xref: /freebsd/contrib/unbound/iterator/iter_utils.c (revision a134ebd6e63f658f2d3d04ac0c60d23bcaa86dd7)
1 /*
2  * iterator/iter_utils.c - iterative resolver module utility functions.
3  *
4  * Copyright (c) 2007, NLnet Labs. All rights reserved.
5  *
6  * This software is open source.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * Redistributions of source code must retain the above copyright notice,
13  * this list of conditions and the following disclaimer.
14  *
15  * Redistributions in binary form must reproduce the above copyright notice,
16  * this list of conditions and the following disclaimer in the documentation
17  * and/or other materials provided with the distribution.
18  *
19  * Neither the name of the NLNET LABS nor the names of its contributors may
20  * be used to endorse or promote products derived from this software without
21  * specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
27  * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
28  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
29  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
31  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
32  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 /**
37  * \file
38  *
39  * This file contains functions to assist the iterator module.
40  * Configuration options. Forward zones.
41  */
42 #include "config.h"
43 #include "iterator/iter_utils.h"
44 #include "iterator/iterator.h"
45 #include "iterator/iter_hints.h"
46 #include "iterator/iter_fwd.h"
47 #include "iterator/iter_donotq.h"
48 #include "iterator/iter_delegpt.h"
49 #include "iterator/iter_priv.h"
50 #include "services/cache/infra.h"
51 #include "services/cache/dns.h"
52 #include "services/cache/rrset.h"
53 #include "util/net_help.h"
54 #include "util/module.h"
55 #include "util/log.h"
56 #include "util/config_file.h"
57 #include "util/regional.h"
58 #include "util/data/msgparse.h"
59 #include "util/data/dname.h"
60 #include "util/random.h"
61 #include "util/fptr_wlist.h"
62 #include "validator/val_anchor.h"
63 #include "validator/val_kcache.h"
64 #include "validator/val_kentry.h"
65 #include "validator/val_utils.h"
66 #include "validator/val_sigcrypt.h"
67 #include "sldns/sbuffer.h"
68 #include "sldns/str2wire.h"
69 
70 /** time when nameserver glue is said to be 'recent' */
71 #define SUSPICION_RECENT_EXPIRY 86400
72 /** penalty to validation failed blacklisted IPs */
73 #define BLACKLIST_PENALTY (USEFUL_SERVER_TOP_TIMEOUT*4)
74 
75 /** fillup fetch policy array */
76 static void
77 fetch_fill(struct iter_env* ie, const char* str)
78 {
79 	char* s = (char*)str, *e;
80 	int i;
81 	for(i=0; i<ie->max_dependency_depth+1; i++) {
82 		ie->target_fetch_policy[i] = strtol(s, &e, 10);
83 		if(s == e)
84 			fatal_exit("cannot parse fetch policy number %s", s);
85 		s = e;
86 	}
87 }
88 
89 /** Read config string that represents the target fetch policy */
90 static int
91 read_fetch_policy(struct iter_env* ie, const char* str)
92 {
93 	int count = cfg_count_numbers(str);
94 	if(count < 1) {
95 		log_err("Cannot parse target fetch policy: \"%s\"", str);
96 		return 0;
97 	}
98 	ie->max_dependency_depth = count - 1;
99 	ie->target_fetch_policy = (int*)calloc(
100 		(size_t)ie->max_dependency_depth+1, sizeof(int));
101 	if(!ie->target_fetch_policy) {
102 		log_err("alloc fetch policy: out of memory");
103 		return 0;
104 	}
105 	fetch_fill(ie, str);
106 	return 1;
107 }
108 
109 /** apply config caps whitelist items to name tree */
110 static int
111 caps_white_apply_cfg(rbtree_type* ntree, struct config_file* cfg)
112 {
113 	struct config_strlist* p;
114 	for(p=cfg->caps_whitelist; p; p=p->next) {
115 		struct name_tree_node* n;
116 		size_t len;
117 		uint8_t* nm = sldns_str2wire_dname(p->str, &len);
118 		if(!nm) {
119 			log_err("could not parse %s", p->str);
120 			return 0;
121 		}
122 		n = (struct name_tree_node*)calloc(1, sizeof(*n));
123 		if(!n) {
124 			log_err("out of memory");
125 			free(nm);
126 			return 0;
127 		}
128 		n->node.key = n;
129 		n->name = nm;
130 		n->len = len;
131 		n->labs = dname_count_labels(nm);
132 		n->dclass = LDNS_RR_CLASS_IN;
133 		if(!name_tree_insert(ntree, n, nm, len, n->labs, n->dclass)) {
134 			/* duplicate element ignored, idempotent */
135 			free(n->name);
136 			free(n);
137 		}
138 	}
139 	name_tree_init_parents(ntree);
140 	return 1;
141 }
142 
143 int
144 iter_apply_cfg(struct iter_env* iter_env, struct config_file* cfg)
145 {
146 	int i;
147 	/* target fetch policy */
148 	if(!read_fetch_policy(iter_env, cfg->target_fetch_policy))
149 		return 0;
150 	for(i=0; i<iter_env->max_dependency_depth+1; i++)
151 		verbose(VERB_QUERY, "target fetch policy for level %d is %d",
152 			i, iter_env->target_fetch_policy[i]);
153 
154 	if(!iter_env->donotq)
155 		iter_env->donotq = donotq_create();
156 	if(!iter_env->donotq || !donotq_apply_cfg(iter_env->donotq, cfg)) {
157 		log_err("Could not set donotqueryaddresses");
158 		return 0;
159 	}
160 	if(!iter_env->priv)
161 		iter_env->priv = priv_create();
162 	if(!iter_env->priv || !priv_apply_cfg(iter_env->priv, cfg)) {
163 		log_err("Could not set private addresses");
164 		return 0;
165 	}
166 	if(cfg->caps_whitelist) {
167 		if(!iter_env->caps_white)
168 			iter_env->caps_white = rbtree_create(name_tree_compare);
169 		if(!iter_env->caps_white || !caps_white_apply_cfg(
170 			iter_env->caps_white, cfg)) {
171 			log_err("Could not set capsforid whitelist");
172 			return 0;
173 		}
174 
175 	}
176 	iter_env->supports_ipv6 = cfg->do_ip6;
177 	iter_env->supports_ipv4 = cfg->do_ip4;
178 	return 1;
179 }
180 
181 /** filter out unsuitable targets
182  * @param iter_env: iterator environment with ipv6-support flag.
183  * @param env: module environment with infra cache.
184  * @param name: zone name
185  * @param namelen: length of name
186  * @param qtype: query type (host order).
187  * @param now: current time
188  * @param a: address in delegation point we are examining.
189  * @return an integer that signals the target suitability.
190  *	as follows:
191  *	-1: The address should be omitted from the list.
192  *	    Because:
193  *		o The address is bogus (DNSSEC validation failure).
194  *		o Listed as donotquery
195  *		o is ipv6 but no ipv6 support (in operating system).
196  *		o is ipv4 but no ipv4 support (in operating system).
197  *		o is lame
198  *	Otherwise, an rtt in milliseconds.
199  *	0 .. USEFUL_SERVER_TOP_TIMEOUT-1
200  *		The roundtrip time timeout estimate. less than 2 minutes.
201  *		Note that util/rtt.c has a MIN_TIMEOUT of 50 msec, thus
202  *		values 0 .. 49 are not used, unless that is changed.
203  *	USEFUL_SERVER_TOP_TIMEOUT
204  *		This value exactly is given for unresponsive blacklisted.
205  *	USEFUL_SERVER_TOP_TIMEOUT+1
206  *		For non-blacklisted servers: huge timeout, but has traffic.
207  *	USEFUL_SERVER_TOP_TIMEOUT*1 ..
208  *		parent-side lame servers get this penalty. A dispreferential
209  *		server. (lame in delegpt).
210  *	USEFUL_SERVER_TOP_TIMEOUT*2 ..
211  *		dnsseclame servers get penalty
212  *	USEFUL_SERVER_TOP_TIMEOUT*3 ..
213  *		recursion lame servers get penalty
214  *	UNKNOWN_SERVER_NICENESS
215  *		If no information is known about the server, this is
216  *		returned. 376 msec or so.
217  *	+BLACKLIST_PENALTY (of USEFUL_TOP_TIMEOUT*4) for dnssec failed IPs.
218  *
219  * When a final value is chosen that is dnsseclame ; dnsseclameness checking
220  * is turned off (so we do not discard the reply).
221  * When a final value is chosen that is recursionlame; RD bit is set on query.
222  * Because of the numbers this means recursionlame also have dnssec lameness
223  * checking turned off.
224  */
225 static int
226 iter_filter_unsuitable(struct iter_env* iter_env, struct module_env* env,
227 	uint8_t* name, size_t namelen, uint16_t qtype, time_t now,
228 	struct delegpt_addr* a)
229 {
230 	int rtt, lame, reclame, dnsseclame;
231 	if(a->bogus)
232 		return -1; /* address of server is bogus */
233 	if(donotq_lookup(iter_env->donotq, &a->addr, a->addrlen)) {
234 		log_addr(VERB_ALGO, "skip addr on the donotquery list",
235 			&a->addr, a->addrlen);
236 		return -1; /* server is on the donotquery list */
237 	}
238 	if(!iter_env->supports_ipv6 && addr_is_ip6(&a->addr, a->addrlen)) {
239 		return -1; /* there is no ip6 available */
240 	}
241 	if(!iter_env->supports_ipv4 && !addr_is_ip6(&a->addr, a->addrlen)) {
242 		return -1; /* there is no ip4 available */
243 	}
244 	/* check lameness - need zone , class info */
245 	if(infra_get_lame_rtt(env->infra_cache, &a->addr, a->addrlen,
246 		name, namelen, qtype, &lame, &dnsseclame, &reclame,
247 		&rtt, now)) {
248 		log_addr(VERB_ALGO, "servselect", &a->addr, a->addrlen);
249 		verbose(VERB_ALGO, "   rtt=%d%s%s%s%s", rtt,
250 			lame?" LAME":"",
251 			dnsseclame?" DNSSEC_LAME":"",
252 			reclame?" REC_LAME":"",
253 			a->lame?" ADDR_LAME":"");
254 		if(lame)
255 			return -1; /* server is lame */
256 		else if(rtt >= USEFUL_SERVER_TOP_TIMEOUT)
257 			/* server is unresponsive,
258 			 * we used to return TOP_TIMEOUT, but fairly useless,
259 			 * because if == TOP_TIMEOUT is dropped because
260 			 * blacklisted later, instead, remove it here, so
261 			 * other choices (that are not blacklisted) can be
262 			 * tried */
263 			return -1;
264 		/* select remainder from worst to best */
265 		else if(reclame)
266 			return rtt+USEFUL_SERVER_TOP_TIMEOUT*3; /* nonpref */
267 		else if(dnsseclame || a->dnsseclame)
268 			return rtt+USEFUL_SERVER_TOP_TIMEOUT*2; /* nonpref */
269 		else if(a->lame)
270 			return rtt+USEFUL_SERVER_TOP_TIMEOUT+1; /* nonpref */
271 		else	return rtt;
272 	}
273 	/* no server information present */
274 	if(a->dnsseclame)
275 		return UNKNOWN_SERVER_NICENESS+USEFUL_SERVER_TOP_TIMEOUT*2; /* nonpref */
276 	else if(a->lame)
277 		return USEFUL_SERVER_TOP_TIMEOUT+1+UNKNOWN_SERVER_NICENESS; /* nonpref */
278 	return UNKNOWN_SERVER_NICENESS;
279 }
280 
281 /** lookup RTT information, and also store fastest rtt (if any) */
282 static int
283 iter_fill_rtt(struct iter_env* iter_env, struct module_env* env,
284 	uint8_t* name, size_t namelen, uint16_t qtype, time_t now,
285 	struct delegpt* dp, int* best_rtt, struct sock_list* blacklist,
286 	size_t* num_suitable_results)
287 {
288 	int got_it = 0;
289 	struct delegpt_addr* a;
290 	*num_suitable_results = 0;
291 
292 	if(dp->bogus)
293 		return 0; /* NS bogus, all bogus, nothing found */
294 	for(a=dp->result_list; a; a = a->next_result) {
295 		a->sel_rtt = iter_filter_unsuitable(iter_env, env,
296 			name, namelen, qtype, now, a);
297 		if(a->sel_rtt != -1) {
298 			if(sock_list_find(blacklist, &a->addr, a->addrlen))
299 				a->sel_rtt += BLACKLIST_PENALTY;
300 
301 			if(!got_it) {
302 				*best_rtt = a->sel_rtt;
303 				got_it = 1;
304 			} else if(a->sel_rtt < *best_rtt) {
305 				*best_rtt = a->sel_rtt;
306 			}
307 			(*num_suitable_results)++;
308 		}
309 	}
310 	return got_it;
311 }
312 
313 /** compare two rtts, return -1, 0 or 1 */
314 static int
315 rtt_compare(const void* x, const void* y)
316 {
317 	if(*(int*)x == *(int*)y)
318 		return 0;
319 	if(*(int*)x > *(int*)y)
320 		return 1;
321 	return -1;
322 }
323 
324 /** get RTT for the Nth fastest server */
325 static int
326 nth_rtt(struct delegpt_addr* result_list, size_t num_results, size_t n)
327 {
328 	int rtt_band;
329 	size_t i;
330 	int* rtt_list, *rtt_index;
331 
332 	if(num_results < 1 || n >= num_results) {
333 		return -1;
334 	}
335 
336 	rtt_list = calloc(num_results, sizeof(int));
337 	if(!rtt_list) {
338 		log_err("malloc failure: allocating rtt_list");
339 		return -1;
340 	}
341 	rtt_index = rtt_list;
342 
343 	for(i=0; i<num_results && result_list; i++) {
344 		if(result_list->sel_rtt != -1) {
345 			*rtt_index = result_list->sel_rtt;
346 			rtt_index++;
347 		}
348 		result_list=result_list->next_result;
349 	}
350 	qsort(rtt_list, num_results, sizeof(*rtt_list), rtt_compare);
351 
352 	log_assert(n > 0);
353 	rtt_band = rtt_list[n-1];
354 	free(rtt_list);
355 
356 	return rtt_band;
357 }
358 
359 /** filter the address list, putting best targets at front,
360  * returns number of best targets (or 0, no suitable targets) */
361 static int
362 iter_filter_order(struct iter_env* iter_env, struct module_env* env,
363 	uint8_t* name, size_t namelen, uint16_t qtype, time_t now,
364 	struct delegpt* dp, int* selected_rtt, int open_target,
365 	struct sock_list* blacklist, time_t prefetch)
366 {
367 	int got_num = 0, low_rtt = 0, swap_to_front, rtt_band = RTT_BAND, nth;
368 	size_t num_results;
369 	struct delegpt_addr* a, *n, *prev=NULL;
370 
371 	/* fillup sel_rtt and find best rtt in the bunch */
372 	got_num = iter_fill_rtt(iter_env, env, name, namelen, qtype, now, dp,
373 		&low_rtt, blacklist, &num_results);
374 	if(got_num == 0)
375 		return 0;
376 	if(low_rtt >= USEFUL_SERVER_TOP_TIMEOUT &&
377 		(delegpt_count_missing_targets(dp) > 0 || open_target > 0)) {
378 		verbose(VERB_ALGO, "Bad choices, trying to get more choice");
379 		return 0; /* we want more choice. The best choice is a bad one.
380 			     return 0 to force the caller to fetch more */
381 	}
382 
383 	if(env->cfg->fast_server_permil != 0 && prefetch == 0 &&
384 		num_results > env->cfg->fast_server_num &&
385 		ub_random_max(env->rnd, 1000) < env->cfg->fast_server_permil) {
386 		/* the query is not prefetch, but for a downstream client,
387 		 * there are more servers available then the fastest N we want
388 		 * to choose from. Limit our choice to the fastest servers. */
389 		nth = nth_rtt(dp->result_list, num_results,
390 			env->cfg->fast_server_num);
391 		if(nth > 0) {
392 			rtt_band = nth - low_rtt;
393 			if(rtt_band > RTT_BAND)
394 				rtt_band = RTT_BAND;
395 		}
396 	}
397 
398 	got_num = 0;
399 	a = dp->result_list;
400 	while(a) {
401 		/* skip unsuitable targets */
402 		if(a->sel_rtt == -1) {
403 			prev = a;
404 			a = a->next_result;
405 			continue;
406 		}
407 		/* classify the server address and determine what to do */
408 		swap_to_front = 0;
409 		if(a->sel_rtt >= low_rtt && a->sel_rtt - low_rtt <= rtt_band) {
410 			got_num++;
411 			swap_to_front = 1;
412 		} else if(a->sel_rtt<low_rtt && low_rtt-a->sel_rtt<=rtt_band) {
413 			got_num++;
414 			swap_to_front = 1;
415 		}
416 		/* swap to front if necessary, or move to next result */
417 		if(swap_to_front && prev) {
418 			n = a->next_result;
419 			prev->next_result = n;
420 			a->next_result = dp->result_list;
421 			dp->result_list = a;
422 			a = n;
423 		} else {
424 			prev = a;
425 			a = a->next_result;
426 		}
427 	}
428 	*selected_rtt = low_rtt;
429 
430 	if (env->cfg->prefer_ip6) {
431 		int got_num6 = 0;
432 		int low_rtt6 = 0;
433 		int i;
434 		int attempt = -1; /* filter to make sure addresses have
435 		  less attempts on them than the first, to force round
436 		  robin when all the IPv6 addresses fail */
437 		int num4ok = 0; /* number ip4 at low attempt count */
438 		int num4_lowrtt = 0;
439 		prev = NULL;
440 		a = dp->result_list;
441 		for(i = 0; i < got_num; i++) {
442 			swap_to_front = 0;
443 			if(a->addr.ss_family != AF_INET6 && attempt == -1) {
444 				/* if we only have ip4 at low attempt count,
445 				 * then ip6 is failing, and we need to
446 				 * select one of the remaining IPv4 addrs */
447 				attempt = a->attempts;
448 				num4ok++;
449 				num4_lowrtt = a->sel_rtt;
450 			} else if(a->addr.ss_family != AF_INET6 && attempt == a->attempts) {
451 				num4ok++;
452 				if(num4_lowrtt == 0 || a->sel_rtt < num4_lowrtt) {
453 					num4_lowrtt = a->sel_rtt;
454 				}
455 			}
456 			if(a->addr.ss_family == AF_INET6) {
457 				if(attempt == -1) {
458 					attempt = a->attempts;
459 				} else if(a->attempts > attempt) {
460 					break;
461 				}
462 				got_num6++;
463 				swap_to_front = 1;
464 				if(low_rtt6 == 0 || a->sel_rtt < low_rtt6) {
465 					low_rtt6 = a->sel_rtt;
466 				}
467 			}
468 			/* swap to front if IPv6, or move to next result */
469 			if(swap_to_front && prev) {
470 				n = a->next_result;
471 				prev->next_result = n;
472 				a->next_result = dp->result_list;
473 				dp->result_list = a;
474 				a = n;
475 			} else {
476 				prev = a;
477 				a = a->next_result;
478 			}
479 		}
480 		if(got_num6 > 0) {
481 			got_num = got_num6;
482 			*selected_rtt = low_rtt6;
483 		} else if(num4ok > 0) {
484 			got_num = num4ok;
485 			*selected_rtt = num4_lowrtt;
486 		}
487 	}
488 	return got_num;
489 }
490 
491 struct delegpt_addr*
492 iter_server_selection(struct iter_env* iter_env,
493 	struct module_env* env, struct delegpt* dp,
494 	uint8_t* name, size_t namelen, uint16_t qtype, int* dnssec_lame,
495 	int* chase_to_rd, int open_target, struct sock_list* blacklist,
496 	time_t prefetch)
497 {
498 	int sel;
499 	int selrtt;
500 	struct delegpt_addr* a, *prev;
501 	int num = iter_filter_order(iter_env, env, name, namelen, qtype,
502 		*env->now, dp, &selrtt, open_target, blacklist, prefetch);
503 
504 	if(num == 0)
505 		return NULL;
506 	verbose(VERB_ALGO, "selrtt %d", selrtt);
507 	if(selrtt > BLACKLIST_PENALTY) {
508 		if(selrtt-BLACKLIST_PENALTY > USEFUL_SERVER_TOP_TIMEOUT*3) {
509 			verbose(VERB_ALGO, "chase to "
510 				"blacklisted recursion lame server");
511 			*chase_to_rd = 1;
512 		}
513 		if(selrtt-BLACKLIST_PENALTY > USEFUL_SERVER_TOP_TIMEOUT*2) {
514 			verbose(VERB_ALGO, "chase to "
515 				"blacklisted dnssec lame server");
516 			*dnssec_lame = 1;
517 		}
518 	} else {
519 		if(selrtt > USEFUL_SERVER_TOP_TIMEOUT*3) {
520 			verbose(VERB_ALGO, "chase to recursion lame server");
521 			*chase_to_rd = 1;
522 		}
523 		if(selrtt > USEFUL_SERVER_TOP_TIMEOUT*2) {
524 			verbose(VERB_ALGO, "chase to dnssec lame server");
525 			*dnssec_lame = 1;
526 		}
527 		if(selrtt == USEFUL_SERVER_TOP_TIMEOUT) {
528 			verbose(VERB_ALGO, "chase to blacklisted lame server");
529 			return NULL;
530 		}
531 	}
532 
533 	if(num == 1) {
534 		a = dp->result_list;
535 		if(++a->attempts < OUTBOUND_MSG_RETRY)
536 			return a;
537 		dp->result_list = a->next_result;
538 		return a;
539 	}
540 
541 	/* randomly select a target from the list */
542 	log_assert(num > 1);
543 	/* grab secure random number, to pick unexpected server.
544 	 * also we need it to be threadsafe. */
545 	sel = ub_random_max(env->rnd, num);
546 	a = dp->result_list;
547 	prev = NULL;
548 	while(sel > 0 && a) {
549 		prev = a;
550 		a = a->next_result;
551 		sel--;
552 	}
553 	if(!a)  /* robustness */
554 		return NULL;
555 	if(++a->attempts < OUTBOUND_MSG_RETRY)
556 		return a;
557 	/* remove it from the delegation point result list */
558 	if(prev)
559 		prev->next_result = a->next_result;
560 	else	dp->result_list = a->next_result;
561 	return a;
562 }
563 
564 struct dns_msg*
565 dns_alloc_msg(sldns_buffer* pkt, struct msg_parse* msg,
566 	struct regional* region)
567 {
568 	struct dns_msg* m = (struct dns_msg*)regional_alloc(region,
569 		sizeof(struct dns_msg));
570 	if(!m)
571 		return NULL;
572 	memset(m, 0, sizeof(*m));
573 	if(!parse_create_msg(pkt, msg, NULL, &m->qinfo, &m->rep, region)) {
574 		log_err("malloc failure: allocating incoming dns_msg");
575 		return NULL;
576 	}
577 	return m;
578 }
579 
580 struct dns_msg*
581 dns_copy_msg(struct dns_msg* from, struct regional* region)
582 {
583 	struct dns_msg* m = (struct dns_msg*)regional_alloc(region,
584 		sizeof(struct dns_msg));
585 	if(!m)
586 		return NULL;
587 	m->qinfo = from->qinfo;
588 	if(!(m->qinfo.qname = regional_alloc_init(region, from->qinfo.qname,
589 		from->qinfo.qname_len)))
590 		return NULL;
591 	if(!(m->rep = reply_info_copy(from->rep, NULL, region)))
592 		return NULL;
593 	return m;
594 }
595 
596 void
597 iter_dns_store(struct module_env* env, struct query_info* msgqinf,
598 	struct reply_info* msgrep, int is_referral, time_t leeway, int pside,
599 	struct regional* region, uint16_t flags)
600 {
601 	if(!dns_cache_store(env, msgqinf, msgrep, is_referral, leeway,
602 		pside, region, flags))
603 		log_err("out of memory: cannot store data in cache");
604 }
605 
606 int
607 iter_ns_probability(struct ub_randstate* rnd, int n, int m)
608 {
609 	int sel;
610 	if(n == m) /* 100% chance */
611 		return 1;
612 	/* we do not need secure random numbers here, but
613 	 * we do need it to be threadsafe, so we use this */
614 	sel = ub_random_max(rnd, m);
615 	return (sel < n);
616 }
617 
618 /** detect dependency cycle for query and target */
619 static int
620 causes_cycle(struct module_qstate* qstate, uint8_t* name, size_t namelen,
621 	uint16_t t, uint16_t c)
622 {
623 	struct query_info qinf;
624 	qinf.qname = name;
625 	qinf.qname_len = namelen;
626 	qinf.qtype = t;
627 	qinf.qclass = c;
628 	qinf.local_alias = NULL;
629 	fptr_ok(fptr_whitelist_modenv_detect_cycle(
630 		qstate->env->detect_cycle));
631 	return (*qstate->env->detect_cycle)(qstate, &qinf,
632 		(uint16_t)(BIT_RD|BIT_CD), qstate->is_priming,
633 		qstate->is_valrec);
634 }
635 
636 void
637 iter_mark_cycle_targets(struct module_qstate* qstate, struct delegpt* dp)
638 {
639 	struct delegpt_ns* ns;
640 	for(ns = dp->nslist; ns; ns = ns->next) {
641 		if(ns->resolved)
642 			continue;
643 		/* see if this ns as target causes dependency cycle */
644 		if(causes_cycle(qstate, ns->name, ns->namelen,
645 			LDNS_RR_TYPE_AAAA, qstate->qinfo.qclass) ||
646 		   causes_cycle(qstate, ns->name, ns->namelen,
647 			LDNS_RR_TYPE_A, qstate->qinfo.qclass)) {
648 			log_nametypeclass(VERB_QUERY, "skipping target due "
649 			 	"to dependency cycle (harden-glue: no may "
650 				"fix some of the cycles)",
651 				ns->name, LDNS_RR_TYPE_A,
652 				qstate->qinfo.qclass);
653 			ns->resolved = 1;
654 		}
655 	}
656 }
657 
658 void
659 iter_mark_pside_cycle_targets(struct module_qstate* qstate, struct delegpt* dp)
660 {
661 	struct delegpt_ns* ns;
662 	for(ns = dp->nslist; ns; ns = ns->next) {
663 		if(ns->done_pside4 && ns->done_pside6)
664 			continue;
665 		/* see if this ns as target causes dependency cycle */
666 		if(causes_cycle(qstate, ns->name, ns->namelen,
667 			LDNS_RR_TYPE_A, qstate->qinfo.qclass)) {
668 			log_nametypeclass(VERB_QUERY, "skipping target due "
669 			 	"to dependency cycle", ns->name,
670 				LDNS_RR_TYPE_A, qstate->qinfo.qclass);
671 			ns->done_pside4 = 1;
672 		}
673 		if(causes_cycle(qstate, ns->name, ns->namelen,
674 			LDNS_RR_TYPE_AAAA, qstate->qinfo.qclass)) {
675 			log_nametypeclass(VERB_QUERY, "skipping target due "
676 			 	"to dependency cycle", ns->name,
677 				LDNS_RR_TYPE_AAAA, qstate->qinfo.qclass);
678 			ns->done_pside6 = 1;
679 		}
680 	}
681 }
682 
683 int
684 iter_dp_is_useless(struct query_info* qinfo, uint16_t qflags,
685 	struct delegpt* dp)
686 {
687 	struct delegpt_ns* ns;
688 	/* check:
689 	 *      o RD qflag is on.
690 	 *      o no addresses are provided.
691 	 *      o all NS items are required glue.
692 	 * OR
693 	 *      o RD qflag is on.
694 	 *      o no addresses are provided.
695 	 *      o the query is for one of the nameservers in dp,
696 	 *        and that nameserver is a glue-name for this dp.
697 	 */
698 	if(!(qflags&BIT_RD))
699 		return 0;
700 	/* either available or unused targets */
701 	if(dp->usable_list || dp->result_list)
702 		return 0;
703 
704 	/* see if query is for one of the nameservers, which is glue */
705 	if( (qinfo->qtype == LDNS_RR_TYPE_A ||
706 		qinfo->qtype == LDNS_RR_TYPE_AAAA) &&
707 		dname_subdomain_c(qinfo->qname, dp->name) &&
708 		delegpt_find_ns(dp, qinfo->qname, qinfo->qname_len))
709 		return 1;
710 
711 	for(ns = dp->nslist; ns; ns = ns->next) {
712 		if(ns->resolved) /* skip failed targets */
713 			continue;
714 		if(!dname_subdomain_c(ns->name, dp->name))
715 			return 0; /* one address is not required glue */
716 	}
717 	return 1;
718 }
719 
720 int
721 iter_qname_indicates_dnssec(struct module_env* env, struct query_info *qinfo)
722 {
723 	struct trust_anchor* a;
724 	if(!env || !env->anchors || !qinfo || !qinfo->qname)
725 		return 0;
726 	/* a trust anchor exists above the name? */
727 	if((a=anchors_lookup(env->anchors, qinfo->qname, qinfo->qname_len,
728 		qinfo->qclass))) {
729 		if(a->numDS == 0 && a->numDNSKEY == 0) {
730 			/* insecure trust point */
731 			lock_basic_unlock(&a->lock);
732 			return 0;
733 		}
734 		lock_basic_unlock(&a->lock);
735 		return 1;
736 	}
737 	/* no trust anchor above it. */
738 	return 0;
739 }
740 
741 int
742 iter_indicates_dnssec(struct module_env* env, struct delegpt* dp,
743         struct dns_msg* msg, uint16_t dclass)
744 {
745 	struct trust_anchor* a;
746 	/* information not available, !env->anchors can be common */
747 	if(!env || !env->anchors || !dp || !dp->name)
748 		return 0;
749 	/* a trust anchor exists with this name, RRSIGs expected */
750 	if((a=anchor_find(env->anchors, dp->name, dp->namelabs, dp->namelen,
751 		dclass))) {
752 		if(a->numDS == 0 && a->numDNSKEY == 0) {
753 			/* insecure trust point */
754 			lock_basic_unlock(&a->lock);
755 			return 0;
756 		}
757 		lock_basic_unlock(&a->lock);
758 		return 1;
759 	}
760 	/* see if DS rrset was given, in AUTH section */
761 	if(msg && msg->rep &&
762 		reply_find_rrset_section_ns(msg->rep, dp->name, dp->namelen,
763 		LDNS_RR_TYPE_DS, dclass))
764 		return 1;
765 	/* look in key cache */
766 	if(env->key_cache) {
767 		struct key_entry_key* kk = key_cache_obtain(env->key_cache,
768 			dp->name, dp->namelen, dclass, env->scratch, *env->now);
769 		if(kk) {
770 			if(query_dname_compare(kk->name, dp->name) == 0) {
771 			  if(key_entry_isgood(kk) || key_entry_isbad(kk)) {
772 				regional_free_all(env->scratch);
773 				return 1;
774 			  } else if(key_entry_isnull(kk)) {
775 				regional_free_all(env->scratch);
776 				return 0;
777 			  }
778 			}
779 			regional_free_all(env->scratch);
780 		}
781 	}
782 	return 0;
783 }
784 
785 int
786 iter_msg_has_dnssec(struct dns_msg* msg)
787 {
788 	size_t i;
789 	if(!msg || !msg->rep)
790 		return 0;
791 	for(i=0; i<msg->rep->an_numrrsets + msg->rep->ns_numrrsets; i++) {
792 		if(((struct packed_rrset_data*)msg->rep->rrsets[i]->
793 			entry.data)->rrsig_count > 0)
794 			return 1;
795 	}
796 	/* empty message has no DNSSEC info, with DNSSEC the reply is
797 	 * not empty (NSEC) */
798 	return 0;
799 }
800 
801 int iter_msg_from_zone(struct dns_msg* msg, struct delegpt* dp,
802         enum response_type type, uint16_t dclass)
803 {
804 	if(!msg || !dp || !msg->rep || !dp->name)
805 		return 0;
806 	/* SOA RRset - always from reply zone */
807 	if(reply_find_rrset_section_an(msg->rep, dp->name, dp->namelen,
808 		LDNS_RR_TYPE_SOA, dclass) ||
809 	   reply_find_rrset_section_ns(msg->rep, dp->name, dp->namelen,
810 		LDNS_RR_TYPE_SOA, dclass))
811 		return 1;
812 	if(type == RESPONSE_TYPE_REFERRAL) {
813 		size_t i;
814 		/* if it adds a single label, i.e. we expect .com,
815 		 * and referral to example.com. NS ... , then origin zone
816 		 * is .com. For a referral to sub.example.com. NS ... then
817 		 * we do not know, since example.com. may be in between. */
818 		for(i=0; i<msg->rep->an_numrrsets+msg->rep->ns_numrrsets;
819 			i++) {
820 			struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
821 			if(ntohs(s->rk.type) == LDNS_RR_TYPE_NS &&
822 				ntohs(s->rk.rrset_class) == dclass) {
823 				int l = dname_count_labels(s->rk.dname);
824 				if(l == dp->namelabs + 1 &&
825 					dname_strict_subdomain(s->rk.dname,
826 					l, dp->name, dp->namelabs))
827 					return 1;
828 			}
829 		}
830 		return 0;
831 	}
832 	log_assert(type==RESPONSE_TYPE_ANSWER || type==RESPONSE_TYPE_CNAME);
833 	/* not a referral, and not lame delegation (upwards), so,
834 	 * any NS rrset must be from the zone itself */
835 	if(reply_find_rrset_section_an(msg->rep, dp->name, dp->namelen,
836 		LDNS_RR_TYPE_NS, dclass) ||
837 	   reply_find_rrset_section_ns(msg->rep, dp->name, dp->namelen,
838 		LDNS_RR_TYPE_NS, dclass))
839 		return 1;
840 	/* a DNSKEY set is expected at the zone apex as well */
841 	/* this is for 'minimal responses' for DNSKEYs */
842 	if(reply_find_rrset_section_an(msg->rep, dp->name, dp->namelen,
843 		LDNS_RR_TYPE_DNSKEY, dclass))
844 		return 1;
845 	return 0;
846 }
847 
848 /**
849  * check equality of two rrsets
850  * @param k1: rrset
851  * @param k2: rrset
852  * @return true if equal
853  */
854 static int
855 rrset_equal(struct ub_packed_rrset_key* k1, struct ub_packed_rrset_key* k2)
856 {
857 	struct packed_rrset_data* d1 = (struct packed_rrset_data*)
858 		k1->entry.data;
859 	struct packed_rrset_data* d2 = (struct packed_rrset_data*)
860 		k2->entry.data;
861 	size_t i, t;
862 	if(k1->rk.dname_len != k2->rk.dname_len ||
863 		k1->rk.flags != k2->rk.flags ||
864 		k1->rk.type != k2->rk.type ||
865 		k1->rk.rrset_class != k2->rk.rrset_class ||
866 		query_dname_compare(k1->rk.dname, k2->rk.dname) != 0)
867 		return 0;
868 	if(	/* do not check ttl: d1->ttl != d2->ttl || */
869 		d1->count != d2->count ||
870 		d1->rrsig_count != d2->rrsig_count ||
871 		d1->trust != d2->trust ||
872 		d1->security != d2->security)
873 		return 0;
874 	t = d1->count + d1->rrsig_count;
875 	for(i=0; i<t; i++) {
876 		if(d1->rr_len[i] != d2->rr_len[i] ||
877 			/* no ttl check: d1->rr_ttl[i] != d2->rr_ttl[i] ||*/
878 			memcmp(d1->rr_data[i], d2->rr_data[i],
879 				d1->rr_len[i]) != 0)
880 			return 0;
881 	}
882 	return 1;
883 }
884 
885 /** compare rrsets and sort canonically.  Compares rrset name, type, class.
886  * return 0 if equal, +1 if x > y, and -1 if x < y.
887  */
888 static int
889 rrset_canonical_sort_cmp(const void* x, const void* y)
890 {
891 	struct ub_packed_rrset_key* rrx = *(struct ub_packed_rrset_key**)x;
892 	struct ub_packed_rrset_key* rry = *(struct ub_packed_rrset_key**)y;
893 	int r = dname_canonical_compare(rrx->rk.dname, rry->rk.dname);
894 	if(r != 0)
895 		return r;
896 	if(rrx->rk.type != rry->rk.type) {
897 		if(ntohs(rrx->rk.type) > ntohs(rry->rk.type))
898 			return 1;
899 		else	return -1;
900 	}
901 	if(rrx->rk.rrset_class != rry->rk.rrset_class) {
902 		if(ntohs(rrx->rk.rrset_class) > ntohs(rry->rk.rrset_class))
903 			return 1;
904 		else	return -1;
905 	}
906 	return 0;
907 }
908 
909 int
910 reply_equal(struct reply_info* p, struct reply_info* q, struct regional* region)
911 {
912 	size_t i;
913 	struct ub_packed_rrset_key** sorted_p, **sorted_q;
914 	if(p->flags != q->flags ||
915 		p->qdcount != q->qdcount ||
916 		/* do not check TTL, this may differ */
917 		/*
918 		p->ttl != q->ttl ||
919 		p->prefetch_ttl != q->prefetch_ttl ||
920 		*/
921 		p->security != q->security ||
922 		p->an_numrrsets != q->an_numrrsets ||
923 		p->ns_numrrsets != q->ns_numrrsets ||
924 		p->ar_numrrsets != q->ar_numrrsets ||
925 		p->rrset_count != q->rrset_count)
926 		return 0;
927 	/* sort the rrsets in the authority and additional sections before
928 	 * compare, the query and answer sections are ordered in the sequence
929 	 * they should have (eg. one after the other for aliases). */
930 	sorted_p = (struct ub_packed_rrset_key**)regional_alloc_init(
931 		region, p->rrsets, sizeof(*sorted_p)*p->rrset_count);
932 	if(!sorted_p) return 0;
933 	log_assert(p->an_numrrsets + p->ns_numrrsets + p->ar_numrrsets <=
934 		p->rrset_count);
935 	qsort(sorted_p + p->an_numrrsets, p->ns_numrrsets,
936 		sizeof(*sorted_p), rrset_canonical_sort_cmp);
937 	qsort(sorted_p + p->an_numrrsets + p->ns_numrrsets, p->ar_numrrsets,
938 		sizeof(*sorted_p), rrset_canonical_sort_cmp);
939 
940 	sorted_q = (struct ub_packed_rrset_key**)regional_alloc_init(
941 		region, q->rrsets, sizeof(*sorted_q)*q->rrset_count);
942 	if(!sorted_q) {
943 		regional_free_all(region);
944 		return 0;
945 	}
946 	log_assert(q->an_numrrsets + q->ns_numrrsets + q->ar_numrrsets <=
947 		q->rrset_count);
948 	qsort(sorted_q + q->an_numrrsets, q->ns_numrrsets,
949 		sizeof(*sorted_q), rrset_canonical_sort_cmp);
950 	qsort(sorted_q + q->an_numrrsets + q->ns_numrrsets, q->ar_numrrsets,
951 		sizeof(*sorted_q), rrset_canonical_sort_cmp);
952 
953 	/* compare the rrsets */
954 	for(i=0; i<p->rrset_count; i++) {
955 		if(!rrset_equal(sorted_p[i], sorted_q[i])) {
956 			if(!rrset_canonical_equal(region, sorted_p[i],
957 				sorted_q[i])) {
958 				regional_free_all(region);
959 				return 0;
960 			}
961 		}
962 	}
963 	regional_free_all(region);
964 	return 1;
965 }
966 
967 void
968 caps_strip_reply(struct reply_info* rep)
969 {
970 	size_t i;
971 	if(!rep) return;
972 	/* see if message is a referral, in which case the additional and
973 	 * NS record cannot be removed */
974 	/* referrals have the AA flag unset (strict check, not elsewhere in
975 	 * unbound, but for 0x20 this is very convenient). */
976 	if(!(rep->flags&BIT_AA))
977 		return;
978 	/* remove the additional section from the reply */
979 	if(rep->ar_numrrsets != 0) {
980 		verbose(VERB_ALGO, "caps fallback: removing additional section");
981 		rep->rrset_count -= rep->ar_numrrsets;
982 		rep->ar_numrrsets = 0;
983 	}
984 	/* is there an NS set in the authority section to remove? */
985 	/* the failure case (Cisco firewalls) only has one rrset in authsec */
986 	for(i=rep->an_numrrsets; i<rep->an_numrrsets+rep->ns_numrrsets; i++) {
987 		struct ub_packed_rrset_key* s = rep->rrsets[i];
988 		if(ntohs(s->rk.type) == LDNS_RR_TYPE_NS) {
989 			/* remove NS rrset and break from loop (loop limits
990 			 * have changed) */
991 			/* move last rrset into this position (there is no
992 			 * additional section any more) */
993 			verbose(VERB_ALGO, "caps fallback: removing NS rrset");
994 			if(i < rep->rrset_count-1)
995 				rep->rrsets[i]=rep->rrsets[rep->rrset_count-1];
996 			rep->rrset_count --;
997 			rep->ns_numrrsets --;
998 			break;
999 		}
1000 	}
1001 }
1002 
1003 int caps_failed_rcode(struct reply_info* rep)
1004 {
1005 	return !(FLAGS_GET_RCODE(rep->flags) == LDNS_RCODE_NOERROR ||
1006 		FLAGS_GET_RCODE(rep->flags) == LDNS_RCODE_NXDOMAIN);
1007 }
1008 
1009 void
1010 iter_store_parentside_rrset(struct module_env* env,
1011 	struct ub_packed_rrset_key* rrset)
1012 {
1013 	struct rrset_ref ref;
1014 	rrset = packed_rrset_copy_alloc(rrset, env->alloc, *env->now);
1015 	if(!rrset) {
1016 		log_err("malloc failure in store_parentside_rrset");
1017 		return;
1018 	}
1019 	rrset->rk.flags |= PACKED_RRSET_PARENT_SIDE;
1020 	rrset->entry.hash = rrset_key_hash(&rrset->rk);
1021 	ref.key = rrset;
1022 	ref.id = rrset->id;
1023 	/* ignore ret: if it was in the cache, ref updated */
1024 	(void)rrset_cache_update(env->rrset_cache, &ref, env->alloc, *env->now);
1025 }
1026 
1027 /** fetch NS record from reply, if any */
1028 static struct ub_packed_rrset_key*
1029 reply_get_NS_rrset(struct reply_info* rep)
1030 {
1031 	size_t i;
1032 	for(i=0; i<rep->rrset_count; i++) {
1033 		if(rep->rrsets[i]->rk.type == htons(LDNS_RR_TYPE_NS)) {
1034 			return rep->rrsets[i];
1035 		}
1036 	}
1037 	return NULL;
1038 }
1039 
1040 void
1041 iter_store_parentside_NS(struct module_env* env, struct reply_info* rep)
1042 {
1043 	struct ub_packed_rrset_key* rrset = reply_get_NS_rrset(rep);
1044 	if(rrset) {
1045 		log_rrset_key(VERB_ALGO, "store parent-side NS", rrset);
1046 		iter_store_parentside_rrset(env, rrset);
1047 	}
1048 }
1049 
1050 void iter_store_parentside_neg(struct module_env* env,
1051         struct query_info* qinfo, struct reply_info* rep)
1052 {
1053 	/* TTL: NS from referral in iq->deleg_msg,
1054 	 *      or first RR from iq->response,
1055 	 *      or servfail5secs if !iq->response */
1056 	time_t ttl = NORR_TTL;
1057 	struct ub_packed_rrset_key* neg;
1058 	struct packed_rrset_data* newd;
1059 	if(rep) {
1060 		struct ub_packed_rrset_key* rrset = reply_get_NS_rrset(rep);
1061 		if(!rrset && rep->rrset_count != 0) rrset = rep->rrsets[0];
1062 		if(rrset) ttl = ub_packed_rrset_ttl(rrset);
1063 	}
1064 	/* create empty rrset to store */
1065 	neg = (struct ub_packed_rrset_key*)regional_alloc(env->scratch,
1066 	                sizeof(struct ub_packed_rrset_key));
1067 	if(!neg) {
1068 		log_err("out of memory in store_parentside_neg");
1069 		return;
1070 	}
1071 	memset(&neg->entry, 0, sizeof(neg->entry));
1072 	neg->entry.key = neg;
1073 	neg->rk.type = htons(qinfo->qtype);
1074 	neg->rk.rrset_class = htons(qinfo->qclass);
1075 	neg->rk.flags = 0;
1076 	neg->rk.dname = regional_alloc_init(env->scratch, qinfo->qname,
1077 		qinfo->qname_len);
1078 	if(!neg->rk.dname) {
1079 		log_err("out of memory in store_parentside_neg");
1080 		return;
1081 	}
1082 	neg->rk.dname_len = qinfo->qname_len;
1083 	neg->entry.hash = rrset_key_hash(&neg->rk);
1084 	newd = (struct packed_rrset_data*)regional_alloc_zero(env->scratch,
1085 		sizeof(struct packed_rrset_data) + sizeof(size_t) +
1086 		sizeof(uint8_t*) + sizeof(time_t) + sizeof(uint16_t));
1087 	if(!newd) {
1088 		log_err("out of memory in store_parentside_neg");
1089 		return;
1090 	}
1091 	neg->entry.data = newd;
1092 	newd->ttl = ttl;
1093 	/* entry must have one RR, otherwise not valid in cache.
1094 	 * put in one RR with empty rdata: those are ignored as nameserver */
1095 	newd->count = 1;
1096 	newd->rrsig_count = 0;
1097 	newd->trust = rrset_trust_ans_noAA;
1098 	newd->rr_len = (size_t*)((uint8_t*)newd +
1099 		sizeof(struct packed_rrset_data));
1100 	newd->rr_len[0] = 0 /* zero len rdata */ + sizeof(uint16_t);
1101 	packed_rrset_ptr_fixup(newd);
1102 	newd->rr_ttl[0] = newd->ttl;
1103 	sldns_write_uint16(newd->rr_data[0], 0 /* zero len rdata */);
1104 	/* store it */
1105 	log_rrset_key(VERB_ALGO, "store parent-side negative", neg);
1106 	iter_store_parentside_rrset(env, neg);
1107 }
1108 
1109 int
1110 iter_lookup_parent_NS_from_cache(struct module_env* env, struct delegpt* dp,
1111 	struct regional* region, struct query_info* qinfo)
1112 {
1113 	struct ub_packed_rrset_key* akey;
1114 	akey = rrset_cache_lookup(env->rrset_cache, dp->name,
1115 		dp->namelen, LDNS_RR_TYPE_NS, qinfo->qclass,
1116 		PACKED_RRSET_PARENT_SIDE, *env->now, 0);
1117 	if(akey) {
1118 		log_rrset_key(VERB_ALGO, "found parent-side NS in cache", akey);
1119 		dp->has_parent_side_NS = 1;
1120 		/* and mark the new names as lame */
1121 		if(!delegpt_rrset_add_ns(dp, region, akey, 1)) {
1122 			lock_rw_unlock(&akey->entry.lock);
1123 			return 0;
1124 		}
1125 		lock_rw_unlock(&akey->entry.lock);
1126 	}
1127 	return 1;
1128 }
1129 
1130 int iter_lookup_parent_glue_from_cache(struct module_env* env,
1131         struct delegpt* dp, struct regional* region, struct query_info* qinfo)
1132 {
1133 	struct ub_packed_rrset_key* akey;
1134 	struct delegpt_ns* ns;
1135 	size_t num = delegpt_count_targets(dp);
1136 	for(ns = dp->nslist; ns; ns = ns->next) {
1137 		/* get cached parentside A */
1138 		akey = rrset_cache_lookup(env->rrset_cache, ns->name,
1139 			ns->namelen, LDNS_RR_TYPE_A, qinfo->qclass,
1140 			PACKED_RRSET_PARENT_SIDE, *env->now, 0);
1141 		if(akey) {
1142 			log_rrset_key(VERB_ALGO, "found parent-side", akey);
1143 			ns->done_pside4 = 1;
1144 			/* a negative-cache-element has no addresses it adds */
1145 			if(!delegpt_add_rrset_A(dp, region, akey, 1, NULL))
1146 				log_err("malloc failure in lookup_parent_glue");
1147 			lock_rw_unlock(&akey->entry.lock);
1148 		}
1149 		/* get cached parentside AAAA */
1150 		akey = rrset_cache_lookup(env->rrset_cache, ns->name,
1151 			ns->namelen, LDNS_RR_TYPE_AAAA, qinfo->qclass,
1152 			PACKED_RRSET_PARENT_SIDE, *env->now, 0);
1153 		if(akey) {
1154 			log_rrset_key(VERB_ALGO, "found parent-side", akey);
1155 			ns->done_pside6 = 1;
1156 			/* a negative-cache-element has no addresses it adds */
1157 			if(!delegpt_add_rrset_AAAA(dp, region, akey, 1, NULL))
1158 				log_err("malloc failure in lookup_parent_glue");
1159 			lock_rw_unlock(&akey->entry.lock);
1160 		}
1161 	}
1162 	/* see if new (but lame) addresses have become available */
1163 	return delegpt_count_targets(dp) != num;
1164 }
1165 
1166 int
1167 iter_get_next_root(struct iter_hints* hints, struct iter_forwards* fwd,
1168 	uint16_t* c)
1169 {
1170 	uint16_t c1 = *c, c2 = *c;
1171 	int r1 = hints_next_root(hints, &c1);
1172 	int r2 = forwards_next_root(fwd, &c2);
1173 	if(!r1 && !r2) /* got none, end of list */
1174 		return 0;
1175 	else if(!r1) /* got one, return that */
1176 		*c = c2;
1177 	else if(!r2)
1178 		*c = c1;
1179 	else if(c1 < c2) /* got both take smallest */
1180 		*c = c1;
1181 	else	*c = c2;
1182 	return 1;
1183 }
1184 
1185 void
1186 iter_scrub_ds(struct dns_msg* msg, struct ub_packed_rrset_key* ns, uint8_t* z)
1187 {
1188 	/* Only the DS record for the delegation itself is expected.
1189 	 * We allow DS for everything between the bailiwick and the
1190 	 * zonecut, thus DS records must be at or above the zonecut.
1191 	 * And the DS records must be below the server authority zone.
1192 	 * The answer section is already scrubbed. */
1193 	size_t i = msg->rep->an_numrrsets;
1194 	while(i < (msg->rep->an_numrrsets + msg->rep->ns_numrrsets)) {
1195 		struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
1196 		if(ntohs(s->rk.type) == LDNS_RR_TYPE_DS &&
1197 			(!ns || !dname_subdomain_c(ns->rk.dname, s->rk.dname)
1198 			|| query_dname_compare(z, s->rk.dname) == 0)) {
1199 			log_nametypeclass(VERB_ALGO, "removing irrelevant DS",
1200 				s->rk.dname, ntohs(s->rk.type),
1201 				ntohs(s->rk.rrset_class));
1202 			memmove(msg->rep->rrsets+i, msg->rep->rrsets+i+1,
1203 				sizeof(struct ub_packed_rrset_key*) *
1204 				(msg->rep->rrset_count-i-1));
1205 			msg->rep->ns_numrrsets--;
1206 			msg->rep->rrset_count--;
1207 			/* stay at same i, but new record */
1208 			continue;
1209 		}
1210 		i++;
1211 	}
1212 }
1213 
1214 void
1215 iter_scrub_nxdomain(struct dns_msg* msg)
1216 {
1217 	if(msg->rep->an_numrrsets == 0)
1218 		return;
1219 
1220 	memmove(msg->rep->rrsets, msg->rep->rrsets+msg->rep->an_numrrsets,
1221 		sizeof(struct ub_packed_rrset_key*) *
1222 		(msg->rep->rrset_count-msg->rep->an_numrrsets));
1223 	msg->rep->rrset_count -= msg->rep->an_numrrsets;
1224 	msg->rep->an_numrrsets = 0;
1225 }
1226 
1227 void iter_dec_attempts(struct delegpt* dp, int d)
1228 {
1229 	struct delegpt_addr* a;
1230 	for(a=dp->target_list; a; a = a->next_target) {
1231 		if(a->attempts >= OUTBOUND_MSG_RETRY) {
1232 			/* add back to result list */
1233 			a->next_result = dp->result_list;
1234 			dp->result_list = a;
1235 		}
1236 		if(a->attempts > d)
1237 			a->attempts -= d;
1238 		else a->attempts = 0;
1239 	}
1240 }
1241 
1242 void iter_merge_retry_counts(struct delegpt* dp, struct delegpt* old)
1243 {
1244 	struct delegpt_addr* a, *o, *prev;
1245 	for(a=dp->target_list; a; a = a->next_target) {
1246 		o = delegpt_find_addr(old, &a->addr, a->addrlen);
1247 		if(o) {
1248 			log_addr(VERB_ALGO, "copy attempt count previous dp",
1249 				&a->addr, a->addrlen);
1250 			a->attempts = o->attempts;
1251 		}
1252 	}
1253 	prev = NULL;
1254 	a = dp->usable_list;
1255 	while(a) {
1256 		if(a->attempts >= OUTBOUND_MSG_RETRY) {
1257 			log_addr(VERB_ALGO, "remove from usable list dp",
1258 				&a->addr, a->addrlen);
1259 			/* remove from result list */
1260 			if(prev)
1261 				prev->next_usable = a->next_usable;
1262 			else	dp->usable_list = a->next_usable;
1263 			/* prev stays the same */
1264 			a = a->next_usable;
1265 			continue;
1266 		}
1267 		prev = a;
1268 		a = a->next_usable;
1269 	}
1270 }
1271 
1272 int
1273 iter_ds_toolow(struct dns_msg* msg, struct delegpt* dp)
1274 {
1275 	/* if for query example.com, there is example.com SOA or a subdomain
1276 	 * of example.com, then we are too low and need to fetch NS. */
1277 	size_t i;
1278 	/* if we have a DNAME or CNAME we are probably wrong */
1279 	/* if we have a qtype DS in the answer section, its fine */
1280 	for(i=0; i < msg->rep->an_numrrsets; i++) {
1281 		struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
1282 		if(ntohs(s->rk.type) == LDNS_RR_TYPE_DNAME ||
1283 			ntohs(s->rk.type) == LDNS_RR_TYPE_CNAME) {
1284 			/* not the right answer, maybe too low, check the
1285 			 * RRSIG signer name (if there is any) for a hint
1286 			 * that it is from the dp zone anyway */
1287 			uint8_t* sname;
1288 			size_t slen;
1289 			val_find_rrset_signer(s, &sname, &slen);
1290 			if(sname && query_dname_compare(dp->name, sname)==0)
1291 				return 0; /* it is fine, from the right dp */
1292 			return 1;
1293 		}
1294 		if(ntohs(s->rk.type) == LDNS_RR_TYPE_DS)
1295 			return 0; /* fine, we have a DS record */
1296 	}
1297 	for(i=msg->rep->an_numrrsets;
1298 		i < msg->rep->an_numrrsets + msg->rep->ns_numrrsets; i++) {
1299 		struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
1300 		if(ntohs(s->rk.type) == LDNS_RR_TYPE_SOA) {
1301 			if(dname_subdomain_c(s->rk.dname, msg->qinfo.qname))
1302 				return 1; /* point is too low */
1303 			if(query_dname_compare(s->rk.dname, dp->name)==0)
1304 				return 0; /* right dp */
1305 		}
1306 		if(ntohs(s->rk.type) == LDNS_RR_TYPE_NSEC ||
1307 			ntohs(s->rk.type) == LDNS_RR_TYPE_NSEC3) {
1308 			uint8_t* sname;
1309 			size_t slen;
1310 			val_find_rrset_signer(s, &sname, &slen);
1311 			if(sname && query_dname_compare(dp->name, sname)==0)
1312 				return 0; /* it is fine, from the right dp */
1313 			return 1;
1314 		}
1315 	}
1316 	/* we do not know */
1317 	return 1;
1318 }
1319 
1320 int iter_dp_cangodown(struct query_info* qinfo, struct delegpt* dp)
1321 {
1322 	/* no delegation point, do not see how we can go down,
1323 	 * robust check, it should really exist */
1324 	if(!dp) return 0;
1325 
1326 	/* see if dp equals the qname, then we cannot go down further */
1327 	if(query_dname_compare(qinfo->qname, dp->name) == 0)
1328 		return 0;
1329 	/* if dp is one label above the name we also cannot go down further */
1330 	if(dname_count_labels(qinfo->qname) == dp->namelabs+1)
1331 		return 0;
1332 	return 1;
1333 }
1334 
1335 int
1336 iter_stub_fwd_no_cache(struct module_qstate *qstate, struct query_info *qinf)
1337 {
1338 	struct iter_hints_stub *stub;
1339 	struct delegpt *dp;
1340 
1341 	/* Check for stub. */
1342 	stub = hints_lookup_stub(qstate->env->hints, qinf->qname,
1343 	    qinf->qclass, NULL);
1344 	dp = forwards_lookup(qstate->env->fwds, qinf->qname, qinf->qclass);
1345 
1346 	/* see if forward or stub is more pertinent */
1347 	if(stub && stub->dp && dp) {
1348 		if(dname_strict_subdomain(dp->name, dp->namelabs,
1349 			stub->dp->name, stub->dp->namelabs)) {
1350 			stub = NULL; /* ignore stub, forward is lower */
1351 		} else {
1352 			dp = NULL; /* ignore forward, stub is lower */
1353 		}
1354 	}
1355 
1356 	/* check stub */
1357 	if (stub != NULL && stub->dp != NULL) {
1358 		if(stub->dp->no_cache) {
1359 			char qname[255+1];
1360 			char dpname[255+1];
1361 			dname_str(qinf->qname, qname);
1362 			dname_str(stub->dp->name, dpname);
1363 			verbose(VERB_ALGO, "stub for %s %s has no_cache", qname, dpname);
1364 		}
1365 		return (stub->dp->no_cache);
1366 	}
1367 
1368 	/* Check for forward. */
1369 	if (dp) {
1370 		if(dp->no_cache) {
1371 			char qname[255+1];
1372 			char dpname[255+1];
1373 			dname_str(qinf->qname, qname);
1374 			dname_str(dp->name, dpname);
1375 			verbose(VERB_ALGO, "forward for %s %s has no_cache", qname, dpname);
1376 		}
1377 		return (dp->no_cache);
1378 	}
1379 	return 0;
1380 }
1381