1 /* 2 * Copyright (c) 1990, 1991, 1993, 1994, 1995, 1996, 1997 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that: (1) source code distributions 7 * retain the above copyright notice and this paragraph in its entirety, (2) 8 * distributions including binary code include the above copyright notice and 9 * this paragraph in its entirety in the documentation or other materials 10 * provided with the distribution, and (3) all advertising materials mentioning 11 * features or use of this software display the following acknowledgement: 12 * ``This product includes software developed by the University of California, 13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of 14 * the University nor the names of its contributors may be used to endorse 15 * or promote products derived from this software without specific prior 16 * written permission. 17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED 18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF 19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. 20 */ 21 22 /* 23 * txtproto_print() derived from original code by Hannes Gredler 24 * (hannes@gredler.at): 25 * 26 * Redistribution and use in source and binary forms, with or without 27 * modification, are permitted provided that: (1) source code 28 * distributions retain the above copyright notice and this paragraph 29 * in its entirety, and (2) distributions including binary code include 30 * the above copyright notice and this paragraph in its entirety in 31 * the documentation or other materials provided with the distribution. 32 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND 33 * WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT 34 * LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 35 * FOR A PARTICULAR PURPOSE. 36 */ 37 38 #include <config.h> 39 40 #include "netdissect-stdinc.h" 41 42 #include <sys/stat.h> 43 44 #include <stdio.h> 45 #include <stdarg.h> 46 #include <stdlib.h> 47 #include <string.h> 48 49 #include "netdissect-ctype.h" 50 51 #include "netdissect.h" 52 #include "extract.h" 53 #include "ascii_strcasecmp.h" 54 #include "timeval-operations.h" 55 56 #define TOKBUFSIZE 128 57 58 enum date_flag { WITHOUT_DATE = 0, WITH_DATE = 1 }; 59 enum time_flag { UTC_TIME = 0, LOCAL_TIME = 1 }; 60 61 /* 62 * Print out a character, filtering out the non-printable ones 63 */ 64 void 65 fn_print_char(netdissect_options *ndo, u_char c) 66 { 67 if (!ND_ISASCII(c)) { 68 c = ND_TOASCII(c); 69 ND_PRINT("M-"); 70 } 71 if (!ND_ASCII_ISPRINT(c)) { 72 c ^= 0x40; /* DEL to ?, others to alpha */ 73 ND_PRINT("^"); 74 } 75 ND_PRINT("%c", c); 76 } 77 78 /* 79 * Print a null-terminated string, filtering out non-printable characters. 80 * DON'T USE IT with a pointer on the packet buffer because there is no 81 * truncation check. For this use, see the nd_printX() functions below. 82 */ 83 void 84 fn_print_str(netdissect_options *ndo, const u_char *s) 85 { 86 while (*s != '\0') { 87 fn_print_char(ndo, *s); 88 s++; 89 } 90 } 91 92 /* 93 * Print out a null-terminated filename (or other ASCII string) from 94 * a fixed-length field in the packet buffer, or from what remains of 95 * the packet. 96 * 97 * n is the length of the fixed-length field, or the number of bytes 98 * remaining in the packet based on its on-the-network length. 99 * 100 * If ep is non-null, it should point just past the last captured byte 101 * of the packet, e.g. ndo->ndo_snapend. If ep is NULL, we assume no 102 * truncation check, other than the checks of the field length/remaining 103 * packet data length, is needed. 104 * 105 * Return the number of bytes of string processed, including the 106 * terminating null, if not truncated; as the terminating null is 107 * included in the count, and as there must be a terminating null, 108 * this will always be non-zero. Return 0 if truncated. 109 */ 110 u_int 111 nd_printztn(netdissect_options *ndo, 112 const u_char *s, u_int n, const u_char *ep) 113 { 114 u_int bytes; 115 u_char c; 116 117 bytes = 0; 118 for (;;) { 119 if (n == 0 || (ep != NULL && s >= ep)) { 120 /* 121 * Truncated. This includes "no null before we 122 * got to the end of the fixed-length buffer or 123 * the end of the packet". 124 * 125 * XXX - BOOTP says "null-terminated", which 126 * means the maximum length of the string, in 127 * bytes, is 1 less than the size of the buffer, 128 * as there must always be a terminating null. 129 */ 130 bytes = 0; 131 break; 132 } 133 134 c = GET_U_1(s); 135 s++; 136 bytes++; 137 n--; 138 if (c == '\0') { 139 /* End of string */ 140 break; 141 } 142 fn_print_char(ndo, c); 143 } 144 return(bytes); 145 } 146 147 /* 148 * Print out a counted filename (or other ASCII string), part of 149 * the packet buffer. 150 * If ep is NULL, assume no truncation check is needed. 151 * Return true if truncated. 152 * Stop at ep (if given) or after n bytes, whichever is first. 153 */ 154 int 155 nd_printn(netdissect_options *ndo, 156 const u_char *s, u_int n, const u_char *ep) 157 { 158 u_char c; 159 160 while (n > 0 && (ep == NULL || s < ep)) { 161 n--; 162 c = GET_U_1(s); 163 s++; 164 fn_print_char(ndo, c); 165 } 166 return (n == 0) ? 0 : 1; 167 } 168 169 /* 170 * Print a counted filename (or other ASCII string), part of 171 * the packet buffer, filtering out non-printable characters. 172 * Stop if truncated (via GET_U_1/longjmp) or after n bytes, 173 * whichever is first. 174 * The suffix comes from: j:longJmp, n:after N bytes. 175 */ 176 void 177 nd_printjn(netdissect_options *ndo, const u_char *s, u_int n) 178 { 179 while (n > 0) { 180 fn_print_char(ndo, GET_U_1(s)); 181 n--; 182 s++; 183 } 184 } 185 186 /* 187 * Print a null-padded filename (or other ASCII string), part of 188 * the packet buffer, filtering out non-printable characters. 189 * Stop if truncated (via GET_U_1/longjmp) or after n bytes or before 190 * the null char, whichever occurs first. 191 * The suffix comes from: j:longJmp, n:after N bytes, p:null-Padded. 192 */ 193 void 194 nd_printjnp(netdissect_options *ndo, const u_char *s, u_int n) 195 { 196 u_char c; 197 198 while (n > 0) { 199 c = GET_U_1(s); 200 if (c == '\0') 201 break; 202 fn_print_char(ndo, c); 203 n--; 204 s++; 205 } 206 } 207 208 /* 209 * Print the timestamp .FRAC part (Microseconds/nanoseconds) 210 */ 211 static void 212 ts_frac_print(netdissect_options *ndo, const struct timeval *tv) 213 { 214 #ifdef HAVE_PCAP_SET_TSTAMP_PRECISION 215 switch (ndo->ndo_tstamp_precision) { 216 217 case PCAP_TSTAMP_PRECISION_MICRO: 218 ND_PRINT(".%06u", (unsigned)tv->tv_usec); 219 break; 220 221 case PCAP_TSTAMP_PRECISION_NANO: 222 ND_PRINT(".%09u", (unsigned)tv->tv_usec); 223 break; 224 225 default: 226 ND_PRINT(".{unknown}"); 227 break; 228 } 229 #else 230 ND_PRINT(".%06u", (unsigned)tv->tv_usec); 231 #endif 232 } 233 234 /* 235 * Print the timestamp as [YY:MM:DD] HH:MM:SS.FRAC. 236 * if time_flag == LOCAL_TIME print local time else UTC/GMT time 237 * if date_flag == WITH_DATE print YY:MM:DD before HH:MM:SS.FRAC 238 */ 239 static void 240 ts_date_hmsfrac_print(netdissect_options *ndo, const struct timeval *tv, 241 enum date_flag date_flag, enum time_flag time_flag) 242 { 243 struct tm *tm; 244 char timebuf[32]; 245 const char *timestr; 246 247 if (tv->tv_sec < 0) { 248 ND_PRINT("[timestamp < 1970-01-01 00:00:00 UTC]"); 249 return; 250 } 251 252 if (time_flag == LOCAL_TIME) 253 tm = localtime(&tv->tv_sec); 254 else 255 tm = gmtime(&tv->tv_sec); 256 257 if (date_flag == WITH_DATE) { 258 timestr = nd_format_time(timebuf, sizeof(timebuf), 259 "%Y-%m-%d %H:%M:%S", tm); 260 } else { 261 timestr = nd_format_time(timebuf, sizeof(timebuf), 262 "%H:%M:%S", tm); 263 } 264 ND_PRINT("%s", timestr); 265 266 ts_frac_print(ndo, tv); 267 } 268 269 /* 270 * Print the timestamp - Unix timeval style, as SECS.FRAC. 271 */ 272 static void 273 ts_unix_print(netdissect_options *ndo, const struct timeval *tv) 274 { 275 if (tv->tv_sec < 0) { 276 ND_PRINT("[timestamp < 1970-01-01 00:00:00 UTC]"); 277 return; 278 } 279 280 ND_PRINT("%u", (unsigned)tv->tv_sec); 281 ts_frac_print(ndo, tv); 282 } 283 284 /* 285 * Print the timestamp 286 */ 287 void 288 ts_print(netdissect_options *ndo, 289 const struct timeval *tvp) 290 { 291 static struct timeval tv_ref; 292 struct timeval tv_result; 293 int negative_offset; 294 int nano_prec; 295 296 switch (ndo->ndo_tflag) { 297 298 case 0: /* Default */ 299 ts_date_hmsfrac_print(ndo, tvp, WITHOUT_DATE, LOCAL_TIME); 300 ND_PRINT(" "); 301 break; 302 303 case 1: /* No time stamp */ 304 break; 305 306 case 2: /* Unix timeval style */ 307 ts_unix_print(ndo, tvp); 308 ND_PRINT(" "); 309 break; 310 311 case 3: /* Microseconds/nanoseconds since previous packet */ 312 case 5: /* Microseconds/nanoseconds since first packet */ 313 #ifdef HAVE_PCAP_SET_TSTAMP_PRECISION 314 switch (ndo->ndo_tstamp_precision) { 315 case PCAP_TSTAMP_PRECISION_MICRO: 316 nano_prec = 0; 317 break; 318 case PCAP_TSTAMP_PRECISION_NANO: 319 nano_prec = 1; 320 break; 321 default: 322 nano_prec = 0; 323 break; 324 } 325 #else 326 nano_prec = 0; 327 #endif 328 if (!(netdissect_timevalisset(&tv_ref))) 329 tv_ref = *tvp; /* set timestamp for first packet */ 330 331 negative_offset = netdissect_timevalcmp(tvp, &tv_ref, <); 332 if (negative_offset) 333 netdissect_timevalsub(&tv_ref, tvp, &tv_result, nano_prec); 334 else 335 netdissect_timevalsub(tvp, &tv_ref, &tv_result, nano_prec); 336 337 ND_PRINT((negative_offset ? "-" : " ")); 338 ts_date_hmsfrac_print(ndo, &tv_result, WITHOUT_DATE, UTC_TIME); 339 ND_PRINT(" "); 340 341 if (ndo->ndo_tflag == 3) 342 tv_ref = *tvp; /* set timestamp for previous packet */ 343 break; 344 345 case 4: /* Date + Default */ 346 ts_date_hmsfrac_print(ndo, tvp, WITH_DATE, LOCAL_TIME); 347 ND_PRINT(" "); 348 break; 349 } 350 } 351 352 /* 353 * Print an unsigned relative number of seconds (e.g. hold time, prune timer) 354 * in the form 5m1s. This does no truncation, so 32230861 seconds 355 * is represented as 1y1w1d1h1m1s. 356 */ 357 void 358 unsigned_relts_print(netdissect_options *ndo, 359 uint32_t secs) 360 { 361 static const char *lengths[] = {"y", "w", "d", "h", "m", "s"}; 362 static const u_int seconds[] = {31536000, 604800, 86400, 3600, 60, 1}; 363 const char **l = lengths; 364 const u_int *s = seconds; 365 366 if (secs == 0) { 367 ND_PRINT("0s"); 368 return; 369 } 370 while (secs > 0) { 371 if (secs >= *s) { 372 ND_PRINT("%u%s", secs / *s, *l); 373 secs -= (secs / *s) * *s; 374 } 375 s++; 376 l++; 377 } 378 } 379 380 /* 381 * Print a signed relative number of seconds (e.g. hold time, prune timer) 382 * in the form 5m1s. This does no truncation, so 32230861 seconds 383 * is represented as 1y1w1d1h1m1s. 384 */ 385 void 386 signed_relts_print(netdissect_options *ndo, 387 int32_t secs) 388 { 389 if (secs < 0) { 390 ND_PRINT("-"); 391 if (secs == INT32_MIN) { 392 /* 393 * -2^31; you can't fit its absolute value into 394 * a 32-bit signed integer. 395 * 396 * Just directly pass said absolute value to 397 * unsigned_relts_print() directly. 398 * 399 * (XXX - does ISO C guarantee that -(-2^n), 400 * when calculated and cast to an n-bit unsigned 401 * integer type, will have the value 2^n?) 402 */ 403 unsigned_relts_print(ndo, 2147483648U); 404 } else { 405 /* 406 * We now know -secs will fit into an int32_t; 407 * negate it and pass that to unsigned_relts_print(). 408 */ 409 unsigned_relts_print(ndo, -secs); 410 } 411 return; 412 } 413 unsigned_relts_print(ndo, secs); 414 } 415 416 /* 417 * Format a struct tm with strftime(). 418 * If the pointer to the struct tm is null, that means that the 419 * routine to convert a time_t to a struct tm failed; the localtime() 420 * and gmtime() in the Microsoft Visual Studio C library will fail, 421 * returning null, if the value is before the UNIX Epoch. 422 */ 423 const char * 424 nd_format_time(char *buf, size_t bufsize, const char *format, 425 const struct tm *timeptr) 426 { 427 if (timeptr != NULL) { 428 if (strftime(buf, bufsize, format, timeptr) != 0) 429 return (buf); 430 else 431 return ("[nd_format_time() buffer is too small]"); 432 } else 433 return ("[localtime() or gmtime() couldn't convert the date and time]"); 434 } 435 436 /* Print the truncated string */ 437 void nd_print_trunc(netdissect_options *ndo) 438 { 439 ND_PRINT(" [|%s]", ndo->ndo_protocol); 440 } 441 442 /* Print the protocol name */ 443 void nd_print_protocol(netdissect_options *ndo) 444 { 445 ND_PRINT("%s", ndo->ndo_protocol); 446 } 447 448 /* Print the protocol name in caps (uppercases) */ 449 void nd_print_protocol_caps(netdissect_options *ndo) 450 { 451 const char *p; 452 for (p = ndo->ndo_protocol; *p != '\0'; p++) 453 ND_PRINT("%c", ND_ASCII_TOUPPER(*p)); 454 } 455 456 /* Print the invalid string */ 457 void nd_print_invalid(netdissect_options *ndo) 458 { 459 ND_PRINT(" (invalid)"); 460 } 461 462 /* 463 * this is a generic routine for printing unknown data; 464 * we pass on the linefeed plus indentation string to 465 * get a proper output - returns 0 on error 466 */ 467 468 int 469 print_unknown_data(netdissect_options *ndo, const u_char *cp, 470 const char *ident, u_int len) 471 { 472 u_int len_to_print; 473 474 len_to_print = len; 475 if (!ND_TTEST_LEN(cp, 0)) { 476 ND_PRINT("%sDissector error: print_unknown_data called with pointer past end of packet", 477 ident); 478 return(0); 479 } 480 if (ND_BYTES_AVAILABLE_AFTER(cp) < len_to_print) 481 len_to_print = ND_BYTES_AVAILABLE_AFTER(cp); 482 hex_print(ndo, ident, cp, len_to_print); 483 return(1); /* everything is ok */ 484 } 485 486 /* 487 * Convert a token value to a string; use "fmt" if not found. 488 */ 489 static const char * 490 tok2strbuf(const struct tok *lp, const char *fmt, 491 u_int v, char *buf, size_t bufsize) 492 { 493 if (lp != NULL) { 494 while (lp->s != NULL) { 495 if (lp->v == v) 496 return (lp->s); 497 ++lp; 498 } 499 } 500 if (fmt == NULL) 501 fmt = "#%d"; 502 503 (void)snprintf(buf, bufsize, fmt, v); 504 return (const char *)buf; 505 } 506 507 /* 508 * Convert a token value to a string; use "fmt" if not found. 509 * Uses tok2strbuf() on one of four local static buffers of size TOKBUFSIZE 510 * in round-robin fashion. 511 */ 512 const char * 513 tok2str(const struct tok *lp, const char *fmt, 514 u_int v) 515 { 516 static char buf[4][TOKBUFSIZE]; 517 static int idx = 0; 518 char *ret; 519 520 ret = buf[idx]; 521 idx = (idx+1) & 3; 522 return tok2strbuf(lp, fmt, v, ret, sizeof(buf[0])); 523 } 524 525 /* 526 * Convert a bit token value to a string; use "fmt" if not found. 527 * this is useful for parsing bitfields, the output strings are separated 528 * if the s field is positive. 529 * 530 * A token matches iff it has one or more bits set and every bit that is set 531 * in the token is set in v. Consequently, a 0 token never matches. 532 */ 533 static char * 534 bittok2str_internal(const struct tok *lp, const char *fmt, 535 u_int v, const char *sep) 536 { 537 static char buf[1024+1]; /* our string buffer */ 538 char *bufp = buf; 539 size_t space_left = sizeof(buf), string_size; 540 const char * sepstr = ""; 541 542 while (lp != NULL && lp->s != NULL) { 543 if (lp->v && (v & lp->v) == lp->v) { 544 /* ok we have found something */ 545 if (space_left <= 1) 546 return (buf); /* only enough room left for NUL, if that */ 547 string_size = strlcpy(bufp, sepstr, space_left); 548 if (string_size >= space_left) 549 return (buf); /* we ran out of room */ 550 bufp += string_size; 551 space_left -= string_size; 552 if (space_left <= 1) 553 return (buf); /* only enough room left for NUL, if that */ 554 string_size = strlcpy(bufp, lp->s, space_left); 555 if (string_size >= space_left) 556 return (buf); /* we ran out of room */ 557 bufp += string_size; 558 space_left -= string_size; 559 sepstr = sep; 560 } 561 lp++; 562 } 563 564 if (bufp == buf) 565 /* bummer - lets print the "unknown" message as advised in the fmt string if we got one */ 566 (void)snprintf(buf, sizeof(buf), fmt == NULL ? "#%08x" : fmt, v); 567 return (buf); 568 } 569 570 /* 571 * Convert a bit token value to a string; use "fmt" if not found. 572 * this is useful for parsing bitfields, the output strings are not separated. 573 */ 574 char * 575 bittok2str_nosep(const struct tok *lp, const char *fmt, 576 u_int v) 577 { 578 return (bittok2str_internal(lp, fmt, v, "")); 579 } 580 581 /* 582 * Convert a bit token value to a string; use "fmt" if not found. 583 * this is useful for parsing bitfields, the output strings are comma separated. 584 */ 585 char * 586 bittok2str(const struct tok *lp, const char *fmt, 587 u_int v) 588 { 589 return (bittok2str_internal(lp, fmt, v, ", ")); 590 } 591 592 /* 593 * Convert a value to a string using an array; the macro 594 * tok2strary() in <netdissect.h> is the public interface to 595 * this function and ensures that the second argument is 596 * correct for bounds-checking. 597 */ 598 const char * 599 tok2strary_internal(const char **lp, int n, const char *fmt, 600 int v) 601 { 602 static char buf[TOKBUFSIZE]; 603 604 if (v >= 0 && v < n && lp[v] != NULL) 605 return lp[v]; 606 if (fmt == NULL) 607 fmt = "#%d"; 608 (void)snprintf(buf, sizeof(buf), fmt, v); 609 return (buf); 610 } 611 612 const struct tok * 613 uint2tokary_internal(const struct uint_tokary dict[], const size_t size, 614 const u_int val) 615 { 616 size_t i; 617 /* Try a direct lookup before the full scan. */ 618 if (val < size && dict[val].uintval == val) 619 return dict[val].tokary; /* OK if NULL */ 620 for (i = 0; i < size; i++) 621 if (dict[i].uintval == val) 622 return dict[i].tokary; /* OK if NULL */ 623 return NULL; 624 } 625 626 /* 627 * Convert a 32-bit netmask to prefixlen if possible 628 * the function returns the prefix-len; if plen == -1 629 * then conversion was not possible; 630 */ 631 632 int 633 mask2plen(uint32_t mask) 634 { 635 const uint32_t bitmasks[33] = { 636 0x00000000, 637 0x80000000, 0xc0000000, 0xe0000000, 0xf0000000, 638 0xf8000000, 0xfc000000, 0xfe000000, 0xff000000, 639 0xff800000, 0xffc00000, 0xffe00000, 0xfff00000, 640 0xfff80000, 0xfffc0000, 0xfffe0000, 0xffff0000, 641 0xffff8000, 0xffffc000, 0xffffe000, 0xfffff000, 642 0xfffff800, 0xfffffc00, 0xfffffe00, 0xffffff00, 643 0xffffff80, 0xffffffc0, 0xffffffe0, 0xfffffff0, 644 0xfffffff8, 0xfffffffc, 0xfffffffe, 0xffffffff 645 }; 646 int prefix_len = 32; 647 648 /* let's see if we can transform the mask into a prefixlen */ 649 while (prefix_len >= 0) { 650 if (bitmasks[prefix_len] == mask) 651 break; 652 prefix_len--; 653 } 654 return (prefix_len); 655 } 656 657 int 658 mask62plen(const u_char *mask) 659 { 660 u_char bitmasks[9] = { 661 0x00, 662 0x80, 0xc0, 0xe0, 0xf0, 663 0xf8, 0xfc, 0xfe, 0xff 664 }; 665 int byte; 666 int cidr_len = 0; 667 668 for (byte = 0; byte < 16; byte++) { 669 u_int bits; 670 671 for (bits = 0; bits < (sizeof (bitmasks) / sizeof (bitmasks[0])); bits++) { 672 if (mask[byte] == bitmasks[bits]) { 673 cidr_len += bits; 674 break; 675 } 676 } 677 678 if (mask[byte] != 0xff) 679 break; 680 } 681 return (cidr_len); 682 } 683 684 /* 685 * Routine to print out information for text-based protocols such as FTP, 686 * HTTP, SMTP, RTSP, SIP, .... 687 */ 688 #define MAX_TOKEN 128 689 690 /* 691 * Fetch a token from a packet, starting at the specified index, 692 * and return the length of the token. 693 * 694 * Returns 0 on error; yes, this is indistinguishable from an empty 695 * token, but an "empty token" isn't a valid token - it just means 696 * either a space character at the beginning of the line (this 697 * includes a blank line) or no more tokens remaining on the line. 698 */ 699 static int 700 fetch_token(netdissect_options *ndo, const u_char *pptr, u_int idx, u_int len, 701 u_char *tbuf, size_t tbuflen) 702 { 703 size_t toklen = 0; 704 u_char c; 705 706 for (; idx < len; idx++) { 707 if (!ND_TTEST_1(pptr + idx)) { 708 /* ran past end of captured data */ 709 return (0); 710 } 711 c = GET_U_1(pptr + idx); 712 if (!ND_ISASCII(c)) { 713 /* not an ASCII character */ 714 return (0); 715 } 716 if (c == ' ' || c == '\t' || c == '\r' || c == '\n') { 717 /* end of token */ 718 break; 719 } 720 if (!ND_ASCII_ISPRINT(c)) { 721 /* not part of a command token or response code */ 722 return (0); 723 } 724 if (toklen + 2 > tbuflen) { 725 /* no room for this character and terminating '\0' */ 726 return (0); 727 } 728 tbuf[toklen] = c; 729 toklen++; 730 } 731 if (toklen == 0) { 732 /* no token */ 733 return (0); 734 } 735 tbuf[toklen] = '\0'; 736 737 /* 738 * Skip past any white space after the token, until we see 739 * an end-of-line (CR or LF). 740 */ 741 for (; idx < len; idx++) { 742 if (!ND_TTEST_1(pptr + idx)) { 743 /* ran past end of captured data */ 744 break; 745 } 746 c = GET_U_1(pptr + idx); 747 if (c == '\r' || c == '\n') { 748 /* end of line */ 749 break; 750 } 751 if (!ND_ASCII_ISPRINT(c)) { 752 /* not a printable ASCII character */ 753 break; 754 } 755 if (c != ' ' && c != '\t' && c != '\r' && c != '\n') { 756 /* beginning of next token */ 757 break; 758 } 759 } 760 return (idx); 761 } 762 763 /* 764 * Scan a buffer looking for a line ending - LF or CR-LF. 765 * Return the index of the character after the line ending or 0 if 766 * we encounter a non-ASCII or non-printable character or don't find 767 * the line ending. 768 */ 769 static u_int 770 print_txt_line(netdissect_options *ndo, const char *prefix, 771 const u_char *pptr, u_int idx, u_int len) 772 { 773 u_int startidx; 774 u_int linelen; 775 u_char c; 776 777 startidx = idx; 778 while (idx < len) { 779 c = GET_U_1(pptr + idx); 780 if (c == '\n') { 781 /* 782 * LF without CR; end of line. 783 * Skip the LF and print the line, with the 784 * exception of the LF. 785 */ 786 linelen = idx - startidx; 787 idx++; 788 goto print; 789 } else if (c == '\r') { 790 /* CR - any LF? */ 791 if ((idx+1) >= len) { 792 /* not in this packet */ 793 return (0); 794 } 795 if (GET_U_1(pptr + idx + 1) == '\n') { 796 /* 797 * CR-LF; end of line. 798 * Skip the CR-LF and print the line, with 799 * the exception of the CR-LF. 800 */ 801 linelen = idx - startidx; 802 idx += 2; 803 goto print; 804 } 805 806 /* 807 * CR followed by something else; treat this 808 * as if it were binary data, and don't print 809 * it. 810 */ 811 return (0); 812 } else if (!ND_ASCII_ISPRINT(c) && c != '\t') { 813 /* 814 * Not a printable ASCII character and not a tab; 815 * treat this as if it were binary data, and 816 * don't print it. 817 */ 818 return (0); 819 } 820 idx++; 821 } 822 823 /* 824 * All printable ASCII, but no line ending after that point 825 * in the buffer. 826 */ 827 linelen = idx - startidx; 828 ND_PRINT("%s%.*s", prefix, (int)linelen, pptr + startidx); 829 return (0); 830 831 print: 832 ND_PRINT("%s%.*s", prefix, (int)linelen, pptr + startidx); 833 return (idx); 834 } 835 836 /* Assign needed before calling txtproto_print(): ndo->ndo_protocol = "proto" */ 837 void 838 txtproto_print(netdissect_options *ndo, const u_char *pptr, u_int len, 839 const char **cmds, u_int flags) 840 { 841 u_int idx, eol; 842 u_char token[MAX_TOKEN+1]; 843 const char *cmd; 844 int print_this = 0; 845 846 if (cmds != NULL) { 847 /* 848 * This protocol has more than just request and 849 * response lines; see whether this looks like a 850 * request or response and, if so, print it and, 851 * in verbose mode, print everything after it. 852 * 853 * This is for HTTP-like protocols, where we 854 * want to print requests and responses, but 855 * don't want to print continuations of request 856 * or response bodies in packets that don't 857 * contain the request or response line. 858 */ 859 idx = fetch_token(ndo, pptr, 0, len, token, sizeof(token)); 860 if (idx != 0) { 861 /* Is this a valid request name? */ 862 while ((cmd = *cmds++) != NULL) { 863 if (ascii_strcasecmp((const char *)token, cmd) == 0) { 864 /* Yes. */ 865 print_this = 1; 866 break; 867 } 868 } 869 870 /* 871 * No - is this a valid response code (3 digits)? 872 * 873 * Is this token the response code, or is the next 874 * token the response code? 875 */ 876 if (flags & RESP_CODE_SECOND_TOKEN) { 877 /* 878 * Next token - get it. 879 */ 880 idx = fetch_token(ndo, pptr, idx, len, token, 881 sizeof(token)); 882 } 883 if (idx != 0) { 884 if (ND_ASCII_ISDIGIT(token[0]) && ND_ASCII_ISDIGIT(token[1]) && 885 ND_ASCII_ISDIGIT(token[2]) && token[3] == '\0') { 886 /* Yes. */ 887 print_this = 1; 888 } 889 } 890 } 891 } else { 892 /* 893 * Either: 894 * 895 * 1) This protocol has only request and response lines 896 * (e.g., FTP, where all the data goes over a different 897 * connection); assume the payload is a request or 898 * response. 899 * 900 * or 901 * 902 * 2) This protocol is just text, so that we should 903 * always, at minimum, print the first line and, 904 * in verbose mode, print all lines. 905 */ 906 print_this = 1; 907 } 908 909 nd_print_protocol_caps(ndo); 910 911 if (print_this) { 912 /* 913 * In non-verbose mode, just print the protocol, followed 914 * by the first line. 915 * 916 * In verbose mode, print lines as text until we run out 917 * of characters or see something that's not a 918 * printable-ASCII line. 919 */ 920 if (ndo->ndo_vflag) { 921 /* 922 * We're going to print all the text lines in the 923 * request or response; just print the length 924 * on the first line of the output. 925 */ 926 ND_PRINT(", length: %u", len); 927 for (idx = 0; 928 idx < len && (eol = print_txt_line(ndo, "\n\t", pptr, idx, len)) != 0; 929 idx = eol) 930 ; 931 } else { 932 /* 933 * Just print the first text line. 934 */ 935 print_txt_line(ndo, ": ", pptr, 0, len); 936 } 937 } 938 } 939 940 #if (defined(__i386__) || defined(_M_IX86) || defined(__X86__) || defined(__x86_64__) || defined(_M_X64)) || \ 941 (defined(__arm__) || defined(_M_ARM) || defined(__aarch64__)) || \ 942 (defined(__m68k__) && (!defined(__mc68000__) && !defined(__mc68010__))) || \ 943 (defined(__ppc__) || defined(__ppc64__) || defined(_M_PPC) || defined(_ARCH_PPC) || defined(_ARCH_PPC64)) || \ 944 (defined(__s390__) || defined(__s390x__) || defined(__zarch__)) || \ 945 defined(__vax__) 946 /* 947 * The processor natively handles unaligned loads, so just use memcpy() 948 * and memcmp(), to enable those optimizations. 949 * 950 * XXX - are those all the x86 tests we need? 951 * XXX - do we need to worry about ARMv1 through ARMv5, which didn't 952 * support unaligned loads, and, if so, do we need to worry about all 953 * of them, or just some of them, e.g. ARMv5? 954 * XXX - are those the only 68k tests we need not to generated 955 * unaligned accesses if the target is the 68000 or 68010? 956 * XXX - are there any tests we don't need, because some definitions are for 957 * compilers that also predefine the GCC symbols? 958 * XXX - do we need to test for both 32-bit and 64-bit versions of those 959 * architectures in all cases? 960 */ 961 #else 962 /* 963 * The processor doesn't natively handle unaligned loads, 964 * and the compiler might "helpfully" optimize memcpy() 965 * and memcmp(), when handed pointers that would normally 966 * be properly aligned, into sequences that assume proper 967 * alignment. 968 * 969 * Do copies and compares of possibly-unaligned data by 970 * calling routines that wrap memcpy() and memcmp(), to 971 * prevent that optimization. 972 */ 973 void 974 unaligned_memcpy(void *p, const void *q, size_t l) 975 { 976 memcpy(p, q, l); 977 } 978 979 /* As with memcpy(), so with memcmp(). */ 980 int 981 unaligned_memcmp(const void *p, const void *q, size_t l) 982 { 983 return (memcmp(p, q, l)); 984 } 985 #endif 986 987