1 /* 2 * validator/val_neg.c - validator aggressive negative caching functions. 3 * 4 * Copyright (c) 2008, NLnet Labs. All rights reserved. 5 * 6 * This software is open source. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 12 * Redistributions of source code must retain the above copyright notice, 13 * this list of conditions and the following disclaimer. 14 * 15 * Redistributions in binary form must reproduce the above copyright notice, 16 * this list of conditions and the following disclaimer in the documentation 17 * and/or other materials provided with the distribution. 18 * 19 * Neither the name of the NLNET LABS nor the names of its contributors may 20 * be used to endorse or promote products derived from this software without 21 * specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 24 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 26 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 27 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 28 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 29 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 30 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 31 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 32 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 33 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 34 */ 35 36 /** 37 * \file 38 * 39 * This file contains helper functions for the validator module. 40 * The functions help with aggressive negative caching. 41 * This creates new denials of existence, and proofs for absence of types 42 * from cached NSEC records. 43 */ 44 #include "config.h" 45 #ifdef HAVE_OPENSSL_SSL_H 46 #include <openssl/ssl.h> 47 #define NSEC3_SHA_LEN SHA_DIGEST_LENGTH 48 #else 49 #define NSEC3_SHA_LEN 20 50 #endif 51 #include "validator/val_neg.h" 52 #include "validator/val_nsec.h" 53 #include "validator/val_nsec3.h" 54 #include "validator/val_utils.h" 55 #include "util/data/dname.h" 56 #include "util/data/msgreply.h" 57 #include "util/log.h" 58 #include "util/net_help.h" 59 #include "util/config_file.h" 60 #include "services/cache/rrset.h" 61 #include "services/cache/dns.h" 62 #include "sldns/rrdef.h" 63 #include "sldns/sbuffer.h" 64 65 int val_neg_data_compare(const void* a, const void* b) 66 { 67 struct val_neg_data* x = (struct val_neg_data*)a; 68 struct val_neg_data* y = (struct val_neg_data*)b; 69 int m; 70 return dname_canon_lab_cmp(x->name, x->labs, y->name, y->labs, &m); 71 } 72 73 int val_neg_zone_compare(const void* a, const void* b) 74 { 75 struct val_neg_zone* x = (struct val_neg_zone*)a; 76 struct val_neg_zone* y = (struct val_neg_zone*)b; 77 int m; 78 if(x->dclass != y->dclass) { 79 if(x->dclass < y->dclass) 80 return -1; 81 return 1; 82 } 83 return dname_canon_lab_cmp(x->name, x->labs, y->name, y->labs, &m); 84 } 85 86 struct val_neg_cache* val_neg_create(struct config_file* cfg, size_t maxiter) 87 { 88 struct val_neg_cache* neg = (struct val_neg_cache*)calloc(1, 89 sizeof(*neg)); 90 if(!neg) { 91 log_err("Could not create neg cache: out of memory"); 92 return NULL; 93 } 94 neg->nsec3_max_iter = maxiter; 95 neg->max = 1024*1024; /* 1 M is thousands of entries */ 96 if(cfg) neg->max = cfg->neg_cache_size; 97 rbtree_init(&neg->tree, &val_neg_zone_compare); 98 lock_basic_init(&neg->lock); 99 lock_protect(&neg->lock, neg, sizeof(*neg)); 100 return neg; 101 } 102 103 size_t val_neg_get_mem(struct val_neg_cache* neg) 104 { 105 size_t result; 106 lock_basic_lock(&neg->lock); 107 result = sizeof(*neg) + neg->use; 108 lock_basic_unlock(&neg->lock); 109 return result; 110 } 111 112 /** clear datas on cache deletion */ 113 static void 114 neg_clear_datas(rbnode_type* n, void* ATTR_UNUSED(arg)) 115 { 116 struct val_neg_data* d = (struct val_neg_data*)n; 117 free(d->name); 118 free(d); 119 } 120 121 /** clear zones on cache deletion */ 122 static void 123 neg_clear_zones(rbnode_type* n, void* ATTR_UNUSED(arg)) 124 { 125 struct val_neg_zone* z = (struct val_neg_zone*)n; 126 /* delete all the rrset entries in the tree */ 127 traverse_postorder(&z->tree, &neg_clear_datas, NULL); 128 free(z->nsec3_salt); 129 free(z->name); 130 free(z); 131 } 132 133 void neg_cache_delete(struct val_neg_cache* neg) 134 { 135 if(!neg) return; 136 lock_basic_destroy(&neg->lock); 137 /* delete all the zones in the tree */ 138 traverse_postorder(&neg->tree, &neg_clear_zones, NULL); 139 free(neg); 140 } 141 142 /** 143 * Put data element at the front of the LRU list. 144 * @param neg: negative cache with LRU start and end. 145 * @param data: this data is fronted. 146 */ 147 static void neg_lru_front(struct val_neg_cache* neg, 148 struct val_neg_data* data) 149 { 150 data->prev = NULL; 151 data->next = neg->first; 152 if(!neg->first) 153 neg->last = data; 154 else neg->first->prev = data; 155 neg->first = data; 156 } 157 158 /** 159 * Remove data element from LRU list. 160 * @param neg: negative cache with LRU start and end. 161 * @param data: this data is removed from the list. 162 */ 163 static void neg_lru_remove(struct val_neg_cache* neg, 164 struct val_neg_data* data) 165 { 166 if(data->prev) 167 data->prev->next = data->next; 168 else neg->first = data->next; 169 if(data->next) 170 data->next->prev = data->prev; 171 else neg->last = data->prev; 172 } 173 174 /** 175 * Touch LRU for data element, put it at the start of the LRU list. 176 * @param neg: negative cache with LRU start and end. 177 * @param data: this data is used. 178 */ 179 static void neg_lru_touch(struct val_neg_cache* neg, 180 struct val_neg_data* data) 181 { 182 if(data == neg->first) 183 return; /* nothing to do */ 184 /* remove from current lru position */ 185 neg_lru_remove(neg, data); 186 /* add at front */ 187 neg_lru_front(neg, data); 188 } 189 190 /** 191 * Delete a zone element from the negative cache. 192 * May delete other zone elements to keep tree coherent, or 193 * only mark the element as 'not in use'. 194 * @param neg: negative cache. 195 * @param z: zone element to delete. 196 */ 197 static void neg_delete_zone(struct val_neg_cache* neg, struct val_neg_zone* z) 198 { 199 struct val_neg_zone* p, *np; 200 if(!z) return; 201 log_assert(z->in_use); 202 log_assert(z->count > 0); 203 z->in_use = 0; 204 205 /* go up the tree and reduce counts */ 206 p = z; 207 while(p) { 208 log_assert(p->count > 0); 209 p->count --; 210 p = p->parent; 211 } 212 213 /* remove zones with zero count */ 214 p = z; 215 while(p && p->count == 0) { 216 np = p->parent; 217 (void)rbtree_delete(&neg->tree, &p->node); 218 neg->use -= p->len + sizeof(*p); 219 free(p->nsec3_salt); 220 free(p->name); 221 free(p); 222 p = np; 223 } 224 } 225 226 void neg_delete_data(struct val_neg_cache* neg, struct val_neg_data* el) 227 { 228 struct val_neg_zone* z; 229 struct val_neg_data* p, *np; 230 if(!el) return; 231 z = el->zone; 232 log_assert(el->in_use); 233 log_assert(el->count > 0); 234 el->in_use = 0; 235 236 /* remove it from the lru list */ 237 neg_lru_remove(neg, el); 238 log_assert(neg->first != el && neg->last != el); 239 240 /* go up the tree and reduce counts */ 241 p = el; 242 while(p) { 243 log_assert(p->count > 0); 244 p->count --; 245 p = p->parent; 246 } 247 248 /* delete 0 count items from tree */ 249 p = el; 250 while(p && p->count == 0) { 251 np = p->parent; 252 (void)rbtree_delete(&z->tree, &p->node); 253 neg->use -= p->len + sizeof(*p); 254 free(p->name); 255 free(p); 256 p = np; 257 } 258 259 /* check if the zone is now unused */ 260 if(z->tree.count == 0) { 261 neg_delete_zone(neg, z); 262 } 263 } 264 265 /** 266 * Create more space in negative cache 267 * The oldest elements are deleted until enough space is present. 268 * Empty zones are deleted. 269 * @param neg: negative cache. 270 * @param need: how many bytes are needed. 271 */ 272 static void neg_make_space(struct val_neg_cache* neg, size_t need) 273 { 274 /* delete elements until enough space or its empty */ 275 while(neg->last && neg->max < neg->use + need) { 276 neg_delete_data(neg, neg->last); 277 } 278 } 279 280 struct val_neg_zone* neg_find_zone(struct val_neg_cache* neg, 281 uint8_t* nm, size_t len, uint16_t dclass) 282 { 283 struct val_neg_zone lookfor; 284 struct val_neg_zone* result; 285 lookfor.node.key = &lookfor; 286 lookfor.name = nm; 287 lookfor.len = len; 288 lookfor.labs = dname_count_labels(lookfor.name); 289 lookfor.dclass = dclass; 290 291 result = (struct val_neg_zone*) 292 rbtree_search(&neg->tree, lookfor.node.key); 293 return result; 294 } 295 296 /** 297 * Find the given data 298 * @param zone: negative zone 299 * @param nm: what to look for. 300 * @param len: length of nm 301 * @param labs: labels in nm 302 * @return data or NULL if not found. 303 */ 304 static struct val_neg_data* neg_find_data(struct val_neg_zone* zone, 305 uint8_t* nm, size_t len, int labs) 306 { 307 struct val_neg_data lookfor; 308 struct val_neg_data* result; 309 lookfor.node.key = &lookfor; 310 lookfor.name = nm; 311 lookfor.len = len; 312 lookfor.labs = labs; 313 314 result = (struct val_neg_data*) 315 rbtree_search(&zone->tree, lookfor.node.key); 316 return result; 317 } 318 319 /** 320 * Calculate space needed for the data and all its parents 321 * @param rep: NSEC entries. 322 * @return size. 323 */ 324 static size_t calc_data_need(struct reply_info* rep) 325 { 326 uint8_t* d; 327 size_t i, len, res = 0; 328 329 for(i=rep->an_numrrsets; i<rep->an_numrrsets+rep->ns_numrrsets; i++) { 330 if(ntohs(rep->rrsets[i]->rk.type) == LDNS_RR_TYPE_NSEC) { 331 d = rep->rrsets[i]->rk.dname; 332 len = rep->rrsets[i]->rk.dname_len; 333 res = sizeof(struct val_neg_data) + len; 334 while(!dname_is_root(d)) { 335 log_assert(len > 1); /* not root label */ 336 dname_remove_label(&d, &len); 337 res += sizeof(struct val_neg_data) + len; 338 } 339 } 340 } 341 return res; 342 } 343 344 /** 345 * Calculate space needed for zone and all its parents 346 * @param d: name of zone 347 * @param len: length of name 348 * @return size. 349 */ 350 static size_t calc_zone_need(uint8_t* d, size_t len) 351 { 352 size_t res = sizeof(struct val_neg_zone) + len; 353 while(!dname_is_root(d)) { 354 log_assert(len > 1); /* not root label */ 355 dname_remove_label(&d, &len); 356 res += sizeof(struct val_neg_zone) + len; 357 } 358 return res; 359 } 360 361 /** 362 * Find closest existing parent zone of the given name. 363 * @param neg: negative cache. 364 * @param nm: name to look for 365 * @param nm_len: length of nm 366 * @param labs: labelcount of nm. 367 * @param qclass: class. 368 * @return the zone or NULL if none found. 369 */ 370 static struct val_neg_zone* neg_closest_zone_parent(struct val_neg_cache* neg, 371 uint8_t* nm, size_t nm_len, int labs, uint16_t qclass) 372 { 373 struct val_neg_zone key; 374 struct val_neg_zone* result; 375 rbnode_type* res = NULL; 376 key.node.key = &key; 377 key.name = nm; 378 key.len = nm_len; 379 key.labs = labs; 380 key.dclass = qclass; 381 if(rbtree_find_less_equal(&neg->tree, &key, &res)) { 382 /* exact match */ 383 result = (struct val_neg_zone*)res; 384 } else { 385 /* smaller element (or no element) */ 386 int m; 387 result = (struct val_neg_zone*)res; 388 if(!result || result->dclass != qclass) 389 return NULL; 390 /* count number of labels matched */ 391 (void)dname_lab_cmp(result->name, result->labs, key.name, 392 key.labs, &m); 393 while(result) { /* go up until qname is subdomain of stub */ 394 if(result->labs <= m) 395 break; 396 result = result->parent; 397 } 398 } 399 return result; 400 } 401 402 /** 403 * Find closest existing parent data for the given name. 404 * @param zone: to look in. 405 * @param nm: name to look for 406 * @param nm_len: length of nm 407 * @param labs: labelcount of nm. 408 * @return the data or NULL if none found. 409 */ 410 static struct val_neg_data* neg_closest_data_parent( 411 struct val_neg_zone* zone, uint8_t* nm, size_t nm_len, int labs) 412 { 413 struct val_neg_data key; 414 struct val_neg_data* result; 415 rbnode_type* res = NULL; 416 key.node.key = &key; 417 key.name = nm; 418 key.len = nm_len; 419 key.labs = labs; 420 if(rbtree_find_less_equal(&zone->tree, &key, &res)) { 421 /* exact match */ 422 result = (struct val_neg_data*)res; 423 } else { 424 /* smaller element (or no element) */ 425 int m; 426 result = (struct val_neg_data*)res; 427 if(!result) 428 return NULL; 429 /* count number of labels matched */ 430 (void)dname_lab_cmp(result->name, result->labs, key.name, 431 key.labs, &m); 432 while(result) { /* go up until qname is subdomain of stub */ 433 if(result->labs <= m) 434 break; 435 result = result->parent; 436 } 437 } 438 return result; 439 } 440 441 /** 442 * Create a single zone node 443 * @param nm: name for zone (copied) 444 * @param nm_len: length of name 445 * @param labs: labels in name. 446 * @param dclass: class of zone, host order. 447 * @return new zone or NULL on failure 448 */ 449 static struct val_neg_zone* neg_setup_zone_node( 450 uint8_t* nm, size_t nm_len, int labs, uint16_t dclass) 451 { 452 struct val_neg_zone* zone = 453 (struct val_neg_zone*)calloc(1, sizeof(*zone)); 454 if(!zone) { 455 return NULL; 456 } 457 zone->node.key = zone; 458 zone->name = memdup(nm, nm_len); 459 if(!zone->name) { 460 free(zone); 461 return NULL; 462 } 463 zone->len = nm_len; 464 zone->labs = labs; 465 zone->dclass = dclass; 466 467 rbtree_init(&zone->tree, &val_neg_data_compare); 468 return zone; 469 } 470 471 /** 472 * Create a linked list of parent zones, starting at longname ending on 473 * the parent (can be NULL, creates to the root). 474 * @param nm: name for lowest in chain 475 * @param nm_len: length of name 476 * @param labs: labels in name. 477 * @param dclass: class of zone. 478 * @param parent: NULL for to root, else so it fits under here. 479 * @return zone; a chain of zones and their parents up to the parent. 480 * or NULL on malloc failure 481 */ 482 static struct val_neg_zone* neg_zone_chain( 483 uint8_t* nm, size_t nm_len, int labs, uint16_t dclass, 484 struct val_neg_zone* parent) 485 { 486 int i; 487 int tolabs = parent?parent->labs:0; 488 struct val_neg_zone* zone, *prev = NULL, *first = NULL; 489 490 /* create the new subtree, i is labelcount of current creation */ 491 /* this creates a 'first' to z->parent=NULL list of zones */ 492 for(i=labs; i!=tolabs; i--) { 493 /* create new item */ 494 zone = neg_setup_zone_node(nm, nm_len, i, dclass); 495 if(!zone) { 496 /* need to delete other allocations in this routine!*/ 497 struct val_neg_zone* p=first, *np; 498 while(p) { 499 np = p->parent; 500 free(p->name); 501 free(p); 502 p = np; 503 } 504 return NULL; 505 } 506 if(i == labs) { 507 first = zone; 508 } else { 509 prev->parent = zone; 510 } 511 /* prepare for next name */ 512 prev = zone; 513 dname_remove_label(&nm, &nm_len); 514 } 515 return first; 516 } 517 518 void val_neg_zone_take_inuse(struct val_neg_zone* zone) 519 { 520 if(!zone->in_use) { 521 struct val_neg_zone* p; 522 zone->in_use = 1; 523 /* increase usage count of all parents */ 524 for(p=zone; p; p = p->parent) { 525 p->count++; 526 } 527 } 528 } 529 530 struct val_neg_zone* neg_create_zone(struct val_neg_cache* neg, 531 uint8_t* nm, size_t nm_len, uint16_t dclass) 532 { 533 struct val_neg_zone* zone; 534 struct val_neg_zone* parent; 535 struct val_neg_zone* p, *np; 536 int labs = dname_count_labels(nm); 537 538 /* find closest enclosing parent zone that (still) exists */ 539 parent = neg_closest_zone_parent(neg, nm, nm_len, labs, dclass); 540 if(parent && query_dname_compare(parent->name, nm) == 0) 541 return parent; /* already exists, weird */ 542 /* if parent exists, it is in use */ 543 log_assert(!parent || parent->count > 0); 544 zone = neg_zone_chain(nm, nm_len, labs, dclass, parent); 545 if(!zone) { 546 return NULL; 547 } 548 549 /* insert the list of zones into the tree */ 550 p = zone; 551 while(p) { 552 np = p->parent; 553 /* mem use */ 554 neg->use += sizeof(struct val_neg_zone) + p->len; 555 /* insert in tree */ 556 (void)rbtree_insert(&neg->tree, &p->node); 557 /* last one needs proper parent pointer */ 558 if(np == NULL) 559 p->parent = parent; 560 p = np; 561 } 562 return zone; 563 } 564 565 /** find zone name of message, returns the SOA record */ 566 static struct ub_packed_rrset_key* reply_find_soa(struct reply_info* rep) 567 { 568 size_t i; 569 for(i=rep->an_numrrsets; i< rep->an_numrrsets+rep->ns_numrrsets; i++){ 570 if(ntohs(rep->rrsets[i]->rk.type) == LDNS_RR_TYPE_SOA) 571 return rep->rrsets[i]; 572 } 573 return NULL; 574 } 575 576 /** see if the reply has NSEC records worthy of caching */ 577 static int reply_has_nsec(struct reply_info* rep) 578 { 579 size_t i; 580 struct packed_rrset_data* d; 581 if(rep->security != sec_status_secure) 582 return 0; 583 for(i=rep->an_numrrsets; i< rep->an_numrrsets+rep->ns_numrrsets; i++){ 584 if(ntohs(rep->rrsets[i]->rk.type) == LDNS_RR_TYPE_NSEC) { 585 d = (struct packed_rrset_data*)rep->rrsets[i]-> 586 entry.data; 587 if(d->security == sec_status_secure) 588 return 1; 589 } 590 } 591 return 0; 592 } 593 594 595 /** 596 * Create single node of data element. 597 * @param nm: name (copied) 598 * @param nm_len: length of name 599 * @param labs: labels in name. 600 * @return element with name nm, or NULL malloc failure. 601 */ 602 static struct val_neg_data* neg_setup_data_node( 603 uint8_t* nm, size_t nm_len, int labs) 604 { 605 struct val_neg_data* el; 606 el = (struct val_neg_data*)calloc(1, sizeof(*el)); 607 if(!el) { 608 return NULL; 609 } 610 el->node.key = el; 611 el->name = memdup(nm, nm_len); 612 if(!el->name) { 613 free(el); 614 return NULL; 615 } 616 el->len = nm_len; 617 el->labs = labs; 618 return el; 619 } 620 621 /** 622 * Create chain of data element and parents 623 * @param nm: name 624 * @param nm_len: length of name 625 * @param labs: labels in name. 626 * @param parent: up to where to make, if NULL up to root label. 627 * @return lowest element with name nm, or NULL malloc failure. 628 */ 629 static struct val_neg_data* neg_data_chain( 630 uint8_t* nm, size_t nm_len, int labs, struct val_neg_data* parent) 631 { 632 int i; 633 int tolabs = parent?parent->labs:0; 634 struct val_neg_data* el, *first = NULL, *prev = NULL; 635 636 /* create the new subtree, i is labelcount of current creation */ 637 /* this creates a 'first' to z->parent=NULL list of zones */ 638 for(i=labs; i!=tolabs; i--) { 639 /* create new item */ 640 el = neg_setup_data_node(nm, nm_len, i); 641 if(!el) { 642 /* need to delete other allocations in this routine!*/ 643 struct val_neg_data* p = first, *np; 644 while(p) { 645 np = p->parent; 646 free(p->name); 647 free(p); 648 p = np; 649 } 650 return NULL; 651 } 652 if(i == labs) { 653 first = el; 654 } else { 655 prev->parent = el; 656 } 657 658 /* prepare for next name */ 659 prev = el; 660 dname_remove_label(&nm, &nm_len); 661 } 662 return first; 663 } 664 665 /** 666 * Remove NSEC records between start and end points. 667 * By walking the tree, the tree is sorted canonically. 668 * @param neg: negative cache. 669 * @param zone: the zone 670 * @param el: element to start walking at. 671 * @param nsec: the nsec record with the end point 672 */ 673 static void wipeout(struct val_neg_cache* neg, struct val_neg_zone* zone, 674 struct val_neg_data* el, struct ub_packed_rrset_key* nsec) 675 { 676 struct packed_rrset_data* d = (struct packed_rrset_data*)nsec-> 677 entry.data; 678 uint8_t* end; 679 size_t end_len; 680 int end_labs, m; 681 rbnode_type* walk, *next; 682 struct val_neg_data* cur; 683 uint8_t buf[257]; 684 /* get endpoint */ 685 if(!d || d->count == 0 || d->rr_len[0] < 2+1) 686 return; 687 if(ntohs(nsec->rk.type) == LDNS_RR_TYPE_NSEC) { 688 end = d->rr_data[0]+2; 689 end_len = dname_valid(end, d->rr_len[0]-2); 690 end_labs = dname_count_labels(end); 691 } else { 692 /* NSEC3 */ 693 if(!nsec3_get_nextowner_b32(nsec, 0, buf, sizeof(buf))) 694 return; 695 end = buf; 696 end_labs = dname_count_size_labels(end, &end_len); 697 } 698 699 /* sanity check, both owner and end must be below the zone apex */ 700 if(!dname_subdomain_c(el->name, zone->name) || 701 !dname_subdomain_c(end, zone->name)) 702 return; 703 704 /* detect end of zone NSEC ; wipe until the end of zone */ 705 if(query_dname_compare(end, zone->name) == 0) { 706 end = NULL; 707 } 708 709 walk = rbtree_next(&el->node); 710 while(walk && walk != RBTREE_NULL) { 711 cur = (struct val_neg_data*)walk; 712 /* sanity check: must be larger than start */ 713 if(dname_canon_lab_cmp(cur->name, cur->labs, 714 el->name, el->labs, &m) <= 0) { 715 /* r == 0 skip original record. */ 716 /* r < 0 too small! */ 717 walk = rbtree_next(walk); 718 continue; 719 } 720 /* stop at endpoint, also data at empty nonterminals must be 721 * removed (no NSECs there) so everything between 722 * start and end */ 723 if(end && dname_canon_lab_cmp(cur->name, cur->labs, 724 end, end_labs, &m) >= 0) { 725 break; 726 } 727 /* this element has to be deleted, but we cannot do it 728 * now, because we are walking the tree still ... */ 729 /* get the next element: */ 730 next = rbtree_next(walk); 731 /* now delete the original element, this may trigger 732 * rbtree rebalances, but really, the next element is 733 * the one we need. 734 * But it may trigger delete of other data and the 735 * entire zone. However, if that happens, this is done 736 * by deleting the *parents* of the element for deletion, 737 * and maybe also the entire zone if it is empty. 738 * But parents are smaller in canonical compare, thus, 739 * if a larger element exists, then it is not a parent, 740 * it cannot get deleted, the zone cannot get empty. 741 * If the next==NULL, then zone can be empty. */ 742 if(cur->in_use) 743 neg_delete_data(neg, cur); 744 walk = next; 745 } 746 } 747 748 void neg_insert_data(struct val_neg_cache* neg, 749 struct val_neg_zone* zone, struct ub_packed_rrset_key* nsec) 750 { 751 struct packed_rrset_data* d; 752 struct val_neg_data* parent; 753 struct val_neg_data* el; 754 uint8_t* nm = nsec->rk.dname; 755 size_t nm_len = nsec->rk.dname_len; 756 int labs = dname_count_labels(nsec->rk.dname); 757 758 d = (struct packed_rrset_data*)nsec->entry.data; 759 if( !(d->security == sec_status_secure || 760 (d->security == sec_status_unchecked && d->rrsig_count > 0))) 761 return; 762 log_nametypeclass(VERB_ALGO, "negcache rr", 763 nsec->rk.dname, ntohs(nsec->rk.type), 764 ntohs(nsec->rk.rrset_class)); 765 766 /* find closest enclosing parent data that (still) exists */ 767 parent = neg_closest_data_parent(zone, nm, nm_len, labs); 768 if(parent && query_dname_compare(parent->name, nm) == 0) { 769 /* perfect match already exists */ 770 log_assert(parent->count > 0); 771 el = parent; 772 } else { 773 struct val_neg_data* p, *np; 774 775 /* create subtree for perfect match */ 776 /* if parent exists, it is in use */ 777 log_assert(!parent || parent->count > 0); 778 779 el = neg_data_chain(nm, nm_len, labs, parent); 780 if(!el) { 781 log_err("out of memory inserting NSEC negative cache"); 782 return; 783 } 784 el->in_use = 0; /* set on below */ 785 786 /* insert the list of zones into the tree */ 787 p = el; 788 while(p) { 789 np = p->parent; 790 /* mem use */ 791 neg->use += sizeof(struct val_neg_data) + p->len; 792 /* insert in tree */ 793 p->zone = zone; 794 (void)rbtree_insert(&zone->tree, &p->node); 795 /* last one needs proper parent pointer */ 796 if(np == NULL) 797 p->parent = parent; 798 p = np; 799 } 800 } 801 802 if(!el->in_use) { 803 struct val_neg_data* p; 804 805 el->in_use = 1; 806 /* increase usage count of all parents */ 807 for(p=el; p; p = p->parent) { 808 p->count++; 809 } 810 811 neg_lru_front(neg, el); 812 } else { 813 /* in use, bring to front, lru */ 814 neg_lru_touch(neg, el); 815 } 816 817 /* if nsec3 store last used parameters */ 818 if(ntohs(nsec->rk.type) == LDNS_RR_TYPE_NSEC3) { 819 int h; 820 uint8_t* s; 821 size_t slen, it; 822 if(nsec3_get_params(nsec, 0, &h, &it, &s, &slen) && 823 it <= neg->nsec3_max_iter && 824 (h != zone->nsec3_hash || it != zone->nsec3_iter || 825 slen != zone->nsec3_saltlen || 826 (slen != 0 && zone->nsec3_salt && s 827 && memcmp(zone->nsec3_salt, s, slen) != 0))) { 828 829 if(slen > 0) { 830 uint8_t* sa = memdup(s, slen); 831 if(sa) { 832 free(zone->nsec3_salt); 833 zone->nsec3_salt = sa; 834 zone->nsec3_saltlen = slen; 835 zone->nsec3_iter = it; 836 zone->nsec3_hash = h; 837 } 838 } else { 839 free(zone->nsec3_salt); 840 zone->nsec3_salt = NULL; 841 zone->nsec3_saltlen = 0; 842 zone->nsec3_iter = it; 843 zone->nsec3_hash = h; 844 } 845 } 846 } 847 848 /* wipe out the cache items between NSEC start and end */ 849 wipeout(neg, zone, el, nsec); 850 } 851 852 /** see if the reply has signed NSEC records and return the signer */ 853 static uint8_t* reply_nsec_signer(struct reply_info* rep, size_t* signer_len, 854 uint16_t* dclass) 855 { 856 size_t i; 857 struct packed_rrset_data* d; 858 uint8_t* s; 859 for(i=rep->an_numrrsets; i< rep->an_numrrsets+rep->ns_numrrsets; i++){ 860 if(ntohs(rep->rrsets[i]->rk.type) == LDNS_RR_TYPE_NSEC || 861 ntohs(rep->rrsets[i]->rk.type) == LDNS_RR_TYPE_NSEC3) { 862 d = (struct packed_rrset_data*)rep->rrsets[i]-> 863 entry.data; 864 /* return first signer name of first NSEC */ 865 if(d->rrsig_count != 0) { 866 val_find_rrset_signer(rep->rrsets[i], 867 &s, signer_len); 868 if(s && *signer_len) { 869 *dclass = ntohs(rep->rrsets[i]-> 870 rk.rrset_class); 871 return s; 872 } 873 } 874 } 875 } 876 return 0; 877 } 878 879 void val_neg_addreply(struct val_neg_cache* neg, struct reply_info* rep) 880 { 881 size_t i, need; 882 struct ub_packed_rrset_key* soa; 883 uint8_t* dname = NULL; 884 size_t dname_len; 885 uint16_t rrset_class; 886 struct val_neg_zone* zone; 887 /* see if secure nsecs inside */ 888 if(!reply_has_nsec(rep)) 889 return; 890 /* find the zone name in message */ 891 if((soa = reply_find_soa(rep))) { 892 dname = soa->rk.dname; 893 dname_len = soa->rk.dname_len; 894 rrset_class = ntohs(soa->rk.rrset_class); 895 } 896 else { 897 /* No SOA in positive (wildcard) answer. Use signer from the 898 * validated answer RRsets' signature. */ 899 if(!(dname = reply_nsec_signer(rep, &dname_len, &rrset_class))) 900 return; 901 } 902 903 log_nametypeclass(VERB_ALGO, "negcache insert for zone", 904 dname, LDNS_RR_TYPE_SOA, rrset_class); 905 906 /* ask for enough space to store all of it */ 907 need = calc_data_need(rep) + 908 calc_zone_need(dname, dname_len); 909 lock_basic_lock(&neg->lock); 910 neg_make_space(neg, need); 911 912 /* find or create the zone entry */ 913 zone = neg_find_zone(neg, dname, dname_len, rrset_class); 914 if(!zone) { 915 if(!(zone = neg_create_zone(neg, dname, dname_len, 916 rrset_class))) { 917 lock_basic_unlock(&neg->lock); 918 log_err("out of memory adding negative zone"); 919 return; 920 } 921 } 922 val_neg_zone_take_inuse(zone); 923 924 /* insert the NSECs */ 925 for(i=rep->an_numrrsets; i< rep->an_numrrsets+rep->ns_numrrsets; i++){ 926 if(ntohs(rep->rrsets[i]->rk.type) != LDNS_RR_TYPE_NSEC) 927 continue; 928 if(!dname_subdomain_c(rep->rrsets[i]->rk.dname, 929 zone->name)) continue; 930 /* insert NSEC into this zone's tree */ 931 neg_insert_data(neg, zone, rep->rrsets[i]); 932 } 933 if(zone->tree.count == 0) { 934 /* remove empty zone if inserts failed */ 935 neg_delete_zone(neg, zone); 936 } 937 lock_basic_unlock(&neg->lock); 938 } 939 940 /** 941 * Lookup closest data record. For NSEC denial. 942 * @param zone: zone to look in 943 * @param qname: name to look for. 944 * @param len: length of name 945 * @param labs: labels in name 946 * @param data: data element, exact or smaller or NULL 947 * @return true if exact match. 948 */ 949 static int neg_closest_data(struct val_neg_zone* zone, 950 uint8_t* qname, size_t len, int labs, struct val_neg_data** data) 951 { 952 struct val_neg_data key; 953 rbnode_type* r; 954 key.node.key = &key; 955 key.name = qname; 956 key.len = len; 957 key.labs = labs; 958 if(rbtree_find_less_equal(&zone->tree, &key, &r)) { 959 /* exact match */ 960 *data = (struct val_neg_data*)r; 961 return 1; 962 } else { 963 /* smaller match */ 964 *data = (struct val_neg_data*)r; 965 return 0; 966 } 967 } 968 969 void val_neg_addreferral(struct val_neg_cache* neg, struct reply_info* rep, 970 uint8_t* zone_name) 971 { 972 size_t i, need; 973 uint8_t* signer; 974 size_t signer_len; 975 uint16_t dclass; 976 struct val_neg_zone* zone; 977 /* no SOA in this message, find RRSIG over NSEC's signer name. 978 * note the NSEC records are maybe not validated yet */ 979 signer = reply_nsec_signer(rep, &signer_len, &dclass); 980 if(!signer) 981 return; 982 if(!dname_subdomain_c(signer, zone_name)) { 983 /* the signer is not in the bailiwick, throw it out */ 984 return; 985 } 986 987 log_nametypeclass(VERB_ALGO, "negcache insert referral ", 988 signer, LDNS_RR_TYPE_NS, dclass); 989 990 /* ask for enough space to store all of it */ 991 need = calc_data_need(rep) + calc_zone_need(signer, signer_len); 992 lock_basic_lock(&neg->lock); 993 neg_make_space(neg, need); 994 995 /* find or create the zone entry */ 996 zone = neg_find_zone(neg, signer, signer_len, dclass); 997 if(!zone) { 998 if(!(zone = neg_create_zone(neg, signer, signer_len, 999 dclass))) { 1000 lock_basic_unlock(&neg->lock); 1001 log_err("out of memory adding negative zone"); 1002 return; 1003 } 1004 } 1005 val_neg_zone_take_inuse(zone); 1006 1007 /* insert the NSECs */ 1008 for(i=rep->an_numrrsets; i< rep->an_numrrsets+rep->ns_numrrsets; i++){ 1009 if(ntohs(rep->rrsets[i]->rk.type) != LDNS_RR_TYPE_NSEC && 1010 ntohs(rep->rrsets[i]->rk.type) != LDNS_RR_TYPE_NSEC3) 1011 continue; 1012 if(!dname_subdomain_c(rep->rrsets[i]->rk.dname, 1013 zone->name)) continue; 1014 /* insert NSEC into this zone's tree */ 1015 neg_insert_data(neg, zone, rep->rrsets[i]); 1016 } 1017 if(zone->tree.count == 0) { 1018 /* remove empty zone if inserts failed */ 1019 neg_delete_zone(neg, zone); 1020 } 1021 lock_basic_unlock(&neg->lock); 1022 } 1023 1024 /** 1025 * Check that an NSEC3 rrset does not have a type set. 1026 * None of the nsec3s in a hash-collision are allowed to have the type. 1027 * (since we do not know which one is the nsec3 looked at, flags, ..., we 1028 * ignore the cached item and let it bypass negative caching). 1029 * @param k: the nsec3 rrset to check. 1030 * @param t: type to check 1031 * @return true if no RRs have the type. 1032 */ 1033 static int nsec3_no_type(struct ub_packed_rrset_key* k, uint16_t t) 1034 { 1035 int count = (int)((struct packed_rrset_data*)k->entry.data)->count; 1036 int i; 1037 for(i=0; i<count; i++) 1038 if(nsec3_has_type(k, i, t)) 1039 return 0; 1040 return 1; 1041 } 1042 1043 /** 1044 * See if rrset exists in rrset cache. 1045 * If it does, the bit is checked, and if not expired, it is returned 1046 * allocated in region. 1047 * @param rrset_cache: rrset cache 1048 * @param qname: to lookup rrset name 1049 * @param qname_len: length of qname. 1050 * @param qtype: type of rrset to lookup, host order 1051 * @param qclass: class of rrset to lookup, host order 1052 * @param flags: flags for rrset to lookup 1053 * @param region: where to alloc result 1054 * @param checkbit: if true, a bit in the nsec typemap is checked for absence. 1055 * @param checktype: which bit to check 1056 * @param now: to check ttl against 1057 * @return rrset or NULL 1058 */ 1059 static struct ub_packed_rrset_key* 1060 grab_nsec(struct rrset_cache* rrset_cache, uint8_t* qname, size_t qname_len, 1061 uint16_t qtype, uint16_t qclass, uint32_t flags, 1062 struct regional* region, int checkbit, uint16_t checktype, 1063 time_t now) 1064 { 1065 struct ub_packed_rrset_key* r, *k = rrset_cache_lookup(rrset_cache, 1066 qname, qname_len, qtype, qclass, flags, now, 0); 1067 struct packed_rrset_data* d; 1068 if(!k) return NULL; 1069 d = (struct packed_rrset_data*)k->entry.data; 1070 if(d->ttl < now) { 1071 lock_rw_unlock(&k->entry.lock); 1072 return NULL; 1073 } 1074 /* only secure or unchecked records that have signatures. */ 1075 if( ! ( d->security == sec_status_secure || 1076 (d->security == sec_status_unchecked && 1077 d->rrsig_count > 0) ) ) { 1078 lock_rw_unlock(&k->entry.lock); 1079 return NULL; 1080 } 1081 /* check if checktype is absent */ 1082 if(checkbit && ( 1083 (qtype == LDNS_RR_TYPE_NSEC && nsec_has_type(k, checktype)) || 1084 (qtype == LDNS_RR_TYPE_NSEC3 && !nsec3_no_type(k, checktype)) 1085 )) { 1086 lock_rw_unlock(&k->entry.lock); 1087 return NULL; 1088 } 1089 /* looks OK! copy to region and return it */ 1090 r = packed_rrset_copy_region(k, region, now); 1091 /* if it failed, we return the NULL */ 1092 lock_rw_unlock(&k->entry.lock); 1093 return r; 1094 } 1095 1096 /** 1097 * Get best NSEC record for qname. Might be matching, covering or totally 1098 * useless. 1099 * @param neg_cache: neg cache 1100 * @param qname: to lookup rrset name 1101 * @param qname_len: length of qname. 1102 * @param qclass: class of rrset to lookup, host order 1103 * @param rrset_cache: rrset cache 1104 * @param now: to check ttl against 1105 * @param region: where to alloc result 1106 * @return rrset or NULL 1107 */ 1108 static struct ub_packed_rrset_key* 1109 neg_find_nsec(struct val_neg_cache* neg_cache, uint8_t* qname, size_t qname_len, 1110 uint16_t qclass, struct rrset_cache* rrset_cache, time_t now, 1111 struct regional* region) 1112 { 1113 int labs; 1114 uint32_t flags; 1115 struct val_neg_zone* zone; 1116 struct val_neg_data* data; 1117 struct ub_packed_rrset_key* nsec; 1118 1119 labs = dname_count_labels(qname); 1120 lock_basic_lock(&neg_cache->lock); 1121 zone = neg_closest_zone_parent(neg_cache, qname, qname_len, labs, 1122 qclass); 1123 while(zone && !zone->in_use) 1124 zone = zone->parent; 1125 if(!zone) { 1126 lock_basic_unlock(&neg_cache->lock); 1127 return NULL; 1128 } 1129 1130 /* NSEC only for now */ 1131 if(zone->nsec3_hash) { 1132 lock_basic_unlock(&neg_cache->lock); 1133 return NULL; 1134 } 1135 1136 /* ignore return value, don't care if it is an exact or smaller match */ 1137 (void)neg_closest_data(zone, qname, qname_len, labs, &data); 1138 if(!data) { 1139 lock_basic_unlock(&neg_cache->lock); 1140 return NULL; 1141 } 1142 1143 /* ENT nodes are not in use, try the previous node. If the previous node 1144 * is not in use, we don't have an useful NSEC and give up. */ 1145 if(!data->in_use) { 1146 data = (struct val_neg_data*)rbtree_previous((rbnode_type*)data); 1147 if((rbnode_type*)data == RBTREE_NULL || !data->in_use) { 1148 lock_basic_unlock(&neg_cache->lock); 1149 return NULL; 1150 } 1151 } 1152 1153 flags = 0; 1154 if(query_dname_compare(data->name, zone->name) == 0) 1155 flags = PACKED_RRSET_NSEC_AT_APEX; 1156 1157 nsec = grab_nsec(rrset_cache, data->name, data->len, LDNS_RR_TYPE_NSEC, 1158 zone->dclass, flags, region, 0, 0, now); 1159 lock_basic_unlock(&neg_cache->lock); 1160 return nsec; 1161 } 1162 1163 /** find nsec3 closest encloser in neg cache */ 1164 static struct val_neg_data* 1165 neg_find_nsec3_ce(struct val_neg_zone* zone, uint8_t* qname, size_t qname_len, 1166 int qlabs, sldns_buffer* buf, uint8_t* hashnc, size_t* nclen) 1167 { 1168 struct val_neg_data* data; 1169 uint8_t hashce[NSEC3_SHA_LEN]; 1170 uint8_t b32[257]; 1171 size_t celen, b32len; 1172 1173 *nclen = 0; 1174 while(qlabs > 0) { 1175 /* hash */ 1176 if(!(celen=nsec3_get_hashed(buf, qname, qname_len, 1177 zone->nsec3_hash, zone->nsec3_iter, zone->nsec3_salt, 1178 zone->nsec3_saltlen, hashce, sizeof(hashce)))) 1179 return NULL; 1180 if(!(b32len=nsec3_hash_to_b32(hashce, celen, zone->name, 1181 zone->len, b32, sizeof(b32)))) 1182 return NULL; 1183 1184 /* lookup (exact match only) */ 1185 data = neg_find_data(zone, b32, b32len, zone->labs+1); 1186 if(data && data->in_use) { 1187 /* found ce match! */ 1188 return data; 1189 } 1190 1191 *nclen = celen; 1192 memmove(hashnc, hashce, celen); 1193 dname_remove_label(&qname, &qname_len); 1194 qlabs --; 1195 } 1196 return NULL; 1197 } 1198 1199 /** check nsec3 parameters on nsec3 rrset with current zone values */ 1200 static int 1201 neg_params_ok(struct val_neg_zone* zone, struct ub_packed_rrset_key* rrset) 1202 { 1203 int h; 1204 uint8_t* s; 1205 size_t slen, it; 1206 if(!nsec3_get_params(rrset, 0, &h, &it, &s, &slen)) 1207 return 0; 1208 return (h == zone->nsec3_hash && it == zone->nsec3_iter && 1209 slen == zone->nsec3_saltlen && 1210 (slen != 0 && zone->nsec3_salt && s 1211 && memcmp(zone->nsec3_salt, s, slen) == 0)); 1212 } 1213 1214 /** get next closer for nsec3 proof */ 1215 static struct ub_packed_rrset_key* 1216 neg_nsec3_getnc(struct val_neg_zone* zone, uint8_t* hashnc, size_t nclen, 1217 struct rrset_cache* rrset_cache, struct regional* region, 1218 time_t now, uint8_t* b32, size_t maxb32) 1219 { 1220 struct ub_packed_rrset_key* nc_rrset; 1221 struct val_neg_data* data; 1222 size_t b32len; 1223 1224 if(!(b32len=nsec3_hash_to_b32(hashnc, nclen, zone->name, 1225 zone->len, b32, maxb32))) 1226 return NULL; 1227 (void)neg_closest_data(zone, b32, b32len, zone->labs+1, &data); 1228 if(!data && zone->tree.count != 0) { 1229 /* could be before the first entry ; return the last 1230 * entry (possibly the rollover nsec3 at end) */ 1231 data = (struct val_neg_data*)rbtree_last(&zone->tree); 1232 } 1233 while(data && !data->in_use) 1234 data = data->parent; 1235 if(!data) 1236 return NULL; 1237 /* got a data element in tree, grab it */ 1238 nc_rrset = grab_nsec(rrset_cache, data->name, data->len, 1239 LDNS_RR_TYPE_NSEC3, zone->dclass, 0, region, 0, 0, now); 1240 if(!nc_rrset) 1241 return NULL; 1242 if(!neg_params_ok(zone, nc_rrset)) 1243 return NULL; 1244 return nc_rrset; 1245 } 1246 1247 /** neg cache nsec3 proof procedure*/ 1248 static struct dns_msg* 1249 neg_nsec3_proof_ds(struct val_neg_zone* zone, uint8_t* qname, size_t qname_len, 1250 int qlabs, sldns_buffer* buf, struct rrset_cache* rrset_cache, 1251 struct regional* region, time_t now, uint8_t* topname) 1252 { 1253 struct dns_msg* msg; 1254 struct val_neg_data* data; 1255 uint8_t hashnc[NSEC3_SHA_LEN]; 1256 size_t nclen; 1257 struct ub_packed_rrset_key* ce_rrset, *nc_rrset; 1258 struct nsec3_cached_hash c; 1259 uint8_t nc_b32[257]; 1260 1261 /* for NSEC3 ; determine the closest encloser for which we 1262 * can find an exact match. Remember the hashed lower name, 1263 * since that is the one we need a closest match for. 1264 * If we find a match straight away, then it becomes NODATA. 1265 * Otherwise, NXDOMAIN or if OPTOUT, an insecure delegation. 1266 * Also check that parameters are the same on closest encloser 1267 * and on closest match. 1268 */ 1269 if(!zone->nsec3_hash) 1270 return NULL; /* not nsec3 zone */ 1271 1272 if(!(data=neg_find_nsec3_ce(zone, qname, qname_len, qlabs, buf, 1273 hashnc, &nclen))) { 1274 return NULL; 1275 } 1276 1277 /* grab the ce rrset */ 1278 ce_rrset = grab_nsec(rrset_cache, data->name, data->len, 1279 LDNS_RR_TYPE_NSEC3, zone->dclass, 0, region, 1, 1280 LDNS_RR_TYPE_DS, now); 1281 if(!ce_rrset) 1282 return NULL; 1283 if(!neg_params_ok(zone, ce_rrset)) 1284 return NULL; 1285 1286 if(nclen == 0) { 1287 /* exact match, just check the type bits */ 1288 /* need: -SOA, -DS, +NS */ 1289 if(nsec3_has_type(ce_rrset, 0, LDNS_RR_TYPE_SOA) || 1290 nsec3_has_type(ce_rrset, 0, LDNS_RR_TYPE_DS) || 1291 !nsec3_has_type(ce_rrset, 0, LDNS_RR_TYPE_NS)) 1292 return NULL; 1293 if(!(msg = dns_msg_create(qname, qname_len, 1294 LDNS_RR_TYPE_DS, zone->dclass, region, 1))) 1295 return NULL; 1296 /* TTL reduced in grab_nsec */ 1297 if(!dns_msg_authadd(msg, region, ce_rrset, 0)) 1298 return NULL; 1299 return msg; 1300 } 1301 1302 /* optout is not allowed without knowing the trust-anchor in use, 1303 * otherwise the optout could spoof away that anchor */ 1304 if(!topname) 1305 return NULL; 1306 1307 /* if there is no exact match, it must be in an optout span 1308 * (an existing DS implies an NSEC3 must exist) */ 1309 nc_rrset = neg_nsec3_getnc(zone, hashnc, nclen, rrset_cache, 1310 region, now, nc_b32, sizeof(nc_b32)); 1311 if(!nc_rrset) 1312 return NULL; 1313 if(!neg_params_ok(zone, nc_rrset)) 1314 return NULL; 1315 if(!nsec3_has_optout(nc_rrset, 0)) 1316 return NULL; 1317 c.hash = hashnc; 1318 c.hash_len = nclen; 1319 c.b32 = nc_b32+1; 1320 c.b32_len = (size_t)nc_b32[0]; 1321 if(nsec3_covers(zone->name, &c, nc_rrset, 0, buf)) { 1322 /* nc_rrset covers the next closer name. 1323 * ce_rrset equals a closer encloser. 1324 * nc_rrset is optout. 1325 * No need to check wildcard for type DS */ 1326 /* capacity=3: ce + nc + soa(if needed) */ 1327 if(!(msg = dns_msg_create(qname, qname_len, 1328 LDNS_RR_TYPE_DS, zone->dclass, region, 3))) 1329 return NULL; 1330 /* now=0 because TTL was reduced in grab_nsec */ 1331 if(!dns_msg_authadd(msg, region, ce_rrset, 0)) 1332 return NULL; 1333 if(!dns_msg_authadd(msg, region, nc_rrset, 0)) 1334 return NULL; 1335 return msg; 1336 } 1337 return NULL; 1338 } 1339 1340 /** 1341 * Add SOA record for external responses. 1342 * @param rrset_cache: to look into. 1343 * @param now: current time. 1344 * @param region: where to perform the allocation 1345 * @param msg: current msg with NSEC. 1346 * @param zone: val_neg_zone if we have one. 1347 * @return false on lookup or alloc failure. 1348 */ 1349 static int add_soa(struct rrset_cache* rrset_cache, time_t now, 1350 struct regional* region, struct dns_msg* msg, struct val_neg_zone* zone) 1351 { 1352 struct ub_packed_rrset_key* soa; 1353 uint8_t* nm; 1354 size_t nmlen; 1355 uint16_t dclass; 1356 if(zone) { 1357 nm = zone->name; 1358 nmlen = zone->len; 1359 dclass = zone->dclass; 1360 } else { 1361 /* Assumes the signer is the zone SOA to add */ 1362 nm = reply_nsec_signer(msg->rep, &nmlen, &dclass); 1363 if(!nm) 1364 return 0; 1365 } 1366 soa = rrset_cache_lookup(rrset_cache, nm, nmlen, LDNS_RR_TYPE_SOA, 1367 dclass, PACKED_RRSET_SOA_NEG, now, 0); 1368 if(!soa) 1369 return 0; 1370 if(!dns_msg_authadd(msg, region, soa, now)) { 1371 lock_rw_unlock(&soa->entry.lock); 1372 return 0; 1373 } 1374 lock_rw_unlock(&soa->entry.lock); 1375 return 1; 1376 } 1377 1378 struct dns_msg* 1379 val_neg_getmsg(struct val_neg_cache* neg, struct query_info* qinfo, 1380 struct regional* region, struct rrset_cache* rrset_cache, 1381 sldns_buffer* buf, time_t now, int addsoa, uint8_t* topname, 1382 struct config_file* cfg) 1383 { 1384 struct dns_msg* msg; 1385 struct ub_packed_rrset_key* nsec; /* qname matching/covering nsec */ 1386 struct ub_packed_rrset_key* wcrr; /* wildcard record or nsec */ 1387 uint8_t* nodata_wc = NULL; 1388 uint8_t* ce = NULL; 1389 size_t ce_len; 1390 uint8_t wc_ce[LDNS_MAX_DOMAINLEN+3]; 1391 struct query_info wc_qinfo; 1392 struct ub_packed_rrset_key* cache_wc; 1393 struct packed_rrset_data* wcrr_data; 1394 int rcode = LDNS_RCODE_NOERROR; 1395 uint8_t* zname; 1396 size_t zname_len; 1397 int zname_labs; 1398 struct val_neg_zone* zone; 1399 1400 /* only for DS queries when aggressive use of NSEC is disabled */ 1401 if(qinfo->qtype != LDNS_RR_TYPE_DS && !cfg->aggressive_nsec) 1402 return NULL; 1403 log_assert(!topname || dname_subdomain_c(qinfo->qname, topname)); 1404 1405 /* Get best available NSEC for qname */ 1406 nsec = neg_find_nsec(neg, qinfo->qname, qinfo->qname_len, qinfo->qclass, 1407 rrset_cache, now, region); 1408 1409 /* Matching NSEC, use to generate No Data answer. Not creating answers 1410 * yet for No Data proven using wildcard. */ 1411 if(nsec && nsec_proves_nodata(nsec, qinfo, &nodata_wc) && !nodata_wc) { 1412 /* do not create nodata answers for qtype ANY, it is a query 1413 * type, not an rrtype to disprove. Nameerrors are useful for 1414 * qtype ANY, in the else branch. */ 1415 if(qinfo->qtype == LDNS_RR_TYPE_ANY) 1416 return NULL; 1417 if(!(msg = dns_msg_create(qinfo->qname, qinfo->qname_len, 1418 qinfo->qtype, qinfo->qclass, region, 2))) 1419 return NULL; 1420 if(!dns_msg_authadd(msg, region, nsec, 0)) 1421 return NULL; 1422 if(addsoa && !add_soa(rrset_cache, now, region, msg, NULL)) 1423 return NULL; 1424 1425 lock_basic_lock(&neg->lock); 1426 neg->num_neg_cache_noerror++; 1427 lock_basic_unlock(&neg->lock); 1428 return msg; 1429 } else if(nsec && val_nsec_proves_name_error(nsec, qinfo->qname)) { 1430 if(!(msg = dns_msg_create(qinfo->qname, qinfo->qname_len, 1431 qinfo->qtype, qinfo->qclass, region, 3))) 1432 return NULL; 1433 if(!(ce = nsec_closest_encloser(qinfo->qname, nsec))) 1434 return NULL; 1435 dname_count_size_labels(ce, &ce_len); 1436 1437 /* No extra extra NSEC required if both nameerror qname and 1438 * nodata *.ce. are proven already. */ 1439 if(!nodata_wc || query_dname_compare(nodata_wc, ce) != 0) { 1440 /* Qname proven non existing, get wildcard record for 1441 * QTYPE or NSEC covering or matching wildcard. */ 1442 1443 /* Num labels in ce is always smaller than in qname, 1444 * therefore adding the wildcard label cannot overflow 1445 * buffer. */ 1446 wc_ce[0] = 1; 1447 wc_ce[1] = (uint8_t)'*'; 1448 memmove(wc_ce+2, ce, ce_len); 1449 wc_qinfo.qname = wc_ce; 1450 wc_qinfo.qname_len = ce_len + 2; 1451 wc_qinfo.qtype = qinfo->qtype; 1452 1453 1454 if((cache_wc = rrset_cache_lookup(rrset_cache, wc_qinfo.qname, 1455 wc_qinfo.qname_len, wc_qinfo.qtype, 1456 qinfo->qclass, 0/*flags*/, now, 0/*read only*/))) { 1457 /* Synthesize wildcard answer */ 1458 wcrr_data = (struct packed_rrset_data*)cache_wc->entry.data; 1459 if(!(wcrr_data->security == sec_status_secure || 1460 (wcrr_data->security == sec_status_unchecked && 1461 wcrr_data->rrsig_count > 0))) { 1462 lock_rw_unlock(&cache_wc->entry.lock); 1463 return NULL; 1464 } 1465 if(!(wcrr = packed_rrset_copy_region(cache_wc, 1466 region, now))) { 1467 lock_rw_unlock(&cache_wc->entry.lock); 1468 return NULL; 1469 }; 1470 lock_rw_unlock(&cache_wc->entry.lock); 1471 wcrr->rk.dname = qinfo->qname; 1472 wcrr->rk.dname_len = qinfo->qname_len; 1473 if(!dns_msg_ansadd(msg, region, wcrr, 0)) 1474 return NULL; 1475 /* No SOA needed for wildcard synthesised 1476 * answer. */ 1477 addsoa = 0; 1478 } else { 1479 /* Get wildcard NSEC for possible non existence 1480 * proof */ 1481 if(!(wcrr = neg_find_nsec(neg, wc_qinfo.qname, 1482 wc_qinfo.qname_len, qinfo->qclass, 1483 rrset_cache, now, region))) 1484 return NULL; 1485 1486 nodata_wc = NULL; 1487 if(val_nsec_proves_name_error(wcrr, wc_ce)) 1488 rcode = LDNS_RCODE_NXDOMAIN; 1489 else if(!nsec_proves_nodata(wcrr, &wc_qinfo, 1490 &nodata_wc) || nodata_wc) 1491 /* &nodata_wc shouldn't be set, wc_qinfo 1492 * already contains wildcard domain. */ 1493 /* NSEC doesn't prove anything for 1494 * wildcard. */ 1495 return NULL; 1496 if(query_dname_compare(wcrr->rk.dname, 1497 nsec->rk.dname) != 0) 1498 if(!dns_msg_authadd(msg, region, wcrr, 0)) 1499 return NULL; 1500 } 1501 } 1502 1503 if(!dns_msg_authadd(msg, region, nsec, 0)) 1504 return NULL; 1505 if(addsoa && !add_soa(rrset_cache, now, region, msg, NULL)) 1506 return NULL; 1507 1508 /* Increment statistic counters */ 1509 lock_basic_lock(&neg->lock); 1510 if(rcode == LDNS_RCODE_NOERROR) 1511 neg->num_neg_cache_noerror++; 1512 else if(rcode == LDNS_RCODE_NXDOMAIN) 1513 neg->num_neg_cache_nxdomain++; 1514 lock_basic_unlock(&neg->lock); 1515 1516 FLAGS_SET_RCODE(msg->rep->flags, rcode); 1517 return msg; 1518 } 1519 1520 /* No aggressive use of NSEC3 for now, only proceed for DS types. */ 1521 if(qinfo->qtype != LDNS_RR_TYPE_DS){ 1522 return NULL; 1523 } 1524 /* check NSEC3 neg cache for type DS */ 1525 /* need to look one zone higher for DS type */ 1526 zname = qinfo->qname; 1527 zname_len = qinfo->qname_len; 1528 dname_remove_label(&zname, &zname_len); 1529 zname_labs = dname_count_labels(zname); 1530 1531 /* lookup closest zone */ 1532 lock_basic_lock(&neg->lock); 1533 zone = neg_closest_zone_parent(neg, zname, zname_len, zname_labs, 1534 qinfo->qclass); 1535 while(zone && !zone->in_use) 1536 zone = zone->parent; 1537 /* check that the zone is not too high up so that we do not pick data 1538 * out of a zone that is above the last-seen key (or trust-anchor). */ 1539 if(zone && topname) { 1540 if(!dname_subdomain_c(zone->name, topname)) 1541 zone = NULL; 1542 } 1543 if(!zone) { 1544 lock_basic_unlock(&neg->lock); 1545 return NULL; 1546 } 1547 1548 msg = neg_nsec3_proof_ds(zone, qinfo->qname, qinfo->qname_len, 1549 zname_labs+1, buf, rrset_cache, region, now, topname); 1550 if(msg && addsoa && !add_soa(rrset_cache, now, region, msg, zone)) { 1551 lock_basic_unlock(&neg->lock); 1552 return NULL; 1553 } 1554 lock_basic_unlock(&neg->lock); 1555 return msg; 1556 } 1557