xref: /freebsd/contrib/unbound/iterator/iter_utils.c (revision ee7b0571c2c18bdec848ed2044223cc88db29bd8)
1 /*
2  * iterator/iter_utils.c - iterative resolver module utility functions.
3  *
4  * Copyright (c) 2007, NLnet Labs. All rights reserved.
5  *
6  * This software is open source.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * Redistributions of source code must retain the above copyright notice,
13  * this list of conditions and the following disclaimer.
14  *
15  * Redistributions in binary form must reproduce the above copyright notice,
16  * this list of conditions and the following disclaimer in the documentation
17  * and/or other materials provided with the distribution.
18  *
19  * Neither the name of the NLNET LABS nor the names of its contributors may
20  * be used to endorse or promote products derived from this software without
21  * specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
27  * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
28  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
29  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
31  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
32  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 /**
37  * \file
38  *
39  * This file contains functions to assist the iterator module.
40  * Configuration options. Forward zones.
41  */
42 #include "config.h"
43 #include "iterator/iter_utils.h"
44 #include "iterator/iterator.h"
45 #include "iterator/iter_hints.h"
46 #include "iterator/iter_fwd.h"
47 #include "iterator/iter_donotq.h"
48 #include "iterator/iter_delegpt.h"
49 #include "iterator/iter_priv.h"
50 #include "services/cache/infra.h"
51 #include "services/cache/dns.h"
52 #include "services/cache/rrset.h"
53 #include "util/net_help.h"
54 #include "util/module.h"
55 #include "util/log.h"
56 #include "util/config_file.h"
57 #include "util/regional.h"
58 #include "util/data/msgparse.h"
59 #include "util/data/dname.h"
60 #include "util/random.h"
61 #include "util/fptr_wlist.h"
62 #include "validator/val_anchor.h"
63 #include "validator/val_kcache.h"
64 #include "validator/val_kentry.h"
65 #include "validator/val_utils.h"
66 #include "validator/val_sigcrypt.h"
67 #include "ldns/sbuffer.h"
68 
69 /** time when nameserver glue is said to be 'recent' */
70 #define SUSPICION_RECENT_EXPIRY 86400
71 /** penalty to validation failed blacklisted IPs */
72 #define BLACKLIST_PENALTY (USEFUL_SERVER_TOP_TIMEOUT*4)
73 
74 /** fillup fetch policy array */
75 static void
76 fetch_fill(struct iter_env* ie, const char* str)
77 {
78 	char* s = (char*)str, *e;
79 	int i;
80 	for(i=0; i<ie->max_dependency_depth+1; i++) {
81 		ie->target_fetch_policy[i] = strtol(s, &e, 10);
82 		if(s == e)
83 			fatal_exit("cannot parse fetch policy number %s", s);
84 		s = e;
85 	}
86 }
87 
88 /** Read config string that represents the target fetch policy */
89 static int
90 read_fetch_policy(struct iter_env* ie, const char* str)
91 {
92 	int count = cfg_count_numbers(str);
93 	if(count < 1) {
94 		log_err("Cannot parse target fetch policy: \"%s\"", str);
95 		return 0;
96 	}
97 	ie->max_dependency_depth = count - 1;
98 	ie->target_fetch_policy = (int*)calloc(
99 		(size_t)ie->max_dependency_depth+1, sizeof(int));
100 	if(!ie->target_fetch_policy) {
101 		log_err("alloc fetch policy: out of memory");
102 		return 0;
103 	}
104 	fetch_fill(ie, str);
105 	return 1;
106 }
107 
108 int
109 iter_apply_cfg(struct iter_env* iter_env, struct config_file* cfg)
110 {
111 	int i;
112 	/* target fetch policy */
113 	if(!read_fetch_policy(iter_env, cfg->target_fetch_policy))
114 		return 0;
115 	for(i=0; i<iter_env->max_dependency_depth+1; i++)
116 		verbose(VERB_QUERY, "target fetch policy for level %d is %d",
117 			i, iter_env->target_fetch_policy[i]);
118 
119 	if(!iter_env->donotq)
120 		iter_env->donotq = donotq_create();
121 	if(!iter_env->donotq || !donotq_apply_cfg(iter_env->donotq, cfg)) {
122 		log_err("Could not set donotqueryaddresses");
123 		return 0;
124 	}
125 	if(!iter_env->priv)
126 		iter_env->priv = priv_create();
127 	if(!iter_env->priv || !priv_apply_cfg(iter_env->priv, cfg)) {
128 		log_err("Could not set private addresses");
129 		return 0;
130 	}
131 	iter_env->supports_ipv6 = cfg->do_ip6;
132 	iter_env->supports_ipv4 = cfg->do_ip4;
133 	return 1;
134 }
135 
136 /** filter out unsuitable targets
137  * @param iter_env: iterator environment with ipv6-support flag.
138  * @param env: module environment with infra cache.
139  * @param name: zone name
140  * @param namelen: length of name
141  * @param qtype: query type (host order).
142  * @param now: current time
143  * @param a: address in delegation point we are examining.
144  * @return an integer that signals the target suitability.
145  *	as follows:
146  *	-1: The address should be omitted from the list.
147  *	    Because:
148  *		o The address is bogus (DNSSEC validation failure).
149  *		o Listed as donotquery
150  *		o is ipv6 but no ipv6 support (in operating system).
151  *		o is ipv4 but no ipv4 support (in operating system).
152  *		o is lame
153  *	Otherwise, an rtt in milliseconds.
154  *	0 .. USEFUL_SERVER_TOP_TIMEOUT-1
155  *		The roundtrip time timeout estimate. less than 2 minutes.
156  *		Note that util/rtt.c has a MIN_TIMEOUT of 50 msec, thus
157  *		values 0 .. 49 are not used, unless that is changed.
158  *	USEFUL_SERVER_TOP_TIMEOUT
159  *		This value exactly is given for unresponsive blacklisted.
160  *	USEFUL_SERVER_TOP_TIMEOUT+1
161  *		For non-blacklisted servers: huge timeout, but has traffic.
162  *	USEFUL_SERVER_TOP_TIMEOUT*1 ..
163  *		parent-side lame servers get this penalty. A dispreferential
164  *		server. (lame in delegpt).
165  *	USEFUL_SERVER_TOP_TIMEOUT*2 ..
166  *		dnsseclame servers get penalty
167  *	USEFUL_SERVER_TOP_TIMEOUT*3 ..
168  *		recursion lame servers get penalty
169  *	UNKNOWN_SERVER_NICENESS
170  *		If no information is known about the server, this is
171  *		returned. 376 msec or so.
172  *	+BLACKLIST_PENALTY (of USEFUL_TOP_TIMEOUT*4) for dnssec failed IPs.
173  *
174  * When a final value is chosen that is dnsseclame ; dnsseclameness checking
175  * is turned off (so we do not discard the reply).
176  * When a final value is chosen that is recursionlame; RD bit is set on query.
177  * Because of the numbers this means recursionlame also have dnssec lameness
178  * checking turned off.
179  */
180 static int
181 iter_filter_unsuitable(struct iter_env* iter_env, struct module_env* env,
182 	uint8_t* name, size_t namelen, uint16_t qtype, time_t now,
183 	struct delegpt_addr* a)
184 {
185 	int rtt, lame, reclame, dnsseclame;
186 	if(a->bogus)
187 		return -1; /* address of server is bogus */
188 	if(donotq_lookup(iter_env->donotq, &a->addr, a->addrlen)) {
189 		log_addr(VERB_ALGO, "skip addr on the donotquery list",
190 			&a->addr, a->addrlen);
191 		return -1; /* server is on the donotquery list */
192 	}
193 	if(!iter_env->supports_ipv6 && addr_is_ip6(&a->addr, a->addrlen)) {
194 		return -1; /* there is no ip6 available */
195 	}
196 	if(!iter_env->supports_ipv4 && !addr_is_ip6(&a->addr, a->addrlen)) {
197 		return -1; /* there is no ip4 available */
198 	}
199 	/* check lameness - need zone , class info */
200 	if(infra_get_lame_rtt(env->infra_cache, &a->addr, a->addrlen,
201 		name, namelen, qtype, &lame, &dnsseclame, &reclame,
202 		&rtt, now)) {
203 		log_addr(VERB_ALGO, "servselect", &a->addr, a->addrlen);
204 		verbose(VERB_ALGO, "   rtt=%d%s%s%s%s", rtt,
205 			lame?" LAME":"",
206 			dnsseclame?" DNSSEC_LAME":"",
207 			reclame?" REC_LAME":"",
208 			a->lame?" ADDR_LAME":"");
209 		if(lame)
210 			return -1; /* server is lame */
211 		else if(rtt >= USEFUL_SERVER_TOP_TIMEOUT)
212 			/* server is unresponsive,
213 			 * we used to return TOP_TIMOUT, but fairly useless,
214 			 * because if == TOP_TIMEOUT is dropped because
215 			 * blacklisted later, instead, remove it here, so
216 			 * other choices (that are not blacklisted) can be
217 			 * tried */
218 			return -1;
219 		/* select remainder from worst to best */
220 		else if(reclame)
221 			return rtt+USEFUL_SERVER_TOP_TIMEOUT*3; /* nonpref */
222 		else if(dnsseclame || a->dnsseclame)
223 			return rtt+USEFUL_SERVER_TOP_TIMEOUT*2; /* nonpref */
224 		else if(a->lame)
225 			return rtt+USEFUL_SERVER_TOP_TIMEOUT+1; /* nonpref */
226 		else	return rtt;
227 	}
228 	/* no server information present */
229 	if(a->dnsseclame)
230 		return UNKNOWN_SERVER_NICENESS+USEFUL_SERVER_TOP_TIMEOUT*2; /* nonpref */
231 	else if(a->lame)
232 		return USEFUL_SERVER_TOP_TIMEOUT+1+UNKNOWN_SERVER_NICENESS; /* nonpref */
233 	return UNKNOWN_SERVER_NICENESS;
234 }
235 
236 /** lookup RTT information, and also store fastest rtt (if any) */
237 static int
238 iter_fill_rtt(struct iter_env* iter_env, struct module_env* env,
239 	uint8_t* name, size_t namelen, uint16_t qtype, time_t now,
240 	struct delegpt* dp, int* best_rtt, struct sock_list* blacklist)
241 {
242 	int got_it = 0;
243 	struct delegpt_addr* a;
244 	if(dp->bogus)
245 		return 0; /* NS bogus, all bogus, nothing found */
246 	for(a=dp->result_list; a; a = a->next_result) {
247 		a->sel_rtt = iter_filter_unsuitable(iter_env, env,
248 			name, namelen, qtype, now, a);
249 		if(a->sel_rtt != -1) {
250 			if(sock_list_find(blacklist, &a->addr, a->addrlen))
251 				a->sel_rtt += BLACKLIST_PENALTY;
252 
253 			if(!got_it) {
254 				*best_rtt = a->sel_rtt;
255 				got_it = 1;
256 			} else if(a->sel_rtt < *best_rtt) {
257 				*best_rtt = a->sel_rtt;
258 			}
259 		}
260 	}
261 	return got_it;
262 }
263 
264 /** filter the addres list, putting best targets at front,
265  * returns number of best targets (or 0, no suitable targets) */
266 static int
267 iter_filter_order(struct iter_env* iter_env, struct module_env* env,
268 	uint8_t* name, size_t namelen, uint16_t qtype, time_t now,
269 	struct delegpt* dp, int* selected_rtt, int open_target,
270 	struct sock_list* blacklist)
271 {
272 	int got_num = 0, low_rtt = 0, swap_to_front;
273 	struct delegpt_addr* a, *n, *prev=NULL;
274 
275 	/* fillup sel_rtt and find best rtt in the bunch */
276 	got_num = iter_fill_rtt(iter_env, env, name, namelen, qtype, now, dp,
277 		&low_rtt, blacklist);
278 	if(got_num == 0)
279 		return 0;
280 	if(low_rtt >= USEFUL_SERVER_TOP_TIMEOUT &&
281 		(delegpt_count_missing_targets(dp) > 0 || open_target > 0)) {
282 		verbose(VERB_ALGO, "Bad choices, trying to get more choice");
283 		return 0; /* we want more choice. The best choice is a bad one.
284 			     return 0 to force the caller to fetch more */
285 	}
286 
287 	got_num = 0;
288 	a = dp->result_list;
289 	while(a) {
290 		/* skip unsuitable targets */
291 		if(a->sel_rtt == -1) {
292 			prev = a;
293 			a = a->next_result;
294 			continue;
295 		}
296 		/* classify the server address and determine what to do */
297 		swap_to_front = 0;
298 		if(a->sel_rtt >= low_rtt && a->sel_rtt - low_rtt <= RTT_BAND) {
299 			got_num++;
300 			swap_to_front = 1;
301 		} else if(a->sel_rtt<low_rtt && low_rtt-a->sel_rtt<=RTT_BAND) {
302 			got_num++;
303 			swap_to_front = 1;
304 		}
305 		/* swap to front if necessary, or move to next result */
306 		if(swap_to_front && prev) {
307 			n = a->next_result;
308 			prev->next_result = n;
309 			a->next_result = dp->result_list;
310 			dp->result_list = a;
311 			a = n;
312 		} else {
313 			prev = a;
314 			a = a->next_result;
315 		}
316 	}
317 	*selected_rtt = low_rtt;
318 	return got_num;
319 }
320 
321 struct delegpt_addr*
322 iter_server_selection(struct iter_env* iter_env,
323 	struct module_env* env, struct delegpt* dp,
324 	uint8_t* name, size_t namelen, uint16_t qtype, int* dnssec_lame,
325 	int* chase_to_rd, int open_target, struct sock_list* blacklist)
326 {
327 	int sel;
328 	int selrtt;
329 	struct delegpt_addr* a, *prev;
330 	int num = iter_filter_order(iter_env, env, name, namelen, qtype,
331 		*env->now, dp, &selrtt, open_target, blacklist);
332 
333 	if(num == 0)
334 		return NULL;
335 	verbose(VERB_ALGO, "selrtt %d", selrtt);
336 	if(selrtt > BLACKLIST_PENALTY) {
337 		if(selrtt-BLACKLIST_PENALTY > USEFUL_SERVER_TOP_TIMEOUT*3) {
338 			verbose(VERB_ALGO, "chase to "
339 				"blacklisted recursion lame server");
340 			*chase_to_rd = 1;
341 		}
342 		if(selrtt-BLACKLIST_PENALTY > USEFUL_SERVER_TOP_TIMEOUT*2) {
343 			verbose(VERB_ALGO, "chase to "
344 				"blacklisted dnssec lame server");
345 			*dnssec_lame = 1;
346 		}
347 	} else {
348 		if(selrtt > USEFUL_SERVER_TOP_TIMEOUT*3) {
349 			verbose(VERB_ALGO, "chase to recursion lame server");
350 			*chase_to_rd = 1;
351 		}
352 		if(selrtt > USEFUL_SERVER_TOP_TIMEOUT*2) {
353 			verbose(VERB_ALGO, "chase to dnssec lame server");
354 			*dnssec_lame = 1;
355 		}
356 		if(selrtt == USEFUL_SERVER_TOP_TIMEOUT) {
357 			verbose(VERB_ALGO, "chase to blacklisted lame server");
358 			return NULL;
359 		}
360 	}
361 
362 	if(num == 1) {
363 		a = dp->result_list;
364 		if(++a->attempts < OUTBOUND_MSG_RETRY)
365 			return a;
366 		dp->result_list = a->next_result;
367 		return a;
368 	}
369 
370 	/* randomly select a target from the list */
371 	log_assert(num > 1);
372 	/* grab secure random number, to pick unexpected server.
373 	 * also we need it to be threadsafe. */
374 	sel = ub_random_max(env->rnd, num);
375 	a = dp->result_list;
376 	prev = NULL;
377 	while(sel > 0 && a) {
378 		prev = a;
379 		a = a->next_result;
380 		sel--;
381 	}
382 	if(!a)  /* robustness */
383 		return NULL;
384 	if(++a->attempts < OUTBOUND_MSG_RETRY)
385 		return a;
386 	/* remove it from the delegation point result list */
387 	if(prev)
388 		prev->next_result = a->next_result;
389 	else	dp->result_list = a->next_result;
390 	return a;
391 }
392 
393 struct dns_msg*
394 dns_alloc_msg(sldns_buffer* pkt, struct msg_parse* msg,
395 	struct regional* region)
396 {
397 	struct dns_msg* m = (struct dns_msg*)regional_alloc(region,
398 		sizeof(struct dns_msg));
399 	if(!m)
400 		return NULL;
401 	memset(m, 0, sizeof(*m));
402 	if(!parse_create_msg(pkt, msg, NULL, &m->qinfo, &m->rep, region)) {
403 		log_err("malloc failure: allocating incoming dns_msg");
404 		return NULL;
405 	}
406 	return m;
407 }
408 
409 struct dns_msg*
410 dns_copy_msg(struct dns_msg* from, struct regional* region)
411 {
412 	struct dns_msg* m = (struct dns_msg*)regional_alloc(region,
413 		sizeof(struct dns_msg));
414 	if(!m)
415 		return NULL;
416 	m->qinfo = from->qinfo;
417 	if(!(m->qinfo.qname = regional_alloc_init(region, from->qinfo.qname,
418 		from->qinfo.qname_len)))
419 		return NULL;
420 	if(!(m->rep = reply_info_copy(from->rep, NULL, region)))
421 		return NULL;
422 	return m;
423 }
424 
425 void
426 iter_dns_store(struct module_env* env, struct query_info* msgqinf,
427 	struct reply_info* msgrep, int is_referral, time_t leeway, int pside,
428 	struct regional* region)
429 {
430 	if(!dns_cache_store(env, msgqinf, msgrep, is_referral, leeway,
431 		pside, region))
432 		log_err("out of memory: cannot store data in cache");
433 }
434 
435 int
436 iter_ns_probability(struct ub_randstate* rnd, int n, int m)
437 {
438 	int sel;
439 	if(n == m) /* 100% chance */
440 		return 1;
441 	/* we do not need secure random numbers here, but
442 	 * we do need it to be threadsafe, so we use this */
443 	sel = ub_random_max(rnd, m);
444 	return (sel < n);
445 }
446 
447 /** detect dependency cycle for query and target */
448 static int
449 causes_cycle(struct module_qstate* qstate, uint8_t* name, size_t namelen,
450 	uint16_t t, uint16_t c)
451 {
452 	struct query_info qinf;
453 	qinf.qname = name;
454 	qinf.qname_len = namelen;
455 	qinf.qtype = t;
456 	qinf.qclass = c;
457 	fptr_ok(fptr_whitelist_modenv_detect_cycle(
458 		qstate->env->detect_cycle));
459 	return (*qstate->env->detect_cycle)(qstate, &qinf,
460 		(uint16_t)(BIT_RD|BIT_CD), qstate->is_priming);
461 }
462 
463 void
464 iter_mark_cycle_targets(struct module_qstate* qstate, struct delegpt* dp)
465 {
466 	struct delegpt_ns* ns;
467 	for(ns = dp->nslist; ns; ns = ns->next) {
468 		if(ns->resolved)
469 			continue;
470 		/* see if this ns as target causes dependency cycle */
471 		if(causes_cycle(qstate, ns->name, ns->namelen,
472 			LDNS_RR_TYPE_AAAA, qstate->qinfo.qclass) ||
473 		   causes_cycle(qstate, ns->name, ns->namelen,
474 			LDNS_RR_TYPE_A, qstate->qinfo.qclass)) {
475 			log_nametypeclass(VERB_QUERY, "skipping target due "
476 			 	"to dependency cycle (harden-glue: no may "
477 				"fix some of the cycles)",
478 				ns->name, LDNS_RR_TYPE_A,
479 				qstate->qinfo.qclass);
480 			ns->resolved = 1;
481 		}
482 	}
483 }
484 
485 void
486 iter_mark_pside_cycle_targets(struct module_qstate* qstate, struct delegpt* dp)
487 {
488 	struct delegpt_ns* ns;
489 	for(ns = dp->nslist; ns; ns = ns->next) {
490 		if(ns->done_pside4 && ns->done_pside6)
491 			continue;
492 		/* see if this ns as target causes dependency cycle */
493 		if(causes_cycle(qstate, ns->name, ns->namelen,
494 			LDNS_RR_TYPE_A, qstate->qinfo.qclass)) {
495 			log_nametypeclass(VERB_QUERY, "skipping target due "
496 			 	"to dependency cycle", ns->name,
497 				LDNS_RR_TYPE_A, qstate->qinfo.qclass);
498 			ns->done_pside4 = 1;
499 		}
500 		if(causes_cycle(qstate, ns->name, ns->namelen,
501 			LDNS_RR_TYPE_AAAA, qstate->qinfo.qclass)) {
502 			log_nametypeclass(VERB_QUERY, "skipping target due "
503 			 	"to dependency cycle", ns->name,
504 				LDNS_RR_TYPE_AAAA, qstate->qinfo.qclass);
505 			ns->done_pside6 = 1;
506 		}
507 	}
508 }
509 
510 int
511 iter_dp_is_useless(struct query_info* qinfo, uint16_t qflags,
512 	struct delegpt* dp)
513 {
514 	struct delegpt_ns* ns;
515 	/* check:
516 	 *      o RD qflag is on.
517 	 *      o no addresses are provided.
518 	 *      o all NS items are required glue.
519 	 * OR
520 	 *      o RD qflag is on.
521 	 *      o no addresses are provided.
522 	 *      o the query is for one of the nameservers in dp,
523 	 *        and that nameserver is a glue-name for this dp.
524 	 */
525 	if(!(qflags&BIT_RD))
526 		return 0;
527 	/* either available or unused targets */
528 	if(dp->usable_list || dp->result_list)
529 		return 0;
530 
531 	/* see if query is for one of the nameservers, which is glue */
532 	if( (qinfo->qtype == LDNS_RR_TYPE_A ||
533 		qinfo->qtype == LDNS_RR_TYPE_AAAA) &&
534 		dname_subdomain_c(qinfo->qname, dp->name) &&
535 		delegpt_find_ns(dp, qinfo->qname, qinfo->qname_len))
536 		return 1;
537 
538 	for(ns = dp->nslist; ns; ns = ns->next) {
539 		if(ns->resolved) /* skip failed targets */
540 			continue;
541 		if(!dname_subdomain_c(ns->name, dp->name))
542 			return 0; /* one address is not required glue */
543 	}
544 	return 1;
545 }
546 
547 int
548 iter_indicates_dnssec(struct module_env* env, struct delegpt* dp,
549         struct dns_msg* msg, uint16_t dclass)
550 {
551 	struct trust_anchor* a;
552 	/* information not available, !env->anchors can be common */
553 	if(!env || !env->anchors || !dp || !dp->name)
554 		return 0;
555 	/* a trust anchor exists with this name, RRSIGs expected */
556 	if((a=anchor_find(env->anchors, dp->name, dp->namelabs, dp->namelen,
557 		dclass))) {
558 		lock_basic_unlock(&a->lock);
559 		return 1;
560 	}
561 	/* see if DS rrset was given, in AUTH section */
562 	if(msg && msg->rep &&
563 		reply_find_rrset_section_ns(msg->rep, dp->name, dp->namelen,
564 		LDNS_RR_TYPE_DS, dclass))
565 		return 1;
566 	/* look in key cache */
567 	if(env->key_cache) {
568 		struct key_entry_key* kk = key_cache_obtain(env->key_cache,
569 			dp->name, dp->namelen, dclass, env->scratch, *env->now);
570 		if(kk) {
571 			if(query_dname_compare(kk->name, dp->name) == 0) {
572 			  if(key_entry_isgood(kk) || key_entry_isbad(kk)) {
573 				regional_free_all(env->scratch);
574 				return 1;
575 			  } else if(key_entry_isnull(kk)) {
576 				regional_free_all(env->scratch);
577 				return 0;
578 			  }
579 			}
580 			regional_free_all(env->scratch);
581 		}
582 	}
583 	return 0;
584 }
585 
586 int
587 iter_msg_has_dnssec(struct dns_msg* msg)
588 {
589 	size_t i;
590 	if(!msg || !msg->rep)
591 		return 0;
592 	for(i=0; i<msg->rep->an_numrrsets + msg->rep->ns_numrrsets; i++) {
593 		if(((struct packed_rrset_data*)msg->rep->rrsets[i]->
594 			entry.data)->rrsig_count > 0)
595 			return 1;
596 	}
597 	/* empty message has no DNSSEC info, with DNSSEC the reply is
598 	 * not empty (NSEC) */
599 	return 0;
600 }
601 
602 int iter_msg_from_zone(struct dns_msg* msg, struct delegpt* dp,
603         enum response_type type, uint16_t dclass)
604 {
605 	if(!msg || !dp || !msg->rep || !dp->name)
606 		return 0;
607 	/* SOA RRset - always from reply zone */
608 	if(reply_find_rrset_section_an(msg->rep, dp->name, dp->namelen,
609 		LDNS_RR_TYPE_SOA, dclass) ||
610 	   reply_find_rrset_section_ns(msg->rep, dp->name, dp->namelen,
611 		LDNS_RR_TYPE_SOA, dclass))
612 		return 1;
613 	if(type == RESPONSE_TYPE_REFERRAL) {
614 		size_t i;
615 		/* if it adds a single label, i.e. we expect .com,
616 		 * and referral to example.com. NS ... , then origin zone
617 		 * is .com. For a referral to sub.example.com. NS ... then
618 		 * we do not know, since example.com. may be in between. */
619 		for(i=0; i<msg->rep->an_numrrsets+msg->rep->ns_numrrsets;
620 			i++) {
621 			struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
622 			if(ntohs(s->rk.type) == LDNS_RR_TYPE_NS &&
623 				ntohs(s->rk.rrset_class) == dclass) {
624 				int l = dname_count_labels(s->rk.dname);
625 				if(l == dp->namelabs + 1 &&
626 					dname_strict_subdomain(s->rk.dname,
627 					l, dp->name, dp->namelabs))
628 					return 1;
629 			}
630 		}
631 		return 0;
632 	}
633 	log_assert(type==RESPONSE_TYPE_ANSWER || type==RESPONSE_TYPE_CNAME);
634 	/* not a referral, and not lame delegation (upwards), so,
635 	 * any NS rrset must be from the zone itself */
636 	if(reply_find_rrset_section_an(msg->rep, dp->name, dp->namelen,
637 		LDNS_RR_TYPE_NS, dclass) ||
638 	   reply_find_rrset_section_ns(msg->rep, dp->name, dp->namelen,
639 		LDNS_RR_TYPE_NS, dclass))
640 		return 1;
641 	/* a DNSKEY set is expected at the zone apex as well */
642 	/* this is for 'minimal responses' for DNSKEYs */
643 	if(reply_find_rrset_section_an(msg->rep, dp->name, dp->namelen,
644 		LDNS_RR_TYPE_DNSKEY, dclass))
645 		return 1;
646 	return 0;
647 }
648 
649 /**
650  * check equality of two rrsets
651  * @param k1: rrset
652  * @param k2: rrset
653  * @return true if equal
654  */
655 static int
656 rrset_equal(struct ub_packed_rrset_key* k1, struct ub_packed_rrset_key* k2)
657 {
658 	struct packed_rrset_data* d1 = (struct packed_rrset_data*)
659 		k1->entry.data;
660 	struct packed_rrset_data* d2 = (struct packed_rrset_data*)
661 		k2->entry.data;
662 	size_t i, t;
663 	if(k1->rk.dname_len != k2->rk.dname_len ||
664 		k1->rk.flags != k2->rk.flags ||
665 		k1->rk.type != k2->rk.type ||
666 		k1->rk.rrset_class != k2->rk.rrset_class ||
667 		query_dname_compare(k1->rk.dname, k2->rk.dname) != 0)
668 		return 0;
669 	if(d1->ttl != d2->ttl ||
670 		d1->count != d2->count ||
671 		d1->rrsig_count != d2->rrsig_count ||
672 		d1->trust != d2->trust ||
673 		d1->security != d2->security)
674 		return 0;
675 	t = d1->count + d1->rrsig_count;
676 	for(i=0; i<t; i++) {
677 		if(d1->rr_len[i] != d2->rr_len[i] ||
678 			d1->rr_ttl[i] != d2->rr_ttl[i] ||
679 			memcmp(d1->rr_data[i], d2->rr_data[i],
680 				d1->rr_len[i]) != 0)
681 			return 0;
682 	}
683 	return 1;
684 }
685 
686 int
687 reply_equal(struct reply_info* p, struct reply_info* q, struct regional* region)
688 {
689 	size_t i;
690 	if(p->flags != q->flags ||
691 		p->qdcount != q->qdcount ||
692 		p->ttl != q->ttl ||
693 		p->prefetch_ttl != q->prefetch_ttl ||
694 		p->security != q->security ||
695 		p->an_numrrsets != q->an_numrrsets ||
696 		p->ns_numrrsets != q->ns_numrrsets ||
697 		p->ar_numrrsets != q->ar_numrrsets ||
698 		p->rrset_count != q->rrset_count)
699 		return 0;
700 	for(i=0; i<p->rrset_count; i++) {
701 		if(!rrset_equal(p->rrsets[i], q->rrsets[i])) {
702 			if(!rrset_canonical_equal(region, p->rrsets[i],
703 				q->rrsets[i])) {
704 				regional_free_all(region);
705 				return 0;
706 			}
707 			regional_free_all(region);
708 		}
709 	}
710 	return 1;
711 }
712 
713 void
714 iter_store_parentside_rrset(struct module_env* env,
715 	struct ub_packed_rrset_key* rrset)
716 {
717 	struct rrset_ref ref;
718 	rrset = packed_rrset_copy_alloc(rrset, env->alloc, *env->now);
719 	if(!rrset) {
720 		log_err("malloc failure in store_parentside_rrset");
721 		return;
722 	}
723 	rrset->rk.flags |= PACKED_RRSET_PARENT_SIDE;
724 	rrset->entry.hash = rrset_key_hash(&rrset->rk);
725 	ref.key = rrset;
726 	ref.id = rrset->id;
727 	/* ignore ret: if it was in the cache, ref updated */
728 	(void)rrset_cache_update(env->rrset_cache, &ref, env->alloc, *env->now);
729 }
730 
731 /** fetch NS record from reply, if any */
732 static struct ub_packed_rrset_key*
733 reply_get_NS_rrset(struct reply_info* rep)
734 {
735 	size_t i;
736 	for(i=0; i<rep->rrset_count; i++) {
737 		if(rep->rrsets[i]->rk.type == htons(LDNS_RR_TYPE_NS)) {
738 			return rep->rrsets[i];
739 		}
740 	}
741 	return NULL;
742 }
743 
744 void
745 iter_store_parentside_NS(struct module_env* env, struct reply_info* rep)
746 {
747 	struct ub_packed_rrset_key* rrset = reply_get_NS_rrset(rep);
748 	if(rrset) {
749 		log_rrset_key(VERB_ALGO, "store parent-side NS", rrset);
750 		iter_store_parentside_rrset(env, rrset);
751 	}
752 }
753 
754 void iter_store_parentside_neg(struct module_env* env,
755         struct query_info* qinfo, struct reply_info* rep)
756 {
757 	/* TTL: NS from referral in iq->deleg_msg,
758 	 *      or first RR from iq->response,
759 	 *      or servfail5secs if !iq->response */
760 	time_t ttl = NORR_TTL;
761 	struct ub_packed_rrset_key* neg;
762 	struct packed_rrset_data* newd;
763 	if(rep) {
764 		struct ub_packed_rrset_key* rrset = reply_get_NS_rrset(rep);
765 		if(!rrset && rep->rrset_count != 0) rrset = rep->rrsets[0];
766 		if(rrset) ttl = ub_packed_rrset_ttl(rrset);
767 	}
768 	/* create empty rrset to store */
769 	neg = (struct ub_packed_rrset_key*)regional_alloc(env->scratch,
770 	                sizeof(struct ub_packed_rrset_key));
771 	if(!neg) {
772 		log_err("out of memory in store_parentside_neg");
773 		return;
774 	}
775 	memset(&neg->entry, 0, sizeof(neg->entry));
776 	neg->entry.key = neg;
777 	neg->rk.type = htons(qinfo->qtype);
778 	neg->rk.rrset_class = htons(qinfo->qclass);
779 	neg->rk.flags = 0;
780 	neg->rk.dname = regional_alloc_init(env->scratch, qinfo->qname,
781 		qinfo->qname_len);
782 	if(!neg->rk.dname) {
783 		log_err("out of memory in store_parentside_neg");
784 		return;
785 	}
786 	neg->rk.dname_len = qinfo->qname_len;
787 	neg->entry.hash = rrset_key_hash(&neg->rk);
788 	newd = (struct packed_rrset_data*)regional_alloc_zero(env->scratch,
789 		sizeof(struct packed_rrset_data) + sizeof(size_t) +
790 		sizeof(uint8_t*) + sizeof(time_t) + sizeof(uint16_t));
791 	if(!newd) {
792 		log_err("out of memory in store_parentside_neg");
793 		return;
794 	}
795 	neg->entry.data = newd;
796 	newd->ttl = ttl;
797 	/* entry must have one RR, otherwise not valid in cache.
798 	 * put in one RR with empty rdata: those are ignored as nameserver */
799 	newd->count = 1;
800 	newd->rrsig_count = 0;
801 	newd->trust = rrset_trust_ans_noAA;
802 	newd->rr_len = (size_t*)((uint8_t*)newd +
803 		sizeof(struct packed_rrset_data));
804 	newd->rr_len[0] = 0 /* zero len rdata */ + sizeof(uint16_t);
805 	packed_rrset_ptr_fixup(newd);
806 	newd->rr_ttl[0] = newd->ttl;
807 	sldns_write_uint16(newd->rr_data[0], 0 /* zero len rdata */);
808 	/* store it */
809 	log_rrset_key(VERB_ALGO, "store parent-side negative", neg);
810 	iter_store_parentside_rrset(env, neg);
811 }
812 
813 int
814 iter_lookup_parent_NS_from_cache(struct module_env* env, struct delegpt* dp,
815 	struct regional* region, struct query_info* qinfo)
816 {
817 	struct ub_packed_rrset_key* akey;
818 	akey = rrset_cache_lookup(env->rrset_cache, dp->name,
819 		dp->namelen, LDNS_RR_TYPE_NS, qinfo->qclass,
820 		PACKED_RRSET_PARENT_SIDE, *env->now, 0);
821 	if(akey) {
822 		log_rrset_key(VERB_ALGO, "found parent-side NS in cache", akey);
823 		dp->has_parent_side_NS = 1;
824 		/* and mark the new names as lame */
825 		if(!delegpt_rrset_add_ns(dp, region, akey, 1)) {
826 			lock_rw_unlock(&akey->entry.lock);
827 			return 0;
828 		}
829 		lock_rw_unlock(&akey->entry.lock);
830 	}
831 	return 1;
832 }
833 
834 int iter_lookup_parent_glue_from_cache(struct module_env* env,
835         struct delegpt* dp, struct regional* region, struct query_info* qinfo)
836 {
837 	struct ub_packed_rrset_key* akey;
838 	struct delegpt_ns* ns;
839 	size_t num = delegpt_count_targets(dp);
840 	for(ns = dp->nslist; ns; ns = ns->next) {
841 		/* get cached parentside A */
842 		akey = rrset_cache_lookup(env->rrset_cache, ns->name,
843 			ns->namelen, LDNS_RR_TYPE_A, qinfo->qclass,
844 			PACKED_RRSET_PARENT_SIDE, *env->now, 0);
845 		if(akey) {
846 			log_rrset_key(VERB_ALGO, "found parent-side", akey);
847 			ns->done_pside4 = 1;
848 			/* a negative-cache-element has no addresses it adds */
849 			if(!delegpt_add_rrset_A(dp, region, akey, 1))
850 				log_err("malloc failure in lookup_parent_glue");
851 			lock_rw_unlock(&akey->entry.lock);
852 		}
853 		/* get cached parentside AAAA */
854 		akey = rrset_cache_lookup(env->rrset_cache, ns->name,
855 			ns->namelen, LDNS_RR_TYPE_AAAA, qinfo->qclass,
856 			PACKED_RRSET_PARENT_SIDE, *env->now, 0);
857 		if(akey) {
858 			log_rrset_key(VERB_ALGO, "found parent-side", akey);
859 			ns->done_pside6 = 1;
860 			/* a negative-cache-element has no addresses it adds */
861 			if(!delegpt_add_rrset_AAAA(dp, region, akey, 1))
862 				log_err("malloc failure in lookup_parent_glue");
863 			lock_rw_unlock(&akey->entry.lock);
864 		}
865 	}
866 	/* see if new (but lame) addresses have become available */
867 	return delegpt_count_targets(dp) != num;
868 }
869 
870 int
871 iter_get_next_root(struct iter_hints* hints, struct iter_forwards* fwd,
872 	uint16_t* c)
873 {
874 	uint16_t c1 = *c, c2 = *c;
875 	int r1 = hints_next_root(hints, &c1);
876 	int r2 = forwards_next_root(fwd, &c2);
877 	if(!r1 && !r2) /* got none, end of list */
878 		return 0;
879 	else if(!r1) /* got one, return that */
880 		*c = c2;
881 	else if(!r2)
882 		*c = c1;
883 	else if(c1 < c2) /* got both take smallest */
884 		*c = c1;
885 	else	*c = c2;
886 	return 1;
887 }
888 
889 void
890 iter_scrub_ds(struct dns_msg* msg, struct ub_packed_rrset_key* ns, uint8_t* z)
891 {
892 	/* Only the DS record for the delegation itself is expected.
893 	 * We allow DS for everything between the bailiwick and the
894 	 * zonecut, thus DS records must be at or above the zonecut.
895 	 * And the DS records must be below the server authority zone.
896 	 * The answer section is already scrubbed. */
897 	size_t i = msg->rep->an_numrrsets;
898 	while(i < (msg->rep->an_numrrsets + msg->rep->ns_numrrsets)) {
899 		struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
900 		if(ntohs(s->rk.type) == LDNS_RR_TYPE_DS &&
901 			(!ns || !dname_subdomain_c(ns->rk.dname, s->rk.dname)
902 			|| query_dname_compare(z, s->rk.dname) == 0)) {
903 			log_nametypeclass(VERB_ALGO, "removing irrelevant DS",
904 				s->rk.dname, ntohs(s->rk.type),
905 				ntohs(s->rk.rrset_class));
906 			memmove(msg->rep->rrsets+i, msg->rep->rrsets+i+1,
907 				sizeof(struct ub_packed_rrset_key*) *
908 				(msg->rep->rrset_count-i-1));
909 			msg->rep->ns_numrrsets--;
910 			msg->rep->rrset_count--;
911 			/* stay at same i, but new record */
912 			continue;
913 		}
914 		i++;
915 	}
916 }
917 
918 void iter_dec_attempts(struct delegpt* dp, int d)
919 {
920 	struct delegpt_addr* a;
921 	for(a=dp->target_list; a; a = a->next_target) {
922 		if(a->attempts >= OUTBOUND_MSG_RETRY) {
923 			/* add back to result list */
924 			a->next_result = dp->result_list;
925 			dp->result_list = a;
926 		}
927 		if(a->attempts > d)
928 			a->attempts -= d;
929 		else a->attempts = 0;
930 	}
931 }
932 
933 void iter_merge_retry_counts(struct delegpt* dp, struct delegpt* old)
934 {
935 	struct delegpt_addr* a, *o, *prev;
936 	for(a=dp->target_list; a; a = a->next_target) {
937 		o = delegpt_find_addr(old, &a->addr, a->addrlen);
938 		if(o) {
939 			log_addr(VERB_ALGO, "copy attempt count previous dp",
940 				&a->addr, a->addrlen);
941 			a->attempts = o->attempts;
942 		}
943 	}
944 	prev = NULL;
945 	a = dp->usable_list;
946 	while(a) {
947 		if(a->attempts >= OUTBOUND_MSG_RETRY) {
948 			log_addr(VERB_ALGO, "remove from usable list dp",
949 				&a->addr, a->addrlen);
950 			/* remove from result list */
951 			if(prev)
952 				prev->next_usable = a->next_usable;
953 			else	dp->usable_list = a->next_usable;
954 			/* prev stays the same */
955 			a = a->next_usable;
956 			continue;
957 		}
958 		prev = a;
959 		a = a->next_usable;
960 	}
961 }
962 
963 int
964 iter_ds_toolow(struct dns_msg* msg, struct delegpt* dp)
965 {
966 	/* if for query example.com, there is example.com SOA or a subdomain
967 	 * of example.com, then we are too low and need to fetch NS. */
968 	size_t i;
969 	/* if we have a DNAME or CNAME we are probably wrong */
970 	/* if we have a qtype DS in the answer section, its fine */
971 	for(i=0; i < msg->rep->an_numrrsets; i++) {
972 		struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
973 		if(ntohs(s->rk.type) == LDNS_RR_TYPE_DNAME ||
974 			ntohs(s->rk.type) == LDNS_RR_TYPE_CNAME) {
975 			/* not the right answer, maybe too low, check the
976 			 * RRSIG signer name (if there is any) for a hint
977 			 * that it is from the dp zone anyway */
978 			uint8_t* sname;
979 			size_t slen;
980 			val_find_rrset_signer(s, &sname, &slen);
981 			if(sname && query_dname_compare(dp->name, sname)==0)
982 				return 0; /* it is fine, from the right dp */
983 			return 1;
984 		}
985 		if(ntohs(s->rk.type) == LDNS_RR_TYPE_DS)
986 			return 0; /* fine, we have a DS record */
987 	}
988 	for(i=msg->rep->an_numrrsets;
989 		i < msg->rep->an_numrrsets + msg->rep->ns_numrrsets; i++) {
990 		struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
991 		if(ntohs(s->rk.type) == LDNS_RR_TYPE_SOA) {
992 			if(dname_subdomain_c(s->rk.dname, msg->qinfo.qname))
993 				return 1; /* point is too low */
994 			if(query_dname_compare(s->rk.dname, dp->name)==0)
995 				return 0; /* right dp */
996 		}
997 		if(ntohs(s->rk.type) == LDNS_RR_TYPE_NSEC ||
998 			ntohs(s->rk.type) == LDNS_RR_TYPE_NSEC3) {
999 			uint8_t* sname;
1000 			size_t slen;
1001 			val_find_rrset_signer(s, &sname, &slen);
1002 			if(sname && query_dname_compare(dp->name, sname)==0)
1003 				return 0; /* it is fine, from the right dp */
1004 			return 1;
1005 		}
1006 	}
1007 	/* we do not know */
1008 	return 1;
1009 }
1010 
1011 int iter_dp_cangodown(struct query_info* qinfo, struct delegpt* dp)
1012 {
1013 	/* no delegation point, do not see how we can go down,
1014 	 * robust check, it should really exist */
1015 	if(!dp) return 0;
1016 
1017 	/* see if dp equals the qname, then we cannot go down further */
1018 	if(query_dname_compare(qinfo->qname, dp->name) == 0)
1019 		return 0;
1020 	/* if dp is one label above the name we also cannot go down further */
1021 	if(dname_count_labels(qinfo->qname) == dp->namelabs+1)
1022 		return 0;
1023 	return 1;
1024 }
1025