1 /* 2 * validator/autotrust.c - RFC5011 trust anchor management for unbound. 3 * 4 * Copyright (c) 2009, NLnet Labs. All rights reserved. 5 * 6 * This software is open source. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 12 * Redistributions of source code must retain the above copyright notice, 13 * this list of conditions and the following disclaimer. 14 * 15 * Redistributions in binary form must reproduce the above copyright notice, 16 * this list of conditions and the following disclaimer in the documentation 17 * and/or other materials provided with the distribution. 18 * 19 * Neither the name of the NLNET LABS nor the names of its contributors may 20 * be used to endorse or promote products derived from this software without 21 * specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 24 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 26 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 27 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 28 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 29 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 30 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 31 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 32 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 33 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 34 */ 35 36 /** 37 * \file 38 * 39 * Contains autotrust implementation. The implementation was taken from 40 * the autotrust daemon (BSD licensed), written by Matthijs Mekking. 41 * It was modified to fit into unbound. The state table process is the same. 42 */ 43 #include "config.h" 44 #include "validator/autotrust.h" 45 #include "validator/val_anchor.h" 46 #include "validator/val_utils.h" 47 #include "validator/val_sigcrypt.h" 48 #include "util/data/dname.h" 49 #include "util/data/packed_rrset.h" 50 #include "util/log.h" 51 #include "util/module.h" 52 #include "util/net_help.h" 53 #include "util/config_file.h" 54 #include "util/regional.h" 55 #include "util/random.h" 56 #include "util/data/msgparse.h" 57 #include "services/mesh.h" 58 #include "services/cache/rrset.h" 59 #include "validator/val_kcache.h" 60 #include "ldns/sbuffer.h" 61 #include "ldns/wire2str.h" 62 #include "ldns/str2wire.h" 63 #include "ldns/keyraw.h" 64 #include "ldns/rrdef.h" 65 #include <stdarg.h> 66 #include <ctype.h> 67 68 /** number of times a key must be seen before it can become valid */ 69 #define MIN_PENDINGCOUNT 2 70 71 /** Event: Revoked */ 72 static void do_revoked(struct module_env* env, struct autr_ta* anchor, int* c); 73 74 struct autr_global_data* autr_global_create(void) 75 { 76 struct autr_global_data* global; 77 global = (struct autr_global_data*)malloc(sizeof(*global)); 78 if(!global) 79 return NULL; 80 rbtree_init(&global->probe, &probetree_cmp); 81 return global; 82 } 83 84 void autr_global_delete(struct autr_global_data* global) 85 { 86 if(!global) 87 return; 88 /* elements deleted by parent */ 89 memset(global, 0, sizeof(*global)); 90 free(global); 91 } 92 93 int probetree_cmp(const void* x, const void* y) 94 { 95 struct trust_anchor* a = (struct trust_anchor*)x; 96 struct trust_anchor* b = (struct trust_anchor*)y; 97 log_assert(a->autr && b->autr); 98 if(a->autr->next_probe_time < b->autr->next_probe_time) 99 return -1; 100 if(a->autr->next_probe_time > b->autr->next_probe_time) 101 return 1; 102 /* time is equal, sort on trust point identity */ 103 return anchor_cmp(x, y); 104 } 105 106 size_t 107 autr_get_num_anchors(struct val_anchors* anchors) 108 { 109 size_t res = 0; 110 if(!anchors) 111 return 0; 112 lock_basic_lock(&anchors->lock); 113 if(anchors->autr) 114 res = anchors->autr->probe.count; 115 lock_basic_unlock(&anchors->lock); 116 return res; 117 } 118 119 /** Position in string */ 120 static int 121 position_in_string(char *str, const char* sub) 122 { 123 char* pos = strstr(str, sub); 124 if(pos) 125 return (int)(pos-str)+(int)strlen(sub); 126 return -1; 127 } 128 129 /** Debug routine to print pretty key information */ 130 static void 131 verbose_key(struct autr_ta* ta, enum verbosity_value level, 132 const char* format, ...) ATTR_FORMAT(printf, 3, 4); 133 134 /** 135 * Implementation of debug pretty key print 136 * @param ta: trust anchor key with DNSKEY data. 137 * @param level: verbosity level to print at. 138 * @param format: printf style format string. 139 */ 140 static void 141 verbose_key(struct autr_ta* ta, enum verbosity_value level, 142 const char* format, ...) 143 { 144 va_list args; 145 va_start(args, format); 146 if(verbosity >= level) { 147 char* str = sldns_wire2str_dname(ta->rr, ta->dname_len); 148 int keytag = (int)sldns_calc_keytag_raw(sldns_wirerr_get_rdata( 149 ta->rr, ta->rr_len, ta->dname_len), 150 sldns_wirerr_get_rdatalen(ta->rr, ta->rr_len, 151 ta->dname_len)); 152 char msg[MAXSYSLOGMSGLEN]; 153 vsnprintf(msg, sizeof(msg), format, args); 154 verbose(level, "%s key %d %s", str?str:"??", keytag, msg); 155 free(str); 156 } 157 va_end(args); 158 } 159 160 /** 161 * Parse comments 162 * @param str: to parse 163 * @param ta: trust key autotrust metadata 164 * @return false on failure. 165 */ 166 static int 167 parse_comments(char* str, struct autr_ta* ta) 168 { 169 int len = (int)strlen(str), pos = 0, timestamp = 0; 170 char* comment = (char*) malloc(sizeof(char)*len+1); 171 char* comments = comment; 172 if(!comment) { 173 log_err("malloc failure in parse"); 174 return 0; 175 } 176 /* skip over whitespace and data at start of line */ 177 while (*str != '\0' && *str != ';') 178 str++; 179 if (*str == ';') 180 str++; 181 /* copy comments */ 182 while (*str != '\0') 183 { 184 *comments = *str; 185 comments++; 186 str++; 187 } 188 *comments = '\0'; 189 190 comments = comment; 191 192 /* read state */ 193 pos = position_in_string(comments, "state="); 194 if (pos >= (int) strlen(comments)) 195 { 196 log_err("parse error"); 197 free(comment); 198 return 0; 199 } 200 if (pos <= 0) 201 ta->s = AUTR_STATE_VALID; 202 else 203 { 204 int s = (int) comments[pos] - '0'; 205 switch(s) 206 { 207 case AUTR_STATE_START: 208 case AUTR_STATE_ADDPEND: 209 case AUTR_STATE_VALID: 210 case AUTR_STATE_MISSING: 211 case AUTR_STATE_REVOKED: 212 case AUTR_STATE_REMOVED: 213 ta->s = s; 214 break; 215 default: 216 verbose_key(ta, VERB_OPS, "has undefined " 217 "state, considered NewKey"); 218 ta->s = AUTR_STATE_START; 219 break; 220 } 221 } 222 /* read pending count */ 223 pos = position_in_string(comments, "count="); 224 if (pos >= (int) strlen(comments)) 225 { 226 log_err("parse error"); 227 free(comment); 228 return 0; 229 } 230 if (pos <= 0) 231 ta->pending_count = 0; 232 else 233 { 234 comments += pos; 235 ta->pending_count = (uint8_t)atoi(comments); 236 } 237 238 /* read last change */ 239 pos = position_in_string(comments, "lastchange="); 240 if (pos >= (int) strlen(comments)) 241 { 242 log_err("parse error"); 243 free(comment); 244 return 0; 245 } 246 if (pos >= 0) 247 { 248 comments += pos; 249 timestamp = atoi(comments); 250 } 251 if (pos < 0 || !timestamp) 252 ta->last_change = 0; 253 else 254 ta->last_change = (time_t)timestamp; 255 256 free(comment); 257 return 1; 258 } 259 260 /** Check if a line contains data (besides comments) */ 261 static int 262 str_contains_data(char* str, char comment) 263 { 264 while (*str != '\0') { 265 if (*str == comment || *str == '\n') 266 return 0; 267 if (*str != ' ' && *str != '\t') 268 return 1; 269 str++; 270 } 271 return 0; 272 } 273 274 /** Get DNSKEY flags 275 * rdata without rdatalen in front of it. */ 276 static int 277 dnskey_flags(uint16_t t, uint8_t* rdata, size_t len) 278 { 279 uint16_t f; 280 if(t != LDNS_RR_TYPE_DNSKEY) 281 return 0; 282 if(len < 2) 283 return 0; 284 memmove(&f, rdata, 2); 285 f = ntohs(f); 286 return (int)f; 287 } 288 289 /** Check if KSK DNSKEY. 290 * pass rdata without rdatalen in front of it */ 291 static int 292 rr_is_dnskey_sep(uint16_t t, uint8_t* rdata, size_t len) 293 { 294 return (dnskey_flags(t, rdata, len)&DNSKEY_BIT_SEP); 295 } 296 297 /** Check if TA is KSK DNSKEY */ 298 static int 299 ta_is_dnskey_sep(struct autr_ta* ta) 300 { 301 return (dnskey_flags( 302 sldns_wirerr_get_type(ta->rr, ta->rr_len, ta->dname_len), 303 sldns_wirerr_get_rdata(ta->rr, ta->rr_len, ta->dname_len), 304 sldns_wirerr_get_rdatalen(ta->rr, ta->rr_len, ta->dname_len) 305 ) & DNSKEY_BIT_SEP); 306 } 307 308 /** Check if REVOKED DNSKEY 309 * pass rdata without rdatalen in front of it */ 310 static int 311 rr_is_dnskey_revoked(uint16_t t, uint8_t* rdata, size_t len) 312 { 313 return (dnskey_flags(t, rdata, len)&LDNS_KEY_REVOKE_KEY); 314 } 315 316 /** create ta */ 317 static struct autr_ta* 318 autr_ta_create(uint8_t* rr, size_t rr_len, size_t dname_len) 319 { 320 struct autr_ta* ta = (struct autr_ta*)calloc(1, sizeof(*ta)); 321 if(!ta) { 322 free(rr); 323 return NULL; 324 } 325 ta->rr = rr; 326 ta->rr_len = rr_len; 327 ta->dname_len = dname_len; 328 return ta; 329 } 330 331 /** create tp */ 332 static struct trust_anchor* 333 autr_tp_create(struct val_anchors* anchors, uint8_t* own, size_t own_len, 334 uint16_t dc) 335 { 336 struct trust_anchor* tp = (struct trust_anchor*)calloc(1, sizeof(*tp)); 337 if(!tp) return NULL; 338 tp->name = memdup(own, own_len); 339 if(!tp->name) { 340 free(tp); 341 return NULL; 342 } 343 tp->namelen = own_len; 344 tp->namelabs = dname_count_labels(tp->name); 345 tp->node.key = tp; 346 tp->dclass = dc; 347 tp->autr = (struct autr_point_data*)calloc(1, sizeof(*tp->autr)); 348 if(!tp->autr) { 349 free(tp->name); 350 free(tp); 351 return NULL; 352 } 353 tp->autr->pnode.key = tp; 354 355 lock_basic_lock(&anchors->lock); 356 if(!rbtree_insert(anchors->tree, &tp->node)) { 357 lock_basic_unlock(&anchors->lock); 358 log_err("trust anchor presented twice"); 359 free(tp->name); 360 free(tp->autr); 361 free(tp); 362 return NULL; 363 } 364 if(!rbtree_insert(&anchors->autr->probe, &tp->autr->pnode)) { 365 (void)rbtree_delete(anchors->tree, tp); 366 lock_basic_unlock(&anchors->lock); 367 log_err("trust anchor in probetree twice"); 368 free(tp->name); 369 free(tp->autr); 370 free(tp); 371 return NULL; 372 } 373 lock_basic_unlock(&anchors->lock); 374 lock_basic_init(&tp->lock); 375 lock_protect(&tp->lock, tp, sizeof(*tp)); 376 lock_protect(&tp->lock, tp->autr, sizeof(*tp->autr)); 377 return tp; 378 } 379 380 /** delete assembled rrsets */ 381 static void 382 autr_rrset_delete(struct ub_packed_rrset_key* r) 383 { 384 if(r) { 385 free(r->rk.dname); 386 free(r->entry.data); 387 free(r); 388 } 389 } 390 391 void autr_point_delete(struct trust_anchor* tp) 392 { 393 if(!tp) 394 return; 395 lock_unprotect(&tp->lock, tp); 396 lock_unprotect(&tp->lock, tp->autr); 397 lock_basic_destroy(&tp->lock); 398 autr_rrset_delete(tp->ds_rrset); 399 autr_rrset_delete(tp->dnskey_rrset); 400 if(tp->autr) { 401 struct autr_ta* p = tp->autr->keys, *np; 402 while(p) { 403 np = p->next; 404 free(p->rr); 405 free(p); 406 p = np; 407 } 408 free(tp->autr->file); 409 free(tp->autr); 410 } 411 free(tp->name); 412 free(tp); 413 } 414 415 /** find or add a new trust point for autotrust */ 416 static struct trust_anchor* 417 find_add_tp(struct val_anchors* anchors, uint8_t* rr, size_t rr_len, 418 size_t dname_len) 419 { 420 struct trust_anchor* tp; 421 tp = anchor_find(anchors, rr, dname_count_labels(rr), dname_len, 422 sldns_wirerr_get_class(rr, rr_len, dname_len)); 423 if(tp) { 424 if(!tp->autr) { 425 log_err("anchor cannot be with and without autotrust"); 426 lock_basic_unlock(&tp->lock); 427 return NULL; 428 } 429 return tp; 430 } 431 tp = autr_tp_create(anchors, rr, dname_len, sldns_wirerr_get_class(rr, 432 rr_len, dname_len)); 433 lock_basic_lock(&tp->lock); 434 return tp; 435 } 436 437 /** Add trust anchor from RR */ 438 static struct autr_ta* 439 add_trustanchor_frm_rr(struct val_anchors* anchors, uint8_t* rr, size_t rr_len, 440 size_t dname_len, struct trust_anchor** tp) 441 { 442 struct autr_ta* ta = autr_ta_create(rr, rr_len, dname_len); 443 if(!ta) 444 return NULL; 445 *tp = find_add_tp(anchors, rr, rr_len, dname_len); 446 if(!*tp) { 447 free(ta->rr); 448 free(ta); 449 return NULL; 450 } 451 /* add ta to tp */ 452 ta->next = (*tp)->autr->keys; 453 (*tp)->autr->keys = ta; 454 lock_basic_unlock(&(*tp)->lock); 455 return ta; 456 } 457 458 /** 459 * Add new trust anchor from a string in file. 460 * @param anchors: all anchors 461 * @param str: string with anchor and comments, if any comments. 462 * @param tp: trust point returned. 463 * @param origin: what to use for @ 464 * @param origin_len: length of origin 465 * @param prev: previous rr name 466 * @param prev_len: length of prev 467 * @param skip: if true, the result is NULL, but not an error, skip it. 468 * @return new key in trust point. 469 */ 470 static struct autr_ta* 471 add_trustanchor_frm_str(struct val_anchors* anchors, char* str, 472 struct trust_anchor** tp, uint8_t* origin, size_t origin_len, 473 uint8_t** prev, size_t* prev_len, int* skip) 474 { 475 uint8_t rr[LDNS_RR_BUF_SIZE]; 476 size_t rr_len = sizeof(rr), dname_len; 477 uint8_t* drr; 478 int lstatus; 479 if (!str_contains_data(str, ';')) { 480 *skip = 1; 481 return NULL; /* empty line */ 482 } 483 if(0 != (lstatus = sldns_str2wire_rr_buf(str, rr, &rr_len, &dname_len, 484 0, origin, origin_len, *prev, *prev_len))) 485 { 486 log_err("ldns error while converting string to RR at%d: %s: %s", 487 LDNS_WIREPARSE_OFFSET(lstatus), 488 sldns_get_errorstr_parse(lstatus), str); 489 return NULL; 490 } 491 free(*prev); 492 *prev = memdup(rr, dname_len); 493 *prev_len = dname_len; 494 if(!*prev) { 495 log_err("malloc failure in add_trustanchor"); 496 return NULL; 497 } 498 if(sldns_wirerr_get_type(rr, rr_len, dname_len)!=LDNS_RR_TYPE_DNSKEY && 499 sldns_wirerr_get_type(rr, rr_len, dname_len)!=LDNS_RR_TYPE_DS) { 500 *skip = 1; 501 return NULL; /* only DS and DNSKEY allowed */ 502 } 503 drr = memdup(rr, rr_len); 504 if(!drr) { 505 log_err("malloc failure in add trustanchor"); 506 return NULL; 507 } 508 return add_trustanchor_frm_rr(anchors, drr, rr_len, dname_len, tp); 509 } 510 511 /** 512 * Load single anchor 513 * @param anchors: all points. 514 * @param str: comments line 515 * @param fname: filename 516 * @param origin: the $ORIGIN. 517 * @param origin_len: length of origin 518 * @param prev: passed to ldns. 519 * @param prev_len: length of prev 520 * @param skip: if true, the result is NULL, but not an error, skip it. 521 * @return false on failure, otherwise the tp read. 522 */ 523 static struct trust_anchor* 524 load_trustanchor(struct val_anchors* anchors, char* str, const char* fname, 525 uint8_t* origin, size_t origin_len, uint8_t** prev, size_t* prev_len, 526 int* skip) 527 { 528 struct autr_ta* ta = NULL; 529 struct trust_anchor* tp = NULL; 530 531 ta = add_trustanchor_frm_str(anchors, str, &tp, origin, origin_len, 532 prev, prev_len, skip); 533 if(!ta) 534 return NULL; 535 lock_basic_lock(&tp->lock); 536 if(!parse_comments(str, ta)) { 537 lock_basic_unlock(&tp->lock); 538 return NULL; 539 } 540 if(!tp->autr->file) { 541 tp->autr->file = strdup(fname); 542 if(!tp->autr->file) { 543 lock_basic_unlock(&tp->lock); 544 log_err("malloc failure"); 545 return NULL; 546 } 547 } 548 lock_basic_unlock(&tp->lock); 549 return tp; 550 } 551 552 /** iterator for DSes from keylist. return true if a next element exists */ 553 static int 554 assemble_iterate_ds(struct autr_ta** list, uint8_t** rr, size_t* rr_len, 555 size_t* dname_len) 556 { 557 while(*list) { 558 if(sldns_wirerr_get_type((*list)->rr, (*list)->rr_len, 559 (*list)->dname_len) == LDNS_RR_TYPE_DS) { 560 *rr = (*list)->rr; 561 *rr_len = (*list)->rr_len; 562 *dname_len = (*list)->dname_len; 563 *list = (*list)->next; 564 return 1; 565 } 566 *list = (*list)->next; 567 } 568 return 0; 569 } 570 571 /** iterator for DNSKEYs from keylist. return true if a next element exists */ 572 static int 573 assemble_iterate_dnskey(struct autr_ta** list, uint8_t** rr, size_t* rr_len, 574 size_t* dname_len) 575 { 576 while(*list) { 577 if(sldns_wirerr_get_type((*list)->rr, (*list)->rr_len, 578 (*list)->dname_len) != LDNS_RR_TYPE_DS && 579 ((*list)->s == AUTR_STATE_VALID || 580 (*list)->s == AUTR_STATE_MISSING)) { 581 *rr = (*list)->rr; 582 *rr_len = (*list)->rr_len; 583 *dname_len = (*list)->dname_len; 584 *list = (*list)->next; 585 return 1; 586 } 587 *list = (*list)->next; 588 } 589 return 0; 590 } 591 592 /** see if iterator-list has any elements in it, or it is empty */ 593 static int 594 assemble_iterate_hasfirst(int iter(struct autr_ta**, uint8_t**, size_t*, 595 size_t*), struct autr_ta* list) 596 { 597 uint8_t* rr = NULL; 598 size_t rr_len = 0, dname_len = 0; 599 return iter(&list, &rr, &rr_len, &dname_len); 600 } 601 602 /** number of elements in iterator list */ 603 static size_t 604 assemble_iterate_count(int iter(struct autr_ta**, uint8_t**, size_t*, 605 size_t*), struct autr_ta* list) 606 { 607 uint8_t* rr = NULL; 608 size_t i = 0, rr_len = 0, dname_len = 0; 609 while(iter(&list, &rr, &rr_len, &dname_len)) { 610 i++; 611 } 612 return i; 613 } 614 615 /** 616 * Create a ub_packed_rrset_key allocated on the heap. 617 * It therefore does not have the correct ID value, and cannot be used 618 * inside the cache. It can be used in storage outside of the cache. 619 * Keys for the cache have to be obtained from alloc.h . 620 * @param iter: iterator over the elements in the list. It filters elements. 621 * @param list: the list. 622 * @return key allocated or NULL on failure. 623 */ 624 static struct ub_packed_rrset_key* 625 ub_packed_rrset_heap_key(int iter(struct autr_ta**, uint8_t**, size_t*, 626 size_t*), struct autr_ta* list) 627 { 628 uint8_t* rr = NULL; 629 size_t rr_len = 0, dname_len = 0; 630 struct ub_packed_rrset_key* k; 631 if(!iter(&list, &rr, &rr_len, &dname_len)) 632 return NULL; 633 k = (struct ub_packed_rrset_key*)calloc(1, sizeof(*k)); 634 if(!k) 635 return NULL; 636 k->rk.type = htons(sldns_wirerr_get_type(rr, rr_len, dname_len)); 637 k->rk.rrset_class = htons(sldns_wirerr_get_class(rr, rr_len, dname_len)); 638 k->rk.dname_len = dname_len; 639 k->rk.dname = memdup(rr, dname_len); 640 if(!k->rk.dname) { 641 free(k); 642 return NULL; 643 } 644 return k; 645 } 646 647 /** 648 * Create packed_rrset data on the heap. 649 * @param iter: iterator over the elements in the list. It filters elements. 650 * @param list: the list. 651 * @return data allocated or NULL on failure. 652 */ 653 static struct packed_rrset_data* 654 packed_rrset_heap_data(int iter(struct autr_ta**, uint8_t**, size_t*, 655 size_t*), struct autr_ta* list) 656 { 657 uint8_t* rr = NULL; 658 size_t rr_len = 0, dname_len = 0; 659 struct packed_rrset_data* data; 660 size_t count=0, rrsig_count=0, len=0, i, total; 661 uint8_t* nextrdata; 662 struct autr_ta* list_i; 663 time_t ttl = 0; 664 665 list_i = list; 666 while(iter(&list_i, &rr, &rr_len, &dname_len)) { 667 if(sldns_wirerr_get_type(rr, rr_len, dname_len) == 668 LDNS_RR_TYPE_RRSIG) 669 rrsig_count++; 670 else count++; 671 /* sizeof the rdlength + rdatalen */ 672 len += 2 + sldns_wirerr_get_rdatalen(rr, rr_len, dname_len); 673 ttl = (time_t)sldns_wirerr_get_ttl(rr, rr_len, dname_len); 674 } 675 if(count == 0 && rrsig_count == 0) 676 return NULL; 677 678 /* allocate */ 679 total = count + rrsig_count; 680 len += sizeof(*data) + total*(sizeof(size_t) + sizeof(time_t) + 681 sizeof(uint8_t*)); 682 data = (struct packed_rrset_data*)calloc(1, len); 683 if(!data) 684 return NULL; 685 686 /* fill it */ 687 data->ttl = ttl; 688 data->count = count; 689 data->rrsig_count = rrsig_count; 690 data->rr_len = (size_t*)((uint8_t*)data + 691 sizeof(struct packed_rrset_data)); 692 data->rr_data = (uint8_t**)&(data->rr_len[total]); 693 data->rr_ttl = (time_t*)&(data->rr_data[total]); 694 nextrdata = (uint8_t*)&(data->rr_ttl[total]); 695 696 /* fill out len, ttl, fields */ 697 list_i = list; 698 i = 0; 699 while(iter(&list_i, &rr, &rr_len, &dname_len)) { 700 data->rr_ttl[i] = (time_t)sldns_wirerr_get_ttl(rr, rr_len, 701 dname_len); 702 if(data->rr_ttl[i] < data->ttl) 703 data->ttl = data->rr_ttl[i]; 704 data->rr_len[i] = 2 /* the rdlength */ + 705 sldns_wirerr_get_rdatalen(rr, rr_len, dname_len); 706 i++; 707 } 708 709 /* fixup rest of ptrs */ 710 for(i=0; i<total; i++) { 711 data->rr_data[i] = nextrdata; 712 nextrdata += data->rr_len[i]; 713 } 714 715 /* copy data in there */ 716 list_i = list; 717 i = 0; 718 while(iter(&list_i, &rr, &rr_len, &dname_len)) { 719 memmove(data->rr_data[i], 720 sldns_wirerr_get_rdatawl(rr, rr_len, dname_len), 721 data->rr_len[i]); 722 i++; 723 } 724 725 if(data->rrsig_count && data->count == 0) { 726 data->count = data->rrsig_count; /* rrset type is RRSIG */ 727 data->rrsig_count = 0; 728 } 729 return data; 730 } 731 732 /** 733 * Assemble the trust anchors into DS and DNSKEY packed rrsets. 734 * Uses only VALID and MISSING DNSKEYs. 735 * Read the sldns_rrs and builds packed rrsets 736 * @param tp: the trust point. Must be locked. 737 * @return false on malloc failure. 738 */ 739 static int 740 autr_assemble(struct trust_anchor* tp) 741 { 742 struct ub_packed_rrset_key* ubds=NULL, *ubdnskey=NULL; 743 744 /* make packed rrset keys - malloced with no ID number, they 745 * are not in the cache */ 746 /* make packed rrset data (if there is a key) */ 747 if(assemble_iterate_hasfirst(assemble_iterate_ds, tp->autr->keys)) { 748 ubds = ub_packed_rrset_heap_key( 749 assemble_iterate_ds, tp->autr->keys); 750 if(!ubds) 751 goto error_cleanup; 752 ubds->entry.data = packed_rrset_heap_data( 753 assemble_iterate_ds, tp->autr->keys); 754 if(!ubds->entry.data) 755 goto error_cleanup; 756 } 757 758 /* make packed DNSKEY data */ 759 if(assemble_iterate_hasfirst(assemble_iterate_dnskey, tp->autr->keys)) { 760 ubdnskey = ub_packed_rrset_heap_key( 761 assemble_iterate_dnskey, tp->autr->keys); 762 if(!ubdnskey) 763 goto error_cleanup; 764 ubdnskey->entry.data = packed_rrset_heap_data( 765 assemble_iterate_dnskey, tp->autr->keys); 766 if(!ubdnskey->entry.data) { 767 error_cleanup: 768 autr_rrset_delete(ubds); 769 autr_rrset_delete(ubdnskey); 770 return 0; 771 } 772 } 773 774 /* we have prepared the new keys so nothing can go wrong any more. 775 * And we are sure we cannot be left without trustanchor after 776 * any errors. Put in the new keys and remove old ones. */ 777 778 /* free the old data */ 779 autr_rrset_delete(tp->ds_rrset); 780 autr_rrset_delete(tp->dnskey_rrset); 781 782 /* assign the data to replace the old */ 783 tp->ds_rrset = ubds; 784 tp->dnskey_rrset = ubdnskey; 785 tp->numDS = assemble_iterate_count(assemble_iterate_ds, 786 tp->autr->keys); 787 tp->numDNSKEY = assemble_iterate_count(assemble_iterate_dnskey, 788 tp->autr->keys); 789 return 1; 790 } 791 792 /** parse integer */ 793 static unsigned int 794 parse_int(char* line, int* ret) 795 { 796 char *e; 797 unsigned int x = (unsigned int)strtol(line, &e, 10); 798 if(line == e) { 799 *ret = -1; /* parse error */ 800 return 0; 801 } 802 *ret = 1; /* matched */ 803 return x; 804 } 805 806 /** parse id sequence for anchor */ 807 static struct trust_anchor* 808 parse_id(struct val_anchors* anchors, char* line) 809 { 810 struct trust_anchor *tp; 811 int r; 812 uint16_t dclass; 813 uint8_t* dname; 814 size_t dname_len; 815 /* read the owner name */ 816 char* next = strchr(line, ' '); 817 if(!next) 818 return NULL; 819 next[0] = 0; 820 dname = sldns_str2wire_dname(line, &dname_len); 821 if(!dname) 822 return NULL; 823 824 /* read the class */ 825 dclass = parse_int(next+1, &r); 826 if(r == -1) { 827 free(dname); 828 return NULL; 829 } 830 831 /* find the trust point */ 832 tp = autr_tp_create(anchors, dname, dname_len, dclass); 833 free(dname); 834 return tp; 835 } 836 837 /** 838 * Parse variable from trustanchor header 839 * @param line: to parse 840 * @param anchors: the anchor is added to this, if "id:" is seen. 841 * @param anchor: the anchor as result value or previously returned anchor 842 * value to read the variable lines into. 843 * @return: 0 no match, -1 failed syntax error, +1 success line read. 844 * +2 revoked trust anchor file. 845 */ 846 static int 847 parse_var_line(char* line, struct val_anchors* anchors, 848 struct trust_anchor** anchor) 849 { 850 struct trust_anchor* tp = *anchor; 851 int r = 0; 852 if(strncmp(line, ";;id: ", 6) == 0) { 853 *anchor = parse_id(anchors, line+6); 854 if(!*anchor) return -1; 855 else return 1; 856 } else if(strncmp(line, ";;REVOKED", 9) == 0) { 857 if(tp) { 858 log_err("REVOKED statement must be at start of file"); 859 return -1; 860 } 861 return 2; 862 } else if(strncmp(line, ";;last_queried: ", 16) == 0) { 863 if(!tp) return -1; 864 lock_basic_lock(&tp->lock); 865 tp->autr->last_queried = (time_t)parse_int(line+16, &r); 866 lock_basic_unlock(&tp->lock); 867 } else if(strncmp(line, ";;last_success: ", 16) == 0) { 868 if(!tp) return -1; 869 lock_basic_lock(&tp->lock); 870 tp->autr->last_success = (time_t)parse_int(line+16, &r); 871 lock_basic_unlock(&tp->lock); 872 } else if(strncmp(line, ";;next_probe_time: ", 19) == 0) { 873 if(!tp) return -1; 874 lock_basic_lock(&anchors->lock); 875 lock_basic_lock(&tp->lock); 876 (void)rbtree_delete(&anchors->autr->probe, tp); 877 tp->autr->next_probe_time = (time_t)parse_int(line+19, &r); 878 (void)rbtree_insert(&anchors->autr->probe, &tp->autr->pnode); 879 lock_basic_unlock(&tp->lock); 880 lock_basic_unlock(&anchors->lock); 881 } else if(strncmp(line, ";;query_failed: ", 16) == 0) { 882 if(!tp) return -1; 883 lock_basic_lock(&tp->lock); 884 tp->autr->query_failed = (uint8_t)parse_int(line+16, &r); 885 lock_basic_unlock(&tp->lock); 886 } else if(strncmp(line, ";;query_interval: ", 18) == 0) { 887 if(!tp) return -1; 888 lock_basic_lock(&tp->lock); 889 tp->autr->query_interval = (time_t)parse_int(line+18, &r); 890 lock_basic_unlock(&tp->lock); 891 } else if(strncmp(line, ";;retry_time: ", 14) == 0) { 892 if(!tp) return -1; 893 lock_basic_lock(&tp->lock); 894 tp->autr->retry_time = (time_t)parse_int(line+14, &r); 895 lock_basic_unlock(&tp->lock); 896 } 897 return r; 898 } 899 900 /** handle origin lines */ 901 static int 902 handle_origin(char* line, uint8_t** origin, size_t* origin_len) 903 { 904 size_t len = 0; 905 while(isspace((int)*line)) 906 line++; 907 if(strncmp(line, "$ORIGIN", 7) != 0) 908 return 0; 909 free(*origin); 910 line += 7; 911 while(isspace((int)*line)) 912 line++; 913 *origin = sldns_str2wire_dname(line, &len); 914 *origin_len = len; 915 if(!*origin) 916 log_warn("malloc failure or parse error in $ORIGIN"); 917 return 1; 918 } 919 920 /** Read one line and put multiline RRs onto one line string */ 921 static int 922 read_multiline(char* buf, size_t len, FILE* in, int* linenr) 923 { 924 char* pos = buf; 925 size_t left = len; 926 int depth = 0; 927 buf[len-1] = 0; 928 while(left > 0 && fgets(pos, (int)left, in) != NULL) { 929 size_t i, poslen = strlen(pos); 930 (*linenr)++; 931 932 /* check what the new depth is after the line */ 933 /* this routine cannot handle braces inside quotes, 934 say for TXT records, but this routine only has to read keys */ 935 for(i=0; i<poslen; i++) { 936 if(pos[i] == '(') { 937 depth++; 938 } else if(pos[i] == ')') { 939 if(depth == 0) { 940 log_err("mismatch: too many ')'"); 941 return -1; 942 } 943 depth--; 944 } else if(pos[i] == ';') { 945 break; 946 } 947 } 948 949 /* normal oneline or last line: keeps newline and comments */ 950 if(depth == 0) { 951 return 1; 952 } 953 954 /* more lines expected, snip off comments and newline */ 955 if(poslen>0) 956 pos[poslen-1] = 0; /* strip newline */ 957 if(strchr(pos, ';')) 958 strchr(pos, ';')[0] = 0; /* strip comments */ 959 960 /* move to paste other lines behind this one */ 961 poslen = strlen(pos); 962 pos += poslen; 963 left -= poslen; 964 /* the newline is changed into a space */ 965 if(left <= 2 /* space and eos */) { 966 log_err("line too long"); 967 return -1; 968 } 969 pos[0] = ' '; 970 pos[1] = 0; 971 pos += 1; 972 left -= 1; 973 } 974 if(depth != 0) { 975 log_err("mismatch: too many '('"); 976 return -1; 977 } 978 if(pos != buf) 979 return 1; 980 return 0; 981 } 982 983 int autr_read_file(struct val_anchors* anchors, const char* nm) 984 { 985 /* the file descriptor */ 986 FILE* fd; 987 /* keep track of line numbers */ 988 int line_nr = 0; 989 /* single line */ 990 char line[10240]; 991 /* trust point being read */ 992 struct trust_anchor *tp = NULL, *tp2; 993 int r; 994 /* for $ORIGIN parsing */ 995 uint8_t *origin=NULL, *prev=NULL; 996 size_t origin_len=0, prev_len=0; 997 998 if (!(fd = fopen(nm, "r"))) { 999 log_err("unable to open %s for reading: %s", 1000 nm, strerror(errno)); 1001 return 0; 1002 } 1003 verbose(VERB_ALGO, "reading autotrust anchor file %s", nm); 1004 while ( (r=read_multiline(line, sizeof(line), fd, &line_nr)) != 0) { 1005 if(r == -1 || (r = parse_var_line(line, anchors, &tp)) == -1) { 1006 log_err("could not parse auto-trust-anchor-file " 1007 "%s line %d", nm, line_nr); 1008 fclose(fd); 1009 free(origin); 1010 free(prev); 1011 return 0; 1012 } else if(r == 1) { 1013 continue; 1014 } else if(r == 2) { 1015 log_warn("trust anchor %s has been revoked", nm); 1016 fclose(fd); 1017 free(origin); 1018 free(prev); 1019 return 1; 1020 } 1021 if (!str_contains_data(line, ';')) 1022 continue; /* empty lines allowed */ 1023 if(handle_origin(line, &origin, &origin_len)) 1024 continue; 1025 r = 0; 1026 if(!(tp2=load_trustanchor(anchors, line, nm, origin, 1027 origin_len, &prev, &prev_len, &r))) { 1028 if(!r) log_err("failed to load trust anchor from %s " 1029 "at line %i, skipping", nm, line_nr); 1030 /* try to do the rest */ 1031 continue; 1032 } 1033 if(tp && tp != tp2) { 1034 log_err("file %s has mismatching data inside: " 1035 "the file may only contain keys for one name, " 1036 "remove keys for other domain names", nm); 1037 fclose(fd); 1038 free(origin); 1039 free(prev); 1040 return 0; 1041 } 1042 tp = tp2; 1043 } 1044 fclose(fd); 1045 free(origin); 1046 free(prev); 1047 if(!tp) { 1048 log_err("failed to read %s", nm); 1049 return 0; 1050 } 1051 1052 /* now assemble the data into DNSKEY and DS packed rrsets */ 1053 lock_basic_lock(&tp->lock); 1054 if(!autr_assemble(tp)) { 1055 lock_basic_unlock(&tp->lock); 1056 log_err("malloc failure assembling %s", nm); 1057 return 0; 1058 } 1059 lock_basic_unlock(&tp->lock); 1060 return 1; 1061 } 1062 1063 /** string for a trustanchor state */ 1064 static const char* 1065 trustanchor_state2str(autr_state_t s) 1066 { 1067 switch (s) { 1068 case AUTR_STATE_START: return " START "; 1069 case AUTR_STATE_ADDPEND: return " ADDPEND "; 1070 case AUTR_STATE_VALID: return " VALID "; 1071 case AUTR_STATE_MISSING: return " MISSING "; 1072 case AUTR_STATE_REVOKED: return " REVOKED "; 1073 case AUTR_STATE_REMOVED: return " REMOVED "; 1074 } 1075 return " UNKNOWN "; 1076 } 1077 1078 /** print ID to file */ 1079 static int 1080 print_id(FILE* out, char* fname, uint8_t* nm, size_t nmlen, uint16_t dclass) 1081 { 1082 char* s = sldns_wire2str_dname(nm, nmlen); 1083 if(!s) { 1084 log_err("malloc failure in write to %s", fname); 1085 return 0; 1086 } 1087 if(fprintf(out, ";;id: %s %d\n", s, (int)dclass) < 0) { 1088 log_err("could not write to %s: %s", fname, strerror(errno)); 1089 free(s); 1090 return 0; 1091 } 1092 free(s); 1093 return 1; 1094 } 1095 1096 static int 1097 autr_write_contents(FILE* out, char* fn, struct trust_anchor* tp) 1098 { 1099 char tmi[32]; 1100 struct autr_ta* ta; 1101 char* str; 1102 1103 /* write pretty header */ 1104 if(fprintf(out, "; autotrust trust anchor file\n") < 0) { 1105 log_err("could not write to %s: %s", fn, strerror(errno)); 1106 return 0; 1107 } 1108 if(tp->autr->revoked) { 1109 if(fprintf(out, ";;REVOKED\n") < 0 || 1110 fprintf(out, "; The zone has all keys revoked, and is\n" 1111 "; considered as if it has no trust anchors.\n" 1112 "; the remainder of the file is the last probe.\n" 1113 "; to restart the trust anchor, overwrite this file.\n" 1114 "; with one containing valid DNSKEYs or DSes.\n") < 0) { 1115 log_err("could not write to %s: %s", fn, strerror(errno)); 1116 return 0; 1117 } 1118 } 1119 if(!print_id(out, fn, tp->name, tp->namelen, tp->dclass)) { 1120 return 0; 1121 } 1122 if(fprintf(out, ";;last_queried: %u ;;%s", 1123 (unsigned int)tp->autr->last_queried, 1124 ctime_r(&(tp->autr->last_queried), tmi)) < 0 || 1125 fprintf(out, ";;last_success: %u ;;%s", 1126 (unsigned int)tp->autr->last_success, 1127 ctime_r(&(tp->autr->last_success), tmi)) < 0 || 1128 fprintf(out, ";;next_probe_time: %u ;;%s", 1129 (unsigned int)tp->autr->next_probe_time, 1130 ctime_r(&(tp->autr->next_probe_time), tmi)) < 0 || 1131 fprintf(out, ";;query_failed: %d\n", (int)tp->autr->query_failed)<0 1132 || fprintf(out, ";;query_interval: %d\n", 1133 (int)tp->autr->query_interval) < 0 || 1134 fprintf(out, ";;retry_time: %d\n", (int)tp->autr->retry_time) < 0) { 1135 log_err("could not write to %s: %s", fn, strerror(errno)); 1136 return 0; 1137 } 1138 1139 /* write anchors */ 1140 for(ta=tp->autr->keys; ta; ta=ta->next) { 1141 /* by default do not store START and REMOVED keys */ 1142 if(ta->s == AUTR_STATE_START) 1143 continue; 1144 if(ta->s == AUTR_STATE_REMOVED) 1145 continue; 1146 /* only store keys */ 1147 if(sldns_wirerr_get_type(ta->rr, ta->rr_len, ta->dname_len) 1148 != LDNS_RR_TYPE_DNSKEY) 1149 continue; 1150 str = sldns_wire2str_rr(ta->rr, ta->rr_len); 1151 if(!str || !str[0]) { 1152 free(str); 1153 log_err("malloc failure writing %s", fn); 1154 return 0; 1155 } 1156 str[strlen(str)-1] = 0; /* remove newline */ 1157 if(fprintf(out, "%s ;;state=%d [%s] ;;count=%d " 1158 ";;lastchange=%u ;;%s", str, (int)ta->s, 1159 trustanchor_state2str(ta->s), (int)ta->pending_count, 1160 (unsigned int)ta->last_change, 1161 ctime_r(&(ta->last_change), tmi)) < 0) { 1162 log_err("could not write to %s: %s", fn, strerror(errno)); 1163 free(str); 1164 return 0; 1165 } 1166 free(str); 1167 } 1168 return 1; 1169 } 1170 1171 void autr_write_file(struct module_env* env, struct trust_anchor* tp) 1172 { 1173 FILE* out; 1174 char* fname = tp->autr->file; 1175 char tempf[2048]; 1176 log_assert(tp->autr); 1177 if(!env) { 1178 log_err("autr_write_file: Module environment is NULL."); 1179 return; 1180 } 1181 /* unique name with pid number and thread number */ 1182 snprintf(tempf, sizeof(tempf), "%s.%d-%d", fname, (int)getpid(), 1183 env->worker?*(int*)env->worker:0); 1184 verbose(VERB_ALGO, "autotrust: write to disk: %s", tempf); 1185 out = fopen(tempf, "w"); 1186 if(!out) { 1187 log_err("could not open autotrust file for writing, %s: %s", 1188 tempf, strerror(errno)); 1189 return; 1190 } 1191 if(!autr_write_contents(out, tempf, tp)) { 1192 /* failed to write contents (completely) */ 1193 fclose(out); 1194 unlink(tempf); 1195 log_err("could not completely write: %s", fname); 1196 return; 1197 } 1198 if(fclose(out) != 0) { 1199 log_err("could not complete write: %s: %s", 1200 fname, strerror(errno)); 1201 unlink(tempf); 1202 return; 1203 } 1204 /* success; overwrite actual file */ 1205 verbose(VERB_ALGO, "autotrust: replaced %s", fname); 1206 #ifdef UB_ON_WINDOWS 1207 (void)unlink(fname); /* windows does not replace file with rename() */ 1208 #endif 1209 if(rename(tempf, fname) < 0) { 1210 log_err("rename(%s to %s): %s", tempf, fname, strerror(errno)); 1211 } 1212 } 1213 1214 /** 1215 * Verify if dnskey works for trust point 1216 * @param env: environment (with time) for verification 1217 * @param ve: validator environment (with options) for verification. 1218 * @param tp: trust point to verify with 1219 * @param rrset: DNSKEY rrset to verify. 1220 * @return false on failure, true if verification successful. 1221 */ 1222 static int 1223 verify_dnskey(struct module_env* env, struct val_env* ve, 1224 struct trust_anchor* tp, struct ub_packed_rrset_key* rrset) 1225 { 1226 char* reason = NULL; 1227 uint8_t sigalg[ALGO_NEEDS_MAX+1]; 1228 int downprot = 1; 1229 enum sec_status sec = val_verify_DNSKEY_with_TA(env, ve, rrset, 1230 tp->ds_rrset, tp->dnskey_rrset, downprot?sigalg:NULL, &reason); 1231 /* sigalg is ignored, it returns algorithms signalled to exist, but 1232 * in 5011 there are no other rrsets to check. if downprot is 1233 * enabled, then it checks that the DNSKEY is signed with all 1234 * algorithms available in the trust store. */ 1235 verbose(VERB_ALGO, "autotrust: validate DNSKEY with anchor: %s", 1236 sec_status_to_string(sec)); 1237 return sec == sec_status_secure; 1238 } 1239 1240 static int32_t 1241 rrsig_get_expiry(uint8_t* d, size_t len) 1242 { 1243 /* rrsig: 2(rdlen), 2(type) 1(alg) 1(v) 4(origttl), then 4(expi), (4)incep) */ 1244 if(len < 2+8+4) 1245 return 0; 1246 return sldns_read_uint32(d+2+8); 1247 } 1248 1249 /** Find minimum expiration interval from signatures */ 1250 static time_t 1251 min_expiry(struct module_env* env, struct packed_rrset_data* dd) 1252 { 1253 size_t i; 1254 int32_t t, r = 15 * 24 * 3600; /* 15 days max */ 1255 for(i=dd->count; i<dd->count+dd->rrsig_count; i++) { 1256 t = rrsig_get_expiry(dd->rr_data[i], dd->rr_len[i]); 1257 if((int32_t)t - (int32_t)*env->now > 0) { 1258 t -= (int32_t)*env->now; 1259 if(t < r) 1260 r = t; 1261 } 1262 } 1263 return (time_t)r; 1264 } 1265 1266 /** Is rr self-signed revoked key */ 1267 static int 1268 rr_is_selfsigned_revoked(struct module_env* env, struct val_env* ve, 1269 struct ub_packed_rrset_key* dnskey_rrset, size_t i) 1270 { 1271 enum sec_status sec; 1272 char* reason = NULL; 1273 verbose(VERB_ALGO, "seen REVOKE flag, check self-signed, rr %d", 1274 (int)i); 1275 /* no algorithm downgrade protection necessary, if it is selfsigned 1276 * revoked it can be removed. */ 1277 sec = dnskey_verify_rrset(env, ve, dnskey_rrset, dnskey_rrset, i, 1278 &reason); 1279 return (sec == sec_status_secure); 1280 } 1281 1282 /** Set fetched value */ 1283 static void 1284 seen_trustanchor(struct autr_ta* ta, uint8_t seen) 1285 { 1286 ta->fetched = seen; 1287 if(ta->pending_count < 250) /* no numerical overflow, please */ 1288 ta->pending_count++; 1289 } 1290 1291 /** set revoked value */ 1292 static void 1293 seen_revoked_trustanchor(struct autr_ta* ta, uint8_t revoked) 1294 { 1295 ta->revoked = revoked; 1296 } 1297 1298 /** revoke a trust anchor */ 1299 static void 1300 revoke_dnskey(struct autr_ta* ta, int off) 1301 { 1302 uint16_t flags; 1303 uint8_t* data; 1304 if(sldns_wirerr_get_type(ta->rr, ta->rr_len, ta->dname_len) != 1305 LDNS_RR_TYPE_DNSKEY) 1306 return; 1307 if(sldns_wirerr_get_rdatalen(ta->rr, ta->rr_len, ta->dname_len) < 2) 1308 return; 1309 data = sldns_wirerr_get_rdata(ta->rr, ta->rr_len, ta->dname_len); 1310 flags = sldns_read_uint16(data); 1311 if (off && (flags&LDNS_KEY_REVOKE_KEY)) 1312 flags ^= LDNS_KEY_REVOKE_KEY; /* flip */ 1313 else 1314 flags |= LDNS_KEY_REVOKE_KEY; 1315 sldns_write_uint16(data, flags); 1316 } 1317 1318 /** Compare two RRs skipping the REVOKED bit. Pass rdata(no len) */ 1319 static int 1320 dnskey_compare_skip_revbit(uint8_t* a, size_t a_len, uint8_t* b, size_t b_len) 1321 { 1322 size_t i; 1323 if(a_len != b_len) 1324 return -1; 1325 /* compare RRs RDATA byte for byte. */ 1326 for(i = 0; i < a_len; i++) 1327 { 1328 uint8_t rdf1, rdf2; 1329 rdf1 = a[i]; 1330 rdf2 = b[i]; 1331 if(i==1) { 1332 /* this is the second part of the flags field */ 1333 rdf1 |= LDNS_KEY_REVOKE_KEY; 1334 rdf2 |= LDNS_KEY_REVOKE_KEY; 1335 } 1336 if (rdf1 < rdf2) return -1; 1337 else if (rdf1 > rdf2) return 1; 1338 } 1339 return 0; 1340 } 1341 1342 1343 /** compare trust anchor with rdata, 0 if equal. Pass rdata(no len) */ 1344 static int 1345 ta_compare(struct autr_ta* a, uint16_t t, uint8_t* b, size_t b_len) 1346 { 1347 if(!a) return -1; 1348 else if(!b) return -1; 1349 else if(sldns_wirerr_get_type(a->rr, a->rr_len, a->dname_len) != t) 1350 return (int)sldns_wirerr_get_type(a->rr, a->rr_len, 1351 a->dname_len) - (int)t; 1352 else if(t == LDNS_RR_TYPE_DNSKEY) { 1353 return dnskey_compare_skip_revbit( 1354 sldns_wirerr_get_rdata(a->rr, a->rr_len, a->dname_len), 1355 sldns_wirerr_get_rdatalen(a->rr, a->rr_len, 1356 a->dname_len), b, b_len); 1357 } 1358 else if(t == LDNS_RR_TYPE_DS) { 1359 if(sldns_wirerr_get_rdatalen(a->rr, a->rr_len, a->dname_len) != 1360 b_len) 1361 return -1; 1362 return memcmp(sldns_wirerr_get_rdata(a->rr, 1363 a->rr_len, a->dname_len), b, b_len); 1364 } 1365 return -1; 1366 } 1367 1368 /** 1369 * Find key 1370 * @param tp: to search in 1371 * @param t: rr type of the rdata. 1372 * @param rdata: to look for (no rdatalen in it) 1373 * @param rdata_len: length of rdata 1374 * @param result: returns NULL or the ta key looked for. 1375 * @return false on malloc failure during search. if true examine result. 1376 */ 1377 static int 1378 find_key(struct trust_anchor* tp, uint16_t t, uint8_t* rdata, size_t rdata_len, 1379 struct autr_ta** result) 1380 { 1381 struct autr_ta* ta; 1382 if(!tp || !rdata) { 1383 *result = NULL; 1384 return 0; 1385 } 1386 for(ta=tp->autr->keys; ta; ta=ta->next) { 1387 if(ta_compare(ta, t, rdata, rdata_len) == 0) { 1388 *result = ta; 1389 return 1; 1390 } 1391 } 1392 *result = NULL; 1393 return 1; 1394 } 1395 1396 /** add key and clone RR and tp already locked. rdata without rdlen. */ 1397 static struct autr_ta* 1398 add_key(struct trust_anchor* tp, uint32_t ttl, uint8_t* rdata, size_t rdata_len) 1399 { 1400 struct autr_ta* ta; 1401 uint8_t* rr; 1402 size_t rr_len, dname_len; 1403 uint16_t rrtype = htons(LDNS_RR_TYPE_DNSKEY); 1404 uint16_t rrclass = htons(LDNS_RR_CLASS_IN); 1405 uint16_t rdlen = htons(rdata_len); 1406 dname_len = tp->namelen; 1407 ttl = htonl(ttl); 1408 rr_len = dname_len + 10 /* type,class,ttl,rdatalen */ + rdata_len; 1409 rr = (uint8_t*)malloc(rr_len); 1410 if(!rr) return NULL; 1411 memmove(rr, tp->name, tp->namelen); 1412 memmove(rr+dname_len, &rrtype, 2); 1413 memmove(rr+dname_len+2, &rrclass, 2); 1414 memmove(rr+dname_len+4, &ttl, 4); 1415 memmove(rr+dname_len+8, &rdlen, 2); 1416 memmove(rr+dname_len+10, rdata, rdata_len); 1417 ta = autr_ta_create(rr, rr_len, dname_len); 1418 if(!ta) { 1419 /* rr freed in autr_ta_create */ 1420 return NULL; 1421 } 1422 /* link in, tp already locked */ 1423 ta->next = tp->autr->keys; 1424 tp->autr->keys = ta; 1425 return ta; 1426 } 1427 1428 /** get TTL from DNSKEY rrset */ 1429 static time_t 1430 key_ttl(struct ub_packed_rrset_key* k) 1431 { 1432 struct packed_rrset_data* d = (struct packed_rrset_data*)k->entry.data; 1433 return d->ttl; 1434 } 1435 1436 /** update the time values for the trustpoint */ 1437 static void 1438 set_tp_times(struct trust_anchor* tp, time_t rrsig_exp_interval, 1439 time_t origttl, int* changed) 1440 { 1441 time_t x, qi = tp->autr->query_interval, rt = tp->autr->retry_time; 1442 1443 /* x = MIN(15days, ttl/2, expire/2) */ 1444 x = 15 * 24 * 3600; 1445 if(origttl/2 < x) 1446 x = origttl/2; 1447 if(rrsig_exp_interval/2 < x) 1448 x = rrsig_exp_interval/2; 1449 /* MAX(1hr, x) */ 1450 if(x < 3600) 1451 tp->autr->query_interval = 3600; 1452 else tp->autr->query_interval = x; 1453 1454 /* x= MIN(1day, ttl/10, expire/10) */ 1455 x = 24 * 3600; 1456 if(origttl/10 < x) 1457 x = origttl/10; 1458 if(rrsig_exp_interval/10 < x) 1459 x = rrsig_exp_interval/10; 1460 /* MAX(1hr, x) */ 1461 if(x < 3600) 1462 tp->autr->retry_time = 3600; 1463 else tp->autr->retry_time = x; 1464 1465 if(qi != tp->autr->query_interval || rt != tp->autr->retry_time) { 1466 *changed = 1; 1467 verbose(VERB_ALGO, "orig_ttl is %d", (int)origttl); 1468 verbose(VERB_ALGO, "rrsig_exp_interval is %d", 1469 (int)rrsig_exp_interval); 1470 verbose(VERB_ALGO, "query_interval: %d, retry_time: %d", 1471 (int)tp->autr->query_interval, 1472 (int)tp->autr->retry_time); 1473 } 1474 } 1475 1476 /** init events to zero */ 1477 static void 1478 init_events(struct trust_anchor* tp) 1479 { 1480 struct autr_ta* ta; 1481 for(ta=tp->autr->keys; ta; ta=ta->next) { 1482 ta->fetched = 0; 1483 } 1484 } 1485 1486 /** check for revoked keys without trusting any other information */ 1487 static void 1488 check_contains_revoked(struct module_env* env, struct val_env* ve, 1489 struct trust_anchor* tp, struct ub_packed_rrset_key* dnskey_rrset, 1490 int* changed) 1491 { 1492 struct packed_rrset_data* dd = (struct packed_rrset_data*) 1493 dnskey_rrset->entry.data; 1494 size_t i; 1495 log_assert(ntohs(dnskey_rrset->rk.type) == LDNS_RR_TYPE_DNSKEY); 1496 for(i=0; i<dd->count; i++) { 1497 struct autr_ta* ta = NULL; 1498 if(!rr_is_dnskey_sep(ntohs(dnskey_rrset->rk.type), 1499 dd->rr_data[i]+2, dd->rr_len[i]-2) || 1500 !rr_is_dnskey_revoked(ntohs(dnskey_rrset->rk.type), 1501 dd->rr_data[i]+2, dd->rr_len[i]-2)) 1502 continue; /* not a revoked KSK */ 1503 if(!find_key(tp, ntohs(dnskey_rrset->rk.type), 1504 dd->rr_data[i]+2, dd->rr_len[i]-2, &ta)) { 1505 log_err("malloc failure"); 1506 continue; /* malloc fail in compare*/ 1507 } 1508 if(!ta) 1509 continue; /* key not found */ 1510 if(rr_is_selfsigned_revoked(env, ve, dnskey_rrset, i)) { 1511 /* checked if there is an rrsig signed by this key. */ 1512 /* same keytag, but stored can be revoked already, so 1513 * compare keytags, with +0 or +128(REVOKE flag) */ 1514 log_assert(dnskey_calc_keytag(dnskey_rrset, i)-128 == 1515 sldns_calc_keytag_raw(sldns_wirerr_get_rdata( 1516 ta->rr, ta->rr_len, ta->dname_len), 1517 sldns_wirerr_get_rdatalen(ta->rr, ta->rr_len, 1518 ta->dname_len)) || 1519 dnskey_calc_keytag(dnskey_rrset, i) == 1520 sldns_calc_keytag_raw(sldns_wirerr_get_rdata( 1521 ta->rr, ta->rr_len, ta->dname_len), 1522 sldns_wirerr_get_rdatalen(ta->rr, ta->rr_len, 1523 ta->dname_len))); /* checks conversion*/ 1524 verbose_key(ta, VERB_ALGO, "is self-signed revoked"); 1525 if(!ta->revoked) 1526 *changed = 1; 1527 seen_revoked_trustanchor(ta, 1); 1528 do_revoked(env, ta, changed); 1529 } 1530 } 1531 } 1532 1533 /** See if a DNSKEY is verified by one of the DSes */ 1534 static int 1535 key_matches_a_ds(struct module_env* env, struct val_env* ve, 1536 struct ub_packed_rrset_key* dnskey_rrset, size_t key_idx, 1537 struct ub_packed_rrset_key* ds_rrset) 1538 { 1539 struct packed_rrset_data* dd = (struct packed_rrset_data*) 1540 ds_rrset->entry.data; 1541 size_t ds_idx, num = dd->count; 1542 int d = val_favorite_ds_algo(ds_rrset); 1543 char* reason = ""; 1544 for(ds_idx=0; ds_idx<num; ds_idx++) { 1545 if(!ds_digest_algo_is_supported(ds_rrset, ds_idx) || 1546 !ds_key_algo_is_supported(ds_rrset, ds_idx) || 1547 ds_get_digest_algo(ds_rrset, ds_idx) != d) 1548 continue; 1549 if(ds_get_key_algo(ds_rrset, ds_idx) 1550 != dnskey_get_algo(dnskey_rrset, key_idx) 1551 || dnskey_calc_keytag(dnskey_rrset, key_idx) 1552 != ds_get_keytag(ds_rrset, ds_idx)) { 1553 continue; 1554 } 1555 if(!ds_digest_match_dnskey(env, dnskey_rrset, key_idx, 1556 ds_rrset, ds_idx)) { 1557 verbose(VERB_ALGO, "DS match attempt failed"); 1558 continue; 1559 } 1560 if(dnskey_verify_rrset(env, ve, dnskey_rrset, 1561 dnskey_rrset, key_idx, &reason) == sec_status_secure) { 1562 return 1; 1563 } else { 1564 verbose(VERB_ALGO, "DS match failed because the key " 1565 "does not verify the keyset: %s", reason); 1566 } 1567 } 1568 return 0; 1569 } 1570 1571 /** Set update events */ 1572 static int 1573 update_events(struct module_env* env, struct val_env* ve, 1574 struct trust_anchor* tp, struct ub_packed_rrset_key* dnskey_rrset, 1575 int* changed) 1576 { 1577 struct packed_rrset_data* dd = (struct packed_rrset_data*) 1578 dnskey_rrset->entry.data; 1579 size_t i; 1580 log_assert(ntohs(dnskey_rrset->rk.type) == LDNS_RR_TYPE_DNSKEY); 1581 init_events(tp); 1582 for(i=0; i<dd->count; i++) { 1583 struct autr_ta* ta = NULL; 1584 if(!rr_is_dnskey_sep(ntohs(dnskey_rrset->rk.type), 1585 dd->rr_data[i]+2, dd->rr_len[i]-2)) 1586 continue; 1587 if(rr_is_dnskey_revoked(ntohs(dnskey_rrset->rk.type), 1588 dd->rr_data[i]+2, dd->rr_len[i]-2)) { 1589 /* self-signed revoked keys already detected before, 1590 * other revoked keys are not 'added' again */ 1591 continue; 1592 } 1593 /* is a key of this type supported?. Note rr_list and 1594 * packed_rrset are in the same order. */ 1595 if(!dnskey_algo_is_supported(dnskey_rrset, i)) { 1596 /* skip unknown algorithm key, it is useless to us */ 1597 log_nametypeclass(VERB_DETAIL, "trust point has " 1598 "unsupported algorithm at", 1599 tp->name, LDNS_RR_TYPE_DNSKEY, tp->dclass); 1600 continue; 1601 } 1602 1603 /* is it new? if revocation bit set, find the unrevoked key */ 1604 if(!find_key(tp, ntohs(dnskey_rrset->rk.type), 1605 dd->rr_data[i]+2, dd->rr_len[i]-2, &ta)) { 1606 return 0; 1607 } 1608 if(!ta) { 1609 ta = add_key(tp, (uint32_t)dd->rr_ttl[i], 1610 dd->rr_data[i]+2, dd->rr_len[i]-2); 1611 *changed = 1; 1612 /* first time seen, do we have DSes? if match: VALID */ 1613 if(ta && tp->ds_rrset && key_matches_a_ds(env, ve, 1614 dnskey_rrset, i, tp->ds_rrset)) { 1615 verbose_key(ta, VERB_ALGO, "verified by DS"); 1616 ta->s = AUTR_STATE_VALID; 1617 } 1618 } 1619 if(!ta) { 1620 return 0; 1621 } 1622 seen_trustanchor(ta, 1); 1623 verbose_key(ta, VERB_ALGO, "in DNS response"); 1624 } 1625 set_tp_times(tp, min_expiry(env, dd), key_ttl(dnskey_rrset), changed); 1626 return 1; 1627 } 1628 1629 /** 1630 * Check if the holddown time has already exceeded 1631 * setting: add-holddown: add holddown timer 1632 * setting: del-holddown: del holddown timer 1633 * @param env: environment with current time 1634 * @param ta: trust anchor to check for. 1635 * @param holddown: the timer value 1636 * @return number of seconds the holddown has passed. 1637 */ 1638 static time_t 1639 check_holddown(struct module_env* env, struct autr_ta* ta, 1640 unsigned int holddown) 1641 { 1642 time_t elapsed; 1643 if(*env->now < ta->last_change) { 1644 log_warn("time goes backwards. delaying key holddown"); 1645 return 0; 1646 } 1647 elapsed = *env->now - ta->last_change; 1648 if (elapsed > (time_t)holddown) { 1649 return elapsed-(time_t)holddown; 1650 } 1651 verbose_key(ta, VERB_ALGO, "holddown time " ARG_LL "d seconds to go", 1652 (long long) ((time_t)holddown-elapsed)); 1653 return 0; 1654 } 1655 1656 1657 /** Set last_change to now */ 1658 static void 1659 reset_holddown(struct module_env* env, struct autr_ta* ta, int* changed) 1660 { 1661 ta->last_change = *env->now; 1662 *changed = 1; 1663 } 1664 1665 /** Set the state for this trust anchor */ 1666 static void 1667 set_trustanchor_state(struct module_env* env, struct autr_ta* ta, int* changed, 1668 autr_state_t s) 1669 { 1670 verbose_key(ta, VERB_ALGO, "update: %s to %s", 1671 trustanchor_state2str(ta->s), trustanchor_state2str(s)); 1672 ta->s = s; 1673 reset_holddown(env, ta, changed); 1674 } 1675 1676 1677 /** Event: NewKey */ 1678 static void 1679 do_newkey(struct module_env* env, struct autr_ta* anchor, int* c) 1680 { 1681 if (anchor->s == AUTR_STATE_START) 1682 set_trustanchor_state(env, anchor, c, AUTR_STATE_ADDPEND); 1683 } 1684 1685 /** Event: AddTime */ 1686 static void 1687 do_addtime(struct module_env* env, struct autr_ta* anchor, int* c) 1688 { 1689 /* This not according to RFC, this is 30 days, but the RFC demands 1690 * MAX(30days, TTL expire time of first DNSKEY set with this key), 1691 * The value may be too small if a very large TTL was used. */ 1692 time_t exceeded = check_holddown(env, anchor, env->cfg->add_holddown); 1693 if (exceeded && anchor->s == AUTR_STATE_ADDPEND) { 1694 verbose_key(anchor, VERB_ALGO, "add-holddown time exceeded " 1695 ARG_LL "d seconds ago, and pending-count %d", 1696 (long long)exceeded, anchor->pending_count); 1697 if(anchor->pending_count >= MIN_PENDINGCOUNT) { 1698 set_trustanchor_state(env, anchor, c, AUTR_STATE_VALID); 1699 anchor->pending_count = 0; 1700 return; 1701 } 1702 verbose_key(anchor, VERB_ALGO, "add-holddown time sanity check " 1703 "failed (pending count: %d)", anchor->pending_count); 1704 } 1705 } 1706 1707 /** Event: RemTime */ 1708 static void 1709 do_remtime(struct module_env* env, struct autr_ta* anchor, int* c) 1710 { 1711 time_t exceeded = check_holddown(env, anchor, env->cfg->del_holddown); 1712 if(exceeded && anchor->s == AUTR_STATE_REVOKED) { 1713 verbose_key(anchor, VERB_ALGO, "del-holddown time exceeded " 1714 ARG_LL "d seconds ago", (long long)exceeded); 1715 set_trustanchor_state(env, anchor, c, AUTR_STATE_REMOVED); 1716 } 1717 } 1718 1719 /** Event: KeyRem */ 1720 static void 1721 do_keyrem(struct module_env* env, struct autr_ta* anchor, int* c) 1722 { 1723 if(anchor->s == AUTR_STATE_ADDPEND) { 1724 set_trustanchor_state(env, anchor, c, AUTR_STATE_START); 1725 anchor->pending_count = 0; 1726 } else if(anchor->s == AUTR_STATE_VALID) 1727 set_trustanchor_state(env, anchor, c, AUTR_STATE_MISSING); 1728 } 1729 1730 /** Event: KeyPres */ 1731 static void 1732 do_keypres(struct module_env* env, struct autr_ta* anchor, int* c) 1733 { 1734 if(anchor->s == AUTR_STATE_MISSING) 1735 set_trustanchor_state(env, anchor, c, AUTR_STATE_VALID); 1736 } 1737 1738 /* Event: Revoked */ 1739 static void 1740 do_revoked(struct module_env* env, struct autr_ta* anchor, int* c) 1741 { 1742 if(anchor->s == AUTR_STATE_VALID || anchor->s == AUTR_STATE_MISSING) { 1743 set_trustanchor_state(env, anchor, c, AUTR_STATE_REVOKED); 1744 verbose_key(anchor, VERB_ALGO, "old id, prior to revocation"); 1745 revoke_dnskey(anchor, 0); 1746 verbose_key(anchor, VERB_ALGO, "new id, after revocation"); 1747 } 1748 } 1749 1750 /** Do statestable transition matrix for anchor */ 1751 static void 1752 anchor_state_update(struct module_env* env, struct autr_ta* anchor, int* c) 1753 { 1754 log_assert(anchor); 1755 switch(anchor->s) { 1756 /* START */ 1757 case AUTR_STATE_START: 1758 /* NewKey: ADDPEND */ 1759 if (anchor->fetched) 1760 do_newkey(env, anchor, c); 1761 break; 1762 /* ADDPEND */ 1763 case AUTR_STATE_ADDPEND: 1764 /* KeyRem: START */ 1765 if (!anchor->fetched) 1766 do_keyrem(env, anchor, c); 1767 /* AddTime: VALID */ 1768 else do_addtime(env, anchor, c); 1769 break; 1770 /* VALID */ 1771 case AUTR_STATE_VALID: 1772 /* RevBit: REVOKED */ 1773 if (anchor->revoked) 1774 do_revoked(env, anchor, c); 1775 /* KeyRem: MISSING */ 1776 else if (!anchor->fetched) 1777 do_keyrem(env, anchor, c); 1778 else if(!anchor->last_change) { 1779 verbose_key(anchor, VERB_ALGO, "first seen"); 1780 reset_holddown(env, anchor, c); 1781 } 1782 break; 1783 /* MISSING */ 1784 case AUTR_STATE_MISSING: 1785 /* RevBit: REVOKED */ 1786 if (anchor->revoked) 1787 do_revoked(env, anchor, c); 1788 /* KeyPres */ 1789 else if (anchor->fetched) 1790 do_keypres(env, anchor, c); 1791 break; 1792 /* REVOKED */ 1793 case AUTR_STATE_REVOKED: 1794 if (anchor->fetched) 1795 reset_holddown(env, anchor, c); 1796 /* RemTime: REMOVED */ 1797 else do_remtime(env, anchor, c); 1798 break; 1799 /* REMOVED */ 1800 case AUTR_STATE_REMOVED: 1801 default: 1802 break; 1803 } 1804 } 1805 1806 /** if ZSK init then trust KSKs */ 1807 static int 1808 init_zsk_to_ksk(struct module_env* env, struct trust_anchor* tp, int* changed) 1809 { 1810 /* search for VALID ZSKs */ 1811 struct autr_ta* anchor; 1812 int validzsk = 0; 1813 int validksk = 0; 1814 for(anchor = tp->autr->keys; anchor; anchor = anchor->next) { 1815 /* last_change test makes sure it was manually configured */ 1816 if(sldns_wirerr_get_type(anchor->rr, anchor->rr_len, 1817 anchor->dname_len) == LDNS_RR_TYPE_DNSKEY && 1818 anchor->last_change == 0 && 1819 !ta_is_dnskey_sep(anchor) && 1820 anchor->s == AUTR_STATE_VALID) 1821 validzsk++; 1822 } 1823 if(validzsk == 0) 1824 return 0; 1825 for(anchor = tp->autr->keys; anchor; anchor = anchor->next) { 1826 if (ta_is_dnskey_sep(anchor) && 1827 anchor->s == AUTR_STATE_ADDPEND) { 1828 verbose_key(anchor, VERB_ALGO, "trust KSK from " 1829 "ZSK(config)"); 1830 set_trustanchor_state(env, anchor, changed, 1831 AUTR_STATE_VALID); 1832 validksk++; 1833 } 1834 } 1835 return validksk; 1836 } 1837 1838 /** Remove missing trustanchors so the list does not grow forever */ 1839 static void 1840 remove_missing_trustanchors(struct module_env* env, struct trust_anchor* tp, 1841 int* changed) 1842 { 1843 struct autr_ta* anchor; 1844 time_t exceeded; 1845 int valid = 0; 1846 /* see if we have anchors that are valid */ 1847 for(anchor = tp->autr->keys; anchor; anchor = anchor->next) { 1848 /* Only do KSKs */ 1849 if (!ta_is_dnskey_sep(anchor)) 1850 continue; 1851 if (anchor->s == AUTR_STATE_VALID) 1852 valid++; 1853 } 1854 /* if there are no SEP Valid anchors, see if we started out with 1855 * a ZSK (last-change=0) anchor, which is VALID and there are KSKs 1856 * now that can be made valid. Do this immediately because there 1857 * is no guarantee that the ZSKs get announced long enough. Usually 1858 * this is immediately after init with a ZSK trusted, unless the domain 1859 * was not advertising any KSKs at all. In which case we perfectly 1860 * track the zero number of KSKs. */ 1861 if(valid == 0) { 1862 valid = init_zsk_to_ksk(env, tp, changed); 1863 if(valid == 0) 1864 return; 1865 } 1866 1867 for(anchor = tp->autr->keys; anchor; anchor = anchor->next) { 1868 /* ignore ZSKs if newly added */ 1869 if(anchor->s == AUTR_STATE_START) 1870 continue; 1871 /* remove ZSKs if a KSK is present */ 1872 if (!ta_is_dnskey_sep(anchor)) { 1873 if(valid > 0) { 1874 verbose_key(anchor, VERB_ALGO, "remove ZSK " 1875 "[%d key(s) VALID]", valid); 1876 set_trustanchor_state(env, anchor, changed, 1877 AUTR_STATE_REMOVED); 1878 } 1879 continue; 1880 } 1881 /* Only do MISSING keys */ 1882 if (anchor->s != AUTR_STATE_MISSING) 1883 continue; 1884 if(env->cfg->keep_missing == 0) 1885 continue; /* keep forever */ 1886 1887 exceeded = check_holddown(env, anchor, env->cfg->keep_missing); 1888 /* If keep_missing has exceeded and we still have more than 1889 * one valid KSK: remove missing trust anchor */ 1890 if (exceeded && valid > 0) { 1891 verbose_key(anchor, VERB_ALGO, "keep-missing time " 1892 "exceeded " ARG_LL "d seconds ago, [%d key(s) VALID]", 1893 (long long)exceeded, valid); 1894 set_trustanchor_state(env, anchor, changed, 1895 AUTR_STATE_REMOVED); 1896 } 1897 } 1898 } 1899 1900 /** Do the statetable from RFC5011 transition matrix */ 1901 static int 1902 do_statetable(struct module_env* env, struct trust_anchor* tp, int* changed) 1903 { 1904 struct autr_ta* anchor; 1905 for(anchor = tp->autr->keys; anchor; anchor = anchor->next) { 1906 /* Only do KSKs */ 1907 if(!ta_is_dnskey_sep(anchor)) 1908 continue; 1909 anchor_state_update(env, anchor, changed); 1910 } 1911 remove_missing_trustanchors(env, tp, changed); 1912 return 1; 1913 } 1914 1915 /** See if time alone makes ADDPEND to VALID transition */ 1916 static void 1917 autr_holddown_exceed(struct module_env* env, struct trust_anchor* tp, int* c) 1918 { 1919 struct autr_ta* anchor; 1920 for(anchor = tp->autr->keys; anchor; anchor = anchor->next) { 1921 if(ta_is_dnskey_sep(anchor) && 1922 anchor->s == AUTR_STATE_ADDPEND) 1923 do_addtime(env, anchor, c); 1924 } 1925 } 1926 1927 /** cleanup key list */ 1928 static void 1929 autr_cleanup_keys(struct trust_anchor* tp) 1930 { 1931 struct autr_ta* p, **prevp; 1932 prevp = &tp->autr->keys; 1933 p = tp->autr->keys; 1934 while(p) { 1935 /* do we want to remove this key? */ 1936 if(p->s == AUTR_STATE_START || p->s == AUTR_STATE_REMOVED || 1937 sldns_wirerr_get_type(p->rr, p->rr_len, p->dname_len) 1938 != LDNS_RR_TYPE_DNSKEY) { 1939 struct autr_ta* np = p->next; 1940 /* remove */ 1941 free(p->rr); 1942 free(p); 1943 /* snip and go to next item */ 1944 *prevp = np; 1945 p = np; 1946 continue; 1947 } 1948 /* remove pending counts if no longer pending */ 1949 if(p->s != AUTR_STATE_ADDPEND) 1950 p->pending_count = 0; 1951 prevp = &p->next; 1952 p = p->next; 1953 } 1954 } 1955 1956 /** calculate next probe time */ 1957 static time_t 1958 calc_next_probe(struct module_env* env, time_t wait) 1959 { 1960 /* make it random, 90-100% */ 1961 time_t rnd, rest; 1962 if(wait < 3600) 1963 wait = 3600; 1964 rnd = wait/10; 1965 rest = wait-rnd; 1966 rnd = (time_t)ub_random_max(env->rnd, (long int)rnd); 1967 return (time_t)(*env->now + rest + rnd); 1968 } 1969 1970 /** what is first probe time (anchors must be locked) */ 1971 static time_t 1972 wait_probe_time(struct val_anchors* anchors) 1973 { 1974 rbnode_t* t = rbtree_first(&anchors->autr->probe); 1975 if(t != RBTREE_NULL) 1976 return ((struct trust_anchor*)t->key)->autr->next_probe_time; 1977 return 0; 1978 } 1979 1980 /** reset worker timer */ 1981 static void 1982 reset_worker_timer(struct module_env* env) 1983 { 1984 struct timeval tv; 1985 #ifndef S_SPLINT_S 1986 time_t next = (time_t)wait_probe_time(env->anchors); 1987 /* in case this is libunbound, no timer */ 1988 if(!env->probe_timer) 1989 return; 1990 if(next > *env->now) 1991 tv.tv_sec = (time_t)(next - *env->now); 1992 else tv.tv_sec = 0; 1993 #endif 1994 tv.tv_usec = 0; 1995 comm_timer_set(env->probe_timer, &tv); 1996 verbose(VERB_ALGO, "scheduled next probe in " ARG_LL "d sec", (long long)tv.tv_sec); 1997 } 1998 1999 /** set next probe for trust anchor */ 2000 static int 2001 set_next_probe(struct module_env* env, struct trust_anchor* tp, 2002 struct ub_packed_rrset_key* dnskey_rrset) 2003 { 2004 struct trust_anchor key, *tp2; 2005 time_t mold, mnew; 2006 /* use memory allocated in rrset for temporary name storage */ 2007 key.node.key = &key; 2008 key.name = dnskey_rrset->rk.dname; 2009 key.namelen = dnskey_rrset->rk.dname_len; 2010 key.namelabs = dname_count_labels(key.name); 2011 key.dclass = tp->dclass; 2012 lock_basic_unlock(&tp->lock); 2013 2014 /* fetch tp again and lock anchors, so that we can modify the trees */ 2015 lock_basic_lock(&env->anchors->lock); 2016 tp2 = (struct trust_anchor*)rbtree_search(env->anchors->tree, &key); 2017 if(!tp2) { 2018 verbose(VERB_ALGO, "trustpoint was deleted in set_next_probe"); 2019 lock_basic_unlock(&env->anchors->lock); 2020 return 0; 2021 } 2022 log_assert(tp == tp2); 2023 lock_basic_lock(&tp->lock); 2024 2025 /* schedule */ 2026 mold = wait_probe_time(env->anchors); 2027 (void)rbtree_delete(&env->anchors->autr->probe, tp); 2028 tp->autr->next_probe_time = calc_next_probe(env, 2029 tp->autr->query_interval); 2030 (void)rbtree_insert(&env->anchors->autr->probe, &tp->autr->pnode); 2031 mnew = wait_probe_time(env->anchors); 2032 2033 lock_basic_unlock(&env->anchors->lock); 2034 verbose(VERB_ALGO, "next probe set in %d seconds", 2035 (int)tp->autr->next_probe_time - (int)*env->now); 2036 if(mold != mnew) { 2037 reset_worker_timer(env); 2038 } 2039 return 1; 2040 } 2041 2042 /** Revoke and Delete a trust point */ 2043 static void 2044 autr_tp_remove(struct module_env* env, struct trust_anchor* tp, 2045 struct ub_packed_rrset_key* dnskey_rrset) 2046 { 2047 struct trust_anchor* del_tp; 2048 struct trust_anchor key; 2049 struct autr_point_data pd; 2050 time_t mold, mnew; 2051 2052 log_nametypeclass(VERB_OPS, "trust point was revoked", 2053 tp->name, LDNS_RR_TYPE_DNSKEY, tp->dclass); 2054 tp->autr->revoked = 1; 2055 2056 /* use space allocated for dnskey_rrset to save name of anchor */ 2057 memset(&key, 0, sizeof(key)); 2058 memset(&pd, 0, sizeof(pd)); 2059 key.autr = &pd; 2060 key.node.key = &key; 2061 pd.pnode.key = &key; 2062 pd.next_probe_time = tp->autr->next_probe_time; 2063 key.name = dnskey_rrset->rk.dname; 2064 key.namelen = tp->namelen; 2065 key.namelabs = tp->namelabs; 2066 key.dclass = tp->dclass; 2067 2068 /* unlock */ 2069 lock_basic_unlock(&tp->lock); 2070 2071 /* take from tree. It could be deleted by someone else,hence (void). */ 2072 lock_basic_lock(&env->anchors->lock); 2073 del_tp = (struct trust_anchor*)rbtree_delete(env->anchors->tree, &key); 2074 mold = wait_probe_time(env->anchors); 2075 (void)rbtree_delete(&env->anchors->autr->probe, &key); 2076 mnew = wait_probe_time(env->anchors); 2077 anchors_init_parents_locked(env->anchors); 2078 lock_basic_unlock(&env->anchors->lock); 2079 2080 /* if !del_tp then the trust point is no longer present in the tree, 2081 * it was deleted by someone else, who will write the zonefile and 2082 * clean up the structure */ 2083 if(del_tp) { 2084 /* save on disk */ 2085 del_tp->autr->next_probe_time = 0; /* no more probing for it */ 2086 autr_write_file(env, del_tp); 2087 2088 /* delete */ 2089 autr_point_delete(del_tp); 2090 } 2091 if(mold != mnew) { 2092 reset_worker_timer(env); 2093 } 2094 } 2095 2096 int autr_process_prime(struct module_env* env, struct val_env* ve, 2097 struct trust_anchor* tp, struct ub_packed_rrset_key* dnskey_rrset) 2098 { 2099 int changed = 0; 2100 log_assert(tp && tp->autr); 2101 /* autotrust update trust anchors */ 2102 /* the tp is locked, and stays locked unless it is deleted */ 2103 2104 /* we could just catch the anchor here while another thread 2105 * is busy deleting it. Just unlock and let the other do its job */ 2106 if(tp->autr->revoked) { 2107 log_nametypeclass(VERB_ALGO, "autotrust not processed, " 2108 "trust point revoked", tp->name, 2109 LDNS_RR_TYPE_DNSKEY, tp->dclass); 2110 lock_basic_unlock(&tp->lock); 2111 return 0; /* it is revoked */ 2112 } 2113 2114 /* query_dnskeys(): */ 2115 tp->autr->last_queried = *env->now; 2116 2117 log_nametypeclass(VERB_ALGO, "autotrust process for", 2118 tp->name, LDNS_RR_TYPE_DNSKEY, tp->dclass); 2119 /* see if time alone makes some keys valid */ 2120 autr_holddown_exceed(env, tp, &changed); 2121 if(changed) { 2122 verbose(VERB_ALGO, "autotrust: morekeys, reassemble"); 2123 if(!autr_assemble(tp)) { 2124 log_err("malloc failure assembling autotrust keys"); 2125 return 1; /* unchanged */ 2126 } 2127 } 2128 /* did we get any data? */ 2129 if(!dnskey_rrset) { 2130 verbose(VERB_ALGO, "autotrust: no dnskey rrset"); 2131 /* no update of query_failed, because then we would have 2132 * to write to disk. But we cannot because we maybe are 2133 * still 'initialising' with DS records, that we cannot write 2134 * in the full format (which only contains KSKs). */ 2135 return 1; /* trust point exists */ 2136 } 2137 /* check for revoked keys to remove immediately */ 2138 check_contains_revoked(env, ve, tp, dnskey_rrset, &changed); 2139 if(changed) { 2140 verbose(VERB_ALGO, "autotrust: revokedkeys, reassemble"); 2141 if(!autr_assemble(tp)) { 2142 log_err("malloc failure assembling autotrust keys"); 2143 return 1; /* unchanged */ 2144 } 2145 if(!tp->ds_rrset && !tp->dnskey_rrset) { 2146 /* no more keys, all are revoked */ 2147 /* this is a success for this probe attempt */ 2148 tp->autr->last_success = *env->now; 2149 autr_tp_remove(env, tp, dnskey_rrset); 2150 return 0; /* trust point removed */ 2151 } 2152 } 2153 /* verify the dnskey rrset and see if it is valid. */ 2154 if(!verify_dnskey(env, ve, tp, dnskey_rrset)) { 2155 verbose(VERB_ALGO, "autotrust: dnskey did not verify."); 2156 /* only increase failure count if this is not the first prime, 2157 * this means there was a previous succesful probe */ 2158 if(tp->autr->last_success) { 2159 tp->autr->query_failed += 1; 2160 autr_write_file(env, tp); 2161 } 2162 return 1; /* trust point exists */ 2163 } 2164 2165 tp->autr->last_success = *env->now; 2166 tp->autr->query_failed = 0; 2167 2168 /* Add new trust anchors to the data structure 2169 * - note which trust anchors are seen this probe. 2170 * Set trustpoint query_interval and retry_time. 2171 * - find minimum rrsig expiration interval 2172 */ 2173 if(!update_events(env, ve, tp, dnskey_rrset, &changed)) { 2174 log_err("malloc failure in autotrust update_events. " 2175 "trust point unchanged."); 2176 return 1; /* trust point unchanged, so exists */ 2177 } 2178 2179 /* - for every SEP key do the 5011 statetable. 2180 * - remove missing trustanchors (if veryold and we have new anchors). 2181 */ 2182 if(!do_statetable(env, tp, &changed)) { 2183 log_err("malloc failure in autotrust do_statetable. " 2184 "trust point unchanged."); 2185 return 1; /* trust point unchanged, so exists */ 2186 } 2187 2188 autr_cleanup_keys(tp); 2189 if(!set_next_probe(env, tp, dnskey_rrset)) 2190 return 0; /* trust point does not exist */ 2191 autr_write_file(env, tp); 2192 if(changed) { 2193 verbose(VERB_ALGO, "autotrust: changed, reassemble"); 2194 if(!autr_assemble(tp)) { 2195 log_err("malloc failure assembling autotrust keys"); 2196 return 1; /* unchanged */ 2197 } 2198 if(!tp->ds_rrset && !tp->dnskey_rrset) { 2199 /* no more keys, all are revoked */ 2200 autr_tp_remove(env, tp, dnskey_rrset); 2201 return 0; /* trust point removed */ 2202 } 2203 } else verbose(VERB_ALGO, "autotrust: no changes"); 2204 2205 return 1; /* trust point exists */ 2206 } 2207 2208 /** debug print a trust anchor key */ 2209 static void 2210 autr_debug_print_ta(struct autr_ta* ta) 2211 { 2212 char buf[32]; 2213 char* str = sldns_wire2str_rr(ta->rr, ta->rr_len); 2214 if(!str) { 2215 log_info("out of memory in debug_print_ta"); 2216 return; 2217 } 2218 if(str && str[0]) str[strlen(str)-1]=0; /* remove newline */ 2219 ctime_r(&ta->last_change, buf); 2220 if(buf[0]) buf[strlen(buf)-1]=0; /* remove newline */ 2221 log_info("[%s] %s ;;state:%d ;;pending_count:%d%s%s last:%s", 2222 trustanchor_state2str(ta->s), str, ta->s, ta->pending_count, 2223 ta->fetched?" fetched":"", ta->revoked?" revoked":"", buf); 2224 free(str); 2225 } 2226 2227 /** debug print a trust point */ 2228 static void 2229 autr_debug_print_tp(struct trust_anchor* tp) 2230 { 2231 struct autr_ta* ta; 2232 char buf[257]; 2233 if(!tp->autr) 2234 return; 2235 dname_str(tp->name, buf); 2236 log_info("trust point %s : %d", buf, (int)tp->dclass); 2237 log_info("assembled %d DS and %d DNSKEYs", 2238 (int)tp->numDS, (int)tp->numDNSKEY); 2239 if(tp->ds_rrset) { 2240 log_packed_rrset(0, "DS:", tp->ds_rrset); 2241 } 2242 if(tp->dnskey_rrset) { 2243 log_packed_rrset(0, "DNSKEY:", tp->dnskey_rrset); 2244 } 2245 log_info("file %s", tp->autr->file); 2246 ctime_r(&tp->autr->last_queried, buf); 2247 if(buf[0]) buf[strlen(buf)-1]=0; /* remove newline */ 2248 log_info("last_queried: %u %s", (unsigned)tp->autr->last_queried, buf); 2249 ctime_r(&tp->autr->last_success, buf); 2250 if(buf[0]) buf[strlen(buf)-1]=0; /* remove newline */ 2251 log_info("last_success: %u %s", (unsigned)tp->autr->last_success, buf); 2252 ctime_r(&tp->autr->next_probe_time, buf); 2253 if(buf[0]) buf[strlen(buf)-1]=0; /* remove newline */ 2254 log_info("next_probe_time: %u %s", (unsigned)tp->autr->next_probe_time, 2255 buf); 2256 log_info("query_interval: %u", (unsigned)tp->autr->query_interval); 2257 log_info("retry_time: %u", (unsigned)tp->autr->retry_time); 2258 log_info("query_failed: %u", (unsigned)tp->autr->query_failed); 2259 2260 for(ta=tp->autr->keys; ta; ta=ta->next) { 2261 autr_debug_print_ta(ta); 2262 } 2263 } 2264 2265 void 2266 autr_debug_print(struct val_anchors* anchors) 2267 { 2268 struct trust_anchor* tp; 2269 lock_basic_lock(&anchors->lock); 2270 RBTREE_FOR(tp, struct trust_anchor*, anchors->tree) { 2271 lock_basic_lock(&tp->lock); 2272 autr_debug_print_tp(tp); 2273 lock_basic_unlock(&tp->lock); 2274 } 2275 lock_basic_unlock(&anchors->lock); 2276 } 2277 2278 void probe_answer_cb(void* arg, int ATTR_UNUSED(rcode), 2279 sldns_buffer* ATTR_UNUSED(buf), enum sec_status ATTR_UNUSED(sec), 2280 char* ATTR_UNUSED(why_bogus)) 2281 { 2282 /* retry was set before the query was done, 2283 * re-querytime is set when query succeeded, but that may not 2284 * have reset this timer because the query could have been 2285 * handled by another thread. In that case, this callback would 2286 * get called after the original timeout is done. 2287 * By not resetting the timer, it may probe more often, but not 2288 * less often. 2289 * Unless the new lookup resulted in smaller TTLs and thus smaller 2290 * timeout values. In that case one old TTL could be mistakenly done. 2291 */ 2292 struct module_env* env = (struct module_env*)arg; 2293 verbose(VERB_ALGO, "autotrust probe answer cb"); 2294 reset_worker_timer(env); 2295 } 2296 2297 /** probe a trust anchor DNSKEY and unlocks tp */ 2298 static void 2299 probe_anchor(struct module_env* env, struct trust_anchor* tp) 2300 { 2301 struct query_info qinfo; 2302 uint16_t qflags = BIT_RD; 2303 struct edns_data edns; 2304 sldns_buffer* buf = env->scratch_buffer; 2305 qinfo.qname = regional_alloc_init(env->scratch, tp->name, tp->namelen); 2306 if(!qinfo.qname) { 2307 log_err("out of memory making 5011 probe"); 2308 return; 2309 } 2310 qinfo.qname_len = tp->namelen; 2311 qinfo.qtype = LDNS_RR_TYPE_DNSKEY; 2312 qinfo.qclass = tp->dclass; 2313 log_query_info(VERB_ALGO, "autotrust probe", &qinfo); 2314 verbose(VERB_ALGO, "retry probe set in %d seconds", 2315 (int)tp->autr->next_probe_time - (int)*env->now); 2316 edns.edns_present = 1; 2317 edns.ext_rcode = 0; 2318 edns.edns_version = 0; 2319 edns.bits = EDNS_DO; 2320 if(sldns_buffer_capacity(buf) < 65535) 2321 edns.udp_size = (uint16_t)sldns_buffer_capacity(buf); 2322 else edns.udp_size = 65535; 2323 2324 /* can't hold the lock while mesh_run is processing */ 2325 lock_basic_unlock(&tp->lock); 2326 2327 /* delete the DNSKEY from rrset and key cache so an active probe 2328 * is done. First the rrset so another thread does not use it 2329 * to recreate the key entry in a race condition. */ 2330 rrset_cache_remove(env->rrset_cache, qinfo.qname, qinfo.qname_len, 2331 qinfo.qtype, qinfo.qclass, 0); 2332 key_cache_remove(env->key_cache, qinfo.qname, qinfo.qname_len, 2333 qinfo.qclass); 2334 2335 if(!mesh_new_callback(env->mesh, &qinfo, qflags, &edns, buf, 0, 2336 &probe_answer_cb, env)) { 2337 log_err("out of memory making 5011 probe"); 2338 } 2339 } 2340 2341 /** fetch first to-probe trust-anchor and lock it and set retrytime */ 2342 static struct trust_anchor* 2343 todo_probe(struct module_env* env, time_t* next) 2344 { 2345 struct trust_anchor* tp; 2346 rbnode_t* el; 2347 /* get first one */ 2348 lock_basic_lock(&env->anchors->lock); 2349 if( (el=rbtree_first(&env->anchors->autr->probe)) == RBTREE_NULL) { 2350 /* in case of revoked anchors */ 2351 lock_basic_unlock(&env->anchors->lock); 2352 return NULL; 2353 } 2354 tp = (struct trust_anchor*)el->key; 2355 lock_basic_lock(&tp->lock); 2356 2357 /* is it eligible? */ 2358 if((time_t)tp->autr->next_probe_time > *env->now) { 2359 /* no more to probe */ 2360 *next = (time_t)tp->autr->next_probe_time - *env->now; 2361 lock_basic_unlock(&tp->lock); 2362 lock_basic_unlock(&env->anchors->lock); 2363 return NULL; 2364 } 2365 2366 /* reset its next probe time */ 2367 (void)rbtree_delete(&env->anchors->autr->probe, tp); 2368 tp->autr->next_probe_time = calc_next_probe(env, tp->autr->retry_time); 2369 (void)rbtree_insert(&env->anchors->autr->probe, &tp->autr->pnode); 2370 lock_basic_unlock(&env->anchors->lock); 2371 2372 return tp; 2373 } 2374 2375 time_t 2376 autr_probe_timer(struct module_env* env) 2377 { 2378 struct trust_anchor* tp; 2379 time_t next_probe = 3600; 2380 int num = 0; 2381 verbose(VERB_ALGO, "autotrust probe timer callback"); 2382 /* while there are still anchors to probe */ 2383 while( (tp = todo_probe(env, &next_probe)) ) { 2384 /* make a probe for this anchor */ 2385 probe_anchor(env, tp); 2386 num++; 2387 } 2388 regional_free_all(env->scratch); 2389 if(num == 0) 2390 return 0; /* no trust points to probe */ 2391 verbose(VERB_ALGO, "autotrust probe timer %d callbacks done", num); 2392 return next_probe; 2393 } 2394