1 /* 2 * services/mesh.c - deal with mesh of query states and handle events for that. 3 * 4 * Copyright (c) 2007, NLnet Labs. All rights reserved. 5 * 6 * This software is open source. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 12 * Redistributions of source code must retain the above copyright notice, 13 * this list of conditions and the following disclaimer. 14 * 15 * Redistributions in binary form must reproduce the above copyright notice, 16 * this list of conditions and the following disclaimer in the documentation 17 * and/or other materials provided with the distribution. 18 * 19 * Neither the name of the NLNET LABS nor the names of its contributors may 20 * be used to endorse or promote products derived from this software without 21 * specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 24 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 26 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 27 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 28 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 29 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 30 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 31 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 32 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 33 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 34 */ 35 36 /** 37 * \file 38 * 39 * This file contains functions to assist in dealing with a mesh of 40 * query states. This mesh is supposed to be thread-specific. 41 * It consists of query states (per qname, qtype, qclass) and connections 42 * between query states and the super and subquery states, and replies to 43 * send back to clients. 44 */ 45 #include "config.h" 46 #include "services/mesh.h" 47 #include "services/outbound_list.h" 48 #include "services/cache/dns.h" 49 #include "util/log.h" 50 #include "util/net_help.h" 51 #include "util/module.h" 52 #include "util/regional.h" 53 #include "util/data/msgencode.h" 54 #include "util/timehist.h" 55 #include "util/fptr_wlist.h" 56 #include "util/alloc.h" 57 #include "util/config_file.h" 58 #include "util/edns.h" 59 #include "sldns/sbuffer.h" 60 #include "sldns/wire2str.h" 61 #include "services/localzone.h" 62 #include "util/data/dname.h" 63 #include "respip/respip.h" 64 #include "services/listen_dnsport.h" 65 66 /** subtract timers and the values do not overflow or become negative */ 67 static void 68 timeval_subtract(struct timeval* d, const struct timeval* end, const struct timeval* start) 69 { 70 #ifndef S_SPLINT_S 71 time_t end_usec = end->tv_usec; 72 d->tv_sec = end->tv_sec - start->tv_sec; 73 if(end_usec < start->tv_usec) { 74 end_usec += 1000000; 75 d->tv_sec--; 76 } 77 d->tv_usec = end_usec - start->tv_usec; 78 #endif 79 } 80 81 /** add timers and the values do not overflow or become negative */ 82 static void 83 timeval_add(struct timeval* d, const struct timeval* add) 84 { 85 #ifndef S_SPLINT_S 86 d->tv_sec += add->tv_sec; 87 d->tv_usec += add->tv_usec; 88 if(d->tv_usec >= 1000000 ) { 89 d->tv_usec -= 1000000; 90 d->tv_sec++; 91 } 92 #endif 93 } 94 95 /** divide sum of timers to get average */ 96 static void 97 timeval_divide(struct timeval* avg, const struct timeval* sum, size_t d) 98 { 99 #ifndef S_SPLINT_S 100 size_t leftover; 101 if(d == 0) { 102 avg->tv_sec = 0; 103 avg->tv_usec = 0; 104 return; 105 } 106 avg->tv_sec = sum->tv_sec / d; 107 avg->tv_usec = sum->tv_usec / d; 108 /* handle fraction from seconds divide */ 109 leftover = sum->tv_sec - avg->tv_sec*d; 110 avg->tv_usec += (leftover*1000000)/d; 111 #endif 112 } 113 114 /** histogram compare of time values */ 115 static int 116 timeval_smaller(const struct timeval* x, const struct timeval* y) 117 { 118 #ifndef S_SPLINT_S 119 if(x->tv_sec < y->tv_sec) 120 return 1; 121 else if(x->tv_sec == y->tv_sec) { 122 if(x->tv_usec <= y->tv_usec) 123 return 1; 124 else return 0; 125 } 126 else return 0; 127 #endif 128 } 129 130 /* 131 * Compare two response-ip client info entries for the purpose of mesh state 132 * compare. It returns 0 if ci_a and ci_b are considered equal; otherwise 133 * 1 or -1 (they mean 'ci_a is larger/smaller than ci_b', respectively, but 134 * in practice it should be only used to mean they are different). 135 * We cannot share the mesh state for two queries if different response-ip 136 * actions can apply in the end, even if those queries are otherwise identical. 137 * For this purpose we compare tag lists and tag action lists; they should be 138 * identical to share the same state. 139 * For tag data, we don't look into the data content, as it can be 140 * expensive; unless tag data are not defined for both or they point to the 141 * exact same data in memory (i.e., they come from the same ACL entry), we 142 * consider these data different. 143 * Likewise, if the client info is associated with views, we don't look into 144 * the views. They are considered different unless they are exactly the same 145 * even if the views only differ in the names. 146 */ 147 static int 148 client_info_compare(const struct respip_client_info* ci_a, 149 const struct respip_client_info* ci_b) 150 { 151 int cmp; 152 153 if(!ci_a && !ci_b) 154 return 0; 155 if(ci_a && !ci_b) 156 return -1; 157 if(!ci_a && ci_b) 158 return 1; 159 if(ci_a->taglen != ci_b->taglen) 160 return (ci_a->taglen < ci_b->taglen) ? -1 : 1; 161 cmp = memcmp(ci_a->taglist, ci_b->taglist, ci_a->taglen); 162 if(cmp != 0) 163 return cmp; 164 if(ci_a->tag_actions_size != ci_b->tag_actions_size) 165 return (ci_a->tag_actions_size < ci_b->tag_actions_size) ? 166 -1 : 1; 167 cmp = memcmp(ci_a->tag_actions, ci_b->tag_actions, 168 ci_a->tag_actions_size); 169 if(cmp != 0) 170 return cmp; 171 if(ci_a->tag_datas != ci_b->tag_datas) 172 return ci_a->tag_datas < ci_b->tag_datas ? -1 : 1; 173 if(ci_a->view != ci_b->view) 174 return ci_a->view < ci_b->view ? -1 : 1; 175 /* For the unbound daemon these should be non-NULL and identical, 176 * but we check that just in case. */ 177 if(ci_a->respip_set != ci_b->respip_set) 178 return ci_a->respip_set < ci_b->respip_set ? -1 : 1; 179 return 0; 180 } 181 182 int 183 mesh_state_compare(const void* ap, const void* bp) 184 { 185 struct mesh_state* a = (struct mesh_state*)ap; 186 struct mesh_state* b = (struct mesh_state*)bp; 187 int cmp; 188 189 if(a->unique < b->unique) 190 return -1; 191 if(a->unique > b->unique) 192 return 1; 193 194 if(a->s.is_priming && !b->s.is_priming) 195 return -1; 196 if(!a->s.is_priming && b->s.is_priming) 197 return 1; 198 199 if(a->s.is_valrec && !b->s.is_valrec) 200 return -1; 201 if(!a->s.is_valrec && b->s.is_valrec) 202 return 1; 203 204 if((a->s.query_flags&BIT_RD) && !(b->s.query_flags&BIT_RD)) 205 return -1; 206 if(!(a->s.query_flags&BIT_RD) && (b->s.query_flags&BIT_RD)) 207 return 1; 208 209 if((a->s.query_flags&BIT_CD) && !(b->s.query_flags&BIT_CD)) 210 return -1; 211 if(!(a->s.query_flags&BIT_CD) && (b->s.query_flags&BIT_CD)) 212 return 1; 213 214 cmp = query_info_compare(&a->s.qinfo, &b->s.qinfo); 215 if(cmp != 0) 216 return cmp; 217 return client_info_compare(a->s.client_info, b->s.client_info); 218 } 219 220 int 221 mesh_state_ref_compare(const void* ap, const void* bp) 222 { 223 struct mesh_state_ref* a = (struct mesh_state_ref*)ap; 224 struct mesh_state_ref* b = (struct mesh_state_ref*)bp; 225 return mesh_state_compare(a->s, b->s); 226 } 227 228 struct mesh_area* 229 mesh_create(struct module_stack* stack, struct module_env* env) 230 { 231 struct mesh_area* mesh = calloc(1, sizeof(struct mesh_area)); 232 if(!mesh) { 233 log_err("mesh area alloc: out of memory"); 234 return NULL; 235 } 236 mesh->histogram = timehist_setup(); 237 mesh->qbuf_bak = sldns_buffer_new(env->cfg->msg_buffer_size); 238 if(!mesh->histogram || !mesh->qbuf_bak) { 239 free(mesh); 240 log_err("mesh area alloc: out of memory"); 241 return NULL; 242 } 243 mesh->mods = *stack; 244 mesh->env = env; 245 rbtree_init(&mesh->run, &mesh_state_compare); 246 rbtree_init(&mesh->all, &mesh_state_compare); 247 mesh->num_reply_addrs = 0; 248 mesh->num_reply_states = 0; 249 mesh->num_detached_states = 0; 250 mesh->num_forever_states = 0; 251 mesh->stats_jostled = 0; 252 mesh->stats_dropped = 0; 253 mesh->max_reply_states = env->cfg->num_queries_per_thread; 254 mesh->max_forever_states = (mesh->max_reply_states+1)/2; 255 #ifndef S_SPLINT_S 256 mesh->jostle_max.tv_sec = (time_t)(env->cfg->jostle_time / 1000); 257 mesh->jostle_max.tv_usec = (time_t)((env->cfg->jostle_time % 1000) 258 *1000); 259 #endif 260 return mesh; 261 } 262 263 /** help mesh delete delete mesh states */ 264 static void 265 mesh_delete_helper(rbnode_type* n) 266 { 267 struct mesh_state* mstate = (struct mesh_state*)n->key; 268 /* perform a full delete, not only 'cleanup' routine, 269 * because other callbacks expect a clean state in the mesh. 270 * For 're-entrant' calls */ 271 mesh_state_delete(&mstate->s); 272 /* but because these delete the items from the tree, postorder 273 * traversal and rbtree rebalancing do not work together */ 274 } 275 276 void 277 mesh_delete(struct mesh_area* mesh) 278 { 279 if(!mesh) 280 return; 281 /* free all query states */ 282 while(mesh->all.count) 283 mesh_delete_helper(mesh->all.root); 284 timehist_delete(mesh->histogram); 285 sldns_buffer_free(mesh->qbuf_bak); 286 free(mesh); 287 } 288 289 void 290 mesh_delete_all(struct mesh_area* mesh) 291 { 292 /* free all query states */ 293 while(mesh->all.count) 294 mesh_delete_helper(mesh->all.root); 295 mesh->stats_dropped += mesh->num_reply_addrs; 296 /* clear mesh area references */ 297 rbtree_init(&mesh->run, &mesh_state_compare); 298 rbtree_init(&mesh->all, &mesh_state_compare); 299 mesh->num_reply_addrs = 0; 300 mesh->num_reply_states = 0; 301 mesh->num_detached_states = 0; 302 mesh->num_forever_states = 0; 303 mesh->forever_first = NULL; 304 mesh->forever_last = NULL; 305 mesh->jostle_first = NULL; 306 mesh->jostle_last = NULL; 307 } 308 309 int mesh_make_new_space(struct mesh_area* mesh, sldns_buffer* qbuf) 310 { 311 struct mesh_state* m = mesh->jostle_first; 312 /* free space is available */ 313 if(mesh->num_reply_states < mesh->max_reply_states) 314 return 1; 315 /* try to kick out a jostle-list item */ 316 if(m && m->reply_list && m->list_select == mesh_jostle_list) { 317 /* how old is it? */ 318 struct timeval age; 319 timeval_subtract(&age, mesh->env->now_tv, 320 &m->reply_list->start_time); 321 if(timeval_smaller(&mesh->jostle_max, &age)) { 322 /* its a goner */ 323 log_nametypeclass(VERB_ALGO, "query jostled out to " 324 "make space for a new one", 325 m->s.qinfo.qname, m->s.qinfo.qtype, 326 m->s.qinfo.qclass); 327 /* backup the query */ 328 if(qbuf) sldns_buffer_copy(mesh->qbuf_bak, qbuf); 329 /* notify supers */ 330 if(m->super_set.count > 0) { 331 verbose(VERB_ALGO, "notify supers of failure"); 332 m->s.return_msg = NULL; 333 m->s.return_rcode = LDNS_RCODE_SERVFAIL; 334 mesh_walk_supers(mesh, m); 335 } 336 mesh->stats_jostled ++; 337 mesh_state_delete(&m->s); 338 /* restore the query - note that the qinfo ptr to 339 * the querybuffer is then correct again. */ 340 if(qbuf) sldns_buffer_copy(qbuf, mesh->qbuf_bak); 341 return 1; 342 } 343 } 344 /* no space for new item */ 345 return 0; 346 } 347 348 void mesh_new_client(struct mesh_area* mesh, struct query_info* qinfo, 349 struct respip_client_info* cinfo, uint16_t qflags, 350 struct edns_data* edns, struct comm_reply* rep, uint16_t qid) 351 { 352 struct mesh_state* s = NULL; 353 int unique = unique_mesh_state(edns->opt_list, mesh->env); 354 int was_detached = 0; 355 int was_noreply = 0; 356 int added = 0; 357 struct sldns_buffer* r_buffer = rep->c->buffer; 358 if(rep->c->tcp_req_info) { 359 r_buffer = rep->c->tcp_req_info->spool_buffer; 360 } 361 if(!unique) 362 s = mesh_area_find(mesh, cinfo, qinfo, qflags&(BIT_RD|BIT_CD), 0, 0); 363 /* does this create a new reply state? */ 364 if(!s || s->list_select == mesh_no_list) { 365 if(!mesh_make_new_space(mesh, rep->c->buffer)) { 366 verbose(VERB_ALGO, "Too many queries. dropping " 367 "incoming query."); 368 comm_point_drop_reply(rep); 369 mesh->stats_dropped ++; 370 return; 371 } 372 /* for this new reply state, the reply address is free, 373 * so the limit of reply addresses does not stop reply states*/ 374 } else { 375 /* protect our memory usage from storing reply addresses */ 376 if(mesh->num_reply_addrs > mesh->max_reply_states*16) { 377 verbose(VERB_ALGO, "Too many requests queued. " 378 "dropping incoming query."); 379 mesh->stats_dropped++; 380 comm_point_drop_reply(rep); 381 return; 382 } 383 } 384 /* see if it already exists, if not, create one */ 385 if(!s) { 386 #ifdef UNBOUND_DEBUG 387 struct rbnode_type* n; 388 #endif 389 s = mesh_state_create(mesh->env, qinfo, cinfo, 390 qflags&(BIT_RD|BIT_CD), 0, 0); 391 if(!s) { 392 log_err("mesh_state_create: out of memory; SERVFAIL"); 393 if(!inplace_cb_reply_servfail_call(mesh->env, qinfo, NULL, NULL, 394 LDNS_RCODE_SERVFAIL, edns, rep, mesh->env->scratch)) 395 edns->opt_list = NULL; 396 error_encode(r_buffer, LDNS_RCODE_SERVFAIL, 397 qinfo, qid, qflags, edns); 398 comm_point_send_reply(rep); 399 return; 400 } 401 if(unique) 402 mesh_state_make_unique(s); 403 /* copy the edns options we got from the front */ 404 if(edns->opt_list) { 405 s->s.edns_opts_front_in = edns_opt_copy_region(edns->opt_list, 406 s->s.region); 407 if(!s->s.edns_opts_front_in) { 408 log_err("mesh_state_create: out of memory; SERVFAIL"); 409 if(!inplace_cb_reply_servfail_call(mesh->env, qinfo, NULL, 410 NULL, LDNS_RCODE_SERVFAIL, edns, rep, mesh->env->scratch)) 411 edns->opt_list = NULL; 412 error_encode(r_buffer, LDNS_RCODE_SERVFAIL, 413 qinfo, qid, qflags, edns); 414 comm_point_send_reply(rep); 415 return; 416 } 417 } 418 419 #ifdef UNBOUND_DEBUG 420 n = 421 #else 422 (void) 423 #endif 424 rbtree_insert(&mesh->all, &s->node); 425 log_assert(n != NULL); 426 /* set detached (it is now) */ 427 mesh->num_detached_states++; 428 added = 1; 429 } 430 if(!s->reply_list && !s->cb_list && s->super_set.count == 0) 431 was_detached = 1; 432 if(!s->reply_list && !s->cb_list) 433 was_noreply = 1; 434 /* add reply to s */ 435 if(!mesh_state_add_reply(s, edns, rep, qid, qflags, qinfo)) { 436 log_err("mesh_new_client: out of memory; SERVFAIL"); 437 servfail_mem: 438 if(!inplace_cb_reply_servfail_call(mesh->env, qinfo, &s->s, 439 NULL, LDNS_RCODE_SERVFAIL, edns, rep, mesh->env->scratch)) 440 edns->opt_list = NULL; 441 error_encode(r_buffer, LDNS_RCODE_SERVFAIL, 442 qinfo, qid, qflags, edns); 443 comm_point_send_reply(rep); 444 if(added) 445 mesh_state_delete(&s->s); 446 return; 447 } 448 if(rep->c->tcp_req_info) { 449 if(!tcp_req_info_add_meshstate(rep->c->tcp_req_info, mesh, s)) { 450 log_err("mesh_new_client: out of memory add tcpreqinfo"); 451 goto servfail_mem; 452 } 453 } 454 /* update statistics */ 455 if(was_detached) { 456 log_assert(mesh->num_detached_states > 0); 457 mesh->num_detached_states--; 458 } 459 if(was_noreply) { 460 mesh->num_reply_states ++; 461 } 462 mesh->num_reply_addrs++; 463 if(s->list_select == mesh_no_list) { 464 /* move to either the forever or the jostle_list */ 465 if(mesh->num_forever_states < mesh->max_forever_states) { 466 mesh->num_forever_states ++; 467 mesh_list_insert(s, &mesh->forever_first, 468 &mesh->forever_last); 469 s->list_select = mesh_forever_list; 470 } else { 471 mesh_list_insert(s, &mesh->jostle_first, 472 &mesh->jostle_last); 473 s->list_select = mesh_jostle_list; 474 } 475 } 476 if(added) 477 mesh_run(mesh, s, module_event_new, NULL); 478 } 479 480 int 481 mesh_new_callback(struct mesh_area* mesh, struct query_info* qinfo, 482 uint16_t qflags, struct edns_data* edns, sldns_buffer* buf, 483 uint16_t qid, mesh_cb_func_type cb, void* cb_arg) 484 { 485 struct mesh_state* s = NULL; 486 int unique = unique_mesh_state(edns->opt_list, mesh->env); 487 int was_detached = 0; 488 int was_noreply = 0; 489 int added = 0; 490 if(!unique) 491 s = mesh_area_find(mesh, NULL, qinfo, qflags&(BIT_RD|BIT_CD), 0, 0); 492 493 /* there are no limits on the number of callbacks */ 494 495 /* see if it already exists, if not, create one */ 496 if(!s) { 497 #ifdef UNBOUND_DEBUG 498 struct rbnode_type* n; 499 #endif 500 s = mesh_state_create(mesh->env, qinfo, NULL, 501 qflags&(BIT_RD|BIT_CD), 0, 0); 502 if(!s) { 503 return 0; 504 } 505 if(unique) 506 mesh_state_make_unique(s); 507 if(edns->opt_list) { 508 s->s.edns_opts_front_in = edns_opt_copy_region(edns->opt_list, 509 s->s.region); 510 if(!s->s.edns_opts_front_in) { 511 return 0; 512 } 513 } 514 #ifdef UNBOUND_DEBUG 515 n = 516 #else 517 (void) 518 #endif 519 rbtree_insert(&mesh->all, &s->node); 520 log_assert(n != NULL); 521 /* set detached (it is now) */ 522 mesh->num_detached_states++; 523 added = 1; 524 } 525 if(!s->reply_list && !s->cb_list && s->super_set.count == 0) 526 was_detached = 1; 527 if(!s->reply_list && !s->cb_list) 528 was_noreply = 1; 529 /* add reply to s */ 530 if(!mesh_state_add_cb(s, edns, buf, cb, cb_arg, qid, qflags)) { 531 if(added) 532 mesh_state_delete(&s->s); 533 return 0; 534 } 535 /* update statistics */ 536 if(was_detached) { 537 log_assert(mesh->num_detached_states > 0); 538 mesh->num_detached_states--; 539 } 540 if(was_noreply) { 541 mesh->num_reply_states ++; 542 } 543 mesh->num_reply_addrs++; 544 if(added) 545 mesh_run(mesh, s, module_event_new, NULL); 546 return 1; 547 } 548 549 static void mesh_schedule_prefetch(struct mesh_area* mesh, 550 struct query_info* qinfo, uint16_t qflags, time_t leeway, int run); 551 552 void mesh_new_prefetch(struct mesh_area* mesh, struct query_info* qinfo, 553 uint16_t qflags, time_t leeway) 554 { 555 mesh_schedule_prefetch(mesh, qinfo, qflags, leeway, 1); 556 } 557 558 /* Internal backend routine of mesh_new_prefetch(). It takes one additional 559 * parameter, 'run', which controls whether to run the prefetch state 560 * immediately. When this function is called internally 'run' could be 561 * 0 (false), in which case the new state is only made runnable so it 562 * will not be run recursively on top of the current state. */ 563 static void mesh_schedule_prefetch(struct mesh_area* mesh, 564 struct query_info* qinfo, uint16_t qflags, time_t leeway, int run) 565 { 566 struct mesh_state* s = mesh_area_find(mesh, NULL, qinfo, 567 qflags&(BIT_RD|BIT_CD), 0, 0); 568 #ifdef UNBOUND_DEBUG 569 struct rbnode_type* n; 570 #endif 571 /* already exists, and for a different purpose perhaps. 572 * if mesh_no_list, keep it that way. */ 573 if(s) { 574 /* make it ignore the cache from now on */ 575 if(!s->s.blacklist) 576 sock_list_insert(&s->s.blacklist, NULL, 0, s->s.region); 577 if(s->s.prefetch_leeway < leeway) 578 s->s.prefetch_leeway = leeway; 579 return; 580 } 581 if(!mesh_make_new_space(mesh, NULL)) { 582 verbose(VERB_ALGO, "Too many queries. dropped prefetch."); 583 mesh->stats_dropped ++; 584 return; 585 } 586 587 s = mesh_state_create(mesh->env, qinfo, NULL, 588 qflags&(BIT_RD|BIT_CD), 0, 0); 589 if(!s) { 590 log_err("prefetch mesh_state_create: out of memory"); 591 return; 592 } 593 #ifdef UNBOUND_DEBUG 594 n = 595 #else 596 (void) 597 #endif 598 rbtree_insert(&mesh->all, &s->node); 599 log_assert(n != NULL); 600 /* set detached (it is now) */ 601 mesh->num_detached_states++; 602 /* make it ignore the cache */ 603 sock_list_insert(&s->s.blacklist, NULL, 0, s->s.region); 604 s->s.prefetch_leeway = leeway; 605 606 if(s->list_select == mesh_no_list) { 607 /* move to either the forever or the jostle_list */ 608 if(mesh->num_forever_states < mesh->max_forever_states) { 609 mesh->num_forever_states ++; 610 mesh_list_insert(s, &mesh->forever_first, 611 &mesh->forever_last); 612 s->list_select = mesh_forever_list; 613 } else { 614 mesh_list_insert(s, &mesh->jostle_first, 615 &mesh->jostle_last); 616 s->list_select = mesh_jostle_list; 617 } 618 } 619 620 if(!run) { 621 #ifdef UNBOUND_DEBUG 622 n = 623 #else 624 (void) 625 #endif 626 rbtree_insert(&mesh->run, &s->run_node); 627 log_assert(n != NULL); 628 return; 629 } 630 631 mesh_run(mesh, s, module_event_new, NULL); 632 } 633 634 void mesh_report_reply(struct mesh_area* mesh, struct outbound_entry* e, 635 struct comm_reply* reply, int what) 636 { 637 enum module_ev event = module_event_reply; 638 e->qstate->reply = reply; 639 if(what != NETEVENT_NOERROR) { 640 event = module_event_noreply; 641 if(what == NETEVENT_CAPSFAIL) 642 event = module_event_capsfail; 643 } 644 mesh_run(mesh, e->qstate->mesh_info, event, e); 645 } 646 647 struct mesh_state* 648 mesh_state_create(struct module_env* env, struct query_info* qinfo, 649 struct respip_client_info* cinfo, uint16_t qflags, int prime, 650 int valrec) 651 { 652 struct regional* region = alloc_reg_obtain(env->alloc); 653 struct mesh_state* mstate; 654 int i; 655 if(!region) 656 return NULL; 657 mstate = (struct mesh_state*)regional_alloc(region, 658 sizeof(struct mesh_state)); 659 if(!mstate) { 660 alloc_reg_release(env->alloc, region); 661 return NULL; 662 } 663 memset(mstate, 0, sizeof(*mstate)); 664 mstate->node = *RBTREE_NULL; 665 mstate->run_node = *RBTREE_NULL; 666 mstate->node.key = mstate; 667 mstate->run_node.key = mstate; 668 mstate->reply_list = NULL; 669 mstate->list_select = mesh_no_list; 670 mstate->replies_sent = 0; 671 rbtree_init(&mstate->super_set, &mesh_state_ref_compare); 672 rbtree_init(&mstate->sub_set, &mesh_state_ref_compare); 673 mstate->num_activated = 0; 674 mstate->unique = NULL; 675 /* init module qstate */ 676 mstate->s.qinfo.qtype = qinfo->qtype; 677 mstate->s.qinfo.qclass = qinfo->qclass; 678 mstate->s.qinfo.local_alias = NULL; 679 mstate->s.qinfo.qname_len = qinfo->qname_len; 680 mstate->s.qinfo.qname = regional_alloc_init(region, qinfo->qname, 681 qinfo->qname_len); 682 if(!mstate->s.qinfo.qname) { 683 alloc_reg_release(env->alloc, region); 684 return NULL; 685 } 686 if(cinfo) { 687 mstate->s.client_info = regional_alloc_init(region, cinfo, 688 sizeof(*cinfo)); 689 if(!mstate->s.client_info) { 690 alloc_reg_release(env->alloc, region); 691 return NULL; 692 } 693 } 694 /* remove all weird bits from qflags */ 695 mstate->s.query_flags = (qflags & (BIT_RD|BIT_CD)); 696 mstate->s.is_priming = prime; 697 mstate->s.is_valrec = valrec; 698 mstate->s.reply = NULL; 699 mstate->s.region = region; 700 mstate->s.curmod = 0; 701 mstate->s.return_msg = 0; 702 mstate->s.return_rcode = LDNS_RCODE_NOERROR; 703 mstate->s.env = env; 704 mstate->s.mesh_info = mstate; 705 mstate->s.prefetch_leeway = 0; 706 mstate->s.no_cache_lookup = 0; 707 mstate->s.no_cache_store = 0; 708 mstate->s.need_refetch = 0; 709 mstate->s.was_ratelimited = 0; 710 711 /* init modules */ 712 for(i=0; i<env->mesh->mods.num; i++) { 713 mstate->s.minfo[i] = NULL; 714 mstate->s.ext_state[i] = module_state_initial; 715 } 716 /* init edns option lists */ 717 mstate->s.edns_opts_front_in = NULL; 718 mstate->s.edns_opts_back_out = NULL; 719 mstate->s.edns_opts_back_in = NULL; 720 mstate->s.edns_opts_front_out = NULL; 721 722 return mstate; 723 } 724 725 int 726 mesh_state_is_unique(struct mesh_state* mstate) 727 { 728 return mstate->unique != NULL; 729 } 730 731 void 732 mesh_state_make_unique(struct mesh_state* mstate) 733 { 734 mstate->unique = mstate; 735 } 736 737 void 738 mesh_state_cleanup(struct mesh_state* mstate) 739 { 740 struct mesh_area* mesh; 741 int i; 742 if(!mstate) 743 return; 744 mesh = mstate->s.env->mesh; 745 /* drop unsent replies */ 746 if(!mstate->replies_sent) { 747 struct mesh_reply* rep = mstate->reply_list; 748 struct mesh_cb* cb; 749 /* in tcp_req_info, the mstates linked are removed, but 750 * the reply_list is now NULL, so the remove-from-empty-list 751 * takes no time and also it does not do the mesh accounting */ 752 mstate->reply_list = NULL; 753 for(; rep; rep=rep->next) { 754 comm_point_drop_reply(&rep->query_reply); 755 mesh->num_reply_addrs--; 756 } 757 while((cb = mstate->cb_list)!=NULL) { 758 mstate->cb_list = cb->next; 759 fptr_ok(fptr_whitelist_mesh_cb(cb->cb)); 760 (*cb->cb)(cb->cb_arg, LDNS_RCODE_SERVFAIL, NULL, 761 sec_status_unchecked, NULL, 0); 762 mesh->num_reply_addrs--; 763 } 764 } 765 766 /* de-init modules */ 767 for(i=0; i<mesh->mods.num; i++) { 768 fptr_ok(fptr_whitelist_mod_clear(mesh->mods.mod[i]->clear)); 769 (*mesh->mods.mod[i]->clear)(&mstate->s, i); 770 mstate->s.minfo[i] = NULL; 771 mstate->s.ext_state[i] = module_finished; 772 } 773 alloc_reg_release(mstate->s.env->alloc, mstate->s.region); 774 } 775 776 void 777 mesh_state_delete(struct module_qstate* qstate) 778 { 779 struct mesh_area* mesh; 780 struct mesh_state_ref* super, ref; 781 struct mesh_state* mstate; 782 if(!qstate) 783 return; 784 mstate = qstate->mesh_info; 785 mesh = mstate->s.env->mesh; 786 mesh_detach_subs(&mstate->s); 787 if(mstate->list_select == mesh_forever_list) { 788 mesh->num_forever_states --; 789 mesh_list_remove(mstate, &mesh->forever_first, 790 &mesh->forever_last); 791 } else if(mstate->list_select == mesh_jostle_list) { 792 mesh_list_remove(mstate, &mesh->jostle_first, 793 &mesh->jostle_last); 794 } 795 if(!mstate->reply_list && !mstate->cb_list 796 && mstate->super_set.count == 0) { 797 log_assert(mesh->num_detached_states > 0); 798 mesh->num_detached_states--; 799 } 800 if(mstate->reply_list || mstate->cb_list) { 801 log_assert(mesh->num_reply_states > 0); 802 mesh->num_reply_states--; 803 } 804 ref.node.key = &ref; 805 ref.s = mstate; 806 RBTREE_FOR(super, struct mesh_state_ref*, &mstate->super_set) { 807 (void)rbtree_delete(&super->s->sub_set, &ref); 808 } 809 (void)rbtree_delete(&mesh->run, mstate); 810 (void)rbtree_delete(&mesh->all, mstate); 811 mesh_state_cleanup(mstate); 812 } 813 814 /** helper recursive rbtree find routine */ 815 static int 816 find_in_subsub(struct mesh_state* m, struct mesh_state* tofind, size_t *c) 817 { 818 struct mesh_state_ref* r; 819 if((*c)++ > MESH_MAX_SUBSUB) 820 return 1; 821 RBTREE_FOR(r, struct mesh_state_ref*, &m->sub_set) { 822 if(r->s == tofind || find_in_subsub(r->s, tofind, c)) 823 return 1; 824 } 825 return 0; 826 } 827 828 /** find cycle for already looked up mesh_state */ 829 static int 830 mesh_detect_cycle_found(struct module_qstate* qstate, struct mesh_state* dep_m) 831 { 832 struct mesh_state* cyc_m = qstate->mesh_info; 833 size_t counter = 0; 834 if(!dep_m) 835 return 0; 836 if(dep_m == cyc_m || find_in_subsub(dep_m, cyc_m, &counter)) { 837 if(counter > MESH_MAX_SUBSUB) 838 return 2; 839 return 1; 840 } 841 return 0; 842 } 843 844 void mesh_detach_subs(struct module_qstate* qstate) 845 { 846 struct mesh_area* mesh = qstate->env->mesh; 847 struct mesh_state_ref* ref, lookup; 848 #ifdef UNBOUND_DEBUG 849 struct rbnode_type* n; 850 #endif 851 lookup.node.key = &lookup; 852 lookup.s = qstate->mesh_info; 853 RBTREE_FOR(ref, struct mesh_state_ref*, &qstate->mesh_info->sub_set) { 854 #ifdef UNBOUND_DEBUG 855 n = 856 #else 857 (void) 858 #endif 859 rbtree_delete(&ref->s->super_set, &lookup); 860 log_assert(n != NULL); /* must have been present */ 861 if(!ref->s->reply_list && !ref->s->cb_list 862 && ref->s->super_set.count == 0) { 863 mesh->num_detached_states++; 864 log_assert(mesh->num_detached_states + 865 mesh->num_reply_states <= mesh->all.count); 866 } 867 } 868 rbtree_init(&qstate->mesh_info->sub_set, &mesh_state_ref_compare); 869 } 870 871 int mesh_add_sub(struct module_qstate* qstate, struct query_info* qinfo, 872 uint16_t qflags, int prime, int valrec, struct module_qstate** newq, 873 struct mesh_state** sub) 874 { 875 /* find it, if not, create it */ 876 struct mesh_area* mesh = qstate->env->mesh; 877 *sub = mesh_area_find(mesh, NULL, qinfo, qflags, 878 prime, valrec); 879 if(mesh_detect_cycle_found(qstate, *sub)) { 880 verbose(VERB_ALGO, "attach failed, cycle detected"); 881 return 0; 882 } 883 if(!*sub) { 884 #ifdef UNBOUND_DEBUG 885 struct rbnode_type* n; 886 #endif 887 /* create a new one */ 888 *sub = mesh_state_create(qstate->env, qinfo, NULL, qflags, prime, 889 valrec); 890 if(!*sub) { 891 log_err("mesh_attach_sub: out of memory"); 892 return 0; 893 } 894 #ifdef UNBOUND_DEBUG 895 n = 896 #else 897 (void) 898 #endif 899 rbtree_insert(&mesh->all, &(*sub)->node); 900 log_assert(n != NULL); 901 /* set detached (it is now) */ 902 mesh->num_detached_states++; 903 /* set new query state to run */ 904 #ifdef UNBOUND_DEBUG 905 n = 906 #else 907 (void) 908 #endif 909 rbtree_insert(&mesh->run, &(*sub)->run_node); 910 log_assert(n != NULL); 911 *newq = &(*sub)->s; 912 } else 913 *newq = NULL; 914 return 1; 915 } 916 917 int mesh_attach_sub(struct module_qstate* qstate, struct query_info* qinfo, 918 uint16_t qflags, int prime, int valrec, struct module_qstate** newq) 919 { 920 struct mesh_area* mesh = qstate->env->mesh; 921 struct mesh_state* sub = NULL; 922 int was_detached; 923 if(!mesh_add_sub(qstate, qinfo, qflags, prime, valrec, newq, &sub)) 924 return 0; 925 was_detached = (sub->super_set.count == 0); 926 if(!mesh_state_attachment(qstate->mesh_info, sub)) 927 return 0; 928 /* if it was a duplicate attachment, the count was not zero before */ 929 if(!sub->reply_list && !sub->cb_list && was_detached && 930 sub->super_set.count == 1) { 931 /* it used to be detached, before this one got added */ 932 log_assert(mesh->num_detached_states > 0); 933 mesh->num_detached_states--; 934 } 935 /* *newq will be run when inited after the current module stops */ 936 return 1; 937 } 938 939 int mesh_state_attachment(struct mesh_state* super, struct mesh_state* sub) 940 { 941 #ifdef UNBOUND_DEBUG 942 struct rbnode_type* n; 943 #endif 944 struct mesh_state_ref* subref; /* points to sub, inserted in super */ 945 struct mesh_state_ref* superref; /* points to super, inserted in sub */ 946 if( !(subref = regional_alloc(super->s.region, 947 sizeof(struct mesh_state_ref))) || 948 !(superref = regional_alloc(sub->s.region, 949 sizeof(struct mesh_state_ref))) ) { 950 log_err("mesh_state_attachment: out of memory"); 951 return 0; 952 } 953 superref->node.key = superref; 954 superref->s = super; 955 subref->node.key = subref; 956 subref->s = sub; 957 if(!rbtree_insert(&sub->super_set, &superref->node)) { 958 /* this should not happen, iterator and validator do not 959 * attach subqueries that are identical. */ 960 /* already attached, we are done, nothing todo. 961 * since superref and subref already allocated in region, 962 * we cannot free them */ 963 return 1; 964 } 965 #ifdef UNBOUND_DEBUG 966 n = 967 #else 968 (void) 969 #endif 970 rbtree_insert(&super->sub_set, &subref->node); 971 log_assert(n != NULL); /* we checked above if statement, the reverse 972 administration should not fail now, unless they are out of sync */ 973 return 1; 974 } 975 976 /** 977 * callback results to mesh cb entry 978 * @param m: mesh state to send it for. 979 * @param rcode: if not 0, error code. 980 * @param rep: reply to send (or NULL if rcode is set). 981 * @param r: callback entry 982 */ 983 static void 984 mesh_do_callback(struct mesh_state* m, int rcode, struct reply_info* rep, 985 struct mesh_cb* r) 986 { 987 int secure; 988 char* reason = NULL; 989 int was_ratelimited = m->s.was_ratelimited; 990 /* bogus messages are not made into servfail, sec_status passed 991 * to the callback function */ 992 if(rep && rep->security == sec_status_secure) 993 secure = 1; 994 else secure = 0; 995 if(!rep && rcode == LDNS_RCODE_NOERROR) 996 rcode = LDNS_RCODE_SERVFAIL; 997 if(!rcode && (rep->security == sec_status_bogus || 998 rep->security == sec_status_secure_sentinel_fail)) { 999 if(!(reason = errinf_to_str_bogus(&m->s))) 1000 rcode = LDNS_RCODE_SERVFAIL; 1001 } 1002 /* send the reply */ 1003 if(rcode) { 1004 if(rcode == LDNS_RCODE_SERVFAIL) { 1005 if(!inplace_cb_reply_servfail_call(m->s.env, &m->s.qinfo, &m->s, 1006 rep, rcode, &r->edns, NULL, m->s.region)) 1007 r->edns.opt_list = NULL; 1008 } else { 1009 if(!inplace_cb_reply_call(m->s.env, &m->s.qinfo, &m->s, rep, rcode, 1010 &r->edns, NULL, m->s.region)) 1011 r->edns.opt_list = NULL; 1012 } 1013 fptr_ok(fptr_whitelist_mesh_cb(r->cb)); 1014 (*r->cb)(r->cb_arg, rcode, r->buf, sec_status_unchecked, NULL, 1015 was_ratelimited); 1016 } else { 1017 size_t udp_size = r->edns.udp_size; 1018 sldns_buffer_clear(r->buf); 1019 r->edns.edns_version = EDNS_ADVERTISED_VERSION; 1020 r->edns.udp_size = EDNS_ADVERTISED_SIZE; 1021 r->edns.ext_rcode = 0; 1022 r->edns.bits &= EDNS_DO; 1023 1024 if(!inplace_cb_reply_call(m->s.env, &m->s.qinfo, &m->s, rep, 1025 LDNS_RCODE_NOERROR, &r->edns, NULL, m->s.region) || 1026 !reply_info_answer_encode(&m->s.qinfo, rep, r->qid, 1027 r->qflags, r->buf, 0, 1, 1028 m->s.env->scratch, udp_size, &r->edns, 1029 (int)(r->edns.bits & EDNS_DO), secure)) 1030 { 1031 fptr_ok(fptr_whitelist_mesh_cb(r->cb)); 1032 (*r->cb)(r->cb_arg, LDNS_RCODE_SERVFAIL, r->buf, 1033 sec_status_unchecked, NULL, 0); 1034 } else { 1035 fptr_ok(fptr_whitelist_mesh_cb(r->cb)); 1036 (*r->cb)(r->cb_arg, LDNS_RCODE_NOERROR, r->buf, 1037 rep->security, reason, was_ratelimited); 1038 } 1039 } 1040 free(reason); 1041 m->s.env->mesh->num_reply_addrs--; 1042 } 1043 1044 /** 1045 * Send reply to mesh reply entry 1046 * @param m: mesh state to send it for. 1047 * @param rcode: if not 0, error code. 1048 * @param rep: reply to send (or NULL if rcode is set). 1049 * @param r: reply entry 1050 * @param r_buffer: buffer to use for reply entry. 1051 * @param prev: previous reply, already has its answer encoded in buffer. 1052 * @param prev_buffer: buffer for previous reply. 1053 */ 1054 static void 1055 mesh_send_reply(struct mesh_state* m, int rcode, struct reply_info* rep, 1056 struct mesh_reply* r, struct sldns_buffer* r_buffer, 1057 struct mesh_reply* prev, struct sldns_buffer* prev_buffer) 1058 { 1059 struct timeval end_time; 1060 struct timeval duration; 1061 int secure; 1062 /* Copy the client's EDNS for later restore, to make sure the edns 1063 * compare is with the correct edns options. */ 1064 struct edns_data edns_bak = r->edns; 1065 /* examine security status */ 1066 if(m->s.env->need_to_validate && (!(r->qflags&BIT_CD) || 1067 m->s.env->cfg->ignore_cd) && rep && 1068 (rep->security <= sec_status_bogus || 1069 rep->security == sec_status_secure_sentinel_fail)) { 1070 rcode = LDNS_RCODE_SERVFAIL; 1071 if(m->s.env->cfg->stat_extended) 1072 m->s.env->mesh->ans_bogus++; 1073 } 1074 if(rep && rep->security == sec_status_secure) 1075 secure = 1; 1076 else secure = 0; 1077 if(!rep && rcode == LDNS_RCODE_NOERROR) 1078 rcode = LDNS_RCODE_SERVFAIL; 1079 /* send the reply */ 1080 /* We don't reuse the encoded answer if either the previous or current 1081 * response has a local alias. We could compare the alias records 1082 * and still reuse the previous answer if they are the same, but that 1083 * would be complicated and error prone for the relatively minor case. 1084 * So we err on the side of safety. */ 1085 if(prev && prev_buffer && prev->qflags == r->qflags && 1086 !prev->local_alias && !r->local_alias && 1087 prev->edns.edns_present == r->edns.edns_present && 1088 prev->edns.bits == r->edns.bits && 1089 prev->edns.udp_size == r->edns.udp_size && 1090 edns_opt_list_compare(prev->edns.opt_list, r->edns.opt_list) 1091 == 0) { 1092 /* if the previous reply is identical to this one, fix ID */ 1093 if(prev_buffer != r_buffer) 1094 sldns_buffer_copy(r_buffer, prev_buffer); 1095 sldns_buffer_write_at(r_buffer, 0, &r->qid, sizeof(uint16_t)); 1096 sldns_buffer_write_at(r_buffer, 12, r->qname, 1097 m->s.qinfo.qname_len); 1098 comm_point_send_reply(&r->query_reply); 1099 } else if(rcode) { 1100 m->s.qinfo.qname = r->qname; 1101 m->s.qinfo.local_alias = r->local_alias; 1102 if(rcode == LDNS_RCODE_SERVFAIL) { 1103 if(!inplace_cb_reply_servfail_call(m->s.env, &m->s.qinfo, &m->s, 1104 rep, rcode, &r->edns, NULL, m->s.region)) 1105 r->edns.opt_list = NULL; 1106 } else { 1107 if(!inplace_cb_reply_call(m->s.env, &m->s.qinfo, &m->s, rep, rcode, 1108 &r->edns, NULL, m->s.region)) 1109 r->edns.opt_list = NULL; 1110 } 1111 error_encode(r_buffer, rcode, &m->s.qinfo, r->qid, 1112 r->qflags, &r->edns); 1113 comm_point_send_reply(&r->query_reply); 1114 } else { 1115 size_t udp_size = r->edns.udp_size; 1116 r->edns.edns_version = EDNS_ADVERTISED_VERSION; 1117 r->edns.udp_size = EDNS_ADVERTISED_SIZE; 1118 r->edns.ext_rcode = 0; 1119 r->edns.bits &= EDNS_DO; 1120 m->s.qinfo.qname = r->qname; 1121 m->s.qinfo.local_alias = r->local_alias; 1122 if(!inplace_cb_reply_call(m->s.env, &m->s.qinfo, &m->s, rep, 1123 LDNS_RCODE_NOERROR, &r->edns, NULL, m->s.region) || 1124 !apply_edns_options(&r->edns, &edns_bak, 1125 m->s.env->cfg, r->query_reply.c, 1126 m->s.region) || 1127 !reply_info_answer_encode(&m->s.qinfo, rep, r->qid, 1128 r->qflags, r_buffer, 0, 1, m->s.env->scratch, 1129 udp_size, &r->edns, (int)(r->edns.bits & EDNS_DO), 1130 secure)) 1131 { 1132 if(!inplace_cb_reply_servfail_call(m->s.env, &m->s.qinfo, &m->s, 1133 rep, LDNS_RCODE_SERVFAIL, &r->edns, NULL, m->s.region)) 1134 r->edns.opt_list = NULL; 1135 error_encode(r_buffer, LDNS_RCODE_SERVFAIL, 1136 &m->s.qinfo, r->qid, r->qflags, &r->edns); 1137 } 1138 r->edns = edns_bak; 1139 comm_point_send_reply(&r->query_reply); 1140 } 1141 /* account */ 1142 m->s.env->mesh->num_reply_addrs--; 1143 end_time = *m->s.env->now_tv; 1144 timeval_subtract(&duration, &end_time, &r->start_time); 1145 verbose(VERB_ALGO, "query took " ARG_LL "d.%6.6d sec", 1146 (long long)duration.tv_sec, (int)duration.tv_usec); 1147 m->s.env->mesh->replies_sent++; 1148 timeval_add(&m->s.env->mesh->replies_sum_wait, &duration); 1149 timehist_insert(m->s.env->mesh->histogram, &duration); 1150 if(m->s.env->cfg->stat_extended) { 1151 uint16_t rc = FLAGS_GET_RCODE(sldns_buffer_read_u16_at( 1152 r_buffer, 2)); 1153 if(secure) m->s.env->mesh->ans_secure++; 1154 m->s.env->mesh->ans_rcode[ rc ] ++; 1155 if(rc == 0 && LDNS_ANCOUNT(sldns_buffer_begin(r_buffer)) == 0) 1156 m->s.env->mesh->ans_nodata++; 1157 } 1158 /* Log reply sent */ 1159 if(m->s.env->cfg->log_replies) { 1160 log_reply_info(NO_VERBOSE, &m->s.qinfo, &r->query_reply.addr, 1161 r->query_reply.addrlen, duration, 0, r_buffer); 1162 } 1163 } 1164 1165 void mesh_query_done(struct mesh_state* mstate) 1166 { 1167 struct mesh_reply* r; 1168 struct mesh_reply* prev = NULL; 1169 struct sldns_buffer* prev_buffer = NULL; 1170 struct mesh_cb* c; 1171 struct reply_info* rep = (mstate->s.return_msg? 1172 mstate->s.return_msg->rep:NULL); 1173 if((mstate->s.return_rcode == LDNS_RCODE_SERVFAIL || 1174 (rep && FLAGS_GET_RCODE(rep->flags) == LDNS_RCODE_SERVFAIL)) 1175 && mstate->s.env->cfg->log_servfail 1176 && !mstate->s.env->cfg->val_log_squelch) { 1177 char* err = errinf_to_str_servfail(&mstate->s); 1178 if(err) 1179 log_err("%s", err); 1180 free(err); 1181 } 1182 for(r = mstate->reply_list; r; r = r->next) { 1183 /* if a response-ip address block has been stored the 1184 * information should be logged for each client. */ 1185 if(mstate->s.respip_action_info && 1186 mstate->s.respip_action_info->addrinfo) { 1187 respip_inform_print(mstate->s.respip_action_info->addrinfo, 1188 r->qname, mstate->s.qinfo.qtype, 1189 mstate->s.qinfo.qclass, r->local_alias, 1190 &r->query_reply); 1191 } 1192 1193 /* if this query is determined to be dropped during the 1194 * mesh processing, this is the point to take that action. */ 1195 if(mstate->s.is_drop) 1196 comm_point_drop_reply(&r->query_reply); 1197 else { 1198 struct sldns_buffer* r_buffer = r->query_reply.c->buffer; 1199 if(r->query_reply.c->tcp_req_info) { 1200 r_buffer = r->query_reply.c->tcp_req_info->spool_buffer; 1201 prev_buffer = NULL; 1202 } 1203 mesh_send_reply(mstate, mstate->s.return_rcode, rep, 1204 r, r_buffer, prev, prev_buffer); 1205 if(r->query_reply.c->tcp_req_info) { 1206 tcp_req_info_remove_mesh_state(r->query_reply.c->tcp_req_info, mstate); 1207 r_buffer = NULL; 1208 } 1209 prev = r; 1210 prev_buffer = r_buffer; 1211 } 1212 } 1213 mstate->replies_sent = 1; 1214 while((c = mstate->cb_list) != NULL) { 1215 /* take this cb off the list; so that the list can be 1216 * changed, eg. by adds from the callback routine */ 1217 if(!mstate->reply_list && mstate->cb_list && !c->next) { 1218 /* was a reply state, not anymore */ 1219 mstate->s.env->mesh->num_reply_states--; 1220 } 1221 mstate->cb_list = c->next; 1222 if(!mstate->reply_list && !mstate->cb_list && 1223 mstate->super_set.count == 0) 1224 mstate->s.env->mesh->num_detached_states++; 1225 mesh_do_callback(mstate, mstate->s.return_rcode, rep, c); 1226 } 1227 } 1228 1229 void mesh_walk_supers(struct mesh_area* mesh, struct mesh_state* mstate) 1230 { 1231 struct mesh_state_ref* ref; 1232 RBTREE_FOR(ref, struct mesh_state_ref*, &mstate->super_set) 1233 { 1234 /* make super runnable */ 1235 (void)rbtree_insert(&mesh->run, &ref->s->run_node); 1236 /* callback the function to inform super of result */ 1237 fptr_ok(fptr_whitelist_mod_inform_super( 1238 mesh->mods.mod[ref->s->s.curmod]->inform_super)); 1239 (*mesh->mods.mod[ref->s->s.curmod]->inform_super)(&mstate->s, 1240 ref->s->s.curmod, &ref->s->s); 1241 /* copy state that is always relevant to super */ 1242 copy_state_to_super(&mstate->s, ref->s->s.curmod, &ref->s->s); 1243 } 1244 } 1245 1246 struct mesh_state* mesh_area_find(struct mesh_area* mesh, 1247 struct respip_client_info* cinfo, struct query_info* qinfo, 1248 uint16_t qflags, int prime, int valrec) 1249 { 1250 struct mesh_state key; 1251 struct mesh_state* result; 1252 1253 key.node.key = &key; 1254 key.s.is_priming = prime; 1255 key.s.is_valrec = valrec; 1256 key.s.qinfo = *qinfo; 1257 key.s.query_flags = qflags; 1258 /* We are searching for a similar mesh state when we DO want to 1259 * aggregate the state. Thus unique is set to NULL. (default when we 1260 * desire aggregation).*/ 1261 key.unique = NULL; 1262 key.s.client_info = cinfo; 1263 1264 result = (struct mesh_state*)rbtree_search(&mesh->all, &key); 1265 return result; 1266 } 1267 1268 int mesh_state_add_cb(struct mesh_state* s, struct edns_data* edns, 1269 sldns_buffer* buf, mesh_cb_func_type cb, void* cb_arg, 1270 uint16_t qid, uint16_t qflags) 1271 { 1272 struct mesh_cb* r = regional_alloc(s->s.region, 1273 sizeof(struct mesh_cb)); 1274 if(!r) 1275 return 0; 1276 r->buf = buf; 1277 log_assert(fptr_whitelist_mesh_cb(cb)); /* early failure ifmissing*/ 1278 r->cb = cb; 1279 r->cb_arg = cb_arg; 1280 r->edns = *edns; 1281 if(edns->opt_list) { 1282 r->edns.opt_list = edns_opt_copy_region(edns->opt_list, 1283 s->s.region); 1284 if(!r->edns.opt_list) 1285 return 0; 1286 } 1287 r->qid = qid; 1288 r->qflags = qflags; 1289 r->next = s->cb_list; 1290 s->cb_list = r; 1291 return 1; 1292 1293 } 1294 1295 int mesh_state_add_reply(struct mesh_state* s, struct edns_data* edns, 1296 struct comm_reply* rep, uint16_t qid, uint16_t qflags, 1297 const struct query_info* qinfo) 1298 { 1299 struct mesh_reply* r = regional_alloc(s->s.region, 1300 sizeof(struct mesh_reply)); 1301 if(!r) 1302 return 0; 1303 r->query_reply = *rep; 1304 r->edns = *edns; 1305 if(edns->opt_list) { 1306 r->edns.opt_list = edns_opt_copy_region(edns->opt_list, 1307 s->s.region); 1308 if(!r->edns.opt_list) 1309 return 0; 1310 } 1311 r->qid = qid; 1312 r->qflags = qflags; 1313 r->start_time = *s->s.env->now_tv; 1314 r->next = s->reply_list; 1315 r->qname = regional_alloc_init(s->s.region, qinfo->qname, 1316 s->s.qinfo.qname_len); 1317 if(!r->qname) 1318 return 0; 1319 1320 /* Data related to local alias stored in 'qinfo' (if any) is ephemeral 1321 * and can be different for different original queries (even if the 1322 * replaced query name is the same). So we need to make a deep copy 1323 * and store the copy for each reply info. */ 1324 if(qinfo->local_alias) { 1325 struct packed_rrset_data* d; 1326 struct packed_rrset_data* dsrc; 1327 r->local_alias = regional_alloc_zero(s->s.region, 1328 sizeof(*qinfo->local_alias)); 1329 if(!r->local_alias) 1330 return 0; 1331 r->local_alias->rrset = regional_alloc_init(s->s.region, 1332 qinfo->local_alias->rrset, 1333 sizeof(*qinfo->local_alias->rrset)); 1334 if(!r->local_alias->rrset) 1335 return 0; 1336 dsrc = qinfo->local_alias->rrset->entry.data; 1337 1338 /* In the current implementation, a local alias must be 1339 * a single CNAME RR (see worker_handle_request()). */ 1340 log_assert(!qinfo->local_alias->next && dsrc->count == 1 && 1341 qinfo->local_alias->rrset->rk.type == 1342 htons(LDNS_RR_TYPE_CNAME)); 1343 /* we should make a local copy for the owner name of 1344 * the RRset */ 1345 r->local_alias->rrset->rk.dname_len = 1346 qinfo->local_alias->rrset->rk.dname_len; 1347 r->local_alias->rrset->rk.dname = regional_alloc_init( 1348 s->s.region, qinfo->local_alias->rrset->rk.dname, 1349 qinfo->local_alias->rrset->rk.dname_len); 1350 if(!r->local_alias->rrset->rk.dname) 1351 return 0; 1352 1353 /* the rrset is not packed, like in the cache, but it is 1354 * individualy allocated with an allocator from localzone. */ 1355 d = regional_alloc_zero(s->s.region, sizeof(*d)); 1356 if(!d) 1357 return 0; 1358 r->local_alias->rrset->entry.data = d; 1359 if(!rrset_insert_rr(s->s.region, d, dsrc->rr_data[0], 1360 dsrc->rr_len[0], dsrc->rr_ttl[0], "CNAME local alias")) 1361 return 0; 1362 } else 1363 r->local_alias = NULL; 1364 1365 s->reply_list = r; 1366 return 1; 1367 } 1368 1369 /* Extract the query info and flags from 'mstate' into '*qinfop' and '*qflags'. 1370 * Since this is only used for internal refetch of otherwise-expired answer, 1371 * we simply ignore the rare failure mode when memory allocation fails. */ 1372 static void 1373 mesh_copy_qinfo(struct mesh_state* mstate, struct query_info** qinfop, 1374 uint16_t* qflags) 1375 { 1376 struct regional* region = mstate->s.env->scratch; 1377 struct query_info* qinfo; 1378 1379 qinfo = regional_alloc_init(region, &mstate->s.qinfo, sizeof(*qinfo)); 1380 if(!qinfo) 1381 return; 1382 qinfo->qname = regional_alloc_init(region, qinfo->qname, 1383 qinfo->qname_len); 1384 if(!qinfo->qname) 1385 return; 1386 *qinfop = qinfo; 1387 *qflags = mstate->s.query_flags; 1388 } 1389 1390 /** 1391 * Continue processing the mesh state at another module. 1392 * Handles module to modules transfer of control. 1393 * Handles module finished. 1394 * @param mesh: the mesh area. 1395 * @param mstate: currently active mesh state. 1396 * Deleted if finished, calls _done and _supers to 1397 * send replies to clients and inform other mesh states. 1398 * This in turn may create additional runnable mesh states. 1399 * @param s: state at which the current module exited. 1400 * @param ev: the event sent to the module. 1401 * returned is the event to send to the next module. 1402 * @return true if continue processing at the new module. 1403 * false if not continued processing is needed. 1404 */ 1405 static int 1406 mesh_continue(struct mesh_area* mesh, struct mesh_state* mstate, 1407 enum module_ext_state s, enum module_ev* ev) 1408 { 1409 mstate->num_activated++; 1410 if(mstate->num_activated > MESH_MAX_ACTIVATION) { 1411 /* module is looping. Stop it. */ 1412 log_err("internal error: looping module (%s) stopped", 1413 mesh->mods.mod[mstate->s.curmod]->name); 1414 log_query_info(NO_VERBOSE, "pass error for qstate", 1415 &mstate->s.qinfo); 1416 s = module_error; 1417 } 1418 if(s == module_wait_module || s == module_restart_next) { 1419 /* start next module */ 1420 mstate->s.curmod++; 1421 if(mesh->mods.num == mstate->s.curmod) { 1422 log_err("Cannot pass to next module; at last module"); 1423 log_query_info(VERB_QUERY, "pass error for qstate", 1424 &mstate->s.qinfo); 1425 mstate->s.curmod--; 1426 return mesh_continue(mesh, mstate, module_error, ev); 1427 } 1428 if(s == module_restart_next) { 1429 int curmod = mstate->s.curmod; 1430 for(; mstate->s.curmod < mesh->mods.num; 1431 mstate->s.curmod++) { 1432 fptr_ok(fptr_whitelist_mod_clear( 1433 mesh->mods.mod[mstate->s.curmod]->clear)); 1434 (*mesh->mods.mod[mstate->s.curmod]->clear) 1435 (&mstate->s, mstate->s.curmod); 1436 mstate->s.minfo[mstate->s.curmod] = NULL; 1437 } 1438 mstate->s.curmod = curmod; 1439 } 1440 *ev = module_event_pass; 1441 return 1; 1442 } 1443 if(s == module_wait_subquery && mstate->sub_set.count == 0) { 1444 log_err("module cannot wait for subquery, subquery list empty"); 1445 log_query_info(VERB_QUERY, "pass error for qstate", 1446 &mstate->s.qinfo); 1447 s = module_error; 1448 } 1449 if(s == module_error && mstate->s.return_rcode == LDNS_RCODE_NOERROR) { 1450 /* error is bad, handle pass back up below */ 1451 mstate->s.return_rcode = LDNS_RCODE_SERVFAIL; 1452 } 1453 if(s == module_error) { 1454 mesh_query_done(mstate); 1455 mesh_walk_supers(mesh, mstate); 1456 mesh_state_delete(&mstate->s); 1457 return 0; 1458 } 1459 if(s == module_finished) { 1460 if(mstate->s.curmod == 0) { 1461 struct query_info* qinfo = NULL; 1462 uint16_t qflags; 1463 1464 mesh_query_done(mstate); 1465 mesh_walk_supers(mesh, mstate); 1466 1467 /* If the answer to the query needs to be refetched 1468 * from an external DNS server, we'll need to schedule 1469 * a prefetch after removing the current state, so 1470 * we need to make a copy of the query info here. */ 1471 if(mstate->s.need_refetch) 1472 mesh_copy_qinfo(mstate, &qinfo, &qflags); 1473 1474 mesh_state_delete(&mstate->s); 1475 if(qinfo) { 1476 mesh_schedule_prefetch(mesh, qinfo, qflags, 1477 0, 1); 1478 } 1479 return 0; 1480 } 1481 /* pass along the locus of control */ 1482 mstate->s.curmod --; 1483 *ev = module_event_moddone; 1484 return 1; 1485 } 1486 return 0; 1487 } 1488 1489 void mesh_run(struct mesh_area* mesh, struct mesh_state* mstate, 1490 enum module_ev ev, struct outbound_entry* e) 1491 { 1492 enum module_ext_state s; 1493 verbose(VERB_ALGO, "mesh_run: start"); 1494 while(mstate) { 1495 /* run the module */ 1496 fptr_ok(fptr_whitelist_mod_operate( 1497 mesh->mods.mod[mstate->s.curmod]->operate)); 1498 (*mesh->mods.mod[mstate->s.curmod]->operate) 1499 (&mstate->s, ev, mstate->s.curmod, e); 1500 1501 /* examine results */ 1502 mstate->s.reply = NULL; 1503 regional_free_all(mstate->s.env->scratch); 1504 s = mstate->s.ext_state[mstate->s.curmod]; 1505 verbose(VERB_ALGO, "mesh_run: %s module exit state is %s", 1506 mesh->mods.mod[mstate->s.curmod]->name, strextstate(s)); 1507 e = NULL; 1508 if(mesh_continue(mesh, mstate, s, &ev)) 1509 continue; 1510 1511 /* run more modules */ 1512 ev = module_event_pass; 1513 if(mesh->run.count > 0) { 1514 /* pop random element off the runnable tree */ 1515 mstate = (struct mesh_state*)mesh->run.root->key; 1516 (void)rbtree_delete(&mesh->run, mstate); 1517 } else mstate = NULL; 1518 } 1519 if(verbosity >= VERB_ALGO) { 1520 mesh_stats(mesh, "mesh_run: end"); 1521 mesh_log_list(mesh); 1522 } 1523 } 1524 1525 void 1526 mesh_log_list(struct mesh_area* mesh) 1527 { 1528 char buf[30]; 1529 struct mesh_state* m; 1530 int num = 0; 1531 RBTREE_FOR(m, struct mesh_state*, &mesh->all) { 1532 snprintf(buf, sizeof(buf), "%d%s%s%s%s%s%s mod%d %s%s", 1533 num++, (m->s.is_priming)?"p":"", /* prime */ 1534 (m->s.is_valrec)?"v":"", /* prime */ 1535 (m->s.query_flags&BIT_RD)?"RD":"", 1536 (m->s.query_flags&BIT_CD)?"CD":"", 1537 (m->super_set.count==0)?"d":"", /* detached */ 1538 (m->sub_set.count!=0)?"c":"", /* children */ 1539 m->s.curmod, (m->reply_list)?"rep":"", /*hasreply*/ 1540 (m->cb_list)?"cb":"" /* callbacks */ 1541 ); 1542 log_query_info(VERB_ALGO, buf, &m->s.qinfo); 1543 } 1544 } 1545 1546 void 1547 mesh_stats(struct mesh_area* mesh, const char* str) 1548 { 1549 verbose(VERB_DETAIL, "%s %u recursion states (%u with reply, " 1550 "%u detached), %u waiting replies, %u recursion replies " 1551 "sent, %d replies dropped, %d states jostled out", 1552 str, (unsigned)mesh->all.count, 1553 (unsigned)mesh->num_reply_states, 1554 (unsigned)mesh->num_detached_states, 1555 (unsigned)mesh->num_reply_addrs, 1556 (unsigned)mesh->replies_sent, 1557 (unsigned)mesh->stats_dropped, 1558 (unsigned)mesh->stats_jostled); 1559 if(mesh->replies_sent > 0) { 1560 struct timeval avg; 1561 timeval_divide(&avg, &mesh->replies_sum_wait, 1562 mesh->replies_sent); 1563 log_info("average recursion processing time " 1564 ARG_LL "d.%6.6d sec", 1565 (long long)avg.tv_sec, (int)avg.tv_usec); 1566 log_info("histogram of recursion processing times"); 1567 timehist_log(mesh->histogram, "recursions"); 1568 } 1569 } 1570 1571 void 1572 mesh_stats_clear(struct mesh_area* mesh) 1573 { 1574 if(!mesh) 1575 return; 1576 mesh->replies_sent = 0; 1577 mesh->replies_sum_wait.tv_sec = 0; 1578 mesh->replies_sum_wait.tv_usec = 0; 1579 mesh->stats_jostled = 0; 1580 mesh->stats_dropped = 0; 1581 timehist_clear(mesh->histogram); 1582 mesh->ans_secure = 0; 1583 mesh->ans_bogus = 0; 1584 memset(&mesh->ans_rcode[0], 0, sizeof(size_t)*16); 1585 mesh->ans_nodata = 0; 1586 } 1587 1588 size_t 1589 mesh_get_mem(struct mesh_area* mesh) 1590 { 1591 struct mesh_state* m; 1592 size_t s = sizeof(*mesh) + sizeof(struct timehist) + 1593 sizeof(struct th_buck)*mesh->histogram->num + 1594 sizeof(sldns_buffer) + sldns_buffer_capacity(mesh->qbuf_bak); 1595 RBTREE_FOR(m, struct mesh_state*, &mesh->all) { 1596 /* all, including m itself allocated in qstate region */ 1597 s += regional_get_mem(m->s.region); 1598 } 1599 return s; 1600 } 1601 1602 int 1603 mesh_detect_cycle(struct module_qstate* qstate, struct query_info* qinfo, 1604 uint16_t flags, int prime, int valrec) 1605 { 1606 struct mesh_area* mesh = qstate->env->mesh; 1607 struct mesh_state* dep_m = NULL; 1608 if(!mesh_state_is_unique(qstate->mesh_info)) 1609 dep_m = mesh_area_find(mesh, NULL, qinfo, flags, prime, valrec); 1610 return mesh_detect_cycle_found(qstate, dep_m); 1611 } 1612 1613 void mesh_list_insert(struct mesh_state* m, struct mesh_state** fp, 1614 struct mesh_state** lp) 1615 { 1616 /* insert as last element */ 1617 m->prev = *lp; 1618 m->next = NULL; 1619 if(*lp) 1620 (*lp)->next = m; 1621 else *fp = m; 1622 *lp = m; 1623 } 1624 1625 void mesh_list_remove(struct mesh_state* m, struct mesh_state** fp, 1626 struct mesh_state** lp) 1627 { 1628 if(m->next) 1629 m->next->prev = m->prev; 1630 else *lp = m->prev; 1631 if(m->prev) 1632 m->prev->next = m->next; 1633 else *fp = m->next; 1634 } 1635 1636 void mesh_state_remove_reply(struct mesh_area* mesh, struct mesh_state* m, 1637 struct comm_point* cp) 1638 { 1639 struct mesh_reply* n, *prev = NULL; 1640 n = m->reply_list; 1641 /* when in mesh_cleanup, it sets the reply_list to NULL, so that 1642 * there is no accounting twice */ 1643 if(!n) return; /* nothing to remove, also no accounting needed */ 1644 while(n) { 1645 if(n->query_reply.c == cp) { 1646 /* unlink it */ 1647 if(prev) prev->next = n->next; 1648 else m->reply_list = n->next; 1649 /* delete it, but allocated in m region */ 1650 mesh->num_reply_addrs--; 1651 1652 /* prev = prev; */ 1653 n = n->next; 1654 continue; 1655 } 1656 prev = n; 1657 n = n->next; 1658 } 1659 /* it was not detached (because it had a reply list), could be now */ 1660 if(!m->reply_list && !m->cb_list 1661 && m->super_set.count == 0) { 1662 mesh->num_detached_states++; 1663 } 1664 /* if not replies any more in mstate, it is no longer a reply_state */ 1665 if(!m->reply_list && !m->cb_list) { 1666 log_assert(mesh->num_reply_states > 0); 1667 mesh->num_reply_states--; 1668 } 1669 } 1670