1 /* 2 * validator/autotrust.c - RFC5011 trust anchor management for unbound. 3 * 4 * Copyright (c) 2009, NLnet Labs. All rights reserved. 5 * 6 * This software is open source. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 12 * Redistributions of source code must retain the above copyright notice, 13 * this list of conditions and the following disclaimer. 14 * 15 * Redistributions in binary form must reproduce the above copyright notice, 16 * this list of conditions and the following disclaimer in the documentation 17 * and/or other materials provided with the distribution. 18 * 19 * Neither the name of the NLNET LABS nor the names of its contributors may 20 * be used to endorse or promote products derived from this software without 21 * specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 24 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 26 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 27 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 28 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 29 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 30 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 31 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 32 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 33 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 34 */ 35 36 /** 37 * \file 38 * 39 * Contains autotrust implementation. The implementation was taken from 40 * the autotrust daemon (BSD licensed), written by Matthijs Mekking. 41 * It was modified to fit into unbound. The state table process is the same. 42 */ 43 #include "config.h" 44 #include "validator/autotrust.h" 45 #include "validator/val_anchor.h" 46 #include "validator/val_utils.h" 47 #include "validator/val_sigcrypt.h" 48 #include "util/data/dname.h" 49 #include "util/data/packed_rrset.h" 50 #include "util/log.h" 51 #include "util/module.h" 52 #include "util/net_help.h" 53 #include "util/config_file.h" 54 #include "util/regional.h" 55 #include "util/random.h" 56 #include "util/data/msgparse.h" 57 #include "services/mesh.h" 58 #include "services/cache/rrset.h" 59 #include "validator/val_kcache.h" 60 #include "sldns/sbuffer.h" 61 #include "sldns/wire2str.h" 62 #include "sldns/str2wire.h" 63 #include "sldns/keyraw.h" 64 #include "sldns/rrdef.h" 65 #include <stdarg.h> 66 #include <ctype.h> 67 68 /** number of times a key must be seen before it can become valid */ 69 #define MIN_PENDINGCOUNT 2 70 71 /** Event: Revoked */ 72 static void do_revoked(struct module_env* env, struct autr_ta* anchor, int* c); 73 74 struct autr_global_data* autr_global_create(void) 75 { 76 struct autr_global_data* global; 77 global = (struct autr_global_data*)malloc(sizeof(*global)); 78 if(!global) 79 return NULL; 80 rbtree_init(&global->probe, &probetree_cmp); 81 return global; 82 } 83 84 void autr_global_delete(struct autr_global_data* global) 85 { 86 if(!global) 87 return; 88 /* elements deleted by parent */ 89 memset(global, 0, sizeof(*global)); 90 free(global); 91 } 92 93 int probetree_cmp(const void* x, const void* y) 94 { 95 struct trust_anchor* a = (struct trust_anchor*)x; 96 struct trust_anchor* b = (struct trust_anchor*)y; 97 log_assert(a->autr && b->autr); 98 if(a->autr->next_probe_time < b->autr->next_probe_time) 99 return -1; 100 if(a->autr->next_probe_time > b->autr->next_probe_time) 101 return 1; 102 /* time is equal, sort on trust point identity */ 103 return anchor_cmp(x, y); 104 } 105 106 size_t 107 autr_get_num_anchors(struct val_anchors* anchors) 108 { 109 size_t res = 0; 110 if(!anchors) 111 return 0; 112 lock_basic_lock(&anchors->lock); 113 if(anchors->autr) 114 res = anchors->autr->probe.count; 115 lock_basic_unlock(&anchors->lock); 116 return res; 117 } 118 119 /** Position in string */ 120 static int 121 position_in_string(char *str, const char* sub) 122 { 123 char* pos = strstr(str, sub); 124 if(pos) 125 return (int)(pos-str)+(int)strlen(sub); 126 return -1; 127 } 128 129 /** Debug routine to print pretty key information */ 130 static void 131 verbose_key(struct autr_ta* ta, enum verbosity_value level, 132 const char* format, ...) ATTR_FORMAT(printf, 3, 4); 133 134 /** 135 * Implementation of debug pretty key print 136 * @param ta: trust anchor key with DNSKEY data. 137 * @param level: verbosity level to print at. 138 * @param format: printf style format string. 139 */ 140 static void 141 verbose_key(struct autr_ta* ta, enum verbosity_value level, 142 const char* format, ...) 143 { 144 va_list args; 145 va_start(args, format); 146 if(verbosity >= level) { 147 char* str = sldns_wire2str_dname(ta->rr, ta->dname_len); 148 int keytag = (int)sldns_calc_keytag_raw(sldns_wirerr_get_rdata( 149 ta->rr, ta->rr_len, ta->dname_len), 150 sldns_wirerr_get_rdatalen(ta->rr, ta->rr_len, 151 ta->dname_len)); 152 char msg[MAXSYSLOGMSGLEN]; 153 vsnprintf(msg, sizeof(msg), format, args); 154 verbose(level, "%s key %d %s", str?str:"??", keytag, msg); 155 free(str); 156 } 157 va_end(args); 158 } 159 160 /** 161 * Parse comments 162 * @param str: to parse 163 * @param ta: trust key autotrust metadata 164 * @return false on failure. 165 */ 166 static int 167 parse_comments(char* str, struct autr_ta* ta) 168 { 169 int len = (int)strlen(str), pos = 0, timestamp = 0; 170 char* comment = (char*) malloc(sizeof(char)*len+1); 171 char* comments = comment; 172 if(!comment) { 173 log_err("malloc failure in parse"); 174 return 0; 175 } 176 /* skip over whitespace and data at start of line */ 177 while (*str != '\0' && *str != ';') 178 str++; 179 if (*str == ';') 180 str++; 181 /* copy comments */ 182 while (*str != '\0') 183 { 184 *comments = *str; 185 comments++; 186 str++; 187 } 188 *comments = '\0'; 189 190 comments = comment; 191 192 /* read state */ 193 pos = position_in_string(comments, "state="); 194 if (pos >= (int) strlen(comments)) 195 { 196 log_err("parse error"); 197 free(comment); 198 return 0; 199 } 200 if (pos <= 0) 201 ta->s = AUTR_STATE_VALID; 202 else 203 { 204 int s = (int) comments[pos] - '0'; 205 switch(s) 206 { 207 case AUTR_STATE_START: 208 case AUTR_STATE_ADDPEND: 209 case AUTR_STATE_VALID: 210 case AUTR_STATE_MISSING: 211 case AUTR_STATE_REVOKED: 212 case AUTR_STATE_REMOVED: 213 ta->s = s; 214 break; 215 default: 216 verbose_key(ta, VERB_OPS, "has undefined " 217 "state, considered NewKey"); 218 ta->s = AUTR_STATE_START; 219 break; 220 } 221 } 222 /* read pending count */ 223 pos = position_in_string(comments, "count="); 224 if (pos >= (int) strlen(comments)) 225 { 226 log_err("parse error"); 227 free(comment); 228 return 0; 229 } 230 if (pos <= 0) 231 ta->pending_count = 0; 232 else 233 { 234 comments += pos; 235 ta->pending_count = (uint8_t)atoi(comments); 236 } 237 238 /* read last change */ 239 pos = position_in_string(comments, "lastchange="); 240 if (pos >= (int) strlen(comments)) 241 { 242 log_err("parse error"); 243 free(comment); 244 return 0; 245 } 246 if (pos >= 0) 247 { 248 comments += pos; 249 timestamp = atoi(comments); 250 } 251 if (pos < 0 || !timestamp) 252 ta->last_change = 0; 253 else 254 ta->last_change = (time_t)timestamp; 255 256 free(comment); 257 return 1; 258 } 259 260 /** Check if a line contains data (besides comments) */ 261 static int 262 str_contains_data(char* str, char comment) 263 { 264 while (*str != '\0') { 265 if (*str == comment || *str == '\n') 266 return 0; 267 if (*str != ' ' && *str != '\t') 268 return 1; 269 str++; 270 } 271 return 0; 272 } 273 274 /** Get DNSKEY flags 275 * rdata without rdatalen in front of it. */ 276 static int 277 dnskey_flags(uint16_t t, uint8_t* rdata, size_t len) 278 { 279 uint16_t f; 280 if(t != LDNS_RR_TYPE_DNSKEY) 281 return 0; 282 if(len < 2) 283 return 0; 284 memmove(&f, rdata, 2); 285 f = ntohs(f); 286 return (int)f; 287 } 288 289 /** Check if KSK DNSKEY. 290 * pass rdata without rdatalen in front of it */ 291 static int 292 rr_is_dnskey_sep(uint16_t t, uint8_t* rdata, size_t len) 293 { 294 return (dnskey_flags(t, rdata, len)&DNSKEY_BIT_SEP); 295 } 296 297 /** Check if TA is KSK DNSKEY */ 298 static int 299 ta_is_dnskey_sep(struct autr_ta* ta) 300 { 301 return (dnskey_flags( 302 sldns_wirerr_get_type(ta->rr, ta->rr_len, ta->dname_len), 303 sldns_wirerr_get_rdata(ta->rr, ta->rr_len, ta->dname_len), 304 sldns_wirerr_get_rdatalen(ta->rr, ta->rr_len, ta->dname_len) 305 ) & DNSKEY_BIT_SEP); 306 } 307 308 /** Check if REVOKED DNSKEY 309 * pass rdata without rdatalen in front of it */ 310 static int 311 rr_is_dnskey_revoked(uint16_t t, uint8_t* rdata, size_t len) 312 { 313 return (dnskey_flags(t, rdata, len)&LDNS_KEY_REVOKE_KEY); 314 } 315 316 /** create ta */ 317 static struct autr_ta* 318 autr_ta_create(uint8_t* rr, size_t rr_len, size_t dname_len) 319 { 320 struct autr_ta* ta = (struct autr_ta*)calloc(1, sizeof(*ta)); 321 if(!ta) { 322 free(rr); 323 return NULL; 324 } 325 ta->rr = rr; 326 ta->rr_len = rr_len; 327 ta->dname_len = dname_len; 328 return ta; 329 } 330 331 /** create tp */ 332 static struct trust_anchor* 333 autr_tp_create(struct val_anchors* anchors, uint8_t* own, size_t own_len, 334 uint16_t dc) 335 { 336 struct trust_anchor* tp = (struct trust_anchor*)calloc(1, sizeof(*tp)); 337 if(!tp) return NULL; 338 tp->name = memdup(own, own_len); 339 if(!tp->name) { 340 free(tp); 341 return NULL; 342 } 343 tp->namelen = own_len; 344 tp->namelabs = dname_count_labels(tp->name); 345 tp->node.key = tp; 346 tp->dclass = dc; 347 tp->autr = (struct autr_point_data*)calloc(1, sizeof(*tp->autr)); 348 if(!tp->autr) { 349 free(tp->name); 350 free(tp); 351 return NULL; 352 } 353 tp->autr->pnode.key = tp; 354 355 lock_basic_lock(&anchors->lock); 356 if(!rbtree_insert(anchors->tree, &tp->node)) { 357 lock_basic_unlock(&anchors->lock); 358 log_err("trust anchor presented twice"); 359 free(tp->name); 360 free(tp->autr); 361 free(tp); 362 return NULL; 363 } 364 if(!rbtree_insert(&anchors->autr->probe, &tp->autr->pnode)) { 365 (void)rbtree_delete(anchors->tree, tp); 366 lock_basic_unlock(&anchors->lock); 367 log_err("trust anchor in probetree twice"); 368 free(tp->name); 369 free(tp->autr); 370 free(tp); 371 return NULL; 372 } 373 lock_basic_unlock(&anchors->lock); 374 lock_basic_init(&tp->lock); 375 lock_protect(&tp->lock, tp, sizeof(*tp)); 376 lock_protect(&tp->lock, tp->autr, sizeof(*tp->autr)); 377 return tp; 378 } 379 380 /** delete assembled rrsets */ 381 static void 382 autr_rrset_delete(struct ub_packed_rrset_key* r) 383 { 384 if(r) { 385 free(r->rk.dname); 386 free(r->entry.data); 387 free(r); 388 } 389 } 390 391 void autr_point_delete(struct trust_anchor* tp) 392 { 393 if(!tp) 394 return; 395 lock_unprotect(&tp->lock, tp); 396 lock_unprotect(&tp->lock, tp->autr); 397 lock_basic_destroy(&tp->lock); 398 autr_rrset_delete(tp->ds_rrset); 399 autr_rrset_delete(tp->dnskey_rrset); 400 if(tp->autr) { 401 struct autr_ta* p = tp->autr->keys, *np; 402 while(p) { 403 np = p->next; 404 free(p->rr); 405 free(p); 406 p = np; 407 } 408 free(tp->autr->file); 409 free(tp->autr); 410 } 411 free(tp->name); 412 free(tp); 413 } 414 415 /** find or add a new trust point for autotrust */ 416 static struct trust_anchor* 417 find_add_tp(struct val_anchors* anchors, uint8_t* rr, size_t rr_len, 418 size_t dname_len) 419 { 420 struct trust_anchor* tp; 421 tp = anchor_find(anchors, rr, dname_count_labels(rr), dname_len, 422 sldns_wirerr_get_class(rr, rr_len, dname_len)); 423 if(tp) { 424 if(!tp->autr) { 425 log_err("anchor cannot be with and without autotrust"); 426 lock_basic_unlock(&tp->lock); 427 return NULL; 428 } 429 return tp; 430 } 431 tp = autr_tp_create(anchors, rr, dname_len, sldns_wirerr_get_class(rr, 432 rr_len, dname_len)); 433 if(!tp) 434 return NULL; 435 lock_basic_lock(&tp->lock); 436 return tp; 437 } 438 439 /** Add trust anchor from RR */ 440 static struct autr_ta* 441 add_trustanchor_frm_rr(struct val_anchors* anchors, uint8_t* rr, size_t rr_len, 442 size_t dname_len, struct trust_anchor** tp) 443 { 444 struct autr_ta* ta = autr_ta_create(rr, rr_len, dname_len); 445 if(!ta) 446 return NULL; 447 *tp = find_add_tp(anchors, rr, rr_len, dname_len); 448 if(!*tp) { 449 free(ta->rr); 450 free(ta); 451 return NULL; 452 } 453 /* add ta to tp */ 454 ta->next = (*tp)->autr->keys; 455 (*tp)->autr->keys = ta; 456 lock_basic_unlock(&(*tp)->lock); 457 return ta; 458 } 459 460 /** 461 * Add new trust anchor from a string in file. 462 * @param anchors: all anchors 463 * @param str: string with anchor and comments, if any comments. 464 * @param tp: trust point returned. 465 * @param origin: what to use for @ 466 * @param origin_len: length of origin 467 * @param prev: previous rr name 468 * @param prev_len: length of prev 469 * @param skip: if true, the result is NULL, but not an error, skip it. 470 * @return new key in trust point. 471 */ 472 static struct autr_ta* 473 add_trustanchor_frm_str(struct val_anchors* anchors, char* str, 474 struct trust_anchor** tp, uint8_t* origin, size_t origin_len, 475 uint8_t** prev, size_t* prev_len, int* skip) 476 { 477 uint8_t rr[LDNS_RR_BUF_SIZE]; 478 size_t rr_len = sizeof(rr), dname_len; 479 uint8_t* drr; 480 int lstatus; 481 if (!str_contains_data(str, ';')) { 482 *skip = 1; 483 return NULL; /* empty line */ 484 } 485 if(0 != (lstatus = sldns_str2wire_rr_buf(str, rr, &rr_len, &dname_len, 486 0, origin, origin_len, *prev, *prev_len))) 487 { 488 log_err("ldns error while converting string to RR at%d: %s: %s", 489 LDNS_WIREPARSE_OFFSET(lstatus), 490 sldns_get_errorstr_parse(lstatus), str); 491 return NULL; 492 } 493 free(*prev); 494 *prev = memdup(rr, dname_len); 495 *prev_len = dname_len; 496 if(!*prev) { 497 log_err("malloc failure in add_trustanchor"); 498 return NULL; 499 } 500 if(sldns_wirerr_get_type(rr, rr_len, dname_len)!=LDNS_RR_TYPE_DNSKEY && 501 sldns_wirerr_get_type(rr, rr_len, dname_len)!=LDNS_RR_TYPE_DS) { 502 *skip = 1; 503 return NULL; /* only DS and DNSKEY allowed */ 504 } 505 drr = memdup(rr, rr_len); 506 if(!drr) { 507 log_err("malloc failure in add trustanchor"); 508 return NULL; 509 } 510 return add_trustanchor_frm_rr(anchors, drr, rr_len, dname_len, tp); 511 } 512 513 /** 514 * Load single anchor 515 * @param anchors: all points. 516 * @param str: comments line 517 * @param fname: filename 518 * @param origin: the $ORIGIN. 519 * @param origin_len: length of origin 520 * @param prev: passed to ldns. 521 * @param prev_len: length of prev 522 * @param skip: if true, the result is NULL, but not an error, skip it. 523 * @return false on failure, otherwise the tp read. 524 */ 525 static struct trust_anchor* 526 load_trustanchor(struct val_anchors* anchors, char* str, const char* fname, 527 uint8_t* origin, size_t origin_len, uint8_t** prev, size_t* prev_len, 528 int* skip) 529 { 530 struct autr_ta* ta = NULL; 531 struct trust_anchor* tp = NULL; 532 533 ta = add_trustanchor_frm_str(anchors, str, &tp, origin, origin_len, 534 prev, prev_len, skip); 535 if(!ta) 536 return NULL; 537 lock_basic_lock(&tp->lock); 538 if(!parse_comments(str, ta)) { 539 lock_basic_unlock(&tp->lock); 540 return NULL; 541 } 542 if(!tp->autr->file) { 543 tp->autr->file = strdup(fname); 544 if(!tp->autr->file) { 545 lock_basic_unlock(&tp->lock); 546 log_err("malloc failure"); 547 return NULL; 548 } 549 } 550 lock_basic_unlock(&tp->lock); 551 return tp; 552 } 553 554 /** iterator for DSes from keylist. return true if a next element exists */ 555 static int 556 assemble_iterate_ds(struct autr_ta** list, uint8_t** rr, size_t* rr_len, 557 size_t* dname_len) 558 { 559 while(*list) { 560 if(sldns_wirerr_get_type((*list)->rr, (*list)->rr_len, 561 (*list)->dname_len) == LDNS_RR_TYPE_DS) { 562 *rr = (*list)->rr; 563 *rr_len = (*list)->rr_len; 564 *dname_len = (*list)->dname_len; 565 *list = (*list)->next; 566 return 1; 567 } 568 *list = (*list)->next; 569 } 570 return 0; 571 } 572 573 /** iterator for DNSKEYs from keylist. return true if a next element exists */ 574 static int 575 assemble_iterate_dnskey(struct autr_ta** list, uint8_t** rr, size_t* rr_len, 576 size_t* dname_len) 577 { 578 while(*list) { 579 if(sldns_wirerr_get_type((*list)->rr, (*list)->rr_len, 580 (*list)->dname_len) != LDNS_RR_TYPE_DS && 581 ((*list)->s == AUTR_STATE_VALID || 582 (*list)->s == AUTR_STATE_MISSING)) { 583 *rr = (*list)->rr; 584 *rr_len = (*list)->rr_len; 585 *dname_len = (*list)->dname_len; 586 *list = (*list)->next; 587 return 1; 588 } 589 *list = (*list)->next; 590 } 591 return 0; 592 } 593 594 /** see if iterator-list has any elements in it, or it is empty */ 595 static int 596 assemble_iterate_hasfirst(int iter(struct autr_ta**, uint8_t**, size_t*, 597 size_t*), struct autr_ta* list) 598 { 599 uint8_t* rr = NULL; 600 size_t rr_len = 0, dname_len = 0; 601 return iter(&list, &rr, &rr_len, &dname_len); 602 } 603 604 /** number of elements in iterator list */ 605 static size_t 606 assemble_iterate_count(int iter(struct autr_ta**, uint8_t**, size_t*, 607 size_t*), struct autr_ta* list) 608 { 609 uint8_t* rr = NULL; 610 size_t i = 0, rr_len = 0, dname_len = 0; 611 while(iter(&list, &rr, &rr_len, &dname_len)) { 612 i++; 613 } 614 return i; 615 } 616 617 /** 618 * Create a ub_packed_rrset_key allocated on the heap. 619 * It therefore does not have the correct ID value, and cannot be used 620 * inside the cache. It can be used in storage outside of the cache. 621 * Keys for the cache have to be obtained from alloc.h . 622 * @param iter: iterator over the elements in the list. It filters elements. 623 * @param list: the list. 624 * @return key allocated or NULL on failure. 625 */ 626 static struct ub_packed_rrset_key* 627 ub_packed_rrset_heap_key(int iter(struct autr_ta**, uint8_t**, size_t*, 628 size_t*), struct autr_ta* list) 629 { 630 uint8_t* rr = NULL; 631 size_t rr_len = 0, dname_len = 0; 632 struct ub_packed_rrset_key* k; 633 if(!iter(&list, &rr, &rr_len, &dname_len)) 634 return NULL; 635 k = (struct ub_packed_rrset_key*)calloc(1, sizeof(*k)); 636 if(!k) 637 return NULL; 638 k->rk.type = htons(sldns_wirerr_get_type(rr, rr_len, dname_len)); 639 k->rk.rrset_class = htons(sldns_wirerr_get_class(rr, rr_len, dname_len)); 640 k->rk.dname_len = dname_len; 641 k->rk.dname = memdup(rr, dname_len); 642 if(!k->rk.dname) { 643 free(k); 644 return NULL; 645 } 646 return k; 647 } 648 649 /** 650 * Create packed_rrset data on the heap. 651 * @param iter: iterator over the elements in the list. It filters elements. 652 * @param list: the list. 653 * @return data allocated or NULL on failure. 654 */ 655 static struct packed_rrset_data* 656 packed_rrset_heap_data(int iter(struct autr_ta**, uint8_t**, size_t*, 657 size_t*), struct autr_ta* list) 658 { 659 uint8_t* rr = NULL; 660 size_t rr_len = 0, dname_len = 0; 661 struct packed_rrset_data* data; 662 size_t count=0, rrsig_count=0, len=0, i, total; 663 uint8_t* nextrdata; 664 struct autr_ta* list_i; 665 time_t ttl = 0; 666 667 list_i = list; 668 while(iter(&list_i, &rr, &rr_len, &dname_len)) { 669 if(sldns_wirerr_get_type(rr, rr_len, dname_len) == 670 LDNS_RR_TYPE_RRSIG) 671 rrsig_count++; 672 else count++; 673 /* sizeof the rdlength + rdatalen */ 674 len += 2 + sldns_wirerr_get_rdatalen(rr, rr_len, dname_len); 675 ttl = (time_t)sldns_wirerr_get_ttl(rr, rr_len, dname_len); 676 } 677 if(count == 0 && rrsig_count == 0) 678 return NULL; 679 680 /* allocate */ 681 total = count + rrsig_count; 682 len += sizeof(*data) + total*(sizeof(size_t) + sizeof(time_t) + 683 sizeof(uint8_t*)); 684 data = (struct packed_rrset_data*)calloc(1, len); 685 if(!data) 686 return NULL; 687 688 /* fill it */ 689 data->ttl = ttl; 690 data->count = count; 691 data->rrsig_count = rrsig_count; 692 data->rr_len = (size_t*)((uint8_t*)data + 693 sizeof(struct packed_rrset_data)); 694 data->rr_data = (uint8_t**)&(data->rr_len[total]); 695 data->rr_ttl = (time_t*)&(data->rr_data[total]); 696 nextrdata = (uint8_t*)&(data->rr_ttl[total]); 697 698 /* fill out len, ttl, fields */ 699 list_i = list; 700 i = 0; 701 while(iter(&list_i, &rr, &rr_len, &dname_len)) { 702 data->rr_ttl[i] = (time_t)sldns_wirerr_get_ttl(rr, rr_len, 703 dname_len); 704 if(data->rr_ttl[i] < data->ttl) 705 data->ttl = data->rr_ttl[i]; 706 data->rr_len[i] = 2 /* the rdlength */ + 707 sldns_wirerr_get_rdatalen(rr, rr_len, dname_len); 708 i++; 709 } 710 711 /* fixup rest of ptrs */ 712 for(i=0; i<total; i++) { 713 data->rr_data[i] = nextrdata; 714 nextrdata += data->rr_len[i]; 715 } 716 717 /* copy data in there */ 718 list_i = list; 719 i = 0; 720 while(iter(&list_i, &rr, &rr_len, &dname_len)) { 721 memmove(data->rr_data[i], 722 sldns_wirerr_get_rdatawl(rr, rr_len, dname_len), 723 data->rr_len[i]); 724 i++; 725 } 726 727 if(data->rrsig_count && data->count == 0) { 728 data->count = data->rrsig_count; /* rrset type is RRSIG */ 729 data->rrsig_count = 0; 730 } 731 return data; 732 } 733 734 /** 735 * Assemble the trust anchors into DS and DNSKEY packed rrsets. 736 * Uses only VALID and MISSING DNSKEYs. 737 * Read the sldns_rrs and builds packed rrsets 738 * @param tp: the trust point. Must be locked. 739 * @return false on malloc failure. 740 */ 741 static int 742 autr_assemble(struct trust_anchor* tp) 743 { 744 struct ub_packed_rrset_key* ubds=NULL, *ubdnskey=NULL; 745 746 /* make packed rrset keys - malloced with no ID number, they 747 * are not in the cache */ 748 /* make packed rrset data (if there is a key) */ 749 if(assemble_iterate_hasfirst(assemble_iterate_ds, tp->autr->keys)) { 750 ubds = ub_packed_rrset_heap_key( 751 assemble_iterate_ds, tp->autr->keys); 752 if(!ubds) 753 goto error_cleanup; 754 ubds->entry.data = packed_rrset_heap_data( 755 assemble_iterate_ds, tp->autr->keys); 756 if(!ubds->entry.data) 757 goto error_cleanup; 758 } 759 760 /* make packed DNSKEY data */ 761 if(assemble_iterate_hasfirst(assemble_iterate_dnskey, tp->autr->keys)) { 762 ubdnskey = ub_packed_rrset_heap_key( 763 assemble_iterate_dnskey, tp->autr->keys); 764 if(!ubdnskey) 765 goto error_cleanup; 766 ubdnskey->entry.data = packed_rrset_heap_data( 767 assemble_iterate_dnskey, tp->autr->keys); 768 if(!ubdnskey->entry.data) { 769 error_cleanup: 770 autr_rrset_delete(ubds); 771 autr_rrset_delete(ubdnskey); 772 return 0; 773 } 774 } 775 776 /* we have prepared the new keys so nothing can go wrong any more. 777 * And we are sure we cannot be left without trustanchor after 778 * any errors. Put in the new keys and remove old ones. */ 779 780 /* free the old data */ 781 autr_rrset_delete(tp->ds_rrset); 782 autr_rrset_delete(tp->dnskey_rrset); 783 784 /* assign the data to replace the old */ 785 tp->ds_rrset = ubds; 786 tp->dnskey_rrset = ubdnskey; 787 tp->numDS = assemble_iterate_count(assemble_iterate_ds, 788 tp->autr->keys); 789 tp->numDNSKEY = assemble_iterate_count(assemble_iterate_dnskey, 790 tp->autr->keys); 791 return 1; 792 } 793 794 /** parse integer */ 795 static unsigned int 796 parse_int(char* line, int* ret) 797 { 798 char *e; 799 unsigned int x = (unsigned int)strtol(line, &e, 10); 800 if(line == e) { 801 *ret = -1; /* parse error */ 802 return 0; 803 } 804 *ret = 1; /* matched */ 805 return x; 806 } 807 808 /** parse id sequence for anchor */ 809 static struct trust_anchor* 810 parse_id(struct val_anchors* anchors, char* line) 811 { 812 struct trust_anchor *tp; 813 int r; 814 uint16_t dclass; 815 uint8_t* dname; 816 size_t dname_len; 817 /* read the owner name */ 818 char* next = strchr(line, ' '); 819 if(!next) 820 return NULL; 821 next[0] = 0; 822 dname = sldns_str2wire_dname(line, &dname_len); 823 if(!dname) 824 return NULL; 825 826 /* read the class */ 827 dclass = parse_int(next+1, &r); 828 if(r == -1) { 829 free(dname); 830 return NULL; 831 } 832 833 /* find the trust point */ 834 tp = autr_tp_create(anchors, dname, dname_len, dclass); 835 free(dname); 836 return tp; 837 } 838 839 /** 840 * Parse variable from trustanchor header 841 * @param line: to parse 842 * @param anchors: the anchor is added to this, if "id:" is seen. 843 * @param anchor: the anchor as result value or previously returned anchor 844 * value to read the variable lines into. 845 * @return: 0 no match, -1 failed syntax error, +1 success line read. 846 * +2 revoked trust anchor file. 847 */ 848 static int 849 parse_var_line(char* line, struct val_anchors* anchors, 850 struct trust_anchor** anchor) 851 { 852 struct trust_anchor* tp = *anchor; 853 int r = 0; 854 if(strncmp(line, ";;id: ", 6) == 0) { 855 *anchor = parse_id(anchors, line+6); 856 if(!*anchor) return -1; 857 else return 1; 858 } else if(strncmp(line, ";;REVOKED", 9) == 0) { 859 if(tp) { 860 log_err("REVOKED statement must be at start of file"); 861 return -1; 862 } 863 return 2; 864 } else if(strncmp(line, ";;last_queried: ", 16) == 0) { 865 if(!tp) return -1; 866 lock_basic_lock(&tp->lock); 867 tp->autr->last_queried = (time_t)parse_int(line+16, &r); 868 lock_basic_unlock(&tp->lock); 869 } else if(strncmp(line, ";;last_success: ", 16) == 0) { 870 if(!tp) return -1; 871 lock_basic_lock(&tp->lock); 872 tp->autr->last_success = (time_t)parse_int(line+16, &r); 873 lock_basic_unlock(&tp->lock); 874 } else if(strncmp(line, ";;next_probe_time: ", 19) == 0) { 875 if(!tp) return -1; 876 lock_basic_lock(&anchors->lock); 877 lock_basic_lock(&tp->lock); 878 (void)rbtree_delete(&anchors->autr->probe, tp); 879 tp->autr->next_probe_time = (time_t)parse_int(line+19, &r); 880 (void)rbtree_insert(&anchors->autr->probe, &tp->autr->pnode); 881 lock_basic_unlock(&tp->lock); 882 lock_basic_unlock(&anchors->lock); 883 } else if(strncmp(line, ";;query_failed: ", 16) == 0) { 884 if(!tp) return -1; 885 lock_basic_lock(&tp->lock); 886 tp->autr->query_failed = (uint8_t)parse_int(line+16, &r); 887 lock_basic_unlock(&tp->lock); 888 } else if(strncmp(line, ";;query_interval: ", 18) == 0) { 889 if(!tp) return -1; 890 lock_basic_lock(&tp->lock); 891 tp->autr->query_interval = (time_t)parse_int(line+18, &r); 892 lock_basic_unlock(&tp->lock); 893 } else if(strncmp(line, ";;retry_time: ", 14) == 0) { 894 if(!tp) return -1; 895 lock_basic_lock(&tp->lock); 896 tp->autr->retry_time = (time_t)parse_int(line+14, &r); 897 lock_basic_unlock(&tp->lock); 898 } 899 return r; 900 } 901 902 /** handle origin lines */ 903 static int 904 handle_origin(char* line, uint8_t** origin, size_t* origin_len) 905 { 906 size_t len = 0; 907 while(isspace((unsigned char)*line)) 908 line++; 909 if(strncmp(line, "$ORIGIN", 7) != 0) 910 return 0; 911 free(*origin); 912 line += 7; 913 while(isspace((unsigned char)*line)) 914 line++; 915 *origin = sldns_str2wire_dname(line, &len); 916 *origin_len = len; 917 if(!*origin) 918 log_warn("malloc failure or parse error in $ORIGIN"); 919 return 1; 920 } 921 922 /** Read one line and put multiline RRs onto one line string */ 923 static int 924 read_multiline(char* buf, size_t len, FILE* in, int* linenr) 925 { 926 char* pos = buf; 927 size_t left = len; 928 int depth = 0; 929 buf[len-1] = 0; 930 while(left > 0 && fgets(pos, (int)left, in) != NULL) { 931 size_t i, poslen = strlen(pos); 932 (*linenr)++; 933 934 /* check what the new depth is after the line */ 935 /* this routine cannot handle braces inside quotes, 936 say for TXT records, but this routine only has to read keys */ 937 for(i=0; i<poslen; i++) { 938 if(pos[i] == '(') { 939 depth++; 940 } else if(pos[i] == ')') { 941 if(depth == 0) { 942 log_err("mismatch: too many ')'"); 943 return -1; 944 } 945 depth--; 946 } else if(pos[i] == ';') { 947 break; 948 } 949 } 950 951 /* normal oneline or last line: keeps newline and comments */ 952 if(depth == 0) { 953 return 1; 954 } 955 956 /* more lines expected, snip off comments and newline */ 957 if(poslen>0) 958 pos[poslen-1] = 0; /* strip newline */ 959 if(strchr(pos, ';')) 960 strchr(pos, ';')[0] = 0; /* strip comments */ 961 962 /* move to paste other lines behind this one */ 963 poslen = strlen(pos); 964 pos += poslen; 965 left -= poslen; 966 /* the newline is changed into a space */ 967 if(left <= 2 /* space and eos */) { 968 log_err("line too long"); 969 return -1; 970 } 971 pos[0] = ' '; 972 pos[1] = 0; 973 pos += 1; 974 left -= 1; 975 } 976 if(depth != 0) { 977 log_err("mismatch: too many '('"); 978 return -1; 979 } 980 if(pos != buf) 981 return 1; 982 return 0; 983 } 984 985 int autr_read_file(struct val_anchors* anchors, const char* nm) 986 { 987 /* the file descriptor */ 988 FILE* fd; 989 /* keep track of line numbers */ 990 int line_nr = 0; 991 /* single line */ 992 char line[10240]; 993 /* trust point being read */ 994 struct trust_anchor *tp = NULL, *tp2; 995 int r; 996 /* for $ORIGIN parsing */ 997 uint8_t *origin=NULL, *prev=NULL; 998 size_t origin_len=0, prev_len=0; 999 1000 if (!(fd = fopen(nm, "r"))) { 1001 log_err("unable to open %s for reading: %s", 1002 nm, strerror(errno)); 1003 return 0; 1004 } 1005 verbose(VERB_ALGO, "reading autotrust anchor file %s", nm); 1006 while ( (r=read_multiline(line, sizeof(line), fd, &line_nr)) != 0) { 1007 if(r == -1 || (r = parse_var_line(line, anchors, &tp)) == -1) { 1008 log_err("could not parse auto-trust-anchor-file " 1009 "%s line %d", nm, line_nr); 1010 fclose(fd); 1011 free(origin); 1012 free(prev); 1013 return 0; 1014 } else if(r == 1) { 1015 continue; 1016 } else if(r == 2) { 1017 log_warn("trust anchor %s has been revoked", nm); 1018 fclose(fd); 1019 free(origin); 1020 free(prev); 1021 return 1; 1022 } 1023 if (!str_contains_data(line, ';')) 1024 continue; /* empty lines allowed */ 1025 if(handle_origin(line, &origin, &origin_len)) 1026 continue; 1027 r = 0; 1028 if(!(tp2=load_trustanchor(anchors, line, nm, origin, 1029 origin_len, &prev, &prev_len, &r))) { 1030 if(!r) log_err("failed to load trust anchor from %s " 1031 "at line %i, skipping", nm, line_nr); 1032 /* try to do the rest */ 1033 continue; 1034 } 1035 if(tp && tp != tp2) { 1036 log_err("file %s has mismatching data inside: " 1037 "the file may only contain keys for one name, " 1038 "remove keys for other domain names", nm); 1039 fclose(fd); 1040 free(origin); 1041 free(prev); 1042 return 0; 1043 } 1044 tp = tp2; 1045 } 1046 fclose(fd); 1047 free(origin); 1048 free(prev); 1049 if(!tp) { 1050 log_err("failed to read %s", nm); 1051 return 0; 1052 } 1053 1054 /* now assemble the data into DNSKEY and DS packed rrsets */ 1055 lock_basic_lock(&tp->lock); 1056 if(!autr_assemble(tp)) { 1057 lock_basic_unlock(&tp->lock); 1058 log_err("malloc failure assembling %s", nm); 1059 return 0; 1060 } 1061 lock_basic_unlock(&tp->lock); 1062 return 1; 1063 } 1064 1065 /** string for a trustanchor state */ 1066 static const char* 1067 trustanchor_state2str(autr_state_t s) 1068 { 1069 switch (s) { 1070 case AUTR_STATE_START: return " START "; 1071 case AUTR_STATE_ADDPEND: return " ADDPEND "; 1072 case AUTR_STATE_VALID: return " VALID "; 1073 case AUTR_STATE_MISSING: return " MISSING "; 1074 case AUTR_STATE_REVOKED: return " REVOKED "; 1075 case AUTR_STATE_REMOVED: return " REMOVED "; 1076 } 1077 return " UNKNOWN "; 1078 } 1079 1080 /** print ID to file */ 1081 static int 1082 print_id(FILE* out, char* fname, uint8_t* nm, size_t nmlen, uint16_t dclass) 1083 { 1084 char* s = sldns_wire2str_dname(nm, nmlen); 1085 if(!s) { 1086 log_err("malloc failure in write to %s", fname); 1087 return 0; 1088 } 1089 if(fprintf(out, ";;id: %s %d\n", s, (int)dclass) < 0) { 1090 log_err("could not write to %s: %s", fname, strerror(errno)); 1091 free(s); 1092 return 0; 1093 } 1094 free(s); 1095 return 1; 1096 } 1097 1098 static int 1099 autr_write_contents(FILE* out, char* fn, struct trust_anchor* tp) 1100 { 1101 char tmi[32]; 1102 struct autr_ta* ta; 1103 char* str; 1104 1105 /* write pretty header */ 1106 if(fprintf(out, "; autotrust trust anchor file\n") < 0) { 1107 log_err("could not write to %s: %s", fn, strerror(errno)); 1108 return 0; 1109 } 1110 if(tp->autr->revoked) { 1111 if(fprintf(out, ";;REVOKED\n") < 0 || 1112 fprintf(out, "; The zone has all keys revoked, and is\n" 1113 "; considered as if it has no trust anchors.\n" 1114 "; the remainder of the file is the last probe.\n" 1115 "; to restart the trust anchor, overwrite this file.\n" 1116 "; with one containing valid DNSKEYs or DSes.\n") < 0) { 1117 log_err("could not write to %s: %s", fn, strerror(errno)); 1118 return 0; 1119 } 1120 } 1121 if(!print_id(out, fn, tp->name, tp->namelen, tp->dclass)) { 1122 return 0; 1123 } 1124 if(fprintf(out, ";;last_queried: %u ;;%s", 1125 (unsigned int)tp->autr->last_queried, 1126 ctime_r(&(tp->autr->last_queried), tmi)) < 0 || 1127 fprintf(out, ";;last_success: %u ;;%s", 1128 (unsigned int)tp->autr->last_success, 1129 ctime_r(&(tp->autr->last_success), tmi)) < 0 || 1130 fprintf(out, ";;next_probe_time: %u ;;%s", 1131 (unsigned int)tp->autr->next_probe_time, 1132 ctime_r(&(tp->autr->next_probe_time), tmi)) < 0 || 1133 fprintf(out, ";;query_failed: %d\n", (int)tp->autr->query_failed)<0 1134 || fprintf(out, ";;query_interval: %d\n", 1135 (int)tp->autr->query_interval) < 0 || 1136 fprintf(out, ";;retry_time: %d\n", (int)tp->autr->retry_time) < 0) { 1137 log_err("could not write to %s: %s", fn, strerror(errno)); 1138 return 0; 1139 } 1140 1141 /* write anchors */ 1142 for(ta=tp->autr->keys; ta; ta=ta->next) { 1143 /* by default do not store START and REMOVED keys */ 1144 if(ta->s == AUTR_STATE_START) 1145 continue; 1146 if(ta->s == AUTR_STATE_REMOVED) 1147 continue; 1148 /* only store keys */ 1149 if(sldns_wirerr_get_type(ta->rr, ta->rr_len, ta->dname_len) 1150 != LDNS_RR_TYPE_DNSKEY) 1151 continue; 1152 str = sldns_wire2str_rr(ta->rr, ta->rr_len); 1153 if(!str || !str[0]) { 1154 free(str); 1155 log_err("malloc failure writing %s", fn); 1156 return 0; 1157 } 1158 str[strlen(str)-1] = 0; /* remove newline */ 1159 if(fprintf(out, "%s ;;state=%d [%s] ;;count=%d " 1160 ";;lastchange=%u ;;%s", str, (int)ta->s, 1161 trustanchor_state2str(ta->s), (int)ta->pending_count, 1162 (unsigned int)ta->last_change, 1163 ctime_r(&(ta->last_change), tmi)) < 0) { 1164 log_err("could not write to %s: %s", fn, strerror(errno)); 1165 free(str); 1166 return 0; 1167 } 1168 free(str); 1169 } 1170 return 1; 1171 } 1172 1173 void autr_write_file(struct module_env* env, struct trust_anchor* tp) 1174 { 1175 FILE* out; 1176 char* fname = tp->autr->file; 1177 char tempf[2048]; 1178 log_assert(tp->autr); 1179 if(!env) { 1180 log_err("autr_write_file: Module environment is NULL."); 1181 return; 1182 } 1183 /* unique name with pid number and thread number */ 1184 snprintf(tempf, sizeof(tempf), "%s.%d-%d", fname, (int)getpid(), 1185 env->worker?*(int*)env->worker:0); 1186 verbose(VERB_ALGO, "autotrust: write to disk: %s", tempf); 1187 out = fopen(tempf, "w"); 1188 if(!out) { 1189 fatal_exit("could not open autotrust file for writing, %s: %s", 1190 tempf, strerror(errno)); 1191 return; 1192 } 1193 if(!autr_write_contents(out, tempf, tp)) { 1194 /* failed to write contents (completely) */ 1195 fclose(out); 1196 unlink(tempf); 1197 fatal_exit("could not completely write: %s", fname); 1198 return; 1199 } 1200 if(fflush(out) != 0) 1201 log_err("could not fflush(%s): %s", fname, strerror(errno)); 1202 #ifdef HAVE_FSYNC 1203 if(fsync(fileno(out)) != 0) 1204 log_err("could not fsync(%s): %s", fname, strerror(errno)); 1205 #else 1206 FlushFileBuffers((HANDLE)_get_osfhandle(_fileno(out))); 1207 #endif 1208 if(fclose(out) != 0) { 1209 fatal_exit("could not complete write: %s: %s", 1210 fname, strerror(errno)); 1211 unlink(tempf); 1212 return; 1213 } 1214 /* success; overwrite actual file */ 1215 verbose(VERB_ALGO, "autotrust: replaced %s", fname); 1216 #ifdef UB_ON_WINDOWS 1217 (void)unlink(fname); /* windows does not replace file with rename() */ 1218 #endif 1219 if(rename(tempf, fname) < 0) { 1220 fatal_exit("rename(%s to %s): %s", tempf, fname, strerror(errno)); 1221 } 1222 } 1223 1224 /** 1225 * Verify if dnskey works for trust point 1226 * @param env: environment (with time) for verification 1227 * @param ve: validator environment (with options) for verification. 1228 * @param tp: trust point to verify with 1229 * @param rrset: DNSKEY rrset to verify. 1230 * @return false on failure, true if verification successful. 1231 */ 1232 static int 1233 verify_dnskey(struct module_env* env, struct val_env* ve, 1234 struct trust_anchor* tp, struct ub_packed_rrset_key* rrset) 1235 { 1236 char* reason = NULL; 1237 uint8_t sigalg[ALGO_NEEDS_MAX+1]; 1238 int downprot = env->cfg->harden_algo_downgrade; 1239 enum sec_status sec = val_verify_DNSKEY_with_TA(env, ve, rrset, 1240 tp->ds_rrset, tp->dnskey_rrset, downprot?sigalg:NULL, &reason); 1241 /* sigalg is ignored, it returns algorithms signalled to exist, but 1242 * in 5011 there are no other rrsets to check. if downprot is 1243 * enabled, then it checks that the DNSKEY is signed with all 1244 * algorithms available in the trust store. */ 1245 verbose(VERB_ALGO, "autotrust: validate DNSKEY with anchor: %s", 1246 sec_status_to_string(sec)); 1247 return sec == sec_status_secure; 1248 } 1249 1250 static int32_t 1251 rrsig_get_expiry(uint8_t* d, size_t len) 1252 { 1253 /* rrsig: 2(rdlen), 2(type) 1(alg) 1(v) 4(origttl), then 4(expi), (4)incep) */ 1254 if(len < 2+8+4) 1255 return 0; 1256 return sldns_read_uint32(d+2+8); 1257 } 1258 1259 /** Find minimum expiration interval from signatures */ 1260 static time_t 1261 min_expiry(struct module_env* env, struct packed_rrset_data* dd) 1262 { 1263 size_t i; 1264 int32_t t, r = 15 * 24 * 3600; /* 15 days max */ 1265 for(i=dd->count; i<dd->count+dd->rrsig_count; i++) { 1266 t = rrsig_get_expiry(dd->rr_data[i], dd->rr_len[i]); 1267 if((int32_t)t - (int32_t)*env->now > 0) { 1268 t -= (int32_t)*env->now; 1269 if(t < r) 1270 r = t; 1271 } 1272 } 1273 return (time_t)r; 1274 } 1275 1276 /** Is rr self-signed revoked key */ 1277 static int 1278 rr_is_selfsigned_revoked(struct module_env* env, struct val_env* ve, 1279 struct ub_packed_rrset_key* dnskey_rrset, size_t i) 1280 { 1281 enum sec_status sec; 1282 char* reason = NULL; 1283 verbose(VERB_ALGO, "seen REVOKE flag, check self-signed, rr %d", 1284 (int)i); 1285 /* no algorithm downgrade protection necessary, if it is selfsigned 1286 * revoked it can be removed. */ 1287 sec = dnskey_verify_rrset(env, ve, dnskey_rrset, dnskey_rrset, i, 1288 &reason); 1289 return (sec == sec_status_secure); 1290 } 1291 1292 /** Set fetched value */ 1293 static void 1294 seen_trustanchor(struct autr_ta* ta, uint8_t seen) 1295 { 1296 ta->fetched = seen; 1297 if(ta->pending_count < 250) /* no numerical overflow, please */ 1298 ta->pending_count++; 1299 } 1300 1301 /** set revoked value */ 1302 static void 1303 seen_revoked_trustanchor(struct autr_ta* ta, uint8_t revoked) 1304 { 1305 ta->revoked = revoked; 1306 } 1307 1308 /** revoke a trust anchor */ 1309 static void 1310 revoke_dnskey(struct autr_ta* ta, int off) 1311 { 1312 uint16_t flags; 1313 uint8_t* data; 1314 if(sldns_wirerr_get_type(ta->rr, ta->rr_len, ta->dname_len) != 1315 LDNS_RR_TYPE_DNSKEY) 1316 return; 1317 if(sldns_wirerr_get_rdatalen(ta->rr, ta->rr_len, ta->dname_len) < 2) 1318 return; 1319 data = sldns_wirerr_get_rdata(ta->rr, ta->rr_len, ta->dname_len); 1320 flags = sldns_read_uint16(data); 1321 if (off && (flags&LDNS_KEY_REVOKE_KEY)) 1322 flags ^= LDNS_KEY_REVOKE_KEY; /* flip */ 1323 else 1324 flags |= LDNS_KEY_REVOKE_KEY; 1325 sldns_write_uint16(data, flags); 1326 } 1327 1328 /** Compare two RRs skipping the REVOKED bit. Pass rdata(no len) */ 1329 static int 1330 dnskey_compare_skip_revbit(uint8_t* a, size_t a_len, uint8_t* b, size_t b_len) 1331 { 1332 size_t i; 1333 if(a_len != b_len) 1334 return -1; 1335 /* compare RRs RDATA byte for byte. */ 1336 for(i = 0; i < a_len; i++) 1337 { 1338 uint8_t rdf1, rdf2; 1339 rdf1 = a[i]; 1340 rdf2 = b[i]; 1341 if(i==1) { 1342 /* this is the second part of the flags field */ 1343 rdf1 |= LDNS_KEY_REVOKE_KEY; 1344 rdf2 |= LDNS_KEY_REVOKE_KEY; 1345 } 1346 if (rdf1 < rdf2) return -1; 1347 else if (rdf1 > rdf2) return 1; 1348 } 1349 return 0; 1350 } 1351 1352 1353 /** compare trust anchor with rdata, 0 if equal. Pass rdata(no len) */ 1354 static int 1355 ta_compare(struct autr_ta* a, uint16_t t, uint8_t* b, size_t b_len) 1356 { 1357 if(!a) return -1; 1358 else if(!b) return -1; 1359 else if(sldns_wirerr_get_type(a->rr, a->rr_len, a->dname_len) != t) 1360 return (int)sldns_wirerr_get_type(a->rr, a->rr_len, 1361 a->dname_len) - (int)t; 1362 else if(t == LDNS_RR_TYPE_DNSKEY) { 1363 return dnskey_compare_skip_revbit( 1364 sldns_wirerr_get_rdata(a->rr, a->rr_len, a->dname_len), 1365 sldns_wirerr_get_rdatalen(a->rr, a->rr_len, 1366 a->dname_len), b, b_len); 1367 } 1368 else if(t == LDNS_RR_TYPE_DS) { 1369 if(sldns_wirerr_get_rdatalen(a->rr, a->rr_len, a->dname_len) != 1370 b_len) 1371 return -1; 1372 return memcmp(sldns_wirerr_get_rdata(a->rr, 1373 a->rr_len, a->dname_len), b, b_len); 1374 } 1375 return -1; 1376 } 1377 1378 /** 1379 * Find key 1380 * @param tp: to search in 1381 * @param t: rr type of the rdata. 1382 * @param rdata: to look for (no rdatalen in it) 1383 * @param rdata_len: length of rdata 1384 * @param result: returns NULL or the ta key looked for. 1385 * @return false on malloc failure during search. if true examine result. 1386 */ 1387 static int 1388 find_key(struct trust_anchor* tp, uint16_t t, uint8_t* rdata, size_t rdata_len, 1389 struct autr_ta** result) 1390 { 1391 struct autr_ta* ta; 1392 if(!tp || !rdata) { 1393 *result = NULL; 1394 return 0; 1395 } 1396 for(ta=tp->autr->keys; ta; ta=ta->next) { 1397 if(ta_compare(ta, t, rdata, rdata_len) == 0) { 1398 *result = ta; 1399 return 1; 1400 } 1401 } 1402 *result = NULL; 1403 return 1; 1404 } 1405 1406 /** add key and clone RR and tp already locked. rdata without rdlen. */ 1407 static struct autr_ta* 1408 add_key(struct trust_anchor* tp, uint32_t ttl, uint8_t* rdata, size_t rdata_len) 1409 { 1410 struct autr_ta* ta; 1411 uint8_t* rr; 1412 size_t rr_len, dname_len; 1413 uint16_t rrtype = htons(LDNS_RR_TYPE_DNSKEY); 1414 uint16_t rrclass = htons(LDNS_RR_CLASS_IN); 1415 uint16_t rdlen = htons(rdata_len); 1416 dname_len = tp->namelen; 1417 ttl = htonl(ttl); 1418 rr_len = dname_len + 10 /* type,class,ttl,rdatalen */ + rdata_len; 1419 rr = (uint8_t*)malloc(rr_len); 1420 if(!rr) return NULL; 1421 memmove(rr, tp->name, tp->namelen); 1422 memmove(rr+dname_len, &rrtype, 2); 1423 memmove(rr+dname_len+2, &rrclass, 2); 1424 memmove(rr+dname_len+4, &ttl, 4); 1425 memmove(rr+dname_len+8, &rdlen, 2); 1426 memmove(rr+dname_len+10, rdata, rdata_len); 1427 ta = autr_ta_create(rr, rr_len, dname_len); 1428 if(!ta) { 1429 /* rr freed in autr_ta_create */ 1430 return NULL; 1431 } 1432 /* link in, tp already locked */ 1433 ta->next = tp->autr->keys; 1434 tp->autr->keys = ta; 1435 return ta; 1436 } 1437 1438 /** get TTL from DNSKEY rrset */ 1439 static time_t 1440 key_ttl(struct ub_packed_rrset_key* k) 1441 { 1442 struct packed_rrset_data* d = (struct packed_rrset_data*)k->entry.data; 1443 return d->ttl; 1444 } 1445 1446 /** update the time values for the trustpoint */ 1447 static void 1448 set_tp_times(struct trust_anchor* tp, time_t rrsig_exp_interval, 1449 time_t origttl, int* changed) 1450 { 1451 time_t x, qi = tp->autr->query_interval, rt = tp->autr->retry_time; 1452 1453 /* x = MIN(15days, ttl/2, expire/2) */ 1454 x = 15 * 24 * 3600; 1455 if(origttl/2 < x) 1456 x = origttl/2; 1457 if(rrsig_exp_interval/2 < x) 1458 x = rrsig_exp_interval/2; 1459 /* MAX(1hr, x) */ 1460 if(!autr_permit_small_holddown) { 1461 if(x < 3600) 1462 tp->autr->query_interval = 3600; 1463 else tp->autr->query_interval = x; 1464 } else tp->autr->query_interval = x; 1465 1466 /* x= MIN(1day, ttl/10, expire/10) */ 1467 x = 24 * 3600; 1468 if(origttl/10 < x) 1469 x = origttl/10; 1470 if(rrsig_exp_interval/10 < x) 1471 x = rrsig_exp_interval/10; 1472 /* MAX(1hr, x) */ 1473 if(!autr_permit_small_holddown) { 1474 if(x < 3600) 1475 tp->autr->retry_time = 3600; 1476 else tp->autr->retry_time = x; 1477 } else tp->autr->retry_time = x; 1478 1479 if(qi != tp->autr->query_interval || rt != tp->autr->retry_time) { 1480 *changed = 1; 1481 verbose(VERB_ALGO, "orig_ttl is %d", (int)origttl); 1482 verbose(VERB_ALGO, "rrsig_exp_interval is %d", 1483 (int)rrsig_exp_interval); 1484 verbose(VERB_ALGO, "query_interval: %d, retry_time: %d", 1485 (int)tp->autr->query_interval, 1486 (int)tp->autr->retry_time); 1487 } 1488 } 1489 1490 /** init events to zero */ 1491 static void 1492 init_events(struct trust_anchor* tp) 1493 { 1494 struct autr_ta* ta; 1495 for(ta=tp->autr->keys; ta; ta=ta->next) { 1496 ta->fetched = 0; 1497 } 1498 } 1499 1500 /** check for revoked keys without trusting any other information */ 1501 static void 1502 check_contains_revoked(struct module_env* env, struct val_env* ve, 1503 struct trust_anchor* tp, struct ub_packed_rrset_key* dnskey_rrset, 1504 int* changed) 1505 { 1506 struct packed_rrset_data* dd = (struct packed_rrset_data*) 1507 dnskey_rrset->entry.data; 1508 size_t i; 1509 log_assert(ntohs(dnskey_rrset->rk.type) == LDNS_RR_TYPE_DNSKEY); 1510 for(i=0; i<dd->count; i++) { 1511 struct autr_ta* ta = NULL; 1512 if(!rr_is_dnskey_sep(ntohs(dnskey_rrset->rk.type), 1513 dd->rr_data[i]+2, dd->rr_len[i]-2) || 1514 !rr_is_dnskey_revoked(ntohs(dnskey_rrset->rk.type), 1515 dd->rr_data[i]+2, dd->rr_len[i]-2)) 1516 continue; /* not a revoked KSK */ 1517 if(!find_key(tp, ntohs(dnskey_rrset->rk.type), 1518 dd->rr_data[i]+2, dd->rr_len[i]-2, &ta)) { 1519 log_err("malloc failure"); 1520 continue; /* malloc fail in compare*/ 1521 } 1522 if(!ta) 1523 continue; /* key not found */ 1524 if(rr_is_selfsigned_revoked(env, ve, dnskey_rrset, i)) { 1525 /* checked if there is an rrsig signed by this key. */ 1526 /* same keytag, but stored can be revoked already, so 1527 * compare keytags, with +0 or +128(REVOKE flag) */ 1528 log_assert(dnskey_calc_keytag(dnskey_rrset, i)-128 == 1529 sldns_calc_keytag_raw(sldns_wirerr_get_rdata( 1530 ta->rr, ta->rr_len, ta->dname_len), 1531 sldns_wirerr_get_rdatalen(ta->rr, ta->rr_len, 1532 ta->dname_len)) || 1533 dnskey_calc_keytag(dnskey_rrset, i) == 1534 sldns_calc_keytag_raw(sldns_wirerr_get_rdata( 1535 ta->rr, ta->rr_len, ta->dname_len), 1536 sldns_wirerr_get_rdatalen(ta->rr, ta->rr_len, 1537 ta->dname_len))); /* checks conversion*/ 1538 verbose_key(ta, VERB_ALGO, "is self-signed revoked"); 1539 if(!ta->revoked) 1540 *changed = 1; 1541 seen_revoked_trustanchor(ta, 1); 1542 do_revoked(env, ta, changed); 1543 } 1544 } 1545 } 1546 1547 /** See if a DNSKEY is verified by one of the DSes */ 1548 static int 1549 key_matches_a_ds(struct module_env* env, struct val_env* ve, 1550 struct ub_packed_rrset_key* dnskey_rrset, size_t key_idx, 1551 struct ub_packed_rrset_key* ds_rrset) 1552 { 1553 struct packed_rrset_data* dd = (struct packed_rrset_data*) 1554 ds_rrset->entry.data; 1555 size_t ds_idx, num = dd->count; 1556 int d = val_favorite_ds_algo(ds_rrset); 1557 char* reason = ""; 1558 for(ds_idx=0; ds_idx<num; ds_idx++) { 1559 if(!ds_digest_algo_is_supported(ds_rrset, ds_idx) || 1560 !ds_key_algo_is_supported(ds_rrset, ds_idx) || 1561 ds_get_digest_algo(ds_rrset, ds_idx) != d) 1562 continue; 1563 if(ds_get_key_algo(ds_rrset, ds_idx) 1564 != dnskey_get_algo(dnskey_rrset, key_idx) 1565 || dnskey_calc_keytag(dnskey_rrset, key_idx) 1566 != ds_get_keytag(ds_rrset, ds_idx)) { 1567 continue; 1568 } 1569 if(!ds_digest_match_dnskey(env, dnskey_rrset, key_idx, 1570 ds_rrset, ds_idx)) { 1571 verbose(VERB_ALGO, "DS match attempt failed"); 1572 continue; 1573 } 1574 if(dnskey_verify_rrset(env, ve, dnskey_rrset, 1575 dnskey_rrset, key_idx, &reason) == sec_status_secure) { 1576 return 1; 1577 } else { 1578 verbose(VERB_ALGO, "DS match failed because the key " 1579 "does not verify the keyset: %s", reason); 1580 } 1581 } 1582 return 0; 1583 } 1584 1585 /** Set update events */ 1586 static int 1587 update_events(struct module_env* env, struct val_env* ve, 1588 struct trust_anchor* tp, struct ub_packed_rrset_key* dnskey_rrset, 1589 int* changed) 1590 { 1591 struct packed_rrset_data* dd = (struct packed_rrset_data*) 1592 dnskey_rrset->entry.data; 1593 size_t i; 1594 log_assert(ntohs(dnskey_rrset->rk.type) == LDNS_RR_TYPE_DNSKEY); 1595 init_events(tp); 1596 for(i=0; i<dd->count; i++) { 1597 struct autr_ta* ta = NULL; 1598 if(!rr_is_dnskey_sep(ntohs(dnskey_rrset->rk.type), 1599 dd->rr_data[i]+2, dd->rr_len[i]-2)) 1600 continue; 1601 if(rr_is_dnskey_revoked(ntohs(dnskey_rrset->rk.type), 1602 dd->rr_data[i]+2, dd->rr_len[i]-2)) { 1603 /* self-signed revoked keys already detected before, 1604 * other revoked keys are not 'added' again */ 1605 continue; 1606 } 1607 /* is a key of this type supported?. Note rr_list and 1608 * packed_rrset are in the same order. */ 1609 if(!dnskey_algo_is_supported(dnskey_rrset, i)) { 1610 /* skip unknown algorithm key, it is useless to us */ 1611 log_nametypeclass(VERB_DETAIL, "trust point has " 1612 "unsupported algorithm at", 1613 tp->name, LDNS_RR_TYPE_DNSKEY, tp->dclass); 1614 continue; 1615 } 1616 1617 /* is it new? if revocation bit set, find the unrevoked key */ 1618 if(!find_key(tp, ntohs(dnskey_rrset->rk.type), 1619 dd->rr_data[i]+2, dd->rr_len[i]-2, &ta)) { 1620 return 0; 1621 } 1622 if(!ta) { 1623 ta = add_key(tp, (uint32_t)dd->rr_ttl[i], 1624 dd->rr_data[i]+2, dd->rr_len[i]-2); 1625 *changed = 1; 1626 /* first time seen, do we have DSes? if match: VALID */ 1627 if(ta && tp->ds_rrset && key_matches_a_ds(env, ve, 1628 dnskey_rrset, i, tp->ds_rrset)) { 1629 verbose_key(ta, VERB_ALGO, "verified by DS"); 1630 ta->s = AUTR_STATE_VALID; 1631 } 1632 } 1633 if(!ta) { 1634 return 0; 1635 } 1636 seen_trustanchor(ta, 1); 1637 verbose_key(ta, VERB_ALGO, "in DNS response"); 1638 } 1639 set_tp_times(tp, min_expiry(env, dd), key_ttl(dnskey_rrset), changed); 1640 return 1; 1641 } 1642 1643 /** 1644 * Check if the holddown time has already exceeded 1645 * setting: add-holddown: add holddown timer 1646 * setting: del-holddown: del holddown timer 1647 * @param env: environment with current time 1648 * @param ta: trust anchor to check for. 1649 * @param holddown: the timer value 1650 * @return number of seconds the holddown has passed. 1651 */ 1652 static time_t 1653 check_holddown(struct module_env* env, struct autr_ta* ta, 1654 unsigned int holddown) 1655 { 1656 time_t elapsed; 1657 if(*env->now < ta->last_change) { 1658 log_warn("time goes backwards. delaying key holddown"); 1659 return 0; 1660 } 1661 elapsed = *env->now - ta->last_change; 1662 if (elapsed > (time_t)holddown) { 1663 return elapsed-(time_t)holddown; 1664 } 1665 verbose_key(ta, VERB_ALGO, "holddown time " ARG_LL "d seconds to go", 1666 (long long) ((time_t)holddown-elapsed)); 1667 return 0; 1668 } 1669 1670 1671 /** Set last_change to now */ 1672 static void 1673 reset_holddown(struct module_env* env, struct autr_ta* ta, int* changed) 1674 { 1675 ta->last_change = *env->now; 1676 *changed = 1; 1677 } 1678 1679 /** Set the state for this trust anchor */ 1680 static void 1681 set_trustanchor_state(struct module_env* env, struct autr_ta* ta, int* changed, 1682 autr_state_t s) 1683 { 1684 verbose_key(ta, VERB_ALGO, "update: %s to %s", 1685 trustanchor_state2str(ta->s), trustanchor_state2str(s)); 1686 ta->s = s; 1687 reset_holddown(env, ta, changed); 1688 } 1689 1690 1691 /** Event: NewKey */ 1692 static void 1693 do_newkey(struct module_env* env, struct autr_ta* anchor, int* c) 1694 { 1695 if (anchor->s == AUTR_STATE_START) 1696 set_trustanchor_state(env, anchor, c, AUTR_STATE_ADDPEND); 1697 } 1698 1699 /** Event: AddTime */ 1700 static void 1701 do_addtime(struct module_env* env, struct autr_ta* anchor, int* c) 1702 { 1703 /* This not according to RFC, this is 30 days, but the RFC demands 1704 * MAX(30days, TTL expire time of first DNSKEY set with this key), 1705 * The value may be too small if a very large TTL was used. */ 1706 time_t exceeded = check_holddown(env, anchor, env->cfg->add_holddown); 1707 if (exceeded && anchor->s == AUTR_STATE_ADDPEND) { 1708 verbose_key(anchor, VERB_ALGO, "add-holddown time exceeded " 1709 ARG_LL "d seconds ago, and pending-count %d", 1710 (long long)exceeded, anchor->pending_count); 1711 if(anchor->pending_count >= MIN_PENDINGCOUNT) { 1712 set_trustanchor_state(env, anchor, c, AUTR_STATE_VALID); 1713 anchor->pending_count = 0; 1714 return; 1715 } 1716 verbose_key(anchor, VERB_ALGO, "add-holddown time sanity check " 1717 "failed (pending count: %d)", anchor->pending_count); 1718 } 1719 } 1720 1721 /** Event: RemTime */ 1722 static void 1723 do_remtime(struct module_env* env, struct autr_ta* anchor, int* c) 1724 { 1725 time_t exceeded = check_holddown(env, anchor, env->cfg->del_holddown); 1726 if(exceeded && anchor->s == AUTR_STATE_REVOKED) { 1727 verbose_key(anchor, VERB_ALGO, "del-holddown time exceeded " 1728 ARG_LL "d seconds ago", (long long)exceeded); 1729 set_trustanchor_state(env, anchor, c, AUTR_STATE_REMOVED); 1730 } 1731 } 1732 1733 /** Event: KeyRem */ 1734 static void 1735 do_keyrem(struct module_env* env, struct autr_ta* anchor, int* c) 1736 { 1737 if(anchor->s == AUTR_STATE_ADDPEND) { 1738 set_trustanchor_state(env, anchor, c, AUTR_STATE_START); 1739 anchor->pending_count = 0; 1740 } else if(anchor->s == AUTR_STATE_VALID) 1741 set_trustanchor_state(env, anchor, c, AUTR_STATE_MISSING); 1742 } 1743 1744 /** Event: KeyPres */ 1745 static void 1746 do_keypres(struct module_env* env, struct autr_ta* anchor, int* c) 1747 { 1748 if(anchor->s == AUTR_STATE_MISSING) 1749 set_trustanchor_state(env, anchor, c, AUTR_STATE_VALID); 1750 } 1751 1752 /* Event: Revoked */ 1753 static void 1754 do_revoked(struct module_env* env, struct autr_ta* anchor, int* c) 1755 { 1756 if(anchor->s == AUTR_STATE_VALID || anchor->s == AUTR_STATE_MISSING) { 1757 set_trustanchor_state(env, anchor, c, AUTR_STATE_REVOKED); 1758 verbose_key(anchor, VERB_ALGO, "old id, prior to revocation"); 1759 revoke_dnskey(anchor, 0); 1760 verbose_key(anchor, VERB_ALGO, "new id, after revocation"); 1761 } 1762 } 1763 1764 /** Do statestable transition matrix for anchor */ 1765 static void 1766 anchor_state_update(struct module_env* env, struct autr_ta* anchor, int* c) 1767 { 1768 log_assert(anchor); 1769 switch(anchor->s) { 1770 /* START */ 1771 case AUTR_STATE_START: 1772 /* NewKey: ADDPEND */ 1773 if (anchor->fetched) 1774 do_newkey(env, anchor, c); 1775 break; 1776 /* ADDPEND */ 1777 case AUTR_STATE_ADDPEND: 1778 /* KeyRem: START */ 1779 if (!anchor->fetched) 1780 do_keyrem(env, anchor, c); 1781 /* AddTime: VALID */ 1782 else do_addtime(env, anchor, c); 1783 break; 1784 /* VALID */ 1785 case AUTR_STATE_VALID: 1786 /* RevBit: REVOKED */ 1787 if (anchor->revoked) 1788 do_revoked(env, anchor, c); 1789 /* KeyRem: MISSING */ 1790 else if (!anchor->fetched) 1791 do_keyrem(env, anchor, c); 1792 else if(!anchor->last_change) { 1793 verbose_key(anchor, VERB_ALGO, "first seen"); 1794 reset_holddown(env, anchor, c); 1795 } 1796 break; 1797 /* MISSING */ 1798 case AUTR_STATE_MISSING: 1799 /* RevBit: REVOKED */ 1800 if (anchor->revoked) 1801 do_revoked(env, anchor, c); 1802 /* KeyPres */ 1803 else if (anchor->fetched) 1804 do_keypres(env, anchor, c); 1805 break; 1806 /* REVOKED */ 1807 case AUTR_STATE_REVOKED: 1808 if (anchor->fetched) 1809 reset_holddown(env, anchor, c); 1810 /* RemTime: REMOVED */ 1811 else do_remtime(env, anchor, c); 1812 break; 1813 /* REMOVED */ 1814 case AUTR_STATE_REMOVED: 1815 default: 1816 break; 1817 } 1818 } 1819 1820 /** if ZSK init then trust KSKs */ 1821 static int 1822 init_zsk_to_ksk(struct module_env* env, struct trust_anchor* tp, int* changed) 1823 { 1824 /* search for VALID ZSKs */ 1825 struct autr_ta* anchor; 1826 int validzsk = 0; 1827 int validksk = 0; 1828 for(anchor = tp->autr->keys; anchor; anchor = anchor->next) { 1829 /* last_change test makes sure it was manually configured */ 1830 if(sldns_wirerr_get_type(anchor->rr, anchor->rr_len, 1831 anchor->dname_len) == LDNS_RR_TYPE_DNSKEY && 1832 anchor->last_change == 0 && 1833 !ta_is_dnskey_sep(anchor) && 1834 anchor->s == AUTR_STATE_VALID) 1835 validzsk++; 1836 } 1837 if(validzsk == 0) 1838 return 0; 1839 for(anchor = tp->autr->keys; anchor; anchor = anchor->next) { 1840 if (ta_is_dnskey_sep(anchor) && 1841 anchor->s == AUTR_STATE_ADDPEND) { 1842 verbose_key(anchor, VERB_ALGO, "trust KSK from " 1843 "ZSK(config)"); 1844 set_trustanchor_state(env, anchor, changed, 1845 AUTR_STATE_VALID); 1846 validksk++; 1847 } 1848 } 1849 return validksk; 1850 } 1851 1852 /** Remove missing trustanchors so the list does not grow forever */ 1853 static void 1854 remove_missing_trustanchors(struct module_env* env, struct trust_anchor* tp, 1855 int* changed) 1856 { 1857 struct autr_ta* anchor; 1858 time_t exceeded; 1859 int valid = 0; 1860 /* see if we have anchors that are valid */ 1861 for(anchor = tp->autr->keys; anchor; anchor = anchor->next) { 1862 /* Only do KSKs */ 1863 if (!ta_is_dnskey_sep(anchor)) 1864 continue; 1865 if (anchor->s == AUTR_STATE_VALID) 1866 valid++; 1867 } 1868 /* if there are no SEP Valid anchors, see if we started out with 1869 * a ZSK (last-change=0) anchor, which is VALID and there are KSKs 1870 * now that can be made valid. Do this immediately because there 1871 * is no guarantee that the ZSKs get announced long enough. Usually 1872 * this is immediately after init with a ZSK trusted, unless the domain 1873 * was not advertising any KSKs at all. In which case we perfectly 1874 * track the zero number of KSKs. */ 1875 if(valid == 0) { 1876 valid = init_zsk_to_ksk(env, tp, changed); 1877 if(valid == 0) 1878 return; 1879 } 1880 1881 for(anchor = tp->autr->keys; anchor; anchor = anchor->next) { 1882 /* ignore ZSKs if newly added */ 1883 if(anchor->s == AUTR_STATE_START) 1884 continue; 1885 /* remove ZSKs if a KSK is present */ 1886 if (!ta_is_dnskey_sep(anchor)) { 1887 if(valid > 0) { 1888 verbose_key(anchor, VERB_ALGO, "remove ZSK " 1889 "[%d key(s) VALID]", valid); 1890 set_trustanchor_state(env, anchor, changed, 1891 AUTR_STATE_REMOVED); 1892 } 1893 continue; 1894 } 1895 /* Only do MISSING keys */ 1896 if (anchor->s != AUTR_STATE_MISSING) 1897 continue; 1898 if(env->cfg->keep_missing == 0) 1899 continue; /* keep forever */ 1900 1901 exceeded = check_holddown(env, anchor, env->cfg->keep_missing); 1902 /* If keep_missing has exceeded and we still have more than 1903 * one valid KSK: remove missing trust anchor */ 1904 if (exceeded && valid > 0) { 1905 verbose_key(anchor, VERB_ALGO, "keep-missing time " 1906 "exceeded " ARG_LL "d seconds ago, [%d key(s) VALID]", 1907 (long long)exceeded, valid); 1908 set_trustanchor_state(env, anchor, changed, 1909 AUTR_STATE_REMOVED); 1910 } 1911 } 1912 } 1913 1914 /** Do the statetable from RFC5011 transition matrix */ 1915 static int 1916 do_statetable(struct module_env* env, struct trust_anchor* tp, int* changed) 1917 { 1918 struct autr_ta* anchor; 1919 for(anchor = tp->autr->keys; anchor; anchor = anchor->next) { 1920 /* Only do KSKs */ 1921 if(!ta_is_dnskey_sep(anchor)) 1922 continue; 1923 anchor_state_update(env, anchor, changed); 1924 } 1925 remove_missing_trustanchors(env, tp, changed); 1926 return 1; 1927 } 1928 1929 /** See if time alone makes ADDPEND to VALID transition */ 1930 static void 1931 autr_holddown_exceed(struct module_env* env, struct trust_anchor* tp, int* c) 1932 { 1933 struct autr_ta* anchor; 1934 for(anchor = tp->autr->keys; anchor; anchor = anchor->next) { 1935 if(ta_is_dnskey_sep(anchor) && 1936 anchor->s == AUTR_STATE_ADDPEND) 1937 do_addtime(env, anchor, c); 1938 } 1939 } 1940 1941 /** cleanup key list */ 1942 static void 1943 autr_cleanup_keys(struct trust_anchor* tp) 1944 { 1945 struct autr_ta* p, **prevp; 1946 prevp = &tp->autr->keys; 1947 p = tp->autr->keys; 1948 while(p) { 1949 /* do we want to remove this key? */ 1950 if(p->s == AUTR_STATE_START || p->s == AUTR_STATE_REMOVED || 1951 sldns_wirerr_get_type(p->rr, p->rr_len, p->dname_len) 1952 != LDNS_RR_TYPE_DNSKEY) { 1953 struct autr_ta* np = p->next; 1954 /* remove */ 1955 free(p->rr); 1956 free(p); 1957 /* snip and go to next item */ 1958 *prevp = np; 1959 p = np; 1960 continue; 1961 } 1962 /* remove pending counts if no longer pending */ 1963 if(p->s != AUTR_STATE_ADDPEND) 1964 p->pending_count = 0; 1965 prevp = &p->next; 1966 p = p->next; 1967 } 1968 } 1969 1970 /** calculate next probe time */ 1971 static time_t 1972 calc_next_probe(struct module_env* env, time_t wait) 1973 { 1974 /* make it random, 90-100% */ 1975 time_t rnd, rest; 1976 if(!autr_permit_small_holddown) { 1977 if(wait < 3600) 1978 wait = 3600; 1979 } else { 1980 if(wait == 0) wait = 1; 1981 } 1982 rnd = wait/10; 1983 rest = wait-rnd; 1984 rnd = (time_t)ub_random_max(env->rnd, (long int)rnd); 1985 return (time_t)(*env->now + rest + rnd); 1986 } 1987 1988 /** what is first probe time (anchors must be locked) */ 1989 static time_t 1990 wait_probe_time(struct val_anchors* anchors) 1991 { 1992 rbnode_t* t = rbtree_first(&anchors->autr->probe); 1993 if(t != RBTREE_NULL) 1994 return ((struct trust_anchor*)t->key)->autr->next_probe_time; 1995 return 0; 1996 } 1997 1998 /** reset worker timer */ 1999 static void 2000 reset_worker_timer(struct module_env* env) 2001 { 2002 struct timeval tv; 2003 #ifndef S_SPLINT_S 2004 time_t next = (time_t)wait_probe_time(env->anchors); 2005 /* in case this is libunbound, no timer */ 2006 if(!env->probe_timer) 2007 return; 2008 if(next > *env->now) 2009 tv.tv_sec = (time_t)(next - *env->now); 2010 else tv.tv_sec = 0; 2011 #endif 2012 tv.tv_usec = 0; 2013 comm_timer_set(env->probe_timer, &tv); 2014 verbose(VERB_ALGO, "scheduled next probe in " ARG_LL "d sec", (long long)tv.tv_sec); 2015 } 2016 2017 /** set next probe for trust anchor */ 2018 static int 2019 set_next_probe(struct module_env* env, struct trust_anchor* tp, 2020 struct ub_packed_rrset_key* dnskey_rrset) 2021 { 2022 struct trust_anchor key, *tp2; 2023 time_t mold, mnew; 2024 /* use memory allocated in rrset for temporary name storage */ 2025 key.node.key = &key; 2026 key.name = dnskey_rrset->rk.dname; 2027 key.namelen = dnskey_rrset->rk.dname_len; 2028 key.namelabs = dname_count_labels(key.name); 2029 key.dclass = tp->dclass; 2030 lock_basic_unlock(&tp->lock); 2031 2032 /* fetch tp again and lock anchors, so that we can modify the trees */ 2033 lock_basic_lock(&env->anchors->lock); 2034 tp2 = (struct trust_anchor*)rbtree_search(env->anchors->tree, &key); 2035 if(!tp2) { 2036 verbose(VERB_ALGO, "trustpoint was deleted in set_next_probe"); 2037 lock_basic_unlock(&env->anchors->lock); 2038 return 0; 2039 } 2040 log_assert(tp == tp2); 2041 lock_basic_lock(&tp->lock); 2042 2043 /* schedule */ 2044 mold = wait_probe_time(env->anchors); 2045 (void)rbtree_delete(&env->anchors->autr->probe, tp); 2046 tp->autr->next_probe_time = calc_next_probe(env, 2047 tp->autr->query_interval); 2048 (void)rbtree_insert(&env->anchors->autr->probe, &tp->autr->pnode); 2049 mnew = wait_probe_time(env->anchors); 2050 2051 lock_basic_unlock(&env->anchors->lock); 2052 verbose(VERB_ALGO, "next probe set in %d seconds", 2053 (int)tp->autr->next_probe_time - (int)*env->now); 2054 if(mold != mnew) { 2055 reset_worker_timer(env); 2056 } 2057 return 1; 2058 } 2059 2060 /** Revoke and Delete a trust point */ 2061 static void 2062 autr_tp_remove(struct module_env* env, struct trust_anchor* tp, 2063 struct ub_packed_rrset_key* dnskey_rrset) 2064 { 2065 struct trust_anchor* del_tp; 2066 struct trust_anchor key; 2067 struct autr_point_data pd; 2068 time_t mold, mnew; 2069 2070 log_nametypeclass(VERB_OPS, "trust point was revoked", 2071 tp->name, LDNS_RR_TYPE_DNSKEY, tp->dclass); 2072 tp->autr->revoked = 1; 2073 2074 /* use space allocated for dnskey_rrset to save name of anchor */ 2075 memset(&key, 0, sizeof(key)); 2076 memset(&pd, 0, sizeof(pd)); 2077 key.autr = &pd; 2078 key.node.key = &key; 2079 pd.pnode.key = &key; 2080 pd.next_probe_time = tp->autr->next_probe_time; 2081 key.name = dnskey_rrset->rk.dname; 2082 key.namelen = tp->namelen; 2083 key.namelabs = tp->namelabs; 2084 key.dclass = tp->dclass; 2085 2086 /* unlock */ 2087 lock_basic_unlock(&tp->lock); 2088 2089 /* take from tree. It could be deleted by someone else,hence (void). */ 2090 lock_basic_lock(&env->anchors->lock); 2091 del_tp = (struct trust_anchor*)rbtree_delete(env->anchors->tree, &key); 2092 mold = wait_probe_time(env->anchors); 2093 (void)rbtree_delete(&env->anchors->autr->probe, &key); 2094 mnew = wait_probe_time(env->anchors); 2095 anchors_init_parents_locked(env->anchors); 2096 lock_basic_unlock(&env->anchors->lock); 2097 2098 /* if !del_tp then the trust point is no longer present in the tree, 2099 * it was deleted by someone else, who will write the zonefile and 2100 * clean up the structure */ 2101 if(del_tp) { 2102 /* save on disk */ 2103 del_tp->autr->next_probe_time = 0; /* no more probing for it */ 2104 autr_write_file(env, del_tp); 2105 2106 /* delete */ 2107 autr_point_delete(del_tp); 2108 } 2109 if(mold != mnew) { 2110 reset_worker_timer(env); 2111 } 2112 } 2113 2114 int autr_process_prime(struct module_env* env, struct val_env* ve, 2115 struct trust_anchor* tp, struct ub_packed_rrset_key* dnskey_rrset) 2116 { 2117 int changed = 0; 2118 log_assert(tp && tp->autr); 2119 /* autotrust update trust anchors */ 2120 /* the tp is locked, and stays locked unless it is deleted */ 2121 2122 /* we could just catch the anchor here while another thread 2123 * is busy deleting it. Just unlock and let the other do its job */ 2124 if(tp->autr->revoked) { 2125 log_nametypeclass(VERB_ALGO, "autotrust not processed, " 2126 "trust point revoked", tp->name, 2127 LDNS_RR_TYPE_DNSKEY, tp->dclass); 2128 lock_basic_unlock(&tp->lock); 2129 return 0; /* it is revoked */ 2130 } 2131 2132 /* query_dnskeys(): */ 2133 tp->autr->last_queried = *env->now; 2134 2135 log_nametypeclass(VERB_ALGO, "autotrust process for", 2136 tp->name, LDNS_RR_TYPE_DNSKEY, tp->dclass); 2137 /* see if time alone makes some keys valid */ 2138 autr_holddown_exceed(env, tp, &changed); 2139 if(changed) { 2140 verbose(VERB_ALGO, "autotrust: morekeys, reassemble"); 2141 if(!autr_assemble(tp)) { 2142 log_err("malloc failure assembling autotrust keys"); 2143 return 1; /* unchanged */ 2144 } 2145 } 2146 /* did we get any data? */ 2147 if(!dnskey_rrset) { 2148 verbose(VERB_ALGO, "autotrust: no dnskey rrset"); 2149 /* no update of query_failed, because then we would have 2150 * to write to disk. But we cannot because we maybe are 2151 * still 'initialising' with DS records, that we cannot write 2152 * in the full format (which only contains KSKs). */ 2153 return 1; /* trust point exists */ 2154 } 2155 /* check for revoked keys to remove immediately */ 2156 check_contains_revoked(env, ve, tp, dnskey_rrset, &changed); 2157 if(changed) { 2158 verbose(VERB_ALGO, "autotrust: revokedkeys, reassemble"); 2159 if(!autr_assemble(tp)) { 2160 log_err("malloc failure assembling autotrust keys"); 2161 return 1; /* unchanged */ 2162 } 2163 if(!tp->ds_rrset && !tp->dnskey_rrset) { 2164 /* no more keys, all are revoked */ 2165 /* this is a success for this probe attempt */ 2166 tp->autr->last_success = *env->now; 2167 autr_tp_remove(env, tp, dnskey_rrset); 2168 return 0; /* trust point removed */ 2169 } 2170 } 2171 /* verify the dnskey rrset and see if it is valid. */ 2172 if(!verify_dnskey(env, ve, tp, dnskey_rrset)) { 2173 verbose(VERB_ALGO, "autotrust: dnskey did not verify."); 2174 /* only increase failure count if this is not the first prime, 2175 * this means there was a previous successful probe */ 2176 if(tp->autr->last_success) { 2177 tp->autr->query_failed += 1; 2178 autr_write_file(env, tp); 2179 } 2180 return 1; /* trust point exists */ 2181 } 2182 2183 tp->autr->last_success = *env->now; 2184 tp->autr->query_failed = 0; 2185 2186 /* Add new trust anchors to the data structure 2187 * - note which trust anchors are seen this probe. 2188 * Set trustpoint query_interval and retry_time. 2189 * - find minimum rrsig expiration interval 2190 */ 2191 if(!update_events(env, ve, tp, dnskey_rrset, &changed)) { 2192 log_err("malloc failure in autotrust update_events. " 2193 "trust point unchanged."); 2194 return 1; /* trust point unchanged, so exists */ 2195 } 2196 2197 /* - for every SEP key do the 5011 statetable. 2198 * - remove missing trustanchors (if veryold and we have new anchors). 2199 */ 2200 if(!do_statetable(env, tp, &changed)) { 2201 log_err("malloc failure in autotrust do_statetable. " 2202 "trust point unchanged."); 2203 return 1; /* trust point unchanged, so exists */ 2204 } 2205 2206 autr_cleanup_keys(tp); 2207 if(!set_next_probe(env, tp, dnskey_rrset)) 2208 return 0; /* trust point does not exist */ 2209 autr_write_file(env, tp); 2210 if(changed) { 2211 verbose(VERB_ALGO, "autotrust: changed, reassemble"); 2212 if(!autr_assemble(tp)) { 2213 log_err("malloc failure assembling autotrust keys"); 2214 return 1; /* unchanged */ 2215 } 2216 if(!tp->ds_rrset && !tp->dnskey_rrset) { 2217 /* no more keys, all are revoked */ 2218 autr_tp_remove(env, tp, dnskey_rrset); 2219 return 0; /* trust point removed */ 2220 } 2221 } else verbose(VERB_ALGO, "autotrust: no changes"); 2222 2223 return 1; /* trust point exists */ 2224 } 2225 2226 /** debug print a trust anchor key */ 2227 static void 2228 autr_debug_print_ta(struct autr_ta* ta) 2229 { 2230 char buf[32]; 2231 char* str = sldns_wire2str_rr(ta->rr, ta->rr_len); 2232 if(!str) { 2233 log_info("out of memory in debug_print_ta"); 2234 return; 2235 } 2236 if(str && str[0]) str[strlen(str)-1]=0; /* remove newline */ 2237 ctime_r(&ta->last_change, buf); 2238 if(buf[0]) buf[strlen(buf)-1]=0; /* remove newline */ 2239 log_info("[%s] %s ;;state:%d ;;pending_count:%d%s%s last:%s", 2240 trustanchor_state2str(ta->s), str, ta->s, ta->pending_count, 2241 ta->fetched?" fetched":"", ta->revoked?" revoked":"", buf); 2242 free(str); 2243 } 2244 2245 /** debug print a trust point */ 2246 static void 2247 autr_debug_print_tp(struct trust_anchor* tp) 2248 { 2249 struct autr_ta* ta; 2250 char buf[257]; 2251 if(!tp->autr) 2252 return; 2253 dname_str(tp->name, buf); 2254 log_info("trust point %s : %d", buf, (int)tp->dclass); 2255 log_info("assembled %d DS and %d DNSKEYs", 2256 (int)tp->numDS, (int)tp->numDNSKEY); 2257 if(tp->ds_rrset) { 2258 log_packed_rrset(0, "DS:", tp->ds_rrset); 2259 } 2260 if(tp->dnskey_rrset) { 2261 log_packed_rrset(0, "DNSKEY:", tp->dnskey_rrset); 2262 } 2263 log_info("file %s", tp->autr->file); 2264 ctime_r(&tp->autr->last_queried, buf); 2265 if(buf[0]) buf[strlen(buf)-1]=0; /* remove newline */ 2266 log_info("last_queried: %u %s", (unsigned)tp->autr->last_queried, buf); 2267 ctime_r(&tp->autr->last_success, buf); 2268 if(buf[0]) buf[strlen(buf)-1]=0; /* remove newline */ 2269 log_info("last_success: %u %s", (unsigned)tp->autr->last_success, buf); 2270 ctime_r(&tp->autr->next_probe_time, buf); 2271 if(buf[0]) buf[strlen(buf)-1]=0; /* remove newline */ 2272 log_info("next_probe_time: %u %s", (unsigned)tp->autr->next_probe_time, 2273 buf); 2274 log_info("query_interval: %u", (unsigned)tp->autr->query_interval); 2275 log_info("retry_time: %u", (unsigned)tp->autr->retry_time); 2276 log_info("query_failed: %u", (unsigned)tp->autr->query_failed); 2277 2278 for(ta=tp->autr->keys; ta; ta=ta->next) { 2279 autr_debug_print_ta(ta); 2280 } 2281 } 2282 2283 void 2284 autr_debug_print(struct val_anchors* anchors) 2285 { 2286 struct trust_anchor* tp; 2287 lock_basic_lock(&anchors->lock); 2288 RBTREE_FOR(tp, struct trust_anchor*, anchors->tree) { 2289 lock_basic_lock(&tp->lock); 2290 autr_debug_print_tp(tp); 2291 lock_basic_unlock(&tp->lock); 2292 } 2293 lock_basic_unlock(&anchors->lock); 2294 } 2295 2296 void probe_answer_cb(void* arg, int ATTR_UNUSED(rcode), 2297 sldns_buffer* ATTR_UNUSED(buf), enum sec_status ATTR_UNUSED(sec), 2298 char* ATTR_UNUSED(why_bogus)) 2299 { 2300 /* retry was set before the query was done, 2301 * re-querytime is set when query succeeded, but that may not 2302 * have reset this timer because the query could have been 2303 * handled by another thread. In that case, this callback would 2304 * get called after the original timeout is done. 2305 * By not resetting the timer, it may probe more often, but not 2306 * less often. 2307 * Unless the new lookup resulted in smaller TTLs and thus smaller 2308 * timeout values. In that case one old TTL could be mistakenly done. 2309 */ 2310 struct module_env* env = (struct module_env*)arg; 2311 verbose(VERB_ALGO, "autotrust probe answer cb"); 2312 reset_worker_timer(env); 2313 } 2314 2315 /** probe a trust anchor DNSKEY and unlocks tp */ 2316 static void 2317 probe_anchor(struct module_env* env, struct trust_anchor* tp) 2318 { 2319 struct query_info qinfo; 2320 uint16_t qflags = BIT_RD; 2321 struct edns_data edns; 2322 sldns_buffer* buf = env->scratch_buffer; 2323 qinfo.qname = regional_alloc_init(env->scratch, tp->name, tp->namelen); 2324 if(!qinfo.qname) { 2325 log_err("out of memory making 5011 probe"); 2326 return; 2327 } 2328 qinfo.qname_len = tp->namelen; 2329 qinfo.qtype = LDNS_RR_TYPE_DNSKEY; 2330 qinfo.qclass = tp->dclass; 2331 log_query_info(VERB_ALGO, "autotrust probe", &qinfo); 2332 verbose(VERB_ALGO, "retry probe set in %d seconds", 2333 (int)tp->autr->next_probe_time - (int)*env->now); 2334 edns.edns_present = 1; 2335 edns.ext_rcode = 0; 2336 edns.edns_version = 0; 2337 edns.bits = EDNS_DO; 2338 edns.opt_list = NULL; 2339 if(sldns_buffer_capacity(buf) < 65535) 2340 edns.udp_size = (uint16_t)sldns_buffer_capacity(buf); 2341 else edns.udp_size = 65535; 2342 2343 /* can't hold the lock while mesh_run is processing */ 2344 lock_basic_unlock(&tp->lock); 2345 2346 /* delete the DNSKEY from rrset and key cache so an active probe 2347 * is done. First the rrset so another thread does not use it 2348 * to recreate the key entry in a race condition. */ 2349 rrset_cache_remove(env->rrset_cache, qinfo.qname, qinfo.qname_len, 2350 qinfo.qtype, qinfo.qclass, 0); 2351 key_cache_remove(env->key_cache, qinfo.qname, qinfo.qname_len, 2352 qinfo.qclass); 2353 2354 if(!mesh_new_callback(env->mesh, &qinfo, qflags, &edns, buf, 0, 2355 &probe_answer_cb, env)) { 2356 log_err("out of memory making 5011 probe"); 2357 } 2358 } 2359 2360 /** fetch first to-probe trust-anchor and lock it and set retrytime */ 2361 static struct trust_anchor* 2362 todo_probe(struct module_env* env, time_t* next) 2363 { 2364 struct trust_anchor* tp; 2365 rbnode_t* el; 2366 /* get first one */ 2367 lock_basic_lock(&env->anchors->lock); 2368 if( (el=rbtree_first(&env->anchors->autr->probe)) == RBTREE_NULL) { 2369 /* in case of revoked anchors */ 2370 lock_basic_unlock(&env->anchors->lock); 2371 /* signal that there are no anchors to probe */ 2372 *next = 0; 2373 return NULL; 2374 } 2375 tp = (struct trust_anchor*)el->key; 2376 lock_basic_lock(&tp->lock); 2377 2378 /* is it eligible? */ 2379 if((time_t)tp->autr->next_probe_time > *env->now) { 2380 /* no more to probe */ 2381 *next = (time_t)tp->autr->next_probe_time - *env->now; 2382 lock_basic_unlock(&tp->lock); 2383 lock_basic_unlock(&env->anchors->lock); 2384 return NULL; 2385 } 2386 2387 /* reset its next probe time */ 2388 (void)rbtree_delete(&env->anchors->autr->probe, tp); 2389 tp->autr->next_probe_time = calc_next_probe(env, tp->autr->retry_time); 2390 (void)rbtree_insert(&env->anchors->autr->probe, &tp->autr->pnode); 2391 lock_basic_unlock(&env->anchors->lock); 2392 2393 return tp; 2394 } 2395 2396 time_t 2397 autr_probe_timer(struct module_env* env) 2398 { 2399 struct trust_anchor* tp; 2400 time_t next_probe = 3600; 2401 int num = 0; 2402 if(autr_permit_small_holddown) next_probe = 1; 2403 verbose(VERB_ALGO, "autotrust probe timer callback"); 2404 /* while there are still anchors to probe */ 2405 while( (tp = todo_probe(env, &next_probe)) ) { 2406 /* make a probe for this anchor */ 2407 probe_anchor(env, tp); 2408 num++; 2409 } 2410 regional_free_all(env->scratch); 2411 if(next_probe == 0) 2412 return 0; /* no trust points to probe */ 2413 verbose(VERB_ALGO, "autotrust probe timer %d callbacks done", num); 2414 return next_probe; 2415 } 2416