1 /* 2 * services/outside_network.c - implement sending of queries and wait answer. 3 * 4 * Copyright (c) 2007, NLnet Labs. All rights reserved. 5 * 6 * This software is open source. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 12 * Redistributions of source code must retain the above copyright notice, 13 * this list of conditions and the following disclaimer. 14 * 15 * Redistributions in binary form must reproduce the above copyright notice, 16 * this list of conditions and the following disclaimer in the documentation 17 * and/or other materials provided with the distribution. 18 * 19 * Neither the name of the NLNET LABS nor the names of its contributors may 20 * be used to endorse or promote products derived from this software without 21 * specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 24 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 26 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 27 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 28 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 29 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 30 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 31 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 32 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 33 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 34 */ 35 36 /** 37 * \file 38 * 39 * This file has functions to send queries to authoritative servers and 40 * wait for the pending answer events. 41 */ 42 #include "config.h" 43 #include <ctype.h> 44 #ifdef HAVE_SYS_TYPES_H 45 # include <sys/types.h> 46 #endif 47 #include <sys/time.h> 48 #include "services/outside_network.h" 49 #include "services/listen_dnsport.h" 50 #include "services/cache/infra.h" 51 #include "iterator/iterator.h" 52 #include "util/data/msgparse.h" 53 #include "util/data/msgreply.h" 54 #include "util/data/msgencode.h" 55 #include "util/data/dname.h" 56 #include "util/netevent.h" 57 #include "util/log.h" 58 #include "util/net_help.h" 59 #include "util/random.h" 60 #include "util/fptr_wlist.h" 61 #include "util/edns.h" 62 #include "sldns/sbuffer.h" 63 #include "dnstap/dnstap.h" 64 #ifdef HAVE_OPENSSL_SSL_H 65 #include <openssl/ssl.h> 66 #endif 67 #ifdef HAVE_X509_VERIFY_PARAM_SET1_HOST 68 #include <openssl/x509v3.h> 69 #endif 70 71 #ifdef HAVE_NETDB_H 72 #include <netdb.h> 73 #endif 74 #include <fcntl.h> 75 76 /** number of times to retry making a random ID that is unique. */ 77 #define MAX_ID_RETRY 1000 78 /** number of times to retry finding interface, port that can be opened. */ 79 #define MAX_PORT_RETRY 10000 80 /** number of retries on outgoing UDP queries */ 81 #define OUTBOUND_UDP_RETRY 1 82 83 /** initiate TCP transaction for serviced query */ 84 static void serviced_tcp_initiate(struct serviced_query* sq, sldns_buffer* buff); 85 /** with a fd available, randomize and send UDP */ 86 static int randomize_and_send_udp(struct pending* pend, sldns_buffer* packet, 87 int timeout); 88 89 /** remove waiting tcp from the outnet waiting list */ 90 static void waiting_list_remove(struct outside_network* outnet, 91 struct waiting_tcp* w); 92 93 /** select a DNS ID for a TCP stream */ 94 static uint16_t tcp_select_id(struct outside_network* outnet, 95 struct reuse_tcp* reuse); 96 97 /** Perform serviced query UDP sending operation */ 98 static int serviced_udp_send(struct serviced_query* sq, sldns_buffer* buff); 99 100 /** Send serviced query over TCP return false on initial failure */ 101 static int serviced_tcp_send(struct serviced_query* sq, sldns_buffer* buff); 102 103 /** call the callbacks for a serviced query */ 104 static void serviced_callbacks(struct serviced_query* sq, int error, 105 struct comm_point* c, struct comm_reply* rep); 106 107 int 108 pending_cmp(const void* key1, const void* key2) 109 { 110 struct pending *p1 = (struct pending*)key1; 111 struct pending *p2 = (struct pending*)key2; 112 if(p1->id < p2->id) 113 return -1; 114 if(p1->id > p2->id) 115 return 1; 116 log_assert(p1->id == p2->id); 117 return sockaddr_cmp(&p1->addr, p1->addrlen, &p2->addr, p2->addrlen); 118 } 119 120 int 121 serviced_cmp(const void* key1, const void* key2) 122 { 123 struct serviced_query* q1 = (struct serviced_query*)key1; 124 struct serviced_query* q2 = (struct serviced_query*)key2; 125 int r; 126 if(q1->qbuflen < q2->qbuflen) 127 return -1; 128 if(q1->qbuflen > q2->qbuflen) 129 return 1; 130 log_assert(q1->qbuflen == q2->qbuflen); 131 log_assert(q1->qbuflen >= 15 /* 10 header, root, type, class */); 132 /* alternate casing of qname is still the same query */ 133 if((r = memcmp(q1->qbuf, q2->qbuf, 10)) != 0) 134 return r; 135 if((r = memcmp(q1->qbuf+q1->qbuflen-4, q2->qbuf+q2->qbuflen-4, 4)) != 0) 136 return r; 137 if(q1->dnssec != q2->dnssec) { 138 if(q1->dnssec < q2->dnssec) 139 return -1; 140 return 1; 141 } 142 if((r = query_dname_compare(q1->qbuf+10, q2->qbuf+10)) != 0) 143 return r; 144 if((r = edns_opt_list_compare(q1->opt_list, q2->opt_list)) != 0) 145 return r; 146 return sockaddr_cmp(&q1->addr, q1->addrlen, &q2->addr, q2->addrlen); 147 } 148 149 /** compare if the reuse element has the same address, port and same ssl-is 150 * used-for-it characteristic */ 151 static int 152 reuse_cmp_addrportssl(const void* key1, const void* key2) 153 { 154 struct reuse_tcp* r1 = (struct reuse_tcp*)key1; 155 struct reuse_tcp* r2 = (struct reuse_tcp*)key2; 156 int r; 157 /* compare address and port */ 158 r = sockaddr_cmp(&r1->addr, r1->addrlen, &r2->addr, r2->addrlen); 159 if(r != 0) 160 return r; 161 162 /* compare if SSL-enabled */ 163 if(r1->is_ssl && !r2->is_ssl) 164 return 1; 165 if(!r1->is_ssl && r2->is_ssl) 166 return -1; 167 return 0; 168 } 169 170 int 171 reuse_cmp(const void* key1, const void* key2) 172 { 173 int r; 174 r = reuse_cmp_addrportssl(key1, key2); 175 if(r != 0) 176 return r; 177 178 /* compare ptr value */ 179 if(key1 < key2) return -1; 180 if(key1 > key2) return 1; 181 return 0; 182 } 183 184 int reuse_id_cmp(const void* key1, const void* key2) 185 { 186 struct waiting_tcp* w1 = (struct waiting_tcp*)key1; 187 struct waiting_tcp* w2 = (struct waiting_tcp*)key2; 188 if(w1->id < w2->id) 189 return -1; 190 if(w1->id > w2->id) 191 return 1; 192 return 0; 193 } 194 195 /** delete waiting_tcp entry. Does not unlink from waiting list. 196 * @param w: to delete. 197 */ 198 static void 199 waiting_tcp_delete(struct waiting_tcp* w) 200 { 201 if(!w) return; 202 if(w->timer) 203 comm_timer_delete(w->timer); 204 free(w); 205 } 206 207 /** 208 * Pick random outgoing-interface of that family, and bind it. 209 * port set to 0 so OS picks a port number for us. 210 * if it is the ANY address, do not bind. 211 * @param pend: pending tcp structure, for storing the local address choice. 212 * @param w: tcp structure with destination address. 213 * @param s: socket fd. 214 * @return false on error, socket closed. 215 */ 216 static int 217 pick_outgoing_tcp(struct pending_tcp* pend, struct waiting_tcp* w, int s) 218 { 219 struct port_if* pi = NULL; 220 int num; 221 pend->pi = NULL; 222 #ifdef INET6 223 if(addr_is_ip6(&w->addr, w->addrlen)) 224 num = w->outnet->num_ip6; 225 else 226 #endif 227 num = w->outnet->num_ip4; 228 if(num == 0) { 229 log_err("no TCP outgoing interfaces of family"); 230 log_addr(VERB_OPS, "for addr", &w->addr, w->addrlen); 231 sock_close(s); 232 return 0; 233 } 234 #ifdef INET6 235 if(addr_is_ip6(&w->addr, w->addrlen)) 236 pi = &w->outnet->ip6_ifs[ub_random_max(w->outnet->rnd, num)]; 237 else 238 #endif 239 pi = &w->outnet->ip4_ifs[ub_random_max(w->outnet->rnd, num)]; 240 log_assert(pi); 241 pend->pi = pi; 242 if(addr_is_any(&pi->addr, pi->addrlen)) { 243 /* binding to the ANY interface is for listening sockets */ 244 return 1; 245 } 246 /* set port to 0 */ 247 if(addr_is_ip6(&pi->addr, pi->addrlen)) 248 ((struct sockaddr_in6*)&pi->addr)->sin6_port = 0; 249 else ((struct sockaddr_in*)&pi->addr)->sin_port = 0; 250 if(bind(s, (struct sockaddr*)&pi->addr, pi->addrlen) != 0) { 251 #ifndef USE_WINSOCK 252 #ifdef EADDRNOTAVAIL 253 if(!(verbosity < 4 && errno == EADDRNOTAVAIL)) 254 #endif 255 #else /* USE_WINSOCK */ 256 if(!(verbosity < 4 && WSAGetLastError() == WSAEADDRNOTAVAIL)) 257 #endif 258 log_err("outgoing tcp: bind: %s", sock_strerror(errno)); 259 sock_close(s); 260 return 0; 261 } 262 log_addr(VERB_ALGO, "tcp bound to src", &pi->addr, pi->addrlen); 263 return 1; 264 } 265 266 /** get TCP file descriptor for address, returns -1 on failure, 267 * tcp_mss is 0 or maxseg size to set for TCP packets. */ 268 int 269 outnet_get_tcp_fd(struct sockaddr_storage* addr, socklen_t addrlen, int tcp_mss, int dscp) 270 { 271 int s; 272 int af; 273 char* err; 274 #ifdef SO_REUSEADDR 275 int on = 1; 276 #endif 277 #ifdef INET6 278 if(addr_is_ip6(addr, addrlen)){ 279 s = socket(PF_INET6, SOCK_STREAM, IPPROTO_TCP); 280 af = AF_INET6; 281 } else { 282 #else 283 { 284 #endif 285 af = AF_INET; 286 s = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP); 287 } 288 if(s == -1) { 289 log_err_addr("outgoing tcp: socket", sock_strerror(errno), 290 addr, addrlen); 291 return -1; 292 } 293 294 #ifdef SO_REUSEADDR 295 if(setsockopt(s, SOL_SOCKET, SO_REUSEADDR, (void*)&on, 296 (socklen_t)sizeof(on)) < 0) { 297 verbose(VERB_ALGO, "outgoing tcp:" 298 " setsockopt(.. SO_REUSEADDR ..) failed"); 299 } 300 #endif 301 302 err = set_ip_dscp(s, af, dscp); 303 if(err != NULL) { 304 verbose(VERB_ALGO, "outgoing tcp:" 305 "error setting IP DiffServ codepoint on socket"); 306 } 307 308 if(tcp_mss > 0) { 309 #if defined(IPPROTO_TCP) && defined(TCP_MAXSEG) 310 if(setsockopt(s, IPPROTO_TCP, TCP_MAXSEG, 311 (void*)&tcp_mss, (socklen_t)sizeof(tcp_mss)) < 0) { 312 verbose(VERB_ALGO, "outgoing tcp:" 313 " setsockopt(.. TCP_MAXSEG ..) failed"); 314 } 315 #else 316 verbose(VERB_ALGO, "outgoing tcp:" 317 " setsockopt(TCP_MAXSEG) unsupported"); 318 #endif /* defined(IPPROTO_TCP) && defined(TCP_MAXSEG) */ 319 } 320 321 return s; 322 } 323 324 /** connect tcp connection to addr, 0 on failure */ 325 int 326 outnet_tcp_connect(int s, struct sockaddr_storage* addr, socklen_t addrlen) 327 { 328 if(connect(s, (struct sockaddr*)addr, addrlen) == -1) { 329 #ifndef USE_WINSOCK 330 #ifdef EINPROGRESS 331 if(errno != EINPROGRESS) { 332 #endif 333 if(tcp_connect_errno_needs_log( 334 (struct sockaddr*)addr, addrlen)) 335 log_err_addr("outgoing tcp: connect", 336 strerror(errno), addr, addrlen); 337 close(s); 338 return 0; 339 #ifdef EINPROGRESS 340 } 341 #endif 342 #else /* USE_WINSOCK */ 343 if(WSAGetLastError() != WSAEINPROGRESS && 344 WSAGetLastError() != WSAEWOULDBLOCK) { 345 closesocket(s); 346 return 0; 347 } 348 #endif 349 } 350 return 1; 351 } 352 353 /** log reuse item addr and ptr with message */ 354 static void 355 log_reuse_tcp(enum verbosity_value v, const char* msg, struct reuse_tcp* reuse) 356 { 357 uint16_t port; 358 char addrbuf[128]; 359 if(verbosity < v) return; 360 if(!reuse || !reuse->pending || !reuse->pending->c) 361 return; 362 addr_to_str(&reuse->addr, reuse->addrlen, addrbuf, sizeof(addrbuf)); 363 port = ntohs(((struct sockaddr_in*)&reuse->addr)->sin_port); 364 verbose(v, "%s %s#%u fd %d", msg, addrbuf, (unsigned)port, 365 reuse->pending->c->fd); 366 } 367 368 /** pop the first element from the writewait list */ 369 static struct waiting_tcp* reuse_write_wait_pop(struct reuse_tcp* reuse) 370 { 371 struct waiting_tcp* w = reuse->write_wait_first; 372 if(!w) 373 return NULL; 374 log_assert(w->write_wait_queued); 375 log_assert(!w->write_wait_prev); 376 reuse->write_wait_first = w->write_wait_next; 377 if(w->write_wait_next) 378 w->write_wait_next->write_wait_prev = NULL; 379 else reuse->write_wait_last = NULL; 380 w->write_wait_queued = 0; 381 w->write_wait_next = NULL; 382 w->write_wait_prev = NULL; 383 return w; 384 } 385 386 /** remove the element from the writewait list */ 387 static void reuse_write_wait_remove(struct reuse_tcp* reuse, 388 struct waiting_tcp* w) 389 { 390 log_assert(w); 391 log_assert(w->write_wait_queued); 392 if(!w) 393 return; 394 if(!w->write_wait_queued) 395 return; 396 if(w->write_wait_prev) 397 w->write_wait_prev->write_wait_next = w->write_wait_next; 398 else reuse->write_wait_first = w->write_wait_next; 399 log_assert(!w->write_wait_prev || 400 w->write_wait_prev->write_wait_next != w->write_wait_prev); 401 if(w->write_wait_next) 402 w->write_wait_next->write_wait_prev = w->write_wait_prev; 403 else reuse->write_wait_last = w->write_wait_prev; 404 log_assert(!w->write_wait_next 405 || w->write_wait_next->write_wait_prev != w->write_wait_next); 406 w->write_wait_queued = 0; 407 w->write_wait_next = NULL; 408 w->write_wait_prev = NULL; 409 } 410 411 /** push the element after the last on the writewait list */ 412 static void reuse_write_wait_push_back(struct reuse_tcp* reuse, 413 struct waiting_tcp* w) 414 { 415 if(!w) return; 416 log_assert(!w->write_wait_queued); 417 if(reuse->write_wait_last) { 418 reuse->write_wait_last->write_wait_next = w; 419 log_assert(reuse->write_wait_last->write_wait_next != 420 reuse->write_wait_last); 421 w->write_wait_prev = reuse->write_wait_last; 422 } else { 423 reuse->write_wait_first = w; 424 } 425 reuse->write_wait_last = w; 426 w->write_wait_queued = 1; 427 } 428 429 /** insert element in tree by id */ 430 void 431 reuse_tree_by_id_insert(struct reuse_tcp* reuse, struct waiting_tcp* w) 432 { 433 #ifdef UNBOUND_DEBUG 434 rbnode_type* added; 435 #endif 436 log_assert(w->id_node.key == NULL); 437 w->id_node.key = w; 438 #ifdef UNBOUND_DEBUG 439 added = 440 #else 441 (void) 442 #endif 443 rbtree_insert(&reuse->tree_by_id, &w->id_node); 444 log_assert(added); /* should have been added */ 445 } 446 447 /** find element in tree by id */ 448 struct waiting_tcp* 449 reuse_tcp_by_id_find(struct reuse_tcp* reuse, uint16_t id) 450 { 451 struct waiting_tcp key_w; 452 rbnode_type* n; 453 memset(&key_w, 0, sizeof(key_w)); 454 key_w.id_node.key = &key_w; 455 key_w.id = id; 456 n = rbtree_search(&reuse->tree_by_id, &key_w); 457 if(!n) return NULL; 458 return (struct waiting_tcp*)n->key; 459 } 460 461 /** return ID value of rbnode in tree_by_id */ 462 static uint16_t 463 tree_by_id_get_id(rbnode_type* node) 464 { 465 struct waiting_tcp* w = (struct waiting_tcp*)node->key; 466 return w->id; 467 } 468 469 /** insert into reuse tcp tree and LRU, false on failure (duplicate) */ 470 int 471 reuse_tcp_insert(struct outside_network* outnet, struct pending_tcp* pend_tcp) 472 { 473 log_reuse_tcp(VERB_CLIENT, "reuse_tcp_insert", &pend_tcp->reuse); 474 if(pend_tcp->reuse.item_on_lru_list) { 475 if(!pend_tcp->reuse.node.key) 476 log_err("internal error: reuse_tcp_insert: " 477 "in lru list without key"); 478 return 1; 479 } 480 pend_tcp->reuse.node.key = &pend_tcp->reuse; 481 pend_tcp->reuse.pending = pend_tcp; 482 if(!rbtree_insert(&outnet->tcp_reuse, &pend_tcp->reuse.node)) { 483 /* We are not in the LRU list but we are already in the 484 * tcp_reuse tree, strange. 485 * Continue to add ourselves to the LRU list. */ 486 log_err("internal error: reuse_tcp_insert: in lru list but " 487 "not in the tree"); 488 } 489 /* insert into LRU, first is newest */ 490 pend_tcp->reuse.lru_prev = NULL; 491 if(outnet->tcp_reuse_first) { 492 pend_tcp->reuse.lru_next = outnet->tcp_reuse_first; 493 log_assert(pend_tcp->reuse.lru_next != &pend_tcp->reuse); 494 outnet->tcp_reuse_first->lru_prev = &pend_tcp->reuse; 495 log_assert(outnet->tcp_reuse_first->lru_prev != 496 outnet->tcp_reuse_first); 497 } else { 498 pend_tcp->reuse.lru_next = NULL; 499 outnet->tcp_reuse_last = &pend_tcp->reuse; 500 } 501 outnet->tcp_reuse_first = &pend_tcp->reuse; 502 pend_tcp->reuse.item_on_lru_list = 1; 503 log_assert((!outnet->tcp_reuse_first && !outnet->tcp_reuse_last) || 504 (outnet->tcp_reuse_first && outnet->tcp_reuse_last)); 505 log_assert(outnet->tcp_reuse_first != outnet->tcp_reuse_first->lru_next && 506 outnet->tcp_reuse_first != outnet->tcp_reuse_first->lru_prev); 507 log_assert(outnet->tcp_reuse_last != outnet->tcp_reuse_last->lru_next && 508 outnet->tcp_reuse_last != outnet->tcp_reuse_last->lru_prev); 509 return 1; 510 } 511 512 /** find reuse tcp stream to destination for query, or NULL if none */ 513 static struct reuse_tcp* 514 reuse_tcp_find(struct outside_network* outnet, struct sockaddr_storage* addr, 515 socklen_t addrlen, int use_ssl) 516 { 517 struct waiting_tcp key_w; 518 struct pending_tcp key_p; 519 struct comm_point c; 520 rbnode_type* result = NULL, *prev; 521 verbose(VERB_CLIENT, "reuse_tcp_find"); 522 memset(&key_w, 0, sizeof(key_w)); 523 memset(&key_p, 0, sizeof(key_p)); 524 memset(&c, 0, sizeof(c)); 525 key_p.query = &key_w; 526 key_p.c = &c; 527 key_p.reuse.pending = &key_p; 528 key_p.reuse.node.key = &key_p.reuse; 529 if(use_ssl) 530 key_p.reuse.is_ssl = 1; 531 if(addrlen > (socklen_t)sizeof(key_p.reuse.addr)) 532 return NULL; 533 memmove(&key_p.reuse.addr, addr, addrlen); 534 key_p.reuse.addrlen = addrlen; 535 536 verbose(VERB_CLIENT, "reuse_tcp_find: num reuse streams %u", 537 (unsigned)outnet->tcp_reuse.count); 538 if(outnet->tcp_reuse.root == NULL || 539 outnet->tcp_reuse.root == RBTREE_NULL) 540 return NULL; 541 if(rbtree_find_less_equal(&outnet->tcp_reuse, &key_p.reuse, 542 &result)) { 543 /* exact match */ 544 /* but the key is on stack, and ptr is compared, impossible */ 545 log_assert(&key_p.reuse != (struct reuse_tcp*)result); 546 log_assert(&key_p != ((struct reuse_tcp*)result)->pending); 547 } 548 /* not found, return null */ 549 if(!result || result == RBTREE_NULL) 550 return NULL; 551 verbose(VERB_CLIENT, "reuse_tcp_find check inexact match"); 552 /* inexact match, find one of possibly several connections to the 553 * same destination address, with the correct port, ssl, and 554 * also less than max number of open queries, or else, fail to open 555 * a new one */ 556 /* rewind to start of sequence of same address,port,ssl */ 557 prev = rbtree_previous(result); 558 while(prev && prev != RBTREE_NULL && 559 reuse_cmp_addrportssl(prev->key, &key_p.reuse) == 0) { 560 result = prev; 561 prev = rbtree_previous(result); 562 } 563 564 /* loop to find first one that has correct characteristics */ 565 while(result && result != RBTREE_NULL && 566 reuse_cmp_addrportssl(result->key, &key_p.reuse) == 0) { 567 if(((struct reuse_tcp*)result)->tree_by_id.count < 568 outnet->max_reuse_tcp_queries) { 569 /* same address, port, ssl-yes-or-no, and has 570 * space for another query */ 571 return (struct reuse_tcp*)result; 572 } 573 result = rbtree_next(result); 574 } 575 return NULL; 576 } 577 578 /** use the buffer to setup writing the query */ 579 static void 580 outnet_tcp_take_query_setup(int s, struct pending_tcp* pend, 581 struct waiting_tcp* w) 582 { 583 struct timeval tv; 584 verbose(VERB_CLIENT, "outnet_tcp_take_query_setup: setup packet to write " 585 "len %d timeout %d msec", 586 (int)w->pkt_len, w->timeout); 587 pend->c->tcp_write_pkt = w->pkt; 588 pend->c->tcp_write_pkt_len = w->pkt_len; 589 pend->c->tcp_write_and_read = 1; 590 pend->c->tcp_write_byte_count = 0; 591 pend->c->tcp_is_reading = 0; 592 comm_point_start_listening(pend->c, s, -1); 593 /* set timer on the waiting_tcp entry, this is the write timeout 594 * for the written packet. The timer on pend->c is the timer 595 * for when there is no written packet and we have readtimeouts */ 596 #ifndef S_SPLINT_S 597 tv.tv_sec = w->timeout/1000; 598 tv.tv_usec = (w->timeout%1000)*1000; 599 #endif 600 /* if the waiting_tcp was previously waiting for a buffer in the 601 * outside_network.tcpwaitlist, then the timer is reset now that 602 * we start writing it */ 603 comm_timer_set(w->timer, &tv); 604 } 605 606 /** use next free buffer to service a tcp query */ 607 static int 608 outnet_tcp_take_into_use(struct waiting_tcp* w) 609 { 610 struct pending_tcp* pend = w->outnet->tcp_free; 611 int s; 612 log_assert(pend); 613 log_assert(w->pkt); 614 log_assert(w->pkt_len > 0); 615 log_assert(w->addrlen > 0); 616 pend->c->tcp_do_toggle_rw = 0; 617 pend->c->tcp_do_close = 0; 618 /* open socket */ 619 s = outnet_get_tcp_fd(&w->addr, w->addrlen, w->outnet->tcp_mss, w->outnet->ip_dscp); 620 621 if(s == -1) 622 return 0; 623 624 if(!pick_outgoing_tcp(pend, w, s)) 625 return 0; 626 627 fd_set_nonblock(s); 628 #ifdef USE_OSX_MSG_FASTOPEN 629 /* API for fast open is different here. We use a connectx() function and 630 then writes can happen as normal even using SSL.*/ 631 /* connectx requires that the len be set in the sockaddr struct*/ 632 struct sockaddr_in *addr_in = (struct sockaddr_in *)&w->addr; 633 addr_in->sin_len = w->addrlen; 634 sa_endpoints_t endpoints; 635 endpoints.sae_srcif = 0; 636 endpoints.sae_srcaddr = NULL; 637 endpoints.sae_srcaddrlen = 0; 638 endpoints.sae_dstaddr = (struct sockaddr *)&w->addr; 639 endpoints.sae_dstaddrlen = w->addrlen; 640 if (connectx(s, &endpoints, SAE_ASSOCID_ANY, 641 CONNECT_DATA_IDEMPOTENT | CONNECT_RESUME_ON_READ_WRITE, 642 NULL, 0, NULL, NULL) == -1) { 643 /* if fails, failover to connect for OSX 10.10 */ 644 #ifdef EINPROGRESS 645 if(errno != EINPROGRESS) { 646 #else 647 if(1) { 648 #endif 649 if(connect(s, (struct sockaddr*)&w->addr, w->addrlen) == -1) { 650 #else /* USE_OSX_MSG_FASTOPEN*/ 651 #ifdef USE_MSG_FASTOPEN 652 pend->c->tcp_do_fastopen = 1; 653 /* Only do TFO for TCP in which case no connect() is required here. 654 Don't combine client TFO with SSL, since OpenSSL can't 655 currently support doing a handshake on fd that already isn't connected*/ 656 if (w->outnet->sslctx && w->ssl_upstream) { 657 if(connect(s, (struct sockaddr*)&w->addr, w->addrlen) == -1) { 658 #else /* USE_MSG_FASTOPEN*/ 659 if(connect(s, (struct sockaddr*)&w->addr, w->addrlen) == -1) { 660 #endif /* USE_MSG_FASTOPEN*/ 661 #endif /* USE_OSX_MSG_FASTOPEN*/ 662 #ifndef USE_WINSOCK 663 #ifdef EINPROGRESS 664 if(errno != EINPROGRESS) { 665 #else 666 if(1) { 667 #endif 668 if(tcp_connect_errno_needs_log( 669 (struct sockaddr*)&w->addr, w->addrlen)) 670 log_err_addr("outgoing tcp: connect", 671 strerror(errno), &w->addr, w->addrlen); 672 close(s); 673 #else /* USE_WINSOCK */ 674 if(WSAGetLastError() != WSAEINPROGRESS && 675 WSAGetLastError() != WSAEWOULDBLOCK) { 676 closesocket(s); 677 #endif 678 return 0; 679 } 680 } 681 #ifdef USE_MSG_FASTOPEN 682 } 683 #endif /* USE_MSG_FASTOPEN */ 684 #ifdef USE_OSX_MSG_FASTOPEN 685 } 686 } 687 #endif /* USE_OSX_MSG_FASTOPEN */ 688 if(w->outnet->sslctx && w->ssl_upstream) { 689 pend->c->ssl = outgoing_ssl_fd(w->outnet->sslctx, s); 690 if(!pend->c->ssl) { 691 pend->c->fd = s; 692 comm_point_close(pend->c); 693 return 0; 694 } 695 verbose(VERB_ALGO, "the query is using TLS encryption, for %s", 696 (w->tls_auth_name?w->tls_auth_name:"an unauthenticated connection")); 697 #ifdef USE_WINSOCK 698 comm_point_tcp_win_bio_cb(pend->c, pend->c->ssl); 699 #endif 700 pend->c->ssl_shake_state = comm_ssl_shake_write; 701 if(!set_auth_name_on_ssl(pend->c->ssl, w->tls_auth_name, 702 w->outnet->tls_use_sni)) { 703 pend->c->fd = s; 704 #ifdef HAVE_SSL 705 SSL_free(pend->c->ssl); 706 #endif 707 pend->c->ssl = NULL; 708 comm_point_close(pend->c); 709 return 0; 710 } 711 } 712 w->next_waiting = (void*)pend; 713 w->outnet->num_tcp_outgoing++; 714 w->outnet->tcp_free = pend->next_free; 715 pend->next_free = NULL; 716 pend->query = w; 717 pend->reuse.outnet = w->outnet; 718 pend->c->repinfo.addrlen = w->addrlen; 719 pend->c->tcp_more_read_again = &pend->reuse.cp_more_read_again; 720 pend->c->tcp_more_write_again = &pend->reuse.cp_more_write_again; 721 pend->reuse.cp_more_read_again = 0; 722 pend->reuse.cp_more_write_again = 0; 723 memcpy(&pend->c->repinfo.addr, &w->addr, w->addrlen); 724 pend->reuse.pending = pend; 725 726 /* Remove from tree in case the is_ssl will be different and causes the 727 * identity of the reuse_tcp to change; could result in nodes not being 728 * deleted from the tree (because the new identity does not match the 729 * previous node) but their ->key would be changed to NULL. */ 730 if(pend->reuse.node.key) 731 reuse_tcp_remove_tree_list(w->outnet, &pend->reuse); 732 733 if(pend->c->ssl) 734 pend->reuse.is_ssl = 1; 735 else pend->reuse.is_ssl = 0; 736 /* insert in reuse by address tree if not already inserted there */ 737 (void)reuse_tcp_insert(w->outnet, pend); 738 reuse_tree_by_id_insert(&pend->reuse, w); 739 outnet_tcp_take_query_setup(s, pend, w); 740 return 1; 741 } 742 743 /** Touch the lru of a reuse_tcp element, it is in use. 744 * This moves it to the front of the list, where it is not likely to 745 * be closed. Items at the back of the list are closed to make space. */ 746 void 747 reuse_tcp_lru_touch(struct outside_network* outnet, struct reuse_tcp* reuse) 748 { 749 if(!reuse->item_on_lru_list) { 750 log_err("internal error: we need to touch the lru_list but item not in list"); 751 return; /* not on the list, no lru to modify */ 752 } 753 log_assert(reuse->lru_prev || 754 (!reuse->lru_prev && outnet->tcp_reuse_first == reuse)); 755 if(!reuse->lru_prev) 756 return; /* already first in the list */ 757 /* remove at current position */ 758 /* since it is not first, there is a previous element */ 759 reuse->lru_prev->lru_next = reuse->lru_next; 760 log_assert(reuse->lru_prev->lru_next != reuse->lru_prev); 761 if(reuse->lru_next) 762 reuse->lru_next->lru_prev = reuse->lru_prev; 763 else outnet->tcp_reuse_last = reuse->lru_prev; 764 log_assert(!reuse->lru_next || reuse->lru_next->lru_prev != reuse->lru_next); 765 log_assert(outnet->tcp_reuse_last != outnet->tcp_reuse_last->lru_next && 766 outnet->tcp_reuse_last != outnet->tcp_reuse_last->lru_prev); 767 /* insert at the front */ 768 reuse->lru_prev = NULL; 769 reuse->lru_next = outnet->tcp_reuse_first; 770 if(outnet->tcp_reuse_first) { 771 outnet->tcp_reuse_first->lru_prev = reuse; 772 } 773 log_assert(reuse->lru_next != reuse); 774 /* since it is not first, it is not the only element and 775 * lru_next is thus not NULL and thus reuse is now not the last in 776 * the list, so outnet->tcp_reuse_last does not need to be modified */ 777 outnet->tcp_reuse_first = reuse; 778 log_assert(outnet->tcp_reuse_first != outnet->tcp_reuse_first->lru_next && 779 outnet->tcp_reuse_first != outnet->tcp_reuse_first->lru_prev); 780 log_assert((!outnet->tcp_reuse_first && !outnet->tcp_reuse_last) || 781 (outnet->tcp_reuse_first && outnet->tcp_reuse_last)); 782 } 783 784 /** Snip the last reuse_tcp element off of the LRU list */ 785 struct reuse_tcp* 786 reuse_tcp_lru_snip(struct outside_network* outnet) 787 { 788 struct reuse_tcp* reuse = outnet->tcp_reuse_last; 789 if(!reuse) return NULL; 790 /* snip off of LRU */ 791 log_assert(reuse->lru_next == NULL); 792 if(reuse->lru_prev) { 793 outnet->tcp_reuse_last = reuse->lru_prev; 794 reuse->lru_prev->lru_next = NULL; 795 } else { 796 outnet->tcp_reuse_last = NULL; 797 outnet->tcp_reuse_first = NULL; 798 } 799 log_assert((!outnet->tcp_reuse_first && !outnet->tcp_reuse_last) || 800 (outnet->tcp_reuse_first && outnet->tcp_reuse_last)); 801 reuse->item_on_lru_list = 0; 802 reuse->lru_next = NULL; 803 reuse->lru_prev = NULL; 804 return reuse; 805 } 806 807 /** call callback on waiting_tcp, if not NULL */ 808 static void 809 waiting_tcp_callback(struct waiting_tcp* w, struct comm_point* c, int error, 810 struct comm_reply* reply_info) 811 { 812 if(w && w->cb) { 813 fptr_ok(fptr_whitelist_pending_tcp(w->cb)); 814 (void)(*w->cb)(c, w->cb_arg, error, reply_info); 815 } 816 } 817 818 /** add waiting_tcp element to the outnet tcp waiting list */ 819 static void 820 outnet_add_tcp_waiting(struct outside_network* outnet, struct waiting_tcp* w) 821 { 822 struct timeval tv; 823 log_assert(!w->on_tcp_waiting_list); 824 if(w->on_tcp_waiting_list) 825 return; 826 w->next_waiting = NULL; 827 if(outnet->tcp_wait_last) 828 outnet->tcp_wait_last->next_waiting = w; 829 else outnet->tcp_wait_first = w; 830 outnet->tcp_wait_last = w; 831 w->on_tcp_waiting_list = 1; 832 #ifndef S_SPLINT_S 833 tv.tv_sec = w->timeout/1000; 834 tv.tv_usec = (w->timeout%1000)*1000; 835 #endif 836 comm_timer_set(w->timer, &tv); 837 } 838 839 /** add waiting_tcp element as first to the outnet tcp waiting list */ 840 static void 841 outnet_add_tcp_waiting_first(struct outside_network* outnet, 842 struct waiting_tcp* w, int reset_timer) 843 { 844 struct timeval tv; 845 log_assert(!w->on_tcp_waiting_list); 846 if(w->on_tcp_waiting_list) 847 return; 848 w->next_waiting = outnet->tcp_wait_first; 849 log_assert(w->next_waiting != w); 850 if(!outnet->tcp_wait_last) 851 outnet->tcp_wait_last = w; 852 outnet->tcp_wait_first = w; 853 w->on_tcp_waiting_list = 1; 854 if(reset_timer) { 855 #ifndef S_SPLINT_S 856 tv.tv_sec = w->timeout/1000; 857 tv.tv_usec = (w->timeout%1000)*1000; 858 #endif 859 comm_timer_set(w->timer, &tv); 860 } 861 log_assert( 862 (!outnet->tcp_reuse_first && !outnet->tcp_reuse_last) || 863 (outnet->tcp_reuse_first && outnet->tcp_reuse_last)); 864 } 865 866 /** see if buffers can be used to service TCP queries */ 867 static void 868 use_free_buffer(struct outside_network* outnet) 869 { 870 struct waiting_tcp* w; 871 while(outnet->tcp_wait_first && !outnet->want_to_quit) { 872 #ifdef USE_DNSTAP 873 struct pending_tcp* pend_tcp = NULL; 874 #endif 875 struct reuse_tcp* reuse = NULL; 876 w = outnet->tcp_wait_first; 877 log_assert(w->on_tcp_waiting_list); 878 outnet->tcp_wait_first = w->next_waiting; 879 if(outnet->tcp_wait_last == w) 880 outnet->tcp_wait_last = NULL; 881 log_assert( 882 (!outnet->tcp_reuse_first && !outnet->tcp_reuse_last) || 883 (outnet->tcp_reuse_first && outnet->tcp_reuse_last)); 884 w->on_tcp_waiting_list = 0; 885 reuse = reuse_tcp_find(outnet, &w->addr, w->addrlen, 886 w->ssl_upstream); 887 /* re-select an ID when moving to a new TCP buffer */ 888 w->id = tcp_select_id(outnet, reuse); 889 LDNS_ID_SET(w->pkt, w->id); 890 if(reuse) { 891 log_reuse_tcp(VERB_CLIENT, "use free buffer for waiting tcp: " 892 "found reuse", reuse); 893 #ifdef USE_DNSTAP 894 pend_tcp = reuse->pending; 895 #endif 896 reuse_tcp_lru_touch(outnet, reuse); 897 comm_timer_disable(w->timer); 898 w->next_waiting = (void*)reuse->pending; 899 reuse_tree_by_id_insert(reuse, w); 900 if(reuse->pending->query) { 901 /* on the write wait list */ 902 reuse_write_wait_push_back(reuse, w); 903 } else { 904 /* write straight away */ 905 /* stop the timer on read of the fd */ 906 comm_point_stop_listening(reuse->pending->c); 907 reuse->pending->query = w; 908 outnet_tcp_take_query_setup( 909 reuse->pending->c->fd, reuse->pending, 910 w); 911 } 912 } else if(outnet->tcp_free) { 913 struct pending_tcp* pend = w->outnet->tcp_free; 914 rbtree_init(&pend->reuse.tree_by_id, reuse_id_cmp); 915 pend->reuse.pending = pend; 916 memcpy(&pend->reuse.addr, &w->addr, w->addrlen); 917 pend->reuse.addrlen = w->addrlen; 918 if(!outnet_tcp_take_into_use(w)) { 919 waiting_tcp_callback(w, NULL, NETEVENT_CLOSED, 920 NULL); 921 waiting_tcp_delete(w); 922 #ifdef USE_DNSTAP 923 w = NULL; 924 #endif 925 } 926 #ifdef USE_DNSTAP 927 pend_tcp = pend; 928 #endif 929 } else { 930 /* no reuse and no free buffer, put back at the start */ 931 outnet_add_tcp_waiting_first(outnet, w, 0); 932 break; 933 } 934 #ifdef USE_DNSTAP 935 if(outnet->dtenv && pend_tcp && w && w->sq && 936 (outnet->dtenv->log_resolver_query_messages || 937 outnet->dtenv->log_forwarder_query_messages)) { 938 sldns_buffer tmp; 939 sldns_buffer_init_frm_data(&tmp, w->pkt, w->pkt_len); 940 dt_msg_send_outside_query(outnet->dtenv, &w->sq->addr, 941 &pend_tcp->pi->addr, comm_tcp, w->sq->zone, 942 w->sq->zonelen, &tmp); 943 } 944 #endif 945 } 946 } 947 948 /** delete element from tree by id */ 949 static void 950 reuse_tree_by_id_delete(struct reuse_tcp* reuse, struct waiting_tcp* w) 951 { 952 #ifdef UNBOUND_DEBUG 953 rbnode_type* rem; 954 #endif 955 log_assert(w->id_node.key != NULL); 956 #ifdef UNBOUND_DEBUG 957 rem = 958 #else 959 (void) 960 #endif 961 rbtree_delete(&reuse->tree_by_id, w); 962 log_assert(rem); /* should have been there */ 963 w->id_node.key = NULL; 964 } 965 966 /** move writewait list to go for another connection. */ 967 static void 968 reuse_move_writewait_away(struct outside_network* outnet, 969 struct pending_tcp* pend) 970 { 971 /* the writewait list has not been written yet, so if the 972 * stream was closed, they have not actually been failed, only 973 * the queries written. Other queries can get written to another 974 * stream. For upstreams that do not support multiple queries 975 * and answers, the stream can get closed, and then the queries 976 * can get written on a new socket */ 977 struct waiting_tcp* w; 978 if(pend->query && pend->query->error_count == 0 && 979 pend->c->tcp_write_pkt == pend->query->pkt && 980 pend->c->tcp_write_pkt_len == pend->query->pkt_len) { 981 /* since the current query is not written, it can also 982 * move to a free buffer */ 983 if(verbosity >= VERB_CLIENT && pend->query->pkt_len > 12+2+2 && 984 LDNS_QDCOUNT(pend->query->pkt) > 0 && 985 dname_valid(pend->query->pkt+12, pend->query->pkt_len-12)) { 986 char buf[LDNS_MAX_DOMAINLEN+1]; 987 dname_str(pend->query->pkt+12, buf); 988 verbose(VERB_CLIENT, "reuse_move_writewait_away current %s %d bytes were written", 989 buf, (int)pend->c->tcp_write_byte_count); 990 } 991 pend->c->tcp_write_pkt = NULL; 992 pend->c->tcp_write_pkt_len = 0; 993 pend->c->tcp_write_and_read = 0; 994 pend->reuse.cp_more_read_again = 0; 995 pend->reuse.cp_more_write_again = 0; 996 pend->c->tcp_is_reading = 1; 997 w = pend->query; 998 pend->query = NULL; 999 /* increase error count, so that if the next socket fails too 1000 * the server selection is run again with this query failed 1001 * and it can select a different server (if possible), or 1002 * fail the query */ 1003 w->error_count ++; 1004 reuse_tree_by_id_delete(&pend->reuse, w); 1005 outnet_add_tcp_waiting(outnet, w); 1006 } 1007 while((w = reuse_write_wait_pop(&pend->reuse)) != NULL) { 1008 if(verbosity >= VERB_CLIENT && w->pkt_len > 12+2+2 && 1009 LDNS_QDCOUNT(w->pkt) > 0 && 1010 dname_valid(w->pkt+12, w->pkt_len-12)) { 1011 char buf[LDNS_MAX_DOMAINLEN+1]; 1012 dname_str(w->pkt+12, buf); 1013 verbose(VERB_CLIENT, "reuse_move_writewait_away item %s", buf); 1014 } 1015 reuse_tree_by_id_delete(&pend->reuse, w); 1016 outnet_add_tcp_waiting(outnet, w); 1017 } 1018 } 1019 1020 /** remove reused element from tree and lru list */ 1021 void 1022 reuse_tcp_remove_tree_list(struct outside_network* outnet, 1023 struct reuse_tcp* reuse) 1024 { 1025 verbose(VERB_CLIENT, "reuse_tcp_remove_tree_list"); 1026 if(reuse->node.key) { 1027 /* delete it from reuse tree */ 1028 if(!rbtree_delete(&outnet->tcp_reuse, reuse)) { 1029 /* should not be possible, it should be there */ 1030 char buf[256]; 1031 addr_to_str(&reuse->addr, reuse->addrlen, buf, 1032 sizeof(buf)); 1033 log_err("reuse tcp delete: node not present, internal error, %s ssl %d lru %d", buf, reuse->is_ssl, reuse->item_on_lru_list); 1034 } 1035 reuse->node.key = NULL; 1036 /* defend against loops on broken tree by zeroing the 1037 * rbnode structure */ 1038 memset(&reuse->node, 0, sizeof(reuse->node)); 1039 } 1040 /* delete from reuse list */ 1041 if(reuse->item_on_lru_list) { 1042 if(reuse->lru_prev) { 1043 /* assert that members of the lru list are waiting 1044 * and thus have a pending pointer to the struct */ 1045 log_assert(reuse->lru_prev->pending); 1046 reuse->lru_prev->lru_next = reuse->lru_next; 1047 log_assert(reuse->lru_prev->lru_next != reuse->lru_prev); 1048 } else { 1049 log_assert(!reuse->lru_next || reuse->lru_next->pending); 1050 outnet->tcp_reuse_first = reuse->lru_next; 1051 log_assert(!outnet->tcp_reuse_first || 1052 (outnet->tcp_reuse_first != 1053 outnet->tcp_reuse_first->lru_next && 1054 outnet->tcp_reuse_first != 1055 outnet->tcp_reuse_first->lru_prev)); 1056 } 1057 if(reuse->lru_next) { 1058 /* assert that members of the lru list are waiting 1059 * and thus have a pending pointer to the struct */ 1060 log_assert(reuse->lru_next->pending); 1061 reuse->lru_next->lru_prev = reuse->lru_prev; 1062 log_assert(reuse->lru_next->lru_prev != reuse->lru_next); 1063 } else { 1064 log_assert(!reuse->lru_prev || reuse->lru_prev->pending); 1065 outnet->tcp_reuse_last = reuse->lru_prev; 1066 log_assert(!outnet->tcp_reuse_last || 1067 (outnet->tcp_reuse_last != 1068 outnet->tcp_reuse_last->lru_next && 1069 outnet->tcp_reuse_last != 1070 outnet->tcp_reuse_last->lru_prev)); 1071 } 1072 log_assert((!outnet->tcp_reuse_first && !outnet->tcp_reuse_last) || 1073 (outnet->tcp_reuse_first && outnet->tcp_reuse_last)); 1074 reuse->item_on_lru_list = 0; 1075 reuse->lru_next = NULL; 1076 reuse->lru_prev = NULL; 1077 } 1078 reuse->pending = NULL; 1079 } 1080 1081 /** helper function that deletes an element from the tree of readwait 1082 * elements in tcp reuse structure */ 1083 static void reuse_del_readwait_elem(rbnode_type* node, void* ATTR_UNUSED(arg)) 1084 { 1085 struct waiting_tcp* w = (struct waiting_tcp*)node->key; 1086 waiting_tcp_delete(w); 1087 } 1088 1089 /** delete readwait waiting_tcp elements, deletes the elements in the list */ 1090 void reuse_del_readwait(rbtree_type* tree_by_id) 1091 { 1092 if(tree_by_id->root == NULL || 1093 tree_by_id->root == RBTREE_NULL) 1094 return; 1095 traverse_postorder(tree_by_id, &reuse_del_readwait_elem, NULL); 1096 rbtree_init(tree_by_id, reuse_id_cmp); 1097 } 1098 1099 /** decommission a tcp buffer, closes commpoint and frees waiting_tcp entry */ 1100 static void 1101 decommission_pending_tcp(struct outside_network* outnet, 1102 struct pending_tcp* pend) 1103 { 1104 verbose(VERB_CLIENT, "decommission_pending_tcp"); 1105 /* A certain code path can lead here twice for the same pending_tcp 1106 * creating a loop in the free pending_tcp list. */ 1107 if(outnet->tcp_free != pend) { 1108 pend->next_free = outnet->tcp_free; 1109 outnet->tcp_free = pend; 1110 } 1111 if(pend->reuse.node.key) { 1112 /* needs unlink from the reuse tree to get deleted */ 1113 reuse_tcp_remove_tree_list(outnet, &pend->reuse); 1114 } 1115 /* free SSL structure after remove from outnet tcp reuse tree, 1116 * because the c->ssl null or not is used for sorting in the tree */ 1117 if(pend->c->ssl) { 1118 #ifdef HAVE_SSL 1119 SSL_shutdown(pend->c->ssl); 1120 SSL_free(pend->c->ssl); 1121 pend->c->ssl = NULL; 1122 #endif 1123 } 1124 comm_point_close(pend->c); 1125 pend->reuse.cp_more_read_again = 0; 1126 pend->reuse.cp_more_write_again = 0; 1127 /* unlink the query and writewait list, it is part of the tree 1128 * nodes and is deleted */ 1129 pend->query = NULL; 1130 pend->reuse.write_wait_first = NULL; 1131 pend->reuse.write_wait_last = NULL; 1132 reuse_del_readwait(&pend->reuse.tree_by_id); 1133 } 1134 1135 /** perform failure callbacks for waiting queries in reuse read rbtree */ 1136 static void reuse_cb_readwait_for_failure(rbtree_type* tree_by_id, int err) 1137 { 1138 rbnode_type* node; 1139 if(tree_by_id->root == NULL || 1140 tree_by_id->root == RBTREE_NULL) 1141 return; 1142 node = rbtree_first(tree_by_id); 1143 while(node && node != RBTREE_NULL) { 1144 struct waiting_tcp* w = (struct waiting_tcp*)node->key; 1145 waiting_tcp_callback(w, NULL, err, NULL); 1146 node = rbtree_next(node); 1147 } 1148 } 1149 1150 /** mark the entry for being in the cb_and_decommission stage */ 1151 static void mark_for_cb_and_decommission(rbnode_type* node, 1152 void* ATTR_UNUSED(arg)) 1153 { 1154 struct waiting_tcp* w = (struct waiting_tcp*)node->key; 1155 /* Mark the waiting_tcp to signal later code (serviced_delete) that 1156 * this item is part of the backed up tree_by_id and will be deleted 1157 * later. */ 1158 w->in_cb_and_decommission = 1; 1159 /* Mark the serviced_query for deletion so that later code through 1160 * callbacks (iter_clear .. outnet_serviced_query_stop) won't 1161 * prematurely delete it. */ 1162 if(w->cb) 1163 ((struct serviced_query*)w->cb_arg)->to_be_deleted = 1; 1164 } 1165 1166 /** perform callbacks for failure and also decommission pending tcp. 1167 * the callbacks remove references in sq->pending to the waiting_tcp 1168 * members of the tree_by_id in the pending tcp. The pending_tcp is 1169 * removed before the callbacks, so that the callbacks do not modify 1170 * the pending_tcp due to its reference in the outside_network reuse tree */ 1171 static void reuse_cb_and_decommission(struct outside_network* outnet, 1172 struct pending_tcp* pend, int error) 1173 { 1174 rbtree_type store; 1175 store = pend->reuse.tree_by_id; 1176 pend->query = NULL; 1177 rbtree_init(&pend->reuse.tree_by_id, reuse_id_cmp); 1178 pend->reuse.write_wait_first = NULL; 1179 pend->reuse.write_wait_last = NULL; 1180 decommission_pending_tcp(outnet, pend); 1181 if(store.root != NULL && store.root != RBTREE_NULL) { 1182 traverse_postorder(&store, &mark_for_cb_and_decommission, NULL); 1183 } 1184 reuse_cb_readwait_for_failure(&store, error); 1185 reuse_del_readwait(&store); 1186 } 1187 1188 /** set timeout on tcp fd and setup read event to catch incoming dns msgs */ 1189 static void 1190 reuse_tcp_setup_timeout(struct pending_tcp* pend_tcp, int tcp_reuse_timeout) 1191 { 1192 log_reuse_tcp(VERB_CLIENT, "reuse_tcp_setup_timeout", &pend_tcp->reuse); 1193 comm_point_start_listening(pend_tcp->c, -1, tcp_reuse_timeout); 1194 } 1195 1196 /** set timeout on tcp fd and setup read event to catch incoming dns msgs */ 1197 static void 1198 reuse_tcp_setup_read_and_timeout(struct pending_tcp* pend_tcp, int tcp_reuse_timeout) 1199 { 1200 log_reuse_tcp(VERB_CLIENT, "reuse_tcp_setup_readtimeout", &pend_tcp->reuse); 1201 sldns_buffer_clear(pend_tcp->c->buffer); 1202 pend_tcp->c->tcp_is_reading = 1; 1203 pend_tcp->c->tcp_byte_count = 0; 1204 comm_point_stop_listening(pend_tcp->c); 1205 comm_point_start_listening(pend_tcp->c, -1, tcp_reuse_timeout); 1206 } 1207 1208 int 1209 outnet_tcp_cb(struct comm_point* c, void* arg, int error, 1210 struct comm_reply *reply_info) 1211 { 1212 struct pending_tcp* pend = (struct pending_tcp*)arg; 1213 struct outside_network* outnet = pend->reuse.outnet; 1214 struct waiting_tcp* w = NULL; 1215 log_assert(pend->reuse.item_on_lru_list && pend->reuse.node.key); 1216 verbose(VERB_ALGO, "outnettcp cb"); 1217 if(error == NETEVENT_TIMEOUT) { 1218 if(pend->c->tcp_write_and_read) { 1219 verbose(VERB_QUERY, "outnettcp got tcp timeout " 1220 "for read, ignored because write underway"); 1221 /* if we are writing, ignore readtimer, wait for write timer 1222 * or write is done */ 1223 return 0; 1224 } else { 1225 verbose(VERB_QUERY, "outnettcp got tcp timeout %s", 1226 (pend->reuse.tree_by_id.count?"for reading pkt": 1227 "for keepalive for reuse")); 1228 } 1229 /* must be timeout for reading or keepalive reuse, 1230 * close it. */ 1231 reuse_tcp_remove_tree_list(outnet, &pend->reuse); 1232 } else if(error == NETEVENT_PKT_WRITTEN) { 1233 /* the packet we want to write has been written. */ 1234 verbose(VERB_ALGO, "outnet tcp pkt was written event"); 1235 log_assert(c == pend->c); 1236 log_assert(pend->query->pkt == pend->c->tcp_write_pkt); 1237 log_assert(pend->query->pkt_len == pend->c->tcp_write_pkt_len); 1238 pend->c->tcp_write_pkt = NULL; 1239 pend->c->tcp_write_pkt_len = 0; 1240 /* the pend.query is already in tree_by_id */ 1241 log_assert(pend->query->id_node.key); 1242 pend->query = NULL; 1243 /* setup to write next packet or setup read timeout */ 1244 if(pend->reuse.write_wait_first) { 1245 verbose(VERB_ALGO, "outnet tcp setup next pkt"); 1246 /* we can write it straight away perhaps, set flag 1247 * because this callback called after a tcp write 1248 * succeeded and likely more buffer space is available 1249 * and we can write some more. */ 1250 pend->reuse.cp_more_write_again = 1; 1251 pend->query = reuse_write_wait_pop(&pend->reuse); 1252 comm_point_stop_listening(pend->c); 1253 outnet_tcp_take_query_setup(pend->c->fd, pend, 1254 pend->query); 1255 } else { 1256 verbose(VERB_ALGO, "outnet tcp writes done, wait"); 1257 pend->c->tcp_write_and_read = 0; 1258 pend->reuse.cp_more_read_again = 0; 1259 pend->reuse.cp_more_write_again = 0; 1260 pend->c->tcp_is_reading = 1; 1261 comm_point_stop_listening(pend->c); 1262 reuse_tcp_setup_timeout(pend, outnet->tcp_reuse_timeout); 1263 } 1264 return 0; 1265 } else if(error != NETEVENT_NOERROR) { 1266 verbose(VERB_QUERY, "outnettcp got tcp error %d", error); 1267 reuse_move_writewait_away(outnet, pend); 1268 /* pass error below and exit */ 1269 } else { 1270 /* check ID */ 1271 if(sldns_buffer_limit(c->buffer) < sizeof(uint16_t)) { 1272 log_addr(VERB_QUERY, 1273 "outnettcp: bad ID in reply, too short, from:", 1274 &pend->reuse.addr, pend->reuse.addrlen); 1275 error = NETEVENT_CLOSED; 1276 } else { 1277 uint16_t id = LDNS_ID_WIRE(sldns_buffer_begin( 1278 c->buffer)); 1279 /* find the query the reply is for */ 1280 w = reuse_tcp_by_id_find(&pend->reuse, id); 1281 /* Make sure that the reply we got is at least for a 1282 * sent query with the same ID; the waiting_tcp that 1283 * gets a reply is assumed to not be waiting to be 1284 * sent. */ 1285 if(w && (w->on_tcp_waiting_list || w->write_wait_queued)) 1286 w = NULL; 1287 } 1288 } 1289 if(error == NETEVENT_NOERROR && !w) { 1290 /* no struct waiting found in tree, no reply to call */ 1291 log_addr(VERB_QUERY, "outnettcp: bad ID in reply, from:", 1292 &pend->reuse.addr, pend->reuse.addrlen); 1293 error = NETEVENT_CLOSED; 1294 } 1295 if(error == NETEVENT_NOERROR) { 1296 /* add to reuse tree so it can be reused, if not a failure. 1297 * This is possible if the state machine wants to make a tcp 1298 * query again to the same destination. */ 1299 if(outnet->tcp_reuse.count < outnet->tcp_reuse_max) { 1300 (void)reuse_tcp_insert(outnet, pend); 1301 } 1302 } 1303 if(w) { 1304 log_assert(!w->on_tcp_waiting_list); 1305 log_assert(!w->write_wait_queued); 1306 reuse_tree_by_id_delete(&pend->reuse, w); 1307 verbose(VERB_CLIENT, "outnet tcp callback query err %d buflen %d", 1308 error, (int)sldns_buffer_limit(c->buffer)); 1309 waiting_tcp_callback(w, c, error, reply_info); 1310 waiting_tcp_delete(w); 1311 } 1312 verbose(VERB_CLIENT, "outnet_tcp_cb reuse after cb"); 1313 if(error == NETEVENT_NOERROR && pend->reuse.node.key) { 1314 verbose(VERB_CLIENT, "outnet_tcp_cb reuse after cb: keep it"); 1315 /* it is in the reuse_tcp tree, with other queries, or 1316 * on the empty list. do not decommission it */ 1317 /* if there are more outstanding queries, we could try to 1318 * read again, to see if it is on the input, 1319 * because this callback called after a successful read 1320 * and there could be more bytes to read on the input */ 1321 if(pend->reuse.tree_by_id.count != 0) 1322 pend->reuse.cp_more_read_again = 1; 1323 reuse_tcp_setup_read_and_timeout(pend, outnet->tcp_reuse_timeout); 1324 return 0; 1325 } 1326 verbose(VERB_CLIENT, "outnet_tcp_cb reuse after cb: decommission it"); 1327 /* no queries on it, no space to keep it. or timeout or closed due 1328 * to error. Close it */ 1329 reuse_cb_and_decommission(outnet, pend, (error==NETEVENT_TIMEOUT? 1330 NETEVENT_TIMEOUT:NETEVENT_CLOSED)); 1331 use_free_buffer(outnet); 1332 return 0; 1333 } 1334 1335 /** lower use count on pc, see if it can be closed */ 1336 static void 1337 portcomm_loweruse(struct outside_network* outnet, struct port_comm* pc) 1338 { 1339 struct port_if* pif; 1340 pc->num_outstanding--; 1341 if(pc->num_outstanding > 0) { 1342 return; 1343 } 1344 /* close it and replace in unused list */ 1345 verbose(VERB_ALGO, "close of port %d", pc->number); 1346 comm_point_close(pc->cp); 1347 pif = pc->pif; 1348 log_assert(pif->inuse > 0); 1349 #ifndef DISABLE_EXPLICIT_PORT_RANDOMISATION 1350 pif->avail_ports[pif->avail_total - pif->inuse] = pc->number; 1351 #endif 1352 pif->inuse--; 1353 pif->out[pc->index] = pif->out[pif->inuse]; 1354 pif->out[pc->index]->index = pc->index; 1355 pc->next = outnet->unused_fds; 1356 outnet->unused_fds = pc; 1357 } 1358 1359 /** try to send waiting UDP queries */ 1360 static void 1361 outnet_send_wait_udp(struct outside_network* outnet) 1362 { 1363 struct pending* pend; 1364 /* process waiting queries */ 1365 while(outnet->udp_wait_first && outnet->unused_fds 1366 && !outnet->want_to_quit) { 1367 pend = outnet->udp_wait_first; 1368 outnet->udp_wait_first = pend->next_waiting; 1369 if(!pend->next_waiting) outnet->udp_wait_last = NULL; 1370 sldns_buffer_clear(outnet->udp_buff); 1371 sldns_buffer_write(outnet->udp_buff, pend->pkt, pend->pkt_len); 1372 sldns_buffer_flip(outnet->udp_buff); 1373 free(pend->pkt); /* freeing now makes get_mem correct */ 1374 pend->pkt = NULL; 1375 pend->pkt_len = 0; 1376 log_assert(!pend->sq->busy); 1377 pend->sq->busy = 1; 1378 if(!randomize_and_send_udp(pend, outnet->udp_buff, 1379 pend->timeout)) { 1380 /* callback error on pending */ 1381 if(pend->cb) { 1382 fptr_ok(fptr_whitelist_pending_udp(pend->cb)); 1383 (void)(*pend->cb)(outnet->unused_fds->cp, pend->cb_arg, 1384 NETEVENT_CLOSED, NULL); 1385 } 1386 pending_delete(outnet, pend); 1387 } else { 1388 pend->sq->busy = 0; 1389 } 1390 } 1391 } 1392 1393 int 1394 outnet_udp_cb(struct comm_point* c, void* arg, int error, 1395 struct comm_reply *reply_info) 1396 { 1397 struct outside_network* outnet = (struct outside_network*)arg; 1398 struct pending key; 1399 struct pending* p; 1400 verbose(VERB_ALGO, "answer cb"); 1401 1402 if(error != NETEVENT_NOERROR) { 1403 verbose(VERB_QUERY, "outnetudp got udp error %d", error); 1404 return 0; 1405 } 1406 if(sldns_buffer_limit(c->buffer) < LDNS_HEADER_SIZE) { 1407 verbose(VERB_QUERY, "outnetudp udp too short"); 1408 return 0; 1409 } 1410 log_assert(reply_info); 1411 1412 /* setup lookup key */ 1413 key.id = (unsigned)LDNS_ID_WIRE(sldns_buffer_begin(c->buffer)); 1414 memcpy(&key.addr, &reply_info->addr, reply_info->addrlen); 1415 key.addrlen = reply_info->addrlen; 1416 verbose(VERB_ALGO, "Incoming reply id = %4.4x", key.id); 1417 log_addr(VERB_ALGO, "Incoming reply addr =", 1418 &reply_info->addr, reply_info->addrlen); 1419 1420 /* find it, see if this thing is a valid query response */ 1421 verbose(VERB_ALGO, "lookup size is %d entries", (int)outnet->pending->count); 1422 p = (struct pending*)rbtree_search(outnet->pending, &key); 1423 if(!p) { 1424 verbose(VERB_QUERY, "received unwanted or unsolicited udp reply dropped."); 1425 log_buf(VERB_ALGO, "dropped message", c->buffer); 1426 outnet->unwanted_replies++; 1427 if(outnet->unwanted_threshold && ++outnet->unwanted_total 1428 >= outnet->unwanted_threshold) { 1429 log_warn("unwanted reply total reached threshold (%u)" 1430 " you may be under attack." 1431 " defensive action: clearing the cache", 1432 (unsigned)outnet->unwanted_threshold); 1433 fptr_ok(fptr_whitelist_alloc_cleanup( 1434 outnet->unwanted_action)); 1435 (*outnet->unwanted_action)(outnet->unwanted_param); 1436 outnet->unwanted_total = 0; 1437 } 1438 return 0; 1439 } 1440 1441 verbose(VERB_ALGO, "received udp reply."); 1442 log_buf(VERB_ALGO, "udp message", c->buffer); 1443 if(p->pc->cp != c) { 1444 verbose(VERB_QUERY, "received reply id,addr on wrong port. " 1445 "dropped."); 1446 outnet->unwanted_replies++; 1447 if(outnet->unwanted_threshold && ++outnet->unwanted_total 1448 >= outnet->unwanted_threshold) { 1449 log_warn("unwanted reply total reached threshold (%u)" 1450 " you may be under attack." 1451 " defensive action: clearing the cache", 1452 (unsigned)outnet->unwanted_threshold); 1453 fptr_ok(fptr_whitelist_alloc_cleanup( 1454 outnet->unwanted_action)); 1455 (*outnet->unwanted_action)(outnet->unwanted_param); 1456 outnet->unwanted_total = 0; 1457 } 1458 return 0; 1459 } 1460 comm_timer_disable(p->timer); 1461 verbose(VERB_ALGO, "outnet handle udp reply"); 1462 /* delete from tree first in case callback creates a retry */ 1463 (void)rbtree_delete(outnet->pending, p->node.key); 1464 if(p->cb) { 1465 fptr_ok(fptr_whitelist_pending_udp(p->cb)); 1466 (void)(*p->cb)(p->pc->cp, p->cb_arg, NETEVENT_NOERROR, reply_info); 1467 } 1468 portcomm_loweruse(outnet, p->pc); 1469 pending_delete(NULL, p); 1470 outnet_send_wait_udp(outnet); 1471 return 0; 1472 } 1473 1474 /** calculate number of ip4 and ip6 interfaces*/ 1475 static void 1476 calc_num46(char** ifs, int num_ifs, int do_ip4, int do_ip6, 1477 int* num_ip4, int* num_ip6) 1478 { 1479 int i; 1480 *num_ip4 = 0; 1481 *num_ip6 = 0; 1482 if(num_ifs <= 0) { 1483 if(do_ip4) 1484 *num_ip4 = 1; 1485 if(do_ip6) 1486 *num_ip6 = 1; 1487 return; 1488 } 1489 for(i=0; i<num_ifs; i++) 1490 { 1491 if(str_is_ip6(ifs[i])) { 1492 if(do_ip6) 1493 (*num_ip6)++; 1494 } else { 1495 if(do_ip4) 1496 (*num_ip4)++; 1497 } 1498 } 1499 } 1500 1501 void 1502 pending_udp_timer_delay_cb(void* arg) 1503 { 1504 struct pending* p = (struct pending*)arg; 1505 struct outside_network* outnet = p->outnet; 1506 verbose(VERB_ALGO, "timeout udp with delay"); 1507 portcomm_loweruse(outnet, p->pc); 1508 pending_delete(outnet, p); 1509 outnet_send_wait_udp(outnet); 1510 } 1511 1512 void 1513 pending_udp_timer_cb(void *arg) 1514 { 1515 struct pending* p = (struct pending*)arg; 1516 struct outside_network* outnet = p->outnet; 1517 /* it timed out */ 1518 verbose(VERB_ALGO, "timeout udp"); 1519 if(p->cb) { 1520 fptr_ok(fptr_whitelist_pending_udp(p->cb)); 1521 (void)(*p->cb)(p->pc->cp, p->cb_arg, NETEVENT_TIMEOUT, NULL); 1522 } 1523 /* if delayclose, keep port open for a longer time. 1524 * But if the udpwaitlist exists, then we are struggling to 1525 * keep up with demand for sockets, so do not wait, but service 1526 * the customer (customer service more important than portICMPs) */ 1527 if(outnet->delayclose && !outnet->udp_wait_first) { 1528 p->cb = NULL; 1529 p->timer->callback = &pending_udp_timer_delay_cb; 1530 comm_timer_set(p->timer, &outnet->delay_tv); 1531 return; 1532 } 1533 portcomm_loweruse(outnet, p->pc); 1534 pending_delete(outnet, p); 1535 outnet_send_wait_udp(outnet); 1536 } 1537 1538 /** create pending_tcp buffers */ 1539 static int 1540 create_pending_tcp(struct outside_network* outnet, size_t bufsize) 1541 { 1542 size_t i; 1543 if(outnet->num_tcp == 0) 1544 return 1; /* no tcp needed, nothing to do */ 1545 if(!(outnet->tcp_conns = (struct pending_tcp **)calloc( 1546 outnet->num_tcp, sizeof(struct pending_tcp*)))) 1547 return 0; 1548 for(i=0; i<outnet->num_tcp; i++) { 1549 if(!(outnet->tcp_conns[i] = (struct pending_tcp*)calloc(1, 1550 sizeof(struct pending_tcp)))) 1551 return 0; 1552 outnet->tcp_conns[i]->next_free = outnet->tcp_free; 1553 outnet->tcp_free = outnet->tcp_conns[i]; 1554 outnet->tcp_conns[i]->c = comm_point_create_tcp_out( 1555 outnet->base, bufsize, outnet_tcp_cb, 1556 outnet->tcp_conns[i]); 1557 if(!outnet->tcp_conns[i]->c) 1558 return 0; 1559 } 1560 return 1; 1561 } 1562 1563 /** setup an outgoing interface, ready address */ 1564 static int setup_if(struct port_if* pif, const char* addrstr, 1565 int* avail, int numavail, size_t numfd) 1566 { 1567 #ifndef DISABLE_EXPLICIT_PORT_RANDOMISATION 1568 pif->avail_total = numavail; 1569 pif->avail_ports = (int*)memdup(avail, (size_t)numavail*sizeof(int)); 1570 if(!pif->avail_ports) 1571 return 0; 1572 #endif 1573 if(!ipstrtoaddr(addrstr, UNBOUND_DNS_PORT, &pif->addr, &pif->addrlen) && 1574 !netblockstrtoaddr(addrstr, UNBOUND_DNS_PORT, 1575 &pif->addr, &pif->addrlen, &pif->pfxlen)) 1576 return 0; 1577 pif->maxout = (int)numfd; 1578 pif->inuse = 0; 1579 pif->out = (struct port_comm**)calloc(numfd, 1580 sizeof(struct port_comm*)); 1581 if(!pif->out) 1582 return 0; 1583 return 1; 1584 } 1585 1586 struct outside_network* 1587 outside_network_create(struct comm_base *base, size_t bufsize, 1588 size_t num_ports, char** ifs, int num_ifs, int do_ip4, 1589 int do_ip6, size_t num_tcp, int dscp, struct infra_cache* infra, 1590 struct ub_randstate* rnd, int use_caps_for_id, int* availports, 1591 int numavailports, size_t unwanted_threshold, int tcp_mss, 1592 void (*unwanted_action)(void*), void* unwanted_param, int do_udp, 1593 void* sslctx, int delayclose, int tls_use_sni, struct dt_env* dtenv, 1594 int udp_connect, int max_reuse_tcp_queries, int tcp_reuse_timeout, 1595 int tcp_auth_query_timeout) 1596 { 1597 struct outside_network* outnet = (struct outside_network*) 1598 calloc(1, sizeof(struct outside_network)); 1599 size_t k; 1600 if(!outnet) { 1601 log_err("malloc failed"); 1602 return NULL; 1603 } 1604 comm_base_timept(base, &outnet->now_secs, &outnet->now_tv); 1605 outnet->base = base; 1606 outnet->num_tcp = num_tcp; 1607 outnet->max_reuse_tcp_queries = max_reuse_tcp_queries; 1608 outnet->tcp_reuse_timeout= tcp_reuse_timeout; 1609 outnet->tcp_auth_query_timeout = tcp_auth_query_timeout; 1610 outnet->num_tcp_outgoing = 0; 1611 outnet->infra = infra; 1612 outnet->rnd = rnd; 1613 outnet->sslctx = sslctx; 1614 outnet->tls_use_sni = tls_use_sni; 1615 #ifdef USE_DNSTAP 1616 outnet->dtenv = dtenv; 1617 #else 1618 (void)dtenv; 1619 #endif 1620 outnet->svcd_overhead = 0; 1621 outnet->want_to_quit = 0; 1622 outnet->unwanted_threshold = unwanted_threshold; 1623 outnet->unwanted_action = unwanted_action; 1624 outnet->unwanted_param = unwanted_param; 1625 outnet->use_caps_for_id = use_caps_for_id; 1626 outnet->do_udp = do_udp; 1627 outnet->tcp_mss = tcp_mss; 1628 outnet->ip_dscp = dscp; 1629 #ifndef S_SPLINT_S 1630 if(delayclose) { 1631 outnet->delayclose = 1; 1632 outnet->delay_tv.tv_sec = delayclose/1000; 1633 outnet->delay_tv.tv_usec = (delayclose%1000)*1000; 1634 } 1635 #endif 1636 if(udp_connect) { 1637 outnet->udp_connect = 1; 1638 } 1639 if(numavailports == 0 || num_ports == 0) { 1640 log_err("no outgoing ports available"); 1641 outside_network_delete(outnet); 1642 return NULL; 1643 } 1644 #ifndef INET6 1645 do_ip6 = 0; 1646 #endif 1647 calc_num46(ifs, num_ifs, do_ip4, do_ip6, 1648 &outnet->num_ip4, &outnet->num_ip6); 1649 if(outnet->num_ip4 != 0) { 1650 if(!(outnet->ip4_ifs = (struct port_if*)calloc( 1651 (size_t)outnet->num_ip4, sizeof(struct port_if)))) { 1652 log_err("malloc failed"); 1653 outside_network_delete(outnet); 1654 return NULL; 1655 } 1656 } 1657 if(outnet->num_ip6 != 0) { 1658 if(!(outnet->ip6_ifs = (struct port_if*)calloc( 1659 (size_t)outnet->num_ip6, sizeof(struct port_if)))) { 1660 log_err("malloc failed"); 1661 outside_network_delete(outnet); 1662 return NULL; 1663 } 1664 } 1665 if( !(outnet->udp_buff = sldns_buffer_new(bufsize)) || 1666 !(outnet->pending = rbtree_create(pending_cmp)) || 1667 !(outnet->serviced = rbtree_create(serviced_cmp)) || 1668 !create_pending_tcp(outnet, bufsize)) { 1669 log_err("malloc failed"); 1670 outside_network_delete(outnet); 1671 return NULL; 1672 } 1673 rbtree_init(&outnet->tcp_reuse, reuse_cmp); 1674 outnet->tcp_reuse_max = num_tcp; 1675 1676 /* allocate commpoints */ 1677 for(k=0; k<num_ports; k++) { 1678 struct port_comm* pc; 1679 pc = (struct port_comm*)calloc(1, sizeof(*pc)); 1680 if(!pc) { 1681 log_err("malloc failed"); 1682 outside_network_delete(outnet); 1683 return NULL; 1684 } 1685 pc->cp = comm_point_create_udp(outnet->base, -1, 1686 outnet->udp_buff, outnet_udp_cb, outnet, NULL); 1687 if(!pc->cp) { 1688 log_err("malloc failed"); 1689 free(pc); 1690 outside_network_delete(outnet); 1691 return NULL; 1692 } 1693 pc->next = outnet->unused_fds; 1694 outnet->unused_fds = pc; 1695 } 1696 1697 /* allocate interfaces */ 1698 if(num_ifs == 0) { 1699 if(do_ip4 && !setup_if(&outnet->ip4_ifs[0], "0.0.0.0", 1700 availports, numavailports, num_ports)) { 1701 log_err("malloc failed"); 1702 outside_network_delete(outnet); 1703 return NULL; 1704 } 1705 if(do_ip6 && !setup_if(&outnet->ip6_ifs[0], "::", 1706 availports, numavailports, num_ports)) { 1707 log_err("malloc failed"); 1708 outside_network_delete(outnet); 1709 return NULL; 1710 } 1711 } else { 1712 size_t done_4 = 0, done_6 = 0; 1713 int i; 1714 for(i=0; i<num_ifs; i++) { 1715 if(str_is_ip6(ifs[i]) && do_ip6) { 1716 if(!setup_if(&outnet->ip6_ifs[done_6], ifs[i], 1717 availports, numavailports, num_ports)){ 1718 log_err("malloc failed"); 1719 outside_network_delete(outnet); 1720 return NULL; 1721 } 1722 done_6++; 1723 } 1724 if(!str_is_ip6(ifs[i]) && do_ip4) { 1725 if(!setup_if(&outnet->ip4_ifs[done_4], ifs[i], 1726 availports, numavailports, num_ports)){ 1727 log_err("malloc failed"); 1728 outside_network_delete(outnet); 1729 return NULL; 1730 } 1731 done_4++; 1732 } 1733 } 1734 } 1735 return outnet; 1736 } 1737 1738 /** helper pending delete */ 1739 static void 1740 pending_node_del(rbnode_type* node, void* arg) 1741 { 1742 struct pending* pend = (struct pending*)node; 1743 struct outside_network* outnet = (struct outside_network*)arg; 1744 pending_delete(outnet, pend); 1745 } 1746 1747 /** helper serviced delete */ 1748 static void 1749 serviced_node_del(rbnode_type* node, void* ATTR_UNUSED(arg)) 1750 { 1751 struct serviced_query* sq = (struct serviced_query*)node; 1752 alloc_reg_release(sq->alloc, sq->region); 1753 if(sq->timer) 1754 comm_timer_delete(sq->timer); 1755 free(sq); 1756 } 1757 1758 void 1759 outside_network_quit_prepare(struct outside_network* outnet) 1760 { 1761 if(!outnet) 1762 return; 1763 /* prevent queued items from being sent */ 1764 outnet->want_to_quit = 1; 1765 } 1766 1767 void 1768 outside_network_delete(struct outside_network* outnet) 1769 { 1770 if(!outnet) 1771 return; 1772 outnet->want_to_quit = 1; 1773 /* check every element, since we can be called on malloc error */ 1774 if(outnet->pending) { 1775 /* free pending elements, but do no unlink from tree. */ 1776 traverse_postorder(outnet->pending, pending_node_del, NULL); 1777 free(outnet->pending); 1778 } 1779 if(outnet->serviced) { 1780 traverse_postorder(outnet->serviced, serviced_node_del, NULL); 1781 free(outnet->serviced); 1782 } 1783 if(outnet->udp_buff) 1784 sldns_buffer_free(outnet->udp_buff); 1785 if(outnet->unused_fds) { 1786 struct port_comm* p = outnet->unused_fds, *np; 1787 while(p) { 1788 np = p->next; 1789 comm_point_delete(p->cp); 1790 free(p); 1791 p = np; 1792 } 1793 outnet->unused_fds = NULL; 1794 } 1795 if(outnet->ip4_ifs) { 1796 int i, k; 1797 for(i=0; i<outnet->num_ip4; i++) { 1798 for(k=0; k<outnet->ip4_ifs[i].inuse; k++) { 1799 struct port_comm* pc = outnet->ip4_ifs[i]. 1800 out[k]; 1801 comm_point_delete(pc->cp); 1802 free(pc); 1803 } 1804 #ifndef DISABLE_EXPLICIT_PORT_RANDOMISATION 1805 free(outnet->ip4_ifs[i].avail_ports); 1806 #endif 1807 free(outnet->ip4_ifs[i].out); 1808 } 1809 free(outnet->ip4_ifs); 1810 } 1811 if(outnet->ip6_ifs) { 1812 int i, k; 1813 for(i=0; i<outnet->num_ip6; i++) { 1814 for(k=0; k<outnet->ip6_ifs[i].inuse; k++) { 1815 struct port_comm* pc = outnet->ip6_ifs[i]. 1816 out[k]; 1817 comm_point_delete(pc->cp); 1818 free(pc); 1819 } 1820 #ifndef DISABLE_EXPLICIT_PORT_RANDOMISATION 1821 free(outnet->ip6_ifs[i].avail_ports); 1822 #endif 1823 free(outnet->ip6_ifs[i].out); 1824 } 1825 free(outnet->ip6_ifs); 1826 } 1827 if(outnet->tcp_conns) { 1828 size_t i; 1829 for(i=0; i<outnet->num_tcp; i++) 1830 if(outnet->tcp_conns[i]) { 1831 struct pending_tcp* pend; 1832 pend = outnet->tcp_conns[i]; 1833 if(pend->reuse.item_on_lru_list) { 1834 /* delete waiting_tcp elements that 1835 * the tcp conn is working on */ 1836 decommission_pending_tcp(outnet, pend); 1837 } 1838 comm_point_delete(outnet->tcp_conns[i]->c); 1839 free(outnet->tcp_conns[i]); 1840 outnet->tcp_conns[i] = NULL; 1841 } 1842 free(outnet->tcp_conns); 1843 outnet->tcp_conns = NULL; 1844 } 1845 if(outnet->tcp_wait_first) { 1846 struct waiting_tcp* p = outnet->tcp_wait_first, *np; 1847 while(p) { 1848 np = p->next_waiting; 1849 waiting_tcp_delete(p); 1850 p = np; 1851 } 1852 } 1853 /* was allocated in struct pending that was deleted above */ 1854 rbtree_init(&outnet->tcp_reuse, reuse_cmp); 1855 outnet->tcp_reuse_first = NULL; 1856 outnet->tcp_reuse_last = NULL; 1857 if(outnet->udp_wait_first) { 1858 struct pending* p = outnet->udp_wait_first, *np; 1859 while(p) { 1860 np = p->next_waiting; 1861 pending_delete(NULL, p); 1862 p = np; 1863 } 1864 } 1865 free(outnet); 1866 } 1867 1868 void 1869 pending_delete(struct outside_network* outnet, struct pending* p) 1870 { 1871 if(!p) 1872 return; 1873 if(outnet && outnet->udp_wait_first && 1874 (p->next_waiting || p == outnet->udp_wait_last) ) { 1875 /* delete from waiting list, if it is in the waiting list */ 1876 struct pending* prev = NULL, *x = outnet->udp_wait_first; 1877 while(x && x != p) { 1878 prev = x; 1879 x = x->next_waiting; 1880 } 1881 if(x) { 1882 log_assert(x == p); 1883 if(prev) 1884 prev->next_waiting = p->next_waiting; 1885 else outnet->udp_wait_first = p->next_waiting; 1886 if(outnet->udp_wait_last == p) 1887 outnet->udp_wait_last = prev; 1888 } 1889 } 1890 if(outnet) { 1891 (void)rbtree_delete(outnet->pending, p->node.key); 1892 } 1893 if(p->timer) 1894 comm_timer_delete(p->timer); 1895 free(p->pkt); 1896 free(p); 1897 } 1898 1899 static void 1900 sai6_putrandom(struct sockaddr_in6 *sa, int pfxlen, struct ub_randstate *rnd) 1901 { 1902 int i, last; 1903 if(!(pfxlen > 0 && pfxlen < 128)) 1904 return; 1905 for(i = 0; i < (128 - pfxlen) / 8; i++) { 1906 sa->sin6_addr.s6_addr[15-i] = (uint8_t)ub_random_max(rnd, 256); 1907 } 1908 last = pfxlen & 7; 1909 if(last != 0) { 1910 sa->sin6_addr.s6_addr[15-i] |= 1911 ((0xFF >> last) & ub_random_max(rnd, 256)); 1912 } 1913 } 1914 1915 /** 1916 * Try to open a UDP socket for outgoing communication. 1917 * Sets sockets options as needed. 1918 * @param addr: socket address. 1919 * @param addrlen: length of address. 1920 * @param pfxlen: length of network prefix (for address randomisation). 1921 * @param port: port override for addr. 1922 * @param inuse: if -1 is returned, this bool means the port was in use. 1923 * @param rnd: random state (for address randomisation). 1924 * @param dscp: DSCP to use. 1925 * @return fd or -1 1926 */ 1927 static int 1928 udp_sockport(struct sockaddr_storage* addr, socklen_t addrlen, int pfxlen, 1929 int port, int* inuse, struct ub_randstate* rnd, int dscp) 1930 { 1931 int fd, noproto; 1932 if(addr_is_ip6(addr, addrlen)) { 1933 int freebind = 0; 1934 struct sockaddr_in6 sa = *(struct sockaddr_in6*)addr; 1935 sa.sin6_port = (in_port_t)htons((uint16_t)port); 1936 sa.sin6_flowinfo = 0; 1937 sa.sin6_scope_id = 0; 1938 if(pfxlen != 0) { 1939 freebind = 1; 1940 sai6_putrandom(&sa, pfxlen, rnd); 1941 } 1942 fd = create_udp_sock(AF_INET6, SOCK_DGRAM, 1943 (struct sockaddr*)&sa, addrlen, 1, inuse, &noproto, 1944 0, 0, 0, NULL, 0, freebind, 0, dscp); 1945 } else { 1946 struct sockaddr_in* sa = (struct sockaddr_in*)addr; 1947 sa->sin_port = (in_port_t)htons((uint16_t)port); 1948 fd = create_udp_sock(AF_INET, SOCK_DGRAM, 1949 (struct sockaddr*)addr, addrlen, 1, inuse, &noproto, 1950 0, 0, 0, NULL, 0, 0, 0, dscp); 1951 } 1952 return fd; 1953 } 1954 1955 /** Select random ID */ 1956 static int 1957 select_id(struct outside_network* outnet, struct pending* pend, 1958 sldns_buffer* packet) 1959 { 1960 int id_tries = 0; 1961 pend->id = GET_RANDOM_ID(outnet->rnd); 1962 LDNS_ID_SET(sldns_buffer_begin(packet), pend->id); 1963 1964 /* insert in tree */ 1965 pend->node.key = pend; 1966 while(!rbtree_insert(outnet->pending, &pend->node)) { 1967 /* change ID to avoid collision */ 1968 pend->id = GET_RANDOM_ID(outnet->rnd); 1969 LDNS_ID_SET(sldns_buffer_begin(packet), pend->id); 1970 id_tries++; 1971 if(id_tries == MAX_ID_RETRY) { 1972 pend->id=99999; /* non existent ID */ 1973 log_err("failed to generate unique ID, drop msg"); 1974 return 0; 1975 } 1976 } 1977 verbose(VERB_ALGO, "inserted new pending reply id=%4.4x", pend->id); 1978 return 1; 1979 } 1980 1981 /** return true is UDP connect error needs to be logged */ 1982 static int udp_connect_needs_log(int err) 1983 { 1984 switch(err) { 1985 case ECONNREFUSED: 1986 # ifdef ENETUNREACH 1987 case ENETUNREACH: 1988 # endif 1989 # ifdef EHOSTDOWN 1990 case EHOSTDOWN: 1991 # endif 1992 # ifdef EHOSTUNREACH 1993 case EHOSTUNREACH: 1994 # endif 1995 # ifdef ENETDOWN 1996 case ENETDOWN: 1997 # endif 1998 case EPERM: 1999 case EACCES: 2000 if(verbosity >= VERB_ALGO) 2001 return 1; 2002 return 0; 2003 default: 2004 break; 2005 } 2006 return 1; 2007 } 2008 2009 2010 /** Select random interface and port */ 2011 static int 2012 select_ifport(struct outside_network* outnet, struct pending* pend, 2013 int num_if, struct port_if* ifs) 2014 { 2015 int my_if, my_port, fd, portno, inuse, tries=0; 2016 struct port_if* pif; 2017 /* randomly select interface and port */ 2018 if(num_if == 0) { 2019 verbose(VERB_QUERY, "Need to send query but have no " 2020 "outgoing interfaces of that family"); 2021 return 0; 2022 } 2023 log_assert(outnet->unused_fds); 2024 tries = 0; 2025 while(1) { 2026 my_if = ub_random_max(outnet->rnd, num_if); 2027 pif = &ifs[my_if]; 2028 #ifndef DISABLE_EXPLICIT_PORT_RANDOMISATION 2029 if(outnet->udp_connect) { 2030 /* if we connect() we cannot reuse fds for a port */ 2031 if(pif->inuse >= pif->avail_total) { 2032 tries++; 2033 if(tries < MAX_PORT_RETRY) 2034 continue; 2035 log_err("failed to find an open port, drop msg"); 2036 return 0; 2037 } 2038 my_port = pif->inuse + ub_random_max(outnet->rnd, 2039 pif->avail_total - pif->inuse); 2040 } else { 2041 my_port = ub_random_max(outnet->rnd, pif->avail_total); 2042 if(my_port < pif->inuse) { 2043 /* port already open */ 2044 pend->pc = pif->out[my_port]; 2045 verbose(VERB_ALGO, "using UDP if=%d port=%d", 2046 my_if, pend->pc->number); 2047 break; 2048 } 2049 } 2050 /* try to open new port, if fails, loop to try again */ 2051 log_assert(pif->inuse < pif->maxout); 2052 portno = pif->avail_ports[my_port - pif->inuse]; 2053 #else 2054 my_port = portno = 0; 2055 #endif 2056 fd = udp_sockport(&pif->addr, pif->addrlen, pif->pfxlen, 2057 portno, &inuse, outnet->rnd, outnet->ip_dscp); 2058 if(fd == -1 && !inuse) { 2059 /* nonrecoverable error making socket */ 2060 return 0; 2061 } 2062 if(fd != -1) { 2063 verbose(VERB_ALGO, "opened UDP if=%d port=%d", 2064 my_if, portno); 2065 if(outnet->udp_connect) { 2066 /* connect() to the destination */ 2067 if(connect(fd, (struct sockaddr*)&pend->addr, 2068 pend->addrlen) < 0) { 2069 if(udp_connect_needs_log(errno)) { 2070 log_err_addr("udp connect failed", 2071 strerror(errno), &pend->addr, 2072 pend->addrlen); 2073 } 2074 sock_close(fd); 2075 return 0; 2076 } 2077 } 2078 /* grab fd */ 2079 pend->pc = outnet->unused_fds; 2080 outnet->unused_fds = pend->pc->next; 2081 2082 /* setup portcomm */ 2083 pend->pc->next = NULL; 2084 pend->pc->number = portno; 2085 pend->pc->pif = pif; 2086 pend->pc->index = pif->inuse; 2087 pend->pc->num_outstanding = 0; 2088 comm_point_start_listening(pend->pc->cp, fd, -1); 2089 2090 /* grab port in interface */ 2091 pif->out[pif->inuse] = pend->pc; 2092 #ifndef DISABLE_EXPLICIT_PORT_RANDOMISATION 2093 pif->avail_ports[my_port - pif->inuse] = 2094 pif->avail_ports[pif->avail_total-pif->inuse-1]; 2095 #endif 2096 pif->inuse++; 2097 break; 2098 } 2099 /* failed, already in use */ 2100 verbose(VERB_QUERY, "port %d in use, trying another", portno); 2101 tries++; 2102 if(tries == MAX_PORT_RETRY) { 2103 log_err("failed to find an open port, drop msg"); 2104 return 0; 2105 } 2106 } 2107 log_assert(pend->pc); 2108 pend->pc->num_outstanding++; 2109 2110 return 1; 2111 } 2112 2113 static int 2114 randomize_and_send_udp(struct pending* pend, sldns_buffer* packet, int timeout) 2115 { 2116 struct timeval tv; 2117 struct outside_network* outnet = pend->sq->outnet; 2118 2119 /* select id */ 2120 if(!select_id(outnet, pend, packet)) { 2121 return 0; 2122 } 2123 2124 /* select src_if, port */ 2125 if(addr_is_ip6(&pend->addr, pend->addrlen)) { 2126 if(!select_ifport(outnet, pend, 2127 outnet->num_ip6, outnet->ip6_ifs)) 2128 return 0; 2129 } else { 2130 if(!select_ifport(outnet, pend, 2131 outnet->num_ip4, outnet->ip4_ifs)) 2132 return 0; 2133 } 2134 log_assert(pend->pc && pend->pc->cp); 2135 2136 /* send it over the commlink */ 2137 if(!comm_point_send_udp_msg(pend->pc->cp, packet, 2138 (struct sockaddr*)&pend->addr, pend->addrlen, outnet->udp_connect)) { 2139 portcomm_loweruse(outnet, pend->pc); 2140 return 0; 2141 } 2142 2143 /* system calls to set timeout after sending UDP to make roundtrip 2144 smaller. */ 2145 #ifndef S_SPLINT_S 2146 tv.tv_sec = timeout/1000; 2147 tv.tv_usec = (timeout%1000)*1000; 2148 #endif 2149 comm_timer_set(pend->timer, &tv); 2150 2151 #ifdef USE_DNSTAP 2152 /* 2153 * sending src (local service)/dst (upstream) addresses over DNSTAP 2154 * There are no chances to get the src (local service) addr if unbound 2155 * is not configured with specific outgoing IP-addresses. So we will 2156 * pass 0.0.0.0 (::) to argument for 2157 * dt_msg_send_outside_query()/dt_msg_send_outside_response() calls. 2158 */ 2159 if(outnet->dtenv && 2160 (outnet->dtenv->log_resolver_query_messages || 2161 outnet->dtenv->log_forwarder_query_messages)) { 2162 log_addr(VERB_ALGO, "from local addr", &pend->pc->pif->addr, pend->pc->pif->addrlen); 2163 log_addr(VERB_ALGO, "request to upstream", &pend->addr, pend->addrlen); 2164 dt_msg_send_outside_query(outnet->dtenv, &pend->addr, &pend->pc->pif->addr, comm_udp, 2165 pend->sq->zone, pend->sq->zonelen, packet); 2166 } 2167 #endif 2168 return 1; 2169 } 2170 2171 struct pending* 2172 pending_udp_query(struct serviced_query* sq, struct sldns_buffer* packet, 2173 int timeout, comm_point_callback_type* cb, void* cb_arg) 2174 { 2175 struct pending* pend = (struct pending*)calloc(1, sizeof(*pend)); 2176 if(!pend) return NULL; 2177 pend->outnet = sq->outnet; 2178 pend->sq = sq; 2179 pend->addrlen = sq->addrlen; 2180 memmove(&pend->addr, &sq->addr, sq->addrlen); 2181 pend->cb = cb; 2182 pend->cb_arg = cb_arg; 2183 pend->node.key = pend; 2184 pend->timer = comm_timer_create(sq->outnet->base, pending_udp_timer_cb, 2185 pend); 2186 if(!pend->timer) { 2187 free(pend); 2188 return NULL; 2189 } 2190 2191 if(sq->outnet->unused_fds == NULL) { 2192 /* no unused fd, cannot create a new port (randomly) */ 2193 verbose(VERB_ALGO, "no fds available, udp query waiting"); 2194 pend->timeout = timeout; 2195 pend->pkt_len = sldns_buffer_limit(packet); 2196 pend->pkt = (uint8_t*)memdup(sldns_buffer_begin(packet), 2197 pend->pkt_len); 2198 if(!pend->pkt) { 2199 comm_timer_delete(pend->timer); 2200 free(pend); 2201 return NULL; 2202 } 2203 /* put at end of waiting list */ 2204 if(sq->outnet->udp_wait_last) 2205 sq->outnet->udp_wait_last->next_waiting = pend; 2206 else 2207 sq->outnet->udp_wait_first = pend; 2208 sq->outnet->udp_wait_last = pend; 2209 return pend; 2210 } 2211 log_assert(!sq->busy); 2212 sq->busy = 1; 2213 if(!randomize_and_send_udp(pend, packet, timeout)) { 2214 pending_delete(sq->outnet, pend); 2215 return NULL; 2216 } 2217 sq->busy = 0; 2218 return pend; 2219 } 2220 2221 void 2222 outnet_tcptimer(void* arg) 2223 { 2224 struct waiting_tcp* w = (struct waiting_tcp*)arg; 2225 struct outside_network* outnet = w->outnet; 2226 verbose(VERB_CLIENT, "outnet_tcptimer"); 2227 if(w->on_tcp_waiting_list) { 2228 /* it is on the waiting list */ 2229 waiting_list_remove(outnet, w); 2230 waiting_tcp_callback(w, NULL, NETEVENT_TIMEOUT, NULL); 2231 waiting_tcp_delete(w); 2232 } else { 2233 /* it was in use */ 2234 struct pending_tcp* pend=(struct pending_tcp*)w->next_waiting; 2235 reuse_cb_and_decommission(outnet, pend, NETEVENT_TIMEOUT); 2236 } 2237 use_free_buffer(outnet); 2238 } 2239 2240 /** close the oldest reuse_tcp connection to make a fd and struct pend 2241 * available for a new stream connection */ 2242 static void 2243 reuse_tcp_close_oldest(struct outside_network* outnet) 2244 { 2245 struct reuse_tcp* reuse; 2246 verbose(VERB_CLIENT, "reuse_tcp_close_oldest"); 2247 reuse = reuse_tcp_lru_snip(outnet); 2248 if(!reuse) return; 2249 /* free up */ 2250 reuse_cb_and_decommission(outnet, reuse->pending, NETEVENT_CLOSED); 2251 } 2252 2253 static uint16_t 2254 tcp_select_id(struct outside_network* outnet, struct reuse_tcp* reuse) 2255 { 2256 if(reuse) 2257 return reuse_tcp_select_id(reuse, outnet); 2258 return GET_RANDOM_ID(outnet->rnd); 2259 } 2260 2261 /** find spare ID value for reuse tcp stream. That is random and also does 2262 * not collide with an existing query ID that is in use or waiting */ 2263 uint16_t 2264 reuse_tcp_select_id(struct reuse_tcp* reuse, struct outside_network* outnet) 2265 { 2266 uint16_t id = 0, curid, nextid; 2267 const int try_random = 2000; 2268 int i; 2269 unsigned select, count, space; 2270 rbnode_type* node; 2271 2272 /* make really sure the tree is not empty */ 2273 if(reuse->tree_by_id.count == 0) { 2274 id = GET_RANDOM_ID(outnet->rnd); 2275 return id; 2276 } 2277 2278 /* try to find random empty spots by picking them */ 2279 for(i = 0; i<try_random; i++) { 2280 id = GET_RANDOM_ID(outnet->rnd); 2281 if(!reuse_tcp_by_id_find(reuse, id)) { 2282 return id; 2283 } 2284 } 2285 2286 /* equally pick a random unused element from the tree that is 2287 * not in use. Pick a the n-th index of an unused number, 2288 * then loop over the empty spaces in the tree and find it */ 2289 log_assert(reuse->tree_by_id.count < 0xffff); 2290 select = ub_random_max(outnet->rnd, 0xffff - reuse->tree_by_id.count); 2291 /* select value now in 0 .. num free - 1 */ 2292 2293 count = 0; /* number of free spaces passed by */ 2294 node = rbtree_first(&reuse->tree_by_id); 2295 log_assert(node && node != RBTREE_NULL); /* tree not empty */ 2296 /* see if select is before first node */ 2297 if(select < tree_by_id_get_id(node)) 2298 return select; 2299 count += tree_by_id_get_id(node); 2300 /* perhaps select is between nodes */ 2301 while(node && node != RBTREE_NULL) { 2302 rbnode_type* next = rbtree_next(node); 2303 if(next && next != RBTREE_NULL) { 2304 curid = tree_by_id_get_id(node); 2305 nextid = tree_by_id_get_id(next); 2306 log_assert(curid < nextid); 2307 if(curid != 0xffff && curid + 1 < nextid) { 2308 /* space between nodes */ 2309 space = nextid - curid - 1; 2310 log_assert(select >= count); 2311 if(select < count + space) { 2312 /* here it is */ 2313 return curid + 1 + (select - count); 2314 } 2315 count += space; 2316 } 2317 } 2318 node = next; 2319 } 2320 2321 /* select is after the last node */ 2322 /* count is the number of free positions before the nodes in the 2323 * tree */ 2324 node = rbtree_last(&reuse->tree_by_id); 2325 log_assert(node && node != RBTREE_NULL); /* tree not empty */ 2326 curid = tree_by_id_get_id(node); 2327 log_assert(count + (0xffff-curid) + reuse->tree_by_id.count == 0xffff); 2328 return curid + 1 + (select - count); 2329 } 2330 2331 struct waiting_tcp* 2332 pending_tcp_query(struct serviced_query* sq, sldns_buffer* packet, 2333 int timeout, comm_point_callback_type* callback, void* callback_arg) 2334 { 2335 struct pending_tcp* pend = sq->outnet->tcp_free; 2336 struct reuse_tcp* reuse = NULL; 2337 struct waiting_tcp* w; 2338 2339 verbose(VERB_CLIENT, "pending_tcp_query"); 2340 if(sldns_buffer_limit(packet) < sizeof(uint16_t)) { 2341 verbose(VERB_ALGO, "pending tcp query with too short buffer < 2"); 2342 return NULL; 2343 } 2344 2345 /* find out if a reused stream to the target exists */ 2346 /* if so, take it into use */ 2347 reuse = reuse_tcp_find(sq->outnet, &sq->addr, sq->addrlen, 2348 sq->ssl_upstream); 2349 if(reuse) { 2350 log_reuse_tcp(VERB_CLIENT, "pending_tcp_query: found reuse", reuse); 2351 log_assert(reuse->pending); 2352 pend = reuse->pending; 2353 reuse_tcp_lru_touch(sq->outnet, reuse); 2354 } 2355 2356 log_assert(!reuse || (reuse && pend)); 2357 /* if !pend but we have reuse streams, close a reuse stream 2358 * to be able to open a new one to this target, no use waiting 2359 * to reuse a file descriptor while another query needs to use 2360 * that buffer and file descriptor now. */ 2361 if(!pend) { 2362 reuse_tcp_close_oldest(sq->outnet); 2363 pend = sq->outnet->tcp_free; 2364 log_assert(!reuse || (pend == reuse->pending)); 2365 } 2366 2367 /* allocate space to store query */ 2368 w = (struct waiting_tcp*)malloc(sizeof(struct waiting_tcp) 2369 + sldns_buffer_limit(packet)); 2370 if(!w) { 2371 return NULL; 2372 } 2373 if(!(w->timer = comm_timer_create(sq->outnet->base, outnet_tcptimer, w))) { 2374 free(w); 2375 return NULL; 2376 } 2377 w->pkt = (uint8_t*)w + sizeof(struct waiting_tcp); 2378 w->pkt_len = sldns_buffer_limit(packet); 2379 memmove(w->pkt, sldns_buffer_begin(packet), w->pkt_len); 2380 w->id = tcp_select_id(sq->outnet, reuse); 2381 LDNS_ID_SET(w->pkt, w->id); 2382 memcpy(&w->addr, &sq->addr, sq->addrlen); 2383 w->addrlen = sq->addrlen; 2384 w->outnet = sq->outnet; 2385 w->on_tcp_waiting_list = 0; 2386 w->next_waiting = NULL; 2387 w->cb = callback; 2388 w->cb_arg = callback_arg; 2389 w->ssl_upstream = sq->ssl_upstream; 2390 w->tls_auth_name = sq->tls_auth_name; 2391 w->timeout = timeout; 2392 w->id_node.key = NULL; 2393 w->write_wait_prev = NULL; 2394 w->write_wait_next = NULL; 2395 w->write_wait_queued = 0; 2396 w->error_count = 0; 2397 #ifdef USE_DNSTAP 2398 w->sq = NULL; 2399 #endif 2400 w->in_cb_and_decommission = 0; 2401 if(pend) { 2402 /* we have a buffer available right now */ 2403 if(reuse) { 2404 log_assert(reuse == &pend->reuse); 2405 /* reuse existing fd, write query and continue */ 2406 /* store query in tree by id */ 2407 verbose(VERB_CLIENT, "pending_tcp_query: reuse, store"); 2408 w->next_waiting = (void*)pend; 2409 reuse_tree_by_id_insert(&pend->reuse, w); 2410 /* can we write right now? */ 2411 if(pend->query == NULL) { 2412 /* write straight away */ 2413 /* stop the timer on read of the fd */ 2414 comm_point_stop_listening(pend->c); 2415 pend->query = w; 2416 outnet_tcp_take_query_setup(pend->c->fd, pend, 2417 w); 2418 } else { 2419 /* put it in the waiting list for 2420 * this stream */ 2421 reuse_write_wait_push_back(&pend->reuse, w); 2422 } 2423 } else { 2424 /* create new fd and connect to addr, setup to 2425 * write query */ 2426 verbose(VERB_CLIENT, "pending_tcp_query: new fd, connect"); 2427 rbtree_init(&pend->reuse.tree_by_id, reuse_id_cmp); 2428 pend->reuse.pending = pend; 2429 memcpy(&pend->reuse.addr, &sq->addr, sq->addrlen); 2430 pend->reuse.addrlen = sq->addrlen; 2431 if(!outnet_tcp_take_into_use(w)) { 2432 waiting_tcp_delete(w); 2433 return NULL; 2434 } 2435 } 2436 #ifdef USE_DNSTAP 2437 if(sq->outnet->dtenv && 2438 (sq->outnet->dtenv->log_resolver_query_messages || 2439 sq->outnet->dtenv->log_forwarder_query_messages)) { 2440 /* use w->pkt, because it has the ID value */ 2441 sldns_buffer tmp; 2442 sldns_buffer_init_frm_data(&tmp, w->pkt, w->pkt_len); 2443 dt_msg_send_outside_query(sq->outnet->dtenv, &sq->addr, 2444 &pend->pi->addr, comm_tcp, sq->zone, 2445 sq->zonelen, &tmp); 2446 } 2447 #endif 2448 } else { 2449 /* queue up */ 2450 /* waiting for a buffer on the outside network buffer wait 2451 * list */ 2452 verbose(VERB_CLIENT, "pending_tcp_query: queue to wait"); 2453 #ifdef USE_DNSTAP 2454 w->sq = sq; 2455 #endif 2456 outnet_add_tcp_waiting(sq->outnet, w); 2457 } 2458 return w; 2459 } 2460 2461 /** create query for serviced queries */ 2462 static void 2463 serviced_gen_query(sldns_buffer* buff, uint8_t* qname, size_t qnamelen, 2464 uint16_t qtype, uint16_t qclass, uint16_t flags) 2465 { 2466 sldns_buffer_clear(buff); 2467 /* skip id */ 2468 sldns_buffer_write_u16(buff, flags); 2469 sldns_buffer_write_u16(buff, 1); /* qdcount */ 2470 sldns_buffer_write_u16(buff, 0); /* ancount */ 2471 sldns_buffer_write_u16(buff, 0); /* nscount */ 2472 sldns_buffer_write_u16(buff, 0); /* arcount */ 2473 sldns_buffer_write(buff, qname, qnamelen); 2474 sldns_buffer_write_u16(buff, qtype); 2475 sldns_buffer_write_u16(buff, qclass); 2476 sldns_buffer_flip(buff); 2477 } 2478 2479 /** lookup serviced query in serviced query rbtree */ 2480 static struct serviced_query* 2481 lookup_serviced(struct outside_network* outnet, sldns_buffer* buff, int dnssec, 2482 struct sockaddr_storage* addr, socklen_t addrlen, 2483 struct edns_option* opt_list) 2484 { 2485 struct serviced_query key; 2486 key.node.key = &key; 2487 key.qbuf = sldns_buffer_begin(buff); 2488 key.qbuflen = sldns_buffer_limit(buff); 2489 key.dnssec = dnssec; 2490 memcpy(&key.addr, addr, addrlen); 2491 key.addrlen = addrlen; 2492 key.outnet = outnet; 2493 key.opt_list = opt_list; 2494 return (struct serviced_query*)rbtree_search(outnet->serviced, &key); 2495 } 2496 2497 void 2498 serviced_timer_cb(void* arg) 2499 { 2500 struct serviced_query* sq = (struct serviced_query*)arg; 2501 struct outside_network* outnet = sq->outnet; 2502 verbose(VERB_ALGO, "serviced send timer"); 2503 /* By the time this cb is called, if we don't have any registered 2504 * callbacks for this serviced_query anymore; do not send. */ 2505 if(!sq->cblist) 2506 goto delete; 2507 /* perform first network action */ 2508 if(outnet->do_udp && !(sq->tcp_upstream || sq->ssl_upstream)) { 2509 if(!serviced_udp_send(sq, outnet->udp_buff)) 2510 goto delete; 2511 } else { 2512 if(!serviced_tcp_send(sq, outnet->udp_buff)) 2513 goto delete; 2514 } 2515 /* Maybe by this time we don't have callbacks attached anymore. Don't 2516 * proactively try to delete; let it run and maybe another callback 2517 * will get attached by the time we get an answer. */ 2518 return; 2519 delete: 2520 serviced_callbacks(sq, NETEVENT_CLOSED, NULL, NULL); 2521 } 2522 2523 /** Create new serviced entry */ 2524 static struct serviced_query* 2525 serviced_create(struct outside_network* outnet, sldns_buffer* buff, int dnssec, 2526 int want_dnssec, int nocaps, int tcp_upstream, int ssl_upstream, 2527 char* tls_auth_name, struct sockaddr_storage* addr, socklen_t addrlen, 2528 uint8_t* zone, size_t zonelen, int qtype, struct edns_option* opt_list, 2529 size_t pad_queries_block_size, struct alloc_cache* alloc, 2530 struct regional* region) 2531 { 2532 struct serviced_query* sq = (struct serviced_query*)malloc(sizeof(*sq)); 2533 struct timeval t; 2534 #ifdef UNBOUND_DEBUG 2535 rbnode_type* ins; 2536 #endif 2537 if(!sq) 2538 return NULL; 2539 sq->node.key = sq; 2540 sq->alloc = alloc; 2541 sq->region = region; 2542 sq->qbuf = regional_alloc_init(region, sldns_buffer_begin(buff), 2543 sldns_buffer_limit(buff)); 2544 if(!sq->qbuf) { 2545 alloc_reg_release(alloc, region); 2546 free(sq); 2547 return NULL; 2548 } 2549 sq->qbuflen = sldns_buffer_limit(buff); 2550 sq->zone = regional_alloc_init(region, zone, zonelen); 2551 if(!sq->zone) { 2552 alloc_reg_release(alloc, region); 2553 free(sq); 2554 return NULL; 2555 } 2556 sq->zonelen = zonelen; 2557 sq->qtype = qtype; 2558 sq->dnssec = dnssec; 2559 sq->want_dnssec = want_dnssec; 2560 sq->nocaps = nocaps; 2561 sq->tcp_upstream = tcp_upstream; 2562 sq->ssl_upstream = ssl_upstream; 2563 if(tls_auth_name) { 2564 sq->tls_auth_name = regional_strdup(region, tls_auth_name); 2565 if(!sq->tls_auth_name) { 2566 alloc_reg_release(alloc, region); 2567 free(sq); 2568 return NULL; 2569 } 2570 } else { 2571 sq->tls_auth_name = NULL; 2572 } 2573 memcpy(&sq->addr, addr, addrlen); 2574 sq->addrlen = addrlen; 2575 sq->opt_list = opt_list; 2576 sq->busy = 0; 2577 sq->timer = comm_timer_create(outnet->base, serviced_timer_cb, sq); 2578 if(!sq->timer) { 2579 alloc_reg_release(alloc, region); 2580 free(sq); 2581 return NULL; 2582 } 2583 memset(&t, 0, sizeof(t)); 2584 comm_timer_set(sq->timer, &t); 2585 sq->outnet = outnet; 2586 sq->cblist = NULL; 2587 sq->pending = NULL; 2588 sq->status = serviced_initial; 2589 sq->retry = 0; 2590 sq->to_be_deleted = 0; 2591 sq->padding_block_size = pad_queries_block_size; 2592 #ifdef UNBOUND_DEBUG 2593 ins = 2594 #else 2595 (void) 2596 #endif 2597 rbtree_insert(outnet->serviced, &sq->node); 2598 log_assert(ins != NULL); /* must not be already present */ 2599 return sq; 2600 } 2601 2602 /** remove waiting tcp from the outnet waiting list */ 2603 static void 2604 waiting_list_remove(struct outside_network* outnet, struct waiting_tcp* w) 2605 { 2606 struct waiting_tcp* p = outnet->tcp_wait_first, *prev = NULL; 2607 w->on_tcp_waiting_list = 0; 2608 while(p) { 2609 if(p == w) { 2610 /* remove w */ 2611 if(prev) 2612 prev->next_waiting = w->next_waiting; 2613 else outnet->tcp_wait_first = w->next_waiting; 2614 if(outnet->tcp_wait_last == w) 2615 outnet->tcp_wait_last = prev; 2616 return; 2617 } 2618 prev = p; 2619 p = p->next_waiting; 2620 } 2621 /* waiting_list_remove is currently called only with items that are 2622 * already in the waiting list. */ 2623 log_assert(0); 2624 } 2625 2626 /** reuse tcp stream, remove serviced query from stream, 2627 * return true if the stream is kept, false if it is to be closed */ 2628 static int 2629 reuse_tcp_remove_serviced_keep(struct waiting_tcp* w, 2630 struct serviced_query* sq) 2631 { 2632 struct pending_tcp* pend_tcp = (struct pending_tcp*)w->next_waiting; 2633 verbose(VERB_CLIENT, "reuse_tcp_remove_serviced_keep"); 2634 /* remove the callback. let query continue to write to not cancel 2635 * the stream itself. also keep it as an entry in the tree_by_id, 2636 * in case the answer returns (that we no longer want), but we cannot 2637 * pick the same ID number meanwhile */ 2638 w->cb = NULL; 2639 /* see if can be entered in reuse tree 2640 * for that the FD has to be non-1 */ 2641 if(pend_tcp->c->fd == -1) { 2642 verbose(VERB_CLIENT, "reuse_tcp_remove_serviced_keep: -1 fd"); 2643 return 0; 2644 } 2645 /* if in tree and used by other queries */ 2646 if(pend_tcp->reuse.node.key) { 2647 verbose(VERB_CLIENT, "reuse_tcp_remove_serviced_keep: in use by other queries"); 2648 /* do not reset the keepalive timer, for that 2649 * we'd need traffic, and this is where the serviced is 2650 * removed due to state machine internal reasons, 2651 * eg. iterator no longer interested in this query */ 2652 return 1; 2653 } 2654 /* if still open and want to keep it open */ 2655 if(pend_tcp->c->fd != -1 && sq->outnet->tcp_reuse.count < 2656 sq->outnet->tcp_reuse_max) { 2657 verbose(VERB_CLIENT, "reuse_tcp_remove_serviced_keep: keep open"); 2658 /* set a keepalive timer on it */ 2659 if(!reuse_tcp_insert(sq->outnet, pend_tcp)) { 2660 return 0; 2661 } 2662 reuse_tcp_setup_timeout(pend_tcp, sq->outnet->tcp_reuse_timeout); 2663 return 1; 2664 } 2665 return 0; 2666 } 2667 2668 /** cleanup serviced query entry */ 2669 static void 2670 serviced_delete(struct serviced_query* sq) 2671 { 2672 verbose(VERB_CLIENT, "serviced_delete"); 2673 if(sq->pending) { 2674 /* clear up the pending query */ 2675 if(sq->status == serviced_query_UDP_EDNS || 2676 sq->status == serviced_query_UDP || 2677 sq->status == serviced_query_UDP_EDNS_FRAG || 2678 sq->status == serviced_query_UDP_EDNS_fallback) { 2679 struct pending* p = (struct pending*)sq->pending; 2680 verbose(VERB_CLIENT, "serviced_delete: UDP"); 2681 if(p->pc) 2682 portcomm_loweruse(sq->outnet, p->pc); 2683 pending_delete(sq->outnet, p); 2684 /* this call can cause reentrant calls back into the 2685 * mesh */ 2686 outnet_send_wait_udp(sq->outnet); 2687 } else { 2688 struct waiting_tcp* w = (struct waiting_tcp*) 2689 sq->pending; 2690 verbose(VERB_CLIENT, "serviced_delete: TCP"); 2691 log_assert(!(w->write_wait_queued && w->on_tcp_waiting_list)); 2692 /* if on stream-write-waiting list then 2693 * remove from waiting list and waiting_tcp_delete */ 2694 if(w->write_wait_queued) { 2695 struct pending_tcp* pend = 2696 (struct pending_tcp*)w->next_waiting; 2697 verbose(VERB_CLIENT, "serviced_delete: writewait"); 2698 if(!w->in_cb_and_decommission) 2699 reuse_tree_by_id_delete(&pend->reuse, w); 2700 reuse_write_wait_remove(&pend->reuse, w); 2701 if(!w->in_cb_and_decommission) 2702 waiting_tcp_delete(w); 2703 } else if(!w->on_tcp_waiting_list) { 2704 struct pending_tcp* pend = 2705 (struct pending_tcp*)w->next_waiting; 2706 verbose(VERB_CLIENT, "serviced_delete: tcpreusekeep"); 2707 /* w needs to stay on tree_by_id to not assign 2708 * the same ID; remove the callback since its 2709 * serviced_query will be gone. */ 2710 w->cb = NULL; 2711 if(!reuse_tcp_remove_serviced_keep(w, sq)) { 2712 if(!w->in_cb_and_decommission) 2713 reuse_cb_and_decommission(sq->outnet, 2714 pend, NETEVENT_CLOSED); 2715 use_free_buffer(sq->outnet); 2716 } 2717 sq->pending = NULL; 2718 } else { 2719 verbose(VERB_CLIENT, "serviced_delete: tcpwait"); 2720 waiting_list_remove(sq->outnet, w); 2721 if(!w->in_cb_and_decommission) 2722 waiting_tcp_delete(w); 2723 } 2724 } 2725 } 2726 /* does not delete from tree, caller has to do that */ 2727 serviced_node_del(&sq->node, NULL); 2728 } 2729 2730 /** perturb a dname capitalization randomly */ 2731 static void 2732 serviced_perturb_qname(struct ub_randstate* rnd, uint8_t* qbuf, size_t len) 2733 { 2734 uint8_t lablen; 2735 uint8_t* d = qbuf + 10; 2736 long int random = 0; 2737 int bits = 0; 2738 log_assert(len >= 10 + 5 /* offset qname, root, qtype, qclass */); 2739 (void)len; 2740 lablen = *d++; 2741 while(lablen) { 2742 while(lablen--) { 2743 /* only perturb A-Z, a-z */ 2744 if(isalpha((unsigned char)*d)) { 2745 /* get a random bit */ 2746 if(bits == 0) { 2747 random = ub_random(rnd); 2748 bits = 30; 2749 } 2750 if(random & 0x1) { 2751 *d = (uint8_t)toupper((unsigned char)*d); 2752 } else { 2753 *d = (uint8_t)tolower((unsigned char)*d); 2754 } 2755 random >>= 1; 2756 bits--; 2757 } 2758 d++; 2759 } 2760 lablen = *d++; 2761 } 2762 if(verbosity >= VERB_ALGO) { 2763 char buf[LDNS_MAX_DOMAINLEN+1]; 2764 dname_str(qbuf+10, buf); 2765 verbose(VERB_ALGO, "qname perturbed to %s", buf); 2766 } 2767 } 2768 2769 /** put serviced query into a buffer */ 2770 static void 2771 serviced_encode(struct serviced_query* sq, sldns_buffer* buff, int with_edns) 2772 { 2773 /* if we are using 0x20 bits for ID randomness, perturb them */ 2774 if(sq->outnet->use_caps_for_id && !sq->nocaps) { 2775 serviced_perturb_qname(sq->outnet->rnd, sq->qbuf, sq->qbuflen); 2776 } 2777 /* generate query */ 2778 sldns_buffer_clear(buff); 2779 sldns_buffer_write_u16(buff, 0); /* id placeholder */ 2780 sldns_buffer_write(buff, sq->qbuf, sq->qbuflen); 2781 sldns_buffer_flip(buff); 2782 if(with_edns) { 2783 /* add edns section */ 2784 struct edns_data edns; 2785 struct edns_option padding_option; 2786 edns.edns_present = 1; 2787 edns.ext_rcode = 0; 2788 edns.edns_version = EDNS_ADVERTISED_VERSION; 2789 edns.opt_list_in = NULL; 2790 edns.opt_list_out = sq->opt_list; 2791 edns.opt_list_inplace_cb_out = NULL; 2792 if(sq->status == serviced_query_UDP_EDNS_FRAG) { 2793 if(addr_is_ip6(&sq->addr, sq->addrlen)) { 2794 if(EDNS_FRAG_SIZE_IP6 < EDNS_ADVERTISED_SIZE) 2795 edns.udp_size = EDNS_FRAG_SIZE_IP6; 2796 else edns.udp_size = EDNS_ADVERTISED_SIZE; 2797 } else { 2798 if(EDNS_FRAG_SIZE_IP4 < EDNS_ADVERTISED_SIZE) 2799 edns.udp_size = EDNS_FRAG_SIZE_IP4; 2800 else edns.udp_size = EDNS_ADVERTISED_SIZE; 2801 } 2802 } else { 2803 edns.udp_size = EDNS_ADVERTISED_SIZE; 2804 } 2805 edns.bits = 0; 2806 if(sq->dnssec & EDNS_DO) 2807 edns.bits = EDNS_DO; 2808 if(sq->dnssec & BIT_CD) 2809 LDNS_CD_SET(sldns_buffer_begin(buff)); 2810 if (sq->ssl_upstream && sq->padding_block_size) { 2811 padding_option.opt_code = LDNS_EDNS_PADDING; 2812 padding_option.opt_len = 0; 2813 padding_option.opt_data = NULL; 2814 padding_option.next = edns.opt_list_out; 2815 edns.opt_list_out = &padding_option; 2816 edns.padding_block_size = sq->padding_block_size; 2817 } 2818 attach_edns_record(buff, &edns); 2819 } 2820 } 2821 2822 /** 2823 * Perform serviced query UDP sending operation. 2824 * Sends UDP with EDNS, unless infra host marked non EDNS. 2825 * @param sq: query to send. 2826 * @param buff: buffer scratch space. 2827 * @return 0 on error. 2828 */ 2829 static int 2830 serviced_udp_send(struct serviced_query* sq, sldns_buffer* buff) 2831 { 2832 int rtt, vs; 2833 uint8_t edns_lame_known; 2834 time_t now = *sq->outnet->now_secs; 2835 2836 if(!infra_host(sq->outnet->infra, &sq->addr, sq->addrlen, sq->zone, 2837 sq->zonelen, now, &vs, &edns_lame_known, &rtt)) 2838 return 0; 2839 sq->last_rtt = rtt; 2840 verbose(VERB_ALGO, "EDNS lookup known=%d vs=%d", edns_lame_known, vs); 2841 if(sq->status == serviced_initial) { 2842 if(vs != -1) { 2843 sq->status = serviced_query_UDP_EDNS; 2844 } else { 2845 sq->status = serviced_query_UDP; 2846 } 2847 } 2848 serviced_encode(sq, buff, (sq->status == serviced_query_UDP_EDNS) || 2849 (sq->status == serviced_query_UDP_EDNS_FRAG)); 2850 sq->last_sent_time = *sq->outnet->now_tv; 2851 sq->edns_lame_known = (int)edns_lame_known; 2852 verbose(VERB_ALGO, "serviced query UDP timeout=%d msec", rtt); 2853 sq->pending = pending_udp_query(sq, buff, rtt, 2854 serviced_udp_callback, sq); 2855 if(!sq->pending) 2856 return 0; 2857 return 1; 2858 } 2859 2860 /** check that perturbed qname is identical */ 2861 static int 2862 serviced_check_qname(sldns_buffer* pkt, uint8_t* qbuf, size_t qbuflen) 2863 { 2864 uint8_t* d1 = sldns_buffer_begin(pkt)+12; 2865 uint8_t* d2 = qbuf+10; 2866 uint8_t len1, len2; 2867 int count = 0; 2868 if(sldns_buffer_limit(pkt) < 12+1+4) /* packet too small for qname */ 2869 return 0; 2870 log_assert(qbuflen >= 15 /* 10 header, root, type, class */); 2871 len1 = *d1++; 2872 len2 = *d2++; 2873 while(len1 != 0 || len2 != 0) { 2874 if(LABEL_IS_PTR(len1)) { 2875 /* check if we can read *d1 with compression ptr rest */ 2876 if(d1 >= sldns_buffer_at(pkt, sldns_buffer_limit(pkt))) 2877 return 0; 2878 d1 = sldns_buffer_begin(pkt)+PTR_OFFSET(len1, *d1); 2879 /* check if we can read the destination *d1 */ 2880 if(d1 >= sldns_buffer_at(pkt, sldns_buffer_limit(pkt))) 2881 return 0; 2882 len1 = *d1++; 2883 if(count++ > MAX_COMPRESS_PTRS) 2884 return 0; 2885 continue; 2886 } 2887 if(d2 > qbuf+qbuflen) 2888 return 0; 2889 if(len1 != len2) 2890 return 0; 2891 if(len1 > LDNS_MAX_LABELLEN) 2892 return 0; 2893 /* check len1 + 1(next length) are okay to read */ 2894 if(d1+len1 >= sldns_buffer_at(pkt, sldns_buffer_limit(pkt))) 2895 return 0; 2896 log_assert(len1 <= LDNS_MAX_LABELLEN); 2897 log_assert(len2 <= LDNS_MAX_LABELLEN); 2898 log_assert(len1 == len2 && len1 != 0); 2899 /* compare the labels - bitwise identical */ 2900 if(memcmp(d1, d2, len1) != 0) 2901 return 0; 2902 d1 += len1; 2903 d2 += len2; 2904 len1 = *d1++; 2905 len2 = *d2++; 2906 } 2907 return 1; 2908 } 2909 2910 /** call the callbacks for a serviced query */ 2911 static void 2912 serviced_callbacks(struct serviced_query* sq, int error, struct comm_point* c, 2913 struct comm_reply* rep) 2914 { 2915 struct service_callback* p; 2916 int dobackup = (sq->cblist && sq->cblist->next); /* >1 cb*/ 2917 uint8_t *backup_p = NULL; 2918 size_t backlen = 0; 2919 #ifdef UNBOUND_DEBUG 2920 rbnode_type* rem = 2921 #else 2922 (void) 2923 #endif 2924 /* remove from tree, and schedule for deletion, so that callbacks 2925 * can safely deregister themselves and even create new serviced 2926 * queries that are identical to this one. */ 2927 rbtree_delete(sq->outnet->serviced, sq); 2928 log_assert(rem); /* should have been present */ 2929 sq->to_be_deleted = 1; 2930 verbose(VERB_ALGO, "svcd callbacks start"); 2931 if(sq->outnet->use_caps_for_id && error == NETEVENT_NOERROR && c && 2932 !sq->nocaps && sq->qtype != LDNS_RR_TYPE_PTR) { 2933 /* for type PTR do not check perturbed name in answer, 2934 * compatibility with cisco dns guard boxes that mess up 2935 * reverse queries 0x20 contents */ 2936 /* noerror and nxdomain must have a qname in reply */ 2937 if(sldns_buffer_read_u16_at(c->buffer, 4) == 0 && 2938 (LDNS_RCODE_WIRE(sldns_buffer_begin(c->buffer)) 2939 == LDNS_RCODE_NOERROR || 2940 LDNS_RCODE_WIRE(sldns_buffer_begin(c->buffer)) 2941 == LDNS_RCODE_NXDOMAIN)) { 2942 verbose(VERB_DETAIL, "no qname in reply to check 0x20ID"); 2943 log_addr(VERB_DETAIL, "from server", 2944 &sq->addr, sq->addrlen); 2945 log_buf(VERB_DETAIL, "for packet", c->buffer); 2946 error = NETEVENT_CLOSED; 2947 c = NULL; 2948 } else if(sldns_buffer_read_u16_at(c->buffer, 4) > 0 && 2949 !serviced_check_qname(c->buffer, sq->qbuf, 2950 sq->qbuflen)) { 2951 verbose(VERB_DETAIL, "wrong 0x20-ID in reply qname"); 2952 log_addr(VERB_DETAIL, "from server", 2953 &sq->addr, sq->addrlen); 2954 log_buf(VERB_DETAIL, "for packet", c->buffer); 2955 error = NETEVENT_CAPSFAIL; 2956 /* and cleanup too */ 2957 pkt_dname_tolower(c->buffer, 2958 sldns_buffer_at(c->buffer, 12)); 2959 } else { 2960 verbose(VERB_ALGO, "good 0x20-ID in reply qname"); 2961 /* cleanup caps, prettier cache contents. */ 2962 pkt_dname_tolower(c->buffer, 2963 sldns_buffer_at(c->buffer, 12)); 2964 } 2965 } 2966 if(dobackup && c) { 2967 /* make a backup of the query, since the querystate processing 2968 * may send outgoing queries that overwrite the buffer. 2969 * use secondary buffer to store the query. 2970 * This is a data copy, but faster than packet to server */ 2971 backlen = sldns_buffer_limit(c->buffer); 2972 backup_p = regional_alloc_init(sq->region, 2973 sldns_buffer_begin(c->buffer), backlen); 2974 if(!backup_p) { 2975 log_err("malloc failure in serviced query callbacks"); 2976 error = NETEVENT_CLOSED; 2977 c = NULL; 2978 } 2979 sq->outnet->svcd_overhead = backlen; 2980 } 2981 /* test the actual sq->cblist, because the next elem could be deleted*/ 2982 while((p=sq->cblist) != NULL) { 2983 sq->cblist = p->next; /* remove this element */ 2984 if(dobackup && c) { 2985 sldns_buffer_clear(c->buffer); 2986 sldns_buffer_write(c->buffer, backup_p, backlen); 2987 sldns_buffer_flip(c->buffer); 2988 } 2989 fptr_ok(fptr_whitelist_serviced_query(p->cb)); 2990 (void)(*p->cb)(c, p->cb_arg, error, rep); 2991 } 2992 if(backup_p) { 2993 sq->outnet->svcd_overhead = 0; 2994 } 2995 verbose(VERB_ALGO, "svcd callbacks end"); 2996 log_assert(sq->cblist == NULL); 2997 serviced_delete(sq); 2998 } 2999 3000 int 3001 serviced_tcp_callback(struct comm_point* c, void* arg, int error, 3002 struct comm_reply* rep) 3003 { 3004 struct serviced_query* sq = (struct serviced_query*)arg; 3005 struct comm_reply r2; 3006 #ifdef USE_DNSTAP 3007 struct waiting_tcp* w = (struct waiting_tcp*)sq->pending; 3008 struct pending_tcp* pend_tcp = NULL; 3009 struct port_if* pi = NULL; 3010 if(w && !w->on_tcp_waiting_list && w->next_waiting) { 3011 pend_tcp = (struct pending_tcp*)w->next_waiting; 3012 pi = pend_tcp->pi; 3013 } 3014 #endif 3015 sq->pending = NULL; /* removed after this callback */ 3016 if(error != NETEVENT_NOERROR) 3017 log_addr(VERB_QUERY, "tcp error for address", 3018 &sq->addr, sq->addrlen); 3019 if(error==NETEVENT_NOERROR) 3020 infra_update_tcp_works(sq->outnet->infra, &sq->addr, 3021 sq->addrlen, sq->zone, sq->zonelen); 3022 #ifdef USE_DNSTAP 3023 /* 3024 * sending src (local service)/dst (upstream) addresses over DNSTAP 3025 */ 3026 if(error==NETEVENT_NOERROR && pi && sq->outnet->dtenv && 3027 (sq->outnet->dtenv->log_resolver_response_messages || 3028 sq->outnet->dtenv->log_forwarder_response_messages)) { 3029 log_addr(VERB_ALGO, "response from upstream", &sq->addr, sq->addrlen); 3030 log_addr(VERB_ALGO, "to local addr", &pi->addr, pi->addrlen); 3031 dt_msg_send_outside_response(sq->outnet->dtenv, &sq->addr, 3032 &pi->addr, c->type, sq->zone, sq->zonelen, sq->qbuf, 3033 sq->qbuflen, &sq->last_sent_time, sq->outnet->now_tv, 3034 c->buffer); 3035 } 3036 #endif 3037 if(error==NETEVENT_NOERROR && sq->status == serviced_query_TCP_EDNS && 3038 (LDNS_RCODE_WIRE(sldns_buffer_begin(c->buffer)) == 3039 LDNS_RCODE_FORMERR || LDNS_RCODE_WIRE(sldns_buffer_begin( 3040 c->buffer)) == LDNS_RCODE_NOTIMPL) ) { 3041 /* attempt to fallback to nonEDNS */ 3042 sq->status = serviced_query_TCP_EDNS_fallback; 3043 serviced_tcp_initiate(sq, c->buffer); 3044 return 0; 3045 } else if(error==NETEVENT_NOERROR && 3046 sq->status == serviced_query_TCP_EDNS_fallback && 3047 (LDNS_RCODE_WIRE(sldns_buffer_begin(c->buffer)) == 3048 LDNS_RCODE_NOERROR || LDNS_RCODE_WIRE( 3049 sldns_buffer_begin(c->buffer)) == LDNS_RCODE_NXDOMAIN 3050 || LDNS_RCODE_WIRE(sldns_buffer_begin(c->buffer)) 3051 == LDNS_RCODE_YXDOMAIN)) { 3052 /* the fallback produced a result that looks promising, note 3053 * that this server should be approached without EDNS */ 3054 /* only store noEDNS in cache if domain is noDNSSEC */ 3055 if(!sq->want_dnssec) 3056 if(!infra_edns_update(sq->outnet->infra, &sq->addr, 3057 sq->addrlen, sq->zone, sq->zonelen, -1, 3058 *sq->outnet->now_secs)) 3059 log_err("Out of memory caching no edns for host"); 3060 sq->status = serviced_query_TCP; 3061 } 3062 if(sq->tcp_upstream || sq->ssl_upstream) { 3063 struct timeval now = *sq->outnet->now_tv; 3064 if(error!=NETEVENT_NOERROR) { 3065 if(!infra_rtt_update(sq->outnet->infra, &sq->addr, 3066 sq->addrlen, sq->zone, sq->zonelen, sq->qtype, 3067 -1, sq->last_rtt, (time_t)now.tv_sec)) 3068 log_err("out of memory in TCP exponential backoff."); 3069 } else if(now.tv_sec > sq->last_sent_time.tv_sec || 3070 (now.tv_sec == sq->last_sent_time.tv_sec && 3071 now.tv_usec > sq->last_sent_time.tv_usec)) { 3072 /* convert from microseconds to milliseconds */ 3073 int roundtime = ((int)(now.tv_sec - sq->last_sent_time.tv_sec))*1000 3074 + ((int)now.tv_usec - (int)sq->last_sent_time.tv_usec)/1000; 3075 verbose(VERB_ALGO, "measured TCP-time at %d msec", roundtime); 3076 log_assert(roundtime >= 0); 3077 /* only store if less then AUTH_TIMEOUT seconds, it could be 3078 * huge due to system-hibernated and we woke up */ 3079 if(roundtime < 60000) { 3080 if(!infra_rtt_update(sq->outnet->infra, &sq->addr, 3081 sq->addrlen, sq->zone, sq->zonelen, sq->qtype, 3082 roundtime, sq->last_rtt, (time_t)now.tv_sec)) 3083 log_err("out of memory noting rtt."); 3084 } 3085 } 3086 } 3087 /* insert address into reply info */ 3088 if(!rep) { 3089 /* create one if there isn't (on errors) */ 3090 rep = &r2; 3091 r2.c = c; 3092 } 3093 memcpy(&rep->addr, &sq->addr, sq->addrlen); 3094 rep->addrlen = sq->addrlen; 3095 serviced_callbacks(sq, error, c, rep); 3096 return 0; 3097 } 3098 3099 static void 3100 serviced_tcp_initiate(struct serviced_query* sq, sldns_buffer* buff) 3101 { 3102 verbose(VERB_ALGO, "initiate TCP query %s", 3103 sq->status==serviced_query_TCP_EDNS?"EDNS":""); 3104 serviced_encode(sq, buff, sq->status == serviced_query_TCP_EDNS); 3105 sq->last_sent_time = *sq->outnet->now_tv; 3106 log_assert(!sq->busy); 3107 sq->busy = 1; 3108 sq->pending = pending_tcp_query(sq, buff, sq->outnet->tcp_auth_query_timeout, 3109 serviced_tcp_callback, sq); 3110 sq->busy = 0; 3111 if(!sq->pending) { 3112 /* delete from tree so that a retry by above layer does not 3113 * clash with this entry */ 3114 verbose(VERB_ALGO, "serviced_tcp_initiate: failed to send tcp query"); 3115 serviced_callbacks(sq, NETEVENT_CLOSED, NULL, NULL); 3116 } 3117 } 3118 3119 /** Send serviced query over TCP return false on initial failure */ 3120 static int 3121 serviced_tcp_send(struct serviced_query* sq, sldns_buffer* buff) 3122 { 3123 int vs, rtt, timeout; 3124 uint8_t edns_lame_known; 3125 if(!infra_host(sq->outnet->infra, &sq->addr, sq->addrlen, sq->zone, 3126 sq->zonelen, *sq->outnet->now_secs, &vs, &edns_lame_known, 3127 &rtt)) 3128 return 0; 3129 sq->last_rtt = rtt; 3130 if(vs != -1) 3131 sq->status = serviced_query_TCP_EDNS; 3132 else sq->status = serviced_query_TCP; 3133 serviced_encode(sq, buff, sq->status == serviced_query_TCP_EDNS); 3134 sq->last_sent_time = *sq->outnet->now_tv; 3135 if(sq->tcp_upstream || sq->ssl_upstream) { 3136 timeout = rtt; 3137 if(rtt >= UNKNOWN_SERVER_NICENESS && rtt < sq->outnet->tcp_auth_query_timeout) 3138 timeout = sq->outnet->tcp_auth_query_timeout; 3139 } else { 3140 timeout = sq->outnet->tcp_auth_query_timeout; 3141 } 3142 log_assert(!sq->busy); 3143 sq->busy = 1; 3144 sq->pending = pending_tcp_query(sq, buff, timeout, 3145 serviced_tcp_callback, sq); 3146 sq->busy = 0; 3147 return sq->pending != NULL; 3148 } 3149 3150 /* see if packet is edns malformed; got zeroes at start. 3151 * This is from servers that return malformed packets to EDNS0 queries, 3152 * but they return good packets for nonEDNS0 queries. 3153 * We try to detect their output; without resorting to a full parse or 3154 * check for too many bytes after the end of the packet. */ 3155 static int 3156 packet_edns_malformed(struct sldns_buffer* buf, int qtype) 3157 { 3158 size_t len; 3159 if(sldns_buffer_limit(buf) < LDNS_HEADER_SIZE) 3160 return 1; /* malformed */ 3161 /* they have NOERROR rcode, 1 answer. */ 3162 if(LDNS_RCODE_WIRE(sldns_buffer_begin(buf)) != LDNS_RCODE_NOERROR) 3163 return 0; 3164 /* one query (to skip) and answer records */ 3165 if(LDNS_QDCOUNT(sldns_buffer_begin(buf)) != 1 || 3166 LDNS_ANCOUNT(sldns_buffer_begin(buf)) == 0) 3167 return 0; 3168 /* skip qname */ 3169 len = dname_valid(sldns_buffer_at(buf, LDNS_HEADER_SIZE), 3170 sldns_buffer_limit(buf)-LDNS_HEADER_SIZE); 3171 if(len == 0) 3172 return 0; 3173 if(len == 1 && qtype == 0) 3174 return 0; /* we asked for '.' and type 0 */ 3175 /* and then 4 bytes (type and class of query) */ 3176 if(sldns_buffer_limit(buf) < LDNS_HEADER_SIZE + len + 4 + 3) 3177 return 0; 3178 3179 /* and start with 11 zeroes as the answer RR */ 3180 /* so check the qtype of the answer record, qname=0, type=0 */ 3181 if(sldns_buffer_at(buf, LDNS_HEADER_SIZE+len+4)[0] == 0 && 3182 sldns_buffer_at(buf, LDNS_HEADER_SIZE+len+4)[1] == 0 && 3183 sldns_buffer_at(buf, LDNS_HEADER_SIZE+len+4)[2] == 0) 3184 return 1; 3185 return 0; 3186 } 3187 3188 int 3189 serviced_udp_callback(struct comm_point* c, void* arg, int error, 3190 struct comm_reply* rep) 3191 { 3192 struct serviced_query* sq = (struct serviced_query*)arg; 3193 struct outside_network* outnet = sq->outnet; 3194 struct timeval now = *sq->outnet->now_tv; 3195 #ifdef USE_DNSTAP 3196 struct pending* p = (struct pending*)sq->pending; 3197 #endif 3198 3199 sq->pending = NULL; /* removed after callback */ 3200 if(error == NETEVENT_TIMEOUT) { 3201 if(sq->status == serviced_query_UDP_EDNS && sq->last_rtt < 5000) { 3202 /* fallback to 1480/1280 */ 3203 sq->status = serviced_query_UDP_EDNS_FRAG; 3204 log_name_addr(VERB_ALGO, "try edns1xx0", sq->qbuf+10, 3205 &sq->addr, sq->addrlen); 3206 if(!serviced_udp_send(sq, c->buffer)) { 3207 serviced_callbacks(sq, NETEVENT_CLOSED, c, rep); 3208 } 3209 return 0; 3210 } 3211 if(sq->status == serviced_query_UDP_EDNS_FRAG) { 3212 /* fragmentation size did not fix it */ 3213 sq->status = serviced_query_UDP_EDNS; 3214 } 3215 sq->retry++; 3216 if(!infra_rtt_update(outnet->infra, &sq->addr, sq->addrlen, 3217 sq->zone, sq->zonelen, sq->qtype, -1, sq->last_rtt, 3218 (time_t)now.tv_sec)) 3219 log_err("out of memory in UDP exponential backoff"); 3220 if(sq->retry < OUTBOUND_UDP_RETRY) { 3221 log_name_addr(VERB_ALGO, "retry query", sq->qbuf+10, 3222 &sq->addr, sq->addrlen); 3223 if(!serviced_udp_send(sq, c->buffer)) { 3224 serviced_callbacks(sq, NETEVENT_CLOSED, c, rep); 3225 } 3226 return 0; 3227 } 3228 } 3229 if(error != NETEVENT_NOERROR) { 3230 /* udp returns error (due to no ID or interface available) */ 3231 serviced_callbacks(sq, error, c, rep); 3232 return 0; 3233 } 3234 #ifdef USE_DNSTAP 3235 /* 3236 * sending src (local service)/dst (upstream) addresses over DNSTAP 3237 */ 3238 if(error == NETEVENT_NOERROR && outnet->dtenv && p->pc && 3239 (outnet->dtenv->log_resolver_response_messages || 3240 outnet->dtenv->log_forwarder_response_messages)) { 3241 log_addr(VERB_ALGO, "response from upstream", &sq->addr, sq->addrlen); 3242 log_addr(VERB_ALGO, "to local addr", &p->pc->pif->addr, 3243 p->pc->pif->addrlen); 3244 dt_msg_send_outside_response(outnet->dtenv, &sq->addr, 3245 &p->pc->pif->addr, c->type, sq->zone, sq->zonelen, 3246 sq->qbuf, sq->qbuflen, &sq->last_sent_time, 3247 sq->outnet->now_tv, c->buffer); 3248 } 3249 #endif 3250 if( (sq->status == serviced_query_UDP_EDNS 3251 ||sq->status == serviced_query_UDP_EDNS_FRAG) 3252 && (LDNS_RCODE_WIRE(sldns_buffer_begin(c->buffer)) 3253 == LDNS_RCODE_FORMERR || LDNS_RCODE_WIRE( 3254 sldns_buffer_begin(c->buffer)) == LDNS_RCODE_NOTIMPL 3255 || packet_edns_malformed(c->buffer, sq->qtype) 3256 )) { 3257 /* try to get an answer by falling back without EDNS */ 3258 verbose(VERB_ALGO, "serviced query: attempt without EDNS"); 3259 sq->status = serviced_query_UDP_EDNS_fallback; 3260 sq->retry = 0; 3261 if(!serviced_udp_send(sq, c->buffer)) { 3262 serviced_callbacks(sq, NETEVENT_CLOSED, c, rep); 3263 } 3264 return 0; 3265 } else if(sq->status == serviced_query_UDP_EDNS && 3266 !sq->edns_lame_known) { 3267 /* now we know that edns queries received answers store that */ 3268 log_addr(VERB_ALGO, "serviced query: EDNS works for", 3269 &sq->addr, sq->addrlen); 3270 if(!infra_edns_update(outnet->infra, &sq->addr, sq->addrlen, 3271 sq->zone, sq->zonelen, 0, (time_t)now.tv_sec)) { 3272 log_err("Out of memory caching edns works"); 3273 } 3274 sq->edns_lame_known = 1; 3275 } else if(sq->status == serviced_query_UDP_EDNS_fallback && 3276 !sq->edns_lame_known && (LDNS_RCODE_WIRE( 3277 sldns_buffer_begin(c->buffer)) == LDNS_RCODE_NOERROR || 3278 LDNS_RCODE_WIRE(sldns_buffer_begin(c->buffer)) == 3279 LDNS_RCODE_NXDOMAIN || LDNS_RCODE_WIRE(sldns_buffer_begin( 3280 c->buffer)) == LDNS_RCODE_YXDOMAIN)) { 3281 /* the fallback produced a result that looks promising, note 3282 * that this server should be approached without EDNS */ 3283 /* only store noEDNS in cache if domain is noDNSSEC */ 3284 if(!sq->want_dnssec) { 3285 log_addr(VERB_ALGO, "serviced query: EDNS fails for", 3286 &sq->addr, sq->addrlen); 3287 if(!infra_edns_update(outnet->infra, &sq->addr, sq->addrlen, 3288 sq->zone, sq->zonelen, -1, (time_t)now.tv_sec)) { 3289 log_err("Out of memory caching no edns for host"); 3290 } 3291 } else { 3292 log_addr(VERB_ALGO, "serviced query: EDNS fails, but " 3293 "not stored because need DNSSEC for", &sq->addr, 3294 sq->addrlen); 3295 } 3296 sq->status = serviced_query_UDP; 3297 } 3298 if(now.tv_sec > sq->last_sent_time.tv_sec || 3299 (now.tv_sec == sq->last_sent_time.tv_sec && 3300 now.tv_usec > sq->last_sent_time.tv_usec)) { 3301 /* convert from microseconds to milliseconds */ 3302 int roundtime = ((int)(now.tv_sec - sq->last_sent_time.tv_sec))*1000 3303 + ((int)now.tv_usec - (int)sq->last_sent_time.tv_usec)/1000; 3304 verbose(VERB_ALGO, "measured roundtrip at %d msec", roundtime); 3305 log_assert(roundtime >= 0); 3306 /* in case the system hibernated, do not enter a huge value, 3307 * above this value gives trouble with server selection */ 3308 if(roundtime < 60000) { 3309 if(!infra_rtt_update(outnet->infra, &sq->addr, sq->addrlen, 3310 sq->zone, sq->zonelen, sq->qtype, roundtime, 3311 sq->last_rtt, (time_t)now.tv_sec)) 3312 log_err("out of memory noting rtt."); 3313 } 3314 } 3315 /* perform TC flag check and TCP fallback after updating our 3316 * cache entries for EDNS status and RTT times */ 3317 if(LDNS_TC_WIRE(sldns_buffer_begin(c->buffer))) { 3318 /* fallback to TCP */ 3319 /* this discards partial UDP contents */ 3320 if(sq->status == serviced_query_UDP_EDNS || 3321 sq->status == serviced_query_UDP_EDNS_FRAG || 3322 sq->status == serviced_query_UDP_EDNS_fallback) 3323 /* if we have unfinished EDNS_fallback, start again */ 3324 sq->status = serviced_query_TCP_EDNS; 3325 else sq->status = serviced_query_TCP; 3326 serviced_tcp_initiate(sq, c->buffer); 3327 return 0; 3328 } 3329 /* yay! an answer */ 3330 serviced_callbacks(sq, error, c, rep); 3331 return 0; 3332 } 3333 3334 struct serviced_query* 3335 outnet_serviced_query(struct outside_network* outnet, 3336 struct query_info* qinfo, uint16_t flags, int dnssec, int want_dnssec, 3337 int nocaps, int check_ratelimit, int tcp_upstream, int ssl_upstream, 3338 char* tls_auth_name, struct sockaddr_storage* addr, socklen_t addrlen, 3339 uint8_t* zone, size_t zonelen, struct module_qstate* qstate, 3340 comm_point_callback_type* callback, void* callback_arg, 3341 sldns_buffer* buff, struct module_env* env, int* was_ratelimited) 3342 { 3343 struct serviced_query* sq; 3344 struct service_callback* cb; 3345 struct edns_string_addr* client_string_addr; 3346 struct regional* region; 3347 struct edns_option* backed_up_opt_list = qstate->edns_opts_back_out; 3348 struct edns_option* per_upstream_opt_list = NULL; 3349 time_t timenow = 0; 3350 3351 /* If we have an already populated EDNS option list make a copy since 3352 * we may now add upstream specific EDNS options. */ 3353 /* Use a region that could be attached to a serviced_query, if it needs 3354 * to be created. If an existing one is found then this region will be 3355 * destroyed here. */ 3356 region = alloc_reg_obtain(env->alloc); 3357 if(!region) return NULL; 3358 if(qstate->edns_opts_back_out) { 3359 per_upstream_opt_list = edns_opt_copy_region( 3360 qstate->edns_opts_back_out, region); 3361 if(!per_upstream_opt_list) { 3362 alloc_reg_release(env->alloc, region); 3363 return NULL; 3364 } 3365 qstate->edns_opts_back_out = per_upstream_opt_list; 3366 } 3367 3368 if(!inplace_cb_query_call(env, qinfo, flags, addr, addrlen, zone, 3369 zonelen, qstate, region)) { 3370 alloc_reg_release(env->alloc, region); 3371 return NULL; 3372 } 3373 /* Restore the option list; we can explicitly use the copied one from 3374 * now on. */ 3375 per_upstream_opt_list = qstate->edns_opts_back_out; 3376 qstate->edns_opts_back_out = backed_up_opt_list; 3377 3378 if((client_string_addr = edns_string_addr_lookup( 3379 &env->edns_strings->client_strings, addr, addrlen))) { 3380 edns_opt_list_append(&per_upstream_opt_list, 3381 env->edns_strings->client_string_opcode, 3382 client_string_addr->string_len, 3383 client_string_addr->string, region); 3384 } 3385 3386 serviced_gen_query(buff, qinfo->qname, qinfo->qname_len, qinfo->qtype, 3387 qinfo->qclass, flags); 3388 sq = lookup_serviced(outnet, buff, dnssec, addr, addrlen, 3389 per_upstream_opt_list); 3390 if(!sq) { 3391 /* Check ratelimit only for new serviced_query */ 3392 if(check_ratelimit) { 3393 timenow = *env->now; 3394 if(!infra_ratelimit_inc(env->infra_cache, zone, 3395 zonelen, timenow, env->cfg->ratelimit_backoff, 3396 &qstate->qinfo, qstate->reply)) { 3397 /* Can we pass through with slip factor? */ 3398 if(env->cfg->ratelimit_factor == 0 || 3399 ub_random_max(env->rnd, 3400 env->cfg->ratelimit_factor) != 1) { 3401 *was_ratelimited = 1; 3402 alloc_reg_release(env->alloc, region); 3403 return NULL; 3404 } 3405 log_nametypeclass(VERB_ALGO, 3406 "ratelimit allowed through for " 3407 "delegation point", zone, 3408 LDNS_RR_TYPE_NS, LDNS_RR_CLASS_IN); 3409 } 3410 } 3411 /* make new serviced query entry */ 3412 sq = serviced_create(outnet, buff, dnssec, want_dnssec, nocaps, 3413 tcp_upstream, ssl_upstream, tls_auth_name, addr, 3414 addrlen, zone, zonelen, (int)qinfo->qtype, 3415 per_upstream_opt_list, 3416 ( ssl_upstream && env->cfg->pad_queries 3417 ? env->cfg->pad_queries_block_size : 0 ), 3418 env->alloc, region); 3419 if(!sq) { 3420 if(check_ratelimit) { 3421 infra_ratelimit_dec(env->infra_cache, 3422 zone, zonelen, timenow); 3423 } 3424 alloc_reg_release(env->alloc, region); 3425 return NULL; 3426 } 3427 if(!(cb = (struct service_callback*)regional_alloc( 3428 sq->region, sizeof(*cb)))) { 3429 if(check_ratelimit) { 3430 infra_ratelimit_dec(env->infra_cache, 3431 zone, zonelen, timenow); 3432 } 3433 (void)rbtree_delete(outnet->serviced, sq); 3434 serviced_node_del(&sq->node, NULL); 3435 return NULL; 3436 } 3437 /* No network action at this point; it will be invoked with the 3438 * serviced_query timer instead to run outside of the mesh. */ 3439 } else { 3440 /* We don't need this region anymore. */ 3441 alloc_reg_release(env->alloc, region); 3442 /* duplicate entries are included in the callback list, because 3443 * there is a counterpart registration by our caller that needs 3444 * to be doubly-removed (with callbacks perhaps). */ 3445 if(!(cb = (struct service_callback*)regional_alloc( 3446 sq->region, sizeof(*cb)))) { 3447 return NULL; 3448 } 3449 } 3450 /* add callback to list of callbacks */ 3451 cb->cb = callback; 3452 cb->cb_arg = callback_arg; 3453 cb->next = sq->cblist; 3454 sq->cblist = cb; 3455 return sq; 3456 } 3457 3458 /** remove callback from list */ 3459 static void 3460 callback_list_remove(struct serviced_query* sq, void* cb_arg) 3461 { 3462 struct service_callback** pp = &sq->cblist; 3463 while(*pp) { 3464 if((*pp)->cb_arg == cb_arg) { 3465 struct service_callback* del = *pp; 3466 *pp = del->next; 3467 return; 3468 } 3469 pp = &(*pp)->next; 3470 } 3471 } 3472 3473 void outnet_serviced_query_stop(struct serviced_query* sq, void* cb_arg) 3474 { 3475 if(!sq) 3476 return; 3477 callback_list_remove(sq, cb_arg); 3478 /* if callbacks() routine scheduled deletion, let it do that */ 3479 if(!sq->cblist && !sq->busy && !sq->to_be_deleted) { 3480 (void)rbtree_delete(sq->outnet->serviced, sq); 3481 serviced_delete(sq); 3482 } 3483 } 3484 3485 /** create fd to send to this destination */ 3486 static int 3487 fd_for_dest(struct outside_network* outnet, struct sockaddr_storage* to_addr, 3488 socklen_t to_addrlen) 3489 { 3490 struct sockaddr_storage* addr; 3491 socklen_t addrlen; 3492 int i, try, pnum, dscp; 3493 struct port_if* pif; 3494 3495 /* create fd */ 3496 dscp = outnet->ip_dscp; 3497 for(try = 0; try<1000; try++) { 3498 int port = 0; 3499 int freebind = 0; 3500 int noproto = 0; 3501 int inuse = 0; 3502 int fd = -1; 3503 3504 /* select interface */ 3505 if(addr_is_ip6(to_addr, to_addrlen)) { 3506 if(outnet->num_ip6 == 0) { 3507 char to[64]; 3508 addr_to_str(to_addr, to_addrlen, to, sizeof(to)); 3509 verbose(VERB_QUERY, "need ipv6 to send, but no ipv6 outgoing interfaces, for %s", to); 3510 return -1; 3511 } 3512 i = ub_random_max(outnet->rnd, outnet->num_ip6); 3513 pif = &outnet->ip6_ifs[i]; 3514 } else { 3515 if(outnet->num_ip4 == 0) { 3516 char to[64]; 3517 addr_to_str(to_addr, to_addrlen, to, sizeof(to)); 3518 verbose(VERB_QUERY, "need ipv4 to send, but no ipv4 outgoing interfaces, for %s", to); 3519 return -1; 3520 } 3521 i = ub_random_max(outnet->rnd, outnet->num_ip4); 3522 pif = &outnet->ip4_ifs[i]; 3523 } 3524 addr = &pif->addr; 3525 addrlen = pif->addrlen; 3526 #ifndef DISABLE_EXPLICIT_PORT_RANDOMISATION 3527 pnum = ub_random_max(outnet->rnd, pif->avail_total); 3528 if(pnum < pif->inuse) { 3529 /* port already open */ 3530 port = pif->out[pnum]->number; 3531 } else { 3532 /* unused ports in start part of array */ 3533 port = pif->avail_ports[pnum - pif->inuse]; 3534 } 3535 #else 3536 pnum = port = 0; 3537 #endif 3538 if(addr_is_ip6(to_addr, to_addrlen)) { 3539 struct sockaddr_in6 sa = *(struct sockaddr_in6*)addr; 3540 sa.sin6_port = (in_port_t)htons((uint16_t)port); 3541 fd = create_udp_sock(AF_INET6, SOCK_DGRAM, 3542 (struct sockaddr*)&sa, addrlen, 1, &inuse, &noproto, 3543 0, 0, 0, NULL, 0, freebind, 0, dscp); 3544 } else { 3545 struct sockaddr_in* sa = (struct sockaddr_in*)addr; 3546 sa->sin_port = (in_port_t)htons((uint16_t)port); 3547 fd = create_udp_sock(AF_INET, SOCK_DGRAM, 3548 (struct sockaddr*)addr, addrlen, 1, &inuse, &noproto, 3549 0, 0, 0, NULL, 0, freebind, 0, dscp); 3550 } 3551 if(fd != -1) { 3552 return fd; 3553 } 3554 if(!inuse) { 3555 return -1; 3556 } 3557 } 3558 /* too many tries */ 3559 log_err("cannot send probe, ports are in use"); 3560 return -1; 3561 } 3562 3563 struct comm_point* 3564 outnet_comm_point_for_udp(struct outside_network* outnet, 3565 comm_point_callback_type* cb, void* cb_arg, 3566 struct sockaddr_storage* to_addr, socklen_t to_addrlen) 3567 { 3568 struct comm_point* cp; 3569 int fd = fd_for_dest(outnet, to_addr, to_addrlen); 3570 if(fd == -1) { 3571 return NULL; 3572 } 3573 cp = comm_point_create_udp(outnet->base, fd, outnet->udp_buff, 3574 cb, cb_arg, NULL); 3575 if(!cp) { 3576 log_err("malloc failure"); 3577 close(fd); 3578 return NULL; 3579 } 3580 return cp; 3581 } 3582 3583 /** setup SSL for comm point */ 3584 static int 3585 setup_comm_ssl(struct comm_point* cp, struct outside_network* outnet, 3586 int fd, char* host) 3587 { 3588 cp->ssl = outgoing_ssl_fd(outnet->sslctx, fd); 3589 if(!cp->ssl) { 3590 log_err("cannot create SSL object"); 3591 return 0; 3592 } 3593 #ifdef USE_WINSOCK 3594 comm_point_tcp_win_bio_cb(cp, cp->ssl); 3595 #endif 3596 cp->ssl_shake_state = comm_ssl_shake_write; 3597 /* https verification */ 3598 #ifdef HAVE_SSL 3599 if(outnet->tls_use_sni) { 3600 (void)SSL_set_tlsext_host_name(cp->ssl, host); 3601 } 3602 #endif 3603 #ifdef HAVE_SSL_SET1_HOST 3604 if((SSL_CTX_get_verify_mode(outnet->sslctx)&SSL_VERIFY_PEER)) { 3605 /* because we set SSL_VERIFY_PEER, in netevent in 3606 * ssl_handshake, it'll check if the certificate 3607 * verification has succeeded */ 3608 /* SSL_VERIFY_PEER is set on the sslctx */ 3609 /* and the certificates to verify with are loaded into 3610 * it with SSL_load_verify_locations or 3611 * SSL_CTX_set_default_verify_paths */ 3612 /* setting the hostname makes openssl verify the 3613 * host name in the x509 certificate in the 3614 * SSL connection*/ 3615 if(!SSL_set1_host(cp->ssl, host)) { 3616 log_err("SSL_set1_host failed"); 3617 return 0; 3618 } 3619 } 3620 #elif defined(HAVE_X509_VERIFY_PARAM_SET1_HOST) 3621 /* openssl 1.0.2 has this function that can be used for 3622 * set1_host like verification */ 3623 if((SSL_CTX_get_verify_mode(outnet->sslctx)&SSL_VERIFY_PEER)) { 3624 X509_VERIFY_PARAM* param = SSL_get0_param(cp->ssl); 3625 # ifdef X509_CHECK_FLAG_NO_PARTIAL_WILDCARDS 3626 X509_VERIFY_PARAM_set_hostflags(param, X509_CHECK_FLAG_NO_PARTIAL_WILDCARDS); 3627 # endif 3628 if(!X509_VERIFY_PARAM_set1_host(param, host, strlen(host))) { 3629 log_err("X509_VERIFY_PARAM_set1_host failed"); 3630 return 0; 3631 } 3632 } 3633 #else 3634 (void)host; 3635 #endif /* HAVE_SSL_SET1_HOST */ 3636 return 1; 3637 } 3638 3639 struct comm_point* 3640 outnet_comm_point_for_tcp(struct outside_network* outnet, 3641 comm_point_callback_type* cb, void* cb_arg, 3642 struct sockaddr_storage* to_addr, socklen_t to_addrlen, 3643 sldns_buffer* query, int timeout, int ssl, char* host) 3644 { 3645 struct comm_point* cp; 3646 int fd = outnet_get_tcp_fd(to_addr, to_addrlen, outnet->tcp_mss, outnet->ip_dscp); 3647 if(fd == -1) { 3648 return 0; 3649 } 3650 fd_set_nonblock(fd); 3651 if(!outnet_tcp_connect(fd, to_addr, to_addrlen)) { 3652 /* outnet_tcp_connect has closed fd on error for us */ 3653 return 0; 3654 } 3655 cp = comm_point_create_tcp_out(outnet->base, 65552, cb, cb_arg); 3656 if(!cp) { 3657 log_err("malloc failure"); 3658 close(fd); 3659 return 0; 3660 } 3661 cp->repinfo.addrlen = to_addrlen; 3662 memcpy(&cp->repinfo.addr, to_addr, to_addrlen); 3663 3664 /* setup for SSL (if needed) */ 3665 if(ssl) { 3666 if(!setup_comm_ssl(cp, outnet, fd, host)) { 3667 log_err("cannot setup XoT"); 3668 comm_point_delete(cp); 3669 return NULL; 3670 } 3671 } 3672 3673 /* set timeout on TCP connection */ 3674 comm_point_start_listening(cp, fd, timeout); 3675 /* copy scratch buffer to cp->buffer */ 3676 sldns_buffer_copy(cp->buffer, query); 3677 return cp; 3678 } 3679 3680 /** setup the User-Agent HTTP header based on http-user-agent configuration */ 3681 static void 3682 setup_http_user_agent(sldns_buffer* buf, struct config_file* cfg) 3683 { 3684 if(cfg->hide_http_user_agent) return; 3685 if(cfg->http_user_agent==NULL || cfg->http_user_agent[0] == 0) { 3686 sldns_buffer_printf(buf, "User-Agent: %s/%s\r\n", PACKAGE_NAME, 3687 PACKAGE_VERSION); 3688 } else { 3689 sldns_buffer_printf(buf, "User-Agent: %s\r\n", cfg->http_user_agent); 3690 } 3691 } 3692 3693 /** setup http request headers in buffer for sending query to destination */ 3694 static int 3695 setup_http_request(sldns_buffer* buf, char* host, char* path, 3696 struct config_file* cfg) 3697 { 3698 sldns_buffer_clear(buf); 3699 sldns_buffer_printf(buf, "GET /%s HTTP/1.1\r\n", path); 3700 sldns_buffer_printf(buf, "Host: %s\r\n", host); 3701 setup_http_user_agent(buf, cfg); 3702 /* We do not really do multiple queries per connection, 3703 * but this header setting is also not needed. 3704 * sldns_buffer_printf(buf, "Connection: close\r\n") */ 3705 sldns_buffer_printf(buf, "\r\n"); 3706 if(sldns_buffer_position(buf)+10 > sldns_buffer_capacity(buf)) 3707 return 0; /* somehow buffer too short, but it is about 60K 3708 and the request is only a couple bytes long. */ 3709 sldns_buffer_flip(buf); 3710 return 1; 3711 } 3712 3713 struct comm_point* 3714 outnet_comm_point_for_http(struct outside_network* outnet, 3715 comm_point_callback_type* cb, void* cb_arg, 3716 struct sockaddr_storage* to_addr, socklen_t to_addrlen, int timeout, 3717 int ssl, char* host, char* path, struct config_file* cfg) 3718 { 3719 /* cp calls cb with err=NETEVENT_DONE when transfer is done */ 3720 struct comm_point* cp; 3721 int fd = outnet_get_tcp_fd(to_addr, to_addrlen, outnet->tcp_mss, outnet->ip_dscp); 3722 if(fd == -1) { 3723 return 0; 3724 } 3725 fd_set_nonblock(fd); 3726 if(!outnet_tcp_connect(fd, to_addr, to_addrlen)) { 3727 /* outnet_tcp_connect has closed fd on error for us */ 3728 return 0; 3729 } 3730 cp = comm_point_create_http_out(outnet->base, 65552, cb, cb_arg, 3731 outnet->udp_buff); 3732 if(!cp) { 3733 log_err("malloc failure"); 3734 close(fd); 3735 return 0; 3736 } 3737 cp->repinfo.addrlen = to_addrlen; 3738 memcpy(&cp->repinfo.addr, to_addr, to_addrlen); 3739 3740 /* setup for SSL (if needed) */ 3741 if(ssl) { 3742 if(!setup_comm_ssl(cp, outnet, fd, host)) { 3743 log_err("cannot setup https"); 3744 comm_point_delete(cp); 3745 return NULL; 3746 } 3747 } 3748 3749 /* set timeout on TCP connection */ 3750 comm_point_start_listening(cp, fd, timeout); 3751 3752 /* setup http request in cp->buffer */ 3753 if(!setup_http_request(cp->buffer, host, path, cfg)) { 3754 log_err("error setting up http request"); 3755 comm_point_delete(cp); 3756 return NULL; 3757 } 3758 return cp; 3759 } 3760 3761 /** get memory used by waiting tcp entry (in use or not) */ 3762 static size_t 3763 waiting_tcp_get_mem(struct waiting_tcp* w) 3764 { 3765 size_t s; 3766 if(!w) return 0; 3767 s = sizeof(*w) + w->pkt_len; 3768 if(w->timer) 3769 s += comm_timer_get_mem(w->timer); 3770 return s; 3771 } 3772 3773 /** get memory used by port if */ 3774 static size_t 3775 if_get_mem(struct port_if* pif) 3776 { 3777 size_t s; 3778 int i; 3779 s = sizeof(*pif) + 3780 #ifndef DISABLE_EXPLICIT_PORT_RANDOMISATION 3781 sizeof(int)*pif->avail_total + 3782 #endif 3783 sizeof(struct port_comm*)*pif->maxout; 3784 for(i=0; i<pif->inuse; i++) 3785 s += sizeof(*pif->out[i]) + 3786 comm_point_get_mem(pif->out[i]->cp); 3787 return s; 3788 } 3789 3790 /** get memory used by waiting udp */ 3791 static size_t 3792 waiting_udp_get_mem(struct pending* w) 3793 { 3794 size_t s; 3795 s = sizeof(*w) + comm_timer_get_mem(w->timer) + w->pkt_len; 3796 return s; 3797 } 3798 3799 size_t outnet_get_mem(struct outside_network* outnet) 3800 { 3801 size_t i; 3802 int k; 3803 struct waiting_tcp* w; 3804 struct pending* u; 3805 struct serviced_query* sq; 3806 struct service_callback* sb; 3807 struct port_comm* pc; 3808 size_t s = sizeof(*outnet) + sizeof(*outnet->base) + 3809 sizeof(*outnet->udp_buff) + 3810 sldns_buffer_capacity(outnet->udp_buff); 3811 /* second buffer is not ours */ 3812 for(pc = outnet->unused_fds; pc; pc = pc->next) { 3813 s += sizeof(*pc) + comm_point_get_mem(pc->cp); 3814 } 3815 for(k=0; k<outnet->num_ip4; k++) 3816 s += if_get_mem(&outnet->ip4_ifs[k]); 3817 for(k=0; k<outnet->num_ip6; k++) 3818 s += if_get_mem(&outnet->ip6_ifs[k]); 3819 for(u=outnet->udp_wait_first; u; u=u->next_waiting) 3820 s += waiting_udp_get_mem(u); 3821 3822 s += sizeof(struct pending_tcp*)*outnet->num_tcp; 3823 for(i=0; i<outnet->num_tcp; i++) { 3824 s += sizeof(struct pending_tcp); 3825 s += comm_point_get_mem(outnet->tcp_conns[i]->c); 3826 if(outnet->tcp_conns[i]->query) 3827 s += waiting_tcp_get_mem(outnet->tcp_conns[i]->query); 3828 } 3829 for(w=outnet->tcp_wait_first; w; w = w->next_waiting) 3830 s += waiting_tcp_get_mem(w); 3831 s += sizeof(*outnet->pending); 3832 s += (sizeof(struct pending) + comm_timer_get_mem(NULL)) * 3833 outnet->pending->count; 3834 s += sizeof(*outnet->serviced); 3835 s += outnet->svcd_overhead; 3836 RBTREE_FOR(sq, struct serviced_query*, outnet->serviced) { 3837 s += sizeof(*sq) + sq->qbuflen; 3838 for(sb = sq->cblist; sb; sb = sb->next) 3839 s += sizeof(*sb); 3840 } 3841 return s; 3842 } 3843 3844 size_t 3845 serviced_get_mem(struct serviced_query* sq) 3846 { 3847 struct service_callback* sb; 3848 size_t s; 3849 s = sizeof(*sq) + sq->qbuflen; 3850 for(sb = sq->cblist; sb; sb = sb->next) 3851 s += sizeof(*sb); 3852 if(sq->status == serviced_query_UDP_EDNS || 3853 sq->status == serviced_query_UDP || 3854 sq->status == serviced_query_UDP_EDNS_FRAG || 3855 sq->status == serviced_query_UDP_EDNS_fallback) { 3856 s += sizeof(struct pending); 3857 s += comm_timer_get_mem(NULL); 3858 } else { 3859 /* does not have size of the pkt pointer */ 3860 /* always has a timer except on malloc failures */ 3861 3862 /* these sizes are part of the main outside network mem */ 3863 /* 3864 s += sizeof(struct waiting_tcp); 3865 s += comm_timer_get_mem(NULL); 3866 */ 3867 } 3868 return s; 3869 } 3870 3871