xref: /freebsd/contrib/unbound/iterator/iter_utils.c (revision d59a76183470685bdf0b88013d2baad1f04f030f)
1 /*
2  * iterator/iter_utils.c - iterative resolver module utility functions.
3  *
4  * Copyright (c) 2007, NLnet Labs. All rights reserved.
5  *
6  * This software is open source.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * Redistributions of source code must retain the above copyright notice,
13  * this list of conditions and the following disclaimer.
14  *
15  * Redistributions in binary form must reproduce the above copyright notice,
16  * this list of conditions and the following disclaimer in the documentation
17  * and/or other materials provided with the distribution.
18  *
19  * Neither the name of the NLNET LABS nor the names of its contributors may
20  * be used to endorse or promote products derived from this software without
21  * specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
27  * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
28  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
29  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
31  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
32  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 /**
37  * \file
38  *
39  * This file contains functions to assist the iterator module.
40  * Configuration options. Forward zones.
41  */
42 #include "config.h"
43 #include "iterator/iter_utils.h"
44 #include "iterator/iterator.h"
45 #include "iterator/iter_hints.h"
46 #include "iterator/iter_fwd.h"
47 #include "iterator/iter_donotq.h"
48 #include "iterator/iter_delegpt.h"
49 #include "iterator/iter_priv.h"
50 #include "services/cache/infra.h"
51 #include "services/cache/dns.h"
52 #include "services/cache/rrset.h"
53 #include "services/outside_network.h"
54 #include "util/net_help.h"
55 #include "util/module.h"
56 #include "util/log.h"
57 #include "util/config_file.h"
58 #include "util/regional.h"
59 #include "util/data/msgparse.h"
60 #include "util/data/dname.h"
61 #include "util/random.h"
62 #include "util/fptr_wlist.h"
63 #include "validator/val_anchor.h"
64 #include "validator/val_kcache.h"
65 #include "validator/val_kentry.h"
66 #include "validator/val_utils.h"
67 #include "validator/val_sigcrypt.h"
68 #include "sldns/sbuffer.h"
69 #include "sldns/str2wire.h"
70 
71 /** time when nameserver glue is said to be 'recent' */
72 #define SUSPICION_RECENT_EXPIRY 86400
73 
74 /** if NAT64 is enabled and no NAT64 prefix is configured, first fall back to
75  * DNS64 prefix.  If that is not configured, fall back to this default value.
76  */
77 static const char DEFAULT_NAT64_PREFIX[] = "64:ff9b::/96";
78 
79 /** fillup fetch policy array */
80 static void
81 fetch_fill(struct iter_env* ie, const char* str)
82 {
83 	char* s = (char*)str, *e;
84 	int i;
85 	for(i=0; i<ie->max_dependency_depth+1; i++) {
86 		ie->target_fetch_policy[i] = strtol(s, &e, 10);
87 		if(s == e)
88 			fatal_exit("cannot parse fetch policy number %s", s);
89 		s = e;
90 	}
91 }
92 
93 /** Read config string that represents the target fetch policy */
94 static int
95 read_fetch_policy(struct iter_env* ie, const char* str)
96 {
97 	int count = cfg_count_numbers(str);
98 	if(count < 1) {
99 		log_err("Cannot parse target fetch policy: \"%s\"", str);
100 		return 0;
101 	}
102 	ie->max_dependency_depth = count - 1;
103 	ie->target_fetch_policy = (int*)calloc(
104 		(size_t)ie->max_dependency_depth+1, sizeof(int));
105 	if(!ie->target_fetch_policy) {
106 		log_err("alloc fetch policy: out of memory");
107 		return 0;
108 	}
109 	fetch_fill(ie, str);
110 	return 1;
111 }
112 
113 /** apply config caps whitelist items to name tree */
114 static int
115 caps_white_apply_cfg(rbtree_type* ntree, struct config_file* cfg)
116 {
117 	struct config_strlist* p;
118 	for(p=cfg->caps_whitelist; p; p=p->next) {
119 		struct name_tree_node* n;
120 		size_t len;
121 		uint8_t* nm = sldns_str2wire_dname(p->str, &len);
122 		if(!nm) {
123 			log_err("could not parse %s", p->str);
124 			return 0;
125 		}
126 		n = (struct name_tree_node*)calloc(1, sizeof(*n));
127 		if(!n) {
128 			log_err("out of memory");
129 			free(nm);
130 			return 0;
131 		}
132 		n->node.key = n;
133 		n->name = nm;
134 		n->len = len;
135 		n->labs = dname_count_labels(nm);
136 		n->dclass = LDNS_RR_CLASS_IN;
137 		if(!name_tree_insert(ntree, n, nm, len, n->labs, n->dclass)) {
138 			/* duplicate element ignored, idempotent */
139 			free(n->name);
140 			free(n);
141 		}
142 	}
143 	name_tree_init_parents(ntree);
144 	return 1;
145 }
146 
147 int
148 iter_apply_cfg(struct iter_env* iter_env, struct config_file* cfg)
149 {
150 	const char *nat64_prefix;
151 	int i;
152 	/* target fetch policy */
153 	if(!read_fetch_policy(iter_env, cfg->target_fetch_policy))
154 		return 0;
155 	for(i=0; i<iter_env->max_dependency_depth+1; i++)
156 		verbose(VERB_QUERY, "target fetch policy for level %d is %d",
157 			i, iter_env->target_fetch_policy[i]);
158 
159 	if(!iter_env->donotq)
160 		iter_env->donotq = donotq_create();
161 	if(!iter_env->donotq || !donotq_apply_cfg(iter_env->donotq, cfg)) {
162 		log_err("Could not set donotqueryaddresses");
163 		return 0;
164 	}
165 	if(!iter_env->priv)
166 		iter_env->priv = priv_create();
167 	if(!iter_env->priv || !priv_apply_cfg(iter_env->priv, cfg)) {
168 		log_err("Could not set private addresses");
169 		return 0;
170 	}
171 	if(cfg->caps_whitelist) {
172 		if(!iter_env->caps_white)
173 			iter_env->caps_white = rbtree_create(name_tree_compare);
174 		if(!iter_env->caps_white || !caps_white_apply_cfg(
175 			iter_env->caps_white, cfg)) {
176 			log_err("Could not set capsforid whitelist");
177 			return 0;
178 		}
179 
180 	}
181 
182 	nat64_prefix = cfg->nat64_prefix;
183 	if(!nat64_prefix)
184 		nat64_prefix = cfg->dns64_prefix;
185 	if(!nat64_prefix)
186 		nat64_prefix = DEFAULT_NAT64_PREFIX;
187 	if(!netblockstrtoaddr(nat64_prefix, 0, &iter_env->nat64_prefix_addr,
188 		&iter_env->nat64_prefix_addrlen,
189 		&iter_env->nat64_prefix_net)) {
190 		log_err("cannot parse nat64-prefix netblock: %s", nat64_prefix);
191 		return 0;
192 	}
193 	if(!addr_is_ip6(&iter_env->nat64_prefix_addr,
194 		iter_env->nat64_prefix_addrlen)) {
195 		log_err("nat64-prefix is not IPv6: %s", cfg->nat64_prefix);
196 		return 0;
197 	}
198 	if(!prefixnet_is_nat64(iter_env->nat64_prefix_net)) {
199 		log_err("nat64-prefix length it not 32, 40, 48, 56, 64 or 96: %s",
200 			nat64_prefix);
201 		return 0;
202 	}
203 
204 	iter_env->supports_ipv6 = cfg->do_ip6;
205 	iter_env->supports_ipv4 = cfg->do_ip4;
206 	iter_env->use_nat64 = cfg->do_nat64;
207 	iter_env->outbound_msg_retry = cfg->outbound_msg_retry;
208 	iter_env->max_sent_count = cfg->max_sent_count;
209 	iter_env->max_query_restarts = cfg->max_query_restarts;
210 	return 1;
211 }
212 
213 /** filter out unsuitable targets
214  * @param iter_env: iterator environment with ipv6-support flag.
215  * @param env: module environment with infra cache.
216  * @param name: zone name
217  * @param namelen: length of name
218  * @param qtype: query type (host order).
219  * @param now: current time
220  * @param a: address in delegation point we are examining.
221  * @return an integer that signals the target suitability.
222  *	as follows:
223  *	-1: The address should be omitted from the list.
224  *	    Because:
225  *		o The address is bogus (DNSSEC validation failure).
226  *		o Listed as donotquery
227  *		o is ipv6 but no ipv6 support (in operating system).
228  *		o is ipv4 but no ipv4 support (in operating system).
229  *		o is lame
230  *	Otherwise, an rtt in milliseconds.
231  *	0 .. USEFUL_SERVER_TOP_TIMEOUT-1
232  *		The roundtrip time timeout estimate. less than 2 minutes.
233  *		Note that util/rtt.c has a MIN_TIMEOUT of 50 msec, thus
234  *		values 0 .. 49 are not used, unless that is changed.
235  *	USEFUL_SERVER_TOP_TIMEOUT
236  *		This value exactly is given for unresponsive blacklisted.
237  *	USEFUL_SERVER_TOP_TIMEOUT+1
238  *		For non-blacklisted servers: huge timeout, but has traffic.
239  *	USEFUL_SERVER_TOP_TIMEOUT*1 ..
240  *		parent-side lame servers get this penalty. A dispreferential
241  *		server. (lame in delegpt).
242  *	USEFUL_SERVER_TOP_TIMEOUT*2 ..
243  *		dnsseclame servers get penalty
244  *	USEFUL_SERVER_TOP_TIMEOUT*3 ..
245  *		recursion lame servers get penalty
246  *	UNKNOWN_SERVER_NICENESS
247  *		If no information is known about the server, this is
248  *		returned. 376 msec or so.
249  *	+BLACKLIST_PENALTY (of USEFUL_TOP_TIMEOUT*4) for dnssec failed IPs.
250  *
251  * When a final value is chosen that is dnsseclame ; dnsseclameness checking
252  * is turned off (so we do not discard the reply).
253  * When a final value is chosen that is recursionlame; RD bit is set on query.
254  * Because of the numbers this means recursionlame also have dnssec lameness
255  * checking turned off.
256  */
257 static int
258 iter_filter_unsuitable(struct iter_env* iter_env, struct module_env* env,
259 	uint8_t* name, size_t namelen, uint16_t qtype, time_t now,
260 	struct delegpt_addr* a)
261 {
262 	int rtt, lame, reclame, dnsseclame;
263 	if(a->bogus)
264 		return -1; /* address of server is bogus */
265 	if(donotq_lookup(iter_env->donotq, &a->addr, a->addrlen)) {
266 		log_addr(VERB_ALGO, "skip addr on the donotquery list",
267 			&a->addr, a->addrlen);
268 		return -1; /* server is on the donotquery list */
269 	}
270 	if(!iter_env->supports_ipv6 && addr_is_ip6(&a->addr, a->addrlen)) {
271 		return -1; /* there is no ip6 available */
272 	}
273 	if(!iter_env->supports_ipv4 && !iter_env->use_nat64 &&
274 	   !addr_is_ip6(&a->addr, a->addrlen)) {
275 		return -1; /* there is no ip4 available */
276 	}
277 	/* check lameness - need zone , class info */
278 	if(infra_get_lame_rtt(env->infra_cache, &a->addr, a->addrlen,
279 		name, namelen, qtype, &lame, &dnsseclame, &reclame,
280 		&rtt, now)) {
281 		log_addr(VERB_ALGO, "servselect", &a->addr, a->addrlen);
282 		verbose(VERB_ALGO, "   rtt=%d%s%s%s%s%s", rtt,
283 			lame?" LAME":"",
284 			dnsseclame?" DNSSEC_LAME":"",
285 			a->dnsseclame?" ADDR_DNSSEC_LAME":"",
286 			reclame?" REC_LAME":"",
287 			a->lame?" ADDR_LAME":"");
288 		if(lame)
289 			return -1; /* server is lame */
290 		else if(rtt >= USEFUL_SERVER_TOP_TIMEOUT)
291 			/* server is unresponsive,
292 			 * we used to return TOP_TIMEOUT, but fairly useless,
293 			 * because if == TOP_TIMEOUT is dropped because
294 			 * blacklisted later, instead, remove it here, so
295 			 * other choices (that are not blacklisted) can be
296 			 * tried */
297 			return -1;
298 		/* select remainder from worst to best */
299 		else if(reclame)
300 			return rtt+USEFUL_SERVER_TOP_TIMEOUT*3; /* nonpref */
301 		else if(dnsseclame || a->dnsseclame)
302 			return rtt+USEFUL_SERVER_TOP_TIMEOUT*2; /* nonpref */
303 		else if(a->lame)
304 			return rtt+USEFUL_SERVER_TOP_TIMEOUT+1; /* nonpref */
305 		else	return rtt;
306 	}
307 	/* no server information present */
308 	if(a->dnsseclame)
309 		return UNKNOWN_SERVER_NICENESS+USEFUL_SERVER_TOP_TIMEOUT*2; /* nonpref */
310 	else if(a->lame)
311 		return USEFUL_SERVER_TOP_TIMEOUT+1+UNKNOWN_SERVER_NICENESS; /* nonpref */
312 	return UNKNOWN_SERVER_NICENESS;
313 }
314 
315 /** lookup RTT information, and also store fastest rtt (if any) */
316 static int
317 iter_fill_rtt(struct iter_env* iter_env, struct module_env* env,
318 	uint8_t* name, size_t namelen, uint16_t qtype, time_t now,
319 	struct delegpt* dp, int* best_rtt, struct sock_list* blacklist,
320 	size_t* num_suitable_results)
321 {
322 	int got_it = 0;
323 	struct delegpt_addr* a;
324 	*num_suitable_results = 0;
325 
326 	if(dp->bogus)
327 		return 0; /* NS bogus, all bogus, nothing found */
328 	for(a=dp->result_list; a; a = a->next_result) {
329 		a->sel_rtt = iter_filter_unsuitable(iter_env, env,
330 			name, namelen, qtype, now, a);
331 		if(a->sel_rtt != -1) {
332 			if(sock_list_find(blacklist, &a->addr, a->addrlen))
333 				a->sel_rtt += BLACKLIST_PENALTY;
334 
335 			if(!got_it) {
336 				*best_rtt = a->sel_rtt;
337 				got_it = 1;
338 			} else if(a->sel_rtt < *best_rtt) {
339 				*best_rtt = a->sel_rtt;
340 			}
341 			(*num_suitable_results)++;
342 		}
343 	}
344 	return got_it;
345 }
346 
347 /** compare two rtts, return -1, 0 or 1 */
348 static int
349 rtt_compare(const void* x, const void* y)
350 {
351 	if(*(int*)x == *(int*)y)
352 		return 0;
353 	if(*(int*)x > *(int*)y)
354 		return 1;
355 	return -1;
356 }
357 
358 /** get RTT for the Nth fastest server */
359 static int
360 nth_rtt(struct delegpt_addr* result_list, size_t num_results, size_t n)
361 {
362 	int rtt_band;
363 	size_t i;
364 	int* rtt_list, *rtt_index;
365 
366 	if(num_results < 1 || n >= num_results) {
367 		return -1;
368 	}
369 
370 	rtt_list = calloc(num_results, sizeof(int));
371 	if(!rtt_list) {
372 		log_err("malloc failure: allocating rtt_list");
373 		return -1;
374 	}
375 	rtt_index = rtt_list;
376 
377 	for(i=0; i<num_results && result_list; i++) {
378 		if(result_list->sel_rtt != -1) {
379 			*rtt_index = result_list->sel_rtt;
380 			rtt_index++;
381 		}
382 		result_list=result_list->next_result;
383 	}
384 	qsort(rtt_list, num_results, sizeof(*rtt_list), rtt_compare);
385 
386 	log_assert(n > 0);
387 	rtt_band = rtt_list[n-1];
388 	free(rtt_list);
389 
390 	return rtt_band;
391 }
392 
393 /** filter the address list, putting best targets at front,
394  * returns number of best targets (or 0, no suitable targets) */
395 static int
396 iter_filter_order(struct iter_env* iter_env, struct module_env* env,
397 	uint8_t* name, size_t namelen, uint16_t qtype, time_t now,
398 	struct delegpt* dp, int* selected_rtt, int open_target,
399 	struct sock_list* blacklist, time_t prefetch)
400 {
401 	int got_num = 0, low_rtt = 0, swap_to_front, rtt_band = RTT_BAND, nth;
402 	int alllame = 0;
403 	size_t num_results;
404 	struct delegpt_addr* a, *n, *prev=NULL;
405 
406 	/* fillup sel_rtt and find best rtt in the bunch */
407 	got_num = iter_fill_rtt(iter_env, env, name, namelen, qtype, now, dp,
408 		&low_rtt, blacklist, &num_results);
409 	if(got_num == 0)
410 		return 0;
411 	if(low_rtt >= USEFUL_SERVER_TOP_TIMEOUT &&
412 		/* If all missing (or not fully resolved) targets are lame,
413 		 * then use the remaining lame address. */
414 		((delegpt_count_missing_targets(dp, &alllame) > 0 && !alllame) ||
415 		open_target > 0)) {
416 		verbose(VERB_ALGO, "Bad choices, trying to get more choice");
417 		return 0; /* we want more choice. The best choice is a bad one.
418 			     return 0 to force the caller to fetch more */
419 	}
420 
421 	if(env->cfg->fast_server_permil != 0 && prefetch == 0 &&
422 		num_results > env->cfg->fast_server_num &&
423 		ub_random_max(env->rnd, 1000) < env->cfg->fast_server_permil) {
424 		/* the query is not prefetch, but for a downstream client,
425 		 * there are more servers available then the fastest N we want
426 		 * to choose from. Limit our choice to the fastest servers. */
427 		nth = nth_rtt(dp->result_list, num_results,
428 			env->cfg->fast_server_num);
429 		if(nth > 0) {
430 			rtt_band = nth - low_rtt;
431 			if(rtt_band > RTT_BAND)
432 				rtt_band = RTT_BAND;
433 		}
434 	}
435 
436 	got_num = 0;
437 	a = dp->result_list;
438 	while(a) {
439 		/* skip unsuitable targets */
440 		if(a->sel_rtt == -1) {
441 			prev = a;
442 			a = a->next_result;
443 			continue;
444 		}
445 		/* classify the server address and determine what to do */
446 		swap_to_front = 0;
447 		if(a->sel_rtt >= low_rtt && a->sel_rtt - low_rtt <= rtt_band) {
448 			got_num++;
449 			swap_to_front = 1;
450 		} else if(a->sel_rtt<low_rtt && low_rtt-a->sel_rtt<=rtt_band) {
451 			got_num++;
452 			swap_to_front = 1;
453 		}
454 		/* swap to front if necessary, or move to next result */
455 		if(swap_to_front && prev) {
456 			n = a->next_result;
457 			prev->next_result = n;
458 			a->next_result = dp->result_list;
459 			dp->result_list = a;
460 			a = n;
461 		} else {
462 			prev = a;
463 			a = a->next_result;
464 		}
465 	}
466 	*selected_rtt = low_rtt;
467 
468 	if (env->cfg->prefer_ip6) {
469 		int got_num6 = 0;
470 		int low_rtt6 = 0;
471 		int i;
472 		int attempt = -1; /* filter to make sure addresses have
473 		  less attempts on them than the first, to force round
474 		  robin when all the IPv6 addresses fail */
475 		int num4ok = 0; /* number ip4 at low attempt count */
476 		int num4_lowrtt = 0;
477 		prev = NULL;
478 		a = dp->result_list;
479 		for(i = 0; i < got_num; i++) {
480 			if(!a) break; /* robustness */
481 			swap_to_front = 0;
482 			if(a->addr.ss_family != AF_INET6 && attempt == -1) {
483 				/* if we only have ip4 at low attempt count,
484 				 * then ip6 is failing, and we need to
485 				 * select one of the remaining IPv4 addrs */
486 				attempt = a->attempts;
487 				num4ok++;
488 				num4_lowrtt = a->sel_rtt;
489 			} else if(a->addr.ss_family != AF_INET6 && attempt == a->attempts) {
490 				num4ok++;
491 				if(num4_lowrtt == 0 || a->sel_rtt < num4_lowrtt) {
492 					num4_lowrtt = a->sel_rtt;
493 				}
494 			}
495 			if(a->addr.ss_family == AF_INET6) {
496 				if(attempt == -1) {
497 					attempt = a->attempts;
498 				} else if(a->attempts > attempt) {
499 					break;
500 				}
501 				got_num6++;
502 				swap_to_front = 1;
503 				if(low_rtt6 == 0 || a->sel_rtt < low_rtt6) {
504 					low_rtt6 = a->sel_rtt;
505 				}
506 			}
507 			/* swap to front if IPv6, or move to next result */
508 			if(swap_to_front && prev) {
509 				n = a->next_result;
510 				prev->next_result = n;
511 				a->next_result = dp->result_list;
512 				dp->result_list = a;
513 				a = n;
514 			} else {
515 				prev = a;
516 				a = a->next_result;
517 			}
518 		}
519 		if(got_num6 > 0) {
520 			got_num = got_num6;
521 			*selected_rtt = low_rtt6;
522 		} else if(num4ok > 0) {
523 			got_num = num4ok;
524 			*selected_rtt = num4_lowrtt;
525 		}
526 	} else if (env->cfg->prefer_ip4) {
527 		int got_num4 = 0;
528 		int low_rtt4 = 0;
529 		int i;
530 		int attempt = -1; /* filter to make sure addresses have
531 		  less attempts on them than the first, to force round
532 		  robin when all the IPv4 addresses fail */
533 		int num6ok = 0; /* number ip6 at low attempt count */
534 		int num6_lowrtt = 0;
535 		prev = NULL;
536 		a = dp->result_list;
537 		for(i = 0; i < got_num; i++) {
538 			if(!a) break; /* robustness */
539 			swap_to_front = 0;
540 			if(a->addr.ss_family != AF_INET && attempt == -1) {
541 				/* if we only have ip6 at low attempt count,
542 				 * then ip4 is failing, and we need to
543 				 * select one of the remaining IPv6 addrs */
544 				attempt = a->attempts;
545 				num6ok++;
546 				num6_lowrtt = a->sel_rtt;
547 			} else if(a->addr.ss_family != AF_INET && attempt == a->attempts) {
548 				num6ok++;
549 				if(num6_lowrtt == 0 || a->sel_rtt < num6_lowrtt) {
550 					num6_lowrtt = a->sel_rtt;
551 				}
552 			}
553 			if(a->addr.ss_family == AF_INET) {
554 				if(attempt == -1) {
555 					attempt = a->attempts;
556 				} else if(a->attempts > attempt) {
557 					break;
558 				}
559 				got_num4++;
560 				swap_to_front = 1;
561 				if(low_rtt4 == 0 || a->sel_rtt < low_rtt4) {
562 					low_rtt4 = a->sel_rtt;
563 				}
564 			}
565 			/* swap to front if IPv4, or move to next result */
566 			if(swap_to_front && prev) {
567 				n = a->next_result;
568 				prev->next_result = n;
569 				a->next_result = dp->result_list;
570 				dp->result_list = a;
571 				a = n;
572 			} else {
573 				prev = a;
574 				a = a->next_result;
575 			}
576 		}
577 		if(got_num4 > 0) {
578 			got_num = got_num4;
579 			*selected_rtt = low_rtt4;
580 		} else if(num6ok > 0) {
581 			got_num = num6ok;
582 			*selected_rtt = num6_lowrtt;
583 		}
584 	}
585 	return got_num;
586 }
587 
588 struct delegpt_addr*
589 iter_server_selection(struct iter_env* iter_env,
590 	struct module_env* env, struct delegpt* dp,
591 	uint8_t* name, size_t namelen, uint16_t qtype, int* dnssec_lame,
592 	int* chase_to_rd, int open_target, struct sock_list* blacklist,
593 	time_t prefetch)
594 {
595 	int sel;
596 	int selrtt;
597 	struct delegpt_addr* a, *prev;
598 	int num = iter_filter_order(iter_env, env, name, namelen, qtype,
599 		*env->now, dp, &selrtt, open_target, blacklist, prefetch);
600 
601 	if(num == 0)
602 		return NULL;
603 	verbose(VERB_ALGO, "selrtt %d", selrtt);
604 	if(selrtt > BLACKLIST_PENALTY) {
605 		if(selrtt-BLACKLIST_PENALTY > USEFUL_SERVER_TOP_TIMEOUT*3) {
606 			verbose(VERB_ALGO, "chase to "
607 				"blacklisted recursion lame server");
608 			*chase_to_rd = 1;
609 		}
610 		if(selrtt-BLACKLIST_PENALTY > USEFUL_SERVER_TOP_TIMEOUT*2) {
611 			verbose(VERB_ALGO, "chase to "
612 				"blacklisted dnssec lame server");
613 			*dnssec_lame = 1;
614 		}
615 	} else {
616 		if(selrtt > USEFUL_SERVER_TOP_TIMEOUT*3) {
617 			verbose(VERB_ALGO, "chase to recursion lame server");
618 			*chase_to_rd = 1;
619 		}
620 		if(selrtt > USEFUL_SERVER_TOP_TIMEOUT*2) {
621 			verbose(VERB_ALGO, "chase to dnssec lame server");
622 			*dnssec_lame = 1;
623 		}
624 		if(selrtt == USEFUL_SERVER_TOP_TIMEOUT) {
625 			verbose(VERB_ALGO, "chase to blacklisted lame server");
626 			return NULL;
627 		}
628 	}
629 
630 	if(num == 1) {
631 		a = dp->result_list;
632 		if(++a->attempts < iter_env->outbound_msg_retry)
633 			return a;
634 		dp->result_list = a->next_result;
635 		return a;
636 	}
637 
638 	/* randomly select a target from the list */
639 	log_assert(num > 1);
640 	/* grab secure random number, to pick unexpected server.
641 	 * also we need it to be threadsafe. */
642 	sel = ub_random_max(env->rnd, num);
643 	a = dp->result_list;
644 	prev = NULL;
645 	while(sel > 0 && a) {
646 		prev = a;
647 		a = a->next_result;
648 		sel--;
649 	}
650 	if(!a)  /* robustness */
651 		return NULL;
652 	if(++a->attempts < iter_env->outbound_msg_retry)
653 		return a;
654 	/* remove it from the delegation point result list */
655 	if(prev)
656 		prev->next_result = a->next_result;
657 	else	dp->result_list = a->next_result;
658 	return a;
659 }
660 
661 struct dns_msg*
662 dns_alloc_msg(sldns_buffer* pkt, struct msg_parse* msg,
663 	struct regional* region)
664 {
665 	struct dns_msg* m = (struct dns_msg*)regional_alloc(region,
666 		sizeof(struct dns_msg));
667 	if(!m)
668 		return NULL;
669 	memset(m, 0, sizeof(*m));
670 	if(!parse_create_msg(pkt, msg, NULL, &m->qinfo, &m->rep, region)) {
671 		log_err("malloc failure: allocating incoming dns_msg");
672 		return NULL;
673 	}
674 	return m;
675 }
676 
677 struct dns_msg*
678 dns_copy_msg(struct dns_msg* from, struct regional* region)
679 {
680 	struct dns_msg* m = (struct dns_msg*)regional_alloc(region,
681 		sizeof(struct dns_msg));
682 	if(!m)
683 		return NULL;
684 	m->qinfo = from->qinfo;
685 	if(!(m->qinfo.qname = regional_alloc_init(region, from->qinfo.qname,
686 		from->qinfo.qname_len)))
687 		return NULL;
688 	if(!(m->rep = reply_info_copy(from->rep, NULL, region)))
689 		return NULL;
690 	return m;
691 }
692 
693 void
694 iter_dns_store(struct module_env* env, struct query_info* msgqinf,
695 	struct reply_info* msgrep, int is_referral, time_t leeway, int pside,
696 	struct regional* region, uint16_t flags, time_t qstarttime)
697 {
698 	if(!dns_cache_store(env, msgqinf, msgrep, is_referral, leeway,
699 		pside, region, flags, qstarttime))
700 		log_err("out of memory: cannot store data in cache");
701 }
702 
703 int
704 iter_ns_probability(struct ub_randstate* rnd, int n, int m)
705 {
706 	int sel;
707 	if(n == m) /* 100% chance */
708 		return 1;
709 	/* we do not need secure random numbers here, but
710 	 * we do need it to be threadsafe, so we use this */
711 	sel = ub_random_max(rnd, m);
712 	return (sel < n);
713 }
714 
715 /** detect dependency cycle for query and target */
716 static int
717 causes_cycle(struct module_qstate* qstate, uint8_t* name, size_t namelen,
718 	uint16_t t, uint16_t c)
719 {
720 	struct query_info qinf;
721 	qinf.qname = name;
722 	qinf.qname_len = namelen;
723 	qinf.qtype = t;
724 	qinf.qclass = c;
725 	qinf.local_alias = NULL;
726 	fptr_ok(fptr_whitelist_modenv_detect_cycle(
727 		qstate->env->detect_cycle));
728 	return (*qstate->env->detect_cycle)(qstate, &qinf,
729 		(uint16_t)(BIT_RD|BIT_CD), qstate->is_priming,
730 		qstate->is_valrec);
731 }
732 
733 void
734 iter_mark_cycle_targets(struct module_qstate* qstate, struct delegpt* dp)
735 {
736 	struct delegpt_ns* ns;
737 	for(ns = dp->nslist; ns; ns = ns->next) {
738 		if(ns->resolved)
739 			continue;
740 		/* see if this ns as target causes dependency cycle */
741 		if(causes_cycle(qstate, ns->name, ns->namelen,
742 			LDNS_RR_TYPE_AAAA, qstate->qinfo.qclass) ||
743 		   causes_cycle(qstate, ns->name, ns->namelen,
744 			LDNS_RR_TYPE_A, qstate->qinfo.qclass)) {
745 			log_nametypeclass(VERB_QUERY, "skipping target due "
746 			 	"to dependency cycle (harden-glue: no may "
747 				"fix some of the cycles)",
748 				ns->name, LDNS_RR_TYPE_A,
749 				qstate->qinfo.qclass);
750 			ns->resolved = 1;
751 		}
752 	}
753 }
754 
755 void
756 iter_mark_pside_cycle_targets(struct module_qstate* qstate, struct delegpt* dp)
757 {
758 	struct delegpt_ns* ns;
759 	for(ns = dp->nslist; ns; ns = ns->next) {
760 		if(ns->done_pside4 && ns->done_pside6)
761 			continue;
762 		/* see if this ns as target causes dependency cycle */
763 		if(causes_cycle(qstate, ns->name, ns->namelen,
764 			LDNS_RR_TYPE_A, qstate->qinfo.qclass)) {
765 			log_nametypeclass(VERB_QUERY, "skipping target due "
766 			 	"to dependency cycle", ns->name,
767 				LDNS_RR_TYPE_A, qstate->qinfo.qclass);
768 			ns->done_pside4 = 1;
769 		}
770 		if(causes_cycle(qstate, ns->name, ns->namelen,
771 			LDNS_RR_TYPE_AAAA, qstate->qinfo.qclass)) {
772 			log_nametypeclass(VERB_QUERY, "skipping target due "
773 			 	"to dependency cycle", ns->name,
774 				LDNS_RR_TYPE_AAAA, qstate->qinfo.qclass);
775 			ns->done_pside6 = 1;
776 		}
777 	}
778 }
779 
780 int
781 iter_dp_is_useless(struct query_info* qinfo, uint16_t qflags,
782 	struct delegpt* dp, int supports_ipv4, int supports_ipv6,
783 	int use_nat64)
784 {
785 	struct delegpt_ns* ns;
786 	struct delegpt_addr* a;
787 
788 	if(supports_ipv6 && use_nat64)
789 		supports_ipv4 = 1;
790 
791 	/* check:
792 	 *      o RD qflag is on.
793 	 *      o no addresses are provided.
794 	 *      o all NS items are required glue.
795 	 * OR
796 	 *      o RD qflag is on.
797 	 *      o no addresses are provided.
798 	 *      o the query is for one of the nameservers in dp,
799 	 *        and that nameserver is a glue-name for this dp.
800 	 */
801 	if(!(qflags&BIT_RD))
802 		return 0;
803 	/* either available or unused targets,
804 	 * if they exist, the dp is not useless. */
805 	for(a = dp->usable_list; a; a = a->next_usable) {
806 		if(!addr_is_ip6(&a->addr, a->addrlen) && supports_ipv4)
807 			return 0;
808 		else if(addr_is_ip6(&a->addr, a->addrlen) && supports_ipv6)
809 			return 0;
810 	}
811 	for(a = dp->result_list; a; a = a->next_result) {
812 		if(!addr_is_ip6(&a->addr, a->addrlen) && supports_ipv4)
813 			return 0;
814 		else if(addr_is_ip6(&a->addr, a->addrlen) && supports_ipv6)
815 			return 0;
816 	}
817 
818 	/* see if query is for one of the nameservers, which is glue */
819 	if( ((qinfo->qtype == LDNS_RR_TYPE_A && supports_ipv4) ||
820 		(qinfo->qtype == LDNS_RR_TYPE_AAAA && supports_ipv6)) &&
821 		dname_subdomain_c(qinfo->qname, dp->name) &&
822 		delegpt_find_ns(dp, qinfo->qname, qinfo->qname_len))
823 		return 1;
824 
825 	for(ns = dp->nslist; ns; ns = ns->next) {
826 		if(ns->resolved) /* skip failed targets */
827 			continue;
828 		if(!dname_subdomain_c(ns->name, dp->name))
829 			return 0; /* one address is not required glue */
830 	}
831 	return 1;
832 }
833 
834 int
835 iter_qname_indicates_dnssec(struct module_env* env, struct query_info *qinfo)
836 {
837 	struct trust_anchor* a;
838 	if(!env || !env->anchors || !qinfo || !qinfo->qname)
839 		return 0;
840 	/* a trust anchor exists above the name? */
841 	if((a=anchors_lookup(env->anchors, qinfo->qname, qinfo->qname_len,
842 		qinfo->qclass))) {
843 		if(a->numDS == 0 && a->numDNSKEY == 0) {
844 			/* insecure trust point */
845 			lock_basic_unlock(&a->lock);
846 			return 0;
847 		}
848 		lock_basic_unlock(&a->lock);
849 		return 1;
850 	}
851 	/* no trust anchor above it. */
852 	return 0;
853 }
854 
855 int
856 iter_indicates_dnssec(struct module_env* env, struct delegpt* dp,
857         struct dns_msg* msg, uint16_t dclass)
858 {
859 	struct trust_anchor* a;
860 	/* information not available, !env->anchors can be common */
861 	if(!env || !env->anchors || !dp || !dp->name)
862 		return 0;
863 	/* a trust anchor exists with this name, RRSIGs expected */
864 	if((a=anchor_find(env->anchors, dp->name, dp->namelabs, dp->namelen,
865 		dclass))) {
866 		if(a->numDS == 0 && a->numDNSKEY == 0) {
867 			/* insecure trust point */
868 			lock_basic_unlock(&a->lock);
869 			return 0;
870 		}
871 		lock_basic_unlock(&a->lock);
872 		return 1;
873 	}
874 	/* see if DS rrset was given, in AUTH section */
875 	if(msg && msg->rep &&
876 		reply_find_rrset_section_ns(msg->rep, dp->name, dp->namelen,
877 		LDNS_RR_TYPE_DS, dclass))
878 		return 1;
879 	/* look in key cache */
880 	if(env->key_cache) {
881 		struct key_entry_key* kk = key_cache_obtain(env->key_cache,
882 			dp->name, dp->namelen, dclass, env->scratch, *env->now);
883 		if(kk) {
884 			if(query_dname_compare(kk->name, dp->name) == 0) {
885 			  if(key_entry_isgood(kk) || key_entry_isbad(kk)) {
886 				regional_free_all(env->scratch);
887 				return 1;
888 			  } else if(key_entry_isnull(kk)) {
889 				regional_free_all(env->scratch);
890 				return 0;
891 			  }
892 			}
893 			regional_free_all(env->scratch);
894 		}
895 	}
896 	return 0;
897 }
898 
899 int
900 iter_msg_has_dnssec(struct dns_msg* msg)
901 {
902 	size_t i;
903 	if(!msg || !msg->rep)
904 		return 0;
905 	for(i=0; i<msg->rep->an_numrrsets + msg->rep->ns_numrrsets; i++) {
906 		if(((struct packed_rrset_data*)msg->rep->rrsets[i]->
907 			entry.data)->rrsig_count > 0)
908 			return 1;
909 	}
910 	/* empty message has no DNSSEC info, with DNSSEC the reply is
911 	 * not empty (NSEC) */
912 	return 0;
913 }
914 
915 int iter_msg_from_zone(struct dns_msg* msg, struct delegpt* dp,
916         enum response_type type, uint16_t dclass)
917 {
918 	if(!msg || !dp || !msg->rep || !dp->name)
919 		return 0;
920 	/* SOA RRset - always from reply zone */
921 	if(reply_find_rrset_section_an(msg->rep, dp->name, dp->namelen,
922 		LDNS_RR_TYPE_SOA, dclass) ||
923 	   reply_find_rrset_section_ns(msg->rep, dp->name, dp->namelen,
924 		LDNS_RR_TYPE_SOA, dclass))
925 		return 1;
926 	if(type == RESPONSE_TYPE_REFERRAL) {
927 		size_t i;
928 		/* if it adds a single label, i.e. we expect .com,
929 		 * and referral to example.com. NS ... , then origin zone
930 		 * is .com. For a referral to sub.example.com. NS ... then
931 		 * we do not know, since example.com. may be in between. */
932 		for(i=0; i<msg->rep->an_numrrsets+msg->rep->ns_numrrsets;
933 			i++) {
934 			struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
935 			if(ntohs(s->rk.type) == LDNS_RR_TYPE_NS &&
936 				ntohs(s->rk.rrset_class) == dclass) {
937 				int l = dname_count_labels(s->rk.dname);
938 				if(l == dp->namelabs + 1 &&
939 					dname_strict_subdomain(s->rk.dname,
940 					l, dp->name, dp->namelabs))
941 					return 1;
942 			}
943 		}
944 		return 0;
945 	}
946 	log_assert(type==RESPONSE_TYPE_ANSWER || type==RESPONSE_TYPE_CNAME);
947 	/* not a referral, and not lame delegation (upwards), so,
948 	 * any NS rrset must be from the zone itself */
949 	if(reply_find_rrset_section_an(msg->rep, dp->name, dp->namelen,
950 		LDNS_RR_TYPE_NS, dclass) ||
951 	   reply_find_rrset_section_ns(msg->rep, dp->name, dp->namelen,
952 		LDNS_RR_TYPE_NS, dclass))
953 		return 1;
954 	/* a DNSKEY set is expected at the zone apex as well */
955 	/* this is for 'minimal responses' for DNSKEYs */
956 	if(reply_find_rrset_section_an(msg->rep, dp->name, dp->namelen,
957 		LDNS_RR_TYPE_DNSKEY, dclass))
958 		return 1;
959 	return 0;
960 }
961 
962 /**
963  * check equality of two rrsets
964  * @param k1: rrset
965  * @param k2: rrset
966  * @return true if equal
967  */
968 static int
969 rrset_equal(struct ub_packed_rrset_key* k1, struct ub_packed_rrset_key* k2)
970 {
971 	struct packed_rrset_data* d1 = (struct packed_rrset_data*)
972 		k1->entry.data;
973 	struct packed_rrset_data* d2 = (struct packed_rrset_data*)
974 		k2->entry.data;
975 	size_t i, t;
976 	if(k1->rk.dname_len != k2->rk.dname_len ||
977 		k1->rk.flags != k2->rk.flags ||
978 		k1->rk.type != k2->rk.type ||
979 		k1->rk.rrset_class != k2->rk.rrset_class ||
980 		query_dname_compare(k1->rk.dname, k2->rk.dname) != 0)
981 		return 0;
982 	if(	/* do not check ttl: d1->ttl != d2->ttl || */
983 		d1->count != d2->count ||
984 		d1->rrsig_count != d2->rrsig_count ||
985 		d1->trust != d2->trust ||
986 		d1->security != d2->security)
987 		return 0;
988 	t = d1->count + d1->rrsig_count;
989 	for(i=0; i<t; i++) {
990 		if(d1->rr_len[i] != d2->rr_len[i] ||
991 			/* no ttl check: d1->rr_ttl[i] != d2->rr_ttl[i] ||*/
992 			memcmp(d1->rr_data[i], d2->rr_data[i],
993 				d1->rr_len[i]) != 0)
994 			return 0;
995 	}
996 	return 1;
997 }
998 
999 /** compare rrsets and sort canonically.  Compares rrset name, type, class.
1000  * return 0 if equal, +1 if x > y, and -1 if x < y.
1001  */
1002 static int
1003 rrset_canonical_sort_cmp(const void* x, const void* y)
1004 {
1005 	struct ub_packed_rrset_key* rrx = *(struct ub_packed_rrset_key**)x;
1006 	struct ub_packed_rrset_key* rry = *(struct ub_packed_rrset_key**)y;
1007 	int r = dname_canonical_compare(rrx->rk.dname, rry->rk.dname);
1008 	if(r != 0)
1009 		return r;
1010 	if(rrx->rk.type != rry->rk.type) {
1011 		if(ntohs(rrx->rk.type) > ntohs(rry->rk.type))
1012 			return 1;
1013 		else	return -1;
1014 	}
1015 	if(rrx->rk.rrset_class != rry->rk.rrset_class) {
1016 		if(ntohs(rrx->rk.rrset_class) > ntohs(rry->rk.rrset_class))
1017 			return 1;
1018 		else	return -1;
1019 	}
1020 	return 0;
1021 }
1022 
1023 int
1024 reply_equal(struct reply_info* p, struct reply_info* q, struct regional* region)
1025 {
1026 	size_t i;
1027 	struct ub_packed_rrset_key** sorted_p, **sorted_q;
1028 	if(p->flags != q->flags ||
1029 		p->qdcount != q->qdcount ||
1030 		/* do not check TTL, this may differ */
1031 		/*
1032 		p->ttl != q->ttl ||
1033 		p->prefetch_ttl != q->prefetch_ttl ||
1034 		*/
1035 		p->security != q->security ||
1036 		p->an_numrrsets != q->an_numrrsets ||
1037 		p->ns_numrrsets != q->ns_numrrsets ||
1038 		p->ar_numrrsets != q->ar_numrrsets ||
1039 		p->rrset_count != q->rrset_count)
1040 		return 0;
1041 	/* sort the rrsets in the authority and additional sections before
1042 	 * compare, the query and answer sections are ordered in the sequence
1043 	 * they should have (eg. one after the other for aliases). */
1044 	sorted_p = (struct ub_packed_rrset_key**)regional_alloc_init(
1045 		region, p->rrsets, sizeof(*sorted_p)*p->rrset_count);
1046 	if(!sorted_p) return 0;
1047 	log_assert(p->an_numrrsets + p->ns_numrrsets + p->ar_numrrsets <=
1048 		p->rrset_count);
1049 	qsort(sorted_p + p->an_numrrsets, p->ns_numrrsets,
1050 		sizeof(*sorted_p), rrset_canonical_sort_cmp);
1051 	qsort(sorted_p + p->an_numrrsets + p->ns_numrrsets, p->ar_numrrsets,
1052 		sizeof(*sorted_p), rrset_canonical_sort_cmp);
1053 
1054 	sorted_q = (struct ub_packed_rrset_key**)regional_alloc_init(
1055 		region, q->rrsets, sizeof(*sorted_q)*q->rrset_count);
1056 	if(!sorted_q) {
1057 		regional_free_all(region);
1058 		return 0;
1059 	}
1060 	log_assert(q->an_numrrsets + q->ns_numrrsets + q->ar_numrrsets <=
1061 		q->rrset_count);
1062 	qsort(sorted_q + q->an_numrrsets, q->ns_numrrsets,
1063 		sizeof(*sorted_q), rrset_canonical_sort_cmp);
1064 	qsort(sorted_q + q->an_numrrsets + q->ns_numrrsets, q->ar_numrrsets,
1065 		sizeof(*sorted_q), rrset_canonical_sort_cmp);
1066 
1067 	/* compare the rrsets */
1068 	for(i=0; i<p->rrset_count; i++) {
1069 		if(!rrset_equal(sorted_p[i], sorted_q[i])) {
1070 			if(!rrset_canonical_equal(region, sorted_p[i],
1071 				sorted_q[i])) {
1072 				regional_free_all(region);
1073 				return 0;
1074 			}
1075 		}
1076 	}
1077 	regional_free_all(region);
1078 	return 1;
1079 }
1080 
1081 void
1082 caps_strip_reply(struct reply_info* rep)
1083 {
1084 	size_t i;
1085 	if(!rep) return;
1086 	/* see if message is a referral, in which case the additional and
1087 	 * NS record cannot be removed */
1088 	/* referrals have the AA flag unset (strict check, not elsewhere in
1089 	 * unbound, but for 0x20 this is very convenient). */
1090 	if(!(rep->flags&BIT_AA))
1091 		return;
1092 	/* remove the additional section from the reply */
1093 	if(rep->ar_numrrsets != 0) {
1094 		verbose(VERB_ALGO, "caps fallback: removing additional section");
1095 		rep->rrset_count -= rep->ar_numrrsets;
1096 		rep->ar_numrrsets = 0;
1097 	}
1098 	/* is there an NS set in the authority section to remove? */
1099 	/* the failure case (Cisco firewalls) only has one rrset in authsec */
1100 	for(i=rep->an_numrrsets; i<rep->an_numrrsets+rep->ns_numrrsets; i++) {
1101 		struct ub_packed_rrset_key* s = rep->rrsets[i];
1102 		if(ntohs(s->rk.type) == LDNS_RR_TYPE_NS) {
1103 			/* remove NS rrset and break from loop (loop limits
1104 			 * have changed) */
1105 			/* move last rrset into this position (there is no
1106 			 * additional section any more) */
1107 			verbose(VERB_ALGO, "caps fallback: removing NS rrset");
1108 			if(i < rep->rrset_count-1)
1109 				rep->rrsets[i]=rep->rrsets[rep->rrset_count-1];
1110 			rep->rrset_count --;
1111 			rep->ns_numrrsets --;
1112 			break;
1113 		}
1114 	}
1115 }
1116 
1117 int caps_failed_rcode(struct reply_info* rep)
1118 {
1119 	return !(FLAGS_GET_RCODE(rep->flags) == LDNS_RCODE_NOERROR ||
1120 		FLAGS_GET_RCODE(rep->flags) == LDNS_RCODE_NXDOMAIN);
1121 }
1122 
1123 void
1124 iter_store_parentside_rrset(struct module_env* env,
1125 	struct ub_packed_rrset_key* rrset)
1126 {
1127 	struct rrset_ref ref;
1128 	rrset = packed_rrset_copy_alloc(rrset, env->alloc, *env->now);
1129 	if(!rrset) {
1130 		log_err("malloc failure in store_parentside_rrset");
1131 		return;
1132 	}
1133 	rrset->rk.flags |= PACKED_RRSET_PARENT_SIDE;
1134 	rrset->entry.hash = rrset_key_hash(&rrset->rk);
1135 	ref.key = rrset;
1136 	ref.id = rrset->id;
1137 	/* ignore ret: if it was in the cache, ref updated */
1138 	(void)rrset_cache_update(env->rrset_cache, &ref, env->alloc, *env->now);
1139 }
1140 
1141 /** fetch NS record from reply, if any */
1142 static struct ub_packed_rrset_key*
1143 reply_get_NS_rrset(struct reply_info* rep)
1144 {
1145 	size_t i;
1146 	for(i=0; i<rep->rrset_count; i++) {
1147 		if(rep->rrsets[i]->rk.type == htons(LDNS_RR_TYPE_NS)) {
1148 			return rep->rrsets[i];
1149 		}
1150 	}
1151 	return NULL;
1152 }
1153 
1154 void
1155 iter_store_parentside_NS(struct module_env* env, struct reply_info* rep)
1156 {
1157 	struct ub_packed_rrset_key* rrset = reply_get_NS_rrset(rep);
1158 	if(rrset) {
1159 		log_rrset_key(VERB_ALGO, "store parent-side NS", rrset);
1160 		iter_store_parentside_rrset(env, rrset);
1161 	}
1162 }
1163 
1164 void iter_store_parentside_neg(struct module_env* env,
1165         struct query_info* qinfo, struct reply_info* rep)
1166 {
1167 	/* TTL: NS from referral in iq->deleg_msg,
1168 	 *      or first RR from iq->response,
1169 	 *      or servfail5secs if !iq->response */
1170 	time_t ttl = NORR_TTL;
1171 	struct ub_packed_rrset_key* neg;
1172 	struct packed_rrset_data* newd;
1173 	if(rep) {
1174 		struct ub_packed_rrset_key* rrset = reply_get_NS_rrset(rep);
1175 		if(!rrset && rep->rrset_count != 0) rrset = rep->rrsets[0];
1176 		if(rrset) ttl = ub_packed_rrset_ttl(rrset);
1177 	}
1178 	/* create empty rrset to store */
1179 	neg = (struct ub_packed_rrset_key*)regional_alloc(env->scratch,
1180 	                sizeof(struct ub_packed_rrset_key));
1181 	if(!neg) {
1182 		log_err("out of memory in store_parentside_neg");
1183 		return;
1184 	}
1185 	memset(&neg->entry, 0, sizeof(neg->entry));
1186 	neg->entry.key = neg;
1187 	neg->rk.type = htons(qinfo->qtype);
1188 	neg->rk.rrset_class = htons(qinfo->qclass);
1189 	neg->rk.flags = 0;
1190 	neg->rk.dname = regional_alloc_init(env->scratch, qinfo->qname,
1191 		qinfo->qname_len);
1192 	if(!neg->rk.dname) {
1193 		log_err("out of memory in store_parentside_neg");
1194 		return;
1195 	}
1196 	neg->rk.dname_len = qinfo->qname_len;
1197 	neg->entry.hash = rrset_key_hash(&neg->rk);
1198 	newd = (struct packed_rrset_data*)regional_alloc_zero(env->scratch,
1199 		sizeof(struct packed_rrset_data) + sizeof(size_t) +
1200 		sizeof(uint8_t*) + sizeof(time_t) + sizeof(uint16_t));
1201 	if(!newd) {
1202 		log_err("out of memory in store_parentside_neg");
1203 		return;
1204 	}
1205 	neg->entry.data = newd;
1206 	newd->ttl = ttl;
1207 	/* entry must have one RR, otherwise not valid in cache.
1208 	 * put in one RR with empty rdata: those are ignored as nameserver */
1209 	newd->count = 1;
1210 	newd->rrsig_count = 0;
1211 	newd->trust = rrset_trust_ans_noAA;
1212 	newd->rr_len = (size_t*)((uint8_t*)newd +
1213 		sizeof(struct packed_rrset_data));
1214 	newd->rr_len[0] = 0 /* zero len rdata */ + sizeof(uint16_t);
1215 	packed_rrset_ptr_fixup(newd);
1216 	newd->rr_ttl[0] = newd->ttl;
1217 	sldns_write_uint16(newd->rr_data[0], 0 /* zero len rdata */);
1218 	/* store it */
1219 	log_rrset_key(VERB_ALGO, "store parent-side negative", neg);
1220 	iter_store_parentside_rrset(env, neg);
1221 }
1222 
1223 int
1224 iter_lookup_parent_NS_from_cache(struct module_env* env, struct delegpt* dp,
1225 	struct regional* region, struct query_info* qinfo)
1226 {
1227 	struct ub_packed_rrset_key* akey;
1228 	akey = rrset_cache_lookup(env->rrset_cache, dp->name,
1229 		dp->namelen, LDNS_RR_TYPE_NS, qinfo->qclass,
1230 		PACKED_RRSET_PARENT_SIDE, *env->now, 0);
1231 	if(akey) {
1232 		log_rrset_key(VERB_ALGO, "found parent-side NS in cache", akey);
1233 		dp->has_parent_side_NS = 1;
1234 		/* and mark the new names as lame */
1235 		if(!delegpt_rrset_add_ns(dp, region, akey, 1)) {
1236 			lock_rw_unlock(&akey->entry.lock);
1237 			return 0;
1238 		}
1239 		lock_rw_unlock(&akey->entry.lock);
1240 	}
1241 	return 1;
1242 }
1243 
1244 int iter_lookup_parent_glue_from_cache(struct module_env* env,
1245         struct delegpt* dp, struct regional* region, struct query_info* qinfo)
1246 {
1247 	struct ub_packed_rrset_key* akey;
1248 	struct delegpt_ns* ns;
1249 	size_t num = delegpt_count_targets(dp);
1250 	for(ns = dp->nslist; ns; ns = ns->next) {
1251 		if(ns->cache_lookup_count > ITERATOR_NAME_CACHELOOKUP_MAX_PSIDE)
1252 			continue;
1253 		ns->cache_lookup_count++;
1254 		/* get cached parentside A */
1255 		akey = rrset_cache_lookup(env->rrset_cache, ns->name,
1256 			ns->namelen, LDNS_RR_TYPE_A, qinfo->qclass,
1257 			PACKED_RRSET_PARENT_SIDE, *env->now, 0);
1258 		if(akey) {
1259 			log_rrset_key(VERB_ALGO, "found parent-side", akey);
1260 			ns->done_pside4 = 1;
1261 			/* a negative-cache-element has no addresses it adds */
1262 			if(!delegpt_add_rrset_A(dp, region, akey, 1, NULL))
1263 				log_err("malloc failure in lookup_parent_glue");
1264 			lock_rw_unlock(&akey->entry.lock);
1265 		}
1266 		/* get cached parentside AAAA */
1267 		akey = rrset_cache_lookup(env->rrset_cache, ns->name,
1268 			ns->namelen, LDNS_RR_TYPE_AAAA, qinfo->qclass,
1269 			PACKED_RRSET_PARENT_SIDE, *env->now, 0);
1270 		if(akey) {
1271 			log_rrset_key(VERB_ALGO, "found parent-side", akey);
1272 			ns->done_pside6 = 1;
1273 			/* a negative-cache-element has no addresses it adds */
1274 			if(!delegpt_add_rrset_AAAA(dp, region, akey, 1, NULL))
1275 				log_err("malloc failure in lookup_parent_glue");
1276 			lock_rw_unlock(&akey->entry.lock);
1277 		}
1278 	}
1279 	/* see if new (but lame) addresses have become available */
1280 	return delegpt_count_targets(dp) != num;
1281 }
1282 
1283 int
1284 iter_get_next_root(struct iter_hints* hints, struct iter_forwards* fwd,
1285 	uint16_t* c)
1286 {
1287 	uint16_t c1 = *c, c2 = *c;
1288 	int r1, r2;
1289 	int nolock = 1;
1290 
1291 	/* prelock both forwards and hints for atomic read. */
1292 	lock_rw_rdlock(&fwd->lock);
1293 	lock_rw_rdlock(&hints->lock);
1294 	r1 = hints_next_root(hints, &c1, nolock);
1295 	r2 = forwards_next_root(fwd, &c2, nolock);
1296 	lock_rw_unlock(&fwd->lock);
1297 	lock_rw_unlock(&hints->lock);
1298 
1299 	if(!r1 && !r2) /* got none, end of list */
1300 		return 0;
1301 	else if(!r1) /* got one, return that */
1302 		*c = c2;
1303 	else if(!r2)
1304 		*c = c1;
1305 	else if(c1 < c2) /* got both take smallest */
1306 		*c = c1;
1307 	else	*c = c2;
1308 	return 1;
1309 }
1310 
1311 void
1312 iter_scrub_ds(struct dns_msg* msg, struct ub_packed_rrset_key* ns, uint8_t* z)
1313 {
1314 	/* Only the DS record for the delegation itself is expected.
1315 	 * We allow DS for everything between the bailiwick and the
1316 	 * zonecut, thus DS records must be at or above the zonecut.
1317 	 * And the DS records must be below the server authority zone.
1318 	 * The answer section is already scrubbed. */
1319 	size_t i = msg->rep->an_numrrsets;
1320 	while(i < (msg->rep->an_numrrsets + msg->rep->ns_numrrsets)) {
1321 		struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
1322 		if(ntohs(s->rk.type) == LDNS_RR_TYPE_DS &&
1323 			(!ns || !dname_subdomain_c(ns->rk.dname, s->rk.dname)
1324 			|| query_dname_compare(z, s->rk.dname) == 0)) {
1325 			log_nametypeclass(VERB_ALGO, "removing irrelevant DS",
1326 				s->rk.dname, ntohs(s->rk.type),
1327 				ntohs(s->rk.rrset_class));
1328 			memmove(msg->rep->rrsets+i, msg->rep->rrsets+i+1,
1329 				sizeof(struct ub_packed_rrset_key*) *
1330 				(msg->rep->rrset_count-i-1));
1331 			msg->rep->ns_numrrsets--;
1332 			msg->rep->rrset_count--;
1333 			/* stay at same i, but new record */
1334 			continue;
1335 		}
1336 		i++;
1337 	}
1338 }
1339 
1340 void
1341 iter_scrub_nxdomain(struct dns_msg* msg)
1342 {
1343 	if(msg->rep->an_numrrsets == 0)
1344 		return;
1345 
1346 	memmove(msg->rep->rrsets, msg->rep->rrsets+msg->rep->an_numrrsets,
1347 		sizeof(struct ub_packed_rrset_key*) *
1348 		(msg->rep->rrset_count-msg->rep->an_numrrsets));
1349 	msg->rep->rrset_count -= msg->rep->an_numrrsets;
1350 	msg->rep->an_numrrsets = 0;
1351 }
1352 
1353 void iter_dec_attempts(struct delegpt* dp, int d, int outbound_msg_retry)
1354 {
1355 	struct delegpt_addr* a;
1356 	for(a=dp->target_list; a; a = a->next_target) {
1357 		if(a->attempts >= outbound_msg_retry) {
1358 			/* add back to result list */
1359 			delegpt_add_to_result_list(dp, a);
1360 		}
1361 		if(a->attempts > d)
1362 			a->attempts -= d;
1363 		else a->attempts = 0;
1364 	}
1365 }
1366 
1367 void iter_merge_retry_counts(struct delegpt* dp, struct delegpt* old,
1368 	int outbound_msg_retry)
1369 {
1370 	struct delegpt_addr* a, *o, *prev;
1371 	for(a=dp->target_list; a; a = a->next_target) {
1372 		o = delegpt_find_addr(old, &a->addr, a->addrlen);
1373 		if(o) {
1374 			log_addr(VERB_ALGO, "copy attempt count previous dp",
1375 				&a->addr, a->addrlen);
1376 			a->attempts = o->attempts;
1377 		}
1378 	}
1379 	prev = NULL;
1380 	a = dp->usable_list;
1381 	while(a) {
1382 		if(a->attempts >= outbound_msg_retry) {
1383 			log_addr(VERB_ALGO, "remove from usable list dp",
1384 				&a->addr, a->addrlen);
1385 			/* remove from result list */
1386 			if(prev)
1387 				prev->next_usable = a->next_usable;
1388 			else	dp->usable_list = a->next_usable;
1389 			/* prev stays the same */
1390 			a = a->next_usable;
1391 			continue;
1392 		}
1393 		prev = a;
1394 		a = a->next_usable;
1395 	}
1396 }
1397 
1398 int
1399 iter_ds_toolow(struct dns_msg* msg, struct delegpt* dp)
1400 {
1401 	/* if for query example.com, there is example.com SOA or a subdomain
1402 	 * of example.com, then we are too low and need to fetch NS. */
1403 	size_t i;
1404 	/* if we have a DNAME or CNAME we are probably wrong */
1405 	/* if we have a qtype DS in the answer section, its fine */
1406 	for(i=0; i < msg->rep->an_numrrsets; i++) {
1407 		struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
1408 		if(ntohs(s->rk.type) == LDNS_RR_TYPE_DNAME ||
1409 			ntohs(s->rk.type) == LDNS_RR_TYPE_CNAME) {
1410 			/* not the right answer, maybe too low, check the
1411 			 * RRSIG signer name (if there is any) for a hint
1412 			 * that it is from the dp zone anyway */
1413 			uint8_t* sname;
1414 			size_t slen;
1415 			val_find_rrset_signer(s, &sname, &slen);
1416 			if(sname && query_dname_compare(dp->name, sname)==0)
1417 				return 0; /* it is fine, from the right dp */
1418 			return 1;
1419 		}
1420 		if(ntohs(s->rk.type) == LDNS_RR_TYPE_DS)
1421 			return 0; /* fine, we have a DS record */
1422 	}
1423 	for(i=msg->rep->an_numrrsets;
1424 		i < msg->rep->an_numrrsets + msg->rep->ns_numrrsets; i++) {
1425 		struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
1426 		if(ntohs(s->rk.type) == LDNS_RR_TYPE_SOA) {
1427 			if(dname_subdomain_c(s->rk.dname, msg->qinfo.qname))
1428 				return 1; /* point is too low */
1429 			if(query_dname_compare(s->rk.dname, dp->name)==0)
1430 				return 0; /* right dp */
1431 		}
1432 		if(ntohs(s->rk.type) == LDNS_RR_TYPE_NSEC ||
1433 			ntohs(s->rk.type) == LDNS_RR_TYPE_NSEC3) {
1434 			uint8_t* sname;
1435 			size_t slen;
1436 			val_find_rrset_signer(s, &sname, &slen);
1437 			if(sname && query_dname_compare(dp->name, sname)==0)
1438 				return 0; /* it is fine, from the right dp */
1439 			return 1;
1440 		}
1441 	}
1442 	/* we do not know */
1443 	return 1;
1444 }
1445 
1446 int iter_dp_cangodown(struct query_info* qinfo, struct delegpt* dp)
1447 {
1448 	/* no delegation point, do not see how we can go down,
1449 	 * robust check, it should really exist */
1450 	if(!dp) return 0;
1451 
1452 	/* see if dp equals the qname, then we cannot go down further */
1453 	if(query_dname_compare(qinfo->qname, dp->name) == 0)
1454 		return 0;
1455 	/* if dp is one label above the name we also cannot go down further */
1456 	if(dname_count_labels(qinfo->qname) == dp->namelabs+1)
1457 		return 0;
1458 	return 1;
1459 }
1460 
1461 int
1462 iter_stub_fwd_no_cache(struct module_qstate *qstate, struct query_info *qinf,
1463 	uint8_t** retdpname, size_t* retdpnamelen, uint8_t* dpname_storage,
1464 	size_t dpname_storage_len)
1465 {
1466 	struct iter_hints_stub *stub;
1467 	struct delegpt *dp;
1468 	int nolock = 1;
1469 
1470 	/* Check for stub. */
1471 	/* Lock both forwards and hints for atomic read. */
1472 	lock_rw_rdlock(&qstate->env->fwds->lock);
1473 	lock_rw_rdlock(&qstate->env->hints->lock);
1474 	stub = hints_lookup_stub(qstate->env->hints, qinf->qname,
1475 	    qinf->qclass, NULL, nolock);
1476 	dp = forwards_lookup(qstate->env->fwds, qinf->qname, qinf->qclass,
1477 		nolock);
1478 
1479 	/* see if forward or stub is more pertinent */
1480 	if(stub && stub->dp && dp) {
1481 		if(dname_strict_subdomain(dp->name, dp->namelabs,
1482 			stub->dp->name, stub->dp->namelabs)) {
1483 			stub = NULL; /* ignore stub, forward is lower */
1484 		} else {
1485 			dp = NULL; /* ignore forward, stub is lower */
1486 		}
1487 	}
1488 
1489 	/* check stub */
1490 	if (stub != NULL && stub->dp != NULL) {
1491 		int stub_no_cache = stub->dp->no_cache;
1492 		lock_rw_unlock(&qstate->env->fwds->lock);
1493 		if(stub_no_cache) {
1494 			char qname[255+1];
1495 			char dpname[255+1];
1496 			dname_str(qinf->qname, qname);
1497 			dname_str(stub->dp->name, dpname);
1498 			verbose(VERB_ALGO, "stub for %s %s has no_cache", qname, dpname);
1499 		}
1500 		if(retdpname) {
1501 			if(stub->dp->namelen > dpname_storage_len) {
1502 				verbose(VERB_ALGO, "no cache stub dpname too long");
1503 				lock_rw_unlock(&qstate->env->hints->lock);
1504 				*retdpname = NULL;
1505 				*retdpnamelen = 0;
1506 				return stub_no_cache;
1507 			}
1508 			memmove(dpname_storage, stub->dp->name,
1509 				stub->dp->namelen);
1510 			*retdpname = dpname_storage;
1511 			*retdpnamelen = stub->dp->namelen;
1512 		}
1513 		lock_rw_unlock(&qstate->env->hints->lock);
1514 		return stub_no_cache;
1515 	}
1516 
1517 	/* Check for forward. */
1518 	if (dp) {
1519 		int dp_no_cache = dp->no_cache;
1520 		lock_rw_unlock(&qstate->env->hints->lock);
1521 		if(dp_no_cache) {
1522 			char qname[255+1];
1523 			char dpname[255+1];
1524 			dname_str(qinf->qname, qname);
1525 			dname_str(dp->name, dpname);
1526 			verbose(VERB_ALGO, "forward for %s %s has no_cache", qname, dpname);
1527 		}
1528 		if(retdpname) {
1529 			if(dp->namelen > dpname_storage_len) {
1530 				verbose(VERB_ALGO, "no cache dpname too long");
1531 				lock_rw_unlock(&qstate->env->fwds->lock);
1532 				*retdpname = NULL;
1533 				*retdpnamelen = 0;
1534 				return dp_no_cache;
1535 			}
1536 			memmove(dpname_storage, dp->name, dp->namelen);
1537 			*retdpname = dpname_storage;
1538 			*retdpnamelen = dp->namelen;
1539 		}
1540 		lock_rw_unlock(&qstate->env->fwds->lock);
1541 		return dp_no_cache;
1542 	}
1543 	lock_rw_unlock(&qstate->env->fwds->lock);
1544 	lock_rw_unlock(&qstate->env->hints->lock);
1545 	if(retdpname) {
1546 		*retdpname = NULL;
1547 		*retdpnamelen = 0;
1548 	}
1549 	return 0;
1550 }
1551 
1552 void iterator_set_ip46_support(struct module_stack* mods,
1553 	struct module_env* env, struct outside_network* outnet)
1554 {
1555 	int m = modstack_find(mods, "iterator");
1556 	struct iter_env* ie = NULL;
1557 	if(m == -1)
1558 		return;
1559 	ie = (struct iter_env*)env->modinfo[m];
1560 	if(outnet->pending == NULL)
1561 		return; /* we are in testbound, no rbtree for UDP */
1562 	if(outnet->num_ip4 == 0)
1563 		ie->supports_ipv4 = 0;
1564 	if(outnet->num_ip6 == 0)
1565 		ie->supports_ipv6 = 0;
1566 }
1567