xref: /freebsd/contrib/unbound/validator/val_neg.c (revision b2d48be1bc7df45ddd13b143a160d0acb5a383c5)
1 /*
2  * validator/val_neg.c - validator aggressive negative caching functions.
3  *
4  * Copyright (c) 2008, NLnet Labs. All rights reserved.
5  *
6  * This software is open source.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * Redistributions of source code must retain the above copyright notice,
13  * this list of conditions and the following disclaimer.
14  *
15  * Redistributions in binary form must reproduce the above copyright notice,
16  * this list of conditions and the following disclaimer in the documentation
17  * and/or other materials provided with the distribution.
18  *
19  * Neither the name of the NLNET LABS nor the names of its contributors may
20  * be used to endorse or promote products derived from this software without
21  * specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
27  * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
28  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
29  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
31  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
32  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 /**
37  * \file
38  *
39  * This file contains helper functions for the validator module.
40  * The functions help with aggressive negative caching.
41  * This creates new denials of existance, and proofs for absence of types
42  * from cached NSEC records.
43  */
44 #include "config.h"
45 #ifdef HAVE_OPENSSL_SSL_H
46 #include "openssl/ssl.h"
47 #define NSEC3_SHA_LEN SHA_DIGEST_LENGTH
48 #else
49 #define NSEC3_SHA_LEN 20
50 #endif
51 #include "validator/val_neg.h"
52 #include "validator/val_nsec.h"
53 #include "validator/val_nsec3.h"
54 #include "validator/val_utils.h"
55 #include "util/data/dname.h"
56 #include "util/data/msgreply.h"
57 #include "util/log.h"
58 #include "util/net_help.h"
59 #include "util/config_file.h"
60 #include "services/cache/rrset.h"
61 #include "services/cache/dns.h"
62 #include "sldns/rrdef.h"
63 #include "sldns/sbuffer.h"
64 
65 int val_neg_data_compare(const void* a, const void* b)
66 {
67 	struct val_neg_data* x = (struct val_neg_data*)a;
68 	struct val_neg_data* y = (struct val_neg_data*)b;
69 	int m;
70 	return dname_canon_lab_cmp(x->name, x->labs, y->name, y->labs, &m);
71 }
72 
73 int val_neg_zone_compare(const void* a, const void* b)
74 {
75 	struct val_neg_zone* x = (struct val_neg_zone*)a;
76 	struct val_neg_zone* y = (struct val_neg_zone*)b;
77 	int m;
78 	if(x->dclass != y->dclass) {
79 		if(x->dclass < y->dclass)
80 			return -1;
81 		return 1;
82 	}
83 	return dname_canon_lab_cmp(x->name, x->labs, y->name, y->labs, &m);
84 }
85 
86 struct val_neg_cache* val_neg_create(struct config_file* cfg, size_t maxiter)
87 {
88 	struct val_neg_cache* neg = (struct val_neg_cache*)calloc(1,
89 		sizeof(*neg));
90 	if(!neg) {
91 		log_err("Could not create neg cache: out of memory");
92 		return NULL;
93 	}
94 	neg->nsec3_max_iter = maxiter;
95 	neg->max = 1024*1024; /* 1 M is thousands of entries */
96 	if(cfg) neg->max = cfg->neg_cache_size;
97 	rbtree_init(&neg->tree, &val_neg_zone_compare);
98 	lock_basic_init(&neg->lock);
99 	lock_protect(&neg->lock, neg, sizeof(*neg));
100 	return neg;
101 }
102 
103 size_t val_neg_get_mem(struct val_neg_cache* neg)
104 {
105 	size_t result;
106 	lock_basic_lock(&neg->lock);
107 	result = sizeof(*neg) + neg->use;
108 	lock_basic_unlock(&neg->lock);
109 	return result;
110 }
111 
112 /** clear datas on cache deletion */
113 static void
114 neg_clear_datas(rbnode_t* n, void* ATTR_UNUSED(arg))
115 {
116 	struct val_neg_data* d = (struct val_neg_data*)n;
117 	free(d->name);
118 	free(d);
119 }
120 
121 /** clear zones on cache deletion */
122 static void
123 neg_clear_zones(rbnode_t* n, void* ATTR_UNUSED(arg))
124 {
125 	struct val_neg_zone* z = (struct val_neg_zone*)n;
126 	/* delete all the rrset entries in the tree */
127 	traverse_postorder(&z->tree, &neg_clear_datas, NULL);
128 	free(z->nsec3_salt);
129 	free(z->name);
130 	free(z);
131 }
132 
133 void neg_cache_delete(struct val_neg_cache* neg)
134 {
135 	if(!neg) return;
136 	lock_basic_destroy(&neg->lock);
137 	/* delete all the zones in the tree */
138 	traverse_postorder(&neg->tree, &neg_clear_zones, NULL);
139 	free(neg);
140 }
141 
142 /**
143  * Put data element at the front of the LRU list.
144  * @param neg: negative cache with LRU start and end.
145  * @param data: this data is fronted.
146  */
147 static void neg_lru_front(struct val_neg_cache* neg,
148 	struct val_neg_data* data)
149 {
150 	data->prev = NULL;
151 	data->next = neg->first;
152 	if(!neg->first)
153 		neg->last = data;
154 	else	neg->first->prev = data;
155 	neg->first = data;
156 }
157 
158 /**
159  * Remove data element from LRU list.
160  * @param neg: negative cache with LRU start and end.
161  * @param data: this data is removed from the list.
162  */
163 static void neg_lru_remove(struct val_neg_cache* neg,
164 	struct val_neg_data* data)
165 {
166 	if(data->prev)
167 		data->prev->next = data->next;
168 	else	neg->first = data->next;
169 	if(data->next)
170 		data->next->prev = data->prev;
171 	else	neg->last = data->prev;
172 }
173 
174 /**
175  * Touch LRU for data element, put it at the start of the LRU list.
176  * @param neg: negative cache with LRU start and end.
177  * @param data: this data is used.
178  */
179 static void neg_lru_touch(struct val_neg_cache* neg,
180 	struct val_neg_data* data)
181 {
182 	if(data == neg->first)
183 		return; /* nothing to do */
184 	/* remove from current lru position */
185 	neg_lru_remove(neg, data);
186 	/* add at front */
187 	neg_lru_front(neg, data);
188 }
189 
190 /**
191  * Delete a zone element from the negative cache.
192  * May delete other zone elements to keep tree coherent, or
193  * only mark the element as 'not in use'.
194  * @param neg: negative cache.
195  * @param z: zone element to delete.
196  */
197 static void neg_delete_zone(struct val_neg_cache* neg, struct val_neg_zone* z)
198 {
199 	struct val_neg_zone* p, *np;
200 	if(!z) return;
201 	log_assert(z->in_use);
202 	log_assert(z->count > 0);
203 	z->in_use = 0;
204 
205 	/* go up the tree and reduce counts */
206 	p = z;
207 	while(p) {
208 		log_assert(p->count > 0);
209 		p->count --;
210 		p = p->parent;
211 	}
212 
213 	/* remove zones with zero count */
214 	p = z;
215 	while(p && p->count == 0) {
216 		np = p->parent;
217 		(void)rbtree_delete(&neg->tree, &p->node);
218 		neg->use -= p->len + sizeof(*p);
219 		free(p->nsec3_salt);
220 		free(p->name);
221 		free(p);
222 		p = np;
223 	}
224 }
225 
226 void neg_delete_data(struct val_neg_cache* neg, struct val_neg_data* el)
227 {
228 	struct val_neg_zone* z;
229 	struct val_neg_data* p, *np;
230 	if(!el) return;
231 	z = el->zone;
232 	log_assert(el->in_use);
233 	log_assert(el->count > 0);
234 	el->in_use = 0;
235 
236 	/* remove it from the lru list */
237 	neg_lru_remove(neg, el);
238 
239 	/* go up the tree and reduce counts */
240 	p = el;
241 	while(p) {
242 		log_assert(p->count > 0);
243 		p->count --;
244 		p = p->parent;
245 	}
246 
247 	/* delete 0 count items from tree */
248 	p = el;
249 	while(p && p->count == 0) {
250 		np = p->parent;
251 		(void)rbtree_delete(&z->tree, &p->node);
252 		neg->use -= p->len + sizeof(*p);
253 		free(p->name);
254 		free(p);
255 		p = np;
256 	}
257 
258 	/* check if the zone is now unused */
259 	if(z->tree.count == 0) {
260 		neg_delete_zone(neg, z);
261 	}
262 }
263 
264 /**
265  * Create more space in negative cache
266  * The oldest elements are deleted until enough space is present.
267  * Empty zones are deleted.
268  * @param neg: negative cache.
269  * @param need: how many bytes are needed.
270  */
271 static void neg_make_space(struct val_neg_cache* neg, size_t need)
272 {
273 	/* delete elements until enough space or its empty */
274 	while(neg->last && neg->max < neg->use + need) {
275 		neg_delete_data(neg, neg->last);
276 	}
277 }
278 
279 struct val_neg_zone* neg_find_zone(struct val_neg_cache* neg,
280 	uint8_t* nm, size_t len, uint16_t dclass)
281 {
282 	struct val_neg_zone lookfor;
283 	struct val_neg_zone* result;
284 	lookfor.node.key = &lookfor;
285 	lookfor.name = nm;
286 	lookfor.len = len;
287 	lookfor.labs = dname_count_labels(lookfor.name);
288 	lookfor.dclass = dclass;
289 
290 	result = (struct val_neg_zone*)
291 		rbtree_search(&neg->tree, lookfor.node.key);
292 	return result;
293 }
294 
295 /**
296  * Find the given data
297  * @param zone: negative zone
298  * @param nm: what to look for.
299  * @param len: length of nm
300  * @param labs: labels in nm
301  * @return data or NULL if not found.
302  */
303 static struct val_neg_data* neg_find_data(struct val_neg_zone* zone,
304 	uint8_t* nm, size_t len, int labs)
305 {
306 	struct val_neg_data lookfor;
307 	struct val_neg_data* result;
308 	lookfor.node.key = &lookfor;
309 	lookfor.name = nm;
310 	lookfor.len = len;
311 	lookfor.labs = labs;
312 
313 	result = (struct val_neg_data*)
314 		rbtree_search(&zone->tree, lookfor.node.key);
315 	return result;
316 }
317 
318 /**
319  * Calculate space needed for the data and all its parents
320  * @param rep: NSEC entries.
321  * @return size.
322  */
323 static size_t calc_data_need(struct reply_info* rep)
324 {
325 	uint8_t* d;
326 	size_t i, len, res = 0;
327 
328 	for(i=rep->an_numrrsets; i<rep->an_numrrsets+rep->ns_numrrsets; i++) {
329 		if(ntohs(rep->rrsets[i]->rk.type) == LDNS_RR_TYPE_NSEC) {
330 			d = rep->rrsets[i]->rk.dname;
331 			len = rep->rrsets[i]->rk.dname_len;
332 			res = sizeof(struct val_neg_data) + len;
333 			while(!dname_is_root(d)) {
334 				log_assert(len > 1); /* not root label */
335 				dname_remove_label(&d, &len);
336 				res += sizeof(struct val_neg_data) + len;
337 			}
338 		}
339 	}
340 	return res;
341 }
342 
343 /**
344  * Calculate space needed for zone and all its parents
345  * @param d: name of zone
346  * @param len: length of name
347  * @return size.
348  */
349 static size_t calc_zone_need(uint8_t* d, size_t len)
350 {
351 	size_t res = sizeof(struct val_neg_zone) + len;
352 	while(!dname_is_root(d)) {
353 		log_assert(len > 1); /* not root label */
354 		dname_remove_label(&d, &len);
355 		res += sizeof(struct val_neg_zone) + len;
356 	}
357 	return res;
358 }
359 
360 /**
361  * Find closest existing parent zone of the given name.
362  * @param neg: negative cache.
363  * @param nm: name to look for
364  * @param nm_len: length of nm
365  * @param labs: labelcount of nm.
366  * @param qclass: class.
367  * @return the zone or NULL if none found.
368  */
369 static struct val_neg_zone* neg_closest_zone_parent(struct val_neg_cache* neg,
370 	uint8_t* nm, size_t nm_len, int labs, uint16_t qclass)
371 {
372 	struct val_neg_zone key;
373 	struct val_neg_zone* result;
374 	rbnode_t* res = NULL;
375 	key.node.key = &key;
376 	key.name = nm;
377 	key.len = nm_len;
378 	key.labs = labs;
379 	key.dclass = qclass;
380 	if(rbtree_find_less_equal(&neg->tree, &key, &res)) {
381 		/* exact match */
382 		result = (struct val_neg_zone*)res;
383 	} else {
384 		/* smaller element (or no element) */
385 		int m;
386 		result = (struct val_neg_zone*)res;
387 		if(!result || result->dclass != qclass)
388 			return NULL;
389 		/* count number of labels matched */
390 		(void)dname_lab_cmp(result->name, result->labs, key.name,
391 			key.labs, &m);
392 		while(result) { /* go up until qname is subdomain of stub */
393 			if(result->labs <= m)
394 				break;
395 			result = result->parent;
396 		}
397 	}
398 	return result;
399 }
400 
401 /**
402  * Find closest existing parent data for the given name.
403  * @param zone: to look in.
404  * @param nm: name to look for
405  * @param nm_len: length of nm
406  * @param labs: labelcount of nm.
407  * @return the data or NULL if none found.
408  */
409 static struct val_neg_data* neg_closest_data_parent(
410 	struct val_neg_zone* zone, uint8_t* nm, size_t nm_len, int labs)
411 {
412 	struct val_neg_data key;
413 	struct val_neg_data* result;
414 	rbnode_t* res = NULL;
415 	key.node.key = &key;
416 	key.name = nm;
417 	key.len = nm_len;
418 	key.labs = labs;
419 	if(rbtree_find_less_equal(&zone->tree, &key, &res)) {
420 		/* exact match */
421 		result = (struct val_neg_data*)res;
422 	} else {
423 		/* smaller element (or no element) */
424 		int m;
425 		result = (struct val_neg_data*)res;
426 		if(!result)
427 			return NULL;
428 		/* count number of labels matched */
429 		(void)dname_lab_cmp(result->name, result->labs, key.name,
430 			key.labs, &m);
431 		while(result) { /* go up until qname is subdomain of stub */
432 			if(result->labs <= m)
433 				break;
434 			result = result->parent;
435 		}
436 	}
437 	return result;
438 }
439 
440 /**
441  * Create a single zone node
442  * @param nm: name for zone (copied)
443  * @param nm_len: length of name
444  * @param labs: labels in name.
445  * @param dclass: class of zone, host order.
446  * @return new zone or NULL on failure
447  */
448 static struct val_neg_zone* neg_setup_zone_node(
449 	uint8_t* nm, size_t nm_len, int labs, uint16_t dclass)
450 {
451 	struct val_neg_zone* zone =
452 		(struct val_neg_zone*)calloc(1, sizeof(*zone));
453 	if(!zone) {
454 		return NULL;
455 	}
456 	zone->node.key = zone;
457 	zone->name = memdup(nm, nm_len);
458 	if(!zone->name) {
459 		free(zone);
460 		return NULL;
461 	}
462 	zone->len = nm_len;
463 	zone->labs = labs;
464 	zone->dclass = dclass;
465 
466 	rbtree_init(&zone->tree, &val_neg_data_compare);
467 	return zone;
468 }
469 
470 /**
471  * Create a linked list of parent zones, starting at longname ending on
472  * the parent (can be NULL, creates to the root).
473  * @param nm: name for lowest in chain
474  * @param nm_len: length of name
475  * @param labs: labels in name.
476  * @param dclass: class of zone.
477  * @param parent: NULL for to root, else so it fits under here.
478  * @return zone; a chain of zones and their parents up to the parent.
479  *  	or NULL on malloc failure
480  */
481 static struct val_neg_zone* neg_zone_chain(
482 	uint8_t* nm, size_t nm_len, int labs, uint16_t dclass,
483 	struct val_neg_zone* parent)
484 {
485 	int i;
486 	int tolabs = parent?parent->labs:0;
487 	struct val_neg_zone* zone, *prev = NULL, *first = NULL;
488 
489 	/* create the new subtree, i is labelcount of current creation */
490 	/* this creates a 'first' to z->parent=NULL list of zones */
491 	for(i=labs; i!=tolabs; i--) {
492 		/* create new item */
493 		zone = neg_setup_zone_node(nm, nm_len, i, dclass);
494 		if(!zone) {
495 			/* need to delete other allocations in this routine!*/
496 			struct val_neg_zone* p=first, *np;
497 			while(p) {
498 				np = p->parent;
499 				free(p->name);
500 				free(p);
501 				p = np;
502 			}
503 			return NULL;
504 		}
505 		if(i == labs) {
506 			first = zone;
507 		} else {
508 			prev->parent = zone;
509 		}
510 		/* prepare for next name */
511 		prev = zone;
512 		dname_remove_label(&nm, &nm_len);
513 	}
514 	return first;
515 }
516 
517 void val_neg_zone_take_inuse(struct val_neg_zone* zone)
518 {
519 	if(!zone->in_use) {
520 		struct val_neg_zone* p;
521 		zone->in_use = 1;
522 		/* increase usage count of all parents */
523 		for(p=zone; p; p = p->parent) {
524 			p->count++;
525 		}
526 	}
527 }
528 
529 struct val_neg_zone* neg_create_zone(struct val_neg_cache* neg,
530 	uint8_t* nm, size_t nm_len, uint16_t dclass)
531 {
532 	struct val_neg_zone* zone;
533 	struct val_neg_zone* parent;
534 	struct val_neg_zone* p, *np;
535 	int labs = dname_count_labels(nm);
536 
537 	/* find closest enclosing parent zone that (still) exists */
538 	parent = neg_closest_zone_parent(neg, nm, nm_len, labs, dclass);
539 	if(parent && query_dname_compare(parent->name, nm) == 0)
540 		return parent; /* already exists, weird */
541 	/* if parent exists, it is in use */
542 	log_assert(!parent || parent->count > 0);
543 	zone = neg_zone_chain(nm, nm_len, labs, dclass, parent);
544 	if(!zone) {
545 		return NULL;
546 	}
547 
548 	/* insert the list of zones into the tree */
549 	p = zone;
550 	while(p) {
551 		np = p->parent;
552 		/* mem use */
553 		neg->use += sizeof(struct val_neg_zone) + p->len;
554 		/* insert in tree */
555 		(void)rbtree_insert(&neg->tree, &p->node);
556 		/* last one needs proper parent pointer */
557 		if(np == NULL)
558 			p->parent = parent;
559 		p = np;
560 	}
561 	return zone;
562 }
563 
564 /** find zone name of message, returns the SOA record */
565 static struct ub_packed_rrset_key* reply_find_soa(struct reply_info* rep)
566 {
567 	size_t i;
568 	for(i=rep->an_numrrsets; i< rep->an_numrrsets+rep->ns_numrrsets; i++){
569 		if(ntohs(rep->rrsets[i]->rk.type) == LDNS_RR_TYPE_SOA)
570 			return rep->rrsets[i];
571 	}
572 	return NULL;
573 }
574 
575 /** see if the reply has NSEC records worthy of caching */
576 static int reply_has_nsec(struct reply_info* rep)
577 {
578 	size_t i;
579 	struct packed_rrset_data* d;
580 	if(rep->security != sec_status_secure)
581 		return 0;
582 	for(i=rep->an_numrrsets; i< rep->an_numrrsets+rep->ns_numrrsets; i++){
583 		if(ntohs(rep->rrsets[i]->rk.type) == LDNS_RR_TYPE_NSEC) {
584 			d = (struct packed_rrset_data*)rep->rrsets[i]->
585 				entry.data;
586 			if(d->security == sec_status_secure)
587 				return 1;
588 		}
589 	}
590 	return 0;
591 }
592 
593 
594 /**
595  * Create single node of data element.
596  * @param nm: name (copied)
597  * @param nm_len: length of name
598  * @param labs: labels in name.
599  * @return element with name nm, or NULL malloc failure.
600  */
601 static struct val_neg_data* neg_setup_data_node(
602 	uint8_t* nm, size_t nm_len, int labs)
603 {
604 	struct val_neg_data* el;
605 	el = (struct val_neg_data*)calloc(1, sizeof(*el));
606 	if(!el) {
607 		return NULL;
608 	}
609 	el->node.key = el;
610 	el->name = memdup(nm, nm_len);
611 	if(!el->name) {
612 		free(el);
613 		return NULL;
614 	}
615 	el->len = nm_len;
616 	el->labs = labs;
617 	return el;
618 }
619 
620 /**
621  * Create chain of data element and parents
622  * @param nm: name
623  * @param nm_len: length of name
624  * @param labs: labels in name.
625  * @param parent: up to where to make, if NULL up to root label.
626  * @return lowest element with name nm, or NULL malloc failure.
627  */
628 static struct val_neg_data* neg_data_chain(
629 	uint8_t* nm, size_t nm_len, int labs, struct val_neg_data* parent)
630 {
631 	int i;
632 	int tolabs = parent?parent->labs:0;
633 	struct val_neg_data* el, *first = NULL, *prev = NULL;
634 
635 	/* create the new subtree, i is labelcount of current creation */
636 	/* this creates a 'first' to z->parent=NULL list of zones */
637 	for(i=labs; i!=tolabs; i--) {
638 		/* create new item */
639 		el = neg_setup_data_node(nm, nm_len, i);
640 		if(!el) {
641 			/* need to delete other allocations in this routine!*/
642 			struct val_neg_data* p = first, *np;
643 			while(p) {
644 				np = p->parent;
645 				free(p->name);
646 				free(p);
647 				p = np;
648 			}
649 			return NULL;
650 		}
651 		if(i == labs) {
652 			first = el;
653 		} else {
654 			prev->parent = el;
655 		}
656 
657 		/* prepare for next name */
658 		prev = el;
659 		dname_remove_label(&nm, &nm_len);
660 	}
661 	return first;
662 }
663 
664 /**
665  * Remove NSEC records between start and end points.
666  * By walking the tree, the tree is sorted canonically.
667  * @param neg: negative cache.
668  * @param zone: the zone
669  * @param el: element to start walking at.
670  * @param nsec: the nsec record with the end point
671  */
672 static void wipeout(struct val_neg_cache* neg, struct val_neg_zone* zone,
673 	struct val_neg_data* el, struct ub_packed_rrset_key* nsec)
674 {
675 	struct packed_rrset_data* d = (struct packed_rrset_data*)nsec->
676 		entry.data;
677 	uint8_t* end;
678 	size_t end_len;
679 	int end_labs, m;
680 	rbnode_t* walk, *next;
681 	struct val_neg_data* cur;
682 	uint8_t buf[257];
683 	/* get endpoint */
684 	if(!d || d->count == 0 || d->rr_len[0] < 2+1)
685 		return;
686 	if(ntohs(nsec->rk.type) == LDNS_RR_TYPE_NSEC) {
687 		end = d->rr_data[0]+2;
688 		end_len = dname_valid(end, d->rr_len[0]-2);
689 		end_labs = dname_count_labels(end);
690 	} else {
691 		/* NSEC3 */
692 		if(!nsec3_get_nextowner_b32(nsec, 0, buf, sizeof(buf)))
693 			return;
694 		end = buf;
695 		end_labs = dname_count_size_labels(end, &end_len);
696 	}
697 
698 	/* sanity check, both owner and end must be below the zone apex */
699 	if(!dname_subdomain_c(el->name, zone->name) ||
700 		!dname_subdomain_c(end, zone->name))
701 		return;
702 
703 	/* detect end of zone NSEC ; wipe until the end of zone */
704 	if(query_dname_compare(end, zone->name) == 0) {
705 		end = NULL;
706 	}
707 
708 	walk = rbtree_next(&el->node);
709 	while(walk && walk != RBTREE_NULL) {
710 		cur = (struct val_neg_data*)walk;
711 		/* sanity check: must be larger than start */
712 		if(dname_canon_lab_cmp(cur->name, cur->labs,
713 			el->name, el->labs, &m) <= 0) {
714 			/* r == 0 skip original record. */
715 			/* r < 0  too small! */
716 			walk = rbtree_next(walk);
717 			continue;
718 		}
719 		/* stop at endpoint, also data at empty nonterminals must be
720 		 * removed (no NSECs there) so everything between
721 		 * start and end */
722 		if(end && dname_canon_lab_cmp(cur->name, cur->labs,
723 			end, end_labs, &m) >= 0) {
724 			break;
725 		}
726 		/* this element has to be deleted, but we cannot do it
727 		 * now, because we are walking the tree still ... */
728 		/* get the next element: */
729 		next = rbtree_next(walk);
730 		/* now delete the original element, this may trigger
731 		 * rbtree rebalances, but really, the next element is
732 		 * the one we need.
733 		 * But it may trigger delete of other data and the
734 		 * entire zone. However, if that happens, this is done
735 		 * by deleting the *parents* of the element for deletion,
736 		 * and maybe also the entire zone if it is empty.
737 		 * But parents are smaller in canonical compare, thus,
738 		 * if a larger element exists, then it is not a parent,
739 		 * it cannot get deleted, the zone cannot get empty.
740 		 * If the next==NULL, then zone can be empty. */
741 		if(cur->in_use)
742 			neg_delete_data(neg, cur);
743 		walk = next;
744 	}
745 }
746 
747 void neg_insert_data(struct val_neg_cache* neg,
748 	struct val_neg_zone* zone, struct ub_packed_rrset_key* nsec)
749 {
750 	struct packed_rrset_data* d;
751 	struct val_neg_data* parent;
752 	struct val_neg_data* el;
753 	uint8_t* nm = nsec->rk.dname;
754 	size_t nm_len = nsec->rk.dname_len;
755 	int labs = dname_count_labels(nsec->rk.dname);
756 
757 	d = (struct packed_rrset_data*)nsec->entry.data;
758 	if( !(d->security == sec_status_secure ||
759 		(d->security == sec_status_unchecked && d->rrsig_count > 0)))
760 		return;
761 	log_nametypeclass(VERB_ALGO, "negcache rr",
762 		nsec->rk.dname, ntohs(nsec->rk.type),
763 		ntohs(nsec->rk.rrset_class));
764 
765 	/* find closest enclosing parent data that (still) exists */
766 	parent = neg_closest_data_parent(zone, nm, nm_len, labs);
767 	if(parent && query_dname_compare(parent->name, nm) == 0) {
768 		/* perfect match already exists */
769 		log_assert(parent->count > 0);
770 		el = parent;
771 	} else {
772 		struct val_neg_data* p, *np;
773 
774 		/* create subtree for perfect match */
775 		/* if parent exists, it is in use */
776 		log_assert(!parent || parent->count > 0);
777 
778 		el = neg_data_chain(nm, nm_len, labs, parent);
779 		if(!el) {
780 			log_err("out of memory inserting NSEC negative cache");
781 			return;
782 		}
783 		el->in_use = 0; /* set on below */
784 
785 		/* insert the list of zones into the tree */
786 		p = el;
787 		while(p) {
788 			np = p->parent;
789 			/* mem use */
790 			neg->use += sizeof(struct val_neg_data) + p->len;
791 			/* insert in tree */
792 			p->zone = zone;
793 			(void)rbtree_insert(&zone->tree, &p->node);
794 			/* last one needs proper parent pointer */
795 			if(np == NULL)
796 				p->parent = parent;
797 			p = np;
798 		}
799 	}
800 
801 	if(!el->in_use) {
802 		struct val_neg_data* p;
803 
804 		el->in_use = 1;
805 		/* increase usage count of all parents */
806 		for(p=el; p; p = p->parent) {
807 			p->count++;
808 		}
809 
810 		neg_lru_front(neg, el);
811 	} else {
812 		/* in use, bring to front, lru */
813 		neg_lru_touch(neg, el);
814 	}
815 
816 	/* if nsec3 store last used parameters */
817 	if(ntohs(nsec->rk.type) == LDNS_RR_TYPE_NSEC3) {
818 		int h;
819 		uint8_t* s;
820 		size_t slen, it;
821 		if(nsec3_get_params(nsec, 0, &h, &it, &s, &slen) &&
822 			it <= neg->nsec3_max_iter &&
823 			(h != zone->nsec3_hash || it != zone->nsec3_iter ||
824 			slen != zone->nsec3_saltlen ||
825 			memcmp(zone->nsec3_salt, s, slen) != 0)) {
826 			uint8_t* sa = memdup(s, slen);
827 			if(sa) {
828 				free(zone->nsec3_salt);
829 				zone->nsec3_salt = sa;
830 				zone->nsec3_saltlen = slen;
831 				zone->nsec3_hash = h;
832 				zone->nsec3_iter = it;
833 			}
834 		}
835 	}
836 
837 	/* wipe out the cache items between NSEC start and end */
838 	wipeout(neg, zone, el, nsec);
839 }
840 
841 void val_neg_addreply(struct val_neg_cache* neg, struct reply_info* rep)
842 {
843 	size_t i, need;
844 	struct ub_packed_rrset_key* soa;
845 	struct val_neg_zone* zone;
846 	/* see if secure nsecs inside */
847 	if(!reply_has_nsec(rep))
848 		return;
849 	/* find the zone name in message */
850 	soa = reply_find_soa(rep);
851 	if(!soa)
852 		return;
853 
854 	log_nametypeclass(VERB_ALGO, "negcache insert for zone",
855 		soa->rk.dname, LDNS_RR_TYPE_SOA, ntohs(soa->rk.rrset_class));
856 
857 	/* ask for enough space to store all of it */
858 	need = calc_data_need(rep) +
859 		calc_zone_need(soa->rk.dname, soa->rk.dname_len);
860 	lock_basic_lock(&neg->lock);
861 	neg_make_space(neg, need);
862 
863 	/* find or create the zone entry */
864 	zone = neg_find_zone(neg, soa->rk.dname, soa->rk.dname_len,
865 		ntohs(soa->rk.rrset_class));
866 	if(!zone) {
867 		if(!(zone = neg_create_zone(neg, soa->rk.dname,
868 			soa->rk.dname_len, ntohs(soa->rk.rrset_class)))) {
869 			lock_basic_unlock(&neg->lock);
870 			log_err("out of memory adding negative zone");
871 			return;
872 		}
873 	}
874 	val_neg_zone_take_inuse(zone);
875 
876 	/* insert the NSECs */
877 	for(i=rep->an_numrrsets; i< rep->an_numrrsets+rep->ns_numrrsets; i++){
878 		if(ntohs(rep->rrsets[i]->rk.type) != LDNS_RR_TYPE_NSEC)
879 			continue;
880 		if(!dname_subdomain_c(rep->rrsets[i]->rk.dname,
881 			zone->name)) continue;
882 		/* insert NSEC into this zone's tree */
883 		neg_insert_data(neg, zone, rep->rrsets[i]);
884 	}
885 	if(zone->tree.count == 0) {
886 		/* remove empty zone if inserts failed */
887 		neg_delete_zone(neg, zone);
888 	}
889 	lock_basic_unlock(&neg->lock);
890 }
891 
892 /**
893  * Lookup closest data record. For NSEC denial.
894  * @param zone: zone to look in
895  * @param qname: name to look for.
896  * @param len: length of name
897  * @param labs: labels in name
898  * @param data: data element, exact or smaller or NULL
899  * @return true if exact match.
900  */
901 static int neg_closest_data(struct val_neg_zone* zone,
902 	uint8_t* qname, size_t len, int labs, struct val_neg_data** data)
903 {
904 	struct val_neg_data key;
905 	rbnode_t* r;
906 	key.node.key = &key;
907 	key.name = qname;
908 	key.len = len;
909 	key.labs = labs;
910 	if(rbtree_find_less_equal(&zone->tree, &key, &r)) {
911 		/* exact match */
912 		*data = (struct val_neg_data*)r;
913 		return 1;
914 	} else {
915 		/* smaller match */
916 		*data = (struct val_neg_data*)r;
917 		return 0;
918 	}
919 }
920 
921 int val_neg_dlvlookup(struct val_neg_cache* neg, uint8_t* qname, size_t len,
922         uint16_t qclass, struct rrset_cache* rrset_cache, time_t now)
923 {
924 	/* lookup closest zone */
925 	struct val_neg_zone* zone;
926 	struct val_neg_data* data;
927 	int labs;
928 	struct ub_packed_rrset_key* nsec;
929 	struct packed_rrset_data* d;
930 	uint32_t flags;
931 	uint8_t* wc;
932 	struct query_info qinfo;
933 	if(!neg) return 0;
934 
935 	log_nametypeclass(VERB_ALGO, "negcache dlvlookup", qname,
936 		LDNS_RR_TYPE_DLV, qclass);
937 
938 	labs = dname_count_labels(qname);
939 	lock_basic_lock(&neg->lock);
940 	zone = neg_closest_zone_parent(neg, qname, len, labs, qclass);
941 	while(zone && !zone->in_use)
942 		zone = zone->parent;
943 	if(!zone) {
944 		lock_basic_unlock(&neg->lock);
945 		return 0;
946 	}
947 	log_nametypeclass(VERB_ALGO, "negcache zone", zone->name, 0,
948 		zone->dclass);
949 
950 	/* DLV is defined to use NSEC only */
951 	if(zone->nsec3_hash) {
952 		lock_basic_unlock(&neg->lock);
953 		return 0;
954 	}
955 
956 	/* lookup closest data record */
957 	(void)neg_closest_data(zone, qname, len, labs, &data);
958 	while(data && !data->in_use)
959 		data = data->parent;
960 	if(!data) {
961 		lock_basic_unlock(&neg->lock);
962 		return 0;
963 	}
964 	log_nametypeclass(VERB_ALGO, "negcache rr", data->name,
965 		LDNS_RR_TYPE_NSEC, zone->dclass);
966 
967 	/* lookup rrset in rrset cache */
968 	flags = 0;
969 	if(query_dname_compare(data->name, zone->name) == 0)
970 		flags = PACKED_RRSET_NSEC_AT_APEX;
971 	nsec = rrset_cache_lookup(rrset_cache, data->name, data->len,
972 		LDNS_RR_TYPE_NSEC, zone->dclass, flags, now, 0);
973 
974 	/* check if secure and TTL ok */
975 	if(!nsec) {
976 		lock_basic_unlock(&neg->lock);
977 		return 0;
978 	}
979 	d = (struct packed_rrset_data*)nsec->entry.data;
980 	if(!d || now > d->ttl) {
981 		lock_rw_unlock(&nsec->entry.lock);
982 		/* delete data record if expired */
983 		neg_delete_data(neg, data);
984 		lock_basic_unlock(&neg->lock);
985 		return 0;
986 	}
987 	if(d->security != sec_status_secure) {
988 		lock_rw_unlock(&nsec->entry.lock);
989 		neg_delete_data(neg, data);
990 		lock_basic_unlock(&neg->lock);
991 		return 0;
992 	}
993 	verbose(VERB_ALGO, "negcache got secure rrset");
994 
995 	/* check NSEC security */
996 	/* check if NSEC proves no DLV type exists */
997 	/* check if NSEC proves NXDOMAIN for qname */
998 	qinfo.qname = qname;
999 	qinfo.qtype = LDNS_RR_TYPE_DLV;
1000 	qinfo.qclass = qclass;
1001 	if(!nsec_proves_nodata(nsec, &qinfo, &wc) &&
1002 		!val_nsec_proves_name_error(nsec, qname)) {
1003 		/* the NSEC is not a denial for the DLV */
1004 		lock_rw_unlock(&nsec->entry.lock);
1005 		lock_basic_unlock(&neg->lock);
1006 		verbose(VERB_ALGO, "negcache not proven");
1007 		return 0;
1008 	}
1009 	/* so the NSEC was a NODATA proof, or NXDOMAIN proof. */
1010 
1011 	/* no need to check for wildcard NSEC; no wildcards in DLV repos */
1012 	/* no need to lookup SOA record for client; no response message */
1013 
1014 	lock_rw_unlock(&nsec->entry.lock);
1015 	/* if OK touch the LRU for neg_data element */
1016 	neg_lru_touch(neg, data);
1017 	lock_basic_unlock(&neg->lock);
1018 	verbose(VERB_ALGO, "negcache DLV denial proven");
1019 	return 1;
1020 }
1021 
1022 /** see if the reply has signed NSEC records and return the signer */
1023 static uint8_t* reply_nsec_signer(struct reply_info* rep, size_t* signer_len,
1024 	uint16_t* dclass)
1025 {
1026 	size_t i;
1027 	struct packed_rrset_data* d;
1028 	uint8_t* s;
1029 	for(i=rep->an_numrrsets; i< rep->an_numrrsets+rep->ns_numrrsets; i++){
1030 		if(ntohs(rep->rrsets[i]->rk.type) == LDNS_RR_TYPE_NSEC ||
1031 			ntohs(rep->rrsets[i]->rk.type) == LDNS_RR_TYPE_NSEC3) {
1032 			d = (struct packed_rrset_data*)rep->rrsets[i]->
1033 				entry.data;
1034 			/* return first signer name of first NSEC */
1035 			if(d->rrsig_count != 0) {
1036 				val_find_rrset_signer(rep->rrsets[i],
1037 					&s, signer_len);
1038 				if(s && *signer_len) {
1039 					*dclass = ntohs(rep->rrsets[i]->
1040 						rk.rrset_class);
1041 					return s;
1042 				}
1043 			}
1044 		}
1045 	}
1046 	return 0;
1047 }
1048 
1049 void val_neg_addreferral(struct val_neg_cache* neg, struct reply_info* rep,
1050 	uint8_t* zone_name)
1051 {
1052 	size_t i, need;
1053 	uint8_t* signer;
1054 	size_t signer_len;
1055 	uint16_t dclass;
1056 	struct val_neg_zone* zone;
1057 	/* no SOA in this message, find RRSIG over NSEC's signer name.
1058 	 * note the NSEC records are maybe not validated yet */
1059 	signer = reply_nsec_signer(rep, &signer_len, &dclass);
1060 	if(!signer)
1061 		return;
1062 	if(!dname_subdomain_c(signer, zone_name)) {
1063 		/* the signer is not in the bailiwick, throw it out */
1064 		return;
1065 	}
1066 
1067 	log_nametypeclass(VERB_ALGO, "negcache insert referral ",
1068 		signer, LDNS_RR_TYPE_NS, dclass);
1069 
1070 	/* ask for enough space to store all of it */
1071 	need = calc_data_need(rep) + calc_zone_need(signer, signer_len);
1072 	lock_basic_lock(&neg->lock);
1073 	neg_make_space(neg, need);
1074 
1075 	/* find or create the zone entry */
1076 	zone = neg_find_zone(neg, signer, signer_len, dclass);
1077 	if(!zone) {
1078 		if(!(zone = neg_create_zone(neg, signer, signer_len,
1079 			dclass))) {
1080 			lock_basic_unlock(&neg->lock);
1081 			log_err("out of memory adding negative zone");
1082 			return;
1083 		}
1084 	}
1085 	val_neg_zone_take_inuse(zone);
1086 
1087 	/* insert the NSECs */
1088 	for(i=rep->an_numrrsets; i< rep->an_numrrsets+rep->ns_numrrsets; i++){
1089 		if(ntohs(rep->rrsets[i]->rk.type) != LDNS_RR_TYPE_NSEC &&
1090 			ntohs(rep->rrsets[i]->rk.type) != LDNS_RR_TYPE_NSEC3)
1091 			continue;
1092 		if(!dname_subdomain_c(rep->rrsets[i]->rk.dname,
1093 			zone->name)) continue;
1094 		/* insert NSEC into this zone's tree */
1095 		neg_insert_data(neg, zone, rep->rrsets[i]);
1096 	}
1097 	if(zone->tree.count == 0) {
1098 		/* remove empty zone if inserts failed */
1099 		neg_delete_zone(neg, zone);
1100 	}
1101 	lock_basic_unlock(&neg->lock);
1102 }
1103 
1104 /**
1105  * Check that an NSEC3 rrset does not have a type set.
1106  * None of the nsec3s in a hash-collision are allowed to have the type.
1107  * (since we do not know which one is the nsec3 looked at, flags, ..., we
1108  * ignore the cached item and let it bypass negative caching).
1109  * @param k: the nsec3 rrset to check.
1110  * @param t: type to check
1111  * @return true if no RRs have the type.
1112  */
1113 static int nsec3_no_type(struct ub_packed_rrset_key* k, uint16_t t)
1114 {
1115 	int count = (int)((struct packed_rrset_data*)k->entry.data)->count;
1116 	int i;
1117 	for(i=0; i<count; i++)
1118 		if(nsec3_has_type(k, i, t))
1119 			return 0;
1120 	return 1;
1121 }
1122 
1123 /**
1124  * See if rrset exists in rrset cache.
1125  * If it does, the bit is checked, and if not expired, it is returned
1126  * allocated in region.
1127  * @param rrset_cache: rrset cache
1128  * @param qname: to lookup rrset name
1129  * @param qname_len: length of qname.
1130  * @param qtype: type of rrset to lookup, host order
1131  * @param qclass: class of rrset to lookup, host order
1132  * @param flags: flags for rrset to lookup
1133  * @param region: where to alloc result
1134  * @param checkbit: if true, a bit in the nsec typemap is checked for absence.
1135  * @param checktype: which bit to check
1136  * @param now: to check ttl against
1137  * @return rrset or NULL
1138  */
1139 static struct ub_packed_rrset_key*
1140 grab_nsec(struct rrset_cache* rrset_cache, uint8_t* qname, size_t qname_len,
1141 	uint16_t qtype, uint16_t qclass, uint32_t flags,
1142 	struct regional* region, int checkbit, uint16_t checktype,
1143 	time_t now)
1144 {
1145 	struct ub_packed_rrset_key* r, *k = rrset_cache_lookup(rrset_cache,
1146 		qname, qname_len, qtype, qclass, flags, now, 0);
1147 	struct packed_rrset_data* d;
1148 	if(!k) return NULL;
1149 	d = (struct packed_rrset_data*)k->entry.data;
1150 	if(d->ttl < now) {
1151 		lock_rw_unlock(&k->entry.lock);
1152 		return NULL;
1153 	}
1154 	/* only secure or unchecked records that have signatures. */
1155 	if( ! ( d->security == sec_status_secure ||
1156 		(d->security == sec_status_unchecked &&
1157 		d->rrsig_count > 0) ) ) {
1158 		lock_rw_unlock(&k->entry.lock);
1159 		return NULL;
1160 	}
1161 	/* check if checktype is absent */
1162 	if(checkbit && (
1163 		(qtype == LDNS_RR_TYPE_NSEC && nsec_has_type(k, checktype)) ||
1164 		(qtype == LDNS_RR_TYPE_NSEC3 && !nsec3_no_type(k, checktype))
1165 		)) {
1166 		lock_rw_unlock(&k->entry.lock);
1167 		return NULL;
1168 	}
1169 	/* looks OK! copy to region and return it */
1170 	r = packed_rrset_copy_region(k, region, now);
1171 	/* if it failed, we return the NULL */
1172 	lock_rw_unlock(&k->entry.lock);
1173 	return r;
1174 }
1175 
1176 /** find nsec3 closest encloser in neg cache */
1177 static struct val_neg_data*
1178 neg_find_nsec3_ce(struct val_neg_zone* zone, uint8_t* qname, size_t qname_len,
1179 		int qlabs, sldns_buffer* buf, uint8_t* hashnc, size_t* nclen)
1180 {
1181 	struct val_neg_data* data;
1182 	uint8_t hashce[NSEC3_SHA_LEN];
1183 	uint8_t b32[257];
1184 	size_t celen, b32len;
1185 
1186 	*nclen = 0;
1187 	while(qlabs > 0) {
1188 		/* hash */
1189 		if(!(celen=nsec3_get_hashed(buf, qname, qname_len,
1190 			zone->nsec3_hash, zone->nsec3_iter, zone->nsec3_salt,
1191 			zone->nsec3_saltlen, hashce, sizeof(hashce))))
1192 			return NULL;
1193 		if(!(b32len=nsec3_hash_to_b32(hashce, celen, zone->name,
1194 			zone->len, b32, sizeof(b32))))
1195 			return NULL;
1196 
1197 		/* lookup (exact match only) */
1198 		data = neg_find_data(zone, b32, b32len, zone->labs+1);
1199 		if(data && data->in_use) {
1200 			/* found ce match! */
1201 			return data;
1202 		}
1203 
1204 		*nclen = celen;
1205 		memmove(hashnc, hashce, celen);
1206 		dname_remove_label(&qname, &qname_len);
1207 		qlabs --;
1208 	}
1209 	return NULL;
1210 }
1211 
1212 /** check nsec3 parameters on nsec3 rrset with current zone values */
1213 static int
1214 neg_params_ok(struct val_neg_zone* zone, struct ub_packed_rrset_key* rrset)
1215 {
1216 	int h;
1217 	uint8_t* s;
1218 	size_t slen, it;
1219 	if(!nsec3_get_params(rrset, 0, &h, &it, &s, &slen))
1220 		return 0;
1221 	return (h == zone->nsec3_hash && it == zone->nsec3_iter &&
1222 		slen == zone->nsec3_saltlen &&
1223 		memcmp(zone->nsec3_salt, s, slen) == 0);
1224 }
1225 
1226 /** get next closer for nsec3 proof */
1227 static struct ub_packed_rrset_key*
1228 neg_nsec3_getnc(struct val_neg_zone* zone, uint8_t* hashnc, size_t nclen,
1229 	struct rrset_cache* rrset_cache, struct regional* region,
1230 	time_t now, uint8_t* b32, size_t maxb32)
1231 {
1232 	struct ub_packed_rrset_key* nc_rrset;
1233 	struct val_neg_data* data;
1234 	size_t b32len;
1235 
1236 	if(!(b32len=nsec3_hash_to_b32(hashnc, nclen, zone->name,
1237 		zone->len, b32, maxb32)))
1238 		return NULL;
1239 	(void)neg_closest_data(zone, b32, b32len, zone->labs+1, &data);
1240 	if(!data && zone->tree.count != 0) {
1241 		/* could be before the first entry ; return the last
1242 		 * entry (possibly the rollover nsec3 at end) */
1243 		data = (struct val_neg_data*)rbtree_last(&zone->tree);
1244 	}
1245 	while(data && !data->in_use)
1246 		data = data->parent;
1247 	if(!data)
1248 		return NULL;
1249 	/* got a data element in tree, grab it */
1250 	nc_rrset = grab_nsec(rrset_cache, data->name, data->len,
1251 		LDNS_RR_TYPE_NSEC3, zone->dclass, 0, region, 0, 0, now);
1252 	if(!nc_rrset)
1253 		return NULL;
1254 	if(!neg_params_ok(zone, nc_rrset))
1255 		return NULL;
1256 	return nc_rrset;
1257 }
1258 
1259 /** neg cache nsec3 proof procedure*/
1260 static struct dns_msg*
1261 neg_nsec3_proof_ds(struct val_neg_zone* zone, uint8_t* qname, size_t qname_len,
1262 		int qlabs, sldns_buffer* buf, struct rrset_cache* rrset_cache,
1263 		struct regional* region, time_t now, uint8_t* topname)
1264 {
1265 	struct dns_msg* msg;
1266 	struct val_neg_data* data;
1267 	uint8_t hashnc[NSEC3_SHA_LEN];
1268 	size_t nclen;
1269 	struct ub_packed_rrset_key* ce_rrset, *nc_rrset;
1270 	struct nsec3_cached_hash c;
1271 	uint8_t nc_b32[257];
1272 
1273 	/* for NSEC3 ; determine the closest encloser for which we
1274 	 * can find an exact match. Remember the hashed lower name,
1275 	 * since that is the one we need a closest match for.
1276 	 * If we find a match straight away, then it becomes NODATA.
1277 	 * Otherwise, NXDOMAIN or if OPTOUT, an insecure delegation.
1278 	 * Also check that parameters are the same on closest encloser
1279 	 * and on closest match.
1280 	 */
1281 	if(!zone->nsec3_hash)
1282 		return NULL; /* not nsec3 zone */
1283 
1284 	if(!(data=neg_find_nsec3_ce(zone, qname, qname_len, qlabs, buf,
1285 		hashnc, &nclen))) {
1286 		return NULL;
1287 	}
1288 
1289 	/* grab the ce rrset */
1290 	ce_rrset = grab_nsec(rrset_cache, data->name, data->len,
1291 		LDNS_RR_TYPE_NSEC3, zone->dclass, 0, region, 1,
1292 		LDNS_RR_TYPE_DS, now);
1293 	if(!ce_rrset)
1294 		return NULL;
1295 	if(!neg_params_ok(zone, ce_rrset))
1296 		return NULL;
1297 
1298 	if(nclen == 0) {
1299 		/* exact match, just check the type bits */
1300 		/* need: -SOA, -DS, +NS */
1301 		if(nsec3_has_type(ce_rrset, 0, LDNS_RR_TYPE_SOA) ||
1302 			nsec3_has_type(ce_rrset, 0, LDNS_RR_TYPE_DS) ||
1303 			!nsec3_has_type(ce_rrset, 0, LDNS_RR_TYPE_NS))
1304 			return NULL;
1305 		if(!(msg = dns_msg_create(qname, qname_len,
1306 			LDNS_RR_TYPE_DS, zone->dclass, region, 1)))
1307 			return NULL;
1308 		/* TTL reduced in grab_nsec */
1309 		if(!dns_msg_authadd(msg, region, ce_rrset, 0))
1310 			return NULL;
1311 		return msg;
1312 	}
1313 
1314 	/* optout is not allowed without knowing the trust-anchor in use,
1315 	 * otherwise the optout could spoof away that anchor */
1316 	if(!topname)
1317 		return NULL;
1318 
1319 	/* if there is no exact match, it must be in an optout span
1320 	 * (an existing DS implies an NSEC3 must exist) */
1321 	nc_rrset = neg_nsec3_getnc(zone, hashnc, nclen, rrset_cache,
1322 		region, now, nc_b32, sizeof(nc_b32));
1323 	if(!nc_rrset)
1324 		return NULL;
1325 	if(!neg_params_ok(zone, nc_rrset))
1326 		return NULL;
1327 	if(!nsec3_has_optout(nc_rrset, 0))
1328 		return NULL;
1329 	c.hash = hashnc;
1330 	c.hash_len = nclen;
1331 	c.b32 = nc_b32+1;
1332 	c.b32_len = (size_t)nc_b32[0];
1333 	if(nsec3_covers(zone->name, &c, nc_rrset, 0, buf)) {
1334 		/* nc_rrset covers the next closer name.
1335 		 * ce_rrset equals a closer encloser.
1336 		 * nc_rrset is optout.
1337 		 * No need to check wildcard for type DS */
1338 		/* capacity=3: ce + nc + soa(if needed) */
1339 		if(!(msg = dns_msg_create(qname, qname_len,
1340 			LDNS_RR_TYPE_DS, zone->dclass, region, 3)))
1341 			return NULL;
1342 		/* now=0 because TTL was reduced in grab_nsec */
1343 		if(!dns_msg_authadd(msg, region, ce_rrset, 0))
1344 			return NULL;
1345 		if(!dns_msg_authadd(msg, region, nc_rrset, 0))
1346 			return NULL;
1347 		return msg;
1348 	}
1349 	return NULL;
1350 }
1351 
1352 /**
1353  * Add SOA record for external responses.
1354  * @param rrset_cache: to look into.
1355  * @param now: current time.
1356  * @param region: where to perform the allocation
1357  * @param msg: current msg with NSEC.
1358  * @param zone: val_neg_zone if we have one.
1359  * @return false on lookup or alloc failure.
1360  */
1361 static int add_soa(struct rrset_cache* rrset_cache, time_t now,
1362 	struct regional* region, struct dns_msg* msg, struct val_neg_zone* zone)
1363 {
1364 	struct ub_packed_rrset_key* soa;
1365 	uint8_t* nm;
1366 	size_t nmlen;
1367 	uint16_t dclass;
1368 	if(zone) {
1369 		nm = zone->name;
1370 		nmlen = zone->len;
1371 		dclass = zone->dclass;
1372 	} else {
1373 		/* Assumes the signer is the zone SOA to add */
1374 		nm = reply_nsec_signer(msg->rep, &nmlen, &dclass);
1375 		if(!nm)
1376 			return 0;
1377 	}
1378 	soa = rrset_cache_lookup(rrset_cache, nm, nmlen, LDNS_RR_TYPE_SOA,
1379 		dclass, PACKED_RRSET_SOA_NEG, now, 0);
1380 	if(!soa)
1381 		return 0;
1382 	if(!dns_msg_authadd(msg, region, soa, now)) {
1383 		lock_rw_unlock(&soa->entry.lock);
1384 		return 0;
1385 	}
1386 	lock_rw_unlock(&soa->entry.lock);
1387 	return 1;
1388 }
1389 
1390 struct dns_msg*
1391 val_neg_getmsg(struct val_neg_cache* neg, struct query_info* qinfo,
1392 	struct regional* region, struct rrset_cache* rrset_cache,
1393 	sldns_buffer* buf, time_t now, int addsoa, uint8_t* topname)
1394 {
1395 	struct dns_msg* msg;
1396 	struct ub_packed_rrset_key* rrset;
1397 	uint8_t* zname;
1398 	size_t zname_len;
1399 	int zname_labs;
1400 	struct val_neg_zone* zone;
1401 
1402 	/* only for DS queries */
1403 	if(qinfo->qtype != LDNS_RR_TYPE_DS)
1404 		return NULL;
1405 	log_assert(!topname || dname_subdomain_c(qinfo->qname, topname));
1406 
1407 	/* see if info from neg cache is available
1408 	 * For NSECs, because there is no optout; a DS next to a delegation
1409 	 * always has exactly an NSEC for it itself; check its DS bit.
1410 	 * flags=0 (not the zone apex).
1411 	 */
1412 	rrset = grab_nsec(rrset_cache, qinfo->qname, qinfo->qname_len,
1413 		LDNS_RR_TYPE_NSEC, qinfo->qclass, 0, region, 1,
1414 		qinfo->qtype, now);
1415 	if(rrset) {
1416 		/* return msg with that rrset */
1417 		if(!(msg = dns_msg_create(qinfo->qname, qinfo->qname_len,
1418 			qinfo->qtype, qinfo->qclass, region, 2)))
1419 			return NULL;
1420 		/* TTL already subtracted in grab_nsec */
1421 		if(!dns_msg_authadd(msg, region, rrset, 0))
1422 			return NULL;
1423 		if(addsoa && !add_soa(rrset_cache, now, region, msg, NULL))
1424 			return NULL;
1425 		return msg;
1426 	}
1427 
1428 	/* check NSEC3 neg cache for type DS */
1429 	/* need to look one zone higher for DS type */
1430 	zname = qinfo->qname;
1431 	zname_len = qinfo->qname_len;
1432 	dname_remove_label(&zname, &zname_len);
1433 	zname_labs = dname_count_labels(zname);
1434 
1435 	/* lookup closest zone */
1436 	lock_basic_lock(&neg->lock);
1437 	zone = neg_closest_zone_parent(neg, zname, zname_len, zname_labs,
1438 		qinfo->qclass);
1439 	while(zone && !zone->in_use)
1440 		zone = zone->parent;
1441 	/* check that the zone is not too high up so that we do not pick data
1442 	 * out of a zone that is above the last-seen key (or trust-anchor). */
1443 	if(zone && topname) {
1444 		if(!dname_subdomain_c(zone->name, topname))
1445 			zone = NULL;
1446 	}
1447 	if(!zone) {
1448 		lock_basic_unlock(&neg->lock);
1449 		return NULL;
1450 	}
1451 
1452 	msg = neg_nsec3_proof_ds(zone, qinfo->qname, qinfo->qname_len,
1453 		zname_labs+1, buf, rrset_cache, region, now, topname);
1454 	if(msg && addsoa && !add_soa(rrset_cache, now, region, msg, zone)) {
1455 		lock_basic_unlock(&neg->lock);
1456 		return NULL;
1457 	}
1458 	lock_basic_unlock(&neg->lock);
1459 	return msg;
1460 }
1461