1 /* 2 * services/outside_network.c - implement sending of queries and wait answer. 3 * 4 * Copyright (c) 2007, NLnet Labs. All rights reserved. 5 * 6 * This software is open source. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 12 * Redistributions of source code must retain the above copyright notice, 13 * this list of conditions and the following disclaimer. 14 * 15 * Redistributions in binary form must reproduce the above copyright notice, 16 * this list of conditions and the following disclaimer in the documentation 17 * and/or other materials provided with the distribution. 18 * 19 * Neither the name of the NLNET LABS nor the names of its contributors may 20 * be used to endorse or promote products derived from this software without 21 * specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 24 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 26 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 27 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 28 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 29 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 30 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 31 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 32 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 33 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 34 */ 35 36 /** 37 * \file 38 * 39 * This file has functions to send queries to authoritative servers and 40 * wait for the pending answer events. 41 */ 42 #include "config.h" 43 #include <ctype.h> 44 #ifdef HAVE_SYS_TYPES_H 45 # include <sys/types.h> 46 #endif 47 #include <sys/time.h> 48 #include "services/outside_network.h" 49 #include "services/listen_dnsport.h" 50 #include "services/cache/infra.h" 51 #include "iterator/iterator.h" 52 #include "util/data/msgparse.h" 53 #include "util/data/msgreply.h" 54 #include "util/data/msgencode.h" 55 #include "util/data/dname.h" 56 #include "util/netevent.h" 57 #include "util/log.h" 58 #include "util/net_help.h" 59 #include "util/random.h" 60 #include "util/fptr_wlist.h" 61 #include "util/edns.h" 62 #include "sldns/sbuffer.h" 63 #include "dnstap/dnstap.h" 64 #ifdef HAVE_OPENSSL_SSL_H 65 #include <openssl/ssl.h> 66 #endif 67 #ifdef HAVE_X509_VERIFY_PARAM_SET1_HOST 68 #include <openssl/x509v3.h> 69 #endif 70 71 #ifdef HAVE_NETDB_H 72 #include <netdb.h> 73 #endif 74 #include <fcntl.h> 75 76 /** number of times to retry making a random ID that is unique. */ 77 #define MAX_ID_RETRY 1000 78 /** number of times to retry finding interface, port that can be opened. */ 79 #define MAX_PORT_RETRY 10000 80 /** number of retries on outgoing UDP queries */ 81 #define OUTBOUND_UDP_RETRY 1 82 83 /** initiate TCP transaction for serviced query */ 84 static void serviced_tcp_initiate(struct serviced_query* sq, sldns_buffer* buff); 85 /** with a fd available, randomize and send UDP */ 86 static int randomize_and_send_udp(struct pending* pend, sldns_buffer* packet, 87 int timeout); 88 89 /** remove waiting tcp from the outnet waiting list */ 90 static void waiting_list_remove(struct outside_network* outnet, 91 struct waiting_tcp* w); 92 93 /** select a DNS ID for a TCP stream */ 94 static uint16_t tcp_select_id(struct outside_network* outnet, 95 struct reuse_tcp* reuse); 96 97 int 98 pending_cmp(const void* key1, const void* key2) 99 { 100 struct pending *p1 = (struct pending*)key1; 101 struct pending *p2 = (struct pending*)key2; 102 if(p1->id < p2->id) 103 return -1; 104 if(p1->id > p2->id) 105 return 1; 106 log_assert(p1->id == p2->id); 107 return sockaddr_cmp(&p1->addr, p1->addrlen, &p2->addr, p2->addrlen); 108 } 109 110 int 111 serviced_cmp(const void* key1, const void* key2) 112 { 113 struct serviced_query* q1 = (struct serviced_query*)key1; 114 struct serviced_query* q2 = (struct serviced_query*)key2; 115 int r; 116 if(q1->qbuflen < q2->qbuflen) 117 return -1; 118 if(q1->qbuflen > q2->qbuflen) 119 return 1; 120 log_assert(q1->qbuflen == q2->qbuflen); 121 log_assert(q1->qbuflen >= 15 /* 10 header, root, type, class */); 122 /* alternate casing of qname is still the same query */ 123 if((r = memcmp(q1->qbuf, q2->qbuf, 10)) != 0) 124 return r; 125 if((r = memcmp(q1->qbuf+q1->qbuflen-4, q2->qbuf+q2->qbuflen-4, 4)) != 0) 126 return r; 127 if(q1->dnssec != q2->dnssec) { 128 if(q1->dnssec < q2->dnssec) 129 return -1; 130 return 1; 131 } 132 if((r = query_dname_compare(q1->qbuf+10, q2->qbuf+10)) != 0) 133 return r; 134 if((r = edns_opt_list_compare(q1->opt_list, q2->opt_list)) != 0) 135 return r; 136 return sockaddr_cmp(&q1->addr, q1->addrlen, &q2->addr, q2->addrlen); 137 } 138 139 /** compare if the reuse element has the same address, port and same ssl-is 140 * used-for-it characteristic */ 141 static int 142 reuse_cmp_addrportssl(const void* key1, const void* key2) 143 { 144 struct reuse_tcp* r1 = (struct reuse_tcp*)key1; 145 struct reuse_tcp* r2 = (struct reuse_tcp*)key2; 146 int r; 147 /* compare address and port */ 148 r = sockaddr_cmp(&r1->addr, r1->addrlen, &r2->addr, r2->addrlen); 149 if(r != 0) 150 return r; 151 152 /* compare if SSL-enabled */ 153 if(r1->is_ssl && !r2->is_ssl) 154 return 1; 155 if(!r1->is_ssl && r2->is_ssl) 156 return -1; 157 return 0; 158 } 159 160 int 161 reuse_cmp(const void* key1, const void* key2) 162 { 163 int r; 164 r = reuse_cmp_addrportssl(key1, key2); 165 if(r != 0) 166 return r; 167 168 /* compare ptr value */ 169 if(key1 < key2) return -1; 170 if(key1 > key2) return 1; 171 return 0; 172 } 173 174 int reuse_id_cmp(const void* key1, const void* key2) 175 { 176 struct waiting_tcp* w1 = (struct waiting_tcp*)key1; 177 struct waiting_tcp* w2 = (struct waiting_tcp*)key2; 178 if(w1->id < w2->id) 179 return -1; 180 if(w1->id > w2->id) 181 return 1; 182 return 0; 183 } 184 185 /** delete waiting_tcp entry. Does not unlink from waiting list. 186 * @param w: to delete. 187 */ 188 static void 189 waiting_tcp_delete(struct waiting_tcp* w) 190 { 191 if(!w) return; 192 if(w->timer) 193 comm_timer_delete(w->timer); 194 free(w); 195 } 196 197 /** 198 * Pick random outgoing-interface of that family, and bind it. 199 * port set to 0 so OS picks a port number for us. 200 * if it is the ANY address, do not bind. 201 * @param pend: pending tcp structure, for storing the local address choice. 202 * @param w: tcp structure with destination address. 203 * @param s: socket fd. 204 * @return false on error, socket closed. 205 */ 206 static int 207 pick_outgoing_tcp(struct pending_tcp* pend, struct waiting_tcp* w, int s) 208 { 209 struct port_if* pi = NULL; 210 int num; 211 pend->pi = NULL; 212 #ifdef INET6 213 if(addr_is_ip6(&w->addr, w->addrlen)) 214 num = w->outnet->num_ip6; 215 else 216 #endif 217 num = w->outnet->num_ip4; 218 if(num == 0) { 219 log_err("no TCP outgoing interfaces of family"); 220 log_addr(VERB_OPS, "for addr", &w->addr, w->addrlen); 221 sock_close(s); 222 return 0; 223 } 224 #ifdef INET6 225 if(addr_is_ip6(&w->addr, w->addrlen)) 226 pi = &w->outnet->ip6_ifs[ub_random_max(w->outnet->rnd, num)]; 227 else 228 #endif 229 pi = &w->outnet->ip4_ifs[ub_random_max(w->outnet->rnd, num)]; 230 log_assert(pi); 231 pend->pi = pi; 232 if(addr_is_any(&pi->addr, pi->addrlen)) { 233 /* binding to the ANY interface is for listening sockets */ 234 return 1; 235 } 236 /* set port to 0 */ 237 if(addr_is_ip6(&pi->addr, pi->addrlen)) 238 ((struct sockaddr_in6*)&pi->addr)->sin6_port = 0; 239 else ((struct sockaddr_in*)&pi->addr)->sin_port = 0; 240 if(bind(s, (struct sockaddr*)&pi->addr, pi->addrlen) != 0) { 241 #ifndef USE_WINSOCK 242 #ifdef EADDRNOTAVAIL 243 if(!(verbosity < 4 && errno == EADDRNOTAVAIL)) 244 #endif 245 #else /* USE_WINSOCK */ 246 if(!(verbosity < 4 && WSAGetLastError() == WSAEADDRNOTAVAIL)) 247 #endif 248 log_err("outgoing tcp: bind: %s", sock_strerror(errno)); 249 sock_close(s); 250 return 0; 251 } 252 log_addr(VERB_ALGO, "tcp bound to src", &pi->addr, pi->addrlen); 253 return 1; 254 } 255 256 /** get TCP file descriptor for address, returns -1 on failure, 257 * tcp_mss is 0 or maxseg size to set for TCP packets. */ 258 int 259 outnet_get_tcp_fd(struct sockaddr_storage* addr, socklen_t addrlen, int tcp_mss, int dscp) 260 { 261 int s; 262 int af; 263 char* err; 264 #ifdef SO_REUSEADDR 265 int on = 1; 266 #endif 267 #ifdef INET6 268 if(addr_is_ip6(addr, addrlen)){ 269 s = socket(PF_INET6, SOCK_STREAM, IPPROTO_TCP); 270 af = AF_INET6; 271 } else { 272 #else 273 { 274 #endif 275 af = AF_INET; 276 s = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP); 277 } 278 if(s == -1) { 279 log_err_addr("outgoing tcp: socket", sock_strerror(errno), 280 addr, addrlen); 281 return -1; 282 } 283 284 #ifdef SO_REUSEADDR 285 if(setsockopt(s, SOL_SOCKET, SO_REUSEADDR, (void*)&on, 286 (socklen_t)sizeof(on)) < 0) { 287 verbose(VERB_ALGO, "outgoing tcp:" 288 " setsockopt(.. SO_REUSEADDR ..) failed"); 289 } 290 #endif 291 292 err = set_ip_dscp(s, af, dscp); 293 if(err != NULL) { 294 verbose(VERB_ALGO, "outgoing tcp:" 295 "error setting IP DiffServ codepoint on socket"); 296 } 297 298 if(tcp_mss > 0) { 299 #if defined(IPPROTO_TCP) && defined(TCP_MAXSEG) 300 if(setsockopt(s, IPPROTO_TCP, TCP_MAXSEG, 301 (void*)&tcp_mss, (socklen_t)sizeof(tcp_mss)) < 0) { 302 verbose(VERB_ALGO, "outgoing tcp:" 303 " setsockopt(.. TCP_MAXSEG ..) failed"); 304 } 305 #else 306 verbose(VERB_ALGO, "outgoing tcp:" 307 " setsockopt(TCP_MAXSEG) unsupported"); 308 #endif /* defined(IPPROTO_TCP) && defined(TCP_MAXSEG) */ 309 } 310 311 return s; 312 } 313 314 /** connect tcp connection to addr, 0 on failure */ 315 int 316 outnet_tcp_connect(int s, struct sockaddr_storage* addr, socklen_t addrlen) 317 { 318 if(connect(s, (struct sockaddr*)addr, addrlen) == -1) { 319 #ifndef USE_WINSOCK 320 #ifdef EINPROGRESS 321 if(errno != EINPROGRESS) { 322 #endif 323 if(tcp_connect_errno_needs_log( 324 (struct sockaddr*)addr, addrlen)) 325 log_err_addr("outgoing tcp: connect", 326 strerror(errno), addr, addrlen); 327 close(s); 328 return 0; 329 #ifdef EINPROGRESS 330 } 331 #endif 332 #else /* USE_WINSOCK */ 333 if(WSAGetLastError() != WSAEINPROGRESS && 334 WSAGetLastError() != WSAEWOULDBLOCK) { 335 closesocket(s); 336 return 0; 337 } 338 #endif 339 } 340 return 1; 341 } 342 343 /** log reuse item addr and ptr with message */ 344 static void 345 log_reuse_tcp(enum verbosity_value v, const char* msg, struct reuse_tcp* reuse) 346 { 347 uint16_t port; 348 char addrbuf[128]; 349 if(verbosity < v) return; 350 if(!reuse || !reuse->pending || !reuse->pending->c) 351 return; 352 addr_to_str(&reuse->addr, reuse->addrlen, addrbuf, sizeof(addrbuf)); 353 port = ntohs(((struct sockaddr_in*)&reuse->addr)->sin_port); 354 verbose(v, "%s %s#%u fd %d", msg, addrbuf, (unsigned)port, 355 reuse->pending->c->fd); 356 } 357 358 /** pop the first element from the writewait list */ 359 static struct waiting_tcp* reuse_write_wait_pop(struct reuse_tcp* reuse) 360 { 361 struct waiting_tcp* w = reuse->write_wait_first; 362 if(!w) 363 return NULL; 364 log_assert(w->write_wait_queued); 365 log_assert(!w->write_wait_prev); 366 reuse->write_wait_first = w->write_wait_next; 367 if(w->write_wait_next) 368 w->write_wait_next->write_wait_prev = NULL; 369 else reuse->write_wait_last = NULL; 370 w->write_wait_queued = 0; 371 w->write_wait_next = NULL; 372 w->write_wait_prev = NULL; 373 return w; 374 } 375 376 /** remove the element from the writewait list */ 377 static void reuse_write_wait_remove(struct reuse_tcp* reuse, 378 struct waiting_tcp* w) 379 { 380 log_assert(w); 381 log_assert(w->write_wait_queued); 382 if(!w) 383 return; 384 if(!w->write_wait_queued) 385 return; 386 if(w->write_wait_prev) 387 w->write_wait_prev->write_wait_next = w->write_wait_next; 388 else reuse->write_wait_first = w->write_wait_next; 389 log_assert(!w->write_wait_prev || 390 w->write_wait_prev->write_wait_next != w->write_wait_prev); 391 if(w->write_wait_next) 392 w->write_wait_next->write_wait_prev = w->write_wait_prev; 393 else reuse->write_wait_last = w->write_wait_prev; 394 log_assert(!w->write_wait_next 395 || w->write_wait_next->write_wait_prev != w->write_wait_next); 396 w->write_wait_queued = 0; 397 w->write_wait_next = NULL; 398 w->write_wait_prev = NULL; 399 } 400 401 /** push the element after the last on the writewait list */ 402 static void reuse_write_wait_push_back(struct reuse_tcp* reuse, 403 struct waiting_tcp* w) 404 { 405 if(!w) return; 406 log_assert(!w->write_wait_queued); 407 if(reuse->write_wait_last) { 408 reuse->write_wait_last->write_wait_next = w; 409 log_assert(reuse->write_wait_last->write_wait_next != 410 reuse->write_wait_last); 411 w->write_wait_prev = reuse->write_wait_last; 412 } else { 413 reuse->write_wait_first = w; 414 } 415 reuse->write_wait_last = w; 416 w->write_wait_queued = 1; 417 } 418 419 /** insert element in tree by id */ 420 void 421 reuse_tree_by_id_insert(struct reuse_tcp* reuse, struct waiting_tcp* w) 422 { 423 #ifdef UNBOUND_DEBUG 424 rbnode_type* added; 425 #endif 426 log_assert(w->id_node.key == NULL); 427 w->id_node.key = w; 428 #ifdef UNBOUND_DEBUG 429 added = 430 #else 431 (void) 432 #endif 433 rbtree_insert(&reuse->tree_by_id, &w->id_node); 434 log_assert(added); /* should have been added */ 435 } 436 437 /** find element in tree by id */ 438 struct waiting_tcp* 439 reuse_tcp_by_id_find(struct reuse_tcp* reuse, uint16_t id) 440 { 441 struct waiting_tcp key_w; 442 rbnode_type* n; 443 memset(&key_w, 0, sizeof(key_w)); 444 key_w.id_node.key = &key_w; 445 key_w.id = id; 446 n = rbtree_search(&reuse->tree_by_id, &key_w); 447 if(!n) return NULL; 448 return (struct waiting_tcp*)n->key; 449 } 450 451 /** return ID value of rbnode in tree_by_id */ 452 static uint16_t 453 tree_by_id_get_id(rbnode_type* node) 454 { 455 struct waiting_tcp* w = (struct waiting_tcp*)node->key; 456 return w->id; 457 } 458 459 /** insert into reuse tcp tree and LRU, false on failure (duplicate) */ 460 int 461 reuse_tcp_insert(struct outside_network* outnet, struct pending_tcp* pend_tcp) 462 { 463 log_reuse_tcp(VERB_CLIENT, "reuse_tcp_insert", &pend_tcp->reuse); 464 if(pend_tcp->reuse.item_on_lru_list) { 465 if(!pend_tcp->reuse.node.key) 466 log_err("internal error: reuse_tcp_insert: " 467 "in lru list without key"); 468 return 1; 469 } 470 pend_tcp->reuse.node.key = &pend_tcp->reuse; 471 pend_tcp->reuse.pending = pend_tcp; 472 if(!rbtree_insert(&outnet->tcp_reuse, &pend_tcp->reuse.node)) { 473 /* We are not in the LRU list but we are already in the 474 * tcp_reuse tree, strange. 475 * Continue to add ourselves to the LRU list. */ 476 log_err("internal error: reuse_tcp_insert: in lru list but " 477 "not in the tree"); 478 } 479 /* insert into LRU, first is newest */ 480 pend_tcp->reuse.lru_prev = NULL; 481 if(outnet->tcp_reuse_first) { 482 pend_tcp->reuse.lru_next = outnet->tcp_reuse_first; 483 log_assert(pend_tcp->reuse.lru_next != &pend_tcp->reuse); 484 outnet->tcp_reuse_first->lru_prev = &pend_tcp->reuse; 485 log_assert(outnet->tcp_reuse_first->lru_prev != 486 outnet->tcp_reuse_first); 487 } else { 488 pend_tcp->reuse.lru_next = NULL; 489 outnet->tcp_reuse_last = &pend_tcp->reuse; 490 } 491 outnet->tcp_reuse_first = &pend_tcp->reuse; 492 pend_tcp->reuse.item_on_lru_list = 1; 493 log_assert((!outnet->tcp_reuse_first && !outnet->tcp_reuse_last) || 494 (outnet->tcp_reuse_first && outnet->tcp_reuse_last)); 495 log_assert(outnet->tcp_reuse_first != outnet->tcp_reuse_first->lru_next && 496 outnet->tcp_reuse_first != outnet->tcp_reuse_first->lru_prev); 497 log_assert(outnet->tcp_reuse_last != outnet->tcp_reuse_last->lru_next && 498 outnet->tcp_reuse_last != outnet->tcp_reuse_last->lru_prev); 499 return 1; 500 } 501 502 /** find reuse tcp stream to destination for query, or NULL if none */ 503 static struct reuse_tcp* 504 reuse_tcp_find(struct outside_network* outnet, struct sockaddr_storage* addr, 505 socklen_t addrlen, int use_ssl) 506 { 507 struct waiting_tcp key_w; 508 struct pending_tcp key_p; 509 struct comm_point c; 510 rbnode_type* result = NULL, *prev; 511 verbose(VERB_CLIENT, "reuse_tcp_find"); 512 memset(&key_w, 0, sizeof(key_w)); 513 memset(&key_p, 0, sizeof(key_p)); 514 memset(&c, 0, sizeof(c)); 515 key_p.query = &key_w; 516 key_p.c = &c; 517 key_p.reuse.pending = &key_p; 518 key_p.reuse.node.key = &key_p.reuse; 519 if(use_ssl) 520 key_p.reuse.is_ssl = 1; 521 if(addrlen > (socklen_t)sizeof(key_p.reuse.addr)) 522 return NULL; 523 memmove(&key_p.reuse.addr, addr, addrlen); 524 key_p.reuse.addrlen = addrlen; 525 526 verbose(VERB_CLIENT, "reuse_tcp_find: num reuse streams %u", 527 (unsigned)outnet->tcp_reuse.count); 528 if(outnet->tcp_reuse.root == NULL || 529 outnet->tcp_reuse.root == RBTREE_NULL) 530 return NULL; 531 if(rbtree_find_less_equal(&outnet->tcp_reuse, &key_p.reuse, 532 &result)) { 533 /* exact match */ 534 /* but the key is on stack, and ptr is compared, impossible */ 535 log_assert(&key_p.reuse != (struct reuse_tcp*)result); 536 log_assert(&key_p != ((struct reuse_tcp*)result)->pending); 537 } 538 /* not found, return null */ 539 if(!result || result == RBTREE_NULL) 540 return NULL; 541 verbose(VERB_CLIENT, "reuse_tcp_find check inexact match"); 542 /* inexact match, find one of possibly several connections to the 543 * same destination address, with the correct port, ssl, and 544 * also less than max number of open queries, or else, fail to open 545 * a new one */ 546 /* rewind to start of sequence of same address,port,ssl */ 547 prev = rbtree_previous(result); 548 while(prev && prev != RBTREE_NULL && 549 reuse_cmp_addrportssl(prev->key, &key_p.reuse) == 0) { 550 result = prev; 551 prev = rbtree_previous(result); 552 } 553 554 /* loop to find first one that has correct characteristics */ 555 while(result && result != RBTREE_NULL && 556 reuse_cmp_addrportssl(result->key, &key_p.reuse) == 0) { 557 if(((struct reuse_tcp*)result)->tree_by_id.count < 558 outnet->max_reuse_tcp_queries) { 559 /* same address, port, ssl-yes-or-no, and has 560 * space for another query */ 561 return (struct reuse_tcp*)result; 562 } 563 result = rbtree_next(result); 564 } 565 return NULL; 566 } 567 568 /** use the buffer to setup writing the query */ 569 static void 570 outnet_tcp_take_query_setup(int s, struct pending_tcp* pend, 571 struct waiting_tcp* w) 572 { 573 struct timeval tv; 574 verbose(VERB_CLIENT, "outnet_tcp_take_query_setup: setup packet to write " 575 "len %d timeout %d msec", 576 (int)w->pkt_len, w->timeout); 577 pend->c->tcp_write_pkt = w->pkt; 578 pend->c->tcp_write_pkt_len = w->pkt_len; 579 pend->c->tcp_write_and_read = 1; 580 pend->c->tcp_write_byte_count = 0; 581 pend->c->tcp_is_reading = 0; 582 comm_point_start_listening(pend->c, s, -1); 583 /* set timer on the waiting_tcp entry, this is the write timeout 584 * for the written packet. The timer on pend->c is the timer 585 * for when there is no written packet and we have readtimeouts */ 586 #ifndef S_SPLINT_S 587 tv.tv_sec = w->timeout/1000; 588 tv.tv_usec = (w->timeout%1000)*1000; 589 #endif 590 /* if the waiting_tcp was previously waiting for a buffer in the 591 * outside_network.tcpwaitlist, then the timer is reset now that 592 * we start writing it */ 593 comm_timer_set(w->timer, &tv); 594 } 595 596 /** use next free buffer to service a tcp query */ 597 static int 598 outnet_tcp_take_into_use(struct waiting_tcp* w) 599 { 600 struct pending_tcp* pend = w->outnet->tcp_free; 601 int s; 602 log_assert(pend); 603 log_assert(w->pkt); 604 log_assert(w->pkt_len > 0); 605 log_assert(w->addrlen > 0); 606 pend->c->tcp_do_toggle_rw = 0; 607 pend->c->tcp_do_close = 0; 608 /* open socket */ 609 s = outnet_get_tcp_fd(&w->addr, w->addrlen, w->outnet->tcp_mss, w->outnet->ip_dscp); 610 611 if(s == -1) 612 return 0; 613 614 if(!pick_outgoing_tcp(pend, w, s)) 615 return 0; 616 617 fd_set_nonblock(s); 618 #ifdef USE_OSX_MSG_FASTOPEN 619 /* API for fast open is different here. We use a connectx() function and 620 then writes can happen as normal even using SSL.*/ 621 /* connectx requires that the len be set in the sockaddr struct*/ 622 struct sockaddr_in *addr_in = (struct sockaddr_in *)&w->addr; 623 addr_in->sin_len = w->addrlen; 624 sa_endpoints_t endpoints; 625 endpoints.sae_srcif = 0; 626 endpoints.sae_srcaddr = NULL; 627 endpoints.sae_srcaddrlen = 0; 628 endpoints.sae_dstaddr = (struct sockaddr *)&w->addr; 629 endpoints.sae_dstaddrlen = w->addrlen; 630 if (connectx(s, &endpoints, SAE_ASSOCID_ANY, 631 CONNECT_DATA_IDEMPOTENT | CONNECT_RESUME_ON_READ_WRITE, 632 NULL, 0, NULL, NULL) == -1) { 633 /* if fails, failover to connect for OSX 10.10 */ 634 #ifdef EINPROGRESS 635 if(errno != EINPROGRESS) { 636 #else 637 if(1) { 638 #endif 639 if(connect(s, (struct sockaddr*)&w->addr, w->addrlen) == -1) { 640 #else /* USE_OSX_MSG_FASTOPEN*/ 641 #ifdef USE_MSG_FASTOPEN 642 pend->c->tcp_do_fastopen = 1; 643 /* Only do TFO for TCP in which case no connect() is required here. 644 Don't combine client TFO with SSL, since OpenSSL can't 645 currently support doing a handshake on fd that already isn't connected*/ 646 if (w->outnet->sslctx && w->ssl_upstream) { 647 if(connect(s, (struct sockaddr*)&w->addr, w->addrlen) == -1) { 648 #else /* USE_MSG_FASTOPEN*/ 649 if(connect(s, (struct sockaddr*)&w->addr, w->addrlen) == -1) { 650 #endif /* USE_MSG_FASTOPEN*/ 651 #endif /* USE_OSX_MSG_FASTOPEN*/ 652 #ifndef USE_WINSOCK 653 #ifdef EINPROGRESS 654 if(errno != EINPROGRESS) { 655 #else 656 if(1) { 657 #endif 658 if(tcp_connect_errno_needs_log( 659 (struct sockaddr*)&w->addr, w->addrlen)) 660 log_err_addr("outgoing tcp: connect", 661 strerror(errno), &w->addr, w->addrlen); 662 close(s); 663 #else /* USE_WINSOCK */ 664 if(WSAGetLastError() != WSAEINPROGRESS && 665 WSAGetLastError() != WSAEWOULDBLOCK) { 666 closesocket(s); 667 #endif 668 return 0; 669 } 670 } 671 #ifdef USE_MSG_FASTOPEN 672 } 673 #endif /* USE_MSG_FASTOPEN */ 674 #ifdef USE_OSX_MSG_FASTOPEN 675 } 676 } 677 #endif /* USE_OSX_MSG_FASTOPEN */ 678 if(w->outnet->sslctx && w->ssl_upstream) { 679 pend->c->ssl = outgoing_ssl_fd(w->outnet->sslctx, s); 680 if(!pend->c->ssl) { 681 pend->c->fd = s; 682 comm_point_close(pend->c); 683 return 0; 684 } 685 verbose(VERB_ALGO, "the query is using TLS encryption, for %s", 686 (w->tls_auth_name?w->tls_auth_name:"an unauthenticated connection")); 687 #ifdef USE_WINSOCK 688 comm_point_tcp_win_bio_cb(pend->c, pend->c->ssl); 689 #endif 690 pend->c->ssl_shake_state = comm_ssl_shake_write; 691 if(!set_auth_name_on_ssl(pend->c->ssl, w->tls_auth_name, 692 w->outnet->tls_use_sni)) { 693 pend->c->fd = s; 694 #ifdef HAVE_SSL 695 SSL_free(pend->c->ssl); 696 #endif 697 pend->c->ssl = NULL; 698 comm_point_close(pend->c); 699 return 0; 700 } 701 } 702 w->next_waiting = (void*)pend; 703 w->outnet->num_tcp_outgoing++; 704 w->outnet->tcp_free = pend->next_free; 705 pend->next_free = NULL; 706 pend->query = w; 707 pend->reuse.outnet = w->outnet; 708 pend->c->repinfo.addrlen = w->addrlen; 709 pend->c->tcp_more_read_again = &pend->reuse.cp_more_read_again; 710 pend->c->tcp_more_write_again = &pend->reuse.cp_more_write_again; 711 pend->reuse.cp_more_read_again = 0; 712 pend->reuse.cp_more_write_again = 0; 713 memcpy(&pend->c->repinfo.addr, &w->addr, w->addrlen); 714 pend->reuse.pending = pend; 715 716 /* Remove from tree in case the is_ssl will be different and causes the 717 * identity of the reuse_tcp to change; could result in nodes not being 718 * deleted from the tree (because the new identity does not match the 719 * previous node) but their ->key would be changed to NULL. */ 720 if(pend->reuse.node.key) 721 reuse_tcp_remove_tree_list(w->outnet, &pend->reuse); 722 723 if(pend->c->ssl) 724 pend->reuse.is_ssl = 1; 725 else pend->reuse.is_ssl = 0; 726 /* insert in reuse by address tree if not already inserted there */ 727 (void)reuse_tcp_insert(w->outnet, pend); 728 reuse_tree_by_id_insert(&pend->reuse, w); 729 outnet_tcp_take_query_setup(s, pend, w); 730 return 1; 731 } 732 733 /** Touch the lru of a reuse_tcp element, it is in use. 734 * This moves it to the front of the list, where it is not likely to 735 * be closed. Items at the back of the list are closed to make space. */ 736 void 737 reuse_tcp_lru_touch(struct outside_network* outnet, struct reuse_tcp* reuse) 738 { 739 if(!reuse->item_on_lru_list) { 740 log_err("internal error: we need to touch the lru_list but item not in list"); 741 return; /* not on the list, no lru to modify */ 742 } 743 log_assert(reuse->lru_prev || 744 (!reuse->lru_prev && outnet->tcp_reuse_first == reuse)); 745 if(!reuse->lru_prev) 746 return; /* already first in the list */ 747 /* remove at current position */ 748 /* since it is not first, there is a previous element */ 749 reuse->lru_prev->lru_next = reuse->lru_next; 750 log_assert(reuse->lru_prev->lru_next != reuse->lru_prev); 751 if(reuse->lru_next) 752 reuse->lru_next->lru_prev = reuse->lru_prev; 753 else outnet->tcp_reuse_last = reuse->lru_prev; 754 log_assert(!reuse->lru_next || reuse->lru_next->lru_prev != reuse->lru_next); 755 log_assert(outnet->tcp_reuse_last != outnet->tcp_reuse_last->lru_next && 756 outnet->tcp_reuse_last != outnet->tcp_reuse_last->lru_prev); 757 /* insert at the front */ 758 reuse->lru_prev = NULL; 759 reuse->lru_next = outnet->tcp_reuse_first; 760 if(outnet->tcp_reuse_first) { 761 outnet->tcp_reuse_first->lru_prev = reuse; 762 } 763 log_assert(reuse->lru_next != reuse); 764 /* since it is not first, it is not the only element and 765 * lru_next is thus not NULL and thus reuse is now not the last in 766 * the list, so outnet->tcp_reuse_last does not need to be modified */ 767 outnet->tcp_reuse_first = reuse; 768 log_assert(outnet->tcp_reuse_first != outnet->tcp_reuse_first->lru_next && 769 outnet->tcp_reuse_first != outnet->tcp_reuse_first->lru_prev); 770 log_assert((!outnet->tcp_reuse_first && !outnet->tcp_reuse_last) || 771 (outnet->tcp_reuse_first && outnet->tcp_reuse_last)); 772 } 773 774 /** Snip the last reuse_tcp element off of the LRU list */ 775 struct reuse_tcp* 776 reuse_tcp_lru_snip(struct outside_network* outnet) 777 { 778 struct reuse_tcp* reuse = outnet->tcp_reuse_last; 779 if(!reuse) return NULL; 780 /* snip off of LRU */ 781 log_assert(reuse->lru_next == NULL); 782 if(reuse->lru_prev) { 783 outnet->tcp_reuse_last = reuse->lru_prev; 784 reuse->lru_prev->lru_next = NULL; 785 } else { 786 outnet->tcp_reuse_last = NULL; 787 outnet->tcp_reuse_first = NULL; 788 } 789 log_assert((!outnet->tcp_reuse_first && !outnet->tcp_reuse_last) || 790 (outnet->tcp_reuse_first && outnet->tcp_reuse_last)); 791 reuse->item_on_lru_list = 0; 792 reuse->lru_next = NULL; 793 reuse->lru_prev = NULL; 794 return reuse; 795 } 796 797 /** call callback on waiting_tcp, if not NULL */ 798 static void 799 waiting_tcp_callback(struct waiting_tcp* w, struct comm_point* c, int error, 800 struct comm_reply* reply_info) 801 { 802 if(w && w->cb) { 803 fptr_ok(fptr_whitelist_pending_tcp(w->cb)); 804 (void)(*w->cb)(c, w->cb_arg, error, reply_info); 805 } 806 } 807 808 /** add waiting_tcp element to the outnet tcp waiting list */ 809 static void 810 outnet_add_tcp_waiting(struct outside_network* outnet, struct waiting_tcp* w) 811 { 812 struct timeval tv; 813 log_assert(!w->on_tcp_waiting_list); 814 if(w->on_tcp_waiting_list) 815 return; 816 w->next_waiting = NULL; 817 if(outnet->tcp_wait_last) 818 outnet->tcp_wait_last->next_waiting = w; 819 else outnet->tcp_wait_first = w; 820 outnet->tcp_wait_last = w; 821 w->on_tcp_waiting_list = 1; 822 #ifndef S_SPLINT_S 823 tv.tv_sec = w->timeout/1000; 824 tv.tv_usec = (w->timeout%1000)*1000; 825 #endif 826 comm_timer_set(w->timer, &tv); 827 } 828 829 /** add waiting_tcp element as first to the outnet tcp waiting list */ 830 static void 831 outnet_add_tcp_waiting_first(struct outside_network* outnet, 832 struct waiting_tcp* w, int reset_timer) 833 { 834 struct timeval tv; 835 log_assert(!w->on_tcp_waiting_list); 836 if(w->on_tcp_waiting_list) 837 return; 838 w->next_waiting = outnet->tcp_wait_first; 839 if(!outnet->tcp_wait_last) 840 outnet->tcp_wait_last = w; 841 outnet->tcp_wait_first = w; 842 w->on_tcp_waiting_list = 1; 843 if(reset_timer) { 844 #ifndef S_SPLINT_S 845 tv.tv_sec = w->timeout/1000; 846 tv.tv_usec = (w->timeout%1000)*1000; 847 #endif 848 comm_timer_set(w->timer, &tv); 849 } 850 log_assert( 851 (!outnet->tcp_reuse_first && !outnet->tcp_reuse_last) || 852 (outnet->tcp_reuse_first && outnet->tcp_reuse_last)); 853 } 854 855 /** see if buffers can be used to service TCP queries */ 856 static void 857 use_free_buffer(struct outside_network* outnet) 858 { 859 struct waiting_tcp* w; 860 while(outnet->tcp_wait_first && !outnet->want_to_quit) { 861 #ifdef USE_DNSTAP 862 struct pending_tcp* pend_tcp = NULL; 863 #endif 864 struct reuse_tcp* reuse = NULL; 865 w = outnet->tcp_wait_first; 866 log_assert(w->on_tcp_waiting_list); 867 outnet->tcp_wait_first = w->next_waiting; 868 if(outnet->tcp_wait_last == w) 869 outnet->tcp_wait_last = NULL; 870 log_assert( 871 (!outnet->tcp_reuse_first && !outnet->tcp_reuse_last) || 872 (outnet->tcp_reuse_first && outnet->tcp_reuse_last)); 873 w->on_tcp_waiting_list = 0; 874 reuse = reuse_tcp_find(outnet, &w->addr, w->addrlen, 875 w->ssl_upstream); 876 /* re-select an ID when moving to a new TCP buffer */ 877 w->id = tcp_select_id(outnet, reuse); 878 LDNS_ID_SET(w->pkt, w->id); 879 if(reuse) { 880 log_reuse_tcp(VERB_CLIENT, "use free buffer for waiting tcp: " 881 "found reuse", reuse); 882 #ifdef USE_DNSTAP 883 pend_tcp = reuse->pending; 884 #endif 885 reuse_tcp_lru_touch(outnet, reuse); 886 comm_timer_disable(w->timer); 887 w->next_waiting = (void*)reuse->pending; 888 reuse_tree_by_id_insert(reuse, w); 889 if(reuse->pending->query) { 890 /* on the write wait list */ 891 reuse_write_wait_push_back(reuse, w); 892 } else { 893 /* write straight away */ 894 /* stop the timer on read of the fd */ 895 comm_point_stop_listening(reuse->pending->c); 896 reuse->pending->query = w; 897 outnet_tcp_take_query_setup( 898 reuse->pending->c->fd, reuse->pending, 899 w); 900 } 901 } else if(outnet->tcp_free) { 902 struct pending_tcp* pend = w->outnet->tcp_free; 903 rbtree_init(&pend->reuse.tree_by_id, reuse_id_cmp); 904 pend->reuse.pending = pend; 905 memcpy(&pend->reuse.addr, &w->addr, w->addrlen); 906 pend->reuse.addrlen = w->addrlen; 907 if(!outnet_tcp_take_into_use(w)) { 908 waiting_tcp_callback(w, NULL, NETEVENT_CLOSED, 909 NULL); 910 waiting_tcp_delete(w); 911 #ifdef USE_DNSTAP 912 w = NULL; 913 #endif 914 } 915 #ifdef USE_DNSTAP 916 pend_tcp = pend; 917 #endif 918 } else { 919 /* no reuse and no free buffer, put back at the start */ 920 outnet_add_tcp_waiting_first(outnet, w, 0); 921 break; 922 } 923 #ifdef USE_DNSTAP 924 if(outnet->dtenv && pend_tcp && w && w->sq && 925 (outnet->dtenv->log_resolver_query_messages || 926 outnet->dtenv->log_forwarder_query_messages)) { 927 sldns_buffer tmp; 928 sldns_buffer_init_frm_data(&tmp, w->pkt, w->pkt_len); 929 dt_msg_send_outside_query(outnet->dtenv, &w->sq->addr, 930 &pend_tcp->pi->addr, comm_tcp, w->sq->zone, 931 w->sq->zonelen, &tmp); 932 } 933 #endif 934 } 935 } 936 937 /** delete element from tree by id */ 938 static void 939 reuse_tree_by_id_delete(struct reuse_tcp* reuse, struct waiting_tcp* w) 940 { 941 #ifdef UNBOUND_DEBUG 942 rbnode_type* rem; 943 #endif 944 log_assert(w->id_node.key != NULL); 945 #ifdef UNBOUND_DEBUG 946 rem = 947 #else 948 (void) 949 #endif 950 rbtree_delete(&reuse->tree_by_id, w); 951 log_assert(rem); /* should have been there */ 952 w->id_node.key = NULL; 953 } 954 955 /** move writewait list to go for another connection. */ 956 static void 957 reuse_move_writewait_away(struct outside_network* outnet, 958 struct pending_tcp* pend) 959 { 960 /* the writewait list has not been written yet, so if the 961 * stream was closed, they have not actually been failed, only 962 * the queries written. Other queries can get written to another 963 * stream. For upstreams that do not support multiple queries 964 * and answers, the stream can get closed, and then the queries 965 * can get written on a new socket */ 966 struct waiting_tcp* w; 967 if(pend->query && pend->query->error_count == 0 && 968 pend->c->tcp_write_pkt == pend->query->pkt && 969 pend->c->tcp_write_pkt_len == pend->query->pkt_len) { 970 /* since the current query is not written, it can also 971 * move to a free buffer */ 972 if(verbosity >= VERB_CLIENT && pend->query->pkt_len > 12+2+2 && 973 LDNS_QDCOUNT(pend->query->pkt) > 0 && 974 dname_valid(pend->query->pkt+12, pend->query->pkt_len-12)) { 975 char buf[LDNS_MAX_DOMAINLEN+1]; 976 dname_str(pend->query->pkt+12, buf); 977 verbose(VERB_CLIENT, "reuse_move_writewait_away current %s %d bytes were written", 978 buf, (int)pend->c->tcp_write_byte_count); 979 } 980 pend->c->tcp_write_pkt = NULL; 981 pend->c->tcp_write_pkt_len = 0; 982 pend->c->tcp_write_and_read = 0; 983 pend->reuse.cp_more_read_again = 0; 984 pend->reuse.cp_more_write_again = 0; 985 pend->c->tcp_is_reading = 1; 986 w = pend->query; 987 pend->query = NULL; 988 /* increase error count, so that if the next socket fails too 989 * the server selection is run again with this query failed 990 * and it can select a different server (if possible), or 991 * fail the query */ 992 w->error_count ++; 993 reuse_tree_by_id_delete(&pend->reuse, w); 994 outnet_add_tcp_waiting(outnet, w); 995 } 996 while((w = reuse_write_wait_pop(&pend->reuse)) != NULL) { 997 if(verbosity >= VERB_CLIENT && w->pkt_len > 12+2+2 && 998 LDNS_QDCOUNT(w->pkt) > 0 && 999 dname_valid(w->pkt+12, w->pkt_len-12)) { 1000 char buf[LDNS_MAX_DOMAINLEN+1]; 1001 dname_str(w->pkt+12, buf); 1002 verbose(VERB_CLIENT, "reuse_move_writewait_away item %s", buf); 1003 } 1004 reuse_tree_by_id_delete(&pend->reuse, w); 1005 outnet_add_tcp_waiting(outnet, w); 1006 } 1007 } 1008 1009 /** remove reused element from tree and lru list */ 1010 void 1011 reuse_tcp_remove_tree_list(struct outside_network* outnet, 1012 struct reuse_tcp* reuse) 1013 { 1014 verbose(VERB_CLIENT, "reuse_tcp_remove_tree_list"); 1015 if(reuse->node.key) { 1016 /* delete it from reuse tree */ 1017 if(!rbtree_delete(&outnet->tcp_reuse, reuse)) { 1018 /* should not be possible, it should be there */ 1019 char buf[256]; 1020 addr_to_str(&reuse->addr, reuse->addrlen, buf, 1021 sizeof(buf)); 1022 log_err("reuse tcp delete: node not present, internal error, %s ssl %d lru %d", buf, reuse->is_ssl, reuse->item_on_lru_list); 1023 } 1024 reuse->node.key = NULL; 1025 /* defend against loops on broken tree by zeroing the 1026 * rbnode structure */ 1027 memset(&reuse->node, 0, sizeof(reuse->node)); 1028 } 1029 /* delete from reuse list */ 1030 if(reuse->item_on_lru_list) { 1031 if(reuse->lru_prev) { 1032 /* assert that members of the lru list are waiting 1033 * and thus have a pending pointer to the struct */ 1034 log_assert(reuse->lru_prev->pending); 1035 reuse->lru_prev->lru_next = reuse->lru_next; 1036 log_assert(reuse->lru_prev->lru_next != reuse->lru_prev); 1037 } else { 1038 log_assert(!reuse->lru_next || reuse->lru_next->pending); 1039 outnet->tcp_reuse_first = reuse->lru_next; 1040 log_assert(!outnet->tcp_reuse_first || 1041 (outnet->tcp_reuse_first != 1042 outnet->tcp_reuse_first->lru_next && 1043 outnet->tcp_reuse_first != 1044 outnet->tcp_reuse_first->lru_prev)); 1045 } 1046 if(reuse->lru_next) { 1047 /* assert that members of the lru list are waiting 1048 * and thus have a pending pointer to the struct */ 1049 log_assert(reuse->lru_next->pending); 1050 reuse->lru_next->lru_prev = reuse->lru_prev; 1051 log_assert(reuse->lru_next->lru_prev != reuse->lru_next); 1052 } else { 1053 log_assert(!reuse->lru_prev || reuse->lru_prev->pending); 1054 outnet->tcp_reuse_last = reuse->lru_prev; 1055 log_assert(!outnet->tcp_reuse_last || 1056 (outnet->tcp_reuse_last != 1057 outnet->tcp_reuse_last->lru_next && 1058 outnet->tcp_reuse_last != 1059 outnet->tcp_reuse_last->lru_prev)); 1060 } 1061 log_assert((!outnet->tcp_reuse_first && !outnet->tcp_reuse_last) || 1062 (outnet->tcp_reuse_first && outnet->tcp_reuse_last)); 1063 reuse->item_on_lru_list = 0; 1064 reuse->lru_next = NULL; 1065 reuse->lru_prev = NULL; 1066 } 1067 reuse->pending = NULL; 1068 } 1069 1070 /** helper function that deletes an element from the tree of readwait 1071 * elements in tcp reuse structure */ 1072 static void reuse_del_readwait_elem(rbnode_type* node, void* ATTR_UNUSED(arg)) 1073 { 1074 struct waiting_tcp* w = (struct waiting_tcp*)node->key; 1075 waiting_tcp_delete(w); 1076 } 1077 1078 /** delete readwait waiting_tcp elements, deletes the elements in the list */ 1079 void reuse_del_readwait(rbtree_type* tree_by_id) 1080 { 1081 if(tree_by_id->root == NULL || 1082 tree_by_id->root == RBTREE_NULL) 1083 return; 1084 traverse_postorder(tree_by_id, &reuse_del_readwait_elem, NULL); 1085 rbtree_init(tree_by_id, reuse_id_cmp); 1086 } 1087 1088 /** decommission a tcp buffer, closes commpoint and frees waiting_tcp entry */ 1089 static void 1090 decommission_pending_tcp(struct outside_network* outnet, 1091 struct pending_tcp* pend) 1092 { 1093 verbose(VERB_CLIENT, "decommission_pending_tcp"); 1094 /* A certain code path can lead here twice for the same pending_tcp 1095 * creating a loop in the free pending_tcp list. */ 1096 if(outnet->tcp_free != pend) { 1097 pend->next_free = outnet->tcp_free; 1098 outnet->tcp_free = pend; 1099 } 1100 if(pend->reuse.node.key) { 1101 /* needs unlink from the reuse tree to get deleted */ 1102 reuse_tcp_remove_tree_list(outnet, &pend->reuse); 1103 } 1104 /* free SSL structure after remove from outnet tcp reuse tree, 1105 * because the c->ssl null or not is used for sorting in the tree */ 1106 if(pend->c->ssl) { 1107 #ifdef HAVE_SSL 1108 SSL_shutdown(pend->c->ssl); 1109 SSL_free(pend->c->ssl); 1110 pend->c->ssl = NULL; 1111 #endif 1112 } 1113 comm_point_close(pend->c); 1114 pend->reuse.cp_more_read_again = 0; 1115 pend->reuse.cp_more_write_again = 0; 1116 /* unlink the query and writewait list, it is part of the tree 1117 * nodes and is deleted */ 1118 pend->query = NULL; 1119 pend->reuse.write_wait_first = NULL; 1120 pend->reuse.write_wait_last = NULL; 1121 reuse_del_readwait(&pend->reuse.tree_by_id); 1122 } 1123 1124 /** perform failure callbacks for waiting queries in reuse read rbtree */ 1125 static void reuse_cb_readwait_for_failure(rbtree_type* tree_by_id, int err) 1126 { 1127 rbnode_type* node; 1128 if(tree_by_id->root == NULL || 1129 tree_by_id->root == RBTREE_NULL) 1130 return; 1131 node = rbtree_first(tree_by_id); 1132 while(node && node != RBTREE_NULL) { 1133 struct waiting_tcp* w = (struct waiting_tcp*)node->key; 1134 waiting_tcp_callback(w, NULL, err, NULL); 1135 node = rbtree_next(node); 1136 } 1137 } 1138 1139 /** perform callbacks for failure and also decommission pending tcp. 1140 * the callbacks remove references in sq->pending to the waiting_tcp 1141 * members of the tree_by_id in the pending tcp. The pending_tcp is 1142 * removed before the callbacks, so that the callbacks do not modify 1143 * the pending_tcp due to its reference in the outside_network reuse tree */ 1144 static void reuse_cb_and_decommission(struct outside_network* outnet, 1145 struct pending_tcp* pend, int error) 1146 { 1147 rbtree_type store; 1148 store = pend->reuse.tree_by_id; 1149 pend->query = NULL; 1150 rbtree_init(&pend->reuse.tree_by_id, reuse_id_cmp); 1151 pend->reuse.write_wait_first = NULL; 1152 pend->reuse.write_wait_last = NULL; 1153 decommission_pending_tcp(outnet, pend); 1154 reuse_cb_readwait_for_failure(&store, error); 1155 reuse_del_readwait(&store); 1156 } 1157 1158 /** set timeout on tcp fd and setup read event to catch incoming dns msgs */ 1159 static void 1160 reuse_tcp_setup_timeout(struct pending_tcp* pend_tcp, int tcp_reuse_timeout) 1161 { 1162 log_reuse_tcp(VERB_CLIENT, "reuse_tcp_setup_timeout", &pend_tcp->reuse); 1163 comm_point_start_listening(pend_tcp->c, -1, tcp_reuse_timeout); 1164 } 1165 1166 /** set timeout on tcp fd and setup read event to catch incoming dns msgs */ 1167 static void 1168 reuse_tcp_setup_read_and_timeout(struct pending_tcp* pend_tcp, int tcp_reuse_timeout) 1169 { 1170 log_reuse_tcp(VERB_CLIENT, "reuse_tcp_setup_readtimeout", &pend_tcp->reuse); 1171 sldns_buffer_clear(pend_tcp->c->buffer); 1172 pend_tcp->c->tcp_is_reading = 1; 1173 pend_tcp->c->tcp_byte_count = 0; 1174 comm_point_stop_listening(pend_tcp->c); 1175 comm_point_start_listening(pend_tcp->c, -1, tcp_reuse_timeout); 1176 } 1177 1178 int 1179 outnet_tcp_cb(struct comm_point* c, void* arg, int error, 1180 struct comm_reply *reply_info) 1181 { 1182 struct pending_tcp* pend = (struct pending_tcp*)arg; 1183 struct outside_network* outnet = pend->reuse.outnet; 1184 struct waiting_tcp* w = NULL; 1185 log_assert(pend->reuse.item_on_lru_list && pend->reuse.node.key); 1186 verbose(VERB_ALGO, "outnettcp cb"); 1187 if(error == NETEVENT_TIMEOUT) { 1188 if(pend->c->tcp_write_and_read) { 1189 verbose(VERB_QUERY, "outnettcp got tcp timeout " 1190 "for read, ignored because write underway"); 1191 /* if we are writing, ignore readtimer, wait for write timer 1192 * or write is done */ 1193 return 0; 1194 } else { 1195 verbose(VERB_QUERY, "outnettcp got tcp timeout %s", 1196 (pend->reuse.tree_by_id.count?"for reading pkt": 1197 "for keepalive for reuse")); 1198 } 1199 /* must be timeout for reading or keepalive reuse, 1200 * close it. */ 1201 reuse_tcp_remove_tree_list(outnet, &pend->reuse); 1202 } else if(error == NETEVENT_PKT_WRITTEN) { 1203 /* the packet we want to write has been written. */ 1204 verbose(VERB_ALGO, "outnet tcp pkt was written event"); 1205 log_assert(c == pend->c); 1206 log_assert(pend->query->pkt == pend->c->tcp_write_pkt); 1207 log_assert(pend->query->pkt_len == pend->c->tcp_write_pkt_len); 1208 pend->c->tcp_write_pkt = NULL; 1209 pend->c->tcp_write_pkt_len = 0; 1210 /* the pend.query is already in tree_by_id */ 1211 log_assert(pend->query->id_node.key); 1212 pend->query = NULL; 1213 /* setup to write next packet or setup read timeout */ 1214 if(pend->reuse.write_wait_first) { 1215 verbose(VERB_ALGO, "outnet tcp setup next pkt"); 1216 /* we can write it straight away perhaps, set flag 1217 * because this callback called after a tcp write 1218 * succeeded and likely more buffer space is available 1219 * and we can write some more. */ 1220 pend->reuse.cp_more_write_again = 1; 1221 pend->query = reuse_write_wait_pop(&pend->reuse); 1222 comm_point_stop_listening(pend->c); 1223 outnet_tcp_take_query_setup(pend->c->fd, pend, 1224 pend->query); 1225 } else { 1226 verbose(VERB_ALGO, "outnet tcp writes done, wait"); 1227 pend->c->tcp_write_and_read = 0; 1228 pend->reuse.cp_more_read_again = 0; 1229 pend->reuse.cp_more_write_again = 0; 1230 pend->c->tcp_is_reading = 1; 1231 comm_point_stop_listening(pend->c); 1232 reuse_tcp_setup_timeout(pend, outnet->tcp_reuse_timeout); 1233 } 1234 return 0; 1235 } else if(error != NETEVENT_NOERROR) { 1236 verbose(VERB_QUERY, "outnettcp got tcp error %d", error); 1237 reuse_move_writewait_away(outnet, pend); 1238 /* pass error below and exit */ 1239 } else { 1240 /* check ID */ 1241 if(sldns_buffer_limit(c->buffer) < sizeof(uint16_t)) { 1242 log_addr(VERB_QUERY, 1243 "outnettcp: bad ID in reply, too short, from:", 1244 &pend->reuse.addr, pend->reuse.addrlen); 1245 error = NETEVENT_CLOSED; 1246 } else { 1247 uint16_t id = LDNS_ID_WIRE(sldns_buffer_begin( 1248 c->buffer)); 1249 /* find the query the reply is for */ 1250 w = reuse_tcp_by_id_find(&pend->reuse, id); 1251 } 1252 } 1253 if(error == NETEVENT_NOERROR && !w) { 1254 /* no struct waiting found in tree, no reply to call */ 1255 log_addr(VERB_QUERY, "outnettcp: bad ID in reply, from:", 1256 &pend->reuse.addr, pend->reuse.addrlen); 1257 error = NETEVENT_CLOSED; 1258 } 1259 if(error == NETEVENT_NOERROR) { 1260 /* add to reuse tree so it can be reused, if not a failure. 1261 * This is possible if the state machine wants to make a tcp 1262 * query again to the same destination. */ 1263 if(outnet->tcp_reuse.count < outnet->tcp_reuse_max) { 1264 (void)reuse_tcp_insert(outnet, pend); 1265 } 1266 } 1267 if(w) { 1268 reuse_tree_by_id_delete(&pend->reuse, w); 1269 verbose(VERB_CLIENT, "outnet tcp callback query err %d buflen %d", 1270 error, (int)sldns_buffer_limit(c->buffer)); 1271 waiting_tcp_callback(w, c, error, reply_info); 1272 waiting_tcp_delete(w); 1273 } 1274 verbose(VERB_CLIENT, "outnet_tcp_cb reuse after cb"); 1275 if(error == NETEVENT_NOERROR && pend->reuse.node.key) { 1276 verbose(VERB_CLIENT, "outnet_tcp_cb reuse after cb: keep it"); 1277 /* it is in the reuse_tcp tree, with other queries, or 1278 * on the empty list. do not decommission it */ 1279 /* if there are more outstanding queries, we could try to 1280 * read again, to see if it is on the input, 1281 * because this callback called after a successful read 1282 * and there could be more bytes to read on the input */ 1283 if(pend->reuse.tree_by_id.count != 0) 1284 pend->reuse.cp_more_read_again = 1; 1285 reuse_tcp_setup_read_and_timeout(pend, outnet->tcp_reuse_timeout); 1286 return 0; 1287 } 1288 verbose(VERB_CLIENT, "outnet_tcp_cb reuse after cb: decommission it"); 1289 /* no queries on it, no space to keep it. or timeout or closed due 1290 * to error. Close it */ 1291 reuse_cb_and_decommission(outnet, pend, (error==NETEVENT_TIMEOUT? 1292 NETEVENT_TIMEOUT:NETEVENT_CLOSED)); 1293 use_free_buffer(outnet); 1294 return 0; 1295 } 1296 1297 /** lower use count on pc, see if it can be closed */ 1298 static void 1299 portcomm_loweruse(struct outside_network* outnet, struct port_comm* pc) 1300 { 1301 struct port_if* pif; 1302 pc->num_outstanding--; 1303 if(pc->num_outstanding > 0) { 1304 return; 1305 } 1306 /* close it and replace in unused list */ 1307 verbose(VERB_ALGO, "close of port %d", pc->number); 1308 comm_point_close(pc->cp); 1309 pif = pc->pif; 1310 log_assert(pif->inuse > 0); 1311 #ifndef DISABLE_EXPLICIT_PORT_RANDOMISATION 1312 pif->avail_ports[pif->avail_total - pif->inuse] = pc->number; 1313 #endif 1314 pif->inuse--; 1315 pif->out[pc->index] = pif->out[pif->inuse]; 1316 pif->out[pc->index]->index = pc->index; 1317 pc->next = outnet->unused_fds; 1318 outnet->unused_fds = pc; 1319 } 1320 1321 /** try to send waiting UDP queries */ 1322 static void 1323 outnet_send_wait_udp(struct outside_network* outnet) 1324 { 1325 struct pending* pend; 1326 /* process waiting queries */ 1327 while(outnet->udp_wait_first && outnet->unused_fds 1328 && !outnet->want_to_quit) { 1329 pend = outnet->udp_wait_first; 1330 outnet->udp_wait_first = pend->next_waiting; 1331 if(!pend->next_waiting) outnet->udp_wait_last = NULL; 1332 sldns_buffer_clear(outnet->udp_buff); 1333 sldns_buffer_write(outnet->udp_buff, pend->pkt, pend->pkt_len); 1334 sldns_buffer_flip(outnet->udp_buff); 1335 free(pend->pkt); /* freeing now makes get_mem correct */ 1336 pend->pkt = NULL; 1337 pend->pkt_len = 0; 1338 if(!randomize_and_send_udp(pend, outnet->udp_buff, 1339 pend->timeout)) { 1340 /* callback error on pending */ 1341 if(pend->cb) { 1342 fptr_ok(fptr_whitelist_pending_udp(pend->cb)); 1343 (void)(*pend->cb)(outnet->unused_fds->cp, pend->cb_arg, 1344 NETEVENT_CLOSED, NULL); 1345 } 1346 pending_delete(outnet, pend); 1347 } 1348 } 1349 } 1350 1351 int 1352 outnet_udp_cb(struct comm_point* c, void* arg, int error, 1353 struct comm_reply *reply_info) 1354 { 1355 struct outside_network* outnet = (struct outside_network*)arg; 1356 struct pending key; 1357 struct pending* p; 1358 verbose(VERB_ALGO, "answer cb"); 1359 1360 if(error != NETEVENT_NOERROR) { 1361 verbose(VERB_QUERY, "outnetudp got udp error %d", error); 1362 return 0; 1363 } 1364 if(sldns_buffer_limit(c->buffer) < LDNS_HEADER_SIZE) { 1365 verbose(VERB_QUERY, "outnetudp udp too short"); 1366 return 0; 1367 } 1368 log_assert(reply_info); 1369 1370 /* setup lookup key */ 1371 key.id = (unsigned)LDNS_ID_WIRE(sldns_buffer_begin(c->buffer)); 1372 memcpy(&key.addr, &reply_info->addr, reply_info->addrlen); 1373 key.addrlen = reply_info->addrlen; 1374 verbose(VERB_ALGO, "Incoming reply id = %4.4x", key.id); 1375 log_addr(VERB_ALGO, "Incoming reply addr =", 1376 &reply_info->addr, reply_info->addrlen); 1377 1378 /* find it, see if this thing is a valid query response */ 1379 verbose(VERB_ALGO, "lookup size is %d entries", (int)outnet->pending->count); 1380 p = (struct pending*)rbtree_search(outnet->pending, &key); 1381 if(!p) { 1382 verbose(VERB_QUERY, "received unwanted or unsolicited udp reply dropped."); 1383 log_buf(VERB_ALGO, "dropped message", c->buffer); 1384 outnet->unwanted_replies++; 1385 if(outnet->unwanted_threshold && ++outnet->unwanted_total 1386 >= outnet->unwanted_threshold) { 1387 log_warn("unwanted reply total reached threshold (%u)" 1388 " you may be under attack." 1389 " defensive action: clearing the cache", 1390 (unsigned)outnet->unwanted_threshold); 1391 fptr_ok(fptr_whitelist_alloc_cleanup( 1392 outnet->unwanted_action)); 1393 (*outnet->unwanted_action)(outnet->unwanted_param); 1394 outnet->unwanted_total = 0; 1395 } 1396 return 0; 1397 } 1398 1399 verbose(VERB_ALGO, "received udp reply."); 1400 log_buf(VERB_ALGO, "udp message", c->buffer); 1401 if(p->pc->cp != c) { 1402 verbose(VERB_QUERY, "received reply id,addr on wrong port. " 1403 "dropped."); 1404 outnet->unwanted_replies++; 1405 if(outnet->unwanted_threshold && ++outnet->unwanted_total 1406 >= outnet->unwanted_threshold) { 1407 log_warn("unwanted reply total reached threshold (%u)" 1408 " you may be under attack." 1409 " defensive action: clearing the cache", 1410 (unsigned)outnet->unwanted_threshold); 1411 fptr_ok(fptr_whitelist_alloc_cleanup( 1412 outnet->unwanted_action)); 1413 (*outnet->unwanted_action)(outnet->unwanted_param); 1414 outnet->unwanted_total = 0; 1415 } 1416 return 0; 1417 } 1418 comm_timer_disable(p->timer); 1419 verbose(VERB_ALGO, "outnet handle udp reply"); 1420 /* delete from tree first in case callback creates a retry */ 1421 (void)rbtree_delete(outnet->pending, p->node.key); 1422 if(p->cb) { 1423 fptr_ok(fptr_whitelist_pending_udp(p->cb)); 1424 (void)(*p->cb)(p->pc->cp, p->cb_arg, NETEVENT_NOERROR, reply_info); 1425 } 1426 portcomm_loweruse(outnet, p->pc); 1427 pending_delete(NULL, p); 1428 outnet_send_wait_udp(outnet); 1429 return 0; 1430 } 1431 1432 /** calculate number of ip4 and ip6 interfaces*/ 1433 static void 1434 calc_num46(char** ifs, int num_ifs, int do_ip4, int do_ip6, 1435 int* num_ip4, int* num_ip6) 1436 { 1437 int i; 1438 *num_ip4 = 0; 1439 *num_ip6 = 0; 1440 if(num_ifs <= 0) { 1441 if(do_ip4) 1442 *num_ip4 = 1; 1443 if(do_ip6) 1444 *num_ip6 = 1; 1445 return; 1446 } 1447 for(i=0; i<num_ifs; i++) 1448 { 1449 if(str_is_ip6(ifs[i])) { 1450 if(do_ip6) 1451 (*num_ip6)++; 1452 } else { 1453 if(do_ip4) 1454 (*num_ip4)++; 1455 } 1456 } 1457 1458 } 1459 1460 void 1461 pending_udp_timer_delay_cb(void* arg) 1462 { 1463 struct pending* p = (struct pending*)arg; 1464 struct outside_network* outnet = p->outnet; 1465 verbose(VERB_ALGO, "timeout udp with delay"); 1466 portcomm_loweruse(outnet, p->pc); 1467 pending_delete(outnet, p); 1468 outnet_send_wait_udp(outnet); 1469 } 1470 1471 void 1472 pending_udp_timer_cb(void *arg) 1473 { 1474 struct pending* p = (struct pending*)arg; 1475 struct outside_network* outnet = p->outnet; 1476 /* it timed out */ 1477 verbose(VERB_ALGO, "timeout udp"); 1478 if(p->cb) { 1479 fptr_ok(fptr_whitelist_pending_udp(p->cb)); 1480 (void)(*p->cb)(p->pc->cp, p->cb_arg, NETEVENT_TIMEOUT, NULL); 1481 } 1482 /* if delayclose, keep port open for a longer time. 1483 * But if the udpwaitlist exists, then we are struggling to 1484 * keep up with demand for sockets, so do not wait, but service 1485 * the customer (customer service more important than portICMPs) */ 1486 if(outnet->delayclose && !outnet->udp_wait_first) { 1487 p->cb = NULL; 1488 p->timer->callback = &pending_udp_timer_delay_cb; 1489 comm_timer_set(p->timer, &outnet->delay_tv); 1490 return; 1491 } 1492 portcomm_loweruse(outnet, p->pc); 1493 pending_delete(outnet, p); 1494 outnet_send_wait_udp(outnet); 1495 } 1496 1497 /** create pending_tcp buffers */ 1498 static int 1499 create_pending_tcp(struct outside_network* outnet, size_t bufsize) 1500 { 1501 size_t i; 1502 if(outnet->num_tcp == 0) 1503 return 1; /* no tcp needed, nothing to do */ 1504 if(!(outnet->tcp_conns = (struct pending_tcp **)calloc( 1505 outnet->num_tcp, sizeof(struct pending_tcp*)))) 1506 return 0; 1507 for(i=0; i<outnet->num_tcp; i++) { 1508 if(!(outnet->tcp_conns[i] = (struct pending_tcp*)calloc(1, 1509 sizeof(struct pending_tcp)))) 1510 return 0; 1511 outnet->tcp_conns[i]->next_free = outnet->tcp_free; 1512 outnet->tcp_free = outnet->tcp_conns[i]; 1513 outnet->tcp_conns[i]->c = comm_point_create_tcp_out( 1514 outnet->base, bufsize, outnet_tcp_cb, 1515 outnet->tcp_conns[i]); 1516 if(!outnet->tcp_conns[i]->c) 1517 return 0; 1518 } 1519 return 1; 1520 } 1521 1522 /** setup an outgoing interface, ready address */ 1523 static int setup_if(struct port_if* pif, const char* addrstr, 1524 int* avail, int numavail, size_t numfd) 1525 { 1526 #ifndef DISABLE_EXPLICIT_PORT_RANDOMISATION 1527 pif->avail_total = numavail; 1528 pif->avail_ports = (int*)memdup(avail, (size_t)numavail*sizeof(int)); 1529 if(!pif->avail_ports) 1530 return 0; 1531 #endif 1532 if(!ipstrtoaddr(addrstr, UNBOUND_DNS_PORT, &pif->addr, &pif->addrlen) && 1533 !netblockstrtoaddr(addrstr, UNBOUND_DNS_PORT, 1534 &pif->addr, &pif->addrlen, &pif->pfxlen)) 1535 return 0; 1536 pif->maxout = (int)numfd; 1537 pif->inuse = 0; 1538 pif->out = (struct port_comm**)calloc(numfd, 1539 sizeof(struct port_comm*)); 1540 if(!pif->out) 1541 return 0; 1542 return 1; 1543 } 1544 1545 struct outside_network* 1546 outside_network_create(struct comm_base *base, size_t bufsize, 1547 size_t num_ports, char** ifs, int num_ifs, int do_ip4, 1548 int do_ip6, size_t num_tcp, int dscp, struct infra_cache* infra, 1549 struct ub_randstate* rnd, int use_caps_for_id, int* availports, 1550 int numavailports, size_t unwanted_threshold, int tcp_mss, 1551 void (*unwanted_action)(void*), void* unwanted_param, int do_udp, 1552 void* sslctx, int delayclose, int tls_use_sni, struct dt_env* dtenv, 1553 int udp_connect, int max_reuse_tcp_queries, int tcp_reuse_timeout, 1554 int tcp_auth_query_timeout) 1555 { 1556 struct outside_network* outnet = (struct outside_network*) 1557 calloc(1, sizeof(struct outside_network)); 1558 size_t k; 1559 if(!outnet) { 1560 log_err("malloc failed"); 1561 return NULL; 1562 } 1563 comm_base_timept(base, &outnet->now_secs, &outnet->now_tv); 1564 outnet->base = base; 1565 outnet->num_tcp = num_tcp; 1566 outnet->max_reuse_tcp_queries = max_reuse_tcp_queries; 1567 outnet->tcp_reuse_timeout= tcp_reuse_timeout; 1568 outnet->tcp_auth_query_timeout = tcp_auth_query_timeout; 1569 outnet->num_tcp_outgoing = 0; 1570 outnet->infra = infra; 1571 outnet->rnd = rnd; 1572 outnet->sslctx = sslctx; 1573 outnet->tls_use_sni = tls_use_sni; 1574 #ifdef USE_DNSTAP 1575 outnet->dtenv = dtenv; 1576 #else 1577 (void)dtenv; 1578 #endif 1579 outnet->svcd_overhead = 0; 1580 outnet->want_to_quit = 0; 1581 outnet->unwanted_threshold = unwanted_threshold; 1582 outnet->unwanted_action = unwanted_action; 1583 outnet->unwanted_param = unwanted_param; 1584 outnet->use_caps_for_id = use_caps_for_id; 1585 outnet->do_udp = do_udp; 1586 outnet->tcp_mss = tcp_mss; 1587 outnet->ip_dscp = dscp; 1588 #ifndef S_SPLINT_S 1589 if(delayclose) { 1590 outnet->delayclose = 1; 1591 outnet->delay_tv.tv_sec = delayclose/1000; 1592 outnet->delay_tv.tv_usec = (delayclose%1000)*1000; 1593 } 1594 #endif 1595 if(udp_connect) { 1596 outnet->udp_connect = 1; 1597 } 1598 if(numavailports == 0 || num_ports == 0) { 1599 log_err("no outgoing ports available"); 1600 outside_network_delete(outnet); 1601 return NULL; 1602 } 1603 #ifndef INET6 1604 do_ip6 = 0; 1605 #endif 1606 calc_num46(ifs, num_ifs, do_ip4, do_ip6, 1607 &outnet->num_ip4, &outnet->num_ip6); 1608 if(outnet->num_ip4 != 0) { 1609 if(!(outnet->ip4_ifs = (struct port_if*)calloc( 1610 (size_t)outnet->num_ip4, sizeof(struct port_if)))) { 1611 log_err("malloc failed"); 1612 outside_network_delete(outnet); 1613 return NULL; 1614 } 1615 } 1616 if(outnet->num_ip6 != 0) { 1617 if(!(outnet->ip6_ifs = (struct port_if*)calloc( 1618 (size_t)outnet->num_ip6, sizeof(struct port_if)))) { 1619 log_err("malloc failed"); 1620 outside_network_delete(outnet); 1621 return NULL; 1622 } 1623 } 1624 if( !(outnet->udp_buff = sldns_buffer_new(bufsize)) || 1625 !(outnet->pending = rbtree_create(pending_cmp)) || 1626 !(outnet->serviced = rbtree_create(serviced_cmp)) || 1627 !create_pending_tcp(outnet, bufsize)) { 1628 log_err("malloc failed"); 1629 outside_network_delete(outnet); 1630 return NULL; 1631 } 1632 rbtree_init(&outnet->tcp_reuse, reuse_cmp); 1633 outnet->tcp_reuse_max = num_tcp; 1634 1635 /* allocate commpoints */ 1636 for(k=0; k<num_ports; k++) { 1637 struct port_comm* pc; 1638 pc = (struct port_comm*)calloc(1, sizeof(*pc)); 1639 if(!pc) { 1640 log_err("malloc failed"); 1641 outside_network_delete(outnet); 1642 return NULL; 1643 } 1644 pc->cp = comm_point_create_udp(outnet->base, -1, 1645 outnet->udp_buff, outnet_udp_cb, outnet, NULL); 1646 if(!pc->cp) { 1647 log_err("malloc failed"); 1648 free(pc); 1649 outside_network_delete(outnet); 1650 return NULL; 1651 } 1652 pc->next = outnet->unused_fds; 1653 outnet->unused_fds = pc; 1654 } 1655 1656 /* allocate interfaces */ 1657 if(num_ifs == 0) { 1658 if(do_ip4 && !setup_if(&outnet->ip4_ifs[0], "0.0.0.0", 1659 availports, numavailports, num_ports)) { 1660 log_err("malloc failed"); 1661 outside_network_delete(outnet); 1662 return NULL; 1663 } 1664 if(do_ip6 && !setup_if(&outnet->ip6_ifs[0], "::", 1665 availports, numavailports, num_ports)) { 1666 log_err("malloc failed"); 1667 outside_network_delete(outnet); 1668 return NULL; 1669 } 1670 } else { 1671 size_t done_4 = 0, done_6 = 0; 1672 int i; 1673 for(i=0; i<num_ifs; i++) { 1674 if(str_is_ip6(ifs[i]) && do_ip6) { 1675 if(!setup_if(&outnet->ip6_ifs[done_6], ifs[i], 1676 availports, numavailports, num_ports)){ 1677 log_err("malloc failed"); 1678 outside_network_delete(outnet); 1679 return NULL; 1680 } 1681 done_6++; 1682 } 1683 if(!str_is_ip6(ifs[i]) && do_ip4) { 1684 if(!setup_if(&outnet->ip4_ifs[done_4], ifs[i], 1685 availports, numavailports, num_ports)){ 1686 log_err("malloc failed"); 1687 outside_network_delete(outnet); 1688 return NULL; 1689 } 1690 done_4++; 1691 } 1692 } 1693 } 1694 return outnet; 1695 } 1696 1697 /** helper pending delete */ 1698 static void 1699 pending_node_del(rbnode_type* node, void* arg) 1700 { 1701 struct pending* pend = (struct pending*)node; 1702 struct outside_network* outnet = (struct outside_network*)arg; 1703 pending_delete(outnet, pend); 1704 } 1705 1706 /** helper serviced delete */ 1707 static void 1708 serviced_node_del(rbnode_type* node, void* ATTR_UNUSED(arg)) 1709 { 1710 struct serviced_query* sq = (struct serviced_query*)node; 1711 struct service_callback* p = sq->cblist, *np; 1712 free(sq->qbuf); 1713 free(sq->zone); 1714 free(sq->tls_auth_name); 1715 edns_opt_list_free(sq->opt_list); 1716 while(p) { 1717 np = p->next; 1718 free(p); 1719 p = np; 1720 } 1721 free(sq); 1722 } 1723 1724 void 1725 outside_network_quit_prepare(struct outside_network* outnet) 1726 { 1727 if(!outnet) 1728 return; 1729 /* prevent queued items from being sent */ 1730 outnet->want_to_quit = 1; 1731 } 1732 1733 void 1734 outside_network_delete(struct outside_network* outnet) 1735 { 1736 if(!outnet) 1737 return; 1738 outnet->want_to_quit = 1; 1739 /* check every element, since we can be called on malloc error */ 1740 if(outnet->pending) { 1741 /* free pending elements, but do no unlink from tree. */ 1742 traverse_postorder(outnet->pending, pending_node_del, NULL); 1743 free(outnet->pending); 1744 } 1745 if(outnet->serviced) { 1746 traverse_postorder(outnet->serviced, serviced_node_del, NULL); 1747 free(outnet->serviced); 1748 } 1749 if(outnet->udp_buff) 1750 sldns_buffer_free(outnet->udp_buff); 1751 if(outnet->unused_fds) { 1752 struct port_comm* p = outnet->unused_fds, *np; 1753 while(p) { 1754 np = p->next; 1755 comm_point_delete(p->cp); 1756 free(p); 1757 p = np; 1758 } 1759 outnet->unused_fds = NULL; 1760 } 1761 if(outnet->ip4_ifs) { 1762 int i, k; 1763 for(i=0; i<outnet->num_ip4; i++) { 1764 for(k=0; k<outnet->ip4_ifs[i].inuse; k++) { 1765 struct port_comm* pc = outnet->ip4_ifs[i]. 1766 out[k]; 1767 comm_point_delete(pc->cp); 1768 free(pc); 1769 } 1770 #ifndef DISABLE_EXPLICIT_PORT_RANDOMISATION 1771 free(outnet->ip4_ifs[i].avail_ports); 1772 #endif 1773 free(outnet->ip4_ifs[i].out); 1774 } 1775 free(outnet->ip4_ifs); 1776 } 1777 if(outnet->ip6_ifs) { 1778 int i, k; 1779 for(i=0; i<outnet->num_ip6; i++) { 1780 for(k=0; k<outnet->ip6_ifs[i].inuse; k++) { 1781 struct port_comm* pc = outnet->ip6_ifs[i]. 1782 out[k]; 1783 comm_point_delete(pc->cp); 1784 free(pc); 1785 } 1786 #ifndef DISABLE_EXPLICIT_PORT_RANDOMISATION 1787 free(outnet->ip6_ifs[i].avail_ports); 1788 #endif 1789 free(outnet->ip6_ifs[i].out); 1790 } 1791 free(outnet->ip6_ifs); 1792 } 1793 if(outnet->tcp_conns) { 1794 size_t i; 1795 for(i=0; i<outnet->num_tcp; i++) 1796 if(outnet->tcp_conns[i]) { 1797 struct pending_tcp* pend; 1798 pend = outnet->tcp_conns[i]; 1799 if(pend->reuse.item_on_lru_list) { 1800 /* delete waiting_tcp elements that 1801 * the tcp conn is working on */ 1802 decommission_pending_tcp(outnet, pend); 1803 } 1804 comm_point_delete(outnet->tcp_conns[i]->c); 1805 free(outnet->tcp_conns[i]); 1806 outnet->tcp_conns[i] = NULL; 1807 } 1808 free(outnet->tcp_conns); 1809 outnet->tcp_conns = NULL; 1810 } 1811 if(outnet->tcp_wait_first) { 1812 struct waiting_tcp* p = outnet->tcp_wait_first, *np; 1813 while(p) { 1814 np = p->next_waiting; 1815 waiting_tcp_delete(p); 1816 p = np; 1817 } 1818 } 1819 /* was allocated in struct pending that was deleted above */ 1820 rbtree_init(&outnet->tcp_reuse, reuse_cmp); 1821 outnet->tcp_reuse_first = NULL; 1822 outnet->tcp_reuse_last = NULL; 1823 if(outnet->udp_wait_first) { 1824 struct pending* p = outnet->udp_wait_first, *np; 1825 while(p) { 1826 np = p->next_waiting; 1827 pending_delete(NULL, p); 1828 p = np; 1829 } 1830 } 1831 free(outnet); 1832 } 1833 1834 void 1835 pending_delete(struct outside_network* outnet, struct pending* p) 1836 { 1837 if(!p) 1838 return; 1839 if(outnet && outnet->udp_wait_first && 1840 (p->next_waiting || p == outnet->udp_wait_last) ) { 1841 /* delete from waiting list, if it is in the waiting list */ 1842 struct pending* prev = NULL, *x = outnet->udp_wait_first; 1843 while(x && x != p) { 1844 prev = x; 1845 x = x->next_waiting; 1846 } 1847 if(x) { 1848 log_assert(x == p); 1849 if(prev) 1850 prev->next_waiting = p->next_waiting; 1851 else outnet->udp_wait_first = p->next_waiting; 1852 if(outnet->udp_wait_last == p) 1853 outnet->udp_wait_last = prev; 1854 } 1855 } 1856 if(outnet) { 1857 (void)rbtree_delete(outnet->pending, p->node.key); 1858 } 1859 if(p->timer) 1860 comm_timer_delete(p->timer); 1861 free(p->pkt); 1862 free(p); 1863 } 1864 1865 static void 1866 sai6_putrandom(struct sockaddr_in6 *sa, int pfxlen, struct ub_randstate *rnd) 1867 { 1868 int i, last; 1869 if(!(pfxlen > 0 && pfxlen < 128)) 1870 return; 1871 for(i = 0; i < (128 - pfxlen) / 8; i++) { 1872 sa->sin6_addr.s6_addr[15-i] = (uint8_t)ub_random_max(rnd, 256); 1873 } 1874 last = pfxlen & 7; 1875 if(last != 0) { 1876 sa->sin6_addr.s6_addr[15-i] |= 1877 ((0xFF >> last) & ub_random_max(rnd, 256)); 1878 } 1879 } 1880 1881 /** 1882 * Try to open a UDP socket for outgoing communication. 1883 * Sets sockets options as needed. 1884 * @param addr: socket address. 1885 * @param addrlen: length of address. 1886 * @param pfxlen: length of network prefix (for address randomisation). 1887 * @param port: port override for addr. 1888 * @param inuse: if -1 is returned, this bool means the port was in use. 1889 * @param rnd: random state (for address randomisation). 1890 * @param dscp: DSCP to use. 1891 * @return fd or -1 1892 */ 1893 static int 1894 udp_sockport(struct sockaddr_storage* addr, socklen_t addrlen, int pfxlen, 1895 int port, int* inuse, struct ub_randstate* rnd, int dscp) 1896 { 1897 int fd, noproto; 1898 if(addr_is_ip6(addr, addrlen)) { 1899 int freebind = 0; 1900 struct sockaddr_in6 sa = *(struct sockaddr_in6*)addr; 1901 sa.sin6_port = (in_port_t)htons((uint16_t)port); 1902 sa.sin6_flowinfo = 0; 1903 sa.sin6_scope_id = 0; 1904 if(pfxlen != 0) { 1905 freebind = 1; 1906 sai6_putrandom(&sa, pfxlen, rnd); 1907 } 1908 fd = create_udp_sock(AF_INET6, SOCK_DGRAM, 1909 (struct sockaddr*)&sa, addrlen, 1, inuse, &noproto, 1910 0, 0, 0, NULL, 0, freebind, 0, dscp); 1911 } else { 1912 struct sockaddr_in* sa = (struct sockaddr_in*)addr; 1913 sa->sin_port = (in_port_t)htons((uint16_t)port); 1914 fd = create_udp_sock(AF_INET, SOCK_DGRAM, 1915 (struct sockaddr*)addr, addrlen, 1, inuse, &noproto, 1916 0, 0, 0, NULL, 0, 0, 0, dscp); 1917 } 1918 return fd; 1919 } 1920 1921 /** Select random ID */ 1922 static int 1923 select_id(struct outside_network* outnet, struct pending* pend, 1924 sldns_buffer* packet) 1925 { 1926 int id_tries = 0; 1927 pend->id = GET_RANDOM_ID(outnet->rnd); 1928 LDNS_ID_SET(sldns_buffer_begin(packet), pend->id); 1929 1930 /* insert in tree */ 1931 pend->node.key = pend; 1932 while(!rbtree_insert(outnet->pending, &pend->node)) { 1933 /* change ID to avoid collision */ 1934 pend->id = GET_RANDOM_ID(outnet->rnd); 1935 LDNS_ID_SET(sldns_buffer_begin(packet), pend->id); 1936 id_tries++; 1937 if(id_tries == MAX_ID_RETRY) { 1938 pend->id=99999; /* non existent ID */ 1939 log_err("failed to generate unique ID, drop msg"); 1940 return 0; 1941 } 1942 } 1943 verbose(VERB_ALGO, "inserted new pending reply id=%4.4x", pend->id); 1944 return 1; 1945 } 1946 1947 /** return true is UDP connect error needs to be logged */ 1948 static int udp_connect_needs_log(int err) 1949 { 1950 switch(err) { 1951 case ECONNREFUSED: 1952 # ifdef ENETUNREACH 1953 case ENETUNREACH: 1954 # endif 1955 # ifdef EHOSTDOWN 1956 case EHOSTDOWN: 1957 # endif 1958 # ifdef EHOSTUNREACH 1959 case EHOSTUNREACH: 1960 # endif 1961 # ifdef ENETDOWN 1962 case ENETDOWN: 1963 # endif 1964 case EPERM: 1965 case EACCES: 1966 if(verbosity >= VERB_ALGO) 1967 return 1; 1968 return 0; 1969 default: 1970 break; 1971 } 1972 return 1; 1973 } 1974 1975 1976 /** Select random interface and port */ 1977 static int 1978 select_ifport(struct outside_network* outnet, struct pending* pend, 1979 int num_if, struct port_if* ifs) 1980 { 1981 int my_if, my_port, fd, portno, inuse, tries=0; 1982 struct port_if* pif; 1983 /* randomly select interface and port */ 1984 if(num_if == 0) { 1985 verbose(VERB_QUERY, "Need to send query but have no " 1986 "outgoing interfaces of that family"); 1987 return 0; 1988 } 1989 log_assert(outnet->unused_fds); 1990 tries = 0; 1991 while(1) { 1992 my_if = ub_random_max(outnet->rnd, num_if); 1993 pif = &ifs[my_if]; 1994 #ifndef DISABLE_EXPLICIT_PORT_RANDOMISATION 1995 if(outnet->udp_connect) { 1996 /* if we connect() we cannot reuse fds for a port */ 1997 if(pif->inuse >= pif->avail_total) { 1998 tries++; 1999 if(tries < MAX_PORT_RETRY) 2000 continue; 2001 log_err("failed to find an open port, drop msg"); 2002 return 0; 2003 } 2004 my_port = pif->inuse + ub_random_max(outnet->rnd, 2005 pif->avail_total - pif->inuse); 2006 } else { 2007 my_port = ub_random_max(outnet->rnd, pif->avail_total); 2008 if(my_port < pif->inuse) { 2009 /* port already open */ 2010 pend->pc = pif->out[my_port]; 2011 verbose(VERB_ALGO, "using UDP if=%d port=%d", 2012 my_if, pend->pc->number); 2013 break; 2014 } 2015 } 2016 /* try to open new port, if fails, loop to try again */ 2017 log_assert(pif->inuse < pif->maxout); 2018 portno = pif->avail_ports[my_port - pif->inuse]; 2019 #else 2020 my_port = portno = 0; 2021 #endif 2022 fd = udp_sockport(&pif->addr, pif->addrlen, pif->pfxlen, 2023 portno, &inuse, outnet->rnd, outnet->ip_dscp); 2024 if(fd == -1 && !inuse) { 2025 /* nonrecoverable error making socket */ 2026 return 0; 2027 } 2028 if(fd != -1) { 2029 verbose(VERB_ALGO, "opened UDP if=%d port=%d", 2030 my_if, portno); 2031 if(outnet->udp_connect) { 2032 /* connect() to the destination */ 2033 if(connect(fd, (struct sockaddr*)&pend->addr, 2034 pend->addrlen) < 0) { 2035 if(udp_connect_needs_log(errno)) { 2036 log_err_addr("udp connect failed", 2037 strerror(errno), &pend->addr, 2038 pend->addrlen); 2039 } 2040 sock_close(fd); 2041 return 0; 2042 } 2043 } 2044 /* grab fd */ 2045 pend->pc = outnet->unused_fds; 2046 outnet->unused_fds = pend->pc->next; 2047 2048 /* setup portcomm */ 2049 pend->pc->next = NULL; 2050 pend->pc->number = portno; 2051 pend->pc->pif = pif; 2052 pend->pc->index = pif->inuse; 2053 pend->pc->num_outstanding = 0; 2054 comm_point_start_listening(pend->pc->cp, fd, -1); 2055 2056 /* grab port in interface */ 2057 pif->out[pif->inuse] = pend->pc; 2058 #ifndef DISABLE_EXPLICIT_PORT_RANDOMISATION 2059 pif->avail_ports[my_port - pif->inuse] = 2060 pif->avail_ports[pif->avail_total-pif->inuse-1]; 2061 #endif 2062 pif->inuse++; 2063 break; 2064 } 2065 /* failed, already in use */ 2066 verbose(VERB_QUERY, "port %d in use, trying another", portno); 2067 tries++; 2068 if(tries == MAX_PORT_RETRY) { 2069 log_err("failed to find an open port, drop msg"); 2070 return 0; 2071 } 2072 } 2073 log_assert(pend->pc); 2074 pend->pc->num_outstanding++; 2075 2076 return 1; 2077 } 2078 2079 static int 2080 randomize_and_send_udp(struct pending* pend, sldns_buffer* packet, int timeout) 2081 { 2082 struct timeval tv; 2083 struct outside_network* outnet = pend->sq->outnet; 2084 2085 /* select id */ 2086 if(!select_id(outnet, pend, packet)) { 2087 return 0; 2088 } 2089 2090 /* select src_if, port */ 2091 if(addr_is_ip6(&pend->addr, pend->addrlen)) { 2092 if(!select_ifport(outnet, pend, 2093 outnet->num_ip6, outnet->ip6_ifs)) 2094 return 0; 2095 } else { 2096 if(!select_ifport(outnet, pend, 2097 outnet->num_ip4, outnet->ip4_ifs)) 2098 return 0; 2099 } 2100 log_assert(pend->pc && pend->pc->cp); 2101 2102 /* send it over the commlink */ 2103 if(!comm_point_send_udp_msg(pend->pc->cp, packet, 2104 (struct sockaddr*)&pend->addr, pend->addrlen, outnet->udp_connect)) { 2105 portcomm_loweruse(outnet, pend->pc); 2106 return 0; 2107 } 2108 2109 /* system calls to set timeout after sending UDP to make roundtrip 2110 smaller. */ 2111 #ifndef S_SPLINT_S 2112 tv.tv_sec = timeout/1000; 2113 tv.tv_usec = (timeout%1000)*1000; 2114 #endif 2115 comm_timer_set(pend->timer, &tv); 2116 2117 #ifdef USE_DNSTAP 2118 /* 2119 * sending src (local service)/dst (upstream) addresses over DNSTAP 2120 * There are no chances to get the src (local service) addr if unbound 2121 * is not configured with specific outgoing IP-addresses. So we will 2122 * pass 0.0.0.0 (::) to argument for 2123 * dt_msg_send_outside_query()/dt_msg_send_outside_response() calls. 2124 */ 2125 if(outnet->dtenv && 2126 (outnet->dtenv->log_resolver_query_messages || 2127 outnet->dtenv->log_forwarder_query_messages)) { 2128 log_addr(VERB_ALGO, "from local addr", &pend->pc->pif->addr, pend->pc->pif->addrlen); 2129 log_addr(VERB_ALGO, "request to upstream", &pend->addr, pend->addrlen); 2130 dt_msg_send_outside_query(outnet->dtenv, &pend->addr, &pend->pc->pif->addr, comm_udp, 2131 pend->sq->zone, pend->sq->zonelen, packet); 2132 } 2133 #endif 2134 return 1; 2135 } 2136 2137 struct pending* 2138 pending_udp_query(struct serviced_query* sq, struct sldns_buffer* packet, 2139 int timeout, comm_point_callback_type* cb, void* cb_arg) 2140 { 2141 struct pending* pend = (struct pending*)calloc(1, sizeof(*pend)); 2142 if(!pend) return NULL; 2143 pend->outnet = sq->outnet; 2144 pend->sq = sq; 2145 pend->addrlen = sq->addrlen; 2146 memmove(&pend->addr, &sq->addr, sq->addrlen); 2147 pend->cb = cb; 2148 pend->cb_arg = cb_arg; 2149 pend->node.key = pend; 2150 pend->timer = comm_timer_create(sq->outnet->base, pending_udp_timer_cb, 2151 pend); 2152 if(!pend->timer) { 2153 free(pend); 2154 return NULL; 2155 } 2156 2157 if(sq->outnet->unused_fds == NULL) { 2158 /* no unused fd, cannot create a new port (randomly) */ 2159 verbose(VERB_ALGO, "no fds available, udp query waiting"); 2160 pend->timeout = timeout; 2161 pend->pkt_len = sldns_buffer_limit(packet); 2162 pend->pkt = (uint8_t*)memdup(sldns_buffer_begin(packet), 2163 pend->pkt_len); 2164 if(!pend->pkt) { 2165 comm_timer_delete(pend->timer); 2166 free(pend); 2167 return NULL; 2168 } 2169 /* put at end of waiting list */ 2170 if(sq->outnet->udp_wait_last) 2171 sq->outnet->udp_wait_last->next_waiting = pend; 2172 else 2173 sq->outnet->udp_wait_first = pend; 2174 sq->outnet->udp_wait_last = pend; 2175 return pend; 2176 } 2177 if(!randomize_and_send_udp(pend, packet, timeout)) { 2178 pending_delete(sq->outnet, pend); 2179 return NULL; 2180 } 2181 return pend; 2182 } 2183 2184 void 2185 outnet_tcptimer(void* arg) 2186 { 2187 struct waiting_tcp* w = (struct waiting_tcp*)arg; 2188 struct outside_network* outnet = w->outnet; 2189 verbose(VERB_CLIENT, "outnet_tcptimer"); 2190 if(w->on_tcp_waiting_list) { 2191 /* it is on the waiting list */ 2192 waiting_list_remove(outnet, w); 2193 waiting_tcp_callback(w, NULL, NETEVENT_TIMEOUT, NULL); 2194 waiting_tcp_delete(w); 2195 } else { 2196 /* it was in use */ 2197 struct pending_tcp* pend=(struct pending_tcp*)w->next_waiting; 2198 reuse_cb_and_decommission(outnet, pend, NETEVENT_TIMEOUT); 2199 } 2200 use_free_buffer(outnet); 2201 } 2202 2203 /** close the oldest reuse_tcp connection to make a fd and struct pend 2204 * available for a new stream connection */ 2205 static void 2206 reuse_tcp_close_oldest(struct outside_network* outnet) 2207 { 2208 struct reuse_tcp* reuse; 2209 verbose(VERB_CLIENT, "reuse_tcp_close_oldest"); 2210 reuse = reuse_tcp_lru_snip(outnet); 2211 if(!reuse) return; 2212 /* free up */ 2213 reuse_cb_and_decommission(outnet, reuse->pending, NETEVENT_CLOSED); 2214 } 2215 2216 static uint16_t 2217 tcp_select_id(struct outside_network* outnet, struct reuse_tcp* reuse) 2218 { 2219 if(reuse) 2220 return reuse_tcp_select_id(reuse, outnet); 2221 return GET_RANDOM_ID(outnet->rnd); 2222 } 2223 2224 /** find spare ID value for reuse tcp stream. That is random and also does 2225 * not collide with an existing query ID that is in use or waiting */ 2226 uint16_t 2227 reuse_tcp_select_id(struct reuse_tcp* reuse, struct outside_network* outnet) 2228 { 2229 uint16_t id = 0, curid, nextid; 2230 const int try_random = 2000; 2231 int i; 2232 unsigned select, count, space; 2233 rbnode_type* node; 2234 2235 /* make really sure the tree is not empty */ 2236 if(reuse->tree_by_id.count == 0) { 2237 id = GET_RANDOM_ID(outnet->rnd); 2238 return id; 2239 } 2240 2241 /* try to find random empty spots by picking them */ 2242 for(i = 0; i<try_random; i++) { 2243 id = GET_RANDOM_ID(outnet->rnd); 2244 if(!reuse_tcp_by_id_find(reuse, id)) { 2245 return id; 2246 } 2247 } 2248 2249 /* equally pick a random unused element from the tree that is 2250 * not in use. Pick a the n-th index of an ununused number, 2251 * then loop over the empty spaces in the tree and find it */ 2252 log_assert(reuse->tree_by_id.count < 0xffff); 2253 select = ub_random_max(outnet->rnd, 0xffff - reuse->tree_by_id.count); 2254 /* select value now in 0 .. num free - 1 */ 2255 2256 count = 0; /* number of free spaces passed by */ 2257 node = rbtree_first(&reuse->tree_by_id); 2258 log_assert(node && node != RBTREE_NULL); /* tree not empty */ 2259 /* see if select is before first node */ 2260 if(select < tree_by_id_get_id(node)) 2261 return select; 2262 count += tree_by_id_get_id(node); 2263 /* perhaps select is between nodes */ 2264 while(node && node != RBTREE_NULL) { 2265 rbnode_type* next = rbtree_next(node); 2266 if(next && next != RBTREE_NULL) { 2267 curid = tree_by_id_get_id(node); 2268 nextid = tree_by_id_get_id(next); 2269 log_assert(curid < nextid); 2270 if(curid != 0xffff && curid + 1 < nextid) { 2271 /* space between nodes */ 2272 space = nextid - curid - 1; 2273 log_assert(select >= count); 2274 if(select < count + space) { 2275 /* here it is */ 2276 return curid + 1 + (select - count); 2277 } 2278 count += space; 2279 } 2280 } 2281 node = next; 2282 } 2283 2284 /* select is after the last node */ 2285 /* count is the number of free positions before the nodes in the 2286 * tree */ 2287 node = rbtree_last(&reuse->tree_by_id); 2288 log_assert(node && node != RBTREE_NULL); /* tree not empty */ 2289 curid = tree_by_id_get_id(node); 2290 log_assert(count + (0xffff-curid) + reuse->tree_by_id.count == 0xffff); 2291 return curid + 1 + (select - count); 2292 } 2293 2294 struct waiting_tcp* 2295 pending_tcp_query(struct serviced_query* sq, sldns_buffer* packet, 2296 int timeout, comm_point_callback_type* callback, void* callback_arg) 2297 { 2298 struct pending_tcp* pend = sq->outnet->tcp_free; 2299 struct reuse_tcp* reuse = NULL; 2300 struct waiting_tcp* w; 2301 2302 verbose(VERB_CLIENT, "pending_tcp_query"); 2303 if(sldns_buffer_limit(packet) < sizeof(uint16_t)) { 2304 verbose(VERB_ALGO, "pending tcp query with too short buffer < 2"); 2305 return NULL; 2306 } 2307 2308 /* find out if a reused stream to the target exists */ 2309 /* if so, take it into use */ 2310 reuse = reuse_tcp_find(sq->outnet, &sq->addr, sq->addrlen, 2311 sq->ssl_upstream); 2312 if(reuse) { 2313 log_reuse_tcp(VERB_CLIENT, "pending_tcp_query: found reuse", reuse); 2314 log_assert(reuse->pending); 2315 pend = reuse->pending; 2316 reuse_tcp_lru_touch(sq->outnet, reuse); 2317 } 2318 2319 log_assert(!reuse || (reuse && pend)); 2320 /* if !pend but we have reuse streams, close a reuse stream 2321 * to be able to open a new one to this target, no use waiting 2322 * to reuse a file descriptor while another query needs to use 2323 * that buffer and file descriptor now. */ 2324 if(!pend) { 2325 reuse_tcp_close_oldest(sq->outnet); 2326 pend = sq->outnet->tcp_free; 2327 log_assert(!reuse || (pend == reuse->pending)); 2328 } 2329 2330 /* allocate space to store query */ 2331 w = (struct waiting_tcp*)malloc(sizeof(struct waiting_tcp) 2332 + sldns_buffer_limit(packet)); 2333 if(!w) { 2334 return NULL; 2335 } 2336 if(!(w->timer = comm_timer_create(sq->outnet->base, outnet_tcptimer, w))) { 2337 free(w); 2338 return NULL; 2339 } 2340 w->pkt = (uint8_t*)w + sizeof(struct waiting_tcp); 2341 w->pkt_len = sldns_buffer_limit(packet); 2342 memmove(w->pkt, sldns_buffer_begin(packet), w->pkt_len); 2343 w->id = tcp_select_id(sq->outnet, reuse); 2344 LDNS_ID_SET(w->pkt, w->id); 2345 memcpy(&w->addr, &sq->addr, sq->addrlen); 2346 w->addrlen = sq->addrlen; 2347 w->outnet = sq->outnet; 2348 w->on_tcp_waiting_list = 0; 2349 w->next_waiting = NULL; 2350 w->cb = callback; 2351 w->cb_arg = callback_arg; 2352 w->ssl_upstream = sq->ssl_upstream; 2353 w->tls_auth_name = sq->tls_auth_name; 2354 w->timeout = timeout; 2355 w->id_node.key = NULL; 2356 w->write_wait_prev = NULL; 2357 w->write_wait_next = NULL; 2358 w->write_wait_queued = 0; 2359 w->error_count = 0; 2360 #ifdef USE_DNSTAP 2361 w->sq = NULL; 2362 #endif 2363 if(pend) { 2364 /* we have a buffer available right now */ 2365 if(reuse) { 2366 log_assert(reuse == &pend->reuse); 2367 /* reuse existing fd, write query and continue */ 2368 /* store query in tree by id */ 2369 verbose(VERB_CLIENT, "pending_tcp_query: reuse, store"); 2370 w->next_waiting = (void*)pend; 2371 reuse_tree_by_id_insert(&pend->reuse, w); 2372 /* can we write right now? */ 2373 if(pend->query == NULL) { 2374 /* write straight away */ 2375 /* stop the timer on read of the fd */ 2376 comm_point_stop_listening(pend->c); 2377 pend->query = w; 2378 outnet_tcp_take_query_setup(pend->c->fd, pend, 2379 w); 2380 } else { 2381 /* put it in the waiting list for 2382 * this stream */ 2383 reuse_write_wait_push_back(&pend->reuse, w); 2384 } 2385 } else { 2386 /* create new fd and connect to addr, setup to 2387 * write query */ 2388 verbose(VERB_CLIENT, "pending_tcp_query: new fd, connect"); 2389 rbtree_init(&pend->reuse.tree_by_id, reuse_id_cmp); 2390 pend->reuse.pending = pend; 2391 memcpy(&pend->reuse.addr, &sq->addr, sq->addrlen); 2392 pend->reuse.addrlen = sq->addrlen; 2393 if(!outnet_tcp_take_into_use(w)) { 2394 waiting_tcp_delete(w); 2395 return NULL; 2396 } 2397 } 2398 #ifdef USE_DNSTAP 2399 if(sq->outnet->dtenv && 2400 (sq->outnet->dtenv->log_resolver_query_messages || 2401 sq->outnet->dtenv->log_forwarder_query_messages)) { 2402 /* use w->pkt, because it has the ID value */ 2403 sldns_buffer tmp; 2404 sldns_buffer_init_frm_data(&tmp, w->pkt, w->pkt_len); 2405 dt_msg_send_outside_query(sq->outnet->dtenv, &sq->addr, 2406 &pend->pi->addr, comm_tcp, sq->zone, 2407 sq->zonelen, &tmp); 2408 } 2409 #endif 2410 } else { 2411 /* queue up */ 2412 /* waiting for a buffer on the outside network buffer wait 2413 * list */ 2414 verbose(VERB_CLIENT, "pending_tcp_query: queue to wait"); 2415 #ifdef USE_DNSTAP 2416 w->sq = sq; 2417 #endif 2418 outnet_add_tcp_waiting(sq->outnet, w); 2419 } 2420 return w; 2421 } 2422 2423 /** create query for serviced queries */ 2424 static void 2425 serviced_gen_query(sldns_buffer* buff, uint8_t* qname, size_t qnamelen, 2426 uint16_t qtype, uint16_t qclass, uint16_t flags) 2427 { 2428 sldns_buffer_clear(buff); 2429 /* skip id */ 2430 sldns_buffer_write_u16(buff, flags); 2431 sldns_buffer_write_u16(buff, 1); /* qdcount */ 2432 sldns_buffer_write_u16(buff, 0); /* ancount */ 2433 sldns_buffer_write_u16(buff, 0); /* nscount */ 2434 sldns_buffer_write_u16(buff, 0); /* arcount */ 2435 sldns_buffer_write(buff, qname, qnamelen); 2436 sldns_buffer_write_u16(buff, qtype); 2437 sldns_buffer_write_u16(buff, qclass); 2438 sldns_buffer_flip(buff); 2439 } 2440 2441 /** lookup serviced query in serviced query rbtree */ 2442 static struct serviced_query* 2443 lookup_serviced(struct outside_network* outnet, sldns_buffer* buff, int dnssec, 2444 struct sockaddr_storage* addr, socklen_t addrlen, 2445 struct edns_option* opt_list) 2446 { 2447 struct serviced_query key; 2448 key.node.key = &key; 2449 key.qbuf = sldns_buffer_begin(buff); 2450 key.qbuflen = sldns_buffer_limit(buff); 2451 key.dnssec = dnssec; 2452 memcpy(&key.addr, addr, addrlen); 2453 key.addrlen = addrlen; 2454 key.outnet = outnet; 2455 key.opt_list = opt_list; 2456 return (struct serviced_query*)rbtree_search(outnet->serviced, &key); 2457 } 2458 2459 /** Create new serviced entry */ 2460 static struct serviced_query* 2461 serviced_create(struct outside_network* outnet, sldns_buffer* buff, int dnssec, 2462 int want_dnssec, int nocaps, int tcp_upstream, int ssl_upstream, 2463 char* tls_auth_name, struct sockaddr_storage* addr, socklen_t addrlen, 2464 uint8_t* zone, size_t zonelen, int qtype, struct edns_option* opt_list, 2465 size_t pad_queries_block_size) 2466 { 2467 struct serviced_query* sq = (struct serviced_query*)malloc(sizeof(*sq)); 2468 #ifdef UNBOUND_DEBUG 2469 rbnode_type* ins; 2470 #endif 2471 if(!sq) 2472 return NULL; 2473 sq->node.key = sq; 2474 sq->qbuf = memdup(sldns_buffer_begin(buff), sldns_buffer_limit(buff)); 2475 if(!sq->qbuf) { 2476 free(sq); 2477 return NULL; 2478 } 2479 sq->qbuflen = sldns_buffer_limit(buff); 2480 sq->zone = memdup(zone, zonelen); 2481 if(!sq->zone) { 2482 free(sq->qbuf); 2483 free(sq); 2484 return NULL; 2485 } 2486 sq->zonelen = zonelen; 2487 sq->qtype = qtype; 2488 sq->dnssec = dnssec; 2489 sq->want_dnssec = want_dnssec; 2490 sq->nocaps = nocaps; 2491 sq->tcp_upstream = tcp_upstream; 2492 sq->ssl_upstream = ssl_upstream; 2493 if(tls_auth_name) { 2494 sq->tls_auth_name = strdup(tls_auth_name); 2495 if(!sq->tls_auth_name) { 2496 free(sq->zone); 2497 free(sq->qbuf); 2498 free(sq); 2499 return NULL; 2500 } 2501 } else { 2502 sq->tls_auth_name = NULL; 2503 } 2504 memcpy(&sq->addr, addr, addrlen); 2505 sq->addrlen = addrlen; 2506 sq->opt_list = NULL; 2507 if(opt_list) { 2508 sq->opt_list = edns_opt_copy_alloc(opt_list); 2509 if(!sq->opt_list) { 2510 free(sq->tls_auth_name); 2511 free(sq->zone); 2512 free(sq->qbuf); 2513 free(sq); 2514 return NULL; 2515 } 2516 } 2517 sq->outnet = outnet; 2518 sq->cblist = NULL; 2519 sq->pending = NULL; 2520 sq->status = serviced_initial; 2521 sq->retry = 0; 2522 sq->to_be_deleted = 0; 2523 sq->padding_block_size = pad_queries_block_size; 2524 #ifdef UNBOUND_DEBUG 2525 ins = 2526 #else 2527 (void) 2528 #endif 2529 rbtree_insert(outnet->serviced, &sq->node); 2530 log_assert(ins != NULL); /* must not be already present */ 2531 return sq; 2532 } 2533 2534 /** remove waiting tcp from the outnet waiting list */ 2535 static void 2536 waiting_list_remove(struct outside_network* outnet, struct waiting_tcp* w) 2537 { 2538 struct waiting_tcp* p = outnet->tcp_wait_first, *prev = NULL; 2539 w->on_tcp_waiting_list = 0; 2540 while(p) { 2541 if(p == w) { 2542 /* remove w */ 2543 if(prev) 2544 prev->next_waiting = w->next_waiting; 2545 else outnet->tcp_wait_first = w->next_waiting; 2546 if(outnet->tcp_wait_last == w) 2547 outnet->tcp_wait_last = prev; 2548 return; 2549 } 2550 prev = p; 2551 p = p->next_waiting; 2552 } 2553 /* waiting_list_remove is currently called only with items that are 2554 * already in the waiting list. */ 2555 log_assert(0); 2556 } 2557 2558 /** reuse tcp stream, remove serviced query from stream, 2559 * return true if the stream is kept, false if it is to be closed */ 2560 static int 2561 reuse_tcp_remove_serviced_keep(struct waiting_tcp* w, 2562 struct serviced_query* sq) 2563 { 2564 struct pending_tcp* pend_tcp = (struct pending_tcp*)w->next_waiting; 2565 verbose(VERB_CLIENT, "reuse_tcp_remove_serviced_keep"); 2566 /* remove the callback. let query continue to write to not cancel 2567 * the stream itself. also keep it as an entry in the tree_by_id, 2568 * in case the answer returns (that we no longer want), but we cannot 2569 * pick the same ID number meanwhile */ 2570 w->cb = NULL; 2571 /* see if can be entered in reuse tree 2572 * for that the FD has to be non-1 */ 2573 if(pend_tcp->c->fd == -1) { 2574 verbose(VERB_CLIENT, "reuse_tcp_remove_serviced_keep: -1 fd"); 2575 return 0; 2576 } 2577 /* if in tree and used by other queries */ 2578 if(pend_tcp->reuse.node.key) { 2579 verbose(VERB_CLIENT, "reuse_tcp_remove_serviced_keep: in use by other queries"); 2580 /* do not reset the keepalive timer, for that 2581 * we'd need traffic, and this is where the serviced is 2582 * removed due to state machine internal reasons, 2583 * eg. iterator no longer interested in this query */ 2584 return 1; 2585 } 2586 /* if still open and want to keep it open */ 2587 if(pend_tcp->c->fd != -1 && sq->outnet->tcp_reuse.count < 2588 sq->outnet->tcp_reuse_max) { 2589 verbose(VERB_CLIENT, "reuse_tcp_remove_serviced_keep: keep open"); 2590 /* set a keepalive timer on it */ 2591 if(!reuse_tcp_insert(sq->outnet, pend_tcp)) { 2592 return 0; 2593 } 2594 reuse_tcp_setup_timeout(pend_tcp, sq->outnet->tcp_reuse_timeout); 2595 return 1; 2596 } 2597 return 0; 2598 } 2599 2600 /** cleanup serviced query entry */ 2601 static void 2602 serviced_delete(struct serviced_query* sq) 2603 { 2604 verbose(VERB_CLIENT, "serviced_delete"); 2605 if(sq->pending) { 2606 /* clear up the pending query */ 2607 if(sq->status == serviced_query_UDP_EDNS || 2608 sq->status == serviced_query_UDP || 2609 sq->status == serviced_query_UDP_EDNS_FRAG || 2610 sq->status == serviced_query_UDP_EDNS_fallback) { 2611 struct pending* p = (struct pending*)sq->pending; 2612 verbose(VERB_CLIENT, "serviced_delete: UDP"); 2613 if(p->pc) 2614 portcomm_loweruse(sq->outnet, p->pc); 2615 pending_delete(sq->outnet, p); 2616 /* this call can cause reentrant calls back into the 2617 * mesh */ 2618 outnet_send_wait_udp(sq->outnet); 2619 } else { 2620 struct waiting_tcp* w = (struct waiting_tcp*) 2621 sq->pending; 2622 verbose(VERB_CLIENT, "serviced_delete: TCP"); 2623 /* if on stream-write-waiting list then 2624 * remove from waiting list and waiting_tcp_delete */ 2625 if(w->write_wait_queued) { 2626 struct pending_tcp* pend = 2627 (struct pending_tcp*)w->next_waiting; 2628 verbose(VERB_CLIENT, "serviced_delete: writewait"); 2629 reuse_tree_by_id_delete(&pend->reuse, w); 2630 reuse_write_wait_remove(&pend->reuse, w); 2631 waiting_tcp_delete(w); 2632 } else if(!w->on_tcp_waiting_list) { 2633 struct pending_tcp* pend = 2634 (struct pending_tcp*)w->next_waiting; 2635 verbose(VERB_CLIENT, "serviced_delete: tcpreusekeep"); 2636 if(!reuse_tcp_remove_serviced_keep(w, sq)) { 2637 reuse_cb_and_decommission(sq->outnet, 2638 pend, NETEVENT_CLOSED); 2639 use_free_buffer(sq->outnet); 2640 } 2641 sq->pending = NULL; 2642 } else { 2643 verbose(VERB_CLIENT, "serviced_delete: tcpwait"); 2644 waiting_list_remove(sq->outnet, w); 2645 waiting_tcp_delete(w); 2646 } 2647 } 2648 } 2649 /* does not delete from tree, caller has to do that */ 2650 serviced_node_del(&sq->node, NULL); 2651 } 2652 2653 /** perturb a dname capitalization randomly */ 2654 static void 2655 serviced_perturb_qname(struct ub_randstate* rnd, uint8_t* qbuf, size_t len) 2656 { 2657 uint8_t lablen; 2658 uint8_t* d = qbuf + 10; 2659 long int random = 0; 2660 int bits = 0; 2661 log_assert(len >= 10 + 5 /* offset qname, root, qtype, qclass */); 2662 (void)len; 2663 lablen = *d++; 2664 while(lablen) { 2665 while(lablen--) { 2666 /* only perturb A-Z, a-z */ 2667 if(isalpha((unsigned char)*d)) { 2668 /* get a random bit */ 2669 if(bits == 0) { 2670 random = ub_random(rnd); 2671 bits = 30; 2672 } 2673 if(random & 0x1) { 2674 *d = (uint8_t)toupper((unsigned char)*d); 2675 } else { 2676 *d = (uint8_t)tolower((unsigned char)*d); 2677 } 2678 random >>= 1; 2679 bits--; 2680 } 2681 d++; 2682 } 2683 lablen = *d++; 2684 } 2685 if(verbosity >= VERB_ALGO) { 2686 char buf[LDNS_MAX_DOMAINLEN+1]; 2687 dname_str(qbuf+10, buf); 2688 verbose(VERB_ALGO, "qname perturbed to %s", buf); 2689 } 2690 } 2691 2692 /** put serviced query into a buffer */ 2693 static void 2694 serviced_encode(struct serviced_query* sq, sldns_buffer* buff, int with_edns) 2695 { 2696 /* if we are using 0x20 bits for ID randomness, perturb them */ 2697 if(sq->outnet->use_caps_for_id && !sq->nocaps) { 2698 serviced_perturb_qname(sq->outnet->rnd, sq->qbuf, sq->qbuflen); 2699 } 2700 /* generate query */ 2701 sldns_buffer_clear(buff); 2702 sldns_buffer_write_u16(buff, 0); /* id placeholder */ 2703 sldns_buffer_write(buff, sq->qbuf, sq->qbuflen); 2704 sldns_buffer_flip(buff); 2705 if(with_edns) { 2706 /* add edns section */ 2707 struct edns_data edns; 2708 struct edns_option padding_option; 2709 edns.edns_present = 1; 2710 edns.ext_rcode = 0; 2711 edns.edns_version = EDNS_ADVERTISED_VERSION; 2712 edns.opt_list_in = NULL; 2713 edns.opt_list_out = sq->opt_list; 2714 edns.opt_list_inplace_cb_out = NULL; 2715 if(sq->status == serviced_query_UDP_EDNS_FRAG) { 2716 if(addr_is_ip6(&sq->addr, sq->addrlen)) { 2717 if(EDNS_FRAG_SIZE_IP6 < EDNS_ADVERTISED_SIZE) 2718 edns.udp_size = EDNS_FRAG_SIZE_IP6; 2719 else edns.udp_size = EDNS_ADVERTISED_SIZE; 2720 } else { 2721 if(EDNS_FRAG_SIZE_IP4 < EDNS_ADVERTISED_SIZE) 2722 edns.udp_size = EDNS_FRAG_SIZE_IP4; 2723 else edns.udp_size = EDNS_ADVERTISED_SIZE; 2724 } 2725 } else { 2726 edns.udp_size = EDNS_ADVERTISED_SIZE; 2727 } 2728 edns.bits = 0; 2729 if(sq->dnssec & EDNS_DO) 2730 edns.bits = EDNS_DO; 2731 if(sq->dnssec & BIT_CD) 2732 LDNS_CD_SET(sldns_buffer_begin(buff)); 2733 if (sq->ssl_upstream && sq->padding_block_size) { 2734 padding_option.opt_code = LDNS_EDNS_PADDING; 2735 padding_option.opt_len = 0; 2736 padding_option.opt_data = NULL; 2737 padding_option.next = edns.opt_list_out; 2738 edns.opt_list_out = &padding_option; 2739 edns.padding_block_size = sq->padding_block_size; 2740 } 2741 attach_edns_record(buff, &edns); 2742 } 2743 } 2744 2745 /** 2746 * Perform serviced query UDP sending operation. 2747 * Sends UDP with EDNS, unless infra host marked non EDNS. 2748 * @param sq: query to send. 2749 * @param buff: buffer scratch space. 2750 * @return 0 on error. 2751 */ 2752 static int 2753 serviced_udp_send(struct serviced_query* sq, sldns_buffer* buff) 2754 { 2755 int rtt, vs; 2756 uint8_t edns_lame_known; 2757 time_t now = *sq->outnet->now_secs; 2758 2759 if(!infra_host(sq->outnet->infra, &sq->addr, sq->addrlen, sq->zone, 2760 sq->zonelen, now, &vs, &edns_lame_known, &rtt)) 2761 return 0; 2762 sq->last_rtt = rtt; 2763 verbose(VERB_ALGO, "EDNS lookup known=%d vs=%d", edns_lame_known, vs); 2764 if(sq->status == serviced_initial) { 2765 if(vs != -1) { 2766 sq->status = serviced_query_UDP_EDNS; 2767 } else { 2768 sq->status = serviced_query_UDP; 2769 } 2770 } 2771 serviced_encode(sq, buff, (sq->status == serviced_query_UDP_EDNS) || 2772 (sq->status == serviced_query_UDP_EDNS_FRAG)); 2773 sq->last_sent_time = *sq->outnet->now_tv; 2774 sq->edns_lame_known = (int)edns_lame_known; 2775 verbose(VERB_ALGO, "serviced query UDP timeout=%d msec", rtt); 2776 sq->pending = pending_udp_query(sq, buff, rtt, 2777 serviced_udp_callback, sq); 2778 if(!sq->pending) 2779 return 0; 2780 return 1; 2781 } 2782 2783 /** check that perturbed qname is identical */ 2784 static int 2785 serviced_check_qname(sldns_buffer* pkt, uint8_t* qbuf, size_t qbuflen) 2786 { 2787 uint8_t* d1 = sldns_buffer_begin(pkt)+12; 2788 uint8_t* d2 = qbuf+10; 2789 uint8_t len1, len2; 2790 int count = 0; 2791 if(sldns_buffer_limit(pkt) < 12+1+4) /* packet too small for qname */ 2792 return 0; 2793 log_assert(qbuflen >= 15 /* 10 header, root, type, class */); 2794 len1 = *d1++; 2795 len2 = *d2++; 2796 while(len1 != 0 || len2 != 0) { 2797 if(LABEL_IS_PTR(len1)) { 2798 /* check if we can read *d1 with compression ptr rest */ 2799 if(d1 >= sldns_buffer_at(pkt, sldns_buffer_limit(pkt))) 2800 return 0; 2801 d1 = sldns_buffer_begin(pkt)+PTR_OFFSET(len1, *d1); 2802 /* check if we can read the destination *d1 */ 2803 if(d1 >= sldns_buffer_at(pkt, sldns_buffer_limit(pkt))) 2804 return 0; 2805 len1 = *d1++; 2806 if(count++ > MAX_COMPRESS_PTRS) 2807 return 0; 2808 continue; 2809 } 2810 if(d2 > qbuf+qbuflen) 2811 return 0; 2812 if(len1 != len2) 2813 return 0; 2814 if(len1 > LDNS_MAX_LABELLEN) 2815 return 0; 2816 /* check len1 + 1(next length) are okay to read */ 2817 if(d1+len1 >= sldns_buffer_at(pkt, sldns_buffer_limit(pkt))) 2818 return 0; 2819 log_assert(len1 <= LDNS_MAX_LABELLEN); 2820 log_assert(len2 <= LDNS_MAX_LABELLEN); 2821 log_assert(len1 == len2 && len1 != 0); 2822 /* compare the labels - bitwise identical */ 2823 if(memcmp(d1, d2, len1) != 0) 2824 return 0; 2825 d1 += len1; 2826 d2 += len2; 2827 len1 = *d1++; 2828 len2 = *d2++; 2829 } 2830 return 1; 2831 } 2832 2833 /** call the callbacks for a serviced query */ 2834 static void 2835 serviced_callbacks(struct serviced_query* sq, int error, struct comm_point* c, 2836 struct comm_reply* rep) 2837 { 2838 struct service_callback* p; 2839 int dobackup = (sq->cblist && sq->cblist->next); /* >1 cb*/ 2840 uint8_t *backup_p = NULL; 2841 size_t backlen = 0; 2842 #ifdef UNBOUND_DEBUG 2843 rbnode_type* rem = 2844 #else 2845 (void) 2846 #endif 2847 /* remove from tree, and schedule for deletion, so that callbacks 2848 * can safely deregister themselves and even create new serviced 2849 * queries that are identical to this one. */ 2850 rbtree_delete(sq->outnet->serviced, sq); 2851 log_assert(rem); /* should have been present */ 2852 sq->to_be_deleted = 1; 2853 verbose(VERB_ALGO, "svcd callbacks start"); 2854 if(sq->outnet->use_caps_for_id && error == NETEVENT_NOERROR && c && 2855 !sq->nocaps && sq->qtype != LDNS_RR_TYPE_PTR) { 2856 /* for type PTR do not check perturbed name in answer, 2857 * compatibility with cisco dns guard boxes that mess up 2858 * reverse queries 0x20 contents */ 2859 /* noerror and nxdomain must have a qname in reply */ 2860 if(sldns_buffer_read_u16_at(c->buffer, 4) == 0 && 2861 (LDNS_RCODE_WIRE(sldns_buffer_begin(c->buffer)) 2862 == LDNS_RCODE_NOERROR || 2863 LDNS_RCODE_WIRE(sldns_buffer_begin(c->buffer)) 2864 == LDNS_RCODE_NXDOMAIN)) { 2865 verbose(VERB_DETAIL, "no qname in reply to check 0x20ID"); 2866 log_addr(VERB_DETAIL, "from server", 2867 &sq->addr, sq->addrlen); 2868 log_buf(VERB_DETAIL, "for packet", c->buffer); 2869 error = NETEVENT_CLOSED; 2870 c = NULL; 2871 } else if(sldns_buffer_read_u16_at(c->buffer, 4) > 0 && 2872 !serviced_check_qname(c->buffer, sq->qbuf, 2873 sq->qbuflen)) { 2874 verbose(VERB_DETAIL, "wrong 0x20-ID in reply qname"); 2875 log_addr(VERB_DETAIL, "from server", 2876 &sq->addr, sq->addrlen); 2877 log_buf(VERB_DETAIL, "for packet", c->buffer); 2878 error = NETEVENT_CAPSFAIL; 2879 /* and cleanup too */ 2880 pkt_dname_tolower(c->buffer, 2881 sldns_buffer_at(c->buffer, 12)); 2882 } else { 2883 verbose(VERB_ALGO, "good 0x20-ID in reply qname"); 2884 /* cleanup caps, prettier cache contents. */ 2885 pkt_dname_tolower(c->buffer, 2886 sldns_buffer_at(c->buffer, 12)); 2887 } 2888 } 2889 if(dobackup && c) { 2890 /* make a backup of the query, since the querystate processing 2891 * may send outgoing queries that overwrite the buffer. 2892 * use secondary buffer to store the query. 2893 * This is a data copy, but faster than packet to server */ 2894 backlen = sldns_buffer_limit(c->buffer); 2895 backup_p = memdup(sldns_buffer_begin(c->buffer), backlen); 2896 if(!backup_p) { 2897 log_err("malloc failure in serviced query callbacks"); 2898 error = NETEVENT_CLOSED; 2899 c = NULL; 2900 } 2901 sq->outnet->svcd_overhead = backlen; 2902 } 2903 /* test the actual sq->cblist, because the next elem could be deleted*/ 2904 while((p=sq->cblist) != NULL) { 2905 sq->cblist = p->next; /* remove this element */ 2906 if(dobackup && c) { 2907 sldns_buffer_clear(c->buffer); 2908 sldns_buffer_write(c->buffer, backup_p, backlen); 2909 sldns_buffer_flip(c->buffer); 2910 } 2911 fptr_ok(fptr_whitelist_serviced_query(p->cb)); 2912 (void)(*p->cb)(c, p->cb_arg, error, rep); 2913 free(p); 2914 } 2915 if(backup_p) { 2916 free(backup_p); 2917 sq->outnet->svcd_overhead = 0; 2918 } 2919 verbose(VERB_ALGO, "svcd callbacks end"); 2920 log_assert(sq->cblist == NULL); 2921 serviced_delete(sq); 2922 } 2923 2924 int 2925 serviced_tcp_callback(struct comm_point* c, void* arg, int error, 2926 struct comm_reply* rep) 2927 { 2928 struct serviced_query* sq = (struct serviced_query*)arg; 2929 struct comm_reply r2; 2930 #ifdef USE_DNSTAP 2931 struct waiting_tcp* w = (struct waiting_tcp*)sq->pending; 2932 struct pending_tcp* pend_tcp = NULL; 2933 struct port_if* pi = NULL; 2934 if(!w->on_tcp_waiting_list && w->next_waiting) { 2935 pend_tcp = (struct pending_tcp*)w->next_waiting; 2936 pi = pend_tcp->pi; 2937 } 2938 #endif 2939 sq->pending = NULL; /* removed after this callback */ 2940 if(error != NETEVENT_NOERROR) 2941 log_addr(VERB_QUERY, "tcp error for address", 2942 &sq->addr, sq->addrlen); 2943 if(error==NETEVENT_NOERROR) 2944 infra_update_tcp_works(sq->outnet->infra, &sq->addr, 2945 sq->addrlen, sq->zone, sq->zonelen); 2946 #ifdef USE_DNSTAP 2947 /* 2948 * sending src (local service)/dst (upstream) addresses over DNSTAP 2949 */ 2950 if(error==NETEVENT_NOERROR && pi && sq->outnet->dtenv && 2951 (sq->outnet->dtenv->log_resolver_response_messages || 2952 sq->outnet->dtenv->log_forwarder_response_messages)) { 2953 log_addr(VERB_ALGO, "response from upstream", &sq->addr, sq->addrlen); 2954 log_addr(VERB_ALGO, "to local addr", &pi->addr, pi->addrlen); 2955 dt_msg_send_outside_response(sq->outnet->dtenv, &sq->addr, 2956 &pi->addr, c->type, sq->zone, sq->zonelen, sq->qbuf, 2957 sq->qbuflen, &sq->last_sent_time, sq->outnet->now_tv, 2958 c->buffer); 2959 } 2960 #endif 2961 if(error==NETEVENT_NOERROR && sq->status == serviced_query_TCP_EDNS && 2962 (LDNS_RCODE_WIRE(sldns_buffer_begin(c->buffer)) == 2963 LDNS_RCODE_FORMERR || LDNS_RCODE_WIRE(sldns_buffer_begin( 2964 c->buffer)) == LDNS_RCODE_NOTIMPL) ) { 2965 /* attempt to fallback to nonEDNS */ 2966 sq->status = serviced_query_TCP_EDNS_fallback; 2967 serviced_tcp_initiate(sq, c->buffer); 2968 return 0; 2969 } else if(error==NETEVENT_NOERROR && 2970 sq->status == serviced_query_TCP_EDNS_fallback && 2971 (LDNS_RCODE_WIRE(sldns_buffer_begin(c->buffer)) == 2972 LDNS_RCODE_NOERROR || LDNS_RCODE_WIRE( 2973 sldns_buffer_begin(c->buffer)) == LDNS_RCODE_NXDOMAIN 2974 || LDNS_RCODE_WIRE(sldns_buffer_begin(c->buffer)) 2975 == LDNS_RCODE_YXDOMAIN)) { 2976 /* the fallback produced a result that looks promising, note 2977 * that this server should be approached without EDNS */ 2978 /* only store noEDNS in cache if domain is noDNSSEC */ 2979 if(!sq->want_dnssec) 2980 if(!infra_edns_update(sq->outnet->infra, &sq->addr, 2981 sq->addrlen, sq->zone, sq->zonelen, -1, 2982 *sq->outnet->now_secs)) 2983 log_err("Out of memory caching no edns for host"); 2984 sq->status = serviced_query_TCP; 2985 } 2986 if(sq->tcp_upstream || sq->ssl_upstream) { 2987 struct timeval now = *sq->outnet->now_tv; 2988 if(error!=NETEVENT_NOERROR) { 2989 if(!infra_rtt_update(sq->outnet->infra, &sq->addr, 2990 sq->addrlen, sq->zone, sq->zonelen, sq->qtype, 2991 -1, sq->last_rtt, (time_t)now.tv_sec)) 2992 log_err("out of memory in TCP exponential backoff."); 2993 } else if(now.tv_sec > sq->last_sent_time.tv_sec || 2994 (now.tv_sec == sq->last_sent_time.tv_sec && 2995 now.tv_usec > sq->last_sent_time.tv_usec)) { 2996 /* convert from microseconds to milliseconds */ 2997 int roundtime = ((int)(now.tv_sec - sq->last_sent_time.tv_sec))*1000 2998 + ((int)now.tv_usec - (int)sq->last_sent_time.tv_usec)/1000; 2999 verbose(VERB_ALGO, "measured TCP-time at %d msec", roundtime); 3000 log_assert(roundtime >= 0); 3001 /* only store if less then AUTH_TIMEOUT seconds, it could be 3002 * huge due to system-hibernated and we woke up */ 3003 if(roundtime < 60000) { 3004 if(!infra_rtt_update(sq->outnet->infra, &sq->addr, 3005 sq->addrlen, sq->zone, sq->zonelen, sq->qtype, 3006 roundtime, sq->last_rtt, (time_t)now.tv_sec)) 3007 log_err("out of memory noting rtt."); 3008 } 3009 } 3010 } 3011 /* insert address into reply info */ 3012 if(!rep) { 3013 /* create one if there isn't (on errors) */ 3014 rep = &r2; 3015 r2.c = c; 3016 } 3017 memcpy(&rep->addr, &sq->addr, sq->addrlen); 3018 rep->addrlen = sq->addrlen; 3019 serviced_callbacks(sq, error, c, rep); 3020 return 0; 3021 } 3022 3023 static void 3024 serviced_tcp_initiate(struct serviced_query* sq, sldns_buffer* buff) 3025 { 3026 verbose(VERB_ALGO, "initiate TCP query %s", 3027 sq->status==serviced_query_TCP_EDNS?"EDNS":""); 3028 serviced_encode(sq, buff, sq->status == serviced_query_TCP_EDNS); 3029 sq->last_sent_time = *sq->outnet->now_tv; 3030 sq->pending = pending_tcp_query(sq, buff, sq->outnet->tcp_auth_query_timeout, 3031 serviced_tcp_callback, sq); 3032 if(!sq->pending) { 3033 /* delete from tree so that a retry by above layer does not 3034 * clash with this entry */ 3035 verbose(VERB_ALGO, "serviced_tcp_initiate: failed to send tcp query"); 3036 serviced_callbacks(sq, NETEVENT_CLOSED, NULL, NULL); 3037 } 3038 } 3039 3040 /** Send serviced query over TCP return false on initial failure */ 3041 static int 3042 serviced_tcp_send(struct serviced_query* sq, sldns_buffer* buff) 3043 { 3044 int vs, rtt, timeout; 3045 uint8_t edns_lame_known; 3046 if(!infra_host(sq->outnet->infra, &sq->addr, sq->addrlen, sq->zone, 3047 sq->zonelen, *sq->outnet->now_secs, &vs, &edns_lame_known, 3048 &rtt)) 3049 return 0; 3050 sq->last_rtt = rtt; 3051 if(vs != -1) 3052 sq->status = serviced_query_TCP_EDNS; 3053 else sq->status = serviced_query_TCP; 3054 serviced_encode(sq, buff, sq->status == serviced_query_TCP_EDNS); 3055 sq->last_sent_time = *sq->outnet->now_tv; 3056 if(sq->tcp_upstream || sq->ssl_upstream) { 3057 timeout = rtt; 3058 if(rtt >= UNKNOWN_SERVER_NICENESS && rtt < sq->outnet->tcp_auth_query_timeout) 3059 timeout = sq->outnet->tcp_auth_query_timeout; 3060 } else { 3061 timeout = sq->outnet->tcp_auth_query_timeout; 3062 } 3063 sq->pending = pending_tcp_query(sq, buff, timeout, 3064 serviced_tcp_callback, sq); 3065 return sq->pending != NULL; 3066 } 3067 3068 /* see if packet is edns malformed; got zeroes at start. 3069 * This is from servers that return malformed packets to EDNS0 queries, 3070 * but they return good packets for nonEDNS0 queries. 3071 * We try to detect their output; without resorting to a full parse or 3072 * check for too many bytes after the end of the packet. */ 3073 static int 3074 packet_edns_malformed(struct sldns_buffer* buf, int qtype) 3075 { 3076 size_t len; 3077 if(sldns_buffer_limit(buf) < LDNS_HEADER_SIZE) 3078 return 1; /* malformed */ 3079 /* they have NOERROR rcode, 1 answer. */ 3080 if(LDNS_RCODE_WIRE(sldns_buffer_begin(buf)) != LDNS_RCODE_NOERROR) 3081 return 0; 3082 /* one query (to skip) and answer records */ 3083 if(LDNS_QDCOUNT(sldns_buffer_begin(buf)) != 1 || 3084 LDNS_ANCOUNT(sldns_buffer_begin(buf)) == 0) 3085 return 0; 3086 /* skip qname */ 3087 len = dname_valid(sldns_buffer_at(buf, LDNS_HEADER_SIZE), 3088 sldns_buffer_limit(buf)-LDNS_HEADER_SIZE); 3089 if(len == 0) 3090 return 0; 3091 if(len == 1 && qtype == 0) 3092 return 0; /* we asked for '.' and type 0 */ 3093 /* and then 4 bytes (type and class of query) */ 3094 if(sldns_buffer_limit(buf) < LDNS_HEADER_SIZE + len + 4 + 3) 3095 return 0; 3096 3097 /* and start with 11 zeroes as the answer RR */ 3098 /* so check the qtype of the answer record, qname=0, type=0 */ 3099 if(sldns_buffer_at(buf, LDNS_HEADER_SIZE+len+4)[0] == 0 && 3100 sldns_buffer_at(buf, LDNS_HEADER_SIZE+len+4)[1] == 0 && 3101 sldns_buffer_at(buf, LDNS_HEADER_SIZE+len+4)[2] == 0) 3102 return 1; 3103 return 0; 3104 } 3105 3106 int 3107 serviced_udp_callback(struct comm_point* c, void* arg, int error, 3108 struct comm_reply* rep) 3109 { 3110 struct serviced_query* sq = (struct serviced_query*)arg; 3111 struct outside_network* outnet = sq->outnet; 3112 struct timeval now = *sq->outnet->now_tv; 3113 #ifdef USE_DNSTAP 3114 struct pending* p = (struct pending*)sq->pending; 3115 struct port_if* pi = p->pc->pif; 3116 #endif 3117 3118 sq->pending = NULL; /* removed after callback */ 3119 if(error == NETEVENT_TIMEOUT) { 3120 if(sq->status == serviced_query_UDP_EDNS && sq->last_rtt < 5000) { 3121 /* fallback to 1480/1280 */ 3122 sq->status = serviced_query_UDP_EDNS_FRAG; 3123 log_name_addr(VERB_ALGO, "try edns1xx0", sq->qbuf+10, 3124 &sq->addr, sq->addrlen); 3125 if(!serviced_udp_send(sq, c->buffer)) { 3126 serviced_callbacks(sq, NETEVENT_CLOSED, c, rep); 3127 } 3128 return 0; 3129 } 3130 if(sq->status == serviced_query_UDP_EDNS_FRAG) { 3131 /* fragmentation size did not fix it */ 3132 sq->status = serviced_query_UDP_EDNS; 3133 } 3134 sq->retry++; 3135 if(!infra_rtt_update(outnet->infra, &sq->addr, sq->addrlen, 3136 sq->zone, sq->zonelen, sq->qtype, -1, sq->last_rtt, 3137 (time_t)now.tv_sec)) 3138 log_err("out of memory in UDP exponential backoff"); 3139 if(sq->retry < OUTBOUND_UDP_RETRY) { 3140 log_name_addr(VERB_ALGO, "retry query", sq->qbuf+10, 3141 &sq->addr, sq->addrlen); 3142 if(!serviced_udp_send(sq, c->buffer)) { 3143 serviced_callbacks(sq, NETEVENT_CLOSED, c, rep); 3144 } 3145 return 0; 3146 } 3147 } 3148 if(error != NETEVENT_NOERROR) { 3149 /* udp returns error (due to no ID or interface available) */ 3150 serviced_callbacks(sq, error, c, rep); 3151 return 0; 3152 } 3153 #ifdef USE_DNSTAP 3154 /* 3155 * sending src (local service)/dst (upstream) addresses over DNSTAP 3156 */ 3157 if(error == NETEVENT_NOERROR && outnet->dtenv && 3158 (outnet->dtenv->log_resolver_response_messages || 3159 outnet->dtenv->log_forwarder_response_messages)) { 3160 log_addr(VERB_ALGO, "response from upstream", &sq->addr, sq->addrlen); 3161 log_addr(VERB_ALGO, "to local addr", &pi->addr, pi->addrlen); 3162 dt_msg_send_outside_response(outnet->dtenv, &sq->addr, &pi->addr, c->type, 3163 sq->zone, sq->zonelen, sq->qbuf, sq->qbuflen, 3164 &sq->last_sent_time, sq->outnet->now_tv, c->buffer); 3165 } 3166 #endif 3167 if( (sq->status == serviced_query_UDP_EDNS 3168 ||sq->status == serviced_query_UDP_EDNS_FRAG) 3169 && (LDNS_RCODE_WIRE(sldns_buffer_begin(c->buffer)) 3170 == LDNS_RCODE_FORMERR || LDNS_RCODE_WIRE( 3171 sldns_buffer_begin(c->buffer)) == LDNS_RCODE_NOTIMPL 3172 || packet_edns_malformed(c->buffer, sq->qtype) 3173 )) { 3174 /* try to get an answer by falling back without EDNS */ 3175 verbose(VERB_ALGO, "serviced query: attempt without EDNS"); 3176 sq->status = serviced_query_UDP_EDNS_fallback; 3177 sq->retry = 0; 3178 if(!serviced_udp_send(sq, c->buffer)) { 3179 serviced_callbacks(sq, NETEVENT_CLOSED, c, rep); 3180 } 3181 return 0; 3182 } else if(sq->status == serviced_query_UDP_EDNS && 3183 !sq->edns_lame_known) { 3184 /* now we know that edns queries received answers store that */ 3185 log_addr(VERB_ALGO, "serviced query: EDNS works for", 3186 &sq->addr, sq->addrlen); 3187 if(!infra_edns_update(outnet->infra, &sq->addr, sq->addrlen, 3188 sq->zone, sq->zonelen, 0, (time_t)now.tv_sec)) { 3189 log_err("Out of memory caching edns works"); 3190 } 3191 sq->edns_lame_known = 1; 3192 } else if(sq->status == serviced_query_UDP_EDNS_fallback && 3193 !sq->edns_lame_known && (LDNS_RCODE_WIRE( 3194 sldns_buffer_begin(c->buffer)) == LDNS_RCODE_NOERROR || 3195 LDNS_RCODE_WIRE(sldns_buffer_begin(c->buffer)) == 3196 LDNS_RCODE_NXDOMAIN || LDNS_RCODE_WIRE(sldns_buffer_begin( 3197 c->buffer)) == LDNS_RCODE_YXDOMAIN)) { 3198 /* the fallback produced a result that looks promising, note 3199 * that this server should be approached without EDNS */ 3200 /* only store noEDNS in cache if domain is noDNSSEC */ 3201 if(!sq->want_dnssec) { 3202 log_addr(VERB_ALGO, "serviced query: EDNS fails for", 3203 &sq->addr, sq->addrlen); 3204 if(!infra_edns_update(outnet->infra, &sq->addr, sq->addrlen, 3205 sq->zone, sq->zonelen, -1, (time_t)now.tv_sec)) { 3206 log_err("Out of memory caching no edns for host"); 3207 } 3208 } else { 3209 log_addr(VERB_ALGO, "serviced query: EDNS fails, but " 3210 "not stored because need DNSSEC for", &sq->addr, 3211 sq->addrlen); 3212 } 3213 sq->status = serviced_query_UDP; 3214 } 3215 if(now.tv_sec > sq->last_sent_time.tv_sec || 3216 (now.tv_sec == sq->last_sent_time.tv_sec && 3217 now.tv_usec > sq->last_sent_time.tv_usec)) { 3218 /* convert from microseconds to milliseconds */ 3219 int roundtime = ((int)(now.tv_sec - sq->last_sent_time.tv_sec))*1000 3220 + ((int)now.tv_usec - (int)sq->last_sent_time.tv_usec)/1000; 3221 verbose(VERB_ALGO, "measured roundtrip at %d msec", roundtime); 3222 log_assert(roundtime >= 0); 3223 /* in case the system hibernated, do not enter a huge value, 3224 * above this value gives trouble with server selection */ 3225 if(roundtime < 60000) { 3226 if(!infra_rtt_update(outnet->infra, &sq->addr, sq->addrlen, 3227 sq->zone, sq->zonelen, sq->qtype, roundtime, 3228 sq->last_rtt, (time_t)now.tv_sec)) 3229 log_err("out of memory noting rtt."); 3230 } 3231 } 3232 /* perform TC flag check and TCP fallback after updating our 3233 * cache entries for EDNS status and RTT times */ 3234 if(LDNS_TC_WIRE(sldns_buffer_begin(c->buffer))) { 3235 /* fallback to TCP */ 3236 /* this discards partial UDP contents */ 3237 if(sq->status == serviced_query_UDP_EDNS || 3238 sq->status == serviced_query_UDP_EDNS_FRAG || 3239 sq->status == serviced_query_UDP_EDNS_fallback) 3240 /* if we have unfinished EDNS_fallback, start again */ 3241 sq->status = serviced_query_TCP_EDNS; 3242 else sq->status = serviced_query_TCP; 3243 serviced_tcp_initiate(sq, c->buffer); 3244 return 0; 3245 } 3246 /* yay! an answer */ 3247 serviced_callbacks(sq, error, c, rep); 3248 return 0; 3249 } 3250 3251 struct serviced_query* 3252 outnet_serviced_query(struct outside_network* outnet, 3253 struct query_info* qinfo, uint16_t flags, int dnssec, int want_dnssec, 3254 int nocaps, int tcp_upstream, int ssl_upstream, char* tls_auth_name, 3255 struct sockaddr_storage* addr, socklen_t addrlen, uint8_t* zone, 3256 size_t zonelen, struct module_qstate* qstate, 3257 comm_point_callback_type* callback, void* callback_arg, sldns_buffer* buff, 3258 struct module_env* env) 3259 { 3260 struct serviced_query* sq; 3261 struct service_callback* cb; 3262 struct edns_string_addr* client_string_addr; 3263 3264 if(!inplace_cb_query_call(env, qinfo, flags, addr, addrlen, zone, zonelen, 3265 qstate, qstate->region)) 3266 return NULL; 3267 3268 if((client_string_addr = edns_string_addr_lookup( 3269 &env->edns_strings->client_strings, addr, addrlen))) { 3270 edns_opt_list_append(&qstate->edns_opts_back_out, 3271 env->edns_strings->client_string_opcode, 3272 client_string_addr->string_len, 3273 client_string_addr->string, qstate->region); 3274 } 3275 3276 serviced_gen_query(buff, qinfo->qname, qinfo->qname_len, qinfo->qtype, 3277 qinfo->qclass, flags); 3278 sq = lookup_serviced(outnet, buff, dnssec, addr, addrlen, 3279 qstate->edns_opts_back_out); 3280 /* duplicate entries are included in the callback list, because 3281 * there is a counterpart registration by our caller that needs to 3282 * be doubly-removed (with callbacks perhaps). */ 3283 if(!(cb = (struct service_callback*)malloc(sizeof(*cb)))) 3284 return NULL; 3285 if(!sq) { 3286 /* make new serviced query entry */ 3287 sq = serviced_create(outnet, buff, dnssec, want_dnssec, nocaps, 3288 tcp_upstream, ssl_upstream, tls_auth_name, addr, 3289 addrlen, zone, zonelen, (int)qinfo->qtype, 3290 qstate->edns_opts_back_out, 3291 ( ssl_upstream && env->cfg->pad_queries 3292 ? env->cfg->pad_queries_block_size : 0 )); 3293 if(!sq) { 3294 free(cb); 3295 return NULL; 3296 } 3297 /* perform first network action */ 3298 if(outnet->do_udp && !(tcp_upstream || ssl_upstream)) { 3299 if(!serviced_udp_send(sq, buff)) { 3300 (void)rbtree_delete(outnet->serviced, sq); 3301 serviced_node_del(&sq->node, NULL); 3302 free(cb); 3303 return NULL; 3304 } 3305 } else { 3306 if(!serviced_tcp_send(sq, buff)) { 3307 (void)rbtree_delete(outnet->serviced, sq); 3308 serviced_node_del(&sq->node, NULL); 3309 free(cb); 3310 return NULL; 3311 } 3312 } 3313 } 3314 /* add callback to list of callbacks */ 3315 cb->cb = callback; 3316 cb->cb_arg = callback_arg; 3317 cb->next = sq->cblist; 3318 sq->cblist = cb; 3319 return sq; 3320 } 3321 3322 /** remove callback from list */ 3323 static void 3324 callback_list_remove(struct serviced_query* sq, void* cb_arg) 3325 { 3326 struct service_callback** pp = &sq->cblist; 3327 while(*pp) { 3328 if((*pp)->cb_arg == cb_arg) { 3329 struct service_callback* del = *pp; 3330 *pp = del->next; 3331 free(del); 3332 return; 3333 } 3334 pp = &(*pp)->next; 3335 } 3336 } 3337 3338 void outnet_serviced_query_stop(struct serviced_query* sq, void* cb_arg) 3339 { 3340 if(!sq) 3341 return; 3342 callback_list_remove(sq, cb_arg); 3343 /* if callbacks() routine scheduled deletion, let it do that */ 3344 if(!sq->cblist && !sq->to_be_deleted) { 3345 (void)rbtree_delete(sq->outnet->serviced, sq); 3346 serviced_delete(sq); 3347 } 3348 } 3349 3350 /** create fd to send to this destination */ 3351 static int 3352 fd_for_dest(struct outside_network* outnet, struct sockaddr_storage* to_addr, 3353 socklen_t to_addrlen) 3354 { 3355 struct sockaddr_storage* addr; 3356 socklen_t addrlen; 3357 int i, try, pnum, dscp; 3358 struct port_if* pif; 3359 3360 /* create fd */ 3361 dscp = outnet->ip_dscp; 3362 for(try = 0; try<1000; try++) { 3363 int port = 0; 3364 int freebind = 0; 3365 int noproto = 0; 3366 int inuse = 0; 3367 int fd = -1; 3368 3369 /* select interface */ 3370 if(addr_is_ip6(to_addr, to_addrlen)) { 3371 if(outnet->num_ip6 == 0) { 3372 char to[64]; 3373 addr_to_str(to_addr, to_addrlen, to, sizeof(to)); 3374 verbose(VERB_QUERY, "need ipv6 to send, but no ipv6 outgoing interfaces, for %s", to); 3375 return -1; 3376 } 3377 i = ub_random_max(outnet->rnd, outnet->num_ip6); 3378 pif = &outnet->ip6_ifs[i]; 3379 } else { 3380 if(outnet->num_ip4 == 0) { 3381 char to[64]; 3382 addr_to_str(to_addr, to_addrlen, to, sizeof(to)); 3383 verbose(VERB_QUERY, "need ipv4 to send, but no ipv4 outgoing interfaces, for %s", to); 3384 return -1; 3385 } 3386 i = ub_random_max(outnet->rnd, outnet->num_ip4); 3387 pif = &outnet->ip4_ifs[i]; 3388 } 3389 addr = &pif->addr; 3390 addrlen = pif->addrlen; 3391 #ifndef DISABLE_EXPLICIT_PORT_RANDOMISATION 3392 pnum = ub_random_max(outnet->rnd, pif->avail_total); 3393 if(pnum < pif->inuse) { 3394 /* port already open */ 3395 port = pif->out[pnum]->number; 3396 } else { 3397 /* unused ports in start part of array */ 3398 port = pif->avail_ports[pnum - pif->inuse]; 3399 } 3400 #else 3401 pnum = port = 0; 3402 #endif 3403 if(addr_is_ip6(to_addr, to_addrlen)) { 3404 struct sockaddr_in6 sa = *(struct sockaddr_in6*)addr; 3405 sa.sin6_port = (in_port_t)htons((uint16_t)port); 3406 fd = create_udp_sock(AF_INET6, SOCK_DGRAM, 3407 (struct sockaddr*)&sa, addrlen, 1, &inuse, &noproto, 3408 0, 0, 0, NULL, 0, freebind, 0, dscp); 3409 } else { 3410 struct sockaddr_in* sa = (struct sockaddr_in*)addr; 3411 sa->sin_port = (in_port_t)htons((uint16_t)port); 3412 fd = create_udp_sock(AF_INET, SOCK_DGRAM, 3413 (struct sockaddr*)addr, addrlen, 1, &inuse, &noproto, 3414 0, 0, 0, NULL, 0, freebind, 0, dscp); 3415 } 3416 if(fd != -1) { 3417 return fd; 3418 } 3419 if(!inuse) { 3420 return -1; 3421 } 3422 } 3423 /* too many tries */ 3424 log_err("cannot send probe, ports are in use"); 3425 return -1; 3426 } 3427 3428 struct comm_point* 3429 outnet_comm_point_for_udp(struct outside_network* outnet, 3430 comm_point_callback_type* cb, void* cb_arg, 3431 struct sockaddr_storage* to_addr, socklen_t to_addrlen) 3432 { 3433 struct comm_point* cp; 3434 int fd = fd_for_dest(outnet, to_addr, to_addrlen); 3435 if(fd == -1) { 3436 return NULL; 3437 } 3438 cp = comm_point_create_udp(outnet->base, fd, outnet->udp_buff, 3439 cb, cb_arg, NULL); 3440 if(!cp) { 3441 log_err("malloc failure"); 3442 close(fd); 3443 return NULL; 3444 } 3445 return cp; 3446 } 3447 3448 /** setup SSL for comm point */ 3449 static int 3450 setup_comm_ssl(struct comm_point* cp, struct outside_network* outnet, 3451 int fd, char* host) 3452 { 3453 cp->ssl = outgoing_ssl_fd(outnet->sslctx, fd); 3454 if(!cp->ssl) { 3455 log_err("cannot create SSL object"); 3456 return 0; 3457 } 3458 #ifdef USE_WINSOCK 3459 comm_point_tcp_win_bio_cb(cp, cp->ssl); 3460 #endif 3461 cp->ssl_shake_state = comm_ssl_shake_write; 3462 /* https verification */ 3463 #ifdef HAVE_SSL 3464 if(outnet->tls_use_sni) { 3465 (void)SSL_set_tlsext_host_name(cp->ssl, host); 3466 } 3467 #endif 3468 #ifdef HAVE_SSL_SET1_HOST 3469 if((SSL_CTX_get_verify_mode(outnet->sslctx)&SSL_VERIFY_PEER)) { 3470 /* because we set SSL_VERIFY_PEER, in netevent in 3471 * ssl_handshake, it'll check if the certificate 3472 * verification has succeeded */ 3473 /* SSL_VERIFY_PEER is set on the sslctx */ 3474 /* and the certificates to verify with are loaded into 3475 * it with SSL_load_verify_locations or 3476 * SSL_CTX_set_default_verify_paths */ 3477 /* setting the hostname makes openssl verify the 3478 * host name in the x509 certificate in the 3479 * SSL connection*/ 3480 if(!SSL_set1_host(cp->ssl, host)) { 3481 log_err("SSL_set1_host failed"); 3482 return 0; 3483 } 3484 } 3485 #elif defined(HAVE_X509_VERIFY_PARAM_SET1_HOST) 3486 /* openssl 1.0.2 has this function that can be used for 3487 * set1_host like verification */ 3488 if((SSL_CTX_get_verify_mode(outnet->sslctx)&SSL_VERIFY_PEER)) { 3489 X509_VERIFY_PARAM* param = SSL_get0_param(cp->ssl); 3490 # ifdef X509_CHECK_FLAG_NO_PARTIAL_WILDCARDS 3491 X509_VERIFY_PARAM_set_hostflags(param, X509_CHECK_FLAG_NO_PARTIAL_WILDCARDS); 3492 # endif 3493 if(!X509_VERIFY_PARAM_set1_host(param, host, strlen(host))) { 3494 log_err("X509_VERIFY_PARAM_set1_host failed"); 3495 return 0; 3496 } 3497 } 3498 #else 3499 (void)host; 3500 #endif /* HAVE_SSL_SET1_HOST */ 3501 return 1; 3502 } 3503 3504 struct comm_point* 3505 outnet_comm_point_for_tcp(struct outside_network* outnet, 3506 comm_point_callback_type* cb, void* cb_arg, 3507 struct sockaddr_storage* to_addr, socklen_t to_addrlen, 3508 sldns_buffer* query, int timeout, int ssl, char* host) 3509 { 3510 struct comm_point* cp; 3511 int fd = outnet_get_tcp_fd(to_addr, to_addrlen, outnet->tcp_mss, outnet->ip_dscp); 3512 if(fd == -1) { 3513 return 0; 3514 } 3515 fd_set_nonblock(fd); 3516 if(!outnet_tcp_connect(fd, to_addr, to_addrlen)) { 3517 /* outnet_tcp_connect has closed fd on error for us */ 3518 return 0; 3519 } 3520 cp = comm_point_create_tcp_out(outnet->base, 65552, cb, cb_arg); 3521 if(!cp) { 3522 log_err("malloc failure"); 3523 close(fd); 3524 return 0; 3525 } 3526 cp->repinfo.addrlen = to_addrlen; 3527 memcpy(&cp->repinfo.addr, to_addr, to_addrlen); 3528 3529 /* setup for SSL (if needed) */ 3530 if(ssl) { 3531 if(!setup_comm_ssl(cp, outnet, fd, host)) { 3532 log_err("cannot setup XoT"); 3533 comm_point_delete(cp); 3534 return NULL; 3535 } 3536 } 3537 3538 /* set timeout on TCP connection */ 3539 comm_point_start_listening(cp, fd, timeout); 3540 /* copy scratch buffer to cp->buffer */ 3541 sldns_buffer_copy(cp->buffer, query); 3542 return cp; 3543 } 3544 3545 /** setup the User-Agent HTTP header based on http-user-agent configuration */ 3546 static void 3547 setup_http_user_agent(sldns_buffer* buf, struct config_file* cfg) 3548 { 3549 if(cfg->hide_http_user_agent) return; 3550 if(cfg->http_user_agent==NULL || cfg->http_user_agent[0] == 0) { 3551 sldns_buffer_printf(buf, "User-Agent: %s/%s\r\n", PACKAGE_NAME, 3552 PACKAGE_VERSION); 3553 } else { 3554 sldns_buffer_printf(buf, "User-Agent: %s\r\n", cfg->http_user_agent); 3555 } 3556 } 3557 3558 /** setup http request headers in buffer for sending query to destination */ 3559 static int 3560 setup_http_request(sldns_buffer* buf, char* host, char* path, 3561 struct config_file* cfg) 3562 { 3563 sldns_buffer_clear(buf); 3564 sldns_buffer_printf(buf, "GET /%s HTTP/1.1\r\n", path); 3565 sldns_buffer_printf(buf, "Host: %s\r\n", host); 3566 setup_http_user_agent(buf, cfg); 3567 /* We do not really do multiple queries per connection, 3568 * but this header setting is also not needed. 3569 * sldns_buffer_printf(buf, "Connection: close\r\n") */ 3570 sldns_buffer_printf(buf, "\r\n"); 3571 if(sldns_buffer_position(buf)+10 > sldns_buffer_capacity(buf)) 3572 return 0; /* somehow buffer too short, but it is about 60K 3573 and the request is only a couple bytes long. */ 3574 sldns_buffer_flip(buf); 3575 return 1; 3576 } 3577 3578 struct comm_point* 3579 outnet_comm_point_for_http(struct outside_network* outnet, 3580 comm_point_callback_type* cb, void* cb_arg, 3581 struct sockaddr_storage* to_addr, socklen_t to_addrlen, int timeout, 3582 int ssl, char* host, char* path, struct config_file* cfg) 3583 { 3584 /* cp calls cb with err=NETEVENT_DONE when transfer is done */ 3585 struct comm_point* cp; 3586 int fd = outnet_get_tcp_fd(to_addr, to_addrlen, outnet->tcp_mss, outnet->ip_dscp); 3587 if(fd == -1) { 3588 return 0; 3589 } 3590 fd_set_nonblock(fd); 3591 if(!outnet_tcp_connect(fd, to_addr, to_addrlen)) { 3592 /* outnet_tcp_connect has closed fd on error for us */ 3593 return 0; 3594 } 3595 cp = comm_point_create_http_out(outnet->base, 65552, cb, cb_arg, 3596 outnet->udp_buff); 3597 if(!cp) { 3598 log_err("malloc failure"); 3599 close(fd); 3600 return 0; 3601 } 3602 cp->repinfo.addrlen = to_addrlen; 3603 memcpy(&cp->repinfo.addr, to_addr, to_addrlen); 3604 3605 /* setup for SSL (if needed) */ 3606 if(ssl) { 3607 if(!setup_comm_ssl(cp, outnet, fd, host)) { 3608 log_err("cannot setup https"); 3609 comm_point_delete(cp); 3610 return NULL; 3611 } 3612 } 3613 3614 /* set timeout on TCP connection */ 3615 comm_point_start_listening(cp, fd, timeout); 3616 3617 /* setup http request in cp->buffer */ 3618 if(!setup_http_request(cp->buffer, host, path, cfg)) { 3619 log_err("error setting up http request"); 3620 comm_point_delete(cp); 3621 return NULL; 3622 } 3623 return cp; 3624 } 3625 3626 /** get memory used by waiting tcp entry (in use or not) */ 3627 static size_t 3628 waiting_tcp_get_mem(struct waiting_tcp* w) 3629 { 3630 size_t s; 3631 if(!w) return 0; 3632 s = sizeof(*w) + w->pkt_len; 3633 if(w->timer) 3634 s += comm_timer_get_mem(w->timer); 3635 return s; 3636 } 3637 3638 /** get memory used by port if */ 3639 static size_t 3640 if_get_mem(struct port_if* pif) 3641 { 3642 size_t s; 3643 int i; 3644 s = sizeof(*pif) + 3645 #ifndef DISABLE_EXPLICIT_PORT_RANDOMISATION 3646 sizeof(int)*pif->avail_total + 3647 #endif 3648 sizeof(struct port_comm*)*pif->maxout; 3649 for(i=0; i<pif->inuse; i++) 3650 s += sizeof(*pif->out[i]) + 3651 comm_point_get_mem(pif->out[i]->cp); 3652 return s; 3653 } 3654 3655 /** get memory used by waiting udp */ 3656 static size_t 3657 waiting_udp_get_mem(struct pending* w) 3658 { 3659 size_t s; 3660 s = sizeof(*w) + comm_timer_get_mem(w->timer) + w->pkt_len; 3661 return s; 3662 } 3663 3664 size_t outnet_get_mem(struct outside_network* outnet) 3665 { 3666 size_t i; 3667 int k; 3668 struct waiting_tcp* w; 3669 struct pending* u; 3670 struct serviced_query* sq; 3671 struct service_callback* sb; 3672 struct port_comm* pc; 3673 size_t s = sizeof(*outnet) + sizeof(*outnet->base) + 3674 sizeof(*outnet->udp_buff) + 3675 sldns_buffer_capacity(outnet->udp_buff); 3676 /* second buffer is not ours */ 3677 for(pc = outnet->unused_fds; pc; pc = pc->next) { 3678 s += sizeof(*pc) + comm_point_get_mem(pc->cp); 3679 } 3680 for(k=0; k<outnet->num_ip4; k++) 3681 s += if_get_mem(&outnet->ip4_ifs[k]); 3682 for(k=0; k<outnet->num_ip6; k++) 3683 s += if_get_mem(&outnet->ip6_ifs[k]); 3684 for(u=outnet->udp_wait_first; u; u=u->next_waiting) 3685 s += waiting_udp_get_mem(u); 3686 3687 s += sizeof(struct pending_tcp*)*outnet->num_tcp; 3688 for(i=0; i<outnet->num_tcp; i++) { 3689 s += sizeof(struct pending_tcp); 3690 s += comm_point_get_mem(outnet->tcp_conns[i]->c); 3691 if(outnet->tcp_conns[i]->query) 3692 s += waiting_tcp_get_mem(outnet->tcp_conns[i]->query); 3693 } 3694 for(w=outnet->tcp_wait_first; w; w = w->next_waiting) 3695 s += waiting_tcp_get_mem(w); 3696 s += sizeof(*outnet->pending); 3697 s += (sizeof(struct pending) + comm_timer_get_mem(NULL)) * 3698 outnet->pending->count; 3699 s += sizeof(*outnet->serviced); 3700 s += outnet->svcd_overhead; 3701 RBTREE_FOR(sq, struct serviced_query*, outnet->serviced) { 3702 s += sizeof(*sq) + sq->qbuflen; 3703 for(sb = sq->cblist; sb; sb = sb->next) 3704 s += sizeof(*sb); 3705 } 3706 return s; 3707 } 3708 3709 size_t 3710 serviced_get_mem(struct serviced_query* sq) 3711 { 3712 struct service_callback* sb; 3713 size_t s; 3714 s = sizeof(*sq) + sq->qbuflen; 3715 for(sb = sq->cblist; sb; sb = sb->next) 3716 s += sizeof(*sb); 3717 if(sq->status == serviced_query_UDP_EDNS || 3718 sq->status == serviced_query_UDP || 3719 sq->status == serviced_query_UDP_EDNS_FRAG || 3720 sq->status == serviced_query_UDP_EDNS_fallback) { 3721 s += sizeof(struct pending); 3722 s += comm_timer_get_mem(NULL); 3723 } else { 3724 /* does not have size of the pkt pointer */ 3725 /* always has a timer except on malloc failures */ 3726 3727 /* these sizes are part of the main outside network mem */ 3728 /* 3729 s += sizeof(struct waiting_tcp); 3730 s += comm_timer_get_mem(NULL); 3731 */ 3732 } 3733 return s; 3734 } 3735 3736