1 /* 2 * validator/val_neg.c - validator aggressive negative caching functions. 3 * 4 * Copyright (c) 2008, NLnet Labs. All rights reserved. 5 * 6 * This software is open source. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 12 * Redistributions of source code must retain the above copyright notice, 13 * this list of conditions and the following disclaimer. 14 * 15 * Redistributions in binary form must reproduce the above copyright notice, 16 * this list of conditions and the following disclaimer in the documentation 17 * and/or other materials provided with the distribution. 18 * 19 * Neither the name of the NLNET LABS nor the names of its contributors may 20 * be used to endorse or promote products derived from this software without 21 * specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 24 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 26 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 27 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 28 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 29 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 30 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 31 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 32 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 33 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 34 */ 35 36 /** 37 * \file 38 * 39 * This file contains helper functions for the validator module. 40 * The functions help with aggressive negative caching. 41 * This creates new denials of existence, and proofs for absence of types 42 * from cached NSEC records. 43 */ 44 #include "config.h" 45 #ifdef HAVE_OPENSSL_SSL_H 46 #include "openssl/ssl.h" 47 #define NSEC3_SHA_LEN SHA_DIGEST_LENGTH 48 #else 49 #define NSEC3_SHA_LEN 20 50 #endif 51 #include "validator/val_neg.h" 52 #include "validator/val_nsec.h" 53 #include "validator/val_nsec3.h" 54 #include "validator/val_utils.h" 55 #include "util/data/dname.h" 56 #include "util/data/msgreply.h" 57 #include "util/log.h" 58 #include "util/net_help.h" 59 #include "util/config_file.h" 60 #include "services/cache/rrset.h" 61 #include "services/cache/dns.h" 62 #include "sldns/rrdef.h" 63 #include "sldns/sbuffer.h" 64 65 int val_neg_data_compare(const void* a, const void* b) 66 { 67 struct val_neg_data* x = (struct val_neg_data*)a; 68 struct val_neg_data* y = (struct val_neg_data*)b; 69 int m; 70 return dname_canon_lab_cmp(x->name, x->labs, y->name, y->labs, &m); 71 } 72 73 int val_neg_zone_compare(const void* a, const void* b) 74 { 75 struct val_neg_zone* x = (struct val_neg_zone*)a; 76 struct val_neg_zone* y = (struct val_neg_zone*)b; 77 int m; 78 if(x->dclass != y->dclass) { 79 if(x->dclass < y->dclass) 80 return -1; 81 return 1; 82 } 83 return dname_canon_lab_cmp(x->name, x->labs, y->name, y->labs, &m); 84 } 85 86 struct val_neg_cache* val_neg_create(struct config_file* cfg, size_t maxiter) 87 { 88 struct val_neg_cache* neg = (struct val_neg_cache*)calloc(1, 89 sizeof(*neg)); 90 if(!neg) { 91 log_err("Could not create neg cache: out of memory"); 92 return NULL; 93 } 94 neg->nsec3_max_iter = maxiter; 95 neg->max = 1024*1024; /* 1 M is thousands of entries */ 96 if(cfg) neg->max = cfg->neg_cache_size; 97 rbtree_init(&neg->tree, &val_neg_zone_compare); 98 lock_basic_init(&neg->lock); 99 lock_protect(&neg->lock, neg, sizeof(*neg)); 100 return neg; 101 } 102 103 size_t val_neg_get_mem(struct val_neg_cache* neg) 104 { 105 size_t result; 106 lock_basic_lock(&neg->lock); 107 result = sizeof(*neg) + neg->use; 108 lock_basic_unlock(&neg->lock); 109 return result; 110 } 111 112 /** clear datas on cache deletion */ 113 static void 114 neg_clear_datas(rbnode_type* n, void* ATTR_UNUSED(arg)) 115 { 116 struct val_neg_data* d = (struct val_neg_data*)n; 117 free(d->name); 118 free(d); 119 } 120 121 /** clear zones on cache deletion */ 122 static void 123 neg_clear_zones(rbnode_type* n, void* ATTR_UNUSED(arg)) 124 { 125 struct val_neg_zone* z = (struct val_neg_zone*)n; 126 /* delete all the rrset entries in the tree */ 127 traverse_postorder(&z->tree, &neg_clear_datas, NULL); 128 free(z->nsec3_salt); 129 free(z->name); 130 free(z); 131 } 132 133 void neg_cache_delete(struct val_neg_cache* neg) 134 { 135 if(!neg) return; 136 lock_basic_destroy(&neg->lock); 137 /* delete all the zones in the tree */ 138 traverse_postorder(&neg->tree, &neg_clear_zones, NULL); 139 free(neg); 140 } 141 142 /** 143 * Put data element at the front of the LRU list. 144 * @param neg: negative cache with LRU start and end. 145 * @param data: this data is fronted. 146 */ 147 static void neg_lru_front(struct val_neg_cache* neg, 148 struct val_neg_data* data) 149 { 150 data->prev = NULL; 151 data->next = neg->first; 152 if(!neg->first) 153 neg->last = data; 154 else neg->first->prev = data; 155 neg->first = data; 156 } 157 158 /** 159 * Remove data element from LRU list. 160 * @param neg: negative cache with LRU start and end. 161 * @param data: this data is removed from the list. 162 */ 163 static void neg_lru_remove(struct val_neg_cache* neg, 164 struct val_neg_data* data) 165 { 166 if(data->prev) 167 data->prev->next = data->next; 168 else neg->first = data->next; 169 if(data->next) 170 data->next->prev = data->prev; 171 else neg->last = data->prev; 172 } 173 174 /** 175 * Touch LRU for data element, put it at the start of the LRU list. 176 * @param neg: negative cache with LRU start and end. 177 * @param data: this data is used. 178 */ 179 static void neg_lru_touch(struct val_neg_cache* neg, 180 struct val_neg_data* data) 181 { 182 if(data == neg->first) 183 return; /* nothing to do */ 184 /* remove from current lru position */ 185 neg_lru_remove(neg, data); 186 /* add at front */ 187 neg_lru_front(neg, data); 188 } 189 190 /** 191 * Delete a zone element from the negative cache. 192 * May delete other zone elements to keep tree coherent, or 193 * only mark the element as 'not in use'. 194 * @param neg: negative cache. 195 * @param z: zone element to delete. 196 */ 197 static void neg_delete_zone(struct val_neg_cache* neg, struct val_neg_zone* z) 198 { 199 struct val_neg_zone* p, *np; 200 if(!z) return; 201 log_assert(z->in_use); 202 log_assert(z->count > 0); 203 z->in_use = 0; 204 205 /* go up the tree and reduce counts */ 206 p = z; 207 while(p) { 208 log_assert(p->count > 0); 209 p->count --; 210 p = p->parent; 211 } 212 213 /* remove zones with zero count */ 214 p = z; 215 while(p && p->count == 0) { 216 np = p->parent; 217 (void)rbtree_delete(&neg->tree, &p->node); 218 neg->use -= p->len + sizeof(*p); 219 free(p->nsec3_salt); 220 free(p->name); 221 free(p); 222 p = np; 223 } 224 } 225 226 void neg_delete_data(struct val_neg_cache* neg, struct val_neg_data* el) 227 { 228 struct val_neg_zone* z; 229 struct val_neg_data* p, *np; 230 if(!el) return; 231 z = el->zone; 232 log_assert(el->in_use); 233 log_assert(el->count > 0); 234 el->in_use = 0; 235 236 /* remove it from the lru list */ 237 neg_lru_remove(neg, el); 238 239 /* go up the tree and reduce counts */ 240 p = el; 241 while(p) { 242 log_assert(p->count > 0); 243 p->count --; 244 p = p->parent; 245 } 246 247 /* delete 0 count items from tree */ 248 p = el; 249 while(p && p->count == 0) { 250 np = p->parent; 251 (void)rbtree_delete(&z->tree, &p->node); 252 neg->use -= p->len + sizeof(*p); 253 free(p->name); 254 free(p); 255 p = np; 256 } 257 258 /* check if the zone is now unused */ 259 if(z->tree.count == 0) { 260 neg_delete_zone(neg, z); 261 } 262 } 263 264 /** 265 * Create more space in negative cache 266 * The oldest elements are deleted until enough space is present. 267 * Empty zones are deleted. 268 * @param neg: negative cache. 269 * @param need: how many bytes are needed. 270 */ 271 static void neg_make_space(struct val_neg_cache* neg, size_t need) 272 { 273 /* delete elements until enough space or its empty */ 274 while(neg->last && neg->max < neg->use + need) { 275 neg_delete_data(neg, neg->last); 276 } 277 } 278 279 struct val_neg_zone* neg_find_zone(struct val_neg_cache* neg, 280 uint8_t* nm, size_t len, uint16_t dclass) 281 { 282 struct val_neg_zone lookfor; 283 struct val_neg_zone* result; 284 lookfor.node.key = &lookfor; 285 lookfor.name = nm; 286 lookfor.len = len; 287 lookfor.labs = dname_count_labels(lookfor.name); 288 lookfor.dclass = dclass; 289 290 result = (struct val_neg_zone*) 291 rbtree_search(&neg->tree, lookfor.node.key); 292 return result; 293 } 294 295 /** 296 * Find the given data 297 * @param zone: negative zone 298 * @param nm: what to look for. 299 * @param len: length of nm 300 * @param labs: labels in nm 301 * @return data or NULL if not found. 302 */ 303 static struct val_neg_data* neg_find_data(struct val_neg_zone* zone, 304 uint8_t* nm, size_t len, int labs) 305 { 306 struct val_neg_data lookfor; 307 struct val_neg_data* result; 308 lookfor.node.key = &lookfor; 309 lookfor.name = nm; 310 lookfor.len = len; 311 lookfor.labs = labs; 312 313 result = (struct val_neg_data*) 314 rbtree_search(&zone->tree, lookfor.node.key); 315 return result; 316 } 317 318 /** 319 * Calculate space needed for the data and all its parents 320 * @param rep: NSEC entries. 321 * @return size. 322 */ 323 static size_t calc_data_need(struct reply_info* rep) 324 { 325 uint8_t* d; 326 size_t i, len, res = 0; 327 328 for(i=rep->an_numrrsets; i<rep->an_numrrsets+rep->ns_numrrsets; i++) { 329 if(ntohs(rep->rrsets[i]->rk.type) == LDNS_RR_TYPE_NSEC) { 330 d = rep->rrsets[i]->rk.dname; 331 len = rep->rrsets[i]->rk.dname_len; 332 res = sizeof(struct val_neg_data) + len; 333 while(!dname_is_root(d)) { 334 log_assert(len > 1); /* not root label */ 335 dname_remove_label(&d, &len); 336 res += sizeof(struct val_neg_data) + len; 337 } 338 } 339 } 340 return res; 341 } 342 343 /** 344 * Calculate space needed for zone and all its parents 345 * @param d: name of zone 346 * @param len: length of name 347 * @return size. 348 */ 349 static size_t calc_zone_need(uint8_t* d, size_t len) 350 { 351 size_t res = sizeof(struct val_neg_zone) + len; 352 while(!dname_is_root(d)) { 353 log_assert(len > 1); /* not root label */ 354 dname_remove_label(&d, &len); 355 res += sizeof(struct val_neg_zone) + len; 356 } 357 return res; 358 } 359 360 /** 361 * Find closest existing parent zone of the given name. 362 * @param neg: negative cache. 363 * @param nm: name to look for 364 * @param nm_len: length of nm 365 * @param labs: labelcount of nm. 366 * @param qclass: class. 367 * @return the zone or NULL if none found. 368 */ 369 static struct val_neg_zone* neg_closest_zone_parent(struct val_neg_cache* neg, 370 uint8_t* nm, size_t nm_len, int labs, uint16_t qclass) 371 { 372 struct val_neg_zone key; 373 struct val_neg_zone* result; 374 rbnode_type* res = NULL; 375 key.node.key = &key; 376 key.name = nm; 377 key.len = nm_len; 378 key.labs = labs; 379 key.dclass = qclass; 380 if(rbtree_find_less_equal(&neg->tree, &key, &res)) { 381 /* exact match */ 382 result = (struct val_neg_zone*)res; 383 } else { 384 /* smaller element (or no element) */ 385 int m; 386 result = (struct val_neg_zone*)res; 387 if(!result || result->dclass != qclass) 388 return NULL; 389 /* count number of labels matched */ 390 (void)dname_lab_cmp(result->name, result->labs, key.name, 391 key.labs, &m); 392 while(result) { /* go up until qname is subdomain of stub */ 393 if(result->labs <= m) 394 break; 395 result = result->parent; 396 } 397 } 398 return result; 399 } 400 401 /** 402 * Find closest existing parent data for the given name. 403 * @param zone: to look in. 404 * @param nm: name to look for 405 * @param nm_len: length of nm 406 * @param labs: labelcount of nm. 407 * @return the data or NULL if none found. 408 */ 409 static struct val_neg_data* neg_closest_data_parent( 410 struct val_neg_zone* zone, uint8_t* nm, size_t nm_len, int labs) 411 { 412 struct val_neg_data key; 413 struct val_neg_data* result; 414 rbnode_type* res = NULL; 415 key.node.key = &key; 416 key.name = nm; 417 key.len = nm_len; 418 key.labs = labs; 419 if(rbtree_find_less_equal(&zone->tree, &key, &res)) { 420 /* exact match */ 421 result = (struct val_neg_data*)res; 422 } else { 423 /* smaller element (or no element) */ 424 int m; 425 result = (struct val_neg_data*)res; 426 if(!result) 427 return NULL; 428 /* count number of labels matched */ 429 (void)dname_lab_cmp(result->name, result->labs, key.name, 430 key.labs, &m); 431 while(result) { /* go up until qname is subdomain of stub */ 432 if(result->labs <= m) 433 break; 434 result = result->parent; 435 } 436 } 437 return result; 438 } 439 440 /** 441 * Create a single zone node 442 * @param nm: name for zone (copied) 443 * @param nm_len: length of name 444 * @param labs: labels in name. 445 * @param dclass: class of zone, host order. 446 * @return new zone or NULL on failure 447 */ 448 static struct val_neg_zone* neg_setup_zone_node( 449 uint8_t* nm, size_t nm_len, int labs, uint16_t dclass) 450 { 451 struct val_neg_zone* zone = 452 (struct val_neg_zone*)calloc(1, sizeof(*zone)); 453 if(!zone) { 454 return NULL; 455 } 456 zone->node.key = zone; 457 zone->name = memdup(nm, nm_len); 458 if(!zone->name) { 459 free(zone); 460 return NULL; 461 } 462 zone->len = nm_len; 463 zone->labs = labs; 464 zone->dclass = dclass; 465 466 rbtree_init(&zone->tree, &val_neg_data_compare); 467 return zone; 468 } 469 470 /** 471 * Create a linked list of parent zones, starting at longname ending on 472 * the parent (can be NULL, creates to the root). 473 * @param nm: name for lowest in chain 474 * @param nm_len: length of name 475 * @param labs: labels in name. 476 * @param dclass: class of zone. 477 * @param parent: NULL for to root, else so it fits under here. 478 * @return zone; a chain of zones and their parents up to the parent. 479 * or NULL on malloc failure 480 */ 481 static struct val_neg_zone* neg_zone_chain( 482 uint8_t* nm, size_t nm_len, int labs, uint16_t dclass, 483 struct val_neg_zone* parent) 484 { 485 int i; 486 int tolabs = parent?parent->labs:0; 487 struct val_neg_zone* zone, *prev = NULL, *first = NULL; 488 489 /* create the new subtree, i is labelcount of current creation */ 490 /* this creates a 'first' to z->parent=NULL list of zones */ 491 for(i=labs; i!=tolabs; i--) { 492 /* create new item */ 493 zone = neg_setup_zone_node(nm, nm_len, i, dclass); 494 if(!zone) { 495 /* need to delete other allocations in this routine!*/ 496 struct val_neg_zone* p=first, *np; 497 while(p) { 498 np = p->parent; 499 free(p->name); 500 free(p); 501 p = np; 502 } 503 return NULL; 504 } 505 if(i == labs) { 506 first = zone; 507 } else { 508 prev->parent = zone; 509 } 510 /* prepare for next name */ 511 prev = zone; 512 dname_remove_label(&nm, &nm_len); 513 } 514 return first; 515 } 516 517 void val_neg_zone_take_inuse(struct val_neg_zone* zone) 518 { 519 if(!zone->in_use) { 520 struct val_neg_zone* p; 521 zone->in_use = 1; 522 /* increase usage count of all parents */ 523 for(p=zone; p; p = p->parent) { 524 p->count++; 525 } 526 } 527 } 528 529 struct val_neg_zone* neg_create_zone(struct val_neg_cache* neg, 530 uint8_t* nm, size_t nm_len, uint16_t dclass) 531 { 532 struct val_neg_zone* zone; 533 struct val_neg_zone* parent; 534 struct val_neg_zone* p, *np; 535 int labs = dname_count_labels(nm); 536 537 /* find closest enclosing parent zone that (still) exists */ 538 parent = neg_closest_zone_parent(neg, nm, nm_len, labs, dclass); 539 if(parent && query_dname_compare(parent->name, nm) == 0) 540 return parent; /* already exists, weird */ 541 /* if parent exists, it is in use */ 542 log_assert(!parent || parent->count > 0); 543 zone = neg_zone_chain(nm, nm_len, labs, dclass, parent); 544 if(!zone) { 545 return NULL; 546 } 547 548 /* insert the list of zones into the tree */ 549 p = zone; 550 while(p) { 551 np = p->parent; 552 /* mem use */ 553 neg->use += sizeof(struct val_neg_zone) + p->len; 554 /* insert in tree */ 555 (void)rbtree_insert(&neg->tree, &p->node); 556 /* last one needs proper parent pointer */ 557 if(np == NULL) 558 p->parent = parent; 559 p = np; 560 } 561 return zone; 562 } 563 564 /** find zone name of message, returns the SOA record */ 565 static struct ub_packed_rrset_key* reply_find_soa(struct reply_info* rep) 566 { 567 size_t i; 568 for(i=rep->an_numrrsets; i< rep->an_numrrsets+rep->ns_numrrsets; i++){ 569 if(ntohs(rep->rrsets[i]->rk.type) == LDNS_RR_TYPE_SOA) 570 return rep->rrsets[i]; 571 } 572 return NULL; 573 } 574 575 /** see if the reply has NSEC records worthy of caching */ 576 static int reply_has_nsec(struct reply_info* rep) 577 { 578 size_t i; 579 struct packed_rrset_data* d; 580 if(rep->security != sec_status_secure) 581 return 0; 582 for(i=rep->an_numrrsets; i< rep->an_numrrsets+rep->ns_numrrsets; i++){ 583 if(ntohs(rep->rrsets[i]->rk.type) == LDNS_RR_TYPE_NSEC) { 584 d = (struct packed_rrset_data*)rep->rrsets[i]-> 585 entry.data; 586 if(d->security == sec_status_secure) 587 return 1; 588 } 589 } 590 return 0; 591 } 592 593 594 /** 595 * Create single node of data element. 596 * @param nm: name (copied) 597 * @param nm_len: length of name 598 * @param labs: labels in name. 599 * @return element with name nm, or NULL malloc failure. 600 */ 601 static struct val_neg_data* neg_setup_data_node( 602 uint8_t* nm, size_t nm_len, int labs) 603 { 604 struct val_neg_data* el; 605 el = (struct val_neg_data*)calloc(1, sizeof(*el)); 606 if(!el) { 607 return NULL; 608 } 609 el->node.key = el; 610 el->name = memdup(nm, nm_len); 611 if(!el->name) { 612 free(el); 613 return NULL; 614 } 615 el->len = nm_len; 616 el->labs = labs; 617 return el; 618 } 619 620 /** 621 * Create chain of data element and parents 622 * @param nm: name 623 * @param nm_len: length of name 624 * @param labs: labels in name. 625 * @param parent: up to where to make, if NULL up to root label. 626 * @return lowest element with name nm, or NULL malloc failure. 627 */ 628 static struct val_neg_data* neg_data_chain( 629 uint8_t* nm, size_t nm_len, int labs, struct val_neg_data* parent) 630 { 631 int i; 632 int tolabs = parent?parent->labs:0; 633 struct val_neg_data* el, *first = NULL, *prev = NULL; 634 635 /* create the new subtree, i is labelcount of current creation */ 636 /* this creates a 'first' to z->parent=NULL list of zones */ 637 for(i=labs; i!=tolabs; i--) { 638 /* create new item */ 639 el = neg_setup_data_node(nm, nm_len, i); 640 if(!el) { 641 /* need to delete other allocations in this routine!*/ 642 struct val_neg_data* p = first, *np; 643 while(p) { 644 np = p->parent; 645 free(p->name); 646 free(p); 647 p = np; 648 } 649 return NULL; 650 } 651 if(i == labs) { 652 first = el; 653 } else { 654 prev->parent = el; 655 } 656 657 /* prepare for next name */ 658 prev = el; 659 dname_remove_label(&nm, &nm_len); 660 } 661 return first; 662 } 663 664 /** 665 * Remove NSEC records between start and end points. 666 * By walking the tree, the tree is sorted canonically. 667 * @param neg: negative cache. 668 * @param zone: the zone 669 * @param el: element to start walking at. 670 * @param nsec: the nsec record with the end point 671 */ 672 static void wipeout(struct val_neg_cache* neg, struct val_neg_zone* zone, 673 struct val_neg_data* el, struct ub_packed_rrset_key* nsec) 674 { 675 struct packed_rrset_data* d = (struct packed_rrset_data*)nsec-> 676 entry.data; 677 uint8_t* end; 678 size_t end_len; 679 int end_labs, m; 680 rbnode_type* walk, *next; 681 struct val_neg_data* cur; 682 uint8_t buf[257]; 683 /* get endpoint */ 684 if(!d || d->count == 0 || d->rr_len[0] < 2+1) 685 return; 686 if(ntohs(nsec->rk.type) == LDNS_RR_TYPE_NSEC) { 687 end = d->rr_data[0]+2; 688 end_len = dname_valid(end, d->rr_len[0]-2); 689 end_labs = dname_count_labels(end); 690 } else { 691 /* NSEC3 */ 692 if(!nsec3_get_nextowner_b32(nsec, 0, buf, sizeof(buf))) 693 return; 694 end = buf; 695 end_labs = dname_count_size_labels(end, &end_len); 696 } 697 698 /* sanity check, both owner and end must be below the zone apex */ 699 if(!dname_subdomain_c(el->name, zone->name) || 700 !dname_subdomain_c(end, zone->name)) 701 return; 702 703 /* detect end of zone NSEC ; wipe until the end of zone */ 704 if(query_dname_compare(end, zone->name) == 0) { 705 end = NULL; 706 } 707 708 walk = rbtree_next(&el->node); 709 while(walk && walk != RBTREE_NULL) { 710 cur = (struct val_neg_data*)walk; 711 /* sanity check: must be larger than start */ 712 if(dname_canon_lab_cmp(cur->name, cur->labs, 713 el->name, el->labs, &m) <= 0) { 714 /* r == 0 skip original record. */ 715 /* r < 0 too small! */ 716 walk = rbtree_next(walk); 717 continue; 718 } 719 /* stop at endpoint, also data at empty nonterminals must be 720 * removed (no NSECs there) so everything between 721 * start and end */ 722 if(end && dname_canon_lab_cmp(cur->name, cur->labs, 723 end, end_labs, &m) >= 0) { 724 break; 725 } 726 /* this element has to be deleted, but we cannot do it 727 * now, because we are walking the tree still ... */ 728 /* get the next element: */ 729 next = rbtree_next(walk); 730 /* now delete the original element, this may trigger 731 * rbtree rebalances, but really, the next element is 732 * the one we need. 733 * But it may trigger delete of other data and the 734 * entire zone. However, if that happens, this is done 735 * by deleting the *parents* of the element for deletion, 736 * and maybe also the entire zone if it is empty. 737 * But parents are smaller in canonical compare, thus, 738 * if a larger element exists, then it is not a parent, 739 * it cannot get deleted, the zone cannot get empty. 740 * If the next==NULL, then zone can be empty. */ 741 if(cur->in_use) 742 neg_delete_data(neg, cur); 743 walk = next; 744 } 745 } 746 747 void neg_insert_data(struct val_neg_cache* neg, 748 struct val_neg_zone* zone, struct ub_packed_rrset_key* nsec) 749 { 750 struct packed_rrset_data* d; 751 struct val_neg_data* parent; 752 struct val_neg_data* el; 753 uint8_t* nm = nsec->rk.dname; 754 size_t nm_len = nsec->rk.dname_len; 755 int labs = dname_count_labels(nsec->rk.dname); 756 757 d = (struct packed_rrset_data*)nsec->entry.data; 758 if( !(d->security == sec_status_secure || 759 (d->security == sec_status_unchecked && d->rrsig_count > 0))) 760 return; 761 log_nametypeclass(VERB_ALGO, "negcache rr", 762 nsec->rk.dname, ntohs(nsec->rk.type), 763 ntohs(nsec->rk.rrset_class)); 764 765 /* find closest enclosing parent data that (still) exists */ 766 parent = neg_closest_data_parent(zone, nm, nm_len, labs); 767 if(parent && query_dname_compare(parent->name, nm) == 0) { 768 /* perfect match already exists */ 769 log_assert(parent->count > 0); 770 el = parent; 771 } else { 772 struct val_neg_data* p, *np; 773 774 /* create subtree for perfect match */ 775 /* if parent exists, it is in use */ 776 log_assert(!parent || parent->count > 0); 777 778 el = neg_data_chain(nm, nm_len, labs, parent); 779 if(!el) { 780 log_err("out of memory inserting NSEC negative cache"); 781 return; 782 } 783 el->in_use = 0; /* set on below */ 784 785 /* insert the list of zones into the tree */ 786 p = el; 787 while(p) { 788 np = p->parent; 789 /* mem use */ 790 neg->use += sizeof(struct val_neg_data) + p->len; 791 /* insert in tree */ 792 p->zone = zone; 793 (void)rbtree_insert(&zone->tree, &p->node); 794 /* last one needs proper parent pointer */ 795 if(np == NULL) 796 p->parent = parent; 797 p = np; 798 } 799 } 800 801 if(!el->in_use) { 802 struct val_neg_data* p; 803 804 el->in_use = 1; 805 /* increase usage count of all parents */ 806 for(p=el; p; p = p->parent) { 807 p->count++; 808 } 809 810 neg_lru_front(neg, el); 811 } else { 812 /* in use, bring to front, lru */ 813 neg_lru_touch(neg, el); 814 } 815 816 /* if nsec3 store last used parameters */ 817 if(ntohs(nsec->rk.type) == LDNS_RR_TYPE_NSEC3) { 818 int h; 819 uint8_t* s; 820 size_t slen, it; 821 if(nsec3_get_params(nsec, 0, &h, &it, &s, &slen) && 822 it <= neg->nsec3_max_iter && 823 (h != zone->nsec3_hash || it != zone->nsec3_iter || 824 slen != zone->nsec3_saltlen || 825 memcmp(zone->nsec3_salt, s, slen) != 0)) { 826 827 if(slen > 0) { 828 uint8_t* sa = memdup(s, slen); 829 if(sa) { 830 free(zone->nsec3_salt); 831 zone->nsec3_salt = sa; 832 zone->nsec3_saltlen = slen; 833 zone->nsec3_iter = it; 834 zone->nsec3_hash = h; 835 } 836 } else { 837 free(zone->nsec3_salt); 838 zone->nsec3_salt = NULL; 839 zone->nsec3_saltlen = 0; 840 zone->nsec3_iter = it; 841 zone->nsec3_hash = h; 842 } 843 } 844 } 845 846 /* wipe out the cache items between NSEC start and end */ 847 wipeout(neg, zone, el, nsec); 848 } 849 850 /** see if the reply has signed NSEC records and return the signer */ 851 static uint8_t* reply_nsec_signer(struct reply_info* rep, size_t* signer_len, 852 uint16_t* dclass) 853 { 854 size_t i; 855 struct packed_rrset_data* d; 856 uint8_t* s; 857 for(i=rep->an_numrrsets; i< rep->an_numrrsets+rep->ns_numrrsets; i++){ 858 if(ntohs(rep->rrsets[i]->rk.type) == LDNS_RR_TYPE_NSEC || 859 ntohs(rep->rrsets[i]->rk.type) == LDNS_RR_TYPE_NSEC3) { 860 d = (struct packed_rrset_data*)rep->rrsets[i]-> 861 entry.data; 862 /* return first signer name of first NSEC */ 863 if(d->rrsig_count != 0) { 864 val_find_rrset_signer(rep->rrsets[i], 865 &s, signer_len); 866 if(s && *signer_len) { 867 *dclass = ntohs(rep->rrsets[i]-> 868 rk.rrset_class); 869 return s; 870 } 871 } 872 } 873 } 874 return 0; 875 } 876 877 void val_neg_addreply(struct val_neg_cache* neg, struct reply_info* rep) 878 { 879 size_t i, need; 880 struct ub_packed_rrset_key* soa; 881 uint8_t* dname = NULL; 882 size_t dname_len; 883 uint16_t rrset_class; 884 struct val_neg_zone* zone; 885 /* see if secure nsecs inside */ 886 if(!reply_has_nsec(rep)) 887 return; 888 /* find the zone name in message */ 889 if((soa = reply_find_soa(rep))) { 890 dname = soa->rk.dname; 891 dname_len = soa->rk.dname_len; 892 rrset_class = ntohs(soa->rk.rrset_class); 893 } 894 else { 895 /* No SOA in positive (wildcard) answer. Use signer from the 896 * validated answer RRsets' signature. */ 897 if(!(dname = reply_nsec_signer(rep, &dname_len, &rrset_class))) 898 return; 899 } 900 901 log_nametypeclass(VERB_ALGO, "negcache insert for zone", 902 dname, LDNS_RR_TYPE_SOA, rrset_class); 903 904 /* ask for enough space to store all of it */ 905 need = calc_data_need(rep) + 906 calc_zone_need(dname, dname_len); 907 lock_basic_lock(&neg->lock); 908 neg_make_space(neg, need); 909 910 /* find or create the zone entry */ 911 zone = neg_find_zone(neg, dname, dname_len, rrset_class); 912 if(!zone) { 913 if(!(zone = neg_create_zone(neg, dname, dname_len, 914 rrset_class))) { 915 lock_basic_unlock(&neg->lock); 916 log_err("out of memory adding negative zone"); 917 return; 918 } 919 } 920 val_neg_zone_take_inuse(zone); 921 922 /* insert the NSECs */ 923 for(i=rep->an_numrrsets; i< rep->an_numrrsets+rep->ns_numrrsets; i++){ 924 if(ntohs(rep->rrsets[i]->rk.type) != LDNS_RR_TYPE_NSEC) 925 continue; 926 if(!dname_subdomain_c(rep->rrsets[i]->rk.dname, 927 zone->name)) continue; 928 /* insert NSEC into this zone's tree */ 929 neg_insert_data(neg, zone, rep->rrsets[i]); 930 } 931 if(zone->tree.count == 0) { 932 /* remove empty zone if inserts failed */ 933 neg_delete_zone(neg, zone); 934 } 935 lock_basic_unlock(&neg->lock); 936 } 937 938 /** 939 * Lookup closest data record. For NSEC denial. 940 * @param zone: zone to look in 941 * @param qname: name to look for. 942 * @param len: length of name 943 * @param labs: labels in name 944 * @param data: data element, exact or smaller or NULL 945 * @return true if exact match. 946 */ 947 static int neg_closest_data(struct val_neg_zone* zone, 948 uint8_t* qname, size_t len, int labs, struct val_neg_data** data) 949 { 950 struct val_neg_data key; 951 rbnode_type* r; 952 key.node.key = &key; 953 key.name = qname; 954 key.len = len; 955 key.labs = labs; 956 if(rbtree_find_less_equal(&zone->tree, &key, &r)) { 957 /* exact match */ 958 *data = (struct val_neg_data*)r; 959 return 1; 960 } else { 961 /* smaller match */ 962 *data = (struct val_neg_data*)r; 963 return 0; 964 } 965 } 966 967 int val_neg_dlvlookup(struct val_neg_cache* neg, uint8_t* qname, size_t len, 968 uint16_t qclass, struct rrset_cache* rrset_cache, time_t now) 969 { 970 /* lookup closest zone */ 971 struct val_neg_zone* zone; 972 struct val_neg_data* data; 973 int labs; 974 struct ub_packed_rrset_key* nsec; 975 struct packed_rrset_data* d; 976 uint32_t flags; 977 uint8_t* wc; 978 struct query_info qinfo; 979 if(!neg) return 0; 980 981 log_nametypeclass(VERB_ALGO, "negcache dlvlookup", qname, 982 LDNS_RR_TYPE_DLV, qclass); 983 984 labs = dname_count_labels(qname); 985 lock_basic_lock(&neg->lock); 986 zone = neg_closest_zone_parent(neg, qname, len, labs, qclass); 987 while(zone && !zone->in_use) 988 zone = zone->parent; 989 if(!zone) { 990 lock_basic_unlock(&neg->lock); 991 return 0; 992 } 993 log_nametypeclass(VERB_ALGO, "negcache zone", zone->name, 0, 994 zone->dclass); 995 996 /* DLV is defined to use NSEC only */ 997 if(zone->nsec3_hash) { 998 lock_basic_unlock(&neg->lock); 999 return 0; 1000 } 1001 1002 /* lookup closest data record */ 1003 (void)neg_closest_data(zone, qname, len, labs, &data); 1004 while(data && !data->in_use) 1005 data = data->parent; 1006 if(!data) { 1007 lock_basic_unlock(&neg->lock); 1008 return 0; 1009 } 1010 log_nametypeclass(VERB_ALGO, "negcache rr", data->name, 1011 LDNS_RR_TYPE_NSEC, zone->dclass); 1012 1013 /* lookup rrset in rrset cache */ 1014 flags = 0; 1015 if(query_dname_compare(data->name, zone->name) == 0) 1016 flags = PACKED_RRSET_NSEC_AT_APEX; 1017 nsec = rrset_cache_lookup(rrset_cache, data->name, data->len, 1018 LDNS_RR_TYPE_NSEC, zone->dclass, flags, now, 0); 1019 1020 /* check if secure and TTL ok */ 1021 if(!nsec) { 1022 lock_basic_unlock(&neg->lock); 1023 return 0; 1024 } 1025 d = (struct packed_rrset_data*)nsec->entry.data; 1026 if(!d || now > d->ttl) { 1027 lock_rw_unlock(&nsec->entry.lock); 1028 /* delete data record if expired */ 1029 neg_delete_data(neg, data); 1030 lock_basic_unlock(&neg->lock); 1031 return 0; 1032 } 1033 if(d->security != sec_status_secure) { 1034 lock_rw_unlock(&nsec->entry.lock); 1035 neg_delete_data(neg, data); 1036 lock_basic_unlock(&neg->lock); 1037 return 0; 1038 } 1039 verbose(VERB_ALGO, "negcache got secure rrset"); 1040 1041 /* check NSEC security */ 1042 /* check if NSEC proves no DLV type exists */ 1043 /* check if NSEC proves NXDOMAIN for qname */ 1044 qinfo.qname = qname; 1045 qinfo.qtype = LDNS_RR_TYPE_DLV; 1046 qinfo.qclass = qclass; 1047 qinfo.local_alias = NULL; 1048 if(!nsec_proves_nodata(nsec, &qinfo, &wc) && 1049 !val_nsec_proves_name_error(nsec, qname)) { 1050 /* the NSEC is not a denial for the DLV */ 1051 lock_rw_unlock(&nsec->entry.lock); 1052 lock_basic_unlock(&neg->lock); 1053 verbose(VERB_ALGO, "negcache not proven"); 1054 return 0; 1055 } 1056 /* so the NSEC was a NODATA proof, or NXDOMAIN proof. */ 1057 1058 /* no need to check for wildcard NSEC; no wildcards in DLV repos */ 1059 /* no need to lookup SOA record for client; no response message */ 1060 1061 lock_rw_unlock(&nsec->entry.lock); 1062 /* if OK touch the LRU for neg_data element */ 1063 neg_lru_touch(neg, data); 1064 lock_basic_unlock(&neg->lock); 1065 verbose(VERB_ALGO, "negcache DLV denial proven"); 1066 return 1; 1067 } 1068 1069 void val_neg_addreferral(struct val_neg_cache* neg, struct reply_info* rep, 1070 uint8_t* zone_name) 1071 { 1072 size_t i, need; 1073 uint8_t* signer; 1074 size_t signer_len; 1075 uint16_t dclass; 1076 struct val_neg_zone* zone; 1077 /* no SOA in this message, find RRSIG over NSEC's signer name. 1078 * note the NSEC records are maybe not validated yet */ 1079 signer = reply_nsec_signer(rep, &signer_len, &dclass); 1080 if(!signer) 1081 return; 1082 if(!dname_subdomain_c(signer, zone_name)) { 1083 /* the signer is not in the bailiwick, throw it out */ 1084 return; 1085 } 1086 1087 log_nametypeclass(VERB_ALGO, "negcache insert referral ", 1088 signer, LDNS_RR_TYPE_NS, dclass); 1089 1090 /* ask for enough space to store all of it */ 1091 need = calc_data_need(rep) + calc_zone_need(signer, signer_len); 1092 lock_basic_lock(&neg->lock); 1093 neg_make_space(neg, need); 1094 1095 /* find or create the zone entry */ 1096 zone = neg_find_zone(neg, signer, signer_len, dclass); 1097 if(!zone) { 1098 if(!(zone = neg_create_zone(neg, signer, signer_len, 1099 dclass))) { 1100 lock_basic_unlock(&neg->lock); 1101 log_err("out of memory adding negative zone"); 1102 return; 1103 } 1104 } 1105 val_neg_zone_take_inuse(zone); 1106 1107 /* insert the NSECs */ 1108 for(i=rep->an_numrrsets; i< rep->an_numrrsets+rep->ns_numrrsets; i++){ 1109 if(ntohs(rep->rrsets[i]->rk.type) != LDNS_RR_TYPE_NSEC && 1110 ntohs(rep->rrsets[i]->rk.type) != LDNS_RR_TYPE_NSEC3) 1111 continue; 1112 if(!dname_subdomain_c(rep->rrsets[i]->rk.dname, 1113 zone->name)) continue; 1114 /* insert NSEC into this zone's tree */ 1115 neg_insert_data(neg, zone, rep->rrsets[i]); 1116 } 1117 if(zone->tree.count == 0) { 1118 /* remove empty zone if inserts failed */ 1119 neg_delete_zone(neg, zone); 1120 } 1121 lock_basic_unlock(&neg->lock); 1122 } 1123 1124 /** 1125 * Check that an NSEC3 rrset does not have a type set. 1126 * None of the nsec3s in a hash-collision are allowed to have the type. 1127 * (since we do not know which one is the nsec3 looked at, flags, ..., we 1128 * ignore the cached item and let it bypass negative caching). 1129 * @param k: the nsec3 rrset to check. 1130 * @param t: type to check 1131 * @return true if no RRs have the type. 1132 */ 1133 static int nsec3_no_type(struct ub_packed_rrset_key* k, uint16_t t) 1134 { 1135 int count = (int)((struct packed_rrset_data*)k->entry.data)->count; 1136 int i; 1137 for(i=0; i<count; i++) 1138 if(nsec3_has_type(k, i, t)) 1139 return 0; 1140 return 1; 1141 } 1142 1143 /** 1144 * See if rrset exists in rrset cache. 1145 * If it does, the bit is checked, and if not expired, it is returned 1146 * allocated in region. 1147 * @param rrset_cache: rrset cache 1148 * @param qname: to lookup rrset name 1149 * @param qname_len: length of qname. 1150 * @param qtype: type of rrset to lookup, host order 1151 * @param qclass: class of rrset to lookup, host order 1152 * @param flags: flags for rrset to lookup 1153 * @param region: where to alloc result 1154 * @param checkbit: if true, a bit in the nsec typemap is checked for absence. 1155 * @param checktype: which bit to check 1156 * @param now: to check ttl against 1157 * @return rrset or NULL 1158 */ 1159 static struct ub_packed_rrset_key* 1160 grab_nsec(struct rrset_cache* rrset_cache, uint8_t* qname, size_t qname_len, 1161 uint16_t qtype, uint16_t qclass, uint32_t flags, 1162 struct regional* region, int checkbit, uint16_t checktype, 1163 time_t now) 1164 { 1165 struct ub_packed_rrset_key* r, *k = rrset_cache_lookup(rrset_cache, 1166 qname, qname_len, qtype, qclass, flags, now, 0); 1167 struct packed_rrset_data* d; 1168 if(!k) return NULL; 1169 d = (struct packed_rrset_data*)k->entry.data; 1170 if(d->ttl < now) { 1171 lock_rw_unlock(&k->entry.lock); 1172 return NULL; 1173 } 1174 /* only secure or unchecked records that have signatures. */ 1175 if( ! ( d->security == sec_status_secure || 1176 (d->security == sec_status_unchecked && 1177 d->rrsig_count > 0) ) ) { 1178 lock_rw_unlock(&k->entry.lock); 1179 return NULL; 1180 } 1181 /* check if checktype is absent */ 1182 if(checkbit && ( 1183 (qtype == LDNS_RR_TYPE_NSEC && nsec_has_type(k, checktype)) || 1184 (qtype == LDNS_RR_TYPE_NSEC3 && !nsec3_no_type(k, checktype)) 1185 )) { 1186 lock_rw_unlock(&k->entry.lock); 1187 return NULL; 1188 } 1189 /* looks OK! copy to region and return it */ 1190 r = packed_rrset_copy_region(k, region, now); 1191 /* if it failed, we return the NULL */ 1192 lock_rw_unlock(&k->entry.lock); 1193 return r; 1194 } 1195 1196 /** 1197 * Get best NSEC record for qname. Might be matching, covering or totally 1198 * useless. 1199 * @param neg_cache: neg cache 1200 * @param qname: to lookup rrset name 1201 * @param qname_len: length of qname. 1202 * @param qclass: class of rrset to lookup, host order 1203 * @param rrset_cache: rrset cache 1204 * @param now: to check ttl against 1205 * @param region: where to alloc result 1206 * @return rrset or NULL 1207 */ 1208 static struct ub_packed_rrset_key* 1209 neg_find_nsec(struct val_neg_cache* neg_cache, uint8_t* qname, size_t qname_len, 1210 uint16_t qclass, struct rrset_cache* rrset_cache, time_t now, 1211 struct regional* region) 1212 { 1213 int labs; 1214 uint32_t flags; 1215 struct val_neg_zone* zone; 1216 struct val_neg_data* data; 1217 struct ub_packed_rrset_key* nsec; 1218 1219 labs = dname_count_labels(qname); 1220 lock_basic_lock(&neg_cache->lock); 1221 zone = neg_closest_zone_parent(neg_cache, qname, qname_len, labs, 1222 qclass); 1223 while(zone && !zone->in_use) 1224 zone = zone->parent; 1225 if(!zone) { 1226 lock_basic_unlock(&neg_cache->lock); 1227 return NULL; 1228 } 1229 1230 /* NSEC only for now */ 1231 if(zone->nsec3_hash) { 1232 lock_basic_unlock(&neg_cache->lock); 1233 return NULL; 1234 } 1235 1236 /* ignore return value, don't care if it is an exact or smaller match */ 1237 (void)neg_closest_data(zone, qname, qname_len, labs, &data); 1238 if(!data) { 1239 lock_basic_unlock(&neg_cache->lock); 1240 return NULL; 1241 } 1242 1243 /* ENT nodes are not in use, try the previous node. If the previous node 1244 * is not in use, we don't have an useful NSEC and give up. */ 1245 if(!data->in_use) { 1246 data = (struct val_neg_data*)rbtree_previous((rbnode_type*)data); 1247 if((rbnode_type*)data == RBTREE_NULL || !data->in_use) { 1248 lock_basic_unlock(&neg_cache->lock); 1249 return NULL; 1250 } 1251 } 1252 1253 flags = 0; 1254 if(query_dname_compare(data->name, zone->name) == 0) 1255 flags = PACKED_RRSET_NSEC_AT_APEX; 1256 1257 nsec = grab_nsec(rrset_cache, data->name, data->len, LDNS_RR_TYPE_NSEC, 1258 zone->dclass, flags, region, 0, 0, now); 1259 lock_basic_unlock(&neg_cache->lock); 1260 return nsec; 1261 } 1262 1263 /** find nsec3 closest encloser in neg cache */ 1264 static struct val_neg_data* 1265 neg_find_nsec3_ce(struct val_neg_zone* zone, uint8_t* qname, size_t qname_len, 1266 int qlabs, sldns_buffer* buf, uint8_t* hashnc, size_t* nclen) 1267 { 1268 struct val_neg_data* data; 1269 uint8_t hashce[NSEC3_SHA_LEN]; 1270 uint8_t b32[257]; 1271 size_t celen, b32len; 1272 1273 *nclen = 0; 1274 while(qlabs > 0) { 1275 /* hash */ 1276 if(!(celen=nsec3_get_hashed(buf, qname, qname_len, 1277 zone->nsec3_hash, zone->nsec3_iter, zone->nsec3_salt, 1278 zone->nsec3_saltlen, hashce, sizeof(hashce)))) 1279 return NULL; 1280 if(!(b32len=nsec3_hash_to_b32(hashce, celen, zone->name, 1281 zone->len, b32, sizeof(b32)))) 1282 return NULL; 1283 1284 /* lookup (exact match only) */ 1285 data = neg_find_data(zone, b32, b32len, zone->labs+1); 1286 if(data && data->in_use) { 1287 /* found ce match! */ 1288 return data; 1289 } 1290 1291 *nclen = celen; 1292 memmove(hashnc, hashce, celen); 1293 dname_remove_label(&qname, &qname_len); 1294 qlabs --; 1295 } 1296 return NULL; 1297 } 1298 1299 /** check nsec3 parameters on nsec3 rrset with current zone values */ 1300 static int 1301 neg_params_ok(struct val_neg_zone* zone, struct ub_packed_rrset_key* rrset) 1302 { 1303 int h; 1304 uint8_t* s; 1305 size_t slen, it; 1306 if(!nsec3_get_params(rrset, 0, &h, &it, &s, &slen)) 1307 return 0; 1308 return (h == zone->nsec3_hash && it == zone->nsec3_iter && 1309 slen == zone->nsec3_saltlen && 1310 memcmp(zone->nsec3_salt, s, slen) == 0); 1311 } 1312 1313 /** get next closer for nsec3 proof */ 1314 static struct ub_packed_rrset_key* 1315 neg_nsec3_getnc(struct val_neg_zone* zone, uint8_t* hashnc, size_t nclen, 1316 struct rrset_cache* rrset_cache, struct regional* region, 1317 time_t now, uint8_t* b32, size_t maxb32) 1318 { 1319 struct ub_packed_rrset_key* nc_rrset; 1320 struct val_neg_data* data; 1321 size_t b32len; 1322 1323 if(!(b32len=nsec3_hash_to_b32(hashnc, nclen, zone->name, 1324 zone->len, b32, maxb32))) 1325 return NULL; 1326 (void)neg_closest_data(zone, b32, b32len, zone->labs+1, &data); 1327 if(!data && zone->tree.count != 0) { 1328 /* could be before the first entry ; return the last 1329 * entry (possibly the rollover nsec3 at end) */ 1330 data = (struct val_neg_data*)rbtree_last(&zone->tree); 1331 } 1332 while(data && !data->in_use) 1333 data = data->parent; 1334 if(!data) 1335 return NULL; 1336 /* got a data element in tree, grab it */ 1337 nc_rrset = grab_nsec(rrset_cache, data->name, data->len, 1338 LDNS_RR_TYPE_NSEC3, zone->dclass, 0, region, 0, 0, now); 1339 if(!nc_rrset) 1340 return NULL; 1341 if(!neg_params_ok(zone, nc_rrset)) 1342 return NULL; 1343 return nc_rrset; 1344 } 1345 1346 /** neg cache nsec3 proof procedure*/ 1347 static struct dns_msg* 1348 neg_nsec3_proof_ds(struct val_neg_zone* zone, uint8_t* qname, size_t qname_len, 1349 int qlabs, sldns_buffer* buf, struct rrset_cache* rrset_cache, 1350 struct regional* region, time_t now, uint8_t* topname) 1351 { 1352 struct dns_msg* msg; 1353 struct val_neg_data* data; 1354 uint8_t hashnc[NSEC3_SHA_LEN]; 1355 size_t nclen; 1356 struct ub_packed_rrset_key* ce_rrset, *nc_rrset; 1357 struct nsec3_cached_hash c; 1358 uint8_t nc_b32[257]; 1359 1360 /* for NSEC3 ; determine the closest encloser for which we 1361 * can find an exact match. Remember the hashed lower name, 1362 * since that is the one we need a closest match for. 1363 * If we find a match straight away, then it becomes NODATA. 1364 * Otherwise, NXDOMAIN or if OPTOUT, an insecure delegation. 1365 * Also check that parameters are the same on closest encloser 1366 * and on closest match. 1367 */ 1368 if(!zone->nsec3_hash) 1369 return NULL; /* not nsec3 zone */ 1370 1371 if(!(data=neg_find_nsec3_ce(zone, qname, qname_len, qlabs, buf, 1372 hashnc, &nclen))) { 1373 return NULL; 1374 } 1375 1376 /* grab the ce rrset */ 1377 ce_rrset = grab_nsec(rrset_cache, data->name, data->len, 1378 LDNS_RR_TYPE_NSEC3, zone->dclass, 0, region, 1, 1379 LDNS_RR_TYPE_DS, now); 1380 if(!ce_rrset) 1381 return NULL; 1382 if(!neg_params_ok(zone, ce_rrset)) 1383 return NULL; 1384 1385 if(nclen == 0) { 1386 /* exact match, just check the type bits */ 1387 /* need: -SOA, -DS, +NS */ 1388 if(nsec3_has_type(ce_rrset, 0, LDNS_RR_TYPE_SOA) || 1389 nsec3_has_type(ce_rrset, 0, LDNS_RR_TYPE_DS) || 1390 !nsec3_has_type(ce_rrset, 0, LDNS_RR_TYPE_NS)) 1391 return NULL; 1392 if(!(msg = dns_msg_create(qname, qname_len, 1393 LDNS_RR_TYPE_DS, zone->dclass, region, 1))) 1394 return NULL; 1395 /* TTL reduced in grab_nsec */ 1396 if(!dns_msg_authadd(msg, region, ce_rrset, 0)) 1397 return NULL; 1398 return msg; 1399 } 1400 1401 /* optout is not allowed without knowing the trust-anchor in use, 1402 * otherwise the optout could spoof away that anchor */ 1403 if(!topname) 1404 return NULL; 1405 1406 /* if there is no exact match, it must be in an optout span 1407 * (an existing DS implies an NSEC3 must exist) */ 1408 nc_rrset = neg_nsec3_getnc(zone, hashnc, nclen, rrset_cache, 1409 region, now, nc_b32, sizeof(nc_b32)); 1410 if(!nc_rrset) 1411 return NULL; 1412 if(!neg_params_ok(zone, nc_rrset)) 1413 return NULL; 1414 if(!nsec3_has_optout(nc_rrset, 0)) 1415 return NULL; 1416 c.hash = hashnc; 1417 c.hash_len = nclen; 1418 c.b32 = nc_b32+1; 1419 c.b32_len = (size_t)nc_b32[0]; 1420 if(nsec3_covers(zone->name, &c, nc_rrset, 0, buf)) { 1421 /* nc_rrset covers the next closer name. 1422 * ce_rrset equals a closer encloser. 1423 * nc_rrset is optout. 1424 * No need to check wildcard for type DS */ 1425 /* capacity=3: ce + nc + soa(if needed) */ 1426 if(!(msg = dns_msg_create(qname, qname_len, 1427 LDNS_RR_TYPE_DS, zone->dclass, region, 3))) 1428 return NULL; 1429 /* now=0 because TTL was reduced in grab_nsec */ 1430 if(!dns_msg_authadd(msg, region, ce_rrset, 0)) 1431 return NULL; 1432 if(!dns_msg_authadd(msg, region, nc_rrset, 0)) 1433 return NULL; 1434 return msg; 1435 } 1436 return NULL; 1437 } 1438 1439 /** 1440 * Add SOA record for external responses. 1441 * @param rrset_cache: to look into. 1442 * @param now: current time. 1443 * @param region: where to perform the allocation 1444 * @param msg: current msg with NSEC. 1445 * @param zone: val_neg_zone if we have one. 1446 * @return false on lookup or alloc failure. 1447 */ 1448 static int add_soa(struct rrset_cache* rrset_cache, time_t now, 1449 struct regional* region, struct dns_msg* msg, struct val_neg_zone* zone) 1450 { 1451 struct ub_packed_rrset_key* soa; 1452 uint8_t* nm; 1453 size_t nmlen; 1454 uint16_t dclass; 1455 if(zone) { 1456 nm = zone->name; 1457 nmlen = zone->len; 1458 dclass = zone->dclass; 1459 } else { 1460 /* Assumes the signer is the zone SOA to add */ 1461 nm = reply_nsec_signer(msg->rep, &nmlen, &dclass); 1462 if(!nm) 1463 return 0; 1464 } 1465 soa = rrset_cache_lookup(rrset_cache, nm, nmlen, LDNS_RR_TYPE_SOA, 1466 dclass, PACKED_RRSET_SOA_NEG, now, 0); 1467 if(!soa) 1468 return 0; 1469 if(!dns_msg_authadd(msg, region, soa, now)) { 1470 lock_rw_unlock(&soa->entry.lock); 1471 return 0; 1472 } 1473 lock_rw_unlock(&soa->entry.lock); 1474 return 1; 1475 } 1476 1477 struct dns_msg* 1478 val_neg_getmsg(struct val_neg_cache* neg, struct query_info* qinfo, 1479 struct regional* region, struct rrset_cache* rrset_cache, 1480 sldns_buffer* buf, time_t now, int addsoa, uint8_t* topname, 1481 struct config_file* cfg) 1482 { 1483 struct dns_msg* msg; 1484 struct ub_packed_rrset_key* nsec; /* qname matching/covering nsec */ 1485 struct ub_packed_rrset_key* wcrr; /* wildcard record or nsec */ 1486 uint8_t* nodata_wc = NULL; 1487 uint8_t* ce = NULL; 1488 size_t ce_len; 1489 uint8_t wc_ce[LDNS_MAX_DOMAINLEN+3]; 1490 struct query_info wc_qinfo; 1491 struct ub_packed_rrset_key* cache_wc; 1492 struct packed_rrset_data* wcrr_data; 1493 int rcode = LDNS_RCODE_NOERROR; 1494 uint8_t* zname; 1495 size_t zname_len; 1496 int zname_labs; 1497 struct val_neg_zone* zone; 1498 1499 /* only for DS queries when aggressive use of NSEC is disabled */ 1500 if(qinfo->qtype != LDNS_RR_TYPE_DS && !cfg->aggressive_nsec) 1501 return NULL; 1502 log_assert(!topname || dname_subdomain_c(qinfo->qname, topname)); 1503 1504 /* Get best available NSEC for qname */ 1505 nsec = neg_find_nsec(neg, qinfo->qname, qinfo->qname_len, qinfo->qclass, 1506 rrset_cache, now, region); 1507 1508 /* Matching NSEC, use to generate No Data answer. Not creating answers 1509 * yet for No Data proven using wildcard. */ 1510 if(nsec && nsec_proves_nodata(nsec, qinfo, &nodata_wc) && !nodata_wc) { 1511 if(!(msg = dns_msg_create(qinfo->qname, qinfo->qname_len, 1512 qinfo->qtype, qinfo->qclass, region, 2))) 1513 return NULL; 1514 if(!dns_msg_authadd(msg, region, nsec, 0)) 1515 return NULL; 1516 if(addsoa && !add_soa(rrset_cache, now, region, msg, NULL)) 1517 return NULL; 1518 1519 lock_basic_lock(&neg->lock); 1520 neg->num_neg_cache_noerror++; 1521 lock_basic_unlock(&neg->lock); 1522 return msg; 1523 } else if(nsec && val_nsec_proves_name_error(nsec, qinfo->qname)) { 1524 if(!(msg = dns_msg_create(qinfo->qname, qinfo->qname_len, 1525 qinfo->qtype, qinfo->qclass, region, 3))) 1526 return NULL; 1527 if(!(ce = nsec_closest_encloser(qinfo->qname, nsec))) 1528 return NULL; 1529 dname_count_size_labels(ce, &ce_len); 1530 1531 /* No extra extra NSEC required if both nameerror qname and 1532 * nodata *.ce. are proven already. */ 1533 if(!nodata_wc || query_dname_compare(nodata_wc, ce) != 0) { 1534 /* Qname proven non existing, get wildcard record for 1535 * QTYPE or NSEC covering or matching wildcard. */ 1536 1537 /* Num labels in ce is always smaller than in qname, 1538 * therefore adding the wildcard label cannot overflow 1539 * buffer. */ 1540 wc_ce[0] = 1; 1541 wc_ce[1] = (uint8_t)'*'; 1542 memmove(wc_ce+2, ce, ce_len); 1543 wc_qinfo.qname = wc_ce; 1544 wc_qinfo.qname_len = ce_len + 2; 1545 wc_qinfo.qtype = qinfo->qtype; 1546 1547 1548 if((cache_wc = rrset_cache_lookup(rrset_cache, wc_qinfo.qname, 1549 wc_qinfo.qname_len, wc_qinfo.qtype, 1550 qinfo->qclass, 0/*flags*/, now, 0/*read only*/))) { 1551 /* Synthesize wildcard answer */ 1552 wcrr_data = (struct packed_rrset_data*)cache_wc->entry.data; 1553 if(!(wcrr_data->security == sec_status_secure || 1554 (wcrr_data->security == sec_status_unchecked && 1555 wcrr_data->rrsig_count > 0))) { 1556 lock_rw_unlock(&cache_wc->entry.lock); 1557 return NULL; 1558 } 1559 if(!(wcrr = packed_rrset_copy_region(cache_wc, 1560 region, now))) { 1561 lock_rw_unlock(&cache_wc->entry.lock); 1562 return NULL; 1563 }; 1564 lock_rw_unlock(&cache_wc->entry.lock); 1565 wcrr->rk.dname = qinfo->qname; 1566 wcrr->rk.dname_len = qinfo->qname_len; 1567 if(!dns_msg_ansadd(msg, region, wcrr, 0)) 1568 return NULL; 1569 /* No SOA needed for wildcard synthesised 1570 * answer. */ 1571 addsoa = 0; 1572 } else { 1573 /* Get wildcard NSEC for possible non existence 1574 * proof */ 1575 if(!(wcrr = neg_find_nsec(neg, wc_qinfo.qname, 1576 wc_qinfo.qname_len, qinfo->qclass, 1577 rrset_cache, now, region))) 1578 return NULL; 1579 1580 nodata_wc = NULL; 1581 if(val_nsec_proves_name_error(wcrr, wc_ce)) 1582 rcode = LDNS_RCODE_NXDOMAIN; 1583 else if(!nsec_proves_nodata(wcrr, &wc_qinfo, 1584 &nodata_wc) || nodata_wc) 1585 /* &nodata_wc shouldn't be set, wc_qinfo 1586 * already contains wildcard domain. */ 1587 /* NSEC doesn't prove anything for 1588 * wildcard. */ 1589 return NULL; 1590 if(query_dname_compare(wcrr->rk.dname, 1591 nsec->rk.dname) != 0) 1592 if(!dns_msg_authadd(msg, region, wcrr, 0)) 1593 return NULL; 1594 } 1595 } 1596 1597 if(!dns_msg_authadd(msg, region, nsec, 0)) 1598 return NULL; 1599 if(addsoa && !add_soa(rrset_cache, now, region, msg, NULL)) 1600 return NULL; 1601 1602 /* Increment statistic counters */ 1603 lock_basic_lock(&neg->lock); 1604 if(rcode == LDNS_RCODE_NOERROR) 1605 neg->num_neg_cache_noerror++; 1606 else if(rcode == LDNS_RCODE_NXDOMAIN) 1607 neg->num_neg_cache_nxdomain++; 1608 lock_basic_unlock(&neg->lock); 1609 1610 FLAGS_SET_RCODE(msg->rep->flags, rcode); 1611 return msg; 1612 } 1613 1614 /* No aggressive use of NSEC3 for now, only proceed for DS types. */ 1615 if(qinfo->qtype != LDNS_RR_TYPE_DS){ 1616 return NULL; 1617 } 1618 /* check NSEC3 neg cache for type DS */ 1619 /* need to look one zone higher for DS type */ 1620 zname = qinfo->qname; 1621 zname_len = qinfo->qname_len; 1622 dname_remove_label(&zname, &zname_len); 1623 zname_labs = dname_count_labels(zname); 1624 1625 /* lookup closest zone */ 1626 lock_basic_lock(&neg->lock); 1627 zone = neg_closest_zone_parent(neg, zname, zname_len, zname_labs, 1628 qinfo->qclass); 1629 while(zone && !zone->in_use) 1630 zone = zone->parent; 1631 /* check that the zone is not too high up so that we do not pick data 1632 * out of a zone that is above the last-seen key (or trust-anchor). */ 1633 if(zone && topname) { 1634 if(!dname_subdomain_c(zone->name, topname)) 1635 zone = NULL; 1636 } 1637 if(!zone) { 1638 lock_basic_unlock(&neg->lock); 1639 return NULL; 1640 } 1641 1642 msg = neg_nsec3_proof_ds(zone, qinfo->qname, qinfo->qname_len, 1643 zname_labs+1, buf, rrset_cache, region, now, topname); 1644 if(msg && addsoa && !add_soa(rrset_cache, now, region, msg, zone)) { 1645 lock_basic_unlock(&neg->lock); 1646 return NULL; 1647 } 1648 lock_basic_unlock(&neg->lock); 1649 return msg; 1650 } 1651