xref: /freebsd/contrib/unbound/services/mesh.c (revision e4c66ddabdb470bab319705c1834a4867c508a43)
1 /*
2  * services/mesh.c - deal with mesh of query states and handle events for that.
3  *
4  * Copyright (c) 2007, NLnet Labs. All rights reserved.
5  *
6  * This software is open source.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * Redistributions of source code must retain the above copyright notice,
13  * this list of conditions and the following disclaimer.
14  *
15  * Redistributions in binary form must reproduce the above copyright notice,
16  * this list of conditions and the following disclaimer in the documentation
17  * and/or other materials provided with the distribution.
18  *
19  * Neither the name of the NLNET LABS nor the names of its contributors may
20  * be used to endorse or promote products derived from this software without
21  * specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
27  * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
28  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
29  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
31  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
32  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 /**
37  * \file
38  *
39  * This file contains functions to assist in dealing with a mesh of
40  * query states. This mesh is supposed to be thread-specific.
41  * It consists of query states (per qname, qtype, qclass) and connections
42  * between query states and the super and subquery states, and replies to
43  * send back to clients.
44  */
45 #include "config.h"
46 #include "services/mesh.h"
47 #include "services/outbound_list.h"
48 #include "services/cache/dns.h"
49 #include "util/log.h"
50 #include "util/net_help.h"
51 #include "util/module.h"
52 #include "util/regional.h"
53 #include "util/data/msgencode.h"
54 #include "util/timehist.h"
55 #include "util/fptr_wlist.h"
56 #include "util/alloc.h"
57 #include "util/config_file.h"
58 #include "sldns/sbuffer.h"
59 #include "sldns/wire2str.h"
60 #include "services/localzone.h"
61 #include "util/data/dname.h"
62 #include "respip/respip.h"
63 
64 /** subtract timers and the values do not overflow or become negative */
65 static void
66 timeval_subtract(struct timeval* d, const struct timeval* end, const struct timeval* start)
67 {
68 #ifndef S_SPLINT_S
69 	time_t end_usec = end->tv_usec;
70 	d->tv_sec = end->tv_sec - start->tv_sec;
71 	if(end_usec < start->tv_usec) {
72 		end_usec += 1000000;
73 		d->tv_sec--;
74 	}
75 	d->tv_usec = end_usec - start->tv_usec;
76 #endif
77 }
78 
79 /** add timers and the values do not overflow or become negative */
80 static void
81 timeval_add(struct timeval* d, const struct timeval* add)
82 {
83 #ifndef S_SPLINT_S
84 	d->tv_sec += add->tv_sec;
85 	d->tv_usec += add->tv_usec;
86 	if(d->tv_usec > 1000000 ) {
87 		d->tv_usec -= 1000000;
88 		d->tv_sec++;
89 	}
90 #endif
91 }
92 
93 /** divide sum of timers to get average */
94 static void
95 timeval_divide(struct timeval* avg, const struct timeval* sum, size_t d)
96 {
97 #ifndef S_SPLINT_S
98 	size_t leftover;
99 	if(d == 0) {
100 		avg->tv_sec = 0;
101 		avg->tv_usec = 0;
102 		return;
103 	}
104 	avg->tv_sec = sum->tv_sec / d;
105 	avg->tv_usec = sum->tv_usec / d;
106 	/* handle fraction from seconds divide */
107 	leftover = sum->tv_sec - avg->tv_sec*d;
108 	avg->tv_usec += (leftover*1000000)/d;
109 #endif
110 }
111 
112 /** histogram compare of time values */
113 static int
114 timeval_smaller(const struct timeval* x, const struct timeval* y)
115 {
116 #ifndef S_SPLINT_S
117 	if(x->tv_sec < y->tv_sec)
118 		return 1;
119 	else if(x->tv_sec == y->tv_sec) {
120 		if(x->tv_usec <= y->tv_usec)
121 			return 1;
122 		else	return 0;
123 	}
124 	else	return 0;
125 #endif
126 }
127 
128 /*
129  * Compare two response-ip client info entries for the purpose of mesh state
130  * compare.  It returns 0 if ci_a and ci_b are considered equal; otherwise
131  * 1 or -1 (they mean 'ci_a is larger/smaller than ci_b', respectively, but
132  * in practice it should be only used to mean they are different).
133  * We cannot share the mesh state for two queries if different response-ip
134  * actions can apply in the end, even if those queries are otherwise identical.
135  * For this purpose we compare tag lists and tag action lists; they should be
136  * identical to share the same state.
137  * For tag data, we don't look into the data content, as it can be
138  * expensive; unless tag data are not defined for both or they point to the
139  * exact same data in memory (i.e., they come from the same ACL entry), we
140  * consider these data different.
141  * Likewise, if the client info is associated with views, we don't look into
142  * the views.  They are considered different unless they are exactly the same
143  * even if the views only differ in the names.
144  */
145 static int
146 client_info_compare(const struct respip_client_info* ci_a,
147 	const struct respip_client_info* ci_b)
148 {
149 	int cmp;
150 
151 	if(!ci_a && !ci_b)
152 		return 0;
153 	if(ci_a && !ci_b)
154 		return -1;
155 	if(!ci_a && ci_b)
156 		return 1;
157 	if(ci_a->taglen != ci_b->taglen)
158 		return (ci_a->taglen < ci_b->taglen) ? -1 : 1;
159 	cmp = memcmp(ci_a->taglist, ci_b->taglist, ci_a->taglen);
160 	if(cmp != 0)
161 		return cmp;
162 	if(ci_a->tag_actions_size != ci_b->tag_actions_size)
163 		return (ci_a->tag_actions_size < ci_b->tag_actions_size) ?
164 			-1 : 1;
165 	cmp = memcmp(ci_a->tag_actions, ci_b->tag_actions,
166 		ci_a->tag_actions_size);
167 	if(cmp != 0)
168 		return cmp;
169 	if(ci_a->tag_datas != ci_b->tag_datas)
170 		return ci_a->tag_datas < ci_b->tag_datas ? -1 : 1;
171 	if(ci_a->view != ci_b->view)
172 		return ci_a->view < ci_b->view ? -1 : 1;
173 	/* For the unbound daemon these should be non-NULL and identical,
174 	 * but we check that just in case. */
175 	if(ci_a->respip_set != ci_b->respip_set)
176 		return ci_a->respip_set < ci_b->respip_set ? -1 : 1;
177 	return 0;
178 }
179 
180 int
181 mesh_state_compare(const void* ap, const void* bp)
182 {
183 	struct mesh_state* a = (struct mesh_state*)ap;
184 	struct mesh_state* b = (struct mesh_state*)bp;
185 	int cmp;
186 
187 	if(a->unique < b->unique)
188 		return -1;
189 	if(a->unique > b->unique)
190 		return 1;
191 
192 	if(a->s.is_priming && !b->s.is_priming)
193 		return -1;
194 	if(!a->s.is_priming && b->s.is_priming)
195 		return 1;
196 
197 	if(a->s.is_valrec && !b->s.is_valrec)
198 		return -1;
199 	if(!a->s.is_valrec && b->s.is_valrec)
200 		return 1;
201 
202 	if((a->s.query_flags&BIT_RD) && !(b->s.query_flags&BIT_RD))
203 		return -1;
204 	if(!(a->s.query_flags&BIT_RD) && (b->s.query_flags&BIT_RD))
205 		return 1;
206 
207 	if((a->s.query_flags&BIT_CD) && !(b->s.query_flags&BIT_CD))
208 		return -1;
209 	if(!(a->s.query_flags&BIT_CD) && (b->s.query_flags&BIT_CD))
210 		return 1;
211 
212 	cmp = query_info_compare(&a->s.qinfo, &b->s.qinfo);
213 	if(cmp != 0)
214 		return cmp;
215 	return client_info_compare(a->s.client_info, b->s.client_info);
216 }
217 
218 int
219 mesh_state_ref_compare(const void* ap, const void* bp)
220 {
221 	struct mesh_state_ref* a = (struct mesh_state_ref*)ap;
222 	struct mesh_state_ref* b = (struct mesh_state_ref*)bp;
223 	return mesh_state_compare(a->s, b->s);
224 }
225 
226 struct mesh_area*
227 mesh_create(struct module_stack* stack, struct module_env* env)
228 {
229 	struct mesh_area* mesh = calloc(1, sizeof(struct mesh_area));
230 	if(!mesh) {
231 		log_err("mesh area alloc: out of memory");
232 		return NULL;
233 	}
234 	mesh->histogram = timehist_setup();
235 	mesh->qbuf_bak = sldns_buffer_new(env->cfg->msg_buffer_size);
236 	if(!mesh->histogram || !mesh->qbuf_bak) {
237 		free(mesh);
238 		log_err("mesh area alloc: out of memory");
239 		return NULL;
240 	}
241 	mesh->mods = *stack;
242 	mesh->env = env;
243 	rbtree_init(&mesh->run, &mesh_state_compare);
244 	rbtree_init(&mesh->all, &mesh_state_compare);
245 	mesh->num_reply_addrs = 0;
246 	mesh->num_reply_states = 0;
247 	mesh->num_detached_states = 0;
248 	mesh->num_forever_states = 0;
249 	mesh->stats_jostled = 0;
250 	mesh->stats_dropped = 0;
251 	mesh->max_reply_states = env->cfg->num_queries_per_thread;
252 	mesh->max_forever_states = (mesh->max_reply_states+1)/2;
253 #ifndef S_SPLINT_S
254 	mesh->jostle_max.tv_sec = (time_t)(env->cfg->jostle_time / 1000);
255 	mesh->jostle_max.tv_usec = (time_t)((env->cfg->jostle_time % 1000)
256 		*1000);
257 #endif
258 	return mesh;
259 }
260 
261 /** help mesh delete delete mesh states */
262 static void
263 mesh_delete_helper(rbnode_type* n)
264 {
265 	struct mesh_state* mstate = (struct mesh_state*)n->key;
266 	/* perform a full delete, not only 'cleanup' routine,
267 	 * because other callbacks expect a clean state in the mesh.
268 	 * For 're-entrant' calls */
269 	mesh_state_delete(&mstate->s);
270 	/* but because these delete the items from the tree, postorder
271 	 * traversal and rbtree rebalancing do not work together */
272 }
273 
274 void
275 mesh_delete(struct mesh_area* mesh)
276 {
277 	if(!mesh)
278 		return;
279 	/* free all query states */
280 	while(mesh->all.count)
281 		mesh_delete_helper(mesh->all.root);
282 	timehist_delete(mesh->histogram);
283 	sldns_buffer_free(mesh->qbuf_bak);
284 	free(mesh);
285 }
286 
287 void
288 mesh_delete_all(struct mesh_area* mesh)
289 {
290 	/* free all query states */
291 	while(mesh->all.count)
292 		mesh_delete_helper(mesh->all.root);
293 	mesh->stats_dropped += mesh->num_reply_addrs;
294 	/* clear mesh area references */
295 	rbtree_init(&mesh->run, &mesh_state_compare);
296 	rbtree_init(&mesh->all, &mesh_state_compare);
297 	mesh->num_reply_addrs = 0;
298 	mesh->num_reply_states = 0;
299 	mesh->num_detached_states = 0;
300 	mesh->num_forever_states = 0;
301 	mesh->forever_first = NULL;
302 	mesh->forever_last = NULL;
303 	mesh->jostle_first = NULL;
304 	mesh->jostle_last = NULL;
305 }
306 
307 int mesh_make_new_space(struct mesh_area* mesh, sldns_buffer* qbuf)
308 {
309 	struct mesh_state* m = mesh->jostle_first;
310 	/* free space is available */
311 	if(mesh->num_reply_states < mesh->max_reply_states)
312 		return 1;
313 	/* try to kick out a jostle-list item */
314 	if(m && m->reply_list && m->list_select == mesh_jostle_list) {
315 		/* how old is it? */
316 		struct timeval age;
317 		timeval_subtract(&age, mesh->env->now_tv,
318 			&m->reply_list->start_time);
319 		if(timeval_smaller(&mesh->jostle_max, &age)) {
320 			/* its a goner */
321 			log_nametypeclass(VERB_ALGO, "query jostled out to "
322 				"make space for a new one",
323 				m->s.qinfo.qname, m->s.qinfo.qtype,
324 				m->s.qinfo.qclass);
325 			/* backup the query */
326 			if(qbuf) sldns_buffer_copy(mesh->qbuf_bak, qbuf);
327 			/* notify supers */
328 			if(m->super_set.count > 0) {
329 				verbose(VERB_ALGO, "notify supers of failure");
330 				m->s.return_msg = NULL;
331 				m->s.return_rcode = LDNS_RCODE_SERVFAIL;
332 				mesh_walk_supers(mesh, m);
333 			}
334 			mesh->stats_jostled ++;
335 			mesh_state_delete(&m->s);
336 			/* restore the query - note that the qinfo ptr to
337 			 * the querybuffer is then correct again. */
338 			if(qbuf) sldns_buffer_copy(qbuf, mesh->qbuf_bak);
339 			return 1;
340 		}
341 	}
342 	/* no space for new item */
343 	return 0;
344 }
345 
346 void mesh_new_client(struct mesh_area* mesh, struct query_info* qinfo,
347 	struct respip_client_info* cinfo, uint16_t qflags,
348 	struct edns_data* edns, struct comm_reply* rep, uint16_t qid)
349 {
350 	struct mesh_state* s = NULL;
351 	int unique = unique_mesh_state(edns->opt_list, mesh->env);
352 	int was_detached = 0;
353 	int was_noreply = 0;
354 	int added = 0;
355 	if(!unique)
356 		s = mesh_area_find(mesh, cinfo, qinfo, qflags&(BIT_RD|BIT_CD), 0, 0);
357 	/* does this create a new reply state? */
358 	if(!s || s->list_select == mesh_no_list) {
359 		if(!mesh_make_new_space(mesh, rep->c->buffer)) {
360 			verbose(VERB_ALGO, "Too many queries. dropping "
361 				"incoming query.");
362 			comm_point_drop_reply(rep);
363 			mesh->stats_dropped ++;
364 			return;
365 		}
366 		/* for this new reply state, the reply address is free,
367 		 * so the limit of reply addresses does not stop reply states*/
368 	} else {
369 		/* protect our memory usage from storing reply addresses */
370 		if(mesh->num_reply_addrs > mesh->max_reply_states*16) {
371 			verbose(VERB_ALGO, "Too many requests queued. "
372 				"dropping incoming query.");
373 			mesh->stats_dropped++;
374 			comm_point_drop_reply(rep);
375 			return;
376 		}
377 	}
378 	/* see if it already exists, if not, create one */
379 	if(!s) {
380 #ifdef UNBOUND_DEBUG
381 		struct rbnode_type* n;
382 #endif
383 		s = mesh_state_create(mesh->env, qinfo, cinfo,
384 			qflags&(BIT_RD|BIT_CD), 0, 0);
385 		if(!s) {
386 			log_err("mesh_state_create: out of memory; SERVFAIL");
387 			if(!inplace_cb_reply_servfail_call(mesh->env, qinfo, NULL, NULL,
388 				LDNS_RCODE_SERVFAIL, edns, mesh->env->scratch))
389 					edns->opt_list = NULL;
390 			error_encode(rep->c->buffer, LDNS_RCODE_SERVFAIL,
391 				qinfo, qid, qflags, edns);
392 			comm_point_send_reply(rep);
393 			return;
394 		}
395 		if(unique)
396 			mesh_state_make_unique(s);
397 		/* copy the edns options we got from the front */
398 		if(edns->opt_list) {
399 			s->s.edns_opts_front_in = edns_opt_copy_region(edns->opt_list,
400 				s->s.region);
401 			if(!s->s.edns_opts_front_in) {
402 				log_err("mesh_state_create: out of memory; SERVFAIL");
403 				if(!inplace_cb_reply_servfail_call(mesh->env, qinfo, NULL,
404 					NULL, LDNS_RCODE_SERVFAIL, edns, mesh->env->scratch))
405 						edns->opt_list = NULL;
406 				error_encode(rep->c->buffer, LDNS_RCODE_SERVFAIL,
407 					qinfo, qid, qflags, edns);
408 				comm_point_send_reply(rep);
409 				return;
410 			}
411 		}
412 
413 #ifdef UNBOUND_DEBUG
414 		n =
415 #else
416 		(void)
417 #endif
418 		rbtree_insert(&mesh->all, &s->node);
419 		log_assert(n != NULL);
420 		/* set detached (it is now) */
421 		mesh->num_detached_states++;
422 		added = 1;
423 	}
424 	if(!s->reply_list && !s->cb_list && s->super_set.count == 0)
425 		was_detached = 1;
426 	if(!s->reply_list && !s->cb_list)
427 		was_noreply = 1;
428 	/* add reply to s */
429 	if(!mesh_state_add_reply(s, edns, rep, qid, qflags, qinfo)) {
430 			log_err("mesh_new_client: out of memory; SERVFAIL");
431 			if(!inplace_cb_reply_servfail_call(mesh->env, qinfo, &s->s,
432 				NULL, LDNS_RCODE_SERVFAIL, edns, mesh->env->scratch))
433 					edns->opt_list = NULL;
434 			error_encode(rep->c->buffer, LDNS_RCODE_SERVFAIL,
435 				qinfo, qid, qflags, edns);
436 			comm_point_send_reply(rep);
437 			if(added)
438 				mesh_state_delete(&s->s);
439 			return;
440 	}
441 	/* update statistics */
442 	if(was_detached) {
443 		log_assert(mesh->num_detached_states > 0);
444 		mesh->num_detached_states--;
445 	}
446 	if(was_noreply) {
447 		mesh->num_reply_states ++;
448 	}
449 	mesh->num_reply_addrs++;
450 	if(s->list_select == mesh_no_list) {
451 		/* move to either the forever or the jostle_list */
452 		if(mesh->num_forever_states < mesh->max_forever_states) {
453 			mesh->num_forever_states ++;
454 			mesh_list_insert(s, &mesh->forever_first,
455 				&mesh->forever_last);
456 			s->list_select = mesh_forever_list;
457 		} else {
458 			mesh_list_insert(s, &mesh->jostle_first,
459 				&mesh->jostle_last);
460 			s->list_select = mesh_jostle_list;
461 		}
462 	}
463 	if(added)
464 		mesh_run(mesh, s, module_event_new, NULL);
465 }
466 
467 int
468 mesh_new_callback(struct mesh_area* mesh, struct query_info* qinfo,
469 	uint16_t qflags, struct edns_data* edns, sldns_buffer* buf,
470 	uint16_t qid, mesh_cb_func_type cb, void* cb_arg)
471 {
472 	struct mesh_state* s = NULL;
473 	int unique = unique_mesh_state(edns->opt_list, mesh->env);
474 	int was_detached = 0;
475 	int was_noreply = 0;
476 	int added = 0;
477 	if(!unique)
478 		s = mesh_area_find(mesh, NULL, qinfo, qflags&(BIT_RD|BIT_CD), 0, 0);
479 
480 	/* there are no limits on the number of callbacks */
481 
482 	/* see if it already exists, if not, create one */
483 	if(!s) {
484 #ifdef UNBOUND_DEBUG
485 		struct rbnode_type* n;
486 #endif
487 		s = mesh_state_create(mesh->env, qinfo, NULL,
488 			qflags&(BIT_RD|BIT_CD), 0, 0);
489 		if(!s) {
490 			return 0;
491 		}
492 		if(unique)
493 			mesh_state_make_unique(s);
494 		if(edns->opt_list) {
495 			s->s.edns_opts_front_in = edns_opt_copy_region(edns->opt_list,
496 				s->s.region);
497 			if(!s->s.edns_opts_front_in) {
498 				return 0;
499 			}
500 		}
501 #ifdef UNBOUND_DEBUG
502 		n =
503 #else
504 		(void)
505 #endif
506 		rbtree_insert(&mesh->all, &s->node);
507 		log_assert(n != NULL);
508 		/* set detached (it is now) */
509 		mesh->num_detached_states++;
510 		added = 1;
511 	}
512 	if(!s->reply_list && !s->cb_list && s->super_set.count == 0)
513 		was_detached = 1;
514 	if(!s->reply_list && !s->cb_list)
515 		was_noreply = 1;
516 	/* add reply to s */
517 	if(!mesh_state_add_cb(s, edns, buf, cb, cb_arg, qid, qflags)) {
518 			if(added)
519 				mesh_state_delete(&s->s);
520 			return 0;
521 	}
522 	/* update statistics */
523 	if(was_detached) {
524 		log_assert(mesh->num_detached_states > 0);
525 		mesh->num_detached_states--;
526 	}
527 	if(was_noreply) {
528 		mesh->num_reply_states ++;
529 	}
530 	mesh->num_reply_addrs++;
531 	if(added)
532 		mesh_run(mesh, s, module_event_new, NULL);
533 	return 1;
534 }
535 
536 static void mesh_schedule_prefetch(struct mesh_area* mesh,
537 	struct query_info* qinfo, uint16_t qflags, time_t leeway, int run);
538 
539 void mesh_new_prefetch(struct mesh_area* mesh, struct query_info* qinfo,
540         uint16_t qflags, time_t leeway)
541 {
542 	mesh_schedule_prefetch(mesh, qinfo, qflags, leeway, 1);
543 }
544 
545 /* Internal backend routine of mesh_new_prefetch().  It takes one additional
546  * parameter, 'run', which controls whether to run the prefetch state
547  * immediately.  When this function is called internally 'run' could be
548  * 0 (false), in which case the new state is only made runnable so it
549  * will not be run recursively on top of the current state. */
550 static void mesh_schedule_prefetch(struct mesh_area* mesh,
551 	struct query_info* qinfo, uint16_t qflags, time_t leeway, int run)
552 {
553 	struct mesh_state* s = mesh_area_find(mesh, NULL, qinfo,
554 		qflags&(BIT_RD|BIT_CD), 0, 0);
555 #ifdef UNBOUND_DEBUG
556 	struct rbnode_type* n;
557 #endif
558 	/* already exists, and for a different purpose perhaps.
559 	 * if mesh_no_list, keep it that way. */
560 	if(s) {
561 		/* make it ignore the cache from now on */
562 		if(!s->s.blacklist)
563 			sock_list_insert(&s->s.blacklist, NULL, 0, s->s.region);
564 		if(s->s.prefetch_leeway < leeway)
565 			s->s.prefetch_leeway = leeway;
566 		return;
567 	}
568 	if(!mesh_make_new_space(mesh, NULL)) {
569 		verbose(VERB_ALGO, "Too many queries. dropped prefetch.");
570 		mesh->stats_dropped ++;
571 		return;
572 	}
573 
574 	s = mesh_state_create(mesh->env, qinfo, NULL,
575 		qflags&(BIT_RD|BIT_CD), 0, 0);
576 	if(!s) {
577 		log_err("prefetch mesh_state_create: out of memory");
578 		return;
579 	}
580 #ifdef UNBOUND_DEBUG
581 	n =
582 #else
583 	(void)
584 #endif
585 	rbtree_insert(&mesh->all, &s->node);
586 	log_assert(n != NULL);
587 	/* set detached (it is now) */
588 	mesh->num_detached_states++;
589 	/* make it ignore the cache */
590 	sock_list_insert(&s->s.blacklist, NULL, 0, s->s.region);
591 	s->s.prefetch_leeway = leeway;
592 
593 	if(s->list_select == mesh_no_list) {
594 		/* move to either the forever or the jostle_list */
595 		if(mesh->num_forever_states < mesh->max_forever_states) {
596 			mesh->num_forever_states ++;
597 			mesh_list_insert(s, &mesh->forever_first,
598 				&mesh->forever_last);
599 			s->list_select = mesh_forever_list;
600 		} else {
601 			mesh_list_insert(s, &mesh->jostle_first,
602 				&mesh->jostle_last);
603 			s->list_select = mesh_jostle_list;
604 		}
605 	}
606 
607 	if(!run) {
608 #ifdef UNBOUND_DEBUG
609 		n =
610 #else
611 		(void)
612 #endif
613 		rbtree_insert(&mesh->run, &s->run_node);
614 		log_assert(n != NULL);
615 		return;
616 	}
617 
618 	mesh_run(mesh, s, module_event_new, NULL);
619 }
620 
621 void mesh_report_reply(struct mesh_area* mesh, struct outbound_entry* e,
622         struct comm_reply* reply, int what)
623 {
624 	enum module_ev event = module_event_reply;
625 	e->qstate->reply = reply;
626 	if(what != NETEVENT_NOERROR) {
627 		event = module_event_noreply;
628 		if(what == NETEVENT_CAPSFAIL)
629 			event = module_event_capsfail;
630 	}
631 	mesh_run(mesh, e->qstate->mesh_info, event, e);
632 }
633 
634 struct mesh_state*
635 mesh_state_create(struct module_env* env, struct query_info* qinfo,
636 	struct respip_client_info* cinfo, uint16_t qflags, int prime,
637 	int valrec)
638 {
639 	struct regional* region = alloc_reg_obtain(env->alloc);
640 	struct mesh_state* mstate;
641 	int i;
642 	if(!region)
643 		return NULL;
644 	mstate = (struct mesh_state*)regional_alloc(region,
645 		sizeof(struct mesh_state));
646 	if(!mstate) {
647 		alloc_reg_release(env->alloc, region);
648 		return NULL;
649 	}
650 	memset(mstate, 0, sizeof(*mstate));
651 	mstate->node = *RBTREE_NULL;
652 	mstate->run_node = *RBTREE_NULL;
653 	mstate->node.key = mstate;
654 	mstate->run_node.key = mstate;
655 	mstate->reply_list = NULL;
656 	mstate->list_select = mesh_no_list;
657 	mstate->replies_sent = 0;
658 	rbtree_init(&mstate->super_set, &mesh_state_ref_compare);
659 	rbtree_init(&mstate->sub_set, &mesh_state_ref_compare);
660 	mstate->num_activated = 0;
661 	mstate->unique = NULL;
662 	/* init module qstate */
663 	mstate->s.qinfo.qtype = qinfo->qtype;
664 	mstate->s.qinfo.qclass = qinfo->qclass;
665 	mstate->s.qinfo.local_alias = NULL;
666 	mstate->s.qinfo.qname_len = qinfo->qname_len;
667 	mstate->s.qinfo.qname = regional_alloc_init(region, qinfo->qname,
668 		qinfo->qname_len);
669 	if(!mstate->s.qinfo.qname) {
670 		alloc_reg_release(env->alloc, region);
671 		return NULL;
672 	}
673 	if(cinfo) {
674 		mstate->s.client_info = regional_alloc_init(region, cinfo,
675 			sizeof(*cinfo));
676 		if(!mstate->s.client_info) {
677 			alloc_reg_release(env->alloc, region);
678 			return NULL;
679 		}
680 	}
681 	/* remove all weird bits from qflags */
682 	mstate->s.query_flags = (qflags & (BIT_RD|BIT_CD));
683 	mstate->s.is_priming = prime;
684 	mstate->s.is_valrec = valrec;
685 	mstate->s.reply = NULL;
686 	mstate->s.region = region;
687 	mstate->s.curmod = 0;
688 	mstate->s.return_msg = 0;
689 	mstate->s.return_rcode = LDNS_RCODE_NOERROR;
690 	mstate->s.env = env;
691 	mstate->s.mesh_info = mstate;
692 	mstate->s.prefetch_leeway = 0;
693 	mstate->s.no_cache_lookup = 0;
694 	mstate->s.no_cache_store = 0;
695 	mstate->s.need_refetch = 0;
696 
697 	/* init modules */
698 	for(i=0; i<env->mesh->mods.num; i++) {
699 		mstate->s.minfo[i] = NULL;
700 		mstate->s.ext_state[i] = module_state_initial;
701 	}
702 	/* init edns option lists */
703 	mstate->s.edns_opts_front_in = NULL;
704 	mstate->s.edns_opts_back_out = NULL;
705 	mstate->s.edns_opts_back_in = NULL;
706 	mstate->s.edns_opts_front_out = NULL;
707 
708 	return mstate;
709 }
710 
711 int
712 mesh_state_is_unique(struct mesh_state* mstate)
713 {
714 	return mstate->unique != NULL;
715 }
716 
717 void
718 mesh_state_make_unique(struct mesh_state* mstate)
719 {
720 	mstate->unique = mstate;
721 }
722 
723 void
724 mesh_state_cleanup(struct mesh_state* mstate)
725 {
726 	struct mesh_area* mesh;
727 	int i;
728 	if(!mstate)
729 		return;
730 	mesh = mstate->s.env->mesh;
731 	/* drop unsent replies */
732 	if(!mstate->replies_sent) {
733 		struct mesh_reply* rep;
734 		struct mesh_cb* cb;
735 		for(rep=mstate->reply_list; rep; rep=rep->next) {
736 			comm_point_drop_reply(&rep->query_reply);
737 			mesh->num_reply_addrs--;
738 		}
739 		while((cb = mstate->cb_list)!=NULL) {
740 			mstate->cb_list = cb->next;
741 			fptr_ok(fptr_whitelist_mesh_cb(cb->cb));
742 			(*cb->cb)(cb->cb_arg, LDNS_RCODE_SERVFAIL, NULL,
743 				sec_status_unchecked, NULL);
744 			mesh->num_reply_addrs--;
745 		}
746 	}
747 
748 	/* de-init modules */
749 	for(i=0; i<mesh->mods.num; i++) {
750 		fptr_ok(fptr_whitelist_mod_clear(mesh->mods.mod[i]->clear));
751 		(*mesh->mods.mod[i]->clear)(&mstate->s, i);
752 		mstate->s.minfo[i] = NULL;
753 		mstate->s.ext_state[i] = module_finished;
754 	}
755 	alloc_reg_release(mstate->s.env->alloc, mstate->s.region);
756 }
757 
758 void
759 mesh_state_delete(struct module_qstate* qstate)
760 {
761 	struct mesh_area* mesh;
762 	struct mesh_state_ref* super, ref;
763 	struct mesh_state* mstate;
764 	if(!qstate)
765 		return;
766 	mstate = qstate->mesh_info;
767 	mesh = mstate->s.env->mesh;
768 	mesh_detach_subs(&mstate->s);
769 	if(mstate->list_select == mesh_forever_list) {
770 		mesh->num_forever_states --;
771 		mesh_list_remove(mstate, &mesh->forever_first,
772 			&mesh->forever_last);
773 	} else if(mstate->list_select == mesh_jostle_list) {
774 		mesh_list_remove(mstate, &mesh->jostle_first,
775 			&mesh->jostle_last);
776 	}
777 	if(!mstate->reply_list && !mstate->cb_list
778 		&& mstate->super_set.count == 0) {
779 		log_assert(mesh->num_detached_states > 0);
780 		mesh->num_detached_states--;
781 	}
782 	if(mstate->reply_list || mstate->cb_list) {
783 		log_assert(mesh->num_reply_states > 0);
784 		mesh->num_reply_states--;
785 	}
786 	ref.node.key = &ref;
787 	ref.s = mstate;
788 	RBTREE_FOR(super, struct mesh_state_ref*, &mstate->super_set) {
789 		(void)rbtree_delete(&super->s->sub_set, &ref);
790 	}
791 	(void)rbtree_delete(&mesh->run, mstate);
792 	(void)rbtree_delete(&mesh->all, mstate);
793 	mesh_state_cleanup(mstate);
794 }
795 
796 /** helper recursive rbtree find routine */
797 static int
798 find_in_subsub(struct mesh_state* m, struct mesh_state* tofind, size_t *c)
799 {
800 	struct mesh_state_ref* r;
801 	if((*c)++ > MESH_MAX_SUBSUB)
802 		return 1;
803 	RBTREE_FOR(r, struct mesh_state_ref*, &m->sub_set) {
804 		if(r->s == tofind || find_in_subsub(r->s, tofind, c))
805 			return 1;
806 	}
807 	return 0;
808 }
809 
810 /** find cycle for already looked up mesh_state */
811 static int
812 mesh_detect_cycle_found(struct module_qstate* qstate, struct mesh_state* dep_m)
813 {
814 	struct mesh_state* cyc_m = qstate->mesh_info;
815 	size_t counter = 0;
816 	if(!dep_m)
817 		return 0;
818 	if(dep_m == cyc_m || find_in_subsub(dep_m, cyc_m, &counter)) {
819 		if(counter > MESH_MAX_SUBSUB)
820 			return 2;
821 		return 1;
822 	}
823 	return 0;
824 }
825 
826 void mesh_detach_subs(struct module_qstate* qstate)
827 {
828 	struct mesh_area* mesh = qstate->env->mesh;
829 	struct mesh_state_ref* ref, lookup;
830 #ifdef UNBOUND_DEBUG
831 	struct rbnode_type* n;
832 #endif
833 	lookup.node.key = &lookup;
834 	lookup.s = qstate->mesh_info;
835 	RBTREE_FOR(ref, struct mesh_state_ref*, &qstate->mesh_info->sub_set) {
836 #ifdef UNBOUND_DEBUG
837 		n =
838 #else
839 		(void)
840 #endif
841 		rbtree_delete(&ref->s->super_set, &lookup);
842 		log_assert(n != NULL); /* must have been present */
843 		if(!ref->s->reply_list && !ref->s->cb_list
844 			&& ref->s->super_set.count == 0) {
845 			mesh->num_detached_states++;
846 			log_assert(mesh->num_detached_states +
847 				mesh->num_reply_states <= mesh->all.count);
848 		}
849 	}
850 	rbtree_init(&qstate->mesh_info->sub_set, &mesh_state_ref_compare);
851 }
852 
853 int mesh_add_sub(struct module_qstate* qstate, struct query_info* qinfo,
854         uint16_t qflags, int prime, int valrec, struct module_qstate** newq,
855 	struct mesh_state** sub)
856 {
857 	/* find it, if not, create it */
858 	struct mesh_area* mesh = qstate->env->mesh;
859 	*sub = mesh_area_find(mesh, NULL, qinfo, qflags,
860 		prime, valrec);
861 	if(mesh_detect_cycle_found(qstate, *sub)) {
862 		verbose(VERB_ALGO, "attach failed, cycle detected");
863 		return 0;
864 	}
865 	if(!*sub) {
866 #ifdef UNBOUND_DEBUG
867 		struct rbnode_type* n;
868 #endif
869 		/* create a new one */
870 		*sub = mesh_state_create(qstate->env, qinfo, NULL, qflags, prime,
871 			valrec);
872 		if(!*sub) {
873 			log_err("mesh_attach_sub: out of memory");
874 			return 0;
875 		}
876 #ifdef UNBOUND_DEBUG
877 		n =
878 #else
879 		(void)
880 #endif
881 		rbtree_insert(&mesh->all, &(*sub)->node);
882 		log_assert(n != NULL);
883 		/* set detached (it is now) */
884 		mesh->num_detached_states++;
885 		/* set new query state to run */
886 #ifdef UNBOUND_DEBUG
887 		n =
888 #else
889 		(void)
890 #endif
891 		rbtree_insert(&mesh->run, &(*sub)->run_node);
892 		log_assert(n != NULL);
893 		*newq = &(*sub)->s;
894 	} else
895 		*newq = NULL;
896 	return 1;
897 }
898 
899 int mesh_attach_sub(struct module_qstate* qstate, struct query_info* qinfo,
900         uint16_t qflags, int prime, int valrec, struct module_qstate** newq)
901 {
902 	struct mesh_area* mesh = qstate->env->mesh;
903 	struct mesh_state* sub = NULL;
904 	int was_detached;
905 	if(!mesh_add_sub(qstate, qinfo, qflags, prime, valrec, newq, &sub))
906 		return 0;
907 	was_detached = (sub->super_set.count == 0);
908 	if(!mesh_state_attachment(qstate->mesh_info, sub))
909 		return 0;
910 	/* if it was a duplicate  attachment, the count was not zero before */
911 	if(!sub->reply_list && !sub->cb_list && was_detached &&
912 		sub->super_set.count == 1) {
913 		/* it used to be detached, before this one got added */
914 		log_assert(mesh->num_detached_states > 0);
915 		mesh->num_detached_states--;
916 	}
917 	/* *newq will be run when inited after the current module stops */
918 	return 1;
919 }
920 
921 int mesh_state_attachment(struct mesh_state* super, struct mesh_state* sub)
922 {
923 #ifdef UNBOUND_DEBUG
924 	struct rbnode_type* n;
925 #endif
926 	struct mesh_state_ref* subref; /* points to sub, inserted in super */
927 	struct mesh_state_ref* superref; /* points to super, inserted in sub */
928 	if( !(subref = regional_alloc(super->s.region,
929 		sizeof(struct mesh_state_ref))) ||
930 		!(superref = regional_alloc(sub->s.region,
931 		sizeof(struct mesh_state_ref))) ) {
932 		log_err("mesh_state_attachment: out of memory");
933 		return 0;
934 	}
935 	superref->node.key = superref;
936 	superref->s = super;
937 	subref->node.key = subref;
938 	subref->s = sub;
939 	if(!rbtree_insert(&sub->super_set, &superref->node)) {
940 		/* this should not happen, iterator and validator do not
941 		 * attach subqueries that are identical. */
942 		/* already attached, we are done, nothing todo.
943 		 * since superref and subref already allocated in region,
944 		 * we cannot free them */
945 		return 1;
946 	}
947 #ifdef UNBOUND_DEBUG
948 	n =
949 #else
950 	(void)
951 #endif
952 	rbtree_insert(&super->sub_set, &subref->node);
953 	log_assert(n != NULL); /* we checked above if statement, the reverse
954 	  administration should not fail now, unless they are out of sync */
955 	return 1;
956 }
957 
958 /**
959  * callback results to mesh cb entry
960  * @param m: mesh state to send it for.
961  * @param rcode: if not 0, error code.
962  * @param rep: reply to send (or NULL if rcode is set).
963  * @param r: callback entry
964  */
965 static void
966 mesh_do_callback(struct mesh_state* m, int rcode, struct reply_info* rep,
967 	struct mesh_cb* r)
968 {
969 	int secure;
970 	char* reason = NULL;
971 	/* bogus messages are not made into servfail, sec_status passed
972 	 * to the callback function */
973 	if(rep && rep->security == sec_status_secure)
974 		secure = 1;
975 	else	secure = 0;
976 	if(!rep && rcode == LDNS_RCODE_NOERROR)
977 		rcode = LDNS_RCODE_SERVFAIL;
978 	if(!rcode && (rep->security == sec_status_bogus ||
979 		rep->security == sec_status_secure_sentinel_fail)) {
980 		if(!(reason = errinf_to_str(&m->s)))
981 			rcode = LDNS_RCODE_SERVFAIL;
982 	}
983 	/* send the reply */
984 	if(rcode) {
985 		if(rcode == LDNS_RCODE_SERVFAIL) {
986 			if(!inplace_cb_reply_servfail_call(m->s.env, &m->s.qinfo, &m->s,
987 				rep, rcode, &r->edns, m->s.region))
988 					r->edns.opt_list = NULL;
989 		} else {
990 			if(!inplace_cb_reply_call(m->s.env, &m->s.qinfo, &m->s, rep, rcode,
991 				&r->edns, m->s.region))
992 					r->edns.opt_list = NULL;
993 		}
994 		fptr_ok(fptr_whitelist_mesh_cb(r->cb));
995 		(*r->cb)(r->cb_arg, rcode, r->buf, sec_status_unchecked, NULL);
996 	} else {
997 		size_t udp_size = r->edns.udp_size;
998 		sldns_buffer_clear(r->buf);
999 		r->edns.edns_version = EDNS_ADVERTISED_VERSION;
1000 		r->edns.udp_size = EDNS_ADVERTISED_SIZE;
1001 		r->edns.ext_rcode = 0;
1002 		r->edns.bits &= EDNS_DO;
1003 
1004 		if(!inplace_cb_reply_call(m->s.env, &m->s.qinfo, &m->s, rep,
1005 			LDNS_RCODE_NOERROR, &r->edns, m->s.region) ||
1006 			!reply_info_answer_encode(&m->s.qinfo, rep, r->qid,
1007 			r->qflags, r->buf, 0, 1,
1008 			m->s.env->scratch, udp_size, &r->edns,
1009 			(int)(r->edns.bits & EDNS_DO), secure))
1010 		{
1011 			fptr_ok(fptr_whitelist_mesh_cb(r->cb));
1012 			(*r->cb)(r->cb_arg, LDNS_RCODE_SERVFAIL, r->buf,
1013 				sec_status_unchecked, NULL);
1014 		} else {
1015 			fptr_ok(fptr_whitelist_mesh_cb(r->cb));
1016 			(*r->cb)(r->cb_arg, LDNS_RCODE_NOERROR, r->buf,
1017 				rep->security, reason);
1018 		}
1019 	}
1020 	free(reason);
1021 	m->s.env->mesh->num_reply_addrs--;
1022 }
1023 
1024 /**
1025  * Send reply to mesh reply entry
1026  * @param m: mesh state to send it for.
1027  * @param rcode: if not 0, error code.
1028  * @param rep: reply to send (or NULL if rcode is set).
1029  * @param r: reply entry
1030  * @param prev: previous reply, already has its answer encoded in buffer.
1031  */
1032 static void
1033 mesh_send_reply(struct mesh_state* m, int rcode, struct reply_info* rep,
1034 	struct mesh_reply* r, struct mesh_reply* prev)
1035 {
1036 	struct timeval end_time;
1037 	struct timeval duration;
1038 	int secure;
1039 	/* Copy the client's EDNS for later restore, to make sure the edns
1040 	 * compare is with the correct edns options. */
1041 	struct edns_data edns_bak = r->edns;
1042 	/* examine security status */
1043 	if(m->s.env->need_to_validate && (!(r->qflags&BIT_CD) ||
1044 		m->s.env->cfg->ignore_cd) && rep &&
1045 		(rep->security <= sec_status_bogus ||
1046 		rep->security == sec_status_secure_sentinel_fail)) {
1047 		rcode = LDNS_RCODE_SERVFAIL;
1048 		if(m->s.env->cfg->stat_extended)
1049 			m->s.env->mesh->ans_bogus++;
1050 	}
1051 	if(rep && rep->security == sec_status_secure)
1052 		secure = 1;
1053 	else	secure = 0;
1054 	if(!rep && rcode == LDNS_RCODE_NOERROR)
1055 		rcode = LDNS_RCODE_SERVFAIL;
1056 	/* send the reply */
1057 	/* We don't reuse the encoded answer if either the previous or current
1058 	 * response has a local alias.  We could compare the alias records
1059 	 * and still reuse the previous answer if they are the same, but that
1060 	 * would be complicated and error prone for the relatively minor case.
1061 	 * So we err on the side of safety. */
1062 	if(prev && prev->qflags == r->qflags &&
1063 		!prev->local_alias && !r->local_alias &&
1064 		prev->edns.edns_present == r->edns.edns_present &&
1065 		prev->edns.bits == r->edns.bits &&
1066 		prev->edns.udp_size == r->edns.udp_size &&
1067 		edns_opt_list_compare(prev->edns.opt_list, r->edns.opt_list)
1068 		== 0) {
1069 		/* if the previous reply is identical to this one, fix ID */
1070 		if(prev->query_reply.c->buffer != r->query_reply.c->buffer)
1071 			sldns_buffer_copy(r->query_reply.c->buffer,
1072 				prev->query_reply.c->buffer);
1073 		sldns_buffer_write_at(r->query_reply.c->buffer, 0,
1074 			&r->qid, sizeof(uint16_t));
1075 		sldns_buffer_write_at(r->query_reply.c->buffer, 12,
1076 			r->qname, m->s.qinfo.qname_len);
1077 		comm_point_send_reply(&r->query_reply);
1078 	} else if(rcode) {
1079 		m->s.qinfo.qname = r->qname;
1080 		m->s.qinfo.local_alias = r->local_alias;
1081 		if(rcode == LDNS_RCODE_SERVFAIL) {
1082 			if(!inplace_cb_reply_servfail_call(m->s.env, &m->s.qinfo, &m->s,
1083 				rep, rcode, &r->edns, m->s.region))
1084 					r->edns.opt_list = NULL;
1085 		} else {
1086 			if(!inplace_cb_reply_call(m->s.env, &m->s.qinfo, &m->s, rep, rcode,
1087 				&r->edns, m->s.region))
1088 					r->edns.opt_list = NULL;
1089 		}
1090 		error_encode(r->query_reply.c->buffer, rcode, &m->s.qinfo,
1091 			r->qid, r->qflags, &r->edns);
1092 		comm_point_send_reply(&r->query_reply);
1093 	} else {
1094 		size_t udp_size = r->edns.udp_size;
1095 		r->edns.edns_version = EDNS_ADVERTISED_VERSION;
1096 		r->edns.udp_size = EDNS_ADVERTISED_SIZE;
1097 		r->edns.ext_rcode = 0;
1098 		r->edns.bits &= EDNS_DO;
1099 		m->s.qinfo.qname = r->qname;
1100 		m->s.qinfo.local_alias = r->local_alias;
1101 		if(!inplace_cb_reply_call(m->s.env, &m->s.qinfo, &m->s, rep,
1102 			LDNS_RCODE_NOERROR, &r->edns, m->s.region) ||
1103 			!reply_info_answer_encode(&m->s.qinfo, rep, r->qid,
1104 			r->qflags, r->query_reply.c->buffer, 0, 1,
1105 			m->s.env->scratch, udp_size, &r->edns,
1106 			(int)(r->edns.bits & EDNS_DO), secure))
1107 		{
1108 			if(!inplace_cb_reply_servfail_call(m->s.env, &m->s.qinfo, &m->s,
1109 			rep, LDNS_RCODE_SERVFAIL, &r->edns, m->s.region))
1110 				r->edns.opt_list = NULL;
1111 			error_encode(r->query_reply.c->buffer,
1112 				LDNS_RCODE_SERVFAIL, &m->s.qinfo, r->qid,
1113 				r->qflags, &r->edns);
1114 		}
1115 		r->edns = edns_bak;
1116 		comm_point_send_reply(&r->query_reply);
1117 	}
1118 	/* account */
1119 	m->s.env->mesh->num_reply_addrs--;
1120 	end_time = *m->s.env->now_tv;
1121 	timeval_subtract(&duration, &end_time, &r->start_time);
1122 	verbose(VERB_ALGO, "query took " ARG_LL "d.%6.6d sec",
1123 		(long long)duration.tv_sec, (int)duration.tv_usec);
1124 	m->s.env->mesh->replies_sent++;
1125 	timeval_add(&m->s.env->mesh->replies_sum_wait, &duration);
1126 	timehist_insert(m->s.env->mesh->histogram, &duration);
1127 	if(m->s.env->cfg->stat_extended) {
1128 		uint16_t rc = FLAGS_GET_RCODE(sldns_buffer_read_u16_at(r->
1129 			query_reply.c->buffer, 2));
1130 		if(secure) m->s.env->mesh->ans_secure++;
1131 		m->s.env->mesh->ans_rcode[ rc ] ++;
1132 		if(rc == 0 && LDNS_ANCOUNT(sldns_buffer_begin(r->
1133 			query_reply.c->buffer)) == 0)
1134 			m->s.env->mesh->ans_nodata++;
1135 	}
1136 	/* Log reply sent */
1137 	if(m->s.env->cfg->log_replies) {
1138 		log_reply_info(0, &m->s.qinfo, &r->query_reply.addr,
1139 			r->query_reply.addrlen, duration, 0,
1140 			r->query_reply.c->buffer);
1141 	}
1142 }
1143 
1144 void mesh_query_done(struct mesh_state* mstate)
1145 {
1146 	struct mesh_reply* r;
1147 	struct mesh_reply* prev = NULL;
1148 	struct mesh_cb* c;
1149 	struct reply_info* rep = (mstate->s.return_msg?
1150 		mstate->s.return_msg->rep:NULL);
1151 	for(r = mstate->reply_list; r; r = r->next) {
1152 		/* if a response-ip address block has been stored the
1153 		 *  information should be logged for each client. */
1154 		if(mstate->s.respip_action_info &&
1155 			mstate->s.respip_action_info->addrinfo) {
1156 			respip_inform_print(mstate->s.respip_action_info->addrinfo,
1157 				r->qname, mstate->s.qinfo.qtype,
1158 				mstate->s.qinfo.qclass, r->local_alias,
1159 				&r->query_reply);
1160 		}
1161 
1162 		/* if this query is determined to be dropped during the
1163 		 * mesh processing, this is the point to take that action. */
1164 		if(mstate->s.is_drop)
1165 			comm_point_drop_reply(&r->query_reply);
1166 		else {
1167 			mesh_send_reply(mstate, mstate->s.return_rcode, rep,
1168 				r, prev);
1169 			prev = r;
1170 		}
1171 	}
1172 	mstate->replies_sent = 1;
1173 	while((c = mstate->cb_list) != NULL) {
1174 		/* take this cb off the list; so that the list can be
1175 		 * changed, eg. by adds from the callback routine */
1176 		mstate->cb_list = c->next;
1177 		if(!mstate->reply_list && !mstate->cb_list &&
1178 			mstate->super_set.count == 0)
1179 			mstate->s.env->mesh->num_detached_states++;
1180 		mesh_do_callback(mstate, mstate->s.return_rcode, rep, c);
1181 	}
1182 }
1183 
1184 void mesh_walk_supers(struct mesh_area* mesh, struct mesh_state* mstate)
1185 {
1186 	struct mesh_state_ref* ref;
1187 	RBTREE_FOR(ref, struct mesh_state_ref*, &mstate->super_set)
1188 	{
1189 		/* make super runnable */
1190 		(void)rbtree_insert(&mesh->run, &ref->s->run_node);
1191 		/* callback the function to inform super of result */
1192 		fptr_ok(fptr_whitelist_mod_inform_super(
1193 			mesh->mods.mod[ref->s->s.curmod]->inform_super));
1194 		(*mesh->mods.mod[ref->s->s.curmod]->inform_super)(&mstate->s,
1195 			ref->s->s.curmod, &ref->s->s);
1196 	}
1197 }
1198 
1199 struct mesh_state* mesh_area_find(struct mesh_area* mesh,
1200 	struct respip_client_info* cinfo, struct query_info* qinfo,
1201 	uint16_t qflags, int prime, int valrec)
1202 {
1203 	struct mesh_state key;
1204 	struct mesh_state* result;
1205 
1206 	key.node.key = &key;
1207 	key.s.is_priming = prime;
1208 	key.s.is_valrec = valrec;
1209 	key.s.qinfo = *qinfo;
1210 	key.s.query_flags = qflags;
1211 	/* We are searching for a similar mesh state when we DO want to
1212 	 * aggregate the state. Thus unique is set to NULL. (default when we
1213 	 * desire aggregation).*/
1214 	key.unique = NULL;
1215 	key.s.client_info = cinfo;
1216 
1217 	result = (struct mesh_state*)rbtree_search(&mesh->all, &key);
1218 	return result;
1219 }
1220 
1221 int mesh_state_add_cb(struct mesh_state* s, struct edns_data* edns,
1222         sldns_buffer* buf, mesh_cb_func_type cb, void* cb_arg,
1223 	uint16_t qid, uint16_t qflags)
1224 {
1225 	struct mesh_cb* r = regional_alloc(s->s.region,
1226 		sizeof(struct mesh_cb));
1227 	if(!r)
1228 		return 0;
1229 	r->buf = buf;
1230 	log_assert(fptr_whitelist_mesh_cb(cb)); /* early failure ifmissing*/
1231 	r->cb = cb;
1232 	r->cb_arg = cb_arg;
1233 	r->edns = *edns;
1234 	if(edns->opt_list) {
1235 		r->edns.opt_list = edns_opt_copy_region(edns->opt_list,
1236 			s->s.region);
1237 		if(!r->edns.opt_list)
1238 			return 0;
1239 	}
1240 	r->qid = qid;
1241 	r->qflags = qflags;
1242 	r->next = s->cb_list;
1243 	s->cb_list = r;
1244 	return 1;
1245 
1246 }
1247 
1248 int mesh_state_add_reply(struct mesh_state* s, struct edns_data* edns,
1249         struct comm_reply* rep, uint16_t qid, uint16_t qflags,
1250         const struct query_info* qinfo)
1251 {
1252 	struct mesh_reply* r = regional_alloc(s->s.region,
1253 		sizeof(struct mesh_reply));
1254 	if(!r)
1255 		return 0;
1256 	r->query_reply = *rep;
1257 	r->edns = *edns;
1258 	if(edns->opt_list) {
1259 		r->edns.opt_list = edns_opt_copy_region(edns->opt_list,
1260 			s->s.region);
1261 		if(!r->edns.opt_list)
1262 			return 0;
1263 	}
1264 	r->qid = qid;
1265 	r->qflags = qflags;
1266 	r->start_time = *s->s.env->now_tv;
1267 	r->next = s->reply_list;
1268 	r->qname = regional_alloc_init(s->s.region, qinfo->qname,
1269 		s->s.qinfo.qname_len);
1270 	if(!r->qname)
1271 		return 0;
1272 
1273 	/* Data related to local alias stored in 'qinfo' (if any) is ephemeral
1274 	 * and can be different for different original queries (even if the
1275 	 * replaced query name is the same).  So we need to make a deep copy
1276 	 * and store the copy for each reply info. */
1277 	if(qinfo->local_alias) {
1278 		struct packed_rrset_data* d;
1279 		struct packed_rrset_data* dsrc;
1280 		r->local_alias = regional_alloc_zero(s->s.region,
1281 			sizeof(*qinfo->local_alias));
1282 		if(!r->local_alias)
1283 			return 0;
1284 		r->local_alias->rrset = regional_alloc_init(s->s.region,
1285 			qinfo->local_alias->rrset,
1286 			sizeof(*qinfo->local_alias->rrset));
1287 		if(!r->local_alias->rrset)
1288 			return 0;
1289 		dsrc = qinfo->local_alias->rrset->entry.data;
1290 
1291 		/* In the current implementation, a local alias must be
1292 		 * a single CNAME RR (see worker_handle_request()). */
1293 		log_assert(!qinfo->local_alias->next && dsrc->count == 1 &&
1294 			qinfo->local_alias->rrset->rk.type ==
1295 			htons(LDNS_RR_TYPE_CNAME));
1296 		/* Technically, we should make a local copy for the owner
1297 		 * name of the RRset, but in the case of the first (and
1298 		 * currently only) local alias RRset, the owner name should
1299 		 * point to the qname of the corresponding query, which should
1300 		 * be valid throughout the lifetime of this mesh_reply.  So
1301 		 * we can skip copying. */
1302 		log_assert(qinfo->local_alias->rrset->rk.dname ==
1303 			sldns_buffer_at(rep->c->buffer, LDNS_HEADER_SIZE));
1304 
1305 		d = regional_alloc_init(s->s.region, dsrc,
1306 			sizeof(struct packed_rrset_data)
1307 			+ sizeof(size_t) + sizeof(uint8_t*) + sizeof(time_t));
1308 		if(!d)
1309 			return 0;
1310 		r->local_alias->rrset->entry.data = d;
1311 		d->rr_len = (size_t*)((uint8_t*)d +
1312 			sizeof(struct packed_rrset_data));
1313 		d->rr_data = (uint8_t**)&(d->rr_len[1]);
1314 		d->rr_ttl = (time_t*)&(d->rr_data[1]);
1315 		d->rr_len[0] = dsrc->rr_len[0];
1316 		d->rr_ttl[0] = dsrc->rr_ttl[0];
1317 		d->rr_data[0] = regional_alloc_init(s->s.region,
1318 			dsrc->rr_data[0], d->rr_len[0]);
1319 		if(!d->rr_data[0])
1320 			return 0;
1321 	} else
1322 		r->local_alias = NULL;
1323 
1324 	s->reply_list = r;
1325 	return 1;
1326 }
1327 
1328 /* Extract the query info and flags from 'mstate' into '*qinfop' and '*qflags'.
1329  * Since this is only used for internal refetch of otherwise-expired answer,
1330  * we simply ignore the rare failure mode when memory allocation fails. */
1331 static void
1332 mesh_copy_qinfo(struct mesh_state* mstate, struct query_info** qinfop,
1333 	uint16_t* qflags)
1334 {
1335 	struct regional* region = mstate->s.env->scratch;
1336 	struct query_info* qinfo;
1337 
1338 	qinfo = regional_alloc_init(region, &mstate->s.qinfo, sizeof(*qinfo));
1339 	if(!qinfo)
1340 		return;
1341 	qinfo->qname = regional_alloc_init(region, qinfo->qname,
1342 		qinfo->qname_len);
1343 	if(!qinfo->qname)
1344 		return;
1345 	*qinfop = qinfo;
1346 	*qflags = mstate->s.query_flags;
1347 }
1348 
1349 /**
1350  * Continue processing the mesh state at another module.
1351  * Handles module to modules transfer of control.
1352  * Handles module finished.
1353  * @param mesh: the mesh area.
1354  * @param mstate: currently active mesh state.
1355  * 	Deleted if finished, calls _done and _supers to
1356  * 	send replies to clients and inform other mesh states.
1357  * 	This in turn may create additional runnable mesh states.
1358  * @param s: state at which the current module exited.
1359  * @param ev: the event sent to the module.
1360  * 	returned is the event to send to the next module.
1361  * @return true if continue processing at the new module.
1362  * 	false if not continued processing is needed.
1363  */
1364 static int
1365 mesh_continue(struct mesh_area* mesh, struct mesh_state* mstate,
1366 	enum module_ext_state s, enum module_ev* ev)
1367 {
1368 	mstate->num_activated++;
1369 	if(mstate->num_activated > MESH_MAX_ACTIVATION) {
1370 		/* module is looping. Stop it. */
1371 		log_err("internal error: looping module (%s) stopped",
1372 			mesh->mods.mod[mstate->s.curmod]->name);
1373 		log_query_info(VERB_QUERY, "pass error for qstate",
1374 			&mstate->s.qinfo);
1375 		s = module_error;
1376 	}
1377 	if(s == module_wait_module || s == module_restart_next) {
1378 		/* start next module */
1379 		mstate->s.curmod++;
1380 		if(mesh->mods.num == mstate->s.curmod) {
1381 			log_err("Cannot pass to next module; at last module");
1382 			log_query_info(VERB_QUERY, "pass error for qstate",
1383 				&mstate->s.qinfo);
1384 			mstate->s.curmod--;
1385 			return mesh_continue(mesh, mstate, module_error, ev);
1386 		}
1387 		if(s == module_restart_next) {
1388 			int curmod = mstate->s.curmod;
1389 			for(; mstate->s.curmod < mesh->mods.num;
1390 				mstate->s.curmod++) {
1391 				fptr_ok(fptr_whitelist_mod_clear(
1392 					mesh->mods.mod[mstate->s.curmod]->clear));
1393 				(*mesh->mods.mod[mstate->s.curmod]->clear)
1394 					(&mstate->s, mstate->s.curmod);
1395 				mstate->s.minfo[mstate->s.curmod] = NULL;
1396 			}
1397 			mstate->s.curmod = curmod;
1398 		}
1399 		*ev = module_event_pass;
1400 		return 1;
1401 	}
1402 	if(s == module_wait_subquery && mstate->sub_set.count == 0) {
1403 		log_err("module cannot wait for subquery, subquery list empty");
1404 		log_query_info(VERB_QUERY, "pass error for qstate",
1405 			&mstate->s.qinfo);
1406 		s = module_error;
1407 	}
1408 	if(s == module_error && mstate->s.return_rcode == LDNS_RCODE_NOERROR) {
1409 		/* error is bad, handle pass back up below */
1410 		mstate->s.return_rcode = LDNS_RCODE_SERVFAIL;
1411 	}
1412 	if(s == module_error) {
1413 		mesh_query_done(mstate);
1414 		mesh_walk_supers(mesh, mstate);
1415 		mesh_state_delete(&mstate->s);
1416 		return 0;
1417 	}
1418 	if(s == module_finished) {
1419 		if(mstate->s.curmod == 0) {
1420 			struct query_info* qinfo = NULL;
1421 			uint16_t qflags;
1422 
1423 			mesh_query_done(mstate);
1424 			mesh_walk_supers(mesh, mstate);
1425 
1426 			/* If the answer to the query needs to be refetched
1427 			 * from an external DNS server, we'll need to schedule
1428 			 * a prefetch after removing the current state, so
1429 			 * we need to make a copy of the query info here. */
1430 			if(mstate->s.need_refetch)
1431 				mesh_copy_qinfo(mstate, &qinfo, &qflags);
1432 
1433 			mesh_state_delete(&mstate->s);
1434 			if(qinfo) {
1435 				mesh_schedule_prefetch(mesh, qinfo, qflags,
1436 					0, 1);
1437 			}
1438 			return 0;
1439 		}
1440 		/* pass along the locus of control */
1441 		mstate->s.curmod --;
1442 		*ev = module_event_moddone;
1443 		return 1;
1444 	}
1445 	return 0;
1446 }
1447 
1448 void mesh_run(struct mesh_area* mesh, struct mesh_state* mstate,
1449 	enum module_ev ev, struct outbound_entry* e)
1450 {
1451 	enum module_ext_state s;
1452 	verbose(VERB_ALGO, "mesh_run: start");
1453 	while(mstate) {
1454 		/* run the module */
1455 		fptr_ok(fptr_whitelist_mod_operate(
1456 			mesh->mods.mod[mstate->s.curmod]->operate));
1457 		(*mesh->mods.mod[mstate->s.curmod]->operate)
1458 			(&mstate->s, ev, mstate->s.curmod, e);
1459 
1460 		/* examine results */
1461 		mstate->s.reply = NULL;
1462 		regional_free_all(mstate->s.env->scratch);
1463 		s = mstate->s.ext_state[mstate->s.curmod];
1464 		verbose(VERB_ALGO, "mesh_run: %s module exit state is %s",
1465 			mesh->mods.mod[mstate->s.curmod]->name, strextstate(s));
1466 		e = NULL;
1467 		if(mesh_continue(mesh, mstate, s, &ev))
1468 			continue;
1469 
1470 		/* run more modules */
1471 		ev = module_event_pass;
1472 		if(mesh->run.count > 0) {
1473 			/* pop random element off the runnable tree */
1474 			mstate = (struct mesh_state*)mesh->run.root->key;
1475 			(void)rbtree_delete(&mesh->run, mstate);
1476 		} else mstate = NULL;
1477 	}
1478 	if(verbosity >= VERB_ALGO) {
1479 		mesh_stats(mesh, "mesh_run: end");
1480 		mesh_log_list(mesh);
1481 	}
1482 }
1483 
1484 void
1485 mesh_log_list(struct mesh_area* mesh)
1486 {
1487 	char buf[30];
1488 	struct mesh_state* m;
1489 	int num = 0;
1490 	RBTREE_FOR(m, struct mesh_state*, &mesh->all) {
1491 		snprintf(buf, sizeof(buf), "%d%s%s%s%s%s%s mod%d %s%s",
1492 			num++, (m->s.is_priming)?"p":"",  /* prime */
1493 			(m->s.is_valrec)?"v":"",  /* prime */
1494 			(m->s.query_flags&BIT_RD)?"RD":"",
1495 			(m->s.query_flags&BIT_CD)?"CD":"",
1496 			(m->super_set.count==0)?"d":"", /* detached */
1497 			(m->sub_set.count!=0)?"c":"",  /* children */
1498 			m->s.curmod, (m->reply_list)?"rep":"", /*hasreply*/
1499 			(m->cb_list)?"cb":"" /* callbacks */
1500 			);
1501 		log_query_info(VERB_ALGO, buf, &m->s.qinfo);
1502 	}
1503 }
1504 
1505 void
1506 mesh_stats(struct mesh_area* mesh, const char* str)
1507 {
1508 	verbose(VERB_DETAIL, "%s %u recursion states (%u with reply, "
1509 		"%u detached), %u waiting replies, %u recursion replies "
1510 		"sent, %d replies dropped, %d states jostled out",
1511 		str, (unsigned)mesh->all.count,
1512 		(unsigned)mesh->num_reply_states,
1513 		(unsigned)mesh->num_detached_states,
1514 		(unsigned)mesh->num_reply_addrs,
1515 		(unsigned)mesh->replies_sent,
1516 		(unsigned)mesh->stats_dropped,
1517 		(unsigned)mesh->stats_jostled);
1518 	if(mesh->replies_sent > 0) {
1519 		struct timeval avg;
1520 		timeval_divide(&avg, &mesh->replies_sum_wait,
1521 			mesh->replies_sent);
1522 		log_info("average recursion processing time "
1523 			ARG_LL "d.%6.6d sec",
1524 			(long long)avg.tv_sec, (int)avg.tv_usec);
1525 		log_info("histogram of recursion processing times");
1526 		timehist_log(mesh->histogram, "recursions");
1527 	}
1528 }
1529 
1530 void
1531 mesh_stats_clear(struct mesh_area* mesh)
1532 {
1533 	if(!mesh)
1534 		return;
1535 	mesh->replies_sent = 0;
1536 	mesh->replies_sum_wait.tv_sec = 0;
1537 	mesh->replies_sum_wait.tv_usec = 0;
1538 	mesh->stats_jostled = 0;
1539 	mesh->stats_dropped = 0;
1540 	timehist_clear(mesh->histogram);
1541 	mesh->ans_secure = 0;
1542 	mesh->ans_bogus = 0;
1543 	memset(&mesh->ans_rcode[0], 0, sizeof(size_t)*16);
1544 	mesh->ans_nodata = 0;
1545 }
1546 
1547 size_t
1548 mesh_get_mem(struct mesh_area* mesh)
1549 {
1550 	struct mesh_state* m;
1551 	size_t s = sizeof(*mesh) + sizeof(struct timehist) +
1552 		sizeof(struct th_buck)*mesh->histogram->num +
1553 		sizeof(sldns_buffer) + sldns_buffer_capacity(mesh->qbuf_bak);
1554 	RBTREE_FOR(m, struct mesh_state*, &mesh->all) {
1555 		/* all, including m itself allocated in qstate region */
1556 		s += regional_get_mem(m->s.region);
1557 	}
1558 	return s;
1559 }
1560 
1561 int
1562 mesh_detect_cycle(struct module_qstate* qstate, struct query_info* qinfo,
1563 	uint16_t flags, int prime, int valrec)
1564 {
1565 	struct mesh_area* mesh = qstate->env->mesh;
1566 	struct mesh_state* dep_m = NULL;
1567 	if(!mesh_state_is_unique(qstate->mesh_info))
1568 		dep_m = mesh_area_find(mesh, NULL, qinfo, flags, prime, valrec);
1569 	return mesh_detect_cycle_found(qstate, dep_m);
1570 }
1571 
1572 void mesh_list_insert(struct mesh_state* m, struct mesh_state** fp,
1573         struct mesh_state** lp)
1574 {
1575 	/* insert as last element */
1576 	m->prev = *lp;
1577 	m->next = NULL;
1578 	if(*lp)
1579 		(*lp)->next = m;
1580 	else	*fp = m;
1581 	*lp = m;
1582 }
1583 
1584 void mesh_list_remove(struct mesh_state* m, struct mesh_state** fp,
1585         struct mesh_state** lp)
1586 {
1587 	if(m->next)
1588 		m->next->prev = m->prev;
1589 	else	*lp = m->prev;
1590 	if(m->prev)
1591 		m->prev->next = m->next;
1592 	else	*fp = m->next;
1593 }
1594