xref: /freebsd/contrib/unbound/util/storage/dnstree.c (revision 5b0945b57059d1cde0831d3afea7ec56c7d79508)
1 /*
2  * util/storage/dnstree.c - support for rbtree types suitable for DNS code.
3  *
4  * Copyright (c) 2008, NLnet Labs. All rights reserved.
5  *
6  * This software is open source.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * Redistributions of source code must retain the above copyright notice,
13  * this list of conditions and the following disclaimer.
14  *
15  * Redistributions in binary form must reproduce the above copyright notice,
16  * this list of conditions and the following disclaimer in the documentation
17  * and/or other materials provided with the distribution.
18  *
19  * Neither the name of the NLNET LABS nor the names of its contributors may
20  * be used to endorse or promote products derived from this software without
21  * specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
27  * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
28  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
29  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
31  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
32  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 /**
37  * \file
38  *
39  * This file contains structures combining types and functions to
40  * manipulate those structures that help building DNS lookup trees.
41  */
42 #include "config.h"
43 #include "util/storage/dnstree.h"
44 #include "util/data/dname.h"
45 #include "util/net_help.h"
46 
47 int name_tree_compare(const void* k1, const void* k2)
48 {
49         struct name_tree_node* x = (struct name_tree_node*)k1;
50         struct name_tree_node* y = (struct name_tree_node*)k2;
51         int m;
52         if(x->dclass != y->dclass) {
53                 if(x->dclass < y->dclass)
54                         return -1;
55                 return 1;
56         }
57         return dname_lab_cmp(x->name, x->labs, y->name, y->labs, &m);
58 }
59 
60 int addr_tree_compare(const void* k1, const void* k2)
61 {
62         struct addr_tree_node* n1 = (struct addr_tree_node*)k1;
63         struct addr_tree_node* n2 = (struct addr_tree_node*)k2;
64         int r = sockaddr_cmp_addr(&n1->addr, n1->addrlen, &n2->addr,
65                 n2->addrlen);
66         if(r != 0) return r;
67         if(n1->net < n2->net)
68                 return -1;
69         if(n1->net > n2->net)
70                 return 1;
71         return 0;
72 }
73 
74 void name_tree_init(rbtree_type* tree)
75 {
76 	rbtree_init(tree, &name_tree_compare);
77 }
78 
79 void addr_tree_init(rbtree_type* tree)
80 {
81 	rbtree_init(tree, &addr_tree_compare);
82 }
83 
84 int name_tree_insert(rbtree_type* tree, struct name_tree_node* node,
85         uint8_t* name, size_t len, int labs, uint16_t dclass)
86 {
87 	node->node.key = node;
88 	node->name = name;
89 	node->len = len;
90 	node->labs = labs;
91 	node->dclass = dclass;
92 	node->parent = NULL;
93 	return rbtree_insert(tree, &node->node) != NULL;
94 }
95 
96 int addr_tree_insert(rbtree_type* tree, struct addr_tree_node* node,
97         struct sockaddr_storage* addr, socklen_t addrlen, int net)
98 {
99 	node->node.key = node;
100 	memcpy(&node->addr, addr, addrlen);
101 	node->addrlen = addrlen;
102 	node->net = net;
103 	node->parent = NULL;
104 	return rbtree_insert(tree, &node->node) != NULL;
105 }
106 
107 void addr_tree_init_parents_node(struct addr_tree_node* node)
108 {
109 	struct addr_tree_node* prev = NULL, *p;
110         int m;
111 	for(; (rbnode_type*)node != RBTREE_NULL;
112 		node = (struct addr_tree_node*)rbtree_next((rbnode_type*)node)) {
113                 node->parent = NULL;
114                 if(!prev || prev->addrlen != node->addrlen) {
115                         prev = node;
116                         continue;
117                 }
118                 m = addr_in_common(&prev->addr, prev->net, &node->addr,
119                         node->net, node->addrlen);
120                 /* sort order like: ::/0, 1::/2, 1::/4, ... 2::/2 */
121                 /* find the previous, or parent-parent-parent */
122                 for(p = prev; p; p = p->parent)
123                         if(p->net <= m) {
124                                 /* ==: since prev matched m, this is closest*/
125                                 /* <: prev matches more, but is not a parent,
126 				 * this one is a (grand)parent */
127                                 node->parent = p;
128                                 break;
129                         }
130                 prev = node;
131         }
132 }
133 
134 void addr_tree_init_parents(rbtree_type* tree)
135 {
136 	addr_tree_init_parents_node(
137 			(struct addr_tree_node*)rbtree_first(tree));
138 }
139 
140 void name_tree_init_parents(rbtree_type* tree)
141 {
142         struct name_tree_node* node, *prev = NULL, *p;
143         int m;
144         RBTREE_FOR(node, struct name_tree_node*, tree) {
145                 node->parent = NULL;
146                 if(!prev || prev->dclass != node->dclass) {
147                         prev = node;
148                         continue;
149                 }
150                 (void)dname_lab_cmp(prev->name, prev->labs, node->name,
151                         node->labs, &m); /* we know prev is smaller */
152 		/* sort order like: . com. bla.com. zwb.com. net. */
153                 /* find the previous, or parent-parent-parent */
154                 for(p = prev; p; p = p->parent)
155                         if(p->labs <= m) {
156                                 /* ==: since prev matched m, this is closest*/
157                                 /* <: prev matches more, but is not a parent,
158 				 * this one is a (grand)parent */
159                                 node->parent = p;
160                                 break;
161                         }
162                 prev = node;
163         }
164 }
165 
166 struct name_tree_node* name_tree_find(rbtree_type* tree, uint8_t* name,
167         size_t len, int labs, uint16_t dclass)
168 {
169 	struct name_tree_node key;
170 	key.node.key = &key;
171 	key.name = name;
172 	key.len = len;
173 	key.labs = labs;
174 	key.dclass = dclass;
175 	return (struct name_tree_node*)rbtree_search(tree, &key);
176 }
177 
178 struct name_tree_node* name_tree_lookup(rbtree_type* tree, uint8_t* name,
179         size_t len, int labs, uint16_t dclass)
180 {
181         rbnode_type* res = NULL;
182         struct name_tree_node *result;
183         struct name_tree_node key;
184         key.node.key = &key;
185         key.name = name;
186         key.len = len;
187         key.labs = labs;
188         key.dclass = dclass;
189         if(rbtree_find_less_equal(tree, &key, &res)) {
190                 /* exact */
191                 result = (struct name_tree_node*)res;
192         } else {
193                 /* smaller element (or no element) */
194                 int m;
195                 result = (struct name_tree_node*)res;
196                 if(!result || result->dclass != dclass)
197                         return NULL;
198                 /* count number of labels matched */
199                 (void)dname_lab_cmp(result->name, result->labs, key.name,
200                         key.labs, &m);
201                 while(result) { /* go up until qname is subdomain of stub */
202                         if(result->labs <= m)
203                                 break;
204                         result = result->parent;
205                 }
206         }
207 	return result;
208 }
209 
210 struct addr_tree_node* addr_tree_lookup(rbtree_type* tree,
211         struct sockaddr_storage* addr, socklen_t addrlen)
212 {
213         rbnode_type* res = NULL;
214         struct addr_tree_node* result;
215         struct addr_tree_node key;
216         key.node.key = &key;
217         memcpy(&key.addr, addr, addrlen);
218         key.addrlen = addrlen;
219         key.net = (addr_is_ip6(addr, addrlen)?128:32);
220         if(rbtree_find_less_equal(tree, &key, &res)) {
221                 /* exact */
222                 return (struct addr_tree_node*)res;
223         } else {
224                 /* smaller element (or no element) */
225                 int m;
226                 result = (struct addr_tree_node*)res;
227                 if(!result || result->addrlen != addrlen)
228                         return 0;
229                 /* count number of bits matched */
230                 m = addr_in_common(&result->addr, result->net, addr,
231                         key.net, addrlen);
232                 while(result) { /* go up until addr is inside netblock */
233                         if(result->net <= m)
234                                 break;
235                         result = result->parent;
236                 }
237         }
238         return result;
239 }
240 
241 struct addr_tree_node* addr_tree_find(rbtree_type* tree,
242         struct sockaddr_storage* addr, socklen_t addrlen, int net)
243 {
244         rbnode_type* res = NULL;
245         struct addr_tree_node key;
246         key.node.key = &key;
247         memcpy(&key.addr, addr, addrlen);
248         key.addrlen = addrlen;
249         key.net = net;
250 	res = rbtree_search(tree, &key);
251 	return (struct addr_tree_node*)res;
252 }
253 
254 int
255 name_tree_next_root(rbtree_type* tree, uint16_t* dclass)
256 {
257 	struct name_tree_node key;
258 	rbnode_type* n;
259 	struct name_tree_node* p;
260 	if(*dclass == 0) {
261 		/* first root item is first item in tree */
262 		n = rbtree_first(tree);
263 		if(n == RBTREE_NULL)
264 			return 0;
265 		p = (struct name_tree_node*)n;
266 		if(dname_is_root(p->name)) {
267 			*dclass = p->dclass;
268 			return 1;
269 		}
270 		/* root not first item? search for higher items */
271 		*dclass = p->dclass + 1;
272 		return name_tree_next_root(tree, dclass);
273 	}
274 	/* find class n in tree, we may get a direct hit, or if we don't
275 	 * this is the last item of the previous class so rbtree_next() takes
276 	 * us to the next root (if any) */
277 	key.node.key = &key;
278 	key.name = (uint8_t*)"\000";
279 	key.len = 1;
280 	key.labs = 0;
281 	key.dclass = *dclass;
282 	n = NULL;
283 	if(rbtree_find_less_equal(tree, &key, &n)) {
284 		/* exact */
285 		return 1;
286 	} else {
287 		/* smaller element */
288 		if(!n || n == RBTREE_NULL)
289 			return 0; /* nothing found */
290 		n = rbtree_next(n);
291 		if(n == RBTREE_NULL)
292 			return 0; /* no higher */
293 		p = (struct name_tree_node*)n;
294 		if(dname_is_root(p->name)) {
295 			*dclass = p->dclass;
296 			return 1;
297 		}
298 		/* not a root node, return next higher item */
299 		*dclass = p->dclass+1;
300 		return name_tree_next_root(tree, dclass);
301 	}
302 }
303