xref: /freebsd/contrib/unbound/validator/autotrust.c (revision d9f0ce31900a48d1a2bfc1c8c86f79d1e831451a)
1 /*
2  * validator/autotrust.c - RFC5011 trust anchor management for unbound.
3  *
4  * Copyright (c) 2009, NLnet Labs. All rights reserved.
5  *
6  * This software is open source.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * Redistributions of source code must retain the above copyright notice,
13  * this list of conditions and the following disclaimer.
14  *
15  * Redistributions in binary form must reproduce the above copyright notice,
16  * this list of conditions and the following disclaimer in the documentation
17  * and/or other materials provided with the distribution.
18  *
19  * Neither the name of the NLNET LABS nor the names of its contributors may
20  * be used to endorse or promote products derived from this software without
21  * specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
27  * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
28  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
29  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
31  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
32  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 /**
37  * \file
38  *
39  * Contains autotrust implementation. The implementation was taken from
40  * the autotrust daemon (BSD licensed), written by Matthijs Mekking.
41  * It was modified to fit into unbound. The state table process is the same.
42  */
43 #include "config.h"
44 #include "validator/autotrust.h"
45 #include "validator/val_anchor.h"
46 #include "validator/val_utils.h"
47 #include "validator/val_sigcrypt.h"
48 #include "util/data/dname.h"
49 #include "util/data/packed_rrset.h"
50 #include "util/log.h"
51 #include "util/module.h"
52 #include "util/net_help.h"
53 #include "util/config_file.h"
54 #include "util/regional.h"
55 #include "util/random.h"
56 #include "util/data/msgparse.h"
57 #include "services/mesh.h"
58 #include "services/cache/rrset.h"
59 #include "validator/val_kcache.h"
60 #include "sldns/sbuffer.h"
61 #include "sldns/wire2str.h"
62 #include "sldns/str2wire.h"
63 #include "sldns/keyraw.h"
64 #include "sldns/rrdef.h"
65 #include <stdarg.h>
66 #include <ctype.h>
67 
68 /** number of times a key must be seen before it can become valid */
69 #define MIN_PENDINGCOUNT 2
70 
71 /** Event: Revoked */
72 static void do_revoked(struct module_env* env, struct autr_ta* anchor, int* c);
73 
74 struct autr_global_data* autr_global_create(void)
75 {
76 	struct autr_global_data* global;
77 	global = (struct autr_global_data*)malloc(sizeof(*global));
78 	if(!global)
79 		return NULL;
80 	rbtree_init(&global->probe, &probetree_cmp);
81 	return global;
82 }
83 
84 void autr_global_delete(struct autr_global_data* global)
85 {
86 	if(!global)
87 		return;
88 	/* elements deleted by parent */
89 	memset(global, 0, sizeof(*global));
90 	free(global);
91 }
92 
93 int probetree_cmp(const void* x, const void* y)
94 {
95 	struct trust_anchor* a = (struct trust_anchor*)x;
96 	struct trust_anchor* b = (struct trust_anchor*)y;
97 	log_assert(a->autr && b->autr);
98 	if(a->autr->next_probe_time < b->autr->next_probe_time)
99 		return -1;
100 	if(a->autr->next_probe_time > b->autr->next_probe_time)
101 		return 1;
102 	/* time is equal, sort on trust point identity */
103 	return anchor_cmp(x, y);
104 }
105 
106 size_t
107 autr_get_num_anchors(struct val_anchors* anchors)
108 {
109 	size_t res = 0;
110 	if(!anchors)
111 		return 0;
112 	lock_basic_lock(&anchors->lock);
113 	if(anchors->autr)
114 		res = anchors->autr->probe.count;
115 	lock_basic_unlock(&anchors->lock);
116 	return res;
117 }
118 
119 /** Position in string */
120 static int
121 position_in_string(char *str, const char* sub)
122 {
123 	char* pos = strstr(str, sub);
124 	if(pos)
125 		return (int)(pos-str)+(int)strlen(sub);
126 	return -1;
127 }
128 
129 /** Debug routine to print pretty key information */
130 static void
131 verbose_key(struct autr_ta* ta, enum verbosity_value level,
132 	const char* format, ...) ATTR_FORMAT(printf, 3, 4);
133 
134 /**
135  * Implementation of debug pretty key print
136  * @param ta: trust anchor key with DNSKEY data.
137  * @param level: verbosity level to print at.
138  * @param format: printf style format string.
139  */
140 static void
141 verbose_key(struct autr_ta* ta, enum verbosity_value level,
142 	const char* format, ...)
143 {
144 	va_list args;
145 	va_start(args, format);
146 	if(verbosity >= level) {
147 		char* str = sldns_wire2str_dname(ta->rr, ta->dname_len);
148 		int keytag = (int)sldns_calc_keytag_raw(sldns_wirerr_get_rdata(
149 			ta->rr, ta->rr_len, ta->dname_len),
150 			sldns_wirerr_get_rdatalen(ta->rr, ta->rr_len,
151 			ta->dname_len));
152 		char msg[MAXSYSLOGMSGLEN];
153 		vsnprintf(msg, sizeof(msg), format, args);
154 		verbose(level, "%s key %d %s", str?str:"??", keytag, msg);
155 		free(str);
156 	}
157 	va_end(args);
158 }
159 
160 /**
161  * Parse comments
162  * @param str: to parse
163  * @param ta: trust key autotrust metadata
164  * @return false on failure.
165  */
166 static int
167 parse_comments(char* str, struct autr_ta* ta)
168 {
169         int len = (int)strlen(str), pos = 0, timestamp = 0;
170         char* comment = (char*) malloc(sizeof(char)*len+1);
171         char* comments = comment;
172 	if(!comment) {
173 		log_err("malloc failure in parse");
174                 return 0;
175 	}
176 	/* skip over whitespace and data at start of line */
177         while (*str != '\0' && *str != ';')
178                 str++;
179         if (*str == ';')
180                 str++;
181         /* copy comments */
182         while (*str != '\0')
183         {
184                 *comments = *str;
185                 comments++;
186                 str++;
187         }
188         *comments = '\0';
189 
190         comments = comment;
191 
192         /* read state */
193         pos = position_in_string(comments, "state=");
194         if (pos >= (int) strlen(comments))
195         {
196 		log_err("parse error");
197                 free(comment);
198                 return 0;
199         }
200         if (pos <= 0)
201                 ta->s = AUTR_STATE_VALID;
202         else
203         {
204                 int s = (int) comments[pos] - '0';
205                 switch(s)
206                 {
207                         case AUTR_STATE_START:
208                         case AUTR_STATE_ADDPEND:
209                         case AUTR_STATE_VALID:
210                         case AUTR_STATE_MISSING:
211                         case AUTR_STATE_REVOKED:
212                         case AUTR_STATE_REMOVED:
213                                 ta->s = s;
214                                 break;
215                         default:
216 				verbose_key(ta, VERB_OPS, "has undefined "
217 					"state, considered NewKey");
218                                 ta->s = AUTR_STATE_START;
219                                 break;
220                 }
221         }
222         /* read pending count */
223         pos = position_in_string(comments, "count=");
224         if (pos >= (int) strlen(comments))
225         {
226 		log_err("parse error");
227                 free(comment);
228                 return 0;
229         }
230         if (pos <= 0)
231                 ta->pending_count = 0;
232         else
233         {
234                 comments += pos;
235                 ta->pending_count = (uint8_t)atoi(comments);
236         }
237 
238         /* read last change */
239         pos = position_in_string(comments, "lastchange=");
240         if (pos >= (int) strlen(comments))
241         {
242 		log_err("parse error");
243                 free(comment);
244                 return 0;
245         }
246         if (pos >= 0)
247         {
248                 comments += pos;
249                 timestamp = atoi(comments);
250         }
251         if (pos < 0 || !timestamp)
252 		ta->last_change = 0;
253         else
254                 ta->last_change = (time_t)timestamp;
255 
256         free(comment);
257         return 1;
258 }
259 
260 /** Check if a line contains data (besides comments) */
261 static int
262 str_contains_data(char* str, char comment)
263 {
264         while (*str != '\0') {
265                 if (*str == comment || *str == '\n')
266                         return 0;
267                 if (*str != ' ' && *str != '\t')
268                         return 1;
269                 str++;
270         }
271         return 0;
272 }
273 
274 /** Get DNSKEY flags
275  * rdata without rdatalen in front of it. */
276 static int
277 dnskey_flags(uint16_t t, uint8_t* rdata, size_t len)
278 {
279 	uint16_t f;
280 	if(t != LDNS_RR_TYPE_DNSKEY)
281 		return 0;
282 	if(len < 2)
283 		return 0;
284 	memmove(&f, rdata, 2);
285 	f = ntohs(f);
286 	return (int)f;
287 }
288 
289 /** Check if KSK DNSKEY.
290  * pass rdata without rdatalen in front of it */
291 static int
292 rr_is_dnskey_sep(uint16_t t, uint8_t* rdata, size_t len)
293 {
294 	return (dnskey_flags(t, rdata, len)&DNSKEY_BIT_SEP);
295 }
296 
297 /** Check if TA is KSK DNSKEY */
298 static int
299 ta_is_dnskey_sep(struct autr_ta* ta)
300 {
301 	return (dnskey_flags(
302 		sldns_wirerr_get_type(ta->rr, ta->rr_len, ta->dname_len),
303 		sldns_wirerr_get_rdata(ta->rr, ta->rr_len, ta->dname_len),
304 		sldns_wirerr_get_rdatalen(ta->rr, ta->rr_len, ta->dname_len)
305 		) & DNSKEY_BIT_SEP);
306 }
307 
308 /** Check if REVOKED DNSKEY
309  * pass rdata without rdatalen in front of it */
310 static int
311 rr_is_dnskey_revoked(uint16_t t, uint8_t* rdata, size_t len)
312 {
313 	return (dnskey_flags(t, rdata, len)&LDNS_KEY_REVOKE_KEY);
314 }
315 
316 /** create ta */
317 static struct autr_ta*
318 autr_ta_create(uint8_t* rr, size_t rr_len, size_t dname_len)
319 {
320 	struct autr_ta* ta = (struct autr_ta*)calloc(1, sizeof(*ta));
321 	if(!ta) {
322 		free(rr);
323 		return NULL;
324 	}
325 	ta->rr = rr;
326 	ta->rr_len = rr_len;
327 	ta->dname_len = dname_len;
328 	return ta;
329 }
330 
331 /** create tp */
332 static struct trust_anchor*
333 autr_tp_create(struct val_anchors* anchors, uint8_t* own, size_t own_len,
334 	uint16_t dc)
335 {
336 	struct trust_anchor* tp = (struct trust_anchor*)calloc(1, sizeof(*tp));
337 	if(!tp) return NULL;
338 	tp->name = memdup(own, own_len);
339 	if(!tp->name) {
340 		free(tp);
341 		return NULL;
342 	}
343 	tp->namelen = own_len;
344 	tp->namelabs = dname_count_labels(tp->name);
345 	tp->node.key = tp;
346 	tp->dclass = dc;
347 	tp->autr = (struct autr_point_data*)calloc(1, sizeof(*tp->autr));
348 	if(!tp->autr) {
349 		free(tp->name);
350 		free(tp);
351 		return NULL;
352 	}
353 	tp->autr->pnode.key = tp;
354 
355 	lock_basic_lock(&anchors->lock);
356 	if(!rbtree_insert(anchors->tree, &tp->node)) {
357 		lock_basic_unlock(&anchors->lock);
358 		log_err("trust anchor presented twice");
359 		free(tp->name);
360 		free(tp->autr);
361 		free(tp);
362 		return NULL;
363 	}
364 	if(!rbtree_insert(&anchors->autr->probe, &tp->autr->pnode)) {
365 		(void)rbtree_delete(anchors->tree, tp);
366 		lock_basic_unlock(&anchors->lock);
367 		log_err("trust anchor in probetree twice");
368 		free(tp->name);
369 		free(tp->autr);
370 		free(tp);
371 		return NULL;
372 	}
373 	lock_basic_unlock(&anchors->lock);
374 	lock_basic_init(&tp->lock);
375 	lock_protect(&tp->lock, tp, sizeof(*tp));
376 	lock_protect(&tp->lock, tp->autr, sizeof(*tp->autr));
377 	return tp;
378 }
379 
380 /** delete assembled rrsets */
381 static void
382 autr_rrset_delete(struct ub_packed_rrset_key* r)
383 {
384 	if(r) {
385 		free(r->rk.dname);
386 		free(r->entry.data);
387 		free(r);
388 	}
389 }
390 
391 void autr_point_delete(struct trust_anchor* tp)
392 {
393 	if(!tp)
394 		return;
395 	lock_unprotect(&tp->lock, tp);
396 	lock_unprotect(&tp->lock, tp->autr);
397 	lock_basic_destroy(&tp->lock);
398 	autr_rrset_delete(tp->ds_rrset);
399 	autr_rrset_delete(tp->dnskey_rrset);
400 	if(tp->autr) {
401 		struct autr_ta* p = tp->autr->keys, *np;
402 		while(p) {
403 			np = p->next;
404 			free(p->rr);
405 			free(p);
406 			p = np;
407 		}
408 		free(tp->autr->file);
409 		free(tp->autr);
410 	}
411 	free(tp->name);
412 	free(tp);
413 }
414 
415 /** find or add a new trust point for autotrust */
416 static struct trust_anchor*
417 find_add_tp(struct val_anchors* anchors, uint8_t* rr, size_t rr_len,
418 	size_t dname_len)
419 {
420 	struct trust_anchor* tp;
421 	tp = anchor_find(anchors, rr, dname_count_labels(rr), dname_len,
422 		sldns_wirerr_get_class(rr, rr_len, dname_len));
423 	if(tp) {
424 		if(!tp->autr) {
425 			log_err("anchor cannot be with and without autotrust");
426 			lock_basic_unlock(&tp->lock);
427 			return NULL;
428 		}
429 		return tp;
430 	}
431 	tp = autr_tp_create(anchors, rr, dname_len, sldns_wirerr_get_class(rr,
432 		rr_len, dname_len));
433 	lock_basic_lock(&tp->lock);
434 	return tp;
435 }
436 
437 /** Add trust anchor from RR */
438 static struct autr_ta*
439 add_trustanchor_frm_rr(struct val_anchors* anchors, uint8_t* rr, size_t rr_len,
440         size_t dname_len, struct trust_anchor** tp)
441 {
442 	struct autr_ta* ta = autr_ta_create(rr, rr_len, dname_len);
443 	if(!ta)
444 		return NULL;
445 	*tp = find_add_tp(anchors, rr, rr_len, dname_len);
446 	if(!*tp) {
447 		free(ta->rr);
448 		free(ta);
449 		return NULL;
450 	}
451 	/* add ta to tp */
452 	ta->next = (*tp)->autr->keys;
453 	(*tp)->autr->keys = ta;
454 	lock_basic_unlock(&(*tp)->lock);
455 	return ta;
456 }
457 
458 /**
459  * Add new trust anchor from a string in file.
460  * @param anchors: all anchors
461  * @param str: string with anchor and comments, if any comments.
462  * @param tp: trust point returned.
463  * @param origin: what to use for @
464  * @param origin_len: length of origin
465  * @param prev: previous rr name
466  * @param prev_len: length of prev
467  * @param skip: if true, the result is NULL, but not an error, skip it.
468  * @return new key in trust point.
469  */
470 static struct autr_ta*
471 add_trustanchor_frm_str(struct val_anchors* anchors, char* str,
472 	struct trust_anchor** tp, uint8_t* origin, size_t origin_len,
473 	uint8_t** prev, size_t* prev_len, int* skip)
474 {
475 	uint8_t rr[LDNS_RR_BUF_SIZE];
476 	size_t rr_len = sizeof(rr), dname_len;
477 	uint8_t* drr;
478 	int lstatus;
479         if (!str_contains_data(str, ';')) {
480 		*skip = 1;
481                 return NULL; /* empty line */
482 	}
483 	if(0 != (lstatus = sldns_str2wire_rr_buf(str, rr, &rr_len, &dname_len,
484 		0, origin, origin_len, *prev, *prev_len)))
485 	{
486 		log_err("ldns error while converting string to RR at%d: %s: %s",
487 			LDNS_WIREPARSE_OFFSET(lstatus),
488 			sldns_get_errorstr_parse(lstatus), str);
489 		return NULL;
490 	}
491 	free(*prev);
492 	*prev = memdup(rr, dname_len);
493 	*prev_len = dname_len;
494 	if(!*prev) {
495 		log_err("malloc failure in add_trustanchor");
496 		return NULL;
497 	}
498 	if(sldns_wirerr_get_type(rr, rr_len, dname_len)!=LDNS_RR_TYPE_DNSKEY &&
499 		sldns_wirerr_get_type(rr, rr_len, dname_len)!=LDNS_RR_TYPE_DS) {
500 		*skip = 1;
501 		return NULL; /* only DS and DNSKEY allowed */
502 	}
503 	drr = memdup(rr, rr_len);
504 	if(!drr) {
505 		log_err("malloc failure in add trustanchor");
506 		return NULL;
507 	}
508 	return add_trustanchor_frm_rr(anchors, drr, rr_len, dname_len, tp);
509 }
510 
511 /**
512  * Load single anchor
513  * @param anchors: all points.
514  * @param str: comments line
515  * @param fname: filename
516  * @param origin: the $ORIGIN.
517  * @param origin_len: length of origin
518  * @param prev: passed to ldns.
519  * @param prev_len: length of prev
520  * @param skip: if true, the result is NULL, but not an error, skip it.
521  * @return false on failure, otherwise the tp read.
522  */
523 static struct trust_anchor*
524 load_trustanchor(struct val_anchors* anchors, char* str, const char* fname,
525 	uint8_t* origin, size_t origin_len, uint8_t** prev, size_t* prev_len,
526 	int* skip)
527 {
528 	struct autr_ta* ta = NULL;
529 	struct trust_anchor* tp = NULL;
530 
531 	ta = add_trustanchor_frm_str(anchors, str, &tp, origin, origin_len,
532 		prev, prev_len, skip);
533 	if(!ta)
534 		return NULL;
535 	lock_basic_lock(&tp->lock);
536 	if(!parse_comments(str, ta)) {
537 		lock_basic_unlock(&tp->lock);
538 		return NULL;
539 	}
540 	if(!tp->autr->file) {
541 		tp->autr->file = strdup(fname);
542 		if(!tp->autr->file) {
543 			lock_basic_unlock(&tp->lock);
544 			log_err("malloc failure");
545 			return NULL;
546 		}
547 	}
548 	lock_basic_unlock(&tp->lock);
549         return tp;
550 }
551 
552 /** iterator for DSes from keylist. return true if a next element exists */
553 static int
554 assemble_iterate_ds(struct autr_ta** list, uint8_t** rr, size_t* rr_len,
555 	size_t* dname_len)
556 {
557 	while(*list) {
558 		if(sldns_wirerr_get_type((*list)->rr, (*list)->rr_len,
559 			(*list)->dname_len) == LDNS_RR_TYPE_DS) {
560 			*rr = (*list)->rr;
561 			*rr_len = (*list)->rr_len;
562 			*dname_len = (*list)->dname_len;
563 			*list = (*list)->next;
564 			return 1;
565 		}
566 		*list = (*list)->next;
567 	}
568 	return 0;
569 }
570 
571 /** iterator for DNSKEYs from keylist. return true if a next element exists */
572 static int
573 assemble_iterate_dnskey(struct autr_ta** list, uint8_t** rr, size_t* rr_len,
574 	size_t* dname_len)
575 {
576 	while(*list) {
577 		if(sldns_wirerr_get_type((*list)->rr, (*list)->rr_len,
578 		   (*list)->dname_len) != LDNS_RR_TYPE_DS &&
579 			((*list)->s == AUTR_STATE_VALID ||
580 			 (*list)->s == AUTR_STATE_MISSING)) {
581 			*rr = (*list)->rr;
582 			*rr_len = (*list)->rr_len;
583 			*dname_len = (*list)->dname_len;
584 			*list = (*list)->next;
585 			return 1;
586 		}
587 		*list = (*list)->next;
588 	}
589 	return 0;
590 }
591 
592 /** see if iterator-list has any elements in it, or it is empty */
593 static int
594 assemble_iterate_hasfirst(int iter(struct autr_ta**, uint8_t**, size_t*,
595 	size_t*), struct autr_ta* list)
596 {
597 	uint8_t* rr = NULL;
598 	size_t rr_len = 0, dname_len = 0;
599 	return iter(&list, &rr, &rr_len, &dname_len);
600 }
601 
602 /** number of elements in iterator list */
603 static size_t
604 assemble_iterate_count(int iter(struct autr_ta**, uint8_t**, size_t*,
605 	size_t*), struct autr_ta* list)
606 {
607 	uint8_t* rr = NULL;
608 	size_t i = 0, rr_len = 0, dname_len = 0;
609 	while(iter(&list, &rr, &rr_len, &dname_len)) {
610 		i++;
611 	}
612 	return i;
613 }
614 
615 /**
616  * Create a ub_packed_rrset_key allocated on the heap.
617  * It therefore does not have the correct ID value, and cannot be used
618  * inside the cache.  It can be used in storage outside of the cache.
619  * Keys for the cache have to be obtained from alloc.h .
620  * @param iter: iterator over the elements in the list.  It filters elements.
621  * @param list: the list.
622  * @return key allocated or NULL on failure.
623  */
624 static struct ub_packed_rrset_key*
625 ub_packed_rrset_heap_key(int iter(struct autr_ta**, uint8_t**, size_t*,
626 	size_t*), struct autr_ta* list)
627 {
628 	uint8_t* rr = NULL;
629 	size_t rr_len = 0, dname_len = 0;
630 	struct ub_packed_rrset_key* k;
631 	if(!iter(&list, &rr, &rr_len, &dname_len))
632 		return NULL;
633 	k = (struct ub_packed_rrset_key*)calloc(1, sizeof(*k));
634 	if(!k)
635 		return NULL;
636 	k->rk.type = htons(sldns_wirerr_get_type(rr, rr_len, dname_len));
637 	k->rk.rrset_class = htons(sldns_wirerr_get_class(rr, rr_len, dname_len));
638 	k->rk.dname_len = dname_len;
639 	k->rk.dname = memdup(rr, dname_len);
640 	if(!k->rk.dname) {
641 		free(k);
642 		return NULL;
643 	}
644 	return k;
645 }
646 
647 /**
648  * Create packed_rrset data on the heap.
649  * @param iter: iterator over the elements in the list.  It filters elements.
650  * @param list: the list.
651  * @return data allocated or NULL on failure.
652  */
653 static struct packed_rrset_data*
654 packed_rrset_heap_data(int iter(struct autr_ta**, uint8_t**, size_t*,
655 	size_t*), struct autr_ta* list)
656 {
657 	uint8_t* rr = NULL;
658 	size_t rr_len = 0, dname_len = 0;
659 	struct packed_rrset_data* data;
660 	size_t count=0, rrsig_count=0, len=0, i, total;
661 	uint8_t* nextrdata;
662 	struct autr_ta* list_i;
663 	time_t ttl = 0;
664 
665 	list_i = list;
666 	while(iter(&list_i, &rr, &rr_len, &dname_len)) {
667 		if(sldns_wirerr_get_type(rr, rr_len, dname_len) ==
668 			LDNS_RR_TYPE_RRSIG)
669 			rrsig_count++;
670 		else	count++;
671 		/* sizeof the rdlength + rdatalen */
672 		len += 2 + sldns_wirerr_get_rdatalen(rr, rr_len, dname_len);
673 		ttl = (time_t)sldns_wirerr_get_ttl(rr, rr_len, dname_len);
674 	}
675 	if(count == 0 && rrsig_count == 0)
676 		return NULL;
677 
678 	/* allocate */
679 	total = count + rrsig_count;
680 	len += sizeof(*data) + total*(sizeof(size_t) + sizeof(time_t) +
681 		sizeof(uint8_t*));
682 	data = (struct packed_rrset_data*)calloc(1, len);
683 	if(!data)
684 		return NULL;
685 
686 	/* fill it */
687 	data->ttl = ttl;
688 	data->count = count;
689 	data->rrsig_count = rrsig_count;
690 	data->rr_len = (size_t*)((uint8_t*)data +
691 		sizeof(struct packed_rrset_data));
692 	data->rr_data = (uint8_t**)&(data->rr_len[total]);
693 	data->rr_ttl = (time_t*)&(data->rr_data[total]);
694 	nextrdata = (uint8_t*)&(data->rr_ttl[total]);
695 
696 	/* fill out len, ttl, fields */
697 	list_i = list;
698 	i = 0;
699 	while(iter(&list_i, &rr, &rr_len, &dname_len)) {
700 		data->rr_ttl[i] = (time_t)sldns_wirerr_get_ttl(rr, rr_len,
701 			dname_len);
702 		if(data->rr_ttl[i] < data->ttl)
703 			data->ttl = data->rr_ttl[i];
704 		data->rr_len[i] = 2 /* the rdlength */ +
705 			sldns_wirerr_get_rdatalen(rr, rr_len, dname_len);
706 		i++;
707 	}
708 
709 	/* fixup rest of ptrs */
710 	for(i=0; i<total; i++) {
711 		data->rr_data[i] = nextrdata;
712 		nextrdata += data->rr_len[i];
713 	}
714 
715 	/* copy data in there */
716 	list_i = list;
717 	i = 0;
718 	while(iter(&list_i, &rr, &rr_len, &dname_len)) {
719 		memmove(data->rr_data[i],
720 			sldns_wirerr_get_rdatawl(rr, rr_len, dname_len),
721 			data->rr_len[i]);
722 		i++;
723 	}
724 
725 	if(data->rrsig_count && data->count == 0) {
726 		data->count = data->rrsig_count; /* rrset type is RRSIG */
727 		data->rrsig_count = 0;
728 	}
729 	return data;
730 }
731 
732 /**
733  * Assemble the trust anchors into DS and DNSKEY packed rrsets.
734  * Uses only VALID and MISSING DNSKEYs.
735  * Read the sldns_rrs and builds packed rrsets
736  * @param tp: the trust point. Must be locked.
737  * @return false on malloc failure.
738  */
739 static int
740 autr_assemble(struct trust_anchor* tp)
741 {
742 	struct ub_packed_rrset_key* ubds=NULL, *ubdnskey=NULL;
743 
744 	/* make packed rrset keys - malloced with no ID number, they
745 	 * are not in the cache */
746 	/* make packed rrset data (if there is a key) */
747 	if(assemble_iterate_hasfirst(assemble_iterate_ds, tp->autr->keys)) {
748 		ubds = ub_packed_rrset_heap_key(
749 			assemble_iterate_ds, tp->autr->keys);
750 		if(!ubds)
751 			goto error_cleanup;
752 		ubds->entry.data = packed_rrset_heap_data(
753 			assemble_iterate_ds, tp->autr->keys);
754 		if(!ubds->entry.data)
755 			goto error_cleanup;
756 	}
757 
758 	/* make packed DNSKEY data */
759 	if(assemble_iterate_hasfirst(assemble_iterate_dnskey, tp->autr->keys)) {
760 		ubdnskey = ub_packed_rrset_heap_key(
761 			assemble_iterate_dnskey, tp->autr->keys);
762 		if(!ubdnskey)
763 			goto error_cleanup;
764 		ubdnskey->entry.data = packed_rrset_heap_data(
765 			assemble_iterate_dnskey, tp->autr->keys);
766 		if(!ubdnskey->entry.data) {
767 		error_cleanup:
768 			autr_rrset_delete(ubds);
769 			autr_rrset_delete(ubdnskey);
770 			return 0;
771 		}
772 	}
773 
774 	/* we have prepared the new keys so nothing can go wrong any more.
775 	 * And we are sure we cannot be left without trustanchor after
776 	 * any errors. Put in the new keys and remove old ones. */
777 
778 	/* free the old data */
779 	autr_rrset_delete(tp->ds_rrset);
780 	autr_rrset_delete(tp->dnskey_rrset);
781 
782 	/* assign the data to replace the old */
783 	tp->ds_rrset = ubds;
784 	tp->dnskey_rrset = ubdnskey;
785 	tp->numDS = assemble_iterate_count(assemble_iterate_ds,
786 		tp->autr->keys);
787 	tp->numDNSKEY = assemble_iterate_count(assemble_iterate_dnskey,
788 		tp->autr->keys);
789 	return 1;
790 }
791 
792 /** parse integer */
793 static unsigned int
794 parse_int(char* line, int* ret)
795 {
796 	char *e;
797 	unsigned int x = (unsigned int)strtol(line, &e, 10);
798 	if(line == e) {
799 		*ret = -1; /* parse error */
800 		return 0;
801 	}
802 	*ret = 1; /* matched */
803 	return x;
804 }
805 
806 /** parse id sequence for anchor */
807 static struct trust_anchor*
808 parse_id(struct val_anchors* anchors, char* line)
809 {
810 	struct trust_anchor *tp;
811 	int r;
812 	uint16_t dclass;
813 	uint8_t* dname;
814 	size_t dname_len;
815 	/* read the owner name */
816 	char* next = strchr(line, ' ');
817 	if(!next)
818 		return NULL;
819 	next[0] = 0;
820 	dname = sldns_str2wire_dname(line, &dname_len);
821 	if(!dname)
822 		return NULL;
823 
824 	/* read the class */
825 	dclass = parse_int(next+1, &r);
826 	if(r == -1) {
827 		free(dname);
828 		return NULL;
829 	}
830 
831 	/* find the trust point */
832 	tp = autr_tp_create(anchors, dname, dname_len, dclass);
833 	free(dname);
834 	return tp;
835 }
836 
837 /**
838  * Parse variable from trustanchor header
839  * @param line: to parse
840  * @param anchors: the anchor is added to this, if "id:" is seen.
841  * @param anchor: the anchor as result value or previously returned anchor
842  * 	value to read the variable lines into.
843  * @return: 0 no match, -1 failed syntax error, +1 success line read.
844  * 	+2 revoked trust anchor file.
845  */
846 static int
847 parse_var_line(char* line, struct val_anchors* anchors,
848 	struct trust_anchor** anchor)
849 {
850 	struct trust_anchor* tp = *anchor;
851 	int r = 0;
852 	if(strncmp(line, ";;id: ", 6) == 0) {
853 		*anchor = parse_id(anchors, line+6);
854 		if(!*anchor) return -1;
855 		else return 1;
856 	} else if(strncmp(line, ";;REVOKED", 9) == 0) {
857 		if(tp) {
858 			log_err("REVOKED statement must be at start of file");
859 			return -1;
860 		}
861 		return 2;
862 	} else if(strncmp(line, ";;last_queried: ", 16) == 0) {
863 		if(!tp) return -1;
864 		lock_basic_lock(&tp->lock);
865 		tp->autr->last_queried = (time_t)parse_int(line+16, &r);
866 		lock_basic_unlock(&tp->lock);
867 	} else if(strncmp(line, ";;last_success: ", 16) == 0) {
868 		if(!tp) return -1;
869 		lock_basic_lock(&tp->lock);
870 		tp->autr->last_success = (time_t)parse_int(line+16, &r);
871 		lock_basic_unlock(&tp->lock);
872 	} else if(strncmp(line, ";;next_probe_time: ", 19) == 0) {
873 		if(!tp) return -1;
874 		lock_basic_lock(&anchors->lock);
875 		lock_basic_lock(&tp->lock);
876 		(void)rbtree_delete(&anchors->autr->probe, tp);
877 		tp->autr->next_probe_time = (time_t)parse_int(line+19, &r);
878 		(void)rbtree_insert(&anchors->autr->probe, &tp->autr->pnode);
879 		lock_basic_unlock(&tp->lock);
880 		lock_basic_unlock(&anchors->lock);
881 	} else if(strncmp(line, ";;query_failed: ", 16) == 0) {
882 		if(!tp) return -1;
883 		lock_basic_lock(&tp->lock);
884 		tp->autr->query_failed = (uint8_t)parse_int(line+16, &r);
885 		lock_basic_unlock(&tp->lock);
886 	} else if(strncmp(line, ";;query_interval: ", 18) == 0) {
887 		if(!tp) return -1;
888 		lock_basic_lock(&tp->lock);
889 		tp->autr->query_interval = (time_t)parse_int(line+18, &r);
890 		lock_basic_unlock(&tp->lock);
891 	} else if(strncmp(line, ";;retry_time: ", 14) == 0) {
892 		if(!tp) return -1;
893 		lock_basic_lock(&tp->lock);
894 		tp->autr->retry_time = (time_t)parse_int(line+14, &r);
895 		lock_basic_unlock(&tp->lock);
896 	}
897 	return r;
898 }
899 
900 /** handle origin lines */
901 static int
902 handle_origin(char* line, uint8_t** origin, size_t* origin_len)
903 {
904 	size_t len = 0;
905 	while(isspace((unsigned char)*line))
906 		line++;
907 	if(strncmp(line, "$ORIGIN", 7) != 0)
908 		return 0;
909 	free(*origin);
910 	line += 7;
911 	while(isspace((unsigned char)*line))
912 		line++;
913 	*origin = sldns_str2wire_dname(line, &len);
914 	*origin_len = len;
915 	if(!*origin)
916 		log_warn("malloc failure or parse error in $ORIGIN");
917 	return 1;
918 }
919 
920 /** Read one line and put multiline RRs onto one line string */
921 static int
922 read_multiline(char* buf, size_t len, FILE* in, int* linenr)
923 {
924 	char* pos = buf;
925 	size_t left = len;
926 	int depth = 0;
927 	buf[len-1] = 0;
928 	while(left > 0 && fgets(pos, (int)left, in) != NULL) {
929 		size_t i, poslen = strlen(pos);
930 		(*linenr)++;
931 
932 		/* check what the new depth is after the line */
933 		/* this routine cannot handle braces inside quotes,
934 		   say for TXT records, but this routine only has to read keys */
935 		for(i=0; i<poslen; i++) {
936 			if(pos[i] == '(') {
937 				depth++;
938 			} else if(pos[i] == ')') {
939 				if(depth == 0) {
940 					log_err("mismatch: too many ')'");
941 					return -1;
942 				}
943 				depth--;
944 			} else if(pos[i] == ';') {
945 				break;
946 			}
947 		}
948 
949 		/* normal oneline or last line: keeps newline and comments */
950 		if(depth == 0) {
951 			return 1;
952 		}
953 
954 		/* more lines expected, snip off comments and newline */
955 		if(poslen>0)
956 			pos[poslen-1] = 0; /* strip newline */
957 		if(strchr(pos, ';'))
958 			strchr(pos, ';')[0] = 0; /* strip comments */
959 
960 		/* move to paste other lines behind this one */
961 		poslen = strlen(pos);
962 		pos += poslen;
963 		left -= poslen;
964 		/* the newline is changed into a space */
965 		if(left <= 2 /* space and eos */) {
966 			log_err("line too long");
967 			return -1;
968 		}
969 		pos[0] = ' ';
970 		pos[1] = 0;
971 		pos += 1;
972 		left -= 1;
973 	}
974 	if(depth != 0) {
975 		log_err("mismatch: too many '('");
976 		return -1;
977 	}
978 	if(pos != buf)
979 		return 1;
980 	return 0;
981 }
982 
983 int autr_read_file(struct val_anchors* anchors, const char* nm)
984 {
985         /* the file descriptor */
986         FILE* fd;
987         /* keep track of line numbers */
988         int line_nr = 0;
989         /* single line */
990         char line[10240];
991 	/* trust point being read */
992 	struct trust_anchor *tp = NULL, *tp2;
993 	int r;
994 	/* for $ORIGIN parsing */
995 	uint8_t *origin=NULL, *prev=NULL;
996 	size_t origin_len=0, prev_len=0;
997 
998         if (!(fd = fopen(nm, "r"))) {
999                 log_err("unable to open %s for reading: %s",
1000 			nm, strerror(errno));
1001                 return 0;
1002         }
1003         verbose(VERB_ALGO, "reading autotrust anchor file %s", nm);
1004         while ( (r=read_multiline(line, sizeof(line), fd, &line_nr)) != 0) {
1005 		if(r == -1 || (r = parse_var_line(line, anchors, &tp)) == -1) {
1006 			log_err("could not parse auto-trust-anchor-file "
1007 				"%s line %d", nm, line_nr);
1008 			fclose(fd);
1009 			free(origin);
1010 			free(prev);
1011 			return 0;
1012 		} else if(r == 1) {
1013 			continue;
1014 		} else if(r == 2) {
1015 			log_warn("trust anchor %s has been revoked", nm);
1016 			fclose(fd);
1017 			free(origin);
1018 			free(prev);
1019 			return 1;
1020 		}
1021         	if (!str_contains_data(line, ';'))
1022                 	continue; /* empty lines allowed */
1023  		if(handle_origin(line, &origin, &origin_len))
1024 			continue;
1025 		r = 0;
1026                 if(!(tp2=load_trustanchor(anchors, line, nm, origin,
1027 			origin_len, &prev, &prev_len, &r))) {
1028 			if(!r) log_err("failed to load trust anchor from %s "
1029 				"at line %i, skipping", nm, line_nr);
1030                         /* try to do the rest */
1031 			continue;
1032                 }
1033 		if(tp && tp != tp2) {
1034 			log_err("file %s has mismatching data inside: "
1035 				"the file may only contain keys for one name, "
1036 				"remove keys for other domain names", nm);
1037         		fclose(fd);
1038 			free(origin);
1039 			free(prev);
1040 			return 0;
1041 		}
1042 		tp = tp2;
1043         }
1044         fclose(fd);
1045 	free(origin);
1046 	free(prev);
1047 	if(!tp) {
1048 		log_err("failed to read %s", nm);
1049 		return 0;
1050 	}
1051 
1052 	/* now assemble the data into DNSKEY and DS packed rrsets */
1053 	lock_basic_lock(&tp->lock);
1054 	if(!autr_assemble(tp)) {
1055 		lock_basic_unlock(&tp->lock);
1056 		log_err("malloc failure assembling %s", nm);
1057 		return 0;
1058 	}
1059 	lock_basic_unlock(&tp->lock);
1060 	return 1;
1061 }
1062 
1063 /** string for a trustanchor state */
1064 static const char*
1065 trustanchor_state2str(autr_state_t s)
1066 {
1067         switch (s) {
1068                 case AUTR_STATE_START:       return "  START  ";
1069                 case AUTR_STATE_ADDPEND:     return " ADDPEND ";
1070                 case AUTR_STATE_VALID:       return "  VALID  ";
1071                 case AUTR_STATE_MISSING:     return " MISSING ";
1072                 case AUTR_STATE_REVOKED:     return " REVOKED ";
1073                 case AUTR_STATE_REMOVED:     return " REMOVED ";
1074         }
1075         return " UNKNOWN ";
1076 }
1077 
1078 /** print ID to file */
1079 static int
1080 print_id(FILE* out, char* fname, uint8_t* nm, size_t nmlen, uint16_t dclass)
1081 {
1082 	char* s = sldns_wire2str_dname(nm, nmlen);
1083 	if(!s) {
1084 		log_err("malloc failure in write to %s", fname);
1085 		return 0;
1086 	}
1087 	if(fprintf(out, ";;id: %s %d\n", s, (int)dclass) < 0) {
1088 		log_err("could not write to %s: %s", fname, strerror(errno));
1089 		free(s);
1090 		return 0;
1091 	}
1092 	free(s);
1093 	return 1;
1094 }
1095 
1096 static int
1097 autr_write_contents(FILE* out, char* fn, struct trust_anchor* tp)
1098 {
1099 	char tmi[32];
1100 	struct autr_ta* ta;
1101 	char* str;
1102 
1103 	/* write pretty header */
1104 	if(fprintf(out, "; autotrust trust anchor file\n") < 0) {
1105 		log_err("could not write to %s: %s", fn, strerror(errno));
1106 		return 0;
1107 	}
1108 	if(tp->autr->revoked) {
1109 		if(fprintf(out, ";;REVOKED\n") < 0 ||
1110 		   fprintf(out, "; The zone has all keys revoked, and is\n"
1111 			"; considered as if it has no trust anchors.\n"
1112 			"; the remainder of the file is the last probe.\n"
1113 			"; to restart the trust anchor, overwrite this file.\n"
1114 			"; with one containing valid DNSKEYs or DSes.\n") < 0) {
1115 		   log_err("could not write to %s: %s", fn, strerror(errno));
1116 		   return 0;
1117 		}
1118 	}
1119 	if(!print_id(out, fn, tp->name, tp->namelen, tp->dclass)) {
1120 		return 0;
1121 	}
1122 	if(fprintf(out, ";;last_queried: %u ;;%s",
1123 		(unsigned int)tp->autr->last_queried,
1124 		ctime_r(&(tp->autr->last_queried), tmi)) < 0 ||
1125 	   fprintf(out, ";;last_success: %u ;;%s",
1126 		(unsigned int)tp->autr->last_success,
1127 		ctime_r(&(tp->autr->last_success), tmi)) < 0 ||
1128 	   fprintf(out, ";;next_probe_time: %u ;;%s",
1129 		(unsigned int)tp->autr->next_probe_time,
1130 		ctime_r(&(tp->autr->next_probe_time), tmi)) < 0 ||
1131 	   fprintf(out, ";;query_failed: %d\n", (int)tp->autr->query_failed)<0
1132 	   || fprintf(out, ";;query_interval: %d\n",
1133 	   (int)tp->autr->query_interval) < 0 ||
1134 	   fprintf(out, ";;retry_time: %d\n", (int)tp->autr->retry_time) < 0) {
1135 		log_err("could not write to %s: %s", fn, strerror(errno));
1136 		return 0;
1137 	}
1138 
1139 	/* write anchors */
1140 	for(ta=tp->autr->keys; ta; ta=ta->next) {
1141 		/* by default do not store START and REMOVED keys */
1142 		if(ta->s == AUTR_STATE_START)
1143 			continue;
1144 		if(ta->s == AUTR_STATE_REMOVED)
1145 			continue;
1146 		/* only store keys */
1147 		if(sldns_wirerr_get_type(ta->rr, ta->rr_len, ta->dname_len)
1148 			!= LDNS_RR_TYPE_DNSKEY)
1149 			continue;
1150 		str = sldns_wire2str_rr(ta->rr, ta->rr_len);
1151 		if(!str || !str[0]) {
1152 			free(str);
1153 			log_err("malloc failure writing %s", fn);
1154 			return 0;
1155 		}
1156 		str[strlen(str)-1] = 0; /* remove newline */
1157 		if(fprintf(out, "%s ;;state=%d [%s] ;;count=%d "
1158 			";;lastchange=%u ;;%s", str, (int)ta->s,
1159 			trustanchor_state2str(ta->s), (int)ta->pending_count,
1160 			(unsigned int)ta->last_change,
1161 			ctime_r(&(ta->last_change), tmi)) < 0) {
1162 		   log_err("could not write to %s: %s", fn, strerror(errno));
1163 		   free(str);
1164 		   return 0;
1165 		}
1166 		free(str);
1167 	}
1168 	return 1;
1169 }
1170 
1171 void autr_write_file(struct module_env* env, struct trust_anchor* tp)
1172 {
1173 	FILE* out;
1174 	char* fname = tp->autr->file;
1175 	char tempf[2048];
1176 	log_assert(tp->autr);
1177 	if(!env) {
1178 		log_err("autr_write_file: Module environment is NULL.");
1179 		return;
1180 	}
1181 	/* unique name with pid number and thread number */
1182 	snprintf(tempf, sizeof(tempf), "%s.%d-%d", fname, (int)getpid(),
1183 		env->worker?*(int*)env->worker:0);
1184 	verbose(VERB_ALGO, "autotrust: write to disk: %s", tempf);
1185 	out = fopen(tempf, "w");
1186 	if(!out) {
1187 		fatal_exit("could not open autotrust file for writing, %s: %s",
1188 			tempf, strerror(errno));
1189 		return;
1190 	}
1191 	if(!autr_write_contents(out, tempf, tp)) {
1192 		/* failed to write contents (completely) */
1193 		fclose(out);
1194 		unlink(tempf);
1195 		fatal_exit("could not completely write: %s", fname);
1196 		return;
1197 	}
1198 	if(fflush(out) != 0)
1199 		log_err("could not fflush(%s): %s", fname, strerror(errno));
1200 #ifdef HAVE_FSYNC
1201 	if(fsync(fileno(out)) != 0)
1202 		log_err("could not fsync(%s): %s", fname, strerror(errno));
1203 #else
1204 	FlushFileBuffers((HANDLE)_fileno(out));
1205 #endif
1206 	if(fclose(out) != 0) {
1207 		fatal_exit("could not complete write: %s: %s",
1208 			fname, strerror(errno));
1209 		unlink(tempf);
1210 		return;
1211 	}
1212 	/* success; overwrite actual file */
1213 	verbose(VERB_ALGO, "autotrust: replaced %s", fname);
1214 #ifdef UB_ON_WINDOWS
1215 	(void)unlink(fname); /* windows does not replace file with rename() */
1216 #endif
1217 	if(rename(tempf, fname) < 0) {
1218 		fatal_exit("rename(%s to %s): %s", tempf, fname, strerror(errno));
1219 	}
1220 }
1221 
1222 /**
1223  * Verify if dnskey works for trust point
1224  * @param env: environment (with time) for verification
1225  * @param ve: validator environment (with options) for verification.
1226  * @param tp: trust point to verify with
1227  * @param rrset: DNSKEY rrset to verify.
1228  * @return false on failure, true if verification successful.
1229  */
1230 static int
1231 verify_dnskey(struct module_env* env, struct val_env* ve,
1232         struct trust_anchor* tp, struct ub_packed_rrset_key* rrset)
1233 {
1234 	char* reason = NULL;
1235 	uint8_t sigalg[ALGO_NEEDS_MAX+1];
1236 	int downprot = env->cfg->harden_algo_downgrade;
1237 	enum sec_status sec = val_verify_DNSKEY_with_TA(env, ve, rrset,
1238 		tp->ds_rrset, tp->dnskey_rrset, downprot?sigalg:NULL, &reason);
1239 	/* sigalg is ignored, it returns algorithms signalled to exist, but
1240 	 * in 5011 there are no other rrsets to check.  if downprot is
1241 	 * enabled, then it checks that the DNSKEY is signed with all
1242 	 * algorithms available in the trust store. */
1243 	verbose(VERB_ALGO, "autotrust: validate DNSKEY with anchor: %s",
1244 		sec_status_to_string(sec));
1245 	return sec == sec_status_secure;
1246 }
1247 
1248 static int32_t
1249 rrsig_get_expiry(uint8_t* d, size_t len)
1250 {
1251 	/* rrsig: 2(rdlen), 2(type) 1(alg) 1(v) 4(origttl), then 4(expi), (4)incep) */
1252 	if(len < 2+8+4)
1253 		return 0;
1254 	return sldns_read_uint32(d+2+8);
1255 }
1256 
1257 /** Find minimum expiration interval from signatures */
1258 static time_t
1259 min_expiry(struct module_env* env, struct packed_rrset_data* dd)
1260 {
1261 	size_t i;
1262 	int32_t t, r = 15 * 24 * 3600; /* 15 days max */
1263 	for(i=dd->count; i<dd->count+dd->rrsig_count; i++) {
1264 		t = rrsig_get_expiry(dd->rr_data[i], dd->rr_len[i]);
1265 		if((int32_t)t - (int32_t)*env->now > 0) {
1266 			t -= (int32_t)*env->now;
1267 			if(t < r)
1268 				r = t;
1269 		}
1270 	}
1271 	return (time_t)r;
1272 }
1273 
1274 /** Is rr self-signed revoked key */
1275 static int
1276 rr_is_selfsigned_revoked(struct module_env* env, struct val_env* ve,
1277 	struct ub_packed_rrset_key* dnskey_rrset, size_t i)
1278 {
1279 	enum sec_status sec;
1280 	char* reason = NULL;
1281 	verbose(VERB_ALGO, "seen REVOKE flag, check self-signed, rr %d",
1282 		(int)i);
1283 	/* no algorithm downgrade protection necessary, if it is selfsigned
1284 	 * revoked it can be removed. */
1285 	sec = dnskey_verify_rrset(env, ve, dnskey_rrset, dnskey_rrset, i,
1286 		&reason);
1287 	return (sec == sec_status_secure);
1288 }
1289 
1290 /** Set fetched value */
1291 static void
1292 seen_trustanchor(struct autr_ta* ta, uint8_t seen)
1293 {
1294 	ta->fetched = seen;
1295 	if(ta->pending_count < 250) /* no numerical overflow, please */
1296 		ta->pending_count++;
1297 }
1298 
1299 /** set revoked value */
1300 static void
1301 seen_revoked_trustanchor(struct autr_ta* ta, uint8_t revoked)
1302 {
1303 	ta->revoked = revoked;
1304 }
1305 
1306 /** revoke a trust anchor */
1307 static void
1308 revoke_dnskey(struct autr_ta* ta, int off)
1309 {
1310 	uint16_t flags;
1311 	uint8_t* data;
1312 	if(sldns_wirerr_get_type(ta->rr, ta->rr_len, ta->dname_len) !=
1313 		LDNS_RR_TYPE_DNSKEY)
1314 		return;
1315 	if(sldns_wirerr_get_rdatalen(ta->rr, ta->rr_len, ta->dname_len) < 2)
1316 		return;
1317 	data = sldns_wirerr_get_rdata(ta->rr, ta->rr_len, ta->dname_len);
1318 	flags = sldns_read_uint16(data);
1319 	if (off && (flags&LDNS_KEY_REVOKE_KEY))
1320 		flags ^= LDNS_KEY_REVOKE_KEY; /* flip */
1321 	else
1322 		flags |= LDNS_KEY_REVOKE_KEY;
1323 	sldns_write_uint16(data, flags);
1324 }
1325 
1326 /** Compare two RRs skipping the REVOKED bit. Pass rdata(no len) */
1327 static int
1328 dnskey_compare_skip_revbit(uint8_t* a, size_t a_len, uint8_t* b, size_t b_len)
1329 {
1330 	size_t i;
1331 	if(a_len != b_len)
1332 		return -1;
1333 	/* compare RRs RDATA byte for byte. */
1334 	for(i = 0; i < a_len; i++)
1335 	{
1336 		uint8_t rdf1, rdf2;
1337 		rdf1 = a[i];
1338 		rdf2 = b[i];
1339 		if(i==1) {
1340 			/* this is the second part of the flags field */
1341 			rdf1 |= LDNS_KEY_REVOKE_KEY;
1342 			rdf2 |= LDNS_KEY_REVOKE_KEY;
1343 		}
1344 		if (rdf1 < rdf2)	return -1;
1345 		else if (rdf1 > rdf2)	return 1;
1346         }
1347 	return 0;
1348 }
1349 
1350 
1351 /** compare trust anchor with rdata, 0 if equal. Pass rdata(no len) */
1352 static int
1353 ta_compare(struct autr_ta* a, uint16_t t, uint8_t* b, size_t b_len)
1354 {
1355 	if(!a) return -1;
1356 	else if(!b) return -1;
1357 	else if(sldns_wirerr_get_type(a->rr, a->rr_len, a->dname_len) != t)
1358 		return (int)sldns_wirerr_get_type(a->rr, a->rr_len,
1359 			a->dname_len) - (int)t;
1360 	else if(t == LDNS_RR_TYPE_DNSKEY) {
1361 		return dnskey_compare_skip_revbit(
1362 			sldns_wirerr_get_rdata(a->rr, a->rr_len, a->dname_len),
1363 			sldns_wirerr_get_rdatalen(a->rr, a->rr_len,
1364 			a->dname_len), b, b_len);
1365 	}
1366 	else if(t == LDNS_RR_TYPE_DS) {
1367 		if(sldns_wirerr_get_rdatalen(a->rr, a->rr_len, a->dname_len) !=
1368 			b_len)
1369 			return -1;
1370 		return memcmp(sldns_wirerr_get_rdata(a->rr,
1371 			a->rr_len, a->dname_len), b, b_len);
1372 	}
1373 	return -1;
1374 }
1375 
1376 /**
1377  * Find key
1378  * @param tp: to search in
1379  * @param t: rr type of the rdata.
1380  * @param rdata: to look for  (no rdatalen in it)
1381  * @param rdata_len: length of rdata
1382  * @param result: returns NULL or the ta key looked for.
1383  * @return false on malloc failure during search. if true examine result.
1384  */
1385 static int
1386 find_key(struct trust_anchor* tp, uint16_t t, uint8_t* rdata, size_t rdata_len,
1387 	struct autr_ta** result)
1388 {
1389 	struct autr_ta* ta;
1390 	if(!tp || !rdata) {
1391 		*result = NULL;
1392 		return 0;
1393 	}
1394 	for(ta=tp->autr->keys; ta; ta=ta->next) {
1395 		if(ta_compare(ta, t, rdata, rdata_len) == 0) {
1396 			*result = ta;
1397 			return 1;
1398 		}
1399 	}
1400 	*result = NULL;
1401 	return 1;
1402 }
1403 
1404 /** add key and clone RR and tp already locked. rdata without rdlen. */
1405 static struct autr_ta*
1406 add_key(struct trust_anchor* tp, uint32_t ttl, uint8_t* rdata, size_t rdata_len)
1407 {
1408 	struct autr_ta* ta;
1409 	uint8_t* rr;
1410 	size_t rr_len, dname_len;
1411 	uint16_t rrtype = htons(LDNS_RR_TYPE_DNSKEY);
1412 	uint16_t rrclass = htons(LDNS_RR_CLASS_IN);
1413 	uint16_t rdlen = htons(rdata_len);
1414 	dname_len = tp->namelen;
1415 	ttl = htonl(ttl);
1416 	rr_len = dname_len + 10 /* type,class,ttl,rdatalen */ + rdata_len;
1417 	rr = (uint8_t*)malloc(rr_len);
1418 	if(!rr) return NULL;
1419 	memmove(rr, tp->name, tp->namelen);
1420 	memmove(rr+dname_len, &rrtype, 2);
1421 	memmove(rr+dname_len+2, &rrclass, 2);
1422 	memmove(rr+dname_len+4, &ttl, 4);
1423 	memmove(rr+dname_len+8, &rdlen, 2);
1424 	memmove(rr+dname_len+10, rdata, rdata_len);
1425 	ta = autr_ta_create(rr, rr_len, dname_len);
1426 	if(!ta) {
1427 		/* rr freed in autr_ta_create */
1428 		return NULL;
1429 	}
1430 	/* link in, tp already locked */
1431 	ta->next = tp->autr->keys;
1432 	tp->autr->keys = ta;
1433 	return ta;
1434 }
1435 
1436 /** get TTL from DNSKEY rrset */
1437 static time_t
1438 key_ttl(struct ub_packed_rrset_key* k)
1439 {
1440 	struct packed_rrset_data* d = (struct packed_rrset_data*)k->entry.data;
1441 	return d->ttl;
1442 }
1443 
1444 /** update the time values for the trustpoint */
1445 static void
1446 set_tp_times(struct trust_anchor* tp, time_t rrsig_exp_interval,
1447 	time_t origttl, int* changed)
1448 {
1449 	time_t x, qi = tp->autr->query_interval, rt = tp->autr->retry_time;
1450 
1451 	/* x = MIN(15days, ttl/2, expire/2) */
1452 	x = 15 * 24 * 3600;
1453 	if(origttl/2 < x)
1454 		x = origttl/2;
1455 	if(rrsig_exp_interval/2 < x)
1456 		x = rrsig_exp_interval/2;
1457 	/* MAX(1hr, x) */
1458 	if(!autr_permit_small_holddown) {
1459 		if(x < 3600)
1460 			tp->autr->query_interval = 3600;
1461 		else	tp->autr->query_interval = x;
1462 	}	else    tp->autr->query_interval = x;
1463 
1464 	/* x= MIN(1day, ttl/10, expire/10) */
1465 	x = 24 * 3600;
1466 	if(origttl/10 < x)
1467 		x = origttl/10;
1468 	if(rrsig_exp_interval/10 < x)
1469 		x = rrsig_exp_interval/10;
1470 	/* MAX(1hr, x) */
1471 	if(!autr_permit_small_holddown) {
1472 		if(x < 3600)
1473 			tp->autr->retry_time = 3600;
1474 		else	tp->autr->retry_time = x;
1475 	}	else    tp->autr->retry_time = x;
1476 
1477 	if(qi != tp->autr->query_interval || rt != tp->autr->retry_time) {
1478 		*changed = 1;
1479 		verbose(VERB_ALGO, "orig_ttl is %d", (int)origttl);
1480 		verbose(VERB_ALGO, "rrsig_exp_interval is %d",
1481 			(int)rrsig_exp_interval);
1482 		verbose(VERB_ALGO, "query_interval: %d, retry_time: %d",
1483 			(int)tp->autr->query_interval,
1484 			(int)tp->autr->retry_time);
1485 	}
1486 }
1487 
1488 /** init events to zero */
1489 static void
1490 init_events(struct trust_anchor* tp)
1491 {
1492 	struct autr_ta* ta;
1493 	for(ta=tp->autr->keys; ta; ta=ta->next) {
1494 		ta->fetched = 0;
1495 	}
1496 }
1497 
1498 /** check for revoked keys without trusting any other information */
1499 static void
1500 check_contains_revoked(struct module_env* env, struct val_env* ve,
1501 	struct trust_anchor* tp, struct ub_packed_rrset_key* dnskey_rrset,
1502 	int* changed)
1503 {
1504 	struct packed_rrset_data* dd = (struct packed_rrset_data*)
1505 		dnskey_rrset->entry.data;
1506 	size_t i;
1507 	log_assert(ntohs(dnskey_rrset->rk.type) == LDNS_RR_TYPE_DNSKEY);
1508 	for(i=0; i<dd->count; i++) {
1509 		struct autr_ta* ta = NULL;
1510 		if(!rr_is_dnskey_sep(ntohs(dnskey_rrset->rk.type),
1511 			dd->rr_data[i]+2, dd->rr_len[i]-2) ||
1512 			!rr_is_dnskey_revoked(ntohs(dnskey_rrset->rk.type),
1513 			dd->rr_data[i]+2, dd->rr_len[i]-2))
1514 			continue; /* not a revoked KSK */
1515 		if(!find_key(tp, ntohs(dnskey_rrset->rk.type),
1516 			dd->rr_data[i]+2, dd->rr_len[i]-2, &ta)) {
1517 			log_err("malloc failure");
1518 			continue; /* malloc fail in compare*/
1519 		}
1520 		if(!ta)
1521 			continue; /* key not found */
1522 		if(rr_is_selfsigned_revoked(env, ve, dnskey_rrset, i)) {
1523 			/* checked if there is an rrsig signed by this key. */
1524 			/* same keytag, but stored can be revoked already, so
1525 			 * compare keytags, with +0 or +128(REVOKE flag) */
1526 			log_assert(dnskey_calc_keytag(dnskey_rrset, i)-128 ==
1527 				sldns_calc_keytag_raw(sldns_wirerr_get_rdata(
1528 				ta->rr, ta->rr_len, ta->dname_len),
1529 				sldns_wirerr_get_rdatalen(ta->rr, ta->rr_len,
1530 				ta->dname_len)) ||
1531 				dnskey_calc_keytag(dnskey_rrset, i) ==
1532 				sldns_calc_keytag_raw(sldns_wirerr_get_rdata(
1533 				ta->rr, ta->rr_len, ta->dname_len),
1534 				sldns_wirerr_get_rdatalen(ta->rr, ta->rr_len,
1535 				ta->dname_len))); /* checks conversion*/
1536 			verbose_key(ta, VERB_ALGO, "is self-signed revoked");
1537 			if(!ta->revoked)
1538 				*changed = 1;
1539 			seen_revoked_trustanchor(ta, 1);
1540 			do_revoked(env, ta, changed);
1541 		}
1542 	}
1543 }
1544 
1545 /** See if a DNSKEY is verified by one of the DSes */
1546 static int
1547 key_matches_a_ds(struct module_env* env, struct val_env* ve,
1548 	struct ub_packed_rrset_key* dnskey_rrset, size_t key_idx,
1549 	struct ub_packed_rrset_key* ds_rrset)
1550 {
1551 	struct packed_rrset_data* dd = (struct packed_rrset_data*)
1552 	                ds_rrset->entry.data;
1553 	size_t ds_idx, num = dd->count;
1554 	int d = val_favorite_ds_algo(ds_rrset);
1555 	char* reason = "";
1556 	for(ds_idx=0; ds_idx<num; ds_idx++) {
1557 		if(!ds_digest_algo_is_supported(ds_rrset, ds_idx) ||
1558 			!ds_key_algo_is_supported(ds_rrset, ds_idx) ||
1559 			ds_get_digest_algo(ds_rrset, ds_idx) != d)
1560 			continue;
1561 		if(ds_get_key_algo(ds_rrset, ds_idx)
1562 		   != dnskey_get_algo(dnskey_rrset, key_idx)
1563 		   || dnskey_calc_keytag(dnskey_rrset, key_idx)
1564 		   != ds_get_keytag(ds_rrset, ds_idx)) {
1565 			continue;
1566 		}
1567 		if(!ds_digest_match_dnskey(env, dnskey_rrset, key_idx,
1568 			ds_rrset, ds_idx)) {
1569 			verbose(VERB_ALGO, "DS match attempt failed");
1570 			continue;
1571 		}
1572 		if(dnskey_verify_rrset(env, ve, dnskey_rrset,
1573 			dnskey_rrset, key_idx, &reason) == sec_status_secure) {
1574 			return 1;
1575 		} else {
1576 			verbose(VERB_ALGO, "DS match failed because the key "
1577 				"does not verify the keyset: %s", reason);
1578 		}
1579 	}
1580 	return 0;
1581 }
1582 
1583 /** Set update events */
1584 static int
1585 update_events(struct module_env* env, struct val_env* ve,
1586 	struct trust_anchor* tp, struct ub_packed_rrset_key* dnskey_rrset,
1587 	int* changed)
1588 {
1589 	struct packed_rrset_data* dd = (struct packed_rrset_data*)
1590 		dnskey_rrset->entry.data;
1591 	size_t i;
1592 	log_assert(ntohs(dnskey_rrset->rk.type) == LDNS_RR_TYPE_DNSKEY);
1593 	init_events(tp);
1594 	for(i=0; i<dd->count; i++) {
1595 		struct autr_ta* ta = NULL;
1596 		if(!rr_is_dnskey_sep(ntohs(dnskey_rrset->rk.type),
1597 			dd->rr_data[i]+2, dd->rr_len[i]-2))
1598 			continue;
1599 		if(rr_is_dnskey_revoked(ntohs(dnskey_rrset->rk.type),
1600 			dd->rr_data[i]+2, dd->rr_len[i]-2)) {
1601 			/* self-signed revoked keys already detected before,
1602 			 * other revoked keys are not 'added' again */
1603 			continue;
1604 		}
1605 		/* is a key of this type supported?. Note rr_list and
1606 		 * packed_rrset are in the same order. */
1607 		if(!dnskey_algo_is_supported(dnskey_rrset, i)) {
1608 			/* skip unknown algorithm key, it is useless to us */
1609 			log_nametypeclass(VERB_DETAIL, "trust point has "
1610 				"unsupported algorithm at",
1611 				tp->name, LDNS_RR_TYPE_DNSKEY, tp->dclass);
1612 			continue;
1613 		}
1614 
1615 		/* is it new? if revocation bit set, find the unrevoked key */
1616 		if(!find_key(tp, ntohs(dnskey_rrset->rk.type),
1617 			dd->rr_data[i]+2, dd->rr_len[i]-2, &ta)) {
1618 			return 0;
1619 		}
1620 		if(!ta) {
1621 			ta = add_key(tp, (uint32_t)dd->rr_ttl[i],
1622 				dd->rr_data[i]+2, dd->rr_len[i]-2);
1623 			*changed = 1;
1624 			/* first time seen, do we have DSes? if match: VALID */
1625 			if(ta && tp->ds_rrset && key_matches_a_ds(env, ve,
1626 				dnskey_rrset, i, tp->ds_rrset)) {
1627 				verbose_key(ta, VERB_ALGO, "verified by DS");
1628 				ta->s = AUTR_STATE_VALID;
1629 			}
1630 		}
1631 		if(!ta) {
1632 			return 0;
1633 		}
1634 		seen_trustanchor(ta, 1);
1635 		verbose_key(ta, VERB_ALGO, "in DNS response");
1636 	}
1637 	set_tp_times(tp, min_expiry(env, dd), key_ttl(dnskey_rrset), changed);
1638 	return 1;
1639 }
1640 
1641 /**
1642  * Check if the holddown time has already exceeded
1643  * setting: add-holddown: add holddown timer
1644  * setting: del-holddown: del holddown timer
1645  * @param env: environment with current time
1646  * @param ta: trust anchor to check for.
1647  * @param holddown: the timer value
1648  * @return number of seconds the holddown has passed.
1649  */
1650 static time_t
1651 check_holddown(struct module_env* env, struct autr_ta* ta,
1652 	unsigned int holddown)
1653 {
1654         time_t elapsed;
1655 	if(*env->now < ta->last_change) {
1656 		log_warn("time goes backwards. delaying key holddown");
1657 		return 0;
1658 	}
1659 	elapsed = *env->now - ta->last_change;
1660         if (elapsed > (time_t)holddown) {
1661                 return elapsed-(time_t)holddown;
1662         }
1663 	verbose_key(ta, VERB_ALGO, "holddown time " ARG_LL "d seconds to go",
1664 		(long long) ((time_t)holddown-elapsed));
1665         return 0;
1666 }
1667 
1668 
1669 /** Set last_change to now */
1670 static void
1671 reset_holddown(struct module_env* env, struct autr_ta* ta, int* changed)
1672 {
1673 	ta->last_change = *env->now;
1674 	*changed = 1;
1675 }
1676 
1677 /** Set the state for this trust anchor */
1678 static void
1679 set_trustanchor_state(struct module_env* env, struct autr_ta* ta, int* changed,
1680 	autr_state_t s)
1681 {
1682 	verbose_key(ta, VERB_ALGO, "update: %s to %s",
1683 		trustanchor_state2str(ta->s), trustanchor_state2str(s));
1684 	ta->s = s;
1685 	reset_holddown(env, ta, changed);
1686 }
1687 
1688 
1689 /** Event: NewKey */
1690 static void
1691 do_newkey(struct module_env* env, struct autr_ta* anchor, int* c)
1692 {
1693 	if (anchor->s == AUTR_STATE_START)
1694 		set_trustanchor_state(env, anchor, c, AUTR_STATE_ADDPEND);
1695 }
1696 
1697 /** Event: AddTime */
1698 static void
1699 do_addtime(struct module_env* env, struct autr_ta* anchor, int* c)
1700 {
1701 	/* This not according to RFC, this is 30 days, but the RFC demands
1702 	 * MAX(30days, TTL expire time of first DNSKEY set with this key),
1703 	 * The value may be too small if a very large TTL was used. */
1704 	time_t exceeded = check_holddown(env, anchor, env->cfg->add_holddown);
1705 	if (exceeded && anchor->s == AUTR_STATE_ADDPEND) {
1706 		verbose_key(anchor, VERB_ALGO, "add-holddown time exceeded "
1707 			ARG_LL "d seconds ago, and pending-count %d",
1708 			(long long)exceeded, anchor->pending_count);
1709 		if(anchor->pending_count >= MIN_PENDINGCOUNT) {
1710 			set_trustanchor_state(env, anchor, c, AUTR_STATE_VALID);
1711 			anchor->pending_count = 0;
1712 			return;
1713 		}
1714 		verbose_key(anchor, VERB_ALGO, "add-holddown time sanity check "
1715 			"failed (pending count: %d)", anchor->pending_count);
1716 	}
1717 }
1718 
1719 /** Event: RemTime */
1720 static void
1721 do_remtime(struct module_env* env, struct autr_ta* anchor, int* c)
1722 {
1723 	time_t exceeded = check_holddown(env, anchor, env->cfg->del_holddown);
1724 	if(exceeded && anchor->s == AUTR_STATE_REVOKED) {
1725 		verbose_key(anchor, VERB_ALGO, "del-holddown time exceeded "
1726 			ARG_LL "d seconds ago", (long long)exceeded);
1727 		set_trustanchor_state(env, anchor, c, AUTR_STATE_REMOVED);
1728 	}
1729 }
1730 
1731 /** Event: KeyRem */
1732 static void
1733 do_keyrem(struct module_env* env, struct autr_ta* anchor, int* c)
1734 {
1735 	if(anchor->s == AUTR_STATE_ADDPEND) {
1736 		set_trustanchor_state(env, anchor, c, AUTR_STATE_START);
1737 		anchor->pending_count = 0;
1738 	} else if(anchor->s == AUTR_STATE_VALID)
1739 		set_trustanchor_state(env, anchor, c, AUTR_STATE_MISSING);
1740 }
1741 
1742 /** Event: KeyPres */
1743 static void
1744 do_keypres(struct module_env* env, struct autr_ta* anchor, int* c)
1745 {
1746 	if(anchor->s == AUTR_STATE_MISSING)
1747 		set_trustanchor_state(env, anchor, c, AUTR_STATE_VALID);
1748 }
1749 
1750 /* Event: Revoked */
1751 static void
1752 do_revoked(struct module_env* env, struct autr_ta* anchor, int* c)
1753 {
1754 	if(anchor->s == AUTR_STATE_VALID || anchor->s == AUTR_STATE_MISSING) {
1755                 set_trustanchor_state(env, anchor, c, AUTR_STATE_REVOKED);
1756 		verbose_key(anchor, VERB_ALGO, "old id, prior to revocation");
1757                 revoke_dnskey(anchor, 0);
1758 		verbose_key(anchor, VERB_ALGO, "new id, after revocation");
1759 	}
1760 }
1761 
1762 /** Do statestable transition matrix for anchor */
1763 static void
1764 anchor_state_update(struct module_env* env, struct autr_ta* anchor, int* c)
1765 {
1766 	log_assert(anchor);
1767 	switch(anchor->s) {
1768 	/* START */
1769 	case AUTR_STATE_START:
1770 		/* NewKey: ADDPEND */
1771 		if (anchor->fetched)
1772 			do_newkey(env, anchor, c);
1773 		break;
1774 	/* ADDPEND */
1775 	case AUTR_STATE_ADDPEND:
1776 		/* KeyRem: START */
1777 		if (!anchor->fetched)
1778 			do_keyrem(env, anchor, c);
1779 		/* AddTime: VALID */
1780 		else	do_addtime(env, anchor, c);
1781 		break;
1782 	/* VALID */
1783 	case AUTR_STATE_VALID:
1784 		/* RevBit: REVOKED */
1785 		if (anchor->revoked)
1786 			do_revoked(env, anchor, c);
1787 		/* KeyRem: MISSING */
1788 		else if (!anchor->fetched)
1789 			do_keyrem(env, anchor, c);
1790 		else if(!anchor->last_change) {
1791 			verbose_key(anchor, VERB_ALGO, "first seen");
1792 			reset_holddown(env, anchor, c);
1793 		}
1794 		break;
1795 	/* MISSING */
1796 	case AUTR_STATE_MISSING:
1797 		/* RevBit: REVOKED */
1798 		if (anchor->revoked)
1799 			do_revoked(env, anchor, c);
1800 		/* KeyPres */
1801 		else if (anchor->fetched)
1802 			do_keypres(env, anchor, c);
1803 		break;
1804 	/* REVOKED */
1805 	case AUTR_STATE_REVOKED:
1806 		if (anchor->fetched)
1807 			reset_holddown(env, anchor, c);
1808 		/* RemTime: REMOVED */
1809 		else	do_remtime(env, anchor, c);
1810 		break;
1811 	/* REMOVED */
1812 	case AUTR_STATE_REMOVED:
1813 	default:
1814 		break;
1815 	}
1816 }
1817 
1818 /** if ZSK init then trust KSKs */
1819 static int
1820 init_zsk_to_ksk(struct module_env* env, struct trust_anchor* tp, int* changed)
1821 {
1822 	/* search for VALID ZSKs */
1823 	struct autr_ta* anchor;
1824 	int validzsk = 0;
1825 	int validksk = 0;
1826 	for(anchor = tp->autr->keys; anchor; anchor = anchor->next) {
1827 		/* last_change test makes sure it was manually configured */
1828 		if(sldns_wirerr_get_type(anchor->rr, anchor->rr_len,
1829 			anchor->dname_len) == LDNS_RR_TYPE_DNSKEY &&
1830 			anchor->last_change == 0 &&
1831 			!ta_is_dnskey_sep(anchor) &&
1832 			anchor->s == AUTR_STATE_VALID)
1833                         validzsk++;
1834 	}
1835 	if(validzsk == 0)
1836 		return 0;
1837 	for(anchor = tp->autr->keys; anchor; anchor = anchor->next) {
1838                 if (ta_is_dnskey_sep(anchor) &&
1839 			anchor->s == AUTR_STATE_ADDPEND) {
1840 			verbose_key(anchor, VERB_ALGO, "trust KSK from "
1841 				"ZSK(config)");
1842 			set_trustanchor_state(env, anchor, changed,
1843 				AUTR_STATE_VALID);
1844 			validksk++;
1845 		}
1846 	}
1847 	return validksk;
1848 }
1849 
1850 /** Remove missing trustanchors so the list does not grow forever */
1851 static void
1852 remove_missing_trustanchors(struct module_env* env, struct trust_anchor* tp,
1853 	int* changed)
1854 {
1855 	struct autr_ta* anchor;
1856 	time_t exceeded;
1857 	int valid = 0;
1858 	/* see if we have anchors that are valid */
1859 	for(anchor = tp->autr->keys; anchor; anchor = anchor->next) {
1860 		/* Only do KSKs */
1861                 if (!ta_is_dnskey_sep(anchor))
1862                         continue;
1863                 if (anchor->s == AUTR_STATE_VALID)
1864                         valid++;
1865 	}
1866 	/* if there are no SEP Valid anchors, see if we started out with
1867 	 * a ZSK (last-change=0) anchor, which is VALID and there are KSKs
1868 	 * now that can be made valid.  Do this immediately because there
1869 	 * is no guarantee that the ZSKs get announced long enough.  Usually
1870 	 * this is immediately after init with a ZSK trusted, unless the domain
1871 	 * was not advertising any KSKs at all.  In which case we perfectly
1872 	 * track the zero number of KSKs. */
1873 	if(valid == 0) {
1874 		valid = init_zsk_to_ksk(env, tp, changed);
1875 		if(valid == 0)
1876 			return;
1877 	}
1878 
1879 	for(anchor = tp->autr->keys; anchor; anchor = anchor->next) {
1880 		/* ignore ZSKs if newly added */
1881 		if(anchor->s == AUTR_STATE_START)
1882 			continue;
1883 		/* remove ZSKs if a KSK is present */
1884                 if (!ta_is_dnskey_sep(anchor)) {
1885 			if(valid > 0) {
1886 				verbose_key(anchor, VERB_ALGO, "remove ZSK "
1887 					"[%d key(s) VALID]", valid);
1888 				set_trustanchor_state(env, anchor, changed,
1889 					AUTR_STATE_REMOVED);
1890 			}
1891                         continue;
1892 		}
1893                 /* Only do MISSING keys */
1894                 if (anchor->s != AUTR_STATE_MISSING)
1895                         continue;
1896 		if(env->cfg->keep_missing == 0)
1897 			continue; /* keep forever */
1898 
1899 		exceeded = check_holddown(env, anchor, env->cfg->keep_missing);
1900 		/* If keep_missing has exceeded and we still have more than
1901 		 * one valid KSK: remove missing trust anchor */
1902                 if (exceeded && valid > 0) {
1903 			verbose_key(anchor, VERB_ALGO, "keep-missing time "
1904 				"exceeded " ARG_LL "d seconds ago, [%d key(s) VALID]",
1905 				(long long)exceeded, valid);
1906 			set_trustanchor_state(env, anchor, changed,
1907 				AUTR_STATE_REMOVED);
1908 		}
1909 	}
1910 }
1911 
1912 /** Do the statetable from RFC5011 transition matrix */
1913 static int
1914 do_statetable(struct module_env* env, struct trust_anchor* tp, int* changed)
1915 {
1916 	struct autr_ta* anchor;
1917 	for(anchor = tp->autr->keys; anchor; anchor = anchor->next) {
1918 		/* Only do KSKs */
1919 		if(!ta_is_dnskey_sep(anchor))
1920 			continue;
1921 		anchor_state_update(env, anchor, changed);
1922 	}
1923 	remove_missing_trustanchors(env, tp, changed);
1924 	return 1;
1925 }
1926 
1927 /** See if time alone makes ADDPEND to VALID transition */
1928 static void
1929 autr_holddown_exceed(struct module_env* env, struct trust_anchor* tp, int* c)
1930 {
1931 	struct autr_ta* anchor;
1932 	for(anchor = tp->autr->keys; anchor; anchor = anchor->next) {
1933 		if(ta_is_dnskey_sep(anchor) &&
1934 			anchor->s == AUTR_STATE_ADDPEND)
1935 			do_addtime(env, anchor, c);
1936 	}
1937 }
1938 
1939 /** cleanup key list */
1940 static void
1941 autr_cleanup_keys(struct trust_anchor* tp)
1942 {
1943 	struct autr_ta* p, **prevp;
1944 	prevp = &tp->autr->keys;
1945 	p = tp->autr->keys;
1946 	while(p) {
1947 		/* do we want to remove this key? */
1948 		if(p->s == AUTR_STATE_START || p->s == AUTR_STATE_REMOVED ||
1949 			sldns_wirerr_get_type(p->rr, p->rr_len, p->dname_len)
1950 			!= LDNS_RR_TYPE_DNSKEY) {
1951 			struct autr_ta* np = p->next;
1952 			/* remove */
1953 			free(p->rr);
1954 			free(p);
1955 			/* snip and go to next item */
1956 			*prevp = np;
1957 			p = np;
1958 			continue;
1959 		}
1960 		/* remove pending counts if no longer pending */
1961 		if(p->s != AUTR_STATE_ADDPEND)
1962 			p->pending_count = 0;
1963 		prevp = &p->next;
1964 		p = p->next;
1965 	}
1966 }
1967 
1968 /** calculate next probe time */
1969 static time_t
1970 calc_next_probe(struct module_env* env, time_t wait)
1971 {
1972 	/* make it random, 90-100% */
1973 	time_t rnd, rest;
1974 	if(!autr_permit_small_holddown) {
1975 		if(wait < 3600)
1976 			wait = 3600;
1977 	} else {
1978 		if(wait == 0) wait = 1;
1979 	}
1980 	rnd = wait/10;
1981 	rest = wait-rnd;
1982 	rnd = (time_t)ub_random_max(env->rnd, (long int)rnd);
1983 	return (time_t)(*env->now + rest + rnd);
1984 }
1985 
1986 /** what is first probe time (anchors must be locked) */
1987 static time_t
1988 wait_probe_time(struct val_anchors* anchors)
1989 {
1990 	rbnode_t* t = rbtree_first(&anchors->autr->probe);
1991 	if(t != RBTREE_NULL)
1992 		return ((struct trust_anchor*)t->key)->autr->next_probe_time;
1993 	return 0;
1994 }
1995 
1996 /** reset worker timer */
1997 static void
1998 reset_worker_timer(struct module_env* env)
1999 {
2000 	struct timeval tv;
2001 #ifndef S_SPLINT_S
2002 	time_t next = (time_t)wait_probe_time(env->anchors);
2003 	/* in case this is libunbound, no timer */
2004 	if(!env->probe_timer)
2005 		return;
2006 	if(next > *env->now)
2007 		tv.tv_sec = (time_t)(next - *env->now);
2008 	else	tv.tv_sec = 0;
2009 #endif
2010 	tv.tv_usec = 0;
2011 	comm_timer_set(env->probe_timer, &tv);
2012 	verbose(VERB_ALGO, "scheduled next probe in " ARG_LL "d sec", (long long)tv.tv_sec);
2013 }
2014 
2015 /** set next probe for trust anchor */
2016 static int
2017 set_next_probe(struct module_env* env, struct trust_anchor* tp,
2018 	struct ub_packed_rrset_key* dnskey_rrset)
2019 {
2020 	struct trust_anchor key, *tp2;
2021 	time_t mold, mnew;
2022 	/* use memory allocated in rrset for temporary name storage */
2023 	key.node.key = &key;
2024 	key.name = dnskey_rrset->rk.dname;
2025 	key.namelen = dnskey_rrset->rk.dname_len;
2026 	key.namelabs = dname_count_labels(key.name);
2027 	key.dclass = tp->dclass;
2028 	lock_basic_unlock(&tp->lock);
2029 
2030 	/* fetch tp again and lock anchors, so that we can modify the trees */
2031 	lock_basic_lock(&env->anchors->lock);
2032 	tp2 = (struct trust_anchor*)rbtree_search(env->anchors->tree, &key);
2033 	if(!tp2) {
2034 		verbose(VERB_ALGO, "trustpoint was deleted in set_next_probe");
2035 		lock_basic_unlock(&env->anchors->lock);
2036 		return 0;
2037 	}
2038 	log_assert(tp == tp2);
2039 	lock_basic_lock(&tp->lock);
2040 
2041 	/* schedule */
2042 	mold = wait_probe_time(env->anchors);
2043 	(void)rbtree_delete(&env->anchors->autr->probe, tp);
2044 	tp->autr->next_probe_time = calc_next_probe(env,
2045 		tp->autr->query_interval);
2046 	(void)rbtree_insert(&env->anchors->autr->probe, &tp->autr->pnode);
2047 	mnew = wait_probe_time(env->anchors);
2048 
2049 	lock_basic_unlock(&env->anchors->lock);
2050 	verbose(VERB_ALGO, "next probe set in %d seconds",
2051 		(int)tp->autr->next_probe_time - (int)*env->now);
2052 	if(mold != mnew) {
2053 		reset_worker_timer(env);
2054 	}
2055 	return 1;
2056 }
2057 
2058 /** Revoke and Delete a trust point */
2059 static void
2060 autr_tp_remove(struct module_env* env, struct trust_anchor* tp,
2061 	struct ub_packed_rrset_key* dnskey_rrset)
2062 {
2063 	struct trust_anchor* del_tp;
2064 	struct trust_anchor key;
2065 	struct autr_point_data pd;
2066 	time_t mold, mnew;
2067 
2068 	log_nametypeclass(VERB_OPS, "trust point was revoked",
2069 		tp->name, LDNS_RR_TYPE_DNSKEY, tp->dclass);
2070 	tp->autr->revoked = 1;
2071 
2072 	/* use space allocated for dnskey_rrset to save name of anchor */
2073 	memset(&key, 0, sizeof(key));
2074 	memset(&pd, 0, sizeof(pd));
2075 	key.autr = &pd;
2076 	key.node.key = &key;
2077 	pd.pnode.key = &key;
2078 	pd.next_probe_time = tp->autr->next_probe_time;
2079 	key.name = dnskey_rrset->rk.dname;
2080 	key.namelen = tp->namelen;
2081 	key.namelabs = tp->namelabs;
2082 	key.dclass = tp->dclass;
2083 
2084 	/* unlock */
2085 	lock_basic_unlock(&tp->lock);
2086 
2087 	/* take from tree. It could be deleted by someone else,hence (void). */
2088 	lock_basic_lock(&env->anchors->lock);
2089 	del_tp = (struct trust_anchor*)rbtree_delete(env->anchors->tree, &key);
2090 	mold = wait_probe_time(env->anchors);
2091 	(void)rbtree_delete(&env->anchors->autr->probe, &key);
2092 	mnew = wait_probe_time(env->anchors);
2093 	anchors_init_parents_locked(env->anchors);
2094 	lock_basic_unlock(&env->anchors->lock);
2095 
2096 	/* if !del_tp then the trust point is no longer present in the tree,
2097 	 * it was deleted by someone else, who will write the zonefile and
2098 	 * clean up the structure */
2099 	if(del_tp) {
2100 		/* save on disk */
2101 		del_tp->autr->next_probe_time = 0; /* no more probing for it */
2102 		autr_write_file(env, del_tp);
2103 
2104 		/* delete */
2105 		autr_point_delete(del_tp);
2106 	}
2107 	if(mold != mnew) {
2108 		reset_worker_timer(env);
2109 	}
2110 }
2111 
2112 int autr_process_prime(struct module_env* env, struct val_env* ve,
2113 	struct trust_anchor* tp, struct ub_packed_rrset_key* dnskey_rrset)
2114 {
2115 	int changed = 0;
2116 	log_assert(tp && tp->autr);
2117 	/* autotrust update trust anchors */
2118 	/* the tp is locked, and stays locked unless it is deleted */
2119 
2120 	/* we could just catch the anchor here while another thread
2121 	 * is busy deleting it. Just unlock and let the other do its job */
2122 	if(tp->autr->revoked) {
2123 		log_nametypeclass(VERB_ALGO, "autotrust not processed, "
2124 			"trust point revoked", tp->name,
2125 			LDNS_RR_TYPE_DNSKEY, tp->dclass);
2126 		lock_basic_unlock(&tp->lock);
2127 		return 0; /* it is revoked */
2128 	}
2129 
2130 	/* query_dnskeys(): */
2131 	tp->autr->last_queried = *env->now;
2132 
2133 	log_nametypeclass(VERB_ALGO, "autotrust process for",
2134 		tp->name, LDNS_RR_TYPE_DNSKEY, tp->dclass);
2135 	/* see if time alone makes some keys valid */
2136 	autr_holddown_exceed(env, tp, &changed);
2137 	if(changed) {
2138 		verbose(VERB_ALGO, "autotrust: morekeys, reassemble");
2139 		if(!autr_assemble(tp)) {
2140 			log_err("malloc failure assembling autotrust keys");
2141 			return 1; /* unchanged */
2142 		}
2143 	}
2144 	/* did we get any data? */
2145 	if(!dnskey_rrset) {
2146 		verbose(VERB_ALGO, "autotrust: no dnskey rrset");
2147 		/* no update of query_failed, because then we would have
2148 		 * to write to disk. But we cannot because we maybe are
2149 		 * still 'initialising' with DS records, that we cannot write
2150 		 * in the full format (which only contains KSKs). */
2151 		return 1; /* trust point exists */
2152 	}
2153 	/* check for revoked keys to remove immediately */
2154 	check_contains_revoked(env, ve, tp, dnskey_rrset, &changed);
2155 	if(changed) {
2156 		verbose(VERB_ALGO, "autotrust: revokedkeys, reassemble");
2157 		if(!autr_assemble(tp)) {
2158 			log_err("malloc failure assembling autotrust keys");
2159 			return 1; /* unchanged */
2160 		}
2161 		if(!tp->ds_rrset && !tp->dnskey_rrset) {
2162 			/* no more keys, all are revoked */
2163 			/* this is a success for this probe attempt */
2164 			tp->autr->last_success = *env->now;
2165 			autr_tp_remove(env, tp, dnskey_rrset);
2166 			return 0; /* trust point removed */
2167 		}
2168 	}
2169 	/* verify the dnskey rrset and see if it is valid. */
2170 	if(!verify_dnskey(env, ve, tp, dnskey_rrset)) {
2171 		verbose(VERB_ALGO, "autotrust: dnskey did not verify.");
2172 		/* only increase failure count if this is not the first prime,
2173 		 * this means there was a previous successful probe */
2174 		if(tp->autr->last_success) {
2175 			tp->autr->query_failed += 1;
2176 			autr_write_file(env, tp);
2177 		}
2178 		return 1; /* trust point exists */
2179 	}
2180 
2181 	tp->autr->last_success = *env->now;
2182 	tp->autr->query_failed = 0;
2183 
2184 	/* Add new trust anchors to the data structure
2185 	 * - note which trust anchors are seen this probe.
2186 	 * Set trustpoint query_interval and retry_time.
2187 	 * - find minimum rrsig expiration interval
2188 	 */
2189 	if(!update_events(env, ve, tp, dnskey_rrset, &changed)) {
2190 		log_err("malloc failure in autotrust update_events. "
2191 			"trust point unchanged.");
2192 		return 1; /* trust point unchanged, so exists */
2193 	}
2194 
2195 	/* - for every SEP key do the 5011 statetable.
2196 	 * - remove missing trustanchors (if veryold and we have new anchors).
2197 	 */
2198 	if(!do_statetable(env, tp, &changed)) {
2199 		log_err("malloc failure in autotrust do_statetable. "
2200 			"trust point unchanged.");
2201 		return 1; /* trust point unchanged, so exists */
2202 	}
2203 
2204 	autr_cleanup_keys(tp);
2205 	if(!set_next_probe(env, tp, dnskey_rrset))
2206 		return 0; /* trust point does not exist */
2207 	autr_write_file(env, tp);
2208 	if(changed) {
2209 		verbose(VERB_ALGO, "autotrust: changed, reassemble");
2210 		if(!autr_assemble(tp)) {
2211 			log_err("malloc failure assembling autotrust keys");
2212 			return 1; /* unchanged */
2213 		}
2214 		if(!tp->ds_rrset && !tp->dnskey_rrset) {
2215 			/* no more keys, all are revoked */
2216 			autr_tp_remove(env, tp, dnskey_rrset);
2217 			return 0; /* trust point removed */
2218 		}
2219 	} else verbose(VERB_ALGO, "autotrust: no changes");
2220 
2221 	return 1; /* trust point exists */
2222 }
2223 
2224 /** debug print a trust anchor key */
2225 static void
2226 autr_debug_print_ta(struct autr_ta* ta)
2227 {
2228 	char buf[32];
2229 	char* str = sldns_wire2str_rr(ta->rr, ta->rr_len);
2230 	if(!str) {
2231 		log_info("out of memory in debug_print_ta");
2232 		return;
2233 	}
2234 	if(str && str[0]) str[strlen(str)-1]=0; /* remove newline */
2235 	ctime_r(&ta->last_change, buf);
2236 	if(buf[0]) buf[strlen(buf)-1]=0; /* remove newline */
2237 	log_info("[%s] %s ;;state:%d ;;pending_count:%d%s%s last:%s",
2238 		trustanchor_state2str(ta->s), str, ta->s, ta->pending_count,
2239 		ta->fetched?" fetched":"", ta->revoked?" revoked":"", buf);
2240 	free(str);
2241 }
2242 
2243 /** debug print a trust point */
2244 static void
2245 autr_debug_print_tp(struct trust_anchor* tp)
2246 {
2247 	struct autr_ta* ta;
2248 	char buf[257];
2249 	if(!tp->autr)
2250 		return;
2251 	dname_str(tp->name, buf);
2252 	log_info("trust point %s : %d", buf, (int)tp->dclass);
2253 	log_info("assembled %d DS and %d DNSKEYs",
2254 		(int)tp->numDS, (int)tp->numDNSKEY);
2255 	if(tp->ds_rrset) {
2256 		log_packed_rrset(0, "DS:", tp->ds_rrset);
2257 	}
2258 	if(tp->dnskey_rrset) {
2259 		log_packed_rrset(0, "DNSKEY:", tp->dnskey_rrset);
2260 	}
2261 	log_info("file %s", tp->autr->file);
2262 	ctime_r(&tp->autr->last_queried, buf);
2263 	if(buf[0]) buf[strlen(buf)-1]=0; /* remove newline */
2264 	log_info("last_queried: %u %s", (unsigned)tp->autr->last_queried, buf);
2265 	ctime_r(&tp->autr->last_success, buf);
2266 	if(buf[0]) buf[strlen(buf)-1]=0; /* remove newline */
2267 	log_info("last_success: %u %s", (unsigned)tp->autr->last_success, buf);
2268 	ctime_r(&tp->autr->next_probe_time, buf);
2269 	if(buf[0]) buf[strlen(buf)-1]=0; /* remove newline */
2270 	log_info("next_probe_time: %u %s", (unsigned)tp->autr->next_probe_time,
2271 		buf);
2272 	log_info("query_interval: %u", (unsigned)tp->autr->query_interval);
2273 	log_info("retry_time: %u", (unsigned)tp->autr->retry_time);
2274 	log_info("query_failed: %u", (unsigned)tp->autr->query_failed);
2275 
2276 	for(ta=tp->autr->keys; ta; ta=ta->next) {
2277 		autr_debug_print_ta(ta);
2278 	}
2279 }
2280 
2281 void
2282 autr_debug_print(struct val_anchors* anchors)
2283 {
2284 	struct trust_anchor* tp;
2285 	lock_basic_lock(&anchors->lock);
2286 	RBTREE_FOR(tp, struct trust_anchor*, anchors->tree) {
2287 		lock_basic_lock(&tp->lock);
2288 		autr_debug_print_tp(tp);
2289 		lock_basic_unlock(&tp->lock);
2290 	}
2291 	lock_basic_unlock(&anchors->lock);
2292 }
2293 
2294 void probe_answer_cb(void* arg, int ATTR_UNUSED(rcode),
2295 	sldns_buffer* ATTR_UNUSED(buf), enum sec_status ATTR_UNUSED(sec),
2296 	char* ATTR_UNUSED(why_bogus))
2297 {
2298 	/* retry was set before the query was done,
2299 	 * re-querytime is set when query succeeded, but that may not
2300 	 * have reset this timer because the query could have been
2301 	 * handled by another thread. In that case, this callback would
2302 	 * get called after the original timeout is done.
2303 	 * By not resetting the timer, it may probe more often, but not
2304 	 * less often.
2305 	 * Unless the new lookup resulted in smaller TTLs and thus smaller
2306 	 * timeout values. In that case one old TTL could be mistakenly done.
2307 	 */
2308 	struct module_env* env = (struct module_env*)arg;
2309 	verbose(VERB_ALGO, "autotrust probe answer cb");
2310 	reset_worker_timer(env);
2311 }
2312 
2313 /** probe a trust anchor DNSKEY and unlocks tp */
2314 static void
2315 probe_anchor(struct module_env* env, struct trust_anchor* tp)
2316 {
2317 	struct query_info qinfo;
2318 	uint16_t qflags = BIT_RD;
2319 	struct edns_data edns;
2320 	sldns_buffer* buf = env->scratch_buffer;
2321 	qinfo.qname = regional_alloc_init(env->scratch, tp->name, tp->namelen);
2322 	if(!qinfo.qname) {
2323 		log_err("out of memory making 5011 probe");
2324 		return;
2325 	}
2326 	qinfo.qname_len = tp->namelen;
2327 	qinfo.qtype = LDNS_RR_TYPE_DNSKEY;
2328 	qinfo.qclass = tp->dclass;
2329 	log_query_info(VERB_ALGO, "autotrust probe", &qinfo);
2330 	verbose(VERB_ALGO, "retry probe set in %d seconds",
2331 		(int)tp->autr->next_probe_time - (int)*env->now);
2332 	edns.edns_present = 1;
2333 	edns.ext_rcode = 0;
2334 	edns.edns_version = 0;
2335 	edns.bits = EDNS_DO;
2336 	if(sldns_buffer_capacity(buf) < 65535)
2337 		edns.udp_size = (uint16_t)sldns_buffer_capacity(buf);
2338 	else	edns.udp_size = 65535;
2339 
2340 	/* can't hold the lock while mesh_run is processing */
2341 	lock_basic_unlock(&tp->lock);
2342 
2343 	/* delete the DNSKEY from rrset and key cache so an active probe
2344 	 * is done. First the rrset so another thread does not use it
2345 	 * to recreate the key entry in a race condition. */
2346 	rrset_cache_remove(env->rrset_cache, qinfo.qname, qinfo.qname_len,
2347 		qinfo.qtype, qinfo.qclass, 0);
2348 	key_cache_remove(env->key_cache, qinfo.qname, qinfo.qname_len,
2349 		qinfo.qclass);
2350 
2351 	if(!mesh_new_callback(env->mesh, &qinfo, qflags, &edns, buf, 0,
2352 		&probe_answer_cb, env)) {
2353 		log_err("out of memory making 5011 probe");
2354 	}
2355 }
2356 
2357 /** fetch first to-probe trust-anchor and lock it and set retrytime */
2358 static struct trust_anchor*
2359 todo_probe(struct module_env* env, time_t* next)
2360 {
2361 	struct trust_anchor* tp;
2362 	rbnode_t* el;
2363 	/* get first one */
2364 	lock_basic_lock(&env->anchors->lock);
2365 	if( (el=rbtree_first(&env->anchors->autr->probe)) == RBTREE_NULL) {
2366 		/* in case of revoked anchors */
2367 		lock_basic_unlock(&env->anchors->lock);
2368 		/* signal that there are no anchors to probe */
2369 		*next = 0;
2370 		return NULL;
2371 	}
2372 	tp = (struct trust_anchor*)el->key;
2373 	lock_basic_lock(&tp->lock);
2374 
2375 	/* is it eligible? */
2376 	if((time_t)tp->autr->next_probe_time > *env->now) {
2377 		/* no more to probe */
2378 		*next = (time_t)tp->autr->next_probe_time - *env->now;
2379 		lock_basic_unlock(&tp->lock);
2380 		lock_basic_unlock(&env->anchors->lock);
2381 		return NULL;
2382 	}
2383 
2384 	/* reset its next probe time */
2385 	(void)rbtree_delete(&env->anchors->autr->probe, tp);
2386 	tp->autr->next_probe_time = calc_next_probe(env, tp->autr->retry_time);
2387 	(void)rbtree_insert(&env->anchors->autr->probe, &tp->autr->pnode);
2388 	lock_basic_unlock(&env->anchors->lock);
2389 
2390 	return tp;
2391 }
2392 
2393 time_t
2394 autr_probe_timer(struct module_env* env)
2395 {
2396 	struct trust_anchor* tp;
2397 	time_t next_probe = 3600;
2398 	int num = 0;
2399 	if(autr_permit_small_holddown) next_probe = 1;
2400 	verbose(VERB_ALGO, "autotrust probe timer callback");
2401 	/* while there are still anchors to probe */
2402 	while( (tp = todo_probe(env, &next_probe)) ) {
2403 		/* make a probe for this anchor */
2404 		probe_anchor(env, tp);
2405 		num++;
2406 	}
2407 	regional_free_all(env->scratch);
2408 	if(next_probe == 0)
2409 		return 0; /* no trust points to probe */
2410 	verbose(VERB_ALGO, "autotrust probe timer %d callbacks done", num);
2411 	return next_probe;
2412 }
2413