xref: /freebsd/contrib/unbound/util/storage/dnstree.c (revision c07d6445eb89d9dd3950361b065b7bd110e3a043)
1 /*
2  * util/storage/dnstree.c - support for rbtree types suitable for DNS code.
3  *
4  * Copyright (c) 2008, NLnet Labs. All rights reserved.
5  *
6  * This software is open source.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * Redistributions of source code must retain the above copyright notice,
13  * this list of conditions and the following disclaimer.
14  *
15  * Redistributions in binary form must reproduce the above copyright notice,
16  * this list of conditions and the following disclaimer in the documentation
17  * and/or other materials provided with the distribution.
18  *
19  * Neither the name of the NLNET LABS nor the names of its contributors may
20  * be used to endorse or promote products derived from this software without
21  * specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
27  * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
28  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
29  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
31  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
32  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 /**
37  * \file
38  *
39  * This file contains structures combining types and functions to
40  * manipulate those structures that help building DNS lookup trees.
41  */
42 #include "config.h"
43 #include "util/storage/dnstree.h"
44 #include "util/data/dname.h"
45 #include "util/net_help.h"
46 
47 int name_tree_compare(const void* k1, const void* k2)
48 {
49         struct name_tree_node* x = (struct name_tree_node*)k1;
50         struct name_tree_node* y = (struct name_tree_node*)k2;
51         int m;
52         if(x->dclass != y->dclass) {
53                 if(x->dclass < y->dclass)
54                         return -1;
55                 return 1;
56         }
57         return dname_lab_cmp(x->name, x->labs, y->name, y->labs, &m);
58 }
59 
60 int addr_tree_compare(const void* k1, const void* k2)
61 {
62         struct addr_tree_node* n1 = (struct addr_tree_node*)k1;
63         struct addr_tree_node* n2 = (struct addr_tree_node*)k2;
64         int r = sockaddr_cmp_addr(&n1->addr, n1->addrlen, &n2->addr,
65                 n2->addrlen);
66         if(r != 0) return r;
67         if(n1->net < n2->net)
68                 return -1;
69         if(n1->net > n2->net)
70                 return 1;
71         return 0;
72 }
73 
74 int addr_tree_addrport_compare(const void* k1, const void* k2)
75 {
76 	struct addr_tree_node* n1 = (struct addr_tree_node*)k1;
77 	struct addr_tree_node* n2 = (struct addr_tree_node*)k2;
78 	return sockaddr_cmp(&n1->addr, n1->addrlen, &n2->addr,
79 		n2->addrlen);
80 }
81 
82 void name_tree_init(rbtree_type* tree)
83 {
84 	rbtree_init(tree, &name_tree_compare);
85 }
86 
87 void addr_tree_init(rbtree_type* tree)
88 {
89 	rbtree_init(tree, &addr_tree_compare);
90 }
91 
92 void addr_tree_addrport_init(rbtree_type* tree)
93 {
94 	rbtree_init(tree, &addr_tree_addrport_compare);
95 }
96 
97 int name_tree_insert(rbtree_type* tree, struct name_tree_node* node,
98         uint8_t* name, size_t len, int labs, uint16_t dclass)
99 {
100 	node->node.key = node;
101 	node->name = name;
102 	node->len = len;
103 	node->labs = labs;
104 	node->dclass = dclass;
105 	node->parent = NULL;
106 	return rbtree_insert(tree, &node->node) != NULL;
107 }
108 
109 int addr_tree_insert(rbtree_type* tree, struct addr_tree_node* node,
110         struct sockaddr_storage* addr, socklen_t addrlen, int net)
111 {
112 	node->node.key = node;
113 	memcpy(&node->addr, addr, addrlen);
114 	node->addrlen = addrlen;
115 	node->net = net;
116 	node->parent = NULL;
117 	return rbtree_insert(tree, &node->node) != NULL;
118 }
119 
120 void addr_tree_init_parents_node(struct addr_tree_node* node)
121 {
122 	struct addr_tree_node* prev = NULL, *p;
123         int m;
124 	for(; (rbnode_type*)node != RBTREE_NULL;
125 		node = (struct addr_tree_node*)rbtree_next((rbnode_type*)node)) {
126                 node->parent = NULL;
127                 if(!prev || prev->addrlen != node->addrlen) {
128                         prev = node;
129                         continue;
130                 }
131                 m = addr_in_common(&prev->addr, prev->net, &node->addr,
132                         node->net, node->addrlen);
133                 /* sort order like: ::/0, 1::/2, 1::/4, ... 2::/2 */
134                 /* find the previous, or parent-parent-parent */
135                 for(p = prev; p; p = p->parent)
136                         if(p->net <= m) {
137                                 /* ==: since prev matched m, this is closest*/
138                                 /* <: prev matches more, but is not a parent,
139 				 * this one is a (grand)parent */
140                                 node->parent = p;
141                                 break;
142                         }
143                 prev = node;
144         }
145 }
146 
147 void addr_tree_init_parents(rbtree_type* tree)
148 {
149 	addr_tree_init_parents_node(
150 			(struct addr_tree_node*)rbtree_first(tree));
151 }
152 
153 void name_tree_init_parents(rbtree_type* tree)
154 {
155         struct name_tree_node* node, *prev = NULL, *p;
156         int m;
157         RBTREE_FOR(node, struct name_tree_node*, tree) {
158                 node->parent = NULL;
159                 if(!prev || prev->dclass != node->dclass) {
160                         prev = node;
161                         continue;
162                 }
163                 (void)dname_lab_cmp(prev->name, prev->labs, node->name,
164                         node->labs, &m); /* we know prev is smaller */
165 		/* sort order like: . com. bla.com. zwb.com. net. */
166                 /* find the previous, or parent-parent-parent */
167                 for(p = prev; p; p = p->parent)
168                         if(p->labs <= m) {
169                                 /* ==: since prev matched m, this is closest*/
170                                 /* <: prev matches more, but is not a parent,
171 				 * this one is a (grand)parent */
172                                 node->parent = p;
173                                 break;
174                         }
175                 prev = node;
176         }
177 }
178 
179 struct name_tree_node* name_tree_find(rbtree_type* tree, uint8_t* name,
180         size_t len, int labs, uint16_t dclass)
181 {
182 	struct name_tree_node key;
183 	key.node.key = &key;
184 	key.name = name;
185 	key.len = len;
186 	key.labs = labs;
187 	key.dclass = dclass;
188 	return (struct name_tree_node*)rbtree_search(tree, &key);
189 }
190 
191 struct name_tree_node* name_tree_lookup(rbtree_type* tree, uint8_t* name,
192         size_t len, int labs, uint16_t dclass)
193 {
194         rbnode_type* res = NULL;
195         struct name_tree_node *result;
196         struct name_tree_node key;
197         key.node.key = &key;
198         key.name = name;
199         key.len = len;
200         key.labs = labs;
201         key.dclass = dclass;
202         if(rbtree_find_less_equal(tree, &key, &res)) {
203                 /* exact */
204                 result = (struct name_tree_node*)res;
205         } else {
206                 /* smaller element (or no element) */
207                 int m;
208                 result = (struct name_tree_node*)res;
209                 if(!result || result->dclass != dclass)
210                         return NULL;
211                 /* count number of labels matched */
212                 (void)dname_lab_cmp(result->name, result->labs, key.name,
213                         key.labs, &m);
214                 while(result) { /* go up until qname is subdomain of stub */
215                         if(result->labs <= m)
216                                 break;
217                         result = result->parent;
218                 }
219         }
220 	return result;
221 }
222 
223 struct addr_tree_node* addr_tree_lookup(rbtree_type* tree,
224         struct sockaddr_storage* addr, socklen_t addrlen)
225 {
226         rbnode_type* res = NULL;
227         struct addr_tree_node* result;
228         struct addr_tree_node key;
229         key.node.key = &key;
230         memcpy(&key.addr, addr, addrlen);
231         key.addrlen = addrlen;
232         key.net = (addr_is_ip6(addr, addrlen)?128:32);
233         if(rbtree_find_less_equal(tree, &key, &res)) {
234                 /* exact */
235                 return (struct addr_tree_node*)res;
236         } else {
237                 /* smaller element (or no element) */
238                 int m;
239                 result = (struct addr_tree_node*)res;
240                 if(!result || result->addrlen != addrlen)
241                         return 0;
242                 /* count number of bits matched */
243                 m = addr_in_common(&result->addr, result->net, addr,
244                         key.net, addrlen);
245                 while(result) { /* go up until addr is inside netblock */
246                         if(result->net <= m)
247                                 break;
248                         result = result->parent;
249                 }
250         }
251         return result;
252 }
253 
254 struct addr_tree_node* addr_tree_find(rbtree_type* tree,
255         struct sockaddr_storage* addr, socklen_t addrlen, int net)
256 {
257         rbnode_type* res = NULL;
258         struct addr_tree_node key;
259         key.node.key = &key;
260         memcpy(&key.addr, addr, addrlen);
261         key.addrlen = addrlen;
262         key.net = net;
263 	res = rbtree_search(tree, &key);
264 	return (struct addr_tree_node*)res;
265 }
266 
267 int
268 name_tree_next_root(rbtree_type* tree, uint16_t* dclass)
269 {
270 	struct name_tree_node key;
271 	rbnode_type* n;
272 	struct name_tree_node* p;
273 	if(*dclass == 0) {
274 		/* first root item is first item in tree */
275 		n = rbtree_first(tree);
276 		if(n == RBTREE_NULL)
277 			return 0;
278 		p = (struct name_tree_node*)n;
279 		if(dname_is_root(p->name)) {
280 			*dclass = p->dclass;
281 			return 1;
282 		}
283 		/* root not first item? search for higher items */
284 		*dclass = p->dclass + 1;
285 		return name_tree_next_root(tree, dclass);
286 	}
287 	/* find class n in tree, we may get a direct hit, or if we don't
288 	 * this is the last item of the previous class so rbtree_next() takes
289 	 * us to the next root (if any) */
290 	key.node.key = &key;
291 	key.name = (uint8_t*)"\000";
292 	key.len = 1;
293 	key.labs = 0;
294 	key.dclass = *dclass;
295 	n = NULL;
296 	if(rbtree_find_less_equal(tree, &key, &n)) {
297 		/* exact */
298 		return 1;
299 	} else {
300 		/* smaller element */
301 		if(!n || n == RBTREE_NULL)
302 			return 0; /* nothing found */
303 		n = rbtree_next(n);
304 		if(n == RBTREE_NULL)
305 			return 0; /* no higher */
306 		p = (struct name_tree_node*)n;
307 		if(dname_is_root(p->name)) {
308 			*dclass = p->dclass;
309 			return 1;
310 		}
311 		/* not a root node, return next higher item */
312 		*dclass = p->dclass+1;
313 		return name_tree_next_root(tree, dclass);
314 	}
315 }
316