xref: /freebsd/contrib/unbound/sldns/parseutil.c (revision 3a56015a2f5d630910177fa79a522bb95511ccf7)
1 /*
2  * parseutil.c - parse utilities for string and wire conversion
3  *
4  * (c) NLnet Labs, 2004-2006
5  *
6  * See the file LICENSE for the license
7  */
8 /**
9  * \file
10  *
11  * Utility functions for parsing, base32(DNS variant) and base64 encoding
12  * and decoding, Hex, Time units, Escape codes.
13  */
14 
15 #include "config.h"
16 #include "sldns/parseutil.h"
17 #include <sys/time.h>
18 #include <time.h>
19 #include <ctype.h>
20 
21 sldns_lookup_table *
22 sldns_lookup_by_name(sldns_lookup_table *table, const char *name)
23 {
24         while (table->name != NULL) {
25                 if (strcasecmp(name, table->name) == 0)
26                         return table;
27                 table++;
28         }
29         return NULL;
30 }
31 
32 sldns_lookup_table *
33 sldns_lookup_by_id(sldns_lookup_table *table, int id)
34 {
35         while (table->name != NULL) {
36                 if (table->id == id)
37                         return table;
38                 table++;
39         }
40         return NULL;
41 }
42 
43 /* Number of days per month (except for February in leap years). */
44 static const int mdays[] = {
45 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
46 };
47 
48 #define LDNS_MOD(x,y) (((x) % (y) < 0) ? ((x) % (y) + (y)) : ((x) % (y)))
49 #define LDNS_DIV(x,y) (((x) % (y) < 0) ? ((x) / (y) -  1 ) : ((x) / (y)))
50 
51 static int
52 is_leap_year(int year)
53 {
54 	return LDNS_MOD(year,   4) == 0 && (LDNS_MOD(year, 100) != 0
55 	    || LDNS_MOD(year, 400) == 0);
56 }
57 
58 static int
59 leap_days(int y1, int y2)
60 {
61 	--y1;
62 	--y2;
63 	return (LDNS_DIV(y2,   4) - LDNS_DIV(y1,   4)) -
64 	       (LDNS_DIV(y2, 100) - LDNS_DIV(y1, 100)) +
65 	       (LDNS_DIV(y2, 400) - LDNS_DIV(y1, 400));
66 }
67 
68 /*
69  * Code adapted from Python 2.4.1 sources (Lib/calendar.py).
70  */
71 time_t
72 sldns_mktime_from_utc(const struct tm *tm)
73 {
74 	int year = 1900 + tm->tm_year;
75 	time_t days = 365 * ((time_t) year - 1970) + leap_days(1970, year);
76 	time_t hours;
77 	time_t minutes;
78 	time_t seconds;
79 	int i;
80 
81 	for (i = 0; i < tm->tm_mon; ++i) {
82 		days += mdays[i];
83 	}
84 	if (tm->tm_mon > 1 && is_leap_year(year)) {
85 		++days;
86 	}
87 	days += tm->tm_mday - 1;
88 
89 	hours = days * 24 + tm->tm_hour;
90 	minutes = hours * 60 + tm->tm_min;
91 	seconds = minutes * 60 + tm->tm_sec;
92 
93 	return seconds;
94 }
95 
96 #if SIZEOF_TIME_T <= 4
97 
98 static void
99 sldns_year_and_yday_from_days_since_epoch(int64_t days, struct tm *result)
100 {
101 	int year = 1970;
102 	int new_year;
103 
104 	while (days < 0 || days >= (int64_t) (is_leap_year(year) ? 366 : 365)) {
105 		new_year = year + (int) LDNS_DIV(days, 365);
106 		days -= (new_year - year) * 365;
107 		days -= leap_days(year, new_year);
108 		year  = new_year;
109 	}
110 	result->tm_year = year;
111 	result->tm_yday = (int) days;
112 }
113 
114 /* Number of days per month in a leap year. */
115 static const int leap_year_mdays[] = {
116 	31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
117 };
118 
119 static void
120 sldns_mon_and_mday_from_year_and_yday(struct tm *result)
121 {
122 	int idays = result->tm_yday;
123 	const int *mon_lengths = is_leap_year(result->tm_year) ?
124 					leap_year_mdays : mdays;
125 
126 	result->tm_mon = 0;
127 	while  (idays >= mon_lengths[result->tm_mon]) {
128 		idays -= mon_lengths[result->tm_mon++];
129 	}
130 	result->tm_mday = idays + 1;
131 }
132 
133 static void
134 sldns_wday_from_year_and_yday(struct tm *result)
135 {
136 	result->tm_wday = 4 /* 1-1-1970 was a thursday */
137 			+ LDNS_MOD((result->tm_year - 1970), 7) * LDNS_MOD(365, 7)
138 			+ leap_days(1970, result->tm_year)
139 			+ result->tm_yday;
140 	result->tm_wday = LDNS_MOD(result->tm_wday, 7);
141 	if (result->tm_wday < 0) {
142 		result->tm_wday += 7;
143 	}
144 }
145 
146 static struct tm *
147 sldns_gmtime64_r(int64_t clock, struct tm *result)
148 {
149 	result->tm_isdst = 0;
150 	result->tm_sec   = (int) LDNS_MOD(clock, 60);
151 	clock            =       LDNS_DIV(clock, 60);
152 	result->tm_min   = (int) LDNS_MOD(clock, 60);
153 	clock            =       LDNS_DIV(clock, 60);
154 	result->tm_hour  = (int) LDNS_MOD(clock, 24);
155 	clock            =       LDNS_DIV(clock, 24);
156 
157 	sldns_year_and_yday_from_days_since_epoch(clock, result);
158 	sldns_mon_and_mday_from_year_and_yday(result);
159 	sldns_wday_from_year_and_yday(result);
160 	result->tm_year -= 1900;
161 
162 	return result;
163 }
164 
165 #endif /* SIZEOF_TIME_T <= 4 */
166 
167 static int64_t
168 sldns_serial_arithmetics_time(int32_t time, time_t now)
169 {
170 	int32_t offset = (int32_t)((uint32_t) time - (uint32_t) now);
171 	return (int64_t) now + offset;
172 }
173 
174 struct tm *
175 sldns_serial_arithmetics_gmtime_r(int32_t time, time_t now, struct tm *result)
176 {
177 #if SIZEOF_TIME_T <= 4
178 	int64_t secs_since_epoch = sldns_serial_arithmetics_time(time, now);
179 	return  sldns_gmtime64_r(secs_since_epoch, result);
180 #else
181 	time_t  secs_since_epoch = sldns_serial_arithmetics_time(time, now);
182 	return  gmtime_r(&secs_since_epoch, result);
183 #endif
184 }
185 
186 int
187 sldns_hexdigit_to_int(char ch)
188 {
189 	switch (ch) {
190 	case '0': return 0;
191 	case '1': return 1;
192 	case '2': return 2;
193 	case '3': return 3;
194 	case '4': return 4;
195 	case '5': return 5;
196 	case '6': return 6;
197 	case '7': return 7;
198 	case '8': return 8;
199 	case '9': return 9;
200 	case 'a': case 'A': return 10;
201 	case 'b': case 'B': return 11;
202 	case 'c': case 'C': return 12;
203 	case 'd': case 'D': return 13;
204 	case 'e': case 'E': return 14;
205 	case 'f': case 'F': return 15;
206 	default:
207 		return -1;
208 	}
209 }
210 
211 uint32_t
212 sldns_str2period(const char *nptr, const char **endptr, int* overflow)
213 {
214 	int sign = 0;
215 	uint32_t i = 0;
216 	uint32_t seconds = 0;
217 	const uint32_t maxint = 0xffffffff;
218 	*overflow = 0;
219 
220 	for(*endptr = nptr; **endptr; (*endptr)++) {
221 		switch (**endptr) {
222 			case ' ':
223 			case '\t':
224 				break;
225 			case '-':
226 				if(sign == 0) {
227 					sign = -1;
228 				} else {
229 					return seconds;
230 				}
231 				break;
232 			case '+':
233 				if(sign == 0) {
234 					sign = 1;
235 				} else {
236 					return seconds;
237 				}
238 				break;
239 			case 's':
240 			case 'S':
241 				if(seconds > maxint-i) {
242 					*overflow = 1;
243 					return 0;
244 				}
245 				seconds += i;
246 				i = 0;
247 				break;
248 			case 'm':
249 			case 'M':
250 				if(i > maxint/60 || seconds > maxint-(i*60)) {
251 					*overflow = 1;
252 					return 0;
253 				}
254 				seconds += i * 60;
255 				i = 0;
256 				break;
257 			case 'h':
258 			case 'H':
259 				if(i > maxint/(60*60) || seconds > maxint-(i*60*60)) {
260 					*overflow = 1;
261 					return 0;
262 				}
263 				seconds += i * 60 * 60;
264 				i = 0;
265 				break;
266 			case 'd':
267 			case 'D':
268 				if(i > maxint/(60*60*24) || seconds > maxint-(i*60*60*24)) {
269 					*overflow = 1;
270 					return 0;
271 				}
272 				seconds += i * 60 * 60 * 24;
273 				i = 0;
274 				break;
275 			case 'w':
276 			case 'W':
277 				if(i > maxint/(60*60*24*7) || seconds > maxint-(i*60*60*24*7)) {
278 					*overflow = 1;
279 					return 0;
280 				}
281 				seconds += i * 60 * 60 * 24 * 7;
282 				i = 0;
283 				break;
284 			case '0':
285 			case '1':
286 			case '2':
287 			case '3':
288 			case '4':
289 			case '5':
290 			case '6':
291 			case '7':
292 			case '8':
293 			case '9':
294 				if(i > maxint/10 || i*10 > maxint - (**endptr - '0')) {
295 					*overflow = 1;
296 					return 0;
297 				}
298 				i *= 10;
299 				i += (**endptr - '0');
300 				break;
301 			default:
302 				if(seconds > maxint-i) {
303 					*overflow = 1;
304 					return 0;
305 				}
306 				seconds += i;
307 				/* disregard signedness */
308 				return seconds;
309 		}
310 	}
311 	if(seconds > maxint-i) {
312 		*overflow = 1;
313 		return 0;
314 	}
315 	seconds += i;
316 	/* disregard signedness */
317 	return seconds;
318 }
319 
320 int
321 sldns_parse_escape(uint8_t *ch_p, const char** str_p)
322 {
323 	uint16_t val;
324 
325 	if ((*str_p)[0] && isdigit((unsigned char)(*str_p)[0]) &&
326 	    (*str_p)[1] && isdigit((unsigned char)(*str_p)[1]) &&
327 	    (*str_p)[2] && isdigit((unsigned char)(*str_p)[2])) {
328 
329 		val = (uint16_t)(((*str_p)[0] - '0') * 100 +
330 				 ((*str_p)[1] - '0') *  10 +
331 				 ((*str_p)[2] - '0'));
332 
333 		if (val > 255) {
334 			goto error;
335 		}
336 		*ch_p = (uint8_t)val;
337 		*str_p += 3;
338 		return 1;
339 
340 	} else if ((*str_p)[0] && !isdigit((unsigned char)(*str_p)[0])) {
341 
342 		*ch_p = (uint8_t)*(*str_p)++;
343 		return 1;
344 	}
345 error:
346 	*str_p = NULL;
347 	return 0; /* LDNS_WIREPARSE_ERR_SYNTAX_BAD_ESCAPE */
348 }
349 
350 /** parse one character, with escape codes */
351 int
352 sldns_parse_char(uint8_t *ch_p, const char** str_p)
353 {
354 	switch (**str_p) {
355 
356 	case '\0':	return 0;
357 
358 	case '\\':	*str_p += 1;
359 			return sldns_parse_escape(ch_p, str_p);
360 
361 	default:	*ch_p = (uint8_t)*(*str_p)++;
362 			return 1;
363 	}
364 }
365 
366 size_t sldns_b32_ntop_calculate_size(size_t src_data_length)
367 {
368 	return src_data_length == 0 ? 0 : ((src_data_length - 1) / 5 + 1) * 8;
369 }
370 
371 size_t sldns_b32_ntop_calculate_size_no_padding(size_t src_data_length)
372 {
373 	return ((src_data_length + 3) * 8 / 5) - 4;
374 }
375 
376 static int
377 sldns_b32_ntop_base(const uint8_t* src, size_t src_sz, char* dst, size_t dst_sz,
378 	int extended_hex, int add_padding)
379 {
380 	size_t ret_sz;
381 	const char* b32 = extended_hex ?  "0123456789abcdefghijklmnopqrstuv"
382 					: "abcdefghijklmnopqrstuvwxyz234567";
383 
384 	size_t c = 0; /* c is used to carry partial base32 character over
385 		       * byte boundaries for sizes with a remainder.
386 		       * (i.e. src_sz % 5 != 0)
387 		       */
388 
389 	ret_sz = add_padding ? sldns_b32_ntop_calculate_size(src_sz)
390 			     : sldns_b32_ntop_calculate_size_no_padding(src_sz);
391 
392 	/* Do we have enough space? */
393 	if (dst_sz < ret_sz + 1)
394 		return -1;
395 
396 	/* We know the size; terminate the string */
397 	dst[ret_sz] = '\0';
398 
399 	/* First process all chunks of five */
400 	while (src_sz >= 5) {
401 		/* 00000... ........ ........ ........ ........ */
402 		dst[0] = b32[(src[0]       ) >> 3];
403 
404 		/* .....111 11...... ........ ........ ........ */
405 		dst[1] = b32[(src[0] & 0x07) << 2 | src[1] >> 6];
406 
407 		/* ........ ..22222. ........ ........ ........ */
408 		dst[2] = b32[(src[1] & 0x3e) >> 1];
409 
410 		/* ........ .......3 3333.... ........ ........ */
411 		dst[3] = b32[(src[1] & 0x01) << 4 | src[2] >> 4];
412 
413 		/* ........ ........ ....4444 4....... ........ */
414 		dst[4] = b32[(src[2] & 0x0f) << 1 | src[3] >> 7];
415 
416 		/* ........ ........ ........ .55555.. ........ */
417 		dst[5] = b32[(src[3] & 0x7c) >> 2];
418 
419 		/* ........ ........ ........ ......66 666..... */
420 		dst[6] = b32[(src[3] & 0x03) << 3 | src[4] >> 5];
421 
422 		/* ........ ........ ........ ........ ...77777 */
423 		dst[7] = b32[(src[4] & 0x1f)     ];
424 
425 		src_sz -= 5;
426 		src    += 5;
427 		dst    += 8;
428 	}
429 	/* Process what remains */
430 	switch (src_sz) {
431 	case 4: /* ........ ........ ........ ......66 666..... */
432 		dst[6] = b32[(src[3] & 0x03) << 3];
433 
434 		/* ........ ........ ........ .55555.. ........ */
435 		dst[5] = b32[(src[3] & 0x7c) >> 2];
436 
437 		/* ........ ........ ....4444 4....... ........ */
438 			 c =  src[3]         >> 7 ;
439 		ATTR_FALLTHROUGH
440 		/* fallthrough */
441 	case 3: dst[4] = b32[(src[2] & 0x0f) << 1 | c];
442 
443 		/* ........ .......3 3333.... ........ ........ */
444 			 c =  src[2]         >> 4 ;
445 		ATTR_FALLTHROUGH
446 		/* fallthrough */
447 	case 2:	dst[3] = b32[(src[1] & 0x01) << 4 | c];
448 
449 		/* ........ ..22222. ........ ........ ........ */
450 		dst[2] = b32[(src[1] & 0x3e) >> 1];
451 
452 		/* .....111 11...... ........ ........ ........ */
453 			 c =  src[1]         >> 6 ;
454 		ATTR_FALLTHROUGH
455 		/* fallthrough */
456 	case 1:	dst[1] = b32[(src[0] & 0x07) << 2 | c];
457 
458 		/* 00000... ........ ........ ........ ........ */
459 		dst[0] = b32[ src[0]         >> 3];
460 	}
461 	/* Add padding */
462 	if (add_padding) {
463 		switch (src_sz) {
464 			case 1: dst[2] = '=';
465 				dst[3] = '=';
466 				ATTR_FALLTHROUGH
467 				/* fallthrough */
468 			case 2: dst[4] = '=';
469 				ATTR_FALLTHROUGH
470 				/* fallthrough */
471 			case 3: dst[5] = '=';
472 				dst[6] = '=';
473 				ATTR_FALLTHROUGH
474 				/* fallthrough */
475 			case 4: dst[7] = '=';
476 		}
477 	}
478 	return (int)ret_sz;
479 }
480 
481 int
482 sldns_b32_ntop(const uint8_t* src, size_t src_sz, char* dst, size_t dst_sz)
483 {
484 	return sldns_b32_ntop_base(src, src_sz, dst, dst_sz, 0, 1);
485 }
486 
487 int
488 sldns_b32_ntop_extended_hex(const uint8_t* src, size_t src_sz,
489 		char* dst, size_t dst_sz)
490 {
491 	return sldns_b32_ntop_base(src, src_sz, dst, dst_sz, 1, 1);
492 }
493 
494 size_t sldns_b32_pton_calculate_size(size_t src_text_length)
495 {
496 	return src_text_length * 5 / 8;
497 }
498 
499 static int
500 sldns_b32_pton_base(const char* src, size_t src_sz, uint8_t* dst, size_t dst_sz,
501 	int extended_hex, int check_padding)
502 {
503 	size_t i = 0;
504 	char ch = '\0';
505 	uint8_t buf[8];
506 	uint8_t* start = dst;
507 
508 	while (src_sz) {
509 		/* Collect 8 characters in buf (if possible) */
510 		for (i = 0; i < 8; i++) {
511 
512 			do {
513 				ch = *src++;
514 				--src_sz;
515 
516 			} while (isspace((unsigned char)ch) && src_sz > 0);
517 
518 			if (ch == '=' || ch == '\0')
519 				break;
520 
521 			else if (extended_hex)
522 
523 				if (ch >= '0' && ch <= '9')
524 					buf[i] = (uint8_t)ch - '0';
525 				else if (ch >= 'a' && ch <= 'v')
526 					buf[i] = (uint8_t)ch - 'a' + 10;
527 				else if (ch >= 'A' && ch <= 'V')
528 					buf[i] = (uint8_t)ch - 'A' + 10;
529 				else
530 					return -1;
531 
532 			else if (ch >= 'a' && ch <= 'z')
533 				buf[i] = (uint8_t)ch - 'a';
534 			else if (ch >= 'A' && ch <= 'Z')
535 				buf[i] = (uint8_t)ch - 'A';
536 			else if (ch >= '2' && ch <= '7')
537 				buf[i] = (uint8_t)ch - '2' + 26;
538 			else
539 				return -1;
540 		}
541 		/* Less that 8 characters. We're done. */
542 		if (i < 8)
543 			break;
544 
545 		/* Enough space available at the destination? */
546 		if (dst_sz < 5)
547 			return -1;
548 
549 		/* 00000... ........ ........ ........ ........ */
550 		/* .....111 11...... ........ ........ ........ */
551 		dst[0] = buf[0] << 3 | buf[1] >> 2;
552 
553 		/* .....111 11...... ........ ........ ........ */
554 		/* ........ ..22222. ........ ........ ........ */
555 		/* ........ .......3 3333.... ........ ........ */
556 		dst[1] = buf[1] << 6 | buf[2] << 1 | buf[3] >> 4;
557 
558 		/* ........ .......3 3333.... ........ ........ */
559 		/* ........ ........ ....4444 4....... ........ */
560 		dst[2] = buf[3] << 4 | buf[4] >> 1;
561 
562 		/* ........ ........ ....4444 4....... ........ */
563 		/* ........ ........ ........ .55555.. ........ */
564 		/* ........ ........ ........ ......66 666..... */
565 		dst[3] = buf[4] << 7 | buf[5] << 2 | buf[6] >> 3;
566 
567 		/* ........ ........ ........ ......66 666..... */
568 		/* ........ ........ ........ ........ ...77777 */
569 		dst[4] = buf[6] << 5 | buf[7];
570 
571 		dst += 5;
572 		dst_sz -= 5;
573 	}
574 	/* Not ending on a eight byte boundary? */
575 	if (i > 0 && i < 8) {
576 
577 		/* Enough space available at the destination? */
578 		if (dst_sz < (i + 1) / 2)
579 			return -1;
580 
581 		switch (i) {
582 		case 7: /* ........ ........ ........ ......66 666..... */
583 			/* ........ ........ ........ .55555.. ........ */
584 			/* ........ ........ ....4444 4....... ........ */
585 			dst[3] = buf[4] << 7 | buf[5] << 2 | buf[6] >> 3;
586 			ATTR_FALLTHROUGH
587 			/* fallthrough */
588 
589 		case 5: /* ........ ........ ....4444 4....... ........ */
590 			/* ........ .......3 3333.... ........ ........ */
591 			dst[2] = buf[3] << 4 | buf[4] >> 1;
592 			ATTR_FALLTHROUGH
593 			/* fallthrough */
594 
595 		case 4: /* ........ .......3 3333.... ........ ........ */
596 			/* ........ ..22222. ........ ........ ........ */
597 			/* .....111 11...... ........ ........ ........ */
598 			dst[1] = buf[1] << 6 | buf[2] << 1 | buf[3] >> 4;
599 			ATTR_FALLTHROUGH
600 			/* fallthrough */
601 
602 		case 2: /* .....111 11...... ........ ........ ........ */
603 			/* 00000... ........ ........ ........ ........ */
604 			dst[0] = buf[0] << 3 | buf[1] >> 2;
605 
606 			break;
607 
608 		default:
609 			return -1;
610 		}
611 		dst += (i + 1) / 2;
612 
613 		if (check_padding) {
614 			/* Check remaining padding characters */
615 			if (ch != '=')
616 				return -1;
617 
618 			/* One down, 8 - i - 1 more to come... */
619 			for (i = 8 - i - 1; i > 0; i--) {
620 
621 				do {
622 					if (src_sz == 0)
623 						return -1;
624 					ch = *src++;
625 					src_sz--;
626 
627 				} while (isspace((unsigned char)ch));
628 
629 				if (ch != '=')
630 					return -1;
631 			}
632 		}
633 	}
634 	return dst - start;
635 }
636 
637 int
638 sldns_b32_pton(const char* src, size_t src_sz, uint8_t* dst, size_t dst_sz)
639 {
640 	return sldns_b32_pton_base(src, src_sz, dst, dst_sz, 0, 1);
641 }
642 
643 int
644 sldns_b32_pton_extended_hex(const char* src, size_t src_sz,
645 		uint8_t* dst, size_t dst_sz)
646 {
647 	return sldns_b32_pton_base(src, src_sz, dst, dst_sz, 1, 1);
648 }
649 
650 size_t sldns_b64_ntop_calculate_size(size_t srcsize)
651 {
652 	return ((((srcsize + 2) / 3) * 4) + 1);
653 }
654 
655 /* RFC 1521, section 5.2.
656  *
657  * The encoding process represents 24-bit groups of input bits as output
658  * strings of 4 encoded characters. Proceeding from left to right, a
659  * 24-bit input group is formed by concatenating 3 8-bit input groups.
660  * These 24 bits are then treated as 4 concatenated 6-bit groups, each
661  * of which is translated into a single digit in the base64 alphabet.
662  *
663  * This routine does not insert spaces or linebreaks after 76 characters.
664  */
665 static int sldns_b64_ntop_base(uint8_t const *src, size_t srclength,
666 	char *target, size_t targsize, int base64url, int padding)
667 {
668 	char* b64;
669 	const char pad64 = '=';
670 	size_t i = 0, o = 0;
671 	if(base64url)
672 		b64 = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123"
673 			"456789-_";
674 	else
675 		b64 = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123"
676 			"456789+/";
677 	if(targsize < sldns_b64_ntop_calculate_size(srclength))
678 		return -1;
679 	/* whole chunks: xxxxxxyy yyyyzzzz zzwwwwww */
680 	while(i+3 <= srclength) {
681 		if(o+4 > targsize) return -1;
682 		target[o] = b64[src[i] >> 2];
683 		target[o+1] = b64[ ((src[i]&0x03)<<4) | (src[i+1]>>4) ];
684 		target[o+2] = b64[ ((src[i+1]&0x0f)<<2) | (src[i+2]>>6) ];
685 		target[o+3] = b64[ (src[i+2]&0x3f) ];
686 		i += 3;
687 		o += 4;
688 	}
689 	/* remainder */
690 	switch(srclength - i) {
691 	case 2:
692 		/* two at end, converted into A B C = */
693 		target[o] = b64[src[i] >> 2];
694 		target[o+1] = b64[ ((src[i]&0x03)<<4) | (src[i+1]>>4) ];
695 		target[o+2] = b64[ ((src[i+1]&0x0f)<<2) ];
696 		if(padding) {
697 			target[o+3] = pad64;
698 			/* i += 2; */
699 			o += 4;
700 		} else {
701 			o += 3;
702 		}
703 		break;
704 	case 1:
705 		/* one at end, converted into A B = = */
706 		target[o] = b64[src[i] >> 2];
707 		target[o+1] = b64[ ((src[i]&0x03)<<4) ];
708 		if(padding) {
709 			target[o+2] = pad64;
710 			target[o+3] = pad64;
711 			/* i += 1; */
712 			o += 4;
713 		} else {
714 			o += 2;
715 		}
716 		break;
717 	case 0:
718 	default:
719 		/* nothing */
720 		break;
721 	}
722 	/* assert: i == srclength */
723 	if(o+1 > targsize) return -1;
724 	target[o] = 0;
725 	return (int)o;
726 }
727 
728 int sldns_b64_ntop(uint8_t const *src, size_t srclength, char *target,
729 	size_t targsize)
730 {
731 	return sldns_b64_ntop_base(src, srclength, target, targsize,
732 		0 /* no base64url */, 1 /* padding */);
733 }
734 
735 int sldns_b64url_ntop(uint8_t const *src, size_t srclength, char *target,
736 	size_t targsize)
737 {
738 	return sldns_b64_ntop_base(src, srclength, target, targsize,
739 		1 /* base64url */, 0 /* no padding */);
740 }
741 
742 size_t sldns_b64_pton_calculate_size(size_t srcsize)
743 {
744 	return (((((srcsize + 3) / 4) * 3)) + 1);
745 }
746 
747 /* padding not required if srcsize is set */
748 static int sldns_b64_pton_base(char const *src, size_t srcsize, uint8_t *target,
749 	size_t targsize, int base64url)
750 {
751 	const uint8_t pad64 = 64; /* is 64th in the b64 array */
752 	const char* s = src;
753 	uint8_t in[4];
754 	size_t o = 0, incount = 0;
755 	int check_padding = (srcsize) ? 0 : 1;
756 
757 	while(*s && (check_padding || srcsize)) {
758 		/* skip any character that is not base64 */
759 		/* conceptually we do:
760 		const char* b64 =      pad'=' is appended to array
761 		"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/=";
762 		const char* d = strchr(b64, *s++);
763 		and use d-b64;
764 		*/
765 		char d = *s++;
766 		srcsize--;
767 		if(d <= 'Z' && d >= 'A')
768 			d -= 'A';
769 		else if(d <= 'z' && d >= 'a')
770 			d = d - 'a' + 26;
771 		else if(d <= '9' && d >= '0')
772 			d = d - '0' + 52;
773 		else if(!base64url && d == '+')
774 			d = 62;
775 		else if(base64url && d == '-')
776 			d = 62;
777 		else if(!base64url && d == '/')
778 			d = 63;
779 		else if(base64url && d == '_')
780 			d = 63;
781 		else if(d == '=') {
782 			if(!check_padding)
783 				continue;
784 			d = 64;
785 		} else	continue;
786 
787 		in[incount++] = (uint8_t)d;
788 		/* work on block of 4, unless padding is not used and there are
789 		 * less than 4 chars left */
790 		if(incount != 4 && (check_padding || srcsize))
791 			continue;
792 		assert(!check_padding || incount==4);
793 		/* process whole block of 4 characters into 3 output bytes */
794 		if((incount == 2 ||
795 			(incount == 4 && in[3] == pad64 && in[2] == pad64))) { /* A B = = */
796 			if(o+1 > targsize)
797 				return -1;
798 			target[o] = (in[0]<<2) | ((in[1]&0x30)>>4);
799 			o += 1;
800 			break; /* we are done */
801 		} else if(incount == 3 ||
802 			(incount == 4 && in[3] == pad64)) { /* A B C = */
803 			if(o+2 > targsize)
804 				return -1;
805 			target[o] = (in[0]<<2) | ((in[1]&0x30)>>4);
806 			target[o+1]= ((in[1]&0x0f)<<4) | ((in[2]&0x3c)>>2);
807 			o += 2;
808 			break; /* we are done */
809 		} else {
810 			if(incount != 4 || o+3 > targsize)
811 				return -1;
812 			/* write xxxxxxyy yyyyzzzz zzwwwwww */
813 			target[o] = (in[0]<<2) | ((in[1]&0x30)>>4);
814 			target[o+1]= ((in[1]&0x0f)<<4) | ((in[2]&0x3c)>>2);
815 			target[o+2]= ((in[2]&0x03)<<6) | in[3];
816 			o += 3;
817 		}
818 		incount = 0;
819 	}
820 	return (int)o;
821 }
822 
823 int sldns_b64_pton(char const *src, uint8_t *target, size_t targsize)
824 {
825 	return sldns_b64_pton_base(src, 0, target, targsize, 0);
826 }
827 
828 int sldns_b64url_pton(char const *src, size_t srcsize, uint8_t *target,
829 	size_t targsize)
830 {
831 	if(!srcsize) {
832 		return 0;
833 	}
834 	return sldns_b64_pton_base(src, srcsize, target, targsize, 1);
835 }
836 
837 int sldns_b64_contains_nonurl(char const *src, size_t srcsize)
838 {
839 	const char* s = src;
840 	while(*s && srcsize) {
841 		char d = *s++;
842 		srcsize--;
843 		/* the '+' and the '/' and padding '=' is not allowed in b64
844 		 * url encoding */
845 		if(d == '+' || d == '/' || d == '=') {
846 			return 1;
847 		}
848 	}
849 	return 0;
850 }
851