1 /* 2 * iterator/iter_utils.c - iterative resolver module utility functions. 3 * 4 * Copyright (c) 2007, NLnet Labs. All rights reserved. 5 * 6 * This software is open source. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 12 * Redistributions of source code must retain the above copyright notice, 13 * this list of conditions and the following disclaimer. 14 * 15 * Redistributions in binary form must reproduce the above copyright notice, 16 * this list of conditions and the following disclaimer in the documentation 17 * and/or other materials provided with the distribution. 18 * 19 * Neither the name of the NLNET LABS nor the names of its contributors may 20 * be used to endorse or promote products derived from this software without 21 * specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 24 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 26 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 27 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 28 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 29 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 30 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 31 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 32 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 33 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 34 */ 35 36 /** 37 * \file 38 * 39 * This file contains functions to assist the iterator module. 40 * Configuration options. Forward zones. 41 */ 42 #include "config.h" 43 #include "iterator/iter_utils.h" 44 #include "iterator/iterator.h" 45 #include "iterator/iter_hints.h" 46 #include "iterator/iter_fwd.h" 47 #include "iterator/iter_donotq.h" 48 #include "iterator/iter_delegpt.h" 49 #include "iterator/iter_priv.h" 50 #include "services/cache/infra.h" 51 #include "services/cache/dns.h" 52 #include "services/cache/rrset.h" 53 #include "util/net_help.h" 54 #include "util/module.h" 55 #include "util/log.h" 56 #include "util/config_file.h" 57 #include "util/regional.h" 58 #include "util/data/msgparse.h" 59 #include "util/data/dname.h" 60 #include "util/random.h" 61 #include "util/fptr_wlist.h" 62 #include "validator/val_anchor.h" 63 #include "validator/val_kcache.h" 64 #include "validator/val_kentry.h" 65 #include "validator/val_utils.h" 66 #include "validator/val_sigcrypt.h" 67 #include "ldns/sbuffer.h" 68 69 /** time when nameserver glue is said to be 'recent' */ 70 #define SUSPICION_RECENT_EXPIRY 86400 71 /** penalty to validation failed blacklisted IPs */ 72 #define BLACKLIST_PENALTY (USEFUL_SERVER_TOP_TIMEOUT*4) 73 74 /** fillup fetch policy array */ 75 static void 76 fetch_fill(struct iter_env* ie, const char* str) 77 { 78 char* s = (char*)str, *e; 79 int i; 80 for(i=0; i<ie->max_dependency_depth+1; i++) { 81 ie->target_fetch_policy[i] = strtol(s, &e, 10); 82 if(s == e) 83 fatal_exit("cannot parse fetch policy number %s", s); 84 s = e; 85 } 86 } 87 88 /** Read config string that represents the target fetch policy */ 89 static int 90 read_fetch_policy(struct iter_env* ie, const char* str) 91 { 92 int count = cfg_count_numbers(str); 93 if(count < 1) { 94 log_err("Cannot parse target fetch policy: \"%s\"", str); 95 return 0; 96 } 97 ie->max_dependency_depth = count - 1; 98 ie->target_fetch_policy = (int*)calloc( 99 (size_t)ie->max_dependency_depth+1, sizeof(int)); 100 if(!ie->target_fetch_policy) { 101 log_err("alloc fetch policy: out of memory"); 102 return 0; 103 } 104 fetch_fill(ie, str); 105 return 1; 106 } 107 108 int 109 iter_apply_cfg(struct iter_env* iter_env, struct config_file* cfg) 110 { 111 int i; 112 /* target fetch policy */ 113 if(!read_fetch_policy(iter_env, cfg->target_fetch_policy)) 114 return 0; 115 for(i=0; i<iter_env->max_dependency_depth+1; i++) 116 verbose(VERB_QUERY, "target fetch policy for level %d is %d", 117 i, iter_env->target_fetch_policy[i]); 118 119 if(!iter_env->donotq) 120 iter_env->donotq = donotq_create(); 121 if(!iter_env->donotq || !donotq_apply_cfg(iter_env->donotq, cfg)) { 122 log_err("Could not set donotqueryaddresses"); 123 return 0; 124 } 125 if(!iter_env->priv) 126 iter_env->priv = priv_create(); 127 if(!iter_env->priv || !priv_apply_cfg(iter_env->priv, cfg)) { 128 log_err("Could not set private addresses"); 129 return 0; 130 } 131 iter_env->supports_ipv6 = cfg->do_ip6; 132 iter_env->supports_ipv4 = cfg->do_ip4; 133 return 1; 134 } 135 136 /** filter out unsuitable targets 137 * @param iter_env: iterator environment with ipv6-support flag. 138 * @param env: module environment with infra cache. 139 * @param name: zone name 140 * @param namelen: length of name 141 * @param qtype: query type (host order). 142 * @param now: current time 143 * @param a: address in delegation point we are examining. 144 * @return an integer that signals the target suitability. 145 * as follows: 146 * -1: The address should be omitted from the list. 147 * Because: 148 * o The address is bogus (DNSSEC validation failure). 149 * o Listed as donotquery 150 * o is ipv6 but no ipv6 support (in operating system). 151 * o is ipv4 but no ipv4 support (in operating system). 152 * o is lame 153 * Otherwise, an rtt in milliseconds. 154 * 0 .. USEFUL_SERVER_TOP_TIMEOUT-1 155 * The roundtrip time timeout estimate. less than 2 minutes. 156 * Note that util/rtt.c has a MIN_TIMEOUT of 50 msec, thus 157 * values 0 .. 49 are not used, unless that is changed. 158 * USEFUL_SERVER_TOP_TIMEOUT 159 * This value exactly is given for unresponsive blacklisted. 160 * USEFUL_SERVER_TOP_TIMEOUT+1 161 * For non-blacklisted servers: huge timeout, but has traffic. 162 * USEFUL_SERVER_TOP_TIMEOUT*1 .. 163 * parent-side lame servers get this penalty. A dispreferential 164 * server. (lame in delegpt). 165 * USEFUL_SERVER_TOP_TIMEOUT*2 .. 166 * dnsseclame servers get penalty 167 * USEFUL_SERVER_TOP_TIMEOUT*3 .. 168 * recursion lame servers get penalty 169 * UNKNOWN_SERVER_NICENESS 170 * If no information is known about the server, this is 171 * returned. 376 msec or so. 172 * +BLACKLIST_PENALTY (of USEFUL_TOP_TIMEOUT*4) for dnssec failed IPs. 173 * 174 * When a final value is chosen that is dnsseclame ; dnsseclameness checking 175 * is turned off (so we do not discard the reply). 176 * When a final value is chosen that is recursionlame; RD bit is set on query. 177 * Because of the numbers this means recursionlame also have dnssec lameness 178 * checking turned off. 179 */ 180 static int 181 iter_filter_unsuitable(struct iter_env* iter_env, struct module_env* env, 182 uint8_t* name, size_t namelen, uint16_t qtype, time_t now, 183 struct delegpt_addr* a) 184 { 185 int rtt, lame, reclame, dnsseclame; 186 if(a->bogus) 187 return -1; /* address of server is bogus */ 188 if(donotq_lookup(iter_env->donotq, &a->addr, a->addrlen)) { 189 log_addr(VERB_ALGO, "skip addr on the donotquery list", 190 &a->addr, a->addrlen); 191 return -1; /* server is on the donotquery list */ 192 } 193 if(!iter_env->supports_ipv6 && addr_is_ip6(&a->addr, a->addrlen)) { 194 return -1; /* there is no ip6 available */ 195 } 196 if(!iter_env->supports_ipv4 && !addr_is_ip6(&a->addr, a->addrlen)) { 197 return -1; /* there is no ip4 available */ 198 } 199 /* check lameness - need zone , class info */ 200 if(infra_get_lame_rtt(env->infra_cache, &a->addr, a->addrlen, 201 name, namelen, qtype, &lame, &dnsseclame, &reclame, 202 &rtt, now)) { 203 log_addr(VERB_ALGO, "servselect", &a->addr, a->addrlen); 204 verbose(VERB_ALGO, " rtt=%d%s%s%s%s", rtt, 205 lame?" LAME":"", 206 dnsseclame?" DNSSEC_LAME":"", 207 reclame?" REC_LAME":"", 208 a->lame?" ADDR_LAME":""); 209 if(lame) 210 return -1; /* server is lame */ 211 else if(rtt >= USEFUL_SERVER_TOP_TIMEOUT) 212 /* server is unresponsive, 213 * we used to return TOP_TIMOUT, but fairly useless, 214 * because if == TOP_TIMEOUT is dropped because 215 * blacklisted later, instead, remove it here, so 216 * other choices (that are not blacklisted) can be 217 * tried */ 218 return -1; 219 /* select remainder from worst to best */ 220 else if(reclame) 221 return rtt+USEFUL_SERVER_TOP_TIMEOUT*3; /* nonpref */ 222 else if(dnsseclame || a->dnsseclame) 223 return rtt+USEFUL_SERVER_TOP_TIMEOUT*2; /* nonpref */ 224 else if(a->lame) 225 return rtt+USEFUL_SERVER_TOP_TIMEOUT+1; /* nonpref */ 226 else return rtt; 227 } 228 /* no server information present */ 229 if(a->dnsseclame) 230 return UNKNOWN_SERVER_NICENESS+USEFUL_SERVER_TOP_TIMEOUT*2; /* nonpref */ 231 else if(a->lame) 232 return USEFUL_SERVER_TOP_TIMEOUT+1+UNKNOWN_SERVER_NICENESS; /* nonpref */ 233 return UNKNOWN_SERVER_NICENESS; 234 } 235 236 /** lookup RTT information, and also store fastest rtt (if any) */ 237 static int 238 iter_fill_rtt(struct iter_env* iter_env, struct module_env* env, 239 uint8_t* name, size_t namelen, uint16_t qtype, time_t now, 240 struct delegpt* dp, int* best_rtt, struct sock_list* blacklist) 241 { 242 int got_it = 0; 243 struct delegpt_addr* a; 244 if(dp->bogus) 245 return 0; /* NS bogus, all bogus, nothing found */ 246 for(a=dp->result_list; a; a = a->next_result) { 247 a->sel_rtt = iter_filter_unsuitable(iter_env, env, 248 name, namelen, qtype, now, a); 249 if(a->sel_rtt != -1) { 250 if(sock_list_find(blacklist, &a->addr, a->addrlen)) 251 a->sel_rtt += BLACKLIST_PENALTY; 252 253 if(!got_it) { 254 *best_rtt = a->sel_rtt; 255 got_it = 1; 256 } else if(a->sel_rtt < *best_rtt) { 257 *best_rtt = a->sel_rtt; 258 } 259 } 260 } 261 return got_it; 262 } 263 264 /** filter the addres list, putting best targets at front, 265 * returns number of best targets (or 0, no suitable targets) */ 266 static int 267 iter_filter_order(struct iter_env* iter_env, struct module_env* env, 268 uint8_t* name, size_t namelen, uint16_t qtype, time_t now, 269 struct delegpt* dp, int* selected_rtt, int open_target, 270 struct sock_list* blacklist) 271 { 272 int got_num = 0, low_rtt = 0, swap_to_front; 273 struct delegpt_addr* a, *n, *prev=NULL; 274 275 /* fillup sel_rtt and find best rtt in the bunch */ 276 got_num = iter_fill_rtt(iter_env, env, name, namelen, qtype, now, dp, 277 &low_rtt, blacklist); 278 if(got_num == 0) 279 return 0; 280 if(low_rtt >= USEFUL_SERVER_TOP_TIMEOUT && 281 (delegpt_count_missing_targets(dp) > 0 || open_target > 0)) { 282 verbose(VERB_ALGO, "Bad choices, trying to get more choice"); 283 return 0; /* we want more choice. The best choice is a bad one. 284 return 0 to force the caller to fetch more */ 285 } 286 287 got_num = 0; 288 a = dp->result_list; 289 while(a) { 290 /* skip unsuitable targets */ 291 if(a->sel_rtt == -1) { 292 prev = a; 293 a = a->next_result; 294 continue; 295 } 296 /* classify the server address and determine what to do */ 297 swap_to_front = 0; 298 if(a->sel_rtt >= low_rtt && a->sel_rtt - low_rtt <= RTT_BAND) { 299 got_num++; 300 swap_to_front = 1; 301 } else if(a->sel_rtt<low_rtt && low_rtt-a->sel_rtt<=RTT_BAND) { 302 got_num++; 303 swap_to_front = 1; 304 } 305 /* swap to front if necessary, or move to next result */ 306 if(swap_to_front && prev) { 307 n = a->next_result; 308 prev->next_result = n; 309 a->next_result = dp->result_list; 310 dp->result_list = a; 311 a = n; 312 } else { 313 prev = a; 314 a = a->next_result; 315 } 316 } 317 *selected_rtt = low_rtt; 318 return got_num; 319 } 320 321 struct delegpt_addr* 322 iter_server_selection(struct iter_env* iter_env, 323 struct module_env* env, struct delegpt* dp, 324 uint8_t* name, size_t namelen, uint16_t qtype, int* dnssec_lame, 325 int* chase_to_rd, int open_target, struct sock_list* blacklist) 326 { 327 int sel; 328 int selrtt; 329 struct delegpt_addr* a, *prev; 330 int num = iter_filter_order(iter_env, env, name, namelen, qtype, 331 *env->now, dp, &selrtt, open_target, blacklist); 332 333 if(num == 0) 334 return NULL; 335 verbose(VERB_ALGO, "selrtt %d", selrtt); 336 if(selrtt > BLACKLIST_PENALTY) { 337 if(selrtt-BLACKLIST_PENALTY > USEFUL_SERVER_TOP_TIMEOUT*3) { 338 verbose(VERB_ALGO, "chase to " 339 "blacklisted recursion lame server"); 340 *chase_to_rd = 1; 341 } 342 if(selrtt-BLACKLIST_PENALTY > USEFUL_SERVER_TOP_TIMEOUT*2) { 343 verbose(VERB_ALGO, "chase to " 344 "blacklisted dnssec lame server"); 345 *dnssec_lame = 1; 346 } 347 } else { 348 if(selrtt > USEFUL_SERVER_TOP_TIMEOUT*3) { 349 verbose(VERB_ALGO, "chase to recursion lame server"); 350 *chase_to_rd = 1; 351 } 352 if(selrtt > USEFUL_SERVER_TOP_TIMEOUT*2) { 353 verbose(VERB_ALGO, "chase to dnssec lame server"); 354 *dnssec_lame = 1; 355 } 356 if(selrtt == USEFUL_SERVER_TOP_TIMEOUT) { 357 verbose(VERB_ALGO, "chase to blacklisted lame server"); 358 return NULL; 359 } 360 } 361 362 if(num == 1) { 363 a = dp->result_list; 364 if(++a->attempts < OUTBOUND_MSG_RETRY) 365 return a; 366 dp->result_list = a->next_result; 367 return a; 368 } 369 370 /* randomly select a target from the list */ 371 log_assert(num > 1); 372 /* grab secure random number, to pick unexpected server. 373 * also we need it to be threadsafe. */ 374 sel = ub_random_max(env->rnd, num); 375 a = dp->result_list; 376 prev = NULL; 377 while(sel > 0 && a) { 378 prev = a; 379 a = a->next_result; 380 sel--; 381 } 382 if(!a) /* robustness */ 383 return NULL; 384 if(++a->attempts < OUTBOUND_MSG_RETRY) 385 return a; 386 /* remove it from the delegation point result list */ 387 if(prev) 388 prev->next_result = a->next_result; 389 else dp->result_list = a->next_result; 390 return a; 391 } 392 393 struct dns_msg* 394 dns_alloc_msg(sldns_buffer* pkt, struct msg_parse* msg, 395 struct regional* region) 396 { 397 struct dns_msg* m = (struct dns_msg*)regional_alloc(region, 398 sizeof(struct dns_msg)); 399 if(!m) 400 return NULL; 401 memset(m, 0, sizeof(*m)); 402 if(!parse_create_msg(pkt, msg, NULL, &m->qinfo, &m->rep, region)) { 403 log_err("malloc failure: allocating incoming dns_msg"); 404 return NULL; 405 } 406 return m; 407 } 408 409 struct dns_msg* 410 dns_copy_msg(struct dns_msg* from, struct regional* region) 411 { 412 struct dns_msg* m = (struct dns_msg*)regional_alloc(region, 413 sizeof(struct dns_msg)); 414 if(!m) 415 return NULL; 416 m->qinfo = from->qinfo; 417 if(!(m->qinfo.qname = regional_alloc_init(region, from->qinfo.qname, 418 from->qinfo.qname_len))) 419 return NULL; 420 if(!(m->rep = reply_info_copy(from->rep, NULL, region))) 421 return NULL; 422 return m; 423 } 424 425 void 426 iter_dns_store(struct module_env* env, struct query_info* msgqinf, 427 struct reply_info* msgrep, int is_referral, time_t leeway, int pside, 428 struct regional* region) 429 { 430 if(!dns_cache_store(env, msgqinf, msgrep, is_referral, leeway, 431 pside, region)) 432 log_err("out of memory: cannot store data in cache"); 433 } 434 435 int 436 iter_ns_probability(struct ub_randstate* rnd, int n, int m) 437 { 438 int sel; 439 if(n == m) /* 100% chance */ 440 return 1; 441 /* we do not need secure random numbers here, but 442 * we do need it to be threadsafe, so we use this */ 443 sel = ub_random_max(rnd, m); 444 return (sel < n); 445 } 446 447 /** detect dependency cycle for query and target */ 448 static int 449 causes_cycle(struct module_qstate* qstate, uint8_t* name, size_t namelen, 450 uint16_t t, uint16_t c) 451 { 452 struct query_info qinf; 453 qinf.qname = name; 454 qinf.qname_len = namelen; 455 qinf.qtype = t; 456 qinf.qclass = c; 457 fptr_ok(fptr_whitelist_modenv_detect_cycle( 458 qstate->env->detect_cycle)); 459 return (*qstate->env->detect_cycle)(qstate, &qinf, 460 (uint16_t)(BIT_RD|BIT_CD), qstate->is_priming); 461 } 462 463 void 464 iter_mark_cycle_targets(struct module_qstate* qstate, struct delegpt* dp) 465 { 466 struct delegpt_ns* ns; 467 for(ns = dp->nslist; ns; ns = ns->next) { 468 if(ns->resolved) 469 continue; 470 /* see if this ns as target causes dependency cycle */ 471 if(causes_cycle(qstate, ns->name, ns->namelen, 472 LDNS_RR_TYPE_AAAA, qstate->qinfo.qclass) || 473 causes_cycle(qstate, ns->name, ns->namelen, 474 LDNS_RR_TYPE_A, qstate->qinfo.qclass)) { 475 log_nametypeclass(VERB_QUERY, "skipping target due " 476 "to dependency cycle (harden-glue: no may " 477 "fix some of the cycles)", 478 ns->name, LDNS_RR_TYPE_A, 479 qstate->qinfo.qclass); 480 ns->resolved = 1; 481 } 482 } 483 } 484 485 void 486 iter_mark_pside_cycle_targets(struct module_qstate* qstate, struct delegpt* dp) 487 { 488 struct delegpt_ns* ns; 489 for(ns = dp->nslist; ns; ns = ns->next) { 490 if(ns->done_pside4 && ns->done_pside6) 491 continue; 492 /* see if this ns as target causes dependency cycle */ 493 if(causes_cycle(qstate, ns->name, ns->namelen, 494 LDNS_RR_TYPE_A, qstate->qinfo.qclass)) { 495 log_nametypeclass(VERB_QUERY, "skipping target due " 496 "to dependency cycle", ns->name, 497 LDNS_RR_TYPE_A, qstate->qinfo.qclass); 498 ns->done_pside4 = 1; 499 } 500 if(causes_cycle(qstate, ns->name, ns->namelen, 501 LDNS_RR_TYPE_AAAA, qstate->qinfo.qclass)) { 502 log_nametypeclass(VERB_QUERY, "skipping target due " 503 "to dependency cycle", ns->name, 504 LDNS_RR_TYPE_AAAA, qstate->qinfo.qclass); 505 ns->done_pside6 = 1; 506 } 507 } 508 } 509 510 int 511 iter_dp_is_useless(struct query_info* qinfo, uint16_t qflags, 512 struct delegpt* dp) 513 { 514 struct delegpt_ns* ns; 515 /* check: 516 * o RD qflag is on. 517 * o no addresses are provided. 518 * o all NS items are required glue. 519 * OR 520 * o RD qflag is on. 521 * o no addresses are provided. 522 * o the query is for one of the nameservers in dp, 523 * and that nameserver is a glue-name for this dp. 524 */ 525 if(!(qflags&BIT_RD)) 526 return 0; 527 /* either available or unused targets */ 528 if(dp->usable_list || dp->result_list) 529 return 0; 530 531 /* see if query is for one of the nameservers, which is glue */ 532 if( (qinfo->qtype == LDNS_RR_TYPE_A || 533 qinfo->qtype == LDNS_RR_TYPE_AAAA) && 534 dname_subdomain_c(qinfo->qname, dp->name) && 535 delegpt_find_ns(dp, qinfo->qname, qinfo->qname_len)) 536 return 1; 537 538 for(ns = dp->nslist; ns; ns = ns->next) { 539 if(ns->resolved) /* skip failed targets */ 540 continue; 541 if(!dname_subdomain_c(ns->name, dp->name)) 542 return 0; /* one address is not required glue */ 543 } 544 return 1; 545 } 546 547 int 548 iter_indicates_dnssec(struct module_env* env, struct delegpt* dp, 549 struct dns_msg* msg, uint16_t dclass) 550 { 551 struct trust_anchor* a; 552 /* information not available, !env->anchors can be common */ 553 if(!env || !env->anchors || !dp || !dp->name) 554 return 0; 555 /* a trust anchor exists with this name, RRSIGs expected */ 556 if((a=anchor_find(env->anchors, dp->name, dp->namelabs, dp->namelen, 557 dclass))) { 558 lock_basic_unlock(&a->lock); 559 return 1; 560 } 561 /* see if DS rrset was given, in AUTH section */ 562 if(msg && msg->rep && 563 reply_find_rrset_section_ns(msg->rep, dp->name, dp->namelen, 564 LDNS_RR_TYPE_DS, dclass)) 565 return 1; 566 /* look in key cache */ 567 if(env->key_cache) { 568 struct key_entry_key* kk = key_cache_obtain(env->key_cache, 569 dp->name, dp->namelen, dclass, env->scratch, *env->now); 570 if(kk) { 571 if(query_dname_compare(kk->name, dp->name) == 0) { 572 if(key_entry_isgood(kk) || key_entry_isbad(kk)) { 573 regional_free_all(env->scratch); 574 return 1; 575 } else if(key_entry_isnull(kk)) { 576 regional_free_all(env->scratch); 577 return 0; 578 } 579 } 580 regional_free_all(env->scratch); 581 } 582 } 583 return 0; 584 } 585 586 int 587 iter_msg_has_dnssec(struct dns_msg* msg) 588 { 589 size_t i; 590 if(!msg || !msg->rep) 591 return 0; 592 for(i=0; i<msg->rep->an_numrrsets + msg->rep->ns_numrrsets; i++) { 593 if(((struct packed_rrset_data*)msg->rep->rrsets[i]-> 594 entry.data)->rrsig_count > 0) 595 return 1; 596 } 597 /* empty message has no DNSSEC info, with DNSSEC the reply is 598 * not empty (NSEC) */ 599 return 0; 600 } 601 602 int iter_msg_from_zone(struct dns_msg* msg, struct delegpt* dp, 603 enum response_type type, uint16_t dclass) 604 { 605 if(!msg || !dp || !msg->rep || !dp->name) 606 return 0; 607 /* SOA RRset - always from reply zone */ 608 if(reply_find_rrset_section_an(msg->rep, dp->name, dp->namelen, 609 LDNS_RR_TYPE_SOA, dclass) || 610 reply_find_rrset_section_ns(msg->rep, dp->name, dp->namelen, 611 LDNS_RR_TYPE_SOA, dclass)) 612 return 1; 613 if(type == RESPONSE_TYPE_REFERRAL) { 614 size_t i; 615 /* if it adds a single label, i.e. we expect .com, 616 * and referral to example.com. NS ... , then origin zone 617 * is .com. For a referral to sub.example.com. NS ... then 618 * we do not know, since example.com. may be in between. */ 619 for(i=0; i<msg->rep->an_numrrsets+msg->rep->ns_numrrsets; 620 i++) { 621 struct ub_packed_rrset_key* s = msg->rep->rrsets[i]; 622 if(ntohs(s->rk.type) == LDNS_RR_TYPE_NS && 623 ntohs(s->rk.rrset_class) == dclass) { 624 int l = dname_count_labels(s->rk.dname); 625 if(l == dp->namelabs + 1 && 626 dname_strict_subdomain(s->rk.dname, 627 l, dp->name, dp->namelabs)) 628 return 1; 629 } 630 } 631 return 0; 632 } 633 log_assert(type==RESPONSE_TYPE_ANSWER || type==RESPONSE_TYPE_CNAME); 634 /* not a referral, and not lame delegation (upwards), so, 635 * any NS rrset must be from the zone itself */ 636 if(reply_find_rrset_section_an(msg->rep, dp->name, dp->namelen, 637 LDNS_RR_TYPE_NS, dclass) || 638 reply_find_rrset_section_ns(msg->rep, dp->name, dp->namelen, 639 LDNS_RR_TYPE_NS, dclass)) 640 return 1; 641 /* a DNSKEY set is expected at the zone apex as well */ 642 /* this is for 'minimal responses' for DNSKEYs */ 643 if(reply_find_rrset_section_an(msg->rep, dp->name, dp->namelen, 644 LDNS_RR_TYPE_DNSKEY, dclass)) 645 return 1; 646 return 0; 647 } 648 649 /** 650 * check equality of two rrsets 651 * @param k1: rrset 652 * @param k2: rrset 653 * @return true if equal 654 */ 655 static int 656 rrset_equal(struct ub_packed_rrset_key* k1, struct ub_packed_rrset_key* k2) 657 { 658 struct packed_rrset_data* d1 = (struct packed_rrset_data*) 659 k1->entry.data; 660 struct packed_rrset_data* d2 = (struct packed_rrset_data*) 661 k2->entry.data; 662 size_t i, t; 663 if(k1->rk.dname_len != k2->rk.dname_len || 664 k1->rk.flags != k2->rk.flags || 665 k1->rk.type != k2->rk.type || 666 k1->rk.rrset_class != k2->rk.rrset_class || 667 query_dname_compare(k1->rk.dname, k2->rk.dname) != 0) 668 return 0; 669 if(d1->ttl != d2->ttl || 670 d1->count != d2->count || 671 d1->rrsig_count != d2->rrsig_count || 672 d1->trust != d2->trust || 673 d1->security != d2->security) 674 return 0; 675 t = d1->count + d1->rrsig_count; 676 for(i=0; i<t; i++) { 677 if(d1->rr_len[i] != d2->rr_len[i] || 678 d1->rr_ttl[i] != d2->rr_ttl[i] || 679 memcmp(d1->rr_data[i], d2->rr_data[i], 680 d1->rr_len[i]) != 0) 681 return 0; 682 } 683 return 1; 684 } 685 686 int 687 reply_equal(struct reply_info* p, struct reply_info* q, struct regional* region) 688 { 689 size_t i; 690 if(p->flags != q->flags || 691 p->qdcount != q->qdcount || 692 p->ttl != q->ttl || 693 p->prefetch_ttl != q->prefetch_ttl || 694 p->security != q->security || 695 p->an_numrrsets != q->an_numrrsets || 696 p->ns_numrrsets != q->ns_numrrsets || 697 p->ar_numrrsets != q->ar_numrrsets || 698 p->rrset_count != q->rrset_count) 699 return 0; 700 for(i=0; i<p->rrset_count; i++) { 701 if(!rrset_equal(p->rrsets[i], q->rrsets[i])) { 702 if(!rrset_canonical_equal(region, p->rrsets[i], 703 q->rrsets[i])) { 704 regional_free_all(region); 705 return 0; 706 } 707 regional_free_all(region); 708 } 709 } 710 return 1; 711 } 712 713 void 714 iter_store_parentside_rrset(struct module_env* env, 715 struct ub_packed_rrset_key* rrset) 716 { 717 struct rrset_ref ref; 718 rrset = packed_rrset_copy_alloc(rrset, env->alloc, *env->now); 719 if(!rrset) { 720 log_err("malloc failure in store_parentside_rrset"); 721 return; 722 } 723 rrset->rk.flags |= PACKED_RRSET_PARENT_SIDE; 724 rrset->entry.hash = rrset_key_hash(&rrset->rk); 725 ref.key = rrset; 726 ref.id = rrset->id; 727 /* ignore ret: if it was in the cache, ref updated */ 728 (void)rrset_cache_update(env->rrset_cache, &ref, env->alloc, *env->now); 729 } 730 731 /** fetch NS record from reply, if any */ 732 static struct ub_packed_rrset_key* 733 reply_get_NS_rrset(struct reply_info* rep) 734 { 735 size_t i; 736 for(i=0; i<rep->rrset_count; i++) { 737 if(rep->rrsets[i]->rk.type == htons(LDNS_RR_TYPE_NS)) { 738 return rep->rrsets[i]; 739 } 740 } 741 return NULL; 742 } 743 744 void 745 iter_store_parentside_NS(struct module_env* env, struct reply_info* rep) 746 { 747 struct ub_packed_rrset_key* rrset = reply_get_NS_rrset(rep); 748 if(rrset) { 749 log_rrset_key(VERB_ALGO, "store parent-side NS", rrset); 750 iter_store_parentside_rrset(env, rrset); 751 } 752 } 753 754 void iter_store_parentside_neg(struct module_env* env, 755 struct query_info* qinfo, struct reply_info* rep) 756 { 757 /* TTL: NS from referral in iq->deleg_msg, 758 * or first RR from iq->response, 759 * or servfail5secs if !iq->response */ 760 time_t ttl = NORR_TTL; 761 struct ub_packed_rrset_key* neg; 762 struct packed_rrset_data* newd; 763 if(rep) { 764 struct ub_packed_rrset_key* rrset = reply_get_NS_rrset(rep); 765 if(!rrset && rep->rrset_count != 0) rrset = rep->rrsets[0]; 766 if(rrset) ttl = ub_packed_rrset_ttl(rrset); 767 } 768 /* create empty rrset to store */ 769 neg = (struct ub_packed_rrset_key*)regional_alloc(env->scratch, 770 sizeof(struct ub_packed_rrset_key)); 771 if(!neg) { 772 log_err("out of memory in store_parentside_neg"); 773 return; 774 } 775 memset(&neg->entry, 0, sizeof(neg->entry)); 776 neg->entry.key = neg; 777 neg->rk.type = htons(qinfo->qtype); 778 neg->rk.rrset_class = htons(qinfo->qclass); 779 neg->rk.flags = 0; 780 neg->rk.dname = regional_alloc_init(env->scratch, qinfo->qname, 781 qinfo->qname_len); 782 if(!neg->rk.dname) { 783 log_err("out of memory in store_parentside_neg"); 784 return; 785 } 786 neg->rk.dname_len = qinfo->qname_len; 787 neg->entry.hash = rrset_key_hash(&neg->rk); 788 newd = (struct packed_rrset_data*)regional_alloc_zero(env->scratch, 789 sizeof(struct packed_rrset_data) + sizeof(size_t) + 790 sizeof(uint8_t*) + sizeof(time_t) + sizeof(uint16_t)); 791 if(!newd) { 792 log_err("out of memory in store_parentside_neg"); 793 return; 794 } 795 neg->entry.data = newd; 796 newd->ttl = ttl; 797 /* entry must have one RR, otherwise not valid in cache. 798 * put in one RR with empty rdata: those are ignored as nameserver */ 799 newd->count = 1; 800 newd->rrsig_count = 0; 801 newd->trust = rrset_trust_ans_noAA; 802 newd->rr_len = (size_t*)((uint8_t*)newd + 803 sizeof(struct packed_rrset_data)); 804 newd->rr_len[0] = 0 /* zero len rdata */ + sizeof(uint16_t); 805 packed_rrset_ptr_fixup(newd); 806 newd->rr_ttl[0] = newd->ttl; 807 sldns_write_uint16(newd->rr_data[0], 0 /* zero len rdata */); 808 /* store it */ 809 log_rrset_key(VERB_ALGO, "store parent-side negative", neg); 810 iter_store_parentside_rrset(env, neg); 811 } 812 813 int 814 iter_lookup_parent_NS_from_cache(struct module_env* env, struct delegpt* dp, 815 struct regional* region, struct query_info* qinfo) 816 { 817 struct ub_packed_rrset_key* akey; 818 akey = rrset_cache_lookup(env->rrset_cache, dp->name, 819 dp->namelen, LDNS_RR_TYPE_NS, qinfo->qclass, 820 PACKED_RRSET_PARENT_SIDE, *env->now, 0); 821 if(akey) { 822 log_rrset_key(VERB_ALGO, "found parent-side NS in cache", akey); 823 dp->has_parent_side_NS = 1; 824 /* and mark the new names as lame */ 825 if(!delegpt_rrset_add_ns(dp, region, akey, 1)) { 826 lock_rw_unlock(&akey->entry.lock); 827 return 0; 828 } 829 lock_rw_unlock(&akey->entry.lock); 830 } 831 return 1; 832 } 833 834 int iter_lookup_parent_glue_from_cache(struct module_env* env, 835 struct delegpt* dp, struct regional* region, struct query_info* qinfo) 836 { 837 struct ub_packed_rrset_key* akey; 838 struct delegpt_ns* ns; 839 size_t num = delegpt_count_targets(dp); 840 for(ns = dp->nslist; ns; ns = ns->next) { 841 /* get cached parentside A */ 842 akey = rrset_cache_lookup(env->rrset_cache, ns->name, 843 ns->namelen, LDNS_RR_TYPE_A, qinfo->qclass, 844 PACKED_RRSET_PARENT_SIDE, *env->now, 0); 845 if(akey) { 846 log_rrset_key(VERB_ALGO, "found parent-side", akey); 847 ns->done_pside4 = 1; 848 /* a negative-cache-element has no addresses it adds */ 849 if(!delegpt_add_rrset_A(dp, region, akey, 1)) 850 log_err("malloc failure in lookup_parent_glue"); 851 lock_rw_unlock(&akey->entry.lock); 852 } 853 /* get cached parentside AAAA */ 854 akey = rrset_cache_lookup(env->rrset_cache, ns->name, 855 ns->namelen, LDNS_RR_TYPE_AAAA, qinfo->qclass, 856 PACKED_RRSET_PARENT_SIDE, *env->now, 0); 857 if(akey) { 858 log_rrset_key(VERB_ALGO, "found parent-side", akey); 859 ns->done_pside6 = 1; 860 /* a negative-cache-element has no addresses it adds */ 861 if(!delegpt_add_rrset_AAAA(dp, region, akey, 1)) 862 log_err("malloc failure in lookup_parent_glue"); 863 lock_rw_unlock(&akey->entry.lock); 864 } 865 } 866 /* see if new (but lame) addresses have become available */ 867 return delegpt_count_targets(dp) != num; 868 } 869 870 int 871 iter_get_next_root(struct iter_hints* hints, struct iter_forwards* fwd, 872 uint16_t* c) 873 { 874 uint16_t c1 = *c, c2 = *c; 875 int r1 = hints_next_root(hints, &c1); 876 int r2 = forwards_next_root(fwd, &c2); 877 if(!r1 && !r2) /* got none, end of list */ 878 return 0; 879 else if(!r1) /* got one, return that */ 880 *c = c2; 881 else if(!r2) 882 *c = c1; 883 else if(c1 < c2) /* got both take smallest */ 884 *c = c1; 885 else *c = c2; 886 return 1; 887 } 888 889 void 890 iter_scrub_ds(struct dns_msg* msg, struct ub_packed_rrset_key* ns, uint8_t* z) 891 { 892 /* Only the DS record for the delegation itself is expected. 893 * We allow DS for everything between the bailiwick and the 894 * zonecut, thus DS records must be at or above the zonecut. 895 * And the DS records must be below the server authority zone. 896 * The answer section is already scrubbed. */ 897 size_t i = msg->rep->an_numrrsets; 898 while(i < (msg->rep->an_numrrsets + msg->rep->ns_numrrsets)) { 899 struct ub_packed_rrset_key* s = msg->rep->rrsets[i]; 900 if(ntohs(s->rk.type) == LDNS_RR_TYPE_DS && 901 (!ns || !dname_subdomain_c(ns->rk.dname, s->rk.dname) 902 || query_dname_compare(z, s->rk.dname) == 0)) { 903 log_nametypeclass(VERB_ALGO, "removing irrelevant DS", 904 s->rk.dname, ntohs(s->rk.type), 905 ntohs(s->rk.rrset_class)); 906 memmove(msg->rep->rrsets+i, msg->rep->rrsets+i+1, 907 sizeof(struct ub_packed_rrset_key*) * 908 (msg->rep->rrset_count-i-1)); 909 msg->rep->ns_numrrsets--; 910 msg->rep->rrset_count--; 911 /* stay at same i, but new record */ 912 continue; 913 } 914 i++; 915 } 916 } 917 918 void iter_dec_attempts(struct delegpt* dp, int d) 919 { 920 struct delegpt_addr* a; 921 for(a=dp->target_list; a; a = a->next_target) { 922 if(a->attempts >= OUTBOUND_MSG_RETRY) { 923 /* add back to result list */ 924 a->next_result = dp->result_list; 925 dp->result_list = a; 926 } 927 if(a->attempts > d) 928 a->attempts -= d; 929 else a->attempts = 0; 930 } 931 } 932 933 void iter_merge_retry_counts(struct delegpt* dp, struct delegpt* old) 934 { 935 struct delegpt_addr* a, *o, *prev; 936 for(a=dp->target_list; a; a = a->next_target) { 937 o = delegpt_find_addr(old, &a->addr, a->addrlen); 938 if(o) { 939 log_addr(VERB_ALGO, "copy attempt count previous dp", 940 &a->addr, a->addrlen); 941 a->attempts = o->attempts; 942 } 943 } 944 prev = NULL; 945 a = dp->usable_list; 946 while(a) { 947 if(a->attempts >= OUTBOUND_MSG_RETRY) { 948 log_addr(VERB_ALGO, "remove from usable list dp", 949 &a->addr, a->addrlen); 950 /* remove from result list */ 951 if(prev) 952 prev->next_usable = a->next_usable; 953 else dp->usable_list = a->next_usable; 954 /* prev stays the same */ 955 a = a->next_usable; 956 continue; 957 } 958 prev = a; 959 a = a->next_usable; 960 } 961 } 962 963 int 964 iter_ds_toolow(struct dns_msg* msg, struct delegpt* dp) 965 { 966 /* if for query example.com, there is example.com SOA or a subdomain 967 * of example.com, then we are too low and need to fetch NS. */ 968 size_t i; 969 /* if we have a DNAME or CNAME we are probably wrong */ 970 /* if we have a qtype DS in the answer section, its fine */ 971 for(i=0; i < msg->rep->an_numrrsets; i++) { 972 struct ub_packed_rrset_key* s = msg->rep->rrsets[i]; 973 if(ntohs(s->rk.type) == LDNS_RR_TYPE_DNAME || 974 ntohs(s->rk.type) == LDNS_RR_TYPE_CNAME) { 975 /* not the right answer, maybe too low, check the 976 * RRSIG signer name (if there is any) for a hint 977 * that it is from the dp zone anyway */ 978 uint8_t* sname; 979 size_t slen; 980 val_find_rrset_signer(s, &sname, &slen); 981 if(sname && query_dname_compare(dp->name, sname)==0) 982 return 0; /* it is fine, from the right dp */ 983 return 1; 984 } 985 if(ntohs(s->rk.type) == LDNS_RR_TYPE_DS) 986 return 0; /* fine, we have a DS record */ 987 } 988 for(i=msg->rep->an_numrrsets; 989 i < msg->rep->an_numrrsets + msg->rep->ns_numrrsets; i++) { 990 struct ub_packed_rrset_key* s = msg->rep->rrsets[i]; 991 if(ntohs(s->rk.type) == LDNS_RR_TYPE_SOA) { 992 if(dname_subdomain_c(s->rk.dname, msg->qinfo.qname)) 993 return 1; /* point is too low */ 994 if(query_dname_compare(s->rk.dname, dp->name)==0) 995 return 0; /* right dp */ 996 } 997 if(ntohs(s->rk.type) == LDNS_RR_TYPE_NSEC || 998 ntohs(s->rk.type) == LDNS_RR_TYPE_NSEC3) { 999 uint8_t* sname; 1000 size_t slen; 1001 val_find_rrset_signer(s, &sname, &slen); 1002 if(sname && query_dname_compare(dp->name, sname)==0) 1003 return 0; /* it is fine, from the right dp */ 1004 return 1; 1005 } 1006 } 1007 /* we do not know */ 1008 return 1; 1009 } 1010 1011 int iter_dp_cangodown(struct query_info* qinfo, struct delegpt* dp) 1012 { 1013 /* no delegation point, do not see how we can go down, 1014 * robust check, it should really exist */ 1015 if(!dp) return 0; 1016 1017 /* see if dp equals the qname, then we cannot go down further */ 1018 if(query_dname_compare(qinfo->qname, dp->name) == 0) 1019 return 0; 1020 /* if dp is one label above the name we also cannot go down further */ 1021 if(dname_count_labels(qinfo->qname) == dp->namelabs+1) 1022 return 0; 1023 return 1; 1024 } 1025