xref: /freebsd/contrib/sqlite3/sqlite3.c (revision 0677dfd1c4dadb62482e2c72fa4c6720902128a4)
1 /******************************************************************************
2 ** This file is an amalgamation of many separate C source files from SQLite
3 ** version 3.8.5.  By combining all the individual C code files into this
4 ** single large file, the entire code can be compiled as a single translation
5 ** unit.  This allows many compilers to do optimizations that would not be
6 ** possible if the files were compiled separately.  Performance improvements
7 ** of 5% or more are commonly seen when SQLite is compiled as a single
8 ** translation unit.
9 **
10 ** This file is all you need to compile SQLite.  To use SQLite in other
11 ** programs, you need this file and the "sqlite3.h" header file that defines
12 ** the programming interface to the SQLite library.  (If you do not have
13 ** the "sqlite3.h" header file at hand, you will find a copy embedded within
14 ** the text of this file.  Search for "Begin file sqlite3.h" to find the start
15 ** of the embedded sqlite3.h header file.) Additional code files may be needed
16 ** if you want a wrapper to interface SQLite with your choice of programming
17 ** language. The code for the "sqlite3" command-line shell is also in a
18 ** separate file. This file contains only code for the core SQLite library.
19 */
20 #define SQLITE_CORE 1
21 #define SQLITE_AMALGAMATION 1
22 #ifndef SQLITE_PRIVATE
23 # define SQLITE_PRIVATE static
24 #endif
25 #ifndef SQLITE_API
26 # define SQLITE_API
27 #endif
28 /************** Begin file sqliteInt.h ***************************************/
29 /*
30 ** 2001 September 15
31 **
32 ** The author disclaims copyright to this source code.  In place of
33 ** a legal notice, here is a blessing:
34 **
35 **    May you do good and not evil.
36 **    May you find forgiveness for yourself and forgive others.
37 **    May you share freely, never taking more than you give.
38 **
39 *************************************************************************
40 ** Internal interface definitions for SQLite.
41 **
42 */
43 #ifndef _SQLITEINT_H_
44 #define _SQLITEINT_H_
45 
46 /*
47 ** These #defines should enable >2GB file support on POSIX if the
48 ** underlying operating system supports it.  If the OS lacks
49 ** large file support, or if the OS is windows, these should be no-ops.
50 **
51 ** Ticket #2739:  The _LARGEFILE_SOURCE macro must appear before any
52 ** system #includes.  Hence, this block of code must be the very first
53 ** code in all source files.
54 **
55 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
56 ** on the compiler command line.  This is necessary if you are compiling
57 ** on a recent machine (ex: Red Hat 7.2) but you want your code to work
58 ** on an older machine (ex: Red Hat 6.0).  If you compile on Red Hat 7.2
59 ** without this option, LFS is enable.  But LFS does not exist in the kernel
60 ** in Red Hat 6.0, so the code won't work.  Hence, for maximum binary
61 ** portability you should omit LFS.
62 **
63 ** The previous paragraph was written in 2005.  (This paragraph is written
64 ** on 2008-11-28.) These days, all Linux kernels support large files, so
65 ** you should probably leave LFS enabled.  But some embedded platforms might
66 ** lack LFS in which case the SQLITE_DISABLE_LFS macro might still be useful.
67 **
68 ** Similar is true for Mac OS X.  LFS is only supported on Mac OS X 9 and later.
69 */
70 #ifndef SQLITE_DISABLE_LFS
71 # define _LARGE_FILE       1
72 # ifndef _FILE_OFFSET_BITS
73 #   define _FILE_OFFSET_BITS 64
74 # endif
75 # define _LARGEFILE_SOURCE 1
76 #endif
77 
78 /*
79 ** For MinGW, check to see if we can include the header file containing its
80 ** version information, among other things.  Normally, this internal MinGW
81 ** header file would [only] be included automatically by other MinGW header
82 ** files; however, the contained version information is now required by this
83 ** header file to work around binary compatibility issues (see below) and
84 ** this is the only known way to reliably obtain it.  This entire #if block
85 ** would be completely unnecessary if there was any other way of detecting
86 ** MinGW via their preprocessor (e.g. if they customized their GCC to define
87 ** some MinGW-specific macros).  When compiling for MinGW, either the
88 ** _HAVE_MINGW_H or _HAVE__MINGW_H (note the extra underscore) macro must be
89 ** defined; otherwise, detection of conditions specific to MinGW will be
90 ** disabled.
91 */
92 #if defined(_HAVE_MINGW_H)
93 # include "mingw.h"
94 #elif defined(_HAVE__MINGW_H)
95 # include "_mingw.h"
96 #endif
97 
98 /*
99 ** For MinGW version 4.x (and higher), check to see if the _USE_32BIT_TIME_T
100 ** define is required to maintain binary compatibility with the MSVC runtime
101 ** library in use (e.g. for Windows XP).
102 */
103 #if !defined(_USE_32BIT_TIME_T) && !defined(_USE_64BIT_TIME_T) && \
104     defined(_WIN32) && !defined(_WIN64) && \
105     defined(__MINGW_MAJOR_VERSION) && __MINGW_MAJOR_VERSION >= 4 && \
106     defined(__MSVCRT__)
107 # define _USE_32BIT_TIME_T
108 #endif
109 
110 /* The public SQLite interface.  The _FILE_OFFSET_BITS macro must appear
111 ** first in QNX.  Also, the _USE_32BIT_TIME_T macro must appear first for
112 ** MinGW.
113 */
114 /************** Include sqlite3.h in the middle of sqliteInt.h ***************/
115 /************** Begin file sqlite3.h *****************************************/
116 /*
117 ** 2001 September 15
118 **
119 ** The author disclaims copyright to this source code.  In place of
120 ** a legal notice, here is a blessing:
121 **
122 **    May you do good and not evil.
123 **    May you find forgiveness for yourself and forgive others.
124 **    May you share freely, never taking more than you give.
125 **
126 *************************************************************************
127 ** This header file defines the interface that the SQLite library
128 ** presents to client programs.  If a C-function, structure, datatype,
129 ** or constant definition does not appear in this file, then it is
130 ** not a published API of SQLite, is subject to change without
131 ** notice, and should not be referenced by programs that use SQLite.
132 **
133 ** Some of the definitions that are in this file are marked as
134 ** "experimental".  Experimental interfaces are normally new
135 ** features recently added to SQLite.  We do not anticipate changes
136 ** to experimental interfaces but reserve the right to make minor changes
137 ** if experience from use "in the wild" suggest such changes are prudent.
138 **
139 ** The official C-language API documentation for SQLite is derived
140 ** from comments in this file.  This file is the authoritative source
141 ** on how SQLite interfaces are suppose to operate.
142 **
143 ** The name of this file under configuration management is "sqlite.h.in".
144 ** The makefile makes some minor changes to this file (such as inserting
145 ** the version number) and changes its name to "sqlite3.h" as
146 ** part of the build process.
147 */
148 #ifndef _SQLITE3_H_
149 #define _SQLITE3_H_
150 #include <stdarg.h>     /* Needed for the definition of va_list */
151 
152 /*
153 ** Make sure we can call this stuff from C++.
154 */
155 #if 0
156 extern "C" {
157 #endif
158 
159 
160 /*
161 ** Add the ability to override 'extern'
162 */
163 #ifndef SQLITE_EXTERN
164 # define SQLITE_EXTERN extern
165 #endif
166 
167 #ifndef SQLITE_API
168 # define SQLITE_API
169 #endif
170 
171 
172 /*
173 ** These no-op macros are used in front of interfaces to mark those
174 ** interfaces as either deprecated or experimental.  New applications
175 ** should not use deprecated interfaces - they are support for backwards
176 ** compatibility only.  Application writers should be aware that
177 ** experimental interfaces are subject to change in point releases.
178 **
179 ** These macros used to resolve to various kinds of compiler magic that
180 ** would generate warning messages when they were used.  But that
181 ** compiler magic ended up generating such a flurry of bug reports
182 ** that we have taken it all out and gone back to using simple
183 ** noop macros.
184 */
185 #define SQLITE_DEPRECATED
186 #define SQLITE_EXPERIMENTAL
187 
188 /*
189 ** Ensure these symbols were not defined by some previous header file.
190 */
191 #ifdef SQLITE_VERSION
192 # undef SQLITE_VERSION
193 #endif
194 #ifdef SQLITE_VERSION_NUMBER
195 # undef SQLITE_VERSION_NUMBER
196 #endif
197 
198 /*
199 ** CAPI3REF: Compile-Time Library Version Numbers
200 **
201 ** ^(The [SQLITE_VERSION] C preprocessor macro in the sqlite3.h header
202 ** evaluates to a string literal that is the SQLite version in the
203 ** format "X.Y.Z" where X is the major version number (always 3 for
204 ** SQLite3) and Y is the minor version number and Z is the release number.)^
205 ** ^(The [SQLITE_VERSION_NUMBER] C preprocessor macro resolves to an integer
206 ** with the value (X*1000000 + Y*1000 + Z) where X, Y, and Z are the same
207 ** numbers used in [SQLITE_VERSION].)^
208 ** The SQLITE_VERSION_NUMBER for any given release of SQLite will also
209 ** be larger than the release from which it is derived.  Either Y will
210 ** be held constant and Z will be incremented or else Y will be incremented
211 ** and Z will be reset to zero.
212 **
213 ** Since version 3.6.18, SQLite source code has been stored in the
214 ** <a href="http://www.fossil-scm.org/">Fossil configuration management
215 ** system</a>.  ^The SQLITE_SOURCE_ID macro evaluates to
216 ** a string which identifies a particular check-in of SQLite
217 ** within its configuration management system.  ^The SQLITE_SOURCE_ID
218 ** string contains the date and time of the check-in (UTC) and an SHA1
219 ** hash of the entire source tree.
220 **
221 ** See also: [sqlite3_libversion()],
222 ** [sqlite3_libversion_number()], [sqlite3_sourceid()],
223 ** [sqlite_version()] and [sqlite_source_id()].
224 */
225 #define SQLITE_VERSION        "3.8.5"
226 #define SQLITE_VERSION_NUMBER 3008005
227 #define SQLITE_SOURCE_ID      "2014-06-04 14:06:34 b1ed4f2a34ba66c29b130f8d13e9092758019212"
228 
229 /*
230 ** CAPI3REF: Run-Time Library Version Numbers
231 ** KEYWORDS: sqlite3_version, sqlite3_sourceid
232 **
233 ** These interfaces provide the same information as the [SQLITE_VERSION],
234 ** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros
235 ** but are associated with the library instead of the header file.  ^(Cautious
236 ** programmers might include assert() statements in their application to
237 ** verify that values returned by these interfaces match the macros in
238 ** the header, and thus insure that the application is
239 ** compiled with matching library and header files.
240 **
241 ** <blockquote><pre>
242 ** assert( sqlite3_libversion_number()==SQLITE_VERSION_NUMBER );
243 ** assert( strcmp(sqlite3_sourceid(),SQLITE_SOURCE_ID)==0 );
244 ** assert( strcmp(sqlite3_libversion(),SQLITE_VERSION)==0 );
245 ** </pre></blockquote>)^
246 **
247 ** ^The sqlite3_version[] string constant contains the text of [SQLITE_VERSION]
248 ** macro.  ^The sqlite3_libversion() function returns a pointer to the
249 ** to the sqlite3_version[] string constant.  The sqlite3_libversion()
250 ** function is provided for use in DLLs since DLL users usually do not have
251 ** direct access to string constants within the DLL.  ^The
252 ** sqlite3_libversion_number() function returns an integer equal to
253 ** [SQLITE_VERSION_NUMBER].  ^The sqlite3_sourceid() function returns
254 ** a pointer to a string constant whose value is the same as the
255 ** [SQLITE_SOURCE_ID] C preprocessor macro.
256 **
257 ** See also: [sqlite_version()] and [sqlite_source_id()].
258 */
259 SQLITE_API const char sqlite3_version[] = SQLITE_VERSION;
260 SQLITE_API const char *sqlite3_libversion(void);
261 SQLITE_API const char *sqlite3_sourceid(void);
262 SQLITE_API int sqlite3_libversion_number(void);
263 
264 /*
265 ** CAPI3REF: Run-Time Library Compilation Options Diagnostics
266 **
267 ** ^The sqlite3_compileoption_used() function returns 0 or 1
268 ** indicating whether the specified option was defined at
269 ** compile time.  ^The SQLITE_ prefix may be omitted from the
270 ** option name passed to sqlite3_compileoption_used().
271 **
272 ** ^The sqlite3_compileoption_get() function allows iterating
273 ** over the list of options that were defined at compile time by
274 ** returning the N-th compile time option string.  ^If N is out of range,
275 ** sqlite3_compileoption_get() returns a NULL pointer.  ^The SQLITE_
276 ** prefix is omitted from any strings returned by
277 ** sqlite3_compileoption_get().
278 **
279 ** ^Support for the diagnostic functions sqlite3_compileoption_used()
280 ** and sqlite3_compileoption_get() may be omitted by specifying the
281 ** [SQLITE_OMIT_COMPILEOPTION_DIAGS] option at compile time.
282 **
283 ** See also: SQL functions [sqlite_compileoption_used()] and
284 ** [sqlite_compileoption_get()] and the [compile_options pragma].
285 */
286 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
287 SQLITE_API int sqlite3_compileoption_used(const char *zOptName);
288 SQLITE_API const char *sqlite3_compileoption_get(int N);
289 #endif
290 
291 /*
292 ** CAPI3REF: Test To See If The Library Is Threadsafe
293 **
294 ** ^The sqlite3_threadsafe() function returns zero if and only if
295 ** SQLite was compiled with mutexing code omitted due to the
296 ** [SQLITE_THREADSAFE] compile-time option being set to 0.
297 **
298 ** SQLite can be compiled with or without mutexes.  When
299 ** the [SQLITE_THREADSAFE] C preprocessor macro is 1 or 2, mutexes
300 ** are enabled and SQLite is threadsafe.  When the
301 ** [SQLITE_THREADSAFE] macro is 0,
302 ** the mutexes are omitted.  Without the mutexes, it is not safe
303 ** to use SQLite concurrently from more than one thread.
304 **
305 ** Enabling mutexes incurs a measurable performance penalty.
306 ** So if speed is of utmost importance, it makes sense to disable
307 ** the mutexes.  But for maximum safety, mutexes should be enabled.
308 ** ^The default behavior is for mutexes to be enabled.
309 **
310 ** This interface can be used by an application to make sure that the
311 ** version of SQLite that it is linking against was compiled with
312 ** the desired setting of the [SQLITE_THREADSAFE] macro.
313 **
314 ** This interface only reports on the compile-time mutex setting
315 ** of the [SQLITE_THREADSAFE] flag.  If SQLite is compiled with
316 ** SQLITE_THREADSAFE=1 or =2 then mutexes are enabled by default but
317 ** can be fully or partially disabled using a call to [sqlite3_config()]
318 ** with the verbs [SQLITE_CONFIG_SINGLETHREAD], [SQLITE_CONFIG_MULTITHREAD],
319 ** or [SQLITE_CONFIG_MUTEX].  ^(The return value of the
320 ** sqlite3_threadsafe() function shows only the compile-time setting of
321 ** thread safety, not any run-time changes to that setting made by
322 ** sqlite3_config(). In other words, the return value from sqlite3_threadsafe()
323 ** is unchanged by calls to sqlite3_config().)^
324 **
325 ** See the [threading mode] documentation for additional information.
326 */
327 SQLITE_API int sqlite3_threadsafe(void);
328 
329 /*
330 ** CAPI3REF: Database Connection Handle
331 ** KEYWORDS: {database connection} {database connections}
332 **
333 ** Each open SQLite database is represented by a pointer to an instance of
334 ** the opaque structure named "sqlite3".  It is useful to think of an sqlite3
335 ** pointer as an object.  The [sqlite3_open()], [sqlite3_open16()], and
336 ** [sqlite3_open_v2()] interfaces are its constructors, and [sqlite3_close()]
337 ** and [sqlite3_close_v2()] are its destructors.  There are many other
338 ** interfaces (such as
339 ** [sqlite3_prepare_v2()], [sqlite3_create_function()], and
340 ** [sqlite3_busy_timeout()] to name but three) that are methods on an
341 ** sqlite3 object.
342 */
343 typedef struct sqlite3 sqlite3;
344 
345 /*
346 ** CAPI3REF: 64-Bit Integer Types
347 ** KEYWORDS: sqlite_int64 sqlite_uint64
348 **
349 ** Because there is no cross-platform way to specify 64-bit integer types
350 ** SQLite includes typedefs for 64-bit signed and unsigned integers.
351 **
352 ** The sqlite3_int64 and sqlite3_uint64 are the preferred type definitions.
353 ** The sqlite_int64 and sqlite_uint64 types are supported for backwards
354 ** compatibility only.
355 **
356 ** ^The sqlite3_int64 and sqlite_int64 types can store integer values
357 ** between -9223372036854775808 and +9223372036854775807 inclusive.  ^The
358 ** sqlite3_uint64 and sqlite_uint64 types can store integer values
359 ** between 0 and +18446744073709551615 inclusive.
360 */
361 #ifdef SQLITE_INT64_TYPE
362   typedef SQLITE_INT64_TYPE sqlite_int64;
363   typedef unsigned SQLITE_INT64_TYPE sqlite_uint64;
364 #elif defined(_MSC_VER) || defined(__BORLANDC__)
365   typedef __int64 sqlite_int64;
366   typedef unsigned __int64 sqlite_uint64;
367 #else
368   typedef long long int sqlite_int64;
369   typedef unsigned long long int sqlite_uint64;
370 #endif
371 typedef sqlite_int64 sqlite3_int64;
372 typedef sqlite_uint64 sqlite3_uint64;
373 
374 /*
375 ** If compiling for a processor that lacks floating point support,
376 ** substitute integer for floating-point.
377 */
378 #ifdef SQLITE_OMIT_FLOATING_POINT
379 # define double sqlite3_int64
380 #endif
381 
382 /*
383 ** CAPI3REF: Closing A Database Connection
384 **
385 ** ^The sqlite3_close() and sqlite3_close_v2() routines are destructors
386 ** for the [sqlite3] object.
387 ** ^Calls to sqlite3_close() and sqlite3_close_v2() return SQLITE_OK if
388 ** the [sqlite3] object is successfully destroyed and all associated
389 ** resources are deallocated.
390 **
391 ** ^If the database connection is associated with unfinalized prepared
392 ** statements or unfinished sqlite3_backup objects then sqlite3_close()
393 ** will leave the database connection open and return [SQLITE_BUSY].
394 ** ^If sqlite3_close_v2() is called with unfinalized prepared statements
395 ** and unfinished sqlite3_backups, then the database connection becomes
396 ** an unusable "zombie" which will automatically be deallocated when the
397 ** last prepared statement is finalized or the last sqlite3_backup is
398 ** finished.  The sqlite3_close_v2() interface is intended for use with
399 ** host languages that are garbage collected, and where the order in which
400 ** destructors are called is arbitrary.
401 **
402 ** Applications should [sqlite3_finalize | finalize] all [prepared statements],
403 ** [sqlite3_blob_close | close] all [BLOB handles], and
404 ** [sqlite3_backup_finish | finish] all [sqlite3_backup] objects associated
405 ** with the [sqlite3] object prior to attempting to close the object.  ^If
406 ** sqlite3_close_v2() is called on a [database connection] that still has
407 ** outstanding [prepared statements], [BLOB handles], and/or
408 ** [sqlite3_backup] objects then it returns SQLITE_OK but the deallocation
409 ** of resources is deferred until all [prepared statements], [BLOB handles],
410 ** and [sqlite3_backup] objects are also destroyed.
411 **
412 ** ^If an [sqlite3] object is destroyed while a transaction is open,
413 ** the transaction is automatically rolled back.
414 **
415 ** The C parameter to [sqlite3_close(C)] and [sqlite3_close_v2(C)]
416 ** must be either a NULL
417 ** pointer or an [sqlite3] object pointer obtained
418 ** from [sqlite3_open()], [sqlite3_open16()], or
419 ** [sqlite3_open_v2()], and not previously closed.
420 ** ^Calling sqlite3_close() or sqlite3_close_v2() with a NULL pointer
421 ** argument is a harmless no-op.
422 */
423 SQLITE_API int sqlite3_close(sqlite3*);
424 SQLITE_API int sqlite3_close_v2(sqlite3*);
425 
426 /*
427 ** The type for a callback function.
428 ** This is legacy and deprecated.  It is included for historical
429 ** compatibility and is not documented.
430 */
431 typedef int (*sqlite3_callback)(void*,int,char**, char**);
432 
433 /*
434 ** CAPI3REF: One-Step Query Execution Interface
435 **
436 ** The sqlite3_exec() interface is a convenience wrapper around
437 ** [sqlite3_prepare_v2()], [sqlite3_step()], and [sqlite3_finalize()],
438 ** that allows an application to run multiple statements of SQL
439 ** without having to use a lot of C code.
440 **
441 ** ^The sqlite3_exec() interface runs zero or more UTF-8 encoded,
442 ** semicolon-separate SQL statements passed into its 2nd argument,
443 ** in the context of the [database connection] passed in as its 1st
444 ** argument.  ^If the callback function of the 3rd argument to
445 ** sqlite3_exec() is not NULL, then it is invoked for each result row
446 ** coming out of the evaluated SQL statements.  ^The 4th argument to
447 ** sqlite3_exec() is relayed through to the 1st argument of each
448 ** callback invocation.  ^If the callback pointer to sqlite3_exec()
449 ** is NULL, then no callback is ever invoked and result rows are
450 ** ignored.
451 **
452 ** ^If an error occurs while evaluating the SQL statements passed into
453 ** sqlite3_exec(), then execution of the current statement stops and
454 ** subsequent statements are skipped.  ^If the 5th parameter to sqlite3_exec()
455 ** is not NULL then any error message is written into memory obtained
456 ** from [sqlite3_malloc()] and passed back through the 5th parameter.
457 ** To avoid memory leaks, the application should invoke [sqlite3_free()]
458 ** on error message strings returned through the 5th parameter of
459 ** of sqlite3_exec() after the error message string is no longer needed.
460 ** ^If the 5th parameter to sqlite3_exec() is not NULL and no errors
461 ** occur, then sqlite3_exec() sets the pointer in its 5th parameter to
462 ** NULL before returning.
463 **
464 ** ^If an sqlite3_exec() callback returns non-zero, the sqlite3_exec()
465 ** routine returns SQLITE_ABORT without invoking the callback again and
466 ** without running any subsequent SQL statements.
467 **
468 ** ^The 2nd argument to the sqlite3_exec() callback function is the
469 ** number of columns in the result.  ^The 3rd argument to the sqlite3_exec()
470 ** callback is an array of pointers to strings obtained as if from
471 ** [sqlite3_column_text()], one for each column.  ^If an element of a
472 ** result row is NULL then the corresponding string pointer for the
473 ** sqlite3_exec() callback is a NULL pointer.  ^The 4th argument to the
474 ** sqlite3_exec() callback is an array of pointers to strings where each
475 ** entry represents the name of corresponding result column as obtained
476 ** from [sqlite3_column_name()].
477 **
478 ** ^If the 2nd parameter to sqlite3_exec() is a NULL pointer, a pointer
479 ** to an empty string, or a pointer that contains only whitespace and/or
480 ** SQL comments, then no SQL statements are evaluated and the database
481 ** is not changed.
482 **
483 ** Restrictions:
484 **
485 ** <ul>
486 ** <li> The application must insure that the 1st parameter to sqlite3_exec()
487 **      is a valid and open [database connection].
488 ** <li> The application must not close the [database connection] specified by
489 **      the 1st parameter to sqlite3_exec() while sqlite3_exec() is running.
490 ** <li> The application must not modify the SQL statement text passed into
491 **      the 2nd parameter of sqlite3_exec() while sqlite3_exec() is running.
492 ** </ul>
493 */
494 SQLITE_API int sqlite3_exec(
495   sqlite3*,                                  /* An open database */
496   const char *sql,                           /* SQL to be evaluated */
497   int (*callback)(void*,int,char**,char**),  /* Callback function */
498   void *,                                    /* 1st argument to callback */
499   char **errmsg                              /* Error msg written here */
500 );
501 
502 /*
503 ** CAPI3REF: Result Codes
504 ** KEYWORDS: SQLITE_OK {error code} {error codes}
505 ** KEYWORDS: {result code} {result codes}
506 **
507 ** Many SQLite functions return an integer result code from the set shown
508 ** here in order to indicate success or failure.
509 **
510 ** New error codes may be added in future versions of SQLite.
511 **
512 ** See also: [SQLITE_IOERR_READ | extended result codes],
513 ** [sqlite3_vtab_on_conflict()] [SQLITE_ROLLBACK | result codes].
514 */
515 #define SQLITE_OK           0   /* Successful result */
516 /* beginning-of-error-codes */
517 #define SQLITE_ERROR        1   /* SQL error or missing database */
518 #define SQLITE_INTERNAL     2   /* Internal logic error in SQLite */
519 #define SQLITE_PERM         3   /* Access permission denied */
520 #define SQLITE_ABORT        4   /* Callback routine requested an abort */
521 #define SQLITE_BUSY         5   /* The database file is locked */
522 #define SQLITE_LOCKED       6   /* A table in the database is locked */
523 #define SQLITE_NOMEM        7   /* A malloc() failed */
524 #define SQLITE_READONLY     8   /* Attempt to write a readonly database */
525 #define SQLITE_INTERRUPT    9   /* Operation terminated by sqlite3_interrupt()*/
526 #define SQLITE_IOERR       10   /* Some kind of disk I/O error occurred */
527 #define SQLITE_CORRUPT     11   /* The database disk image is malformed */
528 #define SQLITE_NOTFOUND    12   /* Unknown opcode in sqlite3_file_control() */
529 #define SQLITE_FULL        13   /* Insertion failed because database is full */
530 #define SQLITE_CANTOPEN    14   /* Unable to open the database file */
531 #define SQLITE_PROTOCOL    15   /* Database lock protocol error */
532 #define SQLITE_EMPTY       16   /* Database is empty */
533 #define SQLITE_SCHEMA      17   /* The database schema changed */
534 #define SQLITE_TOOBIG      18   /* String or BLOB exceeds size limit */
535 #define SQLITE_CONSTRAINT  19   /* Abort due to constraint violation */
536 #define SQLITE_MISMATCH    20   /* Data type mismatch */
537 #define SQLITE_MISUSE      21   /* Library used incorrectly */
538 #define SQLITE_NOLFS       22   /* Uses OS features not supported on host */
539 #define SQLITE_AUTH        23   /* Authorization denied */
540 #define SQLITE_FORMAT      24   /* Auxiliary database format error */
541 #define SQLITE_RANGE       25   /* 2nd parameter to sqlite3_bind out of range */
542 #define SQLITE_NOTADB      26   /* File opened that is not a database file */
543 #define SQLITE_NOTICE      27   /* Notifications from sqlite3_log() */
544 #define SQLITE_WARNING     28   /* Warnings from sqlite3_log() */
545 #define SQLITE_ROW         100  /* sqlite3_step() has another row ready */
546 #define SQLITE_DONE        101  /* sqlite3_step() has finished executing */
547 /* end-of-error-codes */
548 
549 /*
550 ** CAPI3REF: Extended Result Codes
551 ** KEYWORDS: {extended error code} {extended error codes}
552 ** KEYWORDS: {extended result code} {extended result codes}
553 **
554 ** In its default configuration, SQLite API routines return one of 26 integer
555 ** [SQLITE_OK | result codes].  However, experience has shown that many of
556 ** these result codes are too coarse-grained.  They do not provide as
557 ** much information about problems as programmers might like.  In an effort to
558 ** address this, newer versions of SQLite (version 3.3.8 and later) include
559 ** support for additional result codes that provide more detailed information
560 ** about errors. The extended result codes are enabled or disabled
561 ** on a per database connection basis using the
562 ** [sqlite3_extended_result_codes()] API.
563 **
564 ** Some of the available extended result codes are listed here.
565 ** One may expect the number of extended result codes will increase
566 ** over time.  Software that uses extended result codes should expect
567 ** to see new result codes in future releases of SQLite.
568 **
569 ** The SQLITE_OK result code will never be extended.  It will always
570 ** be exactly zero.
571 */
572 #define SQLITE_IOERR_READ              (SQLITE_IOERR | (1<<8))
573 #define SQLITE_IOERR_SHORT_READ        (SQLITE_IOERR | (2<<8))
574 #define SQLITE_IOERR_WRITE             (SQLITE_IOERR | (3<<8))
575 #define SQLITE_IOERR_FSYNC             (SQLITE_IOERR | (4<<8))
576 #define SQLITE_IOERR_DIR_FSYNC         (SQLITE_IOERR | (5<<8))
577 #define SQLITE_IOERR_TRUNCATE          (SQLITE_IOERR | (6<<8))
578 #define SQLITE_IOERR_FSTAT             (SQLITE_IOERR | (7<<8))
579 #define SQLITE_IOERR_UNLOCK            (SQLITE_IOERR | (8<<8))
580 #define SQLITE_IOERR_RDLOCK            (SQLITE_IOERR | (9<<8))
581 #define SQLITE_IOERR_DELETE            (SQLITE_IOERR | (10<<8))
582 #define SQLITE_IOERR_BLOCKED           (SQLITE_IOERR | (11<<8))
583 #define SQLITE_IOERR_NOMEM             (SQLITE_IOERR | (12<<8))
584 #define SQLITE_IOERR_ACCESS            (SQLITE_IOERR | (13<<8))
585 #define SQLITE_IOERR_CHECKRESERVEDLOCK (SQLITE_IOERR | (14<<8))
586 #define SQLITE_IOERR_LOCK              (SQLITE_IOERR | (15<<8))
587 #define SQLITE_IOERR_CLOSE             (SQLITE_IOERR | (16<<8))
588 #define SQLITE_IOERR_DIR_CLOSE         (SQLITE_IOERR | (17<<8))
589 #define SQLITE_IOERR_SHMOPEN           (SQLITE_IOERR | (18<<8))
590 #define SQLITE_IOERR_SHMSIZE           (SQLITE_IOERR | (19<<8))
591 #define SQLITE_IOERR_SHMLOCK           (SQLITE_IOERR | (20<<8))
592 #define SQLITE_IOERR_SHMMAP            (SQLITE_IOERR | (21<<8))
593 #define SQLITE_IOERR_SEEK              (SQLITE_IOERR | (22<<8))
594 #define SQLITE_IOERR_DELETE_NOENT      (SQLITE_IOERR | (23<<8))
595 #define SQLITE_IOERR_MMAP              (SQLITE_IOERR | (24<<8))
596 #define SQLITE_IOERR_GETTEMPPATH       (SQLITE_IOERR | (25<<8))
597 #define SQLITE_IOERR_CONVPATH          (SQLITE_IOERR | (26<<8))
598 #define SQLITE_LOCKED_SHAREDCACHE      (SQLITE_LOCKED |  (1<<8))
599 #define SQLITE_BUSY_RECOVERY           (SQLITE_BUSY   |  (1<<8))
600 #define SQLITE_BUSY_SNAPSHOT           (SQLITE_BUSY   |  (2<<8))
601 #define SQLITE_CANTOPEN_NOTEMPDIR      (SQLITE_CANTOPEN | (1<<8))
602 #define SQLITE_CANTOPEN_ISDIR          (SQLITE_CANTOPEN | (2<<8))
603 #define SQLITE_CANTOPEN_FULLPATH       (SQLITE_CANTOPEN | (3<<8))
604 #define SQLITE_CANTOPEN_CONVPATH       (SQLITE_CANTOPEN | (4<<8))
605 #define SQLITE_CORRUPT_VTAB            (SQLITE_CORRUPT | (1<<8))
606 #define SQLITE_READONLY_RECOVERY       (SQLITE_READONLY | (1<<8))
607 #define SQLITE_READONLY_CANTLOCK       (SQLITE_READONLY | (2<<8))
608 #define SQLITE_READONLY_ROLLBACK       (SQLITE_READONLY | (3<<8))
609 #define SQLITE_READONLY_DBMOVED        (SQLITE_READONLY | (4<<8))
610 #define SQLITE_ABORT_ROLLBACK          (SQLITE_ABORT | (2<<8))
611 #define SQLITE_CONSTRAINT_CHECK        (SQLITE_CONSTRAINT | (1<<8))
612 #define SQLITE_CONSTRAINT_COMMITHOOK   (SQLITE_CONSTRAINT | (2<<8))
613 #define SQLITE_CONSTRAINT_FOREIGNKEY   (SQLITE_CONSTRAINT | (3<<8))
614 #define SQLITE_CONSTRAINT_FUNCTION     (SQLITE_CONSTRAINT | (4<<8))
615 #define SQLITE_CONSTRAINT_NOTNULL      (SQLITE_CONSTRAINT | (5<<8))
616 #define SQLITE_CONSTRAINT_PRIMARYKEY   (SQLITE_CONSTRAINT | (6<<8))
617 #define SQLITE_CONSTRAINT_TRIGGER      (SQLITE_CONSTRAINT | (7<<8))
618 #define SQLITE_CONSTRAINT_UNIQUE       (SQLITE_CONSTRAINT | (8<<8))
619 #define SQLITE_CONSTRAINT_VTAB         (SQLITE_CONSTRAINT | (9<<8))
620 #define SQLITE_CONSTRAINT_ROWID        (SQLITE_CONSTRAINT |(10<<8))
621 #define SQLITE_NOTICE_RECOVER_WAL      (SQLITE_NOTICE | (1<<8))
622 #define SQLITE_NOTICE_RECOVER_ROLLBACK (SQLITE_NOTICE | (2<<8))
623 #define SQLITE_WARNING_AUTOINDEX       (SQLITE_WARNING | (1<<8))
624 
625 /*
626 ** CAPI3REF: Flags For File Open Operations
627 **
628 ** These bit values are intended for use in the
629 ** 3rd parameter to the [sqlite3_open_v2()] interface and
630 ** in the 4th parameter to the [sqlite3_vfs.xOpen] method.
631 */
632 #define SQLITE_OPEN_READONLY         0x00000001  /* Ok for sqlite3_open_v2() */
633 #define SQLITE_OPEN_READWRITE        0x00000002  /* Ok for sqlite3_open_v2() */
634 #define SQLITE_OPEN_CREATE           0x00000004  /* Ok for sqlite3_open_v2() */
635 #define SQLITE_OPEN_DELETEONCLOSE    0x00000008  /* VFS only */
636 #define SQLITE_OPEN_EXCLUSIVE        0x00000010  /* VFS only */
637 #define SQLITE_OPEN_AUTOPROXY        0x00000020  /* VFS only */
638 #define SQLITE_OPEN_URI              0x00000040  /* Ok for sqlite3_open_v2() */
639 #define SQLITE_OPEN_MEMORY           0x00000080  /* Ok for sqlite3_open_v2() */
640 #define SQLITE_OPEN_MAIN_DB          0x00000100  /* VFS only */
641 #define SQLITE_OPEN_TEMP_DB          0x00000200  /* VFS only */
642 #define SQLITE_OPEN_TRANSIENT_DB     0x00000400  /* VFS only */
643 #define SQLITE_OPEN_MAIN_JOURNAL     0x00000800  /* VFS only */
644 #define SQLITE_OPEN_TEMP_JOURNAL     0x00001000  /* VFS only */
645 #define SQLITE_OPEN_SUBJOURNAL       0x00002000  /* VFS only */
646 #define SQLITE_OPEN_MASTER_JOURNAL   0x00004000  /* VFS only */
647 #define SQLITE_OPEN_NOMUTEX          0x00008000  /* Ok for sqlite3_open_v2() */
648 #define SQLITE_OPEN_FULLMUTEX        0x00010000  /* Ok for sqlite3_open_v2() */
649 #define SQLITE_OPEN_SHAREDCACHE      0x00020000  /* Ok for sqlite3_open_v2() */
650 #define SQLITE_OPEN_PRIVATECACHE     0x00040000  /* Ok for sqlite3_open_v2() */
651 #define SQLITE_OPEN_WAL              0x00080000  /* VFS only */
652 
653 /* Reserved:                         0x00F00000 */
654 
655 /*
656 ** CAPI3REF: Device Characteristics
657 **
658 ** The xDeviceCharacteristics method of the [sqlite3_io_methods]
659 ** object returns an integer which is a vector of these
660 ** bit values expressing I/O characteristics of the mass storage
661 ** device that holds the file that the [sqlite3_io_methods]
662 ** refers to.
663 **
664 ** The SQLITE_IOCAP_ATOMIC property means that all writes of
665 ** any size are atomic.  The SQLITE_IOCAP_ATOMICnnn values
666 ** mean that writes of blocks that are nnn bytes in size and
667 ** are aligned to an address which is an integer multiple of
668 ** nnn are atomic.  The SQLITE_IOCAP_SAFE_APPEND value means
669 ** that when data is appended to a file, the data is appended
670 ** first then the size of the file is extended, never the other
671 ** way around.  The SQLITE_IOCAP_SEQUENTIAL property means that
672 ** information is written to disk in the same order as calls
673 ** to xWrite().  The SQLITE_IOCAP_POWERSAFE_OVERWRITE property means that
674 ** after reboot following a crash or power loss, the only bytes in a
675 ** file that were written at the application level might have changed
676 ** and that adjacent bytes, even bytes within the same sector are
677 ** guaranteed to be unchanged.  The SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN
678 ** flag indicate that a file cannot be deleted when open.  The
679 ** SQLITE_IOCAP_IMMUTABLE flag indicates that the file is on
680 ** read-only media and cannot be changed even by processes with
681 ** elevated privileges.
682 */
683 #define SQLITE_IOCAP_ATOMIC                 0x00000001
684 #define SQLITE_IOCAP_ATOMIC512              0x00000002
685 #define SQLITE_IOCAP_ATOMIC1K               0x00000004
686 #define SQLITE_IOCAP_ATOMIC2K               0x00000008
687 #define SQLITE_IOCAP_ATOMIC4K               0x00000010
688 #define SQLITE_IOCAP_ATOMIC8K               0x00000020
689 #define SQLITE_IOCAP_ATOMIC16K              0x00000040
690 #define SQLITE_IOCAP_ATOMIC32K              0x00000080
691 #define SQLITE_IOCAP_ATOMIC64K              0x00000100
692 #define SQLITE_IOCAP_SAFE_APPEND            0x00000200
693 #define SQLITE_IOCAP_SEQUENTIAL             0x00000400
694 #define SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN  0x00000800
695 #define SQLITE_IOCAP_POWERSAFE_OVERWRITE    0x00001000
696 #define SQLITE_IOCAP_IMMUTABLE              0x00002000
697 
698 /*
699 ** CAPI3REF: File Locking Levels
700 **
701 ** SQLite uses one of these integer values as the second
702 ** argument to calls it makes to the xLock() and xUnlock() methods
703 ** of an [sqlite3_io_methods] object.
704 */
705 #define SQLITE_LOCK_NONE          0
706 #define SQLITE_LOCK_SHARED        1
707 #define SQLITE_LOCK_RESERVED      2
708 #define SQLITE_LOCK_PENDING       3
709 #define SQLITE_LOCK_EXCLUSIVE     4
710 
711 /*
712 ** CAPI3REF: Synchronization Type Flags
713 **
714 ** When SQLite invokes the xSync() method of an
715 ** [sqlite3_io_methods] object it uses a combination of
716 ** these integer values as the second argument.
717 **
718 ** When the SQLITE_SYNC_DATAONLY flag is used, it means that the
719 ** sync operation only needs to flush data to mass storage.  Inode
720 ** information need not be flushed. If the lower four bits of the flag
721 ** equal SQLITE_SYNC_NORMAL, that means to use normal fsync() semantics.
722 ** If the lower four bits equal SQLITE_SYNC_FULL, that means
723 ** to use Mac OS X style fullsync instead of fsync().
724 **
725 ** Do not confuse the SQLITE_SYNC_NORMAL and SQLITE_SYNC_FULL flags
726 ** with the [PRAGMA synchronous]=NORMAL and [PRAGMA synchronous]=FULL
727 ** settings.  The [synchronous pragma] determines when calls to the
728 ** xSync VFS method occur and applies uniformly across all platforms.
729 ** The SQLITE_SYNC_NORMAL and SQLITE_SYNC_FULL flags determine how
730 ** energetic or rigorous or forceful the sync operations are and
731 ** only make a difference on Mac OSX for the default SQLite code.
732 ** (Third-party VFS implementations might also make the distinction
733 ** between SQLITE_SYNC_NORMAL and SQLITE_SYNC_FULL, but among the
734 ** operating systems natively supported by SQLite, only Mac OSX
735 ** cares about the difference.)
736 */
737 #define SQLITE_SYNC_NORMAL        0x00002
738 #define SQLITE_SYNC_FULL          0x00003
739 #define SQLITE_SYNC_DATAONLY      0x00010
740 
741 /*
742 ** CAPI3REF: OS Interface Open File Handle
743 **
744 ** An [sqlite3_file] object represents an open file in the
745 ** [sqlite3_vfs | OS interface layer].  Individual OS interface
746 ** implementations will
747 ** want to subclass this object by appending additional fields
748 ** for their own use.  The pMethods entry is a pointer to an
749 ** [sqlite3_io_methods] object that defines methods for performing
750 ** I/O operations on the open file.
751 */
752 typedef struct sqlite3_file sqlite3_file;
753 struct sqlite3_file {
754   const struct sqlite3_io_methods *pMethods;  /* Methods for an open file */
755 };
756 
757 /*
758 ** CAPI3REF: OS Interface File Virtual Methods Object
759 **
760 ** Every file opened by the [sqlite3_vfs.xOpen] method populates an
761 ** [sqlite3_file] object (or, more commonly, a subclass of the
762 ** [sqlite3_file] object) with a pointer to an instance of this object.
763 ** This object defines the methods used to perform various operations
764 ** against the open file represented by the [sqlite3_file] object.
765 **
766 ** If the [sqlite3_vfs.xOpen] method sets the sqlite3_file.pMethods element
767 ** to a non-NULL pointer, then the sqlite3_io_methods.xClose method
768 ** may be invoked even if the [sqlite3_vfs.xOpen] reported that it failed.  The
769 ** only way to prevent a call to xClose following a failed [sqlite3_vfs.xOpen]
770 ** is for the [sqlite3_vfs.xOpen] to set the sqlite3_file.pMethods element
771 ** to NULL.
772 **
773 ** The flags argument to xSync may be one of [SQLITE_SYNC_NORMAL] or
774 ** [SQLITE_SYNC_FULL].  The first choice is the normal fsync().
775 ** The second choice is a Mac OS X style fullsync.  The [SQLITE_SYNC_DATAONLY]
776 ** flag may be ORed in to indicate that only the data of the file
777 ** and not its inode needs to be synced.
778 **
779 ** The integer values to xLock() and xUnlock() are one of
780 ** <ul>
781 ** <li> [SQLITE_LOCK_NONE],
782 ** <li> [SQLITE_LOCK_SHARED],
783 ** <li> [SQLITE_LOCK_RESERVED],
784 ** <li> [SQLITE_LOCK_PENDING], or
785 ** <li> [SQLITE_LOCK_EXCLUSIVE].
786 ** </ul>
787 ** xLock() increases the lock. xUnlock() decreases the lock.
788 ** The xCheckReservedLock() method checks whether any database connection,
789 ** either in this process or in some other process, is holding a RESERVED,
790 ** PENDING, or EXCLUSIVE lock on the file.  It returns true
791 ** if such a lock exists and false otherwise.
792 **
793 ** The xFileControl() method is a generic interface that allows custom
794 ** VFS implementations to directly control an open file using the
795 ** [sqlite3_file_control()] interface.  The second "op" argument is an
796 ** integer opcode.  The third argument is a generic pointer intended to
797 ** point to a structure that may contain arguments or space in which to
798 ** write return values.  Potential uses for xFileControl() might be
799 ** functions to enable blocking locks with timeouts, to change the
800 ** locking strategy (for example to use dot-file locks), to inquire
801 ** about the status of a lock, or to break stale locks.  The SQLite
802 ** core reserves all opcodes less than 100 for its own use.
803 ** A [SQLITE_FCNTL_LOCKSTATE | list of opcodes] less than 100 is available.
804 ** Applications that define a custom xFileControl method should use opcodes
805 ** greater than 100 to avoid conflicts.  VFS implementations should
806 ** return [SQLITE_NOTFOUND] for file control opcodes that they do not
807 ** recognize.
808 **
809 ** The xSectorSize() method returns the sector size of the
810 ** device that underlies the file.  The sector size is the
811 ** minimum write that can be performed without disturbing
812 ** other bytes in the file.  The xDeviceCharacteristics()
813 ** method returns a bit vector describing behaviors of the
814 ** underlying device:
815 **
816 ** <ul>
817 ** <li> [SQLITE_IOCAP_ATOMIC]
818 ** <li> [SQLITE_IOCAP_ATOMIC512]
819 ** <li> [SQLITE_IOCAP_ATOMIC1K]
820 ** <li> [SQLITE_IOCAP_ATOMIC2K]
821 ** <li> [SQLITE_IOCAP_ATOMIC4K]
822 ** <li> [SQLITE_IOCAP_ATOMIC8K]
823 ** <li> [SQLITE_IOCAP_ATOMIC16K]
824 ** <li> [SQLITE_IOCAP_ATOMIC32K]
825 ** <li> [SQLITE_IOCAP_ATOMIC64K]
826 ** <li> [SQLITE_IOCAP_SAFE_APPEND]
827 ** <li> [SQLITE_IOCAP_SEQUENTIAL]
828 ** </ul>
829 **
830 ** The SQLITE_IOCAP_ATOMIC property means that all writes of
831 ** any size are atomic.  The SQLITE_IOCAP_ATOMICnnn values
832 ** mean that writes of blocks that are nnn bytes in size and
833 ** are aligned to an address which is an integer multiple of
834 ** nnn are atomic.  The SQLITE_IOCAP_SAFE_APPEND value means
835 ** that when data is appended to a file, the data is appended
836 ** first then the size of the file is extended, never the other
837 ** way around.  The SQLITE_IOCAP_SEQUENTIAL property means that
838 ** information is written to disk in the same order as calls
839 ** to xWrite().
840 **
841 ** If xRead() returns SQLITE_IOERR_SHORT_READ it must also fill
842 ** in the unread portions of the buffer with zeros.  A VFS that
843 ** fails to zero-fill short reads might seem to work.  However,
844 ** failure to zero-fill short reads will eventually lead to
845 ** database corruption.
846 */
847 typedef struct sqlite3_io_methods sqlite3_io_methods;
848 struct sqlite3_io_methods {
849   int iVersion;
850   int (*xClose)(sqlite3_file*);
851   int (*xRead)(sqlite3_file*, void*, int iAmt, sqlite3_int64 iOfst);
852   int (*xWrite)(sqlite3_file*, const void*, int iAmt, sqlite3_int64 iOfst);
853   int (*xTruncate)(sqlite3_file*, sqlite3_int64 size);
854   int (*xSync)(sqlite3_file*, int flags);
855   int (*xFileSize)(sqlite3_file*, sqlite3_int64 *pSize);
856   int (*xLock)(sqlite3_file*, int);
857   int (*xUnlock)(sqlite3_file*, int);
858   int (*xCheckReservedLock)(sqlite3_file*, int *pResOut);
859   int (*xFileControl)(sqlite3_file*, int op, void *pArg);
860   int (*xSectorSize)(sqlite3_file*);
861   int (*xDeviceCharacteristics)(sqlite3_file*);
862   /* Methods above are valid for version 1 */
863   int (*xShmMap)(sqlite3_file*, int iPg, int pgsz, int, void volatile**);
864   int (*xShmLock)(sqlite3_file*, int offset, int n, int flags);
865   void (*xShmBarrier)(sqlite3_file*);
866   int (*xShmUnmap)(sqlite3_file*, int deleteFlag);
867   /* Methods above are valid for version 2 */
868   int (*xFetch)(sqlite3_file*, sqlite3_int64 iOfst, int iAmt, void **pp);
869   int (*xUnfetch)(sqlite3_file*, sqlite3_int64 iOfst, void *p);
870   /* Methods above are valid for version 3 */
871   /* Additional methods may be added in future releases */
872 };
873 
874 /*
875 ** CAPI3REF: Standard File Control Opcodes
876 **
877 ** These integer constants are opcodes for the xFileControl method
878 ** of the [sqlite3_io_methods] object and for the [sqlite3_file_control()]
879 ** interface.
880 **
881 ** The [SQLITE_FCNTL_LOCKSTATE] opcode is used for debugging.  This
882 ** opcode causes the xFileControl method to write the current state of
883 ** the lock (one of [SQLITE_LOCK_NONE], [SQLITE_LOCK_SHARED],
884 ** [SQLITE_LOCK_RESERVED], [SQLITE_LOCK_PENDING], or [SQLITE_LOCK_EXCLUSIVE])
885 ** into an integer that the pArg argument points to. This capability
886 ** is used during testing and only needs to be supported when SQLITE_TEST
887 ** is defined.
888 ** <ul>
889 ** <li>[[SQLITE_FCNTL_SIZE_HINT]]
890 ** The [SQLITE_FCNTL_SIZE_HINT] opcode is used by SQLite to give the VFS
891 ** layer a hint of how large the database file will grow to be during the
892 ** current transaction.  This hint is not guaranteed to be accurate but it
893 ** is often close.  The underlying VFS might choose to preallocate database
894 ** file space based on this hint in order to help writes to the database
895 ** file run faster.
896 **
897 ** <li>[[SQLITE_FCNTL_CHUNK_SIZE]]
898 ** The [SQLITE_FCNTL_CHUNK_SIZE] opcode is used to request that the VFS
899 ** extends and truncates the database file in chunks of a size specified
900 ** by the user. The fourth argument to [sqlite3_file_control()] should
901 ** point to an integer (type int) containing the new chunk-size to use
902 ** for the nominated database. Allocating database file space in large
903 ** chunks (say 1MB at a time), may reduce file-system fragmentation and
904 ** improve performance on some systems.
905 **
906 ** <li>[[SQLITE_FCNTL_FILE_POINTER]]
907 ** The [SQLITE_FCNTL_FILE_POINTER] opcode is used to obtain a pointer
908 ** to the [sqlite3_file] object associated with a particular database
909 ** connection.  See the [sqlite3_file_control()] documentation for
910 ** additional information.
911 **
912 ** <li>[[SQLITE_FCNTL_SYNC_OMITTED]]
913 ** No longer in use.
914 **
915 ** <li>[[SQLITE_FCNTL_SYNC]]
916 ** The [SQLITE_FCNTL_SYNC] opcode is generated internally by SQLite and
917 ** sent to the VFS immediately before the xSync method is invoked on a
918 ** database file descriptor. Or, if the xSync method is not invoked
919 ** because the user has configured SQLite with
920 ** [PRAGMA synchronous | PRAGMA synchronous=OFF] it is invoked in place
921 ** of the xSync method. In most cases, the pointer argument passed with
922 ** this file-control is NULL. However, if the database file is being synced
923 ** as part of a multi-database commit, the argument points to a nul-terminated
924 ** string containing the transactions master-journal file name. VFSes that
925 ** do not need this signal should silently ignore this opcode. Applications
926 ** should not call [sqlite3_file_control()] with this opcode as doing so may
927 ** disrupt the operation of the specialized VFSes that do require it.
928 **
929 ** <li>[[SQLITE_FCNTL_COMMIT_PHASETWO]]
930 ** The [SQLITE_FCNTL_COMMIT_PHASETWO] opcode is generated internally by SQLite
931 ** and sent to the VFS after a transaction has been committed immediately
932 ** but before the database is unlocked. VFSes that do not need this signal
933 ** should silently ignore this opcode. Applications should not call
934 ** [sqlite3_file_control()] with this opcode as doing so may disrupt the
935 ** operation of the specialized VFSes that do require it.
936 **
937 ** <li>[[SQLITE_FCNTL_WIN32_AV_RETRY]]
938 ** ^The [SQLITE_FCNTL_WIN32_AV_RETRY] opcode is used to configure automatic
939 ** retry counts and intervals for certain disk I/O operations for the
940 ** windows [VFS] in order to provide robustness in the presence of
941 ** anti-virus programs.  By default, the windows VFS will retry file read,
942 ** file write, and file delete operations up to 10 times, with a delay
943 ** of 25 milliseconds before the first retry and with the delay increasing
944 ** by an additional 25 milliseconds with each subsequent retry.  This
945 ** opcode allows these two values (10 retries and 25 milliseconds of delay)
946 ** to be adjusted.  The values are changed for all database connections
947 ** within the same process.  The argument is a pointer to an array of two
948 ** integers where the first integer i the new retry count and the second
949 ** integer is the delay.  If either integer is negative, then the setting
950 ** is not changed but instead the prior value of that setting is written
951 ** into the array entry, allowing the current retry settings to be
952 ** interrogated.  The zDbName parameter is ignored.
953 **
954 ** <li>[[SQLITE_FCNTL_PERSIST_WAL]]
955 ** ^The [SQLITE_FCNTL_PERSIST_WAL] opcode is used to set or query the
956 ** persistent [WAL | Write Ahead Log] setting.  By default, the auxiliary
957 ** write ahead log and shared memory files used for transaction control
958 ** are automatically deleted when the latest connection to the database
959 ** closes.  Setting persistent WAL mode causes those files to persist after
960 ** close.  Persisting the files is useful when other processes that do not
961 ** have write permission on the directory containing the database file want
962 ** to read the database file, as the WAL and shared memory files must exist
963 ** in order for the database to be readable.  The fourth parameter to
964 ** [sqlite3_file_control()] for this opcode should be a pointer to an integer.
965 ** That integer is 0 to disable persistent WAL mode or 1 to enable persistent
966 ** WAL mode.  If the integer is -1, then it is overwritten with the current
967 ** WAL persistence setting.
968 **
969 ** <li>[[SQLITE_FCNTL_POWERSAFE_OVERWRITE]]
970 ** ^The [SQLITE_FCNTL_POWERSAFE_OVERWRITE] opcode is used to set or query the
971 ** persistent "powersafe-overwrite" or "PSOW" setting.  The PSOW setting
972 ** determines the [SQLITE_IOCAP_POWERSAFE_OVERWRITE] bit of the
973 ** xDeviceCharacteristics methods. The fourth parameter to
974 ** [sqlite3_file_control()] for this opcode should be a pointer to an integer.
975 ** That integer is 0 to disable zero-damage mode or 1 to enable zero-damage
976 ** mode.  If the integer is -1, then it is overwritten with the current
977 ** zero-damage mode setting.
978 **
979 ** <li>[[SQLITE_FCNTL_OVERWRITE]]
980 ** ^The [SQLITE_FCNTL_OVERWRITE] opcode is invoked by SQLite after opening
981 ** a write transaction to indicate that, unless it is rolled back for some
982 ** reason, the entire database file will be overwritten by the current
983 ** transaction. This is used by VACUUM operations.
984 **
985 ** <li>[[SQLITE_FCNTL_VFSNAME]]
986 ** ^The [SQLITE_FCNTL_VFSNAME] opcode can be used to obtain the names of
987 ** all [VFSes] in the VFS stack.  The names are of all VFS shims and the
988 ** final bottom-level VFS are written into memory obtained from
989 ** [sqlite3_malloc()] and the result is stored in the char* variable
990 ** that the fourth parameter of [sqlite3_file_control()] points to.
991 ** The caller is responsible for freeing the memory when done.  As with
992 ** all file-control actions, there is no guarantee that this will actually
993 ** do anything.  Callers should initialize the char* variable to a NULL
994 ** pointer in case this file-control is not implemented.  This file-control
995 ** is intended for diagnostic use only.
996 **
997 ** <li>[[SQLITE_FCNTL_PRAGMA]]
998 ** ^Whenever a [PRAGMA] statement is parsed, an [SQLITE_FCNTL_PRAGMA]
999 ** file control is sent to the open [sqlite3_file] object corresponding
1000 ** to the database file to which the pragma statement refers. ^The argument
1001 ** to the [SQLITE_FCNTL_PRAGMA] file control is an array of
1002 ** pointers to strings (char**) in which the second element of the array
1003 ** is the name of the pragma and the third element is the argument to the
1004 ** pragma or NULL if the pragma has no argument.  ^The handler for an
1005 ** [SQLITE_FCNTL_PRAGMA] file control can optionally make the first element
1006 ** of the char** argument point to a string obtained from [sqlite3_mprintf()]
1007 ** or the equivalent and that string will become the result of the pragma or
1008 ** the error message if the pragma fails. ^If the
1009 ** [SQLITE_FCNTL_PRAGMA] file control returns [SQLITE_NOTFOUND], then normal
1010 ** [PRAGMA] processing continues.  ^If the [SQLITE_FCNTL_PRAGMA]
1011 ** file control returns [SQLITE_OK], then the parser assumes that the
1012 ** VFS has handled the PRAGMA itself and the parser generates a no-op
1013 ** prepared statement.  ^If the [SQLITE_FCNTL_PRAGMA] file control returns
1014 ** any result code other than [SQLITE_OK] or [SQLITE_NOTFOUND], that means
1015 ** that the VFS encountered an error while handling the [PRAGMA] and the
1016 ** compilation of the PRAGMA fails with an error.  ^The [SQLITE_FCNTL_PRAGMA]
1017 ** file control occurs at the beginning of pragma statement analysis and so
1018 ** it is able to override built-in [PRAGMA] statements.
1019 **
1020 ** <li>[[SQLITE_FCNTL_BUSYHANDLER]]
1021 ** ^The [SQLITE_FCNTL_BUSYHANDLER]
1022 ** file-control may be invoked by SQLite on the database file handle
1023 ** shortly after it is opened in order to provide a custom VFS with access
1024 ** to the connections busy-handler callback. The argument is of type (void **)
1025 ** - an array of two (void *) values. The first (void *) actually points
1026 ** to a function of type (int (*)(void *)). In order to invoke the connections
1027 ** busy-handler, this function should be invoked with the second (void *) in
1028 ** the array as the only argument. If it returns non-zero, then the operation
1029 ** should be retried. If it returns zero, the custom VFS should abandon the
1030 ** current operation.
1031 **
1032 ** <li>[[SQLITE_FCNTL_TEMPFILENAME]]
1033 ** ^Application can invoke the [SQLITE_FCNTL_TEMPFILENAME] file-control
1034 ** to have SQLite generate a
1035 ** temporary filename using the same algorithm that is followed to generate
1036 ** temporary filenames for TEMP tables and other internal uses.  The
1037 ** argument should be a char** which will be filled with the filename
1038 ** written into memory obtained from [sqlite3_malloc()].  The caller should
1039 ** invoke [sqlite3_free()] on the result to avoid a memory leak.
1040 **
1041 ** <li>[[SQLITE_FCNTL_MMAP_SIZE]]
1042 ** The [SQLITE_FCNTL_MMAP_SIZE] file control is used to query or set the
1043 ** maximum number of bytes that will be used for memory-mapped I/O.
1044 ** The argument is a pointer to a value of type sqlite3_int64 that
1045 ** is an advisory maximum number of bytes in the file to memory map.  The
1046 ** pointer is overwritten with the old value.  The limit is not changed if
1047 ** the value originally pointed to is negative, and so the current limit
1048 ** can be queried by passing in a pointer to a negative number.  This
1049 ** file-control is used internally to implement [PRAGMA mmap_size].
1050 **
1051 ** <li>[[SQLITE_FCNTL_TRACE]]
1052 ** The [SQLITE_FCNTL_TRACE] file control provides advisory information
1053 ** to the VFS about what the higher layers of the SQLite stack are doing.
1054 ** This file control is used by some VFS activity tracing [shims].
1055 ** The argument is a zero-terminated string.  Higher layers in the
1056 ** SQLite stack may generate instances of this file control if
1057 ** the [SQLITE_USE_FCNTL_TRACE] compile-time option is enabled.
1058 **
1059 ** <li>[[SQLITE_FCNTL_HAS_MOVED]]
1060 ** The [SQLITE_FCNTL_HAS_MOVED] file control interprets its argument as a
1061 ** pointer to an integer and it writes a boolean into that integer depending
1062 ** on whether or not the file has been renamed, moved, or deleted since it
1063 ** was first opened.
1064 **
1065 ** <li>[[SQLITE_FCNTL_WIN32_SET_HANDLE]]
1066 ** The [SQLITE_FCNTL_WIN32_SET_HANDLE] opcode is used for debugging.  This
1067 ** opcode causes the xFileControl method to swap the file handle with the one
1068 ** pointed to by the pArg argument.  This capability is used during testing
1069 ** and only needs to be supported when SQLITE_TEST is defined.
1070 **
1071 ** </ul>
1072 */
1073 #define SQLITE_FCNTL_LOCKSTATE               1
1074 #define SQLITE_GET_LOCKPROXYFILE             2
1075 #define SQLITE_SET_LOCKPROXYFILE             3
1076 #define SQLITE_LAST_ERRNO                    4
1077 #define SQLITE_FCNTL_SIZE_HINT               5
1078 #define SQLITE_FCNTL_CHUNK_SIZE              6
1079 #define SQLITE_FCNTL_FILE_POINTER            7
1080 #define SQLITE_FCNTL_SYNC_OMITTED            8
1081 #define SQLITE_FCNTL_WIN32_AV_RETRY          9
1082 #define SQLITE_FCNTL_PERSIST_WAL            10
1083 #define SQLITE_FCNTL_OVERWRITE              11
1084 #define SQLITE_FCNTL_VFSNAME                12
1085 #define SQLITE_FCNTL_POWERSAFE_OVERWRITE    13
1086 #define SQLITE_FCNTL_PRAGMA                 14
1087 #define SQLITE_FCNTL_BUSYHANDLER            15
1088 #define SQLITE_FCNTL_TEMPFILENAME           16
1089 #define SQLITE_FCNTL_MMAP_SIZE              18
1090 #define SQLITE_FCNTL_TRACE                  19
1091 #define SQLITE_FCNTL_HAS_MOVED              20
1092 #define SQLITE_FCNTL_SYNC                   21
1093 #define SQLITE_FCNTL_COMMIT_PHASETWO        22
1094 #define SQLITE_FCNTL_WIN32_SET_HANDLE       23
1095 
1096 /*
1097 ** CAPI3REF: Mutex Handle
1098 **
1099 ** The mutex module within SQLite defines [sqlite3_mutex] to be an
1100 ** abstract type for a mutex object.  The SQLite core never looks
1101 ** at the internal representation of an [sqlite3_mutex].  It only
1102 ** deals with pointers to the [sqlite3_mutex] object.
1103 **
1104 ** Mutexes are created using [sqlite3_mutex_alloc()].
1105 */
1106 typedef struct sqlite3_mutex sqlite3_mutex;
1107 
1108 /*
1109 ** CAPI3REF: OS Interface Object
1110 **
1111 ** An instance of the sqlite3_vfs object defines the interface between
1112 ** the SQLite core and the underlying operating system.  The "vfs"
1113 ** in the name of the object stands for "virtual file system".  See
1114 ** the [VFS | VFS documentation] for further information.
1115 **
1116 ** The value of the iVersion field is initially 1 but may be larger in
1117 ** future versions of SQLite.  Additional fields may be appended to this
1118 ** object when the iVersion value is increased.  Note that the structure
1119 ** of the sqlite3_vfs object changes in the transaction between
1120 ** SQLite version 3.5.9 and 3.6.0 and yet the iVersion field was not
1121 ** modified.
1122 **
1123 ** The szOsFile field is the size of the subclassed [sqlite3_file]
1124 ** structure used by this VFS.  mxPathname is the maximum length of
1125 ** a pathname in this VFS.
1126 **
1127 ** Registered sqlite3_vfs objects are kept on a linked list formed by
1128 ** the pNext pointer.  The [sqlite3_vfs_register()]
1129 ** and [sqlite3_vfs_unregister()] interfaces manage this list
1130 ** in a thread-safe way.  The [sqlite3_vfs_find()] interface
1131 ** searches the list.  Neither the application code nor the VFS
1132 ** implementation should use the pNext pointer.
1133 **
1134 ** The pNext field is the only field in the sqlite3_vfs
1135 ** structure that SQLite will ever modify.  SQLite will only access
1136 ** or modify this field while holding a particular static mutex.
1137 ** The application should never modify anything within the sqlite3_vfs
1138 ** object once the object has been registered.
1139 **
1140 ** The zName field holds the name of the VFS module.  The name must
1141 ** be unique across all VFS modules.
1142 **
1143 ** [[sqlite3_vfs.xOpen]]
1144 ** ^SQLite guarantees that the zFilename parameter to xOpen
1145 ** is either a NULL pointer or string obtained
1146 ** from xFullPathname() with an optional suffix added.
1147 ** ^If a suffix is added to the zFilename parameter, it will
1148 ** consist of a single "-" character followed by no more than
1149 ** 11 alphanumeric and/or "-" characters.
1150 ** ^SQLite further guarantees that
1151 ** the string will be valid and unchanged until xClose() is
1152 ** called. Because of the previous sentence,
1153 ** the [sqlite3_file] can safely store a pointer to the
1154 ** filename if it needs to remember the filename for some reason.
1155 ** If the zFilename parameter to xOpen is a NULL pointer then xOpen
1156 ** must invent its own temporary name for the file.  ^Whenever the
1157 ** xFilename parameter is NULL it will also be the case that the
1158 ** flags parameter will include [SQLITE_OPEN_DELETEONCLOSE].
1159 **
1160 ** The flags argument to xOpen() includes all bits set in
1161 ** the flags argument to [sqlite3_open_v2()].  Or if [sqlite3_open()]
1162 ** or [sqlite3_open16()] is used, then flags includes at least
1163 ** [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE].
1164 ** If xOpen() opens a file read-only then it sets *pOutFlags to
1165 ** include [SQLITE_OPEN_READONLY].  Other bits in *pOutFlags may be set.
1166 **
1167 ** ^(SQLite will also add one of the following flags to the xOpen()
1168 ** call, depending on the object being opened:
1169 **
1170 ** <ul>
1171 ** <li>  [SQLITE_OPEN_MAIN_DB]
1172 ** <li>  [SQLITE_OPEN_MAIN_JOURNAL]
1173 ** <li>  [SQLITE_OPEN_TEMP_DB]
1174 ** <li>  [SQLITE_OPEN_TEMP_JOURNAL]
1175 ** <li>  [SQLITE_OPEN_TRANSIENT_DB]
1176 ** <li>  [SQLITE_OPEN_SUBJOURNAL]
1177 ** <li>  [SQLITE_OPEN_MASTER_JOURNAL]
1178 ** <li>  [SQLITE_OPEN_WAL]
1179 ** </ul>)^
1180 **
1181 ** The file I/O implementation can use the object type flags to
1182 ** change the way it deals with files.  For example, an application
1183 ** that does not care about crash recovery or rollback might make
1184 ** the open of a journal file a no-op.  Writes to this journal would
1185 ** also be no-ops, and any attempt to read the journal would return
1186 ** SQLITE_IOERR.  Or the implementation might recognize that a database
1187 ** file will be doing page-aligned sector reads and writes in a random
1188 ** order and set up its I/O subsystem accordingly.
1189 **
1190 ** SQLite might also add one of the following flags to the xOpen method:
1191 **
1192 ** <ul>
1193 ** <li> [SQLITE_OPEN_DELETEONCLOSE]
1194 ** <li> [SQLITE_OPEN_EXCLUSIVE]
1195 ** </ul>
1196 **
1197 ** The [SQLITE_OPEN_DELETEONCLOSE] flag means the file should be
1198 ** deleted when it is closed.  ^The [SQLITE_OPEN_DELETEONCLOSE]
1199 ** will be set for TEMP databases and their journals, transient
1200 ** databases, and subjournals.
1201 **
1202 ** ^The [SQLITE_OPEN_EXCLUSIVE] flag is always used in conjunction
1203 ** with the [SQLITE_OPEN_CREATE] flag, which are both directly
1204 ** analogous to the O_EXCL and O_CREAT flags of the POSIX open()
1205 ** API.  The SQLITE_OPEN_EXCLUSIVE flag, when paired with the
1206 ** SQLITE_OPEN_CREATE, is used to indicate that file should always
1207 ** be created, and that it is an error if it already exists.
1208 ** It is <i>not</i> used to indicate the file should be opened
1209 ** for exclusive access.
1210 **
1211 ** ^At least szOsFile bytes of memory are allocated by SQLite
1212 ** to hold the  [sqlite3_file] structure passed as the third
1213 ** argument to xOpen.  The xOpen method does not have to
1214 ** allocate the structure; it should just fill it in.  Note that
1215 ** the xOpen method must set the sqlite3_file.pMethods to either
1216 ** a valid [sqlite3_io_methods] object or to NULL.  xOpen must do
1217 ** this even if the open fails.  SQLite expects that the sqlite3_file.pMethods
1218 ** element will be valid after xOpen returns regardless of the success
1219 ** or failure of the xOpen call.
1220 **
1221 ** [[sqlite3_vfs.xAccess]]
1222 ** ^The flags argument to xAccess() may be [SQLITE_ACCESS_EXISTS]
1223 ** to test for the existence of a file, or [SQLITE_ACCESS_READWRITE] to
1224 ** test whether a file is readable and writable, or [SQLITE_ACCESS_READ]
1225 ** to test whether a file is at least readable.   The file can be a
1226 ** directory.
1227 **
1228 ** ^SQLite will always allocate at least mxPathname+1 bytes for the
1229 ** output buffer xFullPathname.  The exact size of the output buffer
1230 ** is also passed as a parameter to both  methods. If the output buffer
1231 ** is not large enough, [SQLITE_CANTOPEN] should be returned. Since this is
1232 ** handled as a fatal error by SQLite, vfs implementations should endeavor
1233 ** to prevent this by setting mxPathname to a sufficiently large value.
1234 **
1235 ** The xRandomness(), xSleep(), xCurrentTime(), and xCurrentTimeInt64()
1236 ** interfaces are not strictly a part of the filesystem, but they are
1237 ** included in the VFS structure for completeness.
1238 ** The xRandomness() function attempts to return nBytes bytes
1239 ** of good-quality randomness into zOut.  The return value is
1240 ** the actual number of bytes of randomness obtained.
1241 ** The xSleep() method causes the calling thread to sleep for at
1242 ** least the number of microseconds given.  ^The xCurrentTime()
1243 ** method returns a Julian Day Number for the current date and time as
1244 ** a floating point value.
1245 ** ^The xCurrentTimeInt64() method returns, as an integer, the Julian
1246 ** Day Number multiplied by 86400000 (the number of milliseconds in
1247 ** a 24-hour day).
1248 ** ^SQLite will use the xCurrentTimeInt64() method to get the current
1249 ** date and time if that method is available (if iVersion is 2 or
1250 ** greater and the function pointer is not NULL) and will fall back
1251 ** to xCurrentTime() if xCurrentTimeInt64() is unavailable.
1252 **
1253 ** ^The xSetSystemCall(), xGetSystemCall(), and xNestSystemCall() interfaces
1254 ** are not used by the SQLite core.  These optional interfaces are provided
1255 ** by some VFSes to facilitate testing of the VFS code. By overriding
1256 ** system calls with functions under its control, a test program can
1257 ** simulate faults and error conditions that would otherwise be difficult
1258 ** or impossible to induce.  The set of system calls that can be overridden
1259 ** varies from one VFS to another, and from one version of the same VFS to the
1260 ** next.  Applications that use these interfaces must be prepared for any
1261 ** or all of these interfaces to be NULL or for their behavior to change
1262 ** from one release to the next.  Applications must not attempt to access
1263 ** any of these methods if the iVersion of the VFS is less than 3.
1264 */
1265 typedef struct sqlite3_vfs sqlite3_vfs;
1266 typedef void (*sqlite3_syscall_ptr)(void);
1267 struct sqlite3_vfs {
1268   int iVersion;            /* Structure version number (currently 3) */
1269   int szOsFile;            /* Size of subclassed sqlite3_file */
1270   int mxPathname;          /* Maximum file pathname length */
1271   sqlite3_vfs *pNext;      /* Next registered VFS */
1272   const char *zName;       /* Name of this virtual file system */
1273   void *pAppData;          /* Pointer to application-specific data */
1274   int (*xOpen)(sqlite3_vfs*, const char *zName, sqlite3_file*,
1275                int flags, int *pOutFlags);
1276   int (*xDelete)(sqlite3_vfs*, const char *zName, int syncDir);
1277   int (*xAccess)(sqlite3_vfs*, const char *zName, int flags, int *pResOut);
1278   int (*xFullPathname)(sqlite3_vfs*, const char *zName, int nOut, char *zOut);
1279   void *(*xDlOpen)(sqlite3_vfs*, const char *zFilename);
1280   void (*xDlError)(sqlite3_vfs*, int nByte, char *zErrMsg);
1281   void (*(*xDlSym)(sqlite3_vfs*,void*, const char *zSymbol))(void);
1282   void (*xDlClose)(sqlite3_vfs*, void*);
1283   int (*xRandomness)(sqlite3_vfs*, int nByte, char *zOut);
1284   int (*xSleep)(sqlite3_vfs*, int microseconds);
1285   int (*xCurrentTime)(sqlite3_vfs*, double*);
1286   int (*xGetLastError)(sqlite3_vfs*, int, char *);
1287   /*
1288   ** The methods above are in version 1 of the sqlite_vfs object
1289   ** definition.  Those that follow are added in version 2 or later
1290   */
1291   int (*xCurrentTimeInt64)(sqlite3_vfs*, sqlite3_int64*);
1292   /*
1293   ** The methods above are in versions 1 and 2 of the sqlite_vfs object.
1294   ** Those below are for version 3 and greater.
1295   */
1296   int (*xSetSystemCall)(sqlite3_vfs*, const char *zName, sqlite3_syscall_ptr);
1297   sqlite3_syscall_ptr (*xGetSystemCall)(sqlite3_vfs*, const char *zName);
1298   const char *(*xNextSystemCall)(sqlite3_vfs*, const char *zName);
1299   /*
1300   ** The methods above are in versions 1 through 3 of the sqlite_vfs object.
1301   ** New fields may be appended in figure versions.  The iVersion
1302   ** value will increment whenever this happens.
1303   */
1304 };
1305 
1306 /*
1307 ** CAPI3REF: Flags for the xAccess VFS method
1308 **
1309 ** These integer constants can be used as the third parameter to
1310 ** the xAccess method of an [sqlite3_vfs] object.  They determine
1311 ** what kind of permissions the xAccess method is looking for.
1312 ** With SQLITE_ACCESS_EXISTS, the xAccess method
1313 ** simply checks whether the file exists.
1314 ** With SQLITE_ACCESS_READWRITE, the xAccess method
1315 ** checks whether the named directory is both readable and writable
1316 ** (in other words, if files can be added, removed, and renamed within
1317 ** the directory).
1318 ** The SQLITE_ACCESS_READWRITE constant is currently used only by the
1319 ** [temp_store_directory pragma], though this could change in a future
1320 ** release of SQLite.
1321 ** With SQLITE_ACCESS_READ, the xAccess method
1322 ** checks whether the file is readable.  The SQLITE_ACCESS_READ constant is
1323 ** currently unused, though it might be used in a future release of
1324 ** SQLite.
1325 */
1326 #define SQLITE_ACCESS_EXISTS    0
1327 #define SQLITE_ACCESS_READWRITE 1   /* Used by PRAGMA temp_store_directory */
1328 #define SQLITE_ACCESS_READ      2   /* Unused */
1329 
1330 /*
1331 ** CAPI3REF: Flags for the xShmLock VFS method
1332 **
1333 ** These integer constants define the various locking operations
1334 ** allowed by the xShmLock method of [sqlite3_io_methods].  The
1335 ** following are the only legal combinations of flags to the
1336 ** xShmLock method:
1337 **
1338 ** <ul>
1339 ** <li>  SQLITE_SHM_LOCK | SQLITE_SHM_SHARED
1340 ** <li>  SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE
1341 ** <li>  SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED
1342 ** <li>  SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE
1343 ** </ul>
1344 **
1345 ** When unlocking, the same SHARED or EXCLUSIVE flag must be supplied as
1346 ** was given no the corresponding lock.
1347 **
1348 ** The xShmLock method can transition between unlocked and SHARED or
1349 ** between unlocked and EXCLUSIVE.  It cannot transition between SHARED
1350 ** and EXCLUSIVE.
1351 */
1352 #define SQLITE_SHM_UNLOCK       1
1353 #define SQLITE_SHM_LOCK         2
1354 #define SQLITE_SHM_SHARED       4
1355 #define SQLITE_SHM_EXCLUSIVE    8
1356 
1357 /*
1358 ** CAPI3REF: Maximum xShmLock index
1359 **
1360 ** The xShmLock method on [sqlite3_io_methods] may use values
1361 ** between 0 and this upper bound as its "offset" argument.
1362 ** The SQLite core will never attempt to acquire or release a
1363 ** lock outside of this range
1364 */
1365 #define SQLITE_SHM_NLOCK        8
1366 
1367 
1368 /*
1369 ** CAPI3REF: Initialize The SQLite Library
1370 **
1371 ** ^The sqlite3_initialize() routine initializes the
1372 ** SQLite library.  ^The sqlite3_shutdown() routine
1373 ** deallocates any resources that were allocated by sqlite3_initialize().
1374 ** These routines are designed to aid in process initialization and
1375 ** shutdown on embedded systems.  Workstation applications using
1376 ** SQLite normally do not need to invoke either of these routines.
1377 **
1378 ** A call to sqlite3_initialize() is an "effective" call if it is
1379 ** the first time sqlite3_initialize() is invoked during the lifetime of
1380 ** the process, or if it is the first time sqlite3_initialize() is invoked
1381 ** following a call to sqlite3_shutdown().  ^(Only an effective call
1382 ** of sqlite3_initialize() does any initialization.  All other calls
1383 ** are harmless no-ops.)^
1384 **
1385 ** A call to sqlite3_shutdown() is an "effective" call if it is the first
1386 ** call to sqlite3_shutdown() since the last sqlite3_initialize().  ^(Only
1387 ** an effective call to sqlite3_shutdown() does any deinitialization.
1388 ** All other valid calls to sqlite3_shutdown() are harmless no-ops.)^
1389 **
1390 ** The sqlite3_initialize() interface is threadsafe, but sqlite3_shutdown()
1391 ** is not.  The sqlite3_shutdown() interface must only be called from a
1392 ** single thread.  All open [database connections] must be closed and all
1393 ** other SQLite resources must be deallocated prior to invoking
1394 ** sqlite3_shutdown().
1395 **
1396 ** Among other things, ^sqlite3_initialize() will invoke
1397 ** sqlite3_os_init().  Similarly, ^sqlite3_shutdown()
1398 ** will invoke sqlite3_os_end().
1399 **
1400 ** ^The sqlite3_initialize() routine returns [SQLITE_OK] on success.
1401 ** ^If for some reason, sqlite3_initialize() is unable to initialize
1402 ** the library (perhaps it is unable to allocate a needed resource such
1403 ** as a mutex) it returns an [error code] other than [SQLITE_OK].
1404 **
1405 ** ^The sqlite3_initialize() routine is called internally by many other
1406 ** SQLite interfaces so that an application usually does not need to
1407 ** invoke sqlite3_initialize() directly.  For example, [sqlite3_open()]
1408 ** calls sqlite3_initialize() so the SQLite library will be automatically
1409 ** initialized when [sqlite3_open()] is called if it has not be initialized
1410 ** already.  ^However, if SQLite is compiled with the [SQLITE_OMIT_AUTOINIT]
1411 ** compile-time option, then the automatic calls to sqlite3_initialize()
1412 ** are omitted and the application must call sqlite3_initialize() directly
1413 ** prior to using any other SQLite interface.  For maximum portability,
1414 ** it is recommended that applications always invoke sqlite3_initialize()
1415 ** directly prior to using any other SQLite interface.  Future releases
1416 ** of SQLite may require this.  In other words, the behavior exhibited
1417 ** when SQLite is compiled with [SQLITE_OMIT_AUTOINIT] might become the
1418 ** default behavior in some future release of SQLite.
1419 **
1420 ** The sqlite3_os_init() routine does operating-system specific
1421 ** initialization of the SQLite library.  The sqlite3_os_end()
1422 ** routine undoes the effect of sqlite3_os_init().  Typical tasks
1423 ** performed by these routines include allocation or deallocation
1424 ** of static resources, initialization of global variables,
1425 ** setting up a default [sqlite3_vfs] module, or setting up
1426 ** a default configuration using [sqlite3_config()].
1427 **
1428 ** The application should never invoke either sqlite3_os_init()
1429 ** or sqlite3_os_end() directly.  The application should only invoke
1430 ** sqlite3_initialize() and sqlite3_shutdown().  The sqlite3_os_init()
1431 ** interface is called automatically by sqlite3_initialize() and
1432 ** sqlite3_os_end() is called by sqlite3_shutdown().  Appropriate
1433 ** implementations for sqlite3_os_init() and sqlite3_os_end()
1434 ** are built into SQLite when it is compiled for Unix, Windows, or OS/2.
1435 ** When [custom builds | built for other platforms]
1436 ** (using the [SQLITE_OS_OTHER=1] compile-time
1437 ** option) the application must supply a suitable implementation for
1438 ** sqlite3_os_init() and sqlite3_os_end().  An application-supplied
1439 ** implementation of sqlite3_os_init() or sqlite3_os_end()
1440 ** must return [SQLITE_OK] on success and some other [error code] upon
1441 ** failure.
1442 */
1443 SQLITE_API int sqlite3_initialize(void);
1444 SQLITE_API int sqlite3_shutdown(void);
1445 SQLITE_API int sqlite3_os_init(void);
1446 SQLITE_API int sqlite3_os_end(void);
1447 
1448 /*
1449 ** CAPI3REF: Configuring The SQLite Library
1450 **
1451 ** The sqlite3_config() interface is used to make global configuration
1452 ** changes to SQLite in order to tune SQLite to the specific needs of
1453 ** the application.  The default configuration is recommended for most
1454 ** applications and so this routine is usually not necessary.  It is
1455 ** provided to support rare applications with unusual needs.
1456 **
1457 ** The sqlite3_config() interface is not threadsafe.  The application
1458 ** must insure that no other SQLite interfaces are invoked by other
1459 ** threads while sqlite3_config() is running.  Furthermore, sqlite3_config()
1460 ** may only be invoked prior to library initialization using
1461 ** [sqlite3_initialize()] or after shutdown by [sqlite3_shutdown()].
1462 ** ^If sqlite3_config() is called after [sqlite3_initialize()] and before
1463 ** [sqlite3_shutdown()] then it will return SQLITE_MISUSE.
1464 ** Note, however, that ^sqlite3_config() can be called as part of the
1465 ** implementation of an application-defined [sqlite3_os_init()].
1466 **
1467 ** The first argument to sqlite3_config() is an integer
1468 ** [configuration option] that determines
1469 ** what property of SQLite is to be configured.  Subsequent arguments
1470 ** vary depending on the [configuration option]
1471 ** in the first argument.
1472 **
1473 ** ^When a configuration option is set, sqlite3_config() returns [SQLITE_OK].
1474 ** ^If the option is unknown or SQLite is unable to set the option
1475 ** then this routine returns a non-zero [error code].
1476 */
1477 SQLITE_API int sqlite3_config(int, ...);
1478 
1479 /*
1480 ** CAPI3REF: Configure database connections
1481 **
1482 ** The sqlite3_db_config() interface is used to make configuration
1483 ** changes to a [database connection].  The interface is similar to
1484 ** [sqlite3_config()] except that the changes apply to a single
1485 ** [database connection] (specified in the first argument).
1486 **
1487 ** The second argument to sqlite3_db_config(D,V,...)  is the
1488 ** [SQLITE_DBCONFIG_LOOKASIDE | configuration verb] - an integer code
1489 ** that indicates what aspect of the [database connection] is being configured.
1490 ** Subsequent arguments vary depending on the configuration verb.
1491 **
1492 ** ^Calls to sqlite3_db_config() return SQLITE_OK if and only if
1493 ** the call is considered successful.
1494 */
1495 SQLITE_API int sqlite3_db_config(sqlite3*, int op, ...);
1496 
1497 /*
1498 ** CAPI3REF: Memory Allocation Routines
1499 **
1500 ** An instance of this object defines the interface between SQLite
1501 ** and low-level memory allocation routines.
1502 **
1503 ** This object is used in only one place in the SQLite interface.
1504 ** A pointer to an instance of this object is the argument to
1505 ** [sqlite3_config()] when the configuration option is
1506 ** [SQLITE_CONFIG_MALLOC] or [SQLITE_CONFIG_GETMALLOC].
1507 ** By creating an instance of this object
1508 ** and passing it to [sqlite3_config]([SQLITE_CONFIG_MALLOC])
1509 ** during configuration, an application can specify an alternative
1510 ** memory allocation subsystem for SQLite to use for all of its
1511 ** dynamic memory needs.
1512 **
1513 ** Note that SQLite comes with several [built-in memory allocators]
1514 ** that are perfectly adequate for the overwhelming majority of applications
1515 ** and that this object is only useful to a tiny minority of applications
1516 ** with specialized memory allocation requirements.  This object is
1517 ** also used during testing of SQLite in order to specify an alternative
1518 ** memory allocator that simulates memory out-of-memory conditions in
1519 ** order to verify that SQLite recovers gracefully from such
1520 ** conditions.
1521 **
1522 ** The xMalloc, xRealloc, and xFree methods must work like the
1523 ** malloc(), realloc() and free() functions from the standard C library.
1524 ** ^SQLite guarantees that the second argument to
1525 ** xRealloc is always a value returned by a prior call to xRoundup.
1526 **
1527 ** xSize should return the allocated size of a memory allocation
1528 ** previously obtained from xMalloc or xRealloc.  The allocated size
1529 ** is always at least as big as the requested size but may be larger.
1530 **
1531 ** The xRoundup method returns what would be the allocated size of
1532 ** a memory allocation given a particular requested size.  Most memory
1533 ** allocators round up memory allocations at least to the next multiple
1534 ** of 8.  Some allocators round up to a larger multiple or to a power of 2.
1535 ** Every memory allocation request coming in through [sqlite3_malloc()]
1536 ** or [sqlite3_realloc()] first calls xRoundup.  If xRoundup returns 0,
1537 ** that causes the corresponding memory allocation to fail.
1538 **
1539 ** The xInit method initializes the memory allocator.  For example,
1540 ** it might allocate any require mutexes or initialize internal data
1541 ** structures.  The xShutdown method is invoked (indirectly) by
1542 ** [sqlite3_shutdown()] and should deallocate any resources acquired
1543 ** by xInit.  The pAppData pointer is used as the only parameter to
1544 ** xInit and xShutdown.
1545 **
1546 ** SQLite holds the [SQLITE_MUTEX_STATIC_MASTER] mutex when it invokes
1547 ** the xInit method, so the xInit method need not be threadsafe.  The
1548 ** xShutdown method is only called from [sqlite3_shutdown()] so it does
1549 ** not need to be threadsafe either.  For all other methods, SQLite
1550 ** holds the [SQLITE_MUTEX_STATIC_MEM] mutex as long as the
1551 ** [SQLITE_CONFIG_MEMSTATUS] configuration option is turned on (which
1552 ** it is by default) and so the methods are automatically serialized.
1553 ** However, if [SQLITE_CONFIG_MEMSTATUS] is disabled, then the other
1554 ** methods must be threadsafe or else make their own arrangements for
1555 ** serialization.
1556 **
1557 ** SQLite will never invoke xInit() more than once without an intervening
1558 ** call to xShutdown().
1559 */
1560 typedef struct sqlite3_mem_methods sqlite3_mem_methods;
1561 struct sqlite3_mem_methods {
1562   void *(*xMalloc)(int);         /* Memory allocation function */
1563   void (*xFree)(void*);          /* Free a prior allocation */
1564   void *(*xRealloc)(void*,int);  /* Resize an allocation */
1565   int (*xSize)(void*);           /* Return the size of an allocation */
1566   int (*xRoundup)(int);          /* Round up request size to allocation size */
1567   int (*xInit)(void*);           /* Initialize the memory allocator */
1568   void (*xShutdown)(void*);      /* Deinitialize the memory allocator */
1569   void *pAppData;                /* Argument to xInit() and xShutdown() */
1570 };
1571 
1572 /*
1573 ** CAPI3REF: Configuration Options
1574 ** KEYWORDS: {configuration option}
1575 **
1576 ** These constants are the available integer configuration options that
1577 ** can be passed as the first argument to the [sqlite3_config()] interface.
1578 **
1579 ** New configuration options may be added in future releases of SQLite.
1580 ** Existing configuration options might be discontinued.  Applications
1581 ** should check the return code from [sqlite3_config()] to make sure that
1582 ** the call worked.  The [sqlite3_config()] interface will return a
1583 ** non-zero [error code] if a discontinued or unsupported configuration option
1584 ** is invoked.
1585 **
1586 ** <dl>
1587 ** [[SQLITE_CONFIG_SINGLETHREAD]] <dt>SQLITE_CONFIG_SINGLETHREAD</dt>
1588 ** <dd>There are no arguments to this option.  ^This option sets the
1589 ** [threading mode] to Single-thread.  In other words, it disables
1590 ** all mutexing and puts SQLite into a mode where it can only be used
1591 ** by a single thread.   ^If SQLite is compiled with
1592 ** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
1593 ** it is not possible to change the [threading mode] from its default
1594 ** value of Single-thread and so [sqlite3_config()] will return
1595 ** [SQLITE_ERROR] if called with the SQLITE_CONFIG_SINGLETHREAD
1596 ** configuration option.</dd>
1597 **
1598 ** [[SQLITE_CONFIG_MULTITHREAD]] <dt>SQLITE_CONFIG_MULTITHREAD</dt>
1599 ** <dd>There are no arguments to this option.  ^This option sets the
1600 ** [threading mode] to Multi-thread.  In other words, it disables
1601 ** mutexing on [database connection] and [prepared statement] objects.
1602 ** The application is responsible for serializing access to
1603 ** [database connections] and [prepared statements].  But other mutexes
1604 ** are enabled so that SQLite will be safe to use in a multi-threaded
1605 ** environment as long as no two threads attempt to use the same
1606 ** [database connection] at the same time.  ^If SQLite is compiled with
1607 ** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
1608 ** it is not possible to set the Multi-thread [threading mode] and
1609 ** [sqlite3_config()] will return [SQLITE_ERROR] if called with the
1610 ** SQLITE_CONFIG_MULTITHREAD configuration option.</dd>
1611 **
1612 ** [[SQLITE_CONFIG_SERIALIZED]] <dt>SQLITE_CONFIG_SERIALIZED</dt>
1613 ** <dd>There are no arguments to this option.  ^This option sets the
1614 ** [threading mode] to Serialized. In other words, this option enables
1615 ** all mutexes including the recursive
1616 ** mutexes on [database connection] and [prepared statement] objects.
1617 ** In this mode (which is the default when SQLite is compiled with
1618 ** [SQLITE_THREADSAFE=1]) the SQLite library will itself serialize access
1619 ** to [database connections] and [prepared statements] so that the
1620 ** application is free to use the same [database connection] or the
1621 ** same [prepared statement] in different threads at the same time.
1622 ** ^If SQLite is compiled with
1623 ** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
1624 ** it is not possible to set the Serialized [threading mode] and
1625 ** [sqlite3_config()] will return [SQLITE_ERROR] if called with the
1626 ** SQLITE_CONFIG_SERIALIZED configuration option.</dd>
1627 **
1628 ** [[SQLITE_CONFIG_MALLOC]] <dt>SQLITE_CONFIG_MALLOC</dt>
1629 ** <dd> ^(This option takes a single argument which is a pointer to an
1630 ** instance of the [sqlite3_mem_methods] structure.  The argument specifies
1631 ** alternative low-level memory allocation routines to be used in place of
1632 ** the memory allocation routines built into SQLite.)^ ^SQLite makes
1633 ** its own private copy of the content of the [sqlite3_mem_methods] structure
1634 ** before the [sqlite3_config()] call returns.</dd>
1635 **
1636 ** [[SQLITE_CONFIG_GETMALLOC]] <dt>SQLITE_CONFIG_GETMALLOC</dt>
1637 ** <dd> ^(This option takes a single argument which is a pointer to an
1638 ** instance of the [sqlite3_mem_methods] structure.  The [sqlite3_mem_methods]
1639 ** structure is filled with the currently defined memory allocation routines.)^
1640 ** This option can be used to overload the default memory allocation
1641 ** routines with a wrapper that simulations memory allocation failure or
1642 ** tracks memory usage, for example. </dd>
1643 **
1644 ** [[SQLITE_CONFIG_MEMSTATUS]] <dt>SQLITE_CONFIG_MEMSTATUS</dt>
1645 ** <dd> ^This option takes single argument of type int, interpreted as a
1646 ** boolean, which enables or disables the collection of memory allocation
1647 ** statistics. ^(When memory allocation statistics are disabled, the
1648 ** following SQLite interfaces become non-operational:
1649 **   <ul>
1650 **   <li> [sqlite3_memory_used()]
1651 **   <li> [sqlite3_memory_highwater()]
1652 **   <li> [sqlite3_soft_heap_limit64()]
1653 **   <li> [sqlite3_status()]
1654 **   </ul>)^
1655 ** ^Memory allocation statistics are enabled by default unless SQLite is
1656 ** compiled with [SQLITE_DEFAULT_MEMSTATUS]=0 in which case memory
1657 ** allocation statistics are disabled by default.
1658 ** </dd>
1659 **
1660 ** [[SQLITE_CONFIG_SCRATCH]] <dt>SQLITE_CONFIG_SCRATCH</dt>
1661 ** <dd> ^This option specifies a static memory buffer that SQLite can use for
1662 ** scratch memory.  There are three arguments:  A pointer an 8-byte
1663 ** aligned memory buffer from which the scratch allocations will be
1664 ** drawn, the size of each scratch allocation (sz),
1665 ** and the maximum number of scratch allocations (N).  The sz
1666 ** argument must be a multiple of 16.
1667 ** The first argument must be a pointer to an 8-byte aligned buffer
1668 ** of at least sz*N bytes of memory.
1669 ** ^SQLite will use no more than two scratch buffers per thread.  So
1670 ** N should be set to twice the expected maximum number of threads.
1671 ** ^SQLite will never require a scratch buffer that is more than 6
1672 ** times the database page size. ^If SQLite needs needs additional
1673 ** scratch memory beyond what is provided by this configuration option, then
1674 ** [sqlite3_malloc()] will be used to obtain the memory needed.</dd>
1675 **
1676 ** [[SQLITE_CONFIG_PAGECACHE]] <dt>SQLITE_CONFIG_PAGECACHE</dt>
1677 ** <dd> ^This option specifies a static memory buffer that SQLite can use for
1678 ** the database page cache with the default page cache implementation.
1679 ** This configuration should not be used if an application-define page
1680 ** cache implementation is loaded using the SQLITE_CONFIG_PCACHE2 option.
1681 ** There are three arguments to this option: A pointer to 8-byte aligned
1682 ** memory, the size of each page buffer (sz), and the number of pages (N).
1683 ** The sz argument should be the size of the largest database page
1684 ** (a power of two between 512 and 32768) plus a little extra for each
1685 ** page header.  ^The page header size is 20 to 40 bytes depending on
1686 ** the host architecture.  ^It is harmless, apart from the wasted memory,
1687 ** to make sz a little too large.  The first
1688 ** argument should point to an allocation of at least sz*N bytes of memory.
1689 ** ^SQLite will use the memory provided by the first argument to satisfy its
1690 ** memory needs for the first N pages that it adds to cache.  ^If additional
1691 ** page cache memory is needed beyond what is provided by this option, then
1692 ** SQLite goes to [sqlite3_malloc()] for the additional storage space.
1693 ** The pointer in the first argument must
1694 ** be aligned to an 8-byte boundary or subsequent behavior of SQLite
1695 ** will be undefined.</dd>
1696 **
1697 ** [[SQLITE_CONFIG_HEAP]] <dt>SQLITE_CONFIG_HEAP</dt>
1698 ** <dd> ^This option specifies a static memory buffer that SQLite will use
1699 ** for all of its dynamic memory allocation needs beyond those provided
1700 ** for by [SQLITE_CONFIG_SCRATCH] and [SQLITE_CONFIG_PAGECACHE].
1701 ** There are three arguments: An 8-byte aligned pointer to the memory,
1702 ** the number of bytes in the memory buffer, and the minimum allocation size.
1703 ** ^If the first pointer (the memory pointer) is NULL, then SQLite reverts
1704 ** to using its default memory allocator (the system malloc() implementation),
1705 ** undoing any prior invocation of [SQLITE_CONFIG_MALLOC].  ^If the
1706 ** memory pointer is not NULL and either [SQLITE_ENABLE_MEMSYS3] or
1707 ** [SQLITE_ENABLE_MEMSYS5] are defined, then the alternative memory
1708 ** allocator is engaged to handle all of SQLites memory allocation needs.
1709 ** The first pointer (the memory pointer) must be aligned to an 8-byte
1710 ** boundary or subsequent behavior of SQLite will be undefined.
1711 ** The minimum allocation size is capped at 2**12. Reasonable values
1712 ** for the minimum allocation size are 2**5 through 2**8.</dd>
1713 **
1714 ** [[SQLITE_CONFIG_MUTEX]] <dt>SQLITE_CONFIG_MUTEX</dt>
1715 ** <dd> ^(This option takes a single argument which is a pointer to an
1716 ** instance of the [sqlite3_mutex_methods] structure.  The argument specifies
1717 ** alternative low-level mutex routines to be used in place
1718 ** the mutex routines built into SQLite.)^  ^SQLite makes a copy of the
1719 ** content of the [sqlite3_mutex_methods] structure before the call to
1720 ** [sqlite3_config()] returns. ^If SQLite is compiled with
1721 ** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
1722 ** the entire mutexing subsystem is omitted from the build and hence calls to
1723 ** [sqlite3_config()] with the SQLITE_CONFIG_MUTEX configuration option will
1724 ** return [SQLITE_ERROR].</dd>
1725 **
1726 ** [[SQLITE_CONFIG_GETMUTEX]] <dt>SQLITE_CONFIG_GETMUTEX</dt>
1727 ** <dd> ^(This option takes a single argument which is a pointer to an
1728 ** instance of the [sqlite3_mutex_methods] structure.  The
1729 ** [sqlite3_mutex_methods]
1730 ** structure is filled with the currently defined mutex routines.)^
1731 ** This option can be used to overload the default mutex allocation
1732 ** routines with a wrapper used to track mutex usage for performance
1733 ** profiling or testing, for example.   ^If SQLite is compiled with
1734 ** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
1735 ** the entire mutexing subsystem is omitted from the build and hence calls to
1736 ** [sqlite3_config()] with the SQLITE_CONFIG_GETMUTEX configuration option will
1737 ** return [SQLITE_ERROR].</dd>
1738 **
1739 ** [[SQLITE_CONFIG_LOOKASIDE]] <dt>SQLITE_CONFIG_LOOKASIDE</dt>
1740 ** <dd> ^(This option takes two arguments that determine the default
1741 ** memory allocation for the lookaside memory allocator on each
1742 ** [database connection].  The first argument is the
1743 ** size of each lookaside buffer slot and the second is the number of
1744 ** slots allocated to each database connection.)^  ^(This option sets the
1745 ** <i>default</i> lookaside size. The [SQLITE_DBCONFIG_LOOKASIDE]
1746 ** verb to [sqlite3_db_config()] can be used to change the lookaside
1747 ** configuration on individual connections.)^ </dd>
1748 **
1749 ** [[SQLITE_CONFIG_PCACHE2]] <dt>SQLITE_CONFIG_PCACHE2</dt>
1750 ** <dd> ^(This option takes a single argument which is a pointer to
1751 ** an [sqlite3_pcache_methods2] object.  This object specifies the interface
1752 ** to a custom page cache implementation.)^  ^SQLite makes a copy of the
1753 ** object and uses it for page cache memory allocations.</dd>
1754 **
1755 ** [[SQLITE_CONFIG_GETPCACHE2]] <dt>SQLITE_CONFIG_GETPCACHE2</dt>
1756 ** <dd> ^(This option takes a single argument which is a pointer to an
1757 ** [sqlite3_pcache_methods2] object.  SQLite copies of the current
1758 ** page cache implementation into that object.)^ </dd>
1759 **
1760 ** [[SQLITE_CONFIG_LOG]] <dt>SQLITE_CONFIG_LOG</dt>
1761 ** <dd> The SQLITE_CONFIG_LOG option is used to configure the SQLite
1762 ** global [error log].
1763 ** (^The SQLITE_CONFIG_LOG option takes two arguments: a pointer to a
1764 ** function with a call signature of void(*)(void*,int,const char*),
1765 ** and a pointer to void. ^If the function pointer is not NULL, it is
1766 ** invoked by [sqlite3_log()] to process each logging event.  ^If the
1767 ** function pointer is NULL, the [sqlite3_log()] interface becomes a no-op.
1768 ** ^The void pointer that is the second argument to SQLITE_CONFIG_LOG is
1769 ** passed through as the first parameter to the application-defined logger
1770 ** function whenever that function is invoked.  ^The second parameter to
1771 ** the logger function is a copy of the first parameter to the corresponding
1772 ** [sqlite3_log()] call and is intended to be a [result code] or an
1773 ** [extended result code].  ^The third parameter passed to the logger is
1774 ** log message after formatting via [sqlite3_snprintf()].
1775 ** The SQLite logging interface is not reentrant; the logger function
1776 ** supplied by the application must not invoke any SQLite interface.
1777 ** In a multi-threaded application, the application-defined logger
1778 ** function must be threadsafe. </dd>
1779 **
1780 ** [[SQLITE_CONFIG_URI]] <dt>SQLITE_CONFIG_URI
1781 ** <dd>^(This option takes a single argument of type int. If non-zero, then
1782 ** URI handling is globally enabled. If the parameter is zero, then URI handling
1783 ** is globally disabled.)^ ^If URI handling is globally enabled, all filenames
1784 ** passed to [sqlite3_open()], [sqlite3_open_v2()], [sqlite3_open16()] or
1785 ** specified as part of [ATTACH] commands are interpreted as URIs, regardless
1786 ** of whether or not the [SQLITE_OPEN_URI] flag is set when the database
1787 ** connection is opened. ^If it is globally disabled, filenames are
1788 ** only interpreted as URIs if the SQLITE_OPEN_URI flag is set when the
1789 ** database connection is opened. ^(By default, URI handling is globally
1790 ** disabled. The default value may be changed by compiling with the
1791 ** [SQLITE_USE_URI] symbol defined.)^
1792 **
1793 ** [[SQLITE_CONFIG_COVERING_INDEX_SCAN]] <dt>SQLITE_CONFIG_COVERING_INDEX_SCAN
1794 ** <dd>^This option takes a single integer argument which is interpreted as
1795 ** a boolean in order to enable or disable the use of covering indices for
1796 ** full table scans in the query optimizer.  ^The default setting is determined
1797 ** by the [SQLITE_ALLOW_COVERING_INDEX_SCAN] compile-time option, or is "on"
1798 ** if that compile-time option is omitted.
1799 ** The ability to disable the use of covering indices for full table scans
1800 ** is because some incorrectly coded legacy applications might malfunction
1801 ** when the optimization is enabled.  Providing the ability to
1802 ** disable the optimization allows the older, buggy application code to work
1803 ** without change even with newer versions of SQLite.
1804 **
1805 ** [[SQLITE_CONFIG_PCACHE]] [[SQLITE_CONFIG_GETPCACHE]]
1806 ** <dt>SQLITE_CONFIG_PCACHE and SQLITE_CONFIG_GETPCACHE
1807 ** <dd> These options are obsolete and should not be used by new code.
1808 ** They are retained for backwards compatibility but are now no-ops.
1809 ** </dd>
1810 **
1811 ** [[SQLITE_CONFIG_SQLLOG]]
1812 ** <dt>SQLITE_CONFIG_SQLLOG
1813 ** <dd>This option is only available if sqlite is compiled with the
1814 ** [SQLITE_ENABLE_SQLLOG] pre-processor macro defined. The first argument should
1815 ** be a pointer to a function of type void(*)(void*,sqlite3*,const char*, int).
1816 ** The second should be of type (void*). The callback is invoked by the library
1817 ** in three separate circumstances, identified by the value passed as the
1818 ** fourth parameter. If the fourth parameter is 0, then the database connection
1819 ** passed as the second argument has just been opened. The third argument
1820 ** points to a buffer containing the name of the main database file. If the
1821 ** fourth parameter is 1, then the SQL statement that the third parameter
1822 ** points to has just been executed. Or, if the fourth parameter is 2, then
1823 ** the connection being passed as the second parameter is being closed. The
1824 ** third parameter is passed NULL In this case.  An example of using this
1825 ** configuration option can be seen in the "test_sqllog.c" source file in
1826 ** the canonical SQLite source tree.</dd>
1827 **
1828 ** [[SQLITE_CONFIG_MMAP_SIZE]]
1829 ** <dt>SQLITE_CONFIG_MMAP_SIZE
1830 ** <dd>^SQLITE_CONFIG_MMAP_SIZE takes two 64-bit integer (sqlite3_int64) values
1831 ** that are the default mmap size limit (the default setting for
1832 ** [PRAGMA mmap_size]) and the maximum allowed mmap size limit.
1833 ** ^The default setting can be overridden by each database connection using
1834 ** either the [PRAGMA mmap_size] command, or by using the
1835 ** [SQLITE_FCNTL_MMAP_SIZE] file control.  ^(The maximum allowed mmap size
1836 ** cannot be changed at run-time.  Nor may the maximum allowed mmap size
1837 ** exceed the compile-time maximum mmap size set by the
1838 ** [SQLITE_MAX_MMAP_SIZE] compile-time option.)^
1839 ** ^If either argument to this option is negative, then that argument is
1840 ** changed to its compile-time default.
1841 **
1842 ** [[SQLITE_CONFIG_WIN32_HEAPSIZE]]
1843 ** <dt>SQLITE_CONFIG_WIN32_HEAPSIZE
1844 ** <dd>^This option is only available if SQLite is compiled for Windows
1845 ** with the [SQLITE_WIN32_MALLOC] pre-processor macro defined.
1846 ** SQLITE_CONFIG_WIN32_HEAPSIZE takes a 32-bit unsigned integer value
1847 ** that specifies the maximum size of the created heap.
1848 ** </dl>
1849 */
1850 #define SQLITE_CONFIG_SINGLETHREAD  1  /* nil */
1851 #define SQLITE_CONFIG_MULTITHREAD   2  /* nil */
1852 #define SQLITE_CONFIG_SERIALIZED    3  /* nil */
1853 #define SQLITE_CONFIG_MALLOC        4  /* sqlite3_mem_methods* */
1854 #define SQLITE_CONFIG_GETMALLOC     5  /* sqlite3_mem_methods* */
1855 #define SQLITE_CONFIG_SCRATCH       6  /* void*, int sz, int N */
1856 #define SQLITE_CONFIG_PAGECACHE     7  /* void*, int sz, int N */
1857 #define SQLITE_CONFIG_HEAP          8  /* void*, int nByte, int min */
1858 #define SQLITE_CONFIG_MEMSTATUS     9  /* boolean */
1859 #define SQLITE_CONFIG_MUTEX        10  /* sqlite3_mutex_methods* */
1860 #define SQLITE_CONFIG_GETMUTEX     11  /* sqlite3_mutex_methods* */
1861 /* previously SQLITE_CONFIG_CHUNKALLOC 12 which is now unused. */
1862 #define SQLITE_CONFIG_LOOKASIDE    13  /* int int */
1863 #define SQLITE_CONFIG_PCACHE       14  /* no-op */
1864 #define SQLITE_CONFIG_GETPCACHE    15  /* no-op */
1865 #define SQLITE_CONFIG_LOG          16  /* xFunc, void* */
1866 #define SQLITE_CONFIG_URI          17  /* int */
1867 #define SQLITE_CONFIG_PCACHE2      18  /* sqlite3_pcache_methods2* */
1868 #define SQLITE_CONFIG_GETPCACHE2   19  /* sqlite3_pcache_methods2* */
1869 #define SQLITE_CONFIG_COVERING_INDEX_SCAN 20  /* int */
1870 #define SQLITE_CONFIG_SQLLOG       21  /* xSqllog, void* */
1871 #define SQLITE_CONFIG_MMAP_SIZE    22  /* sqlite3_int64, sqlite3_int64 */
1872 #define SQLITE_CONFIG_WIN32_HEAPSIZE      23  /* int nByte */
1873 
1874 /*
1875 ** CAPI3REF: Database Connection Configuration Options
1876 **
1877 ** These constants are the available integer configuration options that
1878 ** can be passed as the second argument to the [sqlite3_db_config()] interface.
1879 **
1880 ** New configuration options may be added in future releases of SQLite.
1881 ** Existing configuration options might be discontinued.  Applications
1882 ** should check the return code from [sqlite3_db_config()] to make sure that
1883 ** the call worked.  ^The [sqlite3_db_config()] interface will return a
1884 ** non-zero [error code] if a discontinued or unsupported configuration option
1885 ** is invoked.
1886 **
1887 ** <dl>
1888 ** <dt>SQLITE_DBCONFIG_LOOKASIDE</dt>
1889 ** <dd> ^This option takes three additional arguments that determine the
1890 ** [lookaside memory allocator] configuration for the [database connection].
1891 ** ^The first argument (the third parameter to [sqlite3_db_config()] is a
1892 ** pointer to a memory buffer to use for lookaside memory.
1893 ** ^The first argument after the SQLITE_DBCONFIG_LOOKASIDE verb
1894 ** may be NULL in which case SQLite will allocate the
1895 ** lookaside buffer itself using [sqlite3_malloc()]. ^The second argument is the
1896 ** size of each lookaside buffer slot.  ^The third argument is the number of
1897 ** slots.  The size of the buffer in the first argument must be greater than
1898 ** or equal to the product of the second and third arguments.  The buffer
1899 ** must be aligned to an 8-byte boundary.  ^If the second argument to
1900 ** SQLITE_DBCONFIG_LOOKASIDE is not a multiple of 8, it is internally
1901 ** rounded down to the next smaller multiple of 8.  ^(The lookaside memory
1902 ** configuration for a database connection can only be changed when that
1903 ** connection is not currently using lookaside memory, or in other words
1904 ** when the "current value" returned by
1905 ** [sqlite3_db_status](D,[SQLITE_CONFIG_LOOKASIDE],...) is zero.
1906 ** Any attempt to change the lookaside memory configuration when lookaside
1907 ** memory is in use leaves the configuration unchanged and returns
1908 ** [SQLITE_BUSY].)^</dd>
1909 **
1910 ** <dt>SQLITE_DBCONFIG_ENABLE_FKEY</dt>
1911 ** <dd> ^This option is used to enable or disable the enforcement of
1912 ** [foreign key constraints].  There should be two additional arguments.
1913 ** The first argument is an integer which is 0 to disable FK enforcement,
1914 ** positive to enable FK enforcement or negative to leave FK enforcement
1915 ** unchanged.  The second parameter is a pointer to an integer into which
1916 ** is written 0 or 1 to indicate whether FK enforcement is off or on
1917 ** following this call.  The second parameter may be a NULL pointer, in
1918 ** which case the FK enforcement setting is not reported back. </dd>
1919 **
1920 ** <dt>SQLITE_DBCONFIG_ENABLE_TRIGGER</dt>
1921 ** <dd> ^This option is used to enable or disable [CREATE TRIGGER | triggers].
1922 ** There should be two additional arguments.
1923 ** The first argument is an integer which is 0 to disable triggers,
1924 ** positive to enable triggers or negative to leave the setting unchanged.
1925 ** The second parameter is a pointer to an integer into which
1926 ** is written 0 or 1 to indicate whether triggers are disabled or enabled
1927 ** following this call.  The second parameter may be a NULL pointer, in
1928 ** which case the trigger setting is not reported back. </dd>
1929 **
1930 ** </dl>
1931 */
1932 #define SQLITE_DBCONFIG_LOOKASIDE       1001  /* void* int int */
1933 #define SQLITE_DBCONFIG_ENABLE_FKEY     1002  /* int int* */
1934 #define SQLITE_DBCONFIG_ENABLE_TRIGGER  1003  /* int int* */
1935 
1936 
1937 /*
1938 ** CAPI3REF: Enable Or Disable Extended Result Codes
1939 **
1940 ** ^The sqlite3_extended_result_codes() routine enables or disables the
1941 ** [extended result codes] feature of SQLite. ^The extended result
1942 ** codes are disabled by default for historical compatibility.
1943 */
1944 SQLITE_API int sqlite3_extended_result_codes(sqlite3*, int onoff);
1945 
1946 /*
1947 ** CAPI3REF: Last Insert Rowid
1948 **
1949 ** ^Each entry in most SQLite tables (except for [WITHOUT ROWID] tables)
1950 ** has a unique 64-bit signed
1951 ** integer key called the [ROWID | "rowid"]. ^The rowid is always available
1952 ** as an undeclared column named ROWID, OID, or _ROWID_ as long as those
1953 ** names are not also used by explicitly declared columns. ^If
1954 ** the table has a column of type [INTEGER PRIMARY KEY] then that column
1955 ** is another alias for the rowid.
1956 **
1957 ** ^The sqlite3_last_insert_rowid(D) interface returns the [rowid] of the
1958 ** most recent successful [INSERT] into a rowid table or [virtual table]
1959 ** on database connection D.
1960 ** ^Inserts into [WITHOUT ROWID] tables are not recorded.
1961 ** ^If no successful [INSERT]s into rowid tables
1962 ** have ever occurred on the database connection D,
1963 ** then sqlite3_last_insert_rowid(D) returns zero.
1964 **
1965 ** ^(If an [INSERT] occurs within a trigger or within a [virtual table]
1966 ** method, then this routine will return the [rowid] of the inserted
1967 ** row as long as the trigger or virtual table method is running.
1968 ** But once the trigger or virtual table method ends, the value returned
1969 ** by this routine reverts to what it was before the trigger or virtual
1970 ** table method began.)^
1971 **
1972 ** ^An [INSERT] that fails due to a constraint violation is not a
1973 ** successful [INSERT] and does not change the value returned by this
1974 ** routine.  ^Thus INSERT OR FAIL, INSERT OR IGNORE, INSERT OR ROLLBACK,
1975 ** and INSERT OR ABORT make no changes to the return value of this
1976 ** routine when their insertion fails.  ^(When INSERT OR REPLACE
1977 ** encounters a constraint violation, it does not fail.  The
1978 ** INSERT continues to completion after deleting rows that caused
1979 ** the constraint problem so INSERT OR REPLACE will always change
1980 ** the return value of this interface.)^
1981 **
1982 ** ^For the purposes of this routine, an [INSERT] is considered to
1983 ** be successful even if it is subsequently rolled back.
1984 **
1985 ** This function is accessible to SQL statements via the
1986 ** [last_insert_rowid() SQL function].
1987 **
1988 ** If a separate thread performs a new [INSERT] on the same
1989 ** database connection while the [sqlite3_last_insert_rowid()]
1990 ** function is running and thus changes the last insert [rowid],
1991 ** then the value returned by [sqlite3_last_insert_rowid()] is
1992 ** unpredictable and might not equal either the old or the new
1993 ** last insert [rowid].
1994 */
1995 SQLITE_API sqlite3_int64 sqlite3_last_insert_rowid(sqlite3*);
1996 
1997 /*
1998 ** CAPI3REF: Count The Number Of Rows Modified
1999 **
2000 ** ^This function returns the number of database rows that were changed
2001 ** or inserted or deleted by the most recently completed SQL statement
2002 ** on the [database connection] specified by the first parameter.
2003 ** ^(Only changes that are directly specified by the [INSERT], [UPDATE],
2004 ** or [DELETE] statement are counted.  Auxiliary changes caused by
2005 ** triggers or [foreign key actions] are not counted.)^ Use the
2006 ** [sqlite3_total_changes()] function to find the total number of changes
2007 ** including changes caused by triggers and foreign key actions.
2008 **
2009 ** ^Changes to a view that are simulated by an [INSTEAD OF trigger]
2010 ** are not counted.  Only real table changes are counted.
2011 **
2012 ** ^(A "row change" is a change to a single row of a single table
2013 ** caused by an INSERT, DELETE, or UPDATE statement.  Rows that
2014 ** are changed as side effects of [REPLACE] constraint resolution,
2015 ** rollback, ABORT processing, [DROP TABLE], or by any other
2016 ** mechanisms do not count as direct row changes.)^
2017 **
2018 ** A "trigger context" is a scope of execution that begins and
2019 ** ends with the script of a [CREATE TRIGGER | trigger].
2020 ** Most SQL statements are
2021 ** evaluated outside of any trigger.  This is the "top level"
2022 ** trigger context.  If a trigger fires from the top level, a
2023 ** new trigger context is entered for the duration of that one
2024 ** trigger.  Subtriggers create subcontexts for their duration.
2025 **
2026 ** ^Calling [sqlite3_exec()] or [sqlite3_step()] recursively does
2027 ** not create a new trigger context.
2028 **
2029 ** ^This function returns the number of direct row changes in the
2030 ** most recent INSERT, UPDATE, or DELETE statement within the same
2031 ** trigger context.
2032 **
2033 ** ^Thus, when called from the top level, this function returns the
2034 ** number of changes in the most recent INSERT, UPDATE, or DELETE
2035 ** that also occurred at the top level.  ^(Within the body of a trigger,
2036 ** the sqlite3_changes() interface can be called to find the number of
2037 ** changes in the most recently completed INSERT, UPDATE, or DELETE
2038 ** statement within the body of the same trigger.
2039 ** However, the number returned does not include changes
2040 ** caused by subtriggers since those have their own context.)^
2041 **
2042 ** See also the [sqlite3_total_changes()] interface, the
2043 ** [count_changes pragma], and the [changes() SQL function].
2044 **
2045 ** If a separate thread makes changes on the same database connection
2046 ** while [sqlite3_changes()] is running then the value returned
2047 ** is unpredictable and not meaningful.
2048 */
2049 SQLITE_API int sqlite3_changes(sqlite3*);
2050 
2051 /*
2052 ** CAPI3REF: Total Number Of Rows Modified
2053 **
2054 ** ^This function returns the number of row changes caused by [INSERT],
2055 ** [UPDATE] or [DELETE] statements since the [database connection] was opened.
2056 ** ^(The count returned by sqlite3_total_changes() includes all changes
2057 ** from all [CREATE TRIGGER | trigger] contexts and changes made by
2058 ** [foreign key actions]. However,
2059 ** the count does not include changes used to implement [REPLACE] constraints,
2060 ** do rollbacks or ABORT processing, or [DROP TABLE] processing.  The
2061 ** count does not include rows of views that fire an [INSTEAD OF trigger],
2062 ** though if the INSTEAD OF trigger makes changes of its own, those changes
2063 ** are counted.)^
2064 ** ^The sqlite3_total_changes() function counts the changes as soon as
2065 ** the statement that makes them is completed (when the statement handle
2066 ** is passed to [sqlite3_reset()] or [sqlite3_finalize()]).
2067 **
2068 ** See also the [sqlite3_changes()] interface, the
2069 ** [count_changes pragma], and the [total_changes() SQL function].
2070 **
2071 ** If a separate thread makes changes on the same database connection
2072 ** while [sqlite3_total_changes()] is running then the value
2073 ** returned is unpredictable and not meaningful.
2074 */
2075 SQLITE_API int sqlite3_total_changes(sqlite3*);
2076 
2077 /*
2078 ** CAPI3REF: Interrupt A Long-Running Query
2079 **
2080 ** ^This function causes any pending database operation to abort and
2081 ** return at its earliest opportunity. This routine is typically
2082 ** called in response to a user action such as pressing "Cancel"
2083 ** or Ctrl-C where the user wants a long query operation to halt
2084 ** immediately.
2085 **
2086 ** ^It is safe to call this routine from a thread different from the
2087 ** thread that is currently running the database operation.  But it
2088 ** is not safe to call this routine with a [database connection] that
2089 ** is closed or might close before sqlite3_interrupt() returns.
2090 **
2091 ** ^If an SQL operation is very nearly finished at the time when
2092 ** sqlite3_interrupt() is called, then it might not have an opportunity
2093 ** to be interrupted and might continue to completion.
2094 **
2095 ** ^An SQL operation that is interrupted will return [SQLITE_INTERRUPT].
2096 ** ^If the interrupted SQL operation is an INSERT, UPDATE, or DELETE
2097 ** that is inside an explicit transaction, then the entire transaction
2098 ** will be rolled back automatically.
2099 **
2100 ** ^The sqlite3_interrupt(D) call is in effect until all currently running
2101 ** SQL statements on [database connection] D complete.  ^Any new SQL statements
2102 ** that are started after the sqlite3_interrupt() call and before the
2103 ** running statements reaches zero are interrupted as if they had been
2104 ** running prior to the sqlite3_interrupt() call.  ^New SQL statements
2105 ** that are started after the running statement count reaches zero are
2106 ** not effected by the sqlite3_interrupt().
2107 ** ^A call to sqlite3_interrupt(D) that occurs when there are no running
2108 ** SQL statements is a no-op and has no effect on SQL statements
2109 ** that are started after the sqlite3_interrupt() call returns.
2110 **
2111 ** If the database connection closes while [sqlite3_interrupt()]
2112 ** is running then bad things will likely happen.
2113 */
2114 SQLITE_API void sqlite3_interrupt(sqlite3*);
2115 
2116 /*
2117 ** CAPI3REF: Determine If An SQL Statement Is Complete
2118 **
2119 ** These routines are useful during command-line input to determine if the
2120 ** currently entered text seems to form a complete SQL statement or
2121 ** if additional input is needed before sending the text into
2122 ** SQLite for parsing.  ^These routines return 1 if the input string
2123 ** appears to be a complete SQL statement.  ^A statement is judged to be
2124 ** complete if it ends with a semicolon token and is not a prefix of a
2125 ** well-formed CREATE TRIGGER statement.  ^Semicolons that are embedded within
2126 ** string literals or quoted identifier names or comments are not
2127 ** independent tokens (they are part of the token in which they are
2128 ** embedded) and thus do not count as a statement terminator.  ^Whitespace
2129 ** and comments that follow the final semicolon are ignored.
2130 **
2131 ** ^These routines return 0 if the statement is incomplete.  ^If a
2132 ** memory allocation fails, then SQLITE_NOMEM is returned.
2133 **
2134 ** ^These routines do not parse the SQL statements thus
2135 ** will not detect syntactically incorrect SQL.
2136 **
2137 ** ^(If SQLite has not been initialized using [sqlite3_initialize()] prior
2138 ** to invoking sqlite3_complete16() then sqlite3_initialize() is invoked
2139 ** automatically by sqlite3_complete16().  If that initialization fails,
2140 ** then the return value from sqlite3_complete16() will be non-zero
2141 ** regardless of whether or not the input SQL is complete.)^
2142 **
2143 ** The input to [sqlite3_complete()] must be a zero-terminated
2144 ** UTF-8 string.
2145 **
2146 ** The input to [sqlite3_complete16()] must be a zero-terminated
2147 ** UTF-16 string in native byte order.
2148 */
2149 SQLITE_API int sqlite3_complete(const char *sql);
2150 SQLITE_API int sqlite3_complete16(const void *sql);
2151 
2152 /*
2153 ** CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors
2154 **
2155 ** ^This routine sets a callback function that might be invoked whenever
2156 ** an attempt is made to open a database table that another thread
2157 ** or process has locked.
2158 **
2159 ** ^If the busy callback is NULL, then [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED]
2160 ** is returned immediately upon encountering the lock.  ^If the busy callback
2161 ** is not NULL, then the callback might be invoked with two arguments.
2162 **
2163 ** ^The first argument to the busy handler is a copy of the void* pointer which
2164 ** is the third argument to sqlite3_busy_handler().  ^The second argument to
2165 ** the busy handler callback is the number of times that the busy handler has
2166 ** been invoked for this locking event.  ^If the
2167 ** busy callback returns 0, then no additional attempts are made to
2168 ** access the database and [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED] is returned.
2169 ** ^If the callback returns non-zero, then another attempt
2170 ** is made to open the database for reading and the cycle repeats.
2171 **
2172 ** The presence of a busy handler does not guarantee that it will be invoked
2173 ** when there is lock contention. ^If SQLite determines that invoking the busy
2174 ** handler could result in a deadlock, it will go ahead and return [SQLITE_BUSY]
2175 ** or [SQLITE_IOERR_BLOCKED] instead of invoking the busy handler.
2176 ** Consider a scenario where one process is holding a read lock that
2177 ** it is trying to promote to a reserved lock and
2178 ** a second process is holding a reserved lock that it is trying
2179 ** to promote to an exclusive lock.  The first process cannot proceed
2180 ** because it is blocked by the second and the second process cannot
2181 ** proceed because it is blocked by the first.  If both processes
2182 ** invoke the busy handlers, neither will make any progress.  Therefore,
2183 ** SQLite returns [SQLITE_BUSY] for the first process, hoping that this
2184 ** will induce the first process to release its read lock and allow
2185 ** the second process to proceed.
2186 **
2187 ** ^The default busy callback is NULL.
2188 **
2189 ** ^The [SQLITE_BUSY] error is converted to [SQLITE_IOERR_BLOCKED]
2190 ** when SQLite is in the middle of a large transaction where all the
2191 ** changes will not fit into the in-memory cache.  SQLite will
2192 ** already hold a RESERVED lock on the database file, but it needs
2193 ** to promote this lock to EXCLUSIVE so that it can spill cache
2194 ** pages into the database file without harm to concurrent
2195 ** readers.  ^If it is unable to promote the lock, then the in-memory
2196 ** cache will be left in an inconsistent state and so the error
2197 ** code is promoted from the relatively benign [SQLITE_BUSY] to
2198 ** the more severe [SQLITE_IOERR_BLOCKED].  ^This error code promotion
2199 ** forces an automatic rollback of the changes.  See the
2200 ** <a href="/cvstrac/wiki?p=CorruptionFollowingBusyError">
2201 ** CorruptionFollowingBusyError</a> wiki page for a discussion of why
2202 ** this is important.
2203 **
2204 ** ^(There can only be a single busy handler defined for each
2205 ** [database connection].  Setting a new busy handler clears any
2206 ** previously set handler.)^  ^Note that calling [sqlite3_busy_timeout()]
2207 ** will also set or clear the busy handler.
2208 **
2209 ** The busy callback should not take any actions which modify the
2210 ** database connection that invoked the busy handler.  Any such actions
2211 ** result in undefined behavior.
2212 **
2213 ** A busy handler must not close the database connection
2214 ** or [prepared statement] that invoked the busy handler.
2215 */
2216 SQLITE_API int sqlite3_busy_handler(sqlite3*, int(*)(void*,int), void*);
2217 
2218 /*
2219 ** CAPI3REF: Set A Busy Timeout
2220 **
2221 ** ^This routine sets a [sqlite3_busy_handler | busy handler] that sleeps
2222 ** for a specified amount of time when a table is locked.  ^The handler
2223 ** will sleep multiple times until at least "ms" milliseconds of sleeping
2224 ** have accumulated.  ^After at least "ms" milliseconds of sleeping,
2225 ** the handler returns 0 which causes [sqlite3_step()] to return
2226 ** [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED].
2227 **
2228 ** ^Calling this routine with an argument less than or equal to zero
2229 ** turns off all busy handlers.
2230 **
2231 ** ^(There can only be a single busy handler for a particular
2232 ** [database connection] any any given moment.  If another busy handler
2233 ** was defined  (using [sqlite3_busy_handler()]) prior to calling
2234 ** this routine, that other busy handler is cleared.)^
2235 */
2236 SQLITE_API int sqlite3_busy_timeout(sqlite3*, int ms);
2237 
2238 /*
2239 ** CAPI3REF: Convenience Routines For Running Queries
2240 **
2241 ** This is a legacy interface that is preserved for backwards compatibility.
2242 ** Use of this interface is not recommended.
2243 **
2244 ** Definition: A <b>result table</b> is memory data structure created by the
2245 ** [sqlite3_get_table()] interface.  A result table records the
2246 ** complete query results from one or more queries.
2247 **
2248 ** The table conceptually has a number of rows and columns.  But
2249 ** these numbers are not part of the result table itself.  These
2250 ** numbers are obtained separately.  Let N be the number of rows
2251 ** and M be the number of columns.
2252 **
2253 ** A result table is an array of pointers to zero-terminated UTF-8 strings.
2254 ** There are (N+1)*M elements in the array.  The first M pointers point
2255 ** to zero-terminated strings that  contain the names of the columns.
2256 ** The remaining entries all point to query results.  NULL values result
2257 ** in NULL pointers.  All other values are in their UTF-8 zero-terminated
2258 ** string representation as returned by [sqlite3_column_text()].
2259 **
2260 ** A result table might consist of one or more memory allocations.
2261 ** It is not safe to pass a result table directly to [sqlite3_free()].
2262 ** A result table should be deallocated using [sqlite3_free_table()].
2263 **
2264 ** ^(As an example of the result table format, suppose a query result
2265 ** is as follows:
2266 **
2267 ** <blockquote><pre>
2268 **        Name        | Age
2269 **        -----------------------
2270 **        Alice       | 43
2271 **        Bob         | 28
2272 **        Cindy       | 21
2273 ** </pre></blockquote>
2274 **
2275 ** There are two column (M==2) and three rows (N==3).  Thus the
2276 ** result table has 8 entries.  Suppose the result table is stored
2277 ** in an array names azResult.  Then azResult holds this content:
2278 **
2279 ** <blockquote><pre>
2280 **        azResult&#91;0] = "Name";
2281 **        azResult&#91;1] = "Age";
2282 **        azResult&#91;2] = "Alice";
2283 **        azResult&#91;3] = "43";
2284 **        azResult&#91;4] = "Bob";
2285 **        azResult&#91;5] = "28";
2286 **        azResult&#91;6] = "Cindy";
2287 **        azResult&#91;7] = "21";
2288 ** </pre></blockquote>)^
2289 **
2290 ** ^The sqlite3_get_table() function evaluates one or more
2291 ** semicolon-separated SQL statements in the zero-terminated UTF-8
2292 ** string of its 2nd parameter and returns a result table to the
2293 ** pointer given in its 3rd parameter.
2294 **
2295 ** After the application has finished with the result from sqlite3_get_table(),
2296 ** it must pass the result table pointer to sqlite3_free_table() in order to
2297 ** release the memory that was malloced.  Because of the way the
2298 ** [sqlite3_malloc()] happens within sqlite3_get_table(), the calling
2299 ** function must not try to call [sqlite3_free()] directly.  Only
2300 ** [sqlite3_free_table()] is able to release the memory properly and safely.
2301 **
2302 ** The sqlite3_get_table() interface is implemented as a wrapper around
2303 ** [sqlite3_exec()].  The sqlite3_get_table() routine does not have access
2304 ** to any internal data structures of SQLite.  It uses only the public
2305 ** interface defined here.  As a consequence, errors that occur in the
2306 ** wrapper layer outside of the internal [sqlite3_exec()] call are not
2307 ** reflected in subsequent calls to [sqlite3_errcode()] or
2308 ** [sqlite3_errmsg()].
2309 */
2310 SQLITE_API int sqlite3_get_table(
2311   sqlite3 *db,          /* An open database */
2312   const char *zSql,     /* SQL to be evaluated */
2313   char ***pazResult,    /* Results of the query */
2314   int *pnRow,           /* Number of result rows written here */
2315   int *pnColumn,        /* Number of result columns written here */
2316   char **pzErrmsg       /* Error msg written here */
2317 );
2318 SQLITE_API void sqlite3_free_table(char **result);
2319 
2320 /*
2321 ** CAPI3REF: Formatted String Printing Functions
2322 **
2323 ** These routines are work-alikes of the "printf()" family of functions
2324 ** from the standard C library.
2325 **
2326 ** ^The sqlite3_mprintf() and sqlite3_vmprintf() routines write their
2327 ** results into memory obtained from [sqlite3_malloc()].
2328 ** The strings returned by these two routines should be
2329 ** released by [sqlite3_free()].  ^Both routines return a
2330 ** NULL pointer if [sqlite3_malloc()] is unable to allocate enough
2331 ** memory to hold the resulting string.
2332 **
2333 ** ^(The sqlite3_snprintf() routine is similar to "snprintf()" from
2334 ** the standard C library.  The result is written into the
2335 ** buffer supplied as the second parameter whose size is given by
2336 ** the first parameter. Note that the order of the
2337 ** first two parameters is reversed from snprintf().)^  This is an
2338 ** historical accident that cannot be fixed without breaking
2339 ** backwards compatibility.  ^(Note also that sqlite3_snprintf()
2340 ** returns a pointer to its buffer instead of the number of
2341 ** characters actually written into the buffer.)^  We admit that
2342 ** the number of characters written would be a more useful return
2343 ** value but we cannot change the implementation of sqlite3_snprintf()
2344 ** now without breaking compatibility.
2345 **
2346 ** ^As long as the buffer size is greater than zero, sqlite3_snprintf()
2347 ** guarantees that the buffer is always zero-terminated.  ^The first
2348 ** parameter "n" is the total size of the buffer, including space for
2349 ** the zero terminator.  So the longest string that can be completely
2350 ** written will be n-1 characters.
2351 **
2352 ** ^The sqlite3_vsnprintf() routine is a varargs version of sqlite3_snprintf().
2353 **
2354 ** These routines all implement some additional formatting
2355 ** options that are useful for constructing SQL statements.
2356 ** All of the usual printf() formatting options apply.  In addition, there
2357 ** is are "%q", "%Q", and "%z" options.
2358 **
2359 ** ^(The %q option works like %s in that it substitutes a nul-terminated
2360 ** string from the argument list.  But %q also doubles every '\'' character.
2361 ** %q is designed for use inside a string literal.)^  By doubling each '\''
2362 ** character it escapes that character and allows it to be inserted into
2363 ** the string.
2364 **
2365 ** For example, assume the string variable zText contains text as follows:
2366 **
2367 ** <blockquote><pre>
2368 **  char *zText = "It's a happy day!";
2369 ** </pre></blockquote>
2370 **
2371 ** One can use this text in an SQL statement as follows:
2372 **
2373 ** <blockquote><pre>
2374 **  char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES('%q')", zText);
2375 **  sqlite3_exec(db, zSQL, 0, 0, 0);
2376 **  sqlite3_free(zSQL);
2377 ** </pre></blockquote>
2378 **
2379 ** Because the %q format string is used, the '\'' character in zText
2380 ** is escaped and the SQL generated is as follows:
2381 **
2382 ** <blockquote><pre>
2383 **  INSERT INTO table1 VALUES('It''s a happy day!')
2384 ** </pre></blockquote>
2385 **
2386 ** This is correct.  Had we used %s instead of %q, the generated SQL
2387 ** would have looked like this:
2388 **
2389 ** <blockquote><pre>
2390 **  INSERT INTO table1 VALUES('It's a happy day!');
2391 ** </pre></blockquote>
2392 **
2393 ** This second example is an SQL syntax error.  As a general rule you should
2394 ** always use %q instead of %s when inserting text into a string literal.
2395 **
2396 ** ^(The %Q option works like %q except it also adds single quotes around
2397 ** the outside of the total string.  Additionally, if the parameter in the
2398 ** argument list is a NULL pointer, %Q substitutes the text "NULL" (without
2399 ** single quotes).)^  So, for example, one could say:
2400 **
2401 ** <blockquote><pre>
2402 **  char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES(%Q)", zText);
2403 **  sqlite3_exec(db, zSQL, 0, 0, 0);
2404 **  sqlite3_free(zSQL);
2405 ** </pre></blockquote>
2406 **
2407 ** The code above will render a correct SQL statement in the zSQL
2408 ** variable even if the zText variable is a NULL pointer.
2409 **
2410 ** ^(The "%z" formatting option works like "%s" but with the
2411 ** addition that after the string has been read and copied into
2412 ** the result, [sqlite3_free()] is called on the input string.)^
2413 */
2414 SQLITE_API char *sqlite3_mprintf(const char*,...);
2415 SQLITE_API char *sqlite3_vmprintf(const char*, va_list);
2416 SQLITE_API char *sqlite3_snprintf(int,char*,const char*, ...);
2417 SQLITE_API char *sqlite3_vsnprintf(int,char*,const char*, va_list);
2418 
2419 /*
2420 ** CAPI3REF: Memory Allocation Subsystem
2421 **
2422 ** The SQLite core uses these three routines for all of its own
2423 ** internal memory allocation needs. "Core" in the previous sentence
2424 ** does not include operating-system specific VFS implementation.  The
2425 ** Windows VFS uses native malloc() and free() for some operations.
2426 **
2427 ** ^The sqlite3_malloc() routine returns a pointer to a block
2428 ** of memory at least N bytes in length, where N is the parameter.
2429 ** ^If sqlite3_malloc() is unable to obtain sufficient free
2430 ** memory, it returns a NULL pointer.  ^If the parameter N to
2431 ** sqlite3_malloc() is zero or negative then sqlite3_malloc() returns
2432 ** a NULL pointer.
2433 **
2434 ** ^Calling sqlite3_free() with a pointer previously returned
2435 ** by sqlite3_malloc() or sqlite3_realloc() releases that memory so
2436 ** that it might be reused.  ^The sqlite3_free() routine is
2437 ** a no-op if is called with a NULL pointer.  Passing a NULL pointer
2438 ** to sqlite3_free() is harmless.  After being freed, memory
2439 ** should neither be read nor written.  Even reading previously freed
2440 ** memory might result in a segmentation fault or other severe error.
2441 ** Memory corruption, a segmentation fault, or other severe error
2442 ** might result if sqlite3_free() is called with a non-NULL pointer that
2443 ** was not obtained from sqlite3_malloc() or sqlite3_realloc().
2444 **
2445 ** ^(The sqlite3_realloc() interface attempts to resize a
2446 ** prior memory allocation to be at least N bytes, where N is the
2447 ** second parameter.  The memory allocation to be resized is the first
2448 ** parameter.)^ ^ If the first parameter to sqlite3_realloc()
2449 ** is a NULL pointer then its behavior is identical to calling
2450 ** sqlite3_malloc(N) where N is the second parameter to sqlite3_realloc().
2451 ** ^If the second parameter to sqlite3_realloc() is zero or
2452 ** negative then the behavior is exactly the same as calling
2453 ** sqlite3_free(P) where P is the first parameter to sqlite3_realloc().
2454 ** ^sqlite3_realloc() returns a pointer to a memory allocation
2455 ** of at least N bytes in size or NULL if sufficient memory is unavailable.
2456 ** ^If M is the size of the prior allocation, then min(N,M) bytes
2457 ** of the prior allocation are copied into the beginning of buffer returned
2458 ** by sqlite3_realloc() and the prior allocation is freed.
2459 ** ^If sqlite3_realloc() returns NULL, then the prior allocation
2460 ** is not freed.
2461 **
2462 ** ^The memory returned by sqlite3_malloc() and sqlite3_realloc()
2463 ** is always aligned to at least an 8 byte boundary, or to a
2464 ** 4 byte boundary if the [SQLITE_4_BYTE_ALIGNED_MALLOC] compile-time
2465 ** option is used.
2466 **
2467 ** In SQLite version 3.5.0 and 3.5.1, it was possible to define
2468 ** the SQLITE_OMIT_MEMORY_ALLOCATION which would cause the built-in
2469 ** implementation of these routines to be omitted.  That capability
2470 ** is no longer provided.  Only built-in memory allocators can be used.
2471 **
2472 ** Prior to SQLite version 3.7.10, the Windows OS interface layer called
2473 ** the system malloc() and free() directly when converting
2474 ** filenames between the UTF-8 encoding used by SQLite
2475 ** and whatever filename encoding is used by the particular Windows
2476 ** installation.  Memory allocation errors were detected, but
2477 ** they were reported back as [SQLITE_CANTOPEN] or
2478 ** [SQLITE_IOERR] rather than [SQLITE_NOMEM].
2479 **
2480 ** The pointer arguments to [sqlite3_free()] and [sqlite3_realloc()]
2481 ** must be either NULL or else pointers obtained from a prior
2482 ** invocation of [sqlite3_malloc()] or [sqlite3_realloc()] that have
2483 ** not yet been released.
2484 **
2485 ** The application must not read or write any part of
2486 ** a block of memory after it has been released using
2487 ** [sqlite3_free()] or [sqlite3_realloc()].
2488 */
2489 SQLITE_API void *sqlite3_malloc(int);
2490 SQLITE_API void *sqlite3_realloc(void*, int);
2491 SQLITE_API void sqlite3_free(void*);
2492 
2493 /*
2494 ** CAPI3REF: Memory Allocator Statistics
2495 **
2496 ** SQLite provides these two interfaces for reporting on the status
2497 ** of the [sqlite3_malloc()], [sqlite3_free()], and [sqlite3_realloc()]
2498 ** routines, which form the built-in memory allocation subsystem.
2499 **
2500 ** ^The [sqlite3_memory_used()] routine returns the number of bytes
2501 ** of memory currently outstanding (malloced but not freed).
2502 ** ^The [sqlite3_memory_highwater()] routine returns the maximum
2503 ** value of [sqlite3_memory_used()] since the high-water mark
2504 ** was last reset.  ^The values returned by [sqlite3_memory_used()] and
2505 ** [sqlite3_memory_highwater()] include any overhead
2506 ** added by SQLite in its implementation of [sqlite3_malloc()],
2507 ** but not overhead added by the any underlying system library
2508 ** routines that [sqlite3_malloc()] may call.
2509 **
2510 ** ^The memory high-water mark is reset to the current value of
2511 ** [sqlite3_memory_used()] if and only if the parameter to
2512 ** [sqlite3_memory_highwater()] is true.  ^The value returned
2513 ** by [sqlite3_memory_highwater(1)] is the high-water mark
2514 ** prior to the reset.
2515 */
2516 SQLITE_API sqlite3_int64 sqlite3_memory_used(void);
2517 SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int resetFlag);
2518 
2519 /*
2520 ** CAPI3REF: Pseudo-Random Number Generator
2521 **
2522 ** SQLite contains a high-quality pseudo-random number generator (PRNG) used to
2523 ** select random [ROWID | ROWIDs] when inserting new records into a table that
2524 ** already uses the largest possible [ROWID].  The PRNG is also used for
2525 ** the build-in random() and randomblob() SQL functions.  This interface allows
2526 ** applications to access the same PRNG for other purposes.
2527 **
2528 ** ^A call to this routine stores N bytes of randomness into buffer P.
2529 ** ^If N is less than one, then P can be a NULL pointer.
2530 **
2531 ** ^If this routine has not been previously called or if the previous
2532 ** call had N less than one, then the PRNG is seeded using randomness
2533 ** obtained from the xRandomness method of the default [sqlite3_vfs] object.
2534 ** ^If the previous call to this routine had an N of 1 or more then
2535 ** the pseudo-randomness is generated
2536 ** internally and without recourse to the [sqlite3_vfs] xRandomness
2537 ** method.
2538 */
2539 SQLITE_API void sqlite3_randomness(int N, void *P);
2540 
2541 /*
2542 ** CAPI3REF: Compile-Time Authorization Callbacks
2543 **
2544 ** ^This routine registers an authorizer callback with a particular
2545 ** [database connection], supplied in the first argument.
2546 ** ^The authorizer callback is invoked as SQL statements are being compiled
2547 ** by [sqlite3_prepare()] or its variants [sqlite3_prepare_v2()],
2548 ** [sqlite3_prepare16()] and [sqlite3_prepare16_v2()].  ^At various
2549 ** points during the compilation process, as logic is being created
2550 ** to perform various actions, the authorizer callback is invoked to
2551 ** see if those actions are allowed.  ^The authorizer callback should
2552 ** return [SQLITE_OK] to allow the action, [SQLITE_IGNORE] to disallow the
2553 ** specific action but allow the SQL statement to continue to be
2554 ** compiled, or [SQLITE_DENY] to cause the entire SQL statement to be
2555 ** rejected with an error.  ^If the authorizer callback returns
2556 ** any value other than [SQLITE_IGNORE], [SQLITE_OK], or [SQLITE_DENY]
2557 ** then the [sqlite3_prepare_v2()] or equivalent call that triggered
2558 ** the authorizer will fail with an error message.
2559 **
2560 ** When the callback returns [SQLITE_OK], that means the operation
2561 ** requested is ok.  ^When the callback returns [SQLITE_DENY], the
2562 ** [sqlite3_prepare_v2()] or equivalent call that triggered the
2563 ** authorizer will fail with an error message explaining that
2564 ** access is denied.
2565 **
2566 ** ^The first parameter to the authorizer callback is a copy of the third
2567 ** parameter to the sqlite3_set_authorizer() interface. ^The second parameter
2568 ** to the callback is an integer [SQLITE_COPY | action code] that specifies
2569 ** the particular action to be authorized. ^The third through sixth parameters
2570 ** to the callback are zero-terminated strings that contain additional
2571 ** details about the action to be authorized.
2572 **
2573 ** ^If the action code is [SQLITE_READ]
2574 ** and the callback returns [SQLITE_IGNORE] then the
2575 ** [prepared statement] statement is constructed to substitute
2576 ** a NULL value in place of the table column that would have
2577 ** been read if [SQLITE_OK] had been returned.  The [SQLITE_IGNORE]
2578 ** return can be used to deny an untrusted user access to individual
2579 ** columns of a table.
2580 ** ^If the action code is [SQLITE_DELETE] and the callback returns
2581 ** [SQLITE_IGNORE] then the [DELETE] operation proceeds but the
2582 ** [truncate optimization] is disabled and all rows are deleted individually.
2583 **
2584 ** An authorizer is used when [sqlite3_prepare | preparing]
2585 ** SQL statements from an untrusted source, to ensure that the SQL statements
2586 ** do not try to access data they are not allowed to see, or that they do not
2587 ** try to execute malicious statements that damage the database.  For
2588 ** example, an application may allow a user to enter arbitrary
2589 ** SQL queries for evaluation by a database.  But the application does
2590 ** not want the user to be able to make arbitrary changes to the
2591 ** database.  An authorizer could then be put in place while the
2592 ** user-entered SQL is being [sqlite3_prepare | prepared] that
2593 ** disallows everything except [SELECT] statements.
2594 **
2595 ** Applications that need to process SQL from untrusted sources
2596 ** might also consider lowering resource limits using [sqlite3_limit()]
2597 ** and limiting database size using the [max_page_count] [PRAGMA]
2598 ** in addition to using an authorizer.
2599 **
2600 ** ^(Only a single authorizer can be in place on a database connection
2601 ** at a time.  Each call to sqlite3_set_authorizer overrides the
2602 ** previous call.)^  ^Disable the authorizer by installing a NULL callback.
2603 ** The authorizer is disabled by default.
2604 **
2605 ** The authorizer callback must not do anything that will modify
2606 ** the database connection that invoked the authorizer callback.
2607 ** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
2608 ** database connections for the meaning of "modify" in this paragraph.
2609 **
2610 ** ^When [sqlite3_prepare_v2()] is used to prepare a statement, the
2611 ** statement might be re-prepared during [sqlite3_step()] due to a
2612 ** schema change.  Hence, the application should ensure that the
2613 ** correct authorizer callback remains in place during the [sqlite3_step()].
2614 **
2615 ** ^Note that the authorizer callback is invoked only during
2616 ** [sqlite3_prepare()] or its variants.  Authorization is not
2617 ** performed during statement evaluation in [sqlite3_step()], unless
2618 ** as stated in the previous paragraph, sqlite3_step() invokes
2619 ** sqlite3_prepare_v2() to reprepare a statement after a schema change.
2620 */
2621 SQLITE_API int sqlite3_set_authorizer(
2622   sqlite3*,
2623   int (*xAuth)(void*,int,const char*,const char*,const char*,const char*),
2624   void *pUserData
2625 );
2626 
2627 /*
2628 ** CAPI3REF: Authorizer Return Codes
2629 **
2630 ** The [sqlite3_set_authorizer | authorizer callback function] must
2631 ** return either [SQLITE_OK] or one of these two constants in order
2632 ** to signal SQLite whether or not the action is permitted.  See the
2633 ** [sqlite3_set_authorizer | authorizer documentation] for additional
2634 ** information.
2635 **
2636 ** Note that SQLITE_IGNORE is also used as a [SQLITE_ROLLBACK | return code]
2637 ** from the [sqlite3_vtab_on_conflict()] interface.
2638 */
2639 #define SQLITE_DENY   1   /* Abort the SQL statement with an error */
2640 #define SQLITE_IGNORE 2   /* Don't allow access, but don't generate an error */
2641 
2642 /*
2643 ** CAPI3REF: Authorizer Action Codes
2644 **
2645 ** The [sqlite3_set_authorizer()] interface registers a callback function
2646 ** that is invoked to authorize certain SQL statement actions.  The
2647 ** second parameter to the callback is an integer code that specifies
2648 ** what action is being authorized.  These are the integer action codes that
2649 ** the authorizer callback may be passed.
2650 **
2651 ** These action code values signify what kind of operation is to be
2652 ** authorized.  The 3rd and 4th parameters to the authorization
2653 ** callback function will be parameters or NULL depending on which of these
2654 ** codes is used as the second parameter.  ^(The 5th parameter to the
2655 ** authorizer callback is the name of the database ("main", "temp",
2656 ** etc.) if applicable.)^  ^The 6th parameter to the authorizer callback
2657 ** is the name of the inner-most trigger or view that is responsible for
2658 ** the access attempt or NULL if this access attempt is directly from
2659 ** top-level SQL code.
2660 */
2661 /******************************************* 3rd ************ 4th ***********/
2662 #define SQLITE_CREATE_INDEX          1   /* Index Name      Table Name      */
2663 #define SQLITE_CREATE_TABLE          2   /* Table Name      NULL            */
2664 #define SQLITE_CREATE_TEMP_INDEX     3   /* Index Name      Table Name      */
2665 #define SQLITE_CREATE_TEMP_TABLE     4   /* Table Name      NULL            */
2666 #define SQLITE_CREATE_TEMP_TRIGGER   5   /* Trigger Name    Table Name      */
2667 #define SQLITE_CREATE_TEMP_VIEW      6   /* View Name       NULL            */
2668 #define SQLITE_CREATE_TRIGGER        7   /* Trigger Name    Table Name      */
2669 #define SQLITE_CREATE_VIEW           8   /* View Name       NULL            */
2670 #define SQLITE_DELETE                9   /* Table Name      NULL            */
2671 #define SQLITE_DROP_INDEX           10   /* Index Name      Table Name      */
2672 #define SQLITE_DROP_TABLE           11   /* Table Name      NULL            */
2673 #define SQLITE_DROP_TEMP_INDEX      12   /* Index Name      Table Name      */
2674 #define SQLITE_DROP_TEMP_TABLE      13   /* Table Name      NULL            */
2675 #define SQLITE_DROP_TEMP_TRIGGER    14   /* Trigger Name    Table Name      */
2676 #define SQLITE_DROP_TEMP_VIEW       15   /* View Name       NULL            */
2677 #define SQLITE_DROP_TRIGGER         16   /* Trigger Name    Table Name      */
2678 #define SQLITE_DROP_VIEW            17   /* View Name       NULL            */
2679 #define SQLITE_INSERT               18   /* Table Name      NULL            */
2680 #define SQLITE_PRAGMA               19   /* Pragma Name     1st arg or NULL */
2681 #define SQLITE_READ                 20   /* Table Name      Column Name     */
2682 #define SQLITE_SELECT               21   /* NULL            NULL            */
2683 #define SQLITE_TRANSACTION          22   /* Operation       NULL            */
2684 #define SQLITE_UPDATE               23   /* Table Name      Column Name     */
2685 #define SQLITE_ATTACH               24   /* Filename        NULL            */
2686 #define SQLITE_DETACH               25   /* Database Name   NULL            */
2687 #define SQLITE_ALTER_TABLE          26   /* Database Name   Table Name      */
2688 #define SQLITE_REINDEX              27   /* Index Name      NULL            */
2689 #define SQLITE_ANALYZE              28   /* Table Name      NULL            */
2690 #define SQLITE_CREATE_VTABLE        29   /* Table Name      Module Name     */
2691 #define SQLITE_DROP_VTABLE          30   /* Table Name      Module Name     */
2692 #define SQLITE_FUNCTION             31   /* NULL            Function Name   */
2693 #define SQLITE_SAVEPOINT            32   /* Operation       Savepoint Name  */
2694 #define SQLITE_COPY                  0   /* No longer used */
2695 #define SQLITE_RECURSIVE            33   /* NULL            NULL            */
2696 
2697 /*
2698 ** CAPI3REF: Tracing And Profiling Functions
2699 **
2700 ** These routines register callback functions that can be used for
2701 ** tracing and profiling the execution of SQL statements.
2702 **
2703 ** ^The callback function registered by sqlite3_trace() is invoked at
2704 ** various times when an SQL statement is being run by [sqlite3_step()].
2705 ** ^The sqlite3_trace() callback is invoked with a UTF-8 rendering of the
2706 ** SQL statement text as the statement first begins executing.
2707 ** ^(Additional sqlite3_trace() callbacks might occur
2708 ** as each triggered subprogram is entered.  The callbacks for triggers
2709 ** contain a UTF-8 SQL comment that identifies the trigger.)^
2710 **
2711 ** The [SQLITE_TRACE_SIZE_LIMIT] compile-time option can be used to limit
2712 ** the length of [bound parameter] expansion in the output of sqlite3_trace().
2713 **
2714 ** ^The callback function registered by sqlite3_profile() is invoked
2715 ** as each SQL statement finishes.  ^The profile callback contains
2716 ** the original statement text and an estimate of wall-clock time
2717 ** of how long that statement took to run.  ^The profile callback
2718 ** time is in units of nanoseconds, however the current implementation
2719 ** is only capable of millisecond resolution so the six least significant
2720 ** digits in the time are meaningless.  Future versions of SQLite
2721 ** might provide greater resolution on the profiler callback.  The
2722 ** sqlite3_profile() function is considered experimental and is
2723 ** subject to change in future versions of SQLite.
2724 */
2725 SQLITE_API void *sqlite3_trace(sqlite3*, void(*xTrace)(void*,const char*), void*);
2726 SQLITE_API SQLITE_EXPERIMENTAL void *sqlite3_profile(sqlite3*,
2727    void(*xProfile)(void*,const char*,sqlite3_uint64), void*);
2728 
2729 /*
2730 ** CAPI3REF: Query Progress Callbacks
2731 **
2732 ** ^The sqlite3_progress_handler(D,N,X,P) interface causes the callback
2733 ** function X to be invoked periodically during long running calls to
2734 ** [sqlite3_exec()], [sqlite3_step()] and [sqlite3_get_table()] for
2735 ** database connection D.  An example use for this
2736 ** interface is to keep a GUI updated during a large query.
2737 **
2738 ** ^The parameter P is passed through as the only parameter to the
2739 ** callback function X.  ^The parameter N is the approximate number of
2740 ** [virtual machine instructions] that are evaluated between successive
2741 ** invocations of the callback X.  ^If N is less than one then the progress
2742 ** handler is disabled.
2743 **
2744 ** ^Only a single progress handler may be defined at one time per
2745 ** [database connection]; setting a new progress handler cancels the
2746 ** old one.  ^Setting parameter X to NULL disables the progress handler.
2747 ** ^The progress handler is also disabled by setting N to a value less
2748 ** than 1.
2749 **
2750 ** ^If the progress callback returns non-zero, the operation is
2751 ** interrupted.  This feature can be used to implement a
2752 ** "Cancel" button on a GUI progress dialog box.
2753 **
2754 ** The progress handler callback must not do anything that will modify
2755 ** the database connection that invoked the progress handler.
2756 ** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
2757 ** database connections for the meaning of "modify" in this paragraph.
2758 **
2759 */
2760 SQLITE_API void sqlite3_progress_handler(sqlite3*, int, int(*)(void*), void*);
2761 
2762 /*
2763 ** CAPI3REF: Opening A New Database Connection
2764 **
2765 ** ^These routines open an SQLite database file as specified by the
2766 ** filename argument. ^The filename argument is interpreted as UTF-8 for
2767 ** sqlite3_open() and sqlite3_open_v2() and as UTF-16 in the native byte
2768 ** order for sqlite3_open16(). ^(A [database connection] handle is usually
2769 ** returned in *ppDb, even if an error occurs.  The only exception is that
2770 ** if SQLite is unable to allocate memory to hold the [sqlite3] object,
2771 ** a NULL will be written into *ppDb instead of a pointer to the [sqlite3]
2772 ** object.)^ ^(If the database is opened (and/or created) successfully, then
2773 ** [SQLITE_OK] is returned.  Otherwise an [error code] is returned.)^ ^The
2774 ** [sqlite3_errmsg()] or [sqlite3_errmsg16()] routines can be used to obtain
2775 ** an English language description of the error following a failure of any
2776 ** of the sqlite3_open() routines.
2777 **
2778 ** ^The default encoding for the database will be UTF-8 if
2779 ** sqlite3_open() or sqlite3_open_v2() is called and
2780 ** UTF-16 in the native byte order if sqlite3_open16() is used.
2781 **
2782 ** Whether or not an error occurs when it is opened, resources
2783 ** associated with the [database connection] handle should be released by
2784 ** passing it to [sqlite3_close()] when it is no longer required.
2785 **
2786 ** The sqlite3_open_v2() interface works like sqlite3_open()
2787 ** except that it accepts two additional parameters for additional control
2788 ** over the new database connection.  ^(The flags parameter to
2789 ** sqlite3_open_v2() can take one of
2790 ** the following three values, optionally combined with the
2791 ** [SQLITE_OPEN_NOMUTEX], [SQLITE_OPEN_FULLMUTEX], [SQLITE_OPEN_SHAREDCACHE],
2792 ** [SQLITE_OPEN_PRIVATECACHE], and/or [SQLITE_OPEN_URI] flags:)^
2793 **
2794 ** <dl>
2795 ** ^(<dt>[SQLITE_OPEN_READONLY]</dt>
2796 ** <dd>The database is opened in read-only mode.  If the database does not
2797 ** already exist, an error is returned.</dd>)^
2798 **
2799 ** ^(<dt>[SQLITE_OPEN_READWRITE]</dt>
2800 ** <dd>The database is opened for reading and writing if possible, or reading
2801 ** only if the file is write protected by the operating system.  In either
2802 ** case the database must already exist, otherwise an error is returned.</dd>)^
2803 **
2804 ** ^(<dt>[SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]</dt>
2805 ** <dd>The database is opened for reading and writing, and is created if
2806 ** it does not already exist. This is the behavior that is always used for
2807 ** sqlite3_open() and sqlite3_open16().</dd>)^
2808 ** </dl>
2809 **
2810 ** If the 3rd parameter to sqlite3_open_v2() is not one of the
2811 ** combinations shown above optionally combined with other
2812 ** [SQLITE_OPEN_READONLY | SQLITE_OPEN_* bits]
2813 ** then the behavior is undefined.
2814 **
2815 ** ^If the [SQLITE_OPEN_NOMUTEX] flag is set, then the database connection
2816 ** opens in the multi-thread [threading mode] as long as the single-thread
2817 ** mode has not been set at compile-time or start-time.  ^If the
2818 ** [SQLITE_OPEN_FULLMUTEX] flag is set then the database connection opens
2819 ** in the serialized [threading mode] unless single-thread was
2820 ** previously selected at compile-time or start-time.
2821 ** ^The [SQLITE_OPEN_SHAREDCACHE] flag causes the database connection to be
2822 ** eligible to use [shared cache mode], regardless of whether or not shared
2823 ** cache is enabled using [sqlite3_enable_shared_cache()].  ^The
2824 ** [SQLITE_OPEN_PRIVATECACHE] flag causes the database connection to not
2825 ** participate in [shared cache mode] even if it is enabled.
2826 **
2827 ** ^The fourth parameter to sqlite3_open_v2() is the name of the
2828 ** [sqlite3_vfs] object that defines the operating system interface that
2829 ** the new database connection should use.  ^If the fourth parameter is
2830 ** a NULL pointer then the default [sqlite3_vfs] object is used.
2831 **
2832 ** ^If the filename is ":memory:", then a private, temporary in-memory database
2833 ** is created for the connection.  ^This in-memory database will vanish when
2834 ** the database connection is closed.  Future versions of SQLite might
2835 ** make use of additional special filenames that begin with the ":" character.
2836 ** It is recommended that when a database filename actually does begin with
2837 ** a ":" character you should prefix the filename with a pathname such as
2838 ** "./" to avoid ambiguity.
2839 **
2840 ** ^If the filename is an empty string, then a private, temporary
2841 ** on-disk database will be created.  ^This private database will be
2842 ** automatically deleted as soon as the database connection is closed.
2843 **
2844 ** [[URI filenames in sqlite3_open()]] <h3>URI Filenames</h3>
2845 **
2846 ** ^If [URI filename] interpretation is enabled, and the filename argument
2847 ** begins with "file:", then the filename is interpreted as a URI. ^URI
2848 ** filename interpretation is enabled if the [SQLITE_OPEN_URI] flag is
2849 ** set in the fourth argument to sqlite3_open_v2(), or if it has
2850 ** been enabled globally using the [SQLITE_CONFIG_URI] option with the
2851 ** [sqlite3_config()] method or by the [SQLITE_USE_URI] compile-time option.
2852 ** As of SQLite version 3.7.7, URI filename interpretation is turned off
2853 ** by default, but future releases of SQLite might enable URI filename
2854 ** interpretation by default.  See "[URI filenames]" for additional
2855 ** information.
2856 **
2857 ** URI filenames are parsed according to RFC 3986. ^If the URI contains an
2858 ** authority, then it must be either an empty string or the string
2859 ** "localhost". ^If the authority is not an empty string or "localhost", an
2860 ** error is returned to the caller. ^The fragment component of a URI, if
2861 ** present, is ignored.
2862 **
2863 ** ^SQLite uses the path component of the URI as the name of the disk file
2864 ** which contains the database. ^If the path begins with a '/' character,
2865 ** then it is interpreted as an absolute path. ^If the path does not begin
2866 ** with a '/' (meaning that the authority section is omitted from the URI)
2867 ** then the path is interpreted as a relative path.
2868 ** ^On windows, the first component of an absolute path
2869 ** is a drive specification (e.g. "C:").
2870 **
2871 ** [[core URI query parameters]]
2872 ** The query component of a URI may contain parameters that are interpreted
2873 ** either by SQLite itself, or by a [VFS | custom VFS implementation].
2874 ** SQLite interprets the following three query parameters:
2875 **
2876 ** <ul>
2877 **   <li> <b>vfs</b>: ^The "vfs" parameter may be used to specify the name of
2878 **     a VFS object that provides the operating system interface that should
2879 **     be used to access the database file on disk. ^If this option is set to
2880 **     an empty string the default VFS object is used. ^Specifying an unknown
2881 **     VFS is an error. ^If sqlite3_open_v2() is used and the vfs option is
2882 **     present, then the VFS specified by the option takes precedence over
2883 **     the value passed as the fourth parameter to sqlite3_open_v2().
2884 **
2885 **   <li> <b>mode</b>: ^(The mode parameter may be set to either "ro", "rw",
2886 **     "rwc", or "memory". Attempting to set it to any other value is
2887 **     an error)^.
2888 **     ^If "ro" is specified, then the database is opened for read-only
2889 **     access, just as if the [SQLITE_OPEN_READONLY] flag had been set in the
2890 **     third argument to sqlite3_open_v2(). ^If the mode option is set to
2891 **     "rw", then the database is opened for read-write (but not create)
2892 **     access, as if SQLITE_OPEN_READWRITE (but not SQLITE_OPEN_CREATE) had
2893 **     been set. ^Value "rwc" is equivalent to setting both
2894 **     SQLITE_OPEN_READWRITE and SQLITE_OPEN_CREATE.  ^If the mode option is
2895 **     set to "memory" then a pure [in-memory database] that never reads
2896 **     or writes from disk is used. ^It is an error to specify a value for
2897 **     the mode parameter that is less restrictive than that specified by
2898 **     the flags passed in the third parameter to sqlite3_open_v2().
2899 **
2900 **   <li> <b>cache</b>: ^The cache parameter may be set to either "shared" or
2901 **     "private". ^Setting it to "shared" is equivalent to setting the
2902 **     SQLITE_OPEN_SHAREDCACHE bit in the flags argument passed to
2903 **     sqlite3_open_v2(). ^Setting the cache parameter to "private" is
2904 **     equivalent to setting the SQLITE_OPEN_PRIVATECACHE bit.
2905 **     ^If sqlite3_open_v2() is used and the "cache" parameter is present in
2906 **     a URI filename, its value overrides any behavior requested by setting
2907 **     SQLITE_OPEN_PRIVATECACHE or SQLITE_OPEN_SHAREDCACHE flag.
2908 **
2909 **  <li> <b>psow</b>: ^The psow parameter may be "true" (or "on" or "yes" or
2910 **     "1") or "false" (or "off" or "no" or "0") to indicate that the
2911 **     [powersafe overwrite] property does or does not apply to the
2912 **     storage media on which the database file resides.  ^The psow query
2913 **     parameter only works for the built-in unix and Windows VFSes.
2914 **
2915 **  <li> <b>nolock</b>: ^The nolock parameter is a boolean query parameter
2916 **     which if set disables file locking in rollback journal modes.  This
2917 **     is useful for accessing a database on a filesystem that does not
2918 **     support locking.  Caution:  Database corruption might result if two
2919 **     or more processes write to the same database and any one of those
2920 **     processes uses nolock=1.
2921 **
2922 **  <li> <b>immutable</b>: ^The immutable parameter is a boolean query
2923 **     parameter that indicates that the database file is stored on
2924 **     read-only media.  ^When immutable is set, SQLite assumes that the
2925 **     database file cannot be changed, even by a process with higher
2926 **     privilege, and so the database is opened read-only and all locking
2927 **     and change detection is disabled.  Caution: Setting the immutable
2928 **     property on a database file that does in fact change can result
2929 **     in incorrect query results and/or [SQLITE_CORRUPT] errors.
2930 **     See also: [SQLITE_IOCAP_IMMUTABLE].
2931 **
2932 ** </ul>
2933 **
2934 ** ^Specifying an unknown parameter in the query component of a URI is not an
2935 ** error.  Future versions of SQLite might understand additional query
2936 ** parameters.  See "[query parameters with special meaning to SQLite]" for
2937 ** additional information.
2938 **
2939 ** [[URI filename examples]] <h3>URI filename examples</h3>
2940 **
2941 ** <table border="1" align=center cellpadding=5>
2942 ** <tr><th> URI filenames <th> Results
2943 ** <tr><td> file:data.db <td>
2944 **          Open the file "data.db" in the current directory.
2945 ** <tr><td> file:/home/fred/data.db<br>
2946 **          file:///home/fred/data.db <br>
2947 **          file://localhost/home/fred/data.db <br> <td>
2948 **          Open the database file "/home/fred/data.db".
2949 ** <tr><td> file://darkstar/home/fred/data.db <td>
2950 **          An error. "darkstar" is not a recognized authority.
2951 ** <tr><td style="white-space:nowrap">
2952 **          file:///C:/Documents%20and%20Settings/fred/Desktop/data.db
2953 **     <td> Windows only: Open the file "data.db" on fred's desktop on drive
2954 **          C:. Note that the %20 escaping in this example is not strictly
2955 **          necessary - space characters can be used literally
2956 **          in URI filenames.
2957 ** <tr><td> file:data.db?mode=ro&cache=private <td>
2958 **          Open file "data.db" in the current directory for read-only access.
2959 **          Regardless of whether or not shared-cache mode is enabled by
2960 **          default, use a private cache.
2961 ** <tr><td> file:/home/fred/data.db?vfs=unix-dotfile <td>
2962 **          Open file "/home/fred/data.db". Use the special VFS "unix-dotfile"
2963 **          that uses dot-files in place of posix advisory locking.
2964 ** <tr><td> file:data.db?mode=readonly <td>
2965 **          An error. "readonly" is not a valid option for the "mode" parameter.
2966 ** </table>
2967 **
2968 ** ^URI hexadecimal escape sequences (%HH) are supported within the path and
2969 ** query components of a URI. A hexadecimal escape sequence consists of a
2970 ** percent sign - "%" - followed by exactly two hexadecimal digits
2971 ** specifying an octet value. ^Before the path or query components of a
2972 ** URI filename are interpreted, they are encoded using UTF-8 and all
2973 ** hexadecimal escape sequences replaced by a single byte containing the
2974 ** corresponding octet. If this process generates an invalid UTF-8 encoding,
2975 ** the results are undefined.
2976 **
2977 ** <b>Note to Windows users:</b>  The encoding used for the filename argument
2978 ** of sqlite3_open() and sqlite3_open_v2() must be UTF-8, not whatever
2979 ** codepage is currently defined.  Filenames containing international
2980 ** characters must be converted to UTF-8 prior to passing them into
2981 ** sqlite3_open() or sqlite3_open_v2().
2982 **
2983 ** <b>Note to Windows Runtime users:</b>  The temporary directory must be set
2984 ** prior to calling sqlite3_open() or sqlite3_open_v2().  Otherwise, various
2985 ** features that require the use of temporary files may fail.
2986 **
2987 ** See also: [sqlite3_temp_directory]
2988 */
2989 SQLITE_API int sqlite3_open(
2990   const char *filename,   /* Database filename (UTF-8) */
2991   sqlite3 **ppDb          /* OUT: SQLite db handle */
2992 );
2993 SQLITE_API int sqlite3_open16(
2994   const void *filename,   /* Database filename (UTF-16) */
2995   sqlite3 **ppDb          /* OUT: SQLite db handle */
2996 );
2997 SQLITE_API int sqlite3_open_v2(
2998   const char *filename,   /* Database filename (UTF-8) */
2999   sqlite3 **ppDb,         /* OUT: SQLite db handle */
3000   int flags,              /* Flags */
3001   const char *zVfs        /* Name of VFS module to use */
3002 );
3003 
3004 /*
3005 ** CAPI3REF: Obtain Values For URI Parameters
3006 **
3007 ** These are utility routines, useful to VFS implementations, that check
3008 ** to see if a database file was a URI that contained a specific query
3009 ** parameter, and if so obtains the value of that query parameter.
3010 **
3011 ** If F is the database filename pointer passed into the xOpen() method of
3012 ** a VFS implementation when the flags parameter to xOpen() has one or
3013 ** more of the [SQLITE_OPEN_URI] or [SQLITE_OPEN_MAIN_DB] bits set and
3014 ** P is the name of the query parameter, then
3015 ** sqlite3_uri_parameter(F,P) returns the value of the P
3016 ** parameter if it exists or a NULL pointer if P does not appear as a
3017 ** query parameter on F.  If P is a query parameter of F
3018 ** has no explicit value, then sqlite3_uri_parameter(F,P) returns
3019 ** a pointer to an empty string.
3020 **
3021 ** The sqlite3_uri_boolean(F,P,B) routine assumes that P is a boolean
3022 ** parameter and returns true (1) or false (0) according to the value
3023 ** of P.  The sqlite3_uri_boolean(F,P,B) routine returns true (1) if the
3024 ** value of query parameter P is one of "yes", "true", or "on" in any
3025 ** case or if the value begins with a non-zero number.  The
3026 ** sqlite3_uri_boolean(F,P,B) routines returns false (0) if the value of
3027 ** query parameter P is one of "no", "false", or "off" in any case or
3028 ** if the value begins with a numeric zero.  If P is not a query
3029 ** parameter on F or if the value of P is does not match any of the
3030 ** above, then sqlite3_uri_boolean(F,P,B) returns (B!=0).
3031 **
3032 ** The sqlite3_uri_int64(F,P,D) routine converts the value of P into a
3033 ** 64-bit signed integer and returns that integer, or D if P does not
3034 ** exist.  If the value of P is something other than an integer, then
3035 ** zero is returned.
3036 **
3037 ** If F is a NULL pointer, then sqlite3_uri_parameter(F,P) returns NULL and
3038 ** sqlite3_uri_boolean(F,P,B) returns B.  If F is not a NULL pointer and
3039 ** is not a database file pathname pointer that SQLite passed into the xOpen
3040 ** VFS method, then the behavior of this routine is undefined and probably
3041 ** undesirable.
3042 */
3043 SQLITE_API const char *sqlite3_uri_parameter(const char *zFilename, const char *zParam);
3044 SQLITE_API int sqlite3_uri_boolean(const char *zFile, const char *zParam, int bDefault);
3045 SQLITE_API sqlite3_int64 sqlite3_uri_int64(const char*, const char*, sqlite3_int64);
3046 
3047 
3048 /*
3049 ** CAPI3REF: Error Codes And Messages
3050 **
3051 ** ^The sqlite3_errcode() interface returns the numeric [result code] or
3052 ** [extended result code] for the most recent failed sqlite3_* API call
3053 ** associated with a [database connection]. If a prior API call failed
3054 ** but the most recent API call succeeded, the return value from
3055 ** sqlite3_errcode() is undefined.  ^The sqlite3_extended_errcode()
3056 ** interface is the same except that it always returns the
3057 ** [extended result code] even when extended result codes are
3058 ** disabled.
3059 **
3060 ** ^The sqlite3_errmsg() and sqlite3_errmsg16() return English-language
3061 ** text that describes the error, as either UTF-8 or UTF-16 respectively.
3062 ** ^(Memory to hold the error message string is managed internally.
3063 ** The application does not need to worry about freeing the result.
3064 ** However, the error string might be overwritten or deallocated by
3065 ** subsequent calls to other SQLite interface functions.)^
3066 **
3067 ** ^The sqlite3_errstr() interface returns the English-language text
3068 ** that describes the [result code], as UTF-8.
3069 ** ^(Memory to hold the error message string is managed internally
3070 ** and must not be freed by the application)^.
3071 **
3072 ** When the serialized [threading mode] is in use, it might be the
3073 ** case that a second error occurs on a separate thread in between
3074 ** the time of the first error and the call to these interfaces.
3075 ** When that happens, the second error will be reported since these
3076 ** interfaces always report the most recent result.  To avoid
3077 ** this, each thread can obtain exclusive use of the [database connection] D
3078 ** by invoking [sqlite3_mutex_enter]([sqlite3_db_mutex](D)) before beginning
3079 ** to use D and invoking [sqlite3_mutex_leave]([sqlite3_db_mutex](D)) after
3080 ** all calls to the interfaces listed here are completed.
3081 **
3082 ** If an interface fails with SQLITE_MISUSE, that means the interface
3083 ** was invoked incorrectly by the application.  In that case, the
3084 ** error code and message may or may not be set.
3085 */
3086 SQLITE_API int sqlite3_errcode(sqlite3 *db);
3087 SQLITE_API int sqlite3_extended_errcode(sqlite3 *db);
3088 SQLITE_API const char *sqlite3_errmsg(sqlite3*);
3089 SQLITE_API const void *sqlite3_errmsg16(sqlite3*);
3090 SQLITE_API const char *sqlite3_errstr(int);
3091 
3092 /*
3093 ** CAPI3REF: SQL Statement Object
3094 ** KEYWORDS: {prepared statement} {prepared statements}
3095 **
3096 ** An instance of this object represents a single SQL statement.
3097 ** This object is variously known as a "prepared statement" or a
3098 ** "compiled SQL statement" or simply as a "statement".
3099 **
3100 ** The life of a statement object goes something like this:
3101 **
3102 ** <ol>
3103 ** <li> Create the object using [sqlite3_prepare_v2()] or a related
3104 **      function.
3105 ** <li> Bind values to [host parameters] using the sqlite3_bind_*()
3106 **      interfaces.
3107 ** <li> Run the SQL by calling [sqlite3_step()] one or more times.
3108 ** <li> Reset the statement using [sqlite3_reset()] then go back
3109 **      to step 2.  Do this zero or more times.
3110 ** <li> Destroy the object using [sqlite3_finalize()].
3111 ** </ol>
3112 **
3113 ** Refer to documentation on individual methods above for additional
3114 ** information.
3115 */
3116 typedef struct sqlite3_stmt sqlite3_stmt;
3117 
3118 /*
3119 ** CAPI3REF: Run-time Limits
3120 **
3121 ** ^(This interface allows the size of various constructs to be limited
3122 ** on a connection by connection basis.  The first parameter is the
3123 ** [database connection] whose limit is to be set or queried.  The
3124 ** second parameter is one of the [limit categories] that define a
3125 ** class of constructs to be size limited.  The third parameter is the
3126 ** new limit for that construct.)^
3127 **
3128 ** ^If the new limit is a negative number, the limit is unchanged.
3129 ** ^(For each limit category SQLITE_LIMIT_<i>NAME</i> there is a
3130 ** [limits | hard upper bound]
3131 ** set at compile-time by a C preprocessor macro called
3132 ** [limits | SQLITE_MAX_<i>NAME</i>].
3133 ** (The "_LIMIT_" in the name is changed to "_MAX_".))^
3134 ** ^Attempts to increase a limit above its hard upper bound are
3135 ** silently truncated to the hard upper bound.
3136 **
3137 ** ^Regardless of whether or not the limit was changed, the
3138 ** [sqlite3_limit()] interface returns the prior value of the limit.
3139 ** ^Hence, to find the current value of a limit without changing it,
3140 ** simply invoke this interface with the third parameter set to -1.
3141 **
3142 ** Run-time limits are intended for use in applications that manage
3143 ** both their own internal database and also databases that are controlled
3144 ** by untrusted external sources.  An example application might be a
3145 ** web browser that has its own databases for storing history and
3146 ** separate databases controlled by JavaScript applications downloaded
3147 ** off the Internet.  The internal databases can be given the
3148 ** large, default limits.  Databases managed by external sources can
3149 ** be given much smaller limits designed to prevent a denial of service
3150 ** attack.  Developers might also want to use the [sqlite3_set_authorizer()]
3151 ** interface to further control untrusted SQL.  The size of the database
3152 ** created by an untrusted script can be contained using the
3153 ** [max_page_count] [PRAGMA].
3154 **
3155 ** New run-time limit categories may be added in future releases.
3156 */
3157 SQLITE_API int sqlite3_limit(sqlite3*, int id, int newVal);
3158 
3159 /*
3160 ** CAPI3REF: Run-Time Limit Categories
3161 ** KEYWORDS: {limit category} {*limit categories}
3162 **
3163 ** These constants define various performance limits
3164 ** that can be lowered at run-time using [sqlite3_limit()].
3165 ** The synopsis of the meanings of the various limits is shown below.
3166 ** Additional information is available at [limits | Limits in SQLite].
3167 **
3168 ** <dl>
3169 ** [[SQLITE_LIMIT_LENGTH]] ^(<dt>SQLITE_LIMIT_LENGTH</dt>
3170 ** <dd>The maximum size of any string or BLOB or table row, in bytes.<dd>)^
3171 **
3172 ** [[SQLITE_LIMIT_SQL_LENGTH]] ^(<dt>SQLITE_LIMIT_SQL_LENGTH</dt>
3173 ** <dd>The maximum length of an SQL statement, in bytes.</dd>)^
3174 **
3175 ** [[SQLITE_LIMIT_COLUMN]] ^(<dt>SQLITE_LIMIT_COLUMN</dt>
3176 ** <dd>The maximum number of columns in a table definition or in the
3177 ** result set of a [SELECT] or the maximum number of columns in an index
3178 ** or in an ORDER BY or GROUP BY clause.</dd>)^
3179 **
3180 ** [[SQLITE_LIMIT_EXPR_DEPTH]] ^(<dt>SQLITE_LIMIT_EXPR_DEPTH</dt>
3181 ** <dd>The maximum depth of the parse tree on any expression.</dd>)^
3182 **
3183 ** [[SQLITE_LIMIT_COMPOUND_SELECT]] ^(<dt>SQLITE_LIMIT_COMPOUND_SELECT</dt>
3184 ** <dd>The maximum number of terms in a compound SELECT statement.</dd>)^
3185 **
3186 ** [[SQLITE_LIMIT_VDBE_OP]] ^(<dt>SQLITE_LIMIT_VDBE_OP</dt>
3187 ** <dd>The maximum number of instructions in a virtual machine program
3188 ** used to implement an SQL statement.  This limit is not currently
3189 ** enforced, though that might be added in some future release of
3190 ** SQLite.</dd>)^
3191 **
3192 ** [[SQLITE_LIMIT_FUNCTION_ARG]] ^(<dt>SQLITE_LIMIT_FUNCTION_ARG</dt>
3193 ** <dd>The maximum number of arguments on a function.</dd>)^
3194 **
3195 ** [[SQLITE_LIMIT_ATTACHED]] ^(<dt>SQLITE_LIMIT_ATTACHED</dt>
3196 ** <dd>The maximum number of [ATTACH | attached databases].)^</dd>
3197 **
3198 ** [[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]]
3199 ** ^(<dt>SQLITE_LIMIT_LIKE_PATTERN_LENGTH</dt>
3200 ** <dd>The maximum length of the pattern argument to the [LIKE] or
3201 ** [GLOB] operators.</dd>)^
3202 **
3203 ** [[SQLITE_LIMIT_VARIABLE_NUMBER]]
3204 ** ^(<dt>SQLITE_LIMIT_VARIABLE_NUMBER</dt>
3205 ** <dd>The maximum index number of any [parameter] in an SQL statement.)^
3206 **
3207 ** [[SQLITE_LIMIT_TRIGGER_DEPTH]] ^(<dt>SQLITE_LIMIT_TRIGGER_DEPTH</dt>
3208 ** <dd>The maximum depth of recursion for triggers.</dd>)^
3209 ** </dl>
3210 */
3211 #define SQLITE_LIMIT_LENGTH                    0
3212 #define SQLITE_LIMIT_SQL_LENGTH                1
3213 #define SQLITE_LIMIT_COLUMN                    2
3214 #define SQLITE_LIMIT_EXPR_DEPTH                3
3215 #define SQLITE_LIMIT_COMPOUND_SELECT           4
3216 #define SQLITE_LIMIT_VDBE_OP                   5
3217 #define SQLITE_LIMIT_FUNCTION_ARG              6
3218 #define SQLITE_LIMIT_ATTACHED                  7
3219 #define SQLITE_LIMIT_LIKE_PATTERN_LENGTH       8
3220 #define SQLITE_LIMIT_VARIABLE_NUMBER           9
3221 #define SQLITE_LIMIT_TRIGGER_DEPTH            10
3222 
3223 /*
3224 ** CAPI3REF: Compiling An SQL Statement
3225 ** KEYWORDS: {SQL statement compiler}
3226 **
3227 ** To execute an SQL query, it must first be compiled into a byte-code
3228 ** program using one of these routines.
3229 **
3230 ** The first argument, "db", is a [database connection] obtained from a
3231 ** prior successful call to [sqlite3_open()], [sqlite3_open_v2()] or
3232 ** [sqlite3_open16()].  The database connection must not have been closed.
3233 **
3234 ** The second argument, "zSql", is the statement to be compiled, encoded
3235 ** as either UTF-8 or UTF-16.  The sqlite3_prepare() and sqlite3_prepare_v2()
3236 ** interfaces use UTF-8, and sqlite3_prepare16() and sqlite3_prepare16_v2()
3237 ** use UTF-16.
3238 **
3239 ** ^If the nByte argument is less than zero, then zSql is read up to the
3240 ** first zero terminator. ^If nByte is non-negative, then it is the maximum
3241 ** number of  bytes read from zSql.  ^When nByte is non-negative, the
3242 ** zSql string ends at either the first '\000' or '\u0000' character or
3243 ** the nByte-th byte, whichever comes first. If the caller knows
3244 ** that the supplied string is nul-terminated, then there is a small
3245 ** performance advantage to be gained by passing an nByte parameter that
3246 ** is equal to the number of bytes in the input string <i>including</i>
3247 ** the nul-terminator bytes as this saves SQLite from having to
3248 ** make a copy of the input string.
3249 **
3250 ** ^If pzTail is not NULL then *pzTail is made to point to the first byte
3251 ** past the end of the first SQL statement in zSql.  These routines only
3252 ** compile the first statement in zSql, so *pzTail is left pointing to
3253 ** what remains uncompiled.
3254 **
3255 ** ^*ppStmt is left pointing to a compiled [prepared statement] that can be
3256 ** executed using [sqlite3_step()].  ^If there is an error, *ppStmt is set
3257 ** to NULL.  ^If the input text contains no SQL (if the input is an empty
3258 ** string or a comment) then *ppStmt is set to NULL.
3259 ** The calling procedure is responsible for deleting the compiled
3260 ** SQL statement using [sqlite3_finalize()] after it has finished with it.
3261 ** ppStmt may not be NULL.
3262 **
3263 ** ^On success, the sqlite3_prepare() family of routines return [SQLITE_OK];
3264 ** otherwise an [error code] is returned.
3265 **
3266 ** The sqlite3_prepare_v2() and sqlite3_prepare16_v2() interfaces are
3267 ** recommended for all new programs. The two older interfaces are retained
3268 ** for backwards compatibility, but their use is discouraged.
3269 ** ^In the "v2" interfaces, the prepared statement
3270 ** that is returned (the [sqlite3_stmt] object) contains a copy of the
3271 ** original SQL text. This causes the [sqlite3_step()] interface to
3272 ** behave differently in three ways:
3273 **
3274 ** <ol>
3275 ** <li>
3276 ** ^If the database schema changes, instead of returning [SQLITE_SCHEMA] as it
3277 ** always used to do, [sqlite3_step()] will automatically recompile the SQL
3278 ** statement and try to run it again. As many as [SQLITE_MAX_SCHEMA_RETRY]
3279 ** retries will occur before sqlite3_step() gives up and returns an error.
3280 ** </li>
3281 **
3282 ** <li>
3283 ** ^When an error occurs, [sqlite3_step()] will return one of the detailed
3284 ** [error codes] or [extended error codes].  ^The legacy behavior was that
3285 ** [sqlite3_step()] would only return a generic [SQLITE_ERROR] result code
3286 ** and the application would have to make a second call to [sqlite3_reset()]
3287 ** in order to find the underlying cause of the problem. With the "v2" prepare
3288 ** interfaces, the underlying reason for the error is returned immediately.
3289 ** </li>
3290 **
3291 ** <li>
3292 ** ^If the specific value bound to [parameter | host parameter] in the
3293 ** WHERE clause might influence the choice of query plan for a statement,
3294 ** then the statement will be automatically recompiled, as if there had been
3295 ** a schema change, on the first  [sqlite3_step()] call following any change
3296 ** to the [sqlite3_bind_text | bindings] of that [parameter].
3297 ** ^The specific value of WHERE-clause [parameter] might influence the
3298 ** choice of query plan if the parameter is the left-hand side of a [LIKE]
3299 ** or [GLOB] operator or if the parameter is compared to an indexed column
3300 ** and the [SQLITE_ENABLE_STAT3] compile-time option is enabled.
3301 ** </li>
3302 ** </ol>
3303 */
3304 SQLITE_API int sqlite3_prepare(
3305   sqlite3 *db,            /* Database handle */
3306   const char *zSql,       /* SQL statement, UTF-8 encoded */
3307   int nByte,              /* Maximum length of zSql in bytes. */
3308   sqlite3_stmt **ppStmt,  /* OUT: Statement handle */
3309   const char **pzTail     /* OUT: Pointer to unused portion of zSql */
3310 );
3311 SQLITE_API int sqlite3_prepare_v2(
3312   sqlite3 *db,            /* Database handle */
3313   const char *zSql,       /* SQL statement, UTF-8 encoded */
3314   int nByte,              /* Maximum length of zSql in bytes. */
3315   sqlite3_stmt **ppStmt,  /* OUT: Statement handle */
3316   const char **pzTail     /* OUT: Pointer to unused portion of zSql */
3317 );
3318 SQLITE_API int sqlite3_prepare16(
3319   sqlite3 *db,            /* Database handle */
3320   const void *zSql,       /* SQL statement, UTF-16 encoded */
3321   int nByte,              /* Maximum length of zSql in bytes. */
3322   sqlite3_stmt **ppStmt,  /* OUT: Statement handle */
3323   const void **pzTail     /* OUT: Pointer to unused portion of zSql */
3324 );
3325 SQLITE_API int sqlite3_prepare16_v2(
3326   sqlite3 *db,            /* Database handle */
3327   const void *zSql,       /* SQL statement, UTF-16 encoded */
3328   int nByte,              /* Maximum length of zSql in bytes. */
3329   sqlite3_stmt **ppStmt,  /* OUT: Statement handle */
3330   const void **pzTail     /* OUT: Pointer to unused portion of zSql */
3331 );
3332 
3333 /*
3334 ** CAPI3REF: Retrieving Statement SQL
3335 **
3336 ** ^This interface can be used to retrieve a saved copy of the original
3337 ** SQL text used to create a [prepared statement] if that statement was
3338 ** compiled using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()].
3339 */
3340 SQLITE_API const char *sqlite3_sql(sqlite3_stmt *pStmt);
3341 
3342 /*
3343 ** CAPI3REF: Determine If An SQL Statement Writes The Database
3344 **
3345 ** ^The sqlite3_stmt_readonly(X) interface returns true (non-zero) if
3346 ** and only if the [prepared statement] X makes no direct changes to
3347 ** the content of the database file.
3348 **
3349 ** Note that [application-defined SQL functions] or
3350 ** [virtual tables] might change the database indirectly as a side effect.
3351 ** ^(For example, if an application defines a function "eval()" that
3352 ** calls [sqlite3_exec()], then the following SQL statement would
3353 ** change the database file through side-effects:
3354 **
3355 ** <blockquote><pre>
3356 **    SELECT eval('DELETE FROM t1') FROM t2;
3357 ** </pre></blockquote>
3358 **
3359 ** But because the [SELECT] statement does not change the database file
3360 ** directly, sqlite3_stmt_readonly() would still return true.)^
3361 **
3362 ** ^Transaction control statements such as [BEGIN], [COMMIT], [ROLLBACK],
3363 ** [SAVEPOINT], and [RELEASE] cause sqlite3_stmt_readonly() to return true,
3364 ** since the statements themselves do not actually modify the database but
3365 ** rather they control the timing of when other statements modify the
3366 ** database.  ^The [ATTACH] and [DETACH] statements also cause
3367 ** sqlite3_stmt_readonly() to return true since, while those statements
3368 ** change the configuration of a database connection, they do not make
3369 ** changes to the content of the database files on disk.
3370 */
3371 SQLITE_API int sqlite3_stmt_readonly(sqlite3_stmt *pStmt);
3372 
3373 /*
3374 ** CAPI3REF: Determine If A Prepared Statement Has Been Reset
3375 **
3376 ** ^The sqlite3_stmt_busy(S) interface returns true (non-zero) if the
3377 ** [prepared statement] S has been stepped at least once using
3378 ** [sqlite3_step(S)] but has not run to completion and/or has not
3379 ** been reset using [sqlite3_reset(S)].  ^The sqlite3_stmt_busy(S)
3380 ** interface returns false if S is a NULL pointer.  If S is not a
3381 ** NULL pointer and is not a pointer to a valid [prepared statement]
3382 ** object, then the behavior is undefined and probably undesirable.
3383 **
3384 ** This interface can be used in combination [sqlite3_next_stmt()]
3385 ** to locate all prepared statements associated with a database
3386 ** connection that are in need of being reset.  This can be used,
3387 ** for example, in diagnostic routines to search for prepared
3388 ** statements that are holding a transaction open.
3389 */
3390 SQLITE_API int sqlite3_stmt_busy(sqlite3_stmt*);
3391 
3392 /*
3393 ** CAPI3REF: Dynamically Typed Value Object
3394 ** KEYWORDS: {protected sqlite3_value} {unprotected sqlite3_value}
3395 **
3396 ** SQLite uses the sqlite3_value object to represent all values
3397 ** that can be stored in a database table. SQLite uses dynamic typing
3398 ** for the values it stores.  ^Values stored in sqlite3_value objects
3399 ** can be integers, floating point values, strings, BLOBs, or NULL.
3400 **
3401 ** An sqlite3_value object may be either "protected" or "unprotected".
3402 ** Some interfaces require a protected sqlite3_value.  Other interfaces
3403 ** will accept either a protected or an unprotected sqlite3_value.
3404 ** Every interface that accepts sqlite3_value arguments specifies
3405 ** whether or not it requires a protected sqlite3_value.
3406 **
3407 ** The terms "protected" and "unprotected" refer to whether or not
3408 ** a mutex is held.  An internal mutex is held for a protected
3409 ** sqlite3_value object but no mutex is held for an unprotected
3410 ** sqlite3_value object.  If SQLite is compiled to be single-threaded
3411 ** (with [SQLITE_THREADSAFE=0] and with [sqlite3_threadsafe()] returning 0)
3412 ** or if SQLite is run in one of reduced mutex modes
3413 ** [SQLITE_CONFIG_SINGLETHREAD] or [SQLITE_CONFIG_MULTITHREAD]
3414 ** then there is no distinction between protected and unprotected
3415 ** sqlite3_value objects and they can be used interchangeably.  However,
3416 ** for maximum code portability it is recommended that applications
3417 ** still make the distinction between protected and unprotected
3418 ** sqlite3_value objects even when not strictly required.
3419 **
3420 ** ^The sqlite3_value objects that are passed as parameters into the
3421 ** implementation of [application-defined SQL functions] are protected.
3422 ** ^The sqlite3_value object returned by
3423 ** [sqlite3_column_value()] is unprotected.
3424 ** Unprotected sqlite3_value objects may only be used with
3425 ** [sqlite3_result_value()] and [sqlite3_bind_value()].
3426 ** The [sqlite3_value_blob | sqlite3_value_type()] family of
3427 ** interfaces require protected sqlite3_value objects.
3428 */
3429 typedef struct Mem sqlite3_value;
3430 
3431 /*
3432 ** CAPI3REF: SQL Function Context Object
3433 **
3434 ** The context in which an SQL function executes is stored in an
3435 ** sqlite3_context object.  ^A pointer to an sqlite3_context object
3436 ** is always first parameter to [application-defined SQL functions].
3437 ** The application-defined SQL function implementation will pass this
3438 ** pointer through into calls to [sqlite3_result_int | sqlite3_result()],
3439 ** [sqlite3_aggregate_context()], [sqlite3_user_data()],
3440 ** [sqlite3_context_db_handle()], [sqlite3_get_auxdata()],
3441 ** and/or [sqlite3_set_auxdata()].
3442 */
3443 typedef struct sqlite3_context sqlite3_context;
3444 
3445 /*
3446 ** CAPI3REF: Binding Values To Prepared Statements
3447 ** KEYWORDS: {host parameter} {host parameters} {host parameter name}
3448 ** KEYWORDS: {SQL parameter} {SQL parameters} {parameter binding}
3449 **
3450 ** ^(In the SQL statement text input to [sqlite3_prepare_v2()] and its variants,
3451 ** literals may be replaced by a [parameter] that matches one of following
3452 ** templates:
3453 **
3454 ** <ul>
3455 ** <li>  ?
3456 ** <li>  ?NNN
3457 ** <li>  :VVV
3458 ** <li>  @VVV
3459 ** <li>  $VVV
3460 ** </ul>
3461 **
3462 ** In the templates above, NNN represents an integer literal,
3463 ** and VVV represents an alphanumeric identifier.)^  ^The values of these
3464 ** parameters (also called "host parameter names" or "SQL parameters")
3465 ** can be set using the sqlite3_bind_*() routines defined here.
3466 **
3467 ** ^The first argument to the sqlite3_bind_*() routines is always
3468 ** a pointer to the [sqlite3_stmt] object returned from
3469 ** [sqlite3_prepare_v2()] or its variants.
3470 **
3471 ** ^The second argument is the index of the SQL parameter to be set.
3472 ** ^The leftmost SQL parameter has an index of 1.  ^When the same named
3473 ** SQL parameter is used more than once, second and subsequent
3474 ** occurrences have the same index as the first occurrence.
3475 ** ^The index for named parameters can be looked up using the
3476 ** [sqlite3_bind_parameter_index()] API if desired.  ^The index
3477 ** for "?NNN" parameters is the value of NNN.
3478 ** ^The NNN value must be between 1 and the [sqlite3_limit()]
3479 ** parameter [SQLITE_LIMIT_VARIABLE_NUMBER] (default value: 999).
3480 **
3481 ** ^The third argument is the value to bind to the parameter.
3482 ** ^If the third parameter to sqlite3_bind_text() or sqlite3_bind_text16()
3483 ** or sqlite3_bind_blob() is a NULL pointer then the fourth parameter
3484 ** is ignored and the end result is the same as sqlite3_bind_null().
3485 **
3486 ** ^(In those routines that have a fourth argument, its value is the
3487 ** number of bytes in the parameter.  To be clear: the value is the
3488 ** number of <u>bytes</u> in the value, not the number of characters.)^
3489 ** ^If the fourth parameter to sqlite3_bind_text() or sqlite3_bind_text16()
3490 ** is negative, then the length of the string is
3491 ** the number of bytes up to the first zero terminator.
3492 ** If the fourth parameter to sqlite3_bind_blob() is negative, then
3493 ** the behavior is undefined.
3494 ** If a non-negative fourth parameter is provided to sqlite3_bind_text()
3495 ** or sqlite3_bind_text16() then that parameter must be the byte offset
3496 ** where the NUL terminator would occur assuming the string were NUL
3497 ** terminated.  If any NUL characters occur at byte offsets less than
3498 ** the value of the fourth parameter then the resulting string value will
3499 ** contain embedded NULs.  The result of expressions involving strings
3500 ** with embedded NULs is undefined.
3501 **
3502 ** ^The fifth argument to sqlite3_bind_blob(), sqlite3_bind_text(), and
3503 ** sqlite3_bind_text16() is a destructor used to dispose of the BLOB or
3504 ** string after SQLite has finished with it.  ^The destructor is called
3505 ** to dispose of the BLOB or string even if the call to sqlite3_bind_blob(),
3506 ** sqlite3_bind_text(), or sqlite3_bind_text16() fails.
3507 ** ^If the fifth argument is
3508 ** the special value [SQLITE_STATIC], then SQLite assumes that the
3509 ** information is in static, unmanaged space and does not need to be freed.
3510 ** ^If the fifth argument has the value [SQLITE_TRANSIENT], then
3511 ** SQLite makes its own private copy of the data immediately, before
3512 ** the sqlite3_bind_*() routine returns.
3513 **
3514 ** ^The sqlite3_bind_zeroblob() routine binds a BLOB of length N that
3515 ** is filled with zeroes.  ^A zeroblob uses a fixed amount of memory
3516 ** (just an integer to hold its size) while it is being processed.
3517 ** Zeroblobs are intended to serve as placeholders for BLOBs whose
3518 ** content is later written using
3519 ** [sqlite3_blob_open | incremental BLOB I/O] routines.
3520 ** ^A negative value for the zeroblob results in a zero-length BLOB.
3521 **
3522 ** ^If any of the sqlite3_bind_*() routines are called with a NULL pointer
3523 ** for the [prepared statement] or with a prepared statement for which
3524 ** [sqlite3_step()] has been called more recently than [sqlite3_reset()],
3525 ** then the call will return [SQLITE_MISUSE].  If any sqlite3_bind_()
3526 ** routine is passed a [prepared statement] that has been finalized, the
3527 ** result is undefined and probably harmful.
3528 **
3529 ** ^Bindings are not cleared by the [sqlite3_reset()] routine.
3530 ** ^Unbound parameters are interpreted as NULL.
3531 **
3532 ** ^The sqlite3_bind_* routines return [SQLITE_OK] on success or an
3533 ** [error code] if anything goes wrong.
3534 ** ^[SQLITE_RANGE] is returned if the parameter
3535 ** index is out of range.  ^[SQLITE_NOMEM] is returned if malloc() fails.
3536 **
3537 ** See also: [sqlite3_bind_parameter_count()],
3538 ** [sqlite3_bind_parameter_name()], and [sqlite3_bind_parameter_index()].
3539 */
3540 SQLITE_API int sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, void(*)(void*));
3541 SQLITE_API int sqlite3_bind_double(sqlite3_stmt*, int, double);
3542 SQLITE_API int sqlite3_bind_int(sqlite3_stmt*, int, int);
3543 SQLITE_API int sqlite3_bind_int64(sqlite3_stmt*, int, sqlite3_int64);
3544 SQLITE_API int sqlite3_bind_null(sqlite3_stmt*, int);
3545 SQLITE_API int sqlite3_bind_text(sqlite3_stmt*, int, const char*, int n, void(*)(void*));
3546 SQLITE_API int sqlite3_bind_text16(sqlite3_stmt*, int, const void*, int, void(*)(void*));
3547 SQLITE_API int sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*);
3548 SQLITE_API int sqlite3_bind_zeroblob(sqlite3_stmt*, int, int n);
3549 
3550 /*
3551 ** CAPI3REF: Number Of SQL Parameters
3552 **
3553 ** ^This routine can be used to find the number of [SQL parameters]
3554 ** in a [prepared statement].  SQL parameters are tokens of the
3555 ** form "?", "?NNN", ":AAA", "$AAA", or "@AAA" that serve as
3556 ** placeholders for values that are [sqlite3_bind_blob | bound]
3557 ** to the parameters at a later time.
3558 **
3559 ** ^(This routine actually returns the index of the largest (rightmost)
3560 ** parameter. For all forms except ?NNN, this will correspond to the
3561 ** number of unique parameters.  If parameters of the ?NNN form are used,
3562 ** there may be gaps in the list.)^
3563 **
3564 ** See also: [sqlite3_bind_blob|sqlite3_bind()],
3565 ** [sqlite3_bind_parameter_name()], and
3566 ** [sqlite3_bind_parameter_index()].
3567 */
3568 SQLITE_API int sqlite3_bind_parameter_count(sqlite3_stmt*);
3569 
3570 /*
3571 ** CAPI3REF: Name Of A Host Parameter
3572 **
3573 ** ^The sqlite3_bind_parameter_name(P,N) interface returns
3574 ** the name of the N-th [SQL parameter] in the [prepared statement] P.
3575 ** ^(SQL parameters of the form "?NNN" or ":AAA" or "@AAA" or "$AAA"
3576 ** have a name which is the string "?NNN" or ":AAA" or "@AAA" or "$AAA"
3577 ** respectively.
3578 ** In other words, the initial ":" or "$" or "@" or "?"
3579 ** is included as part of the name.)^
3580 ** ^Parameters of the form "?" without a following integer have no name
3581 ** and are referred to as "nameless" or "anonymous parameters".
3582 **
3583 ** ^The first host parameter has an index of 1, not 0.
3584 **
3585 ** ^If the value N is out of range or if the N-th parameter is
3586 ** nameless, then NULL is returned.  ^The returned string is
3587 ** always in UTF-8 encoding even if the named parameter was
3588 ** originally specified as UTF-16 in [sqlite3_prepare16()] or
3589 ** [sqlite3_prepare16_v2()].
3590 **
3591 ** See also: [sqlite3_bind_blob|sqlite3_bind()],
3592 ** [sqlite3_bind_parameter_count()], and
3593 ** [sqlite3_bind_parameter_index()].
3594 */
3595 SQLITE_API const char *sqlite3_bind_parameter_name(sqlite3_stmt*, int);
3596 
3597 /*
3598 ** CAPI3REF: Index Of A Parameter With A Given Name
3599 **
3600 ** ^Return the index of an SQL parameter given its name.  ^The
3601 ** index value returned is suitable for use as the second
3602 ** parameter to [sqlite3_bind_blob|sqlite3_bind()].  ^A zero
3603 ** is returned if no matching parameter is found.  ^The parameter
3604 ** name must be given in UTF-8 even if the original statement
3605 ** was prepared from UTF-16 text using [sqlite3_prepare16_v2()].
3606 **
3607 ** See also: [sqlite3_bind_blob|sqlite3_bind()],
3608 ** [sqlite3_bind_parameter_count()], and
3609 ** [sqlite3_bind_parameter_index()].
3610 */
3611 SQLITE_API int sqlite3_bind_parameter_index(sqlite3_stmt*, const char *zName);
3612 
3613 /*
3614 ** CAPI3REF: Reset All Bindings On A Prepared Statement
3615 **
3616 ** ^Contrary to the intuition of many, [sqlite3_reset()] does not reset
3617 ** the [sqlite3_bind_blob | bindings] on a [prepared statement].
3618 ** ^Use this routine to reset all host parameters to NULL.
3619 */
3620 SQLITE_API int sqlite3_clear_bindings(sqlite3_stmt*);
3621 
3622 /*
3623 ** CAPI3REF: Number Of Columns In A Result Set
3624 **
3625 ** ^Return the number of columns in the result set returned by the
3626 ** [prepared statement]. ^This routine returns 0 if pStmt is an SQL
3627 ** statement that does not return data (for example an [UPDATE]).
3628 **
3629 ** See also: [sqlite3_data_count()]
3630 */
3631 SQLITE_API int sqlite3_column_count(sqlite3_stmt *pStmt);
3632 
3633 /*
3634 ** CAPI3REF: Column Names In A Result Set
3635 **
3636 ** ^These routines return the name assigned to a particular column
3637 ** in the result set of a [SELECT] statement.  ^The sqlite3_column_name()
3638 ** interface returns a pointer to a zero-terminated UTF-8 string
3639 ** and sqlite3_column_name16() returns a pointer to a zero-terminated
3640 ** UTF-16 string.  ^The first parameter is the [prepared statement]
3641 ** that implements the [SELECT] statement. ^The second parameter is the
3642 ** column number.  ^The leftmost column is number 0.
3643 **
3644 ** ^The returned string pointer is valid until either the [prepared statement]
3645 ** is destroyed by [sqlite3_finalize()] or until the statement is automatically
3646 ** reprepared by the first call to [sqlite3_step()] for a particular run
3647 ** or until the next call to
3648 ** sqlite3_column_name() or sqlite3_column_name16() on the same column.
3649 **
3650 ** ^If sqlite3_malloc() fails during the processing of either routine
3651 ** (for example during a conversion from UTF-8 to UTF-16) then a
3652 ** NULL pointer is returned.
3653 **
3654 ** ^The name of a result column is the value of the "AS" clause for
3655 ** that column, if there is an AS clause.  If there is no AS clause
3656 ** then the name of the column is unspecified and may change from
3657 ** one release of SQLite to the next.
3658 */
3659 SQLITE_API const char *sqlite3_column_name(sqlite3_stmt*, int N);
3660 SQLITE_API const void *sqlite3_column_name16(sqlite3_stmt*, int N);
3661 
3662 /*
3663 ** CAPI3REF: Source Of Data In A Query Result
3664 **
3665 ** ^These routines provide a means to determine the database, table, and
3666 ** table column that is the origin of a particular result column in
3667 ** [SELECT] statement.
3668 ** ^The name of the database or table or column can be returned as
3669 ** either a UTF-8 or UTF-16 string.  ^The _database_ routines return
3670 ** the database name, the _table_ routines return the table name, and
3671 ** the origin_ routines return the column name.
3672 ** ^The returned string is valid until the [prepared statement] is destroyed
3673 ** using [sqlite3_finalize()] or until the statement is automatically
3674 ** reprepared by the first call to [sqlite3_step()] for a particular run
3675 ** or until the same information is requested
3676 ** again in a different encoding.
3677 **
3678 ** ^The names returned are the original un-aliased names of the
3679 ** database, table, and column.
3680 **
3681 ** ^The first argument to these interfaces is a [prepared statement].
3682 ** ^These functions return information about the Nth result column returned by
3683 ** the statement, where N is the second function argument.
3684 ** ^The left-most column is column 0 for these routines.
3685 **
3686 ** ^If the Nth column returned by the statement is an expression or
3687 ** subquery and is not a column value, then all of these functions return
3688 ** NULL.  ^These routine might also return NULL if a memory allocation error
3689 ** occurs.  ^Otherwise, they return the name of the attached database, table,
3690 ** or column that query result column was extracted from.
3691 **
3692 ** ^As with all other SQLite APIs, those whose names end with "16" return
3693 ** UTF-16 encoded strings and the other functions return UTF-8.
3694 **
3695 ** ^These APIs are only available if the library was compiled with the
3696 ** [SQLITE_ENABLE_COLUMN_METADATA] C-preprocessor symbol.
3697 **
3698 ** If two or more threads call one or more of these routines against the same
3699 ** prepared statement and column at the same time then the results are
3700 ** undefined.
3701 **
3702 ** If two or more threads call one or more
3703 ** [sqlite3_column_database_name | column metadata interfaces]
3704 ** for the same [prepared statement] and result column
3705 ** at the same time then the results are undefined.
3706 */
3707 SQLITE_API const char *sqlite3_column_database_name(sqlite3_stmt*,int);
3708 SQLITE_API const void *sqlite3_column_database_name16(sqlite3_stmt*,int);
3709 SQLITE_API const char *sqlite3_column_table_name(sqlite3_stmt*,int);
3710 SQLITE_API const void *sqlite3_column_table_name16(sqlite3_stmt*,int);
3711 SQLITE_API const char *sqlite3_column_origin_name(sqlite3_stmt*,int);
3712 SQLITE_API const void *sqlite3_column_origin_name16(sqlite3_stmt*,int);
3713 
3714 /*
3715 ** CAPI3REF: Declared Datatype Of A Query Result
3716 **
3717 ** ^(The first parameter is a [prepared statement].
3718 ** If this statement is a [SELECT] statement and the Nth column of the
3719 ** returned result set of that [SELECT] is a table column (not an
3720 ** expression or subquery) then the declared type of the table
3721 ** column is returned.)^  ^If the Nth column of the result set is an
3722 ** expression or subquery, then a NULL pointer is returned.
3723 ** ^The returned string is always UTF-8 encoded.
3724 **
3725 ** ^(For example, given the database schema:
3726 **
3727 ** CREATE TABLE t1(c1 VARIANT);
3728 **
3729 ** and the following statement to be compiled:
3730 **
3731 ** SELECT c1 + 1, c1 FROM t1;
3732 **
3733 ** this routine would return the string "VARIANT" for the second result
3734 ** column (i==1), and a NULL pointer for the first result column (i==0).)^
3735 **
3736 ** ^SQLite uses dynamic run-time typing.  ^So just because a column
3737 ** is declared to contain a particular type does not mean that the
3738 ** data stored in that column is of the declared type.  SQLite is
3739 ** strongly typed, but the typing is dynamic not static.  ^Type
3740 ** is associated with individual values, not with the containers
3741 ** used to hold those values.
3742 */
3743 SQLITE_API const char *sqlite3_column_decltype(sqlite3_stmt*,int);
3744 SQLITE_API const void *sqlite3_column_decltype16(sqlite3_stmt*,int);
3745 
3746 /*
3747 ** CAPI3REF: Evaluate An SQL Statement
3748 **
3749 ** After a [prepared statement] has been prepared using either
3750 ** [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] or one of the legacy
3751 ** interfaces [sqlite3_prepare()] or [sqlite3_prepare16()], this function
3752 ** must be called one or more times to evaluate the statement.
3753 **
3754 ** The details of the behavior of the sqlite3_step() interface depend
3755 ** on whether the statement was prepared using the newer "v2" interface
3756 ** [sqlite3_prepare_v2()] and [sqlite3_prepare16_v2()] or the older legacy
3757 ** interface [sqlite3_prepare()] and [sqlite3_prepare16()].  The use of the
3758 ** new "v2" interface is recommended for new applications but the legacy
3759 ** interface will continue to be supported.
3760 **
3761 ** ^In the legacy interface, the return value will be either [SQLITE_BUSY],
3762 ** [SQLITE_DONE], [SQLITE_ROW], [SQLITE_ERROR], or [SQLITE_MISUSE].
3763 ** ^With the "v2" interface, any of the other [result codes] or
3764 ** [extended result codes] might be returned as well.
3765 **
3766 ** ^[SQLITE_BUSY] means that the database engine was unable to acquire the
3767 ** database locks it needs to do its job.  ^If the statement is a [COMMIT]
3768 ** or occurs outside of an explicit transaction, then you can retry the
3769 ** statement.  If the statement is not a [COMMIT] and occurs within an
3770 ** explicit transaction then you should rollback the transaction before
3771 ** continuing.
3772 **
3773 ** ^[SQLITE_DONE] means that the statement has finished executing
3774 ** successfully.  sqlite3_step() should not be called again on this virtual
3775 ** machine without first calling [sqlite3_reset()] to reset the virtual
3776 ** machine back to its initial state.
3777 **
3778 ** ^If the SQL statement being executed returns any data, then [SQLITE_ROW]
3779 ** is returned each time a new row of data is ready for processing by the
3780 ** caller. The values may be accessed using the [column access functions].
3781 ** sqlite3_step() is called again to retrieve the next row of data.
3782 **
3783 ** ^[SQLITE_ERROR] means that a run-time error (such as a constraint
3784 ** violation) has occurred.  sqlite3_step() should not be called again on
3785 ** the VM. More information may be found by calling [sqlite3_errmsg()].
3786 ** ^With the legacy interface, a more specific error code (for example,
3787 ** [SQLITE_INTERRUPT], [SQLITE_SCHEMA], [SQLITE_CORRUPT], and so forth)
3788 ** can be obtained by calling [sqlite3_reset()] on the
3789 ** [prepared statement].  ^In the "v2" interface,
3790 ** the more specific error code is returned directly by sqlite3_step().
3791 **
3792 ** [SQLITE_MISUSE] means that the this routine was called inappropriately.
3793 ** Perhaps it was called on a [prepared statement] that has
3794 ** already been [sqlite3_finalize | finalized] or on one that had
3795 ** previously returned [SQLITE_ERROR] or [SQLITE_DONE].  Or it could
3796 ** be the case that the same database connection is being used by two or
3797 ** more threads at the same moment in time.
3798 **
3799 ** For all versions of SQLite up to and including 3.6.23.1, a call to
3800 ** [sqlite3_reset()] was required after sqlite3_step() returned anything
3801 ** other than [SQLITE_ROW] before any subsequent invocation of
3802 ** sqlite3_step().  Failure to reset the prepared statement using
3803 ** [sqlite3_reset()] would result in an [SQLITE_MISUSE] return from
3804 ** sqlite3_step().  But after version 3.6.23.1, sqlite3_step() began
3805 ** calling [sqlite3_reset()] automatically in this circumstance rather
3806 ** than returning [SQLITE_MISUSE].  This is not considered a compatibility
3807 ** break because any application that ever receives an SQLITE_MISUSE error
3808 ** is broken by definition.  The [SQLITE_OMIT_AUTORESET] compile-time option
3809 ** can be used to restore the legacy behavior.
3810 **
3811 ** <b>Goofy Interface Alert:</b> In the legacy interface, the sqlite3_step()
3812 ** API always returns a generic error code, [SQLITE_ERROR], following any
3813 ** error other than [SQLITE_BUSY] and [SQLITE_MISUSE].  You must call
3814 ** [sqlite3_reset()] or [sqlite3_finalize()] in order to find one of the
3815 ** specific [error codes] that better describes the error.
3816 ** We admit that this is a goofy design.  The problem has been fixed
3817 ** with the "v2" interface.  If you prepare all of your SQL statements
3818 ** using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] instead
3819 ** of the legacy [sqlite3_prepare()] and [sqlite3_prepare16()] interfaces,
3820 ** then the more specific [error codes] are returned directly
3821 ** by sqlite3_step().  The use of the "v2" interface is recommended.
3822 */
3823 SQLITE_API int sqlite3_step(sqlite3_stmt*);
3824 
3825 /*
3826 ** CAPI3REF: Number of columns in a result set
3827 **
3828 ** ^The sqlite3_data_count(P) interface returns the number of columns in the
3829 ** current row of the result set of [prepared statement] P.
3830 ** ^If prepared statement P does not have results ready to return
3831 ** (via calls to the [sqlite3_column_int | sqlite3_column_*()] of
3832 ** interfaces) then sqlite3_data_count(P) returns 0.
3833 ** ^The sqlite3_data_count(P) routine also returns 0 if P is a NULL pointer.
3834 ** ^The sqlite3_data_count(P) routine returns 0 if the previous call to
3835 ** [sqlite3_step](P) returned [SQLITE_DONE].  ^The sqlite3_data_count(P)
3836 ** will return non-zero if previous call to [sqlite3_step](P) returned
3837 ** [SQLITE_ROW], except in the case of the [PRAGMA incremental_vacuum]
3838 ** where it always returns zero since each step of that multi-step
3839 ** pragma returns 0 columns of data.
3840 **
3841 ** See also: [sqlite3_column_count()]
3842 */
3843 SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt);
3844 
3845 /*
3846 ** CAPI3REF: Fundamental Datatypes
3847 ** KEYWORDS: SQLITE_TEXT
3848 **
3849 ** ^(Every value in SQLite has one of five fundamental datatypes:
3850 **
3851 ** <ul>
3852 ** <li> 64-bit signed integer
3853 ** <li> 64-bit IEEE floating point number
3854 ** <li> string
3855 ** <li> BLOB
3856 ** <li> NULL
3857 ** </ul>)^
3858 **
3859 ** These constants are codes for each of those types.
3860 **
3861 ** Note that the SQLITE_TEXT constant was also used in SQLite version 2
3862 ** for a completely different meaning.  Software that links against both
3863 ** SQLite version 2 and SQLite version 3 should use SQLITE3_TEXT, not
3864 ** SQLITE_TEXT.
3865 */
3866 #define SQLITE_INTEGER  1
3867 #define SQLITE_FLOAT    2
3868 #define SQLITE_BLOB     4
3869 #define SQLITE_NULL     5
3870 #ifdef SQLITE_TEXT
3871 # undef SQLITE_TEXT
3872 #else
3873 # define SQLITE_TEXT     3
3874 #endif
3875 #define SQLITE3_TEXT     3
3876 
3877 /*
3878 ** CAPI3REF: Result Values From A Query
3879 ** KEYWORDS: {column access functions}
3880 **
3881 ** These routines form the "result set" interface.
3882 **
3883 ** ^These routines return information about a single column of the current
3884 ** result row of a query.  ^In every case the first argument is a pointer
3885 ** to the [prepared statement] that is being evaluated (the [sqlite3_stmt*]
3886 ** that was returned from [sqlite3_prepare_v2()] or one of its variants)
3887 ** and the second argument is the index of the column for which information
3888 ** should be returned. ^The leftmost column of the result set has the index 0.
3889 ** ^The number of columns in the result can be determined using
3890 ** [sqlite3_column_count()].
3891 **
3892 ** If the SQL statement does not currently point to a valid row, or if the
3893 ** column index is out of range, the result is undefined.
3894 ** These routines may only be called when the most recent call to
3895 ** [sqlite3_step()] has returned [SQLITE_ROW] and neither
3896 ** [sqlite3_reset()] nor [sqlite3_finalize()] have been called subsequently.
3897 ** If any of these routines are called after [sqlite3_reset()] or
3898 ** [sqlite3_finalize()] or after [sqlite3_step()] has returned
3899 ** something other than [SQLITE_ROW], the results are undefined.
3900 ** If [sqlite3_step()] or [sqlite3_reset()] or [sqlite3_finalize()]
3901 ** are called from a different thread while any of these routines
3902 ** are pending, then the results are undefined.
3903 **
3904 ** ^The sqlite3_column_type() routine returns the
3905 ** [SQLITE_INTEGER | datatype code] for the initial data type
3906 ** of the result column.  ^The returned value is one of [SQLITE_INTEGER],
3907 ** [SQLITE_FLOAT], [SQLITE_TEXT], [SQLITE_BLOB], or [SQLITE_NULL].  The value
3908 ** returned by sqlite3_column_type() is only meaningful if no type
3909 ** conversions have occurred as described below.  After a type conversion,
3910 ** the value returned by sqlite3_column_type() is undefined.  Future
3911 ** versions of SQLite may change the behavior of sqlite3_column_type()
3912 ** following a type conversion.
3913 **
3914 ** ^If the result is a BLOB or UTF-8 string then the sqlite3_column_bytes()
3915 ** routine returns the number of bytes in that BLOB or string.
3916 ** ^If the result is a UTF-16 string, then sqlite3_column_bytes() converts
3917 ** the string to UTF-8 and then returns the number of bytes.
3918 ** ^If the result is a numeric value then sqlite3_column_bytes() uses
3919 ** [sqlite3_snprintf()] to convert that value to a UTF-8 string and returns
3920 ** the number of bytes in that string.
3921 ** ^If the result is NULL, then sqlite3_column_bytes() returns zero.
3922 **
3923 ** ^If the result is a BLOB or UTF-16 string then the sqlite3_column_bytes16()
3924 ** routine returns the number of bytes in that BLOB or string.
3925 ** ^If the result is a UTF-8 string, then sqlite3_column_bytes16() converts
3926 ** the string to UTF-16 and then returns the number of bytes.
3927 ** ^If the result is a numeric value then sqlite3_column_bytes16() uses
3928 ** [sqlite3_snprintf()] to convert that value to a UTF-16 string and returns
3929 ** the number of bytes in that string.
3930 ** ^If the result is NULL, then sqlite3_column_bytes16() returns zero.
3931 **
3932 ** ^The values returned by [sqlite3_column_bytes()] and
3933 ** [sqlite3_column_bytes16()] do not include the zero terminators at the end
3934 ** of the string.  ^For clarity: the values returned by
3935 ** [sqlite3_column_bytes()] and [sqlite3_column_bytes16()] are the number of
3936 ** bytes in the string, not the number of characters.
3937 **
3938 ** ^Strings returned by sqlite3_column_text() and sqlite3_column_text16(),
3939 ** even empty strings, are always zero-terminated.  ^The return
3940 ** value from sqlite3_column_blob() for a zero-length BLOB is a NULL pointer.
3941 **
3942 ** ^The object returned by [sqlite3_column_value()] is an
3943 ** [unprotected sqlite3_value] object.  An unprotected sqlite3_value object
3944 ** may only be used with [sqlite3_bind_value()] and [sqlite3_result_value()].
3945 ** If the [unprotected sqlite3_value] object returned by
3946 ** [sqlite3_column_value()] is used in any other way, including calls
3947 ** to routines like [sqlite3_value_int()], [sqlite3_value_text()],
3948 ** or [sqlite3_value_bytes()], then the behavior is undefined.
3949 **
3950 ** These routines attempt to convert the value where appropriate.  ^For
3951 ** example, if the internal representation is FLOAT and a text result
3952 ** is requested, [sqlite3_snprintf()] is used internally to perform the
3953 ** conversion automatically.  ^(The following table details the conversions
3954 ** that are applied:
3955 **
3956 ** <blockquote>
3957 ** <table border="1">
3958 ** <tr><th> Internal<br>Type <th> Requested<br>Type <th>  Conversion
3959 **
3960 ** <tr><td>  NULL    <td> INTEGER   <td> Result is 0
3961 ** <tr><td>  NULL    <td>  FLOAT    <td> Result is 0.0
3962 ** <tr><td>  NULL    <td>   TEXT    <td> Result is a NULL pointer
3963 ** <tr><td>  NULL    <td>   BLOB    <td> Result is a NULL pointer
3964 ** <tr><td> INTEGER  <td>  FLOAT    <td> Convert from integer to float
3965 ** <tr><td> INTEGER  <td>   TEXT    <td> ASCII rendering of the integer
3966 ** <tr><td> INTEGER  <td>   BLOB    <td> Same as INTEGER->TEXT
3967 ** <tr><td>  FLOAT   <td> INTEGER   <td> [CAST] to INTEGER
3968 ** <tr><td>  FLOAT   <td>   TEXT    <td> ASCII rendering of the float
3969 ** <tr><td>  FLOAT   <td>   BLOB    <td> [CAST] to BLOB
3970 ** <tr><td>  TEXT    <td> INTEGER   <td> [CAST] to INTEGER
3971 ** <tr><td>  TEXT    <td>  FLOAT    <td> [CAST] to REAL
3972 ** <tr><td>  TEXT    <td>   BLOB    <td> No change
3973 ** <tr><td>  BLOB    <td> INTEGER   <td> [CAST] to INTEGER
3974 ** <tr><td>  BLOB    <td>  FLOAT    <td> [CAST] to REAL
3975 ** <tr><td>  BLOB    <td>   TEXT    <td> Add a zero terminator if needed
3976 ** </table>
3977 ** </blockquote>)^
3978 **
3979 ** The table above makes reference to standard C library functions atoi()
3980 ** and atof().  SQLite does not really use these functions.  It has its
3981 ** own equivalent internal routines.  The atoi() and atof() names are
3982 ** used in the table for brevity and because they are familiar to most
3983 ** C programmers.
3984 **
3985 ** Note that when type conversions occur, pointers returned by prior
3986 ** calls to sqlite3_column_blob(), sqlite3_column_text(), and/or
3987 ** sqlite3_column_text16() may be invalidated.
3988 ** Type conversions and pointer invalidations might occur
3989 ** in the following cases:
3990 **
3991 ** <ul>
3992 ** <li> The initial content is a BLOB and sqlite3_column_text() or
3993 **      sqlite3_column_text16() is called.  A zero-terminator might
3994 **      need to be added to the string.</li>
3995 ** <li> The initial content is UTF-8 text and sqlite3_column_bytes16() or
3996 **      sqlite3_column_text16() is called.  The content must be converted
3997 **      to UTF-16.</li>
3998 ** <li> The initial content is UTF-16 text and sqlite3_column_bytes() or
3999 **      sqlite3_column_text() is called.  The content must be converted
4000 **      to UTF-8.</li>
4001 ** </ul>
4002 **
4003 ** ^Conversions between UTF-16be and UTF-16le are always done in place and do
4004 ** not invalidate a prior pointer, though of course the content of the buffer
4005 ** that the prior pointer references will have been modified.  Other kinds
4006 ** of conversion are done in place when it is possible, but sometimes they
4007 ** are not possible and in those cases prior pointers are invalidated.
4008 **
4009 ** The safest and easiest to remember policy is to invoke these routines
4010 ** in one of the following ways:
4011 **
4012 ** <ul>
4013 **  <li>sqlite3_column_text() followed by sqlite3_column_bytes()</li>
4014 **  <li>sqlite3_column_blob() followed by sqlite3_column_bytes()</li>
4015 **  <li>sqlite3_column_text16() followed by sqlite3_column_bytes16()</li>
4016 ** </ul>
4017 **
4018 ** In other words, you should call sqlite3_column_text(),
4019 ** sqlite3_column_blob(), or sqlite3_column_text16() first to force the result
4020 ** into the desired format, then invoke sqlite3_column_bytes() or
4021 ** sqlite3_column_bytes16() to find the size of the result.  Do not mix calls
4022 ** to sqlite3_column_text() or sqlite3_column_blob() with calls to
4023 ** sqlite3_column_bytes16(), and do not mix calls to sqlite3_column_text16()
4024 ** with calls to sqlite3_column_bytes().
4025 **
4026 ** ^The pointers returned are valid until a type conversion occurs as
4027 ** described above, or until [sqlite3_step()] or [sqlite3_reset()] or
4028 ** [sqlite3_finalize()] is called.  ^The memory space used to hold strings
4029 ** and BLOBs is freed automatically.  Do <b>not</b> pass the pointers returned
4030 ** from [sqlite3_column_blob()], [sqlite3_column_text()], etc. into
4031 ** [sqlite3_free()].
4032 **
4033 ** ^(If a memory allocation error occurs during the evaluation of any
4034 ** of these routines, a default value is returned.  The default value
4035 ** is either the integer 0, the floating point number 0.0, or a NULL
4036 ** pointer.  Subsequent calls to [sqlite3_errcode()] will return
4037 ** [SQLITE_NOMEM].)^
4038 */
4039 SQLITE_API const void *sqlite3_column_blob(sqlite3_stmt*, int iCol);
4040 SQLITE_API int sqlite3_column_bytes(sqlite3_stmt*, int iCol);
4041 SQLITE_API int sqlite3_column_bytes16(sqlite3_stmt*, int iCol);
4042 SQLITE_API double sqlite3_column_double(sqlite3_stmt*, int iCol);
4043 SQLITE_API int sqlite3_column_int(sqlite3_stmt*, int iCol);
4044 SQLITE_API sqlite3_int64 sqlite3_column_int64(sqlite3_stmt*, int iCol);
4045 SQLITE_API const unsigned char *sqlite3_column_text(sqlite3_stmt*, int iCol);
4046 SQLITE_API const void *sqlite3_column_text16(sqlite3_stmt*, int iCol);
4047 SQLITE_API int sqlite3_column_type(sqlite3_stmt*, int iCol);
4048 SQLITE_API sqlite3_value *sqlite3_column_value(sqlite3_stmt*, int iCol);
4049 
4050 /*
4051 ** CAPI3REF: Destroy A Prepared Statement Object
4052 **
4053 ** ^The sqlite3_finalize() function is called to delete a [prepared statement].
4054 ** ^If the most recent evaluation of the statement encountered no errors
4055 ** or if the statement is never been evaluated, then sqlite3_finalize() returns
4056 ** SQLITE_OK.  ^If the most recent evaluation of statement S failed, then
4057 ** sqlite3_finalize(S) returns the appropriate [error code] or
4058 ** [extended error code].
4059 **
4060 ** ^The sqlite3_finalize(S) routine can be called at any point during
4061 ** the life cycle of [prepared statement] S:
4062 ** before statement S is ever evaluated, after
4063 ** one or more calls to [sqlite3_reset()], or after any call
4064 ** to [sqlite3_step()] regardless of whether or not the statement has
4065 ** completed execution.
4066 **
4067 ** ^Invoking sqlite3_finalize() on a NULL pointer is a harmless no-op.
4068 **
4069 ** The application must finalize every [prepared statement] in order to avoid
4070 ** resource leaks.  It is a grievous error for the application to try to use
4071 ** a prepared statement after it has been finalized.  Any use of a prepared
4072 ** statement after it has been finalized can result in undefined and
4073 ** undesirable behavior such as segfaults and heap corruption.
4074 */
4075 SQLITE_API int sqlite3_finalize(sqlite3_stmt *pStmt);
4076 
4077 /*
4078 ** CAPI3REF: Reset A Prepared Statement Object
4079 **
4080 ** The sqlite3_reset() function is called to reset a [prepared statement]
4081 ** object back to its initial state, ready to be re-executed.
4082 ** ^Any SQL statement variables that had values bound to them using
4083 ** the [sqlite3_bind_blob | sqlite3_bind_*() API] retain their values.
4084 ** Use [sqlite3_clear_bindings()] to reset the bindings.
4085 **
4086 ** ^The [sqlite3_reset(S)] interface resets the [prepared statement] S
4087 ** back to the beginning of its program.
4088 **
4089 ** ^If the most recent call to [sqlite3_step(S)] for the
4090 ** [prepared statement] S returned [SQLITE_ROW] or [SQLITE_DONE],
4091 ** or if [sqlite3_step(S)] has never before been called on S,
4092 ** then [sqlite3_reset(S)] returns [SQLITE_OK].
4093 **
4094 ** ^If the most recent call to [sqlite3_step(S)] for the
4095 ** [prepared statement] S indicated an error, then
4096 ** [sqlite3_reset(S)] returns an appropriate [error code].
4097 **
4098 ** ^The [sqlite3_reset(S)] interface does not change the values
4099 ** of any [sqlite3_bind_blob|bindings] on the [prepared statement] S.
4100 */
4101 SQLITE_API int sqlite3_reset(sqlite3_stmt *pStmt);
4102 
4103 /*
4104 ** CAPI3REF: Create Or Redefine SQL Functions
4105 ** KEYWORDS: {function creation routines}
4106 ** KEYWORDS: {application-defined SQL function}
4107 ** KEYWORDS: {application-defined SQL functions}
4108 **
4109 ** ^These functions (collectively known as "function creation routines")
4110 ** are used to add SQL functions or aggregates or to redefine the behavior
4111 ** of existing SQL functions or aggregates.  The only differences between
4112 ** these routines are the text encoding expected for
4113 ** the second parameter (the name of the function being created)
4114 ** and the presence or absence of a destructor callback for
4115 ** the application data pointer.
4116 **
4117 ** ^The first parameter is the [database connection] to which the SQL
4118 ** function is to be added.  ^If an application uses more than one database
4119 ** connection then application-defined SQL functions must be added
4120 ** to each database connection separately.
4121 **
4122 ** ^The second parameter is the name of the SQL function to be created or
4123 ** redefined.  ^The length of the name is limited to 255 bytes in a UTF-8
4124 ** representation, exclusive of the zero-terminator.  ^Note that the name
4125 ** length limit is in UTF-8 bytes, not characters nor UTF-16 bytes.
4126 ** ^Any attempt to create a function with a longer name
4127 ** will result in [SQLITE_MISUSE] being returned.
4128 **
4129 ** ^The third parameter (nArg)
4130 ** is the number of arguments that the SQL function or
4131 ** aggregate takes. ^If this parameter is -1, then the SQL function or
4132 ** aggregate may take any number of arguments between 0 and the limit
4133 ** set by [sqlite3_limit]([SQLITE_LIMIT_FUNCTION_ARG]).  If the third
4134 ** parameter is less than -1 or greater than 127 then the behavior is
4135 ** undefined.
4136 **
4137 ** ^The fourth parameter, eTextRep, specifies what
4138 ** [SQLITE_UTF8 | text encoding] this SQL function prefers for
4139 ** its parameters.  The application should set this parameter to
4140 ** [SQLITE_UTF16LE] if the function implementation invokes
4141 ** [sqlite3_value_text16le()] on an input, or [SQLITE_UTF16BE] if the
4142 ** implementation invokes [sqlite3_value_text16be()] on an input, or
4143 ** [SQLITE_UTF16] if [sqlite3_value_text16()] is used, or [SQLITE_UTF8]
4144 ** otherwise.  ^The same SQL function may be registered multiple times using
4145 ** different preferred text encodings, with different implementations for
4146 ** each encoding.
4147 ** ^When multiple implementations of the same function are available, SQLite
4148 ** will pick the one that involves the least amount of data conversion.
4149 **
4150 ** ^The fourth parameter may optionally be ORed with [SQLITE_DETERMINISTIC]
4151 ** to signal that the function will always return the same result given
4152 ** the same inputs within a single SQL statement.  Most SQL functions are
4153 ** deterministic.  The built-in [random()] SQL function is an example of a
4154 ** function that is not deterministic.  The SQLite query planner is able to
4155 ** perform additional optimizations on deterministic functions, so use
4156 ** of the [SQLITE_DETERMINISTIC] flag is recommended where possible.
4157 **
4158 ** ^(The fifth parameter is an arbitrary pointer.  The implementation of the
4159 ** function can gain access to this pointer using [sqlite3_user_data()].)^
4160 **
4161 ** ^The sixth, seventh and eighth parameters, xFunc, xStep and xFinal, are
4162 ** pointers to C-language functions that implement the SQL function or
4163 ** aggregate. ^A scalar SQL function requires an implementation of the xFunc
4164 ** callback only; NULL pointers must be passed as the xStep and xFinal
4165 ** parameters. ^An aggregate SQL function requires an implementation of xStep
4166 ** and xFinal and NULL pointer must be passed for xFunc. ^To delete an existing
4167 ** SQL function or aggregate, pass NULL pointers for all three function
4168 ** callbacks.
4169 **
4170 ** ^(If the ninth parameter to sqlite3_create_function_v2() is not NULL,
4171 ** then it is destructor for the application data pointer.
4172 ** The destructor is invoked when the function is deleted, either by being
4173 ** overloaded or when the database connection closes.)^
4174 ** ^The destructor is also invoked if the call to
4175 ** sqlite3_create_function_v2() fails.
4176 ** ^When the destructor callback of the tenth parameter is invoked, it
4177 ** is passed a single argument which is a copy of the application data
4178 ** pointer which was the fifth parameter to sqlite3_create_function_v2().
4179 **
4180 ** ^It is permitted to register multiple implementations of the same
4181 ** functions with the same name but with either differing numbers of
4182 ** arguments or differing preferred text encodings.  ^SQLite will use
4183 ** the implementation that most closely matches the way in which the
4184 ** SQL function is used.  ^A function implementation with a non-negative
4185 ** nArg parameter is a better match than a function implementation with
4186 ** a negative nArg.  ^A function where the preferred text encoding
4187 ** matches the database encoding is a better
4188 ** match than a function where the encoding is different.
4189 ** ^A function where the encoding difference is between UTF16le and UTF16be
4190 ** is a closer match than a function where the encoding difference is
4191 ** between UTF8 and UTF16.
4192 **
4193 ** ^Built-in functions may be overloaded by new application-defined functions.
4194 **
4195 ** ^An application-defined function is permitted to call other
4196 ** SQLite interfaces.  However, such calls must not
4197 ** close the database connection nor finalize or reset the prepared
4198 ** statement in which the function is running.
4199 */
4200 SQLITE_API int sqlite3_create_function(
4201   sqlite3 *db,
4202   const char *zFunctionName,
4203   int nArg,
4204   int eTextRep,
4205   void *pApp,
4206   void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
4207   void (*xStep)(sqlite3_context*,int,sqlite3_value**),
4208   void (*xFinal)(sqlite3_context*)
4209 );
4210 SQLITE_API int sqlite3_create_function16(
4211   sqlite3 *db,
4212   const void *zFunctionName,
4213   int nArg,
4214   int eTextRep,
4215   void *pApp,
4216   void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
4217   void (*xStep)(sqlite3_context*,int,sqlite3_value**),
4218   void (*xFinal)(sqlite3_context*)
4219 );
4220 SQLITE_API int sqlite3_create_function_v2(
4221   sqlite3 *db,
4222   const char *zFunctionName,
4223   int nArg,
4224   int eTextRep,
4225   void *pApp,
4226   void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
4227   void (*xStep)(sqlite3_context*,int,sqlite3_value**),
4228   void (*xFinal)(sqlite3_context*),
4229   void(*xDestroy)(void*)
4230 );
4231 
4232 /*
4233 ** CAPI3REF: Text Encodings
4234 **
4235 ** These constant define integer codes that represent the various
4236 ** text encodings supported by SQLite.
4237 */
4238 #define SQLITE_UTF8           1
4239 #define SQLITE_UTF16LE        2
4240 #define SQLITE_UTF16BE        3
4241 #define SQLITE_UTF16          4    /* Use native byte order */
4242 #define SQLITE_ANY            5    /* Deprecated */
4243 #define SQLITE_UTF16_ALIGNED  8    /* sqlite3_create_collation only */
4244 
4245 /*
4246 ** CAPI3REF: Function Flags
4247 **
4248 ** These constants may be ORed together with the
4249 ** [SQLITE_UTF8 | preferred text encoding] as the fourth argument
4250 ** to [sqlite3_create_function()], [sqlite3_create_function16()], or
4251 ** [sqlite3_create_function_v2()].
4252 */
4253 #define SQLITE_DETERMINISTIC    0x800
4254 
4255 /*
4256 ** CAPI3REF: Deprecated Functions
4257 ** DEPRECATED
4258 **
4259 ** These functions are [deprecated].  In order to maintain
4260 ** backwards compatibility with older code, these functions continue
4261 ** to be supported.  However, new applications should avoid
4262 ** the use of these functions.  To help encourage people to avoid
4263 ** using these functions, we are not going to tell you what they do.
4264 */
4265 #ifndef SQLITE_OMIT_DEPRECATED
4266 SQLITE_API SQLITE_DEPRECATED int sqlite3_aggregate_count(sqlite3_context*);
4267 SQLITE_API SQLITE_DEPRECATED int sqlite3_expired(sqlite3_stmt*);
4268 SQLITE_API SQLITE_DEPRECATED int sqlite3_transfer_bindings(sqlite3_stmt*, sqlite3_stmt*);
4269 SQLITE_API SQLITE_DEPRECATED int sqlite3_global_recover(void);
4270 SQLITE_API SQLITE_DEPRECATED void sqlite3_thread_cleanup(void);
4271 SQLITE_API SQLITE_DEPRECATED int sqlite3_memory_alarm(void(*)(void*,sqlite3_int64,int),
4272                       void*,sqlite3_int64);
4273 #endif
4274 
4275 /*
4276 ** CAPI3REF: Obtaining SQL Function Parameter Values
4277 **
4278 ** The C-language implementation of SQL functions and aggregates uses
4279 ** this set of interface routines to access the parameter values on
4280 ** the function or aggregate.
4281 **
4282 ** The xFunc (for scalar functions) or xStep (for aggregates) parameters
4283 ** to [sqlite3_create_function()] and [sqlite3_create_function16()]
4284 ** define callbacks that implement the SQL functions and aggregates.
4285 ** The 3rd parameter to these callbacks is an array of pointers to
4286 ** [protected sqlite3_value] objects.  There is one [sqlite3_value] object for
4287 ** each parameter to the SQL function.  These routines are used to
4288 ** extract values from the [sqlite3_value] objects.
4289 **
4290 ** These routines work only with [protected sqlite3_value] objects.
4291 ** Any attempt to use these routines on an [unprotected sqlite3_value]
4292 ** object results in undefined behavior.
4293 **
4294 ** ^These routines work just like the corresponding [column access functions]
4295 ** except that  these routines take a single [protected sqlite3_value] object
4296 ** pointer instead of a [sqlite3_stmt*] pointer and an integer column number.
4297 **
4298 ** ^The sqlite3_value_text16() interface extracts a UTF-16 string
4299 ** in the native byte-order of the host machine.  ^The
4300 ** sqlite3_value_text16be() and sqlite3_value_text16le() interfaces
4301 ** extract UTF-16 strings as big-endian and little-endian respectively.
4302 **
4303 ** ^(The sqlite3_value_numeric_type() interface attempts to apply
4304 ** numeric affinity to the value.  This means that an attempt is
4305 ** made to convert the value to an integer or floating point.  If
4306 ** such a conversion is possible without loss of information (in other
4307 ** words, if the value is a string that looks like a number)
4308 ** then the conversion is performed.  Otherwise no conversion occurs.
4309 ** The [SQLITE_INTEGER | datatype] after conversion is returned.)^
4310 **
4311 ** Please pay particular attention to the fact that the pointer returned
4312 ** from [sqlite3_value_blob()], [sqlite3_value_text()], or
4313 ** [sqlite3_value_text16()] can be invalidated by a subsequent call to
4314 ** [sqlite3_value_bytes()], [sqlite3_value_bytes16()], [sqlite3_value_text()],
4315 ** or [sqlite3_value_text16()].
4316 **
4317 ** These routines must be called from the same thread as
4318 ** the SQL function that supplied the [sqlite3_value*] parameters.
4319 */
4320 SQLITE_API const void *sqlite3_value_blob(sqlite3_value*);
4321 SQLITE_API int sqlite3_value_bytes(sqlite3_value*);
4322 SQLITE_API int sqlite3_value_bytes16(sqlite3_value*);
4323 SQLITE_API double sqlite3_value_double(sqlite3_value*);
4324 SQLITE_API int sqlite3_value_int(sqlite3_value*);
4325 SQLITE_API sqlite3_int64 sqlite3_value_int64(sqlite3_value*);
4326 SQLITE_API const unsigned char *sqlite3_value_text(sqlite3_value*);
4327 SQLITE_API const void *sqlite3_value_text16(sqlite3_value*);
4328 SQLITE_API const void *sqlite3_value_text16le(sqlite3_value*);
4329 SQLITE_API const void *sqlite3_value_text16be(sqlite3_value*);
4330 SQLITE_API int sqlite3_value_type(sqlite3_value*);
4331 SQLITE_API int sqlite3_value_numeric_type(sqlite3_value*);
4332 
4333 /*
4334 ** CAPI3REF: Obtain Aggregate Function Context
4335 **
4336 ** Implementations of aggregate SQL functions use this
4337 ** routine to allocate memory for storing their state.
4338 **
4339 ** ^The first time the sqlite3_aggregate_context(C,N) routine is called
4340 ** for a particular aggregate function, SQLite
4341 ** allocates N of memory, zeroes out that memory, and returns a pointer
4342 ** to the new memory. ^On second and subsequent calls to
4343 ** sqlite3_aggregate_context() for the same aggregate function instance,
4344 ** the same buffer is returned.  Sqlite3_aggregate_context() is normally
4345 ** called once for each invocation of the xStep callback and then one
4346 ** last time when the xFinal callback is invoked.  ^(When no rows match
4347 ** an aggregate query, the xStep() callback of the aggregate function
4348 ** implementation is never called and xFinal() is called exactly once.
4349 ** In those cases, sqlite3_aggregate_context() might be called for the
4350 ** first time from within xFinal().)^
4351 **
4352 ** ^The sqlite3_aggregate_context(C,N) routine returns a NULL pointer
4353 ** when first called if N is less than or equal to zero or if a memory
4354 ** allocate error occurs.
4355 **
4356 ** ^(The amount of space allocated by sqlite3_aggregate_context(C,N) is
4357 ** determined by the N parameter on first successful call.  Changing the
4358 ** value of N in subsequent call to sqlite3_aggregate_context() within
4359 ** the same aggregate function instance will not resize the memory
4360 ** allocation.)^  Within the xFinal callback, it is customary to set
4361 ** N=0 in calls to sqlite3_aggregate_context(C,N) so that no
4362 ** pointless memory allocations occur.
4363 **
4364 ** ^SQLite automatically frees the memory allocated by
4365 ** sqlite3_aggregate_context() when the aggregate query concludes.
4366 **
4367 ** The first parameter must be a copy of the
4368 ** [sqlite3_context | SQL function context] that is the first parameter
4369 ** to the xStep or xFinal callback routine that implements the aggregate
4370 ** function.
4371 **
4372 ** This routine must be called from the same thread in which
4373 ** the aggregate SQL function is running.
4374 */
4375 SQLITE_API void *sqlite3_aggregate_context(sqlite3_context*, int nBytes);
4376 
4377 /*
4378 ** CAPI3REF: User Data For Functions
4379 **
4380 ** ^The sqlite3_user_data() interface returns a copy of
4381 ** the pointer that was the pUserData parameter (the 5th parameter)
4382 ** of the [sqlite3_create_function()]
4383 ** and [sqlite3_create_function16()] routines that originally
4384 ** registered the application defined function.
4385 **
4386 ** This routine must be called from the same thread in which
4387 ** the application-defined function is running.
4388 */
4389 SQLITE_API void *sqlite3_user_data(sqlite3_context*);
4390 
4391 /*
4392 ** CAPI3REF: Database Connection For Functions
4393 **
4394 ** ^The sqlite3_context_db_handle() interface returns a copy of
4395 ** the pointer to the [database connection] (the 1st parameter)
4396 ** of the [sqlite3_create_function()]
4397 ** and [sqlite3_create_function16()] routines that originally
4398 ** registered the application defined function.
4399 */
4400 SQLITE_API sqlite3 *sqlite3_context_db_handle(sqlite3_context*);
4401 
4402 /*
4403 ** CAPI3REF: Function Auxiliary Data
4404 **
4405 ** These functions may be used by (non-aggregate) SQL functions to
4406 ** associate metadata with argument values. If the same value is passed to
4407 ** multiple invocations of the same SQL function during query execution, under
4408 ** some circumstances the associated metadata may be preserved.  An example
4409 ** of where this might be useful is in a regular-expression matching
4410 ** function. The compiled version of the regular expression can be stored as
4411 ** metadata associated with the pattern string.
4412 ** Then as long as the pattern string remains the same,
4413 ** the compiled regular expression can be reused on multiple
4414 ** invocations of the same function.
4415 **
4416 ** ^The sqlite3_get_auxdata() interface returns a pointer to the metadata
4417 ** associated by the sqlite3_set_auxdata() function with the Nth argument
4418 ** value to the application-defined function. ^If there is no metadata
4419 ** associated with the function argument, this sqlite3_get_auxdata() interface
4420 ** returns a NULL pointer.
4421 **
4422 ** ^The sqlite3_set_auxdata(C,N,P,X) interface saves P as metadata for the N-th
4423 ** argument of the application-defined function.  ^Subsequent
4424 ** calls to sqlite3_get_auxdata(C,N) return P from the most recent
4425 ** sqlite3_set_auxdata(C,N,P,X) call if the metadata is still valid or
4426 ** NULL if the metadata has been discarded.
4427 ** ^After each call to sqlite3_set_auxdata(C,N,P,X) where X is not NULL,
4428 ** SQLite will invoke the destructor function X with parameter P exactly
4429 ** once, when the metadata is discarded.
4430 ** SQLite is free to discard the metadata at any time, including: <ul>
4431 ** <li> when the corresponding function parameter changes, or
4432 ** <li> when [sqlite3_reset()] or [sqlite3_finalize()] is called for the
4433 **      SQL statement, or
4434 ** <li> when sqlite3_set_auxdata() is invoked again on the same parameter, or
4435 ** <li> during the original sqlite3_set_auxdata() call when a memory
4436 **      allocation error occurs. </ul>)^
4437 **
4438 ** Note the last bullet in particular.  The destructor X in
4439 ** sqlite3_set_auxdata(C,N,P,X) might be called immediately, before the
4440 ** sqlite3_set_auxdata() interface even returns.  Hence sqlite3_set_auxdata()
4441 ** should be called near the end of the function implementation and the
4442 ** function implementation should not make any use of P after
4443 ** sqlite3_set_auxdata() has been called.
4444 **
4445 ** ^(In practice, metadata is preserved between function calls for
4446 ** function parameters that are compile-time constants, including literal
4447 ** values and [parameters] and expressions composed from the same.)^
4448 **
4449 ** These routines must be called from the same thread in which
4450 ** the SQL function is running.
4451 */
4452 SQLITE_API void *sqlite3_get_auxdata(sqlite3_context*, int N);
4453 SQLITE_API void sqlite3_set_auxdata(sqlite3_context*, int N, void*, void (*)(void*));
4454 
4455 
4456 /*
4457 ** CAPI3REF: Constants Defining Special Destructor Behavior
4458 **
4459 ** These are special values for the destructor that is passed in as the
4460 ** final argument to routines like [sqlite3_result_blob()].  ^If the destructor
4461 ** argument is SQLITE_STATIC, it means that the content pointer is constant
4462 ** and will never change.  It does not need to be destroyed.  ^The
4463 ** SQLITE_TRANSIENT value means that the content will likely change in
4464 ** the near future and that SQLite should make its own private copy of
4465 ** the content before returning.
4466 **
4467 ** The typedef is necessary to work around problems in certain
4468 ** C++ compilers.
4469 */
4470 typedef void (*sqlite3_destructor_type)(void*);
4471 #define SQLITE_STATIC      ((sqlite3_destructor_type)0)
4472 #define SQLITE_TRANSIENT   ((sqlite3_destructor_type)-1)
4473 
4474 /*
4475 ** CAPI3REF: Setting The Result Of An SQL Function
4476 **
4477 ** These routines are used by the xFunc or xFinal callbacks that
4478 ** implement SQL functions and aggregates.  See
4479 ** [sqlite3_create_function()] and [sqlite3_create_function16()]
4480 ** for additional information.
4481 **
4482 ** These functions work very much like the [parameter binding] family of
4483 ** functions used to bind values to host parameters in prepared statements.
4484 ** Refer to the [SQL parameter] documentation for additional information.
4485 **
4486 ** ^The sqlite3_result_blob() interface sets the result from
4487 ** an application-defined function to be the BLOB whose content is pointed
4488 ** to by the second parameter and which is N bytes long where N is the
4489 ** third parameter.
4490 **
4491 ** ^The sqlite3_result_zeroblob() interfaces set the result of
4492 ** the application-defined function to be a BLOB containing all zero
4493 ** bytes and N bytes in size, where N is the value of the 2nd parameter.
4494 **
4495 ** ^The sqlite3_result_double() interface sets the result from
4496 ** an application-defined function to be a floating point value specified
4497 ** by its 2nd argument.
4498 **
4499 ** ^The sqlite3_result_error() and sqlite3_result_error16() functions
4500 ** cause the implemented SQL function to throw an exception.
4501 ** ^SQLite uses the string pointed to by the
4502 ** 2nd parameter of sqlite3_result_error() or sqlite3_result_error16()
4503 ** as the text of an error message.  ^SQLite interprets the error
4504 ** message string from sqlite3_result_error() as UTF-8. ^SQLite
4505 ** interprets the string from sqlite3_result_error16() as UTF-16 in native
4506 ** byte order.  ^If the third parameter to sqlite3_result_error()
4507 ** or sqlite3_result_error16() is negative then SQLite takes as the error
4508 ** message all text up through the first zero character.
4509 ** ^If the third parameter to sqlite3_result_error() or
4510 ** sqlite3_result_error16() is non-negative then SQLite takes that many
4511 ** bytes (not characters) from the 2nd parameter as the error message.
4512 ** ^The sqlite3_result_error() and sqlite3_result_error16()
4513 ** routines make a private copy of the error message text before
4514 ** they return.  Hence, the calling function can deallocate or
4515 ** modify the text after they return without harm.
4516 ** ^The sqlite3_result_error_code() function changes the error code
4517 ** returned by SQLite as a result of an error in a function.  ^By default,
4518 ** the error code is SQLITE_ERROR.  ^A subsequent call to sqlite3_result_error()
4519 ** or sqlite3_result_error16() resets the error code to SQLITE_ERROR.
4520 **
4521 ** ^The sqlite3_result_error_toobig() interface causes SQLite to throw an
4522 ** error indicating that a string or BLOB is too long to represent.
4523 **
4524 ** ^The sqlite3_result_error_nomem() interface causes SQLite to throw an
4525 ** error indicating that a memory allocation failed.
4526 **
4527 ** ^The sqlite3_result_int() interface sets the return value
4528 ** of the application-defined function to be the 32-bit signed integer
4529 ** value given in the 2nd argument.
4530 ** ^The sqlite3_result_int64() interface sets the return value
4531 ** of the application-defined function to be the 64-bit signed integer
4532 ** value given in the 2nd argument.
4533 **
4534 ** ^The sqlite3_result_null() interface sets the return value
4535 ** of the application-defined function to be NULL.
4536 **
4537 ** ^The sqlite3_result_text(), sqlite3_result_text16(),
4538 ** sqlite3_result_text16le(), and sqlite3_result_text16be() interfaces
4539 ** set the return value of the application-defined function to be
4540 ** a text string which is represented as UTF-8, UTF-16 native byte order,
4541 ** UTF-16 little endian, or UTF-16 big endian, respectively.
4542 ** ^SQLite takes the text result from the application from
4543 ** the 2nd parameter of the sqlite3_result_text* interfaces.
4544 ** ^If the 3rd parameter to the sqlite3_result_text* interfaces
4545 ** is negative, then SQLite takes result text from the 2nd parameter
4546 ** through the first zero character.
4547 ** ^If the 3rd parameter to the sqlite3_result_text* interfaces
4548 ** is non-negative, then as many bytes (not characters) of the text
4549 ** pointed to by the 2nd parameter are taken as the application-defined
4550 ** function result.  If the 3rd parameter is non-negative, then it
4551 ** must be the byte offset into the string where the NUL terminator would
4552 ** appear if the string where NUL terminated.  If any NUL characters occur
4553 ** in the string at a byte offset that is less than the value of the 3rd
4554 ** parameter, then the resulting string will contain embedded NULs and the
4555 ** result of expressions operating on strings with embedded NULs is undefined.
4556 ** ^If the 4th parameter to the sqlite3_result_text* interfaces
4557 ** or sqlite3_result_blob is a non-NULL pointer, then SQLite calls that
4558 ** function as the destructor on the text or BLOB result when it has
4559 ** finished using that result.
4560 ** ^If the 4th parameter to the sqlite3_result_text* interfaces or to
4561 ** sqlite3_result_blob is the special constant SQLITE_STATIC, then SQLite
4562 ** assumes that the text or BLOB result is in constant space and does not
4563 ** copy the content of the parameter nor call a destructor on the content
4564 ** when it has finished using that result.
4565 ** ^If the 4th parameter to the sqlite3_result_text* interfaces
4566 ** or sqlite3_result_blob is the special constant SQLITE_TRANSIENT
4567 ** then SQLite makes a copy of the result into space obtained from
4568 ** from [sqlite3_malloc()] before it returns.
4569 **
4570 ** ^The sqlite3_result_value() interface sets the result of
4571 ** the application-defined function to be a copy the
4572 ** [unprotected sqlite3_value] object specified by the 2nd parameter.  ^The
4573 ** sqlite3_result_value() interface makes a copy of the [sqlite3_value]
4574 ** so that the [sqlite3_value] specified in the parameter may change or
4575 ** be deallocated after sqlite3_result_value() returns without harm.
4576 ** ^A [protected sqlite3_value] object may always be used where an
4577 ** [unprotected sqlite3_value] object is required, so either
4578 ** kind of [sqlite3_value] object can be used with this interface.
4579 **
4580 ** If these routines are called from within the different thread
4581 ** than the one containing the application-defined function that received
4582 ** the [sqlite3_context] pointer, the results are undefined.
4583 */
4584 SQLITE_API void sqlite3_result_blob(sqlite3_context*, const void*, int, void(*)(void*));
4585 SQLITE_API void sqlite3_result_double(sqlite3_context*, double);
4586 SQLITE_API void sqlite3_result_error(sqlite3_context*, const char*, int);
4587 SQLITE_API void sqlite3_result_error16(sqlite3_context*, const void*, int);
4588 SQLITE_API void sqlite3_result_error_toobig(sqlite3_context*);
4589 SQLITE_API void sqlite3_result_error_nomem(sqlite3_context*);
4590 SQLITE_API void sqlite3_result_error_code(sqlite3_context*, int);
4591 SQLITE_API void sqlite3_result_int(sqlite3_context*, int);
4592 SQLITE_API void sqlite3_result_int64(sqlite3_context*, sqlite3_int64);
4593 SQLITE_API void sqlite3_result_null(sqlite3_context*);
4594 SQLITE_API void sqlite3_result_text(sqlite3_context*, const char*, int, void(*)(void*));
4595 SQLITE_API void sqlite3_result_text16(sqlite3_context*, const void*, int, void(*)(void*));
4596 SQLITE_API void sqlite3_result_text16le(sqlite3_context*, const void*, int,void(*)(void*));
4597 SQLITE_API void sqlite3_result_text16be(sqlite3_context*, const void*, int,void(*)(void*));
4598 SQLITE_API void sqlite3_result_value(sqlite3_context*, sqlite3_value*);
4599 SQLITE_API void sqlite3_result_zeroblob(sqlite3_context*, int n);
4600 
4601 /*
4602 ** CAPI3REF: Define New Collating Sequences
4603 **
4604 ** ^These functions add, remove, or modify a [collation] associated
4605 ** with the [database connection] specified as the first argument.
4606 **
4607 ** ^The name of the collation is a UTF-8 string
4608 ** for sqlite3_create_collation() and sqlite3_create_collation_v2()
4609 ** and a UTF-16 string in native byte order for sqlite3_create_collation16().
4610 ** ^Collation names that compare equal according to [sqlite3_strnicmp()] are
4611 ** considered to be the same name.
4612 **
4613 ** ^(The third argument (eTextRep) must be one of the constants:
4614 ** <ul>
4615 ** <li> [SQLITE_UTF8],
4616 ** <li> [SQLITE_UTF16LE],
4617 ** <li> [SQLITE_UTF16BE],
4618 ** <li> [SQLITE_UTF16], or
4619 ** <li> [SQLITE_UTF16_ALIGNED].
4620 ** </ul>)^
4621 ** ^The eTextRep argument determines the encoding of strings passed
4622 ** to the collating function callback, xCallback.
4623 ** ^The [SQLITE_UTF16] and [SQLITE_UTF16_ALIGNED] values for eTextRep
4624 ** force strings to be UTF16 with native byte order.
4625 ** ^The [SQLITE_UTF16_ALIGNED] value for eTextRep forces strings to begin
4626 ** on an even byte address.
4627 **
4628 ** ^The fourth argument, pArg, is an application data pointer that is passed
4629 ** through as the first argument to the collating function callback.
4630 **
4631 ** ^The fifth argument, xCallback, is a pointer to the collating function.
4632 ** ^Multiple collating functions can be registered using the same name but
4633 ** with different eTextRep parameters and SQLite will use whichever
4634 ** function requires the least amount of data transformation.
4635 ** ^If the xCallback argument is NULL then the collating function is
4636 ** deleted.  ^When all collating functions having the same name are deleted,
4637 ** that collation is no longer usable.
4638 **
4639 ** ^The collating function callback is invoked with a copy of the pArg
4640 ** application data pointer and with two strings in the encoding specified
4641 ** by the eTextRep argument.  The collating function must return an
4642 ** integer that is negative, zero, or positive
4643 ** if the first string is less than, equal to, or greater than the second,
4644 ** respectively.  A collating function must always return the same answer
4645 ** given the same inputs.  If two or more collating functions are registered
4646 ** to the same collation name (using different eTextRep values) then all
4647 ** must give an equivalent answer when invoked with equivalent strings.
4648 ** The collating function must obey the following properties for all
4649 ** strings A, B, and C:
4650 **
4651 ** <ol>
4652 ** <li> If A==B then B==A.
4653 ** <li> If A==B and B==C then A==C.
4654 ** <li> If A&lt;B THEN B&gt;A.
4655 ** <li> If A&lt;B and B&lt;C then A&lt;C.
4656 ** </ol>
4657 **
4658 ** If a collating function fails any of the above constraints and that
4659 ** collating function is  registered and used, then the behavior of SQLite
4660 ** is undefined.
4661 **
4662 ** ^The sqlite3_create_collation_v2() works like sqlite3_create_collation()
4663 ** with the addition that the xDestroy callback is invoked on pArg when
4664 ** the collating function is deleted.
4665 ** ^Collating functions are deleted when they are overridden by later
4666 ** calls to the collation creation functions or when the
4667 ** [database connection] is closed using [sqlite3_close()].
4668 **
4669 ** ^The xDestroy callback is <u>not</u> called if the
4670 ** sqlite3_create_collation_v2() function fails.  Applications that invoke
4671 ** sqlite3_create_collation_v2() with a non-NULL xDestroy argument should
4672 ** check the return code and dispose of the application data pointer
4673 ** themselves rather than expecting SQLite to deal with it for them.
4674 ** This is different from every other SQLite interface.  The inconsistency
4675 ** is unfortunate but cannot be changed without breaking backwards
4676 ** compatibility.
4677 **
4678 ** See also:  [sqlite3_collation_needed()] and [sqlite3_collation_needed16()].
4679 */
4680 SQLITE_API int sqlite3_create_collation(
4681   sqlite3*,
4682   const char *zName,
4683   int eTextRep,
4684   void *pArg,
4685   int(*xCompare)(void*,int,const void*,int,const void*)
4686 );
4687 SQLITE_API int sqlite3_create_collation_v2(
4688   sqlite3*,
4689   const char *zName,
4690   int eTextRep,
4691   void *pArg,
4692   int(*xCompare)(void*,int,const void*,int,const void*),
4693   void(*xDestroy)(void*)
4694 );
4695 SQLITE_API int sqlite3_create_collation16(
4696   sqlite3*,
4697   const void *zName,
4698   int eTextRep,
4699   void *pArg,
4700   int(*xCompare)(void*,int,const void*,int,const void*)
4701 );
4702 
4703 /*
4704 ** CAPI3REF: Collation Needed Callbacks
4705 **
4706 ** ^To avoid having to register all collation sequences before a database
4707 ** can be used, a single callback function may be registered with the
4708 ** [database connection] to be invoked whenever an undefined collation
4709 ** sequence is required.
4710 **
4711 ** ^If the function is registered using the sqlite3_collation_needed() API,
4712 ** then it is passed the names of undefined collation sequences as strings
4713 ** encoded in UTF-8. ^If sqlite3_collation_needed16() is used,
4714 ** the names are passed as UTF-16 in machine native byte order.
4715 ** ^A call to either function replaces the existing collation-needed callback.
4716 **
4717 ** ^(When the callback is invoked, the first argument passed is a copy
4718 ** of the second argument to sqlite3_collation_needed() or
4719 ** sqlite3_collation_needed16().  The second argument is the database
4720 ** connection.  The third argument is one of [SQLITE_UTF8], [SQLITE_UTF16BE],
4721 ** or [SQLITE_UTF16LE], indicating the most desirable form of the collation
4722 ** sequence function required.  The fourth parameter is the name of the
4723 ** required collation sequence.)^
4724 **
4725 ** The callback function should register the desired collation using
4726 ** [sqlite3_create_collation()], [sqlite3_create_collation16()], or
4727 ** [sqlite3_create_collation_v2()].
4728 */
4729 SQLITE_API int sqlite3_collation_needed(
4730   sqlite3*,
4731   void*,
4732   void(*)(void*,sqlite3*,int eTextRep,const char*)
4733 );
4734 SQLITE_API int sqlite3_collation_needed16(
4735   sqlite3*,
4736   void*,
4737   void(*)(void*,sqlite3*,int eTextRep,const void*)
4738 );
4739 
4740 #ifdef SQLITE_HAS_CODEC
4741 /*
4742 ** Specify the key for an encrypted database.  This routine should be
4743 ** called right after sqlite3_open().
4744 **
4745 ** The code to implement this API is not available in the public release
4746 ** of SQLite.
4747 */
4748 SQLITE_API int sqlite3_key(
4749   sqlite3 *db,                   /* Database to be rekeyed */
4750   const void *pKey, int nKey     /* The key */
4751 );
4752 SQLITE_API int sqlite3_key_v2(
4753   sqlite3 *db,                   /* Database to be rekeyed */
4754   const char *zDbName,           /* Name of the database */
4755   const void *pKey, int nKey     /* The key */
4756 );
4757 
4758 /*
4759 ** Change the key on an open database.  If the current database is not
4760 ** encrypted, this routine will encrypt it.  If pNew==0 or nNew==0, the
4761 ** database is decrypted.
4762 **
4763 ** The code to implement this API is not available in the public release
4764 ** of SQLite.
4765 */
4766 SQLITE_API int sqlite3_rekey(
4767   sqlite3 *db,                   /* Database to be rekeyed */
4768   const void *pKey, int nKey     /* The new key */
4769 );
4770 SQLITE_API int sqlite3_rekey_v2(
4771   sqlite3 *db,                   /* Database to be rekeyed */
4772   const char *zDbName,           /* Name of the database */
4773   const void *pKey, int nKey     /* The new key */
4774 );
4775 
4776 /*
4777 ** Specify the activation key for a SEE database.  Unless
4778 ** activated, none of the SEE routines will work.
4779 */
4780 SQLITE_API void sqlite3_activate_see(
4781   const char *zPassPhrase        /* Activation phrase */
4782 );
4783 #endif
4784 
4785 #ifdef SQLITE_ENABLE_CEROD
4786 /*
4787 ** Specify the activation key for a CEROD database.  Unless
4788 ** activated, none of the CEROD routines will work.
4789 */
4790 SQLITE_API void sqlite3_activate_cerod(
4791   const char *zPassPhrase        /* Activation phrase */
4792 );
4793 #endif
4794 
4795 /*
4796 ** CAPI3REF: Suspend Execution For A Short Time
4797 **
4798 ** The sqlite3_sleep() function causes the current thread to suspend execution
4799 ** for at least a number of milliseconds specified in its parameter.
4800 **
4801 ** If the operating system does not support sleep requests with
4802 ** millisecond time resolution, then the time will be rounded up to
4803 ** the nearest second. The number of milliseconds of sleep actually
4804 ** requested from the operating system is returned.
4805 **
4806 ** ^SQLite implements this interface by calling the xSleep()
4807 ** method of the default [sqlite3_vfs] object.  If the xSleep() method
4808 ** of the default VFS is not implemented correctly, or not implemented at
4809 ** all, then the behavior of sqlite3_sleep() may deviate from the description
4810 ** in the previous paragraphs.
4811 */
4812 SQLITE_API int sqlite3_sleep(int);
4813 
4814 /*
4815 ** CAPI3REF: Name Of The Folder Holding Temporary Files
4816 **
4817 ** ^(If this global variable is made to point to a string which is
4818 ** the name of a folder (a.k.a. directory), then all temporary files
4819 ** created by SQLite when using a built-in [sqlite3_vfs | VFS]
4820 ** will be placed in that directory.)^  ^If this variable
4821 ** is a NULL pointer, then SQLite performs a search for an appropriate
4822 ** temporary file directory.
4823 **
4824 ** It is not safe to read or modify this variable in more than one
4825 ** thread at a time.  It is not safe to read or modify this variable
4826 ** if a [database connection] is being used at the same time in a separate
4827 ** thread.
4828 ** It is intended that this variable be set once
4829 ** as part of process initialization and before any SQLite interface
4830 ** routines have been called and that this variable remain unchanged
4831 ** thereafter.
4832 **
4833 ** ^The [temp_store_directory pragma] may modify this variable and cause
4834 ** it to point to memory obtained from [sqlite3_malloc].  ^Furthermore,
4835 ** the [temp_store_directory pragma] always assumes that any string
4836 ** that this variable points to is held in memory obtained from
4837 ** [sqlite3_malloc] and the pragma may attempt to free that memory
4838 ** using [sqlite3_free].
4839 ** Hence, if this variable is modified directly, either it should be
4840 ** made NULL or made to point to memory obtained from [sqlite3_malloc]
4841 ** or else the use of the [temp_store_directory pragma] should be avoided.
4842 **
4843 ** <b>Note to Windows Runtime users:</b>  The temporary directory must be set
4844 ** prior to calling [sqlite3_open] or [sqlite3_open_v2].  Otherwise, various
4845 ** features that require the use of temporary files may fail.  Here is an
4846 ** example of how to do this using C++ with the Windows Runtime:
4847 **
4848 ** <blockquote><pre>
4849 ** LPCWSTR zPath = Windows::Storage::ApplicationData::Current->
4850 ** &nbsp;     TemporaryFolder->Path->Data();
4851 ** char zPathBuf&#91;MAX_PATH + 1&#93;;
4852 ** memset(zPathBuf, 0, sizeof(zPathBuf));
4853 ** WideCharToMultiByte(CP_UTF8, 0, zPath, -1, zPathBuf, sizeof(zPathBuf),
4854 ** &nbsp;     NULL, NULL);
4855 ** sqlite3_temp_directory = sqlite3_mprintf("%s", zPathBuf);
4856 ** </pre></blockquote>
4857 */
4858 SQLITE_API char *sqlite3_temp_directory;
4859 
4860 /*
4861 ** CAPI3REF: Name Of The Folder Holding Database Files
4862 **
4863 ** ^(If this global variable is made to point to a string which is
4864 ** the name of a folder (a.k.a. directory), then all database files
4865 ** specified with a relative pathname and created or accessed by
4866 ** SQLite when using a built-in windows [sqlite3_vfs | VFS] will be assumed
4867 ** to be relative to that directory.)^ ^If this variable is a NULL
4868 ** pointer, then SQLite assumes that all database files specified
4869 ** with a relative pathname are relative to the current directory
4870 ** for the process.  Only the windows VFS makes use of this global
4871 ** variable; it is ignored by the unix VFS.
4872 **
4873 ** Changing the value of this variable while a database connection is
4874 ** open can result in a corrupt database.
4875 **
4876 ** It is not safe to read or modify this variable in more than one
4877 ** thread at a time.  It is not safe to read or modify this variable
4878 ** if a [database connection] is being used at the same time in a separate
4879 ** thread.
4880 ** It is intended that this variable be set once
4881 ** as part of process initialization and before any SQLite interface
4882 ** routines have been called and that this variable remain unchanged
4883 ** thereafter.
4884 **
4885 ** ^The [data_store_directory pragma] may modify this variable and cause
4886 ** it to point to memory obtained from [sqlite3_malloc].  ^Furthermore,
4887 ** the [data_store_directory pragma] always assumes that any string
4888 ** that this variable points to is held in memory obtained from
4889 ** [sqlite3_malloc] and the pragma may attempt to free that memory
4890 ** using [sqlite3_free].
4891 ** Hence, if this variable is modified directly, either it should be
4892 ** made NULL or made to point to memory obtained from [sqlite3_malloc]
4893 ** or else the use of the [data_store_directory pragma] should be avoided.
4894 */
4895 SQLITE_API char *sqlite3_data_directory;
4896 
4897 /*
4898 ** CAPI3REF: Test For Auto-Commit Mode
4899 ** KEYWORDS: {autocommit mode}
4900 **
4901 ** ^The sqlite3_get_autocommit() interface returns non-zero or
4902 ** zero if the given database connection is or is not in autocommit mode,
4903 ** respectively.  ^Autocommit mode is on by default.
4904 ** ^Autocommit mode is disabled by a [BEGIN] statement.
4905 ** ^Autocommit mode is re-enabled by a [COMMIT] or [ROLLBACK].
4906 **
4907 ** If certain kinds of errors occur on a statement within a multi-statement
4908 ** transaction (errors including [SQLITE_FULL], [SQLITE_IOERR],
4909 ** [SQLITE_NOMEM], [SQLITE_BUSY], and [SQLITE_INTERRUPT]) then the
4910 ** transaction might be rolled back automatically.  The only way to
4911 ** find out whether SQLite automatically rolled back the transaction after
4912 ** an error is to use this function.
4913 **
4914 ** If another thread changes the autocommit status of the database
4915 ** connection while this routine is running, then the return value
4916 ** is undefined.
4917 */
4918 SQLITE_API int sqlite3_get_autocommit(sqlite3*);
4919 
4920 /*
4921 ** CAPI3REF: Find The Database Handle Of A Prepared Statement
4922 **
4923 ** ^The sqlite3_db_handle interface returns the [database connection] handle
4924 ** to which a [prepared statement] belongs.  ^The [database connection]
4925 ** returned by sqlite3_db_handle is the same [database connection]
4926 ** that was the first argument
4927 ** to the [sqlite3_prepare_v2()] call (or its variants) that was used to
4928 ** create the statement in the first place.
4929 */
4930 SQLITE_API sqlite3 *sqlite3_db_handle(sqlite3_stmt*);
4931 
4932 /*
4933 ** CAPI3REF: Return The Filename For A Database Connection
4934 **
4935 ** ^The sqlite3_db_filename(D,N) interface returns a pointer to a filename
4936 ** associated with database N of connection D.  ^The main database file
4937 ** has the name "main".  If there is no attached database N on the database
4938 ** connection D, or if database N is a temporary or in-memory database, then
4939 ** a NULL pointer is returned.
4940 **
4941 ** ^The filename returned by this function is the output of the
4942 ** xFullPathname method of the [VFS].  ^In other words, the filename
4943 ** will be an absolute pathname, even if the filename used
4944 ** to open the database originally was a URI or relative pathname.
4945 */
4946 SQLITE_API const char *sqlite3_db_filename(sqlite3 *db, const char *zDbName);
4947 
4948 /*
4949 ** CAPI3REF: Determine if a database is read-only
4950 **
4951 ** ^The sqlite3_db_readonly(D,N) interface returns 1 if the database N
4952 ** of connection D is read-only, 0 if it is read/write, or -1 if N is not
4953 ** the name of a database on connection D.
4954 */
4955 SQLITE_API int sqlite3_db_readonly(sqlite3 *db, const char *zDbName);
4956 
4957 /*
4958 ** CAPI3REF: Find the next prepared statement
4959 **
4960 ** ^This interface returns a pointer to the next [prepared statement] after
4961 ** pStmt associated with the [database connection] pDb.  ^If pStmt is NULL
4962 ** then this interface returns a pointer to the first prepared statement
4963 ** associated with the database connection pDb.  ^If no prepared statement
4964 ** satisfies the conditions of this routine, it returns NULL.
4965 **
4966 ** The [database connection] pointer D in a call to
4967 ** [sqlite3_next_stmt(D,S)] must refer to an open database
4968 ** connection and in particular must not be a NULL pointer.
4969 */
4970 SQLITE_API sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt);
4971 
4972 /*
4973 ** CAPI3REF: Commit And Rollback Notification Callbacks
4974 **
4975 ** ^The sqlite3_commit_hook() interface registers a callback
4976 ** function to be invoked whenever a transaction is [COMMIT | committed].
4977 ** ^Any callback set by a previous call to sqlite3_commit_hook()
4978 ** for the same database connection is overridden.
4979 ** ^The sqlite3_rollback_hook() interface registers a callback
4980 ** function to be invoked whenever a transaction is [ROLLBACK | rolled back].
4981 ** ^Any callback set by a previous call to sqlite3_rollback_hook()
4982 ** for the same database connection is overridden.
4983 ** ^The pArg argument is passed through to the callback.
4984 ** ^If the callback on a commit hook function returns non-zero,
4985 ** then the commit is converted into a rollback.
4986 **
4987 ** ^The sqlite3_commit_hook(D,C,P) and sqlite3_rollback_hook(D,C,P) functions
4988 ** return the P argument from the previous call of the same function
4989 ** on the same [database connection] D, or NULL for
4990 ** the first call for each function on D.
4991 **
4992 ** The commit and rollback hook callbacks are not reentrant.
4993 ** The callback implementation must not do anything that will modify
4994 ** the database connection that invoked the callback.  Any actions
4995 ** to modify the database connection must be deferred until after the
4996 ** completion of the [sqlite3_step()] call that triggered the commit
4997 ** or rollback hook in the first place.
4998 ** Note that running any other SQL statements, including SELECT statements,
4999 ** or merely calling [sqlite3_prepare_v2()] and [sqlite3_step()] will modify
5000 ** the database connections for the meaning of "modify" in this paragraph.
5001 **
5002 ** ^Registering a NULL function disables the callback.
5003 **
5004 ** ^When the commit hook callback routine returns zero, the [COMMIT]
5005 ** operation is allowed to continue normally.  ^If the commit hook
5006 ** returns non-zero, then the [COMMIT] is converted into a [ROLLBACK].
5007 ** ^The rollback hook is invoked on a rollback that results from a commit
5008 ** hook returning non-zero, just as it would be with any other rollback.
5009 **
5010 ** ^For the purposes of this API, a transaction is said to have been
5011 ** rolled back if an explicit "ROLLBACK" statement is executed, or
5012 ** an error or constraint causes an implicit rollback to occur.
5013 ** ^The rollback callback is not invoked if a transaction is
5014 ** automatically rolled back because the database connection is closed.
5015 **
5016 ** See also the [sqlite3_update_hook()] interface.
5017 */
5018 SQLITE_API void *sqlite3_commit_hook(sqlite3*, int(*)(void*), void*);
5019 SQLITE_API void *sqlite3_rollback_hook(sqlite3*, void(*)(void *), void*);
5020 
5021 /*
5022 ** CAPI3REF: Data Change Notification Callbacks
5023 **
5024 ** ^The sqlite3_update_hook() interface registers a callback function
5025 ** with the [database connection] identified by the first argument
5026 ** to be invoked whenever a row is updated, inserted or deleted in
5027 ** a rowid table.
5028 ** ^Any callback set by a previous call to this function
5029 ** for the same database connection is overridden.
5030 **
5031 ** ^The second argument is a pointer to the function to invoke when a
5032 ** row is updated, inserted or deleted in a rowid table.
5033 ** ^The first argument to the callback is a copy of the third argument
5034 ** to sqlite3_update_hook().
5035 ** ^The second callback argument is one of [SQLITE_INSERT], [SQLITE_DELETE],
5036 ** or [SQLITE_UPDATE], depending on the operation that caused the callback
5037 ** to be invoked.
5038 ** ^The third and fourth arguments to the callback contain pointers to the
5039 ** database and table name containing the affected row.
5040 ** ^The final callback parameter is the [rowid] of the row.
5041 ** ^In the case of an update, this is the [rowid] after the update takes place.
5042 **
5043 ** ^(The update hook is not invoked when internal system tables are
5044 ** modified (i.e. sqlite_master and sqlite_sequence).)^
5045 ** ^The update hook is not invoked when [WITHOUT ROWID] tables are modified.
5046 **
5047 ** ^In the current implementation, the update hook
5048 ** is not invoked when duplication rows are deleted because of an
5049 ** [ON CONFLICT | ON CONFLICT REPLACE] clause.  ^Nor is the update hook
5050 ** invoked when rows are deleted using the [truncate optimization].
5051 ** The exceptions defined in this paragraph might change in a future
5052 ** release of SQLite.
5053 **
5054 ** The update hook implementation must not do anything that will modify
5055 ** the database connection that invoked the update hook.  Any actions
5056 ** to modify the database connection must be deferred until after the
5057 ** completion of the [sqlite3_step()] call that triggered the update hook.
5058 ** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
5059 ** database connections for the meaning of "modify" in this paragraph.
5060 **
5061 ** ^The sqlite3_update_hook(D,C,P) function
5062 ** returns the P argument from the previous call
5063 ** on the same [database connection] D, or NULL for
5064 ** the first call on D.
5065 **
5066 ** See also the [sqlite3_commit_hook()] and [sqlite3_rollback_hook()]
5067 ** interfaces.
5068 */
5069 SQLITE_API void *sqlite3_update_hook(
5070   sqlite3*,
5071   void(*)(void *,int ,char const *,char const *,sqlite3_int64),
5072   void*
5073 );
5074 
5075 /*
5076 ** CAPI3REF: Enable Or Disable Shared Pager Cache
5077 **
5078 ** ^(This routine enables or disables the sharing of the database cache
5079 ** and schema data structures between [database connection | connections]
5080 ** to the same database. Sharing is enabled if the argument is true
5081 ** and disabled if the argument is false.)^
5082 **
5083 ** ^Cache sharing is enabled and disabled for an entire process.
5084 ** This is a change as of SQLite version 3.5.0. In prior versions of SQLite,
5085 ** sharing was enabled or disabled for each thread separately.
5086 **
5087 ** ^(The cache sharing mode set by this interface effects all subsequent
5088 ** calls to [sqlite3_open()], [sqlite3_open_v2()], and [sqlite3_open16()].
5089 ** Existing database connections continue use the sharing mode
5090 ** that was in effect at the time they were opened.)^
5091 **
5092 ** ^(This routine returns [SQLITE_OK] if shared cache was enabled or disabled
5093 ** successfully.  An [error code] is returned otherwise.)^
5094 **
5095 ** ^Shared cache is disabled by default. But this might change in
5096 ** future releases of SQLite.  Applications that care about shared
5097 ** cache setting should set it explicitly.
5098 **
5099 ** This interface is threadsafe on processors where writing a
5100 ** 32-bit integer is atomic.
5101 **
5102 ** See Also:  [SQLite Shared-Cache Mode]
5103 */
5104 SQLITE_API int sqlite3_enable_shared_cache(int);
5105 
5106 /*
5107 ** CAPI3REF: Attempt To Free Heap Memory
5108 **
5109 ** ^The sqlite3_release_memory() interface attempts to free N bytes
5110 ** of heap memory by deallocating non-essential memory allocations
5111 ** held by the database library.   Memory used to cache database
5112 ** pages to improve performance is an example of non-essential memory.
5113 ** ^sqlite3_release_memory() returns the number of bytes actually freed,
5114 ** which might be more or less than the amount requested.
5115 ** ^The sqlite3_release_memory() routine is a no-op returning zero
5116 ** if SQLite is not compiled with [SQLITE_ENABLE_MEMORY_MANAGEMENT].
5117 **
5118 ** See also: [sqlite3_db_release_memory()]
5119 */
5120 SQLITE_API int sqlite3_release_memory(int);
5121 
5122 /*
5123 ** CAPI3REF: Free Memory Used By A Database Connection
5124 **
5125 ** ^The sqlite3_db_release_memory(D) interface attempts to free as much heap
5126 ** memory as possible from database connection D. Unlike the
5127 ** [sqlite3_release_memory()] interface, this interface is in effect even
5128 ** when the [SQLITE_ENABLE_MEMORY_MANAGEMENT] compile-time option is
5129 ** omitted.
5130 **
5131 ** See also: [sqlite3_release_memory()]
5132 */
5133 SQLITE_API int sqlite3_db_release_memory(sqlite3*);
5134 
5135 /*
5136 ** CAPI3REF: Impose A Limit On Heap Size
5137 **
5138 ** ^The sqlite3_soft_heap_limit64() interface sets and/or queries the
5139 ** soft limit on the amount of heap memory that may be allocated by SQLite.
5140 ** ^SQLite strives to keep heap memory utilization below the soft heap
5141 ** limit by reducing the number of pages held in the page cache
5142 ** as heap memory usages approaches the limit.
5143 ** ^The soft heap limit is "soft" because even though SQLite strives to stay
5144 ** below the limit, it will exceed the limit rather than generate
5145 ** an [SQLITE_NOMEM] error.  In other words, the soft heap limit
5146 ** is advisory only.
5147 **
5148 ** ^The return value from sqlite3_soft_heap_limit64() is the size of
5149 ** the soft heap limit prior to the call, or negative in the case of an
5150 ** error.  ^If the argument N is negative
5151 ** then no change is made to the soft heap limit.  Hence, the current
5152 ** size of the soft heap limit can be determined by invoking
5153 ** sqlite3_soft_heap_limit64() with a negative argument.
5154 **
5155 ** ^If the argument N is zero then the soft heap limit is disabled.
5156 **
5157 ** ^(The soft heap limit is not enforced in the current implementation
5158 ** if one or more of following conditions are true:
5159 **
5160 ** <ul>
5161 ** <li> The soft heap limit is set to zero.
5162 ** <li> Memory accounting is disabled using a combination of the
5163 **      [sqlite3_config]([SQLITE_CONFIG_MEMSTATUS],...) start-time option and
5164 **      the [SQLITE_DEFAULT_MEMSTATUS] compile-time option.
5165 ** <li> An alternative page cache implementation is specified using
5166 **      [sqlite3_config]([SQLITE_CONFIG_PCACHE2],...).
5167 ** <li> The page cache allocates from its own memory pool supplied
5168 **      by [sqlite3_config]([SQLITE_CONFIG_PAGECACHE],...) rather than
5169 **      from the heap.
5170 ** </ul>)^
5171 **
5172 ** Beginning with SQLite version 3.7.3, the soft heap limit is enforced
5173 ** regardless of whether or not the [SQLITE_ENABLE_MEMORY_MANAGEMENT]
5174 ** compile-time option is invoked.  With [SQLITE_ENABLE_MEMORY_MANAGEMENT],
5175 ** the soft heap limit is enforced on every memory allocation.  Without
5176 ** [SQLITE_ENABLE_MEMORY_MANAGEMENT], the soft heap limit is only enforced
5177 ** when memory is allocated by the page cache.  Testing suggests that because
5178 ** the page cache is the predominate memory user in SQLite, most
5179 ** applications will achieve adequate soft heap limit enforcement without
5180 ** the use of [SQLITE_ENABLE_MEMORY_MANAGEMENT].
5181 **
5182 ** The circumstances under which SQLite will enforce the soft heap limit may
5183 ** changes in future releases of SQLite.
5184 */
5185 SQLITE_API sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 N);
5186 
5187 /*
5188 ** CAPI3REF: Deprecated Soft Heap Limit Interface
5189 ** DEPRECATED
5190 **
5191 ** This is a deprecated version of the [sqlite3_soft_heap_limit64()]
5192 ** interface.  This routine is provided for historical compatibility
5193 ** only.  All new applications should use the
5194 ** [sqlite3_soft_heap_limit64()] interface rather than this one.
5195 */
5196 SQLITE_API SQLITE_DEPRECATED void sqlite3_soft_heap_limit(int N);
5197 
5198 
5199 /*
5200 ** CAPI3REF: Extract Metadata About A Column Of A Table
5201 **
5202 ** ^This routine returns metadata about a specific column of a specific
5203 ** database table accessible using the [database connection] handle
5204 ** passed as the first function argument.
5205 **
5206 ** ^The column is identified by the second, third and fourth parameters to
5207 ** this function. ^The second parameter is either the name of the database
5208 ** (i.e. "main", "temp", or an attached database) containing the specified
5209 ** table or NULL. ^If it is NULL, then all attached databases are searched
5210 ** for the table using the same algorithm used by the database engine to
5211 ** resolve unqualified table references.
5212 **
5213 ** ^The third and fourth parameters to this function are the table and column
5214 ** name of the desired column, respectively. Neither of these parameters
5215 ** may be NULL.
5216 **
5217 ** ^Metadata is returned by writing to the memory locations passed as the 5th
5218 ** and subsequent parameters to this function. ^Any of these arguments may be
5219 ** NULL, in which case the corresponding element of metadata is omitted.
5220 **
5221 ** ^(<blockquote>
5222 ** <table border="1">
5223 ** <tr><th> Parameter <th> Output<br>Type <th>  Description
5224 **
5225 ** <tr><td> 5th <td> const char* <td> Data type
5226 ** <tr><td> 6th <td> const char* <td> Name of default collation sequence
5227 ** <tr><td> 7th <td> int         <td> True if column has a NOT NULL constraint
5228 ** <tr><td> 8th <td> int         <td> True if column is part of the PRIMARY KEY
5229 ** <tr><td> 9th <td> int         <td> True if column is [AUTOINCREMENT]
5230 ** </table>
5231 ** </blockquote>)^
5232 **
5233 ** ^The memory pointed to by the character pointers returned for the
5234 ** declaration type and collation sequence is valid only until the next
5235 ** call to any SQLite API function.
5236 **
5237 ** ^If the specified table is actually a view, an [error code] is returned.
5238 **
5239 ** ^If the specified column is "rowid", "oid" or "_rowid_" and an
5240 ** [INTEGER PRIMARY KEY] column has been explicitly declared, then the output
5241 ** parameters are set for the explicitly declared column. ^(If there is no
5242 ** explicitly declared [INTEGER PRIMARY KEY] column, then the output
5243 ** parameters are set as follows:
5244 **
5245 ** <pre>
5246 **     data type: "INTEGER"
5247 **     collation sequence: "BINARY"
5248 **     not null: 0
5249 **     primary key: 1
5250 **     auto increment: 0
5251 ** </pre>)^
5252 **
5253 ** ^(This function may load one or more schemas from database files. If an
5254 ** error occurs during this process, or if the requested table or column
5255 ** cannot be found, an [error code] is returned and an error message left
5256 ** in the [database connection] (to be retrieved using sqlite3_errmsg()).)^
5257 **
5258 ** ^This API is only available if the library was compiled with the
5259 ** [SQLITE_ENABLE_COLUMN_METADATA] C-preprocessor symbol defined.
5260 */
5261 SQLITE_API int sqlite3_table_column_metadata(
5262   sqlite3 *db,                /* Connection handle */
5263   const char *zDbName,        /* Database name or NULL */
5264   const char *zTableName,     /* Table name */
5265   const char *zColumnName,    /* Column name */
5266   char const **pzDataType,    /* OUTPUT: Declared data type */
5267   char const **pzCollSeq,     /* OUTPUT: Collation sequence name */
5268   int *pNotNull,              /* OUTPUT: True if NOT NULL constraint exists */
5269   int *pPrimaryKey,           /* OUTPUT: True if column part of PK */
5270   int *pAutoinc               /* OUTPUT: True if column is auto-increment */
5271 );
5272 
5273 /*
5274 ** CAPI3REF: Load An Extension
5275 **
5276 ** ^This interface loads an SQLite extension library from the named file.
5277 **
5278 ** ^The sqlite3_load_extension() interface attempts to load an
5279 ** [SQLite extension] library contained in the file zFile.  If
5280 ** the file cannot be loaded directly, attempts are made to load
5281 ** with various operating-system specific extensions added.
5282 ** So for example, if "samplelib" cannot be loaded, then names like
5283 ** "samplelib.so" or "samplelib.dylib" or "samplelib.dll" might
5284 ** be tried also.
5285 **
5286 ** ^The entry point is zProc.
5287 ** ^(zProc may be 0, in which case SQLite will try to come up with an
5288 ** entry point name on its own.  It first tries "sqlite3_extension_init".
5289 ** If that does not work, it constructs a name "sqlite3_X_init" where the
5290 ** X is consists of the lower-case equivalent of all ASCII alphabetic
5291 ** characters in the filename from the last "/" to the first following
5292 ** "." and omitting any initial "lib".)^
5293 ** ^The sqlite3_load_extension() interface returns
5294 ** [SQLITE_OK] on success and [SQLITE_ERROR] if something goes wrong.
5295 ** ^If an error occurs and pzErrMsg is not 0, then the
5296 ** [sqlite3_load_extension()] interface shall attempt to
5297 ** fill *pzErrMsg with error message text stored in memory
5298 ** obtained from [sqlite3_malloc()]. The calling function
5299 ** should free this memory by calling [sqlite3_free()].
5300 **
5301 ** ^Extension loading must be enabled using
5302 ** [sqlite3_enable_load_extension()] prior to calling this API,
5303 ** otherwise an error will be returned.
5304 **
5305 ** See also the [load_extension() SQL function].
5306 */
5307 SQLITE_API int sqlite3_load_extension(
5308   sqlite3 *db,          /* Load the extension into this database connection */
5309   const char *zFile,    /* Name of the shared library containing extension */
5310   const char *zProc,    /* Entry point.  Derived from zFile if 0 */
5311   char **pzErrMsg       /* Put error message here if not 0 */
5312 );
5313 
5314 /*
5315 ** CAPI3REF: Enable Or Disable Extension Loading
5316 **
5317 ** ^So as not to open security holes in older applications that are
5318 ** unprepared to deal with [extension loading], and as a means of disabling
5319 ** [extension loading] while evaluating user-entered SQL, the following API
5320 ** is provided to turn the [sqlite3_load_extension()] mechanism on and off.
5321 **
5322 ** ^Extension loading is off by default.
5323 ** ^Call the sqlite3_enable_load_extension() routine with onoff==1
5324 ** to turn extension loading on and call it with onoff==0 to turn
5325 ** it back off again.
5326 */
5327 SQLITE_API int sqlite3_enable_load_extension(sqlite3 *db, int onoff);
5328 
5329 /*
5330 ** CAPI3REF: Automatically Load Statically Linked Extensions
5331 **
5332 ** ^This interface causes the xEntryPoint() function to be invoked for
5333 ** each new [database connection] that is created.  The idea here is that
5334 ** xEntryPoint() is the entry point for a statically linked [SQLite extension]
5335 ** that is to be automatically loaded into all new database connections.
5336 **
5337 ** ^(Even though the function prototype shows that xEntryPoint() takes
5338 ** no arguments and returns void, SQLite invokes xEntryPoint() with three
5339 ** arguments and expects and integer result as if the signature of the
5340 ** entry point where as follows:
5341 **
5342 ** <blockquote><pre>
5343 ** &nbsp;  int xEntryPoint(
5344 ** &nbsp;    sqlite3 *db,
5345 ** &nbsp;    const char **pzErrMsg,
5346 ** &nbsp;    const struct sqlite3_api_routines *pThunk
5347 ** &nbsp;  );
5348 ** </pre></blockquote>)^
5349 **
5350 ** If the xEntryPoint routine encounters an error, it should make *pzErrMsg
5351 ** point to an appropriate error message (obtained from [sqlite3_mprintf()])
5352 ** and return an appropriate [error code].  ^SQLite ensures that *pzErrMsg
5353 ** is NULL before calling the xEntryPoint().  ^SQLite will invoke
5354 ** [sqlite3_free()] on *pzErrMsg after xEntryPoint() returns.  ^If any
5355 ** xEntryPoint() returns an error, the [sqlite3_open()], [sqlite3_open16()],
5356 ** or [sqlite3_open_v2()] call that provoked the xEntryPoint() will fail.
5357 **
5358 ** ^Calling sqlite3_auto_extension(X) with an entry point X that is already
5359 ** on the list of automatic extensions is a harmless no-op. ^No entry point
5360 ** will be called more than once for each database connection that is opened.
5361 **
5362 ** See also: [sqlite3_reset_auto_extension()]
5363 ** and [sqlite3_cancel_auto_extension()]
5364 */
5365 SQLITE_API int sqlite3_auto_extension(void (*xEntryPoint)(void));
5366 
5367 /*
5368 ** CAPI3REF: Cancel Automatic Extension Loading
5369 **
5370 ** ^The [sqlite3_cancel_auto_extension(X)] interface unregisters the
5371 ** initialization routine X that was registered using a prior call to
5372 ** [sqlite3_auto_extension(X)].  ^The [sqlite3_cancel_auto_extension(X)]
5373 ** routine returns 1 if initialization routine X was successfully
5374 ** unregistered and it returns 0 if X was not on the list of initialization
5375 ** routines.
5376 */
5377 SQLITE_API int sqlite3_cancel_auto_extension(void (*xEntryPoint)(void));
5378 
5379 /*
5380 ** CAPI3REF: Reset Automatic Extension Loading
5381 **
5382 ** ^This interface disables all automatic extensions previously
5383 ** registered using [sqlite3_auto_extension()].
5384 */
5385 SQLITE_API void sqlite3_reset_auto_extension(void);
5386 
5387 /*
5388 ** The interface to the virtual-table mechanism is currently considered
5389 ** to be experimental.  The interface might change in incompatible ways.
5390 ** If this is a problem for you, do not use the interface at this time.
5391 **
5392 ** When the virtual-table mechanism stabilizes, we will declare the
5393 ** interface fixed, support it indefinitely, and remove this comment.
5394 */
5395 
5396 /*
5397 ** Structures used by the virtual table interface
5398 */
5399 typedef struct sqlite3_vtab sqlite3_vtab;
5400 typedef struct sqlite3_index_info sqlite3_index_info;
5401 typedef struct sqlite3_vtab_cursor sqlite3_vtab_cursor;
5402 typedef struct sqlite3_module sqlite3_module;
5403 
5404 /*
5405 ** CAPI3REF: Virtual Table Object
5406 ** KEYWORDS: sqlite3_module {virtual table module}
5407 **
5408 ** This structure, sometimes called a "virtual table module",
5409 ** defines the implementation of a [virtual tables].
5410 ** This structure consists mostly of methods for the module.
5411 **
5412 ** ^A virtual table module is created by filling in a persistent
5413 ** instance of this structure and passing a pointer to that instance
5414 ** to [sqlite3_create_module()] or [sqlite3_create_module_v2()].
5415 ** ^The registration remains valid until it is replaced by a different
5416 ** module or until the [database connection] closes.  The content
5417 ** of this structure must not change while it is registered with
5418 ** any database connection.
5419 */
5420 struct sqlite3_module {
5421   int iVersion;
5422   int (*xCreate)(sqlite3*, void *pAux,
5423                int argc, const char *const*argv,
5424                sqlite3_vtab **ppVTab, char**);
5425   int (*xConnect)(sqlite3*, void *pAux,
5426                int argc, const char *const*argv,
5427                sqlite3_vtab **ppVTab, char**);
5428   int (*xBestIndex)(sqlite3_vtab *pVTab, sqlite3_index_info*);
5429   int (*xDisconnect)(sqlite3_vtab *pVTab);
5430   int (*xDestroy)(sqlite3_vtab *pVTab);
5431   int (*xOpen)(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor);
5432   int (*xClose)(sqlite3_vtab_cursor*);
5433   int (*xFilter)(sqlite3_vtab_cursor*, int idxNum, const char *idxStr,
5434                 int argc, sqlite3_value **argv);
5435   int (*xNext)(sqlite3_vtab_cursor*);
5436   int (*xEof)(sqlite3_vtab_cursor*);
5437   int (*xColumn)(sqlite3_vtab_cursor*, sqlite3_context*, int);
5438   int (*xRowid)(sqlite3_vtab_cursor*, sqlite3_int64 *pRowid);
5439   int (*xUpdate)(sqlite3_vtab *, int, sqlite3_value **, sqlite3_int64 *);
5440   int (*xBegin)(sqlite3_vtab *pVTab);
5441   int (*xSync)(sqlite3_vtab *pVTab);
5442   int (*xCommit)(sqlite3_vtab *pVTab);
5443   int (*xRollback)(sqlite3_vtab *pVTab);
5444   int (*xFindFunction)(sqlite3_vtab *pVtab, int nArg, const char *zName,
5445                        void (**pxFunc)(sqlite3_context*,int,sqlite3_value**),
5446                        void **ppArg);
5447   int (*xRename)(sqlite3_vtab *pVtab, const char *zNew);
5448   /* The methods above are in version 1 of the sqlite_module object. Those
5449   ** below are for version 2 and greater. */
5450   int (*xSavepoint)(sqlite3_vtab *pVTab, int);
5451   int (*xRelease)(sqlite3_vtab *pVTab, int);
5452   int (*xRollbackTo)(sqlite3_vtab *pVTab, int);
5453 };
5454 
5455 /*
5456 ** CAPI3REF: Virtual Table Indexing Information
5457 ** KEYWORDS: sqlite3_index_info
5458 **
5459 ** The sqlite3_index_info structure and its substructures is used as part
5460 ** of the [virtual table] interface to
5461 ** pass information into and receive the reply from the [xBestIndex]
5462 ** method of a [virtual table module].  The fields under **Inputs** are the
5463 ** inputs to xBestIndex and are read-only.  xBestIndex inserts its
5464 ** results into the **Outputs** fields.
5465 **
5466 ** ^(The aConstraint[] array records WHERE clause constraints of the form:
5467 **
5468 ** <blockquote>column OP expr</blockquote>
5469 **
5470 ** where OP is =, &lt;, &lt;=, &gt;, or &gt;=.)^  ^(The particular operator is
5471 ** stored in aConstraint[].op using one of the
5472 ** [SQLITE_INDEX_CONSTRAINT_EQ | SQLITE_INDEX_CONSTRAINT_ values].)^
5473 ** ^(The index of the column is stored in
5474 ** aConstraint[].iColumn.)^  ^(aConstraint[].usable is TRUE if the
5475 ** expr on the right-hand side can be evaluated (and thus the constraint
5476 ** is usable) and false if it cannot.)^
5477 **
5478 ** ^The optimizer automatically inverts terms of the form "expr OP column"
5479 ** and makes other simplifications to the WHERE clause in an attempt to
5480 ** get as many WHERE clause terms into the form shown above as possible.
5481 ** ^The aConstraint[] array only reports WHERE clause terms that are
5482 ** relevant to the particular virtual table being queried.
5483 **
5484 ** ^Information about the ORDER BY clause is stored in aOrderBy[].
5485 ** ^Each term of aOrderBy records a column of the ORDER BY clause.
5486 **
5487 ** The [xBestIndex] method must fill aConstraintUsage[] with information
5488 ** about what parameters to pass to xFilter.  ^If argvIndex>0 then
5489 ** the right-hand side of the corresponding aConstraint[] is evaluated
5490 ** and becomes the argvIndex-th entry in argv.  ^(If aConstraintUsage[].omit
5491 ** is true, then the constraint is assumed to be fully handled by the
5492 ** virtual table and is not checked again by SQLite.)^
5493 **
5494 ** ^The idxNum and idxPtr values are recorded and passed into the
5495 ** [xFilter] method.
5496 ** ^[sqlite3_free()] is used to free idxPtr if and only if
5497 ** needToFreeIdxPtr is true.
5498 **
5499 ** ^The orderByConsumed means that output from [xFilter]/[xNext] will occur in
5500 ** the correct order to satisfy the ORDER BY clause so that no separate
5501 ** sorting step is required.
5502 **
5503 ** ^The estimatedCost value is an estimate of the cost of a particular
5504 ** strategy. A cost of N indicates that the cost of the strategy is similar
5505 ** to a linear scan of an SQLite table with N rows. A cost of log(N)
5506 ** indicates that the expense of the operation is similar to that of a
5507 ** binary search on a unique indexed field of an SQLite table with N rows.
5508 **
5509 ** ^The estimatedRows value is an estimate of the number of rows that
5510 ** will be returned by the strategy.
5511 **
5512 ** IMPORTANT: The estimatedRows field was added to the sqlite3_index_info
5513 ** structure for SQLite version 3.8.2. If a virtual table extension is
5514 ** used with an SQLite version earlier than 3.8.2, the results of attempting
5515 ** to read or write the estimatedRows field are undefined (but are likely
5516 ** to included crashing the application). The estimatedRows field should
5517 ** therefore only be used if [sqlite3_libversion_number()] returns a
5518 ** value greater than or equal to 3008002.
5519 */
5520 struct sqlite3_index_info {
5521   /* Inputs */
5522   int nConstraint;           /* Number of entries in aConstraint */
5523   struct sqlite3_index_constraint {
5524      int iColumn;              /* Column on left-hand side of constraint */
5525      unsigned char op;         /* Constraint operator */
5526      unsigned char usable;     /* True if this constraint is usable */
5527      int iTermOffset;          /* Used internally - xBestIndex should ignore */
5528   } *aConstraint;            /* Table of WHERE clause constraints */
5529   int nOrderBy;              /* Number of terms in the ORDER BY clause */
5530   struct sqlite3_index_orderby {
5531      int iColumn;              /* Column number */
5532      unsigned char desc;       /* True for DESC.  False for ASC. */
5533   } *aOrderBy;               /* The ORDER BY clause */
5534   /* Outputs */
5535   struct sqlite3_index_constraint_usage {
5536     int argvIndex;           /* if >0, constraint is part of argv to xFilter */
5537     unsigned char omit;      /* Do not code a test for this constraint */
5538   } *aConstraintUsage;
5539   int idxNum;                /* Number used to identify the index */
5540   char *idxStr;              /* String, possibly obtained from sqlite3_malloc */
5541   int needToFreeIdxStr;      /* Free idxStr using sqlite3_free() if true */
5542   int orderByConsumed;       /* True if output is already ordered */
5543   double estimatedCost;           /* Estimated cost of using this index */
5544   /* Fields below are only available in SQLite 3.8.2 and later */
5545   sqlite3_int64 estimatedRows;    /* Estimated number of rows returned */
5546 };
5547 
5548 /*
5549 ** CAPI3REF: Virtual Table Constraint Operator Codes
5550 **
5551 ** These macros defined the allowed values for the
5552 ** [sqlite3_index_info].aConstraint[].op field.  Each value represents
5553 ** an operator that is part of a constraint term in the wHERE clause of
5554 ** a query that uses a [virtual table].
5555 */
5556 #define SQLITE_INDEX_CONSTRAINT_EQ    2
5557 #define SQLITE_INDEX_CONSTRAINT_GT    4
5558 #define SQLITE_INDEX_CONSTRAINT_LE    8
5559 #define SQLITE_INDEX_CONSTRAINT_LT    16
5560 #define SQLITE_INDEX_CONSTRAINT_GE    32
5561 #define SQLITE_INDEX_CONSTRAINT_MATCH 64
5562 
5563 /*
5564 ** CAPI3REF: Register A Virtual Table Implementation
5565 **
5566 ** ^These routines are used to register a new [virtual table module] name.
5567 ** ^Module names must be registered before
5568 ** creating a new [virtual table] using the module and before using a
5569 ** preexisting [virtual table] for the module.
5570 **
5571 ** ^The module name is registered on the [database connection] specified
5572 ** by the first parameter.  ^The name of the module is given by the
5573 ** second parameter.  ^The third parameter is a pointer to
5574 ** the implementation of the [virtual table module].   ^The fourth
5575 ** parameter is an arbitrary client data pointer that is passed through
5576 ** into the [xCreate] and [xConnect] methods of the virtual table module
5577 ** when a new virtual table is be being created or reinitialized.
5578 **
5579 ** ^The sqlite3_create_module_v2() interface has a fifth parameter which
5580 ** is a pointer to a destructor for the pClientData.  ^SQLite will
5581 ** invoke the destructor function (if it is not NULL) when SQLite
5582 ** no longer needs the pClientData pointer.  ^The destructor will also
5583 ** be invoked if the call to sqlite3_create_module_v2() fails.
5584 ** ^The sqlite3_create_module()
5585 ** interface is equivalent to sqlite3_create_module_v2() with a NULL
5586 ** destructor.
5587 */
5588 SQLITE_API int sqlite3_create_module(
5589   sqlite3 *db,               /* SQLite connection to register module with */
5590   const char *zName,         /* Name of the module */
5591   const sqlite3_module *p,   /* Methods for the module */
5592   void *pClientData          /* Client data for xCreate/xConnect */
5593 );
5594 SQLITE_API int sqlite3_create_module_v2(
5595   sqlite3 *db,               /* SQLite connection to register module with */
5596   const char *zName,         /* Name of the module */
5597   const sqlite3_module *p,   /* Methods for the module */
5598   void *pClientData,         /* Client data for xCreate/xConnect */
5599   void(*xDestroy)(void*)     /* Module destructor function */
5600 );
5601 
5602 /*
5603 ** CAPI3REF: Virtual Table Instance Object
5604 ** KEYWORDS: sqlite3_vtab
5605 **
5606 ** Every [virtual table module] implementation uses a subclass
5607 ** of this object to describe a particular instance
5608 ** of the [virtual table].  Each subclass will
5609 ** be tailored to the specific needs of the module implementation.
5610 ** The purpose of this superclass is to define certain fields that are
5611 ** common to all module implementations.
5612 **
5613 ** ^Virtual tables methods can set an error message by assigning a
5614 ** string obtained from [sqlite3_mprintf()] to zErrMsg.  The method should
5615 ** take care that any prior string is freed by a call to [sqlite3_free()]
5616 ** prior to assigning a new string to zErrMsg.  ^After the error message
5617 ** is delivered up to the client application, the string will be automatically
5618 ** freed by sqlite3_free() and the zErrMsg field will be zeroed.
5619 */
5620 struct sqlite3_vtab {
5621   const sqlite3_module *pModule;  /* The module for this virtual table */
5622   int nRef;                       /* NO LONGER USED */
5623   char *zErrMsg;                  /* Error message from sqlite3_mprintf() */
5624   /* Virtual table implementations will typically add additional fields */
5625 };
5626 
5627 /*
5628 ** CAPI3REF: Virtual Table Cursor Object
5629 ** KEYWORDS: sqlite3_vtab_cursor {virtual table cursor}
5630 **
5631 ** Every [virtual table module] implementation uses a subclass of the
5632 ** following structure to describe cursors that point into the
5633 ** [virtual table] and are used
5634 ** to loop through the virtual table.  Cursors are created using the
5635 ** [sqlite3_module.xOpen | xOpen] method of the module and are destroyed
5636 ** by the [sqlite3_module.xClose | xClose] method.  Cursors are used
5637 ** by the [xFilter], [xNext], [xEof], [xColumn], and [xRowid] methods
5638 ** of the module.  Each module implementation will define
5639 ** the content of a cursor structure to suit its own needs.
5640 **
5641 ** This superclass exists in order to define fields of the cursor that
5642 ** are common to all implementations.
5643 */
5644 struct sqlite3_vtab_cursor {
5645   sqlite3_vtab *pVtab;      /* Virtual table of this cursor */
5646   /* Virtual table implementations will typically add additional fields */
5647 };
5648 
5649 /*
5650 ** CAPI3REF: Declare The Schema Of A Virtual Table
5651 **
5652 ** ^The [xCreate] and [xConnect] methods of a
5653 ** [virtual table module] call this interface
5654 ** to declare the format (the names and datatypes of the columns) of
5655 ** the virtual tables they implement.
5656 */
5657 SQLITE_API int sqlite3_declare_vtab(sqlite3*, const char *zSQL);
5658 
5659 /*
5660 ** CAPI3REF: Overload A Function For A Virtual Table
5661 **
5662 ** ^(Virtual tables can provide alternative implementations of functions
5663 ** using the [xFindFunction] method of the [virtual table module].
5664 ** But global versions of those functions
5665 ** must exist in order to be overloaded.)^
5666 **
5667 ** ^(This API makes sure a global version of a function with a particular
5668 ** name and number of parameters exists.  If no such function exists
5669 ** before this API is called, a new function is created.)^  ^The implementation
5670 ** of the new function always causes an exception to be thrown.  So
5671 ** the new function is not good for anything by itself.  Its only
5672 ** purpose is to be a placeholder function that can be overloaded
5673 ** by a [virtual table].
5674 */
5675 SQLITE_API int sqlite3_overload_function(sqlite3*, const char *zFuncName, int nArg);
5676 
5677 /*
5678 ** The interface to the virtual-table mechanism defined above (back up
5679 ** to a comment remarkably similar to this one) is currently considered
5680 ** to be experimental.  The interface might change in incompatible ways.
5681 ** If this is a problem for you, do not use the interface at this time.
5682 **
5683 ** When the virtual-table mechanism stabilizes, we will declare the
5684 ** interface fixed, support it indefinitely, and remove this comment.
5685 */
5686 
5687 /*
5688 ** CAPI3REF: A Handle To An Open BLOB
5689 ** KEYWORDS: {BLOB handle} {BLOB handles}
5690 **
5691 ** An instance of this object represents an open BLOB on which
5692 ** [sqlite3_blob_open | incremental BLOB I/O] can be performed.
5693 ** ^Objects of this type are created by [sqlite3_blob_open()]
5694 ** and destroyed by [sqlite3_blob_close()].
5695 ** ^The [sqlite3_blob_read()] and [sqlite3_blob_write()] interfaces
5696 ** can be used to read or write small subsections of the BLOB.
5697 ** ^The [sqlite3_blob_bytes()] interface returns the size of the BLOB in bytes.
5698 */
5699 typedef struct sqlite3_blob sqlite3_blob;
5700 
5701 /*
5702 ** CAPI3REF: Open A BLOB For Incremental I/O
5703 **
5704 ** ^(This interfaces opens a [BLOB handle | handle] to the BLOB located
5705 ** in row iRow, column zColumn, table zTable in database zDb;
5706 ** in other words, the same BLOB that would be selected by:
5707 **
5708 ** <pre>
5709 **     SELECT zColumn FROM zDb.zTable WHERE [rowid] = iRow;
5710 ** </pre>)^
5711 **
5712 ** ^If the flags parameter is non-zero, then the BLOB is opened for read
5713 ** and write access. ^If it is zero, the BLOB is opened for read access.
5714 ** ^It is not possible to open a column that is part of an index or primary
5715 ** key for writing. ^If [foreign key constraints] are enabled, it is
5716 ** not possible to open a column that is part of a [child key] for writing.
5717 **
5718 ** ^Note that the database name is not the filename that contains
5719 ** the database but rather the symbolic name of the database that
5720 ** appears after the AS keyword when the database is connected using [ATTACH].
5721 ** ^For the main database file, the database name is "main".
5722 ** ^For TEMP tables, the database name is "temp".
5723 **
5724 ** ^(On success, [SQLITE_OK] is returned and the new [BLOB handle] is written
5725 ** to *ppBlob. Otherwise an [error code] is returned and *ppBlob is set
5726 ** to be a null pointer.)^
5727 ** ^This function sets the [database connection] error code and message
5728 ** accessible via [sqlite3_errcode()] and [sqlite3_errmsg()] and related
5729 ** functions. ^Note that the *ppBlob variable is always initialized in a
5730 ** way that makes it safe to invoke [sqlite3_blob_close()] on *ppBlob
5731 ** regardless of the success or failure of this routine.
5732 **
5733 ** ^(If the row that a BLOB handle points to is modified by an
5734 ** [UPDATE], [DELETE], or by [ON CONFLICT] side-effects
5735 ** then the BLOB handle is marked as "expired".
5736 ** This is true if any column of the row is changed, even a column
5737 ** other than the one the BLOB handle is open on.)^
5738 ** ^Calls to [sqlite3_blob_read()] and [sqlite3_blob_write()] for
5739 ** an expired BLOB handle fail with a return code of [SQLITE_ABORT].
5740 ** ^(Changes written into a BLOB prior to the BLOB expiring are not
5741 ** rolled back by the expiration of the BLOB.  Such changes will eventually
5742 ** commit if the transaction continues to completion.)^
5743 **
5744 ** ^Use the [sqlite3_blob_bytes()] interface to determine the size of
5745 ** the opened blob.  ^The size of a blob may not be changed by this
5746 ** interface.  Use the [UPDATE] SQL command to change the size of a
5747 ** blob.
5748 **
5749 ** ^The [sqlite3_blob_open()] interface will fail for a [WITHOUT ROWID]
5750 ** table.  Incremental BLOB I/O is not possible on [WITHOUT ROWID] tables.
5751 **
5752 ** ^The [sqlite3_bind_zeroblob()] and [sqlite3_result_zeroblob()] interfaces
5753 ** and the built-in [zeroblob] SQL function can be used, if desired,
5754 ** to create an empty, zero-filled blob in which to read or write using
5755 ** this interface.
5756 **
5757 ** To avoid a resource leak, every open [BLOB handle] should eventually
5758 ** be released by a call to [sqlite3_blob_close()].
5759 */
5760 SQLITE_API int sqlite3_blob_open(
5761   sqlite3*,
5762   const char *zDb,
5763   const char *zTable,
5764   const char *zColumn,
5765   sqlite3_int64 iRow,
5766   int flags,
5767   sqlite3_blob **ppBlob
5768 );
5769 
5770 /*
5771 ** CAPI3REF: Move a BLOB Handle to a New Row
5772 **
5773 ** ^This function is used to move an existing blob handle so that it points
5774 ** to a different row of the same database table. ^The new row is identified
5775 ** by the rowid value passed as the second argument. Only the row can be
5776 ** changed. ^The database, table and column on which the blob handle is open
5777 ** remain the same. Moving an existing blob handle to a new row can be
5778 ** faster than closing the existing handle and opening a new one.
5779 **
5780 ** ^(The new row must meet the same criteria as for [sqlite3_blob_open()] -
5781 ** it must exist and there must be either a blob or text value stored in
5782 ** the nominated column.)^ ^If the new row is not present in the table, or if
5783 ** it does not contain a blob or text value, or if another error occurs, an
5784 ** SQLite error code is returned and the blob handle is considered aborted.
5785 ** ^All subsequent calls to [sqlite3_blob_read()], [sqlite3_blob_write()] or
5786 ** [sqlite3_blob_reopen()] on an aborted blob handle immediately return
5787 ** SQLITE_ABORT. ^Calling [sqlite3_blob_bytes()] on an aborted blob handle
5788 ** always returns zero.
5789 **
5790 ** ^This function sets the database handle error code and message.
5791 */
5792 SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_blob_reopen(sqlite3_blob *, sqlite3_int64);
5793 
5794 /*
5795 ** CAPI3REF: Close A BLOB Handle
5796 **
5797 ** ^Closes an open [BLOB handle].
5798 **
5799 ** ^Closing a BLOB shall cause the current transaction to commit
5800 ** if there are no other BLOBs, no pending prepared statements, and the
5801 ** database connection is in [autocommit mode].
5802 ** ^If any writes were made to the BLOB, they might be held in cache
5803 ** until the close operation if they will fit.
5804 **
5805 ** ^(Closing the BLOB often forces the changes
5806 ** out to disk and so if any I/O errors occur, they will likely occur
5807 ** at the time when the BLOB is closed.  Any errors that occur during
5808 ** closing are reported as a non-zero return value.)^
5809 **
5810 ** ^(The BLOB is closed unconditionally.  Even if this routine returns
5811 ** an error code, the BLOB is still closed.)^
5812 **
5813 ** ^Calling this routine with a null pointer (such as would be returned
5814 ** by a failed call to [sqlite3_blob_open()]) is a harmless no-op.
5815 */
5816 SQLITE_API int sqlite3_blob_close(sqlite3_blob *);
5817 
5818 /*
5819 ** CAPI3REF: Return The Size Of An Open BLOB
5820 **
5821 ** ^Returns the size in bytes of the BLOB accessible via the
5822 ** successfully opened [BLOB handle] in its only argument.  ^The
5823 ** incremental blob I/O routines can only read or overwriting existing
5824 ** blob content; they cannot change the size of a blob.
5825 **
5826 ** This routine only works on a [BLOB handle] which has been created
5827 ** by a prior successful call to [sqlite3_blob_open()] and which has not
5828 ** been closed by [sqlite3_blob_close()].  Passing any other pointer in
5829 ** to this routine results in undefined and probably undesirable behavior.
5830 */
5831 SQLITE_API int sqlite3_blob_bytes(sqlite3_blob *);
5832 
5833 /*
5834 ** CAPI3REF: Read Data From A BLOB Incrementally
5835 **
5836 ** ^(This function is used to read data from an open [BLOB handle] into a
5837 ** caller-supplied buffer. N bytes of data are copied into buffer Z
5838 ** from the open BLOB, starting at offset iOffset.)^
5839 **
5840 ** ^If offset iOffset is less than N bytes from the end of the BLOB,
5841 ** [SQLITE_ERROR] is returned and no data is read.  ^If N or iOffset is
5842 ** less than zero, [SQLITE_ERROR] is returned and no data is read.
5843 ** ^The size of the blob (and hence the maximum value of N+iOffset)
5844 ** can be determined using the [sqlite3_blob_bytes()] interface.
5845 **
5846 ** ^An attempt to read from an expired [BLOB handle] fails with an
5847 ** error code of [SQLITE_ABORT].
5848 **
5849 ** ^(On success, sqlite3_blob_read() returns SQLITE_OK.
5850 ** Otherwise, an [error code] or an [extended error code] is returned.)^
5851 **
5852 ** This routine only works on a [BLOB handle] which has been created
5853 ** by a prior successful call to [sqlite3_blob_open()] and which has not
5854 ** been closed by [sqlite3_blob_close()].  Passing any other pointer in
5855 ** to this routine results in undefined and probably undesirable behavior.
5856 **
5857 ** See also: [sqlite3_blob_write()].
5858 */
5859 SQLITE_API int sqlite3_blob_read(sqlite3_blob *, void *Z, int N, int iOffset);
5860 
5861 /*
5862 ** CAPI3REF: Write Data Into A BLOB Incrementally
5863 **
5864 ** ^This function is used to write data into an open [BLOB handle] from a
5865 ** caller-supplied buffer. ^N bytes of data are copied from the buffer Z
5866 ** into the open BLOB, starting at offset iOffset.
5867 **
5868 ** ^If the [BLOB handle] passed as the first argument was not opened for
5869 ** writing (the flags parameter to [sqlite3_blob_open()] was zero),
5870 ** this function returns [SQLITE_READONLY].
5871 **
5872 ** ^This function may only modify the contents of the BLOB; it is
5873 ** not possible to increase the size of a BLOB using this API.
5874 ** ^If offset iOffset is less than N bytes from the end of the BLOB,
5875 ** [SQLITE_ERROR] is returned and no data is written.  ^If N is
5876 ** less than zero [SQLITE_ERROR] is returned and no data is written.
5877 ** The size of the BLOB (and hence the maximum value of N+iOffset)
5878 ** can be determined using the [sqlite3_blob_bytes()] interface.
5879 **
5880 ** ^An attempt to write to an expired [BLOB handle] fails with an
5881 ** error code of [SQLITE_ABORT].  ^Writes to the BLOB that occurred
5882 ** before the [BLOB handle] expired are not rolled back by the
5883 ** expiration of the handle, though of course those changes might
5884 ** have been overwritten by the statement that expired the BLOB handle
5885 ** or by other independent statements.
5886 **
5887 ** ^(On success, sqlite3_blob_write() returns SQLITE_OK.
5888 ** Otherwise, an  [error code] or an [extended error code] is returned.)^
5889 **
5890 ** This routine only works on a [BLOB handle] which has been created
5891 ** by a prior successful call to [sqlite3_blob_open()] and which has not
5892 ** been closed by [sqlite3_blob_close()].  Passing any other pointer in
5893 ** to this routine results in undefined and probably undesirable behavior.
5894 **
5895 ** See also: [sqlite3_blob_read()].
5896 */
5897 SQLITE_API int sqlite3_blob_write(sqlite3_blob *, const void *z, int n, int iOffset);
5898 
5899 /*
5900 ** CAPI3REF: Virtual File System Objects
5901 **
5902 ** A virtual filesystem (VFS) is an [sqlite3_vfs] object
5903 ** that SQLite uses to interact
5904 ** with the underlying operating system.  Most SQLite builds come with a
5905 ** single default VFS that is appropriate for the host computer.
5906 ** New VFSes can be registered and existing VFSes can be unregistered.
5907 ** The following interfaces are provided.
5908 **
5909 ** ^The sqlite3_vfs_find() interface returns a pointer to a VFS given its name.
5910 ** ^Names are case sensitive.
5911 ** ^Names are zero-terminated UTF-8 strings.
5912 ** ^If there is no match, a NULL pointer is returned.
5913 ** ^If zVfsName is NULL then the default VFS is returned.
5914 **
5915 ** ^New VFSes are registered with sqlite3_vfs_register().
5916 ** ^Each new VFS becomes the default VFS if the makeDflt flag is set.
5917 ** ^The same VFS can be registered multiple times without injury.
5918 ** ^To make an existing VFS into the default VFS, register it again
5919 ** with the makeDflt flag set.  If two different VFSes with the
5920 ** same name are registered, the behavior is undefined.  If a
5921 ** VFS is registered with a name that is NULL or an empty string,
5922 ** then the behavior is undefined.
5923 **
5924 ** ^Unregister a VFS with the sqlite3_vfs_unregister() interface.
5925 ** ^(If the default VFS is unregistered, another VFS is chosen as
5926 ** the default.  The choice for the new VFS is arbitrary.)^
5927 */
5928 SQLITE_API sqlite3_vfs *sqlite3_vfs_find(const char *zVfsName);
5929 SQLITE_API int sqlite3_vfs_register(sqlite3_vfs*, int makeDflt);
5930 SQLITE_API int sqlite3_vfs_unregister(sqlite3_vfs*);
5931 
5932 /*
5933 ** CAPI3REF: Mutexes
5934 **
5935 ** The SQLite core uses these routines for thread
5936 ** synchronization. Though they are intended for internal
5937 ** use by SQLite, code that links against SQLite is
5938 ** permitted to use any of these routines.
5939 **
5940 ** The SQLite source code contains multiple implementations
5941 ** of these mutex routines.  An appropriate implementation
5942 ** is selected automatically at compile-time.  ^(The following
5943 ** implementations are available in the SQLite core:
5944 **
5945 ** <ul>
5946 ** <li>   SQLITE_MUTEX_PTHREADS
5947 ** <li>   SQLITE_MUTEX_W32
5948 ** <li>   SQLITE_MUTEX_NOOP
5949 ** </ul>)^
5950 **
5951 ** ^The SQLITE_MUTEX_NOOP implementation is a set of routines
5952 ** that does no real locking and is appropriate for use in
5953 ** a single-threaded application.  ^The SQLITE_MUTEX_PTHREADS and
5954 ** SQLITE_MUTEX_W32 implementations are appropriate for use on Unix
5955 ** and Windows.
5956 **
5957 ** ^(If SQLite is compiled with the SQLITE_MUTEX_APPDEF preprocessor
5958 ** macro defined (with "-DSQLITE_MUTEX_APPDEF=1"), then no mutex
5959 ** implementation is included with the library. In this case the
5960 ** application must supply a custom mutex implementation using the
5961 ** [SQLITE_CONFIG_MUTEX] option of the sqlite3_config() function
5962 ** before calling sqlite3_initialize() or any other public sqlite3_
5963 ** function that calls sqlite3_initialize().)^
5964 **
5965 ** ^The sqlite3_mutex_alloc() routine allocates a new
5966 ** mutex and returns a pointer to it. ^If it returns NULL
5967 ** that means that a mutex could not be allocated.  ^SQLite
5968 ** will unwind its stack and return an error.  ^(The argument
5969 ** to sqlite3_mutex_alloc() is one of these integer constants:
5970 **
5971 ** <ul>
5972 ** <li>  SQLITE_MUTEX_FAST
5973 ** <li>  SQLITE_MUTEX_RECURSIVE
5974 ** <li>  SQLITE_MUTEX_STATIC_MASTER
5975 ** <li>  SQLITE_MUTEX_STATIC_MEM
5976 ** <li>  SQLITE_MUTEX_STATIC_MEM2
5977 ** <li>  SQLITE_MUTEX_STATIC_PRNG
5978 ** <li>  SQLITE_MUTEX_STATIC_LRU
5979 ** <li>  SQLITE_MUTEX_STATIC_LRU2
5980 ** </ul>)^
5981 **
5982 ** ^The first two constants (SQLITE_MUTEX_FAST and SQLITE_MUTEX_RECURSIVE)
5983 ** cause sqlite3_mutex_alloc() to create
5984 ** a new mutex.  ^The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
5985 ** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
5986 ** The mutex implementation does not need to make a distinction
5987 ** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
5988 ** not want to.  ^SQLite will only request a recursive mutex in
5989 ** cases where it really needs one.  ^If a faster non-recursive mutex
5990 ** implementation is available on the host platform, the mutex subsystem
5991 ** might return such a mutex in response to SQLITE_MUTEX_FAST.
5992 **
5993 ** ^The other allowed parameters to sqlite3_mutex_alloc() (anything other
5994 ** than SQLITE_MUTEX_FAST and SQLITE_MUTEX_RECURSIVE) each return
5995 ** a pointer to a static preexisting mutex.  ^Six static mutexes are
5996 ** used by the current version of SQLite.  Future versions of SQLite
5997 ** may add additional static mutexes.  Static mutexes are for internal
5998 ** use by SQLite only.  Applications that use SQLite mutexes should
5999 ** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
6000 ** SQLITE_MUTEX_RECURSIVE.
6001 **
6002 ** ^Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
6003 ** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
6004 ** returns a different mutex on every call.  ^But for the static
6005 ** mutex types, the same mutex is returned on every call that has
6006 ** the same type number.
6007 **
6008 ** ^The sqlite3_mutex_free() routine deallocates a previously
6009 ** allocated dynamic mutex.  ^SQLite is careful to deallocate every
6010 ** dynamic mutex that it allocates.  The dynamic mutexes must not be in
6011 ** use when they are deallocated.  Attempting to deallocate a static
6012 ** mutex results in undefined behavior.  ^SQLite never deallocates
6013 ** a static mutex.
6014 **
6015 ** ^The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
6016 ** to enter a mutex.  ^If another thread is already within the mutex,
6017 ** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
6018 ** SQLITE_BUSY.  ^The sqlite3_mutex_try() interface returns [SQLITE_OK]
6019 ** upon successful entry.  ^(Mutexes created using
6020 ** SQLITE_MUTEX_RECURSIVE can be entered multiple times by the same thread.
6021 ** In such cases the,
6022 ** mutex must be exited an equal number of times before another thread
6023 ** can enter.)^  ^(If the same thread tries to enter any other
6024 ** kind of mutex more than once, the behavior is undefined.
6025 ** SQLite will never exhibit
6026 ** such behavior in its own use of mutexes.)^
6027 **
6028 ** ^(Some systems (for example, Windows 95) do not support the operation
6029 ** implemented by sqlite3_mutex_try().  On those systems, sqlite3_mutex_try()
6030 ** will always return SQLITE_BUSY.  The SQLite core only ever uses
6031 ** sqlite3_mutex_try() as an optimization so this is acceptable behavior.)^
6032 **
6033 ** ^The sqlite3_mutex_leave() routine exits a mutex that was
6034 ** previously entered by the same thread.   ^(The behavior
6035 ** is undefined if the mutex is not currently entered by the
6036 ** calling thread or is not currently allocated.  SQLite will
6037 ** never do either.)^
6038 **
6039 ** ^If the argument to sqlite3_mutex_enter(), sqlite3_mutex_try(), or
6040 ** sqlite3_mutex_leave() is a NULL pointer, then all three routines
6041 ** behave as no-ops.
6042 **
6043 ** See also: [sqlite3_mutex_held()] and [sqlite3_mutex_notheld()].
6044 */
6045 SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int);
6046 SQLITE_API void sqlite3_mutex_free(sqlite3_mutex*);
6047 SQLITE_API void sqlite3_mutex_enter(sqlite3_mutex*);
6048 SQLITE_API int sqlite3_mutex_try(sqlite3_mutex*);
6049 SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex*);
6050 
6051 /*
6052 ** CAPI3REF: Mutex Methods Object
6053 **
6054 ** An instance of this structure defines the low-level routines
6055 ** used to allocate and use mutexes.
6056 **
6057 ** Usually, the default mutex implementations provided by SQLite are
6058 ** sufficient, however the user has the option of substituting a custom
6059 ** implementation for specialized deployments or systems for which SQLite
6060 ** does not provide a suitable implementation. In this case, the user
6061 ** creates and populates an instance of this structure to pass
6062 ** to sqlite3_config() along with the [SQLITE_CONFIG_MUTEX] option.
6063 ** Additionally, an instance of this structure can be used as an
6064 ** output variable when querying the system for the current mutex
6065 ** implementation, using the [SQLITE_CONFIG_GETMUTEX] option.
6066 **
6067 ** ^The xMutexInit method defined by this structure is invoked as
6068 ** part of system initialization by the sqlite3_initialize() function.
6069 ** ^The xMutexInit routine is called by SQLite exactly once for each
6070 ** effective call to [sqlite3_initialize()].
6071 **
6072 ** ^The xMutexEnd method defined by this structure is invoked as
6073 ** part of system shutdown by the sqlite3_shutdown() function. The
6074 ** implementation of this method is expected to release all outstanding
6075 ** resources obtained by the mutex methods implementation, especially
6076 ** those obtained by the xMutexInit method.  ^The xMutexEnd()
6077 ** interface is invoked exactly once for each call to [sqlite3_shutdown()].
6078 **
6079 ** ^(The remaining seven methods defined by this structure (xMutexAlloc,
6080 ** xMutexFree, xMutexEnter, xMutexTry, xMutexLeave, xMutexHeld and
6081 ** xMutexNotheld) implement the following interfaces (respectively):
6082 **
6083 ** <ul>
6084 **   <li>  [sqlite3_mutex_alloc()] </li>
6085 **   <li>  [sqlite3_mutex_free()] </li>
6086 **   <li>  [sqlite3_mutex_enter()] </li>
6087 **   <li>  [sqlite3_mutex_try()] </li>
6088 **   <li>  [sqlite3_mutex_leave()] </li>
6089 **   <li>  [sqlite3_mutex_held()] </li>
6090 **   <li>  [sqlite3_mutex_notheld()] </li>
6091 ** </ul>)^
6092 **
6093 ** The only difference is that the public sqlite3_XXX functions enumerated
6094 ** above silently ignore any invocations that pass a NULL pointer instead
6095 ** of a valid mutex handle. The implementations of the methods defined
6096 ** by this structure are not required to handle this case, the results
6097 ** of passing a NULL pointer instead of a valid mutex handle are undefined
6098 ** (i.e. it is acceptable to provide an implementation that segfaults if
6099 ** it is passed a NULL pointer).
6100 **
6101 ** The xMutexInit() method must be threadsafe.  ^It must be harmless to
6102 ** invoke xMutexInit() multiple times within the same process and without
6103 ** intervening calls to xMutexEnd().  Second and subsequent calls to
6104 ** xMutexInit() must be no-ops.
6105 **
6106 ** ^xMutexInit() must not use SQLite memory allocation ([sqlite3_malloc()]
6107 ** and its associates).  ^Similarly, xMutexAlloc() must not use SQLite memory
6108 ** allocation for a static mutex.  ^However xMutexAlloc() may use SQLite
6109 ** memory allocation for a fast or recursive mutex.
6110 **
6111 ** ^SQLite will invoke the xMutexEnd() method when [sqlite3_shutdown()] is
6112 ** called, but only if the prior call to xMutexInit returned SQLITE_OK.
6113 ** If xMutexInit fails in any way, it is expected to clean up after itself
6114 ** prior to returning.
6115 */
6116 typedef struct sqlite3_mutex_methods sqlite3_mutex_methods;
6117 struct sqlite3_mutex_methods {
6118   int (*xMutexInit)(void);
6119   int (*xMutexEnd)(void);
6120   sqlite3_mutex *(*xMutexAlloc)(int);
6121   void (*xMutexFree)(sqlite3_mutex *);
6122   void (*xMutexEnter)(sqlite3_mutex *);
6123   int (*xMutexTry)(sqlite3_mutex *);
6124   void (*xMutexLeave)(sqlite3_mutex *);
6125   int (*xMutexHeld)(sqlite3_mutex *);
6126   int (*xMutexNotheld)(sqlite3_mutex *);
6127 };
6128 
6129 /*
6130 ** CAPI3REF: Mutex Verification Routines
6131 **
6132 ** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routines
6133 ** are intended for use inside assert() statements.  ^The SQLite core
6134 ** never uses these routines except inside an assert() and applications
6135 ** are advised to follow the lead of the core.  ^The SQLite core only
6136 ** provides implementations for these routines when it is compiled
6137 ** with the SQLITE_DEBUG flag.  ^External mutex implementations
6138 ** are only required to provide these routines if SQLITE_DEBUG is
6139 ** defined and if NDEBUG is not defined.
6140 **
6141 ** ^These routines should return true if the mutex in their argument
6142 ** is held or not held, respectively, by the calling thread.
6143 **
6144 ** ^The implementation is not required to provide versions of these
6145 ** routines that actually work. If the implementation does not provide working
6146 ** versions of these routines, it should at least provide stubs that always
6147 ** return true so that one does not get spurious assertion failures.
6148 **
6149 ** ^If the argument to sqlite3_mutex_held() is a NULL pointer then
6150 ** the routine should return 1.   This seems counter-intuitive since
6151 ** clearly the mutex cannot be held if it does not exist.  But
6152 ** the reason the mutex does not exist is because the build is not
6153 ** using mutexes.  And we do not want the assert() containing the
6154 ** call to sqlite3_mutex_held() to fail, so a non-zero return is
6155 ** the appropriate thing to do.  ^The sqlite3_mutex_notheld()
6156 ** interface should also return 1 when given a NULL pointer.
6157 */
6158 #ifndef NDEBUG
6159 SQLITE_API int sqlite3_mutex_held(sqlite3_mutex*);
6160 SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex*);
6161 #endif
6162 
6163 /*
6164 ** CAPI3REF: Mutex Types
6165 **
6166 ** The [sqlite3_mutex_alloc()] interface takes a single argument
6167 ** which is one of these integer constants.
6168 **
6169 ** The set of static mutexes may change from one SQLite release to the
6170 ** next.  Applications that override the built-in mutex logic must be
6171 ** prepared to accommodate additional static mutexes.
6172 */
6173 #define SQLITE_MUTEX_FAST             0
6174 #define SQLITE_MUTEX_RECURSIVE        1
6175 #define SQLITE_MUTEX_STATIC_MASTER    2
6176 #define SQLITE_MUTEX_STATIC_MEM       3  /* sqlite3_malloc() */
6177 #define SQLITE_MUTEX_STATIC_MEM2      4  /* NOT USED */
6178 #define SQLITE_MUTEX_STATIC_OPEN      4  /* sqlite3BtreeOpen() */
6179 #define SQLITE_MUTEX_STATIC_PRNG      5  /* sqlite3_random() */
6180 #define SQLITE_MUTEX_STATIC_LRU       6  /* lru page list */
6181 #define SQLITE_MUTEX_STATIC_LRU2      7  /* NOT USED */
6182 #define SQLITE_MUTEX_STATIC_PMEM      7  /* sqlite3PageMalloc() */
6183 
6184 /*
6185 ** CAPI3REF: Retrieve the mutex for a database connection
6186 **
6187 ** ^This interface returns a pointer the [sqlite3_mutex] object that
6188 ** serializes access to the [database connection] given in the argument
6189 ** when the [threading mode] is Serialized.
6190 ** ^If the [threading mode] is Single-thread or Multi-thread then this
6191 ** routine returns a NULL pointer.
6192 */
6193 SQLITE_API sqlite3_mutex *sqlite3_db_mutex(sqlite3*);
6194 
6195 /*
6196 ** CAPI3REF: Low-Level Control Of Database Files
6197 **
6198 ** ^The [sqlite3_file_control()] interface makes a direct call to the
6199 ** xFileControl method for the [sqlite3_io_methods] object associated
6200 ** with a particular database identified by the second argument. ^The
6201 ** name of the database is "main" for the main database or "temp" for the
6202 ** TEMP database, or the name that appears after the AS keyword for
6203 ** databases that are added using the [ATTACH] SQL command.
6204 ** ^A NULL pointer can be used in place of "main" to refer to the
6205 ** main database file.
6206 ** ^The third and fourth parameters to this routine
6207 ** are passed directly through to the second and third parameters of
6208 ** the xFileControl method.  ^The return value of the xFileControl
6209 ** method becomes the return value of this routine.
6210 **
6211 ** ^The SQLITE_FCNTL_FILE_POINTER value for the op parameter causes
6212 ** a pointer to the underlying [sqlite3_file] object to be written into
6213 ** the space pointed to by the 4th parameter.  ^The SQLITE_FCNTL_FILE_POINTER
6214 ** case is a short-circuit path which does not actually invoke the
6215 ** underlying sqlite3_io_methods.xFileControl method.
6216 **
6217 ** ^If the second parameter (zDbName) does not match the name of any
6218 ** open database file, then SQLITE_ERROR is returned.  ^This error
6219 ** code is not remembered and will not be recalled by [sqlite3_errcode()]
6220 ** or [sqlite3_errmsg()].  The underlying xFileControl method might
6221 ** also return SQLITE_ERROR.  There is no way to distinguish between
6222 ** an incorrect zDbName and an SQLITE_ERROR return from the underlying
6223 ** xFileControl method.
6224 **
6225 ** See also: [SQLITE_FCNTL_LOCKSTATE]
6226 */
6227 SQLITE_API int sqlite3_file_control(sqlite3*, const char *zDbName, int op, void*);
6228 
6229 /*
6230 ** CAPI3REF: Testing Interface
6231 **
6232 ** ^The sqlite3_test_control() interface is used to read out internal
6233 ** state of SQLite and to inject faults into SQLite for testing
6234 ** purposes.  ^The first parameter is an operation code that determines
6235 ** the number, meaning, and operation of all subsequent parameters.
6236 **
6237 ** This interface is not for use by applications.  It exists solely
6238 ** for verifying the correct operation of the SQLite library.  Depending
6239 ** on how the SQLite library is compiled, this interface might not exist.
6240 **
6241 ** The details of the operation codes, their meanings, the parameters
6242 ** they take, and what they do are all subject to change without notice.
6243 ** Unlike most of the SQLite API, this function is not guaranteed to
6244 ** operate consistently from one release to the next.
6245 */
6246 SQLITE_API int sqlite3_test_control(int op, ...);
6247 
6248 /*
6249 ** CAPI3REF: Testing Interface Operation Codes
6250 **
6251 ** These constants are the valid operation code parameters used
6252 ** as the first argument to [sqlite3_test_control()].
6253 **
6254 ** These parameters and their meanings are subject to change
6255 ** without notice.  These values are for testing purposes only.
6256 ** Applications should not use any of these parameters or the
6257 ** [sqlite3_test_control()] interface.
6258 */
6259 #define SQLITE_TESTCTRL_FIRST                    5
6260 #define SQLITE_TESTCTRL_PRNG_SAVE                5
6261 #define SQLITE_TESTCTRL_PRNG_RESTORE             6
6262 #define SQLITE_TESTCTRL_PRNG_RESET               7
6263 #define SQLITE_TESTCTRL_BITVEC_TEST              8
6264 #define SQLITE_TESTCTRL_FAULT_INSTALL            9
6265 #define SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS     10
6266 #define SQLITE_TESTCTRL_PENDING_BYTE            11
6267 #define SQLITE_TESTCTRL_ASSERT                  12
6268 #define SQLITE_TESTCTRL_ALWAYS                  13
6269 #define SQLITE_TESTCTRL_RESERVE                 14
6270 #define SQLITE_TESTCTRL_OPTIMIZATIONS           15
6271 #define SQLITE_TESTCTRL_ISKEYWORD               16
6272 #define SQLITE_TESTCTRL_SCRATCHMALLOC           17
6273 #define SQLITE_TESTCTRL_LOCALTIME_FAULT         18
6274 #define SQLITE_TESTCTRL_EXPLAIN_STMT            19
6275 #define SQLITE_TESTCTRL_NEVER_CORRUPT           20
6276 #define SQLITE_TESTCTRL_VDBE_COVERAGE           21
6277 #define SQLITE_TESTCTRL_BYTEORDER               22
6278 #define SQLITE_TESTCTRL_LAST                    22
6279 
6280 /*
6281 ** CAPI3REF: SQLite Runtime Status
6282 **
6283 ** ^This interface is used to retrieve runtime status information
6284 ** about the performance of SQLite, and optionally to reset various
6285 ** highwater marks.  ^The first argument is an integer code for
6286 ** the specific parameter to measure.  ^(Recognized integer codes
6287 ** are of the form [status parameters | SQLITE_STATUS_...].)^
6288 ** ^The current value of the parameter is returned into *pCurrent.
6289 ** ^The highest recorded value is returned in *pHighwater.  ^If the
6290 ** resetFlag is true, then the highest record value is reset after
6291 ** *pHighwater is written.  ^(Some parameters do not record the highest
6292 ** value.  For those parameters
6293 ** nothing is written into *pHighwater and the resetFlag is ignored.)^
6294 ** ^(Other parameters record only the highwater mark and not the current
6295 ** value.  For these latter parameters nothing is written into *pCurrent.)^
6296 **
6297 ** ^The sqlite3_status() routine returns SQLITE_OK on success and a
6298 ** non-zero [error code] on failure.
6299 **
6300 ** This routine is threadsafe but is not atomic.  This routine can be
6301 ** called while other threads are running the same or different SQLite
6302 ** interfaces.  However the values returned in *pCurrent and
6303 ** *pHighwater reflect the status of SQLite at different points in time
6304 ** and it is possible that another thread might change the parameter
6305 ** in between the times when *pCurrent and *pHighwater are written.
6306 **
6307 ** See also: [sqlite3_db_status()]
6308 */
6309 SQLITE_API int sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetFlag);
6310 
6311 
6312 /*
6313 ** CAPI3REF: Status Parameters
6314 ** KEYWORDS: {status parameters}
6315 **
6316 ** These integer constants designate various run-time status parameters
6317 ** that can be returned by [sqlite3_status()].
6318 **
6319 ** <dl>
6320 ** [[SQLITE_STATUS_MEMORY_USED]] ^(<dt>SQLITE_STATUS_MEMORY_USED</dt>
6321 ** <dd>This parameter is the current amount of memory checked out
6322 ** using [sqlite3_malloc()], either directly or indirectly.  The
6323 ** figure includes calls made to [sqlite3_malloc()] by the application
6324 ** and internal memory usage by the SQLite library.  Scratch memory
6325 ** controlled by [SQLITE_CONFIG_SCRATCH] and auxiliary page-cache
6326 ** memory controlled by [SQLITE_CONFIG_PAGECACHE] is not included in
6327 ** this parameter.  The amount returned is the sum of the allocation
6328 ** sizes as reported by the xSize method in [sqlite3_mem_methods].</dd>)^
6329 **
6330 ** [[SQLITE_STATUS_MALLOC_SIZE]] ^(<dt>SQLITE_STATUS_MALLOC_SIZE</dt>
6331 ** <dd>This parameter records the largest memory allocation request
6332 ** handed to [sqlite3_malloc()] or [sqlite3_realloc()] (or their
6333 ** internal equivalents).  Only the value returned in the
6334 ** *pHighwater parameter to [sqlite3_status()] is of interest.
6335 ** The value written into the *pCurrent parameter is undefined.</dd>)^
6336 **
6337 ** [[SQLITE_STATUS_MALLOC_COUNT]] ^(<dt>SQLITE_STATUS_MALLOC_COUNT</dt>
6338 ** <dd>This parameter records the number of separate memory allocations
6339 ** currently checked out.</dd>)^
6340 **
6341 ** [[SQLITE_STATUS_PAGECACHE_USED]] ^(<dt>SQLITE_STATUS_PAGECACHE_USED</dt>
6342 ** <dd>This parameter returns the number of pages used out of the
6343 ** [pagecache memory allocator] that was configured using
6344 ** [SQLITE_CONFIG_PAGECACHE].  The
6345 ** value returned is in pages, not in bytes.</dd>)^
6346 **
6347 ** [[SQLITE_STATUS_PAGECACHE_OVERFLOW]]
6348 ** ^(<dt>SQLITE_STATUS_PAGECACHE_OVERFLOW</dt>
6349 ** <dd>This parameter returns the number of bytes of page cache
6350 ** allocation which could not be satisfied by the [SQLITE_CONFIG_PAGECACHE]
6351 ** buffer and where forced to overflow to [sqlite3_malloc()].  The
6352 ** returned value includes allocations that overflowed because they
6353 ** where too large (they were larger than the "sz" parameter to
6354 ** [SQLITE_CONFIG_PAGECACHE]) and allocations that overflowed because
6355 ** no space was left in the page cache.</dd>)^
6356 **
6357 ** [[SQLITE_STATUS_PAGECACHE_SIZE]] ^(<dt>SQLITE_STATUS_PAGECACHE_SIZE</dt>
6358 ** <dd>This parameter records the largest memory allocation request
6359 ** handed to [pagecache memory allocator].  Only the value returned in the
6360 ** *pHighwater parameter to [sqlite3_status()] is of interest.
6361 ** The value written into the *pCurrent parameter is undefined.</dd>)^
6362 **
6363 ** [[SQLITE_STATUS_SCRATCH_USED]] ^(<dt>SQLITE_STATUS_SCRATCH_USED</dt>
6364 ** <dd>This parameter returns the number of allocations used out of the
6365 ** [scratch memory allocator] configured using
6366 ** [SQLITE_CONFIG_SCRATCH].  The value returned is in allocations, not
6367 ** in bytes.  Since a single thread may only have one scratch allocation
6368 ** outstanding at time, this parameter also reports the number of threads
6369 ** using scratch memory at the same time.</dd>)^
6370 **
6371 ** [[SQLITE_STATUS_SCRATCH_OVERFLOW]] ^(<dt>SQLITE_STATUS_SCRATCH_OVERFLOW</dt>
6372 ** <dd>This parameter returns the number of bytes of scratch memory
6373 ** allocation which could not be satisfied by the [SQLITE_CONFIG_SCRATCH]
6374 ** buffer and where forced to overflow to [sqlite3_malloc()].  The values
6375 ** returned include overflows because the requested allocation was too
6376 ** larger (that is, because the requested allocation was larger than the
6377 ** "sz" parameter to [SQLITE_CONFIG_SCRATCH]) and because no scratch buffer
6378 ** slots were available.
6379 ** </dd>)^
6380 **
6381 ** [[SQLITE_STATUS_SCRATCH_SIZE]] ^(<dt>SQLITE_STATUS_SCRATCH_SIZE</dt>
6382 ** <dd>This parameter records the largest memory allocation request
6383 ** handed to [scratch memory allocator].  Only the value returned in the
6384 ** *pHighwater parameter to [sqlite3_status()] is of interest.
6385 ** The value written into the *pCurrent parameter is undefined.</dd>)^
6386 **
6387 ** [[SQLITE_STATUS_PARSER_STACK]] ^(<dt>SQLITE_STATUS_PARSER_STACK</dt>
6388 ** <dd>This parameter records the deepest parser stack.  It is only
6389 ** meaningful if SQLite is compiled with [YYTRACKMAXSTACKDEPTH].</dd>)^
6390 ** </dl>
6391 **
6392 ** New status parameters may be added from time to time.
6393 */
6394 #define SQLITE_STATUS_MEMORY_USED          0
6395 #define SQLITE_STATUS_PAGECACHE_USED       1
6396 #define SQLITE_STATUS_PAGECACHE_OVERFLOW   2
6397 #define SQLITE_STATUS_SCRATCH_USED         3
6398 #define SQLITE_STATUS_SCRATCH_OVERFLOW     4
6399 #define SQLITE_STATUS_MALLOC_SIZE          5
6400 #define SQLITE_STATUS_PARSER_STACK         6
6401 #define SQLITE_STATUS_PAGECACHE_SIZE       7
6402 #define SQLITE_STATUS_SCRATCH_SIZE         8
6403 #define SQLITE_STATUS_MALLOC_COUNT         9
6404 
6405 /*
6406 ** CAPI3REF: Database Connection Status
6407 **
6408 ** ^This interface is used to retrieve runtime status information
6409 ** about a single [database connection].  ^The first argument is the
6410 ** database connection object to be interrogated.  ^The second argument
6411 ** is an integer constant, taken from the set of
6412 ** [SQLITE_DBSTATUS options], that
6413 ** determines the parameter to interrogate.  The set of
6414 ** [SQLITE_DBSTATUS options] is likely
6415 ** to grow in future releases of SQLite.
6416 **
6417 ** ^The current value of the requested parameter is written into *pCur
6418 ** and the highest instantaneous value is written into *pHiwtr.  ^If
6419 ** the resetFlg is true, then the highest instantaneous value is
6420 ** reset back down to the current value.
6421 **
6422 ** ^The sqlite3_db_status() routine returns SQLITE_OK on success and a
6423 ** non-zero [error code] on failure.
6424 **
6425 ** See also: [sqlite3_status()] and [sqlite3_stmt_status()].
6426 */
6427 SQLITE_API int sqlite3_db_status(sqlite3*, int op, int *pCur, int *pHiwtr, int resetFlg);
6428 
6429 /*
6430 ** CAPI3REF: Status Parameters for database connections
6431 ** KEYWORDS: {SQLITE_DBSTATUS options}
6432 **
6433 ** These constants are the available integer "verbs" that can be passed as
6434 ** the second argument to the [sqlite3_db_status()] interface.
6435 **
6436 ** New verbs may be added in future releases of SQLite. Existing verbs
6437 ** might be discontinued. Applications should check the return code from
6438 ** [sqlite3_db_status()] to make sure that the call worked.
6439 ** The [sqlite3_db_status()] interface will return a non-zero error code
6440 ** if a discontinued or unsupported verb is invoked.
6441 **
6442 ** <dl>
6443 ** [[SQLITE_DBSTATUS_LOOKASIDE_USED]] ^(<dt>SQLITE_DBSTATUS_LOOKASIDE_USED</dt>
6444 ** <dd>This parameter returns the number of lookaside memory slots currently
6445 ** checked out.</dd>)^
6446 **
6447 ** [[SQLITE_DBSTATUS_LOOKASIDE_HIT]] ^(<dt>SQLITE_DBSTATUS_LOOKASIDE_HIT</dt>
6448 ** <dd>This parameter returns the number malloc attempts that were
6449 ** satisfied using lookaside memory. Only the high-water value is meaningful;
6450 ** the current value is always zero.)^
6451 **
6452 ** [[SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE]]
6453 ** ^(<dt>SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE</dt>
6454 ** <dd>This parameter returns the number malloc attempts that might have
6455 ** been satisfied using lookaside memory but failed due to the amount of
6456 ** memory requested being larger than the lookaside slot size.
6457 ** Only the high-water value is meaningful;
6458 ** the current value is always zero.)^
6459 **
6460 ** [[SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL]]
6461 ** ^(<dt>SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL</dt>
6462 ** <dd>This parameter returns the number malloc attempts that might have
6463 ** been satisfied using lookaside memory but failed due to all lookaside
6464 ** memory already being in use.
6465 ** Only the high-water value is meaningful;
6466 ** the current value is always zero.)^
6467 **
6468 ** [[SQLITE_DBSTATUS_CACHE_USED]] ^(<dt>SQLITE_DBSTATUS_CACHE_USED</dt>
6469 ** <dd>This parameter returns the approximate number of of bytes of heap
6470 ** memory used by all pager caches associated with the database connection.)^
6471 ** ^The highwater mark associated with SQLITE_DBSTATUS_CACHE_USED is always 0.
6472 **
6473 ** [[SQLITE_DBSTATUS_SCHEMA_USED]] ^(<dt>SQLITE_DBSTATUS_SCHEMA_USED</dt>
6474 ** <dd>This parameter returns the approximate number of of bytes of heap
6475 ** memory used to store the schema for all databases associated
6476 ** with the connection - main, temp, and any [ATTACH]-ed databases.)^
6477 ** ^The full amount of memory used by the schemas is reported, even if the
6478 ** schema memory is shared with other database connections due to
6479 ** [shared cache mode] being enabled.
6480 ** ^The highwater mark associated with SQLITE_DBSTATUS_SCHEMA_USED is always 0.
6481 **
6482 ** [[SQLITE_DBSTATUS_STMT_USED]] ^(<dt>SQLITE_DBSTATUS_STMT_USED</dt>
6483 ** <dd>This parameter returns the approximate number of of bytes of heap
6484 ** and lookaside memory used by all prepared statements associated with
6485 ** the database connection.)^
6486 ** ^The highwater mark associated with SQLITE_DBSTATUS_STMT_USED is always 0.
6487 ** </dd>
6488 **
6489 ** [[SQLITE_DBSTATUS_CACHE_HIT]] ^(<dt>SQLITE_DBSTATUS_CACHE_HIT</dt>
6490 ** <dd>This parameter returns the number of pager cache hits that have
6491 ** occurred.)^ ^The highwater mark associated with SQLITE_DBSTATUS_CACHE_HIT
6492 ** is always 0.
6493 ** </dd>
6494 **
6495 ** [[SQLITE_DBSTATUS_CACHE_MISS]] ^(<dt>SQLITE_DBSTATUS_CACHE_MISS</dt>
6496 ** <dd>This parameter returns the number of pager cache misses that have
6497 ** occurred.)^ ^The highwater mark associated with SQLITE_DBSTATUS_CACHE_MISS
6498 ** is always 0.
6499 ** </dd>
6500 **
6501 ** [[SQLITE_DBSTATUS_CACHE_WRITE]] ^(<dt>SQLITE_DBSTATUS_CACHE_WRITE</dt>
6502 ** <dd>This parameter returns the number of dirty cache entries that have
6503 ** been written to disk. Specifically, the number of pages written to the
6504 ** wal file in wal mode databases, or the number of pages written to the
6505 ** database file in rollback mode databases. Any pages written as part of
6506 ** transaction rollback or database recovery operations are not included.
6507 ** If an IO or other error occurs while writing a page to disk, the effect
6508 ** on subsequent SQLITE_DBSTATUS_CACHE_WRITE requests is undefined.)^ ^The
6509 ** highwater mark associated with SQLITE_DBSTATUS_CACHE_WRITE is always 0.
6510 ** </dd>
6511 **
6512 ** [[SQLITE_DBSTATUS_DEFERRED_FKS]] ^(<dt>SQLITE_DBSTATUS_DEFERRED_FKS</dt>
6513 ** <dd>This parameter returns zero for the current value if and only if
6514 ** all foreign key constraints (deferred or immediate) have been
6515 ** resolved.)^  ^The highwater mark is always 0.
6516 ** </dd>
6517 ** </dl>
6518 */
6519 #define SQLITE_DBSTATUS_LOOKASIDE_USED       0
6520 #define SQLITE_DBSTATUS_CACHE_USED           1
6521 #define SQLITE_DBSTATUS_SCHEMA_USED          2
6522 #define SQLITE_DBSTATUS_STMT_USED            3
6523 #define SQLITE_DBSTATUS_LOOKASIDE_HIT        4
6524 #define SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE  5
6525 #define SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL  6
6526 #define SQLITE_DBSTATUS_CACHE_HIT            7
6527 #define SQLITE_DBSTATUS_CACHE_MISS           8
6528 #define SQLITE_DBSTATUS_CACHE_WRITE          9
6529 #define SQLITE_DBSTATUS_DEFERRED_FKS        10
6530 #define SQLITE_DBSTATUS_MAX                 10   /* Largest defined DBSTATUS */
6531 
6532 
6533 /*
6534 ** CAPI3REF: Prepared Statement Status
6535 **
6536 ** ^(Each prepared statement maintains various
6537 ** [SQLITE_STMTSTATUS counters] that measure the number
6538 ** of times it has performed specific operations.)^  These counters can
6539 ** be used to monitor the performance characteristics of the prepared
6540 ** statements.  For example, if the number of table steps greatly exceeds
6541 ** the number of table searches or result rows, that would tend to indicate
6542 ** that the prepared statement is using a full table scan rather than
6543 ** an index.
6544 **
6545 ** ^(This interface is used to retrieve and reset counter values from
6546 ** a [prepared statement].  The first argument is the prepared statement
6547 ** object to be interrogated.  The second argument
6548 ** is an integer code for a specific [SQLITE_STMTSTATUS counter]
6549 ** to be interrogated.)^
6550 ** ^The current value of the requested counter is returned.
6551 ** ^If the resetFlg is true, then the counter is reset to zero after this
6552 ** interface call returns.
6553 **
6554 ** See also: [sqlite3_status()] and [sqlite3_db_status()].
6555 */
6556 SQLITE_API int sqlite3_stmt_status(sqlite3_stmt*, int op,int resetFlg);
6557 
6558 /*
6559 ** CAPI3REF: Status Parameters for prepared statements
6560 ** KEYWORDS: {SQLITE_STMTSTATUS counter} {SQLITE_STMTSTATUS counters}
6561 **
6562 ** These preprocessor macros define integer codes that name counter
6563 ** values associated with the [sqlite3_stmt_status()] interface.
6564 ** The meanings of the various counters are as follows:
6565 **
6566 ** <dl>
6567 ** [[SQLITE_STMTSTATUS_FULLSCAN_STEP]] <dt>SQLITE_STMTSTATUS_FULLSCAN_STEP</dt>
6568 ** <dd>^This is the number of times that SQLite has stepped forward in
6569 ** a table as part of a full table scan.  Large numbers for this counter
6570 ** may indicate opportunities for performance improvement through
6571 ** careful use of indices.</dd>
6572 **
6573 ** [[SQLITE_STMTSTATUS_SORT]] <dt>SQLITE_STMTSTATUS_SORT</dt>
6574 ** <dd>^This is the number of sort operations that have occurred.
6575 ** A non-zero value in this counter may indicate an opportunity to
6576 ** improvement performance through careful use of indices.</dd>
6577 **
6578 ** [[SQLITE_STMTSTATUS_AUTOINDEX]] <dt>SQLITE_STMTSTATUS_AUTOINDEX</dt>
6579 ** <dd>^This is the number of rows inserted into transient indices that
6580 ** were created automatically in order to help joins run faster.
6581 ** A non-zero value in this counter may indicate an opportunity to
6582 ** improvement performance by adding permanent indices that do not
6583 ** need to be reinitialized each time the statement is run.</dd>
6584 **
6585 ** [[SQLITE_STMTSTATUS_VM_STEP]] <dt>SQLITE_STMTSTATUS_VM_STEP</dt>
6586 ** <dd>^This is the number of virtual machine operations executed
6587 ** by the prepared statement if that number is less than or equal
6588 ** to 2147483647.  The number of virtual machine operations can be
6589 ** used as a proxy for the total work done by the prepared statement.
6590 ** If the number of virtual machine operations exceeds 2147483647
6591 ** then the value returned by this statement status code is undefined.
6592 ** </dd>
6593 ** </dl>
6594 */
6595 #define SQLITE_STMTSTATUS_FULLSCAN_STEP     1
6596 #define SQLITE_STMTSTATUS_SORT              2
6597 #define SQLITE_STMTSTATUS_AUTOINDEX         3
6598 #define SQLITE_STMTSTATUS_VM_STEP           4
6599 
6600 /*
6601 ** CAPI3REF: Custom Page Cache Object
6602 **
6603 ** The sqlite3_pcache type is opaque.  It is implemented by
6604 ** the pluggable module.  The SQLite core has no knowledge of
6605 ** its size or internal structure and never deals with the
6606 ** sqlite3_pcache object except by holding and passing pointers
6607 ** to the object.
6608 **
6609 ** See [sqlite3_pcache_methods2] for additional information.
6610 */
6611 typedef struct sqlite3_pcache sqlite3_pcache;
6612 
6613 /*
6614 ** CAPI3REF: Custom Page Cache Object
6615 **
6616 ** The sqlite3_pcache_page object represents a single page in the
6617 ** page cache.  The page cache will allocate instances of this
6618 ** object.  Various methods of the page cache use pointers to instances
6619 ** of this object as parameters or as their return value.
6620 **
6621 ** See [sqlite3_pcache_methods2] for additional information.
6622 */
6623 typedef struct sqlite3_pcache_page sqlite3_pcache_page;
6624 struct sqlite3_pcache_page {
6625   void *pBuf;        /* The content of the page */
6626   void *pExtra;      /* Extra information associated with the page */
6627 };
6628 
6629 /*
6630 ** CAPI3REF: Application Defined Page Cache.
6631 ** KEYWORDS: {page cache}
6632 **
6633 ** ^(The [sqlite3_config]([SQLITE_CONFIG_PCACHE2], ...) interface can
6634 ** register an alternative page cache implementation by passing in an
6635 ** instance of the sqlite3_pcache_methods2 structure.)^
6636 ** In many applications, most of the heap memory allocated by
6637 ** SQLite is used for the page cache.
6638 ** By implementing a
6639 ** custom page cache using this API, an application can better control
6640 ** the amount of memory consumed by SQLite, the way in which
6641 ** that memory is allocated and released, and the policies used to
6642 ** determine exactly which parts of a database file are cached and for
6643 ** how long.
6644 **
6645 ** The alternative page cache mechanism is an
6646 ** extreme measure that is only needed by the most demanding applications.
6647 ** The built-in page cache is recommended for most uses.
6648 **
6649 ** ^(The contents of the sqlite3_pcache_methods2 structure are copied to an
6650 ** internal buffer by SQLite within the call to [sqlite3_config].  Hence
6651 ** the application may discard the parameter after the call to
6652 ** [sqlite3_config()] returns.)^
6653 **
6654 ** [[the xInit() page cache method]]
6655 ** ^(The xInit() method is called once for each effective
6656 ** call to [sqlite3_initialize()])^
6657 ** (usually only once during the lifetime of the process). ^(The xInit()
6658 ** method is passed a copy of the sqlite3_pcache_methods2.pArg value.)^
6659 ** The intent of the xInit() method is to set up global data structures
6660 ** required by the custom page cache implementation.
6661 ** ^(If the xInit() method is NULL, then the
6662 ** built-in default page cache is used instead of the application defined
6663 ** page cache.)^
6664 **
6665 ** [[the xShutdown() page cache method]]
6666 ** ^The xShutdown() method is called by [sqlite3_shutdown()].
6667 ** It can be used to clean up
6668 ** any outstanding resources before process shutdown, if required.
6669 ** ^The xShutdown() method may be NULL.
6670 **
6671 ** ^SQLite automatically serializes calls to the xInit method,
6672 ** so the xInit method need not be threadsafe.  ^The
6673 ** xShutdown method is only called from [sqlite3_shutdown()] so it does
6674 ** not need to be threadsafe either.  All other methods must be threadsafe
6675 ** in multithreaded applications.
6676 **
6677 ** ^SQLite will never invoke xInit() more than once without an intervening
6678 ** call to xShutdown().
6679 **
6680 ** [[the xCreate() page cache methods]]
6681 ** ^SQLite invokes the xCreate() method to construct a new cache instance.
6682 ** SQLite will typically create one cache instance for each open database file,
6683 ** though this is not guaranteed. ^The
6684 ** first parameter, szPage, is the size in bytes of the pages that must
6685 ** be allocated by the cache.  ^szPage will always a power of two.  ^The
6686 ** second parameter szExtra is a number of bytes of extra storage
6687 ** associated with each page cache entry.  ^The szExtra parameter will
6688 ** a number less than 250.  SQLite will use the
6689 ** extra szExtra bytes on each page to store metadata about the underlying
6690 ** database page on disk.  The value passed into szExtra depends
6691 ** on the SQLite version, the target platform, and how SQLite was compiled.
6692 ** ^The third argument to xCreate(), bPurgeable, is true if the cache being
6693 ** created will be used to cache database pages of a file stored on disk, or
6694 ** false if it is used for an in-memory database. The cache implementation
6695 ** does not have to do anything special based with the value of bPurgeable;
6696 ** it is purely advisory.  ^On a cache where bPurgeable is false, SQLite will
6697 ** never invoke xUnpin() except to deliberately delete a page.
6698 ** ^In other words, calls to xUnpin() on a cache with bPurgeable set to
6699 ** false will always have the "discard" flag set to true.
6700 ** ^Hence, a cache created with bPurgeable false will
6701 ** never contain any unpinned pages.
6702 **
6703 ** [[the xCachesize() page cache method]]
6704 ** ^(The xCachesize() method may be called at any time by SQLite to set the
6705 ** suggested maximum cache-size (number of pages stored by) the cache
6706 ** instance passed as the first argument. This is the value configured using
6707 ** the SQLite "[PRAGMA cache_size]" command.)^  As with the bPurgeable
6708 ** parameter, the implementation is not required to do anything with this
6709 ** value; it is advisory only.
6710 **
6711 ** [[the xPagecount() page cache methods]]
6712 ** The xPagecount() method must return the number of pages currently
6713 ** stored in the cache, both pinned and unpinned.
6714 **
6715 ** [[the xFetch() page cache methods]]
6716 ** The xFetch() method locates a page in the cache and returns a pointer to
6717 ** an sqlite3_pcache_page object associated with that page, or a NULL pointer.
6718 ** The pBuf element of the returned sqlite3_pcache_page object will be a
6719 ** pointer to a buffer of szPage bytes used to store the content of a
6720 ** single database page.  The pExtra element of sqlite3_pcache_page will be
6721 ** a pointer to the szExtra bytes of extra storage that SQLite has requested
6722 ** for each entry in the page cache.
6723 **
6724 ** The page to be fetched is determined by the key. ^The minimum key value
6725 ** is 1.  After it has been retrieved using xFetch, the page is considered
6726 ** to be "pinned".
6727 **
6728 ** If the requested page is already in the page cache, then the page cache
6729 ** implementation must return a pointer to the page buffer with its content
6730 ** intact.  If the requested page is not already in the cache, then the
6731 ** cache implementation should use the value of the createFlag
6732 ** parameter to help it determined what action to take:
6733 **
6734 ** <table border=1 width=85% align=center>
6735 ** <tr><th> createFlag <th> Behavior when page is not already in cache
6736 ** <tr><td> 0 <td> Do not allocate a new page.  Return NULL.
6737 ** <tr><td> 1 <td> Allocate a new page if it easy and convenient to do so.
6738 **                 Otherwise return NULL.
6739 ** <tr><td> 2 <td> Make every effort to allocate a new page.  Only return
6740 **                 NULL if allocating a new page is effectively impossible.
6741 ** </table>
6742 **
6743 ** ^(SQLite will normally invoke xFetch() with a createFlag of 0 or 1.  SQLite
6744 ** will only use a createFlag of 2 after a prior call with a createFlag of 1
6745 ** failed.)^  In between the to xFetch() calls, SQLite may
6746 ** attempt to unpin one or more cache pages by spilling the content of
6747 ** pinned pages to disk and synching the operating system disk cache.
6748 **
6749 ** [[the xUnpin() page cache method]]
6750 ** ^xUnpin() is called by SQLite with a pointer to a currently pinned page
6751 ** as its second argument.  If the third parameter, discard, is non-zero,
6752 ** then the page must be evicted from the cache.
6753 ** ^If the discard parameter is
6754 ** zero, then the page may be discarded or retained at the discretion of
6755 ** page cache implementation. ^The page cache implementation
6756 ** may choose to evict unpinned pages at any time.
6757 **
6758 ** The cache must not perform any reference counting. A single
6759 ** call to xUnpin() unpins the page regardless of the number of prior calls
6760 ** to xFetch().
6761 **
6762 ** [[the xRekey() page cache methods]]
6763 ** The xRekey() method is used to change the key value associated with the
6764 ** page passed as the second argument. If the cache
6765 ** previously contains an entry associated with newKey, it must be
6766 ** discarded. ^Any prior cache entry associated with newKey is guaranteed not
6767 ** to be pinned.
6768 **
6769 ** When SQLite calls the xTruncate() method, the cache must discard all
6770 ** existing cache entries with page numbers (keys) greater than or equal
6771 ** to the value of the iLimit parameter passed to xTruncate(). If any
6772 ** of these pages are pinned, they are implicitly unpinned, meaning that
6773 ** they can be safely discarded.
6774 **
6775 ** [[the xDestroy() page cache method]]
6776 ** ^The xDestroy() method is used to delete a cache allocated by xCreate().
6777 ** All resources associated with the specified cache should be freed. ^After
6778 ** calling the xDestroy() method, SQLite considers the [sqlite3_pcache*]
6779 ** handle invalid, and will not use it with any other sqlite3_pcache_methods2
6780 ** functions.
6781 **
6782 ** [[the xShrink() page cache method]]
6783 ** ^SQLite invokes the xShrink() method when it wants the page cache to
6784 ** free up as much of heap memory as possible.  The page cache implementation
6785 ** is not obligated to free any memory, but well-behaved implementations should
6786 ** do their best.
6787 */
6788 typedef struct sqlite3_pcache_methods2 sqlite3_pcache_methods2;
6789 struct sqlite3_pcache_methods2 {
6790   int iVersion;
6791   void *pArg;
6792   int (*xInit)(void*);
6793   void (*xShutdown)(void*);
6794   sqlite3_pcache *(*xCreate)(int szPage, int szExtra, int bPurgeable);
6795   void (*xCachesize)(sqlite3_pcache*, int nCachesize);
6796   int (*xPagecount)(sqlite3_pcache*);
6797   sqlite3_pcache_page *(*xFetch)(sqlite3_pcache*, unsigned key, int createFlag);
6798   void (*xUnpin)(sqlite3_pcache*, sqlite3_pcache_page*, int discard);
6799   void (*xRekey)(sqlite3_pcache*, sqlite3_pcache_page*,
6800       unsigned oldKey, unsigned newKey);
6801   void (*xTruncate)(sqlite3_pcache*, unsigned iLimit);
6802   void (*xDestroy)(sqlite3_pcache*);
6803   void (*xShrink)(sqlite3_pcache*);
6804 };
6805 
6806 /*
6807 ** This is the obsolete pcache_methods object that has now been replaced
6808 ** by sqlite3_pcache_methods2.  This object is not used by SQLite.  It is
6809 ** retained in the header file for backwards compatibility only.
6810 */
6811 typedef struct sqlite3_pcache_methods sqlite3_pcache_methods;
6812 struct sqlite3_pcache_methods {
6813   void *pArg;
6814   int (*xInit)(void*);
6815   void (*xShutdown)(void*);
6816   sqlite3_pcache *(*xCreate)(int szPage, int bPurgeable);
6817   void (*xCachesize)(sqlite3_pcache*, int nCachesize);
6818   int (*xPagecount)(sqlite3_pcache*);
6819   void *(*xFetch)(sqlite3_pcache*, unsigned key, int createFlag);
6820   void (*xUnpin)(sqlite3_pcache*, void*, int discard);
6821   void (*xRekey)(sqlite3_pcache*, void*, unsigned oldKey, unsigned newKey);
6822   void (*xTruncate)(sqlite3_pcache*, unsigned iLimit);
6823   void (*xDestroy)(sqlite3_pcache*);
6824 };
6825 
6826 
6827 /*
6828 ** CAPI3REF: Online Backup Object
6829 **
6830 ** The sqlite3_backup object records state information about an ongoing
6831 ** online backup operation.  ^The sqlite3_backup object is created by
6832 ** a call to [sqlite3_backup_init()] and is destroyed by a call to
6833 ** [sqlite3_backup_finish()].
6834 **
6835 ** See Also: [Using the SQLite Online Backup API]
6836 */
6837 typedef struct sqlite3_backup sqlite3_backup;
6838 
6839 /*
6840 ** CAPI3REF: Online Backup API.
6841 **
6842 ** The backup API copies the content of one database into another.
6843 ** It is useful either for creating backups of databases or
6844 ** for copying in-memory databases to or from persistent files.
6845 **
6846 ** See Also: [Using the SQLite Online Backup API]
6847 **
6848 ** ^SQLite holds a write transaction open on the destination database file
6849 ** for the duration of the backup operation.
6850 ** ^The source database is read-locked only while it is being read;
6851 ** it is not locked continuously for the entire backup operation.
6852 ** ^Thus, the backup may be performed on a live source database without
6853 ** preventing other database connections from
6854 ** reading or writing to the source database while the backup is underway.
6855 **
6856 ** ^(To perform a backup operation:
6857 **   <ol>
6858 **     <li><b>sqlite3_backup_init()</b> is called once to initialize the
6859 **         backup,
6860 **     <li><b>sqlite3_backup_step()</b> is called one or more times to transfer
6861 **         the data between the two databases, and finally
6862 **     <li><b>sqlite3_backup_finish()</b> is called to release all resources
6863 **         associated with the backup operation.
6864 **   </ol>)^
6865 ** There should be exactly one call to sqlite3_backup_finish() for each
6866 ** successful call to sqlite3_backup_init().
6867 **
6868 ** [[sqlite3_backup_init()]] <b>sqlite3_backup_init()</b>
6869 **
6870 ** ^The D and N arguments to sqlite3_backup_init(D,N,S,M) are the
6871 ** [database connection] associated with the destination database
6872 ** and the database name, respectively.
6873 ** ^The database name is "main" for the main database, "temp" for the
6874 ** temporary database, or the name specified after the AS keyword in
6875 ** an [ATTACH] statement for an attached database.
6876 ** ^The S and M arguments passed to
6877 ** sqlite3_backup_init(D,N,S,M) identify the [database connection]
6878 ** and database name of the source database, respectively.
6879 ** ^The source and destination [database connections] (parameters S and D)
6880 ** must be different or else sqlite3_backup_init(D,N,S,M) will fail with
6881 ** an error.
6882 **
6883 ** ^If an error occurs within sqlite3_backup_init(D,N,S,M), then NULL is
6884 ** returned and an error code and error message are stored in the
6885 ** destination [database connection] D.
6886 ** ^The error code and message for the failed call to sqlite3_backup_init()
6887 ** can be retrieved using the [sqlite3_errcode()], [sqlite3_errmsg()], and/or
6888 ** [sqlite3_errmsg16()] functions.
6889 ** ^A successful call to sqlite3_backup_init() returns a pointer to an
6890 ** [sqlite3_backup] object.
6891 ** ^The [sqlite3_backup] object may be used with the sqlite3_backup_step() and
6892 ** sqlite3_backup_finish() functions to perform the specified backup
6893 ** operation.
6894 **
6895 ** [[sqlite3_backup_step()]] <b>sqlite3_backup_step()</b>
6896 **
6897 ** ^Function sqlite3_backup_step(B,N) will copy up to N pages between
6898 ** the source and destination databases specified by [sqlite3_backup] object B.
6899 ** ^If N is negative, all remaining source pages are copied.
6900 ** ^If sqlite3_backup_step(B,N) successfully copies N pages and there
6901 ** are still more pages to be copied, then the function returns [SQLITE_OK].
6902 ** ^If sqlite3_backup_step(B,N) successfully finishes copying all pages
6903 ** from source to destination, then it returns [SQLITE_DONE].
6904 ** ^If an error occurs while running sqlite3_backup_step(B,N),
6905 ** then an [error code] is returned. ^As well as [SQLITE_OK] and
6906 ** [SQLITE_DONE], a call to sqlite3_backup_step() may return [SQLITE_READONLY],
6907 ** [SQLITE_NOMEM], [SQLITE_BUSY], [SQLITE_LOCKED], or an
6908 ** [SQLITE_IOERR_ACCESS | SQLITE_IOERR_XXX] extended error code.
6909 **
6910 ** ^(The sqlite3_backup_step() might return [SQLITE_READONLY] if
6911 ** <ol>
6912 ** <li> the destination database was opened read-only, or
6913 ** <li> the destination database is using write-ahead-log journaling
6914 ** and the destination and source page sizes differ, or
6915 ** <li> the destination database is an in-memory database and the
6916 ** destination and source page sizes differ.
6917 ** </ol>)^
6918 **
6919 ** ^If sqlite3_backup_step() cannot obtain a required file-system lock, then
6920 ** the [sqlite3_busy_handler | busy-handler function]
6921 ** is invoked (if one is specified). ^If the
6922 ** busy-handler returns non-zero before the lock is available, then
6923 ** [SQLITE_BUSY] is returned to the caller. ^In this case the call to
6924 ** sqlite3_backup_step() can be retried later. ^If the source
6925 ** [database connection]
6926 ** is being used to write to the source database when sqlite3_backup_step()
6927 ** is called, then [SQLITE_LOCKED] is returned immediately. ^Again, in this
6928 ** case the call to sqlite3_backup_step() can be retried later on. ^(If
6929 ** [SQLITE_IOERR_ACCESS | SQLITE_IOERR_XXX], [SQLITE_NOMEM], or
6930 ** [SQLITE_READONLY] is returned, then
6931 ** there is no point in retrying the call to sqlite3_backup_step(). These
6932 ** errors are considered fatal.)^  The application must accept
6933 ** that the backup operation has failed and pass the backup operation handle
6934 ** to the sqlite3_backup_finish() to release associated resources.
6935 **
6936 ** ^The first call to sqlite3_backup_step() obtains an exclusive lock
6937 ** on the destination file. ^The exclusive lock is not released until either
6938 ** sqlite3_backup_finish() is called or the backup operation is complete
6939 ** and sqlite3_backup_step() returns [SQLITE_DONE].  ^Every call to
6940 ** sqlite3_backup_step() obtains a [shared lock] on the source database that
6941 ** lasts for the duration of the sqlite3_backup_step() call.
6942 ** ^Because the source database is not locked between calls to
6943 ** sqlite3_backup_step(), the source database may be modified mid-way
6944 ** through the backup process.  ^If the source database is modified by an
6945 ** external process or via a database connection other than the one being
6946 ** used by the backup operation, then the backup will be automatically
6947 ** restarted by the next call to sqlite3_backup_step(). ^If the source
6948 ** database is modified by the using the same database connection as is used
6949 ** by the backup operation, then the backup database is automatically
6950 ** updated at the same time.
6951 **
6952 ** [[sqlite3_backup_finish()]] <b>sqlite3_backup_finish()</b>
6953 **
6954 ** When sqlite3_backup_step() has returned [SQLITE_DONE], or when the
6955 ** application wishes to abandon the backup operation, the application
6956 ** should destroy the [sqlite3_backup] by passing it to sqlite3_backup_finish().
6957 ** ^The sqlite3_backup_finish() interfaces releases all
6958 ** resources associated with the [sqlite3_backup] object.
6959 ** ^If sqlite3_backup_step() has not yet returned [SQLITE_DONE], then any
6960 ** active write-transaction on the destination database is rolled back.
6961 ** The [sqlite3_backup] object is invalid
6962 ** and may not be used following a call to sqlite3_backup_finish().
6963 **
6964 ** ^The value returned by sqlite3_backup_finish is [SQLITE_OK] if no
6965 ** sqlite3_backup_step() errors occurred, regardless or whether or not
6966 ** sqlite3_backup_step() completed.
6967 ** ^If an out-of-memory condition or IO error occurred during any prior
6968 ** sqlite3_backup_step() call on the same [sqlite3_backup] object, then
6969 ** sqlite3_backup_finish() returns the corresponding [error code].
6970 **
6971 ** ^A return of [SQLITE_BUSY] or [SQLITE_LOCKED] from sqlite3_backup_step()
6972 ** is not a permanent error and does not affect the return value of
6973 ** sqlite3_backup_finish().
6974 **
6975 ** [[sqlite3_backup__remaining()]] [[sqlite3_backup_pagecount()]]
6976 ** <b>sqlite3_backup_remaining() and sqlite3_backup_pagecount()</b>
6977 **
6978 ** ^Each call to sqlite3_backup_step() sets two values inside
6979 ** the [sqlite3_backup] object: the number of pages still to be backed
6980 ** up and the total number of pages in the source database file.
6981 ** The sqlite3_backup_remaining() and sqlite3_backup_pagecount() interfaces
6982 ** retrieve these two values, respectively.
6983 **
6984 ** ^The values returned by these functions are only updated by
6985 ** sqlite3_backup_step(). ^If the source database is modified during a backup
6986 ** operation, then the values are not updated to account for any extra
6987 ** pages that need to be updated or the size of the source database file
6988 ** changing.
6989 **
6990 ** <b>Concurrent Usage of Database Handles</b>
6991 **
6992 ** ^The source [database connection] may be used by the application for other
6993 ** purposes while a backup operation is underway or being initialized.
6994 ** ^If SQLite is compiled and configured to support threadsafe database
6995 ** connections, then the source database connection may be used concurrently
6996 ** from within other threads.
6997 **
6998 ** However, the application must guarantee that the destination
6999 ** [database connection] is not passed to any other API (by any thread) after
7000 ** sqlite3_backup_init() is called and before the corresponding call to
7001 ** sqlite3_backup_finish().  SQLite does not currently check to see
7002 ** if the application incorrectly accesses the destination [database connection]
7003 ** and so no error code is reported, but the operations may malfunction
7004 ** nevertheless.  Use of the destination database connection while a
7005 ** backup is in progress might also also cause a mutex deadlock.
7006 **
7007 ** If running in [shared cache mode], the application must
7008 ** guarantee that the shared cache used by the destination database
7009 ** is not accessed while the backup is running. In practice this means
7010 ** that the application must guarantee that the disk file being
7011 ** backed up to is not accessed by any connection within the process,
7012 ** not just the specific connection that was passed to sqlite3_backup_init().
7013 **
7014 ** The [sqlite3_backup] object itself is partially threadsafe. Multiple
7015 ** threads may safely make multiple concurrent calls to sqlite3_backup_step().
7016 ** However, the sqlite3_backup_remaining() and sqlite3_backup_pagecount()
7017 ** APIs are not strictly speaking threadsafe. If they are invoked at the
7018 ** same time as another thread is invoking sqlite3_backup_step() it is
7019 ** possible that they return invalid values.
7020 */
7021 SQLITE_API sqlite3_backup *sqlite3_backup_init(
7022   sqlite3 *pDest,                        /* Destination database handle */
7023   const char *zDestName,                 /* Destination database name */
7024   sqlite3 *pSource,                      /* Source database handle */
7025   const char *zSourceName                /* Source database name */
7026 );
7027 SQLITE_API int sqlite3_backup_step(sqlite3_backup *p, int nPage);
7028 SQLITE_API int sqlite3_backup_finish(sqlite3_backup *p);
7029 SQLITE_API int sqlite3_backup_remaining(sqlite3_backup *p);
7030 SQLITE_API int sqlite3_backup_pagecount(sqlite3_backup *p);
7031 
7032 /*
7033 ** CAPI3REF: Unlock Notification
7034 **
7035 ** ^When running in shared-cache mode, a database operation may fail with
7036 ** an [SQLITE_LOCKED] error if the required locks on the shared-cache or
7037 ** individual tables within the shared-cache cannot be obtained. See
7038 ** [SQLite Shared-Cache Mode] for a description of shared-cache locking.
7039 ** ^This API may be used to register a callback that SQLite will invoke
7040 ** when the connection currently holding the required lock relinquishes it.
7041 ** ^This API is only available if the library was compiled with the
7042 ** [SQLITE_ENABLE_UNLOCK_NOTIFY] C-preprocessor symbol defined.
7043 **
7044 ** See Also: [Using the SQLite Unlock Notification Feature].
7045 **
7046 ** ^Shared-cache locks are released when a database connection concludes
7047 ** its current transaction, either by committing it or rolling it back.
7048 **
7049 ** ^When a connection (known as the blocked connection) fails to obtain a
7050 ** shared-cache lock and SQLITE_LOCKED is returned to the caller, the
7051 ** identity of the database connection (the blocking connection) that
7052 ** has locked the required resource is stored internally. ^After an
7053 ** application receives an SQLITE_LOCKED error, it may call the
7054 ** sqlite3_unlock_notify() method with the blocked connection handle as
7055 ** the first argument to register for a callback that will be invoked
7056 ** when the blocking connections current transaction is concluded. ^The
7057 ** callback is invoked from within the [sqlite3_step] or [sqlite3_close]
7058 ** call that concludes the blocking connections transaction.
7059 **
7060 ** ^(If sqlite3_unlock_notify() is called in a multi-threaded application,
7061 ** there is a chance that the blocking connection will have already
7062 ** concluded its transaction by the time sqlite3_unlock_notify() is invoked.
7063 ** If this happens, then the specified callback is invoked immediately,
7064 ** from within the call to sqlite3_unlock_notify().)^
7065 **
7066 ** ^If the blocked connection is attempting to obtain a write-lock on a
7067 ** shared-cache table, and more than one other connection currently holds
7068 ** a read-lock on the same table, then SQLite arbitrarily selects one of
7069 ** the other connections to use as the blocking connection.
7070 **
7071 ** ^(There may be at most one unlock-notify callback registered by a
7072 ** blocked connection. If sqlite3_unlock_notify() is called when the
7073 ** blocked connection already has a registered unlock-notify callback,
7074 ** then the new callback replaces the old.)^ ^If sqlite3_unlock_notify() is
7075 ** called with a NULL pointer as its second argument, then any existing
7076 ** unlock-notify callback is canceled. ^The blocked connections
7077 ** unlock-notify callback may also be canceled by closing the blocked
7078 ** connection using [sqlite3_close()].
7079 **
7080 ** The unlock-notify callback is not reentrant. If an application invokes
7081 ** any sqlite3_xxx API functions from within an unlock-notify callback, a
7082 ** crash or deadlock may be the result.
7083 **
7084 ** ^Unless deadlock is detected (see below), sqlite3_unlock_notify() always
7085 ** returns SQLITE_OK.
7086 **
7087 ** <b>Callback Invocation Details</b>
7088 **
7089 ** When an unlock-notify callback is registered, the application provides a
7090 ** single void* pointer that is passed to the callback when it is invoked.
7091 ** However, the signature of the callback function allows SQLite to pass
7092 ** it an array of void* context pointers. The first argument passed to
7093 ** an unlock-notify callback is a pointer to an array of void* pointers,
7094 ** and the second is the number of entries in the array.
7095 **
7096 ** When a blocking connections transaction is concluded, there may be
7097 ** more than one blocked connection that has registered for an unlock-notify
7098 ** callback. ^If two or more such blocked connections have specified the
7099 ** same callback function, then instead of invoking the callback function
7100 ** multiple times, it is invoked once with the set of void* context pointers
7101 ** specified by the blocked connections bundled together into an array.
7102 ** This gives the application an opportunity to prioritize any actions
7103 ** related to the set of unblocked database connections.
7104 **
7105 ** <b>Deadlock Detection</b>
7106 **
7107 ** Assuming that after registering for an unlock-notify callback a
7108 ** database waits for the callback to be issued before taking any further
7109 ** action (a reasonable assumption), then using this API may cause the
7110 ** application to deadlock. For example, if connection X is waiting for
7111 ** connection Y's transaction to be concluded, and similarly connection
7112 ** Y is waiting on connection X's transaction, then neither connection
7113 ** will proceed and the system may remain deadlocked indefinitely.
7114 **
7115 ** To avoid this scenario, the sqlite3_unlock_notify() performs deadlock
7116 ** detection. ^If a given call to sqlite3_unlock_notify() would put the
7117 ** system in a deadlocked state, then SQLITE_LOCKED is returned and no
7118 ** unlock-notify callback is registered. The system is said to be in
7119 ** a deadlocked state if connection A has registered for an unlock-notify
7120 ** callback on the conclusion of connection B's transaction, and connection
7121 ** B has itself registered for an unlock-notify callback when connection
7122 ** A's transaction is concluded. ^Indirect deadlock is also detected, so
7123 ** the system is also considered to be deadlocked if connection B has
7124 ** registered for an unlock-notify callback on the conclusion of connection
7125 ** C's transaction, where connection C is waiting on connection A. ^Any
7126 ** number of levels of indirection are allowed.
7127 **
7128 ** <b>The "DROP TABLE" Exception</b>
7129 **
7130 ** When a call to [sqlite3_step()] returns SQLITE_LOCKED, it is almost
7131 ** always appropriate to call sqlite3_unlock_notify(). There is however,
7132 ** one exception. When executing a "DROP TABLE" or "DROP INDEX" statement,
7133 ** SQLite checks if there are any currently executing SELECT statements
7134 ** that belong to the same connection. If there are, SQLITE_LOCKED is
7135 ** returned. In this case there is no "blocking connection", so invoking
7136 ** sqlite3_unlock_notify() results in the unlock-notify callback being
7137 ** invoked immediately. If the application then re-attempts the "DROP TABLE"
7138 ** or "DROP INDEX" query, an infinite loop might be the result.
7139 **
7140 ** One way around this problem is to check the extended error code returned
7141 ** by an sqlite3_step() call. ^(If there is a blocking connection, then the
7142 ** extended error code is set to SQLITE_LOCKED_SHAREDCACHE. Otherwise, in
7143 ** the special "DROP TABLE/INDEX" case, the extended error code is just
7144 ** SQLITE_LOCKED.)^
7145 */
7146 SQLITE_API int sqlite3_unlock_notify(
7147   sqlite3 *pBlocked,                          /* Waiting connection */
7148   void (*xNotify)(void **apArg, int nArg),    /* Callback function to invoke */
7149   void *pNotifyArg                            /* Argument to pass to xNotify */
7150 );
7151 
7152 
7153 /*
7154 ** CAPI3REF: String Comparison
7155 **
7156 ** ^The [sqlite3_stricmp()] and [sqlite3_strnicmp()] APIs allow applications
7157 ** and extensions to compare the contents of two buffers containing UTF-8
7158 ** strings in a case-independent fashion, using the same definition of "case
7159 ** independence" that SQLite uses internally when comparing identifiers.
7160 */
7161 SQLITE_API int sqlite3_stricmp(const char *, const char *);
7162 SQLITE_API int sqlite3_strnicmp(const char *, const char *, int);
7163 
7164 /*
7165 ** CAPI3REF: String Globbing
7166 *
7167 ** ^The [sqlite3_strglob(P,X)] interface returns zero if string X matches
7168 ** the glob pattern P, and it returns non-zero if string X does not match
7169 ** the glob pattern P.  ^The definition of glob pattern matching used in
7170 ** [sqlite3_strglob(P,X)] is the same as for the "X GLOB P" operator in the
7171 ** SQL dialect used by SQLite.  ^The sqlite3_strglob(P,X) function is case
7172 ** sensitive.
7173 **
7174 ** Note that this routine returns zero on a match and non-zero if the strings
7175 ** do not match, the same as [sqlite3_stricmp()] and [sqlite3_strnicmp()].
7176 */
7177 SQLITE_API int sqlite3_strglob(const char *zGlob, const char *zStr);
7178 
7179 /*
7180 ** CAPI3REF: Error Logging Interface
7181 **
7182 ** ^The [sqlite3_log()] interface writes a message into the [error log]
7183 ** established by the [SQLITE_CONFIG_LOG] option to [sqlite3_config()].
7184 ** ^If logging is enabled, the zFormat string and subsequent arguments are
7185 ** used with [sqlite3_snprintf()] to generate the final output string.
7186 **
7187 ** The sqlite3_log() interface is intended for use by extensions such as
7188 ** virtual tables, collating functions, and SQL functions.  While there is
7189 ** nothing to prevent an application from calling sqlite3_log(), doing so
7190 ** is considered bad form.
7191 **
7192 ** The zFormat string must not be NULL.
7193 **
7194 ** To avoid deadlocks and other threading problems, the sqlite3_log() routine
7195 ** will not use dynamically allocated memory.  The log message is stored in
7196 ** a fixed-length buffer on the stack.  If the log message is longer than
7197 ** a few hundred characters, it will be truncated to the length of the
7198 ** buffer.
7199 */
7200 SQLITE_API void sqlite3_log(int iErrCode, const char *zFormat, ...);
7201 
7202 /*
7203 ** CAPI3REF: Write-Ahead Log Commit Hook
7204 **
7205 ** ^The [sqlite3_wal_hook()] function is used to register a callback that
7206 ** will be invoked each time a database connection commits data to a
7207 ** [write-ahead log] (i.e. whenever a transaction is committed in
7208 ** [journal_mode | journal_mode=WAL mode]).
7209 **
7210 ** ^The callback is invoked by SQLite after the commit has taken place and
7211 ** the associated write-lock on the database released, so the implementation
7212 ** may read, write or [checkpoint] the database as required.
7213 **
7214 ** ^The first parameter passed to the callback function when it is invoked
7215 ** is a copy of the third parameter passed to sqlite3_wal_hook() when
7216 ** registering the callback. ^The second is a copy of the database handle.
7217 ** ^The third parameter is the name of the database that was written to -
7218 ** either "main" or the name of an [ATTACH]-ed database. ^The fourth parameter
7219 ** is the number of pages currently in the write-ahead log file,
7220 ** including those that were just committed.
7221 **
7222 ** The callback function should normally return [SQLITE_OK].  ^If an error
7223 ** code is returned, that error will propagate back up through the
7224 ** SQLite code base to cause the statement that provoked the callback
7225 ** to report an error, though the commit will have still occurred. If the
7226 ** callback returns [SQLITE_ROW] or [SQLITE_DONE], or if it returns a value
7227 ** that does not correspond to any valid SQLite error code, the results
7228 ** are undefined.
7229 **
7230 ** A single database handle may have at most a single write-ahead log callback
7231 ** registered at one time. ^Calling [sqlite3_wal_hook()] replaces any
7232 ** previously registered write-ahead log callback. ^Note that the
7233 ** [sqlite3_wal_autocheckpoint()] interface and the
7234 ** [wal_autocheckpoint pragma] both invoke [sqlite3_wal_hook()] and will
7235 ** those overwrite any prior [sqlite3_wal_hook()] settings.
7236 */
7237 SQLITE_API void *sqlite3_wal_hook(
7238   sqlite3*,
7239   int(*)(void *,sqlite3*,const char*,int),
7240   void*
7241 );
7242 
7243 /*
7244 ** CAPI3REF: Configure an auto-checkpoint
7245 **
7246 ** ^The [sqlite3_wal_autocheckpoint(D,N)] is a wrapper around
7247 ** [sqlite3_wal_hook()] that causes any database on [database connection] D
7248 ** to automatically [checkpoint]
7249 ** after committing a transaction if there are N or
7250 ** more frames in the [write-ahead log] file.  ^Passing zero or
7251 ** a negative value as the nFrame parameter disables automatic
7252 ** checkpoints entirely.
7253 **
7254 ** ^The callback registered by this function replaces any existing callback
7255 ** registered using [sqlite3_wal_hook()].  ^Likewise, registering a callback
7256 ** using [sqlite3_wal_hook()] disables the automatic checkpoint mechanism
7257 ** configured by this function.
7258 **
7259 ** ^The [wal_autocheckpoint pragma] can be used to invoke this interface
7260 ** from SQL.
7261 **
7262 ** ^Every new [database connection] defaults to having the auto-checkpoint
7263 ** enabled with a threshold of 1000 or [SQLITE_DEFAULT_WAL_AUTOCHECKPOINT]
7264 ** pages.  The use of this interface
7265 ** is only necessary if the default setting is found to be suboptimal
7266 ** for a particular application.
7267 */
7268 SQLITE_API int sqlite3_wal_autocheckpoint(sqlite3 *db, int N);
7269 
7270 /*
7271 ** CAPI3REF: Checkpoint a database
7272 **
7273 ** ^The [sqlite3_wal_checkpoint(D,X)] interface causes database named X
7274 ** on [database connection] D to be [checkpointed].  ^If X is NULL or an
7275 ** empty string, then a checkpoint is run on all databases of
7276 ** connection D.  ^If the database connection D is not in
7277 ** [WAL | write-ahead log mode] then this interface is a harmless no-op.
7278 **
7279 ** ^The [wal_checkpoint pragma] can be used to invoke this interface
7280 ** from SQL.  ^The [sqlite3_wal_autocheckpoint()] interface and the
7281 ** [wal_autocheckpoint pragma] can be used to cause this interface to be
7282 ** run whenever the WAL reaches a certain size threshold.
7283 **
7284 ** See also: [sqlite3_wal_checkpoint_v2()]
7285 */
7286 SQLITE_API int sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb);
7287 
7288 /*
7289 ** CAPI3REF: Checkpoint a database
7290 **
7291 ** Run a checkpoint operation on WAL database zDb attached to database
7292 ** handle db. The specific operation is determined by the value of the
7293 ** eMode parameter:
7294 **
7295 ** <dl>
7296 ** <dt>SQLITE_CHECKPOINT_PASSIVE<dd>
7297 **   Checkpoint as many frames as possible without waiting for any database
7298 **   readers or writers to finish. Sync the db file if all frames in the log
7299 **   are checkpointed. This mode is the same as calling
7300 **   sqlite3_wal_checkpoint(). The busy-handler callback is never invoked.
7301 **
7302 ** <dt>SQLITE_CHECKPOINT_FULL<dd>
7303 **   This mode blocks (calls the busy-handler callback) until there is no
7304 **   database writer and all readers are reading from the most recent database
7305 **   snapshot. It then checkpoints all frames in the log file and syncs the
7306 **   database file. This call blocks database writers while it is running,
7307 **   but not database readers.
7308 **
7309 ** <dt>SQLITE_CHECKPOINT_RESTART<dd>
7310 **   This mode works the same way as SQLITE_CHECKPOINT_FULL, except after
7311 **   checkpointing the log file it blocks (calls the busy-handler callback)
7312 **   until all readers are reading from the database file only. This ensures
7313 **   that the next client to write to the database file restarts the log file
7314 **   from the beginning. This call blocks database writers while it is running,
7315 **   but not database readers.
7316 ** </dl>
7317 **
7318 ** If pnLog is not NULL, then *pnLog is set to the total number of frames in
7319 ** the log file before returning. If pnCkpt is not NULL, then *pnCkpt is set to
7320 ** the total number of checkpointed frames (including any that were already
7321 ** checkpointed when this function is called). *pnLog and *pnCkpt may be
7322 ** populated even if sqlite3_wal_checkpoint_v2() returns other than SQLITE_OK.
7323 ** If no values are available because of an error, they are both set to -1
7324 ** before returning to communicate this to the caller.
7325 **
7326 ** All calls obtain an exclusive "checkpoint" lock on the database file. If
7327 ** any other process is running a checkpoint operation at the same time, the
7328 ** lock cannot be obtained and SQLITE_BUSY is returned. Even if there is a
7329 ** busy-handler configured, it will not be invoked in this case.
7330 **
7331 ** The SQLITE_CHECKPOINT_FULL and RESTART modes also obtain the exclusive
7332 ** "writer" lock on the database file. If the writer lock cannot be obtained
7333 ** immediately, and a busy-handler is configured, it is invoked and the writer
7334 ** lock retried until either the busy-handler returns 0 or the lock is
7335 ** successfully obtained. The busy-handler is also invoked while waiting for
7336 ** database readers as described above. If the busy-handler returns 0 before
7337 ** the writer lock is obtained or while waiting for database readers, the
7338 ** checkpoint operation proceeds from that point in the same way as
7339 ** SQLITE_CHECKPOINT_PASSIVE - checkpointing as many frames as possible
7340 ** without blocking any further. SQLITE_BUSY is returned in this case.
7341 **
7342 ** If parameter zDb is NULL or points to a zero length string, then the
7343 ** specified operation is attempted on all WAL databases. In this case the
7344 ** values written to output parameters *pnLog and *pnCkpt are undefined. If
7345 ** an SQLITE_BUSY error is encountered when processing one or more of the
7346 ** attached WAL databases, the operation is still attempted on any remaining
7347 ** attached databases and SQLITE_BUSY is returned to the caller. If any other
7348 ** error occurs while processing an attached database, processing is abandoned
7349 ** and the error code returned to the caller immediately. If no error
7350 ** (SQLITE_BUSY or otherwise) is encountered while processing the attached
7351 ** databases, SQLITE_OK is returned.
7352 **
7353 ** If database zDb is the name of an attached database that is not in WAL
7354 ** mode, SQLITE_OK is returned and both *pnLog and *pnCkpt set to -1. If
7355 ** zDb is not NULL (or a zero length string) and is not the name of any
7356 ** attached database, SQLITE_ERROR is returned to the caller.
7357 */
7358 SQLITE_API int sqlite3_wal_checkpoint_v2(
7359   sqlite3 *db,                    /* Database handle */
7360   const char *zDb,                /* Name of attached database (or NULL) */
7361   int eMode,                      /* SQLITE_CHECKPOINT_* value */
7362   int *pnLog,                     /* OUT: Size of WAL log in frames */
7363   int *pnCkpt                     /* OUT: Total number of frames checkpointed */
7364 );
7365 
7366 /*
7367 ** CAPI3REF: Checkpoint operation parameters
7368 **
7369 ** These constants can be used as the 3rd parameter to
7370 ** [sqlite3_wal_checkpoint_v2()].  See the [sqlite3_wal_checkpoint_v2()]
7371 ** documentation for additional information about the meaning and use of
7372 ** each of these values.
7373 */
7374 #define SQLITE_CHECKPOINT_PASSIVE 0
7375 #define SQLITE_CHECKPOINT_FULL    1
7376 #define SQLITE_CHECKPOINT_RESTART 2
7377 
7378 /*
7379 ** CAPI3REF: Virtual Table Interface Configuration
7380 **
7381 ** This function may be called by either the [xConnect] or [xCreate] method
7382 ** of a [virtual table] implementation to configure
7383 ** various facets of the virtual table interface.
7384 **
7385 ** If this interface is invoked outside the context of an xConnect or
7386 ** xCreate virtual table method then the behavior is undefined.
7387 **
7388 ** At present, there is only one option that may be configured using
7389 ** this function. (See [SQLITE_VTAB_CONSTRAINT_SUPPORT].)  Further options
7390 ** may be added in the future.
7391 */
7392 SQLITE_API int sqlite3_vtab_config(sqlite3*, int op, ...);
7393 
7394 /*
7395 ** CAPI3REF: Virtual Table Configuration Options
7396 **
7397 ** These macros define the various options to the
7398 ** [sqlite3_vtab_config()] interface that [virtual table] implementations
7399 ** can use to customize and optimize their behavior.
7400 **
7401 ** <dl>
7402 ** <dt>SQLITE_VTAB_CONSTRAINT_SUPPORT
7403 ** <dd>Calls of the form
7404 ** [sqlite3_vtab_config](db,SQLITE_VTAB_CONSTRAINT_SUPPORT,X) are supported,
7405 ** where X is an integer.  If X is zero, then the [virtual table] whose
7406 ** [xCreate] or [xConnect] method invoked [sqlite3_vtab_config()] does not
7407 ** support constraints.  In this configuration (which is the default) if
7408 ** a call to the [xUpdate] method returns [SQLITE_CONSTRAINT], then the entire
7409 ** statement is rolled back as if [ON CONFLICT | OR ABORT] had been
7410 ** specified as part of the users SQL statement, regardless of the actual
7411 ** ON CONFLICT mode specified.
7412 **
7413 ** If X is non-zero, then the virtual table implementation guarantees
7414 ** that if [xUpdate] returns [SQLITE_CONSTRAINT], it will do so before
7415 ** any modifications to internal or persistent data structures have been made.
7416 ** If the [ON CONFLICT] mode is ABORT, FAIL, IGNORE or ROLLBACK, SQLite
7417 ** is able to roll back a statement or database transaction, and abandon
7418 ** or continue processing the current SQL statement as appropriate.
7419 ** If the ON CONFLICT mode is REPLACE and the [xUpdate] method returns
7420 ** [SQLITE_CONSTRAINT], SQLite handles this as if the ON CONFLICT mode
7421 ** had been ABORT.
7422 **
7423 ** Virtual table implementations that are required to handle OR REPLACE
7424 ** must do so within the [xUpdate] method. If a call to the
7425 ** [sqlite3_vtab_on_conflict()] function indicates that the current ON
7426 ** CONFLICT policy is REPLACE, the virtual table implementation should
7427 ** silently replace the appropriate rows within the xUpdate callback and
7428 ** return SQLITE_OK. Or, if this is not possible, it may return
7429 ** SQLITE_CONSTRAINT, in which case SQLite falls back to OR ABORT
7430 ** constraint handling.
7431 ** </dl>
7432 */
7433 #define SQLITE_VTAB_CONSTRAINT_SUPPORT 1
7434 
7435 /*
7436 ** CAPI3REF: Determine The Virtual Table Conflict Policy
7437 **
7438 ** This function may only be called from within a call to the [xUpdate] method
7439 ** of a [virtual table] implementation for an INSERT or UPDATE operation. ^The
7440 ** value returned is one of [SQLITE_ROLLBACK], [SQLITE_IGNORE], [SQLITE_FAIL],
7441 ** [SQLITE_ABORT], or [SQLITE_REPLACE], according to the [ON CONFLICT] mode
7442 ** of the SQL statement that triggered the call to the [xUpdate] method of the
7443 ** [virtual table].
7444 */
7445 SQLITE_API int sqlite3_vtab_on_conflict(sqlite3 *);
7446 
7447 /*
7448 ** CAPI3REF: Conflict resolution modes
7449 **
7450 ** These constants are returned by [sqlite3_vtab_on_conflict()] to
7451 ** inform a [virtual table] implementation what the [ON CONFLICT] mode
7452 ** is for the SQL statement being evaluated.
7453 **
7454 ** Note that the [SQLITE_IGNORE] constant is also used as a potential
7455 ** return value from the [sqlite3_set_authorizer()] callback and that
7456 ** [SQLITE_ABORT] is also a [result code].
7457 */
7458 #define SQLITE_ROLLBACK 1
7459 /* #define SQLITE_IGNORE 2 // Also used by sqlite3_authorizer() callback */
7460 #define SQLITE_FAIL     3
7461 /* #define SQLITE_ABORT 4  // Also an error code */
7462 #define SQLITE_REPLACE  5
7463 
7464 
7465 
7466 /*
7467 ** Undo the hack that converts floating point types to integer for
7468 ** builds on processors without floating point support.
7469 */
7470 #ifdef SQLITE_OMIT_FLOATING_POINT
7471 # undef double
7472 #endif
7473 
7474 #if 0
7475 }  /* End of the 'extern "C"' block */
7476 #endif
7477 #endif /* _SQLITE3_H_ */
7478 
7479 /*
7480 ** 2010 August 30
7481 **
7482 ** The author disclaims copyright to this source code.  In place of
7483 ** a legal notice, here is a blessing:
7484 **
7485 **    May you do good and not evil.
7486 **    May you find forgiveness for yourself and forgive others.
7487 **    May you share freely, never taking more than you give.
7488 **
7489 *************************************************************************
7490 */
7491 
7492 #ifndef _SQLITE3RTREE_H_
7493 #define _SQLITE3RTREE_H_
7494 
7495 
7496 #if 0
7497 extern "C" {
7498 #endif
7499 
7500 typedef struct sqlite3_rtree_geometry sqlite3_rtree_geometry;
7501 typedef struct sqlite3_rtree_query_info sqlite3_rtree_query_info;
7502 
7503 /* The double-precision datatype used by RTree depends on the
7504 ** SQLITE_RTREE_INT_ONLY compile-time option.
7505 */
7506 #ifdef SQLITE_RTREE_INT_ONLY
7507   typedef sqlite3_int64 sqlite3_rtree_dbl;
7508 #else
7509   typedef double sqlite3_rtree_dbl;
7510 #endif
7511 
7512 /*
7513 ** Register a geometry callback named zGeom that can be used as part of an
7514 ** R-Tree geometry query as follows:
7515 **
7516 **   SELECT ... FROM <rtree> WHERE <rtree col> MATCH $zGeom(... params ...)
7517 */
7518 SQLITE_API int sqlite3_rtree_geometry_callback(
7519   sqlite3 *db,
7520   const char *zGeom,
7521   int (*xGeom)(sqlite3_rtree_geometry*, int, sqlite3_rtree_dbl*,int*),
7522   void *pContext
7523 );
7524 
7525 
7526 /*
7527 ** A pointer to a structure of the following type is passed as the first
7528 ** argument to callbacks registered using rtree_geometry_callback().
7529 */
7530 struct sqlite3_rtree_geometry {
7531   void *pContext;                 /* Copy of pContext passed to s_r_g_c() */
7532   int nParam;                     /* Size of array aParam[] */
7533   sqlite3_rtree_dbl *aParam;      /* Parameters passed to SQL geom function */
7534   void *pUser;                    /* Callback implementation user data */
7535   void (*xDelUser)(void *);       /* Called by SQLite to clean up pUser */
7536 };
7537 
7538 /*
7539 ** Register a 2nd-generation geometry callback named zScore that can be
7540 ** used as part of an R-Tree geometry query as follows:
7541 **
7542 **   SELECT ... FROM <rtree> WHERE <rtree col> MATCH $zQueryFunc(... params ...)
7543 */
7544 SQLITE_API int sqlite3_rtree_query_callback(
7545   sqlite3 *db,
7546   const char *zQueryFunc,
7547   int (*xQueryFunc)(sqlite3_rtree_query_info*),
7548   void *pContext,
7549   void (*xDestructor)(void*)
7550 );
7551 
7552 
7553 /*
7554 ** A pointer to a structure of the following type is passed as the
7555 ** argument to scored geometry callback registered using
7556 ** sqlite3_rtree_query_callback().
7557 **
7558 ** Note that the first 5 fields of this structure are identical to
7559 ** sqlite3_rtree_geometry.  This structure is a subclass of
7560 ** sqlite3_rtree_geometry.
7561 */
7562 struct sqlite3_rtree_query_info {
7563   void *pContext;                   /* pContext from when function registered */
7564   int nParam;                       /* Number of function parameters */
7565   sqlite3_rtree_dbl *aParam;        /* value of function parameters */
7566   void *pUser;                      /* callback can use this, if desired */
7567   void (*xDelUser)(void*);          /* function to free pUser */
7568   sqlite3_rtree_dbl *aCoord;        /* Coordinates of node or entry to check */
7569   unsigned int *anQueue;            /* Number of pending entries in the queue */
7570   int nCoord;                       /* Number of coordinates */
7571   int iLevel;                       /* Level of current node or entry */
7572   int mxLevel;                      /* The largest iLevel value in the tree */
7573   sqlite3_int64 iRowid;             /* Rowid for current entry */
7574   sqlite3_rtree_dbl rParentScore;   /* Score of parent node */
7575   int eParentWithin;                /* Visibility of parent node */
7576   int eWithin;                      /* OUT: Visiblity */
7577   sqlite3_rtree_dbl rScore;         /* OUT: Write the score here */
7578 };
7579 
7580 /*
7581 ** Allowed values for sqlite3_rtree_query.eWithin and .eParentWithin.
7582 */
7583 #define NOT_WITHIN       0   /* Object completely outside of query region */
7584 #define PARTLY_WITHIN    1   /* Object partially overlaps query region */
7585 #define FULLY_WITHIN     2   /* Object fully contained within query region */
7586 
7587 
7588 #if 0
7589 }  /* end of the 'extern "C"' block */
7590 #endif
7591 
7592 #endif  /* ifndef _SQLITE3RTREE_H_ */
7593 
7594 
7595 /************** End of sqlite3.h *********************************************/
7596 /************** Continuing where we left off in sqliteInt.h ******************/
7597 
7598 /*
7599 ** Include the configuration header output by 'configure' if we're using the
7600 ** autoconf-based build
7601 */
7602 #ifdef _HAVE_SQLITE_CONFIG_H
7603 #include "config.h"
7604 #endif
7605 
7606 /************** Include sqliteLimit.h in the middle of sqliteInt.h ***********/
7607 /************** Begin file sqliteLimit.h *************************************/
7608 /*
7609 ** 2007 May 7
7610 **
7611 ** The author disclaims copyright to this source code.  In place of
7612 ** a legal notice, here is a blessing:
7613 **
7614 **    May you do good and not evil.
7615 **    May you find forgiveness for yourself and forgive others.
7616 **    May you share freely, never taking more than you give.
7617 **
7618 *************************************************************************
7619 **
7620 ** This file defines various limits of what SQLite can process.
7621 */
7622 
7623 /*
7624 ** The maximum length of a TEXT or BLOB in bytes.   This also
7625 ** limits the size of a row in a table or index.
7626 **
7627 ** The hard limit is the ability of a 32-bit signed integer
7628 ** to count the size: 2^31-1 or 2147483647.
7629 */
7630 #ifndef SQLITE_MAX_LENGTH
7631 # define SQLITE_MAX_LENGTH 1000000000
7632 #endif
7633 
7634 /*
7635 ** This is the maximum number of
7636 **
7637 **    * Columns in a table
7638 **    * Columns in an index
7639 **    * Columns in a view
7640 **    * Terms in the SET clause of an UPDATE statement
7641 **    * Terms in the result set of a SELECT statement
7642 **    * Terms in the GROUP BY or ORDER BY clauses of a SELECT statement.
7643 **    * Terms in the VALUES clause of an INSERT statement
7644 **
7645 ** The hard upper limit here is 32676.  Most database people will
7646 ** tell you that in a well-normalized database, you usually should
7647 ** not have more than a dozen or so columns in any table.  And if
7648 ** that is the case, there is no point in having more than a few
7649 ** dozen values in any of the other situations described above.
7650 */
7651 #ifndef SQLITE_MAX_COLUMN
7652 # define SQLITE_MAX_COLUMN 2000
7653 #endif
7654 
7655 /*
7656 ** The maximum length of a single SQL statement in bytes.
7657 **
7658 ** It used to be the case that setting this value to zero would
7659 ** turn the limit off.  That is no longer true.  It is not possible
7660 ** to turn this limit off.
7661 */
7662 #ifndef SQLITE_MAX_SQL_LENGTH
7663 # define SQLITE_MAX_SQL_LENGTH 1000000000
7664 #endif
7665 
7666 /*
7667 ** The maximum depth of an expression tree. This is limited to
7668 ** some extent by SQLITE_MAX_SQL_LENGTH. But sometime you might
7669 ** want to place more severe limits on the complexity of an
7670 ** expression.
7671 **
7672 ** A value of 0 used to mean that the limit was not enforced.
7673 ** But that is no longer true.  The limit is now strictly enforced
7674 ** at all times.
7675 */
7676 #ifndef SQLITE_MAX_EXPR_DEPTH
7677 # define SQLITE_MAX_EXPR_DEPTH 1000
7678 #endif
7679 
7680 /*
7681 ** The maximum number of terms in a compound SELECT statement.
7682 ** The code generator for compound SELECT statements does one
7683 ** level of recursion for each term.  A stack overflow can result
7684 ** if the number of terms is too large.  In practice, most SQL
7685 ** never has more than 3 or 4 terms.  Use a value of 0 to disable
7686 ** any limit on the number of terms in a compount SELECT.
7687 */
7688 #ifndef SQLITE_MAX_COMPOUND_SELECT
7689 # define SQLITE_MAX_COMPOUND_SELECT 500
7690 #endif
7691 
7692 /*
7693 ** The maximum number of opcodes in a VDBE program.
7694 ** Not currently enforced.
7695 */
7696 #ifndef SQLITE_MAX_VDBE_OP
7697 # define SQLITE_MAX_VDBE_OP 25000
7698 #endif
7699 
7700 /*
7701 ** The maximum number of arguments to an SQL function.
7702 */
7703 #ifndef SQLITE_MAX_FUNCTION_ARG
7704 # define SQLITE_MAX_FUNCTION_ARG 127
7705 #endif
7706 
7707 /*
7708 ** The maximum number of in-memory pages to use for the main database
7709 ** table and for temporary tables.  The SQLITE_DEFAULT_CACHE_SIZE
7710 */
7711 #ifndef SQLITE_DEFAULT_CACHE_SIZE
7712 # define SQLITE_DEFAULT_CACHE_SIZE  2000
7713 #endif
7714 #ifndef SQLITE_DEFAULT_TEMP_CACHE_SIZE
7715 # define SQLITE_DEFAULT_TEMP_CACHE_SIZE  500
7716 #endif
7717 
7718 /*
7719 ** The default number of frames to accumulate in the log file before
7720 ** checkpointing the database in WAL mode.
7721 */
7722 #ifndef SQLITE_DEFAULT_WAL_AUTOCHECKPOINT
7723 # define SQLITE_DEFAULT_WAL_AUTOCHECKPOINT  1000
7724 #endif
7725 
7726 /*
7727 ** The maximum number of attached databases.  This must be between 0
7728 ** and 62.  The upper bound on 62 is because a 64-bit integer bitmap
7729 ** is used internally to track attached databases.
7730 */
7731 #ifndef SQLITE_MAX_ATTACHED
7732 # define SQLITE_MAX_ATTACHED 10
7733 #endif
7734 
7735 
7736 /*
7737 ** The maximum value of a ?nnn wildcard that the parser will accept.
7738 */
7739 #ifndef SQLITE_MAX_VARIABLE_NUMBER
7740 # define SQLITE_MAX_VARIABLE_NUMBER 999
7741 #endif
7742 
7743 /* Maximum page size.  The upper bound on this value is 65536.  This a limit
7744 ** imposed by the use of 16-bit offsets within each page.
7745 **
7746 ** Earlier versions of SQLite allowed the user to change this value at
7747 ** compile time. This is no longer permitted, on the grounds that it creates
7748 ** a library that is technically incompatible with an SQLite library
7749 ** compiled with a different limit. If a process operating on a database
7750 ** with a page-size of 65536 bytes crashes, then an instance of SQLite
7751 ** compiled with the default page-size limit will not be able to rollback
7752 ** the aborted transaction. This could lead to database corruption.
7753 */
7754 #ifdef SQLITE_MAX_PAGE_SIZE
7755 # undef SQLITE_MAX_PAGE_SIZE
7756 #endif
7757 #define SQLITE_MAX_PAGE_SIZE 65536
7758 
7759 
7760 /*
7761 ** The default size of a database page.
7762 */
7763 #ifndef SQLITE_DEFAULT_PAGE_SIZE
7764 # define SQLITE_DEFAULT_PAGE_SIZE 1024
7765 #endif
7766 #if SQLITE_DEFAULT_PAGE_SIZE>SQLITE_MAX_PAGE_SIZE
7767 # undef SQLITE_DEFAULT_PAGE_SIZE
7768 # define SQLITE_DEFAULT_PAGE_SIZE SQLITE_MAX_PAGE_SIZE
7769 #endif
7770 
7771 /*
7772 ** Ordinarily, if no value is explicitly provided, SQLite creates databases
7773 ** with page size SQLITE_DEFAULT_PAGE_SIZE. However, based on certain
7774 ** device characteristics (sector-size and atomic write() support),
7775 ** SQLite may choose a larger value. This constant is the maximum value
7776 ** SQLite will choose on its own.
7777 */
7778 #ifndef SQLITE_MAX_DEFAULT_PAGE_SIZE
7779 # define SQLITE_MAX_DEFAULT_PAGE_SIZE 8192
7780 #endif
7781 #if SQLITE_MAX_DEFAULT_PAGE_SIZE>SQLITE_MAX_PAGE_SIZE
7782 # undef SQLITE_MAX_DEFAULT_PAGE_SIZE
7783 # define SQLITE_MAX_DEFAULT_PAGE_SIZE SQLITE_MAX_PAGE_SIZE
7784 #endif
7785 
7786 
7787 /*
7788 ** Maximum number of pages in one database file.
7789 **
7790 ** This is really just the default value for the max_page_count pragma.
7791 ** This value can be lowered (or raised) at run-time using that the
7792 ** max_page_count macro.
7793 */
7794 #ifndef SQLITE_MAX_PAGE_COUNT
7795 # define SQLITE_MAX_PAGE_COUNT 1073741823
7796 #endif
7797 
7798 /*
7799 ** Maximum length (in bytes) of the pattern in a LIKE or GLOB
7800 ** operator.
7801 */
7802 #ifndef SQLITE_MAX_LIKE_PATTERN_LENGTH
7803 # define SQLITE_MAX_LIKE_PATTERN_LENGTH 50000
7804 #endif
7805 
7806 /*
7807 ** Maximum depth of recursion for triggers.
7808 **
7809 ** A value of 1 means that a trigger program will not be able to itself
7810 ** fire any triggers. A value of 0 means that no trigger programs at all
7811 ** may be executed.
7812 */
7813 #ifndef SQLITE_MAX_TRIGGER_DEPTH
7814 # define SQLITE_MAX_TRIGGER_DEPTH 1000
7815 #endif
7816 
7817 /************** End of sqliteLimit.h *****************************************/
7818 /************** Continuing where we left off in sqliteInt.h ******************/
7819 
7820 /* Disable nuisance warnings on Borland compilers */
7821 #if defined(__BORLANDC__)
7822 #pragma warn -rch /* unreachable code */
7823 #pragma warn -ccc /* Condition is always true or false */
7824 #pragma warn -aus /* Assigned value is never used */
7825 #pragma warn -csu /* Comparing signed and unsigned */
7826 #pragma warn -spa /* Suspicious pointer arithmetic */
7827 #endif
7828 
7829 /* Needed for various definitions... */
7830 #ifndef _GNU_SOURCE
7831 # define _GNU_SOURCE
7832 #endif
7833 
7834 #if defined(__OpenBSD__) && !defined(_BSD_SOURCE)
7835 # define _BSD_SOURCE
7836 #endif
7837 
7838 /*
7839 ** Include standard header files as necessary
7840 */
7841 #ifdef HAVE_STDINT_H
7842 #include <stdint.h>
7843 #endif
7844 #ifdef HAVE_INTTYPES_H
7845 #include <inttypes.h>
7846 #endif
7847 
7848 /*
7849 ** The following macros are used to cast pointers to integers and
7850 ** integers to pointers.  The way you do this varies from one compiler
7851 ** to the next, so we have developed the following set of #if statements
7852 ** to generate appropriate macros for a wide range of compilers.
7853 **
7854 ** The correct "ANSI" way to do this is to use the intptr_t type.
7855 ** Unfortunately, that typedef is not available on all compilers, or
7856 ** if it is available, it requires an #include of specific headers
7857 ** that vary from one machine to the next.
7858 **
7859 ** Ticket #3860:  The llvm-gcc-4.2 compiler from Apple chokes on
7860 ** the ((void*)&((char*)0)[X]) construct.  But MSVC chokes on ((void*)(X)).
7861 ** So we have to define the macros in different ways depending on the
7862 ** compiler.
7863 */
7864 #if defined(__PTRDIFF_TYPE__)  /* This case should work for GCC */
7865 # define SQLITE_INT_TO_PTR(X)  ((void*)(__PTRDIFF_TYPE__)(X))
7866 # define SQLITE_PTR_TO_INT(X)  ((int)(__PTRDIFF_TYPE__)(X))
7867 #elif !defined(__GNUC__)       /* Works for compilers other than LLVM */
7868 # define SQLITE_INT_TO_PTR(X)  ((void*)&((char*)0)[X])
7869 # define SQLITE_PTR_TO_INT(X)  ((int)(((char*)X)-(char*)0))
7870 #elif defined(HAVE_STDINT_H)   /* Use this case if we have ANSI headers */
7871 # define SQLITE_INT_TO_PTR(X)  ((void*)(intptr_t)(X))
7872 # define SQLITE_PTR_TO_INT(X)  ((int)(intptr_t)(X))
7873 #else                          /* Generates a warning - but it always works */
7874 # define SQLITE_INT_TO_PTR(X)  ((void*)(X))
7875 # define SQLITE_PTR_TO_INT(X)  ((int)(X))
7876 #endif
7877 
7878 /*
7879 ** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2.
7880 ** 0 means mutexes are permanently disable and the library is never
7881 ** threadsafe.  1 means the library is serialized which is the highest
7882 ** level of threadsafety.  2 means the library is multithreaded - multiple
7883 ** threads can use SQLite as long as no two threads try to use the same
7884 ** database connection at the same time.
7885 **
7886 ** Older versions of SQLite used an optional THREADSAFE macro.
7887 ** We support that for legacy.
7888 */
7889 #if !defined(SQLITE_THREADSAFE)
7890 # if defined(THREADSAFE)
7891 #   define SQLITE_THREADSAFE THREADSAFE
7892 # else
7893 #   define SQLITE_THREADSAFE 1 /* IMP: R-07272-22309 */
7894 # endif
7895 #endif
7896 
7897 /*
7898 ** Powersafe overwrite is on by default.  But can be turned off using
7899 ** the -DSQLITE_POWERSAFE_OVERWRITE=0 command-line option.
7900 */
7901 #ifndef SQLITE_POWERSAFE_OVERWRITE
7902 # define SQLITE_POWERSAFE_OVERWRITE 1
7903 #endif
7904 
7905 /*
7906 ** The SQLITE_DEFAULT_MEMSTATUS macro must be defined as either 0 or 1.
7907 ** It determines whether or not the features related to
7908 ** SQLITE_CONFIG_MEMSTATUS are available by default or not. This value can
7909 ** be overridden at runtime using the sqlite3_config() API.
7910 */
7911 #if !defined(SQLITE_DEFAULT_MEMSTATUS)
7912 # define SQLITE_DEFAULT_MEMSTATUS 1
7913 #endif
7914 
7915 /*
7916 ** Exactly one of the following macros must be defined in order to
7917 ** specify which memory allocation subsystem to use.
7918 **
7919 **     SQLITE_SYSTEM_MALLOC          // Use normal system malloc()
7920 **     SQLITE_WIN32_MALLOC           // Use Win32 native heap API
7921 **     SQLITE_ZERO_MALLOC            // Use a stub allocator that always fails
7922 **     SQLITE_MEMDEBUG               // Debugging version of system malloc()
7923 **
7924 ** On Windows, if the SQLITE_WIN32_MALLOC_VALIDATE macro is defined and the
7925 ** assert() macro is enabled, each call into the Win32 native heap subsystem
7926 ** will cause HeapValidate to be called.  If heap validation should fail, an
7927 ** assertion will be triggered.
7928 **
7929 ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as
7930 ** the default.
7931 */
7932 #if defined(SQLITE_SYSTEM_MALLOC) \
7933   + defined(SQLITE_WIN32_MALLOC) \
7934   + defined(SQLITE_ZERO_MALLOC) \
7935   + defined(SQLITE_MEMDEBUG)>1
7936 # error "Two or more of the following compile-time configuration options\
7937  are defined but at most one is allowed:\
7938  SQLITE_SYSTEM_MALLOC, SQLITE_WIN32_MALLOC, SQLITE_MEMDEBUG,\
7939  SQLITE_ZERO_MALLOC"
7940 #endif
7941 #if defined(SQLITE_SYSTEM_MALLOC) \
7942   + defined(SQLITE_WIN32_MALLOC) \
7943   + defined(SQLITE_ZERO_MALLOC) \
7944   + defined(SQLITE_MEMDEBUG)==0
7945 # define SQLITE_SYSTEM_MALLOC 1
7946 #endif
7947 
7948 /*
7949 ** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the
7950 ** sizes of memory allocations below this value where possible.
7951 */
7952 #if !defined(SQLITE_MALLOC_SOFT_LIMIT)
7953 # define SQLITE_MALLOC_SOFT_LIMIT 1024
7954 #endif
7955 
7956 /*
7957 ** We need to define _XOPEN_SOURCE as follows in order to enable
7958 ** recursive mutexes on most Unix systems and fchmod() on OpenBSD.
7959 ** But _XOPEN_SOURCE define causes problems for Mac OS X, so omit
7960 ** it.
7961 */
7962 #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__)
7963 #  define _XOPEN_SOURCE 600
7964 #endif
7965 
7966 /*
7967 ** NDEBUG and SQLITE_DEBUG are opposites.  It should always be true that
7968 ** defined(NDEBUG)==!defined(SQLITE_DEBUG).  If this is not currently true,
7969 ** make it true by defining or undefining NDEBUG.
7970 **
7971 ** Setting NDEBUG makes the code smaller and faster by disabling the
7972 ** assert() statements in the code.  So we want the default action
7973 ** to be for NDEBUG to be set and NDEBUG to be undefined only if SQLITE_DEBUG
7974 ** is set.  Thus NDEBUG becomes an opt-in rather than an opt-out
7975 ** feature.
7976 */
7977 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG)
7978 # define NDEBUG 1
7979 #endif
7980 #if defined(NDEBUG) && defined(SQLITE_DEBUG)
7981 # undef NDEBUG
7982 #endif
7983 
7984 /*
7985 ** Enable SQLITE_ENABLE_EXPLAIN_COMMENTS if SQLITE_DEBUG is turned on.
7986 */
7987 #if !defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) && defined(SQLITE_DEBUG)
7988 # define SQLITE_ENABLE_EXPLAIN_COMMENTS 1
7989 #endif
7990 
7991 /*
7992 ** The testcase() macro is used to aid in coverage testing.  When
7993 ** doing coverage testing, the condition inside the argument to
7994 ** testcase() must be evaluated both true and false in order to
7995 ** get full branch coverage.  The testcase() macro is inserted
7996 ** to help ensure adequate test coverage in places where simple
7997 ** condition/decision coverage is inadequate.  For example, testcase()
7998 ** can be used to make sure boundary values are tested.  For
7999 ** bitmask tests, testcase() can be used to make sure each bit
8000 ** is significant and used at least once.  On switch statements
8001 ** where multiple cases go to the same block of code, testcase()
8002 ** can insure that all cases are evaluated.
8003 **
8004 */
8005 #ifdef SQLITE_COVERAGE_TEST
8006 SQLITE_PRIVATE   void sqlite3Coverage(int);
8007 # define testcase(X)  if( X ){ sqlite3Coverage(__LINE__); }
8008 #else
8009 # define testcase(X)
8010 #endif
8011 
8012 /*
8013 ** The TESTONLY macro is used to enclose variable declarations or
8014 ** other bits of code that are needed to support the arguments
8015 ** within testcase() and assert() macros.
8016 */
8017 #if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST)
8018 # define TESTONLY(X)  X
8019 #else
8020 # define TESTONLY(X)
8021 #endif
8022 
8023 /*
8024 ** Sometimes we need a small amount of code such as a variable initialization
8025 ** to setup for a later assert() statement.  We do not want this code to
8026 ** appear when assert() is disabled.  The following macro is therefore
8027 ** used to contain that setup code.  The "VVA" acronym stands for
8028 ** "Verification, Validation, and Accreditation".  In other words, the
8029 ** code within VVA_ONLY() will only run during verification processes.
8030 */
8031 #ifndef NDEBUG
8032 # define VVA_ONLY(X)  X
8033 #else
8034 # define VVA_ONLY(X)
8035 #endif
8036 
8037 /*
8038 ** The ALWAYS and NEVER macros surround boolean expressions which
8039 ** are intended to always be true or false, respectively.  Such
8040 ** expressions could be omitted from the code completely.  But they
8041 ** are included in a few cases in order to enhance the resilience
8042 ** of SQLite to unexpected behavior - to make the code "self-healing"
8043 ** or "ductile" rather than being "brittle" and crashing at the first
8044 ** hint of unplanned behavior.
8045 **
8046 ** In other words, ALWAYS and NEVER are added for defensive code.
8047 **
8048 ** When doing coverage testing ALWAYS and NEVER are hard-coded to
8049 ** be true and false so that the unreachable code they specify will
8050 ** not be counted as untested code.
8051 */
8052 #if defined(SQLITE_COVERAGE_TEST)
8053 # define ALWAYS(X)      (1)
8054 # define NEVER(X)       (0)
8055 #elif !defined(NDEBUG)
8056 # define ALWAYS(X)      ((X)?1:(assert(0),0))
8057 # define NEVER(X)       ((X)?(assert(0),1):0)
8058 #else
8059 # define ALWAYS(X)      (X)
8060 # define NEVER(X)       (X)
8061 #endif
8062 
8063 /*
8064 ** Return true (non-zero) if the input is a integer that is too large
8065 ** to fit in 32-bits.  This macro is used inside of various testcase()
8066 ** macros to verify that we have tested SQLite for large-file support.
8067 */
8068 #define IS_BIG_INT(X)  (((X)&~(i64)0xffffffff)!=0)
8069 
8070 /*
8071 ** The macro unlikely() is a hint that surrounds a boolean
8072 ** expression that is usually false.  Macro likely() surrounds
8073 ** a boolean expression that is usually true.  These hints could,
8074 ** in theory, be used by the compiler to generate better code, but
8075 ** currently they are just comments for human readers.
8076 */
8077 #define likely(X)    (X)
8078 #define unlikely(X)  (X)
8079 
8080 /************** Include hash.h in the middle of sqliteInt.h ******************/
8081 /************** Begin file hash.h ********************************************/
8082 /*
8083 ** 2001 September 22
8084 **
8085 ** The author disclaims copyright to this source code.  In place of
8086 ** a legal notice, here is a blessing:
8087 **
8088 **    May you do good and not evil.
8089 **    May you find forgiveness for yourself and forgive others.
8090 **    May you share freely, never taking more than you give.
8091 **
8092 *************************************************************************
8093 ** This is the header file for the generic hash-table implementation
8094 ** used in SQLite.
8095 */
8096 #ifndef _SQLITE_HASH_H_
8097 #define _SQLITE_HASH_H_
8098 
8099 /* Forward declarations of structures. */
8100 typedef struct Hash Hash;
8101 typedef struct HashElem HashElem;
8102 
8103 /* A complete hash table is an instance of the following structure.
8104 ** The internals of this structure are intended to be opaque -- client
8105 ** code should not attempt to access or modify the fields of this structure
8106 ** directly.  Change this structure only by using the routines below.
8107 ** However, some of the "procedures" and "functions" for modifying and
8108 ** accessing this structure are really macros, so we can't really make
8109 ** this structure opaque.
8110 **
8111 ** All elements of the hash table are on a single doubly-linked list.
8112 ** Hash.first points to the head of this list.
8113 **
8114 ** There are Hash.htsize buckets.  Each bucket points to a spot in
8115 ** the global doubly-linked list.  The contents of the bucket are the
8116 ** element pointed to plus the next _ht.count-1 elements in the list.
8117 **
8118 ** Hash.htsize and Hash.ht may be zero.  In that case lookup is done
8119 ** by a linear search of the global list.  For small tables, the
8120 ** Hash.ht table is never allocated because if there are few elements
8121 ** in the table, it is faster to do a linear search than to manage
8122 ** the hash table.
8123 */
8124 struct Hash {
8125   unsigned int htsize;      /* Number of buckets in the hash table */
8126   unsigned int count;       /* Number of entries in this table */
8127   HashElem *first;          /* The first element of the array */
8128   struct _ht {              /* the hash table */
8129     int count;                 /* Number of entries with this hash */
8130     HashElem *chain;           /* Pointer to first entry with this hash */
8131   } *ht;
8132 };
8133 
8134 /* Each element in the hash table is an instance of the following
8135 ** structure.  All elements are stored on a single doubly-linked list.
8136 **
8137 ** Again, this structure is intended to be opaque, but it can't really
8138 ** be opaque because it is used by macros.
8139 */
8140 struct HashElem {
8141   HashElem *next, *prev;       /* Next and previous elements in the table */
8142   void *data;                  /* Data associated with this element */
8143   const char *pKey; int nKey;  /* Key associated with this element */
8144 };
8145 
8146 /*
8147 ** Access routines.  To delete, insert a NULL pointer.
8148 */
8149 SQLITE_PRIVATE void sqlite3HashInit(Hash*);
8150 SQLITE_PRIVATE void *sqlite3HashInsert(Hash*, const char *pKey, int nKey, void *pData);
8151 SQLITE_PRIVATE void *sqlite3HashFind(const Hash*, const char *pKey, int nKey);
8152 SQLITE_PRIVATE void sqlite3HashClear(Hash*);
8153 
8154 /*
8155 ** Macros for looping over all elements of a hash table.  The idiom is
8156 ** like this:
8157 **
8158 **   Hash h;
8159 **   HashElem *p;
8160 **   ...
8161 **   for(p=sqliteHashFirst(&h); p; p=sqliteHashNext(p)){
8162 **     SomeStructure *pData = sqliteHashData(p);
8163 **     // do something with pData
8164 **   }
8165 */
8166 #define sqliteHashFirst(H)  ((H)->first)
8167 #define sqliteHashNext(E)   ((E)->next)
8168 #define sqliteHashData(E)   ((E)->data)
8169 /* #define sqliteHashKey(E)    ((E)->pKey) // NOT USED */
8170 /* #define sqliteHashKeysize(E) ((E)->nKey)  // NOT USED */
8171 
8172 /*
8173 ** Number of entries in a hash table
8174 */
8175 /* #define sqliteHashCount(H)  ((H)->count) // NOT USED */
8176 
8177 #endif /* _SQLITE_HASH_H_ */
8178 
8179 /************** End of hash.h ************************************************/
8180 /************** Continuing where we left off in sqliteInt.h ******************/
8181 /************** Include parse.h in the middle of sqliteInt.h *****************/
8182 /************** Begin file parse.h *******************************************/
8183 #define TK_SEMI                             1
8184 #define TK_EXPLAIN                          2
8185 #define TK_QUERY                            3
8186 #define TK_PLAN                             4
8187 #define TK_BEGIN                            5
8188 #define TK_TRANSACTION                      6
8189 #define TK_DEFERRED                         7
8190 #define TK_IMMEDIATE                        8
8191 #define TK_EXCLUSIVE                        9
8192 #define TK_COMMIT                          10
8193 #define TK_END                             11
8194 #define TK_ROLLBACK                        12
8195 #define TK_SAVEPOINT                       13
8196 #define TK_RELEASE                         14
8197 #define TK_TO                              15
8198 #define TK_TABLE                           16
8199 #define TK_CREATE                          17
8200 #define TK_IF                              18
8201 #define TK_NOT                             19
8202 #define TK_EXISTS                          20
8203 #define TK_TEMP                            21
8204 #define TK_LP                              22
8205 #define TK_RP                              23
8206 #define TK_AS                              24
8207 #define TK_WITHOUT                         25
8208 #define TK_COMMA                           26
8209 #define TK_ID                              27
8210 #define TK_INDEXED                         28
8211 #define TK_ABORT                           29
8212 #define TK_ACTION                          30
8213 #define TK_AFTER                           31
8214 #define TK_ANALYZE                         32
8215 #define TK_ASC                             33
8216 #define TK_ATTACH                          34
8217 #define TK_BEFORE                          35
8218 #define TK_BY                              36
8219 #define TK_CASCADE                         37
8220 #define TK_CAST                            38
8221 #define TK_COLUMNKW                        39
8222 #define TK_CONFLICT                        40
8223 #define TK_DATABASE                        41
8224 #define TK_DESC                            42
8225 #define TK_DETACH                          43
8226 #define TK_EACH                            44
8227 #define TK_FAIL                            45
8228 #define TK_FOR                             46
8229 #define TK_IGNORE                          47
8230 #define TK_INITIALLY                       48
8231 #define TK_INSTEAD                         49
8232 #define TK_LIKE_KW                         50
8233 #define TK_MATCH                           51
8234 #define TK_NO                              52
8235 #define TK_KEY                             53
8236 #define TK_OF                              54
8237 #define TK_OFFSET                          55
8238 #define TK_PRAGMA                          56
8239 #define TK_RAISE                           57
8240 #define TK_RECURSIVE                       58
8241 #define TK_REPLACE                         59
8242 #define TK_RESTRICT                        60
8243 #define TK_ROW                             61
8244 #define TK_TRIGGER                         62
8245 #define TK_VACUUM                          63
8246 #define TK_VIEW                            64
8247 #define TK_VIRTUAL                         65
8248 #define TK_WITH                            66
8249 #define TK_REINDEX                         67
8250 #define TK_RENAME                          68
8251 #define TK_CTIME_KW                        69
8252 #define TK_ANY                             70
8253 #define TK_OR                              71
8254 #define TK_AND                             72
8255 #define TK_IS                              73
8256 #define TK_BETWEEN                         74
8257 #define TK_IN                              75
8258 #define TK_ISNULL                          76
8259 #define TK_NOTNULL                         77
8260 #define TK_NE                              78
8261 #define TK_EQ                              79
8262 #define TK_GT                              80
8263 #define TK_LE                              81
8264 #define TK_LT                              82
8265 #define TK_GE                              83
8266 #define TK_ESCAPE                          84
8267 #define TK_BITAND                          85
8268 #define TK_BITOR                           86
8269 #define TK_LSHIFT                          87
8270 #define TK_RSHIFT                          88
8271 #define TK_PLUS                            89
8272 #define TK_MINUS                           90
8273 #define TK_STAR                            91
8274 #define TK_SLASH                           92
8275 #define TK_REM                             93
8276 #define TK_CONCAT                          94
8277 #define TK_COLLATE                         95
8278 #define TK_BITNOT                          96
8279 #define TK_STRING                          97
8280 #define TK_JOIN_KW                         98
8281 #define TK_CONSTRAINT                      99
8282 #define TK_DEFAULT                        100
8283 #define TK_NULL                           101
8284 #define TK_PRIMARY                        102
8285 #define TK_UNIQUE                         103
8286 #define TK_CHECK                          104
8287 #define TK_REFERENCES                     105
8288 #define TK_AUTOINCR                       106
8289 #define TK_ON                             107
8290 #define TK_INSERT                         108
8291 #define TK_DELETE                         109
8292 #define TK_UPDATE                         110
8293 #define TK_SET                            111
8294 #define TK_DEFERRABLE                     112
8295 #define TK_FOREIGN                        113
8296 #define TK_DROP                           114
8297 #define TK_UNION                          115
8298 #define TK_ALL                            116
8299 #define TK_EXCEPT                         117
8300 #define TK_INTERSECT                      118
8301 #define TK_SELECT                         119
8302 #define TK_VALUES                         120
8303 #define TK_DISTINCT                       121
8304 #define TK_DOT                            122
8305 #define TK_FROM                           123
8306 #define TK_JOIN                           124
8307 #define TK_USING                          125
8308 #define TK_ORDER                          126
8309 #define TK_GROUP                          127
8310 #define TK_HAVING                         128
8311 #define TK_LIMIT                          129
8312 #define TK_WHERE                          130
8313 #define TK_INTO                           131
8314 #define TK_INTEGER                        132
8315 #define TK_FLOAT                          133
8316 #define TK_BLOB                           134
8317 #define TK_VARIABLE                       135
8318 #define TK_CASE                           136
8319 #define TK_WHEN                           137
8320 #define TK_THEN                           138
8321 #define TK_ELSE                           139
8322 #define TK_INDEX                          140
8323 #define TK_ALTER                          141
8324 #define TK_ADD                            142
8325 #define TK_TO_TEXT                        143
8326 #define TK_TO_BLOB                        144
8327 #define TK_TO_NUMERIC                     145
8328 #define TK_TO_INT                         146
8329 #define TK_TO_REAL                        147
8330 #define TK_ISNOT                          148
8331 #define TK_END_OF_FILE                    149
8332 #define TK_ILLEGAL                        150
8333 #define TK_SPACE                          151
8334 #define TK_UNCLOSED_STRING                152
8335 #define TK_FUNCTION                       153
8336 #define TK_COLUMN                         154
8337 #define TK_AGG_FUNCTION                   155
8338 #define TK_AGG_COLUMN                     156
8339 #define TK_UMINUS                         157
8340 #define TK_UPLUS                          158
8341 #define TK_REGISTER                       159
8342 
8343 /************** End of parse.h ***********************************************/
8344 /************** Continuing where we left off in sqliteInt.h ******************/
8345 #include <stdio.h>
8346 #include <stdlib.h>
8347 #include <string.h>
8348 #include <assert.h>
8349 #include <stddef.h>
8350 
8351 /*
8352 ** If compiling for a processor that lacks floating point support,
8353 ** substitute integer for floating-point
8354 */
8355 #ifdef SQLITE_OMIT_FLOATING_POINT
8356 # define double sqlite_int64
8357 # define float sqlite_int64
8358 # define LONGDOUBLE_TYPE sqlite_int64
8359 # ifndef SQLITE_BIG_DBL
8360 #   define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50)
8361 # endif
8362 # define SQLITE_OMIT_DATETIME_FUNCS 1
8363 # define SQLITE_OMIT_TRACE 1
8364 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
8365 # undef SQLITE_HAVE_ISNAN
8366 #endif
8367 #ifndef SQLITE_BIG_DBL
8368 # define SQLITE_BIG_DBL (1e99)
8369 #endif
8370 
8371 /*
8372 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0
8373 ** afterward. Having this macro allows us to cause the C compiler
8374 ** to omit code used by TEMP tables without messy #ifndef statements.
8375 */
8376 #ifdef SQLITE_OMIT_TEMPDB
8377 #define OMIT_TEMPDB 1
8378 #else
8379 #define OMIT_TEMPDB 0
8380 #endif
8381 
8382 /*
8383 ** The "file format" number is an integer that is incremented whenever
8384 ** the VDBE-level file format changes.  The following macros define the
8385 ** the default file format for new databases and the maximum file format
8386 ** that the library can read.
8387 */
8388 #define SQLITE_MAX_FILE_FORMAT 4
8389 #ifndef SQLITE_DEFAULT_FILE_FORMAT
8390 # define SQLITE_DEFAULT_FILE_FORMAT 4
8391 #endif
8392 
8393 /*
8394 ** Determine whether triggers are recursive by default.  This can be
8395 ** changed at run-time using a pragma.
8396 */
8397 #ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS
8398 # define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0
8399 #endif
8400 
8401 /*
8402 ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified
8403 ** on the command-line
8404 */
8405 #ifndef SQLITE_TEMP_STORE
8406 # define SQLITE_TEMP_STORE 1
8407 # define SQLITE_TEMP_STORE_xc 1  /* Exclude from ctime.c */
8408 #endif
8409 
8410 /*
8411 ** GCC does not define the offsetof() macro so we'll have to do it
8412 ** ourselves.
8413 */
8414 #ifndef offsetof
8415 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD))
8416 #endif
8417 
8418 /*
8419 ** Macros to compute minimum and maximum of two numbers.
8420 */
8421 #define MIN(A,B) ((A)<(B)?(A):(B))
8422 #define MAX(A,B) ((A)>(B)?(A):(B))
8423 
8424 /*
8425 ** Check to see if this machine uses EBCDIC.  (Yes, believe it or
8426 ** not, there are still machines out there that use EBCDIC.)
8427 */
8428 #if 'A' == '\301'
8429 # define SQLITE_EBCDIC 1
8430 #else
8431 # define SQLITE_ASCII 1
8432 #endif
8433 
8434 /*
8435 ** Integers of known sizes.  These typedefs might change for architectures
8436 ** where the sizes very.  Preprocessor macros are available so that the
8437 ** types can be conveniently redefined at compile-type.  Like this:
8438 **
8439 **         cc '-DUINTPTR_TYPE=long long int' ...
8440 */
8441 #ifndef UINT32_TYPE
8442 # ifdef HAVE_UINT32_T
8443 #  define UINT32_TYPE uint32_t
8444 # else
8445 #  define UINT32_TYPE unsigned int
8446 # endif
8447 #endif
8448 #ifndef UINT16_TYPE
8449 # ifdef HAVE_UINT16_T
8450 #  define UINT16_TYPE uint16_t
8451 # else
8452 #  define UINT16_TYPE unsigned short int
8453 # endif
8454 #endif
8455 #ifndef INT16_TYPE
8456 # ifdef HAVE_INT16_T
8457 #  define INT16_TYPE int16_t
8458 # else
8459 #  define INT16_TYPE short int
8460 # endif
8461 #endif
8462 #ifndef UINT8_TYPE
8463 # ifdef HAVE_UINT8_T
8464 #  define UINT8_TYPE uint8_t
8465 # else
8466 #  define UINT8_TYPE unsigned char
8467 # endif
8468 #endif
8469 #ifndef INT8_TYPE
8470 # ifdef HAVE_INT8_T
8471 #  define INT8_TYPE int8_t
8472 # else
8473 #  define INT8_TYPE signed char
8474 # endif
8475 #endif
8476 #ifndef LONGDOUBLE_TYPE
8477 # define LONGDOUBLE_TYPE long double
8478 #endif
8479 typedef sqlite_int64 i64;          /* 8-byte signed integer */
8480 typedef sqlite_uint64 u64;         /* 8-byte unsigned integer */
8481 typedef UINT32_TYPE u32;           /* 4-byte unsigned integer */
8482 typedef UINT16_TYPE u16;           /* 2-byte unsigned integer */
8483 typedef INT16_TYPE i16;            /* 2-byte signed integer */
8484 typedef UINT8_TYPE u8;             /* 1-byte unsigned integer */
8485 typedef INT8_TYPE i8;              /* 1-byte signed integer */
8486 
8487 /*
8488 ** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value
8489 ** that can be stored in a u32 without loss of data.  The value
8490 ** is 0x00000000ffffffff.  But because of quirks of some compilers, we
8491 ** have to specify the value in the less intuitive manner shown:
8492 */
8493 #define SQLITE_MAX_U32  ((((u64)1)<<32)-1)
8494 
8495 /*
8496 ** The datatype used to store estimates of the number of rows in a
8497 ** table or index.  This is an unsigned integer type.  For 99.9% of
8498 ** the world, a 32-bit integer is sufficient.  But a 64-bit integer
8499 ** can be used at compile-time if desired.
8500 */
8501 #ifdef SQLITE_64BIT_STATS
8502  typedef u64 tRowcnt;    /* 64-bit only if requested at compile-time */
8503 #else
8504  typedef u32 tRowcnt;    /* 32-bit is the default */
8505 #endif
8506 
8507 /*
8508 ** Estimated quantities used for query planning are stored as 16-bit
8509 ** logarithms.  For quantity X, the value stored is 10*log2(X).  This
8510 ** gives a possible range of values of approximately 1.0e986 to 1e-986.
8511 ** But the allowed values are "grainy".  Not every value is representable.
8512 ** For example, quantities 16 and 17 are both represented by a LogEst
8513 ** of 40.  However, since LogEst quantaties are suppose to be estimates,
8514 ** not exact values, this imprecision is not a problem.
8515 **
8516 ** "LogEst" is short for "Logarithmic Estimate".
8517 **
8518 ** Examples:
8519 **      1 -> 0              20 -> 43          10000 -> 132
8520 **      2 -> 10             25 -> 46          25000 -> 146
8521 **      3 -> 16            100 -> 66        1000000 -> 199
8522 **      4 -> 20           1000 -> 99        1048576 -> 200
8523 **     10 -> 33           1024 -> 100    4294967296 -> 320
8524 **
8525 ** The LogEst can be negative to indicate fractional values.
8526 ** Examples:
8527 **
8528 **    0.5 -> -10           0.1 -> -33        0.0625 -> -40
8529 */
8530 typedef INT16_TYPE LogEst;
8531 
8532 /*
8533 ** Macros to determine whether the machine is big or little endian,
8534 ** and whether or not that determination is run-time or compile-time.
8535 **
8536 ** For best performance, an attempt is made to guess at the byte-order
8537 ** using C-preprocessor macros.  If that is unsuccessful, or if
8538 ** -DSQLITE_RUNTIME_BYTEORDER=1 is set, then byte-order is determined
8539 ** at run-time.
8540 */
8541 #ifdef SQLITE_AMALGAMATION
8542 SQLITE_PRIVATE const int sqlite3one = 1;
8543 #else
8544 SQLITE_PRIVATE const int sqlite3one;
8545 #endif
8546 #if (defined(i386)     || defined(__i386__)   || defined(_M_IX86) ||    \
8547      defined(__x86_64) || defined(__x86_64__) || defined(_M_X64)  ||    \
8548      defined(_M_AMD64) || defined(_M_ARM)     || defined(__x86)   ||    \
8549      defined(__arm__)) && !defined(SQLITE_RUNTIME_BYTEORDER)
8550 # define SQLITE_BYTEORDER    1234
8551 # define SQLITE_BIGENDIAN    0
8552 # define SQLITE_LITTLEENDIAN 1
8553 # define SQLITE_UTF16NATIVE  SQLITE_UTF16LE
8554 #endif
8555 #if (defined(sparc)    || defined(__ppc__))  \
8556     && !defined(SQLITE_RUNTIME_BYTEORDER)
8557 # define SQLITE_BYTEORDER    4321
8558 # define SQLITE_BIGENDIAN    1
8559 # define SQLITE_LITTLEENDIAN 0
8560 # define SQLITE_UTF16NATIVE  SQLITE_UTF16BE
8561 #endif
8562 #if !defined(SQLITE_BYTEORDER)
8563 # define SQLITE_BYTEORDER    0     /* 0 means "unknown at compile-time" */
8564 # define SQLITE_BIGENDIAN    (*(char *)(&sqlite3one)==0)
8565 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1)
8566 # define SQLITE_UTF16NATIVE  (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE)
8567 #endif
8568 
8569 /*
8570 ** Constants for the largest and smallest possible 64-bit signed integers.
8571 ** These macros are designed to work correctly on both 32-bit and 64-bit
8572 ** compilers.
8573 */
8574 #define LARGEST_INT64  (0xffffffff|(((i64)0x7fffffff)<<32))
8575 #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64)
8576 
8577 /*
8578 ** Round up a number to the next larger multiple of 8.  This is used
8579 ** to force 8-byte alignment on 64-bit architectures.
8580 */
8581 #define ROUND8(x)     (((x)+7)&~7)
8582 
8583 /*
8584 ** Round down to the nearest multiple of 8
8585 */
8586 #define ROUNDDOWN8(x) ((x)&~7)
8587 
8588 /*
8589 ** Assert that the pointer X is aligned to an 8-byte boundary.  This
8590 ** macro is used only within assert() to verify that the code gets
8591 ** all alignment restrictions correct.
8592 **
8593 ** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the
8594 ** underlying malloc() implemention might return us 4-byte aligned
8595 ** pointers.  In that case, only verify 4-byte alignment.
8596 */
8597 #ifdef SQLITE_4_BYTE_ALIGNED_MALLOC
8598 # define EIGHT_BYTE_ALIGNMENT(X)   ((((char*)(X) - (char*)0)&3)==0)
8599 #else
8600 # define EIGHT_BYTE_ALIGNMENT(X)   ((((char*)(X) - (char*)0)&7)==0)
8601 #endif
8602 
8603 /*
8604 ** Disable MMAP on platforms where it is known to not work
8605 */
8606 #if defined(__OpenBSD__) || defined(__QNXNTO__)
8607 # undef SQLITE_MAX_MMAP_SIZE
8608 # define SQLITE_MAX_MMAP_SIZE 0
8609 #endif
8610 
8611 /*
8612 ** Default maximum size of memory used by memory-mapped I/O in the VFS
8613 */
8614 #ifdef __APPLE__
8615 # include <TargetConditionals.h>
8616 # if TARGET_OS_IPHONE
8617 #   undef SQLITE_MAX_MMAP_SIZE
8618 #   define SQLITE_MAX_MMAP_SIZE 0
8619 # endif
8620 #endif
8621 #ifndef SQLITE_MAX_MMAP_SIZE
8622 # if defined(__linux__) \
8623   || defined(_WIN32) \
8624   || (defined(__APPLE__) && defined(__MACH__)) \
8625   || defined(__sun)
8626 #   define SQLITE_MAX_MMAP_SIZE 0x7fff0000  /* 2147418112 */
8627 # else
8628 #   define SQLITE_MAX_MMAP_SIZE 0
8629 # endif
8630 # define SQLITE_MAX_MMAP_SIZE_xc 1 /* exclude from ctime.c */
8631 #endif
8632 
8633 /*
8634 ** The default MMAP_SIZE is zero on all platforms.  Or, even if a larger
8635 ** default MMAP_SIZE is specified at compile-time, make sure that it does
8636 ** not exceed the maximum mmap size.
8637 */
8638 #ifndef SQLITE_DEFAULT_MMAP_SIZE
8639 # define SQLITE_DEFAULT_MMAP_SIZE 0
8640 # define SQLITE_DEFAULT_MMAP_SIZE_xc 1  /* Exclude from ctime.c */
8641 #endif
8642 #if SQLITE_DEFAULT_MMAP_SIZE>SQLITE_MAX_MMAP_SIZE
8643 # undef SQLITE_DEFAULT_MMAP_SIZE
8644 # define SQLITE_DEFAULT_MMAP_SIZE SQLITE_MAX_MMAP_SIZE
8645 #endif
8646 
8647 /*
8648 ** Only one of SQLITE_ENABLE_STAT3 or SQLITE_ENABLE_STAT4 can be defined.
8649 ** Priority is given to SQLITE_ENABLE_STAT4.  If either are defined, also
8650 ** define SQLITE_ENABLE_STAT3_OR_STAT4
8651 */
8652 #ifdef SQLITE_ENABLE_STAT4
8653 # undef SQLITE_ENABLE_STAT3
8654 # define SQLITE_ENABLE_STAT3_OR_STAT4 1
8655 #elif SQLITE_ENABLE_STAT3
8656 # define SQLITE_ENABLE_STAT3_OR_STAT4 1
8657 #elif SQLITE_ENABLE_STAT3_OR_STAT4
8658 # undef SQLITE_ENABLE_STAT3_OR_STAT4
8659 #endif
8660 
8661 /*
8662 ** An instance of the following structure is used to store the busy-handler
8663 ** callback for a given sqlite handle.
8664 **
8665 ** The sqlite.busyHandler member of the sqlite struct contains the busy
8666 ** callback for the database handle. Each pager opened via the sqlite
8667 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler
8668 ** callback is currently invoked only from within pager.c.
8669 */
8670 typedef struct BusyHandler BusyHandler;
8671 struct BusyHandler {
8672   int (*xFunc)(void *,int);  /* The busy callback */
8673   void *pArg;                /* First arg to busy callback */
8674   int nBusy;                 /* Incremented with each busy call */
8675 };
8676 
8677 /*
8678 ** Name of the master database table.  The master database table
8679 ** is a special table that holds the names and attributes of all
8680 ** user tables and indices.
8681 */
8682 #define MASTER_NAME       "sqlite_master"
8683 #define TEMP_MASTER_NAME  "sqlite_temp_master"
8684 
8685 /*
8686 ** The root-page of the master database table.
8687 */
8688 #define MASTER_ROOT       1
8689 
8690 /*
8691 ** The name of the schema table.
8692 */
8693 #define SCHEMA_TABLE(x)  ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME)
8694 
8695 /*
8696 ** A convenience macro that returns the number of elements in
8697 ** an array.
8698 */
8699 #define ArraySize(X)    ((int)(sizeof(X)/sizeof(X[0])))
8700 
8701 /*
8702 ** Determine if the argument is a power of two
8703 */
8704 #define IsPowerOfTwo(X) (((X)&((X)-1))==0)
8705 
8706 /*
8707 ** The following value as a destructor means to use sqlite3DbFree().
8708 ** The sqlite3DbFree() routine requires two parameters instead of the
8709 ** one parameter that destructors normally want.  So we have to introduce
8710 ** this magic value that the code knows to handle differently.  Any
8711 ** pointer will work here as long as it is distinct from SQLITE_STATIC
8712 ** and SQLITE_TRANSIENT.
8713 */
8714 #define SQLITE_DYNAMIC   ((sqlite3_destructor_type)sqlite3MallocSize)
8715 
8716 /*
8717 ** When SQLITE_OMIT_WSD is defined, it means that the target platform does
8718 ** not support Writable Static Data (WSD) such as global and static variables.
8719 ** All variables must either be on the stack or dynamically allocated from
8720 ** the heap.  When WSD is unsupported, the variable declarations scattered
8721 ** throughout the SQLite code must become constants instead.  The SQLITE_WSD
8722 ** macro is used for this purpose.  And instead of referencing the variable
8723 ** directly, we use its constant as a key to lookup the run-time allocated
8724 ** buffer that holds real variable.  The constant is also the initializer
8725 ** for the run-time allocated buffer.
8726 **
8727 ** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL
8728 ** macros become no-ops and have zero performance impact.
8729 */
8730 #ifdef SQLITE_OMIT_WSD
8731   #define SQLITE_WSD const
8732   #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v)))
8733   #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config)
8734 SQLITE_API   int sqlite3_wsd_init(int N, int J);
8735 SQLITE_API   void *sqlite3_wsd_find(void *K, int L);
8736 #else
8737   #define SQLITE_WSD
8738   #define GLOBAL(t,v) v
8739   #define sqlite3GlobalConfig sqlite3Config
8740 #endif
8741 
8742 /*
8743 ** The following macros are used to suppress compiler warnings and to
8744 ** make it clear to human readers when a function parameter is deliberately
8745 ** left unused within the body of a function. This usually happens when
8746 ** a function is called via a function pointer. For example the
8747 ** implementation of an SQL aggregate step callback may not use the
8748 ** parameter indicating the number of arguments passed to the aggregate,
8749 ** if it knows that this is enforced elsewhere.
8750 **
8751 ** When a function parameter is not used at all within the body of a function,
8752 ** it is generally named "NotUsed" or "NotUsed2" to make things even clearer.
8753 ** However, these macros may also be used to suppress warnings related to
8754 ** parameters that may or may not be used depending on compilation options.
8755 ** For example those parameters only used in assert() statements. In these
8756 ** cases the parameters are named as per the usual conventions.
8757 */
8758 #define UNUSED_PARAMETER(x) (void)(x)
8759 #define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y)
8760 
8761 /*
8762 ** Forward references to structures
8763 */
8764 typedef struct AggInfo AggInfo;
8765 typedef struct AuthContext AuthContext;
8766 typedef struct AutoincInfo AutoincInfo;
8767 typedef struct Bitvec Bitvec;
8768 typedef struct CollSeq CollSeq;
8769 typedef struct Column Column;
8770 typedef struct Db Db;
8771 typedef struct Schema Schema;
8772 typedef struct Expr Expr;
8773 typedef struct ExprList ExprList;
8774 typedef struct ExprSpan ExprSpan;
8775 typedef struct FKey FKey;
8776 typedef struct FuncDestructor FuncDestructor;
8777 typedef struct FuncDef FuncDef;
8778 typedef struct FuncDefHash FuncDefHash;
8779 typedef struct IdList IdList;
8780 typedef struct Index Index;
8781 typedef struct IndexSample IndexSample;
8782 typedef struct KeyClass KeyClass;
8783 typedef struct KeyInfo KeyInfo;
8784 typedef struct Lookaside Lookaside;
8785 typedef struct LookasideSlot LookasideSlot;
8786 typedef struct Module Module;
8787 typedef struct NameContext NameContext;
8788 typedef struct Parse Parse;
8789 typedef struct PrintfArguments PrintfArguments;
8790 typedef struct RowSet RowSet;
8791 typedef struct Savepoint Savepoint;
8792 typedef struct Select Select;
8793 typedef struct SelectDest SelectDest;
8794 typedef struct SrcList SrcList;
8795 typedef struct StrAccum StrAccum;
8796 typedef struct Table Table;
8797 typedef struct TableLock TableLock;
8798 typedef struct Token Token;
8799 typedef struct Trigger Trigger;
8800 typedef struct TriggerPrg TriggerPrg;
8801 typedef struct TriggerStep TriggerStep;
8802 typedef struct UnpackedRecord UnpackedRecord;
8803 typedef struct VTable VTable;
8804 typedef struct VtabCtx VtabCtx;
8805 typedef struct Walker Walker;
8806 typedef struct WhereInfo WhereInfo;
8807 typedef struct With With;
8808 
8809 /*
8810 ** Defer sourcing vdbe.h and btree.h until after the "u8" and
8811 ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque
8812 ** pointer types (i.e. FuncDef) defined above.
8813 */
8814 /************** Include btree.h in the middle of sqliteInt.h *****************/
8815 /************** Begin file btree.h *******************************************/
8816 /*
8817 ** 2001 September 15
8818 **
8819 ** The author disclaims copyright to this source code.  In place of
8820 ** a legal notice, here is a blessing:
8821 **
8822 **    May you do good and not evil.
8823 **    May you find forgiveness for yourself and forgive others.
8824 **    May you share freely, never taking more than you give.
8825 **
8826 *************************************************************************
8827 ** This header file defines the interface that the sqlite B-Tree file
8828 ** subsystem.  See comments in the source code for a detailed description
8829 ** of what each interface routine does.
8830 */
8831 #ifndef _BTREE_H_
8832 #define _BTREE_H_
8833 
8834 /* TODO: This definition is just included so other modules compile. It
8835 ** needs to be revisited.
8836 */
8837 #define SQLITE_N_BTREE_META 10
8838 
8839 /*
8840 ** If defined as non-zero, auto-vacuum is enabled by default. Otherwise
8841 ** it must be turned on for each database using "PRAGMA auto_vacuum = 1".
8842 */
8843 #ifndef SQLITE_DEFAULT_AUTOVACUUM
8844   #define SQLITE_DEFAULT_AUTOVACUUM 0
8845 #endif
8846 
8847 #define BTREE_AUTOVACUUM_NONE 0        /* Do not do auto-vacuum */
8848 #define BTREE_AUTOVACUUM_FULL 1        /* Do full auto-vacuum */
8849 #define BTREE_AUTOVACUUM_INCR 2        /* Incremental vacuum */
8850 
8851 /*
8852 ** Forward declarations of structure
8853 */
8854 typedef struct Btree Btree;
8855 typedef struct BtCursor BtCursor;
8856 typedef struct BtShared BtShared;
8857 
8858 
8859 SQLITE_PRIVATE int sqlite3BtreeOpen(
8860   sqlite3_vfs *pVfs,       /* VFS to use with this b-tree */
8861   const char *zFilename,   /* Name of database file to open */
8862   sqlite3 *db,             /* Associated database connection */
8863   Btree **ppBtree,         /* Return open Btree* here */
8864   int flags,               /* Flags */
8865   int vfsFlags             /* Flags passed through to VFS open */
8866 );
8867 
8868 /* The flags parameter to sqlite3BtreeOpen can be the bitwise or of the
8869 ** following values.
8870 **
8871 ** NOTE:  These values must match the corresponding PAGER_ values in
8872 ** pager.h.
8873 */
8874 #define BTREE_OMIT_JOURNAL  1  /* Do not create or use a rollback journal */
8875 #define BTREE_MEMORY        2  /* This is an in-memory DB */
8876 #define BTREE_SINGLE        4  /* The file contains at most 1 b-tree */
8877 #define BTREE_UNORDERED     8  /* Use of a hash implementation is OK */
8878 
8879 SQLITE_PRIVATE int sqlite3BtreeClose(Btree*);
8880 SQLITE_PRIVATE int sqlite3BtreeSetCacheSize(Btree*,int);
8881 #if SQLITE_MAX_MMAP_SIZE>0
8882 SQLITE_PRIVATE   int sqlite3BtreeSetMmapLimit(Btree*,sqlite3_int64);
8883 #endif
8884 SQLITE_PRIVATE int sqlite3BtreeSetPagerFlags(Btree*,unsigned);
8885 SQLITE_PRIVATE int sqlite3BtreeSyncDisabled(Btree*);
8886 SQLITE_PRIVATE int sqlite3BtreeSetPageSize(Btree *p, int nPagesize, int nReserve, int eFix);
8887 SQLITE_PRIVATE int sqlite3BtreeGetPageSize(Btree*);
8888 SQLITE_PRIVATE int sqlite3BtreeMaxPageCount(Btree*,int);
8889 SQLITE_PRIVATE u32 sqlite3BtreeLastPage(Btree*);
8890 SQLITE_PRIVATE int sqlite3BtreeSecureDelete(Btree*,int);
8891 SQLITE_PRIVATE int sqlite3BtreeGetReserve(Btree*);
8892 #if defined(SQLITE_HAS_CODEC) || defined(SQLITE_DEBUG)
8893 SQLITE_PRIVATE int sqlite3BtreeGetReserveNoMutex(Btree *p);
8894 #endif
8895 SQLITE_PRIVATE int sqlite3BtreeSetAutoVacuum(Btree *, int);
8896 SQLITE_PRIVATE int sqlite3BtreeGetAutoVacuum(Btree *);
8897 SQLITE_PRIVATE int sqlite3BtreeBeginTrans(Btree*,int);
8898 SQLITE_PRIVATE int sqlite3BtreeCommitPhaseOne(Btree*, const char *zMaster);
8899 SQLITE_PRIVATE int sqlite3BtreeCommitPhaseTwo(Btree*, int);
8900 SQLITE_PRIVATE int sqlite3BtreeCommit(Btree*);
8901 SQLITE_PRIVATE int sqlite3BtreeRollback(Btree*,int);
8902 SQLITE_PRIVATE int sqlite3BtreeBeginStmt(Btree*,int);
8903 SQLITE_PRIVATE int sqlite3BtreeCreateTable(Btree*, int*, int flags);
8904 SQLITE_PRIVATE int sqlite3BtreeIsInTrans(Btree*);
8905 SQLITE_PRIVATE int sqlite3BtreeIsInReadTrans(Btree*);
8906 SQLITE_PRIVATE int sqlite3BtreeIsInBackup(Btree*);
8907 SQLITE_PRIVATE void *sqlite3BtreeSchema(Btree *, int, void(*)(void *));
8908 SQLITE_PRIVATE int sqlite3BtreeSchemaLocked(Btree *pBtree);
8909 SQLITE_PRIVATE int sqlite3BtreeLockTable(Btree *pBtree, int iTab, u8 isWriteLock);
8910 SQLITE_PRIVATE int sqlite3BtreeSavepoint(Btree *, int, int);
8911 
8912 SQLITE_PRIVATE const char *sqlite3BtreeGetFilename(Btree *);
8913 SQLITE_PRIVATE const char *sqlite3BtreeGetJournalname(Btree *);
8914 SQLITE_PRIVATE int sqlite3BtreeCopyFile(Btree *, Btree *);
8915 
8916 SQLITE_PRIVATE int sqlite3BtreeIncrVacuum(Btree *);
8917 
8918 /* The flags parameter to sqlite3BtreeCreateTable can be the bitwise OR
8919 ** of the flags shown below.
8920 **
8921 ** Every SQLite table must have either BTREE_INTKEY or BTREE_BLOBKEY set.
8922 ** With BTREE_INTKEY, the table key is a 64-bit integer and arbitrary data
8923 ** is stored in the leaves.  (BTREE_INTKEY is used for SQL tables.)  With
8924 ** BTREE_BLOBKEY, the key is an arbitrary BLOB and no content is stored
8925 ** anywhere - the key is the content.  (BTREE_BLOBKEY is used for SQL
8926 ** indices.)
8927 */
8928 #define BTREE_INTKEY     1    /* Table has only 64-bit signed integer keys */
8929 #define BTREE_BLOBKEY    2    /* Table has keys only - no data */
8930 
8931 SQLITE_PRIVATE int sqlite3BtreeDropTable(Btree*, int, int*);
8932 SQLITE_PRIVATE int sqlite3BtreeClearTable(Btree*, int, int*);
8933 SQLITE_PRIVATE int sqlite3BtreeClearTableOfCursor(BtCursor*);
8934 SQLITE_PRIVATE void sqlite3BtreeTripAllCursors(Btree*, int);
8935 
8936 SQLITE_PRIVATE void sqlite3BtreeGetMeta(Btree *pBtree, int idx, u32 *pValue);
8937 SQLITE_PRIVATE int sqlite3BtreeUpdateMeta(Btree*, int idx, u32 value);
8938 
8939 SQLITE_PRIVATE int sqlite3BtreeNewDb(Btree *p);
8940 
8941 /*
8942 ** The second parameter to sqlite3BtreeGetMeta or sqlite3BtreeUpdateMeta
8943 ** should be one of the following values. The integer values are assigned
8944 ** to constants so that the offset of the corresponding field in an
8945 ** SQLite database header may be found using the following formula:
8946 **
8947 **   offset = 36 + (idx * 4)
8948 **
8949 ** For example, the free-page-count field is located at byte offset 36 of
8950 ** the database file header. The incr-vacuum-flag field is located at
8951 ** byte offset 64 (== 36+4*7).
8952 */
8953 #define BTREE_FREE_PAGE_COUNT     0
8954 #define BTREE_SCHEMA_VERSION      1
8955 #define BTREE_FILE_FORMAT         2
8956 #define BTREE_DEFAULT_CACHE_SIZE  3
8957 #define BTREE_LARGEST_ROOT_PAGE   4
8958 #define BTREE_TEXT_ENCODING       5
8959 #define BTREE_USER_VERSION        6
8960 #define BTREE_INCR_VACUUM         7
8961 #define BTREE_APPLICATION_ID      8
8962 
8963 /*
8964 ** Values that may be OR'd together to form the second argument of an
8965 ** sqlite3BtreeCursorHints() call.
8966 */
8967 #define BTREE_BULKLOAD 0x00000001
8968 
8969 SQLITE_PRIVATE int sqlite3BtreeCursor(
8970   Btree*,                              /* BTree containing table to open */
8971   int iTable,                          /* Index of root page */
8972   int wrFlag,                          /* 1 for writing.  0 for read-only */
8973   struct KeyInfo*,                     /* First argument to compare function */
8974   BtCursor *pCursor                    /* Space to write cursor structure */
8975 );
8976 SQLITE_PRIVATE int sqlite3BtreeCursorSize(void);
8977 SQLITE_PRIVATE void sqlite3BtreeCursorZero(BtCursor*);
8978 
8979 SQLITE_PRIVATE int sqlite3BtreeCloseCursor(BtCursor*);
8980 SQLITE_PRIVATE int sqlite3BtreeMovetoUnpacked(
8981   BtCursor*,
8982   UnpackedRecord *pUnKey,
8983   i64 intKey,
8984   int bias,
8985   int *pRes
8986 );
8987 SQLITE_PRIVATE int sqlite3BtreeCursorHasMoved(BtCursor*, int*);
8988 SQLITE_PRIVATE int sqlite3BtreeDelete(BtCursor*);
8989 SQLITE_PRIVATE int sqlite3BtreeInsert(BtCursor*, const void *pKey, i64 nKey,
8990                                   const void *pData, int nData,
8991                                   int nZero, int bias, int seekResult);
8992 SQLITE_PRIVATE int sqlite3BtreeFirst(BtCursor*, int *pRes);
8993 SQLITE_PRIVATE int sqlite3BtreeLast(BtCursor*, int *pRes);
8994 SQLITE_PRIVATE int sqlite3BtreeNext(BtCursor*, int *pRes);
8995 SQLITE_PRIVATE int sqlite3BtreeEof(BtCursor*);
8996 SQLITE_PRIVATE int sqlite3BtreePrevious(BtCursor*, int *pRes);
8997 SQLITE_PRIVATE int sqlite3BtreeKeySize(BtCursor*, i64 *pSize);
8998 SQLITE_PRIVATE int sqlite3BtreeKey(BtCursor*, u32 offset, u32 amt, void*);
8999 SQLITE_PRIVATE const void *sqlite3BtreeKeyFetch(BtCursor*, u32 *pAmt);
9000 SQLITE_PRIVATE const void *sqlite3BtreeDataFetch(BtCursor*, u32 *pAmt);
9001 SQLITE_PRIVATE int sqlite3BtreeDataSize(BtCursor*, u32 *pSize);
9002 SQLITE_PRIVATE int sqlite3BtreeData(BtCursor*, u32 offset, u32 amt, void*);
9003 
9004 SQLITE_PRIVATE char *sqlite3BtreeIntegrityCheck(Btree*, int *aRoot, int nRoot, int, int*);
9005 SQLITE_PRIVATE struct Pager *sqlite3BtreePager(Btree*);
9006 
9007 SQLITE_PRIVATE int sqlite3BtreePutData(BtCursor*, u32 offset, u32 amt, void*);
9008 SQLITE_PRIVATE void sqlite3BtreeIncrblobCursor(BtCursor *);
9009 SQLITE_PRIVATE void sqlite3BtreeClearCursor(BtCursor *);
9010 SQLITE_PRIVATE int sqlite3BtreeSetVersion(Btree *pBt, int iVersion);
9011 SQLITE_PRIVATE void sqlite3BtreeCursorHints(BtCursor *, unsigned int mask);
9012 SQLITE_PRIVATE int sqlite3BtreeIsReadonly(Btree *pBt);
9013 
9014 #ifndef NDEBUG
9015 SQLITE_PRIVATE int sqlite3BtreeCursorIsValid(BtCursor*);
9016 #endif
9017 
9018 #ifndef SQLITE_OMIT_BTREECOUNT
9019 SQLITE_PRIVATE int sqlite3BtreeCount(BtCursor *, i64 *);
9020 #endif
9021 
9022 #ifdef SQLITE_TEST
9023 SQLITE_PRIVATE int sqlite3BtreeCursorInfo(BtCursor*, int*, int);
9024 SQLITE_PRIVATE void sqlite3BtreeCursorList(Btree*);
9025 #endif
9026 
9027 #ifndef SQLITE_OMIT_WAL
9028 SQLITE_PRIVATE   int sqlite3BtreeCheckpoint(Btree*, int, int *, int *);
9029 #endif
9030 
9031 /*
9032 ** If we are not using shared cache, then there is no need to
9033 ** use mutexes to access the BtShared structures.  So make the
9034 ** Enter and Leave procedures no-ops.
9035 */
9036 #ifndef SQLITE_OMIT_SHARED_CACHE
9037 SQLITE_PRIVATE   void sqlite3BtreeEnter(Btree*);
9038 SQLITE_PRIVATE   void sqlite3BtreeEnterAll(sqlite3*);
9039 #else
9040 # define sqlite3BtreeEnter(X)
9041 # define sqlite3BtreeEnterAll(X)
9042 #endif
9043 
9044 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE
9045 SQLITE_PRIVATE   int sqlite3BtreeSharable(Btree*);
9046 SQLITE_PRIVATE   void sqlite3BtreeLeave(Btree*);
9047 SQLITE_PRIVATE   void sqlite3BtreeEnterCursor(BtCursor*);
9048 SQLITE_PRIVATE   void sqlite3BtreeLeaveCursor(BtCursor*);
9049 SQLITE_PRIVATE   void sqlite3BtreeLeaveAll(sqlite3*);
9050 #ifndef NDEBUG
9051   /* These routines are used inside assert() statements only. */
9052 SQLITE_PRIVATE   int sqlite3BtreeHoldsMutex(Btree*);
9053 SQLITE_PRIVATE   int sqlite3BtreeHoldsAllMutexes(sqlite3*);
9054 SQLITE_PRIVATE   int sqlite3SchemaMutexHeld(sqlite3*,int,Schema*);
9055 #endif
9056 #else
9057 
9058 # define sqlite3BtreeSharable(X) 0
9059 # define sqlite3BtreeLeave(X)
9060 # define sqlite3BtreeEnterCursor(X)
9061 # define sqlite3BtreeLeaveCursor(X)
9062 # define sqlite3BtreeLeaveAll(X)
9063 
9064 # define sqlite3BtreeHoldsMutex(X) 1
9065 # define sqlite3BtreeHoldsAllMutexes(X) 1
9066 # define sqlite3SchemaMutexHeld(X,Y,Z) 1
9067 #endif
9068 
9069 
9070 #endif /* _BTREE_H_ */
9071 
9072 /************** End of btree.h ***********************************************/
9073 /************** Continuing where we left off in sqliteInt.h ******************/
9074 /************** Include vdbe.h in the middle of sqliteInt.h ******************/
9075 /************** Begin file vdbe.h ********************************************/
9076 /*
9077 ** 2001 September 15
9078 **
9079 ** The author disclaims copyright to this source code.  In place of
9080 ** a legal notice, here is a blessing:
9081 **
9082 **    May you do good and not evil.
9083 **    May you find forgiveness for yourself and forgive others.
9084 **    May you share freely, never taking more than you give.
9085 **
9086 *************************************************************************
9087 ** Header file for the Virtual DataBase Engine (VDBE)
9088 **
9089 ** This header defines the interface to the virtual database engine
9090 ** or VDBE.  The VDBE implements an abstract machine that runs a
9091 ** simple program to access and modify the underlying database.
9092 */
9093 #ifndef _SQLITE_VDBE_H_
9094 #define _SQLITE_VDBE_H_
9095 /* #include <stdio.h> */
9096 
9097 /*
9098 ** A single VDBE is an opaque structure named "Vdbe".  Only routines
9099 ** in the source file sqliteVdbe.c are allowed to see the insides
9100 ** of this structure.
9101 */
9102 typedef struct Vdbe Vdbe;
9103 
9104 /*
9105 ** The names of the following types declared in vdbeInt.h are required
9106 ** for the VdbeOp definition.
9107 */
9108 typedef struct Mem Mem;
9109 typedef struct SubProgram SubProgram;
9110 
9111 /*
9112 ** A single instruction of the virtual machine has an opcode
9113 ** and as many as three operands.  The instruction is recorded
9114 ** as an instance of the following structure:
9115 */
9116 struct VdbeOp {
9117   u8 opcode;          /* What operation to perform */
9118   signed char p4type; /* One of the P4_xxx constants for p4 */
9119   u8 opflags;         /* Mask of the OPFLG_* flags in opcodes.h */
9120   u8 p5;              /* Fifth parameter is an unsigned character */
9121   int p1;             /* First operand */
9122   int p2;             /* Second parameter (often the jump destination) */
9123   int p3;             /* The third parameter */
9124   union {             /* fourth parameter */
9125     int i;                 /* Integer value if p4type==P4_INT32 */
9126     void *p;               /* Generic pointer */
9127     char *z;               /* Pointer to data for string (char array) types */
9128     i64 *pI64;             /* Used when p4type is P4_INT64 */
9129     double *pReal;         /* Used when p4type is P4_REAL */
9130     FuncDef *pFunc;        /* Used when p4type is P4_FUNCDEF */
9131     CollSeq *pColl;        /* Used when p4type is P4_COLLSEQ */
9132     Mem *pMem;             /* Used when p4type is P4_MEM */
9133     VTable *pVtab;         /* Used when p4type is P4_VTAB */
9134     KeyInfo *pKeyInfo;     /* Used when p4type is P4_KEYINFO */
9135     int *ai;               /* Used when p4type is P4_INTARRAY */
9136     SubProgram *pProgram;  /* Used when p4type is P4_SUBPROGRAM */
9137     int (*xAdvance)(BtCursor *, int *);
9138   } p4;
9139 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
9140   char *zComment;          /* Comment to improve readability */
9141 #endif
9142 #ifdef VDBE_PROFILE
9143   u32 cnt;                 /* Number of times this instruction was executed */
9144   u64 cycles;              /* Total time spent executing this instruction */
9145 #endif
9146 #ifdef SQLITE_VDBE_COVERAGE
9147   int iSrcLine;            /* Source-code line that generated this opcode */
9148 #endif
9149 };
9150 typedef struct VdbeOp VdbeOp;
9151 
9152 
9153 /*
9154 ** A sub-routine used to implement a trigger program.
9155 */
9156 struct SubProgram {
9157   VdbeOp *aOp;                  /* Array of opcodes for sub-program */
9158   int nOp;                      /* Elements in aOp[] */
9159   int nMem;                     /* Number of memory cells required */
9160   int nCsr;                     /* Number of cursors required */
9161   int nOnce;                    /* Number of OP_Once instructions */
9162   void *token;                  /* id that may be used to recursive triggers */
9163   SubProgram *pNext;            /* Next sub-program already visited */
9164 };
9165 
9166 /*
9167 ** A smaller version of VdbeOp used for the VdbeAddOpList() function because
9168 ** it takes up less space.
9169 */
9170 struct VdbeOpList {
9171   u8 opcode;          /* What operation to perform */
9172   signed char p1;     /* First operand */
9173   signed char p2;     /* Second parameter (often the jump destination) */
9174   signed char p3;     /* Third parameter */
9175 };
9176 typedef struct VdbeOpList VdbeOpList;
9177 
9178 /*
9179 ** Allowed values of VdbeOp.p4type
9180 */
9181 #define P4_NOTUSED    0   /* The P4 parameter is not used */
9182 #define P4_DYNAMIC  (-1)  /* Pointer to a string obtained from sqliteMalloc() */
9183 #define P4_STATIC   (-2)  /* Pointer to a static string */
9184 #define P4_COLLSEQ  (-4)  /* P4 is a pointer to a CollSeq structure */
9185 #define P4_FUNCDEF  (-5)  /* P4 is a pointer to a FuncDef structure */
9186 #define P4_KEYINFO  (-6)  /* P4 is a pointer to a KeyInfo structure */
9187 #define P4_MEM      (-8)  /* P4 is a pointer to a Mem*    structure */
9188 #define P4_TRANSIENT  0   /* P4 is a pointer to a transient string */
9189 #define P4_VTAB     (-10) /* P4 is a pointer to an sqlite3_vtab structure */
9190 #define P4_MPRINTF  (-11) /* P4 is a string obtained from sqlite3_mprintf() */
9191 #define P4_REAL     (-12) /* P4 is a 64-bit floating point value */
9192 #define P4_INT64    (-13) /* P4 is a 64-bit signed integer */
9193 #define P4_INT32    (-14) /* P4 is a 32-bit signed integer */
9194 #define P4_INTARRAY (-15) /* P4 is a vector of 32-bit integers */
9195 #define P4_SUBPROGRAM  (-18) /* P4 is a pointer to a SubProgram structure */
9196 #define P4_ADVANCE  (-19) /* P4 is a pointer to BtreeNext() or BtreePrev() */
9197 
9198 /* Error message codes for OP_Halt */
9199 #define P5_ConstraintNotNull 1
9200 #define P5_ConstraintUnique  2
9201 #define P5_ConstraintCheck   3
9202 #define P5_ConstraintFK      4
9203 
9204 /*
9205 ** The Vdbe.aColName array contains 5n Mem structures, where n is the
9206 ** number of columns of data returned by the statement.
9207 */
9208 #define COLNAME_NAME     0
9209 #define COLNAME_DECLTYPE 1
9210 #define COLNAME_DATABASE 2
9211 #define COLNAME_TABLE    3
9212 #define COLNAME_COLUMN   4
9213 #ifdef SQLITE_ENABLE_COLUMN_METADATA
9214 # define COLNAME_N        5      /* Number of COLNAME_xxx symbols */
9215 #else
9216 # ifdef SQLITE_OMIT_DECLTYPE
9217 #   define COLNAME_N      1      /* Store only the name */
9218 # else
9219 #   define COLNAME_N      2      /* Store the name and decltype */
9220 # endif
9221 #endif
9222 
9223 /*
9224 ** The following macro converts a relative address in the p2 field
9225 ** of a VdbeOp structure into a negative number so that
9226 ** sqlite3VdbeAddOpList() knows that the address is relative.  Calling
9227 ** the macro again restores the address.
9228 */
9229 #define ADDR(X)  (-1-(X))
9230 
9231 /*
9232 ** The makefile scans the vdbe.c source file and creates the "opcodes.h"
9233 ** header file that defines a number for each opcode used by the VDBE.
9234 */
9235 /************** Include opcodes.h in the middle of vdbe.h ********************/
9236 /************** Begin file opcodes.h *****************************************/
9237 /* Automatically generated.  Do not edit */
9238 /* See the mkopcodeh.awk script for details */
9239 #define OP_Function        1 /* synopsis: r[P3]=func(r[P2@P5])             */
9240 #define OP_Savepoint       2
9241 #define OP_AutoCommit      3
9242 #define OP_Transaction     4
9243 #define OP_SorterNext      5
9244 #define OP_PrevIfOpen      6
9245 #define OP_NextIfOpen      7
9246 #define OP_Prev            8
9247 #define OP_Next            9
9248 #define OP_AggStep        10 /* synopsis: accum=r[P3] step(r[P2@P5])       */
9249 #define OP_Checkpoint     11
9250 #define OP_JournalMode    12
9251 #define OP_Vacuum         13
9252 #define OP_VFilter        14 /* synopsis: iplan=r[P3] zplan='P4'           */
9253 #define OP_VUpdate        15 /* synopsis: data=r[P3@P2]                    */
9254 #define OP_Goto           16
9255 #define OP_Gosub          17
9256 #define OP_Return         18
9257 #define OP_Not            19 /* same as TK_NOT, synopsis: r[P2]= !r[P1]    */
9258 #define OP_InitCoroutine  20
9259 #define OP_EndCoroutine   21
9260 #define OP_Yield          22
9261 #define OP_HaltIfNull     23 /* synopsis: if r[P3]=null halt               */
9262 #define OP_Halt           24
9263 #define OP_Integer        25 /* synopsis: r[P2]=P1                         */
9264 #define OP_Int64          26 /* synopsis: r[P2]=P4                         */
9265 #define OP_String         27 /* synopsis: r[P2]='P4' (len=P1)              */
9266 #define OP_Null           28 /* synopsis: r[P2..P3]=NULL                   */
9267 #define OP_SoftNull       29 /* synopsis: r[P1]=NULL                       */
9268 #define OP_Blob           30 /* synopsis: r[P2]=P4 (len=P1)                */
9269 #define OP_Variable       31 /* synopsis: r[P2]=parameter(P1,P4)           */
9270 #define OP_Move           32 /* synopsis: r[P2@P3]=r[P1@P3]                */
9271 #define OP_Copy           33 /* synopsis: r[P2@P3+1]=r[P1@P3+1]            */
9272 #define OP_SCopy          34 /* synopsis: r[P2]=r[P1]                      */
9273 #define OP_ResultRow      35 /* synopsis: output=r[P1@P2]                  */
9274 #define OP_CollSeq        36
9275 #define OP_AddImm         37 /* synopsis: r[P1]=r[P1]+P2                   */
9276 #define OP_MustBeInt      38
9277 #define OP_RealAffinity   39
9278 #define OP_Permutation    40
9279 #define OP_Compare        41 /* synopsis: r[P1@P3] <-> r[P2@P3]            */
9280 #define OP_Jump           42
9281 #define OP_Once           43
9282 #define OP_If             44
9283 #define OP_IfNot          45
9284 #define OP_Column         46 /* synopsis: r[P3]=PX                         */
9285 #define OP_Affinity       47 /* synopsis: affinity(r[P1@P2])               */
9286 #define OP_MakeRecord     48 /* synopsis: r[P3]=mkrec(r[P1@P2])            */
9287 #define OP_Count          49 /* synopsis: r[P2]=count()                    */
9288 #define OP_ReadCookie     50
9289 #define OP_SetCookie      51
9290 #define OP_OpenRead       52 /* synopsis: root=P2 iDb=P3                   */
9291 #define OP_OpenWrite      53 /* synopsis: root=P2 iDb=P3                   */
9292 #define OP_OpenAutoindex  54 /* synopsis: nColumn=P2                       */
9293 #define OP_OpenEphemeral  55 /* synopsis: nColumn=P2                       */
9294 #define OP_SorterOpen     56
9295 #define OP_OpenPseudo     57 /* synopsis: P3 columns in r[P2]              */
9296 #define OP_Close          58
9297 #define OP_SeekLT         59
9298 #define OP_SeekLE         60
9299 #define OP_SeekGE         61
9300 #define OP_SeekGT         62
9301 #define OP_Seek           63 /* synopsis: intkey=r[P2]                     */
9302 #define OP_NoConflict     64 /* synopsis: key=r[P3@P4]                     */
9303 #define OP_NotFound       65 /* synopsis: key=r[P3@P4]                     */
9304 #define OP_Found          66 /* synopsis: key=r[P3@P4]                     */
9305 #define OP_NotExists      67 /* synopsis: intkey=r[P3]                     */
9306 #define OP_Sequence       68 /* synopsis: r[P2]=cursor[P1].ctr++           */
9307 #define OP_NewRowid       69 /* synopsis: r[P2]=rowid                      */
9308 #define OP_Insert         70 /* synopsis: intkey=r[P3] data=r[P2]          */
9309 #define OP_Or             71 /* same as TK_OR, synopsis: r[P3]=(r[P1] || r[P2]) */
9310 #define OP_And            72 /* same as TK_AND, synopsis: r[P3]=(r[P1] && r[P2]) */
9311 #define OP_InsertInt      73 /* synopsis: intkey=P3 data=r[P2]             */
9312 #define OP_Delete         74
9313 #define OP_ResetCount     75
9314 #define OP_IsNull         76 /* same as TK_ISNULL, synopsis: if r[P1]==NULL goto P2 */
9315 #define OP_NotNull        77 /* same as TK_NOTNULL, synopsis: if r[P1]!=NULL goto P2 */
9316 #define OP_Ne             78 /* same as TK_NE, synopsis: if r[P1]!=r[P3] goto P2 */
9317 #define OP_Eq             79 /* same as TK_EQ, synopsis: if r[P1]==r[P3] goto P2 */
9318 #define OP_Gt             80 /* same as TK_GT, synopsis: if r[P1]>r[P3] goto P2 */
9319 #define OP_Le             81 /* same as TK_LE, synopsis: if r[P1]<=r[P3] goto P2 */
9320 #define OP_Lt             82 /* same as TK_LT, synopsis: if r[P1]<r[P3] goto P2 */
9321 #define OP_Ge             83 /* same as TK_GE, synopsis: if r[P1]>=r[P3] goto P2 */
9322 #define OP_SorterCompare  84 /* synopsis: if key(P1)!=rtrim(r[P3],P4) goto P2 */
9323 #define OP_BitAnd         85 /* same as TK_BITAND, synopsis: r[P3]=r[P1]&r[P2] */
9324 #define OP_BitOr          86 /* same as TK_BITOR, synopsis: r[P3]=r[P1]|r[P2] */
9325 #define OP_ShiftLeft      87 /* same as TK_LSHIFT, synopsis: r[P3]=r[P2]<<r[P1] */
9326 #define OP_ShiftRight     88 /* same as TK_RSHIFT, synopsis: r[P3]=r[P2]>>r[P1] */
9327 #define OP_Add            89 /* same as TK_PLUS, synopsis: r[P3]=r[P1]+r[P2] */
9328 #define OP_Subtract       90 /* same as TK_MINUS, synopsis: r[P3]=r[P2]-r[P1] */
9329 #define OP_Multiply       91 /* same as TK_STAR, synopsis: r[P3]=r[P1]*r[P2] */
9330 #define OP_Divide         92 /* same as TK_SLASH, synopsis: r[P3]=r[P2]/r[P1] */
9331 #define OP_Remainder      93 /* same as TK_REM, synopsis: r[P3]=r[P2]%r[P1] */
9332 #define OP_Concat         94 /* same as TK_CONCAT, synopsis: r[P3]=r[P2]+r[P1] */
9333 #define OP_SorterData     95 /* synopsis: r[P2]=data                       */
9334 #define OP_BitNot         96 /* same as TK_BITNOT, synopsis: r[P1]= ~r[P1] */
9335 #define OP_String8        97 /* same as TK_STRING, synopsis: r[P2]='P4'    */
9336 #define OP_RowKey         98 /* synopsis: r[P2]=key                        */
9337 #define OP_RowData        99 /* synopsis: r[P2]=data                       */
9338 #define OP_Rowid         100 /* synopsis: r[P2]=rowid                      */
9339 #define OP_NullRow       101
9340 #define OP_Last          102
9341 #define OP_SorterSort    103
9342 #define OP_Sort          104
9343 #define OP_Rewind        105
9344 #define OP_SorterInsert  106
9345 #define OP_IdxInsert     107 /* synopsis: key=r[P2]                        */
9346 #define OP_IdxDelete     108 /* synopsis: key=r[P2@P3]                     */
9347 #define OP_IdxRowid      109 /* synopsis: r[P2]=rowid                      */
9348 #define OP_IdxLE         110 /* synopsis: key=r[P3@P4]                     */
9349 #define OP_IdxGT         111 /* synopsis: key=r[P3@P4]                     */
9350 #define OP_IdxLT         112 /* synopsis: key=r[P3@P4]                     */
9351 #define OP_IdxGE         113 /* synopsis: key=r[P3@P4]                     */
9352 #define OP_Destroy       114
9353 #define OP_Clear         115
9354 #define OP_ResetSorter   116
9355 #define OP_CreateIndex   117 /* synopsis: r[P2]=root iDb=P1                */
9356 #define OP_CreateTable   118 /* synopsis: r[P2]=root iDb=P1                */
9357 #define OP_ParseSchema   119
9358 #define OP_LoadAnalysis  120
9359 #define OP_DropTable     121
9360 #define OP_DropIndex     122
9361 #define OP_DropTrigger   123
9362 #define OP_IntegrityCk   124
9363 #define OP_RowSetAdd     125 /* synopsis: rowset(P1)=r[P2]                 */
9364 #define OP_RowSetRead    126 /* synopsis: r[P3]=rowset(P1)                 */
9365 #define OP_RowSetTest    127 /* synopsis: if r[P3] in rowset(P1) goto P2   */
9366 #define OP_Program       128
9367 #define OP_Param         129
9368 #define OP_FkCounter     130 /* synopsis: fkctr[P1]+=P2                    */
9369 #define OP_FkIfZero      131 /* synopsis: if fkctr[P1]==0 goto P2          */
9370 #define OP_MemMax        132 /* synopsis: r[P1]=max(r[P1],r[P2])           */
9371 #define OP_Real          133 /* same as TK_FLOAT, synopsis: r[P2]=P4       */
9372 #define OP_IfPos         134 /* synopsis: if r[P1]>0 goto P2               */
9373 #define OP_IfNeg         135 /* synopsis: if r[P1]<0 goto P2               */
9374 #define OP_IfZero        136 /* synopsis: r[P1]+=P3, if r[P1]==0 goto P2   */
9375 #define OP_AggFinal      137 /* synopsis: accum=r[P1] N=P2                 */
9376 #define OP_IncrVacuum    138
9377 #define OP_Expire        139
9378 #define OP_TableLock     140 /* synopsis: iDb=P1 root=P2 write=P3          */
9379 #define OP_VBegin        141
9380 #define OP_VCreate       142
9381 #define OP_ToText        143 /* same as TK_TO_TEXT                         */
9382 #define OP_ToBlob        144 /* same as TK_TO_BLOB                         */
9383 #define OP_ToNumeric     145 /* same as TK_TO_NUMERIC                      */
9384 #define OP_ToInt         146 /* same as TK_TO_INT                          */
9385 #define OP_ToReal        147 /* same as TK_TO_REAL                         */
9386 #define OP_VDestroy      148
9387 #define OP_VOpen         149
9388 #define OP_VColumn       150 /* synopsis: r[P3]=vcolumn(P2)                */
9389 #define OP_VNext         151
9390 #define OP_VRename       152
9391 #define OP_Pagecount     153
9392 #define OP_MaxPgcnt      154
9393 #define OP_Init          155 /* synopsis: Start at P2                      */
9394 #define OP_Noop          156
9395 #define OP_Explain       157
9396 
9397 
9398 /* Properties such as "out2" or "jump" that are specified in
9399 ** comments following the "case" for each opcode in the vdbe.c
9400 ** are encoded into bitvectors as follows:
9401 */
9402 #define OPFLG_JUMP            0x0001  /* jump:  P2 holds jmp target */
9403 #define OPFLG_OUT2_PRERELEASE 0x0002  /* out2-prerelease: */
9404 #define OPFLG_IN1             0x0004  /* in1:   P1 is an input */
9405 #define OPFLG_IN2             0x0008  /* in2:   P2 is an input */
9406 #define OPFLG_IN3             0x0010  /* in3:   P3 is an input */
9407 #define OPFLG_OUT2            0x0020  /* out2:  P2 is an output */
9408 #define OPFLG_OUT3            0x0040  /* out3:  P3 is an output */
9409 #define OPFLG_INITIALIZER {\
9410 /*   0 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01,\
9411 /*   8 */ 0x01, 0x01, 0x00, 0x00, 0x02, 0x00, 0x01, 0x00,\
9412 /*  16 */ 0x01, 0x01, 0x04, 0x24, 0x01, 0x04, 0x05, 0x10,\
9413 /*  24 */ 0x00, 0x02, 0x02, 0x02, 0x02, 0x00, 0x02, 0x02,\
9414 /*  32 */ 0x00, 0x00, 0x20, 0x00, 0x00, 0x04, 0x05, 0x04,\
9415 /*  40 */ 0x00, 0x00, 0x01, 0x01, 0x05, 0x05, 0x00, 0x00,\
9416 /*  48 */ 0x00, 0x02, 0x02, 0x10, 0x00, 0x00, 0x00, 0x00,\
9417 /*  56 */ 0x00, 0x00, 0x00, 0x11, 0x11, 0x11, 0x11, 0x08,\
9418 /*  64 */ 0x11, 0x11, 0x11, 0x11, 0x02, 0x02, 0x00, 0x4c,\
9419 /*  72 */ 0x4c, 0x00, 0x00, 0x00, 0x05, 0x05, 0x15, 0x15,\
9420 /*  80 */ 0x15, 0x15, 0x15, 0x15, 0x00, 0x4c, 0x4c, 0x4c,\
9421 /*  88 */ 0x4c, 0x4c, 0x4c, 0x4c, 0x4c, 0x4c, 0x4c, 0x00,\
9422 /*  96 */ 0x24, 0x02, 0x00, 0x00, 0x02, 0x00, 0x01, 0x01,\
9423 /* 104 */ 0x01, 0x01, 0x08, 0x08, 0x00, 0x02, 0x01, 0x01,\
9424 /* 112 */ 0x01, 0x01, 0x02, 0x00, 0x00, 0x02, 0x02, 0x00,\
9425 /* 120 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x0c, 0x45, 0x15,\
9426 /* 128 */ 0x01, 0x02, 0x00, 0x01, 0x08, 0x02, 0x05, 0x05,\
9427 /* 136 */ 0x05, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x04,\
9428 /* 144 */ 0x04, 0x04, 0x04, 0x04, 0x00, 0x00, 0x00, 0x01,\
9429 /* 152 */ 0x00, 0x02, 0x02, 0x01, 0x00, 0x00,}
9430 
9431 /************** End of opcodes.h *********************************************/
9432 /************** Continuing where we left off in vdbe.h ***********************/
9433 
9434 /*
9435 ** Prototypes for the VDBE interface.  See comments on the implementation
9436 ** for a description of what each of these routines does.
9437 */
9438 SQLITE_PRIVATE Vdbe *sqlite3VdbeCreate(Parse*);
9439 SQLITE_PRIVATE int sqlite3VdbeAddOp0(Vdbe*,int);
9440 SQLITE_PRIVATE int sqlite3VdbeAddOp1(Vdbe*,int,int);
9441 SQLITE_PRIVATE int sqlite3VdbeAddOp2(Vdbe*,int,int,int);
9442 SQLITE_PRIVATE int sqlite3VdbeAddOp3(Vdbe*,int,int,int,int);
9443 SQLITE_PRIVATE int sqlite3VdbeAddOp4(Vdbe*,int,int,int,int,const char *zP4,int);
9444 SQLITE_PRIVATE int sqlite3VdbeAddOp4Int(Vdbe*,int,int,int,int,int);
9445 SQLITE_PRIVATE int sqlite3VdbeAddOpList(Vdbe*, int nOp, VdbeOpList const *aOp, int iLineno);
9446 SQLITE_PRIVATE void sqlite3VdbeAddParseSchemaOp(Vdbe*,int,char*);
9447 SQLITE_PRIVATE void sqlite3VdbeChangeP1(Vdbe*, u32 addr, int P1);
9448 SQLITE_PRIVATE void sqlite3VdbeChangeP2(Vdbe*, u32 addr, int P2);
9449 SQLITE_PRIVATE void sqlite3VdbeChangeP3(Vdbe*, u32 addr, int P3);
9450 SQLITE_PRIVATE void sqlite3VdbeChangeP5(Vdbe*, u8 P5);
9451 SQLITE_PRIVATE void sqlite3VdbeJumpHere(Vdbe*, int addr);
9452 SQLITE_PRIVATE void sqlite3VdbeChangeToNoop(Vdbe*, int addr);
9453 SQLITE_PRIVATE int sqlite3VdbeDeletePriorOpcode(Vdbe*, u8 op);
9454 SQLITE_PRIVATE void sqlite3VdbeChangeP4(Vdbe*, int addr, const char *zP4, int N);
9455 SQLITE_PRIVATE void sqlite3VdbeSetP4KeyInfo(Parse*, Index*);
9456 SQLITE_PRIVATE void sqlite3VdbeUsesBtree(Vdbe*, int);
9457 SQLITE_PRIVATE VdbeOp *sqlite3VdbeGetOp(Vdbe*, int);
9458 SQLITE_PRIVATE int sqlite3VdbeMakeLabel(Vdbe*);
9459 SQLITE_PRIVATE void sqlite3VdbeRunOnlyOnce(Vdbe*);
9460 SQLITE_PRIVATE void sqlite3VdbeDelete(Vdbe*);
9461 SQLITE_PRIVATE void sqlite3VdbeClearObject(sqlite3*,Vdbe*);
9462 SQLITE_PRIVATE void sqlite3VdbeMakeReady(Vdbe*,Parse*);
9463 SQLITE_PRIVATE int sqlite3VdbeFinalize(Vdbe*);
9464 SQLITE_PRIVATE void sqlite3VdbeResolveLabel(Vdbe*, int);
9465 SQLITE_PRIVATE int sqlite3VdbeCurrentAddr(Vdbe*);
9466 #ifdef SQLITE_DEBUG
9467 SQLITE_PRIVATE   int sqlite3VdbeAssertMayAbort(Vdbe *, int);
9468 #endif
9469 SQLITE_PRIVATE void sqlite3VdbeResetStepResult(Vdbe*);
9470 SQLITE_PRIVATE void sqlite3VdbeRewind(Vdbe*);
9471 SQLITE_PRIVATE int sqlite3VdbeReset(Vdbe*);
9472 SQLITE_PRIVATE void sqlite3VdbeSetNumCols(Vdbe*,int);
9473 SQLITE_PRIVATE int sqlite3VdbeSetColName(Vdbe*, int, int, const char *, void(*)(void*));
9474 SQLITE_PRIVATE void sqlite3VdbeCountChanges(Vdbe*);
9475 SQLITE_PRIVATE sqlite3 *sqlite3VdbeDb(Vdbe*);
9476 SQLITE_PRIVATE void sqlite3VdbeSetSql(Vdbe*, const char *z, int n, int);
9477 SQLITE_PRIVATE void sqlite3VdbeSwap(Vdbe*,Vdbe*);
9478 SQLITE_PRIVATE VdbeOp *sqlite3VdbeTakeOpArray(Vdbe*, int*, int*);
9479 SQLITE_PRIVATE sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe*, int, u8);
9480 SQLITE_PRIVATE void sqlite3VdbeSetVarmask(Vdbe*, int);
9481 #ifndef SQLITE_OMIT_TRACE
9482 SQLITE_PRIVATE   char *sqlite3VdbeExpandSql(Vdbe*, const char*);
9483 #endif
9484 
9485 SQLITE_PRIVATE void sqlite3VdbeRecordUnpack(KeyInfo*,int,const void*,UnpackedRecord*);
9486 SQLITE_PRIVATE int sqlite3VdbeRecordCompare(int,const void*,UnpackedRecord*,int);
9487 SQLITE_PRIVATE UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(KeyInfo *, char *, int, char **);
9488 
9489 typedef int (*RecordCompare)(int,const void*,UnpackedRecord*,int);
9490 SQLITE_PRIVATE RecordCompare sqlite3VdbeFindCompare(UnpackedRecord*);
9491 
9492 #ifndef SQLITE_OMIT_TRIGGER
9493 SQLITE_PRIVATE void sqlite3VdbeLinkSubProgram(Vdbe *, SubProgram *);
9494 #endif
9495 
9496 /* Use SQLITE_ENABLE_COMMENTS to enable generation of extra comments on
9497 ** each VDBE opcode.
9498 **
9499 ** Use the SQLITE_ENABLE_MODULE_COMMENTS macro to see some extra no-op
9500 ** comments in VDBE programs that show key decision points in the code
9501 ** generator.
9502 */
9503 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
9504 SQLITE_PRIVATE   void sqlite3VdbeComment(Vdbe*, const char*, ...);
9505 # define VdbeComment(X)  sqlite3VdbeComment X
9506 SQLITE_PRIVATE   void sqlite3VdbeNoopComment(Vdbe*, const char*, ...);
9507 # define VdbeNoopComment(X)  sqlite3VdbeNoopComment X
9508 # ifdef SQLITE_ENABLE_MODULE_COMMENTS
9509 #   define VdbeModuleComment(X)  sqlite3VdbeNoopComment X
9510 # else
9511 #   define VdbeModuleComment(X)
9512 # endif
9513 #else
9514 # define VdbeComment(X)
9515 # define VdbeNoopComment(X)
9516 # define VdbeModuleComment(X)
9517 #endif
9518 
9519 /*
9520 ** The VdbeCoverage macros are used to set a coverage testing point
9521 ** for VDBE branch instructions.  The coverage testing points are line
9522 ** numbers in the sqlite3.c source file.  VDBE branch coverage testing
9523 ** only works with an amalagmation build.  That's ok since a VDBE branch
9524 ** coverage build designed for testing the test suite only.  No application
9525 ** should ever ship with VDBE branch coverage measuring turned on.
9526 **
9527 **    VdbeCoverage(v)                  // Mark the previously coded instruction
9528 **                                     // as a branch
9529 **
9530 **    VdbeCoverageIf(v, conditional)   // Mark previous if conditional true
9531 **
9532 **    VdbeCoverageAlwaysTaken(v)       // Previous branch is always taken
9533 **
9534 **    VdbeCoverageNeverTaken(v)        // Previous branch is never taken
9535 **
9536 ** Every VDBE branch operation must be tagged with one of the macros above.
9537 ** If not, then when "make test" is run with -DSQLITE_VDBE_COVERAGE and
9538 ** -DSQLITE_DEBUG then an ALWAYS() will fail in the vdbeTakeBranch()
9539 ** routine in vdbe.c, alerting the developer to the missed tag.
9540 */
9541 #ifdef SQLITE_VDBE_COVERAGE
9542 SQLITE_PRIVATE   void sqlite3VdbeSetLineNumber(Vdbe*,int);
9543 # define VdbeCoverage(v) sqlite3VdbeSetLineNumber(v,__LINE__)
9544 # define VdbeCoverageIf(v,x) if(x)sqlite3VdbeSetLineNumber(v,__LINE__)
9545 # define VdbeCoverageAlwaysTaken(v) sqlite3VdbeSetLineNumber(v,2);
9546 # define VdbeCoverageNeverTaken(v) sqlite3VdbeSetLineNumber(v,1);
9547 # define VDBE_OFFSET_LINENO(x) (__LINE__+x)
9548 #else
9549 # define VdbeCoverage(v)
9550 # define VdbeCoverageIf(v,x)
9551 # define VdbeCoverageAlwaysTaken(v)
9552 # define VdbeCoverageNeverTaken(v)
9553 # define VDBE_OFFSET_LINENO(x) 0
9554 #endif
9555 
9556 #endif
9557 
9558 /************** End of vdbe.h ************************************************/
9559 /************** Continuing where we left off in sqliteInt.h ******************/
9560 /************** Include pager.h in the middle of sqliteInt.h *****************/
9561 /************** Begin file pager.h *******************************************/
9562 /*
9563 ** 2001 September 15
9564 **
9565 ** The author disclaims copyright to this source code.  In place of
9566 ** a legal notice, here is a blessing:
9567 **
9568 **    May you do good and not evil.
9569 **    May you find forgiveness for yourself and forgive others.
9570 **    May you share freely, never taking more than you give.
9571 **
9572 *************************************************************************
9573 ** This header file defines the interface that the sqlite page cache
9574 ** subsystem.  The page cache subsystem reads and writes a file a page
9575 ** at a time and provides a journal for rollback.
9576 */
9577 
9578 #ifndef _PAGER_H_
9579 #define _PAGER_H_
9580 
9581 /*
9582 ** Default maximum size for persistent journal files. A negative
9583 ** value means no limit. This value may be overridden using the
9584 ** sqlite3PagerJournalSizeLimit() API. See also "PRAGMA journal_size_limit".
9585 */
9586 #ifndef SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT
9587   #define SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT -1
9588 #endif
9589 
9590 /*
9591 ** The type used to represent a page number.  The first page in a file
9592 ** is called page 1.  0 is used to represent "not a page".
9593 */
9594 typedef u32 Pgno;
9595 
9596 /*
9597 ** Each open file is managed by a separate instance of the "Pager" structure.
9598 */
9599 typedef struct Pager Pager;
9600 
9601 /*
9602 ** Handle type for pages.
9603 */
9604 typedef struct PgHdr DbPage;
9605 
9606 /*
9607 ** Page number PAGER_MJ_PGNO is never used in an SQLite database (it is
9608 ** reserved for working around a windows/posix incompatibility). It is
9609 ** used in the journal to signify that the remainder of the journal file
9610 ** is devoted to storing a master journal name - there are no more pages to
9611 ** roll back. See comments for function writeMasterJournal() in pager.c
9612 ** for details.
9613 */
9614 #define PAGER_MJ_PGNO(x) ((Pgno)((PENDING_BYTE/((x)->pageSize))+1))
9615 
9616 /*
9617 ** Allowed values for the flags parameter to sqlite3PagerOpen().
9618 **
9619 ** NOTE: These values must match the corresponding BTREE_ values in btree.h.
9620 */
9621 #define PAGER_OMIT_JOURNAL  0x0001    /* Do not use a rollback journal */
9622 #define PAGER_MEMORY        0x0002    /* In-memory database */
9623 
9624 /*
9625 ** Valid values for the second argument to sqlite3PagerLockingMode().
9626 */
9627 #define PAGER_LOCKINGMODE_QUERY      -1
9628 #define PAGER_LOCKINGMODE_NORMAL      0
9629 #define PAGER_LOCKINGMODE_EXCLUSIVE   1
9630 
9631 /*
9632 ** Numeric constants that encode the journalmode.
9633 */
9634 #define PAGER_JOURNALMODE_QUERY     (-1)  /* Query the value of journalmode */
9635 #define PAGER_JOURNALMODE_DELETE      0   /* Commit by deleting journal file */
9636 #define PAGER_JOURNALMODE_PERSIST     1   /* Commit by zeroing journal header */
9637 #define PAGER_JOURNALMODE_OFF         2   /* Journal omitted.  */
9638 #define PAGER_JOURNALMODE_TRUNCATE    3   /* Commit by truncating journal */
9639 #define PAGER_JOURNALMODE_MEMORY      4   /* In-memory journal file */
9640 #define PAGER_JOURNALMODE_WAL         5   /* Use write-ahead logging */
9641 
9642 /*
9643 ** Flags that make up the mask passed to sqlite3PagerAcquire().
9644 */
9645 #define PAGER_GET_NOCONTENT     0x01  /* Do not load data from disk */
9646 #define PAGER_GET_READONLY      0x02  /* Read-only page is acceptable */
9647 
9648 /*
9649 ** Flags for sqlite3PagerSetFlags()
9650 */
9651 #define PAGER_SYNCHRONOUS_OFF       0x01  /* PRAGMA synchronous=OFF */
9652 #define PAGER_SYNCHRONOUS_NORMAL    0x02  /* PRAGMA synchronous=NORMAL */
9653 #define PAGER_SYNCHRONOUS_FULL      0x03  /* PRAGMA synchronous=FULL */
9654 #define PAGER_SYNCHRONOUS_MASK      0x03  /* Mask for three values above */
9655 #define PAGER_FULLFSYNC             0x04  /* PRAGMA fullfsync=ON */
9656 #define PAGER_CKPT_FULLFSYNC        0x08  /* PRAGMA checkpoint_fullfsync=ON */
9657 #define PAGER_CACHESPILL            0x10  /* PRAGMA cache_spill=ON */
9658 #define PAGER_FLAGS_MASK            0x1c  /* All above except SYNCHRONOUS */
9659 
9660 /*
9661 ** The remainder of this file contains the declarations of the functions
9662 ** that make up the Pager sub-system API. See source code comments for
9663 ** a detailed description of each routine.
9664 */
9665 
9666 /* Open and close a Pager connection. */
9667 SQLITE_PRIVATE int sqlite3PagerOpen(
9668   sqlite3_vfs*,
9669   Pager **ppPager,
9670   const char*,
9671   int,
9672   int,
9673   int,
9674   void(*)(DbPage*)
9675 );
9676 SQLITE_PRIVATE int sqlite3PagerClose(Pager *pPager);
9677 SQLITE_PRIVATE int sqlite3PagerReadFileheader(Pager*, int, unsigned char*);
9678 
9679 /* Functions used to configure a Pager object. */
9680 SQLITE_PRIVATE void sqlite3PagerSetBusyhandler(Pager*, int(*)(void *), void *);
9681 SQLITE_PRIVATE int sqlite3PagerSetPagesize(Pager*, u32*, int);
9682 SQLITE_PRIVATE int sqlite3PagerMaxPageCount(Pager*, int);
9683 SQLITE_PRIVATE void sqlite3PagerSetCachesize(Pager*, int);
9684 SQLITE_PRIVATE void sqlite3PagerSetMmapLimit(Pager *, sqlite3_int64);
9685 SQLITE_PRIVATE void sqlite3PagerShrink(Pager*);
9686 SQLITE_PRIVATE void sqlite3PagerSetFlags(Pager*,unsigned);
9687 SQLITE_PRIVATE int sqlite3PagerLockingMode(Pager *, int);
9688 SQLITE_PRIVATE int sqlite3PagerSetJournalMode(Pager *, int);
9689 SQLITE_PRIVATE int sqlite3PagerGetJournalMode(Pager*);
9690 SQLITE_PRIVATE int sqlite3PagerOkToChangeJournalMode(Pager*);
9691 SQLITE_PRIVATE i64 sqlite3PagerJournalSizeLimit(Pager *, i64);
9692 SQLITE_PRIVATE sqlite3_backup **sqlite3PagerBackupPtr(Pager*);
9693 
9694 /* Functions used to obtain and release page references. */
9695 SQLITE_PRIVATE int sqlite3PagerAcquire(Pager *pPager, Pgno pgno, DbPage **ppPage, int clrFlag);
9696 #define sqlite3PagerGet(A,B,C) sqlite3PagerAcquire(A,B,C,0)
9697 SQLITE_PRIVATE DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno);
9698 SQLITE_PRIVATE void sqlite3PagerRef(DbPage*);
9699 SQLITE_PRIVATE void sqlite3PagerUnref(DbPage*);
9700 SQLITE_PRIVATE void sqlite3PagerUnrefNotNull(DbPage*);
9701 
9702 /* Operations on page references. */
9703 SQLITE_PRIVATE int sqlite3PagerWrite(DbPage*);
9704 SQLITE_PRIVATE void sqlite3PagerDontWrite(DbPage*);
9705 SQLITE_PRIVATE int sqlite3PagerMovepage(Pager*,DbPage*,Pgno,int);
9706 SQLITE_PRIVATE int sqlite3PagerPageRefcount(DbPage*);
9707 SQLITE_PRIVATE void *sqlite3PagerGetData(DbPage *);
9708 SQLITE_PRIVATE void *sqlite3PagerGetExtra(DbPage *);
9709 
9710 /* Functions used to manage pager transactions and savepoints. */
9711 SQLITE_PRIVATE void sqlite3PagerPagecount(Pager*, int*);
9712 SQLITE_PRIVATE int sqlite3PagerBegin(Pager*, int exFlag, int);
9713 SQLITE_PRIVATE int sqlite3PagerCommitPhaseOne(Pager*,const char *zMaster, int);
9714 SQLITE_PRIVATE int sqlite3PagerExclusiveLock(Pager*);
9715 SQLITE_PRIVATE int sqlite3PagerSync(Pager *pPager, const char *zMaster);
9716 SQLITE_PRIVATE int sqlite3PagerCommitPhaseTwo(Pager*);
9717 SQLITE_PRIVATE int sqlite3PagerRollback(Pager*);
9718 SQLITE_PRIVATE int sqlite3PagerOpenSavepoint(Pager *pPager, int n);
9719 SQLITE_PRIVATE int sqlite3PagerSavepoint(Pager *pPager, int op, int iSavepoint);
9720 SQLITE_PRIVATE int sqlite3PagerSharedLock(Pager *pPager);
9721 
9722 #ifndef SQLITE_OMIT_WAL
9723 SQLITE_PRIVATE   int sqlite3PagerCheckpoint(Pager *pPager, int, int*, int*);
9724 SQLITE_PRIVATE   int sqlite3PagerWalSupported(Pager *pPager);
9725 SQLITE_PRIVATE   int sqlite3PagerWalCallback(Pager *pPager);
9726 SQLITE_PRIVATE   int sqlite3PagerOpenWal(Pager *pPager, int *pisOpen);
9727 SQLITE_PRIVATE   int sqlite3PagerCloseWal(Pager *pPager);
9728 #endif
9729 
9730 #ifdef SQLITE_ENABLE_ZIPVFS
9731 SQLITE_PRIVATE   int sqlite3PagerWalFramesize(Pager *pPager);
9732 #endif
9733 
9734 /* Functions used to query pager state and configuration. */
9735 SQLITE_PRIVATE u8 sqlite3PagerIsreadonly(Pager*);
9736 SQLITE_PRIVATE int sqlite3PagerRefcount(Pager*);
9737 SQLITE_PRIVATE int sqlite3PagerMemUsed(Pager*);
9738 SQLITE_PRIVATE const char *sqlite3PagerFilename(Pager*, int);
9739 SQLITE_PRIVATE const sqlite3_vfs *sqlite3PagerVfs(Pager*);
9740 SQLITE_PRIVATE sqlite3_file *sqlite3PagerFile(Pager*);
9741 SQLITE_PRIVATE const char *sqlite3PagerJournalname(Pager*);
9742 SQLITE_PRIVATE int sqlite3PagerNosync(Pager*);
9743 SQLITE_PRIVATE void *sqlite3PagerTempSpace(Pager*);
9744 SQLITE_PRIVATE int sqlite3PagerIsMemdb(Pager*);
9745 SQLITE_PRIVATE void sqlite3PagerCacheStat(Pager *, int, int, int *);
9746 SQLITE_PRIVATE void sqlite3PagerClearCache(Pager *);
9747 SQLITE_PRIVATE int sqlite3SectorSize(sqlite3_file *);
9748 
9749 /* Functions used to truncate the database file. */
9750 SQLITE_PRIVATE void sqlite3PagerTruncateImage(Pager*,Pgno);
9751 
9752 #if defined(SQLITE_HAS_CODEC) && !defined(SQLITE_OMIT_WAL)
9753 SQLITE_PRIVATE void *sqlite3PagerCodec(DbPage *);
9754 #endif
9755 
9756 /* Functions to support testing and debugging. */
9757 #if !defined(NDEBUG) || defined(SQLITE_TEST)
9758 SQLITE_PRIVATE   Pgno sqlite3PagerPagenumber(DbPage*);
9759 SQLITE_PRIVATE   int sqlite3PagerIswriteable(DbPage*);
9760 #endif
9761 #ifdef SQLITE_TEST
9762 SQLITE_PRIVATE   int *sqlite3PagerStats(Pager*);
9763 SQLITE_PRIVATE   void sqlite3PagerRefdump(Pager*);
9764   void disable_simulated_io_errors(void);
9765   void enable_simulated_io_errors(void);
9766 #else
9767 # define disable_simulated_io_errors()
9768 # define enable_simulated_io_errors()
9769 #endif
9770 
9771 #endif /* _PAGER_H_ */
9772 
9773 /************** End of pager.h ***********************************************/
9774 /************** Continuing where we left off in sqliteInt.h ******************/
9775 /************** Include pcache.h in the middle of sqliteInt.h ****************/
9776 /************** Begin file pcache.h ******************************************/
9777 /*
9778 ** 2008 August 05
9779 **
9780 ** The author disclaims copyright to this source code.  In place of
9781 ** a legal notice, here is a blessing:
9782 **
9783 **    May you do good and not evil.
9784 **    May you find forgiveness for yourself and forgive others.
9785 **    May you share freely, never taking more than you give.
9786 **
9787 *************************************************************************
9788 ** This header file defines the interface that the sqlite page cache
9789 ** subsystem.
9790 */
9791 
9792 #ifndef _PCACHE_H_
9793 
9794 typedef struct PgHdr PgHdr;
9795 typedef struct PCache PCache;
9796 
9797 /*
9798 ** Every page in the cache is controlled by an instance of the following
9799 ** structure.
9800 */
9801 struct PgHdr {
9802   sqlite3_pcache_page *pPage;    /* Pcache object page handle */
9803   void *pData;                   /* Page data */
9804   void *pExtra;                  /* Extra content */
9805   PgHdr *pDirty;                 /* Transient list of dirty pages */
9806   Pager *pPager;                 /* The pager this page is part of */
9807   Pgno pgno;                     /* Page number for this page */
9808 #ifdef SQLITE_CHECK_PAGES
9809   u32 pageHash;                  /* Hash of page content */
9810 #endif
9811   u16 flags;                     /* PGHDR flags defined below */
9812 
9813   /**********************************************************************
9814   ** Elements above are public.  All that follows is private to pcache.c
9815   ** and should not be accessed by other modules.
9816   */
9817   i16 nRef;                      /* Number of users of this page */
9818   PCache *pCache;                /* Cache that owns this page */
9819 
9820   PgHdr *pDirtyNext;             /* Next element in list of dirty pages */
9821   PgHdr *pDirtyPrev;             /* Previous element in list of dirty pages */
9822 };
9823 
9824 /* Bit values for PgHdr.flags */
9825 #define PGHDR_DIRTY             0x002  /* Page has changed */
9826 #define PGHDR_NEED_SYNC         0x004  /* Fsync the rollback journal before
9827                                        ** writing this page to the database */
9828 #define PGHDR_NEED_READ         0x008  /* Content is unread */
9829 #define PGHDR_REUSE_UNLIKELY    0x010  /* A hint that reuse is unlikely */
9830 #define PGHDR_DONT_WRITE        0x020  /* Do not write content to disk */
9831 
9832 #define PGHDR_MMAP              0x040  /* This is an mmap page object */
9833 
9834 /* Initialize and shutdown the page cache subsystem */
9835 SQLITE_PRIVATE int sqlite3PcacheInitialize(void);
9836 SQLITE_PRIVATE void sqlite3PcacheShutdown(void);
9837 
9838 /* Page cache buffer management:
9839 ** These routines implement SQLITE_CONFIG_PAGECACHE.
9840 */
9841 SQLITE_PRIVATE void sqlite3PCacheBufferSetup(void *, int sz, int n);
9842 
9843 /* Create a new pager cache.
9844 ** Under memory stress, invoke xStress to try to make pages clean.
9845 ** Only clean and unpinned pages can be reclaimed.
9846 */
9847 SQLITE_PRIVATE void sqlite3PcacheOpen(
9848   int szPage,                    /* Size of every page */
9849   int szExtra,                   /* Extra space associated with each page */
9850   int bPurgeable,                /* True if pages are on backing store */
9851   int (*xStress)(void*, PgHdr*), /* Call to try to make pages clean */
9852   void *pStress,                 /* Argument to xStress */
9853   PCache *pToInit                /* Preallocated space for the PCache */
9854 );
9855 
9856 /* Modify the page-size after the cache has been created. */
9857 SQLITE_PRIVATE void sqlite3PcacheSetPageSize(PCache *, int);
9858 
9859 /* Return the size in bytes of a PCache object.  Used to preallocate
9860 ** storage space.
9861 */
9862 SQLITE_PRIVATE int sqlite3PcacheSize(void);
9863 
9864 /* One release per successful fetch.  Page is pinned until released.
9865 ** Reference counted.
9866 */
9867 SQLITE_PRIVATE int sqlite3PcacheFetch(PCache*, Pgno, int createFlag, PgHdr**);
9868 SQLITE_PRIVATE void sqlite3PcacheRelease(PgHdr*);
9869 
9870 SQLITE_PRIVATE void sqlite3PcacheDrop(PgHdr*);         /* Remove page from cache */
9871 SQLITE_PRIVATE void sqlite3PcacheMakeDirty(PgHdr*);    /* Make sure page is marked dirty */
9872 SQLITE_PRIVATE void sqlite3PcacheMakeClean(PgHdr*);    /* Mark a single page as clean */
9873 SQLITE_PRIVATE void sqlite3PcacheCleanAll(PCache*);    /* Mark all dirty list pages as clean */
9874 
9875 /* Change a page number.  Used by incr-vacuum. */
9876 SQLITE_PRIVATE void sqlite3PcacheMove(PgHdr*, Pgno);
9877 
9878 /* Remove all pages with pgno>x.  Reset the cache if x==0 */
9879 SQLITE_PRIVATE void sqlite3PcacheTruncate(PCache*, Pgno x);
9880 
9881 /* Get a list of all dirty pages in the cache, sorted by page number */
9882 SQLITE_PRIVATE PgHdr *sqlite3PcacheDirtyList(PCache*);
9883 
9884 /* Reset and close the cache object */
9885 SQLITE_PRIVATE void sqlite3PcacheClose(PCache*);
9886 
9887 /* Clear flags from pages of the page cache */
9888 SQLITE_PRIVATE void sqlite3PcacheClearSyncFlags(PCache *);
9889 
9890 /* Discard the contents of the cache */
9891 SQLITE_PRIVATE void sqlite3PcacheClear(PCache*);
9892 
9893 /* Return the total number of outstanding page references */
9894 SQLITE_PRIVATE int sqlite3PcacheRefCount(PCache*);
9895 
9896 /* Increment the reference count of an existing page */
9897 SQLITE_PRIVATE void sqlite3PcacheRef(PgHdr*);
9898 
9899 SQLITE_PRIVATE int sqlite3PcachePageRefcount(PgHdr*);
9900 
9901 /* Return the total number of pages stored in the cache */
9902 SQLITE_PRIVATE int sqlite3PcachePagecount(PCache*);
9903 
9904 #if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG)
9905 /* Iterate through all dirty pages currently stored in the cache. This
9906 ** interface is only available if SQLITE_CHECK_PAGES is defined when the
9907 ** library is built.
9908 */
9909 SQLITE_PRIVATE void sqlite3PcacheIterateDirty(PCache *pCache, void (*xIter)(PgHdr *));
9910 #endif
9911 
9912 /* Set and get the suggested cache-size for the specified pager-cache.
9913 **
9914 ** If no global maximum is configured, then the system attempts to limit
9915 ** the total number of pages cached by purgeable pager-caches to the sum
9916 ** of the suggested cache-sizes.
9917 */
9918 SQLITE_PRIVATE void sqlite3PcacheSetCachesize(PCache *, int);
9919 #ifdef SQLITE_TEST
9920 SQLITE_PRIVATE int sqlite3PcacheGetCachesize(PCache *);
9921 #endif
9922 
9923 /* Free up as much memory as possible from the page cache */
9924 SQLITE_PRIVATE void sqlite3PcacheShrink(PCache*);
9925 
9926 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
9927 /* Try to return memory used by the pcache module to the main memory heap */
9928 SQLITE_PRIVATE int sqlite3PcacheReleaseMemory(int);
9929 #endif
9930 
9931 #ifdef SQLITE_TEST
9932 SQLITE_PRIVATE void sqlite3PcacheStats(int*,int*,int*,int*);
9933 #endif
9934 
9935 SQLITE_PRIVATE void sqlite3PCacheSetDefault(void);
9936 
9937 #endif /* _PCACHE_H_ */
9938 
9939 /************** End of pcache.h **********************************************/
9940 /************** Continuing where we left off in sqliteInt.h ******************/
9941 
9942 /************** Include os.h in the middle of sqliteInt.h ********************/
9943 /************** Begin file os.h **********************************************/
9944 /*
9945 ** 2001 September 16
9946 **
9947 ** The author disclaims copyright to this source code.  In place of
9948 ** a legal notice, here is a blessing:
9949 **
9950 **    May you do good and not evil.
9951 **    May you find forgiveness for yourself and forgive others.
9952 **    May you share freely, never taking more than you give.
9953 **
9954 ******************************************************************************
9955 **
9956 ** This header file (together with is companion C source-code file
9957 ** "os.c") attempt to abstract the underlying operating system so that
9958 ** the SQLite library will work on both POSIX and windows systems.
9959 **
9960 ** This header file is #include-ed by sqliteInt.h and thus ends up
9961 ** being included by every source file.
9962 */
9963 #ifndef _SQLITE_OS_H_
9964 #define _SQLITE_OS_H_
9965 
9966 /*
9967 ** Attempt to automatically detect the operating system and setup the
9968 ** necessary pre-processor macros for it.
9969 */
9970 /************** Include os_setup.h in the middle of os.h *********************/
9971 /************** Begin file os_setup.h ****************************************/
9972 /*
9973 ** 2013 November 25
9974 **
9975 ** The author disclaims copyright to this source code.  In place of
9976 ** a legal notice, here is a blessing:
9977 **
9978 **    May you do good and not evil.
9979 **    May you find forgiveness for yourself and forgive others.
9980 **    May you share freely, never taking more than you give.
9981 **
9982 ******************************************************************************
9983 **
9984 ** This file contains pre-processor directives related to operating system
9985 ** detection and/or setup.
9986 */
9987 #ifndef _OS_SETUP_H_
9988 #define _OS_SETUP_H_
9989 
9990 /*
9991 ** Figure out if we are dealing with Unix, Windows, or some other operating
9992 ** system.
9993 **
9994 ** After the following block of preprocess macros, all of SQLITE_OS_UNIX,
9995 ** SQLITE_OS_WIN, and SQLITE_OS_OTHER will defined to either 1 or 0.  One of
9996 ** the three will be 1.  The other two will be 0.
9997 */
9998 #if defined(SQLITE_OS_OTHER)
9999 #  if SQLITE_OS_OTHER==1
10000 #    undef SQLITE_OS_UNIX
10001 #    define SQLITE_OS_UNIX 0
10002 #    undef SQLITE_OS_WIN
10003 #    define SQLITE_OS_WIN 0
10004 #  else
10005 #    undef SQLITE_OS_OTHER
10006 #  endif
10007 #endif
10008 #if !defined(SQLITE_OS_UNIX) && !defined(SQLITE_OS_OTHER)
10009 #  define SQLITE_OS_OTHER 0
10010 #  ifndef SQLITE_OS_WIN
10011 #    if defined(_WIN32) || defined(WIN32) || defined(__CYGWIN__) || \
10012         defined(__MINGW32__) || defined(__BORLANDC__)
10013 #      define SQLITE_OS_WIN 1
10014 #      define SQLITE_OS_UNIX 0
10015 #    else
10016 #      define SQLITE_OS_WIN 0
10017 #      define SQLITE_OS_UNIX 1
10018 #    endif
10019 #  else
10020 #    define SQLITE_OS_UNIX 0
10021 #  endif
10022 #else
10023 #  ifndef SQLITE_OS_WIN
10024 #    define SQLITE_OS_WIN 0
10025 #  endif
10026 #endif
10027 
10028 #endif /* _OS_SETUP_H_ */
10029 
10030 /************** End of os_setup.h ********************************************/
10031 /************** Continuing where we left off in os.h *************************/
10032 
10033 /* If the SET_FULLSYNC macro is not defined above, then make it
10034 ** a no-op
10035 */
10036 #ifndef SET_FULLSYNC
10037 # define SET_FULLSYNC(x,y)
10038 #endif
10039 
10040 /*
10041 ** The default size of a disk sector
10042 */
10043 #ifndef SQLITE_DEFAULT_SECTOR_SIZE
10044 # define SQLITE_DEFAULT_SECTOR_SIZE 4096
10045 #endif
10046 
10047 /*
10048 ** Temporary files are named starting with this prefix followed by 16 random
10049 ** alphanumeric characters, and no file extension. They are stored in the
10050 ** OS's standard temporary file directory, and are deleted prior to exit.
10051 ** If sqlite is being embedded in another program, you may wish to change the
10052 ** prefix to reflect your program's name, so that if your program exits
10053 ** prematurely, old temporary files can be easily identified. This can be done
10054 ** using -DSQLITE_TEMP_FILE_PREFIX=myprefix_ on the compiler command line.
10055 **
10056 ** 2006-10-31:  The default prefix used to be "sqlite_".  But then
10057 ** Mcafee started using SQLite in their anti-virus product and it
10058 ** started putting files with the "sqlite" name in the c:/temp folder.
10059 ** This annoyed many windows users.  Those users would then do a
10060 ** Google search for "sqlite", find the telephone numbers of the
10061 ** developers and call to wake them up at night and complain.
10062 ** For this reason, the default name prefix is changed to be "sqlite"
10063 ** spelled backwards.  So the temp files are still identified, but
10064 ** anybody smart enough to figure out the code is also likely smart
10065 ** enough to know that calling the developer will not help get rid
10066 ** of the file.
10067 */
10068 #ifndef SQLITE_TEMP_FILE_PREFIX
10069 # define SQLITE_TEMP_FILE_PREFIX "etilqs_"
10070 #endif
10071 
10072 /*
10073 ** The following values may be passed as the second argument to
10074 ** sqlite3OsLock(). The various locks exhibit the following semantics:
10075 **
10076 ** SHARED:    Any number of processes may hold a SHARED lock simultaneously.
10077 ** RESERVED:  A single process may hold a RESERVED lock on a file at
10078 **            any time. Other processes may hold and obtain new SHARED locks.
10079 ** PENDING:   A single process may hold a PENDING lock on a file at
10080 **            any one time. Existing SHARED locks may persist, but no new
10081 **            SHARED locks may be obtained by other processes.
10082 ** EXCLUSIVE: An EXCLUSIVE lock precludes all other locks.
10083 **
10084 ** PENDING_LOCK may not be passed directly to sqlite3OsLock(). Instead, a
10085 ** process that requests an EXCLUSIVE lock may actually obtain a PENDING
10086 ** lock. This can be upgraded to an EXCLUSIVE lock by a subsequent call to
10087 ** sqlite3OsLock().
10088 */
10089 #define NO_LOCK         0
10090 #define SHARED_LOCK     1
10091 #define RESERVED_LOCK   2
10092 #define PENDING_LOCK    3
10093 #define EXCLUSIVE_LOCK  4
10094 
10095 /*
10096 ** File Locking Notes:  (Mostly about windows but also some info for Unix)
10097 **
10098 ** We cannot use LockFileEx() or UnlockFileEx() on Win95/98/ME because
10099 ** those functions are not available.  So we use only LockFile() and
10100 ** UnlockFile().
10101 **
10102 ** LockFile() prevents not just writing but also reading by other processes.
10103 ** A SHARED_LOCK is obtained by locking a single randomly-chosen
10104 ** byte out of a specific range of bytes. The lock byte is obtained at
10105 ** random so two separate readers can probably access the file at the
10106 ** same time, unless they are unlucky and choose the same lock byte.
10107 ** An EXCLUSIVE_LOCK is obtained by locking all bytes in the range.
10108 ** There can only be one writer.  A RESERVED_LOCK is obtained by locking
10109 ** a single byte of the file that is designated as the reserved lock byte.
10110 ** A PENDING_LOCK is obtained by locking a designated byte different from
10111 ** the RESERVED_LOCK byte.
10112 **
10113 ** On WinNT/2K/XP systems, LockFileEx() and UnlockFileEx() are available,
10114 ** which means we can use reader/writer locks.  When reader/writer locks
10115 ** are used, the lock is placed on the same range of bytes that is used
10116 ** for probabilistic locking in Win95/98/ME.  Hence, the locking scheme
10117 ** will support two or more Win95 readers or two or more WinNT readers.
10118 ** But a single Win95 reader will lock out all WinNT readers and a single
10119 ** WinNT reader will lock out all other Win95 readers.
10120 **
10121 ** The following #defines specify the range of bytes used for locking.
10122 ** SHARED_SIZE is the number of bytes available in the pool from which
10123 ** a random byte is selected for a shared lock.  The pool of bytes for
10124 ** shared locks begins at SHARED_FIRST.
10125 **
10126 ** The same locking strategy and
10127 ** byte ranges are used for Unix.  This leaves open the possiblity of having
10128 ** clients on win95, winNT, and unix all talking to the same shared file
10129 ** and all locking correctly.  To do so would require that samba (or whatever
10130 ** tool is being used for file sharing) implements locks correctly between
10131 ** windows and unix.  I'm guessing that isn't likely to happen, but by
10132 ** using the same locking range we are at least open to the possibility.
10133 **
10134 ** Locking in windows is manditory.  For this reason, we cannot store
10135 ** actual data in the bytes used for locking.  The pager never allocates
10136 ** the pages involved in locking therefore.  SHARED_SIZE is selected so
10137 ** that all locks will fit on a single page even at the minimum page size.
10138 ** PENDING_BYTE defines the beginning of the locks.  By default PENDING_BYTE
10139 ** is set high so that we don't have to allocate an unused page except
10140 ** for very large databases.  But one should test the page skipping logic
10141 ** by setting PENDING_BYTE low and running the entire regression suite.
10142 **
10143 ** Changing the value of PENDING_BYTE results in a subtly incompatible
10144 ** file format.  Depending on how it is changed, you might not notice
10145 ** the incompatibility right away, even running a full regression test.
10146 ** The default location of PENDING_BYTE is the first byte past the
10147 ** 1GB boundary.
10148 **
10149 */
10150 #ifdef SQLITE_OMIT_WSD
10151 # define PENDING_BYTE     (0x40000000)
10152 #else
10153 # define PENDING_BYTE      sqlite3PendingByte
10154 #endif
10155 #define RESERVED_BYTE     (PENDING_BYTE+1)
10156 #define SHARED_FIRST      (PENDING_BYTE+2)
10157 #define SHARED_SIZE       510
10158 
10159 /*
10160 ** Wrapper around OS specific sqlite3_os_init() function.
10161 */
10162 SQLITE_PRIVATE int sqlite3OsInit(void);
10163 
10164 /*
10165 ** Functions for accessing sqlite3_file methods
10166 */
10167 SQLITE_PRIVATE int sqlite3OsClose(sqlite3_file*);
10168 SQLITE_PRIVATE int sqlite3OsRead(sqlite3_file*, void*, int amt, i64 offset);
10169 SQLITE_PRIVATE int sqlite3OsWrite(sqlite3_file*, const void*, int amt, i64 offset);
10170 SQLITE_PRIVATE int sqlite3OsTruncate(sqlite3_file*, i64 size);
10171 SQLITE_PRIVATE int sqlite3OsSync(sqlite3_file*, int);
10172 SQLITE_PRIVATE int sqlite3OsFileSize(sqlite3_file*, i64 *pSize);
10173 SQLITE_PRIVATE int sqlite3OsLock(sqlite3_file*, int);
10174 SQLITE_PRIVATE int sqlite3OsUnlock(sqlite3_file*, int);
10175 SQLITE_PRIVATE int sqlite3OsCheckReservedLock(sqlite3_file *id, int *pResOut);
10176 SQLITE_PRIVATE int sqlite3OsFileControl(sqlite3_file*,int,void*);
10177 SQLITE_PRIVATE void sqlite3OsFileControlHint(sqlite3_file*,int,void*);
10178 #define SQLITE_FCNTL_DB_UNCHANGED 0xca093fa0
10179 SQLITE_PRIVATE int sqlite3OsSectorSize(sqlite3_file *id);
10180 SQLITE_PRIVATE int sqlite3OsDeviceCharacteristics(sqlite3_file *id);
10181 SQLITE_PRIVATE int sqlite3OsShmMap(sqlite3_file *,int,int,int,void volatile **);
10182 SQLITE_PRIVATE int sqlite3OsShmLock(sqlite3_file *id, int, int, int);
10183 SQLITE_PRIVATE void sqlite3OsShmBarrier(sqlite3_file *id);
10184 SQLITE_PRIVATE int sqlite3OsShmUnmap(sqlite3_file *id, int);
10185 SQLITE_PRIVATE int sqlite3OsFetch(sqlite3_file *id, i64, int, void **);
10186 SQLITE_PRIVATE int sqlite3OsUnfetch(sqlite3_file *, i64, void *);
10187 
10188 
10189 /*
10190 ** Functions for accessing sqlite3_vfs methods
10191 */
10192 SQLITE_PRIVATE int sqlite3OsOpen(sqlite3_vfs *, const char *, sqlite3_file*, int, int *);
10193 SQLITE_PRIVATE int sqlite3OsDelete(sqlite3_vfs *, const char *, int);
10194 SQLITE_PRIVATE int sqlite3OsAccess(sqlite3_vfs *, const char *, int, int *pResOut);
10195 SQLITE_PRIVATE int sqlite3OsFullPathname(sqlite3_vfs *, const char *, int, char *);
10196 #ifndef SQLITE_OMIT_LOAD_EXTENSION
10197 SQLITE_PRIVATE void *sqlite3OsDlOpen(sqlite3_vfs *, const char *);
10198 SQLITE_PRIVATE void sqlite3OsDlError(sqlite3_vfs *, int, char *);
10199 SQLITE_PRIVATE void (*sqlite3OsDlSym(sqlite3_vfs *, void *, const char *))(void);
10200 SQLITE_PRIVATE void sqlite3OsDlClose(sqlite3_vfs *, void *);
10201 #endif /* SQLITE_OMIT_LOAD_EXTENSION */
10202 SQLITE_PRIVATE int sqlite3OsRandomness(sqlite3_vfs *, int, char *);
10203 SQLITE_PRIVATE int sqlite3OsSleep(sqlite3_vfs *, int);
10204 SQLITE_PRIVATE int sqlite3OsCurrentTimeInt64(sqlite3_vfs *, sqlite3_int64*);
10205 
10206 /*
10207 ** Convenience functions for opening and closing files using
10208 ** sqlite3_malloc() to obtain space for the file-handle structure.
10209 */
10210 SQLITE_PRIVATE int sqlite3OsOpenMalloc(sqlite3_vfs *, const char *, sqlite3_file **, int,int*);
10211 SQLITE_PRIVATE int sqlite3OsCloseFree(sqlite3_file *);
10212 
10213 #endif /* _SQLITE_OS_H_ */
10214 
10215 /************** End of os.h **************************************************/
10216 /************** Continuing where we left off in sqliteInt.h ******************/
10217 /************** Include mutex.h in the middle of sqliteInt.h *****************/
10218 /************** Begin file mutex.h *******************************************/
10219 /*
10220 ** 2007 August 28
10221 **
10222 ** The author disclaims copyright to this source code.  In place of
10223 ** a legal notice, here is a blessing:
10224 **
10225 **    May you do good and not evil.
10226 **    May you find forgiveness for yourself and forgive others.
10227 **    May you share freely, never taking more than you give.
10228 **
10229 *************************************************************************
10230 **
10231 ** This file contains the common header for all mutex implementations.
10232 ** The sqliteInt.h header #includes this file so that it is available
10233 ** to all source files.  We break it out in an effort to keep the code
10234 ** better organized.
10235 **
10236 ** NOTE:  source files should *not* #include this header file directly.
10237 ** Source files should #include the sqliteInt.h file and let that file
10238 ** include this one indirectly.
10239 */
10240 
10241 
10242 /*
10243 ** Figure out what version of the code to use.  The choices are
10244 **
10245 **   SQLITE_MUTEX_OMIT         No mutex logic.  Not even stubs.  The
10246 **                             mutexes implemention cannot be overridden
10247 **                             at start-time.
10248 **
10249 **   SQLITE_MUTEX_NOOP         For single-threaded applications.  No
10250 **                             mutual exclusion is provided.  But this
10251 **                             implementation can be overridden at
10252 **                             start-time.
10253 **
10254 **   SQLITE_MUTEX_PTHREADS     For multi-threaded applications on Unix.
10255 **
10256 **   SQLITE_MUTEX_W32          For multi-threaded applications on Win32.
10257 */
10258 #if !SQLITE_THREADSAFE
10259 # define SQLITE_MUTEX_OMIT
10260 #endif
10261 #if SQLITE_THREADSAFE && !defined(SQLITE_MUTEX_NOOP)
10262 #  if SQLITE_OS_UNIX
10263 #    define SQLITE_MUTEX_PTHREADS
10264 #  elif SQLITE_OS_WIN
10265 #    define SQLITE_MUTEX_W32
10266 #  else
10267 #    define SQLITE_MUTEX_NOOP
10268 #  endif
10269 #endif
10270 
10271 #ifdef SQLITE_MUTEX_OMIT
10272 /*
10273 ** If this is a no-op implementation, implement everything as macros.
10274 */
10275 #define sqlite3_mutex_alloc(X)    ((sqlite3_mutex*)8)
10276 #define sqlite3_mutex_free(X)
10277 #define sqlite3_mutex_enter(X)
10278 #define sqlite3_mutex_try(X)      SQLITE_OK
10279 #define sqlite3_mutex_leave(X)
10280 #define sqlite3_mutex_held(X)     ((void)(X),1)
10281 #define sqlite3_mutex_notheld(X)  ((void)(X),1)
10282 #define sqlite3MutexAlloc(X)      ((sqlite3_mutex*)8)
10283 #define sqlite3MutexInit()        SQLITE_OK
10284 #define sqlite3MutexEnd()
10285 #define MUTEX_LOGIC(X)
10286 #else
10287 #define MUTEX_LOGIC(X)            X
10288 #endif /* defined(SQLITE_MUTEX_OMIT) */
10289 
10290 /************** End of mutex.h ***********************************************/
10291 /************** Continuing where we left off in sqliteInt.h ******************/
10292 
10293 
10294 /*
10295 ** Each database file to be accessed by the system is an instance
10296 ** of the following structure.  There are normally two of these structures
10297 ** in the sqlite.aDb[] array.  aDb[0] is the main database file and
10298 ** aDb[1] is the database file used to hold temporary tables.  Additional
10299 ** databases may be attached.
10300 */
10301 struct Db {
10302   char *zName;         /* Name of this database */
10303   Btree *pBt;          /* The B*Tree structure for this database file */
10304   u8 safety_level;     /* How aggressive at syncing data to disk */
10305   Schema *pSchema;     /* Pointer to database schema (possibly shared) */
10306 };
10307 
10308 /*
10309 ** An instance of the following structure stores a database schema.
10310 **
10311 ** Most Schema objects are associated with a Btree.  The exception is
10312 ** the Schema for the TEMP databaes (sqlite3.aDb[1]) which is free-standing.
10313 ** In shared cache mode, a single Schema object can be shared by multiple
10314 ** Btrees that refer to the same underlying BtShared object.
10315 **
10316 ** Schema objects are automatically deallocated when the last Btree that
10317 ** references them is destroyed.   The TEMP Schema is manually freed by
10318 ** sqlite3_close().
10319 *
10320 ** A thread must be holding a mutex on the corresponding Btree in order
10321 ** to access Schema content.  This implies that the thread must also be
10322 ** holding a mutex on the sqlite3 connection pointer that owns the Btree.
10323 ** For a TEMP Schema, only the connection mutex is required.
10324 */
10325 struct Schema {
10326   int schema_cookie;   /* Database schema version number for this file */
10327   int iGeneration;     /* Generation counter.  Incremented with each change */
10328   Hash tblHash;        /* All tables indexed by name */
10329   Hash idxHash;        /* All (named) indices indexed by name */
10330   Hash trigHash;       /* All triggers indexed by name */
10331   Hash fkeyHash;       /* All foreign keys by referenced table name */
10332   Table *pSeqTab;      /* The sqlite_sequence table used by AUTOINCREMENT */
10333   u8 file_format;      /* Schema format version for this file */
10334   u8 enc;              /* Text encoding used by this database */
10335   u16 flags;           /* Flags associated with this schema */
10336   int cache_size;      /* Number of pages to use in the cache */
10337 };
10338 
10339 /*
10340 ** These macros can be used to test, set, or clear bits in the
10341 ** Db.pSchema->flags field.
10342 */
10343 #define DbHasProperty(D,I,P)     (((D)->aDb[I].pSchema->flags&(P))==(P))
10344 #define DbHasAnyProperty(D,I,P)  (((D)->aDb[I].pSchema->flags&(P))!=0)
10345 #define DbSetProperty(D,I,P)     (D)->aDb[I].pSchema->flags|=(P)
10346 #define DbClearProperty(D,I,P)   (D)->aDb[I].pSchema->flags&=~(P)
10347 
10348 /*
10349 ** Allowed values for the DB.pSchema->flags field.
10350 **
10351 ** The DB_SchemaLoaded flag is set after the database schema has been
10352 ** read into internal hash tables.
10353 **
10354 ** DB_UnresetViews means that one or more views have column names that
10355 ** have been filled out.  If the schema changes, these column names might
10356 ** changes and so the view will need to be reset.
10357 */
10358 #define DB_SchemaLoaded    0x0001  /* The schema has been loaded */
10359 #define DB_UnresetViews    0x0002  /* Some views have defined column names */
10360 #define DB_Empty           0x0004  /* The file is empty (length 0 bytes) */
10361 
10362 /*
10363 ** The number of different kinds of things that can be limited
10364 ** using the sqlite3_limit() interface.
10365 */
10366 #define SQLITE_N_LIMIT (SQLITE_LIMIT_TRIGGER_DEPTH+1)
10367 
10368 /*
10369 ** Lookaside malloc is a set of fixed-size buffers that can be used
10370 ** to satisfy small transient memory allocation requests for objects
10371 ** associated with a particular database connection.  The use of
10372 ** lookaside malloc provides a significant performance enhancement
10373 ** (approx 10%) by avoiding numerous malloc/free requests while parsing
10374 ** SQL statements.
10375 **
10376 ** The Lookaside structure holds configuration information about the
10377 ** lookaside malloc subsystem.  Each available memory allocation in
10378 ** the lookaside subsystem is stored on a linked list of LookasideSlot
10379 ** objects.
10380 **
10381 ** Lookaside allocations are only allowed for objects that are associated
10382 ** with a particular database connection.  Hence, schema information cannot
10383 ** be stored in lookaside because in shared cache mode the schema information
10384 ** is shared by multiple database connections.  Therefore, while parsing
10385 ** schema information, the Lookaside.bEnabled flag is cleared so that
10386 ** lookaside allocations are not used to construct the schema objects.
10387 */
10388 struct Lookaside {
10389   u16 sz;                 /* Size of each buffer in bytes */
10390   u8 bEnabled;            /* False to disable new lookaside allocations */
10391   u8 bMalloced;           /* True if pStart obtained from sqlite3_malloc() */
10392   int nOut;               /* Number of buffers currently checked out */
10393   int mxOut;              /* Highwater mark for nOut */
10394   int anStat[3];          /* 0: hits.  1: size misses.  2: full misses */
10395   LookasideSlot *pFree;   /* List of available buffers */
10396   void *pStart;           /* First byte of available memory space */
10397   void *pEnd;             /* First byte past end of available space */
10398 };
10399 struct LookasideSlot {
10400   LookasideSlot *pNext;    /* Next buffer in the list of free buffers */
10401 };
10402 
10403 /*
10404 ** A hash table for function definitions.
10405 **
10406 ** Hash each FuncDef structure into one of the FuncDefHash.a[] slots.
10407 ** Collisions are on the FuncDef.pHash chain.
10408 */
10409 struct FuncDefHash {
10410   FuncDef *a[23];       /* Hash table for functions */
10411 };
10412 
10413 /*
10414 ** Each database connection is an instance of the following structure.
10415 */
10416 struct sqlite3 {
10417   sqlite3_vfs *pVfs;            /* OS Interface */
10418   struct Vdbe *pVdbe;           /* List of active virtual machines */
10419   CollSeq *pDfltColl;           /* The default collating sequence (BINARY) */
10420   sqlite3_mutex *mutex;         /* Connection mutex */
10421   Db *aDb;                      /* All backends */
10422   int nDb;                      /* Number of backends currently in use */
10423   int flags;                    /* Miscellaneous flags. See below */
10424   i64 lastRowid;                /* ROWID of most recent insert (see above) */
10425   i64 szMmap;                   /* Default mmap_size setting */
10426   unsigned int openFlags;       /* Flags passed to sqlite3_vfs.xOpen() */
10427   int errCode;                  /* Most recent error code (SQLITE_*) */
10428   int errMask;                  /* & result codes with this before returning */
10429   u16 dbOptFlags;               /* Flags to enable/disable optimizations */
10430   u8 autoCommit;                /* The auto-commit flag. */
10431   u8 temp_store;                /* 1: file 2: memory 0: default */
10432   u8 mallocFailed;              /* True if we have seen a malloc failure */
10433   u8 dfltLockMode;              /* Default locking-mode for attached dbs */
10434   signed char nextAutovac;      /* Autovac setting after VACUUM if >=0 */
10435   u8 suppressErr;               /* Do not issue error messages if true */
10436   u8 vtabOnConflict;            /* Value to return for s3_vtab_on_conflict() */
10437   u8 isTransactionSavepoint;    /* True if the outermost savepoint is a TS */
10438   int nextPagesize;             /* Pagesize after VACUUM if >0 */
10439   u32 magic;                    /* Magic number for detect library misuse */
10440   int nChange;                  /* Value returned by sqlite3_changes() */
10441   int nTotalChange;             /* Value returned by sqlite3_total_changes() */
10442   int aLimit[SQLITE_N_LIMIT];   /* Limits */
10443   struct sqlite3InitInfo {      /* Information used during initialization */
10444     int newTnum;                /* Rootpage of table being initialized */
10445     u8 iDb;                     /* Which db file is being initialized */
10446     u8 busy;                    /* TRUE if currently initializing */
10447     u8 orphanTrigger;           /* Last statement is orphaned TEMP trigger */
10448   } init;
10449   int nVdbeActive;              /* Number of VDBEs currently running */
10450   int nVdbeRead;                /* Number of active VDBEs that read or write */
10451   int nVdbeWrite;               /* Number of active VDBEs that read and write */
10452   int nVdbeExec;                /* Number of nested calls to VdbeExec() */
10453   int nExtension;               /* Number of loaded extensions */
10454   void **aExtension;            /* Array of shared library handles */
10455   void (*xTrace)(void*,const char*);        /* Trace function */
10456   void *pTraceArg;                          /* Argument to the trace function */
10457   void (*xProfile)(void*,const char*,u64);  /* Profiling function */
10458   void *pProfileArg;                        /* Argument to profile function */
10459   void *pCommitArg;                 /* Argument to xCommitCallback() */
10460   int (*xCommitCallback)(void*);    /* Invoked at every commit. */
10461   void *pRollbackArg;               /* Argument to xRollbackCallback() */
10462   void (*xRollbackCallback)(void*); /* Invoked at every commit. */
10463   void *pUpdateArg;
10464   void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64);
10465 #ifndef SQLITE_OMIT_WAL
10466   int (*xWalCallback)(void *, sqlite3 *, const char *, int);
10467   void *pWalArg;
10468 #endif
10469   void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*);
10470   void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*);
10471   void *pCollNeededArg;
10472   sqlite3_value *pErr;          /* Most recent error message */
10473   union {
10474     volatile int isInterrupted; /* True if sqlite3_interrupt has been called */
10475     double notUsed1;            /* Spacer */
10476   } u1;
10477   Lookaside lookaside;          /* Lookaside malloc configuration */
10478 #ifndef SQLITE_OMIT_AUTHORIZATION
10479   int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
10480                                 /* Access authorization function */
10481   void *pAuthArg;               /* 1st argument to the access auth function */
10482 #endif
10483 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
10484   int (*xProgress)(void *);     /* The progress callback */
10485   void *pProgressArg;           /* Argument to the progress callback */
10486   unsigned nProgressOps;        /* Number of opcodes for progress callback */
10487 #endif
10488 #ifndef SQLITE_OMIT_VIRTUALTABLE
10489   int nVTrans;                  /* Allocated size of aVTrans */
10490   Hash aModule;                 /* populated by sqlite3_create_module() */
10491   VtabCtx *pVtabCtx;            /* Context for active vtab connect/create */
10492   VTable **aVTrans;             /* Virtual tables with open transactions */
10493   VTable *pDisconnect;    /* Disconnect these in next sqlite3_prepare() */
10494 #endif
10495   FuncDefHash aFunc;            /* Hash table of connection functions */
10496   Hash aCollSeq;                /* All collating sequences */
10497   BusyHandler busyHandler;      /* Busy callback */
10498   Db aDbStatic[2];              /* Static space for the 2 default backends */
10499   Savepoint *pSavepoint;        /* List of active savepoints */
10500   int busyTimeout;              /* Busy handler timeout, in msec */
10501   int nSavepoint;               /* Number of non-transaction savepoints */
10502   int nStatement;               /* Number of nested statement-transactions  */
10503   i64 nDeferredCons;            /* Net deferred constraints this transaction. */
10504   i64 nDeferredImmCons;         /* Net deferred immediate constraints */
10505   int *pnBytesFreed;            /* If not NULL, increment this in DbFree() */
10506 
10507 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
10508   /* The following variables are all protected by the STATIC_MASTER
10509   ** mutex, not by sqlite3.mutex. They are used by code in notify.c.
10510   **
10511   ** When X.pUnlockConnection==Y, that means that X is waiting for Y to
10512   ** unlock so that it can proceed.
10513   **
10514   ** When X.pBlockingConnection==Y, that means that something that X tried
10515   ** tried to do recently failed with an SQLITE_LOCKED error due to locks
10516   ** held by Y.
10517   */
10518   sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */
10519   sqlite3 *pUnlockConnection;           /* Connection to watch for unlock */
10520   void *pUnlockArg;                     /* Argument to xUnlockNotify */
10521   void (*xUnlockNotify)(void **, int);  /* Unlock notify callback */
10522   sqlite3 *pNextBlocked;        /* Next in list of all blocked connections */
10523 #endif
10524 };
10525 
10526 /*
10527 ** A macro to discover the encoding of a database.
10528 */
10529 #define ENC(db) ((db)->aDb[0].pSchema->enc)
10530 
10531 /*
10532 ** Possible values for the sqlite3.flags.
10533 */
10534 #define SQLITE_VdbeTrace      0x00000001  /* True to trace VDBE execution */
10535 #define SQLITE_InternChanges  0x00000002  /* Uncommitted Hash table changes */
10536 #define SQLITE_FullFSync      0x00000004  /* Use full fsync on the backend */
10537 #define SQLITE_CkptFullFSync  0x00000008  /* Use full fsync for checkpoint */
10538 #define SQLITE_CacheSpill     0x00000010  /* OK to spill pager cache */
10539 #define SQLITE_FullColNames   0x00000020  /* Show full column names on SELECT */
10540 #define SQLITE_ShortColNames  0x00000040  /* Show short columns names */
10541 #define SQLITE_CountRows      0x00000080  /* Count rows changed by INSERT, */
10542                                           /*   DELETE, or UPDATE and return */
10543                                           /*   the count using a callback. */
10544 #define SQLITE_NullCallback   0x00000100  /* Invoke the callback once if the */
10545                                           /*   result set is empty */
10546 #define SQLITE_SqlTrace       0x00000200  /* Debug print SQL as it executes */
10547 #define SQLITE_VdbeListing    0x00000400  /* Debug listings of VDBE programs */
10548 #define SQLITE_WriteSchema    0x00000800  /* OK to update SQLITE_MASTER */
10549 #define SQLITE_VdbeAddopTrace 0x00001000  /* Trace sqlite3VdbeAddOp() calls */
10550 #define SQLITE_IgnoreChecks   0x00002000  /* Do not enforce check constraints */
10551 #define SQLITE_ReadUncommitted 0x0004000  /* For shared-cache mode */
10552 #define SQLITE_LegacyFileFmt  0x00008000  /* Create new databases in format 1 */
10553 #define SQLITE_RecoveryMode   0x00010000  /* Ignore schema errors */
10554 #define SQLITE_ReverseOrder   0x00020000  /* Reverse unordered SELECTs */
10555 #define SQLITE_RecTriggers    0x00040000  /* Enable recursive triggers */
10556 #define SQLITE_ForeignKeys    0x00080000  /* Enforce foreign key constraints  */
10557 #define SQLITE_AutoIndex      0x00100000  /* Enable automatic indexes */
10558 #define SQLITE_PreferBuiltin  0x00200000  /* Preference to built-in funcs */
10559 #define SQLITE_LoadExtension  0x00400000  /* Enable load_extension */
10560 #define SQLITE_EnableTrigger  0x00800000  /* True to enable triggers */
10561 #define SQLITE_DeferFKs       0x01000000  /* Defer all FK constraints */
10562 #define SQLITE_QueryOnly      0x02000000  /* Disable database changes */
10563 #define SQLITE_VdbeEQP        0x04000000  /* Debug EXPLAIN QUERY PLAN */
10564 
10565 
10566 /*
10567 ** Bits of the sqlite3.dbOptFlags field that are used by the
10568 ** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface to
10569 ** selectively disable various optimizations.
10570 */
10571 #define SQLITE_QueryFlattener 0x0001   /* Query flattening */
10572 #define SQLITE_ColumnCache    0x0002   /* Column cache */
10573 #define SQLITE_GroupByOrder   0x0004   /* GROUPBY cover of ORDERBY */
10574 #define SQLITE_FactorOutConst 0x0008   /* Constant factoring */
10575 /*                not used    0x0010   // Was: SQLITE_IdxRealAsInt */
10576 #define SQLITE_DistinctOpt    0x0020   /* DISTINCT using indexes */
10577 #define SQLITE_CoverIdxScan   0x0040   /* Covering index scans */
10578 #define SQLITE_OrderByIdxJoin 0x0080   /* ORDER BY of joins via index */
10579 #define SQLITE_SubqCoroutine  0x0100   /* Evaluate subqueries as coroutines */
10580 #define SQLITE_Transitive     0x0200   /* Transitive constraints */
10581 #define SQLITE_OmitNoopJoin   0x0400   /* Omit unused tables in joins */
10582 #define SQLITE_Stat3          0x0800   /* Use the SQLITE_STAT3 table */
10583 #define SQLITE_AdjustOutEst   0x1000   /* Adjust output estimates using WHERE */
10584 #define SQLITE_AllOpts        0xffff   /* All optimizations */
10585 
10586 /*
10587 ** Macros for testing whether or not optimizations are enabled or disabled.
10588 */
10589 #ifndef SQLITE_OMIT_BUILTIN_TEST
10590 #define OptimizationDisabled(db, mask)  (((db)->dbOptFlags&(mask))!=0)
10591 #define OptimizationEnabled(db, mask)   (((db)->dbOptFlags&(mask))==0)
10592 #else
10593 #define OptimizationDisabled(db, mask)  0
10594 #define OptimizationEnabled(db, mask)   1
10595 #endif
10596 
10597 /*
10598 ** Return true if it OK to factor constant expressions into the initialization
10599 ** code. The argument is a Parse object for the code generator.
10600 */
10601 #define ConstFactorOk(P) ((P)->okConstFactor)
10602 
10603 /*
10604 ** Possible values for the sqlite.magic field.
10605 ** The numbers are obtained at random and have no special meaning, other
10606 ** than being distinct from one another.
10607 */
10608 #define SQLITE_MAGIC_OPEN     0xa029a697  /* Database is open */
10609 #define SQLITE_MAGIC_CLOSED   0x9f3c2d33  /* Database is closed */
10610 #define SQLITE_MAGIC_SICK     0x4b771290  /* Error and awaiting close */
10611 #define SQLITE_MAGIC_BUSY     0xf03b7906  /* Database currently in use */
10612 #define SQLITE_MAGIC_ERROR    0xb5357930  /* An SQLITE_MISUSE error occurred */
10613 #define SQLITE_MAGIC_ZOMBIE   0x64cffc7f  /* Close with last statement close */
10614 
10615 /*
10616 ** Each SQL function is defined by an instance of the following
10617 ** structure.  A pointer to this structure is stored in the sqlite.aFunc
10618 ** hash table.  When multiple functions have the same name, the hash table
10619 ** points to a linked list of these structures.
10620 */
10621 struct FuncDef {
10622   i16 nArg;            /* Number of arguments.  -1 means unlimited */
10623   u16 funcFlags;       /* Some combination of SQLITE_FUNC_* */
10624   void *pUserData;     /* User data parameter */
10625   FuncDef *pNext;      /* Next function with same name */
10626   void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */
10627   void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */
10628   void (*xFinalize)(sqlite3_context*);                /* Aggregate finalizer */
10629   char *zName;         /* SQL name of the function. */
10630   FuncDef *pHash;      /* Next with a different name but the same hash */
10631   FuncDestructor *pDestructor;   /* Reference counted destructor function */
10632 };
10633 
10634 /*
10635 ** This structure encapsulates a user-function destructor callback (as
10636 ** configured using create_function_v2()) and a reference counter. When
10637 ** create_function_v2() is called to create a function with a destructor,
10638 ** a single object of this type is allocated. FuncDestructor.nRef is set to
10639 ** the number of FuncDef objects created (either 1 or 3, depending on whether
10640 ** or not the specified encoding is SQLITE_ANY). The FuncDef.pDestructor
10641 ** member of each of the new FuncDef objects is set to point to the allocated
10642 ** FuncDestructor.
10643 **
10644 ** Thereafter, when one of the FuncDef objects is deleted, the reference
10645 ** count on this object is decremented. When it reaches 0, the destructor
10646 ** is invoked and the FuncDestructor structure freed.
10647 */
10648 struct FuncDestructor {
10649   int nRef;
10650   void (*xDestroy)(void *);
10651   void *pUserData;
10652 };
10653 
10654 /*
10655 ** Possible values for FuncDef.flags.  Note that the _LENGTH and _TYPEOF
10656 ** values must correspond to OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG.  There
10657 ** are assert() statements in the code to verify this.
10658 */
10659 #define SQLITE_FUNC_ENCMASK  0x003 /* SQLITE_UTF8, SQLITE_UTF16BE or UTF16LE */
10660 #define SQLITE_FUNC_LIKE     0x004 /* Candidate for the LIKE optimization */
10661 #define SQLITE_FUNC_CASE     0x008 /* Case-sensitive LIKE-type function */
10662 #define SQLITE_FUNC_EPHEM    0x010 /* Ephemeral.  Delete with VDBE */
10663 #define SQLITE_FUNC_NEEDCOLL 0x020 /* sqlite3GetFuncCollSeq() might be called */
10664 #define SQLITE_FUNC_LENGTH   0x040 /* Built-in length() function */
10665 #define SQLITE_FUNC_TYPEOF   0x080 /* Built-in typeof() function */
10666 #define SQLITE_FUNC_COUNT    0x100 /* Built-in count(*) aggregate */
10667 #define SQLITE_FUNC_COALESCE 0x200 /* Built-in coalesce() or ifnull() */
10668 #define SQLITE_FUNC_UNLIKELY 0x400 /* Built-in unlikely() function */
10669 #define SQLITE_FUNC_CONSTANT 0x800 /* Constant inputs give a constant output */
10670 
10671 /*
10672 ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are
10673 ** used to create the initializers for the FuncDef structures.
10674 **
10675 **   FUNCTION(zName, nArg, iArg, bNC, xFunc)
10676 **     Used to create a scalar function definition of a function zName
10677 **     implemented by C function xFunc that accepts nArg arguments. The
10678 **     value passed as iArg is cast to a (void*) and made available
10679 **     as the user-data (sqlite3_user_data()) for the function. If
10680 **     argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set.
10681 **
10682 **   VFUNCTION(zName, nArg, iArg, bNC, xFunc)
10683 **     Like FUNCTION except it omits the SQLITE_FUNC_CONSTANT flag.
10684 **
10685 **   AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal)
10686 **     Used to create an aggregate function definition implemented by
10687 **     the C functions xStep and xFinal. The first four parameters
10688 **     are interpreted in the same way as the first 4 parameters to
10689 **     FUNCTION().
10690 **
10691 **   LIKEFUNC(zName, nArg, pArg, flags)
10692 **     Used to create a scalar function definition of a function zName
10693 **     that accepts nArg arguments and is implemented by a call to C
10694 **     function likeFunc. Argument pArg is cast to a (void *) and made
10695 **     available as the function user-data (sqlite3_user_data()). The
10696 **     FuncDef.flags variable is set to the value passed as the flags
10697 **     parameter.
10698 */
10699 #define FUNCTION(zName, nArg, iArg, bNC, xFunc) \
10700   {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \
10701    SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0}
10702 #define VFUNCTION(zName, nArg, iArg, bNC, xFunc) \
10703   {nArg, SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \
10704    SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0}
10705 #define FUNCTION2(zName, nArg, iArg, bNC, xFunc, extraFlags) \
10706   {nArg,SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL)|extraFlags,\
10707    SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0}
10708 #define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \
10709   {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \
10710    pArg, 0, xFunc, 0, 0, #zName, 0, 0}
10711 #define LIKEFUNC(zName, nArg, arg, flags) \
10712   {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|flags, \
10713    (void *)arg, 0, likeFunc, 0, 0, #zName, 0, 0}
10714 #define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \
10715   {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL), \
10716    SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0}
10717 
10718 /*
10719 ** All current savepoints are stored in a linked list starting at
10720 ** sqlite3.pSavepoint. The first element in the list is the most recently
10721 ** opened savepoint. Savepoints are added to the list by the vdbe
10722 ** OP_Savepoint instruction.
10723 */
10724 struct Savepoint {
10725   char *zName;                        /* Savepoint name (nul-terminated) */
10726   i64 nDeferredCons;                  /* Number of deferred fk violations */
10727   i64 nDeferredImmCons;               /* Number of deferred imm fk. */
10728   Savepoint *pNext;                   /* Parent savepoint (if any) */
10729 };
10730 
10731 /*
10732 ** The following are used as the second parameter to sqlite3Savepoint(),
10733 ** and as the P1 argument to the OP_Savepoint instruction.
10734 */
10735 #define SAVEPOINT_BEGIN      0
10736 #define SAVEPOINT_RELEASE    1
10737 #define SAVEPOINT_ROLLBACK   2
10738 
10739 
10740 /*
10741 ** Each SQLite module (virtual table definition) is defined by an
10742 ** instance of the following structure, stored in the sqlite3.aModule
10743 ** hash table.
10744 */
10745 struct Module {
10746   const sqlite3_module *pModule;       /* Callback pointers */
10747   const char *zName;                   /* Name passed to create_module() */
10748   void *pAux;                          /* pAux passed to create_module() */
10749   void (*xDestroy)(void *);            /* Module destructor function */
10750 };
10751 
10752 /*
10753 ** information about each column of an SQL table is held in an instance
10754 ** of this structure.
10755 */
10756 struct Column {
10757   char *zName;     /* Name of this column */
10758   Expr *pDflt;     /* Default value of this column */
10759   char *zDflt;     /* Original text of the default value */
10760   char *zType;     /* Data type for this column */
10761   char *zColl;     /* Collating sequence.  If NULL, use the default */
10762   u8 notNull;      /* An OE_ code for handling a NOT NULL constraint */
10763   char affinity;   /* One of the SQLITE_AFF_... values */
10764   u8 szEst;        /* Estimated size of this column.  INT==1 */
10765   u8 colFlags;     /* Boolean properties.  See COLFLAG_ defines below */
10766 };
10767 
10768 /* Allowed values for Column.colFlags:
10769 */
10770 #define COLFLAG_PRIMKEY  0x0001    /* Column is part of the primary key */
10771 #define COLFLAG_HIDDEN   0x0002    /* A hidden column in a virtual table */
10772 
10773 /*
10774 ** A "Collating Sequence" is defined by an instance of the following
10775 ** structure. Conceptually, a collating sequence consists of a name and
10776 ** a comparison routine that defines the order of that sequence.
10777 **
10778 ** If CollSeq.xCmp is NULL, it means that the
10779 ** collating sequence is undefined.  Indices built on an undefined
10780 ** collating sequence may not be read or written.
10781 */
10782 struct CollSeq {
10783   char *zName;          /* Name of the collating sequence, UTF-8 encoded */
10784   u8 enc;               /* Text encoding handled by xCmp() */
10785   void *pUser;          /* First argument to xCmp() */
10786   int (*xCmp)(void*,int, const void*, int, const void*);
10787   void (*xDel)(void*);  /* Destructor for pUser */
10788 };
10789 
10790 /*
10791 ** A sort order can be either ASC or DESC.
10792 */
10793 #define SQLITE_SO_ASC       0  /* Sort in ascending order */
10794 #define SQLITE_SO_DESC      1  /* Sort in ascending order */
10795 
10796 /*
10797 ** Column affinity types.
10798 **
10799 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and
10800 ** 't' for SQLITE_AFF_TEXT.  But we can save a little space and improve
10801 ** the speed a little by numbering the values consecutively.
10802 **
10803 ** But rather than start with 0 or 1, we begin with 'a'.  That way,
10804 ** when multiple affinity types are concatenated into a string and
10805 ** used as the P4 operand, they will be more readable.
10806 **
10807 ** Note also that the numeric types are grouped together so that testing
10808 ** for a numeric type is a single comparison.
10809 */
10810 #define SQLITE_AFF_TEXT     'a'
10811 #define SQLITE_AFF_NONE     'b'
10812 #define SQLITE_AFF_NUMERIC  'c'
10813 #define SQLITE_AFF_INTEGER  'd'
10814 #define SQLITE_AFF_REAL     'e'
10815 
10816 #define sqlite3IsNumericAffinity(X)  ((X)>=SQLITE_AFF_NUMERIC)
10817 
10818 /*
10819 ** The SQLITE_AFF_MASK values masks off the significant bits of an
10820 ** affinity value.
10821 */
10822 #define SQLITE_AFF_MASK     0x67
10823 
10824 /*
10825 ** Additional bit values that can be ORed with an affinity without
10826 ** changing the affinity.
10827 **
10828 ** The SQLITE_NOTNULL flag is a combination of NULLEQ and JUMPIFNULL.
10829 ** It causes an assert() to fire if either operand to a comparison
10830 ** operator is NULL.  It is added to certain comparison operators to
10831 ** prove that the operands are always NOT NULL.
10832 */
10833 #define SQLITE_JUMPIFNULL   0x08  /* jumps if either operand is NULL */
10834 #define SQLITE_STOREP2      0x10  /* Store result in reg[P2] rather than jump */
10835 #define SQLITE_NULLEQ       0x80  /* NULL=NULL */
10836 #define SQLITE_NOTNULL      0x88  /* Assert that operands are never NULL */
10837 
10838 /*
10839 ** An object of this type is created for each virtual table present in
10840 ** the database schema.
10841 **
10842 ** If the database schema is shared, then there is one instance of this
10843 ** structure for each database connection (sqlite3*) that uses the shared
10844 ** schema. This is because each database connection requires its own unique
10845 ** instance of the sqlite3_vtab* handle used to access the virtual table
10846 ** implementation. sqlite3_vtab* handles can not be shared between
10847 ** database connections, even when the rest of the in-memory database
10848 ** schema is shared, as the implementation often stores the database
10849 ** connection handle passed to it via the xConnect() or xCreate() method
10850 ** during initialization internally. This database connection handle may
10851 ** then be used by the virtual table implementation to access real tables
10852 ** within the database. So that they appear as part of the callers
10853 ** transaction, these accesses need to be made via the same database
10854 ** connection as that used to execute SQL operations on the virtual table.
10855 **
10856 ** All VTable objects that correspond to a single table in a shared
10857 ** database schema are initially stored in a linked-list pointed to by
10858 ** the Table.pVTable member variable of the corresponding Table object.
10859 ** When an sqlite3_prepare() operation is required to access the virtual
10860 ** table, it searches the list for the VTable that corresponds to the
10861 ** database connection doing the preparing so as to use the correct
10862 ** sqlite3_vtab* handle in the compiled query.
10863 **
10864 ** When an in-memory Table object is deleted (for example when the
10865 ** schema is being reloaded for some reason), the VTable objects are not
10866 ** deleted and the sqlite3_vtab* handles are not xDisconnect()ed
10867 ** immediately. Instead, they are moved from the Table.pVTable list to
10868 ** another linked list headed by the sqlite3.pDisconnect member of the
10869 ** corresponding sqlite3 structure. They are then deleted/xDisconnected
10870 ** next time a statement is prepared using said sqlite3*. This is done
10871 ** to avoid deadlock issues involving multiple sqlite3.mutex mutexes.
10872 ** Refer to comments above function sqlite3VtabUnlockList() for an
10873 ** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect
10874 ** list without holding the corresponding sqlite3.mutex mutex.
10875 **
10876 ** The memory for objects of this type is always allocated by
10877 ** sqlite3DbMalloc(), using the connection handle stored in VTable.db as
10878 ** the first argument.
10879 */
10880 struct VTable {
10881   sqlite3 *db;              /* Database connection associated with this table */
10882   Module *pMod;             /* Pointer to module implementation */
10883   sqlite3_vtab *pVtab;      /* Pointer to vtab instance */
10884   int nRef;                 /* Number of pointers to this structure */
10885   u8 bConstraint;           /* True if constraints are supported */
10886   int iSavepoint;           /* Depth of the SAVEPOINT stack */
10887   VTable *pNext;            /* Next in linked list (see above) */
10888 };
10889 
10890 /*
10891 ** Each SQL table is represented in memory by an instance of the
10892 ** following structure.
10893 **
10894 ** Table.zName is the name of the table.  The case of the original
10895 ** CREATE TABLE statement is stored, but case is not significant for
10896 ** comparisons.
10897 **
10898 ** Table.nCol is the number of columns in this table.  Table.aCol is a
10899 ** pointer to an array of Column structures, one for each column.
10900 **
10901 ** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of
10902 ** the column that is that key.   Otherwise Table.iPKey is negative.  Note
10903 ** that the datatype of the PRIMARY KEY must be INTEGER for this field to
10904 ** be set.  An INTEGER PRIMARY KEY is used as the rowid for each row of
10905 ** the table.  If a table has no INTEGER PRIMARY KEY, then a random rowid
10906 ** is generated for each row of the table.  TF_HasPrimaryKey is set if
10907 ** the table has any PRIMARY KEY, INTEGER or otherwise.
10908 **
10909 ** Table.tnum is the page number for the root BTree page of the table in the
10910 ** database file.  If Table.iDb is the index of the database table backend
10911 ** in sqlite.aDb[].  0 is for the main database and 1 is for the file that
10912 ** holds temporary tables and indices.  If TF_Ephemeral is set
10913 ** then the table is stored in a file that is automatically deleted
10914 ** when the VDBE cursor to the table is closed.  In this case Table.tnum
10915 ** refers VDBE cursor number that holds the table open, not to the root
10916 ** page number.  Transient tables are used to hold the results of a
10917 ** sub-query that appears instead of a real table name in the FROM clause
10918 ** of a SELECT statement.
10919 */
10920 struct Table {
10921   char *zName;         /* Name of the table or view */
10922   Column *aCol;        /* Information about each column */
10923   Index *pIndex;       /* List of SQL indexes on this table. */
10924   Select *pSelect;     /* NULL for tables.  Points to definition if a view. */
10925   FKey *pFKey;         /* Linked list of all foreign keys in this table */
10926   char *zColAff;       /* String defining the affinity of each column */
10927 #ifndef SQLITE_OMIT_CHECK
10928   ExprList *pCheck;    /* All CHECK constraints */
10929 #endif
10930   LogEst nRowLogEst;   /* Estimated rows in table - from sqlite_stat1 table */
10931   int tnum;            /* Root BTree node for this table (see note above) */
10932   i16 iPKey;           /* If not negative, use aCol[iPKey] as the primary key */
10933   i16 nCol;            /* Number of columns in this table */
10934   u16 nRef;            /* Number of pointers to this Table */
10935   LogEst szTabRow;     /* Estimated size of each table row in bytes */
10936   u8 tabFlags;         /* Mask of TF_* values */
10937   u8 keyConf;          /* What to do in case of uniqueness conflict on iPKey */
10938 #ifndef SQLITE_OMIT_ALTERTABLE
10939   int addColOffset;    /* Offset in CREATE TABLE stmt to add a new column */
10940 #endif
10941 #ifndef SQLITE_OMIT_VIRTUALTABLE
10942   int nModuleArg;      /* Number of arguments to the module */
10943   char **azModuleArg;  /* Text of all module args. [0] is module name */
10944   VTable *pVTable;     /* List of VTable objects. */
10945 #endif
10946   Trigger *pTrigger;   /* List of triggers stored in pSchema */
10947   Schema *pSchema;     /* Schema that contains this table */
10948   Table *pNextZombie;  /* Next on the Parse.pZombieTab list */
10949 };
10950 
10951 /*
10952 ** Allowed values for Table.tabFlags.
10953 */
10954 #define TF_Readonly        0x01    /* Read-only system table */
10955 #define TF_Ephemeral       0x02    /* An ephemeral table */
10956 #define TF_HasPrimaryKey   0x04    /* Table has a primary key */
10957 #define TF_Autoincrement   0x08    /* Integer primary key is autoincrement */
10958 #define TF_Virtual         0x10    /* Is a virtual table */
10959 #define TF_WithoutRowid    0x20    /* No rowid used. PRIMARY KEY is the key */
10960 
10961 
10962 /*
10963 ** Test to see whether or not a table is a virtual table.  This is
10964 ** done as a macro so that it will be optimized out when virtual
10965 ** table support is omitted from the build.
10966 */
10967 #ifndef SQLITE_OMIT_VIRTUALTABLE
10968 #  define IsVirtual(X)      (((X)->tabFlags & TF_Virtual)!=0)
10969 #  define IsHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0)
10970 #else
10971 #  define IsVirtual(X)      0
10972 #  define IsHiddenColumn(X) 0
10973 #endif
10974 
10975 /* Does the table have a rowid */
10976 #define HasRowid(X)     (((X)->tabFlags & TF_WithoutRowid)==0)
10977 
10978 /*
10979 ** Each foreign key constraint is an instance of the following structure.
10980 **
10981 ** A foreign key is associated with two tables.  The "from" table is
10982 ** the table that contains the REFERENCES clause that creates the foreign
10983 ** key.  The "to" table is the table that is named in the REFERENCES clause.
10984 ** Consider this example:
10985 **
10986 **     CREATE TABLE ex1(
10987 **       a INTEGER PRIMARY KEY,
10988 **       b INTEGER CONSTRAINT fk1 REFERENCES ex2(x)
10989 **     );
10990 **
10991 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2".
10992 ** Equivalent names:
10993 **
10994 **     from-table == child-table
10995 **       to-table == parent-table
10996 **
10997 ** Each REFERENCES clause generates an instance of the following structure
10998 ** which is attached to the from-table.  The to-table need not exist when
10999 ** the from-table is created.  The existence of the to-table is not checked.
11000 **
11001 ** The list of all parents for child Table X is held at X.pFKey.
11002 **
11003 ** A list of all children for a table named Z (which might not even exist)
11004 ** is held in Schema.fkeyHash with a hash key of Z.
11005 */
11006 struct FKey {
11007   Table *pFrom;     /* Table containing the REFERENCES clause (aka: Child) */
11008   FKey *pNextFrom;  /* Next FKey with the same in pFrom. Next parent of pFrom */
11009   char *zTo;        /* Name of table that the key points to (aka: Parent) */
11010   FKey *pNextTo;    /* Next with the same zTo. Next child of zTo. */
11011   FKey *pPrevTo;    /* Previous with the same zTo */
11012   int nCol;         /* Number of columns in this key */
11013   /* EV: R-30323-21917 */
11014   u8 isDeferred;       /* True if constraint checking is deferred till COMMIT */
11015   u8 aAction[2];        /* ON DELETE and ON UPDATE actions, respectively */
11016   Trigger *apTrigger[2];/* Triggers for aAction[] actions */
11017   struct sColMap {      /* Mapping of columns in pFrom to columns in zTo */
11018     int iFrom;            /* Index of column in pFrom */
11019     char *zCol;           /* Name of column in zTo.  If NULL use PRIMARY KEY */
11020   } aCol[1];            /* One entry for each of nCol columns */
11021 };
11022 
11023 /*
11024 ** SQLite supports many different ways to resolve a constraint
11025 ** error.  ROLLBACK processing means that a constraint violation
11026 ** causes the operation in process to fail and for the current transaction
11027 ** to be rolled back.  ABORT processing means the operation in process
11028 ** fails and any prior changes from that one operation are backed out,
11029 ** but the transaction is not rolled back.  FAIL processing means that
11030 ** the operation in progress stops and returns an error code.  But prior
11031 ** changes due to the same operation are not backed out and no rollback
11032 ** occurs.  IGNORE means that the particular row that caused the constraint
11033 ** error is not inserted or updated.  Processing continues and no error
11034 ** is returned.  REPLACE means that preexisting database rows that caused
11035 ** a UNIQUE constraint violation are removed so that the new insert or
11036 ** update can proceed.  Processing continues and no error is reported.
11037 **
11038 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys.
11039 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the
11040 ** same as ROLLBACK for DEFERRED keys.  SETNULL means that the foreign
11041 ** key is set to NULL.  CASCADE means that a DELETE or UPDATE of the
11042 ** referenced table row is propagated into the row that holds the
11043 ** foreign key.
11044 **
11045 ** The following symbolic values are used to record which type
11046 ** of action to take.
11047 */
11048 #define OE_None     0   /* There is no constraint to check */
11049 #define OE_Rollback 1   /* Fail the operation and rollback the transaction */
11050 #define OE_Abort    2   /* Back out changes but do no rollback transaction */
11051 #define OE_Fail     3   /* Stop the operation but leave all prior changes */
11052 #define OE_Ignore   4   /* Ignore the error. Do not do the INSERT or UPDATE */
11053 #define OE_Replace  5   /* Delete existing record, then do INSERT or UPDATE */
11054 
11055 #define OE_Restrict 6   /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */
11056 #define OE_SetNull  7   /* Set the foreign key value to NULL */
11057 #define OE_SetDflt  8   /* Set the foreign key value to its default */
11058 #define OE_Cascade  9   /* Cascade the changes */
11059 
11060 #define OE_Default  10  /* Do whatever the default action is */
11061 
11062 
11063 /*
11064 ** An instance of the following structure is passed as the first
11065 ** argument to sqlite3VdbeKeyCompare and is used to control the
11066 ** comparison of the two index keys.
11067 **
11068 ** Note that aSortOrder[] and aColl[] have nField+1 slots.  There
11069 ** are nField slots for the columns of an index then one extra slot
11070 ** for the rowid at the end.
11071 */
11072 struct KeyInfo {
11073   u32 nRef;           /* Number of references to this KeyInfo object */
11074   u8 enc;             /* Text encoding - one of the SQLITE_UTF* values */
11075   u16 nField;         /* Number of key columns in the index */
11076   u16 nXField;        /* Number of columns beyond the key columns */
11077   sqlite3 *db;        /* The database connection */
11078   u8 *aSortOrder;     /* Sort order for each column. */
11079   CollSeq *aColl[1];  /* Collating sequence for each term of the key */
11080 };
11081 
11082 /*
11083 ** An instance of the following structure holds information about a
11084 ** single index record that has already been parsed out into individual
11085 ** values.
11086 **
11087 ** A record is an object that contains one or more fields of data.
11088 ** Records are used to store the content of a table row and to store
11089 ** the key of an index.  A blob encoding of a record is created by
11090 ** the OP_MakeRecord opcode of the VDBE and is disassembled by the
11091 ** OP_Column opcode.
11092 **
11093 ** This structure holds a record that has already been disassembled
11094 ** into its constituent fields.
11095 **
11096 ** The r1 and r2 member variables are only used by the optimized comparison
11097 ** functions vdbeRecordCompareInt() and vdbeRecordCompareString().
11098 */
11099 struct UnpackedRecord {
11100   KeyInfo *pKeyInfo;  /* Collation and sort-order information */
11101   u16 nField;         /* Number of entries in apMem[] */
11102   i8 default_rc;      /* Comparison result if keys are equal */
11103   u8 isCorrupt;       /* Corruption detected by xRecordCompare() */
11104   Mem *aMem;          /* Values */
11105   int r1;             /* Value to return if (lhs > rhs) */
11106   int r2;             /* Value to return if (rhs < lhs) */
11107 };
11108 
11109 
11110 /*
11111 ** Each SQL index is represented in memory by an
11112 ** instance of the following structure.
11113 **
11114 ** The columns of the table that are to be indexed are described
11115 ** by the aiColumn[] field of this structure.  For example, suppose
11116 ** we have the following table and index:
11117 **
11118 **     CREATE TABLE Ex1(c1 int, c2 int, c3 text);
11119 **     CREATE INDEX Ex2 ON Ex1(c3,c1);
11120 **
11121 ** In the Table structure describing Ex1, nCol==3 because there are
11122 ** three columns in the table.  In the Index structure describing
11123 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed.
11124 ** The value of aiColumn is {2, 0}.  aiColumn[0]==2 because the
11125 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[].
11126 ** The second column to be indexed (c1) has an index of 0 in
11127 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0.
11128 **
11129 ** The Index.onError field determines whether or not the indexed columns
11130 ** must be unique and what to do if they are not.  When Index.onError=OE_None,
11131 ** it means this is not a unique index.  Otherwise it is a unique index
11132 ** and the value of Index.onError indicate the which conflict resolution
11133 ** algorithm to employ whenever an attempt is made to insert a non-unique
11134 ** element.
11135 */
11136 struct Index {
11137   char *zName;             /* Name of this index */
11138   i16 *aiColumn;           /* Which columns are used by this index.  1st is 0 */
11139   LogEst *aiRowLogEst;     /* From ANALYZE: Est. rows selected by each column */
11140   Table *pTable;           /* The SQL table being indexed */
11141   char *zColAff;           /* String defining the affinity of each column */
11142   Index *pNext;            /* The next index associated with the same table */
11143   Schema *pSchema;         /* Schema containing this index */
11144   u8 *aSortOrder;          /* for each column: True==DESC, False==ASC */
11145   char **azColl;           /* Array of collation sequence names for index */
11146   Expr *pPartIdxWhere;     /* WHERE clause for partial indices */
11147   KeyInfo *pKeyInfo;       /* A KeyInfo object suitable for this index */
11148   int tnum;                /* DB Page containing root of this index */
11149   LogEst szIdxRow;         /* Estimated average row size in bytes */
11150   u16 nKeyCol;             /* Number of columns forming the key */
11151   u16 nColumn;             /* Number of columns stored in the index */
11152   u8 onError;              /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
11153   unsigned idxType:2;      /* 1==UNIQUE, 2==PRIMARY KEY, 0==CREATE INDEX */
11154   unsigned bUnordered:1;   /* Use this index for == or IN queries only */
11155   unsigned uniqNotNull:1;  /* True if UNIQUE and NOT NULL for all columns */
11156   unsigned isResized:1;    /* True if resizeIndexObject() has been called */
11157   unsigned isCovering:1;   /* True if this is a covering index */
11158 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
11159   int nSample;             /* Number of elements in aSample[] */
11160   int nSampleCol;          /* Size of IndexSample.anEq[] and so on */
11161   tRowcnt *aAvgEq;         /* Average nEq values for keys not in aSample */
11162   IndexSample *aSample;    /* Samples of the left-most key */
11163 #endif
11164 };
11165 
11166 /*
11167 ** Allowed values for Index.idxType
11168 */
11169 #define SQLITE_IDXTYPE_APPDEF      0   /* Created using CREATE INDEX */
11170 #define SQLITE_IDXTYPE_UNIQUE      1   /* Implements a UNIQUE constraint */
11171 #define SQLITE_IDXTYPE_PRIMARYKEY  2   /* Is the PRIMARY KEY for the table */
11172 
11173 /* Return true if index X is a PRIMARY KEY index */
11174 #define IsPrimaryKeyIndex(X)  ((X)->idxType==SQLITE_IDXTYPE_PRIMARYKEY)
11175 
11176 /*
11177 ** Each sample stored in the sqlite_stat3 table is represented in memory
11178 ** using a structure of this type.  See documentation at the top of the
11179 ** analyze.c source file for additional information.
11180 */
11181 struct IndexSample {
11182   void *p;          /* Pointer to sampled record */
11183   int n;            /* Size of record in bytes */
11184   tRowcnt *anEq;    /* Est. number of rows where the key equals this sample */
11185   tRowcnt *anLt;    /* Est. number of rows where key is less than this sample */
11186   tRowcnt *anDLt;   /* Est. number of distinct keys less than this sample */
11187 };
11188 
11189 /*
11190 ** Each token coming out of the lexer is an instance of
11191 ** this structure.  Tokens are also used as part of an expression.
11192 **
11193 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and
11194 ** may contain random values.  Do not make any assumptions about Token.dyn
11195 ** and Token.n when Token.z==0.
11196 */
11197 struct Token {
11198   const char *z;     /* Text of the token.  Not NULL-terminated! */
11199   unsigned int n;    /* Number of characters in this token */
11200 };
11201 
11202 /*
11203 ** An instance of this structure contains information needed to generate
11204 ** code for a SELECT that contains aggregate functions.
11205 **
11206 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a
11207 ** pointer to this structure.  The Expr.iColumn field is the index in
11208 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate
11209 ** code for that node.
11210 **
11211 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the
11212 ** original Select structure that describes the SELECT statement.  These
11213 ** fields do not need to be freed when deallocating the AggInfo structure.
11214 */
11215 struct AggInfo {
11216   u8 directMode;          /* Direct rendering mode means take data directly
11217                           ** from source tables rather than from accumulators */
11218   u8 useSortingIdx;       /* In direct mode, reference the sorting index rather
11219                           ** than the source table */
11220   int sortingIdx;         /* Cursor number of the sorting index */
11221   int sortingIdxPTab;     /* Cursor number of pseudo-table */
11222   int nSortingColumn;     /* Number of columns in the sorting index */
11223   int mnReg, mxReg;       /* Range of registers allocated for aCol and aFunc */
11224   ExprList *pGroupBy;     /* The group by clause */
11225   struct AggInfo_col {    /* For each column used in source tables */
11226     Table *pTab;             /* Source table */
11227     int iTable;              /* Cursor number of the source table */
11228     int iColumn;             /* Column number within the source table */
11229     int iSorterColumn;       /* Column number in the sorting index */
11230     int iMem;                /* Memory location that acts as accumulator */
11231     Expr *pExpr;             /* The original expression */
11232   } *aCol;
11233   int nColumn;            /* Number of used entries in aCol[] */
11234   int nAccumulator;       /* Number of columns that show through to the output.
11235                           ** Additional columns are used only as parameters to
11236                           ** aggregate functions */
11237   struct AggInfo_func {   /* For each aggregate function */
11238     Expr *pExpr;             /* Expression encoding the function */
11239     FuncDef *pFunc;          /* The aggregate function implementation */
11240     int iMem;                /* Memory location that acts as accumulator */
11241     int iDistinct;           /* Ephemeral table used to enforce DISTINCT */
11242   } *aFunc;
11243   int nFunc;              /* Number of entries in aFunc[] */
11244 };
11245 
11246 /*
11247 ** The datatype ynVar is a signed integer, either 16-bit or 32-bit.
11248 ** Usually it is 16-bits.  But if SQLITE_MAX_VARIABLE_NUMBER is greater
11249 ** than 32767 we have to make it 32-bit.  16-bit is preferred because
11250 ** it uses less memory in the Expr object, which is a big memory user
11251 ** in systems with lots of prepared statements.  And few applications
11252 ** need more than about 10 or 20 variables.  But some extreme users want
11253 ** to have prepared statements with over 32767 variables, and for them
11254 ** the option is available (at compile-time).
11255 */
11256 #if SQLITE_MAX_VARIABLE_NUMBER<=32767
11257 typedef i16 ynVar;
11258 #else
11259 typedef int ynVar;
11260 #endif
11261 
11262 /*
11263 ** Each node of an expression in the parse tree is an instance
11264 ** of this structure.
11265 **
11266 ** Expr.op is the opcode. The integer parser token codes are reused
11267 ** as opcodes here. For example, the parser defines TK_GE to be an integer
11268 ** code representing the ">=" operator. This same integer code is reused
11269 ** to represent the greater-than-or-equal-to operator in the expression
11270 ** tree.
11271 **
11272 ** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB,
11273 ** or TK_STRING), then Expr.token contains the text of the SQL literal. If
11274 ** the expression is a variable (TK_VARIABLE), then Expr.token contains the
11275 ** variable name. Finally, if the expression is an SQL function (TK_FUNCTION),
11276 ** then Expr.token contains the name of the function.
11277 **
11278 ** Expr.pRight and Expr.pLeft are the left and right subexpressions of a
11279 ** binary operator. Either or both may be NULL.
11280 **
11281 ** Expr.x.pList is a list of arguments if the expression is an SQL function,
11282 ** a CASE expression or an IN expression of the form "<lhs> IN (<y>, <z>...)".
11283 ** Expr.x.pSelect is used if the expression is a sub-select or an expression of
11284 ** the form "<lhs> IN (SELECT ...)". If the EP_xIsSelect bit is set in the
11285 ** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is
11286 ** valid.
11287 **
11288 ** An expression of the form ID or ID.ID refers to a column in a table.
11289 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is
11290 ** the integer cursor number of a VDBE cursor pointing to that table and
11291 ** Expr.iColumn is the column number for the specific column.  If the
11292 ** expression is used as a result in an aggregate SELECT, then the
11293 ** value is also stored in the Expr.iAgg column in the aggregate so that
11294 ** it can be accessed after all aggregates are computed.
11295 **
11296 ** If the expression is an unbound variable marker (a question mark
11297 ** character '?' in the original SQL) then the Expr.iTable holds the index
11298 ** number for that variable.
11299 **
11300 ** If the expression is a subquery then Expr.iColumn holds an integer
11301 ** register number containing the result of the subquery.  If the
11302 ** subquery gives a constant result, then iTable is -1.  If the subquery
11303 ** gives a different answer at different times during statement processing
11304 ** then iTable is the address of a subroutine that computes the subquery.
11305 **
11306 ** If the Expr is of type OP_Column, and the table it is selecting from
11307 ** is a disk table or the "old.*" pseudo-table, then pTab points to the
11308 ** corresponding table definition.
11309 **
11310 ** ALLOCATION NOTES:
11311 **
11312 ** Expr objects can use a lot of memory space in database schema.  To
11313 ** help reduce memory requirements, sometimes an Expr object will be
11314 ** truncated.  And to reduce the number of memory allocations, sometimes
11315 ** two or more Expr objects will be stored in a single memory allocation,
11316 ** together with Expr.zToken strings.
11317 **
11318 ** If the EP_Reduced and EP_TokenOnly flags are set when
11319 ** an Expr object is truncated.  When EP_Reduced is set, then all
11320 ** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees
11321 ** are contained within the same memory allocation.  Note, however, that
11322 ** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately
11323 ** allocated, regardless of whether or not EP_Reduced is set.
11324 */
11325 struct Expr {
11326   u8 op;                 /* Operation performed by this node */
11327   char affinity;         /* The affinity of the column or 0 if not a column */
11328   u32 flags;             /* Various flags.  EP_* See below */
11329   union {
11330     char *zToken;          /* Token value. Zero terminated and dequoted */
11331     int iValue;            /* Non-negative integer value if EP_IntValue */
11332   } u;
11333 
11334   /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no
11335   ** space is allocated for the fields below this point. An attempt to
11336   ** access them will result in a segfault or malfunction.
11337   *********************************************************************/
11338 
11339   Expr *pLeft;           /* Left subnode */
11340   Expr *pRight;          /* Right subnode */
11341   union {
11342     ExprList *pList;     /* op = IN, EXISTS, SELECT, CASE, FUNCTION, BETWEEN */
11343     Select *pSelect;     /* EP_xIsSelect and op = IN, EXISTS, SELECT */
11344   } x;
11345 
11346   /* If the EP_Reduced flag is set in the Expr.flags mask, then no
11347   ** space is allocated for the fields below this point. An attempt to
11348   ** access them will result in a segfault or malfunction.
11349   *********************************************************************/
11350 
11351 #if SQLITE_MAX_EXPR_DEPTH>0
11352   int nHeight;           /* Height of the tree headed by this node */
11353 #endif
11354   int iTable;            /* TK_COLUMN: cursor number of table holding column
11355                          ** TK_REGISTER: register number
11356                          ** TK_TRIGGER: 1 -> new, 0 -> old
11357                          ** EP_Unlikely:  1000 times likelihood */
11358   ynVar iColumn;         /* TK_COLUMN: column index.  -1 for rowid.
11359                          ** TK_VARIABLE: variable number (always >= 1). */
11360   i16 iAgg;              /* Which entry in pAggInfo->aCol[] or ->aFunc[] */
11361   i16 iRightJoinTable;   /* If EP_FromJoin, the right table of the join */
11362   u8 op2;                /* TK_REGISTER: original value of Expr.op
11363                          ** TK_COLUMN: the value of p5 for OP_Column
11364                          ** TK_AGG_FUNCTION: nesting depth */
11365   AggInfo *pAggInfo;     /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */
11366   Table *pTab;           /* Table for TK_COLUMN expressions. */
11367 };
11368 
11369 /*
11370 ** The following are the meanings of bits in the Expr.flags field.
11371 */
11372 #define EP_FromJoin  0x000001 /* Originated in ON or USING clause of a join */
11373 #define EP_Agg       0x000002 /* Contains one or more aggregate functions */
11374 #define EP_Resolved  0x000004 /* IDs have been resolved to COLUMNs */
11375 #define EP_Error     0x000008 /* Expression contains one or more errors */
11376 #define EP_Distinct  0x000010 /* Aggregate function with DISTINCT keyword */
11377 #define EP_VarSelect 0x000020 /* pSelect is correlated, not constant */
11378 #define EP_DblQuoted 0x000040 /* token.z was originally in "..." */
11379 #define EP_InfixFunc 0x000080 /* True for an infix function: LIKE, GLOB, etc */
11380 #define EP_Collate   0x000100 /* Tree contains a TK_COLLATE operator */
11381 #define EP_Generic   0x000200 /* Ignore COLLATE or affinity on this tree */
11382 #define EP_IntValue  0x000400 /* Integer value contained in u.iValue */
11383 #define EP_xIsSelect 0x000800 /* x.pSelect is valid (otherwise x.pList is) */
11384 #define EP_Skip      0x001000 /* COLLATE, AS, or UNLIKELY */
11385 #define EP_Reduced   0x002000 /* Expr struct EXPR_REDUCEDSIZE bytes only */
11386 #define EP_TokenOnly 0x004000 /* Expr struct EXPR_TOKENONLYSIZE bytes only */
11387 #define EP_Static    0x008000 /* Held in memory not obtained from malloc() */
11388 #define EP_MemToken  0x010000 /* Need to sqlite3DbFree() Expr.zToken */
11389 #define EP_NoReduce  0x020000 /* Cannot EXPRDUP_REDUCE this Expr */
11390 #define EP_Unlikely  0x040000 /* unlikely() or likelihood() function */
11391 #define EP_Constant  0x080000 /* Node is a constant */
11392 
11393 /*
11394 ** These macros can be used to test, set, or clear bits in the
11395 ** Expr.flags field.
11396 */
11397 #define ExprHasProperty(E,P)     (((E)->flags&(P))!=0)
11398 #define ExprHasAllProperty(E,P)  (((E)->flags&(P))==(P))
11399 #define ExprSetProperty(E,P)     (E)->flags|=(P)
11400 #define ExprClearProperty(E,P)   (E)->flags&=~(P)
11401 
11402 /* The ExprSetVVAProperty() macro is used for Verification, Validation,
11403 ** and Accreditation only.  It works like ExprSetProperty() during VVA
11404 ** processes but is a no-op for delivery.
11405 */
11406 #ifdef SQLITE_DEBUG
11407 # define ExprSetVVAProperty(E,P)  (E)->flags|=(P)
11408 #else
11409 # define ExprSetVVAProperty(E,P)
11410 #endif
11411 
11412 /*
11413 ** Macros to determine the number of bytes required by a normal Expr
11414 ** struct, an Expr struct with the EP_Reduced flag set in Expr.flags
11415 ** and an Expr struct with the EP_TokenOnly flag set.
11416 */
11417 #define EXPR_FULLSIZE           sizeof(Expr)           /* Full size */
11418 #define EXPR_REDUCEDSIZE        offsetof(Expr,iTable)  /* Common features */
11419 #define EXPR_TOKENONLYSIZE      offsetof(Expr,pLeft)   /* Fewer features */
11420 
11421 /*
11422 ** Flags passed to the sqlite3ExprDup() function. See the header comment
11423 ** above sqlite3ExprDup() for details.
11424 */
11425 #define EXPRDUP_REDUCE         0x0001  /* Used reduced-size Expr nodes */
11426 
11427 /*
11428 ** A list of expressions.  Each expression may optionally have a
11429 ** name.  An expr/name combination can be used in several ways, such
11430 ** as the list of "expr AS ID" fields following a "SELECT" or in the
11431 ** list of "ID = expr" items in an UPDATE.  A list of expressions can
11432 ** also be used as the argument to a function, in which case the a.zName
11433 ** field is not used.
11434 **
11435 ** By default the Expr.zSpan field holds a human-readable description of
11436 ** the expression that is used in the generation of error messages and
11437 ** column labels.  In this case, Expr.zSpan is typically the text of a
11438 ** column expression as it exists in a SELECT statement.  However, if
11439 ** the bSpanIsTab flag is set, then zSpan is overloaded to mean the name
11440 ** of the result column in the form: DATABASE.TABLE.COLUMN.  This later
11441 ** form is used for name resolution with nested FROM clauses.
11442 */
11443 struct ExprList {
11444   int nExpr;             /* Number of expressions on the list */
11445   struct ExprList_item { /* For each expression in the list */
11446     Expr *pExpr;            /* The list of expressions */
11447     char *zName;            /* Token associated with this expression */
11448     char *zSpan;            /* Original text of the expression */
11449     u8 sortOrder;           /* 1 for DESC or 0 for ASC */
11450     unsigned done :1;       /* A flag to indicate when processing is finished */
11451     unsigned bSpanIsTab :1; /* zSpan holds DB.TABLE.COLUMN */
11452     unsigned reusable :1;   /* Constant expression is reusable */
11453     union {
11454       struct {
11455         u16 iOrderByCol;      /* For ORDER BY, column number in result set */
11456         u16 iAlias;           /* Index into Parse.aAlias[] for zName */
11457       } x;
11458       int iConstExprReg;      /* Register in which Expr value is cached */
11459     } u;
11460   } *a;                  /* Alloc a power of two greater or equal to nExpr */
11461 };
11462 
11463 /*
11464 ** An instance of this structure is used by the parser to record both
11465 ** the parse tree for an expression and the span of input text for an
11466 ** expression.
11467 */
11468 struct ExprSpan {
11469   Expr *pExpr;          /* The expression parse tree */
11470   const char *zStart;   /* First character of input text */
11471   const char *zEnd;     /* One character past the end of input text */
11472 };
11473 
11474 /*
11475 ** An instance of this structure can hold a simple list of identifiers,
11476 ** such as the list "a,b,c" in the following statements:
11477 **
11478 **      INSERT INTO t(a,b,c) VALUES ...;
11479 **      CREATE INDEX idx ON t(a,b,c);
11480 **      CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...;
11481 **
11482 ** The IdList.a.idx field is used when the IdList represents the list of
11483 ** column names after a table name in an INSERT statement.  In the statement
11484 **
11485 **     INSERT INTO t(a,b,c) ...
11486 **
11487 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k.
11488 */
11489 struct IdList {
11490   struct IdList_item {
11491     char *zName;      /* Name of the identifier */
11492     int idx;          /* Index in some Table.aCol[] of a column named zName */
11493   } *a;
11494   int nId;         /* Number of identifiers on the list */
11495 };
11496 
11497 /*
11498 ** The bitmask datatype defined below is used for various optimizations.
11499 **
11500 ** Changing this from a 64-bit to a 32-bit type limits the number of
11501 ** tables in a join to 32 instead of 64.  But it also reduces the size
11502 ** of the library by 738 bytes on ix86.
11503 */
11504 typedef u64 Bitmask;
11505 
11506 /*
11507 ** The number of bits in a Bitmask.  "BMS" means "BitMask Size".
11508 */
11509 #define BMS  ((int)(sizeof(Bitmask)*8))
11510 
11511 /*
11512 ** A bit in a Bitmask
11513 */
11514 #define MASKBIT(n)   (((Bitmask)1)<<(n))
11515 #define MASKBIT32(n) (((unsigned int)1)<<(n))
11516 
11517 /*
11518 ** The following structure describes the FROM clause of a SELECT statement.
11519 ** Each table or subquery in the FROM clause is a separate element of
11520 ** the SrcList.a[] array.
11521 **
11522 ** With the addition of multiple database support, the following structure
11523 ** can also be used to describe a particular table such as the table that
11524 ** is modified by an INSERT, DELETE, or UPDATE statement.  In standard SQL,
11525 ** such a table must be a simple name: ID.  But in SQLite, the table can
11526 ** now be identified by a database name, a dot, then the table name: ID.ID.
11527 **
11528 ** The jointype starts out showing the join type between the current table
11529 ** and the next table on the list.  The parser builds the list this way.
11530 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each
11531 ** jointype expresses the join between the table and the previous table.
11532 **
11533 ** In the colUsed field, the high-order bit (bit 63) is set if the table
11534 ** contains more than 63 columns and the 64-th or later column is used.
11535 */
11536 struct SrcList {
11537   int nSrc;        /* Number of tables or subqueries in the FROM clause */
11538   u32 nAlloc;      /* Number of entries allocated in a[] below */
11539   struct SrcList_item {
11540     Schema *pSchema;  /* Schema to which this item is fixed */
11541     char *zDatabase;  /* Name of database holding this table */
11542     char *zName;      /* Name of the table */
11543     char *zAlias;     /* The "B" part of a "A AS B" phrase.  zName is the "A" */
11544     Table *pTab;      /* An SQL table corresponding to zName */
11545     Select *pSelect;  /* A SELECT statement used in place of a table name */
11546     int addrFillSub;  /* Address of subroutine to manifest a subquery */
11547     int regReturn;    /* Register holding return address of addrFillSub */
11548     int regResult;    /* Registers holding results of a co-routine */
11549     u8 jointype;      /* Type of join between this able and the previous */
11550     unsigned notIndexed :1;    /* True if there is a NOT INDEXED clause */
11551     unsigned isCorrelated :1;  /* True if sub-query is correlated */
11552     unsigned viaCoroutine :1;  /* Implemented as a co-routine */
11553     unsigned isRecursive :1;   /* True for recursive reference in WITH */
11554 #ifndef SQLITE_OMIT_EXPLAIN
11555     u8 iSelectId;     /* If pSelect!=0, the id of the sub-select in EQP */
11556 #endif
11557     int iCursor;      /* The VDBE cursor number used to access this table */
11558     Expr *pOn;        /* The ON clause of a join */
11559     IdList *pUsing;   /* The USING clause of a join */
11560     Bitmask colUsed;  /* Bit N (1<<N) set if column N of pTab is used */
11561     char *zIndex;     /* Identifier from "INDEXED BY <zIndex>" clause */
11562     Index *pIndex;    /* Index structure corresponding to zIndex, if any */
11563   } a[1];             /* One entry for each identifier on the list */
11564 };
11565 
11566 /*
11567 ** Permitted values of the SrcList.a.jointype field
11568 */
11569 #define JT_INNER     0x0001    /* Any kind of inner or cross join */
11570 #define JT_CROSS     0x0002    /* Explicit use of the CROSS keyword */
11571 #define JT_NATURAL   0x0004    /* True for a "natural" join */
11572 #define JT_LEFT      0x0008    /* Left outer join */
11573 #define JT_RIGHT     0x0010    /* Right outer join */
11574 #define JT_OUTER     0x0020    /* The "OUTER" keyword is present */
11575 #define JT_ERROR     0x0040    /* unknown or unsupported join type */
11576 
11577 
11578 /*
11579 ** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin()
11580 ** and the WhereInfo.wctrlFlags member.
11581 */
11582 #define WHERE_ORDERBY_NORMAL   0x0000 /* No-op */
11583 #define WHERE_ORDERBY_MIN      0x0001 /* ORDER BY processing for min() func */
11584 #define WHERE_ORDERBY_MAX      0x0002 /* ORDER BY processing for max() func */
11585 #define WHERE_ONEPASS_DESIRED  0x0004 /* Want to do one-pass UPDATE/DELETE */
11586 #define WHERE_DUPLICATES_OK    0x0008 /* Ok to return a row more than once */
11587 #define WHERE_OMIT_OPEN_CLOSE  0x0010 /* Table cursors are already open */
11588 #define WHERE_FORCE_TABLE      0x0020 /* Do not use an index-only search */
11589 #define WHERE_ONETABLE_ONLY    0x0040 /* Only code the 1st table in pTabList */
11590 #define WHERE_AND_ONLY         0x0080 /* Don't use indices for OR terms */
11591 #define WHERE_GROUPBY          0x0100 /* pOrderBy is really a GROUP BY */
11592 #define WHERE_DISTINCTBY       0x0200 /* pOrderby is really a DISTINCT clause */
11593 #define WHERE_WANT_DISTINCT    0x0400 /* All output needs to be distinct */
11594 #define WHERE_SORTBYGROUP      0x0800 /* Support sqlite3WhereIsSorted() */
11595 
11596 /* Allowed return values from sqlite3WhereIsDistinct()
11597 */
11598 #define WHERE_DISTINCT_NOOP      0  /* DISTINCT keyword not used */
11599 #define WHERE_DISTINCT_UNIQUE    1  /* No duplicates */
11600 #define WHERE_DISTINCT_ORDERED   2  /* All duplicates are adjacent */
11601 #define WHERE_DISTINCT_UNORDERED 3  /* Duplicates are scattered */
11602 
11603 /*
11604 ** A NameContext defines a context in which to resolve table and column
11605 ** names.  The context consists of a list of tables (the pSrcList) field and
11606 ** a list of named expression (pEList).  The named expression list may
11607 ** be NULL.  The pSrc corresponds to the FROM clause of a SELECT or
11608 ** to the table being operated on by INSERT, UPDATE, or DELETE.  The
11609 ** pEList corresponds to the result set of a SELECT and is NULL for
11610 ** other statements.
11611 **
11612 ** NameContexts can be nested.  When resolving names, the inner-most
11613 ** context is searched first.  If no match is found, the next outer
11614 ** context is checked.  If there is still no match, the next context
11615 ** is checked.  This process continues until either a match is found
11616 ** or all contexts are check.  When a match is found, the nRef member of
11617 ** the context containing the match is incremented.
11618 **
11619 ** Each subquery gets a new NameContext.  The pNext field points to the
11620 ** NameContext in the parent query.  Thus the process of scanning the
11621 ** NameContext list corresponds to searching through successively outer
11622 ** subqueries looking for a match.
11623 */
11624 struct NameContext {
11625   Parse *pParse;       /* The parser */
11626   SrcList *pSrcList;   /* One or more tables used to resolve names */
11627   ExprList *pEList;    /* Optional list of result-set columns */
11628   AggInfo *pAggInfo;   /* Information about aggregates at this level */
11629   NameContext *pNext;  /* Next outer name context.  NULL for outermost */
11630   int nRef;            /* Number of names resolved by this context */
11631   int nErr;            /* Number of errors encountered while resolving names */
11632   u8 ncFlags;          /* Zero or more NC_* flags defined below */
11633 };
11634 
11635 /*
11636 ** Allowed values for the NameContext, ncFlags field.
11637 */
11638 #define NC_AllowAgg  0x01    /* Aggregate functions are allowed here */
11639 #define NC_HasAgg    0x02    /* One or more aggregate functions seen */
11640 #define NC_IsCheck   0x04    /* True if resolving names in a CHECK constraint */
11641 #define NC_InAggFunc 0x08    /* True if analyzing arguments to an agg func */
11642 #define NC_PartIdx   0x10    /* True if resolving a partial index WHERE */
11643 
11644 /*
11645 ** An instance of the following structure contains all information
11646 ** needed to generate code for a single SELECT statement.
11647 **
11648 ** nLimit is set to -1 if there is no LIMIT clause.  nOffset is set to 0.
11649 ** If there is a LIMIT clause, the parser sets nLimit to the value of the
11650 ** limit and nOffset to the value of the offset (or 0 if there is not
11651 ** offset).  But later on, nLimit and nOffset become the memory locations
11652 ** in the VDBE that record the limit and offset counters.
11653 **
11654 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes.
11655 ** These addresses must be stored so that we can go back and fill in
11656 ** the P4_KEYINFO and P2 parameters later.  Neither the KeyInfo nor
11657 ** the number of columns in P2 can be computed at the same time
11658 ** as the OP_OpenEphm instruction is coded because not
11659 ** enough information about the compound query is known at that point.
11660 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences
11661 ** for the result set.  The KeyInfo for addrOpenEphm[2] contains collating
11662 ** sequences for the ORDER BY clause.
11663 */
11664 struct Select {
11665   ExprList *pEList;      /* The fields of the result */
11666   u8 op;                 /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */
11667   u16 selFlags;          /* Various SF_* values */
11668   int iLimit, iOffset;   /* Memory registers holding LIMIT & OFFSET counters */
11669   int addrOpenEphm[2];   /* OP_OpenEphem opcodes related to this select */
11670   u64 nSelectRow;        /* Estimated number of result rows */
11671   SrcList *pSrc;         /* The FROM clause */
11672   Expr *pWhere;          /* The WHERE clause */
11673   ExprList *pGroupBy;    /* The GROUP BY clause */
11674   Expr *pHaving;         /* The HAVING clause */
11675   ExprList *pOrderBy;    /* The ORDER BY clause */
11676   Select *pPrior;        /* Prior select in a compound select statement */
11677   Select *pNext;         /* Next select to the left in a compound */
11678   Expr *pLimit;          /* LIMIT expression. NULL means not used. */
11679   Expr *pOffset;         /* OFFSET expression. NULL means not used. */
11680   With *pWith;           /* WITH clause attached to this select. Or NULL. */
11681 };
11682 
11683 /*
11684 ** Allowed values for Select.selFlags.  The "SF" prefix stands for
11685 ** "Select Flag".
11686 */
11687 #define SF_Distinct        0x0001  /* Output should be DISTINCT */
11688 #define SF_Resolved        0x0002  /* Identifiers have been resolved */
11689 #define SF_Aggregate       0x0004  /* Contains aggregate functions */
11690 #define SF_UsesEphemeral   0x0008  /* Uses the OpenEphemeral opcode */
11691 #define SF_Expanded        0x0010  /* sqlite3SelectExpand() called on this */
11692 #define SF_HasTypeInfo     0x0020  /* FROM subqueries have Table metadata */
11693                     /*     0x0040  NOT USED */
11694 #define SF_Values          0x0080  /* Synthesized from VALUES clause */
11695                     /*     0x0100  NOT USED */
11696 #define SF_NestedFrom      0x0200  /* Part of a parenthesized FROM clause */
11697 #define SF_MaybeConvert    0x0400  /* Need convertCompoundSelectToSubquery() */
11698 #define SF_Recursive       0x0800  /* The recursive part of a recursive CTE */
11699 #define SF_Compound        0x1000  /* Part of a compound query */
11700 
11701 
11702 /*
11703 ** The results of a SELECT can be distributed in several ways, as defined
11704 ** by one of the following macros.  The "SRT" prefix means "SELECT Result
11705 ** Type".
11706 **
11707 **     SRT_Union       Store results as a key in a temporary index
11708 **                     identified by pDest->iSDParm.
11709 **
11710 **     SRT_Except      Remove results from the temporary index pDest->iSDParm.
11711 **
11712 **     SRT_Exists      Store a 1 in memory cell pDest->iSDParm if the result
11713 **                     set is not empty.
11714 **
11715 **     SRT_Discard     Throw the results away.  This is used by SELECT
11716 **                     statements within triggers whose only purpose is
11717 **                     the side-effects of functions.
11718 **
11719 ** All of the above are free to ignore their ORDER BY clause. Those that
11720 ** follow must honor the ORDER BY clause.
11721 **
11722 **     SRT_Output      Generate a row of output (using the OP_ResultRow
11723 **                     opcode) for each row in the result set.
11724 **
11725 **     SRT_Mem         Only valid if the result is a single column.
11726 **                     Store the first column of the first result row
11727 **                     in register pDest->iSDParm then abandon the rest
11728 **                     of the query.  This destination implies "LIMIT 1".
11729 **
11730 **     SRT_Set         The result must be a single column.  Store each
11731 **                     row of result as the key in table pDest->iSDParm.
11732 **                     Apply the affinity pDest->affSdst before storing
11733 **                     results.  Used to implement "IN (SELECT ...)".
11734 **
11735 **     SRT_EphemTab    Create an temporary table pDest->iSDParm and store
11736 **                     the result there. The cursor is left open after
11737 **                     returning.  This is like SRT_Table except that
11738 **                     this destination uses OP_OpenEphemeral to create
11739 **                     the table first.
11740 **
11741 **     SRT_Coroutine   Generate a co-routine that returns a new row of
11742 **                     results each time it is invoked.  The entry point
11743 **                     of the co-routine is stored in register pDest->iSDParm
11744 **                     and the result row is stored in pDest->nDest registers
11745 **                     starting with pDest->iSdst.
11746 **
11747 **     SRT_Table       Store results in temporary table pDest->iSDParm.
11748 **     SRT_Fifo        This is like SRT_EphemTab except that the table
11749 **                     is assumed to already be open.  SRT_Fifo has
11750 **                     the additional property of being able to ignore
11751 **                     the ORDER BY clause.
11752 **
11753 **     SRT_DistFifo    Store results in a temporary table pDest->iSDParm.
11754 **                     But also use temporary table pDest->iSDParm+1 as
11755 **                     a record of all prior results and ignore any duplicate
11756 **                     rows.  Name means:  "Distinct Fifo".
11757 **
11758 **     SRT_Queue       Store results in priority queue pDest->iSDParm (really
11759 **                     an index).  Append a sequence number so that all entries
11760 **                     are distinct.
11761 **
11762 **     SRT_DistQueue   Store results in priority queue pDest->iSDParm only if
11763 **                     the same record has never been stored before.  The
11764 **                     index at pDest->iSDParm+1 hold all prior stores.
11765 */
11766 #define SRT_Union        1  /* Store result as keys in an index */
11767 #define SRT_Except       2  /* Remove result from a UNION index */
11768 #define SRT_Exists       3  /* Store 1 if the result is not empty */
11769 #define SRT_Discard      4  /* Do not save the results anywhere */
11770 #define SRT_Fifo         5  /* Store result as data with an automatic rowid */
11771 #define SRT_DistFifo     6  /* Like SRT_Fifo, but unique results only */
11772 #define SRT_Queue        7  /* Store result in an queue */
11773 #define SRT_DistQueue    8  /* Like SRT_Queue, but unique results only */
11774 
11775 /* The ORDER BY clause is ignored for all of the above */
11776 #define IgnorableOrderby(X) ((X->eDest)<=SRT_DistQueue)
11777 
11778 #define SRT_Output       9  /* Output each row of result */
11779 #define SRT_Mem         10  /* Store result in a memory cell */
11780 #define SRT_Set         11  /* Store results as keys in an index */
11781 #define SRT_EphemTab    12  /* Create transient tab and store like SRT_Table */
11782 #define SRT_Coroutine   13  /* Generate a single row of result */
11783 #define SRT_Table       14  /* Store result as data with an automatic rowid */
11784 
11785 /*
11786 ** An instance of this object describes where to put of the results of
11787 ** a SELECT statement.
11788 */
11789 struct SelectDest {
11790   u8 eDest;            /* How to dispose of the results.  On of SRT_* above. */
11791   char affSdst;        /* Affinity used when eDest==SRT_Set */
11792   int iSDParm;         /* A parameter used by the eDest disposal method */
11793   int iSdst;           /* Base register where results are written */
11794   int nSdst;           /* Number of registers allocated */
11795   ExprList *pOrderBy;  /* Key columns for SRT_Queue and SRT_DistQueue */
11796 };
11797 
11798 /*
11799 ** During code generation of statements that do inserts into AUTOINCREMENT
11800 ** tables, the following information is attached to the Table.u.autoInc.p
11801 ** pointer of each autoincrement table to record some side information that
11802 ** the code generator needs.  We have to keep per-table autoincrement
11803 ** information in case inserts are down within triggers.  Triggers do not
11804 ** normally coordinate their activities, but we do need to coordinate the
11805 ** loading and saving of autoincrement information.
11806 */
11807 struct AutoincInfo {
11808   AutoincInfo *pNext;   /* Next info block in a list of them all */
11809   Table *pTab;          /* Table this info block refers to */
11810   int iDb;              /* Index in sqlite3.aDb[] of database holding pTab */
11811   int regCtr;           /* Memory register holding the rowid counter */
11812 };
11813 
11814 /*
11815 ** Size of the column cache
11816 */
11817 #ifndef SQLITE_N_COLCACHE
11818 # define SQLITE_N_COLCACHE 10
11819 #endif
11820 
11821 /*
11822 ** At least one instance of the following structure is created for each
11823 ** trigger that may be fired while parsing an INSERT, UPDATE or DELETE
11824 ** statement. All such objects are stored in the linked list headed at
11825 ** Parse.pTriggerPrg and deleted once statement compilation has been
11826 ** completed.
11827 **
11828 ** A Vdbe sub-program that implements the body and WHEN clause of trigger
11829 ** TriggerPrg.pTrigger, assuming a default ON CONFLICT clause of
11830 ** TriggerPrg.orconf, is stored in the TriggerPrg.pProgram variable.
11831 ** The Parse.pTriggerPrg list never contains two entries with the same
11832 ** values for both pTrigger and orconf.
11833 **
11834 ** The TriggerPrg.aColmask[0] variable is set to a mask of old.* columns
11835 ** accessed (or set to 0 for triggers fired as a result of INSERT
11836 ** statements). Similarly, the TriggerPrg.aColmask[1] variable is set to
11837 ** a mask of new.* columns used by the program.
11838 */
11839 struct TriggerPrg {
11840   Trigger *pTrigger;      /* Trigger this program was coded from */
11841   TriggerPrg *pNext;      /* Next entry in Parse.pTriggerPrg list */
11842   SubProgram *pProgram;   /* Program implementing pTrigger/orconf */
11843   int orconf;             /* Default ON CONFLICT policy */
11844   u32 aColmask[2];        /* Masks of old.*, new.* columns accessed */
11845 };
11846 
11847 /*
11848 ** The yDbMask datatype for the bitmask of all attached databases.
11849 */
11850 #if SQLITE_MAX_ATTACHED>30
11851   typedef sqlite3_uint64 yDbMask;
11852 #else
11853   typedef unsigned int yDbMask;
11854 #endif
11855 
11856 /*
11857 ** An SQL parser context.  A copy of this structure is passed through
11858 ** the parser and down into all the parser action routine in order to
11859 ** carry around information that is global to the entire parse.
11860 **
11861 ** The structure is divided into two parts.  When the parser and code
11862 ** generate call themselves recursively, the first part of the structure
11863 ** is constant but the second part is reset at the beginning and end of
11864 ** each recursion.
11865 **
11866 ** The nTableLock and aTableLock variables are only used if the shared-cache
11867 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are
11868 ** used to store the set of table-locks required by the statement being
11869 ** compiled. Function sqlite3TableLock() is used to add entries to the
11870 ** list.
11871 */
11872 struct Parse {
11873   sqlite3 *db;         /* The main database structure */
11874   char *zErrMsg;       /* An error message */
11875   Vdbe *pVdbe;         /* An engine for executing database bytecode */
11876   int rc;              /* Return code from execution */
11877   u8 colNamesSet;      /* TRUE after OP_ColumnName has been issued to pVdbe */
11878   u8 checkSchema;      /* Causes schema cookie check after an error */
11879   u8 nested;           /* Number of nested calls to the parser/code generator */
11880   u8 nTempReg;         /* Number of temporary registers in aTempReg[] */
11881   u8 isMultiWrite;     /* True if statement may modify/insert multiple rows */
11882   u8 mayAbort;         /* True if statement may throw an ABORT exception */
11883   u8 hasCompound;      /* Need to invoke convertCompoundSelectToSubquery() */
11884   u8 okConstFactor;    /* OK to factor out constants */
11885   int aTempReg[8];     /* Holding area for temporary registers */
11886   int nRangeReg;       /* Size of the temporary register block */
11887   int iRangeReg;       /* First register in temporary register block */
11888   int nErr;            /* Number of errors seen */
11889   int nTab;            /* Number of previously allocated VDBE cursors */
11890   int nMem;            /* Number of memory cells used so far */
11891   int nSet;            /* Number of sets used so far */
11892   int nOnce;           /* Number of OP_Once instructions so far */
11893   int nOpAlloc;        /* Number of slots allocated for Vdbe.aOp[] */
11894   int iFixedOp;        /* Never back out opcodes iFixedOp-1 or earlier */
11895   int ckBase;          /* Base register of data during check constraints */
11896   int iPartIdxTab;     /* Table corresponding to a partial index */
11897   int iCacheLevel;     /* ColCache valid when aColCache[].iLevel<=iCacheLevel */
11898   int iCacheCnt;       /* Counter used to generate aColCache[].lru values */
11899   int nLabel;          /* Number of labels used */
11900   int *aLabel;         /* Space to hold the labels */
11901   struct yColCache {
11902     int iTable;           /* Table cursor number */
11903     i16 iColumn;          /* Table column number */
11904     u8 tempReg;           /* iReg is a temp register that needs to be freed */
11905     int iLevel;           /* Nesting level */
11906     int iReg;             /* Reg with value of this column. 0 means none. */
11907     int lru;              /* Least recently used entry has the smallest value */
11908   } aColCache[SQLITE_N_COLCACHE];  /* One for each column cache entry */
11909   ExprList *pConstExpr;/* Constant expressions */
11910   Token constraintName;/* Name of the constraint currently being parsed */
11911   yDbMask writeMask;   /* Start a write transaction on these databases */
11912   yDbMask cookieMask;  /* Bitmask of schema verified databases */
11913   int cookieValue[SQLITE_MAX_ATTACHED+2];  /* Values of cookies to verify */
11914   int regRowid;        /* Register holding rowid of CREATE TABLE entry */
11915   int regRoot;         /* Register holding root page number for new objects */
11916   int nMaxArg;         /* Max args passed to user function by sub-program */
11917 #ifndef SQLITE_OMIT_SHARED_CACHE
11918   int nTableLock;        /* Number of locks in aTableLock */
11919   TableLock *aTableLock; /* Required table locks for shared-cache mode */
11920 #endif
11921   AutoincInfo *pAinc;  /* Information about AUTOINCREMENT counters */
11922 
11923   /* Information used while coding trigger programs. */
11924   Parse *pToplevel;    /* Parse structure for main program (or NULL) */
11925   Table *pTriggerTab;  /* Table triggers are being coded for */
11926   int addrCrTab;       /* Address of OP_CreateTable opcode on CREATE TABLE */
11927   int addrSkipPK;      /* Address of instruction to skip PRIMARY KEY index */
11928   u32 nQueryLoop;      /* Est number of iterations of a query (10*log2(N)) */
11929   u32 oldmask;         /* Mask of old.* columns referenced */
11930   u32 newmask;         /* Mask of new.* columns referenced */
11931   u8 eTriggerOp;       /* TK_UPDATE, TK_INSERT or TK_DELETE */
11932   u8 eOrconf;          /* Default ON CONFLICT policy for trigger steps */
11933   u8 disableTriggers;  /* True to disable triggers */
11934 
11935   /************************************************************************
11936   ** Above is constant between recursions.  Below is reset before and after
11937   ** each recursion.  The boundary between these two regions is determined
11938   ** using offsetof(Parse,nVar) so the nVar field must be the first field
11939   ** in the recursive region.
11940   ************************************************************************/
11941 
11942   int nVar;                 /* Number of '?' variables seen in the SQL so far */
11943   int nzVar;                /* Number of available slots in azVar[] */
11944   u8 iPkSortOrder;          /* ASC or DESC for INTEGER PRIMARY KEY */
11945   u8 bFreeWith;             /* True if pWith should be freed with parser */
11946   u8 explain;               /* True if the EXPLAIN flag is found on the query */
11947 #ifndef SQLITE_OMIT_VIRTUALTABLE
11948   u8 declareVtab;           /* True if inside sqlite3_declare_vtab() */
11949   int nVtabLock;            /* Number of virtual tables to lock */
11950 #endif
11951   int nAlias;               /* Number of aliased result set columns */
11952   int nHeight;              /* Expression tree height of current sub-select */
11953 #ifndef SQLITE_OMIT_EXPLAIN
11954   int iSelectId;            /* ID of current select for EXPLAIN output */
11955   int iNextSelectId;        /* Next available select ID for EXPLAIN output */
11956 #endif
11957   char **azVar;             /* Pointers to names of parameters */
11958   Vdbe *pReprepare;         /* VM being reprepared (sqlite3Reprepare()) */
11959   const char *zTail;        /* All SQL text past the last semicolon parsed */
11960   Table *pNewTable;         /* A table being constructed by CREATE TABLE */
11961   Trigger *pNewTrigger;     /* Trigger under construct by a CREATE TRIGGER */
11962   const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */
11963   Token sNameToken;         /* Token with unqualified schema object name */
11964   Token sLastToken;         /* The last token parsed */
11965 #ifndef SQLITE_OMIT_VIRTUALTABLE
11966   Token sArg;               /* Complete text of a module argument */
11967   Table **apVtabLock;       /* Pointer to virtual tables needing locking */
11968 #endif
11969   Table *pZombieTab;        /* List of Table objects to delete after code gen */
11970   TriggerPrg *pTriggerPrg;  /* Linked list of coded triggers */
11971   With *pWith;              /* Current WITH clause, or NULL */
11972 };
11973 
11974 /*
11975 ** Return true if currently inside an sqlite3_declare_vtab() call.
11976 */
11977 #ifdef SQLITE_OMIT_VIRTUALTABLE
11978   #define IN_DECLARE_VTAB 0
11979 #else
11980   #define IN_DECLARE_VTAB (pParse->declareVtab)
11981 #endif
11982 
11983 /*
11984 ** An instance of the following structure can be declared on a stack and used
11985 ** to save the Parse.zAuthContext value so that it can be restored later.
11986 */
11987 struct AuthContext {
11988   const char *zAuthContext;   /* Put saved Parse.zAuthContext here */
11989   Parse *pParse;              /* The Parse structure */
11990 };
11991 
11992 /*
11993 ** Bitfield flags for P5 value in various opcodes.
11994 */
11995 #define OPFLAG_NCHANGE       0x01    /* Set to update db->nChange */
11996 #define OPFLAG_LASTROWID     0x02    /* Set to update db->lastRowid */
11997 #define OPFLAG_ISUPDATE      0x04    /* This OP_Insert is an sql UPDATE */
11998 #define OPFLAG_APPEND        0x08    /* This is likely to be an append */
11999 #define OPFLAG_USESEEKRESULT 0x10    /* Try to avoid a seek in BtreeInsert() */
12000 #define OPFLAG_CLEARCACHE    0x20    /* Clear pseudo-table cache in OP_Column */
12001 #define OPFLAG_LENGTHARG     0x40    /* OP_Column only used for length() */
12002 #define OPFLAG_TYPEOFARG     0x80    /* OP_Column only used for typeof() */
12003 #define OPFLAG_BULKCSR       0x01    /* OP_Open** used to open bulk cursor */
12004 #define OPFLAG_P2ISREG       0x02    /* P2 to OP_Open** is a register number */
12005 #define OPFLAG_PERMUTE       0x01    /* OP_Compare: use the permutation */
12006 
12007 /*
12008  * Each trigger present in the database schema is stored as an instance of
12009  * struct Trigger.
12010  *
12011  * Pointers to instances of struct Trigger are stored in two ways.
12012  * 1. In the "trigHash" hash table (part of the sqlite3* that represents the
12013  *    database). This allows Trigger structures to be retrieved by name.
12014  * 2. All triggers associated with a single table form a linked list, using the
12015  *    pNext member of struct Trigger. A pointer to the first element of the
12016  *    linked list is stored as the "pTrigger" member of the associated
12017  *    struct Table.
12018  *
12019  * The "step_list" member points to the first element of a linked list
12020  * containing the SQL statements specified as the trigger program.
12021  */
12022 struct Trigger {
12023   char *zName;            /* The name of the trigger                        */
12024   char *table;            /* The table or view to which the trigger applies */
12025   u8 op;                  /* One of TK_DELETE, TK_UPDATE, TK_INSERT         */
12026   u8 tr_tm;               /* One of TRIGGER_BEFORE, TRIGGER_AFTER */
12027   Expr *pWhen;            /* The WHEN clause of the expression (may be NULL) */
12028   IdList *pColumns;       /* If this is an UPDATE OF <column-list> trigger,
12029                              the <column-list> is stored here */
12030   Schema *pSchema;        /* Schema containing the trigger */
12031   Schema *pTabSchema;     /* Schema containing the table */
12032   TriggerStep *step_list; /* Link list of trigger program steps             */
12033   Trigger *pNext;         /* Next trigger associated with the table */
12034 };
12035 
12036 /*
12037 ** A trigger is either a BEFORE or an AFTER trigger.  The following constants
12038 ** determine which.
12039 **
12040 ** If there are multiple triggers, you might of some BEFORE and some AFTER.
12041 ** In that cases, the constants below can be ORed together.
12042 */
12043 #define TRIGGER_BEFORE  1
12044 #define TRIGGER_AFTER   2
12045 
12046 /*
12047  * An instance of struct TriggerStep is used to store a single SQL statement
12048  * that is a part of a trigger-program.
12049  *
12050  * Instances of struct TriggerStep are stored in a singly linked list (linked
12051  * using the "pNext" member) referenced by the "step_list" member of the
12052  * associated struct Trigger instance. The first element of the linked list is
12053  * the first step of the trigger-program.
12054  *
12055  * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or
12056  * "SELECT" statement. The meanings of the other members is determined by the
12057  * value of "op" as follows:
12058  *
12059  * (op == TK_INSERT)
12060  * orconf    -> stores the ON CONFLICT algorithm
12061  * pSelect   -> If this is an INSERT INTO ... SELECT ... statement, then
12062  *              this stores a pointer to the SELECT statement. Otherwise NULL.
12063  * target    -> A token holding the quoted name of the table to insert into.
12064  * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then
12065  *              this stores values to be inserted. Otherwise NULL.
12066  * pIdList   -> If this is an INSERT INTO ... (<column-names>) VALUES ...
12067  *              statement, then this stores the column-names to be
12068  *              inserted into.
12069  *
12070  * (op == TK_DELETE)
12071  * target    -> A token holding the quoted name of the table to delete from.
12072  * pWhere    -> The WHERE clause of the DELETE statement if one is specified.
12073  *              Otherwise NULL.
12074  *
12075  * (op == TK_UPDATE)
12076  * target    -> A token holding the quoted name of the table to update rows of.
12077  * pWhere    -> The WHERE clause of the UPDATE statement if one is specified.
12078  *              Otherwise NULL.
12079  * pExprList -> A list of the columns to update and the expressions to update
12080  *              them to. See sqlite3Update() documentation of "pChanges"
12081  *              argument.
12082  *
12083  */
12084 struct TriggerStep {
12085   u8 op;               /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */
12086   u8 orconf;           /* OE_Rollback etc. */
12087   Trigger *pTrig;      /* The trigger that this step is a part of */
12088   Select *pSelect;     /* SELECT statment or RHS of INSERT INTO .. SELECT ... */
12089   Token target;        /* Target table for DELETE, UPDATE, INSERT */
12090   Expr *pWhere;        /* The WHERE clause for DELETE or UPDATE steps */
12091   ExprList *pExprList; /* SET clause for UPDATE. */
12092   IdList *pIdList;     /* Column names for INSERT */
12093   TriggerStep *pNext;  /* Next in the link-list */
12094   TriggerStep *pLast;  /* Last element in link-list. Valid for 1st elem only */
12095 };
12096 
12097 /*
12098 ** The following structure contains information used by the sqliteFix...
12099 ** routines as they walk the parse tree to make database references
12100 ** explicit.
12101 */
12102 typedef struct DbFixer DbFixer;
12103 struct DbFixer {
12104   Parse *pParse;      /* The parsing context.  Error messages written here */
12105   Schema *pSchema;    /* Fix items to this schema */
12106   int bVarOnly;       /* Check for variable references only */
12107   const char *zDb;    /* Make sure all objects are contained in this database */
12108   const char *zType;  /* Type of the container - used for error messages */
12109   const Token *pName; /* Name of the container - used for error messages */
12110 };
12111 
12112 /*
12113 ** An objected used to accumulate the text of a string where we
12114 ** do not necessarily know how big the string will be in the end.
12115 */
12116 struct StrAccum {
12117   sqlite3 *db;         /* Optional database for lookaside.  Can be NULL */
12118   char *zBase;         /* A base allocation.  Not from malloc. */
12119   char *zText;         /* The string collected so far */
12120   int  nChar;          /* Length of the string so far */
12121   int  nAlloc;         /* Amount of space allocated in zText */
12122   int  mxAlloc;        /* Maximum allowed string length */
12123   u8   useMalloc;      /* 0: none,  1: sqlite3DbMalloc,  2: sqlite3_malloc */
12124   u8   accError;       /* STRACCUM_NOMEM or STRACCUM_TOOBIG */
12125 };
12126 #define STRACCUM_NOMEM   1
12127 #define STRACCUM_TOOBIG  2
12128 
12129 /*
12130 ** A pointer to this structure is used to communicate information
12131 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback.
12132 */
12133 typedef struct {
12134   sqlite3 *db;        /* The database being initialized */
12135   char **pzErrMsg;    /* Error message stored here */
12136   int iDb;            /* 0 for main database.  1 for TEMP, 2.. for ATTACHed */
12137   int rc;             /* Result code stored here */
12138 } InitData;
12139 
12140 /*
12141 ** Structure containing global configuration data for the SQLite library.
12142 **
12143 ** This structure also contains some state information.
12144 */
12145 struct Sqlite3Config {
12146   int bMemstat;                     /* True to enable memory status */
12147   int bCoreMutex;                   /* True to enable core mutexing */
12148   int bFullMutex;                   /* True to enable full mutexing */
12149   int bOpenUri;                     /* True to interpret filenames as URIs */
12150   int bUseCis;                      /* Use covering indices for full-scans */
12151   int mxStrlen;                     /* Maximum string length */
12152   int neverCorrupt;                 /* Database is always well-formed */
12153   int szLookaside;                  /* Default lookaside buffer size */
12154   int nLookaside;                   /* Default lookaside buffer count */
12155   sqlite3_mem_methods m;            /* Low-level memory allocation interface */
12156   sqlite3_mutex_methods mutex;      /* Low-level mutex interface */
12157   sqlite3_pcache_methods2 pcache2;  /* Low-level page-cache interface */
12158   void *pHeap;                      /* Heap storage space */
12159   int nHeap;                        /* Size of pHeap[] */
12160   int mnReq, mxReq;                 /* Min and max heap requests sizes */
12161   sqlite3_int64 szMmap;             /* mmap() space per open file */
12162   sqlite3_int64 mxMmap;             /* Maximum value for szMmap */
12163   void *pScratch;                   /* Scratch memory */
12164   int szScratch;                    /* Size of each scratch buffer */
12165   int nScratch;                     /* Number of scratch buffers */
12166   void *pPage;                      /* Page cache memory */
12167   int szPage;                       /* Size of each page in pPage[] */
12168   int nPage;                        /* Number of pages in pPage[] */
12169   int mxParserStack;                /* maximum depth of the parser stack */
12170   int sharedCacheEnabled;           /* true if shared-cache mode enabled */
12171   /* The above might be initialized to non-zero.  The following need to always
12172   ** initially be zero, however. */
12173   int isInit;                       /* True after initialization has finished */
12174   int inProgress;                   /* True while initialization in progress */
12175   int isMutexInit;                  /* True after mutexes are initialized */
12176   int isMallocInit;                 /* True after malloc is initialized */
12177   int isPCacheInit;                 /* True after malloc is initialized */
12178   int nRefInitMutex;                /* Number of users of pInitMutex */
12179   sqlite3_mutex *pInitMutex;        /* Mutex used by sqlite3_initialize() */
12180   void (*xLog)(void*,int,const char*); /* Function for logging */
12181   void *pLogArg;                       /* First argument to xLog() */
12182 #ifdef SQLITE_ENABLE_SQLLOG
12183   void(*xSqllog)(void*,sqlite3*,const char*, int);
12184   void *pSqllogArg;
12185 #endif
12186 #ifdef SQLITE_VDBE_COVERAGE
12187   /* The following callback (if not NULL) is invoked on every VDBE branch
12188   ** operation.  Set the callback using SQLITE_TESTCTRL_VDBE_COVERAGE.
12189   */
12190   void (*xVdbeBranch)(void*,int iSrcLine,u8 eThis,u8 eMx);  /* Callback */
12191   void *pVdbeBranchArg;                                     /* 1st argument */
12192 #endif
12193 #ifndef SQLITE_OMIT_BUILTIN_TEST
12194   int (*xTestCallback)(int);        /* Invoked by sqlite3FaultSim() */
12195 #endif
12196   int bLocaltimeFault;              /* True to fail localtime() calls */
12197 };
12198 
12199 /*
12200 ** This macro is used inside of assert() statements to indicate that
12201 ** the assert is only valid on a well-formed database.  Instead of:
12202 **
12203 **     assert( X );
12204 **
12205 ** One writes:
12206 **
12207 **     assert( X || CORRUPT_DB );
12208 **
12209 ** CORRUPT_DB is true during normal operation.  CORRUPT_DB does not indicate
12210 ** that the database is definitely corrupt, only that it might be corrupt.
12211 ** For most test cases, CORRUPT_DB is set to false using a special
12212 ** sqlite3_test_control().  This enables assert() statements to prove
12213 ** things that are always true for well-formed databases.
12214 */
12215 #define CORRUPT_DB  (sqlite3Config.neverCorrupt==0)
12216 
12217 /*
12218 ** Context pointer passed down through the tree-walk.
12219 */
12220 struct Walker {
12221   int (*xExprCallback)(Walker*, Expr*);     /* Callback for expressions */
12222   int (*xSelectCallback)(Walker*,Select*);  /* Callback for SELECTs */
12223   void (*xSelectCallback2)(Walker*,Select*);/* Second callback for SELECTs */
12224   Parse *pParse;                            /* Parser context.  */
12225   int walkerDepth;                          /* Number of subqueries */
12226   union {                                   /* Extra data for callback */
12227     NameContext *pNC;                          /* Naming context */
12228     int i;                                     /* Integer value */
12229     SrcList *pSrcList;                         /* FROM clause */
12230     struct SrcCount *pSrcCount;                /* Counting column references */
12231   } u;
12232 };
12233 
12234 /* Forward declarations */
12235 SQLITE_PRIVATE int sqlite3WalkExpr(Walker*, Expr*);
12236 SQLITE_PRIVATE int sqlite3WalkExprList(Walker*, ExprList*);
12237 SQLITE_PRIVATE int sqlite3WalkSelect(Walker*, Select*);
12238 SQLITE_PRIVATE int sqlite3WalkSelectExpr(Walker*, Select*);
12239 SQLITE_PRIVATE int sqlite3WalkSelectFrom(Walker*, Select*);
12240 
12241 /*
12242 ** Return code from the parse-tree walking primitives and their
12243 ** callbacks.
12244 */
12245 #define WRC_Continue    0   /* Continue down into children */
12246 #define WRC_Prune       1   /* Omit children but continue walking siblings */
12247 #define WRC_Abort       2   /* Abandon the tree walk */
12248 
12249 /*
12250 ** An instance of this structure represents a set of one or more CTEs
12251 ** (common table expressions) created by a single WITH clause.
12252 */
12253 struct With {
12254   int nCte;                       /* Number of CTEs in the WITH clause */
12255   With *pOuter;                   /* Containing WITH clause, or NULL */
12256   struct Cte {                    /* For each CTE in the WITH clause.... */
12257     char *zName;                    /* Name of this CTE */
12258     ExprList *pCols;                /* List of explicit column names, or NULL */
12259     Select *pSelect;                /* The definition of this CTE */
12260     const char *zErr;               /* Error message for circular references */
12261   } a[1];
12262 };
12263 
12264 /*
12265 ** Assuming zIn points to the first byte of a UTF-8 character,
12266 ** advance zIn to point to the first byte of the next UTF-8 character.
12267 */
12268 #define SQLITE_SKIP_UTF8(zIn) {                        \
12269   if( (*(zIn++))>=0xc0 ){                              \
12270     while( (*zIn & 0xc0)==0x80 ){ zIn++; }             \
12271   }                                                    \
12272 }
12273 
12274 /*
12275 ** The SQLITE_*_BKPT macros are substitutes for the error codes with
12276 ** the same name but without the _BKPT suffix.  These macros invoke
12277 ** routines that report the line-number on which the error originated
12278 ** using sqlite3_log().  The routines also provide a convenient place
12279 ** to set a debugger breakpoint.
12280 */
12281 SQLITE_PRIVATE int sqlite3CorruptError(int);
12282 SQLITE_PRIVATE int sqlite3MisuseError(int);
12283 SQLITE_PRIVATE int sqlite3CantopenError(int);
12284 #define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__)
12285 #define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__)
12286 #define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__)
12287 
12288 
12289 /*
12290 ** FTS4 is really an extension for FTS3.  It is enabled using the
12291 ** SQLITE_ENABLE_FTS3 macro.  But to avoid confusion we also all
12292 ** the SQLITE_ENABLE_FTS4 macro to serve as an alisse for SQLITE_ENABLE_FTS3.
12293 */
12294 #if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3)
12295 # define SQLITE_ENABLE_FTS3
12296 #endif
12297 
12298 /*
12299 ** The ctype.h header is needed for non-ASCII systems.  It is also
12300 ** needed by FTS3 when FTS3 is included in the amalgamation.
12301 */
12302 #if !defined(SQLITE_ASCII) || \
12303     (defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION))
12304 # include <ctype.h>
12305 #endif
12306 
12307 /*
12308 ** The following macros mimic the standard library functions toupper(),
12309 ** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The
12310 ** sqlite versions only work for ASCII characters, regardless of locale.
12311 */
12312 #ifdef SQLITE_ASCII
12313 # define sqlite3Toupper(x)  ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20))
12314 # define sqlite3Isspace(x)   (sqlite3CtypeMap[(unsigned char)(x)]&0x01)
12315 # define sqlite3Isalnum(x)   (sqlite3CtypeMap[(unsigned char)(x)]&0x06)
12316 # define sqlite3Isalpha(x)   (sqlite3CtypeMap[(unsigned char)(x)]&0x02)
12317 # define sqlite3Isdigit(x)   (sqlite3CtypeMap[(unsigned char)(x)]&0x04)
12318 # define sqlite3Isxdigit(x)  (sqlite3CtypeMap[(unsigned char)(x)]&0x08)
12319 # define sqlite3Tolower(x)   (sqlite3UpperToLower[(unsigned char)(x)])
12320 #else
12321 # define sqlite3Toupper(x)   toupper((unsigned char)(x))
12322 # define sqlite3Isspace(x)   isspace((unsigned char)(x))
12323 # define sqlite3Isalnum(x)   isalnum((unsigned char)(x))
12324 # define sqlite3Isalpha(x)   isalpha((unsigned char)(x))
12325 # define sqlite3Isdigit(x)   isdigit((unsigned char)(x))
12326 # define sqlite3Isxdigit(x)  isxdigit((unsigned char)(x))
12327 # define sqlite3Tolower(x)   tolower((unsigned char)(x))
12328 #endif
12329 
12330 /*
12331 ** Internal function prototypes
12332 */
12333 #define sqlite3StrICmp sqlite3_stricmp
12334 SQLITE_PRIVATE int sqlite3Strlen30(const char*);
12335 #define sqlite3StrNICmp sqlite3_strnicmp
12336 
12337 SQLITE_PRIVATE int sqlite3MallocInit(void);
12338 SQLITE_PRIVATE void sqlite3MallocEnd(void);
12339 SQLITE_PRIVATE void *sqlite3Malloc(int);
12340 SQLITE_PRIVATE void *sqlite3MallocZero(int);
12341 SQLITE_PRIVATE void *sqlite3DbMallocZero(sqlite3*, int);
12342 SQLITE_PRIVATE void *sqlite3DbMallocRaw(sqlite3*, int);
12343 SQLITE_PRIVATE char *sqlite3DbStrDup(sqlite3*,const char*);
12344 SQLITE_PRIVATE char *sqlite3DbStrNDup(sqlite3*,const char*, int);
12345 SQLITE_PRIVATE void *sqlite3Realloc(void*, int);
12346 SQLITE_PRIVATE void *sqlite3DbReallocOrFree(sqlite3 *, void *, int);
12347 SQLITE_PRIVATE void *sqlite3DbRealloc(sqlite3 *, void *, int);
12348 SQLITE_PRIVATE void sqlite3DbFree(sqlite3*, void*);
12349 SQLITE_PRIVATE int sqlite3MallocSize(void*);
12350 SQLITE_PRIVATE int sqlite3DbMallocSize(sqlite3*, void*);
12351 SQLITE_PRIVATE void *sqlite3ScratchMalloc(int);
12352 SQLITE_PRIVATE void sqlite3ScratchFree(void*);
12353 SQLITE_PRIVATE void *sqlite3PageMalloc(int);
12354 SQLITE_PRIVATE void sqlite3PageFree(void*);
12355 SQLITE_PRIVATE void sqlite3MemSetDefault(void);
12356 SQLITE_PRIVATE void sqlite3BenignMallocHooks(void (*)(void), void (*)(void));
12357 SQLITE_PRIVATE int sqlite3HeapNearlyFull(void);
12358 
12359 /*
12360 ** On systems with ample stack space and that support alloca(), make
12361 ** use of alloca() to obtain space for large automatic objects.  By default,
12362 ** obtain space from malloc().
12363 **
12364 ** The alloca() routine never returns NULL.  This will cause code paths
12365 ** that deal with sqlite3StackAlloc() failures to be unreachable.
12366 */
12367 #ifdef SQLITE_USE_ALLOCA
12368 # define sqlite3StackAllocRaw(D,N)   alloca(N)
12369 # define sqlite3StackAllocZero(D,N)  memset(alloca(N), 0, N)
12370 # define sqlite3StackFree(D,P)
12371 #else
12372 # define sqlite3StackAllocRaw(D,N)   sqlite3DbMallocRaw(D,N)
12373 # define sqlite3StackAllocZero(D,N)  sqlite3DbMallocZero(D,N)
12374 # define sqlite3StackFree(D,P)       sqlite3DbFree(D,P)
12375 #endif
12376 
12377 #ifdef SQLITE_ENABLE_MEMSYS3
12378 SQLITE_PRIVATE const sqlite3_mem_methods *sqlite3MemGetMemsys3(void);
12379 #endif
12380 #ifdef SQLITE_ENABLE_MEMSYS5
12381 SQLITE_PRIVATE const sqlite3_mem_methods *sqlite3MemGetMemsys5(void);
12382 #endif
12383 
12384 
12385 #ifndef SQLITE_MUTEX_OMIT
12386 SQLITE_PRIVATE   sqlite3_mutex_methods const *sqlite3DefaultMutex(void);
12387 SQLITE_PRIVATE   sqlite3_mutex_methods const *sqlite3NoopMutex(void);
12388 SQLITE_PRIVATE   sqlite3_mutex *sqlite3MutexAlloc(int);
12389 SQLITE_PRIVATE   int sqlite3MutexInit(void);
12390 SQLITE_PRIVATE   int sqlite3MutexEnd(void);
12391 #endif
12392 
12393 SQLITE_PRIVATE int sqlite3StatusValue(int);
12394 SQLITE_PRIVATE void sqlite3StatusAdd(int, int);
12395 SQLITE_PRIVATE void sqlite3StatusSet(int, int);
12396 
12397 #ifndef SQLITE_OMIT_FLOATING_POINT
12398 SQLITE_PRIVATE   int sqlite3IsNaN(double);
12399 #else
12400 # define sqlite3IsNaN(X)  0
12401 #endif
12402 
12403 /*
12404 ** An instance of the following structure holds information about SQL
12405 ** functions arguments that are the parameters to the printf() function.
12406 */
12407 struct PrintfArguments {
12408   int nArg;                /* Total number of arguments */
12409   int nUsed;               /* Number of arguments used so far */
12410   sqlite3_value **apArg;   /* The argument values */
12411 };
12412 
12413 #define SQLITE_PRINTF_INTERNAL 0x01
12414 #define SQLITE_PRINTF_SQLFUNC  0x02
12415 SQLITE_PRIVATE void sqlite3VXPrintf(StrAccum*, u32, const char*, va_list);
12416 SQLITE_PRIVATE void sqlite3XPrintf(StrAccum*, u32, const char*, ...);
12417 SQLITE_PRIVATE char *sqlite3MPrintf(sqlite3*,const char*, ...);
12418 SQLITE_PRIVATE char *sqlite3VMPrintf(sqlite3*,const char*, va_list);
12419 SQLITE_PRIVATE char *sqlite3MAppendf(sqlite3*,char*,const char*,...);
12420 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
12421 SQLITE_PRIVATE   void sqlite3DebugPrintf(const char*, ...);
12422 #endif
12423 #if defined(SQLITE_TEST)
12424 SQLITE_PRIVATE   void *sqlite3TestTextToPtr(const char*);
12425 #endif
12426 
12427 /* Output formatting for SQLITE_TESTCTRL_EXPLAIN */
12428 #if defined(SQLITE_ENABLE_TREE_EXPLAIN)
12429 SQLITE_PRIVATE   void sqlite3ExplainBegin(Vdbe*);
12430 SQLITE_PRIVATE   void sqlite3ExplainPrintf(Vdbe*, const char*, ...);
12431 SQLITE_PRIVATE   void sqlite3ExplainNL(Vdbe*);
12432 SQLITE_PRIVATE   void sqlite3ExplainPush(Vdbe*);
12433 SQLITE_PRIVATE   void sqlite3ExplainPop(Vdbe*);
12434 SQLITE_PRIVATE   void sqlite3ExplainFinish(Vdbe*);
12435 SQLITE_PRIVATE   void sqlite3ExplainSelect(Vdbe*, Select*);
12436 SQLITE_PRIVATE   void sqlite3ExplainExpr(Vdbe*, Expr*);
12437 SQLITE_PRIVATE   void sqlite3ExplainExprList(Vdbe*, ExprList*);
12438 SQLITE_PRIVATE   const char *sqlite3VdbeExplanation(Vdbe*);
12439 #else
12440 # define sqlite3ExplainBegin(X)
12441 # define sqlite3ExplainSelect(A,B)
12442 # define sqlite3ExplainExpr(A,B)
12443 # define sqlite3ExplainExprList(A,B)
12444 # define sqlite3ExplainFinish(X)
12445 # define sqlite3VdbeExplanation(X) 0
12446 #endif
12447 
12448 
12449 SQLITE_PRIVATE void sqlite3SetString(char **, sqlite3*, const char*, ...);
12450 SQLITE_PRIVATE void sqlite3ErrorMsg(Parse*, const char*, ...);
12451 SQLITE_PRIVATE int sqlite3Dequote(char*);
12452 SQLITE_PRIVATE int sqlite3KeywordCode(const unsigned char*, int);
12453 SQLITE_PRIVATE int sqlite3RunParser(Parse*, const char*, char **);
12454 SQLITE_PRIVATE void sqlite3FinishCoding(Parse*);
12455 SQLITE_PRIVATE int sqlite3GetTempReg(Parse*);
12456 SQLITE_PRIVATE void sqlite3ReleaseTempReg(Parse*,int);
12457 SQLITE_PRIVATE int sqlite3GetTempRange(Parse*,int);
12458 SQLITE_PRIVATE void sqlite3ReleaseTempRange(Parse*,int,int);
12459 SQLITE_PRIVATE void sqlite3ClearTempRegCache(Parse*);
12460 SQLITE_PRIVATE Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int);
12461 SQLITE_PRIVATE Expr *sqlite3Expr(sqlite3*,int,const char*);
12462 SQLITE_PRIVATE void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*);
12463 SQLITE_PRIVATE Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*);
12464 SQLITE_PRIVATE Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*);
12465 SQLITE_PRIVATE Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*);
12466 SQLITE_PRIVATE void sqlite3ExprAssignVarNumber(Parse*, Expr*);
12467 SQLITE_PRIVATE void sqlite3ExprDelete(sqlite3*, Expr*);
12468 SQLITE_PRIVATE ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*);
12469 SQLITE_PRIVATE void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int);
12470 SQLITE_PRIVATE void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*);
12471 SQLITE_PRIVATE void sqlite3ExprListDelete(sqlite3*, ExprList*);
12472 SQLITE_PRIVATE int sqlite3Init(sqlite3*, char**);
12473 SQLITE_PRIVATE int sqlite3InitCallback(void*, int, char**, char**);
12474 SQLITE_PRIVATE void sqlite3Pragma(Parse*,Token*,Token*,Token*,int);
12475 SQLITE_PRIVATE void sqlite3ResetAllSchemasOfConnection(sqlite3*);
12476 SQLITE_PRIVATE void sqlite3ResetOneSchema(sqlite3*,int);
12477 SQLITE_PRIVATE void sqlite3CollapseDatabaseArray(sqlite3*);
12478 SQLITE_PRIVATE void sqlite3BeginParse(Parse*,int);
12479 SQLITE_PRIVATE void sqlite3CommitInternalChanges(sqlite3*);
12480 SQLITE_PRIVATE Table *sqlite3ResultSetOfSelect(Parse*,Select*);
12481 SQLITE_PRIVATE void sqlite3OpenMasterTable(Parse *, int);
12482 SQLITE_PRIVATE Index *sqlite3PrimaryKeyIndex(Table*);
12483 SQLITE_PRIVATE i16 sqlite3ColumnOfIndex(Index*, i16);
12484 SQLITE_PRIVATE void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int);
12485 SQLITE_PRIVATE void sqlite3AddColumn(Parse*,Token*);
12486 SQLITE_PRIVATE void sqlite3AddNotNull(Parse*, int);
12487 SQLITE_PRIVATE void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int);
12488 SQLITE_PRIVATE void sqlite3AddCheckConstraint(Parse*, Expr*);
12489 SQLITE_PRIVATE void sqlite3AddColumnType(Parse*,Token*);
12490 SQLITE_PRIVATE void sqlite3AddDefaultValue(Parse*,ExprSpan*);
12491 SQLITE_PRIVATE void sqlite3AddCollateType(Parse*, Token*);
12492 SQLITE_PRIVATE void sqlite3EndTable(Parse*,Token*,Token*,u8,Select*);
12493 SQLITE_PRIVATE int sqlite3ParseUri(const char*,const char*,unsigned int*,
12494                     sqlite3_vfs**,char**,char **);
12495 SQLITE_PRIVATE Btree *sqlite3DbNameToBtree(sqlite3*,const char*);
12496 SQLITE_PRIVATE int sqlite3CodeOnce(Parse *);
12497 
12498 #ifdef SQLITE_OMIT_BUILTIN_TEST
12499 # define sqlite3FaultSim(X) SQLITE_OK
12500 #else
12501 SQLITE_PRIVATE   int sqlite3FaultSim(int);
12502 #endif
12503 
12504 SQLITE_PRIVATE Bitvec *sqlite3BitvecCreate(u32);
12505 SQLITE_PRIVATE int sqlite3BitvecTest(Bitvec*, u32);
12506 SQLITE_PRIVATE int sqlite3BitvecSet(Bitvec*, u32);
12507 SQLITE_PRIVATE void sqlite3BitvecClear(Bitvec*, u32, void*);
12508 SQLITE_PRIVATE void sqlite3BitvecDestroy(Bitvec*);
12509 SQLITE_PRIVATE u32 sqlite3BitvecSize(Bitvec*);
12510 SQLITE_PRIVATE int sqlite3BitvecBuiltinTest(int,int*);
12511 
12512 SQLITE_PRIVATE RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int);
12513 SQLITE_PRIVATE void sqlite3RowSetClear(RowSet*);
12514 SQLITE_PRIVATE void sqlite3RowSetInsert(RowSet*, i64);
12515 SQLITE_PRIVATE int sqlite3RowSetTest(RowSet*, int iBatch, i64);
12516 SQLITE_PRIVATE int sqlite3RowSetNext(RowSet*, i64*);
12517 
12518 SQLITE_PRIVATE void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int);
12519 
12520 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
12521 SQLITE_PRIVATE   int sqlite3ViewGetColumnNames(Parse*,Table*);
12522 #else
12523 # define sqlite3ViewGetColumnNames(A,B) 0
12524 #endif
12525 
12526 SQLITE_PRIVATE void sqlite3DropTable(Parse*, SrcList*, int, int);
12527 SQLITE_PRIVATE void sqlite3CodeDropTable(Parse*, Table*, int, int);
12528 SQLITE_PRIVATE void sqlite3DeleteTable(sqlite3*, Table*);
12529 #ifndef SQLITE_OMIT_AUTOINCREMENT
12530 SQLITE_PRIVATE   void sqlite3AutoincrementBegin(Parse *pParse);
12531 SQLITE_PRIVATE   void sqlite3AutoincrementEnd(Parse *pParse);
12532 #else
12533 # define sqlite3AutoincrementBegin(X)
12534 # define sqlite3AutoincrementEnd(X)
12535 #endif
12536 SQLITE_PRIVATE void sqlite3Insert(Parse*, SrcList*, Select*, IdList*, int);
12537 SQLITE_PRIVATE void *sqlite3ArrayAllocate(sqlite3*,void*,int,int*,int*);
12538 SQLITE_PRIVATE IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*);
12539 SQLITE_PRIVATE int sqlite3IdListIndex(IdList*,const char*);
12540 SQLITE_PRIVATE SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int);
12541 SQLITE_PRIVATE SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*);
12542 SQLITE_PRIVATE SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*,
12543                                       Token*, Select*, Expr*, IdList*);
12544 SQLITE_PRIVATE void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *);
12545 SQLITE_PRIVATE int sqlite3IndexedByLookup(Parse *, struct SrcList_item *);
12546 SQLITE_PRIVATE void sqlite3SrcListShiftJoinType(SrcList*);
12547 SQLITE_PRIVATE void sqlite3SrcListAssignCursors(Parse*, SrcList*);
12548 SQLITE_PRIVATE void sqlite3IdListDelete(sqlite3*, IdList*);
12549 SQLITE_PRIVATE void sqlite3SrcListDelete(sqlite3*, SrcList*);
12550 SQLITE_PRIVATE Index *sqlite3AllocateIndexObject(sqlite3*,i16,int,char**);
12551 SQLITE_PRIVATE Index *sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*,
12552                           Expr*, int, int);
12553 SQLITE_PRIVATE void sqlite3DropIndex(Parse*, SrcList*, int);
12554 SQLITE_PRIVATE int sqlite3Select(Parse*, Select*, SelectDest*);
12555 SQLITE_PRIVATE Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*,
12556                          Expr*,ExprList*,u16,Expr*,Expr*);
12557 SQLITE_PRIVATE void sqlite3SelectDelete(sqlite3*, Select*);
12558 SQLITE_PRIVATE Table *sqlite3SrcListLookup(Parse*, SrcList*);
12559 SQLITE_PRIVATE int sqlite3IsReadOnly(Parse*, Table*, int);
12560 SQLITE_PRIVATE void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int);
12561 #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY)
12562 SQLITE_PRIVATE Expr *sqlite3LimitWhere(Parse*,SrcList*,Expr*,ExprList*,Expr*,Expr*,char*);
12563 #endif
12564 SQLITE_PRIVATE void sqlite3DeleteFrom(Parse*, SrcList*, Expr*);
12565 SQLITE_PRIVATE void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int);
12566 SQLITE_PRIVATE WhereInfo *sqlite3WhereBegin(Parse*,SrcList*,Expr*,ExprList*,ExprList*,u16,int);
12567 SQLITE_PRIVATE void sqlite3WhereEnd(WhereInfo*);
12568 SQLITE_PRIVATE u64 sqlite3WhereOutputRowCount(WhereInfo*);
12569 SQLITE_PRIVATE int sqlite3WhereIsDistinct(WhereInfo*);
12570 SQLITE_PRIVATE int sqlite3WhereIsOrdered(WhereInfo*);
12571 SQLITE_PRIVATE int sqlite3WhereIsSorted(WhereInfo*);
12572 SQLITE_PRIVATE int sqlite3WhereContinueLabel(WhereInfo*);
12573 SQLITE_PRIVATE int sqlite3WhereBreakLabel(WhereInfo*);
12574 SQLITE_PRIVATE int sqlite3WhereOkOnePass(WhereInfo*, int*);
12575 SQLITE_PRIVATE int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, u8);
12576 SQLITE_PRIVATE void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int);
12577 SQLITE_PRIVATE void sqlite3ExprCodeMove(Parse*, int, int, int);
12578 SQLITE_PRIVATE void sqlite3ExprCacheStore(Parse*, int, int, int);
12579 SQLITE_PRIVATE void sqlite3ExprCachePush(Parse*);
12580 SQLITE_PRIVATE void sqlite3ExprCachePop(Parse*);
12581 SQLITE_PRIVATE void sqlite3ExprCacheRemove(Parse*, int, int);
12582 SQLITE_PRIVATE void sqlite3ExprCacheClear(Parse*);
12583 SQLITE_PRIVATE void sqlite3ExprCacheAffinityChange(Parse*, int, int);
12584 SQLITE_PRIVATE void sqlite3ExprCode(Parse*, Expr*, int);
12585 SQLITE_PRIVATE void sqlite3ExprCodeFactorable(Parse*, Expr*, int);
12586 SQLITE_PRIVATE void sqlite3ExprCodeAtInit(Parse*, Expr*, int, u8);
12587 SQLITE_PRIVATE int sqlite3ExprCodeTemp(Parse*, Expr*, int*);
12588 SQLITE_PRIVATE int sqlite3ExprCodeTarget(Parse*, Expr*, int);
12589 SQLITE_PRIVATE void sqlite3ExprCodeAndCache(Parse*, Expr*, int);
12590 SQLITE_PRIVATE int sqlite3ExprCodeExprList(Parse*, ExprList*, int, u8);
12591 #define SQLITE_ECEL_DUP      0x01  /* Deep, not shallow copies */
12592 #define SQLITE_ECEL_FACTOR   0x02  /* Factor out constant terms */
12593 SQLITE_PRIVATE void sqlite3ExprIfTrue(Parse*, Expr*, int, int);
12594 SQLITE_PRIVATE void sqlite3ExprIfFalse(Parse*, Expr*, int, int);
12595 SQLITE_PRIVATE Table *sqlite3FindTable(sqlite3*,const char*, const char*);
12596 SQLITE_PRIVATE Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*);
12597 SQLITE_PRIVATE Table *sqlite3LocateTableItem(Parse*,int isView,struct SrcList_item *);
12598 SQLITE_PRIVATE Index *sqlite3FindIndex(sqlite3*,const char*, const char*);
12599 SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*);
12600 SQLITE_PRIVATE void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*);
12601 SQLITE_PRIVATE void sqlite3Vacuum(Parse*);
12602 SQLITE_PRIVATE int sqlite3RunVacuum(char**, sqlite3*);
12603 SQLITE_PRIVATE char *sqlite3NameFromToken(sqlite3*, Token*);
12604 SQLITE_PRIVATE int sqlite3ExprCompare(Expr*, Expr*, int);
12605 SQLITE_PRIVATE int sqlite3ExprListCompare(ExprList*, ExprList*, int);
12606 SQLITE_PRIVATE int sqlite3ExprImpliesExpr(Expr*, Expr*, int);
12607 SQLITE_PRIVATE void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*);
12608 SQLITE_PRIVATE void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*);
12609 SQLITE_PRIVATE int sqlite3FunctionUsesThisSrc(Expr*, SrcList*);
12610 SQLITE_PRIVATE Vdbe *sqlite3GetVdbe(Parse*);
12611 SQLITE_PRIVATE void sqlite3PrngSaveState(void);
12612 SQLITE_PRIVATE void sqlite3PrngRestoreState(void);
12613 SQLITE_PRIVATE void sqlite3RollbackAll(sqlite3*,int);
12614 SQLITE_PRIVATE void sqlite3CodeVerifySchema(Parse*, int);
12615 SQLITE_PRIVATE void sqlite3CodeVerifyNamedSchema(Parse*, const char *zDb);
12616 SQLITE_PRIVATE void sqlite3BeginTransaction(Parse*, int);
12617 SQLITE_PRIVATE void sqlite3CommitTransaction(Parse*);
12618 SQLITE_PRIVATE void sqlite3RollbackTransaction(Parse*);
12619 SQLITE_PRIVATE void sqlite3Savepoint(Parse*, int, Token*);
12620 SQLITE_PRIVATE void sqlite3CloseSavepoints(sqlite3 *);
12621 SQLITE_PRIVATE void sqlite3LeaveMutexAndCloseZombie(sqlite3*);
12622 SQLITE_PRIVATE int sqlite3ExprIsConstant(Expr*);
12623 SQLITE_PRIVATE int sqlite3ExprIsConstantNotJoin(Expr*);
12624 SQLITE_PRIVATE int sqlite3ExprIsConstantOrFunction(Expr*);
12625 SQLITE_PRIVATE int sqlite3ExprIsInteger(Expr*, int*);
12626 SQLITE_PRIVATE int sqlite3ExprCanBeNull(const Expr*);
12627 SQLITE_PRIVATE int sqlite3ExprNeedsNoAffinityChange(const Expr*, char);
12628 SQLITE_PRIVATE int sqlite3IsRowid(const char*);
12629 SQLITE_PRIVATE void sqlite3GenerateRowDelete(Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8);
12630 SQLITE_PRIVATE void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*);
12631 SQLITE_PRIVATE int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int);
12632 SQLITE_PRIVATE void sqlite3ResolvePartIdxLabel(Parse*,int);
12633 SQLITE_PRIVATE void sqlite3GenerateConstraintChecks(Parse*,Table*,int*,int,int,int,int,
12634                                      u8,u8,int,int*);
12635 SQLITE_PRIVATE void sqlite3CompleteInsertion(Parse*,Table*,int,int,int,int*,int,int,int);
12636 SQLITE_PRIVATE int sqlite3OpenTableAndIndices(Parse*, Table*, int, int, u8*, int*, int*);
12637 SQLITE_PRIVATE void sqlite3BeginWriteOperation(Parse*, int, int);
12638 SQLITE_PRIVATE void sqlite3MultiWrite(Parse*);
12639 SQLITE_PRIVATE void sqlite3MayAbort(Parse*);
12640 SQLITE_PRIVATE void sqlite3HaltConstraint(Parse*, int, int, char*, i8, u8);
12641 SQLITE_PRIVATE void sqlite3UniqueConstraint(Parse*, int, Index*);
12642 SQLITE_PRIVATE void sqlite3RowidConstraint(Parse*, int, Table*);
12643 SQLITE_PRIVATE Expr *sqlite3ExprDup(sqlite3*,Expr*,int);
12644 SQLITE_PRIVATE ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int);
12645 SQLITE_PRIVATE SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int);
12646 SQLITE_PRIVATE IdList *sqlite3IdListDup(sqlite3*,IdList*);
12647 SQLITE_PRIVATE Select *sqlite3SelectDup(sqlite3*,Select*,int);
12648 SQLITE_PRIVATE void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*);
12649 SQLITE_PRIVATE FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,u8);
12650 SQLITE_PRIVATE void sqlite3RegisterBuiltinFunctions(sqlite3*);
12651 SQLITE_PRIVATE void sqlite3RegisterDateTimeFunctions(void);
12652 SQLITE_PRIVATE void sqlite3RegisterGlobalFunctions(void);
12653 SQLITE_PRIVATE int sqlite3SafetyCheckOk(sqlite3*);
12654 SQLITE_PRIVATE int sqlite3SafetyCheckSickOrOk(sqlite3*);
12655 SQLITE_PRIVATE void sqlite3ChangeCookie(Parse*, int);
12656 
12657 #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
12658 SQLITE_PRIVATE void sqlite3MaterializeView(Parse*, Table*, Expr*, int);
12659 #endif
12660 
12661 #ifndef SQLITE_OMIT_TRIGGER
12662 SQLITE_PRIVATE   void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*,
12663                            Expr*,int, int);
12664 SQLITE_PRIVATE   void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*);
12665 SQLITE_PRIVATE   void sqlite3DropTrigger(Parse*, SrcList*, int);
12666 SQLITE_PRIVATE   void sqlite3DropTriggerPtr(Parse*, Trigger*);
12667 SQLITE_PRIVATE   Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask);
12668 SQLITE_PRIVATE   Trigger *sqlite3TriggerList(Parse *, Table *);
12669 SQLITE_PRIVATE   void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *,
12670                             int, int, int);
12671 SQLITE_PRIVATE   void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int);
12672   void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*);
12673 SQLITE_PRIVATE   void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*);
12674 SQLITE_PRIVATE   TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*);
12675 SQLITE_PRIVATE   TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*,
12676                                         Select*,u8);
12677 SQLITE_PRIVATE   TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8);
12678 SQLITE_PRIVATE   TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*);
12679 SQLITE_PRIVATE   void sqlite3DeleteTrigger(sqlite3*, Trigger*);
12680 SQLITE_PRIVATE   void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*);
12681 SQLITE_PRIVATE   u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int);
12682 # define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p))
12683 #else
12684 # define sqlite3TriggersExist(B,C,D,E,F) 0
12685 # define sqlite3DeleteTrigger(A,B)
12686 # define sqlite3DropTriggerPtr(A,B)
12687 # define sqlite3UnlinkAndDeleteTrigger(A,B,C)
12688 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I)
12689 # define sqlite3CodeRowTriggerDirect(A,B,C,D,E,F)
12690 # define sqlite3TriggerList(X, Y) 0
12691 # define sqlite3ParseToplevel(p) p
12692 # define sqlite3TriggerColmask(A,B,C,D,E,F,G) 0
12693 #endif
12694 
12695 SQLITE_PRIVATE int sqlite3JoinType(Parse*, Token*, Token*, Token*);
12696 SQLITE_PRIVATE void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int);
12697 SQLITE_PRIVATE void sqlite3DeferForeignKey(Parse*, int);
12698 #ifndef SQLITE_OMIT_AUTHORIZATION
12699 SQLITE_PRIVATE   void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*);
12700 SQLITE_PRIVATE   int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*);
12701 SQLITE_PRIVATE   void sqlite3AuthContextPush(Parse*, AuthContext*, const char*);
12702 SQLITE_PRIVATE   void sqlite3AuthContextPop(AuthContext*);
12703 SQLITE_PRIVATE   int sqlite3AuthReadCol(Parse*, const char *, const char *, int);
12704 #else
12705 # define sqlite3AuthRead(a,b,c,d)
12706 # define sqlite3AuthCheck(a,b,c,d,e)    SQLITE_OK
12707 # define sqlite3AuthContextPush(a,b,c)
12708 # define sqlite3AuthContextPop(a)  ((void)(a))
12709 #endif
12710 SQLITE_PRIVATE void sqlite3Attach(Parse*, Expr*, Expr*, Expr*);
12711 SQLITE_PRIVATE void sqlite3Detach(Parse*, Expr*);
12712 SQLITE_PRIVATE void sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*);
12713 SQLITE_PRIVATE int sqlite3FixSrcList(DbFixer*, SrcList*);
12714 SQLITE_PRIVATE int sqlite3FixSelect(DbFixer*, Select*);
12715 SQLITE_PRIVATE int sqlite3FixExpr(DbFixer*, Expr*);
12716 SQLITE_PRIVATE int sqlite3FixExprList(DbFixer*, ExprList*);
12717 SQLITE_PRIVATE int sqlite3FixTriggerStep(DbFixer*, TriggerStep*);
12718 SQLITE_PRIVATE int sqlite3AtoF(const char *z, double*, int, u8);
12719 SQLITE_PRIVATE int sqlite3GetInt32(const char *, int*);
12720 SQLITE_PRIVATE int sqlite3Atoi(const char*);
12721 SQLITE_PRIVATE int sqlite3Utf16ByteLen(const void *pData, int nChar);
12722 SQLITE_PRIVATE int sqlite3Utf8CharLen(const char *pData, int nByte);
12723 SQLITE_PRIVATE u32 sqlite3Utf8Read(const u8**);
12724 SQLITE_PRIVATE LogEst sqlite3LogEst(u64);
12725 SQLITE_PRIVATE LogEst sqlite3LogEstAdd(LogEst,LogEst);
12726 #ifndef SQLITE_OMIT_VIRTUALTABLE
12727 SQLITE_PRIVATE LogEst sqlite3LogEstFromDouble(double);
12728 #endif
12729 SQLITE_PRIVATE u64 sqlite3LogEstToInt(LogEst);
12730 
12731 /*
12732 ** Routines to read and write variable-length integers.  These used to
12733 ** be defined locally, but now we use the varint routines in the util.c
12734 ** file.  Code should use the MACRO forms below, as the Varint32 versions
12735 ** are coded to assume the single byte case is already handled (which
12736 ** the MACRO form does).
12737 */
12738 SQLITE_PRIVATE int sqlite3PutVarint(unsigned char*, u64);
12739 SQLITE_PRIVATE int sqlite3PutVarint32(unsigned char*, u32);
12740 SQLITE_PRIVATE u8 sqlite3GetVarint(const unsigned char *, u64 *);
12741 SQLITE_PRIVATE u8 sqlite3GetVarint32(const unsigned char *, u32 *);
12742 SQLITE_PRIVATE int sqlite3VarintLen(u64 v);
12743 
12744 /*
12745 ** The header of a record consists of a sequence variable-length integers.
12746 ** These integers are almost always small and are encoded as a single byte.
12747 ** The following macros take advantage this fact to provide a fast encode
12748 ** and decode of the integers in a record header.  It is faster for the common
12749 ** case where the integer is a single byte.  It is a little slower when the
12750 ** integer is two or more bytes.  But overall it is faster.
12751 **
12752 ** The following expressions are equivalent:
12753 **
12754 **     x = sqlite3GetVarint32( A, &B );
12755 **     x = sqlite3PutVarint32( A, B );
12756 **
12757 **     x = getVarint32( A, B );
12758 **     x = putVarint32( A, B );
12759 **
12760 */
12761 #define getVarint32(A,B)  \
12762   (u8)((*(A)<(u8)0x80)?((B)=(u32)*(A)),1:sqlite3GetVarint32((A),(u32 *)&(B)))
12763 #define putVarint32(A,B)  \
12764   (u8)(((u32)(B)<(u32)0x80)?(*(A)=(unsigned char)(B)),1:\
12765   sqlite3PutVarint32((A),(B)))
12766 #define getVarint    sqlite3GetVarint
12767 #define putVarint    sqlite3PutVarint
12768 
12769 
12770 SQLITE_PRIVATE const char *sqlite3IndexAffinityStr(Vdbe *, Index *);
12771 SQLITE_PRIVATE void sqlite3TableAffinity(Vdbe*, Table*, int);
12772 SQLITE_PRIVATE char sqlite3CompareAffinity(Expr *pExpr, char aff2);
12773 SQLITE_PRIVATE int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity);
12774 SQLITE_PRIVATE char sqlite3ExprAffinity(Expr *pExpr);
12775 SQLITE_PRIVATE int sqlite3Atoi64(const char*, i64*, int, u8);
12776 SQLITE_PRIVATE void sqlite3Error(sqlite3*, int, const char*,...);
12777 SQLITE_PRIVATE void *sqlite3HexToBlob(sqlite3*, const char *z, int n);
12778 SQLITE_PRIVATE u8 sqlite3HexToInt(int h);
12779 SQLITE_PRIVATE int sqlite3TwoPartName(Parse *, Token *, Token *, Token **);
12780 
12781 #if defined(SQLITE_TEST)
12782 SQLITE_PRIVATE const char *sqlite3ErrName(int);
12783 #endif
12784 
12785 SQLITE_PRIVATE const char *sqlite3ErrStr(int);
12786 SQLITE_PRIVATE int sqlite3ReadSchema(Parse *pParse);
12787 SQLITE_PRIVATE CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int);
12788 SQLITE_PRIVATE CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName);
12789 SQLITE_PRIVATE CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr);
12790 SQLITE_PRIVATE Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr*, const Token*);
12791 SQLITE_PRIVATE Expr *sqlite3ExprAddCollateString(Parse*,Expr*,const char*);
12792 SQLITE_PRIVATE Expr *sqlite3ExprSkipCollate(Expr*);
12793 SQLITE_PRIVATE int sqlite3CheckCollSeq(Parse *, CollSeq *);
12794 SQLITE_PRIVATE int sqlite3CheckObjectName(Parse *, const char *);
12795 SQLITE_PRIVATE void sqlite3VdbeSetChanges(sqlite3 *, int);
12796 SQLITE_PRIVATE int sqlite3AddInt64(i64*,i64);
12797 SQLITE_PRIVATE int sqlite3SubInt64(i64*,i64);
12798 SQLITE_PRIVATE int sqlite3MulInt64(i64*,i64);
12799 SQLITE_PRIVATE int sqlite3AbsInt32(int);
12800 #ifdef SQLITE_ENABLE_8_3_NAMES
12801 SQLITE_PRIVATE void sqlite3FileSuffix3(const char*, char*);
12802 #else
12803 # define sqlite3FileSuffix3(X,Y)
12804 #endif
12805 SQLITE_PRIVATE u8 sqlite3GetBoolean(const char *z,int);
12806 
12807 SQLITE_PRIVATE const void *sqlite3ValueText(sqlite3_value*, u8);
12808 SQLITE_PRIVATE int sqlite3ValueBytes(sqlite3_value*, u8);
12809 SQLITE_PRIVATE void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8,
12810                         void(*)(void*));
12811 SQLITE_PRIVATE void sqlite3ValueSetNull(sqlite3_value*);
12812 SQLITE_PRIVATE void sqlite3ValueFree(sqlite3_value*);
12813 SQLITE_PRIVATE sqlite3_value *sqlite3ValueNew(sqlite3 *);
12814 SQLITE_PRIVATE char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8);
12815 SQLITE_PRIVATE int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **);
12816 SQLITE_PRIVATE void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8);
12817 #ifndef SQLITE_AMALGAMATION
12818 SQLITE_PRIVATE const unsigned char sqlite3OpcodeProperty[];
12819 SQLITE_PRIVATE const unsigned char sqlite3UpperToLower[];
12820 SQLITE_PRIVATE const unsigned char sqlite3CtypeMap[];
12821 SQLITE_PRIVATE const Token sqlite3IntTokens[];
12822 SQLITE_PRIVATE SQLITE_WSD struct Sqlite3Config sqlite3Config;
12823 SQLITE_PRIVATE SQLITE_WSD FuncDefHash sqlite3GlobalFunctions;
12824 #ifndef SQLITE_OMIT_WSD
12825 SQLITE_PRIVATE int sqlite3PendingByte;
12826 #endif
12827 #endif
12828 SQLITE_PRIVATE void sqlite3RootPageMoved(sqlite3*, int, int, int);
12829 SQLITE_PRIVATE void sqlite3Reindex(Parse*, Token*, Token*);
12830 SQLITE_PRIVATE void sqlite3AlterFunctions(void);
12831 SQLITE_PRIVATE void sqlite3AlterRenameTable(Parse*, SrcList*, Token*);
12832 SQLITE_PRIVATE int sqlite3GetToken(const unsigned char *, int *);
12833 SQLITE_PRIVATE void sqlite3NestedParse(Parse*, const char*, ...);
12834 SQLITE_PRIVATE void sqlite3ExpirePreparedStatements(sqlite3*);
12835 SQLITE_PRIVATE int sqlite3CodeSubselect(Parse *, Expr *, int, int);
12836 SQLITE_PRIVATE void sqlite3SelectPrep(Parse*, Select*, NameContext*);
12837 SQLITE_PRIVATE int sqlite3MatchSpanName(const char*, const char*, const char*, const char*);
12838 SQLITE_PRIVATE int sqlite3ResolveExprNames(NameContext*, Expr*);
12839 SQLITE_PRIVATE void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*);
12840 SQLITE_PRIVATE void sqlite3ResolveSelfReference(Parse*,Table*,int,Expr*,ExprList*);
12841 SQLITE_PRIVATE int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*);
12842 SQLITE_PRIVATE void sqlite3ColumnDefault(Vdbe *, Table *, int, int);
12843 SQLITE_PRIVATE void sqlite3AlterFinishAddColumn(Parse *, Token *);
12844 SQLITE_PRIVATE void sqlite3AlterBeginAddColumn(Parse *, SrcList *);
12845 SQLITE_PRIVATE CollSeq *sqlite3GetCollSeq(Parse*, u8, CollSeq *, const char*);
12846 SQLITE_PRIVATE char sqlite3AffinityType(const char*, u8*);
12847 SQLITE_PRIVATE void sqlite3Analyze(Parse*, Token*, Token*);
12848 SQLITE_PRIVATE int sqlite3InvokeBusyHandler(BusyHandler*);
12849 SQLITE_PRIVATE int sqlite3FindDb(sqlite3*, Token*);
12850 SQLITE_PRIVATE int sqlite3FindDbName(sqlite3 *, const char *);
12851 SQLITE_PRIVATE int sqlite3AnalysisLoad(sqlite3*,int iDB);
12852 SQLITE_PRIVATE void sqlite3DeleteIndexSamples(sqlite3*,Index*);
12853 SQLITE_PRIVATE void sqlite3DefaultRowEst(Index*);
12854 SQLITE_PRIVATE void sqlite3RegisterLikeFunctions(sqlite3*, int);
12855 SQLITE_PRIVATE int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*);
12856 SQLITE_PRIVATE void sqlite3MinimumFileFormat(Parse*, int, int);
12857 SQLITE_PRIVATE void sqlite3SchemaClear(void *);
12858 SQLITE_PRIVATE Schema *sqlite3SchemaGet(sqlite3 *, Btree *);
12859 SQLITE_PRIVATE int sqlite3SchemaToIndex(sqlite3 *db, Schema *);
12860 SQLITE_PRIVATE KeyInfo *sqlite3KeyInfoAlloc(sqlite3*,int,int);
12861 SQLITE_PRIVATE void sqlite3KeyInfoUnref(KeyInfo*);
12862 SQLITE_PRIVATE KeyInfo *sqlite3KeyInfoRef(KeyInfo*);
12863 SQLITE_PRIVATE KeyInfo *sqlite3KeyInfoOfIndex(Parse*, Index*);
12864 #ifdef SQLITE_DEBUG
12865 SQLITE_PRIVATE int sqlite3KeyInfoIsWriteable(KeyInfo*);
12866 #endif
12867 SQLITE_PRIVATE int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *,
12868   void (*)(sqlite3_context*,int,sqlite3_value **),
12869   void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*),
12870   FuncDestructor *pDestructor
12871 );
12872 SQLITE_PRIVATE int sqlite3ApiExit(sqlite3 *db, int);
12873 SQLITE_PRIVATE int sqlite3OpenTempDatabase(Parse *);
12874 
12875 SQLITE_PRIVATE void sqlite3StrAccumInit(StrAccum*, char*, int, int);
12876 SQLITE_PRIVATE void sqlite3StrAccumAppend(StrAccum*,const char*,int);
12877 SQLITE_PRIVATE void sqlite3StrAccumAppendAll(StrAccum*,const char*);
12878 SQLITE_PRIVATE void sqlite3AppendSpace(StrAccum*,int);
12879 SQLITE_PRIVATE char *sqlite3StrAccumFinish(StrAccum*);
12880 SQLITE_PRIVATE void sqlite3StrAccumReset(StrAccum*);
12881 SQLITE_PRIVATE void sqlite3SelectDestInit(SelectDest*,int,int);
12882 SQLITE_PRIVATE Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int);
12883 
12884 SQLITE_PRIVATE void sqlite3BackupRestart(sqlite3_backup *);
12885 SQLITE_PRIVATE void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *);
12886 
12887 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
12888 SQLITE_PRIVATE void sqlite3AnalyzeFunctions(void);
12889 SQLITE_PRIVATE int sqlite3Stat4ProbeSetValue(Parse*,Index*,UnpackedRecord**,Expr*,u8,int,int*);
12890 SQLITE_PRIVATE void sqlite3Stat4ProbeFree(UnpackedRecord*);
12891 #endif
12892 
12893 /*
12894 ** The interface to the LEMON-generated parser
12895 */
12896 SQLITE_PRIVATE void *sqlite3ParserAlloc(void*(*)(size_t));
12897 SQLITE_PRIVATE void sqlite3ParserFree(void*, void(*)(void*));
12898 SQLITE_PRIVATE void sqlite3Parser(void*, int, Token, Parse*);
12899 #ifdef YYTRACKMAXSTACKDEPTH
12900 SQLITE_PRIVATE   int sqlite3ParserStackPeak(void*);
12901 #endif
12902 
12903 SQLITE_PRIVATE void sqlite3AutoLoadExtensions(sqlite3*);
12904 #ifndef SQLITE_OMIT_LOAD_EXTENSION
12905 SQLITE_PRIVATE   void sqlite3CloseExtensions(sqlite3*);
12906 #else
12907 # define sqlite3CloseExtensions(X)
12908 #endif
12909 
12910 #ifndef SQLITE_OMIT_SHARED_CACHE
12911 SQLITE_PRIVATE   void sqlite3TableLock(Parse *, int, int, u8, const char *);
12912 #else
12913   #define sqlite3TableLock(v,w,x,y,z)
12914 #endif
12915 
12916 #ifdef SQLITE_TEST
12917 SQLITE_PRIVATE   int sqlite3Utf8To8(unsigned char*);
12918 #endif
12919 
12920 #ifdef SQLITE_OMIT_VIRTUALTABLE
12921 #  define sqlite3VtabClear(Y)
12922 #  define sqlite3VtabSync(X,Y) SQLITE_OK
12923 #  define sqlite3VtabRollback(X)
12924 #  define sqlite3VtabCommit(X)
12925 #  define sqlite3VtabInSync(db) 0
12926 #  define sqlite3VtabLock(X)
12927 #  define sqlite3VtabUnlock(X)
12928 #  define sqlite3VtabUnlockList(X)
12929 #  define sqlite3VtabSavepoint(X, Y, Z) SQLITE_OK
12930 #  define sqlite3GetVTable(X,Y)  ((VTable*)0)
12931 #else
12932 SQLITE_PRIVATE    void sqlite3VtabClear(sqlite3 *db, Table*);
12933 SQLITE_PRIVATE    void sqlite3VtabDisconnect(sqlite3 *db, Table *p);
12934 SQLITE_PRIVATE    int sqlite3VtabSync(sqlite3 *db, Vdbe*);
12935 SQLITE_PRIVATE    int sqlite3VtabRollback(sqlite3 *db);
12936 SQLITE_PRIVATE    int sqlite3VtabCommit(sqlite3 *db);
12937 SQLITE_PRIVATE    void sqlite3VtabLock(VTable *);
12938 SQLITE_PRIVATE    void sqlite3VtabUnlock(VTable *);
12939 SQLITE_PRIVATE    void sqlite3VtabUnlockList(sqlite3*);
12940 SQLITE_PRIVATE    int sqlite3VtabSavepoint(sqlite3 *, int, int);
12941 SQLITE_PRIVATE    void sqlite3VtabImportErrmsg(Vdbe*, sqlite3_vtab*);
12942 SQLITE_PRIVATE    VTable *sqlite3GetVTable(sqlite3*, Table*);
12943 #  define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0)
12944 #endif
12945 SQLITE_PRIVATE void sqlite3VtabMakeWritable(Parse*,Table*);
12946 SQLITE_PRIVATE void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*, int);
12947 SQLITE_PRIVATE void sqlite3VtabFinishParse(Parse*, Token*);
12948 SQLITE_PRIVATE void sqlite3VtabArgInit(Parse*);
12949 SQLITE_PRIVATE void sqlite3VtabArgExtend(Parse*, Token*);
12950 SQLITE_PRIVATE int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **);
12951 SQLITE_PRIVATE int sqlite3VtabCallConnect(Parse*, Table*);
12952 SQLITE_PRIVATE int sqlite3VtabCallDestroy(sqlite3*, int, const char *);
12953 SQLITE_PRIVATE int sqlite3VtabBegin(sqlite3 *, VTable *);
12954 SQLITE_PRIVATE FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*);
12955 SQLITE_PRIVATE void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**);
12956 SQLITE_PRIVATE sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context*);
12957 SQLITE_PRIVATE int sqlite3VdbeParameterIndex(Vdbe*, const char*, int);
12958 SQLITE_PRIVATE int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *);
12959 SQLITE_PRIVATE void sqlite3ParserReset(Parse*);
12960 SQLITE_PRIVATE int sqlite3Reprepare(Vdbe*);
12961 SQLITE_PRIVATE void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*);
12962 SQLITE_PRIVATE CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *);
12963 SQLITE_PRIVATE int sqlite3TempInMemory(const sqlite3*);
12964 SQLITE_PRIVATE const char *sqlite3JournalModename(int);
12965 #ifndef SQLITE_OMIT_WAL
12966 SQLITE_PRIVATE   int sqlite3Checkpoint(sqlite3*, int, int, int*, int*);
12967 SQLITE_PRIVATE   int sqlite3WalDefaultHook(void*,sqlite3*,const char*,int);
12968 #endif
12969 #ifndef SQLITE_OMIT_CTE
12970 SQLITE_PRIVATE   With *sqlite3WithAdd(Parse*,With*,Token*,ExprList*,Select*);
12971 SQLITE_PRIVATE   void sqlite3WithDelete(sqlite3*,With*);
12972 SQLITE_PRIVATE   void sqlite3WithPush(Parse*, With*, u8);
12973 #else
12974 #define sqlite3WithPush(x,y,z)
12975 #define sqlite3WithDelete(x,y)
12976 #endif
12977 
12978 /* Declarations for functions in fkey.c. All of these are replaced by
12979 ** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign
12980 ** key functionality is available. If OMIT_TRIGGER is defined but
12981 ** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In
12982 ** this case foreign keys are parsed, but no other functionality is
12983 ** provided (enforcement of FK constraints requires the triggers sub-system).
12984 */
12985 #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER)
12986 SQLITE_PRIVATE   void sqlite3FkCheck(Parse*, Table*, int, int, int*, int);
12987 SQLITE_PRIVATE   void sqlite3FkDropTable(Parse*, SrcList *, Table*);
12988 SQLITE_PRIVATE   void sqlite3FkActions(Parse*, Table*, ExprList*, int, int*, int);
12989 SQLITE_PRIVATE   int sqlite3FkRequired(Parse*, Table*, int*, int);
12990 SQLITE_PRIVATE   u32 sqlite3FkOldmask(Parse*, Table*);
12991 SQLITE_PRIVATE   FKey *sqlite3FkReferences(Table *);
12992 #else
12993   #define sqlite3FkActions(a,b,c,d,e,f)
12994   #define sqlite3FkCheck(a,b,c,d,e,f)
12995   #define sqlite3FkDropTable(a,b,c)
12996   #define sqlite3FkOldmask(a,b)         0
12997   #define sqlite3FkRequired(a,b,c,d)    0
12998 #endif
12999 #ifndef SQLITE_OMIT_FOREIGN_KEY
13000 SQLITE_PRIVATE   void sqlite3FkDelete(sqlite3 *, Table*);
13001 SQLITE_PRIVATE   int sqlite3FkLocateIndex(Parse*,Table*,FKey*,Index**,int**);
13002 #else
13003   #define sqlite3FkDelete(a,b)
13004   #define sqlite3FkLocateIndex(a,b,c,d,e)
13005 #endif
13006 
13007 
13008 /*
13009 ** Available fault injectors.  Should be numbered beginning with 0.
13010 */
13011 #define SQLITE_FAULTINJECTOR_MALLOC     0
13012 #define SQLITE_FAULTINJECTOR_COUNT      1
13013 
13014 /*
13015 ** The interface to the code in fault.c used for identifying "benign"
13016 ** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST
13017 ** is not defined.
13018 */
13019 #ifndef SQLITE_OMIT_BUILTIN_TEST
13020 SQLITE_PRIVATE   void sqlite3BeginBenignMalloc(void);
13021 SQLITE_PRIVATE   void sqlite3EndBenignMalloc(void);
13022 #else
13023   #define sqlite3BeginBenignMalloc()
13024   #define sqlite3EndBenignMalloc()
13025 #endif
13026 
13027 #define IN_INDEX_ROWID           1
13028 #define IN_INDEX_EPH             2
13029 #define IN_INDEX_INDEX_ASC       3
13030 #define IN_INDEX_INDEX_DESC      4
13031 SQLITE_PRIVATE int sqlite3FindInIndex(Parse *, Expr *, int*);
13032 
13033 #ifdef SQLITE_ENABLE_ATOMIC_WRITE
13034 SQLITE_PRIVATE   int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int);
13035 SQLITE_PRIVATE   int sqlite3JournalSize(sqlite3_vfs *);
13036 SQLITE_PRIVATE   int sqlite3JournalCreate(sqlite3_file *);
13037 SQLITE_PRIVATE   int sqlite3JournalExists(sqlite3_file *p);
13038 #else
13039   #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile)
13040   #define sqlite3JournalExists(p) 1
13041 #endif
13042 
13043 SQLITE_PRIVATE void sqlite3MemJournalOpen(sqlite3_file *);
13044 SQLITE_PRIVATE int sqlite3MemJournalSize(void);
13045 SQLITE_PRIVATE int sqlite3IsMemJournal(sqlite3_file *);
13046 
13047 #if SQLITE_MAX_EXPR_DEPTH>0
13048 SQLITE_PRIVATE   void sqlite3ExprSetHeight(Parse *pParse, Expr *p);
13049 SQLITE_PRIVATE   int sqlite3SelectExprHeight(Select *);
13050 SQLITE_PRIVATE   int sqlite3ExprCheckHeight(Parse*, int);
13051 #else
13052   #define sqlite3ExprSetHeight(x,y)
13053   #define sqlite3SelectExprHeight(x) 0
13054   #define sqlite3ExprCheckHeight(x,y)
13055 #endif
13056 
13057 SQLITE_PRIVATE u32 sqlite3Get4byte(const u8*);
13058 SQLITE_PRIVATE void sqlite3Put4byte(u8*, u32);
13059 
13060 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
13061 SQLITE_PRIVATE   void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *);
13062 SQLITE_PRIVATE   void sqlite3ConnectionUnlocked(sqlite3 *db);
13063 SQLITE_PRIVATE   void sqlite3ConnectionClosed(sqlite3 *db);
13064 #else
13065   #define sqlite3ConnectionBlocked(x,y)
13066   #define sqlite3ConnectionUnlocked(x)
13067   #define sqlite3ConnectionClosed(x)
13068 #endif
13069 
13070 #ifdef SQLITE_DEBUG
13071 SQLITE_PRIVATE   void sqlite3ParserTrace(FILE*, char *);
13072 #endif
13073 
13074 /*
13075 ** If the SQLITE_ENABLE IOTRACE exists then the global variable
13076 ** sqlite3IoTrace is a pointer to a printf-like routine used to
13077 ** print I/O tracing messages.
13078 */
13079 #ifdef SQLITE_ENABLE_IOTRACE
13080 # define IOTRACE(A)  if( sqlite3IoTrace ){ sqlite3IoTrace A; }
13081 SQLITE_PRIVATE   void sqlite3VdbeIOTraceSql(Vdbe*);
13082 SQLITE_PRIVATE void (*sqlite3IoTrace)(const char*,...);
13083 #else
13084 # define IOTRACE(A)
13085 # define sqlite3VdbeIOTraceSql(X)
13086 #endif
13087 
13088 /*
13089 ** These routines are available for the mem2.c debugging memory allocator
13090 ** only.  They are used to verify that different "types" of memory
13091 ** allocations are properly tracked by the system.
13092 **
13093 ** sqlite3MemdebugSetType() sets the "type" of an allocation to one of
13094 ** the MEMTYPE_* macros defined below.  The type must be a bitmask with
13095 ** a single bit set.
13096 **
13097 ** sqlite3MemdebugHasType() returns true if any of the bits in its second
13098 ** argument match the type set by the previous sqlite3MemdebugSetType().
13099 ** sqlite3MemdebugHasType() is intended for use inside assert() statements.
13100 **
13101 ** sqlite3MemdebugNoType() returns true if none of the bits in its second
13102 ** argument match the type set by the previous sqlite3MemdebugSetType().
13103 **
13104 ** Perhaps the most important point is the difference between MEMTYPE_HEAP
13105 ** and MEMTYPE_LOOKASIDE.  If an allocation is MEMTYPE_LOOKASIDE, that means
13106 ** it might have been allocated by lookaside, except the allocation was
13107 ** too large or lookaside was already full.  It is important to verify
13108 ** that allocations that might have been satisfied by lookaside are not
13109 ** passed back to non-lookaside free() routines.  Asserts such as the
13110 ** example above are placed on the non-lookaside free() routines to verify
13111 ** this constraint.
13112 **
13113 ** All of this is no-op for a production build.  It only comes into
13114 ** play when the SQLITE_MEMDEBUG compile-time option is used.
13115 */
13116 #ifdef SQLITE_MEMDEBUG
13117 SQLITE_PRIVATE   void sqlite3MemdebugSetType(void*,u8);
13118 SQLITE_PRIVATE   int sqlite3MemdebugHasType(void*,u8);
13119 SQLITE_PRIVATE   int sqlite3MemdebugNoType(void*,u8);
13120 #else
13121 # define sqlite3MemdebugSetType(X,Y)  /* no-op */
13122 # define sqlite3MemdebugHasType(X,Y)  1
13123 # define sqlite3MemdebugNoType(X,Y)   1
13124 #endif
13125 #define MEMTYPE_HEAP       0x01  /* General heap allocations */
13126 #define MEMTYPE_LOOKASIDE  0x02  /* Might have been lookaside memory */
13127 #define MEMTYPE_SCRATCH    0x04  /* Scratch allocations */
13128 #define MEMTYPE_PCACHE     0x08  /* Page cache allocations */
13129 #define MEMTYPE_DB         0x10  /* Uses sqlite3DbMalloc, not sqlite_malloc */
13130 
13131 #endif /* _SQLITEINT_H_ */
13132 
13133 /************** End of sqliteInt.h *******************************************/
13134 /************** Begin file global.c ******************************************/
13135 /*
13136 ** 2008 June 13
13137 **
13138 ** The author disclaims copyright to this source code.  In place of
13139 ** a legal notice, here is a blessing:
13140 **
13141 **    May you do good and not evil.
13142 **    May you find forgiveness for yourself and forgive others.
13143 **    May you share freely, never taking more than you give.
13144 **
13145 *************************************************************************
13146 **
13147 ** This file contains definitions of global variables and contants.
13148 */
13149 
13150 /* An array to map all upper-case characters into their corresponding
13151 ** lower-case character.
13152 **
13153 ** SQLite only considers US-ASCII (or EBCDIC) characters.  We do not
13154 ** handle case conversions for the UTF character set since the tables
13155 ** involved are nearly as big or bigger than SQLite itself.
13156 */
13157 SQLITE_PRIVATE const unsigned char sqlite3UpperToLower[] = {
13158 #ifdef SQLITE_ASCII
13159       0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17,
13160      18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
13161      36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
13162      54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 97, 98, 99,100,101,102,103,
13163     104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,
13164     122, 91, 92, 93, 94, 95, 96, 97, 98, 99,100,101,102,103,104,105,106,107,
13165     108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,
13166     126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,
13167     144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,
13168     162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,
13169     180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,
13170     198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,
13171     216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,
13172     234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,
13173     252,253,254,255
13174 #endif
13175 #ifdef SQLITE_EBCDIC
13176       0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, /* 0x */
13177      16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, /* 1x */
13178      32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, /* 2x */
13179      48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, /* 3x */
13180      64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, /* 4x */
13181      80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, /* 5x */
13182      96, 97, 66, 67, 68, 69, 70, 71, 72, 73,106,107,108,109,110,111, /* 6x */
13183     112, 81, 82, 83, 84, 85, 86, 87, 88, 89,122,123,124,125,126,127, /* 7x */
13184     128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, /* 8x */
13185     144,145,146,147,148,149,150,151,152,153,154,155,156,157,156,159, /* 9x */
13186     160,161,162,163,164,165,166,167,168,169,170,171,140,141,142,175, /* Ax */
13187     176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191, /* Bx */
13188     192,129,130,131,132,133,134,135,136,137,202,203,204,205,206,207, /* Cx */
13189     208,145,146,147,148,149,150,151,152,153,218,219,220,221,222,223, /* Dx */
13190     224,225,162,163,164,165,166,167,168,169,232,203,204,205,206,207, /* Ex */
13191     239,240,241,242,243,244,245,246,247,248,249,219,220,221,222,255, /* Fx */
13192 #endif
13193 };
13194 
13195 /*
13196 ** The following 256 byte lookup table is used to support SQLites built-in
13197 ** equivalents to the following standard library functions:
13198 **
13199 **   isspace()                        0x01
13200 **   isalpha()                        0x02
13201 **   isdigit()                        0x04
13202 **   isalnum()                        0x06
13203 **   isxdigit()                       0x08
13204 **   toupper()                        0x20
13205 **   SQLite identifier character      0x40
13206 **
13207 ** Bit 0x20 is set if the mapped character requires translation to upper
13208 ** case. i.e. if the character is a lower-case ASCII character.
13209 ** If x is a lower-case ASCII character, then its upper-case equivalent
13210 ** is (x - 0x20). Therefore toupper() can be implemented as:
13211 **
13212 **   (x & ~(map[x]&0x20))
13213 **
13214 ** Standard function tolower() is implemented using the sqlite3UpperToLower[]
13215 ** array. tolower() is used more often than toupper() by SQLite.
13216 **
13217 ** Bit 0x40 is set if the character non-alphanumeric and can be used in an
13218 ** SQLite identifier.  Identifiers are alphanumerics, "_", "$", and any
13219 ** non-ASCII UTF character. Hence the test for whether or not a character is
13220 ** part of an identifier is 0x46.
13221 **
13222 ** SQLite's versions are identical to the standard versions assuming a
13223 ** locale of "C". They are implemented as macros in sqliteInt.h.
13224 */
13225 #ifdef SQLITE_ASCII
13226 SQLITE_PRIVATE const unsigned char sqlite3CtypeMap[256] = {
13227   0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,  /* 00..07    ........ */
13228   0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x00, 0x00,  /* 08..0f    ........ */
13229   0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,  /* 10..17    ........ */
13230   0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,  /* 18..1f    ........ */
13231   0x01, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00,  /* 20..27     !"#$%&' */
13232   0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,  /* 28..2f    ()*+,-./ */
13233   0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c,  /* 30..37    01234567 */
13234   0x0c, 0x0c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,  /* 38..3f    89:;<=>? */
13235 
13236   0x00, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x02,  /* 40..47    @ABCDEFG */
13237   0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,  /* 48..4f    HIJKLMNO */
13238   0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,  /* 50..57    PQRSTUVW */
13239   0x02, 0x02, 0x02, 0x00, 0x00, 0x00, 0x00, 0x40,  /* 58..5f    XYZ[\]^_ */
13240   0x00, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x22,  /* 60..67    `abcdefg */
13241   0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22,  /* 68..6f    hijklmno */
13242   0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22,  /* 70..77    pqrstuvw */
13243   0x22, 0x22, 0x22, 0x00, 0x00, 0x00, 0x00, 0x00,  /* 78..7f    xyz{|}~. */
13244 
13245   0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40,  /* 80..87    ........ */
13246   0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40,  /* 88..8f    ........ */
13247   0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40,  /* 90..97    ........ */
13248   0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40,  /* 98..9f    ........ */
13249   0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40,  /* a0..a7    ........ */
13250   0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40,  /* a8..af    ........ */
13251   0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40,  /* b0..b7    ........ */
13252   0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40,  /* b8..bf    ........ */
13253 
13254   0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40,  /* c0..c7    ........ */
13255   0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40,  /* c8..cf    ........ */
13256   0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40,  /* d0..d7    ........ */
13257   0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40,  /* d8..df    ........ */
13258   0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40,  /* e0..e7    ........ */
13259   0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40,  /* e8..ef    ........ */
13260   0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40,  /* f0..f7    ........ */
13261   0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40   /* f8..ff    ........ */
13262 };
13263 #endif
13264 
13265 #ifndef SQLITE_USE_URI
13266 # define  SQLITE_USE_URI 0
13267 #endif
13268 
13269 #ifndef SQLITE_ALLOW_COVERING_INDEX_SCAN
13270 # define SQLITE_ALLOW_COVERING_INDEX_SCAN 1
13271 #endif
13272 
13273 /*
13274 ** The following singleton contains the global configuration for
13275 ** the SQLite library.
13276 */
13277 SQLITE_PRIVATE SQLITE_WSD struct Sqlite3Config sqlite3Config = {
13278    SQLITE_DEFAULT_MEMSTATUS,  /* bMemstat */
13279    1,                         /* bCoreMutex */
13280    SQLITE_THREADSAFE==1,      /* bFullMutex */
13281    SQLITE_USE_URI,            /* bOpenUri */
13282    SQLITE_ALLOW_COVERING_INDEX_SCAN,   /* bUseCis */
13283    0x7ffffffe,                /* mxStrlen */
13284    0,                         /* neverCorrupt */
13285    128,                       /* szLookaside */
13286    500,                       /* nLookaside */
13287    {0,0,0,0,0,0,0,0},         /* m */
13288    {0,0,0,0,0,0,0,0,0},       /* mutex */
13289    {0,0,0,0,0,0,0,0,0,0,0,0,0},/* pcache2 */
13290    (void*)0,                  /* pHeap */
13291    0,                         /* nHeap */
13292    0, 0,                      /* mnHeap, mxHeap */
13293    SQLITE_DEFAULT_MMAP_SIZE,  /* szMmap */
13294    SQLITE_MAX_MMAP_SIZE,      /* mxMmap */
13295    (void*)0,                  /* pScratch */
13296    0,                         /* szScratch */
13297    0,                         /* nScratch */
13298    (void*)0,                  /* pPage */
13299    0,                         /* szPage */
13300    0,                         /* nPage */
13301    0,                         /* mxParserStack */
13302    0,                         /* sharedCacheEnabled */
13303    /* All the rest should always be initialized to zero */
13304    0,                         /* isInit */
13305    0,                         /* inProgress */
13306    0,                         /* isMutexInit */
13307    0,                         /* isMallocInit */
13308    0,                         /* isPCacheInit */
13309    0,                         /* nRefInitMutex */
13310    0,                         /* pInitMutex */
13311    0,                         /* xLog */
13312    0,                         /* pLogArg */
13313 #ifdef SQLITE_ENABLE_SQLLOG
13314    0,                         /* xSqllog */
13315    0,                         /* pSqllogArg */
13316 #endif
13317 #ifdef SQLITE_VDBE_COVERAGE
13318    0,                         /* xVdbeBranch */
13319    0,                         /* pVbeBranchArg */
13320 #endif
13321 #ifndef SQLITE_OMIT_BUILTIN_TEST
13322    0,                         /* xTestCallback */
13323 #endif
13324    0                          /* bLocaltimeFault */
13325 };
13326 
13327 /*
13328 ** Hash table for global functions - functions common to all
13329 ** database connections.  After initialization, this table is
13330 ** read-only.
13331 */
13332 SQLITE_PRIVATE SQLITE_WSD FuncDefHash sqlite3GlobalFunctions;
13333 
13334 /*
13335 ** Constant tokens for values 0 and 1.
13336 */
13337 SQLITE_PRIVATE const Token sqlite3IntTokens[] = {
13338    { "0", 1 },
13339    { "1", 1 }
13340 };
13341 
13342 
13343 /*
13344 ** The value of the "pending" byte must be 0x40000000 (1 byte past the
13345 ** 1-gibabyte boundary) in a compatible database.  SQLite never uses
13346 ** the database page that contains the pending byte.  It never attempts
13347 ** to read or write that page.  The pending byte page is set assign
13348 ** for use by the VFS layers as space for managing file locks.
13349 **
13350 ** During testing, it is often desirable to move the pending byte to
13351 ** a different position in the file.  This allows code that has to
13352 ** deal with the pending byte to run on files that are much smaller
13353 ** than 1 GiB.  The sqlite3_test_control() interface can be used to
13354 ** move the pending byte.
13355 **
13356 ** IMPORTANT:  Changing the pending byte to any value other than
13357 ** 0x40000000 results in an incompatible database file format!
13358 ** Changing the pending byte during operating results in undefined
13359 ** and dileterious behavior.
13360 */
13361 #ifndef SQLITE_OMIT_WSD
13362 SQLITE_PRIVATE int sqlite3PendingByte = 0x40000000;
13363 #endif
13364 
13365 /*
13366 ** Properties of opcodes.  The OPFLG_INITIALIZER macro is
13367 ** created by mkopcodeh.awk during compilation.  Data is obtained
13368 ** from the comments following the "case OP_xxxx:" statements in
13369 ** the vdbe.c file.
13370 */
13371 SQLITE_PRIVATE const unsigned char sqlite3OpcodeProperty[] = OPFLG_INITIALIZER;
13372 
13373 /************** End of global.c **********************************************/
13374 /************** Begin file ctime.c *******************************************/
13375 /*
13376 ** 2010 February 23
13377 **
13378 ** The author disclaims copyright to this source code.  In place of
13379 ** a legal notice, here is a blessing:
13380 **
13381 **    May you do good and not evil.
13382 **    May you find forgiveness for yourself and forgive others.
13383 **    May you share freely, never taking more than you give.
13384 **
13385 *************************************************************************
13386 **
13387 ** This file implements routines used to report what compile-time options
13388 ** SQLite was built with.
13389 */
13390 
13391 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
13392 
13393 
13394 /*
13395 ** An array of names of all compile-time options.  This array should
13396 ** be sorted A-Z.
13397 **
13398 ** This array looks large, but in a typical installation actually uses
13399 ** only a handful of compile-time options, so most times this array is usually
13400 ** rather short and uses little memory space.
13401 */
13402 static const char * const azCompileOpt[] = {
13403 
13404 /* These macros are provided to "stringify" the value of the define
13405 ** for those options in which the value is meaningful. */
13406 #define CTIMEOPT_VAL_(opt) #opt
13407 #define CTIMEOPT_VAL(opt) CTIMEOPT_VAL_(opt)
13408 
13409 #ifdef SQLITE_32BIT_ROWID
13410   "32BIT_ROWID",
13411 #endif
13412 #ifdef SQLITE_4_BYTE_ALIGNED_MALLOC
13413   "4_BYTE_ALIGNED_MALLOC",
13414 #endif
13415 #ifdef SQLITE_CASE_SENSITIVE_LIKE
13416   "CASE_SENSITIVE_LIKE",
13417 #endif
13418 #ifdef SQLITE_CHECK_PAGES
13419   "CHECK_PAGES",
13420 #endif
13421 #ifdef SQLITE_COVERAGE_TEST
13422   "COVERAGE_TEST",
13423 #endif
13424 #ifdef SQLITE_DEBUG
13425   "DEBUG",
13426 #endif
13427 #ifdef SQLITE_DEFAULT_LOCKING_MODE
13428   "DEFAULT_LOCKING_MODE=" CTIMEOPT_VAL(SQLITE_DEFAULT_LOCKING_MODE),
13429 #endif
13430 #if defined(SQLITE_DEFAULT_MMAP_SIZE) && !defined(SQLITE_DEFAULT_MMAP_SIZE_xc)
13431   "DEFAULT_MMAP_SIZE=" CTIMEOPT_VAL(SQLITE_DEFAULT_MMAP_SIZE),
13432 #endif
13433 #ifdef SQLITE_DISABLE_DIRSYNC
13434   "DISABLE_DIRSYNC",
13435 #endif
13436 #ifdef SQLITE_DISABLE_LFS
13437   "DISABLE_LFS",
13438 #endif
13439 #ifdef SQLITE_ENABLE_ATOMIC_WRITE
13440   "ENABLE_ATOMIC_WRITE",
13441 #endif
13442 #ifdef SQLITE_ENABLE_CEROD
13443   "ENABLE_CEROD",
13444 #endif
13445 #ifdef SQLITE_ENABLE_COLUMN_METADATA
13446   "ENABLE_COLUMN_METADATA",
13447 #endif
13448 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
13449   "ENABLE_EXPENSIVE_ASSERT",
13450 #endif
13451 #ifdef SQLITE_ENABLE_FTS1
13452   "ENABLE_FTS1",
13453 #endif
13454 #ifdef SQLITE_ENABLE_FTS2
13455   "ENABLE_FTS2",
13456 #endif
13457 #ifdef SQLITE_ENABLE_FTS3
13458   "ENABLE_FTS3",
13459 #endif
13460 #ifdef SQLITE_ENABLE_FTS3_PARENTHESIS
13461   "ENABLE_FTS3_PARENTHESIS",
13462 #endif
13463 #ifdef SQLITE_ENABLE_FTS4
13464   "ENABLE_FTS4",
13465 #endif
13466 #ifdef SQLITE_ENABLE_ICU
13467   "ENABLE_ICU",
13468 #endif
13469 #ifdef SQLITE_ENABLE_IOTRACE
13470   "ENABLE_IOTRACE",
13471 #endif
13472 #ifdef SQLITE_ENABLE_LOAD_EXTENSION
13473   "ENABLE_LOAD_EXTENSION",
13474 #endif
13475 #ifdef SQLITE_ENABLE_LOCKING_STYLE
13476   "ENABLE_LOCKING_STYLE=" CTIMEOPT_VAL(SQLITE_ENABLE_LOCKING_STYLE),
13477 #endif
13478 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
13479   "ENABLE_MEMORY_MANAGEMENT",
13480 #endif
13481 #ifdef SQLITE_ENABLE_MEMSYS3
13482   "ENABLE_MEMSYS3",
13483 #endif
13484 #ifdef SQLITE_ENABLE_MEMSYS5
13485   "ENABLE_MEMSYS5",
13486 #endif
13487 #ifdef SQLITE_ENABLE_OVERSIZE_CELL_CHECK
13488   "ENABLE_OVERSIZE_CELL_CHECK",
13489 #endif
13490 #ifdef SQLITE_ENABLE_RTREE
13491   "ENABLE_RTREE",
13492 #endif
13493 #if defined(SQLITE_ENABLE_STAT4)
13494   "ENABLE_STAT4",
13495 #elif defined(SQLITE_ENABLE_STAT3)
13496   "ENABLE_STAT3",
13497 #endif
13498 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
13499   "ENABLE_UNLOCK_NOTIFY",
13500 #endif
13501 #ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
13502   "ENABLE_UPDATE_DELETE_LIMIT",
13503 #endif
13504 #ifdef SQLITE_HAS_CODEC
13505   "HAS_CODEC",
13506 #endif
13507 #ifdef SQLITE_HAVE_ISNAN
13508   "HAVE_ISNAN",
13509 #endif
13510 #ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
13511   "HOMEGROWN_RECURSIVE_MUTEX",
13512 #endif
13513 #ifdef SQLITE_IGNORE_AFP_LOCK_ERRORS
13514   "IGNORE_AFP_LOCK_ERRORS",
13515 #endif
13516 #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
13517   "IGNORE_FLOCK_LOCK_ERRORS",
13518 #endif
13519 #ifdef SQLITE_INT64_TYPE
13520   "INT64_TYPE",
13521 #endif
13522 #ifdef SQLITE_LOCK_TRACE
13523   "LOCK_TRACE",
13524 #endif
13525 #if defined(SQLITE_MAX_MMAP_SIZE) && !defined(SQLITE_MAX_MMAP_SIZE_xc)
13526   "MAX_MMAP_SIZE=" CTIMEOPT_VAL(SQLITE_MAX_MMAP_SIZE),
13527 #endif
13528 #ifdef SQLITE_MAX_SCHEMA_RETRY
13529   "MAX_SCHEMA_RETRY=" CTIMEOPT_VAL(SQLITE_MAX_SCHEMA_RETRY),
13530 #endif
13531 #ifdef SQLITE_MEMDEBUG
13532   "MEMDEBUG",
13533 #endif
13534 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
13535   "MIXED_ENDIAN_64BIT_FLOAT",
13536 #endif
13537 #ifdef SQLITE_NO_SYNC
13538   "NO_SYNC",
13539 #endif
13540 #ifdef SQLITE_OMIT_ALTERTABLE
13541   "OMIT_ALTERTABLE",
13542 #endif
13543 #ifdef SQLITE_OMIT_ANALYZE
13544   "OMIT_ANALYZE",
13545 #endif
13546 #ifdef SQLITE_OMIT_ATTACH
13547   "OMIT_ATTACH",
13548 #endif
13549 #ifdef SQLITE_OMIT_AUTHORIZATION
13550   "OMIT_AUTHORIZATION",
13551 #endif
13552 #ifdef SQLITE_OMIT_AUTOINCREMENT
13553   "OMIT_AUTOINCREMENT",
13554 #endif
13555 #ifdef SQLITE_OMIT_AUTOINIT
13556   "OMIT_AUTOINIT",
13557 #endif
13558 #ifdef SQLITE_OMIT_AUTOMATIC_INDEX
13559   "OMIT_AUTOMATIC_INDEX",
13560 #endif
13561 #ifdef SQLITE_OMIT_AUTORESET
13562   "OMIT_AUTORESET",
13563 #endif
13564 #ifdef SQLITE_OMIT_AUTOVACUUM
13565   "OMIT_AUTOVACUUM",
13566 #endif
13567 #ifdef SQLITE_OMIT_BETWEEN_OPTIMIZATION
13568   "OMIT_BETWEEN_OPTIMIZATION",
13569 #endif
13570 #ifdef SQLITE_OMIT_BLOB_LITERAL
13571   "OMIT_BLOB_LITERAL",
13572 #endif
13573 #ifdef SQLITE_OMIT_BTREECOUNT
13574   "OMIT_BTREECOUNT",
13575 #endif
13576 #ifdef SQLITE_OMIT_BUILTIN_TEST
13577   "OMIT_BUILTIN_TEST",
13578 #endif
13579 #ifdef SQLITE_OMIT_CAST
13580   "OMIT_CAST",
13581 #endif
13582 #ifdef SQLITE_OMIT_CHECK
13583   "OMIT_CHECK",
13584 #endif
13585 #ifdef SQLITE_OMIT_COMPLETE
13586   "OMIT_COMPLETE",
13587 #endif
13588 #ifdef SQLITE_OMIT_COMPOUND_SELECT
13589   "OMIT_COMPOUND_SELECT",
13590 #endif
13591 #ifdef SQLITE_OMIT_CTE
13592   "OMIT_CTE",
13593 #endif
13594 #ifdef SQLITE_OMIT_DATETIME_FUNCS
13595   "OMIT_DATETIME_FUNCS",
13596 #endif
13597 #ifdef SQLITE_OMIT_DECLTYPE
13598   "OMIT_DECLTYPE",
13599 #endif
13600 #ifdef SQLITE_OMIT_DEPRECATED
13601   "OMIT_DEPRECATED",
13602 #endif
13603 #ifdef SQLITE_OMIT_DISKIO
13604   "OMIT_DISKIO",
13605 #endif
13606 #ifdef SQLITE_OMIT_EXPLAIN
13607   "OMIT_EXPLAIN",
13608 #endif
13609 #ifdef SQLITE_OMIT_FLAG_PRAGMAS
13610   "OMIT_FLAG_PRAGMAS",
13611 #endif
13612 #ifdef SQLITE_OMIT_FLOATING_POINT
13613   "OMIT_FLOATING_POINT",
13614 #endif
13615 #ifdef SQLITE_OMIT_FOREIGN_KEY
13616   "OMIT_FOREIGN_KEY",
13617 #endif
13618 #ifdef SQLITE_OMIT_GET_TABLE
13619   "OMIT_GET_TABLE",
13620 #endif
13621 #ifdef SQLITE_OMIT_INCRBLOB
13622   "OMIT_INCRBLOB",
13623 #endif
13624 #ifdef SQLITE_OMIT_INTEGRITY_CHECK
13625   "OMIT_INTEGRITY_CHECK",
13626 #endif
13627 #ifdef SQLITE_OMIT_LIKE_OPTIMIZATION
13628   "OMIT_LIKE_OPTIMIZATION",
13629 #endif
13630 #ifdef SQLITE_OMIT_LOAD_EXTENSION
13631   "OMIT_LOAD_EXTENSION",
13632 #endif
13633 #ifdef SQLITE_OMIT_LOCALTIME
13634   "OMIT_LOCALTIME",
13635 #endif
13636 #ifdef SQLITE_OMIT_LOOKASIDE
13637   "OMIT_LOOKASIDE",
13638 #endif
13639 #ifdef SQLITE_OMIT_MEMORYDB
13640   "OMIT_MEMORYDB",
13641 #endif
13642 #ifdef SQLITE_OMIT_OR_OPTIMIZATION
13643   "OMIT_OR_OPTIMIZATION",
13644 #endif
13645 #ifdef SQLITE_OMIT_PAGER_PRAGMAS
13646   "OMIT_PAGER_PRAGMAS",
13647 #endif
13648 #ifdef SQLITE_OMIT_PRAGMA
13649   "OMIT_PRAGMA",
13650 #endif
13651 #ifdef SQLITE_OMIT_PROGRESS_CALLBACK
13652   "OMIT_PROGRESS_CALLBACK",
13653 #endif
13654 #ifdef SQLITE_OMIT_QUICKBALANCE
13655   "OMIT_QUICKBALANCE",
13656 #endif
13657 #ifdef SQLITE_OMIT_REINDEX
13658   "OMIT_REINDEX",
13659 #endif
13660 #ifdef SQLITE_OMIT_SCHEMA_PRAGMAS
13661   "OMIT_SCHEMA_PRAGMAS",
13662 #endif
13663 #ifdef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS
13664   "OMIT_SCHEMA_VERSION_PRAGMAS",
13665 #endif
13666 #ifdef SQLITE_OMIT_SHARED_CACHE
13667   "OMIT_SHARED_CACHE",
13668 #endif
13669 #ifdef SQLITE_OMIT_SUBQUERY
13670   "OMIT_SUBQUERY",
13671 #endif
13672 #ifdef SQLITE_OMIT_TCL_VARIABLE
13673   "OMIT_TCL_VARIABLE",
13674 #endif
13675 #ifdef SQLITE_OMIT_TEMPDB
13676   "OMIT_TEMPDB",
13677 #endif
13678 #ifdef SQLITE_OMIT_TRACE
13679   "OMIT_TRACE",
13680 #endif
13681 #ifdef SQLITE_OMIT_TRIGGER
13682   "OMIT_TRIGGER",
13683 #endif
13684 #ifdef SQLITE_OMIT_TRUNCATE_OPTIMIZATION
13685   "OMIT_TRUNCATE_OPTIMIZATION",
13686 #endif
13687 #ifdef SQLITE_OMIT_UTF16
13688   "OMIT_UTF16",
13689 #endif
13690 #ifdef SQLITE_OMIT_VACUUM
13691   "OMIT_VACUUM",
13692 #endif
13693 #ifdef SQLITE_OMIT_VIEW
13694   "OMIT_VIEW",
13695 #endif
13696 #ifdef SQLITE_OMIT_VIRTUALTABLE
13697   "OMIT_VIRTUALTABLE",
13698 #endif
13699 #ifdef SQLITE_OMIT_WAL
13700   "OMIT_WAL",
13701 #endif
13702 #ifdef SQLITE_OMIT_WSD
13703   "OMIT_WSD",
13704 #endif
13705 #ifdef SQLITE_OMIT_XFER_OPT
13706   "OMIT_XFER_OPT",
13707 #endif
13708 #ifdef SQLITE_PERFORMANCE_TRACE
13709   "PERFORMANCE_TRACE",
13710 #endif
13711 #ifdef SQLITE_PROXY_DEBUG
13712   "PROXY_DEBUG",
13713 #endif
13714 #ifdef SQLITE_RTREE_INT_ONLY
13715   "RTREE_INT_ONLY",
13716 #endif
13717 #ifdef SQLITE_SECURE_DELETE
13718   "SECURE_DELETE",
13719 #endif
13720 #ifdef SQLITE_SMALL_STACK
13721   "SMALL_STACK",
13722 #endif
13723 #ifdef SQLITE_SOUNDEX
13724   "SOUNDEX",
13725 #endif
13726 #ifdef SQLITE_SYSTEM_MALLOC
13727   "SYSTEM_MALLOC",
13728 #endif
13729 #ifdef SQLITE_TCL
13730   "TCL",
13731 #endif
13732 #if defined(SQLITE_TEMP_STORE) && !defined(SQLITE_TEMP_STORE_xc)
13733   "TEMP_STORE=" CTIMEOPT_VAL(SQLITE_TEMP_STORE),
13734 #endif
13735 #ifdef SQLITE_TEST
13736   "TEST",
13737 #endif
13738 #if defined(SQLITE_THREADSAFE)
13739   "THREADSAFE=" CTIMEOPT_VAL(SQLITE_THREADSAFE),
13740 #endif
13741 #ifdef SQLITE_USE_ALLOCA
13742   "USE_ALLOCA",
13743 #endif
13744 #ifdef SQLITE_WIN32_MALLOC
13745   "WIN32_MALLOC",
13746 #endif
13747 #ifdef SQLITE_ZERO_MALLOC
13748   "ZERO_MALLOC"
13749 #endif
13750 };
13751 
13752 /*
13753 ** Given the name of a compile-time option, return true if that option
13754 ** was used and false if not.
13755 **
13756 ** The name can optionally begin with "SQLITE_" but the "SQLITE_" prefix
13757 ** is not required for a match.
13758 */
13759 SQLITE_API int sqlite3_compileoption_used(const char *zOptName){
13760   int i, n;
13761   if( sqlite3StrNICmp(zOptName, "SQLITE_", 7)==0 ) zOptName += 7;
13762   n = sqlite3Strlen30(zOptName);
13763 
13764   /* Since ArraySize(azCompileOpt) is normally in single digits, a
13765   ** linear search is adequate.  No need for a binary search. */
13766   for(i=0; i<ArraySize(azCompileOpt); i++){
13767     if( sqlite3StrNICmp(zOptName, azCompileOpt[i], n)==0
13768      && sqlite3CtypeMap[(unsigned char)azCompileOpt[i][n]]==0
13769     ){
13770       return 1;
13771     }
13772   }
13773   return 0;
13774 }
13775 
13776 /*
13777 ** Return the N-th compile-time option string.  If N is out of range,
13778 ** return a NULL pointer.
13779 */
13780 SQLITE_API const char *sqlite3_compileoption_get(int N){
13781   if( N>=0 && N<ArraySize(azCompileOpt) ){
13782     return azCompileOpt[N];
13783   }
13784   return 0;
13785 }
13786 
13787 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
13788 
13789 /************** End of ctime.c ***********************************************/
13790 /************** Begin file status.c ******************************************/
13791 /*
13792 ** 2008 June 18
13793 **
13794 ** The author disclaims copyright to this source code.  In place of
13795 ** a legal notice, here is a blessing:
13796 **
13797 **    May you do good and not evil.
13798 **    May you find forgiveness for yourself and forgive others.
13799 **    May you share freely, never taking more than you give.
13800 **
13801 *************************************************************************
13802 **
13803 ** This module implements the sqlite3_status() interface and related
13804 ** functionality.
13805 */
13806 /************** Include vdbeInt.h in the middle of status.c ******************/
13807 /************** Begin file vdbeInt.h *****************************************/
13808 /*
13809 ** 2003 September 6
13810 **
13811 ** The author disclaims copyright to this source code.  In place of
13812 ** a legal notice, here is a blessing:
13813 **
13814 **    May you do good and not evil.
13815 **    May you find forgiveness for yourself and forgive others.
13816 **    May you share freely, never taking more than you give.
13817 **
13818 *************************************************************************
13819 ** This is the header file for information that is private to the
13820 ** VDBE.  This information used to all be at the top of the single
13821 ** source code file "vdbe.c".  When that file became too big (over
13822 ** 6000 lines long) it was split up into several smaller files and
13823 ** this header information was factored out.
13824 */
13825 #ifndef _VDBEINT_H_
13826 #define _VDBEINT_H_
13827 
13828 /*
13829 ** The maximum number of times that a statement will try to reparse
13830 ** itself before giving up and returning SQLITE_SCHEMA.
13831 */
13832 #ifndef SQLITE_MAX_SCHEMA_RETRY
13833 # define SQLITE_MAX_SCHEMA_RETRY 50
13834 #endif
13835 
13836 /*
13837 ** SQL is translated into a sequence of instructions to be
13838 ** executed by a virtual machine.  Each instruction is an instance
13839 ** of the following structure.
13840 */
13841 typedef struct VdbeOp Op;
13842 
13843 /*
13844 ** Boolean values
13845 */
13846 typedef unsigned Bool;
13847 
13848 /* Opaque type used by code in vdbesort.c */
13849 typedef struct VdbeSorter VdbeSorter;
13850 
13851 /* Opaque type used by the explainer */
13852 typedef struct Explain Explain;
13853 
13854 /* Elements of the linked list at Vdbe.pAuxData */
13855 typedef struct AuxData AuxData;
13856 
13857 /*
13858 ** A cursor is a pointer into a single BTree within a database file.
13859 ** The cursor can seek to a BTree entry with a particular key, or
13860 ** loop over all entries of the Btree.  You can also insert new BTree
13861 ** entries or retrieve the key or data from the entry that the cursor
13862 ** is currently pointing to.
13863 **
13864 ** Cursors can also point to virtual tables, sorters, or "pseudo-tables".
13865 ** A pseudo-table is a single-row table implemented by registers.
13866 **
13867 ** Every cursor that the virtual machine has open is represented by an
13868 ** instance of the following structure.
13869 */
13870 struct VdbeCursor {
13871   BtCursor *pCursor;    /* The cursor structure of the backend */
13872   Btree *pBt;           /* Separate file holding temporary table */
13873   KeyInfo *pKeyInfo;    /* Info about index keys needed by index cursors */
13874   int seekResult;       /* Result of previous sqlite3BtreeMoveto() */
13875   int pseudoTableReg;   /* Register holding pseudotable content. */
13876   i16 nField;           /* Number of fields in the header */
13877   u16 nHdrParsed;       /* Number of header fields parsed so far */
13878   i8 iDb;               /* Index of cursor database in db->aDb[] (or -1) */
13879   u8 nullRow;           /* True if pointing to a row with no data */
13880   u8 rowidIsValid;      /* True if lastRowid is valid */
13881   u8 deferredMoveto;    /* A call to sqlite3BtreeMoveto() is needed */
13882   Bool isEphemeral:1;   /* True for an ephemeral table */
13883   Bool useRandomRowid:1;/* Generate new record numbers semi-randomly */
13884   Bool isTable:1;       /* True if a table requiring integer keys */
13885   Bool isOrdered:1;     /* True if the underlying table is BTREE_UNORDERED */
13886   sqlite3_vtab_cursor *pVtabCursor;  /* The cursor for a virtual table */
13887   i64 seqCount;         /* Sequence counter */
13888   i64 movetoTarget;     /* Argument to the deferred sqlite3BtreeMoveto() */
13889   i64 lastRowid;        /* Rowid being deleted by OP_Delete */
13890   VdbeSorter *pSorter;  /* Sorter object for OP_SorterOpen cursors */
13891 
13892   /* Cached information about the header for the data record that the
13893   ** cursor is currently pointing to.  Only valid if cacheStatus matches
13894   ** Vdbe.cacheCtr.  Vdbe.cacheCtr will never take on the value of
13895   ** CACHE_STALE and so setting cacheStatus=CACHE_STALE guarantees that
13896   ** the cache is out of date.
13897   **
13898   ** aRow might point to (ephemeral) data for the current row, or it might
13899   ** be NULL.
13900   */
13901   u32 cacheStatus;      /* Cache is valid if this matches Vdbe.cacheCtr */
13902   u32 payloadSize;      /* Total number of bytes in the record */
13903   u32 szRow;            /* Byte available in aRow */
13904   u32 iHdrOffset;       /* Offset to next unparsed byte of the header */
13905   const u8 *aRow;       /* Data for the current row, if all on one page */
13906   u32 aType[1];         /* Type values for all entries in the record */
13907   /* 2*nField extra array elements allocated for aType[], beyond the one
13908   ** static element declared in the structure.  nField total array slots for
13909   ** aType[] and nField+1 array slots for aOffset[] */
13910 };
13911 typedef struct VdbeCursor VdbeCursor;
13912 
13913 /*
13914 ** When a sub-program is executed (OP_Program), a structure of this type
13915 ** is allocated to store the current value of the program counter, as
13916 ** well as the current memory cell array and various other frame specific
13917 ** values stored in the Vdbe struct. When the sub-program is finished,
13918 ** these values are copied back to the Vdbe from the VdbeFrame structure,
13919 ** restoring the state of the VM to as it was before the sub-program
13920 ** began executing.
13921 **
13922 ** The memory for a VdbeFrame object is allocated and managed by a memory
13923 ** cell in the parent (calling) frame. When the memory cell is deleted or
13924 ** overwritten, the VdbeFrame object is not freed immediately. Instead, it
13925 ** is linked into the Vdbe.pDelFrame list. The contents of the Vdbe.pDelFrame
13926 ** list is deleted when the VM is reset in VdbeHalt(). The reason for doing
13927 ** this instead of deleting the VdbeFrame immediately is to avoid recursive
13928 ** calls to sqlite3VdbeMemRelease() when the memory cells belonging to the
13929 ** child frame are released.
13930 **
13931 ** The currently executing frame is stored in Vdbe.pFrame. Vdbe.pFrame is
13932 ** set to NULL if the currently executing frame is the main program.
13933 */
13934 typedef struct VdbeFrame VdbeFrame;
13935 struct VdbeFrame {
13936   Vdbe *v;                /* VM this frame belongs to */
13937   VdbeFrame *pParent;     /* Parent of this frame, or NULL if parent is main */
13938   Op *aOp;                /* Program instructions for parent frame */
13939   Mem *aMem;              /* Array of memory cells for parent frame */
13940   u8 *aOnceFlag;          /* Array of OP_Once flags for parent frame */
13941   VdbeCursor **apCsr;     /* Array of Vdbe cursors for parent frame */
13942   void *token;            /* Copy of SubProgram.token */
13943   i64 lastRowid;          /* Last insert rowid (sqlite3.lastRowid) */
13944   int nCursor;            /* Number of entries in apCsr */
13945   int pc;                 /* Program Counter in parent (calling) frame */
13946   int nOp;                /* Size of aOp array */
13947   int nMem;               /* Number of entries in aMem */
13948   int nOnceFlag;          /* Number of entries in aOnceFlag */
13949   int nChildMem;          /* Number of memory cells for child frame */
13950   int nChildCsr;          /* Number of cursors for child frame */
13951   int nChange;            /* Statement changes (Vdbe.nChanges)     */
13952 };
13953 
13954 #define VdbeFrameMem(p) ((Mem *)&((u8 *)p)[ROUND8(sizeof(VdbeFrame))])
13955 
13956 /*
13957 ** A value for VdbeCursor.cacheValid that means the cache is always invalid.
13958 */
13959 #define CACHE_STALE 0
13960 
13961 /*
13962 ** Internally, the vdbe manipulates nearly all SQL values as Mem
13963 ** structures. Each Mem struct may cache multiple representations (string,
13964 ** integer etc.) of the same value.
13965 */
13966 struct Mem {
13967   sqlite3 *db;        /* The associated database connection */
13968   char *z;            /* String or BLOB value */
13969   double r;           /* Real value */
13970   union {
13971     i64 i;              /* Integer value used when MEM_Int is set in flags */
13972     int nZero;          /* Used when bit MEM_Zero is set in flags */
13973     FuncDef *pDef;      /* Used only when flags==MEM_Agg */
13974     RowSet *pRowSet;    /* Used only when flags==MEM_RowSet */
13975     VdbeFrame *pFrame;  /* Used when flags==MEM_Frame */
13976   } u;
13977   int n;              /* Number of characters in string value, excluding '\0' */
13978   u16 flags;          /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */
13979   u8  enc;            /* SQLITE_UTF8, SQLITE_UTF16BE, SQLITE_UTF16LE */
13980 #ifdef SQLITE_DEBUG
13981   Mem *pScopyFrom;    /* This Mem is a shallow copy of pScopyFrom */
13982   void *pFiller;      /* So that sizeof(Mem) is a multiple of 8 */
13983 #endif
13984   void (*xDel)(void *);  /* If not null, call this function to delete Mem.z */
13985   char *zMalloc;      /* Dynamic buffer allocated by sqlite3_malloc() */
13986 };
13987 
13988 /* One or more of the following flags are set to indicate the validOK
13989 ** representations of the value stored in the Mem struct.
13990 **
13991 ** If the MEM_Null flag is set, then the value is an SQL NULL value.
13992 ** No other flags may be set in this case.
13993 **
13994 ** If the MEM_Str flag is set then Mem.z points at a string representation.
13995 ** Usually this is encoded in the same unicode encoding as the main
13996 ** database (see below for exceptions). If the MEM_Term flag is also
13997 ** set, then the string is nul terminated. The MEM_Int and MEM_Real
13998 ** flags may coexist with the MEM_Str flag.
13999 */
14000 #define MEM_Null      0x0001   /* Value is NULL */
14001 #define MEM_Str       0x0002   /* Value is a string */
14002 #define MEM_Int       0x0004   /* Value is an integer */
14003 #define MEM_Real      0x0008   /* Value is a real number */
14004 #define MEM_Blob      0x0010   /* Value is a BLOB */
14005 #define MEM_AffMask   0x001f   /* Mask of affinity bits */
14006 #define MEM_RowSet    0x0020   /* Value is a RowSet object */
14007 #define MEM_Frame     0x0040   /* Value is a VdbeFrame object */
14008 #define MEM_Undefined 0x0080   /* Value is undefined */
14009 #define MEM_Cleared   0x0100   /* NULL set by OP_Null, not from data */
14010 #define MEM_TypeMask  0x01ff   /* Mask of type bits */
14011 
14012 
14013 /* Whenever Mem contains a valid string or blob representation, one of
14014 ** the following flags must be set to determine the memory management
14015 ** policy for Mem.z.  The MEM_Term flag tells us whether or not the
14016 ** string is \000 or \u0000 terminated
14017 */
14018 #define MEM_Term      0x0200   /* String rep is nul terminated */
14019 #define MEM_Dyn       0x0400   /* Need to call Mem.xDel() on Mem.z */
14020 #define MEM_Static    0x0800   /* Mem.z points to a static string */
14021 #define MEM_Ephem     0x1000   /* Mem.z points to an ephemeral string */
14022 #define MEM_Agg       0x2000   /* Mem.z points to an agg function context */
14023 #define MEM_Zero      0x4000   /* Mem.i contains count of 0s appended to blob */
14024 #ifdef SQLITE_OMIT_INCRBLOB
14025   #undef MEM_Zero
14026   #define MEM_Zero 0x0000
14027 #endif
14028 
14029 /*
14030 ** Clear any existing type flags from a Mem and replace them with f
14031 */
14032 #define MemSetTypeFlag(p, f) \
14033    ((p)->flags = ((p)->flags&~(MEM_TypeMask|MEM_Zero))|f)
14034 
14035 /*
14036 ** Return true if a memory cell is not marked as invalid.  This macro
14037 ** is for use inside assert() statements only.
14038 */
14039 #ifdef SQLITE_DEBUG
14040 #define memIsValid(M)  ((M)->flags & MEM_Undefined)==0
14041 #endif
14042 
14043 /*
14044 ** Each auxilliary data pointer stored by a user defined function
14045 ** implementation calling sqlite3_set_auxdata() is stored in an instance
14046 ** of this structure. All such structures associated with a single VM
14047 ** are stored in a linked list headed at Vdbe.pAuxData. All are destroyed
14048 ** when the VM is halted (if not before).
14049 */
14050 struct AuxData {
14051   int iOp;                        /* Instruction number of OP_Function opcode */
14052   int iArg;                       /* Index of function argument. */
14053   void *pAux;                     /* Aux data pointer */
14054   void (*xDelete)(void *);        /* Destructor for the aux data */
14055   AuxData *pNext;                 /* Next element in list */
14056 };
14057 
14058 /*
14059 ** The "context" argument for a installable function.  A pointer to an
14060 ** instance of this structure is the first argument to the routines used
14061 ** implement the SQL functions.
14062 **
14063 ** There is a typedef for this structure in sqlite.h.  So all routines,
14064 ** even the public interface to SQLite, can use a pointer to this structure.
14065 ** But this file is the only place where the internal details of this
14066 ** structure are known.
14067 **
14068 ** This structure is defined inside of vdbeInt.h because it uses substructures
14069 ** (Mem) which are only defined there.
14070 */
14071 struct sqlite3_context {
14072   FuncDef *pFunc;       /* Pointer to function information.  MUST BE FIRST */
14073   Mem s;                /* The return value is stored here */
14074   Mem *pMem;            /* Memory cell used to store aggregate context */
14075   CollSeq *pColl;       /* Collating sequence */
14076   Vdbe *pVdbe;          /* The VM that owns this context */
14077   int iOp;              /* Instruction number of OP_Function */
14078   int isError;          /* Error code returned by the function. */
14079   u8 skipFlag;          /* Skip skip accumulator loading if true */
14080   u8 fErrorOrAux;       /* isError!=0 or pVdbe->pAuxData modified */
14081 };
14082 
14083 /*
14084 ** An Explain object accumulates indented output which is helpful
14085 ** in describing recursive data structures.
14086 */
14087 struct Explain {
14088   Vdbe *pVdbe;       /* Attach the explanation to this Vdbe */
14089   StrAccum str;      /* The string being accumulated */
14090   int nIndent;       /* Number of elements in aIndent */
14091   u16 aIndent[100];  /* Levels of indentation */
14092   char zBase[100];   /* Initial space */
14093 };
14094 
14095 /* A bitfield type for use inside of structures.  Always follow with :N where
14096 ** N is the number of bits.
14097 */
14098 typedef unsigned bft;  /* Bit Field Type */
14099 
14100 /*
14101 ** An instance of the virtual machine.  This structure contains the complete
14102 ** state of the virtual machine.
14103 **
14104 ** The "sqlite3_stmt" structure pointer that is returned by sqlite3_prepare()
14105 ** is really a pointer to an instance of this structure.
14106 **
14107 ** The Vdbe.inVtabMethod variable is set to non-zero for the duration of
14108 ** any virtual table method invocations made by the vdbe program. It is
14109 ** set to 2 for xDestroy method calls and 1 for all other methods. This
14110 ** variable is used for two purposes: to allow xDestroy methods to execute
14111 ** "DROP TABLE" statements and to prevent some nasty side effects of
14112 ** malloc failure when SQLite is invoked recursively by a virtual table
14113 ** method function.
14114 */
14115 struct Vdbe {
14116   sqlite3 *db;            /* The database connection that owns this statement */
14117   Op *aOp;                /* Space to hold the virtual machine's program */
14118   Mem *aMem;              /* The memory locations */
14119   Mem **apArg;            /* Arguments to currently executing user function */
14120   Mem *aColName;          /* Column names to return */
14121   Mem *pResultSet;        /* Pointer to an array of results */
14122   Parse *pParse;          /* Parsing context used to create this Vdbe */
14123   int nMem;               /* Number of memory locations currently allocated */
14124   int nOp;                /* Number of instructions in the program */
14125   int nCursor;            /* Number of slots in apCsr[] */
14126   u32 magic;              /* Magic number for sanity checking */
14127   char *zErrMsg;          /* Error message written here */
14128   Vdbe *pPrev,*pNext;     /* Linked list of VDBEs with the same Vdbe.db */
14129   VdbeCursor **apCsr;     /* One element of this array for each open cursor */
14130   Mem *aVar;              /* Values for the OP_Variable opcode. */
14131   char **azVar;           /* Name of variables */
14132   ynVar nVar;             /* Number of entries in aVar[] */
14133   ynVar nzVar;            /* Number of entries in azVar[] */
14134   u32 cacheCtr;           /* VdbeCursor row cache generation counter */
14135   int pc;                 /* The program counter */
14136   int rc;                 /* Value to return */
14137   u16 nResColumn;         /* Number of columns in one row of the result set */
14138   u8 errorAction;         /* Recovery action to do in case of an error */
14139   u8 minWriteFileFormat;  /* Minimum file format for writable database files */
14140   bft explain:2;          /* True if EXPLAIN present on SQL command */
14141   bft inVtabMethod:2;     /* See comments above */
14142   bft changeCntOn:1;      /* True to update the change-counter */
14143   bft expired:1;          /* True if the VM needs to be recompiled */
14144   bft runOnlyOnce:1;      /* Automatically expire on reset */
14145   bft usesStmtJournal:1;  /* True if uses a statement journal */
14146   bft readOnly:1;         /* True for statements that do not write */
14147   bft bIsReader:1;        /* True for statements that read */
14148   bft isPrepareV2:1;      /* True if prepared with prepare_v2() */
14149   bft doingRerun:1;       /* True if rerunning after an auto-reprepare */
14150   int nChange;            /* Number of db changes made since last reset */
14151   yDbMask btreeMask;      /* Bitmask of db->aDb[] entries referenced */
14152   yDbMask lockMask;       /* Subset of btreeMask that requires a lock */
14153   int iStatement;         /* Statement number (or 0 if has not opened stmt) */
14154   u32 aCounter[5];        /* Counters used by sqlite3_stmt_status() */
14155 #ifndef SQLITE_OMIT_TRACE
14156   i64 startTime;          /* Time when query started - used for profiling */
14157 #endif
14158   i64 iCurrentTime;       /* Value of julianday('now') for this statement */
14159   i64 nFkConstraint;      /* Number of imm. FK constraints this VM */
14160   i64 nStmtDefCons;       /* Number of def. constraints when stmt started */
14161   i64 nStmtDefImmCons;    /* Number of def. imm constraints when stmt started */
14162   char *zSql;             /* Text of the SQL statement that generated this */
14163   void *pFree;            /* Free this when deleting the vdbe */
14164 #ifdef SQLITE_ENABLE_TREE_EXPLAIN
14165   Explain *pExplain;      /* The explainer */
14166   char *zExplain;         /* Explanation of data structures */
14167 #endif
14168   VdbeFrame *pFrame;      /* Parent frame */
14169   VdbeFrame *pDelFrame;   /* List of frame objects to free on VM reset */
14170   int nFrame;             /* Number of frames in pFrame list */
14171   u32 expmask;            /* Binding to these vars invalidates VM */
14172   SubProgram *pProgram;   /* Linked list of all sub-programs used by VM */
14173   int nOnceFlag;          /* Size of array aOnceFlag[] */
14174   u8 *aOnceFlag;          /* Flags for OP_Once */
14175   AuxData *pAuxData;      /* Linked list of auxdata allocations */
14176 };
14177 
14178 /*
14179 ** The following are allowed values for Vdbe.magic
14180 */
14181 #define VDBE_MAGIC_INIT     0x26bceaa5    /* Building a VDBE program */
14182 #define VDBE_MAGIC_RUN      0xbdf20da3    /* VDBE is ready to execute */
14183 #define VDBE_MAGIC_HALT     0x519c2973    /* VDBE has completed execution */
14184 #define VDBE_MAGIC_DEAD     0xb606c3c8    /* The VDBE has been deallocated */
14185 
14186 /*
14187 ** Function prototypes
14188 */
14189 SQLITE_PRIVATE void sqlite3VdbeFreeCursor(Vdbe *, VdbeCursor*);
14190 void sqliteVdbePopStack(Vdbe*,int);
14191 SQLITE_PRIVATE int sqlite3VdbeCursorMoveto(VdbeCursor*);
14192 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
14193 SQLITE_PRIVATE void sqlite3VdbePrintOp(FILE*, int, Op*);
14194 #endif
14195 SQLITE_PRIVATE u32 sqlite3VdbeSerialTypeLen(u32);
14196 SQLITE_PRIVATE u32 sqlite3VdbeSerialType(Mem*, int);
14197 SQLITE_PRIVATE u32 sqlite3VdbeSerialPut(unsigned char*, Mem*, u32);
14198 SQLITE_PRIVATE u32 sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*);
14199 SQLITE_PRIVATE void sqlite3VdbeDeleteAuxData(Vdbe*, int, int);
14200 
14201 int sqlite2BtreeKeyCompare(BtCursor *, const void *, int, int, int *);
14202 SQLITE_PRIVATE int sqlite3VdbeIdxKeyCompare(VdbeCursor*,UnpackedRecord*,int*);
14203 SQLITE_PRIVATE int sqlite3VdbeIdxRowid(sqlite3*, BtCursor *, i64 *);
14204 SQLITE_PRIVATE int sqlite3MemCompare(const Mem*, const Mem*, const CollSeq*);
14205 SQLITE_PRIVATE int sqlite3VdbeExec(Vdbe*);
14206 SQLITE_PRIVATE int sqlite3VdbeList(Vdbe*);
14207 SQLITE_PRIVATE int sqlite3VdbeHalt(Vdbe*);
14208 SQLITE_PRIVATE int sqlite3VdbeChangeEncoding(Mem *, int);
14209 SQLITE_PRIVATE int sqlite3VdbeMemTooBig(Mem*);
14210 SQLITE_PRIVATE int sqlite3VdbeMemCopy(Mem*, const Mem*);
14211 SQLITE_PRIVATE void sqlite3VdbeMemShallowCopy(Mem*, const Mem*, int);
14212 SQLITE_PRIVATE void sqlite3VdbeMemMove(Mem*, Mem*);
14213 SQLITE_PRIVATE int sqlite3VdbeMemNulTerminate(Mem*);
14214 SQLITE_PRIVATE int sqlite3VdbeMemSetStr(Mem*, const char*, int, u8, void(*)(void*));
14215 SQLITE_PRIVATE void sqlite3VdbeMemSetInt64(Mem*, i64);
14216 #ifdef SQLITE_OMIT_FLOATING_POINT
14217 # define sqlite3VdbeMemSetDouble sqlite3VdbeMemSetInt64
14218 #else
14219 SQLITE_PRIVATE   void sqlite3VdbeMemSetDouble(Mem*, double);
14220 #endif
14221 SQLITE_PRIVATE void sqlite3VdbeMemSetNull(Mem*);
14222 SQLITE_PRIVATE void sqlite3VdbeMemSetZeroBlob(Mem*,int);
14223 SQLITE_PRIVATE void sqlite3VdbeMemSetRowSet(Mem*);
14224 SQLITE_PRIVATE int sqlite3VdbeMemMakeWriteable(Mem*);
14225 SQLITE_PRIVATE int sqlite3VdbeMemStringify(Mem*, int);
14226 SQLITE_PRIVATE i64 sqlite3VdbeIntValue(Mem*);
14227 SQLITE_PRIVATE int sqlite3VdbeMemIntegerify(Mem*);
14228 SQLITE_PRIVATE double sqlite3VdbeRealValue(Mem*);
14229 SQLITE_PRIVATE void sqlite3VdbeIntegerAffinity(Mem*);
14230 SQLITE_PRIVATE int sqlite3VdbeMemRealify(Mem*);
14231 SQLITE_PRIVATE int sqlite3VdbeMemNumerify(Mem*);
14232 SQLITE_PRIVATE int sqlite3VdbeMemFromBtree(BtCursor*,u32,u32,int,Mem*);
14233 SQLITE_PRIVATE void sqlite3VdbeMemRelease(Mem *p);
14234 SQLITE_PRIVATE void sqlite3VdbeMemReleaseExternal(Mem *p);
14235 #define VdbeMemDynamic(X)  \
14236   (((X)->flags&(MEM_Agg|MEM_Dyn|MEM_RowSet|MEM_Frame))!=0)
14237 #define VdbeMemRelease(X)  \
14238   if( VdbeMemDynamic(X) ) sqlite3VdbeMemReleaseExternal(X);
14239 SQLITE_PRIVATE int sqlite3VdbeMemFinalize(Mem*, FuncDef*);
14240 SQLITE_PRIVATE const char *sqlite3OpcodeName(int);
14241 SQLITE_PRIVATE int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve);
14242 SQLITE_PRIVATE int sqlite3VdbeCloseStatement(Vdbe *, int);
14243 SQLITE_PRIVATE void sqlite3VdbeFrameDelete(VdbeFrame*);
14244 SQLITE_PRIVATE int sqlite3VdbeFrameRestore(VdbeFrame *);
14245 SQLITE_PRIVATE int sqlite3VdbeTransferError(Vdbe *p);
14246 
14247 SQLITE_PRIVATE int sqlite3VdbeSorterInit(sqlite3 *, VdbeCursor *);
14248 SQLITE_PRIVATE void sqlite3VdbeSorterReset(sqlite3 *, VdbeSorter *);
14249 SQLITE_PRIVATE void sqlite3VdbeSorterClose(sqlite3 *, VdbeCursor *);
14250 SQLITE_PRIVATE int sqlite3VdbeSorterRowkey(const VdbeCursor *, Mem *);
14251 SQLITE_PRIVATE int sqlite3VdbeSorterNext(sqlite3 *, const VdbeCursor *, int *);
14252 SQLITE_PRIVATE int sqlite3VdbeSorterRewind(sqlite3 *, const VdbeCursor *, int *);
14253 SQLITE_PRIVATE int sqlite3VdbeSorterWrite(sqlite3 *, const VdbeCursor *, Mem *);
14254 SQLITE_PRIVATE int sqlite3VdbeSorterCompare(const VdbeCursor *, Mem *, int, int *);
14255 
14256 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
14257 SQLITE_PRIVATE   void sqlite3VdbeEnter(Vdbe*);
14258 SQLITE_PRIVATE   void sqlite3VdbeLeave(Vdbe*);
14259 #else
14260 # define sqlite3VdbeEnter(X)
14261 # define sqlite3VdbeLeave(X)
14262 #endif
14263 
14264 #ifdef SQLITE_DEBUG
14265 SQLITE_PRIVATE void sqlite3VdbeMemAboutToChange(Vdbe*,Mem*);
14266 SQLITE_PRIVATE int sqlite3VdbeCheckMemInvariants(Mem*);
14267 #endif
14268 
14269 #ifndef SQLITE_OMIT_FOREIGN_KEY
14270 SQLITE_PRIVATE int sqlite3VdbeCheckFk(Vdbe *, int);
14271 #else
14272 # define sqlite3VdbeCheckFk(p,i) 0
14273 #endif
14274 
14275 SQLITE_PRIVATE int sqlite3VdbeMemTranslate(Mem*, u8);
14276 #ifdef SQLITE_DEBUG
14277 SQLITE_PRIVATE   void sqlite3VdbePrintSql(Vdbe*);
14278 SQLITE_PRIVATE   void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf);
14279 #endif
14280 SQLITE_PRIVATE int sqlite3VdbeMemHandleBom(Mem *pMem);
14281 
14282 #ifndef SQLITE_OMIT_INCRBLOB
14283 SQLITE_PRIVATE   int sqlite3VdbeMemExpandBlob(Mem *);
14284   #define ExpandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0)
14285 #else
14286   #define sqlite3VdbeMemExpandBlob(x) SQLITE_OK
14287   #define ExpandBlob(P) SQLITE_OK
14288 #endif
14289 
14290 #endif /* !defined(_VDBEINT_H_) */
14291 
14292 /************** End of vdbeInt.h *********************************************/
14293 /************** Continuing where we left off in status.c *********************/
14294 
14295 /*
14296 ** Variables in which to record status information.
14297 */
14298 typedef struct sqlite3StatType sqlite3StatType;
14299 static SQLITE_WSD struct sqlite3StatType {
14300   int nowValue[10];         /* Current value */
14301   int mxValue[10];          /* Maximum value */
14302 } sqlite3Stat = { {0,}, {0,} };
14303 
14304 
14305 /* The "wsdStat" macro will resolve to the status information
14306 ** state vector.  If writable static data is unsupported on the target,
14307 ** we have to locate the state vector at run-time.  In the more common
14308 ** case where writable static data is supported, wsdStat can refer directly
14309 ** to the "sqlite3Stat" state vector declared above.
14310 */
14311 #ifdef SQLITE_OMIT_WSD
14312 # define wsdStatInit  sqlite3StatType *x = &GLOBAL(sqlite3StatType,sqlite3Stat)
14313 # define wsdStat x[0]
14314 #else
14315 # define wsdStatInit
14316 # define wsdStat sqlite3Stat
14317 #endif
14318 
14319 /*
14320 ** Return the current value of a status parameter.
14321 */
14322 SQLITE_PRIVATE int sqlite3StatusValue(int op){
14323   wsdStatInit;
14324   assert( op>=0 && op<ArraySize(wsdStat.nowValue) );
14325   return wsdStat.nowValue[op];
14326 }
14327 
14328 /*
14329 ** Add N to the value of a status record.  It is assumed that the
14330 ** caller holds appropriate locks.
14331 */
14332 SQLITE_PRIVATE void sqlite3StatusAdd(int op, int N){
14333   wsdStatInit;
14334   assert( op>=0 && op<ArraySize(wsdStat.nowValue) );
14335   wsdStat.nowValue[op] += N;
14336   if( wsdStat.nowValue[op]>wsdStat.mxValue[op] ){
14337     wsdStat.mxValue[op] = wsdStat.nowValue[op];
14338   }
14339 }
14340 
14341 /*
14342 ** Set the value of a status to X.
14343 */
14344 SQLITE_PRIVATE void sqlite3StatusSet(int op, int X){
14345   wsdStatInit;
14346   assert( op>=0 && op<ArraySize(wsdStat.nowValue) );
14347   wsdStat.nowValue[op] = X;
14348   if( wsdStat.nowValue[op]>wsdStat.mxValue[op] ){
14349     wsdStat.mxValue[op] = wsdStat.nowValue[op];
14350   }
14351 }
14352 
14353 /*
14354 ** Query status information.
14355 **
14356 ** This implementation assumes that reading or writing an aligned
14357 ** 32-bit integer is an atomic operation.  If that assumption is not true,
14358 ** then this routine is not threadsafe.
14359 */
14360 SQLITE_API int sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetFlag){
14361   wsdStatInit;
14362   if( op<0 || op>=ArraySize(wsdStat.nowValue) ){
14363     return SQLITE_MISUSE_BKPT;
14364   }
14365   *pCurrent = wsdStat.nowValue[op];
14366   *pHighwater = wsdStat.mxValue[op];
14367   if( resetFlag ){
14368     wsdStat.mxValue[op] = wsdStat.nowValue[op];
14369   }
14370   return SQLITE_OK;
14371 }
14372 
14373 /*
14374 ** Query status information for a single database connection
14375 */
14376 SQLITE_API int sqlite3_db_status(
14377   sqlite3 *db,          /* The database connection whose status is desired */
14378   int op,               /* Status verb */
14379   int *pCurrent,        /* Write current value here */
14380   int *pHighwater,      /* Write high-water mark here */
14381   int resetFlag         /* Reset high-water mark if true */
14382 ){
14383   int rc = SQLITE_OK;   /* Return code */
14384   sqlite3_mutex_enter(db->mutex);
14385   switch( op ){
14386     case SQLITE_DBSTATUS_LOOKASIDE_USED: {
14387       *pCurrent = db->lookaside.nOut;
14388       *pHighwater = db->lookaside.mxOut;
14389       if( resetFlag ){
14390         db->lookaside.mxOut = db->lookaside.nOut;
14391       }
14392       break;
14393     }
14394 
14395     case SQLITE_DBSTATUS_LOOKASIDE_HIT:
14396     case SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE:
14397     case SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL: {
14398       testcase( op==SQLITE_DBSTATUS_LOOKASIDE_HIT );
14399       testcase( op==SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE );
14400       testcase( op==SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL );
14401       assert( (op-SQLITE_DBSTATUS_LOOKASIDE_HIT)>=0 );
14402       assert( (op-SQLITE_DBSTATUS_LOOKASIDE_HIT)<3 );
14403       *pCurrent = 0;
14404       *pHighwater = db->lookaside.anStat[op - SQLITE_DBSTATUS_LOOKASIDE_HIT];
14405       if( resetFlag ){
14406         db->lookaside.anStat[op - SQLITE_DBSTATUS_LOOKASIDE_HIT] = 0;
14407       }
14408       break;
14409     }
14410 
14411     /*
14412     ** Return an approximation for the amount of memory currently used
14413     ** by all pagers associated with the given database connection.  The
14414     ** highwater mark is meaningless and is returned as zero.
14415     */
14416     case SQLITE_DBSTATUS_CACHE_USED: {
14417       int totalUsed = 0;
14418       int i;
14419       sqlite3BtreeEnterAll(db);
14420       for(i=0; i<db->nDb; i++){
14421         Btree *pBt = db->aDb[i].pBt;
14422         if( pBt ){
14423           Pager *pPager = sqlite3BtreePager(pBt);
14424           totalUsed += sqlite3PagerMemUsed(pPager);
14425         }
14426       }
14427       sqlite3BtreeLeaveAll(db);
14428       *pCurrent = totalUsed;
14429       *pHighwater = 0;
14430       break;
14431     }
14432 
14433     /*
14434     ** *pCurrent gets an accurate estimate of the amount of memory used
14435     ** to store the schema for all databases (main, temp, and any ATTACHed
14436     ** databases.  *pHighwater is set to zero.
14437     */
14438     case SQLITE_DBSTATUS_SCHEMA_USED: {
14439       int i;                      /* Used to iterate through schemas */
14440       int nByte = 0;              /* Used to accumulate return value */
14441 
14442       sqlite3BtreeEnterAll(db);
14443       db->pnBytesFreed = &nByte;
14444       for(i=0; i<db->nDb; i++){
14445         Schema *pSchema = db->aDb[i].pSchema;
14446         if( ALWAYS(pSchema!=0) ){
14447           HashElem *p;
14448 
14449           nByte += sqlite3GlobalConfig.m.xRoundup(sizeof(HashElem)) * (
14450               pSchema->tblHash.count
14451             + pSchema->trigHash.count
14452             + pSchema->idxHash.count
14453             + pSchema->fkeyHash.count
14454           );
14455           nByte += sqlite3MallocSize(pSchema->tblHash.ht);
14456           nByte += sqlite3MallocSize(pSchema->trigHash.ht);
14457           nByte += sqlite3MallocSize(pSchema->idxHash.ht);
14458           nByte += sqlite3MallocSize(pSchema->fkeyHash.ht);
14459 
14460           for(p=sqliteHashFirst(&pSchema->trigHash); p; p=sqliteHashNext(p)){
14461             sqlite3DeleteTrigger(db, (Trigger*)sqliteHashData(p));
14462           }
14463           for(p=sqliteHashFirst(&pSchema->tblHash); p; p=sqliteHashNext(p)){
14464             sqlite3DeleteTable(db, (Table *)sqliteHashData(p));
14465           }
14466         }
14467       }
14468       db->pnBytesFreed = 0;
14469       sqlite3BtreeLeaveAll(db);
14470 
14471       *pHighwater = 0;
14472       *pCurrent = nByte;
14473       break;
14474     }
14475 
14476     /*
14477     ** *pCurrent gets an accurate estimate of the amount of memory used
14478     ** to store all prepared statements.
14479     ** *pHighwater is set to zero.
14480     */
14481     case SQLITE_DBSTATUS_STMT_USED: {
14482       struct Vdbe *pVdbe;         /* Used to iterate through VMs */
14483       int nByte = 0;              /* Used to accumulate return value */
14484 
14485       db->pnBytesFreed = &nByte;
14486       for(pVdbe=db->pVdbe; pVdbe; pVdbe=pVdbe->pNext){
14487         sqlite3VdbeClearObject(db, pVdbe);
14488         sqlite3DbFree(db, pVdbe);
14489       }
14490       db->pnBytesFreed = 0;
14491 
14492       *pHighwater = 0;
14493       *pCurrent = nByte;
14494 
14495       break;
14496     }
14497 
14498     /*
14499     ** Set *pCurrent to the total cache hits or misses encountered by all
14500     ** pagers the database handle is connected to. *pHighwater is always set
14501     ** to zero.
14502     */
14503     case SQLITE_DBSTATUS_CACHE_HIT:
14504     case SQLITE_DBSTATUS_CACHE_MISS:
14505     case SQLITE_DBSTATUS_CACHE_WRITE:{
14506       int i;
14507       int nRet = 0;
14508       assert( SQLITE_DBSTATUS_CACHE_MISS==SQLITE_DBSTATUS_CACHE_HIT+1 );
14509       assert( SQLITE_DBSTATUS_CACHE_WRITE==SQLITE_DBSTATUS_CACHE_HIT+2 );
14510 
14511       for(i=0; i<db->nDb; i++){
14512         if( db->aDb[i].pBt ){
14513           Pager *pPager = sqlite3BtreePager(db->aDb[i].pBt);
14514           sqlite3PagerCacheStat(pPager, op, resetFlag, &nRet);
14515         }
14516       }
14517       *pHighwater = 0;
14518       *pCurrent = nRet;
14519       break;
14520     }
14521 
14522     /* Set *pCurrent to non-zero if there are unresolved deferred foreign
14523     ** key constraints.  Set *pCurrent to zero if all foreign key constraints
14524     ** have been satisfied.  The *pHighwater is always set to zero.
14525     */
14526     case SQLITE_DBSTATUS_DEFERRED_FKS: {
14527       *pHighwater = 0;
14528       *pCurrent = db->nDeferredImmCons>0 || db->nDeferredCons>0;
14529       break;
14530     }
14531 
14532     default: {
14533       rc = SQLITE_ERROR;
14534     }
14535   }
14536   sqlite3_mutex_leave(db->mutex);
14537   return rc;
14538 }
14539 
14540 /************** End of status.c **********************************************/
14541 /************** Begin file date.c ********************************************/
14542 /*
14543 ** 2003 October 31
14544 **
14545 ** The author disclaims copyright to this source code.  In place of
14546 ** a legal notice, here is a blessing:
14547 **
14548 **    May you do good and not evil.
14549 **    May you find forgiveness for yourself and forgive others.
14550 **    May you share freely, never taking more than you give.
14551 **
14552 *************************************************************************
14553 ** This file contains the C functions that implement date and time
14554 ** functions for SQLite.
14555 **
14556 ** There is only one exported symbol in this file - the function
14557 ** sqlite3RegisterDateTimeFunctions() found at the bottom of the file.
14558 ** All other code has file scope.
14559 **
14560 ** SQLite processes all times and dates as Julian Day numbers.  The
14561 ** dates and times are stored as the number of days since noon
14562 ** in Greenwich on November 24, 4714 B.C. according to the Gregorian
14563 ** calendar system.
14564 **
14565 ** 1970-01-01 00:00:00 is JD 2440587.5
14566 ** 2000-01-01 00:00:00 is JD 2451544.5
14567 **
14568 ** This implemention requires years to be expressed as a 4-digit number
14569 ** which means that only dates between 0000-01-01 and 9999-12-31 can
14570 ** be represented, even though julian day numbers allow a much wider
14571 ** range of dates.
14572 **
14573 ** The Gregorian calendar system is used for all dates and times,
14574 ** even those that predate the Gregorian calendar.  Historians usually
14575 ** use the Julian calendar for dates prior to 1582-10-15 and for some
14576 ** dates afterwards, depending on locale.  Beware of this difference.
14577 **
14578 ** The conversion algorithms are implemented based on descriptions
14579 ** in the following text:
14580 **
14581 **      Jean Meeus
14582 **      Astronomical Algorithms, 2nd Edition, 1998
14583 **      ISBM 0-943396-61-1
14584 **      Willmann-Bell, Inc
14585 **      Richmond, Virginia (USA)
14586 */
14587 /* #include <stdlib.h> */
14588 /* #include <assert.h> */
14589 #include <time.h>
14590 
14591 #ifndef SQLITE_OMIT_DATETIME_FUNCS
14592 
14593 
14594 /*
14595 ** A structure for holding a single date and time.
14596 */
14597 typedef struct DateTime DateTime;
14598 struct DateTime {
14599   sqlite3_int64 iJD; /* The julian day number times 86400000 */
14600   int Y, M, D;       /* Year, month, and day */
14601   int h, m;          /* Hour and minutes */
14602   int tz;            /* Timezone offset in minutes */
14603   double s;          /* Seconds */
14604   char validYMD;     /* True (1) if Y,M,D are valid */
14605   char validHMS;     /* True (1) if h,m,s are valid */
14606   char validJD;      /* True (1) if iJD is valid */
14607   char validTZ;      /* True (1) if tz is valid */
14608 };
14609 
14610 
14611 /*
14612 ** Convert zDate into one or more integers.  Additional arguments
14613 ** come in groups of 5 as follows:
14614 **
14615 **       N       number of digits in the integer
14616 **       min     minimum allowed value of the integer
14617 **       max     maximum allowed value of the integer
14618 **       nextC   first character after the integer
14619 **       pVal    where to write the integers value.
14620 **
14621 ** Conversions continue until one with nextC==0 is encountered.
14622 ** The function returns the number of successful conversions.
14623 */
14624 static int getDigits(const char *zDate, ...){
14625   va_list ap;
14626   int val;
14627   int N;
14628   int min;
14629   int max;
14630   int nextC;
14631   int *pVal;
14632   int cnt = 0;
14633   va_start(ap, zDate);
14634   do{
14635     N = va_arg(ap, int);
14636     min = va_arg(ap, int);
14637     max = va_arg(ap, int);
14638     nextC = va_arg(ap, int);
14639     pVal = va_arg(ap, int*);
14640     val = 0;
14641     while( N-- ){
14642       if( !sqlite3Isdigit(*zDate) ){
14643         goto end_getDigits;
14644       }
14645       val = val*10 + *zDate - '0';
14646       zDate++;
14647     }
14648     if( val<min || val>max || (nextC!=0 && nextC!=*zDate) ){
14649       goto end_getDigits;
14650     }
14651     *pVal = val;
14652     zDate++;
14653     cnt++;
14654   }while( nextC );
14655 end_getDigits:
14656   va_end(ap);
14657   return cnt;
14658 }
14659 
14660 /*
14661 ** Parse a timezone extension on the end of a date-time.
14662 ** The extension is of the form:
14663 **
14664 **        (+/-)HH:MM
14665 **
14666 ** Or the "zulu" notation:
14667 **
14668 **        Z
14669 **
14670 ** If the parse is successful, write the number of minutes
14671 ** of change in p->tz and return 0.  If a parser error occurs,
14672 ** return non-zero.
14673 **
14674 ** A missing specifier is not considered an error.
14675 */
14676 static int parseTimezone(const char *zDate, DateTime *p){
14677   int sgn = 0;
14678   int nHr, nMn;
14679   int c;
14680   while( sqlite3Isspace(*zDate) ){ zDate++; }
14681   p->tz = 0;
14682   c = *zDate;
14683   if( c=='-' ){
14684     sgn = -1;
14685   }else if( c=='+' ){
14686     sgn = +1;
14687   }else if( c=='Z' || c=='z' ){
14688     zDate++;
14689     goto zulu_time;
14690   }else{
14691     return c!=0;
14692   }
14693   zDate++;
14694   if( getDigits(zDate, 2, 0, 14, ':', &nHr, 2, 0, 59, 0, &nMn)!=2 ){
14695     return 1;
14696   }
14697   zDate += 5;
14698   p->tz = sgn*(nMn + nHr*60);
14699 zulu_time:
14700   while( sqlite3Isspace(*zDate) ){ zDate++; }
14701   return *zDate!=0;
14702 }
14703 
14704 /*
14705 ** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF.
14706 ** The HH, MM, and SS must each be exactly 2 digits.  The
14707 ** fractional seconds FFFF can be one or more digits.
14708 **
14709 ** Return 1 if there is a parsing error and 0 on success.
14710 */
14711 static int parseHhMmSs(const char *zDate, DateTime *p){
14712   int h, m, s;
14713   double ms = 0.0;
14714   if( getDigits(zDate, 2, 0, 24, ':', &h, 2, 0, 59, 0, &m)!=2 ){
14715     return 1;
14716   }
14717   zDate += 5;
14718   if( *zDate==':' ){
14719     zDate++;
14720     if( getDigits(zDate, 2, 0, 59, 0, &s)!=1 ){
14721       return 1;
14722     }
14723     zDate += 2;
14724     if( *zDate=='.' && sqlite3Isdigit(zDate[1]) ){
14725       double rScale = 1.0;
14726       zDate++;
14727       while( sqlite3Isdigit(*zDate) ){
14728         ms = ms*10.0 + *zDate - '0';
14729         rScale *= 10.0;
14730         zDate++;
14731       }
14732       ms /= rScale;
14733     }
14734   }else{
14735     s = 0;
14736   }
14737   p->validJD = 0;
14738   p->validHMS = 1;
14739   p->h = h;
14740   p->m = m;
14741   p->s = s + ms;
14742   if( parseTimezone(zDate, p) ) return 1;
14743   p->validTZ = (p->tz!=0)?1:0;
14744   return 0;
14745 }
14746 
14747 /*
14748 ** Convert from YYYY-MM-DD HH:MM:SS to julian day.  We always assume
14749 ** that the YYYY-MM-DD is according to the Gregorian calendar.
14750 **
14751 ** Reference:  Meeus page 61
14752 */
14753 static void computeJD(DateTime *p){
14754   int Y, M, D, A, B, X1, X2;
14755 
14756   if( p->validJD ) return;
14757   if( p->validYMD ){
14758     Y = p->Y;
14759     M = p->M;
14760     D = p->D;
14761   }else{
14762     Y = 2000;  /* If no YMD specified, assume 2000-Jan-01 */
14763     M = 1;
14764     D = 1;
14765   }
14766   if( M<=2 ){
14767     Y--;
14768     M += 12;
14769   }
14770   A = Y/100;
14771   B = 2 - A + (A/4);
14772   X1 = 36525*(Y+4716)/100;
14773   X2 = 306001*(M+1)/10000;
14774   p->iJD = (sqlite3_int64)((X1 + X2 + D + B - 1524.5 ) * 86400000);
14775   p->validJD = 1;
14776   if( p->validHMS ){
14777     p->iJD += p->h*3600000 + p->m*60000 + (sqlite3_int64)(p->s*1000);
14778     if( p->validTZ ){
14779       p->iJD -= p->tz*60000;
14780       p->validYMD = 0;
14781       p->validHMS = 0;
14782       p->validTZ = 0;
14783     }
14784   }
14785 }
14786 
14787 /*
14788 ** Parse dates of the form
14789 **
14790 **     YYYY-MM-DD HH:MM:SS.FFF
14791 **     YYYY-MM-DD HH:MM:SS
14792 **     YYYY-MM-DD HH:MM
14793 **     YYYY-MM-DD
14794 **
14795 ** Write the result into the DateTime structure and return 0
14796 ** on success and 1 if the input string is not a well-formed
14797 ** date.
14798 */
14799 static int parseYyyyMmDd(const char *zDate, DateTime *p){
14800   int Y, M, D, neg;
14801 
14802   if( zDate[0]=='-' ){
14803     zDate++;
14804     neg = 1;
14805   }else{
14806     neg = 0;
14807   }
14808   if( getDigits(zDate,4,0,9999,'-',&Y,2,1,12,'-',&M,2,1,31,0,&D)!=3 ){
14809     return 1;
14810   }
14811   zDate += 10;
14812   while( sqlite3Isspace(*zDate) || 'T'==*(u8*)zDate ){ zDate++; }
14813   if( parseHhMmSs(zDate, p)==0 ){
14814     /* We got the time */
14815   }else if( *zDate==0 ){
14816     p->validHMS = 0;
14817   }else{
14818     return 1;
14819   }
14820   p->validJD = 0;
14821   p->validYMD = 1;
14822   p->Y = neg ? -Y : Y;
14823   p->M = M;
14824   p->D = D;
14825   if( p->validTZ ){
14826     computeJD(p);
14827   }
14828   return 0;
14829 }
14830 
14831 /*
14832 ** Set the time to the current time reported by the VFS.
14833 **
14834 ** Return the number of errors.
14835 */
14836 static int setDateTimeToCurrent(sqlite3_context *context, DateTime *p){
14837   p->iJD = sqlite3StmtCurrentTime(context);
14838   if( p->iJD>0 ){
14839     p->validJD = 1;
14840     return 0;
14841   }else{
14842     return 1;
14843   }
14844 }
14845 
14846 /*
14847 ** Attempt to parse the given string into a Julian Day Number.  Return
14848 ** the number of errors.
14849 **
14850 ** The following are acceptable forms for the input string:
14851 **
14852 **      YYYY-MM-DD HH:MM:SS.FFF  +/-HH:MM
14853 **      DDDD.DD
14854 **      now
14855 **
14856 ** In the first form, the +/-HH:MM is always optional.  The fractional
14857 ** seconds extension (the ".FFF") is optional.  The seconds portion
14858 ** (":SS.FFF") is option.  The year and date can be omitted as long
14859 ** as there is a time string.  The time string can be omitted as long
14860 ** as there is a year and date.
14861 */
14862 static int parseDateOrTime(
14863   sqlite3_context *context,
14864   const char *zDate,
14865   DateTime *p
14866 ){
14867   double r;
14868   if( parseYyyyMmDd(zDate,p)==0 ){
14869     return 0;
14870   }else if( parseHhMmSs(zDate, p)==0 ){
14871     return 0;
14872   }else if( sqlite3StrICmp(zDate,"now")==0){
14873     return setDateTimeToCurrent(context, p);
14874   }else if( sqlite3AtoF(zDate, &r, sqlite3Strlen30(zDate), SQLITE_UTF8) ){
14875     p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5);
14876     p->validJD = 1;
14877     return 0;
14878   }
14879   return 1;
14880 }
14881 
14882 /*
14883 ** Compute the Year, Month, and Day from the julian day number.
14884 */
14885 static void computeYMD(DateTime *p){
14886   int Z, A, B, C, D, E, X1;
14887   if( p->validYMD ) return;
14888   if( !p->validJD ){
14889     p->Y = 2000;
14890     p->M = 1;
14891     p->D = 1;
14892   }else{
14893     Z = (int)((p->iJD + 43200000)/86400000);
14894     A = (int)((Z - 1867216.25)/36524.25);
14895     A = Z + 1 + A - (A/4);
14896     B = A + 1524;
14897     C = (int)((B - 122.1)/365.25);
14898     D = (36525*C)/100;
14899     E = (int)((B-D)/30.6001);
14900     X1 = (int)(30.6001*E);
14901     p->D = B - D - X1;
14902     p->M = E<14 ? E-1 : E-13;
14903     p->Y = p->M>2 ? C - 4716 : C - 4715;
14904   }
14905   p->validYMD = 1;
14906 }
14907 
14908 /*
14909 ** Compute the Hour, Minute, and Seconds from the julian day number.
14910 */
14911 static void computeHMS(DateTime *p){
14912   int s;
14913   if( p->validHMS ) return;
14914   computeJD(p);
14915   s = (int)((p->iJD + 43200000) % 86400000);
14916   p->s = s/1000.0;
14917   s = (int)p->s;
14918   p->s -= s;
14919   p->h = s/3600;
14920   s -= p->h*3600;
14921   p->m = s/60;
14922   p->s += s - p->m*60;
14923   p->validHMS = 1;
14924 }
14925 
14926 /*
14927 ** Compute both YMD and HMS
14928 */
14929 static void computeYMD_HMS(DateTime *p){
14930   computeYMD(p);
14931   computeHMS(p);
14932 }
14933 
14934 /*
14935 ** Clear the YMD and HMS and the TZ
14936 */
14937 static void clearYMD_HMS_TZ(DateTime *p){
14938   p->validYMD = 0;
14939   p->validHMS = 0;
14940   p->validTZ = 0;
14941 }
14942 
14943 /*
14944 ** On recent Windows platforms, the localtime_s() function is available
14945 ** as part of the "Secure CRT". It is essentially equivalent to
14946 ** localtime_r() available under most POSIX platforms, except that the
14947 ** order of the parameters is reversed.
14948 **
14949 ** See http://msdn.microsoft.com/en-us/library/a442x3ye(VS.80).aspx.
14950 **
14951 ** If the user has not indicated to use localtime_r() or localtime_s()
14952 ** already, check for an MSVC build environment that provides
14953 ** localtime_s().
14954 */
14955 #if !defined(HAVE_LOCALTIME_R) && !defined(HAVE_LOCALTIME_S) && \
14956      defined(_MSC_VER) && defined(_CRT_INSECURE_DEPRECATE)
14957 #define HAVE_LOCALTIME_S 1
14958 #endif
14959 
14960 #ifndef SQLITE_OMIT_LOCALTIME
14961 /*
14962 ** The following routine implements the rough equivalent of localtime_r()
14963 ** using whatever operating-system specific localtime facility that
14964 ** is available.  This routine returns 0 on success and
14965 ** non-zero on any kind of error.
14966 **
14967 ** If the sqlite3GlobalConfig.bLocaltimeFault variable is true then this
14968 ** routine will always fail.
14969 **
14970 ** EVIDENCE-OF: R-62172-00036 In this implementation, the standard C
14971 ** library function localtime_r() is used to assist in the calculation of
14972 ** local time.
14973 */
14974 static int osLocaltime(time_t *t, struct tm *pTm){
14975   int rc;
14976 #if (!defined(HAVE_LOCALTIME_R) || !HAVE_LOCALTIME_R) \
14977       && (!defined(HAVE_LOCALTIME_S) || !HAVE_LOCALTIME_S)
14978   struct tm *pX;
14979 #if SQLITE_THREADSAFE>0
14980   sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
14981 #endif
14982   sqlite3_mutex_enter(mutex);
14983   pX = localtime(t);
14984 #ifndef SQLITE_OMIT_BUILTIN_TEST
14985   if( sqlite3GlobalConfig.bLocaltimeFault ) pX = 0;
14986 #endif
14987   if( pX ) *pTm = *pX;
14988   sqlite3_mutex_leave(mutex);
14989   rc = pX==0;
14990 #else
14991 #ifndef SQLITE_OMIT_BUILTIN_TEST
14992   if( sqlite3GlobalConfig.bLocaltimeFault ) return 1;
14993 #endif
14994 #if defined(HAVE_LOCALTIME_R) && HAVE_LOCALTIME_R
14995   rc = localtime_r(t, pTm)==0;
14996 #else
14997   rc = localtime_s(pTm, t);
14998 #endif /* HAVE_LOCALTIME_R */
14999 #endif /* HAVE_LOCALTIME_R || HAVE_LOCALTIME_S */
15000   return rc;
15001 }
15002 #endif /* SQLITE_OMIT_LOCALTIME */
15003 
15004 
15005 #ifndef SQLITE_OMIT_LOCALTIME
15006 /*
15007 ** Compute the difference (in milliseconds) between localtime and UTC
15008 ** (a.k.a. GMT) for the time value p where p is in UTC. If no error occurs,
15009 ** return this value and set *pRc to SQLITE_OK.
15010 **
15011 ** Or, if an error does occur, set *pRc to SQLITE_ERROR. The returned value
15012 ** is undefined in this case.
15013 */
15014 static sqlite3_int64 localtimeOffset(
15015   DateTime *p,                    /* Date at which to calculate offset */
15016   sqlite3_context *pCtx,          /* Write error here if one occurs */
15017   int *pRc                        /* OUT: Error code. SQLITE_OK or ERROR */
15018 ){
15019   DateTime x, y;
15020   time_t t;
15021   struct tm sLocal;
15022 
15023   /* Initialize the contents of sLocal to avoid a compiler warning. */
15024   memset(&sLocal, 0, sizeof(sLocal));
15025 
15026   x = *p;
15027   computeYMD_HMS(&x);
15028   if( x.Y<1971 || x.Y>=2038 ){
15029     /* EVIDENCE-OF: R-55269-29598 The localtime_r() C function normally only
15030     ** works for years between 1970 and 2037. For dates outside this range,
15031     ** SQLite attempts to map the year into an equivalent year within this
15032     ** range, do the calculation, then map the year back.
15033     */
15034     x.Y = 2000;
15035     x.M = 1;
15036     x.D = 1;
15037     x.h = 0;
15038     x.m = 0;
15039     x.s = 0.0;
15040   } else {
15041     int s = (int)(x.s + 0.5);
15042     x.s = s;
15043   }
15044   x.tz = 0;
15045   x.validJD = 0;
15046   computeJD(&x);
15047   t = (time_t)(x.iJD/1000 - 21086676*(i64)10000);
15048   if( osLocaltime(&t, &sLocal) ){
15049     sqlite3_result_error(pCtx, "local time unavailable", -1);
15050     *pRc = SQLITE_ERROR;
15051     return 0;
15052   }
15053   y.Y = sLocal.tm_year + 1900;
15054   y.M = sLocal.tm_mon + 1;
15055   y.D = sLocal.tm_mday;
15056   y.h = sLocal.tm_hour;
15057   y.m = sLocal.tm_min;
15058   y.s = sLocal.tm_sec;
15059   y.validYMD = 1;
15060   y.validHMS = 1;
15061   y.validJD = 0;
15062   y.validTZ = 0;
15063   computeJD(&y);
15064   *pRc = SQLITE_OK;
15065   return y.iJD - x.iJD;
15066 }
15067 #endif /* SQLITE_OMIT_LOCALTIME */
15068 
15069 /*
15070 ** Process a modifier to a date-time stamp.  The modifiers are
15071 ** as follows:
15072 **
15073 **     NNN days
15074 **     NNN hours
15075 **     NNN minutes
15076 **     NNN.NNNN seconds
15077 **     NNN months
15078 **     NNN years
15079 **     start of month
15080 **     start of year
15081 **     start of week
15082 **     start of day
15083 **     weekday N
15084 **     unixepoch
15085 **     localtime
15086 **     utc
15087 **
15088 ** Return 0 on success and 1 if there is any kind of error. If the error
15089 ** is in a system call (i.e. localtime()), then an error message is written
15090 ** to context pCtx. If the error is an unrecognized modifier, no error is
15091 ** written to pCtx.
15092 */
15093 static int parseModifier(sqlite3_context *pCtx, const char *zMod, DateTime *p){
15094   int rc = 1;
15095   int n;
15096   double r;
15097   char *z, zBuf[30];
15098   z = zBuf;
15099   for(n=0; n<ArraySize(zBuf)-1 && zMod[n]; n++){
15100     z[n] = (char)sqlite3UpperToLower[(u8)zMod[n]];
15101   }
15102   z[n] = 0;
15103   switch( z[0] ){
15104 #ifndef SQLITE_OMIT_LOCALTIME
15105     case 'l': {
15106       /*    localtime
15107       **
15108       ** Assuming the current time value is UTC (a.k.a. GMT), shift it to
15109       ** show local time.
15110       */
15111       if( strcmp(z, "localtime")==0 ){
15112         computeJD(p);
15113         p->iJD += localtimeOffset(p, pCtx, &rc);
15114         clearYMD_HMS_TZ(p);
15115       }
15116       break;
15117     }
15118 #endif
15119     case 'u': {
15120       /*
15121       **    unixepoch
15122       **
15123       ** Treat the current value of p->iJD as the number of
15124       ** seconds since 1970.  Convert to a real julian day number.
15125       */
15126       if( strcmp(z, "unixepoch")==0 && p->validJD ){
15127         p->iJD = (p->iJD + 43200)/86400 + 21086676*(i64)10000000;
15128         clearYMD_HMS_TZ(p);
15129         rc = 0;
15130       }
15131 #ifndef SQLITE_OMIT_LOCALTIME
15132       else if( strcmp(z, "utc")==0 ){
15133         sqlite3_int64 c1;
15134         computeJD(p);
15135         c1 = localtimeOffset(p, pCtx, &rc);
15136         if( rc==SQLITE_OK ){
15137           p->iJD -= c1;
15138           clearYMD_HMS_TZ(p);
15139           p->iJD += c1 - localtimeOffset(p, pCtx, &rc);
15140         }
15141       }
15142 #endif
15143       break;
15144     }
15145     case 'w': {
15146       /*
15147       **    weekday N
15148       **
15149       ** Move the date to the same time on the next occurrence of
15150       ** weekday N where 0==Sunday, 1==Monday, and so forth.  If the
15151       ** date is already on the appropriate weekday, this is a no-op.
15152       */
15153       if( strncmp(z, "weekday ", 8)==0
15154                && sqlite3AtoF(&z[8], &r, sqlite3Strlen30(&z[8]), SQLITE_UTF8)
15155                && (n=(int)r)==r && n>=0 && r<7 ){
15156         sqlite3_int64 Z;
15157         computeYMD_HMS(p);
15158         p->validTZ = 0;
15159         p->validJD = 0;
15160         computeJD(p);
15161         Z = ((p->iJD + 129600000)/86400000) % 7;
15162         if( Z>n ) Z -= 7;
15163         p->iJD += (n - Z)*86400000;
15164         clearYMD_HMS_TZ(p);
15165         rc = 0;
15166       }
15167       break;
15168     }
15169     case 's': {
15170       /*
15171       **    start of TTTTT
15172       **
15173       ** Move the date backwards to the beginning of the current day,
15174       ** or month or year.
15175       */
15176       if( strncmp(z, "start of ", 9)!=0 ) break;
15177       z += 9;
15178       computeYMD(p);
15179       p->validHMS = 1;
15180       p->h = p->m = 0;
15181       p->s = 0.0;
15182       p->validTZ = 0;
15183       p->validJD = 0;
15184       if( strcmp(z,"month")==0 ){
15185         p->D = 1;
15186         rc = 0;
15187       }else if( strcmp(z,"year")==0 ){
15188         computeYMD(p);
15189         p->M = 1;
15190         p->D = 1;
15191         rc = 0;
15192       }else if( strcmp(z,"day")==0 ){
15193         rc = 0;
15194       }
15195       break;
15196     }
15197     case '+':
15198     case '-':
15199     case '0':
15200     case '1':
15201     case '2':
15202     case '3':
15203     case '4':
15204     case '5':
15205     case '6':
15206     case '7':
15207     case '8':
15208     case '9': {
15209       double rRounder;
15210       for(n=1; z[n] && z[n]!=':' && !sqlite3Isspace(z[n]); n++){}
15211       if( !sqlite3AtoF(z, &r, n, SQLITE_UTF8) ){
15212         rc = 1;
15213         break;
15214       }
15215       if( z[n]==':' ){
15216         /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the
15217         ** specified number of hours, minutes, seconds, and fractional seconds
15218         ** to the time.  The ".FFF" may be omitted.  The ":SS.FFF" may be
15219         ** omitted.
15220         */
15221         const char *z2 = z;
15222         DateTime tx;
15223         sqlite3_int64 day;
15224         if( !sqlite3Isdigit(*z2) ) z2++;
15225         memset(&tx, 0, sizeof(tx));
15226         if( parseHhMmSs(z2, &tx) ) break;
15227         computeJD(&tx);
15228         tx.iJD -= 43200000;
15229         day = tx.iJD/86400000;
15230         tx.iJD -= day*86400000;
15231         if( z[0]=='-' ) tx.iJD = -tx.iJD;
15232         computeJD(p);
15233         clearYMD_HMS_TZ(p);
15234         p->iJD += tx.iJD;
15235         rc = 0;
15236         break;
15237       }
15238       z += n;
15239       while( sqlite3Isspace(*z) ) z++;
15240       n = sqlite3Strlen30(z);
15241       if( n>10 || n<3 ) break;
15242       if( z[n-1]=='s' ){ z[n-1] = 0; n--; }
15243       computeJD(p);
15244       rc = 0;
15245       rRounder = r<0 ? -0.5 : +0.5;
15246       if( n==3 && strcmp(z,"day")==0 ){
15247         p->iJD += (sqlite3_int64)(r*86400000.0 + rRounder);
15248       }else if( n==4 && strcmp(z,"hour")==0 ){
15249         p->iJD += (sqlite3_int64)(r*(86400000.0/24.0) + rRounder);
15250       }else if( n==6 && strcmp(z,"minute")==0 ){
15251         p->iJD += (sqlite3_int64)(r*(86400000.0/(24.0*60.0)) + rRounder);
15252       }else if( n==6 && strcmp(z,"second")==0 ){
15253         p->iJD += (sqlite3_int64)(r*(86400000.0/(24.0*60.0*60.0)) + rRounder);
15254       }else if( n==5 && strcmp(z,"month")==0 ){
15255         int x, y;
15256         computeYMD_HMS(p);
15257         p->M += (int)r;
15258         x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12;
15259         p->Y += x;
15260         p->M -= x*12;
15261         p->validJD = 0;
15262         computeJD(p);
15263         y = (int)r;
15264         if( y!=r ){
15265           p->iJD += (sqlite3_int64)((r - y)*30.0*86400000.0 + rRounder);
15266         }
15267       }else if( n==4 && strcmp(z,"year")==0 ){
15268         int y = (int)r;
15269         computeYMD_HMS(p);
15270         p->Y += y;
15271         p->validJD = 0;
15272         computeJD(p);
15273         if( y!=r ){
15274           p->iJD += (sqlite3_int64)((r - y)*365.0*86400000.0 + rRounder);
15275         }
15276       }else{
15277         rc = 1;
15278       }
15279       clearYMD_HMS_TZ(p);
15280       break;
15281     }
15282     default: {
15283       break;
15284     }
15285   }
15286   return rc;
15287 }
15288 
15289 /*
15290 ** Process time function arguments.  argv[0] is a date-time stamp.
15291 ** argv[1] and following are modifiers.  Parse them all and write
15292 ** the resulting time into the DateTime structure p.  Return 0
15293 ** on success and 1 if there are any errors.
15294 **
15295 ** If there are zero parameters (if even argv[0] is undefined)
15296 ** then assume a default value of "now" for argv[0].
15297 */
15298 static int isDate(
15299   sqlite3_context *context,
15300   int argc,
15301   sqlite3_value **argv,
15302   DateTime *p
15303 ){
15304   int i;
15305   const unsigned char *z;
15306   int eType;
15307   memset(p, 0, sizeof(*p));
15308   if( argc==0 ){
15309     return setDateTimeToCurrent(context, p);
15310   }
15311   if( (eType = sqlite3_value_type(argv[0]))==SQLITE_FLOAT
15312                    || eType==SQLITE_INTEGER ){
15313     p->iJD = (sqlite3_int64)(sqlite3_value_double(argv[0])*86400000.0 + 0.5);
15314     p->validJD = 1;
15315   }else{
15316     z = sqlite3_value_text(argv[0]);
15317     if( !z || parseDateOrTime(context, (char*)z, p) ){
15318       return 1;
15319     }
15320   }
15321   for(i=1; i<argc; i++){
15322     z = sqlite3_value_text(argv[i]);
15323     if( z==0 || parseModifier(context, (char*)z, p) ) return 1;
15324   }
15325   return 0;
15326 }
15327 
15328 
15329 /*
15330 ** The following routines implement the various date and time functions
15331 ** of SQLite.
15332 */
15333 
15334 /*
15335 **    julianday( TIMESTRING, MOD, MOD, ...)
15336 **
15337 ** Return the julian day number of the date specified in the arguments
15338 */
15339 static void juliandayFunc(
15340   sqlite3_context *context,
15341   int argc,
15342   sqlite3_value **argv
15343 ){
15344   DateTime x;
15345   if( isDate(context, argc, argv, &x)==0 ){
15346     computeJD(&x);
15347     sqlite3_result_double(context, x.iJD/86400000.0);
15348   }
15349 }
15350 
15351 /*
15352 **    datetime( TIMESTRING, MOD, MOD, ...)
15353 **
15354 ** Return YYYY-MM-DD HH:MM:SS
15355 */
15356 static void datetimeFunc(
15357   sqlite3_context *context,
15358   int argc,
15359   sqlite3_value **argv
15360 ){
15361   DateTime x;
15362   if( isDate(context, argc, argv, &x)==0 ){
15363     char zBuf[100];
15364     computeYMD_HMS(&x);
15365     sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d %02d:%02d:%02d",
15366                      x.Y, x.M, x.D, x.h, x.m, (int)(x.s));
15367     sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
15368   }
15369 }
15370 
15371 /*
15372 **    time( TIMESTRING, MOD, MOD, ...)
15373 **
15374 ** Return HH:MM:SS
15375 */
15376 static void timeFunc(
15377   sqlite3_context *context,
15378   int argc,
15379   sqlite3_value **argv
15380 ){
15381   DateTime x;
15382   if( isDate(context, argc, argv, &x)==0 ){
15383     char zBuf[100];
15384     computeHMS(&x);
15385     sqlite3_snprintf(sizeof(zBuf), zBuf, "%02d:%02d:%02d", x.h, x.m, (int)x.s);
15386     sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
15387   }
15388 }
15389 
15390 /*
15391 **    date( TIMESTRING, MOD, MOD, ...)
15392 **
15393 ** Return YYYY-MM-DD
15394 */
15395 static void dateFunc(
15396   sqlite3_context *context,
15397   int argc,
15398   sqlite3_value **argv
15399 ){
15400   DateTime x;
15401   if( isDate(context, argc, argv, &x)==0 ){
15402     char zBuf[100];
15403     computeYMD(&x);
15404     sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D);
15405     sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
15406   }
15407 }
15408 
15409 /*
15410 **    strftime( FORMAT, TIMESTRING, MOD, MOD, ...)
15411 **
15412 ** Return a string described by FORMAT.  Conversions as follows:
15413 **
15414 **   %d  day of month
15415 **   %f  ** fractional seconds  SS.SSS
15416 **   %H  hour 00-24
15417 **   %j  day of year 000-366
15418 **   %J  ** Julian day number
15419 **   %m  month 01-12
15420 **   %M  minute 00-59
15421 **   %s  seconds since 1970-01-01
15422 **   %S  seconds 00-59
15423 **   %w  day of week 0-6  sunday==0
15424 **   %W  week of year 00-53
15425 **   %Y  year 0000-9999
15426 **   %%  %
15427 */
15428 static void strftimeFunc(
15429   sqlite3_context *context,
15430   int argc,
15431   sqlite3_value **argv
15432 ){
15433   DateTime x;
15434   u64 n;
15435   size_t i,j;
15436   char *z;
15437   sqlite3 *db;
15438   const char *zFmt = (const char*)sqlite3_value_text(argv[0]);
15439   char zBuf[100];
15440   if( zFmt==0 || isDate(context, argc-1, argv+1, &x) ) return;
15441   db = sqlite3_context_db_handle(context);
15442   for(i=0, n=1; zFmt[i]; i++, n++){
15443     if( zFmt[i]=='%' ){
15444       switch( zFmt[i+1] ){
15445         case 'd':
15446         case 'H':
15447         case 'm':
15448         case 'M':
15449         case 'S':
15450         case 'W':
15451           n++;
15452           /* fall thru */
15453         case 'w':
15454         case '%':
15455           break;
15456         case 'f':
15457           n += 8;
15458           break;
15459         case 'j':
15460           n += 3;
15461           break;
15462         case 'Y':
15463           n += 8;
15464           break;
15465         case 's':
15466         case 'J':
15467           n += 50;
15468           break;
15469         default:
15470           return;  /* ERROR.  return a NULL */
15471       }
15472       i++;
15473     }
15474   }
15475   testcase( n==sizeof(zBuf)-1 );
15476   testcase( n==sizeof(zBuf) );
15477   testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH]+1 );
15478   testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH] );
15479   if( n<sizeof(zBuf) ){
15480     z = zBuf;
15481   }else if( n>(u64)db->aLimit[SQLITE_LIMIT_LENGTH] ){
15482     sqlite3_result_error_toobig(context);
15483     return;
15484   }else{
15485     z = sqlite3DbMallocRaw(db, (int)n);
15486     if( z==0 ){
15487       sqlite3_result_error_nomem(context);
15488       return;
15489     }
15490   }
15491   computeJD(&x);
15492   computeYMD_HMS(&x);
15493   for(i=j=0; zFmt[i]; i++){
15494     if( zFmt[i]!='%' ){
15495       z[j++] = zFmt[i];
15496     }else{
15497       i++;
15498       switch( zFmt[i] ){
15499         case 'd':  sqlite3_snprintf(3, &z[j],"%02d",x.D); j+=2; break;
15500         case 'f': {
15501           double s = x.s;
15502           if( s>59.999 ) s = 59.999;
15503           sqlite3_snprintf(7, &z[j],"%06.3f", s);
15504           j += sqlite3Strlen30(&z[j]);
15505           break;
15506         }
15507         case 'H':  sqlite3_snprintf(3, &z[j],"%02d",x.h); j+=2; break;
15508         case 'W': /* Fall thru */
15509         case 'j': {
15510           int nDay;             /* Number of days since 1st day of year */
15511           DateTime y = x;
15512           y.validJD = 0;
15513           y.M = 1;
15514           y.D = 1;
15515           computeJD(&y);
15516           nDay = (int)((x.iJD-y.iJD+43200000)/86400000);
15517           if( zFmt[i]=='W' ){
15518             int wd;   /* 0=Monday, 1=Tuesday, ... 6=Sunday */
15519             wd = (int)(((x.iJD+43200000)/86400000)%7);
15520             sqlite3_snprintf(3, &z[j],"%02d",(nDay+7-wd)/7);
15521             j += 2;
15522           }else{
15523             sqlite3_snprintf(4, &z[j],"%03d",nDay+1);
15524             j += 3;
15525           }
15526           break;
15527         }
15528         case 'J': {
15529           sqlite3_snprintf(20, &z[j],"%.16g",x.iJD/86400000.0);
15530           j+=sqlite3Strlen30(&z[j]);
15531           break;
15532         }
15533         case 'm':  sqlite3_snprintf(3, &z[j],"%02d",x.M); j+=2; break;
15534         case 'M':  sqlite3_snprintf(3, &z[j],"%02d",x.m); j+=2; break;
15535         case 's': {
15536           sqlite3_snprintf(30,&z[j],"%lld",
15537                            (i64)(x.iJD/1000 - 21086676*(i64)10000));
15538           j += sqlite3Strlen30(&z[j]);
15539           break;
15540         }
15541         case 'S':  sqlite3_snprintf(3,&z[j],"%02d",(int)x.s); j+=2; break;
15542         case 'w': {
15543           z[j++] = (char)(((x.iJD+129600000)/86400000) % 7) + '0';
15544           break;
15545         }
15546         case 'Y': {
15547           sqlite3_snprintf(5,&z[j],"%04d",x.Y); j+=sqlite3Strlen30(&z[j]);
15548           break;
15549         }
15550         default:   z[j++] = '%'; break;
15551       }
15552     }
15553   }
15554   z[j] = 0;
15555   sqlite3_result_text(context, z, -1,
15556                       z==zBuf ? SQLITE_TRANSIENT : SQLITE_DYNAMIC);
15557 }
15558 
15559 /*
15560 ** current_time()
15561 **
15562 ** This function returns the same value as time('now').
15563 */
15564 static void ctimeFunc(
15565   sqlite3_context *context,
15566   int NotUsed,
15567   sqlite3_value **NotUsed2
15568 ){
15569   UNUSED_PARAMETER2(NotUsed, NotUsed2);
15570   timeFunc(context, 0, 0);
15571 }
15572 
15573 /*
15574 ** current_date()
15575 **
15576 ** This function returns the same value as date('now').
15577 */
15578 static void cdateFunc(
15579   sqlite3_context *context,
15580   int NotUsed,
15581   sqlite3_value **NotUsed2
15582 ){
15583   UNUSED_PARAMETER2(NotUsed, NotUsed2);
15584   dateFunc(context, 0, 0);
15585 }
15586 
15587 /*
15588 ** current_timestamp()
15589 **
15590 ** This function returns the same value as datetime('now').
15591 */
15592 static void ctimestampFunc(
15593   sqlite3_context *context,
15594   int NotUsed,
15595   sqlite3_value **NotUsed2
15596 ){
15597   UNUSED_PARAMETER2(NotUsed, NotUsed2);
15598   datetimeFunc(context, 0, 0);
15599 }
15600 #endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */
15601 
15602 #ifdef SQLITE_OMIT_DATETIME_FUNCS
15603 /*
15604 ** If the library is compiled to omit the full-scale date and time
15605 ** handling (to get a smaller binary), the following minimal version
15606 ** of the functions current_time(), current_date() and current_timestamp()
15607 ** are included instead. This is to support column declarations that
15608 ** include "DEFAULT CURRENT_TIME" etc.
15609 **
15610 ** This function uses the C-library functions time(), gmtime()
15611 ** and strftime(). The format string to pass to strftime() is supplied
15612 ** as the user-data for the function.
15613 */
15614 static void currentTimeFunc(
15615   sqlite3_context *context,
15616   int argc,
15617   sqlite3_value **argv
15618 ){
15619   time_t t;
15620   char *zFormat = (char *)sqlite3_user_data(context);
15621   sqlite3 *db;
15622   sqlite3_int64 iT;
15623   struct tm *pTm;
15624   struct tm sNow;
15625   char zBuf[20];
15626 
15627   UNUSED_PARAMETER(argc);
15628   UNUSED_PARAMETER(argv);
15629 
15630   iT = sqlite3StmtCurrentTime(context);
15631   if( iT<=0 ) return;
15632   t = iT/1000 - 10000*(sqlite3_int64)21086676;
15633 #ifdef HAVE_GMTIME_R
15634   pTm = gmtime_r(&t, &sNow);
15635 #else
15636   sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
15637   pTm = gmtime(&t);
15638   if( pTm ) memcpy(&sNow, pTm, sizeof(sNow));
15639   sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
15640 #endif
15641   if( pTm ){
15642     strftime(zBuf, 20, zFormat, &sNow);
15643     sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
15644   }
15645 }
15646 #endif
15647 
15648 /*
15649 ** This function registered all of the above C functions as SQL
15650 ** functions.  This should be the only routine in this file with
15651 ** external linkage.
15652 */
15653 SQLITE_PRIVATE void sqlite3RegisterDateTimeFunctions(void){
15654   static SQLITE_WSD FuncDef aDateTimeFuncs[] = {
15655 #ifndef SQLITE_OMIT_DATETIME_FUNCS
15656     FUNCTION(julianday,        -1, 0, 0, juliandayFunc ),
15657     FUNCTION(date,             -1, 0, 0, dateFunc      ),
15658     FUNCTION(time,             -1, 0, 0, timeFunc      ),
15659     FUNCTION(datetime,         -1, 0, 0, datetimeFunc  ),
15660     FUNCTION(strftime,         -1, 0, 0, strftimeFunc  ),
15661     FUNCTION(current_time,      0, 0, 0, ctimeFunc     ),
15662     FUNCTION(current_timestamp, 0, 0, 0, ctimestampFunc),
15663     FUNCTION(current_date,      0, 0, 0, cdateFunc     ),
15664 #else
15665     STR_FUNCTION(current_time,      0, "%H:%M:%S",          0, currentTimeFunc),
15666     STR_FUNCTION(current_date,      0, "%Y-%m-%d",          0, currentTimeFunc),
15667     STR_FUNCTION(current_timestamp, 0, "%Y-%m-%d %H:%M:%S", 0, currentTimeFunc),
15668 #endif
15669   };
15670   int i;
15671   FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions);
15672   FuncDef *aFunc = (FuncDef*)&GLOBAL(FuncDef, aDateTimeFuncs);
15673 
15674   for(i=0; i<ArraySize(aDateTimeFuncs); i++){
15675     sqlite3FuncDefInsert(pHash, &aFunc[i]);
15676   }
15677 }
15678 
15679 /************** End of date.c ************************************************/
15680 /************** Begin file os.c **********************************************/
15681 /*
15682 ** 2005 November 29
15683 **
15684 ** The author disclaims copyright to this source code.  In place of
15685 ** a legal notice, here is a blessing:
15686 **
15687 **    May you do good and not evil.
15688 **    May you find forgiveness for yourself and forgive others.
15689 **    May you share freely, never taking more than you give.
15690 **
15691 ******************************************************************************
15692 **
15693 ** This file contains OS interface code that is common to all
15694 ** architectures.
15695 */
15696 #define _SQLITE_OS_C_ 1
15697 #undef _SQLITE_OS_C_
15698 
15699 /*
15700 ** The default SQLite sqlite3_vfs implementations do not allocate
15701 ** memory (actually, os_unix.c allocates a small amount of memory
15702 ** from within OsOpen()), but some third-party implementations may.
15703 ** So we test the effects of a malloc() failing and the sqlite3OsXXX()
15704 ** function returning SQLITE_IOERR_NOMEM using the DO_OS_MALLOC_TEST macro.
15705 **
15706 ** The following functions are instrumented for malloc() failure
15707 ** testing:
15708 **
15709 **     sqlite3OsRead()
15710 **     sqlite3OsWrite()
15711 **     sqlite3OsSync()
15712 **     sqlite3OsFileSize()
15713 **     sqlite3OsLock()
15714 **     sqlite3OsCheckReservedLock()
15715 **     sqlite3OsFileControl()
15716 **     sqlite3OsShmMap()
15717 **     sqlite3OsOpen()
15718 **     sqlite3OsDelete()
15719 **     sqlite3OsAccess()
15720 **     sqlite3OsFullPathname()
15721 **
15722 */
15723 #if defined(SQLITE_TEST)
15724 SQLITE_API int sqlite3_memdebug_vfs_oom_test = 1;
15725   #define DO_OS_MALLOC_TEST(x)                                       \
15726   if (sqlite3_memdebug_vfs_oom_test && (!x || !sqlite3IsMemJournal(x))) {  \
15727     void *pTstAlloc = sqlite3Malloc(10);                             \
15728     if (!pTstAlloc) return SQLITE_IOERR_NOMEM;                       \
15729     sqlite3_free(pTstAlloc);                                         \
15730   }
15731 #else
15732   #define DO_OS_MALLOC_TEST(x)
15733 #endif
15734 
15735 /*
15736 ** The following routines are convenience wrappers around methods
15737 ** of the sqlite3_file object.  This is mostly just syntactic sugar. All
15738 ** of this would be completely automatic if SQLite were coded using
15739 ** C++ instead of plain old C.
15740 */
15741 SQLITE_PRIVATE int sqlite3OsClose(sqlite3_file *pId){
15742   int rc = SQLITE_OK;
15743   if( pId->pMethods ){
15744     rc = pId->pMethods->xClose(pId);
15745     pId->pMethods = 0;
15746   }
15747   return rc;
15748 }
15749 SQLITE_PRIVATE int sqlite3OsRead(sqlite3_file *id, void *pBuf, int amt, i64 offset){
15750   DO_OS_MALLOC_TEST(id);
15751   return id->pMethods->xRead(id, pBuf, amt, offset);
15752 }
15753 SQLITE_PRIVATE int sqlite3OsWrite(sqlite3_file *id, const void *pBuf, int amt, i64 offset){
15754   DO_OS_MALLOC_TEST(id);
15755   return id->pMethods->xWrite(id, pBuf, amt, offset);
15756 }
15757 SQLITE_PRIVATE int sqlite3OsTruncate(sqlite3_file *id, i64 size){
15758   return id->pMethods->xTruncate(id, size);
15759 }
15760 SQLITE_PRIVATE int sqlite3OsSync(sqlite3_file *id, int flags){
15761   DO_OS_MALLOC_TEST(id);
15762   return id->pMethods->xSync(id, flags);
15763 }
15764 SQLITE_PRIVATE int sqlite3OsFileSize(sqlite3_file *id, i64 *pSize){
15765   DO_OS_MALLOC_TEST(id);
15766   return id->pMethods->xFileSize(id, pSize);
15767 }
15768 SQLITE_PRIVATE int sqlite3OsLock(sqlite3_file *id, int lockType){
15769   DO_OS_MALLOC_TEST(id);
15770   return id->pMethods->xLock(id, lockType);
15771 }
15772 SQLITE_PRIVATE int sqlite3OsUnlock(sqlite3_file *id, int lockType){
15773   return id->pMethods->xUnlock(id, lockType);
15774 }
15775 SQLITE_PRIVATE int sqlite3OsCheckReservedLock(sqlite3_file *id, int *pResOut){
15776   DO_OS_MALLOC_TEST(id);
15777   return id->pMethods->xCheckReservedLock(id, pResOut);
15778 }
15779 
15780 /*
15781 ** Use sqlite3OsFileControl() when we are doing something that might fail
15782 ** and we need to know about the failures.  Use sqlite3OsFileControlHint()
15783 ** when simply tossing information over the wall to the VFS and we do not
15784 ** really care if the VFS receives and understands the information since it
15785 ** is only a hint and can be safely ignored.  The sqlite3OsFileControlHint()
15786 ** routine has no return value since the return value would be meaningless.
15787 */
15788 SQLITE_PRIVATE int sqlite3OsFileControl(sqlite3_file *id, int op, void *pArg){
15789 #ifdef SQLITE_TEST
15790   if( op!=SQLITE_FCNTL_COMMIT_PHASETWO ){
15791     /* Faults are not injected into COMMIT_PHASETWO because, assuming SQLite
15792     ** is using a regular VFS, it is called after the corresponding
15793     ** transaction has been committed. Injecting a fault at this point
15794     ** confuses the test scripts - the COMMIT comand returns SQLITE_NOMEM
15795     ** but the transaction is committed anyway.
15796     **
15797     ** The core must call OsFileControl() though, not OsFileControlHint(),
15798     ** as if a custom VFS (e.g. zipvfs) returns an error here, it probably
15799     ** means the commit really has failed and an error should be returned
15800     ** to the user.  */
15801     DO_OS_MALLOC_TEST(id);
15802   }
15803 #endif
15804   return id->pMethods->xFileControl(id, op, pArg);
15805 }
15806 SQLITE_PRIVATE void sqlite3OsFileControlHint(sqlite3_file *id, int op, void *pArg){
15807   (void)id->pMethods->xFileControl(id, op, pArg);
15808 }
15809 
15810 SQLITE_PRIVATE int sqlite3OsSectorSize(sqlite3_file *id){
15811   int (*xSectorSize)(sqlite3_file*) = id->pMethods->xSectorSize;
15812   return (xSectorSize ? xSectorSize(id) : SQLITE_DEFAULT_SECTOR_SIZE);
15813 }
15814 SQLITE_PRIVATE int sqlite3OsDeviceCharacteristics(sqlite3_file *id){
15815   return id->pMethods->xDeviceCharacteristics(id);
15816 }
15817 SQLITE_PRIVATE int sqlite3OsShmLock(sqlite3_file *id, int offset, int n, int flags){
15818   return id->pMethods->xShmLock(id, offset, n, flags);
15819 }
15820 SQLITE_PRIVATE void sqlite3OsShmBarrier(sqlite3_file *id){
15821   id->pMethods->xShmBarrier(id);
15822 }
15823 SQLITE_PRIVATE int sqlite3OsShmUnmap(sqlite3_file *id, int deleteFlag){
15824   return id->pMethods->xShmUnmap(id, deleteFlag);
15825 }
15826 SQLITE_PRIVATE int sqlite3OsShmMap(
15827   sqlite3_file *id,               /* Database file handle */
15828   int iPage,
15829   int pgsz,
15830   int bExtend,                    /* True to extend file if necessary */
15831   void volatile **pp              /* OUT: Pointer to mapping */
15832 ){
15833   DO_OS_MALLOC_TEST(id);
15834   return id->pMethods->xShmMap(id, iPage, pgsz, bExtend, pp);
15835 }
15836 
15837 #if SQLITE_MAX_MMAP_SIZE>0
15838 /* The real implementation of xFetch and xUnfetch */
15839 SQLITE_PRIVATE int sqlite3OsFetch(sqlite3_file *id, i64 iOff, int iAmt, void **pp){
15840   DO_OS_MALLOC_TEST(id);
15841   return id->pMethods->xFetch(id, iOff, iAmt, pp);
15842 }
15843 SQLITE_PRIVATE int sqlite3OsUnfetch(sqlite3_file *id, i64 iOff, void *p){
15844   return id->pMethods->xUnfetch(id, iOff, p);
15845 }
15846 #else
15847 /* No-op stubs to use when memory-mapped I/O is disabled */
15848 SQLITE_PRIVATE int sqlite3OsFetch(sqlite3_file *id, i64 iOff, int iAmt, void **pp){
15849   *pp = 0;
15850   return SQLITE_OK;
15851 }
15852 SQLITE_PRIVATE int sqlite3OsUnfetch(sqlite3_file *id, i64 iOff, void *p){
15853   return SQLITE_OK;
15854 }
15855 #endif
15856 
15857 /*
15858 ** The next group of routines are convenience wrappers around the
15859 ** VFS methods.
15860 */
15861 SQLITE_PRIVATE int sqlite3OsOpen(
15862   sqlite3_vfs *pVfs,
15863   const char *zPath,
15864   sqlite3_file *pFile,
15865   int flags,
15866   int *pFlagsOut
15867 ){
15868   int rc;
15869   DO_OS_MALLOC_TEST(0);
15870   /* 0x87f7f is a mask of SQLITE_OPEN_ flags that are valid to be passed
15871   ** down into the VFS layer.  Some SQLITE_OPEN_ flags (for example,
15872   ** SQLITE_OPEN_FULLMUTEX or SQLITE_OPEN_SHAREDCACHE) are blocked before
15873   ** reaching the VFS. */
15874   rc = pVfs->xOpen(pVfs, zPath, pFile, flags & 0x87f7f, pFlagsOut);
15875   assert( rc==SQLITE_OK || pFile->pMethods==0 );
15876   return rc;
15877 }
15878 SQLITE_PRIVATE int sqlite3OsDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){
15879   DO_OS_MALLOC_TEST(0);
15880   assert( dirSync==0 || dirSync==1 );
15881   return pVfs->xDelete(pVfs, zPath, dirSync);
15882 }
15883 SQLITE_PRIVATE int sqlite3OsAccess(
15884   sqlite3_vfs *pVfs,
15885   const char *zPath,
15886   int flags,
15887   int *pResOut
15888 ){
15889   DO_OS_MALLOC_TEST(0);
15890   return pVfs->xAccess(pVfs, zPath, flags, pResOut);
15891 }
15892 SQLITE_PRIVATE int sqlite3OsFullPathname(
15893   sqlite3_vfs *pVfs,
15894   const char *zPath,
15895   int nPathOut,
15896   char *zPathOut
15897 ){
15898   DO_OS_MALLOC_TEST(0);
15899   zPathOut[0] = 0;
15900   return pVfs->xFullPathname(pVfs, zPath, nPathOut, zPathOut);
15901 }
15902 #ifndef SQLITE_OMIT_LOAD_EXTENSION
15903 SQLITE_PRIVATE void *sqlite3OsDlOpen(sqlite3_vfs *pVfs, const char *zPath){
15904   return pVfs->xDlOpen(pVfs, zPath);
15905 }
15906 SQLITE_PRIVATE void sqlite3OsDlError(sqlite3_vfs *pVfs, int nByte, char *zBufOut){
15907   pVfs->xDlError(pVfs, nByte, zBufOut);
15908 }
15909 SQLITE_PRIVATE void (*sqlite3OsDlSym(sqlite3_vfs *pVfs, void *pHdle, const char *zSym))(void){
15910   return pVfs->xDlSym(pVfs, pHdle, zSym);
15911 }
15912 SQLITE_PRIVATE void sqlite3OsDlClose(sqlite3_vfs *pVfs, void *pHandle){
15913   pVfs->xDlClose(pVfs, pHandle);
15914 }
15915 #endif /* SQLITE_OMIT_LOAD_EXTENSION */
15916 SQLITE_PRIVATE int sqlite3OsRandomness(sqlite3_vfs *pVfs, int nByte, char *zBufOut){
15917   return pVfs->xRandomness(pVfs, nByte, zBufOut);
15918 }
15919 SQLITE_PRIVATE int sqlite3OsSleep(sqlite3_vfs *pVfs, int nMicro){
15920   return pVfs->xSleep(pVfs, nMicro);
15921 }
15922 SQLITE_PRIVATE int sqlite3OsCurrentTimeInt64(sqlite3_vfs *pVfs, sqlite3_int64 *pTimeOut){
15923   int rc;
15924   /* IMPLEMENTATION-OF: R-49045-42493 SQLite will use the xCurrentTimeInt64()
15925   ** method to get the current date and time if that method is available
15926   ** (if iVersion is 2 or greater and the function pointer is not NULL) and
15927   ** will fall back to xCurrentTime() if xCurrentTimeInt64() is
15928   ** unavailable.
15929   */
15930   if( pVfs->iVersion>=2 && pVfs->xCurrentTimeInt64 ){
15931     rc = pVfs->xCurrentTimeInt64(pVfs, pTimeOut);
15932   }else{
15933     double r;
15934     rc = pVfs->xCurrentTime(pVfs, &r);
15935     *pTimeOut = (sqlite3_int64)(r*86400000.0);
15936   }
15937   return rc;
15938 }
15939 
15940 SQLITE_PRIVATE int sqlite3OsOpenMalloc(
15941   sqlite3_vfs *pVfs,
15942   const char *zFile,
15943   sqlite3_file **ppFile,
15944   int flags,
15945   int *pOutFlags
15946 ){
15947   int rc = SQLITE_NOMEM;
15948   sqlite3_file *pFile;
15949   pFile = (sqlite3_file *)sqlite3MallocZero(pVfs->szOsFile);
15950   if( pFile ){
15951     rc = sqlite3OsOpen(pVfs, zFile, pFile, flags, pOutFlags);
15952     if( rc!=SQLITE_OK ){
15953       sqlite3_free(pFile);
15954     }else{
15955       *ppFile = pFile;
15956     }
15957   }
15958   return rc;
15959 }
15960 SQLITE_PRIVATE int sqlite3OsCloseFree(sqlite3_file *pFile){
15961   int rc = SQLITE_OK;
15962   assert( pFile );
15963   rc = sqlite3OsClose(pFile);
15964   sqlite3_free(pFile);
15965   return rc;
15966 }
15967 
15968 /*
15969 ** This function is a wrapper around the OS specific implementation of
15970 ** sqlite3_os_init(). The purpose of the wrapper is to provide the
15971 ** ability to simulate a malloc failure, so that the handling of an
15972 ** error in sqlite3_os_init() by the upper layers can be tested.
15973 */
15974 SQLITE_PRIVATE int sqlite3OsInit(void){
15975   void *p = sqlite3_malloc(10);
15976   if( p==0 ) return SQLITE_NOMEM;
15977   sqlite3_free(p);
15978   return sqlite3_os_init();
15979 }
15980 
15981 /*
15982 ** The list of all registered VFS implementations.
15983 */
15984 static sqlite3_vfs * SQLITE_WSD vfsList = 0;
15985 #define vfsList GLOBAL(sqlite3_vfs *, vfsList)
15986 
15987 /*
15988 ** Locate a VFS by name.  If no name is given, simply return the
15989 ** first VFS on the list.
15990 */
15991 SQLITE_API sqlite3_vfs *sqlite3_vfs_find(const char *zVfs){
15992   sqlite3_vfs *pVfs = 0;
15993 #if SQLITE_THREADSAFE
15994   sqlite3_mutex *mutex;
15995 #endif
15996 #ifndef SQLITE_OMIT_AUTOINIT
15997   int rc = sqlite3_initialize();
15998   if( rc ) return 0;
15999 #endif
16000 #if SQLITE_THREADSAFE
16001   mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
16002 #endif
16003   sqlite3_mutex_enter(mutex);
16004   for(pVfs = vfsList; pVfs; pVfs=pVfs->pNext){
16005     if( zVfs==0 ) break;
16006     if( strcmp(zVfs, pVfs->zName)==0 ) break;
16007   }
16008   sqlite3_mutex_leave(mutex);
16009   return pVfs;
16010 }
16011 
16012 /*
16013 ** Unlink a VFS from the linked list
16014 */
16015 static void vfsUnlink(sqlite3_vfs *pVfs){
16016   assert( sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)) );
16017   if( pVfs==0 ){
16018     /* No-op */
16019   }else if( vfsList==pVfs ){
16020     vfsList = pVfs->pNext;
16021   }else if( vfsList ){
16022     sqlite3_vfs *p = vfsList;
16023     while( p->pNext && p->pNext!=pVfs ){
16024       p = p->pNext;
16025     }
16026     if( p->pNext==pVfs ){
16027       p->pNext = pVfs->pNext;
16028     }
16029   }
16030 }
16031 
16032 /*
16033 ** Register a VFS with the system.  It is harmless to register the same
16034 ** VFS multiple times.  The new VFS becomes the default if makeDflt is
16035 ** true.
16036 */
16037 SQLITE_API int sqlite3_vfs_register(sqlite3_vfs *pVfs, int makeDflt){
16038   MUTEX_LOGIC(sqlite3_mutex *mutex;)
16039 #ifndef SQLITE_OMIT_AUTOINIT
16040   int rc = sqlite3_initialize();
16041   if( rc ) return rc;
16042 #endif
16043   MUTEX_LOGIC( mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
16044   sqlite3_mutex_enter(mutex);
16045   vfsUnlink(pVfs);
16046   if( makeDflt || vfsList==0 ){
16047     pVfs->pNext = vfsList;
16048     vfsList = pVfs;
16049   }else{
16050     pVfs->pNext = vfsList->pNext;
16051     vfsList->pNext = pVfs;
16052   }
16053   assert(vfsList);
16054   sqlite3_mutex_leave(mutex);
16055   return SQLITE_OK;
16056 }
16057 
16058 /*
16059 ** Unregister a VFS so that it is no longer accessible.
16060 */
16061 SQLITE_API int sqlite3_vfs_unregister(sqlite3_vfs *pVfs){
16062 #if SQLITE_THREADSAFE
16063   sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
16064 #endif
16065   sqlite3_mutex_enter(mutex);
16066   vfsUnlink(pVfs);
16067   sqlite3_mutex_leave(mutex);
16068   return SQLITE_OK;
16069 }
16070 
16071 /************** End of os.c **************************************************/
16072 /************** Begin file fault.c *******************************************/
16073 /*
16074 ** 2008 Jan 22
16075 **
16076 ** The author disclaims copyright to this source code.  In place of
16077 ** a legal notice, here is a blessing:
16078 **
16079 **    May you do good and not evil.
16080 **    May you find forgiveness for yourself and forgive others.
16081 **    May you share freely, never taking more than you give.
16082 **
16083 *************************************************************************
16084 **
16085 ** This file contains code to support the concept of "benign"
16086 ** malloc failures (when the xMalloc() or xRealloc() method of the
16087 ** sqlite3_mem_methods structure fails to allocate a block of memory
16088 ** and returns 0).
16089 **
16090 ** Most malloc failures are non-benign. After they occur, SQLite
16091 ** abandons the current operation and returns an error code (usually
16092 ** SQLITE_NOMEM) to the user. However, sometimes a fault is not necessarily
16093 ** fatal. For example, if a malloc fails while resizing a hash table, this
16094 ** is completely recoverable simply by not carrying out the resize. The
16095 ** hash table will continue to function normally.  So a malloc failure
16096 ** during a hash table resize is a benign fault.
16097 */
16098 
16099 
16100 #ifndef SQLITE_OMIT_BUILTIN_TEST
16101 
16102 /*
16103 ** Global variables.
16104 */
16105 typedef struct BenignMallocHooks BenignMallocHooks;
16106 static SQLITE_WSD struct BenignMallocHooks {
16107   void (*xBenignBegin)(void);
16108   void (*xBenignEnd)(void);
16109 } sqlite3Hooks = { 0, 0 };
16110 
16111 /* The "wsdHooks" macro will resolve to the appropriate BenignMallocHooks
16112 ** structure.  If writable static data is unsupported on the target,
16113 ** we have to locate the state vector at run-time.  In the more common
16114 ** case where writable static data is supported, wsdHooks can refer directly
16115 ** to the "sqlite3Hooks" state vector declared above.
16116 */
16117 #ifdef SQLITE_OMIT_WSD
16118 # define wsdHooksInit \
16119   BenignMallocHooks *x = &GLOBAL(BenignMallocHooks,sqlite3Hooks)
16120 # define wsdHooks x[0]
16121 #else
16122 # define wsdHooksInit
16123 # define wsdHooks sqlite3Hooks
16124 #endif
16125 
16126 
16127 /*
16128 ** Register hooks to call when sqlite3BeginBenignMalloc() and
16129 ** sqlite3EndBenignMalloc() are called, respectively.
16130 */
16131 SQLITE_PRIVATE void sqlite3BenignMallocHooks(
16132   void (*xBenignBegin)(void),
16133   void (*xBenignEnd)(void)
16134 ){
16135   wsdHooksInit;
16136   wsdHooks.xBenignBegin = xBenignBegin;
16137   wsdHooks.xBenignEnd = xBenignEnd;
16138 }
16139 
16140 /*
16141 ** This (sqlite3EndBenignMalloc()) is called by SQLite code to indicate that
16142 ** subsequent malloc failures are benign. A call to sqlite3EndBenignMalloc()
16143 ** indicates that subsequent malloc failures are non-benign.
16144 */
16145 SQLITE_PRIVATE void sqlite3BeginBenignMalloc(void){
16146   wsdHooksInit;
16147   if( wsdHooks.xBenignBegin ){
16148     wsdHooks.xBenignBegin();
16149   }
16150 }
16151 SQLITE_PRIVATE void sqlite3EndBenignMalloc(void){
16152   wsdHooksInit;
16153   if( wsdHooks.xBenignEnd ){
16154     wsdHooks.xBenignEnd();
16155   }
16156 }
16157 
16158 #endif   /* #ifndef SQLITE_OMIT_BUILTIN_TEST */
16159 
16160 /************** End of fault.c ***********************************************/
16161 /************** Begin file mem0.c ********************************************/
16162 /*
16163 ** 2008 October 28
16164 **
16165 ** The author disclaims copyright to this source code.  In place of
16166 ** a legal notice, here is a blessing:
16167 **
16168 **    May you do good and not evil.
16169 **    May you find forgiveness for yourself and forgive others.
16170 **    May you share freely, never taking more than you give.
16171 **
16172 *************************************************************************
16173 **
16174 ** This file contains a no-op memory allocation drivers for use when
16175 ** SQLITE_ZERO_MALLOC is defined.  The allocation drivers implemented
16176 ** here always fail.  SQLite will not operate with these drivers.  These
16177 ** are merely placeholders.  Real drivers must be substituted using
16178 ** sqlite3_config() before SQLite will operate.
16179 */
16180 
16181 /*
16182 ** This version of the memory allocator is the default.  It is
16183 ** used when no other memory allocator is specified using compile-time
16184 ** macros.
16185 */
16186 #ifdef SQLITE_ZERO_MALLOC
16187 
16188 /*
16189 ** No-op versions of all memory allocation routines
16190 */
16191 static void *sqlite3MemMalloc(int nByte){ return 0; }
16192 static void sqlite3MemFree(void *pPrior){ return; }
16193 static void *sqlite3MemRealloc(void *pPrior, int nByte){ return 0; }
16194 static int sqlite3MemSize(void *pPrior){ return 0; }
16195 static int sqlite3MemRoundup(int n){ return n; }
16196 static int sqlite3MemInit(void *NotUsed){ return SQLITE_OK; }
16197 static void sqlite3MemShutdown(void *NotUsed){ return; }
16198 
16199 /*
16200 ** This routine is the only routine in this file with external linkage.
16201 **
16202 ** Populate the low-level memory allocation function pointers in
16203 ** sqlite3GlobalConfig.m with pointers to the routines in this file.
16204 */
16205 SQLITE_PRIVATE void sqlite3MemSetDefault(void){
16206   static const sqlite3_mem_methods defaultMethods = {
16207      sqlite3MemMalloc,
16208      sqlite3MemFree,
16209      sqlite3MemRealloc,
16210      sqlite3MemSize,
16211      sqlite3MemRoundup,
16212      sqlite3MemInit,
16213      sqlite3MemShutdown,
16214      0
16215   };
16216   sqlite3_config(SQLITE_CONFIG_MALLOC, &defaultMethods);
16217 }
16218 
16219 #endif /* SQLITE_ZERO_MALLOC */
16220 
16221 /************** End of mem0.c ************************************************/
16222 /************** Begin file mem1.c ********************************************/
16223 /*
16224 ** 2007 August 14
16225 **
16226 ** The author disclaims copyright to this source code.  In place of
16227 ** a legal notice, here is a blessing:
16228 **
16229 **    May you do good and not evil.
16230 **    May you find forgiveness for yourself and forgive others.
16231 **    May you share freely, never taking more than you give.
16232 **
16233 *************************************************************************
16234 **
16235 ** This file contains low-level memory allocation drivers for when
16236 ** SQLite will use the standard C-library malloc/realloc/free interface
16237 ** to obtain the memory it needs.
16238 **
16239 ** This file contains implementations of the low-level memory allocation
16240 ** routines specified in the sqlite3_mem_methods object.  The content of
16241 ** this file is only used if SQLITE_SYSTEM_MALLOC is defined.  The
16242 ** SQLITE_SYSTEM_MALLOC macro is defined automatically if neither the
16243 ** SQLITE_MEMDEBUG nor the SQLITE_WIN32_MALLOC macros are defined.  The
16244 ** default configuration is to use memory allocation routines in this
16245 ** file.
16246 **
16247 ** C-preprocessor macro summary:
16248 **
16249 **    HAVE_MALLOC_USABLE_SIZE     The configure script sets this symbol if
16250 **                                the malloc_usable_size() interface exists
16251 **                                on the target platform.  Or, this symbol
16252 **                                can be set manually, if desired.
16253 **                                If an equivalent interface exists by
16254 **                                a different name, using a separate -D
16255 **                                option to rename it.
16256 **
16257 **    SQLITE_WITHOUT_ZONEMALLOC   Some older macs lack support for the zone
16258 **                                memory allocator.  Set this symbol to enable
16259 **                                building on older macs.
16260 **
16261 **    SQLITE_WITHOUT_MSIZE        Set this symbol to disable the use of
16262 **                                _msize() on windows systems.  This might
16263 **                                be necessary when compiling for Delphi,
16264 **                                for example.
16265 */
16266 
16267 /*
16268 ** This version of the memory allocator is the default.  It is
16269 ** used when no other memory allocator is specified using compile-time
16270 ** macros.
16271 */
16272 #ifdef SQLITE_SYSTEM_MALLOC
16273 #if defined(__APPLE__) && !defined(SQLITE_WITHOUT_ZONEMALLOC)
16274 
16275 /*
16276 ** Use the zone allocator available on apple products unless the
16277 ** SQLITE_WITHOUT_ZONEMALLOC symbol is defined.
16278 */
16279 #include <sys/sysctl.h>
16280 #include <malloc/malloc.h>
16281 #include <libkern/OSAtomic.h>
16282 static malloc_zone_t* _sqliteZone_;
16283 #define SQLITE_MALLOC(x) malloc_zone_malloc(_sqliteZone_, (x))
16284 #define SQLITE_FREE(x) malloc_zone_free(_sqliteZone_, (x));
16285 #define SQLITE_REALLOC(x,y) malloc_zone_realloc(_sqliteZone_, (x), (y))
16286 #define SQLITE_MALLOCSIZE(x) \
16287         (_sqliteZone_ ? _sqliteZone_->size(_sqliteZone_,x) : malloc_size(x))
16288 
16289 #else /* if not __APPLE__ */
16290 
16291 /*
16292 ** Use standard C library malloc and free on non-Apple systems.
16293 ** Also used by Apple systems if SQLITE_WITHOUT_ZONEMALLOC is defined.
16294 */
16295 #define SQLITE_MALLOC(x)             malloc(x)
16296 #define SQLITE_FREE(x)               free(x)
16297 #define SQLITE_REALLOC(x,y)          realloc((x),(y))
16298 
16299 /*
16300 ** The malloc.h header file is needed for malloc_usable_size() function
16301 ** on some systems (e.g. Linux).
16302 */
16303 #if defined(HAVE_MALLOC_H) && defined(HAVE_MALLOC_USABLE_SIZE)
16304 #  define SQLITE_USE_MALLOC_H
16305 #  define SQLITE_USE_MALLOC_USABLE_SIZE
16306 /*
16307 ** The MSVCRT has malloc_usable_size(), but it is called _msize().  The
16308 ** use of _msize() is automatic, but can be disabled by compiling with
16309 ** -DSQLITE_WITHOUT_MSIZE.  Using the _msize() function also requires
16310 ** the malloc.h header file.
16311 */
16312 #elif defined(_MSC_VER) && !defined(SQLITE_WITHOUT_MSIZE)
16313 #  define SQLITE_USE_MALLOC_H
16314 #  define SQLITE_USE_MSIZE
16315 #endif
16316 
16317 /*
16318 ** Include the malloc.h header file, if necessary.  Also set define macro
16319 ** SQLITE_MALLOCSIZE to the appropriate function name, which is _msize()
16320 ** for MSVC and malloc_usable_size() for most other systems (e.g. Linux).
16321 ** The memory size function can always be overridden manually by defining
16322 ** the macro SQLITE_MALLOCSIZE to the desired function name.
16323 */
16324 #if defined(SQLITE_USE_MALLOC_H)
16325 #  include <malloc.h>
16326 #  if defined(SQLITE_USE_MALLOC_USABLE_SIZE)
16327 #    if !defined(SQLITE_MALLOCSIZE)
16328 #      define SQLITE_MALLOCSIZE(x)   malloc_usable_size(x)
16329 #    endif
16330 #  elif defined(SQLITE_USE_MSIZE)
16331 #    if !defined(SQLITE_MALLOCSIZE)
16332 #      define SQLITE_MALLOCSIZE      _msize
16333 #    endif
16334 #  endif
16335 #endif /* defined(SQLITE_USE_MALLOC_H) */
16336 
16337 #endif /* __APPLE__ or not __APPLE__ */
16338 
16339 /*
16340 ** Like malloc(), but remember the size of the allocation
16341 ** so that we can find it later using sqlite3MemSize().
16342 **
16343 ** For this low-level routine, we are guaranteed that nByte>0 because
16344 ** cases of nByte<=0 will be intercepted and dealt with by higher level
16345 ** routines.
16346 */
16347 static void *sqlite3MemMalloc(int nByte){
16348 #ifdef SQLITE_MALLOCSIZE
16349   void *p = SQLITE_MALLOC( nByte );
16350   if( p==0 ){
16351     testcase( sqlite3GlobalConfig.xLog!=0 );
16352     sqlite3_log(SQLITE_NOMEM, "failed to allocate %u bytes of memory", nByte);
16353   }
16354   return p;
16355 #else
16356   sqlite3_int64 *p;
16357   assert( nByte>0 );
16358   nByte = ROUND8(nByte);
16359   p = SQLITE_MALLOC( nByte+8 );
16360   if( p ){
16361     p[0] = nByte;
16362     p++;
16363   }else{
16364     testcase( sqlite3GlobalConfig.xLog!=0 );
16365     sqlite3_log(SQLITE_NOMEM, "failed to allocate %u bytes of memory", nByte);
16366   }
16367   return (void *)p;
16368 #endif
16369 }
16370 
16371 /*
16372 ** Like free() but works for allocations obtained from sqlite3MemMalloc()
16373 ** or sqlite3MemRealloc().
16374 **
16375 ** For this low-level routine, we already know that pPrior!=0 since
16376 ** cases where pPrior==0 will have been intecepted and dealt with
16377 ** by higher-level routines.
16378 */
16379 static void sqlite3MemFree(void *pPrior){
16380 #ifdef SQLITE_MALLOCSIZE
16381   SQLITE_FREE(pPrior);
16382 #else
16383   sqlite3_int64 *p = (sqlite3_int64*)pPrior;
16384   assert( pPrior!=0 );
16385   p--;
16386   SQLITE_FREE(p);
16387 #endif
16388 }
16389 
16390 /*
16391 ** Report the allocated size of a prior return from xMalloc()
16392 ** or xRealloc().
16393 */
16394 static int sqlite3MemSize(void *pPrior){
16395 #ifdef SQLITE_MALLOCSIZE
16396   return pPrior ? (int)SQLITE_MALLOCSIZE(pPrior) : 0;
16397 #else
16398   sqlite3_int64 *p;
16399   if( pPrior==0 ) return 0;
16400   p = (sqlite3_int64*)pPrior;
16401   p--;
16402   return (int)p[0];
16403 #endif
16404 }
16405 
16406 /*
16407 ** Like realloc().  Resize an allocation previously obtained from
16408 ** sqlite3MemMalloc().
16409 **
16410 ** For this low-level interface, we know that pPrior!=0.  Cases where
16411 ** pPrior==0 while have been intercepted by higher-level routine and
16412 ** redirected to xMalloc.  Similarly, we know that nByte>0 becauses
16413 ** cases where nByte<=0 will have been intercepted by higher-level
16414 ** routines and redirected to xFree.
16415 */
16416 static void *sqlite3MemRealloc(void *pPrior, int nByte){
16417 #ifdef SQLITE_MALLOCSIZE
16418   void *p = SQLITE_REALLOC(pPrior, nByte);
16419   if( p==0 ){
16420     testcase( sqlite3GlobalConfig.xLog!=0 );
16421     sqlite3_log(SQLITE_NOMEM,
16422       "failed memory resize %u to %u bytes",
16423       SQLITE_MALLOCSIZE(pPrior), nByte);
16424   }
16425   return p;
16426 #else
16427   sqlite3_int64 *p = (sqlite3_int64*)pPrior;
16428   assert( pPrior!=0 && nByte>0 );
16429   assert( nByte==ROUND8(nByte) ); /* EV: R-46199-30249 */
16430   p--;
16431   p = SQLITE_REALLOC(p, nByte+8 );
16432   if( p ){
16433     p[0] = nByte;
16434     p++;
16435   }else{
16436     testcase( sqlite3GlobalConfig.xLog!=0 );
16437     sqlite3_log(SQLITE_NOMEM,
16438       "failed memory resize %u to %u bytes",
16439       sqlite3MemSize(pPrior), nByte);
16440   }
16441   return (void*)p;
16442 #endif
16443 }
16444 
16445 /*
16446 ** Round up a request size to the next valid allocation size.
16447 */
16448 static int sqlite3MemRoundup(int n){
16449   return ROUND8(n);
16450 }
16451 
16452 /*
16453 ** Initialize this module.
16454 */
16455 static int sqlite3MemInit(void *NotUsed){
16456 #if defined(__APPLE__) && !defined(SQLITE_WITHOUT_ZONEMALLOC)
16457   int cpuCount;
16458   size_t len;
16459   if( _sqliteZone_ ){
16460     return SQLITE_OK;
16461   }
16462   len = sizeof(cpuCount);
16463   /* One usually wants to use hw.acctivecpu for MT decisions, but not here */
16464   sysctlbyname("hw.ncpu", &cpuCount, &len, NULL, 0);
16465   if( cpuCount>1 ){
16466     /* defer MT decisions to system malloc */
16467     _sqliteZone_ = malloc_default_zone();
16468   }else{
16469     /* only 1 core, use our own zone to contention over global locks,
16470     ** e.g. we have our own dedicated locks */
16471     bool success;
16472     malloc_zone_t* newzone = malloc_create_zone(4096, 0);
16473     malloc_set_zone_name(newzone, "Sqlite_Heap");
16474     do{
16475       success = OSAtomicCompareAndSwapPtrBarrier(NULL, newzone,
16476                                  (void * volatile *)&_sqliteZone_);
16477     }while(!_sqliteZone_);
16478     if( !success ){
16479       /* somebody registered a zone first */
16480       malloc_destroy_zone(newzone);
16481     }
16482   }
16483 #endif
16484   UNUSED_PARAMETER(NotUsed);
16485   return SQLITE_OK;
16486 }
16487 
16488 /*
16489 ** Deinitialize this module.
16490 */
16491 static void sqlite3MemShutdown(void *NotUsed){
16492   UNUSED_PARAMETER(NotUsed);
16493   return;
16494 }
16495 
16496 /*
16497 ** This routine is the only routine in this file with external linkage.
16498 **
16499 ** Populate the low-level memory allocation function pointers in
16500 ** sqlite3GlobalConfig.m with pointers to the routines in this file.
16501 */
16502 SQLITE_PRIVATE void sqlite3MemSetDefault(void){
16503   static const sqlite3_mem_methods defaultMethods = {
16504      sqlite3MemMalloc,
16505      sqlite3MemFree,
16506      sqlite3MemRealloc,
16507      sqlite3MemSize,
16508      sqlite3MemRoundup,
16509      sqlite3MemInit,
16510      sqlite3MemShutdown,
16511      0
16512   };
16513   sqlite3_config(SQLITE_CONFIG_MALLOC, &defaultMethods);
16514 }
16515 
16516 #endif /* SQLITE_SYSTEM_MALLOC */
16517 
16518 /************** End of mem1.c ************************************************/
16519 /************** Begin file mem2.c ********************************************/
16520 /*
16521 ** 2007 August 15
16522 **
16523 ** The author disclaims copyright to this source code.  In place of
16524 ** a legal notice, here is a blessing:
16525 **
16526 **    May you do good and not evil.
16527 **    May you find forgiveness for yourself and forgive others.
16528 **    May you share freely, never taking more than you give.
16529 **
16530 *************************************************************************
16531 **
16532 ** This file contains low-level memory allocation drivers for when
16533 ** SQLite will use the standard C-library malloc/realloc/free interface
16534 ** to obtain the memory it needs while adding lots of additional debugging
16535 ** information to each allocation in order to help detect and fix memory
16536 ** leaks and memory usage errors.
16537 **
16538 ** This file contains implementations of the low-level memory allocation
16539 ** routines specified in the sqlite3_mem_methods object.
16540 */
16541 
16542 /*
16543 ** This version of the memory allocator is used only if the
16544 ** SQLITE_MEMDEBUG macro is defined
16545 */
16546 #ifdef SQLITE_MEMDEBUG
16547 
16548 /*
16549 ** The backtrace functionality is only available with GLIBC
16550 */
16551 #ifdef __GLIBC__
16552   extern int backtrace(void**,int);
16553   extern void backtrace_symbols_fd(void*const*,int,int);
16554 #else
16555 # define backtrace(A,B) 1
16556 # define backtrace_symbols_fd(A,B,C)
16557 #endif
16558 /* #include <stdio.h> */
16559 
16560 /*
16561 ** Each memory allocation looks like this:
16562 **
16563 **  ------------------------------------------------------------------------
16564 **  | Title |  backtrace pointers |  MemBlockHdr |  allocation |  EndGuard |
16565 **  ------------------------------------------------------------------------
16566 **
16567 ** The application code sees only a pointer to the allocation.  We have
16568 ** to back up from the allocation pointer to find the MemBlockHdr.  The
16569 ** MemBlockHdr tells us the size of the allocation and the number of
16570 ** backtrace pointers.  There is also a guard word at the end of the
16571 ** MemBlockHdr.
16572 */
16573 struct MemBlockHdr {
16574   i64 iSize;                          /* Size of this allocation */
16575   struct MemBlockHdr *pNext, *pPrev;  /* Linked list of all unfreed memory */
16576   char nBacktrace;                    /* Number of backtraces on this alloc */
16577   char nBacktraceSlots;               /* Available backtrace slots */
16578   u8 nTitle;                          /* Bytes of title; includes '\0' */
16579   u8 eType;                           /* Allocation type code */
16580   int iForeGuard;                     /* Guard word for sanity */
16581 };
16582 
16583 /*
16584 ** Guard words
16585 */
16586 #define FOREGUARD 0x80F5E153
16587 #define REARGUARD 0xE4676B53
16588 
16589 /*
16590 ** Number of malloc size increments to track.
16591 */
16592 #define NCSIZE  1000
16593 
16594 /*
16595 ** All of the static variables used by this module are collected
16596 ** into a single structure named "mem".  This is to keep the
16597 ** static variables organized and to reduce namespace pollution
16598 ** when this module is combined with other in the amalgamation.
16599 */
16600 static struct {
16601 
16602   /*
16603   ** Mutex to control access to the memory allocation subsystem.
16604   */
16605   sqlite3_mutex *mutex;
16606 
16607   /*
16608   ** Head and tail of a linked list of all outstanding allocations
16609   */
16610   struct MemBlockHdr *pFirst;
16611   struct MemBlockHdr *pLast;
16612 
16613   /*
16614   ** The number of levels of backtrace to save in new allocations.
16615   */
16616   int nBacktrace;
16617   void (*xBacktrace)(int, int, void **);
16618 
16619   /*
16620   ** Title text to insert in front of each block
16621   */
16622   int nTitle;        /* Bytes of zTitle to save.  Includes '\0' and padding */
16623   char zTitle[100];  /* The title text */
16624 
16625   /*
16626   ** sqlite3MallocDisallow() increments the following counter.
16627   ** sqlite3MallocAllow() decrements it.
16628   */
16629   int disallow; /* Do not allow memory allocation */
16630 
16631   /*
16632   ** Gather statistics on the sizes of memory allocations.
16633   ** nAlloc[i] is the number of allocation attempts of i*8
16634   ** bytes.  i==NCSIZE is the number of allocation attempts for
16635   ** sizes more than NCSIZE*8 bytes.
16636   */
16637   int nAlloc[NCSIZE];      /* Total number of allocations */
16638   int nCurrent[NCSIZE];    /* Current number of allocations */
16639   int mxCurrent[NCSIZE];   /* Highwater mark for nCurrent */
16640 
16641 } mem;
16642 
16643 
16644 /*
16645 ** Adjust memory usage statistics
16646 */
16647 static void adjustStats(int iSize, int increment){
16648   int i = ROUND8(iSize)/8;
16649   if( i>NCSIZE-1 ){
16650     i = NCSIZE - 1;
16651   }
16652   if( increment>0 ){
16653     mem.nAlloc[i]++;
16654     mem.nCurrent[i]++;
16655     if( mem.nCurrent[i]>mem.mxCurrent[i] ){
16656       mem.mxCurrent[i] = mem.nCurrent[i];
16657     }
16658   }else{
16659     mem.nCurrent[i]--;
16660     assert( mem.nCurrent[i]>=0 );
16661   }
16662 }
16663 
16664 /*
16665 ** Given an allocation, find the MemBlockHdr for that allocation.
16666 **
16667 ** This routine checks the guards at either end of the allocation and
16668 ** if they are incorrect it asserts.
16669 */
16670 static struct MemBlockHdr *sqlite3MemsysGetHeader(void *pAllocation){
16671   struct MemBlockHdr *p;
16672   int *pInt;
16673   u8 *pU8;
16674   int nReserve;
16675 
16676   p = (struct MemBlockHdr*)pAllocation;
16677   p--;
16678   assert( p->iForeGuard==(int)FOREGUARD );
16679   nReserve = ROUND8(p->iSize);
16680   pInt = (int*)pAllocation;
16681   pU8 = (u8*)pAllocation;
16682   assert( pInt[nReserve/sizeof(int)]==(int)REARGUARD );
16683   /* This checks any of the "extra" bytes allocated due
16684   ** to rounding up to an 8 byte boundary to ensure
16685   ** they haven't been overwritten.
16686   */
16687   while( nReserve-- > p->iSize ) assert( pU8[nReserve]==0x65 );
16688   return p;
16689 }
16690 
16691 /*
16692 ** Return the number of bytes currently allocated at address p.
16693 */
16694 static int sqlite3MemSize(void *p){
16695   struct MemBlockHdr *pHdr;
16696   if( !p ){
16697     return 0;
16698   }
16699   pHdr = sqlite3MemsysGetHeader(p);
16700   return (int)pHdr->iSize;
16701 }
16702 
16703 /*
16704 ** Initialize the memory allocation subsystem.
16705 */
16706 static int sqlite3MemInit(void *NotUsed){
16707   UNUSED_PARAMETER(NotUsed);
16708   assert( (sizeof(struct MemBlockHdr)&7) == 0 );
16709   if( !sqlite3GlobalConfig.bMemstat ){
16710     /* If memory status is enabled, then the malloc.c wrapper will already
16711     ** hold the STATIC_MEM mutex when the routines here are invoked. */
16712     mem.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
16713   }
16714   return SQLITE_OK;
16715 }
16716 
16717 /*
16718 ** Deinitialize the memory allocation subsystem.
16719 */
16720 static void sqlite3MemShutdown(void *NotUsed){
16721   UNUSED_PARAMETER(NotUsed);
16722   mem.mutex = 0;
16723 }
16724 
16725 /*
16726 ** Round up a request size to the next valid allocation size.
16727 */
16728 static int sqlite3MemRoundup(int n){
16729   return ROUND8(n);
16730 }
16731 
16732 /*
16733 ** Fill a buffer with pseudo-random bytes.  This is used to preset
16734 ** the content of a new memory allocation to unpredictable values and
16735 ** to clear the content of a freed allocation to unpredictable values.
16736 */
16737 static void randomFill(char *pBuf, int nByte){
16738   unsigned int x, y, r;
16739   x = SQLITE_PTR_TO_INT(pBuf);
16740   y = nByte | 1;
16741   while( nByte >= 4 ){
16742     x = (x>>1) ^ (-(int)(x&1) & 0xd0000001);
16743     y = y*1103515245 + 12345;
16744     r = x ^ y;
16745     *(int*)pBuf = r;
16746     pBuf += 4;
16747     nByte -= 4;
16748   }
16749   while( nByte-- > 0 ){
16750     x = (x>>1) ^ (-(int)(x&1) & 0xd0000001);
16751     y = y*1103515245 + 12345;
16752     r = x ^ y;
16753     *(pBuf++) = r & 0xff;
16754   }
16755 }
16756 
16757 /*
16758 ** Allocate nByte bytes of memory.
16759 */
16760 static void *sqlite3MemMalloc(int nByte){
16761   struct MemBlockHdr *pHdr;
16762   void **pBt;
16763   char *z;
16764   int *pInt;
16765   void *p = 0;
16766   int totalSize;
16767   int nReserve;
16768   sqlite3_mutex_enter(mem.mutex);
16769   assert( mem.disallow==0 );
16770   nReserve = ROUND8(nByte);
16771   totalSize = nReserve + sizeof(*pHdr) + sizeof(int) +
16772                mem.nBacktrace*sizeof(void*) + mem.nTitle;
16773   p = malloc(totalSize);
16774   if( p ){
16775     z = p;
16776     pBt = (void**)&z[mem.nTitle];
16777     pHdr = (struct MemBlockHdr*)&pBt[mem.nBacktrace];
16778     pHdr->pNext = 0;
16779     pHdr->pPrev = mem.pLast;
16780     if( mem.pLast ){
16781       mem.pLast->pNext = pHdr;
16782     }else{
16783       mem.pFirst = pHdr;
16784     }
16785     mem.pLast = pHdr;
16786     pHdr->iForeGuard = FOREGUARD;
16787     pHdr->eType = MEMTYPE_HEAP;
16788     pHdr->nBacktraceSlots = mem.nBacktrace;
16789     pHdr->nTitle = mem.nTitle;
16790     if( mem.nBacktrace ){
16791       void *aAddr[40];
16792       pHdr->nBacktrace = backtrace(aAddr, mem.nBacktrace+1)-1;
16793       memcpy(pBt, &aAddr[1], pHdr->nBacktrace*sizeof(void*));
16794       assert(pBt[0]);
16795       if( mem.xBacktrace ){
16796         mem.xBacktrace(nByte, pHdr->nBacktrace-1, &aAddr[1]);
16797       }
16798     }else{
16799       pHdr->nBacktrace = 0;
16800     }
16801     if( mem.nTitle ){
16802       memcpy(z, mem.zTitle, mem.nTitle);
16803     }
16804     pHdr->iSize = nByte;
16805     adjustStats(nByte, +1);
16806     pInt = (int*)&pHdr[1];
16807     pInt[nReserve/sizeof(int)] = REARGUARD;
16808     randomFill((char*)pInt, nByte);
16809     memset(((char*)pInt)+nByte, 0x65, nReserve-nByte);
16810     p = (void*)pInt;
16811   }
16812   sqlite3_mutex_leave(mem.mutex);
16813   return p;
16814 }
16815 
16816 /*
16817 ** Free memory.
16818 */
16819 static void sqlite3MemFree(void *pPrior){
16820   struct MemBlockHdr *pHdr;
16821   void **pBt;
16822   char *z;
16823   assert( sqlite3GlobalConfig.bMemstat || sqlite3GlobalConfig.bCoreMutex==0
16824        || mem.mutex!=0 );
16825   pHdr = sqlite3MemsysGetHeader(pPrior);
16826   pBt = (void**)pHdr;
16827   pBt -= pHdr->nBacktraceSlots;
16828   sqlite3_mutex_enter(mem.mutex);
16829   if( pHdr->pPrev ){
16830     assert( pHdr->pPrev->pNext==pHdr );
16831     pHdr->pPrev->pNext = pHdr->pNext;
16832   }else{
16833     assert( mem.pFirst==pHdr );
16834     mem.pFirst = pHdr->pNext;
16835   }
16836   if( pHdr->pNext ){
16837     assert( pHdr->pNext->pPrev==pHdr );
16838     pHdr->pNext->pPrev = pHdr->pPrev;
16839   }else{
16840     assert( mem.pLast==pHdr );
16841     mem.pLast = pHdr->pPrev;
16842   }
16843   z = (char*)pBt;
16844   z -= pHdr->nTitle;
16845   adjustStats((int)pHdr->iSize, -1);
16846   randomFill(z, sizeof(void*)*pHdr->nBacktraceSlots + sizeof(*pHdr) +
16847                 (int)pHdr->iSize + sizeof(int) + pHdr->nTitle);
16848   free(z);
16849   sqlite3_mutex_leave(mem.mutex);
16850 }
16851 
16852 /*
16853 ** Change the size of an existing memory allocation.
16854 **
16855 ** For this debugging implementation, we *always* make a copy of the
16856 ** allocation into a new place in memory.  In this way, if the
16857 ** higher level code is using pointer to the old allocation, it is
16858 ** much more likely to break and we are much more liking to find
16859 ** the error.
16860 */
16861 static void *sqlite3MemRealloc(void *pPrior, int nByte){
16862   struct MemBlockHdr *pOldHdr;
16863   void *pNew;
16864   assert( mem.disallow==0 );
16865   assert( (nByte & 7)==0 );     /* EV: R-46199-30249 */
16866   pOldHdr = sqlite3MemsysGetHeader(pPrior);
16867   pNew = sqlite3MemMalloc(nByte);
16868   if( pNew ){
16869     memcpy(pNew, pPrior, (int)(nByte<pOldHdr->iSize ? nByte : pOldHdr->iSize));
16870     if( nByte>pOldHdr->iSize ){
16871       randomFill(&((char*)pNew)[pOldHdr->iSize], nByte - (int)pOldHdr->iSize);
16872     }
16873     sqlite3MemFree(pPrior);
16874   }
16875   return pNew;
16876 }
16877 
16878 /*
16879 ** Populate the low-level memory allocation function pointers in
16880 ** sqlite3GlobalConfig.m with pointers to the routines in this file.
16881 */
16882 SQLITE_PRIVATE void sqlite3MemSetDefault(void){
16883   static const sqlite3_mem_methods defaultMethods = {
16884      sqlite3MemMalloc,
16885      sqlite3MemFree,
16886      sqlite3MemRealloc,
16887      sqlite3MemSize,
16888      sqlite3MemRoundup,
16889      sqlite3MemInit,
16890      sqlite3MemShutdown,
16891      0
16892   };
16893   sqlite3_config(SQLITE_CONFIG_MALLOC, &defaultMethods);
16894 }
16895 
16896 /*
16897 ** Set the "type" of an allocation.
16898 */
16899 SQLITE_PRIVATE void sqlite3MemdebugSetType(void *p, u8 eType){
16900   if( p && sqlite3GlobalConfig.m.xMalloc==sqlite3MemMalloc ){
16901     struct MemBlockHdr *pHdr;
16902     pHdr = sqlite3MemsysGetHeader(p);
16903     assert( pHdr->iForeGuard==FOREGUARD );
16904     pHdr->eType = eType;
16905   }
16906 }
16907 
16908 /*
16909 ** Return TRUE if the mask of type in eType matches the type of the
16910 ** allocation p.  Also return true if p==NULL.
16911 **
16912 ** This routine is designed for use within an assert() statement, to
16913 ** verify the type of an allocation.  For example:
16914 **
16915 **     assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) );
16916 */
16917 SQLITE_PRIVATE int sqlite3MemdebugHasType(void *p, u8 eType){
16918   int rc = 1;
16919   if( p && sqlite3GlobalConfig.m.xMalloc==sqlite3MemMalloc ){
16920     struct MemBlockHdr *pHdr;
16921     pHdr = sqlite3MemsysGetHeader(p);
16922     assert( pHdr->iForeGuard==FOREGUARD );         /* Allocation is valid */
16923     if( (pHdr->eType&eType)==0 ){
16924       rc = 0;
16925     }
16926   }
16927   return rc;
16928 }
16929 
16930 /*
16931 ** Return TRUE if the mask of type in eType matches no bits of the type of the
16932 ** allocation p.  Also return true if p==NULL.
16933 **
16934 ** This routine is designed for use within an assert() statement, to
16935 ** verify the type of an allocation.  For example:
16936 **
16937 **     assert( sqlite3MemdebugNoType(p, MEMTYPE_DB) );
16938 */
16939 SQLITE_PRIVATE int sqlite3MemdebugNoType(void *p, u8 eType){
16940   int rc = 1;
16941   if( p && sqlite3GlobalConfig.m.xMalloc==sqlite3MemMalloc ){
16942     struct MemBlockHdr *pHdr;
16943     pHdr = sqlite3MemsysGetHeader(p);
16944     assert( pHdr->iForeGuard==FOREGUARD );         /* Allocation is valid */
16945     if( (pHdr->eType&eType)!=0 ){
16946       rc = 0;
16947     }
16948   }
16949   return rc;
16950 }
16951 
16952 /*
16953 ** Set the number of backtrace levels kept for each allocation.
16954 ** A value of zero turns off backtracing.  The number is always rounded
16955 ** up to a multiple of 2.
16956 */
16957 SQLITE_PRIVATE void sqlite3MemdebugBacktrace(int depth){
16958   if( depth<0 ){ depth = 0; }
16959   if( depth>20 ){ depth = 20; }
16960   depth = (depth+1)&0xfe;
16961   mem.nBacktrace = depth;
16962 }
16963 
16964 SQLITE_PRIVATE void sqlite3MemdebugBacktraceCallback(void (*xBacktrace)(int, int, void **)){
16965   mem.xBacktrace = xBacktrace;
16966 }
16967 
16968 /*
16969 ** Set the title string for subsequent allocations.
16970 */
16971 SQLITE_PRIVATE void sqlite3MemdebugSettitle(const char *zTitle){
16972   unsigned int n = sqlite3Strlen30(zTitle) + 1;
16973   sqlite3_mutex_enter(mem.mutex);
16974   if( n>=sizeof(mem.zTitle) ) n = sizeof(mem.zTitle)-1;
16975   memcpy(mem.zTitle, zTitle, n);
16976   mem.zTitle[n] = 0;
16977   mem.nTitle = ROUND8(n);
16978   sqlite3_mutex_leave(mem.mutex);
16979 }
16980 
16981 SQLITE_PRIVATE void sqlite3MemdebugSync(){
16982   struct MemBlockHdr *pHdr;
16983   for(pHdr=mem.pFirst; pHdr; pHdr=pHdr->pNext){
16984     void **pBt = (void**)pHdr;
16985     pBt -= pHdr->nBacktraceSlots;
16986     mem.xBacktrace((int)pHdr->iSize, pHdr->nBacktrace-1, &pBt[1]);
16987   }
16988 }
16989 
16990 /*
16991 ** Open the file indicated and write a log of all unfreed memory
16992 ** allocations into that log.
16993 */
16994 SQLITE_PRIVATE void sqlite3MemdebugDump(const char *zFilename){
16995   FILE *out;
16996   struct MemBlockHdr *pHdr;
16997   void **pBt;
16998   int i;
16999   out = fopen(zFilename, "w");
17000   if( out==0 ){
17001     fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
17002                     zFilename);
17003     return;
17004   }
17005   for(pHdr=mem.pFirst; pHdr; pHdr=pHdr->pNext){
17006     char *z = (char*)pHdr;
17007     z -= pHdr->nBacktraceSlots*sizeof(void*) + pHdr->nTitle;
17008     fprintf(out, "**** %lld bytes at %p from %s ****\n",
17009             pHdr->iSize, &pHdr[1], pHdr->nTitle ? z : "???");
17010     if( pHdr->nBacktrace ){
17011       fflush(out);
17012       pBt = (void**)pHdr;
17013       pBt -= pHdr->nBacktraceSlots;
17014       backtrace_symbols_fd(pBt, pHdr->nBacktrace, fileno(out));
17015       fprintf(out, "\n");
17016     }
17017   }
17018   fprintf(out, "COUNTS:\n");
17019   for(i=0; i<NCSIZE-1; i++){
17020     if( mem.nAlloc[i] ){
17021       fprintf(out, "   %5d: %10d %10d %10d\n",
17022             i*8, mem.nAlloc[i], mem.nCurrent[i], mem.mxCurrent[i]);
17023     }
17024   }
17025   if( mem.nAlloc[NCSIZE-1] ){
17026     fprintf(out, "   %5d: %10d %10d %10d\n",
17027              NCSIZE*8-8, mem.nAlloc[NCSIZE-1],
17028              mem.nCurrent[NCSIZE-1], mem.mxCurrent[NCSIZE-1]);
17029   }
17030   fclose(out);
17031 }
17032 
17033 /*
17034 ** Return the number of times sqlite3MemMalloc() has been called.
17035 */
17036 SQLITE_PRIVATE int sqlite3MemdebugMallocCount(){
17037   int i;
17038   int nTotal = 0;
17039   for(i=0; i<NCSIZE; i++){
17040     nTotal += mem.nAlloc[i];
17041   }
17042   return nTotal;
17043 }
17044 
17045 
17046 #endif /* SQLITE_MEMDEBUG */
17047 
17048 /************** End of mem2.c ************************************************/
17049 /************** Begin file mem3.c ********************************************/
17050 /*
17051 ** 2007 October 14
17052 **
17053 ** The author disclaims copyright to this source code.  In place of
17054 ** a legal notice, here is a blessing:
17055 **
17056 **    May you do good and not evil.
17057 **    May you find forgiveness for yourself and forgive others.
17058 **    May you share freely, never taking more than you give.
17059 **
17060 *************************************************************************
17061 ** This file contains the C functions that implement a memory
17062 ** allocation subsystem for use by SQLite.
17063 **
17064 ** This version of the memory allocation subsystem omits all
17065 ** use of malloc(). The SQLite user supplies a block of memory
17066 ** before calling sqlite3_initialize() from which allocations
17067 ** are made and returned by the xMalloc() and xRealloc()
17068 ** implementations. Once sqlite3_initialize() has been called,
17069 ** the amount of memory available to SQLite is fixed and cannot
17070 ** be changed.
17071 **
17072 ** This version of the memory allocation subsystem is included
17073 ** in the build only if SQLITE_ENABLE_MEMSYS3 is defined.
17074 */
17075 
17076 /*
17077 ** This version of the memory allocator is only built into the library
17078 ** SQLITE_ENABLE_MEMSYS3 is defined. Defining this symbol does not
17079 ** mean that the library will use a memory-pool by default, just that
17080 ** it is available. The mempool allocator is activated by calling
17081 ** sqlite3_config().
17082 */
17083 #ifdef SQLITE_ENABLE_MEMSYS3
17084 
17085 /*
17086 ** Maximum size (in Mem3Blocks) of a "small" chunk.
17087 */
17088 #define MX_SMALL 10
17089 
17090 
17091 /*
17092 ** Number of freelist hash slots
17093 */
17094 #define N_HASH  61
17095 
17096 /*
17097 ** A memory allocation (also called a "chunk") consists of two or
17098 ** more blocks where each block is 8 bytes.  The first 8 bytes are
17099 ** a header that is not returned to the user.
17100 **
17101 ** A chunk is two or more blocks that is either checked out or
17102 ** free.  The first block has format u.hdr.  u.hdr.size4x is 4 times the
17103 ** size of the allocation in blocks if the allocation is free.
17104 ** The u.hdr.size4x&1 bit is true if the chunk is checked out and
17105 ** false if the chunk is on the freelist.  The u.hdr.size4x&2 bit
17106 ** is true if the previous chunk is checked out and false if the
17107 ** previous chunk is free.  The u.hdr.prevSize field is the size of
17108 ** the previous chunk in blocks if the previous chunk is on the
17109 ** freelist. If the previous chunk is checked out, then
17110 ** u.hdr.prevSize can be part of the data for that chunk and should
17111 ** not be read or written.
17112 **
17113 ** We often identify a chunk by its index in mem3.aPool[].  When
17114 ** this is done, the chunk index refers to the second block of
17115 ** the chunk.  In this way, the first chunk has an index of 1.
17116 ** A chunk index of 0 means "no such chunk" and is the equivalent
17117 ** of a NULL pointer.
17118 **
17119 ** The second block of free chunks is of the form u.list.  The
17120 ** two fields form a double-linked list of chunks of related sizes.
17121 ** Pointers to the head of the list are stored in mem3.aiSmall[]
17122 ** for smaller chunks and mem3.aiHash[] for larger chunks.
17123 **
17124 ** The second block of a chunk is user data if the chunk is checked
17125 ** out.  If a chunk is checked out, the user data may extend into
17126 ** the u.hdr.prevSize value of the following chunk.
17127 */
17128 typedef struct Mem3Block Mem3Block;
17129 struct Mem3Block {
17130   union {
17131     struct {
17132       u32 prevSize;   /* Size of previous chunk in Mem3Block elements */
17133       u32 size4x;     /* 4x the size of current chunk in Mem3Block elements */
17134     } hdr;
17135     struct {
17136       u32 next;       /* Index in mem3.aPool[] of next free chunk */
17137       u32 prev;       /* Index in mem3.aPool[] of previous free chunk */
17138     } list;
17139   } u;
17140 };
17141 
17142 /*
17143 ** All of the static variables used by this module are collected
17144 ** into a single structure named "mem3".  This is to keep the
17145 ** static variables organized and to reduce namespace pollution
17146 ** when this module is combined with other in the amalgamation.
17147 */
17148 static SQLITE_WSD struct Mem3Global {
17149   /*
17150   ** Memory available for allocation. nPool is the size of the array
17151   ** (in Mem3Blocks) pointed to by aPool less 2.
17152   */
17153   u32 nPool;
17154   Mem3Block *aPool;
17155 
17156   /*
17157   ** True if we are evaluating an out-of-memory callback.
17158   */
17159   int alarmBusy;
17160 
17161   /*
17162   ** Mutex to control access to the memory allocation subsystem.
17163   */
17164   sqlite3_mutex *mutex;
17165 
17166   /*
17167   ** The minimum amount of free space that we have seen.
17168   */
17169   u32 mnMaster;
17170 
17171   /*
17172   ** iMaster is the index of the master chunk.  Most new allocations
17173   ** occur off of this chunk.  szMaster is the size (in Mem3Blocks)
17174   ** of the current master.  iMaster is 0 if there is not master chunk.
17175   ** The master chunk is not in either the aiHash[] or aiSmall[].
17176   */
17177   u32 iMaster;
17178   u32 szMaster;
17179 
17180   /*
17181   ** Array of lists of free blocks according to the block size
17182   ** for smaller chunks, or a hash on the block size for larger
17183   ** chunks.
17184   */
17185   u32 aiSmall[MX_SMALL-1];   /* For sizes 2 through MX_SMALL, inclusive */
17186   u32 aiHash[N_HASH];        /* For sizes MX_SMALL+1 and larger */
17187 } mem3 = { 97535575 };
17188 
17189 #define mem3 GLOBAL(struct Mem3Global, mem3)
17190 
17191 /*
17192 ** Unlink the chunk at mem3.aPool[i] from list it is currently
17193 ** on.  *pRoot is the list that i is a member of.
17194 */
17195 static void memsys3UnlinkFromList(u32 i, u32 *pRoot){
17196   u32 next = mem3.aPool[i].u.list.next;
17197   u32 prev = mem3.aPool[i].u.list.prev;
17198   assert( sqlite3_mutex_held(mem3.mutex) );
17199   if( prev==0 ){
17200     *pRoot = next;
17201   }else{
17202     mem3.aPool[prev].u.list.next = next;
17203   }
17204   if( next ){
17205     mem3.aPool[next].u.list.prev = prev;
17206   }
17207   mem3.aPool[i].u.list.next = 0;
17208   mem3.aPool[i].u.list.prev = 0;
17209 }
17210 
17211 /*
17212 ** Unlink the chunk at index i from
17213 ** whatever list is currently a member of.
17214 */
17215 static void memsys3Unlink(u32 i){
17216   u32 size, hash;
17217   assert( sqlite3_mutex_held(mem3.mutex) );
17218   assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 );
17219   assert( i>=1 );
17220   size = mem3.aPool[i-1].u.hdr.size4x/4;
17221   assert( size==mem3.aPool[i+size-1].u.hdr.prevSize );
17222   assert( size>=2 );
17223   if( size <= MX_SMALL ){
17224     memsys3UnlinkFromList(i, &mem3.aiSmall[size-2]);
17225   }else{
17226     hash = size % N_HASH;
17227     memsys3UnlinkFromList(i, &mem3.aiHash[hash]);
17228   }
17229 }
17230 
17231 /*
17232 ** Link the chunk at mem3.aPool[i] so that is on the list rooted
17233 ** at *pRoot.
17234 */
17235 static void memsys3LinkIntoList(u32 i, u32 *pRoot){
17236   assert( sqlite3_mutex_held(mem3.mutex) );
17237   mem3.aPool[i].u.list.next = *pRoot;
17238   mem3.aPool[i].u.list.prev = 0;
17239   if( *pRoot ){
17240     mem3.aPool[*pRoot].u.list.prev = i;
17241   }
17242   *pRoot = i;
17243 }
17244 
17245 /*
17246 ** Link the chunk at index i into either the appropriate
17247 ** small chunk list, or into the large chunk hash table.
17248 */
17249 static void memsys3Link(u32 i){
17250   u32 size, hash;
17251   assert( sqlite3_mutex_held(mem3.mutex) );
17252   assert( i>=1 );
17253   assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 );
17254   size = mem3.aPool[i-1].u.hdr.size4x/4;
17255   assert( size==mem3.aPool[i+size-1].u.hdr.prevSize );
17256   assert( size>=2 );
17257   if( size <= MX_SMALL ){
17258     memsys3LinkIntoList(i, &mem3.aiSmall[size-2]);
17259   }else{
17260     hash = size % N_HASH;
17261     memsys3LinkIntoList(i, &mem3.aiHash[hash]);
17262   }
17263 }
17264 
17265 /*
17266 ** If the STATIC_MEM mutex is not already held, obtain it now. The mutex
17267 ** will already be held (obtained by code in malloc.c) if
17268 ** sqlite3GlobalConfig.bMemStat is true.
17269 */
17270 static void memsys3Enter(void){
17271   if( sqlite3GlobalConfig.bMemstat==0 && mem3.mutex==0 ){
17272     mem3.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
17273   }
17274   sqlite3_mutex_enter(mem3.mutex);
17275 }
17276 static void memsys3Leave(void){
17277   sqlite3_mutex_leave(mem3.mutex);
17278 }
17279 
17280 /*
17281 ** Called when we are unable to satisfy an allocation of nBytes.
17282 */
17283 static void memsys3OutOfMemory(int nByte){
17284   if( !mem3.alarmBusy ){
17285     mem3.alarmBusy = 1;
17286     assert( sqlite3_mutex_held(mem3.mutex) );
17287     sqlite3_mutex_leave(mem3.mutex);
17288     sqlite3_release_memory(nByte);
17289     sqlite3_mutex_enter(mem3.mutex);
17290     mem3.alarmBusy = 0;
17291   }
17292 }
17293 
17294 
17295 /*
17296 ** Chunk i is a free chunk that has been unlinked.  Adjust its
17297 ** size parameters for check-out and return a pointer to the
17298 ** user portion of the chunk.
17299 */
17300 static void *memsys3Checkout(u32 i, u32 nBlock){
17301   u32 x;
17302   assert( sqlite3_mutex_held(mem3.mutex) );
17303   assert( i>=1 );
17304   assert( mem3.aPool[i-1].u.hdr.size4x/4==nBlock );
17305   assert( mem3.aPool[i+nBlock-1].u.hdr.prevSize==nBlock );
17306   x = mem3.aPool[i-1].u.hdr.size4x;
17307   mem3.aPool[i-1].u.hdr.size4x = nBlock*4 | 1 | (x&2);
17308   mem3.aPool[i+nBlock-1].u.hdr.prevSize = nBlock;
17309   mem3.aPool[i+nBlock-1].u.hdr.size4x |= 2;
17310   return &mem3.aPool[i];
17311 }
17312 
17313 /*
17314 ** Carve a piece off of the end of the mem3.iMaster free chunk.
17315 ** Return a pointer to the new allocation.  Or, if the master chunk
17316 ** is not large enough, return 0.
17317 */
17318 static void *memsys3FromMaster(u32 nBlock){
17319   assert( sqlite3_mutex_held(mem3.mutex) );
17320   assert( mem3.szMaster>=nBlock );
17321   if( nBlock>=mem3.szMaster-1 ){
17322     /* Use the entire master */
17323     void *p = memsys3Checkout(mem3.iMaster, mem3.szMaster);
17324     mem3.iMaster = 0;
17325     mem3.szMaster = 0;
17326     mem3.mnMaster = 0;
17327     return p;
17328   }else{
17329     /* Split the master block.  Return the tail. */
17330     u32 newi, x;
17331     newi = mem3.iMaster + mem3.szMaster - nBlock;
17332     assert( newi > mem3.iMaster+1 );
17333     mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = nBlock;
17334     mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x |= 2;
17335     mem3.aPool[newi-1].u.hdr.size4x = nBlock*4 + 1;
17336     mem3.szMaster -= nBlock;
17337     mem3.aPool[newi-1].u.hdr.prevSize = mem3.szMaster;
17338     x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2;
17339     mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x;
17340     if( mem3.szMaster < mem3.mnMaster ){
17341       mem3.mnMaster = mem3.szMaster;
17342     }
17343     return (void*)&mem3.aPool[newi];
17344   }
17345 }
17346 
17347 /*
17348 ** *pRoot is the head of a list of free chunks of the same size
17349 ** or same size hash.  In other words, *pRoot is an entry in either
17350 ** mem3.aiSmall[] or mem3.aiHash[].
17351 **
17352 ** This routine examines all entries on the given list and tries
17353 ** to coalesce each entries with adjacent free chunks.
17354 **
17355 ** If it sees a chunk that is larger than mem3.iMaster, it replaces
17356 ** the current mem3.iMaster with the new larger chunk.  In order for
17357 ** this mem3.iMaster replacement to work, the master chunk must be
17358 ** linked into the hash tables.  That is not the normal state of
17359 ** affairs, of course.  The calling routine must link the master
17360 ** chunk before invoking this routine, then must unlink the (possibly
17361 ** changed) master chunk once this routine has finished.
17362 */
17363 static void memsys3Merge(u32 *pRoot){
17364   u32 iNext, prev, size, i, x;
17365 
17366   assert( sqlite3_mutex_held(mem3.mutex) );
17367   for(i=*pRoot; i>0; i=iNext){
17368     iNext = mem3.aPool[i].u.list.next;
17369     size = mem3.aPool[i-1].u.hdr.size4x;
17370     assert( (size&1)==0 );
17371     if( (size&2)==0 ){
17372       memsys3UnlinkFromList(i, pRoot);
17373       assert( i > mem3.aPool[i-1].u.hdr.prevSize );
17374       prev = i - mem3.aPool[i-1].u.hdr.prevSize;
17375       if( prev==iNext ){
17376         iNext = mem3.aPool[prev].u.list.next;
17377       }
17378       memsys3Unlink(prev);
17379       size = i + size/4 - prev;
17380       x = mem3.aPool[prev-1].u.hdr.size4x & 2;
17381       mem3.aPool[prev-1].u.hdr.size4x = size*4 | x;
17382       mem3.aPool[prev+size-1].u.hdr.prevSize = size;
17383       memsys3Link(prev);
17384       i = prev;
17385     }else{
17386       size /= 4;
17387     }
17388     if( size>mem3.szMaster ){
17389       mem3.iMaster = i;
17390       mem3.szMaster = size;
17391     }
17392   }
17393 }
17394 
17395 /*
17396 ** Return a block of memory of at least nBytes in size.
17397 ** Return NULL if unable.
17398 **
17399 ** This function assumes that the necessary mutexes, if any, are
17400 ** already held by the caller. Hence "Unsafe".
17401 */
17402 static void *memsys3MallocUnsafe(int nByte){
17403   u32 i;
17404   u32 nBlock;
17405   u32 toFree;
17406 
17407   assert( sqlite3_mutex_held(mem3.mutex) );
17408   assert( sizeof(Mem3Block)==8 );
17409   if( nByte<=12 ){
17410     nBlock = 2;
17411   }else{
17412     nBlock = (nByte + 11)/8;
17413   }
17414   assert( nBlock>=2 );
17415 
17416   /* STEP 1:
17417   ** Look for an entry of the correct size in either the small
17418   ** chunk table or in the large chunk hash table.  This is
17419   ** successful most of the time (about 9 times out of 10).
17420   */
17421   if( nBlock <= MX_SMALL ){
17422     i = mem3.aiSmall[nBlock-2];
17423     if( i>0 ){
17424       memsys3UnlinkFromList(i, &mem3.aiSmall[nBlock-2]);
17425       return memsys3Checkout(i, nBlock);
17426     }
17427   }else{
17428     int hash = nBlock % N_HASH;
17429     for(i=mem3.aiHash[hash]; i>0; i=mem3.aPool[i].u.list.next){
17430       if( mem3.aPool[i-1].u.hdr.size4x/4==nBlock ){
17431         memsys3UnlinkFromList(i, &mem3.aiHash[hash]);
17432         return memsys3Checkout(i, nBlock);
17433       }
17434     }
17435   }
17436 
17437   /* STEP 2:
17438   ** Try to satisfy the allocation by carving a piece off of the end
17439   ** of the master chunk.  This step usually works if step 1 fails.
17440   */
17441   if( mem3.szMaster>=nBlock ){
17442     return memsys3FromMaster(nBlock);
17443   }
17444 
17445 
17446   /* STEP 3:
17447   ** Loop through the entire memory pool.  Coalesce adjacent free
17448   ** chunks.  Recompute the master chunk as the largest free chunk.
17449   ** Then try again to satisfy the allocation by carving a piece off
17450   ** of the end of the master chunk.  This step happens very
17451   ** rarely (we hope!)
17452   */
17453   for(toFree=nBlock*16; toFree<(mem3.nPool*16); toFree *= 2){
17454     memsys3OutOfMemory(toFree);
17455     if( mem3.iMaster ){
17456       memsys3Link(mem3.iMaster);
17457       mem3.iMaster = 0;
17458       mem3.szMaster = 0;
17459     }
17460     for(i=0; i<N_HASH; i++){
17461       memsys3Merge(&mem3.aiHash[i]);
17462     }
17463     for(i=0; i<MX_SMALL-1; i++){
17464       memsys3Merge(&mem3.aiSmall[i]);
17465     }
17466     if( mem3.szMaster ){
17467       memsys3Unlink(mem3.iMaster);
17468       if( mem3.szMaster>=nBlock ){
17469         return memsys3FromMaster(nBlock);
17470       }
17471     }
17472   }
17473 
17474   /* If none of the above worked, then we fail. */
17475   return 0;
17476 }
17477 
17478 /*
17479 ** Free an outstanding memory allocation.
17480 **
17481 ** This function assumes that the necessary mutexes, if any, are
17482 ** already held by the caller. Hence "Unsafe".
17483 */
17484 static void memsys3FreeUnsafe(void *pOld){
17485   Mem3Block *p = (Mem3Block*)pOld;
17486   int i;
17487   u32 size, x;
17488   assert( sqlite3_mutex_held(mem3.mutex) );
17489   assert( p>mem3.aPool && p<&mem3.aPool[mem3.nPool] );
17490   i = p - mem3.aPool;
17491   assert( (mem3.aPool[i-1].u.hdr.size4x&1)==1 );
17492   size = mem3.aPool[i-1].u.hdr.size4x/4;
17493   assert( i+size<=mem3.nPool+1 );
17494   mem3.aPool[i-1].u.hdr.size4x &= ~1;
17495   mem3.aPool[i+size-1].u.hdr.prevSize = size;
17496   mem3.aPool[i+size-1].u.hdr.size4x &= ~2;
17497   memsys3Link(i);
17498 
17499   /* Try to expand the master using the newly freed chunk */
17500   if( mem3.iMaster ){
17501     while( (mem3.aPool[mem3.iMaster-1].u.hdr.size4x&2)==0 ){
17502       size = mem3.aPool[mem3.iMaster-1].u.hdr.prevSize;
17503       mem3.iMaster -= size;
17504       mem3.szMaster += size;
17505       memsys3Unlink(mem3.iMaster);
17506       x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2;
17507       mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x;
17508       mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = mem3.szMaster;
17509     }
17510     x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2;
17511     while( (mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x&1)==0 ){
17512       memsys3Unlink(mem3.iMaster+mem3.szMaster);
17513       mem3.szMaster += mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x/4;
17514       mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x;
17515       mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = mem3.szMaster;
17516     }
17517   }
17518 }
17519 
17520 /*
17521 ** Return the size of an outstanding allocation, in bytes.  The
17522 ** size returned omits the 8-byte header overhead.  This only
17523 ** works for chunks that are currently checked out.
17524 */
17525 static int memsys3Size(void *p){
17526   Mem3Block *pBlock;
17527   if( p==0 ) return 0;
17528   pBlock = (Mem3Block*)p;
17529   assert( (pBlock[-1].u.hdr.size4x&1)!=0 );
17530   return (pBlock[-1].u.hdr.size4x&~3)*2 - 4;
17531 }
17532 
17533 /*
17534 ** Round up a request size to the next valid allocation size.
17535 */
17536 static int memsys3Roundup(int n){
17537   if( n<=12 ){
17538     return 12;
17539   }else{
17540     return ((n+11)&~7) - 4;
17541   }
17542 }
17543 
17544 /*
17545 ** Allocate nBytes of memory.
17546 */
17547 static void *memsys3Malloc(int nBytes){
17548   sqlite3_int64 *p;
17549   assert( nBytes>0 );          /* malloc.c filters out 0 byte requests */
17550   memsys3Enter();
17551   p = memsys3MallocUnsafe(nBytes);
17552   memsys3Leave();
17553   return (void*)p;
17554 }
17555 
17556 /*
17557 ** Free memory.
17558 */
17559 static void memsys3Free(void *pPrior){
17560   assert( pPrior );
17561   memsys3Enter();
17562   memsys3FreeUnsafe(pPrior);
17563   memsys3Leave();
17564 }
17565 
17566 /*
17567 ** Change the size of an existing memory allocation
17568 */
17569 static void *memsys3Realloc(void *pPrior, int nBytes){
17570   int nOld;
17571   void *p;
17572   if( pPrior==0 ){
17573     return sqlite3_malloc(nBytes);
17574   }
17575   if( nBytes<=0 ){
17576     sqlite3_free(pPrior);
17577     return 0;
17578   }
17579   nOld = memsys3Size(pPrior);
17580   if( nBytes<=nOld && nBytes>=nOld-128 ){
17581     return pPrior;
17582   }
17583   memsys3Enter();
17584   p = memsys3MallocUnsafe(nBytes);
17585   if( p ){
17586     if( nOld<nBytes ){
17587       memcpy(p, pPrior, nOld);
17588     }else{
17589       memcpy(p, pPrior, nBytes);
17590     }
17591     memsys3FreeUnsafe(pPrior);
17592   }
17593   memsys3Leave();
17594   return p;
17595 }
17596 
17597 /*
17598 ** Initialize this module.
17599 */
17600 static int memsys3Init(void *NotUsed){
17601   UNUSED_PARAMETER(NotUsed);
17602   if( !sqlite3GlobalConfig.pHeap ){
17603     return SQLITE_ERROR;
17604   }
17605 
17606   /* Store a pointer to the memory block in global structure mem3. */
17607   assert( sizeof(Mem3Block)==8 );
17608   mem3.aPool = (Mem3Block *)sqlite3GlobalConfig.pHeap;
17609   mem3.nPool = (sqlite3GlobalConfig.nHeap / sizeof(Mem3Block)) - 2;
17610 
17611   /* Initialize the master block. */
17612   mem3.szMaster = mem3.nPool;
17613   mem3.mnMaster = mem3.szMaster;
17614   mem3.iMaster = 1;
17615   mem3.aPool[0].u.hdr.size4x = (mem3.szMaster<<2) + 2;
17616   mem3.aPool[mem3.nPool].u.hdr.prevSize = mem3.nPool;
17617   mem3.aPool[mem3.nPool].u.hdr.size4x = 1;
17618 
17619   return SQLITE_OK;
17620 }
17621 
17622 /*
17623 ** Deinitialize this module.
17624 */
17625 static void memsys3Shutdown(void *NotUsed){
17626   UNUSED_PARAMETER(NotUsed);
17627   mem3.mutex = 0;
17628   return;
17629 }
17630 
17631 
17632 
17633 /*
17634 ** Open the file indicated and write a log of all unfreed memory
17635 ** allocations into that log.
17636 */
17637 SQLITE_PRIVATE void sqlite3Memsys3Dump(const char *zFilename){
17638 #ifdef SQLITE_DEBUG
17639   FILE *out;
17640   u32 i, j;
17641   u32 size;
17642   if( zFilename==0 || zFilename[0]==0 ){
17643     out = stdout;
17644   }else{
17645     out = fopen(zFilename, "w");
17646     if( out==0 ){
17647       fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
17648                       zFilename);
17649       return;
17650     }
17651   }
17652   memsys3Enter();
17653   fprintf(out, "CHUNKS:\n");
17654   for(i=1; i<=mem3.nPool; i+=size/4){
17655     size = mem3.aPool[i-1].u.hdr.size4x;
17656     if( size/4<=1 ){
17657       fprintf(out, "%p size error\n", &mem3.aPool[i]);
17658       assert( 0 );
17659       break;
17660     }
17661     if( (size&1)==0 && mem3.aPool[i+size/4-1].u.hdr.prevSize!=size/4 ){
17662       fprintf(out, "%p tail size does not match\n", &mem3.aPool[i]);
17663       assert( 0 );
17664       break;
17665     }
17666     if( ((mem3.aPool[i+size/4-1].u.hdr.size4x&2)>>1)!=(size&1) ){
17667       fprintf(out, "%p tail checkout bit is incorrect\n", &mem3.aPool[i]);
17668       assert( 0 );
17669       break;
17670     }
17671     if( size&1 ){
17672       fprintf(out, "%p %6d bytes checked out\n", &mem3.aPool[i], (size/4)*8-8);
17673     }else{
17674       fprintf(out, "%p %6d bytes free%s\n", &mem3.aPool[i], (size/4)*8-8,
17675                   i==mem3.iMaster ? " **master**" : "");
17676     }
17677   }
17678   for(i=0; i<MX_SMALL-1; i++){
17679     if( mem3.aiSmall[i]==0 ) continue;
17680     fprintf(out, "small(%2d):", i);
17681     for(j = mem3.aiSmall[i]; j>0; j=mem3.aPool[j].u.list.next){
17682       fprintf(out, " %p(%d)", &mem3.aPool[j],
17683               (mem3.aPool[j-1].u.hdr.size4x/4)*8-8);
17684     }
17685     fprintf(out, "\n");
17686   }
17687   for(i=0; i<N_HASH; i++){
17688     if( mem3.aiHash[i]==0 ) continue;
17689     fprintf(out, "hash(%2d):", i);
17690     for(j = mem3.aiHash[i]; j>0; j=mem3.aPool[j].u.list.next){
17691       fprintf(out, " %p(%d)", &mem3.aPool[j],
17692               (mem3.aPool[j-1].u.hdr.size4x/4)*8-8);
17693     }
17694     fprintf(out, "\n");
17695   }
17696   fprintf(out, "master=%d\n", mem3.iMaster);
17697   fprintf(out, "nowUsed=%d\n", mem3.nPool*8 - mem3.szMaster*8);
17698   fprintf(out, "mxUsed=%d\n", mem3.nPool*8 - mem3.mnMaster*8);
17699   sqlite3_mutex_leave(mem3.mutex);
17700   if( out==stdout ){
17701     fflush(stdout);
17702   }else{
17703     fclose(out);
17704   }
17705 #else
17706   UNUSED_PARAMETER(zFilename);
17707 #endif
17708 }
17709 
17710 /*
17711 ** This routine is the only routine in this file with external
17712 ** linkage.
17713 **
17714 ** Populate the low-level memory allocation function pointers in
17715 ** sqlite3GlobalConfig.m with pointers to the routines in this file. The
17716 ** arguments specify the block of memory to manage.
17717 **
17718 ** This routine is only called by sqlite3_config(), and therefore
17719 ** is not required to be threadsafe (it is not).
17720 */
17721 SQLITE_PRIVATE const sqlite3_mem_methods *sqlite3MemGetMemsys3(void){
17722   static const sqlite3_mem_methods mempoolMethods = {
17723      memsys3Malloc,
17724      memsys3Free,
17725      memsys3Realloc,
17726      memsys3Size,
17727      memsys3Roundup,
17728      memsys3Init,
17729      memsys3Shutdown,
17730      0
17731   };
17732   return &mempoolMethods;
17733 }
17734 
17735 #endif /* SQLITE_ENABLE_MEMSYS3 */
17736 
17737 /************** End of mem3.c ************************************************/
17738 /************** Begin file mem5.c ********************************************/
17739 /*
17740 ** 2007 October 14
17741 **
17742 ** The author disclaims copyright to this source code.  In place of
17743 ** a legal notice, here is a blessing:
17744 **
17745 **    May you do good and not evil.
17746 **    May you find forgiveness for yourself and forgive others.
17747 **    May you share freely, never taking more than you give.
17748 **
17749 *************************************************************************
17750 ** This file contains the C functions that implement a memory
17751 ** allocation subsystem for use by SQLite.
17752 **
17753 ** This version of the memory allocation subsystem omits all
17754 ** use of malloc(). The application gives SQLite a block of memory
17755 ** before calling sqlite3_initialize() from which allocations
17756 ** are made and returned by the xMalloc() and xRealloc()
17757 ** implementations. Once sqlite3_initialize() has been called,
17758 ** the amount of memory available to SQLite is fixed and cannot
17759 ** be changed.
17760 **
17761 ** This version of the memory allocation subsystem is included
17762 ** in the build only if SQLITE_ENABLE_MEMSYS5 is defined.
17763 **
17764 ** This memory allocator uses the following algorithm:
17765 **
17766 **   1.  All memory allocations sizes are rounded up to a power of 2.
17767 **
17768 **   2.  If two adjacent free blocks are the halves of a larger block,
17769 **       then the two blocks are coalesed into the single larger block.
17770 **
17771 **   3.  New memory is allocated from the first available free block.
17772 **
17773 ** This algorithm is described in: J. M. Robson. "Bounds for Some Functions
17774 ** Concerning Dynamic Storage Allocation". Journal of the Association for
17775 ** Computing Machinery, Volume 21, Number 8, July 1974, pages 491-499.
17776 **
17777 ** Let n be the size of the largest allocation divided by the minimum
17778 ** allocation size (after rounding all sizes up to a power of 2.)  Let M
17779 ** be the maximum amount of memory ever outstanding at one time.  Let
17780 ** N be the total amount of memory available for allocation.  Robson
17781 ** proved that this memory allocator will never breakdown due to
17782 ** fragmentation as long as the following constraint holds:
17783 **
17784 **      N >=  M*(1 + log2(n)/2) - n + 1
17785 **
17786 ** The sqlite3_status() logic tracks the maximum values of n and M so
17787 ** that an application can, at any time, verify this constraint.
17788 */
17789 
17790 /*
17791 ** This version of the memory allocator is used only when
17792 ** SQLITE_ENABLE_MEMSYS5 is defined.
17793 */
17794 #ifdef SQLITE_ENABLE_MEMSYS5
17795 
17796 /*
17797 ** A minimum allocation is an instance of the following structure.
17798 ** Larger allocations are an array of these structures where the
17799 ** size of the array is a power of 2.
17800 **
17801 ** The size of this object must be a power of two.  That fact is
17802 ** verified in memsys5Init().
17803 */
17804 typedef struct Mem5Link Mem5Link;
17805 struct Mem5Link {
17806   int next;       /* Index of next free chunk */
17807   int prev;       /* Index of previous free chunk */
17808 };
17809 
17810 /*
17811 ** Maximum size of any allocation is ((1<<LOGMAX)*mem5.szAtom). Since
17812 ** mem5.szAtom is always at least 8 and 32-bit integers are used,
17813 ** it is not actually possible to reach this limit.
17814 */
17815 #define LOGMAX 30
17816 
17817 /*
17818 ** Masks used for mem5.aCtrl[] elements.
17819 */
17820 #define CTRL_LOGSIZE  0x1f    /* Log2 Size of this block */
17821 #define CTRL_FREE     0x20    /* True if not checked out */
17822 
17823 /*
17824 ** All of the static variables used by this module are collected
17825 ** into a single structure named "mem5".  This is to keep the
17826 ** static variables organized and to reduce namespace pollution
17827 ** when this module is combined with other in the amalgamation.
17828 */
17829 static SQLITE_WSD struct Mem5Global {
17830   /*
17831   ** Memory available for allocation
17832   */
17833   int szAtom;      /* Smallest possible allocation in bytes */
17834   int nBlock;      /* Number of szAtom sized blocks in zPool */
17835   u8 *zPool;       /* Memory available to be allocated */
17836 
17837   /*
17838   ** Mutex to control access to the memory allocation subsystem.
17839   */
17840   sqlite3_mutex *mutex;
17841 
17842   /*
17843   ** Performance statistics
17844   */
17845   u64 nAlloc;         /* Total number of calls to malloc */
17846   u64 totalAlloc;     /* Total of all malloc calls - includes internal frag */
17847   u64 totalExcess;    /* Total internal fragmentation */
17848   u32 currentOut;     /* Current checkout, including internal fragmentation */
17849   u32 currentCount;   /* Current number of distinct checkouts */
17850   u32 maxOut;         /* Maximum instantaneous currentOut */
17851   u32 maxCount;       /* Maximum instantaneous currentCount */
17852   u32 maxRequest;     /* Largest allocation (exclusive of internal frag) */
17853 
17854   /*
17855   ** Lists of free blocks.  aiFreelist[0] is a list of free blocks of
17856   ** size mem5.szAtom.  aiFreelist[1] holds blocks of size szAtom*2.
17857   ** and so forth.
17858   */
17859   int aiFreelist[LOGMAX+1];
17860 
17861   /*
17862   ** Space for tracking which blocks are checked out and the size
17863   ** of each block.  One byte per block.
17864   */
17865   u8 *aCtrl;
17866 
17867 } mem5;
17868 
17869 /*
17870 ** Access the static variable through a macro for SQLITE_OMIT_WSD.
17871 */
17872 #define mem5 GLOBAL(struct Mem5Global, mem5)
17873 
17874 /*
17875 ** Assuming mem5.zPool is divided up into an array of Mem5Link
17876 ** structures, return a pointer to the idx-th such link.
17877 */
17878 #define MEM5LINK(idx) ((Mem5Link *)(&mem5.zPool[(idx)*mem5.szAtom]))
17879 
17880 /*
17881 ** Unlink the chunk at mem5.aPool[i] from list it is currently
17882 ** on.  It should be found on mem5.aiFreelist[iLogsize].
17883 */
17884 static void memsys5Unlink(int i, int iLogsize){
17885   int next, prev;
17886   assert( i>=0 && i<mem5.nBlock );
17887   assert( iLogsize>=0 && iLogsize<=LOGMAX );
17888   assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
17889 
17890   next = MEM5LINK(i)->next;
17891   prev = MEM5LINK(i)->prev;
17892   if( prev<0 ){
17893     mem5.aiFreelist[iLogsize] = next;
17894   }else{
17895     MEM5LINK(prev)->next = next;
17896   }
17897   if( next>=0 ){
17898     MEM5LINK(next)->prev = prev;
17899   }
17900 }
17901 
17902 /*
17903 ** Link the chunk at mem5.aPool[i] so that is on the iLogsize
17904 ** free list.
17905 */
17906 static void memsys5Link(int i, int iLogsize){
17907   int x;
17908   assert( sqlite3_mutex_held(mem5.mutex) );
17909   assert( i>=0 && i<mem5.nBlock );
17910   assert( iLogsize>=0 && iLogsize<=LOGMAX );
17911   assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
17912 
17913   x = MEM5LINK(i)->next = mem5.aiFreelist[iLogsize];
17914   MEM5LINK(i)->prev = -1;
17915   if( x>=0 ){
17916     assert( x<mem5.nBlock );
17917     MEM5LINK(x)->prev = i;
17918   }
17919   mem5.aiFreelist[iLogsize] = i;
17920 }
17921 
17922 /*
17923 ** If the STATIC_MEM mutex is not already held, obtain it now. The mutex
17924 ** will already be held (obtained by code in malloc.c) if
17925 ** sqlite3GlobalConfig.bMemStat is true.
17926 */
17927 static void memsys5Enter(void){
17928   sqlite3_mutex_enter(mem5.mutex);
17929 }
17930 static void memsys5Leave(void){
17931   sqlite3_mutex_leave(mem5.mutex);
17932 }
17933 
17934 /*
17935 ** Return the size of an outstanding allocation, in bytes.  The
17936 ** size returned omits the 8-byte header overhead.  This only
17937 ** works for chunks that are currently checked out.
17938 */
17939 static int memsys5Size(void *p){
17940   int iSize = 0;
17941   if( p ){
17942     int i = (int)(((u8 *)p-mem5.zPool)/mem5.szAtom);
17943     assert( i>=0 && i<mem5.nBlock );
17944     iSize = mem5.szAtom * (1 << (mem5.aCtrl[i]&CTRL_LOGSIZE));
17945   }
17946   return iSize;
17947 }
17948 
17949 /*
17950 ** Return a block of memory of at least nBytes in size.
17951 ** Return NULL if unable.  Return NULL if nBytes==0.
17952 **
17953 ** The caller guarantees that nByte is positive.
17954 **
17955 ** The caller has obtained a mutex prior to invoking this
17956 ** routine so there is never any chance that two or more
17957 ** threads can be in this routine at the same time.
17958 */
17959 static void *memsys5MallocUnsafe(int nByte){
17960   int i;           /* Index of a mem5.aPool[] slot */
17961   int iBin;        /* Index into mem5.aiFreelist[] */
17962   int iFullSz;     /* Size of allocation rounded up to power of 2 */
17963   int iLogsize;    /* Log2 of iFullSz/POW2_MIN */
17964 
17965   /* nByte must be a positive */
17966   assert( nByte>0 );
17967 
17968   /* Keep track of the maximum allocation request.  Even unfulfilled
17969   ** requests are counted */
17970   if( (u32)nByte>mem5.maxRequest ){
17971     mem5.maxRequest = nByte;
17972   }
17973 
17974   /* Abort if the requested allocation size is larger than the largest
17975   ** power of two that we can represent using 32-bit signed integers.
17976   */
17977   if( nByte > 0x40000000 ){
17978     return 0;
17979   }
17980 
17981   /* Round nByte up to the next valid power of two */
17982   for(iFullSz=mem5.szAtom, iLogsize=0; iFullSz<nByte; iFullSz *= 2, iLogsize++){}
17983 
17984   /* Make sure mem5.aiFreelist[iLogsize] contains at least one free
17985   ** block.  If not, then split a block of the next larger power of
17986   ** two in order to create a new free block of size iLogsize.
17987   */
17988   for(iBin=iLogsize; iBin<=LOGMAX && mem5.aiFreelist[iBin]<0; iBin++){}
17989   if( iBin>LOGMAX ){
17990     testcase( sqlite3GlobalConfig.xLog!=0 );
17991     sqlite3_log(SQLITE_NOMEM, "failed to allocate %u bytes", nByte);
17992     return 0;
17993   }
17994   i = mem5.aiFreelist[iBin];
17995   memsys5Unlink(i, iBin);
17996   while( iBin>iLogsize ){
17997     int newSize;
17998 
17999     iBin--;
18000     newSize = 1 << iBin;
18001     mem5.aCtrl[i+newSize] = CTRL_FREE | iBin;
18002     memsys5Link(i+newSize, iBin);
18003   }
18004   mem5.aCtrl[i] = iLogsize;
18005 
18006   /* Update allocator performance statistics. */
18007   mem5.nAlloc++;
18008   mem5.totalAlloc += iFullSz;
18009   mem5.totalExcess += iFullSz - nByte;
18010   mem5.currentCount++;
18011   mem5.currentOut += iFullSz;
18012   if( mem5.maxCount<mem5.currentCount ) mem5.maxCount = mem5.currentCount;
18013   if( mem5.maxOut<mem5.currentOut ) mem5.maxOut = mem5.currentOut;
18014 
18015 #ifdef SQLITE_DEBUG
18016   /* Make sure the allocated memory does not assume that it is set to zero
18017   ** or retains a value from a previous allocation */
18018   memset(&mem5.zPool[i*mem5.szAtom], 0xAA, iFullSz);
18019 #endif
18020 
18021   /* Return a pointer to the allocated memory. */
18022   return (void*)&mem5.zPool[i*mem5.szAtom];
18023 }
18024 
18025 /*
18026 ** Free an outstanding memory allocation.
18027 */
18028 static void memsys5FreeUnsafe(void *pOld){
18029   u32 size, iLogsize;
18030   int iBlock;
18031 
18032   /* Set iBlock to the index of the block pointed to by pOld in
18033   ** the array of mem5.szAtom byte blocks pointed to by mem5.zPool.
18034   */
18035   iBlock = (int)(((u8 *)pOld-mem5.zPool)/mem5.szAtom);
18036 
18037   /* Check that the pointer pOld points to a valid, non-free block. */
18038   assert( iBlock>=0 && iBlock<mem5.nBlock );
18039   assert( ((u8 *)pOld-mem5.zPool)%mem5.szAtom==0 );
18040   assert( (mem5.aCtrl[iBlock] & CTRL_FREE)==0 );
18041 
18042   iLogsize = mem5.aCtrl[iBlock] & CTRL_LOGSIZE;
18043   size = 1<<iLogsize;
18044   assert( iBlock+size-1<(u32)mem5.nBlock );
18045 
18046   mem5.aCtrl[iBlock] |= CTRL_FREE;
18047   mem5.aCtrl[iBlock+size-1] |= CTRL_FREE;
18048   assert( mem5.currentCount>0 );
18049   assert( mem5.currentOut>=(size*mem5.szAtom) );
18050   mem5.currentCount--;
18051   mem5.currentOut -= size*mem5.szAtom;
18052   assert( mem5.currentOut>0 || mem5.currentCount==0 );
18053   assert( mem5.currentCount>0 || mem5.currentOut==0 );
18054 
18055   mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
18056   while( ALWAYS(iLogsize<LOGMAX) ){
18057     int iBuddy;
18058     if( (iBlock>>iLogsize) & 1 ){
18059       iBuddy = iBlock - size;
18060     }else{
18061       iBuddy = iBlock + size;
18062     }
18063     assert( iBuddy>=0 );
18064     if( (iBuddy+(1<<iLogsize))>mem5.nBlock ) break;
18065     if( mem5.aCtrl[iBuddy]!=(CTRL_FREE | iLogsize) ) break;
18066     memsys5Unlink(iBuddy, iLogsize);
18067     iLogsize++;
18068     if( iBuddy<iBlock ){
18069       mem5.aCtrl[iBuddy] = CTRL_FREE | iLogsize;
18070       mem5.aCtrl[iBlock] = 0;
18071       iBlock = iBuddy;
18072     }else{
18073       mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
18074       mem5.aCtrl[iBuddy] = 0;
18075     }
18076     size *= 2;
18077   }
18078 
18079 #ifdef SQLITE_DEBUG
18080   /* Overwrite freed memory with the 0x55 bit pattern to verify that it is
18081   ** not used after being freed */
18082   memset(&mem5.zPool[iBlock*mem5.szAtom], 0x55, size);
18083 #endif
18084 
18085   memsys5Link(iBlock, iLogsize);
18086 }
18087 
18088 /*
18089 ** Allocate nBytes of memory.
18090 */
18091 static void *memsys5Malloc(int nBytes){
18092   sqlite3_int64 *p = 0;
18093   if( nBytes>0 ){
18094     memsys5Enter();
18095     p = memsys5MallocUnsafe(nBytes);
18096     memsys5Leave();
18097   }
18098   return (void*)p;
18099 }
18100 
18101 /*
18102 ** Free memory.
18103 **
18104 ** The outer layer memory allocator prevents this routine from
18105 ** being called with pPrior==0.
18106 */
18107 static void memsys5Free(void *pPrior){
18108   assert( pPrior!=0 );
18109   memsys5Enter();
18110   memsys5FreeUnsafe(pPrior);
18111   memsys5Leave();
18112 }
18113 
18114 /*
18115 ** Change the size of an existing memory allocation.
18116 **
18117 ** The outer layer memory allocator prevents this routine from
18118 ** being called with pPrior==0.
18119 **
18120 ** nBytes is always a value obtained from a prior call to
18121 ** memsys5Round().  Hence nBytes is always a non-negative power
18122 ** of two.  If nBytes==0 that means that an oversize allocation
18123 ** (an allocation larger than 0x40000000) was requested and this
18124 ** routine should return 0 without freeing pPrior.
18125 */
18126 static void *memsys5Realloc(void *pPrior, int nBytes){
18127   int nOld;
18128   void *p;
18129   assert( pPrior!=0 );
18130   assert( (nBytes&(nBytes-1))==0 );  /* EV: R-46199-30249 */
18131   assert( nBytes>=0 );
18132   if( nBytes==0 ){
18133     return 0;
18134   }
18135   nOld = memsys5Size(pPrior);
18136   if( nBytes<=nOld ){
18137     return pPrior;
18138   }
18139   memsys5Enter();
18140   p = memsys5MallocUnsafe(nBytes);
18141   if( p ){
18142     memcpy(p, pPrior, nOld);
18143     memsys5FreeUnsafe(pPrior);
18144   }
18145   memsys5Leave();
18146   return p;
18147 }
18148 
18149 /*
18150 ** Round up a request size to the next valid allocation size.  If
18151 ** the allocation is too large to be handled by this allocation system,
18152 ** return 0.
18153 **
18154 ** All allocations must be a power of two and must be expressed by a
18155 ** 32-bit signed integer.  Hence the largest allocation is 0x40000000
18156 ** or 1073741824 bytes.
18157 */
18158 static int memsys5Roundup(int n){
18159   int iFullSz;
18160   if( n > 0x40000000 ) return 0;
18161   for(iFullSz=mem5.szAtom; iFullSz<n; iFullSz *= 2);
18162   return iFullSz;
18163 }
18164 
18165 /*
18166 ** Return the ceiling of the logarithm base 2 of iValue.
18167 **
18168 ** Examples:   memsys5Log(1) -> 0
18169 **             memsys5Log(2) -> 1
18170 **             memsys5Log(4) -> 2
18171 **             memsys5Log(5) -> 3
18172 **             memsys5Log(8) -> 3
18173 **             memsys5Log(9) -> 4
18174 */
18175 static int memsys5Log(int iValue){
18176   int iLog;
18177   for(iLog=0; (iLog<(int)((sizeof(int)*8)-1)) && (1<<iLog)<iValue; iLog++);
18178   return iLog;
18179 }
18180 
18181 /*
18182 ** Initialize the memory allocator.
18183 **
18184 ** This routine is not threadsafe.  The caller must be holding a mutex
18185 ** to prevent multiple threads from entering at the same time.
18186 */
18187 static int memsys5Init(void *NotUsed){
18188   int ii;            /* Loop counter */
18189   int nByte;         /* Number of bytes of memory available to this allocator */
18190   u8 *zByte;         /* Memory usable by this allocator */
18191   int nMinLog;       /* Log base 2 of minimum allocation size in bytes */
18192   int iOffset;       /* An offset into mem5.aCtrl[] */
18193 
18194   UNUSED_PARAMETER(NotUsed);
18195 
18196   /* For the purposes of this routine, disable the mutex */
18197   mem5.mutex = 0;
18198 
18199   /* The size of a Mem5Link object must be a power of two.  Verify that
18200   ** this is case.
18201   */
18202   assert( (sizeof(Mem5Link)&(sizeof(Mem5Link)-1))==0 );
18203 
18204   nByte = sqlite3GlobalConfig.nHeap;
18205   zByte = (u8*)sqlite3GlobalConfig.pHeap;
18206   assert( zByte!=0 );  /* sqlite3_config() does not allow otherwise */
18207 
18208   /* boundaries on sqlite3GlobalConfig.mnReq are enforced in sqlite3_config() */
18209   nMinLog = memsys5Log(sqlite3GlobalConfig.mnReq);
18210   mem5.szAtom = (1<<nMinLog);
18211   while( (int)sizeof(Mem5Link)>mem5.szAtom ){
18212     mem5.szAtom = mem5.szAtom << 1;
18213   }
18214 
18215   mem5.nBlock = (nByte / (mem5.szAtom+sizeof(u8)));
18216   mem5.zPool = zByte;
18217   mem5.aCtrl = (u8 *)&mem5.zPool[mem5.nBlock*mem5.szAtom];
18218 
18219   for(ii=0; ii<=LOGMAX; ii++){
18220     mem5.aiFreelist[ii] = -1;
18221   }
18222 
18223   iOffset = 0;
18224   for(ii=LOGMAX; ii>=0; ii--){
18225     int nAlloc = (1<<ii);
18226     if( (iOffset+nAlloc)<=mem5.nBlock ){
18227       mem5.aCtrl[iOffset] = ii | CTRL_FREE;
18228       memsys5Link(iOffset, ii);
18229       iOffset += nAlloc;
18230     }
18231     assert((iOffset+nAlloc)>mem5.nBlock);
18232   }
18233 
18234   /* If a mutex is required for normal operation, allocate one */
18235   if( sqlite3GlobalConfig.bMemstat==0 ){
18236     mem5.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
18237   }
18238 
18239   return SQLITE_OK;
18240 }
18241 
18242 /*
18243 ** Deinitialize this module.
18244 */
18245 static void memsys5Shutdown(void *NotUsed){
18246   UNUSED_PARAMETER(NotUsed);
18247   mem5.mutex = 0;
18248   return;
18249 }
18250 
18251 #ifdef SQLITE_TEST
18252 /*
18253 ** Open the file indicated and write a log of all unfreed memory
18254 ** allocations into that log.
18255 */
18256 SQLITE_PRIVATE void sqlite3Memsys5Dump(const char *zFilename){
18257   FILE *out;
18258   int i, j, n;
18259   int nMinLog;
18260 
18261   if( zFilename==0 || zFilename[0]==0 ){
18262     out = stdout;
18263   }else{
18264     out = fopen(zFilename, "w");
18265     if( out==0 ){
18266       fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
18267                       zFilename);
18268       return;
18269     }
18270   }
18271   memsys5Enter();
18272   nMinLog = memsys5Log(mem5.szAtom);
18273   for(i=0; i<=LOGMAX && i+nMinLog<32; i++){
18274     for(n=0, j=mem5.aiFreelist[i]; j>=0; j = MEM5LINK(j)->next, n++){}
18275     fprintf(out, "freelist items of size %d: %d\n", mem5.szAtom << i, n);
18276   }
18277   fprintf(out, "mem5.nAlloc       = %llu\n", mem5.nAlloc);
18278   fprintf(out, "mem5.totalAlloc   = %llu\n", mem5.totalAlloc);
18279   fprintf(out, "mem5.totalExcess  = %llu\n", mem5.totalExcess);
18280   fprintf(out, "mem5.currentOut   = %u\n", mem5.currentOut);
18281   fprintf(out, "mem5.currentCount = %u\n", mem5.currentCount);
18282   fprintf(out, "mem5.maxOut       = %u\n", mem5.maxOut);
18283   fprintf(out, "mem5.maxCount     = %u\n", mem5.maxCount);
18284   fprintf(out, "mem5.maxRequest   = %u\n", mem5.maxRequest);
18285   memsys5Leave();
18286   if( out==stdout ){
18287     fflush(stdout);
18288   }else{
18289     fclose(out);
18290   }
18291 }
18292 #endif
18293 
18294 /*
18295 ** This routine is the only routine in this file with external
18296 ** linkage. It returns a pointer to a static sqlite3_mem_methods
18297 ** struct populated with the memsys5 methods.
18298 */
18299 SQLITE_PRIVATE const sqlite3_mem_methods *sqlite3MemGetMemsys5(void){
18300   static const sqlite3_mem_methods memsys5Methods = {
18301      memsys5Malloc,
18302      memsys5Free,
18303      memsys5Realloc,
18304      memsys5Size,
18305      memsys5Roundup,
18306      memsys5Init,
18307      memsys5Shutdown,
18308      0
18309   };
18310   return &memsys5Methods;
18311 }
18312 
18313 #endif /* SQLITE_ENABLE_MEMSYS5 */
18314 
18315 /************** End of mem5.c ************************************************/
18316 /************** Begin file mutex.c *******************************************/
18317 /*
18318 ** 2007 August 14
18319 **
18320 ** The author disclaims copyright to this source code.  In place of
18321 ** a legal notice, here is a blessing:
18322 **
18323 **    May you do good and not evil.
18324 **    May you find forgiveness for yourself and forgive others.
18325 **    May you share freely, never taking more than you give.
18326 **
18327 *************************************************************************
18328 ** This file contains the C functions that implement mutexes.
18329 **
18330 ** This file contains code that is common across all mutex implementations.
18331 */
18332 
18333 #if defined(SQLITE_DEBUG) && !defined(SQLITE_MUTEX_OMIT)
18334 /*
18335 ** For debugging purposes, record when the mutex subsystem is initialized
18336 ** and uninitialized so that we can assert() if there is an attempt to
18337 ** allocate a mutex while the system is uninitialized.
18338 */
18339 static SQLITE_WSD int mutexIsInit = 0;
18340 #endif /* SQLITE_DEBUG */
18341 
18342 
18343 #ifndef SQLITE_MUTEX_OMIT
18344 /*
18345 ** Initialize the mutex system.
18346 */
18347 SQLITE_PRIVATE int sqlite3MutexInit(void){
18348   int rc = SQLITE_OK;
18349   if( !sqlite3GlobalConfig.mutex.xMutexAlloc ){
18350     /* If the xMutexAlloc method has not been set, then the user did not
18351     ** install a mutex implementation via sqlite3_config() prior to
18352     ** sqlite3_initialize() being called. This block copies pointers to
18353     ** the default implementation into the sqlite3GlobalConfig structure.
18354     */
18355     sqlite3_mutex_methods const *pFrom;
18356     sqlite3_mutex_methods *pTo = &sqlite3GlobalConfig.mutex;
18357 
18358     if( sqlite3GlobalConfig.bCoreMutex ){
18359       pFrom = sqlite3DefaultMutex();
18360     }else{
18361       pFrom = sqlite3NoopMutex();
18362     }
18363     memcpy(pTo, pFrom, offsetof(sqlite3_mutex_methods, xMutexAlloc));
18364     memcpy(&pTo->xMutexFree, &pFrom->xMutexFree,
18365            sizeof(*pTo) - offsetof(sqlite3_mutex_methods, xMutexFree));
18366     pTo->xMutexAlloc = pFrom->xMutexAlloc;
18367   }
18368   rc = sqlite3GlobalConfig.mutex.xMutexInit();
18369 
18370 #ifdef SQLITE_DEBUG
18371   GLOBAL(int, mutexIsInit) = 1;
18372 #endif
18373 
18374   return rc;
18375 }
18376 
18377 /*
18378 ** Shutdown the mutex system. This call frees resources allocated by
18379 ** sqlite3MutexInit().
18380 */
18381 SQLITE_PRIVATE int sqlite3MutexEnd(void){
18382   int rc = SQLITE_OK;
18383   if( sqlite3GlobalConfig.mutex.xMutexEnd ){
18384     rc = sqlite3GlobalConfig.mutex.xMutexEnd();
18385   }
18386 
18387 #ifdef SQLITE_DEBUG
18388   GLOBAL(int, mutexIsInit) = 0;
18389 #endif
18390 
18391   return rc;
18392 }
18393 
18394 /*
18395 ** Retrieve a pointer to a static mutex or allocate a new dynamic one.
18396 */
18397 SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int id){
18398 #ifndef SQLITE_OMIT_AUTOINIT
18399   if( sqlite3_initialize() ) return 0;
18400 #endif
18401   return sqlite3GlobalConfig.mutex.xMutexAlloc(id);
18402 }
18403 
18404 SQLITE_PRIVATE sqlite3_mutex *sqlite3MutexAlloc(int id){
18405   if( !sqlite3GlobalConfig.bCoreMutex ){
18406     return 0;
18407   }
18408   assert( GLOBAL(int, mutexIsInit) );
18409   return sqlite3GlobalConfig.mutex.xMutexAlloc(id);
18410 }
18411 
18412 /*
18413 ** Free a dynamic mutex.
18414 */
18415 SQLITE_API void sqlite3_mutex_free(sqlite3_mutex *p){
18416   if( p ){
18417     sqlite3GlobalConfig.mutex.xMutexFree(p);
18418   }
18419 }
18420 
18421 /*
18422 ** Obtain the mutex p. If some other thread already has the mutex, block
18423 ** until it can be obtained.
18424 */
18425 SQLITE_API void sqlite3_mutex_enter(sqlite3_mutex *p){
18426   if( p ){
18427     sqlite3GlobalConfig.mutex.xMutexEnter(p);
18428   }
18429 }
18430 
18431 /*
18432 ** Obtain the mutex p. If successful, return SQLITE_OK. Otherwise, if another
18433 ** thread holds the mutex and it cannot be obtained, return SQLITE_BUSY.
18434 */
18435 SQLITE_API int sqlite3_mutex_try(sqlite3_mutex *p){
18436   int rc = SQLITE_OK;
18437   if( p ){
18438     return sqlite3GlobalConfig.mutex.xMutexTry(p);
18439   }
18440   return rc;
18441 }
18442 
18443 /*
18444 ** The sqlite3_mutex_leave() routine exits a mutex that was previously
18445 ** entered by the same thread.  The behavior is undefined if the mutex
18446 ** is not currently entered. If a NULL pointer is passed as an argument
18447 ** this function is a no-op.
18448 */
18449 SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex *p){
18450   if( p ){
18451     sqlite3GlobalConfig.mutex.xMutexLeave(p);
18452   }
18453 }
18454 
18455 #ifndef NDEBUG
18456 /*
18457 ** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
18458 ** intended for use inside assert() statements.
18459 */
18460 SQLITE_API int sqlite3_mutex_held(sqlite3_mutex *p){
18461   return p==0 || sqlite3GlobalConfig.mutex.xMutexHeld(p);
18462 }
18463 SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex *p){
18464   return p==0 || sqlite3GlobalConfig.mutex.xMutexNotheld(p);
18465 }
18466 #endif
18467 
18468 #endif /* !defined(SQLITE_MUTEX_OMIT) */
18469 
18470 /************** End of mutex.c ***********************************************/
18471 /************** Begin file mutex_noop.c **************************************/
18472 /*
18473 ** 2008 October 07
18474 **
18475 ** The author disclaims copyright to this source code.  In place of
18476 ** a legal notice, here is a blessing:
18477 **
18478 **    May you do good and not evil.
18479 **    May you find forgiveness for yourself and forgive others.
18480 **    May you share freely, never taking more than you give.
18481 **
18482 *************************************************************************
18483 ** This file contains the C functions that implement mutexes.
18484 **
18485 ** This implementation in this file does not provide any mutual
18486 ** exclusion and is thus suitable for use only in applications
18487 ** that use SQLite in a single thread.  The routines defined
18488 ** here are place-holders.  Applications can substitute working
18489 ** mutex routines at start-time using the
18490 **
18491 **     sqlite3_config(SQLITE_CONFIG_MUTEX,...)
18492 **
18493 ** interface.
18494 **
18495 ** If compiled with SQLITE_DEBUG, then additional logic is inserted
18496 ** that does error checking on mutexes to make sure they are being
18497 ** called correctly.
18498 */
18499 
18500 #ifndef SQLITE_MUTEX_OMIT
18501 
18502 #ifndef SQLITE_DEBUG
18503 /*
18504 ** Stub routines for all mutex methods.
18505 **
18506 ** This routines provide no mutual exclusion or error checking.
18507 */
18508 static int noopMutexInit(void){ return SQLITE_OK; }
18509 static int noopMutexEnd(void){ return SQLITE_OK; }
18510 static sqlite3_mutex *noopMutexAlloc(int id){
18511   UNUSED_PARAMETER(id);
18512   return (sqlite3_mutex*)8;
18513 }
18514 static void noopMutexFree(sqlite3_mutex *p){ UNUSED_PARAMETER(p); return; }
18515 static void noopMutexEnter(sqlite3_mutex *p){ UNUSED_PARAMETER(p); return; }
18516 static int noopMutexTry(sqlite3_mutex *p){
18517   UNUSED_PARAMETER(p);
18518   return SQLITE_OK;
18519 }
18520 static void noopMutexLeave(sqlite3_mutex *p){ UNUSED_PARAMETER(p); return; }
18521 
18522 SQLITE_PRIVATE sqlite3_mutex_methods const *sqlite3NoopMutex(void){
18523   static const sqlite3_mutex_methods sMutex = {
18524     noopMutexInit,
18525     noopMutexEnd,
18526     noopMutexAlloc,
18527     noopMutexFree,
18528     noopMutexEnter,
18529     noopMutexTry,
18530     noopMutexLeave,
18531 
18532     0,
18533     0,
18534   };
18535 
18536   return &sMutex;
18537 }
18538 #endif /* !SQLITE_DEBUG */
18539 
18540 #ifdef SQLITE_DEBUG
18541 /*
18542 ** In this implementation, error checking is provided for testing
18543 ** and debugging purposes.  The mutexes still do not provide any
18544 ** mutual exclusion.
18545 */
18546 
18547 /*
18548 ** The mutex object
18549 */
18550 typedef struct sqlite3_debug_mutex {
18551   int id;     /* The mutex type */
18552   int cnt;    /* Number of entries without a matching leave */
18553 } sqlite3_debug_mutex;
18554 
18555 /*
18556 ** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
18557 ** intended for use inside assert() statements.
18558 */
18559 static int debugMutexHeld(sqlite3_mutex *pX){
18560   sqlite3_debug_mutex *p = (sqlite3_debug_mutex*)pX;
18561   return p==0 || p->cnt>0;
18562 }
18563 static int debugMutexNotheld(sqlite3_mutex *pX){
18564   sqlite3_debug_mutex *p = (sqlite3_debug_mutex*)pX;
18565   return p==0 || p->cnt==0;
18566 }
18567 
18568 /*
18569 ** Initialize and deinitialize the mutex subsystem.
18570 */
18571 static int debugMutexInit(void){ return SQLITE_OK; }
18572 static int debugMutexEnd(void){ return SQLITE_OK; }
18573 
18574 /*
18575 ** The sqlite3_mutex_alloc() routine allocates a new
18576 ** mutex and returns a pointer to it.  If it returns NULL
18577 ** that means that a mutex could not be allocated.
18578 */
18579 static sqlite3_mutex *debugMutexAlloc(int id){
18580   static sqlite3_debug_mutex aStatic[6];
18581   sqlite3_debug_mutex *pNew = 0;
18582   switch( id ){
18583     case SQLITE_MUTEX_FAST:
18584     case SQLITE_MUTEX_RECURSIVE: {
18585       pNew = sqlite3Malloc(sizeof(*pNew));
18586       if( pNew ){
18587         pNew->id = id;
18588         pNew->cnt = 0;
18589       }
18590       break;
18591     }
18592     default: {
18593       assert( id-2 >= 0 );
18594       assert( id-2 < (int)(sizeof(aStatic)/sizeof(aStatic[0])) );
18595       pNew = &aStatic[id-2];
18596       pNew->id = id;
18597       break;
18598     }
18599   }
18600   return (sqlite3_mutex*)pNew;
18601 }
18602 
18603 /*
18604 ** This routine deallocates a previously allocated mutex.
18605 */
18606 static void debugMutexFree(sqlite3_mutex *pX){
18607   sqlite3_debug_mutex *p = (sqlite3_debug_mutex*)pX;
18608   assert( p->cnt==0 );
18609   assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );
18610   sqlite3_free(p);
18611 }
18612 
18613 /*
18614 ** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
18615 ** to enter a mutex.  If another thread is already within the mutex,
18616 ** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
18617 ** SQLITE_BUSY.  The sqlite3_mutex_try() interface returns SQLITE_OK
18618 ** upon successful entry.  Mutexes created using SQLITE_MUTEX_RECURSIVE can
18619 ** be entered multiple times by the same thread.  In such cases the,
18620 ** mutex must be exited an equal number of times before another thread
18621 ** can enter.  If the same thread tries to enter any other kind of mutex
18622 ** more than once, the behavior is undefined.
18623 */
18624 static void debugMutexEnter(sqlite3_mutex *pX){
18625   sqlite3_debug_mutex *p = (sqlite3_debug_mutex*)pX;
18626   assert( p->id==SQLITE_MUTEX_RECURSIVE || debugMutexNotheld(pX) );
18627   p->cnt++;
18628 }
18629 static int debugMutexTry(sqlite3_mutex *pX){
18630   sqlite3_debug_mutex *p = (sqlite3_debug_mutex*)pX;
18631   assert( p->id==SQLITE_MUTEX_RECURSIVE || debugMutexNotheld(pX) );
18632   p->cnt++;
18633   return SQLITE_OK;
18634 }
18635 
18636 /*
18637 ** The sqlite3_mutex_leave() routine exits a mutex that was
18638 ** previously entered by the same thread.  The behavior
18639 ** is undefined if the mutex is not currently entered or
18640 ** is not currently allocated.  SQLite will never do either.
18641 */
18642 static void debugMutexLeave(sqlite3_mutex *pX){
18643   sqlite3_debug_mutex *p = (sqlite3_debug_mutex*)pX;
18644   assert( debugMutexHeld(pX) );
18645   p->cnt--;
18646   assert( p->id==SQLITE_MUTEX_RECURSIVE || debugMutexNotheld(pX) );
18647 }
18648 
18649 SQLITE_PRIVATE sqlite3_mutex_methods const *sqlite3NoopMutex(void){
18650   static const sqlite3_mutex_methods sMutex = {
18651     debugMutexInit,
18652     debugMutexEnd,
18653     debugMutexAlloc,
18654     debugMutexFree,
18655     debugMutexEnter,
18656     debugMutexTry,
18657     debugMutexLeave,
18658 
18659     debugMutexHeld,
18660     debugMutexNotheld
18661   };
18662 
18663   return &sMutex;
18664 }
18665 #endif /* SQLITE_DEBUG */
18666 
18667 /*
18668 ** If compiled with SQLITE_MUTEX_NOOP, then the no-op mutex implementation
18669 ** is used regardless of the run-time threadsafety setting.
18670 */
18671 #ifdef SQLITE_MUTEX_NOOP
18672 SQLITE_PRIVATE sqlite3_mutex_methods const *sqlite3DefaultMutex(void){
18673   return sqlite3NoopMutex();
18674 }
18675 #endif /* defined(SQLITE_MUTEX_NOOP) */
18676 #endif /* !defined(SQLITE_MUTEX_OMIT) */
18677 
18678 /************** End of mutex_noop.c ******************************************/
18679 /************** Begin file mutex_unix.c **************************************/
18680 /*
18681 ** 2007 August 28
18682 **
18683 ** The author disclaims copyright to this source code.  In place of
18684 ** a legal notice, here is a blessing:
18685 **
18686 **    May you do good and not evil.
18687 **    May you find forgiveness for yourself and forgive others.
18688 **    May you share freely, never taking more than you give.
18689 **
18690 *************************************************************************
18691 ** This file contains the C functions that implement mutexes for pthreads
18692 */
18693 
18694 /*
18695 ** The code in this file is only used if we are compiling threadsafe
18696 ** under unix with pthreads.
18697 **
18698 ** Note that this implementation requires a version of pthreads that
18699 ** supports recursive mutexes.
18700 */
18701 #ifdef SQLITE_MUTEX_PTHREADS
18702 
18703 #include <pthread.h>
18704 
18705 /*
18706 ** The sqlite3_mutex.id, sqlite3_mutex.nRef, and sqlite3_mutex.owner fields
18707 ** are necessary under two condidtions:  (1) Debug builds and (2) using
18708 ** home-grown mutexes.  Encapsulate these conditions into a single #define.
18709 */
18710 #if defined(SQLITE_DEBUG) || defined(SQLITE_HOMEGROWN_RECURSIVE_MUTEX)
18711 # define SQLITE_MUTEX_NREF 1
18712 #else
18713 # define SQLITE_MUTEX_NREF 0
18714 #endif
18715 
18716 /*
18717 ** Each recursive mutex is an instance of the following structure.
18718 */
18719 struct sqlite3_mutex {
18720   pthread_mutex_t mutex;     /* Mutex controlling the lock */
18721 #if SQLITE_MUTEX_NREF
18722   int id;                    /* Mutex type */
18723   volatile int nRef;         /* Number of entrances */
18724   volatile pthread_t owner;  /* Thread that is within this mutex */
18725   int trace;                 /* True to trace changes */
18726 #endif
18727 };
18728 #if SQLITE_MUTEX_NREF
18729 #define SQLITE3_MUTEX_INITIALIZER { PTHREAD_MUTEX_INITIALIZER, 0, 0, (pthread_t)0, 0 }
18730 #else
18731 #define SQLITE3_MUTEX_INITIALIZER { PTHREAD_MUTEX_INITIALIZER }
18732 #endif
18733 
18734 /*
18735 ** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
18736 ** intended for use only inside assert() statements.  On some platforms,
18737 ** there might be race conditions that can cause these routines to
18738 ** deliver incorrect results.  In particular, if pthread_equal() is
18739 ** not an atomic operation, then these routines might delivery
18740 ** incorrect results.  On most platforms, pthread_equal() is a
18741 ** comparison of two integers and is therefore atomic.  But we are
18742 ** told that HPUX is not such a platform.  If so, then these routines
18743 ** will not always work correctly on HPUX.
18744 **
18745 ** On those platforms where pthread_equal() is not atomic, SQLite
18746 ** should be compiled without -DSQLITE_DEBUG and with -DNDEBUG to
18747 ** make sure no assert() statements are evaluated and hence these
18748 ** routines are never called.
18749 */
18750 #if !defined(NDEBUG) || defined(SQLITE_DEBUG)
18751 static int pthreadMutexHeld(sqlite3_mutex *p){
18752   return (p->nRef!=0 && pthread_equal(p->owner, pthread_self()));
18753 }
18754 static int pthreadMutexNotheld(sqlite3_mutex *p){
18755   return p->nRef==0 || pthread_equal(p->owner, pthread_self())==0;
18756 }
18757 #endif
18758 
18759 /*
18760 ** Initialize and deinitialize the mutex subsystem.
18761 */
18762 static int pthreadMutexInit(void){ return SQLITE_OK; }
18763 static int pthreadMutexEnd(void){ return SQLITE_OK; }
18764 
18765 /*
18766 ** The sqlite3_mutex_alloc() routine allocates a new
18767 ** mutex and returns a pointer to it.  If it returns NULL
18768 ** that means that a mutex could not be allocated.  SQLite
18769 ** will unwind its stack and return an error.  The argument
18770 ** to sqlite3_mutex_alloc() is one of these integer constants:
18771 **
18772 ** <ul>
18773 ** <li>  SQLITE_MUTEX_FAST
18774 ** <li>  SQLITE_MUTEX_RECURSIVE
18775 ** <li>  SQLITE_MUTEX_STATIC_MASTER
18776 ** <li>  SQLITE_MUTEX_STATIC_MEM
18777 ** <li>  SQLITE_MUTEX_STATIC_MEM2
18778 ** <li>  SQLITE_MUTEX_STATIC_PRNG
18779 ** <li>  SQLITE_MUTEX_STATIC_LRU
18780 ** <li>  SQLITE_MUTEX_STATIC_PMEM
18781 ** </ul>
18782 **
18783 ** The first two constants cause sqlite3_mutex_alloc() to create
18784 ** a new mutex.  The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
18785 ** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
18786 ** The mutex implementation does not need to make a distinction
18787 ** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
18788 ** not want to.  But SQLite will only request a recursive mutex in
18789 ** cases where it really needs one.  If a faster non-recursive mutex
18790 ** implementation is available on the host platform, the mutex subsystem
18791 ** might return such a mutex in response to SQLITE_MUTEX_FAST.
18792 **
18793 ** The other allowed parameters to sqlite3_mutex_alloc() each return
18794 ** a pointer to a static preexisting mutex.  Six static mutexes are
18795 ** used by the current version of SQLite.  Future versions of SQLite
18796 ** may add additional static mutexes.  Static mutexes are for internal
18797 ** use by SQLite only.  Applications that use SQLite mutexes should
18798 ** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
18799 ** SQLITE_MUTEX_RECURSIVE.
18800 **
18801 ** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
18802 ** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
18803 ** returns a different mutex on every call.  But for the static
18804 ** mutex types, the same mutex is returned on every call that has
18805 ** the same type number.
18806 */
18807 static sqlite3_mutex *pthreadMutexAlloc(int iType){
18808   static sqlite3_mutex staticMutexes[] = {
18809     SQLITE3_MUTEX_INITIALIZER,
18810     SQLITE3_MUTEX_INITIALIZER,
18811     SQLITE3_MUTEX_INITIALIZER,
18812     SQLITE3_MUTEX_INITIALIZER,
18813     SQLITE3_MUTEX_INITIALIZER,
18814     SQLITE3_MUTEX_INITIALIZER
18815   };
18816   sqlite3_mutex *p;
18817   switch( iType ){
18818     case SQLITE_MUTEX_RECURSIVE: {
18819       p = sqlite3MallocZero( sizeof(*p) );
18820       if( p ){
18821 #ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
18822         /* If recursive mutexes are not available, we will have to
18823         ** build our own.  See below. */
18824         pthread_mutex_init(&p->mutex, 0);
18825 #else
18826         /* Use a recursive mutex if it is available */
18827         pthread_mutexattr_t recursiveAttr;
18828         pthread_mutexattr_init(&recursiveAttr);
18829         pthread_mutexattr_settype(&recursiveAttr, PTHREAD_MUTEX_RECURSIVE);
18830         pthread_mutex_init(&p->mutex, &recursiveAttr);
18831         pthread_mutexattr_destroy(&recursiveAttr);
18832 #endif
18833 #if SQLITE_MUTEX_NREF
18834         p->id = iType;
18835 #endif
18836       }
18837       break;
18838     }
18839     case SQLITE_MUTEX_FAST: {
18840       p = sqlite3MallocZero( sizeof(*p) );
18841       if( p ){
18842 #if SQLITE_MUTEX_NREF
18843         p->id = iType;
18844 #endif
18845         pthread_mutex_init(&p->mutex, 0);
18846       }
18847       break;
18848     }
18849     default: {
18850       assert( iType-2 >= 0 );
18851       assert( iType-2 < ArraySize(staticMutexes) );
18852       p = &staticMutexes[iType-2];
18853 #if SQLITE_MUTEX_NREF
18854       p->id = iType;
18855 #endif
18856       break;
18857     }
18858   }
18859   return p;
18860 }
18861 
18862 
18863 /*
18864 ** This routine deallocates a previously
18865 ** allocated mutex.  SQLite is careful to deallocate every
18866 ** mutex that it allocates.
18867 */
18868 static void pthreadMutexFree(sqlite3_mutex *p){
18869   assert( p->nRef==0 );
18870   assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );
18871   pthread_mutex_destroy(&p->mutex);
18872   sqlite3_free(p);
18873 }
18874 
18875 /*
18876 ** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
18877 ** to enter a mutex.  If another thread is already within the mutex,
18878 ** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
18879 ** SQLITE_BUSY.  The sqlite3_mutex_try() interface returns SQLITE_OK
18880 ** upon successful entry.  Mutexes created using SQLITE_MUTEX_RECURSIVE can
18881 ** be entered multiple times by the same thread.  In such cases the,
18882 ** mutex must be exited an equal number of times before another thread
18883 ** can enter.  If the same thread tries to enter any other kind of mutex
18884 ** more than once, the behavior is undefined.
18885 */
18886 static void pthreadMutexEnter(sqlite3_mutex *p){
18887   assert( p->id==SQLITE_MUTEX_RECURSIVE || pthreadMutexNotheld(p) );
18888 
18889 #ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
18890   /* If recursive mutexes are not available, then we have to grow
18891   ** our own.  This implementation assumes that pthread_equal()
18892   ** is atomic - that it cannot be deceived into thinking self
18893   ** and p->owner are equal if p->owner changes between two values
18894   ** that are not equal to self while the comparison is taking place.
18895   ** This implementation also assumes a coherent cache - that
18896   ** separate processes cannot read different values from the same
18897   ** address at the same time.  If either of these two conditions
18898   ** are not met, then the mutexes will fail and problems will result.
18899   */
18900   {
18901     pthread_t self = pthread_self();
18902     if( p->nRef>0 && pthread_equal(p->owner, self) ){
18903       p->nRef++;
18904     }else{
18905       pthread_mutex_lock(&p->mutex);
18906       assert( p->nRef==0 );
18907       p->owner = self;
18908       p->nRef = 1;
18909     }
18910   }
18911 #else
18912   /* Use the built-in recursive mutexes if they are available.
18913   */
18914   pthread_mutex_lock(&p->mutex);
18915 #if SQLITE_MUTEX_NREF
18916   assert( p->nRef>0 || p->owner==0 );
18917   p->owner = pthread_self();
18918   p->nRef++;
18919 #endif
18920 #endif
18921 
18922 #ifdef SQLITE_DEBUG
18923   if( p->trace ){
18924     printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
18925   }
18926 #endif
18927 }
18928 static int pthreadMutexTry(sqlite3_mutex *p){
18929   int rc;
18930   assert( p->id==SQLITE_MUTEX_RECURSIVE || pthreadMutexNotheld(p) );
18931 
18932 #ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
18933   /* If recursive mutexes are not available, then we have to grow
18934   ** our own.  This implementation assumes that pthread_equal()
18935   ** is atomic - that it cannot be deceived into thinking self
18936   ** and p->owner are equal if p->owner changes between two values
18937   ** that are not equal to self while the comparison is taking place.
18938   ** This implementation also assumes a coherent cache - that
18939   ** separate processes cannot read different values from the same
18940   ** address at the same time.  If either of these two conditions
18941   ** are not met, then the mutexes will fail and problems will result.
18942   */
18943   {
18944     pthread_t self = pthread_self();
18945     if( p->nRef>0 && pthread_equal(p->owner, self) ){
18946       p->nRef++;
18947       rc = SQLITE_OK;
18948     }else if( pthread_mutex_trylock(&p->mutex)==0 ){
18949       assert( p->nRef==0 );
18950       p->owner = self;
18951       p->nRef = 1;
18952       rc = SQLITE_OK;
18953     }else{
18954       rc = SQLITE_BUSY;
18955     }
18956   }
18957 #else
18958   /* Use the built-in recursive mutexes if they are available.
18959   */
18960   if( pthread_mutex_trylock(&p->mutex)==0 ){
18961 #if SQLITE_MUTEX_NREF
18962     p->owner = pthread_self();
18963     p->nRef++;
18964 #endif
18965     rc = SQLITE_OK;
18966   }else{
18967     rc = SQLITE_BUSY;
18968   }
18969 #endif
18970 
18971 #ifdef SQLITE_DEBUG
18972   if( rc==SQLITE_OK && p->trace ){
18973     printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
18974   }
18975 #endif
18976   return rc;
18977 }
18978 
18979 /*
18980 ** The sqlite3_mutex_leave() routine exits a mutex that was
18981 ** previously entered by the same thread.  The behavior
18982 ** is undefined if the mutex is not currently entered or
18983 ** is not currently allocated.  SQLite will never do either.
18984 */
18985 static void pthreadMutexLeave(sqlite3_mutex *p){
18986   assert( pthreadMutexHeld(p) );
18987 #if SQLITE_MUTEX_NREF
18988   p->nRef--;
18989   if( p->nRef==0 ) p->owner = 0;
18990 #endif
18991   assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE );
18992 
18993 #ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
18994   if( p->nRef==0 ){
18995     pthread_mutex_unlock(&p->mutex);
18996   }
18997 #else
18998   pthread_mutex_unlock(&p->mutex);
18999 #endif
19000 
19001 #ifdef SQLITE_DEBUG
19002   if( p->trace ){
19003     printf("leave mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
19004   }
19005 #endif
19006 }
19007 
19008 SQLITE_PRIVATE sqlite3_mutex_methods const *sqlite3DefaultMutex(void){
19009   static const sqlite3_mutex_methods sMutex = {
19010     pthreadMutexInit,
19011     pthreadMutexEnd,
19012     pthreadMutexAlloc,
19013     pthreadMutexFree,
19014     pthreadMutexEnter,
19015     pthreadMutexTry,
19016     pthreadMutexLeave,
19017 #ifdef SQLITE_DEBUG
19018     pthreadMutexHeld,
19019     pthreadMutexNotheld
19020 #else
19021     0,
19022     0
19023 #endif
19024   };
19025 
19026   return &sMutex;
19027 }
19028 
19029 #endif /* SQLITE_MUTEX_PTHREADS */
19030 
19031 /************** End of mutex_unix.c ******************************************/
19032 /************** Begin file mutex_w32.c ***************************************/
19033 /*
19034 ** 2007 August 14
19035 **
19036 ** The author disclaims copyright to this source code.  In place of
19037 ** a legal notice, here is a blessing:
19038 **
19039 **    May you do good and not evil.
19040 **    May you find forgiveness for yourself and forgive others.
19041 **    May you share freely, never taking more than you give.
19042 **
19043 *************************************************************************
19044 ** This file contains the C functions that implement mutexes for win32
19045 */
19046 
19047 #if SQLITE_OS_WIN
19048 /*
19049 ** Include the header file for the Windows VFS.
19050 */
19051 /************** Include os_win.h in the middle of mutex_w32.c ****************/
19052 /************** Begin file os_win.h ******************************************/
19053 /*
19054 ** 2013 November 25
19055 **
19056 ** The author disclaims copyright to this source code.  In place of
19057 ** a legal notice, here is a blessing:
19058 **
19059 **    May you do good and not evil.
19060 **    May you find forgiveness for yourself and forgive others.
19061 **    May you share freely, never taking more than you give.
19062 **
19063 ******************************************************************************
19064 **
19065 ** This file contains code that is specific to Windows.
19066 */
19067 #ifndef _OS_WIN_H_
19068 #define _OS_WIN_H_
19069 
19070 /*
19071 ** Include the primary Windows SDK header file.
19072 */
19073 #include "windows.h"
19074 
19075 #ifdef __CYGWIN__
19076 # include <sys/cygwin.h>
19077 # include <errno.h> /* amalgamator: dontcache */
19078 #endif
19079 
19080 /*
19081 ** Determine if we are dealing with Windows NT.
19082 **
19083 ** We ought to be able to determine if we are compiling for Windows 9x or
19084 ** Windows NT using the _WIN32_WINNT macro as follows:
19085 **
19086 ** #if defined(_WIN32_WINNT)
19087 ** # define SQLITE_OS_WINNT 1
19088 ** #else
19089 ** # define SQLITE_OS_WINNT 0
19090 ** #endif
19091 **
19092 ** However, Visual Studio 2005 does not set _WIN32_WINNT by default, as
19093 ** it ought to, so the above test does not work.  We'll just assume that
19094 ** everything is Windows NT unless the programmer explicitly says otherwise
19095 ** by setting SQLITE_OS_WINNT to 0.
19096 */
19097 #if SQLITE_OS_WIN && !defined(SQLITE_OS_WINNT)
19098 # define SQLITE_OS_WINNT 1
19099 #endif
19100 
19101 /*
19102 ** Determine if we are dealing with Windows CE - which has a much reduced
19103 ** API.
19104 */
19105 #if defined(_WIN32_WCE)
19106 # define SQLITE_OS_WINCE 1
19107 #else
19108 # define SQLITE_OS_WINCE 0
19109 #endif
19110 
19111 /*
19112 ** Determine if we are dealing with WinRT, which provides only a subset of
19113 ** the full Win32 API.
19114 */
19115 #if !defined(SQLITE_OS_WINRT)
19116 # define SQLITE_OS_WINRT 0
19117 #endif
19118 
19119 #endif /* _OS_WIN_H_ */
19120 
19121 /************** End of os_win.h **********************************************/
19122 /************** Continuing where we left off in mutex_w32.c ******************/
19123 #endif
19124 
19125 /*
19126 ** The code in this file is only used if we are compiling multithreaded
19127 ** on a win32 system.
19128 */
19129 #ifdef SQLITE_MUTEX_W32
19130 
19131 /*
19132 ** Each recursive mutex is an instance of the following structure.
19133 */
19134 struct sqlite3_mutex {
19135   CRITICAL_SECTION mutex;    /* Mutex controlling the lock */
19136   int id;                    /* Mutex type */
19137 #ifdef SQLITE_DEBUG
19138   volatile int nRef;         /* Number of enterances */
19139   volatile DWORD owner;      /* Thread holding this mutex */
19140   int trace;                 /* True to trace changes */
19141 #endif
19142 };
19143 #define SQLITE_W32_MUTEX_INITIALIZER { 0 }
19144 #ifdef SQLITE_DEBUG
19145 #define SQLITE3_MUTEX_INITIALIZER { SQLITE_W32_MUTEX_INITIALIZER, 0, 0L, (DWORD)0, 0 }
19146 #else
19147 #define SQLITE3_MUTEX_INITIALIZER { SQLITE_W32_MUTEX_INITIALIZER, 0 }
19148 #endif
19149 
19150 /*
19151 ** Return true (non-zero) if we are running under WinNT, Win2K, WinXP,
19152 ** or WinCE.  Return false (zero) for Win95, Win98, or WinME.
19153 **
19154 ** Here is an interesting observation:  Win95, Win98, and WinME lack
19155 ** the LockFileEx() API.  But we can still statically link against that
19156 ** API as long as we don't call it win running Win95/98/ME.  A call to
19157 ** this routine is used to determine if the host is Win95/98/ME or
19158 ** WinNT/2K/XP so that we will know whether or not we can safely call
19159 ** the LockFileEx() API.
19160 **
19161 ** mutexIsNT() is only used for the TryEnterCriticalSection() API call,
19162 ** which is only available if your application was compiled with
19163 ** _WIN32_WINNT defined to a value >= 0x0400.  Currently, the only
19164 ** call to TryEnterCriticalSection() is #ifdef'ed out, so #ifdef
19165 ** this out as well.
19166 */
19167 #if 0
19168 #if SQLITE_OS_WINCE || SQLITE_OS_WINRT
19169 # define mutexIsNT()  (1)
19170 #else
19171   static int mutexIsNT(void){
19172     static int osType = 0;
19173     if( osType==0 ){
19174       OSVERSIONINFO sInfo;
19175       sInfo.dwOSVersionInfoSize = sizeof(sInfo);
19176       GetVersionEx(&sInfo);
19177       osType = sInfo.dwPlatformId==VER_PLATFORM_WIN32_NT ? 2 : 1;
19178     }
19179     return osType==2;
19180   }
19181 #endif /* SQLITE_OS_WINCE || SQLITE_OS_WINRT */
19182 #endif
19183 
19184 #ifdef SQLITE_DEBUG
19185 /*
19186 ** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
19187 ** intended for use only inside assert() statements.
19188 */
19189 static int winMutexHeld(sqlite3_mutex *p){
19190   return p->nRef!=0 && p->owner==GetCurrentThreadId();
19191 }
19192 static int winMutexNotheld2(sqlite3_mutex *p, DWORD tid){
19193   return p->nRef==0 || p->owner!=tid;
19194 }
19195 static int winMutexNotheld(sqlite3_mutex *p){
19196   DWORD tid = GetCurrentThreadId();
19197   return winMutexNotheld2(p, tid);
19198 }
19199 #endif
19200 
19201 
19202 /*
19203 ** Initialize and deinitialize the mutex subsystem.
19204 */
19205 static sqlite3_mutex winMutex_staticMutexes[6] = {
19206   SQLITE3_MUTEX_INITIALIZER,
19207   SQLITE3_MUTEX_INITIALIZER,
19208   SQLITE3_MUTEX_INITIALIZER,
19209   SQLITE3_MUTEX_INITIALIZER,
19210   SQLITE3_MUTEX_INITIALIZER,
19211   SQLITE3_MUTEX_INITIALIZER
19212 };
19213 static int winMutex_isInit = 0;
19214 /* As winMutexInit() and winMutexEnd() are called as part
19215 ** of the sqlite3_initialize and sqlite3_shutdown()
19216 ** processing, the "interlocked" magic is probably not
19217 ** strictly necessary.
19218 */
19219 static LONG winMutex_lock = 0;
19220 
19221 SQLITE_API void sqlite3_win32_sleep(DWORD milliseconds); /* os_win.c */
19222 
19223 static int winMutexInit(void){
19224   /* The first to increment to 1 does actual initialization */
19225   if( InterlockedCompareExchange(&winMutex_lock, 1, 0)==0 ){
19226     int i;
19227     for(i=0; i<ArraySize(winMutex_staticMutexes); i++){
19228 #if SQLITE_OS_WINRT
19229       InitializeCriticalSectionEx(&winMutex_staticMutexes[i].mutex, 0, 0);
19230 #else
19231       InitializeCriticalSection(&winMutex_staticMutexes[i].mutex);
19232 #endif
19233     }
19234     winMutex_isInit = 1;
19235   }else{
19236     /* Someone else is in the process of initing the static mutexes */
19237     while( !winMutex_isInit ){
19238       sqlite3_win32_sleep(1);
19239     }
19240   }
19241   return SQLITE_OK;
19242 }
19243 
19244 static int winMutexEnd(void){
19245   /* The first to decrement to 0 does actual shutdown
19246   ** (which should be the last to shutdown.) */
19247   if( InterlockedCompareExchange(&winMutex_lock, 0, 1)==1 ){
19248     if( winMutex_isInit==1 ){
19249       int i;
19250       for(i=0; i<ArraySize(winMutex_staticMutexes); i++){
19251         DeleteCriticalSection(&winMutex_staticMutexes[i].mutex);
19252       }
19253       winMutex_isInit = 0;
19254     }
19255   }
19256   return SQLITE_OK;
19257 }
19258 
19259 /*
19260 ** The sqlite3_mutex_alloc() routine allocates a new
19261 ** mutex and returns a pointer to it.  If it returns NULL
19262 ** that means that a mutex could not be allocated.  SQLite
19263 ** will unwind its stack and return an error.  The argument
19264 ** to sqlite3_mutex_alloc() is one of these integer constants:
19265 **
19266 ** <ul>
19267 ** <li>  SQLITE_MUTEX_FAST
19268 ** <li>  SQLITE_MUTEX_RECURSIVE
19269 ** <li>  SQLITE_MUTEX_STATIC_MASTER
19270 ** <li>  SQLITE_MUTEX_STATIC_MEM
19271 ** <li>  SQLITE_MUTEX_STATIC_MEM2
19272 ** <li>  SQLITE_MUTEX_STATIC_PRNG
19273 ** <li>  SQLITE_MUTEX_STATIC_LRU
19274 ** <li>  SQLITE_MUTEX_STATIC_PMEM
19275 ** </ul>
19276 **
19277 ** The first two constants cause sqlite3_mutex_alloc() to create
19278 ** a new mutex.  The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
19279 ** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
19280 ** The mutex implementation does not need to make a distinction
19281 ** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
19282 ** not want to.  But SQLite will only request a recursive mutex in
19283 ** cases where it really needs one.  If a faster non-recursive mutex
19284 ** implementation is available on the host platform, the mutex subsystem
19285 ** might return such a mutex in response to SQLITE_MUTEX_FAST.
19286 **
19287 ** The other allowed parameters to sqlite3_mutex_alloc() each return
19288 ** a pointer to a static preexisting mutex.  Six static mutexes are
19289 ** used by the current version of SQLite.  Future versions of SQLite
19290 ** may add additional static mutexes.  Static mutexes are for internal
19291 ** use by SQLite only.  Applications that use SQLite mutexes should
19292 ** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
19293 ** SQLITE_MUTEX_RECURSIVE.
19294 **
19295 ** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
19296 ** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
19297 ** returns a different mutex on every call.  But for the static
19298 ** mutex types, the same mutex is returned on every call that has
19299 ** the same type number.
19300 */
19301 static sqlite3_mutex *winMutexAlloc(int iType){
19302   sqlite3_mutex *p;
19303 
19304   switch( iType ){
19305     case SQLITE_MUTEX_FAST:
19306     case SQLITE_MUTEX_RECURSIVE: {
19307       p = sqlite3MallocZero( sizeof(*p) );
19308       if( p ){
19309 #ifdef SQLITE_DEBUG
19310         p->id = iType;
19311 #endif
19312 #if SQLITE_OS_WINRT
19313         InitializeCriticalSectionEx(&p->mutex, 0, 0);
19314 #else
19315         InitializeCriticalSection(&p->mutex);
19316 #endif
19317       }
19318       break;
19319     }
19320     default: {
19321       assert( winMutex_isInit==1 );
19322       assert( iType-2 >= 0 );
19323       assert( iType-2 < ArraySize(winMutex_staticMutexes) );
19324       p = &winMutex_staticMutexes[iType-2];
19325 #ifdef SQLITE_DEBUG
19326       p->id = iType;
19327 #endif
19328       break;
19329     }
19330   }
19331   return p;
19332 }
19333 
19334 
19335 /*
19336 ** This routine deallocates a previously
19337 ** allocated mutex.  SQLite is careful to deallocate every
19338 ** mutex that it allocates.
19339 */
19340 static void winMutexFree(sqlite3_mutex *p){
19341   assert( p );
19342   assert( p->nRef==0 && p->owner==0 );
19343   assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );
19344   DeleteCriticalSection(&p->mutex);
19345   sqlite3_free(p);
19346 }
19347 
19348 /*
19349 ** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
19350 ** to enter a mutex.  If another thread is already within the mutex,
19351 ** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
19352 ** SQLITE_BUSY.  The sqlite3_mutex_try() interface returns SQLITE_OK
19353 ** upon successful entry.  Mutexes created using SQLITE_MUTEX_RECURSIVE can
19354 ** be entered multiple times by the same thread.  In such cases the,
19355 ** mutex must be exited an equal number of times before another thread
19356 ** can enter.  If the same thread tries to enter any other kind of mutex
19357 ** more than once, the behavior is undefined.
19358 */
19359 static void winMutexEnter(sqlite3_mutex *p){
19360 #ifdef SQLITE_DEBUG
19361   DWORD tid = GetCurrentThreadId();
19362   assert( p->id==SQLITE_MUTEX_RECURSIVE || winMutexNotheld2(p, tid) );
19363 #endif
19364   EnterCriticalSection(&p->mutex);
19365 #ifdef SQLITE_DEBUG
19366   assert( p->nRef>0 || p->owner==0 );
19367   p->owner = tid;
19368   p->nRef++;
19369   if( p->trace ){
19370     printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
19371   }
19372 #endif
19373 }
19374 static int winMutexTry(sqlite3_mutex *p){
19375 #ifndef NDEBUG
19376   DWORD tid = GetCurrentThreadId();
19377 #endif
19378   int rc = SQLITE_BUSY;
19379   assert( p->id==SQLITE_MUTEX_RECURSIVE || winMutexNotheld2(p, tid) );
19380   /*
19381   ** The sqlite3_mutex_try() routine is very rarely used, and when it
19382   ** is used it is merely an optimization.  So it is OK for it to always
19383   ** fail.
19384   **
19385   ** The TryEnterCriticalSection() interface is only available on WinNT.
19386   ** And some windows compilers complain if you try to use it without
19387   ** first doing some #defines that prevent SQLite from building on Win98.
19388   ** For that reason, we will omit this optimization for now.  See
19389   ** ticket #2685.
19390   */
19391 #if 0
19392   if( mutexIsNT() && TryEnterCriticalSection(&p->mutex) ){
19393     p->owner = tid;
19394     p->nRef++;
19395     rc = SQLITE_OK;
19396   }
19397 #else
19398   UNUSED_PARAMETER(p);
19399 #endif
19400 #ifdef SQLITE_DEBUG
19401   if( rc==SQLITE_OK && p->trace ){
19402     printf("try mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
19403   }
19404 #endif
19405   return rc;
19406 }
19407 
19408 /*
19409 ** The sqlite3_mutex_leave() routine exits a mutex that was
19410 ** previously entered by the same thread.  The behavior
19411 ** is undefined if the mutex is not currently entered or
19412 ** is not currently allocated.  SQLite will never do either.
19413 */
19414 static void winMutexLeave(sqlite3_mutex *p){
19415 #ifndef NDEBUG
19416   DWORD tid = GetCurrentThreadId();
19417   assert( p->nRef>0 );
19418   assert( p->owner==tid );
19419   p->nRef--;
19420   if( p->nRef==0 ) p->owner = 0;
19421   assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE );
19422 #endif
19423   LeaveCriticalSection(&p->mutex);
19424 #ifdef SQLITE_DEBUG
19425   if( p->trace ){
19426     printf("leave mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
19427   }
19428 #endif
19429 }
19430 
19431 SQLITE_PRIVATE sqlite3_mutex_methods const *sqlite3DefaultMutex(void){
19432   static const sqlite3_mutex_methods sMutex = {
19433     winMutexInit,
19434     winMutexEnd,
19435     winMutexAlloc,
19436     winMutexFree,
19437     winMutexEnter,
19438     winMutexTry,
19439     winMutexLeave,
19440 #ifdef SQLITE_DEBUG
19441     winMutexHeld,
19442     winMutexNotheld
19443 #else
19444     0,
19445     0
19446 #endif
19447   };
19448 
19449   return &sMutex;
19450 }
19451 #endif /* SQLITE_MUTEX_W32 */
19452 
19453 /************** End of mutex_w32.c *******************************************/
19454 /************** Begin file malloc.c ******************************************/
19455 /*
19456 ** 2001 September 15
19457 **
19458 ** The author disclaims copyright to this source code.  In place of
19459 ** a legal notice, here is a blessing:
19460 **
19461 **    May you do good and not evil.
19462 **    May you find forgiveness for yourself and forgive others.
19463 **    May you share freely, never taking more than you give.
19464 **
19465 *************************************************************************
19466 **
19467 ** Memory allocation functions used throughout sqlite.
19468 */
19469 /* #include <stdarg.h> */
19470 
19471 /*
19472 ** Attempt to release up to n bytes of non-essential memory currently
19473 ** held by SQLite. An example of non-essential memory is memory used to
19474 ** cache database pages that are not currently in use.
19475 */
19476 SQLITE_API int sqlite3_release_memory(int n){
19477 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
19478   return sqlite3PcacheReleaseMemory(n);
19479 #else
19480   /* IMPLEMENTATION-OF: R-34391-24921 The sqlite3_release_memory() routine
19481   ** is a no-op returning zero if SQLite is not compiled with
19482   ** SQLITE_ENABLE_MEMORY_MANAGEMENT. */
19483   UNUSED_PARAMETER(n);
19484   return 0;
19485 #endif
19486 }
19487 
19488 /*
19489 ** An instance of the following object records the location of
19490 ** each unused scratch buffer.
19491 */
19492 typedef struct ScratchFreeslot {
19493   struct ScratchFreeslot *pNext;   /* Next unused scratch buffer */
19494 } ScratchFreeslot;
19495 
19496 /*
19497 ** State information local to the memory allocation subsystem.
19498 */
19499 static SQLITE_WSD struct Mem0Global {
19500   sqlite3_mutex *mutex;         /* Mutex to serialize access */
19501 
19502   /*
19503   ** The alarm callback and its arguments.  The mem0.mutex lock will
19504   ** be held while the callback is running.  Recursive calls into
19505   ** the memory subsystem are allowed, but no new callbacks will be
19506   ** issued.
19507   */
19508   sqlite3_int64 alarmThreshold;
19509   void (*alarmCallback)(void*, sqlite3_int64,int);
19510   void *alarmArg;
19511 
19512   /*
19513   ** Pointers to the end of sqlite3GlobalConfig.pScratch memory
19514   ** (so that a range test can be used to determine if an allocation
19515   ** being freed came from pScratch) and a pointer to the list of
19516   ** unused scratch allocations.
19517   */
19518   void *pScratchEnd;
19519   ScratchFreeslot *pScratchFree;
19520   u32 nScratchFree;
19521 
19522   /*
19523   ** True if heap is nearly "full" where "full" is defined by the
19524   ** sqlite3_soft_heap_limit() setting.
19525   */
19526   int nearlyFull;
19527 } mem0 = { 0, 0, 0, 0, 0, 0, 0, 0 };
19528 
19529 #define mem0 GLOBAL(struct Mem0Global, mem0)
19530 
19531 /*
19532 ** This routine runs when the memory allocator sees that the
19533 ** total memory allocation is about to exceed the soft heap
19534 ** limit.
19535 */
19536 static void softHeapLimitEnforcer(
19537   void *NotUsed,
19538   sqlite3_int64 NotUsed2,
19539   int allocSize
19540 ){
19541   UNUSED_PARAMETER2(NotUsed, NotUsed2);
19542   sqlite3_release_memory(allocSize);
19543 }
19544 
19545 /*
19546 ** Change the alarm callback
19547 */
19548 static int sqlite3MemoryAlarm(
19549   void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
19550   void *pArg,
19551   sqlite3_int64 iThreshold
19552 ){
19553   int nUsed;
19554   sqlite3_mutex_enter(mem0.mutex);
19555   mem0.alarmCallback = xCallback;
19556   mem0.alarmArg = pArg;
19557   mem0.alarmThreshold = iThreshold;
19558   nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
19559   mem0.nearlyFull = (iThreshold>0 && iThreshold<=nUsed);
19560   sqlite3_mutex_leave(mem0.mutex);
19561   return SQLITE_OK;
19562 }
19563 
19564 #ifndef SQLITE_OMIT_DEPRECATED
19565 /*
19566 ** Deprecated external interface.  Internal/core SQLite code
19567 ** should call sqlite3MemoryAlarm.
19568 */
19569 SQLITE_API int sqlite3_memory_alarm(
19570   void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
19571   void *pArg,
19572   sqlite3_int64 iThreshold
19573 ){
19574   return sqlite3MemoryAlarm(xCallback, pArg, iThreshold);
19575 }
19576 #endif
19577 
19578 /*
19579 ** Set the soft heap-size limit for the library. Passing a zero or
19580 ** negative value indicates no limit.
19581 */
19582 SQLITE_API sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){
19583   sqlite3_int64 priorLimit;
19584   sqlite3_int64 excess;
19585 #ifndef SQLITE_OMIT_AUTOINIT
19586   int rc = sqlite3_initialize();
19587   if( rc ) return -1;
19588 #endif
19589   sqlite3_mutex_enter(mem0.mutex);
19590   priorLimit = mem0.alarmThreshold;
19591   sqlite3_mutex_leave(mem0.mutex);
19592   if( n<0 ) return priorLimit;
19593   if( n>0 ){
19594     sqlite3MemoryAlarm(softHeapLimitEnforcer, 0, n);
19595   }else{
19596     sqlite3MemoryAlarm(0, 0, 0);
19597   }
19598   excess = sqlite3_memory_used() - n;
19599   if( excess>0 ) sqlite3_release_memory((int)(excess & 0x7fffffff));
19600   return priorLimit;
19601 }
19602 SQLITE_API void sqlite3_soft_heap_limit(int n){
19603   if( n<0 ) n = 0;
19604   sqlite3_soft_heap_limit64(n);
19605 }
19606 
19607 /*
19608 ** Initialize the memory allocation subsystem.
19609 */
19610 SQLITE_PRIVATE int sqlite3MallocInit(void){
19611   if( sqlite3GlobalConfig.m.xMalloc==0 ){
19612     sqlite3MemSetDefault();
19613   }
19614   memset(&mem0, 0, sizeof(mem0));
19615   if( sqlite3GlobalConfig.bCoreMutex ){
19616     mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
19617   }
19618   if( sqlite3GlobalConfig.pScratch && sqlite3GlobalConfig.szScratch>=100
19619       && sqlite3GlobalConfig.nScratch>0 ){
19620     int i, n, sz;
19621     ScratchFreeslot *pSlot;
19622     sz = ROUNDDOWN8(sqlite3GlobalConfig.szScratch);
19623     sqlite3GlobalConfig.szScratch = sz;
19624     pSlot = (ScratchFreeslot*)sqlite3GlobalConfig.pScratch;
19625     n = sqlite3GlobalConfig.nScratch;
19626     mem0.pScratchFree = pSlot;
19627     mem0.nScratchFree = n;
19628     for(i=0; i<n-1; i++){
19629       pSlot->pNext = (ScratchFreeslot*)(sz+(char*)pSlot);
19630       pSlot = pSlot->pNext;
19631     }
19632     pSlot->pNext = 0;
19633     mem0.pScratchEnd = (void*)&pSlot[1];
19634   }else{
19635     mem0.pScratchEnd = 0;
19636     sqlite3GlobalConfig.pScratch = 0;
19637     sqlite3GlobalConfig.szScratch = 0;
19638     sqlite3GlobalConfig.nScratch = 0;
19639   }
19640   if( sqlite3GlobalConfig.pPage==0 || sqlite3GlobalConfig.szPage<512
19641       || sqlite3GlobalConfig.nPage<1 ){
19642     sqlite3GlobalConfig.pPage = 0;
19643     sqlite3GlobalConfig.szPage = 0;
19644     sqlite3GlobalConfig.nPage = 0;
19645   }
19646   return sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData);
19647 }
19648 
19649 /*
19650 ** Return true if the heap is currently under memory pressure - in other
19651 ** words if the amount of heap used is close to the limit set by
19652 ** sqlite3_soft_heap_limit().
19653 */
19654 SQLITE_PRIVATE int sqlite3HeapNearlyFull(void){
19655   return mem0.nearlyFull;
19656 }
19657 
19658 /*
19659 ** Deinitialize the memory allocation subsystem.
19660 */
19661 SQLITE_PRIVATE void sqlite3MallocEnd(void){
19662   if( sqlite3GlobalConfig.m.xShutdown ){
19663     sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData);
19664   }
19665   memset(&mem0, 0, sizeof(mem0));
19666 }
19667 
19668 /*
19669 ** Return the amount of memory currently checked out.
19670 */
19671 SQLITE_API sqlite3_int64 sqlite3_memory_used(void){
19672   int n, mx;
19673   sqlite3_int64 res;
19674   sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, 0);
19675   res = (sqlite3_int64)n;  /* Work around bug in Borland C. Ticket #3216 */
19676   return res;
19677 }
19678 
19679 /*
19680 ** Return the maximum amount of memory that has ever been
19681 ** checked out since either the beginning of this process
19682 ** or since the most recent reset.
19683 */
19684 SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
19685   int n, mx;
19686   sqlite3_int64 res;
19687   sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, resetFlag);
19688   res = (sqlite3_int64)mx;  /* Work around bug in Borland C. Ticket #3216 */
19689   return res;
19690 }
19691 
19692 /*
19693 ** Trigger the alarm
19694 */
19695 static void sqlite3MallocAlarm(int nByte){
19696   void (*xCallback)(void*,sqlite3_int64,int);
19697   sqlite3_int64 nowUsed;
19698   void *pArg;
19699   if( mem0.alarmCallback==0 ) return;
19700   xCallback = mem0.alarmCallback;
19701   nowUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
19702   pArg = mem0.alarmArg;
19703   mem0.alarmCallback = 0;
19704   sqlite3_mutex_leave(mem0.mutex);
19705   xCallback(pArg, nowUsed, nByte);
19706   sqlite3_mutex_enter(mem0.mutex);
19707   mem0.alarmCallback = xCallback;
19708   mem0.alarmArg = pArg;
19709 }
19710 
19711 /*
19712 ** Do a memory allocation with statistics and alarms.  Assume the
19713 ** lock is already held.
19714 */
19715 static int mallocWithAlarm(int n, void **pp){
19716   int nFull;
19717   void *p;
19718   assert( sqlite3_mutex_held(mem0.mutex) );
19719   nFull = sqlite3GlobalConfig.m.xRoundup(n);
19720   sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n);
19721   if( mem0.alarmCallback!=0 ){
19722     int nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
19723     if( nUsed >= mem0.alarmThreshold - nFull ){
19724       mem0.nearlyFull = 1;
19725       sqlite3MallocAlarm(nFull);
19726     }else{
19727       mem0.nearlyFull = 0;
19728     }
19729   }
19730   p = sqlite3GlobalConfig.m.xMalloc(nFull);
19731 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
19732   if( p==0 && mem0.alarmCallback ){
19733     sqlite3MallocAlarm(nFull);
19734     p = sqlite3GlobalConfig.m.xMalloc(nFull);
19735   }
19736 #endif
19737   if( p ){
19738     nFull = sqlite3MallocSize(p);
19739     sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nFull);
19740     sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, 1);
19741   }
19742   *pp = p;
19743   return nFull;
19744 }
19745 
19746 /*
19747 ** Allocate memory.  This routine is like sqlite3_malloc() except that it
19748 ** assumes the memory subsystem has already been initialized.
19749 */
19750 SQLITE_PRIVATE void *sqlite3Malloc(int n){
19751   void *p;
19752   if( n<=0               /* IMP: R-65312-04917 */
19753    || n>=0x7fffff00
19754   ){
19755     /* A memory allocation of a number of bytes which is near the maximum
19756     ** signed integer value might cause an integer overflow inside of the
19757     ** xMalloc().  Hence we limit the maximum size to 0x7fffff00, giving
19758     ** 255 bytes of overhead.  SQLite itself will never use anything near
19759     ** this amount.  The only way to reach the limit is with sqlite3_malloc() */
19760     p = 0;
19761   }else if( sqlite3GlobalConfig.bMemstat ){
19762     sqlite3_mutex_enter(mem0.mutex);
19763     mallocWithAlarm(n, &p);
19764     sqlite3_mutex_leave(mem0.mutex);
19765   }else{
19766     p = sqlite3GlobalConfig.m.xMalloc(n);
19767   }
19768   assert( EIGHT_BYTE_ALIGNMENT(p) );  /* IMP: R-04675-44850 */
19769   return p;
19770 }
19771 
19772 /*
19773 ** This version of the memory allocation is for use by the application.
19774 ** First make sure the memory subsystem is initialized, then do the
19775 ** allocation.
19776 */
19777 SQLITE_API void *sqlite3_malloc(int n){
19778 #ifndef SQLITE_OMIT_AUTOINIT
19779   if( sqlite3_initialize() ) return 0;
19780 #endif
19781   return sqlite3Malloc(n);
19782 }
19783 
19784 /*
19785 ** Each thread may only have a single outstanding allocation from
19786 ** xScratchMalloc().  We verify this constraint in the single-threaded
19787 ** case by setting scratchAllocOut to 1 when an allocation
19788 ** is outstanding clearing it when the allocation is freed.
19789 */
19790 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
19791 static int scratchAllocOut = 0;
19792 #endif
19793 
19794 
19795 /*
19796 ** Allocate memory that is to be used and released right away.
19797 ** This routine is similar to alloca() in that it is not intended
19798 ** for situations where the memory might be held long-term.  This
19799 ** routine is intended to get memory to old large transient data
19800 ** structures that would not normally fit on the stack of an
19801 ** embedded processor.
19802 */
19803 SQLITE_PRIVATE void *sqlite3ScratchMalloc(int n){
19804   void *p;
19805   assert( n>0 );
19806 
19807   sqlite3_mutex_enter(mem0.mutex);
19808   if( mem0.nScratchFree && sqlite3GlobalConfig.szScratch>=n ){
19809     p = mem0.pScratchFree;
19810     mem0.pScratchFree = mem0.pScratchFree->pNext;
19811     mem0.nScratchFree--;
19812     sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, 1);
19813     sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
19814     sqlite3_mutex_leave(mem0.mutex);
19815   }else{
19816     if( sqlite3GlobalConfig.bMemstat ){
19817       sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
19818       n = mallocWithAlarm(n, &p);
19819       if( p ) sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, n);
19820       sqlite3_mutex_leave(mem0.mutex);
19821     }else{
19822       sqlite3_mutex_leave(mem0.mutex);
19823       p = sqlite3GlobalConfig.m.xMalloc(n);
19824     }
19825     sqlite3MemdebugSetType(p, MEMTYPE_SCRATCH);
19826   }
19827   assert( sqlite3_mutex_notheld(mem0.mutex) );
19828 
19829 
19830 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
19831   /* Verify that no more than two scratch allocations per thread
19832   ** are outstanding at one time.  (This is only checked in the
19833   ** single-threaded case since checking in the multi-threaded case
19834   ** would be much more complicated.) */
19835   assert( scratchAllocOut<=1 );
19836   if( p ) scratchAllocOut++;
19837 #endif
19838 
19839   return p;
19840 }
19841 SQLITE_PRIVATE void sqlite3ScratchFree(void *p){
19842   if( p ){
19843 
19844 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
19845     /* Verify that no more than two scratch allocation per thread
19846     ** is outstanding at one time.  (This is only checked in the
19847     ** single-threaded case since checking in the multi-threaded case
19848     ** would be much more complicated.) */
19849     assert( scratchAllocOut>=1 && scratchAllocOut<=2 );
19850     scratchAllocOut--;
19851 #endif
19852 
19853     if( p>=sqlite3GlobalConfig.pScratch && p<mem0.pScratchEnd ){
19854       /* Release memory from the SQLITE_CONFIG_SCRATCH allocation */
19855       ScratchFreeslot *pSlot;
19856       pSlot = (ScratchFreeslot*)p;
19857       sqlite3_mutex_enter(mem0.mutex);
19858       pSlot->pNext = mem0.pScratchFree;
19859       mem0.pScratchFree = pSlot;
19860       mem0.nScratchFree++;
19861       assert( mem0.nScratchFree <= (u32)sqlite3GlobalConfig.nScratch );
19862       sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, -1);
19863       sqlite3_mutex_leave(mem0.mutex);
19864     }else{
19865       /* Release memory back to the heap */
19866       assert( sqlite3MemdebugHasType(p, MEMTYPE_SCRATCH) );
19867       assert( sqlite3MemdebugNoType(p, ~MEMTYPE_SCRATCH) );
19868       sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
19869       if( sqlite3GlobalConfig.bMemstat ){
19870         int iSize = sqlite3MallocSize(p);
19871         sqlite3_mutex_enter(mem0.mutex);
19872         sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, -iSize);
19873         sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize);
19874         sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, -1);
19875         sqlite3GlobalConfig.m.xFree(p);
19876         sqlite3_mutex_leave(mem0.mutex);
19877       }else{
19878         sqlite3GlobalConfig.m.xFree(p);
19879       }
19880     }
19881   }
19882 }
19883 
19884 /*
19885 ** TRUE if p is a lookaside memory allocation from db
19886 */
19887 #ifndef SQLITE_OMIT_LOOKASIDE
19888 static int isLookaside(sqlite3 *db, void *p){
19889   return p>=db->lookaside.pStart && p<db->lookaside.pEnd;
19890 }
19891 #else
19892 #define isLookaside(A,B) 0
19893 #endif
19894 
19895 /*
19896 ** Return the size of a memory allocation previously obtained from
19897 ** sqlite3Malloc() or sqlite3_malloc().
19898 */
19899 SQLITE_PRIVATE int sqlite3MallocSize(void *p){
19900   assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
19901   assert( sqlite3MemdebugNoType(p, MEMTYPE_DB) );
19902   return sqlite3GlobalConfig.m.xSize(p);
19903 }
19904 SQLITE_PRIVATE int sqlite3DbMallocSize(sqlite3 *db, void *p){
19905   assert( db!=0 );
19906   assert( sqlite3_mutex_held(db->mutex) );
19907   if( isLookaside(db, p) ){
19908     return db->lookaside.sz;
19909   }else{
19910     assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) );
19911     assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) );
19912     assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) );
19913     return sqlite3GlobalConfig.m.xSize(p);
19914   }
19915 }
19916 
19917 /*
19918 ** Free memory previously obtained from sqlite3Malloc().
19919 */
19920 SQLITE_API void sqlite3_free(void *p){
19921   if( p==0 ) return;  /* IMP: R-49053-54554 */
19922   assert( sqlite3MemdebugNoType(p, MEMTYPE_DB) );
19923   assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
19924   if( sqlite3GlobalConfig.bMemstat ){
19925     sqlite3_mutex_enter(mem0.mutex);
19926     sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -sqlite3MallocSize(p));
19927     sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, -1);
19928     sqlite3GlobalConfig.m.xFree(p);
19929     sqlite3_mutex_leave(mem0.mutex);
19930   }else{
19931     sqlite3GlobalConfig.m.xFree(p);
19932   }
19933 }
19934 
19935 /*
19936 ** Free memory that might be associated with a particular database
19937 ** connection.
19938 */
19939 SQLITE_PRIVATE void sqlite3DbFree(sqlite3 *db, void *p){
19940   assert( db==0 || sqlite3_mutex_held(db->mutex) );
19941   if( p==0 ) return;
19942   if( db ){
19943     if( db->pnBytesFreed ){
19944       *db->pnBytesFreed += sqlite3DbMallocSize(db, p);
19945       return;
19946     }
19947     if( isLookaside(db, p) ){
19948       LookasideSlot *pBuf = (LookasideSlot*)p;
19949 #if SQLITE_DEBUG
19950       /* Trash all content in the buffer being freed */
19951       memset(p, 0xaa, db->lookaside.sz);
19952 #endif
19953       pBuf->pNext = db->lookaside.pFree;
19954       db->lookaside.pFree = pBuf;
19955       db->lookaside.nOut--;
19956       return;
19957     }
19958   }
19959   assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) );
19960   assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) );
19961   assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) );
19962   sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
19963   sqlite3_free(p);
19964 }
19965 
19966 /*
19967 ** Change the size of an existing memory allocation
19968 */
19969 SQLITE_PRIVATE void *sqlite3Realloc(void *pOld, int nBytes){
19970   int nOld, nNew, nDiff;
19971   void *pNew;
19972   if( pOld==0 ){
19973     return sqlite3Malloc(nBytes); /* IMP: R-28354-25769 */
19974   }
19975   if( nBytes<=0 ){
19976     sqlite3_free(pOld); /* IMP: R-31593-10574 */
19977     return 0;
19978   }
19979   if( nBytes>=0x7fffff00 ){
19980     /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */
19981     return 0;
19982   }
19983   nOld = sqlite3MallocSize(pOld);
19984   /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second
19985   ** argument to xRealloc is always a value returned by a prior call to
19986   ** xRoundup. */
19987   nNew = sqlite3GlobalConfig.m.xRoundup(nBytes);
19988   if( nOld==nNew ){
19989     pNew = pOld;
19990   }else if( sqlite3GlobalConfig.bMemstat ){
19991     sqlite3_mutex_enter(mem0.mutex);
19992     sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, nBytes);
19993     nDiff = nNew - nOld;
19994     if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED) >=
19995           mem0.alarmThreshold-nDiff ){
19996       sqlite3MallocAlarm(nDiff);
19997     }
19998     assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) );
19999     assert( sqlite3MemdebugNoType(pOld, ~MEMTYPE_HEAP) );
20000     pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
20001     if( pNew==0 && mem0.alarmCallback ){
20002       sqlite3MallocAlarm(nBytes);
20003       pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
20004     }
20005     if( pNew ){
20006       nNew = sqlite3MallocSize(pNew);
20007       sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nNew-nOld);
20008     }
20009     sqlite3_mutex_leave(mem0.mutex);
20010   }else{
20011     pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
20012   }
20013   assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-04675-44850 */
20014   return pNew;
20015 }
20016 
20017 /*
20018 ** The public interface to sqlite3Realloc.  Make sure that the memory
20019 ** subsystem is initialized prior to invoking sqliteRealloc.
20020 */
20021 SQLITE_API void *sqlite3_realloc(void *pOld, int n){
20022 #ifndef SQLITE_OMIT_AUTOINIT
20023   if( sqlite3_initialize() ) return 0;
20024 #endif
20025   return sqlite3Realloc(pOld, n);
20026 }
20027 
20028 
20029 /*
20030 ** Allocate and zero memory.
20031 */
20032 SQLITE_PRIVATE void *sqlite3MallocZero(int n){
20033   void *p = sqlite3Malloc(n);
20034   if( p ){
20035     memset(p, 0, n);
20036   }
20037   return p;
20038 }
20039 
20040 /*
20041 ** Allocate and zero memory.  If the allocation fails, make
20042 ** the mallocFailed flag in the connection pointer.
20043 */
20044 SQLITE_PRIVATE void *sqlite3DbMallocZero(sqlite3 *db, int n){
20045   void *p = sqlite3DbMallocRaw(db, n);
20046   if( p ){
20047     memset(p, 0, n);
20048   }
20049   return p;
20050 }
20051 
20052 /*
20053 ** Allocate and zero memory.  If the allocation fails, make
20054 ** the mallocFailed flag in the connection pointer.
20055 **
20056 ** If db!=0 and db->mallocFailed is true (indicating a prior malloc
20057 ** failure on the same database connection) then always return 0.
20058 ** Hence for a particular database connection, once malloc starts
20059 ** failing, it fails consistently until mallocFailed is reset.
20060 ** This is an important assumption.  There are many places in the
20061 ** code that do things like this:
20062 **
20063 **         int *a = (int*)sqlite3DbMallocRaw(db, 100);
20064 **         int *b = (int*)sqlite3DbMallocRaw(db, 200);
20065 **         if( b ) a[10] = 9;
20066 **
20067 ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed
20068 ** that all prior mallocs (ex: "a") worked too.
20069 */
20070 SQLITE_PRIVATE void *sqlite3DbMallocRaw(sqlite3 *db, int n){
20071   void *p;
20072   assert( db==0 || sqlite3_mutex_held(db->mutex) );
20073   assert( db==0 || db->pnBytesFreed==0 );
20074 #ifndef SQLITE_OMIT_LOOKASIDE
20075   if( db ){
20076     LookasideSlot *pBuf;
20077     if( db->mallocFailed ){
20078       return 0;
20079     }
20080     if( db->lookaside.bEnabled ){
20081       if( n>db->lookaside.sz ){
20082         db->lookaside.anStat[1]++;
20083       }else if( (pBuf = db->lookaside.pFree)==0 ){
20084         db->lookaside.anStat[2]++;
20085       }else{
20086         db->lookaside.pFree = pBuf->pNext;
20087         db->lookaside.nOut++;
20088         db->lookaside.anStat[0]++;
20089         if( db->lookaside.nOut>db->lookaside.mxOut ){
20090           db->lookaside.mxOut = db->lookaside.nOut;
20091         }
20092         return (void*)pBuf;
20093       }
20094     }
20095   }
20096 #else
20097   if( db && db->mallocFailed ){
20098     return 0;
20099   }
20100 #endif
20101   p = sqlite3Malloc(n);
20102   if( !p && db ){
20103     db->mallocFailed = 1;
20104   }
20105   sqlite3MemdebugSetType(p, MEMTYPE_DB |
20106          ((db && db->lookaside.bEnabled) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP));
20107   return p;
20108 }
20109 
20110 /*
20111 ** Resize the block of memory pointed to by p to n bytes. If the
20112 ** resize fails, set the mallocFailed flag in the connection object.
20113 */
20114 SQLITE_PRIVATE void *sqlite3DbRealloc(sqlite3 *db, void *p, int n){
20115   void *pNew = 0;
20116   assert( db!=0 );
20117   assert( sqlite3_mutex_held(db->mutex) );
20118   if( db->mallocFailed==0 ){
20119     if( p==0 ){
20120       return sqlite3DbMallocRaw(db, n);
20121     }
20122     if( isLookaside(db, p) ){
20123       if( n<=db->lookaside.sz ){
20124         return p;
20125       }
20126       pNew = sqlite3DbMallocRaw(db, n);
20127       if( pNew ){
20128         memcpy(pNew, p, db->lookaside.sz);
20129         sqlite3DbFree(db, p);
20130       }
20131     }else{
20132       assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) );
20133       assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) );
20134       sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
20135       pNew = sqlite3_realloc(p, n);
20136       if( !pNew ){
20137         sqlite3MemdebugSetType(p, MEMTYPE_DB|MEMTYPE_HEAP);
20138         db->mallocFailed = 1;
20139       }
20140       sqlite3MemdebugSetType(pNew, MEMTYPE_DB |
20141             (db->lookaside.bEnabled ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP));
20142     }
20143   }
20144   return pNew;
20145 }
20146 
20147 /*
20148 ** Attempt to reallocate p.  If the reallocation fails, then free p
20149 ** and set the mallocFailed flag in the database connection.
20150 */
20151 SQLITE_PRIVATE void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, int n){
20152   void *pNew;
20153   pNew = sqlite3DbRealloc(db, p, n);
20154   if( !pNew ){
20155     sqlite3DbFree(db, p);
20156   }
20157   return pNew;
20158 }
20159 
20160 /*
20161 ** Make a copy of a string in memory obtained from sqliteMalloc(). These
20162 ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This
20163 ** is because when memory debugging is turned on, these two functions are
20164 ** called via macros that record the current file and line number in the
20165 ** ThreadData structure.
20166 */
20167 SQLITE_PRIVATE char *sqlite3DbStrDup(sqlite3 *db, const char *z){
20168   char *zNew;
20169   size_t n;
20170   if( z==0 ){
20171     return 0;
20172   }
20173   n = sqlite3Strlen30(z) + 1;
20174   assert( (n&0x7fffffff)==n );
20175   zNew = sqlite3DbMallocRaw(db, (int)n);
20176   if( zNew ){
20177     memcpy(zNew, z, n);
20178   }
20179   return zNew;
20180 }
20181 SQLITE_PRIVATE char *sqlite3DbStrNDup(sqlite3 *db, const char *z, int n){
20182   char *zNew;
20183   if( z==0 ){
20184     return 0;
20185   }
20186   assert( (n&0x7fffffff)==n );
20187   zNew = sqlite3DbMallocRaw(db, n+1);
20188   if( zNew ){
20189     memcpy(zNew, z, n);
20190     zNew[n] = 0;
20191   }
20192   return zNew;
20193 }
20194 
20195 /*
20196 ** Create a string from the zFromat argument and the va_list that follows.
20197 ** Store the string in memory obtained from sqliteMalloc() and make *pz
20198 ** point to that string.
20199 */
20200 SQLITE_PRIVATE void sqlite3SetString(char **pz, sqlite3 *db, const char *zFormat, ...){
20201   va_list ap;
20202   char *z;
20203 
20204   va_start(ap, zFormat);
20205   z = sqlite3VMPrintf(db, zFormat, ap);
20206   va_end(ap);
20207   sqlite3DbFree(db, *pz);
20208   *pz = z;
20209 }
20210 
20211 
20212 /*
20213 ** This function must be called before exiting any API function (i.e.
20214 ** returning control to the user) that has called sqlite3_malloc or
20215 ** sqlite3_realloc.
20216 **
20217 ** The returned value is normally a copy of the second argument to this
20218 ** function. However, if a malloc() failure has occurred since the previous
20219 ** invocation SQLITE_NOMEM is returned instead.
20220 **
20221 ** If the first argument, db, is not NULL and a malloc() error has occurred,
20222 ** then the connection error-code (the value returned by sqlite3_errcode())
20223 ** is set to SQLITE_NOMEM.
20224 */
20225 SQLITE_PRIVATE int sqlite3ApiExit(sqlite3* db, int rc){
20226   /* If the db handle is not NULL, then we must hold the connection handle
20227   ** mutex here. Otherwise the read (and possible write) of db->mallocFailed
20228   ** is unsafe, as is the call to sqlite3Error().
20229   */
20230   assert( !db || sqlite3_mutex_held(db->mutex) );
20231   if( db && (db->mallocFailed || rc==SQLITE_IOERR_NOMEM) ){
20232     sqlite3Error(db, SQLITE_NOMEM, 0);
20233     db->mallocFailed = 0;
20234     rc = SQLITE_NOMEM;
20235   }
20236   return rc & (db ? db->errMask : 0xff);
20237 }
20238 
20239 /************** End of malloc.c **********************************************/
20240 /************** Begin file printf.c ******************************************/
20241 /*
20242 ** The "printf" code that follows dates from the 1980's.  It is in
20243 ** the public domain.  The original comments are included here for
20244 ** completeness.  They are very out-of-date but might be useful as
20245 ** an historical reference.  Most of the "enhancements" have been backed
20246 ** out so that the functionality is now the same as standard printf().
20247 **
20248 **************************************************************************
20249 **
20250 ** This file contains code for a set of "printf"-like routines.  These
20251 ** routines format strings much like the printf() from the standard C
20252 ** library, though the implementation here has enhancements to support
20253 ** SQLlite.
20254 */
20255 
20256 /*
20257 ** Conversion types fall into various categories as defined by the
20258 ** following enumeration.
20259 */
20260 #define etRADIX       1 /* Integer types.  %d, %x, %o, and so forth */
20261 #define etFLOAT       2 /* Floating point.  %f */
20262 #define etEXP         3 /* Exponentional notation. %e and %E */
20263 #define etGENERIC     4 /* Floating or exponential, depending on exponent. %g */
20264 #define etSIZE        5 /* Return number of characters processed so far. %n */
20265 #define etSTRING      6 /* Strings. %s */
20266 #define etDYNSTRING   7 /* Dynamically allocated strings. %z */
20267 #define etPERCENT     8 /* Percent symbol. %% */
20268 #define etCHARX       9 /* Characters. %c */
20269 /* The rest are extensions, not normally found in printf() */
20270 #define etSQLESCAPE  10 /* Strings with '\'' doubled.  %q */
20271 #define etSQLESCAPE2 11 /* Strings with '\'' doubled and enclosed in '',
20272                           NULL pointers replaced by SQL NULL.  %Q */
20273 #define etTOKEN      12 /* a pointer to a Token structure */
20274 #define etSRCLIST    13 /* a pointer to a SrcList */
20275 #define etPOINTER    14 /* The %p conversion */
20276 #define etSQLESCAPE3 15 /* %w -> Strings with '\"' doubled */
20277 #define etORDINAL    16 /* %r -> 1st, 2nd, 3rd, 4th, etc.  English only */
20278 
20279 #define etINVALID     0 /* Any unrecognized conversion type */
20280 
20281 
20282 /*
20283 ** An "etByte" is an 8-bit unsigned value.
20284 */
20285 typedef unsigned char etByte;
20286 
20287 /*
20288 ** Each builtin conversion character (ex: the 'd' in "%d") is described
20289 ** by an instance of the following structure
20290 */
20291 typedef struct et_info {   /* Information about each format field */
20292   char fmttype;            /* The format field code letter */
20293   etByte base;             /* The base for radix conversion */
20294   etByte flags;            /* One or more of FLAG_ constants below */
20295   etByte type;             /* Conversion paradigm */
20296   etByte charset;          /* Offset into aDigits[] of the digits string */
20297   etByte prefix;           /* Offset into aPrefix[] of the prefix string */
20298 } et_info;
20299 
20300 /*
20301 ** Allowed values for et_info.flags
20302 */
20303 #define FLAG_SIGNED  1     /* True if the value to convert is signed */
20304 #define FLAG_INTERN  2     /* True if for internal use only */
20305 #define FLAG_STRING  4     /* Allow infinity precision */
20306 
20307 
20308 /*
20309 ** The following table is searched linearly, so it is good to put the
20310 ** most frequently used conversion types first.
20311 */
20312 static const char aDigits[] = "0123456789ABCDEF0123456789abcdef";
20313 static const char aPrefix[] = "-x0\000X0";
20314 static const et_info fmtinfo[] = {
20315   {  'd', 10, 1, etRADIX,      0,  0 },
20316   {  's',  0, 4, etSTRING,     0,  0 },
20317   {  'g',  0, 1, etGENERIC,    30, 0 },
20318   {  'z',  0, 4, etDYNSTRING,  0,  0 },
20319   {  'q',  0, 4, etSQLESCAPE,  0,  0 },
20320   {  'Q',  0, 4, etSQLESCAPE2, 0,  0 },
20321   {  'w',  0, 4, etSQLESCAPE3, 0,  0 },
20322   {  'c',  0, 0, etCHARX,      0,  0 },
20323   {  'o',  8, 0, etRADIX,      0,  2 },
20324   {  'u', 10, 0, etRADIX,      0,  0 },
20325   {  'x', 16, 0, etRADIX,      16, 1 },
20326   {  'X', 16, 0, etRADIX,      0,  4 },
20327 #ifndef SQLITE_OMIT_FLOATING_POINT
20328   {  'f',  0, 1, etFLOAT,      0,  0 },
20329   {  'e',  0, 1, etEXP,        30, 0 },
20330   {  'E',  0, 1, etEXP,        14, 0 },
20331   {  'G',  0, 1, etGENERIC,    14, 0 },
20332 #endif
20333   {  'i', 10, 1, etRADIX,      0,  0 },
20334   {  'n',  0, 0, etSIZE,       0,  0 },
20335   {  '%',  0, 0, etPERCENT,    0,  0 },
20336   {  'p', 16, 0, etPOINTER,    0,  1 },
20337 
20338 /* All the rest have the FLAG_INTERN bit set and are thus for internal
20339 ** use only */
20340   {  'T',  0, 2, etTOKEN,      0,  0 },
20341   {  'S',  0, 2, etSRCLIST,    0,  0 },
20342   {  'r', 10, 3, etORDINAL,    0,  0 },
20343 };
20344 
20345 /*
20346 ** If SQLITE_OMIT_FLOATING_POINT is defined, then none of the floating point
20347 ** conversions will work.
20348 */
20349 #ifndef SQLITE_OMIT_FLOATING_POINT
20350 /*
20351 ** "*val" is a double such that 0.1 <= *val < 10.0
20352 ** Return the ascii code for the leading digit of *val, then
20353 ** multiply "*val" by 10.0 to renormalize.
20354 **
20355 ** Example:
20356 **     input:     *val = 3.14159
20357 **     output:    *val = 1.4159    function return = '3'
20358 **
20359 ** The counter *cnt is incremented each time.  After counter exceeds
20360 ** 16 (the number of significant digits in a 64-bit float) '0' is
20361 ** always returned.
20362 */
20363 static char et_getdigit(LONGDOUBLE_TYPE *val, int *cnt){
20364   int digit;
20365   LONGDOUBLE_TYPE d;
20366   if( (*cnt)<=0 ) return '0';
20367   (*cnt)--;
20368   digit = (int)*val;
20369   d = digit;
20370   digit += '0';
20371   *val = (*val - d)*10.0;
20372   return (char)digit;
20373 }
20374 #endif /* SQLITE_OMIT_FLOATING_POINT */
20375 
20376 /*
20377 ** Set the StrAccum object to an error mode.
20378 */
20379 static void setStrAccumError(StrAccum *p, u8 eError){
20380   p->accError = eError;
20381   p->nAlloc = 0;
20382 }
20383 
20384 /*
20385 ** Extra argument values from a PrintfArguments object
20386 */
20387 static sqlite3_int64 getIntArg(PrintfArguments *p){
20388   if( p->nArg<=p->nUsed ) return 0;
20389   return sqlite3_value_int64(p->apArg[p->nUsed++]);
20390 }
20391 static double getDoubleArg(PrintfArguments *p){
20392   if( p->nArg<=p->nUsed ) return 0.0;
20393   return sqlite3_value_double(p->apArg[p->nUsed++]);
20394 }
20395 static char *getTextArg(PrintfArguments *p){
20396   if( p->nArg<=p->nUsed ) return 0;
20397   return (char*)sqlite3_value_text(p->apArg[p->nUsed++]);
20398 }
20399 
20400 
20401 /*
20402 ** On machines with a small stack size, you can redefine the
20403 ** SQLITE_PRINT_BUF_SIZE to be something smaller, if desired.
20404 */
20405 #ifndef SQLITE_PRINT_BUF_SIZE
20406 # define SQLITE_PRINT_BUF_SIZE 70
20407 #endif
20408 #define etBUFSIZE SQLITE_PRINT_BUF_SIZE  /* Size of the output buffer */
20409 
20410 /*
20411 ** Render a string given by "fmt" into the StrAccum object.
20412 */
20413 SQLITE_PRIVATE void sqlite3VXPrintf(
20414   StrAccum *pAccum,          /* Accumulate results here */
20415   u32 bFlags,                /* SQLITE_PRINTF_* flags */
20416   const char *fmt,           /* Format string */
20417   va_list ap                 /* arguments */
20418 ){
20419   int c;                     /* Next character in the format string */
20420   char *bufpt;               /* Pointer to the conversion buffer */
20421   int precision;             /* Precision of the current field */
20422   int length;                /* Length of the field */
20423   int idx;                   /* A general purpose loop counter */
20424   int width;                 /* Width of the current field */
20425   etByte flag_leftjustify;   /* True if "-" flag is present */
20426   etByte flag_plussign;      /* True if "+" flag is present */
20427   etByte flag_blanksign;     /* True if " " flag is present */
20428   etByte flag_alternateform; /* True if "#" flag is present */
20429   etByte flag_altform2;      /* True if "!" flag is present */
20430   etByte flag_zeropad;       /* True if field width constant starts with zero */
20431   etByte flag_long;          /* True if "l" flag is present */
20432   etByte flag_longlong;      /* True if the "ll" flag is present */
20433   etByte done;               /* Loop termination flag */
20434   etByte xtype = 0;          /* Conversion paradigm */
20435   u8 bArgList;               /* True for SQLITE_PRINTF_SQLFUNC */
20436   u8 useIntern;              /* Ok to use internal conversions (ex: %T) */
20437   char prefix;               /* Prefix character.  "+" or "-" or " " or '\0'. */
20438   sqlite_uint64 longvalue;   /* Value for integer types */
20439   LONGDOUBLE_TYPE realvalue; /* Value for real types */
20440   const et_info *infop;      /* Pointer to the appropriate info structure */
20441   char *zOut;                /* Rendering buffer */
20442   int nOut;                  /* Size of the rendering buffer */
20443   char *zExtra;              /* Malloced memory used by some conversion */
20444 #ifndef SQLITE_OMIT_FLOATING_POINT
20445   int  exp, e2;              /* exponent of real numbers */
20446   int nsd;                   /* Number of significant digits returned */
20447   double rounder;            /* Used for rounding floating point values */
20448   etByte flag_dp;            /* True if decimal point should be shown */
20449   etByte flag_rtz;           /* True if trailing zeros should be removed */
20450 #endif
20451   PrintfArguments *pArgList = 0; /* Arguments for SQLITE_PRINTF_SQLFUNC */
20452   char buf[etBUFSIZE];       /* Conversion buffer */
20453 
20454   bufpt = 0;
20455   if( bFlags ){
20456     if( (bArgList = (bFlags & SQLITE_PRINTF_SQLFUNC))!=0 ){
20457       pArgList = va_arg(ap, PrintfArguments*);
20458     }
20459     useIntern = bFlags & SQLITE_PRINTF_INTERNAL;
20460   }else{
20461     bArgList = useIntern = 0;
20462   }
20463   for(; (c=(*fmt))!=0; ++fmt){
20464     if( c!='%' ){
20465       bufpt = (char *)fmt;
20466       while( (c=(*++fmt))!='%' && c!=0 ){};
20467       sqlite3StrAccumAppend(pAccum, bufpt, (int)(fmt - bufpt));
20468       if( c==0 ) break;
20469     }
20470     if( (c=(*++fmt))==0 ){
20471       sqlite3StrAccumAppend(pAccum, "%", 1);
20472       break;
20473     }
20474     /* Find out what flags are present */
20475     flag_leftjustify = flag_plussign = flag_blanksign =
20476      flag_alternateform = flag_altform2 = flag_zeropad = 0;
20477     done = 0;
20478     do{
20479       switch( c ){
20480         case '-':   flag_leftjustify = 1;     break;
20481         case '+':   flag_plussign = 1;        break;
20482         case ' ':   flag_blanksign = 1;       break;
20483         case '#':   flag_alternateform = 1;   break;
20484         case '!':   flag_altform2 = 1;        break;
20485         case '0':   flag_zeropad = 1;         break;
20486         default:    done = 1;                 break;
20487       }
20488     }while( !done && (c=(*++fmt))!=0 );
20489     /* Get the field width */
20490     width = 0;
20491     if( c=='*' ){
20492       if( bArgList ){
20493         width = (int)getIntArg(pArgList);
20494       }else{
20495         width = va_arg(ap,int);
20496       }
20497       if( width<0 ){
20498         flag_leftjustify = 1;
20499         width = -width;
20500       }
20501       c = *++fmt;
20502     }else{
20503       while( c>='0' && c<='9' ){
20504         width = width*10 + c - '0';
20505         c = *++fmt;
20506       }
20507     }
20508     /* Get the precision */
20509     if( c=='.' ){
20510       precision = 0;
20511       c = *++fmt;
20512       if( c=='*' ){
20513         if( bArgList ){
20514           precision = (int)getIntArg(pArgList);
20515         }else{
20516           precision = va_arg(ap,int);
20517         }
20518         if( precision<0 ) precision = -precision;
20519         c = *++fmt;
20520       }else{
20521         while( c>='0' && c<='9' ){
20522           precision = precision*10 + c - '0';
20523           c = *++fmt;
20524         }
20525       }
20526     }else{
20527       precision = -1;
20528     }
20529     /* Get the conversion type modifier */
20530     if( c=='l' ){
20531       flag_long = 1;
20532       c = *++fmt;
20533       if( c=='l' ){
20534         flag_longlong = 1;
20535         c = *++fmt;
20536       }else{
20537         flag_longlong = 0;
20538       }
20539     }else{
20540       flag_long = flag_longlong = 0;
20541     }
20542     /* Fetch the info entry for the field */
20543     infop = &fmtinfo[0];
20544     xtype = etINVALID;
20545     for(idx=0; idx<ArraySize(fmtinfo); idx++){
20546       if( c==fmtinfo[idx].fmttype ){
20547         infop = &fmtinfo[idx];
20548         if( useIntern || (infop->flags & FLAG_INTERN)==0 ){
20549           xtype = infop->type;
20550         }else{
20551           return;
20552         }
20553         break;
20554       }
20555     }
20556     zExtra = 0;
20557 
20558     /*
20559     ** At this point, variables are initialized as follows:
20560     **
20561     **   flag_alternateform          TRUE if a '#' is present.
20562     **   flag_altform2               TRUE if a '!' is present.
20563     **   flag_plussign               TRUE if a '+' is present.
20564     **   flag_leftjustify            TRUE if a '-' is present or if the
20565     **                               field width was negative.
20566     **   flag_zeropad                TRUE if the width began with 0.
20567     **   flag_long                   TRUE if the letter 'l' (ell) prefixed
20568     **                               the conversion character.
20569     **   flag_longlong               TRUE if the letter 'll' (ell ell) prefixed
20570     **                               the conversion character.
20571     **   flag_blanksign              TRUE if a ' ' is present.
20572     **   width                       The specified field width.  This is
20573     **                               always non-negative.  Zero is the default.
20574     **   precision                   The specified precision.  The default
20575     **                               is -1.
20576     **   xtype                       The class of the conversion.
20577     **   infop                       Pointer to the appropriate info struct.
20578     */
20579     switch( xtype ){
20580       case etPOINTER:
20581         flag_longlong = sizeof(char*)==sizeof(i64);
20582         flag_long = sizeof(char*)==sizeof(long int);
20583         /* Fall through into the next case */
20584       case etORDINAL:
20585       case etRADIX:
20586         if( infop->flags & FLAG_SIGNED ){
20587           i64 v;
20588           if( bArgList ){
20589             v = getIntArg(pArgList);
20590           }else if( flag_longlong ){
20591             v = va_arg(ap,i64);
20592           }else if( flag_long ){
20593             v = va_arg(ap,long int);
20594           }else{
20595             v = va_arg(ap,int);
20596           }
20597           if( v<0 ){
20598             if( v==SMALLEST_INT64 ){
20599               longvalue = ((u64)1)<<63;
20600             }else{
20601               longvalue = -v;
20602             }
20603             prefix = '-';
20604           }else{
20605             longvalue = v;
20606             if( flag_plussign )        prefix = '+';
20607             else if( flag_blanksign )  prefix = ' ';
20608             else                       prefix = 0;
20609           }
20610         }else{
20611           if( bArgList ){
20612             longvalue = (u64)getIntArg(pArgList);
20613           }else if( flag_longlong ){
20614             longvalue = va_arg(ap,u64);
20615           }else if( flag_long ){
20616             longvalue = va_arg(ap,unsigned long int);
20617           }else{
20618             longvalue = va_arg(ap,unsigned int);
20619           }
20620           prefix = 0;
20621         }
20622         if( longvalue==0 ) flag_alternateform = 0;
20623         if( flag_zeropad && precision<width-(prefix!=0) ){
20624           precision = width-(prefix!=0);
20625         }
20626         if( precision<etBUFSIZE-10 ){
20627           nOut = etBUFSIZE;
20628           zOut = buf;
20629         }else{
20630           nOut = precision + 10;
20631           zOut = zExtra = sqlite3Malloc( nOut );
20632           if( zOut==0 ){
20633             setStrAccumError(pAccum, STRACCUM_NOMEM);
20634             return;
20635           }
20636         }
20637         bufpt = &zOut[nOut-1];
20638         if( xtype==etORDINAL ){
20639           static const char zOrd[] = "thstndrd";
20640           int x = (int)(longvalue % 10);
20641           if( x>=4 || (longvalue/10)%10==1 ){
20642             x = 0;
20643           }
20644           *(--bufpt) = zOrd[x*2+1];
20645           *(--bufpt) = zOrd[x*2];
20646         }
20647         {
20648           const char *cset = &aDigits[infop->charset];
20649           u8 base = infop->base;
20650           do{                                           /* Convert to ascii */
20651             *(--bufpt) = cset[longvalue%base];
20652             longvalue = longvalue/base;
20653           }while( longvalue>0 );
20654         }
20655         length = (int)(&zOut[nOut-1]-bufpt);
20656         for(idx=precision-length; idx>0; idx--){
20657           *(--bufpt) = '0';                             /* Zero pad */
20658         }
20659         if( prefix ) *(--bufpt) = prefix;               /* Add sign */
20660         if( flag_alternateform && infop->prefix ){      /* Add "0" or "0x" */
20661           const char *pre;
20662           char x;
20663           pre = &aPrefix[infop->prefix];
20664           for(; (x=(*pre))!=0; pre++) *(--bufpt) = x;
20665         }
20666         length = (int)(&zOut[nOut-1]-bufpt);
20667         break;
20668       case etFLOAT:
20669       case etEXP:
20670       case etGENERIC:
20671         if( bArgList ){
20672           realvalue = getDoubleArg(pArgList);
20673         }else{
20674           realvalue = va_arg(ap,double);
20675         }
20676 #ifdef SQLITE_OMIT_FLOATING_POINT
20677         length = 0;
20678 #else
20679         if( precision<0 ) precision = 6;         /* Set default precision */
20680         if( realvalue<0.0 ){
20681           realvalue = -realvalue;
20682           prefix = '-';
20683         }else{
20684           if( flag_plussign )          prefix = '+';
20685           else if( flag_blanksign )    prefix = ' ';
20686           else                         prefix = 0;
20687         }
20688         if( xtype==etGENERIC && precision>0 ) precision--;
20689         for(idx=precision, rounder=0.5; idx>0; idx--, rounder*=0.1){}
20690         if( xtype==etFLOAT ) realvalue += rounder;
20691         /* Normalize realvalue to within 10.0 > realvalue >= 1.0 */
20692         exp = 0;
20693         if( sqlite3IsNaN((double)realvalue) ){
20694           bufpt = "NaN";
20695           length = 3;
20696           break;
20697         }
20698         if( realvalue>0.0 ){
20699           LONGDOUBLE_TYPE scale = 1.0;
20700           while( realvalue>=1e100*scale && exp<=350 ){ scale *= 1e100;exp+=100;}
20701           while( realvalue>=1e64*scale && exp<=350 ){ scale *= 1e64; exp+=64; }
20702           while( realvalue>=1e8*scale && exp<=350 ){ scale *= 1e8; exp+=8; }
20703           while( realvalue>=10.0*scale && exp<=350 ){ scale *= 10.0; exp++; }
20704           realvalue /= scale;
20705           while( realvalue<1e-8 ){ realvalue *= 1e8; exp-=8; }
20706           while( realvalue<1.0 ){ realvalue *= 10.0; exp--; }
20707           if( exp>350 ){
20708             if( prefix=='-' ){
20709               bufpt = "-Inf";
20710             }else if( prefix=='+' ){
20711               bufpt = "+Inf";
20712             }else{
20713               bufpt = "Inf";
20714             }
20715             length = sqlite3Strlen30(bufpt);
20716             break;
20717           }
20718         }
20719         bufpt = buf;
20720         /*
20721         ** If the field type is etGENERIC, then convert to either etEXP
20722         ** or etFLOAT, as appropriate.
20723         */
20724         if( xtype!=etFLOAT ){
20725           realvalue += rounder;
20726           if( realvalue>=10.0 ){ realvalue *= 0.1; exp++; }
20727         }
20728         if( xtype==etGENERIC ){
20729           flag_rtz = !flag_alternateform;
20730           if( exp<-4 || exp>precision ){
20731             xtype = etEXP;
20732           }else{
20733             precision = precision - exp;
20734             xtype = etFLOAT;
20735           }
20736         }else{
20737           flag_rtz = flag_altform2;
20738         }
20739         if( xtype==etEXP ){
20740           e2 = 0;
20741         }else{
20742           e2 = exp;
20743         }
20744         if( MAX(e2,0)+precision+width > etBUFSIZE - 15 ){
20745           bufpt = zExtra = sqlite3Malloc( MAX(e2,0)+precision+width+15 );
20746           if( bufpt==0 ){
20747             setStrAccumError(pAccum, STRACCUM_NOMEM);
20748             return;
20749           }
20750         }
20751         zOut = bufpt;
20752         nsd = 16 + flag_altform2*10;
20753         flag_dp = (precision>0 ?1:0) | flag_alternateform | flag_altform2;
20754         /* The sign in front of the number */
20755         if( prefix ){
20756           *(bufpt++) = prefix;
20757         }
20758         /* Digits prior to the decimal point */
20759         if( e2<0 ){
20760           *(bufpt++) = '0';
20761         }else{
20762           for(; e2>=0; e2--){
20763             *(bufpt++) = et_getdigit(&realvalue,&nsd);
20764           }
20765         }
20766         /* The decimal point */
20767         if( flag_dp ){
20768           *(bufpt++) = '.';
20769         }
20770         /* "0" digits after the decimal point but before the first
20771         ** significant digit of the number */
20772         for(e2++; e2<0; precision--, e2++){
20773           assert( precision>0 );
20774           *(bufpt++) = '0';
20775         }
20776         /* Significant digits after the decimal point */
20777         while( (precision--)>0 ){
20778           *(bufpt++) = et_getdigit(&realvalue,&nsd);
20779         }
20780         /* Remove trailing zeros and the "." if no digits follow the "." */
20781         if( flag_rtz && flag_dp ){
20782           while( bufpt[-1]=='0' ) *(--bufpt) = 0;
20783           assert( bufpt>zOut );
20784           if( bufpt[-1]=='.' ){
20785             if( flag_altform2 ){
20786               *(bufpt++) = '0';
20787             }else{
20788               *(--bufpt) = 0;
20789             }
20790           }
20791         }
20792         /* Add the "eNNN" suffix */
20793         if( xtype==etEXP ){
20794           *(bufpt++) = aDigits[infop->charset];
20795           if( exp<0 ){
20796             *(bufpt++) = '-'; exp = -exp;
20797           }else{
20798             *(bufpt++) = '+';
20799           }
20800           if( exp>=100 ){
20801             *(bufpt++) = (char)((exp/100)+'0');        /* 100's digit */
20802             exp %= 100;
20803           }
20804           *(bufpt++) = (char)(exp/10+'0');             /* 10's digit */
20805           *(bufpt++) = (char)(exp%10+'0');             /* 1's digit */
20806         }
20807         *bufpt = 0;
20808 
20809         /* The converted number is in buf[] and zero terminated. Output it.
20810         ** Note that the number is in the usual order, not reversed as with
20811         ** integer conversions. */
20812         length = (int)(bufpt-zOut);
20813         bufpt = zOut;
20814 
20815         /* Special case:  Add leading zeros if the flag_zeropad flag is
20816         ** set and we are not left justified */
20817         if( flag_zeropad && !flag_leftjustify && length < width){
20818           int i;
20819           int nPad = width - length;
20820           for(i=width; i>=nPad; i--){
20821             bufpt[i] = bufpt[i-nPad];
20822           }
20823           i = prefix!=0;
20824           while( nPad-- ) bufpt[i++] = '0';
20825           length = width;
20826         }
20827 #endif /* !defined(SQLITE_OMIT_FLOATING_POINT) */
20828         break;
20829       case etSIZE:
20830         if( !bArgList ){
20831           *(va_arg(ap,int*)) = pAccum->nChar;
20832         }
20833         length = width = 0;
20834         break;
20835       case etPERCENT:
20836         buf[0] = '%';
20837         bufpt = buf;
20838         length = 1;
20839         break;
20840       case etCHARX:
20841         if( bArgList ){
20842           bufpt = getTextArg(pArgList);
20843           c = bufpt ? bufpt[0] : 0;
20844         }else{
20845           c = va_arg(ap,int);
20846         }
20847         buf[0] = (char)c;
20848         if( precision>=0 ){
20849           for(idx=1; idx<precision; idx++) buf[idx] = (char)c;
20850           length = precision;
20851         }else{
20852           length =1;
20853         }
20854         bufpt = buf;
20855         break;
20856       case etSTRING:
20857       case etDYNSTRING:
20858         if( bArgList ){
20859           bufpt = getTextArg(pArgList);
20860         }else{
20861           bufpt = va_arg(ap,char*);
20862         }
20863         if( bufpt==0 ){
20864           bufpt = "";
20865         }else if( xtype==etDYNSTRING && !bArgList ){
20866           zExtra = bufpt;
20867         }
20868         if( precision>=0 ){
20869           for(length=0; length<precision && bufpt[length]; length++){}
20870         }else{
20871           length = sqlite3Strlen30(bufpt);
20872         }
20873         break;
20874       case etSQLESCAPE:
20875       case etSQLESCAPE2:
20876       case etSQLESCAPE3: {
20877         int i, j, k, n, isnull;
20878         int needQuote;
20879         char ch;
20880         char q = ((xtype==etSQLESCAPE3)?'"':'\'');   /* Quote character */
20881         char *escarg;
20882 
20883         if( bArgList ){
20884           escarg = getTextArg(pArgList);
20885         }else{
20886           escarg = va_arg(ap,char*);
20887         }
20888         isnull = escarg==0;
20889         if( isnull ) escarg = (xtype==etSQLESCAPE2 ? "NULL" : "(NULL)");
20890         k = precision;
20891         for(i=n=0; k!=0 && (ch=escarg[i])!=0; i++, k--){
20892           if( ch==q )  n++;
20893         }
20894         needQuote = !isnull && xtype==etSQLESCAPE2;
20895         n += i + 1 + needQuote*2;
20896         if( n>etBUFSIZE ){
20897           bufpt = zExtra = sqlite3Malloc( n );
20898           if( bufpt==0 ){
20899             setStrAccumError(pAccum, STRACCUM_NOMEM);
20900             return;
20901           }
20902         }else{
20903           bufpt = buf;
20904         }
20905         j = 0;
20906         if( needQuote ) bufpt[j++] = q;
20907         k = i;
20908         for(i=0; i<k; i++){
20909           bufpt[j++] = ch = escarg[i];
20910           if( ch==q ) bufpt[j++] = ch;
20911         }
20912         if( needQuote ) bufpt[j++] = q;
20913         bufpt[j] = 0;
20914         length = j;
20915         /* The precision in %q and %Q means how many input characters to
20916         ** consume, not the length of the output...
20917         ** if( precision>=0 && precision<length ) length = precision; */
20918         break;
20919       }
20920       case etTOKEN: {
20921         Token *pToken = va_arg(ap, Token*);
20922         assert( bArgList==0 );
20923         if( pToken && pToken->n ){
20924           sqlite3StrAccumAppend(pAccum, (const char*)pToken->z, pToken->n);
20925         }
20926         length = width = 0;
20927         break;
20928       }
20929       case etSRCLIST: {
20930         SrcList *pSrc = va_arg(ap, SrcList*);
20931         int k = va_arg(ap, int);
20932         struct SrcList_item *pItem = &pSrc->a[k];
20933         assert( bArgList==0 );
20934         assert( k>=0 && k<pSrc->nSrc );
20935         if( pItem->zDatabase ){
20936           sqlite3StrAccumAppendAll(pAccum, pItem->zDatabase);
20937           sqlite3StrAccumAppend(pAccum, ".", 1);
20938         }
20939         sqlite3StrAccumAppendAll(pAccum, pItem->zName);
20940         length = width = 0;
20941         break;
20942       }
20943       default: {
20944         assert( xtype==etINVALID );
20945         return;
20946       }
20947     }/* End switch over the format type */
20948     /*
20949     ** The text of the conversion is pointed to by "bufpt" and is
20950     ** "length" characters long.  The field width is "width".  Do
20951     ** the output.
20952     */
20953     width -= length;
20954     if( width>0 && !flag_leftjustify ) sqlite3AppendSpace(pAccum, width);
20955     sqlite3StrAccumAppend(pAccum, bufpt, length);
20956     if( width>0 && flag_leftjustify ) sqlite3AppendSpace(pAccum, width);
20957 
20958     if( zExtra ) sqlite3_free(zExtra);
20959   }/* End for loop over the format string */
20960 } /* End of function */
20961 
20962 /*
20963 ** Enlarge the memory allocation on a StrAccum object so that it is
20964 ** able to accept at least N more bytes of text.
20965 **
20966 ** Return the number of bytes of text that StrAccum is able to accept
20967 ** after the attempted enlargement.  The value returned might be zero.
20968 */
20969 static int sqlite3StrAccumEnlarge(StrAccum *p, int N){
20970   char *zNew;
20971   assert( p->nChar+N >= p->nAlloc ); /* Only called if really needed */
20972   if( p->accError ){
20973     testcase(p->accError==STRACCUM_TOOBIG);
20974     testcase(p->accError==STRACCUM_NOMEM);
20975     return 0;
20976   }
20977   if( !p->useMalloc ){
20978     N = p->nAlloc - p->nChar - 1;
20979     setStrAccumError(p, STRACCUM_TOOBIG);
20980     return N;
20981   }else{
20982     char *zOld = (p->zText==p->zBase ? 0 : p->zText);
20983     i64 szNew = p->nChar;
20984     szNew += N + 1;
20985     if( szNew > p->mxAlloc ){
20986       sqlite3StrAccumReset(p);
20987       setStrAccumError(p, STRACCUM_TOOBIG);
20988       return 0;
20989     }else{
20990       p->nAlloc = (int)szNew;
20991     }
20992     if( p->useMalloc==1 ){
20993       zNew = sqlite3DbRealloc(p->db, zOld, p->nAlloc);
20994     }else{
20995       zNew = sqlite3_realloc(zOld, p->nAlloc);
20996     }
20997     if( zNew ){
20998       assert( p->zText!=0 || p->nChar==0 );
20999       if( zOld==0 && p->nChar>0 ) memcpy(zNew, p->zText, p->nChar);
21000       p->zText = zNew;
21001     }else{
21002       sqlite3StrAccumReset(p);
21003       setStrAccumError(p, STRACCUM_NOMEM);
21004       return 0;
21005     }
21006   }
21007   return N;
21008 }
21009 
21010 /*
21011 ** Append N space characters to the given string buffer.
21012 */
21013 SQLITE_PRIVATE void sqlite3AppendSpace(StrAccum *p, int N){
21014   if( p->nChar+N >= p->nAlloc && (N = sqlite3StrAccumEnlarge(p, N))<=0 ) return;
21015   while( (N--)>0 ) p->zText[p->nChar++] = ' ';
21016 }
21017 
21018 /*
21019 ** The StrAccum "p" is not large enough to accept N new bytes of z[].
21020 ** So enlarge if first, then do the append.
21021 **
21022 ** This is a helper routine to sqlite3StrAccumAppend() that does special-case
21023 ** work (enlarging the buffer) using tail recursion, so that the
21024 ** sqlite3StrAccumAppend() routine can use fast calling semantics.
21025 */
21026 static void enlargeAndAppend(StrAccum *p, const char *z, int N){
21027   N = sqlite3StrAccumEnlarge(p, N);
21028   if( N>0 ){
21029     memcpy(&p->zText[p->nChar], z, N);
21030     p->nChar += N;
21031   }
21032 }
21033 
21034 /*
21035 ** Append N bytes of text from z to the StrAccum object.  Increase the
21036 ** size of the memory allocation for StrAccum if necessary.
21037 */
21038 SQLITE_PRIVATE void sqlite3StrAccumAppend(StrAccum *p, const char *z, int N){
21039   assert( z!=0 );
21040   assert( p->zText!=0 || p->nChar==0 || p->accError );
21041   assert( N>=0 );
21042   assert( p->accError==0 || p->nAlloc==0 );
21043   if( p->nChar+N >= p->nAlloc ){
21044     enlargeAndAppend(p,z,N);
21045     return;
21046   }
21047   assert( p->zText );
21048   memcpy(&p->zText[p->nChar], z, N);
21049   p->nChar += N;
21050 }
21051 
21052 /*
21053 ** Append the complete text of zero-terminated string z[] to the p string.
21054 */
21055 SQLITE_PRIVATE void sqlite3StrAccumAppendAll(StrAccum *p, const char *z){
21056   sqlite3StrAccumAppend(p, z, sqlite3Strlen30(z));
21057 }
21058 
21059 
21060 /*
21061 ** Finish off a string by making sure it is zero-terminated.
21062 ** Return a pointer to the resulting string.  Return a NULL
21063 ** pointer if any kind of error was encountered.
21064 */
21065 SQLITE_PRIVATE char *sqlite3StrAccumFinish(StrAccum *p){
21066   if( p->zText ){
21067     p->zText[p->nChar] = 0;
21068     if( p->useMalloc && p->zText==p->zBase ){
21069       if( p->useMalloc==1 ){
21070         p->zText = sqlite3DbMallocRaw(p->db, p->nChar+1 );
21071       }else{
21072         p->zText = sqlite3_malloc(p->nChar+1);
21073       }
21074       if( p->zText ){
21075         memcpy(p->zText, p->zBase, p->nChar+1);
21076       }else{
21077         setStrAccumError(p, STRACCUM_NOMEM);
21078       }
21079     }
21080   }
21081   return p->zText;
21082 }
21083 
21084 /*
21085 ** Reset an StrAccum string.  Reclaim all malloced memory.
21086 */
21087 SQLITE_PRIVATE void sqlite3StrAccumReset(StrAccum *p){
21088   if( p->zText!=p->zBase ){
21089     if( p->useMalloc==1 ){
21090       sqlite3DbFree(p->db, p->zText);
21091     }else{
21092       sqlite3_free(p->zText);
21093     }
21094   }
21095   p->zText = 0;
21096 }
21097 
21098 /*
21099 ** Initialize a string accumulator
21100 */
21101 SQLITE_PRIVATE void sqlite3StrAccumInit(StrAccum *p, char *zBase, int n, int mx){
21102   p->zText = p->zBase = zBase;
21103   p->db = 0;
21104   p->nChar = 0;
21105   p->nAlloc = n;
21106   p->mxAlloc = mx;
21107   p->useMalloc = 1;
21108   p->accError = 0;
21109 }
21110 
21111 /*
21112 ** Print into memory obtained from sqliteMalloc().  Use the internal
21113 ** %-conversion extensions.
21114 */
21115 SQLITE_PRIVATE char *sqlite3VMPrintf(sqlite3 *db, const char *zFormat, va_list ap){
21116   char *z;
21117   char zBase[SQLITE_PRINT_BUF_SIZE];
21118   StrAccum acc;
21119   assert( db!=0 );
21120   sqlite3StrAccumInit(&acc, zBase, sizeof(zBase),
21121                       db->aLimit[SQLITE_LIMIT_LENGTH]);
21122   acc.db = db;
21123   sqlite3VXPrintf(&acc, SQLITE_PRINTF_INTERNAL, zFormat, ap);
21124   z = sqlite3StrAccumFinish(&acc);
21125   if( acc.accError==STRACCUM_NOMEM ){
21126     db->mallocFailed = 1;
21127   }
21128   return z;
21129 }
21130 
21131 /*
21132 ** Print into memory obtained from sqliteMalloc().  Use the internal
21133 ** %-conversion extensions.
21134 */
21135 SQLITE_PRIVATE char *sqlite3MPrintf(sqlite3 *db, const char *zFormat, ...){
21136   va_list ap;
21137   char *z;
21138   va_start(ap, zFormat);
21139   z = sqlite3VMPrintf(db, zFormat, ap);
21140   va_end(ap);
21141   return z;
21142 }
21143 
21144 /*
21145 ** Like sqlite3MPrintf(), but call sqlite3DbFree() on zStr after formatting
21146 ** the string and before returnning.  This routine is intended to be used
21147 ** to modify an existing string.  For example:
21148 **
21149 **       x = sqlite3MPrintf(db, x, "prefix %s suffix", x);
21150 **
21151 */
21152 SQLITE_PRIVATE char *sqlite3MAppendf(sqlite3 *db, char *zStr, const char *zFormat, ...){
21153   va_list ap;
21154   char *z;
21155   va_start(ap, zFormat);
21156   z = sqlite3VMPrintf(db, zFormat, ap);
21157   va_end(ap);
21158   sqlite3DbFree(db, zStr);
21159   return z;
21160 }
21161 
21162 /*
21163 ** Print into memory obtained from sqlite3_malloc().  Omit the internal
21164 ** %-conversion extensions.
21165 */
21166 SQLITE_API char *sqlite3_vmprintf(const char *zFormat, va_list ap){
21167   char *z;
21168   char zBase[SQLITE_PRINT_BUF_SIZE];
21169   StrAccum acc;
21170 #ifndef SQLITE_OMIT_AUTOINIT
21171   if( sqlite3_initialize() ) return 0;
21172 #endif
21173   sqlite3StrAccumInit(&acc, zBase, sizeof(zBase), SQLITE_MAX_LENGTH);
21174   acc.useMalloc = 2;
21175   sqlite3VXPrintf(&acc, 0, zFormat, ap);
21176   z = sqlite3StrAccumFinish(&acc);
21177   return z;
21178 }
21179 
21180 /*
21181 ** Print into memory obtained from sqlite3_malloc()().  Omit the internal
21182 ** %-conversion extensions.
21183 */
21184 SQLITE_API char *sqlite3_mprintf(const char *zFormat, ...){
21185   va_list ap;
21186   char *z;
21187 #ifndef SQLITE_OMIT_AUTOINIT
21188   if( sqlite3_initialize() ) return 0;
21189 #endif
21190   va_start(ap, zFormat);
21191   z = sqlite3_vmprintf(zFormat, ap);
21192   va_end(ap);
21193   return z;
21194 }
21195 
21196 /*
21197 ** sqlite3_snprintf() works like snprintf() except that it ignores the
21198 ** current locale settings.  This is important for SQLite because we
21199 ** are not able to use a "," as the decimal point in place of "." as
21200 ** specified by some locales.
21201 **
21202 ** Oops:  The first two arguments of sqlite3_snprintf() are backwards
21203 ** from the snprintf() standard.  Unfortunately, it is too late to change
21204 ** this without breaking compatibility, so we just have to live with the
21205 ** mistake.
21206 **
21207 ** sqlite3_vsnprintf() is the varargs version.
21208 */
21209 SQLITE_API char *sqlite3_vsnprintf(int n, char *zBuf, const char *zFormat, va_list ap){
21210   StrAccum acc;
21211   if( n<=0 ) return zBuf;
21212   sqlite3StrAccumInit(&acc, zBuf, n, 0);
21213   acc.useMalloc = 0;
21214   sqlite3VXPrintf(&acc, 0, zFormat, ap);
21215   return sqlite3StrAccumFinish(&acc);
21216 }
21217 SQLITE_API char *sqlite3_snprintf(int n, char *zBuf, const char *zFormat, ...){
21218   char *z;
21219   va_list ap;
21220   va_start(ap,zFormat);
21221   z = sqlite3_vsnprintf(n, zBuf, zFormat, ap);
21222   va_end(ap);
21223   return z;
21224 }
21225 
21226 /*
21227 ** This is the routine that actually formats the sqlite3_log() message.
21228 ** We house it in a separate routine from sqlite3_log() to avoid using
21229 ** stack space on small-stack systems when logging is disabled.
21230 **
21231 ** sqlite3_log() must render into a static buffer.  It cannot dynamically
21232 ** allocate memory because it might be called while the memory allocator
21233 ** mutex is held.
21234 */
21235 static void renderLogMsg(int iErrCode, const char *zFormat, va_list ap){
21236   StrAccum acc;                          /* String accumulator */
21237   char zMsg[SQLITE_PRINT_BUF_SIZE*3];    /* Complete log message */
21238 
21239   sqlite3StrAccumInit(&acc, zMsg, sizeof(zMsg), 0);
21240   acc.useMalloc = 0;
21241   sqlite3VXPrintf(&acc, 0, zFormat, ap);
21242   sqlite3GlobalConfig.xLog(sqlite3GlobalConfig.pLogArg, iErrCode,
21243                            sqlite3StrAccumFinish(&acc));
21244 }
21245 
21246 /*
21247 ** Format and write a message to the log if logging is enabled.
21248 */
21249 SQLITE_API void sqlite3_log(int iErrCode, const char *zFormat, ...){
21250   va_list ap;                             /* Vararg list */
21251   if( sqlite3GlobalConfig.xLog ){
21252     va_start(ap, zFormat);
21253     renderLogMsg(iErrCode, zFormat, ap);
21254     va_end(ap);
21255   }
21256 }
21257 
21258 #if defined(SQLITE_DEBUG)
21259 /*
21260 ** A version of printf() that understands %lld.  Used for debugging.
21261 ** The printf() built into some versions of windows does not understand %lld
21262 ** and segfaults if you give it a long long int.
21263 */
21264 SQLITE_PRIVATE void sqlite3DebugPrintf(const char *zFormat, ...){
21265   va_list ap;
21266   StrAccum acc;
21267   char zBuf[500];
21268   sqlite3StrAccumInit(&acc, zBuf, sizeof(zBuf), 0);
21269   acc.useMalloc = 0;
21270   va_start(ap,zFormat);
21271   sqlite3VXPrintf(&acc, 0, zFormat, ap);
21272   va_end(ap);
21273   sqlite3StrAccumFinish(&acc);
21274   fprintf(stdout,"%s", zBuf);
21275   fflush(stdout);
21276 }
21277 #endif
21278 
21279 /*
21280 ** variable-argument wrapper around sqlite3VXPrintf().
21281 */
21282 SQLITE_PRIVATE void sqlite3XPrintf(StrAccum *p, u32 bFlags, const char *zFormat, ...){
21283   va_list ap;
21284   va_start(ap,zFormat);
21285   sqlite3VXPrintf(p, bFlags, zFormat, ap);
21286   va_end(ap);
21287 }
21288 
21289 /************** End of printf.c **********************************************/
21290 /************** Begin file random.c ******************************************/
21291 /*
21292 ** 2001 September 15
21293 **
21294 ** The author disclaims copyright to this source code.  In place of
21295 ** a legal notice, here is a blessing:
21296 **
21297 **    May you do good and not evil.
21298 **    May you find forgiveness for yourself and forgive others.
21299 **    May you share freely, never taking more than you give.
21300 **
21301 *************************************************************************
21302 ** This file contains code to implement a pseudo-random number
21303 ** generator (PRNG) for SQLite.
21304 **
21305 ** Random numbers are used by some of the database backends in order
21306 ** to generate random integer keys for tables or random filenames.
21307 */
21308 
21309 
21310 /* All threads share a single random number generator.
21311 ** This structure is the current state of the generator.
21312 */
21313 static SQLITE_WSD struct sqlite3PrngType {
21314   unsigned char isInit;          /* True if initialized */
21315   unsigned char i, j;            /* State variables */
21316   unsigned char s[256];          /* State variables */
21317 } sqlite3Prng;
21318 
21319 /*
21320 ** Return N random bytes.
21321 */
21322 SQLITE_API void sqlite3_randomness(int N, void *pBuf){
21323   unsigned char t;
21324   unsigned char *zBuf = pBuf;
21325 
21326   /* The "wsdPrng" macro will resolve to the pseudo-random number generator
21327   ** state vector.  If writable static data is unsupported on the target,
21328   ** we have to locate the state vector at run-time.  In the more common
21329   ** case where writable static data is supported, wsdPrng can refer directly
21330   ** to the "sqlite3Prng" state vector declared above.
21331   */
21332 #ifdef SQLITE_OMIT_WSD
21333   struct sqlite3PrngType *p = &GLOBAL(struct sqlite3PrngType, sqlite3Prng);
21334 # define wsdPrng p[0]
21335 #else
21336 # define wsdPrng sqlite3Prng
21337 #endif
21338 
21339 #if SQLITE_THREADSAFE
21340   sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_PRNG);
21341   sqlite3_mutex_enter(mutex);
21342 #endif
21343 
21344   if( N<=0 ){
21345     wsdPrng.isInit = 0;
21346     sqlite3_mutex_leave(mutex);
21347     return;
21348   }
21349 
21350   /* Initialize the state of the random number generator once,
21351   ** the first time this routine is called.  The seed value does
21352   ** not need to contain a lot of randomness since we are not
21353   ** trying to do secure encryption or anything like that...
21354   **
21355   ** Nothing in this file or anywhere else in SQLite does any kind of
21356   ** encryption.  The RC4 algorithm is being used as a PRNG (pseudo-random
21357   ** number generator) not as an encryption device.
21358   */
21359   if( !wsdPrng.isInit ){
21360     int i;
21361     char k[256];
21362     wsdPrng.j = 0;
21363     wsdPrng.i = 0;
21364     sqlite3OsRandomness(sqlite3_vfs_find(0), 256, k);
21365     for(i=0; i<256; i++){
21366       wsdPrng.s[i] = (u8)i;
21367     }
21368     for(i=0; i<256; i++){
21369       wsdPrng.j += wsdPrng.s[i] + k[i];
21370       t = wsdPrng.s[wsdPrng.j];
21371       wsdPrng.s[wsdPrng.j] = wsdPrng.s[i];
21372       wsdPrng.s[i] = t;
21373     }
21374     wsdPrng.isInit = 1;
21375   }
21376 
21377   assert( N>0 );
21378   do{
21379     wsdPrng.i++;
21380     t = wsdPrng.s[wsdPrng.i];
21381     wsdPrng.j += t;
21382     wsdPrng.s[wsdPrng.i] = wsdPrng.s[wsdPrng.j];
21383     wsdPrng.s[wsdPrng.j] = t;
21384     t += wsdPrng.s[wsdPrng.i];
21385     *(zBuf++) = wsdPrng.s[t];
21386   }while( --N );
21387   sqlite3_mutex_leave(mutex);
21388 }
21389 
21390 #ifndef SQLITE_OMIT_BUILTIN_TEST
21391 /*
21392 ** For testing purposes, we sometimes want to preserve the state of
21393 ** PRNG and restore the PRNG to its saved state at a later time, or
21394 ** to reset the PRNG to its initial state.  These routines accomplish
21395 ** those tasks.
21396 **
21397 ** The sqlite3_test_control() interface calls these routines to
21398 ** control the PRNG.
21399 */
21400 static SQLITE_WSD struct sqlite3PrngType sqlite3SavedPrng;
21401 SQLITE_PRIVATE void sqlite3PrngSaveState(void){
21402   memcpy(
21403     &GLOBAL(struct sqlite3PrngType, sqlite3SavedPrng),
21404     &GLOBAL(struct sqlite3PrngType, sqlite3Prng),
21405     sizeof(sqlite3Prng)
21406   );
21407 }
21408 SQLITE_PRIVATE void sqlite3PrngRestoreState(void){
21409   memcpy(
21410     &GLOBAL(struct sqlite3PrngType, sqlite3Prng),
21411     &GLOBAL(struct sqlite3PrngType, sqlite3SavedPrng),
21412     sizeof(sqlite3Prng)
21413   );
21414 }
21415 #endif /* SQLITE_OMIT_BUILTIN_TEST */
21416 
21417 /************** End of random.c **********************************************/
21418 /************** Begin file utf.c *********************************************/
21419 /*
21420 ** 2004 April 13
21421 **
21422 ** The author disclaims copyright to this source code.  In place of
21423 ** a legal notice, here is a blessing:
21424 **
21425 **    May you do good and not evil.
21426 **    May you find forgiveness for yourself and forgive others.
21427 **    May you share freely, never taking more than you give.
21428 **
21429 *************************************************************************
21430 ** This file contains routines used to translate between UTF-8,
21431 ** UTF-16, UTF-16BE, and UTF-16LE.
21432 **
21433 ** Notes on UTF-8:
21434 **
21435 **   Byte-0    Byte-1    Byte-2    Byte-3    Value
21436 **  0xxxxxxx                                 00000000 00000000 0xxxxxxx
21437 **  110yyyyy  10xxxxxx                       00000000 00000yyy yyxxxxxx
21438 **  1110zzzz  10yyyyyy  10xxxxxx             00000000 zzzzyyyy yyxxxxxx
21439 **  11110uuu  10uuzzzz  10yyyyyy  10xxxxxx   000uuuuu zzzzyyyy yyxxxxxx
21440 **
21441 **
21442 ** Notes on UTF-16:  (with wwww+1==uuuuu)
21443 **
21444 **      Word-0               Word-1          Value
21445 **  110110ww wwzzzzyy   110111yy yyxxxxxx    000uuuuu zzzzyyyy yyxxxxxx
21446 **  zzzzyyyy yyxxxxxx                        00000000 zzzzyyyy yyxxxxxx
21447 **
21448 **
21449 ** BOM or Byte Order Mark:
21450 **     0xff 0xfe   little-endian utf-16 follows
21451 **     0xfe 0xff   big-endian utf-16 follows
21452 **
21453 */
21454 /* #include <assert.h> */
21455 
21456 #ifndef SQLITE_AMALGAMATION
21457 /*
21458 ** The following constant value is used by the SQLITE_BIGENDIAN and
21459 ** SQLITE_LITTLEENDIAN macros.
21460 */
21461 SQLITE_PRIVATE const int sqlite3one = 1;
21462 #endif /* SQLITE_AMALGAMATION */
21463 
21464 /*
21465 ** This lookup table is used to help decode the first byte of
21466 ** a multi-byte UTF8 character.
21467 */
21468 static const unsigned char sqlite3Utf8Trans1[] = {
21469   0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
21470   0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
21471   0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
21472   0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
21473   0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
21474   0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
21475   0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
21476   0x00, 0x01, 0x02, 0x03, 0x00, 0x01, 0x00, 0x00,
21477 };
21478 
21479 
21480 #define WRITE_UTF8(zOut, c) {                          \
21481   if( c<0x00080 ){                                     \
21482     *zOut++ = (u8)(c&0xFF);                            \
21483   }                                                    \
21484   else if( c<0x00800 ){                                \
21485     *zOut++ = 0xC0 + (u8)((c>>6)&0x1F);                \
21486     *zOut++ = 0x80 + (u8)(c & 0x3F);                   \
21487   }                                                    \
21488   else if( c<0x10000 ){                                \
21489     *zOut++ = 0xE0 + (u8)((c>>12)&0x0F);               \
21490     *zOut++ = 0x80 + (u8)((c>>6) & 0x3F);              \
21491     *zOut++ = 0x80 + (u8)(c & 0x3F);                   \
21492   }else{                                               \
21493     *zOut++ = 0xF0 + (u8)((c>>18) & 0x07);             \
21494     *zOut++ = 0x80 + (u8)((c>>12) & 0x3F);             \
21495     *zOut++ = 0x80 + (u8)((c>>6) & 0x3F);              \
21496     *zOut++ = 0x80 + (u8)(c & 0x3F);                   \
21497   }                                                    \
21498 }
21499 
21500 #define WRITE_UTF16LE(zOut, c) {                                    \
21501   if( c<=0xFFFF ){                                                  \
21502     *zOut++ = (u8)(c&0x00FF);                                       \
21503     *zOut++ = (u8)((c>>8)&0x00FF);                                  \
21504   }else{                                                            \
21505     *zOut++ = (u8)(((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0));  \
21506     *zOut++ = (u8)(0x00D8 + (((c-0x10000)>>18)&0x03));              \
21507     *zOut++ = (u8)(c&0x00FF);                                       \
21508     *zOut++ = (u8)(0x00DC + ((c>>8)&0x03));                         \
21509   }                                                                 \
21510 }
21511 
21512 #define WRITE_UTF16BE(zOut, c) {                                    \
21513   if( c<=0xFFFF ){                                                  \
21514     *zOut++ = (u8)((c>>8)&0x00FF);                                  \
21515     *zOut++ = (u8)(c&0x00FF);                                       \
21516   }else{                                                            \
21517     *zOut++ = (u8)(0x00D8 + (((c-0x10000)>>18)&0x03));              \
21518     *zOut++ = (u8)(((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0));  \
21519     *zOut++ = (u8)(0x00DC + ((c>>8)&0x03));                         \
21520     *zOut++ = (u8)(c&0x00FF);                                       \
21521   }                                                                 \
21522 }
21523 
21524 #define READ_UTF16LE(zIn, TERM, c){                                   \
21525   c = (*zIn++);                                                       \
21526   c += ((*zIn++)<<8);                                                 \
21527   if( c>=0xD800 && c<0xE000 && TERM ){                                \
21528     int c2 = (*zIn++);                                                \
21529     c2 += ((*zIn++)<<8);                                              \
21530     c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10);   \
21531   }                                                                   \
21532 }
21533 
21534 #define READ_UTF16BE(zIn, TERM, c){                                   \
21535   c = ((*zIn++)<<8);                                                  \
21536   c += (*zIn++);                                                      \
21537   if( c>=0xD800 && c<0xE000 && TERM ){                                \
21538     int c2 = ((*zIn++)<<8);                                           \
21539     c2 += (*zIn++);                                                   \
21540     c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10);   \
21541   }                                                                   \
21542 }
21543 
21544 /*
21545 ** Translate a single UTF-8 character.  Return the unicode value.
21546 **
21547 ** During translation, assume that the byte that zTerm points
21548 ** is a 0x00.
21549 **
21550 ** Write a pointer to the next unread byte back into *pzNext.
21551 **
21552 ** Notes On Invalid UTF-8:
21553 **
21554 **  *  This routine never allows a 7-bit character (0x00 through 0x7f) to
21555 **     be encoded as a multi-byte character.  Any multi-byte character that
21556 **     attempts to encode a value between 0x00 and 0x7f is rendered as 0xfffd.
21557 **
21558 **  *  This routine never allows a UTF16 surrogate value to be encoded.
21559 **     If a multi-byte character attempts to encode a value between
21560 **     0xd800 and 0xe000 then it is rendered as 0xfffd.
21561 **
21562 **  *  Bytes in the range of 0x80 through 0xbf which occur as the first
21563 **     byte of a character are interpreted as single-byte characters
21564 **     and rendered as themselves even though they are technically
21565 **     invalid characters.
21566 **
21567 **  *  This routine accepts an infinite number of different UTF8 encodings
21568 **     for unicode values 0x80 and greater.  It do not change over-length
21569 **     encodings to 0xfffd as some systems recommend.
21570 */
21571 #define READ_UTF8(zIn, zTerm, c)                           \
21572   c = *(zIn++);                                            \
21573   if( c>=0xc0 ){                                           \
21574     c = sqlite3Utf8Trans1[c-0xc0];                         \
21575     while( zIn!=zTerm && (*zIn & 0xc0)==0x80 ){            \
21576       c = (c<<6) + (0x3f & *(zIn++));                      \
21577     }                                                      \
21578     if( c<0x80                                             \
21579         || (c&0xFFFFF800)==0xD800                          \
21580         || (c&0xFFFFFFFE)==0xFFFE ){  c = 0xFFFD; }        \
21581   }
21582 SQLITE_PRIVATE u32 sqlite3Utf8Read(
21583   const unsigned char **pz    /* Pointer to string from which to read char */
21584 ){
21585   unsigned int c;
21586 
21587   /* Same as READ_UTF8() above but without the zTerm parameter.
21588   ** For this routine, we assume the UTF8 string is always zero-terminated.
21589   */
21590   c = *((*pz)++);
21591   if( c>=0xc0 ){
21592     c = sqlite3Utf8Trans1[c-0xc0];
21593     while( (*(*pz) & 0xc0)==0x80 ){
21594       c = (c<<6) + (0x3f & *((*pz)++));
21595     }
21596     if( c<0x80
21597         || (c&0xFFFFF800)==0xD800
21598         || (c&0xFFFFFFFE)==0xFFFE ){  c = 0xFFFD; }
21599   }
21600   return c;
21601 }
21602 
21603 
21604 
21605 
21606 /*
21607 ** If the TRANSLATE_TRACE macro is defined, the value of each Mem is
21608 ** printed on stderr on the way into and out of sqlite3VdbeMemTranslate().
21609 */
21610 /* #define TRANSLATE_TRACE 1 */
21611 
21612 #ifndef SQLITE_OMIT_UTF16
21613 /*
21614 ** This routine transforms the internal text encoding used by pMem to
21615 ** desiredEnc. It is an error if the string is already of the desired
21616 ** encoding, or if *pMem does not contain a string value.
21617 */
21618 SQLITE_PRIVATE int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){
21619   int len;                    /* Maximum length of output string in bytes */
21620   unsigned char *zOut;                  /* Output buffer */
21621   unsigned char *zIn;                   /* Input iterator */
21622   unsigned char *zTerm;                 /* End of input */
21623   unsigned char *z;                     /* Output iterator */
21624   unsigned int c;
21625 
21626   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
21627   assert( pMem->flags&MEM_Str );
21628   assert( pMem->enc!=desiredEnc );
21629   assert( pMem->enc!=0 );
21630   assert( pMem->n>=0 );
21631 
21632 #if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
21633   {
21634     char zBuf[100];
21635     sqlite3VdbeMemPrettyPrint(pMem, zBuf);
21636     fprintf(stderr, "INPUT:  %s\n", zBuf);
21637   }
21638 #endif
21639 
21640   /* If the translation is between UTF-16 little and big endian, then
21641   ** all that is required is to swap the byte order. This case is handled
21642   ** differently from the others.
21643   */
21644   if( pMem->enc!=SQLITE_UTF8 && desiredEnc!=SQLITE_UTF8 ){
21645     u8 temp;
21646     int rc;
21647     rc = sqlite3VdbeMemMakeWriteable(pMem);
21648     if( rc!=SQLITE_OK ){
21649       assert( rc==SQLITE_NOMEM );
21650       return SQLITE_NOMEM;
21651     }
21652     zIn = (u8*)pMem->z;
21653     zTerm = &zIn[pMem->n&~1];
21654     while( zIn<zTerm ){
21655       temp = *zIn;
21656       *zIn = *(zIn+1);
21657       zIn++;
21658       *zIn++ = temp;
21659     }
21660     pMem->enc = desiredEnc;
21661     goto translate_out;
21662   }
21663 
21664   /* Set len to the maximum number of bytes required in the output buffer. */
21665   if( desiredEnc==SQLITE_UTF8 ){
21666     /* When converting from UTF-16, the maximum growth results from
21667     ** translating a 2-byte character to a 4-byte UTF-8 character.
21668     ** A single byte is required for the output string
21669     ** nul-terminator.
21670     */
21671     pMem->n &= ~1;
21672     len = pMem->n * 2 + 1;
21673   }else{
21674     /* When converting from UTF-8 to UTF-16 the maximum growth is caused
21675     ** when a 1-byte UTF-8 character is translated into a 2-byte UTF-16
21676     ** character. Two bytes are required in the output buffer for the
21677     ** nul-terminator.
21678     */
21679     len = pMem->n * 2 + 2;
21680   }
21681 
21682   /* Set zIn to point at the start of the input buffer and zTerm to point 1
21683   ** byte past the end.
21684   **
21685   ** Variable zOut is set to point at the output buffer, space obtained
21686   ** from sqlite3_malloc().
21687   */
21688   zIn = (u8*)pMem->z;
21689   zTerm = &zIn[pMem->n];
21690   zOut = sqlite3DbMallocRaw(pMem->db, len);
21691   if( !zOut ){
21692     return SQLITE_NOMEM;
21693   }
21694   z = zOut;
21695 
21696   if( pMem->enc==SQLITE_UTF8 ){
21697     if( desiredEnc==SQLITE_UTF16LE ){
21698       /* UTF-8 -> UTF-16 Little-endian */
21699       while( zIn<zTerm ){
21700         READ_UTF8(zIn, zTerm, c);
21701         WRITE_UTF16LE(z, c);
21702       }
21703     }else{
21704       assert( desiredEnc==SQLITE_UTF16BE );
21705       /* UTF-8 -> UTF-16 Big-endian */
21706       while( zIn<zTerm ){
21707         READ_UTF8(zIn, zTerm, c);
21708         WRITE_UTF16BE(z, c);
21709       }
21710     }
21711     pMem->n = (int)(z - zOut);
21712     *z++ = 0;
21713   }else{
21714     assert( desiredEnc==SQLITE_UTF8 );
21715     if( pMem->enc==SQLITE_UTF16LE ){
21716       /* UTF-16 Little-endian -> UTF-8 */
21717       while( zIn<zTerm ){
21718         READ_UTF16LE(zIn, zIn<zTerm, c);
21719         WRITE_UTF8(z, c);
21720       }
21721     }else{
21722       /* UTF-16 Big-endian -> UTF-8 */
21723       while( zIn<zTerm ){
21724         READ_UTF16BE(zIn, zIn<zTerm, c);
21725         WRITE_UTF8(z, c);
21726       }
21727     }
21728     pMem->n = (int)(z - zOut);
21729   }
21730   *z = 0;
21731   assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len );
21732 
21733   sqlite3VdbeMemRelease(pMem);
21734   pMem->flags &= ~(MEM_Static|MEM_Dyn|MEM_Ephem);
21735   pMem->enc = desiredEnc;
21736   pMem->flags |= (MEM_Term);
21737   pMem->z = (char*)zOut;
21738   pMem->zMalloc = pMem->z;
21739 
21740 translate_out:
21741 #if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
21742   {
21743     char zBuf[100];
21744     sqlite3VdbeMemPrettyPrint(pMem, zBuf);
21745     fprintf(stderr, "OUTPUT: %s\n", zBuf);
21746   }
21747 #endif
21748   return SQLITE_OK;
21749 }
21750 
21751 /*
21752 ** This routine checks for a byte-order mark at the beginning of the
21753 ** UTF-16 string stored in *pMem. If one is present, it is removed and
21754 ** the encoding of the Mem adjusted. This routine does not do any
21755 ** byte-swapping, it just sets Mem.enc appropriately.
21756 **
21757 ** The allocation (static, dynamic etc.) and encoding of the Mem may be
21758 ** changed by this function.
21759 */
21760 SQLITE_PRIVATE int sqlite3VdbeMemHandleBom(Mem *pMem){
21761   int rc = SQLITE_OK;
21762   u8 bom = 0;
21763 
21764   assert( pMem->n>=0 );
21765   if( pMem->n>1 ){
21766     u8 b1 = *(u8 *)pMem->z;
21767     u8 b2 = *(((u8 *)pMem->z) + 1);
21768     if( b1==0xFE && b2==0xFF ){
21769       bom = SQLITE_UTF16BE;
21770     }
21771     if( b1==0xFF && b2==0xFE ){
21772       bom = SQLITE_UTF16LE;
21773     }
21774   }
21775 
21776   if( bom ){
21777     rc = sqlite3VdbeMemMakeWriteable(pMem);
21778     if( rc==SQLITE_OK ){
21779       pMem->n -= 2;
21780       memmove(pMem->z, &pMem->z[2], pMem->n);
21781       pMem->z[pMem->n] = '\0';
21782       pMem->z[pMem->n+1] = '\0';
21783       pMem->flags |= MEM_Term;
21784       pMem->enc = bom;
21785     }
21786   }
21787   return rc;
21788 }
21789 #endif /* SQLITE_OMIT_UTF16 */
21790 
21791 /*
21792 ** pZ is a UTF-8 encoded unicode string. If nByte is less than zero,
21793 ** return the number of unicode characters in pZ up to (but not including)
21794 ** the first 0x00 byte. If nByte is not less than zero, return the
21795 ** number of unicode characters in the first nByte of pZ (or up to
21796 ** the first 0x00, whichever comes first).
21797 */
21798 SQLITE_PRIVATE int sqlite3Utf8CharLen(const char *zIn, int nByte){
21799   int r = 0;
21800   const u8 *z = (const u8*)zIn;
21801   const u8 *zTerm;
21802   if( nByte>=0 ){
21803     zTerm = &z[nByte];
21804   }else{
21805     zTerm = (const u8*)(-1);
21806   }
21807   assert( z<=zTerm );
21808   while( *z!=0 && z<zTerm ){
21809     SQLITE_SKIP_UTF8(z);
21810     r++;
21811   }
21812   return r;
21813 }
21814 
21815 /* This test function is not currently used by the automated test-suite.
21816 ** Hence it is only available in debug builds.
21817 */
21818 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
21819 /*
21820 ** Translate UTF-8 to UTF-8.
21821 **
21822 ** This has the effect of making sure that the string is well-formed
21823 ** UTF-8.  Miscoded characters are removed.
21824 **
21825 ** The translation is done in-place and aborted if the output
21826 ** overruns the input.
21827 */
21828 SQLITE_PRIVATE int sqlite3Utf8To8(unsigned char *zIn){
21829   unsigned char *zOut = zIn;
21830   unsigned char *zStart = zIn;
21831   u32 c;
21832 
21833   while( zIn[0] && zOut<=zIn ){
21834     c = sqlite3Utf8Read((const u8**)&zIn);
21835     if( c!=0xfffd ){
21836       WRITE_UTF8(zOut, c);
21837     }
21838   }
21839   *zOut = 0;
21840   return (int)(zOut - zStart);
21841 }
21842 #endif
21843 
21844 #ifndef SQLITE_OMIT_UTF16
21845 /*
21846 ** Convert a UTF-16 string in the native encoding into a UTF-8 string.
21847 ** Memory to hold the UTF-8 string is obtained from sqlite3_malloc and must
21848 ** be freed by the calling function.
21849 **
21850 ** NULL is returned if there is an allocation error.
21851 */
21852 SQLITE_PRIVATE char *sqlite3Utf16to8(sqlite3 *db, const void *z, int nByte, u8 enc){
21853   Mem m;
21854   memset(&m, 0, sizeof(m));
21855   m.db = db;
21856   sqlite3VdbeMemSetStr(&m, z, nByte, enc, SQLITE_STATIC);
21857   sqlite3VdbeChangeEncoding(&m, SQLITE_UTF8);
21858   if( db->mallocFailed ){
21859     sqlite3VdbeMemRelease(&m);
21860     m.z = 0;
21861   }
21862   assert( (m.flags & MEM_Term)!=0 || db->mallocFailed );
21863   assert( (m.flags & MEM_Str)!=0 || db->mallocFailed );
21864   assert( m.z || db->mallocFailed );
21865   return m.z;
21866 }
21867 
21868 /*
21869 ** zIn is a UTF-16 encoded unicode string at least nChar characters long.
21870 ** Return the number of bytes in the first nChar unicode characters
21871 ** in pZ.  nChar must be non-negative.
21872 */
21873 SQLITE_PRIVATE int sqlite3Utf16ByteLen(const void *zIn, int nChar){
21874   int c;
21875   unsigned char const *z = zIn;
21876   int n = 0;
21877 
21878   if( SQLITE_UTF16NATIVE==SQLITE_UTF16BE ){
21879     while( n<nChar ){
21880       READ_UTF16BE(z, 1, c);
21881       n++;
21882     }
21883   }else{
21884     while( n<nChar ){
21885       READ_UTF16LE(z, 1, c);
21886       n++;
21887     }
21888   }
21889   return (int)(z-(unsigned char const *)zIn);
21890 }
21891 
21892 #if defined(SQLITE_TEST)
21893 /*
21894 ** This routine is called from the TCL test function "translate_selftest".
21895 ** It checks that the primitives for serializing and deserializing
21896 ** characters in each encoding are inverses of each other.
21897 */
21898 SQLITE_PRIVATE void sqlite3UtfSelfTest(void){
21899   unsigned int i, t;
21900   unsigned char zBuf[20];
21901   unsigned char *z;
21902   int n;
21903   unsigned int c;
21904 
21905   for(i=0; i<0x00110000; i++){
21906     z = zBuf;
21907     WRITE_UTF8(z, i);
21908     n = (int)(z-zBuf);
21909     assert( n>0 && n<=4 );
21910     z[0] = 0;
21911     z = zBuf;
21912     c = sqlite3Utf8Read((const u8**)&z);
21913     t = i;
21914     if( i>=0xD800 && i<=0xDFFF ) t = 0xFFFD;
21915     if( (i&0xFFFFFFFE)==0xFFFE ) t = 0xFFFD;
21916     assert( c==t );
21917     assert( (z-zBuf)==n );
21918   }
21919   for(i=0; i<0x00110000; i++){
21920     if( i>=0xD800 && i<0xE000 ) continue;
21921     z = zBuf;
21922     WRITE_UTF16LE(z, i);
21923     n = (int)(z-zBuf);
21924     assert( n>0 && n<=4 );
21925     z[0] = 0;
21926     z = zBuf;
21927     READ_UTF16LE(z, 1, c);
21928     assert( c==i );
21929     assert( (z-zBuf)==n );
21930   }
21931   for(i=0; i<0x00110000; i++){
21932     if( i>=0xD800 && i<0xE000 ) continue;
21933     z = zBuf;
21934     WRITE_UTF16BE(z, i);
21935     n = (int)(z-zBuf);
21936     assert( n>0 && n<=4 );
21937     z[0] = 0;
21938     z = zBuf;
21939     READ_UTF16BE(z, 1, c);
21940     assert( c==i );
21941     assert( (z-zBuf)==n );
21942   }
21943 }
21944 #endif /* SQLITE_TEST */
21945 #endif /* SQLITE_OMIT_UTF16 */
21946 
21947 /************** End of utf.c *************************************************/
21948 /************** Begin file util.c ********************************************/
21949 /*
21950 ** 2001 September 15
21951 **
21952 ** The author disclaims copyright to this source code.  In place of
21953 ** a legal notice, here is a blessing:
21954 **
21955 **    May you do good and not evil.
21956 **    May you find forgiveness for yourself and forgive others.
21957 **    May you share freely, never taking more than you give.
21958 **
21959 *************************************************************************
21960 ** Utility functions used throughout sqlite.
21961 **
21962 ** This file contains functions for allocating memory, comparing
21963 ** strings, and stuff like that.
21964 **
21965 */
21966 /* #include <stdarg.h> */
21967 #ifdef SQLITE_HAVE_ISNAN
21968 # include <math.h>
21969 #endif
21970 
21971 /*
21972 ** Routine needed to support the testcase() macro.
21973 */
21974 #ifdef SQLITE_COVERAGE_TEST
21975 SQLITE_PRIVATE void sqlite3Coverage(int x){
21976   static unsigned dummy = 0;
21977   dummy += (unsigned)x;
21978 }
21979 #endif
21980 
21981 /*
21982 ** Give a callback to the test harness that can be used to simulate faults
21983 ** in places where it is difficult or expensive to do so purely by means
21984 ** of inputs.
21985 **
21986 ** The intent of the integer argument is to let the fault simulator know
21987 ** which of multiple sqlite3FaultSim() calls has been hit.
21988 **
21989 ** Return whatever integer value the test callback returns, or return
21990 ** SQLITE_OK if no test callback is installed.
21991 */
21992 #ifndef SQLITE_OMIT_BUILTIN_TEST
21993 SQLITE_PRIVATE int sqlite3FaultSim(int iTest){
21994   int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback;
21995   return xCallback ? xCallback(iTest) : SQLITE_OK;
21996 }
21997 #endif
21998 
21999 #ifndef SQLITE_OMIT_FLOATING_POINT
22000 /*
22001 ** Return true if the floating point value is Not a Number (NaN).
22002 **
22003 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN.
22004 ** Otherwise, we have our own implementation that works on most systems.
22005 */
22006 SQLITE_PRIVATE int sqlite3IsNaN(double x){
22007   int rc;   /* The value return */
22008 #if !defined(SQLITE_HAVE_ISNAN)
22009   /*
22010   ** Systems that support the isnan() library function should probably
22011   ** make use of it by compiling with -DSQLITE_HAVE_ISNAN.  But we have
22012   ** found that many systems do not have a working isnan() function so
22013   ** this implementation is provided as an alternative.
22014   **
22015   ** This NaN test sometimes fails if compiled on GCC with -ffast-math.
22016   ** On the other hand, the use of -ffast-math comes with the following
22017   ** warning:
22018   **
22019   **      This option [-ffast-math] should never be turned on by any
22020   **      -O option since it can result in incorrect output for programs
22021   **      which depend on an exact implementation of IEEE or ISO
22022   **      rules/specifications for math functions.
22023   **
22024   ** Under MSVC, this NaN test may fail if compiled with a floating-
22025   ** point precision mode other than /fp:precise.  From the MSDN
22026   ** documentation:
22027   **
22028   **      The compiler [with /fp:precise] will properly handle comparisons
22029   **      involving NaN. For example, x != x evaluates to true if x is NaN
22030   **      ...
22031   */
22032 #ifdef __FAST_MATH__
22033 # error SQLite will not work correctly with the -ffast-math option of GCC.
22034 #endif
22035   volatile double y = x;
22036   volatile double z = y;
22037   rc = (y!=z);
22038 #else  /* if defined(SQLITE_HAVE_ISNAN) */
22039   rc = isnan(x);
22040 #endif /* SQLITE_HAVE_ISNAN */
22041   testcase( rc );
22042   return rc;
22043 }
22044 #endif /* SQLITE_OMIT_FLOATING_POINT */
22045 
22046 /*
22047 ** Compute a string length that is limited to what can be stored in
22048 ** lower 30 bits of a 32-bit signed integer.
22049 **
22050 ** The value returned will never be negative.  Nor will it ever be greater
22051 ** than the actual length of the string.  For very long strings (greater
22052 ** than 1GiB) the value returned might be less than the true string length.
22053 */
22054 SQLITE_PRIVATE int sqlite3Strlen30(const char *z){
22055   const char *z2 = z;
22056   if( z==0 ) return 0;
22057   while( *z2 ){ z2++; }
22058   return 0x3fffffff & (int)(z2 - z);
22059 }
22060 
22061 /*
22062 ** Set the most recent error code and error string for the sqlite
22063 ** handle "db". The error code is set to "err_code".
22064 **
22065 ** If it is not NULL, string zFormat specifies the format of the
22066 ** error string in the style of the printf functions: The following
22067 ** format characters are allowed:
22068 **
22069 **      %s      Insert a string
22070 **      %z      A string that should be freed after use
22071 **      %d      Insert an integer
22072 **      %T      Insert a token
22073 **      %S      Insert the first element of a SrcList
22074 **
22075 ** zFormat and any string tokens that follow it are assumed to be
22076 ** encoded in UTF-8.
22077 **
22078 ** To clear the most recent error for sqlite handle "db", sqlite3Error
22079 ** should be called with err_code set to SQLITE_OK and zFormat set
22080 ** to NULL.
22081 */
22082 SQLITE_PRIVATE void sqlite3Error(sqlite3 *db, int err_code, const char *zFormat, ...){
22083   assert( db!=0 );
22084   db->errCode = err_code;
22085   if( zFormat && (db->pErr || (db->pErr = sqlite3ValueNew(db))!=0) ){
22086     char *z;
22087     va_list ap;
22088     va_start(ap, zFormat);
22089     z = sqlite3VMPrintf(db, zFormat, ap);
22090     va_end(ap);
22091     sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
22092   }else if( db->pErr ){
22093     sqlite3ValueSetNull(db->pErr);
22094   }
22095 }
22096 
22097 /*
22098 ** Add an error message to pParse->zErrMsg and increment pParse->nErr.
22099 ** The following formatting characters are allowed:
22100 **
22101 **      %s      Insert a string
22102 **      %z      A string that should be freed after use
22103 **      %d      Insert an integer
22104 **      %T      Insert a token
22105 **      %S      Insert the first element of a SrcList
22106 **
22107 ** This function should be used to report any error that occurs whilst
22108 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The
22109 ** last thing the sqlite3_prepare() function does is copy the error
22110 ** stored by this function into the database handle using sqlite3Error().
22111 ** Function sqlite3Error() should be used during statement execution
22112 ** (sqlite3_step() etc.).
22113 */
22114 SQLITE_PRIVATE void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
22115   char *zMsg;
22116   va_list ap;
22117   sqlite3 *db = pParse->db;
22118   va_start(ap, zFormat);
22119   zMsg = sqlite3VMPrintf(db, zFormat, ap);
22120   va_end(ap);
22121   if( db->suppressErr ){
22122     sqlite3DbFree(db, zMsg);
22123   }else{
22124     pParse->nErr++;
22125     sqlite3DbFree(db, pParse->zErrMsg);
22126     pParse->zErrMsg = zMsg;
22127     pParse->rc = SQLITE_ERROR;
22128   }
22129 }
22130 
22131 /*
22132 ** Convert an SQL-style quoted string into a normal string by removing
22133 ** the quote characters.  The conversion is done in-place.  If the
22134 ** input does not begin with a quote character, then this routine
22135 ** is a no-op.
22136 **
22137 ** The input string must be zero-terminated.  A new zero-terminator
22138 ** is added to the dequoted string.
22139 **
22140 ** The return value is -1 if no dequoting occurs or the length of the
22141 ** dequoted string, exclusive of the zero terminator, if dequoting does
22142 ** occur.
22143 **
22144 ** 2002-Feb-14: This routine is extended to remove MS-Access style
22145 ** brackets from around identifers.  For example:  "[a-b-c]" becomes
22146 ** "a-b-c".
22147 */
22148 SQLITE_PRIVATE int sqlite3Dequote(char *z){
22149   char quote;
22150   int i, j;
22151   if( z==0 ) return -1;
22152   quote = z[0];
22153   switch( quote ){
22154     case '\'':  break;
22155     case '"':   break;
22156     case '`':   break;                /* For MySQL compatibility */
22157     case '[':   quote = ']';  break;  /* For MS SqlServer compatibility */
22158     default:    return -1;
22159   }
22160   for(i=1, j=0;; i++){
22161     assert( z[i] );
22162     if( z[i]==quote ){
22163       if( z[i+1]==quote ){
22164         z[j++] = quote;
22165         i++;
22166       }else{
22167         break;
22168       }
22169     }else{
22170       z[j++] = z[i];
22171     }
22172   }
22173   z[j] = 0;
22174   return j;
22175 }
22176 
22177 /* Convenient short-hand */
22178 #define UpperToLower sqlite3UpperToLower
22179 
22180 /*
22181 ** Some systems have stricmp().  Others have strcasecmp().  Because
22182 ** there is no consistency, we will define our own.
22183 **
22184 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and
22185 ** sqlite3_strnicmp() APIs allow applications and extensions to compare
22186 ** the contents of two buffers containing UTF-8 strings in a
22187 ** case-independent fashion, using the same definition of "case
22188 ** independence" that SQLite uses internally when comparing identifiers.
22189 */
22190 SQLITE_API int sqlite3_stricmp(const char *zLeft, const char *zRight){
22191   register unsigned char *a, *b;
22192   a = (unsigned char *)zLeft;
22193   b = (unsigned char *)zRight;
22194   while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
22195   return UpperToLower[*a] - UpperToLower[*b];
22196 }
22197 SQLITE_API int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
22198   register unsigned char *a, *b;
22199   a = (unsigned char *)zLeft;
22200   b = (unsigned char *)zRight;
22201   while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
22202   return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
22203 }
22204 
22205 /*
22206 ** The string z[] is an text representation of a real number.
22207 ** Convert this string to a double and write it into *pResult.
22208 **
22209 ** The string z[] is length bytes in length (bytes, not characters) and
22210 ** uses the encoding enc.  The string is not necessarily zero-terminated.
22211 **
22212 ** Return TRUE if the result is a valid real number (or integer) and FALSE
22213 ** if the string is empty or contains extraneous text.  Valid numbers
22214 ** are in one of these formats:
22215 **
22216 **    [+-]digits[E[+-]digits]
22217 **    [+-]digits.[digits][E[+-]digits]
22218 **    [+-].digits[E[+-]digits]
22219 **
22220 ** Leading and trailing whitespace is ignored for the purpose of determining
22221 ** validity.
22222 **
22223 ** If some prefix of the input string is a valid number, this routine
22224 ** returns FALSE but it still converts the prefix and writes the result
22225 ** into *pResult.
22226 */
22227 SQLITE_PRIVATE int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){
22228 #ifndef SQLITE_OMIT_FLOATING_POINT
22229   int incr;
22230   const char *zEnd = z + length;
22231   /* sign * significand * (10 ^ (esign * exponent)) */
22232   int sign = 1;    /* sign of significand */
22233   i64 s = 0;       /* significand */
22234   int d = 0;       /* adjust exponent for shifting decimal point */
22235   int esign = 1;   /* sign of exponent */
22236   int e = 0;       /* exponent */
22237   int eValid = 1;  /* True exponent is either not used or is well-formed */
22238   double result;
22239   int nDigits = 0;
22240   int nonNum = 0;
22241 
22242   assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
22243   *pResult = 0.0;   /* Default return value, in case of an error */
22244 
22245   if( enc==SQLITE_UTF8 ){
22246     incr = 1;
22247   }else{
22248     int i;
22249     incr = 2;
22250     assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
22251     for(i=3-enc; i<length && z[i]==0; i+=2){}
22252     nonNum = i<length;
22253     zEnd = z+i+enc-3;
22254     z += (enc&1);
22255   }
22256 
22257   /* skip leading spaces */
22258   while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
22259   if( z>=zEnd ) return 0;
22260 
22261   /* get sign of significand */
22262   if( *z=='-' ){
22263     sign = -1;
22264     z+=incr;
22265   }else if( *z=='+' ){
22266     z+=incr;
22267   }
22268 
22269   /* skip leading zeroes */
22270   while( z<zEnd && z[0]=='0' ) z+=incr, nDigits++;
22271 
22272   /* copy max significant digits to significand */
22273   while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
22274     s = s*10 + (*z - '0');
22275     z+=incr, nDigits++;
22276   }
22277 
22278   /* skip non-significant significand digits
22279   ** (increase exponent by d to shift decimal left) */
22280   while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++, d++;
22281   if( z>=zEnd ) goto do_atof_calc;
22282 
22283   /* if decimal point is present */
22284   if( *z=='.' ){
22285     z+=incr;
22286     /* copy digits from after decimal to significand
22287     ** (decrease exponent by d to shift decimal right) */
22288     while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
22289       s = s*10 + (*z - '0');
22290       z+=incr, nDigits++, d--;
22291     }
22292     /* skip non-significant digits */
22293     while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++;
22294   }
22295   if( z>=zEnd ) goto do_atof_calc;
22296 
22297   /* if exponent is present */
22298   if( *z=='e' || *z=='E' ){
22299     z+=incr;
22300     eValid = 0;
22301     if( z>=zEnd ) goto do_atof_calc;
22302     /* get sign of exponent */
22303     if( *z=='-' ){
22304       esign = -1;
22305       z+=incr;
22306     }else if( *z=='+' ){
22307       z+=incr;
22308     }
22309     /* copy digits to exponent */
22310     while( z<zEnd && sqlite3Isdigit(*z) ){
22311       e = e<10000 ? (e*10 + (*z - '0')) : 10000;
22312       z+=incr;
22313       eValid = 1;
22314     }
22315   }
22316 
22317   /* skip trailing spaces */
22318   if( nDigits && eValid ){
22319     while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
22320   }
22321 
22322 do_atof_calc:
22323   /* adjust exponent by d, and update sign */
22324   e = (e*esign) + d;
22325   if( e<0 ) {
22326     esign = -1;
22327     e *= -1;
22328   } else {
22329     esign = 1;
22330   }
22331 
22332   /* if 0 significand */
22333   if( !s ) {
22334     /* In the IEEE 754 standard, zero is signed.
22335     ** Add the sign if we've seen at least one digit */
22336     result = (sign<0 && nDigits) ? -(double)0 : (double)0;
22337   } else {
22338     /* attempt to reduce exponent */
22339     if( esign>0 ){
22340       while( s<(LARGEST_INT64/10) && e>0 ) e--,s*=10;
22341     }else{
22342       while( !(s%10) && e>0 ) e--,s/=10;
22343     }
22344 
22345     /* adjust the sign of significand */
22346     s = sign<0 ? -s : s;
22347 
22348     /* if exponent, scale significand as appropriate
22349     ** and store in result. */
22350     if( e ){
22351       LONGDOUBLE_TYPE scale = 1.0;
22352       /* attempt to handle extremely small/large numbers better */
22353       if( e>307 && e<342 ){
22354         while( e%308 ) { scale *= 1.0e+1; e -= 1; }
22355         if( esign<0 ){
22356           result = s / scale;
22357           result /= 1.0e+308;
22358         }else{
22359           result = s * scale;
22360           result *= 1.0e+308;
22361         }
22362       }else if( e>=342 ){
22363         if( esign<0 ){
22364           result = 0.0*s;
22365         }else{
22366           result = 1e308*1e308*s;  /* Infinity */
22367         }
22368       }else{
22369         /* 1.0e+22 is the largest power of 10 than can be
22370         ** represented exactly. */
22371         while( e%22 ) { scale *= 1.0e+1; e -= 1; }
22372         while( e>0 ) { scale *= 1.0e+22; e -= 22; }
22373         if( esign<0 ){
22374           result = s / scale;
22375         }else{
22376           result = s * scale;
22377         }
22378       }
22379     } else {
22380       result = (double)s;
22381     }
22382   }
22383 
22384   /* store the result */
22385   *pResult = result;
22386 
22387   /* return true if number and no extra non-whitespace chracters after */
22388   return z>=zEnd && nDigits>0 && eValid && nonNum==0;
22389 #else
22390   return !sqlite3Atoi64(z, pResult, length, enc);
22391 #endif /* SQLITE_OMIT_FLOATING_POINT */
22392 }
22393 
22394 /*
22395 ** Compare the 19-character string zNum against the text representation
22396 ** value 2^63:  9223372036854775808.  Return negative, zero, or positive
22397 ** if zNum is less than, equal to, or greater than the string.
22398 ** Note that zNum must contain exactly 19 characters.
22399 **
22400 ** Unlike memcmp() this routine is guaranteed to return the difference
22401 ** in the values of the last digit if the only difference is in the
22402 ** last digit.  So, for example,
22403 **
22404 **      compare2pow63("9223372036854775800", 1)
22405 **
22406 ** will return -8.
22407 */
22408 static int compare2pow63(const char *zNum, int incr){
22409   int c = 0;
22410   int i;
22411                     /* 012345678901234567 */
22412   const char *pow63 = "922337203685477580";
22413   for(i=0; c==0 && i<18; i++){
22414     c = (zNum[i*incr]-pow63[i])*10;
22415   }
22416   if( c==0 ){
22417     c = zNum[18*incr] - '8';
22418     testcase( c==(-1) );
22419     testcase( c==0 );
22420     testcase( c==(+1) );
22421   }
22422   return c;
22423 }
22424 
22425 
22426 /*
22427 ** Convert zNum to a 64-bit signed integer.
22428 **
22429 ** If the zNum value is representable as a 64-bit twos-complement
22430 ** integer, then write that value into *pNum and return 0.
22431 **
22432 ** If zNum is exactly 9223372036854775808, return 2.  This special
22433 ** case is broken out because while 9223372036854775808 cannot be a
22434 ** signed 64-bit integer, its negative -9223372036854775808 can be.
22435 **
22436 ** If zNum is too big for a 64-bit integer and is not
22437 ** 9223372036854775808  or if zNum contains any non-numeric text,
22438 ** then return 1.
22439 **
22440 ** length is the number of bytes in the string (bytes, not characters).
22441 ** The string is not necessarily zero-terminated.  The encoding is
22442 ** given by enc.
22443 */
22444 SQLITE_PRIVATE int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){
22445   int incr;
22446   u64 u = 0;
22447   int neg = 0; /* assume positive */
22448   int i;
22449   int c = 0;
22450   int nonNum = 0;
22451   const char *zStart;
22452   const char *zEnd = zNum + length;
22453   assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
22454   if( enc==SQLITE_UTF8 ){
22455     incr = 1;
22456   }else{
22457     incr = 2;
22458     assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
22459     for(i=3-enc; i<length && zNum[i]==0; i+=2){}
22460     nonNum = i<length;
22461     zEnd = zNum+i+enc-3;
22462     zNum += (enc&1);
22463   }
22464   while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr;
22465   if( zNum<zEnd ){
22466     if( *zNum=='-' ){
22467       neg = 1;
22468       zNum+=incr;
22469     }else if( *zNum=='+' ){
22470       zNum+=incr;
22471     }
22472   }
22473   zStart = zNum;
22474   while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */
22475   for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){
22476     u = u*10 + c - '0';
22477   }
22478   if( u>LARGEST_INT64 ){
22479     *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
22480   }else if( neg ){
22481     *pNum = -(i64)u;
22482   }else{
22483     *pNum = (i64)u;
22484   }
22485   testcase( i==18 );
22486   testcase( i==19 );
22487   testcase( i==20 );
22488   if( (c!=0 && &zNum[i]<zEnd) || (i==0 && zStart==zNum) || i>19*incr || nonNum ){
22489     /* zNum is empty or contains non-numeric text or is longer
22490     ** than 19 digits (thus guaranteeing that it is too large) */
22491     return 1;
22492   }else if( i<19*incr ){
22493     /* Less than 19 digits, so we know that it fits in 64 bits */
22494     assert( u<=LARGEST_INT64 );
22495     return 0;
22496   }else{
22497     /* zNum is a 19-digit numbers.  Compare it against 9223372036854775808. */
22498     c = compare2pow63(zNum, incr);
22499     if( c<0 ){
22500       /* zNum is less than 9223372036854775808 so it fits */
22501       assert( u<=LARGEST_INT64 );
22502       return 0;
22503     }else if( c>0 ){
22504       /* zNum is greater than 9223372036854775808 so it overflows */
22505       return 1;
22506     }else{
22507       /* zNum is exactly 9223372036854775808.  Fits if negative.  The
22508       ** special case 2 overflow if positive */
22509       assert( u-1==LARGEST_INT64 );
22510       return neg ? 0 : 2;
22511     }
22512   }
22513 }
22514 
22515 /*
22516 ** If zNum represents an integer that will fit in 32-bits, then set
22517 ** *pValue to that integer and return true.  Otherwise return false.
22518 **
22519 ** Any non-numeric characters that following zNum are ignored.
22520 ** This is different from sqlite3Atoi64() which requires the
22521 ** input number to be zero-terminated.
22522 */
22523 SQLITE_PRIVATE int sqlite3GetInt32(const char *zNum, int *pValue){
22524   sqlite_int64 v = 0;
22525   int i, c;
22526   int neg = 0;
22527   if( zNum[0]=='-' ){
22528     neg = 1;
22529     zNum++;
22530   }else if( zNum[0]=='+' ){
22531     zNum++;
22532   }
22533   while( zNum[0]=='0' ) zNum++;
22534   for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
22535     v = v*10 + c;
22536   }
22537 
22538   /* The longest decimal representation of a 32 bit integer is 10 digits:
22539   **
22540   **             1234567890
22541   **     2^31 -> 2147483648
22542   */
22543   testcase( i==10 );
22544   if( i>10 ){
22545     return 0;
22546   }
22547   testcase( v-neg==2147483647 );
22548   if( v-neg>2147483647 ){
22549     return 0;
22550   }
22551   if( neg ){
22552     v = -v;
22553   }
22554   *pValue = (int)v;
22555   return 1;
22556 }
22557 
22558 /*
22559 ** Return a 32-bit integer value extracted from a string.  If the
22560 ** string is not an integer, just return 0.
22561 */
22562 SQLITE_PRIVATE int sqlite3Atoi(const char *z){
22563   int x = 0;
22564   if( z ) sqlite3GetInt32(z, &x);
22565   return x;
22566 }
22567 
22568 /*
22569 ** The variable-length integer encoding is as follows:
22570 **
22571 ** KEY:
22572 **         A = 0xxxxxxx    7 bits of data and one flag bit
22573 **         B = 1xxxxxxx    7 bits of data and one flag bit
22574 **         C = xxxxxxxx    8 bits of data
22575 **
22576 **  7 bits - A
22577 ** 14 bits - BA
22578 ** 21 bits - BBA
22579 ** 28 bits - BBBA
22580 ** 35 bits - BBBBA
22581 ** 42 bits - BBBBBA
22582 ** 49 bits - BBBBBBA
22583 ** 56 bits - BBBBBBBA
22584 ** 64 bits - BBBBBBBBC
22585 */
22586 
22587 /*
22588 ** Write a 64-bit variable-length integer to memory starting at p[0].
22589 ** The length of data write will be between 1 and 9 bytes.  The number
22590 ** of bytes written is returned.
22591 **
22592 ** A variable-length integer consists of the lower 7 bits of each byte
22593 ** for all bytes that have the 8th bit set and one byte with the 8th
22594 ** bit clear.  Except, if we get to the 9th byte, it stores the full
22595 ** 8 bits and is the last byte.
22596 */
22597 SQLITE_PRIVATE int sqlite3PutVarint(unsigned char *p, u64 v){
22598   int i, j, n;
22599   u8 buf[10];
22600   if( v & (((u64)0xff000000)<<32) ){
22601     p[8] = (u8)v;
22602     v >>= 8;
22603     for(i=7; i>=0; i--){
22604       p[i] = (u8)((v & 0x7f) | 0x80);
22605       v >>= 7;
22606     }
22607     return 9;
22608   }
22609   n = 0;
22610   do{
22611     buf[n++] = (u8)((v & 0x7f) | 0x80);
22612     v >>= 7;
22613   }while( v!=0 );
22614   buf[0] &= 0x7f;
22615   assert( n<=9 );
22616   for(i=0, j=n-1; j>=0; j--, i++){
22617     p[i] = buf[j];
22618   }
22619   return n;
22620 }
22621 
22622 /*
22623 ** This routine is a faster version of sqlite3PutVarint() that only
22624 ** works for 32-bit positive integers and which is optimized for
22625 ** the common case of small integers.  A MACRO version, putVarint32,
22626 ** is provided which inlines the single-byte case.  All code should use
22627 ** the MACRO version as this function assumes the single-byte case has
22628 ** already been handled.
22629 */
22630 SQLITE_PRIVATE int sqlite3PutVarint32(unsigned char *p, u32 v){
22631 #ifndef putVarint32
22632   if( (v & ~0x7f)==0 ){
22633     p[0] = v;
22634     return 1;
22635   }
22636 #endif
22637   if( (v & ~0x3fff)==0 ){
22638     p[0] = (u8)((v>>7) | 0x80);
22639     p[1] = (u8)(v & 0x7f);
22640     return 2;
22641   }
22642   return sqlite3PutVarint(p, v);
22643 }
22644 
22645 /*
22646 ** Bitmasks used by sqlite3GetVarint().  These precomputed constants
22647 ** are defined here rather than simply putting the constant expressions
22648 ** inline in order to work around bugs in the RVT compiler.
22649 **
22650 ** SLOT_2_0     A mask for  (0x7f<<14) | 0x7f
22651 **
22652 ** SLOT_4_2_0   A mask for  (0x7f<<28) | SLOT_2_0
22653 */
22654 #define SLOT_2_0     0x001fc07f
22655 #define SLOT_4_2_0   0xf01fc07f
22656 
22657 
22658 /*
22659 ** Read a 64-bit variable-length integer from memory starting at p[0].
22660 ** Return the number of bytes read.  The value is stored in *v.
22661 */
22662 SQLITE_PRIVATE u8 sqlite3GetVarint(const unsigned char *p, u64 *v){
22663   u32 a,b,s;
22664 
22665   a = *p;
22666   /* a: p0 (unmasked) */
22667   if (!(a&0x80))
22668   {
22669     *v = a;
22670     return 1;
22671   }
22672 
22673   p++;
22674   b = *p;
22675   /* b: p1 (unmasked) */
22676   if (!(b&0x80))
22677   {
22678     a &= 0x7f;
22679     a = a<<7;
22680     a |= b;
22681     *v = a;
22682     return 2;
22683   }
22684 
22685   /* Verify that constants are precomputed correctly */
22686   assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) );
22687   assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) );
22688 
22689   p++;
22690   a = a<<14;
22691   a |= *p;
22692   /* a: p0<<14 | p2 (unmasked) */
22693   if (!(a&0x80))
22694   {
22695     a &= SLOT_2_0;
22696     b &= 0x7f;
22697     b = b<<7;
22698     a |= b;
22699     *v = a;
22700     return 3;
22701   }
22702 
22703   /* CSE1 from below */
22704   a &= SLOT_2_0;
22705   p++;
22706   b = b<<14;
22707   b |= *p;
22708   /* b: p1<<14 | p3 (unmasked) */
22709   if (!(b&0x80))
22710   {
22711     b &= SLOT_2_0;
22712     /* moved CSE1 up */
22713     /* a &= (0x7f<<14)|(0x7f); */
22714     a = a<<7;
22715     a |= b;
22716     *v = a;
22717     return 4;
22718   }
22719 
22720   /* a: p0<<14 | p2 (masked) */
22721   /* b: p1<<14 | p3 (unmasked) */
22722   /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
22723   /* moved CSE1 up */
22724   /* a &= (0x7f<<14)|(0x7f); */
22725   b &= SLOT_2_0;
22726   s = a;
22727   /* s: p0<<14 | p2 (masked) */
22728 
22729   p++;
22730   a = a<<14;
22731   a |= *p;
22732   /* a: p0<<28 | p2<<14 | p4 (unmasked) */
22733   if (!(a&0x80))
22734   {
22735     /* we can skip these cause they were (effectively) done above in calc'ing s */
22736     /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
22737     /* b &= (0x7f<<14)|(0x7f); */
22738     b = b<<7;
22739     a |= b;
22740     s = s>>18;
22741     *v = ((u64)s)<<32 | a;
22742     return 5;
22743   }
22744 
22745   /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
22746   s = s<<7;
22747   s |= b;
22748   /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
22749 
22750   p++;
22751   b = b<<14;
22752   b |= *p;
22753   /* b: p1<<28 | p3<<14 | p5 (unmasked) */
22754   if (!(b&0x80))
22755   {
22756     /* we can skip this cause it was (effectively) done above in calc'ing s */
22757     /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
22758     a &= SLOT_2_0;
22759     a = a<<7;
22760     a |= b;
22761     s = s>>18;
22762     *v = ((u64)s)<<32 | a;
22763     return 6;
22764   }
22765 
22766   p++;
22767   a = a<<14;
22768   a |= *p;
22769   /* a: p2<<28 | p4<<14 | p6 (unmasked) */
22770   if (!(a&0x80))
22771   {
22772     a &= SLOT_4_2_0;
22773     b &= SLOT_2_0;
22774     b = b<<7;
22775     a |= b;
22776     s = s>>11;
22777     *v = ((u64)s)<<32 | a;
22778     return 7;
22779   }
22780 
22781   /* CSE2 from below */
22782   a &= SLOT_2_0;
22783   p++;
22784   b = b<<14;
22785   b |= *p;
22786   /* b: p3<<28 | p5<<14 | p7 (unmasked) */
22787   if (!(b&0x80))
22788   {
22789     b &= SLOT_4_2_0;
22790     /* moved CSE2 up */
22791     /* a &= (0x7f<<14)|(0x7f); */
22792     a = a<<7;
22793     a |= b;
22794     s = s>>4;
22795     *v = ((u64)s)<<32 | a;
22796     return 8;
22797   }
22798 
22799   p++;
22800   a = a<<15;
22801   a |= *p;
22802   /* a: p4<<29 | p6<<15 | p8 (unmasked) */
22803 
22804   /* moved CSE2 up */
22805   /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
22806   b &= SLOT_2_0;
22807   b = b<<8;
22808   a |= b;
22809 
22810   s = s<<4;
22811   b = p[-4];
22812   b &= 0x7f;
22813   b = b>>3;
22814   s |= b;
22815 
22816   *v = ((u64)s)<<32 | a;
22817 
22818   return 9;
22819 }
22820 
22821 /*
22822 ** Read a 32-bit variable-length integer from memory starting at p[0].
22823 ** Return the number of bytes read.  The value is stored in *v.
22824 **
22825 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
22826 ** integer, then set *v to 0xffffffff.
22827 **
22828 ** A MACRO version, getVarint32, is provided which inlines the
22829 ** single-byte case.  All code should use the MACRO version as
22830 ** this function assumes the single-byte case has already been handled.
22831 */
22832 SQLITE_PRIVATE u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){
22833   u32 a,b;
22834 
22835   /* The 1-byte case.  Overwhelmingly the most common.  Handled inline
22836   ** by the getVarin32() macro */
22837   a = *p;
22838   /* a: p0 (unmasked) */
22839 #ifndef getVarint32
22840   if (!(a&0x80))
22841   {
22842     /* Values between 0 and 127 */
22843     *v = a;
22844     return 1;
22845   }
22846 #endif
22847 
22848   /* The 2-byte case */
22849   p++;
22850   b = *p;
22851   /* b: p1 (unmasked) */
22852   if (!(b&0x80))
22853   {
22854     /* Values between 128 and 16383 */
22855     a &= 0x7f;
22856     a = a<<7;
22857     *v = a | b;
22858     return 2;
22859   }
22860 
22861   /* The 3-byte case */
22862   p++;
22863   a = a<<14;
22864   a |= *p;
22865   /* a: p0<<14 | p2 (unmasked) */
22866   if (!(a&0x80))
22867   {
22868     /* Values between 16384 and 2097151 */
22869     a &= (0x7f<<14)|(0x7f);
22870     b &= 0x7f;
22871     b = b<<7;
22872     *v = a | b;
22873     return 3;
22874   }
22875 
22876   /* A 32-bit varint is used to store size information in btrees.
22877   ** Objects are rarely larger than 2MiB limit of a 3-byte varint.
22878   ** A 3-byte varint is sufficient, for example, to record the size
22879   ** of a 1048569-byte BLOB or string.
22880   **
22881   ** We only unroll the first 1-, 2-, and 3- byte cases.  The very
22882   ** rare larger cases can be handled by the slower 64-bit varint
22883   ** routine.
22884   */
22885 #if 1
22886   {
22887     u64 v64;
22888     u8 n;
22889 
22890     p -= 2;
22891     n = sqlite3GetVarint(p, &v64);
22892     assert( n>3 && n<=9 );
22893     if( (v64 & SQLITE_MAX_U32)!=v64 ){
22894       *v = 0xffffffff;
22895     }else{
22896       *v = (u32)v64;
22897     }
22898     return n;
22899   }
22900 
22901 #else
22902   /* For following code (kept for historical record only) shows an
22903   ** unrolling for the 3- and 4-byte varint cases.  This code is
22904   ** slightly faster, but it is also larger and much harder to test.
22905   */
22906   p++;
22907   b = b<<14;
22908   b |= *p;
22909   /* b: p1<<14 | p3 (unmasked) */
22910   if (!(b&0x80))
22911   {
22912     /* Values between 2097152 and 268435455 */
22913     b &= (0x7f<<14)|(0x7f);
22914     a &= (0x7f<<14)|(0x7f);
22915     a = a<<7;
22916     *v = a | b;
22917     return 4;
22918   }
22919 
22920   p++;
22921   a = a<<14;
22922   a |= *p;
22923   /* a: p0<<28 | p2<<14 | p4 (unmasked) */
22924   if (!(a&0x80))
22925   {
22926     /* Values  between 268435456 and 34359738367 */
22927     a &= SLOT_4_2_0;
22928     b &= SLOT_4_2_0;
22929     b = b<<7;
22930     *v = a | b;
22931     return 5;
22932   }
22933 
22934   /* We can only reach this point when reading a corrupt database
22935   ** file.  In that case we are not in any hurry.  Use the (relatively
22936   ** slow) general-purpose sqlite3GetVarint() routine to extract the
22937   ** value. */
22938   {
22939     u64 v64;
22940     u8 n;
22941 
22942     p -= 4;
22943     n = sqlite3GetVarint(p, &v64);
22944     assert( n>5 && n<=9 );
22945     *v = (u32)v64;
22946     return n;
22947   }
22948 #endif
22949 }
22950 
22951 /*
22952 ** Return the number of bytes that will be needed to store the given
22953 ** 64-bit integer.
22954 */
22955 SQLITE_PRIVATE int sqlite3VarintLen(u64 v){
22956   int i = 0;
22957   do{
22958     i++;
22959     v >>= 7;
22960   }while( v!=0 && ALWAYS(i<9) );
22961   return i;
22962 }
22963 
22964 
22965 /*
22966 ** Read or write a four-byte big-endian integer value.
22967 */
22968 SQLITE_PRIVATE u32 sqlite3Get4byte(const u8 *p){
22969   testcase( p[0]&0x80 );
22970   return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
22971 }
22972 SQLITE_PRIVATE void sqlite3Put4byte(unsigned char *p, u32 v){
22973   p[0] = (u8)(v>>24);
22974   p[1] = (u8)(v>>16);
22975   p[2] = (u8)(v>>8);
22976   p[3] = (u8)v;
22977 }
22978 
22979 
22980 
22981 /*
22982 ** Translate a single byte of Hex into an integer.
22983 ** This routine only works if h really is a valid hexadecimal
22984 ** character:  0..9a..fA..F
22985 */
22986 SQLITE_PRIVATE u8 sqlite3HexToInt(int h){
22987   assert( (h>='0' && h<='9') ||  (h>='a' && h<='f') ||  (h>='A' && h<='F') );
22988 #ifdef SQLITE_ASCII
22989   h += 9*(1&(h>>6));
22990 #endif
22991 #ifdef SQLITE_EBCDIC
22992   h += 9*(1&~(h>>4));
22993 #endif
22994   return (u8)(h & 0xf);
22995 }
22996 
22997 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
22998 /*
22999 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
23000 ** value.  Return a pointer to its binary value.  Space to hold the
23001 ** binary value has been obtained from malloc and must be freed by
23002 ** the calling routine.
23003 */
23004 SQLITE_PRIVATE void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
23005   char *zBlob;
23006   int i;
23007 
23008   zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1);
23009   n--;
23010   if( zBlob ){
23011     for(i=0; i<n; i+=2){
23012       zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]);
23013     }
23014     zBlob[i/2] = 0;
23015   }
23016   return zBlob;
23017 }
23018 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
23019 
23020 /*
23021 ** Log an error that is an API call on a connection pointer that should
23022 ** not have been used.  The "type" of connection pointer is given as the
23023 ** argument.  The zType is a word like "NULL" or "closed" or "invalid".
23024 */
23025 static void logBadConnection(const char *zType){
23026   sqlite3_log(SQLITE_MISUSE,
23027      "API call with %s database connection pointer",
23028      zType
23029   );
23030 }
23031 
23032 /*
23033 ** Check to make sure we have a valid db pointer.  This test is not
23034 ** foolproof but it does provide some measure of protection against
23035 ** misuse of the interface such as passing in db pointers that are
23036 ** NULL or which have been previously closed.  If this routine returns
23037 ** 1 it means that the db pointer is valid and 0 if it should not be
23038 ** dereferenced for any reason.  The calling function should invoke
23039 ** SQLITE_MISUSE immediately.
23040 **
23041 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for
23042 ** use.  sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
23043 ** open properly and is not fit for general use but which can be
23044 ** used as an argument to sqlite3_errmsg() or sqlite3_close().
23045 */
23046 SQLITE_PRIVATE int sqlite3SafetyCheckOk(sqlite3 *db){
23047   u32 magic;
23048   if( db==0 ){
23049     logBadConnection("NULL");
23050     return 0;
23051   }
23052   magic = db->magic;
23053   if( magic!=SQLITE_MAGIC_OPEN ){
23054     if( sqlite3SafetyCheckSickOrOk(db) ){
23055       testcase( sqlite3GlobalConfig.xLog!=0 );
23056       logBadConnection("unopened");
23057     }
23058     return 0;
23059   }else{
23060     return 1;
23061   }
23062 }
23063 SQLITE_PRIVATE int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
23064   u32 magic;
23065   magic = db->magic;
23066   if( magic!=SQLITE_MAGIC_SICK &&
23067       magic!=SQLITE_MAGIC_OPEN &&
23068       magic!=SQLITE_MAGIC_BUSY ){
23069     testcase( sqlite3GlobalConfig.xLog!=0 );
23070     logBadConnection("invalid");
23071     return 0;
23072   }else{
23073     return 1;
23074   }
23075 }
23076 
23077 /*
23078 ** Attempt to add, substract, or multiply the 64-bit signed value iB against
23079 ** the other 64-bit signed integer at *pA and store the result in *pA.
23080 ** Return 0 on success.  Or if the operation would have resulted in an
23081 ** overflow, leave *pA unchanged and return 1.
23082 */
23083 SQLITE_PRIVATE int sqlite3AddInt64(i64 *pA, i64 iB){
23084   i64 iA = *pA;
23085   testcase( iA==0 ); testcase( iA==1 );
23086   testcase( iB==-1 ); testcase( iB==0 );
23087   if( iB>=0 ){
23088     testcase( iA>0 && LARGEST_INT64 - iA == iB );
23089     testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 );
23090     if( iA>0 && LARGEST_INT64 - iA < iB ) return 1;
23091   }else{
23092     testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 );
23093     testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 );
23094     if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1;
23095   }
23096   *pA += iB;
23097   return 0;
23098 }
23099 SQLITE_PRIVATE int sqlite3SubInt64(i64 *pA, i64 iB){
23100   testcase( iB==SMALLEST_INT64+1 );
23101   if( iB==SMALLEST_INT64 ){
23102     testcase( (*pA)==(-1) ); testcase( (*pA)==0 );
23103     if( (*pA)>=0 ) return 1;
23104     *pA -= iB;
23105     return 0;
23106   }else{
23107     return sqlite3AddInt64(pA, -iB);
23108   }
23109 }
23110 #define TWOPOWER32 (((i64)1)<<32)
23111 #define TWOPOWER31 (((i64)1)<<31)
23112 SQLITE_PRIVATE int sqlite3MulInt64(i64 *pA, i64 iB){
23113   i64 iA = *pA;
23114   i64 iA1, iA0, iB1, iB0, r;
23115 
23116   iA1 = iA/TWOPOWER32;
23117   iA0 = iA % TWOPOWER32;
23118   iB1 = iB/TWOPOWER32;
23119   iB0 = iB % TWOPOWER32;
23120   if( iA1==0 ){
23121     if( iB1==0 ){
23122       *pA *= iB;
23123       return 0;
23124     }
23125     r = iA0*iB1;
23126   }else if( iB1==0 ){
23127     r = iA1*iB0;
23128   }else{
23129     /* If both iA1 and iB1 are non-zero, overflow will result */
23130     return 1;
23131   }
23132   testcase( r==(-TWOPOWER31)-1 );
23133   testcase( r==(-TWOPOWER31) );
23134   testcase( r==TWOPOWER31 );
23135   testcase( r==TWOPOWER31-1 );
23136   if( r<(-TWOPOWER31) || r>=TWOPOWER31 ) return 1;
23137   r *= TWOPOWER32;
23138   if( sqlite3AddInt64(&r, iA0*iB0) ) return 1;
23139   *pA = r;
23140   return 0;
23141 }
23142 
23143 /*
23144 ** Compute the absolute value of a 32-bit signed integer, of possible.  Or
23145 ** if the integer has a value of -2147483648, return +2147483647
23146 */
23147 SQLITE_PRIVATE int sqlite3AbsInt32(int x){
23148   if( x>=0 ) return x;
23149   if( x==(int)0x80000000 ) return 0x7fffffff;
23150   return -x;
23151 }
23152 
23153 #ifdef SQLITE_ENABLE_8_3_NAMES
23154 /*
23155 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
23156 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
23157 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
23158 ** three characters, then shorten the suffix on z[] to be the last three
23159 ** characters of the original suffix.
23160 **
23161 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
23162 ** do the suffix shortening regardless of URI parameter.
23163 **
23164 ** Examples:
23165 **
23166 **     test.db-journal    =>   test.nal
23167 **     test.db-wal        =>   test.wal
23168 **     test.db-shm        =>   test.shm
23169 **     test.db-mj7f3319fa =>   test.9fa
23170 */
23171 SQLITE_PRIVATE void sqlite3FileSuffix3(const char *zBaseFilename, char *z){
23172 #if SQLITE_ENABLE_8_3_NAMES<2
23173   if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) )
23174 #endif
23175   {
23176     int i, sz;
23177     sz = sqlite3Strlen30(z);
23178     for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){}
23179     if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4);
23180   }
23181 }
23182 #endif
23183 
23184 /*
23185 ** Find (an approximate) sum of two LogEst values.  This computation is
23186 ** not a simple "+" operator because LogEst is stored as a logarithmic
23187 ** value.
23188 **
23189 */
23190 SQLITE_PRIVATE LogEst sqlite3LogEstAdd(LogEst a, LogEst b){
23191   static const unsigned char x[] = {
23192      10, 10,                         /* 0,1 */
23193       9, 9,                          /* 2,3 */
23194       8, 8,                          /* 4,5 */
23195       7, 7, 7,                       /* 6,7,8 */
23196       6, 6, 6,                       /* 9,10,11 */
23197       5, 5, 5,                       /* 12-14 */
23198       4, 4, 4, 4,                    /* 15-18 */
23199       3, 3, 3, 3, 3, 3,              /* 19-24 */
23200       2, 2, 2, 2, 2, 2, 2,           /* 25-31 */
23201   };
23202   if( a>=b ){
23203     if( a>b+49 ) return a;
23204     if( a>b+31 ) return a+1;
23205     return a+x[a-b];
23206   }else{
23207     if( b>a+49 ) return b;
23208     if( b>a+31 ) return b+1;
23209     return b+x[b-a];
23210   }
23211 }
23212 
23213 /*
23214 ** Convert an integer into a LogEst.  In other words, compute an
23215 ** approximation for 10*log2(x).
23216 */
23217 SQLITE_PRIVATE LogEst sqlite3LogEst(u64 x){
23218   static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 };
23219   LogEst y = 40;
23220   if( x<8 ){
23221     if( x<2 ) return 0;
23222     while( x<8 ){  y -= 10; x <<= 1; }
23223   }else{
23224     while( x>255 ){ y += 40; x >>= 4; }
23225     while( x>15 ){  y += 10; x >>= 1; }
23226   }
23227   return a[x&7] + y - 10;
23228 }
23229 
23230 #ifndef SQLITE_OMIT_VIRTUALTABLE
23231 /*
23232 ** Convert a double into a LogEst
23233 ** In other words, compute an approximation for 10*log2(x).
23234 */
23235 SQLITE_PRIVATE LogEst sqlite3LogEstFromDouble(double x){
23236   u64 a;
23237   LogEst e;
23238   assert( sizeof(x)==8 && sizeof(a)==8 );
23239   if( x<=1 ) return 0;
23240   if( x<=2000000000 ) return sqlite3LogEst((u64)x);
23241   memcpy(&a, &x, 8);
23242   e = (a>>52) - 1022;
23243   return e*10;
23244 }
23245 #endif /* SQLITE_OMIT_VIRTUALTABLE */
23246 
23247 /*
23248 ** Convert a LogEst into an integer.
23249 */
23250 SQLITE_PRIVATE u64 sqlite3LogEstToInt(LogEst x){
23251   u64 n;
23252   if( x<10 ) return 1;
23253   n = x%10;
23254   x /= 10;
23255   if( n>=5 ) n -= 2;
23256   else if( n>=1 ) n -= 1;
23257   if( x>=3 ){
23258     return x>60 ? (u64)LARGEST_INT64 : (n+8)<<(x-3);
23259   }
23260   return (n+8)>>(3-x);
23261 }
23262 
23263 /************** End of util.c ************************************************/
23264 /************** Begin file hash.c ********************************************/
23265 /*
23266 ** 2001 September 22
23267 **
23268 ** The author disclaims copyright to this source code.  In place of
23269 ** a legal notice, here is a blessing:
23270 **
23271 **    May you do good and not evil.
23272 **    May you find forgiveness for yourself and forgive others.
23273 **    May you share freely, never taking more than you give.
23274 **
23275 *************************************************************************
23276 ** This is the implementation of generic hash-tables
23277 ** used in SQLite.
23278 */
23279 /* #include <assert.h> */
23280 
23281 /* Turn bulk memory into a hash table object by initializing the
23282 ** fields of the Hash structure.
23283 **
23284 ** "pNew" is a pointer to the hash table that is to be initialized.
23285 */
23286 SQLITE_PRIVATE void sqlite3HashInit(Hash *pNew){
23287   assert( pNew!=0 );
23288   pNew->first = 0;
23289   pNew->count = 0;
23290   pNew->htsize = 0;
23291   pNew->ht = 0;
23292 }
23293 
23294 /* Remove all entries from a hash table.  Reclaim all memory.
23295 ** Call this routine to delete a hash table or to reset a hash table
23296 ** to the empty state.
23297 */
23298 SQLITE_PRIVATE void sqlite3HashClear(Hash *pH){
23299   HashElem *elem;         /* For looping over all elements of the table */
23300 
23301   assert( pH!=0 );
23302   elem = pH->first;
23303   pH->first = 0;
23304   sqlite3_free(pH->ht);
23305   pH->ht = 0;
23306   pH->htsize = 0;
23307   while( elem ){
23308     HashElem *next_elem = elem->next;
23309     sqlite3_free(elem);
23310     elem = next_elem;
23311   }
23312   pH->count = 0;
23313 }
23314 
23315 /*
23316 ** The hashing function.
23317 */
23318 static unsigned int strHash(const char *z, int nKey){
23319   unsigned int h = 0;
23320   assert( nKey>=0 );
23321   while( nKey > 0  ){
23322     h = (h<<3) ^ h ^ sqlite3UpperToLower[(unsigned char)*z++];
23323     nKey--;
23324   }
23325   return h;
23326 }
23327 
23328 
23329 /* Link pNew element into the hash table pH.  If pEntry!=0 then also
23330 ** insert pNew into the pEntry hash bucket.
23331 */
23332 static void insertElement(
23333   Hash *pH,              /* The complete hash table */
23334   struct _ht *pEntry,    /* The entry into which pNew is inserted */
23335   HashElem *pNew         /* The element to be inserted */
23336 ){
23337   HashElem *pHead;       /* First element already in pEntry */
23338   if( pEntry ){
23339     pHead = pEntry->count ? pEntry->chain : 0;
23340     pEntry->count++;
23341     pEntry->chain = pNew;
23342   }else{
23343     pHead = 0;
23344   }
23345   if( pHead ){
23346     pNew->next = pHead;
23347     pNew->prev = pHead->prev;
23348     if( pHead->prev ){ pHead->prev->next = pNew; }
23349     else             { pH->first = pNew; }
23350     pHead->prev = pNew;
23351   }else{
23352     pNew->next = pH->first;
23353     if( pH->first ){ pH->first->prev = pNew; }
23354     pNew->prev = 0;
23355     pH->first = pNew;
23356   }
23357 }
23358 
23359 
23360 /* Resize the hash table so that it cantains "new_size" buckets.
23361 **
23362 ** The hash table might fail to resize if sqlite3_malloc() fails or
23363 ** if the new size is the same as the prior size.
23364 ** Return TRUE if the resize occurs and false if not.
23365 */
23366 static int rehash(Hash *pH, unsigned int new_size){
23367   struct _ht *new_ht;            /* The new hash table */
23368   HashElem *elem, *next_elem;    /* For looping over existing elements */
23369 
23370 #if SQLITE_MALLOC_SOFT_LIMIT>0
23371   if( new_size*sizeof(struct _ht)>SQLITE_MALLOC_SOFT_LIMIT ){
23372     new_size = SQLITE_MALLOC_SOFT_LIMIT/sizeof(struct _ht);
23373   }
23374   if( new_size==pH->htsize ) return 0;
23375 #endif
23376 
23377   /* The inability to allocates space for a larger hash table is
23378   ** a performance hit but it is not a fatal error.  So mark the
23379   ** allocation as a benign. Use sqlite3Malloc()/memset(0) instead of
23380   ** sqlite3MallocZero() to make the allocation, as sqlite3MallocZero()
23381   ** only zeroes the requested number of bytes whereas this module will
23382   ** use the actual amount of space allocated for the hash table (which
23383   ** may be larger than the requested amount).
23384   */
23385   sqlite3BeginBenignMalloc();
23386   new_ht = (struct _ht *)sqlite3Malloc( new_size*sizeof(struct _ht) );
23387   sqlite3EndBenignMalloc();
23388 
23389   if( new_ht==0 ) return 0;
23390   sqlite3_free(pH->ht);
23391   pH->ht = new_ht;
23392   pH->htsize = new_size = sqlite3MallocSize(new_ht)/sizeof(struct _ht);
23393   memset(new_ht, 0, new_size*sizeof(struct _ht));
23394   for(elem=pH->first, pH->first=0; elem; elem = next_elem){
23395     unsigned int h = strHash(elem->pKey, elem->nKey) % new_size;
23396     next_elem = elem->next;
23397     insertElement(pH, &new_ht[h], elem);
23398   }
23399   return 1;
23400 }
23401 
23402 /* This function (for internal use only) locates an element in an
23403 ** hash table that matches the given key.  The hash for this key has
23404 ** already been computed and is passed as the 4th parameter.
23405 */
23406 static HashElem *findElementGivenHash(
23407   const Hash *pH,     /* The pH to be searched */
23408   const char *pKey,   /* The key we are searching for */
23409   int nKey,           /* Bytes in key (not counting zero terminator) */
23410   unsigned int h      /* The hash for this key. */
23411 ){
23412   HashElem *elem;                /* Used to loop thru the element list */
23413   int count;                     /* Number of elements left to test */
23414 
23415   if( pH->ht ){
23416     struct _ht *pEntry = &pH->ht[h];
23417     elem = pEntry->chain;
23418     count = pEntry->count;
23419   }else{
23420     elem = pH->first;
23421     count = pH->count;
23422   }
23423   while( count-- && ALWAYS(elem) ){
23424     if( elem->nKey==nKey && sqlite3StrNICmp(elem->pKey,pKey,nKey)==0 ){
23425       return elem;
23426     }
23427     elem = elem->next;
23428   }
23429   return 0;
23430 }
23431 
23432 /* Remove a single entry from the hash table given a pointer to that
23433 ** element and a hash on the element's key.
23434 */
23435 static void removeElementGivenHash(
23436   Hash *pH,         /* The pH containing "elem" */
23437   HashElem* elem,   /* The element to be removed from the pH */
23438   unsigned int h    /* Hash value for the element */
23439 ){
23440   struct _ht *pEntry;
23441   if( elem->prev ){
23442     elem->prev->next = elem->next;
23443   }else{
23444     pH->first = elem->next;
23445   }
23446   if( elem->next ){
23447     elem->next->prev = elem->prev;
23448   }
23449   if( pH->ht ){
23450     pEntry = &pH->ht[h];
23451     if( pEntry->chain==elem ){
23452       pEntry->chain = elem->next;
23453     }
23454     pEntry->count--;
23455     assert( pEntry->count>=0 );
23456   }
23457   sqlite3_free( elem );
23458   pH->count--;
23459   if( pH->count==0 ){
23460     assert( pH->first==0 );
23461     assert( pH->count==0 );
23462     sqlite3HashClear(pH);
23463   }
23464 }
23465 
23466 /* Attempt to locate an element of the hash table pH with a key
23467 ** that matches pKey,nKey.  Return the data for this element if it is
23468 ** found, or NULL if there is no match.
23469 */
23470 SQLITE_PRIVATE void *sqlite3HashFind(const Hash *pH, const char *pKey, int nKey){
23471   HashElem *elem;    /* The element that matches key */
23472   unsigned int h;    /* A hash on key */
23473 
23474   assert( pH!=0 );
23475   assert( pKey!=0 );
23476   assert( nKey>=0 );
23477   if( pH->ht ){
23478     h = strHash(pKey, nKey) % pH->htsize;
23479   }else{
23480     h = 0;
23481   }
23482   elem = findElementGivenHash(pH, pKey, nKey, h);
23483   return elem ? elem->data : 0;
23484 }
23485 
23486 /* Insert an element into the hash table pH.  The key is pKey,nKey
23487 ** and the data is "data".
23488 **
23489 ** If no element exists with a matching key, then a new
23490 ** element is created and NULL is returned.
23491 **
23492 ** If another element already exists with the same key, then the
23493 ** new data replaces the old data and the old data is returned.
23494 ** The key is not copied in this instance.  If a malloc fails, then
23495 ** the new data is returned and the hash table is unchanged.
23496 **
23497 ** If the "data" parameter to this function is NULL, then the
23498 ** element corresponding to "key" is removed from the hash table.
23499 */
23500 SQLITE_PRIVATE void *sqlite3HashInsert(Hash *pH, const char *pKey, int nKey, void *data){
23501   unsigned int h;       /* the hash of the key modulo hash table size */
23502   HashElem *elem;       /* Used to loop thru the element list */
23503   HashElem *new_elem;   /* New element added to the pH */
23504 
23505   assert( pH!=0 );
23506   assert( pKey!=0 );
23507   assert( nKey>=0 );
23508   if( pH->htsize ){
23509     h = strHash(pKey, nKey) % pH->htsize;
23510   }else{
23511     h = 0;
23512   }
23513   elem = findElementGivenHash(pH,pKey,nKey,h);
23514   if( elem ){
23515     void *old_data = elem->data;
23516     if( data==0 ){
23517       removeElementGivenHash(pH,elem,h);
23518     }else{
23519       elem->data = data;
23520       elem->pKey = pKey;
23521       assert(nKey==elem->nKey);
23522     }
23523     return old_data;
23524   }
23525   if( data==0 ) return 0;
23526   new_elem = (HashElem*)sqlite3Malloc( sizeof(HashElem) );
23527   if( new_elem==0 ) return data;
23528   new_elem->pKey = pKey;
23529   new_elem->nKey = nKey;
23530   new_elem->data = data;
23531   pH->count++;
23532   if( pH->count>=10 && pH->count > 2*pH->htsize ){
23533     if( rehash(pH, pH->count*2) ){
23534       assert( pH->htsize>0 );
23535       h = strHash(pKey, nKey) % pH->htsize;
23536     }
23537   }
23538   if( pH->ht ){
23539     insertElement(pH, &pH->ht[h], new_elem);
23540   }else{
23541     insertElement(pH, 0, new_elem);
23542   }
23543   return 0;
23544 }
23545 
23546 /************** End of hash.c ************************************************/
23547 /************** Begin file opcodes.c *****************************************/
23548 /* Automatically generated.  Do not edit */
23549 /* See the mkopcodec.awk script for details. */
23550 #if !defined(SQLITE_OMIT_EXPLAIN) || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
23551 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) || defined(SQLITE_DEBUG)
23552 # define OpHelp(X) "\0" X
23553 #else
23554 # define OpHelp(X)
23555 #endif
23556 SQLITE_PRIVATE const char *sqlite3OpcodeName(int i){
23557  static const char *const azName[] = { "?",
23558      /*   1 */ "Function"         OpHelp("r[P3]=func(r[P2@P5])"),
23559      /*   2 */ "Savepoint"        OpHelp(""),
23560      /*   3 */ "AutoCommit"       OpHelp(""),
23561      /*   4 */ "Transaction"      OpHelp(""),
23562      /*   5 */ "SorterNext"       OpHelp(""),
23563      /*   6 */ "PrevIfOpen"       OpHelp(""),
23564      /*   7 */ "NextIfOpen"       OpHelp(""),
23565      /*   8 */ "Prev"             OpHelp(""),
23566      /*   9 */ "Next"             OpHelp(""),
23567      /*  10 */ "AggStep"          OpHelp("accum=r[P3] step(r[P2@P5])"),
23568      /*  11 */ "Checkpoint"       OpHelp(""),
23569      /*  12 */ "JournalMode"      OpHelp(""),
23570      /*  13 */ "Vacuum"           OpHelp(""),
23571      /*  14 */ "VFilter"          OpHelp("iplan=r[P3] zplan='P4'"),
23572      /*  15 */ "VUpdate"          OpHelp("data=r[P3@P2]"),
23573      /*  16 */ "Goto"             OpHelp(""),
23574      /*  17 */ "Gosub"            OpHelp(""),
23575      /*  18 */ "Return"           OpHelp(""),
23576      /*  19 */ "Not"              OpHelp("r[P2]= !r[P1]"),
23577      /*  20 */ "InitCoroutine"    OpHelp(""),
23578      /*  21 */ "EndCoroutine"     OpHelp(""),
23579      /*  22 */ "Yield"            OpHelp(""),
23580      /*  23 */ "HaltIfNull"       OpHelp("if r[P3]=null halt"),
23581      /*  24 */ "Halt"             OpHelp(""),
23582      /*  25 */ "Integer"          OpHelp("r[P2]=P1"),
23583      /*  26 */ "Int64"            OpHelp("r[P2]=P4"),
23584      /*  27 */ "String"           OpHelp("r[P2]='P4' (len=P1)"),
23585      /*  28 */ "Null"             OpHelp("r[P2..P3]=NULL"),
23586      /*  29 */ "SoftNull"         OpHelp("r[P1]=NULL"),
23587      /*  30 */ "Blob"             OpHelp("r[P2]=P4 (len=P1)"),
23588      /*  31 */ "Variable"         OpHelp("r[P2]=parameter(P1,P4)"),
23589      /*  32 */ "Move"             OpHelp("r[P2@P3]=r[P1@P3]"),
23590      /*  33 */ "Copy"             OpHelp("r[P2@P3+1]=r[P1@P3+1]"),
23591      /*  34 */ "SCopy"            OpHelp("r[P2]=r[P1]"),
23592      /*  35 */ "ResultRow"        OpHelp("output=r[P1@P2]"),
23593      /*  36 */ "CollSeq"          OpHelp(""),
23594      /*  37 */ "AddImm"           OpHelp("r[P1]=r[P1]+P2"),
23595      /*  38 */ "MustBeInt"        OpHelp(""),
23596      /*  39 */ "RealAffinity"     OpHelp(""),
23597      /*  40 */ "Permutation"      OpHelp(""),
23598      /*  41 */ "Compare"          OpHelp("r[P1@P3] <-> r[P2@P3]"),
23599      /*  42 */ "Jump"             OpHelp(""),
23600      /*  43 */ "Once"             OpHelp(""),
23601      /*  44 */ "If"               OpHelp(""),
23602      /*  45 */ "IfNot"            OpHelp(""),
23603      /*  46 */ "Column"           OpHelp("r[P3]=PX"),
23604      /*  47 */ "Affinity"         OpHelp("affinity(r[P1@P2])"),
23605      /*  48 */ "MakeRecord"       OpHelp("r[P3]=mkrec(r[P1@P2])"),
23606      /*  49 */ "Count"            OpHelp("r[P2]=count()"),
23607      /*  50 */ "ReadCookie"       OpHelp(""),
23608      /*  51 */ "SetCookie"        OpHelp(""),
23609      /*  52 */ "OpenRead"         OpHelp("root=P2 iDb=P3"),
23610      /*  53 */ "OpenWrite"        OpHelp("root=P2 iDb=P3"),
23611      /*  54 */ "OpenAutoindex"    OpHelp("nColumn=P2"),
23612      /*  55 */ "OpenEphemeral"    OpHelp("nColumn=P2"),
23613      /*  56 */ "SorterOpen"       OpHelp(""),
23614      /*  57 */ "OpenPseudo"       OpHelp("P3 columns in r[P2]"),
23615      /*  58 */ "Close"            OpHelp(""),
23616      /*  59 */ "SeekLT"           OpHelp(""),
23617      /*  60 */ "SeekLE"           OpHelp(""),
23618      /*  61 */ "SeekGE"           OpHelp(""),
23619      /*  62 */ "SeekGT"           OpHelp(""),
23620      /*  63 */ "Seek"             OpHelp("intkey=r[P2]"),
23621      /*  64 */ "NoConflict"       OpHelp("key=r[P3@P4]"),
23622      /*  65 */ "NotFound"         OpHelp("key=r[P3@P4]"),
23623      /*  66 */ "Found"            OpHelp("key=r[P3@P4]"),
23624      /*  67 */ "NotExists"        OpHelp("intkey=r[P3]"),
23625      /*  68 */ "Sequence"         OpHelp("r[P2]=cursor[P1].ctr++"),
23626      /*  69 */ "NewRowid"         OpHelp("r[P2]=rowid"),
23627      /*  70 */ "Insert"           OpHelp("intkey=r[P3] data=r[P2]"),
23628      /*  71 */ "Or"               OpHelp("r[P3]=(r[P1] || r[P2])"),
23629      /*  72 */ "And"              OpHelp("r[P3]=(r[P1] && r[P2])"),
23630      /*  73 */ "InsertInt"        OpHelp("intkey=P3 data=r[P2]"),
23631      /*  74 */ "Delete"           OpHelp(""),
23632      /*  75 */ "ResetCount"       OpHelp(""),
23633      /*  76 */ "IsNull"           OpHelp("if r[P1]==NULL goto P2"),
23634      /*  77 */ "NotNull"          OpHelp("if r[P1]!=NULL goto P2"),
23635      /*  78 */ "Ne"               OpHelp("if r[P1]!=r[P3] goto P2"),
23636      /*  79 */ "Eq"               OpHelp("if r[P1]==r[P3] goto P2"),
23637      /*  80 */ "Gt"               OpHelp("if r[P1]>r[P3] goto P2"),
23638      /*  81 */ "Le"               OpHelp("if r[P1]<=r[P3] goto P2"),
23639      /*  82 */ "Lt"               OpHelp("if r[P1]<r[P3] goto P2"),
23640      /*  83 */ "Ge"               OpHelp("if r[P1]>=r[P3] goto P2"),
23641      /*  84 */ "SorterCompare"    OpHelp("if key(P1)!=rtrim(r[P3],P4) goto P2"),
23642      /*  85 */ "BitAnd"           OpHelp("r[P3]=r[P1]&r[P2]"),
23643      /*  86 */ "BitOr"            OpHelp("r[P3]=r[P1]|r[P2]"),
23644      /*  87 */ "ShiftLeft"        OpHelp("r[P3]=r[P2]<<r[P1]"),
23645      /*  88 */ "ShiftRight"       OpHelp("r[P3]=r[P2]>>r[P1]"),
23646      /*  89 */ "Add"              OpHelp("r[P3]=r[P1]+r[P2]"),
23647      /*  90 */ "Subtract"         OpHelp("r[P3]=r[P2]-r[P1]"),
23648      /*  91 */ "Multiply"         OpHelp("r[P3]=r[P1]*r[P2]"),
23649      /*  92 */ "Divide"           OpHelp("r[P3]=r[P2]/r[P1]"),
23650      /*  93 */ "Remainder"        OpHelp("r[P3]=r[P2]%r[P1]"),
23651      /*  94 */ "Concat"           OpHelp("r[P3]=r[P2]+r[P1]"),
23652      /*  95 */ "SorterData"       OpHelp("r[P2]=data"),
23653      /*  96 */ "BitNot"           OpHelp("r[P1]= ~r[P1]"),
23654      /*  97 */ "String8"          OpHelp("r[P2]='P4'"),
23655      /*  98 */ "RowKey"           OpHelp("r[P2]=key"),
23656      /*  99 */ "RowData"          OpHelp("r[P2]=data"),
23657      /* 100 */ "Rowid"            OpHelp("r[P2]=rowid"),
23658      /* 101 */ "NullRow"          OpHelp(""),
23659      /* 102 */ "Last"             OpHelp(""),
23660      /* 103 */ "SorterSort"       OpHelp(""),
23661      /* 104 */ "Sort"             OpHelp(""),
23662      /* 105 */ "Rewind"           OpHelp(""),
23663      /* 106 */ "SorterInsert"     OpHelp(""),
23664      /* 107 */ "IdxInsert"        OpHelp("key=r[P2]"),
23665      /* 108 */ "IdxDelete"        OpHelp("key=r[P2@P3]"),
23666      /* 109 */ "IdxRowid"         OpHelp("r[P2]=rowid"),
23667      /* 110 */ "IdxLE"            OpHelp("key=r[P3@P4]"),
23668      /* 111 */ "IdxGT"            OpHelp("key=r[P3@P4]"),
23669      /* 112 */ "IdxLT"            OpHelp("key=r[P3@P4]"),
23670      /* 113 */ "IdxGE"            OpHelp("key=r[P3@P4]"),
23671      /* 114 */ "Destroy"          OpHelp(""),
23672      /* 115 */ "Clear"            OpHelp(""),
23673      /* 116 */ "ResetSorter"      OpHelp(""),
23674      /* 117 */ "CreateIndex"      OpHelp("r[P2]=root iDb=P1"),
23675      /* 118 */ "CreateTable"      OpHelp("r[P2]=root iDb=P1"),
23676      /* 119 */ "ParseSchema"      OpHelp(""),
23677      /* 120 */ "LoadAnalysis"     OpHelp(""),
23678      /* 121 */ "DropTable"        OpHelp(""),
23679      /* 122 */ "DropIndex"        OpHelp(""),
23680      /* 123 */ "DropTrigger"      OpHelp(""),
23681      /* 124 */ "IntegrityCk"      OpHelp(""),
23682      /* 125 */ "RowSetAdd"        OpHelp("rowset(P1)=r[P2]"),
23683      /* 126 */ "RowSetRead"       OpHelp("r[P3]=rowset(P1)"),
23684      /* 127 */ "RowSetTest"       OpHelp("if r[P3] in rowset(P1) goto P2"),
23685      /* 128 */ "Program"          OpHelp(""),
23686      /* 129 */ "Param"            OpHelp(""),
23687      /* 130 */ "FkCounter"        OpHelp("fkctr[P1]+=P2"),
23688      /* 131 */ "FkIfZero"         OpHelp("if fkctr[P1]==0 goto P2"),
23689      /* 132 */ "MemMax"           OpHelp("r[P1]=max(r[P1],r[P2])"),
23690      /* 133 */ "Real"             OpHelp("r[P2]=P4"),
23691      /* 134 */ "IfPos"            OpHelp("if r[P1]>0 goto P2"),
23692      /* 135 */ "IfNeg"            OpHelp("if r[P1]<0 goto P2"),
23693      /* 136 */ "IfZero"           OpHelp("r[P1]+=P3, if r[P1]==0 goto P2"),
23694      /* 137 */ "AggFinal"         OpHelp("accum=r[P1] N=P2"),
23695      /* 138 */ "IncrVacuum"       OpHelp(""),
23696      /* 139 */ "Expire"           OpHelp(""),
23697      /* 140 */ "TableLock"        OpHelp("iDb=P1 root=P2 write=P3"),
23698      /* 141 */ "VBegin"           OpHelp(""),
23699      /* 142 */ "VCreate"          OpHelp(""),
23700      /* 143 */ "ToText"           OpHelp(""),
23701      /* 144 */ "ToBlob"           OpHelp(""),
23702      /* 145 */ "ToNumeric"        OpHelp(""),
23703      /* 146 */ "ToInt"            OpHelp(""),
23704      /* 147 */ "ToReal"           OpHelp(""),
23705      /* 148 */ "VDestroy"         OpHelp(""),
23706      /* 149 */ "VOpen"            OpHelp(""),
23707      /* 150 */ "VColumn"          OpHelp("r[P3]=vcolumn(P2)"),
23708      /* 151 */ "VNext"            OpHelp(""),
23709      /* 152 */ "VRename"          OpHelp(""),
23710      /* 153 */ "Pagecount"        OpHelp(""),
23711      /* 154 */ "MaxPgcnt"         OpHelp(""),
23712      /* 155 */ "Init"             OpHelp("Start at P2"),
23713      /* 156 */ "Noop"             OpHelp(""),
23714      /* 157 */ "Explain"          OpHelp(""),
23715   };
23716   return azName[i];
23717 }
23718 #endif
23719 
23720 /************** End of opcodes.c *********************************************/
23721 /************** Begin file os_unix.c *****************************************/
23722 /*
23723 ** 2004 May 22
23724 **
23725 ** The author disclaims copyright to this source code.  In place of
23726 ** a legal notice, here is a blessing:
23727 **
23728 **    May you do good and not evil.
23729 **    May you find forgiveness for yourself and forgive others.
23730 **    May you share freely, never taking more than you give.
23731 **
23732 ******************************************************************************
23733 **
23734 ** This file contains the VFS implementation for unix-like operating systems
23735 ** include Linux, MacOSX, *BSD, QNX, VxWorks, AIX, HPUX, and others.
23736 **
23737 ** There are actually several different VFS implementations in this file.
23738 ** The differences are in the way that file locking is done.  The default
23739 ** implementation uses Posix Advisory Locks.  Alternative implementations
23740 ** use flock(), dot-files, various proprietary locking schemas, or simply
23741 ** skip locking all together.
23742 **
23743 ** This source file is organized into divisions where the logic for various
23744 ** subfunctions is contained within the appropriate division.  PLEASE
23745 ** KEEP THE STRUCTURE OF THIS FILE INTACT.  New code should be placed
23746 ** in the correct division and should be clearly labeled.
23747 **
23748 ** The layout of divisions is as follows:
23749 **
23750 **   *  General-purpose declarations and utility functions.
23751 **   *  Unique file ID logic used by VxWorks.
23752 **   *  Various locking primitive implementations (all except proxy locking):
23753 **      + for Posix Advisory Locks
23754 **      + for no-op locks
23755 **      + for dot-file locks
23756 **      + for flock() locking
23757 **      + for named semaphore locks (VxWorks only)
23758 **      + for AFP filesystem locks (MacOSX only)
23759 **   *  sqlite3_file methods not associated with locking.
23760 **   *  Definitions of sqlite3_io_methods objects for all locking
23761 **      methods plus "finder" functions for each locking method.
23762 **   *  sqlite3_vfs method implementations.
23763 **   *  Locking primitives for the proxy uber-locking-method. (MacOSX only)
23764 **   *  Definitions of sqlite3_vfs objects for all locking methods
23765 **      plus implementations of sqlite3_os_init() and sqlite3_os_end().
23766 */
23767 #if SQLITE_OS_UNIX              /* This file is used on unix only */
23768 
23769 /*
23770 ** There are various methods for file locking used for concurrency
23771 ** control:
23772 **
23773 **   1. POSIX locking (the default),
23774 **   2. No locking,
23775 **   3. Dot-file locking,
23776 **   4. flock() locking,
23777 **   5. AFP locking (OSX only),
23778 **   6. Named POSIX semaphores (VXWorks only),
23779 **   7. proxy locking. (OSX only)
23780 **
23781 ** Styles 4, 5, and 7 are only available of SQLITE_ENABLE_LOCKING_STYLE
23782 ** is defined to 1.  The SQLITE_ENABLE_LOCKING_STYLE also enables automatic
23783 ** selection of the appropriate locking style based on the filesystem
23784 ** where the database is located.
23785 */
23786 #if !defined(SQLITE_ENABLE_LOCKING_STYLE)
23787 #  if defined(__APPLE__)
23788 #    define SQLITE_ENABLE_LOCKING_STYLE 1
23789 #  else
23790 #    define SQLITE_ENABLE_LOCKING_STYLE 0
23791 #  endif
23792 #endif
23793 
23794 /*
23795 ** Define the OS_VXWORKS pre-processor macro to 1 if building on
23796 ** vxworks, or 0 otherwise.
23797 */
23798 #ifndef OS_VXWORKS
23799 #  if defined(__RTP__) || defined(_WRS_KERNEL)
23800 #    define OS_VXWORKS 1
23801 #  else
23802 #    define OS_VXWORKS 0
23803 #  endif
23804 #endif
23805 
23806 /*
23807 ** standard include files.
23808 */
23809 #include <sys/types.h>
23810 #include <sys/stat.h>
23811 #include <fcntl.h>
23812 #include <unistd.h>
23813 /* #include <time.h> */
23814 #include <sys/time.h>
23815 #include <errno.h>
23816 #if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0
23817 #include <sys/mman.h>
23818 #endif
23819 
23820 
23821 #if SQLITE_ENABLE_LOCKING_STYLE
23822 # include <sys/ioctl.h>
23823 # if OS_VXWORKS
23824 #  include <semaphore.h>
23825 #  include <limits.h>
23826 # else
23827 #  include <sys/file.h>
23828 #  include <sys/param.h>
23829 # endif
23830 #endif /* SQLITE_ENABLE_LOCKING_STYLE */
23831 
23832 #if defined(__APPLE__) || (SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS)
23833 # include <sys/mount.h>
23834 #endif
23835 
23836 #ifdef HAVE_UTIME
23837 # include <utime.h>
23838 #endif
23839 
23840 /*
23841 ** Allowed values of unixFile.fsFlags
23842 */
23843 #define SQLITE_FSFLAGS_IS_MSDOS     0x1
23844 
23845 /*
23846 ** If we are to be thread-safe, include the pthreads header and define
23847 ** the SQLITE_UNIX_THREADS macro.
23848 */
23849 #if SQLITE_THREADSAFE
23850 /* # include <pthread.h> */
23851 # define SQLITE_UNIX_THREADS 1
23852 #endif
23853 
23854 /*
23855 ** Default permissions when creating a new file
23856 */
23857 #ifndef SQLITE_DEFAULT_FILE_PERMISSIONS
23858 # define SQLITE_DEFAULT_FILE_PERMISSIONS 0644
23859 #endif
23860 
23861 /*
23862 ** Default permissions when creating auto proxy dir
23863 */
23864 #ifndef SQLITE_DEFAULT_PROXYDIR_PERMISSIONS
23865 # define SQLITE_DEFAULT_PROXYDIR_PERMISSIONS 0755
23866 #endif
23867 
23868 /*
23869 ** Maximum supported path-length.
23870 */
23871 #define MAX_PATHNAME 512
23872 
23873 /*
23874 ** Only set the lastErrno if the error code is a real error and not
23875 ** a normal expected return code of SQLITE_BUSY or SQLITE_OK
23876 */
23877 #define IS_LOCK_ERROR(x)  ((x != SQLITE_OK) && (x != SQLITE_BUSY))
23878 
23879 /* Forward references */
23880 typedef struct unixShm unixShm;               /* Connection shared memory */
23881 typedef struct unixShmNode unixShmNode;       /* Shared memory instance */
23882 typedef struct unixInodeInfo unixInodeInfo;   /* An i-node */
23883 typedef struct UnixUnusedFd UnixUnusedFd;     /* An unused file descriptor */
23884 
23885 /*
23886 ** Sometimes, after a file handle is closed by SQLite, the file descriptor
23887 ** cannot be closed immediately. In these cases, instances of the following
23888 ** structure are used to store the file descriptor while waiting for an
23889 ** opportunity to either close or reuse it.
23890 */
23891 struct UnixUnusedFd {
23892   int fd;                   /* File descriptor to close */
23893   int flags;                /* Flags this file descriptor was opened with */
23894   UnixUnusedFd *pNext;      /* Next unused file descriptor on same file */
23895 };
23896 
23897 /*
23898 ** The unixFile structure is subclass of sqlite3_file specific to the unix
23899 ** VFS implementations.
23900 */
23901 typedef struct unixFile unixFile;
23902 struct unixFile {
23903   sqlite3_io_methods const *pMethod;  /* Always the first entry */
23904   sqlite3_vfs *pVfs;                  /* The VFS that created this unixFile */
23905   unixInodeInfo *pInode;              /* Info about locks on this inode */
23906   int h;                              /* The file descriptor */
23907   unsigned char eFileLock;            /* The type of lock held on this fd */
23908   unsigned short int ctrlFlags;       /* Behavioral bits.  UNIXFILE_* flags */
23909   int lastErrno;                      /* The unix errno from last I/O error */
23910   void *lockingContext;               /* Locking style specific state */
23911   UnixUnusedFd *pUnused;              /* Pre-allocated UnixUnusedFd */
23912   const char *zPath;                  /* Name of the file */
23913   unixShm *pShm;                      /* Shared memory segment information */
23914   int szChunk;                        /* Configured by FCNTL_CHUNK_SIZE */
23915 #if SQLITE_MAX_MMAP_SIZE>0
23916   int nFetchOut;                      /* Number of outstanding xFetch refs */
23917   sqlite3_int64 mmapSize;             /* Usable size of mapping at pMapRegion */
23918   sqlite3_int64 mmapSizeActual;       /* Actual size of mapping at pMapRegion */
23919   sqlite3_int64 mmapSizeMax;          /* Configured FCNTL_MMAP_SIZE value */
23920   void *pMapRegion;                   /* Memory mapped region */
23921 #endif
23922 #ifdef __QNXNTO__
23923   int sectorSize;                     /* Device sector size */
23924   int deviceCharacteristics;          /* Precomputed device characteristics */
23925 #endif
23926 #if SQLITE_ENABLE_LOCKING_STYLE
23927   int openFlags;                      /* The flags specified at open() */
23928 #endif
23929 #if SQLITE_ENABLE_LOCKING_STYLE || defined(__APPLE__)
23930   unsigned fsFlags;                   /* cached details from statfs() */
23931 #endif
23932 #if OS_VXWORKS
23933   struct vxworksFileId *pId;          /* Unique file ID */
23934 #endif
23935 #ifdef SQLITE_DEBUG
23936   /* The next group of variables are used to track whether or not the
23937   ** transaction counter in bytes 24-27 of database files are updated
23938   ** whenever any part of the database changes.  An assertion fault will
23939   ** occur if a file is updated without also updating the transaction
23940   ** counter.  This test is made to avoid new problems similar to the
23941   ** one described by ticket #3584.
23942   */
23943   unsigned char transCntrChng;   /* True if the transaction counter changed */
23944   unsigned char dbUpdate;        /* True if any part of database file changed */
23945   unsigned char inNormalWrite;   /* True if in a normal write operation */
23946 
23947 #endif
23948 
23949 #ifdef SQLITE_TEST
23950   /* In test mode, increase the size of this structure a bit so that
23951   ** it is larger than the struct CrashFile defined in test6.c.
23952   */
23953   char aPadding[32];
23954 #endif
23955 };
23956 
23957 /* This variable holds the process id (pid) from when the xRandomness()
23958 ** method was called.  If xOpen() is called from a different process id,
23959 ** indicating that a fork() has occurred, the PRNG will be reset.
23960 */
23961 static int randomnessPid = 0;
23962 
23963 /*
23964 ** Allowed values for the unixFile.ctrlFlags bitmask:
23965 */
23966 #define UNIXFILE_EXCL        0x01     /* Connections from one process only */
23967 #define UNIXFILE_RDONLY      0x02     /* Connection is read only */
23968 #define UNIXFILE_PERSIST_WAL 0x04     /* Persistent WAL mode */
23969 #ifndef SQLITE_DISABLE_DIRSYNC
23970 # define UNIXFILE_DIRSYNC    0x08     /* Directory sync needed */
23971 #else
23972 # define UNIXFILE_DIRSYNC    0x00
23973 #endif
23974 #define UNIXFILE_PSOW        0x10     /* SQLITE_IOCAP_POWERSAFE_OVERWRITE */
23975 #define UNIXFILE_DELETE      0x20     /* Delete on close */
23976 #define UNIXFILE_URI         0x40     /* Filename might have query parameters */
23977 #define UNIXFILE_NOLOCK      0x80     /* Do no file locking */
23978 #define UNIXFILE_WARNED    0x0100     /* verifyDbFile() warnings have been issued */
23979 
23980 /*
23981 ** Include code that is common to all os_*.c files
23982 */
23983 /************** Include os_common.h in the middle of os_unix.c ***************/
23984 /************** Begin file os_common.h ***************************************/
23985 /*
23986 ** 2004 May 22
23987 **
23988 ** The author disclaims copyright to this source code.  In place of
23989 ** a legal notice, here is a blessing:
23990 **
23991 **    May you do good and not evil.
23992 **    May you find forgiveness for yourself and forgive others.
23993 **    May you share freely, never taking more than you give.
23994 **
23995 ******************************************************************************
23996 **
23997 ** This file contains macros and a little bit of code that is common to
23998 ** all of the platform-specific files (os_*.c) and is #included into those
23999 ** files.
24000 **
24001 ** This file should be #included by the os_*.c files only.  It is not a
24002 ** general purpose header file.
24003 */
24004 #ifndef _OS_COMMON_H_
24005 #define _OS_COMMON_H_
24006 
24007 /*
24008 ** At least two bugs have slipped in because we changed the MEMORY_DEBUG
24009 ** macro to SQLITE_DEBUG and some older makefiles have not yet made the
24010 ** switch.  The following code should catch this problem at compile-time.
24011 */
24012 #ifdef MEMORY_DEBUG
24013 # error "The MEMORY_DEBUG macro is obsolete.  Use SQLITE_DEBUG instead."
24014 #endif
24015 
24016 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
24017 # ifndef SQLITE_DEBUG_OS_TRACE
24018 #   define SQLITE_DEBUG_OS_TRACE 0
24019 # endif
24020   int sqlite3OSTrace = SQLITE_DEBUG_OS_TRACE;
24021 # define OSTRACE(X)          if( sqlite3OSTrace ) sqlite3DebugPrintf X
24022 #else
24023 # define OSTRACE(X)
24024 #endif
24025 
24026 /*
24027 ** Macros for performance tracing.  Normally turned off.  Only works
24028 ** on i486 hardware.
24029 */
24030 #ifdef SQLITE_PERFORMANCE_TRACE
24031 
24032 /*
24033 ** hwtime.h contains inline assembler code for implementing
24034 ** high-performance timing routines.
24035 */
24036 /************** Include hwtime.h in the middle of os_common.h ****************/
24037 /************** Begin file hwtime.h ******************************************/
24038 /*
24039 ** 2008 May 27
24040 **
24041 ** The author disclaims copyright to this source code.  In place of
24042 ** a legal notice, here is a blessing:
24043 **
24044 **    May you do good and not evil.
24045 **    May you find forgiveness for yourself and forgive others.
24046 **    May you share freely, never taking more than you give.
24047 **
24048 ******************************************************************************
24049 **
24050 ** This file contains inline asm code for retrieving "high-performance"
24051 ** counters for x86 class CPUs.
24052 */
24053 #ifndef _HWTIME_H_
24054 #define _HWTIME_H_
24055 
24056 /*
24057 ** The following routine only works on pentium-class (or newer) processors.
24058 ** It uses the RDTSC opcode to read the cycle count value out of the
24059 ** processor and returns that value.  This can be used for high-res
24060 ** profiling.
24061 */
24062 #if (defined(__GNUC__) || defined(_MSC_VER)) && \
24063       (defined(i386) || defined(__i386__) || defined(_M_IX86))
24064 
24065   #if defined(__GNUC__)
24066 
24067   __inline__ sqlite_uint64 sqlite3Hwtime(void){
24068      unsigned int lo, hi;
24069      __asm__ __volatile__ ("rdtsc" : "=a" (lo), "=d" (hi));
24070      return (sqlite_uint64)hi << 32 | lo;
24071   }
24072 
24073   #elif defined(_MSC_VER)
24074 
24075   __declspec(naked) __inline sqlite_uint64 __cdecl sqlite3Hwtime(void){
24076      __asm {
24077         rdtsc
24078         ret       ; return value at EDX:EAX
24079      }
24080   }
24081 
24082   #endif
24083 
24084 #elif (defined(__GNUC__) && defined(__x86_64__))
24085 
24086   __inline__ sqlite_uint64 sqlite3Hwtime(void){
24087       unsigned long val;
24088       __asm__ __volatile__ ("rdtsc" : "=A" (val));
24089       return val;
24090   }
24091 
24092 #elif (defined(__GNUC__) && defined(__ppc__))
24093 
24094   __inline__ sqlite_uint64 sqlite3Hwtime(void){
24095       unsigned long long retval;
24096       unsigned long junk;
24097       __asm__ __volatile__ ("\n\
24098           1:      mftbu   %1\n\
24099                   mftb    %L0\n\
24100                   mftbu   %0\n\
24101                   cmpw    %0,%1\n\
24102                   bne     1b"
24103                   : "=r" (retval), "=r" (junk));
24104       return retval;
24105   }
24106 
24107 #else
24108 
24109   #error Need implementation of sqlite3Hwtime() for your platform.
24110 
24111   /*
24112   ** To compile without implementing sqlite3Hwtime() for your platform,
24113   ** you can remove the above #error and use the following
24114   ** stub function.  You will lose timing support for many
24115   ** of the debugging and testing utilities, but it should at
24116   ** least compile and run.
24117   */
24118 SQLITE_PRIVATE   sqlite_uint64 sqlite3Hwtime(void){ return ((sqlite_uint64)0); }
24119 
24120 #endif
24121 
24122 #endif /* !defined(_HWTIME_H_) */
24123 
24124 /************** End of hwtime.h **********************************************/
24125 /************** Continuing where we left off in os_common.h ******************/
24126 
24127 static sqlite_uint64 g_start;
24128 static sqlite_uint64 g_elapsed;
24129 #define TIMER_START       g_start=sqlite3Hwtime()
24130 #define TIMER_END         g_elapsed=sqlite3Hwtime()-g_start
24131 #define TIMER_ELAPSED     g_elapsed
24132 #else
24133 #define TIMER_START
24134 #define TIMER_END
24135 #define TIMER_ELAPSED     ((sqlite_uint64)0)
24136 #endif
24137 
24138 /*
24139 ** If we compile with the SQLITE_TEST macro set, then the following block
24140 ** of code will give us the ability to simulate a disk I/O error.  This
24141 ** is used for testing the I/O recovery logic.
24142 */
24143 #ifdef SQLITE_TEST
24144 SQLITE_API int sqlite3_io_error_hit = 0;            /* Total number of I/O Errors */
24145 SQLITE_API int sqlite3_io_error_hardhit = 0;        /* Number of non-benign errors */
24146 SQLITE_API int sqlite3_io_error_pending = 0;        /* Count down to first I/O error */
24147 SQLITE_API int sqlite3_io_error_persist = 0;        /* True if I/O errors persist */
24148 SQLITE_API int sqlite3_io_error_benign = 0;         /* True if errors are benign */
24149 SQLITE_API int sqlite3_diskfull_pending = 0;
24150 SQLITE_API int sqlite3_diskfull = 0;
24151 #define SimulateIOErrorBenign(X) sqlite3_io_error_benign=(X)
24152 #define SimulateIOError(CODE)  \
24153   if( (sqlite3_io_error_persist && sqlite3_io_error_hit) \
24154        || sqlite3_io_error_pending-- == 1 )  \
24155               { local_ioerr(); CODE; }
24156 static void local_ioerr(){
24157   IOTRACE(("IOERR\n"));
24158   sqlite3_io_error_hit++;
24159   if( !sqlite3_io_error_benign ) sqlite3_io_error_hardhit++;
24160 }
24161 #define SimulateDiskfullError(CODE) \
24162    if( sqlite3_diskfull_pending ){ \
24163      if( sqlite3_diskfull_pending == 1 ){ \
24164        local_ioerr(); \
24165        sqlite3_diskfull = 1; \
24166        sqlite3_io_error_hit = 1; \
24167        CODE; \
24168      }else{ \
24169        sqlite3_diskfull_pending--; \
24170      } \
24171    }
24172 #else
24173 #define SimulateIOErrorBenign(X)
24174 #define SimulateIOError(A)
24175 #define SimulateDiskfullError(A)
24176 #endif
24177 
24178 /*
24179 ** When testing, keep a count of the number of open files.
24180 */
24181 #ifdef SQLITE_TEST
24182 SQLITE_API int sqlite3_open_file_count = 0;
24183 #define OpenCounter(X)  sqlite3_open_file_count+=(X)
24184 #else
24185 #define OpenCounter(X)
24186 #endif
24187 
24188 #endif /* !defined(_OS_COMMON_H_) */
24189 
24190 /************** End of os_common.h *******************************************/
24191 /************** Continuing where we left off in os_unix.c ********************/
24192 
24193 /*
24194 ** Define various macros that are missing from some systems.
24195 */
24196 #ifndef O_LARGEFILE
24197 # define O_LARGEFILE 0
24198 #endif
24199 #ifdef SQLITE_DISABLE_LFS
24200 # undef O_LARGEFILE
24201 # define O_LARGEFILE 0
24202 #endif
24203 #ifndef O_NOFOLLOW
24204 # define O_NOFOLLOW 0
24205 #endif
24206 #ifndef O_BINARY
24207 # define O_BINARY 0
24208 #endif
24209 
24210 /*
24211 ** The threadid macro resolves to the thread-id or to 0.  Used for
24212 ** testing and debugging only.
24213 */
24214 #if SQLITE_THREADSAFE
24215 #define threadid pthread_self()
24216 #else
24217 #define threadid 0
24218 #endif
24219 
24220 /*
24221 ** HAVE_MREMAP defaults to true on Linux and false everywhere else.
24222 */
24223 #if !defined(HAVE_MREMAP)
24224 # if defined(__linux__) && defined(_GNU_SOURCE)
24225 #  define HAVE_MREMAP 1
24226 # else
24227 #  define HAVE_MREMAP 0
24228 # endif
24229 #endif
24230 
24231 /*
24232 ** Different Unix systems declare open() in different ways.  Same use
24233 ** open(const char*,int,mode_t).  Others use open(const char*,int,...).
24234 ** The difference is important when using a pointer to the function.
24235 **
24236 ** The safest way to deal with the problem is to always use this wrapper
24237 ** which always has the same well-defined interface.
24238 */
24239 static int posixOpen(const char *zFile, int flags, int mode){
24240   return open(zFile, flags, mode);
24241 }
24242 
24243 /*
24244 ** On some systems, calls to fchown() will trigger a message in a security
24245 ** log if they come from non-root processes.  So avoid calling fchown() if
24246 ** we are not running as root.
24247 */
24248 static int posixFchown(int fd, uid_t uid, gid_t gid){
24249   return geteuid() ? 0 : fchown(fd,uid,gid);
24250 }
24251 
24252 /* Forward reference */
24253 static int openDirectory(const char*, int*);
24254 static int unixGetpagesize(void);
24255 
24256 /*
24257 ** Many system calls are accessed through pointer-to-functions so that
24258 ** they may be overridden at runtime to facilitate fault injection during
24259 ** testing and sandboxing.  The following array holds the names and pointers
24260 ** to all overrideable system calls.
24261 */
24262 static struct unix_syscall {
24263   const char *zName;            /* Name of the system call */
24264   sqlite3_syscall_ptr pCurrent; /* Current value of the system call */
24265   sqlite3_syscall_ptr pDefault; /* Default value */
24266 } aSyscall[] = {
24267   { "open",         (sqlite3_syscall_ptr)posixOpen,  0  },
24268 #define osOpen      ((int(*)(const char*,int,int))aSyscall[0].pCurrent)
24269 
24270   { "close",        (sqlite3_syscall_ptr)close,      0  },
24271 #define osClose     ((int(*)(int))aSyscall[1].pCurrent)
24272 
24273   { "access",       (sqlite3_syscall_ptr)access,     0  },
24274 #define osAccess    ((int(*)(const char*,int))aSyscall[2].pCurrent)
24275 
24276   { "getcwd",       (sqlite3_syscall_ptr)getcwd,     0  },
24277 #define osGetcwd    ((char*(*)(char*,size_t))aSyscall[3].pCurrent)
24278 
24279   { "stat",         (sqlite3_syscall_ptr)stat,       0  },
24280 #define osStat      ((int(*)(const char*,struct stat*))aSyscall[4].pCurrent)
24281 
24282 /*
24283 ** The DJGPP compiler environment looks mostly like Unix, but it
24284 ** lacks the fcntl() system call.  So redefine fcntl() to be something
24285 ** that always succeeds.  This means that locking does not occur under
24286 ** DJGPP.  But it is DOS - what did you expect?
24287 */
24288 #ifdef __DJGPP__
24289   { "fstat",        0,                 0  },
24290 #define osFstat(a,b,c)    0
24291 #else
24292   { "fstat",        (sqlite3_syscall_ptr)fstat,      0  },
24293 #define osFstat     ((int(*)(int,struct stat*))aSyscall[5].pCurrent)
24294 #endif
24295 
24296   { "ftruncate",    (sqlite3_syscall_ptr)ftruncate,  0  },
24297 #define osFtruncate ((int(*)(int,off_t))aSyscall[6].pCurrent)
24298 
24299   { "fcntl",        (sqlite3_syscall_ptr)fcntl,      0  },
24300 #define osFcntl     ((int(*)(int,int,...))aSyscall[7].pCurrent)
24301 
24302   { "read",         (sqlite3_syscall_ptr)read,       0  },
24303 #define osRead      ((ssize_t(*)(int,void*,size_t))aSyscall[8].pCurrent)
24304 
24305 #if defined(USE_PREAD) || SQLITE_ENABLE_LOCKING_STYLE
24306   { "pread",        (sqlite3_syscall_ptr)pread,      0  },
24307 #else
24308   { "pread",        (sqlite3_syscall_ptr)0,          0  },
24309 #endif
24310 #define osPread     ((ssize_t(*)(int,void*,size_t,off_t))aSyscall[9].pCurrent)
24311 
24312 #if defined(USE_PREAD64)
24313   { "pread64",      (sqlite3_syscall_ptr)pread64,    0  },
24314 #else
24315   { "pread64",      (sqlite3_syscall_ptr)0,          0  },
24316 #endif
24317 #define osPread64   ((ssize_t(*)(int,void*,size_t,off_t))aSyscall[10].pCurrent)
24318 
24319   { "write",        (sqlite3_syscall_ptr)write,      0  },
24320 #define osWrite     ((ssize_t(*)(int,const void*,size_t))aSyscall[11].pCurrent)
24321 
24322 #if defined(USE_PREAD) || SQLITE_ENABLE_LOCKING_STYLE
24323   { "pwrite",       (sqlite3_syscall_ptr)pwrite,     0  },
24324 #else
24325   { "pwrite",       (sqlite3_syscall_ptr)0,          0  },
24326 #endif
24327 #define osPwrite    ((ssize_t(*)(int,const void*,size_t,off_t))\
24328                     aSyscall[12].pCurrent)
24329 
24330 #if defined(USE_PREAD64)
24331   { "pwrite64",     (sqlite3_syscall_ptr)pwrite64,   0  },
24332 #else
24333   { "pwrite64",     (sqlite3_syscall_ptr)0,          0  },
24334 #endif
24335 #define osPwrite64  ((ssize_t(*)(int,const void*,size_t,off_t))\
24336                     aSyscall[13].pCurrent)
24337 
24338   { "fchmod",       (sqlite3_syscall_ptr)fchmod,     0  },
24339 #define osFchmod    ((int(*)(int,mode_t))aSyscall[14].pCurrent)
24340 
24341 #if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE
24342   { "fallocate",    (sqlite3_syscall_ptr)posix_fallocate,  0 },
24343 #else
24344   { "fallocate",    (sqlite3_syscall_ptr)0,                0 },
24345 #endif
24346 #define osFallocate ((int(*)(int,off_t,off_t))aSyscall[15].pCurrent)
24347 
24348   { "unlink",       (sqlite3_syscall_ptr)unlink,           0 },
24349 #define osUnlink    ((int(*)(const char*))aSyscall[16].pCurrent)
24350 
24351   { "openDirectory",    (sqlite3_syscall_ptr)openDirectory,      0 },
24352 #define osOpenDirectory ((int(*)(const char*,int*))aSyscall[17].pCurrent)
24353 
24354   { "mkdir",        (sqlite3_syscall_ptr)mkdir,           0 },
24355 #define osMkdir     ((int(*)(const char*,mode_t))aSyscall[18].pCurrent)
24356 
24357   { "rmdir",        (sqlite3_syscall_ptr)rmdir,           0 },
24358 #define osRmdir     ((int(*)(const char*))aSyscall[19].pCurrent)
24359 
24360   { "fchown",       (sqlite3_syscall_ptr)posixFchown,     0 },
24361 #define osFchown    ((int(*)(int,uid_t,gid_t))aSyscall[20].pCurrent)
24362 
24363 #if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0
24364   { "mmap",       (sqlite3_syscall_ptr)mmap,     0 },
24365 #define osMmap ((void*(*)(void*,size_t,int,int,int,off_t))aSyscall[21].pCurrent)
24366 
24367   { "munmap",       (sqlite3_syscall_ptr)munmap,          0 },
24368 #define osMunmap ((void*(*)(void*,size_t))aSyscall[22].pCurrent)
24369 
24370 #if HAVE_MREMAP
24371   { "mremap",       (sqlite3_syscall_ptr)mremap,          0 },
24372 #else
24373   { "mremap",       (sqlite3_syscall_ptr)0,               0 },
24374 #endif
24375 #define osMremap ((void*(*)(void*,size_t,size_t,int,...))aSyscall[23].pCurrent)
24376 #endif
24377 
24378   { "getpagesize",  (sqlite3_syscall_ptr)unixGetpagesize, 0 },
24379 #define osGetpagesize ((int(*)(void))aSyscall[24].pCurrent)
24380 
24381 }; /* End of the overrideable system calls */
24382 
24383 /*
24384 ** This is the xSetSystemCall() method of sqlite3_vfs for all of the
24385 ** "unix" VFSes.  Return SQLITE_OK opon successfully updating the
24386 ** system call pointer, or SQLITE_NOTFOUND if there is no configurable
24387 ** system call named zName.
24388 */
24389 static int unixSetSystemCall(
24390   sqlite3_vfs *pNotUsed,        /* The VFS pointer.  Not used */
24391   const char *zName,            /* Name of system call to override */
24392   sqlite3_syscall_ptr pNewFunc  /* Pointer to new system call value */
24393 ){
24394   unsigned int i;
24395   int rc = SQLITE_NOTFOUND;
24396 
24397   UNUSED_PARAMETER(pNotUsed);
24398   if( zName==0 ){
24399     /* If no zName is given, restore all system calls to their default
24400     ** settings and return NULL
24401     */
24402     rc = SQLITE_OK;
24403     for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
24404       if( aSyscall[i].pDefault ){
24405         aSyscall[i].pCurrent = aSyscall[i].pDefault;
24406       }
24407     }
24408   }else{
24409     /* If zName is specified, operate on only the one system call
24410     ** specified.
24411     */
24412     for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
24413       if( strcmp(zName, aSyscall[i].zName)==0 ){
24414         if( aSyscall[i].pDefault==0 ){
24415           aSyscall[i].pDefault = aSyscall[i].pCurrent;
24416         }
24417         rc = SQLITE_OK;
24418         if( pNewFunc==0 ) pNewFunc = aSyscall[i].pDefault;
24419         aSyscall[i].pCurrent = pNewFunc;
24420         break;
24421       }
24422     }
24423   }
24424   return rc;
24425 }
24426 
24427 /*
24428 ** Return the value of a system call.  Return NULL if zName is not a
24429 ** recognized system call name.  NULL is also returned if the system call
24430 ** is currently undefined.
24431 */
24432 static sqlite3_syscall_ptr unixGetSystemCall(
24433   sqlite3_vfs *pNotUsed,
24434   const char *zName
24435 ){
24436   unsigned int i;
24437 
24438   UNUSED_PARAMETER(pNotUsed);
24439   for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
24440     if( strcmp(zName, aSyscall[i].zName)==0 ) return aSyscall[i].pCurrent;
24441   }
24442   return 0;
24443 }
24444 
24445 /*
24446 ** Return the name of the first system call after zName.  If zName==NULL
24447 ** then return the name of the first system call.  Return NULL if zName
24448 ** is the last system call or if zName is not the name of a valid
24449 ** system call.
24450 */
24451 static const char *unixNextSystemCall(sqlite3_vfs *p, const char *zName){
24452   int i = -1;
24453 
24454   UNUSED_PARAMETER(p);
24455   if( zName ){
24456     for(i=0; i<ArraySize(aSyscall)-1; i++){
24457       if( strcmp(zName, aSyscall[i].zName)==0 ) break;
24458     }
24459   }
24460   for(i++; i<ArraySize(aSyscall); i++){
24461     if( aSyscall[i].pCurrent!=0 ) return aSyscall[i].zName;
24462   }
24463   return 0;
24464 }
24465 
24466 /*
24467 ** Do not accept any file descriptor less than this value, in order to avoid
24468 ** opening database file using file descriptors that are commonly used for
24469 ** standard input, output, and error.
24470 */
24471 #ifndef SQLITE_MINIMUM_FILE_DESCRIPTOR
24472 # define SQLITE_MINIMUM_FILE_DESCRIPTOR 3
24473 #endif
24474 
24475 /*
24476 ** Invoke open().  Do so multiple times, until it either succeeds or
24477 ** fails for some reason other than EINTR.
24478 **
24479 ** If the file creation mode "m" is 0 then set it to the default for
24480 ** SQLite.  The default is SQLITE_DEFAULT_FILE_PERMISSIONS (normally
24481 ** 0644) as modified by the system umask.  If m is not 0, then
24482 ** make the file creation mode be exactly m ignoring the umask.
24483 **
24484 ** The m parameter will be non-zero only when creating -wal, -journal,
24485 ** and -shm files.  We want those files to have *exactly* the same
24486 ** permissions as their original database, unadulterated by the umask.
24487 ** In that way, if a database file is -rw-rw-rw or -rw-rw-r-, and a
24488 ** transaction crashes and leaves behind hot journals, then any
24489 ** process that is able to write to the database will also be able to
24490 ** recover the hot journals.
24491 */
24492 static int robust_open(const char *z, int f, mode_t m){
24493   int fd;
24494   mode_t m2 = m ? m : SQLITE_DEFAULT_FILE_PERMISSIONS;
24495   while(1){
24496 #if defined(O_CLOEXEC)
24497     fd = osOpen(z,f|O_CLOEXEC,m2);
24498 #else
24499     fd = osOpen(z,f,m2);
24500 #endif
24501     if( fd<0 ){
24502       if( errno==EINTR ) continue;
24503       break;
24504     }
24505     if( fd>=SQLITE_MINIMUM_FILE_DESCRIPTOR ) break;
24506     osClose(fd);
24507     sqlite3_log(SQLITE_WARNING,
24508                 "attempt to open \"%s\" as file descriptor %d", z, fd);
24509     fd = -1;
24510     if( osOpen("/dev/null", f, m)<0 ) break;
24511   }
24512   if( fd>=0 ){
24513     if( m!=0 ){
24514       struct stat statbuf;
24515       if( osFstat(fd, &statbuf)==0
24516        && statbuf.st_size==0
24517        && (statbuf.st_mode&0777)!=m
24518       ){
24519         osFchmod(fd, m);
24520       }
24521     }
24522 #if defined(FD_CLOEXEC) && (!defined(O_CLOEXEC) || O_CLOEXEC==0)
24523     osFcntl(fd, F_SETFD, osFcntl(fd, F_GETFD, 0) | FD_CLOEXEC);
24524 #endif
24525   }
24526   return fd;
24527 }
24528 
24529 /*
24530 ** Helper functions to obtain and relinquish the global mutex. The
24531 ** global mutex is used to protect the unixInodeInfo and
24532 ** vxworksFileId objects used by this file, all of which may be
24533 ** shared by multiple threads.
24534 **
24535 ** Function unixMutexHeld() is used to assert() that the global mutex
24536 ** is held when required. This function is only used as part of assert()
24537 ** statements. e.g.
24538 **
24539 **   unixEnterMutex()
24540 **     assert( unixMutexHeld() );
24541 **   unixEnterLeave()
24542 */
24543 static void unixEnterMutex(void){
24544   sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
24545 }
24546 static void unixLeaveMutex(void){
24547   sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
24548 }
24549 #ifdef SQLITE_DEBUG
24550 static int unixMutexHeld(void) {
24551   return sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
24552 }
24553 #endif
24554 
24555 
24556 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
24557 /*
24558 ** Helper function for printing out trace information from debugging
24559 ** binaries. This returns the string represetation of the supplied
24560 ** integer lock-type.
24561 */
24562 static const char *azFileLock(int eFileLock){
24563   switch( eFileLock ){
24564     case NO_LOCK: return "NONE";
24565     case SHARED_LOCK: return "SHARED";
24566     case RESERVED_LOCK: return "RESERVED";
24567     case PENDING_LOCK: return "PENDING";
24568     case EXCLUSIVE_LOCK: return "EXCLUSIVE";
24569   }
24570   return "ERROR";
24571 }
24572 #endif
24573 
24574 #ifdef SQLITE_LOCK_TRACE
24575 /*
24576 ** Print out information about all locking operations.
24577 **
24578 ** This routine is used for troubleshooting locks on multithreaded
24579 ** platforms.  Enable by compiling with the -DSQLITE_LOCK_TRACE
24580 ** command-line option on the compiler.  This code is normally
24581 ** turned off.
24582 */
24583 static int lockTrace(int fd, int op, struct flock *p){
24584   char *zOpName, *zType;
24585   int s;
24586   int savedErrno;
24587   if( op==F_GETLK ){
24588     zOpName = "GETLK";
24589   }else if( op==F_SETLK ){
24590     zOpName = "SETLK";
24591   }else{
24592     s = osFcntl(fd, op, p);
24593     sqlite3DebugPrintf("fcntl unknown %d %d %d\n", fd, op, s);
24594     return s;
24595   }
24596   if( p->l_type==F_RDLCK ){
24597     zType = "RDLCK";
24598   }else if( p->l_type==F_WRLCK ){
24599     zType = "WRLCK";
24600   }else if( p->l_type==F_UNLCK ){
24601     zType = "UNLCK";
24602   }else{
24603     assert( 0 );
24604   }
24605   assert( p->l_whence==SEEK_SET );
24606   s = osFcntl(fd, op, p);
24607   savedErrno = errno;
24608   sqlite3DebugPrintf("fcntl %d %d %s %s %d %d %d %d\n",
24609      threadid, fd, zOpName, zType, (int)p->l_start, (int)p->l_len,
24610      (int)p->l_pid, s);
24611   if( s==(-1) && op==F_SETLK && (p->l_type==F_RDLCK || p->l_type==F_WRLCK) ){
24612     struct flock l2;
24613     l2 = *p;
24614     osFcntl(fd, F_GETLK, &l2);
24615     if( l2.l_type==F_RDLCK ){
24616       zType = "RDLCK";
24617     }else if( l2.l_type==F_WRLCK ){
24618       zType = "WRLCK";
24619     }else if( l2.l_type==F_UNLCK ){
24620       zType = "UNLCK";
24621     }else{
24622       assert( 0 );
24623     }
24624     sqlite3DebugPrintf("fcntl-failure-reason: %s %d %d %d\n",
24625        zType, (int)l2.l_start, (int)l2.l_len, (int)l2.l_pid);
24626   }
24627   errno = savedErrno;
24628   return s;
24629 }
24630 #undef osFcntl
24631 #define osFcntl lockTrace
24632 #endif /* SQLITE_LOCK_TRACE */
24633 
24634 /*
24635 ** Retry ftruncate() calls that fail due to EINTR
24636 */
24637 static int robust_ftruncate(int h, sqlite3_int64 sz){
24638   int rc;
24639   do{ rc = osFtruncate(h,sz); }while( rc<0 && errno==EINTR );
24640   return rc;
24641 }
24642 
24643 /*
24644 ** This routine translates a standard POSIX errno code into something
24645 ** useful to the clients of the sqlite3 functions.  Specifically, it is
24646 ** intended to translate a variety of "try again" errors into SQLITE_BUSY
24647 ** and a variety of "please close the file descriptor NOW" errors into
24648 ** SQLITE_IOERR
24649 **
24650 ** Errors during initialization of locks, or file system support for locks,
24651 ** should handle ENOLCK, ENOTSUP, EOPNOTSUPP separately.
24652 */
24653 static int sqliteErrorFromPosixError(int posixError, int sqliteIOErr) {
24654   switch (posixError) {
24655 #if 0
24656   /* At one point this code was not commented out. In theory, this branch
24657   ** should never be hit, as this function should only be called after
24658   ** a locking-related function (i.e. fcntl()) has returned non-zero with
24659   ** the value of errno as the first argument. Since a system call has failed,
24660   ** errno should be non-zero.
24661   **
24662   ** Despite this, if errno really is zero, we still don't want to return
24663   ** SQLITE_OK. The system call failed, and *some* SQLite error should be
24664   ** propagated back to the caller. Commenting this branch out means errno==0
24665   ** will be handled by the "default:" case below.
24666   */
24667   case 0:
24668     return SQLITE_OK;
24669 #endif
24670 
24671   case EAGAIN:
24672   case ETIMEDOUT:
24673   case EBUSY:
24674   case EINTR:
24675   case ENOLCK:
24676     /* random NFS retry error, unless during file system support
24677      * introspection, in which it actually means what it says */
24678     return SQLITE_BUSY;
24679 
24680   case EACCES:
24681     /* EACCES is like EAGAIN during locking operations, but not any other time*/
24682     if( (sqliteIOErr == SQLITE_IOERR_LOCK) ||
24683         (sqliteIOErr == SQLITE_IOERR_UNLOCK) ||
24684         (sqliteIOErr == SQLITE_IOERR_RDLOCK) ||
24685         (sqliteIOErr == SQLITE_IOERR_CHECKRESERVEDLOCK) ){
24686       return SQLITE_BUSY;
24687     }
24688     /* else fall through */
24689   case EPERM:
24690     return SQLITE_PERM;
24691 
24692   /* EDEADLK is only possible if a call to fcntl(F_SETLKW) is made. And
24693   ** this module never makes such a call. And the code in SQLite itself
24694   ** asserts that SQLITE_IOERR_BLOCKED is never returned. For these reasons
24695   ** this case is also commented out. If the system does set errno to EDEADLK,
24696   ** the default SQLITE_IOERR_XXX code will be returned. */
24697 #if 0
24698   case EDEADLK:
24699     return SQLITE_IOERR_BLOCKED;
24700 #endif
24701 
24702 #if EOPNOTSUPP!=ENOTSUP
24703   case EOPNOTSUPP:
24704     /* something went terribly awry, unless during file system support
24705      * introspection, in which it actually means what it says */
24706 #endif
24707 #ifdef ENOTSUP
24708   case ENOTSUP:
24709     /* invalid fd, unless during file system support introspection, in which
24710      * it actually means what it says */
24711 #endif
24712   case EIO:
24713   case EBADF:
24714   case EINVAL:
24715   case ENOTCONN:
24716   case ENODEV:
24717   case ENXIO:
24718   case ENOENT:
24719 #ifdef ESTALE                     /* ESTALE is not defined on Interix systems */
24720   case ESTALE:
24721 #endif
24722   case ENOSYS:
24723     /* these should force the client to close the file and reconnect */
24724 
24725   default:
24726     return sqliteIOErr;
24727   }
24728 }
24729 
24730 
24731 /******************************************************************************
24732 ****************** Begin Unique File ID Utility Used By VxWorks ***************
24733 **
24734 ** On most versions of unix, we can get a unique ID for a file by concatenating
24735 ** the device number and the inode number.  But this does not work on VxWorks.
24736 ** On VxWorks, a unique file id must be based on the canonical filename.
24737 **
24738 ** A pointer to an instance of the following structure can be used as a
24739 ** unique file ID in VxWorks.  Each instance of this structure contains
24740 ** a copy of the canonical filename.  There is also a reference count.
24741 ** The structure is reclaimed when the number of pointers to it drops to
24742 ** zero.
24743 **
24744 ** There are never very many files open at one time and lookups are not
24745 ** a performance-critical path, so it is sufficient to put these
24746 ** structures on a linked list.
24747 */
24748 struct vxworksFileId {
24749   struct vxworksFileId *pNext;  /* Next in a list of them all */
24750   int nRef;                     /* Number of references to this one */
24751   int nName;                    /* Length of the zCanonicalName[] string */
24752   char *zCanonicalName;         /* Canonical filename */
24753 };
24754 
24755 #if OS_VXWORKS
24756 /*
24757 ** All unique filenames are held on a linked list headed by this
24758 ** variable:
24759 */
24760 static struct vxworksFileId *vxworksFileList = 0;
24761 
24762 /*
24763 ** Simplify a filename into its canonical form
24764 ** by making the following changes:
24765 **
24766 **  * removing any trailing and duplicate /
24767 **  * convert /./ into just /
24768 **  * convert /A/../ where A is any simple name into just /
24769 **
24770 ** Changes are made in-place.  Return the new name length.
24771 **
24772 ** The original filename is in z[0..n-1].  Return the number of
24773 ** characters in the simplified name.
24774 */
24775 static int vxworksSimplifyName(char *z, int n){
24776   int i, j;
24777   while( n>1 && z[n-1]=='/' ){ n--; }
24778   for(i=j=0; i<n; i++){
24779     if( z[i]=='/' ){
24780       if( z[i+1]=='/' ) continue;
24781       if( z[i+1]=='.' && i+2<n && z[i+2]=='/' ){
24782         i += 1;
24783         continue;
24784       }
24785       if( z[i+1]=='.' && i+3<n && z[i+2]=='.' && z[i+3]=='/' ){
24786         while( j>0 && z[j-1]!='/' ){ j--; }
24787         if( j>0 ){ j--; }
24788         i += 2;
24789         continue;
24790       }
24791     }
24792     z[j++] = z[i];
24793   }
24794   z[j] = 0;
24795   return j;
24796 }
24797 
24798 /*
24799 ** Find a unique file ID for the given absolute pathname.  Return
24800 ** a pointer to the vxworksFileId object.  This pointer is the unique
24801 ** file ID.
24802 **
24803 ** The nRef field of the vxworksFileId object is incremented before
24804 ** the object is returned.  A new vxworksFileId object is created
24805 ** and added to the global list if necessary.
24806 **
24807 ** If a memory allocation error occurs, return NULL.
24808 */
24809 static struct vxworksFileId *vxworksFindFileId(const char *zAbsoluteName){
24810   struct vxworksFileId *pNew;         /* search key and new file ID */
24811   struct vxworksFileId *pCandidate;   /* For looping over existing file IDs */
24812   int n;                              /* Length of zAbsoluteName string */
24813 
24814   assert( zAbsoluteName[0]=='/' );
24815   n = (int)strlen(zAbsoluteName);
24816   pNew = sqlite3_malloc( sizeof(*pNew) + (n+1) );
24817   if( pNew==0 ) return 0;
24818   pNew->zCanonicalName = (char*)&pNew[1];
24819   memcpy(pNew->zCanonicalName, zAbsoluteName, n+1);
24820   n = vxworksSimplifyName(pNew->zCanonicalName, n);
24821 
24822   /* Search for an existing entry that matching the canonical name.
24823   ** If found, increment the reference count and return a pointer to
24824   ** the existing file ID.
24825   */
24826   unixEnterMutex();
24827   for(pCandidate=vxworksFileList; pCandidate; pCandidate=pCandidate->pNext){
24828     if( pCandidate->nName==n
24829      && memcmp(pCandidate->zCanonicalName, pNew->zCanonicalName, n)==0
24830     ){
24831        sqlite3_free(pNew);
24832        pCandidate->nRef++;
24833        unixLeaveMutex();
24834        return pCandidate;
24835     }
24836   }
24837 
24838   /* No match was found.  We will make a new file ID */
24839   pNew->nRef = 1;
24840   pNew->nName = n;
24841   pNew->pNext = vxworksFileList;
24842   vxworksFileList = pNew;
24843   unixLeaveMutex();
24844   return pNew;
24845 }
24846 
24847 /*
24848 ** Decrement the reference count on a vxworksFileId object.  Free
24849 ** the object when the reference count reaches zero.
24850 */
24851 static void vxworksReleaseFileId(struct vxworksFileId *pId){
24852   unixEnterMutex();
24853   assert( pId->nRef>0 );
24854   pId->nRef--;
24855   if( pId->nRef==0 ){
24856     struct vxworksFileId **pp;
24857     for(pp=&vxworksFileList; *pp && *pp!=pId; pp = &((*pp)->pNext)){}
24858     assert( *pp==pId );
24859     *pp = pId->pNext;
24860     sqlite3_free(pId);
24861   }
24862   unixLeaveMutex();
24863 }
24864 #endif /* OS_VXWORKS */
24865 /*************** End of Unique File ID Utility Used By VxWorks ****************
24866 ******************************************************************************/
24867 
24868 
24869 /******************************************************************************
24870 *************************** Posix Advisory Locking ****************************
24871 **
24872 ** POSIX advisory locks are broken by design.  ANSI STD 1003.1 (1996)
24873 ** section 6.5.2.2 lines 483 through 490 specify that when a process
24874 ** sets or clears a lock, that operation overrides any prior locks set
24875 ** by the same process.  It does not explicitly say so, but this implies
24876 ** that it overrides locks set by the same process using a different
24877 ** file descriptor.  Consider this test case:
24878 **
24879 **       int fd1 = open("./file1", O_RDWR|O_CREAT, 0644);
24880 **       int fd2 = open("./file2", O_RDWR|O_CREAT, 0644);
24881 **
24882 ** Suppose ./file1 and ./file2 are really the same file (because
24883 ** one is a hard or symbolic link to the other) then if you set
24884 ** an exclusive lock on fd1, then try to get an exclusive lock
24885 ** on fd2, it works.  I would have expected the second lock to
24886 ** fail since there was already a lock on the file due to fd1.
24887 ** But not so.  Since both locks came from the same process, the
24888 ** second overrides the first, even though they were on different
24889 ** file descriptors opened on different file names.
24890 **
24891 ** This means that we cannot use POSIX locks to synchronize file access
24892 ** among competing threads of the same process.  POSIX locks will work fine
24893 ** to synchronize access for threads in separate processes, but not
24894 ** threads within the same process.
24895 **
24896 ** To work around the problem, SQLite has to manage file locks internally
24897 ** on its own.  Whenever a new database is opened, we have to find the
24898 ** specific inode of the database file (the inode is determined by the
24899 ** st_dev and st_ino fields of the stat structure that fstat() fills in)
24900 ** and check for locks already existing on that inode.  When locks are
24901 ** created or removed, we have to look at our own internal record of the
24902 ** locks to see if another thread has previously set a lock on that same
24903 ** inode.
24904 **
24905 ** (Aside: The use of inode numbers as unique IDs does not work on VxWorks.
24906 ** For VxWorks, we have to use the alternative unique ID system based on
24907 ** canonical filename and implemented in the previous division.)
24908 **
24909 ** The sqlite3_file structure for POSIX is no longer just an integer file
24910 ** descriptor.  It is now a structure that holds the integer file
24911 ** descriptor and a pointer to a structure that describes the internal
24912 ** locks on the corresponding inode.  There is one locking structure
24913 ** per inode, so if the same inode is opened twice, both unixFile structures
24914 ** point to the same locking structure.  The locking structure keeps
24915 ** a reference count (so we will know when to delete it) and a "cnt"
24916 ** field that tells us its internal lock status.  cnt==0 means the
24917 ** file is unlocked.  cnt==-1 means the file has an exclusive lock.
24918 ** cnt>0 means there are cnt shared locks on the file.
24919 **
24920 ** Any attempt to lock or unlock a file first checks the locking
24921 ** structure.  The fcntl() system call is only invoked to set a
24922 ** POSIX lock if the internal lock structure transitions between
24923 ** a locked and an unlocked state.
24924 **
24925 ** But wait:  there are yet more problems with POSIX advisory locks.
24926 **
24927 ** If you close a file descriptor that points to a file that has locks,
24928 ** all locks on that file that are owned by the current process are
24929 ** released.  To work around this problem, each unixInodeInfo object
24930 ** maintains a count of the number of pending locks on tha inode.
24931 ** When an attempt is made to close an unixFile, if there are
24932 ** other unixFile open on the same inode that are holding locks, the call
24933 ** to close() the file descriptor is deferred until all of the locks clear.
24934 ** The unixInodeInfo structure keeps a list of file descriptors that need to
24935 ** be closed and that list is walked (and cleared) when the last lock
24936 ** clears.
24937 **
24938 ** Yet another problem:  LinuxThreads do not play well with posix locks.
24939 **
24940 ** Many older versions of linux use the LinuxThreads library which is
24941 ** not posix compliant.  Under LinuxThreads, a lock created by thread
24942 ** A cannot be modified or overridden by a different thread B.
24943 ** Only thread A can modify the lock.  Locking behavior is correct
24944 ** if the appliation uses the newer Native Posix Thread Library (NPTL)
24945 ** on linux - with NPTL a lock created by thread A can override locks
24946 ** in thread B.  But there is no way to know at compile-time which
24947 ** threading library is being used.  So there is no way to know at
24948 ** compile-time whether or not thread A can override locks on thread B.
24949 ** One has to do a run-time check to discover the behavior of the
24950 ** current process.
24951 **
24952 ** SQLite used to support LinuxThreads.  But support for LinuxThreads
24953 ** was dropped beginning with version 3.7.0.  SQLite will still work with
24954 ** LinuxThreads provided that (1) there is no more than one connection
24955 ** per database file in the same process and (2) database connections
24956 ** do not move across threads.
24957 */
24958 
24959 /*
24960 ** An instance of the following structure serves as the key used
24961 ** to locate a particular unixInodeInfo object.
24962 */
24963 struct unixFileId {
24964   dev_t dev;                  /* Device number */
24965 #if OS_VXWORKS
24966   struct vxworksFileId *pId;  /* Unique file ID for vxworks. */
24967 #else
24968   ino_t ino;                  /* Inode number */
24969 #endif
24970 };
24971 
24972 /*
24973 ** An instance of the following structure is allocated for each open
24974 ** inode.  Or, on LinuxThreads, there is one of these structures for
24975 ** each inode opened by each thread.
24976 **
24977 ** A single inode can have multiple file descriptors, so each unixFile
24978 ** structure contains a pointer to an instance of this object and this
24979 ** object keeps a count of the number of unixFile pointing to it.
24980 */
24981 struct unixInodeInfo {
24982   struct unixFileId fileId;       /* The lookup key */
24983   int nShared;                    /* Number of SHARED locks held */
24984   unsigned char eFileLock;        /* One of SHARED_LOCK, RESERVED_LOCK etc. */
24985   unsigned char bProcessLock;     /* An exclusive process lock is held */
24986   int nRef;                       /* Number of pointers to this structure */
24987   unixShmNode *pShmNode;          /* Shared memory associated with this inode */
24988   int nLock;                      /* Number of outstanding file locks */
24989   UnixUnusedFd *pUnused;          /* Unused file descriptors to close */
24990   unixInodeInfo *pNext;           /* List of all unixInodeInfo objects */
24991   unixInodeInfo *pPrev;           /*    .... doubly linked */
24992 #if SQLITE_ENABLE_LOCKING_STYLE
24993   unsigned long long sharedByte;  /* for AFP simulated shared lock */
24994 #endif
24995 #if OS_VXWORKS
24996   sem_t *pSem;                    /* Named POSIX semaphore */
24997   char aSemName[MAX_PATHNAME+2];  /* Name of that semaphore */
24998 #endif
24999 };
25000 
25001 /*
25002 ** A lists of all unixInodeInfo objects.
25003 */
25004 static unixInodeInfo *inodeList = 0;
25005 
25006 /*
25007 **
25008 ** This function - unixLogError_x(), is only ever called via the macro
25009 ** unixLogError().
25010 **
25011 ** It is invoked after an error occurs in an OS function and errno has been
25012 ** set. It logs a message using sqlite3_log() containing the current value of
25013 ** errno and, if possible, the human-readable equivalent from strerror() or
25014 ** strerror_r().
25015 **
25016 ** The first argument passed to the macro should be the error code that
25017 ** will be returned to SQLite (e.g. SQLITE_IOERR_DELETE, SQLITE_CANTOPEN).
25018 ** The two subsequent arguments should be the name of the OS function that
25019 ** failed (e.g. "unlink", "open") and the associated file-system path,
25020 ** if any.
25021 */
25022 #define unixLogError(a,b,c)     unixLogErrorAtLine(a,b,c,__LINE__)
25023 static int unixLogErrorAtLine(
25024   int errcode,                    /* SQLite error code */
25025   const char *zFunc,              /* Name of OS function that failed */
25026   const char *zPath,              /* File path associated with error */
25027   int iLine                       /* Source line number where error occurred */
25028 ){
25029   char *zErr;                     /* Message from strerror() or equivalent */
25030   int iErrno = errno;             /* Saved syscall error number */
25031 
25032   /* If this is not a threadsafe build (SQLITE_THREADSAFE==0), then use
25033   ** the strerror() function to obtain the human-readable error message
25034   ** equivalent to errno. Otherwise, use strerror_r().
25035   */
25036 #if SQLITE_THREADSAFE && defined(HAVE_STRERROR_R)
25037   char aErr[80];
25038   memset(aErr, 0, sizeof(aErr));
25039   zErr = aErr;
25040 
25041   /* If STRERROR_R_CHAR_P (set by autoconf scripts) or __USE_GNU is defined,
25042   ** assume that the system provides the GNU version of strerror_r() that
25043   ** returns a pointer to a buffer containing the error message. That pointer
25044   ** may point to aErr[], or it may point to some static storage somewhere.
25045   ** Otherwise, assume that the system provides the POSIX version of
25046   ** strerror_r(), which always writes an error message into aErr[].
25047   **
25048   ** If the code incorrectly assumes that it is the POSIX version that is
25049   ** available, the error message will often be an empty string. Not a
25050   ** huge problem. Incorrectly concluding that the GNU version is available
25051   ** could lead to a segfault though.
25052   */
25053 #if defined(STRERROR_R_CHAR_P) || defined(__USE_GNU)
25054   zErr =
25055 # endif
25056   strerror_r(iErrno, aErr, sizeof(aErr)-1);
25057 
25058 #elif SQLITE_THREADSAFE
25059   /* This is a threadsafe build, but strerror_r() is not available. */
25060   zErr = "";
25061 #else
25062   /* Non-threadsafe build, use strerror(). */
25063   zErr = strerror(iErrno);
25064 #endif
25065 
25066   if( zPath==0 ) zPath = "";
25067   sqlite3_log(errcode,
25068       "os_unix.c:%d: (%d) %s(%s) - %s",
25069       iLine, iErrno, zFunc, zPath, zErr
25070   );
25071 
25072   return errcode;
25073 }
25074 
25075 /*
25076 ** Close a file descriptor.
25077 **
25078 ** We assume that close() almost always works, since it is only in a
25079 ** very sick application or on a very sick platform that it might fail.
25080 ** If it does fail, simply leak the file descriptor, but do log the
25081 ** error.
25082 **
25083 ** Note that it is not safe to retry close() after EINTR since the
25084 ** file descriptor might have already been reused by another thread.
25085 ** So we don't even try to recover from an EINTR.  Just log the error
25086 ** and move on.
25087 */
25088 static void robust_close(unixFile *pFile, int h, int lineno){
25089   if( osClose(h) ){
25090     unixLogErrorAtLine(SQLITE_IOERR_CLOSE, "close",
25091                        pFile ? pFile->zPath : 0, lineno);
25092   }
25093 }
25094 
25095 /*
25096 ** Close all file descriptors accumuated in the unixInodeInfo->pUnused list.
25097 */
25098 static void closePendingFds(unixFile *pFile){
25099   unixInodeInfo *pInode = pFile->pInode;
25100   UnixUnusedFd *p;
25101   UnixUnusedFd *pNext;
25102   for(p=pInode->pUnused; p; p=pNext){
25103     pNext = p->pNext;
25104     robust_close(pFile, p->fd, __LINE__);
25105     sqlite3_free(p);
25106   }
25107   pInode->pUnused = 0;
25108 }
25109 
25110 /*
25111 ** Release a unixInodeInfo structure previously allocated by findInodeInfo().
25112 **
25113 ** The mutex entered using the unixEnterMutex() function must be held
25114 ** when this function is called.
25115 */
25116 static void releaseInodeInfo(unixFile *pFile){
25117   unixInodeInfo *pInode = pFile->pInode;
25118   assert( unixMutexHeld() );
25119   if( ALWAYS(pInode) ){
25120     pInode->nRef--;
25121     if( pInode->nRef==0 ){
25122       assert( pInode->pShmNode==0 );
25123       closePendingFds(pFile);
25124       if( pInode->pPrev ){
25125         assert( pInode->pPrev->pNext==pInode );
25126         pInode->pPrev->pNext = pInode->pNext;
25127       }else{
25128         assert( inodeList==pInode );
25129         inodeList = pInode->pNext;
25130       }
25131       if( pInode->pNext ){
25132         assert( pInode->pNext->pPrev==pInode );
25133         pInode->pNext->pPrev = pInode->pPrev;
25134       }
25135       sqlite3_free(pInode);
25136     }
25137   }
25138 }
25139 
25140 /*
25141 ** Given a file descriptor, locate the unixInodeInfo object that
25142 ** describes that file descriptor.  Create a new one if necessary.  The
25143 ** return value might be uninitialized if an error occurs.
25144 **
25145 ** The mutex entered using the unixEnterMutex() function must be held
25146 ** when this function is called.
25147 **
25148 ** Return an appropriate error code.
25149 */
25150 static int findInodeInfo(
25151   unixFile *pFile,               /* Unix file with file desc used in the key */
25152   unixInodeInfo **ppInode        /* Return the unixInodeInfo object here */
25153 ){
25154   int rc;                        /* System call return code */
25155   int fd;                        /* The file descriptor for pFile */
25156   struct unixFileId fileId;      /* Lookup key for the unixInodeInfo */
25157   struct stat statbuf;           /* Low-level file information */
25158   unixInodeInfo *pInode = 0;     /* Candidate unixInodeInfo object */
25159 
25160   assert( unixMutexHeld() );
25161 
25162   /* Get low-level information about the file that we can used to
25163   ** create a unique name for the file.
25164   */
25165   fd = pFile->h;
25166   rc = osFstat(fd, &statbuf);
25167   if( rc!=0 ){
25168     pFile->lastErrno = errno;
25169 #ifdef EOVERFLOW
25170     if( pFile->lastErrno==EOVERFLOW ) return SQLITE_NOLFS;
25171 #endif
25172     return SQLITE_IOERR;
25173   }
25174 
25175 #ifdef __APPLE__
25176   /* On OS X on an msdos filesystem, the inode number is reported
25177   ** incorrectly for zero-size files.  See ticket #3260.  To work
25178   ** around this problem (we consider it a bug in OS X, not SQLite)
25179   ** we always increase the file size to 1 by writing a single byte
25180   ** prior to accessing the inode number.  The one byte written is
25181   ** an ASCII 'S' character which also happens to be the first byte
25182   ** in the header of every SQLite database.  In this way, if there
25183   ** is a race condition such that another thread has already populated
25184   ** the first page of the database, no damage is done.
25185   */
25186   if( statbuf.st_size==0 && (pFile->fsFlags & SQLITE_FSFLAGS_IS_MSDOS)!=0 ){
25187     do{ rc = osWrite(fd, "S", 1); }while( rc<0 && errno==EINTR );
25188     if( rc!=1 ){
25189       pFile->lastErrno = errno;
25190       return SQLITE_IOERR;
25191     }
25192     rc = osFstat(fd, &statbuf);
25193     if( rc!=0 ){
25194       pFile->lastErrno = errno;
25195       return SQLITE_IOERR;
25196     }
25197   }
25198 #endif
25199 
25200   memset(&fileId, 0, sizeof(fileId));
25201   fileId.dev = statbuf.st_dev;
25202 #if OS_VXWORKS
25203   fileId.pId = pFile->pId;
25204 #else
25205   fileId.ino = statbuf.st_ino;
25206 #endif
25207   pInode = inodeList;
25208   while( pInode && memcmp(&fileId, &pInode->fileId, sizeof(fileId)) ){
25209     pInode = pInode->pNext;
25210   }
25211   if( pInode==0 ){
25212     pInode = sqlite3_malloc( sizeof(*pInode) );
25213     if( pInode==0 ){
25214       return SQLITE_NOMEM;
25215     }
25216     memset(pInode, 0, sizeof(*pInode));
25217     memcpy(&pInode->fileId, &fileId, sizeof(fileId));
25218     pInode->nRef = 1;
25219     pInode->pNext = inodeList;
25220     pInode->pPrev = 0;
25221     if( inodeList ) inodeList->pPrev = pInode;
25222     inodeList = pInode;
25223   }else{
25224     pInode->nRef++;
25225   }
25226   *ppInode = pInode;
25227   return SQLITE_OK;
25228 }
25229 
25230 /*
25231 ** Return TRUE if pFile has been renamed or unlinked since it was first opened.
25232 */
25233 static int fileHasMoved(unixFile *pFile){
25234   struct stat buf;
25235   return pFile->pInode!=0 &&
25236          (osStat(pFile->zPath, &buf)!=0 || buf.st_ino!=pFile->pInode->fileId.ino);
25237 }
25238 
25239 
25240 /*
25241 ** Check a unixFile that is a database.  Verify the following:
25242 **
25243 ** (1) There is exactly one hard link on the file
25244 ** (2) The file is not a symbolic link
25245 ** (3) The file has not been renamed or unlinked
25246 **
25247 ** Issue sqlite3_log(SQLITE_WARNING,...) messages if anything is not right.
25248 */
25249 static void verifyDbFile(unixFile *pFile){
25250   struct stat buf;
25251   int rc;
25252   if( pFile->ctrlFlags & UNIXFILE_WARNED ){
25253     /* One or more of the following warnings have already been issued.  Do not
25254     ** repeat them so as not to clutter the error log */
25255     return;
25256   }
25257   rc = osFstat(pFile->h, &buf);
25258   if( rc!=0 ){
25259     sqlite3_log(SQLITE_WARNING, "cannot fstat db file %s", pFile->zPath);
25260     pFile->ctrlFlags |= UNIXFILE_WARNED;
25261     return;
25262   }
25263   if( buf.st_nlink==0 && (pFile->ctrlFlags & UNIXFILE_DELETE)==0 ){
25264     sqlite3_log(SQLITE_WARNING, "file unlinked while open: %s", pFile->zPath);
25265     pFile->ctrlFlags |= UNIXFILE_WARNED;
25266     return;
25267   }
25268   if( buf.st_nlink>1 ){
25269     sqlite3_log(SQLITE_WARNING, "multiple links to file: %s", pFile->zPath);
25270     pFile->ctrlFlags |= UNIXFILE_WARNED;
25271     return;
25272   }
25273   if( fileHasMoved(pFile) ){
25274     sqlite3_log(SQLITE_WARNING, "file renamed while open: %s", pFile->zPath);
25275     pFile->ctrlFlags |= UNIXFILE_WARNED;
25276     return;
25277   }
25278 }
25279 
25280 
25281 /*
25282 ** This routine checks if there is a RESERVED lock held on the specified
25283 ** file by this or any other process. If such a lock is held, set *pResOut
25284 ** to a non-zero value otherwise *pResOut is set to zero.  The return value
25285 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
25286 */
25287 static int unixCheckReservedLock(sqlite3_file *id, int *pResOut){
25288   int rc = SQLITE_OK;
25289   int reserved = 0;
25290   unixFile *pFile = (unixFile*)id;
25291 
25292   SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
25293 
25294   assert( pFile );
25295   unixEnterMutex(); /* Because pFile->pInode is shared across threads */
25296 
25297   /* Check if a thread in this process holds such a lock */
25298   if( pFile->pInode->eFileLock>SHARED_LOCK ){
25299     reserved = 1;
25300   }
25301 
25302   /* Otherwise see if some other process holds it.
25303   */
25304 #ifndef __DJGPP__
25305   if( !reserved && !pFile->pInode->bProcessLock ){
25306     struct flock lock;
25307     lock.l_whence = SEEK_SET;
25308     lock.l_start = RESERVED_BYTE;
25309     lock.l_len = 1;
25310     lock.l_type = F_WRLCK;
25311     if( osFcntl(pFile->h, F_GETLK, &lock) ){
25312       rc = SQLITE_IOERR_CHECKRESERVEDLOCK;
25313       pFile->lastErrno = errno;
25314     } else if( lock.l_type!=F_UNLCK ){
25315       reserved = 1;
25316     }
25317   }
25318 #endif
25319 
25320   unixLeaveMutex();
25321   OSTRACE(("TEST WR-LOCK %d %d %d (unix)\n", pFile->h, rc, reserved));
25322 
25323   *pResOut = reserved;
25324   return rc;
25325 }
25326 
25327 /*
25328 ** Attempt to set a system-lock on the file pFile.  The lock is
25329 ** described by pLock.
25330 **
25331 ** If the pFile was opened read/write from unix-excl, then the only lock
25332 ** ever obtained is an exclusive lock, and it is obtained exactly once
25333 ** the first time any lock is attempted.  All subsequent system locking
25334 ** operations become no-ops.  Locking operations still happen internally,
25335 ** in order to coordinate access between separate database connections
25336 ** within this process, but all of that is handled in memory and the
25337 ** operating system does not participate.
25338 **
25339 ** This function is a pass-through to fcntl(F_SETLK) if pFile is using
25340 ** any VFS other than "unix-excl" or if pFile is opened on "unix-excl"
25341 ** and is read-only.
25342 **
25343 ** Zero is returned if the call completes successfully, or -1 if a call
25344 ** to fcntl() fails. In this case, errno is set appropriately (by fcntl()).
25345 */
25346 static int unixFileLock(unixFile *pFile, struct flock *pLock){
25347   int rc;
25348   unixInodeInfo *pInode = pFile->pInode;
25349   assert( unixMutexHeld() );
25350   assert( pInode!=0 );
25351   if( ((pFile->ctrlFlags & UNIXFILE_EXCL)!=0 || pInode->bProcessLock)
25352    && ((pFile->ctrlFlags & UNIXFILE_RDONLY)==0)
25353   ){
25354     if( pInode->bProcessLock==0 ){
25355       struct flock lock;
25356       assert( pInode->nLock==0 );
25357       lock.l_whence = SEEK_SET;
25358       lock.l_start = SHARED_FIRST;
25359       lock.l_len = SHARED_SIZE;
25360       lock.l_type = F_WRLCK;
25361       rc = osFcntl(pFile->h, F_SETLK, &lock);
25362       if( rc<0 ) return rc;
25363       pInode->bProcessLock = 1;
25364       pInode->nLock++;
25365     }else{
25366       rc = 0;
25367     }
25368   }else{
25369     rc = osFcntl(pFile->h, F_SETLK, pLock);
25370   }
25371   return rc;
25372 }
25373 
25374 /*
25375 ** Lock the file with the lock specified by parameter eFileLock - one
25376 ** of the following:
25377 **
25378 **     (1) SHARED_LOCK
25379 **     (2) RESERVED_LOCK
25380 **     (3) PENDING_LOCK
25381 **     (4) EXCLUSIVE_LOCK
25382 **
25383 ** Sometimes when requesting one lock state, additional lock states
25384 ** are inserted in between.  The locking might fail on one of the later
25385 ** transitions leaving the lock state different from what it started but
25386 ** still short of its goal.  The following chart shows the allowed
25387 ** transitions and the inserted intermediate states:
25388 **
25389 **    UNLOCKED -> SHARED
25390 **    SHARED -> RESERVED
25391 **    SHARED -> (PENDING) -> EXCLUSIVE
25392 **    RESERVED -> (PENDING) -> EXCLUSIVE
25393 **    PENDING -> EXCLUSIVE
25394 **
25395 ** This routine will only increase a lock.  Use the sqlite3OsUnlock()
25396 ** routine to lower a locking level.
25397 */
25398 static int unixLock(sqlite3_file *id, int eFileLock){
25399   /* The following describes the implementation of the various locks and
25400   ** lock transitions in terms of the POSIX advisory shared and exclusive
25401   ** lock primitives (called read-locks and write-locks below, to avoid
25402   ** confusion with SQLite lock names). The algorithms are complicated
25403   ** slightly in order to be compatible with windows systems simultaneously
25404   ** accessing the same database file, in case that is ever required.
25405   **
25406   ** Symbols defined in os.h indentify the 'pending byte' and the 'reserved
25407   ** byte', each single bytes at well known offsets, and the 'shared byte
25408   ** range', a range of 510 bytes at a well known offset.
25409   **
25410   ** To obtain a SHARED lock, a read-lock is obtained on the 'pending
25411   ** byte'.  If this is successful, a random byte from the 'shared byte
25412   ** range' is read-locked and the lock on the 'pending byte' released.
25413   **
25414   ** A process may only obtain a RESERVED lock after it has a SHARED lock.
25415   ** A RESERVED lock is implemented by grabbing a write-lock on the
25416   ** 'reserved byte'.
25417   **
25418   ** A process may only obtain a PENDING lock after it has obtained a
25419   ** SHARED lock. A PENDING lock is implemented by obtaining a write-lock
25420   ** on the 'pending byte'. This ensures that no new SHARED locks can be
25421   ** obtained, but existing SHARED locks are allowed to persist. A process
25422   ** does not have to obtain a RESERVED lock on the way to a PENDING lock.
25423   ** This property is used by the algorithm for rolling back a journal file
25424   ** after a crash.
25425   **
25426   ** An EXCLUSIVE lock, obtained after a PENDING lock is held, is
25427   ** implemented by obtaining a write-lock on the entire 'shared byte
25428   ** range'. Since all other locks require a read-lock on one of the bytes
25429   ** within this range, this ensures that no other locks are held on the
25430   ** database.
25431   **
25432   ** The reason a single byte cannot be used instead of the 'shared byte
25433   ** range' is that some versions of windows do not support read-locks. By
25434   ** locking a random byte from a range, concurrent SHARED locks may exist
25435   ** even if the locking primitive used is always a write-lock.
25436   */
25437   int rc = SQLITE_OK;
25438   unixFile *pFile = (unixFile*)id;
25439   unixInodeInfo *pInode;
25440   struct flock lock;
25441   int tErrno = 0;
25442 
25443   assert( pFile );
25444   OSTRACE(("LOCK    %d %s was %s(%s,%d) pid=%d (unix)\n", pFile->h,
25445       azFileLock(eFileLock), azFileLock(pFile->eFileLock),
25446       azFileLock(pFile->pInode->eFileLock), pFile->pInode->nShared , getpid()));
25447 
25448   /* If there is already a lock of this type or more restrictive on the
25449   ** unixFile, do nothing. Don't use the end_lock: exit path, as
25450   ** unixEnterMutex() hasn't been called yet.
25451   */
25452   if( pFile->eFileLock>=eFileLock ){
25453     OSTRACE(("LOCK    %d %s ok (already held) (unix)\n", pFile->h,
25454             azFileLock(eFileLock)));
25455     return SQLITE_OK;
25456   }
25457 
25458   /* Make sure the locking sequence is correct.
25459   **  (1) We never move from unlocked to anything higher than shared lock.
25460   **  (2) SQLite never explicitly requests a pendig lock.
25461   **  (3) A shared lock is always held when a reserve lock is requested.
25462   */
25463   assert( pFile->eFileLock!=NO_LOCK || eFileLock==SHARED_LOCK );
25464   assert( eFileLock!=PENDING_LOCK );
25465   assert( eFileLock!=RESERVED_LOCK || pFile->eFileLock==SHARED_LOCK );
25466 
25467   /* This mutex is needed because pFile->pInode is shared across threads
25468   */
25469   unixEnterMutex();
25470   pInode = pFile->pInode;
25471 
25472   /* If some thread using this PID has a lock via a different unixFile*
25473   ** handle that precludes the requested lock, return BUSY.
25474   */
25475   if( (pFile->eFileLock!=pInode->eFileLock &&
25476           (pInode->eFileLock>=PENDING_LOCK || eFileLock>SHARED_LOCK))
25477   ){
25478     rc = SQLITE_BUSY;
25479     goto end_lock;
25480   }
25481 
25482   /* If a SHARED lock is requested, and some thread using this PID already
25483   ** has a SHARED or RESERVED lock, then increment reference counts and
25484   ** return SQLITE_OK.
25485   */
25486   if( eFileLock==SHARED_LOCK &&
25487       (pInode->eFileLock==SHARED_LOCK || pInode->eFileLock==RESERVED_LOCK) ){
25488     assert( eFileLock==SHARED_LOCK );
25489     assert( pFile->eFileLock==0 );
25490     assert( pInode->nShared>0 );
25491     pFile->eFileLock = SHARED_LOCK;
25492     pInode->nShared++;
25493     pInode->nLock++;
25494     goto end_lock;
25495   }
25496 
25497 
25498   /* A PENDING lock is needed before acquiring a SHARED lock and before
25499   ** acquiring an EXCLUSIVE lock.  For the SHARED lock, the PENDING will
25500   ** be released.
25501   */
25502   lock.l_len = 1L;
25503   lock.l_whence = SEEK_SET;
25504   if( eFileLock==SHARED_LOCK
25505       || (eFileLock==EXCLUSIVE_LOCK && pFile->eFileLock<PENDING_LOCK)
25506   ){
25507     lock.l_type = (eFileLock==SHARED_LOCK?F_RDLCK:F_WRLCK);
25508     lock.l_start = PENDING_BYTE;
25509     if( unixFileLock(pFile, &lock) ){
25510       tErrno = errno;
25511       rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
25512       if( rc!=SQLITE_BUSY ){
25513         pFile->lastErrno = tErrno;
25514       }
25515       goto end_lock;
25516     }
25517   }
25518 
25519 
25520   /* If control gets to this point, then actually go ahead and make
25521   ** operating system calls for the specified lock.
25522   */
25523   if( eFileLock==SHARED_LOCK ){
25524     assert( pInode->nShared==0 );
25525     assert( pInode->eFileLock==0 );
25526     assert( rc==SQLITE_OK );
25527 
25528     /* Now get the read-lock */
25529     lock.l_start = SHARED_FIRST;
25530     lock.l_len = SHARED_SIZE;
25531     if( unixFileLock(pFile, &lock) ){
25532       tErrno = errno;
25533       rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
25534     }
25535 
25536     /* Drop the temporary PENDING lock */
25537     lock.l_start = PENDING_BYTE;
25538     lock.l_len = 1L;
25539     lock.l_type = F_UNLCK;
25540     if( unixFileLock(pFile, &lock) && rc==SQLITE_OK ){
25541       /* This could happen with a network mount */
25542       tErrno = errno;
25543       rc = SQLITE_IOERR_UNLOCK;
25544     }
25545 
25546     if( rc ){
25547       if( rc!=SQLITE_BUSY ){
25548         pFile->lastErrno = tErrno;
25549       }
25550       goto end_lock;
25551     }else{
25552       pFile->eFileLock = SHARED_LOCK;
25553       pInode->nLock++;
25554       pInode->nShared = 1;
25555     }
25556   }else if( eFileLock==EXCLUSIVE_LOCK && pInode->nShared>1 ){
25557     /* We are trying for an exclusive lock but another thread in this
25558     ** same process is still holding a shared lock. */
25559     rc = SQLITE_BUSY;
25560   }else{
25561     /* The request was for a RESERVED or EXCLUSIVE lock.  It is
25562     ** assumed that there is a SHARED or greater lock on the file
25563     ** already.
25564     */
25565     assert( 0!=pFile->eFileLock );
25566     lock.l_type = F_WRLCK;
25567 
25568     assert( eFileLock==RESERVED_LOCK || eFileLock==EXCLUSIVE_LOCK );
25569     if( eFileLock==RESERVED_LOCK ){
25570       lock.l_start = RESERVED_BYTE;
25571       lock.l_len = 1L;
25572     }else{
25573       lock.l_start = SHARED_FIRST;
25574       lock.l_len = SHARED_SIZE;
25575     }
25576 
25577     if( unixFileLock(pFile, &lock) ){
25578       tErrno = errno;
25579       rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
25580       if( rc!=SQLITE_BUSY ){
25581         pFile->lastErrno = tErrno;
25582       }
25583     }
25584   }
25585 
25586 
25587 #ifdef SQLITE_DEBUG
25588   /* Set up the transaction-counter change checking flags when
25589   ** transitioning from a SHARED to a RESERVED lock.  The change
25590   ** from SHARED to RESERVED marks the beginning of a normal
25591   ** write operation (not a hot journal rollback).
25592   */
25593   if( rc==SQLITE_OK
25594    && pFile->eFileLock<=SHARED_LOCK
25595    && eFileLock==RESERVED_LOCK
25596   ){
25597     pFile->transCntrChng = 0;
25598     pFile->dbUpdate = 0;
25599     pFile->inNormalWrite = 1;
25600   }
25601 #endif
25602 
25603 
25604   if( rc==SQLITE_OK ){
25605     pFile->eFileLock = eFileLock;
25606     pInode->eFileLock = eFileLock;
25607   }else if( eFileLock==EXCLUSIVE_LOCK ){
25608     pFile->eFileLock = PENDING_LOCK;
25609     pInode->eFileLock = PENDING_LOCK;
25610   }
25611 
25612 end_lock:
25613   unixLeaveMutex();
25614   OSTRACE(("LOCK    %d %s %s (unix)\n", pFile->h, azFileLock(eFileLock),
25615       rc==SQLITE_OK ? "ok" : "failed"));
25616   return rc;
25617 }
25618 
25619 /*
25620 ** Add the file descriptor used by file handle pFile to the corresponding
25621 ** pUnused list.
25622 */
25623 static void setPendingFd(unixFile *pFile){
25624   unixInodeInfo *pInode = pFile->pInode;
25625   UnixUnusedFd *p = pFile->pUnused;
25626   p->pNext = pInode->pUnused;
25627   pInode->pUnused = p;
25628   pFile->h = -1;
25629   pFile->pUnused = 0;
25630 }
25631 
25632 /*
25633 ** Lower the locking level on file descriptor pFile to eFileLock.  eFileLock
25634 ** must be either NO_LOCK or SHARED_LOCK.
25635 **
25636 ** If the locking level of the file descriptor is already at or below
25637 ** the requested locking level, this routine is a no-op.
25638 **
25639 ** If handleNFSUnlock is true, then on downgrading an EXCLUSIVE_LOCK to SHARED
25640 ** the byte range is divided into 2 parts and the first part is unlocked then
25641 ** set to a read lock, then the other part is simply unlocked.  This works
25642 ** around a bug in BSD NFS lockd (also seen on MacOSX 10.3+) that fails to
25643 ** remove the write lock on a region when a read lock is set.
25644 */
25645 static int posixUnlock(sqlite3_file *id, int eFileLock, int handleNFSUnlock){
25646   unixFile *pFile = (unixFile*)id;
25647   unixInodeInfo *pInode;
25648   struct flock lock;
25649   int rc = SQLITE_OK;
25650 
25651   assert( pFile );
25652   OSTRACE(("UNLOCK  %d %d was %d(%d,%d) pid=%d (unix)\n", pFile->h, eFileLock,
25653       pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared,
25654       getpid()));
25655 
25656   assert( eFileLock<=SHARED_LOCK );
25657   if( pFile->eFileLock<=eFileLock ){
25658     return SQLITE_OK;
25659   }
25660   unixEnterMutex();
25661   pInode = pFile->pInode;
25662   assert( pInode->nShared!=0 );
25663   if( pFile->eFileLock>SHARED_LOCK ){
25664     assert( pInode->eFileLock==pFile->eFileLock );
25665 
25666 #ifdef SQLITE_DEBUG
25667     /* When reducing a lock such that other processes can start
25668     ** reading the database file again, make sure that the
25669     ** transaction counter was updated if any part of the database
25670     ** file changed.  If the transaction counter is not updated,
25671     ** other connections to the same file might not realize that
25672     ** the file has changed and hence might not know to flush their
25673     ** cache.  The use of a stale cache can lead to database corruption.
25674     */
25675     pFile->inNormalWrite = 0;
25676 #endif
25677 
25678     /* downgrading to a shared lock on NFS involves clearing the write lock
25679     ** before establishing the readlock - to avoid a race condition we downgrade
25680     ** the lock in 2 blocks, so that part of the range will be covered by a
25681     ** write lock until the rest is covered by a read lock:
25682     **  1:   [WWWWW]
25683     **  2:   [....W]
25684     **  3:   [RRRRW]
25685     **  4:   [RRRR.]
25686     */
25687     if( eFileLock==SHARED_LOCK ){
25688 
25689 #if !defined(__APPLE__) || !SQLITE_ENABLE_LOCKING_STYLE
25690       (void)handleNFSUnlock;
25691       assert( handleNFSUnlock==0 );
25692 #endif
25693 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
25694       if( handleNFSUnlock ){
25695         int tErrno;               /* Error code from system call errors */
25696         off_t divSize = SHARED_SIZE - 1;
25697 
25698         lock.l_type = F_UNLCK;
25699         lock.l_whence = SEEK_SET;
25700         lock.l_start = SHARED_FIRST;
25701         lock.l_len = divSize;
25702         if( unixFileLock(pFile, &lock)==(-1) ){
25703           tErrno = errno;
25704           rc = SQLITE_IOERR_UNLOCK;
25705           if( IS_LOCK_ERROR(rc) ){
25706             pFile->lastErrno = tErrno;
25707           }
25708           goto end_unlock;
25709         }
25710         lock.l_type = F_RDLCK;
25711         lock.l_whence = SEEK_SET;
25712         lock.l_start = SHARED_FIRST;
25713         lock.l_len = divSize;
25714         if( unixFileLock(pFile, &lock)==(-1) ){
25715           tErrno = errno;
25716           rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_RDLOCK);
25717           if( IS_LOCK_ERROR(rc) ){
25718             pFile->lastErrno = tErrno;
25719           }
25720           goto end_unlock;
25721         }
25722         lock.l_type = F_UNLCK;
25723         lock.l_whence = SEEK_SET;
25724         lock.l_start = SHARED_FIRST+divSize;
25725         lock.l_len = SHARED_SIZE-divSize;
25726         if( unixFileLock(pFile, &lock)==(-1) ){
25727           tErrno = errno;
25728           rc = SQLITE_IOERR_UNLOCK;
25729           if( IS_LOCK_ERROR(rc) ){
25730             pFile->lastErrno = tErrno;
25731           }
25732           goto end_unlock;
25733         }
25734       }else
25735 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
25736       {
25737         lock.l_type = F_RDLCK;
25738         lock.l_whence = SEEK_SET;
25739         lock.l_start = SHARED_FIRST;
25740         lock.l_len = SHARED_SIZE;
25741         if( unixFileLock(pFile, &lock) ){
25742           /* In theory, the call to unixFileLock() cannot fail because another
25743           ** process is holding an incompatible lock. If it does, this
25744           ** indicates that the other process is not following the locking
25745           ** protocol. If this happens, return SQLITE_IOERR_RDLOCK. Returning
25746           ** SQLITE_BUSY would confuse the upper layer (in practice it causes
25747           ** an assert to fail). */
25748           rc = SQLITE_IOERR_RDLOCK;
25749           pFile->lastErrno = errno;
25750           goto end_unlock;
25751         }
25752       }
25753     }
25754     lock.l_type = F_UNLCK;
25755     lock.l_whence = SEEK_SET;
25756     lock.l_start = PENDING_BYTE;
25757     lock.l_len = 2L;  assert( PENDING_BYTE+1==RESERVED_BYTE );
25758     if( unixFileLock(pFile, &lock)==0 ){
25759       pInode->eFileLock = SHARED_LOCK;
25760     }else{
25761       rc = SQLITE_IOERR_UNLOCK;
25762       pFile->lastErrno = errno;
25763       goto end_unlock;
25764     }
25765   }
25766   if( eFileLock==NO_LOCK ){
25767     /* Decrement the shared lock counter.  Release the lock using an
25768     ** OS call only when all threads in this same process have released
25769     ** the lock.
25770     */
25771     pInode->nShared--;
25772     if( pInode->nShared==0 ){
25773       lock.l_type = F_UNLCK;
25774       lock.l_whence = SEEK_SET;
25775       lock.l_start = lock.l_len = 0L;
25776       if( unixFileLock(pFile, &lock)==0 ){
25777         pInode->eFileLock = NO_LOCK;
25778       }else{
25779         rc = SQLITE_IOERR_UNLOCK;
25780         pFile->lastErrno = errno;
25781         pInode->eFileLock = NO_LOCK;
25782         pFile->eFileLock = NO_LOCK;
25783       }
25784     }
25785 
25786     /* Decrement the count of locks against this same file.  When the
25787     ** count reaches zero, close any other file descriptors whose close
25788     ** was deferred because of outstanding locks.
25789     */
25790     pInode->nLock--;
25791     assert( pInode->nLock>=0 );
25792     if( pInode->nLock==0 ){
25793       closePendingFds(pFile);
25794     }
25795   }
25796 
25797 end_unlock:
25798   unixLeaveMutex();
25799   if( rc==SQLITE_OK ) pFile->eFileLock = eFileLock;
25800   return rc;
25801 }
25802 
25803 /*
25804 ** Lower the locking level on file descriptor pFile to eFileLock.  eFileLock
25805 ** must be either NO_LOCK or SHARED_LOCK.
25806 **
25807 ** If the locking level of the file descriptor is already at or below
25808 ** the requested locking level, this routine is a no-op.
25809 */
25810 static int unixUnlock(sqlite3_file *id, int eFileLock){
25811 #if SQLITE_MAX_MMAP_SIZE>0
25812   assert( eFileLock==SHARED_LOCK || ((unixFile *)id)->nFetchOut==0 );
25813 #endif
25814   return posixUnlock(id, eFileLock, 0);
25815 }
25816 
25817 #if SQLITE_MAX_MMAP_SIZE>0
25818 static int unixMapfile(unixFile *pFd, i64 nByte);
25819 static void unixUnmapfile(unixFile *pFd);
25820 #endif
25821 
25822 /*
25823 ** This function performs the parts of the "close file" operation
25824 ** common to all locking schemes. It closes the directory and file
25825 ** handles, if they are valid, and sets all fields of the unixFile
25826 ** structure to 0.
25827 **
25828 ** It is *not* necessary to hold the mutex when this routine is called,
25829 ** even on VxWorks.  A mutex will be acquired on VxWorks by the
25830 ** vxworksReleaseFileId() routine.
25831 */
25832 static int closeUnixFile(sqlite3_file *id){
25833   unixFile *pFile = (unixFile*)id;
25834 #if SQLITE_MAX_MMAP_SIZE>0
25835   unixUnmapfile(pFile);
25836 #endif
25837   if( pFile->h>=0 ){
25838     robust_close(pFile, pFile->h, __LINE__);
25839     pFile->h = -1;
25840   }
25841 #if OS_VXWORKS
25842   if( pFile->pId ){
25843     if( pFile->ctrlFlags & UNIXFILE_DELETE ){
25844       osUnlink(pFile->pId->zCanonicalName);
25845     }
25846     vxworksReleaseFileId(pFile->pId);
25847     pFile->pId = 0;
25848   }
25849 #endif
25850   OSTRACE(("CLOSE   %-3d\n", pFile->h));
25851   OpenCounter(-1);
25852   sqlite3_free(pFile->pUnused);
25853   memset(pFile, 0, sizeof(unixFile));
25854   return SQLITE_OK;
25855 }
25856 
25857 /*
25858 ** Close a file.
25859 */
25860 static int unixClose(sqlite3_file *id){
25861   int rc = SQLITE_OK;
25862   unixFile *pFile = (unixFile *)id;
25863   verifyDbFile(pFile);
25864   unixUnlock(id, NO_LOCK);
25865   unixEnterMutex();
25866 
25867   /* unixFile.pInode is always valid here. Otherwise, a different close
25868   ** routine (e.g. nolockClose()) would be called instead.
25869   */
25870   assert( pFile->pInode->nLock>0 || pFile->pInode->bProcessLock==0 );
25871   if( ALWAYS(pFile->pInode) && pFile->pInode->nLock ){
25872     /* If there are outstanding locks, do not actually close the file just
25873     ** yet because that would clear those locks.  Instead, add the file
25874     ** descriptor to pInode->pUnused list.  It will be automatically closed
25875     ** when the last lock is cleared.
25876     */
25877     setPendingFd(pFile);
25878   }
25879   releaseInodeInfo(pFile);
25880   rc = closeUnixFile(id);
25881   unixLeaveMutex();
25882   return rc;
25883 }
25884 
25885 /************** End of the posix advisory lock implementation *****************
25886 ******************************************************************************/
25887 
25888 /******************************************************************************
25889 ****************************** No-op Locking **********************************
25890 **
25891 ** Of the various locking implementations available, this is by far the
25892 ** simplest:  locking is ignored.  No attempt is made to lock the database
25893 ** file for reading or writing.
25894 **
25895 ** This locking mode is appropriate for use on read-only databases
25896 ** (ex: databases that are burned into CD-ROM, for example.)  It can
25897 ** also be used if the application employs some external mechanism to
25898 ** prevent simultaneous access of the same database by two or more
25899 ** database connections.  But there is a serious risk of database
25900 ** corruption if this locking mode is used in situations where multiple
25901 ** database connections are accessing the same database file at the same
25902 ** time and one or more of those connections are writing.
25903 */
25904 
25905 static int nolockCheckReservedLock(sqlite3_file *NotUsed, int *pResOut){
25906   UNUSED_PARAMETER(NotUsed);
25907   *pResOut = 0;
25908   return SQLITE_OK;
25909 }
25910 static int nolockLock(sqlite3_file *NotUsed, int NotUsed2){
25911   UNUSED_PARAMETER2(NotUsed, NotUsed2);
25912   return SQLITE_OK;
25913 }
25914 static int nolockUnlock(sqlite3_file *NotUsed, int NotUsed2){
25915   UNUSED_PARAMETER2(NotUsed, NotUsed2);
25916   return SQLITE_OK;
25917 }
25918 
25919 /*
25920 ** Close the file.
25921 */
25922 static int nolockClose(sqlite3_file *id) {
25923   return closeUnixFile(id);
25924 }
25925 
25926 /******************* End of the no-op lock implementation *********************
25927 ******************************************************************************/
25928 
25929 /******************************************************************************
25930 ************************* Begin dot-file Locking ******************************
25931 **
25932 ** The dotfile locking implementation uses the existence of separate lock
25933 ** files (really a directory) to control access to the database.  This works
25934 ** on just about every filesystem imaginable.  But there are serious downsides:
25935 **
25936 **    (1)  There is zero concurrency.  A single reader blocks all other
25937 **         connections from reading or writing the database.
25938 **
25939 **    (2)  An application crash or power loss can leave stale lock files
25940 **         sitting around that need to be cleared manually.
25941 **
25942 ** Nevertheless, a dotlock is an appropriate locking mode for use if no
25943 ** other locking strategy is available.
25944 **
25945 ** Dotfile locking works by creating a subdirectory in the same directory as
25946 ** the database and with the same name but with a ".lock" extension added.
25947 ** The existence of a lock directory implies an EXCLUSIVE lock.  All other
25948 ** lock types (SHARED, RESERVED, PENDING) are mapped into EXCLUSIVE.
25949 */
25950 
25951 /*
25952 ** The file suffix added to the data base filename in order to create the
25953 ** lock directory.
25954 */
25955 #define DOTLOCK_SUFFIX ".lock"
25956 
25957 /*
25958 ** This routine checks if there is a RESERVED lock held on the specified
25959 ** file by this or any other process. If such a lock is held, set *pResOut
25960 ** to a non-zero value otherwise *pResOut is set to zero.  The return value
25961 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
25962 **
25963 ** In dotfile locking, either a lock exists or it does not.  So in this
25964 ** variation of CheckReservedLock(), *pResOut is set to true if any lock
25965 ** is held on the file and false if the file is unlocked.
25966 */
25967 static int dotlockCheckReservedLock(sqlite3_file *id, int *pResOut) {
25968   int rc = SQLITE_OK;
25969   int reserved = 0;
25970   unixFile *pFile = (unixFile*)id;
25971 
25972   SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
25973 
25974   assert( pFile );
25975 
25976   /* Check if a thread in this process holds such a lock */
25977   if( pFile->eFileLock>SHARED_LOCK ){
25978     /* Either this connection or some other connection in the same process
25979     ** holds a lock on the file.  No need to check further. */
25980     reserved = 1;
25981   }else{
25982     /* The lock is held if and only if the lockfile exists */
25983     const char *zLockFile = (const char*)pFile->lockingContext;
25984     reserved = osAccess(zLockFile, 0)==0;
25985   }
25986   OSTRACE(("TEST WR-LOCK %d %d %d (dotlock)\n", pFile->h, rc, reserved));
25987   *pResOut = reserved;
25988   return rc;
25989 }
25990 
25991 /*
25992 ** Lock the file with the lock specified by parameter eFileLock - one
25993 ** of the following:
25994 **
25995 **     (1) SHARED_LOCK
25996 **     (2) RESERVED_LOCK
25997 **     (3) PENDING_LOCK
25998 **     (4) EXCLUSIVE_LOCK
25999 **
26000 ** Sometimes when requesting one lock state, additional lock states
26001 ** are inserted in between.  The locking might fail on one of the later
26002 ** transitions leaving the lock state different from what it started but
26003 ** still short of its goal.  The following chart shows the allowed
26004 ** transitions and the inserted intermediate states:
26005 **
26006 **    UNLOCKED -> SHARED
26007 **    SHARED -> RESERVED
26008 **    SHARED -> (PENDING) -> EXCLUSIVE
26009 **    RESERVED -> (PENDING) -> EXCLUSIVE
26010 **    PENDING -> EXCLUSIVE
26011 **
26012 ** This routine will only increase a lock.  Use the sqlite3OsUnlock()
26013 ** routine to lower a locking level.
26014 **
26015 ** With dotfile locking, we really only support state (4): EXCLUSIVE.
26016 ** But we track the other locking levels internally.
26017 */
26018 static int dotlockLock(sqlite3_file *id, int eFileLock) {
26019   unixFile *pFile = (unixFile*)id;
26020   char *zLockFile = (char *)pFile->lockingContext;
26021   int rc = SQLITE_OK;
26022 
26023 
26024   /* If we have any lock, then the lock file already exists.  All we have
26025   ** to do is adjust our internal record of the lock level.
26026   */
26027   if( pFile->eFileLock > NO_LOCK ){
26028     pFile->eFileLock = eFileLock;
26029     /* Always update the timestamp on the old file */
26030 #ifdef HAVE_UTIME
26031     utime(zLockFile, NULL);
26032 #else
26033     utimes(zLockFile, NULL);
26034 #endif
26035     return SQLITE_OK;
26036   }
26037 
26038   /* grab an exclusive lock */
26039   rc = osMkdir(zLockFile, 0777);
26040   if( rc<0 ){
26041     /* failed to open/create the lock directory */
26042     int tErrno = errno;
26043     if( EEXIST == tErrno ){
26044       rc = SQLITE_BUSY;
26045     } else {
26046       rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
26047       if( IS_LOCK_ERROR(rc) ){
26048         pFile->lastErrno = tErrno;
26049       }
26050     }
26051     return rc;
26052   }
26053 
26054   /* got it, set the type and return ok */
26055   pFile->eFileLock = eFileLock;
26056   return rc;
26057 }
26058 
26059 /*
26060 ** Lower the locking level on file descriptor pFile to eFileLock.  eFileLock
26061 ** must be either NO_LOCK or SHARED_LOCK.
26062 **
26063 ** If the locking level of the file descriptor is already at or below
26064 ** the requested locking level, this routine is a no-op.
26065 **
26066 ** When the locking level reaches NO_LOCK, delete the lock file.
26067 */
26068 static int dotlockUnlock(sqlite3_file *id, int eFileLock) {
26069   unixFile *pFile = (unixFile*)id;
26070   char *zLockFile = (char *)pFile->lockingContext;
26071   int rc;
26072 
26073   assert( pFile );
26074   OSTRACE(("UNLOCK  %d %d was %d pid=%d (dotlock)\n", pFile->h, eFileLock,
26075            pFile->eFileLock, getpid()));
26076   assert( eFileLock<=SHARED_LOCK );
26077 
26078   /* no-op if possible */
26079   if( pFile->eFileLock==eFileLock ){
26080     return SQLITE_OK;
26081   }
26082 
26083   /* To downgrade to shared, simply update our internal notion of the
26084   ** lock state.  No need to mess with the file on disk.
26085   */
26086   if( eFileLock==SHARED_LOCK ){
26087     pFile->eFileLock = SHARED_LOCK;
26088     return SQLITE_OK;
26089   }
26090 
26091   /* To fully unlock the database, delete the lock file */
26092   assert( eFileLock==NO_LOCK );
26093   rc = osRmdir(zLockFile);
26094   if( rc<0 && errno==ENOTDIR ) rc = osUnlink(zLockFile);
26095   if( rc<0 ){
26096     int tErrno = errno;
26097     rc = 0;
26098     if( ENOENT != tErrno ){
26099       rc = SQLITE_IOERR_UNLOCK;
26100     }
26101     if( IS_LOCK_ERROR(rc) ){
26102       pFile->lastErrno = tErrno;
26103     }
26104     return rc;
26105   }
26106   pFile->eFileLock = NO_LOCK;
26107   return SQLITE_OK;
26108 }
26109 
26110 /*
26111 ** Close a file.  Make sure the lock has been released before closing.
26112 */
26113 static int dotlockClose(sqlite3_file *id) {
26114   int rc = SQLITE_OK;
26115   if( id ){
26116     unixFile *pFile = (unixFile*)id;
26117     dotlockUnlock(id, NO_LOCK);
26118     sqlite3_free(pFile->lockingContext);
26119     rc = closeUnixFile(id);
26120   }
26121   return rc;
26122 }
26123 /****************** End of the dot-file lock implementation *******************
26124 ******************************************************************************/
26125 
26126 /******************************************************************************
26127 ************************** Begin flock Locking ********************************
26128 **
26129 ** Use the flock() system call to do file locking.
26130 **
26131 ** flock() locking is like dot-file locking in that the various
26132 ** fine-grain locking levels supported by SQLite are collapsed into
26133 ** a single exclusive lock.  In other words, SHARED, RESERVED, and
26134 ** PENDING locks are the same thing as an EXCLUSIVE lock.  SQLite
26135 ** still works when you do this, but concurrency is reduced since
26136 ** only a single process can be reading the database at a time.
26137 **
26138 ** Omit this section if SQLITE_ENABLE_LOCKING_STYLE is turned off or if
26139 ** compiling for VXWORKS.
26140 */
26141 #if SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS
26142 
26143 /*
26144 ** Retry flock() calls that fail with EINTR
26145 */
26146 #ifdef EINTR
26147 static int robust_flock(int fd, int op){
26148   int rc;
26149   do{ rc = flock(fd,op); }while( rc<0 && errno==EINTR );
26150   return rc;
26151 }
26152 #else
26153 # define robust_flock(a,b) flock(a,b)
26154 #endif
26155 
26156 
26157 /*
26158 ** This routine checks if there is a RESERVED lock held on the specified
26159 ** file by this or any other process. If such a lock is held, set *pResOut
26160 ** to a non-zero value otherwise *pResOut is set to zero.  The return value
26161 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
26162 */
26163 static int flockCheckReservedLock(sqlite3_file *id, int *pResOut){
26164   int rc = SQLITE_OK;
26165   int reserved = 0;
26166   unixFile *pFile = (unixFile*)id;
26167 
26168   SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
26169 
26170   assert( pFile );
26171 
26172   /* Check if a thread in this process holds such a lock */
26173   if( pFile->eFileLock>SHARED_LOCK ){
26174     reserved = 1;
26175   }
26176 
26177   /* Otherwise see if some other process holds it. */
26178   if( !reserved ){
26179     /* attempt to get the lock */
26180     int lrc = robust_flock(pFile->h, LOCK_EX | LOCK_NB);
26181     if( !lrc ){
26182       /* got the lock, unlock it */
26183       lrc = robust_flock(pFile->h, LOCK_UN);
26184       if ( lrc ) {
26185         int tErrno = errno;
26186         /* unlock failed with an error */
26187         lrc = SQLITE_IOERR_UNLOCK;
26188         if( IS_LOCK_ERROR(lrc) ){
26189           pFile->lastErrno = tErrno;
26190           rc = lrc;
26191         }
26192       }
26193     } else {
26194       int tErrno = errno;
26195       reserved = 1;
26196       /* someone else might have it reserved */
26197       lrc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
26198       if( IS_LOCK_ERROR(lrc) ){
26199         pFile->lastErrno = tErrno;
26200         rc = lrc;
26201       }
26202     }
26203   }
26204   OSTRACE(("TEST WR-LOCK %d %d %d (flock)\n", pFile->h, rc, reserved));
26205 
26206 #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
26207   if( (rc & SQLITE_IOERR) == SQLITE_IOERR ){
26208     rc = SQLITE_OK;
26209     reserved=1;
26210   }
26211 #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
26212   *pResOut = reserved;
26213   return rc;
26214 }
26215 
26216 /*
26217 ** Lock the file with the lock specified by parameter eFileLock - one
26218 ** of the following:
26219 **
26220 **     (1) SHARED_LOCK
26221 **     (2) RESERVED_LOCK
26222 **     (3) PENDING_LOCK
26223 **     (4) EXCLUSIVE_LOCK
26224 **
26225 ** Sometimes when requesting one lock state, additional lock states
26226 ** are inserted in between.  The locking might fail on one of the later
26227 ** transitions leaving the lock state different from what it started but
26228 ** still short of its goal.  The following chart shows the allowed
26229 ** transitions and the inserted intermediate states:
26230 **
26231 **    UNLOCKED -> SHARED
26232 **    SHARED -> RESERVED
26233 **    SHARED -> (PENDING) -> EXCLUSIVE
26234 **    RESERVED -> (PENDING) -> EXCLUSIVE
26235 **    PENDING -> EXCLUSIVE
26236 **
26237 ** flock() only really support EXCLUSIVE locks.  We track intermediate
26238 ** lock states in the sqlite3_file structure, but all locks SHARED or
26239 ** above are really EXCLUSIVE locks and exclude all other processes from
26240 ** access the file.
26241 **
26242 ** This routine will only increase a lock.  Use the sqlite3OsUnlock()
26243 ** routine to lower a locking level.
26244 */
26245 static int flockLock(sqlite3_file *id, int eFileLock) {
26246   int rc = SQLITE_OK;
26247   unixFile *pFile = (unixFile*)id;
26248 
26249   assert( pFile );
26250 
26251   /* if we already have a lock, it is exclusive.
26252   ** Just adjust level and punt on outta here. */
26253   if (pFile->eFileLock > NO_LOCK) {
26254     pFile->eFileLock = eFileLock;
26255     return SQLITE_OK;
26256   }
26257 
26258   /* grab an exclusive lock */
26259 
26260   if (robust_flock(pFile->h, LOCK_EX | LOCK_NB)) {
26261     int tErrno = errno;
26262     /* didn't get, must be busy */
26263     rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
26264     if( IS_LOCK_ERROR(rc) ){
26265       pFile->lastErrno = tErrno;
26266     }
26267   } else {
26268     /* got it, set the type and return ok */
26269     pFile->eFileLock = eFileLock;
26270   }
26271   OSTRACE(("LOCK    %d %s %s (flock)\n", pFile->h, azFileLock(eFileLock),
26272            rc==SQLITE_OK ? "ok" : "failed"));
26273 #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
26274   if( (rc & SQLITE_IOERR) == SQLITE_IOERR ){
26275     rc = SQLITE_BUSY;
26276   }
26277 #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
26278   return rc;
26279 }
26280 
26281 
26282 /*
26283 ** Lower the locking level on file descriptor pFile to eFileLock.  eFileLock
26284 ** must be either NO_LOCK or SHARED_LOCK.
26285 **
26286 ** If the locking level of the file descriptor is already at or below
26287 ** the requested locking level, this routine is a no-op.
26288 */
26289 static int flockUnlock(sqlite3_file *id, int eFileLock) {
26290   unixFile *pFile = (unixFile*)id;
26291 
26292   assert( pFile );
26293   OSTRACE(("UNLOCK  %d %d was %d pid=%d (flock)\n", pFile->h, eFileLock,
26294            pFile->eFileLock, getpid()));
26295   assert( eFileLock<=SHARED_LOCK );
26296 
26297   /* no-op if possible */
26298   if( pFile->eFileLock==eFileLock ){
26299     return SQLITE_OK;
26300   }
26301 
26302   /* shared can just be set because we always have an exclusive */
26303   if (eFileLock==SHARED_LOCK) {
26304     pFile->eFileLock = eFileLock;
26305     return SQLITE_OK;
26306   }
26307 
26308   /* no, really, unlock. */
26309   if( robust_flock(pFile->h, LOCK_UN) ){
26310 #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
26311     return SQLITE_OK;
26312 #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
26313     return SQLITE_IOERR_UNLOCK;
26314   }else{
26315     pFile->eFileLock = NO_LOCK;
26316     return SQLITE_OK;
26317   }
26318 }
26319 
26320 /*
26321 ** Close a file.
26322 */
26323 static int flockClose(sqlite3_file *id) {
26324   int rc = SQLITE_OK;
26325   if( id ){
26326     flockUnlock(id, NO_LOCK);
26327     rc = closeUnixFile(id);
26328   }
26329   return rc;
26330 }
26331 
26332 #endif /* SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORK */
26333 
26334 /******************* End of the flock lock implementation *********************
26335 ******************************************************************************/
26336 
26337 /******************************************************************************
26338 ************************ Begin Named Semaphore Locking ************************
26339 **
26340 ** Named semaphore locking is only supported on VxWorks.
26341 **
26342 ** Semaphore locking is like dot-lock and flock in that it really only
26343 ** supports EXCLUSIVE locking.  Only a single process can read or write
26344 ** the database file at a time.  This reduces potential concurrency, but
26345 ** makes the lock implementation much easier.
26346 */
26347 #if OS_VXWORKS
26348 
26349 /*
26350 ** This routine checks if there is a RESERVED lock held on the specified
26351 ** file by this or any other process. If such a lock is held, set *pResOut
26352 ** to a non-zero value otherwise *pResOut is set to zero.  The return value
26353 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
26354 */
26355 static int semCheckReservedLock(sqlite3_file *id, int *pResOut) {
26356   int rc = SQLITE_OK;
26357   int reserved = 0;
26358   unixFile *pFile = (unixFile*)id;
26359 
26360   SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
26361 
26362   assert( pFile );
26363 
26364   /* Check if a thread in this process holds such a lock */
26365   if( pFile->eFileLock>SHARED_LOCK ){
26366     reserved = 1;
26367   }
26368 
26369   /* Otherwise see if some other process holds it. */
26370   if( !reserved ){
26371     sem_t *pSem = pFile->pInode->pSem;
26372     struct stat statBuf;
26373 
26374     if( sem_trywait(pSem)==-1 ){
26375       int tErrno = errno;
26376       if( EAGAIN != tErrno ){
26377         rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_CHECKRESERVEDLOCK);
26378         pFile->lastErrno = tErrno;
26379       } else {
26380         /* someone else has the lock when we are in NO_LOCK */
26381         reserved = (pFile->eFileLock < SHARED_LOCK);
26382       }
26383     }else{
26384       /* we could have it if we want it */
26385       sem_post(pSem);
26386     }
26387   }
26388   OSTRACE(("TEST WR-LOCK %d %d %d (sem)\n", pFile->h, rc, reserved));
26389 
26390   *pResOut = reserved;
26391   return rc;
26392 }
26393 
26394 /*
26395 ** Lock the file with the lock specified by parameter eFileLock - one
26396 ** of the following:
26397 **
26398 **     (1) SHARED_LOCK
26399 **     (2) RESERVED_LOCK
26400 **     (3) PENDING_LOCK
26401 **     (4) EXCLUSIVE_LOCK
26402 **
26403 ** Sometimes when requesting one lock state, additional lock states
26404 ** are inserted in between.  The locking might fail on one of the later
26405 ** transitions leaving the lock state different from what it started but
26406 ** still short of its goal.  The following chart shows the allowed
26407 ** transitions and the inserted intermediate states:
26408 **
26409 **    UNLOCKED -> SHARED
26410 **    SHARED -> RESERVED
26411 **    SHARED -> (PENDING) -> EXCLUSIVE
26412 **    RESERVED -> (PENDING) -> EXCLUSIVE
26413 **    PENDING -> EXCLUSIVE
26414 **
26415 ** Semaphore locks only really support EXCLUSIVE locks.  We track intermediate
26416 ** lock states in the sqlite3_file structure, but all locks SHARED or
26417 ** above are really EXCLUSIVE locks and exclude all other processes from
26418 ** access the file.
26419 **
26420 ** This routine will only increase a lock.  Use the sqlite3OsUnlock()
26421 ** routine to lower a locking level.
26422 */
26423 static int semLock(sqlite3_file *id, int eFileLock) {
26424   unixFile *pFile = (unixFile*)id;
26425   int fd;
26426   sem_t *pSem = pFile->pInode->pSem;
26427   int rc = SQLITE_OK;
26428 
26429   /* if we already have a lock, it is exclusive.
26430   ** Just adjust level and punt on outta here. */
26431   if (pFile->eFileLock > NO_LOCK) {
26432     pFile->eFileLock = eFileLock;
26433     rc = SQLITE_OK;
26434     goto sem_end_lock;
26435   }
26436 
26437   /* lock semaphore now but bail out when already locked. */
26438   if( sem_trywait(pSem)==-1 ){
26439     rc = SQLITE_BUSY;
26440     goto sem_end_lock;
26441   }
26442 
26443   /* got it, set the type and return ok */
26444   pFile->eFileLock = eFileLock;
26445 
26446  sem_end_lock:
26447   return rc;
26448 }
26449 
26450 /*
26451 ** Lower the locking level on file descriptor pFile to eFileLock.  eFileLock
26452 ** must be either NO_LOCK or SHARED_LOCK.
26453 **
26454 ** If the locking level of the file descriptor is already at or below
26455 ** the requested locking level, this routine is a no-op.
26456 */
26457 static int semUnlock(sqlite3_file *id, int eFileLock) {
26458   unixFile *pFile = (unixFile*)id;
26459   sem_t *pSem = pFile->pInode->pSem;
26460 
26461   assert( pFile );
26462   assert( pSem );
26463   OSTRACE(("UNLOCK  %d %d was %d pid=%d (sem)\n", pFile->h, eFileLock,
26464            pFile->eFileLock, getpid()));
26465   assert( eFileLock<=SHARED_LOCK );
26466 
26467   /* no-op if possible */
26468   if( pFile->eFileLock==eFileLock ){
26469     return SQLITE_OK;
26470   }
26471 
26472   /* shared can just be set because we always have an exclusive */
26473   if (eFileLock==SHARED_LOCK) {
26474     pFile->eFileLock = eFileLock;
26475     return SQLITE_OK;
26476   }
26477 
26478   /* no, really unlock. */
26479   if ( sem_post(pSem)==-1 ) {
26480     int rc, tErrno = errno;
26481     rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK);
26482     if( IS_LOCK_ERROR(rc) ){
26483       pFile->lastErrno = tErrno;
26484     }
26485     return rc;
26486   }
26487   pFile->eFileLock = NO_LOCK;
26488   return SQLITE_OK;
26489 }
26490 
26491 /*
26492  ** Close a file.
26493  */
26494 static int semClose(sqlite3_file *id) {
26495   if( id ){
26496     unixFile *pFile = (unixFile*)id;
26497     semUnlock(id, NO_LOCK);
26498     assert( pFile );
26499     unixEnterMutex();
26500     releaseInodeInfo(pFile);
26501     unixLeaveMutex();
26502     closeUnixFile(id);
26503   }
26504   return SQLITE_OK;
26505 }
26506 
26507 #endif /* OS_VXWORKS */
26508 /*
26509 ** Named semaphore locking is only available on VxWorks.
26510 **
26511 *************** End of the named semaphore lock implementation ****************
26512 ******************************************************************************/
26513 
26514 
26515 /******************************************************************************
26516 *************************** Begin AFP Locking *********************************
26517 **
26518 ** AFP is the Apple Filing Protocol.  AFP is a network filesystem found
26519 ** on Apple Macintosh computers - both OS9 and OSX.
26520 **
26521 ** Third-party implementations of AFP are available.  But this code here
26522 ** only works on OSX.
26523 */
26524 
26525 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
26526 /*
26527 ** The afpLockingContext structure contains all afp lock specific state
26528 */
26529 typedef struct afpLockingContext afpLockingContext;
26530 struct afpLockingContext {
26531   int reserved;
26532   const char *dbPath;             /* Name of the open file */
26533 };
26534 
26535 struct ByteRangeLockPB2
26536 {
26537   unsigned long long offset;        /* offset to first byte to lock */
26538   unsigned long long length;        /* nbr of bytes to lock */
26539   unsigned long long retRangeStart; /* nbr of 1st byte locked if successful */
26540   unsigned char unLockFlag;         /* 1 = unlock, 0 = lock */
26541   unsigned char startEndFlag;       /* 1=rel to end of fork, 0=rel to start */
26542   int fd;                           /* file desc to assoc this lock with */
26543 };
26544 
26545 #define afpfsByteRangeLock2FSCTL        _IOWR('z', 23, struct ByteRangeLockPB2)
26546 
26547 /*
26548 ** This is a utility for setting or clearing a bit-range lock on an
26549 ** AFP filesystem.
26550 **
26551 ** Return SQLITE_OK on success, SQLITE_BUSY on failure.
26552 */
26553 static int afpSetLock(
26554   const char *path,              /* Name of the file to be locked or unlocked */
26555   unixFile *pFile,               /* Open file descriptor on path */
26556   unsigned long long offset,     /* First byte to be locked */
26557   unsigned long long length,     /* Number of bytes to lock */
26558   int setLockFlag                /* True to set lock.  False to clear lock */
26559 ){
26560   struct ByteRangeLockPB2 pb;
26561   int err;
26562 
26563   pb.unLockFlag = setLockFlag ? 0 : 1;
26564   pb.startEndFlag = 0;
26565   pb.offset = offset;
26566   pb.length = length;
26567   pb.fd = pFile->h;
26568 
26569   OSTRACE(("AFPSETLOCK [%s] for %d%s in range %llx:%llx\n",
26570     (setLockFlag?"ON":"OFF"), pFile->h, (pb.fd==-1?"[testval-1]":""),
26571     offset, length));
26572   err = fsctl(path, afpfsByteRangeLock2FSCTL, &pb, 0);
26573   if ( err==-1 ) {
26574     int rc;
26575     int tErrno = errno;
26576     OSTRACE(("AFPSETLOCK failed to fsctl() '%s' %d %s\n",
26577              path, tErrno, strerror(tErrno)));
26578 #ifdef SQLITE_IGNORE_AFP_LOCK_ERRORS
26579     rc = SQLITE_BUSY;
26580 #else
26581     rc = sqliteErrorFromPosixError(tErrno,
26582                     setLockFlag ? SQLITE_IOERR_LOCK : SQLITE_IOERR_UNLOCK);
26583 #endif /* SQLITE_IGNORE_AFP_LOCK_ERRORS */
26584     if( IS_LOCK_ERROR(rc) ){
26585       pFile->lastErrno = tErrno;
26586     }
26587     return rc;
26588   } else {
26589     return SQLITE_OK;
26590   }
26591 }
26592 
26593 /*
26594 ** This routine checks if there is a RESERVED lock held on the specified
26595 ** file by this or any other process. If such a lock is held, set *pResOut
26596 ** to a non-zero value otherwise *pResOut is set to zero.  The return value
26597 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
26598 */
26599 static int afpCheckReservedLock(sqlite3_file *id, int *pResOut){
26600   int rc = SQLITE_OK;
26601   int reserved = 0;
26602   unixFile *pFile = (unixFile*)id;
26603   afpLockingContext *context;
26604 
26605   SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
26606 
26607   assert( pFile );
26608   context = (afpLockingContext *) pFile->lockingContext;
26609   if( context->reserved ){
26610     *pResOut = 1;
26611     return SQLITE_OK;
26612   }
26613   unixEnterMutex(); /* Because pFile->pInode is shared across threads */
26614 
26615   /* Check if a thread in this process holds such a lock */
26616   if( pFile->pInode->eFileLock>SHARED_LOCK ){
26617     reserved = 1;
26618   }
26619 
26620   /* Otherwise see if some other process holds it.
26621    */
26622   if( !reserved ){
26623     /* lock the RESERVED byte */
26624     int lrc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1,1);
26625     if( SQLITE_OK==lrc ){
26626       /* if we succeeded in taking the reserved lock, unlock it to restore
26627       ** the original state */
26628       lrc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1, 0);
26629     } else {
26630       /* if we failed to get the lock then someone else must have it */
26631       reserved = 1;
26632     }
26633     if( IS_LOCK_ERROR(lrc) ){
26634       rc=lrc;
26635     }
26636   }
26637 
26638   unixLeaveMutex();
26639   OSTRACE(("TEST WR-LOCK %d %d %d (afp)\n", pFile->h, rc, reserved));
26640 
26641   *pResOut = reserved;
26642   return rc;
26643 }
26644 
26645 /*
26646 ** Lock the file with the lock specified by parameter eFileLock - one
26647 ** of the following:
26648 **
26649 **     (1) SHARED_LOCK
26650 **     (2) RESERVED_LOCK
26651 **     (3) PENDING_LOCK
26652 **     (4) EXCLUSIVE_LOCK
26653 **
26654 ** Sometimes when requesting one lock state, additional lock states
26655 ** are inserted in between.  The locking might fail on one of the later
26656 ** transitions leaving the lock state different from what it started but
26657 ** still short of its goal.  The following chart shows the allowed
26658 ** transitions and the inserted intermediate states:
26659 **
26660 **    UNLOCKED -> SHARED
26661 **    SHARED -> RESERVED
26662 **    SHARED -> (PENDING) -> EXCLUSIVE
26663 **    RESERVED -> (PENDING) -> EXCLUSIVE
26664 **    PENDING -> EXCLUSIVE
26665 **
26666 ** This routine will only increase a lock.  Use the sqlite3OsUnlock()
26667 ** routine to lower a locking level.
26668 */
26669 static int afpLock(sqlite3_file *id, int eFileLock){
26670   int rc = SQLITE_OK;
26671   unixFile *pFile = (unixFile*)id;
26672   unixInodeInfo *pInode = pFile->pInode;
26673   afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
26674 
26675   assert( pFile );
26676   OSTRACE(("LOCK    %d %s was %s(%s,%d) pid=%d (afp)\n", pFile->h,
26677            azFileLock(eFileLock), azFileLock(pFile->eFileLock),
26678            azFileLock(pInode->eFileLock), pInode->nShared , getpid()));
26679 
26680   /* If there is already a lock of this type or more restrictive on the
26681   ** unixFile, do nothing. Don't use the afp_end_lock: exit path, as
26682   ** unixEnterMutex() hasn't been called yet.
26683   */
26684   if( pFile->eFileLock>=eFileLock ){
26685     OSTRACE(("LOCK    %d %s ok (already held) (afp)\n", pFile->h,
26686            azFileLock(eFileLock)));
26687     return SQLITE_OK;
26688   }
26689 
26690   /* Make sure the locking sequence is correct
26691   **  (1) We never move from unlocked to anything higher than shared lock.
26692   **  (2) SQLite never explicitly requests a pendig lock.
26693   **  (3) A shared lock is always held when a reserve lock is requested.
26694   */
26695   assert( pFile->eFileLock!=NO_LOCK || eFileLock==SHARED_LOCK );
26696   assert( eFileLock!=PENDING_LOCK );
26697   assert( eFileLock!=RESERVED_LOCK || pFile->eFileLock==SHARED_LOCK );
26698 
26699   /* This mutex is needed because pFile->pInode is shared across threads
26700   */
26701   unixEnterMutex();
26702   pInode = pFile->pInode;
26703 
26704   /* If some thread using this PID has a lock via a different unixFile*
26705   ** handle that precludes the requested lock, return BUSY.
26706   */
26707   if( (pFile->eFileLock!=pInode->eFileLock &&
26708        (pInode->eFileLock>=PENDING_LOCK || eFileLock>SHARED_LOCK))
26709      ){
26710     rc = SQLITE_BUSY;
26711     goto afp_end_lock;
26712   }
26713 
26714   /* If a SHARED lock is requested, and some thread using this PID already
26715   ** has a SHARED or RESERVED lock, then increment reference counts and
26716   ** return SQLITE_OK.
26717   */
26718   if( eFileLock==SHARED_LOCK &&
26719      (pInode->eFileLock==SHARED_LOCK || pInode->eFileLock==RESERVED_LOCK) ){
26720     assert( eFileLock==SHARED_LOCK );
26721     assert( pFile->eFileLock==0 );
26722     assert( pInode->nShared>0 );
26723     pFile->eFileLock = SHARED_LOCK;
26724     pInode->nShared++;
26725     pInode->nLock++;
26726     goto afp_end_lock;
26727   }
26728 
26729   /* A PENDING lock is needed before acquiring a SHARED lock and before
26730   ** acquiring an EXCLUSIVE lock.  For the SHARED lock, the PENDING will
26731   ** be released.
26732   */
26733   if( eFileLock==SHARED_LOCK
26734       || (eFileLock==EXCLUSIVE_LOCK && pFile->eFileLock<PENDING_LOCK)
26735   ){
26736     int failed;
26737     failed = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 1);
26738     if (failed) {
26739       rc = failed;
26740       goto afp_end_lock;
26741     }
26742   }
26743 
26744   /* If control gets to this point, then actually go ahead and make
26745   ** operating system calls for the specified lock.
26746   */
26747   if( eFileLock==SHARED_LOCK ){
26748     int lrc1, lrc2, lrc1Errno = 0;
26749     long lk, mask;
26750 
26751     assert( pInode->nShared==0 );
26752     assert( pInode->eFileLock==0 );
26753 
26754     mask = (sizeof(long)==8) ? LARGEST_INT64 : 0x7fffffff;
26755     /* Now get the read-lock SHARED_LOCK */
26756     /* note that the quality of the randomness doesn't matter that much */
26757     lk = random();
26758     pInode->sharedByte = (lk & mask)%(SHARED_SIZE - 1);
26759     lrc1 = afpSetLock(context->dbPath, pFile,
26760           SHARED_FIRST+pInode->sharedByte, 1, 1);
26761     if( IS_LOCK_ERROR(lrc1) ){
26762       lrc1Errno = pFile->lastErrno;
26763     }
26764     /* Drop the temporary PENDING lock */
26765     lrc2 = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 0);
26766 
26767     if( IS_LOCK_ERROR(lrc1) ) {
26768       pFile->lastErrno = lrc1Errno;
26769       rc = lrc1;
26770       goto afp_end_lock;
26771     } else if( IS_LOCK_ERROR(lrc2) ){
26772       rc = lrc2;
26773       goto afp_end_lock;
26774     } else if( lrc1 != SQLITE_OK ) {
26775       rc = lrc1;
26776     } else {
26777       pFile->eFileLock = SHARED_LOCK;
26778       pInode->nLock++;
26779       pInode->nShared = 1;
26780     }
26781   }else if( eFileLock==EXCLUSIVE_LOCK && pInode->nShared>1 ){
26782     /* We are trying for an exclusive lock but another thread in this
26783      ** same process is still holding a shared lock. */
26784     rc = SQLITE_BUSY;
26785   }else{
26786     /* The request was for a RESERVED or EXCLUSIVE lock.  It is
26787     ** assumed that there is a SHARED or greater lock on the file
26788     ** already.
26789     */
26790     int failed = 0;
26791     assert( 0!=pFile->eFileLock );
26792     if (eFileLock >= RESERVED_LOCK && pFile->eFileLock < RESERVED_LOCK) {
26793         /* Acquire a RESERVED lock */
26794         failed = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1,1);
26795       if( !failed ){
26796         context->reserved = 1;
26797       }
26798     }
26799     if (!failed && eFileLock == EXCLUSIVE_LOCK) {
26800       /* Acquire an EXCLUSIVE lock */
26801 
26802       /* Remove the shared lock before trying the range.  we'll need to
26803       ** reestablish the shared lock if we can't get the  afpUnlock
26804       */
26805       if( !(failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST +
26806                          pInode->sharedByte, 1, 0)) ){
26807         int failed2 = SQLITE_OK;
26808         /* now attemmpt to get the exclusive lock range */
26809         failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST,
26810                                SHARED_SIZE, 1);
26811         if( failed && (failed2 = afpSetLock(context->dbPath, pFile,
26812                        SHARED_FIRST + pInode->sharedByte, 1, 1)) ){
26813           /* Can't reestablish the shared lock.  Sqlite can't deal, this is
26814           ** a critical I/O error
26815           */
26816           rc = ((failed & SQLITE_IOERR) == SQLITE_IOERR) ? failed2 :
26817                SQLITE_IOERR_LOCK;
26818           goto afp_end_lock;
26819         }
26820       }else{
26821         rc = failed;
26822       }
26823     }
26824     if( failed ){
26825       rc = failed;
26826     }
26827   }
26828 
26829   if( rc==SQLITE_OK ){
26830     pFile->eFileLock = eFileLock;
26831     pInode->eFileLock = eFileLock;
26832   }else if( eFileLock==EXCLUSIVE_LOCK ){
26833     pFile->eFileLock = PENDING_LOCK;
26834     pInode->eFileLock = PENDING_LOCK;
26835   }
26836 
26837 afp_end_lock:
26838   unixLeaveMutex();
26839   OSTRACE(("LOCK    %d %s %s (afp)\n", pFile->h, azFileLock(eFileLock),
26840          rc==SQLITE_OK ? "ok" : "failed"));
26841   return rc;
26842 }
26843 
26844 /*
26845 ** Lower the locking level on file descriptor pFile to eFileLock.  eFileLock
26846 ** must be either NO_LOCK or SHARED_LOCK.
26847 **
26848 ** If the locking level of the file descriptor is already at or below
26849 ** the requested locking level, this routine is a no-op.
26850 */
26851 static int afpUnlock(sqlite3_file *id, int eFileLock) {
26852   int rc = SQLITE_OK;
26853   unixFile *pFile = (unixFile*)id;
26854   unixInodeInfo *pInode;
26855   afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
26856   int skipShared = 0;
26857 #ifdef SQLITE_TEST
26858   int h = pFile->h;
26859 #endif
26860 
26861   assert( pFile );
26862   OSTRACE(("UNLOCK  %d %d was %d(%d,%d) pid=%d (afp)\n", pFile->h, eFileLock,
26863            pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared,
26864            getpid()));
26865 
26866   assert( eFileLock<=SHARED_LOCK );
26867   if( pFile->eFileLock<=eFileLock ){
26868     return SQLITE_OK;
26869   }
26870   unixEnterMutex();
26871   pInode = pFile->pInode;
26872   assert( pInode->nShared!=0 );
26873   if( pFile->eFileLock>SHARED_LOCK ){
26874     assert( pInode->eFileLock==pFile->eFileLock );
26875     SimulateIOErrorBenign(1);
26876     SimulateIOError( h=(-1) )
26877     SimulateIOErrorBenign(0);
26878 
26879 #ifdef SQLITE_DEBUG
26880     /* When reducing a lock such that other processes can start
26881     ** reading the database file again, make sure that the
26882     ** transaction counter was updated if any part of the database
26883     ** file changed.  If the transaction counter is not updated,
26884     ** other connections to the same file might not realize that
26885     ** the file has changed and hence might not know to flush their
26886     ** cache.  The use of a stale cache can lead to database corruption.
26887     */
26888     assert( pFile->inNormalWrite==0
26889            || pFile->dbUpdate==0
26890            || pFile->transCntrChng==1 );
26891     pFile->inNormalWrite = 0;
26892 #endif
26893 
26894     if( pFile->eFileLock==EXCLUSIVE_LOCK ){
26895       rc = afpSetLock(context->dbPath, pFile, SHARED_FIRST, SHARED_SIZE, 0);
26896       if( rc==SQLITE_OK && (eFileLock==SHARED_LOCK || pInode->nShared>1) ){
26897         /* only re-establish the shared lock if necessary */
26898         int sharedLockByte = SHARED_FIRST+pInode->sharedByte;
26899         rc = afpSetLock(context->dbPath, pFile, sharedLockByte, 1, 1);
26900       } else {
26901         skipShared = 1;
26902       }
26903     }
26904     if( rc==SQLITE_OK && pFile->eFileLock>=PENDING_LOCK ){
26905       rc = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 0);
26906     }
26907     if( rc==SQLITE_OK && pFile->eFileLock>=RESERVED_LOCK && context->reserved ){
26908       rc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1, 0);
26909       if( !rc ){
26910         context->reserved = 0;
26911       }
26912     }
26913     if( rc==SQLITE_OK && (eFileLock==SHARED_LOCK || pInode->nShared>1)){
26914       pInode->eFileLock = SHARED_LOCK;
26915     }
26916   }
26917   if( rc==SQLITE_OK && eFileLock==NO_LOCK ){
26918 
26919     /* Decrement the shared lock counter.  Release the lock using an
26920     ** OS call only when all threads in this same process have released
26921     ** the lock.
26922     */
26923     unsigned long long sharedLockByte = SHARED_FIRST+pInode->sharedByte;
26924     pInode->nShared--;
26925     if( pInode->nShared==0 ){
26926       SimulateIOErrorBenign(1);
26927       SimulateIOError( h=(-1) )
26928       SimulateIOErrorBenign(0);
26929       if( !skipShared ){
26930         rc = afpSetLock(context->dbPath, pFile, sharedLockByte, 1, 0);
26931       }
26932       if( !rc ){
26933         pInode->eFileLock = NO_LOCK;
26934         pFile->eFileLock = NO_LOCK;
26935       }
26936     }
26937     if( rc==SQLITE_OK ){
26938       pInode->nLock--;
26939       assert( pInode->nLock>=0 );
26940       if( pInode->nLock==0 ){
26941         closePendingFds(pFile);
26942       }
26943     }
26944   }
26945 
26946   unixLeaveMutex();
26947   if( rc==SQLITE_OK ) pFile->eFileLock = eFileLock;
26948   return rc;
26949 }
26950 
26951 /*
26952 ** Close a file & cleanup AFP specific locking context
26953 */
26954 static int afpClose(sqlite3_file *id) {
26955   int rc = SQLITE_OK;
26956   if( id ){
26957     unixFile *pFile = (unixFile*)id;
26958     afpUnlock(id, NO_LOCK);
26959     unixEnterMutex();
26960     if( pFile->pInode && pFile->pInode->nLock ){
26961       /* If there are outstanding locks, do not actually close the file just
26962       ** yet because that would clear those locks.  Instead, add the file
26963       ** descriptor to pInode->aPending.  It will be automatically closed when
26964       ** the last lock is cleared.
26965       */
26966       setPendingFd(pFile);
26967     }
26968     releaseInodeInfo(pFile);
26969     sqlite3_free(pFile->lockingContext);
26970     rc = closeUnixFile(id);
26971     unixLeaveMutex();
26972   }
26973   return rc;
26974 }
26975 
26976 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
26977 /*
26978 ** The code above is the AFP lock implementation.  The code is specific
26979 ** to MacOSX and does not work on other unix platforms.  No alternative
26980 ** is available.  If you don't compile for a mac, then the "unix-afp"
26981 ** VFS is not available.
26982 **
26983 ********************* End of the AFP lock implementation **********************
26984 ******************************************************************************/
26985 
26986 /******************************************************************************
26987 *************************** Begin NFS Locking ********************************/
26988 
26989 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
26990 /*
26991  ** Lower the locking level on file descriptor pFile to eFileLock.  eFileLock
26992  ** must be either NO_LOCK or SHARED_LOCK.
26993  **
26994  ** If the locking level of the file descriptor is already at or below
26995  ** the requested locking level, this routine is a no-op.
26996  */
26997 static int nfsUnlock(sqlite3_file *id, int eFileLock){
26998   return posixUnlock(id, eFileLock, 1);
26999 }
27000 
27001 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
27002 /*
27003 ** The code above is the NFS lock implementation.  The code is specific
27004 ** to MacOSX and does not work on other unix platforms.  No alternative
27005 ** is available.
27006 **
27007 ********************* End of the NFS lock implementation **********************
27008 ******************************************************************************/
27009 
27010 /******************************************************************************
27011 **************** Non-locking sqlite3_file methods *****************************
27012 **
27013 ** The next division contains implementations for all methods of the
27014 ** sqlite3_file object other than the locking methods.  The locking
27015 ** methods were defined in divisions above (one locking method per
27016 ** division).  Those methods that are common to all locking modes
27017 ** are gather together into this division.
27018 */
27019 
27020 /*
27021 ** Seek to the offset passed as the second argument, then read cnt
27022 ** bytes into pBuf. Return the number of bytes actually read.
27023 **
27024 ** NB:  If you define USE_PREAD or USE_PREAD64, then it might also
27025 ** be necessary to define _XOPEN_SOURCE to be 500.  This varies from
27026 ** one system to another.  Since SQLite does not define USE_PREAD
27027 ** any any form by default, we will not attempt to define _XOPEN_SOURCE.
27028 ** See tickets #2741 and #2681.
27029 **
27030 ** To avoid stomping the errno value on a failed read the lastErrno value
27031 ** is set before returning.
27032 */
27033 static int seekAndRead(unixFile *id, sqlite3_int64 offset, void *pBuf, int cnt){
27034   int got;
27035   int prior = 0;
27036 #if (!defined(USE_PREAD) && !defined(USE_PREAD64))
27037   i64 newOffset;
27038 #endif
27039   TIMER_START;
27040   assert( cnt==(cnt&0x1ffff) );
27041   assert( id->h>2 );
27042   cnt &= 0x1ffff;
27043   do{
27044 #if defined(USE_PREAD)
27045     got = osPread(id->h, pBuf, cnt, offset);
27046     SimulateIOError( got = -1 );
27047 #elif defined(USE_PREAD64)
27048     got = osPread64(id->h, pBuf, cnt, offset);
27049     SimulateIOError( got = -1 );
27050 #else
27051     newOffset = lseek(id->h, offset, SEEK_SET);
27052     SimulateIOError( newOffset-- );
27053     if( newOffset!=offset ){
27054       if( newOffset == -1 ){
27055         ((unixFile*)id)->lastErrno = errno;
27056       }else{
27057         ((unixFile*)id)->lastErrno = 0;
27058       }
27059       return -1;
27060     }
27061     got = osRead(id->h, pBuf, cnt);
27062 #endif
27063     if( got==cnt ) break;
27064     if( got<0 ){
27065       if( errno==EINTR ){ got = 1; continue; }
27066       prior = 0;
27067       ((unixFile*)id)->lastErrno = errno;
27068       break;
27069     }else if( got>0 ){
27070       cnt -= got;
27071       offset += got;
27072       prior += got;
27073       pBuf = (void*)(got + (char*)pBuf);
27074     }
27075   }while( got>0 );
27076   TIMER_END;
27077   OSTRACE(("READ    %-3d %5d %7lld %llu\n",
27078             id->h, got+prior, offset-prior, TIMER_ELAPSED));
27079   return got+prior;
27080 }
27081 
27082 /*
27083 ** Read data from a file into a buffer.  Return SQLITE_OK if all
27084 ** bytes were read successfully and SQLITE_IOERR if anything goes
27085 ** wrong.
27086 */
27087 static int unixRead(
27088   sqlite3_file *id,
27089   void *pBuf,
27090   int amt,
27091   sqlite3_int64 offset
27092 ){
27093   unixFile *pFile = (unixFile *)id;
27094   int got;
27095   assert( id );
27096   assert( offset>=0 );
27097   assert( amt>0 );
27098 
27099   /* If this is a database file (not a journal, master-journal or temp
27100   ** file), the bytes in the locking range should never be read or written. */
27101 #if 0
27102   assert( pFile->pUnused==0
27103        || offset>=PENDING_BYTE+512
27104        || offset+amt<=PENDING_BYTE
27105   );
27106 #endif
27107 
27108 #if SQLITE_MAX_MMAP_SIZE>0
27109   /* Deal with as much of this read request as possible by transfering
27110   ** data from the memory mapping using memcpy().  */
27111   if( offset<pFile->mmapSize ){
27112     if( offset+amt <= pFile->mmapSize ){
27113       memcpy(pBuf, &((u8 *)(pFile->pMapRegion))[offset], amt);
27114       return SQLITE_OK;
27115     }else{
27116       int nCopy = pFile->mmapSize - offset;
27117       memcpy(pBuf, &((u8 *)(pFile->pMapRegion))[offset], nCopy);
27118       pBuf = &((u8 *)pBuf)[nCopy];
27119       amt -= nCopy;
27120       offset += nCopy;
27121     }
27122   }
27123 #endif
27124 
27125   got = seekAndRead(pFile, offset, pBuf, amt);
27126   if( got==amt ){
27127     return SQLITE_OK;
27128   }else if( got<0 ){
27129     /* lastErrno set by seekAndRead */
27130     return SQLITE_IOERR_READ;
27131   }else{
27132     pFile->lastErrno = 0; /* not a system error */
27133     /* Unread parts of the buffer must be zero-filled */
27134     memset(&((char*)pBuf)[got], 0, amt-got);
27135     return SQLITE_IOERR_SHORT_READ;
27136   }
27137 }
27138 
27139 /*
27140 ** Attempt to seek the file-descriptor passed as the first argument to
27141 ** absolute offset iOff, then attempt to write nBuf bytes of data from
27142 ** pBuf to it. If an error occurs, return -1 and set *piErrno. Otherwise,
27143 ** return the actual number of bytes written (which may be less than
27144 ** nBuf).
27145 */
27146 static int seekAndWriteFd(
27147   int fd,                         /* File descriptor to write to */
27148   i64 iOff,                       /* File offset to begin writing at */
27149   const void *pBuf,               /* Copy data from this buffer to the file */
27150   int nBuf,                       /* Size of buffer pBuf in bytes */
27151   int *piErrno                    /* OUT: Error number if error occurs */
27152 ){
27153   int rc = 0;                     /* Value returned by system call */
27154 
27155   assert( nBuf==(nBuf&0x1ffff) );
27156   assert( fd>2 );
27157   nBuf &= 0x1ffff;
27158   TIMER_START;
27159 
27160 #if defined(USE_PREAD)
27161   do{ rc = osPwrite(fd, pBuf, nBuf, iOff); }while( rc<0 && errno==EINTR );
27162 #elif defined(USE_PREAD64)
27163   do{ rc = osPwrite64(fd, pBuf, nBuf, iOff);}while( rc<0 && errno==EINTR);
27164 #else
27165   do{
27166     i64 iSeek = lseek(fd, iOff, SEEK_SET);
27167     SimulateIOError( iSeek-- );
27168 
27169     if( iSeek!=iOff ){
27170       if( piErrno ) *piErrno = (iSeek==-1 ? errno : 0);
27171       return -1;
27172     }
27173     rc = osWrite(fd, pBuf, nBuf);
27174   }while( rc<0 && errno==EINTR );
27175 #endif
27176 
27177   TIMER_END;
27178   OSTRACE(("WRITE   %-3d %5d %7lld %llu\n", fd, rc, iOff, TIMER_ELAPSED));
27179 
27180   if( rc<0 && piErrno ) *piErrno = errno;
27181   return rc;
27182 }
27183 
27184 
27185 /*
27186 ** Seek to the offset in id->offset then read cnt bytes into pBuf.
27187 ** Return the number of bytes actually read.  Update the offset.
27188 **
27189 ** To avoid stomping the errno value on a failed write the lastErrno value
27190 ** is set before returning.
27191 */
27192 static int seekAndWrite(unixFile *id, i64 offset, const void *pBuf, int cnt){
27193   return seekAndWriteFd(id->h, offset, pBuf, cnt, &id->lastErrno);
27194 }
27195 
27196 
27197 /*
27198 ** Write data from a buffer into a file.  Return SQLITE_OK on success
27199 ** or some other error code on failure.
27200 */
27201 static int unixWrite(
27202   sqlite3_file *id,
27203   const void *pBuf,
27204   int amt,
27205   sqlite3_int64 offset
27206 ){
27207   unixFile *pFile = (unixFile*)id;
27208   int wrote = 0;
27209   assert( id );
27210   assert( amt>0 );
27211 
27212   /* If this is a database file (not a journal, master-journal or temp
27213   ** file), the bytes in the locking range should never be read or written. */
27214 #if 0
27215   assert( pFile->pUnused==0
27216        || offset>=PENDING_BYTE+512
27217        || offset+amt<=PENDING_BYTE
27218   );
27219 #endif
27220 
27221 #ifdef SQLITE_DEBUG
27222   /* If we are doing a normal write to a database file (as opposed to
27223   ** doing a hot-journal rollback or a write to some file other than a
27224   ** normal database file) then record the fact that the database
27225   ** has changed.  If the transaction counter is modified, record that
27226   ** fact too.
27227   */
27228   if( pFile->inNormalWrite ){
27229     pFile->dbUpdate = 1;  /* The database has been modified */
27230     if( offset<=24 && offset+amt>=27 ){
27231       int rc;
27232       char oldCntr[4];
27233       SimulateIOErrorBenign(1);
27234       rc = seekAndRead(pFile, 24, oldCntr, 4);
27235       SimulateIOErrorBenign(0);
27236       if( rc!=4 || memcmp(oldCntr, &((char*)pBuf)[24-offset], 4)!=0 ){
27237         pFile->transCntrChng = 1;  /* The transaction counter has changed */
27238       }
27239     }
27240   }
27241 #endif
27242 
27243 #if SQLITE_MAX_MMAP_SIZE>0
27244   /* Deal with as much of this write request as possible by transfering
27245   ** data from the memory mapping using memcpy().  */
27246   if( offset<pFile->mmapSize ){
27247     if( offset+amt <= pFile->mmapSize ){
27248       memcpy(&((u8 *)(pFile->pMapRegion))[offset], pBuf, amt);
27249       return SQLITE_OK;
27250     }else{
27251       int nCopy = pFile->mmapSize - offset;
27252       memcpy(&((u8 *)(pFile->pMapRegion))[offset], pBuf, nCopy);
27253       pBuf = &((u8 *)pBuf)[nCopy];
27254       amt -= nCopy;
27255       offset += nCopy;
27256     }
27257   }
27258 #endif
27259 
27260   while( amt>0 && (wrote = seekAndWrite(pFile, offset, pBuf, amt))>0 ){
27261     amt -= wrote;
27262     offset += wrote;
27263     pBuf = &((char*)pBuf)[wrote];
27264   }
27265   SimulateIOError(( wrote=(-1), amt=1 ));
27266   SimulateDiskfullError(( wrote=0, amt=1 ));
27267 
27268   if( amt>0 ){
27269     if( wrote<0 && pFile->lastErrno!=ENOSPC ){
27270       /* lastErrno set by seekAndWrite */
27271       return SQLITE_IOERR_WRITE;
27272     }else{
27273       pFile->lastErrno = 0; /* not a system error */
27274       return SQLITE_FULL;
27275     }
27276   }
27277 
27278   return SQLITE_OK;
27279 }
27280 
27281 #ifdef SQLITE_TEST
27282 /*
27283 ** Count the number of fullsyncs and normal syncs.  This is used to test
27284 ** that syncs and fullsyncs are occurring at the right times.
27285 */
27286 SQLITE_API int sqlite3_sync_count = 0;
27287 SQLITE_API int sqlite3_fullsync_count = 0;
27288 #endif
27289 
27290 /*
27291 ** We do not trust systems to provide a working fdatasync().  Some do.
27292 ** Others do no.  To be safe, we will stick with the (slightly slower)
27293 ** fsync(). If you know that your system does support fdatasync() correctly,
27294 ** then simply compile with -Dfdatasync=fdatasync
27295 */
27296 #if !defined(fdatasync)
27297 # define fdatasync fsync
27298 #endif
27299 
27300 /*
27301 ** Define HAVE_FULLFSYNC to 0 or 1 depending on whether or not
27302 ** the F_FULLFSYNC macro is defined.  F_FULLFSYNC is currently
27303 ** only available on Mac OS X.  But that could change.
27304 */
27305 #ifdef F_FULLFSYNC
27306 # define HAVE_FULLFSYNC 1
27307 #else
27308 # define HAVE_FULLFSYNC 0
27309 #endif
27310 
27311 
27312 /*
27313 ** The fsync() system call does not work as advertised on many
27314 ** unix systems.  The following procedure is an attempt to make
27315 ** it work better.
27316 **
27317 ** The SQLITE_NO_SYNC macro disables all fsync()s.  This is useful
27318 ** for testing when we want to run through the test suite quickly.
27319 ** You are strongly advised *not* to deploy with SQLITE_NO_SYNC
27320 ** enabled, however, since with SQLITE_NO_SYNC enabled, an OS crash
27321 ** or power failure will likely corrupt the database file.
27322 **
27323 ** SQLite sets the dataOnly flag if the size of the file is unchanged.
27324 ** The idea behind dataOnly is that it should only write the file content
27325 ** to disk, not the inode.  We only set dataOnly if the file size is
27326 ** unchanged since the file size is part of the inode.  However,
27327 ** Ted Ts'o tells us that fdatasync() will also write the inode if the
27328 ** file size has changed.  The only real difference between fdatasync()
27329 ** and fsync(), Ted tells us, is that fdatasync() will not flush the
27330 ** inode if the mtime or owner or other inode attributes have changed.
27331 ** We only care about the file size, not the other file attributes, so
27332 ** as far as SQLite is concerned, an fdatasync() is always adequate.
27333 ** So, we always use fdatasync() if it is available, regardless of
27334 ** the value of the dataOnly flag.
27335 */
27336 static int full_fsync(int fd, int fullSync, int dataOnly){
27337   int rc;
27338 
27339   /* The following "ifdef/elif/else/" block has the same structure as
27340   ** the one below. It is replicated here solely to avoid cluttering
27341   ** up the real code with the UNUSED_PARAMETER() macros.
27342   */
27343 #ifdef SQLITE_NO_SYNC
27344   UNUSED_PARAMETER(fd);
27345   UNUSED_PARAMETER(fullSync);
27346   UNUSED_PARAMETER(dataOnly);
27347 #elif HAVE_FULLFSYNC
27348   UNUSED_PARAMETER(dataOnly);
27349 #else
27350   UNUSED_PARAMETER(fullSync);
27351   UNUSED_PARAMETER(dataOnly);
27352 #endif
27353 
27354   /* Record the number of times that we do a normal fsync() and
27355   ** FULLSYNC.  This is used during testing to verify that this procedure
27356   ** gets called with the correct arguments.
27357   */
27358 #ifdef SQLITE_TEST
27359   if( fullSync ) sqlite3_fullsync_count++;
27360   sqlite3_sync_count++;
27361 #endif
27362 
27363   /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a
27364   ** no-op
27365   */
27366 #ifdef SQLITE_NO_SYNC
27367   rc = SQLITE_OK;
27368 #elif HAVE_FULLFSYNC
27369   if( fullSync ){
27370     rc = osFcntl(fd, F_FULLFSYNC, 0);
27371   }else{
27372     rc = 1;
27373   }
27374   /* If the FULLFSYNC failed, fall back to attempting an fsync().
27375   ** It shouldn't be possible for fullfsync to fail on the local
27376   ** file system (on OSX), so failure indicates that FULLFSYNC
27377   ** isn't supported for this file system. So, attempt an fsync
27378   ** and (for now) ignore the overhead of a superfluous fcntl call.
27379   ** It'd be better to detect fullfsync support once and avoid
27380   ** the fcntl call every time sync is called.
27381   */
27382   if( rc ) rc = fsync(fd);
27383 
27384 #elif defined(__APPLE__)
27385   /* fdatasync() on HFS+ doesn't yet flush the file size if it changed correctly
27386   ** so currently we default to the macro that redefines fdatasync to fsync
27387   */
27388   rc = fsync(fd);
27389 #else
27390   rc = fdatasync(fd);
27391 #if OS_VXWORKS
27392   if( rc==-1 && errno==ENOTSUP ){
27393     rc = fsync(fd);
27394   }
27395 #endif /* OS_VXWORKS */
27396 #endif /* ifdef SQLITE_NO_SYNC elif HAVE_FULLFSYNC */
27397 
27398   if( OS_VXWORKS && rc!= -1 ){
27399     rc = 0;
27400   }
27401   return rc;
27402 }
27403 
27404 /*
27405 ** Open a file descriptor to the directory containing file zFilename.
27406 ** If successful, *pFd is set to the opened file descriptor and
27407 ** SQLITE_OK is returned. If an error occurs, either SQLITE_NOMEM
27408 ** or SQLITE_CANTOPEN is returned and *pFd is set to an undefined
27409 ** value.
27410 **
27411 ** The directory file descriptor is used for only one thing - to
27412 ** fsync() a directory to make sure file creation and deletion events
27413 ** are flushed to disk.  Such fsyncs are not needed on newer
27414 ** journaling filesystems, but are required on older filesystems.
27415 **
27416 ** This routine can be overridden using the xSetSysCall interface.
27417 ** The ability to override this routine was added in support of the
27418 ** chromium sandbox.  Opening a directory is a security risk (we are
27419 ** told) so making it overrideable allows the chromium sandbox to
27420 ** replace this routine with a harmless no-op.  To make this routine
27421 ** a no-op, replace it with a stub that returns SQLITE_OK but leaves
27422 ** *pFd set to a negative number.
27423 **
27424 ** If SQLITE_OK is returned, the caller is responsible for closing
27425 ** the file descriptor *pFd using close().
27426 */
27427 static int openDirectory(const char *zFilename, int *pFd){
27428   int ii;
27429   int fd = -1;
27430   char zDirname[MAX_PATHNAME+1];
27431 
27432   sqlite3_snprintf(MAX_PATHNAME, zDirname, "%s", zFilename);
27433   for(ii=(int)strlen(zDirname); ii>1 && zDirname[ii]!='/'; ii--);
27434   if( ii>0 ){
27435     zDirname[ii] = '\0';
27436     fd = robust_open(zDirname, O_RDONLY|O_BINARY, 0);
27437     if( fd>=0 ){
27438       OSTRACE(("OPENDIR %-3d %s\n", fd, zDirname));
27439     }
27440   }
27441   *pFd = fd;
27442   return (fd>=0?SQLITE_OK:unixLogError(SQLITE_CANTOPEN_BKPT, "open", zDirname));
27443 }
27444 
27445 /*
27446 ** Make sure all writes to a particular file are committed to disk.
27447 **
27448 ** If dataOnly==0 then both the file itself and its metadata (file
27449 ** size, access time, etc) are synced.  If dataOnly!=0 then only the
27450 ** file data is synced.
27451 **
27452 ** Under Unix, also make sure that the directory entry for the file
27453 ** has been created by fsync-ing the directory that contains the file.
27454 ** If we do not do this and we encounter a power failure, the directory
27455 ** entry for the journal might not exist after we reboot.  The next
27456 ** SQLite to access the file will not know that the journal exists (because
27457 ** the directory entry for the journal was never created) and the transaction
27458 ** will not roll back - possibly leading to database corruption.
27459 */
27460 static int unixSync(sqlite3_file *id, int flags){
27461   int rc;
27462   unixFile *pFile = (unixFile*)id;
27463 
27464   int isDataOnly = (flags&SQLITE_SYNC_DATAONLY);
27465   int isFullsync = (flags&0x0F)==SQLITE_SYNC_FULL;
27466 
27467   /* Check that one of SQLITE_SYNC_NORMAL or FULL was passed */
27468   assert((flags&0x0F)==SQLITE_SYNC_NORMAL
27469       || (flags&0x0F)==SQLITE_SYNC_FULL
27470   );
27471 
27472   /* Unix cannot, but some systems may return SQLITE_FULL from here. This
27473   ** line is to test that doing so does not cause any problems.
27474   */
27475   SimulateDiskfullError( return SQLITE_FULL );
27476 
27477   assert( pFile );
27478   OSTRACE(("SYNC    %-3d\n", pFile->h));
27479   rc = full_fsync(pFile->h, isFullsync, isDataOnly);
27480   SimulateIOError( rc=1 );
27481   if( rc ){
27482     pFile->lastErrno = errno;
27483     return unixLogError(SQLITE_IOERR_FSYNC, "full_fsync", pFile->zPath);
27484   }
27485 
27486   /* Also fsync the directory containing the file if the DIRSYNC flag
27487   ** is set.  This is a one-time occurrence.  Many systems (examples: AIX)
27488   ** are unable to fsync a directory, so ignore errors on the fsync.
27489   */
27490   if( pFile->ctrlFlags & UNIXFILE_DIRSYNC ){
27491     int dirfd;
27492     OSTRACE(("DIRSYNC %s (have_fullfsync=%d fullsync=%d)\n", pFile->zPath,
27493             HAVE_FULLFSYNC, isFullsync));
27494     rc = osOpenDirectory(pFile->zPath, &dirfd);
27495     if( rc==SQLITE_OK && dirfd>=0 ){
27496       full_fsync(dirfd, 0, 0);
27497       robust_close(pFile, dirfd, __LINE__);
27498     }else if( rc==SQLITE_CANTOPEN ){
27499       rc = SQLITE_OK;
27500     }
27501     pFile->ctrlFlags &= ~UNIXFILE_DIRSYNC;
27502   }
27503   return rc;
27504 }
27505 
27506 /*
27507 ** Truncate an open file to a specified size
27508 */
27509 static int unixTruncate(sqlite3_file *id, i64 nByte){
27510   unixFile *pFile = (unixFile *)id;
27511   int rc;
27512   assert( pFile );
27513   SimulateIOError( return SQLITE_IOERR_TRUNCATE );
27514 
27515   /* If the user has configured a chunk-size for this file, truncate the
27516   ** file so that it consists of an integer number of chunks (i.e. the
27517   ** actual file size after the operation may be larger than the requested
27518   ** size).
27519   */
27520   if( pFile->szChunk>0 ){
27521     nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk;
27522   }
27523 
27524   rc = robust_ftruncate(pFile->h, (off_t)nByte);
27525   if( rc ){
27526     pFile->lastErrno = errno;
27527     return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath);
27528   }else{
27529 #ifdef SQLITE_DEBUG
27530     /* If we are doing a normal write to a database file (as opposed to
27531     ** doing a hot-journal rollback or a write to some file other than a
27532     ** normal database file) and we truncate the file to zero length,
27533     ** that effectively updates the change counter.  This might happen
27534     ** when restoring a database using the backup API from a zero-length
27535     ** source.
27536     */
27537     if( pFile->inNormalWrite && nByte==0 ){
27538       pFile->transCntrChng = 1;
27539     }
27540 #endif
27541 
27542 #if SQLITE_MAX_MMAP_SIZE>0
27543     /* If the file was just truncated to a size smaller than the currently
27544     ** mapped region, reduce the effective mapping size as well. SQLite will
27545     ** use read() and write() to access data beyond this point from now on.
27546     */
27547     if( nByte<pFile->mmapSize ){
27548       pFile->mmapSize = nByte;
27549     }
27550 #endif
27551 
27552     return SQLITE_OK;
27553   }
27554 }
27555 
27556 /*
27557 ** Determine the current size of a file in bytes
27558 */
27559 static int unixFileSize(sqlite3_file *id, i64 *pSize){
27560   int rc;
27561   struct stat buf;
27562   assert( id );
27563   rc = osFstat(((unixFile*)id)->h, &buf);
27564   SimulateIOError( rc=1 );
27565   if( rc!=0 ){
27566     ((unixFile*)id)->lastErrno = errno;
27567     return SQLITE_IOERR_FSTAT;
27568   }
27569   *pSize = buf.st_size;
27570 
27571   /* When opening a zero-size database, the findInodeInfo() procedure
27572   ** writes a single byte into that file in order to work around a bug
27573   ** in the OS-X msdos filesystem.  In order to avoid problems with upper
27574   ** layers, we need to report this file size as zero even though it is
27575   ** really 1.   Ticket #3260.
27576   */
27577   if( *pSize==1 ) *pSize = 0;
27578 
27579 
27580   return SQLITE_OK;
27581 }
27582 
27583 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
27584 /*
27585 ** Handler for proxy-locking file-control verbs.  Defined below in the
27586 ** proxying locking division.
27587 */
27588 static int proxyFileControl(sqlite3_file*,int,void*);
27589 #endif
27590 
27591 /*
27592 ** This function is called to handle the SQLITE_FCNTL_SIZE_HINT
27593 ** file-control operation.  Enlarge the database to nBytes in size
27594 ** (rounded up to the next chunk-size).  If the database is already
27595 ** nBytes or larger, this routine is a no-op.
27596 */
27597 static int fcntlSizeHint(unixFile *pFile, i64 nByte){
27598   if( pFile->szChunk>0 ){
27599     i64 nSize;                    /* Required file size */
27600     struct stat buf;              /* Used to hold return values of fstat() */
27601 
27602     if( osFstat(pFile->h, &buf) ) return SQLITE_IOERR_FSTAT;
27603 
27604     nSize = ((nByte+pFile->szChunk-1) / pFile->szChunk) * pFile->szChunk;
27605     if( nSize>(i64)buf.st_size ){
27606 
27607 #if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE
27608       /* The code below is handling the return value of osFallocate()
27609       ** correctly. posix_fallocate() is defined to "returns zero on success,
27610       ** or an error number on  failure". See the manpage for details. */
27611       int err;
27612       do{
27613         err = osFallocate(pFile->h, buf.st_size, nSize-buf.st_size);
27614       }while( err==EINTR );
27615       if( err ) return SQLITE_IOERR_WRITE;
27616 #else
27617       /* If the OS does not have posix_fallocate(), fake it. First use
27618       ** ftruncate() to set the file size, then write a single byte to
27619       ** the last byte in each block within the extended region. This
27620       ** is the same technique used by glibc to implement posix_fallocate()
27621       ** on systems that do not have a real fallocate() system call.
27622       */
27623       int nBlk = buf.st_blksize;  /* File-system block size */
27624       i64 iWrite;                 /* Next offset to write to */
27625 
27626       if( robust_ftruncate(pFile->h, nSize) ){
27627         pFile->lastErrno = errno;
27628         return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath);
27629       }
27630       iWrite = ((buf.st_size + 2*nBlk - 1)/nBlk)*nBlk-1;
27631       while( iWrite<nSize ){
27632         int nWrite = seekAndWrite(pFile, iWrite, "", 1);
27633         if( nWrite!=1 ) return SQLITE_IOERR_WRITE;
27634         iWrite += nBlk;
27635       }
27636 #endif
27637     }
27638   }
27639 
27640 #if SQLITE_MAX_MMAP_SIZE>0
27641   if( pFile->mmapSizeMax>0 && nByte>pFile->mmapSize ){
27642     int rc;
27643     if( pFile->szChunk<=0 ){
27644       if( robust_ftruncate(pFile->h, nByte) ){
27645         pFile->lastErrno = errno;
27646         return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath);
27647       }
27648     }
27649 
27650     rc = unixMapfile(pFile, nByte);
27651     return rc;
27652   }
27653 #endif
27654 
27655   return SQLITE_OK;
27656 }
27657 
27658 /*
27659 ** If *pArg is inititially negative then this is a query.  Set *pArg to
27660 ** 1 or 0 depending on whether or not bit mask of pFile->ctrlFlags is set.
27661 **
27662 ** If *pArg is 0 or 1, then clear or set the mask bit of pFile->ctrlFlags.
27663 */
27664 static void unixModeBit(unixFile *pFile, unsigned char mask, int *pArg){
27665   if( *pArg<0 ){
27666     *pArg = (pFile->ctrlFlags & mask)!=0;
27667   }else if( (*pArg)==0 ){
27668     pFile->ctrlFlags &= ~mask;
27669   }else{
27670     pFile->ctrlFlags |= mask;
27671   }
27672 }
27673 
27674 /* Forward declaration */
27675 static int unixGetTempname(int nBuf, char *zBuf);
27676 
27677 /*
27678 ** Information and control of an open file handle.
27679 */
27680 static int unixFileControl(sqlite3_file *id, int op, void *pArg){
27681   unixFile *pFile = (unixFile*)id;
27682   switch( op ){
27683     case SQLITE_FCNTL_LOCKSTATE: {
27684       *(int*)pArg = pFile->eFileLock;
27685       return SQLITE_OK;
27686     }
27687     case SQLITE_LAST_ERRNO: {
27688       *(int*)pArg = pFile->lastErrno;
27689       return SQLITE_OK;
27690     }
27691     case SQLITE_FCNTL_CHUNK_SIZE: {
27692       pFile->szChunk = *(int *)pArg;
27693       return SQLITE_OK;
27694     }
27695     case SQLITE_FCNTL_SIZE_HINT: {
27696       int rc;
27697       SimulateIOErrorBenign(1);
27698       rc = fcntlSizeHint(pFile, *(i64 *)pArg);
27699       SimulateIOErrorBenign(0);
27700       return rc;
27701     }
27702     case SQLITE_FCNTL_PERSIST_WAL: {
27703       unixModeBit(pFile, UNIXFILE_PERSIST_WAL, (int*)pArg);
27704       return SQLITE_OK;
27705     }
27706     case SQLITE_FCNTL_POWERSAFE_OVERWRITE: {
27707       unixModeBit(pFile, UNIXFILE_PSOW, (int*)pArg);
27708       return SQLITE_OK;
27709     }
27710     case SQLITE_FCNTL_VFSNAME: {
27711       *(char**)pArg = sqlite3_mprintf("%s", pFile->pVfs->zName);
27712       return SQLITE_OK;
27713     }
27714     case SQLITE_FCNTL_TEMPFILENAME: {
27715       char *zTFile = sqlite3_malloc( pFile->pVfs->mxPathname );
27716       if( zTFile ){
27717         unixGetTempname(pFile->pVfs->mxPathname, zTFile);
27718         *(char**)pArg = zTFile;
27719       }
27720       return SQLITE_OK;
27721     }
27722     case SQLITE_FCNTL_HAS_MOVED: {
27723       *(int*)pArg = fileHasMoved(pFile);
27724       return SQLITE_OK;
27725     }
27726 #if SQLITE_MAX_MMAP_SIZE>0
27727     case SQLITE_FCNTL_MMAP_SIZE: {
27728       i64 newLimit = *(i64*)pArg;
27729       int rc = SQLITE_OK;
27730       if( newLimit>sqlite3GlobalConfig.mxMmap ){
27731         newLimit = sqlite3GlobalConfig.mxMmap;
27732       }
27733       *(i64*)pArg = pFile->mmapSizeMax;
27734       if( newLimit>=0 && newLimit!=pFile->mmapSizeMax && pFile->nFetchOut==0 ){
27735         pFile->mmapSizeMax = newLimit;
27736         if( pFile->mmapSize>0 ){
27737           unixUnmapfile(pFile);
27738           rc = unixMapfile(pFile, -1);
27739         }
27740       }
27741       return rc;
27742     }
27743 #endif
27744 #ifdef SQLITE_DEBUG
27745     /* The pager calls this method to signal that it has done
27746     ** a rollback and that the database is therefore unchanged and
27747     ** it hence it is OK for the transaction change counter to be
27748     ** unchanged.
27749     */
27750     case SQLITE_FCNTL_DB_UNCHANGED: {
27751       ((unixFile*)id)->dbUpdate = 0;
27752       return SQLITE_OK;
27753     }
27754 #endif
27755 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
27756     case SQLITE_SET_LOCKPROXYFILE:
27757     case SQLITE_GET_LOCKPROXYFILE: {
27758       return proxyFileControl(id,op,pArg);
27759     }
27760 #endif /* SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) */
27761   }
27762   return SQLITE_NOTFOUND;
27763 }
27764 
27765 /*
27766 ** Return the sector size in bytes of the underlying block device for
27767 ** the specified file. This is almost always 512 bytes, but may be
27768 ** larger for some devices.
27769 **
27770 ** SQLite code assumes this function cannot fail. It also assumes that
27771 ** if two files are created in the same file-system directory (i.e.
27772 ** a database and its journal file) that the sector size will be the
27773 ** same for both.
27774 */
27775 #ifndef __QNXNTO__
27776 static int unixSectorSize(sqlite3_file *NotUsed){
27777   UNUSED_PARAMETER(NotUsed);
27778   return SQLITE_DEFAULT_SECTOR_SIZE;
27779 }
27780 #endif
27781 
27782 /*
27783 ** The following version of unixSectorSize() is optimized for QNX.
27784 */
27785 #ifdef __QNXNTO__
27786 #include <sys/dcmd_blk.h>
27787 #include <sys/statvfs.h>
27788 static int unixSectorSize(sqlite3_file *id){
27789   unixFile *pFile = (unixFile*)id;
27790   if( pFile->sectorSize == 0 ){
27791     struct statvfs fsInfo;
27792 
27793     /* Set defaults for non-supported filesystems */
27794     pFile->sectorSize = SQLITE_DEFAULT_SECTOR_SIZE;
27795     pFile->deviceCharacteristics = 0;
27796     if( fstatvfs(pFile->h, &fsInfo) == -1 ) {
27797       return pFile->sectorSize;
27798     }
27799 
27800     if( !strcmp(fsInfo.f_basetype, "tmp") ) {
27801       pFile->sectorSize = fsInfo.f_bsize;
27802       pFile->deviceCharacteristics =
27803         SQLITE_IOCAP_ATOMIC4K |       /* All ram filesystem writes are atomic */
27804         SQLITE_IOCAP_SAFE_APPEND |    /* growing the file does not occur until
27805                                       ** the write succeeds */
27806         SQLITE_IOCAP_SEQUENTIAL |     /* The ram filesystem has no write behind
27807                                       ** so it is ordered */
27808         0;
27809     }else if( strstr(fsInfo.f_basetype, "etfs") ){
27810       pFile->sectorSize = fsInfo.f_bsize;
27811       pFile->deviceCharacteristics =
27812         /* etfs cluster size writes are atomic */
27813         (pFile->sectorSize / 512 * SQLITE_IOCAP_ATOMIC512) |
27814         SQLITE_IOCAP_SAFE_APPEND |    /* growing the file does not occur until
27815                                       ** the write succeeds */
27816         SQLITE_IOCAP_SEQUENTIAL |     /* The ram filesystem has no write behind
27817                                       ** so it is ordered */
27818         0;
27819     }else if( !strcmp(fsInfo.f_basetype, "qnx6") ){
27820       pFile->sectorSize = fsInfo.f_bsize;
27821       pFile->deviceCharacteristics =
27822         SQLITE_IOCAP_ATOMIC |         /* All filesystem writes are atomic */
27823         SQLITE_IOCAP_SAFE_APPEND |    /* growing the file does not occur until
27824                                       ** the write succeeds */
27825         SQLITE_IOCAP_SEQUENTIAL |     /* The ram filesystem has no write behind
27826                                       ** so it is ordered */
27827         0;
27828     }else if( !strcmp(fsInfo.f_basetype, "qnx4") ){
27829       pFile->sectorSize = fsInfo.f_bsize;
27830       pFile->deviceCharacteristics =
27831         /* full bitset of atomics from max sector size and smaller */
27832         ((pFile->sectorSize / 512 * SQLITE_IOCAP_ATOMIC512) << 1) - 2 |
27833         SQLITE_IOCAP_SEQUENTIAL |     /* The ram filesystem has no write behind
27834                                       ** so it is ordered */
27835         0;
27836     }else if( strstr(fsInfo.f_basetype, "dos") ){
27837       pFile->sectorSize = fsInfo.f_bsize;
27838       pFile->deviceCharacteristics =
27839         /* full bitset of atomics from max sector size and smaller */
27840         ((pFile->sectorSize / 512 * SQLITE_IOCAP_ATOMIC512) << 1) - 2 |
27841         SQLITE_IOCAP_SEQUENTIAL |     /* The ram filesystem has no write behind
27842                                       ** so it is ordered */
27843         0;
27844     }else{
27845       pFile->deviceCharacteristics =
27846         SQLITE_IOCAP_ATOMIC512 |      /* blocks are atomic */
27847         SQLITE_IOCAP_SAFE_APPEND |    /* growing the file does not occur until
27848                                       ** the write succeeds */
27849         0;
27850     }
27851   }
27852   /* Last chance verification.  If the sector size isn't a multiple of 512
27853   ** then it isn't valid.*/
27854   if( pFile->sectorSize % 512 != 0 ){
27855     pFile->deviceCharacteristics = 0;
27856     pFile->sectorSize = SQLITE_DEFAULT_SECTOR_SIZE;
27857   }
27858   return pFile->sectorSize;
27859 }
27860 #endif /* __QNXNTO__ */
27861 
27862 /*
27863 ** Return the device characteristics for the file.
27864 **
27865 ** This VFS is set up to return SQLITE_IOCAP_POWERSAFE_OVERWRITE by default.
27866 ** However, that choice is contraversial since technically the underlying
27867 ** file system does not always provide powersafe overwrites.  (In other
27868 ** words, after a power-loss event, parts of the file that were never
27869 ** written might end up being altered.)  However, non-PSOW behavior is very,
27870 ** very rare.  And asserting PSOW makes a large reduction in the amount
27871 ** of required I/O for journaling, since a lot of padding is eliminated.
27872 **  Hence, while POWERSAFE_OVERWRITE is on by default, there is a file-control
27873 ** available to turn it off and URI query parameter available to turn it off.
27874 */
27875 static int unixDeviceCharacteristics(sqlite3_file *id){
27876   unixFile *p = (unixFile*)id;
27877   int rc = 0;
27878 #ifdef __QNXNTO__
27879   if( p->sectorSize==0 ) unixSectorSize(id);
27880   rc = p->deviceCharacteristics;
27881 #endif
27882   if( p->ctrlFlags & UNIXFILE_PSOW ){
27883     rc |= SQLITE_IOCAP_POWERSAFE_OVERWRITE;
27884   }
27885   return rc;
27886 }
27887 
27888 #ifndef SQLITE_OMIT_WAL
27889 
27890 
27891 /*
27892 ** Object used to represent an shared memory buffer.
27893 **
27894 ** When multiple threads all reference the same wal-index, each thread
27895 ** has its own unixShm object, but they all point to a single instance
27896 ** of this unixShmNode object.  In other words, each wal-index is opened
27897 ** only once per process.
27898 **
27899 ** Each unixShmNode object is connected to a single unixInodeInfo object.
27900 ** We could coalesce this object into unixInodeInfo, but that would mean
27901 ** every open file that does not use shared memory (in other words, most
27902 ** open files) would have to carry around this extra information.  So
27903 ** the unixInodeInfo object contains a pointer to this unixShmNode object
27904 ** and the unixShmNode object is created only when needed.
27905 **
27906 ** unixMutexHeld() must be true when creating or destroying
27907 ** this object or while reading or writing the following fields:
27908 **
27909 **      nRef
27910 **
27911 ** The following fields are read-only after the object is created:
27912 **
27913 **      fid
27914 **      zFilename
27915 **
27916 ** Either unixShmNode.mutex must be held or unixShmNode.nRef==0 and
27917 ** unixMutexHeld() is true when reading or writing any other field
27918 ** in this structure.
27919 */
27920 struct unixShmNode {
27921   unixInodeInfo *pInode;     /* unixInodeInfo that owns this SHM node */
27922   sqlite3_mutex *mutex;      /* Mutex to access this object */
27923   char *zFilename;           /* Name of the mmapped file */
27924   int h;                     /* Open file descriptor */
27925   int szRegion;              /* Size of shared-memory regions */
27926   u16 nRegion;               /* Size of array apRegion */
27927   u8 isReadonly;             /* True if read-only */
27928   char **apRegion;           /* Array of mapped shared-memory regions */
27929   int nRef;                  /* Number of unixShm objects pointing to this */
27930   unixShm *pFirst;           /* All unixShm objects pointing to this */
27931 #ifdef SQLITE_DEBUG
27932   u8 exclMask;               /* Mask of exclusive locks held */
27933   u8 sharedMask;             /* Mask of shared locks held */
27934   u8 nextShmId;              /* Next available unixShm.id value */
27935 #endif
27936 };
27937 
27938 /*
27939 ** Structure used internally by this VFS to record the state of an
27940 ** open shared memory connection.
27941 **
27942 ** The following fields are initialized when this object is created and
27943 ** are read-only thereafter:
27944 **
27945 **    unixShm.pFile
27946 **    unixShm.id
27947 **
27948 ** All other fields are read/write.  The unixShm.pFile->mutex must be held
27949 ** while accessing any read/write fields.
27950 */
27951 struct unixShm {
27952   unixShmNode *pShmNode;     /* The underlying unixShmNode object */
27953   unixShm *pNext;            /* Next unixShm with the same unixShmNode */
27954   u8 hasMutex;               /* True if holding the unixShmNode mutex */
27955   u8 id;                     /* Id of this connection within its unixShmNode */
27956   u16 sharedMask;            /* Mask of shared locks held */
27957   u16 exclMask;              /* Mask of exclusive locks held */
27958 };
27959 
27960 /*
27961 ** Constants used for locking
27962 */
27963 #define UNIX_SHM_BASE   ((22+SQLITE_SHM_NLOCK)*4)         /* first lock byte */
27964 #define UNIX_SHM_DMS    (UNIX_SHM_BASE+SQLITE_SHM_NLOCK)  /* deadman switch */
27965 
27966 /*
27967 ** Apply posix advisory locks for all bytes from ofst through ofst+n-1.
27968 **
27969 ** Locks block if the mask is exactly UNIX_SHM_C and are non-blocking
27970 ** otherwise.
27971 */
27972 static int unixShmSystemLock(
27973   unixShmNode *pShmNode, /* Apply locks to this open shared-memory segment */
27974   int lockType,          /* F_UNLCK, F_RDLCK, or F_WRLCK */
27975   int ofst,              /* First byte of the locking range */
27976   int n                  /* Number of bytes to lock */
27977 ){
27978   struct flock f;       /* The posix advisory locking structure */
27979   int rc = SQLITE_OK;   /* Result code form fcntl() */
27980 
27981   /* Access to the unixShmNode object is serialized by the caller */
27982   assert( sqlite3_mutex_held(pShmNode->mutex) || pShmNode->nRef==0 );
27983 
27984   /* Shared locks never span more than one byte */
27985   assert( n==1 || lockType!=F_RDLCK );
27986 
27987   /* Locks are within range */
27988   assert( n>=1 && n<SQLITE_SHM_NLOCK );
27989 
27990   if( pShmNode->h>=0 ){
27991     /* Initialize the locking parameters */
27992     memset(&f, 0, sizeof(f));
27993     f.l_type = lockType;
27994     f.l_whence = SEEK_SET;
27995     f.l_start = ofst;
27996     f.l_len = n;
27997 
27998     rc = osFcntl(pShmNode->h, F_SETLK, &f);
27999     rc = (rc!=(-1)) ? SQLITE_OK : SQLITE_BUSY;
28000   }
28001 
28002   /* Update the global lock state and do debug tracing */
28003 #ifdef SQLITE_DEBUG
28004   { u16 mask;
28005   OSTRACE(("SHM-LOCK "));
28006   mask = ofst>31 ? 0xffff : (1<<(ofst+n)) - (1<<ofst);
28007   if( rc==SQLITE_OK ){
28008     if( lockType==F_UNLCK ){
28009       OSTRACE(("unlock %d ok", ofst));
28010       pShmNode->exclMask &= ~mask;
28011       pShmNode->sharedMask &= ~mask;
28012     }else if( lockType==F_RDLCK ){
28013       OSTRACE(("read-lock %d ok", ofst));
28014       pShmNode->exclMask &= ~mask;
28015       pShmNode->sharedMask |= mask;
28016     }else{
28017       assert( lockType==F_WRLCK );
28018       OSTRACE(("write-lock %d ok", ofst));
28019       pShmNode->exclMask |= mask;
28020       pShmNode->sharedMask &= ~mask;
28021     }
28022   }else{
28023     if( lockType==F_UNLCK ){
28024       OSTRACE(("unlock %d failed", ofst));
28025     }else if( lockType==F_RDLCK ){
28026       OSTRACE(("read-lock failed"));
28027     }else{
28028       assert( lockType==F_WRLCK );
28029       OSTRACE(("write-lock %d failed", ofst));
28030     }
28031   }
28032   OSTRACE((" - afterwards %03x,%03x\n",
28033            pShmNode->sharedMask, pShmNode->exclMask));
28034   }
28035 #endif
28036 
28037   return rc;
28038 }
28039 
28040 /*
28041 ** Return the system page size.
28042 **
28043 ** This function should not be called directly by other code in this file.
28044 ** Instead, it should be called via macro osGetpagesize().
28045 */
28046 static int unixGetpagesize(void){
28047 #if defined(_BSD_SOURCE)
28048   return getpagesize();
28049 #else
28050   return (int)sysconf(_SC_PAGESIZE);
28051 #endif
28052 }
28053 
28054 /*
28055 ** Return the minimum number of 32KB shm regions that should be mapped at
28056 ** a time, assuming that each mapping must be an integer multiple of the
28057 ** current system page-size.
28058 **
28059 ** Usually, this is 1. The exception seems to be systems that are configured
28060 ** to use 64KB pages - in this case each mapping must cover at least two
28061 ** shm regions.
28062 */
28063 static int unixShmRegionPerMap(void){
28064   int shmsz = 32*1024;            /* SHM region size */
28065   int pgsz = osGetpagesize();   /* System page size */
28066   assert( ((pgsz-1)&pgsz)==0 );   /* Page size must be a power of 2 */
28067   if( pgsz<shmsz ) return 1;
28068   return pgsz/shmsz;
28069 }
28070 
28071 /*
28072 ** Purge the unixShmNodeList list of all entries with unixShmNode.nRef==0.
28073 **
28074 ** This is not a VFS shared-memory method; it is a utility function called
28075 ** by VFS shared-memory methods.
28076 */
28077 static void unixShmPurge(unixFile *pFd){
28078   unixShmNode *p = pFd->pInode->pShmNode;
28079   assert( unixMutexHeld() );
28080   if( p && p->nRef==0 ){
28081     int nShmPerMap = unixShmRegionPerMap();
28082     int i;
28083     assert( p->pInode==pFd->pInode );
28084     sqlite3_mutex_free(p->mutex);
28085     for(i=0; i<p->nRegion; i+=nShmPerMap){
28086       if( p->h>=0 ){
28087         osMunmap(p->apRegion[i], p->szRegion);
28088       }else{
28089         sqlite3_free(p->apRegion[i]);
28090       }
28091     }
28092     sqlite3_free(p->apRegion);
28093     if( p->h>=0 ){
28094       robust_close(pFd, p->h, __LINE__);
28095       p->h = -1;
28096     }
28097     p->pInode->pShmNode = 0;
28098     sqlite3_free(p);
28099   }
28100 }
28101 
28102 /*
28103 ** Open a shared-memory area associated with open database file pDbFd.
28104 ** This particular implementation uses mmapped files.
28105 **
28106 ** The file used to implement shared-memory is in the same directory
28107 ** as the open database file and has the same name as the open database
28108 ** file with the "-shm" suffix added.  For example, if the database file
28109 ** is "/home/user1/config.db" then the file that is created and mmapped
28110 ** for shared memory will be called "/home/user1/config.db-shm".
28111 **
28112 ** Another approach to is to use files in /dev/shm or /dev/tmp or an
28113 ** some other tmpfs mount. But if a file in a different directory
28114 ** from the database file is used, then differing access permissions
28115 ** or a chroot() might cause two different processes on the same
28116 ** database to end up using different files for shared memory -
28117 ** meaning that their memory would not really be shared - resulting
28118 ** in database corruption.  Nevertheless, this tmpfs file usage
28119 ** can be enabled at compile-time using -DSQLITE_SHM_DIRECTORY="/dev/shm"
28120 ** or the equivalent.  The use of the SQLITE_SHM_DIRECTORY compile-time
28121 ** option results in an incompatible build of SQLite;  builds of SQLite
28122 ** that with differing SQLITE_SHM_DIRECTORY settings attempt to use the
28123 ** same database file at the same time, database corruption will likely
28124 ** result. The SQLITE_SHM_DIRECTORY compile-time option is considered
28125 ** "unsupported" and may go away in a future SQLite release.
28126 **
28127 ** When opening a new shared-memory file, if no other instances of that
28128 ** file are currently open, in this process or in other processes, then
28129 ** the file must be truncated to zero length or have its header cleared.
28130 **
28131 ** If the original database file (pDbFd) is using the "unix-excl" VFS
28132 ** that means that an exclusive lock is held on the database file and
28133 ** that no other processes are able to read or write the database.  In
28134 ** that case, we do not really need shared memory.  No shared memory
28135 ** file is created.  The shared memory will be simulated with heap memory.
28136 */
28137 static int unixOpenSharedMemory(unixFile *pDbFd){
28138   struct unixShm *p = 0;          /* The connection to be opened */
28139   struct unixShmNode *pShmNode;   /* The underlying mmapped file */
28140   int rc;                         /* Result code */
28141   unixInodeInfo *pInode;          /* The inode of fd */
28142   char *zShmFilename;             /* Name of the file used for SHM */
28143   int nShmFilename;               /* Size of the SHM filename in bytes */
28144 
28145   /* Allocate space for the new unixShm object. */
28146   p = sqlite3_malloc( sizeof(*p) );
28147   if( p==0 ) return SQLITE_NOMEM;
28148   memset(p, 0, sizeof(*p));
28149   assert( pDbFd->pShm==0 );
28150 
28151   /* Check to see if a unixShmNode object already exists. Reuse an existing
28152   ** one if present. Create a new one if necessary.
28153   */
28154   unixEnterMutex();
28155   pInode = pDbFd->pInode;
28156   pShmNode = pInode->pShmNode;
28157   if( pShmNode==0 ){
28158     struct stat sStat;                 /* fstat() info for database file */
28159 
28160     /* Call fstat() to figure out the permissions on the database file. If
28161     ** a new *-shm file is created, an attempt will be made to create it
28162     ** with the same permissions.
28163     */
28164     if( osFstat(pDbFd->h, &sStat) && pInode->bProcessLock==0 ){
28165       rc = SQLITE_IOERR_FSTAT;
28166       goto shm_open_err;
28167     }
28168 
28169 #ifdef SQLITE_SHM_DIRECTORY
28170     nShmFilename = sizeof(SQLITE_SHM_DIRECTORY) + 31;
28171 #else
28172     nShmFilename = 6 + (int)strlen(pDbFd->zPath);
28173 #endif
28174     pShmNode = sqlite3_malloc( sizeof(*pShmNode) + nShmFilename );
28175     if( pShmNode==0 ){
28176       rc = SQLITE_NOMEM;
28177       goto shm_open_err;
28178     }
28179     memset(pShmNode, 0, sizeof(*pShmNode)+nShmFilename);
28180     zShmFilename = pShmNode->zFilename = (char*)&pShmNode[1];
28181 #ifdef SQLITE_SHM_DIRECTORY
28182     sqlite3_snprintf(nShmFilename, zShmFilename,
28183                      SQLITE_SHM_DIRECTORY "/sqlite-shm-%x-%x",
28184                      (u32)sStat.st_ino, (u32)sStat.st_dev);
28185 #else
28186     sqlite3_snprintf(nShmFilename, zShmFilename, "%s-shm", pDbFd->zPath);
28187     sqlite3FileSuffix3(pDbFd->zPath, zShmFilename);
28188 #endif
28189     pShmNode->h = -1;
28190     pDbFd->pInode->pShmNode = pShmNode;
28191     pShmNode->pInode = pDbFd->pInode;
28192     pShmNode->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST);
28193     if( pShmNode->mutex==0 ){
28194       rc = SQLITE_NOMEM;
28195       goto shm_open_err;
28196     }
28197 
28198     if( pInode->bProcessLock==0 ){
28199       int openFlags = O_RDWR | O_CREAT;
28200       if( sqlite3_uri_boolean(pDbFd->zPath, "readonly_shm", 0) ){
28201         openFlags = O_RDONLY;
28202         pShmNode->isReadonly = 1;
28203       }
28204       pShmNode->h = robust_open(zShmFilename, openFlags, (sStat.st_mode&0777));
28205       if( pShmNode->h<0 ){
28206         rc = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zShmFilename);
28207         goto shm_open_err;
28208       }
28209 
28210       /* If this process is running as root, make sure that the SHM file
28211       ** is owned by the same user that owns the original database.  Otherwise,
28212       ** the original owner will not be able to connect.
28213       */
28214       osFchown(pShmNode->h, sStat.st_uid, sStat.st_gid);
28215 
28216       /* Check to see if another process is holding the dead-man switch.
28217       ** If not, truncate the file to zero length.
28218       */
28219       rc = SQLITE_OK;
28220       if( unixShmSystemLock(pShmNode, F_WRLCK, UNIX_SHM_DMS, 1)==SQLITE_OK ){
28221         if( robust_ftruncate(pShmNode->h, 0) ){
28222           rc = unixLogError(SQLITE_IOERR_SHMOPEN, "ftruncate", zShmFilename);
28223         }
28224       }
28225       if( rc==SQLITE_OK ){
28226         rc = unixShmSystemLock(pShmNode, F_RDLCK, UNIX_SHM_DMS, 1);
28227       }
28228       if( rc ) goto shm_open_err;
28229     }
28230   }
28231 
28232   /* Make the new connection a child of the unixShmNode */
28233   p->pShmNode = pShmNode;
28234 #ifdef SQLITE_DEBUG
28235   p->id = pShmNode->nextShmId++;
28236 #endif
28237   pShmNode->nRef++;
28238   pDbFd->pShm = p;
28239   unixLeaveMutex();
28240 
28241   /* The reference count on pShmNode has already been incremented under
28242   ** the cover of the unixEnterMutex() mutex and the pointer from the
28243   ** new (struct unixShm) object to the pShmNode has been set. All that is
28244   ** left to do is to link the new object into the linked list starting
28245   ** at pShmNode->pFirst. This must be done while holding the pShmNode->mutex
28246   ** mutex.
28247   */
28248   sqlite3_mutex_enter(pShmNode->mutex);
28249   p->pNext = pShmNode->pFirst;
28250   pShmNode->pFirst = p;
28251   sqlite3_mutex_leave(pShmNode->mutex);
28252   return SQLITE_OK;
28253 
28254   /* Jump here on any error */
28255 shm_open_err:
28256   unixShmPurge(pDbFd);       /* This call frees pShmNode if required */
28257   sqlite3_free(p);
28258   unixLeaveMutex();
28259   return rc;
28260 }
28261 
28262 /*
28263 ** This function is called to obtain a pointer to region iRegion of the
28264 ** shared-memory associated with the database file fd. Shared-memory regions
28265 ** are numbered starting from zero. Each shared-memory region is szRegion
28266 ** bytes in size.
28267 **
28268 ** If an error occurs, an error code is returned and *pp is set to NULL.
28269 **
28270 ** Otherwise, if the bExtend parameter is 0 and the requested shared-memory
28271 ** region has not been allocated (by any client, including one running in a
28272 ** separate process), then *pp is set to NULL and SQLITE_OK returned. If
28273 ** bExtend is non-zero and the requested shared-memory region has not yet
28274 ** been allocated, it is allocated by this function.
28275 **
28276 ** If the shared-memory region has already been allocated or is allocated by
28277 ** this call as described above, then it is mapped into this processes
28278 ** address space (if it is not already), *pp is set to point to the mapped
28279 ** memory and SQLITE_OK returned.
28280 */
28281 static int unixShmMap(
28282   sqlite3_file *fd,               /* Handle open on database file */
28283   int iRegion,                    /* Region to retrieve */
28284   int szRegion,                   /* Size of regions */
28285   int bExtend,                    /* True to extend file if necessary */
28286   void volatile **pp              /* OUT: Mapped memory */
28287 ){
28288   unixFile *pDbFd = (unixFile*)fd;
28289   unixShm *p;
28290   unixShmNode *pShmNode;
28291   int rc = SQLITE_OK;
28292   int nShmPerMap = unixShmRegionPerMap();
28293   int nReqRegion;
28294 
28295   /* If the shared-memory file has not yet been opened, open it now. */
28296   if( pDbFd->pShm==0 ){
28297     rc = unixOpenSharedMemory(pDbFd);
28298     if( rc!=SQLITE_OK ) return rc;
28299   }
28300 
28301   p = pDbFd->pShm;
28302   pShmNode = p->pShmNode;
28303   sqlite3_mutex_enter(pShmNode->mutex);
28304   assert( szRegion==pShmNode->szRegion || pShmNode->nRegion==0 );
28305   assert( pShmNode->pInode==pDbFd->pInode );
28306   assert( pShmNode->h>=0 || pDbFd->pInode->bProcessLock==1 );
28307   assert( pShmNode->h<0 || pDbFd->pInode->bProcessLock==0 );
28308 
28309   /* Minimum number of regions required to be mapped. */
28310   nReqRegion = ((iRegion+nShmPerMap) / nShmPerMap) * nShmPerMap;
28311 
28312   if( pShmNode->nRegion<nReqRegion ){
28313     char **apNew;                      /* New apRegion[] array */
28314     int nByte = nReqRegion*szRegion;   /* Minimum required file size */
28315     struct stat sStat;                 /* Used by fstat() */
28316 
28317     pShmNode->szRegion = szRegion;
28318 
28319     if( pShmNode->h>=0 ){
28320       /* The requested region is not mapped into this processes address space.
28321       ** Check to see if it has been allocated (i.e. if the wal-index file is
28322       ** large enough to contain the requested region).
28323       */
28324       if( osFstat(pShmNode->h, &sStat) ){
28325         rc = SQLITE_IOERR_SHMSIZE;
28326         goto shmpage_out;
28327       }
28328 
28329       if( sStat.st_size<nByte ){
28330         /* The requested memory region does not exist. If bExtend is set to
28331         ** false, exit early. *pp will be set to NULL and SQLITE_OK returned.
28332         */
28333         if( !bExtend ){
28334           goto shmpage_out;
28335         }
28336 
28337         /* Alternatively, if bExtend is true, extend the file. Do this by
28338         ** writing a single byte to the end of each (OS) page being
28339         ** allocated or extended. Technically, we need only write to the
28340         ** last page in order to extend the file. But writing to all new
28341         ** pages forces the OS to allocate them immediately, which reduces
28342         ** the chances of SIGBUS while accessing the mapped region later on.
28343         */
28344         else{
28345           static const int pgsz = 4096;
28346           int iPg;
28347 
28348           /* Write to the last byte of each newly allocated or extended page */
28349           assert( (nByte % pgsz)==0 );
28350           for(iPg=(sStat.st_size/pgsz); iPg<(nByte/pgsz); iPg++){
28351             if( seekAndWriteFd(pShmNode->h, iPg*pgsz + pgsz-1, "", 1, 0)!=1 ){
28352               const char *zFile = pShmNode->zFilename;
28353               rc = unixLogError(SQLITE_IOERR_SHMSIZE, "write", zFile);
28354               goto shmpage_out;
28355             }
28356           }
28357         }
28358       }
28359     }
28360 
28361     /* Map the requested memory region into this processes address space. */
28362     apNew = (char **)sqlite3_realloc(
28363         pShmNode->apRegion, nReqRegion*sizeof(char *)
28364     );
28365     if( !apNew ){
28366       rc = SQLITE_IOERR_NOMEM;
28367       goto shmpage_out;
28368     }
28369     pShmNode->apRegion = apNew;
28370     while( pShmNode->nRegion<nReqRegion ){
28371       int nMap = szRegion*nShmPerMap;
28372       int i;
28373       void *pMem;
28374       if( pShmNode->h>=0 ){
28375         pMem = osMmap(0, nMap,
28376             pShmNode->isReadonly ? PROT_READ : PROT_READ|PROT_WRITE,
28377             MAP_SHARED, pShmNode->h, szRegion*(i64)pShmNode->nRegion
28378         );
28379         if( pMem==MAP_FAILED ){
28380           rc = unixLogError(SQLITE_IOERR_SHMMAP, "mmap", pShmNode->zFilename);
28381           goto shmpage_out;
28382         }
28383       }else{
28384         pMem = sqlite3_malloc(szRegion);
28385         if( pMem==0 ){
28386           rc = SQLITE_NOMEM;
28387           goto shmpage_out;
28388         }
28389         memset(pMem, 0, szRegion);
28390       }
28391 
28392       for(i=0; i<nShmPerMap; i++){
28393         pShmNode->apRegion[pShmNode->nRegion+i] = &((char*)pMem)[szRegion*i];
28394       }
28395       pShmNode->nRegion += nShmPerMap;
28396     }
28397   }
28398 
28399 shmpage_out:
28400   if( pShmNode->nRegion>iRegion ){
28401     *pp = pShmNode->apRegion[iRegion];
28402   }else{
28403     *pp = 0;
28404   }
28405   if( pShmNode->isReadonly && rc==SQLITE_OK ) rc = SQLITE_READONLY;
28406   sqlite3_mutex_leave(pShmNode->mutex);
28407   return rc;
28408 }
28409 
28410 /*
28411 ** Change the lock state for a shared-memory segment.
28412 **
28413 ** Note that the relationship between SHAREd and EXCLUSIVE locks is a little
28414 ** different here than in posix.  In xShmLock(), one can go from unlocked
28415 ** to shared and back or from unlocked to exclusive and back.  But one may
28416 ** not go from shared to exclusive or from exclusive to shared.
28417 */
28418 static int unixShmLock(
28419   sqlite3_file *fd,          /* Database file holding the shared memory */
28420   int ofst,                  /* First lock to acquire or release */
28421   int n,                     /* Number of locks to acquire or release */
28422   int flags                  /* What to do with the lock */
28423 ){
28424   unixFile *pDbFd = (unixFile*)fd;      /* Connection holding shared memory */
28425   unixShm *p = pDbFd->pShm;             /* The shared memory being locked */
28426   unixShm *pX;                          /* For looping over all siblings */
28427   unixShmNode *pShmNode = p->pShmNode;  /* The underlying file iNode */
28428   int rc = SQLITE_OK;                   /* Result code */
28429   u16 mask;                             /* Mask of locks to take or release */
28430 
28431   assert( pShmNode==pDbFd->pInode->pShmNode );
28432   assert( pShmNode->pInode==pDbFd->pInode );
28433   assert( ofst>=0 && ofst+n<=SQLITE_SHM_NLOCK );
28434   assert( n>=1 );
28435   assert( flags==(SQLITE_SHM_LOCK | SQLITE_SHM_SHARED)
28436        || flags==(SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE)
28437        || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED)
28438        || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE) );
28439   assert( n==1 || (flags & SQLITE_SHM_EXCLUSIVE)!=0 );
28440   assert( pShmNode->h>=0 || pDbFd->pInode->bProcessLock==1 );
28441   assert( pShmNode->h<0 || pDbFd->pInode->bProcessLock==0 );
28442 
28443   mask = (1<<(ofst+n)) - (1<<ofst);
28444   assert( n>1 || mask==(1<<ofst) );
28445   sqlite3_mutex_enter(pShmNode->mutex);
28446   if( flags & SQLITE_SHM_UNLOCK ){
28447     u16 allMask = 0; /* Mask of locks held by siblings */
28448 
28449     /* See if any siblings hold this same lock */
28450     for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
28451       if( pX==p ) continue;
28452       assert( (pX->exclMask & (p->exclMask|p->sharedMask))==0 );
28453       allMask |= pX->sharedMask;
28454     }
28455 
28456     /* Unlock the system-level locks */
28457     if( (mask & allMask)==0 ){
28458       rc = unixShmSystemLock(pShmNode, F_UNLCK, ofst+UNIX_SHM_BASE, n);
28459     }else{
28460       rc = SQLITE_OK;
28461     }
28462 
28463     /* Undo the local locks */
28464     if( rc==SQLITE_OK ){
28465       p->exclMask &= ~mask;
28466       p->sharedMask &= ~mask;
28467     }
28468   }else if( flags & SQLITE_SHM_SHARED ){
28469     u16 allShared = 0;  /* Union of locks held by connections other than "p" */
28470 
28471     /* Find out which shared locks are already held by sibling connections.
28472     ** If any sibling already holds an exclusive lock, go ahead and return
28473     ** SQLITE_BUSY.
28474     */
28475     for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
28476       if( (pX->exclMask & mask)!=0 ){
28477         rc = SQLITE_BUSY;
28478         break;
28479       }
28480       allShared |= pX->sharedMask;
28481     }
28482 
28483     /* Get shared locks at the system level, if necessary */
28484     if( rc==SQLITE_OK ){
28485       if( (allShared & mask)==0 ){
28486         rc = unixShmSystemLock(pShmNode, F_RDLCK, ofst+UNIX_SHM_BASE, n);
28487       }else{
28488         rc = SQLITE_OK;
28489       }
28490     }
28491 
28492     /* Get the local shared locks */
28493     if( rc==SQLITE_OK ){
28494       p->sharedMask |= mask;
28495     }
28496   }else{
28497     /* Make sure no sibling connections hold locks that will block this
28498     ** lock.  If any do, return SQLITE_BUSY right away.
28499     */
28500     for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
28501       if( (pX->exclMask & mask)!=0 || (pX->sharedMask & mask)!=0 ){
28502         rc = SQLITE_BUSY;
28503         break;
28504       }
28505     }
28506 
28507     /* Get the exclusive locks at the system level.  Then if successful
28508     ** also mark the local connection as being locked.
28509     */
28510     if( rc==SQLITE_OK ){
28511       rc = unixShmSystemLock(pShmNode, F_WRLCK, ofst+UNIX_SHM_BASE, n);
28512       if( rc==SQLITE_OK ){
28513         assert( (p->sharedMask & mask)==0 );
28514         p->exclMask |= mask;
28515       }
28516     }
28517   }
28518   sqlite3_mutex_leave(pShmNode->mutex);
28519   OSTRACE(("SHM-LOCK shmid-%d, pid-%d got %03x,%03x\n",
28520            p->id, getpid(), p->sharedMask, p->exclMask));
28521   return rc;
28522 }
28523 
28524 /*
28525 ** Implement a memory barrier or memory fence on shared memory.
28526 **
28527 ** All loads and stores begun before the barrier must complete before
28528 ** any load or store begun after the barrier.
28529 */
28530 static void unixShmBarrier(
28531   sqlite3_file *fd                /* Database file holding the shared memory */
28532 ){
28533   UNUSED_PARAMETER(fd);
28534   unixEnterMutex();
28535   unixLeaveMutex();
28536 }
28537 
28538 /*
28539 ** Close a connection to shared-memory.  Delete the underlying
28540 ** storage if deleteFlag is true.
28541 **
28542 ** If there is no shared memory associated with the connection then this
28543 ** routine is a harmless no-op.
28544 */
28545 static int unixShmUnmap(
28546   sqlite3_file *fd,               /* The underlying database file */
28547   int deleteFlag                  /* Delete shared-memory if true */
28548 ){
28549   unixShm *p;                     /* The connection to be closed */
28550   unixShmNode *pShmNode;          /* The underlying shared-memory file */
28551   unixShm **pp;                   /* For looping over sibling connections */
28552   unixFile *pDbFd;                /* The underlying database file */
28553 
28554   pDbFd = (unixFile*)fd;
28555   p = pDbFd->pShm;
28556   if( p==0 ) return SQLITE_OK;
28557   pShmNode = p->pShmNode;
28558 
28559   assert( pShmNode==pDbFd->pInode->pShmNode );
28560   assert( pShmNode->pInode==pDbFd->pInode );
28561 
28562   /* Remove connection p from the set of connections associated
28563   ** with pShmNode */
28564   sqlite3_mutex_enter(pShmNode->mutex);
28565   for(pp=&pShmNode->pFirst; (*pp)!=p; pp = &(*pp)->pNext){}
28566   *pp = p->pNext;
28567 
28568   /* Free the connection p */
28569   sqlite3_free(p);
28570   pDbFd->pShm = 0;
28571   sqlite3_mutex_leave(pShmNode->mutex);
28572 
28573   /* If pShmNode->nRef has reached 0, then close the underlying
28574   ** shared-memory file, too */
28575   unixEnterMutex();
28576   assert( pShmNode->nRef>0 );
28577   pShmNode->nRef--;
28578   if( pShmNode->nRef==0 ){
28579     if( deleteFlag && pShmNode->h>=0 ) osUnlink(pShmNode->zFilename);
28580     unixShmPurge(pDbFd);
28581   }
28582   unixLeaveMutex();
28583 
28584   return SQLITE_OK;
28585 }
28586 
28587 
28588 #else
28589 # define unixShmMap     0
28590 # define unixShmLock    0
28591 # define unixShmBarrier 0
28592 # define unixShmUnmap   0
28593 #endif /* #ifndef SQLITE_OMIT_WAL */
28594 
28595 #if SQLITE_MAX_MMAP_SIZE>0
28596 /*
28597 ** If it is currently memory mapped, unmap file pFd.
28598 */
28599 static void unixUnmapfile(unixFile *pFd){
28600   assert( pFd->nFetchOut==0 );
28601   if( pFd->pMapRegion ){
28602     osMunmap(pFd->pMapRegion, pFd->mmapSizeActual);
28603     pFd->pMapRegion = 0;
28604     pFd->mmapSize = 0;
28605     pFd->mmapSizeActual = 0;
28606   }
28607 }
28608 
28609 /*
28610 ** Attempt to set the size of the memory mapping maintained by file
28611 ** descriptor pFd to nNew bytes. Any existing mapping is discarded.
28612 **
28613 ** If successful, this function sets the following variables:
28614 **
28615 **       unixFile.pMapRegion
28616 **       unixFile.mmapSize
28617 **       unixFile.mmapSizeActual
28618 **
28619 ** If unsuccessful, an error message is logged via sqlite3_log() and
28620 ** the three variables above are zeroed. In this case SQLite should
28621 ** continue accessing the database using the xRead() and xWrite()
28622 ** methods.
28623 */
28624 static void unixRemapfile(
28625   unixFile *pFd,                  /* File descriptor object */
28626   i64 nNew                        /* Required mapping size */
28627 ){
28628   const char *zErr = "mmap";
28629   int h = pFd->h;                      /* File descriptor open on db file */
28630   u8 *pOrig = (u8 *)pFd->pMapRegion;   /* Pointer to current file mapping */
28631   i64 nOrig = pFd->mmapSizeActual;     /* Size of pOrig region in bytes */
28632   u8 *pNew = 0;                        /* Location of new mapping */
28633   int flags = PROT_READ;               /* Flags to pass to mmap() */
28634 
28635   assert( pFd->nFetchOut==0 );
28636   assert( nNew>pFd->mmapSize );
28637   assert( nNew<=pFd->mmapSizeMax );
28638   assert( nNew>0 );
28639   assert( pFd->mmapSizeActual>=pFd->mmapSize );
28640   assert( MAP_FAILED!=0 );
28641 
28642   if( (pFd->ctrlFlags & UNIXFILE_RDONLY)==0 ) flags |= PROT_WRITE;
28643 
28644   if( pOrig ){
28645 #if HAVE_MREMAP
28646     i64 nReuse = pFd->mmapSize;
28647 #else
28648     const int szSyspage = osGetpagesize();
28649     i64 nReuse = (pFd->mmapSize & ~(szSyspage-1));
28650 #endif
28651     u8 *pReq = &pOrig[nReuse];
28652 
28653     /* Unmap any pages of the existing mapping that cannot be reused. */
28654     if( nReuse!=nOrig ){
28655       osMunmap(pReq, nOrig-nReuse);
28656     }
28657 
28658 #if HAVE_MREMAP
28659     pNew = osMremap(pOrig, nReuse, nNew, MREMAP_MAYMOVE);
28660     zErr = "mremap";
28661 #else
28662     pNew = osMmap(pReq, nNew-nReuse, flags, MAP_SHARED, h, nReuse);
28663     if( pNew!=MAP_FAILED ){
28664       if( pNew!=pReq ){
28665         osMunmap(pNew, nNew - nReuse);
28666         pNew = 0;
28667       }else{
28668         pNew = pOrig;
28669       }
28670     }
28671 #endif
28672 
28673     /* The attempt to extend the existing mapping failed. Free it. */
28674     if( pNew==MAP_FAILED || pNew==0 ){
28675       osMunmap(pOrig, nReuse);
28676     }
28677   }
28678 
28679   /* If pNew is still NULL, try to create an entirely new mapping. */
28680   if( pNew==0 ){
28681     pNew = osMmap(0, nNew, flags, MAP_SHARED, h, 0);
28682   }
28683 
28684   if( pNew==MAP_FAILED ){
28685     pNew = 0;
28686     nNew = 0;
28687     unixLogError(SQLITE_OK, zErr, pFd->zPath);
28688 
28689     /* If the mmap() above failed, assume that all subsequent mmap() calls
28690     ** will probably fail too. Fall back to using xRead/xWrite exclusively
28691     ** in this case.  */
28692     pFd->mmapSizeMax = 0;
28693   }
28694   pFd->pMapRegion = (void *)pNew;
28695   pFd->mmapSize = pFd->mmapSizeActual = nNew;
28696 }
28697 
28698 /*
28699 ** Memory map or remap the file opened by file-descriptor pFd (if the file
28700 ** is already mapped, the existing mapping is replaced by the new). Or, if
28701 ** there already exists a mapping for this file, and there are still
28702 ** outstanding xFetch() references to it, this function is a no-op.
28703 **
28704 ** If parameter nByte is non-negative, then it is the requested size of
28705 ** the mapping to create. Otherwise, if nByte is less than zero, then the
28706 ** requested size is the size of the file on disk. The actual size of the
28707 ** created mapping is either the requested size or the value configured
28708 ** using SQLITE_FCNTL_MMAP_LIMIT, whichever is smaller.
28709 **
28710 ** SQLITE_OK is returned if no error occurs (even if the mapping is not
28711 ** recreated as a result of outstanding references) or an SQLite error
28712 ** code otherwise.
28713 */
28714 static int unixMapfile(unixFile *pFd, i64 nByte){
28715   i64 nMap = nByte;
28716   int rc;
28717 
28718   assert( nMap>=0 || pFd->nFetchOut==0 );
28719   if( pFd->nFetchOut>0 ) return SQLITE_OK;
28720 
28721   if( nMap<0 ){
28722     struct stat statbuf;          /* Low-level file information */
28723     rc = osFstat(pFd->h, &statbuf);
28724     if( rc!=SQLITE_OK ){
28725       return SQLITE_IOERR_FSTAT;
28726     }
28727     nMap = statbuf.st_size;
28728   }
28729   if( nMap>pFd->mmapSizeMax ){
28730     nMap = pFd->mmapSizeMax;
28731   }
28732 
28733   if( nMap!=pFd->mmapSize ){
28734     if( nMap>0 ){
28735       unixRemapfile(pFd, nMap);
28736     }else{
28737       unixUnmapfile(pFd);
28738     }
28739   }
28740 
28741   return SQLITE_OK;
28742 }
28743 #endif /* SQLITE_MAX_MMAP_SIZE>0 */
28744 
28745 /*
28746 ** If possible, return a pointer to a mapping of file fd starting at offset
28747 ** iOff. The mapping must be valid for at least nAmt bytes.
28748 **
28749 ** If such a pointer can be obtained, store it in *pp and return SQLITE_OK.
28750 ** Or, if one cannot but no error occurs, set *pp to 0 and return SQLITE_OK.
28751 ** Finally, if an error does occur, return an SQLite error code. The final
28752 ** value of *pp is undefined in this case.
28753 **
28754 ** If this function does return a pointer, the caller must eventually
28755 ** release the reference by calling unixUnfetch().
28756 */
28757 static int unixFetch(sqlite3_file *fd, i64 iOff, int nAmt, void **pp){
28758 #if SQLITE_MAX_MMAP_SIZE>0
28759   unixFile *pFd = (unixFile *)fd;   /* The underlying database file */
28760 #endif
28761   *pp = 0;
28762 
28763 #if SQLITE_MAX_MMAP_SIZE>0
28764   if( pFd->mmapSizeMax>0 ){
28765     if( pFd->pMapRegion==0 ){
28766       int rc = unixMapfile(pFd, -1);
28767       if( rc!=SQLITE_OK ) return rc;
28768     }
28769     if( pFd->mmapSize >= iOff+nAmt ){
28770       *pp = &((u8 *)pFd->pMapRegion)[iOff];
28771       pFd->nFetchOut++;
28772     }
28773   }
28774 #endif
28775   return SQLITE_OK;
28776 }
28777 
28778 /*
28779 ** If the third argument is non-NULL, then this function releases a
28780 ** reference obtained by an earlier call to unixFetch(). The second
28781 ** argument passed to this function must be the same as the corresponding
28782 ** argument that was passed to the unixFetch() invocation.
28783 **
28784 ** Or, if the third argument is NULL, then this function is being called
28785 ** to inform the VFS layer that, according to POSIX, any existing mapping
28786 ** may now be invalid and should be unmapped.
28787 */
28788 static int unixUnfetch(sqlite3_file *fd, i64 iOff, void *p){
28789 #if SQLITE_MAX_MMAP_SIZE>0
28790   unixFile *pFd = (unixFile *)fd;   /* The underlying database file */
28791   UNUSED_PARAMETER(iOff);
28792 
28793   /* If p==0 (unmap the entire file) then there must be no outstanding
28794   ** xFetch references. Or, if p!=0 (meaning it is an xFetch reference),
28795   ** then there must be at least one outstanding.  */
28796   assert( (p==0)==(pFd->nFetchOut==0) );
28797 
28798   /* If p!=0, it must match the iOff value. */
28799   assert( p==0 || p==&((u8 *)pFd->pMapRegion)[iOff] );
28800 
28801   if( p ){
28802     pFd->nFetchOut--;
28803   }else{
28804     unixUnmapfile(pFd);
28805   }
28806 
28807   assert( pFd->nFetchOut>=0 );
28808 #else
28809   UNUSED_PARAMETER(fd);
28810   UNUSED_PARAMETER(p);
28811   UNUSED_PARAMETER(iOff);
28812 #endif
28813   return SQLITE_OK;
28814 }
28815 
28816 /*
28817 ** Here ends the implementation of all sqlite3_file methods.
28818 **
28819 ********************** End sqlite3_file Methods *******************************
28820 ******************************************************************************/
28821 
28822 /*
28823 ** This division contains definitions of sqlite3_io_methods objects that
28824 ** implement various file locking strategies.  It also contains definitions
28825 ** of "finder" functions.  A finder-function is used to locate the appropriate
28826 ** sqlite3_io_methods object for a particular database file.  The pAppData
28827 ** field of the sqlite3_vfs VFS objects are initialized to be pointers to
28828 ** the correct finder-function for that VFS.
28829 **
28830 ** Most finder functions return a pointer to a fixed sqlite3_io_methods
28831 ** object.  The only interesting finder-function is autolockIoFinder, which
28832 ** looks at the filesystem type and tries to guess the best locking
28833 ** strategy from that.
28834 **
28835 ** For finder-funtion F, two objects are created:
28836 **
28837 **    (1) The real finder-function named "FImpt()".
28838 **
28839 **    (2) A constant pointer to this function named just "F".
28840 **
28841 **
28842 ** A pointer to the F pointer is used as the pAppData value for VFS
28843 ** objects.  We have to do this instead of letting pAppData point
28844 ** directly at the finder-function since C90 rules prevent a void*
28845 ** from be cast into a function pointer.
28846 **
28847 **
28848 ** Each instance of this macro generates two objects:
28849 **
28850 **   *  A constant sqlite3_io_methods object call METHOD that has locking
28851 **      methods CLOSE, LOCK, UNLOCK, CKRESLOCK.
28852 **
28853 **   *  An I/O method finder function called FINDER that returns a pointer
28854 **      to the METHOD object in the previous bullet.
28855 */
28856 #define IOMETHODS(FINDER, METHOD, VERSION, CLOSE, LOCK, UNLOCK, CKLOCK)      \
28857 static const sqlite3_io_methods METHOD = {                                   \
28858    VERSION,                    /* iVersion */                                \
28859    CLOSE,                      /* xClose */                                  \
28860    unixRead,                   /* xRead */                                   \
28861    unixWrite,                  /* xWrite */                                  \
28862    unixTruncate,               /* xTruncate */                               \
28863    unixSync,                   /* xSync */                                   \
28864    unixFileSize,               /* xFileSize */                               \
28865    LOCK,                       /* xLock */                                   \
28866    UNLOCK,                     /* xUnlock */                                 \
28867    CKLOCK,                     /* xCheckReservedLock */                      \
28868    unixFileControl,            /* xFileControl */                            \
28869    unixSectorSize,             /* xSectorSize */                             \
28870    unixDeviceCharacteristics,  /* xDeviceCapabilities */                     \
28871    unixShmMap,                 /* xShmMap */                                 \
28872    unixShmLock,                /* xShmLock */                                \
28873    unixShmBarrier,             /* xShmBarrier */                             \
28874    unixShmUnmap,               /* xShmUnmap */                               \
28875    unixFetch,                  /* xFetch */                                  \
28876    unixUnfetch,                /* xUnfetch */                                \
28877 };                                                                           \
28878 static const sqlite3_io_methods *FINDER##Impl(const char *z, unixFile *p){   \
28879   UNUSED_PARAMETER(z); UNUSED_PARAMETER(p);                                  \
28880   return &METHOD;                                                            \
28881 }                                                                            \
28882 static const sqlite3_io_methods *(*const FINDER)(const char*,unixFile *p)    \
28883     = FINDER##Impl;
28884 
28885 /*
28886 ** Here are all of the sqlite3_io_methods objects for each of the
28887 ** locking strategies.  Functions that return pointers to these methods
28888 ** are also created.
28889 */
28890 IOMETHODS(
28891   posixIoFinder,            /* Finder function name */
28892   posixIoMethods,           /* sqlite3_io_methods object name */
28893   3,                        /* shared memory and mmap are enabled */
28894   unixClose,                /* xClose method */
28895   unixLock,                 /* xLock method */
28896   unixUnlock,               /* xUnlock method */
28897   unixCheckReservedLock     /* xCheckReservedLock method */
28898 )
28899 IOMETHODS(
28900   nolockIoFinder,           /* Finder function name */
28901   nolockIoMethods,          /* sqlite3_io_methods object name */
28902   1,                        /* shared memory is disabled */
28903   nolockClose,              /* xClose method */
28904   nolockLock,               /* xLock method */
28905   nolockUnlock,             /* xUnlock method */
28906   nolockCheckReservedLock   /* xCheckReservedLock method */
28907 )
28908 IOMETHODS(
28909   dotlockIoFinder,          /* Finder function name */
28910   dotlockIoMethods,         /* sqlite3_io_methods object name */
28911   1,                        /* shared memory is disabled */
28912   dotlockClose,             /* xClose method */
28913   dotlockLock,              /* xLock method */
28914   dotlockUnlock,            /* xUnlock method */
28915   dotlockCheckReservedLock  /* xCheckReservedLock method */
28916 )
28917 
28918 #if SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS
28919 IOMETHODS(
28920   flockIoFinder,            /* Finder function name */
28921   flockIoMethods,           /* sqlite3_io_methods object name */
28922   1,                        /* shared memory is disabled */
28923   flockClose,               /* xClose method */
28924   flockLock,                /* xLock method */
28925   flockUnlock,              /* xUnlock method */
28926   flockCheckReservedLock    /* xCheckReservedLock method */
28927 )
28928 #endif
28929 
28930 #if OS_VXWORKS
28931 IOMETHODS(
28932   semIoFinder,              /* Finder function name */
28933   semIoMethods,             /* sqlite3_io_methods object name */
28934   1,                        /* shared memory is disabled */
28935   semClose,                 /* xClose method */
28936   semLock,                  /* xLock method */
28937   semUnlock,                /* xUnlock method */
28938   semCheckReservedLock      /* xCheckReservedLock method */
28939 )
28940 #endif
28941 
28942 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
28943 IOMETHODS(
28944   afpIoFinder,              /* Finder function name */
28945   afpIoMethods,             /* sqlite3_io_methods object name */
28946   1,                        /* shared memory is disabled */
28947   afpClose,                 /* xClose method */
28948   afpLock,                  /* xLock method */
28949   afpUnlock,                /* xUnlock method */
28950   afpCheckReservedLock      /* xCheckReservedLock method */
28951 )
28952 #endif
28953 
28954 /*
28955 ** The proxy locking method is a "super-method" in the sense that it
28956 ** opens secondary file descriptors for the conch and lock files and
28957 ** it uses proxy, dot-file, AFP, and flock() locking methods on those
28958 ** secondary files.  For this reason, the division that implements
28959 ** proxy locking is located much further down in the file.  But we need
28960 ** to go ahead and define the sqlite3_io_methods and finder function
28961 ** for proxy locking here.  So we forward declare the I/O methods.
28962 */
28963 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
28964 static int proxyClose(sqlite3_file*);
28965 static int proxyLock(sqlite3_file*, int);
28966 static int proxyUnlock(sqlite3_file*, int);
28967 static int proxyCheckReservedLock(sqlite3_file*, int*);
28968 IOMETHODS(
28969   proxyIoFinder,            /* Finder function name */
28970   proxyIoMethods,           /* sqlite3_io_methods object name */
28971   1,                        /* shared memory is disabled */
28972   proxyClose,               /* xClose method */
28973   proxyLock,                /* xLock method */
28974   proxyUnlock,              /* xUnlock method */
28975   proxyCheckReservedLock    /* xCheckReservedLock method */
28976 )
28977 #endif
28978 
28979 /* nfs lockd on OSX 10.3+ doesn't clear write locks when a read lock is set */
28980 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
28981 IOMETHODS(
28982   nfsIoFinder,               /* Finder function name */
28983   nfsIoMethods,              /* sqlite3_io_methods object name */
28984   1,                         /* shared memory is disabled */
28985   unixClose,                 /* xClose method */
28986   unixLock,                  /* xLock method */
28987   nfsUnlock,                 /* xUnlock method */
28988   unixCheckReservedLock      /* xCheckReservedLock method */
28989 )
28990 #endif
28991 
28992 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
28993 /*
28994 ** This "finder" function attempts to determine the best locking strategy
28995 ** for the database file "filePath".  It then returns the sqlite3_io_methods
28996 ** object that implements that strategy.
28997 **
28998 ** This is for MacOSX only.
28999 */
29000 static const sqlite3_io_methods *autolockIoFinderImpl(
29001   const char *filePath,    /* name of the database file */
29002   unixFile *pNew           /* open file object for the database file */
29003 ){
29004   static const struct Mapping {
29005     const char *zFilesystem;              /* Filesystem type name */
29006     const sqlite3_io_methods *pMethods;   /* Appropriate locking method */
29007   } aMap[] = {
29008     { "hfs",    &posixIoMethods },
29009     { "ufs",    &posixIoMethods },
29010     { "afpfs",  &afpIoMethods },
29011     { "smbfs",  &afpIoMethods },
29012     { "webdav", &nolockIoMethods },
29013     { 0, 0 }
29014   };
29015   int i;
29016   struct statfs fsInfo;
29017   struct flock lockInfo;
29018 
29019   if( !filePath ){
29020     /* If filePath==NULL that means we are dealing with a transient file
29021     ** that does not need to be locked. */
29022     return &nolockIoMethods;
29023   }
29024   if( statfs(filePath, &fsInfo) != -1 ){
29025     if( fsInfo.f_flags & MNT_RDONLY ){
29026       return &nolockIoMethods;
29027     }
29028     for(i=0; aMap[i].zFilesystem; i++){
29029       if( strcmp(fsInfo.f_fstypename, aMap[i].zFilesystem)==0 ){
29030         return aMap[i].pMethods;
29031       }
29032     }
29033   }
29034 
29035   /* Default case. Handles, amongst others, "nfs".
29036   ** Test byte-range lock using fcntl(). If the call succeeds,
29037   ** assume that the file-system supports POSIX style locks.
29038   */
29039   lockInfo.l_len = 1;
29040   lockInfo.l_start = 0;
29041   lockInfo.l_whence = SEEK_SET;
29042   lockInfo.l_type = F_RDLCK;
29043   if( osFcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) {
29044     if( strcmp(fsInfo.f_fstypename, "nfs")==0 ){
29045       return &nfsIoMethods;
29046     } else {
29047       return &posixIoMethods;
29048     }
29049   }else{
29050     return &dotlockIoMethods;
29051   }
29052 }
29053 static const sqlite3_io_methods
29054   *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl;
29055 
29056 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
29057 
29058 #if OS_VXWORKS && SQLITE_ENABLE_LOCKING_STYLE
29059 /*
29060 ** This "finder" function attempts to determine the best locking strategy
29061 ** for the database file "filePath".  It then returns the sqlite3_io_methods
29062 ** object that implements that strategy.
29063 **
29064 ** This is for VXWorks only.
29065 */
29066 static const sqlite3_io_methods *autolockIoFinderImpl(
29067   const char *filePath,    /* name of the database file */
29068   unixFile *pNew           /* the open file object */
29069 ){
29070   struct flock lockInfo;
29071 
29072   if( !filePath ){
29073     /* If filePath==NULL that means we are dealing with a transient file
29074     ** that does not need to be locked. */
29075     return &nolockIoMethods;
29076   }
29077 
29078   /* Test if fcntl() is supported and use POSIX style locks.
29079   ** Otherwise fall back to the named semaphore method.
29080   */
29081   lockInfo.l_len = 1;
29082   lockInfo.l_start = 0;
29083   lockInfo.l_whence = SEEK_SET;
29084   lockInfo.l_type = F_RDLCK;
29085   if( osFcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) {
29086     return &posixIoMethods;
29087   }else{
29088     return &semIoMethods;
29089   }
29090 }
29091 static const sqlite3_io_methods
29092   *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl;
29093 
29094 #endif /* OS_VXWORKS && SQLITE_ENABLE_LOCKING_STYLE */
29095 
29096 /*
29097 ** An abstract type for a pointer to a IO method finder function:
29098 */
29099 typedef const sqlite3_io_methods *(*finder_type)(const char*,unixFile*);
29100 
29101 
29102 /****************************************************************************
29103 **************************** sqlite3_vfs methods ****************************
29104 **
29105 ** This division contains the implementation of methods on the
29106 ** sqlite3_vfs object.
29107 */
29108 
29109 /*
29110 ** Initialize the contents of the unixFile structure pointed to by pId.
29111 */
29112 static int fillInUnixFile(
29113   sqlite3_vfs *pVfs,      /* Pointer to vfs object */
29114   int h,                  /* Open file descriptor of file being opened */
29115   sqlite3_file *pId,      /* Write to the unixFile structure here */
29116   const char *zFilename,  /* Name of the file being opened */
29117   int ctrlFlags           /* Zero or more UNIXFILE_* values */
29118 ){
29119   const sqlite3_io_methods *pLockingStyle;
29120   unixFile *pNew = (unixFile *)pId;
29121   int rc = SQLITE_OK;
29122 
29123   assert( pNew->pInode==NULL );
29124 
29125   /* Usually the path zFilename should not be a relative pathname. The
29126   ** exception is when opening the proxy "conch" file in builds that
29127   ** include the special Apple locking styles.
29128   */
29129 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
29130   assert( zFilename==0 || zFilename[0]=='/'
29131     || pVfs->pAppData==(void*)&autolockIoFinder );
29132 #else
29133   assert( zFilename==0 || zFilename[0]=='/' );
29134 #endif
29135 
29136   /* No locking occurs in temporary files */
29137   assert( zFilename!=0 || (ctrlFlags & UNIXFILE_NOLOCK)!=0 );
29138 
29139   OSTRACE(("OPEN    %-3d %s\n", h, zFilename));
29140   pNew->h = h;
29141   pNew->pVfs = pVfs;
29142   pNew->zPath = zFilename;
29143   pNew->ctrlFlags = (u8)ctrlFlags;
29144 #if SQLITE_MAX_MMAP_SIZE>0
29145   pNew->mmapSizeMax = sqlite3GlobalConfig.szMmap;
29146 #endif
29147   if( sqlite3_uri_boolean(((ctrlFlags & UNIXFILE_URI) ? zFilename : 0),
29148                            "psow", SQLITE_POWERSAFE_OVERWRITE) ){
29149     pNew->ctrlFlags |= UNIXFILE_PSOW;
29150   }
29151   if( strcmp(pVfs->zName,"unix-excl")==0 ){
29152     pNew->ctrlFlags |= UNIXFILE_EXCL;
29153   }
29154 
29155 #if OS_VXWORKS
29156   pNew->pId = vxworksFindFileId(zFilename);
29157   if( pNew->pId==0 ){
29158     ctrlFlags |= UNIXFILE_NOLOCK;
29159     rc = SQLITE_NOMEM;
29160   }
29161 #endif
29162 
29163   if( ctrlFlags & UNIXFILE_NOLOCK ){
29164     pLockingStyle = &nolockIoMethods;
29165   }else{
29166     pLockingStyle = (**(finder_type*)pVfs->pAppData)(zFilename, pNew);
29167 #if SQLITE_ENABLE_LOCKING_STYLE
29168     /* Cache zFilename in the locking context (AFP and dotlock override) for
29169     ** proxyLock activation is possible (remote proxy is based on db name)
29170     ** zFilename remains valid until file is closed, to support */
29171     pNew->lockingContext = (void*)zFilename;
29172 #endif
29173   }
29174 
29175   if( pLockingStyle == &posixIoMethods
29176 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
29177     || pLockingStyle == &nfsIoMethods
29178 #endif
29179   ){
29180     unixEnterMutex();
29181     rc = findInodeInfo(pNew, &pNew->pInode);
29182     if( rc!=SQLITE_OK ){
29183       /* If an error occurred in findInodeInfo(), close the file descriptor
29184       ** immediately, before releasing the mutex. findInodeInfo() may fail
29185       ** in two scenarios:
29186       **
29187       **   (a) A call to fstat() failed.
29188       **   (b) A malloc failed.
29189       **
29190       ** Scenario (b) may only occur if the process is holding no other
29191       ** file descriptors open on the same file. If there were other file
29192       ** descriptors on this file, then no malloc would be required by
29193       ** findInodeInfo(). If this is the case, it is quite safe to close
29194       ** handle h - as it is guaranteed that no posix locks will be released
29195       ** by doing so.
29196       **
29197       ** If scenario (a) caused the error then things are not so safe. The
29198       ** implicit assumption here is that if fstat() fails, things are in
29199       ** such bad shape that dropping a lock or two doesn't matter much.
29200       */
29201       robust_close(pNew, h, __LINE__);
29202       h = -1;
29203     }
29204     unixLeaveMutex();
29205   }
29206 
29207 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
29208   else if( pLockingStyle == &afpIoMethods ){
29209     /* AFP locking uses the file path so it needs to be included in
29210     ** the afpLockingContext.
29211     */
29212     afpLockingContext *pCtx;
29213     pNew->lockingContext = pCtx = sqlite3_malloc( sizeof(*pCtx) );
29214     if( pCtx==0 ){
29215       rc = SQLITE_NOMEM;
29216     }else{
29217       /* NB: zFilename exists and remains valid until the file is closed
29218       ** according to requirement F11141.  So we do not need to make a
29219       ** copy of the filename. */
29220       pCtx->dbPath = zFilename;
29221       pCtx->reserved = 0;
29222       srandomdev();
29223       unixEnterMutex();
29224       rc = findInodeInfo(pNew, &pNew->pInode);
29225       if( rc!=SQLITE_OK ){
29226         sqlite3_free(pNew->lockingContext);
29227         robust_close(pNew, h, __LINE__);
29228         h = -1;
29229       }
29230       unixLeaveMutex();
29231     }
29232   }
29233 #endif
29234 
29235   else if( pLockingStyle == &dotlockIoMethods ){
29236     /* Dotfile locking uses the file path so it needs to be included in
29237     ** the dotlockLockingContext
29238     */
29239     char *zLockFile;
29240     int nFilename;
29241     assert( zFilename!=0 );
29242     nFilename = (int)strlen(zFilename) + 6;
29243     zLockFile = (char *)sqlite3_malloc(nFilename);
29244     if( zLockFile==0 ){
29245       rc = SQLITE_NOMEM;
29246     }else{
29247       sqlite3_snprintf(nFilename, zLockFile, "%s" DOTLOCK_SUFFIX, zFilename);
29248     }
29249     pNew->lockingContext = zLockFile;
29250   }
29251 
29252 #if OS_VXWORKS
29253   else if( pLockingStyle == &semIoMethods ){
29254     /* Named semaphore locking uses the file path so it needs to be
29255     ** included in the semLockingContext
29256     */
29257     unixEnterMutex();
29258     rc = findInodeInfo(pNew, &pNew->pInode);
29259     if( (rc==SQLITE_OK) && (pNew->pInode->pSem==NULL) ){
29260       char *zSemName = pNew->pInode->aSemName;
29261       int n;
29262       sqlite3_snprintf(MAX_PATHNAME, zSemName, "/%s.sem",
29263                        pNew->pId->zCanonicalName);
29264       for( n=1; zSemName[n]; n++ )
29265         if( zSemName[n]=='/' ) zSemName[n] = '_';
29266       pNew->pInode->pSem = sem_open(zSemName, O_CREAT, 0666, 1);
29267       if( pNew->pInode->pSem == SEM_FAILED ){
29268         rc = SQLITE_NOMEM;
29269         pNew->pInode->aSemName[0] = '\0';
29270       }
29271     }
29272     unixLeaveMutex();
29273   }
29274 #endif
29275 
29276   pNew->lastErrno = 0;
29277 #if OS_VXWORKS
29278   if( rc!=SQLITE_OK ){
29279     if( h>=0 ) robust_close(pNew, h, __LINE__);
29280     h = -1;
29281     osUnlink(zFilename);
29282     pNew->ctrlFlags |= UNIXFILE_DELETE;
29283   }
29284 #endif
29285   if( rc!=SQLITE_OK ){
29286     if( h>=0 ) robust_close(pNew, h, __LINE__);
29287   }else{
29288     pNew->pMethod = pLockingStyle;
29289     OpenCounter(+1);
29290     verifyDbFile(pNew);
29291   }
29292   return rc;
29293 }
29294 
29295 /*
29296 ** Return the name of a directory in which to put temporary files.
29297 ** If no suitable temporary file directory can be found, return NULL.
29298 */
29299 static const char *unixTempFileDir(void){
29300   static const char *azDirs[] = {
29301      0,
29302      0,
29303      0,
29304      "/var/tmp",
29305      "/usr/tmp",
29306      "/tmp",
29307      0        /* List terminator */
29308   };
29309   unsigned int i;
29310   struct stat buf;
29311   const char *zDir = 0;
29312 
29313   azDirs[0] = sqlite3_temp_directory;
29314   if( !azDirs[1] ) azDirs[1] = getenv("SQLITE_TMPDIR");
29315   if( !azDirs[2] ) azDirs[2] = getenv("TMPDIR");
29316   for(i=0; i<sizeof(azDirs)/sizeof(azDirs[0]); zDir=azDirs[i++]){
29317     if( zDir==0 ) continue;
29318     if( osStat(zDir, &buf) ) continue;
29319     if( !S_ISDIR(buf.st_mode) ) continue;
29320     if( osAccess(zDir, 07) ) continue;
29321     break;
29322   }
29323   return zDir;
29324 }
29325 
29326 /*
29327 ** Create a temporary file name in zBuf.  zBuf must be allocated
29328 ** by the calling process and must be big enough to hold at least
29329 ** pVfs->mxPathname bytes.
29330 */
29331 static int unixGetTempname(int nBuf, char *zBuf){
29332   static const unsigned char zChars[] =
29333     "abcdefghijklmnopqrstuvwxyz"
29334     "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
29335     "0123456789";
29336   unsigned int i, j;
29337   const char *zDir;
29338 
29339   /* It's odd to simulate an io-error here, but really this is just
29340   ** using the io-error infrastructure to test that SQLite handles this
29341   ** function failing.
29342   */
29343   SimulateIOError( return SQLITE_IOERR );
29344 
29345   zDir = unixTempFileDir();
29346   if( zDir==0 ) zDir = ".";
29347 
29348   /* Check that the output buffer is large enough for the temporary file
29349   ** name. If it is not, return SQLITE_ERROR.
29350   */
29351   if( (strlen(zDir) + strlen(SQLITE_TEMP_FILE_PREFIX) + 18) >= (size_t)nBuf ){
29352     return SQLITE_ERROR;
29353   }
29354 
29355   do{
29356     sqlite3_snprintf(nBuf-18, zBuf, "%s/"SQLITE_TEMP_FILE_PREFIX, zDir);
29357     j = (int)strlen(zBuf);
29358     sqlite3_randomness(15, &zBuf[j]);
29359     for(i=0; i<15; i++, j++){
29360       zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
29361     }
29362     zBuf[j] = 0;
29363     zBuf[j+1] = 0;
29364   }while( osAccess(zBuf,0)==0 );
29365   return SQLITE_OK;
29366 }
29367 
29368 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
29369 /*
29370 ** Routine to transform a unixFile into a proxy-locking unixFile.
29371 ** Implementation in the proxy-lock division, but used by unixOpen()
29372 ** if SQLITE_PREFER_PROXY_LOCKING is defined.
29373 */
29374 static int proxyTransformUnixFile(unixFile*, const char*);
29375 #endif
29376 
29377 /*
29378 ** Search for an unused file descriptor that was opened on the database
29379 ** file (not a journal or master-journal file) identified by pathname
29380 ** zPath with SQLITE_OPEN_XXX flags matching those passed as the second
29381 ** argument to this function.
29382 **
29383 ** Such a file descriptor may exist if a database connection was closed
29384 ** but the associated file descriptor could not be closed because some
29385 ** other file descriptor open on the same file is holding a file-lock.
29386 ** Refer to comments in the unixClose() function and the lengthy comment
29387 ** describing "Posix Advisory Locking" at the start of this file for
29388 ** further details. Also, ticket #4018.
29389 **
29390 ** If a suitable file descriptor is found, then it is returned. If no
29391 ** such file descriptor is located, -1 is returned.
29392 */
29393 static UnixUnusedFd *findReusableFd(const char *zPath, int flags){
29394   UnixUnusedFd *pUnused = 0;
29395 
29396   /* Do not search for an unused file descriptor on vxworks. Not because
29397   ** vxworks would not benefit from the change (it might, we're not sure),
29398   ** but because no way to test it is currently available. It is better
29399   ** not to risk breaking vxworks support for the sake of such an obscure
29400   ** feature.  */
29401 #if !OS_VXWORKS
29402   struct stat sStat;                   /* Results of stat() call */
29403 
29404   /* A stat() call may fail for various reasons. If this happens, it is
29405   ** almost certain that an open() call on the same path will also fail.
29406   ** For this reason, if an error occurs in the stat() call here, it is
29407   ** ignored and -1 is returned. The caller will try to open a new file
29408   ** descriptor on the same path, fail, and return an error to SQLite.
29409   **
29410   ** Even if a subsequent open() call does succeed, the consequences of
29411   ** not searching for a resusable file descriptor are not dire.  */
29412   if( 0==osStat(zPath, &sStat) ){
29413     unixInodeInfo *pInode;
29414 
29415     unixEnterMutex();
29416     pInode = inodeList;
29417     while( pInode && (pInode->fileId.dev!=sStat.st_dev
29418                      || pInode->fileId.ino!=sStat.st_ino) ){
29419        pInode = pInode->pNext;
29420     }
29421     if( pInode ){
29422       UnixUnusedFd **pp;
29423       for(pp=&pInode->pUnused; *pp && (*pp)->flags!=flags; pp=&((*pp)->pNext));
29424       pUnused = *pp;
29425       if( pUnused ){
29426         *pp = pUnused->pNext;
29427       }
29428     }
29429     unixLeaveMutex();
29430   }
29431 #endif    /* if !OS_VXWORKS */
29432   return pUnused;
29433 }
29434 
29435 /*
29436 ** This function is called by unixOpen() to determine the unix permissions
29437 ** to create new files with. If no error occurs, then SQLITE_OK is returned
29438 ** and a value suitable for passing as the third argument to open(2) is
29439 ** written to *pMode. If an IO error occurs, an SQLite error code is
29440 ** returned and the value of *pMode is not modified.
29441 **
29442 ** In most cases cases, this routine sets *pMode to 0, which will become
29443 ** an indication to robust_open() to create the file using
29444 ** SQLITE_DEFAULT_FILE_PERMISSIONS adjusted by the umask.
29445 ** But if the file being opened is a WAL or regular journal file, then
29446 ** this function queries the file-system for the permissions on the
29447 ** corresponding database file and sets *pMode to this value. Whenever
29448 ** possible, WAL and journal files are created using the same permissions
29449 ** as the associated database file.
29450 **
29451 ** If the SQLITE_ENABLE_8_3_NAMES option is enabled, then the
29452 ** original filename is unavailable.  But 8_3_NAMES is only used for
29453 ** FAT filesystems and permissions do not matter there, so just use
29454 ** the default permissions.
29455 */
29456 static int findCreateFileMode(
29457   const char *zPath,              /* Path of file (possibly) being created */
29458   int flags,                      /* Flags passed as 4th argument to xOpen() */
29459   mode_t *pMode,                  /* OUT: Permissions to open file with */
29460   uid_t *pUid,                    /* OUT: uid to set on the file */
29461   gid_t *pGid                     /* OUT: gid to set on the file */
29462 ){
29463   int rc = SQLITE_OK;             /* Return Code */
29464   *pMode = 0;
29465   *pUid = 0;
29466   *pGid = 0;
29467   if( flags & (SQLITE_OPEN_WAL|SQLITE_OPEN_MAIN_JOURNAL) ){
29468     char zDb[MAX_PATHNAME+1];     /* Database file path */
29469     int nDb;                      /* Number of valid bytes in zDb */
29470     struct stat sStat;            /* Output of stat() on database file */
29471 
29472     /* zPath is a path to a WAL or journal file. The following block derives
29473     ** the path to the associated database file from zPath. This block handles
29474     ** the following naming conventions:
29475     **
29476     **   "<path to db>-journal"
29477     **   "<path to db>-wal"
29478     **   "<path to db>-journalNN"
29479     **   "<path to db>-walNN"
29480     **
29481     ** where NN is a decimal number. The NN naming schemes are
29482     ** used by the test_multiplex.c module.
29483     */
29484     nDb = sqlite3Strlen30(zPath) - 1;
29485 #ifdef SQLITE_ENABLE_8_3_NAMES
29486     while( nDb>0 && sqlite3Isalnum(zPath[nDb]) ) nDb--;
29487     if( nDb==0 || zPath[nDb]!='-' ) return SQLITE_OK;
29488 #else
29489     while( zPath[nDb]!='-' ){
29490       assert( nDb>0 );
29491       assert( zPath[nDb]!='\n' );
29492       nDb--;
29493     }
29494 #endif
29495     memcpy(zDb, zPath, nDb);
29496     zDb[nDb] = '\0';
29497 
29498     if( 0==osStat(zDb, &sStat) ){
29499       *pMode = sStat.st_mode & 0777;
29500       *pUid = sStat.st_uid;
29501       *pGid = sStat.st_gid;
29502     }else{
29503       rc = SQLITE_IOERR_FSTAT;
29504     }
29505   }else if( flags & SQLITE_OPEN_DELETEONCLOSE ){
29506     *pMode = 0600;
29507   }
29508   return rc;
29509 }
29510 
29511 /*
29512 ** Open the file zPath.
29513 **
29514 ** Previously, the SQLite OS layer used three functions in place of this
29515 ** one:
29516 **
29517 **     sqlite3OsOpenReadWrite();
29518 **     sqlite3OsOpenReadOnly();
29519 **     sqlite3OsOpenExclusive();
29520 **
29521 ** These calls correspond to the following combinations of flags:
29522 **
29523 **     ReadWrite() ->     (READWRITE | CREATE)
29524 **     ReadOnly()  ->     (READONLY)
29525 **     OpenExclusive() -> (READWRITE | CREATE | EXCLUSIVE)
29526 **
29527 ** The old OpenExclusive() accepted a boolean argument - "delFlag". If
29528 ** true, the file was configured to be automatically deleted when the
29529 ** file handle closed. To achieve the same effect using this new
29530 ** interface, add the DELETEONCLOSE flag to those specified above for
29531 ** OpenExclusive().
29532 */
29533 static int unixOpen(
29534   sqlite3_vfs *pVfs,           /* The VFS for which this is the xOpen method */
29535   const char *zPath,           /* Pathname of file to be opened */
29536   sqlite3_file *pFile,         /* The file descriptor to be filled in */
29537   int flags,                   /* Input flags to control the opening */
29538   int *pOutFlags               /* Output flags returned to SQLite core */
29539 ){
29540   unixFile *p = (unixFile *)pFile;
29541   int fd = -1;                   /* File descriptor returned by open() */
29542   int openFlags = 0;             /* Flags to pass to open() */
29543   int eType = flags&0xFFFFFF00;  /* Type of file to open */
29544   int noLock;                    /* True to omit locking primitives */
29545   int rc = SQLITE_OK;            /* Function Return Code */
29546   int ctrlFlags = 0;             /* UNIXFILE_* flags */
29547 
29548   int isExclusive  = (flags & SQLITE_OPEN_EXCLUSIVE);
29549   int isDelete     = (flags & SQLITE_OPEN_DELETEONCLOSE);
29550   int isCreate     = (flags & SQLITE_OPEN_CREATE);
29551   int isReadonly   = (flags & SQLITE_OPEN_READONLY);
29552   int isReadWrite  = (flags & SQLITE_OPEN_READWRITE);
29553 #if SQLITE_ENABLE_LOCKING_STYLE
29554   int isAutoProxy  = (flags & SQLITE_OPEN_AUTOPROXY);
29555 #endif
29556 #if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE
29557   struct statfs fsInfo;
29558 #endif
29559 
29560   /* If creating a master or main-file journal, this function will open
29561   ** a file-descriptor on the directory too. The first time unixSync()
29562   ** is called the directory file descriptor will be fsync()ed and close()d.
29563   */
29564   int syncDir = (isCreate && (
29565         eType==SQLITE_OPEN_MASTER_JOURNAL
29566      || eType==SQLITE_OPEN_MAIN_JOURNAL
29567      || eType==SQLITE_OPEN_WAL
29568   ));
29569 
29570   /* If argument zPath is a NULL pointer, this function is required to open
29571   ** a temporary file. Use this buffer to store the file name in.
29572   */
29573   char zTmpname[MAX_PATHNAME+2];
29574   const char *zName = zPath;
29575 
29576   /* Check the following statements are true:
29577   **
29578   **   (a) Exactly one of the READWRITE and READONLY flags must be set, and
29579   **   (b) if CREATE is set, then READWRITE must also be set, and
29580   **   (c) if EXCLUSIVE is set, then CREATE must also be set.
29581   **   (d) if DELETEONCLOSE is set, then CREATE must also be set.
29582   */
29583   assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly));
29584   assert(isCreate==0 || isReadWrite);
29585   assert(isExclusive==0 || isCreate);
29586   assert(isDelete==0 || isCreate);
29587 
29588   /* The main DB, main journal, WAL file and master journal are never
29589   ** automatically deleted. Nor are they ever temporary files.  */
29590   assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_DB );
29591   assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_JOURNAL );
29592   assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MASTER_JOURNAL );
29593   assert( (!isDelete && zName) || eType!=SQLITE_OPEN_WAL );
29594 
29595   /* Assert that the upper layer has set one of the "file-type" flags. */
29596   assert( eType==SQLITE_OPEN_MAIN_DB      || eType==SQLITE_OPEN_TEMP_DB
29597        || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL
29598        || eType==SQLITE_OPEN_SUBJOURNAL   || eType==SQLITE_OPEN_MASTER_JOURNAL
29599        || eType==SQLITE_OPEN_TRANSIENT_DB || eType==SQLITE_OPEN_WAL
29600   );
29601 
29602   /* Detect a pid change and reset the PRNG.  There is a race condition
29603   ** here such that two or more threads all trying to open databases at
29604   ** the same instant might all reset the PRNG.  But multiple resets
29605   ** are harmless.
29606   */
29607   if( randomnessPid!=getpid() ){
29608     randomnessPid = getpid();
29609     sqlite3_randomness(0,0);
29610   }
29611 
29612   memset(p, 0, sizeof(unixFile));
29613 
29614   if( eType==SQLITE_OPEN_MAIN_DB ){
29615     UnixUnusedFd *pUnused;
29616     pUnused = findReusableFd(zName, flags);
29617     if( pUnused ){
29618       fd = pUnused->fd;
29619     }else{
29620       pUnused = sqlite3_malloc(sizeof(*pUnused));
29621       if( !pUnused ){
29622         return SQLITE_NOMEM;
29623       }
29624     }
29625     p->pUnused = pUnused;
29626 
29627     /* Database filenames are double-zero terminated if they are not
29628     ** URIs with parameters.  Hence, they can always be passed into
29629     ** sqlite3_uri_parameter(). */
29630     assert( (flags & SQLITE_OPEN_URI) || zName[strlen(zName)+1]==0 );
29631 
29632   }else if( !zName ){
29633     /* If zName is NULL, the upper layer is requesting a temp file. */
29634     assert(isDelete && !syncDir);
29635     rc = unixGetTempname(MAX_PATHNAME+2, zTmpname);
29636     if( rc!=SQLITE_OK ){
29637       return rc;
29638     }
29639     zName = zTmpname;
29640 
29641     /* Generated temporary filenames are always double-zero terminated
29642     ** for use by sqlite3_uri_parameter(). */
29643     assert( zName[strlen(zName)+1]==0 );
29644   }
29645 
29646   /* Determine the value of the flags parameter passed to POSIX function
29647   ** open(). These must be calculated even if open() is not called, as
29648   ** they may be stored as part of the file handle and used by the
29649   ** 'conch file' locking functions later on.  */
29650   if( isReadonly )  openFlags |= O_RDONLY;
29651   if( isReadWrite ) openFlags |= O_RDWR;
29652   if( isCreate )    openFlags |= O_CREAT;
29653   if( isExclusive ) openFlags |= (O_EXCL|O_NOFOLLOW);
29654   openFlags |= (O_LARGEFILE|O_BINARY);
29655 
29656   if( fd<0 ){
29657     mode_t openMode;              /* Permissions to create file with */
29658     uid_t uid;                    /* Userid for the file */
29659     gid_t gid;                    /* Groupid for the file */
29660     rc = findCreateFileMode(zName, flags, &openMode, &uid, &gid);
29661     if( rc!=SQLITE_OK ){
29662       assert( !p->pUnused );
29663       assert( eType==SQLITE_OPEN_WAL || eType==SQLITE_OPEN_MAIN_JOURNAL );
29664       return rc;
29665     }
29666     fd = robust_open(zName, openFlags, openMode);
29667     OSTRACE(("OPENX   %-3d %s 0%o\n", fd, zName, openFlags));
29668     if( fd<0 && errno!=EISDIR && isReadWrite && !isExclusive ){
29669       /* Failed to open the file for read/write access. Try read-only. */
29670       flags &= ~(SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE);
29671       openFlags &= ~(O_RDWR|O_CREAT);
29672       flags |= SQLITE_OPEN_READONLY;
29673       openFlags |= O_RDONLY;
29674       isReadonly = 1;
29675       fd = robust_open(zName, openFlags, openMode);
29676     }
29677     if( fd<0 ){
29678       rc = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zName);
29679       goto open_finished;
29680     }
29681 
29682     /* If this process is running as root and if creating a new rollback
29683     ** journal or WAL file, set the ownership of the journal or WAL to be
29684     ** the same as the original database.
29685     */
29686     if( flags & (SQLITE_OPEN_WAL|SQLITE_OPEN_MAIN_JOURNAL) ){
29687       osFchown(fd, uid, gid);
29688     }
29689   }
29690   assert( fd>=0 );
29691   if( pOutFlags ){
29692     *pOutFlags = flags;
29693   }
29694 
29695   if( p->pUnused ){
29696     p->pUnused->fd = fd;
29697     p->pUnused->flags = flags;
29698   }
29699 
29700   if( isDelete ){
29701 #if OS_VXWORKS
29702     zPath = zName;
29703 #else
29704     osUnlink(zName);
29705 #endif
29706   }
29707 #if SQLITE_ENABLE_LOCKING_STYLE
29708   else{
29709     p->openFlags = openFlags;
29710   }
29711 #endif
29712 
29713   noLock = eType!=SQLITE_OPEN_MAIN_DB;
29714 
29715 
29716 #if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE
29717   if( fstatfs(fd, &fsInfo) == -1 ){
29718     ((unixFile*)pFile)->lastErrno = errno;
29719     robust_close(p, fd, __LINE__);
29720     return SQLITE_IOERR_ACCESS;
29721   }
29722   if (0 == strncmp("msdos", fsInfo.f_fstypename, 5)) {
29723     ((unixFile*)pFile)->fsFlags |= SQLITE_FSFLAGS_IS_MSDOS;
29724   }
29725 #endif
29726 
29727   /* Set up appropriate ctrlFlags */
29728   if( isDelete )                ctrlFlags |= UNIXFILE_DELETE;
29729   if( isReadonly )              ctrlFlags |= UNIXFILE_RDONLY;
29730   if( noLock )                  ctrlFlags |= UNIXFILE_NOLOCK;
29731   if( syncDir )                 ctrlFlags |= UNIXFILE_DIRSYNC;
29732   if( flags & SQLITE_OPEN_URI ) ctrlFlags |= UNIXFILE_URI;
29733 
29734 #if SQLITE_ENABLE_LOCKING_STYLE
29735 #if SQLITE_PREFER_PROXY_LOCKING
29736   isAutoProxy = 1;
29737 #endif
29738   if( isAutoProxy && (zPath!=NULL) && (!noLock) && pVfs->xOpen ){
29739     char *envforce = getenv("SQLITE_FORCE_PROXY_LOCKING");
29740     int useProxy = 0;
29741 
29742     /* SQLITE_FORCE_PROXY_LOCKING==1 means force always use proxy, 0 means
29743     ** never use proxy, NULL means use proxy for non-local files only.  */
29744     if( envforce!=NULL ){
29745       useProxy = atoi(envforce)>0;
29746     }else{
29747       if( statfs(zPath, &fsInfo) == -1 ){
29748         /* In theory, the close(fd) call is sub-optimal. If the file opened
29749         ** with fd is a database file, and there are other connections open
29750         ** on that file that are currently holding advisory locks on it,
29751         ** then the call to close() will cancel those locks. In practice,
29752         ** we're assuming that statfs() doesn't fail very often. At least
29753         ** not while other file descriptors opened by the same process on
29754         ** the same file are working.  */
29755         p->lastErrno = errno;
29756         robust_close(p, fd, __LINE__);
29757         rc = SQLITE_IOERR_ACCESS;
29758         goto open_finished;
29759       }
29760       useProxy = !(fsInfo.f_flags&MNT_LOCAL);
29761     }
29762     if( useProxy ){
29763       rc = fillInUnixFile(pVfs, fd, pFile, zPath, ctrlFlags);
29764       if( rc==SQLITE_OK ){
29765         rc = proxyTransformUnixFile((unixFile*)pFile, ":auto:");
29766         if( rc!=SQLITE_OK ){
29767           /* Use unixClose to clean up the resources added in fillInUnixFile
29768           ** and clear all the structure's references.  Specifically,
29769           ** pFile->pMethods will be NULL so sqlite3OsClose will be a no-op
29770           */
29771           unixClose(pFile);
29772           return rc;
29773         }
29774       }
29775       goto open_finished;
29776     }
29777   }
29778 #endif
29779 
29780   rc = fillInUnixFile(pVfs, fd, pFile, zPath, ctrlFlags);
29781 
29782 open_finished:
29783   if( rc!=SQLITE_OK ){
29784     sqlite3_free(p->pUnused);
29785   }
29786   return rc;
29787 }
29788 
29789 
29790 /*
29791 ** Delete the file at zPath. If the dirSync argument is true, fsync()
29792 ** the directory after deleting the file.
29793 */
29794 static int unixDelete(
29795   sqlite3_vfs *NotUsed,     /* VFS containing this as the xDelete method */
29796   const char *zPath,        /* Name of file to be deleted */
29797   int dirSync               /* If true, fsync() directory after deleting file */
29798 ){
29799   int rc = SQLITE_OK;
29800   UNUSED_PARAMETER(NotUsed);
29801   SimulateIOError(return SQLITE_IOERR_DELETE);
29802   if( osUnlink(zPath)==(-1) ){
29803     if( errno==ENOENT ){
29804       rc = SQLITE_IOERR_DELETE_NOENT;
29805     }else{
29806       rc = unixLogError(SQLITE_IOERR_DELETE, "unlink", zPath);
29807     }
29808     return rc;
29809   }
29810 #ifndef SQLITE_DISABLE_DIRSYNC
29811   if( (dirSync & 1)!=0 ){
29812     int fd;
29813     rc = osOpenDirectory(zPath, &fd);
29814     if( rc==SQLITE_OK ){
29815 #if OS_VXWORKS
29816       if( fsync(fd)==-1 )
29817 #else
29818       if( fsync(fd) )
29819 #endif
29820       {
29821         rc = unixLogError(SQLITE_IOERR_DIR_FSYNC, "fsync", zPath);
29822       }
29823       robust_close(0, fd, __LINE__);
29824     }else if( rc==SQLITE_CANTOPEN ){
29825       rc = SQLITE_OK;
29826     }
29827   }
29828 #endif
29829   return rc;
29830 }
29831 
29832 /*
29833 ** Test the existence of or access permissions of file zPath. The
29834 ** test performed depends on the value of flags:
29835 **
29836 **     SQLITE_ACCESS_EXISTS: Return 1 if the file exists
29837 **     SQLITE_ACCESS_READWRITE: Return 1 if the file is read and writable.
29838 **     SQLITE_ACCESS_READONLY: Return 1 if the file is readable.
29839 **
29840 ** Otherwise return 0.
29841 */
29842 static int unixAccess(
29843   sqlite3_vfs *NotUsed,   /* The VFS containing this xAccess method */
29844   const char *zPath,      /* Path of the file to examine */
29845   int flags,              /* What do we want to learn about the zPath file? */
29846   int *pResOut            /* Write result boolean here */
29847 ){
29848   int amode = 0;
29849   UNUSED_PARAMETER(NotUsed);
29850   SimulateIOError( return SQLITE_IOERR_ACCESS; );
29851   switch( flags ){
29852     case SQLITE_ACCESS_EXISTS:
29853       amode = F_OK;
29854       break;
29855     case SQLITE_ACCESS_READWRITE:
29856       amode = W_OK|R_OK;
29857       break;
29858     case SQLITE_ACCESS_READ:
29859       amode = R_OK;
29860       break;
29861 
29862     default:
29863       assert(!"Invalid flags argument");
29864   }
29865   *pResOut = (osAccess(zPath, amode)==0);
29866   if( flags==SQLITE_ACCESS_EXISTS && *pResOut ){
29867     struct stat buf;
29868     if( 0==osStat(zPath, &buf) && buf.st_size==0 ){
29869       *pResOut = 0;
29870     }
29871   }
29872   return SQLITE_OK;
29873 }
29874 
29875 
29876 /*
29877 ** Turn a relative pathname into a full pathname. The relative path
29878 ** is stored as a nul-terminated string in the buffer pointed to by
29879 ** zPath.
29880 **
29881 ** zOut points to a buffer of at least sqlite3_vfs.mxPathname bytes
29882 ** (in this case, MAX_PATHNAME bytes). The full-path is written to
29883 ** this buffer before returning.
29884 */
29885 static int unixFullPathname(
29886   sqlite3_vfs *pVfs,            /* Pointer to vfs object */
29887   const char *zPath,            /* Possibly relative input path */
29888   int nOut,                     /* Size of output buffer in bytes */
29889   char *zOut                    /* Output buffer */
29890 ){
29891 
29892   /* It's odd to simulate an io-error here, but really this is just
29893   ** using the io-error infrastructure to test that SQLite handles this
29894   ** function failing. This function could fail if, for example, the
29895   ** current working directory has been unlinked.
29896   */
29897   SimulateIOError( return SQLITE_ERROR );
29898 
29899   assert( pVfs->mxPathname==MAX_PATHNAME );
29900   UNUSED_PARAMETER(pVfs);
29901 
29902   zOut[nOut-1] = '\0';
29903   if( zPath[0]=='/' ){
29904     sqlite3_snprintf(nOut, zOut, "%s", zPath);
29905   }else{
29906     int nCwd;
29907     if( osGetcwd(zOut, nOut-1)==0 ){
29908       return unixLogError(SQLITE_CANTOPEN_BKPT, "getcwd", zPath);
29909     }
29910     nCwd = (int)strlen(zOut);
29911     sqlite3_snprintf(nOut-nCwd, &zOut[nCwd], "/%s", zPath);
29912   }
29913   return SQLITE_OK;
29914 }
29915 
29916 
29917 #ifndef SQLITE_OMIT_LOAD_EXTENSION
29918 /*
29919 ** Interfaces for opening a shared library, finding entry points
29920 ** within the shared library, and closing the shared library.
29921 */
29922 #include <dlfcn.h>
29923 static void *unixDlOpen(sqlite3_vfs *NotUsed, const char *zFilename){
29924   UNUSED_PARAMETER(NotUsed);
29925   return dlopen(zFilename, RTLD_NOW | RTLD_GLOBAL);
29926 }
29927 
29928 /*
29929 ** SQLite calls this function immediately after a call to unixDlSym() or
29930 ** unixDlOpen() fails (returns a null pointer). If a more detailed error
29931 ** message is available, it is written to zBufOut. If no error message
29932 ** is available, zBufOut is left unmodified and SQLite uses a default
29933 ** error message.
29934 */
29935 static void unixDlError(sqlite3_vfs *NotUsed, int nBuf, char *zBufOut){
29936   const char *zErr;
29937   UNUSED_PARAMETER(NotUsed);
29938   unixEnterMutex();
29939   zErr = dlerror();
29940   if( zErr ){
29941     sqlite3_snprintf(nBuf, zBufOut, "%s", zErr);
29942   }
29943   unixLeaveMutex();
29944 }
29945 static void (*unixDlSym(sqlite3_vfs *NotUsed, void *p, const char*zSym))(void){
29946   /*
29947   ** GCC with -pedantic-errors says that C90 does not allow a void* to be
29948   ** cast into a pointer to a function.  And yet the library dlsym() routine
29949   ** returns a void* which is really a pointer to a function.  So how do we
29950   ** use dlsym() with -pedantic-errors?
29951   **
29952   ** Variable x below is defined to be a pointer to a function taking
29953   ** parameters void* and const char* and returning a pointer to a function.
29954   ** We initialize x by assigning it a pointer to the dlsym() function.
29955   ** (That assignment requires a cast.)  Then we call the function that
29956   ** x points to.
29957   **
29958   ** This work-around is unlikely to work correctly on any system where
29959   ** you really cannot cast a function pointer into void*.  But then, on the
29960   ** other hand, dlsym() will not work on such a system either, so we have
29961   ** not really lost anything.
29962   */
29963   void (*(*x)(void*,const char*))(void);
29964   UNUSED_PARAMETER(NotUsed);
29965   x = (void(*(*)(void*,const char*))(void))dlsym;
29966   return (*x)(p, zSym);
29967 }
29968 static void unixDlClose(sqlite3_vfs *NotUsed, void *pHandle){
29969   UNUSED_PARAMETER(NotUsed);
29970   dlclose(pHandle);
29971 }
29972 #else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */
29973   #define unixDlOpen  0
29974   #define unixDlError 0
29975   #define unixDlSym   0
29976   #define unixDlClose 0
29977 #endif
29978 
29979 /*
29980 ** Write nBuf bytes of random data to the supplied buffer zBuf.
29981 */
29982 static int unixRandomness(sqlite3_vfs *NotUsed, int nBuf, char *zBuf){
29983   UNUSED_PARAMETER(NotUsed);
29984   assert((size_t)nBuf>=(sizeof(time_t)+sizeof(int)));
29985 
29986   /* We have to initialize zBuf to prevent valgrind from reporting
29987   ** errors.  The reports issued by valgrind are incorrect - we would
29988   ** prefer that the randomness be increased by making use of the
29989   ** uninitialized space in zBuf - but valgrind errors tend to worry
29990   ** some users.  Rather than argue, it seems easier just to initialize
29991   ** the whole array and silence valgrind, even if that means less randomness
29992   ** in the random seed.
29993   **
29994   ** When testing, initializing zBuf[] to zero is all we do.  That means
29995   ** that we always use the same random number sequence.  This makes the
29996   ** tests repeatable.
29997   */
29998   memset(zBuf, 0, nBuf);
29999   randomnessPid = getpid();
30000 #if !defined(SQLITE_TEST)
30001   {
30002     int fd, got;
30003     fd = robust_open("/dev/urandom", O_RDONLY, 0);
30004     if( fd<0 ){
30005       time_t t;
30006       time(&t);
30007       memcpy(zBuf, &t, sizeof(t));
30008       memcpy(&zBuf[sizeof(t)], &randomnessPid, sizeof(randomnessPid));
30009       assert( sizeof(t)+sizeof(randomnessPid)<=(size_t)nBuf );
30010       nBuf = sizeof(t) + sizeof(randomnessPid);
30011     }else{
30012       do{ got = osRead(fd, zBuf, nBuf); }while( got<0 && errno==EINTR );
30013       robust_close(0, fd, __LINE__);
30014     }
30015   }
30016 #endif
30017   return nBuf;
30018 }
30019 
30020 
30021 /*
30022 ** Sleep for a little while.  Return the amount of time slept.
30023 ** The argument is the number of microseconds we want to sleep.
30024 ** The return value is the number of microseconds of sleep actually
30025 ** requested from the underlying operating system, a number which
30026 ** might be greater than or equal to the argument, but not less
30027 ** than the argument.
30028 */
30029 static int unixSleep(sqlite3_vfs *NotUsed, int microseconds){
30030 #if OS_VXWORKS
30031   struct timespec sp;
30032 
30033   sp.tv_sec = microseconds / 1000000;
30034   sp.tv_nsec = (microseconds % 1000000) * 1000;
30035   nanosleep(&sp, NULL);
30036   UNUSED_PARAMETER(NotUsed);
30037   return microseconds;
30038 #elif defined(HAVE_USLEEP) && HAVE_USLEEP
30039   usleep(microseconds);
30040   UNUSED_PARAMETER(NotUsed);
30041   return microseconds;
30042 #else
30043   int seconds = (microseconds+999999)/1000000;
30044   sleep(seconds);
30045   UNUSED_PARAMETER(NotUsed);
30046   return seconds*1000000;
30047 #endif
30048 }
30049 
30050 /*
30051 ** The following variable, if set to a non-zero value, is interpreted as
30052 ** the number of seconds since 1970 and is used to set the result of
30053 ** sqlite3OsCurrentTime() during testing.
30054 */
30055 #ifdef SQLITE_TEST
30056 SQLITE_API int sqlite3_current_time = 0;  /* Fake system time in seconds since 1970. */
30057 #endif
30058 
30059 /*
30060 ** Find the current time (in Universal Coordinated Time).  Write into *piNow
30061 ** the current time and date as a Julian Day number times 86_400_000.  In
30062 ** other words, write into *piNow the number of milliseconds since the Julian
30063 ** epoch of noon in Greenwich on November 24, 4714 B.C according to the
30064 ** proleptic Gregorian calendar.
30065 **
30066 ** On success, return SQLITE_OK.  Return SQLITE_ERROR if the time and date
30067 ** cannot be found.
30068 */
30069 static int unixCurrentTimeInt64(sqlite3_vfs *NotUsed, sqlite3_int64 *piNow){
30070   static const sqlite3_int64 unixEpoch = 24405875*(sqlite3_int64)8640000;
30071   int rc = SQLITE_OK;
30072 #if defined(NO_GETTOD)
30073   time_t t;
30074   time(&t);
30075   *piNow = ((sqlite3_int64)t)*1000 + unixEpoch;
30076 #elif OS_VXWORKS
30077   struct timespec sNow;
30078   clock_gettime(CLOCK_REALTIME, &sNow);
30079   *piNow = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_nsec/1000000;
30080 #else
30081   struct timeval sNow;
30082   if( gettimeofday(&sNow, 0)==0 ){
30083     *piNow = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_usec/1000;
30084   }else{
30085     rc = SQLITE_ERROR;
30086   }
30087 #endif
30088 
30089 #ifdef SQLITE_TEST
30090   if( sqlite3_current_time ){
30091     *piNow = 1000*(sqlite3_int64)sqlite3_current_time + unixEpoch;
30092   }
30093 #endif
30094   UNUSED_PARAMETER(NotUsed);
30095   return rc;
30096 }
30097 
30098 /*
30099 ** Find the current time (in Universal Coordinated Time).  Write the
30100 ** current time and date as a Julian Day number into *prNow and
30101 ** return 0.  Return 1 if the time and date cannot be found.
30102 */
30103 static int unixCurrentTime(sqlite3_vfs *NotUsed, double *prNow){
30104   sqlite3_int64 i = 0;
30105   int rc;
30106   UNUSED_PARAMETER(NotUsed);
30107   rc = unixCurrentTimeInt64(0, &i);
30108   *prNow = i/86400000.0;
30109   return rc;
30110 }
30111 
30112 /*
30113 ** We added the xGetLastError() method with the intention of providing
30114 ** better low-level error messages when operating-system problems come up
30115 ** during SQLite operation.  But so far, none of that has been implemented
30116 ** in the core.  So this routine is never called.  For now, it is merely
30117 ** a place-holder.
30118 */
30119 static int unixGetLastError(sqlite3_vfs *NotUsed, int NotUsed2, char *NotUsed3){
30120   UNUSED_PARAMETER(NotUsed);
30121   UNUSED_PARAMETER(NotUsed2);
30122   UNUSED_PARAMETER(NotUsed3);
30123   return 0;
30124 }
30125 
30126 
30127 /*
30128 ************************ End of sqlite3_vfs methods ***************************
30129 ******************************************************************************/
30130 
30131 /******************************************************************************
30132 ************************** Begin Proxy Locking ********************************
30133 **
30134 ** Proxy locking is a "uber-locking-method" in this sense:  It uses the
30135 ** other locking methods on secondary lock files.  Proxy locking is a
30136 ** meta-layer over top of the primitive locking implemented above.  For
30137 ** this reason, the division that implements of proxy locking is deferred
30138 ** until late in the file (here) after all of the other I/O methods have
30139 ** been defined - so that the primitive locking methods are available
30140 ** as services to help with the implementation of proxy locking.
30141 **
30142 ****
30143 **
30144 ** The default locking schemes in SQLite use byte-range locks on the
30145 ** database file to coordinate safe, concurrent access by multiple readers
30146 ** and writers [http://sqlite.org/lockingv3.html].  The five file locking
30147 ** states (UNLOCKED, PENDING, SHARED, RESERVED, EXCLUSIVE) are implemented
30148 ** as POSIX read & write locks over fixed set of locations (via fsctl),
30149 ** on AFP and SMB only exclusive byte-range locks are available via fsctl
30150 ** with _IOWR('z', 23, struct ByteRangeLockPB2) to track the same 5 states.
30151 ** To simulate a F_RDLCK on the shared range, on AFP a randomly selected
30152 ** address in the shared range is taken for a SHARED lock, the entire
30153 ** shared range is taken for an EXCLUSIVE lock):
30154 **
30155 **      PENDING_BYTE        0x40000000
30156 **      RESERVED_BYTE       0x40000001
30157 **      SHARED_RANGE        0x40000002 -> 0x40000200
30158 **
30159 ** This works well on the local file system, but shows a nearly 100x
30160 ** slowdown in read performance on AFP because the AFP client disables
30161 ** the read cache when byte-range locks are present.  Enabling the read
30162 ** cache exposes a cache coherency problem that is present on all OS X
30163 ** supported network file systems.  NFS and AFP both observe the
30164 ** close-to-open semantics for ensuring cache coherency
30165 ** [http://nfs.sourceforge.net/#faq_a8], which does not effectively
30166 ** address the requirements for concurrent database access by multiple
30167 ** readers and writers
30168 ** [http://www.nabble.com/SQLite-on-NFS-cache-coherency-td15655701.html].
30169 **
30170 ** To address the performance and cache coherency issues, proxy file locking
30171 ** changes the way database access is controlled by limiting access to a
30172 ** single host at a time and moving file locks off of the database file
30173 ** and onto a proxy file on the local file system.
30174 **
30175 **
30176 ** Using proxy locks
30177 ** -----------------
30178 **
30179 ** C APIs
30180 **
30181 **  sqlite3_file_control(db, dbname, SQLITE_SET_LOCKPROXYFILE,
30182 **                       <proxy_path> | ":auto:");
30183 **  sqlite3_file_control(db, dbname, SQLITE_GET_LOCKPROXYFILE, &<proxy_path>);
30184 **
30185 **
30186 ** SQL pragmas
30187 **
30188 **  PRAGMA [database.]lock_proxy_file=<proxy_path> | :auto:
30189 **  PRAGMA [database.]lock_proxy_file
30190 **
30191 ** Specifying ":auto:" means that if there is a conch file with a matching
30192 ** host ID in it, the proxy path in the conch file will be used, otherwise
30193 ** a proxy path based on the user's temp dir
30194 ** (via confstr(_CS_DARWIN_USER_TEMP_DIR,...)) will be used and the
30195 ** actual proxy file name is generated from the name and path of the
30196 ** database file.  For example:
30197 **
30198 **       For database path "/Users/me/foo.db"
30199 **       The lock path will be "<tmpdir>/sqliteplocks/_Users_me_foo.db:auto:")
30200 **
30201 ** Once a lock proxy is configured for a database connection, it can not
30202 ** be removed, however it may be switched to a different proxy path via
30203 ** the above APIs (assuming the conch file is not being held by another
30204 ** connection or process).
30205 **
30206 **
30207 ** How proxy locking works
30208 ** -----------------------
30209 **
30210 ** Proxy file locking relies primarily on two new supporting files:
30211 **
30212 **   *  conch file to limit access to the database file to a single host
30213 **      at a time
30214 **
30215 **   *  proxy file to act as a proxy for the advisory locks normally
30216 **      taken on the database
30217 **
30218 ** The conch file - to use a proxy file, sqlite must first "hold the conch"
30219 ** by taking an sqlite-style shared lock on the conch file, reading the
30220 ** contents and comparing the host's unique host ID (see below) and lock
30221 ** proxy path against the values stored in the conch.  The conch file is
30222 ** stored in the same directory as the database file and the file name
30223 ** is patterned after the database file name as ".<databasename>-conch".
30224 ** If the conch file does not exist, or it's contents do not match the
30225 ** host ID and/or proxy path, then the lock is escalated to an exclusive
30226 ** lock and the conch file contents is updated with the host ID and proxy
30227 ** path and the lock is downgraded to a shared lock again.  If the conch
30228 ** is held by another process (with a shared lock), the exclusive lock
30229 ** will fail and SQLITE_BUSY is returned.
30230 **
30231 ** The proxy file - a single-byte file used for all advisory file locks
30232 ** normally taken on the database file.   This allows for safe sharing
30233 ** of the database file for multiple readers and writers on the same
30234 ** host (the conch ensures that they all use the same local lock file).
30235 **
30236 ** Requesting the lock proxy does not immediately take the conch, it is
30237 ** only taken when the first request to lock database file is made.
30238 ** This matches the semantics of the traditional locking behavior, where
30239 ** opening a connection to a database file does not take a lock on it.
30240 ** The shared lock and an open file descriptor are maintained until
30241 ** the connection to the database is closed.
30242 **
30243 ** The proxy file and the lock file are never deleted so they only need
30244 ** to be created the first time they are used.
30245 **
30246 ** Configuration options
30247 ** ---------------------
30248 **
30249 **  SQLITE_PREFER_PROXY_LOCKING
30250 **
30251 **       Database files accessed on non-local file systems are
30252 **       automatically configured for proxy locking, lock files are
30253 **       named automatically using the same logic as
30254 **       PRAGMA lock_proxy_file=":auto:"
30255 **
30256 **  SQLITE_PROXY_DEBUG
30257 **
30258 **       Enables the logging of error messages during host id file
30259 **       retrieval and creation
30260 **
30261 **  LOCKPROXYDIR
30262 **
30263 **       Overrides the default directory used for lock proxy files that
30264 **       are named automatically via the ":auto:" setting
30265 **
30266 **  SQLITE_DEFAULT_PROXYDIR_PERMISSIONS
30267 **
30268 **       Permissions to use when creating a directory for storing the
30269 **       lock proxy files, only used when LOCKPROXYDIR is not set.
30270 **
30271 **
30272 ** As mentioned above, when compiled with SQLITE_PREFER_PROXY_LOCKING,
30273 ** setting the environment variable SQLITE_FORCE_PROXY_LOCKING to 1 will
30274 ** force proxy locking to be used for every database file opened, and 0
30275 ** will force automatic proxy locking to be disabled for all database
30276 ** files (explicity calling the SQLITE_SET_LOCKPROXYFILE pragma or
30277 ** sqlite_file_control API is not affected by SQLITE_FORCE_PROXY_LOCKING).
30278 */
30279 
30280 /*
30281 ** Proxy locking is only available on MacOSX
30282 */
30283 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
30284 
30285 /*
30286 ** The proxyLockingContext has the path and file structures for the remote
30287 ** and local proxy files in it
30288 */
30289 typedef struct proxyLockingContext proxyLockingContext;
30290 struct proxyLockingContext {
30291   unixFile *conchFile;         /* Open conch file */
30292   char *conchFilePath;         /* Name of the conch file */
30293   unixFile *lockProxy;         /* Open proxy lock file */
30294   char *lockProxyPath;         /* Name of the proxy lock file */
30295   char *dbPath;                /* Name of the open file */
30296   int conchHeld;               /* 1 if the conch is held, -1 if lockless */
30297   void *oldLockingContext;     /* Original lockingcontext to restore on close */
30298   sqlite3_io_methods const *pOldMethod;     /* Original I/O methods for close */
30299 };
30300 
30301 /*
30302 ** The proxy lock file path for the database at dbPath is written into lPath,
30303 ** which must point to valid, writable memory large enough for a maxLen length
30304 ** file path.
30305 */
30306 static int proxyGetLockPath(const char *dbPath, char *lPath, size_t maxLen){
30307   int len;
30308   int dbLen;
30309   int i;
30310 
30311 #ifdef LOCKPROXYDIR
30312   len = strlcpy(lPath, LOCKPROXYDIR, maxLen);
30313 #else
30314 # ifdef _CS_DARWIN_USER_TEMP_DIR
30315   {
30316     if( !confstr(_CS_DARWIN_USER_TEMP_DIR, lPath, maxLen) ){
30317       OSTRACE(("GETLOCKPATH  failed %s errno=%d pid=%d\n",
30318                lPath, errno, getpid()));
30319       return SQLITE_IOERR_LOCK;
30320     }
30321     len = strlcat(lPath, "sqliteplocks", maxLen);
30322   }
30323 # else
30324   len = strlcpy(lPath, "/tmp/", maxLen);
30325 # endif
30326 #endif
30327 
30328   if( lPath[len-1]!='/' ){
30329     len = strlcat(lPath, "/", maxLen);
30330   }
30331 
30332   /* transform the db path to a unique cache name */
30333   dbLen = (int)strlen(dbPath);
30334   for( i=0; i<dbLen && (i+len+7)<(int)maxLen; i++){
30335     char c = dbPath[i];
30336     lPath[i+len] = (c=='/')?'_':c;
30337   }
30338   lPath[i+len]='\0';
30339   strlcat(lPath, ":auto:", maxLen);
30340   OSTRACE(("GETLOCKPATH  proxy lock path=%s pid=%d\n", lPath, getpid()));
30341   return SQLITE_OK;
30342 }
30343 
30344 /*
30345  ** Creates the lock file and any missing directories in lockPath
30346  */
30347 static int proxyCreateLockPath(const char *lockPath){
30348   int i, len;
30349   char buf[MAXPATHLEN];
30350   int start = 0;
30351 
30352   assert(lockPath!=NULL);
30353   /* try to create all the intermediate directories */
30354   len = (int)strlen(lockPath);
30355   buf[0] = lockPath[0];
30356   for( i=1; i<len; i++ ){
30357     if( lockPath[i] == '/' && (i - start > 0) ){
30358       /* only mkdir if leaf dir != "." or "/" or ".." */
30359       if( i-start>2 || (i-start==1 && buf[start] != '.' && buf[start] != '/')
30360          || (i-start==2 && buf[start] != '.' && buf[start+1] != '.') ){
30361         buf[i]='\0';
30362         if( osMkdir(buf, SQLITE_DEFAULT_PROXYDIR_PERMISSIONS) ){
30363           int err=errno;
30364           if( err!=EEXIST ) {
30365             OSTRACE(("CREATELOCKPATH  FAILED creating %s, "
30366                      "'%s' proxy lock path=%s pid=%d\n",
30367                      buf, strerror(err), lockPath, getpid()));
30368             return err;
30369           }
30370         }
30371       }
30372       start=i+1;
30373     }
30374     buf[i] = lockPath[i];
30375   }
30376   OSTRACE(("CREATELOCKPATH  proxy lock path=%s pid=%d\n", lockPath, getpid()));
30377   return 0;
30378 }
30379 
30380 /*
30381 ** Create a new VFS file descriptor (stored in memory obtained from
30382 ** sqlite3_malloc) and open the file named "path" in the file descriptor.
30383 **
30384 ** The caller is responsible not only for closing the file descriptor
30385 ** but also for freeing the memory associated with the file descriptor.
30386 */
30387 static int proxyCreateUnixFile(
30388     const char *path,        /* path for the new unixFile */
30389     unixFile **ppFile,       /* unixFile created and returned by ref */
30390     int islockfile           /* if non zero missing dirs will be created */
30391 ) {
30392   int fd = -1;
30393   unixFile *pNew;
30394   int rc = SQLITE_OK;
30395   int openFlags = O_RDWR | O_CREAT;
30396   sqlite3_vfs dummyVfs;
30397   int terrno = 0;
30398   UnixUnusedFd *pUnused = NULL;
30399 
30400   /* 1. first try to open/create the file
30401   ** 2. if that fails, and this is a lock file (not-conch), try creating
30402   ** the parent directories and then try again.
30403   ** 3. if that fails, try to open the file read-only
30404   ** otherwise return BUSY (if lock file) or CANTOPEN for the conch file
30405   */
30406   pUnused = findReusableFd(path, openFlags);
30407   if( pUnused ){
30408     fd = pUnused->fd;
30409   }else{
30410     pUnused = sqlite3_malloc(sizeof(*pUnused));
30411     if( !pUnused ){
30412       return SQLITE_NOMEM;
30413     }
30414   }
30415   if( fd<0 ){
30416     fd = robust_open(path, openFlags, 0);
30417     terrno = errno;
30418     if( fd<0 && errno==ENOENT && islockfile ){
30419       if( proxyCreateLockPath(path) == SQLITE_OK ){
30420         fd = robust_open(path, openFlags, 0);
30421       }
30422     }
30423   }
30424   if( fd<0 ){
30425     openFlags = O_RDONLY;
30426     fd = robust_open(path, openFlags, 0);
30427     terrno = errno;
30428   }
30429   if( fd<0 ){
30430     if( islockfile ){
30431       return SQLITE_BUSY;
30432     }
30433     switch (terrno) {
30434       case EACCES:
30435         return SQLITE_PERM;
30436       case EIO:
30437         return SQLITE_IOERR_LOCK; /* even though it is the conch */
30438       default:
30439         return SQLITE_CANTOPEN_BKPT;
30440     }
30441   }
30442 
30443   pNew = (unixFile *)sqlite3_malloc(sizeof(*pNew));
30444   if( pNew==NULL ){
30445     rc = SQLITE_NOMEM;
30446     goto end_create_proxy;
30447   }
30448   memset(pNew, 0, sizeof(unixFile));
30449   pNew->openFlags = openFlags;
30450   memset(&dummyVfs, 0, sizeof(dummyVfs));
30451   dummyVfs.pAppData = (void*)&autolockIoFinder;
30452   dummyVfs.zName = "dummy";
30453   pUnused->fd = fd;
30454   pUnused->flags = openFlags;
30455   pNew->pUnused = pUnused;
30456 
30457   rc = fillInUnixFile(&dummyVfs, fd, (sqlite3_file*)pNew, path, 0);
30458   if( rc==SQLITE_OK ){
30459     *ppFile = pNew;
30460     return SQLITE_OK;
30461   }
30462 end_create_proxy:
30463   robust_close(pNew, fd, __LINE__);
30464   sqlite3_free(pNew);
30465   sqlite3_free(pUnused);
30466   return rc;
30467 }
30468 
30469 #ifdef SQLITE_TEST
30470 /* simulate multiple hosts by creating unique hostid file paths */
30471 SQLITE_API int sqlite3_hostid_num = 0;
30472 #endif
30473 
30474 #define PROXY_HOSTIDLEN    16  /* conch file host id length */
30475 
30476 /* Not always defined in the headers as it ought to be */
30477 extern int gethostuuid(uuid_t id, const struct timespec *wait);
30478 
30479 /* get the host ID via gethostuuid(), pHostID must point to PROXY_HOSTIDLEN
30480 ** bytes of writable memory.
30481 */
30482 static int proxyGetHostID(unsigned char *pHostID, int *pError){
30483   assert(PROXY_HOSTIDLEN == sizeof(uuid_t));
30484   memset(pHostID, 0, PROXY_HOSTIDLEN);
30485 #if defined(__MAX_OS_X_VERSION_MIN_REQUIRED)\
30486                && __MAC_OS_X_VERSION_MIN_REQUIRED<1050
30487   {
30488     static const struct timespec timeout = {1, 0}; /* 1 sec timeout */
30489     if( gethostuuid(pHostID, &timeout) ){
30490       int err = errno;
30491       if( pError ){
30492         *pError = err;
30493       }
30494       return SQLITE_IOERR;
30495     }
30496   }
30497 #else
30498   UNUSED_PARAMETER(pError);
30499 #endif
30500 #ifdef SQLITE_TEST
30501   /* simulate multiple hosts by creating unique hostid file paths */
30502   if( sqlite3_hostid_num != 0){
30503     pHostID[0] = (char)(pHostID[0] + (char)(sqlite3_hostid_num & 0xFF));
30504   }
30505 #endif
30506 
30507   return SQLITE_OK;
30508 }
30509 
30510 /* The conch file contains the header, host id and lock file path
30511  */
30512 #define PROXY_CONCHVERSION 2   /* 1-byte header, 16-byte host id, path */
30513 #define PROXY_HEADERLEN    1   /* conch file header length */
30514 #define PROXY_PATHINDEX    (PROXY_HEADERLEN+PROXY_HOSTIDLEN)
30515 #define PROXY_MAXCONCHLEN  (PROXY_HEADERLEN+PROXY_HOSTIDLEN+MAXPATHLEN)
30516 
30517 /*
30518 ** Takes an open conch file, copies the contents to a new path and then moves
30519 ** it back.  The newly created file's file descriptor is assigned to the
30520 ** conch file structure and finally the original conch file descriptor is
30521 ** closed.  Returns zero if successful.
30522 */
30523 static int proxyBreakConchLock(unixFile *pFile, uuid_t myHostID){
30524   proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
30525   unixFile *conchFile = pCtx->conchFile;
30526   char tPath[MAXPATHLEN];
30527   char buf[PROXY_MAXCONCHLEN];
30528   char *cPath = pCtx->conchFilePath;
30529   size_t readLen = 0;
30530   size_t pathLen = 0;
30531   char errmsg[64] = "";
30532   int fd = -1;
30533   int rc = -1;
30534   UNUSED_PARAMETER(myHostID);
30535 
30536   /* create a new path by replace the trailing '-conch' with '-break' */
30537   pathLen = strlcpy(tPath, cPath, MAXPATHLEN);
30538   if( pathLen>MAXPATHLEN || pathLen<6 ||
30539      (strlcpy(&tPath[pathLen-5], "break", 6) != 5) ){
30540     sqlite3_snprintf(sizeof(errmsg),errmsg,"path error (len %d)",(int)pathLen);
30541     goto end_breaklock;
30542   }
30543   /* read the conch content */
30544   readLen = osPread(conchFile->h, buf, PROXY_MAXCONCHLEN, 0);
30545   if( readLen<PROXY_PATHINDEX ){
30546     sqlite3_snprintf(sizeof(errmsg),errmsg,"read error (len %d)",(int)readLen);
30547     goto end_breaklock;
30548   }
30549   /* write it out to the temporary break file */
30550   fd = robust_open(tPath, (O_RDWR|O_CREAT|O_EXCL), 0);
30551   if( fd<0 ){
30552     sqlite3_snprintf(sizeof(errmsg), errmsg, "create failed (%d)", errno);
30553     goto end_breaklock;
30554   }
30555   if( osPwrite(fd, buf, readLen, 0) != (ssize_t)readLen ){
30556     sqlite3_snprintf(sizeof(errmsg), errmsg, "write failed (%d)", errno);
30557     goto end_breaklock;
30558   }
30559   if( rename(tPath, cPath) ){
30560     sqlite3_snprintf(sizeof(errmsg), errmsg, "rename failed (%d)", errno);
30561     goto end_breaklock;
30562   }
30563   rc = 0;
30564   fprintf(stderr, "broke stale lock on %s\n", cPath);
30565   robust_close(pFile, conchFile->h, __LINE__);
30566   conchFile->h = fd;
30567   conchFile->openFlags = O_RDWR | O_CREAT;
30568 
30569 end_breaklock:
30570   if( rc ){
30571     if( fd>=0 ){
30572       osUnlink(tPath);
30573       robust_close(pFile, fd, __LINE__);
30574     }
30575     fprintf(stderr, "failed to break stale lock on %s, %s\n", cPath, errmsg);
30576   }
30577   return rc;
30578 }
30579 
30580 /* Take the requested lock on the conch file and break a stale lock if the
30581 ** host id matches.
30582 */
30583 static int proxyConchLock(unixFile *pFile, uuid_t myHostID, int lockType){
30584   proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
30585   unixFile *conchFile = pCtx->conchFile;
30586   int rc = SQLITE_OK;
30587   int nTries = 0;
30588   struct timespec conchModTime;
30589 
30590   memset(&conchModTime, 0, sizeof(conchModTime));
30591   do {
30592     rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, lockType);
30593     nTries ++;
30594     if( rc==SQLITE_BUSY ){
30595       /* If the lock failed (busy):
30596        * 1st try: get the mod time of the conch, wait 0.5s and try again.
30597        * 2nd try: fail if the mod time changed or host id is different, wait
30598        *           10 sec and try again
30599        * 3rd try: break the lock unless the mod time has changed.
30600        */
30601       struct stat buf;
30602       if( osFstat(conchFile->h, &buf) ){
30603         pFile->lastErrno = errno;
30604         return SQLITE_IOERR_LOCK;
30605       }
30606 
30607       if( nTries==1 ){
30608         conchModTime = buf.st_mtimespec;
30609         usleep(500000); /* wait 0.5 sec and try the lock again*/
30610         continue;
30611       }
30612 
30613       assert( nTries>1 );
30614       if( conchModTime.tv_sec != buf.st_mtimespec.tv_sec ||
30615          conchModTime.tv_nsec != buf.st_mtimespec.tv_nsec ){
30616         return SQLITE_BUSY;
30617       }
30618 
30619       if( nTries==2 ){
30620         char tBuf[PROXY_MAXCONCHLEN];
30621         int len = osPread(conchFile->h, tBuf, PROXY_MAXCONCHLEN, 0);
30622         if( len<0 ){
30623           pFile->lastErrno = errno;
30624           return SQLITE_IOERR_LOCK;
30625         }
30626         if( len>PROXY_PATHINDEX && tBuf[0]==(char)PROXY_CONCHVERSION){
30627           /* don't break the lock if the host id doesn't match */
30628           if( 0!=memcmp(&tBuf[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN) ){
30629             return SQLITE_BUSY;
30630           }
30631         }else{
30632           /* don't break the lock on short read or a version mismatch */
30633           return SQLITE_BUSY;
30634         }
30635         usleep(10000000); /* wait 10 sec and try the lock again */
30636         continue;
30637       }
30638 
30639       assert( nTries==3 );
30640       if( 0==proxyBreakConchLock(pFile, myHostID) ){
30641         rc = SQLITE_OK;
30642         if( lockType==EXCLUSIVE_LOCK ){
30643           rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, SHARED_LOCK);
30644         }
30645         if( !rc ){
30646           rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, lockType);
30647         }
30648       }
30649     }
30650   } while( rc==SQLITE_BUSY && nTries<3 );
30651 
30652   return rc;
30653 }
30654 
30655 /* Takes the conch by taking a shared lock and read the contents conch, if
30656 ** lockPath is non-NULL, the host ID and lock file path must match.  A NULL
30657 ** lockPath means that the lockPath in the conch file will be used if the
30658 ** host IDs match, or a new lock path will be generated automatically
30659 ** and written to the conch file.
30660 */
30661 static int proxyTakeConch(unixFile *pFile){
30662   proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
30663 
30664   if( pCtx->conchHeld!=0 ){
30665     return SQLITE_OK;
30666   }else{
30667     unixFile *conchFile = pCtx->conchFile;
30668     uuid_t myHostID;
30669     int pError = 0;
30670     char readBuf[PROXY_MAXCONCHLEN];
30671     char lockPath[MAXPATHLEN];
30672     char *tempLockPath = NULL;
30673     int rc = SQLITE_OK;
30674     int createConch = 0;
30675     int hostIdMatch = 0;
30676     int readLen = 0;
30677     int tryOldLockPath = 0;
30678     int forceNewLockPath = 0;
30679 
30680     OSTRACE(("TAKECONCH  %d for %s pid=%d\n", conchFile->h,
30681              (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"), getpid()));
30682 
30683     rc = proxyGetHostID(myHostID, &pError);
30684     if( (rc&0xff)==SQLITE_IOERR ){
30685       pFile->lastErrno = pError;
30686       goto end_takeconch;
30687     }
30688     rc = proxyConchLock(pFile, myHostID, SHARED_LOCK);
30689     if( rc!=SQLITE_OK ){
30690       goto end_takeconch;
30691     }
30692     /* read the existing conch file */
30693     readLen = seekAndRead((unixFile*)conchFile, 0, readBuf, PROXY_MAXCONCHLEN);
30694     if( readLen<0 ){
30695       /* I/O error: lastErrno set by seekAndRead */
30696       pFile->lastErrno = conchFile->lastErrno;
30697       rc = SQLITE_IOERR_READ;
30698       goto end_takeconch;
30699     }else if( readLen<=(PROXY_HEADERLEN+PROXY_HOSTIDLEN) ||
30700              readBuf[0]!=(char)PROXY_CONCHVERSION ){
30701       /* a short read or version format mismatch means we need to create a new
30702       ** conch file.
30703       */
30704       createConch = 1;
30705     }
30706     /* if the host id matches and the lock path already exists in the conch
30707     ** we'll try to use the path there, if we can't open that path, we'll
30708     ** retry with a new auto-generated path
30709     */
30710     do { /* in case we need to try again for an :auto: named lock file */
30711 
30712       if( !createConch && !forceNewLockPath ){
30713         hostIdMatch = !memcmp(&readBuf[PROXY_HEADERLEN], myHostID,
30714                                   PROXY_HOSTIDLEN);
30715         /* if the conch has data compare the contents */
30716         if( !pCtx->lockProxyPath ){
30717           /* for auto-named local lock file, just check the host ID and we'll
30718            ** use the local lock file path that's already in there
30719            */
30720           if( hostIdMatch ){
30721             size_t pathLen = (readLen - PROXY_PATHINDEX);
30722 
30723             if( pathLen>=MAXPATHLEN ){
30724               pathLen=MAXPATHLEN-1;
30725             }
30726             memcpy(lockPath, &readBuf[PROXY_PATHINDEX], pathLen);
30727             lockPath[pathLen] = 0;
30728             tempLockPath = lockPath;
30729             tryOldLockPath = 1;
30730             /* create a copy of the lock path if the conch is taken */
30731             goto end_takeconch;
30732           }
30733         }else if( hostIdMatch
30734                && !strncmp(pCtx->lockProxyPath, &readBuf[PROXY_PATHINDEX],
30735                            readLen-PROXY_PATHINDEX)
30736         ){
30737           /* conch host and lock path match */
30738           goto end_takeconch;
30739         }
30740       }
30741 
30742       /* if the conch isn't writable and doesn't match, we can't take it */
30743       if( (conchFile->openFlags&O_RDWR) == 0 ){
30744         rc = SQLITE_BUSY;
30745         goto end_takeconch;
30746       }
30747 
30748       /* either the conch didn't match or we need to create a new one */
30749       if( !pCtx->lockProxyPath ){
30750         proxyGetLockPath(pCtx->dbPath, lockPath, MAXPATHLEN);
30751         tempLockPath = lockPath;
30752         /* create a copy of the lock path _only_ if the conch is taken */
30753       }
30754 
30755       /* update conch with host and path (this will fail if other process
30756       ** has a shared lock already), if the host id matches, use the big
30757       ** stick.
30758       */
30759       futimes(conchFile->h, NULL);
30760       if( hostIdMatch && !createConch ){
30761         if( conchFile->pInode && conchFile->pInode->nShared>1 ){
30762           /* We are trying for an exclusive lock but another thread in this
30763            ** same process is still holding a shared lock. */
30764           rc = SQLITE_BUSY;
30765         } else {
30766           rc = proxyConchLock(pFile, myHostID, EXCLUSIVE_LOCK);
30767         }
30768       }else{
30769         rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, EXCLUSIVE_LOCK);
30770       }
30771       if( rc==SQLITE_OK ){
30772         char writeBuffer[PROXY_MAXCONCHLEN];
30773         int writeSize = 0;
30774 
30775         writeBuffer[0] = (char)PROXY_CONCHVERSION;
30776         memcpy(&writeBuffer[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN);
30777         if( pCtx->lockProxyPath!=NULL ){
30778           strlcpy(&writeBuffer[PROXY_PATHINDEX], pCtx->lockProxyPath, MAXPATHLEN);
30779         }else{
30780           strlcpy(&writeBuffer[PROXY_PATHINDEX], tempLockPath, MAXPATHLEN);
30781         }
30782         writeSize = PROXY_PATHINDEX + strlen(&writeBuffer[PROXY_PATHINDEX]);
30783         robust_ftruncate(conchFile->h, writeSize);
30784         rc = unixWrite((sqlite3_file *)conchFile, writeBuffer, writeSize, 0);
30785         fsync(conchFile->h);
30786         /* If we created a new conch file (not just updated the contents of a
30787          ** valid conch file), try to match the permissions of the database
30788          */
30789         if( rc==SQLITE_OK && createConch ){
30790           struct stat buf;
30791           int err = osFstat(pFile->h, &buf);
30792           if( err==0 ){
30793             mode_t cmode = buf.st_mode&(S_IRUSR|S_IWUSR | S_IRGRP|S_IWGRP |
30794                                         S_IROTH|S_IWOTH);
30795             /* try to match the database file R/W permissions, ignore failure */
30796 #ifndef SQLITE_PROXY_DEBUG
30797             osFchmod(conchFile->h, cmode);
30798 #else
30799             do{
30800               rc = osFchmod(conchFile->h, cmode);
30801             }while( rc==(-1) && errno==EINTR );
30802             if( rc!=0 ){
30803               int code = errno;
30804               fprintf(stderr, "fchmod %o FAILED with %d %s\n",
30805                       cmode, code, strerror(code));
30806             } else {
30807               fprintf(stderr, "fchmod %o SUCCEDED\n",cmode);
30808             }
30809           }else{
30810             int code = errno;
30811             fprintf(stderr, "STAT FAILED[%d] with %d %s\n",
30812                     err, code, strerror(code));
30813 #endif
30814           }
30815         }
30816       }
30817       conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, SHARED_LOCK);
30818 
30819     end_takeconch:
30820       OSTRACE(("TRANSPROXY: CLOSE  %d\n", pFile->h));
30821       if( rc==SQLITE_OK && pFile->openFlags ){
30822         int fd;
30823         if( pFile->h>=0 ){
30824           robust_close(pFile, pFile->h, __LINE__);
30825         }
30826         pFile->h = -1;
30827         fd = robust_open(pCtx->dbPath, pFile->openFlags, 0);
30828         OSTRACE(("TRANSPROXY: OPEN  %d\n", fd));
30829         if( fd>=0 ){
30830           pFile->h = fd;
30831         }else{
30832           rc=SQLITE_CANTOPEN_BKPT; /* SQLITE_BUSY? proxyTakeConch called
30833            during locking */
30834         }
30835       }
30836       if( rc==SQLITE_OK && !pCtx->lockProxy ){
30837         char *path = tempLockPath ? tempLockPath : pCtx->lockProxyPath;
30838         rc = proxyCreateUnixFile(path, &pCtx->lockProxy, 1);
30839         if( rc!=SQLITE_OK && rc!=SQLITE_NOMEM && tryOldLockPath ){
30840           /* we couldn't create the proxy lock file with the old lock file path
30841            ** so try again via auto-naming
30842            */
30843           forceNewLockPath = 1;
30844           tryOldLockPath = 0;
30845           continue; /* go back to the do {} while start point, try again */
30846         }
30847       }
30848       if( rc==SQLITE_OK ){
30849         /* Need to make a copy of path if we extracted the value
30850          ** from the conch file or the path was allocated on the stack
30851          */
30852         if( tempLockPath ){
30853           pCtx->lockProxyPath = sqlite3DbStrDup(0, tempLockPath);
30854           if( !pCtx->lockProxyPath ){
30855             rc = SQLITE_NOMEM;
30856           }
30857         }
30858       }
30859       if( rc==SQLITE_OK ){
30860         pCtx->conchHeld = 1;
30861 
30862         if( pCtx->lockProxy->pMethod == &afpIoMethods ){
30863           afpLockingContext *afpCtx;
30864           afpCtx = (afpLockingContext *)pCtx->lockProxy->lockingContext;
30865           afpCtx->dbPath = pCtx->lockProxyPath;
30866         }
30867       } else {
30868         conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK);
30869       }
30870       OSTRACE(("TAKECONCH  %d %s\n", conchFile->h,
30871                rc==SQLITE_OK?"ok":"failed"));
30872       return rc;
30873     } while (1); /* in case we need to retry the :auto: lock file -
30874                  ** we should never get here except via the 'continue' call. */
30875   }
30876 }
30877 
30878 /*
30879 ** If pFile holds a lock on a conch file, then release that lock.
30880 */
30881 static int proxyReleaseConch(unixFile *pFile){
30882   int rc = SQLITE_OK;         /* Subroutine return code */
30883   proxyLockingContext *pCtx;  /* The locking context for the proxy lock */
30884   unixFile *conchFile;        /* Name of the conch file */
30885 
30886   pCtx = (proxyLockingContext *)pFile->lockingContext;
30887   conchFile = pCtx->conchFile;
30888   OSTRACE(("RELEASECONCH  %d for %s pid=%d\n", conchFile->h,
30889            (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"),
30890            getpid()));
30891   if( pCtx->conchHeld>0 ){
30892     rc = conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK);
30893   }
30894   pCtx->conchHeld = 0;
30895   OSTRACE(("RELEASECONCH  %d %s\n", conchFile->h,
30896            (rc==SQLITE_OK ? "ok" : "failed")));
30897   return rc;
30898 }
30899 
30900 /*
30901 ** Given the name of a database file, compute the name of its conch file.
30902 ** Store the conch filename in memory obtained from sqlite3_malloc().
30903 ** Make *pConchPath point to the new name.  Return SQLITE_OK on success
30904 ** or SQLITE_NOMEM if unable to obtain memory.
30905 **
30906 ** The caller is responsible for ensuring that the allocated memory
30907 ** space is eventually freed.
30908 **
30909 ** *pConchPath is set to NULL if a memory allocation error occurs.
30910 */
30911 static int proxyCreateConchPathname(char *dbPath, char **pConchPath){
30912   int i;                        /* Loop counter */
30913   int len = (int)strlen(dbPath); /* Length of database filename - dbPath */
30914   char *conchPath;              /* buffer in which to construct conch name */
30915 
30916   /* Allocate space for the conch filename and initialize the name to
30917   ** the name of the original database file. */
30918   *pConchPath = conchPath = (char *)sqlite3_malloc(len + 8);
30919   if( conchPath==0 ){
30920     return SQLITE_NOMEM;
30921   }
30922   memcpy(conchPath, dbPath, len+1);
30923 
30924   /* now insert a "." before the last / character */
30925   for( i=(len-1); i>=0; i-- ){
30926     if( conchPath[i]=='/' ){
30927       i++;
30928       break;
30929     }
30930   }
30931   conchPath[i]='.';
30932   while ( i<len ){
30933     conchPath[i+1]=dbPath[i];
30934     i++;
30935   }
30936 
30937   /* append the "-conch" suffix to the file */
30938   memcpy(&conchPath[i+1], "-conch", 7);
30939   assert( (int)strlen(conchPath) == len+7 );
30940 
30941   return SQLITE_OK;
30942 }
30943 
30944 
30945 /* Takes a fully configured proxy locking-style unix file and switches
30946 ** the local lock file path
30947 */
30948 static int switchLockProxyPath(unixFile *pFile, const char *path) {
30949   proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext;
30950   char *oldPath = pCtx->lockProxyPath;
30951   int rc = SQLITE_OK;
30952 
30953   if( pFile->eFileLock!=NO_LOCK ){
30954     return SQLITE_BUSY;
30955   }
30956 
30957   /* nothing to do if the path is NULL, :auto: or matches the existing path */
30958   if( !path || path[0]=='\0' || !strcmp(path, ":auto:") ||
30959     (oldPath && !strncmp(oldPath, path, MAXPATHLEN)) ){
30960     return SQLITE_OK;
30961   }else{
30962     unixFile *lockProxy = pCtx->lockProxy;
30963     pCtx->lockProxy=NULL;
30964     pCtx->conchHeld = 0;
30965     if( lockProxy!=NULL ){
30966       rc=lockProxy->pMethod->xClose((sqlite3_file *)lockProxy);
30967       if( rc ) return rc;
30968       sqlite3_free(lockProxy);
30969     }
30970     sqlite3_free(oldPath);
30971     pCtx->lockProxyPath = sqlite3DbStrDup(0, path);
30972   }
30973 
30974   return rc;
30975 }
30976 
30977 /*
30978 ** pFile is a file that has been opened by a prior xOpen call.  dbPath
30979 ** is a string buffer at least MAXPATHLEN+1 characters in size.
30980 **
30981 ** This routine find the filename associated with pFile and writes it
30982 ** int dbPath.
30983 */
30984 static int proxyGetDbPathForUnixFile(unixFile *pFile, char *dbPath){
30985 #if defined(__APPLE__)
30986   if( pFile->pMethod == &afpIoMethods ){
30987     /* afp style keeps a reference to the db path in the filePath field
30988     ** of the struct */
30989     assert( (int)strlen((char*)pFile->lockingContext)<=MAXPATHLEN );
30990     strlcpy(dbPath, ((afpLockingContext *)pFile->lockingContext)->dbPath, MAXPATHLEN);
30991   } else
30992 #endif
30993   if( pFile->pMethod == &dotlockIoMethods ){
30994     /* dot lock style uses the locking context to store the dot lock
30995     ** file path */
30996     int len = strlen((char *)pFile->lockingContext) - strlen(DOTLOCK_SUFFIX);
30997     memcpy(dbPath, (char *)pFile->lockingContext, len + 1);
30998   }else{
30999     /* all other styles use the locking context to store the db file path */
31000     assert( strlen((char*)pFile->lockingContext)<=MAXPATHLEN );
31001     strlcpy(dbPath, (char *)pFile->lockingContext, MAXPATHLEN);
31002   }
31003   return SQLITE_OK;
31004 }
31005 
31006 /*
31007 ** Takes an already filled in unix file and alters it so all file locking
31008 ** will be performed on the local proxy lock file.  The following fields
31009 ** are preserved in the locking context so that they can be restored and
31010 ** the unix structure properly cleaned up at close time:
31011 **  ->lockingContext
31012 **  ->pMethod
31013 */
31014 static int proxyTransformUnixFile(unixFile *pFile, const char *path) {
31015   proxyLockingContext *pCtx;
31016   char dbPath[MAXPATHLEN+1];       /* Name of the database file */
31017   char *lockPath=NULL;
31018   int rc = SQLITE_OK;
31019 
31020   if( pFile->eFileLock!=NO_LOCK ){
31021     return SQLITE_BUSY;
31022   }
31023   proxyGetDbPathForUnixFile(pFile, dbPath);
31024   if( !path || path[0]=='\0' || !strcmp(path, ":auto:") ){
31025     lockPath=NULL;
31026   }else{
31027     lockPath=(char *)path;
31028   }
31029 
31030   OSTRACE(("TRANSPROXY  %d for %s pid=%d\n", pFile->h,
31031            (lockPath ? lockPath : ":auto:"), getpid()));
31032 
31033   pCtx = sqlite3_malloc( sizeof(*pCtx) );
31034   if( pCtx==0 ){
31035     return SQLITE_NOMEM;
31036   }
31037   memset(pCtx, 0, sizeof(*pCtx));
31038 
31039   rc = proxyCreateConchPathname(dbPath, &pCtx->conchFilePath);
31040   if( rc==SQLITE_OK ){
31041     rc = proxyCreateUnixFile(pCtx->conchFilePath, &pCtx->conchFile, 0);
31042     if( rc==SQLITE_CANTOPEN && ((pFile->openFlags&O_RDWR) == 0) ){
31043       /* if (a) the open flags are not O_RDWR, (b) the conch isn't there, and
31044       ** (c) the file system is read-only, then enable no-locking access.
31045       ** Ugh, since O_RDONLY==0x0000 we test for !O_RDWR since unixOpen asserts
31046       ** that openFlags will have only one of O_RDONLY or O_RDWR.
31047       */
31048       struct statfs fsInfo;
31049       struct stat conchInfo;
31050       int goLockless = 0;
31051 
31052       if( osStat(pCtx->conchFilePath, &conchInfo) == -1 ) {
31053         int err = errno;
31054         if( (err==ENOENT) && (statfs(dbPath, &fsInfo) != -1) ){
31055           goLockless = (fsInfo.f_flags&MNT_RDONLY) == MNT_RDONLY;
31056         }
31057       }
31058       if( goLockless ){
31059         pCtx->conchHeld = -1; /* read only FS/ lockless */
31060         rc = SQLITE_OK;
31061       }
31062     }
31063   }
31064   if( rc==SQLITE_OK && lockPath ){
31065     pCtx->lockProxyPath = sqlite3DbStrDup(0, lockPath);
31066   }
31067 
31068   if( rc==SQLITE_OK ){
31069     pCtx->dbPath = sqlite3DbStrDup(0, dbPath);
31070     if( pCtx->dbPath==NULL ){
31071       rc = SQLITE_NOMEM;
31072     }
31073   }
31074   if( rc==SQLITE_OK ){
31075     /* all memory is allocated, proxys are created and assigned,
31076     ** switch the locking context and pMethod then return.
31077     */
31078     pCtx->oldLockingContext = pFile->lockingContext;
31079     pFile->lockingContext = pCtx;
31080     pCtx->pOldMethod = pFile->pMethod;
31081     pFile->pMethod = &proxyIoMethods;
31082   }else{
31083     if( pCtx->conchFile ){
31084       pCtx->conchFile->pMethod->xClose((sqlite3_file *)pCtx->conchFile);
31085       sqlite3_free(pCtx->conchFile);
31086     }
31087     sqlite3DbFree(0, pCtx->lockProxyPath);
31088     sqlite3_free(pCtx->conchFilePath);
31089     sqlite3_free(pCtx);
31090   }
31091   OSTRACE(("TRANSPROXY  %d %s\n", pFile->h,
31092            (rc==SQLITE_OK ? "ok" : "failed")));
31093   return rc;
31094 }
31095 
31096 
31097 /*
31098 ** This routine handles sqlite3_file_control() calls that are specific
31099 ** to proxy locking.
31100 */
31101 static int proxyFileControl(sqlite3_file *id, int op, void *pArg){
31102   switch( op ){
31103     case SQLITE_GET_LOCKPROXYFILE: {
31104       unixFile *pFile = (unixFile*)id;
31105       if( pFile->pMethod == &proxyIoMethods ){
31106         proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext;
31107         proxyTakeConch(pFile);
31108         if( pCtx->lockProxyPath ){
31109           *(const char **)pArg = pCtx->lockProxyPath;
31110         }else{
31111           *(const char **)pArg = ":auto: (not held)";
31112         }
31113       } else {
31114         *(const char **)pArg = NULL;
31115       }
31116       return SQLITE_OK;
31117     }
31118     case SQLITE_SET_LOCKPROXYFILE: {
31119       unixFile *pFile = (unixFile*)id;
31120       int rc = SQLITE_OK;
31121       int isProxyStyle = (pFile->pMethod == &proxyIoMethods);
31122       if( pArg==NULL || (const char *)pArg==0 ){
31123         if( isProxyStyle ){
31124           /* turn off proxy locking - not supported */
31125           rc = SQLITE_ERROR /*SQLITE_PROTOCOL? SQLITE_MISUSE?*/;
31126         }else{
31127           /* turn off proxy locking - already off - NOOP */
31128           rc = SQLITE_OK;
31129         }
31130       }else{
31131         const char *proxyPath = (const char *)pArg;
31132         if( isProxyStyle ){
31133           proxyLockingContext *pCtx =
31134             (proxyLockingContext*)pFile->lockingContext;
31135           if( !strcmp(pArg, ":auto:")
31136            || (pCtx->lockProxyPath &&
31137                !strncmp(pCtx->lockProxyPath, proxyPath, MAXPATHLEN))
31138           ){
31139             rc = SQLITE_OK;
31140           }else{
31141             rc = switchLockProxyPath(pFile, proxyPath);
31142           }
31143         }else{
31144           /* turn on proxy file locking */
31145           rc = proxyTransformUnixFile(pFile, proxyPath);
31146         }
31147       }
31148       return rc;
31149     }
31150     default: {
31151       assert( 0 );  /* The call assures that only valid opcodes are sent */
31152     }
31153   }
31154   /*NOTREACHED*/
31155   return SQLITE_ERROR;
31156 }
31157 
31158 /*
31159 ** Within this division (the proxying locking implementation) the procedures
31160 ** above this point are all utilities.  The lock-related methods of the
31161 ** proxy-locking sqlite3_io_method object follow.
31162 */
31163 
31164 
31165 /*
31166 ** This routine checks if there is a RESERVED lock held on the specified
31167 ** file by this or any other process. If such a lock is held, set *pResOut
31168 ** to a non-zero value otherwise *pResOut is set to zero.  The return value
31169 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
31170 */
31171 static int proxyCheckReservedLock(sqlite3_file *id, int *pResOut) {
31172   unixFile *pFile = (unixFile*)id;
31173   int rc = proxyTakeConch(pFile);
31174   if( rc==SQLITE_OK ){
31175     proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
31176     if( pCtx->conchHeld>0 ){
31177       unixFile *proxy = pCtx->lockProxy;
31178       return proxy->pMethod->xCheckReservedLock((sqlite3_file*)proxy, pResOut);
31179     }else{ /* conchHeld < 0 is lockless */
31180       pResOut=0;
31181     }
31182   }
31183   return rc;
31184 }
31185 
31186 /*
31187 ** Lock the file with the lock specified by parameter eFileLock - one
31188 ** of the following:
31189 **
31190 **     (1) SHARED_LOCK
31191 **     (2) RESERVED_LOCK
31192 **     (3) PENDING_LOCK
31193 **     (4) EXCLUSIVE_LOCK
31194 **
31195 ** Sometimes when requesting one lock state, additional lock states
31196 ** are inserted in between.  The locking might fail on one of the later
31197 ** transitions leaving the lock state different from what it started but
31198 ** still short of its goal.  The following chart shows the allowed
31199 ** transitions and the inserted intermediate states:
31200 **
31201 **    UNLOCKED -> SHARED
31202 **    SHARED -> RESERVED
31203 **    SHARED -> (PENDING) -> EXCLUSIVE
31204 **    RESERVED -> (PENDING) -> EXCLUSIVE
31205 **    PENDING -> EXCLUSIVE
31206 **
31207 ** This routine will only increase a lock.  Use the sqlite3OsUnlock()
31208 ** routine to lower a locking level.
31209 */
31210 static int proxyLock(sqlite3_file *id, int eFileLock) {
31211   unixFile *pFile = (unixFile*)id;
31212   int rc = proxyTakeConch(pFile);
31213   if( rc==SQLITE_OK ){
31214     proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
31215     if( pCtx->conchHeld>0 ){
31216       unixFile *proxy = pCtx->lockProxy;
31217       rc = proxy->pMethod->xLock((sqlite3_file*)proxy, eFileLock);
31218       pFile->eFileLock = proxy->eFileLock;
31219     }else{
31220       /* conchHeld < 0 is lockless */
31221     }
31222   }
31223   return rc;
31224 }
31225 
31226 
31227 /*
31228 ** Lower the locking level on file descriptor pFile to eFileLock.  eFileLock
31229 ** must be either NO_LOCK or SHARED_LOCK.
31230 **
31231 ** If the locking level of the file descriptor is already at or below
31232 ** the requested locking level, this routine is a no-op.
31233 */
31234 static int proxyUnlock(sqlite3_file *id, int eFileLock) {
31235   unixFile *pFile = (unixFile*)id;
31236   int rc = proxyTakeConch(pFile);
31237   if( rc==SQLITE_OK ){
31238     proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
31239     if( pCtx->conchHeld>0 ){
31240       unixFile *proxy = pCtx->lockProxy;
31241       rc = proxy->pMethod->xUnlock((sqlite3_file*)proxy, eFileLock);
31242       pFile->eFileLock = proxy->eFileLock;
31243     }else{
31244       /* conchHeld < 0 is lockless */
31245     }
31246   }
31247   return rc;
31248 }
31249 
31250 /*
31251 ** Close a file that uses proxy locks.
31252 */
31253 static int proxyClose(sqlite3_file *id) {
31254   if( id ){
31255     unixFile *pFile = (unixFile*)id;
31256     proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
31257     unixFile *lockProxy = pCtx->lockProxy;
31258     unixFile *conchFile = pCtx->conchFile;
31259     int rc = SQLITE_OK;
31260 
31261     if( lockProxy ){
31262       rc = lockProxy->pMethod->xUnlock((sqlite3_file*)lockProxy, NO_LOCK);
31263       if( rc ) return rc;
31264       rc = lockProxy->pMethod->xClose((sqlite3_file*)lockProxy);
31265       if( rc ) return rc;
31266       sqlite3_free(lockProxy);
31267       pCtx->lockProxy = 0;
31268     }
31269     if( conchFile ){
31270       if( pCtx->conchHeld ){
31271         rc = proxyReleaseConch(pFile);
31272         if( rc ) return rc;
31273       }
31274       rc = conchFile->pMethod->xClose((sqlite3_file*)conchFile);
31275       if( rc ) return rc;
31276       sqlite3_free(conchFile);
31277     }
31278     sqlite3DbFree(0, pCtx->lockProxyPath);
31279     sqlite3_free(pCtx->conchFilePath);
31280     sqlite3DbFree(0, pCtx->dbPath);
31281     /* restore the original locking context and pMethod then close it */
31282     pFile->lockingContext = pCtx->oldLockingContext;
31283     pFile->pMethod = pCtx->pOldMethod;
31284     sqlite3_free(pCtx);
31285     return pFile->pMethod->xClose(id);
31286   }
31287   return SQLITE_OK;
31288 }
31289 
31290 
31291 
31292 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
31293 /*
31294 ** The proxy locking style is intended for use with AFP filesystems.
31295 ** And since AFP is only supported on MacOSX, the proxy locking is also
31296 ** restricted to MacOSX.
31297 **
31298 **
31299 ******************* End of the proxy lock implementation **********************
31300 ******************************************************************************/
31301 
31302 /*
31303 ** Initialize the operating system interface.
31304 **
31305 ** This routine registers all VFS implementations for unix-like operating
31306 ** systems.  This routine, and the sqlite3_os_end() routine that follows,
31307 ** should be the only routines in this file that are visible from other
31308 ** files.
31309 **
31310 ** This routine is called once during SQLite initialization and by a
31311 ** single thread.  The memory allocation and mutex subsystems have not
31312 ** necessarily been initialized when this routine is called, and so they
31313 ** should not be used.
31314 */
31315 SQLITE_API int sqlite3_os_init(void){
31316   /*
31317   ** The following macro defines an initializer for an sqlite3_vfs object.
31318   ** The name of the VFS is NAME.  The pAppData is a pointer to a pointer
31319   ** to the "finder" function.  (pAppData is a pointer to a pointer because
31320   ** silly C90 rules prohibit a void* from being cast to a function pointer
31321   ** and so we have to go through the intermediate pointer to avoid problems
31322   ** when compiling with -pedantic-errors on GCC.)
31323   **
31324   ** The FINDER parameter to this macro is the name of the pointer to the
31325   ** finder-function.  The finder-function returns a pointer to the
31326   ** sqlite_io_methods object that implements the desired locking
31327   ** behaviors.  See the division above that contains the IOMETHODS
31328   ** macro for addition information on finder-functions.
31329   **
31330   ** Most finders simply return a pointer to a fixed sqlite3_io_methods
31331   ** object.  But the "autolockIoFinder" available on MacOSX does a little
31332   ** more than that; it looks at the filesystem type that hosts the
31333   ** database file and tries to choose an locking method appropriate for
31334   ** that filesystem time.
31335   */
31336   #define UNIXVFS(VFSNAME, FINDER) {                        \
31337     3,                    /* iVersion */                    \
31338     sizeof(unixFile),     /* szOsFile */                    \
31339     MAX_PATHNAME,         /* mxPathname */                  \
31340     0,                    /* pNext */                       \
31341     VFSNAME,              /* zName */                       \
31342     (void*)&FINDER,       /* pAppData */                    \
31343     unixOpen,             /* xOpen */                       \
31344     unixDelete,           /* xDelete */                     \
31345     unixAccess,           /* xAccess */                     \
31346     unixFullPathname,     /* xFullPathname */               \
31347     unixDlOpen,           /* xDlOpen */                     \
31348     unixDlError,          /* xDlError */                    \
31349     unixDlSym,            /* xDlSym */                      \
31350     unixDlClose,          /* xDlClose */                    \
31351     unixRandomness,       /* xRandomness */                 \
31352     unixSleep,            /* xSleep */                      \
31353     unixCurrentTime,      /* xCurrentTime */                \
31354     unixGetLastError,     /* xGetLastError */               \
31355     unixCurrentTimeInt64, /* xCurrentTimeInt64 */           \
31356     unixSetSystemCall,    /* xSetSystemCall */              \
31357     unixGetSystemCall,    /* xGetSystemCall */              \
31358     unixNextSystemCall,   /* xNextSystemCall */             \
31359   }
31360 
31361   /*
31362   ** All default VFSes for unix are contained in the following array.
31363   **
31364   ** Note that the sqlite3_vfs.pNext field of the VFS object is modified
31365   ** by the SQLite core when the VFS is registered.  So the following
31366   ** array cannot be const.
31367   */
31368   static sqlite3_vfs aVfs[] = {
31369 #if SQLITE_ENABLE_LOCKING_STYLE && (OS_VXWORKS || defined(__APPLE__))
31370     UNIXVFS("unix",          autolockIoFinder ),
31371 #else
31372     UNIXVFS("unix",          posixIoFinder ),
31373 #endif
31374     UNIXVFS("unix-none",     nolockIoFinder ),
31375     UNIXVFS("unix-dotfile",  dotlockIoFinder ),
31376     UNIXVFS("unix-excl",     posixIoFinder ),
31377 #if OS_VXWORKS
31378     UNIXVFS("unix-namedsem", semIoFinder ),
31379 #endif
31380 #if SQLITE_ENABLE_LOCKING_STYLE
31381     UNIXVFS("unix-posix",    posixIoFinder ),
31382 #if !OS_VXWORKS
31383     UNIXVFS("unix-flock",    flockIoFinder ),
31384 #endif
31385 #endif
31386 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
31387     UNIXVFS("unix-afp",      afpIoFinder ),
31388     UNIXVFS("unix-nfs",      nfsIoFinder ),
31389     UNIXVFS("unix-proxy",    proxyIoFinder ),
31390 #endif
31391   };
31392   unsigned int i;          /* Loop counter */
31393 
31394   /* Double-check that the aSyscall[] array has been constructed
31395   ** correctly.  See ticket [bb3a86e890c8e96ab] */
31396   assert( ArraySize(aSyscall)==25 );
31397 
31398   /* Register all VFSes defined in the aVfs[] array */
31399   for(i=0; i<(sizeof(aVfs)/sizeof(sqlite3_vfs)); i++){
31400     sqlite3_vfs_register(&aVfs[i], i==0);
31401   }
31402   return SQLITE_OK;
31403 }
31404 
31405 /*
31406 ** Shutdown the operating system interface.
31407 **
31408 ** Some operating systems might need to do some cleanup in this routine,
31409 ** to release dynamically allocated objects.  But not on unix.
31410 ** This routine is a no-op for unix.
31411 */
31412 SQLITE_API int sqlite3_os_end(void){
31413   return SQLITE_OK;
31414 }
31415 
31416 #endif /* SQLITE_OS_UNIX */
31417 
31418 /************** End of os_unix.c *********************************************/
31419 /************** Begin file os_win.c ******************************************/
31420 /*
31421 ** 2004 May 22
31422 **
31423 ** The author disclaims copyright to this source code.  In place of
31424 ** a legal notice, here is a blessing:
31425 **
31426 **    May you do good and not evil.
31427 **    May you find forgiveness for yourself and forgive others.
31428 **    May you share freely, never taking more than you give.
31429 **
31430 ******************************************************************************
31431 **
31432 ** This file contains code that is specific to Windows.
31433 */
31434 #if SQLITE_OS_WIN               /* This file is used for Windows only */
31435 
31436 /*
31437 ** Include code that is common to all os_*.c files
31438 */
31439 /************** Include os_common.h in the middle of os_win.c ****************/
31440 /************** Begin file os_common.h ***************************************/
31441 /*
31442 ** 2004 May 22
31443 **
31444 ** The author disclaims copyright to this source code.  In place of
31445 ** a legal notice, here is a blessing:
31446 **
31447 **    May you do good and not evil.
31448 **    May you find forgiveness for yourself and forgive others.
31449 **    May you share freely, never taking more than you give.
31450 **
31451 ******************************************************************************
31452 **
31453 ** This file contains macros and a little bit of code that is common to
31454 ** all of the platform-specific files (os_*.c) and is #included into those
31455 ** files.
31456 **
31457 ** This file should be #included by the os_*.c files only.  It is not a
31458 ** general purpose header file.
31459 */
31460 #ifndef _OS_COMMON_H_
31461 #define _OS_COMMON_H_
31462 
31463 /*
31464 ** At least two bugs have slipped in because we changed the MEMORY_DEBUG
31465 ** macro to SQLITE_DEBUG and some older makefiles have not yet made the
31466 ** switch.  The following code should catch this problem at compile-time.
31467 */
31468 #ifdef MEMORY_DEBUG
31469 # error "The MEMORY_DEBUG macro is obsolete.  Use SQLITE_DEBUG instead."
31470 #endif
31471 
31472 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
31473 # ifndef SQLITE_DEBUG_OS_TRACE
31474 #   define SQLITE_DEBUG_OS_TRACE 0
31475 # endif
31476   int sqlite3OSTrace = SQLITE_DEBUG_OS_TRACE;
31477 # define OSTRACE(X)          if( sqlite3OSTrace ) sqlite3DebugPrintf X
31478 #else
31479 # define OSTRACE(X)
31480 #endif
31481 
31482 /*
31483 ** Macros for performance tracing.  Normally turned off.  Only works
31484 ** on i486 hardware.
31485 */
31486 #ifdef SQLITE_PERFORMANCE_TRACE
31487 
31488 /*
31489 ** hwtime.h contains inline assembler code for implementing
31490 ** high-performance timing routines.
31491 */
31492 /************** Include hwtime.h in the middle of os_common.h ****************/
31493 /************** Begin file hwtime.h ******************************************/
31494 /*
31495 ** 2008 May 27
31496 **
31497 ** The author disclaims copyright to this source code.  In place of
31498 ** a legal notice, here is a blessing:
31499 **
31500 **    May you do good and not evil.
31501 **    May you find forgiveness for yourself and forgive others.
31502 **    May you share freely, never taking more than you give.
31503 **
31504 ******************************************************************************
31505 **
31506 ** This file contains inline asm code for retrieving "high-performance"
31507 ** counters for x86 class CPUs.
31508 */
31509 #ifndef _HWTIME_H_
31510 #define _HWTIME_H_
31511 
31512 /*
31513 ** The following routine only works on pentium-class (or newer) processors.
31514 ** It uses the RDTSC opcode to read the cycle count value out of the
31515 ** processor and returns that value.  This can be used for high-res
31516 ** profiling.
31517 */
31518 #if (defined(__GNUC__) || defined(_MSC_VER)) && \
31519       (defined(i386) || defined(__i386__) || defined(_M_IX86))
31520 
31521   #if defined(__GNUC__)
31522 
31523   __inline__ sqlite_uint64 sqlite3Hwtime(void){
31524      unsigned int lo, hi;
31525      __asm__ __volatile__ ("rdtsc" : "=a" (lo), "=d" (hi));
31526      return (sqlite_uint64)hi << 32 | lo;
31527   }
31528 
31529   #elif defined(_MSC_VER)
31530 
31531   __declspec(naked) __inline sqlite_uint64 __cdecl sqlite3Hwtime(void){
31532      __asm {
31533         rdtsc
31534         ret       ; return value at EDX:EAX
31535      }
31536   }
31537 
31538   #endif
31539 
31540 #elif (defined(__GNUC__) && defined(__x86_64__))
31541 
31542   __inline__ sqlite_uint64 sqlite3Hwtime(void){
31543       unsigned long val;
31544       __asm__ __volatile__ ("rdtsc" : "=A" (val));
31545       return val;
31546   }
31547 
31548 #elif (defined(__GNUC__) && defined(__ppc__))
31549 
31550   __inline__ sqlite_uint64 sqlite3Hwtime(void){
31551       unsigned long long retval;
31552       unsigned long junk;
31553       __asm__ __volatile__ ("\n\
31554           1:      mftbu   %1\n\
31555                   mftb    %L0\n\
31556                   mftbu   %0\n\
31557                   cmpw    %0,%1\n\
31558                   bne     1b"
31559                   : "=r" (retval), "=r" (junk));
31560       return retval;
31561   }
31562 
31563 #else
31564 
31565   #error Need implementation of sqlite3Hwtime() for your platform.
31566 
31567   /*
31568   ** To compile without implementing sqlite3Hwtime() for your platform,
31569   ** you can remove the above #error and use the following
31570   ** stub function.  You will lose timing support for many
31571   ** of the debugging and testing utilities, but it should at
31572   ** least compile and run.
31573   */
31574 SQLITE_PRIVATE   sqlite_uint64 sqlite3Hwtime(void){ return ((sqlite_uint64)0); }
31575 
31576 #endif
31577 
31578 #endif /* !defined(_HWTIME_H_) */
31579 
31580 /************** End of hwtime.h **********************************************/
31581 /************** Continuing where we left off in os_common.h ******************/
31582 
31583 static sqlite_uint64 g_start;
31584 static sqlite_uint64 g_elapsed;
31585 #define TIMER_START       g_start=sqlite3Hwtime()
31586 #define TIMER_END         g_elapsed=sqlite3Hwtime()-g_start
31587 #define TIMER_ELAPSED     g_elapsed
31588 #else
31589 #define TIMER_START
31590 #define TIMER_END
31591 #define TIMER_ELAPSED     ((sqlite_uint64)0)
31592 #endif
31593 
31594 /*
31595 ** If we compile with the SQLITE_TEST macro set, then the following block
31596 ** of code will give us the ability to simulate a disk I/O error.  This
31597 ** is used for testing the I/O recovery logic.
31598 */
31599 #ifdef SQLITE_TEST
31600 SQLITE_API int sqlite3_io_error_hit = 0;            /* Total number of I/O Errors */
31601 SQLITE_API int sqlite3_io_error_hardhit = 0;        /* Number of non-benign errors */
31602 SQLITE_API int sqlite3_io_error_pending = 0;        /* Count down to first I/O error */
31603 SQLITE_API int sqlite3_io_error_persist = 0;        /* True if I/O errors persist */
31604 SQLITE_API int sqlite3_io_error_benign = 0;         /* True if errors are benign */
31605 SQLITE_API int sqlite3_diskfull_pending = 0;
31606 SQLITE_API int sqlite3_diskfull = 0;
31607 #define SimulateIOErrorBenign(X) sqlite3_io_error_benign=(X)
31608 #define SimulateIOError(CODE)  \
31609   if( (sqlite3_io_error_persist && sqlite3_io_error_hit) \
31610        || sqlite3_io_error_pending-- == 1 )  \
31611               { local_ioerr(); CODE; }
31612 static void local_ioerr(){
31613   IOTRACE(("IOERR\n"));
31614   sqlite3_io_error_hit++;
31615   if( !sqlite3_io_error_benign ) sqlite3_io_error_hardhit++;
31616 }
31617 #define SimulateDiskfullError(CODE) \
31618    if( sqlite3_diskfull_pending ){ \
31619      if( sqlite3_diskfull_pending == 1 ){ \
31620        local_ioerr(); \
31621        sqlite3_diskfull = 1; \
31622        sqlite3_io_error_hit = 1; \
31623        CODE; \
31624      }else{ \
31625        sqlite3_diskfull_pending--; \
31626      } \
31627    }
31628 #else
31629 #define SimulateIOErrorBenign(X)
31630 #define SimulateIOError(A)
31631 #define SimulateDiskfullError(A)
31632 #endif
31633 
31634 /*
31635 ** When testing, keep a count of the number of open files.
31636 */
31637 #ifdef SQLITE_TEST
31638 SQLITE_API int sqlite3_open_file_count = 0;
31639 #define OpenCounter(X)  sqlite3_open_file_count+=(X)
31640 #else
31641 #define OpenCounter(X)
31642 #endif
31643 
31644 #endif /* !defined(_OS_COMMON_H_) */
31645 
31646 /************** End of os_common.h *******************************************/
31647 /************** Continuing where we left off in os_win.c *********************/
31648 
31649 /*
31650 ** Include the header file for the Windows VFS.
31651 */
31652 
31653 /*
31654 ** Compiling and using WAL mode requires several APIs that are only
31655 ** available in Windows platforms based on the NT kernel.
31656 */
31657 #if !SQLITE_OS_WINNT && !defined(SQLITE_OMIT_WAL)
31658 #  error "WAL mode requires support from the Windows NT kernel, compile\
31659  with SQLITE_OMIT_WAL."
31660 #endif
31661 
31662 /*
31663 ** Are most of the Win32 ANSI APIs available (i.e. with certain exceptions
31664 ** based on the sub-platform)?
31665 */
31666 #if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && !defined(SQLITE_WIN32_NO_ANSI)
31667 #  define SQLITE_WIN32_HAS_ANSI
31668 #endif
31669 
31670 /*
31671 ** Are most of the Win32 Unicode APIs available (i.e. with certain exceptions
31672 ** based on the sub-platform)?
31673 */
31674 #if (SQLITE_OS_WINCE || SQLITE_OS_WINNT || SQLITE_OS_WINRT) && \
31675     !defined(SQLITE_WIN32_NO_WIDE)
31676 #  define SQLITE_WIN32_HAS_WIDE
31677 #endif
31678 
31679 /*
31680 ** Make sure at least one set of Win32 APIs is available.
31681 */
31682 #if !defined(SQLITE_WIN32_HAS_ANSI) && !defined(SQLITE_WIN32_HAS_WIDE)
31683 #  error "At least one of SQLITE_WIN32_HAS_ANSI and SQLITE_WIN32_HAS_WIDE\
31684  must be defined."
31685 #endif
31686 
31687 /*
31688 ** Define the required Windows SDK version constants if they are not
31689 ** already available.
31690 */
31691 #ifndef NTDDI_WIN8
31692 #  define NTDDI_WIN8                        0x06020000
31693 #endif
31694 
31695 #ifndef NTDDI_WINBLUE
31696 #  define NTDDI_WINBLUE                     0x06030000
31697 #endif
31698 
31699 /*
31700 ** Check if the GetVersionEx[AW] functions should be considered deprecated
31701 ** and avoid using them in that case.  It should be noted here that if the
31702 ** value of the SQLITE_WIN32_GETVERSIONEX pre-processor macro is zero
31703 ** (whether via this block or via being manually specified), that implies
31704 ** the underlying operating system will always be based on the Windows NT
31705 ** Kernel.
31706 */
31707 #ifndef SQLITE_WIN32_GETVERSIONEX
31708 #  if defined(NTDDI_VERSION) && NTDDI_VERSION >= NTDDI_WINBLUE
31709 #    define SQLITE_WIN32_GETVERSIONEX   0
31710 #  else
31711 #    define SQLITE_WIN32_GETVERSIONEX   1
31712 #  endif
31713 #endif
31714 
31715 /*
31716 ** This constant should already be defined (in the "WinDef.h" SDK file).
31717 */
31718 #ifndef MAX_PATH
31719 #  define MAX_PATH                      (260)
31720 #endif
31721 
31722 /*
31723 ** Maximum pathname length (in chars) for Win32.  This should normally be
31724 ** MAX_PATH.
31725 */
31726 #ifndef SQLITE_WIN32_MAX_PATH_CHARS
31727 #  define SQLITE_WIN32_MAX_PATH_CHARS   (MAX_PATH)
31728 #endif
31729 
31730 /*
31731 ** This constant should already be defined (in the "WinNT.h" SDK file).
31732 */
31733 #ifndef UNICODE_STRING_MAX_CHARS
31734 #  define UNICODE_STRING_MAX_CHARS      (32767)
31735 #endif
31736 
31737 /*
31738 ** Maximum pathname length (in chars) for WinNT.  This should normally be
31739 ** UNICODE_STRING_MAX_CHARS.
31740 */
31741 #ifndef SQLITE_WINNT_MAX_PATH_CHARS
31742 #  define SQLITE_WINNT_MAX_PATH_CHARS   (UNICODE_STRING_MAX_CHARS)
31743 #endif
31744 
31745 /*
31746 ** Maximum pathname length (in bytes) for Win32.  The MAX_PATH macro is in
31747 ** characters, so we allocate 4 bytes per character assuming worst-case of
31748 ** 4-bytes-per-character for UTF8.
31749 */
31750 #ifndef SQLITE_WIN32_MAX_PATH_BYTES
31751 #  define SQLITE_WIN32_MAX_PATH_BYTES   (SQLITE_WIN32_MAX_PATH_CHARS*4)
31752 #endif
31753 
31754 /*
31755 ** Maximum pathname length (in bytes) for WinNT.  This should normally be
31756 ** UNICODE_STRING_MAX_CHARS * sizeof(WCHAR).
31757 */
31758 #ifndef SQLITE_WINNT_MAX_PATH_BYTES
31759 #  define SQLITE_WINNT_MAX_PATH_BYTES   \
31760                             (sizeof(WCHAR) * SQLITE_WINNT_MAX_PATH_CHARS)
31761 #endif
31762 
31763 /*
31764 ** Maximum error message length (in chars) for WinRT.
31765 */
31766 #ifndef SQLITE_WIN32_MAX_ERRMSG_CHARS
31767 #  define SQLITE_WIN32_MAX_ERRMSG_CHARS (1024)
31768 #endif
31769 
31770 /*
31771 ** Returns non-zero if the character should be treated as a directory
31772 ** separator.
31773 */
31774 #ifndef winIsDirSep
31775 #  define winIsDirSep(a)                (((a) == '/') || ((a) == '\\'))
31776 #endif
31777 
31778 /*
31779 ** This macro is used when a local variable is set to a value that is
31780 ** [sometimes] not used by the code (e.g. via conditional compilation).
31781 */
31782 #ifndef UNUSED_VARIABLE_VALUE
31783 #  define UNUSED_VARIABLE_VALUE(x) (void)(x)
31784 #endif
31785 
31786 /*
31787 ** Returns the character that should be used as the directory separator.
31788 */
31789 #ifndef winGetDirSep
31790 #  define winGetDirSep()                '\\'
31791 #endif
31792 
31793 /*
31794 ** Do we need to manually define the Win32 file mapping APIs for use with WAL
31795 ** mode (e.g. these APIs are available in the Windows CE SDK; however, they
31796 ** are not present in the header file)?
31797 */
31798 #if SQLITE_WIN32_FILEMAPPING_API && !defined(SQLITE_OMIT_WAL)
31799 /*
31800 ** Two of the file mapping APIs are different under WinRT.  Figure out which
31801 ** set we need.
31802 */
31803 #if SQLITE_OS_WINRT
31804 WINBASEAPI HANDLE WINAPI CreateFileMappingFromApp(HANDLE, \
31805         LPSECURITY_ATTRIBUTES, ULONG, ULONG64, LPCWSTR);
31806 
31807 WINBASEAPI LPVOID WINAPI MapViewOfFileFromApp(HANDLE, ULONG, ULONG64, SIZE_T);
31808 #else
31809 #if defined(SQLITE_WIN32_HAS_ANSI)
31810 WINBASEAPI HANDLE WINAPI CreateFileMappingA(HANDLE, LPSECURITY_ATTRIBUTES, \
31811         DWORD, DWORD, DWORD, LPCSTR);
31812 #endif /* defined(SQLITE_WIN32_HAS_ANSI) */
31813 
31814 #if defined(SQLITE_WIN32_HAS_WIDE)
31815 WINBASEAPI HANDLE WINAPI CreateFileMappingW(HANDLE, LPSECURITY_ATTRIBUTES, \
31816         DWORD, DWORD, DWORD, LPCWSTR);
31817 #endif /* defined(SQLITE_WIN32_HAS_WIDE) */
31818 
31819 WINBASEAPI LPVOID WINAPI MapViewOfFile(HANDLE, DWORD, DWORD, DWORD, SIZE_T);
31820 #endif /* SQLITE_OS_WINRT */
31821 
31822 /*
31823 ** This file mapping API is common to both Win32 and WinRT.
31824 */
31825 WINBASEAPI BOOL WINAPI UnmapViewOfFile(LPCVOID);
31826 #endif /* SQLITE_WIN32_FILEMAPPING_API && !defined(SQLITE_OMIT_WAL) */
31827 
31828 /*
31829 ** Some Microsoft compilers lack this definition.
31830 */
31831 #ifndef INVALID_FILE_ATTRIBUTES
31832 # define INVALID_FILE_ATTRIBUTES ((DWORD)-1)
31833 #endif
31834 
31835 #ifndef FILE_FLAG_MASK
31836 # define FILE_FLAG_MASK          (0xFF3C0000)
31837 #endif
31838 
31839 #ifndef FILE_ATTRIBUTE_MASK
31840 # define FILE_ATTRIBUTE_MASK     (0x0003FFF7)
31841 #endif
31842 
31843 #ifndef SQLITE_OMIT_WAL
31844 /* Forward references to structures used for WAL */
31845 typedef struct winShm winShm;           /* A connection to shared-memory */
31846 typedef struct winShmNode winShmNode;   /* A region of shared-memory */
31847 #endif
31848 
31849 /*
31850 ** WinCE lacks native support for file locking so we have to fake it
31851 ** with some code of our own.
31852 */
31853 #if SQLITE_OS_WINCE
31854 typedef struct winceLock {
31855   int nReaders;       /* Number of reader locks obtained */
31856   BOOL bPending;      /* Indicates a pending lock has been obtained */
31857   BOOL bReserved;     /* Indicates a reserved lock has been obtained */
31858   BOOL bExclusive;    /* Indicates an exclusive lock has been obtained */
31859 } winceLock;
31860 #endif
31861 
31862 /*
31863 ** The winFile structure is a subclass of sqlite3_file* specific to the win32
31864 ** portability layer.
31865 */
31866 typedef struct winFile winFile;
31867 struct winFile {
31868   const sqlite3_io_methods *pMethod; /*** Must be first ***/
31869   sqlite3_vfs *pVfs;      /* The VFS used to open this file */
31870   HANDLE h;               /* Handle for accessing the file */
31871   u8 locktype;            /* Type of lock currently held on this file */
31872   short sharedLockByte;   /* Randomly chosen byte used as a shared lock */
31873   u8 ctrlFlags;           /* Flags.  See WINFILE_* below */
31874   DWORD lastErrno;        /* The Windows errno from the last I/O error */
31875 #ifndef SQLITE_OMIT_WAL
31876   winShm *pShm;           /* Instance of shared memory on this file */
31877 #endif
31878   const char *zPath;      /* Full pathname of this file */
31879   int szChunk;            /* Chunk size configured by FCNTL_CHUNK_SIZE */
31880 #if SQLITE_OS_WINCE
31881   LPWSTR zDeleteOnClose;  /* Name of file to delete when closing */
31882   HANDLE hMutex;          /* Mutex used to control access to shared lock */
31883   HANDLE hShared;         /* Shared memory segment used for locking */
31884   winceLock local;        /* Locks obtained by this instance of winFile */
31885   winceLock *shared;      /* Global shared lock memory for the file  */
31886 #endif
31887 #if SQLITE_MAX_MMAP_SIZE>0
31888   int nFetchOut;                /* Number of outstanding xFetch references */
31889   HANDLE hMap;                  /* Handle for accessing memory mapping */
31890   void *pMapRegion;             /* Area memory mapped */
31891   sqlite3_int64 mmapSize;       /* Usable size of mapped region */
31892   sqlite3_int64 mmapSizeActual; /* Actual size of mapped region */
31893   sqlite3_int64 mmapSizeMax;    /* Configured FCNTL_MMAP_SIZE value */
31894 #endif
31895 };
31896 
31897 /*
31898 ** Allowed values for winFile.ctrlFlags
31899 */
31900 #define WINFILE_RDONLY          0x02   /* Connection is read only */
31901 #define WINFILE_PERSIST_WAL     0x04   /* Persistent WAL mode */
31902 #define WINFILE_PSOW            0x10   /* SQLITE_IOCAP_POWERSAFE_OVERWRITE */
31903 
31904 /*
31905  * The size of the buffer used by sqlite3_win32_write_debug().
31906  */
31907 #ifndef SQLITE_WIN32_DBG_BUF_SIZE
31908 #  define SQLITE_WIN32_DBG_BUF_SIZE   ((int)(4096-sizeof(DWORD)))
31909 #endif
31910 
31911 /*
31912  * The value used with sqlite3_win32_set_directory() to specify that
31913  * the data directory should be changed.
31914  */
31915 #ifndef SQLITE_WIN32_DATA_DIRECTORY_TYPE
31916 #  define SQLITE_WIN32_DATA_DIRECTORY_TYPE (1)
31917 #endif
31918 
31919 /*
31920  * The value used with sqlite3_win32_set_directory() to specify that
31921  * the temporary directory should be changed.
31922  */
31923 #ifndef SQLITE_WIN32_TEMP_DIRECTORY_TYPE
31924 #  define SQLITE_WIN32_TEMP_DIRECTORY_TYPE (2)
31925 #endif
31926 
31927 /*
31928  * If compiled with SQLITE_WIN32_MALLOC on Windows, we will use the
31929  * various Win32 API heap functions instead of our own.
31930  */
31931 #ifdef SQLITE_WIN32_MALLOC
31932 
31933 /*
31934  * If this is non-zero, an isolated heap will be created by the native Win32
31935  * allocator subsystem; otherwise, the default process heap will be used.  This
31936  * setting has no effect when compiling for WinRT.  By default, this is enabled
31937  * and an isolated heap will be created to store all allocated data.
31938  *
31939  ******************************************************************************
31940  * WARNING: It is important to note that when this setting is non-zero and the
31941  *          winMemShutdown function is called (e.g. by the sqlite3_shutdown
31942  *          function), all data that was allocated using the isolated heap will
31943  *          be freed immediately and any attempt to access any of that freed
31944  *          data will almost certainly result in an immediate access violation.
31945  ******************************************************************************
31946  */
31947 #ifndef SQLITE_WIN32_HEAP_CREATE
31948 #  define SQLITE_WIN32_HEAP_CREATE    (TRUE)
31949 #endif
31950 
31951 /*
31952  * The initial size of the Win32-specific heap.  This value may be zero.
31953  */
31954 #ifndef SQLITE_WIN32_HEAP_INIT_SIZE
31955 #  define SQLITE_WIN32_HEAP_INIT_SIZE ((SQLITE_DEFAULT_CACHE_SIZE) * \
31956                                        (SQLITE_DEFAULT_PAGE_SIZE) + 4194304)
31957 #endif
31958 
31959 /*
31960  * The maximum size of the Win32-specific heap.  This value may be zero.
31961  */
31962 #ifndef SQLITE_WIN32_HEAP_MAX_SIZE
31963 #  define SQLITE_WIN32_HEAP_MAX_SIZE  (0)
31964 #endif
31965 
31966 /*
31967  * The extra flags to use in calls to the Win32 heap APIs.  This value may be
31968  * zero for the default behavior.
31969  */
31970 #ifndef SQLITE_WIN32_HEAP_FLAGS
31971 #  define SQLITE_WIN32_HEAP_FLAGS     (0)
31972 #endif
31973 
31974 
31975 /*
31976 ** The winMemData structure stores information required by the Win32-specific
31977 ** sqlite3_mem_methods implementation.
31978 */
31979 typedef struct winMemData winMemData;
31980 struct winMemData {
31981 #ifndef NDEBUG
31982   u32 magic1;   /* Magic number to detect structure corruption. */
31983 #endif
31984   HANDLE hHeap; /* The handle to our heap. */
31985   BOOL bOwned;  /* Do we own the heap (i.e. destroy it on shutdown)? */
31986 #ifndef NDEBUG
31987   u32 magic2;   /* Magic number to detect structure corruption. */
31988 #endif
31989 };
31990 
31991 #ifndef NDEBUG
31992 #define WINMEM_MAGIC1     0x42b2830b
31993 #define WINMEM_MAGIC2     0xbd4d7cf4
31994 #endif
31995 
31996 static struct winMemData win_mem_data = {
31997 #ifndef NDEBUG
31998   WINMEM_MAGIC1,
31999 #endif
32000   NULL, FALSE
32001 #ifndef NDEBUG
32002   ,WINMEM_MAGIC2
32003 #endif
32004 };
32005 
32006 #ifndef NDEBUG
32007 #define winMemAssertMagic1() assert( win_mem_data.magic1==WINMEM_MAGIC1 )
32008 #define winMemAssertMagic2() assert( win_mem_data.magic2==WINMEM_MAGIC2 )
32009 #define winMemAssertMagic()  winMemAssertMagic1(); winMemAssertMagic2();
32010 #else
32011 #define winMemAssertMagic()
32012 #endif
32013 
32014 #define winMemGetDataPtr()  &win_mem_data
32015 #define winMemGetHeap()     win_mem_data.hHeap
32016 #define winMemGetOwned()    win_mem_data.bOwned
32017 
32018 static void *winMemMalloc(int nBytes);
32019 static void winMemFree(void *pPrior);
32020 static void *winMemRealloc(void *pPrior, int nBytes);
32021 static int winMemSize(void *p);
32022 static int winMemRoundup(int n);
32023 static int winMemInit(void *pAppData);
32024 static void winMemShutdown(void *pAppData);
32025 
32026 SQLITE_PRIVATE const sqlite3_mem_methods *sqlite3MemGetWin32(void);
32027 #endif /* SQLITE_WIN32_MALLOC */
32028 
32029 /*
32030 ** The following variable is (normally) set once and never changes
32031 ** thereafter.  It records whether the operating system is Win9x
32032 ** or WinNT.
32033 **
32034 ** 0:   Operating system unknown.
32035 ** 1:   Operating system is Win9x.
32036 ** 2:   Operating system is WinNT.
32037 **
32038 ** In order to facilitate testing on a WinNT system, the test fixture
32039 ** can manually set this value to 1 to emulate Win98 behavior.
32040 */
32041 #ifdef SQLITE_TEST
32042 SQLITE_API int sqlite3_os_type = 0;
32043 #elif !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && \
32044       defined(SQLITE_WIN32_HAS_ANSI) && defined(SQLITE_WIN32_HAS_WIDE)
32045 static int sqlite3_os_type = 0;
32046 #endif
32047 
32048 #ifndef SYSCALL
32049 #  define SYSCALL sqlite3_syscall_ptr
32050 #endif
32051 
32052 /*
32053 ** This function is not available on Windows CE or WinRT.
32054  */
32055 
32056 #if SQLITE_OS_WINCE || SQLITE_OS_WINRT
32057 #  define osAreFileApisANSI()       1
32058 #endif
32059 
32060 /*
32061 ** Many system calls are accessed through pointer-to-functions so that
32062 ** they may be overridden at runtime to facilitate fault injection during
32063 ** testing and sandboxing.  The following array holds the names and pointers
32064 ** to all overrideable system calls.
32065 */
32066 static struct win_syscall {
32067   const char *zName;            /* Name of the system call */
32068   sqlite3_syscall_ptr pCurrent; /* Current value of the system call */
32069   sqlite3_syscall_ptr pDefault; /* Default value */
32070 } aSyscall[] = {
32071 #if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT
32072   { "AreFileApisANSI",         (SYSCALL)AreFileApisANSI,         0 },
32073 #else
32074   { "AreFileApisANSI",         (SYSCALL)0,                       0 },
32075 #endif
32076 
32077 #ifndef osAreFileApisANSI
32078 #define osAreFileApisANSI ((BOOL(WINAPI*)(VOID))aSyscall[0].pCurrent)
32079 #endif
32080 
32081 #if SQLITE_OS_WINCE && defined(SQLITE_WIN32_HAS_WIDE)
32082   { "CharLowerW",              (SYSCALL)CharLowerW,              0 },
32083 #else
32084   { "CharLowerW",              (SYSCALL)0,                       0 },
32085 #endif
32086 
32087 #define osCharLowerW ((LPWSTR(WINAPI*)(LPWSTR))aSyscall[1].pCurrent)
32088 
32089 #if SQLITE_OS_WINCE && defined(SQLITE_WIN32_HAS_WIDE)
32090   { "CharUpperW",              (SYSCALL)CharUpperW,              0 },
32091 #else
32092   { "CharUpperW",              (SYSCALL)0,                       0 },
32093 #endif
32094 
32095 #define osCharUpperW ((LPWSTR(WINAPI*)(LPWSTR))aSyscall[2].pCurrent)
32096 
32097   { "CloseHandle",             (SYSCALL)CloseHandle,             0 },
32098 
32099 #define osCloseHandle ((BOOL(WINAPI*)(HANDLE))aSyscall[3].pCurrent)
32100 
32101 #if defined(SQLITE_WIN32_HAS_ANSI)
32102   { "CreateFileA",             (SYSCALL)CreateFileA,             0 },
32103 #else
32104   { "CreateFileA",             (SYSCALL)0,                       0 },
32105 #endif
32106 
32107 #define osCreateFileA ((HANDLE(WINAPI*)(LPCSTR,DWORD,DWORD, \
32108         LPSECURITY_ATTRIBUTES,DWORD,DWORD,HANDLE))aSyscall[4].pCurrent)
32109 
32110 #if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE)
32111   { "CreateFileW",             (SYSCALL)CreateFileW,             0 },
32112 #else
32113   { "CreateFileW",             (SYSCALL)0,                       0 },
32114 #endif
32115 
32116 #define osCreateFileW ((HANDLE(WINAPI*)(LPCWSTR,DWORD,DWORD, \
32117         LPSECURITY_ATTRIBUTES,DWORD,DWORD,HANDLE))aSyscall[5].pCurrent)
32118 
32119 #if (!SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_ANSI) && \
32120         !defined(SQLITE_OMIT_WAL))
32121   { "CreateFileMappingA",      (SYSCALL)CreateFileMappingA,      0 },
32122 #else
32123   { "CreateFileMappingA",      (SYSCALL)0,                       0 },
32124 #endif
32125 
32126 #define osCreateFileMappingA ((HANDLE(WINAPI*)(HANDLE,LPSECURITY_ATTRIBUTES, \
32127         DWORD,DWORD,DWORD,LPCSTR))aSyscall[6].pCurrent)
32128 
32129 #if SQLITE_OS_WINCE || (!SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE) && \
32130         !defined(SQLITE_OMIT_WAL))
32131   { "CreateFileMappingW",      (SYSCALL)CreateFileMappingW,      0 },
32132 #else
32133   { "CreateFileMappingW",      (SYSCALL)0,                       0 },
32134 #endif
32135 
32136 #define osCreateFileMappingW ((HANDLE(WINAPI*)(HANDLE,LPSECURITY_ATTRIBUTES, \
32137         DWORD,DWORD,DWORD,LPCWSTR))aSyscall[7].pCurrent)
32138 
32139 #if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE)
32140   { "CreateMutexW",            (SYSCALL)CreateMutexW,            0 },
32141 #else
32142   { "CreateMutexW",            (SYSCALL)0,                       0 },
32143 #endif
32144 
32145 #define osCreateMutexW ((HANDLE(WINAPI*)(LPSECURITY_ATTRIBUTES,BOOL, \
32146         LPCWSTR))aSyscall[8].pCurrent)
32147 
32148 #if defined(SQLITE_WIN32_HAS_ANSI)
32149   { "DeleteFileA",             (SYSCALL)DeleteFileA,             0 },
32150 #else
32151   { "DeleteFileA",             (SYSCALL)0,                       0 },
32152 #endif
32153 
32154 #define osDeleteFileA ((BOOL(WINAPI*)(LPCSTR))aSyscall[9].pCurrent)
32155 
32156 #if defined(SQLITE_WIN32_HAS_WIDE)
32157   { "DeleteFileW",             (SYSCALL)DeleteFileW,             0 },
32158 #else
32159   { "DeleteFileW",             (SYSCALL)0,                       0 },
32160 #endif
32161 
32162 #define osDeleteFileW ((BOOL(WINAPI*)(LPCWSTR))aSyscall[10].pCurrent)
32163 
32164 #if SQLITE_OS_WINCE
32165   { "FileTimeToLocalFileTime", (SYSCALL)FileTimeToLocalFileTime, 0 },
32166 #else
32167   { "FileTimeToLocalFileTime", (SYSCALL)0,                       0 },
32168 #endif
32169 
32170 #define osFileTimeToLocalFileTime ((BOOL(WINAPI*)(CONST FILETIME*, \
32171         LPFILETIME))aSyscall[11].pCurrent)
32172 
32173 #if SQLITE_OS_WINCE
32174   { "FileTimeToSystemTime",    (SYSCALL)FileTimeToSystemTime,    0 },
32175 #else
32176   { "FileTimeToSystemTime",    (SYSCALL)0,                       0 },
32177 #endif
32178 
32179 #define osFileTimeToSystemTime ((BOOL(WINAPI*)(CONST FILETIME*, \
32180         LPSYSTEMTIME))aSyscall[12].pCurrent)
32181 
32182   { "FlushFileBuffers",        (SYSCALL)FlushFileBuffers,        0 },
32183 
32184 #define osFlushFileBuffers ((BOOL(WINAPI*)(HANDLE))aSyscall[13].pCurrent)
32185 
32186 #if defined(SQLITE_WIN32_HAS_ANSI)
32187   { "FormatMessageA",          (SYSCALL)FormatMessageA,          0 },
32188 #else
32189   { "FormatMessageA",          (SYSCALL)0,                       0 },
32190 #endif
32191 
32192 #define osFormatMessageA ((DWORD(WINAPI*)(DWORD,LPCVOID,DWORD,DWORD,LPSTR, \
32193         DWORD,va_list*))aSyscall[14].pCurrent)
32194 
32195 #if defined(SQLITE_WIN32_HAS_WIDE)
32196   { "FormatMessageW",          (SYSCALL)FormatMessageW,          0 },
32197 #else
32198   { "FormatMessageW",          (SYSCALL)0,                       0 },
32199 #endif
32200 
32201 #define osFormatMessageW ((DWORD(WINAPI*)(DWORD,LPCVOID,DWORD,DWORD,LPWSTR, \
32202         DWORD,va_list*))aSyscall[15].pCurrent)
32203 
32204 #if !defined(SQLITE_OMIT_LOAD_EXTENSION)
32205   { "FreeLibrary",             (SYSCALL)FreeLibrary,             0 },
32206 #else
32207   { "FreeLibrary",             (SYSCALL)0,                       0 },
32208 #endif
32209 
32210 #define osFreeLibrary ((BOOL(WINAPI*)(HMODULE))aSyscall[16].pCurrent)
32211 
32212   { "GetCurrentProcessId",     (SYSCALL)GetCurrentProcessId,     0 },
32213 
32214 #define osGetCurrentProcessId ((DWORD(WINAPI*)(VOID))aSyscall[17].pCurrent)
32215 
32216 #if !SQLITE_OS_WINCE && defined(SQLITE_WIN32_HAS_ANSI)
32217   { "GetDiskFreeSpaceA",       (SYSCALL)GetDiskFreeSpaceA,       0 },
32218 #else
32219   { "GetDiskFreeSpaceA",       (SYSCALL)0,                       0 },
32220 #endif
32221 
32222 #define osGetDiskFreeSpaceA ((BOOL(WINAPI*)(LPCSTR,LPDWORD,LPDWORD,LPDWORD, \
32223         LPDWORD))aSyscall[18].pCurrent)
32224 
32225 #if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE)
32226   { "GetDiskFreeSpaceW",       (SYSCALL)GetDiskFreeSpaceW,       0 },
32227 #else
32228   { "GetDiskFreeSpaceW",       (SYSCALL)0,                       0 },
32229 #endif
32230 
32231 #define osGetDiskFreeSpaceW ((BOOL(WINAPI*)(LPCWSTR,LPDWORD,LPDWORD,LPDWORD, \
32232         LPDWORD))aSyscall[19].pCurrent)
32233 
32234 #if defined(SQLITE_WIN32_HAS_ANSI)
32235   { "GetFileAttributesA",      (SYSCALL)GetFileAttributesA,      0 },
32236 #else
32237   { "GetFileAttributesA",      (SYSCALL)0,                       0 },
32238 #endif
32239 
32240 #define osGetFileAttributesA ((DWORD(WINAPI*)(LPCSTR))aSyscall[20].pCurrent)
32241 
32242 #if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE)
32243   { "GetFileAttributesW",      (SYSCALL)GetFileAttributesW,      0 },
32244 #else
32245   { "GetFileAttributesW",      (SYSCALL)0,                       0 },
32246 #endif
32247 
32248 #define osGetFileAttributesW ((DWORD(WINAPI*)(LPCWSTR))aSyscall[21].pCurrent)
32249 
32250 #if defined(SQLITE_WIN32_HAS_WIDE)
32251   { "GetFileAttributesExW",    (SYSCALL)GetFileAttributesExW,    0 },
32252 #else
32253   { "GetFileAttributesExW",    (SYSCALL)0,                       0 },
32254 #endif
32255 
32256 #define osGetFileAttributesExW ((BOOL(WINAPI*)(LPCWSTR,GET_FILEEX_INFO_LEVELS, \
32257         LPVOID))aSyscall[22].pCurrent)
32258 
32259 #if !SQLITE_OS_WINRT
32260   { "GetFileSize",             (SYSCALL)GetFileSize,             0 },
32261 #else
32262   { "GetFileSize",             (SYSCALL)0,                       0 },
32263 #endif
32264 
32265 #define osGetFileSize ((DWORD(WINAPI*)(HANDLE,LPDWORD))aSyscall[23].pCurrent)
32266 
32267 #if !SQLITE_OS_WINCE && defined(SQLITE_WIN32_HAS_ANSI)
32268   { "GetFullPathNameA",        (SYSCALL)GetFullPathNameA,        0 },
32269 #else
32270   { "GetFullPathNameA",        (SYSCALL)0,                       0 },
32271 #endif
32272 
32273 #define osGetFullPathNameA ((DWORD(WINAPI*)(LPCSTR,DWORD,LPSTR, \
32274         LPSTR*))aSyscall[24].pCurrent)
32275 
32276 #if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE)
32277   { "GetFullPathNameW",        (SYSCALL)GetFullPathNameW,        0 },
32278 #else
32279   { "GetFullPathNameW",        (SYSCALL)0,                       0 },
32280 #endif
32281 
32282 #define osGetFullPathNameW ((DWORD(WINAPI*)(LPCWSTR,DWORD,LPWSTR, \
32283         LPWSTR*))aSyscall[25].pCurrent)
32284 
32285   { "GetLastError",            (SYSCALL)GetLastError,            0 },
32286 
32287 #define osGetLastError ((DWORD(WINAPI*)(VOID))aSyscall[26].pCurrent)
32288 
32289 #if !defined(SQLITE_OMIT_LOAD_EXTENSION)
32290 #if SQLITE_OS_WINCE
32291   /* The GetProcAddressA() routine is only available on Windows CE. */
32292   { "GetProcAddressA",         (SYSCALL)GetProcAddressA,         0 },
32293 #else
32294   /* All other Windows platforms expect GetProcAddress() to take
32295   ** an ANSI string regardless of the _UNICODE setting */
32296   { "GetProcAddressA",         (SYSCALL)GetProcAddress,          0 },
32297 #endif
32298 #else
32299   { "GetProcAddressA",         (SYSCALL)0,                       0 },
32300 #endif
32301 
32302 #define osGetProcAddressA ((FARPROC(WINAPI*)(HMODULE, \
32303         LPCSTR))aSyscall[27].pCurrent)
32304 
32305 #if !SQLITE_OS_WINRT
32306   { "GetSystemInfo",           (SYSCALL)GetSystemInfo,           0 },
32307 #else
32308   { "GetSystemInfo",           (SYSCALL)0,                       0 },
32309 #endif
32310 
32311 #define osGetSystemInfo ((VOID(WINAPI*)(LPSYSTEM_INFO))aSyscall[28].pCurrent)
32312 
32313   { "GetSystemTime",           (SYSCALL)GetSystemTime,           0 },
32314 
32315 #define osGetSystemTime ((VOID(WINAPI*)(LPSYSTEMTIME))aSyscall[29].pCurrent)
32316 
32317 #if !SQLITE_OS_WINCE
32318   { "GetSystemTimeAsFileTime", (SYSCALL)GetSystemTimeAsFileTime, 0 },
32319 #else
32320   { "GetSystemTimeAsFileTime", (SYSCALL)0,                       0 },
32321 #endif
32322 
32323 #define osGetSystemTimeAsFileTime ((VOID(WINAPI*)( \
32324         LPFILETIME))aSyscall[30].pCurrent)
32325 
32326 #if defined(SQLITE_WIN32_HAS_ANSI)
32327   { "GetTempPathA",            (SYSCALL)GetTempPathA,            0 },
32328 #else
32329   { "GetTempPathA",            (SYSCALL)0,                       0 },
32330 #endif
32331 
32332 #define osGetTempPathA ((DWORD(WINAPI*)(DWORD,LPSTR))aSyscall[31].pCurrent)
32333 
32334 #if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE)
32335   { "GetTempPathW",            (SYSCALL)GetTempPathW,            0 },
32336 #else
32337   { "GetTempPathW",            (SYSCALL)0,                       0 },
32338 #endif
32339 
32340 #define osGetTempPathW ((DWORD(WINAPI*)(DWORD,LPWSTR))aSyscall[32].pCurrent)
32341 
32342 #if !SQLITE_OS_WINRT
32343   { "GetTickCount",            (SYSCALL)GetTickCount,            0 },
32344 #else
32345   { "GetTickCount",            (SYSCALL)0,                       0 },
32346 #endif
32347 
32348 #define osGetTickCount ((DWORD(WINAPI*)(VOID))aSyscall[33].pCurrent)
32349 
32350 #if defined(SQLITE_WIN32_HAS_ANSI) && defined(SQLITE_WIN32_GETVERSIONEX) && \
32351         SQLITE_WIN32_GETVERSIONEX
32352   { "GetVersionExA",           (SYSCALL)GetVersionExA,           0 },
32353 #else
32354   { "GetVersionExA",           (SYSCALL)0,                       0 },
32355 #endif
32356 
32357 #define osGetVersionExA ((BOOL(WINAPI*)( \
32358         LPOSVERSIONINFOA))aSyscall[34].pCurrent)
32359 
32360 #if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE) && \
32361         defined(SQLITE_WIN32_GETVERSIONEX) && SQLITE_WIN32_GETVERSIONEX
32362   { "GetVersionExW",           (SYSCALL)GetVersionExW,           0 },
32363 #else
32364   { "GetVersionExW",           (SYSCALL)0,                       0 },
32365 #endif
32366 
32367 #define osGetVersionExW ((BOOL(WINAPI*)( \
32368         LPOSVERSIONINFOW))aSyscall[35].pCurrent)
32369 
32370   { "HeapAlloc",               (SYSCALL)HeapAlloc,               0 },
32371 
32372 #define osHeapAlloc ((LPVOID(WINAPI*)(HANDLE,DWORD, \
32373         SIZE_T))aSyscall[36].pCurrent)
32374 
32375 #if !SQLITE_OS_WINRT
32376   { "HeapCreate",              (SYSCALL)HeapCreate,              0 },
32377 #else
32378   { "HeapCreate",              (SYSCALL)0,                       0 },
32379 #endif
32380 
32381 #define osHeapCreate ((HANDLE(WINAPI*)(DWORD,SIZE_T, \
32382         SIZE_T))aSyscall[37].pCurrent)
32383 
32384 #if !SQLITE_OS_WINRT
32385   { "HeapDestroy",             (SYSCALL)HeapDestroy,             0 },
32386 #else
32387   { "HeapDestroy",             (SYSCALL)0,                       0 },
32388 #endif
32389 
32390 #define osHeapDestroy ((BOOL(WINAPI*)(HANDLE))aSyscall[38].pCurrent)
32391 
32392   { "HeapFree",                (SYSCALL)HeapFree,                0 },
32393 
32394 #define osHeapFree ((BOOL(WINAPI*)(HANDLE,DWORD,LPVOID))aSyscall[39].pCurrent)
32395 
32396   { "HeapReAlloc",             (SYSCALL)HeapReAlloc,             0 },
32397 
32398 #define osHeapReAlloc ((LPVOID(WINAPI*)(HANDLE,DWORD,LPVOID, \
32399         SIZE_T))aSyscall[40].pCurrent)
32400 
32401   { "HeapSize",                (SYSCALL)HeapSize,                0 },
32402 
32403 #define osHeapSize ((SIZE_T(WINAPI*)(HANDLE,DWORD, \
32404         LPCVOID))aSyscall[41].pCurrent)
32405 
32406 #if !SQLITE_OS_WINRT
32407   { "HeapValidate",            (SYSCALL)HeapValidate,            0 },
32408 #else
32409   { "HeapValidate",            (SYSCALL)0,                       0 },
32410 #endif
32411 
32412 #define osHeapValidate ((BOOL(WINAPI*)(HANDLE,DWORD, \
32413         LPCVOID))aSyscall[42].pCurrent)
32414 
32415 #if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT
32416   { "HeapCompact",             (SYSCALL)HeapCompact,             0 },
32417 #else
32418   { "HeapCompact",             (SYSCALL)0,                       0 },
32419 #endif
32420 
32421 #define osHeapCompact ((UINT(WINAPI*)(HANDLE,DWORD))aSyscall[43].pCurrent)
32422 
32423 #if defined(SQLITE_WIN32_HAS_ANSI) && !defined(SQLITE_OMIT_LOAD_EXTENSION)
32424   { "LoadLibraryA",            (SYSCALL)LoadLibraryA,            0 },
32425 #else
32426   { "LoadLibraryA",            (SYSCALL)0,                       0 },
32427 #endif
32428 
32429 #define osLoadLibraryA ((HMODULE(WINAPI*)(LPCSTR))aSyscall[44].pCurrent)
32430 
32431 #if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE) && \
32432         !defined(SQLITE_OMIT_LOAD_EXTENSION)
32433   { "LoadLibraryW",            (SYSCALL)LoadLibraryW,            0 },
32434 #else
32435   { "LoadLibraryW",            (SYSCALL)0,                       0 },
32436 #endif
32437 
32438 #define osLoadLibraryW ((HMODULE(WINAPI*)(LPCWSTR))aSyscall[45].pCurrent)
32439 
32440 #if !SQLITE_OS_WINRT
32441   { "LocalFree",               (SYSCALL)LocalFree,               0 },
32442 #else
32443   { "LocalFree",               (SYSCALL)0,                       0 },
32444 #endif
32445 
32446 #define osLocalFree ((HLOCAL(WINAPI*)(HLOCAL))aSyscall[46].pCurrent)
32447 
32448 #if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT
32449   { "LockFile",                (SYSCALL)LockFile,                0 },
32450 #else
32451   { "LockFile",                (SYSCALL)0,                       0 },
32452 #endif
32453 
32454 #ifndef osLockFile
32455 #define osLockFile ((BOOL(WINAPI*)(HANDLE,DWORD,DWORD,DWORD, \
32456         DWORD))aSyscall[47].pCurrent)
32457 #endif
32458 
32459 #if !SQLITE_OS_WINCE
32460   { "LockFileEx",              (SYSCALL)LockFileEx,              0 },
32461 #else
32462   { "LockFileEx",              (SYSCALL)0,                       0 },
32463 #endif
32464 
32465 #ifndef osLockFileEx
32466 #define osLockFileEx ((BOOL(WINAPI*)(HANDLE,DWORD,DWORD,DWORD,DWORD, \
32467         LPOVERLAPPED))aSyscall[48].pCurrent)
32468 #endif
32469 
32470 #if SQLITE_OS_WINCE || (!SQLITE_OS_WINRT && !defined(SQLITE_OMIT_WAL))
32471   { "MapViewOfFile",           (SYSCALL)MapViewOfFile,           0 },
32472 #else
32473   { "MapViewOfFile",           (SYSCALL)0,                       0 },
32474 #endif
32475 
32476 #define osMapViewOfFile ((LPVOID(WINAPI*)(HANDLE,DWORD,DWORD,DWORD, \
32477         SIZE_T))aSyscall[49].pCurrent)
32478 
32479   { "MultiByteToWideChar",     (SYSCALL)MultiByteToWideChar,     0 },
32480 
32481 #define osMultiByteToWideChar ((int(WINAPI*)(UINT,DWORD,LPCSTR,int,LPWSTR, \
32482         int))aSyscall[50].pCurrent)
32483 
32484   { "QueryPerformanceCounter", (SYSCALL)QueryPerformanceCounter, 0 },
32485 
32486 #define osQueryPerformanceCounter ((BOOL(WINAPI*)( \
32487         LARGE_INTEGER*))aSyscall[51].pCurrent)
32488 
32489   { "ReadFile",                (SYSCALL)ReadFile,                0 },
32490 
32491 #define osReadFile ((BOOL(WINAPI*)(HANDLE,LPVOID,DWORD,LPDWORD, \
32492         LPOVERLAPPED))aSyscall[52].pCurrent)
32493 
32494   { "SetEndOfFile",            (SYSCALL)SetEndOfFile,            0 },
32495 
32496 #define osSetEndOfFile ((BOOL(WINAPI*)(HANDLE))aSyscall[53].pCurrent)
32497 
32498 #if !SQLITE_OS_WINRT
32499   { "SetFilePointer",          (SYSCALL)SetFilePointer,          0 },
32500 #else
32501   { "SetFilePointer",          (SYSCALL)0,                       0 },
32502 #endif
32503 
32504 #define osSetFilePointer ((DWORD(WINAPI*)(HANDLE,LONG,PLONG, \
32505         DWORD))aSyscall[54].pCurrent)
32506 
32507 #if !SQLITE_OS_WINRT
32508   { "Sleep",                   (SYSCALL)Sleep,                   0 },
32509 #else
32510   { "Sleep",                   (SYSCALL)0,                       0 },
32511 #endif
32512 
32513 #define osSleep ((VOID(WINAPI*)(DWORD))aSyscall[55].pCurrent)
32514 
32515   { "SystemTimeToFileTime",    (SYSCALL)SystemTimeToFileTime,    0 },
32516 
32517 #define osSystemTimeToFileTime ((BOOL(WINAPI*)(CONST SYSTEMTIME*, \
32518         LPFILETIME))aSyscall[56].pCurrent)
32519 
32520 #if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT
32521   { "UnlockFile",              (SYSCALL)UnlockFile,              0 },
32522 #else
32523   { "UnlockFile",              (SYSCALL)0,                       0 },
32524 #endif
32525 
32526 #ifndef osUnlockFile
32527 #define osUnlockFile ((BOOL(WINAPI*)(HANDLE,DWORD,DWORD,DWORD, \
32528         DWORD))aSyscall[57].pCurrent)
32529 #endif
32530 
32531 #if !SQLITE_OS_WINCE
32532   { "UnlockFileEx",            (SYSCALL)UnlockFileEx,            0 },
32533 #else
32534   { "UnlockFileEx",            (SYSCALL)0,                       0 },
32535 #endif
32536 
32537 #define osUnlockFileEx ((BOOL(WINAPI*)(HANDLE,DWORD,DWORD,DWORD, \
32538         LPOVERLAPPED))aSyscall[58].pCurrent)
32539 
32540 #if SQLITE_OS_WINCE || !defined(SQLITE_OMIT_WAL)
32541   { "UnmapViewOfFile",         (SYSCALL)UnmapViewOfFile,         0 },
32542 #else
32543   { "UnmapViewOfFile",         (SYSCALL)0,                       0 },
32544 #endif
32545 
32546 #define osUnmapViewOfFile ((BOOL(WINAPI*)(LPCVOID))aSyscall[59].pCurrent)
32547 
32548   { "WideCharToMultiByte",     (SYSCALL)WideCharToMultiByte,     0 },
32549 
32550 #define osWideCharToMultiByte ((int(WINAPI*)(UINT,DWORD,LPCWSTR,int,LPSTR,int, \
32551         LPCSTR,LPBOOL))aSyscall[60].pCurrent)
32552 
32553   { "WriteFile",               (SYSCALL)WriteFile,               0 },
32554 
32555 #define osWriteFile ((BOOL(WINAPI*)(HANDLE,LPCVOID,DWORD,LPDWORD, \
32556         LPOVERLAPPED))aSyscall[61].pCurrent)
32557 
32558 #if SQLITE_OS_WINRT
32559   { "CreateEventExW",          (SYSCALL)CreateEventExW,          0 },
32560 #else
32561   { "CreateEventExW",          (SYSCALL)0,                       0 },
32562 #endif
32563 
32564 #define osCreateEventExW ((HANDLE(WINAPI*)(LPSECURITY_ATTRIBUTES,LPCWSTR, \
32565         DWORD,DWORD))aSyscall[62].pCurrent)
32566 
32567 #if !SQLITE_OS_WINRT
32568   { "WaitForSingleObject",     (SYSCALL)WaitForSingleObject,     0 },
32569 #else
32570   { "WaitForSingleObject",     (SYSCALL)0,                       0 },
32571 #endif
32572 
32573 #define osWaitForSingleObject ((DWORD(WINAPI*)(HANDLE, \
32574         DWORD))aSyscall[63].pCurrent)
32575 
32576 #if SQLITE_OS_WINRT
32577   { "WaitForSingleObjectEx",   (SYSCALL)WaitForSingleObjectEx,   0 },
32578 #else
32579   { "WaitForSingleObjectEx",   (SYSCALL)0,                       0 },
32580 #endif
32581 
32582 #define osWaitForSingleObjectEx ((DWORD(WINAPI*)(HANDLE,DWORD, \
32583         BOOL))aSyscall[64].pCurrent)
32584 
32585 #if SQLITE_OS_WINRT
32586   { "SetFilePointerEx",        (SYSCALL)SetFilePointerEx,        0 },
32587 #else
32588   { "SetFilePointerEx",        (SYSCALL)0,                       0 },
32589 #endif
32590 
32591 #define osSetFilePointerEx ((BOOL(WINAPI*)(HANDLE,LARGE_INTEGER, \
32592         PLARGE_INTEGER,DWORD))aSyscall[65].pCurrent)
32593 
32594 #if SQLITE_OS_WINRT
32595   { "GetFileInformationByHandleEx", (SYSCALL)GetFileInformationByHandleEx, 0 },
32596 #else
32597   { "GetFileInformationByHandleEx", (SYSCALL)0,                  0 },
32598 #endif
32599 
32600 #define osGetFileInformationByHandleEx ((BOOL(WINAPI*)(HANDLE, \
32601         FILE_INFO_BY_HANDLE_CLASS,LPVOID,DWORD))aSyscall[66].pCurrent)
32602 
32603 #if SQLITE_OS_WINRT && !defined(SQLITE_OMIT_WAL)
32604   { "MapViewOfFileFromApp",    (SYSCALL)MapViewOfFileFromApp,    0 },
32605 #else
32606   { "MapViewOfFileFromApp",    (SYSCALL)0,                       0 },
32607 #endif
32608 
32609 #define osMapViewOfFileFromApp ((LPVOID(WINAPI*)(HANDLE,ULONG,ULONG64, \
32610         SIZE_T))aSyscall[67].pCurrent)
32611 
32612 #if SQLITE_OS_WINRT
32613   { "CreateFile2",             (SYSCALL)CreateFile2,             0 },
32614 #else
32615   { "CreateFile2",             (SYSCALL)0,                       0 },
32616 #endif
32617 
32618 #define osCreateFile2 ((HANDLE(WINAPI*)(LPCWSTR,DWORD,DWORD,DWORD, \
32619         LPCREATEFILE2_EXTENDED_PARAMETERS))aSyscall[68].pCurrent)
32620 
32621 #if SQLITE_OS_WINRT && !defined(SQLITE_OMIT_LOAD_EXTENSION)
32622   { "LoadPackagedLibrary",     (SYSCALL)LoadPackagedLibrary,     0 },
32623 #else
32624   { "LoadPackagedLibrary",     (SYSCALL)0,                       0 },
32625 #endif
32626 
32627 #define osLoadPackagedLibrary ((HMODULE(WINAPI*)(LPCWSTR, \
32628         DWORD))aSyscall[69].pCurrent)
32629 
32630 #if SQLITE_OS_WINRT
32631   { "GetTickCount64",          (SYSCALL)GetTickCount64,          0 },
32632 #else
32633   { "GetTickCount64",          (SYSCALL)0,                       0 },
32634 #endif
32635 
32636 #define osGetTickCount64 ((ULONGLONG(WINAPI*)(VOID))aSyscall[70].pCurrent)
32637 
32638 #if SQLITE_OS_WINRT
32639   { "GetNativeSystemInfo",     (SYSCALL)GetNativeSystemInfo,     0 },
32640 #else
32641   { "GetNativeSystemInfo",     (SYSCALL)0,                       0 },
32642 #endif
32643 
32644 #define osGetNativeSystemInfo ((VOID(WINAPI*)( \
32645         LPSYSTEM_INFO))aSyscall[71].pCurrent)
32646 
32647 #if defined(SQLITE_WIN32_HAS_ANSI)
32648   { "OutputDebugStringA",      (SYSCALL)OutputDebugStringA,      0 },
32649 #else
32650   { "OutputDebugStringA",      (SYSCALL)0,                       0 },
32651 #endif
32652 
32653 #define osOutputDebugStringA ((VOID(WINAPI*)(LPCSTR))aSyscall[72].pCurrent)
32654 
32655 #if defined(SQLITE_WIN32_HAS_WIDE)
32656   { "OutputDebugStringW",      (SYSCALL)OutputDebugStringW,      0 },
32657 #else
32658   { "OutputDebugStringW",      (SYSCALL)0,                       0 },
32659 #endif
32660 
32661 #define osOutputDebugStringW ((VOID(WINAPI*)(LPCWSTR))aSyscall[73].pCurrent)
32662 
32663   { "GetProcessHeap",          (SYSCALL)GetProcessHeap,          0 },
32664 
32665 #define osGetProcessHeap ((HANDLE(WINAPI*)(VOID))aSyscall[74].pCurrent)
32666 
32667 #if SQLITE_OS_WINRT && !defined(SQLITE_OMIT_WAL)
32668   { "CreateFileMappingFromApp", (SYSCALL)CreateFileMappingFromApp, 0 },
32669 #else
32670   { "CreateFileMappingFromApp", (SYSCALL)0,                      0 },
32671 #endif
32672 
32673 #define osCreateFileMappingFromApp ((HANDLE(WINAPI*)(HANDLE, \
32674         LPSECURITY_ATTRIBUTES,ULONG,ULONG64,LPCWSTR))aSyscall[75].pCurrent)
32675 
32676 }; /* End of the overrideable system calls */
32677 
32678 /*
32679 ** This is the xSetSystemCall() method of sqlite3_vfs for all of the
32680 ** "win32" VFSes.  Return SQLITE_OK opon successfully updating the
32681 ** system call pointer, or SQLITE_NOTFOUND if there is no configurable
32682 ** system call named zName.
32683 */
32684 static int winSetSystemCall(
32685   sqlite3_vfs *pNotUsed,        /* The VFS pointer.  Not used */
32686   const char *zName,            /* Name of system call to override */
32687   sqlite3_syscall_ptr pNewFunc  /* Pointer to new system call value */
32688 ){
32689   unsigned int i;
32690   int rc = SQLITE_NOTFOUND;
32691 
32692   UNUSED_PARAMETER(pNotUsed);
32693   if( zName==0 ){
32694     /* If no zName is given, restore all system calls to their default
32695     ** settings and return NULL
32696     */
32697     rc = SQLITE_OK;
32698     for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
32699       if( aSyscall[i].pDefault ){
32700         aSyscall[i].pCurrent = aSyscall[i].pDefault;
32701       }
32702     }
32703   }else{
32704     /* If zName is specified, operate on only the one system call
32705     ** specified.
32706     */
32707     for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
32708       if( strcmp(zName, aSyscall[i].zName)==0 ){
32709         if( aSyscall[i].pDefault==0 ){
32710           aSyscall[i].pDefault = aSyscall[i].pCurrent;
32711         }
32712         rc = SQLITE_OK;
32713         if( pNewFunc==0 ) pNewFunc = aSyscall[i].pDefault;
32714         aSyscall[i].pCurrent = pNewFunc;
32715         break;
32716       }
32717     }
32718   }
32719   return rc;
32720 }
32721 
32722 /*
32723 ** Return the value of a system call.  Return NULL if zName is not a
32724 ** recognized system call name.  NULL is also returned if the system call
32725 ** is currently undefined.
32726 */
32727 static sqlite3_syscall_ptr winGetSystemCall(
32728   sqlite3_vfs *pNotUsed,
32729   const char *zName
32730 ){
32731   unsigned int i;
32732 
32733   UNUSED_PARAMETER(pNotUsed);
32734   for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
32735     if( strcmp(zName, aSyscall[i].zName)==0 ) return aSyscall[i].pCurrent;
32736   }
32737   return 0;
32738 }
32739 
32740 /*
32741 ** Return the name of the first system call after zName.  If zName==NULL
32742 ** then return the name of the first system call.  Return NULL if zName
32743 ** is the last system call or if zName is not the name of a valid
32744 ** system call.
32745 */
32746 static const char *winNextSystemCall(sqlite3_vfs *p, const char *zName){
32747   int i = -1;
32748 
32749   UNUSED_PARAMETER(p);
32750   if( zName ){
32751     for(i=0; i<ArraySize(aSyscall)-1; i++){
32752       if( strcmp(zName, aSyscall[i].zName)==0 ) break;
32753     }
32754   }
32755   for(i++; i<ArraySize(aSyscall); i++){
32756     if( aSyscall[i].pCurrent!=0 ) return aSyscall[i].zName;
32757   }
32758   return 0;
32759 }
32760 
32761 #ifdef SQLITE_WIN32_MALLOC
32762 /*
32763 ** If a Win32 native heap has been configured, this function will attempt to
32764 ** compact it.  Upon success, SQLITE_OK will be returned.  Upon failure, one
32765 ** of SQLITE_NOMEM, SQLITE_ERROR, or SQLITE_NOTFOUND will be returned.  The
32766 ** "pnLargest" argument, if non-zero, will be used to return the size of the
32767 ** largest committed free block in the heap, in bytes.
32768 */
32769 SQLITE_API int sqlite3_win32_compact_heap(LPUINT pnLargest){
32770   int rc = SQLITE_OK;
32771   UINT nLargest = 0;
32772   HANDLE hHeap;
32773 
32774   winMemAssertMagic();
32775   hHeap = winMemGetHeap();
32776   assert( hHeap!=0 );
32777   assert( hHeap!=INVALID_HANDLE_VALUE );
32778 #if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_MALLOC_VALIDATE)
32779   assert( osHeapValidate(hHeap, SQLITE_WIN32_HEAP_FLAGS, NULL) );
32780 #endif
32781 #if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT
32782   if( (nLargest=osHeapCompact(hHeap, SQLITE_WIN32_HEAP_FLAGS))==0 ){
32783     DWORD lastErrno = osGetLastError();
32784     if( lastErrno==NO_ERROR ){
32785       sqlite3_log(SQLITE_NOMEM, "failed to HeapCompact (no space), heap=%p",
32786                   (void*)hHeap);
32787       rc = SQLITE_NOMEM;
32788     }else{
32789       sqlite3_log(SQLITE_ERROR, "failed to HeapCompact (%lu), heap=%p",
32790                   osGetLastError(), (void*)hHeap);
32791       rc = SQLITE_ERROR;
32792     }
32793   }
32794 #else
32795   sqlite3_log(SQLITE_NOTFOUND, "failed to HeapCompact, heap=%p",
32796               (void*)hHeap);
32797   rc = SQLITE_NOTFOUND;
32798 #endif
32799   if( pnLargest ) *pnLargest = nLargest;
32800   return rc;
32801 }
32802 
32803 /*
32804 ** If a Win32 native heap has been configured, this function will attempt to
32805 ** destroy and recreate it.  If the Win32 native heap is not isolated and/or
32806 ** the sqlite3_memory_used() function does not return zero, SQLITE_BUSY will
32807 ** be returned and no changes will be made to the Win32 native heap.
32808 */
32809 SQLITE_API int sqlite3_win32_reset_heap(){
32810   int rc;
32811   MUTEX_LOGIC( sqlite3_mutex *pMaster; ) /* The main static mutex */
32812   MUTEX_LOGIC( sqlite3_mutex *pMem; )    /* The memsys static mutex */
32813   MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
32814   MUTEX_LOGIC( pMem = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); )
32815   sqlite3_mutex_enter(pMaster);
32816   sqlite3_mutex_enter(pMem);
32817   winMemAssertMagic();
32818   if( winMemGetHeap()!=NULL && winMemGetOwned() && sqlite3_memory_used()==0 ){
32819     /*
32820     ** At this point, there should be no outstanding memory allocations on
32821     ** the heap.  Also, since both the master and memsys locks are currently
32822     ** being held by us, no other function (i.e. from another thread) should
32823     ** be able to even access the heap.  Attempt to destroy and recreate our
32824     ** isolated Win32 native heap now.
32825     */
32826     assert( winMemGetHeap()!=NULL );
32827     assert( winMemGetOwned() );
32828     assert( sqlite3_memory_used()==0 );
32829     winMemShutdown(winMemGetDataPtr());
32830     assert( winMemGetHeap()==NULL );
32831     assert( !winMemGetOwned() );
32832     assert( sqlite3_memory_used()==0 );
32833     rc = winMemInit(winMemGetDataPtr());
32834     assert( rc!=SQLITE_OK || winMemGetHeap()!=NULL );
32835     assert( rc!=SQLITE_OK || winMemGetOwned() );
32836     assert( rc!=SQLITE_OK || sqlite3_memory_used()==0 );
32837   }else{
32838     /*
32839     ** The Win32 native heap cannot be modified because it may be in use.
32840     */
32841     rc = SQLITE_BUSY;
32842   }
32843   sqlite3_mutex_leave(pMem);
32844   sqlite3_mutex_leave(pMaster);
32845   return rc;
32846 }
32847 #endif /* SQLITE_WIN32_MALLOC */
32848 
32849 /*
32850 ** This function outputs the specified (ANSI) string to the Win32 debugger
32851 ** (if available).
32852 */
32853 
32854 SQLITE_API void sqlite3_win32_write_debug(const char *zBuf, int nBuf){
32855   char zDbgBuf[SQLITE_WIN32_DBG_BUF_SIZE];
32856   int nMin = MIN(nBuf, (SQLITE_WIN32_DBG_BUF_SIZE - 1)); /* may be negative. */
32857   if( nMin<-1 ) nMin = -1; /* all negative values become -1. */
32858   assert( nMin==-1 || nMin==0 || nMin<SQLITE_WIN32_DBG_BUF_SIZE );
32859 #if defined(SQLITE_WIN32_HAS_ANSI)
32860   if( nMin>0 ){
32861     memset(zDbgBuf, 0, SQLITE_WIN32_DBG_BUF_SIZE);
32862     memcpy(zDbgBuf, zBuf, nMin);
32863     osOutputDebugStringA(zDbgBuf);
32864   }else{
32865     osOutputDebugStringA(zBuf);
32866   }
32867 #elif defined(SQLITE_WIN32_HAS_WIDE)
32868   memset(zDbgBuf, 0, SQLITE_WIN32_DBG_BUF_SIZE);
32869   if ( osMultiByteToWideChar(
32870           osAreFileApisANSI() ? CP_ACP : CP_OEMCP, 0, zBuf,
32871           nMin, (LPWSTR)zDbgBuf, SQLITE_WIN32_DBG_BUF_SIZE/sizeof(WCHAR))<=0 ){
32872     return;
32873   }
32874   osOutputDebugStringW((LPCWSTR)zDbgBuf);
32875 #else
32876   if( nMin>0 ){
32877     memset(zDbgBuf, 0, SQLITE_WIN32_DBG_BUF_SIZE);
32878     memcpy(zDbgBuf, zBuf, nMin);
32879     fprintf(stderr, "%s", zDbgBuf);
32880   }else{
32881     fprintf(stderr, "%s", zBuf);
32882   }
32883 #endif
32884 }
32885 
32886 /*
32887 ** The following routine suspends the current thread for at least ms
32888 ** milliseconds.  This is equivalent to the Win32 Sleep() interface.
32889 */
32890 #if SQLITE_OS_WINRT
32891 static HANDLE sleepObj = NULL;
32892 #endif
32893 
32894 SQLITE_API void sqlite3_win32_sleep(DWORD milliseconds){
32895 #if SQLITE_OS_WINRT
32896   if ( sleepObj==NULL ){
32897     sleepObj = osCreateEventExW(NULL, NULL, CREATE_EVENT_MANUAL_RESET,
32898                                 SYNCHRONIZE);
32899   }
32900   assert( sleepObj!=NULL );
32901   osWaitForSingleObjectEx(sleepObj, milliseconds, FALSE);
32902 #else
32903   osSleep(milliseconds);
32904 #endif
32905 }
32906 
32907 /*
32908 ** Return true (non-zero) if we are running under WinNT, Win2K, WinXP,
32909 ** or WinCE.  Return false (zero) for Win95, Win98, or WinME.
32910 **
32911 ** Here is an interesting observation:  Win95, Win98, and WinME lack
32912 ** the LockFileEx() API.  But we can still statically link against that
32913 ** API as long as we don't call it when running Win95/98/ME.  A call to
32914 ** this routine is used to determine if the host is Win95/98/ME or
32915 ** WinNT/2K/XP so that we will know whether or not we can safely call
32916 ** the LockFileEx() API.
32917 */
32918 
32919 #if !defined(SQLITE_WIN32_GETVERSIONEX) || !SQLITE_WIN32_GETVERSIONEX
32920 # define osIsNT()  (1)
32921 #elif SQLITE_OS_WINCE || SQLITE_OS_WINRT || !defined(SQLITE_WIN32_HAS_ANSI)
32922 # define osIsNT()  (1)
32923 #elif !defined(SQLITE_WIN32_HAS_WIDE)
32924 # define osIsNT()  (0)
32925 #else
32926   static int osIsNT(void){
32927     if( sqlite3_os_type==0 ){
32928 #if defined(NTDDI_VERSION) && NTDDI_VERSION >= NTDDI_WIN8
32929       OSVERSIONINFOW sInfo;
32930       sInfo.dwOSVersionInfoSize = sizeof(sInfo);
32931       osGetVersionExW(&sInfo);
32932 #else
32933       OSVERSIONINFOA sInfo;
32934       sInfo.dwOSVersionInfoSize = sizeof(sInfo);
32935       osGetVersionExA(&sInfo);
32936 #endif
32937       sqlite3_os_type = sInfo.dwPlatformId==VER_PLATFORM_WIN32_NT ? 2 : 1;
32938     }
32939     return sqlite3_os_type==2;
32940   }
32941 #endif
32942 
32943 #ifdef SQLITE_WIN32_MALLOC
32944 /*
32945 ** Allocate nBytes of memory.
32946 */
32947 static void *winMemMalloc(int nBytes){
32948   HANDLE hHeap;
32949   void *p;
32950 
32951   winMemAssertMagic();
32952   hHeap = winMemGetHeap();
32953   assert( hHeap!=0 );
32954   assert( hHeap!=INVALID_HANDLE_VALUE );
32955 #if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_MALLOC_VALIDATE)
32956   assert( osHeapValidate(hHeap, SQLITE_WIN32_HEAP_FLAGS, NULL) );
32957 #endif
32958   assert( nBytes>=0 );
32959   p = osHeapAlloc(hHeap, SQLITE_WIN32_HEAP_FLAGS, (SIZE_T)nBytes);
32960   if( !p ){
32961     sqlite3_log(SQLITE_NOMEM, "failed to HeapAlloc %u bytes (%lu), heap=%p",
32962                 nBytes, osGetLastError(), (void*)hHeap);
32963   }
32964   return p;
32965 }
32966 
32967 /*
32968 ** Free memory.
32969 */
32970 static void winMemFree(void *pPrior){
32971   HANDLE hHeap;
32972 
32973   winMemAssertMagic();
32974   hHeap = winMemGetHeap();
32975   assert( hHeap!=0 );
32976   assert( hHeap!=INVALID_HANDLE_VALUE );
32977 #if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_MALLOC_VALIDATE)
32978   assert( osHeapValidate(hHeap, SQLITE_WIN32_HEAP_FLAGS, pPrior) );
32979 #endif
32980   if( !pPrior ) return; /* Passing NULL to HeapFree is undefined. */
32981   if( !osHeapFree(hHeap, SQLITE_WIN32_HEAP_FLAGS, pPrior) ){
32982     sqlite3_log(SQLITE_NOMEM, "failed to HeapFree block %p (%lu), heap=%p",
32983                 pPrior, osGetLastError(), (void*)hHeap);
32984   }
32985 }
32986 
32987 /*
32988 ** Change the size of an existing memory allocation
32989 */
32990 static void *winMemRealloc(void *pPrior, int nBytes){
32991   HANDLE hHeap;
32992   void *p;
32993 
32994   winMemAssertMagic();
32995   hHeap = winMemGetHeap();
32996   assert( hHeap!=0 );
32997   assert( hHeap!=INVALID_HANDLE_VALUE );
32998 #if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_MALLOC_VALIDATE)
32999   assert( osHeapValidate(hHeap, SQLITE_WIN32_HEAP_FLAGS, pPrior) );
33000 #endif
33001   assert( nBytes>=0 );
33002   if( !pPrior ){
33003     p = osHeapAlloc(hHeap, SQLITE_WIN32_HEAP_FLAGS, (SIZE_T)nBytes);
33004   }else{
33005     p = osHeapReAlloc(hHeap, SQLITE_WIN32_HEAP_FLAGS, pPrior, (SIZE_T)nBytes);
33006   }
33007   if( !p ){
33008     sqlite3_log(SQLITE_NOMEM, "failed to %s %u bytes (%lu), heap=%p",
33009                 pPrior ? "HeapReAlloc" : "HeapAlloc", nBytes, osGetLastError(),
33010                 (void*)hHeap);
33011   }
33012   return p;
33013 }
33014 
33015 /*
33016 ** Return the size of an outstanding allocation, in bytes.
33017 */
33018 static int winMemSize(void *p){
33019   HANDLE hHeap;
33020   SIZE_T n;
33021 
33022   winMemAssertMagic();
33023   hHeap = winMemGetHeap();
33024   assert( hHeap!=0 );
33025   assert( hHeap!=INVALID_HANDLE_VALUE );
33026 #if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_MALLOC_VALIDATE)
33027   assert( osHeapValidate(hHeap, SQLITE_WIN32_HEAP_FLAGS, p) );
33028 #endif
33029   if( !p ) return 0;
33030   n = osHeapSize(hHeap, SQLITE_WIN32_HEAP_FLAGS, p);
33031   if( n==(SIZE_T)-1 ){
33032     sqlite3_log(SQLITE_NOMEM, "failed to HeapSize block %p (%lu), heap=%p",
33033                 p, osGetLastError(), (void*)hHeap);
33034     return 0;
33035   }
33036   return (int)n;
33037 }
33038 
33039 /*
33040 ** Round up a request size to the next valid allocation size.
33041 */
33042 static int winMemRoundup(int n){
33043   return n;
33044 }
33045 
33046 /*
33047 ** Initialize this module.
33048 */
33049 static int winMemInit(void *pAppData){
33050   winMemData *pWinMemData = (winMemData *)pAppData;
33051 
33052   if( !pWinMemData ) return SQLITE_ERROR;
33053   assert( pWinMemData->magic1==WINMEM_MAGIC1 );
33054   assert( pWinMemData->magic2==WINMEM_MAGIC2 );
33055 
33056 #if !SQLITE_OS_WINRT && SQLITE_WIN32_HEAP_CREATE
33057   if( !pWinMemData->hHeap ){
33058     DWORD dwInitialSize = SQLITE_WIN32_HEAP_INIT_SIZE;
33059     DWORD dwMaximumSize = (DWORD)sqlite3GlobalConfig.nHeap;
33060     if( dwMaximumSize==0 ){
33061       dwMaximumSize = SQLITE_WIN32_HEAP_MAX_SIZE;
33062     }else if( dwInitialSize>dwMaximumSize ){
33063       dwInitialSize = dwMaximumSize;
33064     }
33065     pWinMemData->hHeap = osHeapCreate(SQLITE_WIN32_HEAP_FLAGS,
33066                                       dwInitialSize, dwMaximumSize);
33067     if( !pWinMemData->hHeap ){
33068       sqlite3_log(SQLITE_NOMEM,
33069           "failed to HeapCreate (%lu), flags=%u, initSize=%lu, maxSize=%lu",
33070           osGetLastError(), SQLITE_WIN32_HEAP_FLAGS, dwInitialSize,
33071           dwMaximumSize);
33072       return SQLITE_NOMEM;
33073     }
33074     pWinMemData->bOwned = TRUE;
33075     assert( pWinMemData->bOwned );
33076   }
33077 #else
33078   pWinMemData->hHeap = osGetProcessHeap();
33079   if( !pWinMemData->hHeap ){
33080     sqlite3_log(SQLITE_NOMEM,
33081         "failed to GetProcessHeap (%lu)", osGetLastError());
33082     return SQLITE_NOMEM;
33083   }
33084   pWinMemData->bOwned = FALSE;
33085   assert( !pWinMemData->bOwned );
33086 #endif
33087   assert( pWinMemData->hHeap!=0 );
33088   assert( pWinMemData->hHeap!=INVALID_HANDLE_VALUE );
33089 #if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_MALLOC_VALIDATE)
33090   assert( osHeapValidate(pWinMemData->hHeap, SQLITE_WIN32_HEAP_FLAGS, NULL) );
33091 #endif
33092   return SQLITE_OK;
33093 }
33094 
33095 /*
33096 ** Deinitialize this module.
33097 */
33098 static void winMemShutdown(void *pAppData){
33099   winMemData *pWinMemData = (winMemData *)pAppData;
33100 
33101   if( !pWinMemData ) return;
33102   assert( pWinMemData->magic1==WINMEM_MAGIC1 );
33103   assert( pWinMemData->magic2==WINMEM_MAGIC2 );
33104 
33105   if( pWinMemData->hHeap ){
33106     assert( pWinMemData->hHeap!=INVALID_HANDLE_VALUE );
33107 #if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_MALLOC_VALIDATE)
33108     assert( osHeapValidate(pWinMemData->hHeap, SQLITE_WIN32_HEAP_FLAGS, NULL) );
33109 #endif
33110     if( pWinMemData->bOwned ){
33111       if( !osHeapDestroy(pWinMemData->hHeap) ){
33112         sqlite3_log(SQLITE_NOMEM, "failed to HeapDestroy (%lu), heap=%p",
33113                     osGetLastError(), (void*)pWinMemData->hHeap);
33114       }
33115       pWinMemData->bOwned = FALSE;
33116     }
33117     pWinMemData->hHeap = NULL;
33118   }
33119 }
33120 
33121 /*
33122 ** Populate the low-level memory allocation function pointers in
33123 ** sqlite3GlobalConfig.m with pointers to the routines in this file. The
33124 ** arguments specify the block of memory to manage.
33125 **
33126 ** This routine is only called by sqlite3_config(), and therefore
33127 ** is not required to be threadsafe (it is not).
33128 */
33129 SQLITE_PRIVATE const sqlite3_mem_methods *sqlite3MemGetWin32(void){
33130   static const sqlite3_mem_methods winMemMethods = {
33131     winMemMalloc,
33132     winMemFree,
33133     winMemRealloc,
33134     winMemSize,
33135     winMemRoundup,
33136     winMemInit,
33137     winMemShutdown,
33138     &win_mem_data
33139   };
33140   return &winMemMethods;
33141 }
33142 
33143 SQLITE_PRIVATE void sqlite3MemSetDefault(void){
33144   sqlite3_config(SQLITE_CONFIG_MALLOC, sqlite3MemGetWin32());
33145 }
33146 #endif /* SQLITE_WIN32_MALLOC */
33147 
33148 /*
33149 ** Convert a UTF-8 string to Microsoft Unicode (UTF-16?).
33150 **
33151 ** Space to hold the returned string is obtained from malloc.
33152 */
33153 static LPWSTR winUtf8ToUnicode(const char *zFilename){
33154   int nChar;
33155   LPWSTR zWideFilename;
33156 
33157   nChar = osMultiByteToWideChar(CP_UTF8, 0, zFilename, -1, NULL, 0);
33158   if( nChar==0 ){
33159     return 0;
33160   }
33161   zWideFilename = sqlite3MallocZero( nChar*sizeof(zWideFilename[0]) );
33162   if( zWideFilename==0 ){
33163     return 0;
33164   }
33165   nChar = osMultiByteToWideChar(CP_UTF8, 0, zFilename, -1, zWideFilename,
33166                                 nChar);
33167   if( nChar==0 ){
33168     sqlite3_free(zWideFilename);
33169     zWideFilename = 0;
33170   }
33171   return zWideFilename;
33172 }
33173 
33174 /*
33175 ** Convert Microsoft Unicode to UTF-8.  Space to hold the returned string is
33176 ** obtained from sqlite3_malloc().
33177 */
33178 static char *winUnicodeToUtf8(LPCWSTR zWideFilename){
33179   int nByte;
33180   char *zFilename;
33181 
33182   nByte = osWideCharToMultiByte(CP_UTF8, 0, zWideFilename, -1, 0, 0, 0, 0);
33183   if( nByte == 0 ){
33184     return 0;
33185   }
33186   zFilename = sqlite3MallocZero( nByte );
33187   if( zFilename==0 ){
33188     return 0;
33189   }
33190   nByte = osWideCharToMultiByte(CP_UTF8, 0, zWideFilename, -1, zFilename, nByte,
33191                                 0, 0);
33192   if( nByte == 0 ){
33193     sqlite3_free(zFilename);
33194     zFilename = 0;
33195   }
33196   return zFilename;
33197 }
33198 
33199 /*
33200 ** Convert an ANSI string to Microsoft Unicode, based on the
33201 ** current codepage settings for file apis.
33202 **
33203 ** Space to hold the returned string is obtained
33204 ** from sqlite3_malloc.
33205 */
33206 static LPWSTR winMbcsToUnicode(const char *zFilename){
33207   int nByte;
33208   LPWSTR zMbcsFilename;
33209   int codepage = osAreFileApisANSI() ? CP_ACP : CP_OEMCP;
33210 
33211   nByte = osMultiByteToWideChar(codepage, 0, zFilename, -1, NULL,
33212                                 0)*sizeof(WCHAR);
33213   if( nByte==0 ){
33214     return 0;
33215   }
33216   zMbcsFilename = sqlite3MallocZero( nByte*sizeof(zMbcsFilename[0]) );
33217   if( zMbcsFilename==0 ){
33218     return 0;
33219   }
33220   nByte = osMultiByteToWideChar(codepage, 0, zFilename, -1, zMbcsFilename,
33221                                 nByte);
33222   if( nByte==0 ){
33223     sqlite3_free(zMbcsFilename);
33224     zMbcsFilename = 0;
33225   }
33226   return zMbcsFilename;
33227 }
33228 
33229 /*
33230 ** Convert Microsoft Unicode to multi-byte character string, based on the
33231 ** user's ANSI codepage.
33232 **
33233 ** Space to hold the returned string is obtained from
33234 ** sqlite3_malloc().
33235 */
33236 static char *winUnicodeToMbcs(LPCWSTR zWideFilename){
33237   int nByte;
33238   char *zFilename;
33239   int codepage = osAreFileApisANSI() ? CP_ACP : CP_OEMCP;
33240 
33241   nByte = osWideCharToMultiByte(codepage, 0, zWideFilename, -1, 0, 0, 0, 0);
33242   if( nByte == 0 ){
33243     return 0;
33244   }
33245   zFilename = sqlite3MallocZero( nByte );
33246   if( zFilename==0 ){
33247     return 0;
33248   }
33249   nByte = osWideCharToMultiByte(codepage, 0, zWideFilename, -1, zFilename,
33250                                 nByte, 0, 0);
33251   if( nByte == 0 ){
33252     sqlite3_free(zFilename);
33253     zFilename = 0;
33254   }
33255   return zFilename;
33256 }
33257 
33258 /*
33259 ** Convert multibyte character string to UTF-8.  Space to hold the
33260 ** returned string is obtained from sqlite3_malloc().
33261 */
33262 SQLITE_API char *sqlite3_win32_mbcs_to_utf8(const char *zFilename){
33263   char *zFilenameUtf8;
33264   LPWSTR zTmpWide;
33265 
33266   zTmpWide = winMbcsToUnicode(zFilename);
33267   if( zTmpWide==0 ){
33268     return 0;
33269   }
33270   zFilenameUtf8 = winUnicodeToUtf8(zTmpWide);
33271   sqlite3_free(zTmpWide);
33272   return zFilenameUtf8;
33273 }
33274 
33275 /*
33276 ** Convert UTF-8 to multibyte character string.  Space to hold the
33277 ** returned string is obtained from sqlite3_malloc().
33278 */
33279 SQLITE_API char *sqlite3_win32_utf8_to_mbcs(const char *zFilename){
33280   char *zFilenameMbcs;
33281   LPWSTR zTmpWide;
33282 
33283   zTmpWide = winUtf8ToUnicode(zFilename);
33284   if( zTmpWide==0 ){
33285     return 0;
33286   }
33287   zFilenameMbcs = winUnicodeToMbcs(zTmpWide);
33288   sqlite3_free(zTmpWide);
33289   return zFilenameMbcs;
33290 }
33291 
33292 /*
33293 ** This function sets the data directory or the temporary directory based on
33294 ** the provided arguments.  The type argument must be 1 in order to set the
33295 ** data directory or 2 in order to set the temporary directory.  The zValue
33296 ** argument is the name of the directory to use.  The return value will be
33297 ** SQLITE_OK if successful.
33298 */
33299 SQLITE_API int sqlite3_win32_set_directory(DWORD type, LPCWSTR zValue){
33300   char **ppDirectory = 0;
33301 #ifndef SQLITE_OMIT_AUTOINIT
33302   int rc = sqlite3_initialize();
33303   if( rc ) return rc;
33304 #endif
33305   if( type==SQLITE_WIN32_DATA_DIRECTORY_TYPE ){
33306     ppDirectory = &sqlite3_data_directory;
33307   }else if( type==SQLITE_WIN32_TEMP_DIRECTORY_TYPE ){
33308     ppDirectory = &sqlite3_temp_directory;
33309   }
33310   assert( !ppDirectory || type==SQLITE_WIN32_DATA_DIRECTORY_TYPE
33311           || type==SQLITE_WIN32_TEMP_DIRECTORY_TYPE
33312   );
33313   assert( !ppDirectory || sqlite3MemdebugHasType(*ppDirectory, MEMTYPE_HEAP) );
33314   if( ppDirectory ){
33315     char *zValueUtf8 = 0;
33316     if( zValue && zValue[0] ){
33317       zValueUtf8 = winUnicodeToUtf8(zValue);
33318       if ( zValueUtf8==0 ){
33319         return SQLITE_NOMEM;
33320       }
33321     }
33322     sqlite3_free(*ppDirectory);
33323     *ppDirectory = zValueUtf8;
33324     return SQLITE_OK;
33325   }
33326   return SQLITE_ERROR;
33327 }
33328 
33329 /*
33330 ** The return value of winGetLastErrorMsg
33331 ** is zero if the error message fits in the buffer, or non-zero
33332 ** otherwise (if the message was truncated).
33333 */
33334 static int winGetLastErrorMsg(DWORD lastErrno, int nBuf, char *zBuf){
33335   /* FormatMessage returns 0 on failure.  Otherwise it
33336   ** returns the number of TCHARs written to the output
33337   ** buffer, excluding the terminating null char.
33338   */
33339   DWORD dwLen = 0;
33340   char *zOut = 0;
33341 
33342   if( osIsNT() ){
33343 #if SQLITE_OS_WINRT
33344     WCHAR zTempWide[SQLITE_WIN32_MAX_ERRMSG_CHARS+1];
33345     dwLen = osFormatMessageW(FORMAT_MESSAGE_FROM_SYSTEM |
33346                              FORMAT_MESSAGE_IGNORE_INSERTS,
33347                              NULL,
33348                              lastErrno,
33349                              0,
33350                              zTempWide,
33351                              SQLITE_WIN32_MAX_ERRMSG_CHARS,
33352                              0);
33353 #else
33354     LPWSTR zTempWide = NULL;
33355     dwLen = osFormatMessageW(FORMAT_MESSAGE_ALLOCATE_BUFFER |
33356                              FORMAT_MESSAGE_FROM_SYSTEM |
33357                              FORMAT_MESSAGE_IGNORE_INSERTS,
33358                              NULL,
33359                              lastErrno,
33360                              0,
33361                              (LPWSTR) &zTempWide,
33362                              0,
33363                              0);
33364 #endif
33365     if( dwLen > 0 ){
33366       /* allocate a buffer and convert to UTF8 */
33367       sqlite3BeginBenignMalloc();
33368       zOut = winUnicodeToUtf8(zTempWide);
33369       sqlite3EndBenignMalloc();
33370 #if !SQLITE_OS_WINRT
33371       /* free the system buffer allocated by FormatMessage */
33372       osLocalFree(zTempWide);
33373 #endif
33374     }
33375   }
33376 #ifdef SQLITE_WIN32_HAS_ANSI
33377   else{
33378     char *zTemp = NULL;
33379     dwLen = osFormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER |
33380                              FORMAT_MESSAGE_FROM_SYSTEM |
33381                              FORMAT_MESSAGE_IGNORE_INSERTS,
33382                              NULL,
33383                              lastErrno,
33384                              0,
33385                              (LPSTR) &zTemp,
33386                              0,
33387                              0);
33388     if( dwLen > 0 ){
33389       /* allocate a buffer and convert to UTF8 */
33390       sqlite3BeginBenignMalloc();
33391       zOut = sqlite3_win32_mbcs_to_utf8(zTemp);
33392       sqlite3EndBenignMalloc();
33393       /* free the system buffer allocated by FormatMessage */
33394       osLocalFree(zTemp);
33395     }
33396   }
33397 #endif
33398   if( 0 == dwLen ){
33399     sqlite3_snprintf(nBuf, zBuf, "OsError 0x%lx (%lu)", lastErrno, lastErrno);
33400   }else{
33401     /* copy a maximum of nBuf chars to output buffer */
33402     sqlite3_snprintf(nBuf, zBuf, "%s", zOut);
33403     /* free the UTF8 buffer */
33404     sqlite3_free(zOut);
33405   }
33406   return 0;
33407 }
33408 
33409 /*
33410 **
33411 ** This function - winLogErrorAtLine() - is only ever called via the macro
33412 ** winLogError().
33413 **
33414 ** This routine is invoked after an error occurs in an OS function.
33415 ** It logs a message using sqlite3_log() containing the current value of
33416 ** error code and, if possible, the human-readable equivalent from
33417 ** FormatMessage.
33418 **
33419 ** The first argument passed to the macro should be the error code that
33420 ** will be returned to SQLite (e.g. SQLITE_IOERR_DELETE, SQLITE_CANTOPEN).
33421 ** The two subsequent arguments should be the name of the OS function that
33422 ** failed and the associated file-system path, if any.
33423 */
33424 #define winLogError(a,b,c,d)   winLogErrorAtLine(a,b,c,d,__LINE__)
33425 static int winLogErrorAtLine(
33426   int errcode,                    /* SQLite error code */
33427   DWORD lastErrno,                /* Win32 last error */
33428   const char *zFunc,              /* Name of OS function that failed */
33429   const char *zPath,              /* File path associated with error */
33430   int iLine                       /* Source line number where error occurred */
33431 ){
33432   char zMsg[500];                 /* Human readable error text */
33433   int i;                          /* Loop counter */
33434 
33435   zMsg[0] = 0;
33436   winGetLastErrorMsg(lastErrno, sizeof(zMsg), zMsg);
33437   assert( errcode!=SQLITE_OK );
33438   if( zPath==0 ) zPath = "";
33439   for(i=0; zMsg[i] && zMsg[i]!='\r' && zMsg[i]!='\n'; i++){}
33440   zMsg[i] = 0;
33441   sqlite3_log(errcode,
33442       "os_win.c:%d: (%lu) %s(%s) - %s",
33443       iLine, lastErrno, zFunc, zPath, zMsg
33444   );
33445 
33446   return errcode;
33447 }
33448 
33449 /*
33450 ** The number of times that a ReadFile(), WriteFile(), and DeleteFile()
33451 ** will be retried following a locking error - probably caused by
33452 ** antivirus software.  Also the initial delay before the first retry.
33453 ** The delay increases linearly with each retry.
33454 */
33455 #ifndef SQLITE_WIN32_IOERR_RETRY
33456 # define SQLITE_WIN32_IOERR_RETRY 10
33457 #endif
33458 #ifndef SQLITE_WIN32_IOERR_RETRY_DELAY
33459 # define SQLITE_WIN32_IOERR_RETRY_DELAY 25
33460 #endif
33461 static int winIoerrRetry = SQLITE_WIN32_IOERR_RETRY;
33462 static int winIoerrRetryDelay = SQLITE_WIN32_IOERR_RETRY_DELAY;
33463 
33464 /*
33465 ** The "winIoerrCanRetry1" macro is used to determine if a particular I/O
33466 ** error code obtained via GetLastError() is eligible to be retried.  It
33467 ** must accept the error code DWORD as its only argument and should return
33468 ** non-zero if the error code is transient in nature and the operation
33469 ** responsible for generating the original error might succeed upon being
33470 ** retried.  The argument to this macro should be a variable.
33471 **
33472 ** Additionally, a macro named "winIoerrCanRetry2" may be defined.  If it
33473 ** is defined, it will be consulted only when the macro "winIoerrCanRetry1"
33474 ** returns zero.  The "winIoerrCanRetry2" macro is completely optional and
33475 ** may be used to include additional error codes in the set that should
33476 ** result in the failing I/O operation being retried by the caller.  If
33477 ** defined, the "winIoerrCanRetry2" macro must exhibit external semantics
33478 ** identical to those of the "winIoerrCanRetry1" macro.
33479 */
33480 #if !defined(winIoerrCanRetry1)
33481 #define winIoerrCanRetry1(a) (((a)==ERROR_ACCESS_DENIED)        || \
33482                               ((a)==ERROR_SHARING_VIOLATION)    || \
33483                               ((a)==ERROR_LOCK_VIOLATION)       || \
33484                               ((a)==ERROR_DEV_NOT_EXIST)        || \
33485                               ((a)==ERROR_NETNAME_DELETED)      || \
33486                               ((a)==ERROR_SEM_TIMEOUT)          || \
33487                               ((a)==ERROR_NETWORK_UNREACHABLE))
33488 #endif
33489 
33490 /*
33491 ** If a ReadFile() or WriteFile() error occurs, invoke this routine
33492 ** to see if it should be retried.  Return TRUE to retry.  Return FALSE
33493 ** to give up with an error.
33494 */
33495 static int winRetryIoerr(int *pnRetry, DWORD *pError){
33496   DWORD e = osGetLastError();
33497   if( *pnRetry>=winIoerrRetry ){
33498     if( pError ){
33499       *pError = e;
33500     }
33501     return 0;
33502   }
33503   if( winIoerrCanRetry1(e) ){
33504     sqlite3_win32_sleep(winIoerrRetryDelay*(1+*pnRetry));
33505     ++*pnRetry;
33506     return 1;
33507   }
33508 #if defined(winIoerrCanRetry2)
33509   else if( winIoerrCanRetry2(e) ){
33510     sqlite3_win32_sleep(winIoerrRetryDelay*(1+*pnRetry));
33511     ++*pnRetry;
33512     return 1;
33513   }
33514 #endif
33515   if( pError ){
33516     *pError = e;
33517   }
33518   return 0;
33519 }
33520 
33521 /*
33522 ** Log a I/O error retry episode.
33523 */
33524 static void winLogIoerr(int nRetry){
33525   if( nRetry ){
33526     sqlite3_log(SQLITE_IOERR,
33527       "delayed %dms for lock/sharing conflict",
33528       winIoerrRetryDelay*nRetry*(nRetry+1)/2
33529     );
33530   }
33531 }
33532 
33533 #if SQLITE_OS_WINCE
33534 /*************************************************************************
33535 ** This section contains code for WinCE only.
33536 */
33537 #if !defined(SQLITE_MSVC_LOCALTIME_API) || !SQLITE_MSVC_LOCALTIME_API
33538 /*
33539 ** The MSVC CRT on Windows CE may not have a localtime() function.  So
33540 ** create a substitute.
33541 */
33542 /* #include <time.h> */
33543 struct tm *__cdecl localtime(const time_t *t)
33544 {
33545   static struct tm y;
33546   FILETIME uTm, lTm;
33547   SYSTEMTIME pTm;
33548   sqlite3_int64 t64;
33549   t64 = *t;
33550   t64 = (t64 + 11644473600)*10000000;
33551   uTm.dwLowDateTime = (DWORD)(t64 & 0xFFFFFFFF);
33552   uTm.dwHighDateTime= (DWORD)(t64 >> 32);
33553   osFileTimeToLocalFileTime(&uTm,&lTm);
33554   osFileTimeToSystemTime(&lTm,&pTm);
33555   y.tm_year = pTm.wYear - 1900;
33556   y.tm_mon = pTm.wMonth - 1;
33557   y.tm_wday = pTm.wDayOfWeek;
33558   y.tm_mday = pTm.wDay;
33559   y.tm_hour = pTm.wHour;
33560   y.tm_min = pTm.wMinute;
33561   y.tm_sec = pTm.wSecond;
33562   return &y;
33563 }
33564 #endif
33565 
33566 #define HANDLE_TO_WINFILE(a) (winFile*)&((char*)a)[-(int)offsetof(winFile,h)]
33567 
33568 /*
33569 ** Acquire a lock on the handle h
33570 */
33571 static void winceMutexAcquire(HANDLE h){
33572    DWORD dwErr;
33573    do {
33574      dwErr = osWaitForSingleObject(h, INFINITE);
33575    } while (dwErr != WAIT_OBJECT_0 && dwErr != WAIT_ABANDONED);
33576 }
33577 /*
33578 ** Release a lock acquired by winceMutexAcquire()
33579 */
33580 #define winceMutexRelease(h) ReleaseMutex(h)
33581 
33582 /*
33583 ** Create the mutex and shared memory used for locking in the file
33584 ** descriptor pFile
33585 */
33586 static int winceCreateLock(const char *zFilename, winFile *pFile){
33587   LPWSTR zTok;
33588   LPWSTR zName;
33589   DWORD lastErrno;
33590   BOOL bLogged = FALSE;
33591   BOOL bInit = TRUE;
33592 
33593   zName = winUtf8ToUnicode(zFilename);
33594   if( zName==0 ){
33595     /* out of memory */
33596     return SQLITE_IOERR_NOMEM;
33597   }
33598 
33599   /* Initialize the local lockdata */
33600   memset(&pFile->local, 0, sizeof(pFile->local));
33601 
33602   /* Replace the backslashes from the filename and lowercase it
33603   ** to derive a mutex name. */
33604   zTok = osCharLowerW(zName);
33605   for (;*zTok;zTok++){
33606     if (*zTok == '\\') *zTok = '_';
33607   }
33608 
33609   /* Create/open the named mutex */
33610   pFile->hMutex = osCreateMutexW(NULL, FALSE, zName);
33611   if (!pFile->hMutex){
33612     pFile->lastErrno = osGetLastError();
33613     sqlite3_free(zName);
33614     return winLogError(SQLITE_IOERR, pFile->lastErrno,
33615                        "winceCreateLock1", zFilename);
33616   }
33617 
33618   /* Acquire the mutex before continuing */
33619   winceMutexAcquire(pFile->hMutex);
33620 
33621   /* Since the names of named mutexes, semaphores, file mappings etc are
33622   ** case-sensitive, take advantage of that by uppercasing the mutex name
33623   ** and using that as the shared filemapping name.
33624   */
33625   osCharUpperW(zName);
33626   pFile->hShared = osCreateFileMappingW(INVALID_HANDLE_VALUE, NULL,
33627                                         PAGE_READWRITE, 0, sizeof(winceLock),
33628                                         zName);
33629 
33630   /* Set a flag that indicates we're the first to create the memory so it
33631   ** must be zero-initialized */
33632   lastErrno = osGetLastError();
33633   if (lastErrno == ERROR_ALREADY_EXISTS){
33634     bInit = FALSE;
33635   }
33636 
33637   sqlite3_free(zName);
33638 
33639   /* If we succeeded in making the shared memory handle, map it. */
33640   if( pFile->hShared ){
33641     pFile->shared = (winceLock*)osMapViewOfFile(pFile->hShared,
33642              FILE_MAP_READ|FILE_MAP_WRITE, 0, 0, sizeof(winceLock));
33643     /* If mapping failed, close the shared memory handle and erase it */
33644     if( !pFile->shared ){
33645       pFile->lastErrno = osGetLastError();
33646       winLogError(SQLITE_IOERR, pFile->lastErrno,
33647                   "winceCreateLock2", zFilename);
33648       bLogged = TRUE;
33649       osCloseHandle(pFile->hShared);
33650       pFile->hShared = NULL;
33651     }
33652   }
33653 
33654   /* If shared memory could not be created, then close the mutex and fail */
33655   if( pFile->hShared==NULL ){
33656     if( !bLogged ){
33657       pFile->lastErrno = lastErrno;
33658       winLogError(SQLITE_IOERR, pFile->lastErrno,
33659                   "winceCreateLock3", zFilename);
33660       bLogged = TRUE;
33661     }
33662     winceMutexRelease(pFile->hMutex);
33663     osCloseHandle(pFile->hMutex);
33664     pFile->hMutex = NULL;
33665     return SQLITE_IOERR;
33666   }
33667 
33668   /* Initialize the shared memory if we're supposed to */
33669   if( bInit ){
33670     memset(pFile->shared, 0, sizeof(winceLock));
33671   }
33672 
33673   winceMutexRelease(pFile->hMutex);
33674   return SQLITE_OK;
33675 }
33676 
33677 /*
33678 ** Destroy the part of winFile that deals with wince locks
33679 */
33680 static void winceDestroyLock(winFile *pFile){
33681   if (pFile->hMutex){
33682     /* Acquire the mutex */
33683     winceMutexAcquire(pFile->hMutex);
33684 
33685     /* The following blocks should probably assert in debug mode, but they
33686        are to cleanup in case any locks remained open */
33687     if (pFile->local.nReaders){
33688       pFile->shared->nReaders --;
33689     }
33690     if (pFile->local.bReserved){
33691       pFile->shared->bReserved = FALSE;
33692     }
33693     if (pFile->local.bPending){
33694       pFile->shared->bPending = FALSE;
33695     }
33696     if (pFile->local.bExclusive){
33697       pFile->shared->bExclusive = FALSE;
33698     }
33699 
33700     /* De-reference and close our copy of the shared memory handle */
33701     osUnmapViewOfFile(pFile->shared);
33702     osCloseHandle(pFile->hShared);
33703 
33704     /* Done with the mutex */
33705     winceMutexRelease(pFile->hMutex);
33706     osCloseHandle(pFile->hMutex);
33707     pFile->hMutex = NULL;
33708   }
33709 }
33710 
33711 /*
33712 ** An implementation of the LockFile() API of Windows for CE
33713 */
33714 static BOOL winceLockFile(
33715   LPHANDLE phFile,
33716   DWORD dwFileOffsetLow,
33717   DWORD dwFileOffsetHigh,
33718   DWORD nNumberOfBytesToLockLow,
33719   DWORD nNumberOfBytesToLockHigh
33720 ){
33721   winFile *pFile = HANDLE_TO_WINFILE(phFile);
33722   BOOL bReturn = FALSE;
33723 
33724   UNUSED_PARAMETER(dwFileOffsetHigh);
33725   UNUSED_PARAMETER(nNumberOfBytesToLockHigh);
33726 
33727   if (!pFile->hMutex) return TRUE;
33728   winceMutexAcquire(pFile->hMutex);
33729 
33730   /* Wanting an exclusive lock? */
33731   if (dwFileOffsetLow == (DWORD)SHARED_FIRST
33732        && nNumberOfBytesToLockLow == (DWORD)SHARED_SIZE){
33733     if (pFile->shared->nReaders == 0 && pFile->shared->bExclusive == 0){
33734        pFile->shared->bExclusive = TRUE;
33735        pFile->local.bExclusive = TRUE;
33736        bReturn = TRUE;
33737     }
33738   }
33739 
33740   /* Want a read-only lock? */
33741   else if (dwFileOffsetLow == (DWORD)SHARED_FIRST &&
33742            nNumberOfBytesToLockLow == 1){
33743     if (pFile->shared->bExclusive == 0){
33744       pFile->local.nReaders ++;
33745       if (pFile->local.nReaders == 1){
33746         pFile->shared->nReaders ++;
33747       }
33748       bReturn = TRUE;
33749     }
33750   }
33751 
33752   /* Want a pending lock? */
33753   else if (dwFileOffsetLow == (DWORD)PENDING_BYTE
33754            && nNumberOfBytesToLockLow == 1){
33755     /* If no pending lock has been acquired, then acquire it */
33756     if (pFile->shared->bPending == 0) {
33757       pFile->shared->bPending = TRUE;
33758       pFile->local.bPending = TRUE;
33759       bReturn = TRUE;
33760     }
33761   }
33762 
33763   /* Want a reserved lock? */
33764   else if (dwFileOffsetLow == (DWORD)RESERVED_BYTE
33765            && nNumberOfBytesToLockLow == 1){
33766     if (pFile->shared->bReserved == 0) {
33767       pFile->shared->bReserved = TRUE;
33768       pFile->local.bReserved = TRUE;
33769       bReturn = TRUE;
33770     }
33771   }
33772 
33773   winceMutexRelease(pFile->hMutex);
33774   return bReturn;
33775 }
33776 
33777 /*
33778 ** An implementation of the UnlockFile API of Windows for CE
33779 */
33780 static BOOL winceUnlockFile(
33781   LPHANDLE phFile,
33782   DWORD dwFileOffsetLow,
33783   DWORD dwFileOffsetHigh,
33784   DWORD nNumberOfBytesToUnlockLow,
33785   DWORD nNumberOfBytesToUnlockHigh
33786 ){
33787   winFile *pFile = HANDLE_TO_WINFILE(phFile);
33788   BOOL bReturn = FALSE;
33789 
33790   UNUSED_PARAMETER(dwFileOffsetHigh);
33791   UNUSED_PARAMETER(nNumberOfBytesToUnlockHigh);
33792 
33793   if (!pFile->hMutex) return TRUE;
33794   winceMutexAcquire(pFile->hMutex);
33795 
33796   /* Releasing a reader lock or an exclusive lock */
33797   if (dwFileOffsetLow == (DWORD)SHARED_FIRST){
33798     /* Did we have an exclusive lock? */
33799     if (pFile->local.bExclusive){
33800       assert(nNumberOfBytesToUnlockLow == (DWORD)SHARED_SIZE);
33801       pFile->local.bExclusive = FALSE;
33802       pFile->shared->bExclusive = FALSE;
33803       bReturn = TRUE;
33804     }
33805 
33806     /* Did we just have a reader lock? */
33807     else if (pFile->local.nReaders){
33808       assert(nNumberOfBytesToUnlockLow == (DWORD)SHARED_SIZE
33809              || nNumberOfBytesToUnlockLow == 1);
33810       pFile->local.nReaders --;
33811       if (pFile->local.nReaders == 0)
33812       {
33813         pFile->shared->nReaders --;
33814       }
33815       bReturn = TRUE;
33816     }
33817   }
33818 
33819   /* Releasing a pending lock */
33820   else if (dwFileOffsetLow == (DWORD)PENDING_BYTE
33821            && nNumberOfBytesToUnlockLow == 1){
33822     if (pFile->local.bPending){
33823       pFile->local.bPending = FALSE;
33824       pFile->shared->bPending = FALSE;
33825       bReturn = TRUE;
33826     }
33827   }
33828   /* Releasing a reserved lock */
33829   else if (dwFileOffsetLow == (DWORD)RESERVED_BYTE
33830            && nNumberOfBytesToUnlockLow == 1){
33831     if (pFile->local.bReserved) {
33832       pFile->local.bReserved = FALSE;
33833       pFile->shared->bReserved = FALSE;
33834       bReturn = TRUE;
33835     }
33836   }
33837 
33838   winceMutexRelease(pFile->hMutex);
33839   return bReturn;
33840 }
33841 /*
33842 ** End of the special code for wince
33843 *****************************************************************************/
33844 #endif /* SQLITE_OS_WINCE */
33845 
33846 /*
33847 ** Lock a file region.
33848 */
33849 static BOOL winLockFile(
33850   LPHANDLE phFile,
33851   DWORD flags,
33852   DWORD offsetLow,
33853   DWORD offsetHigh,
33854   DWORD numBytesLow,
33855   DWORD numBytesHigh
33856 ){
33857 #if SQLITE_OS_WINCE
33858   /*
33859   ** NOTE: Windows CE is handled differently here due its lack of the Win32
33860   **       API LockFile.
33861   */
33862   return winceLockFile(phFile, offsetLow, offsetHigh,
33863                        numBytesLow, numBytesHigh);
33864 #else
33865   if( osIsNT() ){
33866     OVERLAPPED ovlp;
33867     memset(&ovlp, 0, sizeof(OVERLAPPED));
33868     ovlp.Offset = offsetLow;
33869     ovlp.OffsetHigh = offsetHigh;
33870     return osLockFileEx(*phFile, flags, 0, numBytesLow, numBytesHigh, &ovlp);
33871   }else{
33872     return osLockFile(*phFile, offsetLow, offsetHigh, numBytesLow,
33873                       numBytesHigh);
33874   }
33875 #endif
33876 }
33877 
33878 /*
33879 ** Unlock a file region.
33880  */
33881 static BOOL winUnlockFile(
33882   LPHANDLE phFile,
33883   DWORD offsetLow,
33884   DWORD offsetHigh,
33885   DWORD numBytesLow,
33886   DWORD numBytesHigh
33887 ){
33888 #if SQLITE_OS_WINCE
33889   /*
33890   ** NOTE: Windows CE is handled differently here due its lack of the Win32
33891   **       API UnlockFile.
33892   */
33893   return winceUnlockFile(phFile, offsetLow, offsetHigh,
33894                          numBytesLow, numBytesHigh);
33895 #else
33896   if( osIsNT() ){
33897     OVERLAPPED ovlp;
33898     memset(&ovlp, 0, sizeof(OVERLAPPED));
33899     ovlp.Offset = offsetLow;
33900     ovlp.OffsetHigh = offsetHigh;
33901     return osUnlockFileEx(*phFile, 0, numBytesLow, numBytesHigh, &ovlp);
33902   }else{
33903     return osUnlockFile(*phFile, offsetLow, offsetHigh, numBytesLow,
33904                         numBytesHigh);
33905   }
33906 #endif
33907 }
33908 
33909 /*****************************************************************************
33910 ** The next group of routines implement the I/O methods specified
33911 ** by the sqlite3_io_methods object.
33912 ******************************************************************************/
33913 
33914 /*
33915 ** Some Microsoft compilers lack this definition.
33916 */
33917 #ifndef INVALID_SET_FILE_POINTER
33918 # define INVALID_SET_FILE_POINTER ((DWORD)-1)
33919 #endif
33920 
33921 /*
33922 ** Move the current position of the file handle passed as the first
33923 ** argument to offset iOffset within the file. If successful, return 0.
33924 ** Otherwise, set pFile->lastErrno and return non-zero.
33925 */
33926 static int winSeekFile(winFile *pFile, sqlite3_int64 iOffset){
33927 #if !SQLITE_OS_WINRT
33928   LONG upperBits;                 /* Most sig. 32 bits of new offset */
33929   LONG lowerBits;                 /* Least sig. 32 bits of new offset */
33930   DWORD dwRet;                    /* Value returned by SetFilePointer() */
33931   DWORD lastErrno;                /* Value returned by GetLastError() */
33932 
33933   OSTRACE(("SEEK file=%p, offset=%lld\n", pFile->h, iOffset));
33934 
33935   upperBits = (LONG)((iOffset>>32) & 0x7fffffff);
33936   lowerBits = (LONG)(iOffset & 0xffffffff);
33937 
33938   /* API oddity: If successful, SetFilePointer() returns a dword
33939   ** containing the lower 32-bits of the new file-offset. Or, if it fails,
33940   ** it returns INVALID_SET_FILE_POINTER. However according to MSDN,
33941   ** INVALID_SET_FILE_POINTER may also be a valid new offset. So to determine
33942   ** whether an error has actually occurred, it is also necessary to call
33943   ** GetLastError().
33944   */
33945   dwRet = osSetFilePointer(pFile->h, lowerBits, &upperBits, FILE_BEGIN);
33946 
33947   if( (dwRet==INVALID_SET_FILE_POINTER
33948       && ((lastErrno = osGetLastError())!=NO_ERROR)) ){
33949     pFile->lastErrno = lastErrno;
33950     winLogError(SQLITE_IOERR_SEEK, pFile->lastErrno,
33951                 "winSeekFile", pFile->zPath);
33952     OSTRACE(("SEEK file=%p, rc=SQLITE_IOERR_SEEK\n", pFile->h));
33953     return 1;
33954   }
33955 
33956   OSTRACE(("SEEK file=%p, rc=SQLITE_OK\n", pFile->h));
33957   return 0;
33958 #else
33959   /*
33960   ** Same as above, except that this implementation works for WinRT.
33961   */
33962 
33963   LARGE_INTEGER x;                /* The new offset */
33964   BOOL bRet;                      /* Value returned by SetFilePointerEx() */
33965 
33966   x.QuadPart = iOffset;
33967   bRet = osSetFilePointerEx(pFile->h, x, 0, FILE_BEGIN);
33968 
33969   if(!bRet){
33970     pFile->lastErrno = osGetLastError();
33971     winLogError(SQLITE_IOERR_SEEK, pFile->lastErrno,
33972                 "winSeekFile", pFile->zPath);
33973     OSTRACE(("SEEK file=%p, rc=SQLITE_IOERR_SEEK\n", pFile->h));
33974     return 1;
33975   }
33976 
33977   OSTRACE(("SEEK file=%p, rc=SQLITE_OK\n", pFile->h));
33978   return 0;
33979 #endif
33980 }
33981 
33982 #if SQLITE_MAX_MMAP_SIZE>0
33983 /* Forward references to VFS helper methods used for memory mapped files */
33984 static int winMapfile(winFile*, sqlite3_int64);
33985 static int winUnmapfile(winFile*);
33986 #endif
33987 
33988 /*
33989 ** Close a file.
33990 **
33991 ** It is reported that an attempt to close a handle might sometimes
33992 ** fail.  This is a very unreasonable result, but Windows is notorious
33993 ** for being unreasonable so I do not doubt that it might happen.  If
33994 ** the close fails, we pause for 100 milliseconds and try again.  As
33995 ** many as MX_CLOSE_ATTEMPT attempts to close the handle are made before
33996 ** giving up and returning an error.
33997 */
33998 #define MX_CLOSE_ATTEMPT 3
33999 static int winClose(sqlite3_file *id){
34000   int rc, cnt = 0;
34001   winFile *pFile = (winFile*)id;
34002 
34003   assert( id!=0 );
34004 #ifndef SQLITE_OMIT_WAL
34005   assert( pFile->pShm==0 );
34006 #endif
34007   assert( pFile->h!=NULL && pFile->h!=INVALID_HANDLE_VALUE );
34008   OSTRACE(("CLOSE file=%p\n", pFile->h));
34009 
34010 #if SQLITE_MAX_MMAP_SIZE>0
34011   winUnmapfile(pFile);
34012 #endif
34013 
34014   do{
34015     rc = osCloseHandle(pFile->h);
34016     /* SimulateIOError( rc=0; cnt=MX_CLOSE_ATTEMPT; ); */
34017   }while( rc==0 && ++cnt < MX_CLOSE_ATTEMPT && (sqlite3_win32_sleep(100), 1) );
34018 #if SQLITE_OS_WINCE
34019 #define WINCE_DELETION_ATTEMPTS 3
34020   winceDestroyLock(pFile);
34021   if( pFile->zDeleteOnClose ){
34022     int cnt = 0;
34023     while(
34024            osDeleteFileW(pFile->zDeleteOnClose)==0
34025         && osGetFileAttributesW(pFile->zDeleteOnClose)!=0xffffffff
34026         && cnt++ < WINCE_DELETION_ATTEMPTS
34027     ){
34028        sqlite3_win32_sleep(100);  /* Wait a little before trying again */
34029     }
34030     sqlite3_free(pFile->zDeleteOnClose);
34031   }
34032 #endif
34033   if( rc ){
34034     pFile->h = NULL;
34035   }
34036   OpenCounter(-1);
34037   OSTRACE(("CLOSE file=%p, rc=%s\n", pFile->h, rc ? "ok" : "failed"));
34038   return rc ? SQLITE_OK
34039             : winLogError(SQLITE_IOERR_CLOSE, osGetLastError(),
34040                           "winClose", pFile->zPath);
34041 }
34042 
34043 /*
34044 ** Read data from a file into a buffer.  Return SQLITE_OK if all
34045 ** bytes were read successfully and SQLITE_IOERR if anything goes
34046 ** wrong.
34047 */
34048 static int winRead(
34049   sqlite3_file *id,          /* File to read from */
34050   void *pBuf,                /* Write content into this buffer */
34051   int amt,                   /* Number of bytes to read */
34052   sqlite3_int64 offset       /* Begin reading at this offset */
34053 ){
34054 #if !SQLITE_OS_WINCE
34055   OVERLAPPED overlapped;          /* The offset for ReadFile. */
34056 #endif
34057   winFile *pFile = (winFile*)id;  /* file handle */
34058   DWORD nRead;                    /* Number of bytes actually read from file */
34059   int nRetry = 0;                 /* Number of retrys */
34060 
34061   assert( id!=0 );
34062   assert( amt>0 );
34063   assert( offset>=0 );
34064   SimulateIOError(return SQLITE_IOERR_READ);
34065   OSTRACE(("READ file=%p, buffer=%p, amount=%d, offset=%lld, lock=%d\n",
34066            pFile->h, pBuf, amt, offset, pFile->locktype));
34067 
34068 #if SQLITE_MAX_MMAP_SIZE>0
34069   /* Deal with as much of this read request as possible by transfering
34070   ** data from the memory mapping using memcpy().  */
34071   if( offset<pFile->mmapSize ){
34072     if( offset+amt <= pFile->mmapSize ){
34073       memcpy(pBuf, &((u8 *)(pFile->pMapRegion))[offset], amt);
34074       OSTRACE(("READ-MMAP file=%p, rc=SQLITE_OK\n", pFile->h));
34075       return SQLITE_OK;
34076     }else{
34077       int nCopy = (int)(pFile->mmapSize - offset);
34078       memcpy(pBuf, &((u8 *)(pFile->pMapRegion))[offset], nCopy);
34079       pBuf = &((u8 *)pBuf)[nCopy];
34080       amt -= nCopy;
34081       offset += nCopy;
34082     }
34083   }
34084 #endif
34085 
34086 #if SQLITE_OS_WINCE
34087   if( winSeekFile(pFile, offset) ){
34088     OSTRACE(("READ file=%p, rc=SQLITE_FULL\n", pFile->h));
34089     return SQLITE_FULL;
34090   }
34091   while( !osReadFile(pFile->h, pBuf, amt, &nRead, 0) ){
34092 #else
34093   memset(&overlapped, 0, sizeof(OVERLAPPED));
34094   overlapped.Offset = (LONG)(offset & 0xffffffff);
34095   overlapped.OffsetHigh = (LONG)((offset>>32) & 0x7fffffff);
34096   while( !osReadFile(pFile->h, pBuf, amt, &nRead, &overlapped) &&
34097          osGetLastError()!=ERROR_HANDLE_EOF ){
34098 #endif
34099     DWORD lastErrno;
34100     if( winRetryIoerr(&nRetry, &lastErrno) ) continue;
34101     pFile->lastErrno = lastErrno;
34102     OSTRACE(("READ file=%p, rc=SQLITE_IOERR_READ\n", pFile->h));
34103     return winLogError(SQLITE_IOERR_READ, pFile->lastErrno,
34104                        "winRead", pFile->zPath);
34105   }
34106   winLogIoerr(nRetry);
34107   if( nRead<(DWORD)amt ){
34108     /* Unread parts of the buffer must be zero-filled */
34109     memset(&((char*)pBuf)[nRead], 0, amt-nRead);
34110     OSTRACE(("READ file=%p, rc=SQLITE_IOERR_SHORT_READ\n", pFile->h));
34111     return SQLITE_IOERR_SHORT_READ;
34112   }
34113 
34114   OSTRACE(("READ file=%p, rc=SQLITE_OK\n", pFile->h));
34115   return SQLITE_OK;
34116 }
34117 
34118 /*
34119 ** Write data from a buffer into a file.  Return SQLITE_OK on success
34120 ** or some other error code on failure.
34121 */
34122 static int winWrite(
34123   sqlite3_file *id,               /* File to write into */
34124   const void *pBuf,               /* The bytes to be written */
34125   int amt,                        /* Number of bytes to write */
34126   sqlite3_int64 offset            /* Offset into the file to begin writing at */
34127 ){
34128   int rc = 0;                     /* True if error has occurred, else false */
34129   winFile *pFile = (winFile*)id;  /* File handle */
34130   int nRetry = 0;                 /* Number of retries */
34131 
34132   assert( amt>0 );
34133   assert( pFile );
34134   SimulateIOError(return SQLITE_IOERR_WRITE);
34135   SimulateDiskfullError(return SQLITE_FULL);
34136 
34137   OSTRACE(("WRITE file=%p, buffer=%p, amount=%d, offset=%lld, lock=%d\n",
34138            pFile->h, pBuf, amt, offset, pFile->locktype));
34139 
34140 #if SQLITE_MAX_MMAP_SIZE>0
34141   /* Deal with as much of this write request as possible by transfering
34142   ** data from the memory mapping using memcpy().  */
34143   if( offset<pFile->mmapSize ){
34144     if( offset+amt <= pFile->mmapSize ){
34145       memcpy(&((u8 *)(pFile->pMapRegion))[offset], pBuf, amt);
34146       OSTRACE(("WRITE-MMAP file=%p, rc=SQLITE_OK\n", pFile->h));
34147       return SQLITE_OK;
34148     }else{
34149       int nCopy = (int)(pFile->mmapSize - offset);
34150       memcpy(&((u8 *)(pFile->pMapRegion))[offset], pBuf, nCopy);
34151       pBuf = &((u8 *)pBuf)[nCopy];
34152       amt -= nCopy;
34153       offset += nCopy;
34154     }
34155   }
34156 #endif
34157 
34158 #if SQLITE_OS_WINCE
34159   rc = winSeekFile(pFile, offset);
34160   if( rc==0 ){
34161 #else
34162   {
34163 #endif
34164 #if !SQLITE_OS_WINCE
34165     OVERLAPPED overlapped;        /* The offset for WriteFile. */
34166 #endif
34167     u8 *aRem = (u8 *)pBuf;        /* Data yet to be written */
34168     int nRem = amt;               /* Number of bytes yet to be written */
34169     DWORD nWrite;                 /* Bytes written by each WriteFile() call */
34170     DWORD lastErrno = NO_ERROR;   /* Value returned by GetLastError() */
34171 
34172 #if !SQLITE_OS_WINCE
34173     memset(&overlapped, 0, sizeof(OVERLAPPED));
34174     overlapped.Offset = (LONG)(offset & 0xffffffff);
34175     overlapped.OffsetHigh = (LONG)((offset>>32) & 0x7fffffff);
34176 #endif
34177 
34178     while( nRem>0 ){
34179 #if SQLITE_OS_WINCE
34180       if( !osWriteFile(pFile->h, aRem, nRem, &nWrite, 0) ){
34181 #else
34182       if( !osWriteFile(pFile->h, aRem, nRem, &nWrite, &overlapped) ){
34183 #endif
34184         if( winRetryIoerr(&nRetry, &lastErrno) ) continue;
34185         break;
34186       }
34187       assert( nWrite==0 || nWrite<=(DWORD)nRem );
34188       if( nWrite==0 || nWrite>(DWORD)nRem ){
34189         lastErrno = osGetLastError();
34190         break;
34191       }
34192 #if !SQLITE_OS_WINCE
34193       offset += nWrite;
34194       overlapped.Offset = (LONG)(offset & 0xffffffff);
34195       overlapped.OffsetHigh = (LONG)((offset>>32) & 0x7fffffff);
34196 #endif
34197       aRem += nWrite;
34198       nRem -= nWrite;
34199     }
34200     if( nRem>0 ){
34201       pFile->lastErrno = lastErrno;
34202       rc = 1;
34203     }
34204   }
34205 
34206   if( rc ){
34207     if(   ( pFile->lastErrno==ERROR_HANDLE_DISK_FULL )
34208        || ( pFile->lastErrno==ERROR_DISK_FULL )){
34209       OSTRACE(("WRITE file=%p, rc=SQLITE_FULL\n", pFile->h));
34210       return winLogError(SQLITE_FULL, pFile->lastErrno,
34211                          "winWrite1", pFile->zPath);
34212     }
34213     OSTRACE(("WRITE file=%p, rc=SQLITE_IOERR_WRITE\n", pFile->h));
34214     return winLogError(SQLITE_IOERR_WRITE, pFile->lastErrno,
34215                        "winWrite2", pFile->zPath);
34216   }else{
34217     winLogIoerr(nRetry);
34218   }
34219   OSTRACE(("WRITE file=%p, rc=SQLITE_OK\n", pFile->h));
34220   return SQLITE_OK;
34221 }
34222 
34223 /*
34224 ** Truncate an open file to a specified size
34225 */
34226 static int winTruncate(sqlite3_file *id, sqlite3_int64 nByte){
34227   winFile *pFile = (winFile*)id;  /* File handle object */
34228   int rc = SQLITE_OK;             /* Return code for this function */
34229   DWORD lastErrno;
34230 
34231   assert( pFile );
34232   SimulateIOError(return SQLITE_IOERR_TRUNCATE);
34233   OSTRACE(("TRUNCATE file=%p, size=%lld, lock=%d\n",
34234            pFile->h, nByte, pFile->locktype));
34235 
34236   /* If the user has configured a chunk-size for this file, truncate the
34237   ** file so that it consists of an integer number of chunks (i.e. the
34238   ** actual file size after the operation may be larger than the requested
34239   ** size).
34240   */
34241   if( pFile->szChunk>0 ){
34242     nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk;
34243   }
34244 
34245   /* SetEndOfFile() returns non-zero when successful, or zero when it fails. */
34246   if( winSeekFile(pFile, nByte) ){
34247     rc = winLogError(SQLITE_IOERR_TRUNCATE, pFile->lastErrno,
34248                      "winTruncate1", pFile->zPath);
34249   }else if( 0==osSetEndOfFile(pFile->h) &&
34250             ((lastErrno = osGetLastError())!=ERROR_USER_MAPPED_FILE) ){
34251     pFile->lastErrno = lastErrno;
34252     rc = winLogError(SQLITE_IOERR_TRUNCATE, pFile->lastErrno,
34253                      "winTruncate2", pFile->zPath);
34254   }
34255 
34256 #if SQLITE_MAX_MMAP_SIZE>0
34257   /* If the file was truncated to a size smaller than the currently
34258   ** mapped region, reduce the effective mapping size as well. SQLite will
34259   ** use read() and write() to access data beyond this point from now on.
34260   */
34261   if( pFile->pMapRegion && nByte<pFile->mmapSize ){
34262     pFile->mmapSize = nByte;
34263   }
34264 #endif
34265 
34266   OSTRACE(("TRUNCATE file=%p, rc=%s\n", pFile->h, sqlite3ErrName(rc)));
34267   return rc;
34268 }
34269 
34270 #ifdef SQLITE_TEST
34271 /*
34272 ** Count the number of fullsyncs and normal syncs.  This is used to test
34273 ** that syncs and fullsyncs are occuring at the right times.
34274 */
34275 SQLITE_API int sqlite3_sync_count = 0;
34276 SQLITE_API int sqlite3_fullsync_count = 0;
34277 #endif
34278 
34279 /*
34280 ** Make sure all writes to a particular file are committed to disk.
34281 */
34282 static int winSync(sqlite3_file *id, int flags){
34283 #ifndef SQLITE_NO_SYNC
34284   /*
34285   ** Used only when SQLITE_NO_SYNC is not defined.
34286    */
34287   BOOL rc;
34288 #endif
34289 #if !defined(NDEBUG) || !defined(SQLITE_NO_SYNC) || \
34290     (defined(SQLITE_TEST) && defined(SQLITE_DEBUG))
34291   /*
34292   ** Used when SQLITE_NO_SYNC is not defined and by the assert() and/or
34293   ** OSTRACE() macros.
34294    */
34295   winFile *pFile = (winFile*)id;
34296 #else
34297   UNUSED_PARAMETER(id);
34298 #endif
34299 
34300   assert( pFile );
34301   /* Check that one of SQLITE_SYNC_NORMAL or FULL was passed */
34302   assert((flags&0x0F)==SQLITE_SYNC_NORMAL
34303       || (flags&0x0F)==SQLITE_SYNC_FULL
34304   );
34305 
34306   /* Unix cannot, but some systems may return SQLITE_FULL from here. This
34307   ** line is to test that doing so does not cause any problems.
34308   */
34309   SimulateDiskfullError( return SQLITE_FULL );
34310 
34311   OSTRACE(("SYNC file=%p, flags=%x, lock=%d\n",
34312            pFile->h, flags, pFile->locktype));
34313 
34314 #ifndef SQLITE_TEST
34315   UNUSED_PARAMETER(flags);
34316 #else
34317   if( (flags&0x0F)==SQLITE_SYNC_FULL ){
34318     sqlite3_fullsync_count++;
34319   }
34320   sqlite3_sync_count++;
34321 #endif
34322 
34323   /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a
34324   ** no-op
34325   */
34326 #ifdef SQLITE_NO_SYNC
34327   OSTRACE(("SYNC-NOP file=%p, rc=SQLITE_OK\n", pFile->h));
34328   return SQLITE_OK;
34329 #else
34330   rc = osFlushFileBuffers(pFile->h);
34331   SimulateIOError( rc=FALSE );
34332   if( rc ){
34333     OSTRACE(("SYNC file=%p, rc=SQLITE_OK\n", pFile->h));
34334     return SQLITE_OK;
34335   }else{
34336     pFile->lastErrno = osGetLastError();
34337     OSTRACE(("SYNC file=%p, rc=SQLITE_IOERR_FSYNC\n", pFile->h));
34338     return winLogError(SQLITE_IOERR_FSYNC, pFile->lastErrno,
34339                        "winSync", pFile->zPath);
34340   }
34341 #endif
34342 }
34343 
34344 /*
34345 ** Determine the current size of a file in bytes
34346 */
34347 static int winFileSize(sqlite3_file *id, sqlite3_int64 *pSize){
34348   winFile *pFile = (winFile*)id;
34349   int rc = SQLITE_OK;
34350 
34351   assert( id!=0 );
34352   assert( pSize!=0 );
34353   SimulateIOError(return SQLITE_IOERR_FSTAT);
34354   OSTRACE(("SIZE file=%p, pSize=%p\n", pFile->h, pSize));
34355 
34356 #if SQLITE_OS_WINRT
34357   {
34358     FILE_STANDARD_INFO info;
34359     if( osGetFileInformationByHandleEx(pFile->h, FileStandardInfo,
34360                                      &info, sizeof(info)) ){
34361       *pSize = info.EndOfFile.QuadPart;
34362     }else{
34363       pFile->lastErrno = osGetLastError();
34364       rc = winLogError(SQLITE_IOERR_FSTAT, pFile->lastErrno,
34365                        "winFileSize", pFile->zPath);
34366     }
34367   }
34368 #else
34369   {
34370     DWORD upperBits;
34371     DWORD lowerBits;
34372     DWORD lastErrno;
34373 
34374     lowerBits = osGetFileSize(pFile->h, &upperBits);
34375     *pSize = (((sqlite3_int64)upperBits)<<32) + lowerBits;
34376     if(   (lowerBits == INVALID_FILE_SIZE)
34377        && ((lastErrno = osGetLastError())!=NO_ERROR) ){
34378       pFile->lastErrno = lastErrno;
34379       rc = winLogError(SQLITE_IOERR_FSTAT, pFile->lastErrno,
34380                        "winFileSize", pFile->zPath);
34381     }
34382   }
34383 #endif
34384   OSTRACE(("SIZE file=%p, pSize=%p, *pSize=%lld, rc=%s\n",
34385            pFile->h, pSize, *pSize, sqlite3ErrName(rc)));
34386   return rc;
34387 }
34388 
34389 /*
34390 ** LOCKFILE_FAIL_IMMEDIATELY is undefined on some Windows systems.
34391 */
34392 #ifndef LOCKFILE_FAIL_IMMEDIATELY
34393 # define LOCKFILE_FAIL_IMMEDIATELY 1
34394 #endif
34395 
34396 #ifndef LOCKFILE_EXCLUSIVE_LOCK
34397 # define LOCKFILE_EXCLUSIVE_LOCK 2
34398 #endif
34399 
34400 /*
34401 ** Historically, SQLite has used both the LockFile and LockFileEx functions.
34402 ** When the LockFile function was used, it was always expected to fail
34403 ** immediately if the lock could not be obtained.  Also, it always expected to
34404 ** obtain an exclusive lock.  These flags are used with the LockFileEx function
34405 ** and reflect those expectations; therefore, they should not be changed.
34406 */
34407 #ifndef SQLITE_LOCKFILE_FLAGS
34408 # define SQLITE_LOCKFILE_FLAGS   (LOCKFILE_FAIL_IMMEDIATELY | \
34409                                   LOCKFILE_EXCLUSIVE_LOCK)
34410 #endif
34411 
34412 /*
34413 ** Currently, SQLite never calls the LockFileEx function without wanting the
34414 ** call to fail immediately if the lock cannot be obtained.
34415 */
34416 #ifndef SQLITE_LOCKFILEEX_FLAGS
34417 # define SQLITE_LOCKFILEEX_FLAGS (LOCKFILE_FAIL_IMMEDIATELY)
34418 #endif
34419 
34420 /*
34421 ** Acquire a reader lock.
34422 ** Different API routines are called depending on whether or not this
34423 ** is Win9x or WinNT.
34424 */
34425 static int winGetReadLock(winFile *pFile){
34426   int res;
34427   OSTRACE(("READ-LOCK file=%p, lock=%d\n", pFile->h, pFile->locktype));
34428   if( osIsNT() ){
34429 #if SQLITE_OS_WINCE
34430     /*
34431     ** NOTE: Windows CE is handled differently here due its lack of the Win32
34432     **       API LockFileEx.
34433     */
34434     res = winceLockFile(&pFile->h, SHARED_FIRST, 0, 1, 0);
34435 #else
34436     res = winLockFile(&pFile->h, SQLITE_LOCKFILEEX_FLAGS, SHARED_FIRST, 0,
34437                       SHARED_SIZE, 0);
34438 #endif
34439   }
34440 #ifdef SQLITE_WIN32_HAS_ANSI
34441   else{
34442     int lk;
34443     sqlite3_randomness(sizeof(lk), &lk);
34444     pFile->sharedLockByte = (short)((lk & 0x7fffffff)%(SHARED_SIZE - 1));
34445     res = winLockFile(&pFile->h, SQLITE_LOCKFILE_FLAGS,
34446                       SHARED_FIRST+pFile->sharedLockByte, 0, 1, 0);
34447   }
34448 #endif
34449   if( res == 0 ){
34450     pFile->lastErrno = osGetLastError();
34451     /* No need to log a failure to lock */
34452   }
34453   OSTRACE(("READ-LOCK file=%p, result=%d\n", pFile->h, res));
34454   return res;
34455 }
34456 
34457 /*
34458 ** Undo a readlock
34459 */
34460 static int winUnlockReadLock(winFile *pFile){
34461   int res;
34462   DWORD lastErrno;
34463   OSTRACE(("READ-UNLOCK file=%p, lock=%d\n", pFile->h, pFile->locktype));
34464   if( osIsNT() ){
34465     res = winUnlockFile(&pFile->h, SHARED_FIRST, 0, SHARED_SIZE, 0);
34466   }
34467 #ifdef SQLITE_WIN32_HAS_ANSI
34468   else{
34469     res = winUnlockFile(&pFile->h, SHARED_FIRST+pFile->sharedLockByte, 0, 1, 0);
34470   }
34471 #endif
34472   if( res==0 && ((lastErrno = osGetLastError())!=ERROR_NOT_LOCKED) ){
34473     pFile->lastErrno = lastErrno;
34474     winLogError(SQLITE_IOERR_UNLOCK, pFile->lastErrno,
34475                 "winUnlockReadLock", pFile->zPath);
34476   }
34477   OSTRACE(("READ-UNLOCK file=%p, result=%d\n", pFile->h, res));
34478   return res;
34479 }
34480 
34481 /*
34482 ** Lock the file with the lock specified by parameter locktype - one
34483 ** of the following:
34484 **
34485 **     (1) SHARED_LOCK
34486 **     (2) RESERVED_LOCK
34487 **     (3) PENDING_LOCK
34488 **     (4) EXCLUSIVE_LOCK
34489 **
34490 ** Sometimes when requesting one lock state, additional lock states
34491 ** are inserted in between.  The locking might fail on one of the later
34492 ** transitions leaving the lock state different from what it started but
34493 ** still short of its goal.  The following chart shows the allowed
34494 ** transitions and the inserted intermediate states:
34495 **
34496 **    UNLOCKED -> SHARED
34497 **    SHARED -> RESERVED
34498 **    SHARED -> (PENDING) -> EXCLUSIVE
34499 **    RESERVED -> (PENDING) -> EXCLUSIVE
34500 **    PENDING -> EXCLUSIVE
34501 **
34502 ** This routine will only increase a lock.  The winUnlock() routine
34503 ** erases all locks at once and returns us immediately to locking level 0.
34504 ** It is not possible to lower the locking level one step at a time.  You
34505 ** must go straight to locking level 0.
34506 */
34507 static int winLock(sqlite3_file *id, int locktype){
34508   int rc = SQLITE_OK;    /* Return code from subroutines */
34509   int res = 1;           /* Result of a Windows lock call */
34510   int newLocktype;       /* Set pFile->locktype to this value before exiting */
34511   int gotPendingLock = 0;/* True if we acquired a PENDING lock this time */
34512   winFile *pFile = (winFile*)id;
34513   DWORD lastErrno = NO_ERROR;
34514 
34515   assert( id!=0 );
34516   OSTRACE(("LOCK file=%p, oldLock=%d(%d), newLock=%d\n",
34517            pFile->h, pFile->locktype, pFile->sharedLockByte, locktype));
34518 
34519   /* If there is already a lock of this type or more restrictive on the
34520   ** OsFile, do nothing. Don't use the end_lock: exit path, as
34521   ** sqlite3OsEnterMutex() hasn't been called yet.
34522   */
34523   if( pFile->locktype>=locktype ){
34524     OSTRACE(("LOCK-HELD file=%p, rc=SQLITE_OK\n", pFile->h));
34525     return SQLITE_OK;
34526   }
34527 
34528   /* Make sure the locking sequence is correct
34529   */
34530   assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK );
34531   assert( locktype!=PENDING_LOCK );
34532   assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK );
34533 
34534   /* Lock the PENDING_LOCK byte if we need to acquire a PENDING lock or
34535   ** a SHARED lock.  If we are acquiring a SHARED lock, the acquisition of
34536   ** the PENDING_LOCK byte is temporary.
34537   */
34538   newLocktype = pFile->locktype;
34539   if(   (pFile->locktype==NO_LOCK)
34540      || (   (locktype==EXCLUSIVE_LOCK)
34541          && (pFile->locktype==RESERVED_LOCK))
34542   ){
34543     int cnt = 3;
34544     while( cnt-->0 && (res = winLockFile(&pFile->h, SQLITE_LOCKFILE_FLAGS,
34545                                          PENDING_BYTE, 0, 1, 0))==0 ){
34546       /* Try 3 times to get the pending lock.  This is needed to work
34547       ** around problems caused by indexing and/or anti-virus software on
34548       ** Windows systems.
34549       ** If you are using this code as a model for alternative VFSes, do not
34550       ** copy this retry logic.  It is a hack intended for Windows only.
34551       */
34552       lastErrno = osGetLastError();
34553       OSTRACE(("LOCK-PENDING-FAIL file=%p, count=%d, result=%d\n",
34554                pFile->h, cnt, res));
34555       if( lastErrno==ERROR_INVALID_HANDLE ){
34556         pFile->lastErrno = lastErrno;
34557         rc = SQLITE_IOERR_LOCK;
34558         OSTRACE(("LOCK-FAIL file=%p, count=%d, rc=%s\n",
34559                  pFile->h, cnt, sqlite3ErrName(rc)));
34560         return rc;
34561       }
34562       if( cnt ) sqlite3_win32_sleep(1);
34563     }
34564     gotPendingLock = res;
34565     if( !res ){
34566       lastErrno = osGetLastError();
34567     }
34568   }
34569 
34570   /* Acquire a shared lock
34571   */
34572   if( locktype==SHARED_LOCK && res ){
34573     assert( pFile->locktype==NO_LOCK );
34574     res = winGetReadLock(pFile);
34575     if( res ){
34576       newLocktype = SHARED_LOCK;
34577     }else{
34578       lastErrno = osGetLastError();
34579     }
34580   }
34581 
34582   /* Acquire a RESERVED lock
34583   */
34584   if( locktype==RESERVED_LOCK && res ){
34585     assert( pFile->locktype==SHARED_LOCK );
34586     res = winLockFile(&pFile->h, SQLITE_LOCKFILE_FLAGS, RESERVED_BYTE, 0, 1, 0);
34587     if( res ){
34588       newLocktype = RESERVED_LOCK;
34589     }else{
34590       lastErrno = osGetLastError();
34591     }
34592   }
34593 
34594   /* Acquire a PENDING lock
34595   */
34596   if( locktype==EXCLUSIVE_LOCK && res ){
34597     newLocktype = PENDING_LOCK;
34598     gotPendingLock = 0;
34599   }
34600 
34601   /* Acquire an EXCLUSIVE lock
34602   */
34603   if( locktype==EXCLUSIVE_LOCK && res ){
34604     assert( pFile->locktype>=SHARED_LOCK );
34605     res = winUnlockReadLock(pFile);
34606     res = winLockFile(&pFile->h, SQLITE_LOCKFILE_FLAGS, SHARED_FIRST, 0,
34607                       SHARED_SIZE, 0);
34608     if( res ){
34609       newLocktype = EXCLUSIVE_LOCK;
34610     }else{
34611       lastErrno = osGetLastError();
34612       winGetReadLock(pFile);
34613     }
34614   }
34615 
34616   /* If we are holding a PENDING lock that ought to be released, then
34617   ** release it now.
34618   */
34619   if( gotPendingLock && locktype==SHARED_LOCK ){
34620     winUnlockFile(&pFile->h, PENDING_BYTE, 0, 1, 0);
34621   }
34622 
34623   /* Update the state of the lock has held in the file descriptor then
34624   ** return the appropriate result code.
34625   */
34626   if( res ){
34627     rc = SQLITE_OK;
34628   }else{
34629     pFile->lastErrno = lastErrno;
34630     rc = SQLITE_BUSY;
34631     OSTRACE(("LOCK-FAIL file=%p, wanted=%d, got=%d\n",
34632              pFile->h, locktype, newLocktype));
34633   }
34634   pFile->locktype = (u8)newLocktype;
34635   OSTRACE(("LOCK file=%p, lock=%d, rc=%s\n",
34636            pFile->h, pFile->locktype, sqlite3ErrName(rc)));
34637   return rc;
34638 }
34639 
34640 /*
34641 ** This routine checks if there is a RESERVED lock held on the specified
34642 ** file by this or any other process. If such a lock is held, return
34643 ** non-zero, otherwise zero.
34644 */
34645 static int winCheckReservedLock(sqlite3_file *id, int *pResOut){
34646   int res;
34647   winFile *pFile = (winFile*)id;
34648 
34649   SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
34650   OSTRACE(("TEST-WR-LOCK file=%p, pResOut=%p\n", pFile->h, pResOut));
34651 
34652   assert( id!=0 );
34653   if( pFile->locktype>=RESERVED_LOCK ){
34654     res = 1;
34655     OSTRACE(("TEST-WR-LOCK file=%p, result=%d (local)\n", pFile->h, res));
34656   }else{
34657     res = winLockFile(&pFile->h, SQLITE_LOCKFILEEX_FLAGS,RESERVED_BYTE, 0, 1, 0);
34658     if( res ){
34659       winUnlockFile(&pFile->h, RESERVED_BYTE, 0, 1, 0);
34660     }
34661     res = !res;
34662     OSTRACE(("TEST-WR-LOCK file=%p, result=%d (remote)\n", pFile->h, res));
34663   }
34664   *pResOut = res;
34665   OSTRACE(("TEST-WR-LOCK file=%p, pResOut=%p, *pResOut=%d, rc=SQLITE_OK\n",
34666            pFile->h, pResOut, *pResOut));
34667   return SQLITE_OK;
34668 }
34669 
34670 /*
34671 ** Lower the locking level on file descriptor id to locktype.  locktype
34672 ** must be either NO_LOCK or SHARED_LOCK.
34673 **
34674 ** If the locking level of the file descriptor is already at or below
34675 ** the requested locking level, this routine is a no-op.
34676 **
34677 ** It is not possible for this routine to fail if the second argument
34678 ** is NO_LOCK.  If the second argument is SHARED_LOCK then this routine
34679 ** might return SQLITE_IOERR;
34680 */
34681 static int winUnlock(sqlite3_file *id, int locktype){
34682   int type;
34683   winFile *pFile = (winFile*)id;
34684   int rc = SQLITE_OK;
34685   assert( pFile!=0 );
34686   assert( locktype<=SHARED_LOCK );
34687   OSTRACE(("UNLOCK file=%p, oldLock=%d(%d), newLock=%d\n",
34688            pFile->h, pFile->locktype, pFile->sharedLockByte, locktype));
34689   type = pFile->locktype;
34690   if( type>=EXCLUSIVE_LOCK ){
34691     winUnlockFile(&pFile->h, SHARED_FIRST, 0, SHARED_SIZE, 0);
34692     if( locktype==SHARED_LOCK && !winGetReadLock(pFile) ){
34693       /* This should never happen.  We should always be able to
34694       ** reacquire the read lock */
34695       rc = winLogError(SQLITE_IOERR_UNLOCK, osGetLastError(),
34696                        "winUnlock", pFile->zPath);
34697     }
34698   }
34699   if( type>=RESERVED_LOCK ){
34700     winUnlockFile(&pFile->h, RESERVED_BYTE, 0, 1, 0);
34701   }
34702   if( locktype==NO_LOCK && type>=SHARED_LOCK ){
34703     winUnlockReadLock(pFile);
34704   }
34705   if( type>=PENDING_LOCK ){
34706     winUnlockFile(&pFile->h, PENDING_BYTE, 0, 1, 0);
34707   }
34708   pFile->locktype = (u8)locktype;
34709   OSTRACE(("UNLOCK file=%p, lock=%d, rc=%s\n",
34710            pFile->h, pFile->locktype, sqlite3ErrName(rc)));
34711   return rc;
34712 }
34713 
34714 /*
34715 ** If *pArg is inititially negative then this is a query.  Set *pArg to
34716 ** 1 or 0 depending on whether or not bit mask of pFile->ctrlFlags is set.
34717 **
34718 ** If *pArg is 0 or 1, then clear or set the mask bit of pFile->ctrlFlags.
34719 */
34720 static void winModeBit(winFile *pFile, unsigned char mask, int *pArg){
34721   if( *pArg<0 ){
34722     *pArg = (pFile->ctrlFlags & mask)!=0;
34723   }else if( (*pArg)==0 ){
34724     pFile->ctrlFlags &= ~mask;
34725   }else{
34726     pFile->ctrlFlags |= mask;
34727   }
34728 }
34729 
34730 /* Forward references to VFS helper methods used for temporary files */
34731 static int winGetTempname(sqlite3_vfs *, char **);
34732 static int winIsDir(const void *);
34733 static BOOL winIsDriveLetterAndColon(const char *);
34734 
34735 /*
34736 ** Control and query of the open file handle.
34737 */
34738 static int winFileControl(sqlite3_file *id, int op, void *pArg){
34739   winFile *pFile = (winFile*)id;
34740   OSTRACE(("FCNTL file=%p, op=%d, pArg=%p\n", pFile->h, op, pArg));
34741   switch( op ){
34742     case SQLITE_FCNTL_LOCKSTATE: {
34743       *(int*)pArg = pFile->locktype;
34744       OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h));
34745       return SQLITE_OK;
34746     }
34747     case SQLITE_LAST_ERRNO: {
34748       *(int*)pArg = (int)pFile->lastErrno;
34749       OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h));
34750       return SQLITE_OK;
34751     }
34752     case SQLITE_FCNTL_CHUNK_SIZE: {
34753       pFile->szChunk = *(int *)pArg;
34754       OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h));
34755       return SQLITE_OK;
34756     }
34757     case SQLITE_FCNTL_SIZE_HINT: {
34758       if( pFile->szChunk>0 ){
34759         sqlite3_int64 oldSz;
34760         int rc = winFileSize(id, &oldSz);
34761         if( rc==SQLITE_OK ){
34762           sqlite3_int64 newSz = *(sqlite3_int64*)pArg;
34763           if( newSz>oldSz ){
34764             SimulateIOErrorBenign(1);
34765             rc = winTruncate(id, newSz);
34766             SimulateIOErrorBenign(0);
34767           }
34768         }
34769         OSTRACE(("FCNTL file=%p, rc=%s\n", pFile->h, sqlite3ErrName(rc)));
34770         return rc;
34771       }
34772       OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h));
34773       return SQLITE_OK;
34774     }
34775     case SQLITE_FCNTL_PERSIST_WAL: {
34776       winModeBit(pFile, WINFILE_PERSIST_WAL, (int*)pArg);
34777       OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h));
34778       return SQLITE_OK;
34779     }
34780     case SQLITE_FCNTL_POWERSAFE_OVERWRITE: {
34781       winModeBit(pFile, WINFILE_PSOW, (int*)pArg);
34782       OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h));
34783       return SQLITE_OK;
34784     }
34785     case SQLITE_FCNTL_VFSNAME: {
34786       *(char**)pArg = sqlite3_mprintf("%s", pFile->pVfs->zName);
34787       OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h));
34788       return SQLITE_OK;
34789     }
34790     case SQLITE_FCNTL_WIN32_AV_RETRY: {
34791       int *a = (int*)pArg;
34792       if( a[0]>0 ){
34793         winIoerrRetry = a[0];
34794       }else{
34795         a[0] = winIoerrRetry;
34796       }
34797       if( a[1]>0 ){
34798         winIoerrRetryDelay = a[1];
34799       }else{
34800         a[1] = winIoerrRetryDelay;
34801       }
34802       OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h));
34803       return SQLITE_OK;
34804     }
34805 #ifdef SQLITE_TEST
34806     case SQLITE_FCNTL_WIN32_SET_HANDLE: {
34807       LPHANDLE phFile = (LPHANDLE)pArg;
34808       HANDLE hOldFile = pFile->h;
34809       pFile->h = *phFile;
34810       *phFile = hOldFile;
34811       OSTRACE(("FCNTL oldFile=%p, newFile=%p, rc=SQLITE_OK\n",
34812                hOldFile, pFile->h));
34813       return SQLITE_OK;
34814     }
34815 #endif
34816     case SQLITE_FCNTL_TEMPFILENAME: {
34817       char *zTFile = 0;
34818       int rc = winGetTempname(pFile->pVfs, &zTFile);
34819       if( rc==SQLITE_OK ){
34820         *(char**)pArg = zTFile;
34821       }
34822       OSTRACE(("FCNTL file=%p, rc=%s\n", pFile->h, sqlite3ErrName(rc)));
34823       return rc;
34824     }
34825 #if SQLITE_MAX_MMAP_SIZE>0
34826     case SQLITE_FCNTL_MMAP_SIZE: {
34827       i64 newLimit = *(i64*)pArg;
34828       int rc = SQLITE_OK;
34829       if( newLimit>sqlite3GlobalConfig.mxMmap ){
34830         newLimit = sqlite3GlobalConfig.mxMmap;
34831       }
34832       *(i64*)pArg = pFile->mmapSizeMax;
34833       if( newLimit>=0 && newLimit!=pFile->mmapSizeMax && pFile->nFetchOut==0 ){
34834         pFile->mmapSizeMax = newLimit;
34835         if( pFile->mmapSize>0 ){
34836           winUnmapfile(pFile);
34837           rc = winMapfile(pFile, -1);
34838         }
34839       }
34840       OSTRACE(("FCNTL file=%p, rc=%s\n", pFile->h, sqlite3ErrName(rc)));
34841       return rc;
34842     }
34843 #endif
34844   }
34845   OSTRACE(("FCNTL file=%p, rc=SQLITE_NOTFOUND\n", pFile->h));
34846   return SQLITE_NOTFOUND;
34847 }
34848 
34849 /*
34850 ** Return the sector size in bytes of the underlying block device for
34851 ** the specified file. This is almost always 512 bytes, but may be
34852 ** larger for some devices.
34853 **
34854 ** SQLite code assumes this function cannot fail. It also assumes that
34855 ** if two files are created in the same file-system directory (i.e.
34856 ** a database and its journal file) that the sector size will be the
34857 ** same for both.
34858 */
34859 static int winSectorSize(sqlite3_file *id){
34860   (void)id;
34861   return SQLITE_DEFAULT_SECTOR_SIZE;
34862 }
34863 
34864 /*
34865 ** Return a vector of device characteristics.
34866 */
34867 static int winDeviceCharacteristics(sqlite3_file *id){
34868   winFile *p = (winFile*)id;
34869   return SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN |
34870          ((p->ctrlFlags & WINFILE_PSOW)?SQLITE_IOCAP_POWERSAFE_OVERWRITE:0);
34871 }
34872 
34873 /*
34874 ** Windows will only let you create file view mappings
34875 ** on allocation size granularity boundaries.
34876 ** During sqlite3_os_init() we do a GetSystemInfo()
34877 ** to get the granularity size.
34878 */
34879 static SYSTEM_INFO winSysInfo;
34880 
34881 #ifndef SQLITE_OMIT_WAL
34882 
34883 /*
34884 ** Helper functions to obtain and relinquish the global mutex. The
34885 ** global mutex is used to protect the winLockInfo objects used by
34886 ** this file, all of which may be shared by multiple threads.
34887 **
34888 ** Function winShmMutexHeld() is used to assert() that the global mutex
34889 ** is held when required. This function is only used as part of assert()
34890 ** statements. e.g.
34891 **
34892 **   winShmEnterMutex()
34893 **     assert( winShmMutexHeld() );
34894 **   winShmLeaveMutex()
34895 */
34896 static void winShmEnterMutex(void){
34897   sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
34898 }
34899 static void winShmLeaveMutex(void){
34900   sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
34901 }
34902 #ifndef NDEBUG
34903 static int winShmMutexHeld(void) {
34904   return sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
34905 }
34906 #endif
34907 
34908 /*
34909 ** Object used to represent a single file opened and mmapped to provide
34910 ** shared memory.  When multiple threads all reference the same
34911 ** log-summary, each thread has its own winFile object, but they all
34912 ** point to a single instance of this object.  In other words, each
34913 ** log-summary is opened only once per process.
34914 **
34915 ** winShmMutexHeld() must be true when creating or destroying
34916 ** this object or while reading or writing the following fields:
34917 **
34918 **      nRef
34919 **      pNext
34920 **
34921 ** The following fields are read-only after the object is created:
34922 **
34923 **      fid
34924 **      zFilename
34925 **
34926 ** Either winShmNode.mutex must be held or winShmNode.nRef==0 and
34927 ** winShmMutexHeld() is true when reading or writing any other field
34928 ** in this structure.
34929 **
34930 */
34931 struct winShmNode {
34932   sqlite3_mutex *mutex;      /* Mutex to access this object */
34933   char *zFilename;           /* Name of the file */
34934   winFile hFile;             /* File handle from winOpen */
34935 
34936   int szRegion;              /* Size of shared-memory regions */
34937   int nRegion;               /* Size of array apRegion */
34938   struct ShmRegion {
34939     HANDLE hMap;             /* File handle from CreateFileMapping */
34940     void *pMap;
34941   } *aRegion;
34942   DWORD lastErrno;           /* The Windows errno from the last I/O error */
34943 
34944   int nRef;                  /* Number of winShm objects pointing to this */
34945   winShm *pFirst;            /* All winShm objects pointing to this */
34946   winShmNode *pNext;         /* Next in list of all winShmNode objects */
34947 #ifdef SQLITE_DEBUG
34948   u8 nextShmId;              /* Next available winShm.id value */
34949 #endif
34950 };
34951 
34952 /*
34953 ** A global array of all winShmNode objects.
34954 **
34955 ** The winShmMutexHeld() must be true while reading or writing this list.
34956 */
34957 static winShmNode *winShmNodeList = 0;
34958 
34959 /*
34960 ** Structure used internally by this VFS to record the state of an
34961 ** open shared memory connection.
34962 **
34963 ** The following fields are initialized when this object is created and
34964 ** are read-only thereafter:
34965 **
34966 **    winShm.pShmNode
34967 **    winShm.id
34968 **
34969 ** All other fields are read/write.  The winShm.pShmNode->mutex must be held
34970 ** while accessing any read/write fields.
34971 */
34972 struct winShm {
34973   winShmNode *pShmNode;      /* The underlying winShmNode object */
34974   winShm *pNext;             /* Next winShm with the same winShmNode */
34975   u8 hasMutex;               /* True if holding the winShmNode mutex */
34976   u16 sharedMask;            /* Mask of shared locks held */
34977   u16 exclMask;              /* Mask of exclusive locks held */
34978 #ifdef SQLITE_DEBUG
34979   u8 id;                     /* Id of this connection with its winShmNode */
34980 #endif
34981 };
34982 
34983 /*
34984 ** Constants used for locking
34985 */
34986 #define WIN_SHM_BASE   ((22+SQLITE_SHM_NLOCK)*4)        /* first lock byte */
34987 #define WIN_SHM_DMS    (WIN_SHM_BASE+SQLITE_SHM_NLOCK)  /* deadman switch */
34988 
34989 /*
34990 ** Apply advisory locks for all n bytes beginning at ofst.
34991 */
34992 #define _SHM_UNLCK  1
34993 #define _SHM_RDLCK  2
34994 #define _SHM_WRLCK  3
34995 static int winShmSystemLock(
34996   winShmNode *pFile,    /* Apply locks to this open shared-memory segment */
34997   int lockType,         /* _SHM_UNLCK, _SHM_RDLCK, or _SHM_WRLCK */
34998   int ofst,             /* Offset to first byte to be locked/unlocked */
34999   int nByte             /* Number of bytes to lock or unlock */
35000 ){
35001   int rc = 0;           /* Result code form Lock/UnlockFileEx() */
35002 
35003   /* Access to the winShmNode object is serialized by the caller */
35004   assert( sqlite3_mutex_held(pFile->mutex) || pFile->nRef==0 );
35005 
35006   OSTRACE(("SHM-LOCK file=%p, lock=%d, offset=%d, size=%d\n",
35007            pFile->hFile.h, lockType, ofst, nByte));
35008 
35009   /* Release/Acquire the system-level lock */
35010   if( lockType==_SHM_UNLCK ){
35011     rc = winUnlockFile(&pFile->hFile.h, ofst, 0, nByte, 0);
35012   }else{
35013     /* Initialize the locking parameters */
35014     DWORD dwFlags = LOCKFILE_FAIL_IMMEDIATELY;
35015     if( lockType == _SHM_WRLCK ) dwFlags |= LOCKFILE_EXCLUSIVE_LOCK;
35016     rc = winLockFile(&pFile->hFile.h, dwFlags, ofst, 0, nByte, 0);
35017   }
35018 
35019   if( rc!= 0 ){
35020     rc = SQLITE_OK;
35021   }else{
35022     pFile->lastErrno =  osGetLastError();
35023     rc = SQLITE_BUSY;
35024   }
35025 
35026   OSTRACE(("SHM-LOCK file=%p, func=%s, errno=%lu, rc=%s\n",
35027            pFile->hFile.h, (lockType == _SHM_UNLCK) ? "winUnlockFile" :
35028            "winLockFile", pFile->lastErrno, sqlite3ErrName(rc)));
35029 
35030   return rc;
35031 }
35032 
35033 /* Forward references to VFS methods */
35034 static int winOpen(sqlite3_vfs*,const char*,sqlite3_file*,int,int*);
35035 static int winDelete(sqlite3_vfs *,const char*,int);
35036 
35037 /*
35038 ** Purge the winShmNodeList list of all entries with winShmNode.nRef==0.
35039 **
35040 ** This is not a VFS shared-memory method; it is a utility function called
35041 ** by VFS shared-memory methods.
35042 */
35043 static void winShmPurge(sqlite3_vfs *pVfs, int deleteFlag){
35044   winShmNode **pp;
35045   winShmNode *p;
35046   assert( winShmMutexHeld() );
35047   OSTRACE(("SHM-PURGE pid=%lu, deleteFlag=%d\n",
35048            osGetCurrentProcessId(), deleteFlag));
35049   pp = &winShmNodeList;
35050   while( (p = *pp)!=0 ){
35051     if( p->nRef==0 ){
35052       int i;
35053       if( p->mutex ){ sqlite3_mutex_free(p->mutex); }
35054       for(i=0; i<p->nRegion; i++){
35055         BOOL bRc = osUnmapViewOfFile(p->aRegion[i].pMap);
35056         OSTRACE(("SHM-PURGE-UNMAP pid=%lu, region=%d, rc=%s\n",
35057                  osGetCurrentProcessId(), i, bRc ? "ok" : "failed"));
35058         UNUSED_VARIABLE_VALUE(bRc);
35059         bRc = osCloseHandle(p->aRegion[i].hMap);
35060         OSTRACE(("SHM-PURGE-CLOSE pid=%lu, region=%d, rc=%s\n",
35061                  osGetCurrentProcessId(), i, bRc ? "ok" : "failed"));
35062         UNUSED_VARIABLE_VALUE(bRc);
35063       }
35064       if( p->hFile.h!=NULL && p->hFile.h!=INVALID_HANDLE_VALUE ){
35065         SimulateIOErrorBenign(1);
35066         winClose((sqlite3_file *)&p->hFile);
35067         SimulateIOErrorBenign(0);
35068       }
35069       if( deleteFlag ){
35070         SimulateIOErrorBenign(1);
35071         sqlite3BeginBenignMalloc();
35072         winDelete(pVfs, p->zFilename, 0);
35073         sqlite3EndBenignMalloc();
35074         SimulateIOErrorBenign(0);
35075       }
35076       *pp = p->pNext;
35077       sqlite3_free(p->aRegion);
35078       sqlite3_free(p);
35079     }else{
35080       pp = &p->pNext;
35081     }
35082   }
35083 }
35084 
35085 /*
35086 ** Open the shared-memory area associated with database file pDbFd.
35087 **
35088 ** When opening a new shared-memory file, if no other instances of that
35089 ** file are currently open, in this process or in other processes, then
35090 ** the file must be truncated to zero length or have its header cleared.
35091 */
35092 static int winOpenSharedMemory(winFile *pDbFd){
35093   struct winShm *p;                  /* The connection to be opened */
35094   struct winShmNode *pShmNode = 0;   /* The underlying mmapped file */
35095   int rc;                            /* Result code */
35096   struct winShmNode *pNew;           /* Newly allocated winShmNode */
35097   int nName;                         /* Size of zName in bytes */
35098 
35099   assert( pDbFd->pShm==0 );    /* Not previously opened */
35100 
35101   /* Allocate space for the new sqlite3_shm object.  Also speculatively
35102   ** allocate space for a new winShmNode and filename.
35103   */
35104   p = sqlite3MallocZero( sizeof(*p) );
35105   if( p==0 ) return SQLITE_IOERR_NOMEM;
35106   nName = sqlite3Strlen30(pDbFd->zPath);
35107   pNew = sqlite3MallocZero( sizeof(*pShmNode) + nName + 17 );
35108   if( pNew==0 ){
35109     sqlite3_free(p);
35110     return SQLITE_IOERR_NOMEM;
35111   }
35112   pNew->zFilename = (char*)&pNew[1];
35113   sqlite3_snprintf(nName+15, pNew->zFilename, "%s-shm", pDbFd->zPath);
35114   sqlite3FileSuffix3(pDbFd->zPath, pNew->zFilename);
35115 
35116   /* Look to see if there is an existing winShmNode that can be used.
35117   ** If no matching winShmNode currently exists, create a new one.
35118   */
35119   winShmEnterMutex();
35120   for(pShmNode = winShmNodeList; pShmNode; pShmNode=pShmNode->pNext){
35121     /* TBD need to come up with better match here.  Perhaps
35122     ** use FILE_ID_BOTH_DIR_INFO Structure.
35123     */
35124     if( sqlite3StrICmp(pShmNode->zFilename, pNew->zFilename)==0 ) break;
35125   }
35126   if( pShmNode ){
35127     sqlite3_free(pNew);
35128   }else{
35129     pShmNode = pNew;
35130     pNew = 0;
35131     ((winFile*)(&pShmNode->hFile))->h = INVALID_HANDLE_VALUE;
35132     pShmNode->pNext = winShmNodeList;
35133     winShmNodeList = pShmNode;
35134 
35135     pShmNode->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST);
35136     if( pShmNode->mutex==0 ){
35137       rc = SQLITE_IOERR_NOMEM;
35138       goto shm_open_err;
35139     }
35140 
35141     rc = winOpen(pDbFd->pVfs,
35142                  pShmNode->zFilename,             /* Name of the file (UTF-8) */
35143                  (sqlite3_file*)&pShmNode->hFile,  /* File handle here */
35144                  SQLITE_OPEN_WAL | SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE,
35145                  0);
35146     if( SQLITE_OK!=rc ){
35147       goto shm_open_err;
35148     }
35149 
35150     /* Check to see if another process is holding the dead-man switch.
35151     ** If not, truncate the file to zero length.
35152     */
35153     if( winShmSystemLock(pShmNode, _SHM_WRLCK, WIN_SHM_DMS, 1)==SQLITE_OK ){
35154       rc = winTruncate((sqlite3_file *)&pShmNode->hFile, 0);
35155       if( rc!=SQLITE_OK ){
35156         rc = winLogError(SQLITE_IOERR_SHMOPEN, osGetLastError(),
35157                          "winOpenShm", pDbFd->zPath);
35158       }
35159     }
35160     if( rc==SQLITE_OK ){
35161       winShmSystemLock(pShmNode, _SHM_UNLCK, WIN_SHM_DMS, 1);
35162       rc = winShmSystemLock(pShmNode, _SHM_RDLCK, WIN_SHM_DMS, 1);
35163     }
35164     if( rc ) goto shm_open_err;
35165   }
35166 
35167   /* Make the new connection a child of the winShmNode */
35168   p->pShmNode = pShmNode;
35169 #ifdef SQLITE_DEBUG
35170   p->id = pShmNode->nextShmId++;
35171 #endif
35172   pShmNode->nRef++;
35173   pDbFd->pShm = p;
35174   winShmLeaveMutex();
35175 
35176   /* The reference count on pShmNode has already been incremented under
35177   ** the cover of the winShmEnterMutex() mutex and the pointer from the
35178   ** new (struct winShm) object to the pShmNode has been set. All that is
35179   ** left to do is to link the new object into the linked list starting
35180   ** at pShmNode->pFirst. This must be done while holding the pShmNode->mutex
35181   ** mutex.
35182   */
35183   sqlite3_mutex_enter(pShmNode->mutex);
35184   p->pNext = pShmNode->pFirst;
35185   pShmNode->pFirst = p;
35186   sqlite3_mutex_leave(pShmNode->mutex);
35187   return SQLITE_OK;
35188 
35189   /* Jump here on any error */
35190 shm_open_err:
35191   winShmSystemLock(pShmNode, _SHM_UNLCK, WIN_SHM_DMS, 1);
35192   winShmPurge(pDbFd->pVfs, 0);      /* This call frees pShmNode if required */
35193   sqlite3_free(p);
35194   sqlite3_free(pNew);
35195   winShmLeaveMutex();
35196   return rc;
35197 }
35198 
35199 /*
35200 ** Close a connection to shared-memory.  Delete the underlying
35201 ** storage if deleteFlag is true.
35202 */
35203 static int winShmUnmap(
35204   sqlite3_file *fd,          /* Database holding shared memory */
35205   int deleteFlag             /* Delete after closing if true */
35206 ){
35207   winFile *pDbFd;       /* Database holding shared-memory */
35208   winShm *p;            /* The connection to be closed */
35209   winShmNode *pShmNode; /* The underlying shared-memory file */
35210   winShm **pp;          /* For looping over sibling connections */
35211 
35212   pDbFd = (winFile*)fd;
35213   p = pDbFd->pShm;
35214   if( p==0 ) return SQLITE_OK;
35215   pShmNode = p->pShmNode;
35216 
35217   /* Remove connection p from the set of connections associated
35218   ** with pShmNode */
35219   sqlite3_mutex_enter(pShmNode->mutex);
35220   for(pp=&pShmNode->pFirst; (*pp)!=p; pp = &(*pp)->pNext){}
35221   *pp = p->pNext;
35222 
35223   /* Free the connection p */
35224   sqlite3_free(p);
35225   pDbFd->pShm = 0;
35226   sqlite3_mutex_leave(pShmNode->mutex);
35227 
35228   /* If pShmNode->nRef has reached 0, then close the underlying
35229   ** shared-memory file, too */
35230   winShmEnterMutex();
35231   assert( pShmNode->nRef>0 );
35232   pShmNode->nRef--;
35233   if( pShmNode->nRef==0 ){
35234     winShmPurge(pDbFd->pVfs, deleteFlag);
35235   }
35236   winShmLeaveMutex();
35237 
35238   return SQLITE_OK;
35239 }
35240 
35241 /*
35242 ** Change the lock state for a shared-memory segment.
35243 */
35244 static int winShmLock(
35245   sqlite3_file *fd,          /* Database file holding the shared memory */
35246   int ofst,                  /* First lock to acquire or release */
35247   int n,                     /* Number of locks to acquire or release */
35248   int flags                  /* What to do with the lock */
35249 ){
35250   winFile *pDbFd = (winFile*)fd;        /* Connection holding shared memory */
35251   winShm *p = pDbFd->pShm;              /* The shared memory being locked */
35252   winShm *pX;                           /* For looping over all siblings */
35253   winShmNode *pShmNode = p->pShmNode;
35254   int rc = SQLITE_OK;                   /* Result code */
35255   u16 mask;                             /* Mask of locks to take or release */
35256 
35257   assert( ofst>=0 && ofst+n<=SQLITE_SHM_NLOCK );
35258   assert( n>=1 );
35259   assert( flags==(SQLITE_SHM_LOCK | SQLITE_SHM_SHARED)
35260        || flags==(SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE)
35261        || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED)
35262        || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE) );
35263   assert( n==1 || (flags & SQLITE_SHM_EXCLUSIVE)!=0 );
35264 
35265   mask = (u16)((1U<<(ofst+n)) - (1U<<ofst));
35266   assert( n>1 || mask==(1<<ofst) );
35267   sqlite3_mutex_enter(pShmNode->mutex);
35268   if( flags & SQLITE_SHM_UNLOCK ){
35269     u16 allMask = 0; /* Mask of locks held by siblings */
35270 
35271     /* See if any siblings hold this same lock */
35272     for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
35273       if( pX==p ) continue;
35274       assert( (pX->exclMask & (p->exclMask|p->sharedMask))==0 );
35275       allMask |= pX->sharedMask;
35276     }
35277 
35278     /* Unlock the system-level locks */
35279     if( (mask & allMask)==0 ){
35280       rc = winShmSystemLock(pShmNode, _SHM_UNLCK, ofst+WIN_SHM_BASE, n);
35281     }else{
35282       rc = SQLITE_OK;
35283     }
35284 
35285     /* Undo the local locks */
35286     if( rc==SQLITE_OK ){
35287       p->exclMask &= ~mask;
35288       p->sharedMask &= ~mask;
35289     }
35290   }else if( flags & SQLITE_SHM_SHARED ){
35291     u16 allShared = 0;  /* Union of locks held by connections other than "p" */
35292 
35293     /* Find out which shared locks are already held by sibling connections.
35294     ** If any sibling already holds an exclusive lock, go ahead and return
35295     ** SQLITE_BUSY.
35296     */
35297     for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
35298       if( (pX->exclMask & mask)!=0 ){
35299         rc = SQLITE_BUSY;
35300         break;
35301       }
35302       allShared |= pX->sharedMask;
35303     }
35304 
35305     /* Get shared locks at the system level, if necessary */
35306     if( rc==SQLITE_OK ){
35307       if( (allShared & mask)==0 ){
35308         rc = winShmSystemLock(pShmNode, _SHM_RDLCK, ofst+WIN_SHM_BASE, n);
35309       }else{
35310         rc = SQLITE_OK;
35311       }
35312     }
35313 
35314     /* Get the local shared locks */
35315     if( rc==SQLITE_OK ){
35316       p->sharedMask |= mask;
35317     }
35318   }else{
35319     /* Make sure no sibling connections hold locks that will block this
35320     ** lock.  If any do, return SQLITE_BUSY right away.
35321     */
35322     for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
35323       if( (pX->exclMask & mask)!=0 || (pX->sharedMask & mask)!=0 ){
35324         rc = SQLITE_BUSY;
35325         break;
35326       }
35327     }
35328 
35329     /* Get the exclusive locks at the system level.  Then if successful
35330     ** also mark the local connection as being locked.
35331     */
35332     if( rc==SQLITE_OK ){
35333       rc = winShmSystemLock(pShmNode, _SHM_WRLCK, ofst+WIN_SHM_BASE, n);
35334       if( rc==SQLITE_OK ){
35335         assert( (p->sharedMask & mask)==0 );
35336         p->exclMask |= mask;
35337       }
35338     }
35339   }
35340   sqlite3_mutex_leave(pShmNode->mutex);
35341   OSTRACE(("SHM-LOCK pid=%lu, id=%d, sharedMask=%03x, exclMask=%03x, rc=%s\n",
35342            osGetCurrentProcessId(), p->id, p->sharedMask, p->exclMask,
35343            sqlite3ErrName(rc)));
35344   return rc;
35345 }
35346 
35347 /*
35348 ** Implement a memory barrier or memory fence on shared memory.
35349 **
35350 ** All loads and stores begun before the barrier must complete before
35351 ** any load or store begun after the barrier.
35352 */
35353 static void winShmBarrier(
35354   sqlite3_file *fd          /* Database holding the shared memory */
35355 ){
35356   UNUSED_PARAMETER(fd);
35357   /* MemoryBarrier(); // does not work -- do not know why not */
35358   winShmEnterMutex();
35359   winShmLeaveMutex();
35360 }
35361 
35362 /*
35363 ** This function is called to obtain a pointer to region iRegion of the
35364 ** shared-memory associated with the database file fd. Shared-memory regions
35365 ** are numbered starting from zero. Each shared-memory region is szRegion
35366 ** bytes in size.
35367 **
35368 ** If an error occurs, an error code is returned and *pp is set to NULL.
35369 **
35370 ** Otherwise, if the isWrite parameter is 0 and the requested shared-memory
35371 ** region has not been allocated (by any client, including one running in a
35372 ** separate process), then *pp is set to NULL and SQLITE_OK returned. If
35373 ** isWrite is non-zero and the requested shared-memory region has not yet
35374 ** been allocated, it is allocated by this function.
35375 **
35376 ** If the shared-memory region has already been allocated or is allocated by
35377 ** this call as described above, then it is mapped into this processes
35378 ** address space (if it is not already), *pp is set to point to the mapped
35379 ** memory and SQLITE_OK returned.
35380 */
35381 static int winShmMap(
35382   sqlite3_file *fd,               /* Handle open on database file */
35383   int iRegion,                    /* Region to retrieve */
35384   int szRegion,                   /* Size of regions */
35385   int isWrite,                    /* True to extend file if necessary */
35386   void volatile **pp              /* OUT: Mapped memory */
35387 ){
35388   winFile *pDbFd = (winFile*)fd;
35389   winShm *p = pDbFd->pShm;
35390   winShmNode *pShmNode;
35391   int rc = SQLITE_OK;
35392 
35393   if( !p ){
35394     rc = winOpenSharedMemory(pDbFd);
35395     if( rc!=SQLITE_OK ) return rc;
35396     p = pDbFd->pShm;
35397   }
35398   pShmNode = p->pShmNode;
35399 
35400   sqlite3_mutex_enter(pShmNode->mutex);
35401   assert( szRegion==pShmNode->szRegion || pShmNode->nRegion==0 );
35402 
35403   if( pShmNode->nRegion<=iRegion ){
35404     struct ShmRegion *apNew;           /* New aRegion[] array */
35405     int nByte = (iRegion+1)*szRegion;  /* Minimum required file size */
35406     sqlite3_int64 sz;                  /* Current size of wal-index file */
35407 
35408     pShmNode->szRegion = szRegion;
35409 
35410     /* The requested region is not mapped into this processes address space.
35411     ** Check to see if it has been allocated (i.e. if the wal-index file is
35412     ** large enough to contain the requested region).
35413     */
35414     rc = winFileSize((sqlite3_file *)&pShmNode->hFile, &sz);
35415     if( rc!=SQLITE_OK ){
35416       rc = winLogError(SQLITE_IOERR_SHMSIZE, osGetLastError(),
35417                        "winShmMap1", pDbFd->zPath);
35418       goto shmpage_out;
35419     }
35420 
35421     if( sz<nByte ){
35422       /* The requested memory region does not exist. If isWrite is set to
35423       ** zero, exit early. *pp will be set to NULL and SQLITE_OK returned.
35424       **
35425       ** Alternatively, if isWrite is non-zero, use ftruncate() to allocate
35426       ** the requested memory region.
35427       */
35428       if( !isWrite ) goto shmpage_out;
35429       rc = winTruncate((sqlite3_file *)&pShmNode->hFile, nByte);
35430       if( rc!=SQLITE_OK ){
35431         rc = winLogError(SQLITE_IOERR_SHMSIZE, osGetLastError(),
35432                          "winShmMap2", pDbFd->zPath);
35433         goto shmpage_out;
35434       }
35435     }
35436 
35437     /* Map the requested memory region into this processes address space. */
35438     apNew = (struct ShmRegion *)sqlite3_realloc(
35439         pShmNode->aRegion, (iRegion+1)*sizeof(apNew[0])
35440     );
35441     if( !apNew ){
35442       rc = SQLITE_IOERR_NOMEM;
35443       goto shmpage_out;
35444     }
35445     pShmNode->aRegion = apNew;
35446 
35447     while( pShmNode->nRegion<=iRegion ){
35448       HANDLE hMap = NULL;         /* file-mapping handle */
35449       void *pMap = 0;             /* Mapped memory region */
35450 
35451 #if SQLITE_OS_WINRT
35452       hMap = osCreateFileMappingFromApp(pShmNode->hFile.h,
35453           NULL, PAGE_READWRITE, nByte, NULL
35454       );
35455 #elif defined(SQLITE_WIN32_HAS_WIDE)
35456       hMap = osCreateFileMappingW(pShmNode->hFile.h,
35457           NULL, PAGE_READWRITE, 0, nByte, NULL
35458       );
35459 #elif defined(SQLITE_WIN32_HAS_ANSI)
35460       hMap = osCreateFileMappingA(pShmNode->hFile.h,
35461           NULL, PAGE_READWRITE, 0, nByte, NULL
35462       );
35463 #endif
35464       OSTRACE(("SHM-MAP-CREATE pid=%lu, region=%d, size=%d, rc=%s\n",
35465                osGetCurrentProcessId(), pShmNode->nRegion, nByte,
35466                hMap ? "ok" : "failed"));
35467       if( hMap ){
35468         int iOffset = pShmNode->nRegion*szRegion;
35469         int iOffsetShift = iOffset % winSysInfo.dwAllocationGranularity;
35470 #if SQLITE_OS_WINRT
35471         pMap = osMapViewOfFileFromApp(hMap, FILE_MAP_WRITE | FILE_MAP_READ,
35472             iOffset - iOffsetShift, szRegion + iOffsetShift
35473         );
35474 #else
35475         pMap = osMapViewOfFile(hMap, FILE_MAP_WRITE | FILE_MAP_READ,
35476             0, iOffset - iOffsetShift, szRegion + iOffsetShift
35477         );
35478 #endif
35479         OSTRACE(("SHM-MAP-MAP pid=%lu, region=%d, offset=%d, size=%d, rc=%s\n",
35480                  osGetCurrentProcessId(), pShmNode->nRegion, iOffset,
35481                  szRegion, pMap ? "ok" : "failed"));
35482       }
35483       if( !pMap ){
35484         pShmNode->lastErrno = osGetLastError();
35485         rc = winLogError(SQLITE_IOERR_SHMMAP, pShmNode->lastErrno,
35486                          "winShmMap3", pDbFd->zPath);
35487         if( hMap ) osCloseHandle(hMap);
35488         goto shmpage_out;
35489       }
35490 
35491       pShmNode->aRegion[pShmNode->nRegion].pMap = pMap;
35492       pShmNode->aRegion[pShmNode->nRegion].hMap = hMap;
35493       pShmNode->nRegion++;
35494     }
35495   }
35496 
35497 shmpage_out:
35498   if( pShmNode->nRegion>iRegion ){
35499     int iOffset = iRegion*szRegion;
35500     int iOffsetShift = iOffset % winSysInfo.dwAllocationGranularity;
35501     char *p = (char *)pShmNode->aRegion[iRegion].pMap;
35502     *pp = (void *)&p[iOffsetShift];
35503   }else{
35504     *pp = 0;
35505   }
35506   sqlite3_mutex_leave(pShmNode->mutex);
35507   return rc;
35508 }
35509 
35510 #else
35511 # define winShmMap     0
35512 # define winShmLock    0
35513 # define winShmBarrier 0
35514 # define winShmUnmap   0
35515 #endif /* #ifndef SQLITE_OMIT_WAL */
35516 
35517 /*
35518 ** Cleans up the mapped region of the specified file, if any.
35519 */
35520 #if SQLITE_MAX_MMAP_SIZE>0
35521 static int winUnmapfile(winFile *pFile){
35522   assert( pFile!=0 );
35523   OSTRACE(("UNMAP-FILE pid=%lu, pFile=%p, hMap=%p, pMapRegion=%p, "
35524            "mmapSize=%lld, mmapSizeActual=%lld, mmapSizeMax=%lld\n",
35525            osGetCurrentProcessId(), pFile, pFile->hMap, pFile->pMapRegion,
35526            pFile->mmapSize, pFile->mmapSizeActual, pFile->mmapSizeMax));
35527   if( pFile->pMapRegion ){
35528     if( !osUnmapViewOfFile(pFile->pMapRegion) ){
35529       pFile->lastErrno = osGetLastError();
35530       OSTRACE(("UNMAP-FILE pid=%lu, pFile=%p, pMapRegion=%p, "
35531                "rc=SQLITE_IOERR_MMAP\n", osGetCurrentProcessId(), pFile,
35532                pFile->pMapRegion));
35533       return winLogError(SQLITE_IOERR_MMAP, pFile->lastErrno,
35534                          "winUnmapfile1", pFile->zPath);
35535     }
35536     pFile->pMapRegion = 0;
35537     pFile->mmapSize = 0;
35538     pFile->mmapSizeActual = 0;
35539   }
35540   if( pFile->hMap!=NULL ){
35541     if( !osCloseHandle(pFile->hMap) ){
35542       pFile->lastErrno = osGetLastError();
35543       OSTRACE(("UNMAP-FILE pid=%lu, pFile=%p, hMap=%p, rc=SQLITE_IOERR_MMAP\n",
35544                osGetCurrentProcessId(), pFile, pFile->hMap));
35545       return winLogError(SQLITE_IOERR_MMAP, pFile->lastErrno,
35546                          "winUnmapfile2", pFile->zPath);
35547     }
35548     pFile->hMap = NULL;
35549   }
35550   OSTRACE(("UNMAP-FILE pid=%lu, pFile=%p, rc=SQLITE_OK\n",
35551            osGetCurrentProcessId(), pFile));
35552   return SQLITE_OK;
35553 }
35554 
35555 /*
35556 ** Memory map or remap the file opened by file-descriptor pFd (if the file
35557 ** is already mapped, the existing mapping is replaced by the new). Or, if
35558 ** there already exists a mapping for this file, and there are still
35559 ** outstanding xFetch() references to it, this function is a no-op.
35560 **
35561 ** If parameter nByte is non-negative, then it is the requested size of
35562 ** the mapping to create. Otherwise, if nByte is less than zero, then the
35563 ** requested size is the size of the file on disk. The actual size of the
35564 ** created mapping is either the requested size or the value configured
35565 ** using SQLITE_FCNTL_MMAP_SIZE, whichever is smaller.
35566 **
35567 ** SQLITE_OK is returned if no error occurs (even if the mapping is not
35568 ** recreated as a result of outstanding references) or an SQLite error
35569 ** code otherwise.
35570 */
35571 static int winMapfile(winFile *pFd, sqlite3_int64 nByte){
35572   sqlite3_int64 nMap = nByte;
35573   int rc;
35574 
35575   assert( nMap>=0 || pFd->nFetchOut==0 );
35576   OSTRACE(("MAP-FILE pid=%lu, pFile=%p, size=%lld\n",
35577            osGetCurrentProcessId(), pFd, nByte));
35578 
35579   if( pFd->nFetchOut>0 ) return SQLITE_OK;
35580 
35581   if( nMap<0 ){
35582     rc = winFileSize((sqlite3_file*)pFd, &nMap);
35583     if( rc ){
35584       OSTRACE(("MAP-FILE pid=%lu, pFile=%p, rc=SQLITE_IOERR_FSTAT\n",
35585                osGetCurrentProcessId(), pFd));
35586       return SQLITE_IOERR_FSTAT;
35587     }
35588   }
35589   if( nMap>pFd->mmapSizeMax ){
35590     nMap = pFd->mmapSizeMax;
35591   }
35592   nMap &= ~(sqlite3_int64)(winSysInfo.dwPageSize - 1);
35593 
35594   if( nMap==0 && pFd->mmapSize>0 ){
35595     winUnmapfile(pFd);
35596   }
35597   if( nMap!=pFd->mmapSize ){
35598     void *pNew = 0;
35599     DWORD protect = PAGE_READONLY;
35600     DWORD flags = FILE_MAP_READ;
35601 
35602     winUnmapfile(pFd);
35603     if( (pFd->ctrlFlags & WINFILE_RDONLY)==0 ){
35604       protect = PAGE_READWRITE;
35605       flags |= FILE_MAP_WRITE;
35606     }
35607 #if SQLITE_OS_WINRT
35608     pFd->hMap = osCreateFileMappingFromApp(pFd->h, NULL, protect, nMap, NULL);
35609 #elif defined(SQLITE_WIN32_HAS_WIDE)
35610     pFd->hMap = osCreateFileMappingW(pFd->h, NULL, protect,
35611                                 (DWORD)((nMap>>32) & 0xffffffff),
35612                                 (DWORD)(nMap & 0xffffffff), NULL);
35613 #elif defined(SQLITE_WIN32_HAS_ANSI)
35614     pFd->hMap = osCreateFileMappingA(pFd->h, NULL, protect,
35615                                 (DWORD)((nMap>>32) & 0xffffffff),
35616                                 (DWORD)(nMap & 0xffffffff), NULL);
35617 #endif
35618     if( pFd->hMap==NULL ){
35619       pFd->lastErrno = osGetLastError();
35620       rc = winLogError(SQLITE_IOERR_MMAP, pFd->lastErrno,
35621                        "winMapfile1", pFd->zPath);
35622       /* Log the error, but continue normal operation using xRead/xWrite */
35623       OSTRACE(("MAP-FILE-CREATE pid=%lu, pFile=%p, rc=%s\n",
35624                osGetCurrentProcessId(), pFd, sqlite3ErrName(rc)));
35625       return SQLITE_OK;
35626     }
35627     assert( (nMap % winSysInfo.dwPageSize)==0 );
35628     assert( sizeof(SIZE_T)==sizeof(sqlite3_int64) || nMap<=0xffffffff );
35629 #if SQLITE_OS_WINRT
35630     pNew = osMapViewOfFileFromApp(pFd->hMap, flags, 0, (SIZE_T)nMap);
35631 #else
35632     pNew = osMapViewOfFile(pFd->hMap, flags, 0, 0, (SIZE_T)nMap);
35633 #endif
35634     if( pNew==NULL ){
35635       osCloseHandle(pFd->hMap);
35636       pFd->hMap = NULL;
35637       pFd->lastErrno = osGetLastError();
35638       rc = winLogError(SQLITE_IOERR_MMAP, pFd->lastErrno,
35639                        "winMapfile2", pFd->zPath);
35640       /* Log the error, but continue normal operation using xRead/xWrite */
35641       OSTRACE(("MAP-FILE-MAP pid=%lu, pFile=%p, rc=%s\n",
35642                osGetCurrentProcessId(), pFd, sqlite3ErrName(rc)));
35643       return SQLITE_OK;
35644     }
35645     pFd->pMapRegion = pNew;
35646     pFd->mmapSize = nMap;
35647     pFd->mmapSizeActual = nMap;
35648   }
35649 
35650   OSTRACE(("MAP-FILE pid=%lu, pFile=%p, rc=SQLITE_OK\n",
35651            osGetCurrentProcessId(), pFd));
35652   return SQLITE_OK;
35653 }
35654 #endif /* SQLITE_MAX_MMAP_SIZE>0 */
35655 
35656 /*
35657 ** If possible, return a pointer to a mapping of file fd starting at offset
35658 ** iOff. The mapping must be valid for at least nAmt bytes.
35659 **
35660 ** If such a pointer can be obtained, store it in *pp and return SQLITE_OK.
35661 ** Or, if one cannot but no error occurs, set *pp to 0 and return SQLITE_OK.
35662 ** Finally, if an error does occur, return an SQLite error code. The final
35663 ** value of *pp is undefined in this case.
35664 **
35665 ** If this function does return a pointer, the caller must eventually
35666 ** release the reference by calling winUnfetch().
35667 */
35668 static int winFetch(sqlite3_file *fd, i64 iOff, int nAmt, void **pp){
35669 #if SQLITE_MAX_MMAP_SIZE>0
35670   winFile *pFd = (winFile*)fd;   /* The underlying database file */
35671 #endif
35672   *pp = 0;
35673 
35674   OSTRACE(("FETCH pid=%lu, pFile=%p, offset=%lld, amount=%d, pp=%p\n",
35675            osGetCurrentProcessId(), fd, iOff, nAmt, pp));
35676 
35677 #if SQLITE_MAX_MMAP_SIZE>0
35678   if( pFd->mmapSizeMax>0 ){
35679     if( pFd->pMapRegion==0 ){
35680       int rc = winMapfile(pFd, -1);
35681       if( rc!=SQLITE_OK ){
35682         OSTRACE(("FETCH pid=%lu, pFile=%p, rc=%s\n",
35683                  osGetCurrentProcessId(), pFd, sqlite3ErrName(rc)));
35684         return rc;
35685       }
35686     }
35687     if( pFd->mmapSize >= iOff+nAmt ){
35688       *pp = &((u8 *)pFd->pMapRegion)[iOff];
35689       pFd->nFetchOut++;
35690     }
35691   }
35692 #endif
35693 
35694   OSTRACE(("FETCH pid=%lu, pFile=%p, pp=%p, *pp=%p, rc=SQLITE_OK\n",
35695            osGetCurrentProcessId(), fd, pp, *pp));
35696   return SQLITE_OK;
35697 }
35698 
35699 /*
35700 ** If the third argument is non-NULL, then this function releases a
35701 ** reference obtained by an earlier call to winFetch(). The second
35702 ** argument passed to this function must be the same as the corresponding
35703 ** argument that was passed to the winFetch() invocation.
35704 **
35705 ** Or, if the third argument is NULL, then this function is being called
35706 ** to inform the VFS layer that, according to POSIX, any existing mapping
35707 ** may now be invalid and should be unmapped.
35708 */
35709 static int winUnfetch(sqlite3_file *fd, i64 iOff, void *p){
35710 #if SQLITE_MAX_MMAP_SIZE>0
35711   winFile *pFd = (winFile*)fd;   /* The underlying database file */
35712 
35713   /* If p==0 (unmap the entire file) then there must be no outstanding
35714   ** xFetch references. Or, if p!=0 (meaning it is an xFetch reference),
35715   ** then there must be at least one outstanding.  */
35716   assert( (p==0)==(pFd->nFetchOut==0) );
35717 
35718   /* If p!=0, it must match the iOff value. */
35719   assert( p==0 || p==&((u8 *)pFd->pMapRegion)[iOff] );
35720 
35721   OSTRACE(("UNFETCH pid=%lu, pFile=%p, offset=%lld, p=%p\n",
35722            osGetCurrentProcessId(), pFd, iOff, p));
35723 
35724   if( p ){
35725     pFd->nFetchOut--;
35726   }else{
35727     /* FIXME:  If Windows truly always prevents truncating or deleting a
35728     ** file while a mapping is held, then the following winUnmapfile() call
35729     ** is unnecessary can can be omitted - potentially improving
35730     ** performance.  */
35731     winUnmapfile(pFd);
35732   }
35733 
35734   assert( pFd->nFetchOut>=0 );
35735 #endif
35736 
35737   OSTRACE(("UNFETCH pid=%lu, pFile=%p, rc=SQLITE_OK\n",
35738            osGetCurrentProcessId(), fd));
35739   return SQLITE_OK;
35740 }
35741 
35742 /*
35743 ** Here ends the implementation of all sqlite3_file methods.
35744 **
35745 ********************** End sqlite3_file Methods *******************************
35746 ******************************************************************************/
35747 
35748 /*
35749 ** This vector defines all the methods that can operate on an
35750 ** sqlite3_file for win32.
35751 */
35752 static const sqlite3_io_methods winIoMethod = {
35753   3,                              /* iVersion */
35754   winClose,                       /* xClose */
35755   winRead,                        /* xRead */
35756   winWrite,                       /* xWrite */
35757   winTruncate,                    /* xTruncate */
35758   winSync,                        /* xSync */
35759   winFileSize,                    /* xFileSize */
35760   winLock,                        /* xLock */
35761   winUnlock,                      /* xUnlock */
35762   winCheckReservedLock,           /* xCheckReservedLock */
35763   winFileControl,                 /* xFileControl */
35764   winSectorSize,                  /* xSectorSize */
35765   winDeviceCharacteristics,       /* xDeviceCharacteristics */
35766   winShmMap,                      /* xShmMap */
35767   winShmLock,                     /* xShmLock */
35768   winShmBarrier,                  /* xShmBarrier */
35769   winShmUnmap,                    /* xShmUnmap */
35770   winFetch,                       /* xFetch */
35771   winUnfetch                      /* xUnfetch */
35772 };
35773 
35774 /****************************************************************************
35775 **************************** sqlite3_vfs methods ****************************
35776 **
35777 ** This division contains the implementation of methods on the
35778 ** sqlite3_vfs object.
35779 */
35780 
35781 #if defined(__CYGWIN__)
35782 /*
35783 ** Convert a filename from whatever the underlying operating system
35784 ** supports for filenames into UTF-8.  Space to hold the result is
35785 ** obtained from malloc and must be freed by the calling function.
35786 */
35787 static char *winConvertToUtf8Filename(const void *zFilename){
35788   char *zConverted = 0;
35789   if( osIsNT() ){
35790     zConverted = winUnicodeToUtf8(zFilename);
35791   }
35792 #ifdef SQLITE_WIN32_HAS_ANSI
35793   else{
35794     zConverted = sqlite3_win32_mbcs_to_utf8(zFilename);
35795   }
35796 #endif
35797   /* caller will handle out of memory */
35798   return zConverted;
35799 }
35800 #endif
35801 
35802 /*
35803 ** Convert a UTF-8 filename into whatever form the underlying
35804 ** operating system wants filenames in.  Space to hold the result
35805 ** is obtained from malloc and must be freed by the calling
35806 ** function.
35807 */
35808 static void *winConvertFromUtf8Filename(const char *zFilename){
35809   void *zConverted = 0;
35810   if( osIsNT() ){
35811     zConverted = winUtf8ToUnicode(zFilename);
35812   }
35813 #ifdef SQLITE_WIN32_HAS_ANSI
35814   else{
35815     zConverted = sqlite3_win32_utf8_to_mbcs(zFilename);
35816   }
35817 #endif
35818   /* caller will handle out of memory */
35819   return zConverted;
35820 }
35821 
35822 /*
35823 ** This function returns non-zero if the specified UTF-8 string buffer
35824 ** ends with a directory separator character or one was successfully
35825 ** added to it.
35826 */
35827 static int winMakeEndInDirSep(int nBuf, char *zBuf){
35828   if( zBuf ){
35829     int nLen = sqlite3Strlen30(zBuf);
35830     if( nLen>0 ){
35831       if( winIsDirSep(zBuf[nLen-1]) ){
35832         return 1;
35833       }else if( nLen+1<nBuf ){
35834         zBuf[nLen] = winGetDirSep();
35835         zBuf[nLen+1] = '\0';
35836         return 1;
35837       }
35838     }
35839   }
35840   return 0;
35841 }
35842 
35843 /*
35844 ** Create a temporary file name and store the resulting pointer into pzBuf.
35845 ** The pointer returned in pzBuf must be freed via sqlite3_free().
35846 */
35847 static int winGetTempname(sqlite3_vfs *pVfs, char **pzBuf){
35848   static char zChars[] =
35849     "abcdefghijklmnopqrstuvwxyz"
35850     "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
35851     "0123456789";
35852   size_t i, j;
35853   int nPre = sqlite3Strlen30(SQLITE_TEMP_FILE_PREFIX);
35854   int nMax, nBuf, nDir, nLen;
35855   char *zBuf;
35856 
35857   /* It's odd to simulate an io-error here, but really this is just
35858   ** using the io-error infrastructure to test that SQLite handles this
35859   ** function failing.
35860   */
35861   SimulateIOError( return SQLITE_IOERR );
35862 
35863   /* Allocate a temporary buffer to store the fully qualified file
35864   ** name for the temporary file.  If this fails, we cannot continue.
35865   */
35866   nMax = pVfs->mxPathname; nBuf = nMax + 2;
35867   zBuf = sqlite3MallocZero( nBuf );
35868   if( !zBuf ){
35869     OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_NOMEM\n"));
35870     return SQLITE_IOERR_NOMEM;
35871   }
35872 
35873   /* Figure out the effective temporary directory.  First, check if one
35874   ** has been explicitly set by the application; otherwise, use the one
35875   ** configured by the operating system.
35876   */
35877   nDir = nMax - (nPre + 15);
35878   assert( nDir>0 );
35879   if( sqlite3_temp_directory ){
35880     int nDirLen = sqlite3Strlen30(sqlite3_temp_directory);
35881     if( nDirLen>0 ){
35882       if( !winIsDirSep(sqlite3_temp_directory[nDirLen-1]) ){
35883         nDirLen++;
35884       }
35885       if( nDirLen>nDir ){
35886         sqlite3_free(zBuf);
35887         OSTRACE(("TEMP-FILENAME rc=SQLITE_ERROR\n"));
35888         return winLogError(SQLITE_ERROR, 0, "winGetTempname1", 0);
35889       }
35890       sqlite3_snprintf(nMax, zBuf, "%s", sqlite3_temp_directory);
35891     }
35892   }
35893 #if defined(__CYGWIN__)
35894   else{
35895     static const char *azDirs[] = {
35896        0, /* getenv("SQLITE_TMPDIR") */
35897        0, /* getenv("TMPDIR") */
35898        0, /* getenv("TMP") */
35899        0, /* getenv("TEMP") */
35900        0, /* getenv("USERPROFILE") */
35901        "/var/tmp",
35902        "/usr/tmp",
35903        "/tmp",
35904        ".",
35905        0        /* List terminator */
35906     };
35907     unsigned int i;
35908     const char *zDir = 0;
35909 
35910     if( !azDirs[0] ) azDirs[0] = getenv("SQLITE_TMPDIR");
35911     if( !azDirs[1] ) azDirs[1] = getenv("TMPDIR");
35912     if( !azDirs[2] ) azDirs[2] = getenv("TMP");
35913     if( !azDirs[3] ) azDirs[3] = getenv("TEMP");
35914     if( !azDirs[4] ) azDirs[4] = getenv("USERPROFILE");
35915     for(i=0; i<sizeof(azDirs)/sizeof(azDirs[0]); zDir=azDirs[i++]){
35916       void *zConverted;
35917       if( zDir==0 ) continue;
35918       /* If the path starts with a drive letter followed by the colon
35919       ** character, assume it is already a native Win32 path; otherwise,
35920       ** it must be converted to a native Win32 path via the Cygwin API
35921       ** prior to using it.
35922       */
35923       if( winIsDriveLetterAndColon(zDir) ){
35924         zConverted = winConvertFromUtf8Filename(zDir);
35925         if( !zConverted ){
35926           sqlite3_free(zBuf);
35927           OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_NOMEM\n"));
35928           return SQLITE_IOERR_NOMEM;
35929         }
35930         if( winIsDir(zConverted) ){
35931           sqlite3_snprintf(nMax, zBuf, "%s", zDir);
35932           sqlite3_free(zConverted);
35933           break;
35934         }
35935         sqlite3_free(zConverted);
35936       }else{
35937         zConverted = sqlite3MallocZero( nMax+1 );
35938         if( !zConverted ){
35939           sqlite3_free(zBuf);
35940           OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_NOMEM\n"));
35941           return SQLITE_IOERR_NOMEM;
35942         }
35943         if( cygwin_conv_path(
35944                 osIsNT() ? CCP_POSIX_TO_WIN_W : CCP_POSIX_TO_WIN_A, zDir,
35945                 zConverted, nMax+1)<0 ){
35946           sqlite3_free(zConverted);
35947           sqlite3_free(zBuf);
35948           OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_CONVPATH\n"));
35949           return winLogError(SQLITE_IOERR_CONVPATH, (DWORD)errno,
35950                              "winGetTempname2", zDir);
35951         }
35952         if( winIsDir(zConverted) ){
35953           /* At this point, we know the candidate directory exists and should
35954           ** be used.  However, we may need to convert the string containing
35955           ** its name into UTF-8 (i.e. if it is UTF-16 right now).
35956           */
35957           char *zUtf8 = winConvertToUtf8Filename(zConverted);
35958           if( !zUtf8 ){
35959             sqlite3_free(zConverted);
35960             sqlite3_free(zBuf);
35961             OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_NOMEM\n"));
35962             return SQLITE_IOERR_NOMEM;
35963           }
35964           sqlite3_snprintf(nMax, zBuf, "%s", zUtf8);
35965           sqlite3_free(zUtf8);
35966           sqlite3_free(zConverted);
35967           break;
35968         }
35969         sqlite3_free(zConverted);
35970       }
35971     }
35972   }
35973 #elif !SQLITE_OS_WINRT && !defined(__CYGWIN__)
35974   else if( osIsNT() ){
35975     char *zMulti;
35976     LPWSTR zWidePath = sqlite3MallocZero( nMax*sizeof(WCHAR) );
35977     if( !zWidePath ){
35978       sqlite3_free(zBuf);
35979       OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_NOMEM\n"));
35980       return SQLITE_IOERR_NOMEM;
35981     }
35982     if( osGetTempPathW(nMax, zWidePath)==0 ){
35983       sqlite3_free(zWidePath);
35984       sqlite3_free(zBuf);
35985       OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_GETTEMPPATH\n"));
35986       return winLogError(SQLITE_IOERR_GETTEMPPATH, osGetLastError(),
35987                          "winGetTempname2", 0);
35988     }
35989     zMulti = winUnicodeToUtf8(zWidePath);
35990     if( zMulti ){
35991       sqlite3_snprintf(nMax, zBuf, "%s", zMulti);
35992       sqlite3_free(zMulti);
35993       sqlite3_free(zWidePath);
35994     }else{
35995       sqlite3_free(zWidePath);
35996       sqlite3_free(zBuf);
35997       OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_NOMEM\n"));
35998       return SQLITE_IOERR_NOMEM;
35999     }
36000   }
36001 #ifdef SQLITE_WIN32_HAS_ANSI
36002   else{
36003     char *zUtf8;
36004     char *zMbcsPath = sqlite3MallocZero( nMax );
36005     if( !zMbcsPath ){
36006       sqlite3_free(zBuf);
36007       OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_NOMEM\n"));
36008       return SQLITE_IOERR_NOMEM;
36009     }
36010     if( osGetTempPathA(nMax, zMbcsPath)==0 ){
36011       sqlite3_free(zBuf);
36012       OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_GETTEMPPATH\n"));
36013       return winLogError(SQLITE_IOERR_GETTEMPPATH, osGetLastError(),
36014                          "winGetTempname3", 0);
36015     }
36016     zUtf8 = sqlite3_win32_mbcs_to_utf8(zMbcsPath);
36017     if( zUtf8 ){
36018       sqlite3_snprintf(nMax, zBuf, "%s", zUtf8);
36019       sqlite3_free(zUtf8);
36020     }else{
36021       sqlite3_free(zBuf);
36022       OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_NOMEM\n"));
36023       return SQLITE_IOERR_NOMEM;
36024     }
36025   }
36026 #endif /* SQLITE_WIN32_HAS_ANSI */
36027 #endif /* !SQLITE_OS_WINRT */
36028 
36029   /*
36030   ** Check to make sure the temporary directory ends with an appropriate
36031   ** separator.  If it does not and there is not enough space left to add
36032   ** one, fail.
36033   */
36034   if( !winMakeEndInDirSep(nDir+1, zBuf) ){
36035     sqlite3_free(zBuf);
36036     OSTRACE(("TEMP-FILENAME rc=SQLITE_ERROR\n"));
36037     return winLogError(SQLITE_ERROR, 0, "winGetTempname4", 0);
36038   }
36039 
36040   /*
36041   ** Check that the output buffer is large enough for the temporary file
36042   ** name in the following format:
36043   **
36044   **   "<temporary_directory>/etilqs_XXXXXXXXXXXXXXX\0\0"
36045   **
36046   ** If not, return SQLITE_ERROR.  The number 17 is used here in order to
36047   ** account for the space used by the 15 character random suffix and the
36048   ** two trailing NUL characters.  The final directory separator character
36049   ** has already added if it was not already present.
36050   */
36051   nLen = sqlite3Strlen30(zBuf);
36052   if( (nLen + nPre + 17) > nBuf ){
36053     sqlite3_free(zBuf);
36054     OSTRACE(("TEMP-FILENAME rc=SQLITE_ERROR\n"));
36055     return winLogError(SQLITE_ERROR, 0, "winGetTempname5", 0);
36056   }
36057 
36058   sqlite3_snprintf(nBuf-16-nLen, zBuf+nLen, SQLITE_TEMP_FILE_PREFIX);
36059 
36060   j = sqlite3Strlen30(zBuf);
36061   sqlite3_randomness(15, &zBuf[j]);
36062   for(i=0; i<15; i++, j++){
36063     zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
36064   }
36065   zBuf[j] = 0;
36066   zBuf[j+1] = 0;
36067   *pzBuf = zBuf;
36068 
36069   OSTRACE(("TEMP-FILENAME name=%s, rc=SQLITE_OK\n", zBuf));
36070   return SQLITE_OK;
36071 }
36072 
36073 /*
36074 ** Return TRUE if the named file is really a directory.  Return false if
36075 ** it is something other than a directory, or if there is any kind of memory
36076 ** allocation failure.
36077 */
36078 static int winIsDir(const void *zConverted){
36079   DWORD attr;
36080   int rc = 0;
36081   DWORD lastErrno;
36082 
36083   if( osIsNT() ){
36084     int cnt = 0;
36085     WIN32_FILE_ATTRIBUTE_DATA sAttrData;
36086     memset(&sAttrData, 0, sizeof(sAttrData));
36087     while( !(rc = osGetFileAttributesExW((LPCWSTR)zConverted,
36088                              GetFileExInfoStandard,
36089                              &sAttrData)) && winRetryIoerr(&cnt, &lastErrno) ){}
36090     if( !rc ){
36091       return 0; /* Invalid name? */
36092     }
36093     attr = sAttrData.dwFileAttributes;
36094 #if SQLITE_OS_WINCE==0
36095   }else{
36096     attr = osGetFileAttributesA((char*)zConverted);
36097 #endif
36098   }
36099   return (attr!=INVALID_FILE_ATTRIBUTES) && (attr&FILE_ATTRIBUTE_DIRECTORY);
36100 }
36101 
36102 /*
36103 ** Open a file.
36104 */
36105 static int winOpen(
36106   sqlite3_vfs *pVfs,        /* Used to get maximum path name length */
36107   const char *zName,        /* Name of the file (UTF-8) */
36108   sqlite3_file *id,         /* Write the SQLite file handle here */
36109   int flags,                /* Open mode flags */
36110   int *pOutFlags            /* Status return flags */
36111 ){
36112   HANDLE h;
36113   DWORD lastErrno = 0;
36114   DWORD dwDesiredAccess;
36115   DWORD dwShareMode;
36116   DWORD dwCreationDisposition;
36117   DWORD dwFlagsAndAttributes = 0;
36118 #if SQLITE_OS_WINCE
36119   int isTemp = 0;
36120 #endif
36121   winFile *pFile = (winFile*)id;
36122   void *zConverted;              /* Filename in OS encoding */
36123   const char *zUtf8Name = zName; /* Filename in UTF-8 encoding */
36124   int cnt = 0;
36125 
36126   /* If argument zPath is a NULL pointer, this function is required to open
36127   ** a temporary file. Use this buffer to store the file name in.
36128   */
36129   char *zTmpname = 0; /* For temporary filename, if necessary. */
36130 
36131   int rc = SQLITE_OK;            /* Function Return Code */
36132 #if !defined(NDEBUG) || SQLITE_OS_WINCE
36133   int eType = flags&0xFFFFFF00;  /* Type of file to open */
36134 #endif
36135 
36136   int isExclusive  = (flags & SQLITE_OPEN_EXCLUSIVE);
36137   int isDelete     = (flags & SQLITE_OPEN_DELETEONCLOSE);
36138   int isCreate     = (flags & SQLITE_OPEN_CREATE);
36139   int isReadonly   = (flags & SQLITE_OPEN_READONLY);
36140   int isReadWrite  = (flags & SQLITE_OPEN_READWRITE);
36141 
36142 #ifndef NDEBUG
36143   int isOpenJournal = (isCreate && (
36144         eType==SQLITE_OPEN_MASTER_JOURNAL
36145      || eType==SQLITE_OPEN_MAIN_JOURNAL
36146      || eType==SQLITE_OPEN_WAL
36147   ));
36148 #endif
36149 
36150   OSTRACE(("OPEN name=%s, pFile=%p, flags=%x, pOutFlags=%p\n",
36151            zUtf8Name, id, flags, pOutFlags));
36152 
36153   /* Check the following statements are true:
36154   **
36155   **   (a) Exactly one of the READWRITE and READONLY flags must be set, and
36156   **   (b) if CREATE is set, then READWRITE must also be set, and
36157   **   (c) if EXCLUSIVE is set, then CREATE must also be set.
36158   **   (d) if DELETEONCLOSE is set, then CREATE must also be set.
36159   */
36160   assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly));
36161   assert(isCreate==0 || isReadWrite);
36162   assert(isExclusive==0 || isCreate);
36163   assert(isDelete==0 || isCreate);
36164 
36165   /* The main DB, main journal, WAL file and master journal are never
36166   ** automatically deleted. Nor are they ever temporary files.  */
36167   assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_DB );
36168   assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_JOURNAL );
36169   assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MASTER_JOURNAL );
36170   assert( (!isDelete && zName) || eType!=SQLITE_OPEN_WAL );
36171 
36172   /* Assert that the upper layer has set one of the "file-type" flags. */
36173   assert( eType==SQLITE_OPEN_MAIN_DB      || eType==SQLITE_OPEN_TEMP_DB
36174        || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL
36175        || eType==SQLITE_OPEN_SUBJOURNAL   || eType==SQLITE_OPEN_MASTER_JOURNAL
36176        || eType==SQLITE_OPEN_TRANSIENT_DB || eType==SQLITE_OPEN_WAL
36177   );
36178 
36179   assert( pFile!=0 );
36180   memset(pFile, 0, sizeof(winFile));
36181   pFile->h = INVALID_HANDLE_VALUE;
36182 
36183 #if SQLITE_OS_WINRT
36184   if( !zUtf8Name && !sqlite3_temp_directory ){
36185     sqlite3_log(SQLITE_ERROR,
36186         "sqlite3_temp_directory variable should be set for WinRT");
36187   }
36188 #endif
36189 
36190   /* If the second argument to this function is NULL, generate a
36191   ** temporary file name to use
36192   */
36193   if( !zUtf8Name ){
36194     assert( isDelete && !isOpenJournal );
36195     rc = winGetTempname(pVfs, &zTmpname);
36196     if( rc!=SQLITE_OK ){
36197       OSTRACE(("OPEN name=%s, rc=%s", zUtf8Name, sqlite3ErrName(rc)));
36198       return rc;
36199     }
36200     zUtf8Name = zTmpname;
36201   }
36202 
36203   /* Database filenames are double-zero terminated if they are not
36204   ** URIs with parameters.  Hence, they can always be passed into
36205   ** sqlite3_uri_parameter().
36206   */
36207   assert( (eType!=SQLITE_OPEN_MAIN_DB) || (flags & SQLITE_OPEN_URI) ||
36208        zUtf8Name[sqlite3Strlen30(zUtf8Name)+1]==0 );
36209 
36210   /* Convert the filename to the system encoding. */
36211   zConverted = winConvertFromUtf8Filename(zUtf8Name);
36212   if( zConverted==0 ){
36213     sqlite3_free(zTmpname);
36214     OSTRACE(("OPEN name=%s, rc=SQLITE_IOERR_NOMEM", zUtf8Name));
36215     return SQLITE_IOERR_NOMEM;
36216   }
36217 
36218   if( winIsDir(zConverted) ){
36219     sqlite3_free(zConverted);
36220     sqlite3_free(zTmpname);
36221     OSTRACE(("OPEN name=%s, rc=SQLITE_CANTOPEN_ISDIR", zUtf8Name));
36222     return SQLITE_CANTOPEN_ISDIR;
36223   }
36224 
36225   if( isReadWrite ){
36226     dwDesiredAccess = GENERIC_READ | GENERIC_WRITE;
36227   }else{
36228     dwDesiredAccess = GENERIC_READ;
36229   }
36230 
36231   /* SQLITE_OPEN_EXCLUSIVE is used to make sure that a new file is
36232   ** created. SQLite doesn't use it to indicate "exclusive access"
36233   ** as it is usually understood.
36234   */
36235   if( isExclusive ){
36236     /* Creates a new file, only if it does not already exist. */
36237     /* If the file exists, it fails. */
36238     dwCreationDisposition = CREATE_NEW;
36239   }else if( isCreate ){
36240     /* Open existing file, or create if it doesn't exist */
36241     dwCreationDisposition = OPEN_ALWAYS;
36242   }else{
36243     /* Opens a file, only if it exists. */
36244     dwCreationDisposition = OPEN_EXISTING;
36245   }
36246 
36247   dwShareMode = FILE_SHARE_READ | FILE_SHARE_WRITE;
36248 
36249   if( isDelete ){
36250 #if SQLITE_OS_WINCE
36251     dwFlagsAndAttributes = FILE_ATTRIBUTE_HIDDEN;
36252     isTemp = 1;
36253 #else
36254     dwFlagsAndAttributes = FILE_ATTRIBUTE_TEMPORARY
36255                                | FILE_ATTRIBUTE_HIDDEN
36256                                | FILE_FLAG_DELETE_ON_CLOSE;
36257 #endif
36258   }else{
36259     dwFlagsAndAttributes = FILE_ATTRIBUTE_NORMAL;
36260   }
36261   /* Reports from the internet are that performance is always
36262   ** better if FILE_FLAG_RANDOM_ACCESS is used.  Ticket #2699. */
36263 #if SQLITE_OS_WINCE
36264   dwFlagsAndAttributes |= FILE_FLAG_RANDOM_ACCESS;
36265 #endif
36266 
36267   if( osIsNT() ){
36268 #if SQLITE_OS_WINRT
36269     CREATEFILE2_EXTENDED_PARAMETERS extendedParameters;
36270     extendedParameters.dwSize = sizeof(CREATEFILE2_EXTENDED_PARAMETERS);
36271     extendedParameters.dwFileAttributes =
36272             dwFlagsAndAttributes & FILE_ATTRIBUTE_MASK;
36273     extendedParameters.dwFileFlags = dwFlagsAndAttributes & FILE_FLAG_MASK;
36274     extendedParameters.dwSecurityQosFlags = SECURITY_ANONYMOUS;
36275     extendedParameters.lpSecurityAttributes = NULL;
36276     extendedParameters.hTemplateFile = NULL;
36277     while( (h = osCreateFile2((LPCWSTR)zConverted,
36278                               dwDesiredAccess,
36279                               dwShareMode,
36280                               dwCreationDisposition,
36281                               &extendedParameters))==INVALID_HANDLE_VALUE &&
36282                               winRetryIoerr(&cnt, &lastErrno) ){
36283                /* Noop */
36284     }
36285 #else
36286     while( (h = osCreateFileW((LPCWSTR)zConverted,
36287                               dwDesiredAccess,
36288                               dwShareMode, NULL,
36289                               dwCreationDisposition,
36290                               dwFlagsAndAttributes,
36291                               NULL))==INVALID_HANDLE_VALUE &&
36292                               winRetryIoerr(&cnt, &lastErrno) ){
36293                /* Noop */
36294     }
36295 #endif
36296   }
36297 #ifdef SQLITE_WIN32_HAS_ANSI
36298   else{
36299     while( (h = osCreateFileA((LPCSTR)zConverted,
36300                               dwDesiredAccess,
36301                               dwShareMode, NULL,
36302                               dwCreationDisposition,
36303                               dwFlagsAndAttributes,
36304                               NULL))==INVALID_HANDLE_VALUE &&
36305                               winRetryIoerr(&cnt, &lastErrno) ){
36306                /* Noop */
36307     }
36308   }
36309 #endif
36310   winLogIoerr(cnt);
36311 
36312   OSTRACE(("OPEN file=%p, name=%s, access=%lx, rc=%s\n", h, zUtf8Name,
36313            dwDesiredAccess, (h==INVALID_HANDLE_VALUE) ? "failed" : "ok"));
36314 
36315   if( h==INVALID_HANDLE_VALUE ){
36316     pFile->lastErrno = lastErrno;
36317     winLogError(SQLITE_CANTOPEN, pFile->lastErrno, "winOpen", zUtf8Name);
36318     sqlite3_free(zConverted);
36319     sqlite3_free(zTmpname);
36320     if( isReadWrite && !isExclusive ){
36321       return winOpen(pVfs, zName, id,
36322          ((flags|SQLITE_OPEN_READONLY) &
36323                      ~(SQLITE_OPEN_CREATE|SQLITE_OPEN_READWRITE)),
36324          pOutFlags);
36325     }else{
36326       return SQLITE_CANTOPEN_BKPT;
36327     }
36328   }
36329 
36330   if( pOutFlags ){
36331     if( isReadWrite ){
36332       *pOutFlags = SQLITE_OPEN_READWRITE;
36333     }else{
36334       *pOutFlags = SQLITE_OPEN_READONLY;
36335     }
36336   }
36337 
36338   OSTRACE(("OPEN file=%p, name=%s, access=%lx, pOutFlags=%p, *pOutFlags=%d, "
36339            "rc=%s\n", h, zUtf8Name, dwDesiredAccess, pOutFlags, pOutFlags ?
36340            *pOutFlags : 0, (h==INVALID_HANDLE_VALUE) ? "failed" : "ok"));
36341 
36342 #if SQLITE_OS_WINCE
36343   if( isReadWrite && eType==SQLITE_OPEN_MAIN_DB
36344        && (rc = winceCreateLock(zName, pFile))!=SQLITE_OK
36345   ){
36346     osCloseHandle(h);
36347     sqlite3_free(zConverted);
36348     sqlite3_free(zTmpname);
36349     OSTRACE(("OPEN-CE-LOCK name=%s, rc=%s\n", zName, sqlite3ErrName(rc)));
36350     return rc;
36351   }
36352   if( isTemp ){
36353     pFile->zDeleteOnClose = zConverted;
36354   }else
36355 #endif
36356   {
36357     sqlite3_free(zConverted);
36358   }
36359 
36360   sqlite3_free(zTmpname);
36361   pFile->pMethod = &winIoMethod;
36362   pFile->pVfs = pVfs;
36363   pFile->h = h;
36364   if( isReadonly ){
36365     pFile->ctrlFlags |= WINFILE_RDONLY;
36366   }
36367   if( sqlite3_uri_boolean(zName, "psow", SQLITE_POWERSAFE_OVERWRITE) ){
36368     pFile->ctrlFlags |= WINFILE_PSOW;
36369   }
36370   pFile->lastErrno = NO_ERROR;
36371   pFile->zPath = zName;
36372 #if SQLITE_MAX_MMAP_SIZE>0
36373   pFile->hMap = NULL;
36374   pFile->pMapRegion = 0;
36375   pFile->mmapSize = 0;
36376   pFile->mmapSizeActual = 0;
36377   pFile->mmapSizeMax = sqlite3GlobalConfig.szMmap;
36378 #endif
36379 
36380   OpenCounter(+1);
36381   return rc;
36382 }
36383 
36384 /*
36385 ** Delete the named file.
36386 **
36387 ** Note that Windows does not allow a file to be deleted if some other
36388 ** process has it open.  Sometimes a virus scanner or indexing program
36389 ** will open a journal file shortly after it is created in order to do
36390 ** whatever it does.  While this other process is holding the
36391 ** file open, we will be unable to delete it.  To work around this
36392 ** problem, we delay 100 milliseconds and try to delete again.  Up
36393 ** to MX_DELETION_ATTEMPTs deletion attempts are run before giving
36394 ** up and returning an error.
36395 */
36396 static int winDelete(
36397   sqlite3_vfs *pVfs,          /* Not used on win32 */
36398   const char *zFilename,      /* Name of file to delete */
36399   int syncDir                 /* Not used on win32 */
36400 ){
36401   int cnt = 0;
36402   int rc;
36403   DWORD attr;
36404   DWORD lastErrno = 0;
36405   void *zConverted;
36406   UNUSED_PARAMETER(pVfs);
36407   UNUSED_PARAMETER(syncDir);
36408 
36409   SimulateIOError(return SQLITE_IOERR_DELETE);
36410   OSTRACE(("DELETE name=%s, syncDir=%d\n", zFilename, syncDir));
36411 
36412   zConverted = winConvertFromUtf8Filename(zFilename);
36413   if( zConverted==0 ){
36414     OSTRACE(("DELETE name=%s, rc=SQLITE_IOERR_NOMEM\n", zFilename));
36415     return SQLITE_IOERR_NOMEM;
36416   }
36417   if( osIsNT() ){
36418     do {
36419 #if SQLITE_OS_WINRT
36420       WIN32_FILE_ATTRIBUTE_DATA sAttrData;
36421       memset(&sAttrData, 0, sizeof(sAttrData));
36422       if ( osGetFileAttributesExW(zConverted, GetFileExInfoStandard,
36423                                   &sAttrData) ){
36424         attr = sAttrData.dwFileAttributes;
36425       }else{
36426         lastErrno = osGetLastError();
36427         if( lastErrno==ERROR_FILE_NOT_FOUND
36428          || lastErrno==ERROR_PATH_NOT_FOUND ){
36429           rc = SQLITE_IOERR_DELETE_NOENT; /* Already gone? */
36430         }else{
36431           rc = SQLITE_ERROR;
36432         }
36433         break;
36434       }
36435 #else
36436       attr = osGetFileAttributesW(zConverted);
36437 #endif
36438       if ( attr==INVALID_FILE_ATTRIBUTES ){
36439         lastErrno = osGetLastError();
36440         if( lastErrno==ERROR_FILE_NOT_FOUND
36441          || lastErrno==ERROR_PATH_NOT_FOUND ){
36442           rc = SQLITE_IOERR_DELETE_NOENT; /* Already gone? */
36443         }else{
36444           rc = SQLITE_ERROR;
36445         }
36446         break;
36447       }
36448       if ( attr&FILE_ATTRIBUTE_DIRECTORY ){
36449         rc = SQLITE_ERROR; /* Files only. */
36450         break;
36451       }
36452       if ( osDeleteFileW(zConverted) ){
36453         rc = SQLITE_OK; /* Deleted OK. */
36454         break;
36455       }
36456       if ( !winRetryIoerr(&cnt, &lastErrno) ){
36457         rc = SQLITE_ERROR; /* No more retries. */
36458         break;
36459       }
36460     } while(1);
36461   }
36462 #ifdef SQLITE_WIN32_HAS_ANSI
36463   else{
36464     do {
36465       attr = osGetFileAttributesA(zConverted);
36466       if ( attr==INVALID_FILE_ATTRIBUTES ){
36467         lastErrno = osGetLastError();
36468         if( lastErrno==ERROR_FILE_NOT_FOUND
36469          || lastErrno==ERROR_PATH_NOT_FOUND ){
36470           rc = SQLITE_IOERR_DELETE_NOENT; /* Already gone? */
36471         }else{
36472           rc = SQLITE_ERROR;
36473         }
36474         break;
36475       }
36476       if ( attr&FILE_ATTRIBUTE_DIRECTORY ){
36477         rc = SQLITE_ERROR; /* Files only. */
36478         break;
36479       }
36480       if ( osDeleteFileA(zConverted) ){
36481         rc = SQLITE_OK; /* Deleted OK. */
36482         break;
36483       }
36484       if ( !winRetryIoerr(&cnt, &lastErrno) ){
36485         rc = SQLITE_ERROR; /* No more retries. */
36486         break;
36487       }
36488     } while(1);
36489   }
36490 #endif
36491   if( rc && rc!=SQLITE_IOERR_DELETE_NOENT ){
36492     rc = winLogError(SQLITE_IOERR_DELETE, lastErrno, "winDelete", zFilename);
36493   }else{
36494     winLogIoerr(cnt);
36495   }
36496   sqlite3_free(zConverted);
36497   OSTRACE(("DELETE name=%s, rc=%s\n", zFilename, sqlite3ErrName(rc)));
36498   return rc;
36499 }
36500 
36501 /*
36502 ** Check the existence and status of a file.
36503 */
36504 static int winAccess(
36505   sqlite3_vfs *pVfs,         /* Not used on win32 */
36506   const char *zFilename,     /* Name of file to check */
36507   int flags,                 /* Type of test to make on this file */
36508   int *pResOut               /* OUT: Result */
36509 ){
36510   DWORD attr;
36511   int rc = 0;
36512   DWORD lastErrno = 0;
36513   void *zConverted;
36514   UNUSED_PARAMETER(pVfs);
36515 
36516   SimulateIOError( return SQLITE_IOERR_ACCESS; );
36517   OSTRACE(("ACCESS name=%s, flags=%x, pResOut=%p\n",
36518            zFilename, flags, pResOut));
36519 
36520   zConverted = winConvertFromUtf8Filename(zFilename);
36521   if( zConverted==0 ){
36522     OSTRACE(("ACCESS name=%s, rc=SQLITE_IOERR_NOMEM\n", zFilename));
36523     return SQLITE_IOERR_NOMEM;
36524   }
36525   if( osIsNT() ){
36526     int cnt = 0;
36527     WIN32_FILE_ATTRIBUTE_DATA sAttrData;
36528     memset(&sAttrData, 0, sizeof(sAttrData));
36529     while( !(rc = osGetFileAttributesExW((LPCWSTR)zConverted,
36530                              GetFileExInfoStandard,
36531                              &sAttrData)) && winRetryIoerr(&cnt, &lastErrno) ){}
36532     if( rc ){
36533       /* For an SQLITE_ACCESS_EXISTS query, treat a zero-length file
36534       ** as if it does not exist.
36535       */
36536       if(    flags==SQLITE_ACCESS_EXISTS
36537           && sAttrData.nFileSizeHigh==0
36538           && sAttrData.nFileSizeLow==0 ){
36539         attr = INVALID_FILE_ATTRIBUTES;
36540       }else{
36541         attr = sAttrData.dwFileAttributes;
36542       }
36543     }else{
36544       winLogIoerr(cnt);
36545       if( lastErrno!=ERROR_FILE_NOT_FOUND && lastErrno!=ERROR_PATH_NOT_FOUND ){
36546         sqlite3_free(zConverted);
36547         return winLogError(SQLITE_IOERR_ACCESS, lastErrno, "winAccess",
36548                            zFilename);
36549       }else{
36550         attr = INVALID_FILE_ATTRIBUTES;
36551       }
36552     }
36553   }
36554 #ifdef SQLITE_WIN32_HAS_ANSI
36555   else{
36556     attr = osGetFileAttributesA((char*)zConverted);
36557   }
36558 #endif
36559   sqlite3_free(zConverted);
36560   switch( flags ){
36561     case SQLITE_ACCESS_READ:
36562     case SQLITE_ACCESS_EXISTS:
36563       rc = attr!=INVALID_FILE_ATTRIBUTES;
36564       break;
36565     case SQLITE_ACCESS_READWRITE:
36566       rc = attr!=INVALID_FILE_ATTRIBUTES &&
36567              (attr & FILE_ATTRIBUTE_READONLY)==0;
36568       break;
36569     default:
36570       assert(!"Invalid flags argument");
36571   }
36572   *pResOut = rc;
36573   OSTRACE(("ACCESS name=%s, pResOut=%p, *pResOut=%d, rc=SQLITE_OK\n",
36574            zFilename, pResOut, *pResOut));
36575   return SQLITE_OK;
36576 }
36577 
36578 /*
36579 ** Returns non-zero if the specified path name starts with a drive letter
36580 ** followed by a colon character.
36581 */
36582 static BOOL winIsDriveLetterAndColon(
36583   const char *zPathname
36584 ){
36585   return ( sqlite3Isalpha(zPathname[0]) && zPathname[1]==':' );
36586 }
36587 
36588 /*
36589 ** Returns non-zero if the specified path name should be used verbatim.  If
36590 ** non-zero is returned from this function, the calling function must simply
36591 ** use the provided path name verbatim -OR- resolve it into a full path name
36592 ** using the GetFullPathName Win32 API function (if available).
36593 */
36594 static BOOL winIsVerbatimPathname(
36595   const char *zPathname
36596 ){
36597   /*
36598   ** If the path name starts with a forward slash or a backslash, it is either
36599   ** a legal UNC name, a volume relative path, or an absolute path name in the
36600   ** "Unix" format on Windows.  There is no easy way to differentiate between
36601   ** the final two cases; therefore, we return the safer return value of TRUE
36602   ** so that callers of this function will simply use it verbatim.
36603   */
36604   if ( winIsDirSep(zPathname[0]) ){
36605     return TRUE;
36606   }
36607 
36608   /*
36609   ** If the path name starts with a letter and a colon it is either a volume
36610   ** relative path or an absolute path.  Callers of this function must not
36611   ** attempt to treat it as a relative path name (i.e. they should simply use
36612   ** it verbatim).
36613   */
36614   if ( winIsDriveLetterAndColon(zPathname) ){
36615     return TRUE;
36616   }
36617 
36618   /*
36619   ** If we get to this point, the path name should almost certainly be a purely
36620   ** relative one (i.e. not a UNC name, not absolute, and not volume relative).
36621   */
36622   return FALSE;
36623 }
36624 
36625 /*
36626 ** Turn a relative pathname into a full pathname.  Write the full
36627 ** pathname into zOut[].  zOut[] will be at least pVfs->mxPathname
36628 ** bytes in size.
36629 */
36630 static int winFullPathname(
36631   sqlite3_vfs *pVfs,            /* Pointer to vfs object */
36632   const char *zRelative,        /* Possibly relative input path */
36633   int nFull,                    /* Size of output buffer in bytes */
36634   char *zFull                   /* Output buffer */
36635 ){
36636 
36637 #if defined(__CYGWIN__)
36638   SimulateIOError( return SQLITE_ERROR );
36639   UNUSED_PARAMETER(nFull);
36640   assert( nFull>=pVfs->mxPathname );
36641   if ( sqlite3_data_directory && !winIsVerbatimPathname(zRelative) ){
36642     /*
36643     ** NOTE: We are dealing with a relative path name and the data
36644     **       directory has been set.  Therefore, use it as the basis
36645     **       for converting the relative path name to an absolute
36646     **       one by prepending the data directory and a slash.
36647     */
36648     char *zOut = sqlite3MallocZero( pVfs->mxPathname+1 );
36649     if( !zOut ){
36650       return SQLITE_IOERR_NOMEM;
36651     }
36652     if( cygwin_conv_path(
36653             (osIsNT() ? CCP_POSIX_TO_WIN_W : CCP_POSIX_TO_WIN_A) |
36654             CCP_RELATIVE, zRelative, zOut, pVfs->mxPathname+1)<0 ){
36655       sqlite3_free(zOut);
36656       return winLogError(SQLITE_CANTOPEN_CONVPATH, (DWORD)errno,
36657                          "winFullPathname1", zRelative);
36658     }else{
36659       char *zUtf8 = winConvertToUtf8Filename(zOut);
36660       if( !zUtf8 ){
36661         sqlite3_free(zOut);
36662         return SQLITE_IOERR_NOMEM;
36663       }
36664       sqlite3_snprintf(MIN(nFull, pVfs->mxPathname), zFull, "%s%c%s",
36665                        sqlite3_data_directory, winGetDirSep(), zUtf8);
36666       sqlite3_free(zUtf8);
36667       sqlite3_free(zOut);
36668     }
36669   }else{
36670     char *zOut = sqlite3MallocZero( pVfs->mxPathname+1 );
36671     if( !zOut ){
36672       return SQLITE_IOERR_NOMEM;
36673     }
36674     if( cygwin_conv_path(
36675             (osIsNT() ? CCP_POSIX_TO_WIN_W : CCP_POSIX_TO_WIN_A),
36676             zRelative, zOut, pVfs->mxPathname+1)<0 ){
36677       sqlite3_free(zOut);
36678       return winLogError(SQLITE_CANTOPEN_CONVPATH, (DWORD)errno,
36679                          "winFullPathname2", zRelative);
36680     }else{
36681       char *zUtf8 = winConvertToUtf8Filename(zOut);
36682       if( !zUtf8 ){
36683         sqlite3_free(zOut);
36684         return SQLITE_IOERR_NOMEM;
36685       }
36686       sqlite3_snprintf(MIN(nFull, pVfs->mxPathname), zFull, "%s", zUtf8);
36687       sqlite3_free(zUtf8);
36688       sqlite3_free(zOut);
36689     }
36690   }
36691   return SQLITE_OK;
36692 #endif
36693 
36694 #if (SQLITE_OS_WINCE || SQLITE_OS_WINRT) && !defined(__CYGWIN__)
36695   SimulateIOError( return SQLITE_ERROR );
36696   /* WinCE has no concept of a relative pathname, or so I am told. */
36697   /* WinRT has no way to convert a relative path to an absolute one. */
36698   if ( sqlite3_data_directory && !winIsVerbatimPathname(zRelative) ){
36699     /*
36700     ** NOTE: We are dealing with a relative path name and the data
36701     **       directory has been set.  Therefore, use it as the basis
36702     **       for converting the relative path name to an absolute
36703     **       one by prepending the data directory and a backslash.
36704     */
36705     sqlite3_snprintf(MIN(nFull, pVfs->mxPathname), zFull, "%s%c%s",
36706                      sqlite3_data_directory, winGetDirSep(), zRelative);
36707   }else{
36708     sqlite3_snprintf(MIN(nFull, pVfs->mxPathname), zFull, "%s", zRelative);
36709   }
36710   return SQLITE_OK;
36711 #endif
36712 
36713 #if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && !defined(__CYGWIN__)
36714   DWORD nByte;
36715   void *zConverted;
36716   char *zOut;
36717 
36718   /* If this path name begins with "/X:", where "X" is any alphabetic
36719   ** character, discard the initial "/" from the pathname.
36720   */
36721   if( zRelative[0]=='/' && winIsDriveLetterAndColon(zRelative+1) ){
36722     zRelative++;
36723   }
36724 
36725   /* It's odd to simulate an io-error here, but really this is just
36726   ** using the io-error infrastructure to test that SQLite handles this
36727   ** function failing. This function could fail if, for example, the
36728   ** current working directory has been unlinked.
36729   */
36730   SimulateIOError( return SQLITE_ERROR );
36731   if ( sqlite3_data_directory && !winIsVerbatimPathname(zRelative) ){
36732     /*
36733     ** NOTE: We are dealing with a relative path name and the data
36734     **       directory has been set.  Therefore, use it as the basis
36735     **       for converting the relative path name to an absolute
36736     **       one by prepending the data directory and a backslash.
36737     */
36738     sqlite3_snprintf(MIN(nFull, pVfs->mxPathname), zFull, "%s%c%s",
36739                      sqlite3_data_directory, winGetDirSep(), zRelative);
36740     return SQLITE_OK;
36741   }
36742   zConverted = winConvertFromUtf8Filename(zRelative);
36743   if( zConverted==0 ){
36744     return SQLITE_IOERR_NOMEM;
36745   }
36746   if( osIsNT() ){
36747     LPWSTR zTemp;
36748     nByte = osGetFullPathNameW((LPCWSTR)zConverted, 0, 0, 0);
36749     if( nByte==0 ){
36750       sqlite3_free(zConverted);
36751       return winLogError(SQLITE_CANTOPEN_FULLPATH, osGetLastError(),
36752                          "winFullPathname1", zRelative);
36753     }
36754     nByte += 3;
36755     zTemp = sqlite3MallocZero( nByte*sizeof(zTemp[0]) );
36756     if( zTemp==0 ){
36757       sqlite3_free(zConverted);
36758       return SQLITE_IOERR_NOMEM;
36759     }
36760     nByte = osGetFullPathNameW((LPCWSTR)zConverted, nByte, zTemp, 0);
36761     if( nByte==0 ){
36762       sqlite3_free(zConverted);
36763       sqlite3_free(zTemp);
36764       return winLogError(SQLITE_CANTOPEN_FULLPATH, osGetLastError(),
36765                          "winFullPathname2", zRelative);
36766     }
36767     sqlite3_free(zConverted);
36768     zOut = winUnicodeToUtf8(zTemp);
36769     sqlite3_free(zTemp);
36770   }
36771 #ifdef SQLITE_WIN32_HAS_ANSI
36772   else{
36773     char *zTemp;
36774     nByte = osGetFullPathNameA((char*)zConverted, 0, 0, 0);
36775     if( nByte==0 ){
36776       sqlite3_free(zConverted);
36777       return winLogError(SQLITE_CANTOPEN_FULLPATH, osGetLastError(),
36778                          "winFullPathname3", zRelative);
36779     }
36780     nByte += 3;
36781     zTemp = sqlite3MallocZero( nByte*sizeof(zTemp[0]) );
36782     if( zTemp==0 ){
36783       sqlite3_free(zConverted);
36784       return SQLITE_IOERR_NOMEM;
36785     }
36786     nByte = osGetFullPathNameA((char*)zConverted, nByte, zTemp, 0);
36787     if( nByte==0 ){
36788       sqlite3_free(zConverted);
36789       sqlite3_free(zTemp);
36790       return winLogError(SQLITE_CANTOPEN_FULLPATH, osGetLastError(),
36791                          "winFullPathname4", zRelative);
36792     }
36793     sqlite3_free(zConverted);
36794     zOut = sqlite3_win32_mbcs_to_utf8(zTemp);
36795     sqlite3_free(zTemp);
36796   }
36797 #endif
36798   if( zOut ){
36799     sqlite3_snprintf(MIN(nFull, pVfs->mxPathname), zFull, "%s", zOut);
36800     sqlite3_free(zOut);
36801     return SQLITE_OK;
36802   }else{
36803     return SQLITE_IOERR_NOMEM;
36804   }
36805 #endif
36806 }
36807 
36808 #ifndef SQLITE_OMIT_LOAD_EXTENSION
36809 /*
36810 ** Interfaces for opening a shared library, finding entry points
36811 ** within the shared library, and closing the shared library.
36812 */
36813 static void *winDlOpen(sqlite3_vfs *pVfs, const char *zFilename){
36814   HANDLE h;
36815 #if defined(__CYGWIN__)
36816   int nFull = pVfs->mxPathname+1;
36817   char *zFull = sqlite3MallocZero( nFull );
36818   void *zConverted = 0;
36819   if( zFull==0 ){
36820     OSTRACE(("DLOPEN name=%s, handle=%p\n", zFilename, (void*)0));
36821     return 0;
36822   }
36823   if( winFullPathname(pVfs, zFilename, nFull, zFull)!=SQLITE_OK ){
36824     sqlite3_free(zFull);
36825     OSTRACE(("DLOPEN name=%s, handle=%p\n", zFilename, (void*)0));
36826     return 0;
36827   }
36828   zConverted = winConvertFromUtf8Filename(zFull);
36829   sqlite3_free(zFull);
36830 #else
36831   void *zConverted = winConvertFromUtf8Filename(zFilename);
36832   UNUSED_PARAMETER(pVfs);
36833 #endif
36834   if( zConverted==0 ){
36835     OSTRACE(("DLOPEN name=%s, handle=%p\n", zFilename, (void*)0));
36836     return 0;
36837   }
36838   if( osIsNT() ){
36839 #if SQLITE_OS_WINRT
36840     h = osLoadPackagedLibrary((LPCWSTR)zConverted, 0);
36841 #else
36842     h = osLoadLibraryW((LPCWSTR)zConverted);
36843 #endif
36844   }
36845 #ifdef SQLITE_WIN32_HAS_ANSI
36846   else{
36847     h = osLoadLibraryA((char*)zConverted);
36848   }
36849 #endif
36850   OSTRACE(("DLOPEN name=%s, handle=%p\n", zFilename, (void*)h));
36851   sqlite3_free(zConverted);
36852   return (void*)h;
36853 }
36854 static void winDlError(sqlite3_vfs *pVfs, int nBuf, char *zBufOut){
36855   UNUSED_PARAMETER(pVfs);
36856   winGetLastErrorMsg(osGetLastError(), nBuf, zBufOut);
36857 }
36858 static void (*winDlSym(sqlite3_vfs *pVfs,void *pH,const char *zSym))(void){
36859   FARPROC proc;
36860   UNUSED_PARAMETER(pVfs);
36861   proc = osGetProcAddressA((HANDLE)pH, zSym);
36862   OSTRACE(("DLSYM handle=%p, symbol=%s, address=%p\n",
36863            (void*)pH, zSym, (void*)proc));
36864   return (void(*)(void))proc;
36865 }
36866 static void winDlClose(sqlite3_vfs *pVfs, void *pHandle){
36867   UNUSED_PARAMETER(pVfs);
36868   osFreeLibrary((HANDLE)pHandle);
36869   OSTRACE(("DLCLOSE handle=%p\n", (void*)pHandle));
36870 }
36871 #else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */
36872   #define winDlOpen  0
36873   #define winDlError 0
36874   #define winDlSym   0
36875   #define winDlClose 0
36876 #endif
36877 
36878 
36879 /*
36880 ** Write up to nBuf bytes of randomness into zBuf.
36881 */
36882 static int winRandomness(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
36883   int n = 0;
36884   UNUSED_PARAMETER(pVfs);
36885 #if defined(SQLITE_TEST)
36886   n = nBuf;
36887   memset(zBuf, 0, nBuf);
36888 #else
36889   if( sizeof(SYSTEMTIME)<=nBuf-n ){
36890     SYSTEMTIME x;
36891     osGetSystemTime(&x);
36892     memcpy(&zBuf[n], &x, sizeof(x));
36893     n += sizeof(x);
36894   }
36895   if( sizeof(DWORD)<=nBuf-n ){
36896     DWORD pid = osGetCurrentProcessId();
36897     memcpy(&zBuf[n], &pid, sizeof(pid));
36898     n += sizeof(pid);
36899   }
36900 #if SQLITE_OS_WINRT
36901   if( sizeof(ULONGLONG)<=nBuf-n ){
36902     ULONGLONG cnt = osGetTickCount64();
36903     memcpy(&zBuf[n], &cnt, sizeof(cnt));
36904     n += sizeof(cnt);
36905   }
36906 #else
36907   if( sizeof(DWORD)<=nBuf-n ){
36908     DWORD cnt = osGetTickCount();
36909     memcpy(&zBuf[n], &cnt, sizeof(cnt));
36910     n += sizeof(cnt);
36911   }
36912 #endif
36913   if( sizeof(LARGE_INTEGER)<=nBuf-n ){
36914     LARGE_INTEGER i;
36915     osQueryPerformanceCounter(&i);
36916     memcpy(&zBuf[n], &i, sizeof(i));
36917     n += sizeof(i);
36918   }
36919 #endif
36920   return n;
36921 }
36922 
36923 
36924 /*
36925 ** Sleep for a little while.  Return the amount of time slept.
36926 */
36927 static int winSleep(sqlite3_vfs *pVfs, int microsec){
36928   sqlite3_win32_sleep((microsec+999)/1000);
36929   UNUSED_PARAMETER(pVfs);
36930   return ((microsec+999)/1000)*1000;
36931 }
36932 
36933 /*
36934 ** The following variable, if set to a non-zero value, is interpreted as
36935 ** the number of seconds since 1970 and is used to set the result of
36936 ** sqlite3OsCurrentTime() during testing.
36937 */
36938 #ifdef SQLITE_TEST
36939 SQLITE_API int sqlite3_current_time = 0;  /* Fake system time in seconds since 1970. */
36940 #endif
36941 
36942 /*
36943 ** Find the current time (in Universal Coordinated Time).  Write into *piNow
36944 ** the current time and date as a Julian Day number times 86_400_000.  In
36945 ** other words, write into *piNow the number of milliseconds since the Julian
36946 ** epoch of noon in Greenwich on November 24, 4714 B.C according to the
36947 ** proleptic Gregorian calendar.
36948 **
36949 ** On success, return SQLITE_OK.  Return SQLITE_ERROR if the time and date
36950 ** cannot be found.
36951 */
36952 static int winCurrentTimeInt64(sqlite3_vfs *pVfs, sqlite3_int64 *piNow){
36953   /* FILETIME structure is a 64-bit value representing the number of
36954      100-nanosecond intervals since January 1, 1601 (= JD 2305813.5).
36955   */
36956   FILETIME ft;
36957   static const sqlite3_int64 winFiletimeEpoch = 23058135*(sqlite3_int64)8640000;
36958 #ifdef SQLITE_TEST
36959   static const sqlite3_int64 unixEpoch = 24405875*(sqlite3_int64)8640000;
36960 #endif
36961   /* 2^32 - to avoid use of LL and warnings in gcc */
36962   static const sqlite3_int64 max32BitValue =
36963       (sqlite3_int64)2000000000 + (sqlite3_int64)2000000000 +
36964       (sqlite3_int64)294967296;
36965 
36966 #if SQLITE_OS_WINCE
36967   SYSTEMTIME time;
36968   osGetSystemTime(&time);
36969   /* if SystemTimeToFileTime() fails, it returns zero. */
36970   if (!osSystemTimeToFileTime(&time,&ft)){
36971     return SQLITE_ERROR;
36972   }
36973 #else
36974   osGetSystemTimeAsFileTime( &ft );
36975 #endif
36976 
36977   *piNow = winFiletimeEpoch +
36978             ((((sqlite3_int64)ft.dwHighDateTime)*max32BitValue) +
36979                (sqlite3_int64)ft.dwLowDateTime)/(sqlite3_int64)10000;
36980 
36981 #ifdef SQLITE_TEST
36982   if( sqlite3_current_time ){
36983     *piNow = 1000*(sqlite3_int64)sqlite3_current_time + unixEpoch;
36984   }
36985 #endif
36986   UNUSED_PARAMETER(pVfs);
36987   return SQLITE_OK;
36988 }
36989 
36990 /*
36991 ** Find the current time (in Universal Coordinated Time).  Write the
36992 ** current time and date as a Julian Day number into *prNow and
36993 ** return 0.  Return 1 if the time and date cannot be found.
36994 */
36995 static int winCurrentTime(sqlite3_vfs *pVfs, double *prNow){
36996   int rc;
36997   sqlite3_int64 i;
36998   rc = winCurrentTimeInt64(pVfs, &i);
36999   if( !rc ){
37000     *prNow = i/86400000.0;
37001   }
37002   return rc;
37003 }
37004 
37005 /*
37006 ** The idea is that this function works like a combination of
37007 ** GetLastError() and FormatMessage() on Windows (or errno and
37008 ** strerror_r() on Unix). After an error is returned by an OS
37009 ** function, SQLite calls this function with zBuf pointing to
37010 ** a buffer of nBuf bytes. The OS layer should populate the
37011 ** buffer with a nul-terminated UTF-8 encoded error message
37012 ** describing the last IO error to have occurred within the calling
37013 ** thread.
37014 **
37015 ** If the error message is too large for the supplied buffer,
37016 ** it should be truncated. The return value of xGetLastError
37017 ** is zero if the error message fits in the buffer, or non-zero
37018 ** otherwise (if the message was truncated). If non-zero is returned,
37019 ** then it is not necessary to include the nul-terminator character
37020 ** in the output buffer.
37021 **
37022 ** Not supplying an error message will have no adverse effect
37023 ** on SQLite. It is fine to have an implementation that never
37024 ** returns an error message:
37025 **
37026 **   int xGetLastError(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
37027 **     assert(zBuf[0]=='\0');
37028 **     return 0;
37029 **   }
37030 **
37031 ** However if an error message is supplied, it will be incorporated
37032 ** by sqlite into the error message available to the user using
37033 ** sqlite3_errmsg(), possibly making IO errors easier to debug.
37034 */
37035 static int winGetLastError(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
37036   UNUSED_PARAMETER(pVfs);
37037   return winGetLastErrorMsg(osGetLastError(), nBuf, zBuf);
37038 }
37039 
37040 /*
37041 ** Initialize and deinitialize the operating system interface.
37042 */
37043 SQLITE_API int sqlite3_os_init(void){
37044   static sqlite3_vfs winVfs = {
37045     3,                   /* iVersion */
37046     sizeof(winFile),     /* szOsFile */
37047     SQLITE_WIN32_MAX_PATH_BYTES, /* mxPathname */
37048     0,                   /* pNext */
37049     "win32",             /* zName */
37050     0,                   /* pAppData */
37051     winOpen,             /* xOpen */
37052     winDelete,           /* xDelete */
37053     winAccess,           /* xAccess */
37054     winFullPathname,     /* xFullPathname */
37055     winDlOpen,           /* xDlOpen */
37056     winDlError,          /* xDlError */
37057     winDlSym,            /* xDlSym */
37058     winDlClose,          /* xDlClose */
37059     winRandomness,       /* xRandomness */
37060     winSleep,            /* xSleep */
37061     winCurrentTime,      /* xCurrentTime */
37062     winGetLastError,     /* xGetLastError */
37063     winCurrentTimeInt64, /* xCurrentTimeInt64 */
37064     winSetSystemCall,    /* xSetSystemCall */
37065     winGetSystemCall,    /* xGetSystemCall */
37066     winNextSystemCall,   /* xNextSystemCall */
37067   };
37068 #if defined(SQLITE_WIN32_HAS_WIDE)
37069   static sqlite3_vfs winLongPathVfs = {
37070     3,                   /* iVersion */
37071     sizeof(winFile),     /* szOsFile */
37072     SQLITE_WINNT_MAX_PATH_BYTES, /* mxPathname */
37073     0,                   /* pNext */
37074     "win32-longpath",    /* zName */
37075     0,                   /* pAppData */
37076     winOpen,             /* xOpen */
37077     winDelete,           /* xDelete */
37078     winAccess,           /* xAccess */
37079     winFullPathname,     /* xFullPathname */
37080     winDlOpen,           /* xDlOpen */
37081     winDlError,          /* xDlError */
37082     winDlSym,            /* xDlSym */
37083     winDlClose,          /* xDlClose */
37084     winRandomness,       /* xRandomness */
37085     winSleep,            /* xSleep */
37086     winCurrentTime,      /* xCurrentTime */
37087     winGetLastError,     /* xGetLastError */
37088     winCurrentTimeInt64, /* xCurrentTimeInt64 */
37089     winSetSystemCall,    /* xSetSystemCall */
37090     winGetSystemCall,    /* xGetSystemCall */
37091     winNextSystemCall,   /* xNextSystemCall */
37092   };
37093 #endif
37094 
37095   /* Double-check that the aSyscall[] array has been constructed
37096   ** correctly.  See ticket [bb3a86e890c8e96ab] */
37097   assert( ArraySize(aSyscall)==76 );
37098 
37099   /* get memory map allocation granularity */
37100   memset(&winSysInfo, 0, sizeof(SYSTEM_INFO));
37101 #if SQLITE_OS_WINRT
37102   osGetNativeSystemInfo(&winSysInfo);
37103 #else
37104   osGetSystemInfo(&winSysInfo);
37105 #endif
37106   assert( winSysInfo.dwAllocationGranularity>0 );
37107   assert( winSysInfo.dwPageSize>0 );
37108 
37109   sqlite3_vfs_register(&winVfs, 1);
37110 
37111 #if defined(SQLITE_WIN32_HAS_WIDE)
37112   sqlite3_vfs_register(&winLongPathVfs, 0);
37113 #endif
37114 
37115   return SQLITE_OK;
37116 }
37117 
37118 SQLITE_API int sqlite3_os_end(void){
37119 #if SQLITE_OS_WINRT
37120   if( sleepObj!=NULL ){
37121     osCloseHandle(sleepObj);
37122     sleepObj = NULL;
37123   }
37124 #endif
37125   return SQLITE_OK;
37126 }
37127 
37128 #endif /* SQLITE_OS_WIN */
37129 
37130 /************** End of os_win.c **********************************************/
37131 /************** Begin file bitvec.c ******************************************/
37132 /*
37133 ** 2008 February 16
37134 **
37135 ** The author disclaims copyright to this source code.  In place of
37136 ** a legal notice, here is a blessing:
37137 **
37138 **    May you do good and not evil.
37139 **    May you find forgiveness for yourself and forgive others.
37140 **    May you share freely, never taking more than you give.
37141 **
37142 *************************************************************************
37143 ** This file implements an object that represents a fixed-length
37144 ** bitmap.  Bits are numbered starting with 1.
37145 **
37146 ** A bitmap is used to record which pages of a database file have been
37147 ** journalled during a transaction, or which pages have the "dont-write"
37148 ** property.  Usually only a few pages are meet either condition.
37149 ** So the bitmap is usually sparse and has low cardinality.
37150 ** But sometimes (for example when during a DROP of a large table) most
37151 ** or all of the pages in a database can get journalled.  In those cases,
37152 ** the bitmap becomes dense with high cardinality.  The algorithm needs
37153 ** to handle both cases well.
37154 **
37155 ** The size of the bitmap is fixed when the object is created.
37156 **
37157 ** All bits are clear when the bitmap is created.  Individual bits
37158 ** may be set or cleared one at a time.
37159 **
37160 ** Test operations are about 100 times more common that set operations.
37161 ** Clear operations are exceedingly rare.  There are usually between
37162 ** 5 and 500 set operations per Bitvec object, though the number of sets can
37163 ** sometimes grow into tens of thousands or larger.  The size of the
37164 ** Bitvec object is the number of pages in the database file at the
37165 ** start of a transaction, and is thus usually less than a few thousand,
37166 ** but can be as large as 2 billion for a really big database.
37167 */
37168 
37169 /* Size of the Bitvec structure in bytes. */
37170 #define BITVEC_SZ        512
37171 
37172 /* Round the union size down to the nearest pointer boundary, since that's how
37173 ** it will be aligned within the Bitvec struct. */
37174 #define BITVEC_USIZE     (((BITVEC_SZ-(3*sizeof(u32)))/sizeof(Bitvec*))*sizeof(Bitvec*))
37175 
37176 /* Type of the array "element" for the bitmap representation.
37177 ** Should be a power of 2, and ideally, evenly divide into BITVEC_USIZE.
37178 ** Setting this to the "natural word" size of your CPU may improve
37179 ** performance. */
37180 #define BITVEC_TELEM     u8
37181 /* Size, in bits, of the bitmap element. */
37182 #define BITVEC_SZELEM    8
37183 /* Number of elements in a bitmap array. */
37184 #define BITVEC_NELEM     (BITVEC_USIZE/sizeof(BITVEC_TELEM))
37185 /* Number of bits in the bitmap array. */
37186 #define BITVEC_NBIT      (BITVEC_NELEM*BITVEC_SZELEM)
37187 
37188 /* Number of u32 values in hash table. */
37189 #define BITVEC_NINT      (BITVEC_USIZE/sizeof(u32))
37190 /* Maximum number of entries in hash table before
37191 ** sub-dividing and re-hashing. */
37192 #define BITVEC_MXHASH    (BITVEC_NINT/2)
37193 /* Hashing function for the aHash representation.
37194 ** Empirical testing showed that the *37 multiplier
37195 ** (an arbitrary prime)in the hash function provided
37196 ** no fewer collisions than the no-op *1. */
37197 #define BITVEC_HASH(X)   (((X)*1)%BITVEC_NINT)
37198 
37199 #define BITVEC_NPTR      (BITVEC_USIZE/sizeof(Bitvec *))
37200 
37201 
37202 /*
37203 ** A bitmap is an instance of the following structure.
37204 **
37205 ** This bitmap records the existence of zero or more bits
37206 ** with values between 1 and iSize, inclusive.
37207 **
37208 ** There are three possible representations of the bitmap.
37209 ** If iSize<=BITVEC_NBIT, then Bitvec.u.aBitmap[] is a straight
37210 ** bitmap.  The least significant bit is bit 1.
37211 **
37212 ** If iSize>BITVEC_NBIT and iDivisor==0 then Bitvec.u.aHash[] is
37213 ** a hash table that will hold up to BITVEC_MXHASH distinct values.
37214 **
37215 ** Otherwise, the value i is redirected into one of BITVEC_NPTR
37216 ** sub-bitmaps pointed to by Bitvec.u.apSub[].  Each subbitmap
37217 ** handles up to iDivisor separate values of i.  apSub[0] holds
37218 ** values between 1 and iDivisor.  apSub[1] holds values between
37219 ** iDivisor+1 and 2*iDivisor.  apSub[N] holds values between
37220 ** N*iDivisor+1 and (N+1)*iDivisor.  Each subbitmap is normalized
37221 ** to hold deal with values between 1 and iDivisor.
37222 */
37223 struct Bitvec {
37224   u32 iSize;      /* Maximum bit index.  Max iSize is 4,294,967,296. */
37225   u32 nSet;       /* Number of bits that are set - only valid for aHash
37226                   ** element.  Max is BITVEC_NINT.  For BITVEC_SZ of 512,
37227                   ** this would be 125. */
37228   u32 iDivisor;   /* Number of bits handled by each apSub[] entry. */
37229                   /* Should >=0 for apSub element. */
37230                   /* Max iDivisor is max(u32) / BITVEC_NPTR + 1.  */
37231                   /* For a BITVEC_SZ of 512, this would be 34,359,739. */
37232   union {
37233     BITVEC_TELEM aBitmap[BITVEC_NELEM];    /* Bitmap representation */
37234     u32 aHash[BITVEC_NINT];      /* Hash table representation */
37235     Bitvec *apSub[BITVEC_NPTR];  /* Recursive representation */
37236   } u;
37237 };
37238 
37239 /*
37240 ** Create a new bitmap object able to handle bits between 0 and iSize,
37241 ** inclusive.  Return a pointer to the new object.  Return NULL if
37242 ** malloc fails.
37243 */
37244 SQLITE_PRIVATE Bitvec *sqlite3BitvecCreate(u32 iSize){
37245   Bitvec *p;
37246   assert( sizeof(*p)==BITVEC_SZ );
37247   p = sqlite3MallocZero( sizeof(*p) );
37248   if( p ){
37249     p->iSize = iSize;
37250   }
37251   return p;
37252 }
37253 
37254 /*
37255 ** Check to see if the i-th bit is set.  Return true or false.
37256 ** If p is NULL (if the bitmap has not been created) or if
37257 ** i is out of range, then return false.
37258 */
37259 SQLITE_PRIVATE int sqlite3BitvecTest(Bitvec *p, u32 i){
37260   if( p==0 ) return 0;
37261   if( i>p->iSize || i==0 ) return 0;
37262   i--;
37263   while( p->iDivisor ){
37264     u32 bin = i/p->iDivisor;
37265     i = i%p->iDivisor;
37266     p = p->u.apSub[bin];
37267     if (!p) {
37268       return 0;
37269     }
37270   }
37271   if( p->iSize<=BITVEC_NBIT ){
37272     return (p->u.aBitmap[i/BITVEC_SZELEM] & (1<<(i&(BITVEC_SZELEM-1))))!=0;
37273   } else{
37274     u32 h = BITVEC_HASH(i++);
37275     while( p->u.aHash[h] ){
37276       if( p->u.aHash[h]==i ) return 1;
37277       h = (h+1) % BITVEC_NINT;
37278     }
37279     return 0;
37280   }
37281 }
37282 
37283 /*
37284 ** Set the i-th bit.  Return 0 on success and an error code if
37285 ** anything goes wrong.
37286 **
37287 ** This routine might cause sub-bitmaps to be allocated.  Failing
37288 ** to get the memory needed to hold the sub-bitmap is the only
37289 ** that can go wrong with an insert, assuming p and i are valid.
37290 **
37291 ** The calling function must ensure that p is a valid Bitvec object
37292 ** and that the value for "i" is within range of the Bitvec object.
37293 ** Otherwise the behavior is undefined.
37294 */
37295 SQLITE_PRIVATE int sqlite3BitvecSet(Bitvec *p, u32 i){
37296   u32 h;
37297   if( p==0 ) return SQLITE_OK;
37298   assert( i>0 );
37299   assert( i<=p->iSize );
37300   i--;
37301   while((p->iSize > BITVEC_NBIT) && p->iDivisor) {
37302     u32 bin = i/p->iDivisor;
37303     i = i%p->iDivisor;
37304     if( p->u.apSub[bin]==0 ){
37305       p->u.apSub[bin] = sqlite3BitvecCreate( p->iDivisor );
37306       if( p->u.apSub[bin]==0 ) return SQLITE_NOMEM;
37307     }
37308     p = p->u.apSub[bin];
37309   }
37310   if( p->iSize<=BITVEC_NBIT ){
37311     p->u.aBitmap[i/BITVEC_SZELEM] |= 1 << (i&(BITVEC_SZELEM-1));
37312     return SQLITE_OK;
37313   }
37314   h = BITVEC_HASH(i++);
37315   /* if there wasn't a hash collision, and this doesn't */
37316   /* completely fill the hash, then just add it without */
37317   /* worring about sub-dividing and re-hashing. */
37318   if( !p->u.aHash[h] ){
37319     if (p->nSet<(BITVEC_NINT-1)) {
37320       goto bitvec_set_end;
37321     } else {
37322       goto bitvec_set_rehash;
37323     }
37324   }
37325   /* there was a collision, check to see if it's already */
37326   /* in hash, if not, try to find a spot for it */
37327   do {
37328     if( p->u.aHash[h]==i ) return SQLITE_OK;
37329     h++;
37330     if( h>=BITVEC_NINT ) h = 0;
37331   } while( p->u.aHash[h] );
37332   /* we didn't find it in the hash.  h points to the first */
37333   /* available free spot. check to see if this is going to */
37334   /* make our hash too "full".  */
37335 bitvec_set_rehash:
37336   if( p->nSet>=BITVEC_MXHASH ){
37337     unsigned int j;
37338     int rc;
37339     u32 *aiValues = sqlite3StackAllocRaw(0, sizeof(p->u.aHash));
37340     if( aiValues==0 ){
37341       return SQLITE_NOMEM;
37342     }else{
37343       memcpy(aiValues, p->u.aHash, sizeof(p->u.aHash));
37344       memset(p->u.apSub, 0, sizeof(p->u.apSub));
37345       p->iDivisor = (p->iSize + BITVEC_NPTR - 1)/BITVEC_NPTR;
37346       rc = sqlite3BitvecSet(p, i);
37347       for(j=0; j<BITVEC_NINT; j++){
37348         if( aiValues[j] ) rc |= sqlite3BitvecSet(p, aiValues[j]);
37349       }
37350       sqlite3StackFree(0, aiValues);
37351       return rc;
37352     }
37353   }
37354 bitvec_set_end:
37355   p->nSet++;
37356   p->u.aHash[h] = i;
37357   return SQLITE_OK;
37358 }
37359 
37360 /*
37361 ** Clear the i-th bit.
37362 **
37363 ** pBuf must be a pointer to at least BITVEC_SZ bytes of temporary storage
37364 ** that BitvecClear can use to rebuilt its hash table.
37365 */
37366 SQLITE_PRIVATE void sqlite3BitvecClear(Bitvec *p, u32 i, void *pBuf){
37367   if( p==0 ) return;
37368   assert( i>0 );
37369   i--;
37370   while( p->iDivisor ){
37371     u32 bin = i/p->iDivisor;
37372     i = i%p->iDivisor;
37373     p = p->u.apSub[bin];
37374     if (!p) {
37375       return;
37376     }
37377   }
37378   if( p->iSize<=BITVEC_NBIT ){
37379     p->u.aBitmap[i/BITVEC_SZELEM] &= ~(1 << (i&(BITVEC_SZELEM-1)));
37380   }else{
37381     unsigned int j;
37382     u32 *aiValues = pBuf;
37383     memcpy(aiValues, p->u.aHash, sizeof(p->u.aHash));
37384     memset(p->u.aHash, 0, sizeof(p->u.aHash));
37385     p->nSet = 0;
37386     for(j=0; j<BITVEC_NINT; j++){
37387       if( aiValues[j] && aiValues[j]!=(i+1) ){
37388         u32 h = BITVEC_HASH(aiValues[j]-1);
37389         p->nSet++;
37390         while( p->u.aHash[h] ){
37391           h++;
37392           if( h>=BITVEC_NINT ) h = 0;
37393         }
37394         p->u.aHash[h] = aiValues[j];
37395       }
37396     }
37397   }
37398 }
37399 
37400 /*
37401 ** Destroy a bitmap object.  Reclaim all memory used.
37402 */
37403 SQLITE_PRIVATE void sqlite3BitvecDestroy(Bitvec *p){
37404   if( p==0 ) return;
37405   if( p->iDivisor ){
37406     unsigned int i;
37407     for(i=0; i<BITVEC_NPTR; i++){
37408       sqlite3BitvecDestroy(p->u.apSub[i]);
37409     }
37410   }
37411   sqlite3_free(p);
37412 }
37413 
37414 /*
37415 ** Return the value of the iSize parameter specified when Bitvec *p
37416 ** was created.
37417 */
37418 SQLITE_PRIVATE u32 sqlite3BitvecSize(Bitvec *p){
37419   return p->iSize;
37420 }
37421 
37422 #ifndef SQLITE_OMIT_BUILTIN_TEST
37423 /*
37424 ** Let V[] be an array of unsigned characters sufficient to hold
37425 ** up to N bits.  Let I be an integer between 0 and N.  0<=I<N.
37426 ** Then the following macros can be used to set, clear, or test
37427 ** individual bits within V.
37428 */
37429 #define SETBIT(V,I)      V[I>>3] |= (1<<(I&7))
37430 #define CLEARBIT(V,I)    V[I>>3] &= ~(1<<(I&7))
37431 #define TESTBIT(V,I)     (V[I>>3]&(1<<(I&7)))!=0
37432 
37433 /*
37434 ** This routine runs an extensive test of the Bitvec code.
37435 **
37436 ** The input is an array of integers that acts as a program
37437 ** to test the Bitvec.  The integers are opcodes followed
37438 ** by 0, 1, or 3 operands, depending on the opcode.  Another
37439 ** opcode follows immediately after the last operand.
37440 **
37441 ** There are 6 opcodes numbered from 0 through 5.  0 is the
37442 ** "halt" opcode and causes the test to end.
37443 **
37444 **    0          Halt and return the number of errors
37445 **    1 N S X    Set N bits beginning with S and incrementing by X
37446 **    2 N S X    Clear N bits beginning with S and incrementing by X
37447 **    3 N        Set N randomly chosen bits
37448 **    4 N        Clear N randomly chosen bits
37449 **    5 N S X    Set N bits from S increment X in array only, not in bitvec
37450 **
37451 ** The opcodes 1 through 4 perform set and clear operations are performed
37452 ** on both a Bitvec object and on a linear array of bits obtained from malloc.
37453 ** Opcode 5 works on the linear array only, not on the Bitvec.
37454 ** Opcode 5 is used to deliberately induce a fault in order to
37455 ** confirm that error detection works.
37456 **
37457 ** At the conclusion of the test the linear array is compared
37458 ** against the Bitvec object.  If there are any differences,
37459 ** an error is returned.  If they are the same, zero is returned.
37460 **
37461 ** If a memory allocation error occurs, return -1.
37462 */
37463 SQLITE_PRIVATE int sqlite3BitvecBuiltinTest(int sz, int *aOp){
37464   Bitvec *pBitvec = 0;
37465   unsigned char *pV = 0;
37466   int rc = -1;
37467   int i, nx, pc, op;
37468   void *pTmpSpace;
37469 
37470   /* Allocate the Bitvec to be tested and a linear array of
37471   ** bits to act as the reference */
37472   pBitvec = sqlite3BitvecCreate( sz );
37473   pV = sqlite3MallocZero( (sz+7)/8 + 1 );
37474   pTmpSpace = sqlite3_malloc(BITVEC_SZ);
37475   if( pBitvec==0 || pV==0 || pTmpSpace==0  ) goto bitvec_end;
37476 
37477   /* NULL pBitvec tests */
37478   sqlite3BitvecSet(0, 1);
37479   sqlite3BitvecClear(0, 1, pTmpSpace);
37480 
37481   /* Run the program */
37482   pc = 0;
37483   while( (op = aOp[pc])!=0 ){
37484     switch( op ){
37485       case 1:
37486       case 2:
37487       case 5: {
37488         nx = 4;
37489         i = aOp[pc+2] - 1;
37490         aOp[pc+2] += aOp[pc+3];
37491         break;
37492       }
37493       case 3:
37494       case 4:
37495       default: {
37496         nx = 2;
37497         sqlite3_randomness(sizeof(i), &i);
37498         break;
37499       }
37500     }
37501     if( (--aOp[pc+1]) > 0 ) nx = 0;
37502     pc += nx;
37503     i = (i & 0x7fffffff)%sz;
37504     if( (op & 1)!=0 ){
37505       SETBIT(pV, (i+1));
37506       if( op!=5 ){
37507         if( sqlite3BitvecSet(pBitvec, i+1) ) goto bitvec_end;
37508       }
37509     }else{
37510       CLEARBIT(pV, (i+1));
37511       sqlite3BitvecClear(pBitvec, i+1, pTmpSpace);
37512     }
37513   }
37514 
37515   /* Test to make sure the linear array exactly matches the
37516   ** Bitvec object.  Start with the assumption that they do
37517   ** match (rc==0).  Change rc to non-zero if a discrepancy
37518   ** is found.
37519   */
37520   rc = sqlite3BitvecTest(0,0) + sqlite3BitvecTest(pBitvec, sz+1)
37521           + sqlite3BitvecTest(pBitvec, 0)
37522           + (sqlite3BitvecSize(pBitvec) - sz);
37523   for(i=1; i<=sz; i++){
37524     if(  (TESTBIT(pV,i))!=sqlite3BitvecTest(pBitvec,i) ){
37525       rc = i;
37526       break;
37527     }
37528   }
37529 
37530   /* Free allocated structure */
37531 bitvec_end:
37532   sqlite3_free(pTmpSpace);
37533   sqlite3_free(pV);
37534   sqlite3BitvecDestroy(pBitvec);
37535   return rc;
37536 }
37537 #endif /* SQLITE_OMIT_BUILTIN_TEST */
37538 
37539 /************** End of bitvec.c **********************************************/
37540 /************** Begin file pcache.c ******************************************/
37541 /*
37542 ** 2008 August 05
37543 **
37544 ** The author disclaims copyright to this source code.  In place of
37545 ** a legal notice, here is a blessing:
37546 **
37547 **    May you do good and not evil.
37548 **    May you find forgiveness for yourself and forgive others.
37549 **    May you share freely, never taking more than you give.
37550 **
37551 *************************************************************************
37552 ** This file implements that page cache.
37553 */
37554 
37555 /*
37556 ** A complete page cache is an instance of this structure.
37557 */
37558 struct PCache {
37559   PgHdr *pDirty, *pDirtyTail;         /* List of dirty pages in LRU order */
37560   PgHdr *pSynced;                     /* Last synced page in dirty page list */
37561   int nRef;                           /* Number of referenced pages */
37562   int szCache;                        /* Configured cache size */
37563   int szPage;                         /* Size of every page in this cache */
37564   int szExtra;                        /* Size of extra space for each page */
37565   u8 bPurgeable;                      /* True if pages are on backing store */
37566   u8 eCreate;                         /* eCreate value for for xFetch() */
37567   int (*xStress)(void*,PgHdr*);       /* Call to try make a page clean */
37568   void *pStress;                      /* Argument to xStress */
37569   sqlite3_pcache *pCache;             /* Pluggable cache module */
37570   PgHdr *pPage1;                      /* Reference to page 1 */
37571 };
37572 
37573 /*
37574 ** Some of the assert() macros in this code are too expensive to run
37575 ** even during normal debugging.  Use them only rarely on long-running
37576 ** tests.  Enable the expensive asserts using the
37577 ** -DSQLITE_ENABLE_EXPENSIVE_ASSERT=1 compile-time option.
37578 */
37579 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
37580 # define expensive_assert(X)  assert(X)
37581 #else
37582 # define expensive_assert(X)
37583 #endif
37584 
37585 /********************************** Linked List Management ********************/
37586 
37587 #if !defined(NDEBUG) && defined(SQLITE_ENABLE_EXPENSIVE_ASSERT)
37588 /*
37589 ** Check that the pCache->pSynced variable is set correctly. If it
37590 ** is not, either fail an assert or return zero. Otherwise, return
37591 ** non-zero. This is only used in debugging builds, as follows:
37592 **
37593 **   expensive_assert( pcacheCheckSynced(pCache) );
37594 */
37595 static int pcacheCheckSynced(PCache *pCache){
37596   PgHdr *p;
37597   for(p=pCache->pDirtyTail; p!=pCache->pSynced; p=p->pDirtyPrev){
37598     assert( p->nRef || (p->flags&PGHDR_NEED_SYNC) );
37599   }
37600   return (p==0 || p->nRef || (p->flags&PGHDR_NEED_SYNC)==0);
37601 }
37602 #endif /* !NDEBUG && SQLITE_ENABLE_EXPENSIVE_ASSERT */
37603 
37604 /*
37605 ** Remove page pPage from the list of dirty pages.
37606 */
37607 static void pcacheRemoveFromDirtyList(PgHdr *pPage){
37608   PCache *p = pPage->pCache;
37609 
37610   assert( pPage->pDirtyNext || pPage==p->pDirtyTail );
37611   assert( pPage->pDirtyPrev || pPage==p->pDirty );
37612 
37613   /* Update the PCache1.pSynced variable if necessary. */
37614   if( p->pSynced==pPage ){
37615     PgHdr *pSynced = pPage->pDirtyPrev;
37616     while( pSynced && (pSynced->flags&PGHDR_NEED_SYNC) ){
37617       pSynced = pSynced->pDirtyPrev;
37618     }
37619     p->pSynced = pSynced;
37620   }
37621 
37622   if( pPage->pDirtyNext ){
37623     pPage->pDirtyNext->pDirtyPrev = pPage->pDirtyPrev;
37624   }else{
37625     assert( pPage==p->pDirtyTail );
37626     p->pDirtyTail = pPage->pDirtyPrev;
37627   }
37628   if( pPage->pDirtyPrev ){
37629     pPage->pDirtyPrev->pDirtyNext = pPage->pDirtyNext;
37630   }else{
37631     assert( pPage==p->pDirty );
37632     p->pDirty = pPage->pDirtyNext;
37633     if( p->pDirty==0 && p->bPurgeable ){
37634       assert( p->eCreate==1 );
37635       p->eCreate = 2;
37636     }
37637   }
37638   pPage->pDirtyNext = 0;
37639   pPage->pDirtyPrev = 0;
37640 
37641   expensive_assert( pcacheCheckSynced(p) );
37642 }
37643 
37644 /*
37645 ** Add page pPage to the head of the dirty list (PCache1.pDirty is set to
37646 ** pPage).
37647 */
37648 static void pcacheAddToDirtyList(PgHdr *pPage){
37649   PCache *p = pPage->pCache;
37650 
37651   assert( pPage->pDirtyNext==0 && pPage->pDirtyPrev==0 && p->pDirty!=pPage );
37652 
37653   pPage->pDirtyNext = p->pDirty;
37654   if( pPage->pDirtyNext ){
37655     assert( pPage->pDirtyNext->pDirtyPrev==0 );
37656     pPage->pDirtyNext->pDirtyPrev = pPage;
37657   }else if( p->bPurgeable ){
37658     assert( p->eCreate==2 );
37659     p->eCreate = 1;
37660   }
37661   p->pDirty = pPage;
37662   if( !p->pDirtyTail ){
37663     p->pDirtyTail = pPage;
37664   }
37665   if( !p->pSynced && 0==(pPage->flags&PGHDR_NEED_SYNC) ){
37666     p->pSynced = pPage;
37667   }
37668   expensive_assert( pcacheCheckSynced(p) );
37669 }
37670 
37671 /*
37672 ** Wrapper around the pluggable caches xUnpin method. If the cache is
37673 ** being used for an in-memory database, this function is a no-op.
37674 */
37675 static void pcacheUnpin(PgHdr *p){
37676   PCache *pCache = p->pCache;
37677   if( pCache->bPurgeable ){
37678     if( p->pgno==1 ){
37679       pCache->pPage1 = 0;
37680     }
37681     sqlite3GlobalConfig.pcache2.xUnpin(pCache->pCache, p->pPage, 0);
37682   }
37683 }
37684 
37685 /*************************************************** General Interfaces ******
37686 **
37687 ** Initialize and shutdown the page cache subsystem. Neither of these
37688 ** functions are threadsafe.
37689 */
37690 SQLITE_PRIVATE int sqlite3PcacheInitialize(void){
37691   if( sqlite3GlobalConfig.pcache2.xInit==0 ){
37692     /* IMPLEMENTATION-OF: R-26801-64137 If the xInit() method is NULL, then the
37693     ** built-in default page cache is used instead of the application defined
37694     ** page cache. */
37695     sqlite3PCacheSetDefault();
37696   }
37697   return sqlite3GlobalConfig.pcache2.xInit(sqlite3GlobalConfig.pcache2.pArg);
37698 }
37699 SQLITE_PRIVATE void sqlite3PcacheShutdown(void){
37700   if( sqlite3GlobalConfig.pcache2.xShutdown ){
37701     /* IMPLEMENTATION-OF: R-26000-56589 The xShutdown() method may be NULL. */
37702     sqlite3GlobalConfig.pcache2.xShutdown(sqlite3GlobalConfig.pcache2.pArg);
37703   }
37704 }
37705 
37706 /*
37707 ** Return the size in bytes of a PCache object.
37708 */
37709 SQLITE_PRIVATE int sqlite3PcacheSize(void){ return sizeof(PCache); }
37710 
37711 /*
37712 ** Create a new PCache object. Storage space to hold the object
37713 ** has already been allocated and is passed in as the p pointer.
37714 ** The caller discovers how much space needs to be allocated by
37715 ** calling sqlite3PcacheSize().
37716 */
37717 SQLITE_PRIVATE void sqlite3PcacheOpen(
37718   int szPage,                  /* Size of every page */
37719   int szExtra,                 /* Extra space associated with each page */
37720   int bPurgeable,              /* True if pages are on backing store */
37721   int (*xStress)(void*,PgHdr*),/* Call to try to make pages clean */
37722   void *pStress,               /* Argument to xStress */
37723   PCache *p                    /* Preallocated space for the PCache */
37724 ){
37725   memset(p, 0, sizeof(PCache));
37726   p->szPage = szPage;
37727   p->szExtra = szExtra;
37728   p->bPurgeable = bPurgeable;
37729   p->eCreate = 2;
37730   p->xStress = xStress;
37731   p->pStress = pStress;
37732   p->szCache = 100;
37733 }
37734 
37735 /*
37736 ** Change the page size for PCache object. The caller must ensure that there
37737 ** are no outstanding page references when this function is called.
37738 */
37739 SQLITE_PRIVATE void sqlite3PcacheSetPageSize(PCache *pCache, int szPage){
37740   assert( pCache->nRef==0 && pCache->pDirty==0 );
37741   if( pCache->pCache ){
37742     sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache);
37743     pCache->pCache = 0;
37744     pCache->pPage1 = 0;
37745   }
37746   pCache->szPage = szPage;
37747 }
37748 
37749 /*
37750 ** Compute the number of pages of cache requested.
37751 */
37752 static int numberOfCachePages(PCache *p){
37753   if( p->szCache>=0 ){
37754     return p->szCache;
37755   }else{
37756     return (int)((-1024*(i64)p->szCache)/(p->szPage+p->szExtra));
37757   }
37758 }
37759 
37760 /*
37761 ** Try to obtain a page from the cache.
37762 */
37763 SQLITE_PRIVATE int sqlite3PcacheFetch(
37764   PCache *pCache,       /* Obtain the page from this cache */
37765   Pgno pgno,            /* Page number to obtain */
37766   int createFlag,       /* If true, create page if it does not exist already */
37767   PgHdr **ppPage        /* Write the page here */
37768 ){
37769   sqlite3_pcache_page *pPage;
37770   PgHdr *pPgHdr = 0;
37771   int eCreate;
37772 
37773   assert( pCache!=0 );
37774   assert( createFlag==1 || createFlag==0 );
37775   assert( pgno>0 );
37776 
37777   /* If the pluggable cache (sqlite3_pcache*) has not been allocated,
37778   ** allocate it now.
37779   */
37780   if( !pCache->pCache ){
37781     sqlite3_pcache *p;
37782     if( !createFlag ){
37783       *ppPage = 0;
37784       return SQLITE_OK;
37785     }
37786     p = sqlite3GlobalConfig.pcache2.xCreate(
37787         pCache->szPage, pCache->szExtra + sizeof(PgHdr), pCache->bPurgeable
37788     );
37789     if( !p ){
37790       return SQLITE_NOMEM;
37791     }
37792     sqlite3GlobalConfig.pcache2.xCachesize(p, numberOfCachePages(pCache));
37793     pCache->pCache = p;
37794   }
37795 
37796   /* eCreate defines what to do if the page does not exist.
37797   **    0     Do not allocate a new page.  (createFlag==0)
37798   **    1     Allocate a new page if doing so is inexpensive.
37799   **          (createFlag==1 AND bPurgeable AND pDirty)
37800   **    2     Allocate a new page even it doing so is difficult.
37801   **          (createFlag==1 AND !(bPurgeable AND pDirty)
37802   */
37803   eCreate = createFlag==0 ? 0 : pCache->eCreate;
37804   assert( (createFlag*(1+(!pCache->bPurgeable||!pCache->pDirty)))==eCreate );
37805   pPage = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, eCreate);
37806   if( !pPage && eCreate==1 ){
37807     PgHdr *pPg;
37808 
37809     /* Find a dirty page to write-out and recycle. First try to find a
37810     ** page that does not require a journal-sync (one with PGHDR_NEED_SYNC
37811     ** cleared), but if that is not possible settle for any other
37812     ** unreferenced dirty page.
37813     */
37814     expensive_assert( pcacheCheckSynced(pCache) );
37815     for(pPg=pCache->pSynced;
37816         pPg && (pPg->nRef || (pPg->flags&PGHDR_NEED_SYNC));
37817         pPg=pPg->pDirtyPrev
37818     );
37819     pCache->pSynced = pPg;
37820     if( !pPg ){
37821       for(pPg=pCache->pDirtyTail; pPg && pPg->nRef; pPg=pPg->pDirtyPrev);
37822     }
37823     if( pPg ){
37824       int rc;
37825 #ifdef SQLITE_LOG_CACHE_SPILL
37826       sqlite3_log(SQLITE_FULL,
37827                   "spill page %d making room for %d - cache used: %d/%d",
37828                   pPg->pgno, pgno,
37829                   sqlite3GlobalConfig.pcache.xPagecount(pCache->pCache),
37830                   numberOfCachePages(pCache));
37831 #endif
37832       rc = pCache->xStress(pCache->pStress, pPg);
37833       if( rc!=SQLITE_OK && rc!=SQLITE_BUSY ){
37834         return rc;
37835       }
37836     }
37837 
37838     pPage = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, 2);
37839   }
37840 
37841   if( pPage ){
37842     pPgHdr = (PgHdr *)pPage->pExtra;
37843 
37844     if( !pPgHdr->pPage ){
37845       memset(pPgHdr, 0, sizeof(PgHdr));
37846       pPgHdr->pPage = pPage;
37847       pPgHdr->pData = pPage->pBuf;
37848       pPgHdr->pExtra = (void *)&pPgHdr[1];
37849       memset(pPgHdr->pExtra, 0, pCache->szExtra);
37850       pPgHdr->pCache = pCache;
37851       pPgHdr->pgno = pgno;
37852     }
37853     assert( pPgHdr->pCache==pCache );
37854     assert( pPgHdr->pgno==pgno );
37855     assert( pPgHdr->pData==pPage->pBuf );
37856     assert( pPgHdr->pExtra==(void *)&pPgHdr[1] );
37857 
37858     if( 0==pPgHdr->nRef ){
37859       pCache->nRef++;
37860     }
37861     pPgHdr->nRef++;
37862     if( pgno==1 ){
37863       pCache->pPage1 = pPgHdr;
37864     }
37865   }
37866   *ppPage = pPgHdr;
37867   return (pPgHdr==0 && eCreate) ? SQLITE_NOMEM : SQLITE_OK;
37868 }
37869 
37870 /*
37871 ** Decrement the reference count on a page. If the page is clean and the
37872 ** reference count drops to 0, then it is made elible for recycling.
37873 */
37874 SQLITE_PRIVATE void sqlite3PcacheRelease(PgHdr *p){
37875   assert( p->nRef>0 );
37876   p->nRef--;
37877   if( p->nRef==0 ){
37878     PCache *pCache = p->pCache;
37879     pCache->nRef--;
37880     if( (p->flags&PGHDR_DIRTY)==0 ){
37881       pcacheUnpin(p);
37882     }else{
37883       /* Move the page to the head of the dirty list. */
37884       pcacheRemoveFromDirtyList(p);
37885       pcacheAddToDirtyList(p);
37886     }
37887   }
37888 }
37889 
37890 /*
37891 ** Increase the reference count of a supplied page by 1.
37892 */
37893 SQLITE_PRIVATE void sqlite3PcacheRef(PgHdr *p){
37894   assert(p->nRef>0);
37895   p->nRef++;
37896 }
37897 
37898 /*
37899 ** Drop a page from the cache. There must be exactly one reference to the
37900 ** page. This function deletes that reference, so after it returns the
37901 ** page pointed to by p is invalid.
37902 */
37903 SQLITE_PRIVATE void sqlite3PcacheDrop(PgHdr *p){
37904   PCache *pCache;
37905   assert( p->nRef==1 );
37906   if( p->flags&PGHDR_DIRTY ){
37907     pcacheRemoveFromDirtyList(p);
37908   }
37909   pCache = p->pCache;
37910   pCache->nRef--;
37911   if( p->pgno==1 ){
37912     pCache->pPage1 = 0;
37913   }
37914   sqlite3GlobalConfig.pcache2.xUnpin(pCache->pCache, p->pPage, 1);
37915 }
37916 
37917 /*
37918 ** Make sure the page is marked as dirty. If it isn't dirty already,
37919 ** make it so.
37920 */
37921 SQLITE_PRIVATE void sqlite3PcacheMakeDirty(PgHdr *p){
37922   p->flags &= ~PGHDR_DONT_WRITE;
37923   assert( p->nRef>0 );
37924   if( 0==(p->flags & PGHDR_DIRTY) ){
37925     p->flags |= PGHDR_DIRTY;
37926     pcacheAddToDirtyList( p);
37927   }
37928 }
37929 
37930 /*
37931 ** Make sure the page is marked as clean. If it isn't clean already,
37932 ** make it so.
37933 */
37934 SQLITE_PRIVATE void sqlite3PcacheMakeClean(PgHdr *p){
37935   if( (p->flags & PGHDR_DIRTY) ){
37936     pcacheRemoveFromDirtyList(p);
37937     p->flags &= ~(PGHDR_DIRTY|PGHDR_NEED_SYNC);
37938     if( p->nRef==0 ){
37939       pcacheUnpin(p);
37940     }
37941   }
37942 }
37943 
37944 /*
37945 ** Make every page in the cache clean.
37946 */
37947 SQLITE_PRIVATE void sqlite3PcacheCleanAll(PCache *pCache){
37948   PgHdr *p;
37949   while( (p = pCache->pDirty)!=0 ){
37950     sqlite3PcacheMakeClean(p);
37951   }
37952 }
37953 
37954 /*
37955 ** Clear the PGHDR_NEED_SYNC flag from all dirty pages.
37956 */
37957 SQLITE_PRIVATE void sqlite3PcacheClearSyncFlags(PCache *pCache){
37958   PgHdr *p;
37959   for(p=pCache->pDirty; p; p=p->pDirtyNext){
37960     p->flags &= ~PGHDR_NEED_SYNC;
37961   }
37962   pCache->pSynced = pCache->pDirtyTail;
37963 }
37964 
37965 /*
37966 ** Change the page number of page p to newPgno.
37967 */
37968 SQLITE_PRIVATE void sqlite3PcacheMove(PgHdr *p, Pgno newPgno){
37969   PCache *pCache = p->pCache;
37970   assert( p->nRef>0 );
37971   assert( newPgno>0 );
37972   sqlite3GlobalConfig.pcache2.xRekey(pCache->pCache, p->pPage, p->pgno,newPgno);
37973   p->pgno = newPgno;
37974   if( (p->flags&PGHDR_DIRTY) && (p->flags&PGHDR_NEED_SYNC) ){
37975     pcacheRemoveFromDirtyList(p);
37976     pcacheAddToDirtyList(p);
37977   }
37978 }
37979 
37980 /*
37981 ** Drop every cache entry whose page number is greater than "pgno". The
37982 ** caller must ensure that there are no outstanding references to any pages
37983 ** other than page 1 with a page number greater than pgno.
37984 **
37985 ** If there is a reference to page 1 and the pgno parameter passed to this
37986 ** function is 0, then the data area associated with page 1 is zeroed, but
37987 ** the page object is not dropped.
37988 */
37989 SQLITE_PRIVATE void sqlite3PcacheTruncate(PCache *pCache, Pgno pgno){
37990   if( pCache->pCache ){
37991     PgHdr *p;
37992     PgHdr *pNext;
37993     for(p=pCache->pDirty; p; p=pNext){
37994       pNext = p->pDirtyNext;
37995       /* This routine never gets call with a positive pgno except right
37996       ** after sqlite3PcacheCleanAll().  So if there are dirty pages,
37997       ** it must be that pgno==0.
37998       */
37999       assert( p->pgno>0 );
38000       if( ALWAYS(p->pgno>pgno) ){
38001         assert( p->flags&PGHDR_DIRTY );
38002         sqlite3PcacheMakeClean(p);
38003       }
38004     }
38005     if( pgno==0 && pCache->pPage1 ){
38006       memset(pCache->pPage1->pData, 0, pCache->szPage);
38007       pgno = 1;
38008     }
38009     sqlite3GlobalConfig.pcache2.xTruncate(pCache->pCache, pgno+1);
38010   }
38011 }
38012 
38013 /*
38014 ** Close a cache.
38015 */
38016 SQLITE_PRIVATE void sqlite3PcacheClose(PCache *pCache){
38017   if( pCache->pCache ){
38018     sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache);
38019   }
38020 }
38021 
38022 /*
38023 ** Discard the contents of the cache.
38024 */
38025 SQLITE_PRIVATE void sqlite3PcacheClear(PCache *pCache){
38026   sqlite3PcacheTruncate(pCache, 0);
38027 }
38028 
38029 /*
38030 ** Merge two lists of pages connected by pDirty and in pgno order.
38031 ** Do not both fixing the pDirtyPrev pointers.
38032 */
38033 static PgHdr *pcacheMergeDirtyList(PgHdr *pA, PgHdr *pB){
38034   PgHdr result, *pTail;
38035   pTail = &result;
38036   while( pA && pB ){
38037     if( pA->pgno<pB->pgno ){
38038       pTail->pDirty = pA;
38039       pTail = pA;
38040       pA = pA->pDirty;
38041     }else{
38042       pTail->pDirty = pB;
38043       pTail = pB;
38044       pB = pB->pDirty;
38045     }
38046   }
38047   if( pA ){
38048     pTail->pDirty = pA;
38049   }else if( pB ){
38050     pTail->pDirty = pB;
38051   }else{
38052     pTail->pDirty = 0;
38053   }
38054   return result.pDirty;
38055 }
38056 
38057 /*
38058 ** Sort the list of pages in accending order by pgno.  Pages are
38059 ** connected by pDirty pointers.  The pDirtyPrev pointers are
38060 ** corrupted by this sort.
38061 **
38062 ** Since there cannot be more than 2^31 distinct pages in a database,
38063 ** there cannot be more than 31 buckets required by the merge sorter.
38064 ** One extra bucket is added to catch overflow in case something
38065 ** ever changes to make the previous sentence incorrect.
38066 */
38067 #define N_SORT_BUCKET  32
38068 static PgHdr *pcacheSortDirtyList(PgHdr *pIn){
38069   PgHdr *a[N_SORT_BUCKET], *p;
38070   int i;
38071   memset(a, 0, sizeof(a));
38072   while( pIn ){
38073     p = pIn;
38074     pIn = p->pDirty;
38075     p->pDirty = 0;
38076     for(i=0; ALWAYS(i<N_SORT_BUCKET-1); i++){
38077       if( a[i]==0 ){
38078         a[i] = p;
38079         break;
38080       }else{
38081         p = pcacheMergeDirtyList(a[i], p);
38082         a[i] = 0;
38083       }
38084     }
38085     if( NEVER(i==N_SORT_BUCKET-1) ){
38086       /* To get here, there need to be 2^(N_SORT_BUCKET) elements in
38087       ** the input list.  But that is impossible.
38088       */
38089       a[i] = pcacheMergeDirtyList(a[i], p);
38090     }
38091   }
38092   p = a[0];
38093   for(i=1; i<N_SORT_BUCKET; i++){
38094     p = pcacheMergeDirtyList(p, a[i]);
38095   }
38096   return p;
38097 }
38098 
38099 /*
38100 ** Return a list of all dirty pages in the cache, sorted by page number.
38101 */
38102 SQLITE_PRIVATE PgHdr *sqlite3PcacheDirtyList(PCache *pCache){
38103   PgHdr *p;
38104   for(p=pCache->pDirty; p; p=p->pDirtyNext){
38105     p->pDirty = p->pDirtyNext;
38106   }
38107   return pcacheSortDirtyList(pCache->pDirty);
38108 }
38109 
38110 /*
38111 ** Return the total number of referenced pages held by the cache.
38112 */
38113 SQLITE_PRIVATE int sqlite3PcacheRefCount(PCache *pCache){
38114   return pCache->nRef;
38115 }
38116 
38117 /*
38118 ** Return the number of references to the page supplied as an argument.
38119 */
38120 SQLITE_PRIVATE int sqlite3PcachePageRefcount(PgHdr *p){
38121   return p->nRef;
38122 }
38123 
38124 /*
38125 ** Return the total number of pages in the cache.
38126 */
38127 SQLITE_PRIVATE int sqlite3PcachePagecount(PCache *pCache){
38128   int nPage = 0;
38129   if( pCache->pCache ){
38130     nPage = sqlite3GlobalConfig.pcache2.xPagecount(pCache->pCache);
38131   }
38132   return nPage;
38133 }
38134 
38135 #ifdef SQLITE_TEST
38136 /*
38137 ** Get the suggested cache-size value.
38138 */
38139 SQLITE_PRIVATE int sqlite3PcacheGetCachesize(PCache *pCache){
38140   return numberOfCachePages(pCache);
38141 }
38142 #endif
38143 
38144 /*
38145 ** Set the suggested cache-size value.
38146 */
38147 SQLITE_PRIVATE void sqlite3PcacheSetCachesize(PCache *pCache, int mxPage){
38148   pCache->szCache = mxPage;
38149   if( pCache->pCache ){
38150     sqlite3GlobalConfig.pcache2.xCachesize(pCache->pCache,
38151                                            numberOfCachePages(pCache));
38152   }
38153 }
38154 
38155 /*
38156 ** Free up as much memory as possible from the page cache.
38157 */
38158 SQLITE_PRIVATE void sqlite3PcacheShrink(PCache *pCache){
38159   if( pCache->pCache ){
38160     sqlite3GlobalConfig.pcache2.xShrink(pCache->pCache);
38161   }
38162 }
38163 
38164 #if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG)
38165 /*
38166 ** For all dirty pages currently in the cache, invoke the specified
38167 ** callback. This is only used if the SQLITE_CHECK_PAGES macro is
38168 ** defined.
38169 */
38170 SQLITE_PRIVATE void sqlite3PcacheIterateDirty(PCache *pCache, void (*xIter)(PgHdr *)){
38171   PgHdr *pDirty;
38172   for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext){
38173     xIter(pDirty);
38174   }
38175 }
38176 #endif
38177 
38178 /************** End of pcache.c **********************************************/
38179 /************** Begin file pcache1.c *****************************************/
38180 /*
38181 ** 2008 November 05
38182 **
38183 ** The author disclaims copyright to this source code.  In place of
38184 ** a legal notice, here is a blessing:
38185 **
38186 **    May you do good and not evil.
38187 **    May you find forgiveness for yourself and forgive others.
38188 **    May you share freely, never taking more than you give.
38189 **
38190 *************************************************************************
38191 **
38192 ** This file implements the default page cache implementation (the
38193 ** sqlite3_pcache interface). It also contains part of the implementation
38194 ** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features.
38195 ** If the default page cache implementation is overriden, then neither of
38196 ** these two features are available.
38197 */
38198 
38199 
38200 typedef struct PCache1 PCache1;
38201 typedef struct PgHdr1 PgHdr1;
38202 typedef struct PgFreeslot PgFreeslot;
38203 typedef struct PGroup PGroup;
38204 
38205 /* Each page cache (or PCache) belongs to a PGroup.  A PGroup is a set
38206 ** of one or more PCaches that are able to recycle each others unpinned
38207 ** pages when they are under memory pressure.  A PGroup is an instance of
38208 ** the following object.
38209 **
38210 ** This page cache implementation works in one of two modes:
38211 **
38212 **   (1)  Every PCache is the sole member of its own PGroup.  There is
38213 **        one PGroup per PCache.
38214 **
38215 **   (2)  There is a single global PGroup that all PCaches are a member
38216 **        of.
38217 **
38218 ** Mode 1 uses more memory (since PCache instances are not able to rob
38219 ** unused pages from other PCaches) but it also operates without a mutex,
38220 ** and is therefore often faster.  Mode 2 requires a mutex in order to be
38221 ** threadsafe, but recycles pages more efficiently.
38222 **
38223 ** For mode (1), PGroup.mutex is NULL.  For mode (2) there is only a single
38224 ** PGroup which is the pcache1.grp global variable and its mutex is
38225 ** SQLITE_MUTEX_STATIC_LRU.
38226 */
38227 struct PGroup {
38228   sqlite3_mutex *mutex;          /* MUTEX_STATIC_LRU or NULL */
38229   unsigned int nMaxPage;         /* Sum of nMax for purgeable caches */
38230   unsigned int nMinPage;         /* Sum of nMin for purgeable caches */
38231   unsigned int mxPinned;         /* nMaxpage + 10 - nMinPage */
38232   unsigned int nCurrentPage;     /* Number of purgeable pages allocated */
38233   PgHdr1 *pLruHead, *pLruTail;   /* LRU list of unpinned pages */
38234 };
38235 
38236 /* Each page cache is an instance of the following object.  Every
38237 ** open database file (including each in-memory database and each
38238 ** temporary or transient database) has a single page cache which
38239 ** is an instance of this object.
38240 **
38241 ** Pointers to structures of this type are cast and returned as
38242 ** opaque sqlite3_pcache* handles.
38243 */
38244 struct PCache1 {
38245   /* Cache configuration parameters. Page size (szPage) and the purgeable
38246   ** flag (bPurgeable) are set when the cache is created. nMax may be
38247   ** modified at any time by a call to the pcache1Cachesize() method.
38248   ** The PGroup mutex must be held when accessing nMax.
38249   */
38250   PGroup *pGroup;                     /* PGroup this cache belongs to */
38251   int szPage;                         /* Size of allocated pages in bytes */
38252   int szExtra;                        /* Size of extra space in bytes */
38253   int bPurgeable;                     /* True if cache is purgeable */
38254   unsigned int nMin;                  /* Minimum number of pages reserved */
38255   unsigned int nMax;                  /* Configured "cache_size" value */
38256   unsigned int n90pct;                /* nMax*9/10 */
38257   unsigned int iMaxKey;               /* Largest key seen since xTruncate() */
38258 
38259   /* Hash table of all pages. The following variables may only be accessed
38260   ** when the accessor is holding the PGroup mutex.
38261   */
38262   unsigned int nRecyclable;           /* Number of pages in the LRU list */
38263   unsigned int nPage;                 /* Total number of pages in apHash */
38264   unsigned int nHash;                 /* Number of slots in apHash[] */
38265   PgHdr1 **apHash;                    /* Hash table for fast lookup by key */
38266 };
38267 
38268 /*
38269 ** Each cache entry is represented by an instance of the following
38270 ** structure. Unless SQLITE_PCACHE_SEPARATE_HEADER is defined, a buffer of
38271 ** PgHdr1.pCache->szPage bytes is allocated directly before this structure
38272 ** in memory.
38273 */
38274 struct PgHdr1 {
38275   sqlite3_pcache_page page;
38276   unsigned int iKey;             /* Key value (page number) */
38277   u8 isPinned;                   /* Page in use, not on the LRU list */
38278   PgHdr1 *pNext;                 /* Next in hash table chain */
38279   PCache1 *pCache;               /* Cache that currently owns this page */
38280   PgHdr1 *pLruNext;              /* Next in LRU list of unpinned pages */
38281   PgHdr1 *pLruPrev;              /* Previous in LRU list of unpinned pages */
38282 };
38283 
38284 /*
38285 ** Free slots in the allocator used to divide up the buffer provided using
38286 ** the SQLITE_CONFIG_PAGECACHE mechanism.
38287 */
38288 struct PgFreeslot {
38289   PgFreeslot *pNext;  /* Next free slot */
38290 };
38291 
38292 /*
38293 ** Global data used by this cache.
38294 */
38295 static SQLITE_WSD struct PCacheGlobal {
38296   PGroup grp;                    /* The global PGroup for mode (2) */
38297 
38298   /* Variables related to SQLITE_CONFIG_PAGECACHE settings.  The
38299   ** szSlot, nSlot, pStart, pEnd, nReserve, and isInit values are all
38300   ** fixed at sqlite3_initialize() time and do not require mutex protection.
38301   ** The nFreeSlot and pFree values do require mutex protection.
38302   */
38303   int isInit;                    /* True if initialized */
38304   int szSlot;                    /* Size of each free slot */
38305   int nSlot;                     /* The number of pcache slots */
38306   int nReserve;                  /* Try to keep nFreeSlot above this */
38307   void *pStart, *pEnd;           /* Bounds of pagecache malloc range */
38308   /* Above requires no mutex.  Use mutex below for variable that follow. */
38309   sqlite3_mutex *mutex;          /* Mutex for accessing the following: */
38310   PgFreeslot *pFree;             /* Free page blocks */
38311   int nFreeSlot;                 /* Number of unused pcache slots */
38312   /* The following value requires a mutex to change.  We skip the mutex on
38313   ** reading because (1) most platforms read a 32-bit integer atomically and
38314   ** (2) even if an incorrect value is read, no great harm is done since this
38315   ** is really just an optimization. */
38316   int bUnderPressure;            /* True if low on PAGECACHE memory */
38317 } pcache1_g;
38318 
38319 /*
38320 ** All code in this file should access the global structure above via the
38321 ** alias "pcache1". This ensures that the WSD emulation is used when
38322 ** compiling for systems that do not support real WSD.
38323 */
38324 #define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g))
38325 
38326 /*
38327 ** Macros to enter and leave the PCache LRU mutex.
38328 */
38329 #define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex)
38330 #define pcache1LeaveMutex(X) sqlite3_mutex_leave((X)->mutex)
38331 
38332 /******************************************************************************/
38333 /******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/
38334 
38335 /*
38336 ** This function is called during initialization if a static buffer is
38337 ** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE
38338 ** verb to sqlite3_config(). Parameter pBuf points to an allocation large
38339 ** enough to contain 'n' buffers of 'sz' bytes each.
38340 **
38341 ** This routine is called from sqlite3_initialize() and so it is guaranteed
38342 ** to be serialized already.  There is no need for further mutexing.
38343 */
38344 SQLITE_PRIVATE void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){
38345   if( pcache1.isInit ){
38346     PgFreeslot *p;
38347     sz = ROUNDDOWN8(sz);
38348     pcache1.szSlot = sz;
38349     pcache1.nSlot = pcache1.nFreeSlot = n;
38350     pcache1.nReserve = n>90 ? 10 : (n/10 + 1);
38351     pcache1.pStart = pBuf;
38352     pcache1.pFree = 0;
38353     pcache1.bUnderPressure = 0;
38354     while( n-- ){
38355       p = (PgFreeslot*)pBuf;
38356       p->pNext = pcache1.pFree;
38357       pcache1.pFree = p;
38358       pBuf = (void*)&((char*)pBuf)[sz];
38359     }
38360     pcache1.pEnd = pBuf;
38361   }
38362 }
38363 
38364 /*
38365 ** Malloc function used within this file to allocate space from the buffer
38366 ** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no
38367 ** such buffer exists or there is no space left in it, this function falls
38368 ** back to sqlite3Malloc().
38369 **
38370 ** Multiple threads can run this routine at the same time.  Global variables
38371 ** in pcache1 need to be protected via mutex.
38372 */
38373 static void *pcache1Alloc(int nByte){
38374   void *p = 0;
38375   assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
38376   sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
38377   if( nByte<=pcache1.szSlot ){
38378     sqlite3_mutex_enter(pcache1.mutex);
38379     p = (PgHdr1 *)pcache1.pFree;
38380     if( p ){
38381       pcache1.pFree = pcache1.pFree->pNext;
38382       pcache1.nFreeSlot--;
38383       pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
38384       assert( pcache1.nFreeSlot>=0 );
38385       sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, 1);
38386     }
38387     sqlite3_mutex_leave(pcache1.mutex);
38388   }
38389   if( p==0 ){
38390     /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool.  Get
38391     ** it from sqlite3Malloc instead.
38392     */
38393     p = sqlite3Malloc(nByte);
38394 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
38395     if( p ){
38396       int sz = sqlite3MallocSize(p);
38397       sqlite3_mutex_enter(pcache1.mutex);
38398       sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz);
38399       sqlite3_mutex_leave(pcache1.mutex);
38400     }
38401 #endif
38402     sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
38403   }
38404   return p;
38405 }
38406 
38407 /*
38408 ** Free an allocated buffer obtained from pcache1Alloc().
38409 */
38410 static int pcache1Free(void *p){
38411   int nFreed = 0;
38412   if( p==0 ) return 0;
38413   if( p>=pcache1.pStart && p<pcache1.pEnd ){
38414     PgFreeslot *pSlot;
38415     sqlite3_mutex_enter(pcache1.mutex);
38416     sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, -1);
38417     pSlot = (PgFreeslot*)p;
38418     pSlot->pNext = pcache1.pFree;
38419     pcache1.pFree = pSlot;
38420     pcache1.nFreeSlot++;
38421     pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
38422     assert( pcache1.nFreeSlot<=pcache1.nSlot );
38423     sqlite3_mutex_leave(pcache1.mutex);
38424   }else{
38425     assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
38426     sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
38427     nFreed = sqlite3MallocSize(p);
38428 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
38429     sqlite3_mutex_enter(pcache1.mutex);
38430     sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, -nFreed);
38431     sqlite3_mutex_leave(pcache1.mutex);
38432 #endif
38433     sqlite3_free(p);
38434   }
38435   return nFreed;
38436 }
38437 
38438 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
38439 /*
38440 ** Return the size of a pcache allocation
38441 */
38442 static int pcache1MemSize(void *p){
38443   if( p>=pcache1.pStart && p<pcache1.pEnd ){
38444     return pcache1.szSlot;
38445   }else{
38446     int iSize;
38447     assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
38448     sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
38449     iSize = sqlite3MallocSize(p);
38450     sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
38451     return iSize;
38452   }
38453 }
38454 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
38455 
38456 /*
38457 ** Allocate a new page object initially associated with cache pCache.
38458 */
38459 static PgHdr1 *pcache1AllocPage(PCache1 *pCache){
38460   PgHdr1 *p = 0;
38461   void *pPg;
38462 
38463   /* The group mutex must be released before pcache1Alloc() is called. This
38464   ** is because it may call sqlite3_release_memory(), which assumes that
38465   ** this mutex is not held. */
38466   assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
38467   pcache1LeaveMutex(pCache->pGroup);
38468 #ifdef SQLITE_PCACHE_SEPARATE_HEADER
38469   pPg = pcache1Alloc(pCache->szPage);
38470   p = sqlite3Malloc(sizeof(PgHdr1) + pCache->szExtra);
38471   if( !pPg || !p ){
38472     pcache1Free(pPg);
38473     sqlite3_free(p);
38474     pPg = 0;
38475   }
38476 #else
38477   pPg = pcache1Alloc(sizeof(PgHdr1) + pCache->szPage + pCache->szExtra);
38478   p = (PgHdr1 *)&((u8 *)pPg)[pCache->szPage];
38479 #endif
38480   pcache1EnterMutex(pCache->pGroup);
38481 
38482   if( pPg ){
38483     p->page.pBuf = pPg;
38484     p->page.pExtra = &p[1];
38485     if( pCache->bPurgeable ){
38486       pCache->pGroup->nCurrentPage++;
38487     }
38488     return p;
38489   }
38490   return 0;
38491 }
38492 
38493 /*
38494 ** Free a page object allocated by pcache1AllocPage().
38495 **
38496 ** The pointer is allowed to be NULL, which is prudent.  But it turns out
38497 ** that the current implementation happens to never call this routine
38498 ** with a NULL pointer, so we mark the NULL test with ALWAYS().
38499 */
38500 static void pcache1FreePage(PgHdr1 *p){
38501   if( ALWAYS(p) ){
38502     PCache1 *pCache = p->pCache;
38503     assert( sqlite3_mutex_held(p->pCache->pGroup->mutex) );
38504     pcache1Free(p->page.pBuf);
38505 #ifdef SQLITE_PCACHE_SEPARATE_HEADER
38506     sqlite3_free(p);
38507 #endif
38508     if( pCache->bPurgeable ){
38509       pCache->pGroup->nCurrentPage--;
38510     }
38511   }
38512 }
38513 
38514 /*
38515 ** Malloc function used by SQLite to obtain space from the buffer configured
38516 ** using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer
38517 ** exists, this function falls back to sqlite3Malloc().
38518 */
38519 SQLITE_PRIVATE void *sqlite3PageMalloc(int sz){
38520   return pcache1Alloc(sz);
38521 }
38522 
38523 /*
38524 ** Free an allocated buffer obtained from sqlite3PageMalloc().
38525 */
38526 SQLITE_PRIVATE void sqlite3PageFree(void *p){
38527   pcache1Free(p);
38528 }
38529 
38530 
38531 /*
38532 ** Return true if it desirable to avoid allocating a new page cache
38533 ** entry.
38534 **
38535 ** If memory was allocated specifically to the page cache using
38536 ** SQLITE_CONFIG_PAGECACHE but that memory has all been used, then
38537 ** it is desirable to avoid allocating a new page cache entry because
38538 ** presumably SQLITE_CONFIG_PAGECACHE was suppose to be sufficient
38539 ** for all page cache needs and we should not need to spill the
38540 ** allocation onto the heap.
38541 **
38542 ** Or, the heap is used for all page cache memory but the heap is
38543 ** under memory pressure, then again it is desirable to avoid
38544 ** allocating a new page cache entry in order to avoid stressing
38545 ** the heap even further.
38546 */
38547 static int pcache1UnderMemoryPressure(PCache1 *pCache){
38548   if( pcache1.nSlot && (pCache->szPage+pCache->szExtra)<=pcache1.szSlot ){
38549     return pcache1.bUnderPressure;
38550   }else{
38551     return sqlite3HeapNearlyFull();
38552   }
38553 }
38554 
38555 /******************************************************************************/
38556 /******** General Implementation Functions ************************************/
38557 
38558 /*
38559 ** This function is used to resize the hash table used by the cache passed
38560 ** as the first argument.
38561 **
38562 ** The PCache mutex must be held when this function is called.
38563 */
38564 static int pcache1ResizeHash(PCache1 *p){
38565   PgHdr1 **apNew;
38566   unsigned int nNew;
38567   unsigned int i;
38568 
38569   assert( sqlite3_mutex_held(p->pGroup->mutex) );
38570 
38571   nNew = p->nHash*2;
38572   if( nNew<256 ){
38573     nNew = 256;
38574   }
38575 
38576   pcache1LeaveMutex(p->pGroup);
38577   if( p->nHash ){ sqlite3BeginBenignMalloc(); }
38578   apNew = (PgHdr1 **)sqlite3MallocZero(sizeof(PgHdr1 *)*nNew);
38579   if( p->nHash ){ sqlite3EndBenignMalloc(); }
38580   pcache1EnterMutex(p->pGroup);
38581   if( apNew ){
38582     for(i=0; i<p->nHash; i++){
38583       PgHdr1 *pPage;
38584       PgHdr1 *pNext = p->apHash[i];
38585       while( (pPage = pNext)!=0 ){
38586         unsigned int h = pPage->iKey % nNew;
38587         pNext = pPage->pNext;
38588         pPage->pNext = apNew[h];
38589         apNew[h] = pPage;
38590       }
38591     }
38592     sqlite3_free(p->apHash);
38593     p->apHash = apNew;
38594     p->nHash = nNew;
38595   }
38596 
38597   return (p->apHash ? SQLITE_OK : SQLITE_NOMEM);
38598 }
38599 
38600 /*
38601 ** This function is used internally to remove the page pPage from the
38602 ** PGroup LRU list, if is part of it. If pPage is not part of the PGroup
38603 ** LRU list, then this function is a no-op.
38604 **
38605 ** The PGroup mutex must be held when this function is called.
38606 */
38607 static void pcache1PinPage(PgHdr1 *pPage){
38608   PCache1 *pCache;
38609   PGroup *pGroup;
38610 
38611   assert( pPage!=0 );
38612   assert( pPage->isPinned==0 );
38613   pCache = pPage->pCache;
38614   pGroup = pCache->pGroup;
38615   assert( pPage->pLruNext || pPage==pGroup->pLruTail );
38616   assert( pPage->pLruPrev || pPage==pGroup->pLruHead );
38617   assert( sqlite3_mutex_held(pGroup->mutex) );
38618   if( pPage->pLruPrev ){
38619     pPage->pLruPrev->pLruNext = pPage->pLruNext;
38620   }else{
38621     pGroup->pLruHead = pPage->pLruNext;
38622   }
38623   if( pPage->pLruNext ){
38624     pPage->pLruNext->pLruPrev = pPage->pLruPrev;
38625   }else{
38626     pGroup->pLruTail = pPage->pLruPrev;
38627   }
38628   pPage->pLruNext = 0;
38629   pPage->pLruPrev = 0;
38630   pPage->isPinned = 1;
38631   pCache->nRecyclable--;
38632 }
38633 
38634 
38635 /*
38636 ** Remove the page supplied as an argument from the hash table
38637 ** (PCache1.apHash structure) that it is currently stored in.
38638 **
38639 ** The PGroup mutex must be held when this function is called.
38640 */
38641 static void pcache1RemoveFromHash(PgHdr1 *pPage){
38642   unsigned int h;
38643   PCache1 *pCache = pPage->pCache;
38644   PgHdr1 **pp;
38645 
38646   assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
38647   h = pPage->iKey % pCache->nHash;
38648   for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext);
38649   *pp = (*pp)->pNext;
38650 
38651   pCache->nPage--;
38652 }
38653 
38654 /*
38655 ** If there are currently more than nMaxPage pages allocated, try
38656 ** to recycle pages to reduce the number allocated to nMaxPage.
38657 */
38658 static void pcache1EnforceMaxPage(PGroup *pGroup){
38659   assert( sqlite3_mutex_held(pGroup->mutex) );
38660   while( pGroup->nCurrentPage>pGroup->nMaxPage && pGroup->pLruTail ){
38661     PgHdr1 *p = pGroup->pLruTail;
38662     assert( p->pCache->pGroup==pGroup );
38663     assert( p->isPinned==0 );
38664     pcache1PinPage(p);
38665     pcache1RemoveFromHash(p);
38666     pcache1FreePage(p);
38667   }
38668 }
38669 
38670 /*
38671 ** Discard all pages from cache pCache with a page number (key value)
38672 ** greater than or equal to iLimit. Any pinned pages that meet this
38673 ** criteria are unpinned before they are discarded.
38674 **
38675 ** The PCache mutex must be held when this function is called.
38676 */
38677 static void pcache1TruncateUnsafe(
38678   PCache1 *pCache,             /* The cache to truncate */
38679   unsigned int iLimit          /* Drop pages with this pgno or larger */
38680 ){
38681   TESTONLY( unsigned int nPage = 0; )  /* To assert pCache->nPage is correct */
38682   unsigned int h;
38683   assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
38684   for(h=0; h<pCache->nHash; h++){
38685     PgHdr1 **pp = &pCache->apHash[h];
38686     PgHdr1 *pPage;
38687     while( (pPage = *pp)!=0 ){
38688       if( pPage->iKey>=iLimit ){
38689         pCache->nPage--;
38690         *pp = pPage->pNext;
38691         if( !pPage->isPinned ) pcache1PinPage(pPage);
38692         pcache1FreePage(pPage);
38693       }else{
38694         pp = &pPage->pNext;
38695         TESTONLY( nPage++; )
38696       }
38697     }
38698   }
38699   assert( pCache->nPage==nPage );
38700 }
38701 
38702 /******************************************************************************/
38703 /******** sqlite3_pcache Methods **********************************************/
38704 
38705 /*
38706 ** Implementation of the sqlite3_pcache.xInit method.
38707 */
38708 static int pcache1Init(void *NotUsed){
38709   UNUSED_PARAMETER(NotUsed);
38710   assert( pcache1.isInit==0 );
38711   memset(&pcache1, 0, sizeof(pcache1));
38712   if( sqlite3GlobalConfig.bCoreMutex ){
38713     pcache1.grp.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU);
38714     pcache1.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_PMEM);
38715   }
38716   pcache1.grp.mxPinned = 10;
38717   pcache1.isInit = 1;
38718   return SQLITE_OK;
38719 }
38720 
38721 /*
38722 ** Implementation of the sqlite3_pcache.xShutdown method.
38723 ** Note that the static mutex allocated in xInit does
38724 ** not need to be freed.
38725 */
38726 static void pcache1Shutdown(void *NotUsed){
38727   UNUSED_PARAMETER(NotUsed);
38728   assert( pcache1.isInit!=0 );
38729   memset(&pcache1, 0, sizeof(pcache1));
38730 }
38731 
38732 /*
38733 ** Implementation of the sqlite3_pcache.xCreate method.
38734 **
38735 ** Allocate a new cache.
38736 */
38737 static sqlite3_pcache *pcache1Create(int szPage, int szExtra, int bPurgeable){
38738   PCache1 *pCache;      /* The newly created page cache */
38739   PGroup *pGroup;       /* The group the new page cache will belong to */
38740   int sz;               /* Bytes of memory required to allocate the new cache */
38741 
38742   /*
38743   ** The separateCache variable is true if each PCache has its own private
38744   ** PGroup.  In other words, separateCache is true for mode (1) where no
38745   ** mutexing is required.
38746   **
38747   **   *  Always use a unified cache (mode-2) if ENABLE_MEMORY_MANAGEMENT
38748   **
38749   **   *  Always use a unified cache in single-threaded applications
38750   **
38751   **   *  Otherwise (if multi-threaded and ENABLE_MEMORY_MANAGEMENT is off)
38752   **      use separate caches (mode-1)
38753   */
38754 #if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || SQLITE_THREADSAFE==0
38755   const int separateCache = 0;
38756 #else
38757   int separateCache = sqlite3GlobalConfig.bCoreMutex>0;
38758 #endif
38759 
38760   assert( (szPage & (szPage-1))==0 && szPage>=512 && szPage<=65536 );
38761   assert( szExtra < 300 );
38762 
38763   sz = sizeof(PCache1) + sizeof(PGroup)*separateCache;
38764   pCache = (PCache1 *)sqlite3MallocZero(sz);
38765   if( pCache ){
38766     if( separateCache ){
38767       pGroup = (PGroup*)&pCache[1];
38768       pGroup->mxPinned = 10;
38769     }else{
38770       pGroup = &pcache1.grp;
38771     }
38772     pCache->pGroup = pGroup;
38773     pCache->szPage = szPage;
38774     pCache->szExtra = szExtra;
38775     pCache->bPurgeable = (bPurgeable ? 1 : 0);
38776     if( bPurgeable ){
38777       pCache->nMin = 10;
38778       pcache1EnterMutex(pGroup);
38779       pGroup->nMinPage += pCache->nMin;
38780       pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
38781       pcache1LeaveMutex(pGroup);
38782     }
38783   }
38784   return (sqlite3_pcache *)pCache;
38785 }
38786 
38787 /*
38788 ** Implementation of the sqlite3_pcache.xCachesize method.
38789 **
38790 ** Configure the cache_size limit for a cache.
38791 */
38792 static void pcache1Cachesize(sqlite3_pcache *p, int nMax){
38793   PCache1 *pCache = (PCache1 *)p;
38794   if( pCache->bPurgeable ){
38795     PGroup *pGroup = pCache->pGroup;
38796     pcache1EnterMutex(pGroup);
38797     pGroup->nMaxPage += (nMax - pCache->nMax);
38798     pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
38799     pCache->nMax = nMax;
38800     pCache->n90pct = pCache->nMax*9/10;
38801     pcache1EnforceMaxPage(pGroup);
38802     pcache1LeaveMutex(pGroup);
38803   }
38804 }
38805 
38806 /*
38807 ** Implementation of the sqlite3_pcache.xShrink method.
38808 **
38809 ** Free up as much memory as possible.
38810 */
38811 static void pcache1Shrink(sqlite3_pcache *p){
38812   PCache1 *pCache = (PCache1*)p;
38813   if( pCache->bPurgeable ){
38814     PGroup *pGroup = pCache->pGroup;
38815     int savedMaxPage;
38816     pcache1EnterMutex(pGroup);
38817     savedMaxPage = pGroup->nMaxPage;
38818     pGroup->nMaxPage = 0;
38819     pcache1EnforceMaxPage(pGroup);
38820     pGroup->nMaxPage = savedMaxPage;
38821     pcache1LeaveMutex(pGroup);
38822   }
38823 }
38824 
38825 /*
38826 ** Implementation of the sqlite3_pcache.xPagecount method.
38827 */
38828 static int pcache1Pagecount(sqlite3_pcache *p){
38829   int n;
38830   PCache1 *pCache = (PCache1*)p;
38831   pcache1EnterMutex(pCache->pGroup);
38832   n = pCache->nPage;
38833   pcache1LeaveMutex(pCache->pGroup);
38834   return n;
38835 }
38836 
38837 /*
38838 ** Implementation of the sqlite3_pcache.xFetch method.
38839 **
38840 ** Fetch a page by key value.
38841 **
38842 ** Whether or not a new page may be allocated by this function depends on
38843 ** the value of the createFlag argument.  0 means do not allocate a new
38844 ** page.  1 means allocate a new page if space is easily available.  2
38845 ** means to try really hard to allocate a new page.
38846 **
38847 ** For a non-purgeable cache (a cache used as the storage for an in-memory
38848 ** database) there is really no difference between createFlag 1 and 2.  So
38849 ** the calling function (pcache.c) will never have a createFlag of 1 on
38850 ** a non-purgeable cache.
38851 **
38852 ** There are three different approaches to obtaining space for a page,
38853 ** depending on the value of parameter createFlag (which may be 0, 1 or 2).
38854 **
38855 **   1. Regardless of the value of createFlag, the cache is searched for a
38856 **      copy of the requested page. If one is found, it is returned.
38857 **
38858 **   2. If createFlag==0 and the page is not already in the cache, NULL is
38859 **      returned.
38860 **
38861 **   3. If createFlag is 1, and the page is not already in the cache, then
38862 **      return NULL (do not allocate a new page) if any of the following
38863 **      conditions are true:
38864 **
38865 **       (a) the number of pages pinned by the cache is greater than
38866 **           PCache1.nMax, or
38867 **
38868 **       (b) the number of pages pinned by the cache is greater than
38869 **           the sum of nMax for all purgeable caches, less the sum of
38870 **           nMin for all other purgeable caches, or
38871 **
38872 **   4. If none of the first three conditions apply and the cache is marked
38873 **      as purgeable, and if one of the following is true:
38874 **
38875 **       (a) The number of pages allocated for the cache is already
38876 **           PCache1.nMax, or
38877 **
38878 **       (b) The number of pages allocated for all purgeable caches is
38879 **           already equal to or greater than the sum of nMax for all
38880 **           purgeable caches,
38881 **
38882 **       (c) The system is under memory pressure and wants to avoid
38883 **           unnecessary pages cache entry allocations
38884 **
38885 **      then attempt to recycle a page from the LRU list. If it is the right
38886 **      size, return the recycled buffer. Otherwise, free the buffer and
38887 **      proceed to step 5.
38888 **
38889 **   5. Otherwise, allocate and return a new page buffer.
38890 */
38891 static sqlite3_pcache_page *pcache1Fetch(
38892   sqlite3_pcache *p,
38893   unsigned int iKey,
38894   int createFlag
38895 ){
38896   unsigned int nPinned;
38897   PCache1 *pCache = (PCache1 *)p;
38898   PGroup *pGroup;
38899   PgHdr1 *pPage = 0;
38900 
38901   assert( offsetof(PgHdr1,page)==0 );
38902   assert( pCache->bPurgeable || createFlag!=1 );
38903   assert( pCache->bPurgeable || pCache->nMin==0 );
38904   assert( pCache->bPurgeable==0 || pCache->nMin==10 );
38905   assert( pCache->nMin==0 || pCache->bPurgeable );
38906   pcache1EnterMutex(pGroup = pCache->pGroup);
38907 
38908   /* Step 1: Search the hash table for an existing entry. */
38909   if( pCache->nHash>0 ){
38910     unsigned int h = iKey % pCache->nHash;
38911     for(pPage=pCache->apHash[h]; pPage&&pPage->iKey!=iKey; pPage=pPage->pNext);
38912   }
38913 
38914   /* Step 2: Abort if no existing page is found and createFlag is 0 */
38915   if( pPage ){
38916     if( !pPage->isPinned ) pcache1PinPage(pPage);
38917     goto fetch_out;
38918   }
38919   if( createFlag==0 ){
38920     goto fetch_out;
38921   }
38922 
38923   /* The pGroup local variable will normally be initialized by the
38924   ** pcache1EnterMutex() macro above.  But if SQLITE_MUTEX_OMIT is defined,
38925   ** then pcache1EnterMutex() is a no-op, so we have to initialize the
38926   ** local variable here.  Delaying the initialization of pGroup is an
38927   ** optimization:  The common case is to exit the module before reaching
38928   ** this point.
38929   */
38930 #ifdef SQLITE_MUTEX_OMIT
38931   pGroup = pCache->pGroup;
38932 #endif
38933 
38934   /* Step 3: Abort if createFlag is 1 but the cache is nearly full */
38935   assert( pCache->nPage >= pCache->nRecyclable );
38936   nPinned = pCache->nPage - pCache->nRecyclable;
38937   assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage );
38938   assert( pCache->n90pct == pCache->nMax*9/10 );
38939   if( createFlag==1 && (
38940         nPinned>=pGroup->mxPinned
38941      || nPinned>=pCache->n90pct
38942      || pcache1UnderMemoryPressure(pCache)
38943   )){
38944     goto fetch_out;
38945   }
38946 
38947   if( pCache->nPage>=pCache->nHash && pcache1ResizeHash(pCache) ){
38948     goto fetch_out;
38949   }
38950   assert( pCache->nHash>0 && pCache->apHash );
38951 
38952   /* Step 4. Try to recycle a page. */
38953   if( pCache->bPurgeable && pGroup->pLruTail && (
38954          (pCache->nPage+1>=pCache->nMax)
38955       || pGroup->nCurrentPage>=pGroup->nMaxPage
38956       || pcache1UnderMemoryPressure(pCache)
38957   )){
38958     PCache1 *pOther;
38959     pPage = pGroup->pLruTail;
38960     assert( pPage->isPinned==0 );
38961     pcache1RemoveFromHash(pPage);
38962     pcache1PinPage(pPage);
38963     pOther = pPage->pCache;
38964 
38965     /* We want to verify that szPage and szExtra are the same for pOther
38966     ** and pCache.  Assert that we can verify this by comparing sums. */
38967     assert( (pCache->szPage & (pCache->szPage-1))==0 && pCache->szPage>=512 );
38968     assert( pCache->szExtra<512 );
38969     assert( (pOther->szPage & (pOther->szPage-1))==0 && pOther->szPage>=512 );
38970     assert( pOther->szExtra<512 );
38971 
38972     if( pOther->szPage+pOther->szExtra != pCache->szPage+pCache->szExtra ){
38973       pcache1FreePage(pPage);
38974       pPage = 0;
38975     }else{
38976       pGroup->nCurrentPage -= (pOther->bPurgeable - pCache->bPurgeable);
38977     }
38978   }
38979 
38980   /* Step 5. If a usable page buffer has still not been found,
38981   ** attempt to allocate a new one.
38982   */
38983   if( !pPage ){
38984     if( createFlag==1 ) sqlite3BeginBenignMalloc();
38985     pPage = pcache1AllocPage(pCache);
38986     if( createFlag==1 ) sqlite3EndBenignMalloc();
38987   }
38988 
38989   if( pPage ){
38990     unsigned int h = iKey % pCache->nHash;
38991     pCache->nPage++;
38992     pPage->iKey = iKey;
38993     pPage->pNext = pCache->apHash[h];
38994     pPage->pCache = pCache;
38995     pPage->pLruPrev = 0;
38996     pPage->pLruNext = 0;
38997     pPage->isPinned = 1;
38998     *(void **)pPage->page.pExtra = 0;
38999     pCache->apHash[h] = pPage;
39000   }
39001 
39002 fetch_out:
39003   if( pPage && iKey>pCache->iMaxKey ){
39004     pCache->iMaxKey = iKey;
39005   }
39006   pcache1LeaveMutex(pGroup);
39007   return (sqlite3_pcache_page*)pPage;
39008 }
39009 
39010 
39011 /*
39012 ** Implementation of the sqlite3_pcache.xUnpin method.
39013 **
39014 ** Mark a page as unpinned (eligible for asynchronous recycling).
39015 */
39016 static void pcache1Unpin(
39017   sqlite3_pcache *p,
39018   sqlite3_pcache_page *pPg,
39019   int reuseUnlikely
39020 ){
39021   PCache1 *pCache = (PCache1 *)p;
39022   PgHdr1 *pPage = (PgHdr1 *)pPg;
39023   PGroup *pGroup = pCache->pGroup;
39024 
39025   assert( pPage->pCache==pCache );
39026   pcache1EnterMutex(pGroup);
39027 
39028   /* It is an error to call this function if the page is already
39029   ** part of the PGroup LRU list.
39030   */
39031   assert( pPage->pLruPrev==0 && pPage->pLruNext==0 );
39032   assert( pGroup->pLruHead!=pPage && pGroup->pLruTail!=pPage );
39033   assert( pPage->isPinned==1 );
39034 
39035   if( reuseUnlikely || pGroup->nCurrentPage>pGroup->nMaxPage ){
39036     pcache1RemoveFromHash(pPage);
39037     pcache1FreePage(pPage);
39038   }else{
39039     /* Add the page to the PGroup LRU list. */
39040     if( pGroup->pLruHead ){
39041       pGroup->pLruHead->pLruPrev = pPage;
39042       pPage->pLruNext = pGroup->pLruHead;
39043       pGroup->pLruHead = pPage;
39044     }else{
39045       pGroup->pLruTail = pPage;
39046       pGroup->pLruHead = pPage;
39047     }
39048     pCache->nRecyclable++;
39049     pPage->isPinned = 0;
39050   }
39051 
39052   pcache1LeaveMutex(pCache->pGroup);
39053 }
39054 
39055 /*
39056 ** Implementation of the sqlite3_pcache.xRekey method.
39057 */
39058 static void pcache1Rekey(
39059   sqlite3_pcache *p,
39060   sqlite3_pcache_page *pPg,
39061   unsigned int iOld,
39062   unsigned int iNew
39063 ){
39064   PCache1 *pCache = (PCache1 *)p;
39065   PgHdr1 *pPage = (PgHdr1 *)pPg;
39066   PgHdr1 **pp;
39067   unsigned int h;
39068   assert( pPage->iKey==iOld );
39069   assert( pPage->pCache==pCache );
39070 
39071   pcache1EnterMutex(pCache->pGroup);
39072 
39073   h = iOld%pCache->nHash;
39074   pp = &pCache->apHash[h];
39075   while( (*pp)!=pPage ){
39076     pp = &(*pp)->pNext;
39077   }
39078   *pp = pPage->pNext;
39079 
39080   h = iNew%pCache->nHash;
39081   pPage->iKey = iNew;
39082   pPage->pNext = pCache->apHash[h];
39083   pCache->apHash[h] = pPage;
39084   if( iNew>pCache->iMaxKey ){
39085     pCache->iMaxKey = iNew;
39086   }
39087 
39088   pcache1LeaveMutex(pCache->pGroup);
39089 }
39090 
39091 /*
39092 ** Implementation of the sqlite3_pcache.xTruncate method.
39093 **
39094 ** Discard all unpinned pages in the cache with a page number equal to
39095 ** or greater than parameter iLimit. Any pinned pages with a page number
39096 ** equal to or greater than iLimit are implicitly unpinned.
39097 */
39098 static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){
39099   PCache1 *pCache = (PCache1 *)p;
39100   pcache1EnterMutex(pCache->pGroup);
39101   if( iLimit<=pCache->iMaxKey ){
39102     pcache1TruncateUnsafe(pCache, iLimit);
39103     pCache->iMaxKey = iLimit-1;
39104   }
39105   pcache1LeaveMutex(pCache->pGroup);
39106 }
39107 
39108 /*
39109 ** Implementation of the sqlite3_pcache.xDestroy method.
39110 **
39111 ** Destroy a cache allocated using pcache1Create().
39112 */
39113 static void pcache1Destroy(sqlite3_pcache *p){
39114   PCache1 *pCache = (PCache1 *)p;
39115   PGroup *pGroup = pCache->pGroup;
39116   assert( pCache->bPurgeable || (pCache->nMax==0 && pCache->nMin==0) );
39117   pcache1EnterMutex(pGroup);
39118   pcache1TruncateUnsafe(pCache, 0);
39119   assert( pGroup->nMaxPage >= pCache->nMax );
39120   pGroup->nMaxPage -= pCache->nMax;
39121   assert( pGroup->nMinPage >= pCache->nMin );
39122   pGroup->nMinPage -= pCache->nMin;
39123   pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
39124   pcache1EnforceMaxPage(pGroup);
39125   pcache1LeaveMutex(pGroup);
39126   sqlite3_free(pCache->apHash);
39127   sqlite3_free(pCache);
39128 }
39129 
39130 /*
39131 ** This function is called during initialization (sqlite3_initialize()) to
39132 ** install the default pluggable cache module, assuming the user has not
39133 ** already provided an alternative.
39134 */
39135 SQLITE_PRIVATE void sqlite3PCacheSetDefault(void){
39136   static const sqlite3_pcache_methods2 defaultMethods = {
39137     1,                       /* iVersion */
39138     0,                       /* pArg */
39139     pcache1Init,             /* xInit */
39140     pcache1Shutdown,         /* xShutdown */
39141     pcache1Create,           /* xCreate */
39142     pcache1Cachesize,        /* xCachesize */
39143     pcache1Pagecount,        /* xPagecount */
39144     pcache1Fetch,            /* xFetch */
39145     pcache1Unpin,            /* xUnpin */
39146     pcache1Rekey,            /* xRekey */
39147     pcache1Truncate,         /* xTruncate */
39148     pcache1Destroy,          /* xDestroy */
39149     pcache1Shrink            /* xShrink */
39150   };
39151   sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods);
39152 }
39153 
39154 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
39155 /*
39156 ** This function is called to free superfluous dynamically allocated memory
39157 ** held by the pager system. Memory in use by any SQLite pager allocated
39158 ** by the current thread may be sqlite3_free()ed.
39159 **
39160 ** nReq is the number of bytes of memory required. Once this much has
39161 ** been released, the function returns. The return value is the total number
39162 ** of bytes of memory released.
39163 */
39164 SQLITE_PRIVATE int sqlite3PcacheReleaseMemory(int nReq){
39165   int nFree = 0;
39166   assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
39167   assert( sqlite3_mutex_notheld(pcache1.mutex) );
39168   if( pcache1.pStart==0 ){
39169     PgHdr1 *p;
39170     pcache1EnterMutex(&pcache1.grp);
39171     while( (nReq<0 || nFree<nReq) && ((p=pcache1.grp.pLruTail)!=0) ){
39172       nFree += pcache1MemSize(p->page.pBuf);
39173 #ifdef SQLITE_PCACHE_SEPARATE_HEADER
39174       nFree += sqlite3MemSize(p);
39175 #endif
39176       assert( p->isPinned==0 );
39177       pcache1PinPage(p);
39178       pcache1RemoveFromHash(p);
39179       pcache1FreePage(p);
39180     }
39181     pcache1LeaveMutex(&pcache1.grp);
39182   }
39183   return nFree;
39184 }
39185 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
39186 
39187 #ifdef SQLITE_TEST
39188 /*
39189 ** This function is used by test procedures to inspect the internal state
39190 ** of the global cache.
39191 */
39192 SQLITE_PRIVATE void sqlite3PcacheStats(
39193   int *pnCurrent,      /* OUT: Total number of pages cached */
39194   int *pnMax,          /* OUT: Global maximum cache size */
39195   int *pnMin,          /* OUT: Sum of PCache1.nMin for purgeable caches */
39196   int *pnRecyclable    /* OUT: Total number of pages available for recycling */
39197 ){
39198   PgHdr1 *p;
39199   int nRecyclable = 0;
39200   for(p=pcache1.grp.pLruHead; p; p=p->pLruNext){
39201     assert( p->isPinned==0 );
39202     nRecyclable++;
39203   }
39204   *pnCurrent = pcache1.grp.nCurrentPage;
39205   *pnMax = (int)pcache1.grp.nMaxPage;
39206   *pnMin = (int)pcache1.grp.nMinPage;
39207   *pnRecyclable = nRecyclable;
39208 }
39209 #endif
39210 
39211 /************** End of pcache1.c *********************************************/
39212 /************** Begin file rowset.c ******************************************/
39213 /*
39214 ** 2008 December 3
39215 **
39216 ** The author disclaims copyright to this source code.  In place of
39217 ** a legal notice, here is a blessing:
39218 **
39219 **    May you do good and not evil.
39220 **    May you find forgiveness for yourself and forgive others.
39221 **    May you share freely, never taking more than you give.
39222 **
39223 *************************************************************************
39224 **
39225 ** This module implements an object we call a "RowSet".
39226 **
39227 ** The RowSet object is a collection of rowids.  Rowids
39228 ** are inserted into the RowSet in an arbitrary order.  Inserts
39229 ** can be intermixed with tests to see if a given rowid has been
39230 ** previously inserted into the RowSet.
39231 **
39232 ** After all inserts are finished, it is possible to extract the
39233 ** elements of the RowSet in sorted order.  Once this extraction
39234 ** process has started, no new elements may be inserted.
39235 **
39236 ** Hence, the primitive operations for a RowSet are:
39237 **
39238 **    CREATE
39239 **    INSERT
39240 **    TEST
39241 **    SMALLEST
39242 **    DESTROY
39243 **
39244 ** The CREATE and DESTROY primitives are the constructor and destructor,
39245 ** obviously.  The INSERT primitive adds a new element to the RowSet.
39246 ** TEST checks to see if an element is already in the RowSet.  SMALLEST
39247 ** extracts the least value from the RowSet.
39248 **
39249 ** The INSERT primitive might allocate additional memory.  Memory is
39250 ** allocated in chunks so most INSERTs do no allocation.  There is an
39251 ** upper bound on the size of allocated memory.  No memory is freed
39252 ** until DESTROY.
39253 **
39254 ** The TEST primitive includes a "batch" number.  The TEST primitive
39255 ** will only see elements that were inserted before the last change
39256 ** in the batch number.  In other words, if an INSERT occurs between
39257 ** two TESTs where the TESTs have the same batch nubmer, then the
39258 ** value added by the INSERT will not be visible to the second TEST.
39259 ** The initial batch number is zero, so if the very first TEST contains
39260 ** a non-zero batch number, it will see all prior INSERTs.
39261 **
39262 ** No INSERTs may occurs after a SMALLEST.  An assertion will fail if
39263 ** that is attempted.
39264 **
39265 ** The cost of an INSERT is roughly constant.  (Sometime new memory
39266 ** has to be allocated on an INSERT.)  The cost of a TEST with a new
39267 ** batch number is O(NlogN) where N is the number of elements in the RowSet.
39268 ** The cost of a TEST using the same batch number is O(logN).  The cost
39269 ** of the first SMALLEST is O(NlogN).  Second and subsequent SMALLEST
39270 ** primitives are constant time.  The cost of DESTROY is O(N).
39271 **
39272 ** There is an added cost of O(N) when switching between TEST and
39273 ** SMALLEST primitives.
39274 */
39275 
39276 
39277 /*
39278 ** Target size for allocation chunks.
39279 */
39280 #define ROWSET_ALLOCATION_SIZE 1024
39281 
39282 /*
39283 ** The number of rowset entries per allocation chunk.
39284 */
39285 #define ROWSET_ENTRY_PER_CHUNK  \
39286                        ((ROWSET_ALLOCATION_SIZE-8)/sizeof(struct RowSetEntry))
39287 
39288 /*
39289 ** Each entry in a RowSet is an instance of the following object.
39290 **
39291 ** This same object is reused to store a linked list of trees of RowSetEntry
39292 ** objects.  In that alternative use, pRight points to the next entry
39293 ** in the list, pLeft points to the tree, and v is unused.  The
39294 ** RowSet.pForest value points to the head of this forest list.
39295 */
39296 struct RowSetEntry {
39297   i64 v;                        /* ROWID value for this entry */
39298   struct RowSetEntry *pRight;   /* Right subtree (larger entries) or list */
39299   struct RowSetEntry *pLeft;    /* Left subtree (smaller entries) */
39300 };
39301 
39302 /*
39303 ** RowSetEntry objects are allocated in large chunks (instances of the
39304 ** following structure) to reduce memory allocation overhead.  The
39305 ** chunks are kept on a linked list so that they can be deallocated
39306 ** when the RowSet is destroyed.
39307 */
39308 struct RowSetChunk {
39309   struct RowSetChunk *pNextChunk;        /* Next chunk on list of them all */
39310   struct RowSetEntry aEntry[ROWSET_ENTRY_PER_CHUNK]; /* Allocated entries */
39311 };
39312 
39313 /*
39314 ** A RowSet in an instance of the following structure.
39315 **
39316 ** A typedef of this structure if found in sqliteInt.h.
39317 */
39318 struct RowSet {
39319   struct RowSetChunk *pChunk;    /* List of all chunk allocations */
39320   sqlite3 *db;                   /* The database connection */
39321   struct RowSetEntry *pEntry;    /* List of entries using pRight */
39322   struct RowSetEntry *pLast;     /* Last entry on the pEntry list */
39323   struct RowSetEntry *pFresh;    /* Source of new entry objects */
39324   struct RowSetEntry *pForest;   /* List of binary trees of entries */
39325   u16 nFresh;                    /* Number of objects on pFresh */
39326   u16 rsFlags;                   /* Various flags */
39327   int iBatch;                    /* Current insert batch */
39328 };
39329 
39330 /*
39331 ** Allowed values for RowSet.rsFlags
39332 */
39333 #define ROWSET_SORTED  0x01   /* True if RowSet.pEntry is sorted */
39334 #define ROWSET_NEXT    0x02   /* True if sqlite3RowSetNext() has been called */
39335 
39336 /*
39337 ** Turn bulk memory into a RowSet object.  N bytes of memory
39338 ** are available at pSpace.  The db pointer is used as a memory context
39339 ** for any subsequent allocations that need to occur.
39340 ** Return a pointer to the new RowSet object.
39341 **
39342 ** It must be the case that N is sufficient to make a Rowset.  If not
39343 ** an assertion fault occurs.
39344 **
39345 ** If N is larger than the minimum, use the surplus as an initial
39346 ** allocation of entries available to be filled.
39347 */
39348 SQLITE_PRIVATE RowSet *sqlite3RowSetInit(sqlite3 *db, void *pSpace, unsigned int N){
39349   RowSet *p;
39350   assert( N >= ROUND8(sizeof(*p)) );
39351   p = pSpace;
39352   p->pChunk = 0;
39353   p->db = db;
39354   p->pEntry = 0;
39355   p->pLast = 0;
39356   p->pForest = 0;
39357   p->pFresh = (struct RowSetEntry*)(ROUND8(sizeof(*p)) + (char*)p);
39358   p->nFresh = (u16)((N - ROUND8(sizeof(*p)))/sizeof(struct RowSetEntry));
39359   p->rsFlags = ROWSET_SORTED;
39360   p->iBatch = 0;
39361   return p;
39362 }
39363 
39364 /*
39365 ** Deallocate all chunks from a RowSet.  This frees all memory that
39366 ** the RowSet has allocated over its lifetime.  This routine is
39367 ** the destructor for the RowSet.
39368 */
39369 SQLITE_PRIVATE void sqlite3RowSetClear(RowSet *p){
39370   struct RowSetChunk *pChunk, *pNextChunk;
39371   for(pChunk=p->pChunk; pChunk; pChunk = pNextChunk){
39372     pNextChunk = pChunk->pNextChunk;
39373     sqlite3DbFree(p->db, pChunk);
39374   }
39375   p->pChunk = 0;
39376   p->nFresh = 0;
39377   p->pEntry = 0;
39378   p->pLast = 0;
39379   p->pForest = 0;
39380   p->rsFlags = ROWSET_SORTED;
39381 }
39382 
39383 /*
39384 ** Allocate a new RowSetEntry object that is associated with the
39385 ** given RowSet.  Return a pointer to the new and completely uninitialized
39386 ** objected.
39387 **
39388 ** In an OOM situation, the RowSet.db->mallocFailed flag is set and this
39389 ** routine returns NULL.
39390 */
39391 static struct RowSetEntry *rowSetEntryAlloc(RowSet *p){
39392   assert( p!=0 );
39393   if( p->nFresh==0 ){
39394     struct RowSetChunk *pNew;
39395     pNew = sqlite3DbMallocRaw(p->db, sizeof(*pNew));
39396     if( pNew==0 ){
39397       return 0;
39398     }
39399     pNew->pNextChunk = p->pChunk;
39400     p->pChunk = pNew;
39401     p->pFresh = pNew->aEntry;
39402     p->nFresh = ROWSET_ENTRY_PER_CHUNK;
39403   }
39404   p->nFresh--;
39405   return p->pFresh++;
39406 }
39407 
39408 /*
39409 ** Insert a new value into a RowSet.
39410 **
39411 ** The mallocFailed flag of the database connection is set if a
39412 ** memory allocation fails.
39413 */
39414 SQLITE_PRIVATE void sqlite3RowSetInsert(RowSet *p, i64 rowid){
39415   struct RowSetEntry *pEntry;  /* The new entry */
39416   struct RowSetEntry *pLast;   /* The last prior entry */
39417 
39418   /* This routine is never called after sqlite3RowSetNext() */
39419   assert( p!=0 && (p->rsFlags & ROWSET_NEXT)==0 );
39420 
39421   pEntry = rowSetEntryAlloc(p);
39422   if( pEntry==0 ) return;
39423   pEntry->v = rowid;
39424   pEntry->pRight = 0;
39425   pLast = p->pLast;
39426   if( pLast ){
39427     if( (p->rsFlags & ROWSET_SORTED)!=0 && rowid<=pLast->v ){
39428       p->rsFlags &= ~ROWSET_SORTED;
39429     }
39430     pLast->pRight = pEntry;
39431   }else{
39432     p->pEntry = pEntry;
39433   }
39434   p->pLast = pEntry;
39435 }
39436 
39437 /*
39438 ** Merge two lists of RowSetEntry objects.  Remove duplicates.
39439 **
39440 ** The input lists are connected via pRight pointers and are
39441 ** assumed to each already be in sorted order.
39442 */
39443 static struct RowSetEntry *rowSetEntryMerge(
39444   struct RowSetEntry *pA,    /* First sorted list to be merged */
39445   struct RowSetEntry *pB     /* Second sorted list to be merged */
39446 ){
39447   struct RowSetEntry head;
39448   struct RowSetEntry *pTail;
39449 
39450   pTail = &head;
39451   while( pA && pB ){
39452     assert( pA->pRight==0 || pA->v<=pA->pRight->v );
39453     assert( pB->pRight==0 || pB->v<=pB->pRight->v );
39454     if( pA->v<pB->v ){
39455       pTail->pRight = pA;
39456       pA = pA->pRight;
39457       pTail = pTail->pRight;
39458     }else if( pB->v<pA->v ){
39459       pTail->pRight = pB;
39460       pB = pB->pRight;
39461       pTail = pTail->pRight;
39462     }else{
39463       pA = pA->pRight;
39464     }
39465   }
39466   if( pA ){
39467     assert( pA->pRight==0 || pA->v<=pA->pRight->v );
39468     pTail->pRight = pA;
39469   }else{
39470     assert( pB==0 || pB->pRight==0 || pB->v<=pB->pRight->v );
39471     pTail->pRight = pB;
39472   }
39473   return head.pRight;
39474 }
39475 
39476 /*
39477 ** Sort all elements on the list of RowSetEntry objects into order of
39478 ** increasing v.
39479 */
39480 static struct RowSetEntry *rowSetEntrySort(struct RowSetEntry *pIn){
39481   unsigned int i;
39482   struct RowSetEntry *pNext, *aBucket[40];
39483 
39484   memset(aBucket, 0, sizeof(aBucket));
39485   while( pIn ){
39486     pNext = pIn->pRight;
39487     pIn->pRight = 0;
39488     for(i=0; aBucket[i]; i++){
39489       pIn = rowSetEntryMerge(aBucket[i], pIn);
39490       aBucket[i] = 0;
39491     }
39492     aBucket[i] = pIn;
39493     pIn = pNext;
39494   }
39495   pIn = 0;
39496   for(i=0; i<sizeof(aBucket)/sizeof(aBucket[0]); i++){
39497     pIn = rowSetEntryMerge(pIn, aBucket[i]);
39498   }
39499   return pIn;
39500 }
39501 
39502 
39503 /*
39504 ** The input, pIn, is a binary tree (or subtree) of RowSetEntry objects.
39505 ** Convert this tree into a linked list connected by the pRight pointers
39506 ** and return pointers to the first and last elements of the new list.
39507 */
39508 static void rowSetTreeToList(
39509   struct RowSetEntry *pIn,         /* Root of the input tree */
39510   struct RowSetEntry **ppFirst,    /* Write head of the output list here */
39511   struct RowSetEntry **ppLast      /* Write tail of the output list here */
39512 ){
39513   assert( pIn!=0 );
39514   if( pIn->pLeft ){
39515     struct RowSetEntry *p;
39516     rowSetTreeToList(pIn->pLeft, ppFirst, &p);
39517     p->pRight = pIn;
39518   }else{
39519     *ppFirst = pIn;
39520   }
39521   if( pIn->pRight ){
39522     rowSetTreeToList(pIn->pRight, &pIn->pRight, ppLast);
39523   }else{
39524     *ppLast = pIn;
39525   }
39526   assert( (*ppLast)->pRight==0 );
39527 }
39528 
39529 
39530 /*
39531 ** Convert a sorted list of elements (connected by pRight) into a binary
39532 ** tree with depth of iDepth.  A depth of 1 means the tree contains a single
39533 ** node taken from the head of *ppList.  A depth of 2 means a tree with
39534 ** three nodes.  And so forth.
39535 **
39536 ** Use as many entries from the input list as required and update the
39537 ** *ppList to point to the unused elements of the list.  If the input
39538 ** list contains too few elements, then construct an incomplete tree
39539 ** and leave *ppList set to NULL.
39540 **
39541 ** Return a pointer to the root of the constructed binary tree.
39542 */
39543 static struct RowSetEntry *rowSetNDeepTree(
39544   struct RowSetEntry **ppList,
39545   int iDepth
39546 ){
39547   struct RowSetEntry *p;         /* Root of the new tree */
39548   struct RowSetEntry *pLeft;     /* Left subtree */
39549   if( *ppList==0 ){
39550     return 0;
39551   }
39552   if( iDepth==1 ){
39553     p = *ppList;
39554     *ppList = p->pRight;
39555     p->pLeft = p->pRight = 0;
39556     return p;
39557   }
39558   pLeft = rowSetNDeepTree(ppList, iDepth-1);
39559   p = *ppList;
39560   if( p==0 ){
39561     return pLeft;
39562   }
39563   p->pLeft = pLeft;
39564   *ppList = p->pRight;
39565   p->pRight = rowSetNDeepTree(ppList, iDepth-1);
39566   return p;
39567 }
39568 
39569 /*
39570 ** Convert a sorted list of elements into a binary tree. Make the tree
39571 ** as deep as it needs to be in order to contain the entire list.
39572 */
39573 static struct RowSetEntry *rowSetListToTree(struct RowSetEntry *pList){
39574   int iDepth;           /* Depth of the tree so far */
39575   struct RowSetEntry *p;       /* Current tree root */
39576   struct RowSetEntry *pLeft;   /* Left subtree */
39577 
39578   assert( pList!=0 );
39579   p = pList;
39580   pList = p->pRight;
39581   p->pLeft = p->pRight = 0;
39582   for(iDepth=1; pList; iDepth++){
39583     pLeft = p;
39584     p = pList;
39585     pList = p->pRight;
39586     p->pLeft = pLeft;
39587     p->pRight = rowSetNDeepTree(&pList, iDepth);
39588   }
39589   return p;
39590 }
39591 
39592 /*
39593 ** Take all the entries on p->pEntry and on the trees in p->pForest and
39594 ** sort them all together into one big ordered list on p->pEntry.
39595 **
39596 ** This routine should only be called once in the life of a RowSet.
39597 */
39598 static void rowSetToList(RowSet *p){
39599 
39600   /* This routine is called only once */
39601   assert( p!=0 && (p->rsFlags & ROWSET_NEXT)==0 );
39602 
39603   if( (p->rsFlags & ROWSET_SORTED)==0 ){
39604     p->pEntry = rowSetEntrySort(p->pEntry);
39605   }
39606 
39607   /* While this module could theoretically support it, sqlite3RowSetNext()
39608   ** is never called after sqlite3RowSetText() for the same RowSet.  So
39609   ** there is never a forest to deal with.  Should this change, simply
39610   ** remove the assert() and the #if 0. */
39611   assert( p->pForest==0 );
39612 #if 0
39613   while( p->pForest ){
39614     struct RowSetEntry *pTree = p->pForest->pLeft;
39615     if( pTree ){
39616       struct RowSetEntry *pHead, *pTail;
39617       rowSetTreeToList(pTree, &pHead, &pTail);
39618       p->pEntry = rowSetEntryMerge(p->pEntry, pHead);
39619     }
39620     p->pForest = p->pForest->pRight;
39621   }
39622 #endif
39623   p->rsFlags |= ROWSET_NEXT;  /* Verify this routine is never called again */
39624 }
39625 
39626 /*
39627 ** Extract the smallest element from the RowSet.
39628 ** Write the element into *pRowid.  Return 1 on success.  Return
39629 ** 0 if the RowSet is already empty.
39630 **
39631 ** After this routine has been called, the sqlite3RowSetInsert()
39632 ** routine may not be called again.
39633 */
39634 SQLITE_PRIVATE int sqlite3RowSetNext(RowSet *p, i64 *pRowid){
39635   assert( p!=0 );
39636 
39637   /* Merge the forest into a single sorted list on first call */
39638   if( (p->rsFlags & ROWSET_NEXT)==0 ) rowSetToList(p);
39639 
39640   /* Return the next entry on the list */
39641   if( p->pEntry ){
39642     *pRowid = p->pEntry->v;
39643     p->pEntry = p->pEntry->pRight;
39644     if( p->pEntry==0 ){
39645       sqlite3RowSetClear(p);
39646     }
39647     return 1;
39648   }else{
39649     return 0;
39650   }
39651 }
39652 
39653 /*
39654 ** Check to see if element iRowid was inserted into the rowset as
39655 ** part of any insert batch prior to iBatch.  Return 1 or 0.
39656 **
39657 ** If this is the first test of a new batch and if there exist entires
39658 ** on pRowSet->pEntry, then sort those entires into the forest at
39659 ** pRowSet->pForest so that they can be tested.
39660 */
39661 SQLITE_PRIVATE int sqlite3RowSetTest(RowSet *pRowSet, int iBatch, sqlite3_int64 iRowid){
39662   struct RowSetEntry *p, *pTree;
39663 
39664   /* This routine is never called after sqlite3RowSetNext() */
39665   assert( pRowSet!=0 && (pRowSet->rsFlags & ROWSET_NEXT)==0 );
39666 
39667   /* Sort entries into the forest on the first test of a new batch
39668   */
39669   if( iBatch!=pRowSet->iBatch ){
39670     p = pRowSet->pEntry;
39671     if( p ){
39672       struct RowSetEntry **ppPrevTree = &pRowSet->pForest;
39673       if( (pRowSet->rsFlags & ROWSET_SORTED)==0 ){
39674         p = rowSetEntrySort(p);
39675       }
39676       for(pTree = pRowSet->pForest; pTree; pTree=pTree->pRight){
39677         ppPrevTree = &pTree->pRight;
39678         if( pTree->pLeft==0 ){
39679           pTree->pLeft = rowSetListToTree(p);
39680           break;
39681         }else{
39682           struct RowSetEntry *pAux, *pTail;
39683           rowSetTreeToList(pTree->pLeft, &pAux, &pTail);
39684           pTree->pLeft = 0;
39685           p = rowSetEntryMerge(pAux, p);
39686         }
39687       }
39688       if( pTree==0 ){
39689         *ppPrevTree = pTree = rowSetEntryAlloc(pRowSet);
39690         if( pTree ){
39691           pTree->v = 0;
39692           pTree->pRight = 0;
39693           pTree->pLeft = rowSetListToTree(p);
39694         }
39695       }
39696       pRowSet->pEntry = 0;
39697       pRowSet->pLast = 0;
39698       pRowSet->rsFlags |= ROWSET_SORTED;
39699     }
39700     pRowSet->iBatch = iBatch;
39701   }
39702 
39703   /* Test to see if the iRowid value appears anywhere in the forest.
39704   ** Return 1 if it does and 0 if not.
39705   */
39706   for(pTree = pRowSet->pForest; pTree; pTree=pTree->pRight){
39707     p = pTree->pLeft;
39708     while( p ){
39709       if( p->v<iRowid ){
39710         p = p->pRight;
39711       }else if( p->v>iRowid ){
39712         p = p->pLeft;
39713       }else{
39714         return 1;
39715       }
39716     }
39717   }
39718   return 0;
39719 }
39720 
39721 /************** End of rowset.c **********************************************/
39722 /************** Begin file pager.c *******************************************/
39723 /*
39724 ** 2001 September 15
39725 **
39726 ** The author disclaims copyright to this source code.  In place of
39727 ** a legal notice, here is a blessing:
39728 **
39729 **    May you do good and not evil.
39730 **    May you find forgiveness for yourself and forgive others.
39731 **    May you share freely, never taking more than you give.
39732 **
39733 *************************************************************************
39734 ** This is the implementation of the page cache subsystem or "pager".
39735 **
39736 ** The pager is used to access a database disk file.  It implements
39737 ** atomic commit and rollback through the use of a journal file that
39738 ** is separate from the database file.  The pager also implements file
39739 ** locking to prevent two processes from writing the same database
39740 ** file simultaneously, or one process from reading the database while
39741 ** another is writing.
39742 */
39743 #ifndef SQLITE_OMIT_DISKIO
39744 /************** Include wal.h in the middle of pager.c ***********************/
39745 /************** Begin file wal.h *********************************************/
39746 /*
39747 ** 2010 February 1
39748 **
39749 ** The author disclaims copyright to this source code.  In place of
39750 ** a legal notice, here is a blessing:
39751 **
39752 **    May you do good and not evil.
39753 **    May you find forgiveness for yourself and forgive others.
39754 **    May you share freely, never taking more than you give.
39755 **
39756 *************************************************************************
39757 ** This header file defines the interface to the write-ahead logging
39758 ** system. Refer to the comments below and the header comment attached to
39759 ** the implementation of each function in log.c for further details.
39760 */
39761 
39762 #ifndef _WAL_H_
39763 #define _WAL_H_
39764 
39765 
39766 /* Additional values that can be added to the sync_flags argument of
39767 ** sqlite3WalFrames():
39768 */
39769 #define WAL_SYNC_TRANSACTIONS  0x20   /* Sync at the end of each transaction */
39770 #define SQLITE_SYNC_MASK       0x13   /* Mask off the SQLITE_SYNC_* values */
39771 
39772 #ifdef SQLITE_OMIT_WAL
39773 # define sqlite3WalOpen(x,y,z)                   0
39774 # define sqlite3WalLimit(x,y)
39775 # define sqlite3WalClose(w,x,y,z)                0
39776 # define sqlite3WalBeginReadTransaction(y,z)     0
39777 # define sqlite3WalEndReadTransaction(z)
39778 # define sqlite3WalDbsize(y)                     0
39779 # define sqlite3WalBeginWriteTransaction(y)      0
39780 # define sqlite3WalEndWriteTransaction(x)        0
39781 # define sqlite3WalUndo(x,y,z)                   0
39782 # define sqlite3WalSavepoint(y,z)
39783 # define sqlite3WalSavepointUndo(y,z)            0
39784 # define sqlite3WalFrames(u,v,w,x,y,z)           0
39785 # define sqlite3WalCheckpoint(r,s,t,u,v,w,x,y,z) 0
39786 # define sqlite3WalCallback(z)                   0
39787 # define sqlite3WalExclusiveMode(y,z)            0
39788 # define sqlite3WalHeapMemory(z)                 0
39789 # define sqlite3WalFramesize(z)                  0
39790 # define sqlite3WalFindFrame(x,y,z)              0
39791 #else
39792 
39793 #define WAL_SAVEPOINT_NDATA 4
39794 
39795 /* Connection to a write-ahead log (WAL) file.
39796 ** There is one object of this type for each pager.
39797 */
39798 typedef struct Wal Wal;
39799 
39800 /* Open and close a connection to a write-ahead log. */
39801 SQLITE_PRIVATE int sqlite3WalOpen(sqlite3_vfs*, sqlite3_file*, const char *, int, i64, Wal**);
39802 SQLITE_PRIVATE int sqlite3WalClose(Wal *pWal, int sync_flags, int, u8 *);
39803 
39804 /* Set the limiting size of a WAL file. */
39805 SQLITE_PRIVATE void sqlite3WalLimit(Wal*, i64);
39806 
39807 /* Used by readers to open (lock) and close (unlock) a snapshot.  A
39808 ** snapshot is like a read-transaction.  It is the state of the database
39809 ** at an instant in time.  sqlite3WalOpenSnapshot gets a read lock and
39810 ** preserves the current state even if the other threads or processes
39811 ** write to or checkpoint the WAL.  sqlite3WalCloseSnapshot() closes the
39812 ** transaction and releases the lock.
39813 */
39814 SQLITE_PRIVATE int sqlite3WalBeginReadTransaction(Wal *pWal, int *);
39815 SQLITE_PRIVATE void sqlite3WalEndReadTransaction(Wal *pWal);
39816 
39817 /* Read a page from the write-ahead log, if it is present. */
39818 SQLITE_PRIVATE int sqlite3WalFindFrame(Wal *, Pgno, u32 *);
39819 SQLITE_PRIVATE int sqlite3WalReadFrame(Wal *, u32, int, u8 *);
39820 
39821 /* If the WAL is not empty, return the size of the database. */
39822 SQLITE_PRIVATE Pgno sqlite3WalDbsize(Wal *pWal);
39823 
39824 /* Obtain or release the WRITER lock. */
39825 SQLITE_PRIVATE int sqlite3WalBeginWriteTransaction(Wal *pWal);
39826 SQLITE_PRIVATE int sqlite3WalEndWriteTransaction(Wal *pWal);
39827 
39828 /* Undo any frames written (but not committed) to the log */
39829 SQLITE_PRIVATE int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx);
39830 
39831 /* Return an integer that records the current (uncommitted) write
39832 ** position in the WAL */
39833 SQLITE_PRIVATE void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData);
39834 
39835 /* Move the write position of the WAL back to iFrame.  Called in
39836 ** response to a ROLLBACK TO command. */
39837 SQLITE_PRIVATE int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData);
39838 
39839 /* Write a frame or frames to the log. */
39840 SQLITE_PRIVATE int sqlite3WalFrames(Wal *pWal, int, PgHdr *, Pgno, int, int);
39841 
39842 /* Copy pages from the log to the database file */
39843 SQLITE_PRIVATE int sqlite3WalCheckpoint(
39844   Wal *pWal,                      /* Write-ahead log connection */
39845   int eMode,                      /* One of PASSIVE, FULL and RESTART */
39846   int (*xBusy)(void*),            /* Function to call when busy */
39847   void *pBusyArg,                 /* Context argument for xBusyHandler */
39848   int sync_flags,                 /* Flags to sync db file with (or 0) */
39849   int nBuf,                       /* Size of buffer nBuf */
39850   u8 *zBuf,                       /* Temporary buffer to use */
39851   int *pnLog,                     /* OUT: Number of frames in WAL */
39852   int *pnCkpt                     /* OUT: Number of backfilled frames in WAL */
39853 );
39854 
39855 /* Return the value to pass to a sqlite3_wal_hook callback, the
39856 ** number of frames in the WAL at the point of the last commit since
39857 ** sqlite3WalCallback() was called.  If no commits have occurred since
39858 ** the last call, then return 0.
39859 */
39860 SQLITE_PRIVATE int sqlite3WalCallback(Wal *pWal);
39861 
39862 /* Tell the wal layer that an EXCLUSIVE lock has been obtained (or released)
39863 ** by the pager layer on the database file.
39864 */
39865 SQLITE_PRIVATE int sqlite3WalExclusiveMode(Wal *pWal, int op);
39866 
39867 /* Return true if the argument is non-NULL and the WAL module is using
39868 ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
39869 ** WAL module is using shared-memory, return false.
39870 */
39871 SQLITE_PRIVATE int sqlite3WalHeapMemory(Wal *pWal);
39872 
39873 #ifdef SQLITE_ENABLE_ZIPVFS
39874 /* If the WAL file is not empty, return the number of bytes of content
39875 ** stored in each frame (i.e. the db page-size when the WAL was created).
39876 */
39877 SQLITE_PRIVATE int sqlite3WalFramesize(Wal *pWal);
39878 #endif
39879 
39880 #endif /* ifndef SQLITE_OMIT_WAL */
39881 #endif /* _WAL_H_ */
39882 
39883 /************** End of wal.h *************************************************/
39884 /************** Continuing where we left off in pager.c **********************/
39885 
39886 
39887 /******************* NOTES ON THE DESIGN OF THE PAGER ************************
39888 **
39889 ** This comment block describes invariants that hold when using a rollback
39890 ** journal.  These invariants do not apply for journal_mode=WAL,
39891 ** journal_mode=MEMORY, or journal_mode=OFF.
39892 **
39893 ** Within this comment block, a page is deemed to have been synced
39894 ** automatically as soon as it is written when PRAGMA synchronous=OFF.
39895 ** Otherwise, the page is not synced until the xSync method of the VFS
39896 ** is called successfully on the file containing the page.
39897 **
39898 ** Definition:  A page of the database file is said to be "overwriteable" if
39899 ** one or more of the following are true about the page:
39900 **
39901 **     (a)  The original content of the page as it was at the beginning of
39902 **          the transaction has been written into the rollback journal and
39903 **          synced.
39904 **
39905 **     (b)  The page was a freelist leaf page at the start of the transaction.
39906 **
39907 **     (c)  The page number is greater than the largest page that existed in
39908 **          the database file at the start of the transaction.
39909 **
39910 ** (1) A page of the database file is never overwritten unless one of the
39911 **     following are true:
39912 **
39913 **     (a) The page and all other pages on the same sector are overwriteable.
39914 **
39915 **     (b) The atomic page write optimization is enabled, and the entire
39916 **         transaction other than the update of the transaction sequence
39917 **         number consists of a single page change.
39918 **
39919 ** (2) The content of a page written into the rollback journal exactly matches
39920 **     both the content in the database when the rollback journal was written
39921 **     and the content in the database at the beginning of the current
39922 **     transaction.
39923 **
39924 ** (3) Writes to the database file are an integer multiple of the page size
39925 **     in length and are aligned on a page boundary.
39926 **
39927 ** (4) Reads from the database file are either aligned on a page boundary and
39928 **     an integer multiple of the page size in length or are taken from the
39929 **     first 100 bytes of the database file.
39930 **
39931 ** (5) All writes to the database file are synced prior to the rollback journal
39932 **     being deleted, truncated, or zeroed.
39933 **
39934 ** (6) If a master journal file is used, then all writes to the database file
39935 **     are synced prior to the master journal being deleted.
39936 **
39937 ** Definition: Two databases (or the same database at two points it time)
39938 ** are said to be "logically equivalent" if they give the same answer to
39939 ** all queries.  Note in particular the content of freelist leaf
39940 ** pages can be changed arbitarily without effecting the logical equivalence
39941 ** of the database.
39942 **
39943 ** (7) At any time, if any subset, including the empty set and the total set,
39944 **     of the unsynced changes to a rollback journal are removed and the
39945 **     journal is rolled back, the resulting database file will be logical
39946 **     equivalent to the database file at the beginning of the transaction.
39947 **
39948 ** (8) When a transaction is rolled back, the xTruncate method of the VFS
39949 **     is called to restore the database file to the same size it was at
39950 **     the beginning of the transaction.  (In some VFSes, the xTruncate
39951 **     method is a no-op, but that does not change the fact the SQLite will
39952 **     invoke it.)
39953 **
39954 ** (9) Whenever the database file is modified, at least one bit in the range
39955 **     of bytes from 24 through 39 inclusive will be changed prior to releasing
39956 **     the EXCLUSIVE lock, thus signaling other connections on the same
39957 **     database to flush their caches.
39958 **
39959 ** (10) The pattern of bits in bytes 24 through 39 shall not repeat in less
39960 **      than one billion transactions.
39961 **
39962 ** (11) A database file is well-formed at the beginning and at the conclusion
39963 **      of every transaction.
39964 **
39965 ** (12) An EXCLUSIVE lock is held on the database file when writing to
39966 **      the database file.
39967 **
39968 ** (13) A SHARED lock is held on the database file while reading any
39969 **      content out of the database file.
39970 **
39971 ******************************************************************************/
39972 
39973 /*
39974 ** Macros for troubleshooting.  Normally turned off
39975 */
39976 #if 0
39977 int sqlite3PagerTrace=1;  /* True to enable tracing */
39978 #define sqlite3DebugPrintf printf
39979 #define PAGERTRACE(X)     if( sqlite3PagerTrace ){ sqlite3DebugPrintf X; }
39980 #else
39981 #define PAGERTRACE(X)
39982 #endif
39983 
39984 /*
39985 ** The following two macros are used within the PAGERTRACE() macros above
39986 ** to print out file-descriptors.
39987 **
39988 ** PAGERID() takes a pointer to a Pager struct as its argument. The
39989 ** associated file-descriptor is returned. FILEHANDLEID() takes an sqlite3_file
39990 ** struct as its argument.
39991 */
39992 #define PAGERID(p) ((int)(p->fd))
39993 #define FILEHANDLEID(fd) ((int)fd)
39994 
39995 /*
39996 ** The Pager.eState variable stores the current 'state' of a pager. A
39997 ** pager may be in any one of the seven states shown in the following
39998 ** state diagram.
39999 **
40000 **                            OPEN <------+------+
40001 **                              |         |      |
40002 **                              V         |      |
40003 **               +---------> READER-------+      |
40004 **               |              |                |
40005 **               |              V                |
40006 **               |<-------WRITER_LOCKED------> ERROR
40007 **               |              |                ^
40008 **               |              V                |
40009 **               |<------WRITER_CACHEMOD-------->|
40010 **               |              |                |
40011 **               |              V                |
40012 **               |<-------WRITER_DBMOD---------->|
40013 **               |              |                |
40014 **               |              V                |
40015 **               +<------WRITER_FINISHED-------->+
40016 **
40017 **
40018 ** List of state transitions and the C [function] that performs each:
40019 **
40020 **   OPEN              -> READER              [sqlite3PagerSharedLock]
40021 **   READER            -> OPEN                [pager_unlock]
40022 **
40023 **   READER            -> WRITER_LOCKED       [sqlite3PagerBegin]
40024 **   WRITER_LOCKED     -> WRITER_CACHEMOD     [pager_open_journal]
40025 **   WRITER_CACHEMOD   -> WRITER_DBMOD        [syncJournal]
40026 **   WRITER_DBMOD      -> WRITER_FINISHED     [sqlite3PagerCommitPhaseOne]
40027 **   WRITER_***        -> READER              [pager_end_transaction]
40028 **
40029 **   WRITER_***        -> ERROR               [pager_error]
40030 **   ERROR             -> OPEN                [pager_unlock]
40031 **
40032 **
40033 **  OPEN:
40034 **
40035 **    The pager starts up in this state. Nothing is guaranteed in this
40036 **    state - the file may or may not be locked and the database size is
40037 **    unknown. The database may not be read or written.
40038 **
40039 **    * No read or write transaction is active.
40040 **    * Any lock, or no lock at all, may be held on the database file.
40041 **    * The dbSize, dbOrigSize and dbFileSize variables may not be trusted.
40042 **
40043 **  READER:
40044 **
40045 **    In this state all the requirements for reading the database in
40046 **    rollback (non-WAL) mode are met. Unless the pager is (or recently
40047 **    was) in exclusive-locking mode, a user-level read transaction is
40048 **    open. The database size is known in this state.
40049 **
40050 **    A connection running with locking_mode=normal enters this state when
40051 **    it opens a read-transaction on the database and returns to state
40052 **    OPEN after the read-transaction is completed. However a connection
40053 **    running in locking_mode=exclusive (including temp databases) remains in
40054 **    this state even after the read-transaction is closed. The only way
40055 **    a locking_mode=exclusive connection can transition from READER to OPEN
40056 **    is via the ERROR state (see below).
40057 **
40058 **    * A read transaction may be active (but a write-transaction cannot).
40059 **    * A SHARED or greater lock is held on the database file.
40060 **    * The dbSize variable may be trusted (even if a user-level read
40061 **      transaction is not active). The dbOrigSize and dbFileSize variables
40062 **      may not be trusted at this point.
40063 **    * If the database is a WAL database, then the WAL connection is open.
40064 **    * Even if a read-transaction is not open, it is guaranteed that
40065 **      there is no hot-journal in the file-system.
40066 **
40067 **  WRITER_LOCKED:
40068 **
40069 **    The pager moves to this state from READER when a write-transaction
40070 **    is first opened on the database. In WRITER_LOCKED state, all locks
40071 **    required to start a write-transaction are held, but no actual
40072 **    modifications to the cache or database have taken place.
40073 **
40074 **    In rollback mode, a RESERVED or (if the transaction was opened with
40075 **    BEGIN EXCLUSIVE) EXCLUSIVE lock is obtained on the database file when
40076 **    moving to this state, but the journal file is not written to or opened
40077 **    to in this state. If the transaction is committed or rolled back while
40078 **    in WRITER_LOCKED state, all that is required is to unlock the database
40079 **    file.
40080 **
40081 **    IN WAL mode, WalBeginWriteTransaction() is called to lock the log file.
40082 **    If the connection is running with locking_mode=exclusive, an attempt
40083 **    is made to obtain an EXCLUSIVE lock on the database file.
40084 **
40085 **    * A write transaction is active.
40086 **    * If the connection is open in rollback-mode, a RESERVED or greater
40087 **      lock is held on the database file.
40088 **    * If the connection is open in WAL-mode, a WAL write transaction
40089 **      is open (i.e. sqlite3WalBeginWriteTransaction() has been successfully
40090 **      called).
40091 **    * The dbSize, dbOrigSize and dbFileSize variables are all valid.
40092 **    * The contents of the pager cache have not been modified.
40093 **    * The journal file may or may not be open.
40094 **    * Nothing (not even the first header) has been written to the journal.
40095 **
40096 **  WRITER_CACHEMOD:
40097 **
40098 **    A pager moves from WRITER_LOCKED state to this state when a page is
40099 **    first modified by the upper layer. In rollback mode the journal file
40100 **    is opened (if it is not already open) and a header written to the
40101 **    start of it. The database file on disk has not been modified.
40102 **
40103 **    * A write transaction is active.
40104 **    * A RESERVED or greater lock is held on the database file.
40105 **    * The journal file is open and the first header has been written
40106 **      to it, but the header has not been synced to disk.
40107 **    * The contents of the page cache have been modified.
40108 **
40109 **  WRITER_DBMOD:
40110 **
40111 **    The pager transitions from WRITER_CACHEMOD into WRITER_DBMOD state
40112 **    when it modifies the contents of the database file. WAL connections
40113 **    never enter this state (since they do not modify the database file,
40114 **    just the log file).
40115 **
40116 **    * A write transaction is active.
40117 **    * An EXCLUSIVE or greater lock is held on the database file.
40118 **    * The journal file is open and the first header has been written
40119 **      and synced to disk.
40120 **    * The contents of the page cache have been modified (and possibly
40121 **      written to disk).
40122 **
40123 **  WRITER_FINISHED:
40124 **
40125 **    It is not possible for a WAL connection to enter this state.
40126 **
40127 **    A rollback-mode pager changes to WRITER_FINISHED state from WRITER_DBMOD
40128 **    state after the entire transaction has been successfully written into the
40129 **    database file. In this state the transaction may be committed simply
40130 **    by finalizing the journal file. Once in WRITER_FINISHED state, it is
40131 **    not possible to modify the database further. At this point, the upper
40132 **    layer must either commit or rollback the transaction.
40133 **
40134 **    * A write transaction is active.
40135 **    * An EXCLUSIVE or greater lock is held on the database file.
40136 **    * All writing and syncing of journal and database data has finished.
40137 **      If no error occurred, all that remains is to finalize the journal to
40138 **      commit the transaction. If an error did occur, the caller will need
40139 **      to rollback the transaction.
40140 **
40141 **  ERROR:
40142 **
40143 **    The ERROR state is entered when an IO or disk-full error (including
40144 **    SQLITE_IOERR_NOMEM) occurs at a point in the code that makes it
40145 **    difficult to be sure that the in-memory pager state (cache contents,
40146 **    db size etc.) are consistent with the contents of the file-system.
40147 **
40148 **    Temporary pager files may enter the ERROR state, but in-memory pagers
40149 **    cannot.
40150 **
40151 **    For example, if an IO error occurs while performing a rollback,
40152 **    the contents of the page-cache may be left in an inconsistent state.
40153 **    At this point it would be dangerous to change back to READER state
40154 **    (as usually happens after a rollback). Any subsequent readers might
40155 **    report database corruption (due to the inconsistent cache), and if
40156 **    they upgrade to writers, they may inadvertently corrupt the database
40157 **    file. To avoid this hazard, the pager switches into the ERROR state
40158 **    instead of READER following such an error.
40159 **
40160 **    Once it has entered the ERROR state, any attempt to use the pager
40161 **    to read or write data returns an error. Eventually, once all
40162 **    outstanding transactions have been abandoned, the pager is able to
40163 **    transition back to OPEN state, discarding the contents of the
40164 **    page-cache and any other in-memory state at the same time. Everything
40165 **    is reloaded from disk (and, if necessary, hot-journal rollback peformed)
40166 **    when a read-transaction is next opened on the pager (transitioning
40167 **    the pager into READER state). At that point the system has recovered
40168 **    from the error.
40169 **
40170 **    Specifically, the pager jumps into the ERROR state if:
40171 **
40172 **      1. An error occurs while attempting a rollback. This happens in
40173 **         function sqlite3PagerRollback().
40174 **
40175 **      2. An error occurs while attempting to finalize a journal file
40176 **         following a commit in function sqlite3PagerCommitPhaseTwo().
40177 **
40178 **      3. An error occurs while attempting to write to the journal or
40179 **         database file in function pagerStress() in order to free up
40180 **         memory.
40181 **
40182 **    In other cases, the error is returned to the b-tree layer. The b-tree
40183 **    layer then attempts a rollback operation. If the error condition
40184 **    persists, the pager enters the ERROR state via condition (1) above.
40185 **
40186 **    Condition (3) is necessary because it can be triggered by a read-only
40187 **    statement executed within a transaction. In this case, if the error
40188 **    code were simply returned to the user, the b-tree layer would not
40189 **    automatically attempt a rollback, as it assumes that an error in a
40190 **    read-only statement cannot leave the pager in an internally inconsistent
40191 **    state.
40192 **
40193 **    * The Pager.errCode variable is set to something other than SQLITE_OK.
40194 **    * There are one or more outstanding references to pages (after the
40195 **      last reference is dropped the pager should move back to OPEN state).
40196 **    * The pager is not an in-memory pager.
40197 **
40198 **
40199 ** Notes:
40200 **
40201 **   * A pager is never in WRITER_DBMOD or WRITER_FINISHED state if the
40202 **     connection is open in WAL mode. A WAL connection is always in one
40203 **     of the first four states.
40204 **
40205 **   * Normally, a connection open in exclusive mode is never in PAGER_OPEN
40206 **     state. There are two exceptions: immediately after exclusive-mode has
40207 **     been turned on (and before any read or write transactions are
40208 **     executed), and when the pager is leaving the "error state".
40209 **
40210 **   * See also: assert_pager_state().
40211 */
40212 #define PAGER_OPEN                  0
40213 #define PAGER_READER                1
40214 #define PAGER_WRITER_LOCKED         2
40215 #define PAGER_WRITER_CACHEMOD       3
40216 #define PAGER_WRITER_DBMOD          4
40217 #define PAGER_WRITER_FINISHED       5
40218 #define PAGER_ERROR                 6
40219 
40220 /*
40221 ** The Pager.eLock variable is almost always set to one of the
40222 ** following locking-states, according to the lock currently held on
40223 ** the database file: NO_LOCK, SHARED_LOCK, RESERVED_LOCK or EXCLUSIVE_LOCK.
40224 ** This variable is kept up to date as locks are taken and released by
40225 ** the pagerLockDb() and pagerUnlockDb() wrappers.
40226 **
40227 ** If the VFS xLock() or xUnlock() returns an error other than SQLITE_BUSY
40228 ** (i.e. one of the SQLITE_IOERR subtypes), it is not clear whether or not
40229 ** the operation was successful. In these circumstances pagerLockDb() and
40230 ** pagerUnlockDb() take a conservative approach - eLock is always updated
40231 ** when unlocking the file, and only updated when locking the file if the
40232 ** VFS call is successful. This way, the Pager.eLock variable may be set
40233 ** to a less exclusive (lower) value than the lock that is actually held
40234 ** at the system level, but it is never set to a more exclusive value.
40235 **
40236 ** This is usually safe. If an xUnlock fails or appears to fail, there may
40237 ** be a few redundant xLock() calls or a lock may be held for longer than
40238 ** required, but nothing really goes wrong.
40239 **
40240 ** The exception is when the database file is unlocked as the pager moves
40241 ** from ERROR to OPEN state. At this point there may be a hot-journal file
40242 ** in the file-system that needs to be rolled back (as part of a OPEN->SHARED
40243 ** transition, by the same pager or any other). If the call to xUnlock()
40244 ** fails at this point and the pager is left holding an EXCLUSIVE lock, this
40245 ** can confuse the call to xCheckReservedLock() call made later as part
40246 ** of hot-journal detection.
40247 **
40248 ** xCheckReservedLock() is defined as returning true "if there is a RESERVED
40249 ** lock held by this process or any others". So xCheckReservedLock may
40250 ** return true because the caller itself is holding an EXCLUSIVE lock (but
40251 ** doesn't know it because of a previous error in xUnlock). If this happens
40252 ** a hot-journal may be mistaken for a journal being created by an active
40253 ** transaction in another process, causing SQLite to read from the database
40254 ** without rolling it back.
40255 **
40256 ** To work around this, if a call to xUnlock() fails when unlocking the
40257 ** database in the ERROR state, Pager.eLock is set to UNKNOWN_LOCK. It
40258 ** is only changed back to a real locking state after a successful call
40259 ** to xLock(EXCLUSIVE). Also, the code to do the OPEN->SHARED state transition
40260 ** omits the check for a hot-journal if Pager.eLock is set to UNKNOWN_LOCK
40261 ** lock. Instead, it assumes a hot-journal exists and obtains an EXCLUSIVE
40262 ** lock on the database file before attempting to roll it back. See function
40263 ** PagerSharedLock() for more detail.
40264 **
40265 ** Pager.eLock may only be set to UNKNOWN_LOCK when the pager is in
40266 ** PAGER_OPEN state.
40267 */
40268 #define UNKNOWN_LOCK                (EXCLUSIVE_LOCK+1)
40269 
40270 /*
40271 ** A macro used for invoking the codec if there is one
40272 */
40273 #ifdef SQLITE_HAS_CODEC
40274 # define CODEC1(P,D,N,X,E) \
40275     if( P->xCodec && P->xCodec(P->pCodec,D,N,X)==0 ){ E; }
40276 # define CODEC2(P,D,N,X,E,O) \
40277     if( P->xCodec==0 ){ O=(char*)D; }else \
40278     if( (O=(char*)(P->xCodec(P->pCodec,D,N,X)))==0 ){ E; }
40279 #else
40280 # define CODEC1(P,D,N,X,E)   /* NO-OP */
40281 # define CODEC2(P,D,N,X,E,O) O=(char*)D
40282 #endif
40283 
40284 /*
40285 ** The maximum allowed sector size. 64KiB. If the xSectorsize() method
40286 ** returns a value larger than this, then MAX_SECTOR_SIZE is used instead.
40287 ** This could conceivably cause corruption following a power failure on
40288 ** such a system. This is currently an undocumented limit.
40289 */
40290 #define MAX_SECTOR_SIZE 0x10000
40291 
40292 /*
40293 ** An instance of the following structure is allocated for each active
40294 ** savepoint and statement transaction in the system. All such structures
40295 ** are stored in the Pager.aSavepoint[] array, which is allocated and
40296 ** resized using sqlite3Realloc().
40297 **
40298 ** When a savepoint is created, the PagerSavepoint.iHdrOffset field is
40299 ** set to 0. If a journal-header is written into the main journal while
40300 ** the savepoint is active, then iHdrOffset is set to the byte offset
40301 ** immediately following the last journal record written into the main
40302 ** journal before the journal-header. This is required during savepoint
40303 ** rollback (see pagerPlaybackSavepoint()).
40304 */
40305 typedef struct PagerSavepoint PagerSavepoint;
40306 struct PagerSavepoint {
40307   i64 iOffset;                 /* Starting offset in main journal */
40308   i64 iHdrOffset;              /* See above */
40309   Bitvec *pInSavepoint;        /* Set of pages in this savepoint */
40310   Pgno nOrig;                  /* Original number of pages in file */
40311   Pgno iSubRec;                /* Index of first record in sub-journal */
40312 #ifndef SQLITE_OMIT_WAL
40313   u32 aWalData[WAL_SAVEPOINT_NDATA];        /* WAL savepoint context */
40314 #endif
40315 };
40316 
40317 /*
40318 ** Bits of the Pager.doNotSpill flag.  See further description below.
40319 */
40320 #define SPILLFLAG_OFF         0x01      /* Never spill cache.  Set via pragma */
40321 #define SPILLFLAG_ROLLBACK    0x02      /* Current rolling back, so do not spill */
40322 #define SPILLFLAG_NOSYNC      0x04      /* Spill is ok, but do not sync */
40323 
40324 /*
40325 ** A open page cache is an instance of struct Pager. A description of
40326 ** some of the more important member variables follows:
40327 **
40328 ** eState
40329 **
40330 **   The current 'state' of the pager object. See the comment and state
40331 **   diagram above for a description of the pager state.
40332 **
40333 ** eLock
40334 **
40335 **   For a real on-disk database, the current lock held on the database file -
40336 **   NO_LOCK, SHARED_LOCK, RESERVED_LOCK or EXCLUSIVE_LOCK.
40337 **
40338 **   For a temporary or in-memory database (neither of which require any
40339 **   locks), this variable is always set to EXCLUSIVE_LOCK. Since such
40340 **   databases always have Pager.exclusiveMode==1, this tricks the pager
40341 **   logic into thinking that it already has all the locks it will ever
40342 **   need (and no reason to release them).
40343 **
40344 **   In some (obscure) circumstances, this variable may also be set to
40345 **   UNKNOWN_LOCK. See the comment above the #define of UNKNOWN_LOCK for
40346 **   details.
40347 **
40348 ** changeCountDone
40349 **
40350 **   This boolean variable is used to make sure that the change-counter
40351 **   (the 4-byte header field at byte offset 24 of the database file) is
40352 **   not updated more often than necessary.
40353 **
40354 **   It is set to true when the change-counter field is updated, which
40355 **   can only happen if an exclusive lock is held on the database file.
40356 **   It is cleared (set to false) whenever an exclusive lock is
40357 **   relinquished on the database file. Each time a transaction is committed,
40358 **   The changeCountDone flag is inspected. If it is true, the work of
40359 **   updating the change-counter is omitted for the current transaction.
40360 **
40361 **   This mechanism means that when running in exclusive mode, a connection
40362 **   need only update the change-counter once, for the first transaction
40363 **   committed.
40364 **
40365 ** setMaster
40366 **
40367 **   When PagerCommitPhaseOne() is called to commit a transaction, it may
40368 **   (or may not) specify a master-journal name to be written into the
40369 **   journal file before it is synced to disk.
40370 **
40371 **   Whether or not a journal file contains a master-journal pointer affects
40372 **   the way in which the journal file is finalized after the transaction is
40373 **   committed or rolled back when running in "journal_mode=PERSIST" mode.
40374 **   If a journal file does not contain a master-journal pointer, it is
40375 **   finalized by overwriting the first journal header with zeroes. If
40376 **   it does contain a master-journal pointer the journal file is finalized
40377 **   by truncating it to zero bytes, just as if the connection were
40378 **   running in "journal_mode=truncate" mode.
40379 **
40380 **   Journal files that contain master journal pointers cannot be finalized
40381 **   simply by overwriting the first journal-header with zeroes, as the
40382 **   master journal pointer could interfere with hot-journal rollback of any
40383 **   subsequently interrupted transaction that reuses the journal file.
40384 **
40385 **   The flag is cleared as soon as the journal file is finalized (either
40386 **   by PagerCommitPhaseTwo or PagerRollback). If an IO error prevents the
40387 **   journal file from being successfully finalized, the setMaster flag
40388 **   is cleared anyway (and the pager will move to ERROR state).
40389 **
40390 ** doNotSpill
40391 **
40392 **   This variables control the behavior of cache-spills  (calls made by
40393 **   the pcache module to the pagerStress() routine to write cached data
40394 **   to the file-system in order to free up memory).
40395 **
40396 **   When bits SPILLFLAG_OFF or SPILLFLAG_ROLLBACK of doNotSpill are set,
40397 **   writing to the database from pagerStress() is disabled altogether.
40398 **   The SPILLFLAG_ROLLBACK case is done in a very obscure case that
40399 **   comes up during savepoint rollback that requires the pcache module
40400 **   to allocate a new page to prevent the journal file from being written
40401 **   while it is being traversed by code in pager_playback().  The SPILLFLAG_OFF
40402 **   case is a user preference.
40403 **
40404 **   If the SPILLFLAG_NOSYNC bit is set, writing to the database from pagerStress()
40405 **   is permitted, but syncing the journal file is not. This flag is set
40406 **   by sqlite3PagerWrite() when the file-system sector-size is larger than
40407 **   the database page-size in order to prevent a journal sync from happening
40408 **   in between the journalling of two pages on the same sector.
40409 **
40410 ** subjInMemory
40411 **
40412 **   This is a boolean variable. If true, then any required sub-journal
40413 **   is opened as an in-memory journal file. If false, then in-memory
40414 **   sub-journals are only used for in-memory pager files.
40415 **
40416 **   This variable is updated by the upper layer each time a new
40417 **   write-transaction is opened.
40418 **
40419 ** dbSize, dbOrigSize, dbFileSize
40420 **
40421 **   Variable dbSize is set to the number of pages in the database file.
40422 **   It is valid in PAGER_READER and higher states (all states except for
40423 **   OPEN and ERROR).
40424 **
40425 **   dbSize is set based on the size of the database file, which may be
40426 **   larger than the size of the database (the value stored at offset
40427 **   28 of the database header by the btree). If the size of the file
40428 **   is not an integer multiple of the page-size, the value stored in
40429 **   dbSize is rounded down (i.e. a 5KB file with 2K page-size has dbSize==2).
40430 **   Except, any file that is greater than 0 bytes in size is considered
40431 **   to have at least one page. (i.e. a 1KB file with 2K page-size leads
40432 **   to dbSize==1).
40433 **
40434 **   During a write-transaction, if pages with page-numbers greater than
40435 **   dbSize are modified in the cache, dbSize is updated accordingly.
40436 **   Similarly, if the database is truncated using PagerTruncateImage(),
40437 **   dbSize is updated.
40438 **
40439 **   Variables dbOrigSize and dbFileSize are valid in states
40440 **   PAGER_WRITER_LOCKED and higher. dbOrigSize is a copy of the dbSize
40441 **   variable at the start of the transaction. It is used during rollback,
40442 **   and to determine whether or not pages need to be journalled before
40443 **   being modified.
40444 **
40445 **   Throughout a write-transaction, dbFileSize contains the size of
40446 **   the file on disk in pages. It is set to a copy of dbSize when the
40447 **   write-transaction is first opened, and updated when VFS calls are made
40448 **   to write or truncate the database file on disk.
40449 **
40450 **   The only reason the dbFileSize variable is required is to suppress
40451 **   unnecessary calls to xTruncate() after committing a transaction. If,
40452 **   when a transaction is committed, the dbFileSize variable indicates
40453 **   that the database file is larger than the database image (Pager.dbSize),
40454 **   pager_truncate() is called. The pager_truncate() call uses xFilesize()
40455 **   to measure the database file on disk, and then truncates it if required.
40456 **   dbFileSize is not used when rolling back a transaction. In this case
40457 **   pager_truncate() is called unconditionally (which means there may be
40458 **   a call to xFilesize() that is not strictly required). In either case,
40459 **   pager_truncate() may cause the file to become smaller or larger.
40460 **
40461 ** dbHintSize
40462 **
40463 **   The dbHintSize variable is used to limit the number of calls made to
40464 **   the VFS xFileControl(FCNTL_SIZE_HINT) method.
40465 **
40466 **   dbHintSize is set to a copy of the dbSize variable when a
40467 **   write-transaction is opened (at the same time as dbFileSize and
40468 **   dbOrigSize). If the xFileControl(FCNTL_SIZE_HINT) method is called,
40469 **   dbHintSize is increased to the number of pages that correspond to the
40470 **   size-hint passed to the method call. See pager_write_pagelist() for
40471 **   details.
40472 **
40473 ** errCode
40474 **
40475 **   The Pager.errCode variable is only ever used in PAGER_ERROR state. It
40476 **   is set to zero in all other states. In PAGER_ERROR state, Pager.errCode
40477 **   is always set to SQLITE_FULL, SQLITE_IOERR or one of the SQLITE_IOERR_XXX
40478 **   sub-codes.
40479 */
40480 struct Pager {
40481   sqlite3_vfs *pVfs;          /* OS functions to use for IO */
40482   u8 exclusiveMode;           /* Boolean. True if locking_mode==EXCLUSIVE */
40483   u8 journalMode;             /* One of the PAGER_JOURNALMODE_* values */
40484   u8 useJournal;              /* Use a rollback journal on this file */
40485   u8 noSync;                  /* Do not sync the journal if true */
40486   u8 fullSync;                /* Do extra syncs of the journal for robustness */
40487   u8 ckptSyncFlags;           /* SYNC_NORMAL or SYNC_FULL for checkpoint */
40488   u8 walSyncFlags;            /* SYNC_NORMAL or SYNC_FULL for wal writes */
40489   u8 syncFlags;               /* SYNC_NORMAL or SYNC_FULL otherwise */
40490   u8 tempFile;                /* zFilename is a temporary or immutable file */
40491   u8 noLock;                  /* Do not lock (except in WAL mode) */
40492   u8 readOnly;                /* True for a read-only database */
40493   u8 memDb;                   /* True to inhibit all file I/O */
40494 
40495   /**************************************************************************
40496   ** The following block contains those class members that change during
40497   ** routine opertion.  Class members not in this block are either fixed
40498   ** when the pager is first created or else only change when there is a
40499   ** significant mode change (such as changing the page_size, locking_mode,
40500   ** or the journal_mode).  From another view, these class members describe
40501   ** the "state" of the pager, while other class members describe the
40502   ** "configuration" of the pager.
40503   */
40504   u8 eState;                  /* Pager state (OPEN, READER, WRITER_LOCKED..) */
40505   u8 eLock;                   /* Current lock held on database file */
40506   u8 changeCountDone;         /* Set after incrementing the change-counter */
40507   u8 setMaster;               /* True if a m-j name has been written to jrnl */
40508   u8 doNotSpill;              /* Do not spill the cache when non-zero */
40509   u8 subjInMemory;            /* True to use in-memory sub-journals */
40510   Pgno dbSize;                /* Number of pages in the database */
40511   Pgno dbOrigSize;            /* dbSize before the current transaction */
40512   Pgno dbFileSize;            /* Number of pages in the database file */
40513   Pgno dbHintSize;            /* Value passed to FCNTL_SIZE_HINT call */
40514   int errCode;                /* One of several kinds of errors */
40515   int nRec;                   /* Pages journalled since last j-header written */
40516   u32 cksumInit;              /* Quasi-random value added to every checksum */
40517   u32 nSubRec;                /* Number of records written to sub-journal */
40518   Bitvec *pInJournal;         /* One bit for each page in the database file */
40519   sqlite3_file *fd;           /* File descriptor for database */
40520   sqlite3_file *jfd;          /* File descriptor for main journal */
40521   sqlite3_file *sjfd;         /* File descriptor for sub-journal */
40522   i64 journalOff;             /* Current write offset in the journal file */
40523   i64 journalHdr;             /* Byte offset to previous journal header */
40524   sqlite3_backup *pBackup;    /* Pointer to list of ongoing backup processes */
40525   PagerSavepoint *aSavepoint; /* Array of active savepoints */
40526   int nSavepoint;             /* Number of elements in aSavepoint[] */
40527   char dbFileVers[16];        /* Changes whenever database file changes */
40528 
40529   u8 bUseFetch;               /* True to use xFetch() */
40530   int nMmapOut;               /* Number of mmap pages currently outstanding */
40531   sqlite3_int64 szMmap;       /* Desired maximum mmap size */
40532   PgHdr *pMmapFreelist;       /* List of free mmap page headers (pDirty) */
40533   /*
40534   ** End of the routinely-changing class members
40535   ***************************************************************************/
40536 
40537   u16 nExtra;                 /* Add this many bytes to each in-memory page */
40538   i16 nReserve;               /* Number of unused bytes at end of each page */
40539   u32 vfsFlags;               /* Flags for sqlite3_vfs.xOpen() */
40540   u32 sectorSize;             /* Assumed sector size during rollback */
40541   int pageSize;               /* Number of bytes in a page */
40542   Pgno mxPgno;                /* Maximum allowed size of the database */
40543   i64 journalSizeLimit;       /* Size limit for persistent journal files */
40544   char *zFilename;            /* Name of the database file */
40545   char *zJournal;             /* Name of the journal file */
40546   int (*xBusyHandler)(void*); /* Function to call when busy */
40547   void *pBusyHandlerArg;      /* Context argument for xBusyHandler */
40548   int aStat[3];               /* Total cache hits, misses and writes */
40549 #ifdef SQLITE_TEST
40550   int nRead;                  /* Database pages read */
40551 #endif
40552   void (*xReiniter)(DbPage*); /* Call this routine when reloading pages */
40553 #ifdef SQLITE_HAS_CODEC
40554   void *(*xCodec)(void*,void*,Pgno,int); /* Routine for en/decoding data */
40555   void (*xCodecSizeChng)(void*,int,int); /* Notify of page size changes */
40556   void (*xCodecFree)(void*);             /* Destructor for the codec */
40557   void *pCodec;               /* First argument to xCodec... methods */
40558 #endif
40559   char *pTmpSpace;            /* Pager.pageSize bytes of space for tmp use */
40560   PCache *pPCache;            /* Pointer to page cache object */
40561 #ifndef SQLITE_OMIT_WAL
40562   Wal *pWal;                  /* Write-ahead log used by "journal_mode=wal" */
40563   char *zWal;                 /* File name for write-ahead log */
40564 #endif
40565 };
40566 
40567 /*
40568 ** Indexes for use with Pager.aStat[]. The Pager.aStat[] array contains
40569 ** the values accessed by passing SQLITE_DBSTATUS_CACHE_HIT, CACHE_MISS
40570 ** or CACHE_WRITE to sqlite3_db_status().
40571 */
40572 #define PAGER_STAT_HIT   0
40573 #define PAGER_STAT_MISS  1
40574 #define PAGER_STAT_WRITE 2
40575 
40576 /*
40577 ** The following global variables hold counters used for
40578 ** testing purposes only.  These variables do not exist in
40579 ** a non-testing build.  These variables are not thread-safe.
40580 */
40581 #ifdef SQLITE_TEST
40582 SQLITE_API int sqlite3_pager_readdb_count = 0;    /* Number of full pages read from DB */
40583 SQLITE_API int sqlite3_pager_writedb_count = 0;   /* Number of full pages written to DB */
40584 SQLITE_API int sqlite3_pager_writej_count = 0;    /* Number of pages written to journal */
40585 # define PAGER_INCR(v)  v++
40586 #else
40587 # define PAGER_INCR(v)
40588 #endif
40589 
40590 
40591 
40592 /*
40593 ** Journal files begin with the following magic string.  The data
40594 ** was obtained from /dev/random.  It is used only as a sanity check.
40595 **
40596 ** Since version 2.8.0, the journal format contains additional sanity
40597 ** checking information.  If the power fails while the journal is being
40598 ** written, semi-random garbage data might appear in the journal
40599 ** file after power is restored.  If an attempt is then made
40600 ** to roll the journal back, the database could be corrupted.  The additional
40601 ** sanity checking data is an attempt to discover the garbage in the
40602 ** journal and ignore it.
40603 **
40604 ** The sanity checking information for the new journal format consists
40605 ** of a 32-bit checksum on each page of data.  The checksum covers both
40606 ** the page number and the pPager->pageSize bytes of data for the page.
40607 ** This cksum is initialized to a 32-bit random value that appears in the
40608 ** journal file right after the header.  The random initializer is important,
40609 ** because garbage data that appears at the end of a journal is likely
40610 ** data that was once in other files that have now been deleted.  If the
40611 ** garbage data came from an obsolete journal file, the checksums might
40612 ** be correct.  But by initializing the checksum to random value which
40613 ** is different for every journal, we minimize that risk.
40614 */
40615 static const unsigned char aJournalMagic[] = {
40616   0xd9, 0xd5, 0x05, 0xf9, 0x20, 0xa1, 0x63, 0xd7,
40617 };
40618 
40619 /*
40620 ** The size of the of each page record in the journal is given by
40621 ** the following macro.
40622 */
40623 #define JOURNAL_PG_SZ(pPager)  ((pPager->pageSize) + 8)
40624 
40625 /*
40626 ** The journal header size for this pager. This is usually the same
40627 ** size as a single disk sector. See also setSectorSize().
40628 */
40629 #define JOURNAL_HDR_SZ(pPager) (pPager->sectorSize)
40630 
40631 /*
40632 ** The macro MEMDB is true if we are dealing with an in-memory database.
40633 ** We do this as a macro so that if the SQLITE_OMIT_MEMORYDB macro is set,
40634 ** the value of MEMDB will be a constant and the compiler will optimize
40635 ** out code that would never execute.
40636 */
40637 #ifdef SQLITE_OMIT_MEMORYDB
40638 # define MEMDB 0
40639 #else
40640 # define MEMDB pPager->memDb
40641 #endif
40642 
40643 /*
40644 ** The macro USEFETCH is true if we are allowed to use the xFetch and xUnfetch
40645 ** interfaces to access the database using memory-mapped I/O.
40646 */
40647 #if SQLITE_MAX_MMAP_SIZE>0
40648 # define USEFETCH(x) ((x)->bUseFetch)
40649 #else
40650 # define USEFETCH(x) 0
40651 #endif
40652 
40653 /*
40654 ** The maximum legal page number is (2^31 - 1).
40655 */
40656 #define PAGER_MAX_PGNO 2147483647
40657 
40658 /*
40659 ** The argument to this macro is a file descriptor (type sqlite3_file*).
40660 ** Return 0 if it is not open, or non-zero (but not 1) if it is.
40661 **
40662 ** This is so that expressions can be written as:
40663 **
40664 **   if( isOpen(pPager->jfd) ){ ...
40665 **
40666 ** instead of
40667 **
40668 **   if( pPager->jfd->pMethods ){ ...
40669 */
40670 #define isOpen(pFd) ((pFd)->pMethods)
40671 
40672 /*
40673 ** Return true if this pager uses a write-ahead log instead of the usual
40674 ** rollback journal. Otherwise false.
40675 */
40676 #ifndef SQLITE_OMIT_WAL
40677 static int pagerUseWal(Pager *pPager){
40678   return (pPager->pWal!=0);
40679 }
40680 #else
40681 # define pagerUseWal(x) 0
40682 # define pagerRollbackWal(x) 0
40683 # define pagerWalFrames(v,w,x,y) 0
40684 # define pagerOpenWalIfPresent(z) SQLITE_OK
40685 # define pagerBeginReadTransaction(z) SQLITE_OK
40686 #endif
40687 
40688 #ifndef NDEBUG
40689 /*
40690 ** Usage:
40691 **
40692 **   assert( assert_pager_state(pPager) );
40693 **
40694 ** This function runs many asserts to try to find inconsistencies in
40695 ** the internal state of the Pager object.
40696 */
40697 static int assert_pager_state(Pager *p){
40698   Pager *pPager = p;
40699 
40700   /* State must be valid. */
40701   assert( p->eState==PAGER_OPEN
40702        || p->eState==PAGER_READER
40703        || p->eState==PAGER_WRITER_LOCKED
40704        || p->eState==PAGER_WRITER_CACHEMOD
40705        || p->eState==PAGER_WRITER_DBMOD
40706        || p->eState==PAGER_WRITER_FINISHED
40707        || p->eState==PAGER_ERROR
40708   );
40709 
40710   /* Regardless of the current state, a temp-file connection always behaves
40711   ** as if it has an exclusive lock on the database file. It never updates
40712   ** the change-counter field, so the changeCountDone flag is always set.
40713   */
40714   assert( p->tempFile==0 || p->eLock==EXCLUSIVE_LOCK );
40715   assert( p->tempFile==0 || pPager->changeCountDone );
40716 
40717   /* If the useJournal flag is clear, the journal-mode must be "OFF".
40718   ** And if the journal-mode is "OFF", the journal file must not be open.
40719   */
40720   assert( p->journalMode==PAGER_JOURNALMODE_OFF || p->useJournal );
40721   assert( p->journalMode!=PAGER_JOURNALMODE_OFF || !isOpen(p->jfd) );
40722 
40723   /* Check that MEMDB implies noSync. And an in-memory journal. Since
40724   ** this means an in-memory pager performs no IO at all, it cannot encounter
40725   ** either SQLITE_IOERR or SQLITE_FULL during rollback or while finalizing
40726   ** a journal file. (although the in-memory journal implementation may
40727   ** return SQLITE_IOERR_NOMEM while the journal file is being written). It
40728   ** is therefore not possible for an in-memory pager to enter the ERROR
40729   ** state.
40730   */
40731   if( MEMDB ){
40732     assert( p->noSync );
40733     assert( p->journalMode==PAGER_JOURNALMODE_OFF
40734          || p->journalMode==PAGER_JOURNALMODE_MEMORY
40735     );
40736     assert( p->eState!=PAGER_ERROR && p->eState!=PAGER_OPEN );
40737     assert( pagerUseWal(p)==0 );
40738   }
40739 
40740   /* If changeCountDone is set, a RESERVED lock or greater must be held
40741   ** on the file.
40742   */
40743   assert( pPager->changeCountDone==0 || pPager->eLock>=RESERVED_LOCK );
40744   assert( p->eLock!=PENDING_LOCK );
40745 
40746   switch( p->eState ){
40747     case PAGER_OPEN:
40748       assert( !MEMDB );
40749       assert( pPager->errCode==SQLITE_OK );
40750       assert( sqlite3PcacheRefCount(pPager->pPCache)==0 || pPager->tempFile );
40751       break;
40752 
40753     case PAGER_READER:
40754       assert( pPager->errCode==SQLITE_OK );
40755       assert( p->eLock!=UNKNOWN_LOCK );
40756       assert( p->eLock>=SHARED_LOCK );
40757       break;
40758 
40759     case PAGER_WRITER_LOCKED:
40760       assert( p->eLock!=UNKNOWN_LOCK );
40761       assert( pPager->errCode==SQLITE_OK );
40762       if( !pagerUseWal(pPager) ){
40763         assert( p->eLock>=RESERVED_LOCK );
40764       }
40765       assert( pPager->dbSize==pPager->dbOrigSize );
40766       assert( pPager->dbOrigSize==pPager->dbFileSize );
40767       assert( pPager->dbOrigSize==pPager->dbHintSize );
40768       assert( pPager->setMaster==0 );
40769       break;
40770 
40771     case PAGER_WRITER_CACHEMOD:
40772       assert( p->eLock!=UNKNOWN_LOCK );
40773       assert( pPager->errCode==SQLITE_OK );
40774       if( !pagerUseWal(pPager) ){
40775         /* It is possible that if journal_mode=wal here that neither the
40776         ** journal file nor the WAL file are open. This happens during
40777         ** a rollback transaction that switches from journal_mode=off
40778         ** to journal_mode=wal.
40779         */
40780         assert( p->eLock>=RESERVED_LOCK );
40781         assert( isOpen(p->jfd)
40782              || p->journalMode==PAGER_JOURNALMODE_OFF
40783              || p->journalMode==PAGER_JOURNALMODE_WAL
40784         );
40785       }
40786       assert( pPager->dbOrigSize==pPager->dbFileSize );
40787       assert( pPager->dbOrigSize==pPager->dbHintSize );
40788       break;
40789 
40790     case PAGER_WRITER_DBMOD:
40791       assert( p->eLock==EXCLUSIVE_LOCK );
40792       assert( pPager->errCode==SQLITE_OK );
40793       assert( !pagerUseWal(pPager) );
40794       assert( p->eLock>=EXCLUSIVE_LOCK );
40795       assert( isOpen(p->jfd)
40796            || p->journalMode==PAGER_JOURNALMODE_OFF
40797            || p->journalMode==PAGER_JOURNALMODE_WAL
40798       );
40799       assert( pPager->dbOrigSize<=pPager->dbHintSize );
40800       break;
40801 
40802     case PAGER_WRITER_FINISHED:
40803       assert( p->eLock==EXCLUSIVE_LOCK );
40804       assert( pPager->errCode==SQLITE_OK );
40805       assert( !pagerUseWal(pPager) );
40806       assert( isOpen(p->jfd)
40807            || p->journalMode==PAGER_JOURNALMODE_OFF
40808            || p->journalMode==PAGER_JOURNALMODE_WAL
40809       );
40810       break;
40811 
40812     case PAGER_ERROR:
40813       /* There must be at least one outstanding reference to the pager if
40814       ** in ERROR state. Otherwise the pager should have already dropped
40815       ** back to OPEN state.
40816       */
40817       assert( pPager->errCode!=SQLITE_OK );
40818       assert( sqlite3PcacheRefCount(pPager->pPCache)>0 );
40819       break;
40820   }
40821 
40822   return 1;
40823 }
40824 #endif /* ifndef NDEBUG */
40825 
40826 #ifdef SQLITE_DEBUG
40827 /*
40828 ** Return a pointer to a human readable string in a static buffer
40829 ** containing the state of the Pager object passed as an argument. This
40830 ** is intended to be used within debuggers. For example, as an alternative
40831 ** to "print *pPager" in gdb:
40832 **
40833 ** (gdb) printf "%s", print_pager_state(pPager)
40834 */
40835 static char *print_pager_state(Pager *p){
40836   static char zRet[1024];
40837 
40838   sqlite3_snprintf(1024, zRet,
40839       "Filename:      %s\n"
40840       "State:         %s errCode=%d\n"
40841       "Lock:          %s\n"
40842       "Locking mode:  locking_mode=%s\n"
40843       "Journal mode:  journal_mode=%s\n"
40844       "Backing store: tempFile=%d memDb=%d useJournal=%d\n"
40845       "Journal:       journalOff=%lld journalHdr=%lld\n"
40846       "Size:          dbsize=%d dbOrigSize=%d dbFileSize=%d\n"
40847       , p->zFilename
40848       , p->eState==PAGER_OPEN            ? "OPEN" :
40849         p->eState==PAGER_READER          ? "READER" :
40850         p->eState==PAGER_WRITER_LOCKED   ? "WRITER_LOCKED" :
40851         p->eState==PAGER_WRITER_CACHEMOD ? "WRITER_CACHEMOD" :
40852         p->eState==PAGER_WRITER_DBMOD    ? "WRITER_DBMOD" :
40853         p->eState==PAGER_WRITER_FINISHED ? "WRITER_FINISHED" :
40854         p->eState==PAGER_ERROR           ? "ERROR" : "?error?"
40855       , (int)p->errCode
40856       , p->eLock==NO_LOCK         ? "NO_LOCK" :
40857         p->eLock==RESERVED_LOCK   ? "RESERVED" :
40858         p->eLock==EXCLUSIVE_LOCK  ? "EXCLUSIVE" :
40859         p->eLock==SHARED_LOCK     ? "SHARED" :
40860         p->eLock==UNKNOWN_LOCK    ? "UNKNOWN" : "?error?"
40861       , p->exclusiveMode ? "exclusive" : "normal"
40862       , p->journalMode==PAGER_JOURNALMODE_MEMORY   ? "memory" :
40863         p->journalMode==PAGER_JOURNALMODE_OFF      ? "off" :
40864         p->journalMode==PAGER_JOURNALMODE_DELETE   ? "delete" :
40865         p->journalMode==PAGER_JOURNALMODE_PERSIST  ? "persist" :
40866         p->journalMode==PAGER_JOURNALMODE_TRUNCATE ? "truncate" :
40867         p->journalMode==PAGER_JOURNALMODE_WAL      ? "wal" : "?error?"
40868       , (int)p->tempFile, (int)p->memDb, (int)p->useJournal
40869       , p->journalOff, p->journalHdr
40870       , (int)p->dbSize, (int)p->dbOrigSize, (int)p->dbFileSize
40871   );
40872 
40873   return zRet;
40874 }
40875 #endif
40876 
40877 /*
40878 ** Return true if it is necessary to write page *pPg into the sub-journal.
40879 ** A page needs to be written into the sub-journal if there exists one
40880 ** or more open savepoints for which:
40881 **
40882 **   * The page-number is less than or equal to PagerSavepoint.nOrig, and
40883 **   * The bit corresponding to the page-number is not set in
40884 **     PagerSavepoint.pInSavepoint.
40885 */
40886 static int subjRequiresPage(PgHdr *pPg){
40887   Pager *pPager = pPg->pPager;
40888   PagerSavepoint *p;
40889   Pgno pgno = pPg->pgno;
40890   int i;
40891   for(i=0; i<pPager->nSavepoint; i++){
40892     p = &pPager->aSavepoint[i];
40893     if( p->nOrig>=pgno && 0==sqlite3BitvecTest(p->pInSavepoint, pgno) ){
40894       return 1;
40895     }
40896   }
40897   return 0;
40898 }
40899 
40900 /*
40901 ** Return true if the page is already in the journal file.
40902 */
40903 static int pageInJournal(Pager *pPager, PgHdr *pPg){
40904   return sqlite3BitvecTest(pPager->pInJournal, pPg->pgno);
40905 }
40906 
40907 /*
40908 ** Read a 32-bit integer from the given file descriptor.  Store the integer
40909 ** that is read in *pRes.  Return SQLITE_OK if everything worked, or an
40910 ** error code is something goes wrong.
40911 **
40912 ** All values are stored on disk as big-endian.
40913 */
40914 static int read32bits(sqlite3_file *fd, i64 offset, u32 *pRes){
40915   unsigned char ac[4];
40916   int rc = sqlite3OsRead(fd, ac, sizeof(ac), offset);
40917   if( rc==SQLITE_OK ){
40918     *pRes = sqlite3Get4byte(ac);
40919   }
40920   return rc;
40921 }
40922 
40923 /*
40924 ** Write a 32-bit integer into a string buffer in big-endian byte order.
40925 */
40926 #define put32bits(A,B)  sqlite3Put4byte((u8*)A,B)
40927 
40928 
40929 /*
40930 ** Write a 32-bit integer into the given file descriptor.  Return SQLITE_OK
40931 ** on success or an error code is something goes wrong.
40932 */
40933 static int write32bits(sqlite3_file *fd, i64 offset, u32 val){
40934   char ac[4];
40935   put32bits(ac, val);
40936   return sqlite3OsWrite(fd, ac, 4, offset);
40937 }
40938 
40939 /*
40940 ** Unlock the database file to level eLock, which must be either NO_LOCK
40941 ** or SHARED_LOCK. Regardless of whether or not the call to xUnlock()
40942 ** succeeds, set the Pager.eLock variable to match the (attempted) new lock.
40943 **
40944 ** Except, if Pager.eLock is set to UNKNOWN_LOCK when this function is
40945 ** called, do not modify it. See the comment above the #define of
40946 ** UNKNOWN_LOCK for an explanation of this.
40947 */
40948 static int pagerUnlockDb(Pager *pPager, int eLock){
40949   int rc = SQLITE_OK;
40950 
40951   assert( !pPager->exclusiveMode || pPager->eLock==eLock );
40952   assert( eLock==NO_LOCK || eLock==SHARED_LOCK );
40953   assert( eLock!=NO_LOCK || pagerUseWal(pPager)==0 );
40954   if( isOpen(pPager->fd) ){
40955     assert( pPager->eLock>=eLock );
40956     rc = pPager->noLock ? SQLITE_OK : sqlite3OsUnlock(pPager->fd, eLock);
40957     if( pPager->eLock!=UNKNOWN_LOCK ){
40958       pPager->eLock = (u8)eLock;
40959     }
40960     IOTRACE(("UNLOCK %p %d\n", pPager, eLock))
40961   }
40962   return rc;
40963 }
40964 
40965 /*
40966 ** Lock the database file to level eLock, which must be either SHARED_LOCK,
40967 ** RESERVED_LOCK or EXCLUSIVE_LOCK. If the caller is successful, set the
40968 ** Pager.eLock variable to the new locking state.
40969 **
40970 ** Except, if Pager.eLock is set to UNKNOWN_LOCK when this function is
40971 ** called, do not modify it unless the new locking state is EXCLUSIVE_LOCK.
40972 ** See the comment above the #define of UNKNOWN_LOCK for an explanation
40973 ** of this.
40974 */
40975 static int pagerLockDb(Pager *pPager, int eLock){
40976   int rc = SQLITE_OK;
40977 
40978   assert( eLock==SHARED_LOCK || eLock==RESERVED_LOCK || eLock==EXCLUSIVE_LOCK );
40979   if( pPager->eLock<eLock || pPager->eLock==UNKNOWN_LOCK ){
40980     rc = pPager->noLock ? SQLITE_OK : sqlite3OsLock(pPager->fd, eLock);
40981     if( rc==SQLITE_OK && (pPager->eLock!=UNKNOWN_LOCK||eLock==EXCLUSIVE_LOCK) ){
40982       pPager->eLock = (u8)eLock;
40983       IOTRACE(("LOCK %p %d\n", pPager, eLock))
40984     }
40985   }
40986   return rc;
40987 }
40988 
40989 /*
40990 ** This function determines whether or not the atomic-write optimization
40991 ** can be used with this pager. The optimization can be used if:
40992 **
40993 **  (a) the value returned by OsDeviceCharacteristics() indicates that
40994 **      a database page may be written atomically, and
40995 **  (b) the value returned by OsSectorSize() is less than or equal
40996 **      to the page size.
40997 **
40998 ** The optimization is also always enabled for temporary files. It is
40999 ** an error to call this function if pPager is opened on an in-memory
41000 ** database.
41001 **
41002 ** If the optimization cannot be used, 0 is returned. If it can be used,
41003 ** then the value returned is the size of the journal file when it
41004 ** contains rollback data for exactly one page.
41005 */
41006 #ifdef SQLITE_ENABLE_ATOMIC_WRITE
41007 static int jrnlBufferSize(Pager *pPager){
41008   assert( !MEMDB );
41009   if( !pPager->tempFile ){
41010     int dc;                           /* Device characteristics */
41011     int nSector;                      /* Sector size */
41012     int szPage;                       /* Page size */
41013 
41014     assert( isOpen(pPager->fd) );
41015     dc = sqlite3OsDeviceCharacteristics(pPager->fd);
41016     nSector = pPager->sectorSize;
41017     szPage = pPager->pageSize;
41018 
41019     assert(SQLITE_IOCAP_ATOMIC512==(512>>8));
41020     assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8));
41021     if( 0==(dc&(SQLITE_IOCAP_ATOMIC|(szPage>>8)) || nSector>szPage) ){
41022       return 0;
41023     }
41024   }
41025 
41026   return JOURNAL_HDR_SZ(pPager) + JOURNAL_PG_SZ(pPager);
41027 }
41028 #endif
41029 
41030 /*
41031 ** If SQLITE_CHECK_PAGES is defined then we do some sanity checking
41032 ** on the cache using a hash function.  This is used for testing
41033 ** and debugging only.
41034 */
41035 #ifdef SQLITE_CHECK_PAGES
41036 /*
41037 ** Return a 32-bit hash of the page data for pPage.
41038 */
41039 static u32 pager_datahash(int nByte, unsigned char *pData){
41040   u32 hash = 0;
41041   int i;
41042   for(i=0; i<nByte; i++){
41043     hash = (hash*1039) + pData[i];
41044   }
41045   return hash;
41046 }
41047 static u32 pager_pagehash(PgHdr *pPage){
41048   return pager_datahash(pPage->pPager->pageSize, (unsigned char *)pPage->pData);
41049 }
41050 static void pager_set_pagehash(PgHdr *pPage){
41051   pPage->pageHash = pager_pagehash(pPage);
41052 }
41053 
41054 /*
41055 ** The CHECK_PAGE macro takes a PgHdr* as an argument. If SQLITE_CHECK_PAGES
41056 ** is defined, and NDEBUG is not defined, an assert() statement checks
41057 ** that the page is either dirty or still matches the calculated page-hash.
41058 */
41059 #define CHECK_PAGE(x) checkPage(x)
41060 static void checkPage(PgHdr *pPg){
41061   Pager *pPager = pPg->pPager;
41062   assert( pPager->eState!=PAGER_ERROR );
41063   assert( (pPg->flags&PGHDR_DIRTY) || pPg->pageHash==pager_pagehash(pPg) );
41064 }
41065 
41066 #else
41067 #define pager_datahash(X,Y)  0
41068 #define pager_pagehash(X)  0
41069 #define pager_set_pagehash(X)
41070 #define CHECK_PAGE(x)
41071 #endif  /* SQLITE_CHECK_PAGES */
41072 
41073 /*
41074 ** When this is called the journal file for pager pPager must be open.
41075 ** This function attempts to read a master journal file name from the
41076 ** end of the file and, if successful, copies it into memory supplied
41077 ** by the caller. See comments above writeMasterJournal() for the format
41078 ** used to store a master journal file name at the end of a journal file.
41079 **
41080 ** zMaster must point to a buffer of at least nMaster bytes allocated by
41081 ** the caller. This should be sqlite3_vfs.mxPathname+1 (to ensure there is
41082 ** enough space to write the master journal name). If the master journal
41083 ** name in the journal is longer than nMaster bytes (including a
41084 ** nul-terminator), then this is handled as if no master journal name
41085 ** were present in the journal.
41086 **
41087 ** If a master journal file name is present at the end of the journal
41088 ** file, then it is copied into the buffer pointed to by zMaster. A
41089 ** nul-terminator byte is appended to the buffer following the master
41090 ** journal file name.
41091 **
41092 ** If it is determined that no master journal file name is present
41093 ** zMaster[0] is set to 0 and SQLITE_OK returned.
41094 **
41095 ** If an error occurs while reading from the journal file, an SQLite
41096 ** error code is returned.
41097 */
41098 static int readMasterJournal(sqlite3_file *pJrnl, char *zMaster, u32 nMaster){
41099   int rc;                    /* Return code */
41100   u32 len;                   /* Length in bytes of master journal name */
41101   i64 szJ;                   /* Total size in bytes of journal file pJrnl */
41102   u32 cksum;                 /* MJ checksum value read from journal */
41103   u32 u;                     /* Unsigned loop counter */
41104   unsigned char aMagic[8];   /* A buffer to hold the magic header */
41105   zMaster[0] = '\0';
41106 
41107   if( SQLITE_OK!=(rc = sqlite3OsFileSize(pJrnl, &szJ))
41108    || szJ<16
41109    || SQLITE_OK!=(rc = read32bits(pJrnl, szJ-16, &len))
41110    || len>=nMaster
41111    || len==0
41112    || SQLITE_OK!=(rc = read32bits(pJrnl, szJ-12, &cksum))
41113    || SQLITE_OK!=(rc = sqlite3OsRead(pJrnl, aMagic, 8, szJ-8))
41114    || memcmp(aMagic, aJournalMagic, 8)
41115    || SQLITE_OK!=(rc = sqlite3OsRead(pJrnl, zMaster, len, szJ-16-len))
41116   ){
41117     return rc;
41118   }
41119 
41120   /* See if the checksum matches the master journal name */
41121   for(u=0; u<len; u++){
41122     cksum -= zMaster[u];
41123   }
41124   if( cksum ){
41125     /* If the checksum doesn't add up, then one or more of the disk sectors
41126     ** containing the master journal filename is corrupted. This means
41127     ** definitely roll back, so just return SQLITE_OK and report a (nul)
41128     ** master-journal filename.
41129     */
41130     len = 0;
41131   }
41132   zMaster[len] = '\0';
41133 
41134   return SQLITE_OK;
41135 }
41136 
41137 /*
41138 ** Return the offset of the sector boundary at or immediately
41139 ** following the value in pPager->journalOff, assuming a sector
41140 ** size of pPager->sectorSize bytes.
41141 **
41142 ** i.e for a sector size of 512:
41143 **
41144 **   Pager.journalOff          Return value
41145 **   ---------------------------------------
41146 **   0                         0
41147 **   512                       512
41148 **   100                       512
41149 **   2000                      2048
41150 **
41151 */
41152 static i64 journalHdrOffset(Pager *pPager){
41153   i64 offset = 0;
41154   i64 c = pPager->journalOff;
41155   if( c ){
41156     offset = ((c-1)/JOURNAL_HDR_SZ(pPager) + 1) * JOURNAL_HDR_SZ(pPager);
41157   }
41158   assert( offset%JOURNAL_HDR_SZ(pPager)==0 );
41159   assert( offset>=c );
41160   assert( (offset-c)<JOURNAL_HDR_SZ(pPager) );
41161   return offset;
41162 }
41163 
41164 /*
41165 ** The journal file must be open when this function is called.
41166 **
41167 ** This function is a no-op if the journal file has not been written to
41168 ** within the current transaction (i.e. if Pager.journalOff==0).
41169 **
41170 ** If doTruncate is non-zero or the Pager.journalSizeLimit variable is
41171 ** set to 0, then truncate the journal file to zero bytes in size. Otherwise,
41172 ** zero the 28-byte header at the start of the journal file. In either case,
41173 ** if the pager is not in no-sync mode, sync the journal file immediately
41174 ** after writing or truncating it.
41175 **
41176 ** If Pager.journalSizeLimit is set to a positive, non-zero value, and
41177 ** following the truncation or zeroing described above the size of the
41178 ** journal file in bytes is larger than this value, then truncate the
41179 ** journal file to Pager.journalSizeLimit bytes. The journal file does
41180 ** not need to be synced following this operation.
41181 **
41182 ** If an IO error occurs, abandon processing and return the IO error code.
41183 ** Otherwise, return SQLITE_OK.
41184 */
41185 static int zeroJournalHdr(Pager *pPager, int doTruncate){
41186   int rc = SQLITE_OK;                               /* Return code */
41187   assert( isOpen(pPager->jfd) );
41188   if( pPager->journalOff ){
41189     const i64 iLimit = pPager->journalSizeLimit;    /* Local cache of jsl */
41190 
41191     IOTRACE(("JZEROHDR %p\n", pPager))
41192     if( doTruncate || iLimit==0 ){
41193       rc = sqlite3OsTruncate(pPager->jfd, 0);
41194     }else{
41195       static const char zeroHdr[28] = {0};
41196       rc = sqlite3OsWrite(pPager->jfd, zeroHdr, sizeof(zeroHdr), 0);
41197     }
41198     if( rc==SQLITE_OK && !pPager->noSync ){
41199       rc = sqlite3OsSync(pPager->jfd, SQLITE_SYNC_DATAONLY|pPager->syncFlags);
41200     }
41201 
41202     /* At this point the transaction is committed but the write lock
41203     ** is still held on the file. If there is a size limit configured for
41204     ** the persistent journal and the journal file currently consumes more
41205     ** space than that limit allows for, truncate it now. There is no need
41206     ** to sync the file following this operation.
41207     */
41208     if( rc==SQLITE_OK && iLimit>0 ){
41209       i64 sz;
41210       rc = sqlite3OsFileSize(pPager->jfd, &sz);
41211       if( rc==SQLITE_OK && sz>iLimit ){
41212         rc = sqlite3OsTruncate(pPager->jfd, iLimit);
41213       }
41214     }
41215   }
41216   return rc;
41217 }
41218 
41219 /*
41220 ** The journal file must be open when this routine is called. A journal
41221 ** header (JOURNAL_HDR_SZ bytes) is written into the journal file at the
41222 ** current location.
41223 **
41224 ** The format for the journal header is as follows:
41225 ** - 8 bytes: Magic identifying journal format.
41226 ** - 4 bytes: Number of records in journal, or -1 no-sync mode is on.
41227 ** - 4 bytes: Random number used for page hash.
41228 ** - 4 bytes: Initial database page count.
41229 ** - 4 bytes: Sector size used by the process that wrote this journal.
41230 ** - 4 bytes: Database page size.
41231 **
41232 ** Followed by (JOURNAL_HDR_SZ - 28) bytes of unused space.
41233 */
41234 static int writeJournalHdr(Pager *pPager){
41235   int rc = SQLITE_OK;                 /* Return code */
41236   char *zHeader = pPager->pTmpSpace;  /* Temporary space used to build header */
41237   u32 nHeader = (u32)pPager->pageSize;/* Size of buffer pointed to by zHeader */
41238   u32 nWrite;                         /* Bytes of header sector written */
41239   int ii;                             /* Loop counter */
41240 
41241   assert( isOpen(pPager->jfd) );      /* Journal file must be open. */
41242 
41243   if( nHeader>JOURNAL_HDR_SZ(pPager) ){
41244     nHeader = JOURNAL_HDR_SZ(pPager);
41245   }
41246 
41247   /* If there are active savepoints and any of them were created
41248   ** since the most recent journal header was written, update the
41249   ** PagerSavepoint.iHdrOffset fields now.
41250   */
41251   for(ii=0; ii<pPager->nSavepoint; ii++){
41252     if( pPager->aSavepoint[ii].iHdrOffset==0 ){
41253       pPager->aSavepoint[ii].iHdrOffset = pPager->journalOff;
41254     }
41255   }
41256 
41257   pPager->journalHdr = pPager->journalOff = journalHdrOffset(pPager);
41258 
41259   /*
41260   ** Write the nRec Field - the number of page records that follow this
41261   ** journal header. Normally, zero is written to this value at this time.
41262   ** After the records are added to the journal (and the journal synced,
41263   ** if in full-sync mode), the zero is overwritten with the true number
41264   ** of records (see syncJournal()).
41265   **
41266   ** A faster alternative is to write 0xFFFFFFFF to the nRec field. When
41267   ** reading the journal this value tells SQLite to assume that the
41268   ** rest of the journal file contains valid page records. This assumption
41269   ** is dangerous, as if a failure occurred whilst writing to the journal
41270   ** file it may contain some garbage data. There are two scenarios
41271   ** where this risk can be ignored:
41272   **
41273   **   * When the pager is in no-sync mode. Corruption can follow a
41274   **     power failure in this case anyway.
41275   **
41276   **   * When the SQLITE_IOCAP_SAFE_APPEND flag is set. This guarantees
41277   **     that garbage data is never appended to the journal file.
41278   */
41279   assert( isOpen(pPager->fd) || pPager->noSync );
41280   if( pPager->noSync || (pPager->journalMode==PAGER_JOURNALMODE_MEMORY)
41281    || (sqlite3OsDeviceCharacteristics(pPager->fd)&SQLITE_IOCAP_SAFE_APPEND)
41282   ){
41283     memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic));
41284     put32bits(&zHeader[sizeof(aJournalMagic)], 0xffffffff);
41285   }else{
41286     memset(zHeader, 0, sizeof(aJournalMagic)+4);
41287   }
41288 
41289   /* The random check-hash initializer */
41290   sqlite3_randomness(sizeof(pPager->cksumInit), &pPager->cksumInit);
41291   put32bits(&zHeader[sizeof(aJournalMagic)+4], pPager->cksumInit);
41292   /* The initial database size */
41293   put32bits(&zHeader[sizeof(aJournalMagic)+8], pPager->dbOrigSize);
41294   /* The assumed sector size for this process */
41295   put32bits(&zHeader[sizeof(aJournalMagic)+12], pPager->sectorSize);
41296 
41297   /* The page size */
41298   put32bits(&zHeader[sizeof(aJournalMagic)+16], pPager->pageSize);
41299 
41300   /* Initializing the tail of the buffer is not necessary.  Everything
41301   ** works find if the following memset() is omitted.  But initializing
41302   ** the memory prevents valgrind from complaining, so we are willing to
41303   ** take the performance hit.
41304   */
41305   memset(&zHeader[sizeof(aJournalMagic)+20], 0,
41306          nHeader-(sizeof(aJournalMagic)+20));
41307 
41308   /* In theory, it is only necessary to write the 28 bytes that the
41309   ** journal header consumes to the journal file here. Then increment the
41310   ** Pager.journalOff variable by JOURNAL_HDR_SZ so that the next
41311   ** record is written to the following sector (leaving a gap in the file
41312   ** that will be implicitly filled in by the OS).
41313   **
41314   ** However it has been discovered that on some systems this pattern can
41315   ** be significantly slower than contiguously writing data to the file,
41316   ** even if that means explicitly writing data to the block of
41317   ** (JOURNAL_HDR_SZ - 28) bytes that will not be used. So that is what
41318   ** is done.
41319   **
41320   ** The loop is required here in case the sector-size is larger than the
41321   ** database page size. Since the zHeader buffer is only Pager.pageSize
41322   ** bytes in size, more than one call to sqlite3OsWrite() may be required
41323   ** to populate the entire journal header sector.
41324   */
41325   for(nWrite=0; rc==SQLITE_OK&&nWrite<JOURNAL_HDR_SZ(pPager); nWrite+=nHeader){
41326     IOTRACE(("JHDR %p %lld %d\n", pPager, pPager->journalHdr, nHeader))
41327     rc = sqlite3OsWrite(pPager->jfd, zHeader, nHeader, pPager->journalOff);
41328     assert( pPager->journalHdr <= pPager->journalOff );
41329     pPager->journalOff += nHeader;
41330   }
41331 
41332   return rc;
41333 }
41334 
41335 /*
41336 ** The journal file must be open when this is called. A journal header file
41337 ** (JOURNAL_HDR_SZ bytes) is read from the current location in the journal
41338 ** file. The current location in the journal file is given by
41339 ** pPager->journalOff. See comments above function writeJournalHdr() for
41340 ** a description of the journal header format.
41341 **
41342 ** If the header is read successfully, *pNRec is set to the number of
41343 ** page records following this header and *pDbSize is set to the size of the
41344 ** database before the transaction began, in pages. Also, pPager->cksumInit
41345 ** is set to the value read from the journal header. SQLITE_OK is returned
41346 ** in this case.
41347 **
41348 ** If the journal header file appears to be corrupted, SQLITE_DONE is
41349 ** returned and *pNRec and *PDbSize are undefined.  If JOURNAL_HDR_SZ bytes
41350 ** cannot be read from the journal file an error code is returned.
41351 */
41352 static int readJournalHdr(
41353   Pager *pPager,               /* Pager object */
41354   int isHot,
41355   i64 journalSize,             /* Size of the open journal file in bytes */
41356   u32 *pNRec,                  /* OUT: Value read from the nRec field */
41357   u32 *pDbSize                 /* OUT: Value of original database size field */
41358 ){
41359   int rc;                      /* Return code */
41360   unsigned char aMagic[8];     /* A buffer to hold the magic header */
41361   i64 iHdrOff;                 /* Offset of journal header being read */
41362 
41363   assert( isOpen(pPager->jfd) );      /* Journal file must be open. */
41364 
41365   /* Advance Pager.journalOff to the start of the next sector. If the
41366   ** journal file is too small for there to be a header stored at this
41367   ** point, return SQLITE_DONE.
41368   */
41369   pPager->journalOff = journalHdrOffset(pPager);
41370   if( pPager->journalOff+JOURNAL_HDR_SZ(pPager) > journalSize ){
41371     return SQLITE_DONE;
41372   }
41373   iHdrOff = pPager->journalOff;
41374 
41375   /* Read in the first 8 bytes of the journal header. If they do not match
41376   ** the  magic string found at the start of each journal header, return
41377   ** SQLITE_DONE. If an IO error occurs, return an error code. Otherwise,
41378   ** proceed.
41379   */
41380   if( isHot || iHdrOff!=pPager->journalHdr ){
41381     rc = sqlite3OsRead(pPager->jfd, aMagic, sizeof(aMagic), iHdrOff);
41382     if( rc ){
41383       return rc;
41384     }
41385     if( memcmp(aMagic, aJournalMagic, sizeof(aMagic))!=0 ){
41386       return SQLITE_DONE;
41387     }
41388   }
41389 
41390   /* Read the first three 32-bit fields of the journal header: The nRec
41391   ** field, the checksum-initializer and the database size at the start
41392   ** of the transaction. Return an error code if anything goes wrong.
41393   */
41394   if( SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+8, pNRec))
41395    || SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+12, &pPager->cksumInit))
41396    || SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+16, pDbSize))
41397   ){
41398     return rc;
41399   }
41400 
41401   if( pPager->journalOff==0 ){
41402     u32 iPageSize;               /* Page-size field of journal header */
41403     u32 iSectorSize;             /* Sector-size field of journal header */
41404 
41405     /* Read the page-size and sector-size journal header fields. */
41406     if( SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+20, &iSectorSize))
41407      || SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+24, &iPageSize))
41408     ){
41409       return rc;
41410     }
41411 
41412     /* Versions of SQLite prior to 3.5.8 set the page-size field of the
41413     ** journal header to zero. In this case, assume that the Pager.pageSize
41414     ** variable is already set to the correct page size.
41415     */
41416     if( iPageSize==0 ){
41417       iPageSize = pPager->pageSize;
41418     }
41419 
41420     /* Check that the values read from the page-size and sector-size fields
41421     ** are within range. To be 'in range', both values need to be a power
41422     ** of two greater than or equal to 512 or 32, and not greater than their
41423     ** respective compile time maximum limits.
41424     */
41425     if( iPageSize<512                  || iSectorSize<32
41426      || iPageSize>SQLITE_MAX_PAGE_SIZE || iSectorSize>MAX_SECTOR_SIZE
41427      || ((iPageSize-1)&iPageSize)!=0   || ((iSectorSize-1)&iSectorSize)!=0
41428     ){
41429       /* If the either the page-size or sector-size in the journal-header is
41430       ** invalid, then the process that wrote the journal-header must have
41431       ** crashed before the header was synced. In this case stop reading
41432       ** the journal file here.
41433       */
41434       return SQLITE_DONE;
41435     }
41436 
41437     /* Update the page-size to match the value read from the journal.
41438     ** Use a testcase() macro to make sure that malloc failure within
41439     ** PagerSetPagesize() is tested.
41440     */
41441     rc = sqlite3PagerSetPagesize(pPager, &iPageSize, -1);
41442     testcase( rc!=SQLITE_OK );
41443 
41444     /* Update the assumed sector-size to match the value used by
41445     ** the process that created this journal. If this journal was
41446     ** created by a process other than this one, then this routine
41447     ** is being called from within pager_playback(). The local value
41448     ** of Pager.sectorSize is restored at the end of that routine.
41449     */
41450     pPager->sectorSize = iSectorSize;
41451   }
41452 
41453   pPager->journalOff += JOURNAL_HDR_SZ(pPager);
41454   return rc;
41455 }
41456 
41457 
41458 /*
41459 ** Write the supplied master journal name into the journal file for pager
41460 ** pPager at the current location. The master journal name must be the last
41461 ** thing written to a journal file. If the pager is in full-sync mode, the
41462 ** journal file descriptor is advanced to the next sector boundary before
41463 ** anything is written. The format is:
41464 **
41465 **   + 4 bytes: PAGER_MJ_PGNO.
41466 **   + N bytes: Master journal filename in utf-8.
41467 **   + 4 bytes: N (length of master journal name in bytes, no nul-terminator).
41468 **   + 4 bytes: Master journal name checksum.
41469 **   + 8 bytes: aJournalMagic[].
41470 **
41471 ** The master journal page checksum is the sum of the bytes in the master
41472 ** journal name, where each byte is interpreted as a signed 8-bit integer.
41473 **
41474 ** If zMaster is a NULL pointer (occurs for a single database transaction),
41475 ** this call is a no-op.
41476 */
41477 static int writeMasterJournal(Pager *pPager, const char *zMaster){
41478   int rc;                          /* Return code */
41479   int nMaster;                     /* Length of string zMaster */
41480   i64 iHdrOff;                     /* Offset of header in journal file */
41481   i64 jrnlSize;                    /* Size of journal file on disk */
41482   u32 cksum = 0;                   /* Checksum of string zMaster */
41483 
41484   assert( pPager->setMaster==0 );
41485   assert( !pagerUseWal(pPager) );
41486 
41487   if( !zMaster
41488    || pPager->journalMode==PAGER_JOURNALMODE_MEMORY
41489    || !isOpen(pPager->jfd)
41490   ){
41491     return SQLITE_OK;
41492   }
41493   pPager->setMaster = 1;
41494   assert( pPager->journalHdr <= pPager->journalOff );
41495 
41496   /* Calculate the length in bytes and the checksum of zMaster */
41497   for(nMaster=0; zMaster[nMaster]; nMaster++){
41498     cksum += zMaster[nMaster];
41499   }
41500 
41501   /* If in full-sync mode, advance to the next disk sector before writing
41502   ** the master journal name. This is in case the previous page written to
41503   ** the journal has already been synced.
41504   */
41505   if( pPager->fullSync ){
41506     pPager->journalOff = journalHdrOffset(pPager);
41507   }
41508   iHdrOff = pPager->journalOff;
41509 
41510   /* Write the master journal data to the end of the journal file. If
41511   ** an error occurs, return the error code to the caller.
41512   */
41513   if( (0 != (rc = write32bits(pPager->jfd, iHdrOff, PAGER_MJ_PGNO(pPager))))
41514    || (0 != (rc = sqlite3OsWrite(pPager->jfd, zMaster, nMaster, iHdrOff+4)))
41515    || (0 != (rc = write32bits(pPager->jfd, iHdrOff+4+nMaster, nMaster)))
41516    || (0 != (rc = write32bits(pPager->jfd, iHdrOff+4+nMaster+4, cksum)))
41517    || (0 != (rc = sqlite3OsWrite(pPager->jfd, aJournalMagic, 8, iHdrOff+4+nMaster+8)))
41518   ){
41519     return rc;
41520   }
41521   pPager->journalOff += (nMaster+20);
41522 
41523   /* If the pager is in peristent-journal mode, then the physical
41524   ** journal-file may extend past the end of the master-journal name
41525   ** and 8 bytes of magic data just written to the file. This is
41526   ** dangerous because the code to rollback a hot-journal file
41527   ** will not be able to find the master-journal name to determine
41528   ** whether or not the journal is hot.
41529   **
41530   ** Easiest thing to do in this scenario is to truncate the journal
41531   ** file to the required size.
41532   */
41533   if( SQLITE_OK==(rc = sqlite3OsFileSize(pPager->jfd, &jrnlSize))
41534    && jrnlSize>pPager->journalOff
41535   ){
41536     rc = sqlite3OsTruncate(pPager->jfd, pPager->journalOff);
41537   }
41538   return rc;
41539 }
41540 
41541 /*
41542 ** Find a page in the hash table given its page number. Return
41543 ** a pointer to the page or NULL if the requested page is not
41544 ** already in memory.
41545 */
41546 static PgHdr *pager_lookup(Pager *pPager, Pgno pgno){
41547   PgHdr *p = 0;                     /* Return value */
41548 
41549   /* It is not possible for a call to PcacheFetch() with createFlag==0 to
41550   ** fail, since no attempt to allocate dynamic memory will be made.
41551   */
41552   (void)sqlite3PcacheFetch(pPager->pPCache, pgno, 0, &p);
41553   return p;
41554 }
41555 
41556 /*
41557 ** Discard the entire contents of the in-memory page-cache.
41558 */
41559 static void pager_reset(Pager *pPager){
41560   sqlite3BackupRestart(pPager->pBackup);
41561   sqlite3PcacheClear(pPager->pPCache);
41562 }
41563 
41564 /*
41565 ** Free all structures in the Pager.aSavepoint[] array and set both
41566 ** Pager.aSavepoint and Pager.nSavepoint to zero. Close the sub-journal
41567 ** if it is open and the pager is not in exclusive mode.
41568 */
41569 static void releaseAllSavepoints(Pager *pPager){
41570   int ii;               /* Iterator for looping through Pager.aSavepoint */
41571   for(ii=0; ii<pPager->nSavepoint; ii++){
41572     sqlite3BitvecDestroy(pPager->aSavepoint[ii].pInSavepoint);
41573   }
41574   if( !pPager->exclusiveMode || sqlite3IsMemJournal(pPager->sjfd) ){
41575     sqlite3OsClose(pPager->sjfd);
41576   }
41577   sqlite3_free(pPager->aSavepoint);
41578   pPager->aSavepoint = 0;
41579   pPager->nSavepoint = 0;
41580   pPager->nSubRec = 0;
41581 }
41582 
41583 /*
41584 ** Set the bit number pgno in the PagerSavepoint.pInSavepoint
41585 ** bitvecs of all open savepoints. Return SQLITE_OK if successful
41586 ** or SQLITE_NOMEM if a malloc failure occurs.
41587 */
41588 static int addToSavepointBitvecs(Pager *pPager, Pgno pgno){
41589   int ii;                   /* Loop counter */
41590   int rc = SQLITE_OK;       /* Result code */
41591 
41592   for(ii=0; ii<pPager->nSavepoint; ii++){
41593     PagerSavepoint *p = &pPager->aSavepoint[ii];
41594     if( pgno<=p->nOrig ){
41595       rc |= sqlite3BitvecSet(p->pInSavepoint, pgno);
41596       testcase( rc==SQLITE_NOMEM );
41597       assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
41598     }
41599   }
41600   return rc;
41601 }
41602 
41603 /*
41604 ** This function is a no-op if the pager is in exclusive mode and not
41605 ** in the ERROR state. Otherwise, it switches the pager to PAGER_OPEN
41606 ** state.
41607 **
41608 ** If the pager is not in exclusive-access mode, the database file is
41609 ** completely unlocked. If the file is unlocked and the file-system does
41610 ** not exhibit the UNDELETABLE_WHEN_OPEN property, the journal file is
41611 ** closed (if it is open).
41612 **
41613 ** If the pager is in ERROR state when this function is called, the
41614 ** contents of the pager cache are discarded before switching back to
41615 ** the OPEN state. Regardless of whether the pager is in exclusive-mode
41616 ** or not, any journal file left in the file-system will be treated
41617 ** as a hot-journal and rolled back the next time a read-transaction
41618 ** is opened (by this or by any other connection).
41619 */
41620 static void pager_unlock(Pager *pPager){
41621 
41622   assert( pPager->eState==PAGER_READER
41623        || pPager->eState==PAGER_OPEN
41624        || pPager->eState==PAGER_ERROR
41625   );
41626 
41627   sqlite3BitvecDestroy(pPager->pInJournal);
41628   pPager->pInJournal = 0;
41629   releaseAllSavepoints(pPager);
41630 
41631   if( pagerUseWal(pPager) ){
41632     assert( !isOpen(pPager->jfd) );
41633     sqlite3WalEndReadTransaction(pPager->pWal);
41634     pPager->eState = PAGER_OPEN;
41635   }else if( !pPager->exclusiveMode ){
41636     int rc;                       /* Error code returned by pagerUnlockDb() */
41637     int iDc = isOpen(pPager->fd)?sqlite3OsDeviceCharacteristics(pPager->fd):0;
41638 
41639     /* If the operating system support deletion of open files, then
41640     ** close the journal file when dropping the database lock.  Otherwise
41641     ** another connection with journal_mode=delete might delete the file
41642     ** out from under us.
41643     */
41644     assert( (PAGER_JOURNALMODE_MEMORY   & 5)!=1 );
41645     assert( (PAGER_JOURNALMODE_OFF      & 5)!=1 );
41646     assert( (PAGER_JOURNALMODE_WAL      & 5)!=1 );
41647     assert( (PAGER_JOURNALMODE_DELETE   & 5)!=1 );
41648     assert( (PAGER_JOURNALMODE_TRUNCATE & 5)==1 );
41649     assert( (PAGER_JOURNALMODE_PERSIST  & 5)==1 );
41650     if( 0==(iDc & SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN)
41651      || 1!=(pPager->journalMode & 5)
41652     ){
41653       sqlite3OsClose(pPager->jfd);
41654     }
41655 
41656     /* If the pager is in the ERROR state and the call to unlock the database
41657     ** file fails, set the current lock to UNKNOWN_LOCK. See the comment
41658     ** above the #define for UNKNOWN_LOCK for an explanation of why this
41659     ** is necessary.
41660     */
41661     rc = pagerUnlockDb(pPager, NO_LOCK);
41662     if( rc!=SQLITE_OK && pPager->eState==PAGER_ERROR ){
41663       pPager->eLock = UNKNOWN_LOCK;
41664     }
41665 
41666     /* The pager state may be changed from PAGER_ERROR to PAGER_OPEN here
41667     ** without clearing the error code. This is intentional - the error
41668     ** code is cleared and the cache reset in the block below.
41669     */
41670     assert( pPager->errCode || pPager->eState!=PAGER_ERROR );
41671     pPager->changeCountDone = 0;
41672     pPager->eState = PAGER_OPEN;
41673   }
41674 
41675   /* If Pager.errCode is set, the contents of the pager cache cannot be
41676   ** trusted. Now that there are no outstanding references to the pager,
41677   ** it can safely move back to PAGER_OPEN state. This happens in both
41678   ** normal and exclusive-locking mode.
41679   */
41680   if( pPager->errCode ){
41681     assert( !MEMDB );
41682     pager_reset(pPager);
41683     pPager->changeCountDone = pPager->tempFile;
41684     pPager->eState = PAGER_OPEN;
41685     pPager->errCode = SQLITE_OK;
41686     if( USEFETCH(pPager) ) sqlite3OsUnfetch(pPager->fd, 0, 0);
41687   }
41688 
41689   pPager->journalOff = 0;
41690   pPager->journalHdr = 0;
41691   pPager->setMaster = 0;
41692 }
41693 
41694 /*
41695 ** This function is called whenever an IOERR or FULL error that requires
41696 ** the pager to transition into the ERROR state may ahve occurred.
41697 ** The first argument is a pointer to the pager structure, the second
41698 ** the error-code about to be returned by a pager API function. The
41699 ** value returned is a copy of the second argument to this function.
41700 **
41701 ** If the second argument is SQLITE_FULL, SQLITE_IOERR or one of the
41702 ** IOERR sub-codes, the pager enters the ERROR state and the error code
41703 ** is stored in Pager.errCode. While the pager remains in the ERROR state,
41704 ** all major API calls on the Pager will immediately return Pager.errCode.
41705 **
41706 ** The ERROR state indicates that the contents of the pager-cache
41707 ** cannot be trusted. This state can be cleared by completely discarding
41708 ** the contents of the pager-cache. If a transaction was active when
41709 ** the persistent error occurred, then the rollback journal may need
41710 ** to be replayed to restore the contents of the database file (as if
41711 ** it were a hot-journal).
41712 */
41713 static int pager_error(Pager *pPager, int rc){
41714   int rc2 = rc & 0xff;
41715   assert( rc==SQLITE_OK || !MEMDB );
41716   assert(
41717        pPager->errCode==SQLITE_FULL ||
41718        pPager->errCode==SQLITE_OK ||
41719        (pPager->errCode & 0xff)==SQLITE_IOERR
41720   );
41721   if( rc2==SQLITE_FULL || rc2==SQLITE_IOERR ){
41722     pPager->errCode = rc;
41723     pPager->eState = PAGER_ERROR;
41724   }
41725   return rc;
41726 }
41727 
41728 static int pager_truncate(Pager *pPager, Pgno nPage);
41729 
41730 /*
41731 ** This routine ends a transaction. A transaction is usually ended by
41732 ** either a COMMIT or a ROLLBACK operation. This routine may be called
41733 ** after rollback of a hot-journal, or if an error occurs while opening
41734 ** the journal file or writing the very first journal-header of a
41735 ** database transaction.
41736 **
41737 ** This routine is never called in PAGER_ERROR state. If it is called
41738 ** in PAGER_NONE or PAGER_SHARED state and the lock held is less
41739 ** exclusive than a RESERVED lock, it is a no-op.
41740 **
41741 ** Otherwise, any active savepoints are released.
41742 **
41743 ** If the journal file is open, then it is "finalized". Once a journal
41744 ** file has been finalized it is not possible to use it to roll back a
41745 ** transaction. Nor will it be considered to be a hot-journal by this
41746 ** or any other database connection. Exactly how a journal is finalized
41747 ** depends on whether or not the pager is running in exclusive mode and
41748 ** the current journal-mode (Pager.journalMode value), as follows:
41749 **
41750 **   journalMode==MEMORY
41751 **     Journal file descriptor is simply closed. This destroys an
41752 **     in-memory journal.
41753 **
41754 **   journalMode==TRUNCATE
41755 **     Journal file is truncated to zero bytes in size.
41756 **
41757 **   journalMode==PERSIST
41758 **     The first 28 bytes of the journal file are zeroed. This invalidates
41759 **     the first journal header in the file, and hence the entire journal
41760 **     file. An invalid journal file cannot be rolled back.
41761 **
41762 **   journalMode==DELETE
41763 **     The journal file is closed and deleted using sqlite3OsDelete().
41764 **
41765 **     If the pager is running in exclusive mode, this method of finalizing
41766 **     the journal file is never used. Instead, if the journalMode is
41767 **     DELETE and the pager is in exclusive mode, the method described under
41768 **     journalMode==PERSIST is used instead.
41769 **
41770 ** After the journal is finalized, the pager moves to PAGER_READER state.
41771 ** If running in non-exclusive rollback mode, the lock on the file is
41772 ** downgraded to a SHARED_LOCK.
41773 **
41774 ** SQLITE_OK is returned if no error occurs. If an error occurs during
41775 ** any of the IO operations to finalize the journal file or unlock the
41776 ** database then the IO error code is returned to the user. If the
41777 ** operation to finalize the journal file fails, then the code still
41778 ** tries to unlock the database file if not in exclusive mode. If the
41779 ** unlock operation fails as well, then the first error code related
41780 ** to the first error encountered (the journal finalization one) is
41781 ** returned.
41782 */
41783 static int pager_end_transaction(Pager *pPager, int hasMaster, int bCommit){
41784   int rc = SQLITE_OK;      /* Error code from journal finalization operation */
41785   int rc2 = SQLITE_OK;     /* Error code from db file unlock operation */
41786 
41787   /* Do nothing if the pager does not have an open write transaction
41788   ** or at least a RESERVED lock. This function may be called when there
41789   ** is no write-transaction active but a RESERVED or greater lock is
41790   ** held under two circumstances:
41791   **
41792   **   1. After a successful hot-journal rollback, it is called with
41793   **      eState==PAGER_NONE and eLock==EXCLUSIVE_LOCK.
41794   **
41795   **   2. If a connection with locking_mode=exclusive holding an EXCLUSIVE
41796   **      lock switches back to locking_mode=normal and then executes a
41797   **      read-transaction, this function is called with eState==PAGER_READER
41798   **      and eLock==EXCLUSIVE_LOCK when the read-transaction is closed.
41799   */
41800   assert( assert_pager_state(pPager) );
41801   assert( pPager->eState!=PAGER_ERROR );
41802   if( pPager->eState<PAGER_WRITER_LOCKED && pPager->eLock<RESERVED_LOCK ){
41803     return SQLITE_OK;
41804   }
41805 
41806   releaseAllSavepoints(pPager);
41807   assert( isOpen(pPager->jfd) || pPager->pInJournal==0 );
41808   if( isOpen(pPager->jfd) ){
41809     assert( !pagerUseWal(pPager) );
41810 
41811     /* Finalize the journal file. */
41812     if( sqlite3IsMemJournal(pPager->jfd) ){
41813       assert( pPager->journalMode==PAGER_JOURNALMODE_MEMORY );
41814       sqlite3OsClose(pPager->jfd);
41815     }else if( pPager->journalMode==PAGER_JOURNALMODE_TRUNCATE ){
41816       if( pPager->journalOff==0 ){
41817         rc = SQLITE_OK;
41818       }else{
41819         rc = sqlite3OsTruncate(pPager->jfd, 0);
41820       }
41821       pPager->journalOff = 0;
41822     }else if( pPager->journalMode==PAGER_JOURNALMODE_PERSIST
41823       || (pPager->exclusiveMode && pPager->journalMode!=PAGER_JOURNALMODE_WAL)
41824     ){
41825       rc = zeroJournalHdr(pPager, hasMaster);
41826       pPager->journalOff = 0;
41827     }else{
41828       /* This branch may be executed with Pager.journalMode==MEMORY if
41829       ** a hot-journal was just rolled back. In this case the journal
41830       ** file should be closed and deleted. If this connection writes to
41831       ** the database file, it will do so using an in-memory journal.
41832       */
41833       int bDelete = (!pPager->tempFile && sqlite3JournalExists(pPager->jfd));
41834       assert( pPager->journalMode==PAGER_JOURNALMODE_DELETE
41835            || pPager->journalMode==PAGER_JOURNALMODE_MEMORY
41836            || pPager->journalMode==PAGER_JOURNALMODE_WAL
41837       );
41838       sqlite3OsClose(pPager->jfd);
41839       if( bDelete ){
41840         rc = sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0);
41841       }
41842     }
41843   }
41844 
41845 #ifdef SQLITE_CHECK_PAGES
41846   sqlite3PcacheIterateDirty(pPager->pPCache, pager_set_pagehash);
41847   if( pPager->dbSize==0 && sqlite3PcacheRefCount(pPager->pPCache)>0 ){
41848     PgHdr *p = pager_lookup(pPager, 1);
41849     if( p ){
41850       p->pageHash = 0;
41851       sqlite3PagerUnrefNotNull(p);
41852     }
41853   }
41854 #endif
41855 
41856   sqlite3BitvecDestroy(pPager->pInJournal);
41857   pPager->pInJournal = 0;
41858   pPager->nRec = 0;
41859   sqlite3PcacheCleanAll(pPager->pPCache);
41860   sqlite3PcacheTruncate(pPager->pPCache, pPager->dbSize);
41861 
41862   if( pagerUseWal(pPager) ){
41863     /* Drop the WAL write-lock, if any. Also, if the connection was in
41864     ** locking_mode=exclusive mode but is no longer, drop the EXCLUSIVE
41865     ** lock held on the database file.
41866     */
41867     rc2 = sqlite3WalEndWriteTransaction(pPager->pWal);
41868     assert( rc2==SQLITE_OK );
41869   }else if( rc==SQLITE_OK && bCommit && pPager->dbFileSize>pPager->dbSize ){
41870     /* This branch is taken when committing a transaction in rollback-journal
41871     ** mode if the database file on disk is larger than the database image.
41872     ** At this point the journal has been finalized and the transaction
41873     ** successfully committed, but the EXCLUSIVE lock is still held on the
41874     ** file. So it is safe to truncate the database file to its minimum
41875     ** required size.  */
41876     assert( pPager->eLock==EXCLUSIVE_LOCK );
41877     rc = pager_truncate(pPager, pPager->dbSize);
41878   }
41879 
41880   if( rc==SQLITE_OK && bCommit && isOpen(pPager->fd) ){
41881     rc = sqlite3OsFileControl(pPager->fd, SQLITE_FCNTL_COMMIT_PHASETWO, 0);
41882     if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK;
41883   }
41884 
41885   if( !pPager->exclusiveMode
41886    && (!pagerUseWal(pPager) || sqlite3WalExclusiveMode(pPager->pWal, 0))
41887   ){
41888     rc2 = pagerUnlockDb(pPager, SHARED_LOCK);
41889     pPager->changeCountDone = 0;
41890   }
41891   pPager->eState = PAGER_READER;
41892   pPager->setMaster = 0;
41893 
41894   return (rc==SQLITE_OK?rc2:rc);
41895 }
41896 
41897 /*
41898 ** Execute a rollback if a transaction is active and unlock the
41899 ** database file.
41900 **
41901 ** If the pager has already entered the ERROR state, do not attempt
41902 ** the rollback at this time. Instead, pager_unlock() is called. The
41903 ** call to pager_unlock() will discard all in-memory pages, unlock
41904 ** the database file and move the pager back to OPEN state. If this
41905 ** means that there is a hot-journal left in the file-system, the next
41906 ** connection to obtain a shared lock on the pager (which may be this one)
41907 ** will roll it back.
41908 **
41909 ** If the pager has not already entered the ERROR state, but an IO or
41910 ** malloc error occurs during a rollback, then this will itself cause
41911 ** the pager to enter the ERROR state. Which will be cleared by the
41912 ** call to pager_unlock(), as described above.
41913 */
41914 static void pagerUnlockAndRollback(Pager *pPager){
41915   if( pPager->eState!=PAGER_ERROR && pPager->eState!=PAGER_OPEN ){
41916     assert( assert_pager_state(pPager) );
41917     if( pPager->eState>=PAGER_WRITER_LOCKED ){
41918       sqlite3BeginBenignMalloc();
41919       sqlite3PagerRollback(pPager);
41920       sqlite3EndBenignMalloc();
41921     }else if( !pPager->exclusiveMode ){
41922       assert( pPager->eState==PAGER_READER );
41923       pager_end_transaction(pPager, 0, 0);
41924     }
41925   }
41926   pager_unlock(pPager);
41927 }
41928 
41929 /*
41930 ** Parameter aData must point to a buffer of pPager->pageSize bytes
41931 ** of data. Compute and return a checksum based ont the contents of the
41932 ** page of data and the current value of pPager->cksumInit.
41933 **
41934 ** This is not a real checksum. It is really just the sum of the
41935 ** random initial value (pPager->cksumInit) and every 200th byte
41936 ** of the page data, starting with byte offset (pPager->pageSize%200).
41937 ** Each byte is interpreted as an 8-bit unsigned integer.
41938 **
41939 ** Changing the formula used to compute this checksum results in an
41940 ** incompatible journal file format.
41941 **
41942 ** If journal corruption occurs due to a power failure, the most likely
41943 ** scenario is that one end or the other of the record will be changed.
41944 ** It is much less likely that the two ends of the journal record will be
41945 ** correct and the middle be corrupt.  Thus, this "checksum" scheme,
41946 ** though fast and simple, catches the mostly likely kind of corruption.
41947 */
41948 static u32 pager_cksum(Pager *pPager, const u8 *aData){
41949   u32 cksum = pPager->cksumInit;         /* Checksum value to return */
41950   int i = pPager->pageSize-200;          /* Loop counter */
41951   while( i>0 ){
41952     cksum += aData[i];
41953     i -= 200;
41954   }
41955   return cksum;
41956 }
41957 
41958 /*
41959 ** Report the current page size and number of reserved bytes back
41960 ** to the codec.
41961 */
41962 #ifdef SQLITE_HAS_CODEC
41963 static void pagerReportSize(Pager *pPager){
41964   if( pPager->xCodecSizeChng ){
41965     pPager->xCodecSizeChng(pPager->pCodec, pPager->pageSize,
41966                            (int)pPager->nReserve);
41967   }
41968 }
41969 #else
41970 # define pagerReportSize(X)     /* No-op if we do not support a codec */
41971 #endif
41972 
41973 /*
41974 ** Read a single page from either the journal file (if isMainJrnl==1) or
41975 ** from the sub-journal (if isMainJrnl==0) and playback that page.
41976 ** The page begins at offset *pOffset into the file. The *pOffset
41977 ** value is increased to the start of the next page in the journal.
41978 **
41979 ** The main rollback journal uses checksums - the statement journal does
41980 ** not.
41981 **
41982 ** If the page number of the page record read from the (sub-)journal file
41983 ** is greater than the current value of Pager.dbSize, then playback is
41984 ** skipped and SQLITE_OK is returned.
41985 **
41986 ** If pDone is not NULL, then it is a record of pages that have already
41987 ** been played back.  If the page at *pOffset has already been played back
41988 ** (if the corresponding pDone bit is set) then skip the playback.
41989 ** Make sure the pDone bit corresponding to the *pOffset page is set
41990 ** prior to returning.
41991 **
41992 ** If the page record is successfully read from the (sub-)journal file
41993 ** and played back, then SQLITE_OK is returned. If an IO error occurs
41994 ** while reading the record from the (sub-)journal file or while writing
41995 ** to the database file, then the IO error code is returned. If data
41996 ** is successfully read from the (sub-)journal file but appears to be
41997 ** corrupted, SQLITE_DONE is returned. Data is considered corrupted in
41998 ** two circumstances:
41999 **
42000 **   * If the record page-number is illegal (0 or PAGER_MJ_PGNO), or
42001 **   * If the record is being rolled back from the main journal file
42002 **     and the checksum field does not match the record content.
42003 **
42004 ** Neither of these two scenarios are possible during a savepoint rollback.
42005 **
42006 ** If this is a savepoint rollback, then memory may have to be dynamically
42007 ** allocated by this function. If this is the case and an allocation fails,
42008 ** SQLITE_NOMEM is returned.
42009 */
42010 static int pager_playback_one_page(
42011   Pager *pPager,                /* The pager being played back */
42012   i64 *pOffset,                 /* Offset of record to playback */
42013   Bitvec *pDone,                /* Bitvec of pages already played back */
42014   int isMainJrnl,               /* 1 -> main journal. 0 -> sub-journal. */
42015   int isSavepnt                 /* True for a savepoint rollback */
42016 ){
42017   int rc;
42018   PgHdr *pPg;                   /* An existing page in the cache */
42019   Pgno pgno;                    /* The page number of a page in journal */
42020   u32 cksum;                    /* Checksum used for sanity checking */
42021   char *aData;                  /* Temporary storage for the page */
42022   sqlite3_file *jfd;            /* The file descriptor for the journal file */
42023   int isSynced;                 /* True if journal page is synced */
42024 
42025   assert( (isMainJrnl&~1)==0 );      /* isMainJrnl is 0 or 1 */
42026   assert( (isSavepnt&~1)==0 );       /* isSavepnt is 0 or 1 */
42027   assert( isMainJrnl || pDone );     /* pDone always used on sub-journals */
42028   assert( isSavepnt || pDone==0 );   /* pDone never used on non-savepoint */
42029 
42030   aData = pPager->pTmpSpace;
42031   assert( aData );         /* Temp storage must have already been allocated */
42032   assert( pagerUseWal(pPager)==0 || (!isMainJrnl && isSavepnt) );
42033 
42034   /* Either the state is greater than PAGER_WRITER_CACHEMOD (a transaction
42035   ** or savepoint rollback done at the request of the caller) or this is
42036   ** a hot-journal rollback. If it is a hot-journal rollback, the pager
42037   ** is in state OPEN and holds an EXCLUSIVE lock. Hot-journal rollback
42038   ** only reads from the main journal, not the sub-journal.
42039   */
42040   assert( pPager->eState>=PAGER_WRITER_CACHEMOD
42041        || (pPager->eState==PAGER_OPEN && pPager->eLock==EXCLUSIVE_LOCK)
42042   );
42043   assert( pPager->eState>=PAGER_WRITER_CACHEMOD || isMainJrnl );
42044 
42045   /* Read the page number and page data from the journal or sub-journal
42046   ** file. Return an error code to the caller if an IO error occurs.
42047   */
42048   jfd = isMainJrnl ? pPager->jfd : pPager->sjfd;
42049   rc = read32bits(jfd, *pOffset, &pgno);
42050   if( rc!=SQLITE_OK ) return rc;
42051   rc = sqlite3OsRead(jfd, (u8*)aData, pPager->pageSize, (*pOffset)+4);
42052   if( rc!=SQLITE_OK ) return rc;
42053   *pOffset += pPager->pageSize + 4 + isMainJrnl*4;
42054 
42055   /* Sanity checking on the page.  This is more important that I originally
42056   ** thought.  If a power failure occurs while the journal is being written,
42057   ** it could cause invalid data to be written into the journal.  We need to
42058   ** detect this invalid data (with high probability) and ignore it.
42059   */
42060   if( pgno==0 || pgno==PAGER_MJ_PGNO(pPager) ){
42061     assert( !isSavepnt );
42062     return SQLITE_DONE;
42063   }
42064   if( pgno>(Pgno)pPager->dbSize || sqlite3BitvecTest(pDone, pgno) ){
42065     return SQLITE_OK;
42066   }
42067   if( isMainJrnl ){
42068     rc = read32bits(jfd, (*pOffset)-4, &cksum);
42069     if( rc ) return rc;
42070     if( !isSavepnt && pager_cksum(pPager, (u8*)aData)!=cksum ){
42071       return SQLITE_DONE;
42072     }
42073   }
42074 
42075   /* If this page has already been played by before during the current
42076   ** rollback, then don't bother to play it back again.
42077   */
42078   if( pDone && (rc = sqlite3BitvecSet(pDone, pgno))!=SQLITE_OK ){
42079     return rc;
42080   }
42081 
42082   /* When playing back page 1, restore the nReserve setting
42083   */
42084   if( pgno==1 && pPager->nReserve!=((u8*)aData)[20] ){
42085     pPager->nReserve = ((u8*)aData)[20];
42086     pagerReportSize(pPager);
42087   }
42088 
42089   /* If the pager is in CACHEMOD state, then there must be a copy of this
42090   ** page in the pager cache. In this case just update the pager cache,
42091   ** not the database file. The page is left marked dirty in this case.
42092   **
42093   ** An exception to the above rule: If the database is in no-sync mode
42094   ** and a page is moved during an incremental vacuum then the page may
42095   ** not be in the pager cache. Later: if a malloc() or IO error occurs
42096   ** during a Movepage() call, then the page may not be in the cache
42097   ** either. So the condition described in the above paragraph is not
42098   ** assert()able.
42099   **
42100   ** If in WRITER_DBMOD, WRITER_FINISHED or OPEN state, then we update the
42101   ** pager cache if it exists and the main file. The page is then marked
42102   ** not dirty. Since this code is only executed in PAGER_OPEN state for
42103   ** a hot-journal rollback, it is guaranteed that the page-cache is empty
42104   ** if the pager is in OPEN state.
42105   **
42106   ** Ticket #1171:  The statement journal might contain page content that is
42107   ** different from the page content at the start of the transaction.
42108   ** This occurs when a page is changed prior to the start of a statement
42109   ** then changed again within the statement.  When rolling back such a
42110   ** statement we must not write to the original database unless we know
42111   ** for certain that original page contents are synced into the main rollback
42112   ** journal.  Otherwise, a power loss might leave modified data in the
42113   ** database file without an entry in the rollback journal that can
42114   ** restore the database to its original form.  Two conditions must be
42115   ** met before writing to the database files. (1) the database must be
42116   ** locked.  (2) we know that the original page content is fully synced
42117   ** in the main journal either because the page is not in cache or else
42118   ** the page is marked as needSync==0.
42119   **
42120   ** 2008-04-14:  When attempting to vacuum a corrupt database file, it
42121   ** is possible to fail a statement on a database that does not yet exist.
42122   ** Do not attempt to write if database file has never been opened.
42123   */
42124   if( pagerUseWal(pPager) ){
42125     pPg = 0;
42126   }else{
42127     pPg = pager_lookup(pPager, pgno);
42128   }
42129   assert( pPg || !MEMDB );
42130   assert( pPager->eState!=PAGER_OPEN || pPg==0 );
42131   PAGERTRACE(("PLAYBACK %d page %d hash(%08x) %s\n",
42132            PAGERID(pPager), pgno, pager_datahash(pPager->pageSize, (u8*)aData),
42133            (isMainJrnl?"main-journal":"sub-journal")
42134   ));
42135   if( isMainJrnl ){
42136     isSynced = pPager->noSync || (*pOffset <= pPager->journalHdr);
42137   }else{
42138     isSynced = (pPg==0 || 0==(pPg->flags & PGHDR_NEED_SYNC));
42139   }
42140   if( isOpen(pPager->fd)
42141    && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN)
42142    && isSynced
42143   ){
42144     i64 ofst = (pgno-1)*(i64)pPager->pageSize;
42145     testcase( !isSavepnt && pPg!=0 && (pPg->flags&PGHDR_NEED_SYNC)!=0 );
42146     assert( !pagerUseWal(pPager) );
42147     rc = sqlite3OsWrite(pPager->fd, (u8 *)aData, pPager->pageSize, ofst);
42148     if( pgno>pPager->dbFileSize ){
42149       pPager->dbFileSize = pgno;
42150     }
42151     if( pPager->pBackup ){
42152       CODEC1(pPager, aData, pgno, 3, rc=SQLITE_NOMEM);
42153       sqlite3BackupUpdate(pPager->pBackup, pgno, (u8*)aData);
42154       CODEC2(pPager, aData, pgno, 7, rc=SQLITE_NOMEM, aData);
42155     }
42156   }else if( !isMainJrnl && pPg==0 ){
42157     /* If this is a rollback of a savepoint and data was not written to
42158     ** the database and the page is not in-memory, there is a potential
42159     ** problem. When the page is next fetched by the b-tree layer, it
42160     ** will be read from the database file, which may or may not be
42161     ** current.
42162     **
42163     ** There are a couple of different ways this can happen. All are quite
42164     ** obscure. When running in synchronous mode, this can only happen
42165     ** if the page is on the free-list at the start of the transaction, then
42166     ** populated, then moved using sqlite3PagerMovepage().
42167     **
42168     ** The solution is to add an in-memory page to the cache containing
42169     ** the data just read from the sub-journal. Mark the page as dirty
42170     ** and if the pager requires a journal-sync, then mark the page as
42171     ** requiring a journal-sync before it is written.
42172     */
42173     assert( isSavepnt );
42174     assert( (pPager->doNotSpill & SPILLFLAG_ROLLBACK)==0 );
42175     pPager->doNotSpill |= SPILLFLAG_ROLLBACK;
42176     rc = sqlite3PagerAcquire(pPager, pgno, &pPg, 1);
42177     assert( (pPager->doNotSpill & SPILLFLAG_ROLLBACK)!=0 );
42178     pPager->doNotSpill &= ~SPILLFLAG_ROLLBACK;
42179     if( rc!=SQLITE_OK ) return rc;
42180     pPg->flags &= ~PGHDR_NEED_READ;
42181     sqlite3PcacheMakeDirty(pPg);
42182   }
42183   if( pPg ){
42184     /* No page should ever be explicitly rolled back that is in use, except
42185     ** for page 1 which is held in use in order to keep the lock on the
42186     ** database active. However such a page may be rolled back as a result
42187     ** of an internal error resulting in an automatic call to
42188     ** sqlite3PagerRollback().
42189     */
42190     void *pData;
42191     pData = pPg->pData;
42192     memcpy(pData, (u8*)aData, pPager->pageSize);
42193     pPager->xReiniter(pPg);
42194     if( isMainJrnl && (!isSavepnt || *pOffset<=pPager->journalHdr) ){
42195       /* If the contents of this page were just restored from the main
42196       ** journal file, then its content must be as they were when the
42197       ** transaction was first opened. In this case we can mark the page
42198       ** as clean, since there will be no need to write it out to the
42199       ** database.
42200       **
42201       ** There is one exception to this rule. If the page is being rolled
42202       ** back as part of a savepoint (or statement) rollback from an
42203       ** unsynced portion of the main journal file, then it is not safe
42204       ** to mark the page as clean. This is because marking the page as
42205       ** clean will clear the PGHDR_NEED_SYNC flag. Since the page is
42206       ** already in the journal file (recorded in Pager.pInJournal) and
42207       ** the PGHDR_NEED_SYNC flag is cleared, if the page is written to
42208       ** again within this transaction, it will be marked as dirty but
42209       ** the PGHDR_NEED_SYNC flag will not be set. It could then potentially
42210       ** be written out into the database file before its journal file
42211       ** segment is synced. If a crash occurs during or following this,
42212       ** database corruption may ensue.
42213       */
42214       assert( !pagerUseWal(pPager) );
42215       sqlite3PcacheMakeClean(pPg);
42216     }
42217     pager_set_pagehash(pPg);
42218 
42219     /* If this was page 1, then restore the value of Pager.dbFileVers.
42220     ** Do this before any decoding. */
42221     if( pgno==1 ){
42222       memcpy(&pPager->dbFileVers, &((u8*)pData)[24],sizeof(pPager->dbFileVers));
42223     }
42224 
42225     /* Decode the page just read from disk */
42226     CODEC1(pPager, pData, pPg->pgno, 3, rc=SQLITE_NOMEM);
42227     sqlite3PcacheRelease(pPg);
42228   }
42229   return rc;
42230 }
42231 
42232 /*
42233 ** Parameter zMaster is the name of a master journal file. A single journal
42234 ** file that referred to the master journal file has just been rolled back.
42235 ** This routine checks if it is possible to delete the master journal file,
42236 ** and does so if it is.
42237 **
42238 ** Argument zMaster may point to Pager.pTmpSpace. So that buffer is not
42239 ** available for use within this function.
42240 **
42241 ** When a master journal file is created, it is populated with the names
42242 ** of all of its child journals, one after another, formatted as utf-8
42243 ** encoded text. The end of each child journal file is marked with a
42244 ** nul-terminator byte (0x00). i.e. the entire contents of a master journal
42245 ** file for a transaction involving two databases might be:
42246 **
42247 **   "/home/bill/a.db-journal\x00/home/bill/b.db-journal\x00"
42248 **
42249 ** A master journal file may only be deleted once all of its child
42250 ** journals have been rolled back.
42251 **
42252 ** This function reads the contents of the master-journal file into
42253 ** memory and loops through each of the child journal names. For
42254 ** each child journal, it checks if:
42255 **
42256 **   * if the child journal exists, and if so
42257 **   * if the child journal contains a reference to master journal
42258 **     file zMaster
42259 **
42260 ** If a child journal can be found that matches both of the criteria
42261 ** above, this function returns without doing anything. Otherwise, if
42262 ** no such child journal can be found, file zMaster is deleted from
42263 ** the file-system using sqlite3OsDelete().
42264 **
42265 ** If an IO error within this function, an error code is returned. This
42266 ** function allocates memory by calling sqlite3Malloc(). If an allocation
42267 ** fails, SQLITE_NOMEM is returned. Otherwise, if no IO or malloc errors
42268 ** occur, SQLITE_OK is returned.
42269 **
42270 ** TODO: This function allocates a single block of memory to load
42271 ** the entire contents of the master journal file. This could be
42272 ** a couple of kilobytes or so - potentially larger than the page
42273 ** size.
42274 */
42275 static int pager_delmaster(Pager *pPager, const char *zMaster){
42276   sqlite3_vfs *pVfs = pPager->pVfs;
42277   int rc;                   /* Return code */
42278   sqlite3_file *pMaster;    /* Malloc'd master-journal file descriptor */
42279   sqlite3_file *pJournal;   /* Malloc'd child-journal file descriptor */
42280   char *zMasterJournal = 0; /* Contents of master journal file */
42281   i64 nMasterJournal;       /* Size of master journal file */
42282   char *zJournal;           /* Pointer to one journal within MJ file */
42283   char *zMasterPtr;         /* Space to hold MJ filename from a journal file */
42284   int nMasterPtr;           /* Amount of space allocated to zMasterPtr[] */
42285 
42286   /* Allocate space for both the pJournal and pMaster file descriptors.
42287   ** If successful, open the master journal file for reading.
42288   */
42289   pMaster = (sqlite3_file *)sqlite3MallocZero(pVfs->szOsFile * 2);
42290   pJournal = (sqlite3_file *)(((u8 *)pMaster) + pVfs->szOsFile);
42291   if( !pMaster ){
42292     rc = SQLITE_NOMEM;
42293   }else{
42294     const int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_MASTER_JOURNAL);
42295     rc = sqlite3OsOpen(pVfs, zMaster, pMaster, flags, 0);
42296   }
42297   if( rc!=SQLITE_OK ) goto delmaster_out;
42298 
42299   /* Load the entire master journal file into space obtained from
42300   ** sqlite3_malloc() and pointed to by zMasterJournal.   Also obtain
42301   ** sufficient space (in zMasterPtr) to hold the names of master
42302   ** journal files extracted from regular rollback-journals.
42303   */
42304   rc = sqlite3OsFileSize(pMaster, &nMasterJournal);
42305   if( rc!=SQLITE_OK ) goto delmaster_out;
42306   nMasterPtr = pVfs->mxPathname+1;
42307   zMasterJournal = sqlite3Malloc((int)nMasterJournal + nMasterPtr + 1);
42308   if( !zMasterJournal ){
42309     rc = SQLITE_NOMEM;
42310     goto delmaster_out;
42311   }
42312   zMasterPtr = &zMasterJournal[nMasterJournal+1];
42313   rc = sqlite3OsRead(pMaster, zMasterJournal, (int)nMasterJournal, 0);
42314   if( rc!=SQLITE_OK ) goto delmaster_out;
42315   zMasterJournal[nMasterJournal] = 0;
42316 
42317   zJournal = zMasterJournal;
42318   while( (zJournal-zMasterJournal)<nMasterJournal ){
42319     int exists;
42320     rc = sqlite3OsAccess(pVfs, zJournal, SQLITE_ACCESS_EXISTS, &exists);
42321     if( rc!=SQLITE_OK ){
42322       goto delmaster_out;
42323     }
42324     if( exists ){
42325       /* One of the journals pointed to by the master journal exists.
42326       ** Open it and check if it points at the master journal. If
42327       ** so, return without deleting the master journal file.
42328       */
42329       int c;
42330       int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_MAIN_JOURNAL);
42331       rc = sqlite3OsOpen(pVfs, zJournal, pJournal, flags, 0);
42332       if( rc!=SQLITE_OK ){
42333         goto delmaster_out;
42334       }
42335 
42336       rc = readMasterJournal(pJournal, zMasterPtr, nMasterPtr);
42337       sqlite3OsClose(pJournal);
42338       if( rc!=SQLITE_OK ){
42339         goto delmaster_out;
42340       }
42341 
42342       c = zMasterPtr[0]!=0 && strcmp(zMasterPtr, zMaster)==0;
42343       if( c ){
42344         /* We have a match. Do not delete the master journal file. */
42345         goto delmaster_out;
42346       }
42347     }
42348     zJournal += (sqlite3Strlen30(zJournal)+1);
42349   }
42350 
42351   sqlite3OsClose(pMaster);
42352   rc = sqlite3OsDelete(pVfs, zMaster, 0);
42353 
42354 delmaster_out:
42355   sqlite3_free(zMasterJournal);
42356   if( pMaster ){
42357     sqlite3OsClose(pMaster);
42358     assert( !isOpen(pJournal) );
42359     sqlite3_free(pMaster);
42360   }
42361   return rc;
42362 }
42363 
42364 
42365 /*
42366 ** This function is used to change the actual size of the database
42367 ** file in the file-system. This only happens when committing a transaction,
42368 ** or rolling back a transaction (including rolling back a hot-journal).
42369 **
42370 ** If the main database file is not open, or the pager is not in either
42371 ** DBMOD or OPEN state, this function is a no-op. Otherwise, the size
42372 ** of the file is changed to nPage pages (nPage*pPager->pageSize bytes).
42373 ** If the file on disk is currently larger than nPage pages, then use the VFS
42374 ** xTruncate() method to truncate it.
42375 **
42376 ** Or, it might might be the case that the file on disk is smaller than
42377 ** nPage pages. Some operating system implementations can get confused if
42378 ** you try to truncate a file to some size that is larger than it
42379 ** currently is, so detect this case and write a single zero byte to
42380 ** the end of the new file instead.
42381 **
42382 ** If successful, return SQLITE_OK. If an IO error occurs while modifying
42383 ** the database file, return the error code to the caller.
42384 */
42385 static int pager_truncate(Pager *pPager, Pgno nPage){
42386   int rc = SQLITE_OK;
42387   assert( pPager->eState!=PAGER_ERROR );
42388   assert( pPager->eState!=PAGER_READER );
42389 
42390   if( isOpen(pPager->fd)
42391    && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN)
42392   ){
42393     i64 currentSize, newSize;
42394     int szPage = pPager->pageSize;
42395     assert( pPager->eLock==EXCLUSIVE_LOCK );
42396     /* TODO: Is it safe to use Pager.dbFileSize here? */
42397     rc = sqlite3OsFileSize(pPager->fd, &currentSize);
42398     newSize = szPage*(i64)nPage;
42399     if( rc==SQLITE_OK && currentSize!=newSize ){
42400       if( currentSize>newSize ){
42401         rc = sqlite3OsTruncate(pPager->fd, newSize);
42402       }else if( (currentSize+szPage)<=newSize ){
42403         char *pTmp = pPager->pTmpSpace;
42404         memset(pTmp, 0, szPage);
42405         testcase( (newSize-szPage) == currentSize );
42406         testcase( (newSize-szPage) >  currentSize );
42407         rc = sqlite3OsWrite(pPager->fd, pTmp, szPage, newSize-szPage);
42408       }
42409       if( rc==SQLITE_OK ){
42410         pPager->dbFileSize = nPage;
42411       }
42412     }
42413   }
42414   return rc;
42415 }
42416 
42417 /*
42418 ** Return a sanitized version of the sector-size of OS file pFile. The
42419 ** return value is guaranteed to lie between 32 and MAX_SECTOR_SIZE.
42420 */
42421 SQLITE_PRIVATE int sqlite3SectorSize(sqlite3_file *pFile){
42422   int iRet = sqlite3OsSectorSize(pFile);
42423   if( iRet<32 ){
42424     iRet = 512;
42425   }else if( iRet>MAX_SECTOR_SIZE ){
42426     assert( MAX_SECTOR_SIZE>=512 );
42427     iRet = MAX_SECTOR_SIZE;
42428   }
42429   return iRet;
42430 }
42431 
42432 /*
42433 ** Set the value of the Pager.sectorSize variable for the given
42434 ** pager based on the value returned by the xSectorSize method
42435 ** of the open database file. The sector size will be used used
42436 ** to determine the size and alignment of journal header and
42437 ** master journal pointers within created journal files.
42438 **
42439 ** For temporary files the effective sector size is always 512 bytes.
42440 **
42441 ** Otherwise, for non-temporary files, the effective sector size is
42442 ** the value returned by the xSectorSize() method rounded up to 32 if
42443 ** it is less than 32, or rounded down to MAX_SECTOR_SIZE if it
42444 ** is greater than MAX_SECTOR_SIZE.
42445 **
42446 ** If the file has the SQLITE_IOCAP_POWERSAFE_OVERWRITE property, then set
42447 ** the effective sector size to its minimum value (512).  The purpose of
42448 ** pPager->sectorSize is to define the "blast radius" of bytes that
42449 ** might change if a crash occurs while writing to a single byte in
42450 ** that range.  But with POWERSAFE_OVERWRITE, the blast radius is zero
42451 ** (that is what POWERSAFE_OVERWRITE means), so we minimize the sector
42452 ** size.  For backwards compatibility of the rollback journal file format,
42453 ** we cannot reduce the effective sector size below 512.
42454 */
42455 static void setSectorSize(Pager *pPager){
42456   assert( isOpen(pPager->fd) || pPager->tempFile );
42457 
42458   if( pPager->tempFile
42459    || (sqlite3OsDeviceCharacteristics(pPager->fd) &
42460               SQLITE_IOCAP_POWERSAFE_OVERWRITE)!=0
42461   ){
42462     /* Sector size doesn't matter for temporary files. Also, the file
42463     ** may not have been opened yet, in which case the OsSectorSize()
42464     ** call will segfault. */
42465     pPager->sectorSize = 512;
42466   }else{
42467     pPager->sectorSize = sqlite3SectorSize(pPager->fd);
42468   }
42469 }
42470 
42471 /*
42472 ** Playback the journal and thus restore the database file to
42473 ** the state it was in before we started making changes.
42474 **
42475 ** The journal file format is as follows:
42476 **
42477 **  (1)  8 byte prefix.  A copy of aJournalMagic[].
42478 **  (2)  4 byte big-endian integer which is the number of valid page records
42479 **       in the journal.  If this value is 0xffffffff, then compute the
42480 **       number of page records from the journal size.
42481 **  (3)  4 byte big-endian integer which is the initial value for the
42482 **       sanity checksum.
42483 **  (4)  4 byte integer which is the number of pages to truncate the
42484 **       database to during a rollback.
42485 **  (5)  4 byte big-endian integer which is the sector size.  The header
42486 **       is this many bytes in size.
42487 **  (6)  4 byte big-endian integer which is the page size.
42488 **  (7)  zero padding out to the next sector size.
42489 **  (8)  Zero or more pages instances, each as follows:
42490 **        +  4 byte page number.
42491 **        +  pPager->pageSize bytes of data.
42492 **        +  4 byte checksum
42493 **
42494 ** When we speak of the journal header, we mean the first 7 items above.
42495 ** Each entry in the journal is an instance of the 8th item.
42496 **
42497 ** Call the value from the second bullet "nRec".  nRec is the number of
42498 ** valid page entries in the journal.  In most cases, you can compute the
42499 ** value of nRec from the size of the journal file.  But if a power
42500 ** failure occurred while the journal was being written, it could be the
42501 ** case that the size of the journal file had already been increased but
42502 ** the extra entries had not yet made it safely to disk.  In such a case,
42503 ** the value of nRec computed from the file size would be too large.  For
42504 ** that reason, we always use the nRec value in the header.
42505 **
42506 ** If the nRec value is 0xffffffff it means that nRec should be computed
42507 ** from the file size.  This value is used when the user selects the
42508 ** no-sync option for the journal.  A power failure could lead to corruption
42509 ** in this case.  But for things like temporary table (which will be
42510 ** deleted when the power is restored) we don't care.
42511 **
42512 ** If the file opened as the journal file is not a well-formed
42513 ** journal file then all pages up to the first corrupted page are rolled
42514 ** back (or no pages if the journal header is corrupted). The journal file
42515 ** is then deleted and SQLITE_OK returned, just as if no corruption had
42516 ** been encountered.
42517 **
42518 ** If an I/O or malloc() error occurs, the journal-file is not deleted
42519 ** and an error code is returned.
42520 **
42521 ** The isHot parameter indicates that we are trying to rollback a journal
42522 ** that might be a hot journal.  Or, it could be that the journal is
42523 ** preserved because of JOURNALMODE_PERSIST or JOURNALMODE_TRUNCATE.
42524 ** If the journal really is hot, reset the pager cache prior rolling
42525 ** back any content.  If the journal is merely persistent, no reset is
42526 ** needed.
42527 */
42528 static int pager_playback(Pager *pPager, int isHot){
42529   sqlite3_vfs *pVfs = pPager->pVfs;
42530   i64 szJ;                 /* Size of the journal file in bytes */
42531   u32 nRec;                /* Number of Records in the journal */
42532   u32 u;                   /* Unsigned loop counter */
42533   Pgno mxPg = 0;           /* Size of the original file in pages */
42534   int rc;                  /* Result code of a subroutine */
42535   int res = 1;             /* Value returned by sqlite3OsAccess() */
42536   char *zMaster = 0;       /* Name of master journal file if any */
42537   int needPagerReset;      /* True to reset page prior to first page rollback */
42538   int nPlayback = 0;       /* Total number of pages restored from journal */
42539 
42540   /* Figure out how many records are in the journal.  Abort early if
42541   ** the journal is empty.
42542   */
42543   assert( isOpen(pPager->jfd) );
42544   rc = sqlite3OsFileSize(pPager->jfd, &szJ);
42545   if( rc!=SQLITE_OK ){
42546     goto end_playback;
42547   }
42548 
42549   /* Read the master journal name from the journal, if it is present.
42550   ** If a master journal file name is specified, but the file is not
42551   ** present on disk, then the journal is not hot and does not need to be
42552   ** played back.
42553   **
42554   ** TODO: Technically the following is an error because it assumes that
42555   ** buffer Pager.pTmpSpace is (mxPathname+1) bytes or larger. i.e. that
42556   ** (pPager->pageSize >= pPager->pVfs->mxPathname+1). Using os_unix.c,
42557   **  mxPathname is 512, which is the same as the minimum allowable value
42558   ** for pageSize.
42559   */
42560   zMaster = pPager->pTmpSpace;
42561   rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1);
42562   if( rc==SQLITE_OK && zMaster[0] ){
42563     rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
42564   }
42565   zMaster = 0;
42566   if( rc!=SQLITE_OK || !res ){
42567     goto end_playback;
42568   }
42569   pPager->journalOff = 0;
42570   needPagerReset = isHot;
42571 
42572   /* This loop terminates either when a readJournalHdr() or
42573   ** pager_playback_one_page() call returns SQLITE_DONE or an IO error
42574   ** occurs.
42575   */
42576   while( 1 ){
42577     /* Read the next journal header from the journal file.  If there are
42578     ** not enough bytes left in the journal file for a complete header, or
42579     ** it is corrupted, then a process must have failed while writing it.
42580     ** This indicates nothing more needs to be rolled back.
42581     */
42582     rc = readJournalHdr(pPager, isHot, szJ, &nRec, &mxPg);
42583     if( rc!=SQLITE_OK ){
42584       if( rc==SQLITE_DONE ){
42585         rc = SQLITE_OK;
42586       }
42587       goto end_playback;
42588     }
42589 
42590     /* If nRec is 0xffffffff, then this journal was created by a process
42591     ** working in no-sync mode. This means that the rest of the journal
42592     ** file consists of pages, there are no more journal headers. Compute
42593     ** the value of nRec based on this assumption.
42594     */
42595     if( nRec==0xffffffff ){
42596       assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) );
42597       nRec = (int)((szJ - JOURNAL_HDR_SZ(pPager))/JOURNAL_PG_SZ(pPager));
42598     }
42599 
42600     /* If nRec is 0 and this rollback is of a transaction created by this
42601     ** process and if this is the final header in the journal, then it means
42602     ** that this part of the journal was being filled but has not yet been
42603     ** synced to disk.  Compute the number of pages based on the remaining
42604     ** size of the file.
42605     **
42606     ** The third term of the test was added to fix ticket #2565.
42607     ** When rolling back a hot journal, nRec==0 always means that the next
42608     ** chunk of the journal contains zero pages to be rolled back.  But
42609     ** when doing a ROLLBACK and the nRec==0 chunk is the last chunk in
42610     ** the journal, it means that the journal might contain additional
42611     ** pages that need to be rolled back and that the number of pages
42612     ** should be computed based on the journal file size.
42613     */
42614     if( nRec==0 && !isHot &&
42615         pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff ){
42616       nRec = (int)((szJ - pPager->journalOff) / JOURNAL_PG_SZ(pPager));
42617     }
42618 
42619     /* If this is the first header read from the journal, truncate the
42620     ** database file back to its original size.
42621     */
42622     if( pPager->journalOff==JOURNAL_HDR_SZ(pPager) ){
42623       rc = pager_truncate(pPager, mxPg);
42624       if( rc!=SQLITE_OK ){
42625         goto end_playback;
42626       }
42627       pPager->dbSize = mxPg;
42628     }
42629 
42630     /* Copy original pages out of the journal and back into the
42631     ** database file and/or page cache.
42632     */
42633     for(u=0; u<nRec; u++){
42634       if( needPagerReset ){
42635         pager_reset(pPager);
42636         needPagerReset = 0;
42637       }
42638       rc = pager_playback_one_page(pPager,&pPager->journalOff,0,1,0);
42639       if( rc==SQLITE_OK ){
42640         nPlayback++;
42641       }else{
42642         if( rc==SQLITE_DONE ){
42643           pPager->journalOff = szJ;
42644           break;
42645         }else if( rc==SQLITE_IOERR_SHORT_READ ){
42646           /* If the journal has been truncated, simply stop reading and
42647           ** processing the journal. This might happen if the journal was
42648           ** not completely written and synced prior to a crash.  In that
42649           ** case, the database should have never been written in the
42650           ** first place so it is OK to simply abandon the rollback. */
42651           rc = SQLITE_OK;
42652           goto end_playback;
42653         }else{
42654           /* If we are unable to rollback, quit and return the error
42655           ** code.  This will cause the pager to enter the error state
42656           ** so that no further harm will be done.  Perhaps the next
42657           ** process to come along will be able to rollback the database.
42658           */
42659           goto end_playback;
42660         }
42661       }
42662     }
42663   }
42664   /*NOTREACHED*/
42665   assert( 0 );
42666 
42667 end_playback:
42668   /* Following a rollback, the database file should be back in its original
42669   ** state prior to the start of the transaction, so invoke the
42670   ** SQLITE_FCNTL_DB_UNCHANGED file-control method to disable the
42671   ** assertion that the transaction counter was modified.
42672   */
42673 #ifdef SQLITE_DEBUG
42674   if( pPager->fd->pMethods ){
42675     sqlite3OsFileControlHint(pPager->fd,SQLITE_FCNTL_DB_UNCHANGED,0);
42676   }
42677 #endif
42678 
42679   /* If this playback is happening automatically as a result of an IO or
42680   ** malloc error that occurred after the change-counter was updated but
42681   ** before the transaction was committed, then the change-counter
42682   ** modification may just have been reverted. If this happens in exclusive
42683   ** mode, then subsequent transactions performed by the connection will not
42684   ** update the change-counter at all. This may lead to cache inconsistency
42685   ** problems for other processes at some point in the future. So, just
42686   ** in case this has happened, clear the changeCountDone flag now.
42687   */
42688   pPager->changeCountDone = pPager->tempFile;
42689 
42690   if( rc==SQLITE_OK ){
42691     zMaster = pPager->pTmpSpace;
42692     rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1);
42693     testcase( rc!=SQLITE_OK );
42694   }
42695   if( rc==SQLITE_OK
42696    && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN)
42697   ){
42698     rc = sqlite3PagerSync(pPager, 0);
42699   }
42700   if( rc==SQLITE_OK ){
42701     rc = pager_end_transaction(pPager, zMaster[0]!='\0', 0);
42702     testcase( rc!=SQLITE_OK );
42703   }
42704   if( rc==SQLITE_OK && zMaster[0] && res ){
42705     /* If there was a master journal and this routine will return success,
42706     ** see if it is possible to delete the master journal.
42707     */
42708     rc = pager_delmaster(pPager, zMaster);
42709     testcase( rc!=SQLITE_OK );
42710   }
42711   if( isHot && nPlayback ){
42712     sqlite3_log(SQLITE_NOTICE_RECOVER_ROLLBACK, "recovered %d pages from %s",
42713                 nPlayback, pPager->zJournal);
42714   }
42715 
42716   /* The Pager.sectorSize variable may have been updated while rolling
42717   ** back a journal created by a process with a different sector size
42718   ** value. Reset it to the correct value for this process.
42719   */
42720   setSectorSize(pPager);
42721   return rc;
42722 }
42723 
42724 
42725 /*
42726 ** Read the content for page pPg out of the database file and into
42727 ** pPg->pData. A shared lock or greater must be held on the database
42728 ** file before this function is called.
42729 **
42730 ** If page 1 is read, then the value of Pager.dbFileVers[] is set to
42731 ** the value read from the database file.
42732 **
42733 ** If an IO error occurs, then the IO error is returned to the caller.
42734 ** Otherwise, SQLITE_OK is returned.
42735 */
42736 static int readDbPage(PgHdr *pPg, u32 iFrame){
42737   Pager *pPager = pPg->pPager; /* Pager object associated with page pPg */
42738   Pgno pgno = pPg->pgno;       /* Page number to read */
42739   int rc = SQLITE_OK;          /* Return code */
42740   int pgsz = pPager->pageSize; /* Number of bytes to read */
42741 
42742   assert( pPager->eState>=PAGER_READER && !MEMDB );
42743   assert( isOpen(pPager->fd) );
42744 
42745 #ifndef SQLITE_OMIT_WAL
42746   if( iFrame ){
42747     /* Try to pull the page from the write-ahead log. */
42748     rc = sqlite3WalReadFrame(pPager->pWal, iFrame, pgsz, pPg->pData);
42749   }else
42750 #endif
42751   {
42752     i64 iOffset = (pgno-1)*(i64)pPager->pageSize;
42753     rc = sqlite3OsRead(pPager->fd, pPg->pData, pgsz, iOffset);
42754     if( rc==SQLITE_IOERR_SHORT_READ ){
42755       rc = SQLITE_OK;
42756     }
42757   }
42758 
42759   if( pgno==1 ){
42760     if( rc ){
42761       /* If the read is unsuccessful, set the dbFileVers[] to something
42762       ** that will never be a valid file version.  dbFileVers[] is a copy
42763       ** of bytes 24..39 of the database.  Bytes 28..31 should always be
42764       ** zero or the size of the database in page. Bytes 32..35 and 35..39
42765       ** should be page numbers which are never 0xffffffff.  So filling
42766       ** pPager->dbFileVers[] with all 0xff bytes should suffice.
42767       **
42768       ** For an encrypted database, the situation is more complex:  bytes
42769       ** 24..39 of the database are white noise.  But the probability of
42770       ** white noising equaling 16 bytes of 0xff is vanishingly small so
42771       ** we should still be ok.
42772       */
42773       memset(pPager->dbFileVers, 0xff, sizeof(pPager->dbFileVers));
42774     }else{
42775       u8 *dbFileVers = &((u8*)pPg->pData)[24];
42776       memcpy(&pPager->dbFileVers, dbFileVers, sizeof(pPager->dbFileVers));
42777     }
42778   }
42779   CODEC1(pPager, pPg->pData, pgno, 3, rc = SQLITE_NOMEM);
42780 
42781   PAGER_INCR(sqlite3_pager_readdb_count);
42782   PAGER_INCR(pPager->nRead);
42783   IOTRACE(("PGIN %p %d\n", pPager, pgno));
42784   PAGERTRACE(("FETCH %d page %d hash(%08x)\n",
42785                PAGERID(pPager), pgno, pager_pagehash(pPg)));
42786 
42787   return rc;
42788 }
42789 
42790 /*
42791 ** Update the value of the change-counter at offsets 24 and 92 in
42792 ** the header and the sqlite version number at offset 96.
42793 **
42794 ** This is an unconditional update.  See also the pager_incr_changecounter()
42795 ** routine which only updates the change-counter if the update is actually
42796 ** needed, as determined by the pPager->changeCountDone state variable.
42797 */
42798 static void pager_write_changecounter(PgHdr *pPg){
42799   u32 change_counter;
42800 
42801   /* Increment the value just read and write it back to byte 24. */
42802   change_counter = sqlite3Get4byte((u8*)pPg->pPager->dbFileVers)+1;
42803   put32bits(((char*)pPg->pData)+24, change_counter);
42804 
42805   /* Also store the SQLite version number in bytes 96..99 and in
42806   ** bytes 92..95 store the change counter for which the version number
42807   ** is valid. */
42808   put32bits(((char*)pPg->pData)+92, change_counter);
42809   put32bits(((char*)pPg->pData)+96, SQLITE_VERSION_NUMBER);
42810 }
42811 
42812 #ifndef SQLITE_OMIT_WAL
42813 /*
42814 ** This function is invoked once for each page that has already been
42815 ** written into the log file when a WAL transaction is rolled back.
42816 ** Parameter iPg is the page number of said page. The pCtx argument
42817 ** is actually a pointer to the Pager structure.
42818 **
42819 ** If page iPg is present in the cache, and has no outstanding references,
42820 ** it is discarded. Otherwise, if there are one or more outstanding
42821 ** references, the page content is reloaded from the database. If the
42822 ** attempt to reload content from the database is required and fails,
42823 ** return an SQLite error code. Otherwise, SQLITE_OK.
42824 */
42825 static int pagerUndoCallback(void *pCtx, Pgno iPg){
42826   int rc = SQLITE_OK;
42827   Pager *pPager = (Pager *)pCtx;
42828   PgHdr *pPg;
42829 
42830   assert( pagerUseWal(pPager) );
42831   pPg = sqlite3PagerLookup(pPager, iPg);
42832   if( pPg ){
42833     if( sqlite3PcachePageRefcount(pPg)==1 ){
42834       sqlite3PcacheDrop(pPg);
42835     }else{
42836       u32 iFrame = 0;
42837       rc = sqlite3WalFindFrame(pPager->pWal, pPg->pgno, &iFrame);
42838       if( rc==SQLITE_OK ){
42839         rc = readDbPage(pPg, iFrame);
42840       }
42841       if( rc==SQLITE_OK ){
42842         pPager->xReiniter(pPg);
42843       }
42844       sqlite3PagerUnrefNotNull(pPg);
42845     }
42846   }
42847 
42848   /* Normally, if a transaction is rolled back, any backup processes are
42849   ** updated as data is copied out of the rollback journal and into the
42850   ** database. This is not generally possible with a WAL database, as
42851   ** rollback involves simply truncating the log file. Therefore, if one
42852   ** or more frames have already been written to the log (and therefore
42853   ** also copied into the backup databases) as part of this transaction,
42854   ** the backups must be restarted.
42855   */
42856   sqlite3BackupRestart(pPager->pBackup);
42857 
42858   return rc;
42859 }
42860 
42861 /*
42862 ** This function is called to rollback a transaction on a WAL database.
42863 */
42864 static int pagerRollbackWal(Pager *pPager){
42865   int rc;                         /* Return Code */
42866   PgHdr *pList;                   /* List of dirty pages to revert */
42867 
42868   /* For all pages in the cache that are currently dirty or have already
42869   ** been written (but not committed) to the log file, do one of the
42870   ** following:
42871   **
42872   **   + Discard the cached page (if refcount==0), or
42873   **   + Reload page content from the database (if refcount>0).
42874   */
42875   pPager->dbSize = pPager->dbOrigSize;
42876   rc = sqlite3WalUndo(pPager->pWal, pagerUndoCallback, (void *)pPager);
42877   pList = sqlite3PcacheDirtyList(pPager->pPCache);
42878   while( pList && rc==SQLITE_OK ){
42879     PgHdr *pNext = pList->pDirty;
42880     rc = pagerUndoCallback((void *)pPager, pList->pgno);
42881     pList = pNext;
42882   }
42883 
42884   return rc;
42885 }
42886 
42887 /*
42888 ** This function is a wrapper around sqlite3WalFrames(). As well as logging
42889 ** the contents of the list of pages headed by pList (connected by pDirty),
42890 ** this function notifies any active backup processes that the pages have
42891 ** changed.
42892 **
42893 ** The list of pages passed into this routine is always sorted by page number.
42894 ** Hence, if page 1 appears anywhere on the list, it will be the first page.
42895 */
42896 static int pagerWalFrames(
42897   Pager *pPager,                  /* Pager object */
42898   PgHdr *pList,                   /* List of frames to log */
42899   Pgno nTruncate,                 /* Database size after this commit */
42900   int isCommit                    /* True if this is a commit */
42901 ){
42902   int rc;                         /* Return code */
42903   int nList;                      /* Number of pages in pList */
42904 #if defined(SQLITE_DEBUG) || defined(SQLITE_CHECK_PAGES)
42905   PgHdr *p;                       /* For looping over pages */
42906 #endif
42907 
42908   assert( pPager->pWal );
42909   assert( pList );
42910 #ifdef SQLITE_DEBUG
42911   /* Verify that the page list is in accending order */
42912   for(p=pList; p && p->pDirty; p=p->pDirty){
42913     assert( p->pgno < p->pDirty->pgno );
42914   }
42915 #endif
42916 
42917   assert( pList->pDirty==0 || isCommit );
42918   if( isCommit ){
42919     /* If a WAL transaction is being committed, there is no point in writing
42920     ** any pages with page numbers greater than nTruncate into the WAL file.
42921     ** They will never be read by any client. So remove them from the pDirty
42922     ** list here. */
42923     PgHdr *p;
42924     PgHdr **ppNext = &pList;
42925     nList = 0;
42926     for(p=pList; (*ppNext = p)!=0; p=p->pDirty){
42927       if( p->pgno<=nTruncate ){
42928         ppNext = &p->pDirty;
42929         nList++;
42930       }
42931     }
42932     assert( pList );
42933   }else{
42934     nList = 1;
42935   }
42936   pPager->aStat[PAGER_STAT_WRITE] += nList;
42937 
42938   if( pList->pgno==1 ) pager_write_changecounter(pList);
42939   rc = sqlite3WalFrames(pPager->pWal,
42940       pPager->pageSize, pList, nTruncate, isCommit, pPager->walSyncFlags
42941   );
42942   if( rc==SQLITE_OK && pPager->pBackup ){
42943     PgHdr *p;
42944     for(p=pList; p; p=p->pDirty){
42945       sqlite3BackupUpdate(pPager->pBackup, p->pgno, (u8 *)p->pData);
42946     }
42947   }
42948 
42949 #ifdef SQLITE_CHECK_PAGES
42950   pList = sqlite3PcacheDirtyList(pPager->pPCache);
42951   for(p=pList; p; p=p->pDirty){
42952     pager_set_pagehash(p);
42953   }
42954 #endif
42955 
42956   return rc;
42957 }
42958 
42959 /*
42960 ** Begin a read transaction on the WAL.
42961 **
42962 ** This routine used to be called "pagerOpenSnapshot()" because it essentially
42963 ** makes a snapshot of the database at the current point in time and preserves
42964 ** that snapshot for use by the reader in spite of concurrently changes by
42965 ** other writers or checkpointers.
42966 */
42967 static int pagerBeginReadTransaction(Pager *pPager){
42968   int rc;                         /* Return code */
42969   int changed = 0;                /* True if cache must be reset */
42970 
42971   assert( pagerUseWal(pPager) );
42972   assert( pPager->eState==PAGER_OPEN || pPager->eState==PAGER_READER );
42973 
42974   /* sqlite3WalEndReadTransaction() was not called for the previous
42975   ** transaction in locking_mode=EXCLUSIVE.  So call it now.  If we
42976   ** are in locking_mode=NORMAL and EndRead() was previously called,
42977   ** the duplicate call is harmless.
42978   */
42979   sqlite3WalEndReadTransaction(pPager->pWal);
42980 
42981   rc = sqlite3WalBeginReadTransaction(pPager->pWal, &changed);
42982   if( rc!=SQLITE_OK || changed ){
42983     pager_reset(pPager);
42984     if( USEFETCH(pPager) ) sqlite3OsUnfetch(pPager->fd, 0, 0);
42985   }
42986 
42987   return rc;
42988 }
42989 #endif
42990 
42991 /*
42992 ** This function is called as part of the transition from PAGER_OPEN
42993 ** to PAGER_READER state to determine the size of the database file
42994 ** in pages (assuming the page size currently stored in Pager.pageSize).
42995 **
42996 ** If no error occurs, SQLITE_OK is returned and the size of the database
42997 ** in pages is stored in *pnPage. Otherwise, an error code (perhaps
42998 ** SQLITE_IOERR_FSTAT) is returned and *pnPage is left unmodified.
42999 */
43000 static int pagerPagecount(Pager *pPager, Pgno *pnPage){
43001   Pgno nPage;                     /* Value to return via *pnPage */
43002 
43003   /* Query the WAL sub-system for the database size. The WalDbsize()
43004   ** function returns zero if the WAL is not open (i.e. Pager.pWal==0), or
43005   ** if the database size is not available. The database size is not
43006   ** available from the WAL sub-system if the log file is empty or
43007   ** contains no valid committed transactions.
43008   */
43009   assert( pPager->eState==PAGER_OPEN );
43010   assert( pPager->eLock>=SHARED_LOCK );
43011   nPage = sqlite3WalDbsize(pPager->pWal);
43012 
43013   /* If the database size was not available from the WAL sub-system,
43014   ** determine it based on the size of the database file. If the size
43015   ** of the database file is not an integer multiple of the page-size,
43016   ** round down to the nearest page. Except, any file larger than 0
43017   ** bytes in size is considered to contain at least one page.
43018   */
43019   if( nPage==0 ){
43020     i64 n = 0;                    /* Size of db file in bytes */
43021     assert( isOpen(pPager->fd) || pPager->tempFile );
43022     if( isOpen(pPager->fd) ){
43023       int rc = sqlite3OsFileSize(pPager->fd, &n);
43024       if( rc!=SQLITE_OK ){
43025         return rc;
43026       }
43027     }
43028     nPage = (Pgno)((n+pPager->pageSize-1) / pPager->pageSize);
43029   }
43030 
43031   /* If the current number of pages in the file is greater than the
43032   ** configured maximum pager number, increase the allowed limit so
43033   ** that the file can be read.
43034   */
43035   if( nPage>pPager->mxPgno ){
43036     pPager->mxPgno = (Pgno)nPage;
43037   }
43038 
43039   *pnPage = nPage;
43040   return SQLITE_OK;
43041 }
43042 
43043 #ifndef SQLITE_OMIT_WAL
43044 /*
43045 ** Check if the *-wal file that corresponds to the database opened by pPager
43046 ** exists if the database is not empy, or verify that the *-wal file does
43047 ** not exist (by deleting it) if the database file is empty.
43048 **
43049 ** If the database is not empty and the *-wal file exists, open the pager
43050 ** in WAL mode.  If the database is empty or if no *-wal file exists and
43051 ** if no error occurs, make sure Pager.journalMode is not set to
43052 ** PAGER_JOURNALMODE_WAL.
43053 **
43054 ** Return SQLITE_OK or an error code.
43055 **
43056 ** The caller must hold a SHARED lock on the database file to call this
43057 ** function. Because an EXCLUSIVE lock on the db file is required to delete
43058 ** a WAL on a none-empty database, this ensures there is no race condition
43059 ** between the xAccess() below and an xDelete() being executed by some
43060 ** other connection.
43061 */
43062 static int pagerOpenWalIfPresent(Pager *pPager){
43063   int rc = SQLITE_OK;
43064   assert( pPager->eState==PAGER_OPEN );
43065   assert( pPager->eLock>=SHARED_LOCK );
43066 
43067   if( !pPager->tempFile ){
43068     int isWal;                    /* True if WAL file exists */
43069     Pgno nPage;                   /* Size of the database file */
43070 
43071     rc = pagerPagecount(pPager, &nPage);
43072     if( rc ) return rc;
43073     if( nPage==0 ){
43074       rc = sqlite3OsDelete(pPager->pVfs, pPager->zWal, 0);
43075       if( rc==SQLITE_IOERR_DELETE_NOENT ) rc = SQLITE_OK;
43076       isWal = 0;
43077     }else{
43078       rc = sqlite3OsAccess(
43079           pPager->pVfs, pPager->zWal, SQLITE_ACCESS_EXISTS, &isWal
43080       );
43081     }
43082     if( rc==SQLITE_OK ){
43083       if( isWal ){
43084         testcase( sqlite3PcachePagecount(pPager->pPCache)==0 );
43085         rc = sqlite3PagerOpenWal(pPager, 0);
43086       }else if( pPager->journalMode==PAGER_JOURNALMODE_WAL ){
43087         pPager->journalMode = PAGER_JOURNALMODE_DELETE;
43088       }
43089     }
43090   }
43091   return rc;
43092 }
43093 #endif
43094 
43095 /*
43096 ** Playback savepoint pSavepoint. Or, if pSavepoint==NULL, then playback
43097 ** the entire master journal file. The case pSavepoint==NULL occurs when
43098 ** a ROLLBACK TO command is invoked on a SAVEPOINT that is a transaction
43099 ** savepoint.
43100 **
43101 ** When pSavepoint is not NULL (meaning a non-transaction savepoint is
43102 ** being rolled back), then the rollback consists of up to three stages,
43103 ** performed in the order specified:
43104 **
43105 **   * Pages are played back from the main journal starting at byte
43106 **     offset PagerSavepoint.iOffset and continuing to
43107 **     PagerSavepoint.iHdrOffset, or to the end of the main journal
43108 **     file if PagerSavepoint.iHdrOffset is zero.
43109 **
43110 **   * If PagerSavepoint.iHdrOffset is not zero, then pages are played
43111 **     back starting from the journal header immediately following
43112 **     PagerSavepoint.iHdrOffset to the end of the main journal file.
43113 **
43114 **   * Pages are then played back from the sub-journal file, starting
43115 **     with the PagerSavepoint.iSubRec and continuing to the end of
43116 **     the journal file.
43117 **
43118 ** Throughout the rollback process, each time a page is rolled back, the
43119 ** corresponding bit is set in a bitvec structure (variable pDone in the
43120 ** implementation below). This is used to ensure that a page is only
43121 ** rolled back the first time it is encountered in either journal.
43122 **
43123 ** If pSavepoint is NULL, then pages are only played back from the main
43124 ** journal file. There is no need for a bitvec in this case.
43125 **
43126 ** In either case, before playback commences the Pager.dbSize variable
43127 ** is reset to the value that it held at the start of the savepoint
43128 ** (or transaction). No page with a page-number greater than this value
43129 ** is played back. If one is encountered it is simply skipped.
43130 */
43131 static int pagerPlaybackSavepoint(Pager *pPager, PagerSavepoint *pSavepoint){
43132   i64 szJ;                 /* Effective size of the main journal */
43133   i64 iHdrOff;             /* End of first segment of main-journal records */
43134   int rc = SQLITE_OK;      /* Return code */
43135   Bitvec *pDone = 0;       /* Bitvec to ensure pages played back only once */
43136 
43137   assert( pPager->eState!=PAGER_ERROR );
43138   assert( pPager->eState>=PAGER_WRITER_LOCKED );
43139 
43140   /* Allocate a bitvec to use to store the set of pages rolled back */
43141   if( pSavepoint ){
43142     pDone = sqlite3BitvecCreate(pSavepoint->nOrig);
43143     if( !pDone ){
43144       return SQLITE_NOMEM;
43145     }
43146   }
43147 
43148   /* Set the database size back to the value it was before the savepoint
43149   ** being reverted was opened.
43150   */
43151   pPager->dbSize = pSavepoint ? pSavepoint->nOrig : pPager->dbOrigSize;
43152   pPager->changeCountDone = pPager->tempFile;
43153 
43154   if( !pSavepoint && pagerUseWal(pPager) ){
43155     return pagerRollbackWal(pPager);
43156   }
43157 
43158   /* Use pPager->journalOff as the effective size of the main rollback
43159   ** journal.  The actual file might be larger than this in
43160   ** PAGER_JOURNALMODE_TRUNCATE or PAGER_JOURNALMODE_PERSIST.  But anything
43161   ** past pPager->journalOff is off-limits to us.
43162   */
43163   szJ = pPager->journalOff;
43164   assert( pagerUseWal(pPager)==0 || szJ==0 );
43165 
43166   /* Begin by rolling back records from the main journal starting at
43167   ** PagerSavepoint.iOffset and continuing to the next journal header.
43168   ** There might be records in the main journal that have a page number
43169   ** greater than the current database size (pPager->dbSize) but those
43170   ** will be skipped automatically.  Pages are added to pDone as they
43171   ** are played back.
43172   */
43173   if( pSavepoint && !pagerUseWal(pPager) ){
43174     iHdrOff = pSavepoint->iHdrOffset ? pSavepoint->iHdrOffset : szJ;
43175     pPager->journalOff = pSavepoint->iOffset;
43176     while( rc==SQLITE_OK && pPager->journalOff<iHdrOff ){
43177       rc = pager_playback_one_page(pPager, &pPager->journalOff, pDone, 1, 1);
43178     }
43179     assert( rc!=SQLITE_DONE );
43180   }else{
43181     pPager->journalOff = 0;
43182   }
43183 
43184   /* Continue rolling back records out of the main journal starting at
43185   ** the first journal header seen and continuing until the effective end
43186   ** of the main journal file.  Continue to skip out-of-range pages and
43187   ** continue adding pages rolled back to pDone.
43188   */
43189   while( rc==SQLITE_OK && pPager->journalOff<szJ ){
43190     u32 ii;            /* Loop counter */
43191     u32 nJRec = 0;     /* Number of Journal Records */
43192     u32 dummy;
43193     rc = readJournalHdr(pPager, 0, szJ, &nJRec, &dummy);
43194     assert( rc!=SQLITE_DONE );
43195 
43196     /*
43197     ** The "pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff"
43198     ** test is related to ticket #2565.  See the discussion in the
43199     ** pager_playback() function for additional information.
43200     */
43201     if( nJRec==0
43202      && pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff
43203     ){
43204       nJRec = (u32)((szJ - pPager->journalOff)/JOURNAL_PG_SZ(pPager));
43205     }
43206     for(ii=0; rc==SQLITE_OK && ii<nJRec && pPager->journalOff<szJ; ii++){
43207       rc = pager_playback_one_page(pPager, &pPager->journalOff, pDone, 1, 1);
43208     }
43209     assert( rc!=SQLITE_DONE );
43210   }
43211   assert( rc!=SQLITE_OK || pPager->journalOff>=szJ );
43212 
43213   /* Finally,  rollback pages from the sub-journal.  Page that were
43214   ** previously rolled back out of the main journal (and are hence in pDone)
43215   ** will be skipped.  Out-of-range pages are also skipped.
43216   */
43217   if( pSavepoint ){
43218     u32 ii;            /* Loop counter */
43219     i64 offset = (i64)pSavepoint->iSubRec*(4+pPager->pageSize);
43220 
43221     if( pagerUseWal(pPager) ){
43222       rc = sqlite3WalSavepointUndo(pPager->pWal, pSavepoint->aWalData);
43223     }
43224     for(ii=pSavepoint->iSubRec; rc==SQLITE_OK && ii<pPager->nSubRec; ii++){
43225       assert( offset==(i64)ii*(4+pPager->pageSize) );
43226       rc = pager_playback_one_page(pPager, &offset, pDone, 0, 1);
43227     }
43228     assert( rc!=SQLITE_DONE );
43229   }
43230 
43231   sqlite3BitvecDestroy(pDone);
43232   if( rc==SQLITE_OK ){
43233     pPager->journalOff = szJ;
43234   }
43235 
43236   return rc;
43237 }
43238 
43239 /*
43240 ** Change the maximum number of in-memory pages that are allowed.
43241 */
43242 SQLITE_PRIVATE void sqlite3PagerSetCachesize(Pager *pPager, int mxPage){
43243   sqlite3PcacheSetCachesize(pPager->pPCache, mxPage);
43244 }
43245 
43246 /*
43247 ** Invoke SQLITE_FCNTL_MMAP_SIZE based on the current value of szMmap.
43248 */
43249 static void pagerFixMaplimit(Pager *pPager){
43250 #if SQLITE_MAX_MMAP_SIZE>0
43251   sqlite3_file *fd = pPager->fd;
43252   if( isOpen(fd) && fd->pMethods->iVersion>=3 ){
43253     sqlite3_int64 sz;
43254     sz = pPager->szMmap;
43255     pPager->bUseFetch = (sz>0);
43256     sqlite3OsFileControlHint(pPager->fd, SQLITE_FCNTL_MMAP_SIZE, &sz);
43257   }
43258 #endif
43259 }
43260 
43261 /*
43262 ** Change the maximum size of any memory mapping made of the database file.
43263 */
43264 SQLITE_PRIVATE void sqlite3PagerSetMmapLimit(Pager *pPager, sqlite3_int64 szMmap){
43265   pPager->szMmap = szMmap;
43266   pagerFixMaplimit(pPager);
43267 }
43268 
43269 /*
43270 ** Free as much memory as possible from the pager.
43271 */
43272 SQLITE_PRIVATE void sqlite3PagerShrink(Pager *pPager){
43273   sqlite3PcacheShrink(pPager->pPCache);
43274 }
43275 
43276 /*
43277 ** Adjust settings of the pager to those specified in the pgFlags parameter.
43278 **
43279 ** The "level" in pgFlags & PAGER_SYNCHRONOUS_MASK sets the robustness
43280 ** of the database to damage due to OS crashes or power failures by
43281 ** changing the number of syncs()s when writing the journals.
43282 ** There are three levels:
43283 **
43284 **    OFF       sqlite3OsSync() is never called.  This is the default
43285 **              for temporary and transient files.
43286 **
43287 **    NORMAL    The journal is synced once before writes begin on the
43288 **              database.  This is normally adequate protection, but
43289 **              it is theoretically possible, though very unlikely,
43290 **              that an inopertune power failure could leave the journal
43291 **              in a state which would cause damage to the database
43292 **              when it is rolled back.
43293 **
43294 **    FULL      The journal is synced twice before writes begin on the
43295 **              database (with some additional information - the nRec field
43296 **              of the journal header - being written in between the two
43297 **              syncs).  If we assume that writing a
43298 **              single disk sector is atomic, then this mode provides
43299 **              assurance that the journal will not be corrupted to the
43300 **              point of causing damage to the database during rollback.
43301 **
43302 ** The above is for a rollback-journal mode.  For WAL mode, OFF continues
43303 ** to mean that no syncs ever occur.  NORMAL means that the WAL is synced
43304 ** prior to the start of checkpoint and that the database file is synced
43305 ** at the conclusion of the checkpoint if the entire content of the WAL
43306 ** was written back into the database.  But no sync operations occur for
43307 ** an ordinary commit in NORMAL mode with WAL.  FULL means that the WAL
43308 ** file is synced following each commit operation, in addition to the
43309 ** syncs associated with NORMAL.
43310 **
43311 ** Do not confuse synchronous=FULL with SQLITE_SYNC_FULL.  The
43312 ** SQLITE_SYNC_FULL macro means to use the MacOSX-style full-fsync
43313 ** using fcntl(F_FULLFSYNC).  SQLITE_SYNC_NORMAL means to do an
43314 ** ordinary fsync() call.  There is no difference between SQLITE_SYNC_FULL
43315 ** and SQLITE_SYNC_NORMAL on platforms other than MacOSX.  But the
43316 ** synchronous=FULL versus synchronous=NORMAL setting determines when
43317 ** the xSync primitive is called and is relevant to all platforms.
43318 **
43319 ** Numeric values associated with these states are OFF==1, NORMAL=2,
43320 ** and FULL=3.
43321 */
43322 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
43323 SQLITE_PRIVATE void sqlite3PagerSetFlags(
43324   Pager *pPager,        /* The pager to set safety level for */
43325   unsigned pgFlags      /* Various flags */
43326 ){
43327   unsigned level = pgFlags & PAGER_SYNCHRONOUS_MASK;
43328   assert( level>=1 && level<=3 );
43329   pPager->noSync =  (level==1 || pPager->tempFile) ?1:0;
43330   pPager->fullSync = (level==3 && !pPager->tempFile) ?1:0;
43331   if( pPager->noSync ){
43332     pPager->syncFlags = 0;
43333     pPager->ckptSyncFlags = 0;
43334   }else if( pgFlags & PAGER_FULLFSYNC ){
43335     pPager->syncFlags = SQLITE_SYNC_FULL;
43336     pPager->ckptSyncFlags = SQLITE_SYNC_FULL;
43337   }else if( pgFlags & PAGER_CKPT_FULLFSYNC ){
43338     pPager->syncFlags = SQLITE_SYNC_NORMAL;
43339     pPager->ckptSyncFlags = SQLITE_SYNC_FULL;
43340   }else{
43341     pPager->syncFlags = SQLITE_SYNC_NORMAL;
43342     pPager->ckptSyncFlags = SQLITE_SYNC_NORMAL;
43343   }
43344   pPager->walSyncFlags = pPager->syncFlags;
43345   if( pPager->fullSync ){
43346     pPager->walSyncFlags |= WAL_SYNC_TRANSACTIONS;
43347   }
43348   if( pgFlags & PAGER_CACHESPILL ){
43349     pPager->doNotSpill &= ~SPILLFLAG_OFF;
43350   }else{
43351     pPager->doNotSpill |= SPILLFLAG_OFF;
43352   }
43353 }
43354 #endif
43355 
43356 /*
43357 ** The following global variable is incremented whenever the library
43358 ** attempts to open a temporary file.  This information is used for
43359 ** testing and analysis only.
43360 */
43361 #ifdef SQLITE_TEST
43362 SQLITE_API int sqlite3_opentemp_count = 0;
43363 #endif
43364 
43365 /*
43366 ** Open a temporary file.
43367 **
43368 ** Write the file descriptor into *pFile. Return SQLITE_OK on success
43369 ** or some other error code if we fail. The OS will automatically
43370 ** delete the temporary file when it is closed.
43371 **
43372 ** The flags passed to the VFS layer xOpen() call are those specified
43373 ** by parameter vfsFlags ORed with the following:
43374 **
43375 **     SQLITE_OPEN_READWRITE
43376 **     SQLITE_OPEN_CREATE
43377 **     SQLITE_OPEN_EXCLUSIVE
43378 **     SQLITE_OPEN_DELETEONCLOSE
43379 */
43380 static int pagerOpentemp(
43381   Pager *pPager,        /* The pager object */
43382   sqlite3_file *pFile,  /* Write the file descriptor here */
43383   int vfsFlags          /* Flags passed through to the VFS */
43384 ){
43385   int rc;               /* Return code */
43386 
43387 #ifdef SQLITE_TEST
43388   sqlite3_opentemp_count++;  /* Used for testing and analysis only */
43389 #endif
43390 
43391   vfsFlags |=  SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE |
43392             SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE;
43393   rc = sqlite3OsOpen(pPager->pVfs, 0, pFile, vfsFlags, 0);
43394   assert( rc!=SQLITE_OK || isOpen(pFile) );
43395   return rc;
43396 }
43397 
43398 /*
43399 ** Set the busy handler function.
43400 **
43401 ** The pager invokes the busy-handler if sqlite3OsLock() returns
43402 ** SQLITE_BUSY when trying to upgrade from no-lock to a SHARED lock,
43403 ** or when trying to upgrade from a RESERVED lock to an EXCLUSIVE
43404 ** lock. It does *not* invoke the busy handler when upgrading from
43405 ** SHARED to RESERVED, or when upgrading from SHARED to EXCLUSIVE
43406 ** (which occurs during hot-journal rollback). Summary:
43407 **
43408 **   Transition                        | Invokes xBusyHandler
43409 **   --------------------------------------------------------
43410 **   NO_LOCK       -> SHARED_LOCK      | Yes
43411 **   SHARED_LOCK   -> RESERVED_LOCK    | No
43412 **   SHARED_LOCK   -> EXCLUSIVE_LOCK   | No
43413 **   RESERVED_LOCK -> EXCLUSIVE_LOCK   | Yes
43414 **
43415 ** If the busy-handler callback returns non-zero, the lock is
43416 ** retried. If it returns zero, then the SQLITE_BUSY error is
43417 ** returned to the caller of the pager API function.
43418 */
43419 SQLITE_PRIVATE void sqlite3PagerSetBusyhandler(
43420   Pager *pPager,                       /* Pager object */
43421   int (*xBusyHandler)(void *),         /* Pointer to busy-handler function */
43422   void *pBusyHandlerArg                /* Argument to pass to xBusyHandler */
43423 ){
43424   pPager->xBusyHandler = xBusyHandler;
43425   pPager->pBusyHandlerArg = pBusyHandlerArg;
43426 
43427   if( isOpen(pPager->fd) ){
43428     void **ap = (void **)&pPager->xBusyHandler;
43429     assert( ((int(*)(void *))(ap[0]))==xBusyHandler );
43430     assert( ap[1]==pBusyHandlerArg );
43431     sqlite3OsFileControlHint(pPager->fd, SQLITE_FCNTL_BUSYHANDLER, (void *)ap);
43432   }
43433 }
43434 
43435 /*
43436 ** Change the page size used by the Pager object. The new page size
43437 ** is passed in *pPageSize.
43438 **
43439 ** If the pager is in the error state when this function is called, it
43440 ** is a no-op. The value returned is the error state error code (i.e.
43441 ** one of SQLITE_IOERR, an SQLITE_IOERR_xxx sub-code or SQLITE_FULL).
43442 **
43443 ** Otherwise, if all of the following are true:
43444 **
43445 **   * the new page size (value of *pPageSize) is valid (a power
43446 **     of two between 512 and SQLITE_MAX_PAGE_SIZE, inclusive), and
43447 **
43448 **   * there are no outstanding page references, and
43449 **
43450 **   * the database is either not an in-memory database or it is
43451 **     an in-memory database that currently consists of zero pages.
43452 **
43453 ** then the pager object page size is set to *pPageSize.
43454 **
43455 ** If the page size is changed, then this function uses sqlite3PagerMalloc()
43456 ** to obtain a new Pager.pTmpSpace buffer. If this allocation attempt
43457 ** fails, SQLITE_NOMEM is returned and the page size remains unchanged.
43458 ** In all other cases, SQLITE_OK is returned.
43459 **
43460 ** If the page size is not changed, either because one of the enumerated
43461 ** conditions above is not true, the pager was in error state when this
43462 ** function was called, or because the memory allocation attempt failed,
43463 ** then *pPageSize is set to the old, retained page size before returning.
43464 */
43465 SQLITE_PRIVATE int sqlite3PagerSetPagesize(Pager *pPager, u32 *pPageSize, int nReserve){
43466   int rc = SQLITE_OK;
43467 
43468   /* It is not possible to do a full assert_pager_state() here, as this
43469   ** function may be called from within PagerOpen(), before the state
43470   ** of the Pager object is internally consistent.
43471   **
43472   ** At one point this function returned an error if the pager was in
43473   ** PAGER_ERROR state. But since PAGER_ERROR state guarantees that
43474   ** there is at least one outstanding page reference, this function
43475   ** is a no-op for that case anyhow.
43476   */
43477 
43478   u32 pageSize = *pPageSize;
43479   assert( pageSize==0 || (pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE) );
43480   if( (pPager->memDb==0 || pPager->dbSize==0)
43481    && sqlite3PcacheRefCount(pPager->pPCache)==0
43482    && pageSize && pageSize!=(u32)pPager->pageSize
43483   ){
43484     char *pNew = NULL;             /* New temp space */
43485     i64 nByte = 0;
43486 
43487     if( pPager->eState>PAGER_OPEN && isOpen(pPager->fd) ){
43488       rc = sqlite3OsFileSize(pPager->fd, &nByte);
43489     }
43490     if( rc==SQLITE_OK ){
43491       pNew = (char *)sqlite3PageMalloc(pageSize);
43492       if( !pNew ) rc = SQLITE_NOMEM;
43493     }
43494 
43495     if( rc==SQLITE_OK ){
43496       pager_reset(pPager);
43497       pPager->dbSize = (Pgno)((nByte+pageSize-1)/pageSize);
43498       pPager->pageSize = pageSize;
43499       sqlite3PageFree(pPager->pTmpSpace);
43500       pPager->pTmpSpace = pNew;
43501       sqlite3PcacheSetPageSize(pPager->pPCache, pageSize);
43502     }
43503   }
43504 
43505   *pPageSize = pPager->pageSize;
43506   if( rc==SQLITE_OK ){
43507     if( nReserve<0 ) nReserve = pPager->nReserve;
43508     assert( nReserve>=0 && nReserve<1000 );
43509     pPager->nReserve = (i16)nReserve;
43510     pagerReportSize(pPager);
43511     pagerFixMaplimit(pPager);
43512   }
43513   return rc;
43514 }
43515 
43516 /*
43517 ** Return a pointer to the "temporary page" buffer held internally
43518 ** by the pager.  This is a buffer that is big enough to hold the
43519 ** entire content of a database page.  This buffer is used internally
43520 ** during rollback and will be overwritten whenever a rollback
43521 ** occurs.  But other modules are free to use it too, as long as
43522 ** no rollbacks are happening.
43523 */
43524 SQLITE_PRIVATE void *sqlite3PagerTempSpace(Pager *pPager){
43525   return pPager->pTmpSpace;
43526 }
43527 
43528 /*
43529 ** Attempt to set the maximum database page count if mxPage is positive.
43530 ** Make no changes if mxPage is zero or negative.  And never reduce the
43531 ** maximum page count below the current size of the database.
43532 **
43533 ** Regardless of mxPage, return the current maximum page count.
43534 */
43535 SQLITE_PRIVATE int sqlite3PagerMaxPageCount(Pager *pPager, int mxPage){
43536   if( mxPage>0 ){
43537     pPager->mxPgno = mxPage;
43538   }
43539   assert( pPager->eState!=PAGER_OPEN );      /* Called only by OP_MaxPgcnt */
43540   assert( pPager->mxPgno>=pPager->dbSize );  /* OP_MaxPgcnt enforces this */
43541   return pPager->mxPgno;
43542 }
43543 
43544 /*
43545 ** The following set of routines are used to disable the simulated
43546 ** I/O error mechanism.  These routines are used to avoid simulated
43547 ** errors in places where we do not care about errors.
43548 **
43549 ** Unless -DSQLITE_TEST=1 is used, these routines are all no-ops
43550 ** and generate no code.
43551 */
43552 #ifdef SQLITE_TEST
43553 SQLITE_API extern int sqlite3_io_error_pending;
43554 SQLITE_API extern int sqlite3_io_error_hit;
43555 static int saved_cnt;
43556 void disable_simulated_io_errors(void){
43557   saved_cnt = sqlite3_io_error_pending;
43558   sqlite3_io_error_pending = -1;
43559 }
43560 void enable_simulated_io_errors(void){
43561   sqlite3_io_error_pending = saved_cnt;
43562 }
43563 #else
43564 # define disable_simulated_io_errors()
43565 # define enable_simulated_io_errors()
43566 #endif
43567 
43568 /*
43569 ** Read the first N bytes from the beginning of the file into memory
43570 ** that pDest points to.
43571 **
43572 ** If the pager was opened on a transient file (zFilename==""), or
43573 ** opened on a file less than N bytes in size, the output buffer is
43574 ** zeroed and SQLITE_OK returned. The rationale for this is that this
43575 ** function is used to read database headers, and a new transient or
43576 ** zero sized database has a header than consists entirely of zeroes.
43577 **
43578 ** If any IO error apart from SQLITE_IOERR_SHORT_READ is encountered,
43579 ** the error code is returned to the caller and the contents of the
43580 ** output buffer undefined.
43581 */
43582 SQLITE_PRIVATE int sqlite3PagerReadFileheader(Pager *pPager, int N, unsigned char *pDest){
43583   int rc = SQLITE_OK;
43584   memset(pDest, 0, N);
43585   assert( isOpen(pPager->fd) || pPager->tempFile );
43586 
43587   /* This routine is only called by btree immediately after creating
43588   ** the Pager object.  There has not been an opportunity to transition
43589   ** to WAL mode yet.
43590   */
43591   assert( !pagerUseWal(pPager) );
43592 
43593   if( isOpen(pPager->fd) ){
43594     IOTRACE(("DBHDR %p 0 %d\n", pPager, N))
43595     rc = sqlite3OsRead(pPager->fd, pDest, N, 0);
43596     if( rc==SQLITE_IOERR_SHORT_READ ){
43597       rc = SQLITE_OK;
43598     }
43599   }
43600   return rc;
43601 }
43602 
43603 /*
43604 ** This function may only be called when a read-transaction is open on
43605 ** the pager. It returns the total number of pages in the database.
43606 **
43607 ** However, if the file is between 1 and <page-size> bytes in size, then
43608 ** this is considered a 1 page file.
43609 */
43610 SQLITE_PRIVATE void sqlite3PagerPagecount(Pager *pPager, int *pnPage){
43611   assert( pPager->eState>=PAGER_READER );
43612   assert( pPager->eState!=PAGER_WRITER_FINISHED );
43613   *pnPage = (int)pPager->dbSize;
43614 }
43615 
43616 
43617 /*
43618 ** Try to obtain a lock of type locktype on the database file. If
43619 ** a similar or greater lock is already held, this function is a no-op
43620 ** (returning SQLITE_OK immediately).
43621 **
43622 ** Otherwise, attempt to obtain the lock using sqlite3OsLock(). Invoke
43623 ** the busy callback if the lock is currently not available. Repeat
43624 ** until the busy callback returns false or until the attempt to
43625 ** obtain the lock succeeds.
43626 **
43627 ** Return SQLITE_OK on success and an error code if we cannot obtain
43628 ** the lock. If the lock is obtained successfully, set the Pager.state
43629 ** variable to locktype before returning.
43630 */
43631 static int pager_wait_on_lock(Pager *pPager, int locktype){
43632   int rc;                              /* Return code */
43633 
43634   /* Check that this is either a no-op (because the requested lock is
43635   ** already held, or one of the transistions that the busy-handler
43636   ** may be invoked during, according to the comment above
43637   ** sqlite3PagerSetBusyhandler().
43638   */
43639   assert( (pPager->eLock>=locktype)
43640        || (pPager->eLock==NO_LOCK && locktype==SHARED_LOCK)
43641        || (pPager->eLock==RESERVED_LOCK && locktype==EXCLUSIVE_LOCK)
43642   );
43643 
43644   do {
43645     rc = pagerLockDb(pPager, locktype);
43646   }while( rc==SQLITE_BUSY && pPager->xBusyHandler(pPager->pBusyHandlerArg) );
43647   return rc;
43648 }
43649 
43650 /*
43651 ** Function assertTruncateConstraint(pPager) checks that one of the
43652 ** following is true for all dirty pages currently in the page-cache:
43653 **
43654 **   a) The page number is less than or equal to the size of the
43655 **      current database image, in pages, OR
43656 **
43657 **   b) if the page content were written at this time, it would not
43658 **      be necessary to write the current content out to the sub-journal
43659 **      (as determined by function subjRequiresPage()).
43660 **
43661 ** If the condition asserted by this function were not true, and the
43662 ** dirty page were to be discarded from the cache via the pagerStress()
43663 ** routine, pagerStress() would not write the current page content to
43664 ** the database file. If a savepoint transaction were rolled back after
43665 ** this happened, the correct behavior would be to restore the current
43666 ** content of the page. However, since this content is not present in either
43667 ** the database file or the portion of the rollback journal and
43668 ** sub-journal rolled back the content could not be restored and the
43669 ** database image would become corrupt. It is therefore fortunate that
43670 ** this circumstance cannot arise.
43671 */
43672 #if defined(SQLITE_DEBUG)
43673 static void assertTruncateConstraintCb(PgHdr *pPg){
43674   assert( pPg->flags&PGHDR_DIRTY );
43675   assert( !subjRequiresPage(pPg) || pPg->pgno<=pPg->pPager->dbSize );
43676 }
43677 static void assertTruncateConstraint(Pager *pPager){
43678   sqlite3PcacheIterateDirty(pPager->pPCache, assertTruncateConstraintCb);
43679 }
43680 #else
43681 # define assertTruncateConstraint(pPager)
43682 #endif
43683 
43684 /*
43685 ** Truncate the in-memory database file image to nPage pages. This
43686 ** function does not actually modify the database file on disk. It
43687 ** just sets the internal state of the pager object so that the
43688 ** truncation will be done when the current transaction is committed.
43689 **
43690 ** This function is only called right before committing a transaction.
43691 ** Once this function has been called, the transaction must either be
43692 ** rolled back or committed. It is not safe to call this function and
43693 ** then continue writing to the database.
43694 */
43695 SQLITE_PRIVATE void sqlite3PagerTruncateImage(Pager *pPager, Pgno nPage){
43696   assert( pPager->dbSize>=nPage );
43697   assert( pPager->eState>=PAGER_WRITER_CACHEMOD );
43698   pPager->dbSize = nPage;
43699 
43700   /* At one point the code here called assertTruncateConstraint() to
43701   ** ensure that all pages being truncated away by this operation are,
43702   ** if one or more savepoints are open, present in the savepoint
43703   ** journal so that they can be restored if the savepoint is rolled
43704   ** back. This is no longer necessary as this function is now only
43705   ** called right before committing a transaction. So although the
43706   ** Pager object may still have open savepoints (Pager.nSavepoint!=0),
43707   ** they cannot be rolled back. So the assertTruncateConstraint() call
43708   ** is no longer correct. */
43709 }
43710 
43711 
43712 /*
43713 ** This function is called before attempting a hot-journal rollback. It
43714 ** syncs the journal file to disk, then sets pPager->journalHdr to the
43715 ** size of the journal file so that the pager_playback() routine knows
43716 ** that the entire journal file has been synced.
43717 **
43718 ** Syncing a hot-journal to disk before attempting to roll it back ensures
43719 ** that if a power-failure occurs during the rollback, the process that
43720 ** attempts rollback following system recovery sees the same journal
43721 ** content as this process.
43722 **
43723 ** If everything goes as planned, SQLITE_OK is returned. Otherwise,
43724 ** an SQLite error code.
43725 */
43726 static int pagerSyncHotJournal(Pager *pPager){
43727   int rc = SQLITE_OK;
43728   if( !pPager->noSync ){
43729     rc = sqlite3OsSync(pPager->jfd, SQLITE_SYNC_NORMAL);
43730   }
43731   if( rc==SQLITE_OK ){
43732     rc = sqlite3OsFileSize(pPager->jfd, &pPager->journalHdr);
43733   }
43734   return rc;
43735 }
43736 
43737 /*
43738 ** Obtain a reference to a memory mapped page object for page number pgno.
43739 ** The new object will use the pointer pData, obtained from xFetch().
43740 ** If successful, set *ppPage to point to the new page reference
43741 ** and return SQLITE_OK. Otherwise, return an SQLite error code and set
43742 ** *ppPage to zero.
43743 **
43744 ** Page references obtained by calling this function should be released
43745 ** by calling pagerReleaseMapPage().
43746 */
43747 static int pagerAcquireMapPage(
43748   Pager *pPager,                  /* Pager object */
43749   Pgno pgno,                      /* Page number */
43750   void *pData,                    /* xFetch()'d data for this page */
43751   PgHdr **ppPage                  /* OUT: Acquired page object */
43752 ){
43753   PgHdr *p;                       /* Memory mapped page to return */
43754 
43755   if( pPager->pMmapFreelist ){
43756     *ppPage = p = pPager->pMmapFreelist;
43757     pPager->pMmapFreelist = p->pDirty;
43758     p->pDirty = 0;
43759     memset(p->pExtra, 0, pPager->nExtra);
43760   }else{
43761     *ppPage = p = (PgHdr *)sqlite3MallocZero(sizeof(PgHdr) + pPager->nExtra);
43762     if( p==0 ){
43763       sqlite3OsUnfetch(pPager->fd, (i64)(pgno-1) * pPager->pageSize, pData);
43764       return SQLITE_NOMEM;
43765     }
43766     p->pExtra = (void *)&p[1];
43767     p->flags = PGHDR_MMAP;
43768     p->nRef = 1;
43769     p->pPager = pPager;
43770   }
43771 
43772   assert( p->pExtra==(void *)&p[1] );
43773   assert( p->pPage==0 );
43774   assert( p->flags==PGHDR_MMAP );
43775   assert( p->pPager==pPager );
43776   assert( p->nRef==1 );
43777 
43778   p->pgno = pgno;
43779   p->pData = pData;
43780   pPager->nMmapOut++;
43781 
43782   return SQLITE_OK;
43783 }
43784 
43785 /*
43786 ** Release a reference to page pPg. pPg must have been returned by an
43787 ** earlier call to pagerAcquireMapPage().
43788 */
43789 static void pagerReleaseMapPage(PgHdr *pPg){
43790   Pager *pPager = pPg->pPager;
43791   pPager->nMmapOut--;
43792   pPg->pDirty = pPager->pMmapFreelist;
43793   pPager->pMmapFreelist = pPg;
43794 
43795   assert( pPager->fd->pMethods->iVersion>=3 );
43796   sqlite3OsUnfetch(pPager->fd, (i64)(pPg->pgno-1)*pPager->pageSize, pPg->pData);
43797 }
43798 
43799 /*
43800 ** Free all PgHdr objects stored in the Pager.pMmapFreelist list.
43801 */
43802 static void pagerFreeMapHdrs(Pager *pPager){
43803   PgHdr *p;
43804   PgHdr *pNext;
43805   for(p=pPager->pMmapFreelist; p; p=pNext){
43806     pNext = p->pDirty;
43807     sqlite3_free(p);
43808   }
43809 }
43810 
43811 
43812 /*
43813 ** Shutdown the page cache.  Free all memory and close all files.
43814 **
43815 ** If a transaction was in progress when this routine is called, that
43816 ** transaction is rolled back.  All outstanding pages are invalidated
43817 ** and their memory is freed.  Any attempt to use a page associated
43818 ** with this page cache after this function returns will likely
43819 ** result in a coredump.
43820 **
43821 ** This function always succeeds. If a transaction is active an attempt
43822 ** is made to roll it back. If an error occurs during the rollback
43823 ** a hot journal may be left in the filesystem but no error is returned
43824 ** to the caller.
43825 */
43826 SQLITE_PRIVATE int sqlite3PagerClose(Pager *pPager){
43827   u8 *pTmp = (u8 *)pPager->pTmpSpace;
43828 
43829   assert( assert_pager_state(pPager) );
43830   disable_simulated_io_errors();
43831   sqlite3BeginBenignMalloc();
43832   pagerFreeMapHdrs(pPager);
43833   /* pPager->errCode = 0; */
43834   pPager->exclusiveMode = 0;
43835 #ifndef SQLITE_OMIT_WAL
43836   sqlite3WalClose(pPager->pWal, pPager->ckptSyncFlags, pPager->pageSize, pTmp);
43837   pPager->pWal = 0;
43838 #endif
43839   pager_reset(pPager);
43840   if( MEMDB ){
43841     pager_unlock(pPager);
43842   }else{
43843     /* If it is open, sync the journal file before calling UnlockAndRollback.
43844     ** If this is not done, then an unsynced portion of the open journal
43845     ** file may be played back into the database. If a power failure occurs
43846     ** while this is happening, the database could become corrupt.
43847     **
43848     ** If an error occurs while trying to sync the journal, shift the pager
43849     ** into the ERROR state. This causes UnlockAndRollback to unlock the
43850     ** database and close the journal file without attempting to roll it
43851     ** back or finalize it. The next database user will have to do hot-journal
43852     ** rollback before accessing the database file.
43853     */
43854     if( isOpen(pPager->jfd) ){
43855       pager_error(pPager, pagerSyncHotJournal(pPager));
43856     }
43857     pagerUnlockAndRollback(pPager);
43858   }
43859   sqlite3EndBenignMalloc();
43860   enable_simulated_io_errors();
43861   PAGERTRACE(("CLOSE %d\n", PAGERID(pPager)));
43862   IOTRACE(("CLOSE %p\n", pPager))
43863   sqlite3OsClose(pPager->jfd);
43864   sqlite3OsClose(pPager->fd);
43865   sqlite3PageFree(pTmp);
43866   sqlite3PcacheClose(pPager->pPCache);
43867 
43868 #ifdef SQLITE_HAS_CODEC
43869   if( pPager->xCodecFree ) pPager->xCodecFree(pPager->pCodec);
43870 #endif
43871 
43872   assert( !pPager->aSavepoint && !pPager->pInJournal );
43873   assert( !isOpen(pPager->jfd) && !isOpen(pPager->sjfd) );
43874 
43875   sqlite3_free(pPager);
43876   return SQLITE_OK;
43877 }
43878 
43879 #if !defined(NDEBUG) || defined(SQLITE_TEST)
43880 /*
43881 ** Return the page number for page pPg.
43882 */
43883 SQLITE_PRIVATE Pgno sqlite3PagerPagenumber(DbPage *pPg){
43884   return pPg->pgno;
43885 }
43886 #endif
43887 
43888 /*
43889 ** Increment the reference count for page pPg.
43890 */
43891 SQLITE_PRIVATE void sqlite3PagerRef(DbPage *pPg){
43892   sqlite3PcacheRef(pPg);
43893 }
43894 
43895 /*
43896 ** Sync the journal. In other words, make sure all the pages that have
43897 ** been written to the journal have actually reached the surface of the
43898 ** disk and can be restored in the event of a hot-journal rollback.
43899 **
43900 ** If the Pager.noSync flag is set, then this function is a no-op.
43901 ** Otherwise, the actions required depend on the journal-mode and the
43902 ** device characteristics of the file-system, as follows:
43903 **
43904 **   * If the journal file is an in-memory journal file, no action need
43905 **     be taken.
43906 **
43907 **   * Otherwise, if the device does not support the SAFE_APPEND property,
43908 **     then the nRec field of the most recently written journal header
43909 **     is updated to contain the number of journal records that have
43910 **     been written following it. If the pager is operating in full-sync
43911 **     mode, then the journal file is synced before this field is updated.
43912 **
43913 **   * If the device does not support the SEQUENTIAL property, then
43914 **     journal file is synced.
43915 **
43916 ** Or, in pseudo-code:
43917 **
43918 **   if( NOT <in-memory journal> ){
43919 **     if( NOT SAFE_APPEND ){
43920 **       if( <full-sync mode> ) xSync(<journal file>);
43921 **       <update nRec field>
43922 **     }
43923 **     if( NOT SEQUENTIAL ) xSync(<journal file>);
43924 **   }
43925 **
43926 ** If successful, this routine clears the PGHDR_NEED_SYNC flag of every
43927 ** page currently held in memory before returning SQLITE_OK. If an IO
43928 ** error is encountered, then the IO error code is returned to the caller.
43929 */
43930 static int syncJournal(Pager *pPager, int newHdr){
43931   int rc;                         /* Return code */
43932 
43933   assert( pPager->eState==PAGER_WRITER_CACHEMOD
43934        || pPager->eState==PAGER_WRITER_DBMOD
43935   );
43936   assert( assert_pager_state(pPager) );
43937   assert( !pagerUseWal(pPager) );
43938 
43939   rc = sqlite3PagerExclusiveLock(pPager);
43940   if( rc!=SQLITE_OK ) return rc;
43941 
43942   if( !pPager->noSync ){
43943     assert( !pPager->tempFile );
43944     if( isOpen(pPager->jfd) && pPager->journalMode!=PAGER_JOURNALMODE_MEMORY ){
43945       const int iDc = sqlite3OsDeviceCharacteristics(pPager->fd);
43946       assert( isOpen(pPager->jfd) );
43947 
43948       if( 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){
43949         /* This block deals with an obscure problem. If the last connection
43950         ** that wrote to this database was operating in persistent-journal
43951         ** mode, then the journal file may at this point actually be larger
43952         ** than Pager.journalOff bytes. If the next thing in the journal
43953         ** file happens to be a journal-header (written as part of the
43954         ** previous connection's transaction), and a crash or power-failure
43955         ** occurs after nRec is updated but before this connection writes
43956         ** anything else to the journal file (or commits/rolls back its
43957         ** transaction), then SQLite may become confused when doing the
43958         ** hot-journal rollback following recovery. It may roll back all
43959         ** of this connections data, then proceed to rolling back the old,
43960         ** out-of-date data that follows it. Database corruption.
43961         **
43962         ** To work around this, if the journal file does appear to contain
43963         ** a valid header following Pager.journalOff, then write a 0x00
43964         ** byte to the start of it to prevent it from being recognized.
43965         **
43966         ** Variable iNextHdrOffset is set to the offset at which this
43967         ** problematic header will occur, if it exists. aMagic is used
43968         ** as a temporary buffer to inspect the first couple of bytes of
43969         ** the potential journal header.
43970         */
43971         i64 iNextHdrOffset;
43972         u8 aMagic[8];
43973         u8 zHeader[sizeof(aJournalMagic)+4];
43974 
43975         memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic));
43976         put32bits(&zHeader[sizeof(aJournalMagic)], pPager->nRec);
43977 
43978         iNextHdrOffset = journalHdrOffset(pPager);
43979         rc = sqlite3OsRead(pPager->jfd, aMagic, 8, iNextHdrOffset);
43980         if( rc==SQLITE_OK && 0==memcmp(aMagic, aJournalMagic, 8) ){
43981           static const u8 zerobyte = 0;
43982           rc = sqlite3OsWrite(pPager->jfd, &zerobyte, 1, iNextHdrOffset);
43983         }
43984         if( rc!=SQLITE_OK && rc!=SQLITE_IOERR_SHORT_READ ){
43985           return rc;
43986         }
43987 
43988         /* Write the nRec value into the journal file header. If in
43989         ** full-synchronous mode, sync the journal first. This ensures that
43990         ** all data has really hit the disk before nRec is updated to mark
43991         ** it as a candidate for rollback.
43992         **
43993         ** This is not required if the persistent media supports the
43994         ** SAFE_APPEND property. Because in this case it is not possible
43995         ** for garbage data to be appended to the file, the nRec field
43996         ** is populated with 0xFFFFFFFF when the journal header is written
43997         ** and never needs to be updated.
43998         */
43999         if( pPager->fullSync && 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){
44000           PAGERTRACE(("SYNC journal of %d\n", PAGERID(pPager)));
44001           IOTRACE(("JSYNC %p\n", pPager))
44002           rc = sqlite3OsSync(pPager->jfd, pPager->syncFlags);
44003           if( rc!=SQLITE_OK ) return rc;
44004         }
44005         IOTRACE(("JHDR %p %lld\n", pPager, pPager->journalHdr));
44006         rc = sqlite3OsWrite(
44007             pPager->jfd, zHeader, sizeof(zHeader), pPager->journalHdr
44008         );
44009         if( rc!=SQLITE_OK ) return rc;
44010       }
44011       if( 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){
44012         PAGERTRACE(("SYNC journal of %d\n", PAGERID(pPager)));
44013         IOTRACE(("JSYNC %p\n", pPager))
44014         rc = sqlite3OsSync(pPager->jfd, pPager->syncFlags|
44015           (pPager->syncFlags==SQLITE_SYNC_FULL?SQLITE_SYNC_DATAONLY:0)
44016         );
44017         if( rc!=SQLITE_OK ) return rc;
44018       }
44019 
44020       pPager->journalHdr = pPager->journalOff;
44021       if( newHdr && 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){
44022         pPager->nRec = 0;
44023         rc = writeJournalHdr(pPager);
44024         if( rc!=SQLITE_OK ) return rc;
44025       }
44026     }else{
44027       pPager->journalHdr = pPager->journalOff;
44028     }
44029   }
44030 
44031   /* Unless the pager is in noSync mode, the journal file was just
44032   ** successfully synced. Either way, clear the PGHDR_NEED_SYNC flag on
44033   ** all pages.
44034   */
44035   sqlite3PcacheClearSyncFlags(pPager->pPCache);
44036   pPager->eState = PAGER_WRITER_DBMOD;
44037   assert( assert_pager_state(pPager) );
44038   return SQLITE_OK;
44039 }
44040 
44041 /*
44042 ** The argument is the first in a linked list of dirty pages connected
44043 ** by the PgHdr.pDirty pointer. This function writes each one of the
44044 ** in-memory pages in the list to the database file. The argument may
44045 ** be NULL, representing an empty list. In this case this function is
44046 ** a no-op.
44047 **
44048 ** The pager must hold at least a RESERVED lock when this function
44049 ** is called. Before writing anything to the database file, this lock
44050 ** is upgraded to an EXCLUSIVE lock. If the lock cannot be obtained,
44051 ** SQLITE_BUSY is returned and no data is written to the database file.
44052 **
44053 ** If the pager is a temp-file pager and the actual file-system file
44054 ** is not yet open, it is created and opened before any data is
44055 ** written out.
44056 **
44057 ** Once the lock has been upgraded and, if necessary, the file opened,
44058 ** the pages are written out to the database file in list order. Writing
44059 ** a page is skipped if it meets either of the following criteria:
44060 **
44061 **   * The page number is greater than Pager.dbSize, or
44062 **   * The PGHDR_DONT_WRITE flag is set on the page.
44063 **
44064 ** If writing out a page causes the database file to grow, Pager.dbFileSize
44065 ** is updated accordingly. If page 1 is written out, then the value cached
44066 ** in Pager.dbFileVers[] is updated to match the new value stored in
44067 ** the database file.
44068 **
44069 ** If everything is successful, SQLITE_OK is returned. If an IO error
44070 ** occurs, an IO error code is returned. Or, if the EXCLUSIVE lock cannot
44071 ** be obtained, SQLITE_BUSY is returned.
44072 */
44073 static int pager_write_pagelist(Pager *pPager, PgHdr *pList){
44074   int rc = SQLITE_OK;                  /* Return code */
44075 
44076   /* This function is only called for rollback pagers in WRITER_DBMOD state. */
44077   assert( !pagerUseWal(pPager) );
44078   assert( pPager->eState==PAGER_WRITER_DBMOD );
44079   assert( pPager->eLock==EXCLUSIVE_LOCK );
44080 
44081   /* If the file is a temp-file has not yet been opened, open it now. It
44082   ** is not possible for rc to be other than SQLITE_OK if this branch
44083   ** is taken, as pager_wait_on_lock() is a no-op for temp-files.
44084   */
44085   if( !isOpen(pPager->fd) ){
44086     assert( pPager->tempFile && rc==SQLITE_OK );
44087     rc = pagerOpentemp(pPager, pPager->fd, pPager->vfsFlags);
44088   }
44089 
44090   /* Before the first write, give the VFS a hint of what the final
44091   ** file size will be.
44092   */
44093   assert( rc!=SQLITE_OK || isOpen(pPager->fd) );
44094   if( rc==SQLITE_OK
44095    && pPager->dbHintSize<pPager->dbSize
44096    && (pList->pDirty || pList->pgno>pPager->dbHintSize)
44097   ){
44098     sqlite3_int64 szFile = pPager->pageSize * (sqlite3_int64)pPager->dbSize;
44099     sqlite3OsFileControlHint(pPager->fd, SQLITE_FCNTL_SIZE_HINT, &szFile);
44100     pPager->dbHintSize = pPager->dbSize;
44101   }
44102 
44103   while( rc==SQLITE_OK && pList ){
44104     Pgno pgno = pList->pgno;
44105 
44106     /* If there are dirty pages in the page cache with page numbers greater
44107     ** than Pager.dbSize, this means sqlite3PagerTruncateImage() was called to
44108     ** make the file smaller (presumably by auto-vacuum code). Do not write
44109     ** any such pages to the file.
44110     **
44111     ** Also, do not write out any page that has the PGHDR_DONT_WRITE flag
44112     ** set (set by sqlite3PagerDontWrite()).
44113     */
44114     if( pgno<=pPager->dbSize && 0==(pList->flags&PGHDR_DONT_WRITE) ){
44115       i64 offset = (pgno-1)*(i64)pPager->pageSize;   /* Offset to write */
44116       char *pData;                                   /* Data to write */
44117 
44118       assert( (pList->flags&PGHDR_NEED_SYNC)==0 );
44119       if( pList->pgno==1 ) pager_write_changecounter(pList);
44120 
44121       /* Encode the database */
44122       CODEC2(pPager, pList->pData, pgno, 6, return SQLITE_NOMEM, pData);
44123 
44124       /* Write out the page data. */
44125       rc = sqlite3OsWrite(pPager->fd, pData, pPager->pageSize, offset);
44126 
44127       /* If page 1 was just written, update Pager.dbFileVers to match
44128       ** the value now stored in the database file. If writing this
44129       ** page caused the database file to grow, update dbFileSize.
44130       */
44131       if( pgno==1 ){
44132         memcpy(&pPager->dbFileVers, &pData[24], sizeof(pPager->dbFileVers));
44133       }
44134       if( pgno>pPager->dbFileSize ){
44135         pPager->dbFileSize = pgno;
44136       }
44137       pPager->aStat[PAGER_STAT_WRITE]++;
44138 
44139       /* Update any backup objects copying the contents of this pager. */
44140       sqlite3BackupUpdate(pPager->pBackup, pgno, (u8*)pList->pData);
44141 
44142       PAGERTRACE(("STORE %d page %d hash(%08x)\n",
44143                    PAGERID(pPager), pgno, pager_pagehash(pList)));
44144       IOTRACE(("PGOUT %p %d\n", pPager, pgno));
44145       PAGER_INCR(sqlite3_pager_writedb_count);
44146     }else{
44147       PAGERTRACE(("NOSTORE %d page %d\n", PAGERID(pPager), pgno));
44148     }
44149     pager_set_pagehash(pList);
44150     pList = pList->pDirty;
44151   }
44152 
44153   return rc;
44154 }
44155 
44156 /*
44157 ** Ensure that the sub-journal file is open. If it is already open, this
44158 ** function is a no-op.
44159 **
44160 ** SQLITE_OK is returned if everything goes according to plan. An
44161 ** SQLITE_IOERR_XXX error code is returned if a call to sqlite3OsOpen()
44162 ** fails.
44163 */
44164 static int openSubJournal(Pager *pPager){
44165   int rc = SQLITE_OK;
44166   if( !isOpen(pPager->sjfd) ){
44167     if( pPager->journalMode==PAGER_JOURNALMODE_MEMORY || pPager->subjInMemory ){
44168       sqlite3MemJournalOpen(pPager->sjfd);
44169     }else{
44170       rc = pagerOpentemp(pPager, pPager->sjfd, SQLITE_OPEN_SUBJOURNAL);
44171     }
44172   }
44173   return rc;
44174 }
44175 
44176 /*
44177 ** Append a record of the current state of page pPg to the sub-journal.
44178 ** It is the callers responsibility to use subjRequiresPage() to check
44179 ** that it is really required before calling this function.
44180 **
44181 ** If successful, set the bit corresponding to pPg->pgno in the bitvecs
44182 ** for all open savepoints before returning.
44183 **
44184 ** This function returns SQLITE_OK if everything is successful, an IO
44185 ** error code if the attempt to write to the sub-journal fails, or
44186 ** SQLITE_NOMEM if a malloc fails while setting a bit in a savepoint
44187 ** bitvec.
44188 */
44189 static int subjournalPage(PgHdr *pPg){
44190   int rc = SQLITE_OK;
44191   Pager *pPager = pPg->pPager;
44192   if( pPager->journalMode!=PAGER_JOURNALMODE_OFF ){
44193 
44194     /* Open the sub-journal, if it has not already been opened */
44195     assert( pPager->useJournal );
44196     assert( isOpen(pPager->jfd) || pagerUseWal(pPager) );
44197     assert( isOpen(pPager->sjfd) || pPager->nSubRec==0 );
44198     assert( pagerUseWal(pPager)
44199          || pageInJournal(pPager, pPg)
44200          || pPg->pgno>pPager->dbOrigSize
44201     );
44202     rc = openSubJournal(pPager);
44203 
44204     /* If the sub-journal was opened successfully (or was already open),
44205     ** write the journal record into the file.  */
44206     if( rc==SQLITE_OK ){
44207       void *pData = pPg->pData;
44208       i64 offset = (i64)pPager->nSubRec*(4+pPager->pageSize);
44209       char *pData2;
44210 
44211       CODEC2(pPager, pData, pPg->pgno, 7, return SQLITE_NOMEM, pData2);
44212       PAGERTRACE(("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno));
44213       rc = write32bits(pPager->sjfd, offset, pPg->pgno);
44214       if( rc==SQLITE_OK ){
44215         rc = sqlite3OsWrite(pPager->sjfd, pData2, pPager->pageSize, offset+4);
44216       }
44217     }
44218   }
44219   if( rc==SQLITE_OK ){
44220     pPager->nSubRec++;
44221     assert( pPager->nSavepoint>0 );
44222     rc = addToSavepointBitvecs(pPager, pPg->pgno);
44223   }
44224   return rc;
44225 }
44226 
44227 /*
44228 ** This function is called by the pcache layer when it has reached some
44229 ** soft memory limit. The first argument is a pointer to a Pager object
44230 ** (cast as a void*). The pager is always 'purgeable' (not an in-memory
44231 ** database). The second argument is a reference to a page that is
44232 ** currently dirty but has no outstanding references. The page
44233 ** is always associated with the Pager object passed as the first
44234 ** argument.
44235 **
44236 ** The job of this function is to make pPg clean by writing its contents
44237 ** out to the database file, if possible. This may involve syncing the
44238 ** journal file.
44239 **
44240 ** If successful, sqlite3PcacheMakeClean() is called on the page and
44241 ** SQLITE_OK returned. If an IO error occurs while trying to make the
44242 ** page clean, the IO error code is returned. If the page cannot be
44243 ** made clean for some other reason, but no error occurs, then SQLITE_OK
44244 ** is returned by sqlite3PcacheMakeClean() is not called.
44245 */
44246 static int pagerStress(void *p, PgHdr *pPg){
44247   Pager *pPager = (Pager *)p;
44248   int rc = SQLITE_OK;
44249 
44250   assert( pPg->pPager==pPager );
44251   assert( pPg->flags&PGHDR_DIRTY );
44252 
44253   /* The doNotSpill NOSYNC bit is set during times when doing a sync of
44254   ** journal (and adding a new header) is not allowed.  This occurs
44255   ** during calls to sqlite3PagerWrite() while trying to journal multiple
44256   ** pages belonging to the same sector.
44257   **
44258   ** The doNotSpill ROLLBACK and OFF bits inhibits all cache spilling
44259   ** regardless of whether or not a sync is required.  This is set during
44260   ** a rollback or by user request, respectively.
44261   **
44262   ** Spilling is also prohibited when in an error state since that could
44263   ** lead to database corruption.   In the current implementaton it
44264   ** is impossible for sqlite3PcacheFetch() to be called with createFlag==1
44265   ** while in the error state, hence it is impossible for this routine to
44266   ** be called in the error state.  Nevertheless, we include a NEVER()
44267   ** test for the error state as a safeguard against future changes.
44268   */
44269   if( NEVER(pPager->errCode) ) return SQLITE_OK;
44270   testcase( pPager->doNotSpill & SPILLFLAG_ROLLBACK );
44271   testcase( pPager->doNotSpill & SPILLFLAG_OFF );
44272   testcase( pPager->doNotSpill & SPILLFLAG_NOSYNC );
44273   if( pPager->doNotSpill
44274    && ((pPager->doNotSpill & (SPILLFLAG_ROLLBACK|SPILLFLAG_OFF))!=0
44275       || (pPg->flags & PGHDR_NEED_SYNC)!=0)
44276   ){
44277     return SQLITE_OK;
44278   }
44279 
44280   pPg->pDirty = 0;
44281   if( pagerUseWal(pPager) ){
44282     /* Write a single frame for this page to the log. */
44283     if( subjRequiresPage(pPg) ){
44284       rc = subjournalPage(pPg);
44285     }
44286     if( rc==SQLITE_OK ){
44287       rc = pagerWalFrames(pPager, pPg, 0, 0);
44288     }
44289   }else{
44290 
44291     /* Sync the journal file if required. */
44292     if( pPg->flags&PGHDR_NEED_SYNC
44293      || pPager->eState==PAGER_WRITER_CACHEMOD
44294     ){
44295       rc = syncJournal(pPager, 1);
44296     }
44297 
44298     /* If the page number of this page is larger than the current size of
44299     ** the database image, it may need to be written to the sub-journal.
44300     ** This is because the call to pager_write_pagelist() below will not
44301     ** actually write data to the file in this case.
44302     **
44303     ** Consider the following sequence of events:
44304     **
44305     **   BEGIN;
44306     **     <journal page X>
44307     **     <modify page X>
44308     **     SAVEPOINT sp;
44309     **       <shrink database file to Y pages>
44310     **       pagerStress(page X)
44311     **     ROLLBACK TO sp;
44312     **
44313     ** If (X>Y), then when pagerStress is called page X will not be written
44314     ** out to the database file, but will be dropped from the cache. Then,
44315     ** following the "ROLLBACK TO sp" statement, reading page X will read
44316     ** data from the database file. This will be the copy of page X as it
44317     ** was when the transaction started, not as it was when "SAVEPOINT sp"
44318     ** was executed.
44319     **
44320     ** The solution is to write the current data for page X into the
44321     ** sub-journal file now (if it is not already there), so that it will
44322     ** be restored to its current value when the "ROLLBACK TO sp" is
44323     ** executed.
44324     */
44325     if( NEVER(
44326         rc==SQLITE_OK && pPg->pgno>pPager->dbSize && subjRequiresPage(pPg)
44327     ) ){
44328       rc = subjournalPage(pPg);
44329     }
44330 
44331     /* Write the contents of the page out to the database file. */
44332     if( rc==SQLITE_OK ){
44333       assert( (pPg->flags&PGHDR_NEED_SYNC)==0 );
44334       rc = pager_write_pagelist(pPager, pPg);
44335     }
44336   }
44337 
44338   /* Mark the page as clean. */
44339   if( rc==SQLITE_OK ){
44340     PAGERTRACE(("STRESS %d page %d\n", PAGERID(pPager), pPg->pgno));
44341     sqlite3PcacheMakeClean(pPg);
44342   }
44343 
44344   return pager_error(pPager, rc);
44345 }
44346 
44347 
44348 /*
44349 ** Allocate and initialize a new Pager object and put a pointer to it
44350 ** in *ppPager. The pager should eventually be freed by passing it
44351 ** to sqlite3PagerClose().
44352 **
44353 ** The zFilename argument is the path to the database file to open.
44354 ** If zFilename is NULL then a randomly-named temporary file is created
44355 ** and used as the file to be cached. Temporary files are be deleted
44356 ** automatically when they are closed. If zFilename is ":memory:" then
44357 ** all information is held in cache. It is never written to disk.
44358 ** This can be used to implement an in-memory database.
44359 **
44360 ** The nExtra parameter specifies the number of bytes of space allocated
44361 ** along with each page reference. This space is available to the user
44362 ** via the sqlite3PagerGetExtra() API.
44363 **
44364 ** The flags argument is used to specify properties that affect the
44365 ** operation of the pager. It should be passed some bitwise combination
44366 ** of the PAGER_* flags.
44367 **
44368 ** The vfsFlags parameter is a bitmask to pass to the flags parameter
44369 ** of the xOpen() method of the supplied VFS when opening files.
44370 **
44371 ** If the pager object is allocated and the specified file opened
44372 ** successfully, SQLITE_OK is returned and *ppPager set to point to
44373 ** the new pager object. If an error occurs, *ppPager is set to NULL
44374 ** and error code returned. This function may return SQLITE_NOMEM
44375 ** (sqlite3Malloc() is used to allocate memory), SQLITE_CANTOPEN or
44376 ** various SQLITE_IO_XXX errors.
44377 */
44378 SQLITE_PRIVATE int sqlite3PagerOpen(
44379   sqlite3_vfs *pVfs,       /* The virtual file system to use */
44380   Pager **ppPager,         /* OUT: Return the Pager structure here */
44381   const char *zFilename,   /* Name of the database file to open */
44382   int nExtra,              /* Extra bytes append to each in-memory page */
44383   int flags,               /* flags controlling this file */
44384   int vfsFlags,            /* flags passed through to sqlite3_vfs.xOpen() */
44385   void (*xReinit)(DbPage*) /* Function to reinitialize pages */
44386 ){
44387   u8 *pPtr;
44388   Pager *pPager = 0;       /* Pager object to allocate and return */
44389   int rc = SQLITE_OK;      /* Return code */
44390   int tempFile = 0;        /* True for temp files (incl. in-memory files) */
44391   int memDb = 0;           /* True if this is an in-memory file */
44392   int readOnly = 0;        /* True if this is a read-only file */
44393   int journalFileSize;     /* Bytes to allocate for each journal fd */
44394   char *zPathname = 0;     /* Full path to database file */
44395   int nPathname = 0;       /* Number of bytes in zPathname */
44396   int useJournal = (flags & PAGER_OMIT_JOURNAL)==0; /* False to omit journal */
44397   int pcacheSize = sqlite3PcacheSize();       /* Bytes to allocate for PCache */
44398   u32 szPageDflt = SQLITE_DEFAULT_PAGE_SIZE;  /* Default page size */
44399   const char *zUri = 0;    /* URI args to copy */
44400   int nUri = 0;            /* Number of bytes of URI args at *zUri */
44401 
44402   /* Figure out how much space is required for each journal file-handle
44403   ** (there are two of them, the main journal and the sub-journal). This
44404   ** is the maximum space required for an in-memory journal file handle
44405   ** and a regular journal file-handle. Note that a "regular journal-handle"
44406   ** may be a wrapper capable of caching the first portion of the journal
44407   ** file in memory to implement the atomic-write optimization (see
44408   ** source file journal.c).
44409   */
44410   if( sqlite3JournalSize(pVfs)>sqlite3MemJournalSize() ){
44411     journalFileSize = ROUND8(sqlite3JournalSize(pVfs));
44412   }else{
44413     journalFileSize = ROUND8(sqlite3MemJournalSize());
44414   }
44415 
44416   /* Set the output variable to NULL in case an error occurs. */
44417   *ppPager = 0;
44418 
44419 #ifndef SQLITE_OMIT_MEMORYDB
44420   if( flags & PAGER_MEMORY ){
44421     memDb = 1;
44422     if( zFilename && zFilename[0] ){
44423       zPathname = sqlite3DbStrDup(0, zFilename);
44424       if( zPathname==0  ) return SQLITE_NOMEM;
44425       nPathname = sqlite3Strlen30(zPathname);
44426       zFilename = 0;
44427     }
44428   }
44429 #endif
44430 
44431   /* Compute and store the full pathname in an allocated buffer pointed
44432   ** to by zPathname, length nPathname. Or, if this is a temporary file,
44433   ** leave both nPathname and zPathname set to 0.
44434   */
44435   if( zFilename && zFilename[0] ){
44436     const char *z;
44437     nPathname = pVfs->mxPathname+1;
44438     zPathname = sqlite3DbMallocRaw(0, nPathname*2);
44439     if( zPathname==0 ){
44440       return SQLITE_NOMEM;
44441     }
44442     zPathname[0] = 0; /* Make sure initialized even if FullPathname() fails */
44443     rc = sqlite3OsFullPathname(pVfs, zFilename, nPathname, zPathname);
44444     nPathname = sqlite3Strlen30(zPathname);
44445     z = zUri = &zFilename[sqlite3Strlen30(zFilename)+1];
44446     while( *z ){
44447       z += sqlite3Strlen30(z)+1;
44448       z += sqlite3Strlen30(z)+1;
44449     }
44450     nUri = (int)(&z[1] - zUri);
44451     assert( nUri>=0 );
44452     if( rc==SQLITE_OK && nPathname+8>pVfs->mxPathname ){
44453       /* This branch is taken when the journal path required by
44454       ** the database being opened will be more than pVfs->mxPathname
44455       ** bytes in length. This means the database cannot be opened,
44456       ** as it will not be possible to open the journal file or even
44457       ** check for a hot-journal before reading.
44458       */
44459       rc = SQLITE_CANTOPEN_BKPT;
44460     }
44461     if( rc!=SQLITE_OK ){
44462       sqlite3DbFree(0, zPathname);
44463       return rc;
44464     }
44465   }
44466 
44467   /* Allocate memory for the Pager structure, PCache object, the
44468   ** three file descriptors, the database file name and the journal
44469   ** file name. The layout in memory is as follows:
44470   **
44471   **     Pager object                    (sizeof(Pager) bytes)
44472   **     PCache object                   (sqlite3PcacheSize() bytes)
44473   **     Database file handle            (pVfs->szOsFile bytes)
44474   **     Sub-journal file handle         (journalFileSize bytes)
44475   **     Main journal file handle        (journalFileSize bytes)
44476   **     Database file name              (nPathname+1 bytes)
44477   **     Journal file name               (nPathname+8+1 bytes)
44478   */
44479   pPtr = (u8 *)sqlite3MallocZero(
44480     ROUND8(sizeof(*pPager)) +      /* Pager structure */
44481     ROUND8(pcacheSize) +           /* PCache object */
44482     ROUND8(pVfs->szOsFile) +       /* The main db file */
44483     journalFileSize * 2 +          /* The two journal files */
44484     nPathname + 1 + nUri +         /* zFilename */
44485     nPathname + 8 + 2              /* zJournal */
44486 #ifndef SQLITE_OMIT_WAL
44487     + nPathname + 4 + 2            /* zWal */
44488 #endif
44489   );
44490   assert( EIGHT_BYTE_ALIGNMENT(SQLITE_INT_TO_PTR(journalFileSize)) );
44491   if( !pPtr ){
44492     sqlite3DbFree(0, zPathname);
44493     return SQLITE_NOMEM;
44494   }
44495   pPager =              (Pager*)(pPtr);
44496   pPager->pPCache =    (PCache*)(pPtr += ROUND8(sizeof(*pPager)));
44497   pPager->fd =   (sqlite3_file*)(pPtr += ROUND8(pcacheSize));
44498   pPager->sjfd = (sqlite3_file*)(pPtr += ROUND8(pVfs->szOsFile));
44499   pPager->jfd =  (sqlite3_file*)(pPtr += journalFileSize);
44500   pPager->zFilename =    (char*)(pPtr += journalFileSize);
44501   assert( EIGHT_BYTE_ALIGNMENT(pPager->jfd) );
44502 
44503   /* Fill in the Pager.zFilename and Pager.zJournal buffers, if required. */
44504   if( zPathname ){
44505     assert( nPathname>0 );
44506     pPager->zJournal =   (char*)(pPtr += nPathname + 1 + nUri);
44507     memcpy(pPager->zFilename, zPathname, nPathname);
44508     if( nUri ) memcpy(&pPager->zFilename[nPathname+1], zUri, nUri);
44509     memcpy(pPager->zJournal, zPathname, nPathname);
44510     memcpy(&pPager->zJournal[nPathname], "-journal\000", 8+2);
44511     sqlite3FileSuffix3(pPager->zFilename, pPager->zJournal);
44512 #ifndef SQLITE_OMIT_WAL
44513     pPager->zWal = &pPager->zJournal[nPathname+8+1];
44514     memcpy(pPager->zWal, zPathname, nPathname);
44515     memcpy(&pPager->zWal[nPathname], "-wal\000", 4+1);
44516     sqlite3FileSuffix3(pPager->zFilename, pPager->zWal);
44517 #endif
44518     sqlite3DbFree(0, zPathname);
44519   }
44520   pPager->pVfs = pVfs;
44521   pPager->vfsFlags = vfsFlags;
44522 
44523   /* Open the pager file.
44524   */
44525   if( zFilename && zFilename[0] ){
44526     int fout = 0;                    /* VFS flags returned by xOpen() */
44527     rc = sqlite3OsOpen(pVfs, pPager->zFilename, pPager->fd, vfsFlags, &fout);
44528     assert( !memDb );
44529     readOnly = (fout&SQLITE_OPEN_READONLY);
44530 
44531     /* If the file was successfully opened for read/write access,
44532     ** choose a default page size in case we have to create the
44533     ** database file. The default page size is the maximum of:
44534     **
44535     **    + SQLITE_DEFAULT_PAGE_SIZE,
44536     **    + The value returned by sqlite3OsSectorSize()
44537     **    + The largest page size that can be written atomically.
44538     */
44539     if( rc==SQLITE_OK ){
44540       int iDc = sqlite3OsDeviceCharacteristics(pPager->fd);
44541       if( !readOnly ){
44542         setSectorSize(pPager);
44543         assert(SQLITE_DEFAULT_PAGE_SIZE<=SQLITE_MAX_DEFAULT_PAGE_SIZE);
44544         if( szPageDflt<pPager->sectorSize ){
44545           if( pPager->sectorSize>SQLITE_MAX_DEFAULT_PAGE_SIZE ){
44546             szPageDflt = SQLITE_MAX_DEFAULT_PAGE_SIZE;
44547           }else{
44548             szPageDflt = (u32)pPager->sectorSize;
44549           }
44550         }
44551 #ifdef SQLITE_ENABLE_ATOMIC_WRITE
44552         {
44553           int ii;
44554           assert(SQLITE_IOCAP_ATOMIC512==(512>>8));
44555           assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8));
44556           assert(SQLITE_MAX_DEFAULT_PAGE_SIZE<=65536);
44557           for(ii=szPageDflt; ii<=SQLITE_MAX_DEFAULT_PAGE_SIZE; ii=ii*2){
44558             if( iDc&(SQLITE_IOCAP_ATOMIC|(ii>>8)) ){
44559               szPageDflt = ii;
44560             }
44561           }
44562         }
44563 #endif
44564       }
44565       pPager->noLock = sqlite3_uri_boolean(zFilename, "nolock", 0);
44566       if( (iDc & SQLITE_IOCAP_IMMUTABLE)!=0
44567        || sqlite3_uri_boolean(zFilename, "immutable", 0) ){
44568           vfsFlags |= SQLITE_OPEN_READONLY;
44569           goto act_like_temp_file;
44570       }
44571     }
44572   }else{
44573     /* If a temporary file is requested, it is not opened immediately.
44574     ** In this case we accept the default page size and delay actually
44575     ** opening the file until the first call to OsWrite().
44576     **
44577     ** This branch is also run for an in-memory database. An in-memory
44578     ** database is the same as a temp-file that is never written out to
44579     ** disk and uses an in-memory rollback journal.
44580     **
44581     ** This branch also runs for files marked as immutable.
44582     */
44583 act_like_temp_file:
44584     tempFile = 1;
44585     pPager->eState = PAGER_READER;     /* Pretend we already have a lock */
44586     pPager->eLock = EXCLUSIVE_LOCK;    /* Pretend we are in EXCLUSIVE locking mode */
44587     pPager->noLock = 1;                /* Do no locking */
44588     readOnly = (vfsFlags&SQLITE_OPEN_READONLY);
44589   }
44590 
44591   /* The following call to PagerSetPagesize() serves to set the value of
44592   ** Pager.pageSize and to allocate the Pager.pTmpSpace buffer.
44593   */
44594   if( rc==SQLITE_OK ){
44595     assert( pPager->memDb==0 );
44596     rc = sqlite3PagerSetPagesize(pPager, &szPageDflt, -1);
44597     testcase( rc!=SQLITE_OK );
44598   }
44599 
44600   /* If an error occurred in either of the blocks above, free the
44601   ** Pager structure and close the file.
44602   */
44603   if( rc!=SQLITE_OK ){
44604     assert( !pPager->pTmpSpace );
44605     sqlite3OsClose(pPager->fd);
44606     sqlite3_free(pPager);
44607     return rc;
44608   }
44609 
44610   /* Initialize the PCache object. */
44611   assert( nExtra<1000 );
44612   nExtra = ROUND8(nExtra);
44613   sqlite3PcacheOpen(szPageDflt, nExtra, !memDb,
44614                     !memDb?pagerStress:0, (void *)pPager, pPager->pPCache);
44615 
44616   PAGERTRACE(("OPEN %d %s\n", FILEHANDLEID(pPager->fd), pPager->zFilename));
44617   IOTRACE(("OPEN %p %s\n", pPager, pPager->zFilename))
44618 
44619   pPager->useJournal = (u8)useJournal;
44620   /* pPager->stmtOpen = 0; */
44621   /* pPager->stmtInUse = 0; */
44622   /* pPager->nRef = 0; */
44623   /* pPager->stmtSize = 0; */
44624   /* pPager->stmtJSize = 0; */
44625   /* pPager->nPage = 0; */
44626   pPager->mxPgno = SQLITE_MAX_PAGE_COUNT;
44627   /* pPager->state = PAGER_UNLOCK; */
44628   /* pPager->errMask = 0; */
44629   pPager->tempFile = (u8)tempFile;
44630   assert( tempFile==PAGER_LOCKINGMODE_NORMAL
44631           || tempFile==PAGER_LOCKINGMODE_EXCLUSIVE );
44632   assert( PAGER_LOCKINGMODE_EXCLUSIVE==1 );
44633   pPager->exclusiveMode = (u8)tempFile;
44634   pPager->changeCountDone = pPager->tempFile;
44635   pPager->memDb = (u8)memDb;
44636   pPager->readOnly = (u8)readOnly;
44637   assert( useJournal || pPager->tempFile );
44638   pPager->noSync = pPager->tempFile;
44639   if( pPager->noSync ){
44640     assert( pPager->fullSync==0 );
44641     assert( pPager->syncFlags==0 );
44642     assert( pPager->walSyncFlags==0 );
44643     assert( pPager->ckptSyncFlags==0 );
44644   }else{
44645     pPager->fullSync = 1;
44646     pPager->syncFlags = SQLITE_SYNC_NORMAL;
44647     pPager->walSyncFlags = SQLITE_SYNC_NORMAL | WAL_SYNC_TRANSACTIONS;
44648     pPager->ckptSyncFlags = SQLITE_SYNC_NORMAL;
44649   }
44650   /* pPager->pFirst = 0; */
44651   /* pPager->pFirstSynced = 0; */
44652   /* pPager->pLast = 0; */
44653   pPager->nExtra = (u16)nExtra;
44654   pPager->journalSizeLimit = SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT;
44655   assert( isOpen(pPager->fd) || tempFile );
44656   setSectorSize(pPager);
44657   if( !useJournal ){
44658     pPager->journalMode = PAGER_JOURNALMODE_OFF;
44659   }else if( memDb ){
44660     pPager->journalMode = PAGER_JOURNALMODE_MEMORY;
44661   }
44662   /* pPager->xBusyHandler = 0; */
44663   /* pPager->pBusyHandlerArg = 0; */
44664   pPager->xReiniter = xReinit;
44665   /* memset(pPager->aHash, 0, sizeof(pPager->aHash)); */
44666   /* pPager->szMmap = SQLITE_DEFAULT_MMAP_SIZE // will be set by btree.c */
44667 
44668   *ppPager = pPager;
44669   return SQLITE_OK;
44670 }
44671 
44672 
44673 /* Verify that the database file has not be deleted or renamed out from
44674 ** under the pager.  Return SQLITE_OK if the database is still were it ought
44675 ** to be on disk.  Return non-zero (SQLITE_READONLY_DBMOVED or some other error
44676 ** code from sqlite3OsAccess()) if the database has gone missing.
44677 */
44678 static int databaseIsUnmoved(Pager *pPager){
44679   int bHasMoved = 0;
44680   int rc;
44681 
44682   if( pPager->tempFile ) return SQLITE_OK;
44683   if( pPager->dbSize==0 ) return SQLITE_OK;
44684   assert( pPager->zFilename && pPager->zFilename[0] );
44685   rc = sqlite3OsFileControl(pPager->fd, SQLITE_FCNTL_HAS_MOVED, &bHasMoved);
44686   if( rc==SQLITE_NOTFOUND ){
44687     /* If the HAS_MOVED file-control is unimplemented, assume that the file
44688     ** has not been moved.  That is the historical behavior of SQLite: prior to
44689     ** version 3.8.3, it never checked */
44690     rc = SQLITE_OK;
44691   }else if( rc==SQLITE_OK && bHasMoved ){
44692     rc = SQLITE_READONLY_DBMOVED;
44693   }
44694   return rc;
44695 }
44696 
44697 
44698 /*
44699 ** This function is called after transitioning from PAGER_UNLOCK to
44700 ** PAGER_SHARED state. It tests if there is a hot journal present in
44701 ** the file-system for the given pager. A hot journal is one that
44702 ** needs to be played back. According to this function, a hot-journal
44703 ** file exists if the following criteria are met:
44704 **
44705 **   * The journal file exists in the file system, and
44706 **   * No process holds a RESERVED or greater lock on the database file, and
44707 **   * The database file itself is greater than 0 bytes in size, and
44708 **   * The first byte of the journal file exists and is not 0x00.
44709 **
44710 ** If the current size of the database file is 0 but a journal file
44711 ** exists, that is probably an old journal left over from a prior
44712 ** database with the same name. In this case the journal file is
44713 ** just deleted using OsDelete, *pExists is set to 0 and SQLITE_OK
44714 ** is returned.
44715 **
44716 ** This routine does not check if there is a master journal filename
44717 ** at the end of the file. If there is, and that master journal file
44718 ** does not exist, then the journal file is not really hot. In this
44719 ** case this routine will return a false-positive. The pager_playback()
44720 ** routine will discover that the journal file is not really hot and
44721 ** will not roll it back.
44722 **
44723 ** If a hot-journal file is found to exist, *pExists is set to 1 and
44724 ** SQLITE_OK returned. If no hot-journal file is present, *pExists is
44725 ** set to 0 and SQLITE_OK returned. If an IO error occurs while trying
44726 ** to determine whether or not a hot-journal file exists, the IO error
44727 ** code is returned and the value of *pExists is undefined.
44728 */
44729 static int hasHotJournal(Pager *pPager, int *pExists){
44730   sqlite3_vfs * const pVfs = pPager->pVfs;
44731   int rc = SQLITE_OK;           /* Return code */
44732   int exists = 1;               /* True if a journal file is present */
44733   int jrnlOpen = !!isOpen(pPager->jfd);
44734 
44735   assert( pPager->useJournal );
44736   assert( isOpen(pPager->fd) );
44737   assert( pPager->eState==PAGER_OPEN );
44738 
44739   assert( jrnlOpen==0 || ( sqlite3OsDeviceCharacteristics(pPager->jfd) &
44740     SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN
44741   ));
44742 
44743   *pExists = 0;
44744   if( !jrnlOpen ){
44745     rc = sqlite3OsAccess(pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS, &exists);
44746   }
44747   if( rc==SQLITE_OK && exists ){
44748     int locked = 0;             /* True if some process holds a RESERVED lock */
44749 
44750     /* Race condition here:  Another process might have been holding the
44751     ** the RESERVED lock and have a journal open at the sqlite3OsAccess()
44752     ** call above, but then delete the journal and drop the lock before
44753     ** we get to the following sqlite3OsCheckReservedLock() call.  If that
44754     ** is the case, this routine might think there is a hot journal when
44755     ** in fact there is none.  This results in a false-positive which will
44756     ** be dealt with by the playback routine.  Ticket #3883.
44757     */
44758     rc = sqlite3OsCheckReservedLock(pPager->fd, &locked);
44759     if( rc==SQLITE_OK && !locked ){
44760       Pgno nPage;                 /* Number of pages in database file */
44761 
44762       rc = pagerPagecount(pPager, &nPage);
44763       if( rc==SQLITE_OK ){
44764         /* If the database is zero pages in size, that means that either (1) the
44765         ** journal is a remnant from a prior database with the same name where
44766         ** the database file but not the journal was deleted, or (2) the initial
44767         ** transaction that populates a new database is being rolled back.
44768         ** In either case, the journal file can be deleted.  However, take care
44769         ** not to delete the journal file if it is already open due to
44770         ** journal_mode=PERSIST.
44771         */
44772         if( nPage==0 && !jrnlOpen ){
44773           sqlite3BeginBenignMalloc();
44774           if( pagerLockDb(pPager, RESERVED_LOCK)==SQLITE_OK ){
44775             sqlite3OsDelete(pVfs, pPager->zJournal, 0);
44776             if( !pPager->exclusiveMode ) pagerUnlockDb(pPager, SHARED_LOCK);
44777           }
44778           sqlite3EndBenignMalloc();
44779         }else{
44780           /* The journal file exists and no other connection has a reserved
44781           ** or greater lock on the database file. Now check that there is
44782           ** at least one non-zero bytes at the start of the journal file.
44783           ** If there is, then we consider this journal to be hot. If not,
44784           ** it can be ignored.
44785           */
44786           if( !jrnlOpen ){
44787             int f = SQLITE_OPEN_READONLY|SQLITE_OPEN_MAIN_JOURNAL;
44788             rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &f);
44789           }
44790           if( rc==SQLITE_OK ){
44791             u8 first = 0;
44792             rc = sqlite3OsRead(pPager->jfd, (void *)&first, 1, 0);
44793             if( rc==SQLITE_IOERR_SHORT_READ ){
44794               rc = SQLITE_OK;
44795             }
44796             if( !jrnlOpen ){
44797               sqlite3OsClose(pPager->jfd);
44798             }
44799             *pExists = (first!=0);
44800           }else if( rc==SQLITE_CANTOPEN ){
44801             /* If we cannot open the rollback journal file in order to see if
44802             ** its has a zero header, that might be due to an I/O error, or
44803             ** it might be due to the race condition described above and in
44804             ** ticket #3883.  Either way, assume that the journal is hot.
44805             ** This might be a false positive.  But if it is, then the
44806             ** automatic journal playback and recovery mechanism will deal
44807             ** with it under an EXCLUSIVE lock where we do not need to
44808             ** worry so much with race conditions.
44809             */
44810             *pExists = 1;
44811             rc = SQLITE_OK;
44812           }
44813         }
44814       }
44815     }
44816   }
44817 
44818   return rc;
44819 }
44820 
44821 /*
44822 ** This function is called to obtain a shared lock on the database file.
44823 ** It is illegal to call sqlite3PagerAcquire() until after this function
44824 ** has been successfully called. If a shared-lock is already held when
44825 ** this function is called, it is a no-op.
44826 **
44827 ** The following operations are also performed by this function.
44828 **
44829 **   1) If the pager is currently in PAGER_OPEN state (no lock held
44830 **      on the database file), then an attempt is made to obtain a
44831 **      SHARED lock on the database file. Immediately after obtaining
44832 **      the SHARED lock, the file-system is checked for a hot-journal,
44833 **      which is played back if present. Following any hot-journal
44834 **      rollback, the contents of the cache are validated by checking
44835 **      the 'change-counter' field of the database file header and
44836 **      discarded if they are found to be invalid.
44837 **
44838 **   2) If the pager is running in exclusive-mode, and there are currently
44839 **      no outstanding references to any pages, and is in the error state,
44840 **      then an attempt is made to clear the error state by discarding
44841 **      the contents of the page cache and rolling back any open journal
44842 **      file.
44843 **
44844 ** If everything is successful, SQLITE_OK is returned. If an IO error
44845 ** occurs while locking the database, checking for a hot-journal file or
44846 ** rolling back a journal file, the IO error code is returned.
44847 */
44848 SQLITE_PRIVATE int sqlite3PagerSharedLock(Pager *pPager){
44849   int rc = SQLITE_OK;                /* Return code */
44850 
44851   /* This routine is only called from b-tree and only when there are no
44852   ** outstanding pages. This implies that the pager state should either
44853   ** be OPEN or READER. READER is only possible if the pager is or was in
44854   ** exclusive access mode.
44855   */
44856   assert( sqlite3PcacheRefCount(pPager->pPCache)==0 );
44857   assert( assert_pager_state(pPager) );
44858   assert( pPager->eState==PAGER_OPEN || pPager->eState==PAGER_READER );
44859   if( NEVER(MEMDB && pPager->errCode) ){ return pPager->errCode; }
44860 
44861   if( !pagerUseWal(pPager) && pPager->eState==PAGER_OPEN ){
44862     int bHotJournal = 1;          /* True if there exists a hot journal-file */
44863 
44864     assert( !MEMDB );
44865 
44866     rc = pager_wait_on_lock(pPager, SHARED_LOCK);
44867     if( rc!=SQLITE_OK ){
44868       assert( pPager->eLock==NO_LOCK || pPager->eLock==UNKNOWN_LOCK );
44869       goto failed;
44870     }
44871 
44872     /* If a journal file exists, and there is no RESERVED lock on the
44873     ** database file, then it either needs to be played back or deleted.
44874     */
44875     if( pPager->eLock<=SHARED_LOCK ){
44876       rc = hasHotJournal(pPager, &bHotJournal);
44877     }
44878     if( rc!=SQLITE_OK ){
44879       goto failed;
44880     }
44881     if( bHotJournal ){
44882       if( pPager->readOnly ){
44883         rc = SQLITE_READONLY_ROLLBACK;
44884         goto failed;
44885       }
44886 
44887       /* Get an EXCLUSIVE lock on the database file. At this point it is
44888       ** important that a RESERVED lock is not obtained on the way to the
44889       ** EXCLUSIVE lock. If it were, another process might open the
44890       ** database file, detect the RESERVED lock, and conclude that the
44891       ** database is safe to read while this process is still rolling the
44892       ** hot-journal back.
44893       **
44894       ** Because the intermediate RESERVED lock is not requested, any
44895       ** other process attempting to access the database file will get to
44896       ** this point in the code and fail to obtain its own EXCLUSIVE lock
44897       ** on the database file.
44898       **
44899       ** Unless the pager is in locking_mode=exclusive mode, the lock is
44900       ** downgraded to SHARED_LOCK before this function returns.
44901       */
44902       rc = pagerLockDb(pPager, EXCLUSIVE_LOCK);
44903       if( rc!=SQLITE_OK ){
44904         goto failed;
44905       }
44906 
44907       /* If it is not already open and the file exists on disk, open the
44908       ** journal for read/write access. Write access is required because
44909       ** in exclusive-access mode the file descriptor will be kept open
44910       ** and possibly used for a transaction later on. Also, write-access
44911       ** is usually required to finalize the journal in journal_mode=persist
44912       ** mode (and also for journal_mode=truncate on some systems).
44913       **
44914       ** If the journal does not exist, it usually means that some
44915       ** other connection managed to get in and roll it back before
44916       ** this connection obtained the exclusive lock above. Or, it
44917       ** may mean that the pager was in the error-state when this
44918       ** function was called and the journal file does not exist.
44919       */
44920       if( !isOpen(pPager->jfd) ){
44921         sqlite3_vfs * const pVfs = pPager->pVfs;
44922         int bExists;              /* True if journal file exists */
44923         rc = sqlite3OsAccess(
44924             pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS, &bExists);
44925         if( rc==SQLITE_OK && bExists ){
44926           int fout = 0;
44927           int f = SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_JOURNAL;
44928           assert( !pPager->tempFile );
44929           rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &fout);
44930           assert( rc!=SQLITE_OK || isOpen(pPager->jfd) );
44931           if( rc==SQLITE_OK && fout&SQLITE_OPEN_READONLY ){
44932             rc = SQLITE_CANTOPEN_BKPT;
44933             sqlite3OsClose(pPager->jfd);
44934           }
44935         }
44936       }
44937 
44938       /* Playback and delete the journal.  Drop the database write
44939       ** lock and reacquire the read lock. Purge the cache before
44940       ** playing back the hot-journal so that we don't end up with
44941       ** an inconsistent cache.  Sync the hot journal before playing
44942       ** it back since the process that crashed and left the hot journal
44943       ** probably did not sync it and we are required to always sync
44944       ** the journal before playing it back.
44945       */
44946       if( isOpen(pPager->jfd) ){
44947         assert( rc==SQLITE_OK );
44948         rc = pagerSyncHotJournal(pPager);
44949         if( rc==SQLITE_OK ){
44950           rc = pager_playback(pPager, 1);
44951           pPager->eState = PAGER_OPEN;
44952         }
44953       }else if( !pPager->exclusiveMode ){
44954         pagerUnlockDb(pPager, SHARED_LOCK);
44955       }
44956 
44957       if( rc!=SQLITE_OK ){
44958         /* This branch is taken if an error occurs while trying to open
44959         ** or roll back a hot-journal while holding an EXCLUSIVE lock. The
44960         ** pager_unlock() routine will be called before returning to unlock
44961         ** the file. If the unlock attempt fails, then Pager.eLock must be
44962         ** set to UNKNOWN_LOCK (see the comment above the #define for
44963         ** UNKNOWN_LOCK above for an explanation).
44964         **
44965         ** In order to get pager_unlock() to do this, set Pager.eState to
44966         ** PAGER_ERROR now. This is not actually counted as a transition
44967         ** to ERROR state in the state diagram at the top of this file,
44968         ** since we know that the same call to pager_unlock() will very
44969         ** shortly transition the pager object to the OPEN state. Calling
44970         ** assert_pager_state() would fail now, as it should not be possible
44971         ** to be in ERROR state when there are zero outstanding page
44972         ** references.
44973         */
44974         pager_error(pPager, rc);
44975         goto failed;
44976       }
44977 
44978       assert( pPager->eState==PAGER_OPEN );
44979       assert( (pPager->eLock==SHARED_LOCK)
44980            || (pPager->exclusiveMode && pPager->eLock>SHARED_LOCK)
44981       );
44982     }
44983 
44984     if( !pPager->tempFile && (
44985         pPager->pBackup
44986      || sqlite3PcachePagecount(pPager->pPCache)>0
44987      || USEFETCH(pPager)
44988     )){
44989       /* The shared-lock has just been acquired on the database file
44990       ** and there are already pages in the cache (from a previous
44991       ** read or write transaction).  Check to see if the database
44992       ** has been modified.  If the database has changed, flush the
44993       ** cache.
44994       **
44995       ** Database changes is detected by looking at 15 bytes beginning
44996       ** at offset 24 into the file.  The first 4 of these 16 bytes are
44997       ** a 32-bit counter that is incremented with each change.  The
44998       ** other bytes change randomly with each file change when
44999       ** a codec is in use.
45000       **
45001       ** There is a vanishingly small chance that a change will not be
45002       ** detected.  The chance of an undetected change is so small that
45003       ** it can be neglected.
45004       */
45005       Pgno nPage = 0;
45006       char dbFileVers[sizeof(pPager->dbFileVers)];
45007 
45008       rc = pagerPagecount(pPager, &nPage);
45009       if( rc ) goto failed;
45010 
45011       if( nPage>0 ){
45012         IOTRACE(("CKVERS %p %d\n", pPager, sizeof(dbFileVers)));
45013         rc = sqlite3OsRead(pPager->fd, &dbFileVers, sizeof(dbFileVers), 24);
45014         if( rc!=SQLITE_OK && rc!=SQLITE_IOERR_SHORT_READ ){
45015           goto failed;
45016         }
45017       }else{
45018         memset(dbFileVers, 0, sizeof(dbFileVers));
45019       }
45020 
45021       if( memcmp(pPager->dbFileVers, dbFileVers, sizeof(dbFileVers))!=0 ){
45022         pager_reset(pPager);
45023 
45024         /* Unmap the database file. It is possible that external processes
45025         ** may have truncated the database file and then extended it back
45026         ** to its original size while this process was not holding a lock.
45027         ** In this case there may exist a Pager.pMap mapping that appears
45028         ** to be the right size but is not actually valid. Avoid this
45029         ** possibility by unmapping the db here. */
45030         if( USEFETCH(pPager) ){
45031           sqlite3OsUnfetch(pPager->fd, 0, 0);
45032         }
45033       }
45034     }
45035 
45036     /* If there is a WAL file in the file-system, open this database in WAL
45037     ** mode. Otherwise, the following function call is a no-op.
45038     */
45039     rc = pagerOpenWalIfPresent(pPager);
45040 #ifndef SQLITE_OMIT_WAL
45041     assert( pPager->pWal==0 || rc==SQLITE_OK );
45042 #endif
45043   }
45044 
45045   if( pagerUseWal(pPager) ){
45046     assert( rc==SQLITE_OK );
45047     rc = pagerBeginReadTransaction(pPager);
45048   }
45049 
45050   if( pPager->eState==PAGER_OPEN && rc==SQLITE_OK ){
45051     rc = pagerPagecount(pPager, &pPager->dbSize);
45052   }
45053 
45054  failed:
45055   if( rc!=SQLITE_OK ){
45056     assert( !MEMDB );
45057     pager_unlock(pPager);
45058     assert( pPager->eState==PAGER_OPEN );
45059   }else{
45060     pPager->eState = PAGER_READER;
45061   }
45062   return rc;
45063 }
45064 
45065 /*
45066 ** If the reference count has reached zero, rollback any active
45067 ** transaction and unlock the pager.
45068 **
45069 ** Except, in locking_mode=EXCLUSIVE when there is nothing to in
45070 ** the rollback journal, the unlock is not performed and there is
45071 ** nothing to rollback, so this routine is a no-op.
45072 */
45073 static void pagerUnlockIfUnused(Pager *pPager){
45074   if( pPager->nMmapOut==0 && (sqlite3PcacheRefCount(pPager->pPCache)==0) ){
45075     pagerUnlockAndRollback(pPager);
45076   }
45077 }
45078 
45079 /*
45080 ** Acquire a reference to page number pgno in pager pPager (a page
45081 ** reference has type DbPage*). If the requested reference is
45082 ** successfully obtained, it is copied to *ppPage and SQLITE_OK returned.
45083 **
45084 ** If the requested page is already in the cache, it is returned.
45085 ** Otherwise, a new page object is allocated and populated with data
45086 ** read from the database file. In some cases, the pcache module may
45087 ** choose not to allocate a new page object and may reuse an existing
45088 ** object with no outstanding references.
45089 **
45090 ** The extra data appended to a page is always initialized to zeros the
45091 ** first time a page is loaded into memory. If the page requested is
45092 ** already in the cache when this function is called, then the extra
45093 ** data is left as it was when the page object was last used.
45094 **
45095 ** If the database image is smaller than the requested page or if a
45096 ** non-zero value is passed as the noContent parameter and the
45097 ** requested page is not already stored in the cache, then no
45098 ** actual disk read occurs. In this case the memory image of the
45099 ** page is initialized to all zeros.
45100 **
45101 ** If noContent is true, it means that we do not care about the contents
45102 ** of the page. This occurs in two scenarios:
45103 **
45104 **   a) When reading a free-list leaf page from the database, and
45105 **
45106 **   b) When a savepoint is being rolled back and we need to load
45107 **      a new page into the cache to be filled with the data read
45108 **      from the savepoint journal.
45109 **
45110 ** If noContent is true, then the data returned is zeroed instead of
45111 ** being read from the database. Additionally, the bits corresponding
45112 ** to pgno in Pager.pInJournal (bitvec of pages already written to the
45113 ** journal file) and the PagerSavepoint.pInSavepoint bitvecs of any open
45114 ** savepoints are set. This means if the page is made writable at any
45115 ** point in the future, using a call to sqlite3PagerWrite(), its contents
45116 ** will not be journaled. This saves IO.
45117 **
45118 ** The acquisition might fail for several reasons.  In all cases,
45119 ** an appropriate error code is returned and *ppPage is set to NULL.
45120 **
45121 ** See also sqlite3PagerLookup().  Both this routine and Lookup() attempt
45122 ** to find a page in the in-memory cache first.  If the page is not already
45123 ** in memory, this routine goes to disk to read it in whereas Lookup()
45124 ** just returns 0.  This routine acquires a read-lock the first time it
45125 ** has to go to disk, and could also playback an old journal if necessary.
45126 ** Since Lookup() never goes to disk, it never has to deal with locks
45127 ** or journal files.
45128 */
45129 SQLITE_PRIVATE int sqlite3PagerAcquire(
45130   Pager *pPager,      /* The pager open on the database file */
45131   Pgno pgno,          /* Page number to fetch */
45132   DbPage **ppPage,    /* Write a pointer to the page here */
45133   int flags           /* PAGER_GET_XXX flags */
45134 ){
45135   int rc = SQLITE_OK;
45136   PgHdr *pPg = 0;
45137   u32 iFrame = 0;                 /* Frame to read from WAL file */
45138   const int noContent = (flags & PAGER_GET_NOCONTENT);
45139 
45140   /* It is acceptable to use a read-only (mmap) page for any page except
45141   ** page 1 if there is no write-transaction open or the ACQUIRE_READONLY
45142   ** flag was specified by the caller. And so long as the db is not a
45143   ** temporary or in-memory database.  */
45144   const int bMmapOk = (pgno!=1 && USEFETCH(pPager)
45145    && (pPager->eState==PAGER_READER || (flags & PAGER_GET_READONLY))
45146 #ifdef SQLITE_HAS_CODEC
45147    && pPager->xCodec==0
45148 #endif
45149   );
45150 
45151   assert( pPager->eState>=PAGER_READER );
45152   assert( assert_pager_state(pPager) );
45153   assert( noContent==0 || bMmapOk==0 );
45154 
45155   if( pgno==0 ){
45156     return SQLITE_CORRUPT_BKPT;
45157   }
45158 
45159   /* If the pager is in the error state, return an error immediately.
45160   ** Otherwise, request the page from the PCache layer. */
45161   if( pPager->errCode!=SQLITE_OK ){
45162     rc = pPager->errCode;
45163   }else{
45164 
45165     if( bMmapOk && pagerUseWal(pPager) ){
45166       rc = sqlite3WalFindFrame(pPager->pWal, pgno, &iFrame);
45167       if( rc!=SQLITE_OK ) goto pager_acquire_err;
45168     }
45169 
45170     if( bMmapOk && iFrame==0 ){
45171       void *pData = 0;
45172 
45173       rc = sqlite3OsFetch(pPager->fd,
45174           (i64)(pgno-1) * pPager->pageSize, pPager->pageSize, &pData
45175       );
45176 
45177       if( rc==SQLITE_OK && pData ){
45178         if( pPager->eState>PAGER_READER ){
45179           (void)sqlite3PcacheFetch(pPager->pPCache, pgno, 0, &pPg);
45180         }
45181         if( pPg==0 ){
45182           rc = pagerAcquireMapPage(pPager, pgno, pData, &pPg);
45183         }else{
45184           sqlite3OsUnfetch(pPager->fd, (i64)(pgno-1)*pPager->pageSize, pData);
45185         }
45186         if( pPg ){
45187           assert( rc==SQLITE_OK );
45188           *ppPage = pPg;
45189           return SQLITE_OK;
45190         }
45191       }
45192       if( rc!=SQLITE_OK ){
45193         goto pager_acquire_err;
45194       }
45195     }
45196 
45197     rc = sqlite3PcacheFetch(pPager->pPCache, pgno, 1, ppPage);
45198   }
45199 
45200   if( rc!=SQLITE_OK ){
45201     /* Either the call to sqlite3PcacheFetch() returned an error or the
45202     ** pager was already in the error-state when this function was called.
45203     ** Set pPg to 0 and jump to the exception handler.  */
45204     pPg = 0;
45205     goto pager_acquire_err;
45206   }
45207   assert( (*ppPage)->pgno==pgno );
45208   assert( (*ppPage)->pPager==pPager || (*ppPage)->pPager==0 );
45209 
45210   if( (*ppPage)->pPager && !noContent ){
45211     /* In this case the pcache already contains an initialized copy of
45212     ** the page. Return without further ado.  */
45213     assert( pgno<=PAGER_MAX_PGNO && pgno!=PAGER_MJ_PGNO(pPager) );
45214     pPager->aStat[PAGER_STAT_HIT]++;
45215     return SQLITE_OK;
45216 
45217   }else{
45218     /* The pager cache has created a new page. Its content needs to
45219     ** be initialized.  */
45220 
45221     pPg = *ppPage;
45222     pPg->pPager = pPager;
45223 
45224     /* The maximum page number is 2^31. Return SQLITE_CORRUPT if a page
45225     ** number greater than this, or the unused locking-page, is requested. */
45226     if( pgno>PAGER_MAX_PGNO || pgno==PAGER_MJ_PGNO(pPager) ){
45227       rc = SQLITE_CORRUPT_BKPT;
45228       goto pager_acquire_err;
45229     }
45230 
45231     if( MEMDB || pPager->dbSize<pgno || noContent || !isOpen(pPager->fd) ){
45232       if( pgno>pPager->mxPgno ){
45233         rc = SQLITE_FULL;
45234         goto pager_acquire_err;
45235       }
45236       if( noContent ){
45237         /* Failure to set the bits in the InJournal bit-vectors is benign.
45238         ** It merely means that we might do some extra work to journal a
45239         ** page that does not need to be journaled.  Nevertheless, be sure
45240         ** to test the case where a malloc error occurs while trying to set
45241         ** a bit in a bit vector.
45242         */
45243         sqlite3BeginBenignMalloc();
45244         if( pgno<=pPager->dbOrigSize ){
45245           TESTONLY( rc = ) sqlite3BitvecSet(pPager->pInJournal, pgno);
45246           testcase( rc==SQLITE_NOMEM );
45247         }
45248         TESTONLY( rc = ) addToSavepointBitvecs(pPager, pgno);
45249         testcase( rc==SQLITE_NOMEM );
45250         sqlite3EndBenignMalloc();
45251       }
45252       memset(pPg->pData, 0, pPager->pageSize);
45253       IOTRACE(("ZERO %p %d\n", pPager, pgno));
45254     }else{
45255       if( pagerUseWal(pPager) && bMmapOk==0 ){
45256         rc = sqlite3WalFindFrame(pPager->pWal, pgno, &iFrame);
45257         if( rc!=SQLITE_OK ) goto pager_acquire_err;
45258       }
45259       assert( pPg->pPager==pPager );
45260       pPager->aStat[PAGER_STAT_MISS]++;
45261       rc = readDbPage(pPg, iFrame);
45262       if( rc!=SQLITE_OK ){
45263         goto pager_acquire_err;
45264       }
45265     }
45266     pager_set_pagehash(pPg);
45267   }
45268 
45269   return SQLITE_OK;
45270 
45271 pager_acquire_err:
45272   assert( rc!=SQLITE_OK );
45273   if( pPg ){
45274     sqlite3PcacheDrop(pPg);
45275   }
45276   pagerUnlockIfUnused(pPager);
45277 
45278   *ppPage = 0;
45279   return rc;
45280 }
45281 
45282 /*
45283 ** Acquire a page if it is already in the in-memory cache.  Do
45284 ** not read the page from disk.  Return a pointer to the page,
45285 ** or 0 if the page is not in cache.
45286 **
45287 ** See also sqlite3PagerGet().  The difference between this routine
45288 ** and sqlite3PagerGet() is that _get() will go to the disk and read
45289 ** in the page if the page is not already in cache.  This routine
45290 ** returns NULL if the page is not in cache or if a disk I/O error
45291 ** has ever happened.
45292 */
45293 SQLITE_PRIVATE DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno){
45294   PgHdr *pPg = 0;
45295   assert( pPager!=0 );
45296   assert( pgno!=0 );
45297   assert( pPager->pPCache!=0 );
45298   assert( pPager->eState>=PAGER_READER && pPager->eState!=PAGER_ERROR );
45299   sqlite3PcacheFetch(pPager->pPCache, pgno, 0, &pPg);
45300   return pPg;
45301 }
45302 
45303 /*
45304 ** Release a page reference.
45305 **
45306 ** If the number of references to the page drop to zero, then the
45307 ** page is added to the LRU list.  When all references to all pages
45308 ** are released, a rollback occurs and the lock on the database is
45309 ** removed.
45310 */
45311 SQLITE_PRIVATE void sqlite3PagerUnrefNotNull(DbPage *pPg){
45312   Pager *pPager;
45313   assert( pPg!=0 );
45314   pPager = pPg->pPager;
45315   if( pPg->flags & PGHDR_MMAP ){
45316     pagerReleaseMapPage(pPg);
45317   }else{
45318     sqlite3PcacheRelease(pPg);
45319   }
45320   pagerUnlockIfUnused(pPager);
45321 }
45322 SQLITE_PRIVATE void sqlite3PagerUnref(DbPage *pPg){
45323   if( pPg ) sqlite3PagerUnrefNotNull(pPg);
45324 }
45325 
45326 /*
45327 ** This function is called at the start of every write transaction.
45328 ** There must already be a RESERVED or EXCLUSIVE lock on the database
45329 ** file when this routine is called.
45330 **
45331 ** Open the journal file for pager pPager and write a journal header
45332 ** to the start of it. If there are active savepoints, open the sub-journal
45333 ** as well. This function is only used when the journal file is being
45334 ** opened to write a rollback log for a transaction. It is not used
45335 ** when opening a hot journal file to roll it back.
45336 **
45337 ** If the journal file is already open (as it may be in exclusive mode),
45338 ** then this function just writes a journal header to the start of the
45339 ** already open file.
45340 **
45341 ** Whether or not the journal file is opened by this function, the
45342 ** Pager.pInJournal bitvec structure is allocated.
45343 **
45344 ** Return SQLITE_OK if everything is successful. Otherwise, return
45345 ** SQLITE_NOMEM if the attempt to allocate Pager.pInJournal fails, or
45346 ** an IO error code if opening or writing the journal file fails.
45347 */
45348 static int pager_open_journal(Pager *pPager){
45349   int rc = SQLITE_OK;                        /* Return code */
45350   sqlite3_vfs * const pVfs = pPager->pVfs;   /* Local cache of vfs pointer */
45351 
45352   assert( pPager->eState==PAGER_WRITER_LOCKED );
45353   assert( assert_pager_state(pPager) );
45354   assert( pPager->pInJournal==0 );
45355 
45356   /* If already in the error state, this function is a no-op.  But on
45357   ** the other hand, this routine is never called if we are already in
45358   ** an error state. */
45359   if( NEVER(pPager->errCode) ) return pPager->errCode;
45360 
45361   if( !pagerUseWal(pPager) && pPager->journalMode!=PAGER_JOURNALMODE_OFF ){
45362     pPager->pInJournal = sqlite3BitvecCreate(pPager->dbSize);
45363     if( pPager->pInJournal==0 ){
45364       return SQLITE_NOMEM;
45365     }
45366 
45367     /* Open the journal file if it is not already open. */
45368     if( !isOpen(pPager->jfd) ){
45369       if( pPager->journalMode==PAGER_JOURNALMODE_MEMORY ){
45370         sqlite3MemJournalOpen(pPager->jfd);
45371       }else{
45372         const int flags =                   /* VFS flags to open journal file */
45373           SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
45374           (pPager->tempFile ?
45375             (SQLITE_OPEN_DELETEONCLOSE|SQLITE_OPEN_TEMP_JOURNAL):
45376             (SQLITE_OPEN_MAIN_JOURNAL)
45377           );
45378 
45379         /* Verify that the database still has the same name as it did when
45380         ** it was originally opened. */
45381         rc = databaseIsUnmoved(pPager);
45382         if( rc==SQLITE_OK ){
45383 #ifdef SQLITE_ENABLE_ATOMIC_WRITE
45384           rc = sqlite3JournalOpen(
45385               pVfs, pPager->zJournal, pPager->jfd, flags, jrnlBufferSize(pPager)
45386           );
45387 #else
45388           rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, flags, 0);
45389 #endif
45390         }
45391       }
45392       assert( rc!=SQLITE_OK || isOpen(pPager->jfd) );
45393     }
45394 
45395 
45396     /* Write the first journal header to the journal file and open
45397     ** the sub-journal if necessary.
45398     */
45399     if( rc==SQLITE_OK ){
45400       /* TODO: Check if all of these are really required. */
45401       pPager->nRec = 0;
45402       pPager->journalOff = 0;
45403       pPager->setMaster = 0;
45404       pPager->journalHdr = 0;
45405       rc = writeJournalHdr(pPager);
45406     }
45407   }
45408 
45409   if( rc!=SQLITE_OK ){
45410     sqlite3BitvecDestroy(pPager->pInJournal);
45411     pPager->pInJournal = 0;
45412   }else{
45413     assert( pPager->eState==PAGER_WRITER_LOCKED );
45414     pPager->eState = PAGER_WRITER_CACHEMOD;
45415   }
45416 
45417   return rc;
45418 }
45419 
45420 /*
45421 ** Begin a write-transaction on the specified pager object. If a
45422 ** write-transaction has already been opened, this function is a no-op.
45423 **
45424 ** If the exFlag argument is false, then acquire at least a RESERVED
45425 ** lock on the database file. If exFlag is true, then acquire at least
45426 ** an EXCLUSIVE lock. If such a lock is already held, no locking
45427 ** functions need be called.
45428 **
45429 ** If the subjInMemory argument is non-zero, then any sub-journal opened
45430 ** within this transaction will be opened as an in-memory file. This
45431 ** has no effect if the sub-journal is already opened (as it may be when
45432 ** running in exclusive mode) or if the transaction does not require a
45433 ** sub-journal. If the subjInMemory argument is zero, then any required
45434 ** sub-journal is implemented in-memory if pPager is an in-memory database,
45435 ** or using a temporary file otherwise.
45436 */
45437 SQLITE_PRIVATE int sqlite3PagerBegin(Pager *pPager, int exFlag, int subjInMemory){
45438   int rc = SQLITE_OK;
45439 
45440   if( pPager->errCode ) return pPager->errCode;
45441   assert( pPager->eState>=PAGER_READER && pPager->eState<PAGER_ERROR );
45442   pPager->subjInMemory = (u8)subjInMemory;
45443 
45444   if( ALWAYS(pPager->eState==PAGER_READER) ){
45445     assert( pPager->pInJournal==0 );
45446 
45447     if( pagerUseWal(pPager) ){
45448       /* If the pager is configured to use locking_mode=exclusive, and an
45449       ** exclusive lock on the database is not already held, obtain it now.
45450       */
45451       if( pPager->exclusiveMode && sqlite3WalExclusiveMode(pPager->pWal, -1) ){
45452         rc = pagerLockDb(pPager, EXCLUSIVE_LOCK);
45453         if( rc!=SQLITE_OK ){
45454           return rc;
45455         }
45456         sqlite3WalExclusiveMode(pPager->pWal, 1);
45457       }
45458 
45459       /* Grab the write lock on the log file. If successful, upgrade to
45460       ** PAGER_RESERVED state. Otherwise, return an error code to the caller.
45461       ** The busy-handler is not invoked if another connection already
45462       ** holds the write-lock. If possible, the upper layer will call it.
45463       */
45464       rc = sqlite3WalBeginWriteTransaction(pPager->pWal);
45465     }else{
45466       /* Obtain a RESERVED lock on the database file. If the exFlag parameter
45467       ** is true, then immediately upgrade this to an EXCLUSIVE lock. The
45468       ** busy-handler callback can be used when upgrading to the EXCLUSIVE
45469       ** lock, but not when obtaining the RESERVED lock.
45470       */
45471       rc = pagerLockDb(pPager, RESERVED_LOCK);
45472       if( rc==SQLITE_OK && exFlag ){
45473         rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK);
45474       }
45475     }
45476 
45477     if( rc==SQLITE_OK ){
45478       /* Change to WRITER_LOCKED state.
45479       **
45480       ** WAL mode sets Pager.eState to PAGER_WRITER_LOCKED or CACHEMOD
45481       ** when it has an open transaction, but never to DBMOD or FINISHED.
45482       ** This is because in those states the code to roll back savepoint
45483       ** transactions may copy data from the sub-journal into the database
45484       ** file as well as into the page cache. Which would be incorrect in
45485       ** WAL mode.
45486       */
45487       pPager->eState = PAGER_WRITER_LOCKED;
45488       pPager->dbHintSize = pPager->dbSize;
45489       pPager->dbFileSize = pPager->dbSize;
45490       pPager->dbOrigSize = pPager->dbSize;
45491       pPager->journalOff = 0;
45492     }
45493 
45494     assert( rc==SQLITE_OK || pPager->eState==PAGER_READER );
45495     assert( rc!=SQLITE_OK || pPager->eState==PAGER_WRITER_LOCKED );
45496     assert( assert_pager_state(pPager) );
45497   }
45498 
45499   PAGERTRACE(("TRANSACTION %d\n", PAGERID(pPager)));
45500   return rc;
45501 }
45502 
45503 /*
45504 ** Mark a single data page as writeable. The page is written into the
45505 ** main journal or sub-journal as required. If the page is written into
45506 ** one of the journals, the corresponding bit is set in the
45507 ** Pager.pInJournal bitvec and the PagerSavepoint.pInSavepoint bitvecs
45508 ** of any open savepoints as appropriate.
45509 */
45510 static int pager_write(PgHdr *pPg){
45511   Pager *pPager = pPg->pPager;
45512   int rc = SQLITE_OK;
45513   int inJournal;
45514 
45515   /* This routine is not called unless a write-transaction has already
45516   ** been started. The journal file may or may not be open at this point.
45517   ** It is never called in the ERROR state.
45518   */
45519   assert( pPager->eState==PAGER_WRITER_LOCKED
45520        || pPager->eState==PAGER_WRITER_CACHEMOD
45521        || pPager->eState==PAGER_WRITER_DBMOD
45522   );
45523   assert( assert_pager_state(pPager) );
45524   assert( pPager->errCode==0 );
45525   assert( pPager->readOnly==0 );
45526 
45527   CHECK_PAGE(pPg);
45528 
45529   /* The journal file needs to be opened. Higher level routines have already
45530   ** obtained the necessary locks to begin the write-transaction, but the
45531   ** rollback journal might not yet be open. Open it now if this is the case.
45532   **
45533   ** This is done before calling sqlite3PcacheMakeDirty() on the page.
45534   ** Otherwise, if it were done after calling sqlite3PcacheMakeDirty(), then
45535   ** an error might occur and the pager would end up in WRITER_LOCKED state
45536   ** with pages marked as dirty in the cache.
45537   */
45538   if( pPager->eState==PAGER_WRITER_LOCKED ){
45539     rc = pager_open_journal(pPager);
45540     if( rc!=SQLITE_OK ) return rc;
45541   }
45542   assert( pPager->eState>=PAGER_WRITER_CACHEMOD );
45543   assert( assert_pager_state(pPager) );
45544 
45545   /* Mark the page as dirty.  If the page has already been written
45546   ** to the journal then we can return right away.
45547   */
45548   sqlite3PcacheMakeDirty(pPg);
45549   inJournal = pageInJournal(pPager, pPg);
45550   if( inJournal && (pPager->nSavepoint==0 || !subjRequiresPage(pPg)) ){
45551     assert( !pagerUseWal(pPager) );
45552   }else{
45553 
45554     /* The transaction journal now exists and we have a RESERVED or an
45555     ** EXCLUSIVE lock on the main database file.  Write the current page to
45556     ** the transaction journal if it is not there already.
45557     */
45558     if( !inJournal && !pagerUseWal(pPager) ){
45559       assert( pagerUseWal(pPager)==0 );
45560       if( pPg->pgno<=pPager->dbOrigSize && isOpen(pPager->jfd) ){
45561         u32 cksum;
45562         char *pData2;
45563         i64 iOff = pPager->journalOff;
45564 
45565         /* We should never write to the journal file the page that
45566         ** contains the database locks.  The following assert verifies
45567         ** that we do not. */
45568         assert( pPg->pgno!=PAGER_MJ_PGNO(pPager) );
45569 
45570         assert( pPager->journalHdr<=pPager->journalOff );
45571         CODEC2(pPager, pPg->pData, pPg->pgno, 7, return SQLITE_NOMEM, pData2);
45572         cksum = pager_cksum(pPager, (u8*)pData2);
45573 
45574         /* Even if an IO or diskfull error occurs while journalling the
45575         ** page in the block above, set the need-sync flag for the page.
45576         ** Otherwise, when the transaction is rolled back, the logic in
45577         ** playback_one_page() will think that the page needs to be restored
45578         ** in the database file. And if an IO error occurs while doing so,
45579         ** then corruption may follow.
45580         */
45581         pPg->flags |= PGHDR_NEED_SYNC;
45582 
45583         rc = write32bits(pPager->jfd, iOff, pPg->pgno);
45584         if( rc!=SQLITE_OK ) return rc;
45585         rc = sqlite3OsWrite(pPager->jfd, pData2, pPager->pageSize, iOff+4);
45586         if( rc!=SQLITE_OK ) return rc;
45587         rc = write32bits(pPager->jfd, iOff+pPager->pageSize+4, cksum);
45588         if( rc!=SQLITE_OK ) return rc;
45589 
45590         IOTRACE(("JOUT %p %d %lld %d\n", pPager, pPg->pgno,
45591                  pPager->journalOff, pPager->pageSize));
45592         PAGER_INCR(sqlite3_pager_writej_count);
45593         PAGERTRACE(("JOURNAL %d page %d needSync=%d hash(%08x)\n",
45594              PAGERID(pPager), pPg->pgno,
45595              ((pPg->flags&PGHDR_NEED_SYNC)?1:0), pager_pagehash(pPg)));
45596 
45597         pPager->journalOff += 8 + pPager->pageSize;
45598         pPager->nRec++;
45599         assert( pPager->pInJournal!=0 );
45600         rc = sqlite3BitvecSet(pPager->pInJournal, pPg->pgno);
45601         testcase( rc==SQLITE_NOMEM );
45602         assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
45603         rc |= addToSavepointBitvecs(pPager, pPg->pgno);
45604         if( rc!=SQLITE_OK ){
45605           assert( rc==SQLITE_NOMEM );
45606           return rc;
45607         }
45608       }else{
45609         if( pPager->eState!=PAGER_WRITER_DBMOD ){
45610           pPg->flags |= PGHDR_NEED_SYNC;
45611         }
45612         PAGERTRACE(("APPEND %d page %d needSync=%d\n",
45613                 PAGERID(pPager), pPg->pgno,
45614                ((pPg->flags&PGHDR_NEED_SYNC)?1:0)));
45615       }
45616     }
45617 
45618     /* If the statement journal is open and the page is not in it,
45619     ** then write the current page to the statement journal.  Note that
45620     ** the statement journal format differs from the standard journal format
45621     ** in that it omits the checksums and the header.
45622     */
45623     if( pPager->nSavepoint>0 && subjRequiresPage(pPg) ){
45624       rc = subjournalPage(pPg);
45625     }
45626   }
45627 
45628   /* Update the database size and return.
45629   */
45630   if( pPager->dbSize<pPg->pgno ){
45631     pPager->dbSize = pPg->pgno;
45632   }
45633   return rc;
45634 }
45635 
45636 /*
45637 ** Mark a data page as writeable. This routine must be called before
45638 ** making changes to a page. The caller must check the return value
45639 ** of this function and be careful not to change any page data unless
45640 ** this routine returns SQLITE_OK.
45641 **
45642 ** The difference between this function and pager_write() is that this
45643 ** function also deals with the special case where 2 or more pages
45644 ** fit on a single disk sector. In this case all co-resident pages
45645 ** must have been written to the journal file before returning.
45646 **
45647 ** If an error occurs, SQLITE_NOMEM or an IO error code is returned
45648 ** as appropriate. Otherwise, SQLITE_OK.
45649 */
45650 SQLITE_PRIVATE int sqlite3PagerWrite(DbPage *pDbPage){
45651   int rc = SQLITE_OK;
45652 
45653   PgHdr *pPg = pDbPage;
45654   Pager *pPager = pPg->pPager;
45655 
45656   assert( (pPg->flags & PGHDR_MMAP)==0 );
45657   assert( pPager->eState>=PAGER_WRITER_LOCKED );
45658   assert( pPager->eState!=PAGER_ERROR );
45659   assert( assert_pager_state(pPager) );
45660 
45661   if( pPager->sectorSize > (u32)pPager->pageSize ){
45662     Pgno nPageCount;          /* Total number of pages in database file */
45663     Pgno pg1;                 /* First page of the sector pPg is located on. */
45664     int nPage = 0;            /* Number of pages starting at pg1 to journal */
45665     int ii;                   /* Loop counter */
45666     int needSync = 0;         /* True if any page has PGHDR_NEED_SYNC */
45667     Pgno nPagePerSector = (pPager->sectorSize/pPager->pageSize);
45668 
45669     /* Set the doNotSpill NOSYNC bit to 1. This is because we cannot allow
45670     ** a journal header to be written between the pages journaled by
45671     ** this function.
45672     */
45673     assert( !MEMDB );
45674     assert( (pPager->doNotSpill & SPILLFLAG_NOSYNC)==0 );
45675     pPager->doNotSpill |= SPILLFLAG_NOSYNC;
45676 
45677     /* This trick assumes that both the page-size and sector-size are
45678     ** an integer power of 2. It sets variable pg1 to the identifier
45679     ** of the first page of the sector pPg is located on.
45680     */
45681     pg1 = ((pPg->pgno-1) & ~(nPagePerSector-1)) + 1;
45682 
45683     nPageCount = pPager->dbSize;
45684     if( pPg->pgno>nPageCount ){
45685       nPage = (pPg->pgno - pg1)+1;
45686     }else if( (pg1+nPagePerSector-1)>nPageCount ){
45687       nPage = nPageCount+1-pg1;
45688     }else{
45689       nPage = nPagePerSector;
45690     }
45691     assert(nPage>0);
45692     assert(pg1<=pPg->pgno);
45693     assert((pg1+nPage)>pPg->pgno);
45694 
45695     for(ii=0; ii<nPage && rc==SQLITE_OK; ii++){
45696       Pgno pg = pg1+ii;
45697       PgHdr *pPage;
45698       if( pg==pPg->pgno || !sqlite3BitvecTest(pPager->pInJournal, pg) ){
45699         if( pg!=PAGER_MJ_PGNO(pPager) ){
45700           rc = sqlite3PagerGet(pPager, pg, &pPage);
45701           if( rc==SQLITE_OK ){
45702             rc = pager_write(pPage);
45703             if( pPage->flags&PGHDR_NEED_SYNC ){
45704               needSync = 1;
45705             }
45706             sqlite3PagerUnrefNotNull(pPage);
45707           }
45708         }
45709       }else if( (pPage = pager_lookup(pPager, pg))!=0 ){
45710         if( pPage->flags&PGHDR_NEED_SYNC ){
45711           needSync = 1;
45712         }
45713         sqlite3PagerUnrefNotNull(pPage);
45714       }
45715     }
45716 
45717     /* If the PGHDR_NEED_SYNC flag is set for any of the nPage pages
45718     ** starting at pg1, then it needs to be set for all of them. Because
45719     ** writing to any of these nPage pages may damage the others, the
45720     ** journal file must contain sync()ed copies of all of them
45721     ** before any of them can be written out to the database file.
45722     */
45723     if( rc==SQLITE_OK && needSync ){
45724       assert( !MEMDB );
45725       for(ii=0; ii<nPage; ii++){
45726         PgHdr *pPage = pager_lookup(pPager, pg1+ii);
45727         if( pPage ){
45728           pPage->flags |= PGHDR_NEED_SYNC;
45729           sqlite3PagerUnrefNotNull(pPage);
45730         }
45731       }
45732     }
45733 
45734     assert( (pPager->doNotSpill & SPILLFLAG_NOSYNC)!=0 );
45735     pPager->doNotSpill &= ~SPILLFLAG_NOSYNC;
45736   }else{
45737     rc = pager_write(pDbPage);
45738   }
45739   return rc;
45740 }
45741 
45742 /*
45743 ** Return TRUE if the page given in the argument was previously passed
45744 ** to sqlite3PagerWrite().  In other words, return TRUE if it is ok
45745 ** to change the content of the page.
45746 */
45747 #ifndef NDEBUG
45748 SQLITE_PRIVATE int sqlite3PagerIswriteable(DbPage *pPg){
45749   return pPg->flags&PGHDR_DIRTY;
45750 }
45751 #endif
45752 
45753 /*
45754 ** A call to this routine tells the pager that it is not necessary to
45755 ** write the information on page pPg back to the disk, even though
45756 ** that page might be marked as dirty.  This happens, for example, when
45757 ** the page has been added as a leaf of the freelist and so its
45758 ** content no longer matters.
45759 **
45760 ** The overlying software layer calls this routine when all of the data
45761 ** on the given page is unused. The pager marks the page as clean so
45762 ** that it does not get written to disk.
45763 **
45764 ** Tests show that this optimization can quadruple the speed of large
45765 ** DELETE operations.
45766 */
45767 SQLITE_PRIVATE void sqlite3PagerDontWrite(PgHdr *pPg){
45768   Pager *pPager = pPg->pPager;
45769   if( (pPg->flags&PGHDR_DIRTY) && pPager->nSavepoint==0 ){
45770     PAGERTRACE(("DONT_WRITE page %d of %d\n", pPg->pgno, PAGERID(pPager)));
45771     IOTRACE(("CLEAN %p %d\n", pPager, pPg->pgno))
45772     pPg->flags |= PGHDR_DONT_WRITE;
45773     pager_set_pagehash(pPg);
45774   }
45775 }
45776 
45777 /*
45778 ** This routine is called to increment the value of the database file
45779 ** change-counter, stored as a 4-byte big-endian integer starting at
45780 ** byte offset 24 of the pager file.  The secondary change counter at
45781 ** 92 is also updated, as is the SQLite version number at offset 96.
45782 **
45783 ** But this only happens if the pPager->changeCountDone flag is false.
45784 ** To avoid excess churning of page 1, the update only happens once.
45785 ** See also the pager_write_changecounter() routine that does an
45786 ** unconditional update of the change counters.
45787 **
45788 ** If the isDirectMode flag is zero, then this is done by calling
45789 ** sqlite3PagerWrite() on page 1, then modifying the contents of the
45790 ** page data. In this case the file will be updated when the current
45791 ** transaction is committed.
45792 **
45793 ** The isDirectMode flag may only be non-zero if the library was compiled
45794 ** with the SQLITE_ENABLE_ATOMIC_WRITE macro defined. In this case,
45795 ** if isDirect is non-zero, then the database file is updated directly
45796 ** by writing an updated version of page 1 using a call to the
45797 ** sqlite3OsWrite() function.
45798 */
45799 static int pager_incr_changecounter(Pager *pPager, int isDirectMode){
45800   int rc = SQLITE_OK;
45801 
45802   assert( pPager->eState==PAGER_WRITER_CACHEMOD
45803        || pPager->eState==PAGER_WRITER_DBMOD
45804   );
45805   assert( assert_pager_state(pPager) );
45806 
45807   /* Declare and initialize constant integer 'isDirect'. If the
45808   ** atomic-write optimization is enabled in this build, then isDirect
45809   ** is initialized to the value passed as the isDirectMode parameter
45810   ** to this function. Otherwise, it is always set to zero.
45811   **
45812   ** The idea is that if the atomic-write optimization is not
45813   ** enabled at compile time, the compiler can omit the tests of
45814   ** 'isDirect' below, as well as the block enclosed in the
45815   ** "if( isDirect )" condition.
45816   */
45817 #ifndef SQLITE_ENABLE_ATOMIC_WRITE
45818 # define DIRECT_MODE 0
45819   assert( isDirectMode==0 );
45820   UNUSED_PARAMETER(isDirectMode);
45821 #else
45822 # define DIRECT_MODE isDirectMode
45823 #endif
45824 
45825   if( !pPager->changeCountDone && ALWAYS(pPager->dbSize>0) ){
45826     PgHdr *pPgHdr;                /* Reference to page 1 */
45827 
45828     assert( !pPager->tempFile && isOpen(pPager->fd) );
45829 
45830     /* Open page 1 of the file for writing. */
45831     rc = sqlite3PagerGet(pPager, 1, &pPgHdr);
45832     assert( pPgHdr==0 || rc==SQLITE_OK );
45833 
45834     /* If page one was fetched successfully, and this function is not
45835     ** operating in direct-mode, make page 1 writable.  When not in
45836     ** direct mode, page 1 is always held in cache and hence the PagerGet()
45837     ** above is always successful - hence the ALWAYS on rc==SQLITE_OK.
45838     */
45839     if( !DIRECT_MODE && ALWAYS(rc==SQLITE_OK) ){
45840       rc = sqlite3PagerWrite(pPgHdr);
45841     }
45842 
45843     if( rc==SQLITE_OK ){
45844       /* Actually do the update of the change counter */
45845       pager_write_changecounter(pPgHdr);
45846 
45847       /* If running in direct mode, write the contents of page 1 to the file. */
45848       if( DIRECT_MODE ){
45849         const void *zBuf;
45850         assert( pPager->dbFileSize>0 );
45851         CODEC2(pPager, pPgHdr->pData, 1, 6, rc=SQLITE_NOMEM, zBuf);
45852         if( rc==SQLITE_OK ){
45853           rc = sqlite3OsWrite(pPager->fd, zBuf, pPager->pageSize, 0);
45854           pPager->aStat[PAGER_STAT_WRITE]++;
45855         }
45856         if( rc==SQLITE_OK ){
45857           /* Update the pager's copy of the change-counter. Otherwise, the
45858           ** next time a read transaction is opened the cache will be
45859           ** flushed (as the change-counter values will not match).  */
45860           const void *pCopy = (const void *)&((const char *)zBuf)[24];
45861           memcpy(&pPager->dbFileVers, pCopy, sizeof(pPager->dbFileVers));
45862           pPager->changeCountDone = 1;
45863         }
45864       }else{
45865         pPager->changeCountDone = 1;
45866       }
45867     }
45868 
45869     /* Release the page reference. */
45870     sqlite3PagerUnref(pPgHdr);
45871   }
45872   return rc;
45873 }
45874 
45875 /*
45876 ** Sync the database file to disk. This is a no-op for in-memory databases
45877 ** or pages with the Pager.noSync flag set.
45878 **
45879 ** If successful, or if called on a pager for which it is a no-op, this
45880 ** function returns SQLITE_OK. Otherwise, an IO error code is returned.
45881 */
45882 SQLITE_PRIVATE int sqlite3PagerSync(Pager *pPager, const char *zMaster){
45883   int rc = SQLITE_OK;
45884 
45885   if( isOpen(pPager->fd) ){
45886     void *pArg = (void*)zMaster;
45887     rc = sqlite3OsFileControl(pPager->fd, SQLITE_FCNTL_SYNC, pArg);
45888     if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK;
45889   }
45890   if( rc==SQLITE_OK && !pPager->noSync ){
45891     assert( !MEMDB );
45892     rc = sqlite3OsSync(pPager->fd, pPager->syncFlags);
45893   }
45894   return rc;
45895 }
45896 
45897 /*
45898 ** This function may only be called while a write-transaction is active in
45899 ** rollback. If the connection is in WAL mode, this call is a no-op.
45900 ** Otherwise, if the connection does not already have an EXCLUSIVE lock on
45901 ** the database file, an attempt is made to obtain one.
45902 **
45903 ** If the EXCLUSIVE lock is already held or the attempt to obtain it is
45904 ** successful, or the connection is in WAL mode, SQLITE_OK is returned.
45905 ** Otherwise, either SQLITE_BUSY or an SQLITE_IOERR_XXX error code is
45906 ** returned.
45907 */
45908 SQLITE_PRIVATE int sqlite3PagerExclusiveLock(Pager *pPager){
45909   int rc = SQLITE_OK;
45910   assert( pPager->eState==PAGER_WRITER_CACHEMOD
45911        || pPager->eState==PAGER_WRITER_DBMOD
45912        || pPager->eState==PAGER_WRITER_LOCKED
45913   );
45914   assert( assert_pager_state(pPager) );
45915   if( 0==pagerUseWal(pPager) ){
45916     rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK);
45917   }
45918   return rc;
45919 }
45920 
45921 /*
45922 ** Sync the database file for the pager pPager. zMaster points to the name
45923 ** of a master journal file that should be written into the individual
45924 ** journal file. zMaster may be NULL, which is interpreted as no master
45925 ** journal (a single database transaction).
45926 **
45927 ** This routine ensures that:
45928 **
45929 **   * The database file change-counter is updated,
45930 **   * the journal is synced (unless the atomic-write optimization is used),
45931 **   * all dirty pages are written to the database file,
45932 **   * the database file is truncated (if required), and
45933 **   * the database file synced.
45934 **
45935 ** The only thing that remains to commit the transaction is to finalize
45936 ** (delete, truncate or zero the first part of) the journal file (or
45937 ** delete the master journal file if specified).
45938 **
45939 ** Note that if zMaster==NULL, this does not overwrite a previous value
45940 ** passed to an sqlite3PagerCommitPhaseOne() call.
45941 **
45942 ** If the final parameter - noSync - is true, then the database file itself
45943 ** is not synced. The caller must call sqlite3PagerSync() directly to
45944 ** sync the database file before calling CommitPhaseTwo() to delete the
45945 ** journal file in this case.
45946 */
45947 SQLITE_PRIVATE int sqlite3PagerCommitPhaseOne(
45948   Pager *pPager,                  /* Pager object */
45949   const char *zMaster,            /* If not NULL, the master journal name */
45950   int noSync                      /* True to omit the xSync on the db file */
45951 ){
45952   int rc = SQLITE_OK;             /* Return code */
45953 
45954   assert( pPager->eState==PAGER_WRITER_LOCKED
45955        || pPager->eState==PAGER_WRITER_CACHEMOD
45956        || pPager->eState==PAGER_WRITER_DBMOD
45957        || pPager->eState==PAGER_ERROR
45958   );
45959   assert( assert_pager_state(pPager) );
45960 
45961   /* If a prior error occurred, report that error again. */
45962   if( NEVER(pPager->errCode) ) return pPager->errCode;
45963 
45964   PAGERTRACE(("DATABASE SYNC: File=%s zMaster=%s nSize=%d\n",
45965       pPager->zFilename, zMaster, pPager->dbSize));
45966 
45967   /* If no database changes have been made, return early. */
45968   if( pPager->eState<PAGER_WRITER_CACHEMOD ) return SQLITE_OK;
45969 
45970   if( MEMDB ){
45971     /* If this is an in-memory db, or no pages have been written to, or this
45972     ** function has already been called, it is mostly a no-op.  However, any
45973     ** backup in progress needs to be restarted.
45974     */
45975     sqlite3BackupRestart(pPager->pBackup);
45976   }else{
45977     if( pagerUseWal(pPager) ){
45978       PgHdr *pList = sqlite3PcacheDirtyList(pPager->pPCache);
45979       PgHdr *pPageOne = 0;
45980       if( pList==0 ){
45981         /* Must have at least one page for the WAL commit flag.
45982         ** Ticket [2d1a5c67dfc2363e44f29d9bbd57f] 2011-05-18 */
45983         rc = sqlite3PagerGet(pPager, 1, &pPageOne);
45984         pList = pPageOne;
45985         pList->pDirty = 0;
45986       }
45987       assert( rc==SQLITE_OK );
45988       if( ALWAYS(pList) ){
45989         rc = pagerWalFrames(pPager, pList, pPager->dbSize, 1);
45990       }
45991       sqlite3PagerUnref(pPageOne);
45992       if( rc==SQLITE_OK ){
45993         sqlite3PcacheCleanAll(pPager->pPCache);
45994       }
45995     }else{
45996       /* The following block updates the change-counter. Exactly how it
45997       ** does this depends on whether or not the atomic-update optimization
45998       ** was enabled at compile time, and if this transaction meets the
45999       ** runtime criteria to use the operation:
46000       **
46001       **    * The file-system supports the atomic-write property for
46002       **      blocks of size page-size, and
46003       **    * This commit is not part of a multi-file transaction, and
46004       **    * Exactly one page has been modified and store in the journal file.
46005       **
46006       ** If the optimization was not enabled at compile time, then the
46007       ** pager_incr_changecounter() function is called to update the change
46008       ** counter in 'indirect-mode'. If the optimization is compiled in but
46009       ** is not applicable to this transaction, call sqlite3JournalCreate()
46010       ** to make sure the journal file has actually been created, then call
46011       ** pager_incr_changecounter() to update the change-counter in indirect
46012       ** mode.
46013       **
46014       ** Otherwise, if the optimization is both enabled and applicable,
46015       ** then call pager_incr_changecounter() to update the change-counter
46016       ** in 'direct' mode. In this case the journal file will never be
46017       ** created for this transaction.
46018       */
46019   #ifdef SQLITE_ENABLE_ATOMIC_WRITE
46020       PgHdr *pPg;
46021       assert( isOpen(pPager->jfd)
46022            || pPager->journalMode==PAGER_JOURNALMODE_OFF
46023            || pPager->journalMode==PAGER_JOURNALMODE_WAL
46024       );
46025       if( !zMaster && isOpen(pPager->jfd)
46026        && pPager->journalOff==jrnlBufferSize(pPager)
46027        && pPager->dbSize>=pPager->dbOrigSize
46028        && (0==(pPg = sqlite3PcacheDirtyList(pPager->pPCache)) || 0==pPg->pDirty)
46029       ){
46030         /* Update the db file change counter via the direct-write method. The
46031         ** following call will modify the in-memory representation of page 1
46032         ** to include the updated change counter and then write page 1
46033         ** directly to the database file. Because of the atomic-write
46034         ** property of the host file-system, this is safe.
46035         */
46036         rc = pager_incr_changecounter(pPager, 1);
46037       }else{
46038         rc = sqlite3JournalCreate(pPager->jfd);
46039         if( rc==SQLITE_OK ){
46040           rc = pager_incr_changecounter(pPager, 0);
46041         }
46042       }
46043   #else
46044       rc = pager_incr_changecounter(pPager, 0);
46045   #endif
46046       if( rc!=SQLITE_OK ) goto commit_phase_one_exit;
46047 
46048       /* Write the master journal name into the journal file. If a master
46049       ** journal file name has already been written to the journal file,
46050       ** or if zMaster is NULL (no master journal), then this call is a no-op.
46051       */
46052       rc = writeMasterJournal(pPager, zMaster);
46053       if( rc!=SQLITE_OK ) goto commit_phase_one_exit;
46054 
46055       /* Sync the journal file and write all dirty pages to the database.
46056       ** If the atomic-update optimization is being used, this sync will not
46057       ** create the journal file or perform any real IO.
46058       **
46059       ** Because the change-counter page was just modified, unless the
46060       ** atomic-update optimization is used it is almost certain that the
46061       ** journal requires a sync here. However, in locking_mode=exclusive
46062       ** on a system under memory pressure it is just possible that this is
46063       ** not the case. In this case it is likely enough that the redundant
46064       ** xSync() call will be changed to a no-op by the OS anyhow.
46065       */
46066       rc = syncJournal(pPager, 0);
46067       if( rc!=SQLITE_OK ) goto commit_phase_one_exit;
46068 
46069       rc = pager_write_pagelist(pPager,sqlite3PcacheDirtyList(pPager->pPCache));
46070       if( rc!=SQLITE_OK ){
46071         assert( rc!=SQLITE_IOERR_BLOCKED );
46072         goto commit_phase_one_exit;
46073       }
46074       sqlite3PcacheCleanAll(pPager->pPCache);
46075 
46076       /* If the file on disk is smaller than the database image, use
46077       ** pager_truncate to grow the file here. This can happen if the database
46078       ** image was extended as part of the current transaction and then the
46079       ** last page in the db image moved to the free-list. In this case the
46080       ** last page is never written out to disk, leaving the database file
46081       ** undersized. Fix this now if it is the case.  */
46082       if( pPager->dbSize>pPager->dbFileSize ){
46083         Pgno nNew = pPager->dbSize - (pPager->dbSize==PAGER_MJ_PGNO(pPager));
46084         assert( pPager->eState==PAGER_WRITER_DBMOD );
46085         rc = pager_truncate(pPager, nNew);
46086         if( rc!=SQLITE_OK ) goto commit_phase_one_exit;
46087       }
46088 
46089       /* Finally, sync the database file. */
46090       if( !noSync ){
46091         rc = sqlite3PagerSync(pPager, zMaster);
46092       }
46093       IOTRACE(("DBSYNC %p\n", pPager))
46094     }
46095   }
46096 
46097 commit_phase_one_exit:
46098   if( rc==SQLITE_OK && !pagerUseWal(pPager) ){
46099     pPager->eState = PAGER_WRITER_FINISHED;
46100   }
46101   return rc;
46102 }
46103 
46104 
46105 /*
46106 ** When this function is called, the database file has been completely
46107 ** updated to reflect the changes made by the current transaction and
46108 ** synced to disk. The journal file still exists in the file-system
46109 ** though, and if a failure occurs at this point it will eventually
46110 ** be used as a hot-journal and the current transaction rolled back.
46111 **
46112 ** This function finalizes the journal file, either by deleting,
46113 ** truncating or partially zeroing it, so that it cannot be used
46114 ** for hot-journal rollback. Once this is done the transaction is
46115 ** irrevocably committed.
46116 **
46117 ** If an error occurs, an IO error code is returned and the pager
46118 ** moves into the error state. Otherwise, SQLITE_OK is returned.
46119 */
46120 SQLITE_PRIVATE int sqlite3PagerCommitPhaseTwo(Pager *pPager){
46121   int rc = SQLITE_OK;                  /* Return code */
46122 
46123   /* This routine should not be called if a prior error has occurred.
46124   ** But if (due to a coding error elsewhere in the system) it does get
46125   ** called, just return the same error code without doing anything. */
46126   if( NEVER(pPager->errCode) ) return pPager->errCode;
46127 
46128   assert( pPager->eState==PAGER_WRITER_LOCKED
46129        || pPager->eState==PAGER_WRITER_FINISHED
46130        || (pagerUseWal(pPager) && pPager->eState==PAGER_WRITER_CACHEMOD)
46131   );
46132   assert( assert_pager_state(pPager) );
46133 
46134   /* An optimization. If the database was not actually modified during
46135   ** this transaction, the pager is running in exclusive-mode and is
46136   ** using persistent journals, then this function is a no-op.
46137   **
46138   ** The start of the journal file currently contains a single journal
46139   ** header with the nRec field set to 0. If such a journal is used as
46140   ** a hot-journal during hot-journal rollback, 0 changes will be made
46141   ** to the database file. So there is no need to zero the journal
46142   ** header. Since the pager is in exclusive mode, there is no need
46143   ** to drop any locks either.
46144   */
46145   if( pPager->eState==PAGER_WRITER_LOCKED
46146    && pPager->exclusiveMode
46147    && pPager->journalMode==PAGER_JOURNALMODE_PERSIST
46148   ){
46149     assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) || !pPager->journalOff );
46150     pPager->eState = PAGER_READER;
46151     return SQLITE_OK;
46152   }
46153 
46154   PAGERTRACE(("COMMIT %d\n", PAGERID(pPager)));
46155   rc = pager_end_transaction(pPager, pPager->setMaster, 1);
46156   return pager_error(pPager, rc);
46157 }
46158 
46159 /*
46160 ** If a write transaction is open, then all changes made within the
46161 ** transaction are reverted and the current write-transaction is closed.
46162 ** The pager falls back to PAGER_READER state if successful, or PAGER_ERROR
46163 ** state if an error occurs.
46164 **
46165 ** If the pager is already in PAGER_ERROR state when this function is called,
46166 ** it returns Pager.errCode immediately. No work is performed in this case.
46167 **
46168 ** Otherwise, in rollback mode, this function performs two functions:
46169 **
46170 **   1) It rolls back the journal file, restoring all database file and
46171 **      in-memory cache pages to the state they were in when the transaction
46172 **      was opened, and
46173 **
46174 **   2) It finalizes the journal file, so that it is not used for hot
46175 **      rollback at any point in the future.
46176 **
46177 ** Finalization of the journal file (task 2) is only performed if the
46178 ** rollback is successful.
46179 **
46180 ** In WAL mode, all cache-entries containing data modified within the
46181 ** current transaction are either expelled from the cache or reverted to
46182 ** their pre-transaction state by re-reading data from the database or
46183 ** WAL files. The WAL transaction is then closed.
46184 */
46185 SQLITE_PRIVATE int sqlite3PagerRollback(Pager *pPager){
46186   int rc = SQLITE_OK;                  /* Return code */
46187   PAGERTRACE(("ROLLBACK %d\n", PAGERID(pPager)));
46188 
46189   /* PagerRollback() is a no-op if called in READER or OPEN state. If
46190   ** the pager is already in the ERROR state, the rollback is not
46191   ** attempted here. Instead, the error code is returned to the caller.
46192   */
46193   assert( assert_pager_state(pPager) );
46194   if( pPager->eState==PAGER_ERROR ) return pPager->errCode;
46195   if( pPager->eState<=PAGER_READER ) return SQLITE_OK;
46196 
46197   if( pagerUseWal(pPager) ){
46198     int rc2;
46199     rc = sqlite3PagerSavepoint(pPager, SAVEPOINT_ROLLBACK, -1);
46200     rc2 = pager_end_transaction(pPager, pPager->setMaster, 0);
46201     if( rc==SQLITE_OK ) rc = rc2;
46202   }else if( !isOpen(pPager->jfd) || pPager->eState==PAGER_WRITER_LOCKED ){
46203     int eState = pPager->eState;
46204     rc = pager_end_transaction(pPager, 0, 0);
46205     if( !MEMDB && eState>PAGER_WRITER_LOCKED ){
46206       /* This can happen using journal_mode=off. Move the pager to the error
46207       ** state to indicate that the contents of the cache may not be trusted.
46208       ** Any active readers will get SQLITE_ABORT.
46209       */
46210       pPager->errCode = SQLITE_ABORT;
46211       pPager->eState = PAGER_ERROR;
46212       return rc;
46213     }
46214   }else{
46215     rc = pager_playback(pPager, 0);
46216   }
46217 
46218   assert( pPager->eState==PAGER_READER || rc!=SQLITE_OK );
46219   assert( rc==SQLITE_OK || rc==SQLITE_FULL || rc==SQLITE_CORRUPT
46220           || rc==SQLITE_NOMEM || (rc&0xFF)==SQLITE_IOERR
46221           || rc==SQLITE_CANTOPEN
46222   );
46223 
46224   /* If an error occurs during a ROLLBACK, we can no longer trust the pager
46225   ** cache. So call pager_error() on the way out to make any error persistent.
46226   */
46227   return pager_error(pPager, rc);
46228 }
46229 
46230 /*
46231 ** Return TRUE if the database file is opened read-only.  Return FALSE
46232 ** if the database is (in theory) writable.
46233 */
46234 SQLITE_PRIVATE u8 sqlite3PagerIsreadonly(Pager *pPager){
46235   return pPager->readOnly;
46236 }
46237 
46238 /*
46239 ** Return the number of references to the pager.
46240 */
46241 SQLITE_PRIVATE int sqlite3PagerRefcount(Pager *pPager){
46242   return sqlite3PcacheRefCount(pPager->pPCache);
46243 }
46244 
46245 /*
46246 ** Return the approximate number of bytes of memory currently
46247 ** used by the pager and its associated cache.
46248 */
46249 SQLITE_PRIVATE int sqlite3PagerMemUsed(Pager *pPager){
46250   int perPageSize = pPager->pageSize + pPager->nExtra + sizeof(PgHdr)
46251                                      + 5*sizeof(void*);
46252   return perPageSize*sqlite3PcachePagecount(pPager->pPCache)
46253            + sqlite3MallocSize(pPager)
46254            + pPager->pageSize;
46255 }
46256 
46257 /*
46258 ** Return the number of references to the specified page.
46259 */
46260 SQLITE_PRIVATE int sqlite3PagerPageRefcount(DbPage *pPage){
46261   return sqlite3PcachePageRefcount(pPage);
46262 }
46263 
46264 #ifdef SQLITE_TEST
46265 /*
46266 ** This routine is used for testing and analysis only.
46267 */
46268 SQLITE_PRIVATE int *sqlite3PagerStats(Pager *pPager){
46269   static int a[11];
46270   a[0] = sqlite3PcacheRefCount(pPager->pPCache);
46271   a[1] = sqlite3PcachePagecount(pPager->pPCache);
46272   a[2] = sqlite3PcacheGetCachesize(pPager->pPCache);
46273   a[3] = pPager->eState==PAGER_OPEN ? -1 : (int) pPager->dbSize;
46274   a[4] = pPager->eState;
46275   a[5] = pPager->errCode;
46276   a[6] = pPager->aStat[PAGER_STAT_HIT];
46277   a[7] = pPager->aStat[PAGER_STAT_MISS];
46278   a[8] = 0;  /* Used to be pPager->nOvfl */
46279   a[9] = pPager->nRead;
46280   a[10] = pPager->aStat[PAGER_STAT_WRITE];
46281   return a;
46282 }
46283 #endif
46284 
46285 /*
46286 ** Parameter eStat must be either SQLITE_DBSTATUS_CACHE_HIT or
46287 ** SQLITE_DBSTATUS_CACHE_MISS. Before returning, *pnVal is incremented by the
46288 ** current cache hit or miss count, according to the value of eStat. If the
46289 ** reset parameter is non-zero, the cache hit or miss count is zeroed before
46290 ** returning.
46291 */
46292 SQLITE_PRIVATE void sqlite3PagerCacheStat(Pager *pPager, int eStat, int reset, int *pnVal){
46293 
46294   assert( eStat==SQLITE_DBSTATUS_CACHE_HIT
46295        || eStat==SQLITE_DBSTATUS_CACHE_MISS
46296        || eStat==SQLITE_DBSTATUS_CACHE_WRITE
46297   );
46298 
46299   assert( SQLITE_DBSTATUS_CACHE_HIT+1==SQLITE_DBSTATUS_CACHE_MISS );
46300   assert( SQLITE_DBSTATUS_CACHE_HIT+2==SQLITE_DBSTATUS_CACHE_WRITE );
46301   assert( PAGER_STAT_HIT==0 && PAGER_STAT_MISS==1 && PAGER_STAT_WRITE==2 );
46302 
46303   *pnVal += pPager->aStat[eStat - SQLITE_DBSTATUS_CACHE_HIT];
46304   if( reset ){
46305     pPager->aStat[eStat - SQLITE_DBSTATUS_CACHE_HIT] = 0;
46306   }
46307 }
46308 
46309 /*
46310 ** Return true if this is an in-memory pager.
46311 */
46312 SQLITE_PRIVATE int sqlite3PagerIsMemdb(Pager *pPager){
46313   return MEMDB;
46314 }
46315 
46316 /*
46317 ** Check that there are at least nSavepoint savepoints open. If there are
46318 ** currently less than nSavepoints open, then open one or more savepoints
46319 ** to make up the difference. If the number of savepoints is already
46320 ** equal to nSavepoint, then this function is a no-op.
46321 **
46322 ** If a memory allocation fails, SQLITE_NOMEM is returned. If an error
46323 ** occurs while opening the sub-journal file, then an IO error code is
46324 ** returned. Otherwise, SQLITE_OK.
46325 */
46326 SQLITE_PRIVATE int sqlite3PagerOpenSavepoint(Pager *pPager, int nSavepoint){
46327   int rc = SQLITE_OK;                       /* Return code */
46328   int nCurrent = pPager->nSavepoint;        /* Current number of savepoints */
46329 
46330   assert( pPager->eState>=PAGER_WRITER_LOCKED );
46331   assert( assert_pager_state(pPager) );
46332 
46333   if( nSavepoint>nCurrent && pPager->useJournal ){
46334     int ii;                                 /* Iterator variable */
46335     PagerSavepoint *aNew;                   /* New Pager.aSavepoint array */
46336 
46337     /* Grow the Pager.aSavepoint array using realloc(). Return SQLITE_NOMEM
46338     ** if the allocation fails. Otherwise, zero the new portion in case a
46339     ** malloc failure occurs while populating it in the for(...) loop below.
46340     */
46341     aNew = (PagerSavepoint *)sqlite3Realloc(
46342         pPager->aSavepoint, sizeof(PagerSavepoint)*nSavepoint
46343     );
46344     if( !aNew ){
46345       return SQLITE_NOMEM;
46346     }
46347     memset(&aNew[nCurrent], 0, (nSavepoint-nCurrent) * sizeof(PagerSavepoint));
46348     pPager->aSavepoint = aNew;
46349 
46350     /* Populate the PagerSavepoint structures just allocated. */
46351     for(ii=nCurrent; ii<nSavepoint; ii++){
46352       aNew[ii].nOrig = pPager->dbSize;
46353       if( isOpen(pPager->jfd) && pPager->journalOff>0 ){
46354         aNew[ii].iOffset = pPager->journalOff;
46355       }else{
46356         aNew[ii].iOffset = JOURNAL_HDR_SZ(pPager);
46357       }
46358       aNew[ii].iSubRec = pPager->nSubRec;
46359       aNew[ii].pInSavepoint = sqlite3BitvecCreate(pPager->dbSize);
46360       if( !aNew[ii].pInSavepoint ){
46361         return SQLITE_NOMEM;
46362       }
46363       if( pagerUseWal(pPager) ){
46364         sqlite3WalSavepoint(pPager->pWal, aNew[ii].aWalData);
46365       }
46366       pPager->nSavepoint = ii+1;
46367     }
46368     assert( pPager->nSavepoint==nSavepoint );
46369     assertTruncateConstraint(pPager);
46370   }
46371 
46372   return rc;
46373 }
46374 
46375 /*
46376 ** This function is called to rollback or release (commit) a savepoint.
46377 ** The savepoint to release or rollback need not be the most recently
46378 ** created savepoint.
46379 **
46380 ** Parameter op is always either SAVEPOINT_ROLLBACK or SAVEPOINT_RELEASE.
46381 ** If it is SAVEPOINT_RELEASE, then release and destroy the savepoint with
46382 ** index iSavepoint. If it is SAVEPOINT_ROLLBACK, then rollback all changes
46383 ** that have occurred since the specified savepoint was created.
46384 **
46385 ** The savepoint to rollback or release is identified by parameter
46386 ** iSavepoint. A value of 0 means to operate on the outermost savepoint
46387 ** (the first created). A value of (Pager.nSavepoint-1) means operate
46388 ** on the most recently created savepoint. If iSavepoint is greater than
46389 ** (Pager.nSavepoint-1), then this function is a no-op.
46390 **
46391 ** If a negative value is passed to this function, then the current
46392 ** transaction is rolled back. This is different to calling
46393 ** sqlite3PagerRollback() because this function does not terminate
46394 ** the transaction or unlock the database, it just restores the
46395 ** contents of the database to its original state.
46396 **
46397 ** In any case, all savepoints with an index greater than iSavepoint
46398 ** are destroyed. If this is a release operation (op==SAVEPOINT_RELEASE),
46399 ** then savepoint iSavepoint is also destroyed.
46400 **
46401 ** This function may return SQLITE_NOMEM if a memory allocation fails,
46402 ** or an IO error code if an IO error occurs while rolling back a
46403 ** savepoint. If no errors occur, SQLITE_OK is returned.
46404 */
46405 SQLITE_PRIVATE int sqlite3PagerSavepoint(Pager *pPager, int op, int iSavepoint){
46406   int rc = pPager->errCode;       /* Return code */
46407 
46408   assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
46409   assert( iSavepoint>=0 || op==SAVEPOINT_ROLLBACK );
46410 
46411   if( rc==SQLITE_OK && iSavepoint<pPager->nSavepoint ){
46412     int ii;            /* Iterator variable */
46413     int nNew;          /* Number of remaining savepoints after this op. */
46414 
46415     /* Figure out how many savepoints will still be active after this
46416     ** operation. Store this value in nNew. Then free resources associated
46417     ** with any savepoints that are destroyed by this operation.
46418     */
46419     nNew = iSavepoint + (( op==SAVEPOINT_RELEASE ) ? 0 : 1);
46420     for(ii=nNew; ii<pPager->nSavepoint; ii++){
46421       sqlite3BitvecDestroy(pPager->aSavepoint[ii].pInSavepoint);
46422     }
46423     pPager->nSavepoint = nNew;
46424 
46425     /* If this is a release of the outermost savepoint, truncate
46426     ** the sub-journal to zero bytes in size. */
46427     if( op==SAVEPOINT_RELEASE ){
46428       if( nNew==0 && isOpen(pPager->sjfd) ){
46429         /* Only truncate if it is an in-memory sub-journal. */
46430         if( sqlite3IsMemJournal(pPager->sjfd) ){
46431           rc = sqlite3OsTruncate(pPager->sjfd, 0);
46432           assert( rc==SQLITE_OK );
46433         }
46434         pPager->nSubRec = 0;
46435       }
46436     }
46437     /* Else this is a rollback operation, playback the specified savepoint.
46438     ** If this is a temp-file, it is possible that the journal file has
46439     ** not yet been opened. In this case there have been no changes to
46440     ** the database file, so the playback operation can be skipped.
46441     */
46442     else if( pagerUseWal(pPager) || isOpen(pPager->jfd) ){
46443       PagerSavepoint *pSavepoint = (nNew==0)?0:&pPager->aSavepoint[nNew-1];
46444       rc = pagerPlaybackSavepoint(pPager, pSavepoint);
46445       assert(rc!=SQLITE_DONE);
46446     }
46447   }
46448 
46449   return rc;
46450 }
46451 
46452 /*
46453 ** Return the full pathname of the database file.
46454 **
46455 ** Except, if the pager is in-memory only, then return an empty string if
46456 ** nullIfMemDb is true.  This routine is called with nullIfMemDb==1 when
46457 ** used to report the filename to the user, for compatibility with legacy
46458 ** behavior.  But when the Btree needs to know the filename for matching to
46459 ** shared cache, it uses nullIfMemDb==0 so that in-memory databases can
46460 ** participate in shared-cache.
46461 */
46462 SQLITE_PRIVATE const char *sqlite3PagerFilename(Pager *pPager, int nullIfMemDb){
46463   return (nullIfMemDb && pPager->memDb) ? "" : pPager->zFilename;
46464 }
46465 
46466 /*
46467 ** Return the VFS structure for the pager.
46468 */
46469 SQLITE_PRIVATE const sqlite3_vfs *sqlite3PagerVfs(Pager *pPager){
46470   return pPager->pVfs;
46471 }
46472 
46473 /*
46474 ** Return the file handle for the database file associated
46475 ** with the pager.  This might return NULL if the file has
46476 ** not yet been opened.
46477 */
46478 SQLITE_PRIVATE sqlite3_file *sqlite3PagerFile(Pager *pPager){
46479   return pPager->fd;
46480 }
46481 
46482 /*
46483 ** Return the full pathname of the journal file.
46484 */
46485 SQLITE_PRIVATE const char *sqlite3PagerJournalname(Pager *pPager){
46486   return pPager->zJournal;
46487 }
46488 
46489 /*
46490 ** Return true if fsync() calls are disabled for this pager.  Return FALSE
46491 ** if fsync()s are executed normally.
46492 */
46493 SQLITE_PRIVATE int sqlite3PagerNosync(Pager *pPager){
46494   return pPager->noSync;
46495 }
46496 
46497 #ifdef SQLITE_HAS_CODEC
46498 /*
46499 ** Set or retrieve the codec for this pager
46500 */
46501 SQLITE_PRIVATE void sqlite3PagerSetCodec(
46502   Pager *pPager,
46503   void *(*xCodec)(void*,void*,Pgno,int),
46504   void (*xCodecSizeChng)(void*,int,int),
46505   void (*xCodecFree)(void*),
46506   void *pCodec
46507 ){
46508   if( pPager->xCodecFree ) pPager->xCodecFree(pPager->pCodec);
46509   pPager->xCodec = pPager->memDb ? 0 : xCodec;
46510   pPager->xCodecSizeChng = xCodecSizeChng;
46511   pPager->xCodecFree = xCodecFree;
46512   pPager->pCodec = pCodec;
46513   pagerReportSize(pPager);
46514 }
46515 SQLITE_PRIVATE void *sqlite3PagerGetCodec(Pager *pPager){
46516   return pPager->pCodec;
46517 }
46518 
46519 /*
46520 ** This function is called by the wal module when writing page content
46521 ** into the log file.
46522 **
46523 ** This function returns a pointer to a buffer containing the encrypted
46524 ** page content. If a malloc fails, this function may return NULL.
46525 */
46526 SQLITE_PRIVATE void *sqlite3PagerCodec(PgHdr *pPg){
46527   void *aData = 0;
46528   CODEC2(pPg->pPager, pPg->pData, pPg->pgno, 6, return 0, aData);
46529   return aData;
46530 }
46531 
46532 /*
46533 ** Return the current pager state
46534 */
46535 SQLITE_PRIVATE int sqlite3PagerState(Pager *pPager){
46536   return pPager->eState;
46537 }
46538 #endif /* SQLITE_HAS_CODEC */
46539 
46540 #ifndef SQLITE_OMIT_AUTOVACUUM
46541 /*
46542 ** Move the page pPg to location pgno in the file.
46543 **
46544 ** There must be no references to the page previously located at
46545 ** pgno (which we call pPgOld) though that page is allowed to be
46546 ** in cache.  If the page previously located at pgno is not already
46547 ** in the rollback journal, it is not put there by by this routine.
46548 **
46549 ** References to the page pPg remain valid. Updating any
46550 ** meta-data associated with pPg (i.e. data stored in the nExtra bytes
46551 ** allocated along with the page) is the responsibility of the caller.
46552 **
46553 ** A transaction must be active when this routine is called. It used to be
46554 ** required that a statement transaction was not active, but this restriction
46555 ** has been removed (CREATE INDEX needs to move a page when a statement
46556 ** transaction is active).
46557 **
46558 ** If the fourth argument, isCommit, is non-zero, then this page is being
46559 ** moved as part of a database reorganization just before the transaction
46560 ** is being committed. In this case, it is guaranteed that the database page
46561 ** pPg refers to will not be written to again within this transaction.
46562 **
46563 ** This function may return SQLITE_NOMEM or an IO error code if an error
46564 ** occurs. Otherwise, it returns SQLITE_OK.
46565 */
46566 SQLITE_PRIVATE int sqlite3PagerMovepage(Pager *pPager, DbPage *pPg, Pgno pgno, int isCommit){
46567   PgHdr *pPgOld;               /* The page being overwritten. */
46568   Pgno needSyncPgno = 0;       /* Old value of pPg->pgno, if sync is required */
46569   int rc;                      /* Return code */
46570   Pgno origPgno;               /* The original page number */
46571 
46572   assert( pPg->nRef>0 );
46573   assert( pPager->eState==PAGER_WRITER_CACHEMOD
46574        || pPager->eState==PAGER_WRITER_DBMOD
46575   );
46576   assert( assert_pager_state(pPager) );
46577 
46578   /* In order to be able to rollback, an in-memory database must journal
46579   ** the page we are moving from.
46580   */
46581   if( MEMDB ){
46582     rc = sqlite3PagerWrite(pPg);
46583     if( rc ) return rc;
46584   }
46585 
46586   /* If the page being moved is dirty and has not been saved by the latest
46587   ** savepoint, then save the current contents of the page into the
46588   ** sub-journal now. This is required to handle the following scenario:
46589   **
46590   **   BEGIN;
46591   **     <journal page X, then modify it in memory>
46592   **     SAVEPOINT one;
46593   **       <Move page X to location Y>
46594   **     ROLLBACK TO one;
46595   **
46596   ** If page X were not written to the sub-journal here, it would not
46597   ** be possible to restore its contents when the "ROLLBACK TO one"
46598   ** statement were is processed.
46599   **
46600   ** subjournalPage() may need to allocate space to store pPg->pgno into
46601   ** one or more savepoint bitvecs. This is the reason this function
46602   ** may return SQLITE_NOMEM.
46603   */
46604   if( pPg->flags&PGHDR_DIRTY
46605    && subjRequiresPage(pPg)
46606    && SQLITE_OK!=(rc = subjournalPage(pPg))
46607   ){
46608     return rc;
46609   }
46610 
46611   PAGERTRACE(("MOVE %d page %d (needSync=%d) moves to %d\n",
46612       PAGERID(pPager), pPg->pgno, (pPg->flags&PGHDR_NEED_SYNC)?1:0, pgno));
46613   IOTRACE(("MOVE %p %d %d\n", pPager, pPg->pgno, pgno))
46614 
46615   /* If the journal needs to be sync()ed before page pPg->pgno can
46616   ** be written to, store pPg->pgno in local variable needSyncPgno.
46617   **
46618   ** If the isCommit flag is set, there is no need to remember that
46619   ** the journal needs to be sync()ed before database page pPg->pgno
46620   ** can be written to. The caller has already promised not to write to it.
46621   */
46622   if( (pPg->flags&PGHDR_NEED_SYNC) && !isCommit ){
46623     needSyncPgno = pPg->pgno;
46624     assert( pPager->journalMode==PAGER_JOURNALMODE_OFF ||
46625             pageInJournal(pPager, pPg) || pPg->pgno>pPager->dbOrigSize );
46626     assert( pPg->flags&PGHDR_DIRTY );
46627   }
46628 
46629   /* If the cache contains a page with page-number pgno, remove it
46630   ** from its hash chain. Also, if the PGHDR_NEED_SYNC flag was set for
46631   ** page pgno before the 'move' operation, it needs to be retained
46632   ** for the page moved there.
46633   */
46634   pPg->flags &= ~PGHDR_NEED_SYNC;
46635   pPgOld = pager_lookup(pPager, pgno);
46636   assert( !pPgOld || pPgOld->nRef==1 );
46637   if( pPgOld ){
46638     pPg->flags |= (pPgOld->flags&PGHDR_NEED_SYNC);
46639     if( MEMDB ){
46640       /* Do not discard pages from an in-memory database since we might
46641       ** need to rollback later.  Just move the page out of the way. */
46642       sqlite3PcacheMove(pPgOld, pPager->dbSize+1);
46643     }else{
46644       sqlite3PcacheDrop(pPgOld);
46645     }
46646   }
46647 
46648   origPgno = pPg->pgno;
46649   sqlite3PcacheMove(pPg, pgno);
46650   sqlite3PcacheMakeDirty(pPg);
46651 
46652   /* For an in-memory database, make sure the original page continues
46653   ** to exist, in case the transaction needs to roll back.  Use pPgOld
46654   ** as the original page since it has already been allocated.
46655   */
46656   if( MEMDB ){
46657     assert( pPgOld );
46658     sqlite3PcacheMove(pPgOld, origPgno);
46659     sqlite3PagerUnrefNotNull(pPgOld);
46660   }
46661 
46662   if( needSyncPgno ){
46663     /* If needSyncPgno is non-zero, then the journal file needs to be
46664     ** sync()ed before any data is written to database file page needSyncPgno.
46665     ** Currently, no such page exists in the page-cache and the
46666     ** "is journaled" bitvec flag has been set. This needs to be remedied by
46667     ** loading the page into the pager-cache and setting the PGHDR_NEED_SYNC
46668     ** flag.
46669     **
46670     ** If the attempt to load the page into the page-cache fails, (due
46671     ** to a malloc() or IO failure), clear the bit in the pInJournal[]
46672     ** array. Otherwise, if the page is loaded and written again in
46673     ** this transaction, it may be written to the database file before
46674     ** it is synced into the journal file. This way, it may end up in
46675     ** the journal file twice, but that is not a problem.
46676     */
46677     PgHdr *pPgHdr;
46678     rc = sqlite3PagerGet(pPager, needSyncPgno, &pPgHdr);
46679     if( rc!=SQLITE_OK ){
46680       if( needSyncPgno<=pPager->dbOrigSize ){
46681         assert( pPager->pTmpSpace!=0 );
46682         sqlite3BitvecClear(pPager->pInJournal, needSyncPgno, pPager->pTmpSpace);
46683       }
46684       return rc;
46685     }
46686     pPgHdr->flags |= PGHDR_NEED_SYNC;
46687     sqlite3PcacheMakeDirty(pPgHdr);
46688     sqlite3PagerUnrefNotNull(pPgHdr);
46689   }
46690 
46691   return SQLITE_OK;
46692 }
46693 #endif
46694 
46695 /*
46696 ** Return a pointer to the data for the specified page.
46697 */
46698 SQLITE_PRIVATE void *sqlite3PagerGetData(DbPage *pPg){
46699   assert( pPg->nRef>0 || pPg->pPager->memDb );
46700   return pPg->pData;
46701 }
46702 
46703 /*
46704 ** Return a pointer to the Pager.nExtra bytes of "extra" space
46705 ** allocated along with the specified page.
46706 */
46707 SQLITE_PRIVATE void *sqlite3PagerGetExtra(DbPage *pPg){
46708   return pPg->pExtra;
46709 }
46710 
46711 /*
46712 ** Get/set the locking-mode for this pager. Parameter eMode must be one
46713 ** of PAGER_LOCKINGMODE_QUERY, PAGER_LOCKINGMODE_NORMAL or
46714 ** PAGER_LOCKINGMODE_EXCLUSIVE. If the parameter is not _QUERY, then
46715 ** the locking-mode is set to the value specified.
46716 **
46717 ** The returned value is either PAGER_LOCKINGMODE_NORMAL or
46718 ** PAGER_LOCKINGMODE_EXCLUSIVE, indicating the current (possibly updated)
46719 ** locking-mode.
46720 */
46721 SQLITE_PRIVATE int sqlite3PagerLockingMode(Pager *pPager, int eMode){
46722   assert( eMode==PAGER_LOCKINGMODE_QUERY
46723             || eMode==PAGER_LOCKINGMODE_NORMAL
46724             || eMode==PAGER_LOCKINGMODE_EXCLUSIVE );
46725   assert( PAGER_LOCKINGMODE_QUERY<0 );
46726   assert( PAGER_LOCKINGMODE_NORMAL>=0 && PAGER_LOCKINGMODE_EXCLUSIVE>=0 );
46727   assert( pPager->exclusiveMode || 0==sqlite3WalHeapMemory(pPager->pWal) );
46728   if( eMode>=0 && !pPager->tempFile && !sqlite3WalHeapMemory(pPager->pWal) ){
46729     pPager->exclusiveMode = (u8)eMode;
46730   }
46731   return (int)pPager->exclusiveMode;
46732 }
46733 
46734 /*
46735 ** Set the journal-mode for this pager. Parameter eMode must be one of:
46736 **
46737 **    PAGER_JOURNALMODE_DELETE
46738 **    PAGER_JOURNALMODE_TRUNCATE
46739 **    PAGER_JOURNALMODE_PERSIST
46740 **    PAGER_JOURNALMODE_OFF
46741 **    PAGER_JOURNALMODE_MEMORY
46742 **    PAGER_JOURNALMODE_WAL
46743 **
46744 ** The journalmode is set to the value specified if the change is allowed.
46745 ** The change may be disallowed for the following reasons:
46746 **
46747 **   *  An in-memory database can only have its journal_mode set to _OFF
46748 **      or _MEMORY.
46749 **
46750 **   *  Temporary databases cannot have _WAL journalmode.
46751 **
46752 ** The returned indicate the current (possibly updated) journal-mode.
46753 */
46754 SQLITE_PRIVATE int sqlite3PagerSetJournalMode(Pager *pPager, int eMode){
46755   u8 eOld = pPager->journalMode;    /* Prior journalmode */
46756 
46757 #ifdef SQLITE_DEBUG
46758   /* The print_pager_state() routine is intended to be used by the debugger
46759   ** only.  We invoke it once here to suppress a compiler warning. */
46760   print_pager_state(pPager);
46761 #endif
46762 
46763 
46764   /* The eMode parameter is always valid */
46765   assert(      eMode==PAGER_JOURNALMODE_DELETE
46766             || eMode==PAGER_JOURNALMODE_TRUNCATE
46767             || eMode==PAGER_JOURNALMODE_PERSIST
46768             || eMode==PAGER_JOURNALMODE_OFF
46769             || eMode==PAGER_JOURNALMODE_WAL
46770             || eMode==PAGER_JOURNALMODE_MEMORY );
46771 
46772   /* This routine is only called from the OP_JournalMode opcode, and
46773   ** the logic there will never allow a temporary file to be changed
46774   ** to WAL mode.
46775   */
46776   assert( pPager->tempFile==0 || eMode!=PAGER_JOURNALMODE_WAL );
46777 
46778   /* Do allow the journalmode of an in-memory database to be set to
46779   ** anything other than MEMORY or OFF
46780   */
46781   if( MEMDB ){
46782     assert( eOld==PAGER_JOURNALMODE_MEMORY || eOld==PAGER_JOURNALMODE_OFF );
46783     if( eMode!=PAGER_JOURNALMODE_MEMORY && eMode!=PAGER_JOURNALMODE_OFF ){
46784       eMode = eOld;
46785     }
46786   }
46787 
46788   if( eMode!=eOld ){
46789 
46790     /* Change the journal mode. */
46791     assert( pPager->eState!=PAGER_ERROR );
46792     pPager->journalMode = (u8)eMode;
46793 
46794     /* When transistioning from TRUNCATE or PERSIST to any other journal
46795     ** mode except WAL, unless the pager is in locking_mode=exclusive mode,
46796     ** delete the journal file.
46797     */
46798     assert( (PAGER_JOURNALMODE_TRUNCATE & 5)==1 );
46799     assert( (PAGER_JOURNALMODE_PERSIST & 5)==1 );
46800     assert( (PAGER_JOURNALMODE_DELETE & 5)==0 );
46801     assert( (PAGER_JOURNALMODE_MEMORY & 5)==4 );
46802     assert( (PAGER_JOURNALMODE_OFF & 5)==0 );
46803     assert( (PAGER_JOURNALMODE_WAL & 5)==5 );
46804 
46805     assert( isOpen(pPager->fd) || pPager->exclusiveMode );
46806     if( !pPager->exclusiveMode && (eOld & 5)==1 && (eMode & 1)==0 ){
46807 
46808       /* In this case we would like to delete the journal file. If it is
46809       ** not possible, then that is not a problem. Deleting the journal file
46810       ** here is an optimization only.
46811       **
46812       ** Before deleting the journal file, obtain a RESERVED lock on the
46813       ** database file. This ensures that the journal file is not deleted
46814       ** while it is in use by some other client.
46815       */
46816       sqlite3OsClose(pPager->jfd);
46817       if( pPager->eLock>=RESERVED_LOCK ){
46818         sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0);
46819       }else{
46820         int rc = SQLITE_OK;
46821         int state = pPager->eState;
46822         assert( state==PAGER_OPEN || state==PAGER_READER );
46823         if( state==PAGER_OPEN ){
46824           rc = sqlite3PagerSharedLock(pPager);
46825         }
46826         if( pPager->eState==PAGER_READER ){
46827           assert( rc==SQLITE_OK );
46828           rc = pagerLockDb(pPager, RESERVED_LOCK);
46829         }
46830         if( rc==SQLITE_OK ){
46831           sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0);
46832         }
46833         if( rc==SQLITE_OK && state==PAGER_READER ){
46834           pagerUnlockDb(pPager, SHARED_LOCK);
46835         }else if( state==PAGER_OPEN ){
46836           pager_unlock(pPager);
46837         }
46838         assert( state==pPager->eState );
46839       }
46840     }
46841   }
46842 
46843   /* Return the new journal mode */
46844   return (int)pPager->journalMode;
46845 }
46846 
46847 /*
46848 ** Return the current journal mode.
46849 */
46850 SQLITE_PRIVATE int sqlite3PagerGetJournalMode(Pager *pPager){
46851   return (int)pPager->journalMode;
46852 }
46853 
46854 /*
46855 ** Return TRUE if the pager is in a state where it is OK to change the
46856 ** journalmode.  Journalmode changes can only happen when the database
46857 ** is unmodified.
46858 */
46859 SQLITE_PRIVATE int sqlite3PagerOkToChangeJournalMode(Pager *pPager){
46860   assert( assert_pager_state(pPager) );
46861   if( pPager->eState>=PAGER_WRITER_CACHEMOD ) return 0;
46862   if( NEVER(isOpen(pPager->jfd) && pPager->journalOff>0) ) return 0;
46863   return 1;
46864 }
46865 
46866 /*
46867 ** Get/set the size-limit used for persistent journal files.
46868 **
46869 ** Setting the size limit to -1 means no limit is enforced.
46870 ** An attempt to set a limit smaller than -1 is a no-op.
46871 */
46872 SQLITE_PRIVATE i64 sqlite3PagerJournalSizeLimit(Pager *pPager, i64 iLimit){
46873   if( iLimit>=-1 ){
46874     pPager->journalSizeLimit = iLimit;
46875     sqlite3WalLimit(pPager->pWal, iLimit);
46876   }
46877   return pPager->journalSizeLimit;
46878 }
46879 
46880 /*
46881 ** Return a pointer to the pPager->pBackup variable. The backup module
46882 ** in backup.c maintains the content of this variable. This module
46883 ** uses it opaquely as an argument to sqlite3BackupRestart() and
46884 ** sqlite3BackupUpdate() only.
46885 */
46886 SQLITE_PRIVATE sqlite3_backup **sqlite3PagerBackupPtr(Pager *pPager){
46887   return &pPager->pBackup;
46888 }
46889 
46890 #ifndef SQLITE_OMIT_VACUUM
46891 /*
46892 ** Unless this is an in-memory or temporary database, clear the pager cache.
46893 */
46894 SQLITE_PRIVATE void sqlite3PagerClearCache(Pager *pPager){
46895   if( !MEMDB && pPager->tempFile==0 ) pager_reset(pPager);
46896 }
46897 #endif
46898 
46899 #ifndef SQLITE_OMIT_WAL
46900 /*
46901 ** This function is called when the user invokes "PRAGMA wal_checkpoint",
46902 ** "PRAGMA wal_blocking_checkpoint" or calls the sqlite3_wal_checkpoint()
46903 ** or wal_blocking_checkpoint() API functions.
46904 **
46905 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
46906 */
46907 SQLITE_PRIVATE int sqlite3PagerCheckpoint(Pager *pPager, int eMode, int *pnLog, int *pnCkpt){
46908   int rc = SQLITE_OK;
46909   if( pPager->pWal ){
46910     rc = sqlite3WalCheckpoint(pPager->pWal, eMode,
46911         pPager->xBusyHandler, pPager->pBusyHandlerArg,
46912         pPager->ckptSyncFlags, pPager->pageSize, (u8 *)pPager->pTmpSpace,
46913         pnLog, pnCkpt
46914     );
46915   }
46916   return rc;
46917 }
46918 
46919 SQLITE_PRIVATE int sqlite3PagerWalCallback(Pager *pPager){
46920   return sqlite3WalCallback(pPager->pWal);
46921 }
46922 
46923 /*
46924 ** Return true if the underlying VFS for the given pager supports the
46925 ** primitives necessary for write-ahead logging.
46926 */
46927 SQLITE_PRIVATE int sqlite3PagerWalSupported(Pager *pPager){
46928   const sqlite3_io_methods *pMethods = pPager->fd->pMethods;
46929   return pPager->exclusiveMode || (pMethods->iVersion>=2 && pMethods->xShmMap);
46930 }
46931 
46932 /*
46933 ** Attempt to take an exclusive lock on the database file. If a PENDING lock
46934 ** is obtained instead, immediately release it.
46935 */
46936 static int pagerExclusiveLock(Pager *pPager){
46937   int rc;                         /* Return code */
46938 
46939   assert( pPager->eLock==SHARED_LOCK || pPager->eLock==EXCLUSIVE_LOCK );
46940   rc = pagerLockDb(pPager, EXCLUSIVE_LOCK);
46941   if( rc!=SQLITE_OK ){
46942     /* If the attempt to grab the exclusive lock failed, release the
46943     ** pending lock that may have been obtained instead.  */
46944     pagerUnlockDb(pPager, SHARED_LOCK);
46945   }
46946 
46947   return rc;
46948 }
46949 
46950 /*
46951 ** Call sqlite3WalOpen() to open the WAL handle. If the pager is in
46952 ** exclusive-locking mode when this function is called, take an EXCLUSIVE
46953 ** lock on the database file and use heap-memory to store the wal-index
46954 ** in. Otherwise, use the normal shared-memory.
46955 */
46956 static int pagerOpenWal(Pager *pPager){
46957   int rc = SQLITE_OK;
46958 
46959   assert( pPager->pWal==0 && pPager->tempFile==0 );
46960   assert( pPager->eLock==SHARED_LOCK || pPager->eLock==EXCLUSIVE_LOCK );
46961 
46962   /* If the pager is already in exclusive-mode, the WAL module will use
46963   ** heap-memory for the wal-index instead of the VFS shared-memory
46964   ** implementation. Take the exclusive lock now, before opening the WAL
46965   ** file, to make sure this is safe.
46966   */
46967   if( pPager->exclusiveMode ){
46968     rc = pagerExclusiveLock(pPager);
46969   }
46970 
46971   /* Open the connection to the log file. If this operation fails,
46972   ** (e.g. due to malloc() failure), return an error code.
46973   */
46974   if( rc==SQLITE_OK ){
46975     rc = sqlite3WalOpen(pPager->pVfs,
46976         pPager->fd, pPager->zWal, pPager->exclusiveMode,
46977         pPager->journalSizeLimit, &pPager->pWal
46978     );
46979   }
46980   pagerFixMaplimit(pPager);
46981 
46982   return rc;
46983 }
46984 
46985 
46986 /*
46987 ** The caller must be holding a SHARED lock on the database file to call
46988 ** this function.
46989 **
46990 ** If the pager passed as the first argument is open on a real database
46991 ** file (not a temp file or an in-memory database), and the WAL file
46992 ** is not already open, make an attempt to open it now. If successful,
46993 ** return SQLITE_OK. If an error occurs or the VFS used by the pager does
46994 ** not support the xShmXXX() methods, return an error code. *pbOpen is
46995 ** not modified in either case.
46996 **
46997 ** If the pager is open on a temp-file (or in-memory database), or if
46998 ** the WAL file is already open, set *pbOpen to 1 and return SQLITE_OK
46999 ** without doing anything.
47000 */
47001 SQLITE_PRIVATE int sqlite3PagerOpenWal(
47002   Pager *pPager,                  /* Pager object */
47003   int *pbOpen                     /* OUT: Set to true if call is a no-op */
47004 ){
47005   int rc = SQLITE_OK;             /* Return code */
47006 
47007   assert( assert_pager_state(pPager) );
47008   assert( pPager->eState==PAGER_OPEN   || pbOpen );
47009   assert( pPager->eState==PAGER_READER || !pbOpen );
47010   assert( pbOpen==0 || *pbOpen==0 );
47011   assert( pbOpen!=0 || (!pPager->tempFile && !pPager->pWal) );
47012 
47013   if( !pPager->tempFile && !pPager->pWal ){
47014     if( !sqlite3PagerWalSupported(pPager) ) return SQLITE_CANTOPEN;
47015 
47016     /* Close any rollback journal previously open */
47017     sqlite3OsClose(pPager->jfd);
47018 
47019     rc = pagerOpenWal(pPager);
47020     if( rc==SQLITE_OK ){
47021       pPager->journalMode = PAGER_JOURNALMODE_WAL;
47022       pPager->eState = PAGER_OPEN;
47023     }
47024   }else{
47025     *pbOpen = 1;
47026   }
47027 
47028   return rc;
47029 }
47030 
47031 /*
47032 ** This function is called to close the connection to the log file prior
47033 ** to switching from WAL to rollback mode.
47034 **
47035 ** Before closing the log file, this function attempts to take an
47036 ** EXCLUSIVE lock on the database file. If this cannot be obtained, an
47037 ** error (SQLITE_BUSY) is returned and the log connection is not closed.
47038 ** If successful, the EXCLUSIVE lock is not released before returning.
47039 */
47040 SQLITE_PRIVATE int sqlite3PagerCloseWal(Pager *pPager){
47041   int rc = SQLITE_OK;
47042 
47043   assert( pPager->journalMode==PAGER_JOURNALMODE_WAL );
47044 
47045   /* If the log file is not already open, but does exist in the file-system,
47046   ** it may need to be checkpointed before the connection can switch to
47047   ** rollback mode. Open it now so this can happen.
47048   */
47049   if( !pPager->pWal ){
47050     int logexists = 0;
47051     rc = pagerLockDb(pPager, SHARED_LOCK);
47052     if( rc==SQLITE_OK ){
47053       rc = sqlite3OsAccess(
47054           pPager->pVfs, pPager->zWal, SQLITE_ACCESS_EXISTS, &logexists
47055       );
47056     }
47057     if( rc==SQLITE_OK && logexists ){
47058       rc = pagerOpenWal(pPager);
47059     }
47060   }
47061 
47062   /* Checkpoint and close the log. Because an EXCLUSIVE lock is held on
47063   ** the database file, the log and log-summary files will be deleted.
47064   */
47065   if( rc==SQLITE_OK && pPager->pWal ){
47066     rc = pagerExclusiveLock(pPager);
47067     if( rc==SQLITE_OK ){
47068       rc = sqlite3WalClose(pPager->pWal, pPager->ckptSyncFlags,
47069                            pPager->pageSize, (u8*)pPager->pTmpSpace);
47070       pPager->pWal = 0;
47071       pagerFixMaplimit(pPager);
47072     }
47073   }
47074   return rc;
47075 }
47076 
47077 #endif /* !SQLITE_OMIT_WAL */
47078 
47079 #ifdef SQLITE_ENABLE_ZIPVFS
47080 /*
47081 ** A read-lock must be held on the pager when this function is called. If
47082 ** the pager is in WAL mode and the WAL file currently contains one or more
47083 ** frames, return the size in bytes of the page images stored within the
47084 ** WAL frames. Otherwise, if this is not a WAL database or the WAL file
47085 ** is empty, return 0.
47086 */
47087 SQLITE_PRIVATE int sqlite3PagerWalFramesize(Pager *pPager){
47088   assert( pPager->eState==PAGER_READER );
47089   return sqlite3WalFramesize(pPager->pWal);
47090 }
47091 #endif
47092 
47093 #endif /* SQLITE_OMIT_DISKIO */
47094 
47095 /************** End of pager.c ***********************************************/
47096 /************** Begin file wal.c *********************************************/
47097 /*
47098 ** 2010 February 1
47099 **
47100 ** The author disclaims copyright to this source code.  In place of
47101 ** a legal notice, here is a blessing:
47102 **
47103 **    May you do good and not evil.
47104 **    May you find forgiveness for yourself and forgive others.
47105 **    May you share freely, never taking more than you give.
47106 **
47107 *************************************************************************
47108 **
47109 ** This file contains the implementation of a write-ahead log (WAL) used in
47110 ** "journal_mode=WAL" mode.
47111 **
47112 ** WRITE-AHEAD LOG (WAL) FILE FORMAT
47113 **
47114 ** A WAL file consists of a header followed by zero or more "frames".
47115 ** Each frame records the revised content of a single page from the
47116 ** database file.  All changes to the database are recorded by writing
47117 ** frames into the WAL.  Transactions commit when a frame is written that
47118 ** contains a commit marker.  A single WAL can and usually does record
47119 ** multiple transactions.  Periodically, the content of the WAL is
47120 ** transferred back into the database file in an operation called a
47121 ** "checkpoint".
47122 **
47123 ** A single WAL file can be used multiple times.  In other words, the
47124 ** WAL can fill up with frames and then be checkpointed and then new
47125 ** frames can overwrite the old ones.  A WAL always grows from beginning
47126 ** toward the end.  Checksums and counters attached to each frame are
47127 ** used to determine which frames within the WAL are valid and which
47128 ** are leftovers from prior checkpoints.
47129 **
47130 ** The WAL header is 32 bytes in size and consists of the following eight
47131 ** big-endian 32-bit unsigned integer values:
47132 **
47133 **     0: Magic number.  0x377f0682 or 0x377f0683
47134 **     4: File format version.  Currently 3007000
47135 **     8: Database page size.  Example: 1024
47136 **    12: Checkpoint sequence number
47137 **    16: Salt-1, random integer incremented with each checkpoint
47138 **    20: Salt-2, a different random integer changing with each ckpt
47139 **    24: Checksum-1 (first part of checksum for first 24 bytes of header).
47140 **    28: Checksum-2 (second part of checksum for first 24 bytes of header).
47141 **
47142 ** Immediately following the wal-header are zero or more frames. Each
47143 ** frame consists of a 24-byte frame-header followed by a <page-size> bytes
47144 ** of page data. The frame-header is six big-endian 32-bit unsigned
47145 ** integer values, as follows:
47146 **
47147 **     0: Page number.
47148 **     4: For commit records, the size of the database image in pages
47149 **        after the commit. For all other records, zero.
47150 **     8: Salt-1 (copied from the header)
47151 **    12: Salt-2 (copied from the header)
47152 **    16: Checksum-1.
47153 **    20: Checksum-2.
47154 **
47155 ** A frame is considered valid if and only if the following conditions are
47156 ** true:
47157 **
47158 **    (1) The salt-1 and salt-2 values in the frame-header match
47159 **        salt values in the wal-header
47160 **
47161 **    (2) The checksum values in the final 8 bytes of the frame-header
47162 **        exactly match the checksum computed consecutively on the
47163 **        WAL header and the first 8 bytes and the content of all frames
47164 **        up to and including the current frame.
47165 **
47166 ** The checksum is computed using 32-bit big-endian integers if the
47167 ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
47168 ** is computed using little-endian if the magic number is 0x377f0682.
47169 ** The checksum values are always stored in the frame header in a
47170 ** big-endian format regardless of which byte order is used to compute
47171 ** the checksum.  The checksum is computed by interpreting the input as
47172 ** an even number of unsigned 32-bit integers: x[0] through x[N].  The
47173 ** algorithm used for the checksum is as follows:
47174 **
47175 **   for i from 0 to n-1 step 2:
47176 **     s0 += x[i] + s1;
47177 **     s1 += x[i+1] + s0;
47178 **   endfor
47179 **
47180 ** Note that s0 and s1 are both weighted checksums using fibonacci weights
47181 ** in reverse order (the largest fibonacci weight occurs on the first element
47182 ** of the sequence being summed.)  The s1 value spans all 32-bit
47183 ** terms of the sequence whereas s0 omits the final term.
47184 **
47185 ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
47186 ** WAL is transferred into the database, then the database is VFS.xSync-ed.
47187 ** The VFS.xSync operations serve as write barriers - all writes launched
47188 ** before the xSync must complete before any write that launches after the
47189 ** xSync begins.
47190 **
47191 ** After each checkpoint, the salt-1 value is incremented and the salt-2
47192 ** value is randomized.  This prevents old and new frames in the WAL from
47193 ** being considered valid at the same time and being checkpointing together
47194 ** following a crash.
47195 **
47196 ** READER ALGORITHM
47197 **
47198 ** To read a page from the database (call it page number P), a reader
47199 ** first checks the WAL to see if it contains page P.  If so, then the
47200 ** last valid instance of page P that is a followed by a commit frame
47201 ** or is a commit frame itself becomes the value read.  If the WAL
47202 ** contains no copies of page P that are valid and which are a commit
47203 ** frame or are followed by a commit frame, then page P is read from
47204 ** the database file.
47205 **
47206 ** To start a read transaction, the reader records the index of the last
47207 ** valid frame in the WAL.  The reader uses this recorded "mxFrame" value
47208 ** for all subsequent read operations.  New transactions can be appended
47209 ** to the WAL, but as long as the reader uses its original mxFrame value
47210 ** and ignores the newly appended content, it will see a consistent snapshot
47211 ** of the database from a single point in time.  This technique allows
47212 ** multiple concurrent readers to view different versions of the database
47213 ** content simultaneously.
47214 **
47215 ** The reader algorithm in the previous paragraphs works correctly, but
47216 ** because frames for page P can appear anywhere within the WAL, the
47217 ** reader has to scan the entire WAL looking for page P frames.  If the
47218 ** WAL is large (multiple megabytes is typical) that scan can be slow,
47219 ** and read performance suffers.  To overcome this problem, a separate
47220 ** data structure called the wal-index is maintained to expedite the
47221 ** search for frames of a particular page.
47222 **
47223 ** WAL-INDEX FORMAT
47224 **
47225 ** Conceptually, the wal-index is shared memory, though VFS implementations
47226 ** might choose to implement the wal-index using a mmapped file.  Because
47227 ** the wal-index is shared memory, SQLite does not support journal_mode=WAL
47228 ** on a network filesystem.  All users of the database must be able to
47229 ** share memory.
47230 **
47231 ** The wal-index is transient.  After a crash, the wal-index can (and should
47232 ** be) reconstructed from the original WAL file.  In fact, the VFS is required
47233 ** to either truncate or zero the header of the wal-index when the last
47234 ** connection to it closes.  Because the wal-index is transient, it can
47235 ** use an architecture-specific format; it does not have to be cross-platform.
47236 ** Hence, unlike the database and WAL file formats which store all values
47237 ** as big endian, the wal-index can store multi-byte values in the native
47238 ** byte order of the host computer.
47239 **
47240 ** The purpose of the wal-index is to answer this question quickly:  Given
47241 ** a page number P and a maximum frame index M, return the index of the
47242 ** last frame in the wal before frame M for page P in the WAL, or return
47243 ** NULL if there are no frames for page P in the WAL prior to M.
47244 **
47245 ** The wal-index consists of a header region, followed by an one or
47246 ** more index blocks.
47247 **
47248 ** The wal-index header contains the total number of frames within the WAL
47249 ** in the mxFrame field.
47250 **
47251 ** Each index block except for the first contains information on
47252 ** HASHTABLE_NPAGE frames. The first index block contains information on
47253 ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and
47254 ** HASHTABLE_NPAGE are selected so that together the wal-index header and
47255 ** first index block are the same size as all other index blocks in the
47256 ** wal-index.
47257 **
47258 ** Each index block contains two sections, a page-mapping that contains the
47259 ** database page number associated with each wal frame, and a hash-table
47260 ** that allows readers to query an index block for a specific page number.
47261 ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
47262 ** for the first index block) 32-bit page numbers. The first entry in the
47263 ** first index-block contains the database page number corresponding to the
47264 ** first frame in the WAL file. The first entry in the second index block
47265 ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
47266 ** the log, and so on.
47267 **
47268 ** The last index block in a wal-index usually contains less than the full
47269 ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
47270 ** depending on the contents of the WAL file. This does not change the
47271 ** allocated size of the page-mapping array - the page-mapping array merely
47272 ** contains unused entries.
47273 **
47274 ** Even without using the hash table, the last frame for page P
47275 ** can be found by scanning the page-mapping sections of each index block
47276 ** starting with the last index block and moving toward the first, and
47277 ** within each index block, starting at the end and moving toward the
47278 ** beginning.  The first entry that equals P corresponds to the frame
47279 ** holding the content for that page.
47280 **
47281 ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
47282 ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
47283 ** hash table for each page number in the mapping section, so the hash
47284 ** table is never more than half full.  The expected number of collisions
47285 ** prior to finding a match is 1.  Each entry of the hash table is an
47286 ** 1-based index of an entry in the mapping section of the same
47287 ** index block.   Let K be the 1-based index of the largest entry in
47288 ** the mapping section.  (For index blocks other than the last, K will
47289 ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
47290 ** K will be (mxFrame%HASHTABLE_NPAGE).)  Unused slots of the hash table
47291 ** contain a value of 0.
47292 **
47293 ** To look for page P in the hash table, first compute a hash iKey on
47294 ** P as follows:
47295 **
47296 **      iKey = (P * 383) % HASHTABLE_NSLOT
47297 **
47298 ** Then start scanning entries of the hash table, starting with iKey
47299 ** (wrapping around to the beginning when the end of the hash table is
47300 ** reached) until an unused hash slot is found. Let the first unused slot
47301 ** be at index iUnused.  (iUnused might be less than iKey if there was
47302 ** wrap-around.) Because the hash table is never more than half full,
47303 ** the search is guaranteed to eventually hit an unused entry.  Let
47304 ** iMax be the value between iKey and iUnused, closest to iUnused,
47305 ** where aHash[iMax]==P.  If there is no iMax entry (if there exists
47306 ** no hash slot such that aHash[i]==p) then page P is not in the
47307 ** current index block.  Otherwise the iMax-th mapping entry of the
47308 ** current index block corresponds to the last entry that references
47309 ** page P.
47310 **
47311 ** A hash search begins with the last index block and moves toward the
47312 ** first index block, looking for entries corresponding to page P.  On
47313 ** average, only two or three slots in each index block need to be
47314 ** examined in order to either find the last entry for page P, or to
47315 ** establish that no such entry exists in the block.  Each index block
47316 ** holds over 4000 entries.  So two or three index blocks are sufficient
47317 ** to cover a typical 10 megabyte WAL file, assuming 1K pages.  8 or 10
47318 ** comparisons (on average) suffice to either locate a frame in the
47319 ** WAL or to establish that the frame does not exist in the WAL.  This
47320 ** is much faster than scanning the entire 10MB WAL.
47321 **
47322 ** Note that entries are added in order of increasing K.  Hence, one
47323 ** reader might be using some value K0 and a second reader that started
47324 ** at a later time (after additional transactions were added to the WAL
47325 ** and to the wal-index) might be using a different value K1, where K1>K0.
47326 ** Both readers can use the same hash table and mapping section to get
47327 ** the correct result.  There may be entries in the hash table with
47328 ** K>K0 but to the first reader, those entries will appear to be unused
47329 ** slots in the hash table and so the first reader will get an answer as
47330 ** if no values greater than K0 had ever been inserted into the hash table
47331 ** in the first place - which is what reader one wants.  Meanwhile, the
47332 ** second reader using K1 will see additional values that were inserted
47333 ** later, which is exactly what reader two wants.
47334 **
47335 ** When a rollback occurs, the value of K is decreased. Hash table entries
47336 ** that correspond to frames greater than the new K value are removed
47337 ** from the hash table at this point.
47338 */
47339 #ifndef SQLITE_OMIT_WAL
47340 
47341 
47342 /*
47343 ** Trace output macros
47344 */
47345 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
47346 SQLITE_PRIVATE int sqlite3WalTrace = 0;
47347 # define WALTRACE(X)  if(sqlite3WalTrace) sqlite3DebugPrintf X
47348 #else
47349 # define WALTRACE(X)
47350 #endif
47351 
47352 /*
47353 ** The maximum (and only) versions of the wal and wal-index formats
47354 ** that may be interpreted by this version of SQLite.
47355 **
47356 ** If a client begins recovering a WAL file and finds that (a) the checksum
47357 ** values in the wal-header are correct and (b) the version field is not
47358 ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN.
47359 **
47360 ** Similarly, if a client successfully reads a wal-index header (i.e. the
47361 ** checksum test is successful) and finds that the version field is not
47362 ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite
47363 ** returns SQLITE_CANTOPEN.
47364 */
47365 #define WAL_MAX_VERSION      3007000
47366 #define WALINDEX_MAX_VERSION 3007000
47367 
47368 /*
47369 ** Indices of various locking bytes.   WAL_NREADER is the number
47370 ** of available reader locks and should be at least 3.
47371 */
47372 #define WAL_WRITE_LOCK         0
47373 #define WAL_ALL_BUT_WRITE      1
47374 #define WAL_CKPT_LOCK          1
47375 #define WAL_RECOVER_LOCK       2
47376 #define WAL_READ_LOCK(I)       (3+(I))
47377 #define WAL_NREADER            (SQLITE_SHM_NLOCK-3)
47378 
47379 
47380 /* Object declarations */
47381 typedef struct WalIndexHdr WalIndexHdr;
47382 typedef struct WalIterator WalIterator;
47383 typedef struct WalCkptInfo WalCkptInfo;
47384 
47385 
47386 /*
47387 ** The following object holds a copy of the wal-index header content.
47388 **
47389 ** The actual header in the wal-index consists of two copies of this
47390 ** object.
47391 **
47392 ** The szPage value can be any power of 2 between 512 and 32768, inclusive.
47393 ** Or it can be 1 to represent a 65536-byte page.  The latter case was
47394 ** added in 3.7.1 when support for 64K pages was added.
47395 */
47396 struct WalIndexHdr {
47397   u32 iVersion;                   /* Wal-index version */
47398   u32 unused;                     /* Unused (padding) field */
47399   u32 iChange;                    /* Counter incremented each transaction */
47400   u8 isInit;                      /* 1 when initialized */
47401   u8 bigEndCksum;                 /* True if checksums in WAL are big-endian */
47402   u16 szPage;                     /* Database page size in bytes. 1==64K */
47403   u32 mxFrame;                    /* Index of last valid frame in the WAL */
47404   u32 nPage;                      /* Size of database in pages */
47405   u32 aFrameCksum[2];             /* Checksum of last frame in log */
47406   u32 aSalt[2];                   /* Two salt values copied from WAL header */
47407   u32 aCksum[2];                  /* Checksum over all prior fields */
47408 };
47409 
47410 /*
47411 ** A copy of the following object occurs in the wal-index immediately
47412 ** following the second copy of the WalIndexHdr.  This object stores
47413 ** information used by checkpoint.
47414 **
47415 ** nBackfill is the number of frames in the WAL that have been written
47416 ** back into the database. (We call the act of moving content from WAL to
47417 ** database "backfilling".)  The nBackfill number is never greater than
47418 ** WalIndexHdr.mxFrame.  nBackfill can only be increased by threads
47419 ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
47420 ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
47421 ** mxFrame back to zero when the WAL is reset.
47422 **
47423 ** There is one entry in aReadMark[] for each reader lock.  If a reader
47424 ** holds read-lock K, then the value in aReadMark[K] is no greater than
47425 ** the mxFrame for that reader.  The value READMARK_NOT_USED (0xffffffff)
47426 ** for any aReadMark[] means that entry is unused.  aReadMark[0] is
47427 ** a special case; its value is never used and it exists as a place-holder
47428 ** to avoid having to offset aReadMark[] indexs by one.  Readers holding
47429 ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
47430 ** directly from the database.
47431 **
47432 ** The value of aReadMark[K] may only be changed by a thread that
47433 ** is holding an exclusive lock on WAL_READ_LOCK(K).  Thus, the value of
47434 ** aReadMark[K] cannot changed while there is a reader is using that mark
47435 ** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
47436 **
47437 ** The checkpointer may only transfer frames from WAL to database where
47438 ** the frame numbers are less than or equal to every aReadMark[] that is
47439 ** in use (that is, every aReadMark[j] for which there is a corresponding
47440 ** WAL_READ_LOCK(j)).  New readers (usually) pick the aReadMark[] with the
47441 ** largest value and will increase an unused aReadMark[] to mxFrame if there
47442 ** is not already an aReadMark[] equal to mxFrame.  The exception to the
47443 ** previous sentence is when nBackfill equals mxFrame (meaning that everything
47444 ** in the WAL has been backfilled into the database) then new readers
47445 ** will choose aReadMark[0] which has value 0 and hence such reader will
47446 ** get all their all content directly from the database file and ignore
47447 ** the WAL.
47448 **
47449 ** Writers normally append new frames to the end of the WAL.  However,
47450 ** if nBackfill equals mxFrame (meaning that all WAL content has been
47451 ** written back into the database) and if no readers are using the WAL
47452 ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
47453 ** the writer will first "reset" the WAL back to the beginning and start
47454 ** writing new content beginning at frame 1.
47455 **
47456 ** We assume that 32-bit loads are atomic and so no locks are needed in
47457 ** order to read from any aReadMark[] entries.
47458 */
47459 struct WalCkptInfo {
47460   u32 nBackfill;                  /* Number of WAL frames backfilled into DB */
47461   u32 aReadMark[WAL_NREADER];     /* Reader marks */
47462 };
47463 #define READMARK_NOT_USED  0xffffffff
47464 
47465 
47466 /* A block of WALINDEX_LOCK_RESERVED bytes beginning at
47467 ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
47468 ** only support mandatory file-locks, we do not read or write data
47469 ** from the region of the file on which locks are applied.
47470 */
47471 #define WALINDEX_LOCK_OFFSET   (sizeof(WalIndexHdr)*2 + sizeof(WalCkptInfo))
47472 #define WALINDEX_LOCK_RESERVED 16
47473 #define WALINDEX_HDR_SIZE      (WALINDEX_LOCK_OFFSET+WALINDEX_LOCK_RESERVED)
47474 
47475 /* Size of header before each frame in wal */
47476 #define WAL_FRAME_HDRSIZE 24
47477 
47478 /* Size of write ahead log header, including checksum. */
47479 /* #define WAL_HDRSIZE 24 */
47480 #define WAL_HDRSIZE 32
47481 
47482 /* WAL magic value. Either this value, or the same value with the least
47483 ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
47484 ** big-endian format in the first 4 bytes of a WAL file.
47485 **
47486 ** If the LSB is set, then the checksums for each frame within the WAL
47487 ** file are calculated by treating all data as an array of 32-bit
47488 ** big-endian words. Otherwise, they are calculated by interpreting
47489 ** all data as 32-bit little-endian words.
47490 */
47491 #define WAL_MAGIC 0x377f0682
47492 
47493 /*
47494 ** Return the offset of frame iFrame in the write-ahead log file,
47495 ** assuming a database page size of szPage bytes. The offset returned
47496 ** is to the start of the write-ahead log frame-header.
47497 */
47498 #define walFrameOffset(iFrame, szPage) (                               \
47499   WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE)         \
47500 )
47501 
47502 /*
47503 ** An open write-ahead log file is represented by an instance of the
47504 ** following object.
47505 */
47506 struct Wal {
47507   sqlite3_vfs *pVfs;         /* The VFS used to create pDbFd */
47508   sqlite3_file *pDbFd;       /* File handle for the database file */
47509   sqlite3_file *pWalFd;      /* File handle for WAL file */
47510   u32 iCallback;             /* Value to pass to log callback (or 0) */
47511   i64 mxWalSize;             /* Truncate WAL to this size upon reset */
47512   int nWiData;               /* Size of array apWiData */
47513   int szFirstBlock;          /* Size of first block written to WAL file */
47514   volatile u32 **apWiData;   /* Pointer to wal-index content in memory */
47515   u32 szPage;                /* Database page size */
47516   i16 readLock;              /* Which read lock is being held.  -1 for none */
47517   u8 syncFlags;              /* Flags to use to sync header writes */
47518   u8 exclusiveMode;          /* Non-zero if connection is in exclusive mode */
47519   u8 writeLock;              /* True if in a write transaction */
47520   u8 ckptLock;               /* True if holding a checkpoint lock */
47521   u8 readOnly;               /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */
47522   u8 truncateOnCommit;       /* True to truncate WAL file on commit */
47523   u8 syncHeader;             /* Fsync the WAL header if true */
47524   u8 padToSectorBoundary;    /* Pad transactions out to the next sector */
47525   WalIndexHdr hdr;           /* Wal-index header for current transaction */
47526   const char *zWalName;      /* Name of WAL file */
47527   u32 nCkpt;                 /* Checkpoint sequence counter in the wal-header */
47528 #ifdef SQLITE_DEBUG
47529   u8 lockError;              /* True if a locking error has occurred */
47530 #endif
47531 };
47532 
47533 /*
47534 ** Candidate values for Wal.exclusiveMode.
47535 */
47536 #define WAL_NORMAL_MODE     0
47537 #define WAL_EXCLUSIVE_MODE  1
47538 #define WAL_HEAPMEMORY_MODE 2
47539 
47540 /*
47541 ** Possible values for WAL.readOnly
47542 */
47543 #define WAL_RDWR        0    /* Normal read/write connection */
47544 #define WAL_RDONLY      1    /* The WAL file is readonly */
47545 #define WAL_SHM_RDONLY  2    /* The SHM file is readonly */
47546 
47547 /*
47548 ** Each page of the wal-index mapping contains a hash-table made up of
47549 ** an array of HASHTABLE_NSLOT elements of the following type.
47550 */
47551 typedef u16 ht_slot;
47552 
47553 /*
47554 ** This structure is used to implement an iterator that loops through
47555 ** all frames in the WAL in database page order. Where two or more frames
47556 ** correspond to the same database page, the iterator visits only the
47557 ** frame most recently written to the WAL (in other words, the frame with
47558 ** the largest index).
47559 **
47560 ** The internals of this structure are only accessed by:
47561 **
47562 **   walIteratorInit() - Create a new iterator,
47563 **   walIteratorNext() - Step an iterator,
47564 **   walIteratorFree() - Free an iterator.
47565 **
47566 ** This functionality is used by the checkpoint code (see walCheckpoint()).
47567 */
47568 struct WalIterator {
47569   int iPrior;                     /* Last result returned from the iterator */
47570   int nSegment;                   /* Number of entries in aSegment[] */
47571   struct WalSegment {
47572     int iNext;                    /* Next slot in aIndex[] not yet returned */
47573     ht_slot *aIndex;              /* i0, i1, i2... such that aPgno[iN] ascend */
47574     u32 *aPgno;                   /* Array of page numbers. */
47575     int nEntry;                   /* Nr. of entries in aPgno[] and aIndex[] */
47576     int iZero;                    /* Frame number associated with aPgno[0] */
47577   } aSegment[1];                  /* One for every 32KB page in the wal-index */
47578 };
47579 
47580 /*
47581 ** Define the parameters of the hash tables in the wal-index file. There
47582 ** is a hash-table following every HASHTABLE_NPAGE page numbers in the
47583 ** wal-index.
47584 **
47585 ** Changing any of these constants will alter the wal-index format and
47586 ** create incompatibilities.
47587 */
47588 #define HASHTABLE_NPAGE      4096                 /* Must be power of 2 */
47589 #define HASHTABLE_HASH_1     383                  /* Should be prime */
47590 #define HASHTABLE_NSLOT      (HASHTABLE_NPAGE*2)  /* Must be a power of 2 */
47591 
47592 /*
47593 ** The block of page numbers associated with the first hash-table in a
47594 ** wal-index is smaller than usual. This is so that there is a complete
47595 ** hash-table on each aligned 32KB page of the wal-index.
47596 */
47597 #define HASHTABLE_NPAGE_ONE  (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
47598 
47599 /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
47600 #define WALINDEX_PGSZ   (                                         \
47601     sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
47602 )
47603 
47604 /*
47605 ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
47606 ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
47607 ** numbered from zero.
47608 **
47609 ** If this call is successful, *ppPage is set to point to the wal-index
47610 ** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs,
47611 ** then an SQLite error code is returned and *ppPage is set to 0.
47612 */
47613 static int walIndexPage(Wal *pWal, int iPage, volatile u32 **ppPage){
47614   int rc = SQLITE_OK;
47615 
47616   /* Enlarge the pWal->apWiData[] array if required */
47617   if( pWal->nWiData<=iPage ){
47618     int nByte = sizeof(u32*)*(iPage+1);
47619     volatile u32 **apNew;
47620     apNew = (volatile u32 **)sqlite3_realloc((void *)pWal->apWiData, nByte);
47621     if( !apNew ){
47622       *ppPage = 0;
47623       return SQLITE_NOMEM;
47624     }
47625     memset((void*)&apNew[pWal->nWiData], 0,
47626            sizeof(u32*)*(iPage+1-pWal->nWiData));
47627     pWal->apWiData = apNew;
47628     pWal->nWiData = iPage+1;
47629   }
47630 
47631   /* Request a pointer to the required page from the VFS */
47632   if( pWal->apWiData[iPage]==0 ){
47633     if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
47634       pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
47635       if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM;
47636     }else{
47637       rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ,
47638           pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
47639       );
47640       if( rc==SQLITE_READONLY ){
47641         pWal->readOnly |= WAL_SHM_RDONLY;
47642         rc = SQLITE_OK;
47643       }
47644     }
47645   }
47646 
47647   *ppPage = pWal->apWiData[iPage];
47648   assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
47649   return rc;
47650 }
47651 
47652 /*
47653 ** Return a pointer to the WalCkptInfo structure in the wal-index.
47654 */
47655 static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
47656   assert( pWal->nWiData>0 && pWal->apWiData[0] );
47657   return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
47658 }
47659 
47660 /*
47661 ** Return a pointer to the WalIndexHdr structure in the wal-index.
47662 */
47663 static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
47664   assert( pWal->nWiData>0 && pWal->apWiData[0] );
47665   return (volatile WalIndexHdr*)pWal->apWiData[0];
47666 }
47667 
47668 /*
47669 ** The argument to this macro must be of type u32. On a little-endian
47670 ** architecture, it returns the u32 value that results from interpreting
47671 ** the 4 bytes as a big-endian value. On a big-endian architecture, it
47672 ** returns the value that would be produced by intepreting the 4 bytes
47673 ** of the input value as a little-endian integer.
47674 */
47675 #define BYTESWAP32(x) ( \
47676     (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8)  \
47677   + (((x)&0x00FF0000)>>8)  + (((x)&0xFF000000)>>24) \
47678 )
47679 
47680 /*
47681 ** Generate or extend an 8 byte checksum based on the data in
47682 ** array aByte[] and the initial values of aIn[0] and aIn[1] (or
47683 ** initial values of 0 and 0 if aIn==NULL).
47684 **
47685 ** The checksum is written back into aOut[] before returning.
47686 **
47687 ** nByte must be a positive multiple of 8.
47688 */
47689 static void walChecksumBytes(
47690   int nativeCksum, /* True for native byte-order, false for non-native */
47691   u8 *a,           /* Content to be checksummed */
47692   int nByte,       /* Bytes of content in a[].  Must be a multiple of 8. */
47693   const u32 *aIn,  /* Initial checksum value input */
47694   u32 *aOut        /* OUT: Final checksum value output */
47695 ){
47696   u32 s1, s2;
47697   u32 *aData = (u32 *)a;
47698   u32 *aEnd = (u32 *)&a[nByte];
47699 
47700   if( aIn ){
47701     s1 = aIn[0];
47702     s2 = aIn[1];
47703   }else{
47704     s1 = s2 = 0;
47705   }
47706 
47707   assert( nByte>=8 );
47708   assert( (nByte&0x00000007)==0 );
47709 
47710   if( nativeCksum ){
47711     do {
47712       s1 += *aData++ + s2;
47713       s2 += *aData++ + s1;
47714     }while( aData<aEnd );
47715   }else{
47716     do {
47717       s1 += BYTESWAP32(aData[0]) + s2;
47718       s2 += BYTESWAP32(aData[1]) + s1;
47719       aData += 2;
47720     }while( aData<aEnd );
47721   }
47722 
47723   aOut[0] = s1;
47724   aOut[1] = s2;
47725 }
47726 
47727 static void walShmBarrier(Wal *pWal){
47728   if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
47729     sqlite3OsShmBarrier(pWal->pDbFd);
47730   }
47731 }
47732 
47733 /*
47734 ** Write the header information in pWal->hdr into the wal-index.
47735 **
47736 ** The checksum on pWal->hdr is updated before it is written.
47737 */
47738 static void walIndexWriteHdr(Wal *pWal){
47739   volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
47740   const int nCksum = offsetof(WalIndexHdr, aCksum);
47741 
47742   assert( pWal->writeLock );
47743   pWal->hdr.isInit = 1;
47744   pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
47745   walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
47746   memcpy((void *)&aHdr[1], (void *)&pWal->hdr, sizeof(WalIndexHdr));
47747   walShmBarrier(pWal);
47748   memcpy((void *)&aHdr[0], (void *)&pWal->hdr, sizeof(WalIndexHdr));
47749 }
47750 
47751 /*
47752 ** This function encodes a single frame header and writes it to a buffer
47753 ** supplied by the caller. A frame-header is made up of a series of
47754 ** 4-byte big-endian integers, as follows:
47755 **
47756 **     0: Page number.
47757 **     4: For commit records, the size of the database image in pages
47758 **        after the commit. For all other records, zero.
47759 **     8: Salt-1 (copied from the wal-header)
47760 **    12: Salt-2 (copied from the wal-header)
47761 **    16: Checksum-1.
47762 **    20: Checksum-2.
47763 */
47764 static void walEncodeFrame(
47765   Wal *pWal,                      /* The write-ahead log */
47766   u32 iPage,                      /* Database page number for frame */
47767   u32 nTruncate,                  /* New db size (or 0 for non-commit frames) */
47768   u8 *aData,                      /* Pointer to page data */
47769   u8 *aFrame                      /* OUT: Write encoded frame here */
47770 ){
47771   int nativeCksum;                /* True for native byte-order checksums */
47772   u32 *aCksum = pWal->hdr.aFrameCksum;
47773   assert( WAL_FRAME_HDRSIZE==24 );
47774   sqlite3Put4byte(&aFrame[0], iPage);
47775   sqlite3Put4byte(&aFrame[4], nTruncate);
47776   memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
47777 
47778   nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
47779   walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
47780   walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
47781 
47782   sqlite3Put4byte(&aFrame[16], aCksum[0]);
47783   sqlite3Put4byte(&aFrame[20], aCksum[1]);
47784 }
47785 
47786 /*
47787 ** Check to see if the frame with header in aFrame[] and content
47788 ** in aData[] is valid.  If it is a valid frame, fill *piPage and
47789 ** *pnTruncate and return true.  Return if the frame is not valid.
47790 */
47791 static int walDecodeFrame(
47792   Wal *pWal,                      /* The write-ahead log */
47793   u32 *piPage,                    /* OUT: Database page number for frame */
47794   u32 *pnTruncate,                /* OUT: New db size (or 0 if not commit) */
47795   u8 *aData,                      /* Pointer to page data (for checksum) */
47796   u8 *aFrame                      /* Frame data */
47797 ){
47798   int nativeCksum;                /* True for native byte-order checksums */
47799   u32 *aCksum = pWal->hdr.aFrameCksum;
47800   u32 pgno;                       /* Page number of the frame */
47801   assert( WAL_FRAME_HDRSIZE==24 );
47802 
47803   /* A frame is only valid if the salt values in the frame-header
47804   ** match the salt values in the wal-header.
47805   */
47806   if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
47807     return 0;
47808   }
47809 
47810   /* A frame is only valid if the page number is creater than zero.
47811   */
47812   pgno = sqlite3Get4byte(&aFrame[0]);
47813   if( pgno==0 ){
47814     return 0;
47815   }
47816 
47817   /* A frame is only valid if a checksum of the WAL header,
47818   ** all prior frams, the first 16 bytes of this frame-header,
47819   ** and the frame-data matches the checksum in the last 8
47820   ** bytes of this frame-header.
47821   */
47822   nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
47823   walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
47824   walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
47825   if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
47826    || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
47827   ){
47828     /* Checksum failed. */
47829     return 0;
47830   }
47831 
47832   /* If we reach this point, the frame is valid.  Return the page number
47833   ** and the new database size.
47834   */
47835   *piPage = pgno;
47836   *pnTruncate = sqlite3Get4byte(&aFrame[4]);
47837   return 1;
47838 }
47839 
47840 
47841 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
47842 /*
47843 ** Names of locks.  This routine is used to provide debugging output and is not
47844 ** a part of an ordinary build.
47845 */
47846 static const char *walLockName(int lockIdx){
47847   if( lockIdx==WAL_WRITE_LOCK ){
47848     return "WRITE-LOCK";
47849   }else if( lockIdx==WAL_CKPT_LOCK ){
47850     return "CKPT-LOCK";
47851   }else if( lockIdx==WAL_RECOVER_LOCK ){
47852     return "RECOVER-LOCK";
47853   }else{
47854     static char zName[15];
47855     sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
47856                      lockIdx-WAL_READ_LOCK(0));
47857     return zName;
47858   }
47859 }
47860 #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
47861 
47862 
47863 /*
47864 ** Set or release locks on the WAL.  Locks are either shared or exclusive.
47865 ** A lock cannot be moved directly between shared and exclusive - it must go
47866 ** through the unlocked state first.
47867 **
47868 ** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
47869 */
47870 static int walLockShared(Wal *pWal, int lockIdx){
47871   int rc;
47872   if( pWal->exclusiveMode ) return SQLITE_OK;
47873   rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
47874                         SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
47875   WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
47876             walLockName(lockIdx), rc ? "failed" : "ok"));
47877   VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
47878   return rc;
47879 }
47880 static void walUnlockShared(Wal *pWal, int lockIdx){
47881   if( pWal->exclusiveMode ) return;
47882   (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
47883                          SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
47884   WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
47885 }
47886 static int walLockExclusive(Wal *pWal, int lockIdx, int n){
47887   int rc;
47888   if( pWal->exclusiveMode ) return SQLITE_OK;
47889   rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
47890                         SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
47891   WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
47892             walLockName(lockIdx), n, rc ? "failed" : "ok"));
47893   VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
47894   return rc;
47895 }
47896 static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
47897   if( pWal->exclusiveMode ) return;
47898   (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
47899                          SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
47900   WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
47901              walLockName(lockIdx), n));
47902 }
47903 
47904 /*
47905 ** Compute a hash on a page number.  The resulting hash value must land
47906 ** between 0 and (HASHTABLE_NSLOT-1).  The walHashNext() function advances
47907 ** the hash to the next value in the event of a collision.
47908 */
47909 static int walHash(u32 iPage){
47910   assert( iPage>0 );
47911   assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
47912   return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
47913 }
47914 static int walNextHash(int iPriorHash){
47915   return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
47916 }
47917 
47918 /*
47919 ** Return pointers to the hash table and page number array stored on
47920 ** page iHash of the wal-index. The wal-index is broken into 32KB pages
47921 ** numbered starting from 0.
47922 **
47923 ** Set output variable *paHash to point to the start of the hash table
47924 ** in the wal-index file. Set *piZero to one less than the frame
47925 ** number of the first frame indexed by this hash table. If a
47926 ** slot in the hash table is set to N, it refers to frame number
47927 ** (*piZero+N) in the log.
47928 **
47929 ** Finally, set *paPgno so that *paPgno[1] is the page number of the
47930 ** first frame indexed by the hash table, frame (*piZero+1).
47931 */
47932 static int walHashGet(
47933   Wal *pWal,                      /* WAL handle */
47934   int iHash,                      /* Find the iHash'th table */
47935   volatile ht_slot **paHash,      /* OUT: Pointer to hash index */
47936   volatile u32 **paPgno,          /* OUT: Pointer to page number array */
47937   u32 *piZero                     /* OUT: Frame associated with *paPgno[0] */
47938 ){
47939   int rc;                         /* Return code */
47940   volatile u32 *aPgno;
47941 
47942   rc = walIndexPage(pWal, iHash, &aPgno);
47943   assert( rc==SQLITE_OK || iHash>0 );
47944 
47945   if( rc==SQLITE_OK ){
47946     u32 iZero;
47947     volatile ht_slot *aHash;
47948 
47949     aHash = (volatile ht_slot *)&aPgno[HASHTABLE_NPAGE];
47950     if( iHash==0 ){
47951       aPgno = &aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
47952       iZero = 0;
47953     }else{
47954       iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
47955     }
47956 
47957     *paPgno = &aPgno[-1];
47958     *paHash = aHash;
47959     *piZero = iZero;
47960   }
47961   return rc;
47962 }
47963 
47964 /*
47965 ** Return the number of the wal-index page that contains the hash-table
47966 ** and page-number array that contain entries corresponding to WAL frame
47967 ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages
47968 ** are numbered starting from 0.
47969 */
47970 static int walFramePage(u32 iFrame){
47971   int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
47972   assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
47973        && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
47974        && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
47975        && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
47976        && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
47977   );
47978   return iHash;
47979 }
47980 
47981 /*
47982 ** Return the page number associated with frame iFrame in this WAL.
47983 */
47984 static u32 walFramePgno(Wal *pWal, u32 iFrame){
47985   int iHash = walFramePage(iFrame);
47986   if( iHash==0 ){
47987     return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
47988   }
47989   return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
47990 }
47991 
47992 /*
47993 ** Remove entries from the hash table that point to WAL slots greater
47994 ** than pWal->hdr.mxFrame.
47995 **
47996 ** This function is called whenever pWal->hdr.mxFrame is decreased due
47997 ** to a rollback or savepoint.
47998 **
47999 ** At most only the hash table containing pWal->hdr.mxFrame needs to be
48000 ** updated.  Any later hash tables will be automatically cleared when
48001 ** pWal->hdr.mxFrame advances to the point where those hash tables are
48002 ** actually needed.
48003 */
48004 static void walCleanupHash(Wal *pWal){
48005   volatile ht_slot *aHash = 0;    /* Pointer to hash table to clear */
48006   volatile u32 *aPgno = 0;        /* Page number array for hash table */
48007   u32 iZero = 0;                  /* frame == (aHash[x]+iZero) */
48008   int iLimit = 0;                 /* Zero values greater than this */
48009   int nByte;                      /* Number of bytes to zero in aPgno[] */
48010   int i;                          /* Used to iterate through aHash[] */
48011 
48012   assert( pWal->writeLock );
48013   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 );
48014   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE );
48015   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 );
48016 
48017   if( pWal->hdr.mxFrame==0 ) return;
48018 
48019   /* Obtain pointers to the hash-table and page-number array containing
48020   ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
48021   ** that the page said hash-table and array reside on is already mapped.
48022   */
48023   assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
48024   assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
48025   walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &aHash, &aPgno, &iZero);
48026 
48027   /* Zero all hash-table entries that correspond to frame numbers greater
48028   ** than pWal->hdr.mxFrame.
48029   */
48030   iLimit = pWal->hdr.mxFrame - iZero;
48031   assert( iLimit>0 );
48032   for(i=0; i<HASHTABLE_NSLOT; i++){
48033     if( aHash[i]>iLimit ){
48034       aHash[i] = 0;
48035     }
48036   }
48037 
48038   /* Zero the entries in the aPgno array that correspond to frames with
48039   ** frame numbers greater than pWal->hdr.mxFrame.
48040   */
48041   nByte = (int)((char *)aHash - (char *)&aPgno[iLimit+1]);
48042   memset((void *)&aPgno[iLimit+1], 0, nByte);
48043 
48044 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
48045   /* Verify that the every entry in the mapping region is still reachable
48046   ** via the hash table even after the cleanup.
48047   */
48048   if( iLimit ){
48049     int i;           /* Loop counter */
48050     int iKey;        /* Hash key */
48051     for(i=1; i<=iLimit; i++){
48052       for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){
48053         if( aHash[iKey]==i ) break;
48054       }
48055       assert( aHash[iKey]==i );
48056     }
48057   }
48058 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
48059 }
48060 
48061 
48062 /*
48063 ** Set an entry in the wal-index that will map database page number
48064 ** pPage into WAL frame iFrame.
48065 */
48066 static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
48067   int rc;                         /* Return code */
48068   u32 iZero = 0;                  /* One less than frame number of aPgno[1] */
48069   volatile u32 *aPgno = 0;        /* Page number array */
48070   volatile ht_slot *aHash = 0;    /* Hash table */
48071 
48072   rc = walHashGet(pWal, walFramePage(iFrame), &aHash, &aPgno, &iZero);
48073 
48074   /* Assuming the wal-index file was successfully mapped, populate the
48075   ** page number array and hash table entry.
48076   */
48077   if( rc==SQLITE_OK ){
48078     int iKey;                     /* Hash table key */
48079     int idx;                      /* Value to write to hash-table slot */
48080     int nCollide;                 /* Number of hash collisions */
48081 
48082     idx = iFrame - iZero;
48083     assert( idx <= HASHTABLE_NSLOT/2 + 1 );
48084 
48085     /* If this is the first entry to be added to this hash-table, zero the
48086     ** entire hash table and aPgno[] array before proceding.
48087     */
48088     if( idx==1 ){
48089       int nByte = (int)((u8 *)&aHash[HASHTABLE_NSLOT] - (u8 *)&aPgno[1]);
48090       memset((void*)&aPgno[1], 0, nByte);
48091     }
48092 
48093     /* If the entry in aPgno[] is already set, then the previous writer
48094     ** must have exited unexpectedly in the middle of a transaction (after
48095     ** writing one or more dirty pages to the WAL to free up memory).
48096     ** Remove the remnants of that writers uncommitted transaction from
48097     ** the hash-table before writing any new entries.
48098     */
48099     if( aPgno[idx] ){
48100       walCleanupHash(pWal);
48101       assert( !aPgno[idx] );
48102     }
48103 
48104     /* Write the aPgno[] array entry and the hash-table slot. */
48105     nCollide = idx;
48106     for(iKey=walHash(iPage); aHash[iKey]; iKey=walNextHash(iKey)){
48107       if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT;
48108     }
48109     aPgno[idx] = iPage;
48110     aHash[iKey] = (ht_slot)idx;
48111 
48112 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
48113     /* Verify that the number of entries in the hash table exactly equals
48114     ** the number of entries in the mapping region.
48115     */
48116     {
48117       int i;           /* Loop counter */
48118       int nEntry = 0;  /* Number of entries in the hash table */
48119       for(i=0; i<HASHTABLE_NSLOT; i++){ if( aHash[i] ) nEntry++; }
48120       assert( nEntry==idx );
48121     }
48122 
48123     /* Verify that the every entry in the mapping region is reachable
48124     ** via the hash table.  This turns out to be a really, really expensive
48125     ** thing to check, so only do this occasionally - not on every
48126     ** iteration.
48127     */
48128     if( (idx&0x3ff)==0 ){
48129       int i;           /* Loop counter */
48130       for(i=1; i<=idx; i++){
48131         for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){
48132           if( aHash[iKey]==i ) break;
48133         }
48134         assert( aHash[iKey]==i );
48135       }
48136     }
48137 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
48138   }
48139 
48140 
48141   return rc;
48142 }
48143 
48144 
48145 /*
48146 ** Recover the wal-index by reading the write-ahead log file.
48147 **
48148 ** This routine first tries to establish an exclusive lock on the
48149 ** wal-index to prevent other threads/processes from doing anything
48150 ** with the WAL or wal-index while recovery is running.  The
48151 ** WAL_RECOVER_LOCK is also held so that other threads will know
48152 ** that this thread is running recovery.  If unable to establish
48153 ** the necessary locks, this routine returns SQLITE_BUSY.
48154 */
48155 static int walIndexRecover(Wal *pWal){
48156   int rc;                         /* Return Code */
48157   i64 nSize;                      /* Size of log file */
48158   u32 aFrameCksum[2] = {0, 0};
48159   int iLock;                      /* Lock offset to lock for checkpoint */
48160   int nLock;                      /* Number of locks to hold */
48161 
48162   /* Obtain an exclusive lock on all byte in the locking range not already
48163   ** locked by the caller. The caller is guaranteed to have locked the
48164   ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
48165   ** If successful, the same bytes that are locked here are unlocked before
48166   ** this function returns.
48167   */
48168   assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
48169   assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
48170   assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
48171   assert( pWal->writeLock );
48172   iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
48173   nLock = SQLITE_SHM_NLOCK - iLock;
48174   rc = walLockExclusive(pWal, iLock, nLock);
48175   if( rc ){
48176     return rc;
48177   }
48178   WALTRACE(("WAL%p: recovery begin...\n", pWal));
48179 
48180   memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
48181 
48182   rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
48183   if( rc!=SQLITE_OK ){
48184     goto recovery_error;
48185   }
48186 
48187   if( nSize>WAL_HDRSIZE ){
48188     u8 aBuf[WAL_HDRSIZE];         /* Buffer to load WAL header into */
48189     u8 *aFrame = 0;               /* Malloc'd buffer to load entire frame */
48190     int szFrame;                  /* Number of bytes in buffer aFrame[] */
48191     u8 *aData;                    /* Pointer to data part of aFrame buffer */
48192     int iFrame;                   /* Index of last frame read */
48193     i64 iOffset;                  /* Next offset to read from log file */
48194     int szPage;                   /* Page size according to the log */
48195     u32 magic;                    /* Magic value read from WAL header */
48196     u32 version;                  /* Magic value read from WAL header */
48197     int isValid;                  /* True if this frame is valid */
48198 
48199     /* Read in the WAL header. */
48200     rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
48201     if( rc!=SQLITE_OK ){
48202       goto recovery_error;
48203     }
48204 
48205     /* If the database page size is not a power of two, or is greater than
48206     ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
48207     ** data. Similarly, if the 'magic' value is invalid, ignore the whole
48208     ** WAL file.
48209     */
48210     magic = sqlite3Get4byte(&aBuf[0]);
48211     szPage = sqlite3Get4byte(&aBuf[8]);
48212     if( (magic&0xFFFFFFFE)!=WAL_MAGIC
48213      || szPage&(szPage-1)
48214      || szPage>SQLITE_MAX_PAGE_SIZE
48215      || szPage<512
48216     ){
48217       goto finished;
48218     }
48219     pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
48220     pWal->szPage = szPage;
48221     pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
48222     memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
48223 
48224     /* Verify that the WAL header checksum is correct */
48225     walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
48226         aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
48227     );
48228     if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
48229      || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
48230     ){
48231       goto finished;
48232     }
48233 
48234     /* Verify that the version number on the WAL format is one that
48235     ** are able to understand */
48236     version = sqlite3Get4byte(&aBuf[4]);
48237     if( version!=WAL_MAX_VERSION ){
48238       rc = SQLITE_CANTOPEN_BKPT;
48239       goto finished;
48240     }
48241 
48242     /* Malloc a buffer to read frames into. */
48243     szFrame = szPage + WAL_FRAME_HDRSIZE;
48244     aFrame = (u8 *)sqlite3_malloc(szFrame);
48245     if( !aFrame ){
48246       rc = SQLITE_NOMEM;
48247       goto recovery_error;
48248     }
48249     aData = &aFrame[WAL_FRAME_HDRSIZE];
48250 
48251     /* Read all frames from the log file. */
48252     iFrame = 0;
48253     for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){
48254       u32 pgno;                   /* Database page number for frame */
48255       u32 nTruncate;              /* dbsize field from frame header */
48256 
48257       /* Read and decode the next log frame. */
48258       iFrame++;
48259       rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
48260       if( rc!=SQLITE_OK ) break;
48261       isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
48262       if( !isValid ) break;
48263       rc = walIndexAppend(pWal, iFrame, pgno);
48264       if( rc!=SQLITE_OK ) break;
48265 
48266       /* If nTruncate is non-zero, this is a commit record. */
48267       if( nTruncate ){
48268         pWal->hdr.mxFrame = iFrame;
48269         pWal->hdr.nPage = nTruncate;
48270         pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
48271         testcase( szPage<=32768 );
48272         testcase( szPage>=65536 );
48273         aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
48274         aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
48275       }
48276     }
48277 
48278     sqlite3_free(aFrame);
48279   }
48280 
48281 finished:
48282   if( rc==SQLITE_OK ){
48283     volatile WalCkptInfo *pInfo;
48284     int i;
48285     pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
48286     pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
48287     walIndexWriteHdr(pWal);
48288 
48289     /* Reset the checkpoint-header. This is safe because this thread is
48290     ** currently holding locks that exclude all other readers, writers and
48291     ** checkpointers.
48292     */
48293     pInfo = walCkptInfo(pWal);
48294     pInfo->nBackfill = 0;
48295     pInfo->aReadMark[0] = 0;
48296     for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
48297     if( pWal->hdr.mxFrame ) pInfo->aReadMark[1] = pWal->hdr.mxFrame;
48298 
48299     /* If more than one frame was recovered from the log file, report an
48300     ** event via sqlite3_log(). This is to help with identifying performance
48301     ** problems caused by applications routinely shutting down without
48302     ** checkpointing the log file.
48303     */
48304     if( pWal->hdr.nPage ){
48305       sqlite3_log(SQLITE_NOTICE_RECOVER_WAL,
48306           "recovered %d frames from WAL file %s",
48307           pWal->hdr.mxFrame, pWal->zWalName
48308       );
48309     }
48310   }
48311 
48312 recovery_error:
48313   WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
48314   walUnlockExclusive(pWal, iLock, nLock);
48315   return rc;
48316 }
48317 
48318 /*
48319 ** Close an open wal-index.
48320 */
48321 static void walIndexClose(Wal *pWal, int isDelete){
48322   if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
48323     int i;
48324     for(i=0; i<pWal->nWiData; i++){
48325       sqlite3_free((void *)pWal->apWiData[i]);
48326       pWal->apWiData[i] = 0;
48327     }
48328   }else{
48329     sqlite3OsShmUnmap(pWal->pDbFd, isDelete);
48330   }
48331 }
48332 
48333 /*
48334 ** Open a connection to the WAL file zWalName. The database file must
48335 ** already be opened on connection pDbFd. The buffer that zWalName points
48336 ** to must remain valid for the lifetime of the returned Wal* handle.
48337 **
48338 ** A SHARED lock should be held on the database file when this function
48339 ** is called. The purpose of this SHARED lock is to prevent any other
48340 ** client from unlinking the WAL or wal-index file. If another process
48341 ** were to do this just after this client opened one of these files, the
48342 ** system would be badly broken.
48343 **
48344 ** If the log file is successfully opened, SQLITE_OK is returned and
48345 ** *ppWal is set to point to a new WAL handle. If an error occurs,
48346 ** an SQLite error code is returned and *ppWal is left unmodified.
48347 */
48348 SQLITE_PRIVATE int sqlite3WalOpen(
48349   sqlite3_vfs *pVfs,              /* vfs module to open wal and wal-index */
48350   sqlite3_file *pDbFd,            /* The open database file */
48351   const char *zWalName,           /* Name of the WAL file */
48352   int bNoShm,                     /* True to run in heap-memory mode */
48353   i64 mxWalSize,                  /* Truncate WAL to this size on reset */
48354   Wal **ppWal                     /* OUT: Allocated Wal handle */
48355 ){
48356   int rc;                         /* Return Code */
48357   Wal *pRet;                      /* Object to allocate and return */
48358   int flags;                      /* Flags passed to OsOpen() */
48359 
48360   assert( zWalName && zWalName[0] );
48361   assert( pDbFd );
48362 
48363   /* In the amalgamation, the os_unix.c and os_win.c source files come before
48364   ** this source file.  Verify that the #defines of the locking byte offsets
48365   ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
48366   */
48367 #ifdef WIN_SHM_BASE
48368   assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
48369 #endif
48370 #ifdef UNIX_SHM_BASE
48371   assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
48372 #endif
48373 
48374 
48375   /* Allocate an instance of struct Wal to return. */
48376   *ppWal = 0;
48377   pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile);
48378   if( !pRet ){
48379     return SQLITE_NOMEM;
48380   }
48381 
48382   pRet->pVfs = pVfs;
48383   pRet->pWalFd = (sqlite3_file *)&pRet[1];
48384   pRet->pDbFd = pDbFd;
48385   pRet->readLock = -1;
48386   pRet->mxWalSize = mxWalSize;
48387   pRet->zWalName = zWalName;
48388   pRet->syncHeader = 1;
48389   pRet->padToSectorBoundary = 1;
48390   pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);
48391 
48392   /* Open file handle on the write-ahead log file. */
48393   flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
48394   rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
48395   if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){
48396     pRet->readOnly = WAL_RDONLY;
48397   }
48398 
48399   if( rc!=SQLITE_OK ){
48400     walIndexClose(pRet, 0);
48401     sqlite3OsClose(pRet->pWalFd);
48402     sqlite3_free(pRet);
48403   }else{
48404     int iDC = sqlite3OsDeviceCharacteristics(pDbFd);
48405     if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; }
48406     if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){
48407       pRet->padToSectorBoundary = 0;
48408     }
48409     *ppWal = pRet;
48410     WALTRACE(("WAL%d: opened\n", pRet));
48411   }
48412   return rc;
48413 }
48414 
48415 /*
48416 ** Change the size to which the WAL file is trucated on each reset.
48417 */
48418 SQLITE_PRIVATE void sqlite3WalLimit(Wal *pWal, i64 iLimit){
48419   if( pWal ) pWal->mxWalSize = iLimit;
48420 }
48421 
48422 /*
48423 ** Find the smallest page number out of all pages held in the WAL that
48424 ** has not been returned by any prior invocation of this method on the
48425 ** same WalIterator object.   Write into *piFrame the frame index where
48426 ** that page was last written into the WAL.  Write into *piPage the page
48427 ** number.
48428 **
48429 ** Return 0 on success.  If there are no pages in the WAL with a page
48430 ** number larger than *piPage, then return 1.
48431 */
48432 static int walIteratorNext(
48433   WalIterator *p,               /* Iterator */
48434   u32 *piPage,                  /* OUT: The page number of the next page */
48435   u32 *piFrame                  /* OUT: Wal frame index of next page */
48436 ){
48437   u32 iMin;                     /* Result pgno must be greater than iMin */
48438   u32 iRet = 0xFFFFFFFF;        /* 0xffffffff is never a valid page number */
48439   int i;                        /* For looping through segments */
48440 
48441   iMin = p->iPrior;
48442   assert( iMin<0xffffffff );
48443   for(i=p->nSegment-1; i>=0; i--){
48444     struct WalSegment *pSegment = &p->aSegment[i];
48445     while( pSegment->iNext<pSegment->nEntry ){
48446       u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
48447       if( iPg>iMin ){
48448         if( iPg<iRet ){
48449           iRet = iPg;
48450           *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
48451         }
48452         break;
48453       }
48454       pSegment->iNext++;
48455     }
48456   }
48457 
48458   *piPage = p->iPrior = iRet;
48459   return (iRet==0xFFFFFFFF);
48460 }
48461 
48462 /*
48463 ** This function merges two sorted lists into a single sorted list.
48464 **
48465 ** aLeft[] and aRight[] are arrays of indices.  The sort key is
48466 ** aContent[aLeft[]] and aContent[aRight[]].  Upon entry, the following
48467 ** is guaranteed for all J<K:
48468 **
48469 **        aContent[aLeft[J]] < aContent[aLeft[K]]
48470 **        aContent[aRight[J]] < aContent[aRight[K]]
48471 **
48472 ** This routine overwrites aRight[] with a new (probably longer) sequence
48473 ** of indices such that the aRight[] contains every index that appears in
48474 ** either aLeft[] or the old aRight[] and such that the second condition
48475 ** above is still met.
48476 **
48477 ** The aContent[aLeft[X]] values will be unique for all X.  And the
48478 ** aContent[aRight[X]] values will be unique too.  But there might be
48479 ** one or more combinations of X and Y such that
48480 **
48481 **      aLeft[X]!=aRight[Y]  &&  aContent[aLeft[X]] == aContent[aRight[Y]]
48482 **
48483 ** When that happens, omit the aLeft[X] and use the aRight[Y] index.
48484 */
48485 static void walMerge(
48486   const u32 *aContent,            /* Pages in wal - keys for the sort */
48487   ht_slot *aLeft,                 /* IN: Left hand input list */
48488   int nLeft,                      /* IN: Elements in array *paLeft */
48489   ht_slot **paRight,              /* IN/OUT: Right hand input list */
48490   int *pnRight,                   /* IN/OUT: Elements in *paRight */
48491   ht_slot *aTmp                   /* Temporary buffer */
48492 ){
48493   int iLeft = 0;                  /* Current index in aLeft */
48494   int iRight = 0;                 /* Current index in aRight */
48495   int iOut = 0;                   /* Current index in output buffer */
48496   int nRight = *pnRight;
48497   ht_slot *aRight = *paRight;
48498 
48499   assert( nLeft>0 && nRight>0 );
48500   while( iRight<nRight || iLeft<nLeft ){
48501     ht_slot logpage;
48502     Pgno dbpage;
48503 
48504     if( (iLeft<nLeft)
48505      && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
48506     ){
48507       logpage = aLeft[iLeft++];
48508     }else{
48509       logpage = aRight[iRight++];
48510     }
48511     dbpage = aContent[logpage];
48512 
48513     aTmp[iOut++] = logpage;
48514     if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
48515 
48516     assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
48517     assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
48518   }
48519 
48520   *paRight = aLeft;
48521   *pnRight = iOut;
48522   memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
48523 }
48524 
48525 /*
48526 ** Sort the elements in list aList using aContent[] as the sort key.
48527 ** Remove elements with duplicate keys, preferring to keep the
48528 ** larger aList[] values.
48529 **
48530 ** The aList[] entries are indices into aContent[].  The values in
48531 ** aList[] are to be sorted so that for all J<K:
48532 **
48533 **      aContent[aList[J]] < aContent[aList[K]]
48534 **
48535 ** For any X and Y such that
48536 **
48537 **      aContent[aList[X]] == aContent[aList[Y]]
48538 **
48539 ** Keep the larger of the two values aList[X] and aList[Y] and discard
48540 ** the smaller.
48541 */
48542 static void walMergesort(
48543   const u32 *aContent,            /* Pages in wal */
48544   ht_slot *aBuffer,               /* Buffer of at least *pnList items to use */
48545   ht_slot *aList,                 /* IN/OUT: List to sort */
48546   int *pnList                     /* IN/OUT: Number of elements in aList[] */
48547 ){
48548   struct Sublist {
48549     int nList;                    /* Number of elements in aList */
48550     ht_slot *aList;               /* Pointer to sub-list content */
48551   };
48552 
48553   const int nList = *pnList;      /* Size of input list */
48554   int nMerge = 0;                 /* Number of elements in list aMerge */
48555   ht_slot *aMerge = 0;            /* List to be merged */
48556   int iList;                      /* Index into input list */
48557   int iSub = 0;                   /* Index into aSub array */
48558   struct Sublist aSub[13];        /* Array of sub-lists */
48559 
48560   memset(aSub, 0, sizeof(aSub));
48561   assert( nList<=HASHTABLE_NPAGE && nList>0 );
48562   assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );
48563 
48564   for(iList=0; iList<nList; iList++){
48565     nMerge = 1;
48566     aMerge = &aList[iList];
48567     for(iSub=0; iList & (1<<iSub); iSub++){
48568       struct Sublist *p = &aSub[iSub];
48569       assert( p->aList && p->nList<=(1<<iSub) );
48570       assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
48571       walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
48572     }
48573     aSub[iSub].aList = aMerge;
48574     aSub[iSub].nList = nMerge;
48575   }
48576 
48577   for(iSub++; iSub<ArraySize(aSub); iSub++){
48578     if( nList & (1<<iSub) ){
48579       struct Sublist *p = &aSub[iSub];
48580       assert( p->nList<=(1<<iSub) );
48581       assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
48582       walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
48583     }
48584   }
48585   assert( aMerge==aList );
48586   *pnList = nMerge;
48587 
48588 #ifdef SQLITE_DEBUG
48589   {
48590     int i;
48591     for(i=1; i<*pnList; i++){
48592       assert( aContent[aList[i]] > aContent[aList[i-1]] );
48593     }
48594   }
48595 #endif
48596 }
48597 
48598 /*
48599 ** Free an iterator allocated by walIteratorInit().
48600 */
48601 static void walIteratorFree(WalIterator *p){
48602   sqlite3ScratchFree(p);
48603 }
48604 
48605 /*
48606 ** Construct a WalInterator object that can be used to loop over all
48607 ** pages in the WAL in ascending order. The caller must hold the checkpoint
48608 ** lock.
48609 **
48610 ** On success, make *pp point to the newly allocated WalInterator object
48611 ** return SQLITE_OK. Otherwise, return an error code. If this routine
48612 ** returns an error, the value of *pp is undefined.
48613 **
48614 ** The calling routine should invoke walIteratorFree() to destroy the
48615 ** WalIterator object when it has finished with it.
48616 */
48617 static int walIteratorInit(Wal *pWal, WalIterator **pp){
48618   WalIterator *p;                 /* Return value */
48619   int nSegment;                   /* Number of segments to merge */
48620   u32 iLast;                      /* Last frame in log */
48621   int nByte;                      /* Number of bytes to allocate */
48622   int i;                          /* Iterator variable */
48623   ht_slot *aTmp;                  /* Temp space used by merge-sort */
48624   int rc = SQLITE_OK;             /* Return Code */
48625 
48626   /* This routine only runs while holding the checkpoint lock. And
48627   ** it only runs if there is actually content in the log (mxFrame>0).
48628   */
48629   assert( pWal->ckptLock && pWal->hdr.mxFrame>0 );
48630   iLast = pWal->hdr.mxFrame;
48631 
48632   /* Allocate space for the WalIterator object. */
48633   nSegment = walFramePage(iLast) + 1;
48634   nByte = sizeof(WalIterator)
48635         + (nSegment-1)*sizeof(struct WalSegment)
48636         + iLast*sizeof(ht_slot);
48637   p = (WalIterator *)sqlite3ScratchMalloc(nByte);
48638   if( !p ){
48639     return SQLITE_NOMEM;
48640   }
48641   memset(p, 0, nByte);
48642   p->nSegment = nSegment;
48643 
48644   /* Allocate temporary space used by the merge-sort routine. This block
48645   ** of memory will be freed before this function returns.
48646   */
48647   aTmp = (ht_slot *)sqlite3ScratchMalloc(
48648       sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
48649   );
48650   if( !aTmp ){
48651     rc = SQLITE_NOMEM;
48652   }
48653 
48654   for(i=0; rc==SQLITE_OK && i<nSegment; i++){
48655     volatile ht_slot *aHash;
48656     u32 iZero;
48657     volatile u32 *aPgno;
48658 
48659     rc = walHashGet(pWal, i, &aHash, &aPgno, &iZero);
48660     if( rc==SQLITE_OK ){
48661       int j;                      /* Counter variable */
48662       int nEntry;                 /* Number of entries in this segment */
48663       ht_slot *aIndex;            /* Sorted index for this segment */
48664 
48665       aPgno++;
48666       if( (i+1)==nSegment ){
48667         nEntry = (int)(iLast - iZero);
48668       }else{
48669         nEntry = (int)((u32*)aHash - (u32*)aPgno);
48670       }
48671       aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[iZero];
48672       iZero++;
48673 
48674       for(j=0; j<nEntry; j++){
48675         aIndex[j] = (ht_slot)j;
48676       }
48677       walMergesort((u32 *)aPgno, aTmp, aIndex, &nEntry);
48678       p->aSegment[i].iZero = iZero;
48679       p->aSegment[i].nEntry = nEntry;
48680       p->aSegment[i].aIndex = aIndex;
48681       p->aSegment[i].aPgno = (u32 *)aPgno;
48682     }
48683   }
48684   sqlite3ScratchFree(aTmp);
48685 
48686   if( rc!=SQLITE_OK ){
48687     walIteratorFree(p);
48688   }
48689   *pp = p;
48690   return rc;
48691 }
48692 
48693 /*
48694 ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and
48695 ** n. If the attempt fails and parameter xBusy is not NULL, then it is a
48696 ** busy-handler function. Invoke it and retry the lock until either the
48697 ** lock is successfully obtained or the busy-handler returns 0.
48698 */
48699 static int walBusyLock(
48700   Wal *pWal,                      /* WAL connection */
48701   int (*xBusy)(void*),            /* Function to call when busy */
48702   void *pBusyArg,                 /* Context argument for xBusyHandler */
48703   int lockIdx,                    /* Offset of first byte to lock */
48704   int n                           /* Number of bytes to lock */
48705 ){
48706   int rc;
48707   do {
48708     rc = walLockExclusive(pWal, lockIdx, n);
48709   }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
48710   return rc;
48711 }
48712 
48713 /*
48714 ** The cache of the wal-index header must be valid to call this function.
48715 ** Return the page-size in bytes used by the database.
48716 */
48717 static int walPagesize(Wal *pWal){
48718   return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
48719 }
48720 
48721 /*
48722 ** Copy as much content as we can from the WAL back into the database file
48723 ** in response to an sqlite3_wal_checkpoint() request or the equivalent.
48724 **
48725 ** The amount of information copies from WAL to database might be limited
48726 ** by active readers.  This routine will never overwrite a database page
48727 ** that a concurrent reader might be using.
48728 **
48729 ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
48730 ** SQLite is in WAL-mode in synchronous=NORMAL.  That means that if
48731 ** checkpoints are always run by a background thread or background
48732 ** process, foreground threads will never block on a lengthy fsync call.
48733 **
48734 ** Fsync is called on the WAL before writing content out of the WAL and
48735 ** into the database.  This ensures that if the new content is persistent
48736 ** in the WAL and can be recovered following a power-loss or hard reset.
48737 **
48738 ** Fsync is also called on the database file if (and only if) the entire
48739 ** WAL content is copied into the database file.  This second fsync makes
48740 ** it safe to delete the WAL since the new content will persist in the
48741 ** database file.
48742 **
48743 ** This routine uses and updates the nBackfill field of the wal-index header.
48744 ** This is the only routine tha will increase the value of nBackfill.
48745 ** (A WAL reset or recovery will revert nBackfill to zero, but not increase
48746 ** its value.)
48747 **
48748 ** The caller must be holding sufficient locks to ensure that no other
48749 ** checkpoint is running (in any other thread or process) at the same
48750 ** time.
48751 */
48752 static int walCheckpoint(
48753   Wal *pWal,                      /* Wal connection */
48754   int eMode,                      /* One of PASSIVE, FULL or RESTART */
48755   int (*xBusyCall)(void*),        /* Function to call when busy */
48756   void *pBusyArg,                 /* Context argument for xBusyHandler */
48757   int sync_flags,                 /* Flags for OsSync() (or 0) */
48758   u8 *zBuf                        /* Temporary buffer to use */
48759 ){
48760   int rc;                         /* Return code */
48761   int szPage;                     /* Database page-size */
48762   WalIterator *pIter = 0;         /* Wal iterator context */
48763   u32 iDbpage = 0;                /* Next database page to write */
48764   u32 iFrame = 0;                 /* Wal frame containing data for iDbpage */
48765   u32 mxSafeFrame;                /* Max frame that can be backfilled */
48766   u32 mxPage;                     /* Max database page to write */
48767   int i;                          /* Loop counter */
48768   volatile WalCkptInfo *pInfo;    /* The checkpoint status information */
48769   int (*xBusy)(void*) = 0;        /* Function to call when waiting for locks */
48770 
48771   szPage = walPagesize(pWal);
48772   testcase( szPage<=32768 );
48773   testcase( szPage>=65536 );
48774   pInfo = walCkptInfo(pWal);
48775   if( pInfo->nBackfill>=pWal->hdr.mxFrame ) return SQLITE_OK;
48776 
48777   /* Allocate the iterator */
48778   rc = walIteratorInit(pWal, &pIter);
48779   if( rc!=SQLITE_OK ){
48780     return rc;
48781   }
48782   assert( pIter );
48783 
48784   if( eMode!=SQLITE_CHECKPOINT_PASSIVE ) xBusy = xBusyCall;
48785 
48786   /* Compute in mxSafeFrame the index of the last frame of the WAL that is
48787   ** safe to write into the database.  Frames beyond mxSafeFrame might
48788   ** overwrite database pages that are in use by active readers and thus
48789   ** cannot be backfilled from the WAL.
48790   */
48791   mxSafeFrame = pWal->hdr.mxFrame;
48792   mxPage = pWal->hdr.nPage;
48793   for(i=1; i<WAL_NREADER; i++){
48794     u32 y = pInfo->aReadMark[i];
48795     if( mxSafeFrame>y ){
48796       assert( y<=pWal->hdr.mxFrame );
48797       rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
48798       if( rc==SQLITE_OK ){
48799         pInfo->aReadMark[i] = (i==1 ? mxSafeFrame : READMARK_NOT_USED);
48800         walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
48801       }else if( rc==SQLITE_BUSY ){
48802         mxSafeFrame = y;
48803         xBusy = 0;
48804       }else{
48805         goto walcheckpoint_out;
48806       }
48807     }
48808   }
48809 
48810   if( pInfo->nBackfill<mxSafeFrame
48811    && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0), 1))==SQLITE_OK
48812   ){
48813     i64 nSize;                    /* Current size of database file */
48814     u32 nBackfill = pInfo->nBackfill;
48815 
48816     /* Sync the WAL to disk */
48817     if( sync_flags ){
48818       rc = sqlite3OsSync(pWal->pWalFd, sync_flags);
48819     }
48820 
48821     /* If the database may grow as a result of this checkpoint, hint
48822     ** about the eventual size of the db file to the VFS layer.
48823     */
48824     if( rc==SQLITE_OK ){
48825       i64 nReq = ((i64)mxPage * szPage);
48826       rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
48827       if( rc==SQLITE_OK && nSize<nReq ){
48828         sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq);
48829       }
48830     }
48831 
48832 
48833     /* Iterate through the contents of the WAL, copying data to the db file. */
48834     while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
48835       i64 iOffset;
48836       assert( walFramePgno(pWal, iFrame)==iDbpage );
48837       if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ) continue;
48838       iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
48839       /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
48840       rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
48841       if( rc!=SQLITE_OK ) break;
48842       iOffset = (iDbpage-1)*(i64)szPage;
48843       testcase( IS_BIG_INT(iOffset) );
48844       rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
48845       if( rc!=SQLITE_OK ) break;
48846     }
48847 
48848     /* If work was actually accomplished... */
48849     if( rc==SQLITE_OK ){
48850       if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
48851         i64 szDb = pWal->hdr.nPage*(i64)szPage;
48852         testcase( IS_BIG_INT(szDb) );
48853         rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
48854         if( rc==SQLITE_OK && sync_flags ){
48855           rc = sqlite3OsSync(pWal->pDbFd, sync_flags);
48856         }
48857       }
48858       if( rc==SQLITE_OK ){
48859         pInfo->nBackfill = mxSafeFrame;
48860       }
48861     }
48862 
48863     /* Release the reader lock held while backfilling */
48864     walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
48865   }
48866 
48867   if( rc==SQLITE_BUSY ){
48868     /* Reset the return code so as not to report a checkpoint failure
48869     ** just because there are active readers.  */
48870     rc = SQLITE_OK;
48871   }
48872 
48873   /* If this is an SQLITE_CHECKPOINT_RESTART operation, and the entire wal
48874   ** file has been copied into the database file, then block until all
48875   ** readers have finished using the wal file. This ensures that the next
48876   ** process to write to the database restarts the wal file.
48877   */
48878   if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
48879     assert( pWal->writeLock );
48880     if( pInfo->nBackfill<pWal->hdr.mxFrame ){
48881       rc = SQLITE_BUSY;
48882     }else if( eMode==SQLITE_CHECKPOINT_RESTART ){
48883       assert( mxSafeFrame==pWal->hdr.mxFrame );
48884       rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
48885       if( rc==SQLITE_OK ){
48886         walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
48887       }
48888     }
48889   }
48890 
48891  walcheckpoint_out:
48892   walIteratorFree(pIter);
48893   return rc;
48894 }
48895 
48896 /*
48897 ** If the WAL file is currently larger than nMax bytes in size, truncate
48898 ** it to exactly nMax bytes. If an error occurs while doing so, ignore it.
48899 */
48900 static void walLimitSize(Wal *pWal, i64 nMax){
48901   i64 sz;
48902   int rx;
48903   sqlite3BeginBenignMalloc();
48904   rx = sqlite3OsFileSize(pWal->pWalFd, &sz);
48905   if( rx==SQLITE_OK && (sz > nMax ) ){
48906     rx = sqlite3OsTruncate(pWal->pWalFd, nMax);
48907   }
48908   sqlite3EndBenignMalloc();
48909   if( rx ){
48910     sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName);
48911   }
48912 }
48913 
48914 /*
48915 ** Close a connection to a log file.
48916 */
48917 SQLITE_PRIVATE int sqlite3WalClose(
48918   Wal *pWal,                      /* Wal to close */
48919   int sync_flags,                 /* Flags to pass to OsSync() (or 0) */
48920   int nBuf,
48921   u8 *zBuf                        /* Buffer of at least nBuf bytes */
48922 ){
48923   int rc = SQLITE_OK;
48924   if( pWal ){
48925     int isDelete = 0;             /* True to unlink wal and wal-index files */
48926 
48927     /* If an EXCLUSIVE lock can be obtained on the database file (using the
48928     ** ordinary, rollback-mode locking methods, this guarantees that the
48929     ** connection associated with this log file is the only connection to
48930     ** the database. In this case checkpoint the database and unlink both
48931     ** the wal and wal-index files.
48932     **
48933     ** The EXCLUSIVE lock is not released before returning.
48934     */
48935     rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE);
48936     if( rc==SQLITE_OK ){
48937       if( pWal->exclusiveMode==WAL_NORMAL_MODE ){
48938         pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
48939       }
48940       rc = sqlite3WalCheckpoint(
48941           pWal, SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0
48942       );
48943       if( rc==SQLITE_OK ){
48944         int bPersist = -1;
48945         sqlite3OsFileControlHint(
48946             pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist
48947         );
48948         if( bPersist!=1 ){
48949           /* Try to delete the WAL file if the checkpoint completed and
48950           ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal
48951           ** mode (!bPersist) */
48952           isDelete = 1;
48953         }else if( pWal->mxWalSize>=0 ){
48954           /* Try to truncate the WAL file to zero bytes if the checkpoint
48955           ** completed and fsynced (rc==SQLITE_OK) and we are in persistent
48956           ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a
48957           ** non-negative value (pWal->mxWalSize>=0).  Note that we truncate
48958           ** to zero bytes as truncating to the journal_size_limit might
48959           ** leave a corrupt WAL file on disk. */
48960           walLimitSize(pWal, 0);
48961         }
48962       }
48963     }
48964 
48965     walIndexClose(pWal, isDelete);
48966     sqlite3OsClose(pWal->pWalFd);
48967     if( isDelete ){
48968       sqlite3BeginBenignMalloc();
48969       sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
48970       sqlite3EndBenignMalloc();
48971     }
48972     WALTRACE(("WAL%p: closed\n", pWal));
48973     sqlite3_free((void *)pWal->apWiData);
48974     sqlite3_free(pWal);
48975   }
48976   return rc;
48977 }
48978 
48979 /*
48980 ** Try to read the wal-index header.  Return 0 on success and 1 if
48981 ** there is a problem.
48982 **
48983 ** The wal-index is in shared memory.  Another thread or process might
48984 ** be writing the header at the same time this procedure is trying to
48985 ** read it, which might result in inconsistency.  A dirty read is detected
48986 ** by verifying that both copies of the header are the same and also by
48987 ** a checksum on the header.
48988 **
48989 ** If and only if the read is consistent and the header is different from
48990 ** pWal->hdr, then pWal->hdr is updated to the content of the new header
48991 ** and *pChanged is set to 1.
48992 **
48993 ** If the checksum cannot be verified return non-zero. If the header
48994 ** is read successfully and the checksum verified, return zero.
48995 */
48996 static int walIndexTryHdr(Wal *pWal, int *pChanged){
48997   u32 aCksum[2];                  /* Checksum on the header content */
48998   WalIndexHdr h1, h2;             /* Two copies of the header content */
48999   WalIndexHdr volatile *aHdr;     /* Header in shared memory */
49000 
49001   /* The first page of the wal-index must be mapped at this point. */
49002   assert( pWal->nWiData>0 && pWal->apWiData[0] );
49003 
49004   /* Read the header. This might happen concurrently with a write to the
49005   ** same area of shared memory on a different CPU in a SMP,
49006   ** meaning it is possible that an inconsistent snapshot is read
49007   ** from the file. If this happens, return non-zero.
49008   **
49009   ** There are two copies of the header at the beginning of the wal-index.
49010   ** When reading, read [0] first then [1].  Writes are in the reverse order.
49011   ** Memory barriers are used to prevent the compiler or the hardware from
49012   ** reordering the reads and writes.
49013   */
49014   aHdr = walIndexHdr(pWal);
49015   memcpy(&h1, (void *)&aHdr[0], sizeof(h1));
49016   walShmBarrier(pWal);
49017   memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
49018 
49019   if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
49020     return 1;   /* Dirty read */
49021   }
49022   if( h1.isInit==0 ){
49023     return 1;   /* Malformed header - probably all zeros */
49024   }
49025   walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
49026   if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
49027     return 1;   /* Checksum does not match */
49028   }
49029 
49030   if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
49031     *pChanged = 1;
49032     memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
49033     pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
49034     testcase( pWal->szPage<=32768 );
49035     testcase( pWal->szPage>=65536 );
49036   }
49037 
49038   /* The header was successfully read. Return zero. */
49039   return 0;
49040 }
49041 
49042 /*
49043 ** Read the wal-index header from the wal-index and into pWal->hdr.
49044 ** If the wal-header appears to be corrupt, try to reconstruct the
49045 ** wal-index from the WAL before returning.
49046 **
49047 ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
49048 ** changed by this opertion.  If pWal->hdr is unchanged, set *pChanged
49049 ** to 0.
49050 **
49051 ** If the wal-index header is successfully read, return SQLITE_OK.
49052 ** Otherwise an SQLite error code.
49053 */
49054 static int walIndexReadHdr(Wal *pWal, int *pChanged){
49055   int rc;                         /* Return code */
49056   int badHdr;                     /* True if a header read failed */
49057   volatile u32 *page0;            /* Chunk of wal-index containing header */
49058 
49059   /* Ensure that page 0 of the wal-index (the page that contains the
49060   ** wal-index header) is mapped. Return early if an error occurs here.
49061   */
49062   assert( pChanged );
49063   rc = walIndexPage(pWal, 0, &page0);
49064   if( rc!=SQLITE_OK ){
49065     return rc;
49066   };
49067   assert( page0 || pWal->writeLock==0 );
49068 
49069   /* If the first page of the wal-index has been mapped, try to read the
49070   ** wal-index header immediately, without holding any lock. This usually
49071   ** works, but may fail if the wal-index header is corrupt or currently
49072   ** being modified by another thread or process.
49073   */
49074   badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
49075 
49076   /* If the first attempt failed, it might have been due to a race
49077   ** with a writer.  So get a WRITE lock and try again.
49078   */
49079   assert( badHdr==0 || pWal->writeLock==0 );
49080   if( badHdr ){
49081     if( pWal->readOnly & WAL_SHM_RDONLY ){
49082       if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){
49083         walUnlockShared(pWal, WAL_WRITE_LOCK);
49084         rc = SQLITE_READONLY_RECOVERY;
49085       }
49086     }else if( SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){
49087       pWal->writeLock = 1;
49088       if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
49089         badHdr = walIndexTryHdr(pWal, pChanged);
49090         if( badHdr ){
49091           /* If the wal-index header is still malformed even while holding
49092           ** a WRITE lock, it can only mean that the header is corrupted and
49093           ** needs to be reconstructed.  So run recovery to do exactly that.
49094           */
49095           rc = walIndexRecover(pWal);
49096           *pChanged = 1;
49097         }
49098       }
49099       pWal->writeLock = 0;
49100       walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
49101     }
49102   }
49103 
49104   /* If the header is read successfully, check the version number to make
49105   ** sure the wal-index was not constructed with some future format that
49106   ** this version of SQLite cannot understand.
49107   */
49108   if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
49109     rc = SQLITE_CANTOPEN_BKPT;
49110   }
49111 
49112   return rc;
49113 }
49114 
49115 /*
49116 ** This is the value that walTryBeginRead returns when it needs to
49117 ** be retried.
49118 */
49119 #define WAL_RETRY  (-1)
49120 
49121 /*
49122 ** Attempt to start a read transaction.  This might fail due to a race or
49123 ** other transient condition.  When that happens, it returns WAL_RETRY to
49124 ** indicate to the caller that it is safe to retry immediately.
49125 **
49126 ** On success return SQLITE_OK.  On a permanent failure (such an
49127 ** I/O error or an SQLITE_BUSY because another process is running
49128 ** recovery) return a positive error code.
49129 **
49130 ** The useWal parameter is true to force the use of the WAL and disable
49131 ** the case where the WAL is bypassed because it has been completely
49132 ** checkpointed.  If useWal==0 then this routine calls walIndexReadHdr()
49133 ** to make a copy of the wal-index header into pWal->hdr.  If the
49134 ** wal-index header has changed, *pChanged is set to 1 (as an indication
49135 ** to the caller that the local paget cache is obsolete and needs to be
49136 ** flushed.)  When useWal==1, the wal-index header is assumed to already
49137 ** be loaded and the pChanged parameter is unused.
49138 **
49139 ** The caller must set the cnt parameter to the number of prior calls to
49140 ** this routine during the current read attempt that returned WAL_RETRY.
49141 ** This routine will start taking more aggressive measures to clear the
49142 ** race conditions after multiple WAL_RETRY returns, and after an excessive
49143 ** number of errors will ultimately return SQLITE_PROTOCOL.  The
49144 ** SQLITE_PROTOCOL return indicates that some other process has gone rogue
49145 ** and is not honoring the locking protocol.  There is a vanishingly small
49146 ** chance that SQLITE_PROTOCOL could be returned because of a run of really
49147 ** bad luck when there is lots of contention for the wal-index, but that
49148 ** possibility is so small that it can be safely neglected, we believe.
49149 **
49150 ** On success, this routine obtains a read lock on
49151 ** WAL_READ_LOCK(pWal->readLock).  The pWal->readLock integer is
49152 ** in the range 0 <= pWal->readLock < WAL_NREADER.  If pWal->readLock==(-1)
49153 ** that means the Wal does not hold any read lock.  The reader must not
49154 ** access any database page that is modified by a WAL frame up to and
49155 ** including frame number aReadMark[pWal->readLock].  The reader will
49156 ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
49157 ** Or if pWal->readLock==0, then the reader will ignore the WAL
49158 ** completely and get all content directly from the database file.
49159 ** If the useWal parameter is 1 then the WAL will never be ignored and
49160 ** this routine will always set pWal->readLock>0 on success.
49161 ** When the read transaction is completed, the caller must release the
49162 ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
49163 **
49164 ** This routine uses the nBackfill and aReadMark[] fields of the header
49165 ** to select a particular WAL_READ_LOCK() that strives to let the
49166 ** checkpoint process do as much work as possible.  This routine might
49167 ** update values of the aReadMark[] array in the header, but if it does
49168 ** so it takes care to hold an exclusive lock on the corresponding
49169 ** WAL_READ_LOCK() while changing values.
49170 */
49171 static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
49172   volatile WalCkptInfo *pInfo;    /* Checkpoint information in wal-index */
49173   u32 mxReadMark;                 /* Largest aReadMark[] value */
49174   int mxI;                        /* Index of largest aReadMark[] value */
49175   int i;                          /* Loop counter */
49176   int rc = SQLITE_OK;             /* Return code  */
49177 
49178   assert( pWal->readLock<0 );     /* Not currently locked */
49179 
49180   /* Take steps to avoid spinning forever if there is a protocol error.
49181   **
49182   ** Circumstances that cause a RETRY should only last for the briefest
49183   ** instances of time.  No I/O or other system calls are done while the
49184   ** locks are held, so the locks should not be held for very long. But
49185   ** if we are unlucky, another process that is holding a lock might get
49186   ** paged out or take a page-fault that is time-consuming to resolve,
49187   ** during the few nanoseconds that it is holding the lock.  In that case,
49188   ** it might take longer than normal for the lock to free.
49189   **
49190   ** After 5 RETRYs, we begin calling sqlite3OsSleep().  The first few
49191   ** calls to sqlite3OsSleep() have a delay of 1 microsecond.  Really this
49192   ** is more of a scheduler yield than an actual delay.  But on the 10th
49193   ** an subsequent retries, the delays start becoming longer and longer,
49194   ** so that on the 100th (and last) RETRY we delay for 21 milliseconds.
49195   ** The total delay time before giving up is less than 1 second.
49196   */
49197   if( cnt>5 ){
49198     int nDelay = 1;                      /* Pause time in microseconds */
49199     if( cnt>100 ){
49200       VVA_ONLY( pWal->lockError = 1; )
49201       return SQLITE_PROTOCOL;
49202     }
49203     if( cnt>=10 ) nDelay = (cnt-9)*238;  /* Max delay 21ms. Total delay 996ms */
49204     sqlite3OsSleep(pWal->pVfs, nDelay);
49205   }
49206 
49207   if( !useWal ){
49208     rc = walIndexReadHdr(pWal, pChanged);
49209     if( rc==SQLITE_BUSY ){
49210       /* If there is not a recovery running in another thread or process
49211       ** then convert BUSY errors to WAL_RETRY.  If recovery is known to
49212       ** be running, convert BUSY to BUSY_RECOVERY.  There is a race here
49213       ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
49214       ** would be technically correct.  But the race is benign since with
49215       ** WAL_RETRY this routine will be called again and will probably be
49216       ** right on the second iteration.
49217       */
49218       if( pWal->apWiData[0]==0 ){
49219         /* This branch is taken when the xShmMap() method returns SQLITE_BUSY.
49220         ** We assume this is a transient condition, so return WAL_RETRY. The
49221         ** xShmMap() implementation used by the default unix and win32 VFS
49222         ** modules may return SQLITE_BUSY due to a race condition in the
49223         ** code that determines whether or not the shared-memory region
49224         ** must be zeroed before the requested page is returned.
49225         */
49226         rc = WAL_RETRY;
49227       }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){
49228         walUnlockShared(pWal, WAL_RECOVER_LOCK);
49229         rc = WAL_RETRY;
49230       }else if( rc==SQLITE_BUSY ){
49231         rc = SQLITE_BUSY_RECOVERY;
49232       }
49233     }
49234     if( rc!=SQLITE_OK ){
49235       return rc;
49236     }
49237   }
49238 
49239   pInfo = walCkptInfo(pWal);
49240   if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame ){
49241     /* The WAL has been completely backfilled (or it is empty).
49242     ** and can be safely ignored.
49243     */
49244     rc = walLockShared(pWal, WAL_READ_LOCK(0));
49245     walShmBarrier(pWal);
49246     if( rc==SQLITE_OK ){
49247       if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
49248         /* It is not safe to allow the reader to continue here if frames
49249         ** may have been appended to the log before READ_LOCK(0) was obtained.
49250         ** When holding READ_LOCK(0), the reader ignores the entire log file,
49251         ** which implies that the database file contains a trustworthy
49252         ** snapshoT. Since holding READ_LOCK(0) prevents a checkpoint from
49253         ** happening, this is usually correct.
49254         **
49255         ** However, if frames have been appended to the log (or if the log
49256         ** is wrapped and written for that matter) before the READ_LOCK(0)
49257         ** is obtained, that is not necessarily true. A checkpointer may
49258         ** have started to backfill the appended frames but crashed before
49259         ** it finished. Leaving a corrupt image in the database file.
49260         */
49261         walUnlockShared(pWal, WAL_READ_LOCK(0));
49262         return WAL_RETRY;
49263       }
49264       pWal->readLock = 0;
49265       return SQLITE_OK;
49266     }else if( rc!=SQLITE_BUSY ){
49267       return rc;
49268     }
49269   }
49270 
49271   /* If we get this far, it means that the reader will want to use
49272   ** the WAL to get at content from recent commits.  The job now is
49273   ** to select one of the aReadMark[] entries that is closest to
49274   ** but not exceeding pWal->hdr.mxFrame and lock that entry.
49275   */
49276   mxReadMark = 0;
49277   mxI = 0;
49278   for(i=1; i<WAL_NREADER; i++){
49279     u32 thisMark = pInfo->aReadMark[i];
49280     if( mxReadMark<=thisMark && thisMark<=pWal->hdr.mxFrame ){
49281       assert( thisMark!=READMARK_NOT_USED );
49282       mxReadMark = thisMark;
49283       mxI = i;
49284     }
49285   }
49286   /* There was once an "if" here. The extra "{" is to preserve indentation. */
49287   {
49288     if( (pWal->readOnly & WAL_SHM_RDONLY)==0
49289      && (mxReadMark<pWal->hdr.mxFrame || mxI==0)
49290     ){
49291       for(i=1; i<WAL_NREADER; i++){
49292         rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
49293         if( rc==SQLITE_OK ){
49294           mxReadMark = pInfo->aReadMark[i] = pWal->hdr.mxFrame;
49295           mxI = i;
49296           walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
49297           break;
49298         }else if( rc!=SQLITE_BUSY ){
49299           return rc;
49300         }
49301       }
49302     }
49303     if( mxI==0 ){
49304       assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 );
49305       return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTLOCK;
49306     }
49307 
49308     rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
49309     if( rc ){
49310       return rc==SQLITE_BUSY ? WAL_RETRY : rc;
49311     }
49312     /* Now that the read-lock has been obtained, check that neither the
49313     ** value in the aReadMark[] array or the contents of the wal-index
49314     ** header have changed.
49315     **
49316     ** It is necessary to check that the wal-index header did not change
49317     ** between the time it was read and when the shared-lock was obtained
49318     ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
49319     ** that the log file may have been wrapped by a writer, or that frames
49320     ** that occur later in the log than pWal->hdr.mxFrame may have been
49321     ** copied into the database by a checkpointer. If either of these things
49322     ** happened, then reading the database with the current value of
49323     ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
49324     ** instead.
49325     **
49326     ** This does not guarantee that the copy of the wal-index header is up to
49327     ** date before proceeding. That would not be possible without somehow
49328     ** blocking writers. It only guarantees that a dangerous checkpoint or
49329     ** log-wrap (either of which would require an exclusive lock on
49330     ** WAL_READ_LOCK(mxI)) has not occurred since the snapshot was valid.
49331     */
49332     walShmBarrier(pWal);
49333     if( pInfo->aReadMark[mxI]!=mxReadMark
49334      || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
49335     ){
49336       walUnlockShared(pWal, WAL_READ_LOCK(mxI));
49337       return WAL_RETRY;
49338     }else{
49339       assert( mxReadMark<=pWal->hdr.mxFrame );
49340       pWal->readLock = (i16)mxI;
49341     }
49342   }
49343   return rc;
49344 }
49345 
49346 /*
49347 ** Begin a read transaction on the database.
49348 **
49349 ** This routine used to be called sqlite3OpenSnapshot() and with good reason:
49350 ** it takes a snapshot of the state of the WAL and wal-index for the current
49351 ** instant in time.  The current thread will continue to use this snapshot.
49352 ** Other threads might append new content to the WAL and wal-index but
49353 ** that extra content is ignored by the current thread.
49354 **
49355 ** If the database contents have changes since the previous read
49356 ** transaction, then *pChanged is set to 1 before returning.  The
49357 ** Pager layer will use this to know that is cache is stale and
49358 ** needs to be flushed.
49359 */
49360 SQLITE_PRIVATE int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
49361   int rc;                         /* Return code */
49362   int cnt = 0;                    /* Number of TryBeginRead attempts */
49363 
49364   do{
49365     rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
49366   }while( rc==WAL_RETRY );
49367   testcase( (rc&0xff)==SQLITE_BUSY );
49368   testcase( (rc&0xff)==SQLITE_IOERR );
49369   testcase( rc==SQLITE_PROTOCOL );
49370   testcase( rc==SQLITE_OK );
49371   return rc;
49372 }
49373 
49374 /*
49375 ** Finish with a read transaction.  All this does is release the
49376 ** read-lock.
49377 */
49378 SQLITE_PRIVATE void sqlite3WalEndReadTransaction(Wal *pWal){
49379   sqlite3WalEndWriteTransaction(pWal);
49380   if( pWal->readLock>=0 ){
49381     walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
49382     pWal->readLock = -1;
49383   }
49384 }
49385 
49386 /*
49387 ** Search the wal file for page pgno. If found, set *piRead to the frame that
49388 ** contains the page. Otherwise, if pgno is not in the wal file, set *piRead
49389 ** to zero.
49390 **
49391 ** Return SQLITE_OK if successful, or an error code if an error occurs. If an
49392 ** error does occur, the final value of *piRead is undefined.
49393 */
49394 SQLITE_PRIVATE int sqlite3WalFindFrame(
49395   Wal *pWal,                      /* WAL handle */
49396   Pgno pgno,                      /* Database page number to read data for */
49397   u32 *piRead                     /* OUT: Frame number (or zero) */
49398 ){
49399   u32 iRead = 0;                  /* If !=0, WAL frame to return data from */
49400   u32 iLast = pWal->hdr.mxFrame;  /* Last page in WAL for this reader */
49401   int iHash;                      /* Used to loop through N hash tables */
49402 
49403   /* This routine is only be called from within a read transaction. */
49404   assert( pWal->readLock>=0 || pWal->lockError );
49405 
49406   /* If the "last page" field of the wal-index header snapshot is 0, then
49407   ** no data will be read from the wal under any circumstances. Return early
49408   ** in this case as an optimization.  Likewise, if pWal->readLock==0,
49409   ** then the WAL is ignored by the reader so return early, as if the
49410   ** WAL were empty.
49411   */
49412   if( iLast==0 || pWal->readLock==0 ){
49413     *piRead = 0;
49414     return SQLITE_OK;
49415   }
49416 
49417   /* Search the hash table or tables for an entry matching page number
49418   ** pgno. Each iteration of the following for() loop searches one
49419   ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
49420   **
49421   ** This code might run concurrently to the code in walIndexAppend()
49422   ** that adds entries to the wal-index (and possibly to this hash
49423   ** table). This means the value just read from the hash
49424   ** slot (aHash[iKey]) may have been added before or after the
49425   ** current read transaction was opened. Values added after the
49426   ** read transaction was opened may have been written incorrectly -
49427   ** i.e. these slots may contain garbage data. However, we assume
49428   ** that any slots written before the current read transaction was
49429   ** opened remain unmodified.
49430   **
49431   ** For the reasons above, the if(...) condition featured in the inner
49432   ** loop of the following block is more stringent that would be required
49433   ** if we had exclusive access to the hash-table:
49434   **
49435   **   (aPgno[iFrame]==pgno):
49436   **     This condition filters out normal hash-table collisions.
49437   **
49438   **   (iFrame<=iLast):
49439   **     This condition filters out entries that were added to the hash
49440   **     table after the current read-transaction had started.
49441   */
49442   for(iHash=walFramePage(iLast); iHash>=0 && iRead==0; iHash--){
49443     volatile ht_slot *aHash;      /* Pointer to hash table */
49444     volatile u32 *aPgno;          /* Pointer to array of page numbers */
49445     u32 iZero;                    /* Frame number corresponding to aPgno[0] */
49446     int iKey;                     /* Hash slot index */
49447     int nCollide;                 /* Number of hash collisions remaining */
49448     int rc;                       /* Error code */
49449 
49450     rc = walHashGet(pWal, iHash, &aHash, &aPgno, &iZero);
49451     if( rc!=SQLITE_OK ){
49452       return rc;
49453     }
49454     nCollide = HASHTABLE_NSLOT;
49455     for(iKey=walHash(pgno); aHash[iKey]; iKey=walNextHash(iKey)){
49456       u32 iFrame = aHash[iKey] + iZero;
49457       if( iFrame<=iLast && aPgno[aHash[iKey]]==pgno ){
49458         /* assert( iFrame>iRead ); -- not true if there is corruption */
49459         iRead = iFrame;
49460       }
49461       if( (nCollide--)==0 ){
49462         return SQLITE_CORRUPT_BKPT;
49463       }
49464     }
49465   }
49466 
49467 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
49468   /* If expensive assert() statements are available, do a linear search
49469   ** of the wal-index file content. Make sure the results agree with the
49470   ** result obtained using the hash indexes above.  */
49471   {
49472     u32 iRead2 = 0;
49473     u32 iTest;
49474     for(iTest=iLast; iTest>0; iTest--){
49475       if( walFramePgno(pWal, iTest)==pgno ){
49476         iRead2 = iTest;
49477         break;
49478       }
49479     }
49480     assert( iRead==iRead2 );
49481   }
49482 #endif
49483 
49484   *piRead = iRead;
49485   return SQLITE_OK;
49486 }
49487 
49488 /*
49489 ** Read the contents of frame iRead from the wal file into buffer pOut
49490 ** (which is nOut bytes in size). Return SQLITE_OK if successful, or an
49491 ** error code otherwise.
49492 */
49493 SQLITE_PRIVATE int sqlite3WalReadFrame(
49494   Wal *pWal,                      /* WAL handle */
49495   u32 iRead,                      /* Frame to read */
49496   int nOut,                       /* Size of buffer pOut in bytes */
49497   u8 *pOut                        /* Buffer to write page data to */
49498 ){
49499   int sz;
49500   i64 iOffset;
49501   sz = pWal->hdr.szPage;
49502   sz = (sz&0xfe00) + ((sz&0x0001)<<16);
49503   testcase( sz<=32768 );
49504   testcase( sz>=65536 );
49505   iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE;
49506   /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
49507   return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset);
49508 }
49509 
49510 /*
49511 ** Return the size of the database in pages (or zero, if unknown).
49512 */
49513 SQLITE_PRIVATE Pgno sqlite3WalDbsize(Wal *pWal){
49514   if( pWal && ALWAYS(pWal->readLock>=0) ){
49515     return pWal->hdr.nPage;
49516   }
49517   return 0;
49518 }
49519 
49520 
49521 /*
49522 ** This function starts a write transaction on the WAL.
49523 **
49524 ** A read transaction must have already been started by a prior call
49525 ** to sqlite3WalBeginReadTransaction().
49526 **
49527 ** If another thread or process has written into the database since
49528 ** the read transaction was started, then it is not possible for this
49529 ** thread to write as doing so would cause a fork.  So this routine
49530 ** returns SQLITE_BUSY in that case and no write transaction is started.
49531 **
49532 ** There can only be a single writer active at a time.
49533 */
49534 SQLITE_PRIVATE int sqlite3WalBeginWriteTransaction(Wal *pWal){
49535   int rc;
49536 
49537   /* Cannot start a write transaction without first holding a read
49538   ** transaction. */
49539   assert( pWal->readLock>=0 );
49540 
49541   if( pWal->readOnly ){
49542     return SQLITE_READONLY;
49543   }
49544 
49545   /* Only one writer allowed at a time.  Get the write lock.  Return
49546   ** SQLITE_BUSY if unable.
49547   */
49548   rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
49549   if( rc ){
49550     return rc;
49551   }
49552   pWal->writeLock = 1;
49553 
49554   /* If another connection has written to the database file since the
49555   ** time the read transaction on this connection was started, then
49556   ** the write is disallowed.
49557   */
49558   if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
49559     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
49560     pWal->writeLock = 0;
49561     rc = SQLITE_BUSY_SNAPSHOT;
49562   }
49563 
49564   return rc;
49565 }
49566 
49567 /*
49568 ** End a write transaction.  The commit has already been done.  This
49569 ** routine merely releases the lock.
49570 */
49571 SQLITE_PRIVATE int sqlite3WalEndWriteTransaction(Wal *pWal){
49572   if( pWal->writeLock ){
49573     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
49574     pWal->writeLock = 0;
49575     pWal->truncateOnCommit = 0;
49576   }
49577   return SQLITE_OK;
49578 }
49579 
49580 /*
49581 ** If any data has been written (but not committed) to the log file, this
49582 ** function moves the write-pointer back to the start of the transaction.
49583 **
49584 ** Additionally, the callback function is invoked for each frame written
49585 ** to the WAL since the start of the transaction. If the callback returns
49586 ** other than SQLITE_OK, it is not invoked again and the error code is
49587 ** returned to the caller.
49588 **
49589 ** Otherwise, if the callback function does not return an error, this
49590 ** function returns SQLITE_OK.
49591 */
49592 SQLITE_PRIVATE int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
49593   int rc = SQLITE_OK;
49594   if( ALWAYS(pWal->writeLock) ){
49595     Pgno iMax = pWal->hdr.mxFrame;
49596     Pgno iFrame;
49597 
49598     /* Restore the clients cache of the wal-index header to the state it
49599     ** was in before the client began writing to the database.
49600     */
49601     memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
49602 
49603     for(iFrame=pWal->hdr.mxFrame+1;
49604         ALWAYS(rc==SQLITE_OK) && iFrame<=iMax;
49605         iFrame++
49606     ){
49607       /* This call cannot fail. Unless the page for which the page number
49608       ** is passed as the second argument is (a) in the cache and
49609       ** (b) has an outstanding reference, then xUndo is either a no-op
49610       ** (if (a) is false) or simply expels the page from the cache (if (b)
49611       ** is false).
49612       **
49613       ** If the upper layer is doing a rollback, it is guaranteed that there
49614       ** are no outstanding references to any page other than page 1. And
49615       ** page 1 is never written to the log until the transaction is
49616       ** committed. As a result, the call to xUndo may not fail.
49617       */
49618       assert( walFramePgno(pWal, iFrame)!=1 );
49619       rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
49620     }
49621     if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal);
49622   }
49623   assert( rc==SQLITE_OK );
49624   return rc;
49625 }
49626 
49627 /*
49628 ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
49629 ** values. This function populates the array with values required to
49630 ** "rollback" the write position of the WAL handle back to the current
49631 ** point in the event of a savepoint rollback (via WalSavepointUndo()).
49632 */
49633 SQLITE_PRIVATE void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
49634   assert( pWal->writeLock );
49635   aWalData[0] = pWal->hdr.mxFrame;
49636   aWalData[1] = pWal->hdr.aFrameCksum[0];
49637   aWalData[2] = pWal->hdr.aFrameCksum[1];
49638   aWalData[3] = pWal->nCkpt;
49639 }
49640 
49641 /*
49642 ** Move the write position of the WAL back to the point identified by
49643 ** the values in the aWalData[] array. aWalData must point to an array
49644 ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
49645 ** by a call to WalSavepoint().
49646 */
49647 SQLITE_PRIVATE int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
49648   int rc = SQLITE_OK;
49649 
49650   assert( pWal->writeLock );
49651   assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
49652 
49653   if( aWalData[3]!=pWal->nCkpt ){
49654     /* This savepoint was opened immediately after the write-transaction
49655     ** was started. Right after that, the writer decided to wrap around
49656     ** to the start of the log. Update the savepoint values to match.
49657     */
49658     aWalData[0] = 0;
49659     aWalData[3] = pWal->nCkpt;
49660   }
49661 
49662   if( aWalData[0]<pWal->hdr.mxFrame ){
49663     pWal->hdr.mxFrame = aWalData[0];
49664     pWal->hdr.aFrameCksum[0] = aWalData[1];
49665     pWal->hdr.aFrameCksum[1] = aWalData[2];
49666     walCleanupHash(pWal);
49667   }
49668 
49669   return rc;
49670 }
49671 
49672 
49673 /*
49674 ** This function is called just before writing a set of frames to the log
49675 ** file (see sqlite3WalFrames()). It checks to see if, instead of appending
49676 ** to the current log file, it is possible to overwrite the start of the
49677 ** existing log file with the new frames (i.e. "reset" the log). If so,
49678 ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
49679 ** unchanged.
49680 **
49681 ** SQLITE_OK is returned if no error is encountered (regardless of whether
49682 ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
49683 ** if an error occurs.
49684 */
49685 static int walRestartLog(Wal *pWal){
49686   int rc = SQLITE_OK;
49687   int cnt;
49688 
49689   if( pWal->readLock==0 ){
49690     volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
49691     assert( pInfo->nBackfill==pWal->hdr.mxFrame );
49692     if( pInfo->nBackfill>0 ){
49693       u32 salt1;
49694       sqlite3_randomness(4, &salt1);
49695       rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
49696       if( rc==SQLITE_OK ){
49697         /* If all readers are using WAL_READ_LOCK(0) (in other words if no
49698         ** readers are currently using the WAL), then the transactions
49699         ** frames will overwrite the start of the existing log. Update the
49700         ** wal-index header to reflect this.
49701         **
49702         ** In theory it would be Ok to update the cache of the header only
49703         ** at this point. But updating the actual wal-index header is also
49704         ** safe and means there is no special case for sqlite3WalUndo()
49705         ** to handle if this transaction is rolled back.
49706         */
49707         int i;                    /* Loop counter */
49708         u32 *aSalt = pWal->hdr.aSalt;       /* Big-endian salt values */
49709 
49710         pWal->nCkpt++;
49711         pWal->hdr.mxFrame = 0;
49712         sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
49713         aSalt[1] = salt1;
49714         walIndexWriteHdr(pWal);
49715         pInfo->nBackfill = 0;
49716         pInfo->aReadMark[1] = 0;
49717         for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
49718         assert( pInfo->aReadMark[0]==0 );
49719         walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
49720       }else if( rc!=SQLITE_BUSY ){
49721         return rc;
49722       }
49723     }
49724     walUnlockShared(pWal, WAL_READ_LOCK(0));
49725     pWal->readLock = -1;
49726     cnt = 0;
49727     do{
49728       int notUsed;
49729       rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
49730     }while( rc==WAL_RETRY );
49731     assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */
49732     testcase( (rc&0xff)==SQLITE_IOERR );
49733     testcase( rc==SQLITE_PROTOCOL );
49734     testcase( rc==SQLITE_OK );
49735   }
49736   return rc;
49737 }
49738 
49739 /*
49740 ** Information about the current state of the WAL file and where
49741 ** the next fsync should occur - passed from sqlite3WalFrames() into
49742 ** walWriteToLog().
49743 */
49744 typedef struct WalWriter {
49745   Wal *pWal;                   /* The complete WAL information */
49746   sqlite3_file *pFd;           /* The WAL file to which we write */
49747   sqlite3_int64 iSyncPoint;    /* Fsync at this offset */
49748   int syncFlags;               /* Flags for the fsync */
49749   int szPage;                  /* Size of one page */
49750 } WalWriter;
49751 
49752 /*
49753 ** Write iAmt bytes of content into the WAL file beginning at iOffset.
49754 ** Do a sync when crossing the p->iSyncPoint boundary.
49755 **
49756 ** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt,
49757 ** first write the part before iSyncPoint, then sync, then write the
49758 ** rest.
49759 */
49760 static int walWriteToLog(
49761   WalWriter *p,              /* WAL to write to */
49762   void *pContent,            /* Content to be written */
49763   int iAmt,                  /* Number of bytes to write */
49764   sqlite3_int64 iOffset      /* Start writing at this offset */
49765 ){
49766   int rc;
49767   if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){
49768     int iFirstAmt = (int)(p->iSyncPoint - iOffset);
49769     rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset);
49770     if( rc ) return rc;
49771     iOffset += iFirstAmt;
49772     iAmt -= iFirstAmt;
49773     pContent = (void*)(iFirstAmt + (char*)pContent);
49774     assert( p->syncFlags & (SQLITE_SYNC_NORMAL|SQLITE_SYNC_FULL) );
49775     rc = sqlite3OsSync(p->pFd, p->syncFlags & SQLITE_SYNC_MASK);
49776     if( iAmt==0 || rc ) return rc;
49777   }
49778   rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset);
49779   return rc;
49780 }
49781 
49782 /*
49783 ** Write out a single frame of the WAL
49784 */
49785 static int walWriteOneFrame(
49786   WalWriter *p,               /* Where to write the frame */
49787   PgHdr *pPage,               /* The page of the frame to be written */
49788   int nTruncate,              /* The commit flag.  Usually 0.  >0 for commit */
49789   sqlite3_int64 iOffset       /* Byte offset at which to write */
49790 ){
49791   int rc;                         /* Result code from subfunctions */
49792   void *pData;                    /* Data actually written */
49793   u8 aFrame[WAL_FRAME_HDRSIZE];   /* Buffer to assemble frame-header in */
49794 #if defined(SQLITE_HAS_CODEC)
49795   if( (pData = sqlite3PagerCodec(pPage))==0 ) return SQLITE_NOMEM;
49796 #else
49797   pData = pPage->pData;
49798 #endif
49799   walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame);
49800   rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset);
49801   if( rc ) return rc;
49802   /* Write the page data */
49803   rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame));
49804   return rc;
49805 }
49806 
49807 /*
49808 ** Write a set of frames to the log. The caller must hold the write-lock
49809 ** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
49810 */
49811 SQLITE_PRIVATE int sqlite3WalFrames(
49812   Wal *pWal,                      /* Wal handle to write to */
49813   int szPage,                     /* Database page-size in bytes */
49814   PgHdr *pList,                   /* List of dirty pages to write */
49815   Pgno nTruncate,                 /* Database size after this commit */
49816   int isCommit,                   /* True if this is a commit */
49817   int sync_flags                  /* Flags to pass to OsSync() (or 0) */
49818 ){
49819   int rc;                         /* Used to catch return codes */
49820   u32 iFrame;                     /* Next frame address */
49821   PgHdr *p;                       /* Iterator to run through pList with. */
49822   PgHdr *pLast = 0;               /* Last frame in list */
49823   int nExtra = 0;                 /* Number of extra copies of last page */
49824   int szFrame;                    /* The size of a single frame */
49825   i64 iOffset;                    /* Next byte to write in WAL file */
49826   WalWriter w;                    /* The writer */
49827 
49828   assert( pList );
49829   assert( pWal->writeLock );
49830 
49831   /* If this frame set completes a transaction, then nTruncate>0.  If
49832   ** nTruncate==0 then this frame set does not complete the transaction. */
49833   assert( (isCommit!=0)==(nTruncate!=0) );
49834 
49835 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
49836   { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
49837     WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
49838               pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
49839   }
49840 #endif
49841 
49842   /* See if it is possible to write these frames into the start of the
49843   ** log file, instead of appending to it at pWal->hdr.mxFrame.
49844   */
49845   if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
49846     return rc;
49847   }
49848 
49849   /* If this is the first frame written into the log, write the WAL
49850   ** header to the start of the WAL file. See comments at the top of
49851   ** this source file for a description of the WAL header format.
49852   */
49853   iFrame = pWal->hdr.mxFrame;
49854   if( iFrame==0 ){
49855     u8 aWalHdr[WAL_HDRSIZE];      /* Buffer to assemble wal-header in */
49856     u32 aCksum[2];                /* Checksum for wal-header */
49857 
49858     sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
49859     sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION);
49860     sqlite3Put4byte(&aWalHdr[8], szPage);
49861     sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
49862     if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt);
49863     memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
49864     walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
49865     sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
49866     sqlite3Put4byte(&aWalHdr[28], aCksum[1]);
49867 
49868     pWal->szPage = szPage;
49869     pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
49870     pWal->hdr.aFrameCksum[0] = aCksum[0];
49871     pWal->hdr.aFrameCksum[1] = aCksum[1];
49872     pWal->truncateOnCommit = 1;
49873 
49874     rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
49875     WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
49876     if( rc!=SQLITE_OK ){
49877       return rc;
49878     }
49879 
49880     /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless
49881     ** all syncing is turned off by PRAGMA synchronous=OFF).  Otherwise
49882     ** an out-of-order write following a WAL restart could result in
49883     ** database corruption.  See the ticket:
49884     **
49885     **     http://localhost:591/sqlite/info/ff5be73dee
49886     */
49887     if( pWal->syncHeader && sync_flags ){
49888       rc = sqlite3OsSync(pWal->pWalFd, sync_flags & SQLITE_SYNC_MASK);
49889       if( rc ) return rc;
49890     }
49891   }
49892   assert( (int)pWal->szPage==szPage );
49893 
49894   /* Setup information needed to write frames into the WAL */
49895   w.pWal = pWal;
49896   w.pFd = pWal->pWalFd;
49897   w.iSyncPoint = 0;
49898   w.syncFlags = sync_flags;
49899   w.szPage = szPage;
49900   iOffset = walFrameOffset(iFrame+1, szPage);
49901   szFrame = szPage + WAL_FRAME_HDRSIZE;
49902 
49903   /* Write all frames into the log file exactly once */
49904   for(p=pList; p; p=p->pDirty){
49905     int nDbSize;   /* 0 normally.  Positive == commit flag */
49906     iFrame++;
49907     assert( iOffset==walFrameOffset(iFrame, szPage) );
49908     nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0;
49909     rc = walWriteOneFrame(&w, p, nDbSize, iOffset);
49910     if( rc ) return rc;
49911     pLast = p;
49912     iOffset += szFrame;
49913   }
49914 
49915   /* If this is the end of a transaction, then we might need to pad
49916   ** the transaction and/or sync the WAL file.
49917   **
49918   ** Padding and syncing only occur if this set of frames complete a
49919   ** transaction and if PRAGMA synchronous=FULL.  If synchronous==NORMAL
49920   ** or synchonous==OFF, then no padding or syncing are needed.
49921   **
49922   ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not
49923   ** needed and only the sync is done.  If padding is needed, then the
49924   ** final frame is repeated (with its commit mark) until the next sector
49925   ** boundary is crossed.  Only the part of the WAL prior to the last
49926   ** sector boundary is synced; the part of the last frame that extends
49927   ** past the sector boundary is written after the sync.
49928   */
49929   if( isCommit && (sync_flags & WAL_SYNC_TRANSACTIONS)!=0 ){
49930     if( pWal->padToSectorBoundary ){
49931       int sectorSize = sqlite3SectorSize(pWal->pWalFd);
49932       w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize;
49933       while( iOffset<w.iSyncPoint ){
49934         rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset);
49935         if( rc ) return rc;
49936         iOffset += szFrame;
49937         nExtra++;
49938       }
49939     }else{
49940       rc = sqlite3OsSync(w.pFd, sync_flags & SQLITE_SYNC_MASK);
49941     }
49942   }
49943 
49944   /* If this frame set completes the first transaction in the WAL and
49945   ** if PRAGMA journal_size_limit is set, then truncate the WAL to the
49946   ** journal size limit, if possible.
49947   */
49948   if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){
49949     i64 sz = pWal->mxWalSize;
49950     if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){
49951       sz = walFrameOffset(iFrame+nExtra+1, szPage);
49952     }
49953     walLimitSize(pWal, sz);
49954     pWal->truncateOnCommit = 0;
49955   }
49956 
49957   /* Append data to the wal-index. It is not necessary to lock the
49958   ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
49959   ** guarantees that there are no other writers, and no data that may
49960   ** be in use by existing readers is being overwritten.
49961   */
49962   iFrame = pWal->hdr.mxFrame;
49963   for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
49964     iFrame++;
49965     rc = walIndexAppend(pWal, iFrame, p->pgno);
49966   }
49967   while( rc==SQLITE_OK && nExtra>0 ){
49968     iFrame++;
49969     nExtra--;
49970     rc = walIndexAppend(pWal, iFrame, pLast->pgno);
49971   }
49972 
49973   if( rc==SQLITE_OK ){
49974     /* Update the private copy of the header. */
49975     pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
49976     testcase( szPage<=32768 );
49977     testcase( szPage>=65536 );
49978     pWal->hdr.mxFrame = iFrame;
49979     if( isCommit ){
49980       pWal->hdr.iChange++;
49981       pWal->hdr.nPage = nTruncate;
49982     }
49983     /* If this is a commit, update the wal-index header too. */
49984     if( isCommit ){
49985       walIndexWriteHdr(pWal);
49986       pWal->iCallback = iFrame;
49987     }
49988   }
49989 
49990   WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
49991   return rc;
49992 }
49993 
49994 /*
49995 ** This routine is called to implement sqlite3_wal_checkpoint() and
49996 ** related interfaces.
49997 **
49998 ** Obtain a CHECKPOINT lock and then backfill as much information as
49999 ** we can from WAL into the database.
50000 **
50001 ** If parameter xBusy is not NULL, it is a pointer to a busy-handler
50002 ** callback. In this case this function runs a blocking checkpoint.
50003 */
50004 SQLITE_PRIVATE int sqlite3WalCheckpoint(
50005   Wal *pWal,                      /* Wal connection */
50006   int eMode,                      /* PASSIVE, FULL or RESTART */
50007   int (*xBusy)(void*),            /* Function to call when busy */
50008   void *pBusyArg,                 /* Context argument for xBusyHandler */
50009   int sync_flags,                 /* Flags to sync db file with (or 0) */
50010   int nBuf,                       /* Size of temporary buffer */
50011   u8 *zBuf,                       /* Temporary buffer to use */
50012   int *pnLog,                     /* OUT: Number of frames in WAL */
50013   int *pnCkpt                     /* OUT: Number of backfilled frames in WAL */
50014 ){
50015   int rc;                         /* Return code */
50016   int isChanged = 0;              /* True if a new wal-index header is loaded */
50017   int eMode2 = eMode;             /* Mode to pass to walCheckpoint() */
50018 
50019   assert( pWal->ckptLock==0 );
50020   assert( pWal->writeLock==0 );
50021 
50022   if( pWal->readOnly ) return SQLITE_READONLY;
50023   WALTRACE(("WAL%p: checkpoint begins\n", pWal));
50024   rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
50025   if( rc ){
50026     /* Usually this is SQLITE_BUSY meaning that another thread or process
50027     ** is already running a checkpoint, or maybe a recovery.  But it might
50028     ** also be SQLITE_IOERR. */
50029     return rc;
50030   }
50031   pWal->ckptLock = 1;
50032 
50033   /* If this is a blocking-checkpoint, then obtain the write-lock as well
50034   ** to prevent any writers from running while the checkpoint is underway.
50035   ** This has to be done before the call to walIndexReadHdr() below.
50036   **
50037   ** If the writer lock cannot be obtained, then a passive checkpoint is
50038   ** run instead. Since the checkpointer is not holding the writer lock,
50039   ** there is no point in blocking waiting for any readers. Assuming no
50040   ** other error occurs, this function will return SQLITE_BUSY to the caller.
50041   */
50042   if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){
50043     rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1);
50044     if( rc==SQLITE_OK ){
50045       pWal->writeLock = 1;
50046     }else if( rc==SQLITE_BUSY ){
50047       eMode2 = SQLITE_CHECKPOINT_PASSIVE;
50048       rc = SQLITE_OK;
50049     }
50050   }
50051 
50052   /* Read the wal-index header. */
50053   if( rc==SQLITE_OK ){
50054     rc = walIndexReadHdr(pWal, &isChanged);
50055     if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){
50056       sqlite3OsUnfetch(pWal->pDbFd, 0, 0);
50057     }
50058   }
50059 
50060   /* Copy data from the log to the database file. */
50061   if( rc==SQLITE_OK ){
50062     if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
50063       rc = SQLITE_CORRUPT_BKPT;
50064     }else{
50065       rc = walCheckpoint(pWal, eMode2, xBusy, pBusyArg, sync_flags, zBuf);
50066     }
50067 
50068     /* If no error occurred, set the output variables. */
50069     if( rc==SQLITE_OK || rc==SQLITE_BUSY ){
50070       if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame;
50071       if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill);
50072     }
50073   }
50074 
50075   if( isChanged ){
50076     /* If a new wal-index header was loaded before the checkpoint was
50077     ** performed, then the pager-cache associated with pWal is now
50078     ** out of date. So zero the cached wal-index header to ensure that
50079     ** next time the pager opens a snapshot on this database it knows that
50080     ** the cache needs to be reset.
50081     */
50082     memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
50083   }
50084 
50085   /* Release the locks. */
50086   sqlite3WalEndWriteTransaction(pWal);
50087   walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
50088   pWal->ckptLock = 0;
50089   WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
50090   return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc);
50091 }
50092 
50093 /* Return the value to pass to a sqlite3_wal_hook callback, the
50094 ** number of frames in the WAL at the point of the last commit since
50095 ** sqlite3WalCallback() was called.  If no commits have occurred since
50096 ** the last call, then return 0.
50097 */
50098 SQLITE_PRIVATE int sqlite3WalCallback(Wal *pWal){
50099   u32 ret = 0;
50100   if( pWal ){
50101     ret = pWal->iCallback;
50102     pWal->iCallback = 0;
50103   }
50104   return (int)ret;
50105 }
50106 
50107 /*
50108 ** This function is called to change the WAL subsystem into or out
50109 ** of locking_mode=EXCLUSIVE.
50110 **
50111 ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
50112 ** into locking_mode=NORMAL.  This means that we must acquire a lock
50113 ** on the pWal->readLock byte.  If the WAL is already in locking_mode=NORMAL
50114 ** or if the acquisition of the lock fails, then return 0.  If the
50115 ** transition out of exclusive-mode is successful, return 1.  This
50116 ** operation must occur while the pager is still holding the exclusive
50117 ** lock on the main database file.
50118 **
50119 ** If op is one, then change from locking_mode=NORMAL into
50120 ** locking_mode=EXCLUSIVE.  This means that the pWal->readLock must
50121 ** be released.  Return 1 if the transition is made and 0 if the
50122 ** WAL is already in exclusive-locking mode - meaning that this
50123 ** routine is a no-op.  The pager must already hold the exclusive lock
50124 ** on the main database file before invoking this operation.
50125 **
50126 ** If op is negative, then do a dry-run of the op==1 case but do
50127 ** not actually change anything. The pager uses this to see if it
50128 ** should acquire the database exclusive lock prior to invoking
50129 ** the op==1 case.
50130 */
50131 SQLITE_PRIVATE int sqlite3WalExclusiveMode(Wal *pWal, int op){
50132   int rc;
50133   assert( pWal->writeLock==0 );
50134   assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 );
50135 
50136   /* pWal->readLock is usually set, but might be -1 if there was a
50137   ** prior error while attempting to acquire are read-lock. This cannot
50138   ** happen if the connection is actually in exclusive mode (as no xShmLock
50139   ** locks are taken in this case). Nor should the pager attempt to
50140   ** upgrade to exclusive-mode following such an error.
50141   */
50142   assert( pWal->readLock>=0 || pWal->lockError );
50143   assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
50144 
50145   if( op==0 ){
50146     if( pWal->exclusiveMode ){
50147       pWal->exclusiveMode = 0;
50148       if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
50149         pWal->exclusiveMode = 1;
50150       }
50151       rc = pWal->exclusiveMode==0;
50152     }else{
50153       /* Already in locking_mode=NORMAL */
50154       rc = 0;
50155     }
50156   }else if( op>0 ){
50157     assert( pWal->exclusiveMode==0 );
50158     assert( pWal->readLock>=0 );
50159     walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
50160     pWal->exclusiveMode = 1;
50161     rc = 1;
50162   }else{
50163     rc = pWal->exclusiveMode==0;
50164   }
50165   return rc;
50166 }
50167 
50168 /*
50169 ** Return true if the argument is non-NULL and the WAL module is using
50170 ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
50171 ** WAL module is using shared-memory, return false.
50172 */
50173 SQLITE_PRIVATE int sqlite3WalHeapMemory(Wal *pWal){
50174   return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE );
50175 }
50176 
50177 #ifdef SQLITE_ENABLE_ZIPVFS
50178 /*
50179 ** If the argument is not NULL, it points to a Wal object that holds a
50180 ** read-lock. This function returns the database page-size if it is known,
50181 ** or zero if it is not (or if pWal is NULL).
50182 */
50183 SQLITE_PRIVATE int sqlite3WalFramesize(Wal *pWal){
50184   assert( pWal==0 || pWal->readLock>=0 );
50185   return (pWal ? pWal->szPage : 0);
50186 }
50187 #endif
50188 
50189 #endif /* #ifndef SQLITE_OMIT_WAL */
50190 
50191 /************** End of wal.c *************************************************/
50192 /************** Begin file btmutex.c *****************************************/
50193 /*
50194 ** 2007 August 27
50195 **
50196 ** The author disclaims copyright to this source code.  In place of
50197 ** a legal notice, here is a blessing:
50198 **
50199 **    May you do good and not evil.
50200 **    May you find forgiveness for yourself and forgive others.
50201 **    May you share freely, never taking more than you give.
50202 **
50203 *************************************************************************
50204 **
50205 ** This file contains code used to implement mutexes on Btree objects.
50206 ** This code really belongs in btree.c.  But btree.c is getting too
50207 ** big and we want to break it down some.  This packaged seemed like
50208 ** a good breakout.
50209 */
50210 /************** Include btreeInt.h in the middle of btmutex.c ****************/
50211 /************** Begin file btreeInt.h ****************************************/
50212 /*
50213 ** 2004 April 6
50214 **
50215 ** The author disclaims copyright to this source code.  In place of
50216 ** a legal notice, here is a blessing:
50217 **
50218 **    May you do good and not evil.
50219 **    May you find forgiveness for yourself and forgive others.
50220 **    May you share freely, never taking more than you give.
50221 **
50222 *************************************************************************
50223 ** This file implements a external (disk-based) database using BTrees.
50224 ** For a detailed discussion of BTrees, refer to
50225 **
50226 **     Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3:
50227 **     "Sorting And Searching", pages 473-480. Addison-Wesley
50228 **     Publishing Company, Reading, Massachusetts.
50229 **
50230 ** The basic idea is that each page of the file contains N database
50231 ** entries and N+1 pointers to subpages.
50232 **
50233 **   ----------------------------------------------------------------
50234 **   |  Ptr(0) | Key(0) | Ptr(1) | Key(1) | ... | Key(N-1) | Ptr(N) |
50235 **   ----------------------------------------------------------------
50236 **
50237 ** All of the keys on the page that Ptr(0) points to have values less
50238 ** than Key(0).  All of the keys on page Ptr(1) and its subpages have
50239 ** values greater than Key(0) and less than Key(1).  All of the keys
50240 ** on Ptr(N) and its subpages have values greater than Key(N-1).  And
50241 ** so forth.
50242 **
50243 ** Finding a particular key requires reading O(log(M)) pages from the
50244 ** disk where M is the number of entries in the tree.
50245 **
50246 ** In this implementation, a single file can hold one or more separate
50247 ** BTrees.  Each BTree is identified by the index of its root page.  The
50248 ** key and data for any entry are combined to form the "payload".  A
50249 ** fixed amount of payload can be carried directly on the database
50250 ** page.  If the payload is larger than the preset amount then surplus
50251 ** bytes are stored on overflow pages.  The payload for an entry
50252 ** and the preceding pointer are combined to form a "Cell".  Each
50253 ** page has a small header which contains the Ptr(N) pointer and other
50254 ** information such as the size of key and data.
50255 **
50256 ** FORMAT DETAILS
50257 **
50258 ** The file is divided into pages.  The first page is called page 1,
50259 ** the second is page 2, and so forth.  A page number of zero indicates
50260 ** "no such page".  The page size can be any power of 2 between 512 and 65536.
50261 ** Each page can be either a btree page, a freelist page, an overflow
50262 ** page, or a pointer-map page.
50263 **
50264 ** The first page is always a btree page.  The first 100 bytes of the first
50265 ** page contain a special header (the "file header") that describes the file.
50266 ** The format of the file header is as follows:
50267 **
50268 **   OFFSET   SIZE    DESCRIPTION
50269 **      0      16     Header string: "SQLite format 3\000"
50270 **     16       2     Page size in bytes.  (1 means 65536)
50271 **     18       1     File format write version
50272 **     19       1     File format read version
50273 **     20       1     Bytes of unused space at the end of each page
50274 **     21       1     Max embedded payload fraction (must be 64)
50275 **     22       1     Min embedded payload fraction (must be 32)
50276 **     23       1     Min leaf payload fraction (must be 32)
50277 **     24       4     File change counter
50278 **     28       4     Reserved for future use
50279 **     32       4     First freelist page
50280 **     36       4     Number of freelist pages in the file
50281 **     40      60     15 4-byte meta values passed to higher layers
50282 **
50283 **     40       4     Schema cookie
50284 **     44       4     File format of schema layer
50285 **     48       4     Size of page cache
50286 **     52       4     Largest root-page (auto/incr_vacuum)
50287 **     56       4     1=UTF-8 2=UTF16le 3=UTF16be
50288 **     60       4     User version
50289 **     64       4     Incremental vacuum mode
50290 **     68       4     Application-ID
50291 **     72      20     unused
50292 **     92       4     The version-valid-for number
50293 **     96       4     SQLITE_VERSION_NUMBER
50294 **
50295 ** All of the integer values are big-endian (most significant byte first).
50296 **
50297 ** The file change counter is incremented when the database is changed
50298 ** This counter allows other processes to know when the file has changed
50299 ** and thus when they need to flush their cache.
50300 **
50301 ** The max embedded payload fraction is the amount of the total usable
50302 ** space in a page that can be consumed by a single cell for standard
50303 ** B-tree (non-LEAFDATA) tables.  A value of 255 means 100%.  The default
50304 ** is to limit the maximum cell size so that at least 4 cells will fit
50305 ** on one page.  Thus the default max embedded payload fraction is 64.
50306 **
50307 ** If the payload for a cell is larger than the max payload, then extra
50308 ** payload is spilled to overflow pages.  Once an overflow page is allocated,
50309 ** as many bytes as possible are moved into the overflow pages without letting
50310 ** the cell size drop below the min embedded payload fraction.
50311 **
50312 ** The min leaf payload fraction is like the min embedded payload fraction
50313 ** except that it applies to leaf nodes in a LEAFDATA tree.  The maximum
50314 ** payload fraction for a LEAFDATA tree is always 100% (or 255) and it
50315 ** not specified in the header.
50316 **
50317 ** Each btree pages is divided into three sections:  The header, the
50318 ** cell pointer array, and the cell content area.  Page 1 also has a 100-byte
50319 ** file header that occurs before the page header.
50320 **
50321 **      |----------------|
50322 **      | file header    |   100 bytes.  Page 1 only.
50323 **      |----------------|
50324 **      | page header    |   8 bytes for leaves.  12 bytes for interior nodes
50325 **      |----------------|
50326 **      | cell pointer   |   |  2 bytes per cell.  Sorted order.
50327 **      | array          |   |  Grows downward
50328 **      |                |   v
50329 **      |----------------|
50330 **      | unallocated    |
50331 **      | space          |
50332 **      |----------------|   ^  Grows upwards
50333 **      | cell content   |   |  Arbitrary order interspersed with freeblocks.
50334 **      | area           |   |  and free space fragments.
50335 **      |----------------|
50336 **
50337 ** The page headers looks like this:
50338 **
50339 **   OFFSET   SIZE     DESCRIPTION
50340 **      0       1      Flags. 1: intkey, 2: zerodata, 4: leafdata, 8: leaf
50341 **      1       2      byte offset to the first freeblock
50342 **      3       2      number of cells on this page
50343 **      5       2      first byte of the cell content area
50344 **      7       1      number of fragmented free bytes
50345 **      8       4      Right child (the Ptr(N) value).  Omitted on leaves.
50346 **
50347 ** The flags define the format of this btree page.  The leaf flag means that
50348 ** this page has no children.  The zerodata flag means that this page carries
50349 ** only keys and no data.  The intkey flag means that the key is a integer
50350 ** which is stored in the key size entry of the cell header rather than in
50351 ** the payload area.
50352 **
50353 ** The cell pointer array begins on the first byte after the page header.
50354 ** The cell pointer array contains zero or more 2-byte numbers which are
50355 ** offsets from the beginning of the page to the cell content in the cell
50356 ** content area.  The cell pointers occur in sorted order.  The system strives
50357 ** to keep free space after the last cell pointer so that new cells can
50358 ** be easily added without having to defragment the page.
50359 **
50360 ** Cell content is stored at the very end of the page and grows toward the
50361 ** beginning of the page.
50362 **
50363 ** Unused space within the cell content area is collected into a linked list of
50364 ** freeblocks.  Each freeblock is at least 4 bytes in size.  The byte offset
50365 ** to the first freeblock is given in the header.  Freeblocks occur in
50366 ** increasing order.  Because a freeblock must be at least 4 bytes in size,
50367 ** any group of 3 or fewer unused bytes in the cell content area cannot
50368 ** exist on the freeblock chain.  A group of 3 or fewer free bytes is called
50369 ** a fragment.  The total number of bytes in all fragments is recorded.
50370 ** in the page header at offset 7.
50371 **
50372 **    SIZE    DESCRIPTION
50373 **      2     Byte offset of the next freeblock
50374 **      2     Bytes in this freeblock
50375 **
50376 ** Cells are of variable length.  Cells are stored in the cell content area at
50377 ** the end of the page.  Pointers to the cells are in the cell pointer array
50378 ** that immediately follows the page header.  Cells is not necessarily
50379 ** contiguous or in order, but cell pointers are contiguous and in order.
50380 **
50381 ** Cell content makes use of variable length integers.  A variable
50382 ** length integer is 1 to 9 bytes where the lower 7 bits of each
50383 ** byte are used.  The integer consists of all bytes that have bit 8 set and
50384 ** the first byte with bit 8 clear.  The most significant byte of the integer
50385 ** appears first.  A variable-length integer may not be more than 9 bytes long.
50386 ** As a special case, all 8 bytes of the 9th byte are used as data.  This
50387 ** allows a 64-bit integer to be encoded in 9 bytes.
50388 **
50389 **    0x00                      becomes  0x00000000
50390 **    0x7f                      becomes  0x0000007f
50391 **    0x81 0x00                 becomes  0x00000080
50392 **    0x82 0x00                 becomes  0x00000100
50393 **    0x80 0x7f                 becomes  0x0000007f
50394 **    0x8a 0x91 0xd1 0xac 0x78  becomes  0x12345678
50395 **    0x81 0x81 0x81 0x81 0x01  becomes  0x10204081
50396 **
50397 ** Variable length integers are used for rowids and to hold the number of
50398 ** bytes of key and data in a btree cell.
50399 **
50400 ** The content of a cell looks like this:
50401 **
50402 **    SIZE    DESCRIPTION
50403 **      4     Page number of the left child. Omitted if leaf flag is set.
50404 **     var    Number of bytes of data. Omitted if the zerodata flag is set.
50405 **     var    Number of bytes of key. Or the key itself if intkey flag is set.
50406 **      *     Payload
50407 **      4     First page of the overflow chain.  Omitted if no overflow
50408 **
50409 ** Overflow pages form a linked list.  Each page except the last is completely
50410 ** filled with data (pagesize - 4 bytes).  The last page can have as little
50411 ** as 1 byte of data.
50412 **
50413 **    SIZE    DESCRIPTION
50414 **      4     Page number of next overflow page
50415 **      *     Data
50416 **
50417 ** Freelist pages come in two subtypes: trunk pages and leaf pages.  The
50418 ** file header points to the first in a linked list of trunk page.  Each trunk
50419 ** page points to multiple leaf pages.  The content of a leaf page is
50420 ** unspecified.  A trunk page looks like this:
50421 **
50422 **    SIZE    DESCRIPTION
50423 **      4     Page number of next trunk page
50424 **      4     Number of leaf pointers on this page
50425 **      *     zero or more pages numbers of leaves
50426 */
50427 
50428 
50429 /* The following value is the maximum cell size assuming a maximum page
50430 ** size give above.
50431 */
50432 #define MX_CELL_SIZE(pBt)  ((int)(pBt->pageSize-8))
50433 
50434 /* The maximum number of cells on a single page of the database.  This
50435 ** assumes a minimum cell size of 6 bytes  (4 bytes for the cell itself
50436 ** plus 2 bytes for the index to the cell in the page header).  Such
50437 ** small cells will be rare, but they are possible.
50438 */
50439 #define MX_CELL(pBt) ((pBt->pageSize-8)/6)
50440 
50441 /* Forward declarations */
50442 typedef struct MemPage MemPage;
50443 typedef struct BtLock BtLock;
50444 
50445 /*
50446 ** This is a magic string that appears at the beginning of every
50447 ** SQLite database in order to identify the file as a real database.
50448 **
50449 ** You can change this value at compile-time by specifying a
50450 ** -DSQLITE_FILE_HEADER="..." on the compiler command-line.  The
50451 ** header must be exactly 16 bytes including the zero-terminator so
50452 ** the string itself should be 15 characters long.  If you change
50453 ** the header, then your custom library will not be able to read
50454 ** databases generated by the standard tools and the standard tools
50455 ** will not be able to read databases created by your custom library.
50456 */
50457 #ifndef SQLITE_FILE_HEADER /* 123456789 123456 */
50458 #  define SQLITE_FILE_HEADER "SQLite format 3"
50459 #endif
50460 
50461 /*
50462 ** Page type flags.  An ORed combination of these flags appear as the
50463 ** first byte of on-disk image of every BTree page.
50464 */
50465 #define PTF_INTKEY    0x01
50466 #define PTF_ZERODATA  0x02
50467 #define PTF_LEAFDATA  0x04
50468 #define PTF_LEAF      0x08
50469 
50470 /*
50471 ** As each page of the file is loaded into memory, an instance of the following
50472 ** structure is appended and initialized to zero.  This structure stores
50473 ** information about the page that is decoded from the raw file page.
50474 **
50475 ** The pParent field points back to the parent page.  This allows us to
50476 ** walk up the BTree from any leaf to the root.  Care must be taken to
50477 ** unref() the parent page pointer when this page is no longer referenced.
50478 ** The pageDestructor() routine handles that chore.
50479 **
50480 ** Access to all fields of this structure is controlled by the mutex
50481 ** stored in MemPage.pBt->mutex.
50482 */
50483 struct MemPage {
50484   u8 isInit;           /* True if previously initialized. MUST BE FIRST! */
50485   u8 nOverflow;        /* Number of overflow cell bodies in aCell[] */
50486   u8 intKey;           /* True if intkey flag is set */
50487   u8 leaf;             /* True if leaf flag is set */
50488   u8 hasData;          /* True if this page stores data */
50489   u8 hdrOffset;        /* 100 for page 1.  0 otherwise */
50490   u8 childPtrSize;     /* 0 if leaf==1.  4 if leaf==0 */
50491   u8 max1bytePayload;  /* min(maxLocal,127) */
50492   u16 maxLocal;        /* Copy of BtShared.maxLocal or BtShared.maxLeaf */
50493   u16 minLocal;        /* Copy of BtShared.minLocal or BtShared.minLeaf */
50494   u16 cellOffset;      /* Index in aData of first cell pointer */
50495   u16 nFree;           /* Number of free bytes on the page */
50496   u16 nCell;           /* Number of cells on this page, local and ovfl */
50497   u16 maskPage;        /* Mask for page offset */
50498   u16 aiOvfl[5];       /* Insert the i-th overflow cell before the aiOvfl-th
50499                        ** non-overflow cell */
50500   u8 *apOvfl[5];       /* Pointers to the body of overflow cells */
50501   BtShared *pBt;       /* Pointer to BtShared that this page is part of */
50502   u8 *aData;           /* Pointer to disk image of the page data */
50503   u8 *aDataEnd;        /* One byte past the end of usable data */
50504   u8 *aCellIdx;        /* The cell index area */
50505   DbPage *pDbPage;     /* Pager page handle */
50506   Pgno pgno;           /* Page number for this page */
50507 };
50508 
50509 /*
50510 ** The in-memory image of a disk page has the auxiliary information appended
50511 ** to the end.  EXTRA_SIZE is the number of bytes of space needed to hold
50512 ** that extra information.
50513 */
50514 #define EXTRA_SIZE sizeof(MemPage)
50515 
50516 /*
50517 ** A linked list of the following structures is stored at BtShared.pLock.
50518 ** Locks are added (or upgraded from READ_LOCK to WRITE_LOCK) when a cursor
50519 ** is opened on the table with root page BtShared.iTable. Locks are removed
50520 ** from this list when a transaction is committed or rolled back, or when
50521 ** a btree handle is closed.
50522 */
50523 struct BtLock {
50524   Btree *pBtree;        /* Btree handle holding this lock */
50525   Pgno iTable;          /* Root page of table */
50526   u8 eLock;             /* READ_LOCK or WRITE_LOCK */
50527   BtLock *pNext;        /* Next in BtShared.pLock list */
50528 };
50529 
50530 /* Candidate values for BtLock.eLock */
50531 #define READ_LOCK     1
50532 #define WRITE_LOCK    2
50533 
50534 /* A Btree handle
50535 **
50536 ** A database connection contains a pointer to an instance of
50537 ** this object for every database file that it has open.  This structure
50538 ** is opaque to the database connection.  The database connection cannot
50539 ** see the internals of this structure and only deals with pointers to
50540 ** this structure.
50541 **
50542 ** For some database files, the same underlying database cache might be
50543 ** shared between multiple connections.  In that case, each connection
50544 ** has it own instance of this object.  But each instance of this object
50545 ** points to the same BtShared object.  The database cache and the
50546 ** schema associated with the database file are all contained within
50547 ** the BtShared object.
50548 **
50549 ** All fields in this structure are accessed under sqlite3.mutex.
50550 ** The pBt pointer itself may not be changed while there exists cursors
50551 ** in the referenced BtShared that point back to this Btree since those
50552 ** cursors have to go through this Btree to find their BtShared and
50553 ** they often do so without holding sqlite3.mutex.
50554 */
50555 struct Btree {
50556   sqlite3 *db;       /* The database connection holding this btree */
50557   BtShared *pBt;     /* Sharable content of this btree */
50558   u8 inTrans;        /* TRANS_NONE, TRANS_READ or TRANS_WRITE */
50559   u8 sharable;       /* True if we can share pBt with another db */
50560   u8 locked;         /* True if db currently has pBt locked */
50561   int wantToLock;    /* Number of nested calls to sqlite3BtreeEnter() */
50562   int nBackup;       /* Number of backup operations reading this btree */
50563   Btree *pNext;      /* List of other sharable Btrees from the same db */
50564   Btree *pPrev;      /* Back pointer of the same list */
50565 #ifndef SQLITE_OMIT_SHARED_CACHE
50566   BtLock lock;       /* Object used to lock page 1 */
50567 #endif
50568 };
50569 
50570 /*
50571 ** Btree.inTrans may take one of the following values.
50572 **
50573 ** If the shared-data extension is enabled, there may be multiple users
50574 ** of the Btree structure. At most one of these may open a write transaction,
50575 ** but any number may have active read transactions.
50576 */
50577 #define TRANS_NONE  0
50578 #define TRANS_READ  1
50579 #define TRANS_WRITE 2
50580 
50581 /*
50582 ** An instance of this object represents a single database file.
50583 **
50584 ** A single database file can be in use at the same time by two
50585 ** or more database connections.  When two or more connections are
50586 ** sharing the same database file, each connection has it own
50587 ** private Btree object for the file and each of those Btrees points
50588 ** to this one BtShared object.  BtShared.nRef is the number of
50589 ** connections currently sharing this database file.
50590 **
50591 ** Fields in this structure are accessed under the BtShared.mutex
50592 ** mutex, except for nRef and pNext which are accessed under the
50593 ** global SQLITE_MUTEX_STATIC_MASTER mutex.  The pPager field
50594 ** may not be modified once it is initially set as long as nRef>0.
50595 ** The pSchema field may be set once under BtShared.mutex and
50596 ** thereafter is unchanged as long as nRef>0.
50597 **
50598 ** isPending:
50599 **
50600 **   If a BtShared client fails to obtain a write-lock on a database
50601 **   table (because there exists one or more read-locks on the table),
50602 **   the shared-cache enters 'pending-lock' state and isPending is
50603 **   set to true.
50604 **
50605 **   The shared-cache leaves the 'pending lock' state when either of
50606 **   the following occur:
50607 **
50608 **     1) The current writer (BtShared.pWriter) concludes its transaction, OR
50609 **     2) The number of locks held by other connections drops to zero.
50610 **
50611 **   while in the 'pending-lock' state, no connection may start a new
50612 **   transaction.
50613 **
50614 **   This feature is included to help prevent writer-starvation.
50615 */
50616 struct BtShared {
50617   Pager *pPager;        /* The page cache */
50618   sqlite3 *db;          /* Database connection currently using this Btree */
50619   BtCursor *pCursor;    /* A list of all open cursors */
50620   MemPage *pPage1;      /* First page of the database */
50621   u8 openFlags;         /* Flags to sqlite3BtreeOpen() */
50622 #ifndef SQLITE_OMIT_AUTOVACUUM
50623   u8 autoVacuum;        /* True if auto-vacuum is enabled */
50624   u8 incrVacuum;        /* True if incr-vacuum is enabled */
50625   u8 bDoTruncate;       /* True to truncate db on commit */
50626 #endif
50627   u8 inTransaction;     /* Transaction state */
50628   u8 max1bytePayload;   /* Maximum first byte of cell for a 1-byte payload */
50629   u16 btsFlags;         /* Boolean parameters.  See BTS_* macros below */
50630   u16 maxLocal;         /* Maximum local payload in non-LEAFDATA tables */
50631   u16 minLocal;         /* Minimum local payload in non-LEAFDATA tables */
50632   u16 maxLeaf;          /* Maximum local payload in a LEAFDATA table */
50633   u16 minLeaf;          /* Minimum local payload in a LEAFDATA table */
50634   u32 pageSize;         /* Total number of bytes on a page */
50635   u32 usableSize;       /* Number of usable bytes on each page */
50636   int nTransaction;     /* Number of open transactions (read + write) */
50637   u32 nPage;            /* Number of pages in the database */
50638   void *pSchema;        /* Pointer to space allocated by sqlite3BtreeSchema() */
50639   void (*xFreeSchema)(void*);  /* Destructor for BtShared.pSchema */
50640   sqlite3_mutex *mutex; /* Non-recursive mutex required to access this object */
50641   Bitvec *pHasContent;  /* Set of pages moved to free-list this transaction */
50642 #ifndef SQLITE_OMIT_SHARED_CACHE
50643   int nRef;             /* Number of references to this structure */
50644   BtShared *pNext;      /* Next on a list of sharable BtShared structs */
50645   BtLock *pLock;        /* List of locks held on this shared-btree struct */
50646   Btree *pWriter;       /* Btree with currently open write transaction */
50647 #endif
50648   u8 *pTmpSpace;        /* BtShared.pageSize bytes of space for tmp use */
50649 };
50650 
50651 /*
50652 ** Allowed values for BtShared.btsFlags
50653 */
50654 #define BTS_READ_ONLY        0x0001   /* Underlying file is readonly */
50655 #define BTS_PAGESIZE_FIXED   0x0002   /* Page size can no longer be changed */
50656 #define BTS_SECURE_DELETE    0x0004   /* PRAGMA secure_delete is enabled */
50657 #define BTS_INITIALLY_EMPTY  0x0008   /* Database was empty at trans start */
50658 #define BTS_NO_WAL           0x0010   /* Do not open write-ahead-log files */
50659 #define BTS_EXCLUSIVE        0x0020   /* pWriter has an exclusive lock */
50660 #define BTS_PENDING          0x0040   /* Waiting for read-locks to clear */
50661 
50662 /*
50663 ** An instance of the following structure is used to hold information
50664 ** about a cell.  The parseCellPtr() function fills in this structure
50665 ** based on information extract from the raw disk page.
50666 */
50667 typedef struct CellInfo CellInfo;
50668 struct CellInfo {
50669   i64 nKey;      /* The key for INTKEY tables, or number of bytes in key */
50670   u8 *pCell;     /* Pointer to the start of cell content */
50671   u32 nData;     /* Number of bytes of data */
50672   u32 nPayload;  /* Total amount of payload */
50673   u16 nHeader;   /* Size of the cell content header in bytes */
50674   u16 nLocal;    /* Amount of payload held locally */
50675   u16 iOverflow; /* Offset to overflow page number.  Zero if no overflow */
50676   u16 nSize;     /* Size of the cell content on the main b-tree page */
50677 };
50678 
50679 /*
50680 ** Maximum depth of an SQLite B-Tree structure. Any B-Tree deeper than
50681 ** this will be declared corrupt. This value is calculated based on a
50682 ** maximum database size of 2^31 pages a minimum fanout of 2 for a
50683 ** root-node and 3 for all other internal nodes.
50684 **
50685 ** If a tree that appears to be taller than this is encountered, it is
50686 ** assumed that the database is corrupt.
50687 */
50688 #define BTCURSOR_MAX_DEPTH 20
50689 
50690 /*
50691 ** A cursor is a pointer to a particular entry within a particular
50692 ** b-tree within a database file.
50693 **
50694 ** The entry is identified by its MemPage and the index in
50695 ** MemPage.aCell[] of the entry.
50696 **
50697 ** A single database file can be shared by two more database connections,
50698 ** but cursors cannot be shared.  Each cursor is associated with a
50699 ** particular database connection identified BtCursor.pBtree.db.
50700 **
50701 ** Fields in this structure are accessed under the BtShared.mutex
50702 ** found at self->pBt->mutex.
50703 */
50704 struct BtCursor {
50705   Btree *pBtree;            /* The Btree to which this cursor belongs */
50706   BtShared *pBt;            /* The BtShared this cursor points to */
50707   BtCursor *pNext, *pPrev;  /* Forms a linked list of all cursors */
50708   struct KeyInfo *pKeyInfo; /* Argument passed to comparison function */
50709   Pgno *aOverflow;          /* Cache of overflow page locations */
50710   CellInfo info;            /* A parse of the cell we are pointing at */
50711   i64 nKey;                 /* Size of pKey, or last integer key */
50712   void *pKey;               /* Saved key that was cursor last known position */
50713   Pgno pgnoRoot;            /* The root page of this tree */
50714   int nOvflAlloc;           /* Allocated size of aOverflow[] array */
50715   int skipNext;    /* Prev() is noop if negative. Next() is noop if positive */
50716   u8 curFlags;              /* zero or more BTCF_* flags defined below */
50717   u8 eState;                /* One of the CURSOR_XXX constants (see below) */
50718   u8 hints;                             /* As configured by CursorSetHints() */
50719   i16 iPage;                            /* Index of current page in apPage */
50720   u16 aiIdx[BTCURSOR_MAX_DEPTH];        /* Current index in apPage[i] */
50721   MemPage *apPage[BTCURSOR_MAX_DEPTH];  /* Pages from root to current page */
50722 };
50723 
50724 /*
50725 ** Legal values for BtCursor.curFlags
50726 */
50727 #define BTCF_WriteFlag    0x01   /* True if a write cursor */
50728 #define BTCF_ValidNKey    0x02   /* True if info.nKey is valid */
50729 #define BTCF_ValidOvfl    0x04   /* True if aOverflow is valid */
50730 #define BTCF_AtLast       0x08   /* Cursor is pointing ot the last entry */
50731 #define BTCF_Incrblob     0x10   /* True if an incremental I/O handle */
50732 
50733 /*
50734 ** Potential values for BtCursor.eState.
50735 **
50736 ** CURSOR_INVALID:
50737 **   Cursor does not point to a valid entry. This can happen (for example)
50738 **   because the table is empty or because BtreeCursorFirst() has not been
50739 **   called.
50740 **
50741 ** CURSOR_VALID:
50742 **   Cursor points to a valid entry. getPayload() etc. may be called.
50743 **
50744 ** CURSOR_SKIPNEXT:
50745 **   Cursor is valid except that the Cursor.skipNext field is non-zero
50746 **   indicating that the next sqlite3BtreeNext() or sqlite3BtreePrevious()
50747 **   operation should be a no-op.
50748 **
50749 ** CURSOR_REQUIRESEEK:
50750 **   The table that this cursor was opened on still exists, but has been
50751 **   modified since the cursor was last used. The cursor position is saved
50752 **   in variables BtCursor.pKey and BtCursor.nKey. When a cursor is in
50753 **   this state, restoreCursorPosition() can be called to attempt to
50754 **   seek the cursor to the saved position.
50755 **
50756 ** CURSOR_FAULT:
50757 **   A unrecoverable error (an I/O error or a malloc failure) has occurred
50758 **   on a different connection that shares the BtShared cache with this
50759 **   cursor.  The error has left the cache in an inconsistent state.
50760 **   Do nothing else with this cursor.  Any attempt to use the cursor
50761 **   should return the error code stored in BtCursor.skip
50762 */
50763 #define CURSOR_INVALID           0
50764 #define CURSOR_VALID             1
50765 #define CURSOR_SKIPNEXT          2
50766 #define CURSOR_REQUIRESEEK       3
50767 #define CURSOR_FAULT             4
50768 
50769 /*
50770 ** The database page the PENDING_BYTE occupies. This page is never used.
50771 */
50772 # define PENDING_BYTE_PAGE(pBt) PAGER_MJ_PGNO(pBt)
50773 
50774 /*
50775 ** These macros define the location of the pointer-map entry for a
50776 ** database page. The first argument to each is the number of usable
50777 ** bytes on each page of the database (often 1024). The second is the
50778 ** page number to look up in the pointer map.
50779 **
50780 ** PTRMAP_PAGENO returns the database page number of the pointer-map
50781 ** page that stores the required pointer. PTRMAP_PTROFFSET returns
50782 ** the offset of the requested map entry.
50783 **
50784 ** If the pgno argument passed to PTRMAP_PAGENO is a pointer-map page,
50785 ** then pgno is returned. So (pgno==PTRMAP_PAGENO(pgsz, pgno)) can be
50786 ** used to test if pgno is a pointer-map page. PTRMAP_ISPAGE implements
50787 ** this test.
50788 */
50789 #define PTRMAP_PAGENO(pBt, pgno) ptrmapPageno(pBt, pgno)
50790 #define PTRMAP_PTROFFSET(pgptrmap, pgno) (5*(pgno-pgptrmap-1))
50791 #define PTRMAP_ISPAGE(pBt, pgno) (PTRMAP_PAGENO((pBt),(pgno))==(pgno))
50792 
50793 /*
50794 ** The pointer map is a lookup table that identifies the parent page for
50795 ** each child page in the database file.  The parent page is the page that
50796 ** contains a pointer to the child.  Every page in the database contains
50797 ** 0 or 1 parent pages.  (In this context 'database page' refers
50798 ** to any page that is not part of the pointer map itself.)  Each pointer map
50799 ** entry consists of a single byte 'type' and a 4 byte parent page number.
50800 ** The PTRMAP_XXX identifiers below are the valid types.
50801 **
50802 ** The purpose of the pointer map is to facility moving pages from one
50803 ** position in the file to another as part of autovacuum.  When a page
50804 ** is moved, the pointer in its parent must be updated to point to the
50805 ** new location.  The pointer map is used to locate the parent page quickly.
50806 **
50807 ** PTRMAP_ROOTPAGE: The database page is a root-page. The page-number is not
50808 **                  used in this case.
50809 **
50810 ** PTRMAP_FREEPAGE: The database page is an unused (free) page. The page-number
50811 **                  is not used in this case.
50812 **
50813 ** PTRMAP_OVERFLOW1: The database page is the first page in a list of
50814 **                   overflow pages. The page number identifies the page that
50815 **                   contains the cell with a pointer to this overflow page.
50816 **
50817 ** PTRMAP_OVERFLOW2: The database page is the second or later page in a list of
50818 **                   overflow pages. The page-number identifies the previous
50819 **                   page in the overflow page list.
50820 **
50821 ** PTRMAP_BTREE: The database page is a non-root btree page. The page number
50822 **               identifies the parent page in the btree.
50823 */
50824 #define PTRMAP_ROOTPAGE 1
50825 #define PTRMAP_FREEPAGE 2
50826 #define PTRMAP_OVERFLOW1 3
50827 #define PTRMAP_OVERFLOW2 4
50828 #define PTRMAP_BTREE 5
50829 
50830 /* A bunch of assert() statements to check the transaction state variables
50831 ** of handle p (type Btree*) are internally consistent.
50832 */
50833 #define btreeIntegrity(p) \
50834   assert( p->pBt->inTransaction!=TRANS_NONE || p->pBt->nTransaction==0 ); \
50835   assert( p->pBt->inTransaction>=p->inTrans );
50836 
50837 
50838 /*
50839 ** The ISAUTOVACUUM macro is used within balance_nonroot() to determine
50840 ** if the database supports auto-vacuum or not. Because it is used
50841 ** within an expression that is an argument to another macro
50842 ** (sqliteMallocRaw), it is not possible to use conditional compilation.
50843 ** So, this macro is defined instead.
50844 */
50845 #ifndef SQLITE_OMIT_AUTOVACUUM
50846 #define ISAUTOVACUUM (pBt->autoVacuum)
50847 #else
50848 #define ISAUTOVACUUM 0
50849 #endif
50850 
50851 
50852 /*
50853 ** This structure is passed around through all the sanity checking routines
50854 ** in order to keep track of some global state information.
50855 **
50856 ** The aRef[] array is allocated so that there is 1 bit for each page in
50857 ** the database. As the integrity-check proceeds, for each page used in
50858 ** the database the corresponding bit is set. This allows integrity-check to
50859 ** detect pages that are used twice and orphaned pages (both of which
50860 ** indicate corruption).
50861 */
50862 typedef struct IntegrityCk IntegrityCk;
50863 struct IntegrityCk {
50864   BtShared *pBt;    /* The tree being checked out */
50865   Pager *pPager;    /* The associated pager.  Also accessible by pBt->pPager */
50866   u8 *aPgRef;       /* 1 bit per page in the db (see above) */
50867   Pgno nPage;       /* Number of pages in the database */
50868   int mxErr;        /* Stop accumulating errors when this reaches zero */
50869   int nErr;         /* Number of messages written to zErrMsg so far */
50870   int mallocFailed; /* A memory allocation error has occurred */
50871   StrAccum errMsg;  /* Accumulate the error message text here */
50872 };
50873 
50874 /*
50875 ** Routines to read or write a two- and four-byte big-endian integer values.
50876 */
50877 #define get2byte(x)   ((x)[0]<<8 | (x)[1])
50878 #define put2byte(p,v) ((p)[0] = (u8)((v)>>8), (p)[1] = (u8)(v))
50879 #define get4byte sqlite3Get4byte
50880 #define put4byte sqlite3Put4byte
50881 
50882 /************** End of btreeInt.h ********************************************/
50883 /************** Continuing where we left off in btmutex.c ********************/
50884 #ifndef SQLITE_OMIT_SHARED_CACHE
50885 #if SQLITE_THREADSAFE
50886 
50887 /*
50888 ** Obtain the BtShared mutex associated with B-Tree handle p. Also,
50889 ** set BtShared.db to the database handle associated with p and the
50890 ** p->locked boolean to true.
50891 */
50892 static void lockBtreeMutex(Btree *p){
50893   assert( p->locked==0 );
50894   assert( sqlite3_mutex_notheld(p->pBt->mutex) );
50895   assert( sqlite3_mutex_held(p->db->mutex) );
50896 
50897   sqlite3_mutex_enter(p->pBt->mutex);
50898   p->pBt->db = p->db;
50899   p->locked = 1;
50900 }
50901 
50902 /*
50903 ** Release the BtShared mutex associated with B-Tree handle p and
50904 ** clear the p->locked boolean.
50905 */
50906 static void unlockBtreeMutex(Btree *p){
50907   BtShared *pBt = p->pBt;
50908   assert( p->locked==1 );
50909   assert( sqlite3_mutex_held(pBt->mutex) );
50910   assert( sqlite3_mutex_held(p->db->mutex) );
50911   assert( p->db==pBt->db );
50912 
50913   sqlite3_mutex_leave(pBt->mutex);
50914   p->locked = 0;
50915 }
50916 
50917 /*
50918 ** Enter a mutex on the given BTree object.
50919 **
50920 ** If the object is not sharable, then no mutex is ever required
50921 ** and this routine is a no-op.  The underlying mutex is non-recursive.
50922 ** But we keep a reference count in Btree.wantToLock so the behavior
50923 ** of this interface is recursive.
50924 **
50925 ** To avoid deadlocks, multiple Btrees are locked in the same order
50926 ** by all database connections.  The p->pNext is a list of other
50927 ** Btrees belonging to the same database connection as the p Btree
50928 ** which need to be locked after p.  If we cannot get a lock on
50929 ** p, then first unlock all of the others on p->pNext, then wait
50930 ** for the lock to become available on p, then relock all of the
50931 ** subsequent Btrees that desire a lock.
50932 */
50933 SQLITE_PRIVATE void sqlite3BtreeEnter(Btree *p){
50934   Btree *pLater;
50935 
50936   /* Some basic sanity checking on the Btree.  The list of Btrees
50937   ** connected by pNext and pPrev should be in sorted order by
50938   ** Btree.pBt value. All elements of the list should belong to
50939   ** the same connection. Only shared Btrees are on the list. */
50940   assert( p->pNext==0 || p->pNext->pBt>p->pBt );
50941   assert( p->pPrev==0 || p->pPrev->pBt<p->pBt );
50942   assert( p->pNext==0 || p->pNext->db==p->db );
50943   assert( p->pPrev==0 || p->pPrev->db==p->db );
50944   assert( p->sharable || (p->pNext==0 && p->pPrev==0) );
50945 
50946   /* Check for locking consistency */
50947   assert( !p->locked || p->wantToLock>0 );
50948   assert( p->sharable || p->wantToLock==0 );
50949 
50950   /* We should already hold a lock on the database connection */
50951   assert( sqlite3_mutex_held(p->db->mutex) );
50952 
50953   /* Unless the database is sharable and unlocked, then BtShared.db
50954   ** should already be set correctly. */
50955   assert( (p->locked==0 && p->sharable) || p->pBt->db==p->db );
50956 
50957   if( !p->sharable ) return;
50958   p->wantToLock++;
50959   if( p->locked ) return;
50960 
50961   /* In most cases, we should be able to acquire the lock we
50962   ** want without having to go throught the ascending lock
50963   ** procedure that follows.  Just be sure not to block.
50964   */
50965   if( sqlite3_mutex_try(p->pBt->mutex)==SQLITE_OK ){
50966     p->pBt->db = p->db;
50967     p->locked = 1;
50968     return;
50969   }
50970 
50971   /* To avoid deadlock, first release all locks with a larger
50972   ** BtShared address.  Then acquire our lock.  Then reacquire
50973   ** the other BtShared locks that we used to hold in ascending
50974   ** order.
50975   */
50976   for(pLater=p->pNext; pLater; pLater=pLater->pNext){
50977     assert( pLater->sharable );
50978     assert( pLater->pNext==0 || pLater->pNext->pBt>pLater->pBt );
50979     assert( !pLater->locked || pLater->wantToLock>0 );
50980     if( pLater->locked ){
50981       unlockBtreeMutex(pLater);
50982     }
50983   }
50984   lockBtreeMutex(p);
50985   for(pLater=p->pNext; pLater; pLater=pLater->pNext){
50986     if( pLater->wantToLock ){
50987       lockBtreeMutex(pLater);
50988     }
50989   }
50990 }
50991 
50992 /*
50993 ** Exit the recursive mutex on a Btree.
50994 */
50995 SQLITE_PRIVATE void sqlite3BtreeLeave(Btree *p){
50996   if( p->sharable ){
50997     assert( p->wantToLock>0 );
50998     p->wantToLock--;
50999     if( p->wantToLock==0 ){
51000       unlockBtreeMutex(p);
51001     }
51002   }
51003 }
51004 
51005 #ifndef NDEBUG
51006 /*
51007 ** Return true if the BtShared mutex is held on the btree, or if the
51008 ** B-Tree is not marked as sharable.
51009 **
51010 ** This routine is used only from within assert() statements.
51011 */
51012 SQLITE_PRIVATE int sqlite3BtreeHoldsMutex(Btree *p){
51013   assert( p->sharable==0 || p->locked==0 || p->wantToLock>0 );
51014   assert( p->sharable==0 || p->locked==0 || p->db==p->pBt->db );
51015   assert( p->sharable==0 || p->locked==0 || sqlite3_mutex_held(p->pBt->mutex) );
51016   assert( p->sharable==0 || p->locked==0 || sqlite3_mutex_held(p->db->mutex) );
51017 
51018   return (p->sharable==0 || p->locked);
51019 }
51020 #endif
51021 
51022 
51023 #ifndef SQLITE_OMIT_INCRBLOB
51024 /*
51025 ** Enter and leave a mutex on a Btree given a cursor owned by that
51026 ** Btree.  These entry points are used by incremental I/O and can be
51027 ** omitted if that module is not used.
51028 */
51029 SQLITE_PRIVATE void sqlite3BtreeEnterCursor(BtCursor *pCur){
51030   sqlite3BtreeEnter(pCur->pBtree);
51031 }
51032 SQLITE_PRIVATE void sqlite3BtreeLeaveCursor(BtCursor *pCur){
51033   sqlite3BtreeLeave(pCur->pBtree);
51034 }
51035 #endif /* SQLITE_OMIT_INCRBLOB */
51036 
51037 
51038 /*
51039 ** Enter the mutex on every Btree associated with a database
51040 ** connection.  This is needed (for example) prior to parsing
51041 ** a statement since we will be comparing table and column names
51042 ** against all schemas and we do not want those schemas being
51043 ** reset out from under us.
51044 **
51045 ** There is a corresponding leave-all procedures.
51046 **
51047 ** Enter the mutexes in accending order by BtShared pointer address
51048 ** to avoid the possibility of deadlock when two threads with
51049 ** two or more btrees in common both try to lock all their btrees
51050 ** at the same instant.
51051 */
51052 SQLITE_PRIVATE void sqlite3BtreeEnterAll(sqlite3 *db){
51053   int i;
51054   Btree *p;
51055   assert( sqlite3_mutex_held(db->mutex) );
51056   for(i=0; i<db->nDb; i++){
51057     p = db->aDb[i].pBt;
51058     if( p ) sqlite3BtreeEnter(p);
51059   }
51060 }
51061 SQLITE_PRIVATE void sqlite3BtreeLeaveAll(sqlite3 *db){
51062   int i;
51063   Btree *p;
51064   assert( sqlite3_mutex_held(db->mutex) );
51065   for(i=0; i<db->nDb; i++){
51066     p = db->aDb[i].pBt;
51067     if( p ) sqlite3BtreeLeave(p);
51068   }
51069 }
51070 
51071 /*
51072 ** Return true if a particular Btree requires a lock.  Return FALSE if
51073 ** no lock is ever required since it is not sharable.
51074 */
51075 SQLITE_PRIVATE int sqlite3BtreeSharable(Btree *p){
51076   return p->sharable;
51077 }
51078 
51079 #ifndef NDEBUG
51080 /*
51081 ** Return true if the current thread holds the database connection
51082 ** mutex and all required BtShared mutexes.
51083 **
51084 ** This routine is used inside assert() statements only.
51085 */
51086 SQLITE_PRIVATE int sqlite3BtreeHoldsAllMutexes(sqlite3 *db){
51087   int i;
51088   if( !sqlite3_mutex_held(db->mutex) ){
51089     return 0;
51090   }
51091   for(i=0; i<db->nDb; i++){
51092     Btree *p;
51093     p = db->aDb[i].pBt;
51094     if( p && p->sharable &&
51095          (p->wantToLock==0 || !sqlite3_mutex_held(p->pBt->mutex)) ){
51096       return 0;
51097     }
51098   }
51099   return 1;
51100 }
51101 #endif /* NDEBUG */
51102 
51103 #ifndef NDEBUG
51104 /*
51105 ** Return true if the correct mutexes are held for accessing the
51106 ** db->aDb[iDb].pSchema structure.  The mutexes required for schema
51107 ** access are:
51108 **
51109 **   (1) The mutex on db
51110 **   (2) if iDb!=1, then the mutex on db->aDb[iDb].pBt.
51111 **
51112 ** If pSchema is not NULL, then iDb is computed from pSchema and
51113 ** db using sqlite3SchemaToIndex().
51114 */
51115 SQLITE_PRIVATE int sqlite3SchemaMutexHeld(sqlite3 *db, int iDb, Schema *pSchema){
51116   Btree *p;
51117   assert( db!=0 );
51118   if( pSchema ) iDb = sqlite3SchemaToIndex(db, pSchema);
51119   assert( iDb>=0 && iDb<db->nDb );
51120   if( !sqlite3_mutex_held(db->mutex) ) return 0;
51121   if( iDb==1 ) return 1;
51122   p = db->aDb[iDb].pBt;
51123   assert( p!=0 );
51124   return p->sharable==0 || p->locked==1;
51125 }
51126 #endif /* NDEBUG */
51127 
51128 #else /* SQLITE_THREADSAFE>0 above.  SQLITE_THREADSAFE==0 below */
51129 /*
51130 ** The following are special cases for mutex enter routines for use
51131 ** in single threaded applications that use shared cache.  Except for
51132 ** these two routines, all mutex operations are no-ops in that case and
51133 ** are null #defines in btree.h.
51134 **
51135 ** If shared cache is disabled, then all btree mutex routines, including
51136 ** the ones below, are no-ops and are null #defines in btree.h.
51137 */
51138 
51139 SQLITE_PRIVATE void sqlite3BtreeEnter(Btree *p){
51140   p->pBt->db = p->db;
51141 }
51142 SQLITE_PRIVATE void sqlite3BtreeEnterAll(sqlite3 *db){
51143   int i;
51144   for(i=0; i<db->nDb; i++){
51145     Btree *p = db->aDb[i].pBt;
51146     if( p ){
51147       p->pBt->db = p->db;
51148     }
51149   }
51150 }
51151 #endif /* if SQLITE_THREADSAFE */
51152 #endif /* ifndef SQLITE_OMIT_SHARED_CACHE */
51153 
51154 /************** End of btmutex.c *********************************************/
51155 /************** Begin file btree.c *******************************************/
51156 /*
51157 ** 2004 April 6
51158 **
51159 ** The author disclaims copyright to this source code.  In place of
51160 ** a legal notice, here is a blessing:
51161 **
51162 **    May you do good and not evil.
51163 **    May you find forgiveness for yourself and forgive others.
51164 **    May you share freely, never taking more than you give.
51165 **
51166 *************************************************************************
51167 ** This file implements a external (disk-based) database using BTrees.
51168 ** See the header comment on "btreeInt.h" for additional information.
51169 ** Including a description of file format and an overview of operation.
51170 */
51171 
51172 /*
51173 ** The header string that appears at the beginning of every
51174 ** SQLite database.
51175 */
51176 static const char zMagicHeader[] = SQLITE_FILE_HEADER;
51177 
51178 /*
51179 ** Set this global variable to 1 to enable tracing using the TRACE
51180 ** macro.
51181 */
51182 #if 0
51183 int sqlite3BtreeTrace=1;  /* True to enable tracing */
51184 # define TRACE(X)  if(sqlite3BtreeTrace){printf X;fflush(stdout);}
51185 #else
51186 # define TRACE(X)
51187 #endif
51188 
51189 /*
51190 ** Extract a 2-byte big-endian integer from an array of unsigned bytes.
51191 ** But if the value is zero, make it 65536.
51192 **
51193 ** This routine is used to extract the "offset to cell content area" value
51194 ** from the header of a btree page.  If the page size is 65536 and the page
51195 ** is empty, the offset should be 65536, but the 2-byte value stores zero.
51196 ** This routine makes the necessary adjustment to 65536.
51197 */
51198 #define get2byteNotZero(X)  (((((int)get2byte(X))-1)&0xffff)+1)
51199 
51200 /*
51201 ** Values passed as the 5th argument to allocateBtreePage()
51202 */
51203 #define BTALLOC_ANY   0           /* Allocate any page */
51204 #define BTALLOC_EXACT 1           /* Allocate exact page if possible */
51205 #define BTALLOC_LE    2           /* Allocate any page <= the parameter */
51206 
51207 /*
51208 ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
51209 ** defined, or 0 if it is. For example:
51210 **
51211 **   bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
51212 */
51213 #ifndef SQLITE_OMIT_AUTOVACUUM
51214 #define IfNotOmitAV(expr) (expr)
51215 #else
51216 #define IfNotOmitAV(expr) 0
51217 #endif
51218 
51219 #ifndef SQLITE_OMIT_SHARED_CACHE
51220 /*
51221 ** A list of BtShared objects that are eligible for participation
51222 ** in shared cache.  This variable has file scope during normal builds,
51223 ** but the test harness needs to access it so we make it global for
51224 ** test builds.
51225 **
51226 ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
51227 */
51228 #ifdef SQLITE_TEST
51229 SQLITE_PRIVATE BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
51230 #else
51231 static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
51232 #endif
51233 #endif /* SQLITE_OMIT_SHARED_CACHE */
51234 
51235 #ifndef SQLITE_OMIT_SHARED_CACHE
51236 /*
51237 ** Enable or disable the shared pager and schema features.
51238 **
51239 ** This routine has no effect on existing database connections.
51240 ** The shared cache setting effects only future calls to
51241 ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
51242 */
51243 SQLITE_API int sqlite3_enable_shared_cache(int enable){
51244   sqlite3GlobalConfig.sharedCacheEnabled = enable;
51245   return SQLITE_OK;
51246 }
51247 #endif
51248 
51249 
51250 
51251 #ifdef SQLITE_OMIT_SHARED_CACHE
51252   /*
51253   ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
51254   ** and clearAllSharedCacheTableLocks()
51255   ** manipulate entries in the BtShared.pLock linked list used to store
51256   ** shared-cache table level locks. If the library is compiled with the
51257   ** shared-cache feature disabled, then there is only ever one user
51258   ** of each BtShared structure and so this locking is not necessary.
51259   ** So define the lock related functions as no-ops.
51260   */
51261   #define querySharedCacheTableLock(a,b,c) SQLITE_OK
51262   #define setSharedCacheTableLock(a,b,c) SQLITE_OK
51263   #define clearAllSharedCacheTableLocks(a)
51264   #define downgradeAllSharedCacheTableLocks(a)
51265   #define hasSharedCacheTableLock(a,b,c,d) 1
51266   #define hasReadConflicts(a, b) 0
51267 #endif
51268 
51269 #ifndef SQLITE_OMIT_SHARED_CACHE
51270 
51271 #ifdef SQLITE_DEBUG
51272 /*
51273 **** This function is only used as part of an assert() statement. ***
51274 **
51275 ** Check to see if pBtree holds the required locks to read or write to the
51276 ** table with root page iRoot.   Return 1 if it does and 0 if not.
51277 **
51278 ** For example, when writing to a table with root-page iRoot via
51279 ** Btree connection pBtree:
51280 **
51281 **    assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
51282 **
51283 ** When writing to an index that resides in a sharable database, the
51284 ** caller should have first obtained a lock specifying the root page of
51285 ** the corresponding table. This makes things a bit more complicated,
51286 ** as this module treats each table as a separate structure. To determine
51287 ** the table corresponding to the index being written, this
51288 ** function has to search through the database schema.
51289 **
51290 ** Instead of a lock on the table/index rooted at page iRoot, the caller may
51291 ** hold a write-lock on the schema table (root page 1). This is also
51292 ** acceptable.
51293 */
51294 static int hasSharedCacheTableLock(
51295   Btree *pBtree,         /* Handle that must hold lock */
51296   Pgno iRoot,            /* Root page of b-tree */
51297   int isIndex,           /* True if iRoot is the root of an index b-tree */
51298   int eLockType          /* Required lock type (READ_LOCK or WRITE_LOCK) */
51299 ){
51300   Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
51301   Pgno iTab = 0;
51302   BtLock *pLock;
51303 
51304   /* If this database is not shareable, or if the client is reading
51305   ** and has the read-uncommitted flag set, then no lock is required.
51306   ** Return true immediately.
51307   */
51308   if( (pBtree->sharable==0)
51309    || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
51310   ){
51311     return 1;
51312   }
51313 
51314   /* If the client is reading  or writing an index and the schema is
51315   ** not loaded, then it is too difficult to actually check to see if
51316   ** the correct locks are held.  So do not bother - just return true.
51317   ** This case does not come up very often anyhow.
51318   */
51319   if( isIndex && (!pSchema || (pSchema->flags&DB_SchemaLoaded)==0) ){
51320     return 1;
51321   }
51322 
51323   /* Figure out the root-page that the lock should be held on. For table
51324   ** b-trees, this is just the root page of the b-tree being read or
51325   ** written. For index b-trees, it is the root page of the associated
51326   ** table.  */
51327   if( isIndex ){
51328     HashElem *p;
51329     for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
51330       Index *pIdx = (Index *)sqliteHashData(p);
51331       if( pIdx->tnum==(int)iRoot ){
51332         iTab = pIdx->pTable->tnum;
51333       }
51334     }
51335   }else{
51336     iTab = iRoot;
51337   }
51338 
51339   /* Search for the required lock. Either a write-lock on root-page iTab, a
51340   ** write-lock on the schema table, or (if the client is reading) a
51341   ** read-lock on iTab will suffice. Return 1 if any of these are found.  */
51342   for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
51343     if( pLock->pBtree==pBtree
51344      && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
51345      && pLock->eLock>=eLockType
51346     ){
51347       return 1;
51348     }
51349   }
51350 
51351   /* Failed to find the required lock. */
51352   return 0;
51353 }
51354 #endif /* SQLITE_DEBUG */
51355 
51356 #ifdef SQLITE_DEBUG
51357 /*
51358 **** This function may be used as part of assert() statements only. ****
51359 **
51360 ** Return true if it would be illegal for pBtree to write into the
51361 ** table or index rooted at iRoot because other shared connections are
51362 ** simultaneously reading that same table or index.
51363 **
51364 ** It is illegal for pBtree to write if some other Btree object that
51365 ** shares the same BtShared object is currently reading or writing
51366 ** the iRoot table.  Except, if the other Btree object has the
51367 ** read-uncommitted flag set, then it is OK for the other object to
51368 ** have a read cursor.
51369 **
51370 ** For example, before writing to any part of the table or index
51371 ** rooted at page iRoot, one should call:
51372 **
51373 **    assert( !hasReadConflicts(pBtree, iRoot) );
51374 */
51375 static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
51376   BtCursor *p;
51377   for(p=pBtree->pBt->pCursor; p; p=p->pNext){
51378     if( p->pgnoRoot==iRoot
51379      && p->pBtree!=pBtree
51380      && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
51381     ){
51382       return 1;
51383     }
51384   }
51385   return 0;
51386 }
51387 #endif    /* #ifdef SQLITE_DEBUG */
51388 
51389 /*
51390 ** Query to see if Btree handle p may obtain a lock of type eLock
51391 ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
51392 ** SQLITE_OK if the lock may be obtained (by calling
51393 ** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
51394 */
51395 static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
51396   BtShared *pBt = p->pBt;
51397   BtLock *pIter;
51398 
51399   assert( sqlite3BtreeHoldsMutex(p) );
51400   assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
51401   assert( p->db!=0 );
51402   assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
51403 
51404   /* If requesting a write-lock, then the Btree must have an open write
51405   ** transaction on this file. And, obviously, for this to be so there
51406   ** must be an open write transaction on the file itself.
51407   */
51408   assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
51409   assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
51410 
51411   /* This routine is a no-op if the shared-cache is not enabled */
51412   if( !p->sharable ){
51413     return SQLITE_OK;
51414   }
51415 
51416   /* If some other connection is holding an exclusive lock, the
51417   ** requested lock may not be obtained.
51418   */
51419   if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
51420     sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
51421     return SQLITE_LOCKED_SHAREDCACHE;
51422   }
51423 
51424   for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
51425     /* The condition (pIter->eLock!=eLock) in the following if(...)
51426     ** statement is a simplification of:
51427     **
51428     **   (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
51429     **
51430     ** since we know that if eLock==WRITE_LOCK, then no other connection
51431     ** may hold a WRITE_LOCK on any table in this file (since there can
51432     ** only be a single writer).
51433     */
51434     assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
51435     assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
51436     if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
51437       sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
51438       if( eLock==WRITE_LOCK ){
51439         assert( p==pBt->pWriter );
51440         pBt->btsFlags |= BTS_PENDING;
51441       }
51442       return SQLITE_LOCKED_SHAREDCACHE;
51443     }
51444   }
51445   return SQLITE_OK;
51446 }
51447 #endif /* !SQLITE_OMIT_SHARED_CACHE */
51448 
51449 #ifndef SQLITE_OMIT_SHARED_CACHE
51450 /*
51451 ** Add a lock on the table with root-page iTable to the shared-btree used
51452 ** by Btree handle p. Parameter eLock must be either READ_LOCK or
51453 ** WRITE_LOCK.
51454 **
51455 ** This function assumes the following:
51456 **
51457 **   (a) The specified Btree object p is connected to a sharable
51458 **       database (one with the BtShared.sharable flag set), and
51459 **
51460 **   (b) No other Btree objects hold a lock that conflicts
51461 **       with the requested lock (i.e. querySharedCacheTableLock() has
51462 **       already been called and returned SQLITE_OK).
51463 **
51464 ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
51465 ** is returned if a malloc attempt fails.
51466 */
51467 static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
51468   BtShared *pBt = p->pBt;
51469   BtLock *pLock = 0;
51470   BtLock *pIter;
51471 
51472   assert( sqlite3BtreeHoldsMutex(p) );
51473   assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
51474   assert( p->db!=0 );
51475 
51476   /* A connection with the read-uncommitted flag set will never try to
51477   ** obtain a read-lock using this function. The only read-lock obtained
51478   ** by a connection in read-uncommitted mode is on the sqlite_master
51479   ** table, and that lock is obtained in BtreeBeginTrans().  */
51480   assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
51481 
51482   /* This function should only be called on a sharable b-tree after it
51483   ** has been determined that no other b-tree holds a conflicting lock.  */
51484   assert( p->sharable );
51485   assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
51486 
51487   /* First search the list for an existing lock on this table. */
51488   for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
51489     if( pIter->iTable==iTable && pIter->pBtree==p ){
51490       pLock = pIter;
51491       break;
51492     }
51493   }
51494 
51495   /* If the above search did not find a BtLock struct associating Btree p
51496   ** with table iTable, allocate one and link it into the list.
51497   */
51498   if( !pLock ){
51499     pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
51500     if( !pLock ){
51501       return SQLITE_NOMEM;
51502     }
51503     pLock->iTable = iTable;
51504     pLock->pBtree = p;
51505     pLock->pNext = pBt->pLock;
51506     pBt->pLock = pLock;
51507   }
51508 
51509   /* Set the BtLock.eLock variable to the maximum of the current lock
51510   ** and the requested lock. This means if a write-lock was already held
51511   ** and a read-lock requested, we don't incorrectly downgrade the lock.
51512   */
51513   assert( WRITE_LOCK>READ_LOCK );
51514   if( eLock>pLock->eLock ){
51515     pLock->eLock = eLock;
51516   }
51517 
51518   return SQLITE_OK;
51519 }
51520 #endif /* !SQLITE_OMIT_SHARED_CACHE */
51521 
51522 #ifndef SQLITE_OMIT_SHARED_CACHE
51523 /*
51524 ** Release all the table locks (locks obtained via calls to
51525 ** the setSharedCacheTableLock() procedure) held by Btree object p.
51526 **
51527 ** This function assumes that Btree p has an open read or write
51528 ** transaction. If it does not, then the BTS_PENDING flag
51529 ** may be incorrectly cleared.
51530 */
51531 static void clearAllSharedCacheTableLocks(Btree *p){
51532   BtShared *pBt = p->pBt;
51533   BtLock **ppIter = &pBt->pLock;
51534 
51535   assert( sqlite3BtreeHoldsMutex(p) );
51536   assert( p->sharable || 0==*ppIter );
51537   assert( p->inTrans>0 );
51538 
51539   while( *ppIter ){
51540     BtLock *pLock = *ppIter;
51541     assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
51542     assert( pLock->pBtree->inTrans>=pLock->eLock );
51543     if( pLock->pBtree==p ){
51544       *ppIter = pLock->pNext;
51545       assert( pLock->iTable!=1 || pLock==&p->lock );
51546       if( pLock->iTable!=1 ){
51547         sqlite3_free(pLock);
51548       }
51549     }else{
51550       ppIter = &pLock->pNext;
51551     }
51552   }
51553 
51554   assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
51555   if( pBt->pWriter==p ){
51556     pBt->pWriter = 0;
51557     pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
51558   }else if( pBt->nTransaction==2 ){
51559     /* This function is called when Btree p is concluding its
51560     ** transaction. If there currently exists a writer, and p is not
51561     ** that writer, then the number of locks held by connections other
51562     ** than the writer must be about to drop to zero. In this case
51563     ** set the BTS_PENDING flag to 0.
51564     **
51565     ** If there is not currently a writer, then BTS_PENDING must
51566     ** be zero already. So this next line is harmless in that case.
51567     */
51568     pBt->btsFlags &= ~BTS_PENDING;
51569   }
51570 }
51571 
51572 /*
51573 ** This function changes all write-locks held by Btree p into read-locks.
51574 */
51575 static void downgradeAllSharedCacheTableLocks(Btree *p){
51576   BtShared *pBt = p->pBt;
51577   if( pBt->pWriter==p ){
51578     BtLock *pLock;
51579     pBt->pWriter = 0;
51580     pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
51581     for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
51582       assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
51583       pLock->eLock = READ_LOCK;
51584     }
51585   }
51586 }
51587 
51588 #endif /* SQLITE_OMIT_SHARED_CACHE */
51589 
51590 static void releasePage(MemPage *pPage);  /* Forward reference */
51591 
51592 /*
51593 ***** This routine is used inside of assert() only ****
51594 **
51595 ** Verify that the cursor holds the mutex on its BtShared
51596 */
51597 #ifdef SQLITE_DEBUG
51598 static int cursorHoldsMutex(BtCursor *p){
51599   return sqlite3_mutex_held(p->pBt->mutex);
51600 }
51601 #endif
51602 
51603 /*
51604 ** Invalidate the overflow cache of the cursor passed as the first argument.
51605 ** on the shared btree structure pBt.
51606 */
51607 #define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
51608 
51609 /*
51610 ** Invalidate the overflow page-list cache for all cursors opened
51611 ** on the shared btree structure pBt.
51612 */
51613 static void invalidateAllOverflowCache(BtShared *pBt){
51614   BtCursor *p;
51615   assert( sqlite3_mutex_held(pBt->mutex) );
51616   for(p=pBt->pCursor; p; p=p->pNext){
51617     invalidateOverflowCache(p);
51618   }
51619 }
51620 
51621 #ifndef SQLITE_OMIT_INCRBLOB
51622 /*
51623 ** This function is called before modifying the contents of a table
51624 ** to invalidate any incrblob cursors that are open on the
51625 ** row or one of the rows being modified.
51626 **
51627 ** If argument isClearTable is true, then the entire contents of the
51628 ** table is about to be deleted. In this case invalidate all incrblob
51629 ** cursors open on any row within the table with root-page pgnoRoot.
51630 **
51631 ** Otherwise, if argument isClearTable is false, then the row with
51632 ** rowid iRow is being replaced or deleted. In this case invalidate
51633 ** only those incrblob cursors open on that specific row.
51634 */
51635 static void invalidateIncrblobCursors(
51636   Btree *pBtree,          /* The database file to check */
51637   i64 iRow,               /* The rowid that might be changing */
51638   int isClearTable        /* True if all rows are being deleted */
51639 ){
51640   BtCursor *p;
51641   BtShared *pBt = pBtree->pBt;
51642   assert( sqlite3BtreeHoldsMutex(pBtree) );
51643   for(p=pBt->pCursor; p; p=p->pNext){
51644     if( (p->curFlags & BTCF_Incrblob)!=0 && (isClearTable || p->info.nKey==iRow) ){
51645       p->eState = CURSOR_INVALID;
51646     }
51647   }
51648 }
51649 
51650 #else
51651   /* Stub function when INCRBLOB is omitted */
51652   #define invalidateIncrblobCursors(x,y,z)
51653 #endif /* SQLITE_OMIT_INCRBLOB */
51654 
51655 /*
51656 ** Set bit pgno of the BtShared.pHasContent bitvec. This is called
51657 ** when a page that previously contained data becomes a free-list leaf
51658 ** page.
51659 **
51660 ** The BtShared.pHasContent bitvec exists to work around an obscure
51661 ** bug caused by the interaction of two useful IO optimizations surrounding
51662 ** free-list leaf pages:
51663 **
51664 **   1) When all data is deleted from a page and the page becomes
51665 **      a free-list leaf page, the page is not written to the database
51666 **      (as free-list leaf pages contain no meaningful data). Sometimes
51667 **      such a page is not even journalled (as it will not be modified,
51668 **      why bother journalling it?).
51669 **
51670 **   2) When a free-list leaf page is reused, its content is not read
51671 **      from the database or written to the journal file (why should it
51672 **      be, if it is not at all meaningful?).
51673 **
51674 ** By themselves, these optimizations work fine and provide a handy
51675 ** performance boost to bulk delete or insert operations. However, if
51676 ** a page is moved to the free-list and then reused within the same
51677 ** transaction, a problem comes up. If the page is not journalled when
51678 ** it is moved to the free-list and it is also not journalled when it
51679 ** is extracted from the free-list and reused, then the original data
51680 ** may be lost. In the event of a rollback, it may not be possible
51681 ** to restore the database to its original configuration.
51682 **
51683 ** The solution is the BtShared.pHasContent bitvec. Whenever a page is
51684 ** moved to become a free-list leaf page, the corresponding bit is
51685 ** set in the bitvec. Whenever a leaf page is extracted from the free-list,
51686 ** optimization 2 above is omitted if the corresponding bit is already
51687 ** set in BtShared.pHasContent. The contents of the bitvec are cleared
51688 ** at the end of every transaction.
51689 */
51690 static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
51691   int rc = SQLITE_OK;
51692   if( !pBt->pHasContent ){
51693     assert( pgno<=pBt->nPage );
51694     pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
51695     if( !pBt->pHasContent ){
51696       rc = SQLITE_NOMEM;
51697     }
51698   }
51699   if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
51700     rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
51701   }
51702   return rc;
51703 }
51704 
51705 /*
51706 ** Query the BtShared.pHasContent vector.
51707 **
51708 ** This function is called when a free-list leaf page is removed from the
51709 ** free-list for reuse. It returns false if it is safe to retrieve the
51710 ** page from the pager layer with the 'no-content' flag set. True otherwise.
51711 */
51712 static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
51713   Bitvec *p = pBt->pHasContent;
51714   return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
51715 }
51716 
51717 /*
51718 ** Clear (destroy) the BtShared.pHasContent bitvec. This should be
51719 ** invoked at the conclusion of each write-transaction.
51720 */
51721 static void btreeClearHasContent(BtShared *pBt){
51722   sqlite3BitvecDestroy(pBt->pHasContent);
51723   pBt->pHasContent = 0;
51724 }
51725 
51726 /*
51727 ** Release all of the apPage[] pages for a cursor.
51728 */
51729 static void btreeReleaseAllCursorPages(BtCursor *pCur){
51730   int i;
51731   for(i=0; i<=pCur->iPage; i++){
51732     releasePage(pCur->apPage[i]);
51733     pCur->apPage[i] = 0;
51734   }
51735   pCur->iPage = -1;
51736 }
51737 
51738 
51739 /*
51740 ** Save the current cursor position in the variables BtCursor.nKey
51741 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
51742 **
51743 ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
51744 ** prior to calling this routine.
51745 */
51746 static int saveCursorPosition(BtCursor *pCur){
51747   int rc;
51748 
51749   assert( CURSOR_VALID==pCur->eState );
51750   assert( 0==pCur->pKey );
51751   assert( cursorHoldsMutex(pCur) );
51752 
51753   rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
51754   assert( rc==SQLITE_OK );  /* KeySize() cannot fail */
51755 
51756   /* If this is an intKey table, then the above call to BtreeKeySize()
51757   ** stores the integer key in pCur->nKey. In this case this value is
51758   ** all that is required. Otherwise, if pCur is not open on an intKey
51759   ** table, then malloc space for and store the pCur->nKey bytes of key
51760   ** data.
51761   */
51762   if( 0==pCur->apPage[0]->intKey ){
51763     void *pKey = sqlite3Malloc( (int)pCur->nKey );
51764     if( pKey ){
51765       rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
51766       if( rc==SQLITE_OK ){
51767         pCur->pKey = pKey;
51768       }else{
51769         sqlite3_free(pKey);
51770       }
51771     }else{
51772       rc = SQLITE_NOMEM;
51773     }
51774   }
51775   assert( !pCur->apPage[0]->intKey || !pCur->pKey );
51776 
51777   if( rc==SQLITE_OK ){
51778     btreeReleaseAllCursorPages(pCur);
51779     pCur->eState = CURSOR_REQUIRESEEK;
51780   }
51781 
51782   invalidateOverflowCache(pCur);
51783   return rc;
51784 }
51785 
51786 /*
51787 ** Save the positions of all cursors (except pExcept) that are open on
51788 ** the table  with root-page iRoot. Usually, this is called just before cursor
51789 ** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
51790 */
51791 static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
51792   BtCursor *p;
51793   assert( sqlite3_mutex_held(pBt->mutex) );
51794   assert( pExcept==0 || pExcept->pBt==pBt );
51795   for(p=pBt->pCursor; p; p=p->pNext){
51796     if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
51797       if( p->eState==CURSOR_VALID ){
51798         int rc = saveCursorPosition(p);
51799         if( SQLITE_OK!=rc ){
51800           return rc;
51801         }
51802       }else{
51803         testcase( p->iPage>0 );
51804         btreeReleaseAllCursorPages(p);
51805       }
51806     }
51807   }
51808   return SQLITE_OK;
51809 }
51810 
51811 /*
51812 ** Clear the current cursor position.
51813 */
51814 SQLITE_PRIVATE void sqlite3BtreeClearCursor(BtCursor *pCur){
51815   assert( cursorHoldsMutex(pCur) );
51816   sqlite3_free(pCur->pKey);
51817   pCur->pKey = 0;
51818   pCur->eState = CURSOR_INVALID;
51819 }
51820 
51821 /*
51822 ** In this version of BtreeMoveto, pKey is a packed index record
51823 ** such as is generated by the OP_MakeRecord opcode.  Unpack the
51824 ** record and then call BtreeMovetoUnpacked() to do the work.
51825 */
51826 static int btreeMoveto(
51827   BtCursor *pCur,     /* Cursor open on the btree to be searched */
51828   const void *pKey,   /* Packed key if the btree is an index */
51829   i64 nKey,           /* Integer key for tables.  Size of pKey for indices */
51830   int bias,           /* Bias search to the high end */
51831   int *pRes           /* Write search results here */
51832 ){
51833   int rc;                    /* Status code */
51834   UnpackedRecord *pIdxKey;   /* Unpacked index key */
51835   char aSpace[200];          /* Temp space for pIdxKey - to avoid a malloc */
51836   char *pFree = 0;
51837 
51838   if( pKey ){
51839     assert( nKey==(i64)(int)nKey );
51840     pIdxKey = sqlite3VdbeAllocUnpackedRecord(
51841         pCur->pKeyInfo, aSpace, sizeof(aSpace), &pFree
51842     );
51843     if( pIdxKey==0 ) return SQLITE_NOMEM;
51844     sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
51845     if( pIdxKey->nField==0 ){
51846       sqlite3DbFree(pCur->pKeyInfo->db, pFree);
51847       return SQLITE_CORRUPT_BKPT;
51848     }
51849   }else{
51850     pIdxKey = 0;
51851   }
51852   rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
51853   if( pFree ){
51854     sqlite3DbFree(pCur->pKeyInfo->db, pFree);
51855   }
51856   return rc;
51857 }
51858 
51859 /*
51860 ** Restore the cursor to the position it was in (or as close to as possible)
51861 ** when saveCursorPosition() was called. Note that this call deletes the
51862 ** saved position info stored by saveCursorPosition(), so there can be
51863 ** at most one effective restoreCursorPosition() call after each
51864 ** saveCursorPosition().
51865 */
51866 static int btreeRestoreCursorPosition(BtCursor *pCur){
51867   int rc;
51868   assert( cursorHoldsMutex(pCur) );
51869   assert( pCur->eState>=CURSOR_REQUIRESEEK );
51870   if( pCur->eState==CURSOR_FAULT ){
51871     return pCur->skipNext;
51872   }
51873   pCur->eState = CURSOR_INVALID;
51874   rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skipNext);
51875   if( rc==SQLITE_OK ){
51876     sqlite3_free(pCur->pKey);
51877     pCur->pKey = 0;
51878     assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
51879     if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
51880       pCur->eState = CURSOR_SKIPNEXT;
51881     }
51882   }
51883   return rc;
51884 }
51885 
51886 #define restoreCursorPosition(p) \
51887   (p->eState>=CURSOR_REQUIRESEEK ? \
51888          btreeRestoreCursorPosition(p) : \
51889          SQLITE_OK)
51890 
51891 /*
51892 ** Determine whether or not a cursor has moved from the position it
51893 ** was last placed at.  Cursors can move when the row they are pointing
51894 ** at is deleted out from under them.
51895 **
51896 ** This routine returns an error code if something goes wrong.  The
51897 ** integer *pHasMoved is set as follows:
51898 **
51899 **    0:   The cursor is unchanged
51900 **    1:   The cursor is still pointing at the same row, but the pointers
51901 **         returned by sqlite3BtreeKeyFetch() or sqlite3BtreeDataFetch()
51902 **         might now be invalid because of a balance() or other change to the
51903 **         b-tree.
51904 **    2:   The cursor is no longer pointing to the row.  The row might have
51905 **         been deleted out from under the cursor.
51906 */
51907 SQLITE_PRIVATE int sqlite3BtreeCursorHasMoved(BtCursor *pCur, int *pHasMoved){
51908   int rc;
51909 
51910   if( pCur->eState==CURSOR_VALID ){
51911     *pHasMoved = 0;
51912     return SQLITE_OK;
51913   }
51914   rc = restoreCursorPosition(pCur);
51915   if( rc ){
51916     *pHasMoved = 2;
51917     return rc;
51918   }
51919   if( pCur->eState!=CURSOR_VALID || NEVER(pCur->skipNext!=0) ){
51920     *pHasMoved = 2;
51921   }else{
51922     *pHasMoved = 1;
51923   }
51924   return SQLITE_OK;
51925 }
51926 
51927 #ifndef SQLITE_OMIT_AUTOVACUUM
51928 /*
51929 ** Given a page number of a regular database page, return the page
51930 ** number for the pointer-map page that contains the entry for the
51931 ** input page number.
51932 **
51933 ** Return 0 (not a valid page) for pgno==1 since there is
51934 ** no pointer map associated with page 1.  The integrity_check logic
51935 ** requires that ptrmapPageno(*,1)!=1.
51936 */
51937 static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
51938   int nPagesPerMapPage;
51939   Pgno iPtrMap, ret;
51940   assert( sqlite3_mutex_held(pBt->mutex) );
51941   if( pgno<2 ) return 0;
51942   nPagesPerMapPage = (pBt->usableSize/5)+1;
51943   iPtrMap = (pgno-2)/nPagesPerMapPage;
51944   ret = (iPtrMap*nPagesPerMapPage) + 2;
51945   if( ret==PENDING_BYTE_PAGE(pBt) ){
51946     ret++;
51947   }
51948   return ret;
51949 }
51950 
51951 /*
51952 ** Write an entry into the pointer map.
51953 **
51954 ** This routine updates the pointer map entry for page number 'key'
51955 ** so that it maps to type 'eType' and parent page number 'pgno'.
51956 **
51957 ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
51958 ** a no-op.  If an error occurs, the appropriate error code is written
51959 ** into *pRC.
51960 */
51961 static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
51962   DbPage *pDbPage;  /* The pointer map page */
51963   u8 *pPtrmap;      /* The pointer map data */
51964   Pgno iPtrmap;     /* The pointer map page number */
51965   int offset;       /* Offset in pointer map page */
51966   int rc;           /* Return code from subfunctions */
51967 
51968   if( *pRC ) return;
51969 
51970   assert( sqlite3_mutex_held(pBt->mutex) );
51971   /* The master-journal page number must never be used as a pointer map page */
51972   assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
51973 
51974   assert( pBt->autoVacuum );
51975   if( key==0 ){
51976     *pRC = SQLITE_CORRUPT_BKPT;
51977     return;
51978   }
51979   iPtrmap = PTRMAP_PAGENO(pBt, key);
51980   rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
51981   if( rc!=SQLITE_OK ){
51982     *pRC = rc;
51983     return;
51984   }
51985   offset = PTRMAP_PTROFFSET(iPtrmap, key);
51986   if( offset<0 ){
51987     *pRC = SQLITE_CORRUPT_BKPT;
51988     goto ptrmap_exit;
51989   }
51990   assert( offset <= (int)pBt->usableSize-5 );
51991   pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
51992 
51993   if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
51994     TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
51995     *pRC= rc = sqlite3PagerWrite(pDbPage);
51996     if( rc==SQLITE_OK ){
51997       pPtrmap[offset] = eType;
51998       put4byte(&pPtrmap[offset+1], parent);
51999     }
52000   }
52001 
52002 ptrmap_exit:
52003   sqlite3PagerUnref(pDbPage);
52004 }
52005 
52006 /*
52007 ** Read an entry from the pointer map.
52008 **
52009 ** This routine retrieves the pointer map entry for page 'key', writing
52010 ** the type and parent page number to *pEType and *pPgno respectively.
52011 ** An error code is returned if something goes wrong, otherwise SQLITE_OK.
52012 */
52013 static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
52014   DbPage *pDbPage;   /* The pointer map page */
52015   int iPtrmap;       /* Pointer map page index */
52016   u8 *pPtrmap;       /* Pointer map page data */
52017   int offset;        /* Offset of entry in pointer map */
52018   int rc;
52019 
52020   assert( sqlite3_mutex_held(pBt->mutex) );
52021 
52022   iPtrmap = PTRMAP_PAGENO(pBt, key);
52023   rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
52024   if( rc!=0 ){
52025     return rc;
52026   }
52027   pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
52028 
52029   offset = PTRMAP_PTROFFSET(iPtrmap, key);
52030   if( offset<0 ){
52031     sqlite3PagerUnref(pDbPage);
52032     return SQLITE_CORRUPT_BKPT;
52033   }
52034   assert( offset <= (int)pBt->usableSize-5 );
52035   assert( pEType!=0 );
52036   *pEType = pPtrmap[offset];
52037   if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
52038 
52039   sqlite3PagerUnref(pDbPage);
52040   if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
52041   return SQLITE_OK;
52042 }
52043 
52044 #else /* if defined SQLITE_OMIT_AUTOVACUUM */
52045   #define ptrmapPut(w,x,y,z,rc)
52046   #define ptrmapGet(w,x,y,z) SQLITE_OK
52047   #define ptrmapPutOvflPtr(x, y, rc)
52048 #endif
52049 
52050 /*
52051 ** Given a btree page and a cell index (0 means the first cell on
52052 ** the page, 1 means the second cell, and so forth) return a pointer
52053 ** to the cell content.
52054 **
52055 ** This routine works only for pages that do not contain overflow cells.
52056 */
52057 #define findCell(P,I) \
52058   ((P)->aData + ((P)->maskPage & get2byte(&(P)->aCellIdx[2*(I)])))
52059 #define findCellv2(D,M,O,I) (D+(M&get2byte(D+(O+2*(I)))))
52060 
52061 
52062 /*
52063 ** This a more complex version of findCell() that works for
52064 ** pages that do contain overflow cells.
52065 */
52066 static u8 *findOverflowCell(MemPage *pPage, int iCell){
52067   int i;
52068   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
52069   for(i=pPage->nOverflow-1; i>=0; i--){
52070     int k;
52071     k = pPage->aiOvfl[i];
52072     if( k<=iCell ){
52073       if( k==iCell ){
52074         return pPage->apOvfl[i];
52075       }
52076       iCell--;
52077     }
52078   }
52079   return findCell(pPage, iCell);
52080 }
52081 
52082 /*
52083 ** Parse a cell content block and fill in the CellInfo structure.  There
52084 ** are two versions of this function.  btreeParseCell() takes a
52085 ** cell index as the second argument and btreeParseCellPtr()
52086 ** takes a pointer to the body of the cell as its second argument.
52087 **
52088 ** Within this file, the parseCell() macro can be called instead of
52089 ** btreeParseCellPtr(). Using some compilers, this will be faster.
52090 */
52091 static void btreeParseCellPtr(
52092   MemPage *pPage,         /* Page containing the cell */
52093   u8 *pCell,              /* Pointer to the cell text. */
52094   CellInfo *pInfo         /* Fill in this structure */
52095 ){
52096   u16 n;                  /* Number bytes in cell content header */
52097   u32 nPayload;           /* Number of bytes of cell payload */
52098 
52099   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
52100 
52101   pInfo->pCell = pCell;
52102   assert( pPage->leaf==0 || pPage->leaf==1 );
52103   n = pPage->childPtrSize;
52104   assert( n==4-4*pPage->leaf );
52105   if( pPage->intKey ){
52106     if( pPage->hasData ){
52107       assert( n==0 );
52108       n = getVarint32(pCell, nPayload);
52109     }else{
52110       nPayload = 0;
52111     }
52112     n += getVarint(&pCell[n], (u64*)&pInfo->nKey);
52113     pInfo->nData = nPayload;
52114   }else{
52115     pInfo->nData = 0;
52116     n += getVarint32(&pCell[n], nPayload);
52117     pInfo->nKey = nPayload;
52118   }
52119   pInfo->nPayload = nPayload;
52120   pInfo->nHeader = n;
52121   testcase( nPayload==pPage->maxLocal );
52122   testcase( nPayload==pPage->maxLocal+1 );
52123   if( likely(nPayload<=pPage->maxLocal) ){
52124     /* This is the (easy) common case where the entire payload fits
52125     ** on the local page.  No overflow is required.
52126     */
52127     if( (pInfo->nSize = (u16)(n+nPayload))<4 ) pInfo->nSize = 4;
52128     pInfo->nLocal = (u16)nPayload;
52129     pInfo->iOverflow = 0;
52130   }else{
52131     /* If the payload will not fit completely on the local page, we have
52132     ** to decide how much to store locally and how much to spill onto
52133     ** overflow pages.  The strategy is to minimize the amount of unused
52134     ** space on overflow pages while keeping the amount of local storage
52135     ** in between minLocal and maxLocal.
52136     **
52137     ** Warning:  changing the way overflow payload is distributed in any
52138     ** way will result in an incompatible file format.
52139     */
52140     int minLocal;  /* Minimum amount of payload held locally */
52141     int maxLocal;  /* Maximum amount of payload held locally */
52142     int surplus;   /* Overflow payload available for local storage */
52143 
52144     minLocal = pPage->minLocal;
52145     maxLocal = pPage->maxLocal;
52146     surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
52147     testcase( surplus==maxLocal );
52148     testcase( surplus==maxLocal+1 );
52149     if( surplus <= maxLocal ){
52150       pInfo->nLocal = (u16)surplus;
52151     }else{
52152       pInfo->nLocal = (u16)minLocal;
52153     }
52154     pInfo->iOverflow = (u16)(pInfo->nLocal + n);
52155     pInfo->nSize = pInfo->iOverflow + 4;
52156   }
52157 }
52158 #define parseCell(pPage, iCell, pInfo) \
52159   btreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo))
52160 static void btreeParseCell(
52161   MemPage *pPage,         /* Page containing the cell */
52162   int iCell,              /* The cell index.  First cell is 0 */
52163   CellInfo *pInfo         /* Fill in this structure */
52164 ){
52165   parseCell(pPage, iCell, pInfo);
52166 }
52167 
52168 /*
52169 ** Compute the total number of bytes that a Cell needs in the cell
52170 ** data area of the btree-page.  The return number includes the cell
52171 ** data header and the local payload, but not any overflow page or
52172 ** the space used by the cell pointer.
52173 */
52174 static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
52175   u8 *pIter = &pCell[pPage->childPtrSize];
52176   u32 nSize;
52177 
52178 #ifdef SQLITE_DEBUG
52179   /* The value returned by this function should always be the same as
52180   ** the (CellInfo.nSize) value found by doing a full parse of the
52181   ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
52182   ** this function verifies that this invariant is not violated. */
52183   CellInfo debuginfo;
52184   btreeParseCellPtr(pPage, pCell, &debuginfo);
52185 #endif
52186 
52187   if( pPage->intKey ){
52188     u8 *pEnd;
52189     if( pPage->hasData ){
52190       pIter += getVarint32(pIter, nSize);
52191     }else{
52192       nSize = 0;
52193     }
52194 
52195     /* pIter now points at the 64-bit integer key value, a variable length
52196     ** integer. The following block moves pIter to point at the first byte
52197     ** past the end of the key value. */
52198     pEnd = &pIter[9];
52199     while( (*pIter++)&0x80 && pIter<pEnd );
52200   }else{
52201     pIter += getVarint32(pIter, nSize);
52202   }
52203 
52204   testcase( nSize==pPage->maxLocal );
52205   testcase( nSize==pPage->maxLocal+1 );
52206   if( nSize>pPage->maxLocal ){
52207     int minLocal = pPage->minLocal;
52208     nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
52209     testcase( nSize==pPage->maxLocal );
52210     testcase( nSize==pPage->maxLocal+1 );
52211     if( nSize>pPage->maxLocal ){
52212       nSize = minLocal;
52213     }
52214     nSize += 4;
52215   }
52216   nSize += (u32)(pIter - pCell);
52217 
52218   /* The minimum size of any cell is 4 bytes. */
52219   if( nSize<4 ){
52220     nSize = 4;
52221   }
52222 
52223   assert( nSize==debuginfo.nSize );
52224   return (u16)nSize;
52225 }
52226 
52227 #ifdef SQLITE_DEBUG
52228 /* This variation on cellSizePtr() is used inside of assert() statements
52229 ** only. */
52230 static u16 cellSize(MemPage *pPage, int iCell){
52231   return cellSizePtr(pPage, findCell(pPage, iCell));
52232 }
52233 #endif
52234 
52235 #ifndef SQLITE_OMIT_AUTOVACUUM
52236 /*
52237 ** If the cell pCell, part of page pPage contains a pointer
52238 ** to an overflow page, insert an entry into the pointer-map
52239 ** for the overflow page.
52240 */
52241 static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
52242   CellInfo info;
52243   if( *pRC ) return;
52244   assert( pCell!=0 );
52245   btreeParseCellPtr(pPage, pCell, &info);
52246   assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
52247   if( info.iOverflow ){
52248     Pgno ovfl = get4byte(&pCell[info.iOverflow]);
52249     ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
52250   }
52251 }
52252 #endif
52253 
52254 
52255 /*
52256 ** Defragment the page given.  All Cells are moved to the
52257 ** end of the page and all free space is collected into one
52258 ** big FreeBlk that occurs in between the header and cell
52259 ** pointer array and the cell content area.
52260 */
52261 static int defragmentPage(MemPage *pPage){
52262   int i;                     /* Loop counter */
52263   int pc;                    /* Address of a i-th cell */
52264   int hdr;                   /* Offset to the page header */
52265   int size;                  /* Size of a cell */
52266   int usableSize;            /* Number of usable bytes on a page */
52267   int cellOffset;            /* Offset to the cell pointer array */
52268   int cbrk;                  /* Offset to the cell content area */
52269   int nCell;                 /* Number of cells on the page */
52270   unsigned char *data;       /* The page data */
52271   unsigned char *temp;       /* Temp area for cell content */
52272   int iCellFirst;            /* First allowable cell index */
52273   int iCellLast;             /* Last possible cell index */
52274 
52275 
52276   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
52277   assert( pPage->pBt!=0 );
52278   assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
52279   assert( pPage->nOverflow==0 );
52280   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
52281   temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
52282   data = pPage->aData;
52283   hdr = pPage->hdrOffset;
52284   cellOffset = pPage->cellOffset;
52285   nCell = pPage->nCell;
52286   assert( nCell==get2byte(&data[hdr+3]) );
52287   usableSize = pPage->pBt->usableSize;
52288   cbrk = get2byte(&data[hdr+5]);
52289   memcpy(&temp[cbrk], &data[cbrk], usableSize - cbrk);
52290   cbrk = usableSize;
52291   iCellFirst = cellOffset + 2*nCell;
52292   iCellLast = usableSize - 4;
52293   for(i=0; i<nCell; i++){
52294     u8 *pAddr;     /* The i-th cell pointer */
52295     pAddr = &data[cellOffset + i*2];
52296     pc = get2byte(pAddr);
52297     testcase( pc==iCellFirst );
52298     testcase( pc==iCellLast );
52299 #if !defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
52300     /* These conditions have already been verified in btreeInitPage()
52301     ** if SQLITE_ENABLE_OVERSIZE_CELL_CHECK is defined
52302     */
52303     if( pc<iCellFirst || pc>iCellLast ){
52304       return SQLITE_CORRUPT_BKPT;
52305     }
52306 #endif
52307     assert( pc>=iCellFirst && pc<=iCellLast );
52308     size = cellSizePtr(pPage, &temp[pc]);
52309     cbrk -= size;
52310 #if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
52311     if( cbrk<iCellFirst ){
52312       return SQLITE_CORRUPT_BKPT;
52313     }
52314 #else
52315     if( cbrk<iCellFirst || pc+size>usableSize ){
52316       return SQLITE_CORRUPT_BKPT;
52317     }
52318 #endif
52319     assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
52320     testcase( cbrk+size==usableSize );
52321     testcase( pc+size==usableSize );
52322     memcpy(&data[cbrk], &temp[pc], size);
52323     put2byte(pAddr, cbrk);
52324   }
52325   assert( cbrk>=iCellFirst );
52326   put2byte(&data[hdr+5], cbrk);
52327   data[hdr+1] = 0;
52328   data[hdr+2] = 0;
52329   data[hdr+7] = 0;
52330   memset(&data[iCellFirst], 0, cbrk-iCellFirst);
52331   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
52332   if( cbrk-iCellFirst!=pPage->nFree ){
52333     return SQLITE_CORRUPT_BKPT;
52334   }
52335   return SQLITE_OK;
52336 }
52337 
52338 /*
52339 ** Allocate nByte bytes of space from within the B-Tree page passed
52340 ** as the first argument. Write into *pIdx the index into pPage->aData[]
52341 ** of the first byte of allocated space. Return either SQLITE_OK or
52342 ** an error code (usually SQLITE_CORRUPT).
52343 **
52344 ** The caller guarantees that there is sufficient space to make the
52345 ** allocation.  This routine might need to defragment in order to bring
52346 ** all the space together, however.  This routine will avoid using
52347 ** the first two bytes past the cell pointer area since presumably this
52348 ** allocation is being made in order to insert a new cell, so we will
52349 ** also end up needing a new cell pointer.
52350 */
52351 static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
52352   const int hdr = pPage->hdrOffset;    /* Local cache of pPage->hdrOffset */
52353   u8 * const data = pPage->aData;      /* Local cache of pPage->aData */
52354   int nFrag;                           /* Number of fragmented bytes on pPage */
52355   int top;                             /* First byte of cell content area */
52356   int gap;        /* First byte of gap between cell pointers and cell content */
52357   int rc;         /* Integer return code */
52358   int usableSize; /* Usable size of the page */
52359 
52360   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
52361   assert( pPage->pBt );
52362   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
52363   assert( nByte>=0 );  /* Minimum cell size is 4 */
52364   assert( pPage->nFree>=nByte );
52365   assert( pPage->nOverflow==0 );
52366   usableSize = pPage->pBt->usableSize;
52367   assert( nByte < usableSize-8 );
52368 
52369   nFrag = data[hdr+7];
52370   assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
52371   gap = pPage->cellOffset + 2*pPage->nCell;
52372   top = get2byteNotZero(&data[hdr+5]);
52373   if( gap>top ) return SQLITE_CORRUPT_BKPT;
52374   testcase( gap+2==top );
52375   testcase( gap+1==top );
52376   testcase( gap==top );
52377 
52378   if( nFrag>=60 ){
52379     /* Always defragment highly fragmented pages */
52380     rc = defragmentPage(pPage);
52381     if( rc ) return rc;
52382     top = get2byteNotZero(&data[hdr+5]);
52383   }else if( gap+2<=top ){
52384     /* Search the freelist looking for a free slot big enough to satisfy
52385     ** the request. The allocation is made from the first free slot in
52386     ** the list that is large enough to accommodate it.
52387     */
52388     int pc, addr;
52389     for(addr=hdr+1; (pc = get2byte(&data[addr]))>0; addr=pc){
52390       int size;            /* Size of the free slot */
52391       if( pc>usableSize-4 || pc<addr+4 ){
52392         return SQLITE_CORRUPT_BKPT;
52393       }
52394       size = get2byte(&data[pc+2]);
52395       if( size>=nByte ){
52396         int x = size - nByte;
52397         testcase( x==4 );
52398         testcase( x==3 );
52399         if( x<4 ){
52400           /* Remove the slot from the free-list. Update the number of
52401           ** fragmented bytes within the page. */
52402           memcpy(&data[addr], &data[pc], 2);
52403           data[hdr+7] = (u8)(nFrag + x);
52404         }else if( size+pc > usableSize ){
52405           return SQLITE_CORRUPT_BKPT;
52406         }else{
52407           /* The slot remains on the free-list. Reduce its size to account
52408           ** for the portion used by the new allocation. */
52409           put2byte(&data[pc+2], x);
52410         }
52411         *pIdx = pc + x;
52412         return SQLITE_OK;
52413       }
52414     }
52415   }
52416 
52417   /* Check to make sure there is enough space in the gap to satisfy
52418   ** the allocation.  If not, defragment.
52419   */
52420   testcase( gap+2+nByte==top );
52421   if( gap+2+nByte>top ){
52422     rc = defragmentPage(pPage);
52423     if( rc ) return rc;
52424     top = get2byteNotZero(&data[hdr+5]);
52425     assert( gap+nByte<=top );
52426   }
52427 
52428 
52429   /* Allocate memory from the gap in between the cell pointer array
52430   ** and the cell content area.  The btreeInitPage() call has already
52431   ** validated the freelist.  Given that the freelist is valid, there
52432   ** is no way that the allocation can extend off the end of the page.
52433   ** The assert() below verifies the previous sentence.
52434   */
52435   top -= nByte;
52436   put2byte(&data[hdr+5], top);
52437   assert( top+nByte <= (int)pPage->pBt->usableSize );
52438   *pIdx = top;
52439   return SQLITE_OK;
52440 }
52441 
52442 /*
52443 ** Return a section of the pPage->aData to the freelist.
52444 ** The first byte of the new free block is pPage->aDisk[start]
52445 ** and the size of the block is "size" bytes.
52446 **
52447 ** Most of the effort here is involved in coalesing adjacent
52448 ** free blocks into a single big free block.
52449 */
52450 static int freeSpace(MemPage *pPage, int start, int size){
52451   int addr, pbegin, hdr;
52452   int iLast;                        /* Largest possible freeblock offset */
52453   unsigned char *data = pPage->aData;
52454 
52455   assert( pPage->pBt!=0 );
52456   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
52457   assert( start>=pPage->hdrOffset+6+pPage->childPtrSize );
52458   assert( (start + size) <= (int)pPage->pBt->usableSize );
52459   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
52460   assert( size>=0 );   /* Minimum cell size is 4 */
52461 
52462   if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){
52463     /* Overwrite deleted information with zeros when the secure_delete
52464     ** option is enabled */
52465     memset(&data[start], 0, size);
52466   }
52467 
52468   /* Add the space back into the linked list of freeblocks.  Note that
52469   ** even though the freeblock list was checked by btreeInitPage(),
52470   ** btreeInitPage() did not detect overlapping cells or
52471   ** freeblocks that overlapped cells.   Nor does it detect when the
52472   ** cell content area exceeds the value in the page header.  If these
52473   ** situations arise, then subsequent insert operations might corrupt
52474   ** the freelist.  So we do need to check for corruption while scanning
52475   ** the freelist.
52476   */
52477   hdr = pPage->hdrOffset;
52478   addr = hdr + 1;
52479   iLast = pPage->pBt->usableSize - 4;
52480   assert( start<=iLast );
52481   while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
52482     if( pbegin<addr+4 ){
52483       return SQLITE_CORRUPT_BKPT;
52484     }
52485     addr = pbegin;
52486   }
52487   if( pbegin>iLast ){
52488     return SQLITE_CORRUPT_BKPT;
52489   }
52490   assert( pbegin>addr || pbegin==0 );
52491   put2byte(&data[addr], start);
52492   put2byte(&data[start], pbegin);
52493   put2byte(&data[start+2], size);
52494   pPage->nFree = pPage->nFree + (u16)size;
52495 
52496   /* Coalesce adjacent free blocks */
52497   addr = hdr + 1;
52498   while( (pbegin = get2byte(&data[addr]))>0 ){
52499     int pnext, psize, x;
52500     assert( pbegin>addr );
52501     assert( pbegin <= (int)pPage->pBt->usableSize-4 );
52502     pnext = get2byte(&data[pbegin]);
52503     psize = get2byte(&data[pbegin+2]);
52504     if( pbegin + psize + 3 >= pnext && pnext>0 ){
52505       int frag = pnext - (pbegin+psize);
52506       if( (frag<0) || (frag>(int)data[hdr+7]) ){
52507         return SQLITE_CORRUPT_BKPT;
52508       }
52509       data[hdr+7] -= (u8)frag;
52510       x = get2byte(&data[pnext]);
52511       put2byte(&data[pbegin], x);
52512       x = pnext + get2byte(&data[pnext+2]) - pbegin;
52513       put2byte(&data[pbegin+2], x);
52514     }else{
52515       addr = pbegin;
52516     }
52517   }
52518 
52519   /* If the cell content area begins with a freeblock, remove it. */
52520   if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
52521     int top;
52522     pbegin = get2byte(&data[hdr+1]);
52523     memcpy(&data[hdr+1], &data[pbegin], 2);
52524     top = get2byte(&data[hdr+5]) + get2byte(&data[pbegin+2]);
52525     put2byte(&data[hdr+5], top);
52526   }
52527   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
52528   return SQLITE_OK;
52529 }
52530 
52531 /*
52532 ** Decode the flags byte (the first byte of the header) for a page
52533 ** and initialize fields of the MemPage structure accordingly.
52534 **
52535 ** Only the following combinations are supported.  Anything different
52536 ** indicates a corrupt database files:
52537 **
52538 **         PTF_ZERODATA
52539 **         PTF_ZERODATA | PTF_LEAF
52540 **         PTF_LEAFDATA | PTF_INTKEY
52541 **         PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
52542 */
52543 static int decodeFlags(MemPage *pPage, int flagByte){
52544   BtShared *pBt;     /* A copy of pPage->pBt */
52545 
52546   assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
52547   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
52548   pPage->leaf = (u8)(flagByte>>3);  assert( PTF_LEAF == 1<<3 );
52549   flagByte &= ~PTF_LEAF;
52550   pPage->childPtrSize = 4-4*pPage->leaf;
52551   pBt = pPage->pBt;
52552   if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
52553     pPage->intKey = 1;
52554     pPage->hasData = pPage->leaf;
52555     pPage->maxLocal = pBt->maxLeaf;
52556     pPage->minLocal = pBt->minLeaf;
52557   }else if( flagByte==PTF_ZERODATA ){
52558     pPage->intKey = 0;
52559     pPage->hasData = 0;
52560     pPage->maxLocal = pBt->maxLocal;
52561     pPage->minLocal = pBt->minLocal;
52562   }else{
52563     return SQLITE_CORRUPT_BKPT;
52564   }
52565   pPage->max1bytePayload = pBt->max1bytePayload;
52566   return SQLITE_OK;
52567 }
52568 
52569 /*
52570 ** Initialize the auxiliary information for a disk block.
52571 **
52572 ** Return SQLITE_OK on success.  If we see that the page does
52573 ** not contain a well-formed database page, then return
52574 ** SQLITE_CORRUPT.  Note that a return of SQLITE_OK does not
52575 ** guarantee that the page is well-formed.  It only shows that
52576 ** we failed to detect any corruption.
52577 */
52578 static int btreeInitPage(MemPage *pPage){
52579 
52580   assert( pPage->pBt!=0 );
52581   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
52582   assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
52583   assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
52584   assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
52585 
52586   if( !pPage->isInit ){
52587     u16 pc;            /* Address of a freeblock within pPage->aData[] */
52588     u8 hdr;            /* Offset to beginning of page header */
52589     u8 *data;          /* Equal to pPage->aData */
52590     BtShared *pBt;        /* The main btree structure */
52591     int usableSize;    /* Amount of usable space on each page */
52592     u16 cellOffset;    /* Offset from start of page to first cell pointer */
52593     int nFree;         /* Number of unused bytes on the page */
52594     int top;           /* First byte of the cell content area */
52595     int iCellFirst;    /* First allowable cell or freeblock offset */
52596     int iCellLast;     /* Last possible cell or freeblock offset */
52597 
52598     pBt = pPage->pBt;
52599 
52600     hdr = pPage->hdrOffset;
52601     data = pPage->aData;
52602     if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
52603     assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
52604     pPage->maskPage = (u16)(pBt->pageSize - 1);
52605     pPage->nOverflow = 0;
52606     usableSize = pBt->usableSize;
52607     pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
52608     pPage->aDataEnd = &data[usableSize];
52609     pPage->aCellIdx = &data[cellOffset];
52610     top = get2byteNotZero(&data[hdr+5]);
52611     pPage->nCell = get2byte(&data[hdr+3]);
52612     if( pPage->nCell>MX_CELL(pBt) ){
52613       /* To many cells for a single page.  The page must be corrupt */
52614       return SQLITE_CORRUPT_BKPT;
52615     }
52616     testcase( pPage->nCell==MX_CELL(pBt) );
52617 
52618     /* A malformed database page might cause us to read past the end
52619     ** of page when parsing a cell.
52620     **
52621     ** The following block of code checks early to see if a cell extends
52622     ** past the end of a page boundary and causes SQLITE_CORRUPT to be
52623     ** returned if it does.
52624     */
52625     iCellFirst = cellOffset + 2*pPage->nCell;
52626     iCellLast = usableSize - 4;
52627 #if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
52628     {
52629       int i;            /* Index into the cell pointer array */
52630       int sz;           /* Size of a cell */
52631 
52632       if( !pPage->leaf ) iCellLast--;
52633       for(i=0; i<pPage->nCell; i++){
52634         pc = get2byte(&data[cellOffset+i*2]);
52635         testcase( pc==iCellFirst );
52636         testcase( pc==iCellLast );
52637         if( pc<iCellFirst || pc>iCellLast ){
52638           return SQLITE_CORRUPT_BKPT;
52639         }
52640         sz = cellSizePtr(pPage, &data[pc]);
52641         testcase( pc+sz==usableSize );
52642         if( pc+sz>usableSize ){
52643           return SQLITE_CORRUPT_BKPT;
52644         }
52645       }
52646       if( !pPage->leaf ) iCellLast++;
52647     }
52648 #endif
52649 
52650     /* Compute the total free space on the page */
52651     pc = get2byte(&data[hdr+1]);
52652     nFree = data[hdr+7] + top;
52653     while( pc>0 ){
52654       u16 next, size;
52655       if( pc<iCellFirst || pc>iCellLast ){
52656         /* Start of free block is off the page */
52657         return SQLITE_CORRUPT_BKPT;
52658       }
52659       next = get2byte(&data[pc]);
52660       size = get2byte(&data[pc+2]);
52661       if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
52662         /* Free blocks must be in ascending order. And the last byte of
52663         ** the free-block must lie on the database page.  */
52664         return SQLITE_CORRUPT_BKPT;
52665       }
52666       nFree = nFree + size;
52667       pc = next;
52668     }
52669 
52670     /* At this point, nFree contains the sum of the offset to the start
52671     ** of the cell-content area plus the number of free bytes within
52672     ** the cell-content area. If this is greater than the usable-size
52673     ** of the page, then the page must be corrupted. This check also
52674     ** serves to verify that the offset to the start of the cell-content
52675     ** area, according to the page header, lies within the page.
52676     */
52677     if( nFree>usableSize ){
52678       return SQLITE_CORRUPT_BKPT;
52679     }
52680     pPage->nFree = (u16)(nFree - iCellFirst);
52681     pPage->isInit = 1;
52682   }
52683   return SQLITE_OK;
52684 }
52685 
52686 /*
52687 ** Set up a raw page so that it looks like a database page holding
52688 ** no entries.
52689 */
52690 static void zeroPage(MemPage *pPage, int flags){
52691   unsigned char *data = pPage->aData;
52692   BtShared *pBt = pPage->pBt;
52693   u8 hdr = pPage->hdrOffset;
52694   u16 first;
52695 
52696   assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
52697   assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
52698   assert( sqlite3PagerGetData(pPage->pDbPage) == data );
52699   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
52700   assert( sqlite3_mutex_held(pBt->mutex) );
52701   if( pBt->btsFlags & BTS_SECURE_DELETE ){
52702     memset(&data[hdr], 0, pBt->usableSize - hdr);
52703   }
52704   data[hdr] = (char)flags;
52705   first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
52706   memset(&data[hdr+1], 0, 4);
52707   data[hdr+7] = 0;
52708   put2byte(&data[hdr+5], pBt->usableSize);
52709   pPage->nFree = (u16)(pBt->usableSize - first);
52710   decodeFlags(pPage, flags);
52711   pPage->cellOffset = first;
52712   pPage->aDataEnd = &data[pBt->usableSize];
52713   pPage->aCellIdx = &data[first];
52714   pPage->nOverflow = 0;
52715   assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
52716   pPage->maskPage = (u16)(pBt->pageSize - 1);
52717   pPage->nCell = 0;
52718   pPage->isInit = 1;
52719 }
52720 
52721 
52722 /*
52723 ** Convert a DbPage obtained from the pager into a MemPage used by
52724 ** the btree layer.
52725 */
52726 static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
52727   MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
52728   pPage->aData = sqlite3PagerGetData(pDbPage);
52729   pPage->pDbPage = pDbPage;
52730   pPage->pBt = pBt;
52731   pPage->pgno = pgno;
52732   pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
52733   return pPage;
52734 }
52735 
52736 /*
52737 ** Get a page from the pager.  Initialize the MemPage.pBt and
52738 ** MemPage.aData elements if needed.
52739 **
52740 ** If the noContent flag is set, it means that we do not care about
52741 ** the content of the page at this time.  So do not go to the disk
52742 ** to fetch the content.  Just fill in the content with zeros for now.
52743 ** If in the future we call sqlite3PagerWrite() on this page, that
52744 ** means we have started to be concerned about content and the disk
52745 ** read should occur at that point.
52746 */
52747 static int btreeGetPage(
52748   BtShared *pBt,       /* The btree */
52749   Pgno pgno,           /* Number of the page to fetch */
52750   MemPage **ppPage,    /* Return the page in this parameter */
52751   int flags            /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
52752 ){
52753   int rc;
52754   DbPage *pDbPage;
52755 
52756   assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
52757   assert( sqlite3_mutex_held(pBt->mutex) );
52758   rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
52759   if( rc ) return rc;
52760   *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
52761   return SQLITE_OK;
52762 }
52763 
52764 /*
52765 ** Retrieve a page from the pager cache. If the requested page is not
52766 ** already in the pager cache return NULL. Initialize the MemPage.pBt and
52767 ** MemPage.aData elements if needed.
52768 */
52769 static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
52770   DbPage *pDbPage;
52771   assert( sqlite3_mutex_held(pBt->mutex) );
52772   pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
52773   if( pDbPage ){
52774     return btreePageFromDbPage(pDbPage, pgno, pBt);
52775   }
52776   return 0;
52777 }
52778 
52779 /*
52780 ** Return the size of the database file in pages. If there is any kind of
52781 ** error, return ((unsigned int)-1).
52782 */
52783 static Pgno btreePagecount(BtShared *pBt){
52784   return pBt->nPage;
52785 }
52786 SQLITE_PRIVATE u32 sqlite3BtreeLastPage(Btree *p){
52787   assert( sqlite3BtreeHoldsMutex(p) );
52788   assert( ((p->pBt->nPage)&0x8000000)==0 );
52789   return (int)btreePagecount(p->pBt);
52790 }
52791 
52792 /*
52793 ** Get a page from the pager and initialize it.  This routine is just a
52794 ** convenience wrapper around separate calls to btreeGetPage() and
52795 ** btreeInitPage().
52796 **
52797 ** If an error occurs, then the value *ppPage is set to is undefined. It
52798 ** may remain unchanged, or it may be set to an invalid value.
52799 */
52800 static int getAndInitPage(
52801   BtShared *pBt,                  /* The database file */
52802   Pgno pgno,                      /* Number of the page to get */
52803   MemPage **ppPage,               /* Write the page pointer here */
52804   int bReadonly                   /* PAGER_GET_READONLY or 0 */
52805 ){
52806   int rc;
52807   assert( sqlite3_mutex_held(pBt->mutex) );
52808   assert( bReadonly==PAGER_GET_READONLY || bReadonly==0 );
52809 
52810   if( pgno>btreePagecount(pBt) ){
52811     rc = SQLITE_CORRUPT_BKPT;
52812   }else{
52813     rc = btreeGetPage(pBt, pgno, ppPage, bReadonly);
52814     if( rc==SQLITE_OK && (*ppPage)->isInit==0 ){
52815       rc = btreeInitPage(*ppPage);
52816       if( rc!=SQLITE_OK ){
52817         releasePage(*ppPage);
52818       }
52819     }
52820   }
52821 
52822   testcase( pgno==0 );
52823   assert( pgno!=0 || rc==SQLITE_CORRUPT );
52824   return rc;
52825 }
52826 
52827 /*
52828 ** Release a MemPage.  This should be called once for each prior
52829 ** call to btreeGetPage.
52830 */
52831 static void releasePage(MemPage *pPage){
52832   if( pPage ){
52833     assert( pPage->aData );
52834     assert( pPage->pBt );
52835     assert( pPage->pDbPage!=0 );
52836     assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
52837     assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
52838     assert( sqlite3_mutex_held(pPage->pBt->mutex) );
52839     sqlite3PagerUnrefNotNull(pPage->pDbPage);
52840   }
52841 }
52842 
52843 /*
52844 ** During a rollback, when the pager reloads information into the cache
52845 ** so that the cache is restored to its original state at the start of
52846 ** the transaction, for each page restored this routine is called.
52847 **
52848 ** This routine needs to reset the extra data section at the end of the
52849 ** page to agree with the restored data.
52850 */
52851 static void pageReinit(DbPage *pData){
52852   MemPage *pPage;
52853   pPage = (MemPage *)sqlite3PagerGetExtra(pData);
52854   assert( sqlite3PagerPageRefcount(pData)>0 );
52855   if( pPage->isInit ){
52856     assert( sqlite3_mutex_held(pPage->pBt->mutex) );
52857     pPage->isInit = 0;
52858     if( sqlite3PagerPageRefcount(pData)>1 ){
52859       /* pPage might not be a btree page;  it might be an overflow page
52860       ** or ptrmap page or a free page.  In those cases, the following
52861       ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
52862       ** But no harm is done by this.  And it is very important that
52863       ** btreeInitPage() be called on every btree page so we make
52864       ** the call for every page that comes in for re-initing. */
52865       btreeInitPage(pPage);
52866     }
52867   }
52868 }
52869 
52870 /*
52871 ** Invoke the busy handler for a btree.
52872 */
52873 static int btreeInvokeBusyHandler(void *pArg){
52874   BtShared *pBt = (BtShared*)pArg;
52875   assert( pBt->db );
52876   assert( sqlite3_mutex_held(pBt->db->mutex) );
52877   return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
52878 }
52879 
52880 /*
52881 ** Open a database file.
52882 **
52883 ** zFilename is the name of the database file.  If zFilename is NULL
52884 ** then an ephemeral database is created.  The ephemeral database might
52885 ** be exclusively in memory, or it might use a disk-based memory cache.
52886 ** Either way, the ephemeral database will be automatically deleted
52887 ** when sqlite3BtreeClose() is called.
52888 **
52889 ** If zFilename is ":memory:" then an in-memory database is created
52890 ** that is automatically destroyed when it is closed.
52891 **
52892 ** The "flags" parameter is a bitmask that might contain bits like
52893 ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
52894 **
52895 ** If the database is already opened in the same database connection
52896 ** and we are in shared cache mode, then the open will fail with an
52897 ** SQLITE_CONSTRAINT error.  We cannot allow two or more BtShared
52898 ** objects in the same database connection since doing so will lead
52899 ** to problems with locking.
52900 */
52901 SQLITE_PRIVATE int sqlite3BtreeOpen(
52902   sqlite3_vfs *pVfs,      /* VFS to use for this b-tree */
52903   const char *zFilename,  /* Name of the file containing the BTree database */
52904   sqlite3 *db,            /* Associated database handle */
52905   Btree **ppBtree,        /* Pointer to new Btree object written here */
52906   int flags,              /* Options */
52907   int vfsFlags            /* Flags passed through to sqlite3_vfs.xOpen() */
52908 ){
52909   BtShared *pBt = 0;             /* Shared part of btree structure */
52910   Btree *p;                      /* Handle to return */
52911   sqlite3_mutex *mutexOpen = 0;  /* Prevents a race condition. Ticket #3537 */
52912   int rc = SQLITE_OK;            /* Result code from this function */
52913   u8 nReserve;                   /* Byte of unused space on each page */
52914   unsigned char zDbHeader[100];  /* Database header content */
52915 
52916   /* True if opening an ephemeral, temporary database */
52917   const int isTempDb = zFilename==0 || zFilename[0]==0;
52918 
52919   /* Set the variable isMemdb to true for an in-memory database, or
52920   ** false for a file-based database.
52921   */
52922 #ifdef SQLITE_OMIT_MEMORYDB
52923   const int isMemdb = 0;
52924 #else
52925   const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
52926                        || (isTempDb && sqlite3TempInMemory(db))
52927                        || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
52928 #endif
52929 
52930   assert( db!=0 );
52931   assert( pVfs!=0 );
52932   assert( sqlite3_mutex_held(db->mutex) );
52933   assert( (flags&0xff)==flags );   /* flags fit in 8 bits */
52934 
52935   /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
52936   assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
52937 
52938   /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
52939   assert( (flags & BTREE_SINGLE)==0 || isTempDb );
52940 
52941   if( isMemdb ){
52942     flags |= BTREE_MEMORY;
52943   }
52944   if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
52945     vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
52946   }
52947   p = sqlite3MallocZero(sizeof(Btree));
52948   if( !p ){
52949     return SQLITE_NOMEM;
52950   }
52951   p->inTrans = TRANS_NONE;
52952   p->db = db;
52953 #ifndef SQLITE_OMIT_SHARED_CACHE
52954   p->lock.pBtree = p;
52955   p->lock.iTable = 1;
52956 #endif
52957 
52958 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
52959   /*
52960   ** If this Btree is a candidate for shared cache, try to find an
52961   ** existing BtShared object that we can share with
52962   */
52963   if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
52964     if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
52965       int nFullPathname = pVfs->mxPathname+1;
52966       char *zFullPathname = sqlite3Malloc(nFullPathname);
52967       MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
52968       p->sharable = 1;
52969       if( !zFullPathname ){
52970         sqlite3_free(p);
52971         return SQLITE_NOMEM;
52972       }
52973       if( isMemdb ){
52974         memcpy(zFullPathname, zFilename, sqlite3Strlen30(zFilename)+1);
52975       }else{
52976         rc = sqlite3OsFullPathname(pVfs, zFilename,
52977                                    nFullPathname, zFullPathname);
52978         if( rc ){
52979           sqlite3_free(zFullPathname);
52980           sqlite3_free(p);
52981           return rc;
52982         }
52983       }
52984 #if SQLITE_THREADSAFE
52985       mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
52986       sqlite3_mutex_enter(mutexOpen);
52987       mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
52988       sqlite3_mutex_enter(mutexShared);
52989 #endif
52990       for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
52991         assert( pBt->nRef>0 );
52992         if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
52993                  && sqlite3PagerVfs(pBt->pPager)==pVfs ){
52994           int iDb;
52995           for(iDb=db->nDb-1; iDb>=0; iDb--){
52996             Btree *pExisting = db->aDb[iDb].pBt;
52997             if( pExisting && pExisting->pBt==pBt ){
52998               sqlite3_mutex_leave(mutexShared);
52999               sqlite3_mutex_leave(mutexOpen);
53000               sqlite3_free(zFullPathname);
53001               sqlite3_free(p);
53002               return SQLITE_CONSTRAINT;
53003             }
53004           }
53005           p->pBt = pBt;
53006           pBt->nRef++;
53007           break;
53008         }
53009       }
53010       sqlite3_mutex_leave(mutexShared);
53011       sqlite3_free(zFullPathname);
53012     }
53013 #ifdef SQLITE_DEBUG
53014     else{
53015       /* In debug mode, we mark all persistent databases as sharable
53016       ** even when they are not.  This exercises the locking code and
53017       ** gives more opportunity for asserts(sqlite3_mutex_held())
53018       ** statements to find locking problems.
53019       */
53020       p->sharable = 1;
53021     }
53022 #endif
53023   }
53024 #endif
53025   if( pBt==0 ){
53026     /*
53027     ** The following asserts make sure that structures used by the btree are
53028     ** the right size.  This is to guard against size changes that result
53029     ** when compiling on a different architecture.
53030     */
53031     assert( sizeof(i64)==8 || sizeof(i64)==4 );
53032     assert( sizeof(u64)==8 || sizeof(u64)==4 );
53033     assert( sizeof(u32)==4 );
53034     assert( sizeof(u16)==2 );
53035     assert( sizeof(Pgno)==4 );
53036 
53037     pBt = sqlite3MallocZero( sizeof(*pBt) );
53038     if( pBt==0 ){
53039       rc = SQLITE_NOMEM;
53040       goto btree_open_out;
53041     }
53042     rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
53043                           EXTRA_SIZE, flags, vfsFlags, pageReinit);
53044     if( rc==SQLITE_OK ){
53045       sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
53046       rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
53047     }
53048     if( rc!=SQLITE_OK ){
53049       goto btree_open_out;
53050     }
53051     pBt->openFlags = (u8)flags;
53052     pBt->db = db;
53053     sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
53054     p->pBt = pBt;
53055 
53056     pBt->pCursor = 0;
53057     pBt->pPage1 = 0;
53058     if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
53059 #ifdef SQLITE_SECURE_DELETE
53060     pBt->btsFlags |= BTS_SECURE_DELETE;
53061 #endif
53062     pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
53063     if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
53064          || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
53065       pBt->pageSize = 0;
53066 #ifndef SQLITE_OMIT_AUTOVACUUM
53067       /* If the magic name ":memory:" will create an in-memory database, then
53068       ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
53069       ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
53070       ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
53071       ** regular file-name. In this case the auto-vacuum applies as per normal.
53072       */
53073       if( zFilename && !isMemdb ){
53074         pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
53075         pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
53076       }
53077 #endif
53078       nReserve = 0;
53079     }else{
53080       nReserve = zDbHeader[20];
53081       pBt->btsFlags |= BTS_PAGESIZE_FIXED;
53082 #ifndef SQLITE_OMIT_AUTOVACUUM
53083       pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
53084       pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
53085 #endif
53086     }
53087     rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
53088     if( rc ) goto btree_open_out;
53089     pBt->usableSize = pBt->pageSize - nReserve;
53090     assert( (pBt->pageSize & 7)==0 );  /* 8-byte alignment of pageSize */
53091 
53092 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
53093     /* Add the new BtShared object to the linked list sharable BtShareds.
53094     */
53095     if( p->sharable ){
53096       MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
53097       pBt->nRef = 1;
53098       MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
53099       if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
53100         pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
53101         if( pBt->mutex==0 ){
53102           rc = SQLITE_NOMEM;
53103           db->mallocFailed = 0;
53104           goto btree_open_out;
53105         }
53106       }
53107       sqlite3_mutex_enter(mutexShared);
53108       pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
53109       GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
53110       sqlite3_mutex_leave(mutexShared);
53111     }
53112 #endif
53113   }
53114 
53115 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
53116   /* If the new Btree uses a sharable pBtShared, then link the new
53117   ** Btree into the list of all sharable Btrees for the same connection.
53118   ** The list is kept in ascending order by pBt address.
53119   */
53120   if( p->sharable ){
53121     int i;
53122     Btree *pSib;
53123     for(i=0; i<db->nDb; i++){
53124       if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
53125         while( pSib->pPrev ){ pSib = pSib->pPrev; }
53126         if( p->pBt<pSib->pBt ){
53127           p->pNext = pSib;
53128           p->pPrev = 0;
53129           pSib->pPrev = p;
53130         }else{
53131           while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
53132             pSib = pSib->pNext;
53133           }
53134           p->pNext = pSib->pNext;
53135           p->pPrev = pSib;
53136           if( p->pNext ){
53137             p->pNext->pPrev = p;
53138           }
53139           pSib->pNext = p;
53140         }
53141         break;
53142       }
53143     }
53144   }
53145 #endif
53146   *ppBtree = p;
53147 
53148 btree_open_out:
53149   if( rc!=SQLITE_OK ){
53150     if( pBt && pBt->pPager ){
53151       sqlite3PagerClose(pBt->pPager);
53152     }
53153     sqlite3_free(pBt);
53154     sqlite3_free(p);
53155     *ppBtree = 0;
53156   }else{
53157     /* If the B-Tree was successfully opened, set the pager-cache size to the
53158     ** default value. Except, when opening on an existing shared pager-cache,
53159     ** do not change the pager-cache size.
53160     */
53161     if( sqlite3BtreeSchema(p, 0, 0)==0 ){
53162       sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
53163     }
53164   }
53165   if( mutexOpen ){
53166     assert( sqlite3_mutex_held(mutexOpen) );
53167     sqlite3_mutex_leave(mutexOpen);
53168   }
53169   return rc;
53170 }
53171 
53172 /*
53173 ** Decrement the BtShared.nRef counter.  When it reaches zero,
53174 ** remove the BtShared structure from the sharing list.  Return
53175 ** true if the BtShared.nRef counter reaches zero and return
53176 ** false if it is still positive.
53177 */
53178 static int removeFromSharingList(BtShared *pBt){
53179 #ifndef SQLITE_OMIT_SHARED_CACHE
53180   MUTEX_LOGIC( sqlite3_mutex *pMaster; )
53181   BtShared *pList;
53182   int removed = 0;
53183 
53184   assert( sqlite3_mutex_notheld(pBt->mutex) );
53185   MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
53186   sqlite3_mutex_enter(pMaster);
53187   pBt->nRef--;
53188   if( pBt->nRef<=0 ){
53189     if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
53190       GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
53191     }else{
53192       pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
53193       while( ALWAYS(pList) && pList->pNext!=pBt ){
53194         pList=pList->pNext;
53195       }
53196       if( ALWAYS(pList) ){
53197         pList->pNext = pBt->pNext;
53198       }
53199     }
53200     if( SQLITE_THREADSAFE ){
53201       sqlite3_mutex_free(pBt->mutex);
53202     }
53203     removed = 1;
53204   }
53205   sqlite3_mutex_leave(pMaster);
53206   return removed;
53207 #else
53208   return 1;
53209 #endif
53210 }
53211 
53212 /*
53213 ** Make sure pBt->pTmpSpace points to an allocation of
53214 ** MX_CELL_SIZE(pBt) bytes.
53215 */
53216 static void allocateTempSpace(BtShared *pBt){
53217   if( !pBt->pTmpSpace ){
53218     pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
53219 
53220     /* One of the uses of pBt->pTmpSpace is to format cells before
53221     ** inserting them into a leaf page (function fillInCell()). If
53222     ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
53223     ** by the various routines that manipulate binary cells. Which
53224     ** can mean that fillInCell() only initializes the first 2 or 3
53225     ** bytes of pTmpSpace, but that the first 4 bytes are copied from
53226     ** it into a database page. This is not actually a problem, but it
53227     ** does cause a valgrind error when the 1 or 2 bytes of unitialized
53228     ** data is passed to system call write(). So to avoid this error,
53229     ** zero the first 4 bytes of temp space here.  */
53230     if( pBt->pTmpSpace ) memset(pBt->pTmpSpace, 0, 4);
53231   }
53232 }
53233 
53234 /*
53235 ** Free the pBt->pTmpSpace allocation
53236 */
53237 static void freeTempSpace(BtShared *pBt){
53238   sqlite3PageFree( pBt->pTmpSpace);
53239   pBt->pTmpSpace = 0;
53240 }
53241 
53242 /*
53243 ** Close an open database and invalidate all cursors.
53244 */
53245 SQLITE_PRIVATE int sqlite3BtreeClose(Btree *p){
53246   BtShared *pBt = p->pBt;
53247   BtCursor *pCur;
53248 
53249   /* Close all cursors opened via this handle.  */
53250   assert( sqlite3_mutex_held(p->db->mutex) );
53251   sqlite3BtreeEnter(p);
53252   pCur = pBt->pCursor;
53253   while( pCur ){
53254     BtCursor *pTmp = pCur;
53255     pCur = pCur->pNext;
53256     if( pTmp->pBtree==p ){
53257       sqlite3BtreeCloseCursor(pTmp);
53258     }
53259   }
53260 
53261   /* Rollback any active transaction and free the handle structure.
53262   ** The call to sqlite3BtreeRollback() drops any table-locks held by
53263   ** this handle.
53264   */
53265   sqlite3BtreeRollback(p, SQLITE_OK);
53266   sqlite3BtreeLeave(p);
53267 
53268   /* If there are still other outstanding references to the shared-btree
53269   ** structure, return now. The remainder of this procedure cleans
53270   ** up the shared-btree.
53271   */
53272   assert( p->wantToLock==0 && p->locked==0 );
53273   if( !p->sharable || removeFromSharingList(pBt) ){
53274     /* The pBt is no longer on the sharing list, so we can access
53275     ** it without having to hold the mutex.
53276     **
53277     ** Clean out and delete the BtShared object.
53278     */
53279     assert( !pBt->pCursor );
53280     sqlite3PagerClose(pBt->pPager);
53281     if( pBt->xFreeSchema && pBt->pSchema ){
53282       pBt->xFreeSchema(pBt->pSchema);
53283     }
53284     sqlite3DbFree(0, pBt->pSchema);
53285     freeTempSpace(pBt);
53286     sqlite3_free(pBt);
53287   }
53288 
53289 #ifndef SQLITE_OMIT_SHARED_CACHE
53290   assert( p->wantToLock==0 );
53291   assert( p->locked==0 );
53292   if( p->pPrev ) p->pPrev->pNext = p->pNext;
53293   if( p->pNext ) p->pNext->pPrev = p->pPrev;
53294 #endif
53295 
53296   sqlite3_free(p);
53297   return SQLITE_OK;
53298 }
53299 
53300 /*
53301 ** Change the limit on the number of pages allowed in the cache.
53302 **
53303 ** The maximum number of cache pages is set to the absolute
53304 ** value of mxPage.  If mxPage is negative, the pager will
53305 ** operate asynchronously - it will not stop to do fsync()s
53306 ** to insure data is written to the disk surface before
53307 ** continuing.  Transactions still work if synchronous is off,
53308 ** and the database cannot be corrupted if this program
53309 ** crashes.  But if the operating system crashes or there is
53310 ** an abrupt power failure when synchronous is off, the database
53311 ** could be left in an inconsistent and unrecoverable state.
53312 ** Synchronous is on by default so database corruption is not
53313 ** normally a worry.
53314 */
53315 SQLITE_PRIVATE int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
53316   BtShared *pBt = p->pBt;
53317   assert( sqlite3_mutex_held(p->db->mutex) );
53318   sqlite3BtreeEnter(p);
53319   sqlite3PagerSetCachesize(pBt->pPager, mxPage);
53320   sqlite3BtreeLeave(p);
53321   return SQLITE_OK;
53322 }
53323 
53324 #if SQLITE_MAX_MMAP_SIZE>0
53325 /*
53326 ** Change the limit on the amount of the database file that may be
53327 ** memory mapped.
53328 */
53329 SQLITE_PRIVATE int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
53330   BtShared *pBt = p->pBt;
53331   assert( sqlite3_mutex_held(p->db->mutex) );
53332   sqlite3BtreeEnter(p);
53333   sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
53334   sqlite3BtreeLeave(p);
53335   return SQLITE_OK;
53336 }
53337 #endif /* SQLITE_MAX_MMAP_SIZE>0 */
53338 
53339 /*
53340 ** Change the way data is synced to disk in order to increase or decrease
53341 ** how well the database resists damage due to OS crashes and power
53342 ** failures.  Level 1 is the same as asynchronous (no syncs() occur and
53343 ** there is a high probability of damage)  Level 2 is the default.  There
53344 ** is a very low but non-zero probability of damage.  Level 3 reduces the
53345 ** probability of damage to near zero but with a write performance reduction.
53346 */
53347 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
53348 SQLITE_PRIVATE int sqlite3BtreeSetPagerFlags(
53349   Btree *p,              /* The btree to set the safety level on */
53350   unsigned pgFlags       /* Various PAGER_* flags */
53351 ){
53352   BtShared *pBt = p->pBt;
53353   assert( sqlite3_mutex_held(p->db->mutex) );
53354   sqlite3BtreeEnter(p);
53355   sqlite3PagerSetFlags(pBt->pPager, pgFlags);
53356   sqlite3BtreeLeave(p);
53357   return SQLITE_OK;
53358 }
53359 #endif
53360 
53361 /*
53362 ** Return TRUE if the given btree is set to safety level 1.  In other
53363 ** words, return TRUE if no sync() occurs on the disk files.
53364 */
53365 SQLITE_PRIVATE int sqlite3BtreeSyncDisabled(Btree *p){
53366   BtShared *pBt = p->pBt;
53367   int rc;
53368   assert( sqlite3_mutex_held(p->db->mutex) );
53369   sqlite3BtreeEnter(p);
53370   assert( pBt && pBt->pPager );
53371   rc = sqlite3PagerNosync(pBt->pPager);
53372   sqlite3BtreeLeave(p);
53373   return rc;
53374 }
53375 
53376 /*
53377 ** Change the default pages size and the number of reserved bytes per page.
53378 ** Or, if the page size has already been fixed, return SQLITE_READONLY
53379 ** without changing anything.
53380 **
53381 ** The page size must be a power of 2 between 512 and 65536.  If the page
53382 ** size supplied does not meet this constraint then the page size is not
53383 ** changed.
53384 **
53385 ** Page sizes are constrained to be a power of two so that the region
53386 ** of the database file used for locking (beginning at PENDING_BYTE,
53387 ** the first byte past the 1GB boundary, 0x40000000) needs to occur
53388 ** at the beginning of a page.
53389 **
53390 ** If parameter nReserve is less than zero, then the number of reserved
53391 ** bytes per page is left unchanged.
53392 **
53393 ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
53394 ** and autovacuum mode can no longer be changed.
53395 */
53396 SQLITE_PRIVATE int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
53397   int rc = SQLITE_OK;
53398   BtShared *pBt = p->pBt;
53399   assert( nReserve>=-1 && nReserve<=255 );
53400   sqlite3BtreeEnter(p);
53401   if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
53402     sqlite3BtreeLeave(p);
53403     return SQLITE_READONLY;
53404   }
53405   if( nReserve<0 ){
53406     nReserve = pBt->pageSize - pBt->usableSize;
53407   }
53408   assert( nReserve>=0 && nReserve<=255 );
53409   if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
53410         ((pageSize-1)&pageSize)==0 ){
53411     assert( (pageSize & 7)==0 );
53412     assert( !pBt->pPage1 && !pBt->pCursor );
53413     pBt->pageSize = (u32)pageSize;
53414     freeTempSpace(pBt);
53415   }
53416   rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
53417   pBt->usableSize = pBt->pageSize - (u16)nReserve;
53418   if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
53419   sqlite3BtreeLeave(p);
53420   return rc;
53421 }
53422 
53423 /*
53424 ** Return the currently defined page size
53425 */
53426 SQLITE_PRIVATE int sqlite3BtreeGetPageSize(Btree *p){
53427   return p->pBt->pageSize;
53428 }
53429 
53430 #if defined(SQLITE_HAS_CODEC) || defined(SQLITE_DEBUG)
53431 /*
53432 ** This function is similar to sqlite3BtreeGetReserve(), except that it
53433 ** may only be called if it is guaranteed that the b-tree mutex is already
53434 ** held.
53435 **
53436 ** This is useful in one special case in the backup API code where it is
53437 ** known that the shared b-tree mutex is held, but the mutex on the
53438 ** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
53439 ** were to be called, it might collide with some other operation on the
53440 ** database handle that owns *p, causing undefined behavior.
53441 */
53442 SQLITE_PRIVATE int sqlite3BtreeGetReserveNoMutex(Btree *p){
53443   assert( sqlite3_mutex_held(p->pBt->mutex) );
53444   return p->pBt->pageSize - p->pBt->usableSize;
53445 }
53446 #endif /* SQLITE_HAS_CODEC || SQLITE_DEBUG */
53447 
53448 #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
53449 /*
53450 ** Return the number of bytes of space at the end of every page that
53451 ** are intentually left unused.  This is the "reserved" space that is
53452 ** sometimes used by extensions.
53453 */
53454 SQLITE_PRIVATE int sqlite3BtreeGetReserve(Btree *p){
53455   int n;
53456   sqlite3BtreeEnter(p);
53457   n = p->pBt->pageSize - p->pBt->usableSize;
53458   sqlite3BtreeLeave(p);
53459   return n;
53460 }
53461 
53462 /*
53463 ** Set the maximum page count for a database if mxPage is positive.
53464 ** No changes are made if mxPage is 0 or negative.
53465 ** Regardless of the value of mxPage, return the maximum page count.
53466 */
53467 SQLITE_PRIVATE int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
53468   int n;
53469   sqlite3BtreeEnter(p);
53470   n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
53471   sqlite3BtreeLeave(p);
53472   return n;
53473 }
53474 
53475 /*
53476 ** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1.  If newFlag is -1,
53477 ** then make no changes.  Always return the value of the BTS_SECURE_DELETE
53478 ** setting after the change.
53479 */
53480 SQLITE_PRIVATE int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
53481   int b;
53482   if( p==0 ) return 0;
53483   sqlite3BtreeEnter(p);
53484   if( newFlag>=0 ){
53485     p->pBt->btsFlags &= ~BTS_SECURE_DELETE;
53486     if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE;
53487   }
53488   b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0;
53489   sqlite3BtreeLeave(p);
53490   return b;
53491 }
53492 #endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
53493 
53494 /*
53495 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
53496 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
53497 ** is disabled. The default value for the auto-vacuum property is
53498 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
53499 */
53500 SQLITE_PRIVATE int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
53501 #ifdef SQLITE_OMIT_AUTOVACUUM
53502   return SQLITE_READONLY;
53503 #else
53504   BtShared *pBt = p->pBt;
53505   int rc = SQLITE_OK;
53506   u8 av = (u8)autoVacuum;
53507 
53508   sqlite3BtreeEnter(p);
53509   if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
53510     rc = SQLITE_READONLY;
53511   }else{
53512     pBt->autoVacuum = av ?1:0;
53513     pBt->incrVacuum = av==2 ?1:0;
53514   }
53515   sqlite3BtreeLeave(p);
53516   return rc;
53517 #endif
53518 }
53519 
53520 /*
53521 ** Return the value of the 'auto-vacuum' property. If auto-vacuum is
53522 ** enabled 1 is returned. Otherwise 0.
53523 */
53524 SQLITE_PRIVATE int sqlite3BtreeGetAutoVacuum(Btree *p){
53525 #ifdef SQLITE_OMIT_AUTOVACUUM
53526   return BTREE_AUTOVACUUM_NONE;
53527 #else
53528   int rc;
53529   sqlite3BtreeEnter(p);
53530   rc = (
53531     (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
53532     (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
53533     BTREE_AUTOVACUUM_INCR
53534   );
53535   sqlite3BtreeLeave(p);
53536   return rc;
53537 #endif
53538 }
53539 
53540 
53541 /*
53542 ** Get a reference to pPage1 of the database file.  This will
53543 ** also acquire a readlock on that file.
53544 **
53545 ** SQLITE_OK is returned on success.  If the file is not a
53546 ** well-formed database file, then SQLITE_CORRUPT is returned.
53547 ** SQLITE_BUSY is returned if the database is locked.  SQLITE_NOMEM
53548 ** is returned if we run out of memory.
53549 */
53550 static int lockBtree(BtShared *pBt){
53551   int rc;              /* Result code from subfunctions */
53552   MemPage *pPage1;     /* Page 1 of the database file */
53553   int nPage;           /* Number of pages in the database */
53554   int nPageFile = 0;   /* Number of pages in the database file */
53555   int nPageHeader;     /* Number of pages in the database according to hdr */
53556 
53557   assert( sqlite3_mutex_held(pBt->mutex) );
53558   assert( pBt->pPage1==0 );
53559   rc = sqlite3PagerSharedLock(pBt->pPager);
53560   if( rc!=SQLITE_OK ) return rc;
53561   rc = btreeGetPage(pBt, 1, &pPage1, 0);
53562   if( rc!=SQLITE_OK ) return rc;
53563 
53564   /* Do some checking to help insure the file we opened really is
53565   ** a valid database file.
53566   */
53567   nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
53568   sqlite3PagerPagecount(pBt->pPager, &nPageFile);
53569   if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
53570     nPage = nPageFile;
53571   }
53572   if( nPage>0 ){
53573     u32 pageSize;
53574     u32 usableSize;
53575     u8 *page1 = pPage1->aData;
53576     rc = SQLITE_NOTADB;
53577     if( memcmp(page1, zMagicHeader, 16)!=0 ){
53578       goto page1_init_failed;
53579     }
53580 
53581 #ifdef SQLITE_OMIT_WAL
53582     if( page1[18]>1 ){
53583       pBt->btsFlags |= BTS_READ_ONLY;
53584     }
53585     if( page1[19]>1 ){
53586       goto page1_init_failed;
53587     }
53588 #else
53589     if( page1[18]>2 ){
53590       pBt->btsFlags |= BTS_READ_ONLY;
53591     }
53592     if( page1[19]>2 ){
53593       goto page1_init_failed;
53594     }
53595 
53596     /* If the write version is set to 2, this database should be accessed
53597     ** in WAL mode. If the log is not already open, open it now. Then
53598     ** return SQLITE_OK and return without populating BtShared.pPage1.
53599     ** The caller detects this and calls this function again. This is
53600     ** required as the version of page 1 currently in the page1 buffer
53601     ** may not be the latest version - there may be a newer one in the log
53602     ** file.
53603     */
53604     if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
53605       int isOpen = 0;
53606       rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
53607       if( rc!=SQLITE_OK ){
53608         goto page1_init_failed;
53609       }else if( isOpen==0 ){
53610         releasePage(pPage1);
53611         return SQLITE_OK;
53612       }
53613       rc = SQLITE_NOTADB;
53614     }
53615 #endif
53616 
53617     /* The maximum embedded fraction must be exactly 25%.  And the minimum
53618     ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data.
53619     ** The original design allowed these amounts to vary, but as of
53620     ** version 3.6.0, we require them to be fixed.
53621     */
53622     if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
53623       goto page1_init_failed;
53624     }
53625     pageSize = (page1[16]<<8) | (page1[17]<<16);
53626     if( ((pageSize-1)&pageSize)!=0
53627      || pageSize>SQLITE_MAX_PAGE_SIZE
53628      || pageSize<=256
53629     ){
53630       goto page1_init_failed;
53631     }
53632     assert( (pageSize & 7)==0 );
53633     usableSize = pageSize - page1[20];
53634     if( (u32)pageSize!=pBt->pageSize ){
53635       /* After reading the first page of the database assuming a page size
53636       ** of BtShared.pageSize, we have discovered that the page-size is
53637       ** actually pageSize. Unlock the database, leave pBt->pPage1 at
53638       ** zero and return SQLITE_OK. The caller will call this function
53639       ** again with the correct page-size.
53640       */
53641       releasePage(pPage1);
53642       pBt->usableSize = usableSize;
53643       pBt->pageSize = pageSize;
53644       freeTempSpace(pBt);
53645       rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
53646                                    pageSize-usableSize);
53647       return rc;
53648     }
53649     if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){
53650       rc = SQLITE_CORRUPT_BKPT;
53651       goto page1_init_failed;
53652     }
53653     if( usableSize<480 ){
53654       goto page1_init_failed;
53655     }
53656     pBt->pageSize = pageSize;
53657     pBt->usableSize = usableSize;
53658 #ifndef SQLITE_OMIT_AUTOVACUUM
53659     pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
53660     pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
53661 #endif
53662   }
53663 
53664   /* maxLocal is the maximum amount of payload to store locally for
53665   ** a cell.  Make sure it is small enough so that at least minFanout
53666   ** cells can will fit on one page.  We assume a 10-byte page header.
53667   ** Besides the payload, the cell must store:
53668   **     2-byte pointer to the cell
53669   **     4-byte child pointer
53670   **     9-byte nKey value
53671   **     4-byte nData value
53672   **     4-byte overflow page pointer
53673   ** So a cell consists of a 2-byte pointer, a header which is as much as
53674   ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
53675   ** page pointer.
53676   */
53677   pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
53678   pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
53679   pBt->maxLeaf = (u16)(pBt->usableSize - 35);
53680   pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
53681   if( pBt->maxLocal>127 ){
53682     pBt->max1bytePayload = 127;
53683   }else{
53684     pBt->max1bytePayload = (u8)pBt->maxLocal;
53685   }
53686   assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
53687   pBt->pPage1 = pPage1;
53688   pBt->nPage = nPage;
53689   return SQLITE_OK;
53690 
53691 page1_init_failed:
53692   releasePage(pPage1);
53693   pBt->pPage1 = 0;
53694   return rc;
53695 }
53696 
53697 #ifndef NDEBUG
53698 /*
53699 ** Return the number of cursors open on pBt. This is for use
53700 ** in assert() expressions, so it is only compiled if NDEBUG is not
53701 ** defined.
53702 **
53703 ** Only write cursors are counted if wrOnly is true.  If wrOnly is
53704 ** false then all cursors are counted.
53705 **
53706 ** For the purposes of this routine, a cursor is any cursor that
53707 ** is capable of reading or writing to the databse.  Cursors that
53708 ** have been tripped into the CURSOR_FAULT state are not counted.
53709 */
53710 static int countValidCursors(BtShared *pBt, int wrOnly){
53711   BtCursor *pCur;
53712   int r = 0;
53713   for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
53714     if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
53715      && pCur->eState!=CURSOR_FAULT ) r++;
53716   }
53717   return r;
53718 }
53719 #endif
53720 
53721 /*
53722 ** If there are no outstanding cursors and we are not in the middle
53723 ** of a transaction but there is a read lock on the database, then
53724 ** this routine unrefs the first page of the database file which
53725 ** has the effect of releasing the read lock.
53726 **
53727 ** If there is a transaction in progress, this routine is a no-op.
53728 */
53729 static void unlockBtreeIfUnused(BtShared *pBt){
53730   assert( sqlite3_mutex_held(pBt->mutex) );
53731   assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
53732   if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
53733     assert( pBt->pPage1->aData );
53734     assert( sqlite3PagerRefcount(pBt->pPager)==1 );
53735     assert( pBt->pPage1->aData );
53736     releasePage(pBt->pPage1);
53737     pBt->pPage1 = 0;
53738   }
53739 }
53740 
53741 /*
53742 ** If pBt points to an empty file then convert that empty file
53743 ** into a new empty database by initializing the first page of
53744 ** the database.
53745 */
53746 static int newDatabase(BtShared *pBt){
53747   MemPage *pP1;
53748   unsigned char *data;
53749   int rc;
53750 
53751   assert( sqlite3_mutex_held(pBt->mutex) );
53752   if( pBt->nPage>0 ){
53753     return SQLITE_OK;
53754   }
53755   pP1 = pBt->pPage1;
53756   assert( pP1!=0 );
53757   data = pP1->aData;
53758   rc = sqlite3PagerWrite(pP1->pDbPage);
53759   if( rc ) return rc;
53760   memcpy(data, zMagicHeader, sizeof(zMagicHeader));
53761   assert( sizeof(zMagicHeader)==16 );
53762   data[16] = (u8)((pBt->pageSize>>8)&0xff);
53763   data[17] = (u8)((pBt->pageSize>>16)&0xff);
53764   data[18] = 1;
53765   data[19] = 1;
53766   assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
53767   data[20] = (u8)(pBt->pageSize - pBt->usableSize);
53768   data[21] = 64;
53769   data[22] = 32;
53770   data[23] = 32;
53771   memset(&data[24], 0, 100-24);
53772   zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
53773   pBt->btsFlags |= BTS_PAGESIZE_FIXED;
53774 #ifndef SQLITE_OMIT_AUTOVACUUM
53775   assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
53776   assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
53777   put4byte(&data[36 + 4*4], pBt->autoVacuum);
53778   put4byte(&data[36 + 7*4], pBt->incrVacuum);
53779 #endif
53780   pBt->nPage = 1;
53781   data[31] = 1;
53782   return SQLITE_OK;
53783 }
53784 
53785 /*
53786 ** Initialize the first page of the database file (creating a database
53787 ** consisting of a single page and no schema objects). Return SQLITE_OK
53788 ** if successful, or an SQLite error code otherwise.
53789 */
53790 SQLITE_PRIVATE int sqlite3BtreeNewDb(Btree *p){
53791   int rc;
53792   sqlite3BtreeEnter(p);
53793   p->pBt->nPage = 0;
53794   rc = newDatabase(p->pBt);
53795   sqlite3BtreeLeave(p);
53796   return rc;
53797 }
53798 
53799 /*
53800 ** Attempt to start a new transaction. A write-transaction
53801 ** is started if the second argument is nonzero, otherwise a read-
53802 ** transaction.  If the second argument is 2 or more and exclusive
53803 ** transaction is started, meaning that no other process is allowed
53804 ** to access the database.  A preexisting transaction may not be
53805 ** upgraded to exclusive by calling this routine a second time - the
53806 ** exclusivity flag only works for a new transaction.
53807 **
53808 ** A write-transaction must be started before attempting any
53809 ** changes to the database.  None of the following routines
53810 ** will work unless a transaction is started first:
53811 **
53812 **      sqlite3BtreeCreateTable()
53813 **      sqlite3BtreeCreateIndex()
53814 **      sqlite3BtreeClearTable()
53815 **      sqlite3BtreeDropTable()
53816 **      sqlite3BtreeInsert()
53817 **      sqlite3BtreeDelete()
53818 **      sqlite3BtreeUpdateMeta()
53819 **
53820 ** If an initial attempt to acquire the lock fails because of lock contention
53821 ** and the database was previously unlocked, then invoke the busy handler
53822 ** if there is one.  But if there was previously a read-lock, do not
53823 ** invoke the busy handler - just return SQLITE_BUSY.  SQLITE_BUSY is
53824 ** returned when there is already a read-lock in order to avoid a deadlock.
53825 **
53826 ** Suppose there are two processes A and B.  A has a read lock and B has
53827 ** a reserved lock.  B tries to promote to exclusive but is blocked because
53828 ** of A's read lock.  A tries to promote to reserved but is blocked by B.
53829 ** One or the other of the two processes must give way or there can be
53830 ** no progress.  By returning SQLITE_BUSY and not invoking the busy callback
53831 ** when A already has a read lock, we encourage A to give up and let B
53832 ** proceed.
53833 */
53834 SQLITE_PRIVATE int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
53835   sqlite3 *pBlock = 0;
53836   BtShared *pBt = p->pBt;
53837   int rc = SQLITE_OK;
53838 
53839   sqlite3BtreeEnter(p);
53840   btreeIntegrity(p);
53841 
53842   /* If the btree is already in a write-transaction, or it
53843   ** is already in a read-transaction and a read-transaction
53844   ** is requested, this is a no-op.
53845   */
53846   if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
53847     goto trans_begun;
53848   }
53849   assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
53850 
53851   /* Write transactions are not possible on a read-only database */
53852   if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
53853     rc = SQLITE_READONLY;
53854     goto trans_begun;
53855   }
53856 
53857 #ifndef SQLITE_OMIT_SHARED_CACHE
53858   /* If another database handle has already opened a write transaction
53859   ** on this shared-btree structure and a second write transaction is
53860   ** requested, return SQLITE_LOCKED.
53861   */
53862   if( (wrflag && pBt->inTransaction==TRANS_WRITE)
53863    || (pBt->btsFlags & BTS_PENDING)!=0
53864   ){
53865     pBlock = pBt->pWriter->db;
53866   }else if( wrflag>1 ){
53867     BtLock *pIter;
53868     for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
53869       if( pIter->pBtree!=p ){
53870         pBlock = pIter->pBtree->db;
53871         break;
53872       }
53873     }
53874   }
53875   if( pBlock ){
53876     sqlite3ConnectionBlocked(p->db, pBlock);
53877     rc = SQLITE_LOCKED_SHAREDCACHE;
53878     goto trans_begun;
53879   }
53880 #endif
53881 
53882   /* Any read-only or read-write transaction implies a read-lock on
53883   ** page 1. So if some other shared-cache client already has a write-lock
53884   ** on page 1, the transaction cannot be opened. */
53885   rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
53886   if( SQLITE_OK!=rc ) goto trans_begun;
53887 
53888   pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
53889   if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
53890   do {
53891     /* Call lockBtree() until either pBt->pPage1 is populated or
53892     ** lockBtree() returns something other than SQLITE_OK. lockBtree()
53893     ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
53894     ** reading page 1 it discovers that the page-size of the database
53895     ** file is not pBt->pageSize. In this case lockBtree() will update
53896     ** pBt->pageSize to the page-size of the file on disk.
53897     */
53898     while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
53899 
53900     if( rc==SQLITE_OK && wrflag ){
53901       if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
53902         rc = SQLITE_READONLY;
53903       }else{
53904         rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
53905         if( rc==SQLITE_OK ){
53906           rc = newDatabase(pBt);
53907         }
53908       }
53909     }
53910 
53911     if( rc!=SQLITE_OK ){
53912       unlockBtreeIfUnused(pBt);
53913     }
53914   }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
53915           btreeInvokeBusyHandler(pBt) );
53916 
53917   if( rc==SQLITE_OK ){
53918     if( p->inTrans==TRANS_NONE ){
53919       pBt->nTransaction++;
53920 #ifndef SQLITE_OMIT_SHARED_CACHE
53921       if( p->sharable ){
53922         assert( p->lock.pBtree==p && p->lock.iTable==1 );
53923         p->lock.eLock = READ_LOCK;
53924         p->lock.pNext = pBt->pLock;
53925         pBt->pLock = &p->lock;
53926       }
53927 #endif
53928     }
53929     p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
53930     if( p->inTrans>pBt->inTransaction ){
53931       pBt->inTransaction = p->inTrans;
53932     }
53933     if( wrflag ){
53934       MemPage *pPage1 = pBt->pPage1;
53935 #ifndef SQLITE_OMIT_SHARED_CACHE
53936       assert( !pBt->pWriter );
53937       pBt->pWriter = p;
53938       pBt->btsFlags &= ~BTS_EXCLUSIVE;
53939       if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
53940 #endif
53941 
53942       /* If the db-size header field is incorrect (as it may be if an old
53943       ** client has been writing the database file), update it now. Doing
53944       ** this sooner rather than later means the database size can safely
53945       ** re-read the database size from page 1 if a savepoint or transaction
53946       ** rollback occurs within the transaction.
53947       */
53948       if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
53949         rc = sqlite3PagerWrite(pPage1->pDbPage);
53950         if( rc==SQLITE_OK ){
53951           put4byte(&pPage1->aData[28], pBt->nPage);
53952         }
53953       }
53954     }
53955   }
53956 
53957 
53958 trans_begun:
53959   if( rc==SQLITE_OK && wrflag ){
53960     /* This call makes sure that the pager has the correct number of
53961     ** open savepoints. If the second parameter is greater than 0 and
53962     ** the sub-journal is not already open, then it will be opened here.
53963     */
53964     rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
53965   }
53966 
53967   btreeIntegrity(p);
53968   sqlite3BtreeLeave(p);
53969   return rc;
53970 }
53971 
53972 #ifndef SQLITE_OMIT_AUTOVACUUM
53973 
53974 /*
53975 ** Set the pointer-map entries for all children of page pPage. Also, if
53976 ** pPage contains cells that point to overflow pages, set the pointer
53977 ** map entries for the overflow pages as well.
53978 */
53979 static int setChildPtrmaps(MemPage *pPage){
53980   int i;                             /* Counter variable */
53981   int nCell;                         /* Number of cells in page pPage */
53982   int rc;                            /* Return code */
53983   BtShared *pBt = pPage->pBt;
53984   u8 isInitOrig = pPage->isInit;
53985   Pgno pgno = pPage->pgno;
53986 
53987   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
53988   rc = btreeInitPage(pPage);
53989   if( rc!=SQLITE_OK ){
53990     goto set_child_ptrmaps_out;
53991   }
53992   nCell = pPage->nCell;
53993 
53994   for(i=0; i<nCell; i++){
53995     u8 *pCell = findCell(pPage, i);
53996 
53997     ptrmapPutOvflPtr(pPage, pCell, &rc);
53998 
53999     if( !pPage->leaf ){
54000       Pgno childPgno = get4byte(pCell);
54001       ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
54002     }
54003   }
54004 
54005   if( !pPage->leaf ){
54006     Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
54007     ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
54008   }
54009 
54010 set_child_ptrmaps_out:
54011   pPage->isInit = isInitOrig;
54012   return rc;
54013 }
54014 
54015 /*
54016 ** Somewhere on pPage is a pointer to page iFrom.  Modify this pointer so
54017 ** that it points to iTo. Parameter eType describes the type of pointer to
54018 ** be modified, as  follows:
54019 **
54020 ** PTRMAP_BTREE:     pPage is a btree-page. The pointer points at a child
54021 **                   page of pPage.
54022 **
54023 ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
54024 **                   page pointed to by one of the cells on pPage.
54025 **
54026 ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
54027 **                   overflow page in the list.
54028 */
54029 static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
54030   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
54031   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
54032   if( eType==PTRMAP_OVERFLOW2 ){
54033     /* The pointer is always the first 4 bytes of the page in this case.  */
54034     if( get4byte(pPage->aData)!=iFrom ){
54035       return SQLITE_CORRUPT_BKPT;
54036     }
54037     put4byte(pPage->aData, iTo);
54038   }else{
54039     u8 isInitOrig = pPage->isInit;
54040     int i;
54041     int nCell;
54042 
54043     btreeInitPage(pPage);
54044     nCell = pPage->nCell;
54045 
54046     for(i=0; i<nCell; i++){
54047       u8 *pCell = findCell(pPage, i);
54048       if( eType==PTRMAP_OVERFLOW1 ){
54049         CellInfo info;
54050         btreeParseCellPtr(pPage, pCell, &info);
54051         if( info.iOverflow
54052          && pCell+info.iOverflow+3<=pPage->aData+pPage->maskPage
54053          && iFrom==get4byte(&pCell[info.iOverflow])
54054         ){
54055           put4byte(&pCell[info.iOverflow], iTo);
54056           break;
54057         }
54058       }else{
54059         if( get4byte(pCell)==iFrom ){
54060           put4byte(pCell, iTo);
54061           break;
54062         }
54063       }
54064     }
54065 
54066     if( i==nCell ){
54067       if( eType!=PTRMAP_BTREE ||
54068           get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
54069         return SQLITE_CORRUPT_BKPT;
54070       }
54071       put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
54072     }
54073 
54074     pPage->isInit = isInitOrig;
54075   }
54076   return SQLITE_OK;
54077 }
54078 
54079 
54080 /*
54081 ** Move the open database page pDbPage to location iFreePage in the
54082 ** database. The pDbPage reference remains valid.
54083 **
54084 ** The isCommit flag indicates that there is no need to remember that
54085 ** the journal needs to be sync()ed before database page pDbPage->pgno
54086 ** can be written to. The caller has already promised not to write to that
54087 ** page.
54088 */
54089 static int relocatePage(
54090   BtShared *pBt,           /* Btree */
54091   MemPage *pDbPage,        /* Open page to move */
54092   u8 eType,                /* Pointer map 'type' entry for pDbPage */
54093   Pgno iPtrPage,           /* Pointer map 'page-no' entry for pDbPage */
54094   Pgno iFreePage,          /* The location to move pDbPage to */
54095   int isCommit             /* isCommit flag passed to sqlite3PagerMovepage */
54096 ){
54097   MemPage *pPtrPage;   /* The page that contains a pointer to pDbPage */
54098   Pgno iDbPage = pDbPage->pgno;
54099   Pager *pPager = pBt->pPager;
54100   int rc;
54101 
54102   assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
54103       eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
54104   assert( sqlite3_mutex_held(pBt->mutex) );
54105   assert( pDbPage->pBt==pBt );
54106 
54107   /* Move page iDbPage from its current location to page number iFreePage */
54108   TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
54109       iDbPage, iFreePage, iPtrPage, eType));
54110   rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
54111   if( rc!=SQLITE_OK ){
54112     return rc;
54113   }
54114   pDbPage->pgno = iFreePage;
54115 
54116   /* If pDbPage was a btree-page, then it may have child pages and/or cells
54117   ** that point to overflow pages. The pointer map entries for all these
54118   ** pages need to be changed.
54119   **
54120   ** If pDbPage is an overflow page, then the first 4 bytes may store a
54121   ** pointer to a subsequent overflow page. If this is the case, then
54122   ** the pointer map needs to be updated for the subsequent overflow page.
54123   */
54124   if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
54125     rc = setChildPtrmaps(pDbPage);
54126     if( rc!=SQLITE_OK ){
54127       return rc;
54128     }
54129   }else{
54130     Pgno nextOvfl = get4byte(pDbPage->aData);
54131     if( nextOvfl!=0 ){
54132       ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
54133       if( rc!=SQLITE_OK ){
54134         return rc;
54135       }
54136     }
54137   }
54138 
54139   /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
54140   ** that it points at iFreePage. Also fix the pointer map entry for
54141   ** iPtrPage.
54142   */
54143   if( eType!=PTRMAP_ROOTPAGE ){
54144     rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
54145     if( rc!=SQLITE_OK ){
54146       return rc;
54147     }
54148     rc = sqlite3PagerWrite(pPtrPage->pDbPage);
54149     if( rc!=SQLITE_OK ){
54150       releasePage(pPtrPage);
54151       return rc;
54152     }
54153     rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
54154     releasePage(pPtrPage);
54155     if( rc==SQLITE_OK ){
54156       ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
54157     }
54158   }
54159   return rc;
54160 }
54161 
54162 /* Forward declaration required by incrVacuumStep(). */
54163 static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
54164 
54165 /*
54166 ** Perform a single step of an incremental-vacuum. If successful, return
54167 ** SQLITE_OK. If there is no work to do (and therefore no point in
54168 ** calling this function again), return SQLITE_DONE. Or, if an error
54169 ** occurs, return some other error code.
54170 **
54171 ** More specificly, this function attempts to re-organize the database so
54172 ** that the last page of the file currently in use is no longer in use.
54173 **
54174 ** Parameter nFin is the number of pages that this database would contain
54175 ** were this function called until it returns SQLITE_DONE.
54176 **
54177 ** If the bCommit parameter is non-zero, this function assumes that the
54178 ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
54179 ** or an error. bCommit is passed true for an auto-vacuum-on-commmit
54180 ** operation, or false for an incremental vacuum.
54181 */
54182 static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
54183   Pgno nFreeList;           /* Number of pages still on the free-list */
54184   int rc;
54185 
54186   assert( sqlite3_mutex_held(pBt->mutex) );
54187   assert( iLastPg>nFin );
54188 
54189   if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
54190     u8 eType;
54191     Pgno iPtrPage;
54192 
54193     nFreeList = get4byte(&pBt->pPage1->aData[36]);
54194     if( nFreeList==0 ){
54195       return SQLITE_DONE;
54196     }
54197 
54198     rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
54199     if( rc!=SQLITE_OK ){
54200       return rc;
54201     }
54202     if( eType==PTRMAP_ROOTPAGE ){
54203       return SQLITE_CORRUPT_BKPT;
54204     }
54205 
54206     if( eType==PTRMAP_FREEPAGE ){
54207       if( bCommit==0 ){
54208         /* Remove the page from the files free-list. This is not required
54209         ** if bCommit is non-zero. In that case, the free-list will be
54210         ** truncated to zero after this function returns, so it doesn't
54211         ** matter if it still contains some garbage entries.
54212         */
54213         Pgno iFreePg;
54214         MemPage *pFreePg;
54215         rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
54216         if( rc!=SQLITE_OK ){
54217           return rc;
54218         }
54219         assert( iFreePg==iLastPg );
54220         releasePage(pFreePg);
54221       }
54222     } else {
54223       Pgno iFreePg;             /* Index of free page to move pLastPg to */
54224       MemPage *pLastPg;
54225       u8 eMode = BTALLOC_ANY;   /* Mode parameter for allocateBtreePage() */
54226       Pgno iNear = 0;           /* nearby parameter for allocateBtreePage() */
54227 
54228       rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
54229       if( rc!=SQLITE_OK ){
54230         return rc;
54231       }
54232 
54233       /* If bCommit is zero, this loop runs exactly once and page pLastPg
54234       ** is swapped with the first free page pulled off the free list.
54235       **
54236       ** On the other hand, if bCommit is greater than zero, then keep
54237       ** looping until a free-page located within the first nFin pages
54238       ** of the file is found.
54239       */
54240       if( bCommit==0 ){
54241         eMode = BTALLOC_LE;
54242         iNear = nFin;
54243       }
54244       do {
54245         MemPage *pFreePg;
54246         rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
54247         if( rc!=SQLITE_OK ){
54248           releasePage(pLastPg);
54249           return rc;
54250         }
54251         releasePage(pFreePg);
54252       }while( bCommit && iFreePg>nFin );
54253       assert( iFreePg<iLastPg );
54254 
54255       rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
54256       releasePage(pLastPg);
54257       if( rc!=SQLITE_OK ){
54258         return rc;
54259       }
54260     }
54261   }
54262 
54263   if( bCommit==0 ){
54264     do {
54265       iLastPg--;
54266     }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
54267     pBt->bDoTruncate = 1;
54268     pBt->nPage = iLastPg;
54269   }
54270   return SQLITE_OK;
54271 }
54272 
54273 /*
54274 ** The database opened by the first argument is an auto-vacuum database
54275 ** nOrig pages in size containing nFree free pages. Return the expected
54276 ** size of the database in pages following an auto-vacuum operation.
54277 */
54278 static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
54279   int nEntry;                     /* Number of entries on one ptrmap page */
54280   Pgno nPtrmap;                   /* Number of PtrMap pages to be freed */
54281   Pgno nFin;                      /* Return value */
54282 
54283   nEntry = pBt->usableSize/5;
54284   nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
54285   nFin = nOrig - nFree - nPtrmap;
54286   if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
54287     nFin--;
54288   }
54289   while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
54290     nFin--;
54291   }
54292 
54293   return nFin;
54294 }
54295 
54296 /*
54297 ** A write-transaction must be opened before calling this function.
54298 ** It performs a single unit of work towards an incremental vacuum.
54299 **
54300 ** If the incremental vacuum is finished after this function has run,
54301 ** SQLITE_DONE is returned. If it is not finished, but no error occurred,
54302 ** SQLITE_OK is returned. Otherwise an SQLite error code.
54303 */
54304 SQLITE_PRIVATE int sqlite3BtreeIncrVacuum(Btree *p){
54305   int rc;
54306   BtShared *pBt = p->pBt;
54307 
54308   sqlite3BtreeEnter(p);
54309   assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
54310   if( !pBt->autoVacuum ){
54311     rc = SQLITE_DONE;
54312   }else{
54313     Pgno nOrig = btreePagecount(pBt);
54314     Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
54315     Pgno nFin = finalDbSize(pBt, nOrig, nFree);
54316 
54317     if( nOrig<nFin ){
54318       rc = SQLITE_CORRUPT_BKPT;
54319     }else if( nFree>0 ){
54320       rc = saveAllCursors(pBt, 0, 0);
54321       if( rc==SQLITE_OK ){
54322         invalidateAllOverflowCache(pBt);
54323         rc = incrVacuumStep(pBt, nFin, nOrig, 0);
54324       }
54325       if( rc==SQLITE_OK ){
54326         rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
54327         put4byte(&pBt->pPage1->aData[28], pBt->nPage);
54328       }
54329     }else{
54330       rc = SQLITE_DONE;
54331     }
54332   }
54333   sqlite3BtreeLeave(p);
54334   return rc;
54335 }
54336 
54337 /*
54338 ** This routine is called prior to sqlite3PagerCommit when a transaction
54339 ** is committed for an auto-vacuum database.
54340 **
54341 ** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
54342 ** the database file should be truncated to during the commit process.
54343 ** i.e. the database has been reorganized so that only the first *pnTrunc
54344 ** pages are in use.
54345 */
54346 static int autoVacuumCommit(BtShared *pBt){
54347   int rc = SQLITE_OK;
54348   Pager *pPager = pBt->pPager;
54349   VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) );
54350 
54351   assert( sqlite3_mutex_held(pBt->mutex) );
54352   invalidateAllOverflowCache(pBt);
54353   assert(pBt->autoVacuum);
54354   if( !pBt->incrVacuum ){
54355     Pgno nFin;         /* Number of pages in database after autovacuuming */
54356     Pgno nFree;        /* Number of pages on the freelist initially */
54357     Pgno iFree;        /* The next page to be freed */
54358     Pgno nOrig;        /* Database size before freeing */
54359 
54360     nOrig = btreePagecount(pBt);
54361     if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
54362       /* It is not possible to create a database for which the final page
54363       ** is either a pointer-map page or the pending-byte page. If one
54364       ** is encountered, this indicates corruption.
54365       */
54366       return SQLITE_CORRUPT_BKPT;
54367     }
54368 
54369     nFree = get4byte(&pBt->pPage1->aData[36]);
54370     nFin = finalDbSize(pBt, nOrig, nFree);
54371     if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
54372     if( nFin<nOrig ){
54373       rc = saveAllCursors(pBt, 0, 0);
54374     }
54375     for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
54376       rc = incrVacuumStep(pBt, nFin, iFree, 1);
54377     }
54378     if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
54379       rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
54380       put4byte(&pBt->pPage1->aData[32], 0);
54381       put4byte(&pBt->pPage1->aData[36], 0);
54382       put4byte(&pBt->pPage1->aData[28], nFin);
54383       pBt->bDoTruncate = 1;
54384       pBt->nPage = nFin;
54385     }
54386     if( rc!=SQLITE_OK ){
54387       sqlite3PagerRollback(pPager);
54388     }
54389   }
54390 
54391   assert( nRef>=sqlite3PagerRefcount(pPager) );
54392   return rc;
54393 }
54394 
54395 #else /* ifndef SQLITE_OMIT_AUTOVACUUM */
54396 # define setChildPtrmaps(x) SQLITE_OK
54397 #endif
54398 
54399 /*
54400 ** This routine does the first phase of a two-phase commit.  This routine
54401 ** causes a rollback journal to be created (if it does not already exist)
54402 ** and populated with enough information so that if a power loss occurs
54403 ** the database can be restored to its original state by playing back
54404 ** the journal.  Then the contents of the journal are flushed out to
54405 ** the disk.  After the journal is safely on oxide, the changes to the
54406 ** database are written into the database file and flushed to oxide.
54407 ** At the end of this call, the rollback journal still exists on the
54408 ** disk and we are still holding all locks, so the transaction has not
54409 ** committed.  See sqlite3BtreeCommitPhaseTwo() for the second phase of the
54410 ** commit process.
54411 **
54412 ** This call is a no-op if no write-transaction is currently active on pBt.
54413 **
54414 ** Otherwise, sync the database file for the btree pBt. zMaster points to
54415 ** the name of a master journal file that should be written into the
54416 ** individual journal file, or is NULL, indicating no master journal file
54417 ** (single database transaction).
54418 **
54419 ** When this is called, the master journal should already have been
54420 ** created, populated with this journal pointer and synced to disk.
54421 **
54422 ** Once this is routine has returned, the only thing required to commit
54423 ** the write-transaction for this database file is to delete the journal.
54424 */
54425 SQLITE_PRIVATE int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
54426   int rc = SQLITE_OK;
54427   if( p->inTrans==TRANS_WRITE ){
54428     BtShared *pBt = p->pBt;
54429     sqlite3BtreeEnter(p);
54430 #ifndef SQLITE_OMIT_AUTOVACUUM
54431     if( pBt->autoVacuum ){
54432       rc = autoVacuumCommit(pBt);
54433       if( rc!=SQLITE_OK ){
54434         sqlite3BtreeLeave(p);
54435         return rc;
54436       }
54437     }
54438     if( pBt->bDoTruncate ){
54439       sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
54440     }
54441 #endif
54442     rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
54443     sqlite3BtreeLeave(p);
54444   }
54445   return rc;
54446 }
54447 
54448 /*
54449 ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
54450 ** at the conclusion of a transaction.
54451 */
54452 static void btreeEndTransaction(Btree *p){
54453   BtShared *pBt = p->pBt;
54454   sqlite3 *db = p->db;
54455   assert( sqlite3BtreeHoldsMutex(p) );
54456 
54457 #ifndef SQLITE_OMIT_AUTOVACUUM
54458   pBt->bDoTruncate = 0;
54459 #endif
54460   if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
54461     /* If there are other active statements that belong to this database
54462     ** handle, downgrade to a read-only transaction. The other statements
54463     ** may still be reading from the database.  */
54464     downgradeAllSharedCacheTableLocks(p);
54465     p->inTrans = TRANS_READ;
54466   }else{
54467     /* If the handle had any kind of transaction open, decrement the
54468     ** transaction count of the shared btree. If the transaction count
54469     ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
54470     ** call below will unlock the pager.  */
54471     if( p->inTrans!=TRANS_NONE ){
54472       clearAllSharedCacheTableLocks(p);
54473       pBt->nTransaction--;
54474       if( 0==pBt->nTransaction ){
54475         pBt->inTransaction = TRANS_NONE;
54476       }
54477     }
54478 
54479     /* Set the current transaction state to TRANS_NONE and unlock the
54480     ** pager if this call closed the only read or write transaction.  */
54481     p->inTrans = TRANS_NONE;
54482     unlockBtreeIfUnused(pBt);
54483   }
54484 
54485   btreeIntegrity(p);
54486 }
54487 
54488 /*
54489 ** Commit the transaction currently in progress.
54490 **
54491 ** This routine implements the second phase of a 2-phase commit.  The
54492 ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
54493 ** be invoked prior to calling this routine.  The sqlite3BtreeCommitPhaseOne()
54494 ** routine did all the work of writing information out to disk and flushing the
54495 ** contents so that they are written onto the disk platter.  All this
54496 ** routine has to do is delete or truncate or zero the header in the
54497 ** the rollback journal (which causes the transaction to commit) and
54498 ** drop locks.
54499 **
54500 ** Normally, if an error occurs while the pager layer is attempting to
54501 ** finalize the underlying journal file, this function returns an error and
54502 ** the upper layer will attempt a rollback. However, if the second argument
54503 ** is non-zero then this b-tree transaction is part of a multi-file
54504 ** transaction. In this case, the transaction has already been committed
54505 ** (by deleting a master journal file) and the caller will ignore this
54506 ** functions return code. So, even if an error occurs in the pager layer,
54507 ** reset the b-tree objects internal state to indicate that the write
54508 ** transaction has been closed. This is quite safe, as the pager will have
54509 ** transitioned to the error state.
54510 **
54511 ** This will release the write lock on the database file.  If there
54512 ** are no active cursors, it also releases the read lock.
54513 */
54514 SQLITE_PRIVATE int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
54515 
54516   if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
54517   sqlite3BtreeEnter(p);
54518   btreeIntegrity(p);
54519 
54520   /* If the handle has a write-transaction open, commit the shared-btrees
54521   ** transaction and set the shared state to TRANS_READ.
54522   */
54523   if( p->inTrans==TRANS_WRITE ){
54524     int rc;
54525     BtShared *pBt = p->pBt;
54526     assert( pBt->inTransaction==TRANS_WRITE );
54527     assert( pBt->nTransaction>0 );
54528     rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
54529     if( rc!=SQLITE_OK && bCleanup==0 ){
54530       sqlite3BtreeLeave(p);
54531       return rc;
54532     }
54533     pBt->inTransaction = TRANS_READ;
54534     btreeClearHasContent(pBt);
54535   }
54536 
54537   btreeEndTransaction(p);
54538   sqlite3BtreeLeave(p);
54539   return SQLITE_OK;
54540 }
54541 
54542 /*
54543 ** Do both phases of a commit.
54544 */
54545 SQLITE_PRIVATE int sqlite3BtreeCommit(Btree *p){
54546   int rc;
54547   sqlite3BtreeEnter(p);
54548   rc = sqlite3BtreeCommitPhaseOne(p, 0);
54549   if( rc==SQLITE_OK ){
54550     rc = sqlite3BtreeCommitPhaseTwo(p, 0);
54551   }
54552   sqlite3BtreeLeave(p);
54553   return rc;
54554 }
54555 
54556 /*
54557 ** This routine sets the state to CURSOR_FAULT and the error
54558 ** code to errCode for every cursor on BtShared that pBtree
54559 ** references.
54560 **
54561 ** Every cursor is tripped, including cursors that belong
54562 ** to other database connections that happen to be sharing
54563 ** the cache with pBtree.
54564 **
54565 ** This routine gets called when a rollback occurs.
54566 ** All cursors using the same cache must be tripped
54567 ** to prevent them from trying to use the btree after
54568 ** the rollback.  The rollback may have deleted tables
54569 ** or moved root pages, so it is not sufficient to
54570 ** save the state of the cursor.  The cursor must be
54571 ** invalidated.
54572 */
54573 SQLITE_PRIVATE void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){
54574   BtCursor *p;
54575   if( pBtree==0 ) return;
54576   sqlite3BtreeEnter(pBtree);
54577   for(p=pBtree->pBt->pCursor; p; p=p->pNext){
54578     int i;
54579     sqlite3BtreeClearCursor(p);
54580     p->eState = CURSOR_FAULT;
54581     p->skipNext = errCode;
54582     for(i=0; i<=p->iPage; i++){
54583       releasePage(p->apPage[i]);
54584       p->apPage[i] = 0;
54585     }
54586   }
54587   sqlite3BtreeLeave(pBtree);
54588 }
54589 
54590 /*
54591 ** Rollback the transaction in progress.  All cursors will be
54592 ** invalided by this operation.  Any attempt to use a cursor
54593 ** that was open at the beginning of this operation will result
54594 ** in an error.
54595 **
54596 ** This will release the write lock on the database file.  If there
54597 ** are no active cursors, it also releases the read lock.
54598 */
54599 SQLITE_PRIVATE int sqlite3BtreeRollback(Btree *p, int tripCode){
54600   int rc;
54601   BtShared *pBt = p->pBt;
54602   MemPage *pPage1;
54603 
54604   sqlite3BtreeEnter(p);
54605   if( tripCode==SQLITE_OK ){
54606     rc = tripCode = saveAllCursors(pBt, 0, 0);
54607   }else{
54608     rc = SQLITE_OK;
54609   }
54610   if( tripCode ){
54611     sqlite3BtreeTripAllCursors(p, tripCode);
54612   }
54613   btreeIntegrity(p);
54614 
54615   if( p->inTrans==TRANS_WRITE ){
54616     int rc2;
54617 
54618     assert( TRANS_WRITE==pBt->inTransaction );
54619     rc2 = sqlite3PagerRollback(pBt->pPager);
54620     if( rc2!=SQLITE_OK ){
54621       rc = rc2;
54622     }
54623 
54624     /* The rollback may have destroyed the pPage1->aData value.  So
54625     ** call btreeGetPage() on page 1 again to make
54626     ** sure pPage1->aData is set correctly. */
54627     if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
54628       int nPage = get4byte(28+(u8*)pPage1->aData);
54629       testcase( nPage==0 );
54630       if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
54631       testcase( pBt->nPage!=nPage );
54632       pBt->nPage = nPage;
54633       releasePage(pPage1);
54634     }
54635     assert( countValidCursors(pBt, 1)==0 );
54636     pBt->inTransaction = TRANS_READ;
54637     btreeClearHasContent(pBt);
54638   }
54639 
54640   btreeEndTransaction(p);
54641   sqlite3BtreeLeave(p);
54642   return rc;
54643 }
54644 
54645 /*
54646 ** Start a statement subtransaction. The subtransaction can can be rolled
54647 ** back independently of the main transaction. You must start a transaction
54648 ** before starting a subtransaction. The subtransaction is ended automatically
54649 ** if the main transaction commits or rolls back.
54650 **
54651 ** Statement subtransactions are used around individual SQL statements
54652 ** that are contained within a BEGIN...COMMIT block.  If a constraint
54653 ** error occurs within the statement, the effect of that one statement
54654 ** can be rolled back without having to rollback the entire transaction.
54655 **
54656 ** A statement sub-transaction is implemented as an anonymous savepoint. The
54657 ** value passed as the second parameter is the total number of savepoints,
54658 ** including the new anonymous savepoint, open on the B-Tree. i.e. if there
54659 ** are no active savepoints and no other statement-transactions open,
54660 ** iStatement is 1. This anonymous savepoint can be released or rolled back
54661 ** using the sqlite3BtreeSavepoint() function.
54662 */
54663 SQLITE_PRIVATE int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
54664   int rc;
54665   BtShared *pBt = p->pBt;
54666   sqlite3BtreeEnter(p);
54667   assert( p->inTrans==TRANS_WRITE );
54668   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
54669   assert( iStatement>0 );
54670   assert( iStatement>p->db->nSavepoint );
54671   assert( pBt->inTransaction==TRANS_WRITE );
54672   /* At the pager level, a statement transaction is a savepoint with
54673   ** an index greater than all savepoints created explicitly using
54674   ** SQL statements. It is illegal to open, release or rollback any
54675   ** such savepoints while the statement transaction savepoint is active.
54676   */
54677   rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
54678   sqlite3BtreeLeave(p);
54679   return rc;
54680 }
54681 
54682 /*
54683 ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
54684 ** or SAVEPOINT_RELEASE. This function either releases or rolls back the
54685 ** savepoint identified by parameter iSavepoint, depending on the value
54686 ** of op.
54687 **
54688 ** Normally, iSavepoint is greater than or equal to zero. However, if op is
54689 ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
54690 ** contents of the entire transaction are rolled back. This is different
54691 ** from a normal transaction rollback, as no locks are released and the
54692 ** transaction remains open.
54693 */
54694 SQLITE_PRIVATE int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
54695   int rc = SQLITE_OK;
54696   if( p && p->inTrans==TRANS_WRITE ){
54697     BtShared *pBt = p->pBt;
54698     assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
54699     assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
54700     sqlite3BtreeEnter(p);
54701     rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
54702     if( rc==SQLITE_OK ){
54703       if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
54704         pBt->nPage = 0;
54705       }
54706       rc = newDatabase(pBt);
54707       pBt->nPage = get4byte(28 + pBt->pPage1->aData);
54708 
54709       /* The database size was written into the offset 28 of the header
54710       ** when the transaction started, so we know that the value at offset
54711       ** 28 is nonzero. */
54712       assert( pBt->nPage>0 );
54713     }
54714     sqlite3BtreeLeave(p);
54715   }
54716   return rc;
54717 }
54718 
54719 /*
54720 ** Create a new cursor for the BTree whose root is on the page
54721 ** iTable. If a read-only cursor is requested, it is assumed that
54722 ** the caller already has at least a read-only transaction open
54723 ** on the database already. If a write-cursor is requested, then
54724 ** the caller is assumed to have an open write transaction.
54725 **
54726 ** If wrFlag==0, then the cursor can only be used for reading.
54727 ** If wrFlag==1, then the cursor can be used for reading or for
54728 ** writing if other conditions for writing are also met.  These
54729 ** are the conditions that must be met in order for writing to
54730 ** be allowed:
54731 **
54732 ** 1:  The cursor must have been opened with wrFlag==1
54733 **
54734 ** 2:  Other database connections that share the same pager cache
54735 **     but which are not in the READ_UNCOMMITTED state may not have
54736 **     cursors open with wrFlag==0 on the same table.  Otherwise
54737 **     the changes made by this write cursor would be visible to
54738 **     the read cursors in the other database connection.
54739 **
54740 ** 3:  The database must be writable (not on read-only media)
54741 **
54742 ** 4:  There must be an active transaction.
54743 **
54744 ** No checking is done to make sure that page iTable really is the
54745 ** root page of a b-tree.  If it is not, then the cursor acquired
54746 ** will not work correctly.
54747 **
54748 ** It is assumed that the sqlite3BtreeCursorZero() has been called
54749 ** on pCur to initialize the memory space prior to invoking this routine.
54750 */
54751 static int btreeCursor(
54752   Btree *p,                              /* The btree */
54753   int iTable,                            /* Root page of table to open */
54754   int wrFlag,                            /* 1 to write. 0 read-only */
54755   struct KeyInfo *pKeyInfo,              /* First arg to comparison function */
54756   BtCursor *pCur                         /* Space for new cursor */
54757 ){
54758   BtShared *pBt = p->pBt;                /* Shared b-tree handle */
54759 
54760   assert( sqlite3BtreeHoldsMutex(p) );
54761   assert( wrFlag==0 || wrFlag==1 );
54762 
54763   /* The following assert statements verify that if this is a sharable
54764   ** b-tree database, the connection is holding the required table locks,
54765   ** and that no other connection has any open cursor that conflicts with
54766   ** this lock.  */
54767   assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) );
54768   assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
54769 
54770   /* Assert that the caller has opened the required transaction. */
54771   assert( p->inTrans>TRANS_NONE );
54772   assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
54773   assert( pBt->pPage1 && pBt->pPage1->aData );
54774 
54775   if( NEVER(wrFlag && (pBt->btsFlags & BTS_READ_ONLY)!=0) ){
54776     return SQLITE_READONLY;
54777   }
54778   if( iTable==1 && btreePagecount(pBt)==0 ){
54779     assert( wrFlag==0 );
54780     iTable = 0;
54781   }
54782 
54783   /* Now that no other errors can occur, finish filling in the BtCursor
54784   ** variables and link the cursor into the BtShared list.  */
54785   pCur->pgnoRoot = (Pgno)iTable;
54786   pCur->iPage = -1;
54787   pCur->pKeyInfo = pKeyInfo;
54788   pCur->pBtree = p;
54789   pCur->pBt = pBt;
54790   assert( wrFlag==0 || wrFlag==BTCF_WriteFlag );
54791   pCur->curFlags = wrFlag;
54792   pCur->pNext = pBt->pCursor;
54793   if( pCur->pNext ){
54794     pCur->pNext->pPrev = pCur;
54795   }
54796   pBt->pCursor = pCur;
54797   pCur->eState = CURSOR_INVALID;
54798   return SQLITE_OK;
54799 }
54800 SQLITE_PRIVATE int sqlite3BtreeCursor(
54801   Btree *p,                                   /* The btree */
54802   int iTable,                                 /* Root page of table to open */
54803   int wrFlag,                                 /* 1 to write. 0 read-only */
54804   struct KeyInfo *pKeyInfo,                   /* First arg to xCompare() */
54805   BtCursor *pCur                              /* Write new cursor here */
54806 ){
54807   int rc;
54808   sqlite3BtreeEnter(p);
54809   rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
54810   sqlite3BtreeLeave(p);
54811   return rc;
54812 }
54813 
54814 /*
54815 ** Return the size of a BtCursor object in bytes.
54816 **
54817 ** This interfaces is needed so that users of cursors can preallocate
54818 ** sufficient storage to hold a cursor.  The BtCursor object is opaque
54819 ** to users so they cannot do the sizeof() themselves - they must call
54820 ** this routine.
54821 */
54822 SQLITE_PRIVATE int sqlite3BtreeCursorSize(void){
54823   return ROUND8(sizeof(BtCursor));
54824 }
54825 
54826 /*
54827 ** Initialize memory that will be converted into a BtCursor object.
54828 **
54829 ** The simple approach here would be to memset() the entire object
54830 ** to zero.  But it turns out that the apPage[] and aiIdx[] arrays
54831 ** do not need to be zeroed and they are large, so we can save a lot
54832 ** of run-time by skipping the initialization of those elements.
54833 */
54834 SQLITE_PRIVATE void sqlite3BtreeCursorZero(BtCursor *p){
54835   memset(p, 0, offsetof(BtCursor, iPage));
54836 }
54837 
54838 /*
54839 ** Close a cursor.  The read lock on the database file is released
54840 ** when the last cursor is closed.
54841 */
54842 SQLITE_PRIVATE int sqlite3BtreeCloseCursor(BtCursor *pCur){
54843   Btree *pBtree = pCur->pBtree;
54844   if( pBtree ){
54845     int i;
54846     BtShared *pBt = pCur->pBt;
54847     sqlite3BtreeEnter(pBtree);
54848     sqlite3BtreeClearCursor(pCur);
54849     if( pCur->pPrev ){
54850       pCur->pPrev->pNext = pCur->pNext;
54851     }else{
54852       pBt->pCursor = pCur->pNext;
54853     }
54854     if( pCur->pNext ){
54855       pCur->pNext->pPrev = pCur->pPrev;
54856     }
54857     for(i=0; i<=pCur->iPage; i++){
54858       releasePage(pCur->apPage[i]);
54859     }
54860     unlockBtreeIfUnused(pBt);
54861     sqlite3DbFree(pBtree->db, pCur->aOverflow);
54862     /* sqlite3_free(pCur); */
54863     sqlite3BtreeLeave(pBtree);
54864   }
54865   return SQLITE_OK;
54866 }
54867 
54868 /*
54869 ** Make sure the BtCursor* given in the argument has a valid
54870 ** BtCursor.info structure.  If it is not already valid, call
54871 ** btreeParseCell() to fill it in.
54872 **
54873 ** BtCursor.info is a cache of the information in the current cell.
54874 ** Using this cache reduces the number of calls to btreeParseCell().
54875 **
54876 ** 2007-06-25:  There is a bug in some versions of MSVC that cause the
54877 ** compiler to crash when getCellInfo() is implemented as a macro.
54878 ** But there is a measureable speed advantage to using the macro on gcc
54879 ** (when less compiler optimizations like -Os or -O0 are used and the
54880 ** compiler is not doing agressive inlining.)  So we use a real function
54881 ** for MSVC and a macro for everything else.  Ticket #2457.
54882 */
54883 #ifndef NDEBUG
54884   static void assertCellInfo(BtCursor *pCur){
54885     CellInfo info;
54886     int iPage = pCur->iPage;
54887     memset(&info, 0, sizeof(info));
54888     btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
54889     assert( CORRUPT_DB || memcmp(&info, &pCur->info, sizeof(info))==0 );
54890   }
54891 #else
54892   #define assertCellInfo(x)
54893 #endif
54894 #ifdef _MSC_VER
54895   /* Use a real function in MSVC to work around bugs in that compiler. */
54896   static void getCellInfo(BtCursor *pCur){
54897     if( pCur->info.nSize==0 ){
54898       int iPage = pCur->iPage;
54899       btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
54900       pCur->curFlags |= BTCF_ValidNKey;
54901     }else{
54902       assertCellInfo(pCur);
54903     }
54904   }
54905 #else /* if not _MSC_VER */
54906   /* Use a macro in all other compilers so that the function is inlined */
54907 #define getCellInfo(pCur)                                                      \
54908   if( pCur->info.nSize==0 ){                                                   \
54909     int iPage = pCur->iPage;                                                   \
54910     btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);        \
54911     pCur->curFlags |= BTCF_ValidNKey;                                          \
54912   }else{                                                                       \
54913     assertCellInfo(pCur);                                                      \
54914   }
54915 #endif /* _MSC_VER */
54916 
54917 #ifndef NDEBUG  /* The next routine used only within assert() statements */
54918 /*
54919 ** Return true if the given BtCursor is valid.  A valid cursor is one
54920 ** that is currently pointing to a row in a (non-empty) table.
54921 ** This is a verification routine is used only within assert() statements.
54922 */
54923 SQLITE_PRIVATE int sqlite3BtreeCursorIsValid(BtCursor *pCur){
54924   return pCur && pCur->eState==CURSOR_VALID;
54925 }
54926 #endif /* NDEBUG */
54927 
54928 /*
54929 ** Set *pSize to the size of the buffer needed to hold the value of
54930 ** the key for the current entry.  If the cursor is not pointing
54931 ** to a valid entry, *pSize is set to 0.
54932 **
54933 ** For a table with the INTKEY flag set, this routine returns the key
54934 ** itself, not the number of bytes in the key.
54935 **
54936 ** The caller must position the cursor prior to invoking this routine.
54937 **
54938 ** This routine cannot fail.  It always returns SQLITE_OK.
54939 */
54940 SQLITE_PRIVATE int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
54941   assert( cursorHoldsMutex(pCur) );
54942   assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
54943   if( pCur->eState!=CURSOR_VALID ){
54944     *pSize = 0;
54945   }else{
54946     getCellInfo(pCur);
54947     *pSize = pCur->info.nKey;
54948   }
54949   return SQLITE_OK;
54950 }
54951 
54952 /*
54953 ** Set *pSize to the number of bytes of data in the entry the
54954 ** cursor currently points to.
54955 **
54956 ** The caller must guarantee that the cursor is pointing to a non-NULL
54957 ** valid entry.  In other words, the calling procedure must guarantee
54958 ** that the cursor has Cursor.eState==CURSOR_VALID.
54959 **
54960 ** Failure is not possible.  This function always returns SQLITE_OK.
54961 ** It might just as well be a procedure (returning void) but we continue
54962 ** to return an integer result code for historical reasons.
54963 */
54964 SQLITE_PRIVATE int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
54965   assert( cursorHoldsMutex(pCur) );
54966   assert( pCur->eState==CURSOR_VALID );
54967   getCellInfo(pCur);
54968   *pSize = pCur->info.nData;
54969   return SQLITE_OK;
54970 }
54971 
54972 /*
54973 ** Given the page number of an overflow page in the database (parameter
54974 ** ovfl), this function finds the page number of the next page in the
54975 ** linked list of overflow pages. If possible, it uses the auto-vacuum
54976 ** pointer-map data instead of reading the content of page ovfl to do so.
54977 **
54978 ** If an error occurs an SQLite error code is returned. Otherwise:
54979 **
54980 ** The page number of the next overflow page in the linked list is
54981 ** written to *pPgnoNext. If page ovfl is the last page in its linked
54982 ** list, *pPgnoNext is set to zero.
54983 **
54984 ** If ppPage is not NULL, and a reference to the MemPage object corresponding
54985 ** to page number pOvfl was obtained, then *ppPage is set to point to that
54986 ** reference. It is the responsibility of the caller to call releasePage()
54987 ** on *ppPage to free the reference. In no reference was obtained (because
54988 ** the pointer-map was used to obtain the value for *pPgnoNext), then
54989 ** *ppPage is set to zero.
54990 */
54991 static int getOverflowPage(
54992   BtShared *pBt,               /* The database file */
54993   Pgno ovfl,                   /* Current overflow page number */
54994   MemPage **ppPage,            /* OUT: MemPage handle (may be NULL) */
54995   Pgno *pPgnoNext              /* OUT: Next overflow page number */
54996 ){
54997   Pgno next = 0;
54998   MemPage *pPage = 0;
54999   int rc = SQLITE_OK;
55000 
55001   assert( sqlite3_mutex_held(pBt->mutex) );
55002   assert(pPgnoNext);
55003 
55004 #ifndef SQLITE_OMIT_AUTOVACUUM
55005   /* Try to find the next page in the overflow list using the
55006   ** autovacuum pointer-map pages. Guess that the next page in
55007   ** the overflow list is page number (ovfl+1). If that guess turns
55008   ** out to be wrong, fall back to loading the data of page
55009   ** number ovfl to determine the next page number.
55010   */
55011   if( pBt->autoVacuum ){
55012     Pgno pgno;
55013     Pgno iGuess = ovfl+1;
55014     u8 eType;
55015 
55016     while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
55017       iGuess++;
55018     }
55019 
55020     if( iGuess<=btreePagecount(pBt) ){
55021       rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
55022       if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
55023         next = iGuess;
55024         rc = SQLITE_DONE;
55025       }
55026     }
55027   }
55028 #endif
55029 
55030   assert( next==0 || rc==SQLITE_DONE );
55031   if( rc==SQLITE_OK ){
55032     rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
55033     assert( rc==SQLITE_OK || pPage==0 );
55034     if( rc==SQLITE_OK ){
55035       next = get4byte(pPage->aData);
55036     }
55037   }
55038 
55039   *pPgnoNext = next;
55040   if( ppPage ){
55041     *ppPage = pPage;
55042   }else{
55043     releasePage(pPage);
55044   }
55045   return (rc==SQLITE_DONE ? SQLITE_OK : rc);
55046 }
55047 
55048 /*
55049 ** Copy data from a buffer to a page, or from a page to a buffer.
55050 **
55051 ** pPayload is a pointer to data stored on database page pDbPage.
55052 ** If argument eOp is false, then nByte bytes of data are copied
55053 ** from pPayload to the buffer pointed at by pBuf. If eOp is true,
55054 ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
55055 ** of data are copied from the buffer pBuf to pPayload.
55056 **
55057 ** SQLITE_OK is returned on success, otherwise an error code.
55058 */
55059 static int copyPayload(
55060   void *pPayload,           /* Pointer to page data */
55061   void *pBuf,               /* Pointer to buffer */
55062   int nByte,                /* Number of bytes to copy */
55063   int eOp,                  /* 0 -> copy from page, 1 -> copy to page */
55064   DbPage *pDbPage           /* Page containing pPayload */
55065 ){
55066   if( eOp ){
55067     /* Copy data from buffer to page (a write operation) */
55068     int rc = sqlite3PagerWrite(pDbPage);
55069     if( rc!=SQLITE_OK ){
55070       return rc;
55071     }
55072     memcpy(pPayload, pBuf, nByte);
55073   }else{
55074     /* Copy data from page to buffer (a read operation) */
55075     memcpy(pBuf, pPayload, nByte);
55076   }
55077   return SQLITE_OK;
55078 }
55079 
55080 /*
55081 ** This function is used to read or overwrite payload information
55082 ** for the entry that the pCur cursor is pointing to. The eOp
55083 ** argument is interpreted as follows:
55084 **
55085 **   0: The operation is a read. Populate the overflow cache.
55086 **   1: The operation is a write. Populate the overflow cache.
55087 **   2: The operation is a read. Do not populate the overflow cache.
55088 **
55089 ** A total of "amt" bytes are read or written beginning at "offset".
55090 ** Data is read to or from the buffer pBuf.
55091 **
55092 ** The content being read or written might appear on the main page
55093 ** or be scattered out on multiple overflow pages.
55094 **
55095 ** If the current cursor entry uses one or more overflow pages and the
55096 ** eOp argument is not 2, this function may allocate space for and lazily
55097 ** popluates the overflow page-list cache array (BtCursor.aOverflow).
55098 ** Subsequent calls use this cache to make seeking to the supplied offset
55099 ** more efficient.
55100 **
55101 ** Once an overflow page-list cache has been allocated, it may be
55102 ** invalidated if some other cursor writes to the same table, or if
55103 ** the cursor is moved to a different row. Additionally, in auto-vacuum
55104 ** mode, the following events may invalidate an overflow page-list cache.
55105 **
55106 **   * An incremental vacuum,
55107 **   * A commit in auto_vacuum="full" mode,
55108 **   * Creating a table (may require moving an overflow page).
55109 */
55110 static int accessPayload(
55111   BtCursor *pCur,      /* Cursor pointing to entry to read from */
55112   u32 offset,          /* Begin reading this far into payload */
55113   u32 amt,             /* Read this many bytes */
55114   unsigned char *pBuf, /* Write the bytes into this buffer */
55115   int eOp              /* zero to read. non-zero to write. */
55116 ){
55117   unsigned char *aPayload;
55118   int rc = SQLITE_OK;
55119   u32 nKey;
55120   int iIdx = 0;
55121   MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
55122   BtShared *pBt = pCur->pBt;                  /* Btree this cursor belongs to */
55123 #ifdef SQLITE_DIRECT_OVERFLOW_READ
55124   int bEnd;                                   /* True if reading to end of data */
55125 #endif
55126 
55127   assert( pPage );
55128   assert( pCur->eState==CURSOR_VALID );
55129   assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
55130   assert( cursorHoldsMutex(pCur) );
55131   assert( eOp!=2 || offset==0 );      /* Always start from beginning for eOp==2 */
55132 
55133   getCellInfo(pCur);
55134   aPayload = pCur->info.pCell + pCur->info.nHeader;
55135   nKey = (pPage->intKey ? 0 : (int)pCur->info.nKey);
55136 #ifdef SQLITE_DIRECT_OVERFLOW_READ
55137   bEnd = (offset+amt==nKey+pCur->info.nData);
55138 #endif
55139 
55140   if( NEVER(offset+amt > nKey+pCur->info.nData)
55141    || &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
55142   ){
55143     /* Trying to read or write past the end of the data is an error */
55144     return SQLITE_CORRUPT_BKPT;
55145   }
55146 
55147   /* Check if data must be read/written to/from the btree page itself. */
55148   if( offset<pCur->info.nLocal ){
55149     int a = amt;
55150     if( a+offset>pCur->info.nLocal ){
55151       a = pCur->info.nLocal - offset;
55152     }
55153     rc = copyPayload(&aPayload[offset], pBuf, a, (eOp & 0x01), pPage->pDbPage);
55154     offset = 0;
55155     pBuf += a;
55156     amt -= a;
55157   }else{
55158     offset -= pCur->info.nLocal;
55159   }
55160 
55161   if( rc==SQLITE_OK && amt>0 ){
55162     const u32 ovflSize = pBt->usableSize - 4;  /* Bytes content per ovfl page */
55163     Pgno nextPage;
55164 
55165     nextPage = get4byte(&aPayload[pCur->info.nLocal]);
55166 
55167     /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
55168     ** Except, do not allocate aOverflow[] for eOp==2.
55169     **
55170     ** The aOverflow[] array is sized at one entry for each overflow page
55171     ** in the overflow chain. The page number of the first overflow page is
55172     ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
55173     ** means "not yet known" (the cache is lazily populated).
55174     */
55175     if( eOp!=2 && (pCur->curFlags & BTCF_ValidOvfl)==0 ){
55176       int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
55177       if( nOvfl>pCur->nOvflAlloc ){
55178         Pgno *aNew = (Pgno*)sqlite3DbRealloc(
55179             pCur->pBtree->db, pCur->aOverflow, nOvfl*2*sizeof(Pgno)
55180         );
55181         if( aNew==0 ){
55182           rc = SQLITE_NOMEM;
55183         }else{
55184           pCur->nOvflAlloc = nOvfl*2;
55185           pCur->aOverflow = aNew;
55186         }
55187       }
55188       if( rc==SQLITE_OK ){
55189         memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
55190         pCur->curFlags |= BTCF_ValidOvfl;
55191       }
55192     }
55193 
55194     /* If the overflow page-list cache has been allocated and the
55195     ** entry for the first required overflow page is valid, skip
55196     ** directly to it.
55197     */
55198     if( (pCur->curFlags & BTCF_ValidOvfl)!=0 && pCur->aOverflow[offset/ovflSize] ){
55199       iIdx = (offset/ovflSize);
55200       nextPage = pCur->aOverflow[iIdx];
55201       offset = (offset%ovflSize);
55202     }
55203 
55204     for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
55205 
55206       /* If required, populate the overflow page-list cache. */
55207       if( (pCur->curFlags & BTCF_ValidOvfl)!=0 ){
55208         assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
55209         pCur->aOverflow[iIdx] = nextPage;
55210       }
55211 
55212       if( offset>=ovflSize ){
55213         /* The only reason to read this page is to obtain the page
55214         ** number for the next page in the overflow chain. The page
55215         ** data is not required. So first try to lookup the overflow
55216         ** page-list cache, if any, then fall back to the getOverflowPage()
55217         ** function.
55218         **
55219         ** Note that the aOverflow[] array must be allocated because eOp!=2
55220         ** here.  If eOp==2, then offset==0 and this branch is never taken.
55221         */
55222         assert( eOp!=2 );
55223         assert( pCur->curFlags & BTCF_ValidOvfl );
55224         if( pCur->aOverflow[iIdx+1] ){
55225           nextPage = pCur->aOverflow[iIdx+1];
55226         }else{
55227           rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
55228         }
55229         offset -= ovflSize;
55230       }else{
55231         /* Need to read this page properly. It contains some of the
55232         ** range of data that is being read (eOp==0) or written (eOp!=0).
55233         */
55234 #ifdef SQLITE_DIRECT_OVERFLOW_READ
55235         sqlite3_file *fd;
55236 #endif
55237         int a = amt;
55238         if( a + offset > ovflSize ){
55239           a = ovflSize - offset;
55240         }
55241 
55242 #ifdef SQLITE_DIRECT_OVERFLOW_READ
55243         /* If all the following are true:
55244         **
55245         **   1) this is a read operation, and
55246         **   2) data is required from the start of this overflow page, and
55247         **   3) the database is file-backed, and
55248         **   4) there is no open write-transaction, and
55249         **   5) the database is not a WAL database,
55250         **   6) all data from the page is being read.
55251         **
55252         ** then data can be read directly from the database file into the
55253         ** output buffer, bypassing the page-cache altogether. This speeds
55254         ** up loading large records that span many overflow pages.
55255         */
55256         if( (eOp&0x01)==0                                      /* (1) */
55257          && offset==0                                          /* (2) */
55258          && (bEnd || a==ovflSize)                              /* (6) */
55259          && pBt->inTransaction==TRANS_READ                     /* (4) */
55260          && (fd = sqlite3PagerFile(pBt->pPager))->pMethods     /* (3) */
55261          && pBt->pPage1->aData[19]==0x01                       /* (5) */
55262         ){
55263           u8 aSave[4];
55264           u8 *aWrite = &pBuf[-4];
55265           memcpy(aSave, aWrite, 4);
55266           rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
55267           nextPage = get4byte(aWrite);
55268           memcpy(aWrite, aSave, 4);
55269         }else
55270 #endif
55271 
55272         {
55273           DbPage *pDbPage;
55274           rc = sqlite3PagerAcquire(pBt->pPager, nextPage, &pDbPage,
55275               ((eOp&0x01)==0 ? PAGER_GET_READONLY : 0)
55276           );
55277           if( rc==SQLITE_OK ){
55278             aPayload = sqlite3PagerGetData(pDbPage);
55279             nextPage = get4byte(aPayload);
55280             rc = copyPayload(&aPayload[offset+4], pBuf, a, (eOp&0x01), pDbPage);
55281             sqlite3PagerUnref(pDbPage);
55282             offset = 0;
55283           }
55284         }
55285         amt -= a;
55286         pBuf += a;
55287       }
55288     }
55289   }
55290 
55291   if( rc==SQLITE_OK && amt>0 ){
55292     return SQLITE_CORRUPT_BKPT;
55293   }
55294   return rc;
55295 }
55296 
55297 /*
55298 ** Read part of the key associated with cursor pCur.  Exactly
55299 ** "amt" bytes will be transfered into pBuf[].  The transfer
55300 ** begins at "offset".
55301 **
55302 ** The caller must ensure that pCur is pointing to a valid row
55303 ** in the table.
55304 **
55305 ** Return SQLITE_OK on success or an error code if anything goes
55306 ** wrong.  An error is returned if "offset+amt" is larger than
55307 ** the available payload.
55308 */
55309 SQLITE_PRIVATE int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
55310   assert( cursorHoldsMutex(pCur) );
55311   assert( pCur->eState==CURSOR_VALID );
55312   assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
55313   assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
55314   return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
55315 }
55316 
55317 /*
55318 ** Read part of the data associated with cursor pCur.  Exactly
55319 ** "amt" bytes will be transfered into pBuf[].  The transfer
55320 ** begins at "offset".
55321 **
55322 ** Return SQLITE_OK on success or an error code if anything goes
55323 ** wrong.  An error is returned if "offset+amt" is larger than
55324 ** the available payload.
55325 */
55326 SQLITE_PRIVATE int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
55327   int rc;
55328 
55329 #ifndef SQLITE_OMIT_INCRBLOB
55330   if ( pCur->eState==CURSOR_INVALID ){
55331     return SQLITE_ABORT;
55332   }
55333 #endif
55334 
55335   assert( cursorHoldsMutex(pCur) );
55336   rc = restoreCursorPosition(pCur);
55337   if( rc==SQLITE_OK ){
55338     assert( pCur->eState==CURSOR_VALID );
55339     assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
55340     assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
55341     rc = accessPayload(pCur, offset, amt, pBuf, 0);
55342   }
55343   return rc;
55344 }
55345 
55346 /*
55347 ** Return a pointer to payload information from the entry that the
55348 ** pCur cursor is pointing to.  The pointer is to the beginning of
55349 ** the key if index btrees (pPage->intKey==0) and is the data for
55350 ** table btrees (pPage->intKey==1). The number of bytes of available
55351 ** key/data is written into *pAmt.  If *pAmt==0, then the value
55352 ** returned will not be a valid pointer.
55353 **
55354 ** This routine is an optimization.  It is common for the entire key
55355 ** and data to fit on the local page and for there to be no overflow
55356 ** pages.  When that is so, this routine can be used to access the
55357 ** key and data without making a copy.  If the key and/or data spills
55358 ** onto overflow pages, then accessPayload() must be used to reassemble
55359 ** the key/data and copy it into a preallocated buffer.
55360 **
55361 ** The pointer returned by this routine looks directly into the cached
55362 ** page of the database.  The data might change or move the next time
55363 ** any btree routine is called.
55364 */
55365 static const void *fetchPayload(
55366   BtCursor *pCur,      /* Cursor pointing to entry to read from */
55367   u32 *pAmt            /* Write the number of available bytes here */
55368 ){
55369   assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
55370   assert( pCur->eState==CURSOR_VALID );
55371   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
55372   assert( cursorHoldsMutex(pCur) );
55373   assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
55374   assert( pCur->info.nSize>0 );
55375   *pAmt = pCur->info.nLocal;
55376   return (void*)(pCur->info.pCell + pCur->info.nHeader);
55377 }
55378 
55379 
55380 /*
55381 ** For the entry that cursor pCur is point to, return as
55382 ** many bytes of the key or data as are available on the local
55383 ** b-tree page.  Write the number of available bytes into *pAmt.
55384 **
55385 ** The pointer returned is ephemeral.  The key/data may move
55386 ** or be destroyed on the next call to any Btree routine,
55387 ** including calls from other threads against the same cache.
55388 ** Hence, a mutex on the BtShared should be held prior to calling
55389 ** this routine.
55390 **
55391 ** These routines is used to get quick access to key and data
55392 ** in the common case where no overflow pages are used.
55393 */
55394 SQLITE_PRIVATE const void *sqlite3BtreeKeyFetch(BtCursor *pCur, u32 *pAmt){
55395   return fetchPayload(pCur, pAmt);
55396 }
55397 SQLITE_PRIVATE const void *sqlite3BtreeDataFetch(BtCursor *pCur, u32 *pAmt){
55398   return fetchPayload(pCur, pAmt);
55399 }
55400 
55401 
55402 /*
55403 ** Move the cursor down to a new child page.  The newPgno argument is the
55404 ** page number of the child page to move to.
55405 **
55406 ** This function returns SQLITE_CORRUPT if the page-header flags field of
55407 ** the new child page does not match the flags field of the parent (i.e.
55408 ** if an intkey page appears to be the parent of a non-intkey page, or
55409 ** vice-versa).
55410 */
55411 static int moveToChild(BtCursor *pCur, u32 newPgno){
55412   int rc;
55413   int i = pCur->iPage;
55414   MemPage *pNewPage;
55415   BtShared *pBt = pCur->pBt;
55416 
55417   assert( cursorHoldsMutex(pCur) );
55418   assert( pCur->eState==CURSOR_VALID );
55419   assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
55420   assert( pCur->iPage>=0 );
55421   if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
55422     return SQLITE_CORRUPT_BKPT;
55423   }
55424   rc = getAndInitPage(pBt, newPgno, &pNewPage,
55425                (pCur->curFlags & BTCF_WriteFlag)==0 ? PAGER_GET_READONLY : 0);
55426   if( rc ) return rc;
55427   pCur->apPage[i+1] = pNewPage;
55428   pCur->aiIdx[i+1] = 0;
55429   pCur->iPage++;
55430 
55431   pCur->info.nSize = 0;
55432   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
55433   if( pNewPage->nCell<1 || pNewPage->intKey!=pCur->apPage[i]->intKey ){
55434     return SQLITE_CORRUPT_BKPT;
55435   }
55436   return SQLITE_OK;
55437 }
55438 
55439 #if 0
55440 /*
55441 ** Page pParent is an internal (non-leaf) tree page. This function
55442 ** asserts that page number iChild is the left-child if the iIdx'th
55443 ** cell in page pParent. Or, if iIdx is equal to the total number of
55444 ** cells in pParent, that page number iChild is the right-child of
55445 ** the page.
55446 */
55447 static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
55448   assert( iIdx<=pParent->nCell );
55449   if( iIdx==pParent->nCell ){
55450     assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
55451   }else{
55452     assert( get4byte(findCell(pParent, iIdx))==iChild );
55453   }
55454 }
55455 #else
55456 #  define assertParentIndex(x,y,z)
55457 #endif
55458 
55459 /*
55460 ** Move the cursor up to the parent page.
55461 **
55462 ** pCur->idx is set to the cell index that contains the pointer
55463 ** to the page we are coming from.  If we are coming from the
55464 ** right-most child page then pCur->idx is set to one more than
55465 ** the largest cell index.
55466 */
55467 static void moveToParent(BtCursor *pCur){
55468   assert( cursorHoldsMutex(pCur) );
55469   assert( pCur->eState==CURSOR_VALID );
55470   assert( pCur->iPage>0 );
55471   assert( pCur->apPage[pCur->iPage] );
55472 
55473   /* UPDATE: It is actually possible for the condition tested by the assert
55474   ** below to be untrue if the database file is corrupt. This can occur if
55475   ** one cursor has modified page pParent while a reference to it is held
55476   ** by a second cursor. Which can only happen if a single page is linked
55477   ** into more than one b-tree structure in a corrupt database.  */
55478 #if 0
55479   assertParentIndex(
55480     pCur->apPage[pCur->iPage-1],
55481     pCur->aiIdx[pCur->iPage-1],
55482     pCur->apPage[pCur->iPage]->pgno
55483   );
55484 #endif
55485   testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
55486 
55487   releasePage(pCur->apPage[pCur->iPage]);
55488   pCur->iPage--;
55489   pCur->info.nSize = 0;
55490   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
55491 }
55492 
55493 /*
55494 ** Move the cursor to point to the root page of its b-tree structure.
55495 **
55496 ** If the table has a virtual root page, then the cursor is moved to point
55497 ** to the virtual root page instead of the actual root page. A table has a
55498 ** virtual root page when the actual root page contains no cells and a
55499 ** single child page. This can only happen with the table rooted at page 1.
55500 **
55501 ** If the b-tree structure is empty, the cursor state is set to
55502 ** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
55503 ** cell located on the root (or virtual root) page and the cursor state
55504 ** is set to CURSOR_VALID.
55505 **
55506 ** If this function returns successfully, it may be assumed that the
55507 ** page-header flags indicate that the [virtual] root-page is the expected
55508 ** kind of b-tree page (i.e. if when opening the cursor the caller did not
55509 ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
55510 ** indicating a table b-tree, or if the caller did specify a KeyInfo
55511 ** structure the flags byte is set to 0x02 or 0x0A, indicating an index
55512 ** b-tree).
55513 */
55514 static int moveToRoot(BtCursor *pCur){
55515   MemPage *pRoot;
55516   int rc = SQLITE_OK;
55517 
55518   assert( cursorHoldsMutex(pCur) );
55519   assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
55520   assert( CURSOR_VALID   < CURSOR_REQUIRESEEK );
55521   assert( CURSOR_FAULT   > CURSOR_REQUIRESEEK );
55522   if( pCur->eState>=CURSOR_REQUIRESEEK ){
55523     if( pCur->eState==CURSOR_FAULT ){
55524       assert( pCur->skipNext!=SQLITE_OK );
55525       return pCur->skipNext;
55526     }
55527     sqlite3BtreeClearCursor(pCur);
55528   }
55529 
55530   if( pCur->iPage>=0 ){
55531     while( pCur->iPage ) releasePage(pCur->apPage[pCur->iPage--]);
55532   }else if( pCur->pgnoRoot==0 ){
55533     pCur->eState = CURSOR_INVALID;
55534     return SQLITE_OK;
55535   }else{
55536     rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->apPage[0],
55537                  (pCur->curFlags & BTCF_WriteFlag)==0 ? PAGER_GET_READONLY : 0);
55538     if( rc!=SQLITE_OK ){
55539       pCur->eState = CURSOR_INVALID;
55540       return rc;
55541     }
55542     pCur->iPage = 0;
55543   }
55544   pRoot = pCur->apPage[0];
55545   assert( pRoot->pgno==pCur->pgnoRoot );
55546 
55547   /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
55548   ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
55549   ** NULL, the caller expects a table b-tree. If this is not the case,
55550   ** return an SQLITE_CORRUPT error.
55551   **
55552   ** Earlier versions of SQLite assumed that this test could not fail
55553   ** if the root page was already loaded when this function was called (i.e.
55554   ** if pCur->iPage>=0). But this is not so if the database is corrupted
55555   ** in such a way that page pRoot is linked into a second b-tree table
55556   ** (or the freelist).  */
55557   assert( pRoot->intKey==1 || pRoot->intKey==0 );
55558   if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
55559     return SQLITE_CORRUPT_BKPT;
55560   }
55561 
55562   pCur->aiIdx[0] = 0;
55563   pCur->info.nSize = 0;
55564   pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
55565 
55566   if( pRoot->nCell>0 ){
55567     pCur->eState = CURSOR_VALID;
55568   }else if( !pRoot->leaf ){
55569     Pgno subpage;
55570     if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
55571     subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
55572     pCur->eState = CURSOR_VALID;
55573     rc = moveToChild(pCur, subpage);
55574   }else{
55575     pCur->eState = CURSOR_INVALID;
55576   }
55577   return rc;
55578 }
55579 
55580 /*
55581 ** Move the cursor down to the left-most leaf entry beneath the
55582 ** entry to which it is currently pointing.
55583 **
55584 ** The left-most leaf is the one with the smallest key - the first
55585 ** in ascending order.
55586 */
55587 static int moveToLeftmost(BtCursor *pCur){
55588   Pgno pgno;
55589   int rc = SQLITE_OK;
55590   MemPage *pPage;
55591 
55592   assert( cursorHoldsMutex(pCur) );
55593   assert( pCur->eState==CURSOR_VALID );
55594   while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
55595     assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
55596     pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
55597     rc = moveToChild(pCur, pgno);
55598   }
55599   return rc;
55600 }
55601 
55602 /*
55603 ** Move the cursor down to the right-most leaf entry beneath the
55604 ** page to which it is currently pointing.  Notice the difference
55605 ** between moveToLeftmost() and moveToRightmost().  moveToLeftmost()
55606 ** finds the left-most entry beneath the *entry* whereas moveToRightmost()
55607 ** finds the right-most entry beneath the *page*.
55608 **
55609 ** The right-most entry is the one with the largest key - the last
55610 ** key in ascending order.
55611 */
55612 static int moveToRightmost(BtCursor *pCur){
55613   Pgno pgno;
55614   int rc = SQLITE_OK;
55615   MemPage *pPage = 0;
55616 
55617   assert( cursorHoldsMutex(pCur) );
55618   assert( pCur->eState==CURSOR_VALID );
55619   while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
55620     pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
55621     pCur->aiIdx[pCur->iPage] = pPage->nCell;
55622     rc = moveToChild(pCur, pgno);
55623   }
55624   if( rc==SQLITE_OK ){
55625     pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
55626     pCur->info.nSize = 0;
55627     pCur->curFlags &= ~BTCF_ValidNKey;
55628   }
55629   return rc;
55630 }
55631 
55632 /* Move the cursor to the first entry in the table.  Return SQLITE_OK
55633 ** on success.  Set *pRes to 0 if the cursor actually points to something
55634 ** or set *pRes to 1 if the table is empty.
55635 */
55636 SQLITE_PRIVATE int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
55637   int rc;
55638 
55639   assert( cursorHoldsMutex(pCur) );
55640   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
55641   rc = moveToRoot(pCur);
55642   if( rc==SQLITE_OK ){
55643     if( pCur->eState==CURSOR_INVALID ){
55644       assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
55645       *pRes = 1;
55646     }else{
55647       assert( pCur->apPage[pCur->iPage]->nCell>0 );
55648       *pRes = 0;
55649       rc = moveToLeftmost(pCur);
55650     }
55651   }
55652   return rc;
55653 }
55654 
55655 /* Move the cursor to the last entry in the table.  Return SQLITE_OK
55656 ** on success.  Set *pRes to 0 if the cursor actually points to something
55657 ** or set *pRes to 1 if the table is empty.
55658 */
55659 SQLITE_PRIVATE int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
55660   int rc;
55661 
55662   assert( cursorHoldsMutex(pCur) );
55663   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
55664 
55665   /* If the cursor already points to the last entry, this is a no-op. */
55666   if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
55667 #ifdef SQLITE_DEBUG
55668     /* This block serves to assert() that the cursor really does point
55669     ** to the last entry in the b-tree. */
55670     int ii;
55671     for(ii=0; ii<pCur->iPage; ii++){
55672       assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
55673     }
55674     assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
55675     assert( pCur->apPage[pCur->iPage]->leaf );
55676 #endif
55677     return SQLITE_OK;
55678   }
55679 
55680   rc = moveToRoot(pCur);
55681   if( rc==SQLITE_OK ){
55682     if( CURSOR_INVALID==pCur->eState ){
55683       assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
55684       *pRes = 1;
55685     }else{
55686       assert( pCur->eState==CURSOR_VALID );
55687       *pRes = 0;
55688       rc = moveToRightmost(pCur);
55689       if( rc==SQLITE_OK ){
55690         pCur->curFlags |= BTCF_AtLast;
55691       }else{
55692         pCur->curFlags &= ~BTCF_AtLast;
55693       }
55694 
55695     }
55696   }
55697   return rc;
55698 }
55699 
55700 /* Move the cursor so that it points to an entry near the key
55701 ** specified by pIdxKey or intKey.   Return a success code.
55702 **
55703 ** For INTKEY tables, the intKey parameter is used.  pIdxKey
55704 ** must be NULL.  For index tables, pIdxKey is used and intKey
55705 ** is ignored.
55706 **
55707 ** If an exact match is not found, then the cursor is always
55708 ** left pointing at a leaf page which would hold the entry if it
55709 ** were present.  The cursor might point to an entry that comes
55710 ** before or after the key.
55711 **
55712 ** An integer is written into *pRes which is the result of
55713 ** comparing the key with the entry to which the cursor is
55714 ** pointing.  The meaning of the integer written into
55715 ** *pRes is as follows:
55716 **
55717 **     *pRes<0      The cursor is left pointing at an entry that
55718 **                  is smaller than intKey/pIdxKey or if the table is empty
55719 **                  and the cursor is therefore left point to nothing.
55720 **
55721 **     *pRes==0     The cursor is left pointing at an entry that
55722 **                  exactly matches intKey/pIdxKey.
55723 **
55724 **     *pRes>0      The cursor is left pointing at an entry that
55725 **                  is larger than intKey/pIdxKey.
55726 **
55727 */
55728 SQLITE_PRIVATE int sqlite3BtreeMovetoUnpacked(
55729   BtCursor *pCur,          /* The cursor to be moved */
55730   UnpackedRecord *pIdxKey, /* Unpacked index key */
55731   i64 intKey,              /* The table key */
55732   int biasRight,           /* If true, bias the search to the high end */
55733   int *pRes                /* Write search results here */
55734 ){
55735   int rc;
55736   RecordCompare xRecordCompare;
55737 
55738   assert( cursorHoldsMutex(pCur) );
55739   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
55740   assert( pRes );
55741   assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
55742 
55743   /* If the cursor is already positioned at the point we are trying
55744   ** to move to, then just return without doing any work */
55745   if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
55746    && pCur->apPage[0]->intKey
55747   ){
55748     if( pCur->info.nKey==intKey ){
55749       *pRes = 0;
55750       return SQLITE_OK;
55751     }
55752     if( (pCur->curFlags & BTCF_AtLast)!=0 && pCur->info.nKey<intKey ){
55753       *pRes = -1;
55754       return SQLITE_OK;
55755     }
55756   }
55757 
55758   if( pIdxKey ){
55759     xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
55760     pIdxKey->isCorrupt = 0;
55761     assert( pIdxKey->default_rc==1
55762          || pIdxKey->default_rc==0
55763          || pIdxKey->default_rc==-1
55764     );
55765   }else{
55766     xRecordCompare = 0; /* All keys are integers */
55767   }
55768 
55769   rc = moveToRoot(pCur);
55770   if( rc ){
55771     return rc;
55772   }
55773   assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] );
55774   assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
55775   assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 );
55776   if( pCur->eState==CURSOR_INVALID ){
55777     *pRes = -1;
55778     assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
55779     return SQLITE_OK;
55780   }
55781   assert( pCur->apPage[0]->intKey || pIdxKey );
55782   for(;;){
55783     int lwr, upr, idx, c;
55784     Pgno chldPg;
55785     MemPage *pPage = pCur->apPage[pCur->iPage];
55786     u8 *pCell;                          /* Pointer to current cell in pPage */
55787 
55788     /* pPage->nCell must be greater than zero. If this is the root-page
55789     ** the cursor would have been INVALID above and this for(;;) loop
55790     ** not run. If this is not the root-page, then the moveToChild() routine
55791     ** would have already detected db corruption. Similarly, pPage must
55792     ** be the right kind (index or table) of b-tree page. Otherwise
55793     ** a moveToChild() or moveToRoot() call would have detected corruption.  */
55794     assert( pPage->nCell>0 );
55795     assert( pPage->intKey==(pIdxKey==0) );
55796     lwr = 0;
55797     upr = pPage->nCell-1;
55798     assert( biasRight==0 || biasRight==1 );
55799     idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
55800     pCur->aiIdx[pCur->iPage] = (u16)idx;
55801     if( xRecordCompare==0 ){
55802       for(;;){
55803         i64 nCellKey;
55804         pCell = findCell(pPage, idx) + pPage->childPtrSize;
55805         if( pPage->hasData ){
55806           while( 0x80 <= *(pCell++) ){
55807             if( pCell>=pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
55808           }
55809         }
55810         getVarint(pCell, (u64*)&nCellKey);
55811         if( nCellKey<intKey ){
55812           lwr = idx+1;
55813           if( lwr>upr ){ c = -1; break; }
55814         }else if( nCellKey>intKey ){
55815           upr = idx-1;
55816           if( lwr>upr ){ c = +1; break; }
55817         }else{
55818           assert( nCellKey==intKey );
55819           pCur->curFlags |= BTCF_ValidNKey;
55820           pCur->info.nKey = nCellKey;
55821           pCur->aiIdx[pCur->iPage] = (u16)idx;
55822           if( !pPage->leaf ){
55823             lwr = idx;
55824             goto moveto_next_layer;
55825           }else{
55826             *pRes = 0;
55827             rc = SQLITE_OK;
55828             goto moveto_finish;
55829           }
55830         }
55831         assert( lwr+upr>=0 );
55832         idx = (lwr+upr)>>1;  /* idx = (lwr+upr)/2; */
55833       }
55834     }else{
55835       for(;;){
55836         int nCell;
55837         pCell = findCell(pPage, idx) + pPage->childPtrSize;
55838 
55839         /* The maximum supported page-size is 65536 bytes. This means that
55840         ** the maximum number of record bytes stored on an index B-Tree
55841         ** page is less than 16384 bytes and may be stored as a 2-byte
55842         ** varint. This information is used to attempt to avoid parsing
55843         ** the entire cell by checking for the cases where the record is
55844         ** stored entirely within the b-tree page by inspecting the first
55845         ** 2 bytes of the cell.
55846         */
55847         nCell = pCell[0];
55848         if( nCell<=pPage->max1bytePayload ){
55849           /* This branch runs if the record-size field of the cell is a
55850           ** single byte varint and the record fits entirely on the main
55851           ** b-tree page.  */
55852           testcase( pCell+nCell+1==pPage->aDataEnd );
55853           c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey, 0);
55854         }else if( !(pCell[1] & 0x80)
55855           && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
55856         ){
55857           /* The record-size field is a 2 byte varint and the record
55858           ** fits entirely on the main b-tree page.  */
55859           testcase( pCell+nCell+2==pPage->aDataEnd );
55860           c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey, 0);
55861         }else{
55862           /* The record flows over onto one or more overflow pages. In
55863           ** this case the whole cell needs to be parsed, a buffer allocated
55864           ** and accessPayload() used to retrieve the record into the
55865           ** buffer before VdbeRecordCompare() can be called. */
55866           void *pCellKey;
55867           u8 * const pCellBody = pCell - pPage->childPtrSize;
55868           btreeParseCellPtr(pPage, pCellBody, &pCur->info);
55869           nCell = (int)pCur->info.nKey;
55870           pCellKey = sqlite3Malloc( nCell );
55871           if( pCellKey==0 ){
55872             rc = SQLITE_NOMEM;
55873             goto moveto_finish;
55874           }
55875           pCur->aiIdx[pCur->iPage] = (u16)idx;
55876           rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 2);
55877           if( rc ){
55878             sqlite3_free(pCellKey);
55879             goto moveto_finish;
55880           }
55881           c = xRecordCompare(nCell, pCellKey, pIdxKey, 0);
55882           sqlite3_free(pCellKey);
55883         }
55884         assert( pIdxKey->isCorrupt==0 || c==0 );
55885         if( c<0 ){
55886           lwr = idx+1;
55887         }else if( c>0 ){
55888           upr = idx-1;
55889         }else{
55890           assert( c==0 );
55891           *pRes = 0;
55892           rc = SQLITE_OK;
55893           pCur->aiIdx[pCur->iPage] = (u16)idx;
55894           if( pIdxKey->isCorrupt ) rc = SQLITE_CORRUPT;
55895           goto moveto_finish;
55896         }
55897         if( lwr>upr ) break;
55898         assert( lwr+upr>=0 );
55899         idx = (lwr+upr)>>1;  /* idx = (lwr+upr)/2 */
55900       }
55901     }
55902     assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
55903     assert( pPage->isInit );
55904     if( pPage->leaf ){
55905       assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
55906       pCur->aiIdx[pCur->iPage] = (u16)idx;
55907       *pRes = c;
55908       rc = SQLITE_OK;
55909       goto moveto_finish;
55910     }
55911 moveto_next_layer:
55912     if( lwr>=pPage->nCell ){
55913       chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
55914     }else{
55915       chldPg = get4byte(findCell(pPage, lwr));
55916     }
55917     pCur->aiIdx[pCur->iPage] = (u16)lwr;
55918     rc = moveToChild(pCur, chldPg);
55919     if( rc ) break;
55920   }
55921 moveto_finish:
55922   pCur->info.nSize = 0;
55923   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
55924   return rc;
55925 }
55926 
55927 
55928 /*
55929 ** Return TRUE if the cursor is not pointing at an entry of the table.
55930 **
55931 ** TRUE will be returned after a call to sqlite3BtreeNext() moves
55932 ** past the last entry in the table or sqlite3BtreePrev() moves past
55933 ** the first entry.  TRUE is also returned if the table is empty.
55934 */
55935 SQLITE_PRIVATE int sqlite3BtreeEof(BtCursor *pCur){
55936   /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
55937   ** have been deleted? This API will need to change to return an error code
55938   ** as well as the boolean result value.
55939   */
55940   return (CURSOR_VALID!=pCur->eState);
55941 }
55942 
55943 /*
55944 ** Advance the cursor to the next entry in the database.  If
55945 ** successful then set *pRes=0.  If the cursor
55946 ** was already pointing to the last entry in the database before
55947 ** this routine was called, then set *pRes=1.
55948 **
55949 ** The calling function will set *pRes to 0 or 1.  The initial *pRes value
55950 ** will be 1 if the cursor being stepped corresponds to an SQL index and
55951 ** if this routine could have been skipped if that SQL index had been
55952 ** a unique index.  Otherwise the caller will have set *pRes to zero.
55953 ** Zero is the common case. The btree implementation is free to use the
55954 ** initial *pRes value as a hint to improve performance, but the current
55955 ** SQLite btree implementation does not. (Note that the comdb2 btree
55956 ** implementation does use this hint, however.)
55957 */
55958 SQLITE_PRIVATE int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
55959   int rc;
55960   int idx;
55961   MemPage *pPage;
55962 
55963   assert( cursorHoldsMutex(pCur) );
55964   assert( pRes!=0 );
55965   assert( *pRes==0 || *pRes==1 );
55966   assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
55967   if( pCur->eState!=CURSOR_VALID ){
55968     invalidateOverflowCache(pCur);
55969     rc = restoreCursorPosition(pCur);
55970     if( rc!=SQLITE_OK ){
55971       *pRes = 0;
55972       return rc;
55973     }
55974     if( CURSOR_INVALID==pCur->eState ){
55975       *pRes = 1;
55976       return SQLITE_OK;
55977     }
55978     if( pCur->skipNext ){
55979       assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
55980       pCur->eState = CURSOR_VALID;
55981       if( pCur->skipNext>0 ){
55982         pCur->skipNext = 0;
55983         *pRes = 0;
55984         return SQLITE_OK;
55985       }
55986       pCur->skipNext = 0;
55987     }
55988   }
55989 
55990   pPage = pCur->apPage[pCur->iPage];
55991   idx = ++pCur->aiIdx[pCur->iPage];
55992   assert( pPage->isInit );
55993 
55994   /* If the database file is corrupt, it is possible for the value of idx
55995   ** to be invalid here. This can only occur if a second cursor modifies
55996   ** the page while cursor pCur is holding a reference to it. Which can
55997   ** only happen if the database is corrupt in such a way as to link the
55998   ** page into more than one b-tree structure. */
55999   testcase( idx>pPage->nCell );
56000 
56001   pCur->info.nSize = 0;
56002   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
56003   if( idx>=pPage->nCell ){
56004     if( !pPage->leaf ){
56005       rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
56006       if( rc ){
56007         *pRes = 0;
56008         return rc;
56009       }
56010       rc = moveToLeftmost(pCur);
56011       *pRes = 0;
56012       return rc;
56013     }
56014     do{
56015       if( pCur->iPage==0 ){
56016         *pRes = 1;
56017         pCur->eState = CURSOR_INVALID;
56018         return SQLITE_OK;
56019       }
56020       moveToParent(pCur);
56021       pPage = pCur->apPage[pCur->iPage];
56022     }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
56023     *pRes = 0;
56024     if( pPage->intKey ){
56025       rc = sqlite3BtreeNext(pCur, pRes);
56026     }else{
56027       rc = SQLITE_OK;
56028     }
56029     return rc;
56030   }
56031   *pRes = 0;
56032   if( pPage->leaf ){
56033     return SQLITE_OK;
56034   }
56035   rc = moveToLeftmost(pCur);
56036   return rc;
56037 }
56038 
56039 
56040 /*
56041 ** Step the cursor to the back to the previous entry in the database.  If
56042 ** successful then set *pRes=0.  If the cursor
56043 ** was already pointing to the first entry in the database before
56044 ** this routine was called, then set *pRes=1.
56045 **
56046 ** The calling function will set *pRes to 0 or 1.  The initial *pRes value
56047 ** will be 1 if the cursor being stepped corresponds to an SQL index and
56048 ** if this routine could have been skipped if that SQL index had been
56049 ** a unique index.  Otherwise the caller will have set *pRes to zero.
56050 ** Zero is the common case. The btree implementation is free to use the
56051 ** initial *pRes value as a hint to improve performance, but the current
56052 ** SQLite btree implementation does not. (Note that the comdb2 btree
56053 ** implementation does use this hint, however.)
56054 */
56055 SQLITE_PRIVATE int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
56056   int rc;
56057   MemPage *pPage;
56058 
56059   assert( cursorHoldsMutex(pCur) );
56060   assert( pRes!=0 );
56061   assert( *pRes==0 || *pRes==1 );
56062   assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
56063   pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl);
56064   if( pCur->eState!=CURSOR_VALID ){
56065     if( ALWAYS(pCur->eState>=CURSOR_REQUIRESEEK) ){
56066       rc = btreeRestoreCursorPosition(pCur);
56067       if( rc!=SQLITE_OK ){
56068         *pRes = 0;
56069         return rc;
56070       }
56071     }
56072     if( CURSOR_INVALID==pCur->eState ){
56073       *pRes = 1;
56074       return SQLITE_OK;
56075     }
56076     if( pCur->skipNext ){
56077       assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
56078       pCur->eState = CURSOR_VALID;
56079       if( pCur->skipNext<0 ){
56080         pCur->skipNext = 0;
56081         *pRes = 0;
56082         return SQLITE_OK;
56083       }
56084       pCur->skipNext = 0;
56085     }
56086   }
56087 
56088   pPage = pCur->apPage[pCur->iPage];
56089   assert( pPage->isInit );
56090   if( !pPage->leaf ){
56091     int idx = pCur->aiIdx[pCur->iPage];
56092     rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
56093     if( rc ){
56094       *pRes = 0;
56095       return rc;
56096     }
56097     rc = moveToRightmost(pCur);
56098   }else{
56099     while( pCur->aiIdx[pCur->iPage]==0 ){
56100       if( pCur->iPage==0 ){
56101         pCur->eState = CURSOR_INVALID;
56102         *pRes = 1;
56103         return SQLITE_OK;
56104       }
56105       moveToParent(pCur);
56106     }
56107     pCur->info.nSize = 0;
56108     pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
56109 
56110     pCur->aiIdx[pCur->iPage]--;
56111     pPage = pCur->apPage[pCur->iPage];
56112     if( pPage->intKey && !pPage->leaf ){
56113       rc = sqlite3BtreePrevious(pCur, pRes);
56114     }else{
56115       rc = SQLITE_OK;
56116     }
56117   }
56118   *pRes = 0;
56119   return rc;
56120 }
56121 
56122 /*
56123 ** Allocate a new page from the database file.
56124 **
56125 ** The new page is marked as dirty.  (In other words, sqlite3PagerWrite()
56126 ** has already been called on the new page.)  The new page has also
56127 ** been referenced and the calling routine is responsible for calling
56128 ** sqlite3PagerUnref() on the new page when it is done.
56129 **
56130 ** SQLITE_OK is returned on success.  Any other return value indicates
56131 ** an error.  *ppPage and *pPgno are undefined in the event of an error.
56132 ** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
56133 **
56134 ** If the "nearby" parameter is not 0, then an effort is made to
56135 ** locate a page close to the page number "nearby".  This can be used in an
56136 ** attempt to keep related pages close to each other in the database file,
56137 ** which in turn can make database access faster.
56138 **
56139 ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
56140 ** anywhere on the free-list, then it is guaranteed to be returned.  If
56141 ** eMode is BTALLOC_LT then the page returned will be less than or equal
56142 ** to nearby if any such page exists.  If eMode is BTALLOC_ANY then there
56143 ** are no restrictions on which page is returned.
56144 */
56145 static int allocateBtreePage(
56146   BtShared *pBt,         /* The btree */
56147   MemPage **ppPage,      /* Store pointer to the allocated page here */
56148   Pgno *pPgno,           /* Store the page number here */
56149   Pgno nearby,           /* Search for a page near this one */
56150   u8 eMode               /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
56151 ){
56152   MemPage *pPage1;
56153   int rc;
56154   u32 n;     /* Number of pages on the freelist */
56155   u32 k;     /* Number of leaves on the trunk of the freelist */
56156   MemPage *pTrunk = 0;
56157   MemPage *pPrevTrunk = 0;
56158   Pgno mxPage;     /* Total size of the database file */
56159 
56160   assert( sqlite3_mutex_held(pBt->mutex) );
56161   assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
56162   pPage1 = pBt->pPage1;
56163   mxPage = btreePagecount(pBt);
56164   n = get4byte(&pPage1->aData[36]);
56165   testcase( n==mxPage-1 );
56166   if( n>=mxPage ){
56167     return SQLITE_CORRUPT_BKPT;
56168   }
56169   if( n>0 ){
56170     /* There are pages on the freelist.  Reuse one of those pages. */
56171     Pgno iTrunk;
56172     u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
56173 
56174     /* If eMode==BTALLOC_EXACT and a query of the pointer-map
56175     ** shows that the page 'nearby' is somewhere on the free-list, then
56176     ** the entire-list will be searched for that page.
56177     */
56178 #ifndef SQLITE_OMIT_AUTOVACUUM
56179     if( eMode==BTALLOC_EXACT ){
56180       if( nearby<=mxPage ){
56181         u8 eType;
56182         assert( nearby>0 );
56183         assert( pBt->autoVacuum );
56184         rc = ptrmapGet(pBt, nearby, &eType, 0);
56185         if( rc ) return rc;
56186         if( eType==PTRMAP_FREEPAGE ){
56187           searchList = 1;
56188         }
56189       }
56190     }else if( eMode==BTALLOC_LE ){
56191       searchList = 1;
56192     }
56193 #endif
56194 
56195     /* Decrement the free-list count by 1. Set iTrunk to the index of the
56196     ** first free-list trunk page. iPrevTrunk is initially 1.
56197     */
56198     rc = sqlite3PagerWrite(pPage1->pDbPage);
56199     if( rc ) return rc;
56200     put4byte(&pPage1->aData[36], n-1);
56201 
56202     /* The code within this loop is run only once if the 'searchList' variable
56203     ** is not true. Otherwise, it runs once for each trunk-page on the
56204     ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
56205     ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
56206     */
56207     do {
56208       pPrevTrunk = pTrunk;
56209       if( pPrevTrunk ){
56210         iTrunk = get4byte(&pPrevTrunk->aData[0]);
56211       }else{
56212         iTrunk = get4byte(&pPage1->aData[32]);
56213       }
56214       testcase( iTrunk==mxPage );
56215       if( iTrunk>mxPage ){
56216         rc = SQLITE_CORRUPT_BKPT;
56217       }else{
56218         rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
56219       }
56220       if( rc ){
56221         pTrunk = 0;
56222         goto end_allocate_page;
56223       }
56224       assert( pTrunk!=0 );
56225       assert( pTrunk->aData!=0 );
56226 
56227       k = get4byte(&pTrunk->aData[4]); /* # of leaves on this trunk page */
56228       if( k==0 && !searchList ){
56229         /* The trunk has no leaves and the list is not being searched.
56230         ** So extract the trunk page itself and use it as the newly
56231         ** allocated page */
56232         assert( pPrevTrunk==0 );
56233         rc = sqlite3PagerWrite(pTrunk->pDbPage);
56234         if( rc ){
56235           goto end_allocate_page;
56236         }
56237         *pPgno = iTrunk;
56238         memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
56239         *ppPage = pTrunk;
56240         pTrunk = 0;
56241         TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
56242       }else if( k>(u32)(pBt->usableSize/4 - 2) ){
56243         /* Value of k is out of range.  Database corruption */
56244         rc = SQLITE_CORRUPT_BKPT;
56245         goto end_allocate_page;
56246 #ifndef SQLITE_OMIT_AUTOVACUUM
56247       }else if( searchList
56248             && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
56249       ){
56250         /* The list is being searched and this trunk page is the page
56251         ** to allocate, regardless of whether it has leaves.
56252         */
56253         *pPgno = iTrunk;
56254         *ppPage = pTrunk;
56255         searchList = 0;
56256         rc = sqlite3PagerWrite(pTrunk->pDbPage);
56257         if( rc ){
56258           goto end_allocate_page;
56259         }
56260         if( k==0 ){
56261           if( !pPrevTrunk ){
56262             memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
56263           }else{
56264             rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
56265             if( rc!=SQLITE_OK ){
56266               goto end_allocate_page;
56267             }
56268             memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
56269           }
56270         }else{
56271           /* The trunk page is required by the caller but it contains
56272           ** pointers to free-list leaves. The first leaf becomes a trunk
56273           ** page in this case.
56274           */
56275           MemPage *pNewTrunk;
56276           Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
56277           if( iNewTrunk>mxPage ){
56278             rc = SQLITE_CORRUPT_BKPT;
56279             goto end_allocate_page;
56280           }
56281           testcase( iNewTrunk==mxPage );
56282           rc = btreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
56283           if( rc!=SQLITE_OK ){
56284             goto end_allocate_page;
56285           }
56286           rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
56287           if( rc!=SQLITE_OK ){
56288             releasePage(pNewTrunk);
56289             goto end_allocate_page;
56290           }
56291           memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
56292           put4byte(&pNewTrunk->aData[4], k-1);
56293           memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
56294           releasePage(pNewTrunk);
56295           if( !pPrevTrunk ){
56296             assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
56297             put4byte(&pPage1->aData[32], iNewTrunk);
56298           }else{
56299             rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
56300             if( rc ){
56301               goto end_allocate_page;
56302             }
56303             put4byte(&pPrevTrunk->aData[0], iNewTrunk);
56304           }
56305         }
56306         pTrunk = 0;
56307         TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
56308 #endif
56309       }else if( k>0 ){
56310         /* Extract a leaf from the trunk */
56311         u32 closest;
56312         Pgno iPage;
56313         unsigned char *aData = pTrunk->aData;
56314         if( nearby>0 ){
56315           u32 i;
56316           closest = 0;
56317           if( eMode==BTALLOC_LE ){
56318             for(i=0; i<k; i++){
56319               iPage = get4byte(&aData[8+i*4]);
56320               if( iPage<=nearby ){
56321                 closest = i;
56322                 break;
56323               }
56324             }
56325           }else{
56326             int dist;
56327             dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
56328             for(i=1; i<k; i++){
56329               int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
56330               if( d2<dist ){
56331                 closest = i;
56332                 dist = d2;
56333               }
56334             }
56335           }
56336         }else{
56337           closest = 0;
56338         }
56339 
56340         iPage = get4byte(&aData[8+closest*4]);
56341         testcase( iPage==mxPage );
56342         if( iPage>mxPage ){
56343           rc = SQLITE_CORRUPT_BKPT;
56344           goto end_allocate_page;
56345         }
56346         testcase( iPage==mxPage );
56347         if( !searchList
56348          || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
56349         ){
56350           int noContent;
56351           *pPgno = iPage;
56352           TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
56353                  ": %d more free pages\n",
56354                  *pPgno, closest+1, k, pTrunk->pgno, n-1));
56355           rc = sqlite3PagerWrite(pTrunk->pDbPage);
56356           if( rc ) goto end_allocate_page;
56357           if( closest<k-1 ){
56358             memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
56359           }
56360           put4byte(&aData[4], k-1);
56361           noContent = !btreeGetHasContent(pBt, *pPgno) ? PAGER_GET_NOCONTENT : 0;
56362           rc = btreeGetPage(pBt, *pPgno, ppPage, noContent);
56363           if( rc==SQLITE_OK ){
56364             rc = sqlite3PagerWrite((*ppPage)->pDbPage);
56365             if( rc!=SQLITE_OK ){
56366               releasePage(*ppPage);
56367             }
56368           }
56369           searchList = 0;
56370         }
56371       }
56372       releasePage(pPrevTrunk);
56373       pPrevTrunk = 0;
56374     }while( searchList );
56375   }else{
56376     /* There are no pages on the freelist, so append a new page to the
56377     ** database image.
56378     **
56379     ** Normally, new pages allocated by this block can be requested from the
56380     ** pager layer with the 'no-content' flag set. This prevents the pager
56381     ** from trying to read the pages content from disk. However, if the
56382     ** current transaction has already run one or more incremental-vacuum
56383     ** steps, then the page we are about to allocate may contain content
56384     ** that is required in the event of a rollback. In this case, do
56385     ** not set the no-content flag. This causes the pager to load and journal
56386     ** the current page content before overwriting it.
56387     **
56388     ** Note that the pager will not actually attempt to load or journal
56389     ** content for any page that really does lie past the end of the database
56390     ** file on disk. So the effects of disabling the no-content optimization
56391     ** here are confined to those pages that lie between the end of the
56392     ** database image and the end of the database file.
56393     */
56394     int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate)) ? PAGER_GET_NOCONTENT : 0;
56395 
56396     rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
56397     if( rc ) return rc;
56398     pBt->nPage++;
56399     if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
56400 
56401 #ifndef SQLITE_OMIT_AUTOVACUUM
56402     if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
56403       /* If *pPgno refers to a pointer-map page, allocate two new pages
56404       ** at the end of the file instead of one. The first allocated page
56405       ** becomes a new pointer-map page, the second is used by the caller.
56406       */
56407       MemPage *pPg = 0;
56408       TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
56409       assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
56410       rc = btreeGetPage(pBt, pBt->nPage, &pPg, bNoContent);
56411       if( rc==SQLITE_OK ){
56412         rc = sqlite3PagerWrite(pPg->pDbPage);
56413         releasePage(pPg);
56414       }
56415       if( rc ) return rc;
56416       pBt->nPage++;
56417       if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
56418     }
56419 #endif
56420     put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
56421     *pPgno = pBt->nPage;
56422 
56423     assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
56424     rc = btreeGetPage(pBt, *pPgno, ppPage, bNoContent);
56425     if( rc ) return rc;
56426     rc = sqlite3PagerWrite((*ppPage)->pDbPage);
56427     if( rc!=SQLITE_OK ){
56428       releasePage(*ppPage);
56429     }
56430     TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
56431   }
56432 
56433   assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
56434 
56435 end_allocate_page:
56436   releasePage(pTrunk);
56437   releasePage(pPrevTrunk);
56438   if( rc==SQLITE_OK ){
56439     if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
56440       releasePage(*ppPage);
56441       *ppPage = 0;
56442       return SQLITE_CORRUPT_BKPT;
56443     }
56444     (*ppPage)->isInit = 0;
56445   }else{
56446     *ppPage = 0;
56447   }
56448   assert( rc!=SQLITE_OK || sqlite3PagerIswriteable((*ppPage)->pDbPage) );
56449   return rc;
56450 }
56451 
56452 /*
56453 ** This function is used to add page iPage to the database file free-list.
56454 ** It is assumed that the page is not already a part of the free-list.
56455 **
56456 ** The value passed as the second argument to this function is optional.
56457 ** If the caller happens to have a pointer to the MemPage object
56458 ** corresponding to page iPage handy, it may pass it as the second value.
56459 ** Otherwise, it may pass NULL.
56460 **
56461 ** If a pointer to a MemPage object is passed as the second argument,
56462 ** its reference count is not altered by this function.
56463 */
56464 static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
56465   MemPage *pTrunk = 0;                /* Free-list trunk page */
56466   Pgno iTrunk = 0;                    /* Page number of free-list trunk page */
56467   MemPage *pPage1 = pBt->pPage1;      /* Local reference to page 1 */
56468   MemPage *pPage;                     /* Page being freed. May be NULL. */
56469   int rc;                             /* Return Code */
56470   int nFree;                          /* Initial number of pages on free-list */
56471 
56472   assert( sqlite3_mutex_held(pBt->mutex) );
56473   assert( iPage>1 );
56474   assert( !pMemPage || pMemPage->pgno==iPage );
56475 
56476   if( pMemPage ){
56477     pPage = pMemPage;
56478     sqlite3PagerRef(pPage->pDbPage);
56479   }else{
56480     pPage = btreePageLookup(pBt, iPage);
56481   }
56482 
56483   /* Increment the free page count on pPage1 */
56484   rc = sqlite3PagerWrite(pPage1->pDbPage);
56485   if( rc ) goto freepage_out;
56486   nFree = get4byte(&pPage1->aData[36]);
56487   put4byte(&pPage1->aData[36], nFree+1);
56488 
56489   if( pBt->btsFlags & BTS_SECURE_DELETE ){
56490     /* If the secure_delete option is enabled, then
56491     ** always fully overwrite deleted information with zeros.
56492     */
56493     if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
56494      ||            ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
56495     ){
56496       goto freepage_out;
56497     }
56498     memset(pPage->aData, 0, pPage->pBt->pageSize);
56499   }
56500 
56501   /* If the database supports auto-vacuum, write an entry in the pointer-map
56502   ** to indicate that the page is free.
56503   */
56504   if( ISAUTOVACUUM ){
56505     ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
56506     if( rc ) goto freepage_out;
56507   }
56508 
56509   /* Now manipulate the actual database free-list structure. There are two
56510   ** possibilities. If the free-list is currently empty, or if the first
56511   ** trunk page in the free-list is full, then this page will become a
56512   ** new free-list trunk page. Otherwise, it will become a leaf of the
56513   ** first trunk page in the current free-list. This block tests if it
56514   ** is possible to add the page as a new free-list leaf.
56515   */
56516   if( nFree!=0 ){
56517     u32 nLeaf;                /* Initial number of leaf cells on trunk page */
56518 
56519     iTrunk = get4byte(&pPage1->aData[32]);
56520     rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
56521     if( rc!=SQLITE_OK ){
56522       goto freepage_out;
56523     }
56524 
56525     nLeaf = get4byte(&pTrunk->aData[4]);
56526     assert( pBt->usableSize>32 );
56527     if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
56528       rc = SQLITE_CORRUPT_BKPT;
56529       goto freepage_out;
56530     }
56531     if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
56532       /* In this case there is room on the trunk page to insert the page
56533       ** being freed as a new leaf.
56534       **
56535       ** Note that the trunk page is not really full until it contains
56536       ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
56537       ** coded.  But due to a coding error in versions of SQLite prior to
56538       ** 3.6.0, databases with freelist trunk pages holding more than
56539       ** usableSize/4 - 8 entries will be reported as corrupt.  In order
56540       ** to maintain backwards compatibility with older versions of SQLite,
56541       ** we will continue to restrict the number of entries to usableSize/4 - 8
56542       ** for now.  At some point in the future (once everyone has upgraded
56543       ** to 3.6.0 or later) we should consider fixing the conditional above
56544       ** to read "usableSize/4-2" instead of "usableSize/4-8".
56545       */
56546       rc = sqlite3PagerWrite(pTrunk->pDbPage);
56547       if( rc==SQLITE_OK ){
56548         put4byte(&pTrunk->aData[4], nLeaf+1);
56549         put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
56550         if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
56551           sqlite3PagerDontWrite(pPage->pDbPage);
56552         }
56553         rc = btreeSetHasContent(pBt, iPage);
56554       }
56555       TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
56556       goto freepage_out;
56557     }
56558   }
56559 
56560   /* If control flows to this point, then it was not possible to add the
56561   ** the page being freed as a leaf page of the first trunk in the free-list.
56562   ** Possibly because the free-list is empty, or possibly because the
56563   ** first trunk in the free-list is full. Either way, the page being freed
56564   ** will become the new first trunk page in the free-list.
56565   */
56566   if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
56567     goto freepage_out;
56568   }
56569   rc = sqlite3PagerWrite(pPage->pDbPage);
56570   if( rc!=SQLITE_OK ){
56571     goto freepage_out;
56572   }
56573   put4byte(pPage->aData, iTrunk);
56574   put4byte(&pPage->aData[4], 0);
56575   put4byte(&pPage1->aData[32], iPage);
56576   TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
56577 
56578 freepage_out:
56579   if( pPage ){
56580     pPage->isInit = 0;
56581   }
56582   releasePage(pPage);
56583   releasePage(pTrunk);
56584   return rc;
56585 }
56586 static void freePage(MemPage *pPage, int *pRC){
56587   if( (*pRC)==SQLITE_OK ){
56588     *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
56589   }
56590 }
56591 
56592 /*
56593 ** Free any overflow pages associated with the given Cell.
56594 */
56595 static int clearCell(MemPage *pPage, unsigned char *pCell){
56596   BtShared *pBt = pPage->pBt;
56597   CellInfo info;
56598   Pgno ovflPgno;
56599   int rc;
56600   int nOvfl;
56601   u32 ovflPageSize;
56602 
56603   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
56604   btreeParseCellPtr(pPage, pCell, &info);
56605   if( info.iOverflow==0 ){
56606     return SQLITE_OK;  /* No overflow pages. Return without doing anything */
56607   }
56608   if( pCell+info.iOverflow+3 > pPage->aData+pPage->maskPage ){
56609     return SQLITE_CORRUPT_BKPT;  /* Cell extends past end of page */
56610   }
56611   ovflPgno = get4byte(&pCell[info.iOverflow]);
56612   assert( pBt->usableSize > 4 );
56613   ovflPageSize = pBt->usableSize - 4;
56614   nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
56615   assert( ovflPgno==0 || nOvfl>0 );
56616   while( nOvfl-- ){
56617     Pgno iNext = 0;
56618     MemPage *pOvfl = 0;
56619     if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
56620       /* 0 is not a legal page number and page 1 cannot be an
56621       ** overflow page. Therefore if ovflPgno<2 or past the end of the
56622       ** file the database must be corrupt. */
56623       return SQLITE_CORRUPT_BKPT;
56624     }
56625     if( nOvfl ){
56626       rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
56627       if( rc ) return rc;
56628     }
56629 
56630     if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
56631      && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
56632     ){
56633       /* There is no reason any cursor should have an outstanding reference
56634       ** to an overflow page belonging to a cell that is being deleted/updated.
56635       ** So if there exists more than one reference to this page, then it
56636       ** must not really be an overflow page and the database must be corrupt.
56637       ** It is helpful to detect this before calling freePage2(), as
56638       ** freePage2() may zero the page contents if secure-delete mode is
56639       ** enabled. If this 'overflow' page happens to be a page that the
56640       ** caller is iterating through or using in some other way, this
56641       ** can be problematic.
56642       */
56643       rc = SQLITE_CORRUPT_BKPT;
56644     }else{
56645       rc = freePage2(pBt, pOvfl, ovflPgno);
56646     }
56647 
56648     if( pOvfl ){
56649       sqlite3PagerUnref(pOvfl->pDbPage);
56650     }
56651     if( rc ) return rc;
56652     ovflPgno = iNext;
56653   }
56654   return SQLITE_OK;
56655 }
56656 
56657 /*
56658 ** Create the byte sequence used to represent a cell on page pPage
56659 ** and write that byte sequence into pCell[].  Overflow pages are
56660 ** allocated and filled in as necessary.  The calling procedure
56661 ** is responsible for making sure sufficient space has been allocated
56662 ** for pCell[].
56663 **
56664 ** Note that pCell does not necessary need to point to the pPage->aData
56665 ** area.  pCell might point to some temporary storage.  The cell will
56666 ** be constructed in this temporary area then copied into pPage->aData
56667 ** later.
56668 */
56669 static int fillInCell(
56670   MemPage *pPage,                /* The page that contains the cell */
56671   unsigned char *pCell,          /* Complete text of the cell */
56672   const void *pKey, i64 nKey,    /* The key */
56673   const void *pData,int nData,   /* The data */
56674   int nZero,                     /* Extra zero bytes to append to pData */
56675   int *pnSize                    /* Write cell size here */
56676 ){
56677   int nPayload;
56678   const u8 *pSrc;
56679   int nSrc, n, rc;
56680   int spaceLeft;
56681   MemPage *pOvfl = 0;
56682   MemPage *pToRelease = 0;
56683   unsigned char *pPrior;
56684   unsigned char *pPayload;
56685   BtShared *pBt = pPage->pBt;
56686   Pgno pgnoOvfl = 0;
56687   int nHeader;
56688   CellInfo info;
56689 
56690   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
56691 
56692   /* pPage is not necessarily writeable since pCell might be auxiliary
56693   ** buffer space that is separate from the pPage buffer area */
56694   assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
56695             || sqlite3PagerIswriteable(pPage->pDbPage) );
56696 
56697   /* Fill in the header. */
56698   nHeader = 0;
56699   if( !pPage->leaf ){
56700     nHeader += 4;
56701   }
56702   if( pPage->hasData ){
56703     nHeader += putVarint32(&pCell[nHeader], nData+nZero);
56704   }else{
56705     nData = nZero = 0;
56706   }
56707   nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
56708   btreeParseCellPtr(pPage, pCell, &info);
56709   assert( info.nHeader==nHeader );
56710   assert( info.nKey==nKey );
56711   assert( info.nData==(u32)(nData+nZero) );
56712 
56713   /* Fill in the payload */
56714   nPayload = nData + nZero;
56715   if( pPage->intKey ){
56716     pSrc = pData;
56717     nSrc = nData;
56718     nData = 0;
56719   }else{
56720     if( NEVER(nKey>0x7fffffff || pKey==0) ){
56721       return SQLITE_CORRUPT_BKPT;
56722     }
56723     nPayload += (int)nKey;
56724     pSrc = pKey;
56725     nSrc = (int)nKey;
56726   }
56727   *pnSize = info.nSize;
56728   spaceLeft = info.nLocal;
56729   pPayload = &pCell[nHeader];
56730   pPrior = &pCell[info.iOverflow];
56731 
56732   while( nPayload>0 ){
56733     if( spaceLeft==0 ){
56734 #ifndef SQLITE_OMIT_AUTOVACUUM
56735       Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
56736       if( pBt->autoVacuum ){
56737         do{
56738           pgnoOvfl++;
56739         } while(
56740           PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
56741         );
56742       }
56743 #endif
56744       rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
56745 #ifndef SQLITE_OMIT_AUTOVACUUM
56746       /* If the database supports auto-vacuum, and the second or subsequent
56747       ** overflow page is being allocated, add an entry to the pointer-map
56748       ** for that page now.
56749       **
56750       ** If this is the first overflow page, then write a partial entry
56751       ** to the pointer-map. If we write nothing to this pointer-map slot,
56752       ** then the optimistic overflow chain processing in clearCell()
56753       ** may misinterpret the uninitialized values and delete the
56754       ** wrong pages from the database.
56755       */
56756       if( pBt->autoVacuum && rc==SQLITE_OK ){
56757         u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
56758         ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
56759         if( rc ){
56760           releasePage(pOvfl);
56761         }
56762       }
56763 #endif
56764       if( rc ){
56765         releasePage(pToRelease);
56766         return rc;
56767       }
56768 
56769       /* If pToRelease is not zero than pPrior points into the data area
56770       ** of pToRelease.  Make sure pToRelease is still writeable. */
56771       assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
56772 
56773       /* If pPrior is part of the data area of pPage, then make sure pPage
56774       ** is still writeable */
56775       assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
56776             || sqlite3PagerIswriteable(pPage->pDbPage) );
56777 
56778       put4byte(pPrior, pgnoOvfl);
56779       releasePage(pToRelease);
56780       pToRelease = pOvfl;
56781       pPrior = pOvfl->aData;
56782       put4byte(pPrior, 0);
56783       pPayload = &pOvfl->aData[4];
56784       spaceLeft = pBt->usableSize - 4;
56785     }
56786     n = nPayload;
56787     if( n>spaceLeft ) n = spaceLeft;
56788 
56789     /* If pToRelease is not zero than pPayload points into the data area
56790     ** of pToRelease.  Make sure pToRelease is still writeable. */
56791     assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
56792 
56793     /* If pPayload is part of the data area of pPage, then make sure pPage
56794     ** is still writeable */
56795     assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
56796             || sqlite3PagerIswriteable(pPage->pDbPage) );
56797 
56798     if( nSrc>0 ){
56799       if( n>nSrc ) n = nSrc;
56800       assert( pSrc );
56801       memcpy(pPayload, pSrc, n);
56802     }else{
56803       memset(pPayload, 0, n);
56804     }
56805     nPayload -= n;
56806     pPayload += n;
56807     pSrc += n;
56808     nSrc -= n;
56809     spaceLeft -= n;
56810     if( nSrc==0 ){
56811       nSrc = nData;
56812       pSrc = pData;
56813     }
56814   }
56815   releasePage(pToRelease);
56816   return SQLITE_OK;
56817 }
56818 
56819 /*
56820 ** Remove the i-th cell from pPage.  This routine effects pPage only.
56821 ** The cell content is not freed or deallocated.  It is assumed that
56822 ** the cell content has been copied someplace else.  This routine just
56823 ** removes the reference to the cell from pPage.
56824 **
56825 ** "sz" must be the number of bytes in the cell.
56826 */
56827 static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
56828   u32 pc;         /* Offset to cell content of cell being deleted */
56829   u8 *data;       /* pPage->aData */
56830   u8 *ptr;        /* Used to move bytes around within data[] */
56831   int rc;         /* The return code */
56832   int hdr;        /* Beginning of the header.  0 most pages.  100 page 1 */
56833 
56834   if( *pRC ) return;
56835 
56836   assert( idx>=0 && idx<pPage->nCell );
56837   assert( sz==cellSize(pPage, idx) );
56838   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
56839   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
56840   data = pPage->aData;
56841   ptr = &pPage->aCellIdx[2*idx];
56842   pc = get2byte(ptr);
56843   hdr = pPage->hdrOffset;
56844   testcase( pc==get2byte(&data[hdr+5]) );
56845   testcase( pc+sz==pPage->pBt->usableSize );
56846   if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
56847     *pRC = SQLITE_CORRUPT_BKPT;
56848     return;
56849   }
56850   rc = freeSpace(pPage, pc, sz);
56851   if( rc ){
56852     *pRC = rc;
56853     return;
56854   }
56855   pPage->nCell--;
56856   memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
56857   put2byte(&data[hdr+3], pPage->nCell);
56858   pPage->nFree += 2;
56859 }
56860 
56861 /*
56862 ** Insert a new cell on pPage at cell index "i".  pCell points to the
56863 ** content of the cell.
56864 **
56865 ** If the cell content will fit on the page, then put it there.  If it
56866 ** will not fit, then make a copy of the cell content into pTemp if
56867 ** pTemp is not null.  Regardless of pTemp, allocate a new entry
56868 ** in pPage->apOvfl[] and make it point to the cell content (either
56869 ** in pTemp or the original pCell) and also record its index.
56870 ** Allocating a new entry in pPage->aCell[] implies that
56871 ** pPage->nOverflow is incremented.
56872 **
56873 ** If nSkip is non-zero, then do not copy the first nSkip bytes of the
56874 ** cell. The caller will overwrite them after this function returns. If
56875 ** nSkip is non-zero, then pCell may not point to an invalid memory location
56876 ** (but pCell+nSkip is always valid).
56877 */
56878 static void insertCell(
56879   MemPage *pPage,   /* Page into which we are copying */
56880   int i,            /* New cell becomes the i-th cell of the page */
56881   u8 *pCell,        /* Content of the new cell */
56882   int sz,           /* Bytes of content in pCell */
56883   u8 *pTemp,        /* Temp storage space for pCell, if needed */
56884   Pgno iChild,      /* If non-zero, replace first 4 bytes with this value */
56885   int *pRC          /* Read and write return code from here */
56886 ){
56887   int idx = 0;      /* Where to write new cell content in data[] */
56888   int j;            /* Loop counter */
56889   int end;          /* First byte past the last cell pointer in data[] */
56890   int ins;          /* Index in data[] where new cell pointer is inserted */
56891   int cellOffset;   /* Address of first cell pointer in data[] */
56892   u8 *data;         /* The content of the whole page */
56893   int nSkip = (iChild ? 4 : 0);
56894 
56895   if( *pRC ) return;
56896 
56897   assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
56898   assert( pPage->nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=10921 );
56899   assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
56900   assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
56901   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
56902   /* The cell should normally be sized correctly.  However, when moving a
56903   ** malformed cell from a leaf page to an interior page, if the cell size
56904   ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
56905   ** might be less than 8 (leaf-size + pointer) on the interior node.  Hence
56906   ** the term after the || in the following assert(). */
56907   assert( sz==cellSizePtr(pPage, pCell) || (sz==8 && iChild>0) );
56908   if( pPage->nOverflow || sz+2>pPage->nFree ){
56909     if( pTemp ){
56910       memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
56911       pCell = pTemp;
56912     }
56913     if( iChild ){
56914       put4byte(pCell, iChild);
56915     }
56916     j = pPage->nOverflow++;
56917     assert( j<(int)(sizeof(pPage->apOvfl)/sizeof(pPage->apOvfl[0])) );
56918     pPage->apOvfl[j] = pCell;
56919     pPage->aiOvfl[j] = (u16)i;
56920   }else{
56921     int rc = sqlite3PagerWrite(pPage->pDbPage);
56922     if( rc!=SQLITE_OK ){
56923       *pRC = rc;
56924       return;
56925     }
56926     assert( sqlite3PagerIswriteable(pPage->pDbPage) );
56927     data = pPage->aData;
56928     cellOffset = pPage->cellOffset;
56929     end = cellOffset + 2*pPage->nCell;
56930     ins = cellOffset + 2*i;
56931     rc = allocateSpace(pPage, sz, &idx);
56932     if( rc ){ *pRC = rc; return; }
56933     /* The allocateSpace() routine guarantees the following two properties
56934     ** if it returns success */
56935     assert( idx >= end+2 );
56936     assert( idx+sz <= (int)pPage->pBt->usableSize );
56937     pPage->nCell++;
56938     pPage->nFree -= (u16)(2 + sz);
56939     memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
56940     if( iChild ){
56941       put4byte(&data[idx], iChild);
56942     }
56943     memmove(&data[ins+2], &data[ins], end-ins);
56944     put2byte(&data[ins], idx);
56945     put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
56946 #ifndef SQLITE_OMIT_AUTOVACUUM
56947     if( pPage->pBt->autoVacuum ){
56948       /* The cell may contain a pointer to an overflow page. If so, write
56949       ** the entry for the overflow page into the pointer map.
56950       */
56951       ptrmapPutOvflPtr(pPage, pCell, pRC);
56952     }
56953 #endif
56954   }
56955 }
56956 
56957 /*
56958 ** Add a list of cells to a page.  The page should be initially empty.
56959 ** The cells are guaranteed to fit on the page.
56960 */
56961 static void assemblePage(
56962   MemPage *pPage,   /* The page to be assemblied */
56963   int nCell,        /* The number of cells to add to this page */
56964   u8 **apCell,      /* Pointers to cell bodies */
56965   u16 *aSize        /* Sizes of the cells */
56966 ){
56967   int i;            /* Loop counter */
56968   u8 *pCellptr;     /* Address of next cell pointer */
56969   int cellbody;     /* Address of next cell body */
56970   u8 * const data = pPage->aData;             /* Pointer to data for pPage */
56971   const int hdr = pPage->hdrOffset;           /* Offset of header on pPage */
56972   const int nUsable = pPage->pBt->usableSize; /* Usable size of page */
56973 
56974   assert( pPage->nOverflow==0 );
56975   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
56976   assert( nCell>=0 && nCell<=(int)MX_CELL(pPage->pBt)
56977             && (int)MX_CELL(pPage->pBt)<=10921);
56978   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
56979 
56980   /* Check that the page has just been zeroed by zeroPage() */
56981   assert( pPage->nCell==0 );
56982   assert( get2byteNotZero(&data[hdr+5])==nUsable );
56983 
56984   pCellptr = &pPage->aCellIdx[nCell*2];
56985   cellbody = nUsable;
56986   for(i=nCell-1; i>=0; i--){
56987     u16 sz = aSize[i];
56988     pCellptr -= 2;
56989     cellbody -= sz;
56990     put2byte(pCellptr, cellbody);
56991     memcpy(&data[cellbody], apCell[i], sz);
56992   }
56993   put2byte(&data[hdr+3], nCell);
56994   put2byte(&data[hdr+5], cellbody);
56995   pPage->nFree -= (nCell*2 + nUsable - cellbody);
56996   pPage->nCell = (u16)nCell;
56997 }
56998 
56999 /*
57000 ** The following parameters determine how many adjacent pages get involved
57001 ** in a balancing operation.  NN is the number of neighbors on either side
57002 ** of the page that participate in the balancing operation.  NB is the
57003 ** total number of pages that participate, including the target page and
57004 ** NN neighbors on either side.
57005 **
57006 ** The minimum value of NN is 1 (of course).  Increasing NN above 1
57007 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
57008 ** in exchange for a larger degradation in INSERT and UPDATE performance.
57009 ** The value of NN appears to give the best results overall.
57010 */
57011 #define NN 1             /* Number of neighbors on either side of pPage */
57012 #define NB (NN*2+1)      /* Total pages involved in the balance */
57013 
57014 
57015 #ifndef SQLITE_OMIT_QUICKBALANCE
57016 /*
57017 ** This version of balance() handles the common special case where
57018 ** a new entry is being inserted on the extreme right-end of the
57019 ** tree, in other words, when the new entry will become the largest
57020 ** entry in the tree.
57021 **
57022 ** Instead of trying to balance the 3 right-most leaf pages, just add
57023 ** a new page to the right-hand side and put the one new entry in
57024 ** that page.  This leaves the right side of the tree somewhat
57025 ** unbalanced.  But odds are that we will be inserting new entries
57026 ** at the end soon afterwards so the nearly empty page will quickly
57027 ** fill up.  On average.
57028 **
57029 ** pPage is the leaf page which is the right-most page in the tree.
57030 ** pParent is its parent.  pPage must have a single overflow entry
57031 ** which is also the right-most entry on the page.
57032 **
57033 ** The pSpace buffer is used to store a temporary copy of the divider
57034 ** cell that will be inserted into pParent. Such a cell consists of a 4
57035 ** byte page number followed by a variable length integer. In other
57036 ** words, at most 13 bytes. Hence the pSpace buffer must be at
57037 ** least 13 bytes in size.
57038 */
57039 static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
57040   BtShared *const pBt = pPage->pBt;    /* B-Tree Database */
57041   MemPage *pNew;                       /* Newly allocated page */
57042   int rc;                              /* Return Code */
57043   Pgno pgnoNew;                        /* Page number of pNew */
57044 
57045   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
57046   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
57047   assert( pPage->nOverflow==1 );
57048 
57049   /* This error condition is now caught prior to reaching this function */
57050   if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT;
57051 
57052   /* Allocate a new page. This page will become the right-sibling of
57053   ** pPage. Make the parent page writable, so that the new divider cell
57054   ** may be inserted. If both these operations are successful, proceed.
57055   */
57056   rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
57057 
57058   if( rc==SQLITE_OK ){
57059 
57060     u8 *pOut = &pSpace[4];
57061     u8 *pCell = pPage->apOvfl[0];
57062     u16 szCell = cellSizePtr(pPage, pCell);
57063     u8 *pStop;
57064 
57065     assert( sqlite3PagerIswriteable(pNew->pDbPage) );
57066     assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
57067     zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
57068     assemblePage(pNew, 1, &pCell, &szCell);
57069 
57070     /* If this is an auto-vacuum database, update the pointer map
57071     ** with entries for the new page, and any pointer from the
57072     ** cell on the page to an overflow page. If either of these
57073     ** operations fails, the return code is set, but the contents
57074     ** of the parent page are still manipulated by thh code below.
57075     ** That is Ok, at this point the parent page is guaranteed to
57076     ** be marked as dirty. Returning an error code will cause a
57077     ** rollback, undoing any changes made to the parent page.
57078     */
57079     if( ISAUTOVACUUM ){
57080       ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
57081       if( szCell>pNew->minLocal ){
57082         ptrmapPutOvflPtr(pNew, pCell, &rc);
57083       }
57084     }
57085 
57086     /* Create a divider cell to insert into pParent. The divider cell
57087     ** consists of a 4-byte page number (the page number of pPage) and
57088     ** a variable length key value (which must be the same value as the
57089     ** largest key on pPage).
57090     **
57091     ** To find the largest key value on pPage, first find the right-most
57092     ** cell on pPage. The first two fields of this cell are the
57093     ** record-length (a variable length integer at most 32-bits in size)
57094     ** and the key value (a variable length integer, may have any value).
57095     ** The first of the while(...) loops below skips over the record-length
57096     ** field. The second while(...) loop copies the key value from the
57097     ** cell on pPage into the pSpace buffer.
57098     */
57099     pCell = findCell(pPage, pPage->nCell-1);
57100     pStop = &pCell[9];
57101     while( (*(pCell++)&0x80) && pCell<pStop );
57102     pStop = &pCell[9];
57103     while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
57104 
57105     /* Insert the new divider cell into pParent. */
57106     insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
57107                0, pPage->pgno, &rc);
57108 
57109     /* Set the right-child pointer of pParent to point to the new page. */
57110     put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
57111 
57112     /* Release the reference to the new page. */
57113     releasePage(pNew);
57114   }
57115 
57116   return rc;
57117 }
57118 #endif /* SQLITE_OMIT_QUICKBALANCE */
57119 
57120 #if 0
57121 /*
57122 ** This function does not contribute anything to the operation of SQLite.
57123 ** it is sometimes activated temporarily while debugging code responsible
57124 ** for setting pointer-map entries.
57125 */
57126 static int ptrmapCheckPages(MemPage **apPage, int nPage){
57127   int i, j;
57128   for(i=0; i<nPage; i++){
57129     Pgno n;
57130     u8 e;
57131     MemPage *pPage = apPage[i];
57132     BtShared *pBt = pPage->pBt;
57133     assert( pPage->isInit );
57134 
57135     for(j=0; j<pPage->nCell; j++){
57136       CellInfo info;
57137       u8 *z;
57138 
57139       z = findCell(pPage, j);
57140       btreeParseCellPtr(pPage, z, &info);
57141       if( info.iOverflow ){
57142         Pgno ovfl = get4byte(&z[info.iOverflow]);
57143         ptrmapGet(pBt, ovfl, &e, &n);
57144         assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
57145       }
57146       if( !pPage->leaf ){
57147         Pgno child = get4byte(z);
57148         ptrmapGet(pBt, child, &e, &n);
57149         assert( n==pPage->pgno && e==PTRMAP_BTREE );
57150       }
57151     }
57152     if( !pPage->leaf ){
57153       Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
57154       ptrmapGet(pBt, child, &e, &n);
57155       assert( n==pPage->pgno && e==PTRMAP_BTREE );
57156     }
57157   }
57158   return 1;
57159 }
57160 #endif
57161 
57162 /*
57163 ** This function is used to copy the contents of the b-tree node stored
57164 ** on page pFrom to page pTo. If page pFrom was not a leaf page, then
57165 ** the pointer-map entries for each child page are updated so that the
57166 ** parent page stored in the pointer map is page pTo. If pFrom contained
57167 ** any cells with overflow page pointers, then the corresponding pointer
57168 ** map entries are also updated so that the parent page is page pTo.
57169 **
57170 ** If pFrom is currently carrying any overflow cells (entries in the
57171 ** MemPage.apOvfl[] array), they are not copied to pTo.
57172 **
57173 ** Before returning, page pTo is reinitialized using btreeInitPage().
57174 **
57175 ** The performance of this function is not critical. It is only used by
57176 ** the balance_shallower() and balance_deeper() procedures, neither of
57177 ** which are called often under normal circumstances.
57178 */
57179 static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
57180   if( (*pRC)==SQLITE_OK ){
57181     BtShared * const pBt = pFrom->pBt;
57182     u8 * const aFrom = pFrom->aData;
57183     u8 * const aTo = pTo->aData;
57184     int const iFromHdr = pFrom->hdrOffset;
57185     int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
57186     int rc;
57187     int iData;
57188 
57189 
57190     assert( pFrom->isInit );
57191     assert( pFrom->nFree>=iToHdr );
57192     assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
57193 
57194     /* Copy the b-tree node content from page pFrom to page pTo. */
57195     iData = get2byte(&aFrom[iFromHdr+5]);
57196     memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
57197     memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
57198 
57199     /* Reinitialize page pTo so that the contents of the MemPage structure
57200     ** match the new data. The initialization of pTo can actually fail under
57201     ** fairly obscure circumstances, even though it is a copy of initialized
57202     ** page pFrom.
57203     */
57204     pTo->isInit = 0;
57205     rc = btreeInitPage(pTo);
57206     if( rc!=SQLITE_OK ){
57207       *pRC = rc;
57208       return;
57209     }
57210 
57211     /* If this is an auto-vacuum database, update the pointer-map entries
57212     ** for any b-tree or overflow pages that pTo now contains the pointers to.
57213     */
57214     if( ISAUTOVACUUM ){
57215       *pRC = setChildPtrmaps(pTo);
57216     }
57217   }
57218 }
57219 
57220 /*
57221 ** This routine redistributes cells on the iParentIdx'th child of pParent
57222 ** (hereafter "the page") and up to 2 siblings so that all pages have about the
57223 ** same amount of free space. Usually a single sibling on either side of the
57224 ** page are used in the balancing, though both siblings might come from one
57225 ** side if the page is the first or last child of its parent. If the page
57226 ** has fewer than 2 siblings (something which can only happen if the page
57227 ** is a root page or a child of a root page) then all available siblings
57228 ** participate in the balancing.
57229 **
57230 ** The number of siblings of the page might be increased or decreased by
57231 ** one or two in an effort to keep pages nearly full but not over full.
57232 **
57233 ** Note that when this routine is called, some of the cells on the page
57234 ** might not actually be stored in MemPage.aData[]. This can happen
57235 ** if the page is overfull. This routine ensures that all cells allocated
57236 ** to the page and its siblings fit into MemPage.aData[] before returning.
57237 **
57238 ** In the course of balancing the page and its siblings, cells may be
57239 ** inserted into or removed from the parent page (pParent). Doing so
57240 ** may cause the parent page to become overfull or underfull. If this
57241 ** happens, it is the responsibility of the caller to invoke the correct
57242 ** balancing routine to fix this problem (see the balance() routine).
57243 **
57244 ** If this routine fails for any reason, it might leave the database
57245 ** in a corrupted state. So if this routine fails, the database should
57246 ** be rolled back.
57247 **
57248 ** The third argument to this function, aOvflSpace, is a pointer to a
57249 ** buffer big enough to hold one page. If while inserting cells into the parent
57250 ** page (pParent) the parent page becomes overfull, this buffer is
57251 ** used to store the parent's overflow cells. Because this function inserts
57252 ** a maximum of four divider cells into the parent page, and the maximum
57253 ** size of a cell stored within an internal node is always less than 1/4
57254 ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
57255 ** enough for all overflow cells.
57256 **
57257 ** If aOvflSpace is set to a null pointer, this function returns
57258 ** SQLITE_NOMEM.
57259 */
57260 #if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
57261 #pragma optimize("", off)
57262 #endif
57263 static int balance_nonroot(
57264   MemPage *pParent,               /* Parent page of siblings being balanced */
57265   int iParentIdx,                 /* Index of "the page" in pParent */
57266   u8 *aOvflSpace,                 /* page-size bytes of space for parent ovfl */
57267   int isRoot,                     /* True if pParent is a root-page */
57268   int bBulk                       /* True if this call is part of a bulk load */
57269 ){
57270   BtShared *pBt;               /* The whole database */
57271   int nCell = 0;               /* Number of cells in apCell[] */
57272   int nMaxCells = 0;           /* Allocated size of apCell, szCell, aFrom. */
57273   int nNew = 0;                /* Number of pages in apNew[] */
57274   int nOld;                    /* Number of pages in apOld[] */
57275   int i, j, k;                 /* Loop counters */
57276   int nxDiv;                   /* Next divider slot in pParent->aCell[] */
57277   int rc = SQLITE_OK;          /* The return code */
57278   u16 leafCorrection;          /* 4 if pPage is a leaf.  0 if not */
57279   int leafData;                /* True if pPage is a leaf of a LEAFDATA tree */
57280   int usableSpace;             /* Bytes in pPage beyond the header */
57281   int pageFlags;               /* Value of pPage->aData[0] */
57282   int subtotal;                /* Subtotal of bytes in cells on one page */
57283   int iSpace1 = 0;             /* First unused byte of aSpace1[] */
57284   int iOvflSpace = 0;          /* First unused byte of aOvflSpace[] */
57285   int szScratch;               /* Size of scratch memory requested */
57286   MemPage *apOld[NB];          /* pPage and up to two siblings */
57287   MemPage *apCopy[NB];         /* Private copies of apOld[] pages */
57288   MemPage *apNew[NB+2];        /* pPage and up to NB siblings after balancing */
57289   u8 *pRight;                  /* Location in parent of right-sibling pointer */
57290   u8 *apDiv[NB-1];             /* Divider cells in pParent */
57291   int cntNew[NB+2];            /* Index in aCell[] of cell after i-th page */
57292   int szNew[NB+2];             /* Combined size of cells place on i-th page */
57293   u8 **apCell = 0;             /* All cells begin balanced */
57294   u16 *szCell;                 /* Local size of all cells in apCell[] */
57295   u8 *aSpace1;                 /* Space for copies of dividers cells */
57296   Pgno pgno;                   /* Temp var to store a page number in */
57297 
57298   pBt = pParent->pBt;
57299   assert( sqlite3_mutex_held(pBt->mutex) );
57300   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
57301 
57302 #if 0
57303   TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
57304 #endif
57305 
57306   /* At this point pParent may have at most one overflow cell. And if
57307   ** this overflow cell is present, it must be the cell with
57308   ** index iParentIdx. This scenario comes about when this function
57309   ** is called (indirectly) from sqlite3BtreeDelete().
57310   */
57311   assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
57312   assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
57313 
57314   if( !aOvflSpace ){
57315     return SQLITE_NOMEM;
57316   }
57317 
57318   /* Find the sibling pages to balance. Also locate the cells in pParent
57319   ** that divide the siblings. An attempt is made to find NN siblings on
57320   ** either side of pPage. More siblings are taken from one side, however,
57321   ** if there are fewer than NN siblings on the other side. If pParent
57322   ** has NB or fewer children then all children of pParent are taken.
57323   **
57324   ** This loop also drops the divider cells from the parent page. This
57325   ** way, the remainder of the function does not have to deal with any
57326   ** overflow cells in the parent page, since if any existed they will
57327   ** have already been removed.
57328   */
57329   i = pParent->nOverflow + pParent->nCell;
57330   if( i<2 ){
57331     nxDiv = 0;
57332   }else{
57333     assert( bBulk==0 || bBulk==1 );
57334     if( iParentIdx==0 ){
57335       nxDiv = 0;
57336     }else if( iParentIdx==i ){
57337       nxDiv = i-2+bBulk;
57338     }else{
57339       assert( bBulk==0 );
57340       nxDiv = iParentIdx-1;
57341     }
57342     i = 2-bBulk;
57343   }
57344   nOld = i+1;
57345   if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
57346     pRight = &pParent->aData[pParent->hdrOffset+8];
57347   }else{
57348     pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
57349   }
57350   pgno = get4byte(pRight);
57351   while( 1 ){
57352     rc = getAndInitPage(pBt, pgno, &apOld[i], 0);
57353     if( rc ){
57354       memset(apOld, 0, (i+1)*sizeof(MemPage*));
57355       goto balance_cleanup;
57356     }
57357     nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
57358     if( (i--)==0 ) break;
57359 
57360     if( i+nxDiv==pParent->aiOvfl[0] && pParent->nOverflow ){
57361       apDiv[i] = pParent->apOvfl[0];
57362       pgno = get4byte(apDiv[i]);
57363       szNew[i] = cellSizePtr(pParent, apDiv[i]);
57364       pParent->nOverflow = 0;
57365     }else{
57366       apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
57367       pgno = get4byte(apDiv[i]);
57368       szNew[i] = cellSizePtr(pParent, apDiv[i]);
57369 
57370       /* Drop the cell from the parent page. apDiv[i] still points to
57371       ** the cell within the parent, even though it has been dropped.
57372       ** This is safe because dropping a cell only overwrites the first
57373       ** four bytes of it, and this function does not need the first
57374       ** four bytes of the divider cell. So the pointer is safe to use
57375       ** later on.
57376       **
57377       ** But not if we are in secure-delete mode. In secure-delete mode,
57378       ** the dropCell() routine will overwrite the entire cell with zeroes.
57379       ** In this case, temporarily copy the cell into the aOvflSpace[]
57380       ** buffer. It will be copied out again as soon as the aSpace[] buffer
57381       ** is allocated.  */
57382       if( pBt->btsFlags & BTS_SECURE_DELETE ){
57383         int iOff;
57384 
57385         iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
57386         if( (iOff+szNew[i])>(int)pBt->usableSize ){
57387           rc = SQLITE_CORRUPT_BKPT;
57388           memset(apOld, 0, (i+1)*sizeof(MemPage*));
57389           goto balance_cleanup;
57390         }else{
57391           memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
57392           apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
57393         }
57394       }
57395       dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
57396     }
57397   }
57398 
57399   /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
57400   ** alignment */
57401   nMaxCells = (nMaxCells + 3)&~3;
57402 
57403   /*
57404   ** Allocate space for memory structures
57405   */
57406   k = pBt->pageSize + ROUND8(sizeof(MemPage));
57407   szScratch =
57408        nMaxCells*sizeof(u8*)                       /* apCell */
57409      + nMaxCells*sizeof(u16)                       /* szCell */
57410      + pBt->pageSize                               /* aSpace1 */
57411      + k*nOld;                                     /* Page copies (apCopy) */
57412   apCell = sqlite3ScratchMalloc( szScratch );
57413   if( apCell==0 ){
57414     rc = SQLITE_NOMEM;
57415     goto balance_cleanup;
57416   }
57417   szCell = (u16*)&apCell[nMaxCells];
57418   aSpace1 = (u8*)&szCell[nMaxCells];
57419   assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
57420 
57421   /*
57422   ** Load pointers to all cells on sibling pages and the divider cells
57423   ** into the local apCell[] array.  Make copies of the divider cells
57424   ** into space obtained from aSpace1[] and remove the divider cells
57425   ** from pParent.
57426   **
57427   ** If the siblings are on leaf pages, then the child pointers of the
57428   ** divider cells are stripped from the cells before they are copied
57429   ** into aSpace1[].  In this way, all cells in apCell[] are without
57430   ** child pointers.  If siblings are not leaves, then all cell in
57431   ** apCell[] include child pointers.  Either way, all cells in apCell[]
57432   ** are alike.
57433   **
57434   ** leafCorrection:  4 if pPage is a leaf.  0 if pPage is not a leaf.
57435   **       leafData:  1 if pPage holds key+data and pParent holds only keys.
57436   */
57437   leafCorrection = apOld[0]->leaf*4;
57438   leafData = apOld[0]->hasData;
57439   for(i=0; i<nOld; i++){
57440     int limit;
57441 
57442     /* Before doing anything else, take a copy of the i'th original sibling
57443     ** The rest of this function will use data from the copies rather
57444     ** that the original pages since the original pages will be in the
57445     ** process of being overwritten.  */
57446     MemPage *pOld = apCopy[i] = (MemPage*)&aSpace1[pBt->pageSize + k*i];
57447     memcpy(pOld, apOld[i], sizeof(MemPage));
57448     pOld->aData = (void*)&pOld[1];
57449     memcpy(pOld->aData, apOld[i]->aData, pBt->pageSize);
57450 
57451     limit = pOld->nCell+pOld->nOverflow;
57452     if( pOld->nOverflow>0 ){
57453       for(j=0; j<limit; j++){
57454         assert( nCell<nMaxCells );
57455         apCell[nCell] = findOverflowCell(pOld, j);
57456         szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
57457         nCell++;
57458       }
57459     }else{
57460       u8 *aData = pOld->aData;
57461       u16 maskPage = pOld->maskPage;
57462       u16 cellOffset = pOld->cellOffset;
57463       for(j=0; j<limit; j++){
57464         assert( nCell<nMaxCells );
57465         apCell[nCell] = findCellv2(aData, maskPage, cellOffset, j);
57466         szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
57467         nCell++;
57468       }
57469     }
57470     if( i<nOld-1 && !leafData){
57471       u16 sz = (u16)szNew[i];
57472       u8 *pTemp;
57473       assert( nCell<nMaxCells );
57474       szCell[nCell] = sz;
57475       pTemp = &aSpace1[iSpace1];
57476       iSpace1 += sz;
57477       assert( sz<=pBt->maxLocal+23 );
57478       assert( iSpace1 <= (int)pBt->pageSize );
57479       memcpy(pTemp, apDiv[i], sz);
57480       apCell[nCell] = pTemp+leafCorrection;
57481       assert( leafCorrection==0 || leafCorrection==4 );
57482       szCell[nCell] = szCell[nCell] - leafCorrection;
57483       if( !pOld->leaf ){
57484         assert( leafCorrection==0 );
57485         assert( pOld->hdrOffset==0 );
57486         /* The right pointer of the child page pOld becomes the left
57487         ** pointer of the divider cell */
57488         memcpy(apCell[nCell], &pOld->aData[8], 4);
57489       }else{
57490         assert( leafCorrection==4 );
57491         if( szCell[nCell]<4 ){
57492           /* Do not allow any cells smaller than 4 bytes. */
57493           szCell[nCell] = 4;
57494         }
57495       }
57496       nCell++;
57497     }
57498   }
57499 
57500   /*
57501   ** Figure out the number of pages needed to hold all nCell cells.
57502   ** Store this number in "k".  Also compute szNew[] which is the total
57503   ** size of all cells on the i-th page and cntNew[] which is the index
57504   ** in apCell[] of the cell that divides page i from page i+1.
57505   ** cntNew[k] should equal nCell.
57506   **
57507   ** Values computed by this block:
57508   **
57509   **           k: The total number of sibling pages
57510   **    szNew[i]: Spaced used on the i-th sibling page.
57511   **   cntNew[i]: Index in apCell[] and szCell[] for the first cell to
57512   **              the right of the i-th sibling page.
57513   ** usableSpace: Number of bytes of space available on each sibling.
57514   **
57515   */
57516   usableSpace = pBt->usableSize - 12 + leafCorrection;
57517   for(subtotal=k=i=0; i<nCell; i++){
57518     assert( i<nMaxCells );
57519     subtotal += szCell[i] + 2;
57520     if( subtotal > usableSpace ){
57521       szNew[k] = subtotal - szCell[i];
57522       cntNew[k] = i;
57523       if( leafData ){ i--; }
57524       subtotal = 0;
57525       k++;
57526       if( k>NB+1 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
57527     }
57528   }
57529   szNew[k] = subtotal;
57530   cntNew[k] = nCell;
57531   k++;
57532 
57533   /*
57534   ** The packing computed by the previous block is biased toward the siblings
57535   ** on the left side.  The left siblings are always nearly full, while the
57536   ** right-most sibling might be nearly empty.  This block of code attempts
57537   ** to adjust the packing of siblings to get a better balance.
57538   **
57539   ** This adjustment is more than an optimization.  The packing above might
57540   ** be so out of balance as to be illegal.  For example, the right-most
57541   ** sibling might be completely empty.  This adjustment is not optional.
57542   */
57543   for(i=k-1; i>0; i--){
57544     int szRight = szNew[i];  /* Size of sibling on the right */
57545     int szLeft = szNew[i-1]; /* Size of sibling on the left */
57546     int r;              /* Index of right-most cell in left sibling */
57547     int d;              /* Index of first cell to the left of right sibling */
57548 
57549     r = cntNew[i-1] - 1;
57550     d = r + 1 - leafData;
57551     assert( d<nMaxCells );
57552     assert( r<nMaxCells );
57553     while( szRight==0
57554        || (!bBulk && szRight+szCell[d]+2<=szLeft-(szCell[r]+2))
57555     ){
57556       szRight += szCell[d] + 2;
57557       szLeft -= szCell[r] + 2;
57558       cntNew[i-1]--;
57559       r = cntNew[i-1] - 1;
57560       d = r + 1 - leafData;
57561     }
57562     szNew[i] = szRight;
57563     szNew[i-1] = szLeft;
57564   }
57565 
57566   /* Either we found one or more cells (cntnew[0])>0) or pPage is
57567   ** a virtual root page.  A virtual root page is when the real root
57568   ** page is page 1 and we are the only child of that page.
57569   **
57570   ** UPDATE:  The assert() below is not necessarily true if the database
57571   ** file is corrupt.  The corruption will be detected and reported later
57572   ** in this procedure so there is no need to act upon it now.
57573   */
57574 #if 0
57575   assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
57576 #endif
57577 
57578   TRACE(("BALANCE: old: %d %d %d  ",
57579     apOld[0]->pgno,
57580     nOld>=2 ? apOld[1]->pgno : 0,
57581     nOld>=3 ? apOld[2]->pgno : 0
57582   ));
57583 
57584   /*
57585   ** Allocate k new pages.  Reuse old pages where possible.
57586   */
57587   if( apOld[0]->pgno<=1 ){
57588     rc = SQLITE_CORRUPT_BKPT;
57589     goto balance_cleanup;
57590   }
57591   pageFlags = apOld[0]->aData[0];
57592   for(i=0; i<k; i++){
57593     MemPage *pNew;
57594     if( i<nOld ){
57595       pNew = apNew[i] = apOld[i];
57596       apOld[i] = 0;
57597       rc = sqlite3PagerWrite(pNew->pDbPage);
57598       nNew++;
57599       if( rc ) goto balance_cleanup;
57600     }else{
57601       assert( i>0 );
57602       rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
57603       if( rc ) goto balance_cleanup;
57604       apNew[i] = pNew;
57605       nNew++;
57606 
57607       /* Set the pointer-map entry for the new sibling page. */
57608       if( ISAUTOVACUUM ){
57609         ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
57610         if( rc!=SQLITE_OK ){
57611           goto balance_cleanup;
57612         }
57613       }
57614     }
57615   }
57616 
57617   /* Free any old pages that were not reused as new pages.
57618   */
57619   while( i<nOld ){
57620     freePage(apOld[i], &rc);
57621     if( rc ) goto balance_cleanup;
57622     releasePage(apOld[i]);
57623     apOld[i] = 0;
57624     i++;
57625   }
57626 
57627   /*
57628   ** Put the new pages in accending order.  This helps to
57629   ** keep entries in the disk file in order so that a scan
57630   ** of the table is a linear scan through the file.  That
57631   ** in turn helps the operating system to deliver pages
57632   ** from the disk more rapidly.
57633   **
57634   ** An O(n^2) insertion sort algorithm is used, but since
57635   ** n is never more than NB (a small constant), that should
57636   ** not be a problem.
57637   **
57638   ** When NB==3, this one optimization makes the database
57639   ** about 25% faster for large insertions and deletions.
57640   */
57641   for(i=0; i<k-1; i++){
57642     int minV = apNew[i]->pgno;
57643     int minI = i;
57644     for(j=i+1; j<k; j++){
57645       if( apNew[j]->pgno<(unsigned)minV ){
57646         minI = j;
57647         minV = apNew[j]->pgno;
57648       }
57649     }
57650     if( minI>i ){
57651       MemPage *pT;
57652       pT = apNew[i];
57653       apNew[i] = apNew[minI];
57654       apNew[minI] = pT;
57655     }
57656   }
57657   TRACE(("new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
57658     apNew[0]->pgno, szNew[0],
57659     nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
57660     nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
57661     nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
57662     nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0));
57663 
57664   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
57665   put4byte(pRight, apNew[nNew-1]->pgno);
57666 
57667   /*
57668   ** Evenly distribute the data in apCell[] across the new pages.
57669   ** Insert divider cells into pParent as necessary.
57670   */
57671   j = 0;
57672   for(i=0; i<nNew; i++){
57673     /* Assemble the new sibling page. */
57674     MemPage *pNew = apNew[i];
57675     assert( j<nMaxCells );
57676     zeroPage(pNew, pageFlags);
57677     assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
57678     assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
57679     assert( pNew->nOverflow==0 );
57680 
57681     j = cntNew[i];
57682 
57683     /* If the sibling page assembled above was not the right-most sibling,
57684     ** insert a divider cell into the parent page.
57685     */
57686     assert( i<nNew-1 || j==nCell );
57687     if( j<nCell ){
57688       u8 *pCell;
57689       u8 *pTemp;
57690       int sz;
57691 
57692       assert( j<nMaxCells );
57693       pCell = apCell[j];
57694       sz = szCell[j] + leafCorrection;
57695       pTemp = &aOvflSpace[iOvflSpace];
57696       if( !pNew->leaf ){
57697         memcpy(&pNew->aData[8], pCell, 4);
57698       }else if( leafData ){
57699         /* If the tree is a leaf-data tree, and the siblings are leaves,
57700         ** then there is no divider cell in apCell[]. Instead, the divider
57701         ** cell consists of the integer key for the right-most cell of
57702         ** the sibling-page assembled above only.
57703         */
57704         CellInfo info;
57705         j--;
57706         btreeParseCellPtr(pNew, apCell[j], &info);
57707         pCell = pTemp;
57708         sz = 4 + putVarint(&pCell[4], info.nKey);
57709         pTemp = 0;
57710       }else{
57711         pCell -= 4;
57712         /* Obscure case for non-leaf-data trees: If the cell at pCell was
57713         ** previously stored on a leaf node, and its reported size was 4
57714         ** bytes, then it may actually be smaller than this
57715         ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
57716         ** any cell). But it is important to pass the correct size to
57717         ** insertCell(), so reparse the cell now.
57718         **
57719         ** Note that this can never happen in an SQLite data file, as all
57720         ** cells are at least 4 bytes. It only happens in b-trees used
57721         ** to evaluate "IN (SELECT ...)" and similar clauses.
57722         */
57723         if( szCell[j]==4 ){
57724           assert(leafCorrection==4);
57725           sz = cellSizePtr(pParent, pCell);
57726         }
57727       }
57728       iOvflSpace += sz;
57729       assert( sz<=pBt->maxLocal+23 );
57730       assert( iOvflSpace <= (int)pBt->pageSize );
57731       insertCell(pParent, nxDiv, pCell, sz, pTemp, pNew->pgno, &rc);
57732       if( rc!=SQLITE_OK ) goto balance_cleanup;
57733       assert( sqlite3PagerIswriteable(pParent->pDbPage) );
57734 
57735       j++;
57736       nxDiv++;
57737     }
57738   }
57739   assert( j==nCell );
57740   assert( nOld>0 );
57741   assert( nNew>0 );
57742   if( (pageFlags & PTF_LEAF)==0 ){
57743     u8 *zChild = &apCopy[nOld-1]->aData[8];
57744     memcpy(&apNew[nNew-1]->aData[8], zChild, 4);
57745   }
57746 
57747   if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
57748     /* The root page of the b-tree now contains no cells. The only sibling
57749     ** page is the right-child of the parent. Copy the contents of the
57750     ** child page into the parent, decreasing the overall height of the
57751     ** b-tree structure by one. This is described as the "balance-shallower"
57752     ** sub-algorithm in some documentation.
57753     **
57754     ** If this is an auto-vacuum database, the call to copyNodeContent()
57755     ** sets all pointer-map entries corresponding to database image pages
57756     ** for which the pointer is stored within the content being copied.
57757     **
57758     ** The second assert below verifies that the child page is defragmented
57759     ** (it must be, as it was just reconstructed using assemblePage()). This
57760     ** is important if the parent page happens to be page 1 of the database
57761     ** image.  */
57762     assert( nNew==1 );
57763     assert( apNew[0]->nFree ==
57764         (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
57765     );
57766     copyNodeContent(apNew[0], pParent, &rc);
57767     freePage(apNew[0], &rc);
57768   }else if( ISAUTOVACUUM ){
57769     /* Fix the pointer-map entries for all the cells that were shifted around.
57770     ** There are several different types of pointer-map entries that need to
57771     ** be dealt with by this routine. Some of these have been set already, but
57772     ** many have not. The following is a summary:
57773     **
57774     **   1) The entries associated with new sibling pages that were not
57775     **      siblings when this function was called. These have already
57776     **      been set. We don't need to worry about old siblings that were
57777     **      moved to the free-list - the freePage() code has taken care
57778     **      of those.
57779     **
57780     **   2) The pointer-map entries associated with the first overflow
57781     **      page in any overflow chains used by new divider cells. These
57782     **      have also already been taken care of by the insertCell() code.
57783     **
57784     **   3) If the sibling pages are not leaves, then the child pages of
57785     **      cells stored on the sibling pages may need to be updated.
57786     **
57787     **   4) If the sibling pages are not internal intkey nodes, then any
57788     **      overflow pages used by these cells may need to be updated
57789     **      (internal intkey nodes never contain pointers to overflow pages).
57790     **
57791     **   5) If the sibling pages are not leaves, then the pointer-map
57792     **      entries for the right-child pages of each sibling may need
57793     **      to be updated.
57794     **
57795     ** Cases 1 and 2 are dealt with above by other code. The next
57796     ** block deals with cases 3 and 4 and the one after that, case 5. Since
57797     ** setting a pointer map entry is a relatively expensive operation, this
57798     ** code only sets pointer map entries for child or overflow pages that have
57799     ** actually moved between pages.  */
57800     MemPage *pNew = apNew[0];
57801     MemPage *pOld = apCopy[0];
57802     int nOverflow = pOld->nOverflow;
57803     int iNextOld = pOld->nCell + nOverflow;
57804     int iOverflow = (nOverflow ? pOld->aiOvfl[0] : -1);
57805     j = 0;                             /* Current 'old' sibling page */
57806     k = 0;                             /* Current 'new' sibling page */
57807     for(i=0; i<nCell; i++){
57808       int isDivider = 0;
57809       while( i==iNextOld ){
57810         /* Cell i is the cell immediately following the last cell on old
57811         ** sibling page j. If the siblings are not leaf pages of an
57812         ** intkey b-tree, then cell i was a divider cell. */
57813         assert( j+1 < ArraySize(apCopy) );
57814         assert( j+1 < nOld );
57815         pOld = apCopy[++j];
57816         iNextOld = i + !leafData + pOld->nCell + pOld->nOverflow;
57817         if( pOld->nOverflow ){
57818           nOverflow = pOld->nOverflow;
57819           iOverflow = i + !leafData + pOld->aiOvfl[0];
57820         }
57821         isDivider = !leafData;
57822       }
57823 
57824       assert(nOverflow>0 || iOverflow<i );
57825       assert(nOverflow<2 || pOld->aiOvfl[0]==pOld->aiOvfl[1]-1);
57826       assert(nOverflow<3 || pOld->aiOvfl[1]==pOld->aiOvfl[2]-1);
57827       if( i==iOverflow ){
57828         isDivider = 1;
57829         if( (--nOverflow)>0 ){
57830           iOverflow++;
57831         }
57832       }
57833 
57834       if( i==cntNew[k] ){
57835         /* Cell i is the cell immediately following the last cell on new
57836         ** sibling page k. If the siblings are not leaf pages of an
57837         ** intkey b-tree, then cell i is a divider cell.  */
57838         pNew = apNew[++k];
57839         if( !leafData ) continue;
57840       }
57841       assert( j<nOld );
57842       assert( k<nNew );
57843 
57844       /* If the cell was originally divider cell (and is not now) or
57845       ** an overflow cell, or if the cell was located on a different sibling
57846       ** page before the balancing, then the pointer map entries associated
57847       ** with any child or overflow pages need to be updated.  */
57848       if( isDivider || pOld->pgno!=pNew->pgno ){
57849         if( !leafCorrection ){
57850           ptrmapPut(pBt, get4byte(apCell[i]), PTRMAP_BTREE, pNew->pgno, &rc);
57851         }
57852         if( szCell[i]>pNew->minLocal ){
57853           ptrmapPutOvflPtr(pNew, apCell[i], &rc);
57854         }
57855       }
57856     }
57857 
57858     if( !leafCorrection ){
57859       for(i=0; i<nNew; i++){
57860         u32 key = get4byte(&apNew[i]->aData[8]);
57861         ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
57862       }
57863     }
57864 
57865 #if 0
57866     /* The ptrmapCheckPages() contains assert() statements that verify that
57867     ** all pointer map pages are set correctly. This is helpful while
57868     ** debugging. This is usually disabled because a corrupt database may
57869     ** cause an assert() statement to fail.  */
57870     ptrmapCheckPages(apNew, nNew);
57871     ptrmapCheckPages(&pParent, 1);
57872 #endif
57873   }
57874 
57875   assert( pParent->isInit );
57876   TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
57877           nOld, nNew, nCell));
57878 
57879   /*
57880   ** Cleanup before returning.
57881   */
57882 balance_cleanup:
57883   sqlite3ScratchFree(apCell);
57884   for(i=0; i<nOld; i++){
57885     releasePage(apOld[i]);
57886   }
57887   for(i=0; i<nNew; i++){
57888     releasePage(apNew[i]);
57889   }
57890 
57891   return rc;
57892 }
57893 #if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
57894 #pragma optimize("", on)
57895 #endif
57896 
57897 
57898 /*
57899 ** This function is called when the root page of a b-tree structure is
57900 ** overfull (has one or more overflow pages).
57901 **
57902 ** A new child page is allocated and the contents of the current root
57903 ** page, including overflow cells, are copied into the child. The root
57904 ** page is then overwritten to make it an empty page with the right-child
57905 ** pointer pointing to the new page.
57906 **
57907 ** Before returning, all pointer-map entries corresponding to pages
57908 ** that the new child-page now contains pointers to are updated. The
57909 ** entry corresponding to the new right-child pointer of the root
57910 ** page is also updated.
57911 **
57912 ** If successful, *ppChild is set to contain a reference to the child
57913 ** page and SQLITE_OK is returned. In this case the caller is required
57914 ** to call releasePage() on *ppChild exactly once. If an error occurs,
57915 ** an error code is returned and *ppChild is set to 0.
57916 */
57917 static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
57918   int rc;                        /* Return value from subprocedures */
57919   MemPage *pChild = 0;           /* Pointer to a new child page */
57920   Pgno pgnoChild = 0;            /* Page number of the new child page */
57921   BtShared *pBt = pRoot->pBt;    /* The BTree */
57922 
57923   assert( pRoot->nOverflow>0 );
57924   assert( sqlite3_mutex_held(pBt->mutex) );
57925 
57926   /* Make pRoot, the root page of the b-tree, writable. Allocate a new
57927   ** page that will become the new right-child of pPage. Copy the contents
57928   ** of the node stored on pRoot into the new child page.
57929   */
57930   rc = sqlite3PagerWrite(pRoot->pDbPage);
57931   if( rc==SQLITE_OK ){
57932     rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
57933     copyNodeContent(pRoot, pChild, &rc);
57934     if( ISAUTOVACUUM ){
57935       ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
57936     }
57937   }
57938   if( rc ){
57939     *ppChild = 0;
57940     releasePage(pChild);
57941     return rc;
57942   }
57943   assert( sqlite3PagerIswriteable(pChild->pDbPage) );
57944   assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
57945   assert( pChild->nCell==pRoot->nCell );
57946 
57947   TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
57948 
57949   /* Copy the overflow cells from pRoot to pChild */
57950   memcpy(pChild->aiOvfl, pRoot->aiOvfl,
57951          pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
57952   memcpy(pChild->apOvfl, pRoot->apOvfl,
57953          pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
57954   pChild->nOverflow = pRoot->nOverflow;
57955 
57956   /* Zero the contents of pRoot. Then install pChild as the right-child. */
57957   zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
57958   put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
57959 
57960   *ppChild = pChild;
57961   return SQLITE_OK;
57962 }
57963 
57964 /*
57965 ** The page that pCur currently points to has just been modified in
57966 ** some way. This function figures out if this modification means the
57967 ** tree needs to be balanced, and if so calls the appropriate balancing
57968 ** routine. Balancing routines are:
57969 **
57970 **   balance_quick()
57971 **   balance_deeper()
57972 **   balance_nonroot()
57973 */
57974 static int balance(BtCursor *pCur){
57975   int rc = SQLITE_OK;
57976   const int nMin = pCur->pBt->usableSize * 2 / 3;
57977   u8 aBalanceQuickSpace[13];
57978   u8 *pFree = 0;
57979 
57980   TESTONLY( int balance_quick_called = 0 );
57981   TESTONLY( int balance_deeper_called = 0 );
57982 
57983   do {
57984     int iPage = pCur->iPage;
57985     MemPage *pPage = pCur->apPage[iPage];
57986 
57987     if( iPage==0 ){
57988       if( pPage->nOverflow ){
57989         /* The root page of the b-tree is overfull. In this case call the
57990         ** balance_deeper() function to create a new child for the root-page
57991         ** and copy the current contents of the root-page to it. The
57992         ** next iteration of the do-loop will balance the child page.
57993         */
57994         assert( (balance_deeper_called++)==0 );
57995         rc = balance_deeper(pPage, &pCur->apPage[1]);
57996         if( rc==SQLITE_OK ){
57997           pCur->iPage = 1;
57998           pCur->aiIdx[0] = 0;
57999           pCur->aiIdx[1] = 0;
58000           assert( pCur->apPage[1]->nOverflow );
58001         }
58002       }else{
58003         break;
58004       }
58005     }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
58006       break;
58007     }else{
58008       MemPage * const pParent = pCur->apPage[iPage-1];
58009       int const iIdx = pCur->aiIdx[iPage-1];
58010 
58011       rc = sqlite3PagerWrite(pParent->pDbPage);
58012       if( rc==SQLITE_OK ){
58013 #ifndef SQLITE_OMIT_QUICKBALANCE
58014         if( pPage->hasData
58015          && pPage->nOverflow==1
58016          && pPage->aiOvfl[0]==pPage->nCell
58017          && pParent->pgno!=1
58018          && pParent->nCell==iIdx
58019         ){
58020           /* Call balance_quick() to create a new sibling of pPage on which
58021           ** to store the overflow cell. balance_quick() inserts a new cell
58022           ** into pParent, which may cause pParent overflow. If this
58023           ** happens, the next interation of the do-loop will balance pParent
58024           ** use either balance_nonroot() or balance_deeper(). Until this
58025           ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
58026           ** buffer.
58027           **
58028           ** The purpose of the following assert() is to check that only a
58029           ** single call to balance_quick() is made for each call to this
58030           ** function. If this were not verified, a subtle bug involving reuse
58031           ** of the aBalanceQuickSpace[] might sneak in.
58032           */
58033           assert( (balance_quick_called++)==0 );
58034           rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
58035         }else
58036 #endif
58037         {
58038           /* In this case, call balance_nonroot() to redistribute cells
58039           ** between pPage and up to 2 of its sibling pages. This involves
58040           ** modifying the contents of pParent, which may cause pParent to
58041           ** become overfull or underfull. The next iteration of the do-loop
58042           ** will balance the parent page to correct this.
58043           **
58044           ** If the parent page becomes overfull, the overflow cell or cells
58045           ** are stored in the pSpace buffer allocated immediately below.
58046           ** A subsequent iteration of the do-loop will deal with this by
58047           ** calling balance_nonroot() (balance_deeper() may be called first,
58048           ** but it doesn't deal with overflow cells - just moves them to a
58049           ** different page). Once this subsequent call to balance_nonroot()
58050           ** has completed, it is safe to release the pSpace buffer used by
58051           ** the previous call, as the overflow cell data will have been
58052           ** copied either into the body of a database page or into the new
58053           ** pSpace buffer passed to the latter call to balance_nonroot().
58054           */
58055           u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
58056           rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1, pCur->hints);
58057           if( pFree ){
58058             /* If pFree is not NULL, it points to the pSpace buffer used
58059             ** by a previous call to balance_nonroot(). Its contents are
58060             ** now stored either on real database pages or within the
58061             ** new pSpace buffer, so it may be safely freed here. */
58062             sqlite3PageFree(pFree);
58063           }
58064 
58065           /* The pSpace buffer will be freed after the next call to
58066           ** balance_nonroot(), or just before this function returns, whichever
58067           ** comes first. */
58068           pFree = pSpace;
58069         }
58070       }
58071 
58072       pPage->nOverflow = 0;
58073 
58074       /* The next iteration of the do-loop balances the parent page. */
58075       releasePage(pPage);
58076       pCur->iPage--;
58077     }
58078   }while( rc==SQLITE_OK );
58079 
58080   if( pFree ){
58081     sqlite3PageFree(pFree);
58082   }
58083   return rc;
58084 }
58085 
58086 
58087 /*
58088 ** Insert a new record into the BTree.  The key is given by (pKey,nKey)
58089 ** and the data is given by (pData,nData).  The cursor is used only to
58090 ** define what table the record should be inserted into.  The cursor
58091 ** is left pointing at a random location.
58092 **
58093 ** For an INTKEY table, only the nKey value of the key is used.  pKey is
58094 ** ignored.  For a ZERODATA table, the pData and nData are both ignored.
58095 **
58096 ** If the seekResult parameter is non-zero, then a successful call to
58097 ** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
58098 ** been performed. seekResult is the search result returned (a negative
58099 ** number if pCur points at an entry that is smaller than (pKey, nKey), or
58100 ** a positive value if pCur points at an etry that is larger than
58101 ** (pKey, nKey)).
58102 **
58103 ** If the seekResult parameter is non-zero, then the caller guarantees that
58104 ** cursor pCur is pointing at the existing copy of a row that is to be
58105 ** overwritten.  If the seekResult parameter is 0, then cursor pCur may
58106 ** point to any entry or to no entry at all and so this function has to seek
58107 ** the cursor before the new key can be inserted.
58108 */
58109 SQLITE_PRIVATE int sqlite3BtreeInsert(
58110   BtCursor *pCur,                /* Insert data into the table of this cursor */
58111   const void *pKey, i64 nKey,    /* The key of the new record */
58112   const void *pData, int nData,  /* The data of the new record */
58113   int nZero,                     /* Number of extra 0 bytes to append to data */
58114   int appendBias,                /* True if this is likely an append */
58115   int seekResult                 /* Result of prior MovetoUnpacked() call */
58116 ){
58117   int rc;
58118   int loc = seekResult;          /* -1: before desired location  +1: after */
58119   int szNew = 0;
58120   int idx;
58121   MemPage *pPage;
58122   Btree *p = pCur->pBtree;
58123   BtShared *pBt = p->pBt;
58124   unsigned char *oldCell;
58125   unsigned char *newCell = 0;
58126 
58127   if( pCur->eState==CURSOR_FAULT ){
58128     assert( pCur->skipNext!=SQLITE_OK );
58129     return pCur->skipNext;
58130   }
58131 
58132   assert( cursorHoldsMutex(pCur) );
58133   assert( (pCur->curFlags & BTCF_WriteFlag)!=0 && pBt->inTransaction==TRANS_WRITE
58134               && (pBt->btsFlags & BTS_READ_ONLY)==0 );
58135   assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
58136 
58137   /* Assert that the caller has been consistent. If this cursor was opened
58138   ** expecting an index b-tree, then the caller should be inserting blob
58139   ** keys with no associated data. If the cursor was opened expecting an
58140   ** intkey table, the caller should be inserting integer keys with a
58141   ** blob of associated data.  */
58142   assert( (pKey==0)==(pCur->pKeyInfo==0) );
58143 
58144   /* Save the positions of any other cursors open on this table.
58145   **
58146   ** In some cases, the call to btreeMoveto() below is a no-op. For
58147   ** example, when inserting data into a table with auto-generated integer
58148   ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
58149   ** integer key to use. It then calls this function to actually insert the
58150   ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
58151   ** that the cursor is already where it needs to be and returns without
58152   ** doing any work. To avoid thwarting these optimizations, it is important
58153   ** not to clear the cursor here.
58154   */
58155   rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
58156   if( rc ) return rc;
58157 
58158   if( pCur->pKeyInfo==0 ){
58159     /* If this is an insert into a table b-tree, invalidate any incrblob
58160     ** cursors open on the row being replaced */
58161     invalidateIncrblobCursors(p, nKey, 0);
58162 
58163     /* If the cursor is currently on the last row and we are appending a
58164     ** new row onto the end, set the "loc" to avoid an unnecessary btreeMoveto()
58165     ** call */
58166     if( (pCur->curFlags&BTCF_ValidNKey)!=0 && nKey>0 && pCur->info.nKey==nKey-1 ){
58167       loc = -1;
58168     }
58169   }
58170 
58171   if( !loc ){
58172     rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
58173     if( rc ) return rc;
58174   }
58175   assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
58176 
58177   pPage = pCur->apPage[pCur->iPage];
58178   assert( pPage->intKey || nKey>=0 );
58179   assert( pPage->leaf || !pPage->intKey );
58180 
58181   TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
58182           pCur->pgnoRoot, nKey, nData, pPage->pgno,
58183           loc==0 ? "overwrite" : "new entry"));
58184   assert( pPage->isInit );
58185   allocateTempSpace(pBt);
58186   newCell = pBt->pTmpSpace;
58187   if( newCell==0 ) return SQLITE_NOMEM;
58188   rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
58189   if( rc ) goto end_insert;
58190   assert( szNew==cellSizePtr(pPage, newCell) );
58191   assert( szNew <= MX_CELL_SIZE(pBt) );
58192   idx = pCur->aiIdx[pCur->iPage];
58193   if( loc==0 ){
58194     u16 szOld;
58195     assert( idx<pPage->nCell );
58196     rc = sqlite3PagerWrite(pPage->pDbPage);
58197     if( rc ){
58198       goto end_insert;
58199     }
58200     oldCell = findCell(pPage, idx);
58201     if( !pPage->leaf ){
58202       memcpy(newCell, oldCell, 4);
58203     }
58204     szOld = cellSizePtr(pPage, oldCell);
58205     rc = clearCell(pPage, oldCell);
58206     dropCell(pPage, idx, szOld, &rc);
58207     if( rc ) goto end_insert;
58208   }else if( loc<0 && pPage->nCell>0 ){
58209     assert( pPage->leaf );
58210     idx = ++pCur->aiIdx[pCur->iPage];
58211   }else{
58212     assert( pPage->leaf );
58213   }
58214   insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
58215   assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
58216 
58217   /* If no error has occurred and pPage has an overflow cell, call balance()
58218   ** to redistribute the cells within the tree. Since balance() may move
58219   ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
58220   ** variables.
58221   **
58222   ** Previous versions of SQLite called moveToRoot() to move the cursor
58223   ** back to the root page as balance() used to invalidate the contents
58224   ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
58225   ** set the cursor state to "invalid". This makes common insert operations
58226   ** slightly faster.
58227   **
58228   ** There is a subtle but important optimization here too. When inserting
58229   ** multiple records into an intkey b-tree using a single cursor (as can
58230   ** happen while processing an "INSERT INTO ... SELECT" statement), it
58231   ** is advantageous to leave the cursor pointing to the last entry in
58232   ** the b-tree if possible. If the cursor is left pointing to the last
58233   ** entry in the table, and the next row inserted has an integer key
58234   ** larger than the largest existing key, it is possible to insert the
58235   ** row without seeking the cursor. This can be a big performance boost.
58236   */
58237   pCur->info.nSize = 0;
58238   if( rc==SQLITE_OK && pPage->nOverflow ){
58239     pCur->curFlags &= ~(BTCF_ValidNKey);
58240     rc = balance(pCur);
58241 
58242     /* Must make sure nOverflow is reset to zero even if the balance()
58243     ** fails. Internal data structure corruption will result otherwise.
58244     ** Also, set the cursor state to invalid. This stops saveCursorPosition()
58245     ** from trying to save the current position of the cursor.  */
58246     pCur->apPage[pCur->iPage]->nOverflow = 0;
58247     pCur->eState = CURSOR_INVALID;
58248   }
58249   assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
58250 
58251 end_insert:
58252   return rc;
58253 }
58254 
58255 /*
58256 ** Delete the entry that the cursor is pointing to.  The cursor
58257 ** is left pointing at a arbitrary location.
58258 */
58259 SQLITE_PRIVATE int sqlite3BtreeDelete(BtCursor *pCur){
58260   Btree *p = pCur->pBtree;
58261   BtShared *pBt = p->pBt;
58262   int rc;                              /* Return code */
58263   MemPage *pPage;                      /* Page to delete cell from */
58264   unsigned char *pCell;                /* Pointer to cell to delete */
58265   int iCellIdx;                        /* Index of cell to delete */
58266   int iCellDepth;                      /* Depth of node containing pCell */
58267 
58268   assert( cursorHoldsMutex(pCur) );
58269   assert( pBt->inTransaction==TRANS_WRITE );
58270   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
58271   assert( pCur->curFlags & BTCF_WriteFlag );
58272   assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
58273   assert( !hasReadConflicts(p, pCur->pgnoRoot) );
58274 
58275   if( NEVER(pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell)
58276    || NEVER(pCur->eState!=CURSOR_VALID)
58277   ){
58278     return SQLITE_ERROR;  /* Something has gone awry. */
58279   }
58280 
58281   iCellDepth = pCur->iPage;
58282   iCellIdx = pCur->aiIdx[iCellDepth];
58283   pPage = pCur->apPage[iCellDepth];
58284   pCell = findCell(pPage, iCellIdx);
58285 
58286   /* If the page containing the entry to delete is not a leaf page, move
58287   ** the cursor to the largest entry in the tree that is smaller than
58288   ** the entry being deleted. This cell will replace the cell being deleted
58289   ** from the internal node. The 'previous' entry is used for this instead
58290   ** of the 'next' entry, as the previous entry is always a part of the
58291   ** sub-tree headed by the child page of the cell being deleted. This makes
58292   ** balancing the tree following the delete operation easier.  */
58293   if( !pPage->leaf ){
58294     int notUsed = 0;
58295     rc = sqlite3BtreePrevious(pCur, &notUsed);
58296     if( rc ) return rc;
58297   }
58298 
58299   /* Save the positions of any other cursors open on this table before
58300   ** making any modifications. Make the page containing the entry to be
58301   ** deleted writable. Then free any overflow pages associated with the
58302   ** entry and finally remove the cell itself from within the page.
58303   */
58304   rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
58305   if( rc ) return rc;
58306 
58307   /* If this is a delete operation to remove a row from a table b-tree,
58308   ** invalidate any incrblob cursors open on the row being deleted.  */
58309   if( pCur->pKeyInfo==0 ){
58310     invalidateIncrblobCursors(p, pCur->info.nKey, 0);
58311   }
58312 
58313   rc = sqlite3PagerWrite(pPage->pDbPage);
58314   if( rc ) return rc;
58315   rc = clearCell(pPage, pCell);
58316   dropCell(pPage, iCellIdx, cellSizePtr(pPage, pCell), &rc);
58317   if( rc ) return rc;
58318 
58319   /* If the cell deleted was not located on a leaf page, then the cursor
58320   ** is currently pointing to the largest entry in the sub-tree headed
58321   ** by the child-page of the cell that was just deleted from an internal
58322   ** node. The cell from the leaf node needs to be moved to the internal
58323   ** node to replace the deleted cell.  */
58324   if( !pPage->leaf ){
58325     MemPage *pLeaf = pCur->apPage[pCur->iPage];
58326     int nCell;
58327     Pgno n = pCur->apPage[iCellDepth+1]->pgno;
58328     unsigned char *pTmp;
58329 
58330     pCell = findCell(pLeaf, pLeaf->nCell-1);
58331     nCell = cellSizePtr(pLeaf, pCell);
58332     assert( MX_CELL_SIZE(pBt) >= nCell );
58333 
58334     allocateTempSpace(pBt);
58335     pTmp = pBt->pTmpSpace;
58336 
58337     rc = sqlite3PagerWrite(pLeaf->pDbPage);
58338     insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
58339     dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
58340     if( rc ) return rc;
58341   }
58342 
58343   /* Balance the tree. If the entry deleted was located on a leaf page,
58344   ** then the cursor still points to that page. In this case the first
58345   ** call to balance() repairs the tree, and the if(...) condition is
58346   ** never true.
58347   **
58348   ** Otherwise, if the entry deleted was on an internal node page, then
58349   ** pCur is pointing to the leaf page from which a cell was removed to
58350   ** replace the cell deleted from the internal node. This is slightly
58351   ** tricky as the leaf node may be underfull, and the internal node may
58352   ** be either under or overfull. In this case run the balancing algorithm
58353   ** on the leaf node first. If the balance proceeds far enough up the
58354   ** tree that we can be sure that any problem in the internal node has
58355   ** been corrected, so be it. Otherwise, after balancing the leaf node,
58356   ** walk the cursor up the tree to the internal node and balance it as
58357   ** well.  */
58358   rc = balance(pCur);
58359   if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
58360     while( pCur->iPage>iCellDepth ){
58361       releasePage(pCur->apPage[pCur->iPage--]);
58362     }
58363     rc = balance(pCur);
58364   }
58365 
58366   if( rc==SQLITE_OK ){
58367     moveToRoot(pCur);
58368   }
58369   return rc;
58370 }
58371 
58372 /*
58373 ** Create a new BTree table.  Write into *piTable the page
58374 ** number for the root page of the new table.
58375 **
58376 ** The type of type is determined by the flags parameter.  Only the
58377 ** following values of flags are currently in use.  Other values for
58378 ** flags might not work:
58379 **
58380 **     BTREE_INTKEY|BTREE_LEAFDATA     Used for SQL tables with rowid keys
58381 **     BTREE_ZERODATA                  Used for SQL indices
58382 */
58383 static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
58384   BtShared *pBt = p->pBt;
58385   MemPage *pRoot;
58386   Pgno pgnoRoot;
58387   int rc;
58388   int ptfFlags;          /* Page-type flage for the root page of new table */
58389 
58390   assert( sqlite3BtreeHoldsMutex(p) );
58391   assert( pBt->inTransaction==TRANS_WRITE );
58392   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
58393 
58394 #ifdef SQLITE_OMIT_AUTOVACUUM
58395   rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
58396   if( rc ){
58397     return rc;
58398   }
58399 #else
58400   if( pBt->autoVacuum ){
58401     Pgno pgnoMove;      /* Move a page here to make room for the root-page */
58402     MemPage *pPageMove; /* The page to move to. */
58403 
58404     /* Creating a new table may probably require moving an existing database
58405     ** to make room for the new tables root page. In case this page turns
58406     ** out to be an overflow page, delete all overflow page-map caches
58407     ** held by open cursors.
58408     */
58409     invalidateAllOverflowCache(pBt);
58410 
58411     /* Read the value of meta[3] from the database to determine where the
58412     ** root page of the new table should go. meta[3] is the largest root-page
58413     ** created so far, so the new root-page is (meta[3]+1).
58414     */
58415     sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
58416     pgnoRoot++;
58417 
58418     /* The new root-page may not be allocated on a pointer-map page, or the
58419     ** PENDING_BYTE page.
58420     */
58421     while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
58422         pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
58423       pgnoRoot++;
58424     }
58425     assert( pgnoRoot>=3 );
58426 
58427     /* Allocate a page. The page that currently resides at pgnoRoot will
58428     ** be moved to the allocated page (unless the allocated page happens
58429     ** to reside at pgnoRoot).
58430     */
58431     rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
58432     if( rc!=SQLITE_OK ){
58433       return rc;
58434     }
58435 
58436     if( pgnoMove!=pgnoRoot ){
58437       /* pgnoRoot is the page that will be used for the root-page of
58438       ** the new table (assuming an error did not occur). But we were
58439       ** allocated pgnoMove. If required (i.e. if it was not allocated
58440       ** by extending the file), the current page at position pgnoMove
58441       ** is already journaled.
58442       */
58443       u8 eType = 0;
58444       Pgno iPtrPage = 0;
58445 
58446       /* Save the positions of any open cursors. This is required in
58447       ** case they are holding a reference to an xFetch reference
58448       ** corresponding to page pgnoRoot.  */
58449       rc = saveAllCursors(pBt, 0, 0);
58450       releasePage(pPageMove);
58451       if( rc!=SQLITE_OK ){
58452         return rc;
58453       }
58454 
58455       /* Move the page currently at pgnoRoot to pgnoMove. */
58456       rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
58457       if( rc!=SQLITE_OK ){
58458         return rc;
58459       }
58460       rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
58461       if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
58462         rc = SQLITE_CORRUPT_BKPT;
58463       }
58464       if( rc!=SQLITE_OK ){
58465         releasePage(pRoot);
58466         return rc;
58467       }
58468       assert( eType!=PTRMAP_ROOTPAGE );
58469       assert( eType!=PTRMAP_FREEPAGE );
58470       rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
58471       releasePage(pRoot);
58472 
58473       /* Obtain the page at pgnoRoot */
58474       if( rc!=SQLITE_OK ){
58475         return rc;
58476       }
58477       rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
58478       if( rc!=SQLITE_OK ){
58479         return rc;
58480       }
58481       rc = sqlite3PagerWrite(pRoot->pDbPage);
58482       if( rc!=SQLITE_OK ){
58483         releasePage(pRoot);
58484         return rc;
58485       }
58486     }else{
58487       pRoot = pPageMove;
58488     }
58489 
58490     /* Update the pointer-map and meta-data with the new root-page number. */
58491     ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
58492     if( rc ){
58493       releasePage(pRoot);
58494       return rc;
58495     }
58496 
58497     /* When the new root page was allocated, page 1 was made writable in
58498     ** order either to increase the database filesize, or to decrement the
58499     ** freelist count.  Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
58500     */
58501     assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
58502     rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
58503     if( NEVER(rc) ){
58504       releasePage(pRoot);
58505       return rc;
58506     }
58507 
58508   }else{
58509     rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
58510     if( rc ) return rc;
58511   }
58512 #endif
58513   assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
58514   if( createTabFlags & BTREE_INTKEY ){
58515     ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
58516   }else{
58517     ptfFlags = PTF_ZERODATA | PTF_LEAF;
58518   }
58519   zeroPage(pRoot, ptfFlags);
58520   sqlite3PagerUnref(pRoot->pDbPage);
58521   assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
58522   *piTable = (int)pgnoRoot;
58523   return SQLITE_OK;
58524 }
58525 SQLITE_PRIVATE int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
58526   int rc;
58527   sqlite3BtreeEnter(p);
58528   rc = btreeCreateTable(p, piTable, flags);
58529   sqlite3BtreeLeave(p);
58530   return rc;
58531 }
58532 
58533 /*
58534 ** Erase the given database page and all its children.  Return
58535 ** the page to the freelist.
58536 */
58537 static int clearDatabasePage(
58538   BtShared *pBt,           /* The BTree that contains the table */
58539   Pgno pgno,               /* Page number to clear */
58540   int freePageFlag,        /* Deallocate page if true */
58541   int *pnChange            /* Add number of Cells freed to this counter */
58542 ){
58543   MemPage *pPage;
58544   int rc;
58545   unsigned char *pCell;
58546   int i;
58547   int hdr;
58548 
58549   assert( sqlite3_mutex_held(pBt->mutex) );
58550   if( pgno>btreePagecount(pBt) ){
58551     return SQLITE_CORRUPT_BKPT;
58552   }
58553 
58554   rc = getAndInitPage(pBt, pgno, &pPage, 0);
58555   if( rc ) return rc;
58556   hdr = pPage->hdrOffset;
58557   for(i=0; i<pPage->nCell; i++){
58558     pCell = findCell(pPage, i);
58559     if( !pPage->leaf ){
58560       rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
58561       if( rc ) goto cleardatabasepage_out;
58562     }
58563     rc = clearCell(pPage, pCell);
58564     if( rc ) goto cleardatabasepage_out;
58565   }
58566   if( !pPage->leaf ){
58567     rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
58568     if( rc ) goto cleardatabasepage_out;
58569   }else if( pnChange ){
58570     assert( pPage->intKey );
58571     *pnChange += pPage->nCell;
58572   }
58573   if( freePageFlag ){
58574     freePage(pPage, &rc);
58575   }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
58576     zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
58577   }
58578 
58579 cleardatabasepage_out:
58580   releasePage(pPage);
58581   return rc;
58582 }
58583 
58584 /*
58585 ** Delete all information from a single table in the database.  iTable is
58586 ** the page number of the root of the table.  After this routine returns,
58587 ** the root page is empty, but still exists.
58588 **
58589 ** This routine will fail with SQLITE_LOCKED if there are any open
58590 ** read cursors on the table.  Open write cursors are moved to the
58591 ** root of the table.
58592 **
58593 ** If pnChange is not NULL, then table iTable must be an intkey table. The
58594 ** integer value pointed to by pnChange is incremented by the number of
58595 ** entries in the table.
58596 */
58597 SQLITE_PRIVATE int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
58598   int rc;
58599   BtShared *pBt = p->pBt;
58600   sqlite3BtreeEnter(p);
58601   assert( p->inTrans==TRANS_WRITE );
58602 
58603   rc = saveAllCursors(pBt, (Pgno)iTable, 0);
58604 
58605   if( SQLITE_OK==rc ){
58606     /* Invalidate all incrblob cursors open on table iTable (assuming iTable
58607     ** is the root of a table b-tree - if it is not, the following call is
58608     ** a no-op).  */
58609     invalidateIncrblobCursors(p, 0, 1);
58610     rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
58611   }
58612   sqlite3BtreeLeave(p);
58613   return rc;
58614 }
58615 
58616 /*
58617 ** Delete all information from the single table that pCur is open on.
58618 **
58619 ** This routine only work for pCur on an ephemeral table.
58620 */
58621 SQLITE_PRIVATE int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
58622   return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
58623 }
58624 
58625 /*
58626 ** Erase all information in a table and add the root of the table to
58627 ** the freelist.  Except, the root of the principle table (the one on
58628 ** page 1) is never added to the freelist.
58629 **
58630 ** This routine will fail with SQLITE_LOCKED if there are any open
58631 ** cursors on the table.
58632 **
58633 ** If AUTOVACUUM is enabled and the page at iTable is not the last
58634 ** root page in the database file, then the last root page
58635 ** in the database file is moved into the slot formerly occupied by
58636 ** iTable and that last slot formerly occupied by the last root page
58637 ** is added to the freelist instead of iTable.  In this say, all
58638 ** root pages are kept at the beginning of the database file, which
58639 ** is necessary for AUTOVACUUM to work right.  *piMoved is set to the
58640 ** page number that used to be the last root page in the file before
58641 ** the move.  If no page gets moved, *piMoved is set to 0.
58642 ** The last root page is recorded in meta[3] and the value of
58643 ** meta[3] is updated by this procedure.
58644 */
58645 static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
58646   int rc;
58647   MemPage *pPage = 0;
58648   BtShared *pBt = p->pBt;
58649 
58650   assert( sqlite3BtreeHoldsMutex(p) );
58651   assert( p->inTrans==TRANS_WRITE );
58652 
58653   /* It is illegal to drop a table if any cursors are open on the
58654   ** database. This is because in auto-vacuum mode the backend may
58655   ** need to move another root-page to fill a gap left by the deleted
58656   ** root page. If an open cursor was using this page a problem would
58657   ** occur.
58658   **
58659   ** This error is caught long before control reaches this point.
58660   */
58661   if( NEVER(pBt->pCursor) ){
58662     sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
58663     return SQLITE_LOCKED_SHAREDCACHE;
58664   }
58665 
58666   rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
58667   if( rc ) return rc;
58668   rc = sqlite3BtreeClearTable(p, iTable, 0);
58669   if( rc ){
58670     releasePage(pPage);
58671     return rc;
58672   }
58673 
58674   *piMoved = 0;
58675 
58676   if( iTable>1 ){
58677 #ifdef SQLITE_OMIT_AUTOVACUUM
58678     freePage(pPage, &rc);
58679     releasePage(pPage);
58680 #else
58681     if( pBt->autoVacuum ){
58682       Pgno maxRootPgno;
58683       sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
58684 
58685       if( iTable==maxRootPgno ){
58686         /* If the table being dropped is the table with the largest root-page
58687         ** number in the database, put the root page on the free list.
58688         */
58689         freePage(pPage, &rc);
58690         releasePage(pPage);
58691         if( rc!=SQLITE_OK ){
58692           return rc;
58693         }
58694       }else{
58695         /* The table being dropped does not have the largest root-page
58696         ** number in the database. So move the page that does into the
58697         ** gap left by the deleted root-page.
58698         */
58699         MemPage *pMove;
58700         releasePage(pPage);
58701         rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
58702         if( rc!=SQLITE_OK ){
58703           return rc;
58704         }
58705         rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
58706         releasePage(pMove);
58707         if( rc!=SQLITE_OK ){
58708           return rc;
58709         }
58710         pMove = 0;
58711         rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
58712         freePage(pMove, &rc);
58713         releasePage(pMove);
58714         if( rc!=SQLITE_OK ){
58715           return rc;
58716         }
58717         *piMoved = maxRootPgno;
58718       }
58719 
58720       /* Set the new 'max-root-page' value in the database header. This
58721       ** is the old value less one, less one more if that happens to
58722       ** be a root-page number, less one again if that is the
58723       ** PENDING_BYTE_PAGE.
58724       */
58725       maxRootPgno--;
58726       while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
58727              || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
58728         maxRootPgno--;
58729       }
58730       assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
58731 
58732       rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
58733     }else{
58734       freePage(pPage, &rc);
58735       releasePage(pPage);
58736     }
58737 #endif
58738   }else{
58739     /* If sqlite3BtreeDropTable was called on page 1.
58740     ** This really never should happen except in a corrupt
58741     ** database.
58742     */
58743     zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
58744     releasePage(pPage);
58745   }
58746   return rc;
58747 }
58748 SQLITE_PRIVATE int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
58749   int rc;
58750   sqlite3BtreeEnter(p);
58751   rc = btreeDropTable(p, iTable, piMoved);
58752   sqlite3BtreeLeave(p);
58753   return rc;
58754 }
58755 
58756 
58757 /*
58758 ** This function may only be called if the b-tree connection already
58759 ** has a read or write transaction open on the database.
58760 **
58761 ** Read the meta-information out of a database file.  Meta[0]
58762 ** is the number of free pages currently in the database.  Meta[1]
58763 ** through meta[15] are available for use by higher layers.  Meta[0]
58764 ** is read-only, the others are read/write.
58765 **
58766 ** The schema layer numbers meta values differently.  At the schema
58767 ** layer (and the SetCookie and ReadCookie opcodes) the number of
58768 ** free pages is not visible.  So Cookie[0] is the same as Meta[1].
58769 */
58770 SQLITE_PRIVATE void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
58771   BtShared *pBt = p->pBt;
58772 
58773   sqlite3BtreeEnter(p);
58774   assert( p->inTrans>TRANS_NONE );
58775   assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
58776   assert( pBt->pPage1 );
58777   assert( idx>=0 && idx<=15 );
58778 
58779   *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
58780 
58781   /* If auto-vacuum is disabled in this build and this is an auto-vacuum
58782   ** database, mark the database as read-only.  */
58783 #ifdef SQLITE_OMIT_AUTOVACUUM
58784   if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
58785     pBt->btsFlags |= BTS_READ_ONLY;
58786   }
58787 #endif
58788 
58789   sqlite3BtreeLeave(p);
58790 }
58791 
58792 /*
58793 ** Write meta-information back into the database.  Meta[0] is
58794 ** read-only and may not be written.
58795 */
58796 SQLITE_PRIVATE int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
58797   BtShared *pBt = p->pBt;
58798   unsigned char *pP1;
58799   int rc;
58800   assert( idx>=1 && idx<=15 );
58801   sqlite3BtreeEnter(p);
58802   assert( p->inTrans==TRANS_WRITE );
58803   assert( pBt->pPage1!=0 );
58804   pP1 = pBt->pPage1->aData;
58805   rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
58806   if( rc==SQLITE_OK ){
58807     put4byte(&pP1[36 + idx*4], iMeta);
58808 #ifndef SQLITE_OMIT_AUTOVACUUM
58809     if( idx==BTREE_INCR_VACUUM ){
58810       assert( pBt->autoVacuum || iMeta==0 );
58811       assert( iMeta==0 || iMeta==1 );
58812       pBt->incrVacuum = (u8)iMeta;
58813     }
58814 #endif
58815   }
58816   sqlite3BtreeLeave(p);
58817   return rc;
58818 }
58819 
58820 #ifndef SQLITE_OMIT_BTREECOUNT
58821 /*
58822 ** The first argument, pCur, is a cursor opened on some b-tree. Count the
58823 ** number of entries in the b-tree and write the result to *pnEntry.
58824 **
58825 ** SQLITE_OK is returned if the operation is successfully executed.
58826 ** Otherwise, if an error is encountered (i.e. an IO error or database
58827 ** corruption) an SQLite error code is returned.
58828 */
58829 SQLITE_PRIVATE int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
58830   i64 nEntry = 0;                      /* Value to return in *pnEntry */
58831   int rc;                              /* Return code */
58832 
58833   if( pCur->pgnoRoot==0 ){
58834     *pnEntry = 0;
58835     return SQLITE_OK;
58836   }
58837   rc = moveToRoot(pCur);
58838 
58839   /* Unless an error occurs, the following loop runs one iteration for each
58840   ** page in the B-Tree structure (not including overflow pages).
58841   */
58842   while( rc==SQLITE_OK ){
58843     int iIdx;                          /* Index of child node in parent */
58844     MemPage *pPage;                    /* Current page of the b-tree */
58845 
58846     /* If this is a leaf page or the tree is not an int-key tree, then
58847     ** this page contains countable entries. Increment the entry counter
58848     ** accordingly.
58849     */
58850     pPage = pCur->apPage[pCur->iPage];
58851     if( pPage->leaf || !pPage->intKey ){
58852       nEntry += pPage->nCell;
58853     }
58854 
58855     /* pPage is a leaf node. This loop navigates the cursor so that it
58856     ** points to the first interior cell that it points to the parent of
58857     ** the next page in the tree that has not yet been visited. The
58858     ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
58859     ** of the page, or to the number of cells in the page if the next page
58860     ** to visit is the right-child of its parent.
58861     **
58862     ** If all pages in the tree have been visited, return SQLITE_OK to the
58863     ** caller.
58864     */
58865     if( pPage->leaf ){
58866       do {
58867         if( pCur->iPage==0 ){
58868           /* All pages of the b-tree have been visited. Return successfully. */
58869           *pnEntry = nEntry;
58870           return SQLITE_OK;
58871         }
58872         moveToParent(pCur);
58873       }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
58874 
58875       pCur->aiIdx[pCur->iPage]++;
58876       pPage = pCur->apPage[pCur->iPage];
58877     }
58878 
58879     /* Descend to the child node of the cell that the cursor currently
58880     ** points at. This is the right-child if (iIdx==pPage->nCell).
58881     */
58882     iIdx = pCur->aiIdx[pCur->iPage];
58883     if( iIdx==pPage->nCell ){
58884       rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
58885     }else{
58886       rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
58887     }
58888   }
58889 
58890   /* An error has occurred. Return an error code. */
58891   return rc;
58892 }
58893 #endif
58894 
58895 /*
58896 ** Return the pager associated with a BTree.  This routine is used for
58897 ** testing and debugging only.
58898 */
58899 SQLITE_PRIVATE Pager *sqlite3BtreePager(Btree *p){
58900   return p->pBt->pPager;
58901 }
58902 
58903 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
58904 /*
58905 ** Append a message to the error message string.
58906 */
58907 static void checkAppendMsg(
58908   IntegrityCk *pCheck,
58909   char *zMsg1,
58910   const char *zFormat,
58911   ...
58912 ){
58913   va_list ap;
58914   if( !pCheck->mxErr ) return;
58915   pCheck->mxErr--;
58916   pCheck->nErr++;
58917   va_start(ap, zFormat);
58918   if( pCheck->errMsg.nChar ){
58919     sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
58920   }
58921   if( zMsg1 ){
58922     sqlite3StrAccumAppendAll(&pCheck->errMsg, zMsg1);
58923   }
58924   sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
58925   va_end(ap);
58926   if( pCheck->errMsg.accError==STRACCUM_NOMEM ){
58927     pCheck->mallocFailed = 1;
58928   }
58929 }
58930 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
58931 
58932 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
58933 
58934 /*
58935 ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
58936 ** corresponds to page iPg is already set.
58937 */
58938 static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
58939   assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
58940   return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
58941 }
58942 
58943 /*
58944 ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
58945 */
58946 static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
58947   assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
58948   pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
58949 }
58950 
58951 
58952 /*
58953 ** Add 1 to the reference count for page iPage.  If this is the second
58954 ** reference to the page, add an error message to pCheck->zErrMsg.
58955 ** Return 1 if there are 2 ore more references to the page and 0 if
58956 ** if this is the first reference to the page.
58957 **
58958 ** Also check that the page number is in bounds.
58959 */
58960 static int checkRef(IntegrityCk *pCheck, Pgno iPage, char *zContext){
58961   if( iPage==0 ) return 1;
58962   if( iPage>pCheck->nPage ){
58963     checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
58964     return 1;
58965   }
58966   if( getPageReferenced(pCheck, iPage) ){
58967     checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
58968     return 1;
58969   }
58970   setPageReferenced(pCheck, iPage);
58971   return 0;
58972 }
58973 
58974 #ifndef SQLITE_OMIT_AUTOVACUUM
58975 /*
58976 ** Check that the entry in the pointer-map for page iChild maps to
58977 ** page iParent, pointer type ptrType. If not, append an error message
58978 ** to pCheck.
58979 */
58980 static void checkPtrmap(
58981   IntegrityCk *pCheck,   /* Integrity check context */
58982   Pgno iChild,           /* Child page number */
58983   u8 eType,              /* Expected pointer map type */
58984   Pgno iParent,          /* Expected pointer map parent page number */
58985   char *zContext         /* Context description (used for error msg) */
58986 ){
58987   int rc;
58988   u8 ePtrmapType;
58989   Pgno iPtrmapParent;
58990 
58991   rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
58992   if( rc!=SQLITE_OK ){
58993     if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
58994     checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
58995     return;
58996   }
58997 
58998   if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
58999     checkAppendMsg(pCheck, zContext,
59000       "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
59001       iChild, eType, iParent, ePtrmapType, iPtrmapParent);
59002   }
59003 }
59004 #endif
59005 
59006 /*
59007 ** Check the integrity of the freelist or of an overflow page list.
59008 ** Verify that the number of pages on the list is N.
59009 */
59010 static void checkList(
59011   IntegrityCk *pCheck,  /* Integrity checking context */
59012   int isFreeList,       /* True for a freelist.  False for overflow page list */
59013   int iPage,            /* Page number for first page in the list */
59014   int N,                /* Expected number of pages in the list */
59015   char *zContext        /* Context for error messages */
59016 ){
59017   int i;
59018   int expected = N;
59019   int iFirst = iPage;
59020   while( N-- > 0 && pCheck->mxErr ){
59021     DbPage *pOvflPage;
59022     unsigned char *pOvflData;
59023     if( iPage<1 ){
59024       checkAppendMsg(pCheck, zContext,
59025          "%d of %d pages missing from overflow list starting at %d",
59026           N+1, expected, iFirst);
59027       break;
59028     }
59029     if( checkRef(pCheck, iPage, zContext) ) break;
59030     if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
59031       checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
59032       break;
59033     }
59034     pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
59035     if( isFreeList ){
59036       int n = get4byte(&pOvflData[4]);
59037 #ifndef SQLITE_OMIT_AUTOVACUUM
59038       if( pCheck->pBt->autoVacuum ){
59039         checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
59040       }
59041 #endif
59042       if( n>(int)pCheck->pBt->usableSize/4-2 ){
59043         checkAppendMsg(pCheck, zContext,
59044            "freelist leaf count too big on page %d", iPage);
59045         N--;
59046       }else{
59047         for(i=0; i<n; i++){
59048           Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
59049 #ifndef SQLITE_OMIT_AUTOVACUUM
59050           if( pCheck->pBt->autoVacuum ){
59051             checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext);
59052           }
59053 #endif
59054           checkRef(pCheck, iFreePage, zContext);
59055         }
59056         N -= n;
59057       }
59058     }
59059 #ifndef SQLITE_OMIT_AUTOVACUUM
59060     else{
59061       /* If this database supports auto-vacuum and iPage is not the last
59062       ** page in this overflow list, check that the pointer-map entry for
59063       ** the following page matches iPage.
59064       */
59065       if( pCheck->pBt->autoVacuum && N>0 ){
59066         i = get4byte(pOvflData);
59067         checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
59068       }
59069     }
59070 #endif
59071     iPage = get4byte(pOvflData);
59072     sqlite3PagerUnref(pOvflPage);
59073   }
59074 }
59075 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
59076 
59077 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
59078 /*
59079 ** Do various sanity checks on a single page of a tree.  Return
59080 ** the tree depth.  Root pages return 0.  Parents of root pages
59081 ** return 1, and so forth.
59082 **
59083 ** These checks are done:
59084 **
59085 **      1.  Make sure that cells and freeblocks do not overlap
59086 **          but combine to completely cover the page.
59087 **  NO  2.  Make sure cell keys are in order.
59088 **  NO  3.  Make sure no key is less than or equal to zLowerBound.
59089 **  NO  4.  Make sure no key is greater than or equal to zUpperBound.
59090 **      5.  Check the integrity of overflow pages.
59091 **      6.  Recursively call checkTreePage on all children.
59092 **      7.  Verify that the depth of all children is the same.
59093 **      8.  Make sure this page is at least 33% full or else it is
59094 **          the root of the tree.
59095 */
59096 static int checkTreePage(
59097   IntegrityCk *pCheck,  /* Context for the sanity check */
59098   int iPage,            /* Page number of the page to check */
59099   char *zParentContext, /* Parent context */
59100   i64 *pnParentMinKey,
59101   i64 *pnParentMaxKey
59102 ){
59103   MemPage *pPage;
59104   int i, rc, depth, d2, pgno, cnt;
59105   int hdr, cellStart;
59106   int nCell;
59107   u8 *data;
59108   BtShared *pBt;
59109   int usableSize;
59110   char zContext[100];
59111   char *hit = 0;
59112   i64 nMinKey = 0;
59113   i64 nMaxKey = 0;
59114 
59115   sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage);
59116 
59117   /* Check that the page exists
59118   */
59119   pBt = pCheck->pBt;
59120   usableSize = pBt->usableSize;
59121   if( iPage==0 ) return 0;
59122   if( checkRef(pCheck, iPage, zParentContext) ) return 0;
59123   if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
59124     checkAppendMsg(pCheck, zContext,
59125        "unable to get the page. error code=%d", rc);
59126     return 0;
59127   }
59128 
59129   /* Clear MemPage.isInit to make sure the corruption detection code in
59130   ** btreeInitPage() is executed.  */
59131   pPage->isInit = 0;
59132   if( (rc = btreeInitPage(pPage))!=0 ){
59133     assert( rc==SQLITE_CORRUPT );  /* The only possible error from InitPage */
59134     checkAppendMsg(pCheck, zContext,
59135                    "btreeInitPage() returns error code %d", rc);
59136     releasePage(pPage);
59137     return 0;
59138   }
59139 
59140   /* Check out all the cells.
59141   */
59142   depth = 0;
59143   for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
59144     u8 *pCell;
59145     u32 sz;
59146     CellInfo info;
59147 
59148     /* Check payload overflow pages
59149     */
59150     sqlite3_snprintf(sizeof(zContext), zContext,
59151              "On tree page %d cell %d: ", iPage, i);
59152     pCell = findCell(pPage,i);
59153     btreeParseCellPtr(pPage, pCell, &info);
59154     sz = info.nData;
59155     if( !pPage->intKey ) sz += (int)info.nKey;
59156     /* For intKey pages, check that the keys are in order.
59157     */
59158     else if( i==0 ) nMinKey = nMaxKey = info.nKey;
59159     else{
59160       if( info.nKey <= nMaxKey ){
59161         checkAppendMsg(pCheck, zContext,
59162             "Rowid %lld out of order (previous was %lld)", info.nKey, nMaxKey);
59163       }
59164       nMaxKey = info.nKey;
59165     }
59166     assert( sz==info.nPayload );
59167     if( (sz>info.nLocal)
59168      && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize])
59169     ){
59170       int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
59171       Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
59172 #ifndef SQLITE_OMIT_AUTOVACUUM
59173       if( pBt->autoVacuum ){
59174         checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
59175       }
59176 #endif
59177       checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
59178     }
59179 
59180     /* Check sanity of left child page.
59181     */
59182     if( !pPage->leaf ){
59183       pgno = get4byte(pCell);
59184 #ifndef SQLITE_OMIT_AUTOVACUUM
59185       if( pBt->autoVacuum ){
59186         checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
59187       }
59188 #endif
59189       d2 = checkTreePage(pCheck, pgno, zContext, &nMinKey, i==0 ? NULL : &nMaxKey);
59190       if( i>0 && d2!=depth ){
59191         checkAppendMsg(pCheck, zContext, "Child page depth differs");
59192       }
59193       depth = d2;
59194     }
59195   }
59196 
59197   if( !pPage->leaf ){
59198     pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
59199     sqlite3_snprintf(sizeof(zContext), zContext,
59200                      "On page %d at right child: ", iPage);
59201 #ifndef SQLITE_OMIT_AUTOVACUUM
59202     if( pBt->autoVacuum ){
59203       checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
59204     }
59205 #endif
59206     checkTreePage(pCheck, pgno, zContext, NULL, !pPage->nCell ? NULL : &nMaxKey);
59207   }
59208 
59209   /* For intKey leaf pages, check that the min/max keys are in order
59210   ** with any left/parent/right pages.
59211   */
59212   if( pPage->leaf && pPage->intKey ){
59213     /* if we are a left child page */
59214     if( pnParentMinKey ){
59215       /* if we are the left most child page */
59216       if( !pnParentMaxKey ){
59217         if( nMaxKey > *pnParentMinKey ){
59218           checkAppendMsg(pCheck, zContext,
59219               "Rowid %lld out of order (max larger than parent min of %lld)",
59220               nMaxKey, *pnParentMinKey);
59221         }
59222       }else{
59223         if( nMinKey <= *pnParentMinKey ){
59224           checkAppendMsg(pCheck, zContext,
59225               "Rowid %lld out of order (min less than parent min of %lld)",
59226               nMinKey, *pnParentMinKey);
59227         }
59228         if( nMaxKey > *pnParentMaxKey ){
59229           checkAppendMsg(pCheck, zContext,
59230               "Rowid %lld out of order (max larger than parent max of %lld)",
59231               nMaxKey, *pnParentMaxKey);
59232         }
59233         *pnParentMinKey = nMaxKey;
59234       }
59235     /* else if we're a right child page */
59236     } else if( pnParentMaxKey ){
59237       if( nMinKey <= *pnParentMaxKey ){
59238         checkAppendMsg(pCheck, zContext,
59239             "Rowid %lld out of order (min less than parent max of %lld)",
59240             nMinKey, *pnParentMaxKey);
59241       }
59242     }
59243   }
59244 
59245   /* Check for complete coverage of the page
59246   */
59247   data = pPage->aData;
59248   hdr = pPage->hdrOffset;
59249   hit = sqlite3PageMalloc( pBt->pageSize );
59250   if( hit==0 ){
59251     pCheck->mallocFailed = 1;
59252   }else{
59253     int contentOffset = get2byteNotZero(&data[hdr+5]);
59254     assert( contentOffset<=usableSize );  /* Enforced by btreeInitPage() */
59255     memset(hit+contentOffset, 0, usableSize-contentOffset);
59256     memset(hit, 1, contentOffset);
59257     nCell = get2byte(&data[hdr+3]);
59258     cellStart = hdr + 12 - 4*pPage->leaf;
59259     for(i=0; i<nCell; i++){
59260       int pc = get2byte(&data[cellStart+i*2]);
59261       u32 size = 65536;
59262       int j;
59263       if( pc<=usableSize-4 ){
59264         size = cellSizePtr(pPage, &data[pc]);
59265       }
59266       if( (int)(pc+size-1)>=usableSize ){
59267         checkAppendMsg(pCheck, 0,
59268             "Corruption detected in cell %d on page %d",i,iPage);
59269       }else{
59270         for(j=pc+size-1; j>=pc; j--) hit[j]++;
59271       }
59272     }
59273     i = get2byte(&data[hdr+1]);
59274     while( i>0 ){
59275       int size, j;
59276       assert( i<=usableSize-4 );     /* Enforced by btreeInitPage() */
59277       size = get2byte(&data[i+2]);
59278       assert( i+size<=usableSize );  /* Enforced by btreeInitPage() */
59279       for(j=i+size-1; j>=i; j--) hit[j]++;
59280       j = get2byte(&data[i]);
59281       assert( j==0 || j>i+size );  /* Enforced by btreeInitPage() */
59282       assert( j<=usableSize-4 );   /* Enforced by btreeInitPage() */
59283       i = j;
59284     }
59285     for(i=cnt=0; i<usableSize; i++){
59286       if( hit[i]==0 ){
59287         cnt++;
59288       }else if( hit[i]>1 ){
59289         checkAppendMsg(pCheck, 0,
59290           "Multiple uses for byte %d of page %d", i, iPage);
59291         break;
59292       }
59293     }
59294     if( cnt!=data[hdr+7] ){
59295       checkAppendMsg(pCheck, 0,
59296           "Fragmentation of %d bytes reported as %d on page %d",
59297           cnt, data[hdr+7], iPage);
59298     }
59299   }
59300   sqlite3PageFree(hit);
59301   releasePage(pPage);
59302   return depth+1;
59303 }
59304 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
59305 
59306 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
59307 /*
59308 ** This routine does a complete check of the given BTree file.  aRoot[] is
59309 ** an array of pages numbers were each page number is the root page of
59310 ** a table.  nRoot is the number of entries in aRoot.
59311 **
59312 ** A read-only or read-write transaction must be opened before calling
59313 ** this function.
59314 **
59315 ** Write the number of error seen in *pnErr.  Except for some memory
59316 ** allocation errors,  an error message held in memory obtained from
59317 ** malloc is returned if *pnErr is non-zero.  If *pnErr==0 then NULL is
59318 ** returned.  If a memory allocation error occurs, NULL is returned.
59319 */
59320 SQLITE_PRIVATE char *sqlite3BtreeIntegrityCheck(
59321   Btree *p,     /* The btree to be checked */
59322   int *aRoot,   /* An array of root pages numbers for individual trees */
59323   int nRoot,    /* Number of entries in aRoot[] */
59324   int mxErr,    /* Stop reporting errors after this many */
59325   int *pnErr    /* Write number of errors seen to this variable */
59326 ){
59327   Pgno i;
59328   int nRef;
59329   IntegrityCk sCheck;
59330   BtShared *pBt = p->pBt;
59331   char zErr[100];
59332 
59333   sqlite3BtreeEnter(p);
59334   assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
59335   nRef = sqlite3PagerRefcount(pBt->pPager);
59336   sCheck.pBt = pBt;
59337   sCheck.pPager = pBt->pPager;
59338   sCheck.nPage = btreePagecount(sCheck.pBt);
59339   sCheck.mxErr = mxErr;
59340   sCheck.nErr = 0;
59341   sCheck.mallocFailed = 0;
59342   *pnErr = 0;
59343   if( sCheck.nPage==0 ){
59344     sqlite3BtreeLeave(p);
59345     return 0;
59346   }
59347 
59348   sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
59349   if( !sCheck.aPgRef ){
59350     *pnErr = 1;
59351     sqlite3BtreeLeave(p);
59352     return 0;
59353   }
59354   i = PENDING_BYTE_PAGE(pBt);
59355   if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
59356   sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
59357   sCheck.errMsg.useMalloc = 2;
59358 
59359   /* Check the integrity of the freelist
59360   */
59361   checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
59362             get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
59363 
59364   /* Check all the tables.
59365   */
59366   for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
59367     if( aRoot[i]==0 ) continue;
59368 #ifndef SQLITE_OMIT_AUTOVACUUM
59369     if( pBt->autoVacuum && aRoot[i]>1 ){
59370       checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
59371     }
59372 #endif
59373     checkTreePage(&sCheck, aRoot[i], "List of tree roots: ", NULL, NULL);
59374   }
59375 
59376   /* Make sure every page in the file is referenced
59377   */
59378   for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
59379 #ifdef SQLITE_OMIT_AUTOVACUUM
59380     if( getPageReferenced(&sCheck, i)==0 ){
59381       checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
59382     }
59383 #else
59384     /* If the database supports auto-vacuum, make sure no tables contain
59385     ** references to pointer-map pages.
59386     */
59387     if( getPageReferenced(&sCheck, i)==0 &&
59388        (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
59389       checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
59390     }
59391     if( getPageReferenced(&sCheck, i)!=0 &&
59392        (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
59393       checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
59394     }
59395 #endif
59396   }
59397 
59398   /* Make sure this analysis did not leave any unref() pages.
59399   ** This is an internal consistency check; an integrity check
59400   ** of the integrity check.
59401   */
59402   if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
59403     checkAppendMsg(&sCheck, 0,
59404       "Outstanding page count goes from %d to %d during this analysis",
59405       nRef, sqlite3PagerRefcount(pBt->pPager)
59406     );
59407   }
59408 
59409   /* Clean  up and report errors.
59410   */
59411   sqlite3BtreeLeave(p);
59412   sqlite3_free(sCheck.aPgRef);
59413   if( sCheck.mallocFailed ){
59414     sqlite3StrAccumReset(&sCheck.errMsg);
59415     *pnErr = sCheck.nErr+1;
59416     return 0;
59417   }
59418   *pnErr = sCheck.nErr;
59419   if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
59420   return sqlite3StrAccumFinish(&sCheck.errMsg);
59421 }
59422 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
59423 
59424 /*
59425 ** Return the full pathname of the underlying database file.  Return
59426 ** an empty string if the database is in-memory or a TEMP database.
59427 **
59428 ** The pager filename is invariant as long as the pager is
59429 ** open so it is safe to access without the BtShared mutex.
59430 */
59431 SQLITE_PRIVATE const char *sqlite3BtreeGetFilename(Btree *p){
59432   assert( p->pBt->pPager!=0 );
59433   return sqlite3PagerFilename(p->pBt->pPager, 1);
59434 }
59435 
59436 /*
59437 ** Return the pathname of the journal file for this database. The return
59438 ** value of this routine is the same regardless of whether the journal file
59439 ** has been created or not.
59440 **
59441 ** The pager journal filename is invariant as long as the pager is
59442 ** open so it is safe to access without the BtShared mutex.
59443 */
59444 SQLITE_PRIVATE const char *sqlite3BtreeGetJournalname(Btree *p){
59445   assert( p->pBt->pPager!=0 );
59446   return sqlite3PagerJournalname(p->pBt->pPager);
59447 }
59448 
59449 /*
59450 ** Return non-zero if a transaction is active.
59451 */
59452 SQLITE_PRIVATE int sqlite3BtreeIsInTrans(Btree *p){
59453   assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
59454   return (p && (p->inTrans==TRANS_WRITE));
59455 }
59456 
59457 #ifndef SQLITE_OMIT_WAL
59458 /*
59459 ** Run a checkpoint on the Btree passed as the first argument.
59460 **
59461 ** Return SQLITE_LOCKED if this or any other connection has an open
59462 ** transaction on the shared-cache the argument Btree is connected to.
59463 **
59464 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
59465 */
59466 SQLITE_PRIVATE int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
59467   int rc = SQLITE_OK;
59468   if( p ){
59469     BtShared *pBt = p->pBt;
59470     sqlite3BtreeEnter(p);
59471     if( pBt->inTransaction!=TRANS_NONE ){
59472       rc = SQLITE_LOCKED;
59473     }else{
59474       rc = sqlite3PagerCheckpoint(pBt->pPager, eMode, pnLog, pnCkpt);
59475     }
59476     sqlite3BtreeLeave(p);
59477   }
59478   return rc;
59479 }
59480 #endif
59481 
59482 /*
59483 ** Return non-zero if a read (or write) transaction is active.
59484 */
59485 SQLITE_PRIVATE int sqlite3BtreeIsInReadTrans(Btree *p){
59486   assert( p );
59487   assert( sqlite3_mutex_held(p->db->mutex) );
59488   return p->inTrans!=TRANS_NONE;
59489 }
59490 
59491 SQLITE_PRIVATE int sqlite3BtreeIsInBackup(Btree *p){
59492   assert( p );
59493   assert( sqlite3_mutex_held(p->db->mutex) );
59494   return p->nBackup!=0;
59495 }
59496 
59497 /*
59498 ** This function returns a pointer to a blob of memory associated with
59499 ** a single shared-btree. The memory is used by client code for its own
59500 ** purposes (for example, to store a high-level schema associated with
59501 ** the shared-btree). The btree layer manages reference counting issues.
59502 **
59503 ** The first time this is called on a shared-btree, nBytes bytes of memory
59504 ** are allocated, zeroed, and returned to the caller. For each subsequent
59505 ** call the nBytes parameter is ignored and a pointer to the same blob
59506 ** of memory returned.
59507 **
59508 ** If the nBytes parameter is 0 and the blob of memory has not yet been
59509 ** allocated, a null pointer is returned. If the blob has already been
59510 ** allocated, it is returned as normal.
59511 **
59512 ** Just before the shared-btree is closed, the function passed as the
59513 ** xFree argument when the memory allocation was made is invoked on the
59514 ** blob of allocated memory. The xFree function should not call sqlite3_free()
59515 ** on the memory, the btree layer does that.
59516 */
59517 SQLITE_PRIVATE void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
59518   BtShared *pBt = p->pBt;
59519   sqlite3BtreeEnter(p);
59520   if( !pBt->pSchema && nBytes ){
59521     pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
59522     pBt->xFreeSchema = xFree;
59523   }
59524   sqlite3BtreeLeave(p);
59525   return pBt->pSchema;
59526 }
59527 
59528 /*
59529 ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
59530 ** btree as the argument handle holds an exclusive lock on the
59531 ** sqlite_master table. Otherwise SQLITE_OK.
59532 */
59533 SQLITE_PRIVATE int sqlite3BtreeSchemaLocked(Btree *p){
59534   int rc;
59535   assert( sqlite3_mutex_held(p->db->mutex) );
59536   sqlite3BtreeEnter(p);
59537   rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
59538   assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
59539   sqlite3BtreeLeave(p);
59540   return rc;
59541 }
59542 
59543 
59544 #ifndef SQLITE_OMIT_SHARED_CACHE
59545 /*
59546 ** Obtain a lock on the table whose root page is iTab.  The
59547 ** lock is a write lock if isWritelock is true or a read lock
59548 ** if it is false.
59549 */
59550 SQLITE_PRIVATE int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
59551   int rc = SQLITE_OK;
59552   assert( p->inTrans!=TRANS_NONE );
59553   if( p->sharable ){
59554     u8 lockType = READ_LOCK + isWriteLock;
59555     assert( READ_LOCK+1==WRITE_LOCK );
59556     assert( isWriteLock==0 || isWriteLock==1 );
59557 
59558     sqlite3BtreeEnter(p);
59559     rc = querySharedCacheTableLock(p, iTab, lockType);
59560     if( rc==SQLITE_OK ){
59561       rc = setSharedCacheTableLock(p, iTab, lockType);
59562     }
59563     sqlite3BtreeLeave(p);
59564   }
59565   return rc;
59566 }
59567 #endif
59568 
59569 #ifndef SQLITE_OMIT_INCRBLOB
59570 /*
59571 ** Argument pCsr must be a cursor opened for writing on an
59572 ** INTKEY table currently pointing at a valid table entry.
59573 ** This function modifies the data stored as part of that entry.
59574 **
59575 ** Only the data content may only be modified, it is not possible to
59576 ** change the length of the data stored. If this function is called with
59577 ** parameters that attempt to write past the end of the existing data,
59578 ** no modifications are made and SQLITE_CORRUPT is returned.
59579 */
59580 SQLITE_PRIVATE int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
59581   int rc;
59582   assert( cursorHoldsMutex(pCsr) );
59583   assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
59584   assert( pCsr->curFlags & BTCF_Incrblob );
59585 
59586   rc = restoreCursorPosition(pCsr);
59587   if( rc!=SQLITE_OK ){
59588     return rc;
59589   }
59590   assert( pCsr->eState!=CURSOR_REQUIRESEEK );
59591   if( pCsr->eState!=CURSOR_VALID ){
59592     return SQLITE_ABORT;
59593   }
59594 
59595   /* Save the positions of all other cursors open on this table. This is
59596   ** required in case any of them are holding references to an xFetch
59597   ** version of the b-tree page modified by the accessPayload call below.
59598   **
59599   ** Note that pCsr must be open on a BTREE_INTKEY table and saveCursorPosition()
59600   ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
59601   ** saveAllCursors can only return SQLITE_OK.
59602   */
59603   VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
59604   assert( rc==SQLITE_OK );
59605 
59606   /* Check some assumptions:
59607   **   (a) the cursor is open for writing,
59608   **   (b) there is a read/write transaction open,
59609   **   (c) the connection holds a write-lock on the table (if required),
59610   **   (d) there are no conflicting read-locks, and
59611   **   (e) the cursor points at a valid row of an intKey table.
59612   */
59613   if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
59614     return SQLITE_READONLY;
59615   }
59616   assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
59617               && pCsr->pBt->inTransaction==TRANS_WRITE );
59618   assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
59619   assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
59620   assert( pCsr->apPage[pCsr->iPage]->intKey );
59621 
59622   return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
59623 }
59624 
59625 /*
59626 ** Mark this cursor as an incremental blob cursor.
59627 */
59628 SQLITE_PRIVATE void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
59629   pCur->curFlags |= BTCF_Incrblob;
59630 }
59631 #endif
59632 
59633 /*
59634 ** Set both the "read version" (single byte at byte offset 18) and
59635 ** "write version" (single byte at byte offset 19) fields in the database
59636 ** header to iVersion.
59637 */
59638 SQLITE_PRIVATE int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
59639   BtShared *pBt = pBtree->pBt;
59640   int rc;                         /* Return code */
59641 
59642   assert( iVersion==1 || iVersion==2 );
59643 
59644   /* If setting the version fields to 1, do not automatically open the
59645   ** WAL connection, even if the version fields are currently set to 2.
59646   */
59647   pBt->btsFlags &= ~BTS_NO_WAL;
59648   if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
59649 
59650   rc = sqlite3BtreeBeginTrans(pBtree, 0);
59651   if( rc==SQLITE_OK ){
59652     u8 *aData = pBt->pPage1->aData;
59653     if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
59654       rc = sqlite3BtreeBeginTrans(pBtree, 2);
59655       if( rc==SQLITE_OK ){
59656         rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
59657         if( rc==SQLITE_OK ){
59658           aData[18] = (u8)iVersion;
59659           aData[19] = (u8)iVersion;
59660         }
59661       }
59662     }
59663   }
59664 
59665   pBt->btsFlags &= ~BTS_NO_WAL;
59666   return rc;
59667 }
59668 
59669 /*
59670 ** set the mask of hint flags for cursor pCsr. Currently the only valid
59671 ** values are 0 and BTREE_BULKLOAD.
59672 */
59673 SQLITE_PRIVATE void sqlite3BtreeCursorHints(BtCursor *pCsr, unsigned int mask){
59674   assert( mask==BTREE_BULKLOAD || mask==0 );
59675   pCsr->hints = mask;
59676 }
59677 
59678 /*
59679 ** Return true if the given Btree is read-only.
59680 */
59681 SQLITE_PRIVATE int sqlite3BtreeIsReadonly(Btree *p){
59682   return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
59683 }
59684 
59685 /************** End of btree.c ***********************************************/
59686 /************** Begin file backup.c ******************************************/
59687 /*
59688 ** 2009 January 28
59689 **
59690 ** The author disclaims copyright to this source code.  In place of
59691 ** a legal notice, here is a blessing:
59692 **
59693 **    May you do good and not evil.
59694 **    May you find forgiveness for yourself and forgive others.
59695 **    May you share freely, never taking more than you give.
59696 **
59697 *************************************************************************
59698 ** This file contains the implementation of the sqlite3_backup_XXX()
59699 ** API functions and the related features.
59700 */
59701 
59702 /*
59703 ** Structure allocated for each backup operation.
59704 */
59705 struct sqlite3_backup {
59706   sqlite3* pDestDb;        /* Destination database handle */
59707   Btree *pDest;            /* Destination b-tree file */
59708   u32 iDestSchema;         /* Original schema cookie in destination */
59709   int bDestLocked;         /* True once a write-transaction is open on pDest */
59710 
59711   Pgno iNext;              /* Page number of the next source page to copy */
59712   sqlite3* pSrcDb;         /* Source database handle */
59713   Btree *pSrc;             /* Source b-tree file */
59714 
59715   int rc;                  /* Backup process error code */
59716 
59717   /* These two variables are set by every call to backup_step(). They are
59718   ** read by calls to backup_remaining() and backup_pagecount().
59719   */
59720   Pgno nRemaining;         /* Number of pages left to copy */
59721   Pgno nPagecount;         /* Total number of pages to copy */
59722 
59723   int isAttached;          /* True once backup has been registered with pager */
59724   sqlite3_backup *pNext;   /* Next backup associated with source pager */
59725 };
59726 
59727 /*
59728 ** THREAD SAFETY NOTES:
59729 **
59730 **   Once it has been created using backup_init(), a single sqlite3_backup
59731 **   structure may be accessed via two groups of thread-safe entry points:
59732 **
59733 **     * Via the sqlite3_backup_XXX() API function backup_step() and
59734 **       backup_finish(). Both these functions obtain the source database
59735 **       handle mutex and the mutex associated with the source BtShared
59736 **       structure, in that order.
59737 **
59738 **     * Via the BackupUpdate() and BackupRestart() functions, which are
59739 **       invoked by the pager layer to report various state changes in
59740 **       the page cache associated with the source database. The mutex
59741 **       associated with the source database BtShared structure will always
59742 **       be held when either of these functions are invoked.
59743 **
59744 **   The other sqlite3_backup_XXX() API functions, backup_remaining() and
59745 **   backup_pagecount() are not thread-safe functions. If they are called
59746 **   while some other thread is calling backup_step() or backup_finish(),
59747 **   the values returned may be invalid. There is no way for a call to
59748 **   BackupUpdate() or BackupRestart() to interfere with backup_remaining()
59749 **   or backup_pagecount().
59750 **
59751 **   Depending on the SQLite configuration, the database handles and/or
59752 **   the Btree objects may have their own mutexes that require locking.
59753 **   Non-sharable Btrees (in-memory databases for example), do not have
59754 **   associated mutexes.
59755 */
59756 
59757 /*
59758 ** Return a pointer corresponding to database zDb (i.e. "main", "temp")
59759 ** in connection handle pDb. If such a database cannot be found, return
59760 ** a NULL pointer and write an error message to pErrorDb.
59761 **
59762 ** If the "temp" database is requested, it may need to be opened by this
59763 ** function. If an error occurs while doing so, return 0 and write an
59764 ** error message to pErrorDb.
59765 */
59766 static Btree *findBtree(sqlite3 *pErrorDb, sqlite3 *pDb, const char *zDb){
59767   int i = sqlite3FindDbName(pDb, zDb);
59768 
59769   if( i==1 ){
59770     Parse *pParse;
59771     int rc = 0;
59772     pParse = sqlite3StackAllocZero(pErrorDb, sizeof(*pParse));
59773     if( pParse==0 ){
59774       sqlite3Error(pErrorDb, SQLITE_NOMEM, "out of memory");
59775       rc = SQLITE_NOMEM;
59776     }else{
59777       pParse->db = pDb;
59778       if( sqlite3OpenTempDatabase(pParse) ){
59779         sqlite3Error(pErrorDb, pParse->rc, "%s", pParse->zErrMsg);
59780         rc = SQLITE_ERROR;
59781       }
59782       sqlite3DbFree(pErrorDb, pParse->zErrMsg);
59783       sqlite3ParserReset(pParse);
59784       sqlite3StackFree(pErrorDb, pParse);
59785     }
59786     if( rc ){
59787       return 0;
59788     }
59789   }
59790 
59791   if( i<0 ){
59792     sqlite3Error(pErrorDb, SQLITE_ERROR, "unknown database %s", zDb);
59793     return 0;
59794   }
59795 
59796   return pDb->aDb[i].pBt;
59797 }
59798 
59799 /*
59800 ** Attempt to set the page size of the destination to match the page size
59801 ** of the source.
59802 */
59803 static int setDestPgsz(sqlite3_backup *p){
59804   int rc;
59805   rc = sqlite3BtreeSetPageSize(p->pDest,sqlite3BtreeGetPageSize(p->pSrc),-1,0);
59806   return rc;
59807 }
59808 
59809 /*
59810 ** Create an sqlite3_backup process to copy the contents of zSrcDb from
59811 ** connection handle pSrcDb to zDestDb in pDestDb. If successful, return
59812 ** a pointer to the new sqlite3_backup object.
59813 **
59814 ** If an error occurs, NULL is returned and an error code and error message
59815 ** stored in database handle pDestDb.
59816 */
59817 SQLITE_API sqlite3_backup *sqlite3_backup_init(
59818   sqlite3* pDestDb,                     /* Database to write to */
59819   const char *zDestDb,                  /* Name of database within pDestDb */
59820   sqlite3* pSrcDb,                      /* Database connection to read from */
59821   const char *zSrcDb                    /* Name of database within pSrcDb */
59822 ){
59823   sqlite3_backup *p;                    /* Value to return */
59824 
59825   /* Lock the source database handle. The destination database
59826   ** handle is not locked in this routine, but it is locked in
59827   ** sqlite3_backup_step(). The user is required to ensure that no
59828   ** other thread accesses the destination handle for the duration
59829   ** of the backup operation.  Any attempt to use the destination
59830   ** database connection while a backup is in progress may cause
59831   ** a malfunction or a deadlock.
59832   */
59833   sqlite3_mutex_enter(pSrcDb->mutex);
59834   sqlite3_mutex_enter(pDestDb->mutex);
59835 
59836   if( pSrcDb==pDestDb ){
59837     sqlite3Error(
59838         pDestDb, SQLITE_ERROR, "source and destination must be distinct"
59839     );
59840     p = 0;
59841   }else {
59842     /* Allocate space for a new sqlite3_backup object...
59843     ** EVIDENCE-OF: R-64852-21591 The sqlite3_backup object is created by a
59844     ** call to sqlite3_backup_init() and is destroyed by a call to
59845     ** sqlite3_backup_finish(). */
59846     p = (sqlite3_backup *)sqlite3MallocZero(sizeof(sqlite3_backup));
59847     if( !p ){
59848       sqlite3Error(pDestDb, SQLITE_NOMEM, 0);
59849     }
59850   }
59851 
59852   /* If the allocation succeeded, populate the new object. */
59853   if( p ){
59854     p->pSrc = findBtree(pDestDb, pSrcDb, zSrcDb);
59855     p->pDest = findBtree(pDestDb, pDestDb, zDestDb);
59856     p->pDestDb = pDestDb;
59857     p->pSrcDb = pSrcDb;
59858     p->iNext = 1;
59859     p->isAttached = 0;
59860 
59861     if( 0==p->pSrc || 0==p->pDest || setDestPgsz(p)==SQLITE_NOMEM ){
59862       /* One (or both) of the named databases did not exist or an OOM
59863       ** error was hit.  The error has already been written into the
59864       ** pDestDb handle.  All that is left to do here is free the
59865       ** sqlite3_backup structure.
59866       */
59867       sqlite3_free(p);
59868       p = 0;
59869     }
59870   }
59871   if( p ){
59872     p->pSrc->nBackup++;
59873   }
59874 
59875   sqlite3_mutex_leave(pDestDb->mutex);
59876   sqlite3_mutex_leave(pSrcDb->mutex);
59877   return p;
59878 }
59879 
59880 /*
59881 ** Argument rc is an SQLite error code. Return true if this error is
59882 ** considered fatal if encountered during a backup operation. All errors
59883 ** are considered fatal except for SQLITE_BUSY and SQLITE_LOCKED.
59884 */
59885 static int isFatalError(int rc){
59886   return (rc!=SQLITE_OK && rc!=SQLITE_BUSY && ALWAYS(rc!=SQLITE_LOCKED));
59887 }
59888 
59889 /*
59890 ** Parameter zSrcData points to a buffer containing the data for
59891 ** page iSrcPg from the source database. Copy this data into the
59892 ** destination database.
59893 */
59894 static int backupOnePage(
59895   sqlite3_backup *p,              /* Backup handle */
59896   Pgno iSrcPg,                    /* Source database page to backup */
59897   const u8 *zSrcData,             /* Source database page data */
59898   int bUpdate                     /* True for an update, false otherwise */
59899 ){
59900   Pager * const pDestPager = sqlite3BtreePager(p->pDest);
59901   const int nSrcPgsz = sqlite3BtreeGetPageSize(p->pSrc);
59902   int nDestPgsz = sqlite3BtreeGetPageSize(p->pDest);
59903   const int nCopy = MIN(nSrcPgsz, nDestPgsz);
59904   const i64 iEnd = (i64)iSrcPg*(i64)nSrcPgsz;
59905 #ifdef SQLITE_HAS_CODEC
59906   /* Use BtreeGetReserveNoMutex() for the source b-tree, as although it is
59907   ** guaranteed that the shared-mutex is held by this thread, handle
59908   ** p->pSrc may not actually be the owner.  */
59909   int nSrcReserve = sqlite3BtreeGetReserveNoMutex(p->pSrc);
59910   int nDestReserve = sqlite3BtreeGetReserve(p->pDest);
59911 #endif
59912   int rc = SQLITE_OK;
59913   i64 iOff;
59914 
59915   assert( sqlite3BtreeGetReserveNoMutex(p->pSrc)>=0 );
59916   assert( p->bDestLocked );
59917   assert( !isFatalError(p->rc) );
59918   assert( iSrcPg!=PENDING_BYTE_PAGE(p->pSrc->pBt) );
59919   assert( zSrcData );
59920 
59921   /* Catch the case where the destination is an in-memory database and the
59922   ** page sizes of the source and destination differ.
59923   */
59924   if( nSrcPgsz!=nDestPgsz && sqlite3PagerIsMemdb(pDestPager) ){
59925     rc = SQLITE_READONLY;
59926   }
59927 
59928 #ifdef SQLITE_HAS_CODEC
59929   /* Backup is not possible if the page size of the destination is changing
59930   ** and a codec is in use.
59931   */
59932   if( nSrcPgsz!=nDestPgsz && sqlite3PagerGetCodec(pDestPager)!=0 ){
59933     rc = SQLITE_READONLY;
59934   }
59935 
59936   /* Backup is not possible if the number of bytes of reserve space differ
59937   ** between source and destination.  If there is a difference, try to
59938   ** fix the destination to agree with the source.  If that is not possible,
59939   ** then the backup cannot proceed.
59940   */
59941   if( nSrcReserve!=nDestReserve ){
59942     u32 newPgsz = nSrcPgsz;
59943     rc = sqlite3PagerSetPagesize(pDestPager, &newPgsz, nSrcReserve);
59944     if( rc==SQLITE_OK && newPgsz!=nSrcPgsz ) rc = SQLITE_READONLY;
59945   }
59946 #endif
59947 
59948   /* This loop runs once for each destination page spanned by the source
59949   ** page. For each iteration, variable iOff is set to the byte offset
59950   ** of the destination page.
59951   */
59952   for(iOff=iEnd-(i64)nSrcPgsz; rc==SQLITE_OK && iOff<iEnd; iOff+=nDestPgsz){
59953     DbPage *pDestPg = 0;
59954     Pgno iDest = (Pgno)(iOff/nDestPgsz)+1;
59955     if( iDest==PENDING_BYTE_PAGE(p->pDest->pBt) ) continue;
59956     if( SQLITE_OK==(rc = sqlite3PagerGet(pDestPager, iDest, &pDestPg))
59957      && SQLITE_OK==(rc = sqlite3PagerWrite(pDestPg))
59958     ){
59959       const u8 *zIn = &zSrcData[iOff%nSrcPgsz];
59960       u8 *zDestData = sqlite3PagerGetData(pDestPg);
59961       u8 *zOut = &zDestData[iOff%nDestPgsz];
59962 
59963       /* Copy the data from the source page into the destination page.
59964       ** Then clear the Btree layer MemPage.isInit flag. Both this module
59965       ** and the pager code use this trick (clearing the first byte
59966       ** of the page 'extra' space to invalidate the Btree layers
59967       ** cached parse of the page). MemPage.isInit is marked
59968       ** "MUST BE FIRST" for this purpose.
59969       */
59970       memcpy(zOut, zIn, nCopy);
59971       ((u8 *)sqlite3PagerGetExtra(pDestPg))[0] = 0;
59972       if( iOff==0 && bUpdate==0 ){
59973         sqlite3Put4byte(&zOut[28], sqlite3BtreeLastPage(p->pSrc));
59974       }
59975     }
59976     sqlite3PagerUnref(pDestPg);
59977   }
59978 
59979   return rc;
59980 }
59981 
59982 /*
59983 ** If pFile is currently larger than iSize bytes, then truncate it to
59984 ** exactly iSize bytes. If pFile is not larger than iSize bytes, then
59985 ** this function is a no-op.
59986 **
59987 ** Return SQLITE_OK if everything is successful, or an SQLite error
59988 ** code if an error occurs.
59989 */
59990 static int backupTruncateFile(sqlite3_file *pFile, i64 iSize){
59991   i64 iCurrent;
59992   int rc = sqlite3OsFileSize(pFile, &iCurrent);
59993   if( rc==SQLITE_OK && iCurrent>iSize ){
59994     rc = sqlite3OsTruncate(pFile, iSize);
59995   }
59996   return rc;
59997 }
59998 
59999 /*
60000 ** Register this backup object with the associated source pager for
60001 ** callbacks when pages are changed or the cache invalidated.
60002 */
60003 static void attachBackupObject(sqlite3_backup *p){
60004   sqlite3_backup **pp;
60005   assert( sqlite3BtreeHoldsMutex(p->pSrc) );
60006   pp = sqlite3PagerBackupPtr(sqlite3BtreePager(p->pSrc));
60007   p->pNext = *pp;
60008   *pp = p;
60009   p->isAttached = 1;
60010 }
60011 
60012 /*
60013 ** Copy nPage pages from the source b-tree to the destination.
60014 */
60015 SQLITE_API int sqlite3_backup_step(sqlite3_backup *p, int nPage){
60016   int rc;
60017   int destMode;       /* Destination journal mode */
60018   int pgszSrc = 0;    /* Source page size */
60019   int pgszDest = 0;   /* Destination page size */
60020 
60021   sqlite3_mutex_enter(p->pSrcDb->mutex);
60022   sqlite3BtreeEnter(p->pSrc);
60023   if( p->pDestDb ){
60024     sqlite3_mutex_enter(p->pDestDb->mutex);
60025   }
60026 
60027   rc = p->rc;
60028   if( !isFatalError(rc) ){
60029     Pager * const pSrcPager = sqlite3BtreePager(p->pSrc);     /* Source pager */
60030     Pager * const pDestPager = sqlite3BtreePager(p->pDest);   /* Dest pager */
60031     int ii;                            /* Iterator variable */
60032     int nSrcPage = -1;                 /* Size of source db in pages */
60033     int bCloseTrans = 0;               /* True if src db requires unlocking */
60034 
60035     /* If the source pager is currently in a write-transaction, return
60036     ** SQLITE_BUSY immediately.
60037     */
60038     if( p->pDestDb && p->pSrc->pBt->inTransaction==TRANS_WRITE ){
60039       rc = SQLITE_BUSY;
60040     }else{
60041       rc = SQLITE_OK;
60042     }
60043 
60044     /* Lock the destination database, if it is not locked already. */
60045     if( SQLITE_OK==rc && p->bDestLocked==0
60046      && SQLITE_OK==(rc = sqlite3BtreeBeginTrans(p->pDest, 2))
60047     ){
60048       p->bDestLocked = 1;
60049       sqlite3BtreeGetMeta(p->pDest, BTREE_SCHEMA_VERSION, &p->iDestSchema);
60050     }
60051 
60052     /* If there is no open read-transaction on the source database, open
60053     ** one now. If a transaction is opened here, then it will be closed
60054     ** before this function exits.
60055     */
60056     if( rc==SQLITE_OK && 0==sqlite3BtreeIsInReadTrans(p->pSrc) ){
60057       rc = sqlite3BtreeBeginTrans(p->pSrc, 0);
60058       bCloseTrans = 1;
60059     }
60060 
60061     /* Do not allow backup if the destination database is in WAL mode
60062     ** and the page sizes are different between source and destination */
60063     pgszSrc = sqlite3BtreeGetPageSize(p->pSrc);
60064     pgszDest = sqlite3BtreeGetPageSize(p->pDest);
60065     destMode = sqlite3PagerGetJournalMode(sqlite3BtreePager(p->pDest));
60066     if( SQLITE_OK==rc && destMode==PAGER_JOURNALMODE_WAL && pgszSrc!=pgszDest ){
60067       rc = SQLITE_READONLY;
60068     }
60069 
60070     /* Now that there is a read-lock on the source database, query the
60071     ** source pager for the number of pages in the database.
60072     */
60073     nSrcPage = (int)sqlite3BtreeLastPage(p->pSrc);
60074     assert( nSrcPage>=0 );
60075     for(ii=0; (nPage<0 || ii<nPage) && p->iNext<=(Pgno)nSrcPage && !rc; ii++){
60076       const Pgno iSrcPg = p->iNext;                 /* Source page number */
60077       if( iSrcPg!=PENDING_BYTE_PAGE(p->pSrc->pBt) ){
60078         DbPage *pSrcPg;                             /* Source page object */
60079         rc = sqlite3PagerAcquire(pSrcPager, iSrcPg, &pSrcPg,
60080                                  PAGER_GET_READONLY);
60081         if( rc==SQLITE_OK ){
60082           rc = backupOnePage(p, iSrcPg, sqlite3PagerGetData(pSrcPg), 0);
60083           sqlite3PagerUnref(pSrcPg);
60084         }
60085       }
60086       p->iNext++;
60087     }
60088     if( rc==SQLITE_OK ){
60089       p->nPagecount = nSrcPage;
60090       p->nRemaining = nSrcPage+1-p->iNext;
60091       if( p->iNext>(Pgno)nSrcPage ){
60092         rc = SQLITE_DONE;
60093       }else if( !p->isAttached ){
60094         attachBackupObject(p);
60095       }
60096     }
60097 
60098     /* Update the schema version field in the destination database. This
60099     ** is to make sure that the schema-version really does change in
60100     ** the case where the source and destination databases have the
60101     ** same schema version.
60102     */
60103     if( rc==SQLITE_DONE ){
60104       if( nSrcPage==0 ){
60105         rc = sqlite3BtreeNewDb(p->pDest);
60106         nSrcPage = 1;
60107       }
60108       if( rc==SQLITE_OK || rc==SQLITE_DONE ){
60109         rc = sqlite3BtreeUpdateMeta(p->pDest,1,p->iDestSchema+1);
60110       }
60111       if( rc==SQLITE_OK ){
60112         if( p->pDestDb ){
60113           sqlite3ResetAllSchemasOfConnection(p->pDestDb);
60114         }
60115         if( destMode==PAGER_JOURNALMODE_WAL ){
60116           rc = sqlite3BtreeSetVersion(p->pDest, 2);
60117         }
60118       }
60119       if( rc==SQLITE_OK ){
60120         int nDestTruncate;
60121         /* Set nDestTruncate to the final number of pages in the destination
60122         ** database. The complication here is that the destination page
60123         ** size may be different to the source page size.
60124         **
60125         ** If the source page size is smaller than the destination page size,
60126         ** round up. In this case the call to sqlite3OsTruncate() below will
60127         ** fix the size of the file. However it is important to call
60128         ** sqlite3PagerTruncateImage() here so that any pages in the
60129         ** destination file that lie beyond the nDestTruncate page mark are
60130         ** journalled by PagerCommitPhaseOne() before they are destroyed
60131         ** by the file truncation.
60132         */
60133         assert( pgszSrc==sqlite3BtreeGetPageSize(p->pSrc) );
60134         assert( pgszDest==sqlite3BtreeGetPageSize(p->pDest) );
60135         if( pgszSrc<pgszDest ){
60136           int ratio = pgszDest/pgszSrc;
60137           nDestTruncate = (nSrcPage+ratio-1)/ratio;
60138           if( nDestTruncate==(int)PENDING_BYTE_PAGE(p->pDest->pBt) ){
60139             nDestTruncate--;
60140           }
60141         }else{
60142           nDestTruncate = nSrcPage * (pgszSrc/pgszDest);
60143         }
60144         assert( nDestTruncate>0 );
60145 
60146         if( pgszSrc<pgszDest ){
60147           /* If the source page-size is smaller than the destination page-size,
60148           ** two extra things may need to happen:
60149           **
60150           **   * The destination may need to be truncated, and
60151           **
60152           **   * Data stored on the pages immediately following the
60153           **     pending-byte page in the source database may need to be
60154           **     copied into the destination database.
60155           */
60156           const i64 iSize = (i64)pgszSrc * (i64)nSrcPage;
60157           sqlite3_file * const pFile = sqlite3PagerFile(pDestPager);
60158           Pgno iPg;
60159           int nDstPage;
60160           i64 iOff;
60161           i64 iEnd;
60162 
60163           assert( pFile );
60164           assert( nDestTruncate==0
60165               || (i64)nDestTruncate*(i64)pgszDest >= iSize || (
60166                 nDestTruncate==(int)(PENDING_BYTE_PAGE(p->pDest->pBt)-1)
60167              && iSize>=PENDING_BYTE && iSize<=PENDING_BYTE+pgszDest
60168           ));
60169 
60170           /* This block ensures that all data required to recreate the original
60171           ** database has been stored in the journal for pDestPager and the
60172           ** journal synced to disk. So at this point we may safely modify
60173           ** the database file in any way, knowing that if a power failure
60174           ** occurs, the original database will be reconstructed from the
60175           ** journal file.  */
60176           sqlite3PagerPagecount(pDestPager, &nDstPage);
60177           for(iPg=nDestTruncate; rc==SQLITE_OK && iPg<=(Pgno)nDstPage; iPg++){
60178             if( iPg!=PENDING_BYTE_PAGE(p->pDest->pBt) ){
60179               DbPage *pPg;
60180               rc = sqlite3PagerGet(pDestPager, iPg, &pPg);
60181               if( rc==SQLITE_OK ){
60182                 rc = sqlite3PagerWrite(pPg);
60183                 sqlite3PagerUnref(pPg);
60184               }
60185             }
60186           }
60187           if( rc==SQLITE_OK ){
60188             rc = sqlite3PagerCommitPhaseOne(pDestPager, 0, 1);
60189           }
60190 
60191           /* Write the extra pages and truncate the database file as required */
60192           iEnd = MIN(PENDING_BYTE + pgszDest, iSize);
60193           for(
60194             iOff=PENDING_BYTE+pgszSrc;
60195             rc==SQLITE_OK && iOff<iEnd;
60196             iOff+=pgszSrc
60197           ){
60198             PgHdr *pSrcPg = 0;
60199             const Pgno iSrcPg = (Pgno)((iOff/pgszSrc)+1);
60200             rc = sqlite3PagerGet(pSrcPager, iSrcPg, &pSrcPg);
60201             if( rc==SQLITE_OK ){
60202               u8 *zData = sqlite3PagerGetData(pSrcPg);
60203               rc = sqlite3OsWrite(pFile, zData, pgszSrc, iOff);
60204             }
60205             sqlite3PagerUnref(pSrcPg);
60206           }
60207           if( rc==SQLITE_OK ){
60208             rc = backupTruncateFile(pFile, iSize);
60209           }
60210 
60211           /* Sync the database file to disk. */
60212           if( rc==SQLITE_OK ){
60213             rc = sqlite3PagerSync(pDestPager, 0);
60214           }
60215         }else{
60216           sqlite3PagerTruncateImage(pDestPager, nDestTruncate);
60217           rc = sqlite3PagerCommitPhaseOne(pDestPager, 0, 0);
60218         }
60219 
60220         /* Finish committing the transaction to the destination database. */
60221         if( SQLITE_OK==rc
60222          && SQLITE_OK==(rc = sqlite3BtreeCommitPhaseTwo(p->pDest, 0))
60223         ){
60224           rc = SQLITE_DONE;
60225         }
60226       }
60227     }
60228 
60229     /* If bCloseTrans is true, then this function opened a read transaction
60230     ** on the source database. Close the read transaction here. There is
60231     ** no need to check the return values of the btree methods here, as
60232     ** "committing" a read-only transaction cannot fail.
60233     */
60234     if( bCloseTrans ){
60235       TESTONLY( int rc2 );
60236       TESTONLY( rc2  = ) sqlite3BtreeCommitPhaseOne(p->pSrc, 0);
60237       TESTONLY( rc2 |= ) sqlite3BtreeCommitPhaseTwo(p->pSrc, 0);
60238       assert( rc2==SQLITE_OK );
60239     }
60240 
60241     if( rc==SQLITE_IOERR_NOMEM ){
60242       rc = SQLITE_NOMEM;
60243     }
60244     p->rc = rc;
60245   }
60246   if( p->pDestDb ){
60247     sqlite3_mutex_leave(p->pDestDb->mutex);
60248   }
60249   sqlite3BtreeLeave(p->pSrc);
60250   sqlite3_mutex_leave(p->pSrcDb->mutex);
60251   return rc;
60252 }
60253 
60254 /*
60255 ** Release all resources associated with an sqlite3_backup* handle.
60256 */
60257 SQLITE_API int sqlite3_backup_finish(sqlite3_backup *p){
60258   sqlite3_backup **pp;                 /* Ptr to head of pagers backup list */
60259   sqlite3 *pSrcDb;                     /* Source database connection */
60260   int rc;                              /* Value to return */
60261 
60262   /* Enter the mutexes */
60263   if( p==0 ) return SQLITE_OK;
60264   pSrcDb = p->pSrcDb;
60265   sqlite3_mutex_enter(pSrcDb->mutex);
60266   sqlite3BtreeEnter(p->pSrc);
60267   if( p->pDestDb ){
60268     sqlite3_mutex_enter(p->pDestDb->mutex);
60269   }
60270 
60271   /* Detach this backup from the source pager. */
60272   if( p->pDestDb ){
60273     p->pSrc->nBackup--;
60274   }
60275   if( p->isAttached ){
60276     pp = sqlite3PagerBackupPtr(sqlite3BtreePager(p->pSrc));
60277     while( *pp!=p ){
60278       pp = &(*pp)->pNext;
60279     }
60280     *pp = p->pNext;
60281   }
60282 
60283   /* If a transaction is still open on the Btree, roll it back. */
60284   sqlite3BtreeRollback(p->pDest, SQLITE_OK);
60285 
60286   /* Set the error code of the destination database handle. */
60287   rc = (p->rc==SQLITE_DONE) ? SQLITE_OK : p->rc;
60288   if( p->pDestDb ){
60289     sqlite3Error(p->pDestDb, rc, 0);
60290 
60291     /* Exit the mutexes and free the backup context structure. */
60292     sqlite3LeaveMutexAndCloseZombie(p->pDestDb);
60293   }
60294   sqlite3BtreeLeave(p->pSrc);
60295   if( p->pDestDb ){
60296     /* EVIDENCE-OF: R-64852-21591 The sqlite3_backup object is created by a
60297     ** call to sqlite3_backup_init() and is destroyed by a call to
60298     ** sqlite3_backup_finish(). */
60299     sqlite3_free(p);
60300   }
60301   sqlite3LeaveMutexAndCloseZombie(pSrcDb);
60302   return rc;
60303 }
60304 
60305 /*
60306 ** Return the number of pages still to be backed up as of the most recent
60307 ** call to sqlite3_backup_step().
60308 */
60309 SQLITE_API int sqlite3_backup_remaining(sqlite3_backup *p){
60310   return p->nRemaining;
60311 }
60312 
60313 /*
60314 ** Return the total number of pages in the source database as of the most
60315 ** recent call to sqlite3_backup_step().
60316 */
60317 SQLITE_API int sqlite3_backup_pagecount(sqlite3_backup *p){
60318   return p->nPagecount;
60319 }
60320 
60321 /*
60322 ** This function is called after the contents of page iPage of the
60323 ** source database have been modified. If page iPage has already been
60324 ** copied into the destination database, then the data written to the
60325 ** destination is now invalidated. The destination copy of iPage needs
60326 ** to be updated with the new data before the backup operation is
60327 ** complete.
60328 **
60329 ** It is assumed that the mutex associated with the BtShared object
60330 ** corresponding to the source database is held when this function is
60331 ** called.
60332 */
60333 SQLITE_PRIVATE void sqlite3BackupUpdate(sqlite3_backup *pBackup, Pgno iPage, const u8 *aData){
60334   sqlite3_backup *p;                   /* Iterator variable */
60335   for(p=pBackup; p; p=p->pNext){
60336     assert( sqlite3_mutex_held(p->pSrc->pBt->mutex) );
60337     if( !isFatalError(p->rc) && iPage<p->iNext ){
60338       /* The backup process p has already copied page iPage. But now it
60339       ** has been modified by a transaction on the source pager. Copy
60340       ** the new data into the backup.
60341       */
60342       int rc;
60343       assert( p->pDestDb );
60344       sqlite3_mutex_enter(p->pDestDb->mutex);
60345       rc = backupOnePage(p, iPage, aData, 1);
60346       sqlite3_mutex_leave(p->pDestDb->mutex);
60347       assert( rc!=SQLITE_BUSY && rc!=SQLITE_LOCKED );
60348       if( rc!=SQLITE_OK ){
60349         p->rc = rc;
60350       }
60351     }
60352   }
60353 }
60354 
60355 /*
60356 ** Restart the backup process. This is called when the pager layer
60357 ** detects that the database has been modified by an external database
60358 ** connection. In this case there is no way of knowing which of the
60359 ** pages that have been copied into the destination database are still
60360 ** valid and which are not, so the entire process needs to be restarted.
60361 **
60362 ** It is assumed that the mutex associated with the BtShared object
60363 ** corresponding to the source database is held when this function is
60364 ** called.
60365 */
60366 SQLITE_PRIVATE void sqlite3BackupRestart(sqlite3_backup *pBackup){
60367   sqlite3_backup *p;                   /* Iterator variable */
60368   for(p=pBackup; p; p=p->pNext){
60369     assert( sqlite3_mutex_held(p->pSrc->pBt->mutex) );
60370     p->iNext = 1;
60371   }
60372 }
60373 
60374 #ifndef SQLITE_OMIT_VACUUM
60375 /*
60376 ** Copy the complete content of pBtFrom into pBtTo.  A transaction
60377 ** must be active for both files.
60378 **
60379 ** The size of file pTo may be reduced by this operation. If anything
60380 ** goes wrong, the transaction on pTo is rolled back. If successful, the
60381 ** transaction is committed before returning.
60382 */
60383 SQLITE_PRIVATE int sqlite3BtreeCopyFile(Btree *pTo, Btree *pFrom){
60384   int rc;
60385   sqlite3_file *pFd;              /* File descriptor for database pTo */
60386   sqlite3_backup b;
60387   sqlite3BtreeEnter(pTo);
60388   sqlite3BtreeEnter(pFrom);
60389 
60390   assert( sqlite3BtreeIsInTrans(pTo) );
60391   pFd = sqlite3PagerFile(sqlite3BtreePager(pTo));
60392   if( pFd->pMethods ){
60393     i64 nByte = sqlite3BtreeGetPageSize(pFrom)*(i64)sqlite3BtreeLastPage(pFrom);
60394     rc = sqlite3OsFileControl(pFd, SQLITE_FCNTL_OVERWRITE, &nByte);
60395     if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK;
60396     if( rc ) goto copy_finished;
60397   }
60398 
60399   /* Set up an sqlite3_backup object. sqlite3_backup.pDestDb must be set
60400   ** to 0. This is used by the implementations of sqlite3_backup_step()
60401   ** and sqlite3_backup_finish() to detect that they are being called
60402   ** from this function, not directly by the user.
60403   */
60404   memset(&b, 0, sizeof(b));
60405   b.pSrcDb = pFrom->db;
60406   b.pSrc = pFrom;
60407   b.pDest = pTo;
60408   b.iNext = 1;
60409 
60410   /* 0x7FFFFFFF is the hard limit for the number of pages in a database
60411   ** file. By passing this as the number of pages to copy to
60412   ** sqlite3_backup_step(), we can guarantee that the copy finishes
60413   ** within a single call (unless an error occurs). The assert() statement
60414   ** checks this assumption - (p->rc) should be set to either SQLITE_DONE
60415   ** or an error code.
60416   */
60417   sqlite3_backup_step(&b, 0x7FFFFFFF);
60418   assert( b.rc!=SQLITE_OK );
60419   rc = sqlite3_backup_finish(&b);
60420   if( rc==SQLITE_OK ){
60421     pTo->pBt->btsFlags &= ~BTS_PAGESIZE_FIXED;
60422   }else{
60423     sqlite3PagerClearCache(sqlite3BtreePager(b.pDest));
60424   }
60425 
60426   assert( sqlite3BtreeIsInTrans(pTo)==0 );
60427 copy_finished:
60428   sqlite3BtreeLeave(pFrom);
60429   sqlite3BtreeLeave(pTo);
60430   return rc;
60431 }
60432 #endif /* SQLITE_OMIT_VACUUM */
60433 
60434 /************** End of backup.c **********************************************/
60435 /************** Begin file vdbemem.c *****************************************/
60436 /*
60437 ** 2004 May 26
60438 **
60439 ** The author disclaims copyright to this source code.  In place of
60440 ** a legal notice, here is a blessing:
60441 **
60442 **    May you do good and not evil.
60443 **    May you find forgiveness for yourself and forgive others.
60444 **    May you share freely, never taking more than you give.
60445 **
60446 *************************************************************************
60447 **
60448 ** This file contains code use to manipulate "Mem" structure.  A "Mem"
60449 ** stores a single value in the VDBE.  Mem is an opaque structure visible
60450 ** only within the VDBE.  Interface routines refer to a Mem using the
60451 ** name sqlite_value
60452 */
60453 
60454 #ifdef SQLITE_DEBUG
60455 /*
60456 ** Check invariants on a Mem object.
60457 **
60458 ** This routine is intended for use inside of assert() statements, like
60459 ** this:    assert( sqlite3VdbeCheckMemInvariants(pMem) );
60460 */
60461 SQLITE_PRIVATE int sqlite3VdbeCheckMemInvariants(Mem *p){
60462   /* The MEM_Dyn bit is set if and only if Mem.xDel is a non-NULL destructor
60463   ** function for Mem.z
60464   */
60465   assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 );
60466   assert( (p->flags & MEM_Dyn)!=0 || p->xDel==0 );
60467 
60468   /* If p holds a string or blob, the Mem.z must point to exactly
60469   ** one of the following:
60470   **
60471   **   (1) Memory in Mem.zMalloc and managed by the Mem object
60472   **   (2) Memory to be freed using Mem.xDel
60473   **   (3) An ephermal string or blob
60474   **   (4) A static string or blob
60475   */
60476   if( (p->flags & (MEM_Str|MEM_Blob)) && p->z!=0 ){
60477     assert(
60478       ((p->z==p->zMalloc)? 1 : 0) +
60479       ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
60480       ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
60481       ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1
60482     );
60483   }
60484 
60485   return 1;
60486 }
60487 #endif
60488 
60489 
60490 /*
60491 ** If pMem is an object with a valid string representation, this routine
60492 ** ensures the internal encoding for the string representation is
60493 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
60494 **
60495 ** If pMem is not a string object, or the encoding of the string
60496 ** representation is already stored using the requested encoding, then this
60497 ** routine is a no-op.
60498 **
60499 ** SQLITE_OK is returned if the conversion is successful (or not required).
60500 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion
60501 ** between formats.
60502 */
60503 SQLITE_PRIVATE int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){
60504 #ifndef SQLITE_OMIT_UTF16
60505   int rc;
60506 #endif
60507   assert( (pMem->flags&MEM_RowSet)==0 );
60508   assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE
60509            || desiredEnc==SQLITE_UTF16BE );
60510   if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){
60511     return SQLITE_OK;
60512   }
60513   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
60514 #ifdef SQLITE_OMIT_UTF16
60515   return SQLITE_ERROR;
60516 #else
60517 
60518   /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
60519   ** then the encoding of the value may not have changed.
60520   */
60521   rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc);
60522   assert(rc==SQLITE_OK    || rc==SQLITE_NOMEM);
60523   assert(rc==SQLITE_OK    || pMem->enc!=desiredEnc);
60524   assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc);
60525   return rc;
60526 #endif
60527 }
60528 
60529 /*
60530 ** Make sure pMem->z points to a writable allocation of at least
60531 ** min(n,32) bytes.
60532 **
60533 ** If the bPreserve argument is true, then copy of the content of
60534 ** pMem->z into the new allocation.  pMem must be either a string or
60535 ** blob if bPreserve is true.  If bPreserve is false, any prior content
60536 ** in pMem->z is discarded.
60537 */
60538 SQLITE_PRIVATE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){
60539   assert( sqlite3VdbeCheckMemInvariants(pMem) );
60540   assert( (pMem->flags&MEM_RowSet)==0 );
60541 
60542   /* If the bPreserve flag is set to true, then the memory cell must already
60543   ** contain a valid string or blob value.  */
60544   assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) );
60545   testcase( bPreserve && pMem->z==0 );
60546 
60547   if( pMem->zMalloc==0 || sqlite3DbMallocSize(pMem->db, pMem->zMalloc)<n ){
60548     if( n<32 ) n = 32;
60549     if( bPreserve && pMem->z==pMem->zMalloc ){
60550       pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
60551       bPreserve = 0;
60552     }else{
60553       sqlite3DbFree(pMem->db, pMem->zMalloc);
60554       pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
60555     }
60556     if( pMem->zMalloc==0 ){
60557       VdbeMemRelease(pMem);
60558       pMem->z = 0;
60559       pMem->flags = MEM_Null;
60560       return SQLITE_NOMEM;
60561     }
60562   }
60563 
60564   if( pMem->z && bPreserve && pMem->z!=pMem->zMalloc ){
60565     memcpy(pMem->zMalloc, pMem->z, pMem->n);
60566   }
60567   if( (pMem->flags&MEM_Dyn)!=0 ){
60568     assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC );
60569     pMem->xDel((void *)(pMem->z));
60570   }
60571 
60572   pMem->z = pMem->zMalloc;
60573   pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static);
60574   pMem->xDel = 0;
60575   return SQLITE_OK;
60576 }
60577 
60578 /*
60579 ** Make the given Mem object MEM_Dyn.  In other words, make it so
60580 ** that any TEXT or BLOB content is stored in memory obtained from
60581 ** malloc().  In this way, we know that the memory is safe to be
60582 ** overwritten or altered.
60583 **
60584 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
60585 */
60586 SQLITE_PRIVATE int sqlite3VdbeMemMakeWriteable(Mem *pMem){
60587   int f;
60588   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
60589   assert( (pMem->flags&MEM_RowSet)==0 );
60590   ExpandBlob(pMem);
60591   f = pMem->flags;
60592   if( (f&(MEM_Str|MEM_Blob)) && pMem->z!=pMem->zMalloc ){
60593     if( sqlite3VdbeMemGrow(pMem, pMem->n + 2, 1) ){
60594       return SQLITE_NOMEM;
60595     }
60596     pMem->z[pMem->n] = 0;
60597     pMem->z[pMem->n+1] = 0;
60598     pMem->flags |= MEM_Term;
60599 #ifdef SQLITE_DEBUG
60600     pMem->pScopyFrom = 0;
60601 #endif
60602   }
60603 
60604   return SQLITE_OK;
60605 }
60606 
60607 /*
60608 ** If the given Mem* has a zero-filled tail, turn it into an ordinary
60609 ** blob stored in dynamically allocated space.
60610 */
60611 #ifndef SQLITE_OMIT_INCRBLOB
60612 SQLITE_PRIVATE int sqlite3VdbeMemExpandBlob(Mem *pMem){
60613   if( pMem->flags & MEM_Zero ){
60614     int nByte;
60615     assert( pMem->flags&MEM_Blob );
60616     assert( (pMem->flags&MEM_RowSet)==0 );
60617     assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
60618 
60619     /* Set nByte to the number of bytes required to store the expanded blob. */
60620     nByte = pMem->n + pMem->u.nZero;
60621     if( nByte<=0 ){
60622       nByte = 1;
60623     }
60624     if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){
60625       return SQLITE_NOMEM;
60626     }
60627 
60628     memset(&pMem->z[pMem->n], 0, pMem->u.nZero);
60629     pMem->n += pMem->u.nZero;
60630     pMem->flags &= ~(MEM_Zero|MEM_Term);
60631   }
60632   return SQLITE_OK;
60633 }
60634 #endif
60635 
60636 
60637 /*
60638 ** Make sure the given Mem is \u0000 terminated.
60639 */
60640 SQLITE_PRIVATE int sqlite3VdbeMemNulTerminate(Mem *pMem){
60641   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
60642   if( (pMem->flags & MEM_Term)!=0 || (pMem->flags & MEM_Str)==0 ){
60643     return SQLITE_OK;   /* Nothing to do */
60644   }
60645   if( sqlite3VdbeMemGrow(pMem, pMem->n+2, 1) ){
60646     return SQLITE_NOMEM;
60647   }
60648   pMem->z[pMem->n] = 0;
60649   pMem->z[pMem->n+1] = 0;
60650   pMem->flags |= MEM_Term;
60651   return SQLITE_OK;
60652 }
60653 
60654 /*
60655 ** Add MEM_Str to the set of representations for the given Mem.  Numbers
60656 ** are converted using sqlite3_snprintf().  Converting a BLOB to a string
60657 ** is a no-op.
60658 **
60659 ** Existing representations MEM_Int and MEM_Real are *not* invalidated.
60660 **
60661 ** A MEM_Null value will never be passed to this function. This function is
60662 ** used for converting values to text for returning to the user (i.e. via
60663 ** sqlite3_value_text()), or for ensuring that values to be used as btree
60664 ** keys are strings. In the former case a NULL pointer is returned the
60665 ** user and the later is an internal programming error.
60666 */
60667 SQLITE_PRIVATE int sqlite3VdbeMemStringify(Mem *pMem, int enc){
60668   int rc = SQLITE_OK;
60669   int fg = pMem->flags;
60670   const int nByte = 32;
60671 
60672   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
60673   assert( !(fg&MEM_Zero) );
60674   assert( !(fg&(MEM_Str|MEM_Blob)) );
60675   assert( fg&(MEM_Int|MEM_Real) );
60676   assert( (pMem->flags&MEM_RowSet)==0 );
60677   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
60678 
60679 
60680   if( sqlite3VdbeMemGrow(pMem, nByte, 0) ){
60681     return SQLITE_NOMEM;
60682   }
60683 
60684   /* For a Real or Integer, use sqlite3_mprintf() to produce the UTF-8
60685   ** string representation of the value. Then, if the required encoding
60686   ** is UTF-16le or UTF-16be do a translation.
60687   **
60688   ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16.
60689   */
60690   if( fg & MEM_Int ){
60691     sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i);
60692   }else{
60693     assert( fg & MEM_Real );
60694     sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->r);
60695   }
60696   pMem->n = sqlite3Strlen30(pMem->z);
60697   pMem->enc = SQLITE_UTF8;
60698   pMem->flags |= MEM_Str|MEM_Term;
60699   sqlite3VdbeChangeEncoding(pMem, enc);
60700   return rc;
60701 }
60702 
60703 /*
60704 ** Memory cell pMem contains the context of an aggregate function.
60705 ** This routine calls the finalize method for that function.  The
60706 ** result of the aggregate is stored back into pMem.
60707 **
60708 ** Return SQLITE_ERROR if the finalizer reports an error.  SQLITE_OK
60709 ** otherwise.
60710 */
60711 SQLITE_PRIVATE int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){
60712   int rc = SQLITE_OK;
60713   if( ALWAYS(pFunc && pFunc->xFinalize) ){
60714     sqlite3_context ctx;
60715     assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef );
60716     assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
60717     memset(&ctx, 0, sizeof(ctx));
60718     ctx.s.flags = MEM_Null;
60719     ctx.s.db = pMem->db;
60720     ctx.pMem = pMem;
60721     ctx.pFunc = pFunc;
60722     pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */
60723     assert( 0==(pMem->flags&MEM_Dyn) && !pMem->xDel );
60724     sqlite3DbFree(pMem->db, pMem->zMalloc);
60725     memcpy(pMem, &ctx.s, sizeof(ctx.s));
60726     rc = ctx.isError;
60727   }
60728   return rc;
60729 }
60730 
60731 /*
60732 ** If the memory cell contains a string value that must be freed by
60733 ** invoking an external callback, free it now. Calling this function
60734 ** does not free any Mem.zMalloc buffer.
60735 */
60736 SQLITE_PRIVATE void sqlite3VdbeMemReleaseExternal(Mem *p){
60737   assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );
60738   if( p->flags&MEM_Agg ){
60739     sqlite3VdbeMemFinalize(p, p->u.pDef);
60740     assert( (p->flags & MEM_Agg)==0 );
60741     sqlite3VdbeMemRelease(p);
60742   }else if( p->flags&MEM_Dyn ){
60743     assert( (p->flags&MEM_RowSet)==0 );
60744     assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 );
60745     p->xDel((void *)p->z);
60746     p->xDel = 0;
60747   }else if( p->flags&MEM_RowSet ){
60748     sqlite3RowSetClear(p->u.pRowSet);
60749   }else if( p->flags&MEM_Frame ){
60750     sqlite3VdbeMemSetNull(p);
60751   }
60752 }
60753 
60754 /*
60755 ** Release any memory held by the Mem. This may leave the Mem in an
60756 ** inconsistent state, for example with (Mem.z==0) and
60757 ** (Mem.flags==MEM_Str).
60758 */
60759 SQLITE_PRIVATE void sqlite3VdbeMemRelease(Mem *p){
60760   assert( sqlite3VdbeCheckMemInvariants(p) );
60761   VdbeMemRelease(p);
60762   if( p->zMalloc ){
60763     sqlite3DbFree(p->db, p->zMalloc);
60764     p->zMalloc = 0;
60765   }
60766   p->z = 0;
60767   assert( p->xDel==0 );  /* Zeroed by VdbeMemRelease() above */
60768 }
60769 
60770 /*
60771 ** Convert a 64-bit IEEE double into a 64-bit signed integer.
60772 ** If the double is out of range of a 64-bit signed integer then
60773 ** return the closest available 64-bit signed integer.
60774 */
60775 static i64 doubleToInt64(double r){
60776 #ifdef SQLITE_OMIT_FLOATING_POINT
60777   /* When floating-point is omitted, double and int64 are the same thing */
60778   return r;
60779 #else
60780   /*
60781   ** Many compilers we encounter do not define constants for the
60782   ** minimum and maximum 64-bit integers, or they define them
60783   ** inconsistently.  And many do not understand the "LL" notation.
60784   ** So we define our own static constants here using nothing
60785   ** larger than a 32-bit integer constant.
60786   */
60787   static const i64 maxInt = LARGEST_INT64;
60788   static const i64 minInt = SMALLEST_INT64;
60789 
60790   if( r<=(double)minInt ){
60791     return minInt;
60792   }else if( r>=(double)maxInt ){
60793     return maxInt;
60794   }else{
60795     return (i64)r;
60796   }
60797 #endif
60798 }
60799 
60800 /*
60801 ** Return some kind of integer value which is the best we can do
60802 ** at representing the value that *pMem describes as an integer.
60803 ** If pMem is an integer, then the value is exact.  If pMem is
60804 ** a floating-point then the value returned is the integer part.
60805 ** If pMem is a string or blob, then we make an attempt to convert
60806 ** it into a integer and return that.  If pMem represents an
60807 ** an SQL-NULL value, return 0.
60808 **
60809 ** If pMem represents a string value, its encoding might be changed.
60810 */
60811 SQLITE_PRIVATE i64 sqlite3VdbeIntValue(Mem *pMem){
60812   int flags;
60813   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
60814   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
60815   flags = pMem->flags;
60816   if( flags & MEM_Int ){
60817     return pMem->u.i;
60818   }else if( flags & MEM_Real ){
60819     return doubleToInt64(pMem->r);
60820   }else if( flags & (MEM_Str|MEM_Blob) ){
60821     i64 value = 0;
60822     assert( pMem->z || pMem->n==0 );
60823     testcase( pMem->z==0 );
60824     sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc);
60825     return value;
60826   }else{
60827     return 0;
60828   }
60829 }
60830 
60831 /*
60832 ** Return the best representation of pMem that we can get into a
60833 ** double.  If pMem is already a double or an integer, return its
60834 ** value.  If it is a string or blob, try to convert it to a double.
60835 ** If it is a NULL, return 0.0.
60836 */
60837 SQLITE_PRIVATE double sqlite3VdbeRealValue(Mem *pMem){
60838   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
60839   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
60840   if( pMem->flags & MEM_Real ){
60841     return pMem->r;
60842   }else if( pMem->flags & MEM_Int ){
60843     return (double)pMem->u.i;
60844   }else if( pMem->flags & (MEM_Str|MEM_Blob) ){
60845     /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
60846     double val = (double)0;
60847     sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc);
60848     return val;
60849   }else{
60850     /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
60851     return (double)0;
60852   }
60853 }
60854 
60855 /*
60856 ** The MEM structure is already a MEM_Real.  Try to also make it a
60857 ** MEM_Int if we can.
60858 */
60859 SQLITE_PRIVATE void sqlite3VdbeIntegerAffinity(Mem *pMem){
60860   assert( pMem->flags & MEM_Real );
60861   assert( (pMem->flags & MEM_RowSet)==0 );
60862   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
60863   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
60864 
60865   pMem->u.i = doubleToInt64(pMem->r);
60866 
60867   /* Only mark the value as an integer if
60868   **
60869   **    (1) the round-trip conversion real->int->real is a no-op, and
60870   **    (2) The integer is neither the largest nor the smallest
60871   **        possible integer (ticket #3922)
60872   **
60873   ** The second and third terms in the following conditional enforces
60874   ** the second condition under the assumption that addition overflow causes
60875   ** values to wrap around.
60876   */
60877   if( pMem->r==(double)pMem->u.i
60878    && pMem->u.i>SMALLEST_INT64
60879    && pMem->u.i<LARGEST_INT64
60880   ){
60881     pMem->flags |= MEM_Int;
60882   }
60883 }
60884 
60885 /*
60886 ** Convert pMem to type integer.  Invalidate any prior representations.
60887 */
60888 SQLITE_PRIVATE int sqlite3VdbeMemIntegerify(Mem *pMem){
60889   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
60890   assert( (pMem->flags & MEM_RowSet)==0 );
60891   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
60892 
60893   pMem->u.i = sqlite3VdbeIntValue(pMem);
60894   MemSetTypeFlag(pMem, MEM_Int);
60895   return SQLITE_OK;
60896 }
60897 
60898 /*
60899 ** Convert pMem so that it is of type MEM_Real.
60900 ** Invalidate any prior representations.
60901 */
60902 SQLITE_PRIVATE int sqlite3VdbeMemRealify(Mem *pMem){
60903   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
60904   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
60905 
60906   pMem->r = sqlite3VdbeRealValue(pMem);
60907   MemSetTypeFlag(pMem, MEM_Real);
60908   return SQLITE_OK;
60909 }
60910 
60911 /*
60912 ** Convert pMem so that it has types MEM_Real or MEM_Int or both.
60913 ** Invalidate any prior representations.
60914 **
60915 ** Every effort is made to force the conversion, even if the input
60916 ** is a string that does not look completely like a number.  Convert
60917 ** as much of the string as we can and ignore the rest.
60918 */
60919 SQLITE_PRIVATE int sqlite3VdbeMemNumerify(Mem *pMem){
60920   if( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 ){
60921     assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 );
60922     assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
60923     if( 0==sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc) ){
60924       MemSetTypeFlag(pMem, MEM_Int);
60925     }else{
60926       pMem->r = sqlite3VdbeRealValue(pMem);
60927       MemSetTypeFlag(pMem, MEM_Real);
60928       sqlite3VdbeIntegerAffinity(pMem);
60929     }
60930   }
60931   assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))!=0 );
60932   pMem->flags &= ~(MEM_Str|MEM_Blob);
60933   return SQLITE_OK;
60934 }
60935 
60936 /*
60937 ** Delete any previous value and set the value stored in *pMem to NULL.
60938 */
60939 SQLITE_PRIVATE void sqlite3VdbeMemSetNull(Mem *pMem){
60940   if( pMem->flags & MEM_Frame ){
60941     VdbeFrame *pFrame = pMem->u.pFrame;
60942     pFrame->pParent = pFrame->v->pDelFrame;
60943     pFrame->v->pDelFrame = pFrame;
60944   }
60945   if( pMem->flags & MEM_RowSet ){
60946     sqlite3RowSetClear(pMem->u.pRowSet);
60947   }
60948   MemSetTypeFlag(pMem, MEM_Null);
60949 }
60950 SQLITE_PRIVATE void sqlite3ValueSetNull(sqlite3_value *p){
60951   sqlite3VdbeMemSetNull((Mem*)p);
60952 }
60953 
60954 /*
60955 ** Delete any previous value and set the value to be a BLOB of length
60956 ** n containing all zeros.
60957 */
60958 SQLITE_PRIVATE void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
60959   sqlite3VdbeMemRelease(pMem);
60960   pMem->flags = MEM_Blob|MEM_Zero;
60961   pMem->n = 0;
60962   if( n<0 ) n = 0;
60963   pMem->u.nZero = n;
60964   pMem->enc = SQLITE_UTF8;
60965 
60966 #ifdef SQLITE_OMIT_INCRBLOB
60967   sqlite3VdbeMemGrow(pMem, n, 0);
60968   if( pMem->z ){
60969     pMem->n = n;
60970     memset(pMem->z, 0, n);
60971   }
60972 #endif
60973 }
60974 
60975 /*
60976 ** Delete any previous value and set the value stored in *pMem to val,
60977 ** manifest type INTEGER.
60978 */
60979 SQLITE_PRIVATE void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){
60980   sqlite3VdbeMemRelease(pMem);
60981   pMem->u.i = val;
60982   pMem->flags = MEM_Int;
60983 }
60984 
60985 #ifndef SQLITE_OMIT_FLOATING_POINT
60986 /*
60987 ** Delete any previous value and set the value stored in *pMem to val,
60988 ** manifest type REAL.
60989 */
60990 SQLITE_PRIVATE void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
60991   if( sqlite3IsNaN(val) ){
60992     sqlite3VdbeMemSetNull(pMem);
60993   }else{
60994     sqlite3VdbeMemRelease(pMem);
60995     pMem->r = val;
60996     pMem->flags = MEM_Real;
60997   }
60998 }
60999 #endif
61000 
61001 /*
61002 ** Delete any previous value and set the value of pMem to be an
61003 ** empty boolean index.
61004 */
61005 SQLITE_PRIVATE void sqlite3VdbeMemSetRowSet(Mem *pMem){
61006   sqlite3 *db = pMem->db;
61007   assert( db!=0 );
61008   assert( (pMem->flags & MEM_RowSet)==0 );
61009   sqlite3VdbeMemRelease(pMem);
61010   pMem->zMalloc = sqlite3DbMallocRaw(db, 64);
61011   if( db->mallocFailed ){
61012     pMem->flags = MEM_Null;
61013   }else{
61014     assert( pMem->zMalloc );
61015     pMem->u.pRowSet = sqlite3RowSetInit(db, pMem->zMalloc,
61016                                        sqlite3DbMallocSize(db, pMem->zMalloc));
61017     assert( pMem->u.pRowSet!=0 );
61018     pMem->flags = MEM_RowSet;
61019   }
61020 }
61021 
61022 /*
61023 ** Return true if the Mem object contains a TEXT or BLOB that is
61024 ** too large - whose size exceeds SQLITE_MAX_LENGTH.
61025 */
61026 SQLITE_PRIVATE int sqlite3VdbeMemTooBig(Mem *p){
61027   assert( p->db!=0 );
61028   if( p->flags & (MEM_Str|MEM_Blob) ){
61029     int n = p->n;
61030     if( p->flags & MEM_Zero ){
61031       n += p->u.nZero;
61032     }
61033     return n>p->db->aLimit[SQLITE_LIMIT_LENGTH];
61034   }
61035   return 0;
61036 }
61037 
61038 #ifdef SQLITE_DEBUG
61039 /*
61040 ** This routine prepares a memory cell for modication by breaking
61041 ** its link to a shallow copy and by marking any current shallow
61042 ** copies of this cell as invalid.
61043 **
61044 ** This is used for testing and debugging only - to make sure shallow
61045 ** copies are not misused.
61046 */
61047 SQLITE_PRIVATE void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){
61048   int i;
61049   Mem *pX;
61050   for(i=1, pX=&pVdbe->aMem[1]; i<=pVdbe->nMem; i++, pX++){
61051     if( pX->pScopyFrom==pMem ){
61052       pX->flags |= MEM_Undefined;
61053       pX->pScopyFrom = 0;
61054     }
61055   }
61056   pMem->pScopyFrom = 0;
61057 }
61058 #endif /* SQLITE_DEBUG */
61059 
61060 /*
61061 ** Size of struct Mem not including the Mem.zMalloc member.
61062 */
61063 #define MEMCELLSIZE offsetof(Mem,zMalloc)
61064 
61065 /*
61066 ** Make an shallow copy of pFrom into pTo.  Prior contents of
61067 ** pTo are freed.  The pFrom->z field is not duplicated.  If
61068 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
61069 ** and flags gets srcType (either MEM_Ephem or MEM_Static).
61070 */
61071 SQLITE_PRIVATE void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
61072   assert( (pFrom->flags & MEM_RowSet)==0 );
61073   VdbeMemRelease(pTo);
61074   memcpy(pTo, pFrom, MEMCELLSIZE);
61075   pTo->xDel = 0;
61076   if( (pFrom->flags&MEM_Static)==0 ){
61077     pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem);
61078     assert( srcType==MEM_Ephem || srcType==MEM_Static );
61079     pTo->flags |= srcType;
61080   }
61081 }
61082 
61083 /*
61084 ** Make a full copy of pFrom into pTo.  Prior contents of pTo are
61085 ** freed before the copy is made.
61086 */
61087 SQLITE_PRIVATE int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
61088   int rc = SQLITE_OK;
61089 
61090   assert( (pFrom->flags & MEM_RowSet)==0 );
61091   VdbeMemRelease(pTo);
61092   memcpy(pTo, pFrom, MEMCELLSIZE);
61093   pTo->flags &= ~MEM_Dyn;
61094   pTo->xDel = 0;
61095 
61096   if( pTo->flags&(MEM_Str|MEM_Blob) ){
61097     if( 0==(pFrom->flags&MEM_Static) ){
61098       pTo->flags |= MEM_Ephem;
61099       rc = sqlite3VdbeMemMakeWriteable(pTo);
61100     }
61101   }
61102 
61103   return rc;
61104 }
61105 
61106 /*
61107 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is
61108 ** freed. If pFrom contains ephemeral data, a copy is made.
61109 **
61110 ** pFrom contains an SQL NULL when this routine returns.
61111 */
61112 SQLITE_PRIVATE void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){
61113   assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) );
61114   assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) );
61115   assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db );
61116 
61117   sqlite3VdbeMemRelease(pTo);
61118   memcpy(pTo, pFrom, sizeof(Mem));
61119   pFrom->flags = MEM_Null;
61120   pFrom->xDel = 0;
61121   pFrom->zMalloc = 0;
61122 }
61123 
61124 /*
61125 ** Change the value of a Mem to be a string or a BLOB.
61126 **
61127 ** The memory management strategy depends on the value of the xDel
61128 ** parameter. If the value passed is SQLITE_TRANSIENT, then the
61129 ** string is copied into a (possibly existing) buffer managed by the
61130 ** Mem structure. Otherwise, any existing buffer is freed and the
61131 ** pointer copied.
61132 **
61133 ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH
61134 ** size limit) then no memory allocation occurs.  If the string can be
61135 ** stored without allocating memory, then it is.  If a memory allocation
61136 ** is required to store the string, then value of pMem is unchanged.  In
61137 ** either case, SQLITE_TOOBIG is returned.
61138 */
61139 SQLITE_PRIVATE int sqlite3VdbeMemSetStr(
61140   Mem *pMem,          /* Memory cell to set to string value */
61141   const char *z,      /* String pointer */
61142   int n,              /* Bytes in string, or negative */
61143   u8 enc,             /* Encoding of z.  0 for BLOBs */
61144   void (*xDel)(void*) /* Destructor function */
61145 ){
61146   int nByte = n;      /* New value for pMem->n */
61147   int iLimit;         /* Maximum allowed string or blob size */
61148   u16 flags = 0;      /* New value for pMem->flags */
61149 
61150   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
61151   assert( (pMem->flags & MEM_RowSet)==0 );
61152 
61153   /* If z is a NULL pointer, set pMem to contain an SQL NULL. */
61154   if( !z ){
61155     sqlite3VdbeMemSetNull(pMem);
61156     return SQLITE_OK;
61157   }
61158 
61159   if( pMem->db ){
61160     iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH];
61161   }else{
61162     iLimit = SQLITE_MAX_LENGTH;
61163   }
61164   flags = (enc==0?MEM_Blob:MEM_Str);
61165   if( nByte<0 ){
61166     assert( enc!=0 );
61167     if( enc==SQLITE_UTF8 ){
61168       for(nByte=0; nByte<=iLimit && z[nByte]; nByte++){}
61169     }else{
61170       for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){}
61171     }
61172     flags |= MEM_Term;
61173   }
61174 
61175   /* The following block sets the new values of Mem.z and Mem.xDel. It
61176   ** also sets a flag in local variable "flags" to indicate the memory
61177   ** management (one of MEM_Dyn or MEM_Static).
61178   */
61179   if( xDel==SQLITE_TRANSIENT ){
61180     int nAlloc = nByte;
61181     if( flags&MEM_Term ){
61182       nAlloc += (enc==SQLITE_UTF8?1:2);
61183     }
61184     if( nByte>iLimit ){
61185       return SQLITE_TOOBIG;
61186     }
61187     if( sqlite3VdbeMemGrow(pMem, nAlloc, 0) ){
61188       return SQLITE_NOMEM;
61189     }
61190     memcpy(pMem->z, z, nAlloc);
61191   }else if( xDel==SQLITE_DYNAMIC ){
61192     sqlite3VdbeMemRelease(pMem);
61193     pMem->zMalloc = pMem->z = (char *)z;
61194     pMem->xDel = 0;
61195   }else{
61196     sqlite3VdbeMemRelease(pMem);
61197     pMem->z = (char *)z;
61198     pMem->xDel = xDel;
61199     flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn);
61200   }
61201 
61202   pMem->n = nByte;
61203   pMem->flags = flags;
61204   pMem->enc = (enc==0 ? SQLITE_UTF8 : enc);
61205 
61206 #ifndef SQLITE_OMIT_UTF16
61207   if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){
61208     return SQLITE_NOMEM;
61209   }
61210 #endif
61211 
61212   if( nByte>iLimit ){
61213     return SQLITE_TOOBIG;
61214   }
61215 
61216   return SQLITE_OK;
61217 }
61218 
61219 /*
61220 ** Move data out of a btree key or data field and into a Mem structure.
61221 ** The data or key is taken from the entry that pCur is currently pointing
61222 ** to.  offset and amt determine what portion of the data or key to retrieve.
61223 ** key is true to get the key or false to get data.  The result is written
61224 ** into the pMem element.
61225 **
61226 ** The pMem structure is assumed to be uninitialized.  Any prior content
61227 ** is overwritten without being freed.
61228 **
61229 ** If this routine fails for any reason (malloc returns NULL or unable
61230 ** to read from the disk) then the pMem is left in an inconsistent state.
61231 */
61232 SQLITE_PRIVATE int sqlite3VdbeMemFromBtree(
61233   BtCursor *pCur,   /* Cursor pointing at record to retrieve. */
61234   u32 offset,       /* Offset from the start of data to return bytes from. */
61235   u32 amt,          /* Number of bytes to return. */
61236   int key,          /* If true, retrieve from the btree key, not data. */
61237   Mem *pMem         /* OUT: Return data in this Mem structure. */
61238 ){
61239   char *zData;        /* Data from the btree layer */
61240   u32 available = 0;  /* Number of bytes available on the local btree page */
61241   int rc = SQLITE_OK; /* Return code */
61242 
61243   assert( sqlite3BtreeCursorIsValid(pCur) );
61244 
61245   /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert()
61246   ** that both the BtShared and database handle mutexes are held. */
61247   assert( (pMem->flags & MEM_RowSet)==0 );
61248   if( key ){
61249     zData = (char *)sqlite3BtreeKeyFetch(pCur, &available);
61250   }else{
61251     zData = (char *)sqlite3BtreeDataFetch(pCur, &available);
61252   }
61253   assert( zData!=0 );
61254 
61255   if( offset+amt<=available ){
61256     sqlite3VdbeMemRelease(pMem);
61257     pMem->z = &zData[offset];
61258     pMem->flags = MEM_Blob|MEM_Ephem;
61259     pMem->n = (int)amt;
61260   }else if( SQLITE_OK==(rc = sqlite3VdbeMemGrow(pMem, amt+2, 0)) ){
61261     if( key ){
61262       rc = sqlite3BtreeKey(pCur, offset, amt, pMem->z);
61263     }else{
61264       rc = sqlite3BtreeData(pCur, offset, amt, pMem->z);
61265     }
61266     if( rc==SQLITE_OK ){
61267       pMem->z[amt] = 0;
61268       pMem->z[amt+1] = 0;
61269       pMem->flags = MEM_Blob|MEM_Term;
61270       pMem->n = (int)amt;
61271     }else{
61272       sqlite3VdbeMemRelease(pMem);
61273     }
61274   }
61275 
61276   return rc;
61277 }
61278 
61279 /* This function is only available internally, it is not part of the
61280 ** external API. It works in a similar way to sqlite3_value_text(),
61281 ** except the data returned is in the encoding specified by the second
61282 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
61283 ** SQLITE_UTF8.
61284 **
61285 ** (2006-02-16:)  The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
61286 ** If that is the case, then the result must be aligned on an even byte
61287 ** boundary.
61288 */
61289 SQLITE_PRIVATE const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){
61290   if( !pVal ) return 0;
61291 
61292   assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
61293   assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
61294   assert( (pVal->flags & MEM_RowSet)==0 );
61295 
61296   if( pVal->flags&MEM_Null ){
61297     return 0;
61298   }
61299   assert( (MEM_Blob>>3) == MEM_Str );
61300   pVal->flags |= (pVal->flags & MEM_Blob)>>3;
61301   ExpandBlob(pVal);
61302   if( pVal->flags&MEM_Str ){
61303     sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED);
61304     if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){
61305       assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 );
61306       if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){
61307         return 0;
61308       }
61309     }
61310     sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */
61311   }else{
61312     assert( (pVal->flags&MEM_Blob)==0 );
61313     sqlite3VdbeMemStringify(pVal, enc);
61314     assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) );
61315   }
61316   assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0
61317               || pVal->db->mallocFailed );
61318   if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){
61319     return pVal->z;
61320   }else{
61321     return 0;
61322   }
61323 }
61324 
61325 /*
61326 ** Create a new sqlite3_value object.
61327 */
61328 SQLITE_PRIVATE sqlite3_value *sqlite3ValueNew(sqlite3 *db){
61329   Mem *p = sqlite3DbMallocZero(db, sizeof(*p));
61330   if( p ){
61331     p->flags = MEM_Null;
61332     p->db = db;
61333   }
61334   return p;
61335 }
61336 
61337 /*
61338 ** Context object passed by sqlite3Stat4ProbeSetValue() through to
61339 ** valueNew(). See comments above valueNew() for details.
61340 */
61341 struct ValueNewStat4Ctx {
61342   Parse *pParse;
61343   Index *pIdx;
61344   UnpackedRecord **ppRec;
61345   int iVal;
61346 };
61347 
61348 /*
61349 ** Allocate and return a pointer to a new sqlite3_value object. If
61350 ** the second argument to this function is NULL, the object is allocated
61351 ** by calling sqlite3ValueNew().
61352 **
61353 ** Otherwise, if the second argument is non-zero, then this function is
61354 ** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not
61355 ** already been allocated, allocate the UnpackedRecord structure that
61356 ** that function will return to its caller here. Then return a pointer
61357 ** an sqlite3_value within the UnpackedRecord.a[] array.
61358 */
61359 static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){
61360 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
61361   if( p ){
61362     UnpackedRecord *pRec = p->ppRec[0];
61363 
61364     if( pRec==0 ){
61365       Index *pIdx = p->pIdx;      /* Index being probed */
61366       int nByte;                  /* Bytes of space to allocate */
61367       int i;                      /* Counter variable */
61368       int nCol = pIdx->nColumn;   /* Number of index columns including rowid */
61369 
61370       nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord));
61371       pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte);
61372       if( pRec ){
61373         pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx);
61374         if( pRec->pKeyInfo ){
61375           assert( pRec->pKeyInfo->nField+pRec->pKeyInfo->nXField==nCol );
61376           assert( pRec->pKeyInfo->enc==ENC(db) );
61377           pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord)));
61378           for(i=0; i<nCol; i++){
61379             pRec->aMem[i].flags = MEM_Null;
61380             pRec->aMem[i].db = db;
61381           }
61382         }else{
61383           sqlite3DbFree(db, pRec);
61384           pRec = 0;
61385         }
61386       }
61387       if( pRec==0 ) return 0;
61388       p->ppRec[0] = pRec;
61389     }
61390 
61391     pRec->nField = p->iVal+1;
61392     return &pRec->aMem[p->iVal];
61393   }
61394 #else
61395   UNUSED_PARAMETER(p);
61396 #endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */
61397   return sqlite3ValueNew(db);
61398 }
61399 
61400 /*
61401 ** Extract a value from the supplied expression in the manner described
61402 ** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object
61403 ** using valueNew().
61404 **
61405 ** If pCtx is NULL and an error occurs after the sqlite3_value object
61406 ** has been allocated, it is freed before returning. Or, if pCtx is not
61407 ** NULL, it is assumed that the caller will free any allocated object
61408 ** in all cases.
61409 */
61410 static int valueFromExpr(
61411   sqlite3 *db,                    /* The database connection */
61412   Expr *pExpr,                    /* The expression to evaluate */
61413   u8 enc,                         /* Encoding to use */
61414   u8 affinity,                    /* Affinity to use */
61415   sqlite3_value **ppVal,          /* Write the new value here */
61416   struct ValueNewStat4Ctx *pCtx   /* Second argument for valueNew() */
61417 ){
61418   int op;
61419   char *zVal = 0;
61420   sqlite3_value *pVal = 0;
61421   int negInt = 1;
61422   const char *zNeg = "";
61423   int rc = SQLITE_OK;
61424 
61425   if( !pExpr ){
61426     *ppVal = 0;
61427     return SQLITE_OK;
61428   }
61429   op = pExpr->op;
61430   if( NEVER(op==TK_REGISTER) ) op = pExpr->op2;
61431 
61432   /* Handle negative integers in a single step.  This is needed in the
61433   ** case when the value is -9223372036854775808.
61434   */
61435   if( op==TK_UMINUS
61436    && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){
61437     pExpr = pExpr->pLeft;
61438     op = pExpr->op;
61439     negInt = -1;
61440     zNeg = "-";
61441   }
61442 
61443   if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
61444     pVal = valueNew(db, pCtx);
61445     if( pVal==0 ) goto no_mem;
61446     if( ExprHasProperty(pExpr, EP_IntValue) ){
61447       sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt);
61448     }else{
61449       zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken);
61450       if( zVal==0 ) goto no_mem;
61451       sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC);
61452     }
61453     if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_NONE ){
61454       sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8);
61455     }else{
61456       sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8);
61457     }
61458     if( pVal->flags & (MEM_Int|MEM_Real) ) pVal->flags &= ~MEM_Str;
61459     if( enc!=SQLITE_UTF8 ){
61460       rc = sqlite3VdbeChangeEncoding(pVal, enc);
61461     }
61462   }else if( op==TK_UMINUS ) {
61463     /* This branch happens for multiple negative signs.  Ex: -(-5) */
61464     if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal)
61465      && pVal!=0
61466     ){
61467       sqlite3VdbeMemNumerify(pVal);
61468       if( pVal->u.i==SMALLEST_INT64 ){
61469         pVal->flags &= ~MEM_Int;
61470         pVal->flags |= MEM_Real;
61471         pVal->r = (double)SMALLEST_INT64;
61472       }else{
61473         pVal->u.i = -pVal->u.i;
61474       }
61475       pVal->r = -pVal->r;
61476       sqlite3ValueApplyAffinity(pVal, affinity, enc);
61477     }
61478   }else if( op==TK_NULL ){
61479     pVal = valueNew(db, pCtx);
61480     if( pVal==0 ) goto no_mem;
61481   }
61482 #ifndef SQLITE_OMIT_BLOB_LITERAL
61483   else if( op==TK_BLOB ){
61484     int nVal;
61485     assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
61486     assert( pExpr->u.zToken[1]=='\'' );
61487     pVal = valueNew(db, pCtx);
61488     if( !pVal ) goto no_mem;
61489     zVal = &pExpr->u.zToken[2];
61490     nVal = sqlite3Strlen30(zVal)-1;
61491     assert( zVal[nVal]=='\'' );
61492     sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
61493                          0, SQLITE_DYNAMIC);
61494   }
61495 #endif
61496 
61497   *ppVal = pVal;
61498   return rc;
61499 
61500 no_mem:
61501   db->mallocFailed = 1;
61502   sqlite3DbFree(db, zVal);
61503   assert( *ppVal==0 );
61504 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
61505   if( pCtx==0 ) sqlite3ValueFree(pVal);
61506 #else
61507   assert( pCtx==0 ); sqlite3ValueFree(pVal);
61508 #endif
61509   return SQLITE_NOMEM;
61510 }
61511 
61512 /*
61513 ** Create a new sqlite3_value object, containing the value of pExpr.
61514 **
61515 ** This only works for very simple expressions that consist of one constant
61516 ** token (i.e. "5", "5.1", "'a string'"). If the expression can
61517 ** be converted directly into a value, then the value is allocated and
61518 ** a pointer written to *ppVal. The caller is responsible for deallocating
61519 ** the value by passing it to sqlite3ValueFree() later on. If the expression
61520 ** cannot be converted to a value, then *ppVal is set to NULL.
61521 */
61522 SQLITE_PRIVATE int sqlite3ValueFromExpr(
61523   sqlite3 *db,              /* The database connection */
61524   Expr *pExpr,              /* The expression to evaluate */
61525   u8 enc,                   /* Encoding to use */
61526   u8 affinity,              /* Affinity to use */
61527   sqlite3_value **ppVal     /* Write the new value here */
61528 ){
61529   return valueFromExpr(db, pExpr, enc, affinity, ppVal, 0);
61530 }
61531 
61532 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
61533 /*
61534 ** The implementation of the sqlite_record() function. This function accepts
61535 ** a single argument of any type. The return value is a formatted database
61536 ** record (a blob) containing the argument value.
61537 **
61538 ** This is used to convert the value stored in the 'sample' column of the
61539 ** sqlite_stat3 table to the record format SQLite uses internally.
61540 */
61541 static void recordFunc(
61542   sqlite3_context *context,
61543   int argc,
61544   sqlite3_value **argv
61545 ){
61546   const int file_format = 1;
61547   int iSerial;                    /* Serial type */
61548   int nSerial;                    /* Bytes of space for iSerial as varint */
61549   int nVal;                       /* Bytes of space required for argv[0] */
61550   int nRet;
61551   sqlite3 *db;
61552   u8 *aRet;
61553 
61554   UNUSED_PARAMETER( argc );
61555   iSerial = sqlite3VdbeSerialType(argv[0], file_format);
61556   nSerial = sqlite3VarintLen(iSerial);
61557   nVal = sqlite3VdbeSerialTypeLen(iSerial);
61558   db = sqlite3_context_db_handle(context);
61559 
61560   nRet = 1 + nSerial + nVal;
61561   aRet = sqlite3DbMallocRaw(db, nRet);
61562   if( aRet==0 ){
61563     sqlite3_result_error_nomem(context);
61564   }else{
61565     aRet[0] = nSerial+1;
61566     sqlite3PutVarint(&aRet[1], iSerial);
61567     sqlite3VdbeSerialPut(&aRet[1+nSerial], argv[0], iSerial);
61568     sqlite3_result_blob(context, aRet, nRet, SQLITE_TRANSIENT);
61569     sqlite3DbFree(db, aRet);
61570   }
61571 }
61572 
61573 /*
61574 ** Register built-in functions used to help read ANALYZE data.
61575 */
61576 SQLITE_PRIVATE void sqlite3AnalyzeFunctions(void){
61577   static SQLITE_WSD FuncDef aAnalyzeTableFuncs[] = {
61578     FUNCTION(sqlite_record,   1, 0, 0, recordFunc),
61579   };
61580   int i;
61581   FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions);
61582   FuncDef *aFunc = (FuncDef*)&GLOBAL(FuncDef, aAnalyzeTableFuncs);
61583   for(i=0; i<ArraySize(aAnalyzeTableFuncs); i++){
61584     sqlite3FuncDefInsert(pHash, &aFunc[i]);
61585   }
61586 }
61587 
61588 /*
61589 ** This function is used to allocate and populate UnpackedRecord
61590 ** structures intended to be compared against sample index keys stored
61591 ** in the sqlite_stat4 table.
61592 **
61593 ** A single call to this function attempts to populates field iVal (leftmost
61594 ** is 0 etc.) of the unpacked record with a value extracted from expression
61595 ** pExpr. Extraction of values is possible if:
61596 **
61597 **  * (pExpr==0). In this case the value is assumed to be an SQL NULL,
61598 **
61599 **  * The expression is a bound variable, and this is a reprepare, or
61600 **
61601 **  * The sqlite3ValueFromExpr() function is able to extract a value
61602 **    from the expression (i.e. the expression is a literal value).
61603 **
61604 ** If a value can be extracted, the affinity passed as the 5th argument
61605 ** is applied to it before it is copied into the UnpackedRecord. Output
61606 ** parameter *pbOk is set to true if a value is extracted, or false
61607 ** otherwise.
61608 **
61609 ** When this function is called, *ppRec must either point to an object
61610 ** allocated by an earlier call to this function, or must be NULL. If it
61611 ** is NULL and a value can be successfully extracted, a new UnpackedRecord
61612 ** is allocated (and *ppRec set to point to it) before returning.
61613 **
61614 ** Unless an error is encountered, SQLITE_OK is returned. It is not an
61615 ** error if a value cannot be extracted from pExpr. If an error does
61616 ** occur, an SQLite error code is returned.
61617 */
61618 SQLITE_PRIVATE int sqlite3Stat4ProbeSetValue(
61619   Parse *pParse,                  /* Parse context */
61620   Index *pIdx,                    /* Index being probed */
61621   UnpackedRecord **ppRec,         /* IN/OUT: Probe record */
61622   Expr *pExpr,                    /* The expression to extract a value from */
61623   u8 affinity,                    /* Affinity to use */
61624   int iVal,                       /* Array element to populate */
61625   int *pbOk                       /* OUT: True if value was extracted */
61626 ){
61627   int rc = SQLITE_OK;
61628   sqlite3_value *pVal = 0;
61629   sqlite3 *db = pParse->db;
61630 
61631 
61632   struct ValueNewStat4Ctx alloc;
61633   alloc.pParse = pParse;
61634   alloc.pIdx = pIdx;
61635   alloc.ppRec = ppRec;
61636   alloc.iVal = iVal;
61637 
61638   /* Skip over any TK_COLLATE nodes */
61639   pExpr = sqlite3ExprSkipCollate(pExpr);
61640 
61641   if( !pExpr ){
61642     pVal = valueNew(db, &alloc);
61643     if( pVal ){
61644       sqlite3VdbeMemSetNull((Mem*)pVal);
61645     }
61646   }else if( pExpr->op==TK_VARIABLE
61647         || NEVER(pExpr->op==TK_REGISTER && pExpr->op2==TK_VARIABLE)
61648   ){
61649     Vdbe *v;
61650     int iBindVar = pExpr->iColumn;
61651     sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar);
61652     if( (v = pParse->pReprepare)!=0 ){
61653       pVal = valueNew(db, &alloc);
61654       if( pVal ){
61655         rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]);
61656         if( rc==SQLITE_OK ){
61657           sqlite3ValueApplyAffinity(pVal, affinity, ENC(db));
61658         }
61659         pVal->db = pParse->db;
61660       }
61661     }
61662   }else{
61663     rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, &alloc);
61664   }
61665   *pbOk = (pVal!=0);
61666 
61667   assert( pVal==0 || pVal->db==db );
61668   return rc;
61669 }
61670 
61671 /*
61672 ** Unless it is NULL, the argument must be an UnpackedRecord object returned
61673 ** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes
61674 ** the object.
61675 */
61676 SQLITE_PRIVATE void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){
61677   if( pRec ){
61678     int i;
61679     int nCol = pRec->pKeyInfo->nField+pRec->pKeyInfo->nXField;
61680     Mem *aMem = pRec->aMem;
61681     sqlite3 *db = aMem[0].db;
61682     for(i=0; i<nCol; i++){
61683       sqlite3DbFree(db, aMem[i].zMalloc);
61684     }
61685     sqlite3KeyInfoUnref(pRec->pKeyInfo);
61686     sqlite3DbFree(db, pRec);
61687   }
61688 }
61689 #endif /* ifdef SQLITE_ENABLE_STAT4 */
61690 
61691 /*
61692 ** Change the string value of an sqlite3_value object
61693 */
61694 SQLITE_PRIVATE void sqlite3ValueSetStr(
61695   sqlite3_value *v,     /* Value to be set */
61696   int n,                /* Length of string z */
61697   const void *z,        /* Text of the new string */
61698   u8 enc,               /* Encoding to use */
61699   void (*xDel)(void*)   /* Destructor for the string */
61700 ){
61701   if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel);
61702 }
61703 
61704 /*
61705 ** Free an sqlite3_value object
61706 */
61707 SQLITE_PRIVATE void sqlite3ValueFree(sqlite3_value *v){
61708   if( !v ) return;
61709   sqlite3VdbeMemRelease((Mem *)v);
61710   sqlite3DbFree(((Mem*)v)->db, v);
61711 }
61712 
61713 /*
61714 ** Return the number of bytes in the sqlite3_value object assuming
61715 ** that it uses the encoding "enc"
61716 */
61717 SQLITE_PRIVATE int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){
61718   Mem *p = (Mem*)pVal;
61719   if( (p->flags & MEM_Blob)!=0 || sqlite3ValueText(pVal, enc) ){
61720     if( p->flags & MEM_Zero ){
61721       return p->n + p->u.nZero;
61722     }else{
61723       return p->n;
61724     }
61725   }
61726   return 0;
61727 }
61728 
61729 /************** End of vdbemem.c *********************************************/
61730 /************** Begin file vdbeaux.c *****************************************/
61731 /*
61732 ** 2003 September 6
61733 **
61734 ** The author disclaims copyright to this source code.  In place of
61735 ** a legal notice, here is a blessing:
61736 **
61737 **    May you do good and not evil.
61738 **    May you find forgiveness for yourself and forgive others.
61739 **    May you share freely, never taking more than you give.
61740 **
61741 *************************************************************************
61742 ** This file contains code used for creating, destroying, and populating
61743 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)  Prior
61744 ** to version 2.8.7, all this code was combined into the vdbe.c source file.
61745 ** But that file was getting too big so this subroutines were split out.
61746 */
61747 
61748 /*
61749 ** Create a new virtual database engine.
61750 */
61751 SQLITE_PRIVATE Vdbe *sqlite3VdbeCreate(Parse *pParse){
61752   sqlite3 *db = pParse->db;
61753   Vdbe *p;
61754   p = sqlite3DbMallocZero(db, sizeof(Vdbe) );
61755   if( p==0 ) return 0;
61756   p->db = db;
61757   if( db->pVdbe ){
61758     db->pVdbe->pPrev = p;
61759   }
61760   p->pNext = db->pVdbe;
61761   p->pPrev = 0;
61762   db->pVdbe = p;
61763   p->magic = VDBE_MAGIC_INIT;
61764   p->pParse = pParse;
61765   assert( pParse->aLabel==0 );
61766   assert( pParse->nLabel==0 );
61767   assert( pParse->nOpAlloc==0 );
61768   return p;
61769 }
61770 
61771 /*
61772 ** Remember the SQL string for a prepared statement.
61773 */
61774 SQLITE_PRIVATE void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, int isPrepareV2){
61775   assert( isPrepareV2==1 || isPrepareV2==0 );
61776   if( p==0 ) return;
61777 #if defined(SQLITE_OMIT_TRACE) && !defined(SQLITE_ENABLE_SQLLOG)
61778   if( !isPrepareV2 ) return;
61779 #endif
61780   assert( p->zSql==0 );
61781   p->zSql = sqlite3DbStrNDup(p->db, z, n);
61782   p->isPrepareV2 = (u8)isPrepareV2;
61783 }
61784 
61785 /*
61786 ** Return the SQL associated with a prepared statement
61787 */
61788 SQLITE_API const char *sqlite3_sql(sqlite3_stmt *pStmt){
61789   Vdbe *p = (Vdbe *)pStmt;
61790   return (p && p->isPrepareV2) ? p->zSql : 0;
61791 }
61792 
61793 /*
61794 ** Swap all content between two VDBE structures.
61795 */
61796 SQLITE_PRIVATE void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
61797   Vdbe tmp, *pTmp;
61798   char *zTmp;
61799   tmp = *pA;
61800   *pA = *pB;
61801   *pB = tmp;
61802   pTmp = pA->pNext;
61803   pA->pNext = pB->pNext;
61804   pB->pNext = pTmp;
61805   pTmp = pA->pPrev;
61806   pA->pPrev = pB->pPrev;
61807   pB->pPrev = pTmp;
61808   zTmp = pA->zSql;
61809   pA->zSql = pB->zSql;
61810   pB->zSql = zTmp;
61811   pB->isPrepareV2 = pA->isPrepareV2;
61812 }
61813 
61814 /*
61815 ** Resize the Vdbe.aOp array so that it is at least one op larger than
61816 ** it was.
61817 **
61818 ** If an out-of-memory error occurs while resizing the array, return
61819 ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain
61820 ** unchanged (this is so that any opcodes already allocated can be
61821 ** correctly deallocated along with the rest of the Vdbe).
61822 */
61823 static int growOpArray(Vdbe *v){
61824   VdbeOp *pNew;
61825   Parse *p = v->pParse;
61826   int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op)));
61827   pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op));
61828   if( pNew ){
61829     p->nOpAlloc = sqlite3DbMallocSize(p->db, pNew)/sizeof(Op);
61830     v->aOp = pNew;
61831   }
61832   return (pNew ? SQLITE_OK : SQLITE_NOMEM);
61833 }
61834 
61835 #ifdef SQLITE_DEBUG
61836 /* This routine is just a convenient place to set a breakpoint that will
61837 ** fire after each opcode is inserted and displayed using
61838 ** "PRAGMA vdbe_addoptrace=on".
61839 */
61840 static void test_addop_breakpoint(void){
61841   static int n = 0;
61842   n++;
61843 }
61844 #endif
61845 
61846 /*
61847 ** Add a new instruction to the list of instructions current in the
61848 ** VDBE.  Return the address of the new instruction.
61849 **
61850 ** Parameters:
61851 **
61852 **    p               Pointer to the VDBE
61853 **
61854 **    op              The opcode for this instruction
61855 **
61856 **    p1, p2, p3      Operands
61857 **
61858 ** Use the sqlite3VdbeResolveLabel() function to fix an address and
61859 ** the sqlite3VdbeChangeP4() function to change the value of the P4
61860 ** operand.
61861 */
61862 SQLITE_PRIVATE int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
61863   int i;
61864   VdbeOp *pOp;
61865 
61866   i = p->nOp;
61867   assert( p->magic==VDBE_MAGIC_INIT );
61868   assert( op>0 && op<0xff );
61869   if( p->pParse->nOpAlloc<=i ){
61870     if( growOpArray(p) ){
61871       return 1;
61872     }
61873   }
61874   p->nOp++;
61875   pOp = &p->aOp[i];
61876   pOp->opcode = (u8)op;
61877   pOp->p5 = 0;
61878   pOp->p1 = p1;
61879   pOp->p2 = p2;
61880   pOp->p3 = p3;
61881   pOp->p4.p = 0;
61882   pOp->p4type = P4_NOTUSED;
61883 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
61884   pOp->zComment = 0;
61885 #endif
61886 #ifdef SQLITE_DEBUG
61887   if( p->db->flags & SQLITE_VdbeAddopTrace ){
61888     int jj, kk;
61889     Parse *pParse = p->pParse;
61890     for(jj=kk=0; jj<SQLITE_N_COLCACHE; jj++){
61891       struct yColCache *x = pParse->aColCache + jj;
61892       if( x->iLevel>pParse->iCacheLevel || x->iReg==0 ) continue;
61893       printf(" r[%d]={%d:%d}", x->iReg, x->iTable, x->iColumn);
61894       kk++;
61895     }
61896     if( kk ) printf("\n");
61897     sqlite3VdbePrintOp(0, i, &p->aOp[i]);
61898     test_addop_breakpoint();
61899   }
61900 #endif
61901 #ifdef VDBE_PROFILE
61902   pOp->cycles = 0;
61903   pOp->cnt = 0;
61904 #endif
61905 #ifdef SQLITE_VDBE_COVERAGE
61906   pOp->iSrcLine = 0;
61907 #endif
61908   return i;
61909 }
61910 SQLITE_PRIVATE int sqlite3VdbeAddOp0(Vdbe *p, int op){
61911   return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
61912 }
61913 SQLITE_PRIVATE int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
61914   return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
61915 }
61916 SQLITE_PRIVATE int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
61917   return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
61918 }
61919 
61920 
61921 /*
61922 ** Add an opcode that includes the p4 value as a pointer.
61923 */
61924 SQLITE_PRIVATE int sqlite3VdbeAddOp4(
61925   Vdbe *p,            /* Add the opcode to this VM */
61926   int op,             /* The new opcode */
61927   int p1,             /* The P1 operand */
61928   int p2,             /* The P2 operand */
61929   int p3,             /* The P3 operand */
61930   const char *zP4,    /* The P4 operand */
61931   int p4type          /* P4 operand type */
61932 ){
61933   int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
61934   sqlite3VdbeChangeP4(p, addr, zP4, p4type);
61935   return addr;
61936 }
61937 
61938 /*
61939 ** Add an OP_ParseSchema opcode.  This routine is broken out from
61940 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
61941 ** as having been used.
61942 **
61943 ** The zWhere string must have been obtained from sqlite3_malloc().
61944 ** This routine will take ownership of the allocated memory.
61945 */
61946 SQLITE_PRIVATE void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){
61947   int j;
61948   int addr = sqlite3VdbeAddOp3(p, OP_ParseSchema, iDb, 0, 0);
61949   sqlite3VdbeChangeP4(p, addr, zWhere, P4_DYNAMIC);
61950   for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
61951 }
61952 
61953 /*
61954 ** Add an opcode that includes the p4 value as an integer.
61955 */
61956 SQLITE_PRIVATE int sqlite3VdbeAddOp4Int(
61957   Vdbe *p,            /* Add the opcode to this VM */
61958   int op,             /* The new opcode */
61959   int p1,             /* The P1 operand */
61960   int p2,             /* The P2 operand */
61961   int p3,             /* The P3 operand */
61962   int p4              /* The P4 operand as an integer */
61963 ){
61964   int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
61965   sqlite3VdbeChangeP4(p, addr, SQLITE_INT_TO_PTR(p4), P4_INT32);
61966   return addr;
61967 }
61968 
61969 /*
61970 ** Create a new symbolic label for an instruction that has yet to be
61971 ** coded.  The symbolic label is really just a negative number.  The
61972 ** label can be used as the P2 value of an operation.  Later, when
61973 ** the label is resolved to a specific address, the VDBE will scan
61974 ** through its operation list and change all values of P2 which match
61975 ** the label into the resolved address.
61976 **
61977 ** The VDBE knows that a P2 value is a label because labels are
61978 ** always negative and P2 values are suppose to be non-negative.
61979 ** Hence, a negative P2 value is a label that has yet to be resolved.
61980 **
61981 ** Zero is returned if a malloc() fails.
61982 */
61983 SQLITE_PRIVATE int sqlite3VdbeMakeLabel(Vdbe *v){
61984   Parse *p = v->pParse;
61985   int i = p->nLabel++;
61986   assert( v->magic==VDBE_MAGIC_INIT );
61987   if( (i & (i-1))==0 ){
61988     p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
61989                                        (i*2+1)*sizeof(p->aLabel[0]));
61990   }
61991   if( p->aLabel ){
61992     p->aLabel[i] = -1;
61993   }
61994   return -1-i;
61995 }
61996 
61997 /*
61998 ** Resolve label "x" to be the address of the next instruction to
61999 ** be inserted.  The parameter "x" must have been obtained from
62000 ** a prior call to sqlite3VdbeMakeLabel().
62001 */
62002 SQLITE_PRIVATE void sqlite3VdbeResolveLabel(Vdbe *v, int x){
62003   Parse *p = v->pParse;
62004   int j = -1-x;
62005   assert( v->magic==VDBE_MAGIC_INIT );
62006   assert( j<p->nLabel );
62007   if( ALWAYS(j>=0) && p->aLabel ){
62008     p->aLabel[j] = v->nOp;
62009   }
62010   p->iFixedOp = v->nOp - 1;
62011 }
62012 
62013 /*
62014 ** Mark the VDBE as one that can only be run one time.
62015 */
62016 SQLITE_PRIVATE void sqlite3VdbeRunOnlyOnce(Vdbe *p){
62017   p->runOnlyOnce = 1;
62018 }
62019 
62020 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
62021 
62022 /*
62023 ** The following type and function are used to iterate through all opcodes
62024 ** in a Vdbe main program and each of the sub-programs (triggers) it may
62025 ** invoke directly or indirectly. It should be used as follows:
62026 **
62027 **   Op *pOp;
62028 **   VdbeOpIter sIter;
62029 **
62030 **   memset(&sIter, 0, sizeof(sIter));
62031 **   sIter.v = v;                            // v is of type Vdbe*
62032 **   while( (pOp = opIterNext(&sIter)) ){
62033 **     // Do something with pOp
62034 **   }
62035 **   sqlite3DbFree(v->db, sIter.apSub);
62036 **
62037 */
62038 typedef struct VdbeOpIter VdbeOpIter;
62039 struct VdbeOpIter {
62040   Vdbe *v;                   /* Vdbe to iterate through the opcodes of */
62041   SubProgram **apSub;        /* Array of subprograms */
62042   int nSub;                  /* Number of entries in apSub */
62043   int iAddr;                 /* Address of next instruction to return */
62044   int iSub;                  /* 0 = main program, 1 = first sub-program etc. */
62045 };
62046 static Op *opIterNext(VdbeOpIter *p){
62047   Vdbe *v = p->v;
62048   Op *pRet = 0;
62049   Op *aOp;
62050   int nOp;
62051 
62052   if( p->iSub<=p->nSub ){
62053 
62054     if( p->iSub==0 ){
62055       aOp = v->aOp;
62056       nOp = v->nOp;
62057     }else{
62058       aOp = p->apSub[p->iSub-1]->aOp;
62059       nOp = p->apSub[p->iSub-1]->nOp;
62060     }
62061     assert( p->iAddr<nOp );
62062 
62063     pRet = &aOp[p->iAddr];
62064     p->iAddr++;
62065     if( p->iAddr==nOp ){
62066       p->iSub++;
62067       p->iAddr = 0;
62068     }
62069 
62070     if( pRet->p4type==P4_SUBPROGRAM ){
62071       int nByte = (p->nSub+1)*sizeof(SubProgram*);
62072       int j;
62073       for(j=0; j<p->nSub; j++){
62074         if( p->apSub[j]==pRet->p4.pProgram ) break;
62075       }
62076       if( j==p->nSub ){
62077         p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
62078         if( !p->apSub ){
62079           pRet = 0;
62080         }else{
62081           p->apSub[p->nSub++] = pRet->p4.pProgram;
62082         }
62083       }
62084     }
62085   }
62086 
62087   return pRet;
62088 }
62089 
62090 /*
62091 ** Check if the program stored in the VM associated with pParse may
62092 ** throw an ABORT exception (causing the statement, but not entire transaction
62093 ** to be rolled back). This condition is true if the main program or any
62094 ** sub-programs contains any of the following:
62095 **
62096 **   *  OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
62097 **   *  OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
62098 **   *  OP_Destroy
62099 **   *  OP_VUpdate
62100 **   *  OP_VRename
62101 **   *  OP_FkCounter with P2==0 (immediate foreign key constraint)
62102 **
62103 ** Then check that the value of Parse.mayAbort is true if an
62104 ** ABORT may be thrown, or false otherwise. Return true if it does
62105 ** match, or false otherwise. This function is intended to be used as
62106 ** part of an assert statement in the compiler. Similar to:
62107 **
62108 **   assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
62109 */
62110 SQLITE_PRIVATE int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
62111   int hasAbort = 0;
62112   Op *pOp;
62113   VdbeOpIter sIter;
62114   memset(&sIter, 0, sizeof(sIter));
62115   sIter.v = v;
62116 
62117   while( (pOp = opIterNext(&sIter))!=0 ){
62118     int opcode = pOp->opcode;
62119     if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
62120 #ifndef SQLITE_OMIT_FOREIGN_KEY
62121      || (opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1)
62122 #endif
62123      || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
62124       && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort))
62125     ){
62126       hasAbort = 1;
62127       break;
62128     }
62129   }
62130   sqlite3DbFree(v->db, sIter.apSub);
62131 
62132   /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
62133   ** If malloc failed, then the while() loop above may not have iterated
62134   ** through all opcodes and hasAbort may be set incorrectly. Return
62135   ** true for this case to prevent the assert() in the callers frame
62136   ** from failing.  */
62137   return ( v->db->mallocFailed || hasAbort==mayAbort );
62138 }
62139 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
62140 
62141 /*
62142 ** Loop through the program looking for P2 values that are negative
62143 ** on jump instructions.  Each such value is a label.  Resolve the
62144 ** label by setting the P2 value to its correct non-zero value.
62145 **
62146 ** This routine is called once after all opcodes have been inserted.
62147 **
62148 ** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument
62149 ** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by
62150 ** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array.
62151 **
62152 ** The Op.opflags field is set on all opcodes.
62153 */
62154 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
62155   int i;
62156   int nMaxArgs = *pMaxFuncArgs;
62157   Op *pOp;
62158   Parse *pParse = p->pParse;
62159   int *aLabel = pParse->aLabel;
62160   p->readOnly = 1;
62161   p->bIsReader = 0;
62162   for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
62163     u8 opcode = pOp->opcode;
62164 
62165     /* NOTE: Be sure to update mkopcodeh.awk when adding or removing
62166     ** cases from this switch! */
62167     switch( opcode ){
62168       case OP_Function:
62169       case OP_AggStep: {
62170         if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5;
62171         break;
62172       }
62173       case OP_Transaction: {
62174         if( pOp->p2!=0 ) p->readOnly = 0;
62175         /* fall thru */
62176       }
62177       case OP_AutoCommit:
62178       case OP_Savepoint: {
62179         p->bIsReader = 1;
62180         break;
62181       }
62182 #ifndef SQLITE_OMIT_WAL
62183       case OP_Checkpoint:
62184 #endif
62185       case OP_Vacuum:
62186       case OP_JournalMode: {
62187         p->readOnly = 0;
62188         p->bIsReader = 1;
62189         break;
62190       }
62191 #ifndef SQLITE_OMIT_VIRTUALTABLE
62192       case OP_VUpdate: {
62193         if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
62194         break;
62195       }
62196       case OP_VFilter: {
62197         int n;
62198         assert( p->nOp - i >= 3 );
62199         assert( pOp[-1].opcode==OP_Integer );
62200         n = pOp[-1].p1;
62201         if( n>nMaxArgs ) nMaxArgs = n;
62202         break;
62203       }
62204 #endif
62205       case OP_Next:
62206       case OP_NextIfOpen:
62207       case OP_SorterNext: {
62208         pOp->p4.xAdvance = sqlite3BtreeNext;
62209         pOp->p4type = P4_ADVANCE;
62210         break;
62211       }
62212       case OP_Prev:
62213       case OP_PrevIfOpen: {
62214         pOp->p4.xAdvance = sqlite3BtreePrevious;
62215         pOp->p4type = P4_ADVANCE;
62216         break;
62217       }
62218     }
62219 
62220     pOp->opflags = sqlite3OpcodeProperty[opcode];
62221     if( (pOp->opflags & OPFLG_JUMP)!=0 && pOp->p2<0 ){
62222       assert( -1-pOp->p2<pParse->nLabel );
62223       pOp->p2 = aLabel[-1-pOp->p2];
62224     }
62225   }
62226   sqlite3DbFree(p->db, pParse->aLabel);
62227   pParse->aLabel = 0;
62228   pParse->nLabel = 0;
62229   *pMaxFuncArgs = nMaxArgs;
62230   assert( p->bIsReader!=0 || p->btreeMask==0 );
62231 }
62232 
62233 /*
62234 ** Return the address of the next instruction to be inserted.
62235 */
62236 SQLITE_PRIVATE int sqlite3VdbeCurrentAddr(Vdbe *p){
62237   assert( p->magic==VDBE_MAGIC_INIT );
62238   return p->nOp;
62239 }
62240 
62241 /*
62242 ** This function returns a pointer to the array of opcodes associated with
62243 ** the Vdbe passed as the first argument. It is the callers responsibility
62244 ** to arrange for the returned array to be eventually freed using the
62245 ** vdbeFreeOpArray() function.
62246 **
62247 ** Before returning, *pnOp is set to the number of entries in the returned
62248 ** array. Also, *pnMaxArg is set to the larger of its current value and
62249 ** the number of entries in the Vdbe.apArg[] array required to execute the
62250 ** returned program.
62251 */
62252 SQLITE_PRIVATE VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
62253   VdbeOp *aOp = p->aOp;
62254   assert( aOp && !p->db->mallocFailed );
62255 
62256   /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
62257   assert( p->btreeMask==0 );
62258 
62259   resolveP2Values(p, pnMaxArg);
62260   *pnOp = p->nOp;
62261   p->aOp = 0;
62262   return aOp;
62263 }
62264 
62265 /*
62266 ** Add a whole list of operations to the operation stack.  Return the
62267 ** address of the first operation added.
62268 */
62269 SQLITE_PRIVATE int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp, int iLineno){
62270   int addr;
62271   assert( p->magic==VDBE_MAGIC_INIT );
62272   if( p->nOp + nOp > p->pParse->nOpAlloc && growOpArray(p) ){
62273     return 0;
62274   }
62275   addr = p->nOp;
62276   if( ALWAYS(nOp>0) ){
62277     int i;
62278     VdbeOpList const *pIn = aOp;
62279     for(i=0; i<nOp; i++, pIn++){
62280       int p2 = pIn->p2;
62281       VdbeOp *pOut = &p->aOp[i+addr];
62282       pOut->opcode = pIn->opcode;
62283       pOut->p1 = pIn->p1;
62284       if( p2<0 ){
62285         assert( sqlite3OpcodeProperty[pOut->opcode] & OPFLG_JUMP );
62286         pOut->p2 = addr + ADDR(p2);
62287       }else{
62288         pOut->p2 = p2;
62289       }
62290       pOut->p3 = pIn->p3;
62291       pOut->p4type = P4_NOTUSED;
62292       pOut->p4.p = 0;
62293       pOut->p5 = 0;
62294 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
62295       pOut->zComment = 0;
62296 #endif
62297 #ifdef SQLITE_VDBE_COVERAGE
62298       pOut->iSrcLine = iLineno+i;
62299 #else
62300       (void)iLineno;
62301 #endif
62302 #ifdef SQLITE_DEBUG
62303       if( p->db->flags & SQLITE_VdbeAddopTrace ){
62304         sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]);
62305       }
62306 #endif
62307     }
62308     p->nOp += nOp;
62309   }
62310   return addr;
62311 }
62312 
62313 /*
62314 ** Change the value of the P1 operand for a specific instruction.
62315 ** This routine is useful when a large program is loaded from a
62316 ** static array using sqlite3VdbeAddOpList but we want to make a
62317 ** few minor changes to the program.
62318 */
62319 SQLITE_PRIVATE void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){
62320   assert( p!=0 );
62321   if( ((u32)p->nOp)>addr ){
62322     p->aOp[addr].p1 = val;
62323   }
62324 }
62325 
62326 /*
62327 ** Change the value of the P2 operand for a specific instruction.
62328 ** This routine is useful for setting a jump destination.
62329 */
62330 SQLITE_PRIVATE void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){
62331   assert( p!=0 );
62332   if( ((u32)p->nOp)>addr ){
62333     p->aOp[addr].p2 = val;
62334   }
62335 }
62336 
62337 /*
62338 ** Change the value of the P3 operand for a specific instruction.
62339 */
62340 SQLITE_PRIVATE void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){
62341   assert( p!=0 );
62342   if( ((u32)p->nOp)>addr ){
62343     p->aOp[addr].p3 = val;
62344   }
62345 }
62346 
62347 /*
62348 ** Change the value of the P5 operand for the most recently
62349 ** added operation.
62350 */
62351 SQLITE_PRIVATE void sqlite3VdbeChangeP5(Vdbe *p, u8 val){
62352   assert( p!=0 );
62353   if( p->aOp ){
62354     assert( p->nOp>0 );
62355     p->aOp[p->nOp-1].p5 = val;
62356   }
62357 }
62358 
62359 /*
62360 ** Change the P2 operand of instruction addr so that it points to
62361 ** the address of the next instruction to be coded.
62362 */
62363 SQLITE_PRIVATE void sqlite3VdbeJumpHere(Vdbe *p, int addr){
62364   sqlite3VdbeChangeP2(p, addr, p->nOp);
62365   p->pParse->iFixedOp = p->nOp - 1;
62366 }
62367 
62368 
62369 /*
62370 ** If the input FuncDef structure is ephemeral, then free it.  If
62371 ** the FuncDef is not ephermal, then do nothing.
62372 */
62373 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
62374   if( ALWAYS(pDef) && (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){
62375     sqlite3DbFree(db, pDef);
62376   }
62377 }
62378 
62379 static void vdbeFreeOpArray(sqlite3 *, Op *, int);
62380 
62381 /*
62382 ** Delete a P4 value if necessary.
62383 */
62384 static void freeP4(sqlite3 *db, int p4type, void *p4){
62385   if( p4 ){
62386     assert( db );
62387     switch( p4type ){
62388       case P4_REAL:
62389       case P4_INT64:
62390       case P4_DYNAMIC:
62391       case P4_INTARRAY: {
62392         sqlite3DbFree(db, p4);
62393         break;
62394       }
62395       case P4_KEYINFO: {
62396         if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4);
62397         break;
62398       }
62399       case P4_MPRINTF: {
62400         if( db->pnBytesFreed==0 ) sqlite3_free(p4);
62401         break;
62402       }
62403       case P4_FUNCDEF: {
62404         freeEphemeralFunction(db, (FuncDef*)p4);
62405         break;
62406       }
62407       case P4_MEM: {
62408         if( db->pnBytesFreed==0 ){
62409           sqlite3ValueFree((sqlite3_value*)p4);
62410         }else{
62411           Mem *p = (Mem*)p4;
62412           sqlite3DbFree(db, p->zMalloc);
62413           sqlite3DbFree(db, p);
62414         }
62415         break;
62416       }
62417       case P4_VTAB : {
62418         if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
62419         break;
62420       }
62421     }
62422   }
62423 }
62424 
62425 /*
62426 ** Free the space allocated for aOp and any p4 values allocated for the
62427 ** opcodes contained within. If aOp is not NULL it is assumed to contain
62428 ** nOp entries.
62429 */
62430 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
62431   if( aOp ){
62432     Op *pOp;
62433     for(pOp=aOp; pOp<&aOp[nOp]; pOp++){
62434       freeP4(db, pOp->p4type, pOp->p4.p);
62435 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
62436       sqlite3DbFree(db, pOp->zComment);
62437 #endif
62438     }
62439   }
62440   sqlite3DbFree(db, aOp);
62441 }
62442 
62443 /*
62444 ** Link the SubProgram object passed as the second argument into the linked
62445 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program
62446 ** objects when the VM is no longer required.
62447 */
62448 SQLITE_PRIVATE void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
62449   p->pNext = pVdbe->pProgram;
62450   pVdbe->pProgram = p;
62451 }
62452 
62453 /*
62454 ** Change the opcode at addr into OP_Noop
62455 */
62456 SQLITE_PRIVATE void sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
62457   if( p->aOp ){
62458     VdbeOp *pOp = &p->aOp[addr];
62459     sqlite3 *db = p->db;
62460     freeP4(db, pOp->p4type, pOp->p4.p);
62461     memset(pOp, 0, sizeof(pOp[0]));
62462     pOp->opcode = OP_Noop;
62463     if( addr==p->nOp-1 ) p->nOp--;
62464   }
62465 }
62466 
62467 /*
62468 ** Remove the last opcode inserted
62469 */
62470 SQLITE_PRIVATE int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){
62471   if( (p->nOp-1)>(p->pParse->iFixedOp) && p->aOp[p->nOp-1].opcode==op ){
62472     sqlite3VdbeChangeToNoop(p, p->nOp-1);
62473     return 1;
62474   }else{
62475     return 0;
62476   }
62477 }
62478 
62479 /*
62480 ** Change the value of the P4 operand for a specific instruction.
62481 ** This routine is useful when a large program is loaded from a
62482 ** static array using sqlite3VdbeAddOpList but we want to make a
62483 ** few minor changes to the program.
62484 **
62485 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of
62486 ** the string is made into memory obtained from sqlite3_malloc().
62487 ** A value of n==0 means copy bytes of zP4 up to and including the
62488 ** first null byte.  If n>0 then copy n+1 bytes of zP4.
62489 **
62490 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
62491 ** to a string or structure that is guaranteed to exist for the lifetime of
62492 ** the Vdbe. In these cases we can just copy the pointer.
62493 **
62494 ** If addr<0 then change P4 on the most recently inserted instruction.
62495 */
62496 SQLITE_PRIVATE void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
62497   Op *pOp;
62498   sqlite3 *db;
62499   assert( p!=0 );
62500   db = p->db;
62501   assert( p->magic==VDBE_MAGIC_INIT );
62502   if( p->aOp==0 || db->mallocFailed ){
62503     if( n!=P4_VTAB ){
62504       freeP4(db, n, (void*)*(char**)&zP4);
62505     }
62506     return;
62507   }
62508   assert( p->nOp>0 );
62509   assert( addr<p->nOp );
62510   if( addr<0 ){
62511     addr = p->nOp - 1;
62512   }
62513   pOp = &p->aOp[addr];
62514   assert( pOp->p4type==P4_NOTUSED
62515        || pOp->p4type==P4_INT32
62516        || pOp->p4type==P4_KEYINFO );
62517   freeP4(db, pOp->p4type, pOp->p4.p);
62518   pOp->p4.p = 0;
62519   if( n==P4_INT32 ){
62520     /* Note: this cast is safe, because the origin data point was an int
62521     ** that was cast to a (const char *). */
62522     pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
62523     pOp->p4type = P4_INT32;
62524   }else if( zP4==0 ){
62525     pOp->p4.p = 0;
62526     pOp->p4type = P4_NOTUSED;
62527   }else if( n==P4_KEYINFO ){
62528     pOp->p4.p = (void*)zP4;
62529     pOp->p4type = P4_KEYINFO;
62530   }else if( n==P4_VTAB ){
62531     pOp->p4.p = (void*)zP4;
62532     pOp->p4type = P4_VTAB;
62533     sqlite3VtabLock((VTable *)zP4);
62534     assert( ((VTable *)zP4)->db==p->db );
62535   }else if( n<0 ){
62536     pOp->p4.p = (void*)zP4;
62537     pOp->p4type = (signed char)n;
62538   }else{
62539     if( n==0 ) n = sqlite3Strlen30(zP4);
62540     pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
62541     pOp->p4type = P4_DYNAMIC;
62542   }
62543 }
62544 
62545 /*
62546 ** Set the P4 on the most recently added opcode to the KeyInfo for the
62547 ** index given.
62548 */
62549 SQLITE_PRIVATE void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){
62550   Vdbe *v = pParse->pVdbe;
62551   assert( v!=0 );
62552   assert( pIdx!=0 );
62553   sqlite3VdbeChangeP4(v, -1, (char*)sqlite3KeyInfoOfIndex(pParse, pIdx),
62554                       P4_KEYINFO);
62555 }
62556 
62557 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
62558 /*
62559 ** Change the comment on the most recently coded instruction.  Or
62560 ** insert a No-op and add the comment to that new instruction.  This
62561 ** makes the code easier to read during debugging.  None of this happens
62562 ** in a production build.
62563 */
62564 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
62565   assert( p->nOp>0 || p->aOp==0 );
62566   assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
62567   if( p->nOp ){
62568     assert( p->aOp );
62569     sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
62570     p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
62571   }
62572 }
62573 SQLITE_PRIVATE void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
62574   va_list ap;
62575   if( p ){
62576     va_start(ap, zFormat);
62577     vdbeVComment(p, zFormat, ap);
62578     va_end(ap);
62579   }
62580 }
62581 SQLITE_PRIVATE void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
62582   va_list ap;
62583   if( p ){
62584     sqlite3VdbeAddOp0(p, OP_Noop);
62585     va_start(ap, zFormat);
62586     vdbeVComment(p, zFormat, ap);
62587     va_end(ap);
62588   }
62589 }
62590 #endif  /* NDEBUG */
62591 
62592 #ifdef SQLITE_VDBE_COVERAGE
62593 /*
62594 ** Set the value if the iSrcLine field for the previously coded instruction.
62595 */
62596 SQLITE_PRIVATE void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){
62597   sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine;
62598 }
62599 #endif /* SQLITE_VDBE_COVERAGE */
62600 
62601 /*
62602 ** Return the opcode for a given address.  If the address is -1, then
62603 ** return the most recently inserted opcode.
62604 **
62605 ** If a memory allocation error has occurred prior to the calling of this
62606 ** routine, then a pointer to a dummy VdbeOp will be returned.  That opcode
62607 ** is readable but not writable, though it is cast to a writable value.
62608 ** The return of a dummy opcode allows the call to continue functioning
62609 ** after a OOM fault without having to check to see if the return from
62610 ** this routine is a valid pointer.  But because the dummy.opcode is 0,
62611 ** dummy will never be written to.  This is verified by code inspection and
62612 ** by running with Valgrind.
62613 */
62614 SQLITE_PRIVATE VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
62615   /* C89 specifies that the constant "dummy" will be initialized to all
62616   ** zeros, which is correct.  MSVC generates a warning, nevertheless. */
62617   static VdbeOp dummy;  /* Ignore the MSVC warning about no initializer */
62618   assert( p->magic==VDBE_MAGIC_INIT );
62619   if( addr<0 ){
62620     addr = p->nOp - 1;
62621   }
62622   assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
62623   if( p->db->mallocFailed ){
62624     return (VdbeOp*)&dummy;
62625   }else{
62626     return &p->aOp[addr];
62627   }
62628 }
62629 
62630 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
62631 /*
62632 ** Return an integer value for one of the parameters to the opcode pOp
62633 ** determined by character c.
62634 */
62635 static int translateP(char c, const Op *pOp){
62636   if( c=='1' ) return pOp->p1;
62637   if( c=='2' ) return pOp->p2;
62638   if( c=='3' ) return pOp->p3;
62639   if( c=='4' ) return pOp->p4.i;
62640   return pOp->p5;
62641 }
62642 
62643 /*
62644 ** Compute a string for the "comment" field of a VDBE opcode listing.
62645 **
62646 ** The Synopsis: field in comments in the vdbe.c source file gets converted
62647 ** to an extra string that is appended to the sqlite3OpcodeName().  In the
62648 ** absence of other comments, this synopsis becomes the comment on the opcode.
62649 ** Some translation occurs:
62650 **
62651 **       "PX"      ->  "r[X]"
62652 **       "PX@PY"   ->  "r[X..X+Y-1]"  or "r[x]" if y is 0 or 1
62653 **       "PX@PY+1" ->  "r[X..X+Y]"    or "r[x]" if y is 0
62654 **       "PY..PY"  ->  "r[X..Y]"      or "r[x]" if y<=x
62655 */
62656 static int displayComment(
62657   const Op *pOp,     /* The opcode to be commented */
62658   const char *zP4,   /* Previously obtained value for P4 */
62659   char *zTemp,       /* Write result here */
62660   int nTemp          /* Space available in zTemp[] */
62661 ){
62662   const char *zOpName;
62663   const char *zSynopsis;
62664   int nOpName;
62665   int ii, jj;
62666   zOpName = sqlite3OpcodeName(pOp->opcode);
62667   nOpName = sqlite3Strlen30(zOpName);
62668   if( zOpName[nOpName+1] ){
62669     int seenCom = 0;
62670     char c;
62671     zSynopsis = zOpName += nOpName + 1;
62672     for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){
62673       if( c=='P' ){
62674         c = zSynopsis[++ii];
62675         if( c=='4' ){
62676           sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4);
62677         }else if( c=='X' ){
62678           sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment);
62679           seenCom = 1;
62680         }else{
62681           int v1 = translateP(c, pOp);
62682           int v2;
62683           sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1);
62684           if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){
62685             ii += 3;
62686             jj += sqlite3Strlen30(zTemp+jj);
62687             v2 = translateP(zSynopsis[ii], pOp);
62688             if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){
62689               ii += 2;
62690               v2++;
62691             }
62692             if( v2>1 ){
62693               sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1);
62694             }
62695           }else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){
62696             ii += 4;
62697           }
62698         }
62699         jj += sqlite3Strlen30(zTemp+jj);
62700       }else{
62701         zTemp[jj++] = c;
62702       }
62703     }
62704     if( !seenCom && jj<nTemp-5 && pOp->zComment ){
62705       sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment);
62706       jj += sqlite3Strlen30(zTemp+jj);
62707     }
62708     if( jj<nTemp ) zTemp[jj] = 0;
62709   }else if( pOp->zComment ){
62710     sqlite3_snprintf(nTemp, zTemp, "%s", pOp->zComment);
62711     jj = sqlite3Strlen30(zTemp);
62712   }else{
62713     zTemp[0] = 0;
62714     jj = 0;
62715   }
62716   return jj;
62717 }
62718 #endif /* SQLITE_DEBUG */
62719 
62720 
62721 #if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \
62722      || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
62723 /*
62724 ** Compute a string that describes the P4 parameter for an opcode.
62725 ** Use zTemp for any required temporary buffer space.
62726 */
62727 static char *displayP4(Op *pOp, char *zTemp, int nTemp){
62728   char *zP4 = zTemp;
62729   assert( nTemp>=20 );
62730   switch( pOp->p4type ){
62731     case P4_KEYINFO: {
62732       int i, j;
62733       KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
62734       assert( pKeyInfo->aSortOrder!=0 );
62735       sqlite3_snprintf(nTemp, zTemp, "k(%d", pKeyInfo->nField);
62736       i = sqlite3Strlen30(zTemp);
62737       for(j=0; j<pKeyInfo->nField; j++){
62738         CollSeq *pColl = pKeyInfo->aColl[j];
62739         const char *zColl = pColl ? pColl->zName : "nil";
62740         int n = sqlite3Strlen30(zColl);
62741         if( n==6 && memcmp(zColl,"BINARY",6)==0 ){
62742           zColl = "B";
62743           n = 1;
62744         }
62745         if( i+n>nTemp-6 ){
62746           memcpy(&zTemp[i],",...",4);
62747           break;
62748         }
62749         zTemp[i++] = ',';
62750         if( pKeyInfo->aSortOrder[j] ){
62751           zTemp[i++] = '-';
62752         }
62753         memcpy(&zTemp[i], zColl, n+1);
62754         i += n;
62755       }
62756       zTemp[i++] = ')';
62757       zTemp[i] = 0;
62758       assert( i<nTemp );
62759       break;
62760     }
62761     case P4_COLLSEQ: {
62762       CollSeq *pColl = pOp->p4.pColl;
62763       sqlite3_snprintf(nTemp, zTemp, "(%.20s)", pColl->zName);
62764       break;
62765     }
62766     case P4_FUNCDEF: {
62767       FuncDef *pDef = pOp->p4.pFunc;
62768       sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg);
62769       break;
62770     }
62771     case P4_INT64: {
62772       sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64);
62773       break;
62774     }
62775     case P4_INT32: {
62776       sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i);
62777       break;
62778     }
62779     case P4_REAL: {
62780       sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal);
62781       break;
62782     }
62783     case P4_MEM: {
62784       Mem *pMem = pOp->p4.pMem;
62785       if( pMem->flags & MEM_Str ){
62786         zP4 = pMem->z;
62787       }else if( pMem->flags & MEM_Int ){
62788         sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i);
62789       }else if( pMem->flags & MEM_Real ){
62790         sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->r);
62791       }else if( pMem->flags & MEM_Null ){
62792         sqlite3_snprintf(nTemp, zTemp, "NULL");
62793       }else{
62794         assert( pMem->flags & MEM_Blob );
62795         zP4 = "(blob)";
62796       }
62797       break;
62798     }
62799 #ifndef SQLITE_OMIT_VIRTUALTABLE
62800     case P4_VTAB: {
62801       sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
62802       sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule);
62803       break;
62804     }
62805 #endif
62806     case P4_INTARRAY: {
62807       sqlite3_snprintf(nTemp, zTemp, "intarray");
62808       break;
62809     }
62810     case P4_SUBPROGRAM: {
62811       sqlite3_snprintf(nTemp, zTemp, "program");
62812       break;
62813     }
62814     case P4_ADVANCE: {
62815       zTemp[0] = 0;
62816       break;
62817     }
62818     default: {
62819       zP4 = pOp->p4.z;
62820       if( zP4==0 ){
62821         zP4 = zTemp;
62822         zTemp[0] = 0;
62823       }
62824     }
62825   }
62826   assert( zP4!=0 );
62827   return zP4;
62828 }
62829 #endif
62830 
62831 /*
62832 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
62833 **
62834 ** The prepared statements need to know in advance the complete set of
62835 ** attached databases that will be use.  A mask of these databases
62836 ** is maintained in p->btreeMask.  The p->lockMask value is the subset of
62837 ** p->btreeMask of databases that will require a lock.
62838 */
62839 SQLITE_PRIVATE void sqlite3VdbeUsesBtree(Vdbe *p, int i){
62840   assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
62841   assert( i<(int)sizeof(p->btreeMask)*8 );
62842   p->btreeMask |= ((yDbMask)1)<<i;
62843   if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
62844     p->lockMask |= ((yDbMask)1)<<i;
62845   }
62846 }
62847 
62848 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
62849 /*
62850 ** If SQLite is compiled to support shared-cache mode and to be threadsafe,
62851 ** this routine obtains the mutex associated with each BtShared structure
62852 ** that may be accessed by the VM passed as an argument. In doing so it also
62853 ** sets the BtShared.db member of each of the BtShared structures, ensuring
62854 ** that the correct busy-handler callback is invoked if required.
62855 **
62856 ** If SQLite is not threadsafe but does support shared-cache mode, then
62857 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
62858 ** of all of BtShared structures accessible via the database handle
62859 ** associated with the VM.
62860 **
62861 ** If SQLite is not threadsafe and does not support shared-cache mode, this
62862 ** function is a no-op.
62863 **
62864 ** The p->btreeMask field is a bitmask of all btrees that the prepared
62865 ** statement p will ever use.  Let N be the number of bits in p->btreeMask
62866 ** corresponding to btrees that use shared cache.  Then the runtime of
62867 ** this routine is N*N.  But as N is rarely more than 1, this should not
62868 ** be a problem.
62869 */
62870 SQLITE_PRIVATE void sqlite3VdbeEnter(Vdbe *p){
62871   int i;
62872   yDbMask mask;
62873   sqlite3 *db;
62874   Db *aDb;
62875   int nDb;
62876   if( p->lockMask==0 ) return;  /* The common case */
62877   db = p->db;
62878   aDb = db->aDb;
62879   nDb = db->nDb;
62880   for(i=0, mask=1; i<nDb; i++, mask += mask){
62881     if( i!=1 && (mask & p->lockMask)!=0 && ALWAYS(aDb[i].pBt!=0) ){
62882       sqlite3BtreeEnter(aDb[i].pBt);
62883     }
62884   }
62885 }
62886 #endif
62887 
62888 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
62889 /*
62890 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
62891 */
62892 SQLITE_PRIVATE void sqlite3VdbeLeave(Vdbe *p){
62893   int i;
62894   yDbMask mask;
62895   sqlite3 *db;
62896   Db *aDb;
62897   int nDb;
62898   if( p->lockMask==0 ) return;  /* The common case */
62899   db = p->db;
62900   aDb = db->aDb;
62901   nDb = db->nDb;
62902   for(i=0, mask=1; i<nDb; i++, mask += mask){
62903     if( i!=1 && (mask & p->lockMask)!=0 && ALWAYS(aDb[i].pBt!=0) ){
62904       sqlite3BtreeLeave(aDb[i].pBt);
62905     }
62906   }
62907 }
62908 #endif
62909 
62910 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
62911 /*
62912 ** Print a single opcode.  This routine is used for debugging only.
62913 */
62914 SQLITE_PRIVATE void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
62915   char *zP4;
62916   char zPtr[50];
62917   char zCom[100];
62918   static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
62919   if( pOut==0 ) pOut = stdout;
62920   zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
62921 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
62922   displayComment(pOp, zP4, zCom, sizeof(zCom));
62923 #else
62924   zCom[0] = 0;
62925 #endif
62926   /* NB:  The sqlite3OpcodeName() function is implemented by code created
62927   ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
62928   ** information from the vdbe.c source text */
62929   fprintf(pOut, zFormat1, pc,
62930       sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
62931       zCom
62932   );
62933   fflush(pOut);
62934 }
62935 #endif
62936 
62937 /*
62938 ** Release an array of N Mem elements
62939 */
62940 static void releaseMemArray(Mem *p, int N){
62941   if( p && N ){
62942     Mem *pEnd;
62943     sqlite3 *db = p->db;
62944     u8 malloc_failed = db->mallocFailed;
62945     if( db->pnBytesFreed ){
62946       for(pEnd=&p[N]; p<pEnd; p++){
62947         sqlite3DbFree(db, p->zMalloc);
62948       }
62949       return;
62950     }
62951     for(pEnd=&p[N]; p<pEnd; p++){
62952       assert( (&p[1])==pEnd || p[0].db==p[1].db );
62953       assert( sqlite3VdbeCheckMemInvariants(p) );
62954 
62955       /* This block is really an inlined version of sqlite3VdbeMemRelease()
62956       ** that takes advantage of the fact that the memory cell value is
62957       ** being set to NULL after releasing any dynamic resources.
62958       **
62959       ** The justification for duplicating code is that according to
62960       ** callgrind, this causes a certain test case to hit the CPU 4.7
62961       ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
62962       ** sqlite3MemRelease() were called from here. With -O2, this jumps
62963       ** to 6.6 percent. The test case is inserting 1000 rows into a table
62964       ** with no indexes using a single prepared INSERT statement, bind()
62965       ** and reset(). Inserts are grouped into a transaction.
62966       */
62967       testcase( p->flags & MEM_Agg );
62968       testcase( p->flags & MEM_Dyn );
62969       testcase( p->flags & MEM_Frame );
62970       testcase( p->flags & MEM_RowSet );
62971       if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){
62972         sqlite3VdbeMemRelease(p);
62973       }else if( p->zMalloc ){
62974         sqlite3DbFree(db, p->zMalloc);
62975         p->zMalloc = 0;
62976       }
62977 
62978       p->flags = MEM_Undefined;
62979     }
62980     db->mallocFailed = malloc_failed;
62981   }
62982 }
62983 
62984 /*
62985 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are
62986 ** allocated by the OP_Program opcode in sqlite3VdbeExec().
62987 */
62988 SQLITE_PRIVATE void sqlite3VdbeFrameDelete(VdbeFrame *p){
62989   int i;
62990   Mem *aMem = VdbeFrameMem(p);
62991   VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
62992   for(i=0; i<p->nChildCsr; i++){
62993     sqlite3VdbeFreeCursor(p->v, apCsr[i]);
62994   }
62995   releaseMemArray(aMem, p->nChildMem);
62996   sqlite3DbFree(p->v->db, p);
62997 }
62998 
62999 #ifndef SQLITE_OMIT_EXPLAIN
63000 /*
63001 ** Give a listing of the program in the virtual machine.
63002 **
63003 ** The interface is the same as sqlite3VdbeExec().  But instead of
63004 ** running the code, it invokes the callback once for each instruction.
63005 ** This feature is used to implement "EXPLAIN".
63006 **
63007 ** When p->explain==1, each instruction is listed.  When
63008 ** p->explain==2, only OP_Explain instructions are listed and these
63009 ** are shown in a different format.  p->explain==2 is used to implement
63010 ** EXPLAIN QUERY PLAN.
63011 **
63012 ** When p->explain==1, first the main program is listed, then each of
63013 ** the trigger subprograms are listed one by one.
63014 */
63015 SQLITE_PRIVATE int sqlite3VdbeList(
63016   Vdbe *p                   /* The VDBE */
63017 ){
63018   int nRow;                            /* Stop when row count reaches this */
63019   int nSub = 0;                        /* Number of sub-vdbes seen so far */
63020   SubProgram **apSub = 0;              /* Array of sub-vdbes */
63021   Mem *pSub = 0;                       /* Memory cell hold array of subprogs */
63022   sqlite3 *db = p->db;                 /* The database connection */
63023   int i;                               /* Loop counter */
63024   int rc = SQLITE_OK;                  /* Return code */
63025   Mem *pMem = &p->aMem[1];             /* First Mem of result set */
63026 
63027   assert( p->explain );
63028   assert( p->magic==VDBE_MAGIC_RUN );
63029   assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
63030 
63031   /* Even though this opcode does not use dynamic strings for
63032   ** the result, result columns may become dynamic if the user calls
63033   ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
63034   */
63035   releaseMemArray(pMem, 8);
63036   p->pResultSet = 0;
63037 
63038   if( p->rc==SQLITE_NOMEM ){
63039     /* This happens if a malloc() inside a call to sqlite3_column_text() or
63040     ** sqlite3_column_text16() failed.  */
63041     db->mallocFailed = 1;
63042     return SQLITE_ERROR;
63043   }
63044 
63045   /* When the number of output rows reaches nRow, that means the
63046   ** listing has finished and sqlite3_step() should return SQLITE_DONE.
63047   ** nRow is the sum of the number of rows in the main program, plus
63048   ** the sum of the number of rows in all trigger subprograms encountered
63049   ** so far.  The nRow value will increase as new trigger subprograms are
63050   ** encountered, but p->pc will eventually catch up to nRow.
63051   */
63052   nRow = p->nOp;
63053   if( p->explain==1 ){
63054     /* The first 8 memory cells are used for the result set.  So we will
63055     ** commandeer the 9th cell to use as storage for an array of pointers
63056     ** to trigger subprograms.  The VDBE is guaranteed to have at least 9
63057     ** cells.  */
63058     assert( p->nMem>9 );
63059     pSub = &p->aMem[9];
63060     if( pSub->flags&MEM_Blob ){
63061       /* On the first call to sqlite3_step(), pSub will hold a NULL.  It is
63062       ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */
63063       nSub = pSub->n/sizeof(Vdbe*);
63064       apSub = (SubProgram **)pSub->z;
63065     }
63066     for(i=0; i<nSub; i++){
63067       nRow += apSub[i]->nOp;
63068     }
63069   }
63070 
63071   do{
63072     i = p->pc++;
63073   }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain );
63074   if( i>=nRow ){
63075     p->rc = SQLITE_OK;
63076     rc = SQLITE_DONE;
63077   }else if( db->u1.isInterrupted ){
63078     p->rc = SQLITE_INTERRUPT;
63079     rc = SQLITE_ERROR;
63080     sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(p->rc));
63081   }else{
63082     char *zP4;
63083     Op *pOp;
63084     if( i<p->nOp ){
63085       /* The output line number is small enough that we are still in the
63086       ** main program. */
63087       pOp = &p->aOp[i];
63088     }else{
63089       /* We are currently listing subprograms.  Figure out which one and
63090       ** pick up the appropriate opcode. */
63091       int j;
63092       i -= p->nOp;
63093       for(j=0; i>=apSub[j]->nOp; j++){
63094         i -= apSub[j]->nOp;
63095       }
63096       pOp = &apSub[j]->aOp[i];
63097     }
63098     if( p->explain==1 ){
63099       pMem->flags = MEM_Int;
63100       pMem->u.i = i;                                /* Program counter */
63101       pMem++;
63102 
63103       pMem->flags = MEM_Static|MEM_Str|MEM_Term;
63104       pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */
63105       assert( pMem->z!=0 );
63106       pMem->n = sqlite3Strlen30(pMem->z);
63107       pMem->enc = SQLITE_UTF8;
63108       pMem++;
63109 
63110       /* When an OP_Program opcode is encounter (the only opcode that has
63111       ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
63112       ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
63113       ** has not already been seen.
63114       */
63115       if( pOp->p4type==P4_SUBPROGRAM ){
63116         int nByte = (nSub+1)*sizeof(SubProgram*);
63117         int j;
63118         for(j=0; j<nSub; j++){
63119           if( apSub[j]==pOp->p4.pProgram ) break;
63120         }
63121         if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, nSub!=0) ){
63122           apSub = (SubProgram **)pSub->z;
63123           apSub[nSub++] = pOp->p4.pProgram;
63124           pSub->flags |= MEM_Blob;
63125           pSub->n = nSub*sizeof(SubProgram*);
63126         }
63127       }
63128     }
63129 
63130     pMem->flags = MEM_Int;
63131     pMem->u.i = pOp->p1;                          /* P1 */
63132     pMem++;
63133 
63134     pMem->flags = MEM_Int;
63135     pMem->u.i = pOp->p2;                          /* P2 */
63136     pMem++;
63137 
63138     pMem->flags = MEM_Int;
63139     pMem->u.i = pOp->p3;                          /* P3 */
63140     pMem++;
63141 
63142     if( sqlite3VdbeMemGrow(pMem, 32, 0) ){            /* P4 */
63143       assert( p->db->mallocFailed );
63144       return SQLITE_ERROR;
63145     }
63146     pMem->flags = MEM_Str|MEM_Term;
63147     zP4 = displayP4(pOp, pMem->z, 32);
63148     if( zP4!=pMem->z ){
63149       sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0);
63150     }else{
63151       assert( pMem->z!=0 );
63152       pMem->n = sqlite3Strlen30(pMem->z);
63153       pMem->enc = SQLITE_UTF8;
63154     }
63155     pMem++;
63156 
63157     if( p->explain==1 ){
63158       if( sqlite3VdbeMemGrow(pMem, 4, 0) ){
63159         assert( p->db->mallocFailed );
63160         return SQLITE_ERROR;
63161       }
63162       pMem->flags = MEM_Str|MEM_Term;
63163       pMem->n = 2;
63164       sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5);   /* P5 */
63165       pMem->enc = SQLITE_UTF8;
63166       pMem++;
63167 
63168 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
63169       if( sqlite3VdbeMemGrow(pMem, 500, 0) ){
63170         assert( p->db->mallocFailed );
63171         return SQLITE_ERROR;
63172       }
63173       pMem->flags = MEM_Str|MEM_Term;
63174       pMem->n = displayComment(pOp, zP4, pMem->z, 500);
63175       pMem->enc = SQLITE_UTF8;
63176 #else
63177       pMem->flags = MEM_Null;                       /* Comment */
63178 #endif
63179     }
63180 
63181     p->nResColumn = 8 - 4*(p->explain-1);
63182     p->pResultSet = &p->aMem[1];
63183     p->rc = SQLITE_OK;
63184     rc = SQLITE_ROW;
63185   }
63186   return rc;
63187 }
63188 #endif /* SQLITE_OMIT_EXPLAIN */
63189 
63190 #ifdef SQLITE_DEBUG
63191 /*
63192 ** Print the SQL that was used to generate a VDBE program.
63193 */
63194 SQLITE_PRIVATE void sqlite3VdbePrintSql(Vdbe *p){
63195   const char *z = 0;
63196   if( p->zSql ){
63197     z = p->zSql;
63198   }else if( p->nOp>=1 ){
63199     const VdbeOp *pOp = &p->aOp[0];
63200     if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
63201       z = pOp->p4.z;
63202       while( sqlite3Isspace(*z) ) z++;
63203     }
63204   }
63205   if( z ) printf("SQL: [%s]\n", z);
63206 }
63207 #endif
63208 
63209 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
63210 /*
63211 ** Print an IOTRACE message showing SQL content.
63212 */
63213 SQLITE_PRIVATE void sqlite3VdbeIOTraceSql(Vdbe *p){
63214   int nOp = p->nOp;
63215   VdbeOp *pOp;
63216   if( sqlite3IoTrace==0 ) return;
63217   if( nOp<1 ) return;
63218   pOp = &p->aOp[0];
63219   if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
63220     int i, j;
63221     char z[1000];
63222     sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
63223     for(i=0; sqlite3Isspace(z[i]); i++){}
63224     for(j=0; z[i]; i++){
63225       if( sqlite3Isspace(z[i]) ){
63226         if( z[i-1]!=' ' ){
63227           z[j++] = ' ';
63228         }
63229       }else{
63230         z[j++] = z[i];
63231       }
63232     }
63233     z[j] = 0;
63234     sqlite3IoTrace("SQL %s\n", z);
63235   }
63236 }
63237 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
63238 
63239 /*
63240 ** Allocate space from a fixed size buffer and return a pointer to
63241 ** that space.  If insufficient space is available, return NULL.
63242 **
63243 ** The pBuf parameter is the initial value of a pointer which will
63244 ** receive the new memory.  pBuf is normally NULL.  If pBuf is not
63245 ** NULL, it means that memory space has already been allocated and that
63246 ** this routine should not allocate any new memory.  When pBuf is not
63247 ** NULL simply return pBuf.  Only allocate new memory space when pBuf
63248 ** is NULL.
63249 **
63250 ** nByte is the number of bytes of space needed.
63251 **
63252 ** *ppFrom points to available space and pEnd points to the end of the
63253 ** available space.  When space is allocated, *ppFrom is advanced past
63254 ** the end of the allocated space.
63255 **
63256 ** *pnByte is a counter of the number of bytes of space that have failed
63257 ** to allocate.  If there is insufficient space in *ppFrom to satisfy the
63258 ** request, then increment *pnByte by the amount of the request.
63259 */
63260 static void *allocSpace(
63261   void *pBuf,          /* Where return pointer will be stored */
63262   int nByte,           /* Number of bytes to allocate */
63263   u8 **ppFrom,         /* IN/OUT: Allocate from *ppFrom */
63264   u8 *pEnd,            /* Pointer to 1 byte past the end of *ppFrom buffer */
63265   int *pnByte          /* If allocation cannot be made, increment *pnByte */
63266 ){
63267   assert( EIGHT_BYTE_ALIGNMENT(*ppFrom) );
63268   if( pBuf ) return pBuf;
63269   nByte = ROUND8(nByte);
63270   if( &(*ppFrom)[nByte] <= pEnd ){
63271     pBuf = (void*)*ppFrom;
63272     *ppFrom += nByte;
63273   }else{
63274     *pnByte += nByte;
63275   }
63276   return pBuf;
63277 }
63278 
63279 /*
63280 ** Rewind the VDBE back to the beginning in preparation for
63281 ** running it.
63282 */
63283 SQLITE_PRIVATE void sqlite3VdbeRewind(Vdbe *p){
63284 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
63285   int i;
63286 #endif
63287   assert( p!=0 );
63288   assert( p->magic==VDBE_MAGIC_INIT );
63289 
63290   /* There should be at least one opcode.
63291   */
63292   assert( p->nOp>0 );
63293 
63294   /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
63295   p->magic = VDBE_MAGIC_RUN;
63296 
63297 #ifdef SQLITE_DEBUG
63298   for(i=1; i<p->nMem; i++){
63299     assert( p->aMem[i].db==p->db );
63300   }
63301 #endif
63302   p->pc = -1;
63303   p->rc = SQLITE_OK;
63304   p->errorAction = OE_Abort;
63305   p->magic = VDBE_MAGIC_RUN;
63306   p->nChange = 0;
63307   p->cacheCtr = 1;
63308   p->minWriteFileFormat = 255;
63309   p->iStatement = 0;
63310   p->nFkConstraint = 0;
63311 #ifdef VDBE_PROFILE
63312   for(i=0; i<p->nOp; i++){
63313     p->aOp[i].cnt = 0;
63314     p->aOp[i].cycles = 0;
63315   }
63316 #endif
63317 }
63318 
63319 /*
63320 ** Prepare a virtual machine for execution for the first time after
63321 ** creating the virtual machine.  This involves things such
63322 ** as allocating stack space and initializing the program counter.
63323 ** After the VDBE has be prepped, it can be executed by one or more
63324 ** calls to sqlite3VdbeExec().
63325 **
63326 ** This function may be called exact once on a each virtual machine.
63327 ** After this routine is called the VM has been "packaged" and is ready
63328 ** to run.  After this routine is called, futher calls to
63329 ** sqlite3VdbeAddOp() functions are prohibited.  This routine disconnects
63330 ** the Vdbe from the Parse object that helped generate it so that the
63331 ** the Vdbe becomes an independent entity and the Parse object can be
63332 ** destroyed.
63333 **
63334 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
63335 ** to its initial state after it has been run.
63336 */
63337 SQLITE_PRIVATE void sqlite3VdbeMakeReady(
63338   Vdbe *p,                       /* The VDBE */
63339   Parse *pParse                  /* Parsing context */
63340 ){
63341   sqlite3 *db;                   /* The database connection */
63342   int nVar;                      /* Number of parameters */
63343   int nMem;                      /* Number of VM memory registers */
63344   int nCursor;                   /* Number of cursors required */
63345   int nArg;                      /* Number of arguments in subprograms */
63346   int nOnce;                     /* Number of OP_Once instructions */
63347   int n;                         /* Loop counter */
63348   u8 *zCsr;                      /* Memory available for allocation */
63349   u8 *zEnd;                      /* First byte past allocated memory */
63350   int nByte;                     /* How much extra memory is needed */
63351 
63352   assert( p!=0 );
63353   assert( p->nOp>0 );
63354   assert( pParse!=0 );
63355   assert( p->magic==VDBE_MAGIC_INIT );
63356   assert( pParse==p->pParse );
63357   db = p->db;
63358   assert( db->mallocFailed==0 );
63359   nVar = pParse->nVar;
63360   nMem = pParse->nMem;
63361   nCursor = pParse->nTab;
63362   nArg = pParse->nMaxArg;
63363   nOnce = pParse->nOnce;
63364   if( nOnce==0 ) nOnce = 1; /* Ensure at least one byte in p->aOnceFlag[] */
63365 
63366   /* For each cursor required, also allocate a memory cell. Memory
63367   ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by
63368   ** the vdbe program. Instead they are used to allocate space for
63369   ** VdbeCursor/BtCursor structures. The blob of memory associated with
63370   ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1)
63371   ** stores the blob of memory associated with cursor 1, etc.
63372   **
63373   ** See also: allocateCursor().
63374   */
63375   nMem += nCursor;
63376 
63377   /* Allocate space for memory registers, SQL variables, VDBE cursors and
63378   ** an array to marshal SQL function arguments in.
63379   */
63380   zCsr = (u8*)&p->aOp[p->nOp];            /* Memory avaliable for allocation */
63381   zEnd = (u8*)&p->aOp[pParse->nOpAlloc];  /* First byte past end of zCsr[] */
63382 
63383   resolveP2Values(p, &nArg);
63384   p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
63385   if( pParse->explain && nMem<10 ){
63386     nMem = 10;
63387   }
63388   memset(zCsr, 0, zEnd-zCsr);
63389   zCsr += (zCsr - (u8*)0)&7;
63390   assert( EIGHT_BYTE_ALIGNMENT(zCsr) );
63391   p->expired = 0;
63392 
63393   /* Memory for registers, parameters, cursor, etc, is allocated in two
63394   ** passes.  On the first pass, we try to reuse unused space at the
63395   ** end of the opcode array.  If we are unable to satisfy all memory
63396   ** requirements by reusing the opcode array tail, then the second
63397   ** pass will fill in the rest using a fresh allocation.
63398   **
63399   ** This two-pass approach that reuses as much memory as possible from
63400   ** the leftover space at the end of the opcode array can significantly
63401   ** reduce the amount of memory held by a prepared statement.
63402   */
63403   do {
63404     nByte = 0;
63405     p->aMem = allocSpace(p->aMem, nMem*sizeof(Mem), &zCsr, zEnd, &nByte);
63406     p->aVar = allocSpace(p->aVar, nVar*sizeof(Mem), &zCsr, zEnd, &nByte);
63407     p->apArg = allocSpace(p->apArg, nArg*sizeof(Mem*), &zCsr, zEnd, &nByte);
63408     p->azVar = allocSpace(p->azVar, nVar*sizeof(char*), &zCsr, zEnd, &nByte);
63409     p->apCsr = allocSpace(p->apCsr, nCursor*sizeof(VdbeCursor*),
63410                           &zCsr, zEnd, &nByte);
63411     p->aOnceFlag = allocSpace(p->aOnceFlag, nOnce, &zCsr, zEnd, &nByte);
63412     if( nByte ){
63413       p->pFree = sqlite3DbMallocZero(db, nByte);
63414     }
63415     zCsr = p->pFree;
63416     zEnd = &zCsr[nByte];
63417   }while( nByte && !db->mallocFailed );
63418 
63419   p->nCursor = nCursor;
63420   p->nOnceFlag = nOnce;
63421   if( p->aVar ){
63422     p->nVar = (ynVar)nVar;
63423     for(n=0; n<nVar; n++){
63424       p->aVar[n].flags = MEM_Null;
63425       p->aVar[n].db = db;
63426     }
63427   }
63428   if( p->azVar ){
63429     p->nzVar = pParse->nzVar;
63430     memcpy(p->azVar, pParse->azVar, p->nzVar*sizeof(p->azVar[0]));
63431     memset(pParse->azVar, 0, pParse->nzVar*sizeof(pParse->azVar[0]));
63432   }
63433   if( p->aMem ){
63434     p->aMem--;                      /* aMem[] goes from 1..nMem */
63435     p->nMem = nMem;                 /*       not from 0..nMem-1 */
63436     for(n=1; n<=nMem; n++){
63437       p->aMem[n].flags = MEM_Undefined;
63438       p->aMem[n].db = db;
63439     }
63440   }
63441   p->explain = pParse->explain;
63442   sqlite3VdbeRewind(p);
63443 }
63444 
63445 /*
63446 ** Close a VDBE cursor and release all the resources that cursor
63447 ** happens to hold.
63448 */
63449 SQLITE_PRIVATE void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
63450   if( pCx==0 ){
63451     return;
63452   }
63453   sqlite3VdbeSorterClose(p->db, pCx);
63454   if( pCx->pBt ){
63455     sqlite3BtreeClose(pCx->pBt);
63456     /* The pCx->pCursor will be close automatically, if it exists, by
63457     ** the call above. */
63458   }else if( pCx->pCursor ){
63459     sqlite3BtreeCloseCursor(pCx->pCursor);
63460   }
63461 #ifndef SQLITE_OMIT_VIRTUALTABLE
63462   if( pCx->pVtabCursor ){
63463     sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor;
63464     const sqlite3_module *pModule = pVtabCursor->pVtab->pModule;
63465     p->inVtabMethod = 1;
63466     pModule->xClose(pVtabCursor);
63467     p->inVtabMethod = 0;
63468   }
63469 #endif
63470 }
63471 
63472 /*
63473 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This
63474 ** is used, for example, when a trigger sub-program is halted to restore
63475 ** control to the main program.
63476 */
63477 SQLITE_PRIVATE int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
63478   Vdbe *v = pFrame->v;
63479   v->aOnceFlag = pFrame->aOnceFlag;
63480   v->nOnceFlag = pFrame->nOnceFlag;
63481   v->aOp = pFrame->aOp;
63482   v->nOp = pFrame->nOp;
63483   v->aMem = pFrame->aMem;
63484   v->nMem = pFrame->nMem;
63485   v->apCsr = pFrame->apCsr;
63486   v->nCursor = pFrame->nCursor;
63487   v->db->lastRowid = pFrame->lastRowid;
63488   v->nChange = pFrame->nChange;
63489   return pFrame->pc;
63490 }
63491 
63492 /*
63493 ** Close all cursors.
63494 **
63495 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
63496 ** cell array. This is necessary as the memory cell array may contain
63497 ** pointers to VdbeFrame objects, which may in turn contain pointers to
63498 ** open cursors.
63499 */
63500 static void closeAllCursors(Vdbe *p){
63501   if( p->pFrame ){
63502     VdbeFrame *pFrame;
63503     for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
63504     sqlite3VdbeFrameRestore(pFrame);
63505   }
63506   p->pFrame = 0;
63507   p->nFrame = 0;
63508 
63509   if( p->apCsr ){
63510     int i;
63511     for(i=0; i<p->nCursor; i++){
63512       VdbeCursor *pC = p->apCsr[i];
63513       if( pC ){
63514         sqlite3VdbeFreeCursor(p, pC);
63515         p->apCsr[i] = 0;
63516       }
63517     }
63518   }
63519   if( p->aMem ){
63520     releaseMemArray(&p->aMem[1], p->nMem);
63521   }
63522   while( p->pDelFrame ){
63523     VdbeFrame *pDel = p->pDelFrame;
63524     p->pDelFrame = pDel->pParent;
63525     sqlite3VdbeFrameDelete(pDel);
63526   }
63527 
63528   /* Delete any auxdata allocations made by the VM */
63529   sqlite3VdbeDeleteAuxData(p, -1, 0);
63530   assert( p->pAuxData==0 );
63531 }
63532 
63533 /*
63534 ** Clean up the VM after execution.
63535 **
63536 ** This routine will automatically close any cursors, lists, and/or
63537 ** sorters that were left open.  It also deletes the values of
63538 ** variables in the aVar[] array.
63539 */
63540 static void Cleanup(Vdbe *p){
63541   sqlite3 *db = p->db;
63542 
63543 #ifdef SQLITE_DEBUG
63544   /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
63545   ** Vdbe.aMem[] arrays have already been cleaned up.  */
63546   int i;
63547   if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
63548   if( p->aMem ){
63549     for(i=1; i<=p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined );
63550   }
63551 #endif
63552 
63553   sqlite3DbFree(db, p->zErrMsg);
63554   p->zErrMsg = 0;
63555   p->pResultSet = 0;
63556 }
63557 
63558 /*
63559 ** Set the number of result columns that will be returned by this SQL
63560 ** statement. This is now set at compile time, rather than during
63561 ** execution of the vdbe program so that sqlite3_column_count() can
63562 ** be called on an SQL statement before sqlite3_step().
63563 */
63564 SQLITE_PRIVATE void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
63565   Mem *pColName;
63566   int n;
63567   sqlite3 *db = p->db;
63568 
63569   releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
63570   sqlite3DbFree(db, p->aColName);
63571   n = nResColumn*COLNAME_N;
63572   p->nResColumn = (u16)nResColumn;
63573   p->aColName = pColName = (Mem*)sqlite3DbMallocZero(db, sizeof(Mem)*n );
63574   if( p->aColName==0 ) return;
63575   while( n-- > 0 ){
63576     pColName->flags = MEM_Null;
63577     pColName->db = p->db;
63578     pColName++;
63579   }
63580 }
63581 
63582 /*
63583 ** Set the name of the idx'th column to be returned by the SQL statement.
63584 ** zName must be a pointer to a nul terminated string.
63585 **
63586 ** This call must be made after a call to sqlite3VdbeSetNumCols().
63587 **
63588 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
63589 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
63590 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
63591 */
63592 SQLITE_PRIVATE int sqlite3VdbeSetColName(
63593   Vdbe *p,                         /* Vdbe being configured */
63594   int idx,                         /* Index of column zName applies to */
63595   int var,                         /* One of the COLNAME_* constants */
63596   const char *zName,               /* Pointer to buffer containing name */
63597   void (*xDel)(void*)              /* Memory management strategy for zName */
63598 ){
63599   int rc;
63600   Mem *pColName;
63601   assert( idx<p->nResColumn );
63602   assert( var<COLNAME_N );
63603   if( p->db->mallocFailed ){
63604     assert( !zName || xDel!=SQLITE_DYNAMIC );
63605     return SQLITE_NOMEM;
63606   }
63607   assert( p->aColName!=0 );
63608   pColName = &(p->aColName[idx+var*p->nResColumn]);
63609   rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
63610   assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
63611   return rc;
63612 }
63613 
63614 /*
63615 ** A read or write transaction may or may not be active on database handle
63616 ** db. If a transaction is active, commit it. If there is a
63617 ** write-transaction spanning more than one database file, this routine
63618 ** takes care of the master journal trickery.
63619 */
63620 static int vdbeCommit(sqlite3 *db, Vdbe *p){
63621   int i;
63622   int nTrans = 0;  /* Number of databases with an active write-transaction */
63623   int rc = SQLITE_OK;
63624   int needXcommit = 0;
63625 
63626 #ifdef SQLITE_OMIT_VIRTUALTABLE
63627   /* With this option, sqlite3VtabSync() is defined to be simply
63628   ** SQLITE_OK so p is not used.
63629   */
63630   UNUSED_PARAMETER(p);
63631 #endif
63632 
63633   /* Before doing anything else, call the xSync() callback for any
63634   ** virtual module tables written in this transaction. This has to
63635   ** be done before determining whether a master journal file is
63636   ** required, as an xSync() callback may add an attached database
63637   ** to the transaction.
63638   */
63639   rc = sqlite3VtabSync(db, p);
63640 
63641   /* This loop determines (a) if the commit hook should be invoked and
63642   ** (b) how many database files have open write transactions, not
63643   ** including the temp database. (b) is important because if more than
63644   ** one database file has an open write transaction, a master journal
63645   ** file is required for an atomic commit.
63646   */
63647   for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
63648     Btree *pBt = db->aDb[i].pBt;
63649     if( sqlite3BtreeIsInTrans(pBt) ){
63650       needXcommit = 1;
63651       if( i!=1 ) nTrans++;
63652       sqlite3BtreeEnter(pBt);
63653       rc = sqlite3PagerExclusiveLock(sqlite3BtreePager(pBt));
63654       sqlite3BtreeLeave(pBt);
63655     }
63656   }
63657   if( rc!=SQLITE_OK ){
63658     return rc;
63659   }
63660 
63661   /* If there are any write-transactions at all, invoke the commit hook */
63662   if( needXcommit && db->xCommitCallback ){
63663     rc = db->xCommitCallback(db->pCommitArg);
63664     if( rc ){
63665       return SQLITE_CONSTRAINT_COMMITHOOK;
63666     }
63667   }
63668 
63669   /* The simple case - no more than one database file (not counting the
63670   ** TEMP database) has a transaction active.   There is no need for the
63671   ** master-journal.
63672   **
63673   ** If the return value of sqlite3BtreeGetFilename() is a zero length
63674   ** string, it means the main database is :memory: or a temp file.  In
63675   ** that case we do not support atomic multi-file commits, so use the
63676   ** simple case then too.
63677   */
63678   if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
63679    || nTrans<=1
63680   ){
63681     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
63682       Btree *pBt = db->aDb[i].pBt;
63683       if( pBt ){
63684         rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
63685       }
63686     }
63687 
63688     /* Do the commit only if all databases successfully complete phase 1.
63689     ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
63690     ** IO error while deleting or truncating a journal file. It is unlikely,
63691     ** but could happen. In this case abandon processing and return the error.
63692     */
63693     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
63694       Btree *pBt = db->aDb[i].pBt;
63695       if( pBt ){
63696         rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
63697       }
63698     }
63699     if( rc==SQLITE_OK ){
63700       sqlite3VtabCommit(db);
63701     }
63702   }
63703 
63704   /* The complex case - There is a multi-file write-transaction active.
63705   ** This requires a master journal file to ensure the transaction is
63706   ** committed atomicly.
63707   */
63708 #ifndef SQLITE_OMIT_DISKIO
63709   else{
63710     sqlite3_vfs *pVfs = db->pVfs;
63711     int needSync = 0;
63712     char *zMaster = 0;   /* File-name for the master journal */
63713     char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
63714     sqlite3_file *pMaster = 0;
63715     i64 offset = 0;
63716     int res;
63717     int retryCount = 0;
63718     int nMainFile;
63719 
63720     /* Select a master journal file name */
63721     nMainFile = sqlite3Strlen30(zMainFile);
63722     zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile);
63723     if( zMaster==0 ) return SQLITE_NOMEM;
63724     do {
63725       u32 iRandom;
63726       if( retryCount ){
63727         if( retryCount>100 ){
63728           sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster);
63729           sqlite3OsDelete(pVfs, zMaster, 0);
63730           break;
63731         }else if( retryCount==1 ){
63732           sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster);
63733         }
63734       }
63735       retryCount++;
63736       sqlite3_randomness(sizeof(iRandom), &iRandom);
63737       sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X",
63738                                (iRandom>>8)&0xffffff, iRandom&0xff);
63739       /* The antipenultimate character of the master journal name must
63740       ** be "9" to avoid name collisions when using 8+3 filenames. */
63741       assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' );
63742       sqlite3FileSuffix3(zMainFile, zMaster);
63743       rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
63744     }while( rc==SQLITE_OK && res );
63745     if( rc==SQLITE_OK ){
63746       /* Open the master journal. */
63747       rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster,
63748           SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
63749           SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
63750       );
63751     }
63752     if( rc!=SQLITE_OK ){
63753       sqlite3DbFree(db, zMaster);
63754       return rc;
63755     }
63756 
63757     /* Write the name of each database file in the transaction into the new
63758     ** master journal file. If an error occurs at this point close
63759     ** and delete the master journal file. All the individual journal files
63760     ** still have 'null' as the master journal pointer, so they will roll
63761     ** back independently if a failure occurs.
63762     */
63763     for(i=0; i<db->nDb; i++){
63764       Btree *pBt = db->aDb[i].pBt;
63765       if( sqlite3BtreeIsInTrans(pBt) ){
63766         char const *zFile = sqlite3BtreeGetJournalname(pBt);
63767         if( zFile==0 ){
63768           continue;  /* Ignore TEMP and :memory: databases */
63769         }
63770         assert( zFile[0]!=0 );
63771         if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){
63772           needSync = 1;
63773         }
63774         rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset);
63775         offset += sqlite3Strlen30(zFile)+1;
63776         if( rc!=SQLITE_OK ){
63777           sqlite3OsCloseFree(pMaster);
63778           sqlite3OsDelete(pVfs, zMaster, 0);
63779           sqlite3DbFree(db, zMaster);
63780           return rc;
63781         }
63782       }
63783     }
63784 
63785     /* Sync the master journal file. If the IOCAP_SEQUENTIAL device
63786     ** flag is set this is not required.
63787     */
63788     if( needSync
63789      && 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL)
63790      && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))
63791     ){
63792       sqlite3OsCloseFree(pMaster);
63793       sqlite3OsDelete(pVfs, zMaster, 0);
63794       sqlite3DbFree(db, zMaster);
63795       return rc;
63796     }
63797 
63798     /* Sync all the db files involved in the transaction. The same call
63799     ** sets the master journal pointer in each individual journal. If
63800     ** an error occurs here, do not delete the master journal file.
63801     **
63802     ** If the error occurs during the first call to
63803     ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
63804     ** master journal file will be orphaned. But we cannot delete it,
63805     ** in case the master journal file name was written into the journal
63806     ** file before the failure occurred.
63807     */
63808     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
63809       Btree *pBt = db->aDb[i].pBt;
63810       if( pBt ){
63811         rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
63812       }
63813     }
63814     sqlite3OsCloseFree(pMaster);
63815     assert( rc!=SQLITE_BUSY );
63816     if( rc!=SQLITE_OK ){
63817       sqlite3DbFree(db, zMaster);
63818       return rc;
63819     }
63820 
63821     /* Delete the master journal file. This commits the transaction. After
63822     ** doing this the directory is synced again before any individual
63823     ** transaction files are deleted.
63824     */
63825     rc = sqlite3OsDelete(pVfs, zMaster, 1);
63826     sqlite3DbFree(db, zMaster);
63827     zMaster = 0;
63828     if( rc ){
63829       return rc;
63830     }
63831 
63832     /* All files and directories have already been synced, so the following
63833     ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
63834     ** deleting or truncating journals. If something goes wrong while
63835     ** this is happening we don't really care. The integrity of the
63836     ** transaction is already guaranteed, but some stray 'cold' journals
63837     ** may be lying around. Returning an error code won't help matters.
63838     */
63839     disable_simulated_io_errors();
63840     sqlite3BeginBenignMalloc();
63841     for(i=0; i<db->nDb; i++){
63842       Btree *pBt = db->aDb[i].pBt;
63843       if( pBt ){
63844         sqlite3BtreeCommitPhaseTwo(pBt, 1);
63845       }
63846     }
63847     sqlite3EndBenignMalloc();
63848     enable_simulated_io_errors();
63849 
63850     sqlite3VtabCommit(db);
63851   }
63852 #endif
63853 
63854   return rc;
63855 }
63856 
63857 /*
63858 ** This routine checks that the sqlite3.nVdbeActive count variable
63859 ** matches the number of vdbe's in the list sqlite3.pVdbe that are
63860 ** currently active. An assertion fails if the two counts do not match.
63861 ** This is an internal self-check only - it is not an essential processing
63862 ** step.
63863 **
63864 ** This is a no-op if NDEBUG is defined.
63865 */
63866 #ifndef NDEBUG
63867 static void checkActiveVdbeCnt(sqlite3 *db){
63868   Vdbe *p;
63869   int cnt = 0;
63870   int nWrite = 0;
63871   int nRead = 0;
63872   p = db->pVdbe;
63873   while( p ){
63874     if( p->magic==VDBE_MAGIC_RUN && p->pc>=0 ){
63875       cnt++;
63876       if( p->readOnly==0 ) nWrite++;
63877       if( p->bIsReader ) nRead++;
63878     }
63879     p = p->pNext;
63880   }
63881   assert( cnt==db->nVdbeActive );
63882   assert( nWrite==db->nVdbeWrite );
63883   assert( nRead==db->nVdbeRead );
63884 }
63885 #else
63886 #define checkActiveVdbeCnt(x)
63887 #endif
63888 
63889 /*
63890 ** If the Vdbe passed as the first argument opened a statement-transaction,
63891 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
63892 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
63893 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
63894 ** statement transaction is committed.
63895 **
63896 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
63897 ** Otherwise SQLITE_OK.
63898 */
63899 SQLITE_PRIVATE int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
63900   sqlite3 *const db = p->db;
63901   int rc = SQLITE_OK;
63902 
63903   /* If p->iStatement is greater than zero, then this Vdbe opened a
63904   ** statement transaction that should be closed here. The only exception
63905   ** is that an IO error may have occurred, causing an emergency rollback.
63906   ** In this case (db->nStatement==0), and there is nothing to do.
63907   */
63908   if( db->nStatement && p->iStatement ){
63909     int i;
63910     const int iSavepoint = p->iStatement-1;
63911 
63912     assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
63913     assert( db->nStatement>0 );
63914     assert( p->iStatement==(db->nStatement+db->nSavepoint) );
63915 
63916     for(i=0; i<db->nDb; i++){
63917       int rc2 = SQLITE_OK;
63918       Btree *pBt = db->aDb[i].pBt;
63919       if( pBt ){
63920         if( eOp==SAVEPOINT_ROLLBACK ){
63921           rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
63922         }
63923         if( rc2==SQLITE_OK ){
63924           rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
63925         }
63926         if( rc==SQLITE_OK ){
63927           rc = rc2;
63928         }
63929       }
63930     }
63931     db->nStatement--;
63932     p->iStatement = 0;
63933 
63934     if( rc==SQLITE_OK ){
63935       if( eOp==SAVEPOINT_ROLLBACK ){
63936         rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
63937       }
63938       if( rc==SQLITE_OK ){
63939         rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
63940       }
63941     }
63942 
63943     /* If the statement transaction is being rolled back, also restore the
63944     ** database handles deferred constraint counter to the value it had when
63945     ** the statement transaction was opened.  */
63946     if( eOp==SAVEPOINT_ROLLBACK ){
63947       db->nDeferredCons = p->nStmtDefCons;
63948       db->nDeferredImmCons = p->nStmtDefImmCons;
63949     }
63950   }
63951   return rc;
63952 }
63953 
63954 /*
63955 ** This function is called when a transaction opened by the database
63956 ** handle associated with the VM passed as an argument is about to be
63957 ** committed. If there are outstanding deferred foreign key constraint
63958 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
63959 **
63960 ** If there are outstanding FK violations and this function returns
63961 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
63962 ** and write an error message to it. Then return SQLITE_ERROR.
63963 */
63964 #ifndef SQLITE_OMIT_FOREIGN_KEY
63965 SQLITE_PRIVATE int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
63966   sqlite3 *db = p->db;
63967   if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0)
63968    || (!deferred && p->nFkConstraint>0)
63969   ){
63970     p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
63971     p->errorAction = OE_Abort;
63972     sqlite3SetString(&p->zErrMsg, db, "FOREIGN KEY constraint failed");
63973     return SQLITE_ERROR;
63974   }
63975   return SQLITE_OK;
63976 }
63977 #endif
63978 
63979 /*
63980 ** This routine is called the when a VDBE tries to halt.  If the VDBE
63981 ** has made changes and is in autocommit mode, then commit those
63982 ** changes.  If a rollback is needed, then do the rollback.
63983 **
63984 ** This routine is the only way to move the state of a VM from
63985 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT.  It is harmless to
63986 ** call this on a VM that is in the SQLITE_MAGIC_HALT state.
63987 **
63988 ** Return an error code.  If the commit could not complete because of
63989 ** lock contention, return SQLITE_BUSY.  If SQLITE_BUSY is returned, it
63990 ** means the close did not happen and needs to be repeated.
63991 */
63992 SQLITE_PRIVATE int sqlite3VdbeHalt(Vdbe *p){
63993   int rc;                         /* Used to store transient return codes */
63994   sqlite3 *db = p->db;
63995 
63996   /* This function contains the logic that determines if a statement or
63997   ** transaction will be committed or rolled back as a result of the
63998   ** execution of this virtual machine.
63999   **
64000   ** If any of the following errors occur:
64001   **
64002   **     SQLITE_NOMEM
64003   **     SQLITE_IOERR
64004   **     SQLITE_FULL
64005   **     SQLITE_INTERRUPT
64006   **
64007   ** Then the internal cache might have been left in an inconsistent
64008   ** state.  We need to rollback the statement transaction, if there is
64009   ** one, or the complete transaction if there is no statement transaction.
64010   */
64011 
64012   if( p->db->mallocFailed ){
64013     p->rc = SQLITE_NOMEM;
64014   }
64015   if( p->aOnceFlag ) memset(p->aOnceFlag, 0, p->nOnceFlag);
64016   closeAllCursors(p);
64017   if( p->magic!=VDBE_MAGIC_RUN ){
64018     return SQLITE_OK;
64019   }
64020   checkActiveVdbeCnt(db);
64021 
64022   /* No commit or rollback needed if the program never started or if the
64023   ** SQL statement does not read or write a database file.  */
64024   if( p->pc>=0 && p->bIsReader ){
64025     int mrc;   /* Primary error code from p->rc */
64026     int eStatementOp = 0;
64027     int isSpecialError;            /* Set to true if a 'special' error */
64028 
64029     /* Lock all btrees used by the statement */
64030     sqlite3VdbeEnter(p);
64031 
64032     /* Check for one of the special errors */
64033     mrc = p->rc & 0xff;
64034     assert( p->rc!=SQLITE_IOERR_BLOCKED );  /* This error no longer exists */
64035     isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
64036                      || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
64037     if( isSpecialError ){
64038       /* If the query was read-only and the error code is SQLITE_INTERRUPT,
64039       ** no rollback is necessary. Otherwise, at least a savepoint
64040       ** transaction must be rolled back to restore the database to a
64041       ** consistent state.
64042       **
64043       ** Even if the statement is read-only, it is important to perform
64044       ** a statement or transaction rollback operation. If the error
64045       ** occurred while writing to the journal, sub-journal or database
64046       ** file as part of an effort to free up cache space (see function
64047       ** pagerStress() in pager.c), the rollback is required to restore
64048       ** the pager to a consistent state.
64049       */
64050       if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
64051         if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
64052           eStatementOp = SAVEPOINT_ROLLBACK;
64053         }else{
64054           /* We are forced to roll back the active transaction. Before doing
64055           ** so, abort any other statements this handle currently has active.
64056           */
64057           sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
64058           sqlite3CloseSavepoints(db);
64059           db->autoCommit = 1;
64060         }
64061       }
64062     }
64063 
64064     /* Check for immediate foreign key violations. */
64065     if( p->rc==SQLITE_OK ){
64066       sqlite3VdbeCheckFk(p, 0);
64067     }
64068 
64069     /* If the auto-commit flag is set and this is the only active writer
64070     ** VM, then we do either a commit or rollback of the current transaction.
64071     **
64072     ** Note: This block also runs if one of the special errors handled
64073     ** above has occurred.
64074     */
64075     if( !sqlite3VtabInSync(db)
64076      && db->autoCommit
64077      && db->nVdbeWrite==(p->readOnly==0)
64078     ){
64079       if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
64080         rc = sqlite3VdbeCheckFk(p, 1);
64081         if( rc!=SQLITE_OK ){
64082           if( NEVER(p->readOnly) ){
64083             sqlite3VdbeLeave(p);
64084             return SQLITE_ERROR;
64085           }
64086           rc = SQLITE_CONSTRAINT_FOREIGNKEY;
64087         }else{
64088           /* The auto-commit flag is true, the vdbe program was successful
64089           ** or hit an 'OR FAIL' constraint and there are no deferred foreign
64090           ** key constraints to hold up the transaction. This means a commit
64091           ** is required. */
64092           rc = vdbeCommit(db, p);
64093         }
64094         if( rc==SQLITE_BUSY && p->readOnly ){
64095           sqlite3VdbeLeave(p);
64096           return SQLITE_BUSY;
64097         }else if( rc!=SQLITE_OK ){
64098           p->rc = rc;
64099           sqlite3RollbackAll(db, SQLITE_OK);
64100         }else{
64101           db->nDeferredCons = 0;
64102           db->nDeferredImmCons = 0;
64103           db->flags &= ~SQLITE_DeferFKs;
64104           sqlite3CommitInternalChanges(db);
64105         }
64106       }else{
64107         sqlite3RollbackAll(db, SQLITE_OK);
64108       }
64109       db->nStatement = 0;
64110     }else if( eStatementOp==0 ){
64111       if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
64112         eStatementOp = SAVEPOINT_RELEASE;
64113       }else if( p->errorAction==OE_Abort ){
64114         eStatementOp = SAVEPOINT_ROLLBACK;
64115       }else{
64116         sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
64117         sqlite3CloseSavepoints(db);
64118         db->autoCommit = 1;
64119       }
64120     }
64121 
64122     /* If eStatementOp is non-zero, then a statement transaction needs to
64123     ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
64124     ** do so. If this operation returns an error, and the current statement
64125     ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
64126     ** current statement error code.
64127     */
64128     if( eStatementOp ){
64129       rc = sqlite3VdbeCloseStatement(p, eStatementOp);
64130       if( rc ){
64131         if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){
64132           p->rc = rc;
64133           sqlite3DbFree(db, p->zErrMsg);
64134           p->zErrMsg = 0;
64135         }
64136         sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
64137         sqlite3CloseSavepoints(db);
64138         db->autoCommit = 1;
64139       }
64140     }
64141 
64142     /* If this was an INSERT, UPDATE or DELETE and no statement transaction
64143     ** has been rolled back, update the database connection change-counter.
64144     */
64145     if( p->changeCntOn ){
64146       if( eStatementOp!=SAVEPOINT_ROLLBACK ){
64147         sqlite3VdbeSetChanges(db, p->nChange);
64148       }else{
64149         sqlite3VdbeSetChanges(db, 0);
64150       }
64151       p->nChange = 0;
64152     }
64153 
64154     /* Release the locks */
64155     sqlite3VdbeLeave(p);
64156   }
64157 
64158   /* We have successfully halted and closed the VM.  Record this fact. */
64159   if( p->pc>=0 ){
64160     db->nVdbeActive--;
64161     if( !p->readOnly ) db->nVdbeWrite--;
64162     if( p->bIsReader ) db->nVdbeRead--;
64163     assert( db->nVdbeActive>=db->nVdbeRead );
64164     assert( db->nVdbeRead>=db->nVdbeWrite );
64165     assert( db->nVdbeWrite>=0 );
64166   }
64167   p->magic = VDBE_MAGIC_HALT;
64168   checkActiveVdbeCnt(db);
64169   if( p->db->mallocFailed ){
64170     p->rc = SQLITE_NOMEM;
64171   }
64172 
64173   /* If the auto-commit flag is set to true, then any locks that were held
64174   ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
64175   ** to invoke any required unlock-notify callbacks.
64176   */
64177   if( db->autoCommit ){
64178     sqlite3ConnectionUnlocked(db);
64179   }
64180 
64181   assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 );
64182   return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
64183 }
64184 
64185 
64186 /*
64187 ** Each VDBE holds the result of the most recent sqlite3_step() call
64188 ** in p->rc.  This routine sets that result back to SQLITE_OK.
64189 */
64190 SQLITE_PRIVATE void sqlite3VdbeResetStepResult(Vdbe *p){
64191   p->rc = SQLITE_OK;
64192 }
64193 
64194 /*
64195 ** Copy the error code and error message belonging to the VDBE passed
64196 ** as the first argument to its database handle (so that they will be
64197 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
64198 **
64199 ** This function does not clear the VDBE error code or message, just
64200 ** copies them to the database handle.
64201 */
64202 SQLITE_PRIVATE int sqlite3VdbeTransferError(Vdbe *p){
64203   sqlite3 *db = p->db;
64204   int rc = p->rc;
64205   if( p->zErrMsg ){
64206     u8 mallocFailed = db->mallocFailed;
64207     sqlite3BeginBenignMalloc();
64208     if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db);
64209     sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
64210     sqlite3EndBenignMalloc();
64211     db->mallocFailed = mallocFailed;
64212     db->errCode = rc;
64213   }else{
64214     sqlite3Error(db, rc, 0);
64215   }
64216   return rc;
64217 }
64218 
64219 #ifdef SQLITE_ENABLE_SQLLOG
64220 /*
64221 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
64222 ** invoke it.
64223 */
64224 static void vdbeInvokeSqllog(Vdbe *v){
64225   if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){
64226     char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql);
64227     assert( v->db->init.busy==0 );
64228     if( zExpanded ){
64229       sqlite3GlobalConfig.xSqllog(
64230           sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1
64231       );
64232       sqlite3DbFree(v->db, zExpanded);
64233     }
64234   }
64235 }
64236 #else
64237 # define vdbeInvokeSqllog(x)
64238 #endif
64239 
64240 /*
64241 ** Clean up a VDBE after execution but do not delete the VDBE just yet.
64242 ** Write any error messages into *pzErrMsg.  Return the result code.
64243 **
64244 ** After this routine is run, the VDBE should be ready to be executed
64245 ** again.
64246 **
64247 ** To look at it another way, this routine resets the state of the
64248 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
64249 ** VDBE_MAGIC_INIT.
64250 */
64251 SQLITE_PRIVATE int sqlite3VdbeReset(Vdbe *p){
64252   sqlite3 *db;
64253   db = p->db;
64254 
64255   /* If the VM did not run to completion or if it encountered an
64256   ** error, then it might not have been halted properly.  So halt
64257   ** it now.
64258   */
64259   sqlite3VdbeHalt(p);
64260 
64261   /* If the VDBE has be run even partially, then transfer the error code
64262   ** and error message from the VDBE into the main database structure.  But
64263   ** if the VDBE has just been set to run but has not actually executed any
64264   ** instructions yet, leave the main database error information unchanged.
64265   */
64266   if( p->pc>=0 ){
64267     vdbeInvokeSqllog(p);
64268     sqlite3VdbeTransferError(p);
64269     sqlite3DbFree(db, p->zErrMsg);
64270     p->zErrMsg = 0;
64271     if( p->runOnlyOnce ) p->expired = 1;
64272   }else if( p->rc && p->expired ){
64273     /* The expired flag was set on the VDBE before the first call
64274     ** to sqlite3_step(). For consistency (since sqlite3_step() was
64275     ** called), set the database error in this case as well.
64276     */
64277     sqlite3Error(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg);
64278     sqlite3DbFree(db, p->zErrMsg);
64279     p->zErrMsg = 0;
64280   }
64281 
64282   /* Reclaim all memory used by the VDBE
64283   */
64284   Cleanup(p);
64285 
64286   /* Save profiling information from this VDBE run.
64287   */
64288 #ifdef VDBE_PROFILE
64289   {
64290     FILE *out = fopen("vdbe_profile.out", "a");
64291     if( out ){
64292       int i;
64293       fprintf(out, "---- ");
64294       for(i=0; i<p->nOp; i++){
64295         fprintf(out, "%02x", p->aOp[i].opcode);
64296       }
64297       fprintf(out, "\n");
64298       if( p->zSql ){
64299         char c, pc = 0;
64300         fprintf(out, "-- ");
64301         for(i=0; (c = p->zSql[i])!=0; i++){
64302           if( pc=='\n' ) fprintf(out, "-- ");
64303           putc(c, out);
64304           pc = c;
64305         }
64306         if( pc!='\n' ) fprintf(out, "\n");
64307       }
64308       for(i=0; i<p->nOp; i++){
64309         char zHdr[100];
64310         sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ",
64311            p->aOp[i].cnt,
64312            p->aOp[i].cycles,
64313            p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
64314         );
64315         fprintf(out, "%s", zHdr);
64316         sqlite3VdbePrintOp(out, i, &p->aOp[i]);
64317       }
64318       fclose(out);
64319     }
64320   }
64321 #endif
64322   p->iCurrentTime = 0;
64323   p->magic = VDBE_MAGIC_INIT;
64324   return p->rc & db->errMask;
64325 }
64326 
64327 /*
64328 ** Clean up and delete a VDBE after execution.  Return an integer which is
64329 ** the result code.  Write any error message text into *pzErrMsg.
64330 */
64331 SQLITE_PRIVATE int sqlite3VdbeFinalize(Vdbe *p){
64332   int rc = SQLITE_OK;
64333   if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
64334     rc = sqlite3VdbeReset(p);
64335     assert( (rc & p->db->errMask)==rc );
64336   }
64337   sqlite3VdbeDelete(p);
64338   return rc;
64339 }
64340 
64341 /*
64342 ** If parameter iOp is less than zero, then invoke the destructor for
64343 ** all auxiliary data pointers currently cached by the VM passed as
64344 ** the first argument.
64345 **
64346 ** Or, if iOp is greater than or equal to zero, then the destructor is
64347 ** only invoked for those auxiliary data pointers created by the user
64348 ** function invoked by the OP_Function opcode at instruction iOp of
64349 ** VM pVdbe, and only then if:
64350 **
64351 **    * the associated function parameter is the 32nd or later (counting
64352 **      from left to right), or
64353 **
64354 **    * the corresponding bit in argument mask is clear (where the first
64355 **      function parameter corrsponds to bit 0 etc.).
64356 */
64357 SQLITE_PRIVATE void sqlite3VdbeDeleteAuxData(Vdbe *pVdbe, int iOp, int mask){
64358   AuxData **pp = &pVdbe->pAuxData;
64359   while( *pp ){
64360     AuxData *pAux = *pp;
64361     if( (iOp<0)
64362      || (pAux->iOp==iOp && (pAux->iArg>31 || !(mask & MASKBIT32(pAux->iArg))))
64363     ){
64364       testcase( pAux->iArg==31 );
64365       if( pAux->xDelete ){
64366         pAux->xDelete(pAux->pAux);
64367       }
64368       *pp = pAux->pNext;
64369       sqlite3DbFree(pVdbe->db, pAux);
64370     }else{
64371       pp= &pAux->pNext;
64372     }
64373   }
64374 }
64375 
64376 /*
64377 ** Free all memory associated with the Vdbe passed as the second argument,
64378 ** except for object itself, which is preserved.
64379 **
64380 ** The difference between this function and sqlite3VdbeDelete() is that
64381 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
64382 ** the database connection and frees the object itself.
64383 */
64384 SQLITE_PRIVATE void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
64385   SubProgram *pSub, *pNext;
64386   int i;
64387   assert( p->db==0 || p->db==db );
64388   releaseMemArray(p->aVar, p->nVar);
64389   releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
64390   for(pSub=p->pProgram; pSub; pSub=pNext){
64391     pNext = pSub->pNext;
64392     vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
64393     sqlite3DbFree(db, pSub);
64394   }
64395   for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]);
64396   vdbeFreeOpArray(db, p->aOp, p->nOp);
64397   sqlite3DbFree(db, p->aColName);
64398   sqlite3DbFree(db, p->zSql);
64399   sqlite3DbFree(db, p->pFree);
64400 #if defined(SQLITE_ENABLE_TREE_EXPLAIN)
64401   sqlite3DbFree(db, p->zExplain);
64402   sqlite3DbFree(db, p->pExplain);
64403 #endif
64404 }
64405 
64406 /*
64407 ** Delete an entire VDBE.
64408 */
64409 SQLITE_PRIVATE void sqlite3VdbeDelete(Vdbe *p){
64410   sqlite3 *db;
64411 
64412   if( NEVER(p==0) ) return;
64413   db = p->db;
64414   assert( sqlite3_mutex_held(db->mutex) );
64415   sqlite3VdbeClearObject(db, p);
64416   if( p->pPrev ){
64417     p->pPrev->pNext = p->pNext;
64418   }else{
64419     assert( db->pVdbe==p );
64420     db->pVdbe = p->pNext;
64421   }
64422   if( p->pNext ){
64423     p->pNext->pPrev = p->pPrev;
64424   }
64425   p->magic = VDBE_MAGIC_DEAD;
64426   p->db = 0;
64427   sqlite3DbFree(db, p);
64428 }
64429 
64430 /*
64431 ** Make sure the cursor p is ready to read or write the row to which it
64432 ** was last positioned.  Return an error code if an OOM fault or I/O error
64433 ** prevents us from positioning the cursor to its correct position.
64434 **
64435 ** If a MoveTo operation is pending on the given cursor, then do that
64436 ** MoveTo now.  If no move is pending, check to see if the row has been
64437 ** deleted out from under the cursor and if it has, mark the row as
64438 ** a NULL row.
64439 **
64440 ** If the cursor is already pointing to the correct row and that row has
64441 ** not been deleted out from under the cursor, then this routine is a no-op.
64442 */
64443 SQLITE_PRIVATE int sqlite3VdbeCursorMoveto(VdbeCursor *p){
64444   if( p->deferredMoveto ){
64445     int res, rc;
64446 #ifdef SQLITE_TEST
64447     extern int sqlite3_search_count;
64448 #endif
64449     assert( p->isTable );
64450     rc = sqlite3BtreeMovetoUnpacked(p->pCursor, 0, p->movetoTarget, 0, &res);
64451     if( rc ) return rc;
64452     p->lastRowid = p->movetoTarget;
64453     if( res!=0 ) return SQLITE_CORRUPT_BKPT;
64454     p->rowidIsValid = 1;
64455 #ifdef SQLITE_TEST
64456     sqlite3_search_count++;
64457 #endif
64458     p->deferredMoveto = 0;
64459     p->cacheStatus = CACHE_STALE;
64460   }else if( p->pCursor ){
64461     int hasMoved;
64462     int rc = sqlite3BtreeCursorHasMoved(p->pCursor, &hasMoved);
64463     if( rc ) return rc;
64464     if( hasMoved ){
64465       p->cacheStatus = CACHE_STALE;
64466       if( hasMoved==2 ) p->nullRow = 1;
64467     }
64468   }
64469   return SQLITE_OK;
64470 }
64471 
64472 /*
64473 ** The following functions:
64474 **
64475 ** sqlite3VdbeSerialType()
64476 ** sqlite3VdbeSerialTypeLen()
64477 ** sqlite3VdbeSerialLen()
64478 ** sqlite3VdbeSerialPut()
64479 ** sqlite3VdbeSerialGet()
64480 **
64481 ** encapsulate the code that serializes values for storage in SQLite
64482 ** data and index records. Each serialized value consists of a
64483 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
64484 ** integer, stored as a varint.
64485 **
64486 ** In an SQLite index record, the serial type is stored directly before
64487 ** the blob of data that it corresponds to. In a table record, all serial
64488 ** types are stored at the start of the record, and the blobs of data at
64489 ** the end. Hence these functions allow the caller to handle the
64490 ** serial-type and data blob separately.
64491 **
64492 ** The following table describes the various storage classes for data:
64493 **
64494 **   serial type        bytes of data      type
64495 **   --------------     ---------------    ---------------
64496 **      0                     0            NULL
64497 **      1                     1            signed integer
64498 **      2                     2            signed integer
64499 **      3                     3            signed integer
64500 **      4                     4            signed integer
64501 **      5                     6            signed integer
64502 **      6                     8            signed integer
64503 **      7                     8            IEEE float
64504 **      8                     0            Integer constant 0
64505 **      9                     0            Integer constant 1
64506 **     10,11                               reserved for expansion
64507 **    N>=12 and even       (N-12)/2        BLOB
64508 **    N>=13 and odd        (N-13)/2        text
64509 **
64510 ** The 8 and 9 types were added in 3.3.0, file format 4.  Prior versions
64511 ** of SQLite will not understand those serial types.
64512 */
64513 
64514 /*
64515 ** Return the serial-type for the value stored in pMem.
64516 */
64517 SQLITE_PRIVATE u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){
64518   int flags = pMem->flags;
64519   int n;
64520 
64521   if( flags&MEM_Null ){
64522     return 0;
64523   }
64524   if( flags&MEM_Int ){
64525     /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
64526 #   define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
64527     i64 i = pMem->u.i;
64528     u64 u;
64529     if( i<0 ){
64530       if( i<(-MAX_6BYTE) ) return 6;
64531       /* Previous test prevents:  u = -(-9223372036854775808) */
64532       u = -i;
64533     }else{
64534       u = i;
64535     }
64536     if( u<=127 ){
64537       return ((i&1)==i && file_format>=4) ? 8+(u32)u : 1;
64538     }
64539     if( u<=32767 ) return 2;
64540     if( u<=8388607 ) return 3;
64541     if( u<=2147483647 ) return 4;
64542     if( u<=MAX_6BYTE ) return 5;
64543     return 6;
64544   }
64545   if( flags&MEM_Real ){
64546     return 7;
64547   }
64548   assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
64549   n = pMem->n;
64550   if( flags & MEM_Zero ){
64551     n += pMem->u.nZero;
64552   }
64553   assert( n>=0 );
64554   return ((n*2) + 12 + ((flags&MEM_Str)!=0));
64555 }
64556 
64557 /*
64558 ** Return the length of the data corresponding to the supplied serial-type.
64559 */
64560 SQLITE_PRIVATE u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
64561   if( serial_type>=12 ){
64562     return (serial_type-12)/2;
64563   }else{
64564     static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 };
64565     return aSize[serial_type];
64566   }
64567 }
64568 
64569 /*
64570 ** If we are on an architecture with mixed-endian floating
64571 ** points (ex: ARM7) then swap the lower 4 bytes with the
64572 ** upper 4 bytes.  Return the result.
64573 **
64574 ** For most architectures, this is a no-op.
64575 **
64576 ** (later):  It is reported to me that the mixed-endian problem
64577 ** on ARM7 is an issue with GCC, not with the ARM7 chip.  It seems
64578 ** that early versions of GCC stored the two words of a 64-bit
64579 ** float in the wrong order.  And that error has been propagated
64580 ** ever since.  The blame is not necessarily with GCC, though.
64581 ** GCC might have just copying the problem from a prior compiler.
64582 ** I am also told that newer versions of GCC that follow a different
64583 ** ABI get the byte order right.
64584 **
64585 ** Developers using SQLite on an ARM7 should compile and run their
64586 ** application using -DSQLITE_DEBUG=1 at least once.  With DEBUG
64587 ** enabled, some asserts below will ensure that the byte order of
64588 ** floating point values is correct.
64589 **
64590 ** (2007-08-30)  Frank van Vugt has studied this problem closely
64591 ** and has send his findings to the SQLite developers.  Frank
64592 ** writes that some Linux kernels offer floating point hardware
64593 ** emulation that uses only 32-bit mantissas instead of a full
64594 ** 48-bits as required by the IEEE standard.  (This is the
64595 ** CONFIG_FPE_FASTFPE option.)  On such systems, floating point
64596 ** byte swapping becomes very complicated.  To avoid problems,
64597 ** the necessary byte swapping is carried out using a 64-bit integer
64598 ** rather than a 64-bit float.  Frank assures us that the code here
64599 ** works for him.  We, the developers, have no way to independently
64600 ** verify this, but Frank seems to know what he is talking about
64601 ** so we trust him.
64602 */
64603 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
64604 static u64 floatSwap(u64 in){
64605   union {
64606     u64 r;
64607     u32 i[2];
64608   } u;
64609   u32 t;
64610 
64611   u.r = in;
64612   t = u.i[0];
64613   u.i[0] = u.i[1];
64614   u.i[1] = t;
64615   return u.r;
64616 }
64617 # define swapMixedEndianFloat(X)  X = floatSwap(X)
64618 #else
64619 # define swapMixedEndianFloat(X)
64620 #endif
64621 
64622 /*
64623 ** Write the serialized data blob for the value stored in pMem into
64624 ** buf. It is assumed that the caller has allocated sufficient space.
64625 ** Return the number of bytes written.
64626 **
64627 ** nBuf is the amount of space left in buf[].  The caller is responsible
64628 ** for allocating enough space to buf[] to hold the entire field, exclusive
64629 ** of the pMem->u.nZero bytes for a MEM_Zero value.
64630 **
64631 ** Return the number of bytes actually written into buf[].  The number
64632 ** of bytes in the zero-filled tail is included in the return value only
64633 ** if those bytes were zeroed in buf[].
64634 */
64635 SQLITE_PRIVATE u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){
64636   u32 len;
64637 
64638   /* Integer and Real */
64639   if( serial_type<=7 && serial_type>0 ){
64640     u64 v;
64641     u32 i;
64642     if( serial_type==7 ){
64643       assert( sizeof(v)==sizeof(pMem->r) );
64644       memcpy(&v, &pMem->r, sizeof(v));
64645       swapMixedEndianFloat(v);
64646     }else{
64647       v = pMem->u.i;
64648     }
64649     len = i = sqlite3VdbeSerialTypeLen(serial_type);
64650     while( i-- ){
64651       buf[i] = (u8)(v&0xFF);
64652       v >>= 8;
64653     }
64654     return len;
64655   }
64656 
64657   /* String or blob */
64658   if( serial_type>=12 ){
64659     assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
64660              == (int)sqlite3VdbeSerialTypeLen(serial_type) );
64661     len = pMem->n;
64662     memcpy(buf, pMem->z, len);
64663     return len;
64664   }
64665 
64666   /* NULL or constants 0 or 1 */
64667   return 0;
64668 }
64669 
64670 /* Input "x" is a sequence of unsigned characters that represent a
64671 ** big-endian integer.  Return the equivalent native integer
64672 */
64673 #define ONE_BYTE_INT(x)    ((i8)(x)[0])
64674 #define TWO_BYTE_INT(x)    (256*(i8)((x)[0])|(x)[1])
64675 #define THREE_BYTE_INT(x)  (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
64676 #define FOUR_BYTE_UINT(x)  (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
64677 
64678 /*
64679 ** Deserialize the data blob pointed to by buf as serial type serial_type
64680 ** and store the result in pMem.  Return the number of bytes read.
64681 */
64682 SQLITE_PRIVATE u32 sqlite3VdbeSerialGet(
64683   const unsigned char *buf,     /* Buffer to deserialize from */
64684   u32 serial_type,              /* Serial type to deserialize */
64685   Mem *pMem                     /* Memory cell to write value into */
64686 ){
64687   u64 x;
64688   u32 y;
64689   switch( serial_type ){
64690     case 10:   /* Reserved for future use */
64691     case 11:   /* Reserved for future use */
64692     case 0: {  /* NULL */
64693       pMem->flags = MEM_Null;
64694       break;
64695     }
64696     case 1: { /* 1-byte signed integer */
64697       pMem->u.i = ONE_BYTE_INT(buf);
64698       pMem->flags = MEM_Int;
64699       testcase( pMem->u.i<0 );
64700       return 1;
64701     }
64702     case 2: { /* 2-byte signed integer */
64703       pMem->u.i = TWO_BYTE_INT(buf);
64704       pMem->flags = MEM_Int;
64705       testcase( pMem->u.i<0 );
64706       return 2;
64707     }
64708     case 3: { /* 3-byte signed integer */
64709       pMem->u.i = THREE_BYTE_INT(buf);
64710       pMem->flags = MEM_Int;
64711       testcase( pMem->u.i<0 );
64712       return 3;
64713     }
64714     case 4: { /* 4-byte signed integer */
64715       y = FOUR_BYTE_UINT(buf);
64716       pMem->u.i = (i64)*(int*)&y;
64717       pMem->flags = MEM_Int;
64718       testcase( pMem->u.i<0 );
64719       return 4;
64720     }
64721     case 5: { /* 6-byte signed integer */
64722       pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
64723       pMem->flags = MEM_Int;
64724       testcase( pMem->u.i<0 );
64725       return 6;
64726     }
64727     case 6:   /* 8-byte signed integer */
64728     case 7: { /* IEEE floating point */
64729 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
64730       /* Verify that integers and floating point values use the same
64731       ** byte order.  Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
64732       ** defined that 64-bit floating point values really are mixed
64733       ** endian.
64734       */
64735       static const u64 t1 = ((u64)0x3ff00000)<<32;
64736       static const double r1 = 1.0;
64737       u64 t2 = t1;
64738       swapMixedEndianFloat(t2);
64739       assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
64740 #endif
64741       x = FOUR_BYTE_UINT(buf);
64742       y = FOUR_BYTE_UINT(buf+4);
64743       x = (x<<32) | y;
64744       if( serial_type==6 ){
64745         pMem->u.i = *(i64*)&x;
64746         pMem->flags = MEM_Int;
64747         testcase( pMem->u.i<0 );
64748       }else{
64749         assert( sizeof(x)==8 && sizeof(pMem->r)==8 );
64750         swapMixedEndianFloat(x);
64751         memcpy(&pMem->r, &x, sizeof(x));
64752         pMem->flags = sqlite3IsNaN(pMem->r) ? MEM_Null : MEM_Real;
64753       }
64754       return 8;
64755     }
64756     case 8:    /* Integer 0 */
64757     case 9: {  /* Integer 1 */
64758       pMem->u.i = serial_type-8;
64759       pMem->flags = MEM_Int;
64760       return 0;
64761     }
64762     default: {
64763       static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
64764       u32 len = (serial_type-12)/2;
64765       pMem->z = (char *)buf;
64766       pMem->n = len;
64767       pMem->xDel = 0;
64768       pMem->flags = aFlag[serial_type&1];
64769       return len;
64770     }
64771   }
64772   return 0;
64773 }
64774 
64775 /*
64776 ** This routine is used to allocate sufficient space for an UnpackedRecord
64777 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if
64778 ** the first argument is a pointer to KeyInfo structure pKeyInfo.
64779 **
64780 ** The space is either allocated using sqlite3DbMallocRaw() or from within
64781 ** the unaligned buffer passed via the second and third arguments (presumably
64782 ** stack space). If the former, then *ppFree is set to a pointer that should
64783 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the
64784 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
64785 ** before returning.
64786 **
64787 ** If an OOM error occurs, NULL is returned.
64788 */
64789 SQLITE_PRIVATE UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
64790   KeyInfo *pKeyInfo,              /* Description of the record */
64791   char *pSpace,                   /* Unaligned space available */
64792   int szSpace,                    /* Size of pSpace[] in bytes */
64793   char **ppFree                   /* OUT: Caller should free this pointer */
64794 ){
64795   UnpackedRecord *p;              /* Unpacked record to return */
64796   int nOff;                       /* Increment pSpace by nOff to align it */
64797   int nByte;                      /* Number of bytes required for *p */
64798 
64799   /* We want to shift the pointer pSpace up such that it is 8-byte aligned.
64800   ** Thus, we need to calculate a value, nOff, between 0 and 7, to shift
64801   ** it by.  If pSpace is already 8-byte aligned, nOff should be zero.
64802   */
64803   nOff = (8 - (SQLITE_PTR_TO_INT(pSpace) & 7)) & 7;
64804   nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1);
64805   if( nByte>szSpace+nOff ){
64806     p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
64807     *ppFree = (char *)p;
64808     if( !p ) return 0;
64809   }else{
64810     p = (UnpackedRecord*)&pSpace[nOff];
64811     *ppFree = 0;
64812   }
64813 
64814   p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))];
64815   assert( pKeyInfo->aSortOrder!=0 );
64816   p->pKeyInfo = pKeyInfo;
64817   p->nField = pKeyInfo->nField + 1;
64818   return p;
64819 }
64820 
64821 /*
64822 ** Given the nKey-byte encoding of a record in pKey[], populate the
64823 ** UnpackedRecord structure indicated by the fourth argument with the
64824 ** contents of the decoded record.
64825 */
64826 SQLITE_PRIVATE void sqlite3VdbeRecordUnpack(
64827   KeyInfo *pKeyInfo,     /* Information about the record format */
64828   int nKey,              /* Size of the binary record */
64829   const void *pKey,      /* The binary record */
64830   UnpackedRecord *p      /* Populate this structure before returning. */
64831 ){
64832   const unsigned char *aKey = (const unsigned char *)pKey;
64833   int d;
64834   u32 idx;                        /* Offset in aKey[] to read from */
64835   u16 u;                          /* Unsigned loop counter */
64836   u32 szHdr;
64837   Mem *pMem = p->aMem;
64838 
64839   p->default_rc = 0;
64840   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
64841   idx = getVarint32(aKey, szHdr);
64842   d = szHdr;
64843   u = 0;
64844   while( idx<szHdr && u<p->nField && d<=nKey ){
64845     u32 serial_type;
64846 
64847     idx += getVarint32(&aKey[idx], serial_type);
64848     pMem->enc = pKeyInfo->enc;
64849     pMem->db = pKeyInfo->db;
64850     /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
64851     pMem->zMalloc = 0;
64852     d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
64853     pMem++;
64854     u++;
64855   }
64856   assert( u<=pKeyInfo->nField + 1 );
64857   p->nField = u;
64858 }
64859 
64860 #if SQLITE_DEBUG
64861 /*
64862 ** This function compares two index or table record keys in the same way
64863 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
64864 ** this function deserializes and compares values using the
64865 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
64866 ** in assert() statements to ensure that the optimized code in
64867 ** sqlite3VdbeRecordCompare() returns results with these two primitives.
64868 */
64869 static int vdbeRecordCompareDebug(
64870   int nKey1, const void *pKey1, /* Left key */
64871   const UnpackedRecord *pPKey2  /* Right key */
64872 ){
64873   u32 d1;            /* Offset into aKey[] of next data element */
64874   u32 idx1;          /* Offset into aKey[] of next header element */
64875   u32 szHdr1;        /* Number of bytes in header */
64876   int i = 0;
64877   int rc = 0;
64878   const unsigned char *aKey1 = (const unsigned char *)pKey1;
64879   KeyInfo *pKeyInfo;
64880   Mem mem1;
64881 
64882   pKeyInfo = pPKey2->pKeyInfo;
64883   mem1.enc = pKeyInfo->enc;
64884   mem1.db = pKeyInfo->db;
64885   /* mem1.flags = 0;  // Will be initialized by sqlite3VdbeSerialGet() */
64886   VVA_ONLY( mem1.zMalloc = 0; ) /* Only needed by assert() statements */
64887 
64888   /* Compilers may complain that mem1.u.i is potentially uninitialized.
64889   ** We could initialize it, as shown here, to silence those complaints.
64890   ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
64891   ** the unnecessary initialization has a measurable negative performance
64892   ** impact, since this routine is a very high runner.  And so, we choose
64893   ** to ignore the compiler warnings and leave this variable uninitialized.
64894   */
64895   /*  mem1.u.i = 0;  // not needed, here to silence compiler warning */
64896 
64897   idx1 = getVarint32(aKey1, szHdr1);
64898   d1 = szHdr1;
64899   assert( pKeyInfo->nField+pKeyInfo->nXField>=pPKey2->nField || CORRUPT_DB );
64900   assert( pKeyInfo->aSortOrder!=0 );
64901   assert( pKeyInfo->nField>0 );
64902   assert( idx1<=szHdr1 || CORRUPT_DB );
64903   do{
64904     u32 serial_type1;
64905 
64906     /* Read the serial types for the next element in each key. */
64907     idx1 += getVarint32( aKey1+idx1, serial_type1 );
64908 
64909     /* Verify that there is enough key space remaining to avoid
64910     ** a buffer overread.  The "d1+serial_type1+2" subexpression will
64911     ** always be greater than or equal to the amount of required key space.
64912     ** Use that approximation to avoid the more expensive call to
64913     ** sqlite3VdbeSerialTypeLen() in the common case.
64914     */
64915     if( d1+serial_type1+2>(u32)nKey1
64916      && d1+sqlite3VdbeSerialTypeLen(serial_type1)>(u32)nKey1
64917     ){
64918       break;
64919     }
64920 
64921     /* Extract the values to be compared.
64922     */
64923     d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
64924 
64925     /* Do the comparison
64926     */
64927     rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]);
64928     if( rc!=0 ){
64929       assert( mem1.zMalloc==0 );  /* See comment below */
64930       if( pKeyInfo->aSortOrder[i] ){
64931         rc = -rc;  /* Invert the result for DESC sort order. */
64932       }
64933       return rc;
64934     }
64935     i++;
64936   }while( idx1<szHdr1 && i<pPKey2->nField );
64937 
64938   /* No memory allocation is ever used on mem1.  Prove this using
64939   ** the following assert().  If the assert() fails, it indicates a
64940   ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
64941   */
64942   assert( mem1.zMalloc==0 );
64943 
64944   /* rc==0 here means that one of the keys ran out of fields and
64945   ** all the fields up to that point were equal. Return the the default_rc
64946   ** value.  */
64947   return pPKey2->default_rc;
64948 }
64949 #endif
64950 
64951 /*
64952 ** Both *pMem1 and *pMem2 contain string values. Compare the two values
64953 ** using the collation sequence pColl. As usual, return a negative , zero
64954 ** or positive value if *pMem1 is less than, equal to or greater than
64955 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
64956 */
64957 static int vdbeCompareMemString(
64958   const Mem *pMem1,
64959   const Mem *pMem2,
64960   const CollSeq *pColl
64961 ){
64962   if( pMem1->enc==pColl->enc ){
64963     /* The strings are already in the correct encoding.  Call the
64964      ** comparison function directly */
64965     return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
64966   }else{
64967     int rc;
64968     const void *v1, *v2;
64969     int n1, n2;
64970     Mem c1;
64971     Mem c2;
64972     memset(&c1, 0, sizeof(c1));
64973     memset(&c2, 0, sizeof(c2));
64974     sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
64975     sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
64976     v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
64977     n1 = v1==0 ? 0 : c1.n;
64978     v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
64979     n2 = v2==0 ? 0 : c2.n;
64980     rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);
64981     sqlite3VdbeMemRelease(&c1);
64982     sqlite3VdbeMemRelease(&c2);
64983     return rc;
64984   }
64985 }
64986 
64987 /*
64988 ** Compare the values contained by the two memory cells, returning
64989 ** negative, zero or positive if pMem1 is less than, equal to, or greater
64990 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers
64991 ** and reals) sorted numerically, followed by text ordered by the collating
64992 ** sequence pColl and finally blob's ordered by memcmp().
64993 **
64994 ** Two NULL values are considered equal by this function.
64995 */
64996 SQLITE_PRIVATE int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
64997   int rc;
64998   int f1, f2;
64999   int combined_flags;
65000 
65001   f1 = pMem1->flags;
65002   f2 = pMem2->flags;
65003   combined_flags = f1|f2;
65004   assert( (combined_flags & MEM_RowSet)==0 );
65005 
65006   /* If one value is NULL, it is less than the other. If both values
65007   ** are NULL, return 0.
65008   */
65009   if( combined_flags&MEM_Null ){
65010     return (f2&MEM_Null) - (f1&MEM_Null);
65011   }
65012 
65013   /* If one value is a number and the other is not, the number is less.
65014   ** If both are numbers, compare as reals if one is a real, or as integers
65015   ** if both values are integers.
65016   */
65017   if( combined_flags&(MEM_Int|MEM_Real) ){
65018     double r1, r2;
65019     if( (f1 & f2 & MEM_Int)!=0 ){
65020       if( pMem1->u.i < pMem2->u.i ) return -1;
65021       if( pMem1->u.i > pMem2->u.i ) return 1;
65022       return 0;
65023     }
65024     if( (f1&MEM_Real)!=0 ){
65025       r1 = pMem1->r;
65026     }else if( (f1&MEM_Int)!=0 ){
65027       r1 = (double)pMem1->u.i;
65028     }else{
65029       return 1;
65030     }
65031     if( (f2&MEM_Real)!=0 ){
65032       r2 = pMem2->r;
65033     }else if( (f2&MEM_Int)!=0 ){
65034       r2 = (double)pMem2->u.i;
65035     }else{
65036       return -1;
65037     }
65038     if( r1<r2 ) return -1;
65039     if( r1>r2 ) return 1;
65040     return 0;
65041   }
65042 
65043   /* If one value is a string and the other is a blob, the string is less.
65044   ** If both are strings, compare using the collating functions.
65045   */
65046   if( combined_flags&MEM_Str ){
65047     if( (f1 & MEM_Str)==0 ){
65048       return 1;
65049     }
65050     if( (f2 & MEM_Str)==0 ){
65051       return -1;
65052     }
65053 
65054     assert( pMem1->enc==pMem2->enc );
65055     assert( pMem1->enc==SQLITE_UTF8 ||
65056             pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
65057 
65058     /* The collation sequence must be defined at this point, even if
65059     ** the user deletes the collation sequence after the vdbe program is
65060     ** compiled (this was not always the case).
65061     */
65062     assert( !pColl || pColl->xCmp );
65063 
65064     if( pColl ){
65065       return vdbeCompareMemString(pMem1, pMem2, pColl);
65066     }
65067     /* If a NULL pointer was passed as the collate function, fall through
65068     ** to the blob case and use memcmp().  */
65069   }
65070 
65071   /* Both values must be blobs.  Compare using memcmp().  */
65072   rc = memcmp(pMem1->z, pMem2->z, (pMem1->n>pMem2->n)?pMem2->n:pMem1->n);
65073   if( rc==0 ){
65074     rc = pMem1->n - pMem2->n;
65075   }
65076   return rc;
65077 }
65078 
65079 
65080 /*
65081 ** The first argument passed to this function is a serial-type that
65082 ** corresponds to an integer - all values between 1 and 9 inclusive
65083 ** except 7. The second points to a buffer containing an integer value
65084 ** serialized according to serial_type. This function deserializes
65085 ** and returns the value.
65086 */
65087 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){
65088   u32 y;
65089   assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) );
65090   switch( serial_type ){
65091     case 0:
65092     case 1:
65093       testcase( aKey[0]&0x80 );
65094       return ONE_BYTE_INT(aKey);
65095     case 2:
65096       testcase( aKey[0]&0x80 );
65097       return TWO_BYTE_INT(aKey);
65098     case 3:
65099       testcase( aKey[0]&0x80 );
65100       return THREE_BYTE_INT(aKey);
65101     case 4: {
65102       testcase( aKey[0]&0x80 );
65103       y = FOUR_BYTE_UINT(aKey);
65104       return (i64)*(int*)&y;
65105     }
65106     case 5: {
65107       testcase( aKey[0]&0x80 );
65108       return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
65109     }
65110     case 6: {
65111       u64 x = FOUR_BYTE_UINT(aKey);
65112       testcase( aKey[0]&0x80 );
65113       x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
65114       return (i64)*(i64*)&x;
65115     }
65116   }
65117 
65118   return (serial_type - 8);
65119 }
65120 
65121 /*
65122 ** This function compares the two table rows or index records
65123 ** specified by {nKey1, pKey1} and pPKey2.  It returns a negative, zero
65124 ** or positive integer if key1 is less than, equal to or
65125 ** greater than key2.  The {nKey1, pKey1} key must be a blob
65126 ** created by th OP_MakeRecord opcode of the VDBE.  The pPKey2
65127 ** key must be a parsed key such as obtained from
65128 ** sqlite3VdbeParseRecord.
65129 **
65130 ** If argument bSkip is non-zero, it is assumed that the caller has already
65131 ** determined that the first fields of the keys are equal.
65132 **
65133 ** Key1 and Key2 do not have to contain the same number of fields. If all
65134 ** fields that appear in both keys are equal, then pPKey2->default_rc is
65135 ** returned.
65136 **
65137 ** If database corruption is discovered, set pPKey2->isCorrupt to non-zero
65138 ** and return 0.
65139 */
65140 SQLITE_PRIVATE int sqlite3VdbeRecordCompare(
65141   int nKey1, const void *pKey1,   /* Left key */
65142   UnpackedRecord *pPKey2,         /* Right key */
65143   int bSkip                       /* If true, skip the first field */
65144 ){
65145   u32 d1;                         /* Offset into aKey[] of next data element */
65146   int i;                          /* Index of next field to compare */
65147   u32 szHdr1;                     /* Size of record header in bytes */
65148   u32 idx1;                       /* Offset of first type in header */
65149   int rc = 0;                     /* Return value */
65150   Mem *pRhs = pPKey2->aMem;       /* Next field of pPKey2 to compare */
65151   KeyInfo *pKeyInfo = pPKey2->pKeyInfo;
65152   const unsigned char *aKey1 = (const unsigned char *)pKey1;
65153   Mem mem1;
65154 
65155   /* If bSkip is true, then the caller has already determined that the first
65156   ** two elements in the keys are equal. Fix the various stack variables so
65157   ** that this routine begins comparing at the second field. */
65158   if( bSkip ){
65159     u32 s1;
65160     idx1 = 1 + getVarint32(&aKey1[1], s1);
65161     szHdr1 = aKey1[0];
65162     d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1);
65163     i = 1;
65164     pRhs++;
65165   }else{
65166     idx1 = getVarint32(aKey1, szHdr1);
65167     d1 = szHdr1;
65168     if( d1>(unsigned)nKey1 ){
65169       pPKey2->isCorrupt = (u8)SQLITE_CORRUPT_BKPT;
65170       return 0;  /* Corruption */
65171     }
65172     i = 0;
65173   }
65174 
65175   VVA_ONLY( mem1.zMalloc = 0; ) /* Only needed by assert() statements */
65176   assert( pPKey2->pKeyInfo->nField+pPKey2->pKeyInfo->nXField>=pPKey2->nField
65177        || CORRUPT_DB );
65178   assert( pPKey2->pKeyInfo->aSortOrder!=0 );
65179   assert( pPKey2->pKeyInfo->nField>0 );
65180   assert( idx1<=szHdr1 || CORRUPT_DB );
65181   do{
65182     u32 serial_type;
65183 
65184     /* RHS is an integer */
65185     if( pRhs->flags & MEM_Int ){
65186       serial_type = aKey1[idx1];
65187       testcase( serial_type==12 );
65188       if( serial_type>=12 ){
65189         rc = +1;
65190       }else if( serial_type==0 ){
65191         rc = -1;
65192       }else if( serial_type==7 ){
65193         double rhs = (double)pRhs->u.i;
65194         sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
65195         if( mem1.r<rhs ){
65196           rc = -1;
65197         }else if( mem1.r>rhs ){
65198           rc = +1;
65199         }
65200       }else{
65201         i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
65202         i64 rhs = pRhs->u.i;
65203         if( lhs<rhs ){
65204           rc = -1;
65205         }else if( lhs>rhs ){
65206           rc = +1;
65207         }
65208       }
65209     }
65210 
65211     /* RHS is real */
65212     else if( pRhs->flags & MEM_Real ){
65213       serial_type = aKey1[idx1];
65214       if( serial_type>=12 ){
65215         rc = +1;
65216       }else if( serial_type==0 ){
65217         rc = -1;
65218       }else{
65219         double rhs = pRhs->r;
65220         double lhs;
65221         sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
65222         if( serial_type==7 ){
65223           lhs = mem1.r;
65224         }else{
65225           lhs = (double)mem1.u.i;
65226         }
65227         if( lhs<rhs ){
65228           rc = -1;
65229         }else if( lhs>rhs ){
65230           rc = +1;
65231         }
65232       }
65233     }
65234 
65235     /* RHS is a string */
65236     else if( pRhs->flags & MEM_Str ){
65237       getVarint32(&aKey1[idx1], serial_type);
65238       testcase( serial_type==12 );
65239       if( serial_type<12 ){
65240         rc = -1;
65241       }else if( !(serial_type & 0x01) ){
65242         rc = +1;
65243       }else{
65244         mem1.n = (serial_type - 12) / 2;
65245         testcase( (d1+mem1.n)==(unsigned)nKey1 );
65246         testcase( (d1+mem1.n+1)==(unsigned)nKey1 );
65247         if( (d1+mem1.n) > (unsigned)nKey1 ){
65248           pPKey2->isCorrupt = (u8)SQLITE_CORRUPT_BKPT;
65249           return 0;                /* Corruption */
65250         }else if( pKeyInfo->aColl[i] ){
65251           mem1.enc = pKeyInfo->enc;
65252           mem1.db = pKeyInfo->db;
65253           mem1.flags = MEM_Str;
65254           mem1.z = (char*)&aKey1[d1];
65255           rc = vdbeCompareMemString(&mem1, pRhs, pKeyInfo->aColl[i]);
65256         }else{
65257           int nCmp = MIN(mem1.n, pRhs->n);
65258           rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
65259           if( rc==0 ) rc = mem1.n - pRhs->n;
65260         }
65261       }
65262     }
65263 
65264     /* RHS is a blob */
65265     else if( pRhs->flags & MEM_Blob ){
65266       getVarint32(&aKey1[idx1], serial_type);
65267       testcase( serial_type==12 );
65268       if( serial_type<12 || (serial_type & 0x01) ){
65269         rc = -1;
65270       }else{
65271         int nStr = (serial_type - 12) / 2;
65272         testcase( (d1+nStr)==(unsigned)nKey1 );
65273         testcase( (d1+nStr+1)==(unsigned)nKey1 );
65274         if( (d1+nStr) > (unsigned)nKey1 ){
65275           pPKey2->isCorrupt = (u8)SQLITE_CORRUPT_BKPT;
65276           return 0;                /* Corruption */
65277         }else{
65278           int nCmp = MIN(nStr, pRhs->n);
65279           rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
65280           if( rc==0 ) rc = nStr - pRhs->n;
65281         }
65282       }
65283     }
65284 
65285     /* RHS is null */
65286     else{
65287       serial_type = aKey1[idx1];
65288       rc = (serial_type!=0);
65289     }
65290 
65291     if( rc!=0 ){
65292       if( pKeyInfo->aSortOrder[i] ){
65293         rc = -rc;
65294       }
65295       assert( CORRUPT_DB
65296           || (rc<0 && vdbeRecordCompareDebug(nKey1, pKey1, pPKey2)<0)
65297           || (rc>0 && vdbeRecordCompareDebug(nKey1, pKey1, pPKey2)>0)
65298           || pKeyInfo->db->mallocFailed
65299       );
65300       assert( mem1.zMalloc==0 );  /* See comment below */
65301       return rc;
65302     }
65303 
65304     i++;
65305     pRhs++;
65306     d1 += sqlite3VdbeSerialTypeLen(serial_type);
65307     idx1 += sqlite3VarintLen(serial_type);
65308   }while( idx1<(unsigned)szHdr1 && i<pPKey2->nField && d1<=(unsigned)nKey1 );
65309 
65310   /* No memory allocation is ever used on mem1.  Prove this using
65311   ** the following assert().  If the assert() fails, it indicates a
65312   ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).  */
65313   assert( mem1.zMalloc==0 );
65314 
65315   /* rc==0 here means that one or both of the keys ran out of fields and
65316   ** all the fields up to that point were equal. Return the the default_rc
65317   ** value.  */
65318   assert( CORRUPT_DB
65319        || pPKey2->default_rc==vdbeRecordCompareDebug(nKey1, pKey1, pPKey2)
65320   );
65321   return pPKey2->default_rc;
65322 }
65323 
65324 /*
65325 ** This function is an optimized version of sqlite3VdbeRecordCompare()
65326 ** that (a) the first field of pPKey2 is an integer, and (b) the
65327 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single
65328 ** byte (i.e. is less than 128).
65329 **
65330 ** To avoid concerns about buffer overreads, this routine is only used
65331 ** on schemas where the maximum valid header size is 63 bytes or less.
65332 */
65333 static int vdbeRecordCompareInt(
65334   int nKey1, const void *pKey1, /* Left key */
65335   UnpackedRecord *pPKey2,       /* Right key */
65336   int bSkip                     /* Ignored */
65337 ){
65338   const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
65339   int serial_type = ((const u8*)pKey1)[1];
65340   int res;
65341   u32 y;
65342   u64 x;
65343   i64 v = pPKey2->aMem[0].u.i;
65344   i64 lhs;
65345   UNUSED_PARAMETER(bSkip);
65346 
65347   assert( bSkip==0 );
65348   assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
65349   switch( serial_type ){
65350     case 1: { /* 1-byte signed integer */
65351       lhs = ONE_BYTE_INT(aKey);
65352       testcase( lhs<0 );
65353       break;
65354     }
65355     case 2: { /* 2-byte signed integer */
65356       lhs = TWO_BYTE_INT(aKey);
65357       testcase( lhs<0 );
65358       break;
65359     }
65360     case 3: { /* 3-byte signed integer */
65361       lhs = THREE_BYTE_INT(aKey);
65362       testcase( lhs<0 );
65363       break;
65364     }
65365     case 4: { /* 4-byte signed integer */
65366       y = FOUR_BYTE_UINT(aKey);
65367       lhs = (i64)*(int*)&y;
65368       testcase( lhs<0 );
65369       break;
65370     }
65371     case 5: { /* 6-byte signed integer */
65372       lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
65373       testcase( lhs<0 );
65374       break;
65375     }
65376     case 6: { /* 8-byte signed integer */
65377       x = FOUR_BYTE_UINT(aKey);
65378       x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
65379       lhs = *(i64*)&x;
65380       testcase( lhs<0 );
65381       break;
65382     }
65383     case 8:
65384       lhs = 0;
65385       break;
65386     case 9:
65387       lhs = 1;
65388       break;
65389 
65390     /* This case could be removed without changing the results of running
65391     ** this code. Including it causes gcc to generate a faster switch
65392     ** statement (since the range of switch targets now starts at zero and
65393     ** is contiguous) but does not cause any duplicate code to be generated
65394     ** (as gcc is clever enough to combine the two like cases). Other
65395     ** compilers might be similar.  */
65396     case 0: case 7:
65397       return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2, 0);
65398 
65399     default:
65400       return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2, 0);
65401   }
65402 
65403   if( v>lhs ){
65404     res = pPKey2->r1;
65405   }else if( v<lhs ){
65406     res = pPKey2->r2;
65407   }else if( pPKey2->nField>1 ){
65408     /* The first fields of the two keys are equal. Compare the trailing
65409     ** fields.  */
65410     res = sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2, 1);
65411   }else{
65412     /* The first fields of the two keys are equal and there are no trailing
65413     ** fields. Return pPKey2->default_rc in this case. */
65414     res = pPKey2->default_rc;
65415   }
65416 
65417   assert( (res==0 && vdbeRecordCompareDebug(nKey1, pKey1, pPKey2)==0)
65418        || (res<0 && vdbeRecordCompareDebug(nKey1, pKey1, pPKey2)<0)
65419        || (res>0 && vdbeRecordCompareDebug(nKey1, pKey1, pPKey2)>0)
65420        || CORRUPT_DB
65421   );
65422   return res;
65423 }
65424 
65425 /*
65426 ** This function is an optimized version of sqlite3VdbeRecordCompare()
65427 ** that (a) the first field of pPKey2 is a string, that (b) the first field
65428 ** uses the collation sequence BINARY and (c) that the size-of-header varint
65429 ** at the start of (pKey1/nKey1) fits in a single byte.
65430 */
65431 static int vdbeRecordCompareString(
65432   int nKey1, const void *pKey1, /* Left key */
65433   UnpackedRecord *pPKey2,       /* Right key */
65434   int bSkip
65435 ){
65436   const u8 *aKey1 = (const u8*)pKey1;
65437   int serial_type;
65438   int res;
65439   UNUSED_PARAMETER(bSkip);
65440 
65441   assert( bSkip==0 );
65442   getVarint32(&aKey1[1], serial_type);
65443 
65444   if( serial_type<12 ){
65445     res = pPKey2->r1;      /* (pKey1/nKey1) is a number or a null */
65446   }else if( !(serial_type & 0x01) ){
65447     res = pPKey2->r2;      /* (pKey1/nKey1) is a blob */
65448   }else{
65449     int nCmp;
65450     int nStr;
65451     int szHdr = aKey1[0];
65452 
65453     nStr = (serial_type-12) / 2;
65454     if( (szHdr + nStr) > nKey1 ){
65455       pPKey2->isCorrupt = (u8)SQLITE_CORRUPT_BKPT;
65456       return 0;    /* Corruption */
65457     }
65458     nCmp = MIN( pPKey2->aMem[0].n, nStr );
65459     res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp);
65460 
65461     if( res==0 ){
65462       res = nStr - pPKey2->aMem[0].n;
65463       if( res==0 ){
65464         if( pPKey2->nField>1 ){
65465           res = sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2, 1);
65466         }else{
65467           res = pPKey2->default_rc;
65468         }
65469       }else if( res>0 ){
65470         res = pPKey2->r2;
65471       }else{
65472         res = pPKey2->r1;
65473       }
65474     }else if( res>0 ){
65475       res = pPKey2->r2;
65476     }else{
65477       res = pPKey2->r1;
65478     }
65479   }
65480 
65481   assert( (res==0 && vdbeRecordCompareDebug(nKey1, pKey1, pPKey2)==0)
65482        || (res<0 && vdbeRecordCompareDebug(nKey1, pKey1, pPKey2)<0)
65483        || (res>0 && vdbeRecordCompareDebug(nKey1, pKey1, pPKey2)>0)
65484        || CORRUPT_DB
65485   );
65486   return res;
65487 }
65488 
65489 /*
65490 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
65491 ** suitable for comparing serialized records to the unpacked record passed
65492 ** as the only argument.
65493 */
65494 SQLITE_PRIVATE RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){
65495   /* varintRecordCompareInt() and varintRecordCompareString() both assume
65496   ** that the size-of-header varint that occurs at the start of each record
65497   ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
65498   ** also assumes that it is safe to overread a buffer by at least the
65499   ** maximum possible legal header size plus 8 bytes. Because there is
65500   ** guaranteed to be at least 74 (but not 136) bytes of padding following each
65501   ** buffer passed to varintRecordCompareInt() this makes it convenient to
65502   ** limit the size of the header to 64 bytes in cases where the first field
65503   ** is an integer.
65504   **
65505   ** The easiest way to enforce this limit is to consider only records with
65506   ** 13 fields or less. If the first field is an integer, the maximum legal
65507   ** header size is (12*5 + 1 + 1) bytes.  */
65508   if( (p->pKeyInfo->nField + p->pKeyInfo->nXField)<=13 ){
65509     int flags = p->aMem[0].flags;
65510     if( p->pKeyInfo->aSortOrder[0] ){
65511       p->r1 = 1;
65512       p->r2 = -1;
65513     }else{
65514       p->r1 = -1;
65515       p->r2 = 1;
65516     }
65517     if( (flags & MEM_Int) ){
65518       return vdbeRecordCompareInt;
65519     }
65520     testcase( flags & MEM_Real );
65521     testcase( flags & MEM_Null );
65522     testcase( flags & MEM_Blob );
65523     if( (flags & (MEM_Real|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){
65524       assert( flags & MEM_Str );
65525       return vdbeRecordCompareString;
65526     }
65527   }
65528 
65529   return sqlite3VdbeRecordCompare;
65530 }
65531 
65532 /*
65533 ** pCur points at an index entry created using the OP_MakeRecord opcode.
65534 ** Read the rowid (the last field in the record) and store it in *rowid.
65535 ** Return SQLITE_OK if everything works, or an error code otherwise.
65536 **
65537 ** pCur might be pointing to text obtained from a corrupt database file.
65538 ** So the content cannot be trusted.  Do appropriate checks on the content.
65539 */
65540 SQLITE_PRIVATE int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
65541   i64 nCellKey = 0;
65542   int rc;
65543   u32 szHdr;        /* Size of the header */
65544   u32 typeRowid;    /* Serial type of the rowid */
65545   u32 lenRowid;     /* Size of the rowid */
65546   Mem m, v;
65547 
65548   UNUSED_PARAMETER(db);
65549 
65550   /* Get the size of the index entry.  Only indices entries of less
65551   ** than 2GiB are support - anything large must be database corruption.
65552   ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
65553   ** this code can safely assume that nCellKey is 32-bits
65554   */
65555   assert( sqlite3BtreeCursorIsValid(pCur) );
65556   VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey);
65557   assert( rc==SQLITE_OK );     /* pCur is always valid so KeySize cannot fail */
65558   assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
65559 
65560   /* Read in the complete content of the index entry */
65561   memset(&m, 0, sizeof(m));
65562   rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, 1, &m);
65563   if( rc ){
65564     return rc;
65565   }
65566 
65567   /* The index entry must begin with a header size */
65568   (void)getVarint32((u8*)m.z, szHdr);
65569   testcase( szHdr==3 );
65570   testcase( szHdr==m.n );
65571   if( unlikely(szHdr<3 || (int)szHdr>m.n) ){
65572     goto idx_rowid_corruption;
65573   }
65574 
65575   /* The last field of the index should be an integer - the ROWID.
65576   ** Verify that the last entry really is an integer. */
65577   (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid);
65578   testcase( typeRowid==1 );
65579   testcase( typeRowid==2 );
65580   testcase( typeRowid==3 );
65581   testcase( typeRowid==4 );
65582   testcase( typeRowid==5 );
65583   testcase( typeRowid==6 );
65584   testcase( typeRowid==8 );
65585   testcase( typeRowid==9 );
65586   if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
65587     goto idx_rowid_corruption;
65588   }
65589   lenRowid = sqlite3VdbeSerialTypeLen(typeRowid);
65590   testcase( (u32)m.n==szHdr+lenRowid );
65591   if( unlikely((u32)m.n<szHdr+lenRowid) ){
65592     goto idx_rowid_corruption;
65593   }
65594 
65595   /* Fetch the integer off the end of the index record */
65596   sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
65597   *rowid = v.u.i;
65598   sqlite3VdbeMemRelease(&m);
65599   return SQLITE_OK;
65600 
65601   /* Jump here if database corruption is detected after m has been
65602   ** allocated.  Free the m object and return SQLITE_CORRUPT. */
65603 idx_rowid_corruption:
65604   testcase( m.zMalloc!=0 );
65605   sqlite3VdbeMemRelease(&m);
65606   return SQLITE_CORRUPT_BKPT;
65607 }
65608 
65609 /*
65610 ** Compare the key of the index entry that cursor pC is pointing to against
65611 ** the key string in pUnpacked.  Write into *pRes a number
65612 ** that is negative, zero, or positive if pC is less than, equal to,
65613 ** or greater than pUnpacked.  Return SQLITE_OK on success.
65614 **
65615 ** pUnpacked is either created without a rowid or is truncated so that it
65616 ** omits the rowid at the end.  The rowid at the end of the index entry
65617 ** is ignored as well.  Hence, this routine only compares the prefixes
65618 ** of the keys prior to the final rowid, not the entire key.
65619 */
65620 SQLITE_PRIVATE int sqlite3VdbeIdxKeyCompare(
65621   VdbeCursor *pC,                  /* The cursor to compare against */
65622   UnpackedRecord *pUnpacked,       /* Unpacked version of key */
65623   int *res                         /* Write the comparison result here */
65624 ){
65625   i64 nCellKey = 0;
65626   int rc;
65627   BtCursor *pCur = pC->pCursor;
65628   Mem m;
65629 
65630   assert( sqlite3BtreeCursorIsValid(pCur) );
65631   VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey);
65632   assert( rc==SQLITE_OK );    /* pCur is always valid so KeySize cannot fail */
65633   /* nCellKey will always be between 0 and 0xffffffff because of the way
65634   ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
65635   if( nCellKey<=0 || nCellKey>0x7fffffff ){
65636     *res = 0;
65637     return SQLITE_CORRUPT_BKPT;
65638   }
65639   memset(&m, 0, sizeof(m));
65640   rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, (u32)nCellKey, 1, &m);
65641   if( rc ){
65642     return rc;
65643   }
65644   *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked, 0);
65645   sqlite3VdbeMemRelease(&m);
65646   return SQLITE_OK;
65647 }
65648 
65649 /*
65650 ** This routine sets the value to be returned by subsequent calls to
65651 ** sqlite3_changes() on the database handle 'db'.
65652 */
65653 SQLITE_PRIVATE void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
65654   assert( sqlite3_mutex_held(db->mutex) );
65655   db->nChange = nChange;
65656   db->nTotalChange += nChange;
65657 }
65658 
65659 /*
65660 ** Set a flag in the vdbe to update the change counter when it is finalised
65661 ** or reset.
65662 */
65663 SQLITE_PRIVATE void sqlite3VdbeCountChanges(Vdbe *v){
65664   v->changeCntOn = 1;
65665 }
65666 
65667 /*
65668 ** Mark every prepared statement associated with a database connection
65669 ** as expired.
65670 **
65671 ** An expired statement means that recompilation of the statement is
65672 ** recommend.  Statements expire when things happen that make their
65673 ** programs obsolete.  Removing user-defined functions or collating
65674 ** sequences, or changing an authorization function are the types of
65675 ** things that make prepared statements obsolete.
65676 */
65677 SQLITE_PRIVATE void sqlite3ExpirePreparedStatements(sqlite3 *db){
65678   Vdbe *p;
65679   for(p = db->pVdbe; p; p=p->pNext){
65680     p->expired = 1;
65681   }
65682 }
65683 
65684 /*
65685 ** Return the database associated with the Vdbe.
65686 */
65687 SQLITE_PRIVATE sqlite3 *sqlite3VdbeDb(Vdbe *v){
65688   return v->db;
65689 }
65690 
65691 /*
65692 ** Return a pointer to an sqlite3_value structure containing the value bound
65693 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return
65694 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
65695 ** constants) to the value before returning it.
65696 **
65697 ** The returned value must be freed by the caller using sqlite3ValueFree().
65698 */
65699 SQLITE_PRIVATE sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){
65700   assert( iVar>0 );
65701   if( v ){
65702     Mem *pMem = &v->aVar[iVar-1];
65703     if( 0==(pMem->flags & MEM_Null) ){
65704       sqlite3_value *pRet = sqlite3ValueNew(v->db);
65705       if( pRet ){
65706         sqlite3VdbeMemCopy((Mem *)pRet, pMem);
65707         sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
65708       }
65709       return pRet;
65710     }
65711   }
65712   return 0;
65713 }
65714 
65715 /*
65716 ** Configure SQL variable iVar so that binding a new value to it signals
65717 ** to sqlite3_reoptimize() that re-preparing the statement may result
65718 ** in a better query plan.
65719 */
65720 SQLITE_PRIVATE void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
65721   assert( iVar>0 );
65722   if( iVar>32 ){
65723     v->expmask = 0xffffffff;
65724   }else{
65725     v->expmask |= ((u32)1 << (iVar-1));
65726   }
65727 }
65728 
65729 #ifndef SQLITE_OMIT_VIRTUALTABLE
65730 /*
65731 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
65732 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
65733 ** in memory obtained from sqlite3DbMalloc).
65734 */
65735 SQLITE_PRIVATE void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){
65736   sqlite3 *db = p->db;
65737   sqlite3DbFree(db, p->zErrMsg);
65738   p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
65739   sqlite3_free(pVtab->zErrMsg);
65740   pVtab->zErrMsg = 0;
65741 }
65742 #endif /* SQLITE_OMIT_VIRTUALTABLE */
65743 
65744 /************** End of vdbeaux.c *********************************************/
65745 /************** Begin file vdbeapi.c *****************************************/
65746 /*
65747 ** 2004 May 26
65748 **
65749 ** The author disclaims copyright to this source code.  In place of
65750 ** a legal notice, here is a blessing:
65751 **
65752 **    May you do good and not evil.
65753 **    May you find forgiveness for yourself and forgive others.
65754 **    May you share freely, never taking more than you give.
65755 **
65756 *************************************************************************
65757 **
65758 ** This file contains code use to implement APIs that are part of the
65759 ** VDBE.
65760 */
65761 
65762 #ifndef SQLITE_OMIT_DEPRECATED
65763 /*
65764 ** Return TRUE (non-zero) of the statement supplied as an argument needs
65765 ** to be recompiled.  A statement needs to be recompiled whenever the
65766 ** execution environment changes in a way that would alter the program
65767 ** that sqlite3_prepare() generates.  For example, if new functions or
65768 ** collating sequences are registered or if an authorizer function is
65769 ** added or changed.
65770 */
65771 SQLITE_API int sqlite3_expired(sqlite3_stmt *pStmt){
65772   Vdbe *p = (Vdbe*)pStmt;
65773   return p==0 || p->expired;
65774 }
65775 #endif
65776 
65777 /*
65778 ** Check on a Vdbe to make sure it has not been finalized.  Log
65779 ** an error and return true if it has been finalized (or is otherwise
65780 ** invalid).  Return false if it is ok.
65781 */
65782 static int vdbeSafety(Vdbe *p){
65783   if( p->db==0 ){
65784     sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement");
65785     return 1;
65786   }else{
65787     return 0;
65788   }
65789 }
65790 static int vdbeSafetyNotNull(Vdbe *p){
65791   if( p==0 ){
65792     sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement");
65793     return 1;
65794   }else{
65795     return vdbeSafety(p);
65796   }
65797 }
65798 
65799 /*
65800 ** The following routine destroys a virtual machine that is created by
65801 ** the sqlite3_compile() routine. The integer returned is an SQLITE_
65802 ** success/failure code that describes the result of executing the virtual
65803 ** machine.
65804 **
65805 ** This routine sets the error code and string returned by
65806 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
65807 */
65808 SQLITE_API int sqlite3_finalize(sqlite3_stmt *pStmt){
65809   int rc;
65810   if( pStmt==0 ){
65811     /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL
65812     ** pointer is a harmless no-op. */
65813     rc = SQLITE_OK;
65814   }else{
65815     Vdbe *v = (Vdbe*)pStmt;
65816     sqlite3 *db = v->db;
65817     if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT;
65818     sqlite3_mutex_enter(db->mutex);
65819     rc = sqlite3VdbeFinalize(v);
65820     rc = sqlite3ApiExit(db, rc);
65821     sqlite3LeaveMutexAndCloseZombie(db);
65822   }
65823   return rc;
65824 }
65825 
65826 /*
65827 ** Terminate the current execution of an SQL statement and reset it
65828 ** back to its starting state so that it can be reused. A success code from
65829 ** the prior execution is returned.
65830 **
65831 ** This routine sets the error code and string returned by
65832 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
65833 */
65834 SQLITE_API int sqlite3_reset(sqlite3_stmt *pStmt){
65835   int rc;
65836   if( pStmt==0 ){
65837     rc = SQLITE_OK;
65838   }else{
65839     Vdbe *v = (Vdbe*)pStmt;
65840     sqlite3_mutex_enter(v->db->mutex);
65841     rc = sqlite3VdbeReset(v);
65842     sqlite3VdbeRewind(v);
65843     assert( (rc & (v->db->errMask))==rc );
65844     rc = sqlite3ApiExit(v->db, rc);
65845     sqlite3_mutex_leave(v->db->mutex);
65846   }
65847   return rc;
65848 }
65849 
65850 /*
65851 ** Set all the parameters in the compiled SQL statement to NULL.
65852 */
65853 SQLITE_API int sqlite3_clear_bindings(sqlite3_stmt *pStmt){
65854   int i;
65855   int rc = SQLITE_OK;
65856   Vdbe *p = (Vdbe*)pStmt;
65857 #if SQLITE_THREADSAFE
65858   sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex;
65859 #endif
65860   sqlite3_mutex_enter(mutex);
65861   for(i=0; i<p->nVar; i++){
65862     sqlite3VdbeMemRelease(&p->aVar[i]);
65863     p->aVar[i].flags = MEM_Null;
65864   }
65865   if( p->isPrepareV2 && p->expmask ){
65866     p->expired = 1;
65867   }
65868   sqlite3_mutex_leave(mutex);
65869   return rc;
65870 }
65871 
65872 
65873 /**************************** sqlite3_value_  *******************************
65874 ** The following routines extract information from a Mem or sqlite3_value
65875 ** structure.
65876 */
65877 SQLITE_API const void *sqlite3_value_blob(sqlite3_value *pVal){
65878   Mem *p = (Mem*)pVal;
65879   if( p->flags & (MEM_Blob|MEM_Str) ){
65880     sqlite3VdbeMemExpandBlob(p);
65881     p->flags |= MEM_Blob;
65882     return p->n ? p->z : 0;
65883   }else{
65884     return sqlite3_value_text(pVal);
65885   }
65886 }
65887 SQLITE_API int sqlite3_value_bytes(sqlite3_value *pVal){
65888   return sqlite3ValueBytes(pVal, SQLITE_UTF8);
65889 }
65890 SQLITE_API int sqlite3_value_bytes16(sqlite3_value *pVal){
65891   return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE);
65892 }
65893 SQLITE_API double sqlite3_value_double(sqlite3_value *pVal){
65894   return sqlite3VdbeRealValue((Mem*)pVal);
65895 }
65896 SQLITE_API int sqlite3_value_int(sqlite3_value *pVal){
65897   return (int)sqlite3VdbeIntValue((Mem*)pVal);
65898 }
65899 SQLITE_API sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
65900   return sqlite3VdbeIntValue((Mem*)pVal);
65901 }
65902 SQLITE_API const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
65903   return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
65904 }
65905 #ifndef SQLITE_OMIT_UTF16
65906 SQLITE_API const void *sqlite3_value_text16(sqlite3_value* pVal){
65907   return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
65908 }
65909 SQLITE_API const void *sqlite3_value_text16be(sqlite3_value *pVal){
65910   return sqlite3ValueText(pVal, SQLITE_UTF16BE);
65911 }
65912 SQLITE_API const void *sqlite3_value_text16le(sqlite3_value *pVal){
65913   return sqlite3ValueText(pVal, SQLITE_UTF16LE);
65914 }
65915 #endif /* SQLITE_OMIT_UTF16 */
65916 SQLITE_API int sqlite3_value_type(sqlite3_value* pVal){
65917   static const u8 aType[] = {
65918      SQLITE_BLOB,     /* 0x00 */
65919      SQLITE_NULL,     /* 0x01 */
65920      SQLITE_TEXT,     /* 0x02 */
65921      SQLITE_NULL,     /* 0x03 */
65922      SQLITE_INTEGER,  /* 0x04 */
65923      SQLITE_NULL,     /* 0x05 */
65924      SQLITE_INTEGER,  /* 0x06 */
65925      SQLITE_NULL,     /* 0x07 */
65926      SQLITE_FLOAT,    /* 0x08 */
65927      SQLITE_NULL,     /* 0x09 */
65928      SQLITE_FLOAT,    /* 0x0a */
65929      SQLITE_NULL,     /* 0x0b */
65930      SQLITE_INTEGER,  /* 0x0c */
65931      SQLITE_NULL,     /* 0x0d */
65932      SQLITE_INTEGER,  /* 0x0e */
65933      SQLITE_NULL,     /* 0x0f */
65934      SQLITE_BLOB,     /* 0x10 */
65935      SQLITE_NULL,     /* 0x11 */
65936      SQLITE_TEXT,     /* 0x12 */
65937      SQLITE_NULL,     /* 0x13 */
65938      SQLITE_INTEGER,  /* 0x14 */
65939      SQLITE_NULL,     /* 0x15 */
65940      SQLITE_INTEGER,  /* 0x16 */
65941      SQLITE_NULL,     /* 0x17 */
65942      SQLITE_FLOAT,    /* 0x18 */
65943      SQLITE_NULL,     /* 0x19 */
65944      SQLITE_FLOAT,    /* 0x1a */
65945      SQLITE_NULL,     /* 0x1b */
65946      SQLITE_INTEGER,  /* 0x1c */
65947      SQLITE_NULL,     /* 0x1d */
65948      SQLITE_INTEGER,  /* 0x1e */
65949      SQLITE_NULL,     /* 0x1f */
65950   };
65951   return aType[pVal->flags&MEM_AffMask];
65952 }
65953 
65954 /**************************** sqlite3_result_  *******************************
65955 ** The following routines are used by user-defined functions to specify
65956 ** the function result.
65957 **
65958 ** The setStrOrError() funtion calls sqlite3VdbeMemSetStr() to store the
65959 ** result as a string or blob but if the string or blob is too large, it
65960 ** then sets the error code to SQLITE_TOOBIG
65961 */
65962 static void setResultStrOrError(
65963   sqlite3_context *pCtx,  /* Function context */
65964   const char *z,          /* String pointer */
65965   int n,                  /* Bytes in string, or negative */
65966   u8 enc,                 /* Encoding of z.  0 for BLOBs */
65967   void (*xDel)(void*)     /* Destructor function */
65968 ){
65969   if( sqlite3VdbeMemSetStr(&pCtx->s, z, n, enc, xDel)==SQLITE_TOOBIG ){
65970     sqlite3_result_error_toobig(pCtx);
65971   }
65972 }
65973 SQLITE_API void sqlite3_result_blob(
65974   sqlite3_context *pCtx,
65975   const void *z,
65976   int n,
65977   void (*xDel)(void *)
65978 ){
65979   assert( n>=0 );
65980   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
65981   setResultStrOrError(pCtx, z, n, 0, xDel);
65982 }
65983 SQLITE_API void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
65984   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
65985   sqlite3VdbeMemSetDouble(&pCtx->s, rVal);
65986 }
65987 SQLITE_API void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
65988   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
65989   pCtx->isError = SQLITE_ERROR;
65990   pCtx->fErrorOrAux = 1;
65991   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
65992 }
65993 #ifndef SQLITE_OMIT_UTF16
65994 SQLITE_API void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
65995   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
65996   pCtx->isError = SQLITE_ERROR;
65997   pCtx->fErrorOrAux = 1;
65998   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
65999 }
66000 #endif
66001 SQLITE_API void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
66002   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
66003   sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal);
66004 }
66005 SQLITE_API void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
66006   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
66007   sqlite3VdbeMemSetInt64(&pCtx->s, iVal);
66008 }
66009 SQLITE_API void sqlite3_result_null(sqlite3_context *pCtx){
66010   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
66011   sqlite3VdbeMemSetNull(&pCtx->s);
66012 }
66013 SQLITE_API void sqlite3_result_text(
66014   sqlite3_context *pCtx,
66015   const char *z,
66016   int n,
66017   void (*xDel)(void *)
66018 ){
66019   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
66020   setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel);
66021 }
66022 #ifndef SQLITE_OMIT_UTF16
66023 SQLITE_API void sqlite3_result_text16(
66024   sqlite3_context *pCtx,
66025   const void *z,
66026   int n,
66027   void (*xDel)(void *)
66028 ){
66029   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
66030   setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel);
66031 }
66032 SQLITE_API void sqlite3_result_text16be(
66033   sqlite3_context *pCtx,
66034   const void *z,
66035   int n,
66036   void (*xDel)(void *)
66037 ){
66038   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
66039   setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel);
66040 }
66041 SQLITE_API void sqlite3_result_text16le(
66042   sqlite3_context *pCtx,
66043   const void *z,
66044   int n,
66045   void (*xDel)(void *)
66046 ){
66047   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
66048   setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel);
66049 }
66050 #endif /* SQLITE_OMIT_UTF16 */
66051 SQLITE_API void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
66052   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
66053   sqlite3VdbeMemCopy(&pCtx->s, pValue);
66054 }
66055 SQLITE_API void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
66056   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
66057   sqlite3VdbeMemSetZeroBlob(&pCtx->s, n);
66058 }
66059 SQLITE_API void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){
66060   pCtx->isError = errCode;
66061   pCtx->fErrorOrAux = 1;
66062   if( pCtx->s.flags & MEM_Null ){
66063     sqlite3VdbeMemSetStr(&pCtx->s, sqlite3ErrStr(errCode), -1,
66064                          SQLITE_UTF8, SQLITE_STATIC);
66065   }
66066 }
66067 
66068 /* Force an SQLITE_TOOBIG error. */
66069 SQLITE_API void sqlite3_result_error_toobig(sqlite3_context *pCtx){
66070   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
66071   pCtx->isError = SQLITE_TOOBIG;
66072   pCtx->fErrorOrAux = 1;
66073   sqlite3VdbeMemSetStr(&pCtx->s, "string or blob too big", -1,
66074                        SQLITE_UTF8, SQLITE_STATIC);
66075 }
66076 
66077 /* An SQLITE_NOMEM error. */
66078 SQLITE_API void sqlite3_result_error_nomem(sqlite3_context *pCtx){
66079   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
66080   sqlite3VdbeMemSetNull(&pCtx->s);
66081   pCtx->isError = SQLITE_NOMEM;
66082   pCtx->fErrorOrAux = 1;
66083   pCtx->s.db->mallocFailed = 1;
66084 }
66085 
66086 /*
66087 ** This function is called after a transaction has been committed. It
66088 ** invokes callbacks registered with sqlite3_wal_hook() as required.
66089 */
66090 static int doWalCallbacks(sqlite3 *db){
66091   int rc = SQLITE_OK;
66092 #ifndef SQLITE_OMIT_WAL
66093   int i;
66094   for(i=0; i<db->nDb; i++){
66095     Btree *pBt = db->aDb[i].pBt;
66096     if( pBt ){
66097       int nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt));
66098       if( db->xWalCallback && nEntry>0 && rc==SQLITE_OK ){
66099         rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zName, nEntry);
66100       }
66101     }
66102   }
66103 #endif
66104   return rc;
66105 }
66106 
66107 /*
66108 ** Execute the statement pStmt, either until a row of data is ready, the
66109 ** statement is completely executed or an error occurs.
66110 **
66111 ** This routine implements the bulk of the logic behind the sqlite_step()
66112 ** API.  The only thing omitted is the automatic recompile if a
66113 ** schema change has occurred.  That detail is handled by the
66114 ** outer sqlite3_step() wrapper procedure.
66115 */
66116 static int sqlite3Step(Vdbe *p){
66117   sqlite3 *db;
66118   int rc;
66119 
66120   assert(p);
66121   if( p->magic!=VDBE_MAGIC_RUN ){
66122     /* We used to require that sqlite3_reset() be called before retrying
66123     ** sqlite3_step() after any error or after SQLITE_DONE.  But beginning
66124     ** with version 3.7.0, we changed this so that sqlite3_reset() would
66125     ** be called automatically instead of throwing the SQLITE_MISUSE error.
66126     ** This "automatic-reset" change is not technically an incompatibility,
66127     ** since any application that receives an SQLITE_MISUSE is broken by
66128     ** definition.
66129     **
66130     ** Nevertheless, some published applications that were originally written
66131     ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE
66132     ** returns, and those were broken by the automatic-reset change.  As a
66133     ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the
66134     ** legacy behavior of returning SQLITE_MISUSE for cases where the
66135     ** previous sqlite3_step() returned something other than a SQLITE_LOCKED
66136     ** or SQLITE_BUSY error.
66137     */
66138 #ifdef SQLITE_OMIT_AUTORESET
66139     if( p->rc==SQLITE_BUSY || p->rc==SQLITE_LOCKED ){
66140       sqlite3_reset((sqlite3_stmt*)p);
66141     }else{
66142       return SQLITE_MISUSE_BKPT;
66143     }
66144 #else
66145     sqlite3_reset((sqlite3_stmt*)p);
66146 #endif
66147   }
66148 
66149   /* Check that malloc() has not failed. If it has, return early. */
66150   db = p->db;
66151   if( db->mallocFailed ){
66152     p->rc = SQLITE_NOMEM;
66153     return SQLITE_NOMEM;
66154   }
66155 
66156   if( p->pc<=0 && p->expired ){
66157     p->rc = SQLITE_SCHEMA;
66158     rc = SQLITE_ERROR;
66159     goto end_of_step;
66160   }
66161   if( p->pc<0 ){
66162     /* If there are no other statements currently running, then
66163     ** reset the interrupt flag.  This prevents a call to sqlite3_interrupt
66164     ** from interrupting a statement that has not yet started.
66165     */
66166     if( db->nVdbeActive==0 ){
66167       db->u1.isInterrupted = 0;
66168     }
66169 
66170     assert( db->nVdbeWrite>0 || db->autoCommit==0
66171         || (db->nDeferredCons==0 && db->nDeferredImmCons==0)
66172     );
66173 
66174 #ifndef SQLITE_OMIT_TRACE
66175     if( db->xProfile && !db->init.busy ){
66176       sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime);
66177     }
66178 #endif
66179 
66180     db->nVdbeActive++;
66181     if( p->readOnly==0 ) db->nVdbeWrite++;
66182     if( p->bIsReader ) db->nVdbeRead++;
66183     p->pc = 0;
66184   }
66185 #ifndef SQLITE_OMIT_EXPLAIN
66186   if( p->explain ){
66187     rc = sqlite3VdbeList(p);
66188   }else
66189 #endif /* SQLITE_OMIT_EXPLAIN */
66190   {
66191     db->nVdbeExec++;
66192     rc = sqlite3VdbeExec(p);
66193     db->nVdbeExec--;
66194   }
66195 
66196 #ifndef SQLITE_OMIT_TRACE
66197   /* Invoke the profile callback if there is one
66198   */
66199   if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy && p->zSql ){
66200     sqlite3_int64 iNow;
66201     sqlite3OsCurrentTimeInt64(db->pVfs, &iNow);
66202     db->xProfile(db->pProfileArg, p->zSql, (iNow - p->startTime)*1000000);
66203   }
66204 #endif
66205 
66206   if( rc==SQLITE_DONE ){
66207     assert( p->rc==SQLITE_OK );
66208     p->rc = doWalCallbacks(db);
66209     if( p->rc!=SQLITE_OK ){
66210       rc = SQLITE_ERROR;
66211     }
66212   }
66213 
66214   db->errCode = rc;
66215   if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){
66216     p->rc = SQLITE_NOMEM;
66217   }
66218 end_of_step:
66219   /* At this point local variable rc holds the value that should be
66220   ** returned if this statement was compiled using the legacy
66221   ** sqlite3_prepare() interface. According to the docs, this can only
66222   ** be one of the values in the first assert() below. Variable p->rc
66223   ** contains the value that would be returned if sqlite3_finalize()
66224   ** were called on statement p.
66225   */
66226   assert( rc==SQLITE_ROW  || rc==SQLITE_DONE   || rc==SQLITE_ERROR
66227        || rc==SQLITE_BUSY || rc==SQLITE_MISUSE
66228   );
66229   assert( p->rc!=SQLITE_ROW && p->rc!=SQLITE_DONE );
66230   if( p->isPrepareV2 && rc!=SQLITE_ROW && rc!=SQLITE_DONE ){
66231     /* If this statement was prepared using sqlite3_prepare_v2(), and an
66232     ** error has occurred, then return the error code in p->rc to the
66233     ** caller. Set the error code in the database handle to the same value.
66234     */
66235     rc = sqlite3VdbeTransferError(p);
66236   }
66237   return (rc&db->errMask);
66238 }
66239 
66240 /*
66241 ** This is the top-level implementation of sqlite3_step().  Call
66242 ** sqlite3Step() to do most of the work.  If a schema error occurs,
66243 ** call sqlite3Reprepare() and try again.
66244 */
66245 SQLITE_API int sqlite3_step(sqlite3_stmt *pStmt){
66246   int rc = SQLITE_OK;      /* Result from sqlite3Step() */
66247   int rc2 = SQLITE_OK;     /* Result from sqlite3Reprepare() */
66248   Vdbe *v = (Vdbe*)pStmt;  /* the prepared statement */
66249   int cnt = 0;             /* Counter to prevent infinite loop of reprepares */
66250   sqlite3 *db;             /* The database connection */
66251 
66252   if( vdbeSafetyNotNull(v) ){
66253     return SQLITE_MISUSE_BKPT;
66254   }
66255   db = v->db;
66256   sqlite3_mutex_enter(db->mutex);
66257   v->doingRerun = 0;
66258   while( (rc = sqlite3Step(v))==SQLITE_SCHEMA
66259          && cnt++ < SQLITE_MAX_SCHEMA_RETRY
66260          && (rc2 = rc = sqlite3Reprepare(v))==SQLITE_OK ){
66261     sqlite3_reset(pStmt);
66262     v->doingRerun = 1;
66263     assert( v->expired==0 );
66264   }
66265   if( rc2!=SQLITE_OK ){
66266     /* This case occurs after failing to recompile an sql statement.
66267     ** The error message from the SQL compiler has already been loaded
66268     ** into the database handle. This block copies the error message
66269     ** from the database handle into the statement and sets the statement
66270     ** program counter to 0 to ensure that when the statement is
66271     ** finalized or reset the parser error message is available via
66272     ** sqlite3_errmsg() and sqlite3_errcode().
66273     */
66274     const char *zErr = (const char *)sqlite3_value_text(db->pErr);
66275     assert( zErr!=0 || db->mallocFailed );
66276     sqlite3DbFree(db, v->zErrMsg);
66277     if( !db->mallocFailed ){
66278       v->zErrMsg = sqlite3DbStrDup(db, zErr);
66279       v->rc = rc2;
66280     } else {
66281       v->zErrMsg = 0;
66282       v->rc = rc = SQLITE_NOMEM;
66283     }
66284   }
66285   rc = sqlite3ApiExit(db, rc);
66286   sqlite3_mutex_leave(db->mutex);
66287   return rc;
66288 }
66289 
66290 
66291 /*
66292 ** Extract the user data from a sqlite3_context structure and return a
66293 ** pointer to it.
66294 */
66295 SQLITE_API void *sqlite3_user_data(sqlite3_context *p){
66296   assert( p && p->pFunc );
66297   return p->pFunc->pUserData;
66298 }
66299 
66300 /*
66301 ** Extract the user data from a sqlite3_context structure and return a
66302 ** pointer to it.
66303 **
66304 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface
66305 ** returns a copy of the pointer to the database connection (the 1st
66306 ** parameter) of the sqlite3_create_function() and
66307 ** sqlite3_create_function16() routines that originally registered the
66308 ** application defined function.
66309 */
66310 SQLITE_API sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){
66311   assert( p && p->pFunc );
66312   return p->s.db;
66313 }
66314 
66315 /*
66316 ** Return the current time for a statement
66317 */
66318 SQLITE_PRIVATE sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){
66319   Vdbe *v = p->pVdbe;
66320   int rc;
66321   if( v->iCurrentTime==0 ){
66322     rc = sqlite3OsCurrentTimeInt64(p->s.db->pVfs, &v->iCurrentTime);
66323     if( rc ) v->iCurrentTime = 0;
66324   }
66325   return v->iCurrentTime;
66326 }
66327 
66328 /*
66329 ** The following is the implementation of an SQL function that always
66330 ** fails with an error message stating that the function is used in the
66331 ** wrong context.  The sqlite3_overload_function() API might construct
66332 ** SQL function that use this routine so that the functions will exist
66333 ** for name resolution but are actually overloaded by the xFindFunction
66334 ** method of virtual tables.
66335 */
66336 SQLITE_PRIVATE void sqlite3InvalidFunction(
66337   sqlite3_context *context,  /* The function calling context */
66338   int NotUsed,               /* Number of arguments to the function */
66339   sqlite3_value **NotUsed2   /* Value of each argument */
66340 ){
66341   const char *zName = context->pFunc->zName;
66342   char *zErr;
66343   UNUSED_PARAMETER2(NotUsed, NotUsed2);
66344   zErr = sqlite3_mprintf(
66345       "unable to use function %s in the requested context", zName);
66346   sqlite3_result_error(context, zErr, -1);
66347   sqlite3_free(zErr);
66348 }
66349 
66350 /*
66351 ** Allocate or return the aggregate context for a user function.  A new
66352 ** context is allocated on the first call.  Subsequent calls return the
66353 ** same context that was returned on prior calls.
66354 */
66355 SQLITE_API void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
66356   Mem *pMem;
66357   assert( p && p->pFunc && p->pFunc->xStep );
66358   assert( sqlite3_mutex_held(p->s.db->mutex) );
66359   pMem = p->pMem;
66360   testcase( nByte<0 );
66361   if( (pMem->flags & MEM_Agg)==0 ){
66362     if( nByte<=0 ){
66363       sqlite3VdbeMemReleaseExternal(pMem);
66364       pMem->flags = MEM_Null;
66365       pMem->z = 0;
66366     }else{
66367       sqlite3VdbeMemGrow(pMem, nByte, 0);
66368       pMem->flags = MEM_Agg;
66369       pMem->u.pDef = p->pFunc;
66370       if( pMem->z ){
66371         memset(pMem->z, 0, nByte);
66372       }
66373     }
66374   }
66375   return (void*)pMem->z;
66376 }
66377 
66378 /*
66379 ** Return the auxilary data pointer, if any, for the iArg'th argument to
66380 ** the user-function defined by pCtx.
66381 */
66382 SQLITE_API void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
66383   AuxData *pAuxData;
66384 
66385   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
66386   for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNext){
66387     if( pAuxData->iOp==pCtx->iOp && pAuxData->iArg==iArg ) break;
66388   }
66389 
66390   return (pAuxData ? pAuxData->pAux : 0);
66391 }
66392 
66393 /*
66394 ** Set the auxilary data pointer and delete function, for the iArg'th
66395 ** argument to the user-function defined by pCtx. Any previous value is
66396 ** deleted by calling the delete function specified when it was set.
66397 */
66398 SQLITE_API void sqlite3_set_auxdata(
66399   sqlite3_context *pCtx,
66400   int iArg,
66401   void *pAux,
66402   void (*xDelete)(void*)
66403 ){
66404   AuxData *pAuxData;
66405   Vdbe *pVdbe = pCtx->pVdbe;
66406 
66407   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
66408   if( iArg<0 ) goto failed;
66409 
66410   for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNext){
66411     if( pAuxData->iOp==pCtx->iOp && pAuxData->iArg==iArg ) break;
66412   }
66413   if( pAuxData==0 ){
66414     pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData));
66415     if( !pAuxData ) goto failed;
66416     pAuxData->iOp = pCtx->iOp;
66417     pAuxData->iArg = iArg;
66418     pAuxData->pNext = pVdbe->pAuxData;
66419     pVdbe->pAuxData = pAuxData;
66420     if( pCtx->fErrorOrAux==0 ){
66421       pCtx->isError = 0;
66422       pCtx->fErrorOrAux = 1;
66423     }
66424   }else if( pAuxData->xDelete ){
66425     pAuxData->xDelete(pAuxData->pAux);
66426   }
66427 
66428   pAuxData->pAux = pAux;
66429   pAuxData->xDelete = xDelete;
66430   return;
66431 
66432 failed:
66433   if( xDelete ){
66434     xDelete(pAux);
66435   }
66436 }
66437 
66438 #ifndef SQLITE_OMIT_DEPRECATED
66439 /*
66440 ** Return the number of times the Step function of a aggregate has been
66441 ** called.
66442 **
66443 ** This function is deprecated.  Do not use it for new code.  It is
66444 ** provide only to avoid breaking legacy code.  New aggregate function
66445 ** implementations should keep their own counts within their aggregate
66446 ** context.
66447 */
66448 SQLITE_API int sqlite3_aggregate_count(sqlite3_context *p){
66449   assert( p && p->pMem && p->pFunc && p->pFunc->xStep );
66450   return p->pMem->n;
66451 }
66452 #endif
66453 
66454 /*
66455 ** Return the number of columns in the result set for the statement pStmt.
66456 */
66457 SQLITE_API int sqlite3_column_count(sqlite3_stmt *pStmt){
66458   Vdbe *pVm = (Vdbe *)pStmt;
66459   return pVm ? pVm->nResColumn : 0;
66460 }
66461 
66462 /*
66463 ** Return the number of values available from the current row of the
66464 ** currently executing statement pStmt.
66465 */
66466 SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt){
66467   Vdbe *pVm = (Vdbe *)pStmt;
66468   if( pVm==0 || pVm->pResultSet==0 ) return 0;
66469   return pVm->nResColumn;
66470 }
66471 
66472 /*
66473 ** Return a pointer to static memory containing an SQL NULL value.
66474 */
66475 static const Mem *columnNullValue(void){
66476   /* Even though the Mem structure contains an element
66477   ** of type i64, on certain architectures (x86) with certain compiler
66478   ** switches (-Os), gcc may align this Mem object on a 4-byte boundary
66479   ** instead of an 8-byte one. This all works fine, except that when
66480   ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s
66481   ** that a Mem structure is located on an 8-byte boundary. To prevent
66482   ** these assert()s from failing, when building with SQLITE_DEBUG defined
66483   ** using gcc, we force nullMem to be 8-byte aligned using the magical
66484   ** __attribute__((aligned(8))) macro.  */
66485   static const Mem nullMem
66486 #if defined(SQLITE_DEBUG) && defined(__GNUC__)
66487     __attribute__((aligned(8)))
66488 #endif
66489     = {0, "", (double)0, {0}, 0, MEM_Null, 0,
66490 #ifdef SQLITE_DEBUG
66491        0, 0,  /* pScopyFrom, pFiller */
66492 #endif
66493        0, 0 };
66494   return &nullMem;
66495 }
66496 
66497 /*
66498 ** Check to see if column iCol of the given statement is valid.  If
66499 ** it is, return a pointer to the Mem for the value of that column.
66500 ** If iCol is not valid, return a pointer to a Mem which has a value
66501 ** of NULL.
66502 */
66503 static Mem *columnMem(sqlite3_stmt *pStmt, int i){
66504   Vdbe *pVm;
66505   Mem *pOut;
66506 
66507   pVm = (Vdbe *)pStmt;
66508   if( pVm && pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){
66509     sqlite3_mutex_enter(pVm->db->mutex);
66510     pOut = &pVm->pResultSet[i];
66511   }else{
66512     if( pVm && ALWAYS(pVm->db) ){
66513       sqlite3_mutex_enter(pVm->db->mutex);
66514       sqlite3Error(pVm->db, SQLITE_RANGE, 0);
66515     }
66516     pOut = (Mem*)columnNullValue();
66517   }
66518   return pOut;
66519 }
66520 
66521 /*
66522 ** This function is called after invoking an sqlite3_value_XXX function on a
66523 ** column value (i.e. a value returned by evaluating an SQL expression in the
66524 ** select list of a SELECT statement) that may cause a malloc() failure. If
66525 ** malloc() has failed, the threads mallocFailed flag is cleared and the result
66526 ** code of statement pStmt set to SQLITE_NOMEM.
66527 **
66528 ** Specifically, this is called from within:
66529 **
66530 **     sqlite3_column_int()
66531 **     sqlite3_column_int64()
66532 **     sqlite3_column_text()
66533 **     sqlite3_column_text16()
66534 **     sqlite3_column_real()
66535 **     sqlite3_column_bytes()
66536 **     sqlite3_column_bytes16()
66537 **     sqiite3_column_blob()
66538 */
66539 static void columnMallocFailure(sqlite3_stmt *pStmt)
66540 {
66541   /* If malloc() failed during an encoding conversion within an
66542   ** sqlite3_column_XXX API, then set the return code of the statement to
66543   ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR
66544   ** and _finalize() will return NOMEM.
66545   */
66546   Vdbe *p = (Vdbe *)pStmt;
66547   if( p ){
66548     p->rc = sqlite3ApiExit(p->db, p->rc);
66549     sqlite3_mutex_leave(p->db->mutex);
66550   }
66551 }
66552 
66553 /**************************** sqlite3_column_  *******************************
66554 ** The following routines are used to access elements of the current row
66555 ** in the result set.
66556 */
66557 SQLITE_API const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){
66558   const void *val;
66559   val = sqlite3_value_blob( columnMem(pStmt,i) );
66560   /* Even though there is no encoding conversion, value_blob() might
66561   ** need to call malloc() to expand the result of a zeroblob()
66562   ** expression.
66563   */
66564   columnMallocFailure(pStmt);
66565   return val;
66566 }
66567 SQLITE_API int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){
66568   int val = sqlite3_value_bytes( columnMem(pStmt,i) );
66569   columnMallocFailure(pStmt);
66570   return val;
66571 }
66572 SQLITE_API int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){
66573   int val = sqlite3_value_bytes16( columnMem(pStmt,i) );
66574   columnMallocFailure(pStmt);
66575   return val;
66576 }
66577 SQLITE_API double sqlite3_column_double(sqlite3_stmt *pStmt, int i){
66578   double val = sqlite3_value_double( columnMem(pStmt,i) );
66579   columnMallocFailure(pStmt);
66580   return val;
66581 }
66582 SQLITE_API int sqlite3_column_int(sqlite3_stmt *pStmt, int i){
66583   int val = sqlite3_value_int( columnMem(pStmt,i) );
66584   columnMallocFailure(pStmt);
66585   return val;
66586 }
66587 SQLITE_API sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){
66588   sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) );
66589   columnMallocFailure(pStmt);
66590   return val;
66591 }
66592 SQLITE_API const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){
66593   const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) );
66594   columnMallocFailure(pStmt);
66595   return val;
66596 }
66597 SQLITE_API sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){
66598   Mem *pOut = columnMem(pStmt, i);
66599   if( pOut->flags&MEM_Static ){
66600     pOut->flags &= ~MEM_Static;
66601     pOut->flags |= MEM_Ephem;
66602   }
66603   columnMallocFailure(pStmt);
66604   return (sqlite3_value *)pOut;
66605 }
66606 #ifndef SQLITE_OMIT_UTF16
66607 SQLITE_API const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){
66608   const void *val = sqlite3_value_text16( columnMem(pStmt,i) );
66609   columnMallocFailure(pStmt);
66610   return val;
66611 }
66612 #endif /* SQLITE_OMIT_UTF16 */
66613 SQLITE_API int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
66614   int iType = sqlite3_value_type( columnMem(pStmt,i) );
66615   columnMallocFailure(pStmt);
66616   return iType;
66617 }
66618 
66619 /*
66620 ** Convert the N-th element of pStmt->pColName[] into a string using
66621 ** xFunc() then return that string.  If N is out of range, return 0.
66622 **
66623 ** There are up to 5 names for each column.  useType determines which
66624 ** name is returned.  Here are the names:
66625 **
66626 **    0      The column name as it should be displayed for output
66627 **    1      The datatype name for the column
66628 **    2      The name of the database that the column derives from
66629 **    3      The name of the table that the column derives from
66630 **    4      The name of the table column that the result column derives from
66631 **
66632 ** If the result is not a simple column reference (if it is an expression
66633 ** or a constant) then useTypes 2, 3, and 4 return NULL.
66634 */
66635 static const void *columnName(
66636   sqlite3_stmt *pStmt,
66637   int N,
66638   const void *(*xFunc)(Mem*),
66639   int useType
66640 ){
66641   const void *ret = 0;
66642   Vdbe *p = (Vdbe *)pStmt;
66643   int n;
66644   sqlite3 *db = p->db;
66645 
66646   assert( db!=0 );
66647   n = sqlite3_column_count(pStmt);
66648   if( N<n && N>=0 ){
66649     N += useType*n;
66650     sqlite3_mutex_enter(db->mutex);
66651     assert( db->mallocFailed==0 );
66652     ret = xFunc(&p->aColName[N]);
66653      /* A malloc may have failed inside of the xFunc() call. If this
66654     ** is the case, clear the mallocFailed flag and return NULL.
66655     */
66656     if( db->mallocFailed ){
66657       db->mallocFailed = 0;
66658       ret = 0;
66659     }
66660     sqlite3_mutex_leave(db->mutex);
66661   }
66662   return ret;
66663 }
66664 
66665 /*
66666 ** Return the name of the Nth column of the result set returned by SQL
66667 ** statement pStmt.
66668 */
66669 SQLITE_API const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){
66670   return columnName(
66671       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME);
66672 }
66673 #ifndef SQLITE_OMIT_UTF16
66674 SQLITE_API const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
66675   return columnName(
66676       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME);
66677 }
66678 #endif
66679 
66680 /*
66681 ** Constraint:  If you have ENABLE_COLUMN_METADATA then you must
66682 ** not define OMIT_DECLTYPE.
66683 */
66684 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA)
66685 # error "Must not define both SQLITE_OMIT_DECLTYPE \
66686          and SQLITE_ENABLE_COLUMN_METADATA"
66687 #endif
66688 
66689 #ifndef SQLITE_OMIT_DECLTYPE
66690 /*
66691 ** Return the column declaration type (if applicable) of the 'i'th column
66692 ** of the result set of SQL statement pStmt.
66693 */
66694 SQLITE_API const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){
66695   return columnName(
66696       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE);
66697 }
66698 #ifndef SQLITE_OMIT_UTF16
66699 SQLITE_API const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
66700   return columnName(
66701       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE);
66702 }
66703 #endif /* SQLITE_OMIT_UTF16 */
66704 #endif /* SQLITE_OMIT_DECLTYPE */
66705 
66706 #ifdef SQLITE_ENABLE_COLUMN_METADATA
66707 /*
66708 ** Return the name of the database from which a result column derives.
66709 ** NULL is returned if the result column is an expression or constant or
66710 ** anything else which is not an unabiguous reference to a database column.
66711 */
66712 SQLITE_API const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
66713   return columnName(
66714       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE);
66715 }
66716 #ifndef SQLITE_OMIT_UTF16
66717 SQLITE_API const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
66718   return columnName(
66719       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE);
66720 }
66721 #endif /* SQLITE_OMIT_UTF16 */
66722 
66723 /*
66724 ** Return the name of the table from which a result column derives.
66725 ** NULL is returned if the result column is an expression or constant or
66726 ** anything else which is not an unabiguous reference to a database column.
66727 */
66728 SQLITE_API const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
66729   return columnName(
66730       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE);
66731 }
66732 #ifndef SQLITE_OMIT_UTF16
66733 SQLITE_API const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
66734   return columnName(
66735       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE);
66736 }
66737 #endif /* SQLITE_OMIT_UTF16 */
66738 
66739 /*
66740 ** Return the name of the table column from which a result column derives.
66741 ** NULL is returned if the result column is an expression or constant or
66742 ** anything else which is not an unabiguous reference to a database column.
66743 */
66744 SQLITE_API const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
66745   return columnName(
66746       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN);
66747 }
66748 #ifndef SQLITE_OMIT_UTF16
66749 SQLITE_API const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
66750   return columnName(
66751       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN);
66752 }
66753 #endif /* SQLITE_OMIT_UTF16 */
66754 #endif /* SQLITE_ENABLE_COLUMN_METADATA */
66755 
66756 
66757 /******************************* sqlite3_bind_  ***************************
66758 **
66759 ** Routines used to attach values to wildcards in a compiled SQL statement.
66760 */
66761 /*
66762 ** Unbind the value bound to variable i in virtual machine p. This is the
66763 ** the same as binding a NULL value to the column. If the "i" parameter is
66764 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK.
66765 **
66766 ** A successful evaluation of this routine acquires the mutex on p.
66767 ** the mutex is released if any kind of error occurs.
66768 **
66769 ** The error code stored in database p->db is overwritten with the return
66770 ** value in any case.
66771 */
66772 static int vdbeUnbind(Vdbe *p, int i){
66773   Mem *pVar;
66774   if( vdbeSafetyNotNull(p) ){
66775     return SQLITE_MISUSE_BKPT;
66776   }
66777   sqlite3_mutex_enter(p->db->mutex);
66778   if( p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){
66779     sqlite3Error(p->db, SQLITE_MISUSE, 0);
66780     sqlite3_mutex_leave(p->db->mutex);
66781     sqlite3_log(SQLITE_MISUSE,
66782         "bind on a busy prepared statement: [%s]", p->zSql);
66783     return SQLITE_MISUSE_BKPT;
66784   }
66785   if( i<1 || i>p->nVar ){
66786     sqlite3Error(p->db, SQLITE_RANGE, 0);
66787     sqlite3_mutex_leave(p->db->mutex);
66788     return SQLITE_RANGE;
66789   }
66790   i--;
66791   pVar = &p->aVar[i];
66792   sqlite3VdbeMemRelease(pVar);
66793   pVar->flags = MEM_Null;
66794   sqlite3Error(p->db, SQLITE_OK, 0);
66795 
66796   /* If the bit corresponding to this variable in Vdbe.expmask is set, then
66797   ** binding a new value to this variable invalidates the current query plan.
66798   **
66799   ** IMPLEMENTATION-OF: R-48440-37595 If the specific value bound to host
66800   ** parameter in the WHERE clause might influence the choice of query plan
66801   ** for a statement, then the statement will be automatically recompiled,
66802   ** as if there had been a schema change, on the first sqlite3_step() call
66803   ** following any change to the bindings of that parameter.
66804   */
66805   if( p->isPrepareV2 &&
66806      ((i<32 && p->expmask & ((u32)1 << i)) || p->expmask==0xffffffff)
66807   ){
66808     p->expired = 1;
66809   }
66810   return SQLITE_OK;
66811 }
66812 
66813 /*
66814 ** Bind a text or BLOB value.
66815 */
66816 static int bindText(
66817   sqlite3_stmt *pStmt,   /* The statement to bind against */
66818   int i,                 /* Index of the parameter to bind */
66819   const void *zData,     /* Pointer to the data to be bound */
66820   int nData,             /* Number of bytes of data to be bound */
66821   void (*xDel)(void*),   /* Destructor for the data */
66822   u8 encoding            /* Encoding for the data */
66823 ){
66824   Vdbe *p = (Vdbe *)pStmt;
66825   Mem *pVar;
66826   int rc;
66827 
66828   rc = vdbeUnbind(p, i);
66829   if( rc==SQLITE_OK ){
66830     if( zData!=0 ){
66831       pVar = &p->aVar[i-1];
66832       rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel);
66833       if( rc==SQLITE_OK && encoding!=0 ){
66834         rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db));
66835       }
66836       sqlite3Error(p->db, rc, 0);
66837       rc = sqlite3ApiExit(p->db, rc);
66838     }
66839     sqlite3_mutex_leave(p->db->mutex);
66840   }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){
66841     xDel((void*)zData);
66842   }
66843   return rc;
66844 }
66845 
66846 
66847 /*
66848 ** Bind a blob value to an SQL statement variable.
66849 */
66850 SQLITE_API int sqlite3_bind_blob(
66851   sqlite3_stmt *pStmt,
66852   int i,
66853   const void *zData,
66854   int nData,
66855   void (*xDel)(void*)
66856 ){
66857   return bindText(pStmt, i, zData, nData, xDel, 0);
66858 }
66859 SQLITE_API int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
66860   int rc;
66861   Vdbe *p = (Vdbe *)pStmt;
66862   rc = vdbeUnbind(p, i);
66863   if( rc==SQLITE_OK ){
66864     sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue);
66865     sqlite3_mutex_leave(p->db->mutex);
66866   }
66867   return rc;
66868 }
66869 SQLITE_API int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){
66870   return sqlite3_bind_int64(p, i, (i64)iValue);
66871 }
66872 SQLITE_API int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){
66873   int rc;
66874   Vdbe *p = (Vdbe *)pStmt;
66875   rc = vdbeUnbind(p, i);
66876   if( rc==SQLITE_OK ){
66877     sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue);
66878     sqlite3_mutex_leave(p->db->mutex);
66879   }
66880   return rc;
66881 }
66882 SQLITE_API int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){
66883   int rc;
66884   Vdbe *p = (Vdbe*)pStmt;
66885   rc = vdbeUnbind(p, i);
66886   if( rc==SQLITE_OK ){
66887     sqlite3_mutex_leave(p->db->mutex);
66888   }
66889   return rc;
66890 }
66891 SQLITE_API int sqlite3_bind_text(
66892   sqlite3_stmt *pStmt,
66893   int i,
66894   const char *zData,
66895   int nData,
66896   void (*xDel)(void*)
66897 ){
66898   return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8);
66899 }
66900 #ifndef SQLITE_OMIT_UTF16
66901 SQLITE_API int sqlite3_bind_text16(
66902   sqlite3_stmt *pStmt,
66903   int i,
66904   const void *zData,
66905   int nData,
66906   void (*xDel)(void*)
66907 ){
66908   return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE);
66909 }
66910 #endif /* SQLITE_OMIT_UTF16 */
66911 SQLITE_API int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
66912   int rc;
66913   switch( sqlite3_value_type((sqlite3_value*)pValue) ){
66914     case SQLITE_INTEGER: {
66915       rc = sqlite3_bind_int64(pStmt, i, pValue->u.i);
66916       break;
66917     }
66918     case SQLITE_FLOAT: {
66919       rc = sqlite3_bind_double(pStmt, i, pValue->r);
66920       break;
66921     }
66922     case SQLITE_BLOB: {
66923       if( pValue->flags & MEM_Zero ){
66924         rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero);
66925       }else{
66926         rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT);
66927       }
66928       break;
66929     }
66930     case SQLITE_TEXT: {
66931       rc = bindText(pStmt,i,  pValue->z, pValue->n, SQLITE_TRANSIENT,
66932                               pValue->enc);
66933       break;
66934     }
66935     default: {
66936       rc = sqlite3_bind_null(pStmt, i);
66937       break;
66938     }
66939   }
66940   return rc;
66941 }
66942 SQLITE_API int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){
66943   int rc;
66944   Vdbe *p = (Vdbe *)pStmt;
66945   rc = vdbeUnbind(p, i);
66946   if( rc==SQLITE_OK ){
66947     sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
66948     sqlite3_mutex_leave(p->db->mutex);
66949   }
66950   return rc;
66951 }
66952 
66953 /*
66954 ** Return the number of wildcards that can be potentially bound to.
66955 ** This routine is added to support DBD::SQLite.
66956 */
66957 SQLITE_API int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
66958   Vdbe *p = (Vdbe*)pStmt;
66959   return p ? p->nVar : 0;
66960 }
66961 
66962 /*
66963 ** Return the name of a wildcard parameter.  Return NULL if the index
66964 ** is out of range or if the wildcard is unnamed.
66965 **
66966 ** The result is always UTF-8.
66967 */
66968 SQLITE_API const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
66969   Vdbe *p = (Vdbe*)pStmt;
66970   if( p==0 || i<1 || i>p->nzVar ){
66971     return 0;
66972   }
66973   return p->azVar[i-1];
66974 }
66975 
66976 /*
66977 ** Given a wildcard parameter name, return the index of the variable
66978 ** with that name.  If there is no variable with the given name,
66979 ** return 0.
66980 */
66981 SQLITE_PRIVATE int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){
66982   int i;
66983   if( p==0 ){
66984     return 0;
66985   }
66986   if( zName ){
66987     for(i=0; i<p->nzVar; i++){
66988       const char *z = p->azVar[i];
66989       if( z && strncmp(z,zName,nName)==0 && z[nName]==0 ){
66990         return i+1;
66991       }
66992     }
66993   }
66994   return 0;
66995 }
66996 SQLITE_API int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
66997   return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName));
66998 }
66999 
67000 /*
67001 ** Transfer all bindings from the first statement over to the second.
67002 */
67003 SQLITE_PRIVATE int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
67004   Vdbe *pFrom = (Vdbe*)pFromStmt;
67005   Vdbe *pTo = (Vdbe*)pToStmt;
67006   int i;
67007   assert( pTo->db==pFrom->db );
67008   assert( pTo->nVar==pFrom->nVar );
67009   sqlite3_mutex_enter(pTo->db->mutex);
67010   for(i=0; i<pFrom->nVar; i++){
67011     sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]);
67012   }
67013   sqlite3_mutex_leave(pTo->db->mutex);
67014   return SQLITE_OK;
67015 }
67016 
67017 #ifndef SQLITE_OMIT_DEPRECATED
67018 /*
67019 ** Deprecated external interface.  Internal/core SQLite code
67020 ** should call sqlite3TransferBindings.
67021 **
67022 ** Is is misuse to call this routine with statements from different
67023 ** database connections.  But as this is a deprecated interface, we
67024 ** will not bother to check for that condition.
67025 **
67026 ** If the two statements contain a different number of bindings, then
67027 ** an SQLITE_ERROR is returned.  Nothing else can go wrong, so otherwise
67028 ** SQLITE_OK is returned.
67029 */
67030 SQLITE_API int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
67031   Vdbe *pFrom = (Vdbe*)pFromStmt;
67032   Vdbe *pTo = (Vdbe*)pToStmt;
67033   if( pFrom->nVar!=pTo->nVar ){
67034     return SQLITE_ERROR;
67035   }
67036   if( pTo->isPrepareV2 && pTo->expmask ){
67037     pTo->expired = 1;
67038   }
67039   if( pFrom->isPrepareV2 && pFrom->expmask ){
67040     pFrom->expired = 1;
67041   }
67042   return sqlite3TransferBindings(pFromStmt, pToStmt);
67043 }
67044 #endif
67045 
67046 /*
67047 ** Return the sqlite3* database handle to which the prepared statement given
67048 ** in the argument belongs.  This is the same database handle that was
67049 ** the first argument to the sqlite3_prepare() that was used to create
67050 ** the statement in the first place.
67051 */
67052 SQLITE_API sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){
67053   return pStmt ? ((Vdbe*)pStmt)->db : 0;
67054 }
67055 
67056 /*
67057 ** Return true if the prepared statement is guaranteed to not modify the
67058 ** database.
67059 */
67060 SQLITE_API int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){
67061   return pStmt ? ((Vdbe*)pStmt)->readOnly : 1;
67062 }
67063 
67064 /*
67065 ** Return true if the prepared statement is in need of being reset.
67066 */
67067 SQLITE_API int sqlite3_stmt_busy(sqlite3_stmt *pStmt){
67068   Vdbe *v = (Vdbe*)pStmt;
67069   return v!=0 && v->pc>0 && v->magic==VDBE_MAGIC_RUN;
67070 }
67071 
67072 /*
67073 ** Return a pointer to the next prepared statement after pStmt associated
67074 ** with database connection pDb.  If pStmt is NULL, return the first
67075 ** prepared statement for the database connection.  Return NULL if there
67076 ** are no more.
67077 */
67078 SQLITE_API sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){
67079   sqlite3_stmt *pNext;
67080   sqlite3_mutex_enter(pDb->mutex);
67081   if( pStmt==0 ){
67082     pNext = (sqlite3_stmt*)pDb->pVdbe;
67083   }else{
67084     pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext;
67085   }
67086   sqlite3_mutex_leave(pDb->mutex);
67087   return pNext;
67088 }
67089 
67090 /*
67091 ** Return the value of a status counter for a prepared statement
67092 */
67093 SQLITE_API int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){
67094   Vdbe *pVdbe = (Vdbe*)pStmt;
67095   u32 v = pVdbe->aCounter[op];
67096   if( resetFlag ) pVdbe->aCounter[op] = 0;
67097   return (int)v;
67098 }
67099 
67100 /************** End of vdbeapi.c *********************************************/
67101 /************** Begin file vdbetrace.c ***************************************/
67102 /*
67103 ** 2009 November 25
67104 **
67105 ** The author disclaims copyright to this source code.  In place of
67106 ** a legal notice, here is a blessing:
67107 **
67108 **    May you do good and not evil.
67109 **    May you find forgiveness for yourself and forgive others.
67110 **    May you share freely, never taking more than you give.
67111 **
67112 *************************************************************************
67113 **
67114 ** This file contains code used to insert the values of host parameters
67115 ** (aka "wildcards") into the SQL text output by sqlite3_trace().
67116 **
67117 ** The Vdbe parse-tree explainer is also found here.
67118 */
67119 
67120 #ifndef SQLITE_OMIT_TRACE
67121 
67122 /*
67123 ** zSql is a zero-terminated string of UTF-8 SQL text.  Return the number of
67124 ** bytes in this text up to but excluding the first character in
67125 ** a host parameter.  If the text contains no host parameters, return
67126 ** the total number of bytes in the text.
67127 */
67128 static int findNextHostParameter(const char *zSql, int *pnToken){
67129   int tokenType;
67130   int nTotal = 0;
67131   int n;
67132 
67133   *pnToken = 0;
67134   while( zSql[0] ){
67135     n = sqlite3GetToken((u8*)zSql, &tokenType);
67136     assert( n>0 && tokenType!=TK_ILLEGAL );
67137     if( tokenType==TK_VARIABLE ){
67138       *pnToken = n;
67139       break;
67140     }
67141     nTotal += n;
67142     zSql += n;
67143   }
67144   return nTotal;
67145 }
67146 
67147 /*
67148 ** This function returns a pointer to a nul-terminated string in memory
67149 ** obtained from sqlite3DbMalloc(). If sqlite3.nVdbeExec is 1, then the
67150 ** string contains a copy of zRawSql but with host parameters expanded to
67151 ** their current bindings. Or, if sqlite3.nVdbeExec is greater than 1,
67152 ** then the returned string holds a copy of zRawSql with "-- " prepended
67153 ** to each line of text.
67154 **
67155 ** If the SQLITE_TRACE_SIZE_LIMIT macro is defined to an integer, then
67156 ** then long strings and blobs are truncated to that many bytes.  This
67157 ** can be used to prevent unreasonably large trace strings when dealing
67158 ** with large (multi-megabyte) strings and blobs.
67159 **
67160 ** The calling function is responsible for making sure the memory returned
67161 ** is eventually freed.
67162 **
67163 ** ALGORITHM:  Scan the input string looking for host parameters in any of
67164 ** these forms:  ?, ?N, $A, @A, :A.  Take care to avoid text within
67165 ** string literals, quoted identifier names, and comments.  For text forms,
67166 ** the host parameter index is found by scanning the perpared
67167 ** statement for the corresponding OP_Variable opcode.  Once the host
67168 ** parameter index is known, locate the value in p->aVar[].  Then render
67169 ** the value as a literal in place of the host parameter name.
67170 */
67171 SQLITE_PRIVATE char *sqlite3VdbeExpandSql(
67172   Vdbe *p,                 /* The prepared statement being evaluated */
67173   const char *zRawSql      /* Raw text of the SQL statement */
67174 ){
67175   sqlite3 *db;             /* The database connection */
67176   int idx = 0;             /* Index of a host parameter */
67177   int nextIndex = 1;       /* Index of next ? host parameter */
67178   int n;                   /* Length of a token prefix */
67179   int nToken;              /* Length of the parameter token */
67180   int i;                   /* Loop counter */
67181   Mem *pVar;               /* Value of a host parameter */
67182   StrAccum out;            /* Accumulate the output here */
67183   char zBase[100];         /* Initial working space */
67184 
67185   db = p->db;
67186   sqlite3StrAccumInit(&out, zBase, sizeof(zBase),
67187                       db->aLimit[SQLITE_LIMIT_LENGTH]);
67188   out.db = db;
67189   if( db->nVdbeExec>1 ){
67190     while( *zRawSql ){
67191       const char *zStart = zRawSql;
67192       while( *(zRawSql++)!='\n' && *zRawSql );
67193       sqlite3StrAccumAppend(&out, "-- ", 3);
67194       assert( (zRawSql - zStart) > 0 );
67195       sqlite3StrAccumAppend(&out, zStart, (int)(zRawSql-zStart));
67196     }
67197   }else{
67198     while( zRawSql[0] ){
67199       n = findNextHostParameter(zRawSql, &nToken);
67200       assert( n>0 );
67201       sqlite3StrAccumAppend(&out, zRawSql, n);
67202       zRawSql += n;
67203       assert( zRawSql[0] || nToken==0 );
67204       if( nToken==0 ) break;
67205       if( zRawSql[0]=='?' ){
67206         if( nToken>1 ){
67207           assert( sqlite3Isdigit(zRawSql[1]) );
67208           sqlite3GetInt32(&zRawSql[1], &idx);
67209         }else{
67210           idx = nextIndex;
67211         }
67212       }else{
67213         assert( zRawSql[0]==':' || zRawSql[0]=='$' || zRawSql[0]=='@' );
67214         testcase( zRawSql[0]==':' );
67215         testcase( zRawSql[0]=='$' );
67216         testcase( zRawSql[0]=='@' );
67217         idx = sqlite3VdbeParameterIndex(p, zRawSql, nToken);
67218         assert( idx>0 );
67219       }
67220       zRawSql += nToken;
67221       nextIndex = idx + 1;
67222       assert( idx>0 && idx<=p->nVar );
67223       pVar = &p->aVar[idx-1];
67224       if( pVar->flags & MEM_Null ){
67225         sqlite3StrAccumAppend(&out, "NULL", 4);
67226       }else if( pVar->flags & MEM_Int ){
67227         sqlite3XPrintf(&out, 0, "%lld", pVar->u.i);
67228       }else if( pVar->flags & MEM_Real ){
67229         sqlite3XPrintf(&out, 0, "%!.15g", pVar->r);
67230       }else if( pVar->flags & MEM_Str ){
67231         int nOut;  /* Number of bytes of the string text to include in output */
67232 #ifndef SQLITE_OMIT_UTF16
67233         u8 enc = ENC(db);
67234         Mem utf8;
67235         if( enc!=SQLITE_UTF8 ){
67236           memset(&utf8, 0, sizeof(utf8));
67237           utf8.db = db;
67238           sqlite3VdbeMemSetStr(&utf8, pVar->z, pVar->n, enc, SQLITE_STATIC);
67239           sqlite3VdbeChangeEncoding(&utf8, SQLITE_UTF8);
67240           pVar = &utf8;
67241         }
67242 #endif
67243         nOut = pVar->n;
67244 #ifdef SQLITE_TRACE_SIZE_LIMIT
67245         if( nOut>SQLITE_TRACE_SIZE_LIMIT ){
67246           nOut = SQLITE_TRACE_SIZE_LIMIT;
67247           while( nOut<pVar->n && (pVar->z[nOut]&0xc0)==0x80 ){ nOut++; }
67248         }
67249 #endif
67250         sqlite3XPrintf(&out, 0, "'%.*q'", nOut, pVar->z);
67251 #ifdef SQLITE_TRACE_SIZE_LIMIT
67252         if( nOut<pVar->n ){
67253           sqlite3XPrintf(&out, 0, "/*+%d bytes*/", pVar->n-nOut);
67254         }
67255 #endif
67256 #ifndef SQLITE_OMIT_UTF16
67257         if( enc!=SQLITE_UTF8 ) sqlite3VdbeMemRelease(&utf8);
67258 #endif
67259       }else if( pVar->flags & MEM_Zero ){
67260         sqlite3XPrintf(&out, 0, "zeroblob(%d)", pVar->u.nZero);
67261       }else{
67262         int nOut;  /* Number of bytes of the blob to include in output */
67263         assert( pVar->flags & MEM_Blob );
67264         sqlite3StrAccumAppend(&out, "x'", 2);
67265         nOut = pVar->n;
67266 #ifdef SQLITE_TRACE_SIZE_LIMIT
67267         if( nOut>SQLITE_TRACE_SIZE_LIMIT ) nOut = SQLITE_TRACE_SIZE_LIMIT;
67268 #endif
67269         for(i=0; i<nOut; i++){
67270           sqlite3XPrintf(&out, 0, "%02x", pVar->z[i]&0xff);
67271         }
67272         sqlite3StrAccumAppend(&out, "'", 1);
67273 #ifdef SQLITE_TRACE_SIZE_LIMIT
67274         if( nOut<pVar->n ){
67275           sqlite3XPrintf(&out, 0, "/*+%d bytes*/", pVar->n-nOut);
67276         }
67277 #endif
67278       }
67279     }
67280   }
67281   return sqlite3StrAccumFinish(&out);
67282 }
67283 
67284 #endif /* #ifndef SQLITE_OMIT_TRACE */
67285 
67286 /*****************************************************************************
67287 ** The following code implements the data-structure explaining logic
67288 ** for the Vdbe.
67289 */
67290 
67291 #if defined(SQLITE_ENABLE_TREE_EXPLAIN)
67292 
67293 /*
67294 ** Allocate a new Explain object
67295 */
67296 SQLITE_PRIVATE void sqlite3ExplainBegin(Vdbe *pVdbe){
67297   if( pVdbe ){
67298     Explain *p;
67299     sqlite3BeginBenignMalloc();
67300     p = (Explain *)sqlite3MallocZero( sizeof(Explain) );
67301     if( p ){
67302       p->pVdbe = pVdbe;
67303       sqlite3_free(pVdbe->pExplain);
67304       pVdbe->pExplain = p;
67305       sqlite3StrAccumInit(&p->str, p->zBase, sizeof(p->zBase),
67306                           SQLITE_MAX_LENGTH);
67307       p->str.useMalloc = 2;
67308     }else{
67309       sqlite3EndBenignMalloc();
67310     }
67311   }
67312 }
67313 
67314 /*
67315 ** Return true if the Explain ends with a new-line.
67316 */
67317 static int endsWithNL(Explain *p){
67318   return p && p->str.zText && p->str.nChar
67319            && p->str.zText[p->str.nChar-1]=='\n';
67320 }
67321 
67322 /*
67323 ** Append text to the indentation
67324 */
67325 SQLITE_PRIVATE void sqlite3ExplainPrintf(Vdbe *pVdbe, const char *zFormat, ...){
67326   Explain *p;
67327   if( pVdbe && (p = pVdbe->pExplain)!=0 ){
67328     va_list ap;
67329     if( p->nIndent && endsWithNL(p) ){
67330       int n = p->nIndent;
67331       if( n>ArraySize(p->aIndent) ) n = ArraySize(p->aIndent);
67332       sqlite3AppendSpace(&p->str, p->aIndent[n-1]);
67333     }
67334     va_start(ap, zFormat);
67335     sqlite3VXPrintf(&p->str, SQLITE_PRINTF_INTERNAL, zFormat, ap);
67336     va_end(ap);
67337   }
67338 }
67339 
67340 /*
67341 ** Append a '\n' if there is not already one.
67342 */
67343 SQLITE_PRIVATE void sqlite3ExplainNL(Vdbe *pVdbe){
67344   Explain *p;
67345   if( pVdbe && (p = pVdbe->pExplain)!=0 && !endsWithNL(p) ){
67346     sqlite3StrAccumAppend(&p->str, "\n", 1);
67347   }
67348 }
67349 
67350 /*
67351 ** Push a new indentation level.  Subsequent lines will be indented
67352 ** so that they begin at the current cursor position.
67353 */
67354 SQLITE_PRIVATE void sqlite3ExplainPush(Vdbe *pVdbe){
67355   Explain *p;
67356   if( pVdbe && (p = pVdbe->pExplain)!=0 ){
67357     if( p->str.zText && p->nIndent<ArraySize(p->aIndent) ){
67358       const char *z = p->str.zText;
67359       int i = p->str.nChar-1;
67360       int x;
67361       while( i>=0 && z[i]!='\n' ){ i--; }
67362       x = (p->str.nChar - 1) - i;
67363       if( p->nIndent && x<p->aIndent[p->nIndent-1] ){
67364         x = p->aIndent[p->nIndent-1];
67365       }
67366       p->aIndent[p->nIndent] = x;
67367     }
67368     p->nIndent++;
67369   }
67370 }
67371 
67372 /*
67373 ** Pop the indentation stack by one level.
67374 */
67375 SQLITE_PRIVATE void sqlite3ExplainPop(Vdbe *p){
67376   if( p && p->pExplain ) p->pExplain->nIndent--;
67377 }
67378 
67379 /*
67380 ** Free the indentation structure
67381 */
67382 SQLITE_PRIVATE void sqlite3ExplainFinish(Vdbe *pVdbe){
67383   if( pVdbe && pVdbe->pExplain ){
67384     sqlite3_free(pVdbe->zExplain);
67385     sqlite3ExplainNL(pVdbe);
67386     pVdbe->zExplain = sqlite3StrAccumFinish(&pVdbe->pExplain->str);
67387     sqlite3_free(pVdbe->pExplain);
67388     pVdbe->pExplain = 0;
67389     sqlite3EndBenignMalloc();
67390   }
67391 }
67392 
67393 /*
67394 ** Return the explanation of a virtual machine.
67395 */
67396 SQLITE_PRIVATE const char *sqlite3VdbeExplanation(Vdbe *pVdbe){
67397   return (pVdbe && pVdbe->zExplain) ? pVdbe->zExplain : 0;
67398 }
67399 #endif /* defined(SQLITE_DEBUG) */
67400 
67401 /************** End of vdbetrace.c *******************************************/
67402 /************** Begin file vdbe.c ********************************************/
67403 /*
67404 ** 2001 September 15
67405 **
67406 ** The author disclaims copyright to this source code.  In place of
67407 ** a legal notice, here is a blessing:
67408 **
67409 **    May you do good and not evil.
67410 **    May you find forgiveness for yourself and forgive others.
67411 **    May you share freely, never taking more than you give.
67412 **
67413 *************************************************************************
67414 ** The code in this file implements the function that runs the
67415 ** bytecode of a prepared statement.
67416 **
67417 ** Various scripts scan this source file in order to generate HTML
67418 ** documentation, headers files, or other derived files.  The formatting
67419 ** of the code in this file is, therefore, important.  See other comments
67420 ** in this file for details.  If in doubt, do not deviate from existing
67421 ** commenting and indentation practices when changing or adding code.
67422 */
67423 
67424 /*
67425 ** Invoke this macro on memory cells just prior to changing the
67426 ** value of the cell.  This macro verifies that shallow copies are
67427 ** not misused.  A shallow copy of a string or blob just copies a
67428 ** pointer to the string or blob, not the content.  If the original
67429 ** is changed while the copy is still in use, the string or blob might
67430 ** be changed out from under the copy.  This macro verifies that nothing
67431 ** like that ever happens.
67432 */
67433 #ifdef SQLITE_DEBUG
67434 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
67435 #else
67436 # define memAboutToChange(P,M)
67437 #endif
67438 
67439 /*
67440 ** The following global variable is incremented every time a cursor
67441 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes.  The test
67442 ** procedures use this information to make sure that indices are
67443 ** working correctly.  This variable has no function other than to
67444 ** help verify the correct operation of the library.
67445 */
67446 #ifdef SQLITE_TEST
67447 SQLITE_API int sqlite3_search_count = 0;
67448 #endif
67449 
67450 /*
67451 ** When this global variable is positive, it gets decremented once before
67452 ** each instruction in the VDBE.  When it reaches zero, the u1.isInterrupted
67453 ** field of the sqlite3 structure is set in order to simulate an interrupt.
67454 **
67455 ** This facility is used for testing purposes only.  It does not function
67456 ** in an ordinary build.
67457 */
67458 #ifdef SQLITE_TEST
67459 SQLITE_API int sqlite3_interrupt_count = 0;
67460 #endif
67461 
67462 /*
67463 ** The next global variable is incremented each type the OP_Sort opcode
67464 ** is executed.  The test procedures use this information to make sure that
67465 ** sorting is occurring or not occurring at appropriate times.   This variable
67466 ** has no function other than to help verify the correct operation of the
67467 ** library.
67468 */
67469 #ifdef SQLITE_TEST
67470 SQLITE_API int sqlite3_sort_count = 0;
67471 #endif
67472 
67473 /*
67474 ** The next global variable records the size of the largest MEM_Blob
67475 ** or MEM_Str that has been used by a VDBE opcode.  The test procedures
67476 ** use this information to make sure that the zero-blob functionality
67477 ** is working correctly.   This variable has no function other than to
67478 ** help verify the correct operation of the library.
67479 */
67480 #ifdef SQLITE_TEST
67481 SQLITE_API int sqlite3_max_blobsize = 0;
67482 static void updateMaxBlobsize(Mem *p){
67483   if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
67484     sqlite3_max_blobsize = p->n;
67485   }
67486 }
67487 #endif
67488 
67489 /*
67490 ** The next global variable is incremented each time the OP_Found opcode
67491 ** is executed. This is used to test whether or not the foreign key
67492 ** operation implemented using OP_FkIsZero is working. This variable
67493 ** has no function other than to help verify the correct operation of the
67494 ** library.
67495 */
67496 #ifdef SQLITE_TEST
67497 SQLITE_API int sqlite3_found_count = 0;
67498 #endif
67499 
67500 /*
67501 ** Test a register to see if it exceeds the current maximum blob size.
67502 ** If it does, record the new maximum blob size.
67503 */
67504 #if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST)
67505 # define UPDATE_MAX_BLOBSIZE(P)  updateMaxBlobsize(P)
67506 #else
67507 # define UPDATE_MAX_BLOBSIZE(P)
67508 #endif
67509 
67510 /*
67511 ** Invoke the VDBE coverage callback, if that callback is defined.  This
67512 ** feature is used for test suite validation only and does not appear an
67513 ** production builds.
67514 **
67515 ** M is an integer, 2 or 3, that indices how many different ways the
67516 ** branch can go.  It is usually 2.  "I" is the direction the branch
67517 ** goes.  0 means falls through.  1 means branch is taken.  2 means the
67518 ** second alternative branch is taken.
67519 */
67520 #if !defined(SQLITE_VDBE_COVERAGE)
67521 # define VdbeBranchTaken(I,M)
67522 #else
67523 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
67524   static void vdbeTakeBranch(int iSrcLine, u8 I, u8 M){
67525     if( iSrcLine<=2 && ALWAYS(iSrcLine>0) ){
67526       M = iSrcLine;
67527       /* Assert the truth of VdbeCoverageAlwaysTaken() and
67528       ** VdbeCoverageNeverTaken() */
67529       assert( (M & I)==I );
67530     }else{
67531       if( sqlite3GlobalConfig.xVdbeBranch==0 ) return;  /*NO_TEST*/
67532       sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg,
67533                                       iSrcLine,I,M);
67534     }
67535   }
67536 #endif
67537 
67538 /*
67539 ** Convert the given register into a string if it isn't one
67540 ** already. Return non-zero if a malloc() fails.
67541 */
67542 #define Stringify(P, enc) \
67543    if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \
67544      { goto no_mem; }
67545 
67546 /*
67547 ** An ephemeral string value (signified by the MEM_Ephem flag) contains
67548 ** a pointer to a dynamically allocated string where some other entity
67549 ** is responsible for deallocating that string.  Because the register
67550 ** does not control the string, it might be deleted without the register
67551 ** knowing it.
67552 **
67553 ** This routine converts an ephemeral string into a dynamically allocated
67554 ** string that the register itself controls.  In other words, it
67555 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
67556 */
67557 #define Deephemeralize(P) \
67558    if( ((P)->flags&MEM_Ephem)!=0 \
67559        && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
67560 
67561 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */
67562 #define isSorter(x) ((x)->pSorter!=0)
67563 
67564 /*
67565 ** Allocate VdbeCursor number iCur.  Return a pointer to it.  Return NULL
67566 ** if we run out of memory.
67567 */
67568 static VdbeCursor *allocateCursor(
67569   Vdbe *p,              /* The virtual machine */
67570   int iCur,             /* Index of the new VdbeCursor */
67571   int nField,           /* Number of fields in the table or index */
67572   int iDb,              /* Database the cursor belongs to, or -1 */
67573   int isBtreeCursor     /* True for B-Tree.  False for pseudo-table or vtab */
67574 ){
67575   /* Find the memory cell that will be used to store the blob of memory
67576   ** required for this VdbeCursor structure. It is convenient to use a
67577   ** vdbe memory cell to manage the memory allocation required for a
67578   ** VdbeCursor structure for the following reasons:
67579   **
67580   **   * Sometimes cursor numbers are used for a couple of different
67581   **     purposes in a vdbe program. The different uses might require
67582   **     different sized allocations. Memory cells provide growable
67583   **     allocations.
67584   **
67585   **   * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
67586   **     be freed lazily via the sqlite3_release_memory() API. This
67587   **     minimizes the number of malloc calls made by the system.
67588   **
67589   ** Memory cells for cursors are allocated at the top of the address
67590   ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for
67591   ** cursor 1 is managed by memory cell (p->nMem-1), etc.
67592   */
67593   Mem *pMem = &p->aMem[p->nMem-iCur];
67594 
67595   int nByte;
67596   VdbeCursor *pCx = 0;
67597   nByte =
67598       ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField +
67599       (isBtreeCursor?sqlite3BtreeCursorSize():0);
67600 
67601   assert( iCur<p->nCursor );
67602   if( p->apCsr[iCur] ){
67603     sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
67604     p->apCsr[iCur] = 0;
67605   }
67606   if( SQLITE_OK==sqlite3VdbeMemGrow(pMem, nByte, 0) ){
67607     p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
67608     memset(pCx, 0, sizeof(VdbeCursor));
67609     pCx->iDb = iDb;
67610     pCx->nField = nField;
67611     if( isBtreeCursor ){
67612       pCx->pCursor = (BtCursor*)
67613           &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
67614       sqlite3BtreeCursorZero(pCx->pCursor);
67615     }
67616   }
67617   return pCx;
67618 }
67619 
67620 /*
67621 ** Try to convert a value into a numeric representation if we can
67622 ** do so without loss of information.  In other words, if the string
67623 ** looks like a number, convert it into a number.  If it does not
67624 ** look like a number, leave it alone.
67625 */
67626 static void applyNumericAffinity(Mem *pRec){
67627   if( (pRec->flags & (MEM_Real|MEM_Int))==0 ){
67628     double rValue;
67629     i64 iValue;
67630     u8 enc = pRec->enc;
67631     if( (pRec->flags&MEM_Str)==0 ) return;
67632     if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return;
67633     if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){
67634       pRec->u.i = iValue;
67635       pRec->flags |= MEM_Int;
67636     }else{
67637       pRec->r = rValue;
67638       pRec->flags |= MEM_Real;
67639     }
67640   }
67641 }
67642 
67643 /*
67644 ** Processing is determine by the affinity parameter:
67645 **
67646 ** SQLITE_AFF_INTEGER:
67647 ** SQLITE_AFF_REAL:
67648 ** SQLITE_AFF_NUMERIC:
67649 **    Try to convert pRec to an integer representation or a
67650 **    floating-point representation if an integer representation
67651 **    is not possible.  Note that the integer representation is
67652 **    always preferred, even if the affinity is REAL, because
67653 **    an integer representation is more space efficient on disk.
67654 **
67655 ** SQLITE_AFF_TEXT:
67656 **    Convert pRec to a text representation.
67657 **
67658 ** SQLITE_AFF_NONE:
67659 **    No-op.  pRec is unchanged.
67660 */
67661 static void applyAffinity(
67662   Mem *pRec,          /* The value to apply affinity to */
67663   char affinity,      /* The affinity to be applied */
67664   u8 enc              /* Use this text encoding */
67665 ){
67666   if( affinity==SQLITE_AFF_TEXT ){
67667     /* Only attempt the conversion to TEXT if there is an integer or real
67668     ** representation (blob and NULL do not get converted) but no string
67669     ** representation.
67670     */
67671     if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
67672       sqlite3VdbeMemStringify(pRec, enc);
67673     }
67674     pRec->flags &= ~(MEM_Real|MEM_Int);
67675   }else if( affinity!=SQLITE_AFF_NONE ){
67676     assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
67677              || affinity==SQLITE_AFF_NUMERIC );
67678     applyNumericAffinity(pRec);
67679     if( pRec->flags & MEM_Real ){
67680       sqlite3VdbeIntegerAffinity(pRec);
67681     }
67682   }
67683 }
67684 
67685 /*
67686 ** Try to convert the type of a function argument or a result column
67687 ** into a numeric representation.  Use either INTEGER or REAL whichever
67688 ** is appropriate.  But only do the conversion if it is possible without
67689 ** loss of information and return the revised type of the argument.
67690 */
67691 SQLITE_API int sqlite3_value_numeric_type(sqlite3_value *pVal){
67692   int eType = sqlite3_value_type(pVal);
67693   if( eType==SQLITE_TEXT ){
67694     Mem *pMem = (Mem*)pVal;
67695     applyNumericAffinity(pMem);
67696     eType = sqlite3_value_type(pVal);
67697   }
67698   return eType;
67699 }
67700 
67701 /*
67702 ** Exported version of applyAffinity(). This one works on sqlite3_value*,
67703 ** not the internal Mem* type.
67704 */
67705 SQLITE_PRIVATE void sqlite3ValueApplyAffinity(
67706   sqlite3_value *pVal,
67707   u8 affinity,
67708   u8 enc
67709 ){
67710   applyAffinity((Mem *)pVal, affinity, enc);
67711 }
67712 
67713 /*
67714 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
67715 ** none.
67716 **
67717 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
67718 ** But it does set pMem->r and pMem->u.i appropriately.
67719 */
67720 static u16 numericType(Mem *pMem){
67721   if( pMem->flags & (MEM_Int|MEM_Real) ){
67722     return pMem->flags & (MEM_Int|MEM_Real);
67723   }
67724   if( pMem->flags & (MEM_Str|MEM_Blob) ){
67725     if( sqlite3AtoF(pMem->z, &pMem->r, pMem->n, pMem->enc)==0 ){
67726       return 0;
67727     }
67728     if( sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc)==SQLITE_OK ){
67729       return MEM_Int;
67730     }
67731     return MEM_Real;
67732   }
67733   return 0;
67734 }
67735 
67736 #ifdef SQLITE_DEBUG
67737 /*
67738 ** Write a nice string representation of the contents of cell pMem
67739 ** into buffer zBuf, length nBuf.
67740 */
67741 SQLITE_PRIVATE void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
67742   char *zCsr = zBuf;
67743   int f = pMem->flags;
67744 
67745   static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
67746 
67747   if( f&MEM_Blob ){
67748     int i;
67749     char c;
67750     if( f & MEM_Dyn ){
67751       c = 'z';
67752       assert( (f & (MEM_Static|MEM_Ephem))==0 );
67753     }else if( f & MEM_Static ){
67754       c = 't';
67755       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
67756     }else if( f & MEM_Ephem ){
67757       c = 'e';
67758       assert( (f & (MEM_Static|MEM_Dyn))==0 );
67759     }else{
67760       c = 's';
67761     }
67762 
67763     sqlite3_snprintf(100, zCsr, "%c", c);
67764     zCsr += sqlite3Strlen30(zCsr);
67765     sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
67766     zCsr += sqlite3Strlen30(zCsr);
67767     for(i=0; i<16 && i<pMem->n; i++){
67768       sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
67769       zCsr += sqlite3Strlen30(zCsr);
67770     }
67771     for(i=0; i<16 && i<pMem->n; i++){
67772       char z = pMem->z[i];
67773       if( z<32 || z>126 ) *zCsr++ = '.';
67774       else *zCsr++ = z;
67775     }
67776 
67777     sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
67778     zCsr += sqlite3Strlen30(zCsr);
67779     if( f & MEM_Zero ){
67780       sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero);
67781       zCsr += sqlite3Strlen30(zCsr);
67782     }
67783     *zCsr = '\0';
67784   }else if( f & MEM_Str ){
67785     int j, k;
67786     zBuf[0] = ' ';
67787     if( f & MEM_Dyn ){
67788       zBuf[1] = 'z';
67789       assert( (f & (MEM_Static|MEM_Ephem))==0 );
67790     }else if( f & MEM_Static ){
67791       zBuf[1] = 't';
67792       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
67793     }else if( f & MEM_Ephem ){
67794       zBuf[1] = 'e';
67795       assert( (f & (MEM_Static|MEM_Dyn))==0 );
67796     }else{
67797       zBuf[1] = 's';
67798     }
67799     k = 2;
67800     sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
67801     k += sqlite3Strlen30(&zBuf[k]);
67802     zBuf[k++] = '[';
67803     for(j=0; j<15 && j<pMem->n; j++){
67804       u8 c = pMem->z[j];
67805       if( c>=0x20 && c<0x7f ){
67806         zBuf[k++] = c;
67807       }else{
67808         zBuf[k++] = '.';
67809       }
67810     }
67811     zBuf[k++] = ']';
67812     sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
67813     k += sqlite3Strlen30(&zBuf[k]);
67814     zBuf[k++] = 0;
67815   }
67816 }
67817 #endif
67818 
67819 #ifdef SQLITE_DEBUG
67820 /*
67821 ** Print the value of a register for tracing purposes:
67822 */
67823 static void memTracePrint(Mem *p){
67824   if( p->flags & MEM_Undefined ){
67825     printf(" undefined");
67826   }else if( p->flags & MEM_Null ){
67827     printf(" NULL");
67828   }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
67829     printf(" si:%lld", p->u.i);
67830   }else if( p->flags & MEM_Int ){
67831     printf(" i:%lld", p->u.i);
67832 #ifndef SQLITE_OMIT_FLOATING_POINT
67833   }else if( p->flags & MEM_Real ){
67834     printf(" r:%g", p->r);
67835 #endif
67836   }else if( p->flags & MEM_RowSet ){
67837     printf(" (rowset)");
67838   }else{
67839     char zBuf[200];
67840     sqlite3VdbeMemPrettyPrint(p, zBuf);
67841     printf(" %s", zBuf);
67842   }
67843 }
67844 static void registerTrace(int iReg, Mem *p){
67845   printf("REG[%d] = ", iReg);
67846   memTracePrint(p);
67847   printf("\n");
67848 }
67849 #endif
67850 
67851 #ifdef SQLITE_DEBUG
67852 #  define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
67853 #else
67854 #  define REGISTER_TRACE(R,M)
67855 #endif
67856 
67857 
67858 #ifdef VDBE_PROFILE
67859 
67860 /*
67861 ** hwtime.h contains inline assembler code for implementing
67862 ** high-performance timing routines.
67863 */
67864 /************** Include hwtime.h in the middle of vdbe.c *********************/
67865 /************** Begin file hwtime.h ******************************************/
67866 /*
67867 ** 2008 May 27
67868 **
67869 ** The author disclaims copyright to this source code.  In place of
67870 ** a legal notice, here is a blessing:
67871 **
67872 **    May you do good and not evil.
67873 **    May you find forgiveness for yourself and forgive others.
67874 **    May you share freely, never taking more than you give.
67875 **
67876 ******************************************************************************
67877 **
67878 ** This file contains inline asm code for retrieving "high-performance"
67879 ** counters for x86 class CPUs.
67880 */
67881 #ifndef _HWTIME_H_
67882 #define _HWTIME_H_
67883 
67884 /*
67885 ** The following routine only works on pentium-class (or newer) processors.
67886 ** It uses the RDTSC opcode to read the cycle count value out of the
67887 ** processor and returns that value.  This can be used for high-res
67888 ** profiling.
67889 */
67890 #if (defined(__GNUC__) || defined(_MSC_VER)) && \
67891       (defined(i386) || defined(__i386__) || defined(_M_IX86))
67892 
67893   #if defined(__GNUC__)
67894 
67895   __inline__ sqlite_uint64 sqlite3Hwtime(void){
67896      unsigned int lo, hi;
67897      __asm__ __volatile__ ("rdtsc" : "=a" (lo), "=d" (hi));
67898      return (sqlite_uint64)hi << 32 | lo;
67899   }
67900 
67901   #elif defined(_MSC_VER)
67902 
67903   __declspec(naked) __inline sqlite_uint64 __cdecl sqlite3Hwtime(void){
67904      __asm {
67905         rdtsc
67906         ret       ; return value at EDX:EAX
67907      }
67908   }
67909 
67910   #endif
67911 
67912 #elif (defined(__GNUC__) && defined(__x86_64__))
67913 
67914   __inline__ sqlite_uint64 sqlite3Hwtime(void){
67915       unsigned long val;
67916       __asm__ __volatile__ ("rdtsc" : "=A" (val));
67917       return val;
67918   }
67919 
67920 #elif (defined(__GNUC__) && defined(__ppc__))
67921 
67922   __inline__ sqlite_uint64 sqlite3Hwtime(void){
67923       unsigned long long retval;
67924       unsigned long junk;
67925       __asm__ __volatile__ ("\n\
67926           1:      mftbu   %1\n\
67927                   mftb    %L0\n\
67928                   mftbu   %0\n\
67929                   cmpw    %0,%1\n\
67930                   bne     1b"
67931                   : "=r" (retval), "=r" (junk));
67932       return retval;
67933   }
67934 
67935 #else
67936 
67937   #error Need implementation of sqlite3Hwtime() for your platform.
67938 
67939   /*
67940   ** To compile without implementing sqlite3Hwtime() for your platform,
67941   ** you can remove the above #error and use the following
67942   ** stub function.  You will lose timing support for many
67943   ** of the debugging and testing utilities, but it should at
67944   ** least compile and run.
67945   */
67946 SQLITE_PRIVATE   sqlite_uint64 sqlite3Hwtime(void){ return ((sqlite_uint64)0); }
67947 
67948 #endif
67949 
67950 #endif /* !defined(_HWTIME_H_) */
67951 
67952 /************** End of hwtime.h **********************************************/
67953 /************** Continuing where we left off in vdbe.c ***********************/
67954 
67955 #endif
67956 
67957 #ifndef NDEBUG
67958 /*
67959 ** This function is only called from within an assert() expression. It
67960 ** checks that the sqlite3.nTransaction variable is correctly set to
67961 ** the number of non-transaction savepoints currently in the
67962 ** linked list starting at sqlite3.pSavepoint.
67963 **
67964 ** Usage:
67965 **
67966 **     assert( checkSavepointCount(db) );
67967 */
67968 static int checkSavepointCount(sqlite3 *db){
67969   int n = 0;
67970   Savepoint *p;
67971   for(p=db->pSavepoint; p; p=p->pNext) n++;
67972   assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
67973   return 1;
67974 }
67975 #endif
67976 
67977 
67978 /*
67979 ** Execute as much of a VDBE program as we can.
67980 ** This is the core of sqlite3_step().
67981 */
67982 SQLITE_PRIVATE int sqlite3VdbeExec(
67983   Vdbe *p                    /* The VDBE */
67984 ){
67985   int pc=0;                  /* The program counter */
67986   Op *aOp = p->aOp;          /* Copy of p->aOp */
67987   Op *pOp;                   /* Current operation */
67988   int rc = SQLITE_OK;        /* Value to return */
67989   sqlite3 *db = p->db;       /* The database */
67990   u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
67991   u8 encoding = ENC(db);     /* The database encoding */
67992   int iCompare = 0;          /* Result of last OP_Compare operation */
67993   unsigned nVmStep = 0;      /* Number of virtual machine steps */
67994 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
67995   unsigned nProgressLimit = 0;/* Invoke xProgress() when nVmStep reaches this */
67996 #endif
67997   Mem *aMem = p->aMem;       /* Copy of p->aMem */
67998   Mem *pIn1 = 0;             /* 1st input operand */
67999   Mem *pIn2 = 0;             /* 2nd input operand */
68000   Mem *pIn3 = 0;             /* 3rd input operand */
68001   Mem *pOut = 0;             /* Output operand */
68002   int *aPermute = 0;         /* Permutation of columns for OP_Compare */
68003   i64 lastRowid = db->lastRowid;  /* Saved value of the last insert ROWID */
68004 #ifdef VDBE_PROFILE
68005   u64 start;                 /* CPU clock count at start of opcode */
68006 #endif
68007   /*** INSERT STACK UNION HERE ***/
68008 
68009   assert( p->magic==VDBE_MAGIC_RUN );  /* sqlite3_step() verifies this */
68010   sqlite3VdbeEnter(p);
68011   if( p->rc==SQLITE_NOMEM ){
68012     /* This happens if a malloc() inside a call to sqlite3_column_text() or
68013     ** sqlite3_column_text16() failed.  */
68014     goto no_mem;
68015   }
68016   assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
68017   assert( p->bIsReader || p->readOnly!=0 );
68018   p->rc = SQLITE_OK;
68019   p->iCurrentTime = 0;
68020   assert( p->explain==0 );
68021   p->pResultSet = 0;
68022   db->busyHandler.nBusy = 0;
68023   if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
68024   sqlite3VdbeIOTraceSql(p);
68025 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
68026   if( db->xProgress ){
68027     assert( 0 < db->nProgressOps );
68028     nProgressLimit = (unsigned)p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
68029     if( nProgressLimit==0 ){
68030       nProgressLimit = db->nProgressOps;
68031     }else{
68032       nProgressLimit %= (unsigned)db->nProgressOps;
68033     }
68034   }
68035 #endif
68036 #ifdef SQLITE_DEBUG
68037   sqlite3BeginBenignMalloc();
68038   if( p->pc==0
68039    && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
68040   ){
68041     int i;
68042     int once = 1;
68043     sqlite3VdbePrintSql(p);
68044     if( p->db->flags & SQLITE_VdbeListing ){
68045       printf("VDBE Program Listing:\n");
68046       for(i=0; i<p->nOp; i++){
68047         sqlite3VdbePrintOp(stdout, i, &aOp[i]);
68048       }
68049     }
68050     if( p->db->flags & SQLITE_VdbeEQP ){
68051       for(i=0; i<p->nOp; i++){
68052         if( aOp[i].opcode==OP_Explain ){
68053           if( once ) printf("VDBE Query Plan:\n");
68054           printf("%s\n", aOp[i].p4.z);
68055           once = 0;
68056         }
68057       }
68058     }
68059     if( p->db->flags & SQLITE_VdbeTrace )  printf("VDBE Trace:\n");
68060   }
68061   sqlite3EndBenignMalloc();
68062 #endif
68063   for(pc=p->pc; rc==SQLITE_OK; pc++){
68064     assert( pc>=0 && pc<p->nOp );
68065     if( db->mallocFailed ) goto no_mem;
68066 #ifdef VDBE_PROFILE
68067     start = sqlite3Hwtime();
68068 #endif
68069     nVmStep++;
68070     pOp = &aOp[pc];
68071 
68072     /* Only allow tracing if SQLITE_DEBUG is defined.
68073     */
68074 #ifdef SQLITE_DEBUG
68075     if( db->flags & SQLITE_VdbeTrace ){
68076       sqlite3VdbePrintOp(stdout, pc, pOp);
68077     }
68078 #endif
68079 
68080 
68081     /* Check to see if we need to simulate an interrupt.  This only happens
68082     ** if we have a special test build.
68083     */
68084 #ifdef SQLITE_TEST
68085     if( sqlite3_interrupt_count>0 ){
68086       sqlite3_interrupt_count--;
68087       if( sqlite3_interrupt_count==0 ){
68088         sqlite3_interrupt(db);
68089       }
68090     }
68091 #endif
68092 
68093     /* On any opcode with the "out2-prerelease" tag, free any
68094     ** external allocations out of mem[p2] and set mem[p2] to be
68095     ** an undefined integer.  Opcodes will either fill in the integer
68096     ** value or convert mem[p2] to a different type.
68097     */
68098     assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
68099     if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){
68100       assert( pOp->p2>0 );
68101       assert( pOp->p2<=(p->nMem-p->nCursor) );
68102       pOut = &aMem[pOp->p2];
68103       memAboutToChange(p, pOut);
68104       VdbeMemRelease(pOut);
68105       pOut->flags = MEM_Int;
68106     }
68107 
68108     /* Sanity checking on other operands */
68109 #ifdef SQLITE_DEBUG
68110     if( (pOp->opflags & OPFLG_IN1)!=0 ){
68111       assert( pOp->p1>0 );
68112       assert( pOp->p1<=(p->nMem-p->nCursor) );
68113       assert( memIsValid(&aMem[pOp->p1]) );
68114       assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
68115       REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
68116     }
68117     if( (pOp->opflags & OPFLG_IN2)!=0 ){
68118       assert( pOp->p2>0 );
68119       assert( pOp->p2<=(p->nMem-p->nCursor) );
68120       assert( memIsValid(&aMem[pOp->p2]) );
68121       assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) );
68122       REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
68123     }
68124     if( (pOp->opflags & OPFLG_IN3)!=0 ){
68125       assert( pOp->p3>0 );
68126       assert( pOp->p3<=(p->nMem-p->nCursor) );
68127       assert( memIsValid(&aMem[pOp->p3]) );
68128       assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) );
68129       REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
68130     }
68131     if( (pOp->opflags & OPFLG_OUT2)!=0 ){
68132       assert( pOp->p2>0 );
68133       assert( pOp->p2<=(p->nMem-p->nCursor) );
68134       memAboutToChange(p, &aMem[pOp->p2]);
68135     }
68136     if( (pOp->opflags & OPFLG_OUT3)!=0 ){
68137       assert( pOp->p3>0 );
68138       assert( pOp->p3<=(p->nMem-p->nCursor) );
68139       memAboutToChange(p, &aMem[pOp->p3]);
68140     }
68141 #endif
68142 
68143     switch( pOp->opcode ){
68144 
68145 /*****************************************************************************
68146 ** What follows is a massive switch statement where each case implements a
68147 ** separate instruction in the virtual machine.  If we follow the usual
68148 ** indentation conventions, each case should be indented by 6 spaces.  But
68149 ** that is a lot of wasted space on the left margin.  So the code within
68150 ** the switch statement will break with convention and be flush-left. Another
68151 ** big comment (similar to this one) will mark the point in the code where
68152 ** we transition back to normal indentation.
68153 **
68154 ** The formatting of each case is important.  The makefile for SQLite
68155 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
68156 ** file looking for lines that begin with "case OP_".  The opcodes.h files
68157 ** will be filled with #defines that give unique integer values to each
68158 ** opcode and the opcodes.c file is filled with an array of strings where
68159 ** each string is the symbolic name for the corresponding opcode.  If the
68160 ** case statement is followed by a comment of the form "/# same as ... #/"
68161 ** that comment is used to determine the particular value of the opcode.
68162 **
68163 ** Other keywords in the comment that follows each case are used to
68164 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
68165 ** Keywords include: in1, in2, in3, out2_prerelease, out2, out3.  See
68166 ** the mkopcodeh.awk script for additional information.
68167 **
68168 ** Documentation about VDBE opcodes is generated by scanning this file
68169 ** for lines of that contain "Opcode:".  That line and all subsequent
68170 ** comment lines are used in the generation of the opcode.html documentation
68171 ** file.
68172 **
68173 ** SUMMARY:
68174 **
68175 **     Formatting is important to scripts that scan this file.
68176 **     Do not deviate from the formatting style currently in use.
68177 **
68178 *****************************************************************************/
68179 
68180 /* Opcode:  Goto * P2 * * *
68181 **
68182 ** An unconditional jump to address P2.
68183 ** The next instruction executed will be
68184 ** the one at index P2 from the beginning of
68185 ** the program.
68186 **
68187 ** The P1 parameter is not actually used by this opcode.  However, it
68188 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell
68189 ** that this Goto is the bottom of a loop and that the lines from P2 down
68190 ** to the current line should be indented for EXPLAIN output.
68191 */
68192 case OP_Goto: {             /* jump */
68193   pc = pOp->p2 - 1;
68194 
68195   /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
68196   ** OP_VNext, OP_RowSetNext, or OP_SorterNext) all jump here upon
68197   ** completion.  Check to see if sqlite3_interrupt() has been called
68198   ** or if the progress callback needs to be invoked.
68199   **
68200   ** This code uses unstructured "goto" statements and does not look clean.
68201   ** But that is not due to sloppy coding habits. The code is written this
68202   ** way for performance, to avoid having to run the interrupt and progress
68203   ** checks on every opcode.  This helps sqlite3_step() to run about 1.5%
68204   ** faster according to "valgrind --tool=cachegrind" */
68205 check_for_interrupt:
68206   if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
68207 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
68208   /* Call the progress callback if it is configured and the required number
68209   ** of VDBE ops have been executed (either since this invocation of
68210   ** sqlite3VdbeExec() or since last time the progress callback was called).
68211   ** If the progress callback returns non-zero, exit the virtual machine with
68212   ** a return code SQLITE_ABORT.
68213   */
68214   if( db->xProgress!=0 && nVmStep>=nProgressLimit ){
68215     assert( db->nProgressOps!=0 );
68216     nProgressLimit = nVmStep + db->nProgressOps - (nVmStep%db->nProgressOps);
68217     if( db->xProgress(db->pProgressArg) ){
68218       rc = SQLITE_INTERRUPT;
68219       goto vdbe_error_halt;
68220     }
68221   }
68222 #endif
68223 
68224   break;
68225 }
68226 
68227 /* Opcode:  Gosub P1 P2 * * *
68228 **
68229 ** Write the current address onto register P1
68230 ** and then jump to address P2.
68231 */
68232 case OP_Gosub: {            /* jump */
68233   assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
68234   pIn1 = &aMem[pOp->p1];
68235   assert( VdbeMemDynamic(pIn1)==0 );
68236   memAboutToChange(p, pIn1);
68237   pIn1->flags = MEM_Int;
68238   pIn1->u.i = pc;
68239   REGISTER_TRACE(pOp->p1, pIn1);
68240   pc = pOp->p2 - 1;
68241   break;
68242 }
68243 
68244 /* Opcode:  Return P1 * * * *
68245 **
68246 ** Jump to the next instruction after the address in register P1.  After
68247 ** the jump, register P1 becomes undefined.
68248 */
68249 case OP_Return: {           /* in1 */
68250   pIn1 = &aMem[pOp->p1];
68251   assert( pIn1->flags==MEM_Int );
68252   pc = (int)pIn1->u.i;
68253   pIn1->flags = MEM_Undefined;
68254   break;
68255 }
68256 
68257 /* Opcode: InitCoroutine P1 P2 P3 * *
68258 **
68259 ** Set up register P1 so that it will OP_Yield to the co-routine
68260 ** located at address P3.
68261 **
68262 ** If P2!=0 then the co-routine implementation immediately follows
68263 ** this opcode.  So jump over the co-routine implementation to
68264 ** address P2.
68265 */
68266 case OP_InitCoroutine: {     /* jump */
68267   assert( pOp->p1>0 &&  pOp->p1<=(p->nMem-p->nCursor) );
68268   assert( pOp->p2>=0 && pOp->p2<p->nOp );
68269   assert( pOp->p3>=0 && pOp->p3<p->nOp );
68270   pOut = &aMem[pOp->p1];
68271   assert( !VdbeMemDynamic(pOut) );
68272   pOut->u.i = pOp->p3 - 1;
68273   pOut->flags = MEM_Int;
68274   if( pOp->p2 ) pc = pOp->p2 - 1;
68275   break;
68276 }
68277 
68278 /* Opcode:  EndCoroutine P1 * * * *
68279 **
68280 ** The instruction at the address in register P1 is an OP_Yield.
68281 ** Jump to the P2 parameter of that OP_Yield.
68282 ** After the jump, register P1 becomes undefined.
68283 */
68284 case OP_EndCoroutine: {           /* in1 */
68285   VdbeOp *pCaller;
68286   pIn1 = &aMem[pOp->p1];
68287   assert( pIn1->flags==MEM_Int );
68288   assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
68289   pCaller = &aOp[pIn1->u.i];
68290   assert( pCaller->opcode==OP_Yield );
68291   assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
68292   pc = pCaller->p2 - 1;
68293   pIn1->flags = MEM_Undefined;
68294   break;
68295 }
68296 
68297 /* Opcode:  Yield P1 P2 * * *
68298 **
68299 ** Swap the program counter with the value in register P1.
68300 **
68301 ** If the co-routine ends with OP_Yield or OP_Return then continue
68302 ** to the next instruction.  But if the co-routine ends with
68303 ** OP_EndCoroutine, jump immediately to P2.
68304 */
68305 case OP_Yield: {            /* in1, jump */
68306   int pcDest;
68307   pIn1 = &aMem[pOp->p1];
68308   assert( VdbeMemDynamic(pIn1)==0 );
68309   pIn1->flags = MEM_Int;
68310   pcDest = (int)pIn1->u.i;
68311   pIn1->u.i = pc;
68312   REGISTER_TRACE(pOp->p1, pIn1);
68313   pc = pcDest;
68314   break;
68315 }
68316 
68317 /* Opcode:  HaltIfNull  P1 P2 P3 P4 P5
68318 ** Synopsis:  if r[P3]=null halt
68319 **
68320 ** Check the value in register P3.  If it is NULL then Halt using
68321 ** parameter P1, P2, and P4 as if this were a Halt instruction.  If the
68322 ** value in register P3 is not NULL, then this routine is a no-op.
68323 ** The P5 parameter should be 1.
68324 */
68325 case OP_HaltIfNull: {      /* in3 */
68326   pIn3 = &aMem[pOp->p3];
68327   if( (pIn3->flags & MEM_Null)==0 ) break;
68328   /* Fall through into OP_Halt */
68329 }
68330 
68331 /* Opcode:  Halt P1 P2 * P4 P5
68332 **
68333 ** Exit immediately.  All open cursors, etc are closed
68334 ** automatically.
68335 **
68336 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
68337 ** or sqlite3_finalize().  For a normal halt, this should be SQLITE_OK (0).
68338 ** For errors, it can be some other value.  If P1!=0 then P2 will determine
68339 ** whether or not to rollback the current transaction.  Do not rollback
68340 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback.  If P2==OE_Abort,
68341 ** then back out all changes that have occurred during this execution of the
68342 ** VDBE, but do not rollback the transaction.
68343 **
68344 ** If P4 is not null then it is an error message string.
68345 **
68346 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
68347 **
68348 **    0:  (no change)
68349 **    1:  NOT NULL contraint failed: P4
68350 **    2:  UNIQUE constraint failed: P4
68351 **    3:  CHECK constraint failed: P4
68352 **    4:  FOREIGN KEY constraint failed: P4
68353 **
68354 ** If P5 is not zero and P4 is NULL, then everything after the ":" is
68355 ** omitted.
68356 **
68357 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
68358 ** every program.  So a jump past the last instruction of the program
68359 ** is the same as executing Halt.
68360 */
68361 case OP_Halt: {
68362   const char *zType;
68363   const char *zLogFmt;
68364 
68365   if( pOp->p1==SQLITE_OK && p->pFrame ){
68366     /* Halt the sub-program. Return control to the parent frame. */
68367     VdbeFrame *pFrame = p->pFrame;
68368     p->pFrame = pFrame->pParent;
68369     p->nFrame--;
68370     sqlite3VdbeSetChanges(db, p->nChange);
68371     pc = sqlite3VdbeFrameRestore(pFrame);
68372     lastRowid = db->lastRowid;
68373     if( pOp->p2==OE_Ignore ){
68374       /* Instruction pc is the OP_Program that invoked the sub-program
68375       ** currently being halted. If the p2 instruction of this OP_Halt
68376       ** instruction is set to OE_Ignore, then the sub-program is throwing
68377       ** an IGNORE exception. In this case jump to the address specified
68378       ** as the p2 of the calling OP_Program.  */
68379       pc = p->aOp[pc].p2-1;
68380     }
68381     aOp = p->aOp;
68382     aMem = p->aMem;
68383     break;
68384   }
68385   p->rc = pOp->p1;
68386   p->errorAction = (u8)pOp->p2;
68387   p->pc = pc;
68388   if( p->rc ){
68389     if( pOp->p5 ){
68390       static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
68391                                              "FOREIGN KEY" };
68392       assert( pOp->p5>=1 && pOp->p5<=4 );
68393       testcase( pOp->p5==1 );
68394       testcase( pOp->p5==2 );
68395       testcase( pOp->p5==3 );
68396       testcase( pOp->p5==4 );
68397       zType = azType[pOp->p5-1];
68398     }else{
68399       zType = 0;
68400     }
68401     assert( zType!=0 || pOp->p4.z!=0 );
68402     zLogFmt = "abort at %d in [%s]: %s";
68403     if( zType && pOp->p4.z ){
68404       sqlite3SetString(&p->zErrMsg, db, "%s constraint failed: %s",
68405                        zType, pOp->p4.z);
68406     }else if( pOp->p4.z ){
68407       sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z);
68408     }else{
68409       sqlite3SetString(&p->zErrMsg, db, "%s constraint failed", zType);
68410     }
68411     sqlite3_log(pOp->p1, zLogFmt, pc, p->zSql, p->zErrMsg);
68412   }
68413   rc = sqlite3VdbeHalt(p);
68414   assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
68415   if( rc==SQLITE_BUSY ){
68416     p->rc = rc = SQLITE_BUSY;
68417   }else{
68418     assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
68419     assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
68420     rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
68421   }
68422   goto vdbe_return;
68423 }
68424 
68425 /* Opcode: Integer P1 P2 * * *
68426 ** Synopsis: r[P2]=P1
68427 **
68428 ** The 32-bit integer value P1 is written into register P2.
68429 */
68430 case OP_Integer: {         /* out2-prerelease */
68431   pOut->u.i = pOp->p1;
68432   break;
68433 }
68434 
68435 /* Opcode: Int64 * P2 * P4 *
68436 ** Synopsis: r[P2]=P4
68437 **
68438 ** P4 is a pointer to a 64-bit integer value.
68439 ** Write that value into register P2.
68440 */
68441 case OP_Int64: {           /* out2-prerelease */
68442   assert( pOp->p4.pI64!=0 );
68443   pOut->u.i = *pOp->p4.pI64;
68444   break;
68445 }
68446 
68447 #ifndef SQLITE_OMIT_FLOATING_POINT
68448 /* Opcode: Real * P2 * P4 *
68449 ** Synopsis: r[P2]=P4
68450 **
68451 ** P4 is a pointer to a 64-bit floating point value.
68452 ** Write that value into register P2.
68453 */
68454 case OP_Real: {            /* same as TK_FLOAT, out2-prerelease */
68455   pOut->flags = MEM_Real;
68456   assert( !sqlite3IsNaN(*pOp->p4.pReal) );
68457   pOut->r = *pOp->p4.pReal;
68458   break;
68459 }
68460 #endif
68461 
68462 /* Opcode: String8 * P2 * P4 *
68463 ** Synopsis: r[P2]='P4'
68464 **
68465 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed
68466 ** into an OP_String before it is executed for the first time.  During
68467 ** this transformation, the length of string P4 is computed and stored
68468 ** as the P1 parameter.
68469 */
68470 case OP_String8: {         /* same as TK_STRING, out2-prerelease */
68471   assert( pOp->p4.z!=0 );
68472   pOp->opcode = OP_String;
68473   pOp->p1 = sqlite3Strlen30(pOp->p4.z);
68474 
68475 #ifndef SQLITE_OMIT_UTF16
68476   if( encoding!=SQLITE_UTF8 ){
68477     rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
68478     if( rc==SQLITE_TOOBIG ) goto too_big;
68479     if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
68480     assert( pOut->zMalloc==pOut->z );
68481     assert( VdbeMemDynamic(pOut)==0 );
68482     pOut->zMalloc = 0;
68483     pOut->flags |= MEM_Static;
68484     if( pOp->p4type==P4_DYNAMIC ){
68485       sqlite3DbFree(db, pOp->p4.z);
68486     }
68487     pOp->p4type = P4_DYNAMIC;
68488     pOp->p4.z = pOut->z;
68489     pOp->p1 = pOut->n;
68490   }
68491 #endif
68492   if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
68493     goto too_big;
68494   }
68495   /* Fall through to the next case, OP_String */
68496 }
68497 
68498 /* Opcode: String P1 P2 * P4 *
68499 ** Synopsis: r[P2]='P4' (len=P1)
68500 **
68501 ** The string value P4 of length P1 (bytes) is stored in register P2.
68502 */
68503 case OP_String: {          /* out2-prerelease */
68504   assert( pOp->p4.z!=0 );
68505   pOut->flags = MEM_Str|MEM_Static|MEM_Term;
68506   pOut->z = pOp->p4.z;
68507   pOut->n = pOp->p1;
68508   pOut->enc = encoding;
68509   UPDATE_MAX_BLOBSIZE(pOut);
68510   break;
68511 }
68512 
68513 /* Opcode: Null P1 P2 P3 * *
68514 ** Synopsis:  r[P2..P3]=NULL
68515 **
68516 ** Write a NULL into registers P2.  If P3 greater than P2, then also write
68517 ** NULL into register P3 and every register in between P2 and P3.  If P3
68518 ** is less than P2 (typically P3 is zero) then only register P2 is
68519 ** set to NULL.
68520 **
68521 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
68522 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on
68523 ** OP_Ne or OP_Eq.
68524 */
68525 case OP_Null: {           /* out2-prerelease */
68526   int cnt;
68527   u16 nullFlag;
68528   cnt = pOp->p3-pOp->p2;
68529   assert( pOp->p3<=(p->nMem-p->nCursor) );
68530   pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
68531   while( cnt>0 ){
68532     pOut++;
68533     memAboutToChange(p, pOut);
68534     VdbeMemRelease(pOut);
68535     pOut->flags = nullFlag;
68536     cnt--;
68537   }
68538   break;
68539 }
68540 
68541 /* Opcode: SoftNull P1 * * * *
68542 ** Synopsis:  r[P1]=NULL
68543 **
68544 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord
68545 ** instruction, but do not free any string or blob memory associated with
68546 ** the register, so that if the value was a string or blob that was
68547 ** previously copied using OP_SCopy, the copies will continue to be valid.
68548 */
68549 case OP_SoftNull: {
68550   assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
68551   pOut = &aMem[pOp->p1];
68552   pOut->flags = (pOut->flags|MEM_Null)&~MEM_Undefined;
68553   break;
68554 }
68555 
68556 /* Opcode: Blob P1 P2 * P4 *
68557 ** Synopsis: r[P2]=P4 (len=P1)
68558 **
68559 ** P4 points to a blob of data P1 bytes long.  Store this
68560 ** blob in register P2.
68561 */
68562 case OP_Blob: {                /* out2-prerelease */
68563   assert( pOp->p1 <= SQLITE_MAX_LENGTH );
68564   sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
68565   pOut->enc = encoding;
68566   UPDATE_MAX_BLOBSIZE(pOut);
68567   break;
68568 }
68569 
68570 /* Opcode: Variable P1 P2 * P4 *
68571 ** Synopsis: r[P2]=parameter(P1,P4)
68572 **
68573 ** Transfer the values of bound parameter P1 into register P2
68574 **
68575 ** If the parameter is named, then its name appears in P4.
68576 ** The P4 value is used by sqlite3_bind_parameter_name().
68577 */
68578 case OP_Variable: {            /* out2-prerelease */
68579   Mem *pVar;       /* Value being transferred */
68580 
68581   assert( pOp->p1>0 && pOp->p1<=p->nVar );
68582   assert( pOp->p4.z==0 || pOp->p4.z==p->azVar[pOp->p1-1] );
68583   pVar = &p->aVar[pOp->p1 - 1];
68584   if( sqlite3VdbeMemTooBig(pVar) ){
68585     goto too_big;
68586   }
68587   sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
68588   UPDATE_MAX_BLOBSIZE(pOut);
68589   break;
68590 }
68591 
68592 /* Opcode: Move P1 P2 P3 * *
68593 ** Synopsis:  r[P2@P3]=r[P1@P3]
68594 **
68595 ** Move the P3 values in register P1..P1+P3-1 over into
68596 ** registers P2..P2+P3-1.  Registers P1..P1+P3-1 are
68597 ** left holding a NULL.  It is an error for register ranges
68598 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap.  It is an error
68599 ** for P3 to be less than 1.
68600 */
68601 case OP_Move: {
68602   char *zMalloc;   /* Holding variable for allocated memory */
68603   int n;           /* Number of registers left to copy */
68604   int p1;          /* Register to copy from */
68605   int p2;          /* Register to copy to */
68606 
68607   n = pOp->p3;
68608   p1 = pOp->p1;
68609   p2 = pOp->p2;
68610   assert( n>0 && p1>0 && p2>0 );
68611   assert( p1+n<=p2 || p2+n<=p1 );
68612 
68613   pIn1 = &aMem[p1];
68614   pOut = &aMem[p2];
68615   do{
68616     assert( pOut<=&aMem[(p->nMem-p->nCursor)] );
68617     assert( pIn1<=&aMem[(p->nMem-p->nCursor)] );
68618     assert( memIsValid(pIn1) );
68619     memAboutToChange(p, pOut);
68620     VdbeMemRelease(pOut);
68621     zMalloc = pOut->zMalloc;
68622     memcpy(pOut, pIn1, sizeof(Mem));
68623 #ifdef SQLITE_DEBUG
68624     if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<&aMem[p1+pOp->p3] ){
68625       pOut->pScopyFrom += p1 - pOp->p2;
68626     }
68627 #endif
68628     pIn1->flags = MEM_Undefined;
68629     pIn1->xDel = 0;
68630     pIn1->zMalloc = zMalloc;
68631     REGISTER_TRACE(p2++, pOut);
68632     pIn1++;
68633     pOut++;
68634   }while( --n );
68635   break;
68636 }
68637 
68638 /* Opcode: Copy P1 P2 P3 * *
68639 ** Synopsis: r[P2@P3+1]=r[P1@P3+1]
68640 **
68641 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
68642 **
68643 ** This instruction makes a deep copy of the value.  A duplicate
68644 ** is made of any string or blob constant.  See also OP_SCopy.
68645 */
68646 case OP_Copy: {
68647   int n;
68648 
68649   n = pOp->p3;
68650   pIn1 = &aMem[pOp->p1];
68651   pOut = &aMem[pOp->p2];
68652   assert( pOut!=pIn1 );
68653   while( 1 ){
68654     sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
68655     Deephemeralize(pOut);
68656 #ifdef SQLITE_DEBUG
68657     pOut->pScopyFrom = 0;
68658 #endif
68659     REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
68660     if( (n--)==0 ) break;
68661     pOut++;
68662     pIn1++;
68663   }
68664   break;
68665 }
68666 
68667 /* Opcode: SCopy P1 P2 * * *
68668 ** Synopsis: r[P2]=r[P1]
68669 **
68670 ** Make a shallow copy of register P1 into register P2.
68671 **
68672 ** This instruction makes a shallow copy of the value.  If the value
68673 ** is a string or blob, then the copy is only a pointer to the
68674 ** original and hence if the original changes so will the copy.
68675 ** Worse, if the original is deallocated, the copy becomes invalid.
68676 ** Thus the program must guarantee that the original will not change
68677 ** during the lifetime of the copy.  Use OP_Copy to make a complete
68678 ** copy.
68679 */
68680 case OP_SCopy: {            /* out2 */
68681   pIn1 = &aMem[pOp->p1];
68682   pOut = &aMem[pOp->p2];
68683   assert( pOut!=pIn1 );
68684   sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
68685 #ifdef SQLITE_DEBUG
68686   if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1;
68687 #endif
68688   break;
68689 }
68690 
68691 /* Opcode: ResultRow P1 P2 * * *
68692 ** Synopsis:  output=r[P1@P2]
68693 **
68694 ** The registers P1 through P1+P2-1 contain a single row of
68695 ** results. This opcode causes the sqlite3_step() call to terminate
68696 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
68697 ** structure to provide access to the r(P1)..r(P1+P2-1) values as
68698 ** the result row.
68699 */
68700 case OP_ResultRow: {
68701   Mem *pMem;
68702   int i;
68703   assert( p->nResColumn==pOp->p2 );
68704   assert( pOp->p1>0 );
68705   assert( pOp->p1+pOp->p2<=(p->nMem-p->nCursor)+1 );
68706 
68707 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
68708   /* Run the progress counter just before returning.
68709   */
68710   if( db->xProgress!=0
68711    && nVmStep>=nProgressLimit
68712    && db->xProgress(db->pProgressArg)!=0
68713   ){
68714     rc = SQLITE_INTERRUPT;
68715     goto vdbe_error_halt;
68716   }
68717 #endif
68718 
68719   /* If this statement has violated immediate foreign key constraints, do
68720   ** not return the number of rows modified. And do not RELEASE the statement
68721   ** transaction. It needs to be rolled back.  */
68722   if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
68723     assert( db->flags&SQLITE_CountRows );
68724     assert( p->usesStmtJournal );
68725     break;
68726   }
68727 
68728   /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
68729   ** DML statements invoke this opcode to return the number of rows
68730   ** modified to the user. This is the only way that a VM that
68731   ** opens a statement transaction may invoke this opcode.
68732   **
68733   ** In case this is such a statement, close any statement transaction
68734   ** opened by this VM before returning control to the user. This is to
68735   ** ensure that statement-transactions are always nested, not overlapping.
68736   ** If the open statement-transaction is not closed here, then the user
68737   ** may step another VM that opens its own statement transaction. This
68738   ** may lead to overlapping statement transactions.
68739   **
68740   ** The statement transaction is never a top-level transaction.  Hence
68741   ** the RELEASE call below can never fail.
68742   */
68743   assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
68744   rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
68745   if( NEVER(rc!=SQLITE_OK) ){
68746     break;
68747   }
68748 
68749   /* Invalidate all ephemeral cursor row caches */
68750   p->cacheCtr = (p->cacheCtr + 2)|1;
68751 
68752   /* Make sure the results of the current row are \000 terminated
68753   ** and have an assigned type.  The results are de-ephemeralized as
68754   ** a side effect.
68755   */
68756   pMem = p->pResultSet = &aMem[pOp->p1];
68757   for(i=0; i<pOp->p2; i++){
68758     assert( memIsValid(&pMem[i]) );
68759     Deephemeralize(&pMem[i]);
68760     assert( (pMem[i].flags & MEM_Ephem)==0
68761             || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
68762     sqlite3VdbeMemNulTerminate(&pMem[i]);
68763     REGISTER_TRACE(pOp->p1+i, &pMem[i]);
68764   }
68765   if( db->mallocFailed ) goto no_mem;
68766 
68767   /* Return SQLITE_ROW
68768   */
68769   p->pc = pc + 1;
68770   rc = SQLITE_ROW;
68771   goto vdbe_return;
68772 }
68773 
68774 /* Opcode: Concat P1 P2 P3 * *
68775 ** Synopsis: r[P3]=r[P2]+r[P1]
68776 **
68777 ** Add the text in register P1 onto the end of the text in
68778 ** register P2 and store the result in register P3.
68779 ** If either the P1 or P2 text are NULL then store NULL in P3.
68780 **
68781 **   P3 = P2 || P1
68782 **
68783 ** It is illegal for P1 and P3 to be the same register. Sometimes,
68784 ** if P3 is the same register as P2, the implementation is able
68785 ** to avoid a memcpy().
68786 */
68787 case OP_Concat: {           /* same as TK_CONCAT, in1, in2, out3 */
68788   i64 nByte;
68789 
68790   pIn1 = &aMem[pOp->p1];
68791   pIn2 = &aMem[pOp->p2];
68792   pOut = &aMem[pOp->p3];
68793   assert( pIn1!=pOut );
68794   if( (pIn1->flags | pIn2->flags) & MEM_Null ){
68795     sqlite3VdbeMemSetNull(pOut);
68796     break;
68797   }
68798   if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem;
68799   Stringify(pIn1, encoding);
68800   Stringify(pIn2, encoding);
68801   nByte = pIn1->n + pIn2->n;
68802   if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
68803     goto too_big;
68804   }
68805   if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
68806     goto no_mem;
68807   }
68808   MemSetTypeFlag(pOut, MEM_Str);
68809   if( pOut!=pIn2 ){
68810     memcpy(pOut->z, pIn2->z, pIn2->n);
68811   }
68812   memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
68813   pOut->z[nByte]=0;
68814   pOut->z[nByte+1] = 0;
68815   pOut->flags |= MEM_Term;
68816   pOut->n = (int)nByte;
68817   pOut->enc = encoding;
68818   UPDATE_MAX_BLOBSIZE(pOut);
68819   break;
68820 }
68821 
68822 /* Opcode: Add P1 P2 P3 * *
68823 ** Synopsis:  r[P3]=r[P1]+r[P2]
68824 **
68825 ** Add the value in register P1 to the value in register P2
68826 ** and store the result in register P3.
68827 ** If either input is NULL, the result is NULL.
68828 */
68829 /* Opcode: Multiply P1 P2 P3 * *
68830 ** Synopsis:  r[P3]=r[P1]*r[P2]
68831 **
68832 **
68833 ** Multiply the value in register P1 by the value in register P2
68834 ** and store the result in register P3.
68835 ** If either input is NULL, the result is NULL.
68836 */
68837 /* Opcode: Subtract P1 P2 P3 * *
68838 ** Synopsis:  r[P3]=r[P2]-r[P1]
68839 **
68840 ** Subtract the value in register P1 from the value in register P2
68841 ** and store the result in register P3.
68842 ** If either input is NULL, the result is NULL.
68843 */
68844 /* Opcode: Divide P1 P2 P3 * *
68845 ** Synopsis:  r[P3]=r[P2]/r[P1]
68846 **
68847 ** Divide the value in register P1 by the value in register P2
68848 ** and store the result in register P3 (P3=P2/P1). If the value in
68849 ** register P1 is zero, then the result is NULL. If either input is
68850 ** NULL, the result is NULL.
68851 */
68852 /* Opcode: Remainder P1 P2 P3 * *
68853 ** Synopsis:  r[P3]=r[P2]%r[P1]
68854 **
68855 ** Compute the remainder after integer register P2 is divided by
68856 ** register P1 and store the result in register P3.
68857 ** If the value in register P1 is zero the result is NULL.
68858 ** If either operand is NULL, the result is NULL.
68859 */
68860 case OP_Add:                   /* same as TK_PLUS, in1, in2, out3 */
68861 case OP_Subtract:              /* same as TK_MINUS, in1, in2, out3 */
68862 case OP_Multiply:              /* same as TK_STAR, in1, in2, out3 */
68863 case OP_Divide:                /* same as TK_SLASH, in1, in2, out3 */
68864 case OP_Remainder: {           /* same as TK_REM, in1, in2, out3 */
68865   char bIntint;   /* Started out as two integer operands */
68866   u16 flags;      /* Combined MEM_* flags from both inputs */
68867   u16 type1;      /* Numeric type of left operand */
68868   u16 type2;      /* Numeric type of right operand */
68869   i64 iA;         /* Integer value of left operand */
68870   i64 iB;         /* Integer value of right operand */
68871   double rA;      /* Real value of left operand */
68872   double rB;      /* Real value of right operand */
68873 
68874   pIn1 = &aMem[pOp->p1];
68875   type1 = numericType(pIn1);
68876   pIn2 = &aMem[pOp->p2];
68877   type2 = numericType(pIn2);
68878   pOut = &aMem[pOp->p3];
68879   flags = pIn1->flags | pIn2->flags;
68880   if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
68881   if( (type1 & type2 & MEM_Int)!=0 ){
68882     iA = pIn1->u.i;
68883     iB = pIn2->u.i;
68884     bIntint = 1;
68885     switch( pOp->opcode ){
68886       case OP_Add:       if( sqlite3AddInt64(&iB,iA) ) goto fp_math;  break;
68887       case OP_Subtract:  if( sqlite3SubInt64(&iB,iA) ) goto fp_math;  break;
68888       case OP_Multiply:  if( sqlite3MulInt64(&iB,iA) ) goto fp_math;  break;
68889       case OP_Divide: {
68890         if( iA==0 ) goto arithmetic_result_is_null;
68891         if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
68892         iB /= iA;
68893         break;
68894       }
68895       default: {
68896         if( iA==0 ) goto arithmetic_result_is_null;
68897         if( iA==-1 ) iA = 1;
68898         iB %= iA;
68899         break;
68900       }
68901     }
68902     pOut->u.i = iB;
68903     MemSetTypeFlag(pOut, MEM_Int);
68904   }else{
68905     bIntint = 0;
68906 fp_math:
68907     rA = sqlite3VdbeRealValue(pIn1);
68908     rB = sqlite3VdbeRealValue(pIn2);
68909     switch( pOp->opcode ){
68910       case OP_Add:         rB += rA;       break;
68911       case OP_Subtract:    rB -= rA;       break;
68912       case OP_Multiply:    rB *= rA;       break;
68913       case OP_Divide: {
68914         /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
68915         if( rA==(double)0 ) goto arithmetic_result_is_null;
68916         rB /= rA;
68917         break;
68918       }
68919       default: {
68920         iA = (i64)rA;
68921         iB = (i64)rB;
68922         if( iA==0 ) goto arithmetic_result_is_null;
68923         if( iA==-1 ) iA = 1;
68924         rB = (double)(iB % iA);
68925         break;
68926       }
68927     }
68928 #ifdef SQLITE_OMIT_FLOATING_POINT
68929     pOut->u.i = rB;
68930     MemSetTypeFlag(pOut, MEM_Int);
68931 #else
68932     if( sqlite3IsNaN(rB) ){
68933       goto arithmetic_result_is_null;
68934     }
68935     pOut->r = rB;
68936     MemSetTypeFlag(pOut, MEM_Real);
68937     if( ((type1|type2)&MEM_Real)==0 && !bIntint ){
68938       sqlite3VdbeIntegerAffinity(pOut);
68939     }
68940 #endif
68941   }
68942   break;
68943 
68944 arithmetic_result_is_null:
68945   sqlite3VdbeMemSetNull(pOut);
68946   break;
68947 }
68948 
68949 /* Opcode: CollSeq P1 * * P4
68950 **
68951 ** P4 is a pointer to a CollSeq struct. If the next call to a user function
68952 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
68953 ** be returned. This is used by the built-in min(), max() and nullif()
68954 ** functions.
68955 **
68956 ** If P1 is not zero, then it is a register that a subsequent min() or
68957 ** max() aggregate will set to 1 if the current row is not the minimum or
68958 ** maximum.  The P1 register is initialized to 0 by this instruction.
68959 **
68960 ** The interface used by the implementation of the aforementioned functions
68961 ** to retrieve the collation sequence set by this opcode is not available
68962 ** publicly, only to user functions defined in func.c.
68963 */
68964 case OP_CollSeq: {
68965   assert( pOp->p4type==P4_COLLSEQ );
68966   if( pOp->p1 ){
68967     sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
68968   }
68969   break;
68970 }
68971 
68972 /* Opcode: Function P1 P2 P3 P4 P5
68973 ** Synopsis: r[P3]=func(r[P2@P5])
68974 **
68975 ** Invoke a user function (P4 is a pointer to a Function structure that
68976 ** defines the function) with P5 arguments taken from register P2 and
68977 ** successors.  The result of the function is stored in register P3.
68978 ** Register P3 must not be one of the function inputs.
68979 **
68980 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
68981 ** function was determined to be constant at compile time. If the first
68982 ** argument was constant then bit 0 of P1 is set. This is used to determine
68983 ** whether meta data associated with a user function argument using the
68984 ** sqlite3_set_auxdata() API may be safely retained until the next
68985 ** invocation of this opcode.
68986 **
68987 ** See also: AggStep and AggFinal
68988 */
68989 case OP_Function: {
68990   int i;
68991   Mem *pArg;
68992   sqlite3_context ctx;
68993   sqlite3_value **apVal;
68994   int n;
68995 
68996   n = pOp->p5;
68997   apVal = p->apArg;
68998   assert( apVal || n==0 );
68999   assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
69000   pOut = &aMem[pOp->p3];
69001   memAboutToChange(p, pOut);
69002 
69003   assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) );
69004   assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
69005   pArg = &aMem[pOp->p2];
69006   for(i=0; i<n; i++, pArg++){
69007     assert( memIsValid(pArg) );
69008     apVal[i] = pArg;
69009     Deephemeralize(pArg);
69010     REGISTER_TRACE(pOp->p2+i, pArg);
69011   }
69012 
69013   assert( pOp->p4type==P4_FUNCDEF );
69014   ctx.pFunc = pOp->p4.pFunc;
69015   ctx.iOp = pc;
69016   ctx.pVdbe = p;
69017 
69018   /* The output cell may already have a buffer allocated. Move
69019   ** the pointer to ctx.s so in case the user-function can use
69020   ** the already allocated buffer instead of allocating a new one.
69021   */
69022   memcpy(&ctx.s, pOut, sizeof(Mem));
69023   pOut->flags = MEM_Null;
69024   pOut->xDel = 0;
69025   pOut->zMalloc = 0;
69026   MemSetTypeFlag(&ctx.s, MEM_Null);
69027 
69028   ctx.fErrorOrAux = 0;
69029   if( ctx.pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
69030     assert( pOp>aOp );
69031     assert( pOp[-1].p4type==P4_COLLSEQ );
69032     assert( pOp[-1].opcode==OP_CollSeq );
69033     ctx.pColl = pOp[-1].p4.pColl;
69034   }
69035   db->lastRowid = lastRowid;
69036   (*ctx.pFunc->xFunc)(&ctx, n, apVal); /* IMP: R-24505-23230 */
69037   lastRowid = db->lastRowid;
69038 
69039   if( db->mallocFailed ){
69040     /* Even though a malloc() has failed, the implementation of the
69041     ** user function may have called an sqlite3_result_XXX() function
69042     ** to return a value. The following call releases any resources
69043     ** associated with such a value.
69044     */
69045     sqlite3VdbeMemRelease(&ctx.s);
69046     goto no_mem;
69047   }
69048 
69049   /* If the function returned an error, throw an exception */
69050   if( ctx.fErrorOrAux ){
69051     if( ctx.isError ){
69052       sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
69053       rc = ctx.isError;
69054     }
69055     sqlite3VdbeDeleteAuxData(p, pc, pOp->p1);
69056   }
69057 
69058   /* Copy the result of the function into register P3 */
69059   sqlite3VdbeChangeEncoding(&ctx.s, encoding);
69060   assert( pOut->flags==MEM_Null );
69061   memcpy(pOut, &ctx.s, sizeof(Mem));
69062   if( sqlite3VdbeMemTooBig(pOut) ){
69063     goto too_big;
69064   }
69065 
69066 #if 0
69067   /* The app-defined function has done something that as caused this
69068   ** statement to expire.  (Perhaps the function called sqlite3_exec()
69069   ** with a CREATE TABLE statement.)
69070   */
69071   if( p->expired ) rc = SQLITE_ABORT;
69072 #endif
69073 
69074   REGISTER_TRACE(pOp->p3, pOut);
69075   UPDATE_MAX_BLOBSIZE(pOut);
69076   break;
69077 }
69078 
69079 /* Opcode: BitAnd P1 P2 P3 * *
69080 ** Synopsis:  r[P3]=r[P1]&r[P2]
69081 **
69082 ** Take the bit-wise AND of the values in register P1 and P2 and
69083 ** store the result in register P3.
69084 ** If either input is NULL, the result is NULL.
69085 */
69086 /* Opcode: BitOr P1 P2 P3 * *
69087 ** Synopsis:  r[P3]=r[P1]|r[P2]
69088 **
69089 ** Take the bit-wise OR of the values in register P1 and P2 and
69090 ** store the result in register P3.
69091 ** If either input is NULL, the result is NULL.
69092 */
69093 /* Opcode: ShiftLeft P1 P2 P3 * *
69094 ** Synopsis:  r[P3]=r[P2]<<r[P1]
69095 **
69096 ** Shift the integer value in register P2 to the left by the
69097 ** number of bits specified by the integer in register P1.
69098 ** Store the result in register P3.
69099 ** If either input is NULL, the result is NULL.
69100 */
69101 /* Opcode: ShiftRight P1 P2 P3 * *
69102 ** Synopsis:  r[P3]=r[P2]>>r[P1]
69103 **
69104 ** Shift the integer value in register P2 to the right by the
69105 ** number of bits specified by the integer in register P1.
69106 ** Store the result in register P3.
69107 ** If either input is NULL, the result is NULL.
69108 */
69109 case OP_BitAnd:                 /* same as TK_BITAND, in1, in2, out3 */
69110 case OP_BitOr:                  /* same as TK_BITOR, in1, in2, out3 */
69111 case OP_ShiftLeft:              /* same as TK_LSHIFT, in1, in2, out3 */
69112 case OP_ShiftRight: {           /* same as TK_RSHIFT, in1, in2, out3 */
69113   i64 iA;
69114   u64 uA;
69115   i64 iB;
69116   u8 op;
69117 
69118   pIn1 = &aMem[pOp->p1];
69119   pIn2 = &aMem[pOp->p2];
69120   pOut = &aMem[pOp->p3];
69121   if( (pIn1->flags | pIn2->flags) & MEM_Null ){
69122     sqlite3VdbeMemSetNull(pOut);
69123     break;
69124   }
69125   iA = sqlite3VdbeIntValue(pIn2);
69126   iB = sqlite3VdbeIntValue(pIn1);
69127   op = pOp->opcode;
69128   if( op==OP_BitAnd ){
69129     iA &= iB;
69130   }else if( op==OP_BitOr ){
69131     iA |= iB;
69132   }else if( iB!=0 ){
69133     assert( op==OP_ShiftRight || op==OP_ShiftLeft );
69134 
69135     /* If shifting by a negative amount, shift in the other direction */
69136     if( iB<0 ){
69137       assert( OP_ShiftRight==OP_ShiftLeft+1 );
69138       op = 2*OP_ShiftLeft + 1 - op;
69139       iB = iB>(-64) ? -iB : 64;
69140     }
69141 
69142     if( iB>=64 ){
69143       iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
69144     }else{
69145       memcpy(&uA, &iA, sizeof(uA));
69146       if( op==OP_ShiftLeft ){
69147         uA <<= iB;
69148       }else{
69149         uA >>= iB;
69150         /* Sign-extend on a right shift of a negative number */
69151         if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
69152       }
69153       memcpy(&iA, &uA, sizeof(iA));
69154     }
69155   }
69156   pOut->u.i = iA;
69157   MemSetTypeFlag(pOut, MEM_Int);
69158   break;
69159 }
69160 
69161 /* Opcode: AddImm  P1 P2 * * *
69162 ** Synopsis:  r[P1]=r[P1]+P2
69163 **
69164 ** Add the constant P2 to the value in register P1.
69165 ** The result is always an integer.
69166 **
69167 ** To force any register to be an integer, just add 0.
69168 */
69169 case OP_AddImm: {            /* in1 */
69170   pIn1 = &aMem[pOp->p1];
69171   memAboutToChange(p, pIn1);
69172   sqlite3VdbeMemIntegerify(pIn1);
69173   pIn1->u.i += pOp->p2;
69174   break;
69175 }
69176 
69177 /* Opcode: MustBeInt P1 P2 * * *
69178 **
69179 ** Force the value in register P1 to be an integer.  If the value
69180 ** in P1 is not an integer and cannot be converted into an integer
69181 ** without data loss, then jump immediately to P2, or if P2==0
69182 ** raise an SQLITE_MISMATCH exception.
69183 */
69184 case OP_MustBeInt: {            /* jump, in1 */
69185   pIn1 = &aMem[pOp->p1];
69186   if( (pIn1->flags & MEM_Int)==0 ){
69187     applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
69188     VdbeBranchTaken((pIn1->flags&MEM_Int)==0, 2);
69189     if( (pIn1->flags & MEM_Int)==0 ){
69190       if( pOp->p2==0 ){
69191         rc = SQLITE_MISMATCH;
69192         goto abort_due_to_error;
69193       }else{
69194         pc = pOp->p2 - 1;
69195         break;
69196       }
69197     }
69198   }
69199   MemSetTypeFlag(pIn1, MEM_Int);
69200   break;
69201 }
69202 
69203 #ifndef SQLITE_OMIT_FLOATING_POINT
69204 /* Opcode: RealAffinity P1 * * * *
69205 **
69206 ** If register P1 holds an integer convert it to a real value.
69207 **
69208 ** This opcode is used when extracting information from a column that
69209 ** has REAL affinity.  Such column values may still be stored as
69210 ** integers, for space efficiency, but after extraction we want them
69211 ** to have only a real value.
69212 */
69213 case OP_RealAffinity: {                  /* in1 */
69214   pIn1 = &aMem[pOp->p1];
69215   if( pIn1->flags & MEM_Int ){
69216     sqlite3VdbeMemRealify(pIn1);
69217   }
69218   break;
69219 }
69220 #endif
69221 
69222 #ifndef SQLITE_OMIT_CAST
69223 /* Opcode: ToText P1 * * * *
69224 **
69225 ** Force the value in register P1 to be text.
69226 ** If the value is numeric, convert it to a string using the
69227 ** equivalent of sprintf().  Blob values are unchanged and
69228 ** are afterwards simply interpreted as text.
69229 **
69230 ** A NULL value is not changed by this routine.  It remains NULL.
69231 */
69232 case OP_ToText: {                  /* same as TK_TO_TEXT, in1 */
69233   pIn1 = &aMem[pOp->p1];
69234   memAboutToChange(p, pIn1);
69235   if( pIn1->flags & MEM_Null ) break;
69236   assert( MEM_Str==(MEM_Blob>>3) );
69237   pIn1->flags |= (pIn1->flags&MEM_Blob)>>3;
69238   applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
69239   rc = ExpandBlob(pIn1);
69240   assert( pIn1->flags & MEM_Str || db->mallocFailed );
69241   pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero);
69242   UPDATE_MAX_BLOBSIZE(pIn1);
69243   break;
69244 }
69245 
69246 /* Opcode: ToBlob P1 * * * *
69247 **
69248 ** Force the value in register P1 to be a BLOB.
69249 ** If the value is numeric, convert it to a string first.
69250 ** Strings are simply reinterpreted as blobs with no change
69251 ** to the underlying data.
69252 **
69253 ** A NULL value is not changed by this routine.  It remains NULL.
69254 */
69255 case OP_ToBlob: {                  /* same as TK_TO_BLOB, in1 */
69256   pIn1 = &aMem[pOp->p1];
69257   if( pIn1->flags & MEM_Null ) break;
69258   if( (pIn1->flags & MEM_Blob)==0 ){
69259     applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
69260     assert( pIn1->flags & MEM_Str || db->mallocFailed );
69261     MemSetTypeFlag(pIn1, MEM_Blob);
69262   }else{
69263     pIn1->flags &= ~(MEM_TypeMask&~MEM_Blob);
69264   }
69265   UPDATE_MAX_BLOBSIZE(pIn1);
69266   break;
69267 }
69268 
69269 /* Opcode: ToNumeric P1 * * * *
69270 **
69271 ** Force the value in register P1 to be numeric (either an
69272 ** integer or a floating-point number.)
69273 ** If the value is text or blob, try to convert it to an using the
69274 ** equivalent of atoi() or atof() and store 0 if no such conversion
69275 ** is possible.
69276 **
69277 ** A NULL value is not changed by this routine.  It remains NULL.
69278 */
69279 case OP_ToNumeric: {                  /* same as TK_TO_NUMERIC, in1 */
69280   pIn1 = &aMem[pOp->p1];
69281   sqlite3VdbeMemNumerify(pIn1);
69282   break;
69283 }
69284 #endif /* SQLITE_OMIT_CAST */
69285 
69286 /* Opcode: ToInt P1 * * * *
69287 **
69288 ** Force the value in register P1 to be an integer.  If
69289 ** The value is currently a real number, drop its fractional part.
69290 ** If the value is text or blob, try to convert it to an integer using the
69291 ** equivalent of atoi() and store 0 if no such conversion is possible.
69292 **
69293 ** A NULL value is not changed by this routine.  It remains NULL.
69294 */
69295 case OP_ToInt: {                  /* same as TK_TO_INT, in1 */
69296   pIn1 = &aMem[pOp->p1];
69297   if( (pIn1->flags & MEM_Null)==0 ){
69298     sqlite3VdbeMemIntegerify(pIn1);
69299   }
69300   break;
69301 }
69302 
69303 #if !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT)
69304 /* Opcode: ToReal P1 * * * *
69305 **
69306 ** Force the value in register P1 to be a floating point number.
69307 ** If The value is currently an integer, convert it.
69308 ** If the value is text or blob, try to convert it to an integer using the
69309 ** equivalent of atoi() and store 0.0 if no such conversion is possible.
69310 **
69311 ** A NULL value is not changed by this routine.  It remains NULL.
69312 */
69313 case OP_ToReal: {                  /* same as TK_TO_REAL, in1 */
69314   pIn1 = &aMem[pOp->p1];
69315   memAboutToChange(p, pIn1);
69316   if( (pIn1->flags & MEM_Null)==0 ){
69317     sqlite3VdbeMemRealify(pIn1);
69318   }
69319   break;
69320 }
69321 #endif /* !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT) */
69322 
69323 /* Opcode: Lt P1 P2 P3 P4 P5
69324 ** Synopsis: if r[P1]<r[P3] goto P2
69325 **
69326 ** Compare the values in register P1 and P3.  If reg(P3)<reg(P1) then
69327 ** jump to address P2.
69328 **
69329 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
69330 ** reg(P3) is NULL then take the jump.  If the SQLITE_JUMPIFNULL
69331 ** bit is clear then fall through if either operand is NULL.
69332 **
69333 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
69334 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
69335 ** to coerce both inputs according to this affinity before the
69336 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
69337 ** affinity is used. Note that the affinity conversions are stored
69338 ** back into the input registers P1 and P3.  So this opcode can cause
69339 ** persistent changes to registers P1 and P3.
69340 **
69341 ** Once any conversions have taken place, and neither value is NULL,
69342 ** the values are compared. If both values are blobs then memcmp() is
69343 ** used to determine the results of the comparison.  If both values
69344 ** are text, then the appropriate collating function specified in
69345 ** P4 is  used to do the comparison.  If P4 is not specified then
69346 ** memcmp() is used to compare text string.  If both values are
69347 ** numeric, then a numeric comparison is used. If the two values
69348 ** are of different types, then numbers are considered less than
69349 ** strings and strings are considered less than blobs.
69350 **
69351 ** If the SQLITE_STOREP2 bit of P5 is set, then do not jump.  Instead,
69352 ** store a boolean result (either 0, or 1, or NULL) in register P2.
69353 **
69354 ** If the SQLITE_NULLEQ bit is set in P5, then NULL values are considered
69355 ** equal to one another, provided that they do not have their MEM_Cleared
69356 ** bit set.
69357 */
69358 /* Opcode: Ne P1 P2 P3 P4 P5
69359 ** Synopsis: if r[P1]!=r[P3] goto P2
69360 **
69361 ** This works just like the Lt opcode except that the jump is taken if
69362 ** the operands in registers P1 and P3 are not equal.  See the Lt opcode for
69363 ** additional information.
69364 **
69365 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
69366 ** true or false and is never NULL.  If both operands are NULL then the result
69367 ** of comparison is false.  If either operand is NULL then the result is true.
69368 ** If neither operand is NULL the result is the same as it would be if
69369 ** the SQLITE_NULLEQ flag were omitted from P5.
69370 */
69371 /* Opcode: Eq P1 P2 P3 P4 P5
69372 ** Synopsis: if r[P1]==r[P3] goto P2
69373 **
69374 ** This works just like the Lt opcode except that the jump is taken if
69375 ** the operands in registers P1 and P3 are equal.
69376 ** See the Lt opcode for additional information.
69377 **
69378 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
69379 ** true or false and is never NULL.  If both operands are NULL then the result
69380 ** of comparison is true.  If either operand is NULL then the result is false.
69381 ** If neither operand is NULL the result is the same as it would be if
69382 ** the SQLITE_NULLEQ flag were omitted from P5.
69383 */
69384 /* Opcode: Le P1 P2 P3 P4 P5
69385 ** Synopsis: if r[P1]<=r[P3] goto P2
69386 **
69387 ** This works just like the Lt opcode except that the jump is taken if
69388 ** the content of register P3 is less than or equal to the content of
69389 ** register P1.  See the Lt opcode for additional information.
69390 */
69391 /* Opcode: Gt P1 P2 P3 P4 P5
69392 ** Synopsis: if r[P1]>r[P3] goto P2
69393 **
69394 ** This works just like the Lt opcode except that the jump is taken if
69395 ** the content of register P3 is greater than the content of
69396 ** register P1.  See the Lt opcode for additional information.
69397 */
69398 /* Opcode: Ge P1 P2 P3 P4 P5
69399 ** Synopsis: if r[P1]>=r[P3] goto P2
69400 **
69401 ** This works just like the Lt opcode except that the jump is taken if
69402 ** the content of register P3 is greater than or equal to the content of
69403 ** register P1.  See the Lt opcode for additional information.
69404 */
69405 case OP_Eq:               /* same as TK_EQ, jump, in1, in3 */
69406 case OP_Ne:               /* same as TK_NE, jump, in1, in3 */
69407 case OP_Lt:               /* same as TK_LT, jump, in1, in3 */
69408 case OP_Le:               /* same as TK_LE, jump, in1, in3 */
69409 case OP_Gt:               /* same as TK_GT, jump, in1, in3 */
69410 case OP_Ge: {             /* same as TK_GE, jump, in1, in3 */
69411   int res;            /* Result of the comparison of pIn1 against pIn3 */
69412   char affinity;      /* Affinity to use for comparison */
69413   u16 flags1;         /* Copy of initial value of pIn1->flags */
69414   u16 flags3;         /* Copy of initial value of pIn3->flags */
69415 
69416   pIn1 = &aMem[pOp->p1];
69417   pIn3 = &aMem[pOp->p3];
69418   flags1 = pIn1->flags;
69419   flags3 = pIn3->flags;
69420   if( (flags1 | flags3)&MEM_Null ){
69421     /* One or both operands are NULL */
69422     if( pOp->p5 & SQLITE_NULLEQ ){
69423       /* If SQLITE_NULLEQ is set (which will only happen if the operator is
69424       ** OP_Eq or OP_Ne) then take the jump or not depending on whether
69425       ** or not both operands are null.
69426       */
69427       assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
69428       assert( (flags1 & MEM_Cleared)==0 );
69429       assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 );
69430       if( (flags1&MEM_Null)!=0
69431        && (flags3&MEM_Null)!=0
69432        && (flags3&MEM_Cleared)==0
69433       ){
69434         res = 0;  /* Results are equal */
69435       }else{
69436         res = 1;  /* Results are not equal */
69437       }
69438     }else{
69439       /* SQLITE_NULLEQ is clear and at least one operand is NULL,
69440       ** then the result is always NULL.
69441       ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
69442       */
69443       if( pOp->p5 & SQLITE_STOREP2 ){
69444         pOut = &aMem[pOp->p2];
69445         MemSetTypeFlag(pOut, MEM_Null);
69446         REGISTER_TRACE(pOp->p2, pOut);
69447       }else{
69448         VdbeBranchTaken(2,3);
69449         if( pOp->p5 & SQLITE_JUMPIFNULL ){
69450           pc = pOp->p2-1;
69451         }
69452       }
69453       break;
69454     }
69455   }else{
69456     /* Neither operand is NULL.  Do a comparison. */
69457     affinity = pOp->p5 & SQLITE_AFF_MASK;
69458     if( affinity ){
69459       applyAffinity(pIn1, affinity, encoding);
69460       applyAffinity(pIn3, affinity, encoding);
69461       if( db->mallocFailed ) goto no_mem;
69462     }
69463 
69464     assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
69465     ExpandBlob(pIn1);
69466     ExpandBlob(pIn3);
69467     res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
69468   }
69469   switch( pOp->opcode ){
69470     case OP_Eq:    res = res==0;     break;
69471     case OP_Ne:    res = res!=0;     break;
69472     case OP_Lt:    res = res<0;      break;
69473     case OP_Le:    res = res<=0;     break;
69474     case OP_Gt:    res = res>0;      break;
69475     default:       res = res>=0;     break;
69476   }
69477 
69478   if( pOp->p5 & SQLITE_STOREP2 ){
69479     pOut = &aMem[pOp->p2];
69480     memAboutToChange(p, pOut);
69481     MemSetTypeFlag(pOut, MEM_Int);
69482     pOut->u.i = res;
69483     REGISTER_TRACE(pOp->p2, pOut);
69484   }else{
69485     VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
69486     if( res ){
69487       pc = pOp->p2-1;
69488     }
69489   }
69490   /* Undo any changes made by applyAffinity() to the input registers. */
69491   pIn1->flags = (pIn1->flags&~MEM_TypeMask) | (flags1&MEM_TypeMask);
69492   pIn3->flags = (pIn3->flags&~MEM_TypeMask) | (flags3&MEM_TypeMask);
69493   break;
69494 }
69495 
69496 /* Opcode: Permutation * * * P4 *
69497 **
69498 ** Set the permutation used by the OP_Compare operator to be the array
69499 ** of integers in P4.
69500 **
69501 ** The permutation is only valid until the next OP_Compare that has
69502 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should
69503 ** occur immediately prior to the OP_Compare.
69504 */
69505 case OP_Permutation: {
69506   assert( pOp->p4type==P4_INTARRAY );
69507   assert( pOp->p4.ai );
69508   aPermute = pOp->p4.ai;
69509   break;
69510 }
69511 
69512 /* Opcode: Compare P1 P2 P3 P4 P5
69513 ** Synopsis: r[P1@P3] <-> r[P2@P3]
69514 **
69515 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
69516 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B").  Save the result of
69517 ** the comparison for use by the next OP_Jump instruct.
69518 **
69519 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
69520 ** determined by the most recent OP_Permutation operator.  If the
69521 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
69522 ** order.
69523 **
69524 ** P4 is a KeyInfo structure that defines collating sequences and sort
69525 ** orders for the comparison.  The permutation applies to registers
69526 ** only.  The KeyInfo elements are used sequentially.
69527 **
69528 ** The comparison is a sort comparison, so NULLs compare equal,
69529 ** NULLs are less than numbers, numbers are less than strings,
69530 ** and strings are less than blobs.
69531 */
69532 case OP_Compare: {
69533   int n;
69534   int i;
69535   int p1;
69536   int p2;
69537   const KeyInfo *pKeyInfo;
69538   int idx;
69539   CollSeq *pColl;    /* Collating sequence to use on this term */
69540   int bRev;          /* True for DESCENDING sort order */
69541 
69542   if( (pOp->p5 & OPFLAG_PERMUTE)==0 ) aPermute = 0;
69543   n = pOp->p3;
69544   pKeyInfo = pOp->p4.pKeyInfo;
69545   assert( n>0 );
69546   assert( pKeyInfo!=0 );
69547   p1 = pOp->p1;
69548   p2 = pOp->p2;
69549 #if SQLITE_DEBUG
69550   if( aPermute ){
69551     int k, mx = 0;
69552     for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
69553     assert( p1>0 && p1+mx<=(p->nMem-p->nCursor)+1 );
69554     assert( p2>0 && p2+mx<=(p->nMem-p->nCursor)+1 );
69555   }else{
69556     assert( p1>0 && p1+n<=(p->nMem-p->nCursor)+1 );
69557     assert( p2>0 && p2+n<=(p->nMem-p->nCursor)+1 );
69558   }
69559 #endif /* SQLITE_DEBUG */
69560   for(i=0; i<n; i++){
69561     idx = aPermute ? aPermute[i] : i;
69562     assert( memIsValid(&aMem[p1+idx]) );
69563     assert( memIsValid(&aMem[p2+idx]) );
69564     REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
69565     REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
69566     assert( i<pKeyInfo->nField );
69567     pColl = pKeyInfo->aColl[i];
69568     bRev = pKeyInfo->aSortOrder[i];
69569     iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
69570     if( iCompare ){
69571       if( bRev ) iCompare = -iCompare;
69572       break;
69573     }
69574   }
69575   aPermute = 0;
69576   break;
69577 }
69578 
69579 /* Opcode: Jump P1 P2 P3 * *
69580 **
69581 ** Jump to the instruction at address P1, P2, or P3 depending on whether
69582 ** in the most recent OP_Compare instruction the P1 vector was less than
69583 ** equal to, or greater than the P2 vector, respectively.
69584 */
69585 case OP_Jump: {             /* jump */
69586   if( iCompare<0 ){
69587     pc = pOp->p1 - 1;  VdbeBranchTaken(0,3);
69588   }else if( iCompare==0 ){
69589     pc = pOp->p2 - 1;  VdbeBranchTaken(1,3);
69590   }else{
69591     pc = pOp->p3 - 1;  VdbeBranchTaken(2,3);
69592   }
69593   break;
69594 }
69595 
69596 /* Opcode: And P1 P2 P3 * *
69597 ** Synopsis: r[P3]=(r[P1] && r[P2])
69598 **
69599 ** Take the logical AND of the values in registers P1 and P2 and
69600 ** write the result into register P3.
69601 **
69602 ** If either P1 or P2 is 0 (false) then the result is 0 even if
69603 ** the other input is NULL.  A NULL and true or two NULLs give
69604 ** a NULL output.
69605 */
69606 /* Opcode: Or P1 P2 P3 * *
69607 ** Synopsis: r[P3]=(r[P1] || r[P2])
69608 **
69609 ** Take the logical OR of the values in register P1 and P2 and
69610 ** store the answer in register P3.
69611 **
69612 ** If either P1 or P2 is nonzero (true) then the result is 1 (true)
69613 ** even if the other input is NULL.  A NULL and false or two NULLs
69614 ** give a NULL output.
69615 */
69616 case OP_And:              /* same as TK_AND, in1, in2, out3 */
69617 case OP_Or: {             /* same as TK_OR, in1, in2, out3 */
69618   int v1;    /* Left operand:  0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
69619   int v2;    /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
69620 
69621   pIn1 = &aMem[pOp->p1];
69622   if( pIn1->flags & MEM_Null ){
69623     v1 = 2;
69624   }else{
69625     v1 = sqlite3VdbeIntValue(pIn1)!=0;
69626   }
69627   pIn2 = &aMem[pOp->p2];
69628   if( pIn2->flags & MEM_Null ){
69629     v2 = 2;
69630   }else{
69631     v2 = sqlite3VdbeIntValue(pIn2)!=0;
69632   }
69633   if( pOp->opcode==OP_And ){
69634     static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
69635     v1 = and_logic[v1*3+v2];
69636   }else{
69637     static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
69638     v1 = or_logic[v1*3+v2];
69639   }
69640   pOut = &aMem[pOp->p3];
69641   if( v1==2 ){
69642     MemSetTypeFlag(pOut, MEM_Null);
69643   }else{
69644     pOut->u.i = v1;
69645     MemSetTypeFlag(pOut, MEM_Int);
69646   }
69647   break;
69648 }
69649 
69650 /* Opcode: Not P1 P2 * * *
69651 ** Synopsis: r[P2]= !r[P1]
69652 **
69653 ** Interpret the value in register P1 as a boolean value.  Store the
69654 ** boolean complement in register P2.  If the value in register P1 is
69655 ** NULL, then a NULL is stored in P2.
69656 */
69657 case OP_Not: {                /* same as TK_NOT, in1, out2 */
69658   pIn1 = &aMem[pOp->p1];
69659   pOut = &aMem[pOp->p2];
69660   if( pIn1->flags & MEM_Null ){
69661     sqlite3VdbeMemSetNull(pOut);
69662   }else{
69663     sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeIntValue(pIn1));
69664   }
69665   break;
69666 }
69667 
69668 /* Opcode: BitNot P1 P2 * * *
69669 ** Synopsis: r[P1]= ~r[P1]
69670 **
69671 ** Interpret the content of register P1 as an integer.  Store the
69672 ** ones-complement of the P1 value into register P2.  If P1 holds
69673 ** a NULL then store a NULL in P2.
69674 */
69675 case OP_BitNot: {             /* same as TK_BITNOT, in1, out2 */
69676   pIn1 = &aMem[pOp->p1];
69677   pOut = &aMem[pOp->p2];
69678   if( pIn1->flags & MEM_Null ){
69679     sqlite3VdbeMemSetNull(pOut);
69680   }else{
69681     sqlite3VdbeMemSetInt64(pOut, ~sqlite3VdbeIntValue(pIn1));
69682   }
69683   break;
69684 }
69685 
69686 /* Opcode: Once P1 P2 * * *
69687 **
69688 ** Check if OP_Once flag P1 is set. If so, jump to instruction P2. Otherwise,
69689 ** set the flag and fall through to the next instruction.  In other words,
69690 ** this opcode causes all following opcodes up through P2 (but not including
69691 ** P2) to run just once and to be skipped on subsequent times through the loop.
69692 */
69693 case OP_Once: {             /* jump */
69694   assert( pOp->p1<p->nOnceFlag );
69695   VdbeBranchTaken(p->aOnceFlag[pOp->p1]!=0, 2);
69696   if( p->aOnceFlag[pOp->p1] ){
69697     pc = pOp->p2-1;
69698   }else{
69699     p->aOnceFlag[pOp->p1] = 1;
69700   }
69701   break;
69702 }
69703 
69704 /* Opcode: If P1 P2 P3 * *
69705 **
69706 ** Jump to P2 if the value in register P1 is true.  The value
69707 ** is considered true if it is numeric and non-zero.  If the value
69708 ** in P1 is NULL then take the jump if P3 is non-zero.
69709 */
69710 /* Opcode: IfNot P1 P2 P3 * *
69711 **
69712 ** Jump to P2 if the value in register P1 is False.  The value
69713 ** is considered false if it has a numeric value of zero.  If the value
69714 ** in P1 is NULL then take the jump if P3 is zero.
69715 */
69716 case OP_If:                 /* jump, in1 */
69717 case OP_IfNot: {            /* jump, in1 */
69718   int c;
69719   pIn1 = &aMem[pOp->p1];
69720   if( pIn1->flags & MEM_Null ){
69721     c = pOp->p3;
69722   }else{
69723 #ifdef SQLITE_OMIT_FLOATING_POINT
69724     c = sqlite3VdbeIntValue(pIn1)!=0;
69725 #else
69726     c = sqlite3VdbeRealValue(pIn1)!=0.0;
69727 #endif
69728     if( pOp->opcode==OP_IfNot ) c = !c;
69729   }
69730   VdbeBranchTaken(c!=0, 2);
69731   if( c ){
69732     pc = pOp->p2-1;
69733   }
69734   break;
69735 }
69736 
69737 /* Opcode: IsNull P1 P2 * * *
69738 ** Synopsis:  if r[P1]==NULL goto P2
69739 **
69740 ** Jump to P2 if the value in register P1 is NULL.
69741 */
69742 case OP_IsNull: {            /* same as TK_ISNULL, jump, in1 */
69743   pIn1 = &aMem[pOp->p1];
69744   VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
69745   if( (pIn1->flags & MEM_Null)!=0 ){
69746     pc = pOp->p2 - 1;
69747   }
69748   break;
69749 }
69750 
69751 /* Opcode: NotNull P1 P2 * * *
69752 ** Synopsis: if r[P1]!=NULL goto P2
69753 **
69754 ** Jump to P2 if the value in register P1 is not NULL.
69755 */
69756 case OP_NotNull: {            /* same as TK_NOTNULL, jump, in1 */
69757   pIn1 = &aMem[pOp->p1];
69758   VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
69759   if( (pIn1->flags & MEM_Null)==0 ){
69760     pc = pOp->p2 - 1;
69761   }
69762   break;
69763 }
69764 
69765 /* Opcode: Column P1 P2 P3 P4 P5
69766 ** Synopsis:  r[P3]=PX
69767 **
69768 ** Interpret the data that cursor P1 points to as a structure built using
69769 ** the MakeRecord instruction.  (See the MakeRecord opcode for additional
69770 ** information about the format of the data.)  Extract the P2-th column
69771 ** from this record.  If there are less that (P2+1)
69772 ** values in the record, extract a NULL.
69773 **
69774 ** The value extracted is stored in register P3.
69775 **
69776 ** If the column contains fewer than P2 fields, then extract a NULL.  Or,
69777 ** if the P4 argument is a P4_MEM use the value of the P4 argument as
69778 ** the result.
69779 **
69780 ** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
69781 ** then the cache of the cursor is reset prior to extracting the column.
69782 ** The first OP_Column against a pseudo-table after the value of the content
69783 ** register has changed should have this bit set.
69784 **
69785 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 when
69786 ** the result is guaranteed to only be used as the argument of a length()
69787 ** or typeof() function, respectively.  The loading of large blobs can be
69788 ** skipped for length() and all content loading can be skipped for typeof().
69789 */
69790 case OP_Column: {
69791   i64 payloadSize64; /* Number of bytes in the record */
69792   int p2;            /* column number to retrieve */
69793   VdbeCursor *pC;    /* The VDBE cursor */
69794   BtCursor *pCrsr;   /* The BTree cursor */
69795   u32 *aType;        /* aType[i] holds the numeric type of the i-th column */
69796   u32 *aOffset;      /* aOffset[i] is offset to start of data for i-th column */
69797   int len;           /* The length of the serialized data for the column */
69798   int i;             /* Loop counter */
69799   Mem *pDest;        /* Where to write the extracted value */
69800   Mem sMem;          /* For storing the record being decoded */
69801   const u8 *zData;   /* Part of the record being decoded */
69802   const u8 *zHdr;    /* Next unparsed byte of the header */
69803   const u8 *zEndHdr; /* Pointer to first byte after the header */
69804   u32 offset;        /* Offset into the data */
69805   u32 szField;       /* Number of bytes in the content of a field */
69806   u32 avail;         /* Number of bytes of available data */
69807   u32 t;             /* A type code from the record header */
69808   Mem *pReg;         /* PseudoTable input register */
69809 
69810   p2 = pOp->p2;
69811   assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
69812   pDest = &aMem[pOp->p3];
69813   memAboutToChange(p, pDest);
69814   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
69815   pC = p->apCsr[pOp->p1];
69816   assert( pC!=0 );
69817   assert( p2<pC->nField );
69818   aType = pC->aType;
69819   aOffset = aType + pC->nField;
69820 #ifndef SQLITE_OMIT_VIRTUALTABLE
69821   assert( pC->pVtabCursor==0 ); /* OP_Column never called on virtual table */
69822 #endif
69823   pCrsr = pC->pCursor;
69824   assert( pCrsr!=0 || pC->pseudoTableReg>0 ); /* pCrsr NULL on PseudoTables */
69825   assert( pCrsr!=0 || pC->nullRow );          /* pC->nullRow on PseudoTables */
69826 
69827   /* If the cursor cache is stale, bring it up-to-date */
69828   rc = sqlite3VdbeCursorMoveto(pC);
69829   if( rc ) goto abort_due_to_error;
69830   if( pC->cacheStatus!=p->cacheCtr || (pOp->p5&OPFLAG_CLEARCACHE)!=0 ){
69831     if( pC->nullRow ){
69832       if( pCrsr==0 ){
69833         assert( pC->pseudoTableReg>0 );
69834         pReg = &aMem[pC->pseudoTableReg];
69835         assert( pReg->flags & MEM_Blob );
69836         assert( memIsValid(pReg) );
69837         pC->payloadSize = pC->szRow = avail = pReg->n;
69838         pC->aRow = (u8*)pReg->z;
69839       }else{
69840         MemSetTypeFlag(pDest, MEM_Null);
69841         goto op_column_out;
69842       }
69843     }else{
69844       assert( pCrsr );
69845       if( pC->isTable==0 ){
69846         assert( sqlite3BtreeCursorIsValid(pCrsr) );
69847         VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &payloadSize64);
69848         assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
69849         /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the
69850         ** payload size, so it is impossible for payloadSize64 to be
69851         ** larger than 32 bits. */
69852         assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 );
69853         pC->aRow = sqlite3BtreeKeyFetch(pCrsr, &avail);
69854         pC->payloadSize = (u32)payloadSize64;
69855       }else{
69856         assert( sqlite3BtreeCursorIsValid(pCrsr) );
69857         VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &pC->payloadSize);
69858         assert( rc==SQLITE_OK );   /* DataSize() cannot fail */
69859         pC->aRow = sqlite3BtreeDataFetch(pCrsr, &avail);
69860       }
69861       assert( avail<=65536 );  /* Maximum page size is 64KiB */
69862       if( pC->payloadSize <= (u32)avail ){
69863         pC->szRow = pC->payloadSize;
69864       }else{
69865         pC->szRow = avail;
69866       }
69867       if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
69868         goto too_big;
69869       }
69870     }
69871     pC->cacheStatus = p->cacheCtr;
69872     pC->iHdrOffset = getVarint32(pC->aRow, offset);
69873     pC->nHdrParsed = 0;
69874     aOffset[0] = offset;
69875     if( avail<offset ){
69876       /* pC->aRow does not have to hold the entire row, but it does at least
69877       ** need to cover the header of the record.  If pC->aRow does not contain
69878       ** the complete header, then set it to zero, forcing the header to be
69879       ** dynamically allocated. */
69880       pC->aRow = 0;
69881       pC->szRow = 0;
69882     }
69883 
69884     /* Make sure a corrupt database has not given us an oversize header.
69885     ** Do this now to avoid an oversize memory allocation.
69886     **
69887     ** Type entries can be between 1 and 5 bytes each.  But 4 and 5 byte
69888     ** types use so much data space that there can only be 4096 and 32 of
69889     ** them, respectively.  So the maximum header length results from a
69890     ** 3-byte type for each of the maximum of 32768 columns plus three
69891     ** extra bytes for the header length itself.  32768*3 + 3 = 98307.
69892     */
69893     if( offset > 98307 || offset > pC->payloadSize ){
69894       rc = SQLITE_CORRUPT_BKPT;
69895       goto op_column_error;
69896     }
69897   }
69898 
69899   /* Make sure at least the first p2+1 entries of the header have been
69900   ** parsed and valid information is in aOffset[] and aType[].
69901   */
69902   if( pC->nHdrParsed<=p2 ){
69903     /* If there is more header available for parsing in the record, try
69904     ** to extract additional fields up through the p2+1-th field
69905     */
69906     if( pC->iHdrOffset<aOffset[0] ){
69907       /* Make sure zData points to enough of the record to cover the header. */
69908       if( pC->aRow==0 ){
69909         memset(&sMem, 0, sizeof(sMem));
69910         rc = sqlite3VdbeMemFromBtree(pCrsr, 0, aOffset[0],
69911                                      !pC->isTable, &sMem);
69912         if( rc!=SQLITE_OK ){
69913           goto op_column_error;
69914         }
69915         zData = (u8*)sMem.z;
69916       }else{
69917         zData = pC->aRow;
69918       }
69919 
69920       /* Fill in aType[i] and aOffset[i] values through the p2-th field. */
69921       i = pC->nHdrParsed;
69922       offset = aOffset[i];
69923       zHdr = zData + pC->iHdrOffset;
69924       zEndHdr = zData + aOffset[0];
69925       assert( i<=p2 && zHdr<zEndHdr );
69926       do{
69927         if( zHdr[0]<0x80 ){
69928           t = zHdr[0];
69929           zHdr++;
69930         }else{
69931           zHdr += sqlite3GetVarint32(zHdr, &t);
69932         }
69933         aType[i] = t;
69934         szField = sqlite3VdbeSerialTypeLen(t);
69935         offset += szField;
69936         if( offset<szField ){  /* True if offset overflows */
69937           zHdr = &zEndHdr[1];  /* Forces SQLITE_CORRUPT return below */
69938           break;
69939         }
69940         i++;
69941         aOffset[i] = offset;
69942       }while( i<=p2 && zHdr<zEndHdr );
69943       pC->nHdrParsed = i;
69944       pC->iHdrOffset = (u32)(zHdr - zData);
69945       if( pC->aRow==0 ){
69946         sqlite3VdbeMemRelease(&sMem);
69947         sMem.flags = MEM_Null;
69948       }
69949 
69950       /* If we have read more header data than was contained in the header,
69951       ** or if the end of the last field appears to be past the end of the
69952       ** record, or if the end of the last field appears to be before the end
69953       ** of the record (when all fields present), then we must be dealing
69954       ** with a corrupt database.
69955       */
69956       if( (zHdr > zEndHdr)
69957        || (offset > pC->payloadSize)
69958        || (zHdr==zEndHdr && offset!=pC->payloadSize)
69959       ){
69960         rc = SQLITE_CORRUPT_BKPT;
69961         goto op_column_error;
69962       }
69963     }
69964 
69965     /* If after trying to extra new entries from the header, nHdrParsed is
69966     ** still not up to p2, that means that the record has fewer than p2
69967     ** columns.  So the result will be either the default value or a NULL.
69968     */
69969     if( pC->nHdrParsed<=p2 ){
69970       if( pOp->p4type==P4_MEM ){
69971         sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
69972       }else{
69973         MemSetTypeFlag(pDest, MEM_Null);
69974       }
69975       goto op_column_out;
69976     }
69977   }
69978 
69979   /* Extract the content for the p2+1-th column.  Control can only
69980   ** reach this point if aOffset[p2], aOffset[p2+1], and aType[p2] are
69981   ** all valid.
69982   */
69983   assert( p2<pC->nHdrParsed );
69984   assert( rc==SQLITE_OK );
69985   assert( sqlite3VdbeCheckMemInvariants(pDest) );
69986   if( pC->szRow>=aOffset[p2+1] ){
69987     /* This is the common case where the desired content fits on the original
69988     ** page - where the content is not on an overflow page */
69989     VdbeMemRelease(pDest);
69990     sqlite3VdbeSerialGet(pC->aRow+aOffset[p2], aType[p2], pDest);
69991   }else{
69992     /* This branch happens only when content is on overflow pages */
69993     t = aType[p2];
69994     if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
69995           && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
69996      || (len = sqlite3VdbeSerialTypeLen(t))==0
69997     ){
69998       /* Content is irrelevant for the typeof() function and for
69999       ** the length(X) function if X is a blob.  So we might as well use
70000       ** bogus content rather than reading content from disk.  NULL works
70001       ** for text and blob and whatever is in the payloadSize64 variable
70002       ** will work for everything else.  Content is also irrelevant if
70003       ** the content length is 0. */
70004       zData = t<=13 ? (u8*)&payloadSize64 : 0;
70005       sMem.zMalloc = 0;
70006     }else{
70007       memset(&sMem, 0, sizeof(sMem));
70008       sqlite3VdbeMemMove(&sMem, pDest);
70009       rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, !pC->isTable,
70010                                    &sMem);
70011       if( rc!=SQLITE_OK ){
70012         goto op_column_error;
70013       }
70014       zData = (u8*)sMem.z;
70015     }
70016     sqlite3VdbeSerialGet(zData, t, pDest);
70017     /* If we dynamically allocated space to hold the data (in the
70018     ** sqlite3VdbeMemFromBtree() call above) then transfer control of that
70019     ** dynamically allocated space over to the pDest structure.
70020     ** This prevents a memory copy. */
70021     if( sMem.zMalloc ){
70022       assert( sMem.z==sMem.zMalloc );
70023       assert( VdbeMemDynamic(pDest)==0 );
70024       assert( (pDest->flags & (MEM_Blob|MEM_Str))==0 || pDest->z==sMem.z );
70025       pDest->flags &= ~(MEM_Ephem|MEM_Static);
70026       pDest->flags |= MEM_Term;
70027       pDest->z = sMem.z;
70028       pDest->zMalloc = sMem.zMalloc;
70029     }
70030   }
70031   pDest->enc = encoding;
70032 
70033 op_column_out:
70034   Deephemeralize(pDest);
70035 op_column_error:
70036   UPDATE_MAX_BLOBSIZE(pDest);
70037   REGISTER_TRACE(pOp->p3, pDest);
70038   break;
70039 }
70040 
70041 /* Opcode: Affinity P1 P2 * P4 *
70042 ** Synopsis: affinity(r[P1@P2])
70043 **
70044 ** Apply affinities to a range of P2 registers starting with P1.
70045 **
70046 ** P4 is a string that is P2 characters long. The nth character of the
70047 ** string indicates the column affinity that should be used for the nth
70048 ** memory cell in the range.
70049 */
70050 case OP_Affinity: {
70051   const char *zAffinity;   /* The affinity to be applied */
70052   char cAff;               /* A single character of affinity */
70053 
70054   zAffinity = pOp->p4.z;
70055   assert( zAffinity!=0 );
70056   assert( zAffinity[pOp->p2]==0 );
70057   pIn1 = &aMem[pOp->p1];
70058   while( (cAff = *(zAffinity++))!=0 ){
70059     assert( pIn1 <= &p->aMem[(p->nMem-p->nCursor)] );
70060     assert( memIsValid(pIn1) );
70061     applyAffinity(pIn1, cAff, encoding);
70062     pIn1++;
70063   }
70064   break;
70065 }
70066 
70067 /* Opcode: MakeRecord P1 P2 P3 P4 *
70068 ** Synopsis: r[P3]=mkrec(r[P1@P2])
70069 **
70070 ** Convert P2 registers beginning with P1 into the [record format]
70071 ** use as a data record in a database table or as a key
70072 ** in an index.  The OP_Column opcode can decode the record later.
70073 **
70074 ** P4 may be a string that is P2 characters long.  The nth character of the
70075 ** string indicates the column affinity that should be used for the nth
70076 ** field of the index key.
70077 **
70078 ** The mapping from character to affinity is given by the SQLITE_AFF_
70079 ** macros defined in sqliteInt.h.
70080 **
70081 ** If P4 is NULL then all index fields have the affinity NONE.
70082 */
70083 case OP_MakeRecord: {
70084   u8 *zNewRecord;        /* A buffer to hold the data for the new record */
70085   Mem *pRec;             /* The new record */
70086   u64 nData;             /* Number of bytes of data space */
70087   int nHdr;              /* Number of bytes of header space */
70088   i64 nByte;             /* Data space required for this record */
70089   int nZero;             /* Number of zero bytes at the end of the record */
70090   int nVarint;           /* Number of bytes in a varint */
70091   u32 serial_type;       /* Type field */
70092   Mem *pData0;           /* First field to be combined into the record */
70093   Mem *pLast;            /* Last field of the record */
70094   int nField;            /* Number of fields in the record */
70095   char *zAffinity;       /* The affinity string for the record */
70096   int file_format;       /* File format to use for encoding */
70097   int i;                 /* Space used in zNewRecord[] header */
70098   int j;                 /* Space used in zNewRecord[] content */
70099   int len;               /* Length of a field */
70100 
70101   /* Assuming the record contains N fields, the record format looks
70102   ** like this:
70103   **
70104   ** ------------------------------------------------------------------------
70105   ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
70106   ** ------------------------------------------------------------------------
70107   **
70108   ** Data(0) is taken from register P1.  Data(1) comes from register P1+1
70109   ** and so froth.
70110   **
70111   ** Each type field is a varint representing the serial type of the
70112   ** corresponding data element (see sqlite3VdbeSerialType()). The
70113   ** hdr-size field is also a varint which is the offset from the beginning
70114   ** of the record to data0.
70115   */
70116   nData = 0;         /* Number of bytes of data space */
70117   nHdr = 0;          /* Number of bytes of header space */
70118   nZero = 0;         /* Number of zero bytes at the end of the record */
70119   nField = pOp->p1;
70120   zAffinity = pOp->p4.z;
70121   assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem-p->nCursor)+1 );
70122   pData0 = &aMem[nField];
70123   nField = pOp->p2;
70124   pLast = &pData0[nField-1];
70125   file_format = p->minWriteFileFormat;
70126 
70127   /* Identify the output register */
70128   assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
70129   pOut = &aMem[pOp->p3];
70130   memAboutToChange(p, pOut);
70131 
70132   /* Apply the requested affinity to all inputs
70133   */
70134   assert( pData0<=pLast );
70135   if( zAffinity ){
70136     pRec = pData0;
70137     do{
70138       applyAffinity(pRec++, *(zAffinity++), encoding);
70139       assert( zAffinity[0]==0 || pRec<=pLast );
70140     }while( zAffinity[0] );
70141   }
70142 
70143   /* Loop through the elements that will make up the record to figure
70144   ** out how much space is required for the new record.
70145   */
70146   pRec = pLast;
70147   do{
70148     assert( memIsValid(pRec) );
70149     serial_type = sqlite3VdbeSerialType(pRec, file_format);
70150     len = sqlite3VdbeSerialTypeLen(serial_type);
70151     if( pRec->flags & MEM_Zero ){
70152       if( nData ){
70153         sqlite3VdbeMemExpandBlob(pRec);
70154       }else{
70155         nZero += pRec->u.nZero;
70156         len -= pRec->u.nZero;
70157       }
70158     }
70159     nData += len;
70160     testcase( serial_type==127 );
70161     testcase( serial_type==128 );
70162     nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type);
70163   }while( (--pRec)>=pData0 );
70164 
70165   /* Add the initial header varint and total the size */
70166   testcase( nHdr==126 );
70167   testcase( nHdr==127 );
70168   if( nHdr<=126 ){
70169     /* The common case */
70170     nHdr += 1;
70171   }else{
70172     /* Rare case of a really large header */
70173     nVarint = sqlite3VarintLen(nHdr);
70174     nHdr += nVarint;
70175     if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
70176   }
70177   nByte = nHdr+nData;
70178   if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
70179     goto too_big;
70180   }
70181 
70182   /* Make sure the output register has a buffer large enough to store
70183   ** the new record. The output register (pOp->p3) is not allowed to
70184   ** be one of the input registers (because the following call to
70185   ** sqlite3VdbeMemGrow() could clobber the value before it is used).
70186   */
70187   if( sqlite3VdbeMemGrow(pOut, (int)nByte, 0) ){
70188     goto no_mem;
70189   }
70190   zNewRecord = (u8 *)pOut->z;
70191 
70192   /* Write the record */
70193   i = putVarint32(zNewRecord, nHdr);
70194   j = nHdr;
70195   assert( pData0<=pLast );
70196   pRec = pData0;
70197   do{
70198     serial_type = sqlite3VdbeSerialType(pRec, file_format);
70199     i += putVarint32(&zNewRecord[i], serial_type);            /* serial type */
70200     j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */
70201   }while( (++pRec)<=pLast );
70202   assert( i==nHdr );
70203   assert( j==nByte );
70204 
70205   assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
70206   pOut->n = (int)nByte;
70207   pOut->flags = MEM_Blob;
70208   pOut->xDel = 0;
70209   if( nZero ){
70210     pOut->u.nZero = nZero;
70211     pOut->flags |= MEM_Zero;
70212   }
70213   pOut->enc = SQLITE_UTF8;  /* In case the blob is ever converted to text */
70214   REGISTER_TRACE(pOp->p3, pOut);
70215   UPDATE_MAX_BLOBSIZE(pOut);
70216   break;
70217 }
70218 
70219 /* Opcode: Count P1 P2 * * *
70220 ** Synopsis: r[P2]=count()
70221 **
70222 ** Store the number of entries (an integer value) in the table or index
70223 ** opened by cursor P1 in register P2
70224 */
70225 #ifndef SQLITE_OMIT_BTREECOUNT
70226 case OP_Count: {         /* out2-prerelease */
70227   i64 nEntry;
70228   BtCursor *pCrsr;
70229 
70230   pCrsr = p->apCsr[pOp->p1]->pCursor;
70231   assert( pCrsr );
70232   nEntry = 0;  /* Not needed.  Only used to silence a warning. */
70233   rc = sqlite3BtreeCount(pCrsr, &nEntry);
70234   pOut->u.i = nEntry;
70235   break;
70236 }
70237 #endif
70238 
70239 /* Opcode: Savepoint P1 * * P4 *
70240 **
70241 ** Open, release or rollback the savepoint named by parameter P4, depending
70242 ** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
70243 ** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
70244 */
70245 case OP_Savepoint: {
70246   int p1;                         /* Value of P1 operand */
70247   char *zName;                    /* Name of savepoint */
70248   int nName;
70249   Savepoint *pNew;
70250   Savepoint *pSavepoint;
70251   Savepoint *pTmp;
70252   int iSavepoint;
70253   int ii;
70254 
70255   p1 = pOp->p1;
70256   zName = pOp->p4.z;
70257 
70258   /* Assert that the p1 parameter is valid. Also that if there is no open
70259   ** transaction, then there cannot be any savepoints.
70260   */
70261   assert( db->pSavepoint==0 || db->autoCommit==0 );
70262   assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
70263   assert( db->pSavepoint || db->isTransactionSavepoint==0 );
70264   assert( checkSavepointCount(db) );
70265   assert( p->bIsReader );
70266 
70267   if( p1==SAVEPOINT_BEGIN ){
70268     if( db->nVdbeWrite>0 ){
70269       /* A new savepoint cannot be created if there are active write
70270       ** statements (i.e. open read/write incremental blob handles).
70271       */
70272       sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - "
70273         "SQL statements in progress");
70274       rc = SQLITE_BUSY;
70275     }else{
70276       nName = sqlite3Strlen30(zName);
70277 
70278 #ifndef SQLITE_OMIT_VIRTUALTABLE
70279       /* This call is Ok even if this savepoint is actually a transaction
70280       ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
70281       ** If this is a transaction savepoint being opened, it is guaranteed
70282       ** that the db->aVTrans[] array is empty.  */
70283       assert( db->autoCommit==0 || db->nVTrans==0 );
70284       rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
70285                                 db->nStatement+db->nSavepoint);
70286       if( rc!=SQLITE_OK ) goto abort_due_to_error;
70287 #endif
70288 
70289       /* Create a new savepoint structure. */
70290       pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1);
70291       if( pNew ){
70292         pNew->zName = (char *)&pNew[1];
70293         memcpy(pNew->zName, zName, nName+1);
70294 
70295         /* If there is no open transaction, then mark this as a special
70296         ** "transaction savepoint". */
70297         if( db->autoCommit ){
70298           db->autoCommit = 0;
70299           db->isTransactionSavepoint = 1;
70300         }else{
70301           db->nSavepoint++;
70302         }
70303 
70304         /* Link the new savepoint into the database handle's list. */
70305         pNew->pNext = db->pSavepoint;
70306         db->pSavepoint = pNew;
70307         pNew->nDeferredCons = db->nDeferredCons;
70308         pNew->nDeferredImmCons = db->nDeferredImmCons;
70309       }
70310     }
70311   }else{
70312     iSavepoint = 0;
70313 
70314     /* Find the named savepoint. If there is no such savepoint, then an
70315     ** an error is returned to the user.  */
70316     for(
70317       pSavepoint = db->pSavepoint;
70318       pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
70319       pSavepoint = pSavepoint->pNext
70320     ){
70321       iSavepoint++;
70322     }
70323     if( !pSavepoint ){
70324       sqlite3SetString(&p->zErrMsg, db, "no such savepoint: %s", zName);
70325       rc = SQLITE_ERROR;
70326     }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
70327       /* It is not possible to release (commit) a savepoint if there are
70328       ** active write statements.
70329       */
70330       sqlite3SetString(&p->zErrMsg, db,
70331         "cannot release savepoint - SQL statements in progress"
70332       );
70333       rc = SQLITE_BUSY;
70334     }else{
70335 
70336       /* Determine whether or not this is a transaction savepoint. If so,
70337       ** and this is a RELEASE command, then the current transaction
70338       ** is committed.
70339       */
70340       int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
70341       if( isTransaction && p1==SAVEPOINT_RELEASE ){
70342         if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
70343           goto vdbe_return;
70344         }
70345         db->autoCommit = 1;
70346         if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
70347           p->pc = pc;
70348           db->autoCommit = 0;
70349           p->rc = rc = SQLITE_BUSY;
70350           goto vdbe_return;
70351         }
70352         db->isTransactionSavepoint = 0;
70353         rc = p->rc;
70354       }else{
70355         iSavepoint = db->nSavepoint - iSavepoint - 1;
70356         if( p1==SAVEPOINT_ROLLBACK ){
70357           for(ii=0; ii<db->nDb; ii++){
70358             sqlite3BtreeTripAllCursors(db->aDb[ii].pBt, SQLITE_ABORT);
70359           }
70360         }
70361         for(ii=0; ii<db->nDb; ii++){
70362           rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
70363           if( rc!=SQLITE_OK ){
70364             goto abort_due_to_error;
70365           }
70366         }
70367         if( p1==SAVEPOINT_ROLLBACK && (db->flags&SQLITE_InternChanges)!=0 ){
70368           sqlite3ExpirePreparedStatements(db);
70369           sqlite3ResetAllSchemasOfConnection(db);
70370           db->flags = (db->flags | SQLITE_InternChanges);
70371         }
70372       }
70373 
70374       /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
70375       ** savepoints nested inside of the savepoint being operated on. */
70376       while( db->pSavepoint!=pSavepoint ){
70377         pTmp = db->pSavepoint;
70378         db->pSavepoint = pTmp->pNext;
70379         sqlite3DbFree(db, pTmp);
70380         db->nSavepoint--;
70381       }
70382 
70383       /* If it is a RELEASE, then destroy the savepoint being operated on
70384       ** too. If it is a ROLLBACK TO, then set the number of deferred
70385       ** constraint violations present in the database to the value stored
70386       ** when the savepoint was created.  */
70387       if( p1==SAVEPOINT_RELEASE ){
70388         assert( pSavepoint==db->pSavepoint );
70389         db->pSavepoint = pSavepoint->pNext;
70390         sqlite3DbFree(db, pSavepoint);
70391         if( !isTransaction ){
70392           db->nSavepoint--;
70393         }
70394       }else{
70395         db->nDeferredCons = pSavepoint->nDeferredCons;
70396         db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
70397       }
70398 
70399       if( !isTransaction ){
70400         rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
70401         if( rc!=SQLITE_OK ) goto abort_due_to_error;
70402       }
70403     }
70404   }
70405 
70406   break;
70407 }
70408 
70409 /* Opcode: AutoCommit P1 P2 * * *
70410 **
70411 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
70412 ** back any currently active btree transactions. If there are any active
70413 ** VMs (apart from this one), then a ROLLBACK fails.  A COMMIT fails if
70414 ** there are active writing VMs or active VMs that use shared cache.
70415 **
70416 ** This instruction causes the VM to halt.
70417 */
70418 case OP_AutoCommit: {
70419   int desiredAutoCommit;
70420   int iRollback;
70421   int turnOnAC;
70422 
70423   desiredAutoCommit = pOp->p1;
70424   iRollback = pOp->p2;
70425   turnOnAC = desiredAutoCommit && !db->autoCommit;
70426   assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
70427   assert( desiredAutoCommit==1 || iRollback==0 );
70428   assert( db->nVdbeActive>0 );  /* At least this one VM is active */
70429   assert( p->bIsReader );
70430 
70431 #if 0
70432   if( turnOnAC && iRollback && db->nVdbeActive>1 ){
70433     /* If this instruction implements a ROLLBACK and other VMs are
70434     ** still running, and a transaction is active, return an error indicating
70435     ** that the other VMs must complete first.
70436     */
70437     sqlite3SetString(&p->zErrMsg, db, "cannot rollback transaction - "
70438         "SQL statements in progress");
70439     rc = SQLITE_BUSY;
70440   }else
70441 #endif
70442   if( turnOnAC && !iRollback && db->nVdbeWrite>0 ){
70443     /* If this instruction implements a COMMIT and other VMs are writing
70444     ** return an error indicating that the other VMs must complete first.
70445     */
70446     sqlite3SetString(&p->zErrMsg, db, "cannot commit transaction - "
70447         "SQL statements in progress");
70448     rc = SQLITE_BUSY;
70449   }else if( desiredAutoCommit!=db->autoCommit ){
70450     if( iRollback ){
70451       assert( desiredAutoCommit==1 );
70452       sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
70453       db->autoCommit = 1;
70454     }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
70455       goto vdbe_return;
70456     }else{
70457       db->autoCommit = (u8)desiredAutoCommit;
70458       if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
70459         p->pc = pc;
70460         db->autoCommit = (u8)(1-desiredAutoCommit);
70461         p->rc = rc = SQLITE_BUSY;
70462         goto vdbe_return;
70463       }
70464     }
70465     assert( db->nStatement==0 );
70466     sqlite3CloseSavepoints(db);
70467     if( p->rc==SQLITE_OK ){
70468       rc = SQLITE_DONE;
70469     }else{
70470       rc = SQLITE_ERROR;
70471     }
70472     goto vdbe_return;
70473   }else{
70474     sqlite3SetString(&p->zErrMsg, db,
70475         (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
70476         (iRollback)?"cannot rollback - no transaction is active":
70477                    "cannot commit - no transaction is active"));
70478 
70479     rc = SQLITE_ERROR;
70480   }
70481   break;
70482 }
70483 
70484 /* Opcode: Transaction P1 P2 P3 P4 P5
70485 **
70486 ** Begin a transaction on database P1 if a transaction is not already
70487 ** active.
70488 ** If P2 is non-zero, then a write-transaction is started, or if a
70489 ** read-transaction is already active, it is upgraded to a write-transaction.
70490 ** If P2 is zero, then a read-transaction is started.
70491 **
70492 ** P1 is the index of the database file on which the transaction is
70493 ** started.  Index 0 is the main database file and index 1 is the
70494 ** file used for temporary tables.  Indices of 2 or more are used for
70495 ** attached databases.
70496 **
70497 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
70498 ** true (this flag is set if the Vdbe may modify more than one row and may
70499 ** throw an ABORT exception), a statement transaction may also be opened.
70500 ** More specifically, a statement transaction is opened iff the database
70501 ** connection is currently not in autocommit mode, or if there are other
70502 ** active statements. A statement transaction allows the changes made by this
70503 ** VDBE to be rolled back after an error without having to roll back the
70504 ** entire transaction. If no error is encountered, the statement transaction
70505 ** will automatically commit when the VDBE halts.
70506 **
70507 ** If P5!=0 then this opcode also checks the schema cookie against P3
70508 ** and the schema generation counter against P4.
70509 ** The cookie changes its value whenever the database schema changes.
70510 ** This operation is used to detect when that the cookie has changed
70511 ** and that the current process needs to reread the schema.  If the schema
70512 ** cookie in P3 differs from the schema cookie in the database header or
70513 ** if the schema generation counter in P4 differs from the current
70514 ** generation counter, then an SQLITE_SCHEMA error is raised and execution
70515 ** halts.  The sqlite3_step() wrapper function might then reprepare the
70516 ** statement and rerun it from the beginning.
70517 */
70518 case OP_Transaction: {
70519   Btree *pBt;
70520   int iMeta;
70521   int iGen;
70522 
70523   assert( p->bIsReader );
70524   assert( p->readOnly==0 || pOp->p2==0 );
70525   assert( pOp->p1>=0 && pOp->p1<db->nDb );
70526   assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
70527   if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){
70528     rc = SQLITE_READONLY;
70529     goto abort_due_to_error;
70530   }
70531   pBt = db->aDb[pOp->p1].pBt;
70532 
70533   if( pBt ){
70534     rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
70535     if( rc==SQLITE_BUSY ){
70536       p->pc = pc;
70537       p->rc = rc = SQLITE_BUSY;
70538       goto vdbe_return;
70539     }
70540     if( rc!=SQLITE_OK ){
70541       goto abort_due_to_error;
70542     }
70543 
70544     if( pOp->p2 && p->usesStmtJournal
70545      && (db->autoCommit==0 || db->nVdbeRead>1)
70546     ){
70547       assert( sqlite3BtreeIsInTrans(pBt) );
70548       if( p->iStatement==0 ){
70549         assert( db->nStatement>=0 && db->nSavepoint>=0 );
70550         db->nStatement++;
70551         p->iStatement = db->nSavepoint + db->nStatement;
70552       }
70553 
70554       rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
70555       if( rc==SQLITE_OK ){
70556         rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
70557       }
70558 
70559       /* Store the current value of the database handles deferred constraint
70560       ** counter. If the statement transaction needs to be rolled back,
70561       ** the value of this counter needs to be restored too.  */
70562       p->nStmtDefCons = db->nDeferredCons;
70563       p->nStmtDefImmCons = db->nDeferredImmCons;
70564     }
70565 
70566     /* Gather the schema version number for checking */
70567     sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
70568     iGen = db->aDb[pOp->p1].pSchema->iGeneration;
70569   }else{
70570     iGen = iMeta = 0;
70571   }
70572   assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
70573   if( pOp->p5 && (iMeta!=pOp->p3 || iGen!=pOp->p4.i) ){
70574     sqlite3DbFree(db, p->zErrMsg);
70575     p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
70576     /* If the schema-cookie from the database file matches the cookie
70577     ** stored with the in-memory representation of the schema, do
70578     ** not reload the schema from the database file.
70579     **
70580     ** If virtual-tables are in use, this is not just an optimization.
70581     ** Often, v-tables store their data in other SQLite tables, which
70582     ** are queried from within xNext() and other v-table methods using
70583     ** prepared queries. If such a query is out-of-date, we do not want to
70584     ** discard the database schema, as the user code implementing the
70585     ** v-table would have to be ready for the sqlite3_vtab structure itself
70586     ** to be invalidated whenever sqlite3_step() is called from within
70587     ** a v-table method.
70588     */
70589     if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
70590       sqlite3ResetOneSchema(db, pOp->p1);
70591     }
70592     p->expired = 1;
70593     rc = SQLITE_SCHEMA;
70594   }
70595   break;
70596 }
70597 
70598 /* Opcode: ReadCookie P1 P2 P3 * *
70599 **
70600 ** Read cookie number P3 from database P1 and write it into register P2.
70601 ** P3==1 is the schema version.  P3==2 is the database format.
70602 ** P3==3 is the recommended pager cache size, and so forth.  P1==0 is
70603 ** the main database file and P1==1 is the database file used to store
70604 ** temporary tables.
70605 **
70606 ** There must be a read-lock on the database (either a transaction
70607 ** must be started or there must be an open cursor) before
70608 ** executing this instruction.
70609 */
70610 case OP_ReadCookie: {               /* out2-prerelease */
70611   int iMeta;
70612   int iDb;
70613   int iCookie;
70614 
70615   assert( p->bIsReader );
70616   iDb = pOp->p1;
70617   iCookie = pOp->p3;
70618   assert( pOp->p3<SQLITE_N_BTREE_META );
70619   assert( iDb>=0 && iDb<db->nDb );
70620   assert( db->aDb[iDb].pBt!=0 );
70621   assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
70622 
70623   sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
70624   pOut->u.i = iMeta;
70625   break;
70626 }
70627 
70628 /* Opcode: SetCookie P1 P2 P3 * *
70629 **
70630 ** Write the content of register P3 (interpreted as an integer)
70631 ** into cookie number P2 of database P1.  P2==1 is the schema version.
70632 ** P2==2 is the database format. P2==3 is the recommended pager cache
70633 ** size, and so forth.  P1==0 is the main database file and P1==1 is the
70634 ** database file used to store temporary tables.
70635 **
70636 ** A transaction must be started before executing this opcode.
70637 */
70638 case OP_SetCookie: {       /* in3 */
70639   Db *pDb;
70640   assert( pOp->p2<SQLITE_N_BTREE_META );
70641   assert( pOp->p1>=0 && pOp->p1<db->nDb );
70642   assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
70643   assert( p->readOnly==0 );
70644   pDb = &db->aDb[pOp->p1];
70645   assert( pDb->pBt!=0 );
70646   assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
70647   pIn3 = &aMem[pOp->p3];
70648   sqlite3VdbeMemIntegerify(pIn3);
70649   /* See note about index shifting on OP_ReadCookie */
70650   rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, (int)pIn3->u.i);
70651   if( pOp->p2==BTREE_SCHEMA_VERSION ){
70652     /* When the schema cookie changes, record the new cookie internally */
70653     pDb->pSchema->schema_cookie = (int)pIn3->u.i;
70654     db->flags |= SQLITE_InternChanges;
70655   }else if( pOp->p2==BTREE_FILE_FORMAT ){
70656     /* Record changes in the file format */
70657     pDb->pSchema->file_format = (u8)pIn3->u.i;
70658   }
70659   if( pOp->p1==1 ){
70660     /* Invalidate all prepared statements whenever the TEMP database
70661     ** schema is changed.  Ticket #1644 */
70662     sqlite3ExpirePreparedStatements(db);
70663     p->expired = 0;
70664   }
70665   break;
70666 }
70667 
70668 /* Opcode: OpenRead P1 P2 P3 P4 P5
70669 ** Synopsis: root=P2 iDb=P3
70670 **
70671 ** Open a read-only cursor for the database table whose root page is
70672 ** P2 in a database file.  The database file is determined by P3.
70673 ** P3==0 means the main database, P3==1 means the database used for
70674 ** temporary tables, and P3>1 means used the corresponding attached
70675 ** database.  Give the new cursor an identifier of P1.  The P1
70676 ** values need not be contiguous but all P1 values should be small integers.
70677 ** It is an error for P1 to be negative.
70678 **
70679 ** If P5!=0 then use the content of register P2 as the root page, not
70680 ** the value of P2 itself.
70681 **
70682 ** There will be a read lock on the database whenever there is an
70683 ** open cursor.  If the database was unlocked prior to this instruction
70684 ** then a read lock is acquired as part of this instruction.  A read
70685 ** lock allows other processes to read the database but prohibits
70686 ** any other process from modifying the database.  The read lock is
70687 ** released when all cursors are closed.  If this instruction attempts
70688 ** to get a read lock but fails, the script terminates with an
70689 ** SQLITE_BUSY error code.
70690 **
70691 ** The P4 value may be either an integer (P4_INT32) or a pointer to
70692 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
70693 ** structure, then said structure defines the content and collating
70694 ** sequence of the index being opened. Otherwise, if P4 is an integer
70695 ** value, it is set to the number of columns in the table.
70696 **
70697 ** See also OpenWrite.
70698 */
70699 /* Opcode: OpenWrite P1 P2 P3 P4 P5
70700 ** Synopsis: root=P2 iDb=P3
70701 **
70702 ** Open a read/write cursor named P1 on the table or index whose root
70703 ** page is P2.  Or if P5!=0 use the content of register P2 to find the
70704 ** root page.
70705 **
70706 ** The P4 value may be either an integer (P4_INT32) or a pointer to
70707 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
70708 ** structure, then said structure defines the content and collating
70709 ** sequence of the index being opened. Otherwise, if P4 is an integer
70710 ** value, it is set to the number of columns in the table, or to the
70711 ** largest index of any column of the table that is actually used.
70712 **
70713 ** This instruction works just like OpenRead except that it opens the cursor
70714 ** in read/write mode.  For a given table, there can be one or more read-only
70715 ** cursors or a single read/write cursor but not both.
70716 **
70717 ** See also OpenRead.
70718 */
70719 case OP_OpenRead:
70720 case OP_OpenWrite: {
70721   int nField;
70722   KeyInfo *pKeyInfo;
70723   int p2;
70724   int iDb;
70725   int wrFlag;
70726   Btree *pX;
70727   VdbeCursor *pCur;
70728   Db *pDb;
70729 
70730   assert( (pOp->p5&(OPFLAG_P2ISREG|OPFLAG_BULKCSR))==pOp->p5 );
70731   assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 );
70732   assert( p->bIsReader );
70733   assert( pOp->opcode==OP_OpenRead || p->readOnly==0 );
70734 
70735   if( p->expired ){
70736     rc = SQLITE_ABORT;
70737     break;
70738   }
70739 
70740   nField = 0;
70741   pKeyInfo = 0;
70742   p2 = pOp->p2;
70743   iDb = pOp->p3;
70744   assert( iDb>=0 && iDb<db->nDb );
70745   assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
70746   pDb = &db->aDb[iDb];
70747   pX = pDb->pBt;
70748   assert( pX!=0 );
70749   if( pOp->opcode==OP_OpenWrite ){
70750     wrFlag = 1;
70751     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
70752     if( pDb->pSchema->file_format < p->minWriteFileFormat ){
70753       p->minWriteFileFormat = pDb->pSchema->file_format;
70754     }
70755   }else{
70756     wrFlag = 0;
70757   }
70758   if( pOp->p5 & OPFLAG_P2ISREG ){
70759     assert( p2>0 );
70760     assert( p2<=(p->nMem-p->nCursor) );
70761     pIn2 = &aMem[p2];
70762     assert( memIsValid(pIn2) );
70763     assert( (pIn2->flags & MEM_Int)!=0 );
70764     sqlite3VdbeMemIntegerify(pIn2);
70765     p2 = (int)pIn2->u.i;
70766     /* The p2 value always comes from a prior OP_CreateTable opcode and
70767     ** that opcode will always set the p2 value to 2 or more or else fail.
70768     ** If there were a failure, the prepared statement would have halted
70769     ** before reaching this instruction. */
70770     if( NEVER(p2<2) ) {
70771       rc = SQLITE_CORRUPT_BKPT;
70772       goto abort_due_to_error;
70773     }
70774   }
70775   if( pOp->p4type==P4_KEYINFO ){
70776     pKeyInfo = pOp->p4.pKeyInfo;
70777     assert( pKeyInfo->enc==ENC(db) );
70778     assert( pKeyInfo->db==db );
70779     nField = pKeyInfo->nField+pKeyInfo->nXField;
70780   }else if( pOp->p4type==P4_INT32 ){
70781     nField = pOp->p4.i;
70782   }
70783   assert( pOp->p1>=0 );
70784   assert( nField>=0 );
70785   testcase( nField==0 );  /* Table with INTEGER PRIMARY KEY and nothing else */
70786   pCur = allocateCursor(p, pOp->p1, nField, iDb, 1);
70787   if( pCur==0 ) goto no_mem;
70788   pCur->nullRow = 1;
70789   pCur->isOrdered = 1;
70790   rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor);
70791   pCur->pKeyInfo = pKeyInfo;
70792   assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
70793   sqlite3BtreeCursorHints(pCur->pCursor, (pOp->p5 & OPFLAG_BULKCSR));
70794 
70795   /* Since it performs no memory allocation or IO, the only value that
70796   ** sqlite3BtreeCursor() may return is SQLITE_OK. */
70797   assert( rc==SQLITE_OK );
70798 
70799   /* Set the VdbeCursor.isTable variable. Previous versions of
70800   ** SQLite used to check if the root-page flags were sane at this point
70801   ** and report database corruption if they were not, but this check has
70802   ** since moved into the btree layer.  */
70803   pCur->isTable = pOp->p4type!=P4_KEYINFO;
70804   break;
70805 }
70806 
70807 /* Opcode: OpenEphemeral P1 P2 * P4 P5
70808 ** Synopsis: nColumn=P2
70809 **
70810 ** Open a new cursor P1 to a transient table.
70811 ** The cursor is always opened read/write even if
70812 ** the main database is read-only.  The ephemeral
70813 ** table is deleted automatically when the cursor is closed.
70814 **
70815 ** P2 is the number of columns in the ephemeral table.
70816 ** The cursor points to a BTree table if P4==0 and to a BTree index
70817 ** if P4 is not 0.  If P4 is not NULL, it points to a KeyInfo structure
70818 ** that defines the format of keys in the index.
70819 **
70820 ** The P5 parameter can be a mask of the BTREE_* flags defined
70821 ** in btree.h.  These flags control aspects of the operation of
70822 ** the btree.  The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
70823 ** added automatically.
70824 */
70825 /* Opcode: OpenAutoindex P1 P2 * P4 *
70826 ** Synopsis: nColumn=P2
70827 **
70828 ** This opcode works the same as OP_OpenEphemeral.  It has a
70829 ** different name to distinguish its use.  Tables created using
70830 ** by this opcode will be used for automatically created transient
70831 ** indices in joins.
70832 */
70833 case OP_OpenAutoindex:
70834 case OP_OpenEphemeral: {
70835   VdbeCursor *pCx;
70836   KeyInfo *pKeyInfo;
70837 
70838   static const int vfsFlags =
70839       SQLITE_OPEN_READWRITE |
70840       SQLITE_OPEN_CREATE |
70841       SQLITE_OPEN_EXCLUSIVE |
70842       SQLITE_OPEN_DELETEONCLOSE |
70843       SQLITE_OPEN_TRANSIENT_DB;
70844   assert( pOp->p1>=0 );
70845   assert( pOp->p2>=0 );
70846   pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
70847   if( pCx==0 ) goto no_mem;
70848   pCx->nullRow = 1;
70849   pCx->isEphemeral = 1;
70850   rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt,
70851                         BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
70852   if( rc==SQLITE_OK ){
70853     rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
70854   }
70855   if( rc==SQLITE_OK ){
70856     /* If a transient index is required, create it by calling
70857     ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
70858     ** opening it. If a transient table is required, just use the
70859     ** automatically created table with root-page 1 (an BLOB_INTKEY table).
70860     */
70861     if( (pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
70862       int pgno;
70863       assert( pOp->p4type==P4_KEYINFO );
70864       rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY | pOp->p5);
70865       if( rc==SQLITE_OK ){
70866         assert( pgno==MASTER_ROOT+1 );
70867         assert( pKeyInfo->db==db );
70868         assert( pKeyInfo->enc==ENC(db) );
70869         pCx->pKeyInfo = pKeyInfo;
70870         rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, pKeyInfo, pCx->pCursor);
70871       }
70872       pCx->isTable = 0;
70873     }else{
70874       rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor);
70875       pCx->isTable = 1;
70876     }
70877   }
70878   pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
70879   break;
70880 }
70881 
70882 /* Opcode: SorterOpen P1 P2 * P4 *
70883 **
70884 ** This opcode works like OP_OpenEphemeral except that it opens
70885 ** a transient index that is specifically designed to sort large
70886 ** tables using an external merge-sort algorithm.
70887 */
70888 case OP_SorterOpen: {
70889   VdbeCursor *pCx;
70890 
70891   assert( pOp->p1>=0 );
70892   assert( pOp->p2>=0 );
70893   pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
70894   if( pCx==0 ) goto no_mem;
70895   pCx->pKeyInfo = pOp->p4.pKeyInfo;
70896   assert( pCx->pKeyInfo->db==db );
70897   assert( pCx->pKeyInfo->enc==ENC(db) );
70898   rc = sqlite3VdbeSorterInit(db, pCx);
70899   break;
70900 }
70901 
70902 /* Opcode: OpenPseudo P1 P2 P3 * *
70903 ** Synopsis: P3 columns in r[P2]
70904 **
70905 ** Open a new cursor that points to a fake table that contains a single
70906 ** row of data.  The content of that one row is the content of memory
70907 ** register P2.  In other words, cursor P1 becomes an alias for the
70908 ** MEM_Blob content contained in register P2.
70909 **
70910 ** A pseudo-table created by this opcode is used to hold a single
70911 ** row output from the sorter so that the row can be decomposed into
70912 ** individual columns using the OP_Column opcode.  The OP_Column opcode
70913 ** is the only cursor opcode that works with a pseudo-table.
70914 **
70915 ** P3 is the number of fields in the records that will be stored by
70916 ** the pseudo-table.
70917 */
70918 case OP_OpenPseudo: {
70919   VdbeCursor *pCx;
70920 
70921   assert( pOp->p1>=0 );
70922   assert( pOp->p3>=0 );
70923   pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0);
70924   if( pCx==0 ) goto no_mem;
70925   pCx->nullRow = 1;
70926   pCx->pseudoTableReg = pOp->p2;
70927   pCx->isTable = 1;
70928   assert( pOp->p5==0 );
70929   break;
70930 }
70931 
70932 /* Opcode: Close P1 * * * *
70933 **
70934 ** Close a cursor previously opened as P1.  If P1 is not
70935 ** currently open, this instruction is a no-op.
70936 */
70937 case OP_Close: {
70938   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
70939   sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
70940   p->apCsr[pOp->p1] = 0;
70941   break;
70942 }
70943 
70944 /* Opcode: SeekGe P1 P2 P3 P4 *
70945 ** Synopsis: key=r[P3@P4]
70946 **
70947 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
70948 ** use the value in register P3 as the key.  If cursor P1 refers
70949 ** to an SQL index, then P3 is the first in an array of P4 registers
70950 ** that are used as an unpacked index key.
70951 **
70952 ** Reposition cursor P1 so that  it points to the smallest entry that
70953 ** is greater than or equal to the key value. If there are no records
70954 ** greater than or equal to the key and P2 is not zero, then jump to P2.
70955 **
70956 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
70957 */
70958 /* Opcode: SeekGt P1 P2 P3 P4 *
70959 ** Synopsis: key=r[P3@P4]
70960 **
70961 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
70962 ** use the value in register P3 as a key. If cursor P1 refers
70963 ** to an SQL index, then P3 is the first in an array of P4 registers
70964 ** that are used as an unpacked index key.
70965 **
70966 ** Reposition cursor P1 so that  it points to the smallest entry that
70967 ** is greater than the key value. If there are no records greater than
70968 ** the key and P2 is not zero, then jump to P2.
70969 **
70970 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
70971 */
70972 /* Opcode: SeekLt P1 P2 P3 P4 *
70973 ** Synopsis: key=r[P3@P4]
70974 **
70975 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
70976 ** use the value in register P3 as a key. If cursor P1 refers
70977 ** to an SQL index, then P3 is the first in an array of P4 registers
70978 ** that are used as an unpacked index key.
70979 **
70980 ** Reposition cursor P1 so that  it points to the largest entry that
70981 ** is less than the key value. If there are no records less than
70982 ** the key and P2 is not zero, then jump to P2.
70983 **
70984 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
70985 */
70986 /* Opcode: SeekLe P1 P2 P3 P4 *
70987 ** Synopsis: key=r[P3@P4]
70988 **
70989 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
70990 ** use the value in register P3 as a key. If cursor P1 refers
70991 ** to an SQL index, then P3 is the first in an array of P4 registers
70992 ** that are used as an unpacked index key.
70993 **
70994 ** Reposition cursor P1 so that it points to the largest entry that
70995 ** is less than or equal to the key value. If there are no records
70996 ** less than or equal to the key and P2 is not zero, then jump to P2.
70997 **
70998 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
70999 */
71000 case OP_SeekLT:         /* jump, in3 */
71001 case OP_SeekLE:         /* jump, in3 */
71002 case OP_SeekGE:         /* jump, in3 */
71003 case OP_SeekGT: {       /* jump, in3 */
71004   int res;
71005   int oc;
71006   VdbeCursor *pC;
71007   UnpackedRecord r;
71008   int nField;
71009   i64 iKey;      /* The rowid we are to seek to */
71010 
71011   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
71012   assert( pOp->p2!=0 );
71013   pC = p->apCsr[pOp->p1];
71014   assert( pC!=0 );
71015   assert( pC->pseudoTableReg==0 );
71016   assert( OP_SeekLE == OP_SeekLT+1 );
71017   assert( OP_SeekGE == OP_SeekLT+2 );
71018   assert( OP_SeekGT == OP_SeekLT+3 );
71019   assert( pC->isOrdered );
71020   assert( pC->pCursor!=0 );
71021   oc = pOp->opcode;
71022   pC->nullRow = 0;
71023   if( pC->isTable ){
71024     /* The input value in P3 might be of any type: integer, real, string,
71025     ** blob, or NULL.  But it needs to be an integer before we can do
71026     ** the seek, so covert it. */
71027     pIn3 = &aMem[pOp->p3];
71028     applyNumericAffinity(pIn3);
71029     iKey = sqlite3VdbeIntValue(pIn3);
71030     pC->rowidIsValid = 0;
71031 
71032     /* If the P3 value could not be converted into an integer without
71033     ** loss of information, then special processing is required... */
71034     if( (pIn3->flags & MEM_Int)==0 ){
71035       if( (pIn3->flags & MEM_Real)==0 ){
71036         /* If the P3 value cannot be converted into any kind of a number,
71037         ** then the seek is not possible, so jump to P2 */
71038         pc = pOp->p2 - 1;  VdbeBranchTaken(1,2);
71039         break;
71040       }
71041 
71042       /* If the approximation iKey is larger than the actual real search
71043       ** term, substitute >= for > and < for <=. e.g. if the search term
71044       ** is 4.9 and the integer approximation 5:
71045       **
71046       **        (x >  4.9)    ->     (x >= 5)
71047       **        (x <= 4.9)    ->     (x <  5)
71048       */
71049       if( pIn3->r<(double)iKey ){
71050         assert( OP_SeekGE==(OP_SeekGT-1) );
71051         assert( OP_SeekLT==(OP_SeekLE-1) );
71052         assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
71053         if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
71054       }
71055 
71056       /* If the approximation iKey is smaller than the actual real search
71057       ** term, substitute <= for < and > for >=.  */
71058       else if( pIn3->r>(double)iKey ){
71059         assert( OP_SeekLE==(OP_SeekLT+1) );
71060         assert( OP_SeekGT==(OP_SeekGE+1) );
71061         assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
71062         if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
71063       }
71064     }
71065     rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res);
71066     if( rc!=SQLITE_OK ){
71067       goto abort_due_to_error;
71068     }
71069     if( res==0 ){
71070       pC->rowidIsValid = 1;
71071       pC->lastRowid = iKey;
71072     }
71073   }else{
71074     nField = pOp->p4.i;
71075     assert( pOp->p4type==P4_INT32 );
71076     assert( nField>0 );
71077     r.pKeyInfo = pC->pKeyInfo;
71078     r.nField = (u16)nField;
71079 
71080     /* The next line of code computes as follows, only faster:
71081     **   if( oc==OP_SeekGT || oc==OP_SeekLE ){
71082     **     r.default_rc = -1;
71083     **   }else{
71084     **     r.default_rc = +1;
71085     **   }
71086     */
71087     r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
71088     assert( oc!=OP_SeekGT || r.default_rc==-1 );
71089     assert( oc!=OP_SeekLE || r.default_rc==-1 );
71090     assert( oc!=OP_SeekGE || r.default_rc==+1 );
71091     assert( oc!=OP_SeekLT || r.default_rc==+1 );
71092 
71093     r.aMem = &aMem[pOp->p3];
71094 #ifdef SQLITE_DEBUG
71095     { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
71096 #endif
71097     ExpandBlob(r.aMem);
71098     rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res);
71099     if( rc!=SQLITE_OK ){
71100       goto abort_due_to_error;
71101     }
71102     pC->rowidIsValid = 0;
71103   }
71104   pC->deferredMoveto = 0;
71105   pC->cacheStatus = CACHE_STALE;
71106 #ifdef SQLITE_TEST
71107   sqlite3_search_count++;
71108 #endif
71109   if( oc>=OP_SeekGE ){  assert( oc==OP_SeekGE || oc==OP_SeekGT );
71110     if( res<0 || (res==0 && oc==OP_SeekGT) ){
71111       res = 0;
71112       rc = sqlite3BtreeNext(pC->pCursor, &res);
71113       if( rc!=SQLITE_OK ) goto abort_due_to_error;
71114       pC->rowidIsValid = 0;
71115     }else{
71116       res = 0;
71117     }
71118   }else{
71119     assert( oc==OP_SeekLT || oc==OP_SeekLE );
71120     if( res>0 || (res==0 && oc==OP_SeekLT) ){
71121       res = 0;
71122       rc = sqlite3BtreePrevious(pC->pCursor, &res);
71123       if( rc!=SQLITE_OK ) goto abort_due_to_error;
71124       pC->rowidIsValid = 0;
71125     }else{
71126       /* res might be negative because the table is empty.  Check to
71127       ** see if this is the case.
71128       */
71129       res = sqlite3BtreeEof(pC->pCursor);
71130     }
71131   }
71132   assert( pOp->p2>0 );
71133   VdbeBranchTaken(res!=0,2);
71134   if( res ){
71135     pc = pOp->p2 - 1;
71136   }
71137   break;
71138 }
71139 
71140 /* Opcode: Seek P1 P2 * * *
71141 ** Synopsis:  intkey=r[P2]
71142 **
71143 ** P1 is an open table cursor and P2 is a rowid integer.  Arrange
71144 ** for P1 to move so that it points to the rowid given by P2.
71145 **
71146 ** This is actually a deferred seek.  Nothing actually happens until
71147 ** the cursor is used to read a record.  That way, if no reads
71148 ** occur, no unnecessary I/O happens.
71149 */
71150 case OP_Seek: {    /* in2 */
71151   VdbeCursor *pC;
71152 
71153   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
71154   pC = p->apCsr[pOp->p1];
71155   assert( pC!=0 );
71156   assert( pC->pCursor!=0 );
71157   assert( pC->isTable );
71158   pC->nullRow = 0;
71159   pIn2 = &aMem[pOp->p2];
71160   pC->movetoTarget = sqlite3VdbeIntValue(pIn2);
71161   pC->rowidIsValid = 0;
71162   pC->deferredMoveto = 1;
71163   break;
71164 }
71165 
71166 
71167 /* Opcode: Found P1 P2 P3 P4 *
71168 ** Synopsis: key=r[P3@P4]
71169 **
71170 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
71171 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
71172 ** record.
71173 **
71174 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
71175 ** is a prefix of any entry in P1 then a jump is made to P2 and
71176 ** P1 is left pointing at the matching entry.
71177 **
71178 ** See also: NotFound, NoConflict, NotExists. SeekGe
71179 */
71180 /* Opcode: NotFound P1 P2 P3 P4 *
71181 ** Synopsis: key=r[P3@P4]
71182 **
71183 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
71184 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
71185 ** record.
71186 **
71187 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
71188 ** is not the prefix of any entry in P1 then a jump is made to P2.  If P1
71189 ** does contain an entry whose prefix matches the P3/P4 record then control
71190 ** falls through to the next instruction and P1 is left pointing at the
71191 ** matching entry.
71192 **
71193 ** See also: Found, NotExists, NoConflict
71194 */
71195 /* Opcode: NoConflict P1 P2 P3 P4 *
71196 ** Synopsis: key=r[P3@P4]
71197 **
71198 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
71199 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
71200 ** record.
71201 **
71202 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
71203 ** contains any NULL value, jump immediately to P2.  If all terms of the
71204 ** record are not-NULL then a check is done to determine if any row in the
71205 ** P1 index btree has a matching key prefix.  If there are no matches, jump
71206 ** immediately to P2.  If there is a match, fall through and leave the P1
71207 ** cursor pointing to the matching row.
71208 **
71209 ** This opcode is similar to OP_NotFound with the exceptions that the
71210 ** branch is always taken if any part of the search key input is NULL.
71211 **
71212 ** See also: NotFound, Found, NotExists
71213 */
71214 case OP_NoConflict:     /* jump, in3 */
71215 case OP_NotFound:       /* jump, in3 */
71216 case OP_Found: {        /* jump, in3 */
71217   int alreadyExists;
71218   int ii;
71219   VdbeCursor *pC;
71220   int res;
71221   char *pFree;
71222   UnpackedRecord *pIdxKey;
71223   UnpackedRecord r;
71224   char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*4 + 7];
71225 
71226 #ifdef SQLITE_TEST
71227   if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
71228 #endif
71229 
71230   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
71231   assert( pOp->p4type==P4_INT32 );
71232   pC = p->apCsr[pOp->p1];
71233   assert( pC!=0 );
71234   pIn3 = &aMem[pOp->p3];
71235   assert( pC->pCursor!=0 );
71236   assert( pC->isTable==0 );
71237   pFree = 0;  /* Not needed.  Only used to suppress a compiler warning. */
71238   if( pOp->p4.i>0 ){
71239     r.pKeyInfo = pC->pKeyInfo;
71240     r.nField = (u16)pOp->p4.i;
71241     r.aMem = pIn3;
71242     for(ii=0; ii<r.nField; ii++){
71243       assert( memIsValid(&r.aMem[ii]) );
71244       ExpandBlob(&r.aMem[ii]);
71245 #ifdef SQLITE_DEBUG
71246       if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
71247 #endif
71248     }
71249     pIdxKey = &r;
71250   }else{
71251     pIdxKey = sqlite3VdbeAllocUnpackedRecord(
71252         pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree
71253     );
71254     if( pIdxKey==0 ) goto no_mem;
71255     assert( pIn3->flags & MEM_Blob );
71256     assert( (pIn3->flags & MEM_Zero)==0 );  /* zeroblobs already expanded */
71257     sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
71258   }
71259   pIdxKey->default_rc = 0;
71260   if( pOp->opcode==OP_NoConflict ){
71261     /* For the OP_NoConflict opcode, take the jump if any of the
71262     ** input fields are NULL, since any key with a NULL will not
71263     ** conflict */
71264     for(ii=0; ii<r.nField; ii++){
71265       if( r.aMem[ii].flags & MEM_Null ){
71266         pc = pOp->p2 - 1; VdbeBranchTaken(1,2);
71267         break;
71268       }
71269     }
71270   }
71271   rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res);
71272   if( pOp->p4.i==0 ){
71273     sqlite3DbFree(db, pFree);
71274   }
71275   if( rc!=SQLITE_OK ){
71276     break;
71277   }
71278   pC->seekResult = res;
71279   alreadyExists = (res==0);
71280   pC->nullRow = 1-alreadyExists;
71281   pC->deferredMoveto = 0;
71282   pC->cacheStatus = CACHE_STALE;
71283   if( pOp->opcode==OP_Found ){
71284     VdbeBranchTaken(alreadyExists!=0,2);
71285     if( alreadyExists ) pc = pOp->p2 - 1;
71286   }else{
71287     VdbeBranchTaken(alreadyExists==0,2);
71288     if( !alreadyExists ) pc = pOp->p2 - 1;
71289   }
71290   break;
71291 }
71292 
71293 /* Opcode: NotExists P1 P2 P3 * *
71294 ** Synopsis: intkey=r[P3]
71295 **
71296 ** P1 is the index of a cursor open on an SQL table btree (with integer
71297 ** keys).  P3 is an integer rowid.  If P1 does not contain a record with
71298 ** rowid P3 then jump immediately to P2.  If P1 does contain a record
71299 ** with rowid P3 then leave the cursor pointing at that record and fall
71300 ** through to the next instruction.
71301 **
71302 ** The OP_NotFound opcode performs the same operation on index btrees
71303 ** (with arbitrary multi-value keys).
71304 **
71305 ** See also: Found, NotFound, NoConflict
71306 */
71307 case OP_NotExists: {        /* jump, in3 */
71308   VdbeCursor *pC;
71309   BtCursor *pCrsr;
71310   int res;
71311   u64 iKey;
71312 
71313   pIn3 = &aMem[pOp->p3];
71314   assert( pIn3->flags & MEM_Int );
71315   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
71316   pC = p->apCsr[pOp->p1];
71317   assert( pC!=0 );
71318   assert( pC->isTable );
71319   assert( pC->pseudoTableReg==0 );
71320   pCrsr = pC->pCursor;
71321   assert( pCrsr!=0 );
71322   res = 0;
71323   iKey = pIn3->u.i;
71324   rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
71325   pC->lastRowid = pIn3->u.i;
71326   pC->rowidIsValid = res==0 ?1:0;
71327   pC->nullRow = 0;
71328   pC->cacheStatus = CACHE_STALE;
71329   pC->deferredMoveto = 0;
71330   VdbeBranchTaken(res!=0,2);
71331   if( res!=0 ){
71332     pc = pOp->p2 - 1;
71333     assert( pC->rowidIsValid==0 );
71334   }
71335   pC->seekResult = res;
71336   break;
71337 }
71338 
71339 /* Opcode: Sequence P1 P2 * * *
71340 ** Synopsis: r[P2]=cursor[P1].ctr++
71341 **
71342 ** Find the next available sequence number for cursor P1.
71343 ** Write the sequence number into register P2.
71344 ** The sequence number on the cursor is incremented after this
71345 ** instruction.
71346 */
71347 case OP_Sequence: {           /* out2-prerelease */
71348   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
71349   assert( p->apCsr[pOp->p1]!=0 );
71350   pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
71351   break;
71352 }
71353 
71354 
71355 /* Opcode: NewRowid P1 P2 P3 * *
71356 ** Synopsis: r[P2]=rowid
71357 **
71358 ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
71359 ** The record number is not previously used as a key in the database
71360 ** table that cursor P1 points to.  The new record number is written
71361 ** written to register P2.
71362 **
71363 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds
71364 ** the largest previously generated record number. No new record numbers are
71365 ** allowed to be less than this value. When this value reaches its maximum,
71366 ** an SQLITE_FULL error is generated. The P3 register is updated with the '
71367 ** generated record number. This P3 mechanism is used to help implement the
71368 ** AUTOINCREMENT feature.
71369 */
71370 case OP_NewRowid: {           /* out2-prerelease */
71371   i64 v;                 /* The new rowid */
71372   VdbeCursor *pC;        /* Cursor of table to get the new rowid */
71373   int res;               /* Result of an sqlite3BtreeLast() */
71374   int cnt;               /* Counter to limit the number of searches */
71375   Mem *pMem;             /* Register holding largest rowid for AUTOINCREMENT */
71376   VdbeFrame *pFrame;     /* Root frame of VDBE */
71377 
71378   v = 0;
71379   res = 0;
71380   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
71381   pC = p->apCsr[pOp->p1];
71382   assert( pC!=0 );
71383   if( NEVER(pC->pCursor==0) ){
71384     /* The zero initialization above is all that is needed */
71385   }else{
71386     /* The next rowid or record number (different terms for the same
71387     ** thing) is obtained in a two-step algorithm.
71388     **
71389     ** First we attempt to find the largest existing rowid and add one
71390     ** to that.  But if the largest existing rowid is already the maximum
71391     ** positive integer, we have to fall through to the second
71392     ** probabilistic algorithm
71393     **
71394     ** The second algorithm is to select a rowid at random and see if
71395     ** it already exists in the table.  If it does not exist, we have
71396     ** succeeded.  If the random rowid does exist, we select a new one
71397     ** and try again, up to 100 times.
71398     */
71399     assert( pC->isTable );
71400 
71401 #ifdef SQLITE_32BIT_ROWID
71402 #   define MAX_ROWID 0x7fffffff
71403 #else
71404     /* Some compilers complain about constants of the form 0x7fffffffffffffff.
71405     ** Others complain about 0x7ffffffffffffffffLL.  The following macro seems
71406     ** to provide the constant while making all compilers happy.
71407     */
71408 #   define MAX_ROWID  (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
71409 #endif
71410 
71411     if( !pC->useRandomRowid ){
71412       rc = sqlite3BtreeLast(pC->pCursor, &res);
71413       if( rc!=SQLITE_OK ){
71414         goto abort_due_to_error;
71415       }
71416       if( res ){
71417         v = 1;   /* IMP: R-61914-48074 */
71418       }else{
71419         assert( sqlite3BtreeCursorIsValid(pC->pCursor) );
71420         rc = sqlite3BtreeKeySize(pC->pCursor, &v);
71421         assert( rc==SQLITE_OK );   /* Cannot fail following BtreeLast() */
71422         if( v>=MAX_ROWID ){
71423           pC->useRandomRowid = 1;
71424         }else{
71425           v++;   /* IMP: R-29538-34987 */
71426         }
71427       }
71428     }
71429 
71430 #ifndef SQLITE_OMIT_AUTOINCREMENT
71431     if( pOp->p3 ){
71432       /* Assert that P3 is a valid memory cell. */
71433       assert( pOp->p3>0 );
71434       if( p->pFrame ){
71435         for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
71436         /* Assert that P3 is a valid memory cell. */
71437         assert( pOp->p3<=pFrame->nMem );
71438         pMem = &pFrame->aMem[pOp->p3];
71439       }else{
71440         /* Assert that P3 is a valid memory cell. */
71441         assert( pOp->p3<=(p->nMem-p->nCursor) );
71442         pMem = &aMem[pOp->p3];
71443         memAboutToChange(p, pMem);
71444       }
71445       assert( memIsValid(pMem) );
71446 
71447       REGISTER_TRACE(pOp->p3, pMem);
71448       sqlite3VdbeMemIntegerify(pMem);
71449       assert( (pMem->flags & MEM_Int)!=0 );  /* mem(P3) holds an integer */
71450       if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
71451         rc = SQLITE_FULL;   /* IMP: R-12275-61338 */
71452         goto abort_due_to_error;
71453       }
71454       if( v<pMem->u.i+1 ){
71455         v = pMem->u.i + 1;
71456       }
71457       pMem->u.i = v;
71458     }
71459 #endif
71460     if( pC->useRandomRowid ){
71461       /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
71462       ** largest possible integer (9223372036854775807) then the database
71463       ** engine starts picking positive candidate ROWIDs at random until
71464       ** it finds one that is not previously used. */
71465       assert( pOp->p3==0 );  /* We cannot be in random rowid mode if this is
71466                              ** an AUTOINCREMENT table. */
71467       /* on the first attempt, simply do one more than previous */
71468       v = lastRowid;
71469       v &= (MAX_ROWID>>1); /* ensure doesn't go negative */
71470       v++; /* ensure non-zero */
71471       cnt = 0;
71472       while(   ((rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)v,
71473                                                  0, &res))==SQLITE_OK)
71474             && (res==0)
71475             && (++cnt<100)){
71476         /* collision - try another random rowid */
71477         sqlite3_randomness(sizeof(v), &v);
71478         if( cnt<5 ){
71479           /* try "small" random rowids for the initial attempts */
71480           v &= 0xffffff;
71481         }else{
71482           v &= (MAX_ROWID>>1); /* ensure doesn't go negative */
71483         }
71484         v++; /* ensure non-zero */
71485       }
71486       if( rc==SQLITE_OK && res==0 ){
71487         rc = SQLITE_FULL;   /* IMP: R-38219-53002 */
71488         goto abort_due_to_error;
71489       }
71490       assert( v>0 );  /* EV: R-40812-03570 */
71491     }
71492     pC->rowidIsValid = 0;
71493     pC->deferredMoveto = 0;
71494     pC->cacheStatus = CACHE_STALE;
71495   }
71496   pOut->u.i = v;
71497   break;
71498 }
71499 
71500 /* Opcode: Insert P1 P2 P3 P4 P5
71501 ** Synopsis: intkey=r[P3] data=r[P2]
71502 **
71503 ** Write an entry into the table of cursor P1.  A new entry is
71504 ** created if it doesn't already exist or the data for an existing
71505 ** entry is overwritten.  The data is the value MEM_Blob stored in register
71506 ** number P2. The key is stored in register P3. The key must
71507 ** be a MEM_Int.
71508 **
71509 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
71510 ** incremented (otherwise not).  If the OPFLAG_LASTROWID flag of P5 is set,
71511 ** then rowid is stored for subsequent return by the
71512 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
71513 **
71514 ** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of
71515 ** the last seek operation (OP_NotExists) was a success, then this
71516 ** operation will not attempt to find the appropriate row before doing
71517 ** the insert but will instead overwrite the row that the cursor is
71518 ** currently pointing to.  Presumably, the prior OP_NotExists opcode
71519 ** has already positioned the cursor correctly.  This is an optimization
71520 ** that boosts performance by avoiding redundant seeks.
71521 **
71522 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
71523 ** UPDATE operation.  Otherwise (if the flag is clear) then this opcode
71524 ** is part of an INSERT operation.  The difference is only important to
71525 ** the update hook.
71526 **
71527 ** Parameter P4 may point to a string containing the table-name, or
71528 ** may be NULL. If it is not NULL, then the update-hook
71529 ** (sqlite3.xUpdateCallback) is invoked following a successful insert.
71530 **
71531 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
71532 ** allocated, then ownership of P2 is transferred to the pseudo-cursor
71533 ** and register P2 becomes ephemeral.  If the cursor is changed, the
71534 ** value of register P2 will then change.  Make sure this does not
71535 ** cause any problems.)
71536 **
71537 ** This instruction only works on tables.  The equivalent instruction
71538 ** for indices is OP_IdxInsert.
71539 */
71540 /* Opcode: InsertInt P1 P2 P3 P4 P5
71541 ** Synopsis:  intkey=P3 data=r[P2]
71542 **
71543 ** This works exactly like OP_Insert except that the key is the
71544 ** integer value P3, not the value of the integer stored in register P3.
71545 */
71546 case OP_Insert:
71547 case OP_InsertInt: {
71548   Mem *pData;       /* MEM cell holding data for the record to be inserted */
71549   Mem *pKey;        /* MEM cell holding key  for the record */
71550   i64 iKey;         /* The integer ROWID or key for the record to be inserted */
71551   VdbeCursor *pC;   /* Cursor to table into which insert is written */
71552   int nZero;        /* Number of zero-bytes to append */
71553   int seekResult;   /* Result of prior seek or 0 if no USESEEKRESULT flag */
71554   const char *zDb;  /* database name - used by the update hook */
71555   const char *zTbl; /* Table name - used by the opdate hook */
71556   int op;           /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
71557 
71558   pData = &aMem[pOp->p2];
71559   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
71560   assert( memIsValid(pData) );
71561   pC = p->apCsr[pOp->p1];
71562   assert( pC!=0 );
71563   assert( pC->pCursor!=0 );
71564   assert( pC->pseudoTableReg==0 );
71565   assert( pC->isTable );
71566   REGISTER_TRACE(pOp->p2, pData);
71567 
71568   if( pOp->opcode==OP_Insert ){
71569     pKey = &aMem[pOp->p3];
71570     assert( pKey->flags & MEM_Int );
71571     assert( memIsValid(pKey) );
71572     REGISTER_TRACE(pOp->p3, pKey);
71573     iKey = pKey->u.i;
71574   }else{
71575     assert( pOp->opcode==OP_InsertInt );
71576     iKey = pOp->p3;
71577   }
71578 
71579   if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
71580   if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = lastRowid = iKey;
71581   if( pData->flags & MEM_Null ){
71582     pData->z = 0;
71583     pData->n = 0;
71584   }else{
71585     assert( pData->flags & (MEM_Blob|MEM_Str) );
71586   }
71587   seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
71588   if( pData->flags & MEM_Zero ){
71589     nZero = pData->u.nZero;
71590   }else{
71591     nZero = 0;
71592   }
71593   rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
71594                           pData->z, pData->n, nZero,
71595                           (pOp->p5 & OPFLAG_APPEND)!=0, seekResult
71596   );
71597   pC->rowidIsValid = 0;
71598   pC->deferredMoveto = 0;
71599   pC->cacheStatus = CACHE_STALE;
71600 
71601   /* Invoke the update-hook if required. */
71602   if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
71603     zDb = db->aDb[pC->iDb].zName;
71604     zTbl = pOp->p4.z;
71605     op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
71606     assert( pC->isTable );
71607     db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
71608     assert( pC->iDb>=0 );
71609   }
71610   break;
71611 }
71612 
71613 /* Opcode: Delete P1 P2 * P4 *
71614 **
71615 ** Delete the record at which the P1 cursor is currently pointing.
71616 **
71617 ** The cursor will be left pointing at either the next or the previous
71618 ** record in the table. If it is left pointing at the next record, then
71619 ** the next Next instruction will be a no-op.  Hence it is OK to delete
71620 ** a record from within an Next loop.
71621 **
71622 ** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
71623 ** incremented (otherwise not).
71624 **
71625 ** P1 must not be pseudo-table.  It has to be a real table with
71626 ** multiple rows.
71627 **
71628 ** If P4 is not NULL, then it is the name of the table that P1 is
71629 ** pointing to.  The update hook will be invoked, if it exists.
71630 ** If P4 is not NULL then the P1 cursor must have been positioned
71631 ** using OP_NotFound prior to invoking this opcode.
71632 */
71633 case OP_Delete: {
71634   i64 iKey;
71635   VdbeCursor *pC;
71636 
71637   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
71638   pC = p->apCsr[pOp->p1];
71639   assert( pC!=0 );
71640   assert( pC->pCursor!=0 );  /* Only valid for real tables, no pseudotables */
71641   iKey = pC->lastRowid;      /* Only used for the update hook */
71642 
71643   /* The OP_Delete opcode always follows an OP_NotExists or OP_Last or
71644   ** OP_Column on the same table without any intervening operations that
71645   ** might move or invalidate the cursor.  Hence cursor pC is always pointing
71646   ** to the row to be deleted and the sqlite3VdbeCursorMoveto() operation
71647   ** below is always a no-op and cannot fail.  We will run it anyhow, though,
71648   ** to guard against future changes to the code generator.
71649   **/
71650   assert( pC->deferredMoveto==0 );
71651   rc = sqlite3VdbeCursorMoveto(pC);
71652   if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
71653 
71654   rc = sqlite3BtreeDelete(pC->pCursor);
71655   pC->cacheStatus = CACHE_STALE;
71656 
71657   /* Invoke the update-hook if required. */
71658   if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z && pC->isTable ){
71659     db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE,
71660                         db->aDb[pC->iDb].zName, pOp->p4.z, iKey);
71661     assert( pC->iDb>=0 );
71662   }
71663   if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
71664   break;
71665 }
71666 /* Opcode: ResetCount * * * * *
71667 **
71668 ** The value of the change counter is copied to the database handle
71669 ** change counter (returned by subsequent calls to sqlite3_changes()).
71670 ** Then the VMs internal change counter resets to 0.
71671 ** This is used by trigger programs.
71672 */
71673 case OP_ResetCount: {
71674   sqlite3VdbeSetChanges(db, p->nChange);
71675   p->nChange = 0;
71676   break;
71677 }
71678 
71679 /* Opcode: SorterCompare P1 P2 P3 P4
71680 ** Synopsis:  if key(P1)!=rtrim(r[P3],P4) goto P2
71681 **
71682 ** P1 is a sorter cursor. This instruction compares a prefix of the
71683 ** the record blob in register P3 against a prefix of the entry that
71684 ** the sorter cursor currently points to.  The final P4 fields of both
71685 ** the P3 and sorter record are ignored.
71686 **
71687 ** If either P3 or the sorter contains a NULL in one of their significant
71688 ** fields (not counting the P4 fields at the end which are ignored) then
71689 ** the comparison is assumed to be equal.
71690 **
71691 ** Fall through to next instruction if the two records compare equal to
71692 ** each other.  Jump to P2 if they are different.
71693 */
71694 case OP_SorterCompare: {
71695   VdbeCursor *pC;
71696   int res;
71697   int nIgnore;
71698 
71699   pC = p->apCsr[pOp->p1];
71700   assert( isSorter(pC) );
71701   assert( pOp->p4type==P4_INT32 );
71702   pIn3 = &aMem[pOp->p3];
71703   nIgnore = pOp->p4.i;
71704   rc = sqlite3VdbeSorterCompare(pC, pIn3, nIgnore, &res);
71705   VdbeBranchTaken(res!=0,2);
71706   if( res ){
71707     pc = pOp->p2-1;
71708   }
71709   break;
71710 };
71711 
71712 /* Opcode: SorterData P1 P2 * * *
71713 ** Synopsis: r[P2]=data
71714 **
71715 ** Write into register P2 the current sorter data for sorter cursor P1.
71716 */
71717 case OP_SorterData: {
71718   VdbeCursor *pC;
71719 
71720   pOut = &aMem[pOp->p2];
71721   pC = p->apCsr[pOp->p1];
71722   assert( isSorter(pC) );
71723   rc = sqlite3VdbeSorterRowkey(pC, pOut);
71724   assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
71725   break;
71726 }
71727 
71728 /* Opcode: RowData P1 P2 * * *
71729 ** Synopsis: r[P2]=data
71730 **
71731 ** Write into register P2 the complete row data for cursor P1.
71732 ** There is no interpretation of the data.
71733 ** It is just copied onto the P2 register exactly as
71734 ** it is found in the database file.
71735 **
71736 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
71737 ** of a real table, not a pseudo-table.
71738 */
71739 /* Opcode: RowKey P1 P2 * * *
71740 ** Synopsis: r[P2]=key
71741 **
71742 ** Write into register P2 the complete row key for cursor P1.
71743 ** There is no interpretation of the data.
71744 ** The key is copied onto the P2 register exactly as
71745 ** it is found in the database file.
71746 **
71747 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
71748 ** of a real table, not a pseudo-table.
71749 */
71750 case OP_RowKey:
71751 case OP_RowData: {
71752   VdbeCursor *pC;
71753   BtCursor *pCrsr;
71754   u32 n;
71755   i64 n64;
71756 
71757   pOut = &aMem[pOp->p2];
71758   memAboutToChange(p, pOut);
71759 
71760   /* Note that RowKey and RowData are really exactly the same instruction */
71761   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
71762   pC = p->apCsr[pOp->p1];
71763   assert( isSorter(pC)==0 );
71764   assert( pC->isTable || pOp->opcode!=OP_RowData );
71765   assert( pC->isTable==0 || pOp->opcode==OP_RowData );
71766   assert( pC!=0 );
71767   assert( pC->nullRow==0 );
71768   assert( pC->pseudoTableReg==0 );
71769   assert( pC->pCursor!=0 );
71770   pCrsr = pC->pCursor;
71771   assert( sqlite3BtreeCursorIsValid(pCrsr) );
71772 
71773   /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
71774   ** OP_Rewind/Op_Next with no intervening instructions that might invalidate
71775   ** the cursor.  Hence the following sqlite3VdbeCursorMoveto() call is always
71776   ** a no-op and can never fail.  But we leave it in place as a safety.
71777   */
71778   assert( pC->deferredMoveto==0 );
71779   rc = sqlite3VdbeCursorMoveto(pC);
71780   if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
71781 
71782   if( pC->isTable==0 ){
71783     assert( !pC->isTable );
71784     VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &n64);
71785     assert( rc==SQLITE_OK );    /* True because of CursorMoveto() call above */
71786     if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){
71787       goto too_big;
71788     }
71789     n = (u32)n64;
71790   }else{
71791     VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &n);
71792     assert( rc==SQLITE_OK );    /* DataSize() cannot fail */
71793     if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
71794       goto too_big;
71795     }
71796   }
71797   if( sqlite3VdbeMemGrow(pOut, n, 0) ){
71798     goto no_mem;
71799   }
71800   pOut->n = n;
71801   MemSetTypeFlag(pOut, MEM_Blob);
71802   if( pC->isTable==0 ){
71803     rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
71804   }else{
71805     rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z);
71806   }
71807   pOut->enc = SQLITE_UTF8;  /* In case the blob is ever cast to text */
71808   UPDATE_MAX_BLOBSIZE(pOut);
71809   REGISTER_TRACE(pOp->p2, pOut);
71810   break;
71811 }
71812 
71813 /* Opcode: Rowid P1 P2 * * *
71814 ** Synopsis: r[P2]=rowid
71815 **
71816 ** Store in register P2 an integer which is the key of the table entry that
71817 ** P1 is currently point to.
71818 **
71819 ** P1 can be either an ordinary table or a virtual table.  There used to
71820 ** be a separate OP_VRowid opcode for use with virtual tables, but this
71821 ** one opcode now works for both table types.
71822 */
71823 case OP_Rowid: {                 /* out2-prerelease */
71824   VdbeCursor *pC;
71825   i64 v;
71826   sqlite3_vtab *pVtab;
71827   const sqlite3_module *pModule;
71828 
71829   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
71830   pC = p->apCsr[pOp->p1];
71831   assert( pC!=0 );
71832   assert( pC->pseudoTableReg==0 || pC->nullRow );
71833   if( pC->nullRow ){
71834     pOut->flags = MEM_Null;
71835     break;
71836   }else if( pC->deferredMoveto ){
71837     v = pC->movetoTarget;
71838 #ifndef SQLITE_OMIT_VIRTUALTABLE
71839   }else if( pC->pVtabCursor ){
71840     pVtab = pC->pVtabCursor->pVtab;
71841     pModule = pVtab->pModule;
71842     assert( pModule->xRowid );
71843     rc = pModule->xRowid(pC->pVtabCursor, &v);
71844     sqlite3VtabImportErrmsg(p, pVtab);
71845 #endif /* SQLITE_OMIT_VIRTUALTABLE */
71846   }else{
71847     assert( pC->pCursor!=0 );
71848     rc = sqlite3VdbeCursorMoveto(pC);
71849     if( rc ) goto abort_due_to_error;
71850     if( pC->rowidIsValid ){
71851       v = pC->lastRowid;
71852     }else{
71853       rc = sqlite3BtreeKeySize(pC->pCursor, &v);
71854       assert( rc==SQLITE_OK );  /* Always so because of CursorMoveto() above */
71855     }
71856   }
71857   pOut->u.i = v;
71858   break;
71859 }
71860 
71861 /* Opcode: NullRow P1 * * * *
71862 **
71863 ** Move the cursor P1 to a null row.  Any OP_Column operations
71864 ** that occur while the cursor is on the null row will always
71865 ** write a NULL.
71866 */
71867 case OP_NullRow: {
71868   VdbeCursor *pC;
71869 
71870   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
71871   pC = p->apCsr[pOp->p1];
71872   assert( pC!=0 );
71873   pC->nullRow = 1;
71874   pC->rowidIsValid = 0;
71875   pC->cacheStatus = CACHE_STALE;
71876   if( pC->pCursor ){
71877     sqlite3BtreeClearCursor(pC->pCursor);
71878   }
71879   break;
71880 }
71881 
71882 /* Opcode: Last P1 P2 * * *
71883 **
71884 ** The next use of the Rowid or Column or Next instruction for P1
71885 ** will refer to the last entry in the database table or index.
71886 ** If the table or index is empty and P2>0, then jump immediately to P2.
71887 ** If P2 is 0 or if the table or index is not empty, fall through
71888 ** to the following instruction.
71889 */
71890 case OP_Last: {        /* jump */
71891   VdbeCursor *pC;
71892   BtCursor *pCrsr;
71893   int res;
71894 
71895   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
71896   pC = p->apCsr[pOp->p1];
71897   assert( pC!=0 );
71898   pCrsr = pC->pCursor;
71899   res = 0;
71900   assert( pCrsr!=0 );
71901   rc = sqlite3BtreeLast(pCrsr, &res);
71902   pC->nullRow = (u8)res;
71903   pC->deferredMoveto = 0;
71904   pC->rowidIsValid = 0;
71905   pC->cacheStatus = CACHE_STALE;
71906   if( pOp->p2>0 ){
71907     VdbeBranchTaken(res!=0,2);
71908     if( res ) pc = pOp->p2 - 1;
71909   }
71910   break;
71911 }
71912 
71913 
71914 /* Opcode: Sort P1 P2 * * *
71915 **
71916 ** This opcode does exactly the same thing as OP_Rewind except that
71917 ** it increments an undocumented global variable used for testing.
71918 **
71919 ** Sorting is accomplished by writing records into a sorting index,
71920 ** then rewinding that index and playing it back from beginning to
71921 ** end.  We use the OP_Sort opcode instead of OP_Rewind to do the
71922 ** rewinding so that the global variable will be incremented and
71923 ** regression tests can determine whether or not the optimizer is
71924 ** correctly optimizing out sorts.
71925 */
71926 case OP_SorterSort:    /* jump */
71927 case OP_Sort: {        /* jump */
71928 #ifdef SQLITE_TEST
71929   sqlite3_sort_count++;
71930   sqlite3_search_count--;
71931 #endif
71932   p->aCounter[SQLITE_STMTSTATUS_SORT]++;
71933   /* Fall through into OP_Rewind */
71934 }
71935 /* Opcode: Rewind P1 P2 * * *
71936 **
71937 ** The next use of the Rowid or Column or Next instruction for P1
71938 ** will refer to the first entry in the database table or index.
71939 ** If the table or index is empty and P2>0, then jump immediately to P2.
71940 ** If P2 is 0 or if the table or index is not empty, fall through
71941 ** to the following instruction.
71942 */
71943 case OP_Rewind: {        /* jump */
71944   VdbeCursor *pC;
71945   BtCursor *pCrsr;
71946   int res;
71947 
71948   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
71949   pC = p->apCsr[pOp->p1];
71950   assert( pC!=0 );
71951   assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
71952   res = 1;
71953   if( isSorter(pC) ){
71954     rc = sqlite3VdbeSorterRewind(db, pC, &res);
71955   }else{
71956     pCrsr = pC->pCursor;
71957     assert( pCrsr );
71958     rc = sqlite3BtreeFirst(pCrsr, &res);
71959     pC->deferredMoveto = 0;
71960     pC->cacheStatus = CACHE_STALE;
71961     pC->rowidIsValid = 0;
71962   }
71963   pC->nullRow = (u8)res;
71964   assert( pOp->p2>0 && pOp->p2<p->nOp );
71965   VdbeBranchTaken(res!=0,2);
71966   if( res ){
71967     pc = pOp->p2 - 1;
71968   }
71969   break;
71970 }
71971 
71972 /* Opcode: Next P1 P2 P3 P4 P5
71973 **
71974 ** Advance cursor P1 so that it points to the next key/data pair in its
71975 ** table or index.  If there are no more key/value pairs then fall through
71976 ** to the following instruction.  But if the cursor advance was successful,
71977 ** jump immediately to P2.
71978 **
71979 ** The P1 cursor must be for a real table, not a pseudo-table.  P1 must have
71980 ** been opened prior to this opcode or the program will segfault.
71981 **
71982 ** The P3 value is a hint to the btree implementation. If P3==1, that
71983 ** means P1 is an SQL index and that this instruction could have been
71984 ** omitted if that index had been unique.  P3 is usually 0.  P3 is
71985 ** always either 0 or 1.
71986 **
71987 ** P4 is always of type P4_ADVANCE. The function pointer points to
71988 ** sqlite3BtreeNext().
71989 **
71990 ** If P5 is positive and the jump is taken, then event counter
71991 ** number P5-1 in the prepared statement is incremented.
71992 **
71993 ** See also: Prev, NextIfOpen
71994 */
71995 /* Opcode: NextIfOpen P1 P2 P3 P4 P5
71996 **
71997 ** This opcode works just like OP_Next except that if cursor P1 is not
71998 ** open it behaves a no-op.
71999 */
72000 /* Opcode: Prev P1 P2 P3 P4 P5
72001 **
72002 ** Back up cursor P1 so that it points to the previous key/data pair in its
72003 ** table or index.  If there is no previous key/value pairs then fall through
72004 ** to the following instruction.  But if the cursor backup was successful,
72005 ** jump immediately to P2.
72006 **
72007 ** The P1 cursor must be for a real table, not a pseudo-table.  If P1 is
72008 ** not open then the behavior is undefined.
72009 **
72010 ** The P3 value is a hint to the btree implementation. If P3==1, that
72011 ** means P1 is an SQL index and that this instruction could have been
72012 ** omitted if that index had been unique.  P3 is usually 0.  P3 is
72013 ** always either 0 or 1.
72014 **
72015 ** P4 is always of type P4_ADVANCE. The function pointer points to
72016 ** sqlite3BtreePrevious().
72017 **
72018 ** If P5 is positive and the jump is taken, then event counter
72019 ** number P5-1 in the prepared statement is incremented.
72020 */
72021 /* Opcode: PrevIfOpen P1 P2 P3 P4 P5
72022 **
72023 ** This opcode works just like OP_Prev except that if cursor P1 is not
72024 ** open it behaves a no-op.
72025 */
72026 case OP_SorterNext: {  /* jump */
72027   VdbeCursor *pC;
72028   int res;
72029 
72030   pC = p->apCsr[pOp->p1];
72031   assert( isSorter(pC) );
72032   res = 0;
72033   rc = sqlite3VdbeSorterNext(db, pC, &res);
72034   goto next_tail;
72035 case OP_PrevIfOpen:    /* jump */
72036 case OP_NextIfOpen:    /* jump */
72037   if( p->apCsr[pOp->p1]==0 ) break;
72038   /* Fall through */
72039 case OP_Prev:          /* jump */
72040 case OP_Next:          /* jump */
72041   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
72042   assert( pOp->p5<ArraySize(p->aCounter) );
72043   pC = p->apCsr[pOp->p1];
72044   res = pOp->p3;
72045   assert( pC!=0 );
72046   assert( pC->deferredMoveto==0 );
72047   assert( pC->pCursor );
72048   assert( res==0 || (res==1 && pC->isTable==0) );
72049   testcase( res==1 );
72050   assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
72051   assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
72052   assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext );
72053   assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious);
72054   rc = pOp->p4.xAdvance(pC->pCursor, &res);
72055 next_tail:
72056   pC->cacheStatus = CACHE_STALE;
72057   VdbeBranchTaken(res==0,2);
72058   if( res==0 ){
72059     pC->nullRow = 0;
72060     pc = pOp->p2 - 1;
72061     p->aCounter[pOp->p5]++;
72062 #ifdef SQLITE_TEST
72063     sqlite3_search_count++;
72064 #endif
72065   }else{
72066     pC->nullRow = 1;
72067   }
72068   pC->rowidIsValid = 0;
72069   goto check_for_interrupt;
72070 }
72071 
72072 /* Opcode: IdxInsert P1 P2 P3 * P5
72073 ** Synopsis: key=r[P2]
72074 **
72075 ** Register P2 holds an SQL index key made using the
72076 ** MakeRecord instructions.  This opcode writes that key
72077 ** into the index P1.  Data for the entry is nil.
72078 **
72079 ** P3 is a flag that provides a hint to the b-tree layer that this
72080 ** insert is likely to be an append.
72081 **
72082 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
72083 ** incremented by this instruction.  If the OPFLAG_NCHANGE bit is clear,
72084 ** then the change counter is unchanged.
72085 **
72086 ** If P5 has the OPFLAG_USESEEKRESULT bit set, then the cursor must have
72087 ** just done a seek to the spot where the new entry is to be inserted.
72088 ** This flag avoids doing an extra seek.
72089 **
72090 ** This instruction only works for indices.  The equivalent instruction
72091 ** for tables is OP_Insert.
72092 */
72093 case OP_SorterInsert:       /* in2 */
72094 case OP_IdxInsert: {        /* in2 */
72095   VdbeCursor *pC;
72096   BtCursor *pCrsr;
72097   int nKey;
72098   const char *zKey;
72099 
72100   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
72101   pC = p->apCsr[pOp->p1];
72102   assert( pC!=0 );
72103   assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) );
72104   pIn2 = &aMem[pOp->p2];
72105   assert( pIn2->flags & MEM_Blob );
72106   pCrsr = pC->pCursor;
72107   if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
72108   assert( pCrsr!=0 );
72109   assert( pC->isTable==0 );
72110   rc = ExpandBlob(pIn2);
72111   if( rc==SQLITE_OK ){
72112     if( isSorter(pC) ){
72113       rc = sqlite3VdbeSorterWrite(db, pC, pIn2);
72114     }else{
72115       nKey = pIn2->n;
72116       zKey = pIn2->z;
72117       rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3,
72118           ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
72119           );
72120       assert( pC->deferredMoveto==0 );
72121       pC->cacheStatus = CACHE_STALE;
72122     }
72123   }
72124   break;
72125 }
72126 
72127 /* Opcode: IdxDelete P1 P2 P3 * *
72128 ** Synopsis: key=r[P2@P3]
72129 **
72130 ** The content of P3 registers starting at register P2 form
72131 ** an unpacked index key. This opcode removes that entry from the
72132 ** index opened by cursor P1.
72133 */
72134 case OP_IdxDelete: {
72135   VdbeCursor *pC;
72136   BtCursor *pCrsr;
72137   int res;
72138   UnpackedRecord r;
72139 
72140   assert( pOp->p3>0 );
72141   assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem-p->nCursor)+1 );
72142   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
72143   pC = p->apCsr[pOp->p1];
72144   assert( pC!=0 );
72145   pCrsr = pC->pCursor;
72146   assert( pCrsr!=0 );
72147   assert( pOp->p5==0 );
72148   r.pKeyInfo = pC->pKeyInfo;
72149   r.nField = (u16)pOp->p3;
72150   r.default_rc = 0;
72151   r.aMem = &aMem[pOp->p2];
72152 #ifdef SQLITE_DEBUG
72153   { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
72154 #endif
72155   rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
72156   if( rc==SQLITE_OK && res==0 ){
72157     rc = sqlite3BtreeDelete(pCrsr);
72158   }
72159   assert( pC->deferredMoveto==0 );
72160   pC->cacheStatus = CACHE_STALE;
72161   break;
72162 }
72163 
72164 /* Opcode: IdxRowid P1 P2 * * *
72165 ** Synopsis: r[P2]=rowid
72166 **
72167 ** Write into register P2 an integer which is the last entry in the record at
72168 ** the end of the index key pointed to by cursor P1.  This integer should be
72169 ** the rowid of the table entry to which this index entry points.
72170 **
72171 ** See also: Rowid, MakeRecord.
72172 */
72173 case OP_IdxRowid: {              /* out2-prerelease */
72174   BtCursor *pCrsr;
72175   VdbeCursor *pC;
72176   i64 rowid;
72177 
72178   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
72179   pC = p->apCsr[pOp->p1];
72180   assert( pC!=0 );
72181   pCrsr = pC->pCursor;
72182   assert( pCrsr!=0 );
72183   pOut->flags = MEM_Null;
72184   rc = sqlite3VdbeCursorMoveto(pC);
72185   if( NEVER(rc) ) goto abort_due_to_error;
72186   assert( pC->deferredMoveto==0 );
72187   assert( pC->isTable==0 );
72188   if( !pC->nullRow ){
72189     rowid = 0;  /* Not needed.  Only used to silence a warning. */
72190     rc = sqlite3VdbeIdxRowid(db, pCrsr, &rowid);
72191     if( rc!=SQLITE_OK ){
72192       goto abort_due_to_error;
72193     }
72194     pOut->u.i = rowid;
72195     pOut->flags = MEM_Int;
72196   }
72197   break;
72198 }
72199 
72200 /* Opcode: IdxGE P1 P2 P3 P4 P5
72201 ** Synopsis: key=r[P3@P4]
72202 **
72203 ** The P4 register values beginning with P3 form an unpacked index
72204 ** key that omits the PRIMARY KEY.  Compare this key value against the index
72205 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
72206 ** fields at the end.
72207 **
72208 ** If the P1 index entry is greater than or equal to the key value
72209 ** then jump to P2.  Otherwise fall through to the next instruction.
72210 */
72211 /* Opcode: IdxGT P1 P2 P3 P4 P5
72212 ** Synopsis: key=r[P3@P4]
72213 **
72214 ** The P4 register values beginning with P3 form an unpacked index
72215 ** key that omits the PRIMARY KEY.  Compare this key value against the index
72216 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
72217 ** fields at the end.
72218 **
72219 ** If the P1 index entry is greater than the key value
72220 ** then jump to P2.  Otherwise fall through to the next instruction.
72221 */
72222 /* Opcode: IdxLT P1 P2 P3 P4 P5
72223 ** Synopsis: key=r[P3@P4]
72224 **
72225 ** The P4 register values beginning with P3 form an unpacked index
72226 ** key that omits the PRIMARY KEY or ROWID.  Compare this key value against
72227 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
72228 ** ROWID on the P1 index.
72229 **
72230 ** If the P1 index entry is less than the key value then jump to P2.
72231 ** Otherwise fall through to the next instruction.
72232 */
72233 /* Opcode: IdxLE P1 P2 P3 P4 P5
72234 ** Synopsis: key=r[P3@P4]
72235 **
72236 ** The P4 register values beginning with P3 form an unpacked index
72237 ** key that omits the PRIMARY KEY or ROWID.  Compare this key value against
72238 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
72239 ** ROWID on the P1 index.
72240 **
72241 ** If the P1 index entry is less than or equal to the key value then jump
72242 ** to P2. Otherwise fall through to the next instruction.
72243 */
72244 case OP_IdxLE:          /* jump */
72245 case OP_IdxGT:          /* jump */
72246 case OP_IdxLT:          /* jump */
72247 case OP_IdxGE:  {       /* jump */
72248   VdbeCursor *pC;
72249   int res;
72250   UnpackedRecord r;
72251 
72252   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
72253   pC = p->apCsr[pOp->p1];
72254   assert( pC!=0 );
72255   assert( pC->isOrdered );
72256   assert( pC->pCursor!=0);
72257   assert( pC->deferredMoveto==0 );
72258   assert( pOp->p5==0 || pOp->p5==1 );
72259   assert( pOp->p4type==P4_INT32 );
72260   r.pKeyInfo = pC->pKeyInfo;
72261   r.nField = (u16)pOp->p4.i;
72262   if( pOp->opcode<OP_IdxLT ){
72263     assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
72264     r.default_rc = -1;
72265   }else{
72266     assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
72267     r.default_rc = 0;
72268   }
72269   r.aMem = &aMem[pOp->p3];
72270 #ifdef SQLITE_DEBUG
72271   { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
72272 #endif
72273   res = 0;  /* Not needed.  Only used to silence a warning. */
72274   rc = sqlite3VdbeIdxKeyCompare(pC, &r, &res);
72275   assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
72276   if( (pOp->opcode&1)==(OP_IdxLT&1) ){
72277     assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
72278     res = -res;
72279   }else{
72280     assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
72281     res++;
72282   }
72283   VdbeBranchTaken(res>0,2);
72284   if( res>0 ){
72285     pc = pOp->p2 - 1 ;
72286   }
72287   break;
72288 }
72289 
72290 /* Opcode: Destroy P1 P2 P3 * *
72291 **
72292 ** Delete an entire database table or index whose root page in the database
72293 ** file is given by P1.
72294 **
72295 ** The table being destroyed is in the main database file if P3==0.  If
72296 ** P3==1 then the table to be clear is in the auxiliary database file
72297 ** that is used to store tables create using CREATE TEMPORARY TABLE.
72298 **
72299 ** If AUTOVACUUM is enabled then it is possible that another root page
72300 ** might be moved into the newly deleted root page in order to keep all
72301 ** root pages contiguous at the beginning of the database.  The former
72302 ** value of the root page that moved - its value before the move occurred -
72303 ** is stored in register P2.  If no page
72304 ** movement was required (because the table being dropped was already
72305 ** the last one in the database) then a zero is stored in register P2.
72306 ** If AUTOVACUUM is disabled then a zero is stored in register P2.
72307 **
72308 ** See also: Clear
72309 */
72310 case OP_Destroy: {     /* out2-prerelease */
72311   int iMoved;
72312   int iCnt;
72313   Vdbe *pVdbe;
72314   int iDb;
72315 
72316   assert( p->readOnly==0 );
72317 #ifndef SQLITE_OMIT_VIRTUALTABLE
72318   iCnt = 0;
72319   for(pVdbe=db->pVdbe; pVdbe; pVdbe = pVdbe->pNext){
72320     if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->bIsReader
72321      && pVdbe->inVtabMethod<2 && pVdbe->pc>=0
72322     ){
72323       iCnt++;
72324     }
72325   }
72326 #else
72327   iCnt = db->nVdbeRead;
72328 #endif
72329   pOut->flags = MEM_Null;
72330   if( iCnt>1 ){
72331     rc = SQLITE_LOCKED;
72332     p->errorAction = OE_Abort;
72333   }else{
72334     iDb = pOp->p3;
72335     assert( iCnt==1 );
72336     assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
72337     iMoved = 0;  /* Not needed.  Only to silence a warning. */
72338     rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
72339     pOut->flags = MEM_Int;
72340     pOut->u.i = iMoved;
72341 #ifndef SQLITE_OMIT_AUTOVACUUM
72342     if( rc==SQLITE_OK && iMoved!=0 ){
72343       sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
72344       /* All OP_Destroy operations occur on the same btree */
72345       assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
72346       resetSchemaOnFault = iDb+1;
72347     }
72348 #endif
72349   }
72350   break;
72351 }
72352 
72353 /* Opcode: Clear P1 P2 P3
72354 **
72355 ** Delete all contents of the database table or index whose root page
72356 ** in the database file is given by P1.  But, unlike Destroy, do not
72357 ** remove the table or index from the database file.
72358 **
72359 ** The table being clear is in the main database file if P2==0.  If
72360 ** P2==1 then the table to be clear is in the auxiliary database file
72361 ** that is used to store tables create using CREATE TEMPORARY TABLE.
72362 **
72363 ** If the P3 value is non-zero, then the table referred to must be an
72364 ** intkey table (an SQL table, not an index). In this case the row change
72365 ** count is incremented by the number of rows in the table being cleared.
72366 ** If P3 is greater than zero, then the value stored in register P3 is
72367 ** also incremented by the number of rows in the table being cleared.
72368 **
72369 ** See also: Destroy
72370 */
72371 case OP_Clear: {
72372   int nChange;
72373 
72374   nChange = 0;
72375   assert( p->readOnly==0 );
72376   assert( (p->btreeMask & (((yDbMask)1)<<pOp->p2))!=0 );
72377   rc = sqlite3BtreeClearTable(
72378       db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
72379   );
72380   if( pOp->p3 ){
72381     p->nChange += nChange;
72382     if( pOp->p3>0 ){
72383       assert( memIsValid(&aMem[pOp->p3]) );
72384       memAboutToChange(p, &aMem[pOp->p3]);
72385       aMem[pOp->p3].u.i += nChange;
72386     }
72387   }
72388   break;
72389 }
72390 
72391 /* Opcode: ResetSorter P1 * * * *
72392 **
72393 ** Delete all contents from the ephemeral table or sorter
72394 ** that is open on cursor P1.
72395 **
72396 ** This opcode only works for cursors used for sorting and
72397 ** opened with OP_OpenEphemeral or OP_SorterOpen.
72398 */
72399 case OP_ResetSorter: {
72400   VdbeCursor *pC;
72401 
72402   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
72403   pC = p->apCsr[pOp->p1];
72404   assert( pC!=0 );
72405   if( pC->pSorter ){
72406     sqlite3VdbeSorterReset(db, pC->pSorter);
72407   }else{
72408     assert( pC->isEphemeral );
72409     rc = sqlite3BtreeClearTableOfCursor(pC->pCursor);
72410   }
72411   break;
72412 }
72413 
72414 /* Opcode: CreateTable P1 P2 * * *
72415 ** Synopsis: r[P2]=root iDb=P1
72416 **
72417 ** Allocate a new table in the main database file if P1==0 or in the
72418 ** auxiliary database file if P1==1 or in an attached database if
72419 ** P1>1.  Write the root page number of the new table into
72420 ** register P2
72421 **
72422 ** The difference between a table and an index is this:  A table must
72423 ** have a 4-byte integer key and can have arbitrary data.  An index
72424 ** has an arbitrary key but no data.
72425 **
72426 ** See also: CreateIndex
72427 */
72428 /* Opcode: CreateIndex P1 P2 * * *
72429 ** Synopsis: r[P2]=root iDb=P1
72430 **
72431 ** Allocate a new index in the main database file if P1==0 or in the
72432 ** auxiliary database file if P1==1 or in an attached database if
72433 ** P1>1.  Write the root page number of the new table into
72434 ** register P2.
72435 **
72436 ** See documentation on OP_CreateTable for additional information.
72437 */
72438 case OP_CreateIndex:            /* out2-prerelease */
72439 case OP_CreateTable: {          /* out2-prerelease */
72440   int pgno;
72441   int flags;
72442   Db *pDb;
72443 
72444   pgno = 0;
72445   assert( pOp->p1>=0 && pOp->p1<db->nDb );
72446   assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
72447   assert( p->readOnly==0 );
72448   pDb = &db->aDb[pOp->p1];
72449   assert( pDb->pBt!=0 );
72450   if( pOp->opcode==OP_CreateTable ){
72451     /* flags = BTREE_INTKEY; */
72452     flags = BTREE_INTKEY;
72453   }else{
72454     flags = BTREE_BLOBKEY;
72455   }
72456   rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
72457   pOut->u.i = pgno;
72458   break;
72459 }
72460 
72461 /* Opcode: ParseSchema P1 * * P4 *
72462 **
72463 ** Read and parse all entries from the SQLITE_MASTER table of database P1
72464 ** that match the WHERE clause P4.
72465 **
72466 ** This opcode invokes the parser to create a new virtual machine,
72467 ** then runs the new virtual machine.  It is thus a re-entrant opcode.
72468 */
72469 case OP_ParseSchema: {
72470   int iDb;
72471   const char *zMaster;
72472   char *zSql;
72473   InitData initData;
72474 
72475   /* Any prepared statement that invokes this opcode will hold mutexes
72476   ** on every btree.  This is a prerequisite for invoking
72477   ** sqlite3InitCallback().
72478   */
72479 #ifdef SQLITE_DEBUG
72480   for(iDb=0; iDb<db->nDb; iDb++){
72481     assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
72482   }
72483 #endif
72484 
72485   iDb = pOp->p1;
72486   assert( iDb>=0 && iDb<db->nDb );
72487   assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
72488   /* Used to be a conditional */ {
72489     zMaster = SCHEMA_TABLE(iDb);
72490     initData.db = db;
72491     initData.iDb = pOp->p1;
72492     initData.pzErrMsg = &p->zErrMsg;
72493     zSql = sqlite3MPrintf(db,
72494        "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
72495        db->aDb[iDb].zName, zMaster, pOp->p4.z);
72496     if( zSql==0 ){
72497       rc = SQLITE_NOMEM;
72498     }else{
72499       assert( db->init.busy==0 );
72500       db->init.busy = 1;
72501       initData.rc = SQLITE_OK;
72502       assert( !db->mallocFailed );
72503       rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
72504       if( rc==SQLITE_OK ) rc = initData.rc;
72505       sqlite3DbFree(db, zSql);
72506       db->init.busy = 0;
72507     }
72508   }
72509   if( rc ) sqlite3ResetAllSchemasOfConnection(db);
72510   if( rc==SQLITE_NOMEM ){
72511     goto no_mem;
72512   }
72513   break;
72514 }
72515 
72516 #if !defined(SQLITE_OMIT_ANALYZE)
72517 /* Opcode: LoadAnalysis P1 * * * *
72518 **
72519 ** Read the sqlite_stat1 table for database P1 and load the content
72520 ** of that table into the internal index hash table.  This will cause
72521 ** the analysis to be used when preparing all subsequent queries.
72522 */
72523 case OP_LoadAnalysis: {
72524   assert( pOp->p1>=0 && pOp->p1<db->nDb );
72525   rc = sqlite3AnalysisLoad(db, pOp->p1);
72526   break;
72527 }
72528 #endif /* !defined(SQLITE_OMIT_ANALYZE) */
72529 
72530 /* Opcode: DropTable P1 * * P4 *
72531 **
72532 ** Remove the internal (in-memory) data structures that describe
72533 ** the table named P4 in database P1.  This is called after a table
72534 ** is dropped in order to keep the internal representation of the
72535 ** schema consistent with what is on disk.
72536 */
72537 case OP_DropTable: {
72538   sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
72539   break;
72540 }
72541 
72542 /* Opcode: DropIndex P1 * * P4 *
72543 **
72544 ** Remove the internal (in-memory) data structures that describe
72545 ** the index named P4 in database P1.  This is called after an index
72546 ** is dropped in order to keep the internal representation of the
72547 ** schema consistent with what is on disk.
72548 */
72549 case OP_DropIndex: {
72550   sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
72551   break;
72552 }
72553 
72554 /* Opcode: DropTrigger P1 * * P4 *
72555 **
72556 ** Remove the internal (in-memory) data structures that describe
72557 ** the trigger named P4 in database P1.  This is called after a trigger
72558 ** is dropped in order to keep the internal representation of the
72559 ** schema consistent with what is on disk.
72560 */
72561 case OP_DropTrigger: {
72562   sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
72563   break;
72564 }
72565 
72566 
72567 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
72568 /* Opcode: IntegrityCk P1 P2 P3 * P5
72569 **
72570 ** Do an analysis of the currently open database.  Store in
72571 ** register P1 the text of an error message describing any problems.
72572 ** If no problems are found, store a NULL in register P1.
72573 **
72574 ** The register P3 contains the maximum number of allowed errors.
72575 ** At most reg(P3) errors will be reported.
72576 ** In other words, the analysis stops as soon as reg(P1) errors are
72577 ** seen.  Reg(P1) is updated with the number of errors remaining.
72578 **
72579 ** The root page numbers of all tables in the database are integer
72580 ** stored in reg(P1), reg(P1+1), reg(P1+2), ....  There are P2 tables
72581 ** total.
72582 **
72583 ** If P5 is not zero, the check is done on the auxiliary database
72584 ** file, not the main database file.
72585 **
72586 ** This opcode is used to implement the integrity_check pragma.
72587 */
72588 case OP_IntegrityCk: {
72589   int nRoot;      /* Number of tables to check.  (Number of root pages.) */
72590   int *aRoot;     /* Array of rootpage numbers for tables to be checked */
72591   int j;          /* Loop counter */
72592   int nErr;       /* Number of errors reported */
72593   char *z;        /* Text of the error report */
72594   Mem *pnErr;     /* Register keeping track of errors remaining */
72595 
72596   assert( p->bIsReader );
72597   nRoot = pOp->p2;
72598   assert( nRoot>0 );
72599   aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) );
72600   if( aRoot==0 ) goto no_mem;
72601   assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
72602   pnErr = &aMem[pOp->p3];
72603   assert( (pnErr->flags & MEM_Int)!=0 );
72604   assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
72605   pIn1 = &aMem[pOp->p1];
72606   for(j=0; j<nRoot; j++){
72607     aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]);
72608   }
72609   aRoot[j] = 0;
72610   assert( pOp->p5<db->nDb );
72611   assert( (p->btreeMask & (((yDbMask)1)<<pOp->p5))!=0 );
72612   z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
72613                                  (int)pnErr->u.i, &nErr);
72614   sqlite3DbFree(db, aRoot);
72615   pnErr->u.i -= nErr;
72616   sqlite3VdbeMemSetNull(pIn1);
72617   if( nErr==0 ){
72618     assert( z==0 );
72619   }else if( z==0 ){
72620     goto no_mem;
72621   }else{
72622     sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
72623   }
72624   UPDATE_MAX_BLOBSIZE(pIn1);
72625   sqlite3VdbeChangeEncoding(pIn1, encoding);
72626   break;
72627 }
72628 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
72629 
72630 /* Opcode: RowSetAdd P1 P2 * * *
72631 ** Synopsis:  rowset(P1)=r[P2]
72632 **
72633 ** Insert the integer value held by register P2 into a boolean index
72634 ** held in register P1.
72635 **
72636 ** An assertion fails if P2 is not an integer.
72637 */
72638 case OP_RowSetAdd: {       /* in1, in2 */
72639   pIn1 = &aMem[pOp->p1];
72640   pIn2 = &aMem[pOp->p2];
72641   assert( (pIn2->flags & MEM_Int)!=0 );
72642   if( (pIn1->flags & MEM_RowSet)==0 ){
72643     sqlite3VdbeMemSetRowSet(pIn1);
72644     if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
72645   }
72646   sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i);
72647   break;
72648 }
72649 
72650 /* Opcode: RowSetRead P1 P2 P3 * *
72651 ** Synopsis:  r[P3]=rowset(P1)
72652 **
72653 ** Extract the smallest value from boolean index P1 and put that value into
72654 ** register P3.  Or, if boolean index P1 is initially empty, leave P3
72655 ** unchanged and jump to instruction P2.
72656 */
72657 case OP_RowSetRead: {       /* jump, in1, out3 */
72658   i64 val;
72659 
72660   pIn1 = &aMem[pOp->p1];
72661   if( (pIn1->flags & MEM_RowSet)==0
72662    || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0
72663   ){
72664     /* The boolean index is empty */
72665     sqlite3VdbeMemSetNull(pIn1);
72666     pc = pOp->p2 - 1;
72667     VdbeBranchTaken(1,2);
72668   }else{
72669     /* A value was pulled from the index */
72670     sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
72671     VdbeBranchTaken(0,2);
72672   }
72673   goto check_for_interrupt;
72674 }
72675 
72676 /* Opcode: RowSetTest P1 P2 P3 P4
72677 ** Synopsis: if r[P3] in rowset(P1) goto P2
72678 **
72679 ** Register P3 is assumed to hold a 64-bit integer value. If register P1
72680 ** contains a RowSet object and that RowSet object contains
72681 ** the value held in P3, jump to register P2. Otherwise, insert the
72682 ** integer in P3 into the RowSet and continue on to the
72683 ** next opcode.
72684 **
72685 ** The RowSet object is optimized for the case where successive sets
72686 ** of integers, where each set contains no duplicates. Each set
72687 ** of values is identified by a unique P4 value. The first set
72688 ** must have P4==0, the final set P4=-1.  P4 must be either -1 or
72689 ** non-negative.  For non-negative values of P4 only the lower 4
72690 ** bits are significant.
72691 **
72692 ** This allows optimizations: (a) when P4==0 there is no need to test
72693 ** the rowset object for P3, as it is guaranteed not to contain it,
72694 ** (b) when P4==-1 there is no need to insert the value, as it will
72695 ** never be tested for, and (c) when a value that is part of set X is
72696 ** inserted, there is no need to search to see if the same value was
72697 ** previously inserted as part of set X (only if it was previously
72698 ** inserted as part of some other set).
72699 */
72700 case OP_RowSetTest: {                     /* jump, in1, in3 */
72701   int iSet;
72702   int exists;
72703 
72704   pIn1 = &aMem[pOp->p1];
72705   pIn3 = &aMem[pOp->p3];
72706   iSet = pOp->p4.i;
72707   assert( pIn3->flags&MEM_Int );
72708 
72709   /* If there is anything other than a rowset object in memory cell P1,
72710   ** delete it now and initialize P1 with an empty rowset
72711   */
72712   if( (pIn1->flags & MEM_RowSet)==0 ){
72713     sqlite3VdbeMemSetRowSet(pIn1);
72714     if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
72715   }
72716 
72717   assert( pOp->p4type==P4_INT32 );
72718   assert( iSet==-1 || iSet>=0 );
72719   if( iSet ){
72720     exists = sqlite3RowSetTest(pIn1->u.pRowSet, iSet, pIn3->u.i);
72721     VdbeBranchTaken(exists!=0,2);
72722     if( exists ){
72723       pc = pOp->p2 - 1;
72724       break;
72725     }
72726   }
72727   if( iSet>=0 ){
72728     sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
72729   }
72730   break;
72731 }
72732 
72733 
72734 #ifndef SQLITE_OMIT_TRIGGER
72735 
72736 /* Opcode: Program P1 P2 P3 P4 P5
72737 **
72738 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
72739 **
72740 ** P1 contains the address of the memory cell that contains the first memory
72741 ** cell in an array of values used as arguments to the sub-program. P2
72742 ** contains the address to jump to if the sub-program throws an IGNORE
72743 ** exception using the RAISE() function. Register P3 contains the address
72744 ** of a memory cell in this (the parent) VM that is used to allocate the
72745 ** memory required by the sub-vdbe at runtime.
72746 **
72747 ** P4 is a pointer to the VM containing the trigger program.
72748 **
72749 ** If P5 is non-zero, then recursive program invocation is enabled.
72750 */
72751 case OP_Program: {        /* jump */
72752   int nMem;               /* Number of memory registers for sub-program */
72753   int nByte;              /* Bytes of runtime space required for sub-program */
72754   Mem *pRt;               /* Register to allocate runtime space */
72755   Mem *pMem;              /* Used to iterate through memory cells */
72756   Mem *pEnd;              /* Last memory cell in new array */
72757   VdbeFrame *pFrame;      /* New vdbe frame to execute in */
72758   SubProgram *pProgram;   /* Sub-program to execute */
72759   void *t;                /* Token identifying trigger */
72760 
72761   pProgram = pOp->p4.pProgram;
72762   pRt = &aMem[pOp->p3];
72763   assert( pProgram->nOp>0 );
72764 
72765   /* If the p5 flag is clear, then recursive invocation of triggers is
72766   ** disabled for backwards compatibility (p5 is set if this sub-program
72767   ** is really a trigger, not a foreign key action, and the flag set
72768   ** and cleared by the "PRAGMA recursive_triggers" command is clear).
72769   **
72770   ** It is recursive invocation of triggers, at the SQL level, that is
72771   ** disabled. In some cases a single trigger may generate more than one
72772   ** SubProgram (if the trigger may be executed with more than one different
72773   ** ON CONFLICT algorithm). SubProgram structures associated with a
72774   ** single trigger all have the same value for the SubProgram.token
72775   ** variable.  */
72776   if( pOp->p5 ){
72777     t = pProgram->token;
72778     for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
72779     if( pFrame ) break;
72780   }
72781 
72782   if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
72783     rc = SQLITE_ERROR;
72784     sqlite3SetString(&p->zErrMsg, db, "too many levels of trigger recursion");
72785     break;
72786   }
72787 
72788   /* Register pRt is used to store the memory required to save the state
72789   ** of the current program, and the memory required at runtime to execute
72790   ** the trigger program. If this trigger has been fired before, then pRt
72791   ** is already allocated. Otherwise, it must be initialized.  */
72792   if( (pRt->flags&MEM_Frame)==0 ){
72793     /* SubProgram.nMem is set to the number of memory cells used by the
72794     ** program stored in SubProgram.aOp. As well as these, one memory
72795     ** cell is required for each cursor used by the program. Set local
72796     ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
72797     */
72798     nMem = pProgram->nMem + pProgram->nCsr;
72799     nByte = ROUND8(sizeof(VdbeFrame))
72800               + nMem * sizeof(Mem)
72801               + pProgram->nCsr * sizeof(VdbeCursor *)
72802               + pProgram->nOnce * sizeof(u8);
72803     pFrame = sqlite3DbMallocZero(db, nByte);
72804     if( !pFrame ){
72805       goto no_mem;
72806     }
72807     sqlite3VdbeMemRelease(pRt);
72808     pRt->flags = MEM_Frame;
72809     pRt->u.pFrame = pFrame;
72810 
72811     pFrame->v = p;
72812     pFrame->nChildMem = nMem;
72813     pFrame->nChildCsr = pProgram->nCsr;
72814     pFrame->pc = pc;
72815     pFrame->aMem = p->aMem;
72816     pFrame->nMem = p->nMem;
72817     pFrame->apCsr = p->apCsr;
72818     pFrame->nCursor = p->nCursor;
72819     pFrame->aOp = p->aOp;
72820     pFrame->nOp = p->nOp;
72821     pFrame->token = pProgram->token;
72822     pFrame->aOnceFlag = p->aOnceFlag;
72823     pFrame->nOnceFlag = p->nOnceFlag;
72824 
72825     pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
72826     for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
72827       pMem->flags = MEM_Undefined;
72828       pMem->db = db;
72829     }
72830   }else{
72831     pFrame = pRt->u.pFrame;
72832     assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem );
72833     assert( pProgram->nCsr==pFrame->nChildCsr );
72834     assert( pc==pFrame->pc );
72835   }
72836 
72837   p->nFrame++;
72838   pFrame->pParent = p->pFrame;
72839   pFrame->lastRowid = lastRowid;
72840   pFrame->nChange = p->nChange;
72841   p->nChange = 0;
72842   p->pFrame = pFrame;
72843   p->aMem = aMem = &VdbeFrameMem(pFrame)[-1];
72844   p->nMem = pFrame->nChildMem;
72845   p->nCursor = (u16)pFrame->nChildCsr;
72846   p->apCsr = (VdbeCursor **)&aMem[p->nMem+1];
72847   p->aOp = aOp = pProgram->aOp;
72848   p->nOp = pProgram->nOp;
72849   p->aOnceFlag = (u8 *)&p->apCsr[p->nCursor];
72850   p->nOnceFlag = pProgram->nOnce;
72851   pc = -1;
72852   memset(p->aOnceFlag, 0, p->nOnceFlag);
72853 
72854   break;
72855 }
72856 
72857 /* Opcode: Param P1 P2 * * *
72858 **
72859 ** This opcode is only ever present in sub-programs called via the
72860 ** OP_Program instruction. Copy a value currently stored in a memory
72861 ** cell of the calling (parent) frame to cell P2 in the current frames
72862 ** address space. This is used by trigger programs to access the new.*
72863 ** and old.* values.
72864 **
72865 ** The address of the cell in the parent frame is determined by adding
72866 ** the value of the P1 argument to the value of the P1 argument to the
72867 ** calling OP_Program instruction.
72868 */
72869 case OP_Param: {           /* out2-prerelease */
72870   VdbeFrame *pFrame;
72871   Mem *pIn;
72872   pFrame = p->pFrame;
72873   pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
72874   sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
72875   break;
72876 }
72877 
72878 #endif /* #ifndef SQLITE_OMIT_TRIGGER */
72879 
72880 #ifndef SQLITE_OMIT_FOREIGN_KEY
72881 /* Opcode: FkCounter P1 P2 * * *
72882 ** Synopsis: fkctr[P1]+=P2
72883 **
72884 ** Increment a "constraint counter" by P2 (P2 may be negative or positive).
72885 ** If P1 is non-zero, the database constraint counter is incremented
72886 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the
72887 ** statement counter is incremented (immediate foreign key constraints).
72888 */
72889 case OP_FkCounter: {
72890   if( db->flags & SQLITE_DeferFKs ){
72891     db->nDeferredImmCons += pOp->p2;
72892   }else if( pOp->p1 ){
72893     db->nDeferredCons += pOp->p2;
72894   }else{
72895     p->nFkConstraint += pOp->p2;
72896   }
72897   break;
72898 }
72899 
72900 /* Opcode: FkIfZero P1 P2 * * *
72901 ** Synopsis: if fkctr[P1]==0 goto P2
72902 **
72903 ** This opcode tests if a foreign key constraint-counter is currently zero.
72904 ** If so, jump to instruction P2. Otherwise, fall through to the next
72905 ** instruction.
72906 **
72907 ** If P1 is non-zero, then the jump is taken if the database constraint-counter
72908 ** is zero (the one that counts deferred constraint violations). If P1 is
72909 ** zero, the jump is taken if the statement constraint-counter is zero
72910 ** (immediate foreign key constraint violations).
72911 */
72912 case OP_FkIfZero: {         /* jump */
72913   if( pOp->p1 ){
72914     VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
72915     if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) pc = pOp->p2-1;
72916   }else{
72917     VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
72918     if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) pc = pOp->p2-1;
72919   }
72920   break;
72921 }
72922 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
72923 
72924 #ifndef SQLITE_OMIT_AUTOINCREMENT
72925 /* Opcode: MemMax P1 P2 * * *
72926 ** Synopsis: r[P1]=max(r[P1],r[P2])
72927 **
72928 ** P1 is a register in the root frame of this VM (the root frame is
72929 ** different from the current frame if this instruction is being executed
72930 ** within a sub-program). Set the value of register P1 to the maximum of
72931 ** its current value and the value in register P2.
72932 **
72933 ** This instruction throws an error if the memory cell is not initially
72934 ** an integer.
72935 */
72936 case OP_MemMax: {        /* in2 */
72937   VdbeFrame *pFrame;
72938   if( p->pFrame ){
72939     for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
72940     pIn1 = &pFrame->aMem[pOp->p1];
72941   }else{
72942     pIn1 = &aMem[pOp->p1];
72943   }
72944   assert( memIsValid(pIn1) );
72945   sqlite3VdbeMemIntegerify(pIn1);
72946   pIn2 = &aMem[pOp->p2];
72947   sqlite3VdbeMemIntegerify(pIn2);
72948   if( pIn1->u.i<pIn2->u.i){
72949     pIn1->u.i = pIn2->u.i;
72950   }
72951   break;
72952 }
72953 #endif /* SQLITE_OMIT_AUTOINCREMENT */
72954 
72955 /* Opcode: IfPos P1 P2 * * *
72956 ** Synopsis: if r[P1]>0 goto P2
72957 **
72958 ** If the value of register P1 is 1 or greater, jump to P2.
72959 **
72960 ** It is illegal to use this instruction on a register that does
72961 ** not contain an integer.  An assertion fault will result if you try.
72962 */
72963 case OP_IfPos: {        /* jump, in1 */
72964   pIn1 = &aMem[pOp->p1];
72965   assert( pIn1->flags&MEM_Int );
72966   VdbeBranchTaken( pIn1->u.i>0, 2);
72967   if( pIn1->u.i>0 ){
72968      pc = pOp->p2 - 1;
72969   }
72970   break;
72971 }
72972 
72973 /* Opcode: IfNeg P1 P2 * * *
72974 ** Synopsis: if r[P1]<0 goto P2
72975 **
72976 ** If the value of register P1 is less than zero, jump to P2.
72977 **
72978 ** It is illegal to use this instruction on a register that does
72979 ** not contain an integer.  An assertion fault will result if you try.
72980 */
72981 case OP_IfNeg: {        /* jump, in1 */
72982   pIn1 = &aMem[pOp->p1];
72983   assert( pIn1->flags&MEM_Int );
72984   VdbeBranchTaken(pIn1->u.i<0, 2);
72985   if( pIn1->u.i<0 ){
72986      pc = pOp->p2 - 1;
72987   }
72988   break;
72989 }
72990 
72991 /* Opcode: IfZero P1 P2 P3 * *
72992 ** Synopsis: r[P1]+=P3, if r[P1]==0 goto P2
72993 **
72994 ** The register P1 must contain an integer.  Add literal P3 to the
72995 ** value in register P1.  If the result is exactly 0, jump to P2.
72996 **
72997 ** It is illegal to use this instruction on a register that does
72998 ** not contain an integer.  An assertion fault will result if you try.
72999 */
73000 case OP_IfZero: {        /* jump, in1 */
73001   pIn1 = &aMem[pOp->p1];
73002   assert( pIn1->flags&MEM_Int );
73003   pIn1->u.i += pOp->p3;
73004   VdbeBranchTaken(pIn1->u.i==0, 2);
73005   if( pIn1->u.i==0 ){
73006      pc = pOp->p2 - 1;
73007   }
73008   break;
73009 }
73010 
73011 /* Opcode: AggStep * P2 P3 P4 P5
73012 ** Synopsis: accum=r[P3] step(r[P2@P5])
73013 **
73014 ** Execute the step function for an aggregate.  The
73015 ** function has P5 arguments.   P4 is a pointer to the FuncDef
73016 ** structure that specifies the function.  Use register
73017 ** P3 as the accumulator.
73018 **
73019 ** The P5 arguments are taken from register P2 and its
73020 ** successors.
73021 */
73022 case OP_AggStep: {
73023   int n;
73024   int i;
73025   Mem *pMem;
73026   Mem *pRec;
73027   sqlite3_context ctx;
73028   sqlite3_value **apVal;
73029 
73030   n = pOp->p5;
73031   assert( n>=0 );
73032   pRec = &aMem[pOp->p2];
73033   apVal = p->apArg;
73034   assert( apVal || n==0 );
73035   for(i=0; i<n; i++, pRec++){
73036     assert( memIsValid(pRec) );
73037     apVal[i] = pRec;
73038     memAboutToChange(p, pRec);
73039   }
73040   ctx.pFunc = pOp->p4.pFunc;
73041   assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
73042   ctx.pMem = pMem = &aMem[pOp->p3];
73043   pMem->n++;
73044   ctx.s.flags = MEM_Null;
73045   ctx.s.z = 0;
73046   ctx.s.zMalloc = 0;
73047   ctx.s.xDel = 0;
73048   ctx.s.db = db;
73049   ctx.isError = 0;
73050   ctx.pColl = 0;
73051   ctx.skipFlag = 0;
73052   if( ctx.pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
73053     assert( pOp>p->aOp );
73054     assert( pOp[-1].p4type==P4_COLLSEQ );
73055     assert( pOp[-1].opcode==OP_CollSeq );
73056     ctx.pColl = pOp[-1].p4.pColl;
73057   }
73058   (ctx.pFunc->xStep)(&ctx, n, apVal); /* IMP: R-24505-23230 */
73059   if( ctx.isError ){
73060     sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
73061     rc = ctx.isError;
73062   }
73063   if( ctx.skipFlag ){
73064     assert( pOp[-1].opcode==OP_CollSeq );
73065     i = pOp[-1].p1;
73066     if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
73067   }
73068 
73069   sqlite3VdbeMemRelease(&ctx.s);
73070 
73071   break;
73072 }
73073 
73074 /* Opcode: AggFinal P1 P2 * P4 *
73075 ** Synopsis: accum=r[P1] N=P2
73076 **
73077 ** Execute the finalizer function for an aggregate.  P1 is
73078 ** the memory location that is the accumulator for the aggregate.
73079 **
73080 ** P2 is the number of arguments that the step function takes and
73081 ** P4 is a pointer to the FuncDef for this function.  The P2
73082 ** argument is not used by this opcode.  It is only there to disambiguate
73083 ** functions that can take varying numbers of arguments.  The
73084 ** P4 argument is only needed for the degenerate case where
73085 ** the step function was not previously called.
73086 */
73087 case OP_AggFinal: {
73088   Mem *pMem;
73089   assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
73090   pMem = &aMem[pOp->p1];
73091   assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
73092   rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
73093   if( rc ){
73094     sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(pMem));
73095   }
73096   sqlite3VdbeChangeEncoding(pMem, encoding);
73097   UPDATE_MAX_BLOBSIZE(pMem);
73098   if( sqlite3VdbeMemTooBig(pMem) ){
73099     goto too_big;
73100   }
73101   break;
73102 }
73103 
73104 #ifndef SQLITE_OMIT_WAL
73105 /* Opcode: Checkpoint P1 P2 P3 * *
73106 **
73107 ** Checkpoint database P1. This is a no-op if P1 is not currently in
73108 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL
73109 ** or RESTART.  Write 1 or 0 into mem[P3] if the checkpoint returns
73110 ** SQLITE_BUSY or not, respectively.  Write the number of pages in the
73111 ** WAL after the checkpoint into mem[P3+1] and the number of pages
73112 ** in the WAL that have been checkpointed after the checkpoint
73113 ** completes into mem[P3+2].  However on an error, mem[P3+1] and
73114 ** mem[P3+2] are initialized to -1.
73115 */
73116 case OP_Checkpoint: {
73117   int i;                          /* Loop counter */
73118   int aRes[3];                    /* Results */
73119   Mem *pMem;                      /* Write results here */
73120 
73121   assert( p->readOnly==0 );
73122   aRes[0] = 0;
73123   aRes[1] = aRes[2] = -1;
73124   assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
73125        || pOp->p2==SQLITE_CHECKPOINT_FULL
73126        || pOp->p2==SQLITE_CHECKPOINT_RESTART
73127   );
73128   rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
73129   if( rc==SQLITE_BUSY ){
73130     rc = SQLITE_OK;
73131     aRes[0] = 1;
73132   }
73133   for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
73134     sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
73135   }
73136   break;
73137 };
73138 #endif
73139 
73140 #ifndef SQLITE_OMIT_PRAGMA
73141 /* Opcode: JournalMode P1 P2 P3 * *
73142 **
73143 ** Change the journal mode of database P1 to P3. P3 must be one of the
73144 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
73145 ** modes (delete, truncate, persist, off and memory), this is a simple
73146 ** operation. No IO is required.
73147 **
73148 ** If changing into or out of WAL mode the procedure is more complicated.
73149 **
73150 ** Write a string containing the final journal-mode to register P2.
73151 */
73152 case OP_JournalMode: {    /* out2-prerelease */
73153   Btree *pBt;                     /* Btree to change journal mode of */
73154   Pager *pPager;                  /* Pager associated with pBt */
73155   int eNew;                       /* New journal mode */
73156   int eOld;                       /* The old journal mode */
73157 #ifndef SQLITE_OMIT_WAL
73158   const char *zFilename;          /* Name of database file for pPager */
73159 #endif
73160 
73161   eNew = pOp->p3;
73162   assert( eNew==PAGER_JOURNALMODE_DELETE
73163        || eNew==PAGER_JOURNALMODE_TRUNCATE
73164        || eNew==PAGER_JOURNALMODE_PERSIST
73165        || eNew==PAGER_JOURNALMODE_OFF
73166        || eNew==PAGER_JOURNALMODE_MEMORY
73167        || eNew==PAGER_JOURNALMODE_WAL
73168        || eNew==PAGER_JOURNALMODE_QUERY
73169   );
73170   assert( pOp->p1>=0 && pOp->p1<db->nDb );
73171   assert( p->readOnly==0 );
73172 
73173   pBt = db->aDb[pOp->p1].pBt;
73174   pPager = sqlite3BtreePager(pBt);
73175   eOld = sqlite3PagerGetJournalMode(pPager);
73176   if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
73177   if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
73178 
73179 #ifndef SQLITE_OMIT_WAL
73180   zFilename = sqlite3PagerFilename(pPager, 1);
73181 
73182   /* Do not allow a transition to journal_mode=WAL for a database
73183   ** in temporary storage or if the VFS does not support shared memory
73184   */
73185   if( eNew==PAGER_JOURNALMODE_WAL
73186    && (sqlite3Strlen30(zFilename)==0           /* Temp file */
73187        || !sqlite3PagerWalSupported(pPager))   /* No shared-memory support */
73188   ){
73189     eNew = eOld;
73190   }
73191 
73192   if( (eNew!=eOld)
73193    && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
73194   ){
73195     if( !db->autoCommit || db->nVdbeRead>1 ){
73196       rc = SQLITE_ERROR;
73197       sqlite3SetString(&p->zErrMsg, db,
73198           "cannot change %s wal mode from within a transaction",
73199           (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
73200       );
73201       break;
73202     }else{
73203 
73204       if( eOld==PAGER_JOURNALMODE_WAL ){
73205         /* If leaving WAL mode, close the log file. If successful, the call
73206         ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
73207         ** file. An EXCLUSIVE lock may still be held on the database file
73208         ** after a successful return.
73209         */
73210         rc = sqlite3PagerCloseWal(pPager);
73211         if( rc==SQLITE_OK ){
73212           sqlite3PagerSetJournalMode(pPager, eNew);
73213         }
73214       }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
73215         /* Cannot transition directly from MEMORY to WAL.  Use mode OFF
73216         ** as an intermediate */
73217         sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
73218       }
73219 
73220       /* Open a transaction on the database file. Regardless of the journal
73221       ** mode, this transaction always uses a rollback journal.
73222       */
73223       assert( sqlite3BtreeIsInTrans(pBt)==0 );
73224       if( rc==SQLITE_OK ){
73225         rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
73226       }
73227     }
73228   }
73229 #endif /* ifndef SQLITE_OMIT_WAL */
73230 
73231   if( rc ){
73232     eNew = eOld;
73233   }
73234   eNew = sqlite3PagerSetJournalMode(pPager, eNew);
73235 
73236   pOut = &aMem[pOp->p2];
73237   pOut->flags = MEM_Str|MEM_Static|MEM_Term;
73238   pOut->z = (char *)sqlite3JournalModename(eNew);
73239   pOut->n = sqlite3Strlen30(pOut->z);
73240   pOut->enc = SQLITE_UTF8;
73241   sqlite3VdbeChangeEncoding(pOut, encoding);
73242   break;
73243 };
73244 #endif /* SQLITE_OMIT_PRAGMA */
73245 
73246 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
73247 /* Opcode: Vacuum * * * * *
73248 **
73249 ** Vacuum the entire database.  This opcode will cause other virtual
73250 ** machines to be created and run.  It may not be called from within
73251 ** a transaction.
73252 */
73253 case OP_Vacuum: {
73254   assert( p->readOnly==0 );
73255   rc = sqlite3RunVacuum(&p->zErrMsg, db);
73256   break;
73257 }
73258 #endif
73259 
73260 #if !defined(SQLITE_OMIT_AUTOVACUUM)
73261 /* Opcode: IncrVacuum P1 P2 * * *
73262 **
73263 ** Perform a single step of the incremental vacuum procedure on
73264 ** the P1 database. If the vacuum has finished, jump to instruction
73265 ** P2. Otherwise, fall through to the next instruction.
73266 */
73267 case OP_IncrVacuum: {        /* jump */
73268   Btree *pBt;
73269 
73270   assert( pOp->p1>=0 && pOp->p1<db->nDb );
73271   assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
73272   assert( p->readOnly==0 );
73273   pBt = db->aDb[pOp->p1].pBt;
73274   rc = sqlite3BtreeIncrVacuum(pBt);
73275   VdbeBranchTaken(rc==SQLITE_DONE,2);
73276   if( rc==SQLITE_DONE ){
73277     pc = pOp->p2 - 1;
73278     rc = SQLITE_OK;
73279   }
73280   break;
73281 }
73282 #endif
73283 
73284 /* Opcode: Expire P1 * * * *
73285 **
73286 ** Cause precompiled statements to become expired. An expired statement
73287 ** fails with an error code of SQLITE_SCHEMA if it is ever executed
73288 ** (via sqlite3_step()).
73289 **
73290 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
73291 ** then only the currently executing statement is affected.
73292 */
73293 case OP_Expire: {
73294   if( !pOp->p1 ){
73295     sqlite3ExpirePreparedStatements(db);
73296   }else{
73297     p->expired = 1;
73298   }
73299   break;
73300 }
73301 
73302 #ifndef SQLITE_OMIT_SHARED_CACHE
73303 /* Opcode: TableLock P1 P2 P3 P4 *
73304 ** Synopsis: iDb=P1 root=P2 write=P3
73305 **
73306 ** Obtain a lock on a particular table. This instruction is only used when
73307 ** the shared-cache feature is enabled.
73308 **
73309 ** P1 is the index of the database in sqlite3.aDb[] of the database
73310 ** on which the lock is acquired.  A readlock is obtained if P3==0 or
73311 ** a write lock if P3==1.
73312 **
73313 ** P2 contains the root-page of the table to lock.
73314 **
73315 ** P4 contains a pointer to the name of the table being locked. This is only
73316 ** used to generate an error message if the lock cannot be obtained.
73317 */
73318 case OP_TableLock: {
73319   u8 isWriteLock = (u8)pOp->p3;
73320   if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){
73321     int p1 = pOp->p1;
73322     assert( p1>=0 && p1<db->nDb );
73323     assert( (p->btreeMask & (((yDbMask)1)<<p1))!=0 );
73324     assert( isWriteLock==0 || isWriteLock==1 );
73325     rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
73326     if( (rc&0xFF)==SQLITE_LOCKED ){
73327       const char *z = pOp->p4.z;
73328       sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z);
73329     }
73330   }
73331   break;
73332 }
73333 #endif /* SQLITE_OMIT_SHARED_CACHE */
73334 
73335 #ifndef SQLITE_OMIT_VIRTUALTABLE
73336 /* Opcode: VBegin * * * P4 *
73337 **
73338 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
73339 ** xBegin method for that table.
73340 **
73341 ** Also, whether or not P4 is set, check that this is not being called from
73342 ** within a callback to a virtual table xSync() method. If it is, the error
73343 ** code will be set to SQLITE_LOCKED.
73344 */
73345 case OP_VBegin: {
73346   VTable *pVTab;
73347   pVTab = pOp->p4.pVtab;
73348   rc = sqlite3VtabBegin(db, pVTab);
73349   if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
73350   break;
73351 }
73352 #endif /* SQLITE_OMIT_VIRTUALTABLE */
73353 
73354 #ifndef SQLITE_OMIT_VIRTUALTABLE
73355 /* Opcode: VCreate P1 * * P4 *
73356 **
73357 ** P4 is the name of a virtual table in database P1. Call the xCreate method
73358 ** for that table.
73359 */
73360 case OP_VCreate: {
73361   rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg);
73362   break;
73363 }
73364 #endif /* SQLITE_OMIT_VIRTUALTABLE */
73365 
73366 #ifndef SQLITE_OMIT_VIRTUALTABLE
73367 /* Opcode: VDestroy P1 * * P4 *
73368 **
73369 ** P4 is the name of a virtual table in database P1.  Call the xDestroy method
73370 ** of that table.
73371 */
73372 case OP_VDestroy: {
73373   p->inVtabMethod = 2;
73374   rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
73375   p->inVtabMethod = 0;
73376   break;
73377 }
73378 #endif /* SQLITE_OMIT_VIRTUALTABLE */
73379 
73380 #ifndef SQLITE_OMIT_VIRTUALTABLE
73381 /* Opcode: VOpen P1 * * P4 *
73382 **
73383 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
73384 ** P1 is a cursor number.  This opcode opens a cursor to the virtual
73385 ** table and stores that cursor in P1.
73386 */
73387 case OP_VOpen: {
73388   VdbeCursor *pCur;
73389   sqlite3_vtab_cursor *pVtabCursor;
73390   sqlite3_vtab *pVtab;
73391   sqlite3_module *pModule;
73392 
73393   assert( p->bIsReader );
73394   pCur = 0;
73395   pVtabCursor = 0;
73396   pVtab = pOp->p4.pVtab->pVtab;
73397   pModule = (sqlite3_module *)pVtab->pModule;
73398   assert(pVtab && pModule);
73399   rc = pModule->xOpen(pVtab, &pVtabCursor);
73400   sqlite3VtabImportErrmsg(p, pVtab);
73401   if( SQLITE_OK==rc ){
73402     /* Initialize sqlite3_vtab_cursor base class */
73403     pVtabCursor->pVtab = pVtab;
73404 
73405     /* Initialize vdbe cursor object */
73406     pCur = allocateCursor(p, pOp->p1, 0, -1, 0);
73407     if( pCur ){
73408       pCur->pVtabCursor = pVtabCursor;
73409     }else{
73410       db->mallocFailed = 1;
73411       pModule->xClose(pVtabCursor);
73412     }
73413   }
73414   break;
73415 }
73416 #endif /* SQLITE_OMIT_VIRTUALTABLE */
73417 
73418 #ifndef SQLITE_OMIT_VIRTUALTABLE
73419 /* Opcode: VFilter P1 P2 P3 P4 *
73420 ** Synopsis: iplan=r[P3] zplan='P4'
73421 **
73422 ** P1 is a cursor opened using VOpen.  P2 is an address to jump to if
73423 ** the filtered result set is empty.
73424 **
73425 ** P4 is either NULL or a string that was generated by the xBestIndex
73426 ** method of the module.  The interpretation of the P4 string is left
73427 ** to the module implementation.
73428 **
73429 ** This opcode invokes the xFilter method on the virtual table specified
73430 ** by P1.  The integer query plan parameter to xFilter is stored in register
73431 ** P3. Register P3+1 stores the argc parameter to be passed to the
73432 ** xFilter method. Registers P3+2..P3+1+argc are the argc
73433 ** additional parameters which are passed to
73434 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
73435 **
73436 ** A jump is made to P2 if the result set after filtering would be empty.
73437 */
73438 case OP_VFilter: {   /* jump */
73439   int nArg;
73440   int iQuery;
73441   const sqlite3_module *pModule;
73442   Mem *pQuery;
73443   Mem *pArgc;
73444   sqlite3_vtab_cursor *pVtabCursor;
73445   sqlite3_vtab *pVtab;
73446   VdbeCursor *pCur;
73447   int res;
73448   int i;
73449   Mem **apArg;
73450 
73451   pQuery = &aMem[pOp->p3];
73452   pArgc = &pQuery[1];
73453   pCur = p->apCsr[pOp->p1];
73454   assert( memIsValid(pQuery) );
73455   REGISTER_TRACE(pOp->p3, pQuery);
73456   assert( pCur->pVtabCursor );
73457   pVtabCursor = pCur->pVtabCursor;
73458   pVtab = pVtabCursor->pVtab;
73459   pModule = pVtab->pModule;
73460 
73461   /* Grab the index number and argc parameters */
73462   assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
73463   nArg = (int)pArgc->u.i;
73464   iQuery = (int)pQuery->u.i;
73465 
73466   /* Invoke the xFilter method */
73467   {
73468     res = 0;
73469     apArg = p->apArg;
73470     for(i = 0; i<nArg; i++){
73471       apArg[i] = &pArgc[i+1];
73472     }
73473 
73474     p->inVtabMethod = 1;
73475     rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg);
73476     p->inVtabMethod = 0;
73477     sqlite3VtabImportErrmsg(p, pVtab);
73478     if( rc==SQLITE_OK ){
73479       res = pModule->xEof(pVtabCursor);
73480     }
73481     VdbeBranchTaken(res!=0,2);
73482     if( res ){
73483       pc = pOp->p2 - 1;
73484     }
73485   }
73486   pCur->nullRow = 0;
73487 
73488   break;
73489 }
73490 #endif /* SQLITE_OMIT_VIRTUALTABLE */
73491 
73492 #ifndef SQLITE_OMIT_VIRTUALTABLE
73493 /* Opcode: VColumn P1 P2 P3 * *
73494 ** Synopsis: r[P3]=vcolumn(P2)
73495 **
73496 ** Store the value of the P2-th column of
73497 ** the row of the virtual-table that the
73498 ** P1 cursor is pointing to into register P3.
73499 */
73500 case OP_VColumn: {
73501   sqlite3_vtab *pVtab;
73502   const sqlite3_module *pModule;
73503   Mem *pDest;
73504   sqlite3_context sContext;
73505 
73506   VdbeCursor *pCur = p->apCsr[pOp->p1];
73507   assert( pCur->pVtabCursor );
73508   assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
73509   pDest = &aMem[pOp->p3];
73510   memAboutToChange(p, pDest);
73511   if( pCur->nullRow ){
73512     sqlite3VdbeMemSetNull(pDest);
73513     break;
73514   }
73515   pVtab = pCur->pVtabCursor->pVtab;
73516   pModule = pVtab->pModule;
73517   assert( pModule->xColumn );
73518   memset(&sContext, 0, sizeof(sContext));
73519 
73520   /* The output cell may already have a buffer allocated. Move
73521   ** the current contents to sContext.s so in case the user-function
73522   ** can use the already allocated buffer instead of allocating a
73523   ** new one.
73524   */
73525   sqlite3VdbeMemMove(&sContext.s, pDest);
73526   MemSetTypeFlag(&sContext.s, MEM_Null);
73527 
73528   rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
73529   sqlite3VtabImportErrmsg(p, pVtab);
73530   if( sContext.isError ){
73531     rc = sContext.isError;
73532   }
73533 
73534   /* Copy the result of the function to the P3 register. We
73535   ** do this regardless of whether or not an error occurred to ensure any
73536   ** dynamic allocation in sContext.s (a Mem struct) is  released.
73537   */
73538   sqlite3VdbeChangeEncoding(&sContext.s, encoding);
73539   sqlite3VdbeMemMove(pDest, &sContext.s);
73540   REGISTER_TRACE(pOp->p3, pDest);
73541   UPDATE_MAX_BLOBSIZE(pDest);
73542 
73543   if( sqlite3VdbeMemTooBig(pDest) ){
73544     goto too_big;
73545   }
73546   break;
73547 }
73548 #endif /* SQLITE_OMIT_VIRTUALTABLE */
73549 
73550 #ifndef SQLITE_OMIT_VIRTUALTABLE
73551 /* Opcode: VNext P1 P2 * * *
73552 **
73553 ** Advance virtual table P1 to the next row in its result set and
73554 ** jump to instruction P2.  Or, if the virtual table has reached
73555 ** the end of its result set, then fall through to the next instruction.
73556 */
73557 case OP_VNext: {   /* jump */
73558   sqlite3_vtab *pVtab;
73559   const sqlite3_module *pModule;
73560   int res;
73561   VdbeCursor *pCur;
73562 
73563   res = 0;
73564   pCur = p->apCsr[pOp->p1];
73565   assert( pCur->pVtabCursor );
73566   if( pCur->nullRow ){
73567     break;
73568   }
73569   pVtab = pCur->pVtabCursor->pVtab;
73570   pModule = pVtab->pModule;
73571   assert( pModule->xNext );
73572 
73573   /* Invoke the xNext() method of the module. There is no way for the
73574   ** underlying implementation to return an error if one occurs during
73575   ** xNext(). Instead, if an error occurs, true is returned (indicating that
73576   ** data is available) and the error code returned when xColumn or
73577   ** some other method is next invoked on the save virtual table cursor.
73578   */
73579   p->inVtabMethod = 1;
73580   rc = pModule->xNext(pCur->pVtabCursor);
73581   p->inVtabMethod = 0;
73582   sqlite3VtabImportErrmsg(p, pVtab);
73583   if( rc==SQLITE_OK ){
73584     res = pModule->xEof(pCur->pVtabCursor);
73585   }
73586   VdbeBranchTaken(!res,2);
73587   if( !res ){
73588     /* If there is data, jump to P2 */
73589     pc = pOp->p2 - 1;
73590   }
73591   goto check_for_interrupt;
73592 }
73593 #endif /* SQLITE_OMIT_VIRTUALTABLE */
73594 
73595 #ifndef SQLITE_OMIT_VIRTUALTABLE
73596 /* Opcode: VRename P1 * * P4 *
73597 **
73598 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
73599 ** This opcode invokes the corresponding xRename method. The value
73600 ** in register P1 is passed as the zName argument to the xRename method.
73601 */
73602 case OP_VRename: {
73603   sqlite3_vtab *pVtab;
73604   Mem *pName;
73605 
73606   pVtab = pOp->p4.pVtab->pVtab;
73607   pName = &aMem[pOp->p1];
73608   assert( pVtab->pModule->xRename );
73609   assert( memIsValid(pName) );
73610   assert( p->readOnly==0 );
73611   REGISTER_TRACE(pOp->p1, pName);
73612   assert( pName->flags & MEM_Str );
73613   testcase( pName->enc==SQLITE_UTF8 );
73614   testcase( pName->enc==SQLITE_UTF16BE );
73615   testcase( pName->enc==SQLITE_UTF16LE );
73616   rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
73617   if( rc==SQLITE_OK ){
73618     rc = pVtab->pModule->xRename(pVtab, pName->z);
73619     sqlite3VtabImportErrmsg(p, pVtab);
73620     p->expired = 0;
73621   }
73622   break;
73623 }
73624 #endif
73625 
73626 #ifndef SQLITE_OMIT_VIRTUALTABLE
73627 /* Opcode: VUpdate P1 P2 P3 P4 P5
73628 ** Synopsis: data=r[P3@P2]
73629 **
73630 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
73631 ** This opcode invokes the corresponding xUpdate method. P2 values
73632 ** are contiguous memory cells starting at P3 to pass to the xUpdate
73633 ** invocation. The value in register (P3+P2-1) corresponds to the
73634 ** p2th element of the argv array passed to xUpdate.
73635 **
73636 ** The xUpdate method will do a DELETE or an INSERT or both.
73637 ** The argv[0] element (which corresponds to memory cell P3)
73638 ** is the rowid of a row to delete.  If argv[0] is NULL then no
73639 ** deletion occurs.  The argv[1] element is the rowid of the new
73640 ** row.  This can be NULL to have the virtual table select the new
73641 ** rowid for itself.  The subsequent elements in the array are
73642 ** the values of columns in the new row.
73643 **
73644 ** If P2==1 then no insert is performed.  argv[0] is the rowid of
73645 ** a row to delete.
73646 **
73647 ** P1 is a boolean flag. If it is set to true and the xUpdate call
73648 ** is successful, then the value returned by sqlite3_last_insert_rowid()
73649 ** is set to the value of the rowid for the row just inserted.
73650 **
73651 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
73652 ** apply in the case of a constraint failure on an insert or update.
73653 */
73654 case OP_VUpdate: {
73655   sqlite3_vtab *pVtab;
73656   sqlite3_module *pModule;
73657   int nArg;
73658   int i;
73659   sqlite_int64 rowid;
73660   Mem **apArg;
73661   Mem *pX;
73662 
73663   assert( pOp->p2==1        || pOp->p5==OE_Fail   || pOp->p5==OE_Rollback
73664        || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
73665   );
73666   assert( p->readOnly==0 );
73667   pVtab = pOp->p4.pVtab->pVtab;
73668   pModule = (sqlite3_module *)pVtab->pModule;
73669   nArg = pOp->p2;
73670   assert( pOp->p4type==P4_VTAB );
73671   if( ALWAYS(pModule->xUpdate) ){
73672     u8 vtabOnConflict = db->vtabOnConflict;
73673     apArg = p->apArg;
73674     pX = &aMem[pOp->p3];
73675     for(i=0; i<nArg; i++){
73676       assert( memIsValid(pX) );
73677       memAboutToChange(p, pX);
73678       apArg[i] = pX;
73679       pX++;
73680     }
73681     db->vtabOnConflict = pOp->p5;
73682     rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
73683     db->vtabOnConflict = vtabOnConflict;
73684     sqlite3VtabImportErrmsg(p, pVtab);
73685     if( rc==SQLITE_OK && pOp->p1 ){
73686       assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
73687       db->lastRowid = lastRowid = rowid;
73688     }
73689     if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
73690       if( pOp->p5==OE_Ignore ){
73691         rc = SQLITE_OK;
73692       }else{
73693         p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
73694       }
73695     }else{
73696       p->nChange++;
73697     }
73698   }
73699   break;
73700 }
73701 #endif /* SQLITE_OMIT_VIRTUALTABLE */
73702 
73703 #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
73704 /* Opcode: Pagecount P1 P2 * * *
73705 **
73706 ** Write the current number of pages in database P1 to memory cell P2.
73707 */
73708 case OP_Pagecount: {            /* out2-prerelease */
73709   pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
73710   break;
73711 }
73712 #endif
73713 
73714 
73715 #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
73716 /* Opcode: MaxPgcnt P1 P2 P3 * *
73717 **
73718 ** Try to set the maximum page count for database P1 to the value in P3.
73719 ** Do not let the maximum page count fall below the current page count and
73720 ** do not change the maximum page count value if P3==0.
73721 **
73722 ** Store the maximum page count after the change in register P2.
73723 */
73724 case OP_MaxPgcnt: {            /* out2-prerelease */
73725   unsigned int newMax;
73726   Btree *pBt;
73727 
73728   pBt = db->aDb[pOp->p1].pBt;
73729   newMax = 0;
73730   if( pOp->p3 ){
73731     newMax = sqlite3BtreeLastPage(pBt);
73732     if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
73733   }
73734   pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
73735   break;
73736 }
73737 #endif
73738 
73739 
73740 /* Opcode: Init * P2 * P4 *
73741 ** Synopsis:  Start at P2
73742 **
73743 ** Programs contain a single instance of this opcode as the very first
73744 ** opcode.
73745 **
73746 ** If tracing is enabled (by the sqlite3_trace()) interface, then
73747 ** the UTF-8 string contained in P4 is emitted on the trace callback.
73748 ** Or if P4 is blank, use the string returned by sqlite3_sql().
73749 **
73750 ** If P2 is not zero, jump to instruction P2.
73751 */
73752 case OP_Init: {          /* jump */
73753   char *zTrace;
73754   char *z;
73755 
73756   if( pOp->p2 ){
73757     pc = pOp->p2 - 1;
73758   }
73759 #ifndef SQLITE_OMIT_TRACE
73760   if( db->xTrace
73761    && !p->doingRerun
73762    && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
73763   ){
73764     z = sqlite3VdbeExpandSql(p, zTrace);
73765     db->xTrace(db->pTraceArg, z);
73766     sqlite3DbFree(db, z);
73767   }
73768 #ifdef SQLITE_USE_FCNTL_TRACE
73769   zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
73770   if( zTrace ){
73771     int i;
73772     for(i=0; i<db->nDb; i++){
73773       if( (MASKBIT(i) & p->btreeMask)==0 ) continue;
73774       sqlite3_file_control(db, db->aDb[i].zName, SQLITE_FCNTL_TRACE, zTrace);
73775     }
73776   }
73777 #endif /* SQLITE_USE_FCNTL_TRACE */
73778 #ifdef SQLITE_DEBUG
73779   if( (db->flags & SQLITE_SqlTrace)!=0
73780    && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
73781   ){
73782     sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
73783   }
73784 #endif /* SQLITE_DEBUG */
73785 #endif /* SQLITE_OMIT_TRACE */
73786   break;
73787 }
73788 
73789 
73790 /* Opcode: Noop * * * * *
73791 **
73792 ** Do nothing.  This instruction is often useful as a jump
73793 ** destination.
73794 */
73795 /*
73796 ** The magic Explain opcode are only inserted when explain==2 (which
73797 ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
73798 ** This opcode records information from the optimizer.  It is the
73799 ** the same as a no-op.  This opcodesnever appears in a real VM program.
73800 */
73801 default: {          /* This is really OP_Noop and OP_Explain */
73802   assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
73803   break;
73804 }
73805 
73806 /*****************************************************************************
73807 ** The cases of the switch statement above this line should all be indented
73808 ** by 6 spaces.  But the left-most 6 spaces have been removed to improve the
73809 ** readability.  From this point on down, the normal indentation rules are
73810 ** restored.
73811 *****************************************************************************/
73812     }
73813 
73814 #ifdef VDBE_PROFILE
73815     {
73816       u64 endTime = sqlite3Hwtime();
73817       if( endTime>start ) pOp->cycles += endTime - start;
73818       pOp->cnt++;
73819     }
73820 #endif
73821 
73822     /* The following code adds nothing to the actual functionality
73823     ** of the program.  It is only here for testing and debugging.
73824     ** On the other hand, it does burn CPU cycles every time through
73825     ** the evaluator loop.  So we can leave it out when NDEBUG is defined.
73826     */
73827 #ifndef NDEBUG
73828     assert( pc>=-1 && pc<p->nOp );
73829 
73830 #ifdef SQLITE_DEBUG
73831     if( db->flags & SQLITE_VdbeTrace ){
73832       if( rc!=0 ) printf("rc=%d\n",rc);
73833       if( pOp->opflags & (OPFLG_OUT2_PRERELEASE|OPFLG_OUT2) ){
73834         registerTrace(pOp->p2, &aMem[pOp->p2]);
73835       }
73836       if( pOp->opflags & OPFLG_OUT3 ){
73837         registerTrace(pOp->p3, &aMem[pOp->p3]);
73838       }
73839     }
73840 #endif  /* SQLITE_DEBUG */
73841 #endif  /* NDEBUG */
73842   }  /* The end of the for(;;) loop the loops through opcodes */
73843 
73844   /* If we reach this point, it means that execution is finished with
73845   ** an error of some kind.
73846   */
73847 vdbe_error_halt:
73848   assert( rc );
73849   p->rc = rc;
73850   testcase( sqlite3GlobalConfig.xLog!=0 );
73851   sqlite3_log(rc, "statement aborts at %d: [%s] %s",
73852                    pc, p->zSql, p->zErrMsg);
73853   sqlite3VdbeHalt(p);
73854   if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1;
73855   rc = SQLITE_ERROR;
73856   if( resetSchemaOnFault>0 ){
73857     sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
73858   }
73859 
73860   /* This is the only way out of this procedure.  We have to
73861   ** release the mutexes on btrees that were acquired at the
73862   ** top. */
73863 vdbe_return:
73864   db->lastRowid = lastRowid;
73865   testcase( nVmStep>0 );
73866   p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
73867   sqlite3VdbeLeave(p);
73868   return rc;
73869 
73870   /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
73871   ** is encountered.
73872   */
73873 too_big:
73874   sqlite3SetString(&p->zErrMsg, db, "string or blob too big");
73875   rc = SQLITE_TOOBIG;
73876   goto vdbe_error_halt;
73877 
73878   /* Jump to here if a malloc() fails.
73879   */
73880 no_mem:
73881   db->mallocFailed = 1;
73882   sqlite3SetString(&p->zErrMsg, db, "out of memory");
73883   rc = SQLITE_NOMEM;
73884   goto vdbe_error_halt;
73885 
73886   /* Jump to here for any other kind of fatal error.  The "rc" variable
73887   ** should hold the error number.
73888   */
73889 abort_due_to_error:
73890   assert( p->zErrMsg==0 );
73891   if( db->mallocFailed ) rc = SQLITE_NOMEM;
73892   if( rc!=SQLITE_IOERR_NOMEM ){
73893     sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
73894   }
73895   goto vdbe_error_halt;
73896 
73897   /* Jump to here if the sqlite3_interrupt() API sets the interrupt
73898   ** flag.
73899   */
73900 abort_due_to_interrupt:
73901   assert( db->u1.isInterrupted );
73902   rc = SQLITE_INTERRUPT;
73903   p->rc = rc;
73904   sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
73905   goto vdbe_error_halt;
73906 }
73907 
73908 
73909 /************** End of vdbe.c ************************************************/
73910 /************** Begin file vdbeblob.c ****************************************/
73911 /*
73912 ** 2007 May 1
73913 **
73914 ** The author disclaims copyright to this source code.  In place of
73915 ** a legal notice, here is a blessing:
73916 **
73917 **    May you do good and not evil.
73918 **    May you find forgiveness for yourself and forgive others.
73919 **    May you share freely, never taking more than you give.
73920 **
73921 *************************************************************************
73922 **
73923 ** This file contains code used to implement incremental BLOB I/O.
73924 */
73925 
73926 
73927 #ifndef SQLITE_OMIT_INCRBLOB
73928 
73929 /*
73930 ** Valid sqlite3_blob* handles point to Incrblob structures.
73931 */
73932 typedef struct Incrblob Incrblob;
73933 struct Incrblob {
73934   int flags;              /* Copy of "flags" passed to sqlite3_blob_open() */
73935   int nByte;              /* Size of open blob, in bytes */
73936   int iOffset;            /* Byte offset of blob in cursor data */
73937   int iCol;               /* Table column this handle is open on */
73938   BtCursor *pCsr;         /* Cursor pointing at blob row */
73939   sqlite3_stmt *pStmt;    /* Statement holding cursor open */
73940   sqlite3 *db;            /* The associated database */
73941 };
73942 
73943 
73944 /*
73945 ** This function is used by both blob_open() and blob_reopen(). It seeks
73946 ** the b-tree cursor associated with blob handle p to point to row iRow.
73947 ** If successful, SQLITE_OK is returned and subsequent calls to
73948 ** sqlite3_blob_read() or sqlite3_blob_write() access the specified row.
73949 **
73950 ** If an error occurs, or if the specified row does not exist or does not
73951 ** contain a value of type TEXT or BLOB in the column nominated when the
73952 ** blob handle was opened, then an error code is returned and *pzErr may
73953 ** be set to point to a buffer containing an error message. It is the
73954 ** responsibility of the caller to free the error message buffer using
73955 ** sqlite3DbFree().
73956 **
73957 ** If an error does occur, then the b-tree cursor is closed. All subsequent
73958 ** calls to sqlite3_blob_read(), blob_write() or blob_reopen() will
73959 ** immediately return SQLITE_ABORT.
73960 */
73961 static int blobSeekToRow(Incrblob *p, sqlite3_int64 iRow, char **pzErr){
73962   int rc;                         /* Error code */
73963   char *zErr = 0;                 /* Error message */
73964   Vdbe *v = (Vdbe *)p->pStmt;
73965 
73966   /* Set the value of the SQL statements only variable to integer iRow.
73967   ** This is done directly instead of using sqlite3_bind_int64() to avoid
73968   ** triggering asserts related to mutexes.
73969   */
73970   assert( v->aVar[0].flags&MEM_Int );
73971   v->aVar[0].u.i = iRow;
73972 
73973   rc = sqlite3_step(p->pStmt);
73974   if( rc==SQLITE_ROW ){
73975     VdbeCursor *pC = v->apCsr[0];
73976     u32 type = pC->aType[p->iCol];
73977     if( type<12 ){
73978       zErr = sqlite3MPrintf(p->db, "cannot open value of type %s",
73979           type==0?"null": type==7?"real": "integer"
73980       );
73981       rc = SQLITE_ERROR;
73982       sqlite3_finalize(p->pStmt);
73983       p->pStmt = 0;
73984     }else{
73985       p->iOffset = pC->aType[p->iCol + pC->nField];
73986       p->nByte = sqlite3VdbeSerialTypeLen(type);
73987       p->pCsr =  pC->pCursor;
73988       sqlite3BtreeIncrblobCursor(p->pCsr);
73989     }
73990   }
73991 
73992   if( rc==SQLITE_ROW ){
73993     rc = SQLITE_OK;
73994   }else if( p->pStmt ){
73995     rc = sqlite3_finalize(p->pStmt);
73996     p->pStmt = 0;
73997     if( rc==SQLITE_OK ){
73998       zErr = sqlite3MPrintf(p->db, "no such rowid: %lld", iRow);
73999       rc = SQLITE_ERROR;
74000     }else{
74001       zErr = sqlite3MPrintf(p->db, "%s", sqlite3_errmsg(p->db));
74002     }
74003   }
74004 
74005   assert( rc!=SQLITE_OK || zErr==0 );
74006   assert( rc!=SQLITE_ROW && rc!=SQLITE_DONE );
74007 
74008   *pzErr = zErr;
74009   return rc;
74010 }
74011 
74012 /*
74013 ** Open a blob handle.
74014 */
74015 SQLITE_API int sqlite3_blob_open(
74016   sqlite3* db,            /* The database connection */
74017   const char *zDb,        /* The attached database containing the blob */
74018   const char *zTable,     /* The table containing the blob */
74019   const char *zColumn,    /* The column containing the blob */
74020   sqlite_int64 iRow,      /* The row containing the glob */
74021   int flags,              /* True -> read/write access, false -> read-only */
74022   sqlite3_blob **ppBlob   /* Handle for accessing the blob returned here */
74023 ){
74024   int nAttempt = 0;
74025   int iCol;               /* Index of zColumn in row-record */
74026 
74027   /* This VDBE program seeks a btree cursor to the identified
74028   ** db/table/row entry. The reason for using a vdbe program instead
74029   ** of writing code to use the b-tree layer directly is that the
74030   ** vdbe program will take advantage of the various transaction,
74031   ** locking and error handling infrastructure built into the vdbe.
74032   **
74033   ** After seeking the cursor, the vdbe executes an OP_ResultRow.
74034   ** Code external to the Vdbe then "borrows" the b-tree cursor and
74035   ** uses it to implement the blob_read(), blob_write() and
74036   ** blob_bytes() functions.
74037   **
74038   ** The sqlite3_blob_close() function finalizes the vdbe program,
74039   ** which closes the b-tree cursor and (possibly) commits the
74040   ** transaction.
74041   */
74042   static const int iLn = VDBE_OFFSET_LINENO(4);
74043   static const VdbeOpList openBlob[] = {
74044     /* {OP_Transaction, 0, 0, 0},  // 0: Inserted separately */
74045     {OP_TableLock, 0, 0, 0},       /* 1: Acquire a read or write lock */
74046     /* One of the following two instructions is replaced by an OP_Noop. */
74047     {OP_OpenRead, 0, 0, 0},        /* 2: Open cursor 0 for reading */
74048     {OP_OpenWrite, 0, 0, 0},       /* 3: Open cursor 0 for read/write */
74049     {OP_Variable, 1, 1, 1},        /* 4: Push the rowid to the stack */
74050     {OP_NotExists, 0, 10, 1},      /* 5: Seek the cursor */
74051     {OP_Column, 0, 0, 1},          /* 6  */
74052     {OP_ResultRow, 1, 0, 0},       /* 7  */
74053     {OP_Goto, 0, 4, 0},            /* 8  */
74054     {OP_Close, 0, 0, 0},           /* 9  */
74055     {OP_Halt, 0, 0, 0},            /* 10 */
74056   };
74057 
74058   int rc = SQLITE_OK;
74059   char *zErr = 0;
74060   Table *pTab;
74061   Parse *pParse = 0;
74062   Incrblob *pBlob = 0;
74063 
74064   flags = !!flags;                /* flags = (flags ? 1 : 0); */
74065   *ppBlob = 0;
74066 
74067   sqlite3_mutex_enter(db->mutex);
74068 
74069   pBlob = (Incrblob *)sqlite3DbMallocZero(db, sizeof(Incrblob));
74070   if( !pBlob ) goto blob_open_out;
74071   pParse = sqlite3StackAllocRaw(db, sizeof(*pParse));
74072   if( !pParse ) goto blob_open_out;
74073 
74074   do {
74075     memset(pParse, 0, sizeof(Parse));
74076     pParse->db = db;
74077     sqlite3DbFree(db, zErr);
74078     zErr = 0;
74079 
74080     sqlite3BtreeEnterAll(db);
74081     pTab = sqlite3LocateTable(pParse, 0, zTable, zDb);
74082     if( pTab && IsVirtual(pTab) ){
74083       pTab = 0;
74084       sqlite3ErrorMsg(pParse, "cannot open virtual table: %s", zTable);
74085     }
74086     if( pTab && !HasRowid(pTab) ){
74087       pTab = 0;
74088       sqlite3ErrorMsg(pParse, "cannot open table without rowid: %s", zTable);
74089     }
74090 #ifndef SQLITE_OMIT_VIEW
74091     if( pTab && pTab->pSelect ){
74092       pTab = 0;
74093       sqlite3ErrorMsg(pParse, "cannot open view: %s", zTable);
74094     }
74095 #endif
74096     if( !pTab ){
74097       if( pParse->zErrMsg ){
74098         sqlite3DbFree(db, zErr);
74099         zErr = pParse->zErrMsg;
74100         pParse->zErrMsg = 0;
74101       }
74102       rc = SQLITE_ERROR;
74103       sqlite3BtreeLeaveAll(db);
74104       goto blob_open_out;
74105     }
74106 
74107     /* Now search pTab for the exact column. */
74108     for(iCol=0; iCol<pTab->nCol; iCol++) {
74109       if( sqlite3StrICmp(pTab->aCol[iCol].zName, zColumn)==0 ){
74110         break;
74111       }
74112     }
74113     if( iCol==pTab->nCol ){
74114       sqlite3DbFree(db, zErr);
74115       zErr = sqlite3MPrintf(db, "no such column: \"%s\"", zColumn);
74116       rc = SQLITE_ERROR;
74117       sqlite3BtreeLeaveAll(db);
74118       goto blob_open_out;
74119     }
74120 
74121     /* If the value is being opened for writing, check that the
74122     ** column is not indexed, and that it is not part of a foreign key.
74123     ** It is against the rules to open a column to which either of these
74124     ** descriptions applies for writing.  */
74125     if( flags ){
74126       const char *zFault = 0;
74127       Index *pIdx;
74128 #ifndef SQLITE_OMIT_FOREIGN_KEY
74129       if( db->flags&SQLITE_ForeignKeys ){
74130         /* Check that the column is not part of an FK child key definition. It
74131         ** is not necessary to check if it is part of a parent key, as parent
74132         ** key columns must be indexed. The check below will pick up this
74133         ** case.  */
74134         FKey *pFKey;
74135         for(pFKey=pTab->pFKey; pFKey; pFKey=pFKey->pNextFrom){
74136           int j;
74137           for(j=0; j<pFKey->nCol; j++){
74138             if( pFKey->aCol[j].iFrom==iCol ){
74139               zFault = "foreign key";
74140             }
74141           }
74142         }
74143       }
74144 #endif
74145       for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
74146         int j;
74147         for(j=0; j<pIdx->nKeyCol; j++){
74148           if( pIdx->aiColumn[j]==iCol ){
74149             zFault = "indexed";
74150           }
74151         }
74152       }
74153       if( zFault ){
74154         sqlite3DbFree(db, zErr);
74155         zErr = sqlite3MPrintf(db, "cannot open %s column for writing", zFault);
74156         rc = SQLITE_ERROR;
74157         sqlite3BtreeLeaveAll(db);
74158         goto blob_open_out;
74159       }
74160     }
74161 
74162     pBlob->pStmt = (sqlite3_stmt *)sqlite3VdbeCreate(pParse);
74163     assert( pBlob->pStmt || db->mallocFailed );
74164     if( pBlob->pStmt ){
74165       Vdbe *v = (Vdbe *)pBlob->pStmt;
74166       int iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
74167 
74168 
74169       sqlite3VdbeAddOp4Int(v, OP_Transaction, iDb, flags,
74170                            pTab->pSchema->schema_cookie,
74171                            pTab->pSchema->iGeneration);
74172       sqlite3VdbeChangeP5(v, 1);
74173       sqlite3VdbeAddOpList(v, ArraySize(openBlob), openBlob, iLn);
74174 
74175       /* Make sure a mutex is held on the table to be accessed */
74176       sqlite3VdbeUsesBtree(v, iDb);
74177 
74178       /* Configure the OP_TableLock instruction */
74179 #ifdef SQLITE_OMIT_SHARED_CACHE
74180       sqlite3VdbeChangeToNoop(v, 1);
74181 #else
74182       sqlite3VdbeChangeP1(v, 1, iDb);
74183       sqlite3VdbeChangeP2(v, 1, pTab->tnum);
74184       sqlite3VdbeChangeP3(v, 1, flags);
74185       sqlite3VdbeChangeP4(v, 1, pTab->zName, P4_TRANSIENT);
74186 #endif
74187 
74188       /* Remove either the OP_OpenWrite or OpenRead. Set the P2
74189       ** parameter of the other to pTab->tnum.  */
74190       sqlite3VdbeChangeToNoop(v, 3 - flags);
74191       sqlite3VdbeChangeP2(v, 2 + flags, pTab->tnum);
74192       sqlite3VdbeChangeP3(v, 2 + flags, iDb);
74193 
74194       /* Configure the number of columns. Configure the cursor to
74195       ** think that the table has one more column than it really
74196       ** does. An OP_Column to retrieve this imaginary column will
74197       ** always return an SQL NULL. This is useful because it means
74198       ** we can invoke OP_Column to fill in the vdbe cursors type
74199       ** and offset cache without causing any IO.
74200       */
74201       sqlite3VdbeChangeP4(v, 2+flags, SQLITE_INT_TO_PTR(pTab->nCol+1),P4_INT32);
74202       sqlite3VdbeChangeP2(v, 6, pTab->nCol);
74203       if( !db->mallocFailed ){
74204         pParse->nVar = 1;
74205         pParse->nMem = 1;
74206         pParse->nTab = 1;
74207         sqlite3VdbeMakeReady(v, pParse);
74208       }
74209     }
74210 
74211     pBlob->flags = flags;
74212     pBlob->iCol = iCol;
74213     pBlob->db = db;
74214     sqlite3BtreeLeaveAll(db);
74215     if( db->mallocFailed ){
74216       goto blob_open_out;
74217     }
74218     sqlite3_bind_int64(pBlob->pStmt, 1, iRow);
74219     rc = blobSeekToRow(pBlob, iRow, &zErr);
74220   } while( (++nAttempt)<SQLITE_MAX_SCHEMA_RETRY && rc==SQLITE_SCHEMA );
74221 
74222 blob_open_out:
74223   if( rc==SQLITE_OK && db->mallocFailed==0 ){
74224     *ppBlob = (sqlite3_blob *)pBlob;
74225   }else{
74226     if( pBlob && pBlob->pStmt ) sqlite3VdbeFinalize((Vdbe *)pBlob->pStmt);
74227     sqlite3DbFree(db, pBlob);
74228   }
74229   sqlite3Error(db, rc, (zErr ? "%s" : 0), zErr);
74230   sqlite3DbFree(db, zErr);
74231   sqlite3ParserReset(pParse);
74232   sqlite3StackFree(db, pParse);
74233   rc = sqlite3ApiExit(db, rc);
74234   sqlite3_mutex_leave(db->mutex);
74235   return rc;
74236 }
74237 
74238 /*
74239 ** Close a blob handle that was previously created using
74240 ** sqlite3_blob_open().
74241 */
74242 SQLITE_API int sqlite3_blob_close(sqlite3_blob *pBlob){
74243   Incrblob *p = (Incrblob *)pBlob;
74244   int rc;
74245   sqlite3 *db;
74246 
74247   if( p ){
74248     db = p->db;
74249     sqlite3_mutex_enter(db->mutex);
74250     rc = sqlite3_finalize(p->pStmt);
74251     sqlite3DbFree(db, p);
74252     sqlite3_mutex_leave(db->mutex);
74253   }else{
74254     rc = SQLITE_OK;
74255   }
74256   return rc;
74257 }
74258 
74259 /*
74260 ** Perform a read or write operation on a blob
74261 */
74262 static int blobReadWrite(
74263   sqlite3_blob *pBlob,
74264   void *z,
74265   int n,
74266   int iOffset,
74267   int (*xCall)(BtCursor*, u32, u32, void*)
74268 ){
74269   int rc;
74270   Incrblob *p = (Incrblob *)pBlob;
74271   Vdbe *v;
74272   sqlite3 *db;
74273 
74274   if( p==0 ) return SQLITE_MISUSE_BKPT;
74275   db = p->db;
74276   sqlite3_mutex_enter(db->mutex);
74277   v = (Vdbe*)p->pStmt;
74278 
74279   if( n<0 || iOffset<0 || (iOffset+n)>p->nByte ){
74280     /* Request is out of range. Return a transient error. */
74281     rc = SQLITE_ERROR;
74282     sqlite3Error(db, SQLITE_ERROR, 0);
74283   }else if( v==0 ){
74284     /* If there is no statement handle, then the blob-handle has
74285     ** already been invalidated. Return SQLITE_ABORT in this case.
74286     */
74287     rc = SQLITE_ABORT;
74288   }else{
74289     /* Call either BtreeData() or BtreePutData(). If SQLITE_ABORT is
74290     ** returned, clean-up the statement handle.
74291     */
74292     assert( db == v->db );
74293     sqlite3BtreeEnterCursor(p->pCsr);
74294     rc = xCall(p->pCsr, iOffset+p->iOffset, n, z);
74295     sqlite3BtreeLeaveCursor(p->pCsr);
74296     if( rc==SQLITE_ABORT ){
74297       sqlite3VdbeFinalize(v);
74298       p->pStmt = 0;
74299     }else{
74300       db->errCode = rc;
74301       v->rc = rc;
74302     }
74303   }
74304   rc = sqlite3ApiExit(db, rc);
74305   sqlite3_mutex_leave(db->mutex);
74306   return rc;
74307 }
74308 
74309 /*
74310 ** Read data from a blob handle.
74311 */
74312 SQLITE_API int sqlite3_blob_read(sqlite3_blob *pBlob, void *z, int n, int iOffset){
74313   return blobReadWrite(pBlob, z, n, iOffset, sqlite3BtreeData);
74314 }
74315 
74316 /*
74317 ** Write data to a blob handle.
74318 */
74319 SQLITE_API int sqlite3_blob_write(sqlite3_blob *pBlob, const void *z, int n, int iOffset){
74320   return blobReadWrite(pBlob, (void *)z, n, iOffset, sqlite3BtreePutData);
74321 }
74322 
74323 /*
74324 ** Query a blob handle for the size of the data.
74325 **
74326 ** The Incrblob.nByte field is fixed for the lifetime of the Incrblob
74327 ** so no mutex is required for access.
74328 */
74329 SQLITE_API int sqlite3_blob_bytes(sqlite3_blob *pBlob){
74330   Incrblob *p = (Incrblob *)pBlob;
74331   return (p && p->pStmt) ? p->nByte : 0;
74332 }
74333 
74334 /*
74335 ** Move an existing blob handle to point to a different row of the same
74336 ** database table.
74337 **
74338 ** If an error occurs, or if the specified row does not exist or does not
74339 ** contain a blob or text value, then an error code is returned and the
74340 ** database handle error code and message set. If this happens, then all
74341 ** subsequent calls to sqlite3_blob_xxx() functions (except blob_close())
74342 ** immediately return SQLITE_ABORT.
74343 */
74344 SQLITE_API int sqlite3_blob_reopen(sqlite3_blob *pBlob, sqlite3_int64 iRow){
74345   int rc;
74346   Incrblob *p = (Incrblob *)pBlob;
74347   sqlite3 *db;
74348 
74349   if( p==0 ) return SQLITE_MISUSE_BKPT;
74350   db = p->db;
74351   sqlite3_mutex_enter(db->mutex);
74352 
74353   if( p->pStmt==0 ){
74354     /* If there is no statement handle, then the blob-handle has
74355     ** already been invalidated. Return SQLITE_ABORT in this case.
74356     */
74357     rc = SQLITE_ABORT;
74358   }else{
74359     char *zErr;
74360     rc = blobSeekToRow(p, iRow, &zErr);
74361     if( rc!=SQLITE_OK ){
74362       sqlite3Error(db, rc, (zErr ? "%s" : 0), zErr);
74363       sqlite3DbFree(db, zErr);
74364     }
74365     assert( rc!=SQLITE_SCHEMA );
74366   }
74367 
74368   rc = sqlite3ApiExit(db, rc);
74369   assert( rc==SQLITE_OK || p->pStmt==0 );
74370   sqlite3_mutex_leave(db->mutex);
74371   return rc;
74372 }
74373 
74374 #endif /* #ifndef SQLITE_OMIT_INCRBLOB */
74375 
74376 /************** End of vdbeblob.c ********************************************/
74377 /************** Begin file vdbesort.c ****************************************/
74378 /*
74379 ** 2011 July 9
74380 **
74381 ** The author disclaims copyright to this source code.  In place of
74382 ** a legal notice, here is a blessing:
74383 **
74384 **    May you do good and not evil.
74385 **    May you find forgiveness for yourself and forgive others.
74386 **    May you share freely, never taking more than you give.
74387 **
74388 *************************************************************************
74389 ** This file contains code for the VdbeSorter object, used in concert with
74390 ** a VdbeCursor to sort large numbers of keys (as may be required, for
74391 ** example, by CREATE INDEX statements on tables too large to fit in main
74392 ** memory).
74393 */
74394 
74395 
74396 
74397 typedef struct VdbeSorterIter VdbeSorterIter;
74398 typedef struct SorterRecord SorterRecord;
74399 typedef struct FileWriter FileWriter;
74400 
74401 /*
74402 ** NOTES ON DATA STRUCTURE USED FOR N-WAY MERGES:
74403 **
74404 ** As keys are added to the sorter, they are written to disk in a series
74405 ** of sorted packed-memory-arrays (PMAs). The size of each PMA is roughly
74406 ** the same as the cache-size allowed for temporary databases. In order
74407 ** to allow the caller to extract keys from the sorter in sorted order,
74408 ** all PMAs currently stored on disk must be merged together. This comment
74409 ** describes the data structure used to do so. The structure supports
74410 ** merging any number of arrays in a single pass with no redundant comparison
74411 ** operations.
74412 **
74413 ** The aIter[] array contains an iterator for each of the PMAs being merged.
74414 ** An aIter[] iterator either points to a valid key or else is at EOF. For
74415 ** the purposes of the paragraphs below, we assume that the array is actually
74416 ** N elements in size, where N is the smallest power of 2 greater to or equal
74417 ** to the number of iterators being merged. The extra aIter[] elements are
74418 ** treated as if they are empty (always at EOF).
74419 **
74420 ** The aTree[] array is also N elements in size. The value of N is stored in
74421 ** the VdbeSorter.nTree variable.
74422 **
74423 ** The final (N/2) elements of aTree[] contain the results of comparing
74424 ** pairs of iterator keys together. Element i contains the result of
74425 ** comparing aIter[2*i-N] and aIter[2*i-N+1]. Whichever key is smaller, the
74426 ** aTree element is set to the index of it.
74427 **
74428 ** For the purposes of this comparison, EOF is considered greater than any
74429 ** other key value. If the keys are equal (only possible with two EOF
74430 ** values), it doesn't matter which index is stored.
74431 **
74432 ** The (N/4) elements of aTree[] that precede the final (N/2) described
74433 ** above contains the index of the smallest of each block of 4 iterators.
74434 ** And so on. So that aTree[1] contains the index of the iterator that
74435 ** currently points to the smallest key value. aTree[0] is unused.
74436 **
74437 ** Example:
74438 **
74439 **     aIter[0] -> Banana
74440 **     aIter[1] -> Feijoa
74441 **     aIter[2] -> Elderberry
74442 **     aIter[3] -> Currant
74443 **     aIter[4] -> Grapefruit
74444 **     aIter[5] -> Apple
74445 **     aIter[6] -> Durian
74446 **     aIter[7] -> EOF
74447 **
74448 **     aTree[] = { X, 5   0, 5    0, 3, 5, 6 }
74449 **
74450 ** The current element is "Apple" (the value of the key indicated by
74451 ** iterator 5). When the Next() operation is invoked, iterator 5 will
74452 ** be advanced to the next key in its segment. Say the next key is
74453 ** "Eggplant":
74454 **
74455 **     aIter[5] -> Eggplant
74456 **
74457 ** The contents of aTree[] are updated first by comparing the new iterator
74458 ** 5 key to the current key of iterator 4 (still "Grapefruit"). The iterator
74459 ** 5 value is still smaller, so aTree[6] is set to 5. And so on up the tree.
74460 ** The value of iterator 6 - "Durian" - is now smaller than that of iterator
74461 ** 5, so aTree[3] is set to 6. Key 0 is smaller than key 6 (Banana<Durian),
74462 ** so the value written into element 1 of the array is 0. As follows:
74463 **
74464 **     aTree[] = { X, 0   0, 6    0, 3, 5, 6 }
74465 **
74466 ** In other words, each time we advance to the next sorter element, log2(N)
74467 ** key comparison operations are required, where N is the number of segments
74468 ** being merged (rounded up to the next power of 2).
74469 */
74470 struct VdbeSorter {
74471   i64 iWriteOff;                  /* Current write offset within file pTemp1 */
74472   i64 iReadOff;                   /* Current read offset within file pTemp1 */
74473   int nInMemory;                  /* Current size of pRecord list as PMA */
74474   int nTree;                      /* Used size of aTree/aIter (power of 2) */
74475   int nPMA;                       /* Number of PMAs stored in pTemp1 */
74476   int mnPmaSize;                  /* Minimum PMA size, in bytes */
74477   int mxPmaSize;                  /* Maximum PMA size, in bytes.  0==no limit */
74478   VdbeSorterIter *aIter;          /* Array of iterators to merge */
74479   int *aTree;                     /* Current state of incremental merge */
74480   sqlite3_file *pTemp1;           /* PMA file 1 */
74481   SorterRecord *pRecord;          /* Head of in-memory record list */
74482   UnpackedRecord *pUnpacked;      /* Used to unpack keys */
74483 };
74484 
74485 /*
74486 ** The following type is an iterator for a PMA. It caches the current key in
74487 ** variables nKey/aKey. If the iterator is at EOF, pFile==0.
74488 */
74489 struct VdbeSorterIter {
74490   i64 iReadOff;                   /* Current read offset */
74491   i64 iEof;                       /* 1 byte past EOF for this iterator */
74492   int nAlloc;                     /* Bytes of space at aAlloc */
74493   int nKey;                       /* Number of bytes in key */
74494   sqlite3_file *pFile;            /* File iterator is reading from */
74495   u8 *aAlloc;                     /* Allocated space */
74496   u8 *aKey;                       /* Pointer to current key */
74497   u8 *aBuffer;                    /* Current read buffer */
74498   int nBuffer;                    /* Size of read buffer in bytes */
74499 };
74500 
74501 /*
74502 ** An instance of this structure is used to organize the stream of records
74503 ** being written to files by the merge-sort code into aligned, page-sized
74504 ** blocks.  Doing all I/O in aligned page-sized blocks helps I/O to go
74505 ** faster on many operating systems.
74506 */
74507 struct FileWriter {
74508   int eFWErr;                     /* Non-zero if in an error state */
74509   u8 *aBuffer;                    /* Pointer to write buffer */
74510   int nBuffer;                    /* Size of write buffer in bytes */
74511   int iBufStart;                  /* First byte of buffer to write */
74512   int iBufEnd;                    /* Last byte of buffer to write */
74513   i64 iWriteOff;                  /* Offset of start of buffer in file */
74514   sqlite3_file *pFile;            /* File to write to */
74515 };
74516 
74517 /*
74518 ** A structure to store a single record. All in-memory records are connected
74519 ** together into a linked list headed at VdbeSorter.pRecord using the
74520 ** SorterRecord.pNext pointer.
74521 */
74522 struct SorterRecord {
74523   void *pVal;
74524   int nVal;
74525   SorterRecord *pNext;
74526 };
74527 
74528 /* Minimum allowable value for the VdbeSorter.nWorking variable */
74529 #define SORTER_MIN_WORKING 10
74530 
74531 /* Maximum number of segments to merge in a single pass. */
74532 #define SORTER_MAX_MERGE_COUNT 16
74533 
74534 /*
74535 ** Free all memory belonging to the VdbeSorterIter object passed as the second
74536 ** argument. All structure fields are set to zero before returning.
74537 */
74538 static void vdbeSorterIterZero(sqlite3 *db, VdbeSorterIter *pIter){
74539   sqlite3DbFree(db, pIter->aAlloc);
74540   sqlite3DbFree(db, pIter->aBuffer);
74541   memset(pIter, 0, sizeof(VdbeSorterIter));
74542 }
74543 
74544 /*
74545 ** Read nByte bytes of data from the stream of data iterated by object p.
74546 ** If successful, set *ppOut to point to a buffer containing the data
74547 ** and return SQLITE_OK. Otherwise, if an error occurs, return an SQLite
74548 ** error code.
74549 **
74550 ** The buffer indicated by *ppOut may only be considered valid until the
74551 ** next call to this function.
74552 */
74553 static int vdbeSorterIterRead(
74554   sqlite3 *db,                    /* Database handle (for malloc) */
74555   VdbeSorterIter *p,              /* Iterator */
74556   int nByte,                      /* Bytes of data to read */
74557   u8 **ppOut                      /* OUT: Pointer to buffer containing data */
74558 ){
74559   int iBuf;                       /* Offset within buffer to read from */
74560   int nAvail;                     /* Bytes of data available in buffer */
74561   assert( p->aBuffer );
74562 
74563   /* If there is no more data to be read from the buffer, read the next
74564   ** p->nBuffer bytes of data from the file into it. Or, if there are less
74565   ** than p->nBuffer bytes remaining in the PMA, read all remaining data.  */
74566   iBuf = p->iReadOff % p->nBuffer;
74567   if( iBuf==0 ){
74568     int nRead;                    /* Bytes to read from disk */
74569     int rc;                       /* sqlite3OsRead() return code */
74570 
74571     /* Determine how many bytes of data to read. */
74572     if( (p->iEof - p->iReadOff) > (i64)p->nBuffer ){
74573       nRead = p->nBuffer;
74574     }else{
74575       nRead = (int)(p->iEof - p->iReadOff);
74576     }
74577     assert( nRead>0 );
74578 
74579     /* Read data from the file. Return early if an error occurs. */
74580     rc = sqlite3OsRead(p->pFile, p->aBuffer, nRead, p->iReadOff);
74581     assert( rc!=SQLITE_IOERR_SHORT_READ );
74582     if( rc!=SQLITE_OK ) return rc;
74583   }
74584   nAvail = p->nBuffer - iBuf;
74585 
74586   if( nByte<=nAvail ){
74587     /* The requested data is available in the in-memory buffer. In this
74588     ** case there is no need to make a copy of the data, just return a
74589     ** pointer into the buffer to the caller.  */
74590     *ppOut = &p->aBuffer[iBuf];
74591     p->iReadOff += nByte;
74592   }else{
74593     /* The requested data is not all available in the in-memory buffer.
74594     ** In this case, allocate space at p->aAlloc[] to copy the requested
74595     ** range into. Then return a copy of pointer p->aAlloc to the caller.  */
74596     int nRem;                     /* Bytes remaining to copy */
74597 
74598     /* Extend the p->aAlloc[] allocation if required. */
74599     if( p->nAlloc<nByte ){
74600       int nNew = p->nAlloc*2;
74601       while( nByte>nNew ) nNew = nNew*2;
74602       p->aAlloc = sqlite3DbReallocOrFree(db, p->aAlloc, nNew);
74603       if( !p->aAlloc ) return SQLITE_NOMEM;
74604       p->nAlloc = nNew;
74605     }
74606 
74607     /* Copy as much data as is available in the buffer into the start of
74608     ** p->aAlloc[].  */
74609     memcpy(p->aAlloc, &p->aBuffer[iBuf], nAvail);
74610     p->iReadOff += nAvail;
74611     nRem = nByte - nAvail;
74612 
74613     /* The following loop copies up to p->nBuffer bytes per iteration into
74614     ** the p->aAlloc[] buffer.  */
74615     while( nRem>0 ){
74616       int rc;                     /* vdbeSorterIterRead() return code */
74617       int nCopy;                  /* Number of bytes to copy */
74618       u8 *aNext;                  /* Pointer to buffer to copy data from */
74619 
74620       nCopy = nRem;
74621       if( nRem>p->nBuffer ) nCopy = p->nBuffer;
74622       rc = vdbeSorterIterRead(db, p, nCopy, &aNext);
74623       if( rc!=SQLITE_OK ) return rc;
74624       assert( aNext!=p->aAlloc );
74625       memcpy(&p->aAlloc[nByte - nRem], aNext, nCopy);
74626       nRem -= nCopy;
74627     }
74628 
74629     *ppOut = p->aAlloc;
74630   }
74631 
74632   return SQLITE_OK;
74633 }
74634 
74635 /*
74636 ** Read a varint from the stream of data accessed by p. Set *pnOut to
74637 ** the value read.
74638 */
74639 static int vdbeSorterIterVarint(sqlite3 *db, VdbeSorterIter *p, u64 *pnOut){
74640   int iBuf;
74641 
74642   iBuf = p->iReadOff % p->nBuffer;
74643   if( iBuf && (p->nBuffer-iBuf)>=9 ){
74644     p->iReadOff += sqlite3GetVarint(&p->aBuffer[iBuf], pnOut);
74645   }else{
74646     u8 aVarint[16], *a;
74647     int i = 0, rc;
74648     do{
74649       rc = vdbeSorterIterRead(db, p, 1, &a);
74650       if( rc ) return rc;
74651       aVarint[(i++)&0xf] = a[0];
74652     }while( (a[0]&0x80)!=0 );
74653     sqlite3GetVarint(aVarint, pnOut);
74654   }
74655 
74656   return SQLITE_OK;
74657 }
74658 
74659 
74660 /*
74661 ** Advance iterator pIter to the next key in its PMA. Return SQLITE_OK if
74662 ** no error occurs, or an SQLite error code if one does.
74663 */
74664 static int vdbeSorterIterNext(
74665   sqlite3 *db,                    /* Database handle (for sqlite3DbMalloc() ) */
74666   VdbeSorterIter *pIter           /* Iterator to advance */
74667 ){
74668   int rc;                         /* Return Code */
74669   u64 nRec = 0;                   /* Size of record in bytes */
74670 
74671   if( pIter->iReadOff>=pIter->iEof ){
74672     /* This is an EOF condition */
74673     vdbeSorterIterZero(db, pIter);
74674     return SQLITE_OK;
74675   }
74676 
74677   rc = vdbeSorterIterVarint(db, pIter, &nRec);
74678   if( rc==SQLITE_OK ){
74679     pIter->nKey = (int)nRec;
74680     rc = vdbeSorterIterRead(db, pIter, (int)nRec, &pIter->aKey);
74681   }
74682 
74683   return rc;
74684 }
74685 
74686 /*
74687 ** Initialize iterator pIter to scan through the PMA stored in file pFile
74688 ** starting at offset iStart and ending at offset iEof-1. This function
74689 ** leaves the iterator pointing to the first key in the PMA (or EOF if the
74690 ** PMA is empty).
74691 */
74692 static int vdbeSorterIterInit(
74693   sqlite3 *db,                    /* Database handle */
74694   const VdbeSorter *pSorter,      /* Sorter object */
74695   i64 iStart,                     /* Start offset in pFile */
74696   VdbeSorterIter *pIter,          /* Iterator to populate */
74697   i64 *pnByte                     /* IN/OUT: Increment this value by PMA size */
74698 ){
74699   int rc = SQLITE_OK;
74700   int nBuf;
74701 
74702   nBuf = sqlite3BtreeGetPageSize(db->aDb[0].pBt);
74703 
74704   assert( pSorter->iWriteOff>iStart );
74705   assert( pIter->aAlloc==0 );
74706   assert( pIter->aBuffer==0 );
74707   pIter->pFile = pSorter->pTemp1;
74708   pIter->iReadOff = iStart;
74709   pIter->nAlloc = 128;
74710   pIter->aAlloc = (u8 *)sqlite3DbMallocRaw(db, pIter->nAlloc);
74711   pIter->nBuffer = nBuf;
74712   pIter->aBuffer = (u8 *)sqlite3DbMallocRaw(db, nBuf);
74713 
74714   if( !pIter->aBuffer ){
74715     rc = SQLITE_NOMEM;
74716   }else{
74717     int iBuf;
74718 
74719     iBuf = iStart % nBuf;
74720     if( iBuf ){
74721       int nRead = nBuf - iBuf;
74722       if( (iStart + nRead) > pSorter->iWriteOff ){
74723         nRead = (int)(pSorter->iWriteOff - iStart);
74724       }
74725       rc = sqlite3OsRead(
74726           pSorter->pTemp1, &pIter->aBuffer[iBuf], nRead, iStart
74727       );
74728     }
74729 
74730     if( rc==SQLITE_OK ){
74731       u64 nByte;                       /* Size of PMA in bytes */
74732       pIter->iEof = pSorter->iWriteOff;
74733       rc = vdbeSorterIterVarint(db, pIter, &nByte);
74734       pIter->iEof = pIter->iReadOff + nByte;
74735       *pnByte += nByte;
74736     }
74737   }
74738 
74739   if( rc==SQLITE_OK ){
74740     rc = vdbeSorterIterNext(db, pIter);
74741   }
74742   return rc;
74743 }
74744 
74745 
74746 /*
74747 ** Compare key1 (buffer pKey1, size nKey1 bytes) with key2 (buffer pKey2,
74748 ** size nKey2 bytes).  Argument pKeyInfo supplies the collation functions
74749 ** used by the comparison. If an error occurs, return an SQLite error code.
74750 ** Otherwise, return SQLITE_OK and set *pRes to a negative, zero or positive
74751 ** value, depending on whether key1 is smaller, equal to or larger than key2.
74752 **
74753 ** If the bOmitRowid argument is non-zero, assume both keys end in a rowid
74754 ** field. For the purposes of the comparison, ignore it. Also, if bOmitRowid
74755 ** is true and key1 contains even a single NULL value, it is considered to
74756 ** be less than key2. Even if key2 also contains NULL values.
74757 **
74758 ** If pKey2 is passed a NULL pointer, then it is assumed that the pCsr->aSpace
74759 ** has been allocated and contains an unpacked record that is used as key2.
74760 */
74761 static void vdbeSorterCompare(
74762   const VdbeCursor *pCsr,         /* Cursor object (for pKeyInfo) */
74763   int nIgnore,                    /* Ignore the last nIgnore fields */
74764   const void *pKey1, int nKey1,   /* Left side of comparison */
74765   const void *pKey2, int nKey2,   /* Right side of comparison */
74766   int *pRes                       /* OUT: Result of comparison */
74767 ){
74768   KeyInfo *pKeyInfo = pCsr->pKeyInfo;
74769   VdbeSorter *pSorter = pCsr->pSorter;
74770   UnpackedRecord *r2 = pSorter->pUnpacked;
74771   int i;
74772 
74773   if( pKey2 ){
74774     sqlite3VdbeRecordUnpack(pKeyInfo, nKey2, pKey2, r2);
74775   }
74776 
74777   if( nIgnore ){
74778     r2->nField = pKeyInfo->nField - nIgnore;
74779     assert( r2->nField>0 );
74780     for(i=0; i<r2->nField; i++){
74781       if( r2->aMem[i].flags & MEM_Null ){
74782         *pRes = -1;
74783         return;
74784       }
74785     }
74786     assert( r2->default_rc==0 );
74787   }
74788 
74789   *pRes = sqlite3VdbeRecordCompare(nKey1, pKey1, r2, 0);
74790 }
74791 
74792 /*
74793 ** This function is called to compare two iterator keys when merging
74794 ** multiple b-tree segments. Parameter iOut is the index of the aTree[]
74795 ** value to recalculate.
74796 */
74797 static int vdbeSorterDoCompare(const VdbeCursor *pCsr, int iOut){
74798   VdbeSorter *pSorter = pCsr->pSorter;
74799   int i1;
74800   int i2;
74801   int iRes;
74802   VdbeSorterIter *p1;
74803   VdbeSorterIter *p2;
74804 
74805   assert( iOut<pSorter->nTree && iOut>0 );
74806 
74807   if( iOut>=(pSorter->nTree/2) ){
74808     i1 = (iOut - pSorter->nTree/2) * 2;
74809     i2 = i1 + 1;
74810   }else{
74811     i1 = pSorter->aTree[iOut*2];
74812     i2 = pSorter->aTree[iOut*2+1];
74813   }
74814 
74815   p1 = &pSorter->aIter[i1];
74816   p2 = &pSorter->aIter[i2];
74817 
74818   if( p1->pFile==0 ){
74819     iRes = i2;
74820   }else if( p2->pFile==0 ){
74821     iRes = i1;
74822   }else{
74823     int res;
74824     assert( pCsr->pSorter->pUnpacked!=0 );  /* allocated in vdbeSorterMerge() */
74825     vdbeSorterCompare(
74826         pCsr, 0, p1->aKey, p1->nKey, p2->aKey, p2->nKey, &res
74827     );
74828     if( res<=0 ){
74829       iRes = i1;
74830     }else{
74831       iRes = i2;
74832     }
74833   }
74834 
74835   pSorter->aTree[iOut] = iRes;
74836   return SQLITE_OK;
74837 }
74838 
74839 /*
74840 ** Initialize the temporary index cursor just opened as a sorter cursor.
74841 */
74842 SQLITE_PRIVATE int sqlite3VdbeSorterInit(sqlite3 *db, VdbeCursor *pCsr){
74843   int pgsz;                       /* Page size of main database */
74844   int mxCache;                    /* Cache size */
74845   VdbeSorter *pSorter;            /* The new sorter */
74846   char *d;                        /* Dummy */
74847 
74848   assert( pCsr->pKeyInfo && pCsr->pBt==0 );
74849   pCsr->pSorter = pSorter = sqlite3DbMallocZero(db, sizeof(VdbeSorter));
74850   if( pSorter==0 ){
74851     return SQLITE_NOMEM;
74852   }
74853 
74854   pSorter->pUnpacked = sqlite3VdbeAllocUnpackedRecord(pCsr->pKeyInfo, 0, 0, &d);
74855   if( pSorter->pUnpacked==0 ) return SQLITE_NOMEM;
74856   assert( pSorter->pUnpacked==(UnpackedRecord *)d );
74857 
74858   if( !sqlite3TempInMemory(db) ){
74859     pgsz = sqlite3BtreeGetPageSize(db->aDb[0].pBt);
74860     pSorter->mnPmaSize = SORTER_MIN_WORKING * pgsz;
74861     mxCache = db->aDb[0].pSchema->cache_size;
74862     if( mxCache<SORTER_MIN_WORKING ) mxCache = SORTER_MIN_WORKING;
74863     pSorter->mxPmaSize = mxCache * pgsz;
74864   }
74865 
74866   return SQLITE_OK;
74867 }
74868 
74869 /*
74870 ** Free the list of sorted records starting at pRecord.
74871 */
74872 static void vdbeSorterRecordFree(sqlite3 *db, SorterRecord *pRecord){
74873   SorterRecord *p;
74874   SorterRecord *pNext;
74875   for(p=pRecord; p; p=pNext){
74876     pNext = p->pNext;
74877     sqlite3DbFree(db, p);
74878   }
74879 }
74880 
74881 /*
74882 ** Reset a sorting cursor back to its original empty state.
74883 */
74884 SQLITE_PRIVATE void sqlite3VdbeSorterReset(sqlite3 *db, VdbeSorter *pSorter){
74885   if( pSorter->aIter ){
74886     int i;
74887     for(i=0; i<pSorter->nTree; i++){
74888       vdbeSorterIterZero(db, &pSorter->aIter[i]);
74889     }
74890     sqlite3DbFree(db, pSorter->aIter);
74891     pSorter->aIter = 0;
74892   }
74893   if( pSorter->pTemp1 ){
74894     sqlite3OsCloseFree(pSorter->pTemp1);
74895     pSorter->pTemp1 = 0;
74896   }
74897   vdbeSorterRecordFree(db, pSorter->pRecord);
74898   pSorter->pRecord = 0;
74899   pSorter->iWriteOff = 0;
74900   pSorter->iReadOff = 0;
74901   pSorter->nInMemory = 0;
74902   pSorter->nTree = 0;
74903   pSorter->nPMA = 0;
74904   pSorter->aTree = 0;
74905 }
74906 
74907 
74908 /*
74909 ** Free any cursor components allocated by sqlite3VdbeSorterXXX routines.
74910 */
74911 SQLITE_PRIVATE void sqlite3VdbeSorterClose(sqlite3 *db, VdbeCursor *pCsr){
74912   VdbeSorter *pSorter = pCsr->pSorter;
74913   if( pSorter ){
74914     sqlite3VdbeSorterReset(db, pSorter);
74915     sqlite3DbFree(db, pSorter->pUnpacked);
74916     sqlite3DbFree(db, pSorter);
74917     pCsr->pSorter = 0;
74918   }
74919 }
74920 
74921 /*
74922 ** Allocate space for a file-handle and open a temporary file. If successful,
74923 ** set *ppFile to point to the malloc'd file-handle and return SQLITE_OK.
74924 ** Otherwise, set *ppFile to 0 and return an SQLite error code.
74925 */
74926 static int vdbeSorterOpenTempFile(sqlite3 *db, sqlite3_file **ppFile){
74927   int dummy;
74928   return sqlite3OsOpenMalloc(db->pVfs, 0, ppFile,
74929       SQLITE_OPEN_TEMP_JOURNAL |
74930       SQLITE_OPEN_READWRITE    | SQLITE_OPEN_CREATE |
74931       SQLITE_OPEN_EXCLUSIVE    | SQLITE_OPEN_DELETEONCLOSE, &dummy
74932   );
74933 }
74934 
74935 /*
74936 ** Merge the two sorted lists p1 and p2 into a single list.
74937 ** Set *ppOut to the head of the new list.
74938 */
74939 static void vdbeSorterMerge(
74940   const VdbeCursor *pCsr,         /* For pKeyInfo */
74941   SorterRecord *p1,               /* First list to merge */
74942   SorterRecord *p2,               /* Second list to merge */
74943   SorterRecord **ppOut            /* OUT: Head of merged list */
74944 ){
74945   SorterRecord *pFinal = 0;
74946   SorterRecord **pp = &pFinal;
74947   void *pVal2 = p2 ? p2->pVal : 0;
74948 
74949   while( p1 && p2 ){
74950     int res;
74951     vdbeSorterCompare(pCsr, 0, p1->pVal, p1->nVal, pVal2, p2->nVal, &res);
74952     if( res<=0 ){
74953       *pp = p1;
74954       pp = &p1->pNext;
74955       p1 = p1->pNext;
74956       pVal2 = 0;
74957     }else{
74958       *pp = p2;
74959        pp = &p2->pNext;
74960       p2 = p2->pNext;
74961       if( p2==0 ) break;
74962       pVal2 = p2->pVal;
74963     }
74964   }
74965   *pp = p1 ? p1 : p2;
74966   *ppOut = pFinal;
74967 }
74968 
74969 /*
74970 ** Sort the linked list of records headed at pCsr->pRecord. Return SQLITE_OK
74971 ** if successful, or an SQLite error code (i.e. SQLITE_NOMEM) if an error
74972 ** occurs.
74973 */
74974 static int vdbeSorterSort(const VdbeCursor *pCsr){
74975   int i;
74976   SorterRecord **aSlot;
74977   SorterRecord *p;
74978   VdbeSorter *pSorter = pCsr->pSorter;
74979 
74980   aSlot = (SorterRecord **)sqlite3MallocZero(64 * sizeof(SorterRecord *));
74981   if( !aSlot ){
74982     return SQLITE_NOMEM;
74983   }
74984 
74985   p = pSorter->pRecord;
74986   while( p ){
74987     SorterRecord *pNext = p->pNext;
74988     p->pNext = 0;
74989     for(i=0; aSlot[i]; i++){
74990       vdbeSorterMerge(pCsr, p, aSlot[i], &p);
74991       aSlot[i] = 0;
74992     }
74993     aSlot[i] = p;
74994     p = pNext;
74995   }
74996 
74997   p = 0;
74998   for(i=0; i<64; i++){
74999     vdbeSorterMerge(pCsr, p, aSlot[i], &p);
75000   }
75001   pSorter->pRecord = p;
75002 
75003   sqlite3_free(aSlot);
75004   return SQLITE_OK;
75005 }
75006 
75007 /*
75008 ** Initialize a file-writer object.
75009 */
75010 static void fileWriterInit(
75011   sqlite3 *db,                    /* Database (for malloc) */
75012   sqlite3_file *pFile,            /* File to write to */
75013   FileWriter *p,                  /* Object to populate */
75014   i64 iStart                      /* Offset of pFile to begin writing at */
75015 ){
75016   int nBuf = sqlite3BtreeGetPageSize(db->aDb[0].pBt);
75017 
75018   memset(p, 0, sizeof(FileWriter));
75019   p->aBuffer = (u8 *)sqlite3DbMallocRaw(db, nBuf);
75020   if( !p->aBuffer ){
75021     p->eFWErr = SQLITE_NOMEM;
75022   }else{
75023     p->iBufEnd = p->iBufStart = (iStart % nBuf);
75024     p->iWriteOff = iStart - p->iBufStart;
75025     p->nBuffer = nBuf;
75026     p->pFile = pFile;
75027   }
75028 }
75029 
75030 /*
75031 ** Write nData bytes of data to the file-write object. Return SQLITE_OK
75032 ** if successful, or an SQLite error code if an error occurs.
75033 */
75034 static void fileWriterWrite(FileWriter *p, u8 *pData, int nData){
75035   int nRem = nData;
75036   while( nRem>0 && p->eFWErr==0 ){
75037     int nCopy = nRem;
75038     if( nCopy>(p->nBuffer - p->iBufEnd) ){
75039       nCopy = p->nBuffer - p->iBufEnd;
75040     }
75041 
75042     memcpy(&p->aBuffer[p->iBufEnd], &pData[nData-nRem], nCopy);
75043     p->iBufEnd += nCopy;
75044     if( p->iBufEnd==p->nBuffer ){
75045       p->eFWErr = sqlite3OsWrite(p->pFile,
75046           &p->aBuffer[p->iBufStart], p->iBufEnd - p->iBufStart,
75047           p->iWriteOff + p->iBufStart
75048       );
75049       p->iBufStart = p->iBufEnd = 0;
75050       p->iWriteOff += p->nBuffer;
75051     }
75052     assert( p->iBufEnd<p->nBuffer );
75053 
75054     nRem -= nCopy;
75055   }
75056 }
75057 
75058 /*
75059 ** Flush any buffered data to disk and clean up the file-writer object.
75060 ** The results of using the file-writer after this call are undefined.
75061 ** Return SQLITE_OK if flushing the buffered data succeeds or is not
75062 ** required. Otherwise, return an SQLite error code.
75063 **
75064 ** Before returning, set *piEof to the offset immediately following the
75065 ** last byte written to the file.
75066 */
75067 static int fileWriterFinish(sqlite3 *db, FileWriter *p, i64 *piEof){
75068   int rc;
75069   if( p->eFWErr==0 && ALWAYS(p->aBuffer) && p->iBufEnd>p->iBufStart ){
75070     p->eFWErr = sqlite3OsWrite(p->pFile,
75071         &p->aBuffer[p->iBufStart], p->iBufEnd - p->iBufStart,
75072         p->iWriteOff + p->iBufStart
75073     );
75074   }
75075   *piEof = (p->iWriteOff + p->iBufEnd);
75076   sqlite3DbFree(db, p->aBuffer);
75077   rc = p->eFWErr;
75078   memset(p, 0, sizeof(FileWriter));
75079   return rc;
75080 }
75081 
75082 /*
75083 ** Write value iVal encoded as a varint to the file-write object. Return
75084 ** SQLITE_OK if successful, or an SQLite error code if an error occurs.
75085 */
75086 static void fileWriterWriteVarint(FileWriter *p, u64 iVal){
75087   int nByte;
75088   u8 aByte[10];
75089   nByte = sqlite3PutVarint(aByte, iVal);
75090   fileWriterWrite(p, aByte, nByte);
75091 }
75092 
75093 /*
75094 ** Write the current contents of the in-memory linked-list to a PMA. Return
75095 ** SQLITE_OK if successful, or an SQLite error code otherwise.
75096 **
75097 ** The format of a PMA is:
75098 **
75099 **     * A varint. This varint contains the total number of bytes of content
75100 **       in the PMA (not including the varint itself).
75101 **
75102 **     * One or more records packed end-to-end in order of ascending keys.
75103 **       Each record consists of a varint followed by a blob of data (the
75104 **       key). The varint is the number of bytes in the blob of data.
75105 */
75106 static int vdbeSorterListToPMA(sqlite3 *db, const VdbeCursor *pCsr){
75107   int rc = SQLITE_OK;             /* Return code */
75108   VdbeSorter *pSorter = pCsr->pSorter;
75109   FileWriter writer;
75110 
75111   memset(&writer, 0, sizeof(FileWriter));
75112 
75113   if( pSorter->nInMemory==0 ){
75114     assert( pSorter->pRecord==0 );
75115     return rc;
75116   }
75117 
75118   rc = vdbeSorterSort(pCsr);
75119 
75120   /* If the first temporary PMA file has not been opened, open it now. */
75121   if( rc==SQLITE_OK && pSorter->pTemp1==0 ){
75122     rc = vdbeSorterOpenTempFile(db, &pSorter->pTemp1);
75123     assert( rc!=SQLITE_OK || pSorter->pTemp1 );
75124     assert( pSorter->iWriteOff==0 );
75125     assert( pSorter->nPMA==0 );
75126   }
75127 
75128   if( rc==SQLITE_OK ){
75129     SorterRecord *p;
75130     SorterRecord *pNext = 0;
75131 
75132     fileWriterInit(db, pSorter->pTemp1, &writer, pSorter->iWriteOff);
75133     pSorter->nPMA++;
75134     fileWriterWriteVarint(&writer, pSorter->nInMemory);
75135     for(p=pSorter->pRecord; p; p=pNext){
75136       pNext = p->pNext;
75137       fileWriterWriteVarint(&writer, p->nVal);
75138       fileWriterWrite(&writer, p->pVal, p->nVal);
75139       sqlite3DbFree(db, p);
75140     }
75141     pSorter->pRecord = p;
75142     rc = fileWriterFinish(db, &writer, &pSorter->iWriteOff);
75143   }
75144 
75145   return rc;
75146 }
75147 
75148 /*
75149 ** Add a record to the sorter.
75150 */
75151 SQLITE_PRIVATE int sqlite3VdbeSorterWrite(
75152   sqlite3 *db,                    /* Database handle */
75153   const VdbeCursor *pCsr,               /* Sorter cursor */
75154   Mem *pVal                       /* Memory cell containing record */
75155 ){
75156   VdbeSorter *pSorter = pCsr->pSorter;
75157   int rc = SQLITE_OK;             /* Return Code */
75158   SorterRecord *pNew;             /* New list element */
75159 
75160   assert( pSorter );
75161   pSorter->nInMemory += sqlite3VarintLen(pVal->n) + pVal->n;
75162 
75163   pNew = (SorterRecord *)sqlite3DbMallocRaw(db, pVal->n + sizeof(SorterRecord));
75164   if( pNew==0 ){
75165     rc = SQLITE_NOMEM;
75166   }else{
75167     pNew->pVal = (void *)&pNew[1];
75168     memcpy(pNew->pVal, pVal->z, pVal->n);
75169     pNew->nVal = pVal->n;
75170     pNew->pNext = pSorter->pRecord;
75171     pSorter->pRecord = pNew;
75172   }
75173 
75174   /* See if the contents of the sorter should now be written out. They
75175   ** are written out when either of the following are true:
75176   **
75177   **   * The total memory allocated for the in-memory list is greater
75178   **     than (page-size * cache-size), or
75179   **
75180   **   * The total memory allocated for the in-memory list is greater
75181   **     than (page-size * 10) and sqlite3HeapNearlyFull() returns true.
75182   */
75183   if( rc==SQLITE_OK && pSorter->mxPmaSize>0 && (
75184         (pSorter->nInMemory>pSorter->mxPmaSize)
75185      || (pSorter->nInMemory>pSorter->mnPmaSize && sqlite3HeapNearlyFull())
75186   )){
75187 #ifdef SQLITE_DEBUG
75188     i64 nExpect = pSorter->iWriteOff
75189                 + sqlite3VarintLen(pSorter->nInMemory)
75190                 + pSorter->nInMemory;
75191 #endif
75192     rc = vdbeSorterListToPMA(db, pCsr);
75193     pSorter->nInMemory = 0;
75194     assert( rc!=SQLITE_OK || (nExpect==pSorter->iWriteOff) );
75195   }
75196 
75197   return rc;
75198 }
75199 
75200 /*
75201 ** Helper function for sqlite3VdbeSorterRewind().
75202 */
75203 static int vdbeSorterInitMerge(
75204   sqlite3 *db,                    /* Database handle */
75205   const VdbeCursor *pCsr,         /* Cursor handle for this sorter */
75206   i64 *pnByte                     /* Sum of bytes in all opened PMAs */
75207 ){
75208   VdbeSorter *pSorter = pCsr->pSorter;
75209   int rc = SQLITE_OK;             /* Return code */
75210   int i;                          /* Used to iterator through aIter[] */
75211   i64 nByte = 0;                  /* Total bytes in all opened PMAs */
75212 
75213   /* Initialize the iterators. */
75214   for(i=0; i<SORTER_MAX_MERGE_COUNT; i++){
75215     VdbeSorterIter *pIter = &pSorter->aIter[i];
75216     rc = vdbeSorterIterInit(db, pSorter, pSorter->iReadOff, pIter, &nByte);
75217     pSorter->iReadOff = pIter->iEof;
75218     assert( rc!=SQLITE_OK || pSorter->iReadOff<=pSorter->iWriteOff );
75219     if( rc!=SQLITE_OK || pSorter->iReadOff>=pSorter->iWriteOff ) break;
75220   }
75221 
75222   /* Initialize the aTree[] array. */
75223   for(i=pSorter->nTree-1; rc==SQLITE_OK && i>0; i--){
75224     rc = vdbeSorterDoCompare(pCsr, i);
75225   }
75226 
75227   *pnByte = nByte;
75228   return rc;
75229 }
75230 
75231 /*
75232 ** Once the sorter has been populated, this function is called to prepare
75233 ** for iterating through its contents in sorted order.
75234 */
75235 SQLITE_PRIVATE int sqlite3VdbeSorterRewind(sqlite3 *db, const VdbeCursor *pCsr, int *pbEof){
75236   VdbeSorter *pSorter = pCsr->pSorter;
75237   int rc;                         /* Return code */
75238   sqlite3_file *pTemp2 = 0;       /* Second temp file to use */
75239   i64 iWrite2 = 0;                /* Write offset for pTemp2 */
75240   int nIter;                      /* Number of iterators used */
75241   int nByte;                      /* Bytes of space required for aIter/aTree */
75242   int N = 2;                      /* Power of 2 >= nIter */
75243 
75244   assert( pSorter );
75245 
75246   /* If no data has been written to disk, then do not do so now. Instead,
75247   ** sort the VdbeSorter.pRecord list. The vdbe layer will read data directly
75248   ** from the in-memory list.  */
75249   if( pSorter->nPMA==0 ){
75250     *pbEof = !pSorter->pRecord;
75251     assert( pSorter->aTree==0 );
75252     return vdbeSorterSort(pCsr);
75253   }
75254 
75255   /* Write the current in-memory list to a PMA. */
75256   rc = vdbeSorterListToPMA(db, pCsr);
75257   if( rc!=SQLITE_OK ) return rc;
75258 
75259   /* Allocate space for aIter[] and aTree[]. */
75260   nIter = pSorter->nPMA;
75261   if( nIter>SORTER_MAX_MERGE_COUNT ) nIter = SORTER_MAX_MERGE_COUNT;
75262   assert( nIter>0 );
75263   while( N<nIter ) N += N;
75264   nByte = N * (sizeof(int) + sizeof(VdbeSorterIter));
75265   pSorter->aIter = (VdbeSorterIter *)sqlite3DbMallocZero(db, nByte);
75266   if( !pSorter->aIter ) return SQLITE_NOMEM;
75267   pSorter->aTree = (int *)&pSorter->aIter[N];
75268   pSorter->nTree = N;
75269 
75270   do {
75271     int iNew;                     /* Index of new, merged, PMA */
75272 
75273     for(iNew=0;
75274         rc==SQLITE_OK && iNew*SORTER_MAX_MERGE_COUNT<pSorter->nPMA;
75275         iNew++
75276     ){
75277       int rc2;                    /* Return code from fileWriterFinish() */
75278       FileWriter writer;          /* Object used to write to disk */
75279       i64 nWrite;                 /* Number of bytes in new PMA */
75280 
75281       memset(&writer, 0, sizeof(FileWriter));
75282 
75283       /* If there are SORTER_MAX_MERGE_COUNT or less PMAs in file pTemp1,
75284       ** initialize an iterator for each of them and break out of the loop.
75285       ** These iterators will be incrementally merged as the VDBE layer calls
75286       ** sqlite3VdbeSorterNext().
75287       **
75288       ** Otherwise, if pTemp1 contains more than SORTER_MAX_MERGE_COUNT PMAs,
75289       ** initialize interators for SORTER_MAX_MERGE_COUNT of them. These PMAs
75290       ** are merged into a single PMA that is written to file pTemp2.
75291       */
75292       rc = vdbeSorterInitMerge(db, pCsr, &nWrite);
75293       assert( rc!=SQLITE_OK || pSorter->aIter[ pSorter->aTree[1] ].pFile );
75294       if( rc!=SQLITE_OK || pSorter->nPMA<=SORTER_MAX_MERGE_COUNT ){
75295         break;
75296       }
75297 
75298       /* Open the second temp file, if it is not already open. */
75299       if( pTemp2==0 ){
75300         assert( iWrite2==0 );
75301         rc = vdbeSorterOpenTempFile(db, &pTemp2);
75302       }
75303 
75304       if( rc==SQLITE_OK ){
75305         int bEof = 0;
75306         fileWriterInit(db, pTemp2, &writer, iWrite2);
75307         fileWriterWriteVarint(&writer, nWrite);
75308         while( rc==SQLITE_OK && bEof==0 ){
75309           VdbeSorterIter *pIter = &pSorter->aIter[ pSorter->aTree[1] ];
75310           assert( pIter->pFile );
75311 
75312           fileWriterWriteVarint(&writer, pIter->nKey);
75313           fileWriterWrite(&writer, pIter->aKey, pIter->nKey);
75314           rc = sqlite3VdbeSorterNext(db, pCsr, &bEof);
75315         }
75316         rc2 = fileWriterFinish(db, &writer, &iWrite2);
75317         if( rc==SQLITE_OK ) rc = rc2;
75318       }
75319     }
75320 
75321     if( pSorter->nPMA<=SORTER_MAX_MERGE_COUNT ){
75322       break;
75323     }else{
75324       sqlite3_file *pTmp = pSorter->pTemp1;
75325       pSorter->nPMA = iNew;
75326       pSorter->pTemp1 = pTemp2;
75327       pTemp2 = pTmp;
75328       pSorter->iWriteOff = iWrite2;
75329       pSorter->iReadOff = 0;
75330       iWrite2 = 0;
75331     }
75332   }while( rc==SQLITE_OK );
75333 
75334   if( pTemp2 ){
75335     sqlite3OsCloseFree(pTemp2);
75336   }
75337   *pbEof = (pSorter->aIter[pSorter->aTree[1]].pFile==0);
75338   return rc;
75339 }
75340 
75341 /*
75342 ** Advance to the next element in the sorter.
75343 */
75344 SQLITE_PRIVATE int sqlite3VdbeSorterNext(sqlite3 *db, const VdbeCursor *pCsr, int *pbEof){
75345   VdbeSorter *pSorter = pCsr->pSorter;
75346   int rc;                         /* Return code */
75347 
75348   if( pSorter->aTree ){
75349     int iPrev = pSorter->aTree[1];/* Index of iterator to advance */
75350     rc = vdbeSorterIterNext(db, &pSorter->aIter[iPrev]);
75351     if( rc==SQLITE_OK ){
75352       int i;                      /* Index of aTree[] to recalculate */
75353       VdbeSorterIter *pIter1;     /* First iterator to compare */
75354       VdbeSorterIter *pIter2;     /* Second iterator to compare */
75355       u8 *pKey2;                  /* To pIter2->aKey, or 0 if record cached */
75356 
75357       /* Find the first two iterators to compare. The one that was just
75358       ** advanced (iPrev) and the one next to it in the array.  */
75359       pIter1 = &pSorter->aIter[(iPrev & 0xFFFE)];
75360       pIter2 = &pSorter->aIter[(iPrev | 0x0001)];
75361       pKey2 = pIter2->aKey;
75362 
75363       for(i=(pSorter->nTree+iPrev)/2; i>0; i=i/2){
75364         /* Compare pIter1 and pIter2. Store the result in variable iRes. */
75365         int iRes;
75366         if( pIter1->pFile==0 ){
75367           iRes = +1;
75368         }else if( pIter2->pFile==0 ){
75369           iRes = -1;
75370         }else{
75371           vdbeSorterCompare(pCsr, 0,
75372               pIter1->aKey, pIter1->nKey, pKey2, pIter2->nKey, &iRes
75373           );
75374         }
75375 
75376         /* If pIter1 contained the smaller value, set aTree[i] to its index.
75377         ** Then set pIter2 to the next iterator to compare to pIter1. In this
75378         ** case there is no cache of pIter2 in pSorter->pUnpacked, so set
75379         ** pKey2 to point to the record belonging to pIter2.
75380         **
75381         ** Alternatively, if pIter2 contains the smaller of the two values,
75382         ** set aTree[i] to its index and update pIter1. If vdbeSorterCompare()
75383         ** was actually called above, then pSorter->pUnpacked now contains
75384         ** a value equivalent to pIter2. So set pKey2 to NULL to prevent
75385         ** vdbeSorterCompare() from decoding pIter2 again.  */
75386         if( iRes<=0 ){
75387           pSorter->aTree[i] = (int)(pIter1 - pSorter->aIter);
75388           pIter2 = &pSorter->aIter[ pSorter->aTree[i ^ 0x0001] ];
75389           pKey2 = pIter2->aKey;
75390         }else{
75391           if( pIter1->pFile ) pKey2 = 0;
75392           pSorter->aTree[i] = (int)(pIter2 - pSorter->aIter);
75393           pIter1 = &pSorter->aIter[ pSorter->aTree[i ^ 0x0001] ];
75394         }
75395 
75396       }
75397       *pbEof = (pSorter->aIter[pSorter->aTree[1]].pFile==0);
75398     }
75399   }else{
75400     SorterRecord *pFree = pSorter->pRecord;
75401     pSorter->pRecord = pFree->pNext;
75402     pFree->pNext = 0;
75403     vdbeSorterRecordFree(db, pFree);
75404     *pbEof = !pSorter->pRecord;
75405     rc = SQLITE_OK;
75406   }
75407   return rc;
75408 }
75409 
75410 /*
75411 ** Return a pointer to a buffer owned by the sorter that contains the
75412 ** current key.
75413 */
75414 static void *vdbeSorterRowkey(
75415   const VdbeSorter *pSorter,      /* Sorter object */
75416   int *pnKey                      /* OUT: Size of current key in bytes */
75417 ){
75418   void *pKey;
75419   if( pSorter->aTree ){
75420     VdbeSorterIter *pIter;
75421     pIter = &pSorter->aIter[ pSorter->aTree[1] ];
75422     *pnKey = pIter->nKey;
75423     pKey = pIter->aKey;
75424   }else{
75425     *pnKey = pSorter->pRecord->nVal;
75426     pKey = pSorter->pRecord->pVal;
75427   }
75428   return pKey;
75429 }
75430 
75431 /*
75432 ** Copy the current sorter key into the memory cell pOut.
75433 */
75434 SQLITE_PRIVATE int sqlite3VdbeSorterRowkey(const VdbeCursor *pCsr, Mem *pOut){
75435   VdbeSorter *pSorter = pCsr->pSorter;
75436   void *pKey; int nKey;           /* Sorter key to copy into pOut */
75437 
75438   pKey = vdbeSorterRowkey(pSorter, &nKey);
75439   if( sqlite3VdbeMemGrow(pOut, nKey, 0) ){
75440     return SQLITE_NOMEM;
75441   }
75442   pOut->n = nKey;
75443   MemSetTypeFlag(pOut, MEM_Blob);
75444   memcpy(pOut->z, pKey, nKey);
75445 
75446   return SQLITE_OK;
75447 }
75448 
75449 /*
75450 ** Compare the key in memory cell pVal with the key that the sorter cursor
75451 ** passed as the first argument currently points to. For the purposes of
75452 ** the comparison, ignore the rowid field at the end of each record.
75453 **
75454 ** If an error occurs, return an SQLite error code (i.e. SQLITE_NOMEM).
75455 ** Otherwise, set *pRes to a negative, zero or positive value if the
75456 ** key in pVal is smaller than, equal to or larger than the current sorter
75457 ** key.
75458 */
75459 SQLITE_PRIVATE int sqlite3VdbeSorterCompare(
75460   const VdbeCursor *pCsr,         /* Sorter cursor */
75461   Mem *pVal,                      /* Value to compare to current sorter key */
75462   int nIgnore,                    /* Ignore this many fields at the end */
75463   int *pRes                       /* OUT: Result of comparison */
75464 ){
75465   VdbeSorter *pSorter = pCsr->pSorter;
75466   void *pKey; int nKey;           /* Sorter key to compare pVal with */
75467 
75468   pKey = vdbeSorterRowkey(pSorter, &nKey);
75469   vdbeSorterCompare(pCsr, nIgnore, pVal->z, pVal->n, pKey, nKey, pRes);
75470   return SQLITE_OK;
75471 }
75472 
75473 /************** End of vdbesort.c ********************************************/
75474 /************** Begin file journal.c *****************************************/
75475 /*
75476 ** 2007 August 22
75477 **
75478 ** The author disclaims copyright to this source code.  In place of
75479 ** a legal notice, here is a blessing:
75480 **
75481 **    May you do good and not evil.
75482 **    May you find forgiveness for yourself and forgive others.
75483 **    May you share freely, never taking more than you give.
75484 **
75485 *************************************************************************
75486 **
75487 ** This file implements a special kind of sqlite3_file object used
75488 ** by SQLite to create journal files if the atomic-write optimization
75489 ** is enabled.
75490 **
75491 ** The distinctive characteristic of this sqlite3_file is that the
75492 ** actual on disk file is created lazily. When the file is created,
75493 ** the caller specifies a buffer size for an in-memory buffer to
75494 ** be used to service read() and write() requests. The actual file
75495 ** on disk is not created or populated until either:
75496 **
75497 **   1) The in-memory representation grows too large for the allocated
75498 **      buffer, or
75499 **   2) The sqlite3JournalCreate() function is called.
75500 */
75501 #ifdef SQLITE_ENABLE_ATOMIC_WRITE
75502 
75503 
75504 /*
75505 ** A JournalFile object is a subclass of sqlite3_file used by
75506 ** as an open file handle for journal files.
75507 */
75508 struct JournalFile {
75509   sqlite3_io_methods *pMethod;    /* I/O methods on journal files */
75510   int nBuf;                       /* Size of zBuf[] in bytes */
75511   char *zBuf;                     /* Space to buffer journal writes */
75512   int iSize;                      /* Amount of zBuf[] currently used */
75513   int flags;                      /* xOpen flags */
75514   sqlite3_vfs *pVfs;              /* The "real" underlying VFS */
75515   sqlite3_file *pReal;            /* The "real" underlying file descriptor */
75516   const char *zJournal;           /* Name of the journal file */
75517 };
75518 typedef struct JournalFile JournalFile;
75519 
75520 /*
75521 ** If it does not already exists, create and populate the on-disk file
75522 ** for JournalFile p.
75523 */
75524 static int createFile(JournalFile *p){
75525   int rc = SQLITE_OK;
75526   if( !p->pReal ){
75527     sqlite3_file *pReal = (sqlite3_file *)&p[1];
75528     rc = sqlite3OsOpen(p->pVfs, p->zJournal, pReal, p->flags, 0);
75529     if( rc==SQLITE_OK ){
75530       p->pReal = pReal;
75531       if( p->iSize>0 ){
75532         assert(p->iSize<=p->nBuf);
75533         rc = sqlite3OsWrite(p->pReal, p->zBuf, p->iSize, 0);
75534       }
75535       if( rc!=SQLITE_OK ){
75536         /* If an error occurred while writing to the file, close it before
75537         ** returning. This way, SQLite uses the in-memory journal data to
75538         ** roll back changes made to the internal page-cache before this
75539         ** function was called.  */
75540         sqlite3OsClose(pReal);
75541         p->pReal = 0;
75542       }
75543     }
75544   }
75545   return rc;
75546 }
75547 
75548 /*
75549 ** Close the file.
75550 */
75551 static int jrnlClose(sqlite3_file *pJfd){
75552   JournalFile *p = (JournalFile *)pJfd;
75553   if( p->pReal ){
75554     sqlite3OsClose(p->pReal);
75555   }
75556   sqlite3_free(p->zBuf);
75557   return SQLITE_OK;
75558 }
75559 
75560 /*
75561 ** Read data from the file.
75562 */
75563 static int jrnlRead(
75564   sqlite3_file *pJfd,    /* The journal file from which to read */
75565   void *zBuf,            /* Put the results here */
75566   int iAmt,              /* Number of bytes to read */
75567   sqlite_int64 iOfst     /* Begin reading at this offset */
75568 ){
75569   int rc = SQLITE_OK;
75570   JournalFile *p = (JournalFile *)pJfd;
75571   if( p->pReal ){
75572     rc = sqlite3OsRead(p->pReal, zBuf, iAmt, iOfst);
75573   }else if( (iAmt+iOfst)>p->iSize ){
75574     rc = SQLITE_IOERR_SHORT_READ;
75575   }else{
75576     memcpy(zBuf, &p->zBuf[iOfst], iAmt);
75577   }
75578   return rc;
75579 }
75580 
75581 /*
75582 ** Write data to the file.
75583 */
75584 static int jrnlWrite(
75585   sqlite3_file *pJfd,    /* The journal file into which to write */
75586   const void *zBuf,      /* Take data to be written from here */
75587   int iAmt,              /* Number of bytes to write */
75588   sqlite_int64 iOfst     /* Begin writing at this offset into the file */
75589 ){
75590   int rc = SQLITE_OK;
75591   JournalFile *p = (JournalFile *)pJfd;
75592   if( !p->pReal && (iOfst+iAmt)>p->nBuf ){
75593     rc = createFile(p);
75594   }
75595   if( rc==SQLITE_OK ){
75596     if( p->pReal ){
75597       rc = sqlite3OsWrite(p->pReal, zBuf, iAmt, iOfst);
75598     }else{
75599       memcpy(&p->zBuf[iOfst], zBuf, iAmt);
75600       if( p->iSize<(iOfst+iAmt) ){
75601         p->iSize = (iOfst+iAmt);
75602       }
75603     }
75604   }
75605   return rc;
75606 }
75607 
75608 /*
75609 ** Truncate the file.
75610 */
75611 static int jrnlTruncate(sqlite3_file *pJfd, sqlite_int64 size){
75612   int rc = SQLITE_OK;
75613   JournalFile *p = (JournalFile *)pJfd;
75614   if( p->pReal ){
75615     rc = sqlite3OsTruncate(p->pReal, size);
75616   }else if( size<p->iSize ){
75617     p->iSize = size;
75618   }
75619   return rc;
75620 }
75621 
75622 /*
75623 ** Sync the file.
75624 */
75625 static int jrnlSync(sqlite3_file *pJfd, int flags){
75626   int rc;
75627   JournalFile *p = (JournalFile *)pJfd;
75628   if( p->pReal ){
75629     rc = sqlite3OsSync(p->pReal, flags);
75630   }else{
75631     rc = SQLITE_OK;
75632   }
75633   return rc;
75634 }
75635 
75636 /*
75637 ** Query the size of the file in bytes.
75638 */
75639 static int jrnlFileSize(sqlite3_file *pJfd, sqlite_int64 *pSize){
75640   int rc = SQLITE_OK;
75641   JournalFile *p = (JournalFile *)pJfd;
75642   if( p->pReal ){
75643     rc = sqlite3OsFileSize(p->pReal, pSize);
75644   }else{
75645     *pSize = (sqlite_int64) p->iSize;
75646   }
75647   return rc;
75648 }
75649 
75650 /*
75651 ** Table of methods for JournalFile sqlite3_file object.
75652 */
75653 static struct sqlite3_io_methods JournalFileMethods = {
75654   1,             /* iVersion */
75655   jrnlClose,     /* xClose */
75656   jrnlRead,      /* xRead */
75657   jrnlWrite,     /* xWrite */
75658   jrnlTruncate,  /* xTruncate */
75659   jrnlSync,      /* xSync */
75660   jrnlFileSize,  /* xFileSize */
75661   0,             /* xLock */
75662   0,             /* xUnlock */
75663   0,             /* xCheckReservedLock */
75664   0,             /* xFileControl */
75665   0,             /* xSectorSize */
75666   0,             /* xDeviceCharacteristics */
75667   0,             /* xShmMap */
75668   0,             /* xShmLock */
75669   0,             /* xShmBarrier */
75670   0              /* xShmUnmap */
75671 };
75672 
75673 /*
75674 ** Open a journal file.
75675 */
75676 SQLITE_PRIVATE int sqlite3JournalOpen(
75677   sqlite3_vfs *pVfs,         /* The VFS to use for actual file I/O */
75678   const char *zName,         /* Name of the journal file */
75679   sqlite3_file *pJfd,        /* Preallocated, blank file handle */
75680   int flags,                 /* Opening flags */
75681   int nBuf                   /* Bytes buffered before opening the file */
75682 ){
75683   JournalFile *p = (JournalFile *)pJfd;
75684   memset(p, 0, sqlite3JournalSize(pVfs));
75685   if( nBuf>0 ){
75686     p->zBuf = sqlite3MallocZero(nBuf);
75687     if( !p->zBuf ){
75688       return SQLITE_NOMEM;
75689     }
75690   }else{
75691     return sqlite3OsOpen(pVfs, zName, pJfd, flags, 0);
75692   }
75693   p->pMethod = &JournalFileMethods;
75694   p->nBuf = nBuf;
75695   p->flags = flags;
75696   p->zJournal = zName;
75697   p->pVfs = pVfs;
75698   return SQLITE_OK;
75699 }
75700 
75701 /*
75702 ** If the argument p points to a JournalFile structure, and the underlying
75703 ** file has not yet been created, create it now.
75704 */
75705 SQLITE_PRIVATE int sqlite3JournalCreate(sqlite3_file *p){
75706   if( p->pMethods!=&JournalFileMethods ){
75707     return SQLITE_OK;
75708   }
75709   return createFile((JournalFile *)p);
75710 }
75711 
75712 /*
75713 ** The file-handle passed as the only argument is guaranteed to be an open
75714 ** file. It may or may not be of class JournalFile. If the file is a
75715 ** JournalFile, and the underlying file on disk has not yet been opened,
75716 ** return 0. Otherwise, return 1.
75717 */
75718 SQLITE_PRIVATE int sqlite3JournalExists(sqlite3_file *p){
75719   return (p->pMethods!=&JournalFileMethods || ((JournalFile *)p)->pReal!=0);
75720 }
75721 
75722 /*
75723 ** Return the number of bytes required to store a JournalFile that uses vfs
75724 ** pVfs to create the underlying on-disk files.
75725 */
75726 SQLITE_PRIVATE int sqlite3JournalSize(sqlite3_vfs *pVfs){
75727   return (pVfs->szOsFile+sizeof(JournalFile));
75728 }
75729 #endif
75730 
75731 /************** End of journal.c *********************************************/
75732 /************** Begin file memjournal.c **************************************/
75733 /*
75734 ** 2008 October 7
75735 **
75736 ** The author disclaims copyright to this source code.  In place of
75737 ** a legal notice, here is a blessing:
75738 **
75739 **    May you do good and not evil.
75740 **    May you find forgiveness for yourself and forgive others.
75741 **    May you share freely, never taking more than you give.
75742 **
75743 *************************************************************************
75744 **
75745 ** This file contains code use to implement an in-memory rollback journal.
75746 ** The in-memory rollback journal is used to journal transactions for
75747 ** ":memory:" databases and when the journal_mode=MEMORY pragma is used.
75748 */
75749 
75750 /* Forward references to internal structures */
75751 typedef struct MemJournal MemJournal;
75752 typedef struct FilePoint FilePoint;
75753 typedef struct FileChunk FileChunk;
75754 
75755 /* Space to hold the rollback journal is allocated in increments of
75756 ** this many bytes.
75757 **
75758 ** The size chosen is a little less than a power of two.  That way,
75759 ** the FileChunk object will have a size that almost exactly fills
75760 ** a power-of-two allocation.  This mimimizes wasted space in power-of-two
75761 ** memory allocators.
75762 */
75763 #define JOURNAL_CHUNKSIZE ((int)(1024-sizeof(FileChunk*)))
75764 
75765 /*
75766 ** The rollback journal is composed of a linked list of these structures.
75767 */
75768 struct FileChunk {
75769   FileChunk *pNext;               /* Next chunk in the journal */
75770   u8 zChunk[JOURNAL_CHUNKSIZE];   /* Content of this chunk */
75771 };
75772 
75773 /*
75774 ** An instance of this object serves as a cursor into the rollback journal.
75775 ** The cursor can be either for reading or writing.
75776 */
75777 struct FilePoint {
75778   sqlite3_int64 iOffset;          /* Offset from the beginning of the file */
75779   FileChunk *pChunk;              /* Specific chunk into which cursor points */
75780 };
75781 
75782 /*
75783 ** This subclass is a subclass of sqlite3_file.  Each open memory-journal
75784 ** is an instance of this class.
75785 */
75786 struct MemJournal {
75787   sqlite3_io_methods *pMethod;    /* Parent class. MUST BE FIRST */
75788   FileChunk *pFirst;              /* Head of in-memory chunk-list */
75789   FilePoint endpoint;             /* Pointer to the end of the file */
75790   FilePoint readpoint;            /* Pointer to the end of the last xRead() */
75791 };
75792 
75793 /*
75794 ** Read data from the in-memory journal file.  This is the implementation
75795 ** of the sqlite3_vfs.xRead method.
75796 */
75797 static int memjrnlRead(
75798   sqlite3_file *pJfd,    /* The journal file from which to read */
75799   void *zBuf,            /* Put the results here */
75800   int iAmt,              /* Number of bytes to read */
75801   sqlite_int64 iOfst     /* Begin reading at this offset */
75802 ){
75803   MemJournal *p = (MemJournal *)pJfd;
75804   u8 *zOut = zBuf;
75805   int nRead = iAmt;
75806   int iChunkOffset;
75807   FileChunk *pChunk;
75808 
75809   /* SQLite never tries to read past the end of a rollback journal file */
75810   assert( iOfst+iAmt<=p->endpoint.iOffset );
75811 
75812   if( p->readpoint.iOffset!=iOfst || iOfst==0 ){
75813     sqlite3_int64 iOff = 0;
75814     for(pChunk=p->pFirst;
75815         ALWAYS(pChunk) && (iOff+JOURNAL_CHUNKSIZE)<=iOfst;
75816         pChunk=pChunk->pNext
75817     ){
75818       iOff += JOURNAL_CHUNKSIZE;
75819     }
75820   }else{
75821     pChunk = p->readpoint.pChunk;
75822   }
75823 
75824   iChunkOffset = (int)(iOfst%JOURNAL_CHUNKSIZE);
75825   do {
75826     int iSpace = JOURNAL_CHUNKSIZE - iChunkOffset;
75827     int nCopy = MIN(nRead, (JOURNAL_CHUNKSIZE - iChunkOffset));
75828     memcpy(zOut, &pChunk->zChunk[iChunkOffset], nCopy);
75829     zOut += nCopy;
75830     nRead -= iSpace;
75831     iChunkOffset = 0;
75832   } while( nRead>=0 && (pChunk=pChunk->pNext)!=0 && nRead>0 );
75833   p->readpoint.iOffset = iOfst+iAmt;
75834   p->readpoint.pChunk = pChunk;
75835 
75836   return SQLITE_OK;
75837 }
75838 
75839 /*
75840 ** Write data to the file.
75841 */
75842 static int memjrnlWrite(
75843   sqlite3_file *pJfd,    /* The journal file into which to write */
75844   const void *zBuf,      /* Take data to be written from here */
75845   int iAmt,              /* Number of bytes to write */
75846   sqlite_int64 iOfst     /* Begin writing at this offset into the file */
75847 ){
75848   MemJournal *p = (MemJournal *)pJfd;
75849   int nWrite = iAmt;
75850   u8 *zWrite = (u8 *)zBuf;
75851 
75852   /* An in-memory journal file should only ever be appended to. Random
75853   ** access writes are not required by sqlite.
75854   */
75855   assert( iOfst==p->endpoint.iOffset );
75856   UNUSED_PARAMETER(iOfst);
75857 
75858   while( nWrite>0 ){
75859     FileChunk *pChunk = p->endpoint.pChunk;
75860     int iChunkOffset = (int)(p->endpoint.iOffset%JOURNAL_CHUNKSIZE);
75861     int iSpace = MIN(nWrite, JOURNAL_CHUNKSIZE - iChunkOffset);
75862 
75863     if( iChunkOffset==0 ){
75864       /* New chunk is required to extend the file. */
75865       FileChunk *pNew = sqlite3_malloc(sizeof(FileChunk));
75866       if( !pNew ){
75867         return SQLITE_IOERR_NOMEM;
75868       }
75869       pNew->pNext = 0;
75870       if( pChunk ){
75871         assert( p->pFirst );
75872         pChunk->pNext = pNew;
75873       }else{
75874         assert( !p->pFirst );
75875         p->pFirst = pNew;
75876       }
75877       p->endpoint.pChunk = pNew;
75878     }
75879 
75880     memcpy(&p->endpoint.pChunk->zChunk[iChunkOffset], zWrite, iSpace);
75881     zWrite += iSpace;
75882     nWrite -= iSpace;
75883     p->endpoint.iOffset += iSpace;
75884   }
75885 
75886   return SQLITE_OK;
75887 }
75888 
75889 /*
75890 ** Truncate the file.
75891 */
75892 static int memjrnlTruncate(sqlite3_file *pJfd, sqlite_int64 size){
75893   MemJournal *p = (MemJournal *)pJfd;
75894   FileChunk *pChunk;
75895   assert(size==0);
75896   UNUSED_PARAMETER(size);
75897   pChunk = p->pFirst;
75898   while( pChunk ){
75899     FileChunk *pTmp = pChunk;
75900     pChunk = pChunk->pNext;
75901     sqlite3_free(pTmp);
75902   }
75903   sqlite3MemJournalOpen(pJfd);
75904   return SQLITE_OK;
75905 }
75906 
75907 /*
75908 ** Close the file.
75909 */
75910 static int memjrnlClose(sqlite3_file *pJfd){
75911   memjrnlTruncate(pJfd, 0);
75912   return SQLITE_OK;
75913 }
75914 
75915 
75916 /*
75917 ** Sync the file.
75918 **
75919 ** Syncing an in-memory journal is a no-op.  And, in fact, this routine
75920 ** is never called in a working implementation.  This implementation
75921 ** exists purely as a contingency, in case some malfunction in some other
75922 ** part of SQLite causes Sync to be called by mistake.
75923 */
75924 static int memjrnlSync(sqlite3_file *NotUsed, int NotUsed2){
75925   UNUSED_PARAMETER2(NotUsed, NotUsed2);
75926   return SQLITE_OK;
75927 }
75928 
75929 /*
75930 ** Query the size of the file in bytes.
75931 */
75932 static int memjrnlFileSize(sqlite3_file *pJfd, sqlite_int64 *pSize){
75933   MemJournal *p = (MemJournal *)pJfd;
75934   *pSize = (sqlite_int64) p->endpoint.iOffset;
75935   return SQLITE_OK;
75936 }
75937 
75938 /*
75939 ** Table of methods for MemJournal sqlite3_file object.
75940 */
75941 static const struct sqlite3_io_methods MemJournalMethods = {
75942   1,                /* iVersion */
75943   memjrnlClose,     /* xClose */
75944   memjrnlRead,      /* xRead */
75945   memjrnlWrite,     /* xWrite */
75946   memjrnlTruncate,  /* xTruncate */
75947   memjrnlSync,      /* xSync */
75948   memjrnlFileSize,  /* xFileSize */
75949   0,                /* xLock */
75950   0,                /* xUnlock */
75951   0,                /* xCheckReservedLock */
75952   0,                /* xFileControl */
75953   0,                /* xSectorSize */
75954   0,                /* xDeviceCharacteristics */
75955   0,                /* xShmMap */
75956   0,                /* xShmLock */
75957   0,                /* xShmBarrier */
75958   0,                /* xShmUnmap */
75959   0,                /* xFetch */
75960   0                 /* xUnfetch */
75961 };
75962 
75963 /*
75964 ** Open a journal file.
75965 */
75966 SQLITE_PRIVATE void sqlite3MemJournalOpen(sqlite3_file *pJfd){
75967   MemJournal *p = (MemJournal *)pJfd;
75968   assert( EIGHT_BYTE_ALIGNMENT(p) );
75969   memset(p, 0, sqlite3MemJournalSize());
75970   p->pMethod = (sqlite3_io_methods*)&MemJournalMethods;
75971 }
75972 
75973 /*
75974 ** Return true if the file-handle passed as an argument is
75975 ** an in-memory journal
75976 */
75977 SQLITE_PRIVATE int sqlite3IsMemJournal(sqlite3_file *pJfd){
75978   return pJfd->pMethods==&MemJournalMethods;
75979 }
75980 
75981 /*
75982 ** Return the number of bytes required to store a MemJournal file descriptor.
75983 */
75984 SQLITE_PRIVATE int sqlite3MemJournalSize(void){
75985   return sizeof(MemJournal);
75986 }
75987 
75988 /************** End of memjournal.c ******************************************/
75989 /************** Begin file walker.c ******************************************/
75990 /*
75991 ** 2008 August 16
75992 **
75993 ** The author disclaims copyright to this source code.  In place of
75994 ** a legal notice, here is a blessing:
75995 **
75996 **    May you do good and not evil.
75997 **    May you find forgiveness for yourself and forgive others.
75998 **    May you share freely, never taking more than you give.
75999 **
76000 *************************************************************************
76001 ** This file contains routines used for walking the parser tree for
76002 ** an SQL statement.
76003 */
76004 /* #include <stdlib.h> */
76005 /* #include <string.h> */
76006 
76007 
76008 /*
76009 ** Walk an expression tree.  Invoke the callback once for each node
76010 ** of the expression, while decending.  (In other words, the callback
76011 ** is invoked before visiting children.)
76012 **
76013 ** The return value from the callback should be one of the WRC_*
76014 ** constants to specify how to proceed with the walk.
76015 **
76016 **    WRC_Continue      Continue descending down the tree.
76017 **
76018 **    WRC_Prune         Do not descend into child nodes.  But allow
76019 **                      the walk to continue with sibling nodes.
76020 **
76021 **    WRC_Abort         Do no more callbacks.  Unwind the stack and
76022 **                      return the top-level walk call.
76023 **
76024 ** The return value from this routine is WRC_Abort to abandon the tree walk
76025 ** and WRC_Continue to continue.
76026 */
76027 SQLITE_PRIVATE int sqlite3WalkExpr(Walker *pWalker, Expr *pExpr){
76028   int rc;
76029   if( pExpr==0 ) return WRC_Continue;
76030   testcase( ExprHasProperty(pExpr, EP_TokenOnly) );
76031   testcase( ExprHasProperty(pExpr, EP_Reduced) );
76032   rc = pWalker->xExprCallback(pWalker, pExpr);
76033   if( rc==WRC_Continue
76034               && !ExprHasProperty(pExpr,EP_TokenOnly) ){
76035     if( sqlite3WalkExpr(pWalker, pExpr->pLeft) ) return WRC_Abort;
76036     if( sqlite3WalkExpr(pWalker, pExpr->pRight) ) return WRC_Abort;
76037     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
76038       if( sqlite3WalkSelect(pWalker, pExpr->x.pSelect) ) return WRC_Abort;
76039     }else{
76040       if( sqlite3WalkExprList(pWalker, pExpr->x.pList) ) return WRC_Abort;
76041     }
76042   }
76043   return rc & WRC_Abort;
76044 }
76045 
76046 /*
76047 ** Call sqlite3WalkExpr() for every expression in list p or until
76048 ** an abort request is seen.
76049 */
76050 SQLITE_PRIVATE int sqlite3WalkExprList(Walker *pWalker, ExprList *p){
76051   int i;
76052   struct ExprList_item *pItem;
76053   if( p ){
76054     for(i=p->nExpr, pItem=p->a; i>0; i--, pItem++){
76055       if( sqlite3WalkExpr(pWalker, pItem->pExpr) ) return WRC_Abort;
76056     }
76057   }
76058   return WRC_Continue;
76059 }
76060 
76061 /*
76062 ** Walk all expressions associated with SELECT statement p.  Do
76063 ** not invoke the SELECT callback on p, but do (of course) invoke
76064 ** any expr callbacks and SELECT callbacks that come from subqueries.
76065 ** Return WRC_Abort or WRC_Continue.
76066 */
76067 SQLITE_PRIVATE int sqlite3WalkSelectExpr(Walker *pWalker, Select *p){
76068   if( sqlite3WalkExprList(pWalker, p->pEList) ) return WRC_Abort;
76069   if( sqlite3WalkExpr(pWalker, p->pWhere) ) return WRC_Abort;
76070   if( sqlite3WalkExprList(pWalker, p->pGroupBy) ) return WRC_Abort;
76071   if( sqlite3WalkExpr(pWalker, p->pHaving) ) return WRC_Abort;
76072   if( sqlite3WalkExprList(pWalker, p->pOrderBy) ) return WRC_Abort;
76073   if( sqlite3WalkExpr(pWalker, p->pLimit) ) return WRC_Abort;
76074   if( sqlite3WalkExpr(pWalker, p->pOffset) ) return WRC_Abort;
76075   return WRC_Continue;
76076 }
76077 
76078 /*
76079 ** Walk the parse trees associated with all subqueries in the
76080 ** FROM clause of SELECT statement p.  Do not invoke the select
76081 ** callback on p, but do invoke it on each FROM clause subquery
76082 ** and on any subqueries further down in the tree.  Return
76083 ** WRC_Abort or WRC_Continue;
76084 */
76085 SQLITE_PRIVATE int sqlite3WalkSelectFrom(Walker *pWalker, Select *p){
76086   SrcList *pSrc;
76087   int i;
76088   struct SrcList_item *pItem;
76089 
76090   pSrc = p->pSrc;
76091   if( ALWAYS(pSrc) ){
76092     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
76093       if( sqlite3WalkSelect(pWalker, pItem->pSelect) ){
76094         return WRC_Abort;
76095       }
76096     }
76097   }
76098   return WRC_Continue;
76099 }
76100 
76101 /*
76102 ** Call sqlite3WalkExpr() for every expression in Select statement p.
76103 ** Invoke sqlite3WalkSelect() for subqueries in the FROM clause and
76104 ** on the compound select chain, p->pPrior.
76105 **
76106 ** If it is not NULL, the xSelectCallback() callback is invoked before
76107 ** the walk of the expressions and FROM clause. The xSelectCallback2()
76108 ** method, if it is not NULL, is invoked following the walk of the
76109 ** expressions and FROM clause.
76110 **
76111 ** Return WRC_Continue under normal conditions.  Return WRC_Abort if
76112 ** there is an abort request.
76113 **
76114 ** If the Walker does not have an xSelectCallback() then this routine
76115 ** is a no-op returning WRC_Continue.
76116 */
76117 SQLITE_PRIVATE int sqlite3WalkSelect(Walker *pWalker, Select *p){
76118   int rc;
76119   if( p==0 || (pWalker->xSelectCallback==0 && pWalker->xSelectCallback2==0) ){
76120     return WRC_Continue;
76121   }
76122   rc = WRC_Continue;
76123   pWalker->walkerDepth++;
76124   while( p ){
76125     if( pWalker->xSelectCallback ){
76126        rc = pWalker->xSelectCallback(pWalker, p);
76127        if( rc ) break;
76128     }
76129     if( sqlite3WalkSelectExpr(pWalker, p)
76130      || sqlite3WalkSelectFrom(pWalker, p)
76131     ){
76132       pWalker->walkerDepth--;
76133       return WRC_Abort;
76134     }
76135     if( pWalker->xSelectCallback2 ){
76136       pWalker->xSelectCallback2(pWalker, p);
76137     }
76138     p = p->pPrior;
76139   }
76140   pWalker->walkerDepth--;
76141   return rc & WRC_Abort;
76142 }
76143 
76144 /************** End of walker.c **********************************************/
76145 /************** Begin file resolve.c *****************************************/
76146 /*
76147 ** 2008 August 18
76148 **
76149 ** The author disclaims copyright to this source code.  In place of
76150 ** a legal notice, here is a blessing:
76151 **
76152 **    May you do good and not evil.
76153 **    May you find forgiveness for yourself and forgive others.
76154 **    May you share freely, never taking more than you give.
76155 **
76156 *************************************************************************
76157 **
76158 ** This file contains routines used for walking the parser tree and
76159 ** resolve all identifiers by associating them with a particular
76160 ** table and column.
76161 */
76162 /* #include <stdlib.h> */
76163 /* #include <string.h> */
76164 
76165 /*
76166 ** Walk the expression tree pExpr and increase the aggregate function
76167 ** depth (the Expr.op2 field) by N on every TK_AGG_FUNCTION node.
76168 ** This needs to occur when copying a TK_AGG_FUNCTION node from an
76169 ** outer query into an inner subquery.
76170 **
76171 ** incrAggFunctionDepth(pExpr,n) is the main routine.  incrAggDepth(..)
76172 ** is a helper function - a callback for the tree walker.
76173 */
76174 static int incrAggDepth(Walker *pWalker, Expr *pExpr){
76175   if( pExpr->op==TK_AGG_FUNCTION ) pExpr->op2 += pWalker->u.i;
76176   return WRC_Continue;
76177 }
76178 static void incrAggFunctionDepth(Expr *pExpr, int N){
76179   if( N>0 ){
76180     Walker w;
76181     memset(&w, 0, sizeof(w));
76182     w.xExprCallback = incrAggDepth;
76183     w.u.i = N;
76184     sqlite3WalkExpr(&w, pExpr);
76185   }
76186 }
76187 
76188 /*
76189 ** Turn the pExpr expression into an alias for the iCol-th column of the
76190 ** result set in pEList.
76191 **
76192 ** If the result set column is a simple column reference, then this routine
76193 ** makes an exact copy.  But for any other kind of expression, this
76194 ** routine make a copy of the result set column as the argument to the
76195 ** TK_AS operator.  The TK_AS operator causes the expression to be
76196 ** evaluated just once and then reused for each alias.
76197 **
76198 ** The reason for suppressing the TK_AS term when the expression is a simple
76199 ** column reference is so that the column reference will be recognized as
76200 ** usable by indices within the WHERE clause processing logic.
76201 **
76202 ** The TK_AS operator is inhibited if zType[0]=='G'.  This means
76203 ** that in a GROUP BY clause, the expression is evaluated twice.  Hence:
76204 **
76205 **     SELECT random()%5 AS x, count(*) FROM tab GROUP BY x
76206 **
76207 ** Is equivalent to:
76208 **
76209 **     SELECT random()%5 AS x, count(*) FROM tab GROUP BY random()%5
76210 **
76211 ** The result of random()%5 in the GROUP BY clause is probably different
76212 ** from the result in the result-set.  On the other hand Standard SQL does
76213 ** not allow the GROUP BY clause to contain references to result-set columns.
76214 ** So this should never come up in well-formed queries.
76215 **
76216 ** If the reference is followed by a COLLATE operator, then make sure
76217 ** the COLLATE operator is preserved.  For example:
76218 **
76219 **     SELECT a+b, c+d FROM t1 ORDER BY 1 COLLATE nocase;
76220 **
76221 ** Should be transformed into:
76222 **
76223 **     SELECT a+b, c+d FROM t1 ORDER BY (a+b) COLLATE nocase;
76224 **
76225 ** The nSubquery parameter specifies how many levels of subquery the
76226 ** alias is removed from the original expression.  The usually value is
76227 ** zero but it might be more if the alias is contained within a subquery
76228 ** of the original expression.  The Expr.op2 field of TK_AGG_FUNCTION
76229 ** structures must be increased by the nSubquery amount.
76230 */
76231 static void resolveAlias(
76232   Parse *pParse,         /* Parsing context */
76233   ExprList *pEList,      /* A result set */
76234   int iCol,              /* A column in the result set.  0..pEList->nExpr-1 */
76235   Expr *pExpr,           /* Transform this into an alias to the result set */
76236   const char *zType,     /* "GROUP" or "ORDER" or "" */
76237   int nSubquery          /* Number of subqueries that the label is moving */
76238 ){
76239   Expr *pOrig;           /* The iCol-th column of the result set */
76240   Expr *pDup;            /* Copy of pOrig */
76241   sqlite3 *db;           /* The database connection */
76242 
76243   assert( iCol>=0 && iCol<pEList->nExpr );
76244   pOrig = pEList->a[iCol].pExpr;
76245   assert( pOrig!=0 );
76246   assert( pOrig->flags & EP_Resolved );
76247   db = pParse->db;
76248   pDup = sqlite3ExprDup(db, pOrig, 0);
76249   if( pDup==0 ) return;
76250   if( pOrig->op!=TK_COLUMN && zType[0]!='G' ){
76251     incrAggFunctionDepth(pDup, nSubquery);
76252     pDup = sqlite3PExpr(pParse, TK_AS, pDup, 0, 0);
76253     if( pDup==0 ) return;
76254     ExprSetProperty(pDup, EP_Skip);
76255     if( pEList->a[iCol].u.x.iAlias==0 ){
76256       pEList->a[iCol].u.x.iAlias = (u16)(++pParse->nAlias);
76257     }
76258     pDup->iTable = pEList->a[iCol].u.x.iAlias;
76259   }
76260   if( pExpr->op==TK_COLLATE ){
76261     pDup = sqlite3ExprAddCollateString(pParse, pDup, pExpr->u.zToken);
76262   }
76263 
76264   /* Before calling sqlite3ExprDelete(), set the EP_Static flag. This
76265   ** prevents ExprDelete() from deleting the Expr structure itself,
76266   ** allowing it to be repopulated by the memcpy() on the following line.
76267   ** The pExpr->u.zToken might point into memory that will be freed by the
76268   ** sqlite3DbFree(db, pDup) on the last line of this block, so be sure to
76269   ** make a copy of the token before doing the sqlite3DbFree().
76270   */
76271   ExprSetProperty(pExpr, EP_Static);
76272   sqlite3ExprDelete(db, pExpr);
76273   memcpy(pExpr, pDup, sizeof(*pExpr));
76274   if( !ExprHasProperty(pExpr, EP_IntValue) && pExpr->u.zToken!=0 ){
76275     assert( (pExpr->flags & (EP_Reduced|EP_TokenOnly))==0 );
76276     pExpr->u.zToken = sqlite3DbStrDup(db, pExpr->u.zToken);
76277     pExpr->flags |= EP_MemToken;
76278   }
76279   sqlite3DbFree(db, pDup);
76280 }
76281 
76282 
76283 /*
76284 ** Return TRUE if the name zCol occurs anywhere in the USING clause.
76285 **
76286 ** Return FALSE if the USING clause is NULL or if it does not contain
76287 ** zCol.
76288 */
76289 static int nameInUsingClause(IdList *pUsing, const char *zCol){
76290   if( pUsing ){
76291     int k;
76292     for(k=0; k<pUsing->nId; k++){
76293       if( sqlite3StrICmp(pUsing->a[k].zName, zCol)==0 ) return 1;
76294     }
76295   }
76296   return 0;
76297 }
76298 
76299 /*
76300 ** Subqueries stores the original database, table and column names for their
76301 ** result sets in ExprList.a[].zSpan, in the form "DATABASE.TABLE.COLUMN".
76302 ** Check to see if the zSpan given to this routine matches the zDb, zTab,
76303 ** and zCol.  If any of zDb, zTab, and zCol are NULL then those fields will
76304 ** match anything.
76305 */
76306 SQLITE_PRIVATE int sqlite3MatchSpanName(
76307   const char *zSpan,
76308   const char *zCol,
76309   const char *zTab,
76310   const char *zDb
76311 ){
76312   int n;
76313   for(n=0; ALWAYS(zSpan[n]) && zSpan[n]!='.'; n++){}
76314   if( zDb && (sqlite3StrNICmp(zSpan, zDb, n)!=0 || zDb[n]!=0) ){
76315     return 0;
76316   }
76317   zSpan += n+1;
76318   for(n=0; ALWAYS(zSpan[n]) && zSpan[n]!='.'; n++){}
76319   if( zTab && (sqlite3StrNICmp(zSpan, zTab, n)!=0 || zTab[n]!=0) ){
76320     return 0;
76321   }
76322   zSpan += n+1;
76323   if( zCol && sqlite3StrICmp(zSpan, zCol)!=0 ){
76324     return 0;
76325   }
76326   return 1;
76327 }
76328 
76329 /*
76330 ** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up
76331 ** that name in the set of source tables in pSrcList and make the pExpr
76332 ** expression node refer back to that source column.  The following changes
76333 ** are made to pExpr:
76334 **
76335 **    pExpr->iDb           Set the index in db->aDb[] of the database X
76336 **                         (even if X is implied).
76337 **    pExpr->iTable        Set to the cursor number for the table obtained
76338 **                         from pSrcList.
76339 **    pExpr->pTab          Points to the Table structure of X.Y (even if
76340 **                         X and/or Y are implied.)
76341 **    pExpr->iColumn       Set to the column number within the table.
76342 **    pExpr->op            Set to TK_COLUMN.
76343 **    pExpr->pLeft         Any expression this points to is deleted
76344 **    pExpr->pRight        Any expression this points to is deleted.
76345 **
76346 ** The zDb variable is the name of the database (the "X").  This value may be
76347 ** NULL meaning that name is of the form Y.Z or Z.  Any available database
76348 ** can be used.  The zTable variable is the name of the table (the "Y").  This
76349 ** value can be NULL if zDb is also NULL.  If zTable is NULL it
76350 ** means that the form of the name is Z and that columns from any table
76351 ** can be used.
76352 **
76353 ** If the name cannot be resolved unambiguously, leave an error message
76354 ** in pParse and return WRC_Abort.  Return WRC_Prune on success.
76355 */
76356 static int lookupName(
76357   Parse *pParse,       /* The parsing context */
76358   const char *zDb,     /* Name of the database containing table, or NULL */
76359   const char *zTab,    /* Name of table containing column, or NULL */
76360   const char *zCol,    /* Name of the column. */
76361   NameContext *pNC,    /* The name context used to resolve the name */
76362   Expr *pExpr          /* Make this EXPR node point to the selected column */
76363 ){
76364   int i, j;                         /* Loop counters */
76365   int cnt = 0;                      /* Number of matching column names */
76366   int cntTab = 0;                   /* Number of matching table names */
76367   int nSubquery = 0;                /* How many levels of subquery */
76368   sqlite3 *db = pParse->db;         /* The database connection */
76369   struct SrcList_item *pItem;       /* Use for looping over pSrcList items */
76370   struct SrcList_item *pMatch = 0;  /* The matching pSrcList item */
76371   NameContext *pTopNC = pNC;        /* First namecontext in the list */
76372   Schema *pSchema = 0;              /* Schema of the expression */
76373   int isTrigger = 0;                /* True if resolved to a trigger column */
76374   Table *pTab = 0;                  /* Table hold the row */
76375   Column *pCol;                     /* A column of pTab */
76376 
76377   assert( pNC );     /* the name context cannot be NULL. */
76378   assert( zCol );    /* The Z in X.Y.Z cannot be NULL */
76379   assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
76380 
76381   /* Initialize the node to no-match */
76382   pExpr->iTable = -1;
76383   pExpr->pTab = 0;
76384   ExprSetVVAProperty(pExpr, EP_NoReduce);
76385 
76386   /* Translate the schema name in zDb into a pointer to the corresponding
76387   ** schema.  If not found, pSchema will remain NULL and nothing will match
76388   ** resulting in an appropriate error message toward the end of this routine
76389   */
76390   if( zDb ){
76391     testcase( pNC->ncFlags & NC_PartIdx );
76392     testcase( pNC->ncFlags & NC_IsCheck );
76393     if( (pNC->ncFlags & (NC_PartIdx|NC_IsCheck))!=0 ){
76394       /* Silently ignore database qualifiers inside CHECK constraints and partial
76395       ** indices.  Do not raise errors because that might break legacy and
76396       ** because it does not hurt anything to just ignore the database name. */
76397       zDb = 0;
76398     }else{
76399       for(i=0; i<db->nDb; i++){
76400         assert( db->aDb[i].zName );
76401         if( sqlite3StrICmp(db->aDb[i].zName,zDb)==0 ){
76402           pSchema = db->aDb[i].pSchema;
76403           break;
76404         }
76405       }
76406     }
76407   }
76408 
76409   /* Start at the inner-most context and move outward until a match is found */
76410   while( pNC && cnt==0 ){
76411     ExprList *pEList;
76412     SrcList *pSrcList = pNC->pSrcList;
76413 
76414     if( pSrcList ){
76415       for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){
76416         pTab = pItem->pTab;
76417         assert( pTab!=0 && pTab->zName!=0 );
76418         assert( pTab->nCol>0 );
76419         if( pItem->pSelect && (pItem->pSelect->selFlags & SF_NestedFrom)!=0 ){
76420           int hit = 0;
76421           pEList = pItem->pSelect->pEList;
76422           for(j=0; j<pEList->nExpr; j++){
76423             if( sqlite3MatchSpanName(pEList->a[j].zSpan, zCol, zTab, zDb) ){
76424               cnt++;
76425               cntTab = 2;
76426               pMatch = pItem;
76427               pExpr->iColumn = j;
76428               hit = 1;
76429             }
76430           }
76431           if( hit || zTab==0 ) continue;
76432         }
76433         if( zDb && pTab->pSchema!=pSchema ){
76434           continue;
76435         }
76436         if( zTab ){
76437           const char *zTabName = pItem->zAlias ? pItem->zAlias : pTab->zName;
76438           assert( zTabName!=0 );
76439           if( sqlite3StrICmp(zTabName, zTab)!=0 ){
76440             continue;
76441           }
76442         }
76443         if( 0==(cntTab++) ){
76444           pMatch = pItem;
76445         }
76446         for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){
76447           if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
76448             /* If there has been exactly one prior match and this match
76449             ** is for the right-hand table of a NATURAL JOIN or is in a
76450             ** USING clause, then skip this match.
76451             */
76452             if( cnt==1 ){
76453               if( pItem->jointype & JT_NATURAL ) continue;
76454               if( nameInUsingClause(pItem->pUsing, zCol) ) continue;
76455             }
76456             cnt++;
76457             pMatch = pItem;
76458             /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */
76459             pExpr->iColumn = j==pTab->iPKey ? -1 : (i16)j;
76460             break;
76461           }
76462         }
76463       }
76464       if( pMatch ){
76465         pExpr->iTable = pMatch->iCursor;
76466         pExpr->pTab = pMatch->pTab;
76467         pSchema = pExpr->pTab->pSchema;
76468       }
76469     } /* if( pSrcList ) */
76470 
76471 #ifndef SQLITE_OMIT_TRIGGER
76472     /* If we have not already resolved the name, then maybe
76473     ** it is a new.* or old.* trigger argument reference
76474     */
76475     if( zDb==0 && zTab!=0 && cntTab==0 && pParse->pTriggerTab!=0 ){
76476       int op = pParse->eTriggerOp;
76477       assert( op==TK_DELETE || op==TK_UPDATE || op==TK_INSERT );
76478       if( op!=TK_DELETE && sqlite3StrICmp("new",zTab) == 0 ){
76479         pExpr->iTable = 1;
76480         pTab = pParse->pTriggerTab;
76481       }else if( op!=TK_INSERT && sqlite3StrICmp("old",zTab)==0 ){
76482         pExpr->iTable = 0;
76483         pTab = pParse->pTriggerTab;
76484       }else{
76485         pTab = 0;
76486       }
76487 
76488       if( pTab ){
76489         int iCol;
76490         pSchema = pTab->pSchema;
76491         cntTab++;
76492         for(iCol=0, pCol=pTab->aCol; iCol<pTab->nCol; iCol++, pCol++){
76493           if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
76494             if( iCol==pTab->iPKey ){
76495               iCol = -1;
76496             }
76497             break;
76498           }
76499         }
76500         if( iCol>=pTab->nCol && sqlite3IsRowid(zCol) && HasRowid(pTab) ){
76501           /* IMP: R-24309-18625 */
76502           /* IMP: R-44911-55124 */
76503           iCol = -1;
76504         }
76505         if( iCol<pTab->nCol ){
76506           cnt++;
76507           if( iCol<0 ){
76508             pExpr->affinity = SQLITE_AFF_INTEGER;
76509           }else if( pExpr->iTable==0 ){
76510             testcase( iCol==31 );
76511             testcase( iCol==32 );
76512             pParse->oldmask |= (iCol>=32 ? 0xffffffff : (((u32)1)<<iCol));
76513           }else{
76514             testcase( iCol==31 );
76515             testcase( iCol==32 );
76516             pParse->newmask |= (iCol>=32 ? 0xffffffff : (((u32)1)<<iCol));
76517           }
76518           pExpr->iColumn = (i16)iCol;
76519           pExpr->pTab = pTab;
76520           isTrigger = 1;
76521         }
76522       }
76523     }
76524 #endif /* !defined(SQLITE_OMIT_TRIGGER) */
76525 
76526     /*
76527     ** Perhaps the name is a reference to the ROWID
76528     */
76529     if( cnt==0 && cntTab==1 && pMatch && sqlite3IsRowid(zCol)
76530      && HasRowid(pMatch->pTab) ){
76531       cnt = 1;
76532       pExpr->iColumn = -1;     /* IMP: R-44911-55124 */
76533       pExpr->affinity = SQLITE_AFF_INTEGER;
76534     }
76535 
76536     /*
76537     ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z
76538     ** might refer to an result-set alias.  This happens, for example, when
76539     ** we are resolving names in the WHERE clause of the following command:
76540     **
76541     **     SELECT a+b AS x FROM table WHERE x<10;
76542     **
76543     ** In cases like this, replace pExpr with a copy of the expression that
76544     ** forms the result set entry ("a+b" in the example) and return immediately.
76545     ** Note that the expression in the result set should have already been
76546     ** resolved by the time the WHERE clause is resolved.
76547     **
76548     ** The ability to use an output result-set column in the WHERE, GROUP BY,
76549     ** or HAVING clauses, or as part of a larger expression in the ORDRE BY
76550     ** clause is not standard SQL.  This is a (goofy) SQLite extension, that
76551     ** is supported for backwards compatibility only.  TO DO: Issue a warning
76552     ** on sqlite3_log() whenever the capability is used.
76553     */
76554     if( (pEList = pNC->pEList)!=0
76555      && zTab==0
76556      && cnt==0
76557     ){
76558       for(j=0; j<pEList->nExpr; j++){
76559         char *zAs = pEList->a[j].zName;
76560         if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){
76561           Expr *pOrig;
76562           assert( pExpr->pLeft==0 && pExpr->pRight==0 );
76563           assert( pExpr->x.pList==0 );
76564           assert( pExpr->x.pSelect==0 );
76565           pOrig = pEList->a[j].pExpr;
76566           if( (pNC->ncFlags&NC_AllowAgg)==0 && ExprHasProperty(pOrig, EP_Agg) ){
76567             sqlite3ErrorMsg(pParse, "misuse of aliased aggregate %s", zAs);
76568             return WRC_Abort;
76569           }
76570           resolveAlias(pParse, pEList, j, pExpr, "", nSubquery);
76571           cnt = 1;
76572           pMatch = 0;
76573           assert( zTab==0 && zDb==0 );
76574           goto lookupname_end;
76575         }
76576       }
76577     }
76578 
76579     /* Advance to the next name context.  The loop will exit when either
76580     ** we have a match (cnt>0) or when we run out of name contexts.
76581     */
76582     if( cnt==0 ){
76583       pNC = pNC->pNext;
76584       nSubquery++;
76585     }
76586   }
76587 
76588   /*
76589   ** If X and Y are NULL (in other words if only the column name Z is
76590   ** supplied) and the value of Z is enclosed in double-quotes, then
76591   ** Z is a string literal if it doesn't match any column names.  In that
76592   ** case, we need to return right away and not make any changes to
76593   ** pExpr.
76594   **
76595   ** Because no reference was made to outer contexts, the pNC->nRef
76596   ** fields are not changed in any context.
76597   */
76598   if( cnt==0 && zTab==0 && ExprHasProperty(pExpr,EP_DblQuoted) ){
76599     pExpr->op = TK_STRING;
76600     pExpr->pTab = 0;
76601     return WRC_Prune;
76602   }
76603 
76604   /*
76605   ** cnt==0 means there was not match.  cnt>1 means there were two or
76606   ** more matches.  Either way, we have an error.
76607   */
76608   if( cnt!=1 ){
76609     const char *zErr;
76610     zErr = cnt==0 ? "no such column" : "ambiguous column name";
76611     if( zDb ){
76612       sqlite3ErrorMsg(pParse, "%s: %s.%s.%s", zErr, zDb, zTab, zCol);
76613     }else if( zTab ){
76614       sqlite3ErrorMsg(pParse, "%s: %s.%s", zErr, zTab, zCol);
76615     }else{
76616       sqlite3ErrorMsg(pParse, "%s: %s", zErr, zCol);
76617     }
76618     pParse->checkSchema = 1;
76619     pTopNC->nErr++;
76620   }
76621 
76622   /* If a column from a table in pSrcList is referenced, then record
76623   ** this fact in the pSrcList.a[].colUsed bitmask.  Column 0 causes
76624   ** bit 0 to be set.  Column 1 sets bit 1.  And so forth.  If the
76625   ** column number is greater than the number of bits in the bitmask
76626   ** then set the high-order bit of the bitmask.
76627   */
76628   if( pExpr->iColumn>=0 && pMatch!=0 ){
76629     int n = pExpr->iColumn;
76630     testcase( n==BMS-1 );
76631     if( n>=BMS ){
76632       n = BMS-1;
76633     }
76634     assert( pMatch->iCursor==pExpr->iTable );
76635     pMatch->colUsed |= ((Bitmask)1)<<n;
76636   }
76637 
76638   /* Clean up and return
76639   */
76640   sqlite3ExprDelete(db, pExpr->pLeft);
76641   pExpr->pLeft = 0;
76642   sqlite3ExprDelete(db, pExpr->pRight);
76643   pExpr->pRight = 0;
76644   pExpr->op = (isTrigger ? TK_TRIGGER : TK_COLUMN);
76645 lookupname_end:
76646   if( cnt==1 ){
76647     assert( pNC!=0 );
76648     if( pExpr->op!=TK_AS ){
76649       sqlite3AuthRead(pParse, pExpr, pSchema, pNC->pSrcList);
76650     }
76651     /* Increment the nRef value on all name contexts from TopNC up to
76652     ** the point where the name matched. */
76653     for(;;){
76654       assert( pTopNC!=0 );
76655       pTopNC->nRef++;
76656       if( pTopNC==pNC ) break;
76657       pTopNC = pTopNC->pNext;
76658     }
76659     return WRC_Prune;
76660   } else {
76661     return WRC_Abort;
76662   }
76663 }
76664 
76665 /*
76666 ** Allocate and return a pointer to an expression to load the column iCol
76667 ** from datasource iSrc in SrcList pSrc.
76668 */
76669 SQLITE_PRIVATE Expr *sqlite3CreateColumnExpr(sqlite3 *db, SrcList *pSrc, int iSrc, int iCol){
76670   Expr *p = sqlite3ExprAlloc(db, TK_COLUMN, 0, 0);
76671   if( p ){
76672     struct SrcList_item *pItem = &pSrc->a[iSrc];
76673     p->pTab = pItem->pTab;
76674     p->iTable = pItem->iCursor;
76675     if( p->pTab->iPKey==iCol ){
76676       p->iColumn = -1;
76677     }else{
76678       p->iColumn = (ynVar)iCol;
76679       testcase( iCol==BMS );
76680       testcase( iCol==BMS-1 );
76681       pItem->colUsed |= ((Bitmask)1)<<(iCol>=BMS ? BMS-1 : iCol);
76682     }
76683     ExprSetProperty(p, EP_Resolved);
76684   }
76685   return p;
76686 }
76687 
76688 /*
76689 ** Report an error that an expression is not valid for a partial index WHERE
76690 ** clause.
76691 */
76692 static void notValidPartIdxWhere(
76693   Parse *pParse,       /* Leave error message here */
76694   NameContext *pNC,    /* The name context */
76695   const char *zMsg     /* Type of error */
76696 ){
76697   if( (pNC->ncFlags & NC_PartIdx)!=0 ){
76698     sqlite3ErrorMsg(pParse, "%s prohibited in partial index WHERE clauses",
76699                     zMsg);
76700   }
76701 }
76702 
76703 #ifndef SQLITE_OMIT_CHECK
76704 /*
76705 ** Report an error that an expression is not valid for a CHECK constraint.
76706 */
76707 static void notValidCheckConstraint(
76708   Parse *pParse,       /* Leave error message here */
76709   NameContext *pNC,    /* The name context */
76710   const char *zMsg     /* Type of error */
76711 ){
76712   if( (pNC->ncFlags & NC_IsCheck)!=0 ){
76713     sqlite3ErrorMsg(pParse,"%s prohibited in CHECK constraints", zMsg);
76714   }
76715 }
76716 #else
76717 # define notValidCheckConstraint(P,N,M)
76718 #endif
76719 
76720 /*
76721 ** Expression p should encode a floating point value between 1.0 and 0.0.
76722 ** Return 1024 times this value.  Or return -1 if p is not a floating point
76723 ** value between 1.0 and 0.0.
76724 */
76725 static int exprProbability(Expr *p){
76726   double r = -1.0;
76727   if( p->op!=TK_FLOAT ) return -1;
76728   sqlite3AtoF(p->u.zToken, &r, sqlite3Strlen30(p->u.zToken), SQLITE_UTF8);
76729   assert( r>=0.0 );
76730   if( r>1.0 ) return -1;
76731   return (int)(r*1000.0);
76732 }
76733 
76734 /*
76735 ** This routine is callback for sqlite3WalkExpr().
76736 **
76737 ** Resolve symbolic names into TK_COLUMN operators for the current
76738 ** node in the expression tree.  Return 0 to continue the search down
76739 ** the tree or 2 to abort the tree walk.
76740 **
76741 ** This routine also does error checking and name resolution for
76742 ** function names.  The operator for aggregate functions is changed
76743 ** to TK_AGG_FUNCTION.
76744 */
76745 static int resolveExprStep(Walker *pWalker, Expr *pExpr){
76746   NameContext *pNC;
76747   Parse *pParse;
76748 
76749   pNC = pWalker->u.pNC;
76750   assert( pNC!=0 );
76751   pParse = pNC->pParse;
76752   assert( pParse==pWalker->pParse );
76753 
76754   if( ExprHasProperty(pExpr, EP_Resolved) ) return WRC_Prune;
76755   ExprSetProperty(pExpr, EP_Resolved);
76756 #ifndef NDEBUG
76757   if( pNC->pSrcList && pNC->pSrcList->nAlloc>0 ){
76758     SrcList *pSrcList = pNC->pSrcList;
76759     int i;
76760     for(i=0; i<pNC->pSrcList->nSrc; i++){
76761       assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab);
76762     }
76763   }
76764 #endif
76765   switch( pExpr->op ){
76766 
76767 #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY)
76768     /* The special operator TK_ROW means use the rowid for the first
76769     ** column in the FROM clause.  This is used by the LIMIT and ORDER BY
76770     ** clause processing on UPDATE and DELETE statements.
76771     */
76772     case TK_ROW: {
76773       SrcList *pSrcList = pNC->pSrcList;
76774       struct SrcList_item *pItem;
76775       assert( pSrcList && pSrcList->nSrc==1 );
76776       pItem = pSrcList->a;
76777       pExpr->op = TK_COLUMN;
76778       pExpr->pTab = pItem->pTab;
76779       pExpr->iTable = pItem->iCursor;
76780       pExpr->iColumn = -1;
76781       pExpr->affinity = SQLITE_AFF_INTEGER;
76782       break;
76783     }
76784 #endif /* defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) */
76785 
76786     /* A lone identifier is the name of a column.
76787     */
76788     case TK_ID: {
76789       return lookupName(pParse, 0, 0, pExpr->u.zToken, pNC, pExpr);
76790     }
76791 
76792     /* A table name and column name:     ID.ID
76793     ** Or a database, table and column:  ID.ID.ID
76794     */
76795     case TK_DOT: {
76796       const char *zColumn;
76797       const char *zTable;
76798       const char *zDb;
76799       Expr *pRight;
76800 
76801       /* if( pSrcList==0 ) break; */
76802       pRight = pExpr->pRight;
76803       if( pRight->op==TK_ID ){
76804         zDb = 0;
76805         zTable = pExpr->pLeft->u.zToken;
76806         zColumn = pRight->u.zToken;
76807       }else{
76808         assert( pRight->op==TK_DOT );
76809         zDb = pExpr->pLeft->u.zToken;
76810         zTable = pRight->pLeft->u.zToken;
76811         zColumn = pRight->pRight->u.zToken;
76812       }
76813       return lookupName(pParse, zDb, zTable, zColumn, pNC, pExpr);
76814     }
76815 
76816     /* Resolve function names
76817     */
76818     case TK_FUNCTION: {
76819       ExprList *pList = pExpr->x.pList;    /* The argument list */
76820       int n = pList ? pList->nExpr : 0;    /* Number of arguments */
76821       int no_such_func = 0;       /* True if no such function exists */
76822       int wrong_num_args = 0;     /* True if wrong number of arguments */
76823       int is_agg = 0;             /* True if is an aggregate function */
76824       int auth;                   /* Authorization to use the function */
76825       int nId;                    /* Number of characters in function name */
76826       const char *zId;            /* The function name. */
76827       FuncDef *pDef;              /* Information about the function */
76828       u8 enc = ENC(pParse->db);   /* The database encoding */
76829 
76830       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
76831       notValidPartIdxWhere(pParse, pNC, "functions");
76832       zId = pExpr->u.zToken;
76833       nId = sqlite3Strlen30(zId);
76834       pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0);
76835       if( pDef==0 ){
76836         pDef = sqlite3FindFunction(pParse->db, zId, nId, -2, enc, 0);
76837         if( pDef==0 ){
76838           no_such_func = 1;
76839         }else{
76840           wrong_num_args = 1;
76841         }
76842       }else{
76843         is_agg = pDef->xFunc==0;
76844         if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){
76845           ExprSetProperty(pExpr, EP_Unlikely|EP_Skip);
76846           if( n==2 ){
76847             pExpr->iTable = exprProbability(pList->a[1].pExpr);
76848             if( pExpr->iTable<0 ){
76849               sqlite3ErrorMsg(pParse, "second argument to likelihood() must be a "
76850                                       "constant between 0.0 and 1.0");
76851               pNC->nErr++;
76852             }
76853           }else{
76854             /* EVIDENCE-OF: R-61304-29449 The unlikely(X) function is equivalent to
76855             ** likelihood(X, 0.0625).
76856             ** EVIDENCE-OF: R-01283-11636 The unlikely(X) function is short-hand for
76857             ** likelihood(X,0.0625). */
76858             pExpr->iTable = 62;  /* TUNING:  Default 2nd arg to unlikely() is 0.0625 */
76859           }
76860         }
76861       }
76862 #ifndef SQLITE_OMIT_AUTHORIZATION
76863       if( pDef ){
76864         auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0, pDef->zName, 0);
76865         if( auth!=SQLITE_OK ){
76866           if( auth==SQLITE_DENY ){
76867             sqlite3ErrorMsg(pParse, "not authorized to use function: %s",
76868                                     pDef->zName);
76869             pNC->nErr++;
76870           }
76871           pExpr->op = TK_NULL;
76872           return WRC_Prune;
76873         }
76874         if( pDef->funcFlags & SQLITE_FUNC_CONSTANT ) ExprSetProperty(pExpr,EP_Constant);
76875       }
76876 #endif
76877       if( is_agg && (pNC->ncFlags & NC_AllowAgg)==0 ){
76878         sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId);
76879         pNC->nErr++;
76880         is_agg = 0;
76881       }else if( no_such_func && pParse->db->init.busy==0 ){
76882         sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId);
76883         pNC->nErr++;
76884       }else if( wrong_num_args ){
76885         sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()",
76886              nId, zId);
76887         pNC->nErr++;
76888       }
76889       if( is_agg ) pNC->ncFlags &= ~NC_AllowAgg;
76890       sqlite3WalkExprList(pWalker, pList);
76891       if( is_agg ){
76892         NameContext *pNC2 = pNC;
76893         pExpr->op = TK_AGG_FUNCTION;
76894         pExpr->op2 = 0;
76895         while( pNC2 && !sqlite3FunctionUsesThisSrc(pExpr, pNC2->pSrcList) ){
76896           pExpr->op2++;
76897           pNC2 = pNC2->pNext;
76898         }
76899         if( pNC2 ) pNC2->ncFlags |= NC_HasAgg;
76900         pNC->ncFlags |= NC_AllowAgg;
76901       }
76902       /* FIX ME:  Compute pExpr->affinity based on the expected return
76903       ** type of the function
76904       */
76905       return WRC_Prune;
76906     }
76907 #ifndef SQLITE_OMIT_SUBQUERY
76908     case TK_SELECT:
76909     case TK_EXISTS:  testcase( pExpr->op==TK_EXISTS );
76910 #endif
76911     case TK_IN: {
76912       testcase( pExpr->op==TK_IN );
76913       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
76914         int nRef = pNC->nRef;
76915         notValidCheckConstraint(pParse, pNC, "subqueries");
76916         notValidPartIdxWhere(pParse, pNC, "subqueries");
76917         sqlite3WalkSelect(pWalker, pExpr->x.pSelect);
76918         assert( pNC->nRef>=nRef );
76919         if( nRef!=pNC->nRef ){
76920           ExprSetProperty(pExpr, EP_VarSelect);
76921         }
76922       }
76923       break;
76924     }
76925     case TK_VARIABLE: {
76926       notValidCheckConstraint(pParse, pNC, "parameters");
76927       notValidPartIdxWhere(pParse, pNC, "parameters");
76928       break;
76929     }
76930   }
76931   return (pParse->nErr || pParse->db->mallocFailed) ? WRC_Abort : WRC_Continue;
76932 }
76933 
76934 /*
76935 ** pEList is a list of expressions which are really the result set of the
76936 ** a SELECT statement.  pE is a term in an ORDER BY or GROUP BY clause.
76937 ** This routine checks to see if pE is a simple identifier which corresponds
76938 ** to the AS-name of one of the terms of the expression list.  If it is,
76939 ** this routine return an integer between 1 and N where N is the number of
76940 ** elements in pEList, corresponding to the matching entry.  If there is
76941 ** no match, or if pE is not a simple identifier, then this routine
76942 ** return 0.
76943 **
76944 ** pEList has been resolved.  pE has not.
76945 */
76946 static int resolveAsName(
76947   Parse *pParse,     /* Parsing context for error messages */
76948   ExprList *pEList,  /* List of expressions to scan */
76949   Expr *pE           /* Expression we are trying to match */
76950 ){
76951   int i;             /* Loop counter */
76952 
76953   UNUSED_PARAMETER(pParse);
76954 
76955   if( pE->op==TK_ID ){
76956     char *zCol = pE->u.zToken;
76957     for(i=0; i<pEList->nExpr; i++){
76958       char *zAs = pEList->a[i].zName;
76959       if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){
76960         return i+1;
76961       }
76962     }
76963   }
76964   return 0;
76965 }
76966 
76967 /*
76968 ** pE is a pointer to an expression which is a single term in the
76969 ** ORDER BY of a compound SELECT.  The expression has not been
76970 ** name resolved.
76971 **
76972 ** At the point this routine is called, we already know that the
76973 ** ORDER BY term is not an integer index into the result set.  That
76974 ** case is handled by the calling routine.
76975 **
76976 ** Attempt to match pE against result set columns in the left-most
76977 ** SELECT statement.  Return the index i of the matching column,
76978 ** as an indication to the caller that it should sort by the i-th column.
76979 ** The left-most column is 1.  In other words, the value returned is the
76980 ** same integer value that would be used in the SQL statement to indicate
76981 ** the column.
76982 **
76983 ** If there is no match, return 0.  Return -1 if an error occurs.
76984 */
76985 static int resolveOrderByTermToExprList(
76986   Parse *pParse,     /* Parsing context for error messages */
76987   Select *pSelect,   /* The SELECT statement with the ORDER BY clause */
76988   Expr *pE           /* The specific ORDER BY term */
76989 ){
76990   int i;             /* Loop counter */
76991   ExprList *pEList;  /* The columns of the result set */
76992   NameContext nc;    /* Name context for resolving pE */
76993   sqlite3 *db;       /* Database connection */
76994   int rc;            /* Return code from subprocedures */
76995   u8 savedSuppErr;   /* Saved value of db->suppressErr */
76996 
76997   assert( sqlite3ExprIsInteger(pE, &i)==0 );
76998   pEList = pSelect->pEList;
76999 
77000   /* Resolve all names in the ORDER BY term expression
77001   */
77002   memset(&nc, 0, sizeof(nc));
77003   nc.pParse = pParse;
77004   nc.pSrcList = pSelect->pSrc;
77005   nc.pEList = pEList;
77006   nc.ncFlags = NC_AllowAgg;
77007   nc.nErr = 0;
77008   db = pParse->db;
77009   savedSuppErr = db->suppressErr;
77010   db->suppressErr = 1;
77011   rc = sqlite3ResolveExprNames(&nc, pE);
77012   db->suppressErr = savedSuppErr;
77013   if( rc ) return 0;
77014 
77015   /* Try to match the ORDER BY expression against an expression
77016   ** in the result set.  Return an 1-based index of the matching
77017   ** result-set entry.
77018   */
77019   for(i=0; i<pEList->nExpr; i++){
77020     if( sqlite3ExprCompare(pEList->a[i].pExpr, pE, -1)<2 ){
77021       return i+1;
77022     }
77023   }
77024 
77025   /* If no match, return 0. */
77026   return 0;
77027 }
77028 
77029 /*
77030 ** Generate an ORDER BY or GROUP BY term out-of-range error.
77031 */
77032 static void resolveOutOfRangeError(
77033   Parse *pParse,         /* The error context into which to write the error */
77034   const char *zType,     /* "ORDER" or "GROUP" */
77035   int i,                 /* The index (1-based) of the term out of range */
77036   int mx                 /* Largest permissible value of i */
77037 ){
77038   sqlite3ErrorMsg(pParse,
77039     "%r %s BY term out of range - should be "
77040     "between 1 and %d", i, zType, mx);
77041 }
77042 
77043 /*
77044 ** Analyze the ORDER BY clause in a compound SELECT statement.   Modify
77045 ** each term of the ORDER BY clause is a constant integer between 1
77046 ** and N where N is the number of columns in the compound SELECT.
77047 **
77048 ** ORDER BY terms that are already an integer between 1 and N are
77049 ** unmodified.  ORDER BY terms that are integers outside the range of
77050 ** 1 through N generate an error.  ORDER BY terms that are expressions
77051 ** are matched against result set expressions of compound SELECT
77052 ** beginning with the left-most SELECT and working toward the right.
77053 ** At the first match, the ORDER BY expression is transformed into
77054 ** the integer column number.
77055 **
77056 ** Return the number of errors seen.
77057 */
77058 static int resolveCompoundOrderBy(
77059   Parse *pParse,        /* Parsing context.  Leave error messages here */
77060   Select *pSelect       /* The SELECT statement containing the ORDER BY */
77061 ){
77062   int i;
77063   ExprList *pOrderBy;
77064   ExprList *pEList;
77065   sqlite3 *db;
77066   int moreToDo = 1;
77067 
77068   pOrderBy = pSelect->pOrderBy;
77069   if( pOrderBy==0 ) return 0;
77070   db = pParse->db;
77071 #if SQLITE_MAX_COLUMN
77072   if( pOrderBy->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
77073     sqlite3ErrorMsg(pParse, "too many terms in ORDER BY clause");
77074     return 1;
77075   }
77076 #endif
77077   for(i=0; i<pOrderBy->nExpr; i++){
77078     pOrderBy->a[i].done = 0;
77079   }
77080   pSelect->pNext = 0;
77081   while( pSelect->pPrior ){
77082     pSelect->pPrior->pNext = pSelect;
77083     pSelect = pSelect->pPrior;
77084   }
77085   while( pSelect && moreToDo ){
77086     struct ExprList_item *pItem;
77087     moreToDo = 0;
77088     pEList = pSelect->pEList;
77089     assert( pEList!=0 );
77090     for(i=0, pItem=pOrderBy->a; i<pOrderBy->nExpr; i++, pItem++){
77091       int iCol = -1;
77092       Expr *pE, *pDup;
77093       if( pItem->done ) continue;
77094       pE = sqlite3ExprSkipCollate(pItem->pExpr);
77095       if( sqlite3ExprIsInteger(pE, &iCol) ){
77096         if( iCol<=0 || iCol>pEList->nExpr ){
77097           resolveOutOfRangeError(pParse, "ORDER", i+1, pEList->nExpr);
77098           return 1;
77099         }
77100       }else{
77101         iCol = resolveAsName(pParse, pEList, pE);
77102         if( iCol==0 ){
77103           pDup = sqlite3ExprDup(db, pE, 0);
77104           if( !db->mallocFailed ){
77105             assert(pDup);
77106             iCol = resolveOrderByTermToExprList(pParse, pSelect, pDup);
77107           }
77108           sqlite3ExprDelete(db, pDup);
77109         }
77110       }
77111       if( iCol>0 ){
77112         /* Convert the ORDER BY term into an integer column number iCol,
77113         ** taking care to preserve the COLLATE clause if it exists */
77114         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
77115         if( pNew==0 ) return 1;
77116         pNew->flags |= EP_IntValue;
77117         pNew->u.iValue = iCol;
77118         if( pItem->pExpr==pE ){
77119           pItem->pExpr = pNew;
77120         }else{
77121           assert( pItem->pExpr->op==TK_COLLATE );
77122           assert( pItem->pExpr->pLeft==pE );
77123           pItem->pExpr->pLeft = pNew;
77124         }
77125         sqlite3ExprDelete(db, pE);
77126         pItem->u.x.iOrderByCol = (u16)iCol;
77127         pItem->done = 1;
77128       }else{
77129         moreToDo = 1;
77130       }
77131     }
77132     pSelect = pSelect->pNext;
77133   }
77134   for(i=0; i<pOrderBy->nExpr; i++){
77135     if( pOrderBy->a[i].done==0 ){
77136       sqlite3ErrorMsg(pParse, "%r ORDER BY term does not match any "
77137             "column in the result set", i+1);
77138       return 1;
77139     }
77140   }
77141   return 0;
77142 }
77143 
77144 /*
77145 ** Check every term in the ORDER BY or GROUP BY clause pOrderBy of
77146 ** the SELECT statement pSelect.  If any term is reference to a
77147 ** result set expression (as determined by the ExprList.a.u.x.iOrderByCol
77148 ** field) then convert that term into a copy of the corresponding result set
77149 ** column.
77150 **
77151 ** If any errors are detected, add an error message to pParse and
77152 ** return non-zero.  Return zero if no errors are seen.
77153 */
77154 SQLITE_PRIVATE int sqlite3ResolveOrderGroupBy(
77155   Parse *pParse,        /* Parsing context.  Leave error messages here */
77156   Select *pSelect,      /* The SELECT statement containing the clause */
77157   ExprList *pOrderBy,   /* The ORDER BY or GROUP BY clause to be processed */
77158   const char *zType     /* "ORDER" or "GROUP" */
77159 ){
77160   int i;
77161   sqlite3 *db = pParse->db;
77162   ExprList *pEList;
77163   struct ExprList_item *pItem;
77164 
77165   if( pOrderBy==0 || pParse->db->mallocFailed ) return 0;
77166 #if SQLITE_MAX_COLUMN
77167   if( pOrderBy->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
77168     sqlite3ErrorMsg(pParse, "too many terms in %s BY clause", zType);
77169     return 1;
77170   }
77171 #endif
77172   pEList = pSelect->pEList;
77173   assert( pEList!=0 );  /* sqlite3SelectNew() guarantees this */
77174   for(i=0, pItem=pOrderBy->a; i<pOrderBy->nExpr; i++, pItem++){
77175     if( pItem->u.x.iOrderByCol ){
77176       if( pItem->u.x.iOrderByCol>pEList->nExpr ){
77177         resolveOutOfRangeError(pParse, zType, i+1, pEList->nExpr);
77178         return 1;
77179       }
77180       resolveAlias(pParse, pEList, pItem->u.x.iOrderByCol-1, pItem->pExpr, zType,0);
77181     }
77182   }
77183   return 0;
77184 }
77185 
77186 /*
77187 ** pOrderBy is an ORDER BY or GROUP BY clause in SELECT statement pSelect.
77188 ** The Name context of the SELECT statement is pNC.  zType is either
77189 ** "ORDER" or "GROUP" depending on which type of clause pOrderBy is.
77190 **
77191 ** This routine resolves each term of the clause into an expression.
77192 ** If the order-by term is an integer I between 1 and N (where N is the
77193 ** number of columns in the result set of the SELECT) then the expression
77194 ** in the resolution is a copy of the I-th result-set expression.  If
77195 ** the order-by term is an identifier that corresponds to the AS-name of
77196 ** a result-set expression, then the term resolves to a copy of the
77197 ** result-set expression.  Otherwise, the expression is resolved in
77198 ** the usual way - using sqlite3ResolveExprNames().
77199 **
77200 ** This routine returns the number of errors.  If errors occur, then
77201 ** an appropriate error message might be left in pParse.  (OOM errors
77202 ** excepted.)
77203 */
77204 static int resolveOrderGroupBy(
77205   NameContext *pNC,     /* The name context of the SELECT statement */
77206   Select *pSelect,      /* The SELECT statement holding pOrderBy */
77207   ExprList *pOrderBy,   /* An ORDER BY or GROUP BY clause to resolve */
77208   const char *zType     /* Either "ORDER" or "GROUP", as appropriate */
77209 ){
77210   int i, j;                      /* Loop counters */
77211   int iCol;                      /* Column number */
77212   struct ExprList_item *pItem;   /* A term of the ORDER BY clause */
77213   Parse *pParse;                 /* Parsing context */
77214   int nResult;                   /* Number of terms in the result set */
77215 
77216   if( pOrderBy==0 ) return 0;
77217   nResult = pSelect->pEList->nExpr;
77218   pParse = pNC->pParse;
77219   for(i=0, pItem=pOrderBy->a; i<pOrderBy->nExpr; i++, pItem++){
77220     Expr *pE = pItem->pExpr;
77221     Expr *pE2 = sqlite3ExprSkipCollate(pE);
77222     if( zType[0]!='G' ){
77223       iCol = resolveAsName(pParse, pSelect->pEList, pE2);
77224       if( iCol>0 ){
77225         /* If an AS-name match is found, mark this ORDER BY column as being
77226         ** a copy of the iCol-th result-set column.  The subsequent call to
77227         ** sqlite3ResolveOrderGroupBy() will convert the expression to a
77228         ** copy of the iCol-th result-set expression. */
77229         pItem->u.x.iOrderByCol = (u16)iCol;
77230         continue;
77231       }
77232     }
77233     if( sqlite3ExprIsInteger(pE2, &iCol) ){
77234       /* The ORDER BY term is an integer constant.  Again, set the column
77235       ** number so that sqlite3ResolveOrderGroupBy() will convert the
77236       ** order-by term to a copy of the result-set expression */
77237       if( iCol<1 || iCol>0xffff ){
77238         resolveOutOfRangeError(pParse, zType, i+1, nResult);
77239         return 1;
77240       }
77241       pItem->u.x.iOrderByCol = (u16)iCol;
77242       continue;
77243     }
77244 
77245     /* Otherwise, treat the ORDER BY term as an ordinary expression */
77246     pItem->u.x.iOrderByCol = 0;
77247     if( sqlite3ResolveExprNames(pNC, pE) ){
77248       return 1;
77249     }
77250     for(j=0; j<pSelect->pEList->nExpr; j++){
77251       if( sqlite3ExprCompare(pE, pSelect->pEList->a[j].pExpr, -1)==0 ){
77252         pItem->u.x.iOrderByCol = j+1;
77253       }
77254     }
77255   }
77256   return sqlite3ResolveOrderGroupBy(pParse, pSelect, pOrderBy, zType);
77257 }
77258 
77259 /*
77260 ** Resolve names in the SELECT statement p and all of its descendents.
77261 */
77262 static int resolveSelectStep(Walker *pWalker, Select *p){
77263   NameContext *pOuterNC;  /* Context that contains this SELECT */
77264   NameContext sNC;        /* Name context of this SELECT */
77265   int isCompound;         /* True if p is a compound select */
77266   int nCompound;          /* Number of compound terms processed so far */
77267   Parse *pParse;          /* Parsing context */
77268   ExprList *pEList;       /* Result set expression list */
77269   int i;                  /* Loop counter */
77270   ExprList *pGroupBy;     /* The GROUP BY clause */
77271   Select *pLeftmost;      /* Left-most of SELECT of a compound */
77272   sqlite3 *db;            /* Database connection */
77273 
77274 
77275   assert( p!=0 );
77276   if( p->selFlags & SF_Resolved ){
77277     return WRC_Prune;
77278   }
77279   pOuterNC = pWalker->u.pNC;
77280   pParse = pWalker->pParse;
77281   db = pParse->db;
77282 
77283   /* Normally sqlite3SelectExpand() will be called first and will have
77284   ** already expanded this SELECT.  However, if this is a subquery within
77285   ** an expression, sqlite3ResolveExprNames() will be called without a
77286   ** prior call to sqlite3SelectExpand().  When that happens, let
77287   ** sqlite3SelectPrep() do all of the processing for this SELECT.
77288   ** sqlite3SelectPrep() will invoke both sqlite3SelectExpand() and
77289   ** this routine in the correct order.
77290   */
77291   if( (p->selFlags & SF_Expanded)==0 ){
77292     sqlite3SelectPrep(pParse, p, pOuterNC);
77293     return (pParse->nErr || db->mallocFailed) ? WRC_Abort : WRC_Prune;
77294   }
77295 
77296   isCompound = p->pPrior!=0;
77297   nCompound = 0;
77298   pLeftmost = p;
77299   while( p ){
77300     assert( (p->selFlags & SF_Expanded)!=0 );
77301     assert( (p->selFlags & SF_Resolved)==0 );
77302     p->selFlags |= SF_Resolved;
77303 
77304     /* Resolve the expressions in the LIMIT and OFFSET clauses. These
77305     ** are not allowed to refer to any names, so pass an empty NameContext.
77306     */
77307     memset(&sNC, 0, sizeof(sNC));
77308     sNC.pParse = pParse;
77309     if( sqlite3ResolveExprNames(&sNC, p->pLimit) ||
77310         sqlite3ResolveExprNames(&sNC, p->pOffset) ){
77311       return WRC_Abort;
77312     }
77313 
77314     /* Recursively resolve names in all subqueries
77315     */
77316     for(i=0; i<p->pSrc->nSrc; i++){
77317       struct SrcList_item *pItem = &p->pSrc->a[i];
77318       if( pItem->pSelect ){
77319         NameContext *pNC;         /* Used to iterate name contexts */
77320         int nRef = 0;             /* Refcount for pOuterNC and outer contexts */
77321         const char *zSavedContext = pParse->zAuthContext;
77322 
77323         /* Count the total number of references to pOuterNC and all of its
77324         ** parent contexts. After resolving references to expressions in
77325         ** pItem->pSelect, check if this value has changed. If so, then
77326         ** SELECT statement pItem->pSelect must be correlated. Set the
77327         ** pItem->isCorrelated flag if this is the case. */
77328         for(pNC=pOuterNC; pNC; pNC=pNC->pNext) nRef += pNC->nRef;
77329 
77330         if( pItem->zName ) pParse->zAuthContext = pItem->zName;
77331         sqlite3ResolveSelectNames(pParse, pItem->pSelect, pOuterNC);
77332         pParse->zAuthContext = zSavedContext;
77333         if( pParse->nErr || db->mallocFailed ) return WRC_Abort;
77334 
77335         for(pNC=pOuterNC; pNC; pNC=pNC->pNext) nRef -= pNC->nRef;
77336         assert( pItem->isCorrelated==0 && nRef<=0 );
77337         pItem->isCorrelated = (nRef!=0);
77338       }
77339     }
77340 
77341     /* Set up the local name-context to pass to sqlite3ResolveExprNames() to
77342     ** resolve the result-set expression list.
77343     */
77344     sNC.ncFlags = NC_AllowAgg;
77345     sNC.pSrcList = p->pSrc;
77346     sNC.pNext = pOuterNC;
77347 
77348     /* Resolve names in the result set. */
77349     pEList = p->pEList;
77350     assert( pEList!=0 );
77351     for(i=0; i<pEList->nExpr; i++){
77352       Expr *pX = pEList->a[i].pExpr;
77353       if( sqlite3ResolveExprNames(&sNC, pX) ){
77354         return WRC_Abort;
77355       }
77356     }
77357 
77358     /* If there are no aggregate functions in the result-set, and no GROUP BY
77359     ** expression, do not allow aggregates in any of the other expressions.
77360     */
77361     assert( (p->selFlags & SF_Aggregate)==0 );
77362     pGroupBy = p->pGroupBy;
77363     if( pGroupBy || (sNC.ncFlags & NC_HasAgg)!=0 ){
77364       p->selFlags |= SF_Aggregate;
77365     }else{
77366       sNC.ncFlags &= ~NC_AllowAgg;
77367     }
77368 
77369     /* If a HAVING clause is present, then there must be a GROUP BY clause.
77370     */
77371     if( p->pHaving && !pGroupBy ){
77372       sqlite3ErrorMsg(pParse, "a GROUP BY clause is required before HAVING");
77373       return WRC_Abort;
77374     }
77375 
77376     /* Add the output column list to the name-context before parsing the
77377     ** other expressions in the SELECT statement. This is so that
77378     ** expressions in the WHERE clause (etc.) can refer to expressions by
77379     ** aliases in the result set.
77380     **
77381     ** Minor point: If this is the case, then the expression will be
77382     ** re-evaluated for each reference to it.
77383     */
77384     sNC.pEList = p->pEList;
77385     if( sqlite3ResolveExprNames(&sNC, p->pHaving) ) return WRC_Abort;
77386     if( sqlite3ResolveExprNames(&sNC, p->pWhere) ) return WRC_Abort;
77387 
77388     /* The ORDER BY and GROUP BY clauses may not refer to terms in
77389     ** outer queries
77390     */
77391     sNC.pNext = 0;
77392     sNC.ncFlags |= NC_AllowAgg;
77393 
77394     /* Process the ORDER BY clause for singleton SELECT statements.
77395     ** The ORDER BY clause for compounds SELECT statements is handled
77396     ** below, after all of the result-sets for all of the elements of
77397     ** the compound have been resolved.
77398     */
77399     if( !isCompound && resolveOrderGroupBy(&sNC, p, p->pOrderBy, "ORDER") ){
77400       return WRC_Abort;
77401     }
77402     if( db->mallocFailed ){
77403       return WRC_Abort;
77404     }
77405 
77406     /* Resolve the GROUP BY clause.  At the same time, make sure
77407     ** the GROUP BY clause does not contain aggregate functions.
77408     */
77409     if( pGroupBy ){
77410       struct ExprList_item *pItem;
77411 
77412       if( resolveOrderGroupBy(&sNC, p, pGroupBy, "GROUP") || db->mallocFailed ){
77413         return WRC_Abort;
77414       }
77415       for(i=0, pItem=pGroupBy->a; i<pGroupBy->nExpr; i++, pItem++){
77416         if( ExprHasProperty(pItem->pExpr, EP_Agg) ){
77417           sqlite3ErrorMsg(pParse, "aggregate functions are not allowed in "
77418               "the GROUP BY clause");
77419           return WRC_Abort;
77420         }
77421       }
77422     }
77423 
77424     /* Advance to the next term of the compound
77425     */
77426     p = p->pPrior;
77427     nCompound++;
77428   }
77429 
77430   /* Resolve the ORDER BY on a compound SELECT after all terms of
77431   ** the compound have been resolved.
77432   */
77433   if( isCompound && resolveCompoundOrderBy(pParse, pLeftmost) ){
77434     return WRC_Abort;
77435   }
77436 
77437   return WRC_Prune;
77438 }
77439 
77440 /*
77441 ** This routine walks an expression tree and resolves references to
77442 ** table columns and result-set columns.  At the same time, do error
77443 ** checking on function usage and set a flag if any aggregate functions
77444 ** are seen.
77445 **
77446 ** To resolve table columns references we look for nodes (or subtrees) of the
77447 ** form X.Y.Z or Y.Z or just Z where
77448 **
77449 **      X:   The name of a database.  Ex:  "main" or "temp" or
77450 **           the symbolic name assigned to an ATTACH-ed database.
77451 **
77452 **      Y:   The name of a table in a FROM clause.  Or in a trigger
77453 **           one of the special names "old" or "new".
77454 **
77455 **      Z:   The name of a column in table Y.
77456 **
77457 ** The node at the root of the subtree is modified as follows:
77458 **
77459 **    Expr.op        Changed to TK_COLUMN
77460 **    Expr.pTab      Points to the Table object for X.Y
77461 **    Expr.iColumn   The column index in X.Y.  -1 for the rowid.
77462 **    Expr.iTable    The VDBE cursor number for X.Y
77463 **
77464 **
77465 ** To resolve result-set references, look for expression nodes of the
77466 ** form Z (with no X and Y prefix) where the Z matches the right-hand
77467 ** size of an AS clause in the result-set of a SELECT.  The Z expression
77468 ** is replaced by a copy of the left-hand side of the result-set expression.
77469 ** Table-name and function resolution occurs on the substituted expression
77470 ** tree.  For example, in:
77471 **
77472 **      SELECT a+b AS x, c+d AS y FROM t1 ORDER BY x;
77473 **
77474 ** The "x" term of the order by is replaced by "a+b" to render:
77475 **
77476 **      SELECT a+b AS x, c+d AS y FROM t1 ORDER BY a+b;
77477 **
77478 ** Function calls are checked to make sure that the function is
77479 ** defined and that the correct number of arguments are specified.
77480 ** If the function is an aggregate function, then the NC_HasAgg flag is
77481 ** set and the opcode is changed from TK_FUNCTION to TK_AGG_FUNCTION.
77482 ** If an expression contains aggregate functions then the EP_Agg
77483 ** property on the expression is set.
77484 **
77485 ** An error message is left in pParse if anything is amiss.  The number
77486 ** if errors is returned.
77487 */
77488 SQLITE_PRIVATE int sqlite3ResolveExprNames(
77489   NameContext *pNC,       /* Namespace to resolve expressions in. */
77490   Expr *pExpr             /* The expression to be analyzed. */
77491 ){
77492   u8 savedHasAgg;
77493   Walker w;
77494 
77495   if( pExpr==0 ) return 0;
77496 #if SQLITE_MAX_EXPR_DEPTH>0
77497   {
77498     Parse *pParse = pNC->pParse;
77499     if( sqlite3ExprCheckHeight(pParse, pExpr->nHeight+pNC->pParse->nHeight) ){
77500       return 1;
77501     }
77502     pParse->nHeight += pExpr->nHeight;
77503   }
77504 #endif
77505   savedHasAgg = pNC->ncFlags & NC_HasAgg;
77506   pNC->ncFlags &= ~NC_HasAgg;
77507   memset(&w, 0, sizeof(w));
77508   w.xExprCallback = resolveExprStep;
77509   w.xSelectCallback = resolveSelectStep;
77510   w.pParse = pNC->pParse;
77511   w.u.pNC = pNC;
77512   sqlite3WalkExpr(&w, pExpr);
77513 #if SQLITE_MAX_EXPR_DEPTH>0
77514   pNC->pParse->nHeight -= pExpr->nHeight;
77515 #endif
77516   if( pNC->nErr>0 || w.pParse->nErr>0 ){
77517     ExprSetProperty(pExpr, EP_Error);
77518   }
77519   if( pNC->ncFlags & NC_HasAgg ){
77520     ExprSetProperty(pExpr, EP_Agg);
77521   }else if( savedHasAgg ){
77522     pNC->ncFlags |= NC_HasAgg;
77523   }
77524   return ExprHasProperty(pExpr, EP_Error);
77525 }
77526 
77527 
77528 /*
77529 ** Resolve all names in all expressions of a SELECT and in all
77530 ** decendents of the SELECT, including compounds off of p->pPrior,
77531 ** subqueries in expressions, and subqueries used as FROM clause
77532 ** terms.
77533 **
77534 ** See sqlite3ResolveExprNames() for a description of the kinds of
77535 ** transformations that occur.
77536 **
77537 ** All SELECT statements should have been expanded using
77538 ** sqlite3SelectExpand() prior to invoking this routine.
77539 */
77540 SQLITE_PRIVATE void sqlite3ResolveSelectNames(
77541   Parse *pParse,         /* The parser context */
77542   Select *p,             /* The SELECT statement being coded. */
77543   NameContext *pOuterNC  /* Name context for parent SELECT statement */
77544 ){
77545   Walker w;
77546 
77547   assert( p!=0 );
77548   memset(&w, 0, sizeof(w));
77549   w.xExprCallback = resolveExprStep;
77550   w.xSelectCallback = resolveSelectStep;
77551   w.pParse = pParse;
77552   w.u.pNC = pOuterNC;
77553   sqlite3WalkSelect(&w, p);
77554 }
77555 
77556 /*
77557 ** Resolve names in expressions that can only reference a single table:
77558 **
77559 **    *   CHECK constraints
77560 **    *   WHERE clauses on partial indices
77561 **
77562 ** The Expr.iTable value for Expr.op==TK_COLUMN nodes of the expression
77563 ** is set to -1 and the Expr.iColumn value is set to the column number.
77564 **
77565 ** Any errors cause an error message to be set in pParse.
77566 */
77567 SQLITE_PRIVATE void sqlite3ResolveSelfReference(
77568   Parse *pParse,      /* Parsing context */
77569   Table *pTab,        /* The table being referenced */
77570   int type,           /* NC_IsCheck or NC_PartIdx */
77571   Expr *pExpr,        /* Expression to resolve.  May be NULL. */
77572   ExprList *pList     /* Expression list to resolve.  May be NUL. */
77573 ){
77574   SrcList sSrc;                   /* Fake SrcList for pParse->pNewTable */
77575   NameContext sNC;                /* Name context for pParse->pNewTable */
77576   int i;                          /* Loop counter */
77577 
77578   assert( type==NC_IsCheck || type==NC_PartIdx );
77579   memset(&sNC, 0, sizeof(sNC));
77580   memset(&sSrc, 0, sizeof(sSrc));
77581   sSrc.nSrc = 1;
77582   sSrc.a[0].zName = pTab->zName;
77583   sSrc.a[0].pTab = pTab;
77584   sSrc.a[0].iCursor = -1;
77585   sNC.pParse = pParse;
77586   sNC.pSrcList = &sSrc;
77587   sNC.ncFlags = type;
77588   if( sqlite3ResolveExprNames(&sNC, pExpr) ) return;
77589   if( pList ){
77590     for(i=0; i<pList->nExpr; i++){
77591       if( sqlite3ResolveExprNames(&sNC, pList->a[i].pExpr) ){
77592         return;
77593       }
77594     }
77595   }
77596 }
77597 
77598 /************** End of resolve.c *********************************************/
77599 /************** Begin file expr.c ********************************************/
77600 /*
77601 ** 2001 September 15
77602 **
77603 ** The author disclaims copyright to this source code.  In place of
77604 ** a legal notice, here is a blessing:
77605 **
77606 **    May you do good and not evil.
77607 **    May you find forgiveness for yourself and forgive others.
77608 **    May you share freely, never taking more than you give.
77609 **
77610 *************************************************************************
77611 ** This file contains routines used for analyzing expressions and
77612 ** for generating VDBE code that evaluates expressions in SQLite.
77613 */
77614 
77615 /*
77616 ** Return the 'affinity' of the expression pExpr if any.
77617 **
77618 ** If pExpr is a column, a reference to a column via an 'AS' alias,
77619 ** or a sub-select with a column as the return value, then the
77620 ** affinity of that column is returned. Otherwise, 0x00 is returned,
77621 ** indicating no affinity for the expression.
77622 **
77623 ** i.e. the WHERE clause expresssions in the following statements all
77624 ** have an affinity:
77625 **
77626 ** CREATE TABLE t1(a);
77627 ** SELECT * FROM t1 WHERE a;
77628 ** SELECT a AS b FROM t1 WHERE b;
77629 ** SELECT * FROM t1 WHERE (select a from t1);
77630 */
77631 SQLITE_PRIVATE char sqlite3ExprAffinity(Expr *pExpr){
77632   int op;
77633   pExpr = sqlite3ExprSkipCollate(pExpr);
77634   if( pExpr->flags & EP_Generic ) return SQLITE_AFF_NONE;
77635   op = pExpr->op;
77636   if( op==TK_SELECT ){
77637     assert( pExpr->flags&EP_xIsSelect );
77638     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
77639   }
77640 #ifndef SQLITE_OMIT_CAST
77641   if( op==TK_CAST ){
77642     assert( !ExprHasProperty(pExpr, EP_IntValue) );
77643     return sqlite3AffinityType(pExpr->u.zToken, 0);
77644   }
77645 #endif
77646   if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER)
77647    && pExpr->pTab!=0
77648   ){
77649     /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally
77650     ** a TK_COLUMN but was previously evaluated and cached in a register */
77651     int j = pExpr->iColumn;
77652     if( j<0 ) return SQLITE_AFF_INTEGER;
77653     assert( pExpr->pTab && j<pExpr->pTab->nCol );
77654     return pExpr->pTab->aCol[j].affinity;
77655   }
77656   return pExpr->affinity;
77657 }
77658 
77659 /*
77660 ** Set the collating sequence for expression pExpr to be the collating
77661 ** sequence named by pToken.   Return a pointer to a new Expr node that
77662 ** implements the COLLATE operator.
77663 **
77664 ** If a memory allocation error occurs, that fact is recorded in pParse->db
77665 ** and the pExpr parameter is returned unchanged.
77666 */
77667 SQLITE_PRIVATE Expr *sqlite3ExprAddCollateToken(
77668   Parse *pParse,           /* Parsing context */
77669   Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
77670   const Token *pCollName   /* Name of collating sequence */
77671 ){
77672   if( pCollName->n>0 ){
77673     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, 1);
77674     if( pNew ){
77675       pNew->pLeft = pExpr;
77676       pNew->flags |= EP_Collate|EP_Skip;
77677       pExpr = pNew;
77678     }
77679   }
77680   return pExpr;
77681 }
77682 SQLITE_PRIVATE Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
77683   Token s;
77684   assert( zC!=0 );
77685   s.z = zC;
77686   s.n = sqlite3Strlen30(s.z);
77687   return sqlite3ExprAddCollateToken(pParse, pExpr, &s);
77688 }
77689 
77690 /*
77691 ** Skip over any TK_COLLATE or TK_AS operators and any unlikely()
77692 ** or likelihood() function at the root of an expression.
77693 */
77694 SQLITE_PRIVATE Expr *sqlite3ExprSkipCollate(Expr *pExpr){
77695   while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
77696     if( ExprHasProperty(pExpr, EP_Unlikely) ){
77697       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
77698       assert( pExpr->x.pList->nExpr>0 );
77699       assert( pExpr->op==TK_FUNCTION );
77700       pExpr = pExpr->x.pList->a[0].pExpr;
77701     }else{
77702       assert( pExpr->op==TK_COLLATE || pExpr->op==TK_AS );
77703       pExpr = pExpr->pLeft;
77704     }
77705   }
77706   return pExpr;
77707 }
77708 
77709 /*
77710 ** Return the collation sequence for the expression pExpr. If
77711 ** there is no defined collating sequence, return NULL.
77712 **
77713 ** The collating sequence might be determined by a COLLATE operator
77714 ** or by the presence of a column with a defined collating sequence.
77715 ** COLLATE operators take first precedence.  Left operands take
77716 ** precedence over right operands.
77717 */
77718 SQLITE_PRIVATE CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
77719   sqlite3 *db = pParse->db;
77720   CollSeq *pColl = 0;
77721   Expr *p = pExpr;
77722   while( p ){
77723     int op = p->op;
77724     if( p->flags & EP_Generic ) break;
77725     if( op==TK_CAST || op==TK_UPLUS ){
77726       p = p->pLeft;
77727       continue;
77728     }
77729     if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){
77730       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
77731       break;
77732     }
77733     if( p->pTab!=0
77734      && (op==TK_AGG_COLUMN || op==TK_COLUMN
77735           || op==TK_REGISTER || op==TK_TRIGGER)
77736     ){
77737       /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
77738       ** a TK_COLUMN but was previously evaluated and cached in a register */
77739       int j = p->iColumn;
77740       if( j>=0 ){
77741         const char *zColl = p->pTab->aCol[j].zColl;
77742         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
77743       }
77744       break;
77745     }
77746     if( p->flags & EP_Collate ){
77747       if( ALWAYS(p->pLeft) && (p->pLeft->flags & EP_Collate)!=0 ){
77748         p = p->pLeft;
77749       }else{
77750         p = p->pRight;
77751       }
77752     }else{
77753       break;
77754     }
77755   }
77756   if( sqlite3CheckCollSeq(pParse, pColl) ){
77757     pColl = 0;
77758   }
77759   return pColl;
77760 }
77761 
77762 /*
77763 ** pExpr is an operand of a comparison operator.  aff2 is the
77764 ** type affinity of the other operand.  This routine returns the
77765 ** type affinity that should be used for the comparison operator.
77766 */
77767 SQLITE_PRIVATE char sqlite3CompareAffinity(Expr *pExpr, char aff2){
77768   char aff1 = sqlite3ExprAffinity(pExpr);
77769   if( aff1 && aff2 ){
77770     /* Both sides of the comparison are columns. If one has numeric
77771     ** affinity, use that. Otherwise use no affinity.
77772     */
77773     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
77774       return SQLITE_AFF_NUMERIC;
77775     }else{
77776       return SQLITE_AFF_NONE;
77777     }
77778   }else if( !aff1 && !aff2 ){
77779     /* Neither side of the comparison is a column.  Compare the
77780     ** results directly.
77781     */
77782     return SQLITE_AFF_NONE;
77783   }else{
77784     /* One side is a column, the other is not. Use the columns affinity. */
77785     assert( aff1==0 || aff2==0 );
77786     return (aff1 + aff2);
77787   }
77788 }
77789 
77790 /*
77791 ** pExpr is a comparison operator.  Return the type affinity that should
77792 ** be applied to both operands prior to doing the comparison.
77793 */
77794 static char comparisonAffinity(Expr *pExpr){
77795   char aff;
77796   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
77797           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
77798           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
77799   assert( pExpr->pLeft );
77800   aff = sqlite3ExprAffinity(pExpr->pLeft);
77801   if( pExpr->pRight ){
77802     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
77803   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
77804     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
77805   }else if( !aff ){
77806     aff = SQLITE_AFF_NONE;
77807   }
77808   return aff;
77809 }
77810 
77811 /*
77812 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
77813 ** idx_affinity is the affinity of an indexed column. Return true
77814 ** if the index with affinity idx_affinity may be used to implement
77815 ** the comparison in pExpr.
77816 */
77817 SQLITE_PRIVATE int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
77818   char aff = comparisonAffinity(pExpr);
77819   switch( aff ){
77820     case SQLITE_AFF_NONE:
77821       return 1;
77822     case SQLITE_AFF_TEXT:
77823       return idx_affinity==SQLITE_AFF_TEXT;
77824     default:
77825       return sqlite3IsNumericAffinity(idx_affinity);
77826   }
77827 }
77828 
77829 /*
77830 ** Return the P5 value that should be used for a binary comparison
77831 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
77832 */
77833 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
77834   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
77835   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
77836   return aff;
77837 }
77838 
77839 /*
77840 ** Return a pointer to the collation sequence that should be used by
77841 ** a binary comparison operator comparing pLeft and pRight.
77842 **
77843 ** If the left hand expression has a collating sequence type, then it is
77844 ** used. Otherwise the collation sequence for the right hand expression
77845 ** is used, or the default (BINARY) if neither expression has a collating
77846 ** type.
77847 **
77848 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
77849 ** it is not considered.
77850 */
77851 SQLITE_PRIVATE CollSeq *sqlite3BinaryCompareCollSeq(
77852   Parse *pParse,
77853   Expr *pLeft,
77854   Expr *pRight
77855 ){
77856   CollSeq *pColl;
77857   assert( pLeft );
77858   if( pLeft->flags & EP_Collate ){
77859     pColl = sqlite3ExprCollSeq(pParse, pLeft);
77860   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
77861     pColl = sqlite3ExprCollSeq(pParse, pRight);
77862   }else{
77863     pColl = sqlite3ExprCollSeq(pParse, pLeft);
77864     if( !pColl ){
77865       pColl = sqlite3ExprCollSeq(pParse, pRight);
77866     }
77867   }
77868   return pColl;
77869 }
77870 
77871 /*
77872 ** Generate code for a comparison operator.
77873 */
77874 static int codeCompare(
77875   Parse *pParse,    /* The parsing (and code generating) context */
77876   Expr *pLeft,      /* The left operand */
77877   Expr *pRight,     /* The right operand */
77878   int opcode,       /* The comparison opcode */
77879   int in1, int in2, /* Register holding operands */
77880   int dest,         /* Jump here if true.  */
77881   int jumpIfNull    /* If true, jump if either operand is NULL */
77882 ){
77883   int p5;
77884   int addr;
77885   CollSeq *p4;
77886 
77887   p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
77888   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
77889   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
77890                            (void*)p4, P4_COLLSEQ);
77891   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
77892   return addr;
77893 }
77894 
77895 #if SQLITE_MAX_EXPR_DEPTH>0
77896 /*
77897 ** Check that argument nHeight is less than or equal to the maximum
77898 ** expression depth allowed. If it is not, leave an error message in
77899 ** pParse.
77900 */
77901 SQLITE_PRIVATE int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
77902   int rc = SQLITE_OK;
77903   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
77904   if( nHeight>mxHeight ){
77905     sqlite3ErrorMsg(pParse,
77906        "Expression tree is too large (maximum depth %d)", mxHeight
77907     );
77908     rc = SQLITE_ERROR;
77909   }
77910   return rc;
77911 }
77912 
77913 /* The following three functions, heightOfExpr(), heightOfExprList()
77914 ** and heightOfSelect(), are used to determine the maximum height
77915 ** of any expression tree referenced by the structure passed as the
77916 ** first argument.
77917 **
77918 ** If this maximum height is greater than the current value pointed
77919 ** to by pnHeight, the second parameter, then set *pnHeight to that
77920 ** value.
77921 */
77922 static void heightOfExpr(Expr *p, int *pnHeight){
77923   if( p ){
77924     if( p->nHeight>*pnHeight ){
77925       *pnHeight = p->nHeight;
77926     }
77927   }
77928 }
77929 static void heightOfExprList(ExprList *p, int *pnHeight){
77930   if( p ){
77931     int i;
77932     for(i=0; i<p->nExpr; i++){
77933       heightOfExpr(p->a[i].pExpr, pnHeight);
77934     }
77935   }
77936 }
77937 static void heightOfSelect(Select *p, int *pnHeight){
77938   if( p ){
77939     heightOfExpr(p->pWhere, pnHeight);
77940     heightOfExpr(p->pHaving, pnHeight);
77941     heightOfExpr(p->pLimit, pnHeight);
77942     heightOfExpr(p->pOffset, pnHeight);
77943     heightOfExprList(p->pEList, pnHeight);
77944     heightOfExprList(p->pGroupBy, pnHeight);
77945     heightOfExprList(p->pOrderBy, pnHeight);
77946     heightOfSelect(p->pPrior, pnHeight);
77947   }
77948 }
77949 
77950 /*
77951 ** Set the Expr.nHeight variable in the structure passed as an
77952 ** argument. An expression with no children, Expr.pList or
77953 ** Expr.pSelect member has a height of 1. Any other expression
77954 ** has a height equal to the maximum height of any other
77955 ** referenced Expr plus one.
77956 */
77957 static void exprSetHeight(Expr *p){
77958   int nHeight = 0;
77959   heightOfExpr(p->pLeft, &nHeight);
77960   heightOfExpr(p->pRight, &nHeight);
77961   if( ExprHasProperty(p, EP_xIsSelect) ){
77962     heightOfSelect(p->x.pSelect, &nHeight);
77963   }else{
77964     heightOfExprList(p->x.pList, &nHeight);
77965   }
77966   p->nHeight = nHeight + 1;
77967 }
77968 
77969 /*
77970 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
77971 ** the height is greater than the maximum allowed expression depth,
77972 ** leave an error in pParse.
77973 */
77974 SQLITE_PRIVATE void sqlite3ExprSetHeight(Parse *pParse, Expr *p){
77975   exprSetHeight(p);
77976   sqlite3ExprCheckHeight(pParse, p->nHeight);
77977 }
77978 
77979 /*
77980 ** Return the maximum height of any expression tree referenced
77981 ** by the select statement passed as an argument.
77982 */
77983 SQLITE_PRIVATE int sqlite3SelectExprHeight(Select *p){
77984   int nHeight = 0;
77985   heightOfSelect(p, &nHeight);
77986   return nHeight;
77987 }
77988 #else
77989   #define exprSetHeight(y)
77990 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
77991 
77992 /*
77993 ** This routine is the core allocator for Expr nodes.
77994 **
77995 ** Construct a new expression node and return a pointer to it.  Memory
77996 ** for this node and for the pToken argument is a single allocation
77997 ** obtained from sqlite3DbMalloc().  The calling function
77998 ** is responsible for making sure the node eventually gets freed.
77999 **
78000 ** If dequote is true, then the token (if it exists) is dequoted.
78001 ** If dequote is false, no dequoting is performance.  The deQuote
78002 ** parameter is ignored if pToken is NULL or if the token does not
78003 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
78004 ** then the EP_DblQuoted flag is set on the expression node.
78005 **
78006 ** Special case:  If op==TK_INTEGER and pToken points to a string that
78007 ** can be translated into a 32-bit integer, then the token is not
78008 ** stored in u.zToken.  Instead, the integer values is written
78009 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
78010 ** is allocated to hold the integer text and the dequote flag is ignored.
78011 */
78012 SQLITE_PRIVATE Expr *sqlite3ExprAlloc(
78013   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
78014   int op,                 /* Expression opcode */
78015   const Token *pToken,    /* Token argument.  Might be NULL */
78016   int dequote             /* True to dequote */
78017 ){
78018   Expr *pNew;
78019   int nExtra = 0;
78020   int iValue = 0;
78021 
78022   if( pToken ){
78023     if( op!=TK_INTEGER || pToken->z==0
78024           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
78025       nExtra = pToken->n+1;
78026       assert( iValue>=0 );
78027     }
78028   }
78029   pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra);
78030   if( pNew ){
78031     pNew->op = (u8)op;
78032     pNew->iAgg = -1;
78033     if( pToken ){
78034       if( nExtra==0 ){
78035         pNew->flags |= EP_IntValue;
78036         pNew->u.iValue = iValue;
78037       }else{
78038         int c;
78039         pNew->u.zToken = (char*)&pNew[1];
78040         assert( pToken->z!=0 || pToken->n==0 );
78041         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
78042         pNew->u.zToken[pToken->n] = 0;
78043         if( dequote && nExtra>=3
78044              && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){
78045           sqlite3Dequote(pNew->u.zToken);
78046           if( c=='"' ) pNew->flags |= EP_DblQuoted;
78047         }
78048       }
78049     }
78050 #if SQLITE_MAX_EXPR_DEPTH>0
78051     pNew->nHeight = 1;
78052 #endif
78053   }
78054   return pNew;
78055 }
78056 
78057 /*
78058 ** Allocate a new expression node from a zero-terminated token that has
78059 ** already been dequoted.
78060 */
78061 SQLITE_PRIVATE Expr *sqlite3Expr(
78062   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
78063   int op,                 /* Expression opcode */
78064   const char *zToken      /* Token argument.  Might be NULL */
78065 ){
78066   Token x;
78067   x.z = zToken;
78068   x.n = zToken ? sqlite3Strlen30(zToken) : 0;
78069   return sqlite3ExprAlloc(db, op, &x, 0);
78070 }
78071 
78072 /*
78073 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
78074 **
78075 ** If pRoot==NULL that means that a memory allocation error has occurred.
78076 ** In that case, delete the subtrees pLeft and pRight.
78077 */
78078 SQLITE_PRIVATE void sqlite3ExprAttachSubtrees(
78079   sqlite3 *db,
78080   Expr *pRoot,
78081   Expr *pLeft,
78082   Expr *pRight
78083 ){
78084   if( pRoot==0 ){
78085     assert( db->mallocFailed );
78086     sqlite3ExprDelete(db, pLeft);
78087     sqlite3ExprDelete(db, pRight);
78088   }else{
78089     if( pRight ){
78090       pRoot->pRight = pRight;
78091       pRoot->flags |= EP_Collate & pRight->flags;
78092     }
78093     if( pLeft ){
78094       pRoot->pLeft = pLeft;
78095       pRoot->flags |= EP_Collate & pLeft->flags;
78096     }
78097     exprSetHeight(pRoot);
78098   }
78099 }
78100 
78101 /*
78102 ** Allocate a Expr node which joins as many as two subtrees.
78103 **
78104 ** One or both of the subtrees can be NULL.  Return a pointer to the new
78105 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
78106 ** free the subtrees and return NULL.
78107 */
78108 SQLITE_PRIVATE Expr *sqlite3PExpr(
78109   Parse *pParse,          /* Parsing context */
78110   int op,                 /* Expression opcode */
78111   Expr *pLeft,            /* Left operand */
78112   Expr *pRight,           /* Right operand */
78113   const Token *pToken     /* Argument token */
78114 ){
78115   Expr *p;
78116   if( op==TK_AND && pLeft && pRight ){
78117     /* Take advantage of short-circuit false optimization for AND */
78118     p = sqlite3ExprAnd(pParse->db, pLeft, pRight);
78119   }else{
78120     p = sqlite3ExprAlloc(pParse->db, op, pToken, 1);
78121     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
78122   }
78123   if( p ) {
78124     sqlite3ExprCheckHeight(pParse, p->nHeight);
78125   }
78126   return p;
78127 }
78128 
78129 /*
78130 ** If the expression is always either TRUE or FALSE (respectively),
78131 ** then return 1.  If one cannot determine the truth value of the
78132 ** expression at compile-time return 0.
78133 **
78134 ** This is an optimization.  If is OK to return 0 here even if
78135 ** the expression really is always false or false (a false negative).
78136 ** But it is a bug to return 1 if the expression might have different
78137 ** boolean values in different circumstances (a false positive.)
78138 **
78139 ** Note that if the expression is part of conditional for a
78140 ** LEFT JOIN, then we cannot determine at compile-time whether or not
78141 ** is it true or false, so always return 0.
78142 */
78143 static int exprAlwaysTrue(Expr *p){
78144   int v = 0;
78145   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
78146   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
78147   return v!=0;
78148 }
78149 static int exprAlwaysFalse(Expr *p){
78150   int v = 0;
78151   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
78152   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
78153   return v==0;
78154 }
78155 
78156 /*
78157 ** Join two expressions using an AND operator.  If either expression is
78158 ** NULL, then just return the other expression.
78159 **
78160 ** If one side or the other of the AND is known to be false, then instead
78161 ** of returning an AND expression, just return a constant expression with
78162 ** a value of false.
78163 */
78164 SQLITE_PRIVATE Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
78165   if( pLeft==0 ){
78166     return pRight;
78167   }else if( pRight==0 ){
78168     return pLeft;
78169   }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){
78170     sqlite3ExprDelete(db, pLeft);
78171     sqlite3ExprDelete(db, pRight);
78172     return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0);
78173   }else{
78174     Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
78175     sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
78176     return pNew;
78177   }
78178 }
78179 
78180 /*
78181 ** Construct a new expression node for a function with multiple
78182 ** arguments.
78183 */
78184 SQLITE_PRIVATE Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
78185   Expr *pNew;
78186   sqlite3 *db = pParse->db;
78187   assert( pToken );
78188   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
78189   if( pNew==0 ){
78190     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
78191     return 0;
78192   }
78193   pNew->x.pList = pList;
78194   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
78195   sqlite3ExprSetHeight(pParse, pNew);
78196   return pNew;
78197 }
78198 
78199 /*
78200 ** Assign a variable number to an expression that encodes a wildcard
78201 ** in the original SQL statement.
78202 **
78203 ** Wildcards consisting of a single "?" are assigned the next sequential
78204 ** variable number.
78205 **
78206 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
78207 ** sure "nnn" is not too be to avoid a denial of service attack when
78208 ** the SQL statement comes from an external source.
78209 **
78210 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
78211 ** as the previous instance of the same wildcard.  Or if this is the first
78212 ** instance of the wildcard, the next sequenial variable number is
78213 ** assigned.
78214 */
78215 SQLITE_PRIVATE void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
78216   sqlite3 *db = pParse->db;
78217   const char *z;
78218 
78219   if( pExpr==0 ) return;
78220   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
78221   z = pExpr->u.zToken;
78222   assert( z!=0 );
78223   assert( z[0]!=0 );
78224   if( z[1]==0 ){
78225     /* Wildcard of the form "?".  Assign the next variable number */
78226     assert( z[0]=='?' );
78227     pExpr->iColumn = (ynVar)(++pParse->nVar);
78228   }else{
78229     ynVar x = 0;
78230     u32 n = sqlite3Strlen30(z);
78231     if( z[0]=='?' ){
78232       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
78233       ** use it as the variable number */
78234       i64 i;
78235       int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
78236       pExpr->iColumn = x = (ynVar)i;
78237       testcase( i==0 );
78238       testcase( i==1 );
78239       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
78240       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
78241       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
78242         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
78243             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
78244         x = 0;
78245       }
78246       if( i>pParse->nVar ){
78247         pParse->nVar = (int)i;
78248       }
78249     }else{
78250       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
78251       ** number as the prior appearance of the same name, or if the name
78252       ** has never appeared before, reuse the same variable number
78253       */
78254       ynVar i;
78255       for(i=0; i<pParse->nzVar; i++){
78256         if( pParse->azVar[i] && strcmp(pParse->azVar[i],z)==0 ){
78257           pExpr->iColumn = x = (ynVar)i+1;
78258           break;
78259         }
78260       }
78261       if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar);
78262     }
78263     if( x>0 ){
78264       if( x>pParse->nzVar ){
78265         char **a;
78266         a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0]));
78267         if( a==0 ) return;  /* Error reported through db->mallocFailed */
78268         pParse->azVar = a;
78269         memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0]));
78270         pParse->nzVar = x;
78271       }
78272       if( z[0]!='?' || pParse->azVar[x-1]==0 ){
78273         sqlite3DbFree(db, pParse->azVar[x-1]);
78274         pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n);
78275       }
78276     }
78277   }
78278   if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
78279     sqlite3ErrorMsg(pParse, "too many SQL variables");
78280   }
78281 }
78282 
78283 /*
78284 ** Recursively delete an expression tree.
78285 */
78286 SQLITE_PRIVATE void sqlite3ExprDelete(sqlite3 *db, Expr *p){
78287   if( p==0 ) return;
78288   /* Sanity check: Assert that the IntValue is non-negative if it exists */
78289   assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
78290   if( !ExprHasProperty(p, EP_TokenOnly) ){
78291     /* The Expr.x union is never used at the same time as Expr.pRight */
78292     assert( p->x.pList==0 || p->pRight==0 );
78293     sqlite3ExprDelete(db, p->pLeft);
78294     sqlite3ExprDelete(db, p->pRight);
78295     if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
78296     if( ExprHasProperty(p, EP_xIsSelect) ){
78297       sqlite3SelectDelete(db, p->x.pSelect);
78298     }else{
78299       sqlite3ExprListDelete(db, p->x.pList);
78300     }
78301   }
78302   if( !ExprHasProperty(p, EP_Static) ){
78303     sqlite3DbFree(db, p);
78304   }
78305 }
78306 
78307 /*
78308 ** Return the number of bytes allocated for the expression structure
78309 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
78310 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
78311 */
78312 static int exprStructSize(Expr *p){
78313   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
78314   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
78315   return EXPR_FULLSIZE;
78316 }
78317 
78318 /*
78319 ** The dupedExpr*Size() routines each return the number of bytes required
78320 ** to store a copy of an expression or expression tree.  They differ in
78321 ** how much of the tree is measured.
78322 **
78323 **     dupedExprStructSize()     Size of only the Expr structure
78324 **     dupedExprNodeSize()       Size of Expr + space for token
78325 **     dupedExprSize()           Expr + token + subtree components
78326 **
78327 ***************************************************************************
78328 **
78329 ** The dupedExprStructSize() function returns two values OR-ed together:
78330 ** (1) the space required for a copy of the Expr structure only and
78331 ** (2) the EP_xxx flags that indicate what the structure size should be.
78332 ** The return values is always one of:
78333 **
78334 **      EXPR_FULLSIZE
78335 **      EXPR_REDUCEDSIZE   | EP_Reduced
78336 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
78337 **
78338 ** The size of the structure can be found by masking the return value
78339 ** of this routine with 0xfff.  The flags can be found by masking the
78340 ** return value with EP_Reduced|EP_TokenOnly.
78341 **
78342 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
78343 ** (unreduced) Expr objects as they or originally constructed by the parser.
78344 ** During expression analysis, extra information is computed and moved into
78345 ** later parts of teh Expr object and that extra information might get chopped
78346 ** off if the expression is reduced.  Note also that it does not work to
78347 ** make a EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
78348 ** to reduce a pristine expression tree from the parser.  The implementation
78349 ** of dupedExprStructSize() contain multiple assert() statements that attempt
78350 ** to enforce this constraint.
78351 */
78352 static int dupedExprStructSize(Expr *p, int flags){
78353   int nSize;
78354   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
78355   assert( EXPR_FULLSIZE<=0xfff );
78356   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
78357   if( 0==(flags&EXPRDUP_REDUCE) ){
78358     nSize = EXPR_FULLSIZE;
78359   }else{
78360     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
78361     assert( !ExprHasProperty(p, EP_FromJoin) );
78362     assert( !ExprHasProperty(p, EP_MemToken) );
78363     assert( !ExprHasProperty(p, EP_NoReduce) );
78364     if( p->pLeft || p->x.pList ){
78365       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
78366     }else{
78367       assert( p->pRight==0 );
78368       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
78369     }
78370   }
78371   return nSize;
78372 }
78373 
78374 /*
78375 ** This function returns the space in bytes required to store the copy
78376 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
78377 ** string is defined.)
78378 */
78379 static int dupedExprNodeSize(Expr *p, int flags){
78380   int nByte = dupedExprStructSize(p, flags) & 0xfff;
78381   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
78382     nByte += sqlite3Strlen30(p->u.zToken)+1;
78383   }
78384   return ROUND8(nByte);
78385 }
78386 
78387 /*
78388 ** Return the number of bytes required to create a duplicate of the
78389 ** expression passed as the first argument. The second argument is a
78390 ** mask containing EXPRDUP_XXX flags.
78391 **
78392 ** The value returned includes space to create a copy of the Expr struct
78393 ** itself and the buffer referred to by Expr.u.zToken, if any.
78394 **
78395 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
78396 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
78397 ** and Expr.pRight variables (but not for any structures pointed to or
78398 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
78399 */
78400 static int dupedExprSize(Expr *p, int flags){
78401   int nByte = 0;
78402   if( p ){
78403     nByte = dupedExprNodeSize(p, flags);
78404     if( flags&EXPRDUP_REDUCE ){
78405       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
78406     }
78407   }
78408   return nByte;
78409 }
78410 
78411 /*
78412 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
78413 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
78414 ** to store the copy of expression p, the copies of p->u.zToken
78415 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
78416 ** if any. Before returning, *pzBuffer is set to the first byte passed the
78417 ** portion of the buffer copied into by this function.
78418 */
78419 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){
78420   Expr *pNew = 0;                      /* Value to return */
78421   if( p ){
78422     const int isReduced = (flags&EXPRDUP_REDUCE);
78423     u8 *zAlloc;
78424     u32 staticFlag = 0;
78425 
78426     assert( pzBuffer==0 || isReduced );
78427 
78428     /* Figure out where to write the new Expr structure. */
78429     if( pzBuffer ){
78430       zAlloc = *pzBuffer;
78431       staticFlag = EP_Static;
78432     }else{
78433       zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags));
78434     }
78435     pNew = (Expr *)zAlloc;
78436 
78437     if( pNew ){
78438       /* Set nNewSize to the size allocated for the structure pointed to
78439       ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
78440       ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
78441       ** by the copy of the p->u.zToken string (if any).
78442       */
78443       const unsigned nStructSize = dupedExprStructSize(p, flags);
78444       const int nNewSize = nStructSize & 0xfff;
78445       int nToken;
78446       if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
78447         nToken = sqlite3Strlen30(p->u.zToken) + 1;
78448       }else{
78449         nToken = 0;
78450       }
78451       if( isReduced ){
78452         assert( ExprHasProperty(p, EP_Reduced)==0 );
78453         memcpy(zAlloc, p, nNewSize);
78454       }else{
78455         int nSize = exprStructSize(p);
78456         memcpy(zAlloc, p, nSize);
78457         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
78458       }
78459 
78460       /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
78461       pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
78462       pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
78463       pNew->flags |= staticFlag;
78464 
78465       /* Copy the p->u.zToken string, if any. */
78466       if( nToken ){
78467         char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
78468         memcpy(zToken, p->u.zToken, nToken);
78469       }
78470 
78471       if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){
78472         /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
78473         if( ExprHasProperty(p, EP_xIsSelect) ){
78474           pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced);
78475         }else{
78476           pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced);
78477         }
78478       }
78479 
78480       /* Fill in pNew->pLeft and pNew->pRight. */
78481       if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){
78482         zAlloc += dupedExprNodeSize(p, flags);
78483         if( ExprHasProperty(pNew, EP_Reduced) ){
78484           pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc);
78485           pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc);
78486         }
78487         if( pzBuffer ){
78488           *pzBuffer = zAlloc;
78489         }
78490       }else{
78491         if( !ExprHasProperty(p, EP_TokenOnly) ){
78492           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
78493           pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
78494         }
78495       }
78496 
78497     }
78498   }
78499   return pNew;
78500 }
78501 
78502 /*
78503 ** Create and return a deep copy of the object passed as the second
78504 ** argument. If an OOM condition is encountered, NULL is returned
78505 ** and the db->mallocFailed flag set.
78506 */
78507 #ifndef SQLITE_OMIT_CTE
78508 static With *withDup(sqlite3 *db, With *p){
78509   With *pRet = 0;
78510   if( p ){
78511     int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
78512     pRet = sqlite3DbMallocZero(db, nByte);
78513     if( pRet ){
78514       int i;
78515       pRet->nCte = p->nCte;
78516       for(i=0; i<p->nCte; i++){
78517         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
78518         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
78519         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
78520       }
78521     }
78522   }
78523   return pRet;
78524 }
78525 #else
78526 # define withDup(x,y) 0
78527 #endif
78528 
78529 /*
78530 ** The following group of routines make deep copies of expressions,
78531 ** expression lists, ID lists, and select statements.  The copies can
78532 ** be deleted (by being passed to their respective ...Delete() routines)
78533 ** without effecting the originals.
78534 **
78535 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
78536 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
78537 ** by subsequent calls to sqlite*ListAppend() routines.
78538 **
78539 ** Any tables that the SrcList might point to are not duplicated.
78540 **
78541 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
78542 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
78543 ** truncated version of the usual Expr structure that will be stored as
78544 ** part of the in-memory representation of the database schema.
78545 */
78546 SQLITE_PRIVATE Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
78547   return exprDup(db, p, flags, 0);
78548 }
78549 SQLITE_PRIVATE ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
78550   ExprList *pNew;
78551   struct ExprList_item *pItem, *pOldItem;
78552   int i;
78553   if( p==0 ) return 0;
78554   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
78555   if( pNew==0 ) return 0;
78556   pNew->nExpr = i = p->nExpr;
78557   if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){}
78558   pNew->a = pItem = sqlite3DbMallocRaw(db,  i*sizeof(p->a[0]) );
78559   if( pItem==0 ){
78560     sqlite3DbFree(db, pNew);
78561     return 0;
78562   }
78563   pOldItem = p->a;
78564   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
78565     Expr *pOldExpr = pOldItem->pExpr;
78566     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
78567     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
78568     pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
78569     pItem->sortOrder = pOldItem->sortOrder;
78570     pItem->done = 0;
78571     pItem->bSpanIsTab = pOldItem->bSpanIsTab;
78572     pItem->u = pOldItem->u;
78573   }
78574   return pNew;
78575 }
78576 
78577 /*
78578 ** If cursors, triggers, views and subqueries are all omitted from
78579 ** the build, then none of the following routines, except for
78580 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
78581 ** called with a NULL argument.
78582 */
78583 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
78584  || !defined(SQLITE_OMIT_SUBQUERY)
78585 SQLITE_PRIVATE SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
78586   SrcList *pNew;
78587   int i;
78588   int nByte;
78589   if( p==0 ) return 0;
78590   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
78591   pNew = sqlite3DbMallocRaw(db, nByte );
78592   if( pNew==0 ) return 0;
78593   pNew->nSrc = pNew->nAlloc = p->nSrc;
78594   for(i=0; i<p->nSrc; i++){
78595     struct SrcList_item *pNewItem = &pNew->a[i];
78596     struct SrcList_item *pOldItem = &p->a[i];
78597     Table *pTab;
78598     pNewItem->pSchema = pOldItem->pSchema;
78599     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
78600     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
78601     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
78602     pNewItem->jointype = pOldItem->jointype;
78603     pNewItem->iCursor = pOldItem->iCursor;
78604     pNewItem->addrFillSub = pOldItem->addrFillSub;
78605     pNewItem->regReturn = pOldItem->regReturn;
78606     pNewItem->isCorrelated = pOldItem->isCorrelated;
78607     pNewItem->viaCoroutine = pOldItem->viaCoroutine;
78608     pNewItem->isRecursive = pOldItem->isRecursive;
78609     pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex);
78610     pNewItem->notIndexed = pOldItem->notIndexed;
78611     pNewItem->pIndex = pOldItem->pIndex;
78612     pTab = pNewItem->pTab = pOldItem->pTab;
78613     if( pTab ){
78614       pTab->nRef++;
78615     }
78616     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
78617     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
78618     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
78619     pNewItem->colUsed = pOldItem->colUsed;
78620   }
78621   return pNew;
78622 }
78623 SQLITE_PRIVATE IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
78624   IdList *pNew;
78625   int i;
78626   if( p==0 ) return 0;
78627   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
78628   if( pNew==0 ) return 0;
78629   pNew->nId = p->nId;
78630   pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
78631   if( pNew->a==0 ){
78632     sqlite3DbFree(db, pNew);
78633     return 0;
78634   }
78635   /* Note that because the size of the allocation for p->a[] is not
78636   ** necessarily a power of two, sqlite3IdListAppend() may not be called
78637   ** on the duplicate created by this function. */
78638   for(i=0; i<p->nId; i++){
78639     struct IdList_item *pNewItem = &pNew->a[i];
78640     struct IdList_item *pOldItem = &p->a[i];
78641     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
78642     pNewItem->idx = pOldItem->idx;
78643   }
78644   return pNew;
78645 }
78646 SQLITE_PRIVATE Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
78647   Select *pNew, *pPrior;
78648   if( p==0 ) return 0;
78649   pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
78650   if( pNew==0 ) return 0;
78651   pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
78652   pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
78653   pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
78654   pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
78655   pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
78656   pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
78657   pNew->op = p->op;
78658   pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags);
78659   if( pPrior ) pPrior->pNext = pNew;
78660   pNew->pNext = 0;
78661   pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
78662   pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
78663   pNew->iLimit = 0;
78664   pNew->iOffset = 0;
78665   pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
78666   pNew->addrOpenEphm[0] = -1;
78667   pNew->addrOpenEphm[1] = -1;
78668   pNew->nSelectRow = p->nSelectRow;
78669   pNew->pWith = withDup(db, p->pWith);
78670   return pNew;
78671 }
78672 #else
78673 SQLITE_PRIVATE Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
78674   assert( p==0 );
78675   return 0;
78676 }
78677 #endif
78678 
78679 
78680 /*
78681 ** Add a new element to the end of an expression list.  If pList is
78682 ** initially NULL, then create a new expression list.
78683 **
78684 ** If a memory allocation error occurs, the entire list is freed and
78685 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
78686 ** that the new entry was successfully appended.
78687 */
78688 SQLITE_PRIVATE ExprList *sqlite3ExprListAppend(
78689   Parse *pParse,          /* Parsing context */
78690   ExprList *pList,        /* List to which to append. Might be NULL */
78691   Expr *pExpr             /* Expression to be appended. Might be NULL */
78692 ){
78693   sqlite3 *db = pParse->db;
78694   if( pList==0 ){
78695     pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
78696     if( pList==0 ){
78697       goto no_mem;
78698     }
78699     pList->a = sqlite3DbMallocRaw(db, sizeof(pList->a[0]));
78700     if( pList->a==0 ) goto no_mem;
78701   }else if( (pList->nExpr & (pList->nExpr-1))==0 ){
78702     struct ExprList_item *a;
78703     assert( pList->nExpr>0 );
78704     a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0]));
78705     if( a==0 ){
78706       goto no_mem;
78707     }
78708     pList->a = a;
78709   }
78710   assert( pList->a!=0 );
78711   if( 1 ){
78712     struct ExprList_item *pItem = &pList->a[pList->nExpr++];
78713     memset(pItem, 0, sizeof(*pItem));
78714     pItem->pExpr = pExpr;
78715   }
78716   return pList;
78717 
78718 no_mem:
78719   /* Avoid leaking memory if malloc has failed. */
78720   sqlite3ExprDelete(db, pExpr);
78721   sqlite3ExprListDelete(db, pList);
78722   return 0;
78723 }
78724 
78725 /*
78726 ** Set the ExprList.a[].zName element of the most recently added item
78727 ** on the expression list.
78728 **
78729 ** pList might be NULL following an OOM error.  But pName should never be
78730 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
78731 ** is set.
78732 */
78733 SQLITE_PRIVATE void sqlite3ExprListSetName(
78734   Parse *pParse,          /* Parsing context */
78735   ExprList *pList,        /* List to which to add the span. */
78736   Token *pName,           /* Name to be added */
78737   int dequote             /* True to cause the name to be dequoted */
78738 ){
78739   assert( pList!=0 || pParse->db->mallocFailed!=0 );
78740   if( pList ){
78741     struct ExprList_item *pItem;
78742     assert( pList->nExpr>0 );
78743     pItem = &pList->a[pList->nExpr-1];
78744     assert( pItem->zName==0 );
78745     pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
78746     if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName);
78747   }
78748 }
78749 
78750 /*
78751 ** Set the ExprList.a[].zSpan element of the most recently added item
78752 ** on the expression list.
78753 **
78754 ** pList might be NULL following an OOM error.  But pSpan should never be
78755 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
78756 ** is set.
78757 */
78758 SQLITE_PRIVATE void sqlite3ExprListSetSpan(
78759   Parse *pParse,          /* Parsing context */
78760   ExprList *pList,        /* List to which to add the span. */
78761   ExprSpan *pSpan         /* The span to be added */
78762 ){
78763   sqlite3 *db = pParse->db;
78764   assert( pList!=0 || db->mallocFailed!=0 );
78765   if( pList ){
78766     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
78767     assert( pList->nExpr>0 );
78768     assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr );
78769     sqlite3DbFree(db, pItem->zSpan);
78770     pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
78771                                     (int)(pSpan->zEnd - pSpan->zStart));
78772   }
78773 }
78774 
78775 /*
78776 ** If the expression list pEList contains more than iLimit elements,
78777 ** leave an error message in pParse.
78778 */
78779 SQLITE_PRIVATE void sqlite3ExprListCheckLength(
78780   Parse *pParse,
78781   ExprList *pEList,
78782   const char *zObject
78783 ){
78784   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
78785   testcase( pEList && pEList->nExpr==mx );
78786   testcase( pEList && pEList->nExpr==mx+1 );
78787   if( pEList && pEList->nExpr>mx ){
78788     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
78789   }
78790 }
78791 
78792 /*
78793 ** Delete an entire expression list.
78794 */
78795 SQLITE_PRIVATE void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
78796   int i;
78797   struct ExprList_item *pItem;
78798   if( pList==0 ) return;
78799   assert( pList->a!=0 || pList->nExpr==0 );
78800   for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
78801     sqlite3ExprDelete(db, pItem->pExpr);
78802     sqlite3DbFree(db, pItem->zName);
78803     sqlite3DbFree(db, pItem->zSpan);
78804   }
78805   sqlite3DbFree(db, pList->a);
78806   sqlite3DbFree(db, pList);
78807 }
78808 
78809 /*
78810 ** These routines are Walker callbacks.  Walker.u.pi is a pointer
78811 ** to an integer.  These routines are checking an expression to see
78812 ** if it is a constant.  Set *Walker.u.pi to 0 if the expression is
78813 ** not constant.
78814 **
78815 ** These callback routines are used to implement the following:
78816 **
78817 **     sqlite3ExprIsConstant()
78818 **     sqlite3ExprIsConstantNotJoin()
78819 **     sqlite3ExprIsConstantOrFunction()
78820 **
78821 */
78822 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
78823 
78824   /* If pWalker->u.i is 3 then any term of the expression that comes from
78825   ** the ON or USING clauses of a join disqualifies the expression
78826   ** from being considered constant. */
78827   if( pWalker->u.i==3 && ExprHasProperty(pExpr, EP_FromJoin) ){
78828     pWalker->u.i = 0;
78829     return WRC_Abort;
78830   }
78831 
78832   switch( pExpr->op ){
78833     /* Consider functions to be constant if all their arguments are constant
78834     ** and either pWalker->u.i==2 or the function as the SQLITE_FUNC_CONST
78835     ** flag. */
78836     case TK_FUNCTION:
78837       if( pWalker->u.i==2 || ExprHasProperty(pExpr,EP_Constant) ){
78838         return WRC_Continue;
78839       }
78840       /* Fall through */
78841     case TK_ID:
78842     case TK_COLUMN:
78843     case TK_AGG_FUNCTION:
78844     case TK_AGG_COLUMN:
78845       testcase( pExpr->op==TK_ID );
78846       testcase( pExpr->op==TK_COLUMN );
78847       testcase( pExpr->op==TK_AGG_FUNCTION );
78848       testcase( pExpr->op==TK_AGG_COLUMN );
78849       pWalker->u.i = 0;
78850       return WRC_Abort;
78851     default:
78852       testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */
78853       testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */
78854       return WRC_Continue;
78855   }
78856 }
78857 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){
78858   UNUSED_PARAMETER(NotUsed);
78859   pWalker->u.i = 0;
78860   return WRC_Abort;
78861 }
78862 static int exprIsConst(Expr *p, int initFlag){
78863   Walker w;
78864   memset(&w, 0, sizeof(w));
78865   w.u.i = initFlag;
78866   w.xExprCallback = exprNodeIsConstant;
78867   w.xSelectCallback = selectNodeIsConstant;
78868   sqlite3WalkExpr(&w, p);
78869   return w.u.i;
78870 }
78871 
78872 /*
78873 ** Walk an expression tree.  Return 1 if the expression is constant
78874 ** and 0 if it involves variables or function calls.
78875 **
78876 ** For the purposes of this function, a double-quoted string (ex: "abc")
78877 ** is considered a variable but a single-quoted string (ex: 'abc') is
78878 ** a constant.
78879 */
78880 SQLITE_PRIVATE int sqlite3ExprIsConstant(Expr *p){
78881   return exprIsConst(p, 1);
78882 }
78883 
78884 /*
78885 ** Walk an expression tree.  Return 1 if the expression is constant
78886 ** that does no originate from the ON or USING clauses of a join.
78887 ** Return 0 if it involves variables or function calls or terms from
78888 ** an ON or USING clause.
78889 */
78890 SQLITE_PRIVATE int sqlite3ExprIsConstantNotJoin(Expr *p){
78891   return exprIsConst(p, 3);
78892 }
78893 
78894 /*
78895 ** Walk an expression tree.  Return 1 if the expression is constant
78896 ** or a function call with constant arguments.  Return and 0 if there
78897 ** are any variables.
78898 **
78899 ** For the purposes of this function, a double-quoted string (ex: "abc")
78900 ** is considered a variable but a single-quoted string (ex: 'abc') is
78901 ** a constant.
78902 */
78903 SQLITE_PRIVATE int sqlite3ExprIsConstantOrFunction(Expr *p){
78904   return exprIsConst(p, 2);
78905 }
78906 
78907 /*
78908 ** If the expression p codes a constant integer that is small enough
78909 ** to fit in a 32-bit integer, return 1 and put the value of the integer
78910 ** in *pValue.  If the expression is not an integer or if it is too big
78911 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
78912 */
78913 SQLITE_PRIVATE int sqlite3ExprIsInteger(Expr *p, int *pValue){
78914   int rc = 0;
78915 
78916   /* If an expression is an integer literal that fits in a signed 32-bit
78917   ** integer, then the EP_IntValue flag will have already been set */
78918   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
78919            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
78920 
78921   if( p->flags & EP_IntValue ){
78922     *pValue = p->u.iValue;
78923     return 1;
78924   }
78925   switch( p->op ){
78926     case TK_UPLUS: {
78927       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
78928       break;
78929     }
78930     case TK_UMINUS: {
78931       int v;
78932       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
78933         assert( v!=(-2147483647-1) );
78934         *pValue = -v;
78935         rc = 1;
78936       }
78937       break;
78938     }
78939     default: break;
78940   }
78941   return rc;
78942 }
78943 
78944 /*
78945 ** Return FALSE if there is no chance that the expression can be NULL.
78946 **
78947 ** If the expression might be NULL or if the expression is too complex
78948 ** to tell return TRUE.
78949 **
78950 ** This routine is used as an optimization, to skip OP_IsNull opcodes
78951 ** when we know that a value cannot be NULL.  Hence, a false positive
78952 ** (returning TRUE when in fact the expression can never be NULL) might
78953 ** be a small performance hit but is otherwise harmless.  On the other
78954 ** hand, a false negative (returning FALSE when the result could be NULL)
78955 ** will likely result in an incorrect answer.  So when in doubt, return
78956 ** TRUE.
78957 */
78958 SQLITE_PRIVATE int sqlite3ExprCanBeNull(const Expr *p){
78959   u8 op;
78960   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
78961   op = p->op;
78962   if( op==TK_REGISTER ) op = p->op2;
78963   switch( op ){
78964     case TK_INTEGER:
78965     case TK_STRING:
78966     case TK_FLOAT:
78967     case TK_BLOB:
78968       return 0;
78969     default:
78970       return 1;
78971   }
78972 }
78973 
78974 /*
78975 ** Return TRUE if the given expression is a constant which would be
78976 ** unchanged by OP_Affinity with the affinity given in the second
78977 ** argument.
78978 **
78979 ** This routine is used to determine if the OP_Affinity operation
78980 ** can be omitted.  When in doubt return FALSE.  A false negative
78981 ** is harmless.  A false positive, however, can result in the wrong
78982 ** answer.
78983 */
78984 SQLITE_PRIVATE int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
78985   u8 op;
78986   if( aff==SQLITE_AFF_NONE ) return 1;
78987   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
78988   op = p->op;
78989   if( op==TK_REGISTER ) op = p->op2;
78990   switch( op ){
78991     case TK_INTEGER: {
78992       return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
78993     }
78994     case TK_FLOAT: {
78995       return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
78996     }
78997     case TK_STRING: {
78998       return aff==SQLITE_AFF_TEXT;
78999     }
79000     case TK_BLOB: {
79001       return 1;
79002     }
79003     case TK_COLUMN: {
79004       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
79005       return p->iColumn<0
79006           && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
79007     }
79008     default: {
79009       return 0;
79010     }
79011   }
79012 }
79013 
79014 /*
79015 ** Return TRUE if the given string is a row-id column name.
79016 */
79017 SQLITE_PRIVATE int sqlite3IsRowid(const char *z){
79018   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
79019   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
79020   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
79021   return 0;
79022 }
79023 
79024 /*
79025 ** Return true if we are able to the IN operator optimization on a
79026 ** query of the form
79027 **
79028 **       x IN (SELECT ...)
79029 **
79030 ** Where the SELECT... clause is as specified by the parameter to this
79031 ** routine.
79032 **
79033 ** The Select object passed in has already been preprocessed and no
79034 ** errors have been found.
79035 */
79036 #ifndef SQLITE_OMIT_SUBQUERY
79037 static int isCandidateForInOpt(Select *p){
79038   SrcList *pSrc;
79039   ExprList *pEList;
79040   Table *pTab;
79041   if( p==0 ) return 0;                   /* right-hand side of IN is SELECT */
79042   if( p->pPrior ) return 0;              /* Not a compound SELECT */
79043   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
79044     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
79045     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
79046     return 0; /* No DISTINCT keyword and no aggregate functions */
79047   }
79048   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
79049   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
79050   assert( p->pOffset==0 );               /* No LIMIT means no OFFSET */
79051   if( p->pWhere ) return 0;              /* Has no WHERE clause */
79052   pSrc = p->pSrc;
79053   assert( pSrc!=0 );
79054   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
79055   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
79056   pTab = pSrc->a[0].pTab;
79057   if( NEVER(pTab==0) ) return 0;
79058   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
79059   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
79060   pEList = p->pEList;
79061   if( pEList->nExpr!=1 ) return 0;       /* One column in the result set */
79062   if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */
79063   return 1;
79064 }
79065 #endif /* SQLITE_OMIT_SUBQUERY */
79066 
79067 /*
79068 ** Code an OP_Once instruction and allocate space for its flag. Return the
79069 ** address of the new instruction.
79070 */
79071 SQLITE_PRIVATE int sqlite3CodeOnce(Parse *pParse){
79072   Vdbe *v = sqlite3GetVdbe(pParse);      /* Virtual machine being coded */
79073   return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++);
79074 }
79075 
79076 /*
79077 ** This function is used by the implementation of the IN (...) operator.
79078 ** The pX parameter is the expression on the RHS of the IN operator, which
79079 ** might be either a list of expressions or a subquery.
79080 **
79081 ** The job of this routine is to find or create a b-tree object that can
79082 ** be used either to test for membership in the RHS set or to iterate through
79083 ** all members of the RHS set, skipping duplicates.
79084 **
79085 ** A cursor is opened on the b-tree object that the RHS of the IN operator
79086 ** and pX->iTable is set to the index of that cursor.
79087 **
79088 ** The returned value of this function indicates the b-tree type, as follows:
79089 **
79090 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
79091 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
79092 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
79093 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
79094 **                         populated epheremal table.
79095 **
79096 ** An existing b-tree might be used if the RHS expression pX is a simple
79097 ** subquery such as:
79098 **
79099 **     SELECT <column> FROM <table>
79100 **
79101 ** If the RHS of the IN operator is a list or a more complex subquery, then
79102 ** an ephemeral table might need to be generated from the RHS and then
79103 ** pX->iTable made to point to the ephermeral table instead of an
79104 ** existing table.
79105 **
79106 ** If the prNotFound parameter is 0, then the b-tree will be used to iterate
79107 ** through the set members, skipping any duplicates. In this case an
79108 ** epheremal table must be used unless the selected <column> is guaranteed
79109 ** to be unique - either because it is an INTEGER PRIMARY KEY or it
79110 ** has a UNIQUE constraint or UNIQUE index.
79111 **
79112 ** If the prNotFound parameter is not 0, then the b-tree will be used
79113 ** for fast set membership tests. In this case an epheremal table must
79114 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can
79115 ** be found with <column> as its left-most column.
79116 **
79117 ** When the b-tree is being used for membership tests, the calling function
79118 ** needs to know whether or not the structure contains an SQL NULL
79119 ** value in order to correctly evaluate expressions like "X IN (Y, Z)".
79120 ** If there is any chance that the (...) might contain a NULL value at
79121 ** runtime, then a register is allocated and the register number written
79122 ** to *prNotFound. If there is no chance that the (...) contains a
79123 ** NULL value, then *prNotFound is left unchanged.
79124 **
79125 ** If a register is allocated and its location stored in *prNotFound, then
79126 ** its initial value is NULL.  If the (...) does not remain constant
79127 ** for the duration of the query (i.e. the SELECT within the (...)
79128 ** is a correlated subquery) then the value of the allocated register is
79129 ** reset to NULL each time the subquery is rerun. This allows the
79130 ** caller to use vdbe code equivalent to the following:
79131 **
79132 **   if( register==NULL ){
79133 **     has_null = <test if data structure contains null>
79134 **     register = 1
79135 **   }
79136 **
79137 ** in order to avoid running the <test if data structure contains null>
79138 ** test more often than is necessary.
79139 */
79140 #ifndef SQLITE_OMIT_SUBQUERY
79141 SQLITE_PRIVATE int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){
79142   Select *p;                            /* SELECT to the right of IN operator */
79143   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
79144   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
79145   int mustBeUnique = (prNotFound==0);   /* True if RHS must be unique */
79146   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
79147 
79148   assert( pX->op==TK_IN );
79149 
79150   /* Check to see if an existing table or index can be used to
79151   ** satisfy the query.  This is preferable to generating a new
79152   ** ephemeral table.
79153   */
79154   p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0);
79155   if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){
79156     sqlite3 *db = pParse->db;              /* Database connection */
79157     Table *pTab;                           /* Table <table>. */
79158     Expr *pExpr;                           /* Expression <column> */
79159     i16 iCol;                              /* Index of column <column> */
79160     i16 iDb;                               /* Database idx for pTab */
79161 
79162     assert( p );                        /* Because of isCandidateForInOpt(p) */
79163     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
79164     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
79165     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
79166     pTab = p->pSrc->a[0].pTab;
79167     pExpr = p->pEList->a[0].pExpr;
79168     iCol = (i16)pExpr->iColumn;
79169 
79170     /* Code an OP_Transaction and OP_TableLock for <table>. */
79171     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
79172     sqlite3CodeVerifySchema(pParse, iDb);
79173     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
79174 
79175     /* This function is only called from two places. In both cases the vdbe
79176     ** has already been allocated. So assume sqlite3GetVdbe() is always
79177     ** successful here.
79178     */
79179     assert(v);
79180     if( iCol<0 ){
79181       int iAddr = sqlite3CodeOnce(pParse);
79182       VdbeCoverage(v);
79183 
79184       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
79185       eType = IN_INDEX_ROWID;
79186 
79187       sqlite3VdbeJumpHere(v, iAddr);
79188     }else{
79189       Index *pIdx;                         /* Iterator variable */
79190 
79191       /* The collation sequence used by the comparison. If an index is to
79192       ** be used in place of a temp-table, it must be ordered according
79193       ** to this collation sequence.  */
79194       CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
79195 
79196       /* Check that the affinity that will be used to perform the
79197       ** comparison is the same as the affinity of the column. If
79198       ** it is not, it is not possible to use any index.
79199       */
79200       int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity);
79201 
79202       for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
79203         if( (pIdx->aiColumn[0]==iCol)
79204          && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq
79205          && (!mustBeUnique || (pIdx->nKeyCol==1 && pIdx->onError!=OE_None))
79206         ){
79207           int iAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v);
79208           sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
79209           sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
79210           VdbeComment((v, "%s", pIdx->zName));
79211           assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
79212           eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
79213 
79214           if( prNotFound && !pTab->aCol[iCol].notNull ){
79215             *prNotFound = ++pParse->nMem;
79216             sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound);
79217           }
79218           sqlite3VdbeJumpHere(v, iAddr);
79219         }
79220       }
79221     }
79222   }
79223 
79224   if( eType==0 ){
79225     /* Could not found an existing table or index to use as the RHS b-tree.
79226     ** We will have to generate an ephemeral table to do the job.
79227     */
79228     u32 savedNQueryLoop = pParse->nQueryLoop;
79229     int rMayHaveNull = 0;
79230     eType = IN_INDEX_EPH;
79231     if( prNotFound ){
79232       *prNotFound = rMayHaveNull = ++pParse->nMem;
79233       sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound);
79234     }else{
79235       pParse->nQueryLoop = 0;
79236       if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){
79237         eType = IN_INDEX_ROWID;
79238       }
79239     }
79240     sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
79241     pParse->nQueryLoop = savedNQueryLoop;
79242   }else{
79243     pX->iTable = iTab;
79244   }
79245   return eType;
79246 }
79247 #endif
79248 
79249 /*
79250 ** Generate code for scalar subqueries used as a subquery expression, EXISTS,
79251 ** or IN operators.  Examples:
79252 **
79253 **     (SELECT a FROM b)          -- subquery
79254 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
79255 **     x IN (4,5,11)              -- IN operator with list on right-hand side
79256 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
79257 **
79258 ** The pExpr parameter describes the expression that contains the IN
79259 ** operator or subquery.
79260 **
79261 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
79262 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
79263 ** to some integer key column of a table B-Tree. In this case, use an
79264 ** intkey B-Tree to store the set of IN(...) values instead of the usual
79265 ** (slower) variable length keys B-Tree.
79266 **
79267 ** If rMayHaveNull is non-zero, that means that the operation is an IN
79268 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
79269 ** Furthermore, the IN is in a WHERE clause and that we really want
79270 ** to iterate over the RHS of the IN operator in order to quickly locate
79271 ** all corresponding LHS elements.  All this routine does is initialize
79272 ** the register given by rMayHaveNull to NULL.  Calling routines will take
79273 ** care of changing this register value to non-NULL if the RHS is NULL-free.
79274 **
79275 ** If rMayHaveNull is zero, that means that the subquery is being used
79276 ** for membership testing only.  There is no need to initialize any
79277 ** registers to indicate the presence or absence of NULLs on the RHS.
79278 **
79279 ** For a SELECT or EXISTS operator, return the register that holds the
79280 ** result.  For IN operators or if an error occurs, the return value is 0.
79281 */
79282 #ifndef SQLITE_OMIT_SUBQUERY
79283 SQLITE_PRIVATE int sqlite3CodeSubselect(
79284   Parse *pParse,          /* Parsing context */
79285   Expr *pExpr,            /* The IN, SELECT, or EXISTS operator */
79286   int rMayHaveNull,       /* Register that records whether NULLs exist in RHS */
79287   int isRowid             /* If true, LHS of IN operator is a rowid */
79288 ){
79289   int testAddr = -1;                      /* One-time test address */
79290   int rReg = 0;                           /* Register storing resulting */
79291   Vdbe *v = sqlite3GetVdbe(pParse);
79292   if( NEVER(v==0) ) return 0;
79293   sqlite3ExprCachePush(pParse);
79294 
79295   /* This code must be run in its entirety every time it is encountered
79296   ** if any of the following is true:
79297   **
79298   **    *  The right-hand side is a correlated subquery
79299   **    *  The right-hand side is an expression list containing variables
79300   **    *  We are inside a trigger
79301   **
79302   ** If all of the above are false, then we can run this code just once
79303   ** save the results, and reuse the same result on subsequent invocations.
79304   */
79305   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
79306     testAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v);
79307   }
79308 
79309 #ifndef SQLITE_OMIT_EXPLAIN
79310   if( pParse->explain==2 ){
79311     char *zMsg = sqlite3MPrintf(
79312         pParse->db, "EXECUTE %s%s SUBQUERY %d", testAddr>=0?"":"CORRELATED ",
79313         pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId
79314     );
79315     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
79316   }
79317 #endif
79318 
79319   switch( pExpr->op ){
79320     case TK_IN: {
79321       char affinity;              /* Affinity of the LHS of the IN */
79322       int addr;                   /* Address of OP_OpenEphemeral instruction */
79323       Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
79324       KeyInfo *pKeyInfo = 0;      /* Key information */
79325 
79326       if( rMayHaveNull ){
79327         sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull);
79328       }
79329 
79330       affinity = sqlite3ExprAffinity(pLeft);
79331 
79332       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
79333       ** expression it is handled the same way.  An ephemeral table is
79334       ** filled with single-field index keys representing the results
79335       ** from the SELECT or the <exprlist>.
79336       **
79337       ** If the 'x' expression is a column value, or the SELECT...
79338       ** statement returns a column value, then the affinity of that
79339       ** column is used to build the index keys. If both 'x' and the
79340       ** SELECT... statement are columns, then numeric affinity is used
79341       ** if either column has NUMERIC or INTEGER affinity. If neither
79342       ** 'x' nor the SELECT... statement are columns, then numeric affinity
79343       ** is used.
79344       */
79345       pExpr->iTable = pParse->nTab++;
79346       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
79347       pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, 1, 1);
79348 
79349       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
79350         /* Case 1:     expr IN (SELECT ...)
79351         **
79352         ** Generate code to write the results of the select into the temporary
79353         ** table allocated and opened above.
79354         */
79355         SelectDest dest;
79356         ExprList *pEList;
79357 
79358         assert( !isRowid );
79359         sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
79360         dest.affSdst = (u8)affinity;
79361         assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
79362         pExpr->x.pSelect->iLimit = 0;
79363         testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
79364         if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){
79365           sqlite3KeyInfoUnref(pKeyInfo);
79366           return 0;
79367         }
79368         pEList = pExpr->x.pSelect->pEList;
79369         assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
79370         assert( pEList!=0 );
79371         assert( pEList->nExpr>0 );
79372         assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
79373         pKeyInfo->aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
79374                                                          pEList->a[0].pExpr);
79375       }else if( ALWAYS(pExpr->x.pList!=0) ){
79376         /* Case 2:     expr IN (exprlist)
79377         **
79378         ** For each expression, build an index key from the evaluation and
79379         ** store it in the temporary table. If <expr> is a column, then use
79380         ** that columns affinity when building index keys. If <expr> is not
79381         ** a column, use numeric affinity.
79382         */
79383         int i;
79384         ExprList *pList = pExpr->x.pList;
79385         struct ExprList_item *pItem;
79386         int r1, r2, r3;
79387 
79388         if( !affinity ){
79389           affinity = SQLITE_AFF_NONE;
79390         }
79391         if( pKeyInfo ){
79392           assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
79393           pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
79394         }
79395 
79396         /* Loop through each expression in <exprlist>. */
79397         r1 = sqlite3GetTempReg(pParse);
79398         r2 = sqlite3GetTempReg(pParse);
79399         sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
79400         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
79401           Expr *pE2 = pItem->pExpr;
79402           int iValToIns;
79403 
79404           /* If the expression is not constant then we will need to
79405           ** disable the test that was generated above that makes sure
79406           ** this code only executes once.  Because for a non-constant
79407           ** expression we need to rerun this code each time.
79408           */
79409           if( testAddr>=0 && !sqlite3ExprIsConstant(pE2) ){
79410             sqlite3VdbeChangeToNoop(v, testAddr);
79411             testAddr = -1;
79412           }
79413 
79414           /* Evaluate the expression and insert it into the temp table */
79415           if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
79416             sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
79417           }else{
79418             r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
79419             if( isRowid ){
79420               sqlite3VdbeAddOp2(v, OP_MustBeInt, r3,
79421                                 sqlite3VdbeCurrentAddr(v)+2);
79422               VdbeCoverage(v);
79423               sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
79424             }else{
79425               sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
79426               sqlite3ExprCacheAffinityChange(pParse, r3, 1);
79427               sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
79428             }
79429           }
79430         }
79431         sqlite3ReleaseTempReg(pParse, r1);
79432         sqlite3ReleaseTempReg(pParse, r2);
79433       }
79434       if( pKeyInfo ){
79435         sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
79436       }
79437       break;
79438     }
79439 
79440     case TK_EXISTS:
79441     case TK_SELECT:
79442     default: {
79443       /* If this has to be a scalar SELECT.  Generate code to put the
79444       ** value of this select in a memory cell and record the number
79445       ** of the memory cell in iColumn.  If this is an EXISTS, write
79446       ** an integer 0 (not exists) or 1 (exists) into a memory cell
79447       ** and record that memory cell in iColumn.
79448       */
79449       Select *pSel;                         /* SELECT statement to encode */
79450       SelectDest dest;                      /* How to deal with SELECt result */
79451 
79452       testcase( pExpr->op==TK_EXISTS );
79453       testcase( pExpr->op==TK_SELECT );
79454       assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
79455 
79456       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
79457       pSel = pExpr->x.pSelect;
79458       sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
79459       if( pExpr->op==TK_SELECT ){
79460         dest.eDest = SRT_Mem;
79461         sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm);
79462         VdbeComment((v, "Init subquery result"));
79463       }else{
79464         dest.eDest = SRT_Exists;
79465         sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
79466         VdbeComment((v, "Init EXISTS result"));
79467       }
79468       sqlite3ExprDelete(pParse->db, pSel->pLimit);
79469       pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0,
79470                                   &sqlite3IntTokens[1]);
79471       pSel->iLimit = 0;
79472       if( sqlite3Select(pParse, pSel, &dest) ){
79473         return 0;
79474       }
79475       rReg = dest.iSDParm;
79476       ExprSetVVAProperty(pExpr, EP_NoReduce);
79477       break;
79478     }
79479   }
79480 
79481   if( testAddr>=0 ){
79482     sqlite3VdbeJumpHere(v, testAddr);
79483   }
79484   sqlite3ExprCachePop(pParse);
79485 
79486   return rReg;
79487 }
79488 #endif /* SQLITE_OMIT_SUBQUERY */
79489 
79490 #ifndef SQLITE_OMIT_SUBQUERY
79491 /*
79492 ** Generate code for an IN expression.
79493 **
79494 **      x IN (SELECT ...)
79495 **      x IN (value, value, ...)
79496 **
79497 ** The left-hand side (LHS) is a scalar expression.  The right-hand side (RHS)
79498 ** is an array of zero or more values.  The expression is true if the LHS is
79499 ** contained within the RHS.  The value of the expression is unknown (NULL)
79500 ** if the LHS is NULL or if the LHS is not contained within the RHS and the
79501 ** RHS contains one or more NULL values.
79502 **
79503 ** This routine generates code will jump to destIfFalse if the LHS is not
79504 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
79505 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
79506 ** within the RHS then fall through.
79507 */
79508 static void sqlite3ExprCodeIN(
79509   Parse *pParse,        /* Parsing and code generating context */
79510   Expr *pExpr,          /* The IN expression */
79511   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
79512   int destIfNull        /* Jump here if the results are unknown due to NULLs */
79513 ){
79514   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
79515   char affinity;        /* Comparison affinity to use */
79516   int eType;            /* Type of the RHS */
79517   int r1;               /* Temporary use register */
79518   Vdbe *v;              /* Statement under construction */
79519 
79520   /* Compute the RHS.   After this step, the table with cursor
79521   ** pExpr->iTable will contains the values that make up the RHS.
79522   */
79523   v = pParse->pVdbe;
79524   assert( v!=0 );       /* OOM detected prior to this routine */
79525   VdbeNoopComment((v, "begin IN expr"));
79526   eType = sqlite3FindInIndex(pParse, pExpr, &rRhsHasNull);
79527 
79528   /* Figure out the affinity to use to create a key from the results
79529   ** of the expression. affinityStr stores a static string suitable for
79530   ** P4 of OP_MakeRecord.
79531   */
79532   affinity = comparisonAffinity(pExpr);
79533 
79534   /* Code the LHS, the <expr> from "<expr> IN (...)".
79535   */
79536   sqlite3ExprCachePush(pParse);
79537   r1 = sqlite3GetTempReg(pParse);
79538   sqlite3ExprCode(pParse, pExpr->pLeft, r1);
79539 
79540   /* If the LHS is NULL, then the result is either false or NULL depending
79541   ** on whether the RHS is empty or not, respectively.
79542   */
79543   if( destIfNull==destIfFalse ){
79544     /* Shortcut for the common case where the false and NULL outcomes are
79545     ** the same. */
79546     sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); VdbeCoverage(v);
79547   }else{
79548     int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); VdbeCoverage(v);
79549     sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
79550     VdbeCoverage(v);
79551     sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
79552     sqlite3VdbeJumpHere(v, addr1);
79553   }
79554 
79555   if( eType==IN_INDEX_ROWID ){
79556     /* In this case, the RHS is the ROWID of table b-tree
79557     */
79558     sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); VdbeCoverage(v);
79559     sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1);
79560     VdbeCoverage(v);
79561   }else{
79562     /* In this case, the RHS is an index b-tree.
79563     */
79564     sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1);
79565 
79566     /* If the set membership test fails, then the result of the
79567     ** "x IN (...)" expression must be either 0 or NULL. If the set
79568     ** contains no NULL values, then the result is 0. If the set
79569     ** contains one or more NULL values, then the result of the
79570     ** expression is also NULL.
79571     */
79572     if( rRhsHasNull==0 || destIfFalse==destIfNull ){
79573       /* This branch runs if it is known at compile time that the RHS
79574       ** cannot contain NULL values. This happens as the result
79575       ** of a "NOT NULL" constraint in the database schema.
79576       **
79577       ** Also run this branch if NULL is equivalent to FALSE
79578       ** for this particular IN operator.
79579       */
79580       sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1);
79581       VdbeCoverage(v);
79582     }else{
79583       /* In this branch, the RHS of the IN might contain a NULL and
79584       ** the presence of a NULL on the RHS makes a difference in the
79585       ** outcome.
79586       */
79587       int j1, j2;
79588 
79589       /* First check to see if the LHS is contained in the RHS.  If so,
79590       ** then the presence of NULLs in the RHS does not matter, so jump
79591       ** over all of the code that follows.
79592       */
79593       j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1);
79594       VdbeCoverage(v);
79595 
79596       /* Here we begin generating code that runs if the LHS is not
79597       ** contained within the RHS.  Generate additional code that
79598       ** tests the RHS for NULLs.  If the RHS contains a NULL then
79599       ** jump to destIfNull.  If there are no NULLs in the RHS then
79600       ** jump to destIfFalse.
79601       */
79602       sqlite3VdbeAddOp2(v, OP_If, rRhsHasNull, destIfNull); VdbeCoverage(v);
79603       sqlite3VdbeAddOp2(v, OP_IfNot, rRhsHasNull, destIfFalse); VdbeCoverage(v);
79604       j2 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, rRhsHasNull, 1);
79605       VdbeCoverage(v);
79606       sqlite3VdbeAddOp2(v, OP_Integer, 0, rRhsHasNull);
79607       sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
79608       sqlite3VdbeJumpHere(v, j2);
79609       sqlite3VdbeAddOp2(v, OP_Integer, 1, rRhsHasNull);
79610       sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
79611 
79612       /* The OP_Found at the top of this branch jumps here when true,
79613       ** causing the overall IN expression evaluation to fall through.
79614       */
79615       sqlite3VdbeJumpHere(v, j1);
79616     }
79617   }
79618   sqlite3ReleaseTempReg(pParse, r1);
79619   sqlite3ExprCachePop(pParse);
79620   VdbeComment((v, "end IN expr"));
79621 }
79622 #endif /* SQLITE_OMIT_SUBQUERY */
79623 
79624 /*
79625 ** Duplicate an 8-byte value
79626 */
79627 static char *dup8bytes(Vdbe *v, const char *in){
79628   char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8);
79629   if( out ){
79630     memcpy(out, in, 8);
79631   }
79632   return out;
79633 }
79634 
79635 #ifndef SQLITE_OMIT_FLOATING_POINT
79636 /*
79637 ** Generate an instruction that will put the floating point
79638 ** value described by z[0..n-1] into register iMem.
79639 **
79640 ** The z[] string will probably not be zero-terminated.  But the
79641 ** z[n] character is guaranteed to be something that does not look
79642 ** like the continuation of the number.
79643 */
79644 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
79645   if( ALWAYS(z!=0) ){
79646     double value;
79647     char *zV;
79648     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
79649     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
79650     if( negateFlag ) value = -value;
79651     zV = dup8bytes(v, (char*)&value);
79652     sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL);
79653   }
79654 }
79655 #endif
79656 
79657 
79658 /*
79659 ** Generate an instruction that will put the integer describe by
79660 ** text z[0..n-1] into register iMem.
79661 **
79662 ** Expr.u.zToken is always UTF8 and zero-terminated.
79663 */
79664 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
79665   Vdbe *v = pParse->pVdbe;
79666   if( pExpr->flags & EP_IntValue ){
79667     int i = pExpr->u.iValue;
79668     assert( i>=0 );
79669     if( negFlag ) i = -i;
79670     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
79671   }else{
79672     int c;
79673     i64 value;
79674     const char *z = pExpr->u.zToken;
79675     assert( z!=0 );
79676     c = sqlite3Atoi64(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
79677     if( c==0 || (c==2 && negFlag) ){
79678       char *zV;
79679       if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; }
79680       zV = dup8bytes(v, (char*)&value);
79681       sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
79682     }else{
79683 #ifdef SQLITE_OMIT_FLOATING_POINT
79684       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
79685 #else
79686       codeReal(v, z, negFlag, iMem);
79687 #endif
79688     }
79689   }
79690 }
79691 
79692 /*
79693 ** Clear a cache entry.
79694 */
79695 static void cacheEntryClear(Parse *pParse, struct yColCache *p){
79696   if( p->tempReg ){
79697     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
79698       pParse->aTempReg[pParse->nTempReg++] = p->iReg;
79699     }
79700     p->tempReg = 0;
79701   }
79702 }
79703 
79704 
79705 /*
79706 ** Record in the column cache that a particular column from a
79707 ** particular table is stored in a particular register.
79708 */
79709 SQLITE_PRIVATE void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
79710   int i;
79711   int minLru;
79712   int idxLru;
79713   struct yColCache *p;
79714 
79715   assert( iReg>0 );  /* Register numbers are always positive */
79716   assert( iCol>=-1 && iCol<32768 );  /* Finite column numbers */
79717 
79718   /* The SQLITE_ColumnCache flag disables the column cache.  This is used
79719   ** for testing only - to verify that SQLite always gets the same answer
79720   ** with and without the column cache.
79721   */
79722   if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return;
79723 
79724   /* First replace any existing entry.
79725   **
79726   ** Actually, the way the column cache is currently used, we are guaranteed
79727   ** that the object will never already be in cache.  Verify this guarantee.
79728   */
79729 #ifndef NDEBUG
79730   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
79731     assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol );
79732   }
79733 #endif
79734 
79735   /* Find an empty slot and replace it */
79736   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
79737     if( p->iReg==0 ){
79738       p->iLevel = pParse->iCacheLevel;
79739       p->iTable = iTab;
79740       p->iColumn = iCol;
79741       p->iReg = iReg;
79742       p->tempReg = 0;
79743       p->lru = pParse->iCacheCnt++;
79744       return;
79745     }
79746   }
79747 
79748   /* Replace the last recently used */
79749   minLru = 0x7fffffff;
79750   idxLru = -1;
79751   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
79752     if( p->lru<minLru ){
79753       idxLru = i;
79754       minLru = p->lru;
79755     }
79756   }
79757   if( ALWAYS(idxLru>=0) ){
79758     p = &pParse->aColCache[idxLru];
79759     p->iLevel = pParse->iCacheLevel;
79760     p->iTable = iTab;
79761     p->iColumn = iCol;
79762     p->iReg = iReg;
79763     p->tempReg = 0;
79764     p->lru = pParse->iCacheCnt++;
79765     return;
79766   }
79767 }
79768 
79769 /*
79770 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten.
79771 ** Purge the range of registers from the column cache.
79772 */
79773 SQLITE_PRIVATE void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){
79774   int i;
79775   int iLast = iReg + nReg - 1;
79776   struct yColCache *p;
79777   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
79778     int r = p->iReg;
79779     if( r>=iReg && r<=iLast ){
79780       cacheEntryClear(pParse, p);
79781       p->iReg = 0;
79782     }
79783   }
79784 }
79785 
79786 /*
79787 ** Remember the current column cache context.  Any new entries added
79788 ** added to the column cache after this call are removed when the
79789 ** corresponding pop occurs.
79790 */
79791 SQLITE_PRIVATE void sqlite3ExprCachePush(Parse *pParse){
79792   pParse->iCacheLevel++;
79793 #ifdef SQLITE_DEBUG
79794   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
79795     printf("PUSH to %d\n", pParse->iCacheLevel);
79796   }
79797 #endif
79798 }
79799 
79800 /*
79801 ** Remove from the column cache any entries that were added since the
79802 ** the previous sqlite3ExprCachePush operation.  In other words, restore
79803 ** the cache to the state it was in prior the most recent Push.
79804 */
79805 SQLITE_PRIVATE void sqlite3ExprCachePop(Parse *pParse){
79806   int i;
79807   struct yColCache *p;
79808   assert( pParse->iCacheLevel>=1 );
79809   pParse->iCacheLevel--;
79810 #ifdef SQLITE_DEBUG
79811   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
79812     printf("POP  to %d\n", pParse->iCacheLevel);
79813   }
79814 #endif
79815   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
79816     if( p->iReg && p->iLevel>pParse->iCacheLevel ){
79817       cacheEntryClear(pParse, p);
79818       p->iReg = 0;
79819     }
79820   }
79821 }
79822 
79823 /*
79824 ** When a cached column is reused, make sure that its register is
79825 ** no longer available as a temp register.  ticket #3879:  that same
79826 ** register might be in the cache in multiple places, so be sure to
79827 ** get them all.
79828 */
79829 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){
79830   int i;
79831   struct yColCache *p;
79832   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
79833     if( p->iReg==iReg ){
79834       p->tempReg = 0;
79835     }
79836   }
79837 }
79838 
79839 /*
79840 ** Generate code to extract the value of the iCol-th column of a table.
79841 */
79842 SQLITE_PRIVATE void sqlite3ExprCodeGetColumnOfTable(
79843   Vdbe *v,        /* The VDBE under construction */
79844   Table *pTab,    /* The table containing the value */
79845   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
79846   int iCol,       /* Index of the column to extract */
79847   int regOut      /* Extract the value into this register */
79848 ){
79849   if( iCol<0 || iCol==pTab->iPKey ){
79850     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
79851   }else{
79852     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
79853     int x = iCol;
79854     if( !HasRowid(pTab) ){
79855       x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
79856     }
79857     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
79858   }
79859   if( iCol>=0 ){
79860     sqlite3ColumnDefault(v, pTab, iCol, regOut);
79861   }
79862 }
79863 
79864 /*
79865 ** Generate code that will extract the iColumn-th column from
79866 ** table pTab and store the column value in a register.  An effort
79867 ** is made to store the column value in register iReg, but this is
79868 ** not guaranteed.  The location of the column value is returned.
79869 **
79870 ** There must be an open cursor to pTab in iTable when this routine
79871 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
79872 */
79873 SQLITE_PRIVATE int sqlite3ExprCodeGetColumn(
79874   Parse *pParse,   /* Parsing and code generating context */
79875   Table *pTab,     /* Description of the table we are reading from */
79876   int iColumn,     /* Index of the table column */
79877   int iTable,      /* The cursor pointing to the table */
79878   int iReg,        /* Store results here */
79879   u8 p5            /* P5 value for OP_Column */
79880 ){
79881   Vdbe *v = pParse->pVdbe;
79882   int i;
79883   struct yColCache *p;
79884 
79885   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
79886     if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){
79887       p->lru = pParse->iCacheCnt++;
79888       sqlite3ExprCachePinRegister(pParse, p->iReg);
79889       return p->iReg;
79890     }
79891   }
79892   assert( v!=0 );
79893   sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
79894   if( p5 ){
79895     sqlite3VdbeChangeP5(v, p5);
79896   }else{
79897     sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
79898   }
79899   return iReg;
79900 }
79901 
79902 /*
79903 ** Clear all column cache entries.
79904 */
79905 SQLITE_PRIVATE void sqlite3ExprCacheClear(Parse *pParse){
79906   int i;
79907   struct yColCache *p;
79908 
79909 #if SQLITE_DEBUG
79910   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
79911     printf("CLEAR\n");
79912   }
79913 #endif
79914   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
79915     if( p->iReg ){
79916       cacheEntryClear(pParse, p);
79917       p->iReg = 0;
79918     }
79919   }
79920 }
79921 
79922 /*
79923 ** Record the fact that an affinity change has occurred on iCount
79924 ** registers starting with iStart.
79925 */
79926 SQLITE_PRIVATE void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
79927   sqlite3ExprCacheRemove(pParse, iStart, iCount);
79928 }
79929 
79930 /*
79931 ** Generate code to move content from registers iFrom...iFrom+nReg-1
79932 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
79933 */
79934 SQLITE_PRIVATE void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
79935   int i;
79936   struct yColCache *p;
79937   assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo );
79938   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
79939   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
79940     int x = p->iReg;
79941     if( x>=iFrom && x<iFrom+nReg ){
79942       p->iReg += iTo-iFrom;
79943     }
79944   }
79945 }
79946 
79947 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
79948 /*
79949 ** Return true if any register in the range iFrom..iTo (inclusive)
79950 ** is used as part of the column cache.
79951 **
79952 ** This routine is used within assert() and testcase() macros only
79953 ** and does not appear in a normal build.
79954 */
79955 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
79956   int i;
79957   struct yColCache *p;
79958   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
79959     int r = p->iReg;
79960     if( r>=iFrom && r<=iTo ) return 1;    /*NO_TEST*/
79961   }
79962   return 0;
79963 }
79964 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */
79965 
79966 /*
79967 ** Convert an expression node to a TK_REGISTER
79968 */
79969 static void exprToRegister(Expr *p, int iReg){
79970   p->op2 = p->op;
79971   p->op = TK_REGISTER;
79972   p->iTable = iReg;
79973   ExprClearProperty(p, EP_Skip);
79974 }
79975 
79976 /*
79977 ** Generate code into the current Vdbe to evaluate the given
79978 ** expression.  Attempt to store the results in register "target".
79979 ** Return the register where results are stored.
79980 **
79981 ** With this routine, there is no guarantee that results will
79982 ** be stored in target.  The result might be stored in some other
79983 ** register if it is convenient to do so.  The calling function
79984 ** must check the return code and move the results to the desired
79985 ** register.
79986 */
79987 SQLITE_PRIVATE int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
79988   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
79989   int op;                   /* The opcode being coded */
79990   int inReg = target;       /* Results stored in register inReg */
79991   int regFree1 = 0;         /* If non-zero free this temporary register */
79992   int regFree2 = 0;         /* If non-zero free this temporary register */
79993   int r1, r2, r3, r4;       /* Various register numbers */
79994   sqlite3 *db = pParse->db; /* The database connection */
79995   Expr tempX;               /* Temporary expression node */
79996 
79997   assert( target>0 && target<=pParse->nMem );
79998   if( v==0 ){
79999     assert( pParse->db->mallocFailed );
80000     return 0;
80001   }
80002 
80003   if( pExpr==0 ){
80004     op = TK_NULL;
80005   }else{
80006     op = pExpr->op;
80007   }
80008   switch( op ){
80009     case TK_AGG_COLUMN: {
80010       AggInfo *pAggInfo = pExpr->pAggInfo;
80011       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
80012       if( !pAggInfo->directMode ){
80013         assert( pCol->iMem>0 );
80014         inReg = pCol->iMem;
80015         break;
80016       }else if( pAggInfo->useSortingIdx ){
80017         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
80018                               pCol->iSorterColumn, target);
80019         break;
80020       }
80021       /* Otherwise, fall thru into the TK_COLUMN case */
80022     }
80023     case TK_COLUMN: {
80024       int iTab = pExpr->iTable;
80025       if( iTab<0 ){
80026         if( pParse->ckBase>0 ){
80027           /* Generating CHECK constraints or inserting into partial index */
80028           inReg = pExpr->iColumn + pParse->ckBase;
80029           break;
80030         }else{
80031           /* Deleting from a partial index */
80032           iTab = pParse->iPartIdxTab;
80033         }
80034       }
80035       inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
80036                                pExpr->iColumn, iTab, target,
80037                                pExpr->op2);
80038       break;
80039     }
80040     case TK_INTEGER: {
80041       codeInteger(pParse, pExpr, 0, target);
80042       break;
80043     }
80044 #ifndef SQLITE_OMIT_FLOATING_POINT
80045     case TK_FLOAT: {
80046       assert( !ExprHasProperty(pExpr, EP_IntValue) );
80047       codeReal(v, pExpr->u.zToken, 0, target);
80048       break;
80049     }
80050 #endif
80051     case TK_STRING: {
80052       assert( !ExprHasProperty(pExpr, EP_IntValue) );
80053       sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0);
80054       break;
80055     }
80056     case TK_NULL: {
80057       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
80058       break;
80059     }
80060 #ifndef SQLITE_OMIT_BLOB_LITERAL
80061     case TK_BLOB: {
80062       int n;
80063       const char *z;
80064       char *zBlob;
80065       assert( !ExprHasProperty(pExpr, EP_IntValue) );
80066       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
80067       assert( pExpr->u.zToken[1]=='\'' );
80068       z = &pExpr->u.zToken[2];
80069       n = sqlite3Strlen30(z) - 1;
80070       assert( z[n]=='\'' );
80071       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
80072       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
80073       break;
80074     }
80075 #endif
80076     case TK_VARIABLE: {
80077       assert( !ExprHasProperty(pExpr, EP_IntValue) );
80078       assert( pExpr->u.zToken!=0 );
80079       assert( pExpr->u.zToken[0]!=0 );
80080       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
80081       if( pExpr->u.zToken[1]!=0 ){
80082         assert( pExpr->u.zToken[0]=='?'
80083              || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 );
80084         sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC);
80085       }
80086       break;
80087     }
80088     case TK_REGISTER: {
80089       inReg = pExpr->iTable;
80090       break;
80091     }
80092     case TK_AS: {
80093       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
80094       break;
80095     }
80096 #ifndef SQLITE_OMIT_CAST
80097     case TK_CAST: {
80098       /* Expressions of the form:   CAST(pLeft AS token) */
80099       int aff, to_op;
80100       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
80101       assert( !ExprHasProperty(pExpr, EP_IntValue) );
80102       aff = sqlite3AffinityType(pExpr->u.zToken, 0);
80103       to_op = aff - SQLITE_AFF_TEXT + OP_ToText;
80104       assert( to_op==OP_ToText    || aff!=SQLITE_AFF_TEXT    );
80105       assert( to_op==OP_ToBlob    || aff!=SQLITE_AFF_NONE    );
80106       assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC );
80107       assert( to_op==OP_ToInt     || aff!=SQLITE_AFF_INTEGER );
80108       assert( to_op==OP_ToReal    || aff!=SQLITE_AFF_REAL    );
80109       testcase( to_op==OP_ToText );
80110       testcase( to_op==OP_ToBlob );
80111       testcase( to_op==OP_ToNumeric );
80112       testcase( to_op==OP_ToInt );
80113       testcase( to_op==OP_ToReal );
80114       if( inReg!=target ){
80115         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
80116         inReg = target;
80117       }
80118       sqlite3VdbeAddOp1(v, to_op, inReg);
80119       testcase( usedAsColumnCache(pParse, inReg, inReg) );
80120       sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
80121       break;
80122     }
80123 #endif /* SQLITE_OMIT_CAST */
80124     case TK_LT:
80125     case TK_LE:
80126     case TK_GT:
80127     case TK_GE:
80128     case TK_NE:
80129     case TK_EQ: {
80130       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
80131       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
80132       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
80133                   r1, r2, inReg, SQLITE_STOREP2);
80134       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
80135       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
80136       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
80137       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
80138       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
80139       assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
80140       testcase( regFree1==0 );
80141       testcase( regFree2==0 );
80142       break;
80143     }
80144     case TK_IS:
80145     case TK_ISNOT: {
80146       testcase( op==TK_IS );
80147       testcase( op==TK_ISNOT );
80148       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
80149       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
80150       op = (op==TK_IS) ? TK_EQ : TK_NE;
80151       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
80152                   r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ);
80153       VdbeCoverageIf(v, op==TK_EQ);
80154       VdbeCoverageIf(v, op==TK_NE);
80155       testcase( regFree1==0 );
80156       testcase( regFree2==0 );
80157       break;
80158     }
80159     case TK_AND:
80160     case TK_OR:
80161     case TK_PLUS:
80162     case TK_STAR:
80163     case TK_MINUS:
80164     case TK_REM:
80165     case TK_BITAND:
80166     case TK_BITOR:
80167     case TK_SLASH:
80168     case TK_LSHIFT:
80169     case TK_RSHIFT:
80170     case TK_CONCAT: {
80171       assert( TK_AND==OP_And );            testcase( op==TK_AND );
80172       assert( TK_OR==OP_Or );              testcase( op==TK_OR );
80173       assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
80174       assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
80175       assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
80176       assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
80177       assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
80178       assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
80179       assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
80180       assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
80181       assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
80182       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
80183       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
80184       sqlite3VdbeAddOp3(v, op, r2, r1, target);
80185       testcase( regFree1==0 );
80186       testcase( regFree2==0 );
80187       break;
80188     }
80189     case TK_UMINUS: {
80190       Expr *pLeft = pExpr->pLeft;
80191       assert( pLeft );
80192       if( pLeft->op==TK_INTEGER ){
80193         codeInteger(pParse, pLeft, 1, target);
80194 #ifndef SQLITE_OMIT_FLOATING_POINT
80195       }else if( pLeft->op==TK_FLOAT ){
80196         assert( !ExprHasProperty(pExpr, EP_IntValue) );
80197         codeReal(v, pLeft->u.zToken, 1, target);
80198 #endif
80199       }else{
80200         tempX.op = TK_INTEGER;
80201         tempX.flags = EP_IntValue|EP_TokenOnly;
80202         tempX.u.iValue = 0;
80203         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
80204         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
80205         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
80206         testcase( regFree2==0 );
80207       }
80208       inReg = target;
80209       break;
80210     }
80211     case TK_BITNOT:
80212     case TK_NOT: {
80213       assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
80214       assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
80215       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
80216       testcase( regFree1==0 );
80217       inReg = target;
80218       sqlite3VdbeAddOp2(v, op, r1, inReg);
80219       break;
80220     }
80221     case TK_ISNULL:
80222     case TK_NOTNULL: {
80223       int addr;
80224       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
80225       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
80226       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
80227       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
80228       testcase( regFree1==0 );
80229       addr = sqlite3VdbeAddOp1(v, op, r1);
80230       VdbeCoverageIf(v, op==TK_ISNULL);
80231       VdbeCoverageIf(v, op==TK_NOTNULL);
80232       sqlite3VdbeAddOp2(v, OP_AddImm, target, -1);
80233       sqlite3VdbeJumpHere(v, addr);
80234       break;
80235     }
80236     case TK_AGG_FUNCTION: {
80237       AggInfo *pInfo = pExpr->pAggInfo;
80238       if( pInfo==0 ){
80239         assert( !ExprHasProperty(pExpr, EP_IntValue) );
80240         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
80241       }else{
80242         inReg = pInfo->aFunc[pExpr->iAgg].iMem;
80243       }
80244       break;
80245     }
80246     case TK_FUNCTION: {
80247       ExprList *pFarg;       /* List of function arguments */
80248       int nFarg;             /* Number of function arguments */
80249       FuncDef *pDef;         /* The function definition object */
80250       int nId;               /* Length of the function name in bytes */
80251       const char *zId;       /* The function name */
80252       u32 constMask = 0;     /* Mask of function arguments that are constant */
80253       int i;                 /* Loop counter */
80254       u8 enc = ENC(db);      /* The text encoding used by this database */
80255       CollSeq *pColl = 0;    /* A collating sequence */
80256 
80257       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
80258       if( ExprHasProperty(pExpr, EP_TokenOnly) ){
80259         pFarg = 0;
80260       }else{
80261         pFarg = pExpr->x.pList;
80262       }
80263       nFarg = pFarg ? pFarg->nExpr : 0;
80264       assert( !ExprHasProperty(pExpr, EP_IntValue) );
80265       zId = pExpr->u.zToken;
80266       nId = sqlite3Strlen30(zId);
80267       pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0);
80268       if( pDef==0 ){
80269         sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId);
80270         break;
80271       }
80272 
80273       /* Attempt a direct implementation of the built-in COALESCE() and
80274       ** IFNULL() functions.  This avoids unnecessary evalation of
80275       ** arguments past the first non-NULL argument.
80276       */
80277       if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){
80278         int endCoalesce = sqlite3VdbeMakeLabel(v);
80279         assert( nFarg>=2 );
80280         sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
80281         for(i=1; i<nFarg; i++){
80282           sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
80283           VdbeCoverage(v);
80284           sqlite3ExprCacheRemove(pParse, target, 1);
80285           sqlite3ExprCachePush(pParse);
80286           sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
80287           sqlite3ExprCachePop(pParse);
80288         }
80289         sqlite3VdbeResolveLabel(v, endCoalesce);
80290         break;
80291       }
80292 
80293       /* The UNLIKELY() function is a no-op.  The result is the value
80294       ** of the first argument.
80295       */
80296       if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){
80297         assert( nFarg>=1 );
80298         sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
80299         break;
80300       }
80301 
80302       for(i=0; i<nFarg; i++){
80303         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
80304           testcase( i==31 );
80305           constMask |= MASKBIT32(i);
80306         }
80307         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
80308           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
80309         }
80310       }
80311       if( pFarg ){
80312         if( constMask ){
80313           r1 = pParse->nMem+1;
80314           pParse->nMem += nFarg;
80315         }else{
80316           r1 = sqlite3GetTempRange(pParse, nFarg);
80317         }
80318 
80319         /* For length() and typeof() functions with a column argument,
80320         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
80321         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
80322         ** loading.
80323         */
80324         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
80325           u8 exprOp;
80326           assert( nFarg==1 );
80327           assert( pFarg->a[0].pExpr!=0 );
80328           exprOp = pFarg->a[0].pExpr->op;
80329           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
80330             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
80331             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
80332             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
80333             pFarg->a[0].pExpr->op2 =
80334                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
80335           }
80336         }
80337 
80338         sqlite3ExprCachePush(pParse);     /* Ticket 2ea2425d34be */
80339         sqlite3ExprCodeExprList(pParse, pFarg, r1,
80340                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
80341         sqlite3ExprCachePop(pParse);      /* Ticket 2ea2425d34be */
80342       }else{
80343         r1 = 0;
80344       }
80345 #ifndef SQLITE_OMIT_VIRTUALTABLE
80346       /* Possibly overload the function if the first argument is
80347       ** a virtual table column.
80348       **
80349       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
80350       ** second argument, not the first, as the argument to test to
80351       ** see if it is a column in a virtual table.  This is done because
80352       ** the left operand of infix functions (the operand we want to
80353       ** control overloading) ends up as the second argument to the
80354       ** function.  The expression "A glob B" is equivalent to
80355       ** "glob(B,A).  We want to use the A in "A glob B" to test
80356       ** for function overloading.  But we use the B term in "glob(B,A)".
80357       */
80358       if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){
80359         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
80360       }else if( nFarg>0 ){
80361         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
80362       }
80363 #endif
80364       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
80365         if( !pColl ) pColl = db->pDfltColl;
80366         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
80367       }
80368       sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target,
80369                         (char*)pDef, P4_FUNCDEF);
80370       sqlite3VdbeChangeP5(v, (u8)nFarg);
80371       if( nFarg && constMask==0 ){
80372         sqlite3ReleaseTempRange(pParse, r1, nFarg);
80373       }
80374       break;
80375     }
80376 #ifndef SQLITE_OMIT_SUBQUERY
80377     case TK_EXISTS:
80378     case TK_SELECT: {
80379       testcase( op==TK_EXISTS );
80380       testcase( op==TK_SELECT );
80381       inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0);
80382       break;
80383     }
80384     case TK_IN: {
80385       int destIfFalse = sqlite3VdbeMakeLabel(v);
80386       int destIfNull = sqlite3VdbeMakeLabel(v);
80387       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
80388       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
80389       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
80390       sqlite3VdbeResolveLabel(v, destIfFalse);
80391       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
80392       sqlite3VdbeResolveLabel(v, destIfNull);
80393       break;
80394     }
80395 #endif /* SQLITE_OMIT_SUBQUERY */
80396 
80397 
80398     /*
80399     **    x BETWEEN y AND z
80400     **
80401     ** This is equivalent to
80402     **
80403     **    x>=y AND x<=z
80404     **
80405     ** X is stored in pExpr->pLeft.
80406     ** Y is stored in pExpr->pList->a[0].pExpr.
80407     ** Z is stored in pExpr->pList->a[1].pExpr.
80408     */
80409     case TK_BETWEEN: {
80410       Expr *pLeft = pExpr->pLeft;
80411       struct ExprList_item *pLItem = pExpr->x.pList->a;
80412       Expr *pRight = pLItem->pExpr;
80413 
80414       r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
80415       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
80416       testcase( regFree1==0 );
80417       testcase( regFree2==0 );
80418       r3 = sqlite3GetTempReg(pParse);
80419       r4 = sqlite3GetTempReg(pParse);
80420       codeCompare(pParse, pLeft, pRight, OP_Ge,
80421                   r1, r2, r3, SQLITE_STOREP2);  VdbeCoverage(v);
80422       pLItem++;
80423       pRight = pLItem->pExpr;
80424       sqlite3ReleaseTempReg(pParse, regFree2);
80425       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
80426       testcase( regFree2==0 );
80427       codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
80428       VdbeCoverage(v);
80429       sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
80430       sqlite3ReleaseTempReg(pParse, r3);
80431       sqlite3ReleaseTempReg(pParse, r4);
80432       break;
80433     }
80434     case TK_COLLATE:
80435     case TK_UPLUS: {
80436       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
80437       break;
80438     }
80439 
80440     case TK_TRIGGER: {
80441       /* If the opcode is TK_TRIGGER, then the expression is a reference
80442       ** to a column in the new.* or old.* pseudo-tables available to
80443       ** trigger programs. In this case Expr.iTable is set to 1 for the
80444       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
80445       ** is set to the column of the pseudo-table to read, or to -1 to
80446       ** read the rowid field.
80447       **
80448       ** The expression is implemented using an OP_Param opcode. The p1
80449       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
80450       ** to reference another column of the old.* pseudo-table, where
80451       ** i is the index of the column. For a new.rowid reference, p1 is
80452       ** set to (n+1), where n is the number of columns in each pseudo-table.
80453       ** For a reference to any other column in the new.* pseudo-table, p1
80454       ** is set to (n+2+i), where n and i are as defined previously. For
80455       ** example, if the table on which triggers are being fired is
80456       ** declared as:
80457       **
80458       **   CREATE TABLE t1(a, b);
80459       **
80460       ** Then p1 is interpreted as follows:
80461       **
80462       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
80463       **   p1==1   ->    old.a         p1==4   ->    new.a
80464       **   p1==2   ->    old.b         p1==5   ->    new.b
80465       */
80466       Table *pTab = pExpr->pTab;
80467       int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
80468 
80469       assert( pExpr->iTable==0 || pExpr->iTable==1 );
80470       assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
80471       assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
80472       assert( p1>=0 && p1<(pTab->nCol*2+2) );
80473 
80474       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
80475       VdbeComment((v, "%s.%s -> $%d",
80476         (pExpr->iTable ? "new" : "old"),
80477         (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName),
80478         target
80479       ));
80480 
80481 #ifndef SQLITE_OMIT_FLOATING_POINT
80482       /* If the column has REAL affinity, it may currently be stored as an
80483       ** integer. Use OP_RealAffinity to make sure it is really real.  */
80484       if( pExpr->iColumn>=0
80485        && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
80486       ){
80487         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
80488       }
80489 #endif
80490       break;
80491     }
80492 
80493 
80494     /*
80495     ** Form A:
80496     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
80497     **
80498     ** Form B:
80499     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
80500     **
80501     ** Form A is can be transformed into the equivalent form B as follows:
80502     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
80503     **        WHEN x=eN THEN rN ELSE y END
80504     **
80505     ** X (if it exists) is in pExpr->pLeft.
80506     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
80507     ** odd.  The Y is also optional.  If the number of elements in x.pList
80508     ** is even, then Y is omitted and the "otherwise" result is NULL.
80509     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
80510     **
80511     ** The result of the expression is the Ri for the first matching Ei,
80512     ** or if there is no matching Ei, the ELSE term Y, or if there is
80513     ** no ELSE term, NULL.
80514     */
80515     default: assert( op==TK_CASE ); {
80516       int endLabel;                     /* GOTO label for end of CASE stmt */
80517       int nextCase;                     /* GOTO label for next WHEN clause */
80518       int nExpr;                        /* 2x number of WHEN terms */
80519       int i;                            /* Loop counter */
80520       ExprList *pEList;                 /* List of WHEN terms */
80521       struct ExprList_item *aListelem;  /* Array of WHEN terms */
80522       Expr opCompare;                   /* The X==Ei expression */
80523       Expr *pX;                         /* The X expression */
80524       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
80525       VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; )
80526 
80527       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
80528       assert(pExpr->x.pList->nExpr > 0);
80529       pEList = pExpr->x.pList;
80530       aListelem = pEList->a;
80531       nExpr = pEList->nExpr;
80532       endLabel = sqlite3VdbeMakeLabel(v);
80533       if( (pX = pExpr->pLeft)!=0 ){
80534         tempX = *pX;
80535         testcase( pX->op==TK_COLUMN );
80536         exprToRegister(&tempX, sqlite3ExprCodeTemp(pParse, pX, &regFree1));
80537         testcase( regFree1==0 );
80538         opCompare.op = TK_EQ;
80539         opCompare.pLeft = &tempX;
80540         pTest = &opCompare;
80541         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
80542         ** The value in regFree1 might get SCopy-ed into the file result.
80543         ** So make sure that the regFree1 register is not reused for other
80544         ** purposes and possibly overwritten.  */
80545         regFree1 = 0;
80546       }
80547       for(i=0; i<nExpr-1; i=i+2){
80548         sqlite3ExprCachePush(pParse);
80549         if( pX ){
80550           assert( pTest!=0 );
80551           opCompare.pRight = aListelem[i].pExpr;
80552         }else{
80553           pTest = aListelem[i].pExpr;
80554         }
80555         nextCase = sqlite3VdbeMakeLabel(v);
80556         testcase( pTest->op==TK_COLUMN );
80557         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
80558         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
80559         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
80560         sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel);
80561         sqlite3ExprCachePop(pParse);
80562         sqlite3VdbeResolveLabel(v, nextCase);
80563       }
80564       if( (nExpr&1)!=0 ){
80565         sqlite3ExprCachePush(pParse);
80566         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
80567         sqlite3ExprCachePop(pParse);
80568       }else{
80569         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
80570       }
80571       assert( db->mallocFailed || pParse->nErr>0
80572            || pParse->iCacheLevel==iCacheLevel );
80573       sqlite3VdbeResolveLabel(v, endLabel);
80574       break;
80575     }
80576 #ifndef SQLITE_OMIT_TRIGGER
80577     case TK_RAISE: {
80578       assert( pExpr->affinity==OE_Rollback
80579            || pExpr->affinity==OE_Abort
80580            || pExpr->affinity==OE_Fail
80581            || pExpr->affinity==OE_Ignore
80582       );
80583       if( !pParse->pTriggerTab ){
80584         sqlite3ErrorMsg(pParse,
80585                        "RAISE() may only be used within a trigger-program");
80586         return 0;
80587       }
80588       if( pExpr->affinity==OE_Abort ){
80589         sqlite3MayAbort(pParse);
80590       }
80591       assert( !ExprHasProperty(pExpr, EP_IntValue) );
80592       if( pExpr->affinity==OE_Ignore ){
80593         sqlite3VdbeAddOp4(
80594             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
80595         VdbeCoverage(v);
80596       }else{
80597         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER,
80598                               pExpr->affinity, pExpr->u.zToken, 0, 0);
80599       }
80600 
80601       break;
80602     }
80603 #endif
80604   }
80605   sqlite3ReleaseTempReg(pParse, regFree1);
80606   sqlite3ReleaseTempReg(pParse, regFree2);
80607   return inReg;
80608 }
80609 
80610 /*
80611 ** Factor out the code of the given expression to initialization time.
80612 */
80613 SQLITE_PRIVATE void sqlite3ExprCodeAtInit(
80614   Parse *pParse,    /* Parsing context */
80615   Expr *pExpr,      /* The expression to code when the VDBE initializes */
80616   int regDest,      /* Store the value in this register */
80617   u8 reusable       /* True if this expression is reusable */
80618 ){
80619   ExprList *p;
80620   assert( ConstFactorOk(pParse) );
80621   p = pParse->pConstExpr;
80622   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
80623   p = sqlite3ExprListAppend(pParse, p, pExpr);
80624   if( p ){
80625      struct ExprList_item *pItem = &p->a[p->nExpr-1];
80626      pItem->u.iConstExprReg = regDest;
80627      pItem->reusable = reusable;
80628   }
80629   pParse->pConstExpr = p;
80630 }
80631 
80632 /*
80633 ** Generate code to evaluate an expression and store the results
80634 ** into a register.  Return the register number where the results
80635 ** are stored.
80636 **
80637 ** If the register is a temporary register that can be deallocated,
80638 ** then write its number into *pReg.  If the result register is not
80639 ** a temporary, then set *pReg to zero.
80640 **
80641 ** If pExpr is a constant, then this routine might generate this
80642 ** code to fill the register in the initialization section of the
80643 ** VDBE program, in order to factor it out of the evaluation loop.
80644 */
80645 SQLITE_PRIVATE int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
80646   int r2;
80647   pExpr = sqlite3ExprSkipCollate(pExpr);
80648   if( ConstFactorOk(pParse)
80649    && pExpr->op!=TK_REGISTER
80650    && sqlite3ExprIsConstantNotJoin(pExpr)
80651   ){
80652     ExprList *p = pParse->pConstExpr;
80653     int i;
80654     *pReg  = 0;
80655     if( p ){
80656       struct ExprList_item *pItem;
80657       for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
80658         if( pItem->reusable && sqlite3ExprCompare(pItem->pExpr,pExpr,-1)==0 ){
80659           return pItem->u.iConstExprReg;
80660         }
80661       }
80662     }
80663     r2 = ++pParse->nMem;
80664     sqlite3ExprCodeAtInit(pParse, pExpr, r2, 1);
80665   }else{
80666     int r1 = sqlite3GetTempReg(pParse);
80667     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
80668     if( r2==r1 ){
80669       *pReg = r1;
80670     }else{
80671       sqlite3ReleaseTempReg(pParse, r1);
80672       *pReg = 0;
80673     }
80674   }
80675   return r2;
80676 }
80677 
80678 /*
80679 ** Generate code that will evaluate expression pExpr and store the
80680 ** results in register target.  The results are guaranteed to appear
80681 ** in register target.
80682 */
80683 SQLITE_PRIVATE void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
80684   int inReg;
80685 
80686   assert( target>0 && target<=pParse->nMem );
80687   if( pExpr && pExpr->op==TK_REGISTER ){
80688     sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
80689   }else{
80690     inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
80691     assert( pParse->pVdbe || pParse->db->mallocFailed );
80692     if( inReg!=target && pParse->pVdbe ){
80693       sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
80694     }
80695   }
80696 }
80697 
80698 /*
80699 ** Generate code that will evaluate expression pExpr and store the
80700 ** results in register target.  The results are guaranteed to appear
80701 ** in register target.  If the expression is constant, then this routine
80702 ** might choose to code the expression at initialization time.
80703 */
80704 SQLITE_PRIVATE void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
80705   if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){
80706     sqlite3ExprCodeAtInit(pParse, pExpr, target, 0);
80707   }else{
80708     sqlite3ExprCode(pParse, pExpr, target);
80709   }
80710 }
80711 
80712 /*
80713 ** Generate code that evalutes the given expression and puts the result
80714 ** in register target.
80715 **
80716 ** Also make a copy of the expression results into another "cache" register
80717 ** and modify the expression so that the next time it is evaluated,
80718 ** the result is a copy of the cache register.
80719 **
80720 ** This routine is used for expressions that are used multiple
80721 ** times.  They are evaluated once and the results of the expression
80722 ** are reused.
80723 */
80724 SQLITE_PRIVATE void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
80725   Vdbe *v = pParse->pVdbe;
80726   int iMem;
80727 
80728   assert( target>0 );
80729   assert( pExpr->op!=TK_REGISTER );
80730   sqlite3ExprCode(pParse, pExpr, target);
80731   iMem = ++pParse->nMem;
80732   sqlite3VdbeAddOp2(v, OP_Copy, target, iMem);
80733   exprToRegister(pExpr, iMem);
80734 }
80735 
80736 #if defined(SQLITE_ENABLE_TREE_EXPLAIN)
80737 /*
80738 ** Generate a human-readable explanation of an expression tree.
80739 */
80740 SQLITE_PRIVATE void sqlite3ExplainExpr(Vdbe *pOut, Expr *pExpr){
80741   int op;                   /* The opcode being coded */
80742   const char *zBinOp = 0;   /* Binary operator */
80743   const char *zUniOp = 0;   /* Unary operator */
80744   if( pExpr==0 ){
80745     op = TK_NULL;
80746   }else{
80747     op = pExpr->op;
80748   }
80749   switch( op ){
80750     case TK_AGG_COLUMN: {
80751       sqlite3ExplainPrintf(pOut, "AGG{%d:%d}",
80752             pExpr->iTable, pExpr->iColumn);
80753       break;
80754     }
80755     case TK_COLUMN: {
80756       if( pExpr->iTable<0 ){
80757         /* This only happens when coding check constraints */
80758         sqlite3ExplainPrintf(pOut, "COLUMN(%d)", pExpr->iColumn);
80759       }else{
80760         sqlite3ExplainPrintf(pOut, "{%d:%d}",
80761                              pExpr->iTable, pExpr->iColumn);
80762       }
80763       break;
80764     }
80765     case TK_INTEGER: {
80766       if( pExpr->flags & EP_IntValue ){
80767         sqlite3ExplainPrintf(pOut, "%d", pExpr->u.iValue);
80768       }else{
80769         sqlite3ExplainPrintf(pOut, "%s", pExpr->u.zToken);
80770       }
80771       break;
80772     }
80773 #ifndef SQLITE_OMIT_FLOATING_POINT
80774     case TK_FLOAT: {
80775       sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken);
80776       break;
80777     }
80778 #endif
80779     case TK_STRING: {
80780       sqlite3ExplainPrintf(pOut,"%Q", pExpr->u.zToken);
80781       break;
80782     }
80783     case TK_NULL: {
80784       sqlite3ExplainPrintf(pOut,"NULL");
80785       break;
80786     }
80787 #ifndef SQLITE_OMIT_BLOB_LITERAL
80788     case TK_BLOB: {
80789       sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken);
80790       break;
80791     }
80792 #endif
80793     case TK_VARIABLE: {
80794       sqlite3ExplainPrintf(pOut,"VARIABLE(%s,%d)",
80795                            pExpr->u.zToken, pExpr->iColumn);
80796       break;
80797     }
80798     case TK_REGISTER: {
80799       sqlite3ExplainPrintf(pOut,"REGISTER(%d)", pExpr->iTable);
80800       break;
80801     }
80802     case TK_AS: {
80803       sqlite3ExplainExpr(pOut, pExpr->pLeft);
80804       break;
80805     }
80806 #ifndef SQLITE_OMIT_CAST
80807     case TK_CAST: {
80808       /* Expressions of the form:   CAST(pLeft AS token) */
80809       const char *zAff = "unk";
80810       switch( sqlite3AffinityType(pExpr->u.zToken, 0) ){
80811         case SQLITE_AFF_TEXT:    zAff = "TEXT";     break;
80812         case SQLITE_AFF_NONE:    zAff = "NONE";     break;
80813         case SQLITE_AFF_NUMERIC: zAff = "NUMERIC";  break;
80814         case SQLITE_AFF_INTEGER: zAff = "INTEGER";  break;
80815         case SQLITE_AFF_REAL:    zAff = "REAL";     break;
80816       }
80817       sqlite3ExplainPrintf(pOut, "CAST-%s(", zAff);
80818       sqlite3ExplainExpr(pOut, pExpr->pLeft);
80819       sqlite3ExplainPrintf(pOut, ")");
80820       break;
80821     }
80822 #endif /* SQLITE_OMIT_CAST */
80823     case TK_LT:      zBinOp = "LT";     break;
80824     case TK_LE:      zBinOp = "LE";     break;
80825     case TK_GT:      zBinOp = "GT";     break;
80826     case TK_GE:      zBinOp = "GE";     break;
80827     case TK_NE:      zBinOp = "NE";     break;
80828     case TK_EQ:      zBinOp = "EQ";     break;
80829     case TK_IS:      zBinOp = "IS";     break;
80830     case TK_ISNOT:   zBinOp = "ISNOT";  break;
80831     case TK_AND:     zBinOp = "AND";    break;
80832     case TK_OR:      zBinOp = "OR";     break;
80833     case TK_PLUS:    zBinOp = "ADD";    break;
80834     case TK_STAR:    zBinOp = "MUL";    break;
80835     case TK_MINUS:   zBinOp = "SUB";    break;
80836     case TK_REM:     zBinOp = "REM";    break;
80837     case TK_BITAND:  zBinOp = "BITAND"; break;
80838     case TK_BITOR:   zBinOp = "BITOR";  break;
80839     case TK_SLASH:   zBinOp = "DIV";    break;
80840     case TK_LSHIFT:  zBinOp = "LSHIFT"; break;
80841     case TK_RSHIFT:  zBinOp = "RSHIFT"; break;
80842     case TK_CONCAT:  zBinOp = "CONCAT"; break;
80843 
80844     case TK_UMINUS:  zUniOp = "UMINUS"; break;
80845     case TK_UPLUS:   zUniOp = "UPLUS";  break;
80846     case TK_BITNOT:  zUniOp = "BITNOT"; break;
80847     case TK_NOT:     zUniOp = "NOT";    break;
80848     case TK_ISNULL:  zUniOp = "ISNULL"; break;
80849     case TK_NOTNULL: zUniOp = "NOTNULL"; break;
80850 
80851     case TK_COLLATE: {
80852       sqlite3ExplainExpr(pOut, pExpr->pLeft);
80853       sqlite3ExplainPrintf(pOut,".COLLATE(%s)",pExpr->u.zToken);
80854       break;
80855     }
80856 
80857     case TK_AGG_FUNCTION:
80858     case TK_FUNCTION: {
80859       ExprList *pFarg;       /* List of function arguments */
80860       if( ExprHasProperty(pExpr, EP_TokenOnly) ){
80861         pFarg = 0;
80862       }else{
80863         pFarg = pExpr->x.pList;
80864       }
80865       if( op==TK_AGG_FUNCTION ){
80866         sqlite3ExplainPrintf(pOut, "AGG_FUNCTION%d:%s(",
80867                              pExpr->op2, pExpr->u.zToken);
80868       }else{
80869         sqlite3ExplainPrintf(pOut, "FUNCTION:%s(", pExpr->u.zToken);
80870       }
80871       if( pFarg ){
80872         sqlite3ExplainExprList(pOut, pFarg);
80873       }
80874       sqlite3ExplainPrintf(pOut, ")");
80875       break;
80876     }
80877 #ifndef SQLITE_OMIT_SUBQUERY
80878     case TK_EXISTS: {
80879       sqlite3ExplainPrintf(pOut, "EXISTS(");
80880       sqlite3ExplainSelect(pOut, pExpr->x.pSelect);
80881       sqlite3ExplainPrintf(pOut,")");
80882       break;
80883     }
80884     case TK_SELECT: {
80885       sqlite3ExplainPrintf(pOut, "(");
80886       sqlite3ExplainSelect(pOut, pExpr->x.pSelect);
80887       sqlite3ExplainPrintf(pOut, ")");
80888       break;
80889     }
80890     case TK_IN: {
80891       sqlite3ExplainPrintf(pOut, "IN(");
80892       sqlite3ExplainExpr(pOut, pExpr->pLeft);
80893       sqlite3ExplainPrintf(pOut, ",");
80894       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
80895         sqlite3ExplainSelect(pOut, pExpr->x.pSelect);
80896       }else{
80897         sqlite3ExplainExprList(pOut, pExpr->x.pList);
80898       }
80899       sqlite3ExplainPrintf(pOut, ")");
80900       break;
80901     }
80902 #endif /* SQLITE_OMIT_SUBQUERY */
80903 
80904     /*
80905     **    x BETWEEN y AND z
80906     **
80907     ** This is equivalent to
80908     **
80909     **    x>=y AND x<=z
80910     **
80911     ** X is stored in pExpr->pLeft.
80912     ** Y is stored in pExpr->pList->a[0].pExpr.
80913     ** Z is stored in pExpr->pList->a[1].pExpr.
80914     */
80915     case TK_BETWEEN: {
80916       Expr *pX = pExpr->pLeft;
80917       Expr *pY = pExpr->x.pList->a[0].pExpr;
80918       Expr *pZ = pExpr->x.pList->a[1].pExpr;
80919       sqlite3ExplainPrintf(pOut, "BETWEEN(");
80920       sqlite3ExplainExpr(pOut, pX);
80921       sqlite3ExplainPrintf(pOut, ",");
80922       sqlite3ExplainExpr(pOut, pY);
80923       sqlite3ExplainPrintf(pOut, ",");
80924       sqlite3ExplainExpr(pOut, pZ);
80925       sqlite3ExplainPrintf(pOut, ")");
80926       break;
80927     }
80928     case TK_TRIGGER: {
80929       /* If the opcode is TK_TRIGGER, then the expression is a reference
80930       ** to a column in the new.* or old.* pseudo-tables available to
80931       ** trigger programs. In this case Expr.iTable is set to 1 for the
80932       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
80933       ** is set to the column of the pseudo-table to read, or to -1 to
80934       ** read the rowid field.
80935       */
80936       sqlite3ExplainPrintf(pOut, "%s(%d)",
80937           pExpr->iTable ? "NEW" : "OLD", pExpr->iColumn);
80938       break;
80939     }
80940     case TK_CASE: {
80941       sqlite3ExplainPrintf(pOut, "CASE(");
80942       sqlite3ExplainExpr(pOut, pExpr->pLeft);
80943       sqlite3ExplainPrintf(pOut, ",");
80944       sqlite3ExplainExprList(pOut, pExpr->x.pList);
80945       break;
80946     }
80947 #ifndef SQLITE_OMIT_TRIGGER
80948     case TK_RAISE: {
80949       const char *zType = "unk";
80950       switch( pExpr->affinity ){
80951         case OE_Rollback:   zType = "rollback";  break;
80952         case OE_Abort:      zType = "abort";     break;
80953         case OE_Fail:       zType = "fail";      break;
80954         case OE_Ignore:     zType = "ignore";    break;
80955       }
80956       sqlite3ExplainPrintf(pOut, "RAISE-%s(%s)", zType, pExpr->u.zToken);
80957       break;
80958     }
80959 #endif
80960   }
80961   if( zBinOp ){
80962     sqlite3ExplainPrintf(pOut,"%s(", zBinOp);
80963     sqlite3ExplainExpr(pOut, pExpr->pLeft);
80964     sqlite3ExplainPrintf(pOut,",");
80965     sqlite3ExplainExpr(pOut, pExpr->pRight);
80966     sqlite3ExplainPrintf(pOut,")");
80967   }else if( zUniOp ){
80968     sqlite3ExplainPrintf(pOut,"%s(", zUniOp);
80969     sqlite3ExplainExpr(pOut, pExpr->pLeft);
80970     sqlite3ExplainPrintf(pOut,")");
80971   }
80972 }
80973 #endif /* defined(SQLITE_ENABLE_TREE_EXPLAIN) */
80974 
80975 #if defined(SQLITE_ENABLE_TREE_EXPLAIN)
80976 /*
80977 ** Generate a human-readable explanation of an expression list.
80978 */
80979 SQLITE_PRIVATE void sqlite3ExplainExprList(Vdbe *pOut, ExprList *pList){
80980   int i;
80981   if( pList==0 || pList->nExpr==0 ){
80982     sqlite3ExplainPrintf(pOut, "(empty-list)");
80983     return;
80984   }else if( pList->nExpr==1 ){
80985     sqlite3ExplainExpr(pOut, pList->a[0].pExpr);
80986   }else{
80987     sqlite3ExplainPush(pOut);
80988     for(i=0; i<pList->nExpr; i++){
80989       sqlite3ExplainPrintf(pOut, "item[%d] = ", i);
80990       sqlite3ExplainPush(pOut);
80991       sqlite3ExplainExpr(pOut, pList->a[i].pExpr);
80992       sqlite3ExplainPop(pOut);
80993       if( pList->a[i].zName ){
80994         sqlite3ExplainPrintf(pOut, " AS %s", pList->a[i].zName);
80995       }
80996       if( pList->a[i].bSpanIsTab ){
80997         sqlite3ExplainPrintf(pOut, " (%s)", pList->a[i].zSpan);
80998       }
80999       if( i<pList->nExpr-1 ){
81000         sqlite3ExplainNL(pOut);
81001       }
81002     }
81003     sqlite3ExplainPop(pOut);
81004   }
81005 }
81006 #endif /* SQLITE_DEBUG */
81007 
81008 /*
81009 ** Generate code that pushes the value of every element of the given
81010 ** expression list into a sequence of registers beginning at target.
81011 **
81012 ** Return the number of elements evaluated.
81013 **
81014 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
81015 ** filled using OP_SCopy.  OP_Copy must be used instead.
81016 **
81017 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
81018 ** factored out into initialization code.
81019 */
81020 SQLITE_PRIVATE int sqlite3ExprCodeExprList(
81021   Parse *pParse,     /* Parsing context */
81022   ExprList *pList,   /* The expression list to be coded */
81023   int target,        /* Where to write results */
81024   u8 flags           /* SQLITE_ECEL_* flags */
81025 ){
81026   struct ExprList_item *pItem;
81027   int i, n;
81028   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
81029   assert( pList!=0 );
81030   assert( target>0 );
81031   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
81032   n = pList->nExpr;
81033   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
81034   for(pItem=pList->a, i=0; i<n; i++, pItem++){
81035     Expr *pExpr = pItem->pExpr;
81036     if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){
81037       sqlite3ExprCodeAtInit(pParse, pExpr, target+i, 0);
81038     }else{
81039       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
81040       if( inReg!=target+i ){
81041         VdbeOp *pOp;
81042         Vdbe *v = pParse->pVdbe;
81043         if( copyOp==OP_Copy
81044          && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
81045          && pOp->p1+pOp->p3+1==inReg
81046          && pOp->p2+pOp->p3+1==target+i
81047         ){
81048           pOp->p3++;
81049         }else{
81050           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
81051         }
81052       }
81053     }
81054   }
81055   return n;
81056 }
81057 
81058 /*
81059 ** Generate code for a BETWEEN operator.
81060 **
81061 **    x BETWEEN y AND z
81062 **
81063 ** The above is equivalent to
81064 **
81065 **    x>=y AND x<=z
81066 **
81067 ** Code it as such, taking care to do the common subexpression
81068 ** elementation of x.
81069 */
81070 static void exprCodeBetween(
81071   Parse *pParse,    /* Parsing and code generating context */
81072   Expr *pExpr,      /* The BETWEEN expression */
81073   int dest,         /* Jump here if the jump is taken */
81074   int jumpIfTrue,   /* Take the jump if the BETWEEN is true */
81075   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
81076 ){
81077   Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
81078   Expr compLeft;    /* The  x>=y  term */
81079   Expr compRight;   /* The  x<=z  term */
81080   Expr exprX;       /* The  x  subexpression */
81081   int regFree1 = 0; /* Temporary use register */
81082 
81083   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
81084   exprX = *pExpr->pLeft;
81085   exprAnd.op = TK_AND;
81086   exprAnd.pLeft = &compLeft;
81087   exprAnd.pRight = &compRight;
81088   compLeft.op = TK_GE;
81089   compLeft.pLeft = &exprX;
81090   compLeft.pRight = pExpr->x.pList->a[0].pExpr;
81091   compRight.op = TK_LE;
81092   compRight.pLeft = &exprX;
81093   compRight.pRight = pExpr->x.pList->a[1].pExpr;
81094   exprToRegister(&exprX, sqlite3ExprCodeTemp(pParse, &exprX, &regFree1));
81095   if( jumpIfTrue ){
81096     sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
81097   }else{
81098     sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
81099   }
81100   sqlite3ReleaseTempReg(pParse, regFree1);
81101 
81102   /* Ensure adequate test coverage */
81103   testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 );
81104   testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 );
81105   testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 );
81106   testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 );
81107   testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 );
81108   testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 );
81109   testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 );
81110   testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 );
81111 }
81112 
81113 /*
81114 ** Generate code for a boolean expression such that a jump is made
81115 ** to the label "dest" if the expression is true but execution
81116 ** continues straight thru if the expression is false.
81117 **
81118 ** If the expression evaluates to NULL (neither true nor false), then
81119 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
81120 **
81121 ** This code depends on the fact that certain token values (ex: TK_EQ)
81122 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
81123 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
81124 ** the make process cause these values to align.  Assert()s in the code
81125 ** below verify that the numbers are aligned correctly.
81126 */
81127 SQLITE_PRIVATE void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
81128   Vdbe *v = pParse->pVdbe;
81129   int op = 0;
81130   int regFree1 = 0;
81131   int regFree2 = 0;
81132   int r1, r2;
81133 
81134   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
81135   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
81136   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
81137   op = pExpr->op;
81138   switch( op ){
81139     case TK_AND: {
81140       int d2 = sqlite3VdbeMakeLabel(v);
81141       testcase( jumpIfNull==0 );
81142       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
81143       sqlite3ExprCachePush(pParse);
81144       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
81145       sqlite3VdbeResolveLabel(v, d2);
81146       sqlite3ExprCachePop(pParse);
81147       break;
81148     }
81149     case TK_OR: {
81150       testcase( jumpIfNull==0 );
81151       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
81152       sqlite3ExprCachePush(pParse);
81153       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
81154       sqlite3ExprCachePop(pParse);
81155       break;
81156     }
81157     case TK_NOT: {
81158       testcase( jumpIfNull==0 );
81159       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
81160       break;
81161     }
81162     case TK_LT:
81163     case TK_LE:
81164     case TK_GT:
81165     case TK_GE:
81166     case TK_NE:
81167     case TK_EQ: {
81168       testcase( jumpIfNull==0 );
81169       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
81170       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
81171       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
81172                   r1, r2, dest, jumpIfNull);
81173       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
81174       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
81175       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
81176       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
81177       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
81178       assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
81179       testcase( regFree1==0 );
81180       testcase( regFree2==0 );
81181       break;
81182     }
81183     case TK_IS:
81184     case TK_ISNOT: {
81185       testcase( op==TK_IS );
81186       testcase( op==TK_ISNOT );
81187       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
81188       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
81189       op = (op==TK_IS) ? TK_EQ : TK_NE;
81190       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
81191                   r1, r2, dest, SQLITE_NULLEQ);
81192       VdbeCoverageIf(v, op==TK_EQ);
81193       VdbeCoverageIf(v, op==TK_NE);
81194       testcase( regFree1==0 );
81195       testcase( regFree2==0 );
81196       break;
81197     }
81198     case TK_ISNULL:
81199     case TK_NOTNULL: {
81200       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
81201       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
81202       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
81203       sqlite3VdbeAddOp2(v, op, r1, dest);
81204       VdbeCoverageIf(v, op==TK_ISNULL);
81205       VdbeCoverageIf(v, op==TK_NOTNULL);
81206       testcase( regFree1==0 );
81207       break;
81208     }
81209     case TK_BETWEEN: {
81210       testcase( jumpIfNull==0 );
81211       exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull);
81212       break;
81213     }
81214 #ifndef SQLITE_OMIT_SUBQUERY
81215     case TK_IN: {
81216       int destIfFalse = sqlite3VdbeMakeLabel(v);
81217       int destIfNull = jumpIfNull ? dest : destIfFalse;
81218       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
81219       sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
81220       sqlite3VdbeResolveLabel(v, destIfFalse);
81221       break;
81222     }
81223 #endif
81224     default: {
81225       if( exprAlwaysTrue(pExpr) ){
81226         sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
81227       }else if( exprAlwaysFalse(pExpr) ){
81228         /* No-op */
81229       }else{
81230         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
81231         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
81232         VdbeCoverage(v);
81233         testcase( regFree1==0 );
81234         testcase( jumpIfNull==0 );
81235       }
81236       break;
81237     }
81238   }
81239   sqlite3ReleaseTempReg(pParse, regFree1);
81240   sqlite3ReleaseTempReg(pParse, regFree2);
81241 }
81242 
81243 /*
81244 ** Generate code for a boolean expression such that a jump is made
81245 ** to the label "dest" if the expression is false but execution
81246 ** continues straight thru if the expression is true.
81247 **
81248 ** If the expression evaluates to NULL (neither true nor false) then
81249 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
81250 ** is 0.
81251 */
81252 SQLITE_PRIVATE void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
81253   Vdbe *v = pParse->pVdbe;
81254   int op = 0;
81255   int regFree1 = 0;
81256   int regFree2 = 0;
81257   int r1, r2;
81258 
81259   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
81260   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
81261   if( pExpr==0 )    return;
81262 
81263   /* The value of pExpr->op and op are related as follows:
81264   **
81265   **       pExpr->op            op
81266   **       ---------          ----------
81267   **       TK_ISNULL          OP_NotNull
81268   **       TK_NOTNULL         OP_IsNull
81269   **       TK_NE              OP_Eq
81270   **       TK_EQ              OP_Ne
81271   **       TK_GT              OP_Le
81272   **       TK_LE              OP_Gt
81273   **       TK_GE              OP_Lt
81274   **       TK_LT              OP_Ge
81275   **
81276   ** For other values of pExpr->op, op is undefined and unused.
81277   ** The value of TK_ and OP_ constants are arranged such that we
81278   ** can compute the mapping above using the following expression.
81279   ** Assert()s verify that the computation is correct.
81280   */
81281   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
81282 
81283   /* Verify correct alignment of TK_ and OP_ constants
81284   */
81285   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
81286   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
81287   assert( pExpr->op!=TK_NE || op==OP_Eq );
81288   assert( pExpr->op!=TK_EQ || op==OP_Ne );
81289   assert( pExpr->op!=TK_LT || op==OP_Ge );
81290   assert( pExpr->op!=TK_LE || op==OP_Gt );
81291   assert( pExpr->op!=TK_GT || op==OP_Le );
81292   assert( pExpr->op!=TK_GE || op==OP_Lt );
81293 
81294   switch( pExpr->op ){
81295     case TK_AND: {
81296       testcase( jumpIfNull==0 );
81297       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
81298       sqlite3ExprCachePush(pParse);
81299       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
81300       sqlite3ExprCachePop(pParse);
81301       break;
81302     }
81303     case TK_OR: {
81304       int d2 = sqlite3VdbeMakeLabel(v);
81305       testcase( jumpIfNull==0 );
81306       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
81307       sqlite3ExprCachePush(pParse);
81308       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
81309       sqlite3VdbeResolveLabel(v, d2);
81310       sqlite3ExprCachePop(pParse);
81311       break;
81312     }
81313     case TK_NOT: {
81314       testcase( jumpIfNull==0 );
81315       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
81316       break;
81317     }
81318     case TK_LT:
81319     case TK_LE:
81320     case TK_GT:
81321     case TK_GE:
81322     case TK_NE:
81323     case TK_EQ: {
81324       testcase( jumpIfNull==0 );
81325       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
81326       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
81327       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
81328                   r1, r2, dest, jumpIfNull);
81329       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
81330       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
81331       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
81332       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
81333       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
81334       assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
81335       testcase( regFree1==0 );
81336       testcase( regFree2==0 );
81337       break;
81338     }
81339     case TK_IS:
81340     case TK_ISNOT: {
81341       testcase( pExpr->op==TK_IS );
81342       testcase( pExpr->op==TK_ISNOT );
81343       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
81344       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
81345       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
81346       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
81347                   r1, r2, dest, SQLITE_NULLEQ);
81348       VdbeCoverageIf(v, op==TK_EQ);
81349       VdbeCoverageIf(v, op==TK_NE);
81350       testcase( regFree1==0 );
81351       testcase( regFree2==0 );
81352       break;
81353     }
81354     case TK_ISNULL:
81355     case TK_NOTNULL: {
81356       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
81357       sqlite3VdbeAddOp2(v, op, r1, dest);
81358       testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
81359       testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
81360       testcase( regFree1==0 );
81361       break;
81362     }
81363     case TK_BETWEEN: {
81364       testcase( jumpIfNull==0 );
81365       exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull);
81366       break;
81367     }
81368 #ifndef SQLITE_OMIT_SUBQUERY
81369     case TK_IN: {
81370       if( jumpIfNull ){
81371         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
81372       }else{
81373         int destIfNull = sqlite3VdbeMakeLabel(v);
81374         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
81375         sqlite3VdbeResolveLabel(v, destIfNull);
81376       }
81377       break;
81378     }
81379 #endif
81380     default: {
81381       if( exprAlwaysFalse(pExpr) ){
81382         sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
81383       }else if( exprAlwaysTrue(pExpr) ){
81384         /* no-op */
81385       }else{
81386         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
81387         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
81388         VdbeCoverage(v);
81389         testcase( regFree1==0 );
81390         testcase( jumpIfNull==0 );
81391       }
81392       break;
81393     }
81394   }
81395   sqlite3ReleaseTempReg(pParse, regFree1);
81396   sqlite3ReleaseTempReg(pParse, regFree2);
81397 }
81398 
81399 /*
81400 ** Do a deep comparison of two expression trees.  Return 0 if the two
81401 ** expressions are completely identical.  Return 1 if they differ only
81402 ** by a COLLATE operator at the top level.  Return 2 if there are differences
81403 ** other than the top-level COLLATE operator.
81404 **
81405 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
81406 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
81407 **
81408 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
81409 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
81410 **
81411 ** Sometimes this routine will return 2 even if the two expressions
81412 ** really are equivalent.  If we cannot prove that the expressions are
81413 ** identical, we return 2 just to be safe.  So if this routine
81414 ** returns 2, then you do not really know for certain if the two
81415 ** expressions are the same.  But if you get a 0 or 1 return, then you
81416 ** can be sure the expressions are the same.  In the places where
81417 ** this routine is used, it does not hurt to get an extra 2 - that
81418 ** just might result in some slightly slower code.  But returning
81419 ** an incorrect 0 or 1 could lead to a malfunction.
81420 */
81421 SQLITE_PRIVATE int sqlite3ExprCompare(Expr *pA, Expr *pB, int iTab){
81422   u32 combinedFlags;
81423   if( pA==0 || pB==0 ){
81424     return pB==pA ? 0 : 2;
81425   }
81426   combinedFlags = pA->flags | pB->flags;
81427   if( combinedFlags & EP_IntValue ){
81428     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
81429       return 0;
81430     }
81431     return 2;
81432   }
81433   if( pA->op!=pB->op ){
81434     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB, iTab)<2 ){
81435       return 1;
81436     }
81437     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){
81438       return 1;
81439     }
81440     return 2;
81441   }
81442   if( pA->op!=TK_COLUMN && ALWAYS(pA->op!=TK_AGG_COLUMN) && pA->u.zToken ){
81443     if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
81444       return pA->op==TK_COLLATE ? 1 : 2;
81445     }
81446   }
81447   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
81448   if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
81449     if( combinedFlags & EP_xIsSelect ) return 2;
81450     if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2;
81451     if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2;
81452     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
81453     if( ALWAYS((combinedFlags & EP_Reduced)==0) ){
81454       if( pA->iColumn!=pB->iColumn ) return 2;
81455       if( pA->iTable!=pB->iTable
81456        && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2;
81457     }
81458   }
81459   return 0;
81460 }
81461 
81462 /*
81463 ** Compare two ExprList objects.  Return 0 if they are identical and
81464 ** non-zero if they differ in any way.
81465 **
81466 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
81467 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
81468 **
81469 ** This routine might return non-zero for equivalent ExprLists.  The
81470 ** only consequence will be disabled optimizations.  But this routine
81471 ** must never return 0 if the two ExprList objects are different, or
81472 ** a malfunction will result.
81473 **
81474 ** Two NULL pointers are considered to be the same.  But a NULL pointer
81475 ** always differs from a non-NULL pointer.
81476 */
81477 SQLITE_PRIVATE int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
81478   int i;
81479   if( pA==0 && pB==0 ) return 0;
81480   if( pA==0 || pB==0 ) return 1;
81481   if( pA->nExpr!=pB->nExpr ) return 1;
81482   for(i=0; i<pA->nExpr; i++){
81483     Expr *pExprA = pA->a[i].pExpr;
81484     Expr *pExprB = pB->a[i].pExpr;
81485     if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
81486     if( sqlite3ExprCompare(pExprA, pExprB, iTab) ) return 1;
81487   }
81488   return 0;
81489 }
81490 
81491 /*
81492 ** Return true if we can prove the pE2 will always be true if pE1 is
81493 ** true.  Return false if we cannot complete the proof or if pE2 might
81494 ** be false.  Examples:
81495 **
81496 **     pE1: x==5       pE2: x==5             Result: true
81497 **     pE1: x>0        pE2: x==5             Result: false
81498 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
81499 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
81500 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
81501 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
81502 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
81503 **
81504 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
81505 ** Expr.iTable<0 then assume a table number given by iTab.
81506 **
81507 ** When in doubt, return false.  Returning true might give a performance
81508 ** improvement.  Returning false might cause a performance reduction, but
81509 ** it will always give the correct answer and is hence always safe.
81510 */
81511 SQLITE_PRIVATE int sqlite3ExprImpliesExpr(Expr *pE1, Expr *pE2, int iTab){
81512   if( sqlite3ExprCompare(pE1, pE2, iTab)==0 ){
81513     return 1;
81514   }
81515   if( pE2->op==TK_OR
81516    && (sqlite3ExprImpliesExpr(pE1, pE2->pLeft, iTab)
81517              || sqlite3ExprImpliesExpr(pE1, pE2->pRight, iTab) )
81518   ){
81519     return 1;
81520   }
81521   if( pE2->op==TK_NOTNULL
81522    && sqlite3ExprCompare(pE1->pLeft, pE2->pLeft, iTab)==0
81523    && (pE1->op!=TK_ISNULL && pE1->op!=TK_IS)
81524   ){
81525     return 1;
81526   }
81527   return 0;
81528 }
81529 
81530 /*
81531 ** An instance of the following structure is used by the tree walker
81532 ** to count references to table columns in the arguments of an
81533 ** aggregate function, in order to implement the
81534 ** sqlite3FunctionThisSrc() routine.
81535 */
81536 struct SrcCount {
81537   SrcList *pSrc;   /* One particular FROM clause in a nested query */
81538   int nThis;       /* Number of references to columns in pSrcList */
81539   int nOther;      /* Number of references to columns in other FROM clauses */
81540 };
81541 
81542 /*
81543 ** Count the number of references to columns.
81544 */
81545 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
81546   /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc()
81547   ** is always called before sqlite3ExprAnalyzeAggregates() and so the
81548   ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN.  If
81549   ** sqlite3FunctionUsesThisSrc() is used differently in the future, the
81550   ** NEVER() will need to be removed. */
81551   if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){
81552     int i;
81553     struct SrcCount *p = pWalker->u.pSrcCount;
81554     SrcList *pSrc = p->pSrc;
81555     for(i=0; i<pSrc->nSrc; i++){
81556       if( pExpr->iTable==pSrc->a[i].iCursor ) break;
81557     }
81558     if( i<pSrc->nSrc ){
81559       p->nThis++;
81560     }else{
81561       p->nOther++;
81562     }
81563   }
81564   return WRC_Continue;
81565 }
81566 
81567 /*
81568 ** Determine if any of the arguments to the pExpr Function reference
81569 ** pSrcList.  Return true if they do.  Also return true if the function
81570 ** has no arguments or has only constant arguments.  Return false if pExpr
81571 ** references columns but not columns of tables found in pSrcList.
81572 */
81573 SQLITE_PRIVATE int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
81574   Walker w;
81575   struct SrcCount cnt;
81576   assert( pExpr->op==TK_AGG_FUNCTION );
81577   memset(&w, 0, sizeof(w));
81578   w.xExprCallback = exprSrcCount;
81579   w.u.pSrcCount = &cnt;
81580   cnt.pSrc = pSrcList;
81581   cnt.nThis = 0;
81582   cnt.nOther = 0;
81583   sqlite3WalkExprList(&w, pExpr->x.pList);
81584   return cnt.nThis>0 || cnt.nOther==0;
81585 }
81586 
81587 /*
81588 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
81589 ** the new element.  Return a negative number if malloc fails.
81590 */
81591 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
81592   int i;
81593   pInfo->aCol = sqlite3ArrayAllocate(
81594        db,
81595        pInfo->aCol,
81596        sizeof(pInfo->aCol[0]),
81597        &pInfo->nColumn,
81598        &i
81599   );
81600   return i;
81601 }
81602 
81603 /*
81604 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
81605 ** the new element.  Return a negative number if malloc fails.
81606 */
81607 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
81608   int i;
81609   pInfo->aFunc = sqlite3ArrayAllocate(
81610        db,
81611        pInfo->aFunc,
81612        sizeof(pInfo->aFunc[0]),
81613        &pInfo->nFunc,
81614        &i
81615   );
81616   return i;
81617 }
81618 
81619 /*
81620 ** This is the xExprCallback for a tree walker.  It is used to
81621 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
81622 ** for additional information.
81623 */
81624 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
81625   int i;
81626   NameContext *pNC = pWalker->u.pNC;
81627   Parse *pParse = pNC->pParse;
81628   SrcList *pSrcList = pNC->pSrcList;
81629   AggInfo *pAggInfo = pNC->pAggInfo;
81630 
81631   switch( pExpr->op ){
81632     case TK_AGG_COLUMN:
81633     case TK_COLUMN: {
81634       testcase( pExpr->op==TK_AGG_COLUMN );
81635       testcase( pExpr->op==TK_COLUMN );
81636       /* Check to see if the column is in one of the tables in the FROM
81637       ** clause of the aggregate query */
81638       if( ALWAYS(pSrcList!=0) ){
81639         struct SrcList_item *pItem = pSrcList->a;
81640         for(i=0; i<pSrcList->nSrc; i++, pItem++){
81641           struct AggInfo_col *pCol;
81642           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
81643           if( pExpr->iTable==pItem->iCursor ){
81644             /* If we reach this point, it means that pExpr refers to a table
81645             ** that is in the FROM clause of the aggregate query.
81646             **
81647             ** Make an entry for the column in pAggInfo->aCol[] if there
81648             ** is not an entry there already.
81649             */
81650             int k;
81651             pCol = pAggInfo->aCol;
81652             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
81653               if( pCol->iTable==pExpr->iTable &&
81654                   pCol->iColumn==pExpr->iColumn ){
81655                 break;
81656               }
81657             }
81658             if( (k>=pAggInfo->nColumn)
81659              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
81660             ){
81661               pCol = &pAggInfo->aCol[k];
81662               pCol->pTab = pExpr->pTab;
81663               pCol->iTable = pExpr->iTable;
81664               pCol->iColumn = pExpr->iColumn;
81665               pCol->iMem = ++pParse->nMem;
81666               pCol->iSorterColumn = -1;
81667               pCol->pExpr = pExpr;
81668               if( pAggInfo->pGroupBy ){
81669                 int j, n;
81670                 ExprList *pGB = pAggInfo->pGroupBy;
81671                 struct ExprList_item *pTerm = pGB->a;
81672                 n = pGB->nExpr;
81673                 for(j=0; j<n; j++, pTerm++){
81674                   Expr *pE = pTerm->pExpr;
81675                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
81676                       pE->iColumn==pExpr->iColumn ){
81677                     pCol->iSorterColumn = j;
81678                     break;
81679                   }
81680                 }
81681               }
81682               if( pCol->iSorterColumn<0 ){
81683                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
81684               }
81685             }
81686             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
81687             ** because it was there before or because we just created it).
81688             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
81689             ** pAggInfo->aCol[] entry.
81690             */
81691             ExprSetVVAProperty(pExpr, EP_NoReduce);
81692             pExpr->pAggInfo = pAggInfo;
81693             pExpr->op = TK_AGG_COLUMN;
81694             pExpr->iAgg = (i16)k;
81695             break;
81696           } /* endif pExpr->iTable==pItem->iCursor */
81697         } /* end loop over pSrcList */
81698       }
81699       return WRC_Prune;
81700     }
81701     case TK_AGG_FUNCTION: {
81702       if( (pNC->ncFlags & NC_InAggFunc)==0
81703        && pWalker->walkerDepth==pExpr->op2
81704       ){
81705         /* Check to see if pExpr is a duplicate of another aggregate
81706         ** function that is already in the pAggInfo structure
81707         */
81708         struct AggInfo_func *pItem = pAggInfo->aFunc;
81709         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
81710           if( sqlite3ExprCompare(pItem->pExpr, pExpr, -1)==0 ){
81711             break;
81712           }
81713         }
81714         if( i>=pAggInfo->nFunc ){
81715           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
81716           */
81717           u8 enc = ENC(pParse->db);
81718           i = addAggInfoFunc(pParse->db, pAggInfo);
81719           if( i>=0 ){
81720             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
81721             pItem = &pAggInfo->aFunc[i];
81722             pItem->pExpr = pExpr;
81723             pItem->iMem = ++pParse->nMem;
81724             assert( !ExprHasProperty(pExpr, EP_IntValue) );
81725             pItem->pFunc = sqlite3FindFunction(pParse->db,
81726                    pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken),
81727                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
81728             if( pExpr->flags & EP_Distinct ){
81729               pItem->iDistinct = pParse->nTab++;
81730             }else{
81731               pItem->iDistinct = -1;
81732             }
81733           }
81734         }
81735         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
81736         */
81737         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
81738         ExprSetVVAProperty(pExpr, EP_NoReduce);
81739         pExpr->iAgg = (i16)i;
81740         pExpr->pAggInfo = pAggInfo;
81741         return WRC_Prune;
81742       }else{
81743         return WRC_Continue;
81744       }
81745     }
81746   }
81747   return WRC_Continue;
81748 }
81749 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
81750   UNUSED_PARAMETER(pWalker);
81751   UNUSED_PARAMETER(pSelect);
81752   return WRC_Continue;
81753 }
81754 
81755 /*
81756 ** Analyze the pExpr expression looking for aggregate functions and
81757 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
81758 ** points to.  Additional entries are made on the AggInfo object as
81759 ** necessary.
81760 **
81761 ** This routine should only be called after the expression has been
81762 ** analyzed by sqlite3ResolveExprNames().
81763 */
81764 SQLITE_PRIVATE void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
81765   Walker w;
81766   memset(&w, 0, sizeof(w));
81767   w.xExprCallback = analyzeAggregate;
81768   w.xSelectCallback = analyzeAggregatesInSelect;
81769   w.u.pNC = pNC;
81770   assert( pNC->pSrcList!=0 );
81771   sqlite3WalkExpr(&w, pExpr);
81772 }
81773 
81774 /*
81775 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
81776 ** expression list.  Return the number of errors.
81777 **
81778 ** If an error is found, the analysis is cut short.
81779 */
81780 SQLITE_PRIVATE void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
81781   struct ExprList_item *pItem;
81782   int i;
81783   if( pList ){
81784     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
81785       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
81786     }
81787   }
81788 }
81789 
81790 /*
81791 ** Allocate a single new register for use to hold some intermediate result.
81792 */
81793 SQLITE_PRIVATE int sqlite3GetTempReg(Parse *pParse){
81794   if( pParse->nTempReg==0 ){
81795     return ++pParse->nMem;
81796   }
81797   return pParse->aTempReg[--pParse->nTempReg];
81798 }
81799 
81800 /*
81801 ** Deallocate a register, making available for reuse for some other
81802 ** purpose.
81803 **
81804 ** If a register is currently being used by the column cache, then
81805 ** the dallocation is deferred until the column cache line that uses
81806 ** the register becomes stale.
81807 */
81808 SQLITE_PRIVATE void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
81809   if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
81810     int i;
81811     struct yColCache *p;
81812     for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
81813       if( p->iReg==iReg ){
81814         p->tempReg = 1;
81815         return;
81816       }
81817     }
81818     pParse->aTempReg[pParse->nTempReg++] = iReg;
81819   }
81820 }
81821 
81822 /*
81823 ** Allocate or deallocate a block of nReg consecutive registers
81824 */
81825 SQLITE_PRIVATE int sqlite3GetTempRange(Parse *pParse, int nReg){
81826   int i, n;
81827   i = pParse->iRangeReg;
81828   n = pParse->nRangeReg;
81829   if( nReg<=n ){
81830     assert( !usedAsColumnCache(pParse, i, i+n-1) );
81831     pParse->iRangeReg += nReg;
81832     pParse->nRangeReg -= nReg;
81833   }else{
81834     i = pParse->nMem+1;
81835     pParse->nMem += nReg;
81836   }
81837   return i;
81838 }
81839 SQLITE_PRIVATE void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
81840   sqlite3ExprCacheRemove(pParse, iReg, nReg);
81841   if( nReg>pParse->nRangeReg ){
81842     pParse->nRangeReg = nReg;
81843     pParse->iRangeReg = iReg;
81844   }
81845 }
81846 
81847 /*
81848 ** Mark all temporary registers as being unavailable for reuse.
81849 */
81850 SQLITE_PRIVATE void sqlite3ClearTempRegCache(Parse *pParse){
81851   pParse->nTempReg = 0;
81852   pParse->nRangeReg = 0;
81853 }
81854 
81855 /************** End of expr.c ************************************************/
81856 /************** Begin file alter.c *******************************************/
81857 /*
81858 ** 2005 February 15
81859 **
81860 ** The author disclaims copyright to this source code.  In place of
81861 ** a legal notice, here is a blessing:
81862 **
81863 **    May you do good and not evil.
81864 **    May you find forgiveness for yourself and forgive others.
81865 **    May you share freely, never taking more than you give.
81866 **
81867 *************************************************************************
81868 ** This file contains C code routines that used to generate VDBE code
81869 ** that implements the ALTER TABLE command.
81870 */
81871 
81872 /*
81873 ** The code in this file only exists if we are not omitting the
81874 ** ALTER TABLE logic from the build.
81875 */
81876 #ifndef SQLITE_OMIT_ALTERTABLE
81877 
81878 
81879 /*
81880 ** This function is used by SQL generated to implement the
81881 ** ALTER TABLE command. The first argument is the text of a CREATE TABLE or
81882 ** CREATE INDEX command. The second is a table name. The table name in
81883 ** the CREATE TABLE or CREATE INDEX statement is replaced with the third
81884 ** argument and the result returned. Examples:
81885 **
81886 ** sqlite_rename_table('CREATE TABLE abc(a, b, c)', 'def')
81887 **     -> 'CREATE TABLE def(a, b, c)'
81888 **
81889 ** sqlite_rename_table('CREATE INDEX i ON abc(a)', 'def')
81890 **     -> 'CREATE INDEX i ON def(a, b, c)'
81891 */
81892 static void renameTableFunc(
81893   sqlite3_context *context,
81894   int NotUsed,
81895   sqlite3_value **argv
81896 ){
81897   unsigned char const *zSql = sqlite3_value_text(argv[0]);
81898   unsigned char const *zTableName = sqlite3_value_text(argv[1]);
81899 
81900   int token;
81901   Token tname;
81902   unsigned char const *zCsr = zSql;
81903   int len = 0;
81904   char *zRet;
81905 
81906   sqlite3 *db = sqlite3_context_db_handle(context);
81907 
81908   UNUSED_PARAMETER(NotUsed);
81909 
81910   /* The principle used to locate the table name in the CREATE TABLE
81911   ** statement is that the table name is the first non-space token that
81912   ** is immediately followed by a TK_LP or TK_USING token.
81913   */
81914   if( zSql ){
81915     do {
81916       if( !*zCsr ){
81917         /* Ran out of input before finding an opening bracket. Return NULL. */
81918         return;
81919       }
81920 
81921       /* Store the token that zCsr points to in tname. */
81922       tname.z = (char*)zCsr;
81923       tname.n = len;
81924 
81925       /* Advance zCsr to the next token. Store that token type in 'token',
81926       ** and its length in 'len' (to be used next iteration of this loop).
81927       */
81928       do {
81929         zCsr += len;
81930         len = sqlite3GetToken(zCsr, &token);
81931       } while( token==TK_SPACE );
81932       assert( len>0 );
81933     } while( token!=TK_LP && token!=TK_USING );
81934 
81935     zRet = sqlite3MPrintf(db, "%.*s\"%w\"%s", (int)(((u8*)tname.z) - zSql),
81936        zSql, zTableName, tname.z+tname.n);
81937     sqlite3_result_text(context, zRet, -1, SQLITE_DYNAMIC);
81938   }
81939 }
81940 
81941 /*
81942 ** This C function implements an SQL user function that is used by SQL code
81943 ** generated by the ALTER TABLE ... RENAME command to modify the definition
81944 ** of any foreign key constraints that use the table being renamed as the
81945 ** parent table. It is passed three arguments:
81946 **
81947 **   1) The complete text of the CREATE TABLE statement being modified,
81948 **   2) The old name of the table being renamed, and
81949 **   3) The new name of the table being renamed.
81950 **
81951 ** It returns the new CREATE TABLE statement. For example:
81952 **
81953 **   sqlite_rename_parent('CREATE TABLE t1(a REFERENCES t2)', 't2', 't3')
81954 **       -> 'CREATE TABLE t1(a REFERENCES t3)'
81955 */
81956 #ifndef SQLITE_OMIT_FOREIGN_KEY
81957 static void renameParentFunc(
81958   sqlite3_context *context,
81959   int NotUsed,
81960   sqlite3_value **argv
81961 ){
81962   sqlite3 *db = sqlite3_context_db_handle(context);
81963   char *zOutput = 0;
81964   char *zResult;
81965   unsigned char const *zInput = sqlite3_value_text(argv[0]);
81966   unsigned char const *zOld = sqlite3_value_text(argv[1]);
81967   unsigned char const *zNew = sqlite3_value_text(argv[2]);
81968 
81969   unsigned const char *z;         /* Pointer to token */
81970   int n;                          /* Length of token z */
81971   int token;                      /* Type of token */
81972 
81973   UNUSED_PARAMETER(NotUsed);
81974   if( zInput==0 || zOld==0 ) return;
81975   for(z=zInput; *z; z=z+n){
81976     n = sqlite3GetToken(z, &token);
81977     if( token==TK_REFERENCES ){
81978       char *zParent;
81979       do {
81980         z += n;
81981         n = sqlite3GetToken(z, &token);
81982       }while( token==TK_SPACE );
81983 
81984       zParent = sqlite3DbStrNDup(db, (const char *)z, n);
81985       if( zParent==0 ) break;
81986       sqlite3Dequote(zParent);
81987       if( 0==sqlite3StrICmp((const char *)zOld, zParent) ){
81988         char *zOut = sqlite3MPrintf(db, "%s%.*s\"%w\"",
81989             (zOutput?zOutput:""), (int)(z-zInput), zInput, (const char *)zNew
81990         );
81991         sqlite3DbFree(db, zOutput);
81992         zOutput = zOut;
81993         zInput = &z[n];
81994       }
81995       sqlite3DbFree(db, zParent);
81996     }
81997   }
81998 
81999   zResult = sqlite3MPrintf(db, "%s%s", (zOutput?zOutput:""), zInput),
82000   sqlite3_result_text(context, zResult, -1, SQLITE_DYNAMIC);
82001   sqlite3DbFree(db, zOutput);
82002 }
82003 #endif
82004 
82005 #ifndef SQLITE_OMIT_TRIGGER
82006 /* This function is used by SQL generated to implement the
82007 ** ALTER TABLE command. The first argument is the text of a CREATE TRIGGER
82008 ** statement. The second is a table name. The table name in the CREATE
82009 ** TRIGGER statement is replaced with the third argument and the result
82010 ** returned. This is analagous to renameTableFunc() above, except for CREATE
82011 ** TRIGGER, not CREATE INDEX and CREATE TABLE.
82012 */
82013 static void renameTriggerFunc(
82014   sqlite3_context *context,
82015   int NotUsed,
82016   sqlite3_value **argv
82017 ){
82018   unsigned char const *zSql = sqlite3_value_text(argv[0]);
82019   unsigned char const *zTableName = sqlite3_value_text(argv[1]);
82020 
82021   int token;
82022   Token tname;
82023   int dist = 3;
82024   unsigned char const *zCsr = zSql;
82025   int len = 0;
82026   char *zRet;
82027   sqlite3 *db = sqlite3_context_db_handle(context);
82028 
82029   UNUSED_PARAMETER(NotUsed);
82030 
82031   /* The principle used to locate the table name in the CREATE TRIGGER
82032   ** statement is that the table name is the first token that is immediatedly
82033   ** preceded by either TK_ON or TK_DOT and immediatedly followed by one
82034   ** of TK_WHEN, TK_BEGIN or TK_FOR.
82035   */
82036   if( zSql ){
82037     do {
82038 
82039       if( !*zCsr ){
82040         /* Ran out of input before finding the table name. Return NULL. */
82041         return;
82042       }
82043 
82044       /* Store the token that zCsr points to in tname. */
82045       tname.z = (char*)zCsr;
82046       tname.n = len;
82047 
82048       /* Advance zCsr to the next token. Store that token type in 'token',
82049       ** and its length in 'len' (to be used next iteration of this loop).
82050       */
82051       do {
82052         zCsr += len;
82053         len = sqlite3GetToken(zCsr, &token);
82054       }while( token==TK_SPACE );
82055       assert( len>0 );
82056 
82057       /* Variable 'dist' stores the number of tokens read since the most
82058       ** recent TK_DOT or TK_ON. This means that when a WHEN, FOR or BEGIN
82059       ** token is read and 'dist' equals 2, the condition stated above
82060       ** to be met.
82061       **
82062       ** Note that ON cannot be a database, table or column name, so
82063       ** there is no need to worry about syntax like
82064       ** "CREATE TRIGGER ... ON ON.ON BEGIN ..." etc.
82065       */
82066       dist++;
82067       if( token==TK_DOT || token==TK_ON ){
82068         dist = 0;
82069       }
82070     } while( dist!=2 || (token!=TK_WHEN && token!=TK_FOR && token!=TK_BEGIN) );
82071 
82072     /* Variable tname now contains the token that is the old table-name
82073     ** in the CREATE TRIGGER statement.
82074     */
82075     zRet = sqlite3MPrintf(db, "%.*s\"%w\"%s", (int)(((u8*)tname.z) - zSql),
82076        zSql, zTableName, tname.z+tname.n);
82077     sqlite3_result_text(context, zRet, -1, SQLITE_DYNAMIC);
82078   }
82079 }
82080 #endif   /* !SQLITE_OMIT_TRIGGER */
82081 
82082 /*
82083 ** Register built-in functions used to help implement ALTER TABLE
82084 */
82085 SQLITE_PRIVATE void sqlite3AlterFunctions(void){
82086   static SQLITE_WSD FuncDef aAlterTableFuncs[] = {
82087     FUNCTION(sqlite_rename_table,   2, 0, 0, renameTableFunc),
82088 #ifndef SQLITE_OMIT_TRIGGER
82089     FUNCTION(sqlite_rename_trigger, 2, 0, 0, renameTriggerFunc),
82090 #endif
82091 #ifndef SQLITE_OMIT_FOREIGN_KEY
82092     FUNCTION(sqlite_rename_parent,  3, 0, 0, renameParentFunc),
82093 #endif
82094   };
82095   int i;
82096   FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions);
82097   FuncDef *aFunc = (FuncDef*)&GLOBAL(FuncDef, aAlterTableFuncs);
82098 
82099   for(i=0; i<ArraySize(aAlterTableFuncs); i++){
82100     sqlite3FuncDefInsert(pHash, &aFunc[i]);
82101   }
82102 }
82103 
82104 /*
82105 ** This function is used to create the text of expressions of the form:
82106 **
82107 **   name=<constant1> OR name=<constant2> OR ...
82108 **
82109 ** If argument zWhere is NULL, then a pointer string containing the text
82110 ** "name=<constant>" is returned, where <constant> is the quoted version
82111 ** of the string passed as argument zConstant. The returned buffer is
82112 ** allocated using sqlite3DbMalloc(). It is the responsibility of the
82113 ** caller to ensure that it is eventually freed.
82114 **
82115 ** If argument zWhere is not NULL, then the string returned is
82116 ** "<where> OR name=<constant>", where <where> is the contents of zWhere.
82117 ** In this case zWhere is passed to sqlite3DbFree() before returning.
82118 **
82119 */
82120 static char *whereOrName(sqlite3 *db, char *zWhere, char *zConstant){
82121   char *zNew;
82122   if( !zWhere ){
82123     zNew = sqlite3MPrintf(db, "name=%Q", zConstant);
82124   }else{
82125     zNew = sqlite3MPrintf(db, "%s OR name=%Q", zWhere, zConstant);
82126     sqlite3DbFree(db, zWhere);
82127   }
82128   return zNew;
82129 }
82130 
82131 #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER)
82132 /*
82133 ** Generate the text of a WHERE expression which can be used to select all
82134 ** tables that have foreign key constraints that refer to table pTab (i.e.
82135 ** constraints for which pTab is the parent table) from the sqlite_master
82136 ** table.
82137 */
82138 static char *whereForeignKeys(Parse *pParse, Table *pTab){
82139   FKey *p;
82140   char *zWhere = 0;
82141   for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
82142     zWhere = whereOrName(pParse->db, zWhere, p->pFrom->zName);
82143   }
82144   return zWhere;
82145 }
82146 #endif
82147 
82148 /*
82149 ** Generate the text of a WHERE expression which can be used to select all
82150 ** temporary triggers on table pTab from the sqlite_temp_master table. If
82151 ** table pTab has no temporary triggers, or is itself stored in the
82152 ** temporary database, NULL is returned.
82153 */
82154 static char *whereTempTriggers(Parse *pParse, Table *pTab){
82155   Trigger *pTrig;
82156   char *zWhere = 0;
82157   const Schema *pTempSchema = pParse->db->aDb[1].pSchema; /* Temp db schema */
82158 
82159   /* If the table is not located in the temp-db (in which case NULL is
82160   ** returned, loop through the tables list of triggers. For each trigger
82161   ** that is not part of the temp-db schema, add a clause to the WHERE
82162   ** expression being built up in zWhere.
82163   */
82164   if( pTab->pSchema!=pTempSchema ){
82165     sqlite3 *db = pParse->db;
82166     for(pTrig=sqlite3TriggerList(pParse, pTab); pTrig; pTrig=pTrig->pNext){
82167       if( pTrig->pSchema==pTempSchema ){
82168         zWhere = whereOrName(db, zWhere, pTrig->zName);
82169       }
82170     }
82171   }
82172   if( zWhere ){
82173     char *zNew = sqlite3MPrintf(pParse->db, "type='trigger' AND (%s)", zWhere);
82174     sqlite3DbFree(pParse->db, zWhere);
82175     zWhere = zNew;
82176   }
82177   return zWhere;
82178 }
82179 
82180 /*
82181 ** Generate code to drop and reload the internal representation of table
82182 ** pTab from the database, including triggers and temporary triggers.
82183 ** Argument zName is the name of the table in the database schema at
82184 ** the time the generated code is executed. This can be different from
82185 ** pTab->zName if this function is being called to code part of an
82186 ** "ALTER TABLE RENAME TO" statement.
82187 */
82188 static void reloadTableSchema(Parse *pParse, Table *pTab, const char *zName){
82189   Vdbe *v;
82190   char *zWhere;
82191   int iDb;                   /* Index of database containing pTab */
82192 #ifndef SQLITE_OMIT_TRIGGER
82193   Trigger *pTrig;
82194 #endif
82195 
82196   v = sqlite3GetVdbe(pParse);
82197   if( NEVER(v==0) ) return;
82198   assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
82199   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
82200   assert( iDb>=0 );
82201 
82202 #ifndef SQLITE_OMIT_TRIGGER
82203   /* Drop any table triggers from the internal schema. */
82204   for(pTrig=sqlite3TriggerList(pParse, pTab); pTrig; pTrig=pTrig->pNext){
82205     int iTrigDb = sqlite3SchemaToIndex(pParse->db, pTrig->pSchema);
82206     assert( iTrigDb==iDb || iTrigDb==1 );
82207     sqlite3VdbeAddOp4(v, OP_DropTrigger, iTrigDb, 0, 0, pTrig->zName, 0);
82208   }
82209 #endif
82210 
82211   /* Drop the table and index from the internal schema.  */
82212   sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
82213 
82214   /* Reload the table, index and permanent trigger schemas. */
82215   zWhere = sqlite3MPrintf(pParse->db, "tbl_name=%Q", zName);
82216   if( !zWhere ) return;
82217   sqlite3VdbeAddParseSchemaOp(v, iDb, zWhere);
82218 
82219 #ifndef SQLITE_OMIT_TRIGGER
82220   /* Now, if the table is not stored in the temp database, reload any temp
82221   ** triggers. Don't use IN(...) in case SQLITE_OMIT_SUBQUERY is defined.
82222   */
82223   if( (zWhere=whereTempTriggers(pParse, pTab))!=0 ){
82224     sqlite3VdbeAddParseSchemaOp(v, 1, zWhere);
82225   }
82226 #endif
82227 }
82228 
82229 /*
82230 ** Parameter zName is the name of a table that is about to be altered
82231 ** (either with ALTER TABLE ... RENAME TO or ALTER TABLE ... ADD COLUMN).
82232 ** If the table is a system table, this function leaves an error message
82233 ** in pParse->zErr (system tables may not be altered) and returns non-zero.
82234 **
82235 ** Or, if zName is not a system table, zero is returned.
82236 */
82237 static int isSystemTable(Parse *pParse, const char *zName){
82238   if( sqlite3Strlen30(zName)>6 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
82239     sqlite3ErrorMsg(pParse, "table %s may not be altered", zName);
82240     return 1;
82241   }
82242   return 0;
82243 }
82244 
82245 /*
82246 ** Generate code to implement the "ALTER TABLE xxx RENAME TO yyy"
82247 ** command.
82248 */
82249 SQLITE_PRIVATE void sqlite3AlterRenameTable(
82250   Parse *pParse,            /* Parser context. */
82251   SrcList *pSrc,            /* The table to rename. */
82252   Token *pName              /* The new table name. */
82253 ){
82254   int iDb;                  /* Database that contains the table */
82255   char *zDb;                /* Name of database iDb */
82256   Table *pTab;              /* Table being renamed */
82257   char *zName = 0;          /* NULL-terminated version of pName */
82258   sqlite3 *db = pParse->db; /* Database connection */
82259   int nTabName;             /* Number of UTF-8 characters in zTabName */
82260   const char *zTabName;     /* Original name of the table */
82261   Vdbe *v;
82262 #ifndef SQLITE_OMIT_TRIGGER
82263   char *zWhere = 0;         /* Where clause to locate temp triggers */
82264 #endif
82265   VTable *pVTab = 0;        /* Non-zero if this is a v-tab with an xRename() */
82266   int savedDbFlags;         /* Saved value of db->flags */
82267 
82268   savedDbFlags = db->flags;
82269   if( NEVER(db->mallocFailed) ) goto exit_rename_table;
82270   assert( pSrc->nSrc==1 );
82271   assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
82272 
82273   pTab = sqlite3LocateTableItem(pParse, 0, &pSrc->a[0]);
82274   if( !pTab ) goto exit_rename_table;
82275   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
82276   zDb = db->aDb[iDb].zName;
82277   db->flags |= SQLITE_PreferBuiltin;
82278 
82279   /* Get a NULL terminated version of the new table name. */
82280   zName = sqlite3NameFromToken(db, pName);
82281   if( !zName ) goto exit_rename_table;
82282 
82283   /* Check that a table or index named 'zName' does not already exist
82284   ** in database iDb. If so, this is an error.
82285   */
82286   if( sqlite3FindTable(db, zName, zDb) || sqlite3FindIndex(db, zName, zDb) ){
82287     sqlite3ErrorMsg(pParse,
82288         "there is already another table or index with this name: %s", zName);
82289     goto exit_rename_table;
82290   }
82291 
82292   /* Make sure it is not a system table being altered, or a reserved name
82293   ** that the table is being renamed to.
82294   */
82295   if( SQLITE_OK!=isSystemTable(pParse, pTab->zName) ){
82296     goto exit_rename_table;
82297   }
82298   if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ goto
82299     exit_rename_table;
82300   }
82301 
82302 #ifndef SQLITE_OMIT_VIEW
82303   if( pTab->pSelect ){
82304     sqlite3ErrorMsg(pParse, "view %s may not be altered", pTab->zName);
82305     goto exit_rename_table;
82306   }
82307 #endif
82308 
82309 #ifndef SQLITE_OMIT_AUTHORIZATION
82310   /* Invoke the authorization callback. */
82311   if( sqlite3AuthCheck(pParse, SQLITE_ALTER_TABLE, zDb, pTab->zName, 0) ){
82312     goto exit_rename_table;
82313   }
82314 #endif
82315 
82316 #ifndef SQLITE_OMIT_VIRTUALTABLE
82317   if( sqlite3ViewGetColumnNames(pParse, pTab) ){
82318     goto exit_rename_table;
82319   }
82320   if( IsVirtual(pTab) ){
82321     pVTab = sqlite3GetVTable(db, pTab);
82322     if( pVTab->pVtab->pModule->xRename==0 ){
82323       pVTab = 0;
82324     }
82325   }
82326 #endif
82327 
82328   /* Begin a transaction for database iDb.
82329   ** Then modify the schema cookie (since the ALTER TABLE modifies the
82330   ** schema). Open a statement transaction if the table is a virtual
82331   ** table.
82332   */
82333   v = sqlite3GetVdbe(pParse);
82334   if( v==0 ){
82335     goto exit_rename_table;
82336   }
82337   sqlite3BeginWriteOperation(pParse, pVTab!=0, iDb);
82338   sqlite3ChangeCookie(pParse, iDb);
82339 
82340   /* If this is a virtual table, invoke the xRename() function if
82341   ** one is defined. The xRename() callback will modify the names
82342   ** of any resources used by the v-table implementation (including other
82343   ** SQLite tables) that are identified by the name of the virtual table.
82344   */
82345 #ifndef SQLITE_OMIT_VIRTUALTABLE
82346   if( pVTab ){
82347     int i = ++pParse->nMem;
82348     sqlite3VdbeAddOp4(v, OP_String8, 0, i, 0, zName, 0);
82349     sqlite3VdbeAddOp4(v, OP_VRename, i, 0, 0,(const char*)pVTab, P4_VTAB);
82350     sqlite3MayAbort(pParse);
82351   }
82352 #endif
82353 
82354   /* figure out how many UTF-8 characters are in zName */
82355   zTabName = pTab->zName;
82356   nTabName = sqlite3Utf8CharLen(zTabName, -1);
82357 
82358 #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER)
82359   if( db->flags&SQLITE_ForeignKeys ){
82360     /* If foreign-key support is enabled, rewrite the CREATE TABLE
82361     ** statements corresponding to all child tables of foreign key constraints
82362     ** for which the renamed table is the parent table.  */
82363     if( (zWhere=whereForeignKeys(pParse, pTab))!=0 ){
82364       sqlite3NestedParse(pParse,
82365           "UPDATE \"%w\".%s SET "
82366               "sql = sqlite_rename_parent(sql, %Q, %Q) "
82367               "WHERE %s;", zDb, SCHEMA_TABLE(iDb), zTabName, zName, zWhere);
82368       sqlite3DbFree(db, zWhere);
82369     }
82370   }
82371 #endif
82372 
82373   /* Modify the sqlite_master table to use the new table name. */
82374   sqlite3NestedParse(pParse,
82375       "UPDATE %Q.%s SET "
82376 #ifdef SQLITE_OMIT_TRIGGER
82377           "sql = sqlite_rename_table(sql, %Q), "
82378 #else
82379           "sql = CASE "
82380             "WHEN type = 'trigger' THEN sqlite_rename_trigger(sql, %Q)"
82381             "ELSE sqlite_rename_table(sql, %Q) END, "
82382 #endif
82383           "tbl_name = %Q, "
82384           "name = CASE "
82385             "WHEN type='table' THEN %Q "
82386             "WHEN name LIKE 'sqlite_autoindex%%' AND type='index' THEN "
82387              "'sqlite_autoindex_' || %Q || substr(name,%d+18) "
82388             "ELSE name END "
82389       "WHERE tbl_name=%Q COLLATE nocase AND "
82390           "(type='table' OR type='index' OR type='trigger');",
82391       zDb, SCHEMA_TABLE(iDb), zName, zName, zName,
82392 #ifndef SQLITE_OMIT_TRIGGER
82393       zName,
82394 #endif
82395       zName, nTabName, zTabName
82396   );
82397 
82398 #ifndef SQLITE_OMIT_AUTOINCREMENT
82399   /* If the sqlite_sequence table exists in this database, then update
82400   ** it with the new table name.
82401   */
82402   if( sqlite3FindTable(db, "sqlite_sequence", zDb) ){
82403     sqlite3NestedParse(pParse,
82404         "UPDATE \"%w\".sqlite_sequence set name = %Q WHERE name = %Q",
82405         zDb, zName, pTab->zName);
82406   }
82407 #endif
82408 
82409 #ifndef SQLITE_OMIT_TRIGGER
82410   /* If there are TEMP triggers on this table, modify the sqlite_temp_master
82411   ** table. Don't do this if the table being ALTERed is itself located in
82412   ** the temp database.
82413   */
82414   if( (zWhere=whereTempTriggers(pParse, pTab))!=0 ){
82415     sqlite3NestedParse(pParse,
82416         "UPDATE sqlite_temp_master SET "
82417             "sql = sqlite_rename_trigger(sql, %Q), "
82418             "tbl_name = %Q "
82419             "WHERE %s;", zName, zName, zWhere);
82420     sqlite3DbFree(db, zWhere);
82421   }
82422 #endif
82423 
82424 #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER)
82425   if( db->flags&SQLITE_ForeignKeys ){
82426     FKey *p;
82427     for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
82428       Table *pFrom = p->pFrom;
82429       if( pFrom!=pTab ){
82430         reloadTableSchema(pParse, p->pFrom, pFrom->zName);
82431       }
82432     }
82433   }
82434 #endif
82435 
82436   /* Drop and reload the internal table schema. */
82437   reloadTableSchema(pParse, pTab, zName);
82438 
82439 exit_rename_table:
82440   sqlite3SrcListDelete(db, pSrc);
82441   sqlite3DbFree(db, zName);
82442   db->flags = savedDbFlags;
82443 }
82444 
82445 
82446 /*
82447 ** Generate code to make sure the file format number is at least minFormat.
82448 ** The generated code will increase the file format number if necessary.
82449 */
82450 SQLITE_PRIVATE void sqlite3MinimumFileFormat(Parse *pParse, int iDb, int minFormat){
82451   Vdbe *v;
82452   v = sqlite3GetVdbe(pParse);
82453   /* The VDBE should have been allocated before this routine is called.
82454   ** If that allocation failed, we would have quit before reaching this
82455   ** point */
82456   if( ALWAYS(v) ){
82457     int r1 = sqlite3GetTempReg(pParse);
82458     int r2 = sqlite3GetTempReg(pParse);
82459     int j1;
82460     sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, r1, BTREE_FILE_FORMAT);
82461     sqlite3VdbeUsesBtree(v, iDb);
82462     sqlite3VdbeAddOp2(v, OP_Integer, minFormat, r2);
82463     j1 = sqlite3VdbeAddOp3(v, OP_Ge, r2, 0, r1);
82464     sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); VdbeCoverage(v);
82465     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, r2);
82466     sqlite3VdbeJumpHere(v, j1);
82467     sqlite3ReleaseTempReg(pParse, r1);
82468     sqlite3ReleaseTempReg(pParse, r2);
82469   }
82470 }
82471 
82472 /*
82473 ** This function is called after an "ALTER TABLE ... ADD" statement
82474 ** has been parsed. Argument pColDef contains the text of the new
82475 ** column definition.
82476 **
82477 ** The Table structure pParse->pNewTable was extended to include
82478 ** the new column during parsing.
82479 */
82480 SQLITE_PRIVATE void sqlite3AlterFinishAddColumn(Parse *pParse, Token *pColDef){
82481   Table *pNew;              /* Copy of pParse->pNewTable */
82482   Table *pTab;              /* Table being altered */
82483   int iDb;                  /* Database number */
82484   const char *zDb;          /* Database name */
82485   const char *zTab;         /* Table name */
82486   char *zCol;               /* Null-terminated column definition */
82487   Column *pCol;             /* The new column */
82488   Expr *pDflt;              /* Default value for the new column */
82489   sqlite3 *db;              /* The database connection; */
82490 
82491   db = pParse->db;
82492   if( pParse->nErr || db->mallocFailed ) return;
82493   pNew = pParse->pNewTable;
82494   assert( pNew );
82495 
82496   assert( sqlite3BtreeHoldsAllMutexes(db) );
82497   iDb = sqlite3SchemaToIndex(db, pNew->pSchema);
82498   zDb = db->aDb[iDb].zName;
82499   zTab = &pNew->zName[16];  /* Skip the "sqlite_altertab_" prefix on the name */
82500   pCol = &pNew->aCol[pNew->nCol-1];
82501   pDflt = pCol->pDflt;
82502   pTab = sqlite3FindTable(db, zTab, zDb);
82503   assert( pTab );
82504 
82505 #ifndef SQLITE_OMIT_AUTHORIZATION
82506   /* Invoke the authorization callback. */
82507   if( sqlite3AuthCheck(pParse, SQLITE_ALTER_TABLE, zDb, pTab->zName, 0) ){
82508     return;
82509   }
82510 #endif
82511 
82512   /* If the default value for the new column was specified with a
82513   ** literal NULL, then set pDflt to 0. This simplifies checking
82514   ** for an SQL NULL default below.
82515   */
82516   if( pDflt && pDflt->op==TK_NULL ){
82517     pDflt = 0;
82518   }
82519 
82520   /* Check that the new column is not specified as PRIMARY KEY or UNIQUE.
82521   ** If there is a NOT NULL constraint, then the default value for the
82522   ** column must not be NULL.
82523   */
82524   if( pCol->colFlags & COLFLAG_PRIMKEY ){
82525     sqlite3ErrorMsg(pParse, "Cannot add a PRIMARY KEY column");
82526     return;
82527   }
82528   if( pNew->pIndex ){
82529     sqlite3ErrorMsg(pParse, "Cannot add a UNIQUE column");
82530     return;
82531   }
82532   if( (db->flags&SQLITE_ForeignKeys) && pNew->pFKey && pDflt ){
82533     sqlite3ErrorMsg(pParse,
82534         "Cannot add a REFERENCES column with non-NULL default value");
82535     return;
82536   }
82537   if( pCol->notNull && !pDflt ){
82538     sqlite3ErrorMsg(pParse,
82539         "Cannot add a NOT NULL column with default value NULL");
82540     return;
82541   }
82542 
82543   /* Ensure the default expression is something that sqlite3ValueFromExpr()
82544   ** can handle (i.e. not CURRENT_TIME etc.)
82545   */
82546   if( pDflt ){
82547     sqlite3_value *pVal = 0;
82548     if( sqlite3ValueFromExpr(db, pDflt, SQLITE_UTF8, SQLITE_AFF_NONE, &pVal) ){
82549       db->mallocFailed = 1;
82550       return;
82551     }
82552     if( !pVal ){
82553       sqlite3ErrorMsg(pParse, "Cannot add a column with non-constant default");
82554       return;
82555     }
82556     sqlite3ValueFree(pVal);
82557   }
82558 
82559   /* Modify the CREATE TABLE statement. */
82560   zCol = sqlite3DbStrNDup(db, (char*)pColDef->z, pColDef->n);
82561   if( zCol ){
82562     char *zEnd = &zCol[pColDef->n-1];
82563     int savedDbFlags = db->flags;
82564     while( zEnd>zCol && (*zEnd==';' || sqlite3Isspace(*zEnd)) ){
82565       *zEnd-- = '\0';
82566     }
82567     db->flags |= SQLITE_PreferBuiltin;
82568     sqlite3NestedParse(pParse,
82569         "UPDATE \"%w\".%s SET "
82570           "sql = substr(sql,1,%d) || ', ' || %Q || substr(sql,%d) "
82571         "WHERE type = 'table' AND name = %Q",
82572       zDb, SCHEMA_TABLE(iDb), pNew->addColOffset, zCol, pNew->addColOffset+1,
82573       zTab
82574     );
82575     sqlite3DbFree(db, zCol);
82576     db->flags = savedDbFlags;
82577   }
82578 
82579   /* If the default value of the new column is NULL, then set the file
82580   ** format to 2. If the default value of the new column is not NULL,
82581   ** the file format becomes 3.
82582   */
82583   sqlite3MinimumFileFormat(pParse, iDb, pDflt ? 3 : 2);
82584 
82585   /* Reload the schema of the modified table. */
82586   reloadTableSchema(pParse, pTab, pTab->zName);
82587 }
82588 
82589 /*
82590 ** This function is called by the parser after the table-name in
82591 ** an "ALTER TABLE <table-name> ADD" statement is parsed. Argument
82592 ** pSrc is the full-name of the table being altered.
82593 **
82594 ** This routine makes a (partial) copy of the Table structure
82595 ** for the table being altered and sets Parse.pNewTable to point
82596 ** to it. Routines called by the parser as the column definition
82597 ** is parsed (i.e. sqlite3AddColumn()) add the new Column data to
82598 ** the copy. The copy of the Table structure is deleted by tokenize.c
82599 ** after parsing is finished.
82600 **
82601 ** Routine sqlite3AlterFinishAddColumn() will be called to complete
82602 ** coding the "ALTER TABLE ... ADD" statement.
82603 */
82604 SQLITE_PRIVATE void sqlite3AlterBeginAddColumn(Parse *pParse, SrcList *pSrc){
82605   Table *pNew;
82606   Table *pTab;
82607   Vdbe *v;
82608   int iDb;
82609   int i;
82610   int nAlloc;
82611   sqlite3 *db = pParse->db;
82612 
82613   /* Look up the table being altered. */
82614   assert( pParse->pNewTable==0 );
82615   assert( sqlite3BtreeHoldsAllMutexes(db) );
82616   if( db->mallocFailed ) goto exit_begin_add_column;
82617   pTab = sqlite3LocateTableItem(pParse, 0, &pSrc->a[0]);
82618   if( !pTab ) goto exit_begin_add_column;
82619 
82620 #ifndef SQLITE_OMIT_VIRTUALTABLE
82621   if( IsVirtual(pTab) ){
82622     sqlite3ErrorMsg(pParse, "virtual tables may not be altered");
82623     goto exit_begin_add_column;
82624   }
82625 #endif
82626 
82627   /* Make sure this is not an attempt to ALTER a view. */
82628   if( pTab->pSelect ){
82629     sqlite3ErrorMsg(pParse, "Cannot add a column to a view");
82630     goto exit_begin_add_column;
82631   }
82632   if( SQLITE_OK!=isSystemTable(pParse, pTab->zName) ){
82633     goto exit_begin_add_column;
82634   }
82635 
82636   assert( pTab->addColOffset>0 );
82637   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
82638 
82639   /* Put a copy of the Table struct in Parse.pNewTable for the
82640   ** sqlite3AddColumn() function and friends to modify.  But modify
82641   ** the name by adding an "sqlite_altertab_" prefix.  By adding this
82642   ** prefix, we insure that the name will not collide with an existing
82643   ** table because user table are not allowed to have the "sqlite_"
82644   ** prefix on their name.
82645   */
82646   pNew = (Table*)sqlite3DbMallocZero(db, sizeof(Table));
82647   if( !pNew ) goto exit_begin_add_column;
82648   pParse->pNewTable = pNew;
82649   pNew->nRef = 1;
82650   pNew->nCol = pTab->nCol;
82651   assert( pNew->nCol>0 );
82652   nAlloc = (((pNew->nCol-1)/8)*8)+8;
82653   assert( nAlloc>=pNew->nCol && nAlloc%8==0 && nAlloc-pNew->nCol<8 );
82654   pNew->aCol = (Column*)sqlite3DbMallocZero(db, sizeof(Column)*nAlloc);
82655   pNew->zName = sqlite3MPrintf(db, "sqlite_altertab_%s", pTab->zName);
82656   if( !pNew->aCol || !pNew->zName ){
82657     db->mallocFailed = 1;
82658     goto exit_begin_add_column;
82659   }
82660   memcpy(pNew->aCol, pTab->aCol, sizeof(Column)*pNew->nCol);
82661   for(i=0; i<pNew->nCol; i++){
82662     Column *pCol = &pNew->aCol[i];
82663     pCol->zName = sqlite3DbStrDup(db, pCol->zName);
82664     pCol->zColl = 0;
82665     pCol->zType = 0;
82666     pCol->pDflt = 0;
82667     pCol->zDflt = 0;
82668   }
82669   pNew->pSchema = db->aDb[iDb].pSchema;
82670   pNew->addColOffset = pTab->addColOffset;
82671   pNew->nRef = 1;
82672 
82673   /* Begin a transaction and increment the schema cookie.  */
82674   sqlite3BeginWriteOperation(pParse, 0, iDb);
82675   v = sqlite3GetVdbe(pParse);
82676   if( !v ) goto exit_begin_add_column;
82677   sqlite3ChangeCookie(pParse, iDb);
82678 
82679 exit_begin_add_column:
82680   sqlite3SrcListDelete(db, pSrc);
82681   return;
82682 }
82683 #endif  /* SQLITE_ALTER_TABLE */
82684 
82685 /************** End of alter.c ***********************************************/
82686 /************** Begin file analyze.c *****************************************/
82687 /*
82688 ** 2005-07-08
82689 **
82690 ** The author disclaims copyright to this source code.  In place of
82691 ** a legal notice, here is a blessing:
82692 **
82693 **    May you do good and not evil.
82694 **    May you find forgiveness for yourself and forgive others.
82695 **    May you share freely, never taking more than you give.
82696 **
82697 *************************************************************************
82698 ** This file contains code associated with the ANALYZE command.
82699 **
82700 ** The ANALYZE command gather statistics about the content of tables
82701 ** and indices.  These statistics are made available to the query planner
82702 ** to help it make better decisions about how to perform queries.
82703 **
82704 ** The following system tables are or have been supported:
82705 **
82706 **    CREATE TABLE sqlite_stat1(tbl, idx, stat);
82707 **    CREATE TABLE sqlite_stat2(tbl, idx, sampleno, sample);
82708 **    CREATE TABLE sqlite_stat3(tbl, idx, nEq, nLt, nDLt, sample);
82709 **    CREATE TABLE sqlite_stat4(tbl, idx, nEq, nLt, nDLt, sample);
82710 **
82711 ** Additional tables might be added in future releases of SQLite.
82712 ** The sqlite_stat2 table is not created or used unless the SQLite version
82713 ** is between 3.6.18 and 3.7.8, inclusive, and unless SQLite is compiled
82714 ** with SQLITE_ENABLE_STAT2.  The sqlite_stat2 table is deprecated.
82715 ** The sqlite_stat2 table is superseded by sqlite_stat3, which is only
82716 ** created and used by SQLite versions 3.7.9 and later and with
82717 ** SQLITE_ENABLE_STAT3 defined.  The functionality of sqlite_stat3
82718 ** is a superset of sqlite_stat2.  The sqlite_stat4 is an enhanced
82719 ** version of sqlite_stat3 and is only available when compiled with
82720 ** SQLITE_ENABLE_STAT4 and in SQLite versions 3.8.1 and later.  It is
82721 ** not possible to enable both STAT3 and STAT4 at the same time.  If they
82722 ** are both enabled, then STAT4 takes precedence.
82723 **
82724 ** For most applications, sqlite_stat1 provides all the statisics required
82725 ** for the query planner to make good choices.
82726 **
82727 ** Format of sqlite_stat1:
82728 **
82729 ** There is normally one row per index, with the index identified by the
82730 ** name in the idx column.  The tbl column is the name of the table to
82731 ** which the index belongs.  In each such row, the stat column will be
82732 ** a string consisting of a list of integers.  The first integer in this
82733 ** list is the number of rows in the index.  (This is the same as the
82734 ** number of rows in the table, except for partial indices.)  The second
82735 ** integer is the average number of rows in the index that have the same
82736 ** value in the first column of the index.  The third integer is the average
82737 ** number of rows in the index that have the same value for the first two
82738 ** columns.  The N-th integer (for N>1) is the average number of rows in
82739 ** the index which have the same value for the first N-1 columns.  For
82740 ** a K-column index, there will be K+1 integers in the stat column.  If
82741 ** the index is unique, then the last integer will be 1.
82742 **
82743 ** The list of integers in the stat column can optionally be followed
82744 ** by the keyword "unordered".  The "unordered" keyword, if it is present,
82745 ** must be separated from the last integer by a single space.  If the
82746 ** "unordered" keyword is present, then the query planner assumes that
82747 ** the index is unordered and will not use the index for a range query.
82748 **
82749 ** If the sqlite_stat1.idx column is NULL, then the sqlite_stat1.stat
82750 ** column contains a single integer which is the (estimated) number of
82751 ** rows in the table identified by sqlite_stat1.tbl.
82752 **
82753 ** Format of sqlite_stat2:
82754 **
82755 ** The sqlite_stat2 is only created and is only used if SQLite is compiled
82756 ** with SQLITE_ENABLE_STAT2 and if the SQLite version number is between
82757 ** 3.6.18 and 3.7.8.  The "stat2" table contains additional information
82758 ** about the distribution of keys within an index.  The index is identified by
82759 ** the "idx" column and the "tbl" column is the name of the table to which
82760 ** the index belongs.  There are usually 10 rows in the sqlite_stat2
82761 ** table for each index.
82762 **
82763 ** The sqlite_stat2 entries for an index that have sampleno between 0 and 9
82764 ** inclusive are samples of the left-most key value in the index taken at
82765 ** evenly spaced points along the index.  Let the number of samples be S
82766 ** (10 in the standard build) and let C be the number of rows in the index.
82767 ** Then the sampled rows are given by:
82768 **
82769 **     rownumber = (i*C*2 + C)/(S*2)
82770 **
82771 ** For i between 0 and S-1.  Conceptually, the index space is divided into
82772 ** S uniform buckets and the samples are the middle row from each bucket.
82773 **
82774 ** The format for sqlite_stat2 is recorded here for legacy reference.  This
82775 ** version of SQLite does not support sqlite_stat2.  It neither reads nor
82776 ** writes the sqlite_stat2 table.  This version of SQLite only supports
82777 ** sqlite_stat3.
82778 **
82779 ** Format for sqlite_stat3:
82780 **
82781 ** The sqlite_stat3 format is a subset of sqlite_stat4.  Hence, the
82782 ** sqlite_stat4 format will be described first.  Further information
82783 ** about sqlite_stat3 follows the sqlite_stat4 description.
82784 **
82785 ** Format for sqlite_stat4:
82786 **
82787 ** As with sqlite_stat2, the sqlite_stat4 table contains histogram data
82788 ** to aid the query planner in choosing good indices based on the values
82789 ** that indexed columns are compared against in the WHERE clauses of
82790 ** queries.
82791 **
82792 ** The sqlite_stat4 table contains multiple entries for each index.
82793 ** The idx column names the index and the tbl column is the table of the
82794 ** index.  If the idx and tbl columns are the same, then the sample is
82795 ** of the INTEGER PRIMARY KEY.  The sample column is a blob which is the
82796 ** binary encoding of a key from the index.  The nEq column is a
82797 ** list of integers.  The first integer is the approximate number
82798 ** of entries in the index whose left-most column exactly matches
82799 ** the left-most column of the sample.  The second integer in nEq
82800 ** is the approximate number of entries in the index where the
82801 ** first two columns match the first two columns of the sample.
82802 ** And so forth.  nLt is another list of integers that show the approximate
82803 ** number of entries that are strictly less than the sample.  The first
82804 ** integer in nLt contains the number of entries in the index where the
82805 ** left-most column is less than the left-most column of the sample.
82806 ** The K-th integer in the nLt entry is the number of index entries
82807 ** where the first K columns are less than the first K columns of the
82808 ** sample.  The nDLt column is like nLt except that it contains the
82809 ** number of distinct entries in the index that are less than the
82810 ** sample.
82811 **
82812 ** There can be an arbitrary number of sqlite_stat4 entries per index.
82813 ** The ANALYZE command will typically generate sqlite_stat4 tables
82814 ** that contain between 10 and 40 samples which are distributed across
82815 ** the key space, though not uniformly, and which include samples with
82816 ** large nEq values.
82817 **
82818 ** Format for sqlite_stat3 redux:
82819 **
82820 ** The sqlite_stat3 table is like sqlite_stat4 except that it only
82821 ** looks at the left-most column of the index.  The sqlite_stat3.sample
82822 ** column contains the actual value of the left-most column instead
82823 ** of a blob encoding of the complete index key as is found in
82824 ** sqlite_stat4.sample.  The nEq, nLt, and nDLt entries of sqlite_stat3
82825 ** all contain just a single integer which is the same as the first
82826 ** integer in the equivalent columns in sqlite_stat4.
82827 */
82828 #ifndef SQLITE_OMIT_ANALYZE
82829 
82830 #if defined(SQLITE_ENABLE_STAT4)
82831 # define IsStat4     1
82832 # define IsStat3     0
82833 #elif defined(SQLITE_ENABLE_STAT3)
82834 # define IsStat4     0
82835 # define IsStat3     1
82836 #else
82837 # define IsStat4     0
82838 # define IsStat3     0
82839 # undef SQLITE_STAT4_SAMPLES
82840 # define SQLITE_STAT4_SAMPLES 1
82841 #endif
82842 #define IsStat34    (IsStat3+IsStat4)  /* 1 for STAT3 or STAT4. 0 otherwise */
82843 
82844 /*
82845 ** This routine generates code that opens the sqlite_statN tables.
82846 ** The sqlite_stat1 table is always relevant.  sqlite_stat2 is now
82847 ** obsolete.  sqlite_stat3 and sqlite_stat4 are only opened when
82848 ** appropriate compile-time options are provided.
82849 **
82850 ** If the sqlite_statN tables do not previously exist, it is created.
82851 **
82852 ** Argument zWhere may be a pointer to a buffer containing a table name,
82853 ** or it may be a NULL pointer. If it is not NULL, then all entries in
82854 ** the sqlite_statN tables associated with the named table are deleted.
82855 ** If zWhere==0, then code is generated to delete all stat table entries.
82856 */
82857 static void openStatTable(
82858   Parse *pParse,          /* Parsing context */
82859   int iDb,                /* The database we are looking in */
82860   int iStatCur,           /* Open the sqlite_stat1 table on this cursor */
82861   const char *zWhere,     /* Delete entries for this table or index */
82862   const char *zWhereType  /* Either "tbl" or "idx" */
82863 ){
82864   static const struct {
82865     const char *zName;
82866     const char *zCols;
82867   } aTable[] = {
82868     { "sqlite_stat1", "tbl,idx,stat" },
82869 #if defined(SQLITE_ENABLE_STAT4)
82870     { "sqlite_stat4", "tbl,idx,neq,nlt,ndlt,sample" },
82871     { "sqlite_stat3", 0 },
82872 #elif defined(SQLITE_ENABLE_STAT3)
82873     { "sqlite_stat3", "tbl,idx,neq,nlt,ndlt,sample" },
82874     { "sqlite_stat4", 0 },
82875 #else
82876     { "sqlite_stat3", 0 },
82877     { "sqlite_stat4", 0 },
82878 #endif
82879   };
82880   int i;
82881   sqlite3 *db = pParse->db;
82882   Db *pDb;
82883   Vdbe *v = sqlite3GetVdbe(pParse);
82884   int aRoot[ArraySize(aTable)];
82885   u8 aCreateTbl[ArraySize(aTable)];
82886 
82887   if( v==0 ) return;
82888   assert( sqlite3BtreeHoldsAllMutexes(db) );
82889   assert( sqlite3VdbeDb(v)==db );
82890   pDb = &db->aDb[iDb];
82891 
82892   /* Create new statistic tables if they do not exist, or clear them
82893   ** if they do already exist.
82894   */
82895   for(i=0; i<ArraySize(aTable); i++){
82896     const char *zTab = aTable[i].zName;
82897     Table *pStat;
82898     if( (pStat = sqlite3FindTable(db, zTab, pDb->zName))==0 ){
82899       if( aTable[i].zCols ){
82900         /* The sqlite_statN table does not exist. Create it. Note that a
82901         ** side-effect of the CREATE TABLE statement is to leave the rootpage
82902         ** of the new table in register pParse->regRoot. This is important
82903         ** because the OpenWrite opcode below will be needing it. */
82904         sqlite3NestedParse(pParse,
82905             "CREATE TABLE %Q.%s(%s)", pDb->zName, zTab, aTable[i].zCols
82906         );
82907         aRoot[i] = pParse->regRoot;
82908         aCreateTbl[i] = OPFLAG_P2ISREG;
82909       }
82910     }else{
82911       /* The table already exists. If zWhere is not NULL, delete all entries
82912       ** associated with the table zWhere. If zWhere is NULL, delete the
82913       ** entire contents of the table. */
82914       aRoot[i] = pStat->tnum;
82915       aCreateTbl[i] = 0;
82916       sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab);
82917       if( zWhere ){
82918         sqlite3NestedParse(pParse,
82919            "DELETE FROM %Q.%s WHERE %s=%Q",
82920            pDb->zName, zTab, zWhereType, zWhere
82921         );
82922       }else{
82923         /* The sqlite_stat[134] table already exists.  Delete all rows. */
82924         sqlite3VdbeAddOp2(v, OP_Clear, aRoot[i], iDb);
82925       }
82926     }
82927   }
82928 
82929   /* Open the sqlite_stat[134] tables for writing. */
82930   for(i=0; aTable[i].zCols; i++){
82931     assert( i<ArraySize(aTable) );
82932     sqlite3VdbeAddOp4Int(v, OP_OpenWrite, iStatCur+i, aRoot[i], iDb, 3);
82933     sqlite3VdbeChangeP5(v, aCreateTbl[i]);
82934   }
82935 }
82936 
82937 /*
82938 ** Recommended number of samples for sqlite_stat4
82939 */
82940 #ifndef SQLITE_STAT4_SAMPLES
82941 # define SQLITE_STAT4_SAMPLES 24
82942 #endif
82943 
82944 /*
82945 ** Three SQL functions - stat_init(), stat_push(), and stat_get() -
82946 ** share an instance of the following structure to hold their state
82947 ** information.
82948 */
82949 typedef struct Stat4Accum Stat4Accum;
82950 typedef struct Stat4Sample Stat4Sample;
82951 struct Stat4Sample {
82952   tRowcnt *anEq;                  /* sqlite_stat4.nEq */
82953   tRowcnt *anDLt;                 /* sqlite_stat4.nDLt */
82954 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
82955   tRowcnt *anLt;                  /* sqlite_stat4.nLt */
82956   union {
82957     i64 iRowid;                     /* Rowid in main table of the key */
82958     u8 *aRowid;                     /* Key for WITHOUT ROWID tables */
82959   } u;
82960   u32 nRowid;                     /* Sizeof aRowid[] */
82961   u8 isPSample;                   /* True if a periodic sample */
82962   int iCol;                       /* If !isPSample, the reason for inclusion */
82963   u32 iHash;                      /* Tiebreaker hash */
82964 #endif
82965 };
82966 struct Stat4Accum {
82967   tRowcnt nRow;             /* Number of rows in the entire table */
82968   tRowcnt nPSample;         /* How often to do a periodic sample */
82969   int nCol;                 /* Number of columns in index + rowid */
82970   int mxSample;             /* Maximum number of samples to accumulate */
82971   Stat4Sample current;      /* Current row as a Stat4Sample */
82972   u32 iPrn;                 /* Pseudo-random number used for sampling */
82973   Stat4Sample *aBest;       /* Array of nCol best samples */
82974   int iMin;                 /* Index in a[] of entry with minimum score */
82975   int nSample;              /* Current number of samples */
82976   int iGet;                 /* Index of current sample accessed by stat_get() */
82977   Stat4Sample *a;           /* Array of mxSample Stat4Sample objects */
82978   sqlite3 *db;              /* Database connection, for malloc() */
82979 };
82980 
82981 /* Reclaim memory used by a Stat4Sample
82982 */
82983 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
82984 static void sampleClear(sqlite3 *db, Stat4Sample *p){
82985   assert( db!=0 );
82986   if( p->nRowid ){
82987     sqlite3DbFree(db, p->u.aRowid);
82988     p->nRowid = 0;
82989   }
82990 }
82991 #endif
82992 
82993 /* Initialize the BLOB value of a ROWID
82994 */
82995 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
82996 static void sampleSetRowid(sqlite3 *db, Stat4Sample *p, int n, const u8 *pData){
82997   assert( db!=0 );
82998   if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid);
82999   p->u.aRowid = sqlite3DbMallocRaw(db, n);
83000   if( p->u.aRowid ){
83001     p->nRowid = n;
83002     memcpy(p->u.aRowid, pData, n);
83003   }else{
83004     p->nRowid = 0;
83005   }
83006 }
83007 #endif
83008 
83009 /* Initialize the INTEGER value of a ROWID.
83010 */
83011 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
83012 static void sampleSetRowidInt64(sqlite3 *db, Stat4Sample *p, i64 iRowid){
83013   assert( db!=0 );
83014   if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid);
83015   p->nRowid = 0;
83016   p->u.iRowid = iRowid;
83017 }
83018 #endif
83019 
83020 
83021 /*
83022 ** Copy the contents of object (*pFrom) into (*pTo).
83023 */
83024 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
83025 static void sampleCopy(Stat4Accum *p, Stat4Sample *pTo, Stat4Sample *pFrom){
83026   pTo->isPSample = pFrom->isPSample;
83027   pTo->iCol = pFrom->iCol;
83028   pTo->iHash = pFrom->iHash;
83029   memcpy(pTo->anEq, pFrom->anEq, sizeof(tRowcnt)*p->nCol);
83030   memcpy(pTo->anLt, pFrom->anLt, sizeof(tRowcnt)*p->nCol);
83031   memcpy(pTo->anDLt, pFrom->anDLt, sizeof(tRowcnt)*p->nCol);
83032   if( pFrom->nRowid ){
83033     sampleSetRowid(p->db, pTo, pFrom->nRowid, pFrom->u.aRowid);
83034   }else{
83035     sampleSetRowidInt64(p->db, pTo, pFrom->u.iRowid);
83036   }
83037 }
83038 #endif
83039 
83040 /*
83041 ** Reclaim all memory of a Stat4Accum structure.
83042 */
83043 static void stat4Destructor(void *pOld){
83044   Stat4Accum *p = (Stat4Accum*)pOld;
83045 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
83046   int i;
83047   for(i=0; i<p->nCol; i++) sampleClear(p->db, p->aBest+i);
83048   for(i=0; i<p->mxSample; i++) sampleClear(p->db, p->a+i);
83049   sampleClear(p->db, &p->current);
83050 #endif
83051   sqlite3DbFree(p->db, p);
83052 }
83053 
83054 /*
83055 ** Implementation of the stat_init(N,C) SQL function. The two parameters
83056 ** are the number of rows in the table or index (C) and the number of columns
83057 ** in the index (N).  The second argument (C) is only used for STAT3 and STAT4.
83058 **
83059 ** This routine allocates the Stat4Accum object in heap memory. The return
83060 ** value is a pointer to the the Stat4Accum object encoded as a blob (i.e.
83061 ** the size of the blob is sizeof(void*) bytes).
83062 */
83063 static void statInit(
83064   sqlite3_context *context,
83065   int argc,
83066   sqlite3_value **argv
83067 ){
83068   Stat4Accum *p;
83069   int nCol;                       /* Number of columns in index being sampled */
83070   int nColUp;                     /* nCol rounded up for alignment */
83071   int n;                          /* Bytes of space to allocate */
83072   sqlite3 *db;                    /* Database connection */
83073 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
83074   int mxSample = SQLITE_STAT4_SAMPLES;
83075 #endif
83076 
83077   /* Decode the three function arguments */
83078   UNUSED_PARAMETER(argc);
83079   nCol = sqlite3_value_int(argv[0]);
83080   assert( nCol>1 );               /* >1 because it includes the rowid column */
83081   nColUp = sizeof(tRowcnt)<8 ? (nCol+1)&~1 : nCol;
83082 
83083   /* Allocate the space required for the Stat4Accum object */
83084   n = sizeof(*p)
83085     + sizeof(tRowcnt)*nColUp                  /* Stat4Accum.anEq */
83086     + sizeof(tRowcnt)*nColUp                  /* Stat4Accum.anDLt */
83087 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
83088     + sizeof(tRowcnt)*nColUp                  /* Stat4Accum.anLt */
83089     + sizeof(Stat4Sample)*(nCol+mxSample)     /* Stat4Accum.aBest[], a[] */
83090     + sizeof(tRowcnt)*3*nColUp*(nCol+mxSample)
83091 #endif
83092   ;
83093   db = sqlite3_context_db_handle(context);
83094   p = sqlite3DbMallocZero(db, n);
83095   if( p==0 ){
83096     sqlite3_result_error_nomem(context);
83097     return;
83098   }
83099 
83100   p->db = db;
83101   p->nRow = 0;
83102   p->nCol = nCol;
83103   p->current.anDLt = (tRowcnt*)&p[1];
83104   p->current.anEq = &p->current.anDLt[nColUp];
83105 
83106 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
83107   {
83108     u8 *pSpace;                     /* Allocated space not yet assigned */
83109     int i;                          /* Used to iterate through p->aSample[] */
83110 
83111     p->iGet = -1;
83112     p->mxSample = mxSample;
83113     p->nPSample = (tRowcnt)(sqlite3_value_int64(argv[1])/(mxSample/3+1) + 1);
83114     p->current.anLt = &p->current.anEq[nColUp];
83115     p->iPrn = nCol*0x689e962d ^ sqlite3_value_int(argv[1])*0xd0944565;
83116 
83117     /* Set up the Stat4Accum.a[] and aBest[] arrays */
83118     p->a = (struct Stat4Sample*)&p->current.anLt[nColUp];
83119     p->aBest = &p->a[mxSample];
83120     pSpace = (u8*)(&p->a[mxSample+nCol]);
83121     for(i=0; i<(mxSample+nCol); i++){
83122       p->a[i].anEq = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp);
83123       p->a[i].anLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp);
83124       p->a[i].anDLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp);
83125     }
83126     assert( (pSpace - (u8*)p)==n );
83127 
83128     for(i=0; i<nCol; i++){
83129       p->aBest[i].iCol = i;
83130     }
83131   }
83132 #endif
83133 
83134   /* Return a pointer to the allocated object to the caller */
83135   sqlite3_result_blob(context, p, sizeof(p), stat4Destructor);
83136 }
83137 static const FuncDef statInitFuncdef = {
83138   1+IsStat34,      /* nArg */
83139   SQLITE_UTF8,     /* funcFlags */
83140   0,               /* pUserData */
83141   0,               /* pNext */
83142   statInit,        /* xFunc */
83143   0,               /* xStep */
83144   0,               /* xFinalize */
83145   "stat_init",     /* zName */
83146   0,               /* pHash */
83147   0                /* pDestructor */
83148 };
83149 
83150 #ifdef SQLITE_ENABLE_STAT4
83151 /*
83152 ** pNew and pOld are both candidate non-periodic samples selected for
83153 ** the same column (pNew->iCol==pOld->iCol). Ignoring this column and
83154 ** considering only any trailing columns and the sample hash value, this
83155 ** function returns true if sample pNew is to be preferred over pOld.
83156 ** In other words, if we assume that the cardinalities of the selected
83157 ** column for pNew and pOld are equal, is pNew to be preferred over pOld.
83158 **
83159 ** This function assumes that for each argument sample, the contents of
83160 ** the anEq[] array from pSample->anEq[pSample->iCol+1] onwards are valid.
83161 */
83162 static int sampleIsBetterPost(
83163   Stat4Accum *pAccum,
83164   Stat4Sample *pNew,
83165   Stat4Sample *pOld
83166 ){
83167   int nCol = pAccum->nCol;
83168   int i;
83169   assert( pNew->iCol==pOld->iCol );
83170   for(i=pNew->iCol+1; i<nCol; i++){
83171     if( pNew->anEq[i]>pOld->anEq[i] ) return 1;
83172     if( pNew->anEq[i]<pOld->anEq[i] ) return 0;
83173   }
83174   if( pNew->iHash>pOld->iHash ) return 1;
83175   return 0;
83176 }
83177 #endif
83178 
83179 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
83180 /*
83181 ** Return true if pNew is to be preferred over pOld.
83182 **
83183 ** This function assumes that for each argument sample, the contents of
83184 ** the anEq[] array from pSample->anEq[pSample->iCol] onwards are valid.
83185 */
83186 static int sampleIsBetter(
83187   Stat4Accum *pAccum,
83188   Stat4Sample *pNew,
83189   Stat4Sample *pOld
83190 ){
83191   tRowcnt nEqNew = pNew->anEq[pNew->iCol];
83192   tRowcnt nEqOld = pOld->anEq[pOld->iCol];
83193 
83194   assert( pOld->isPSample==0 && pNew->isPSample==0 );
83195   assert( IsStat4 || (pNew->iCol==0 && pOld->iCol==0) );
83196 
83197   if( (nEqNew>nEqOld) ) return 1;
83198 #ifdef SQLITE_ENABLE_STAT4
83199   if( nEqNew==nEqOld ){
83200     if( pNew->iCol<pOld->iCol ) return 1;
83201     return (pNew->iCol==pOld->iCol && sampleIsBetterPost(pAccum, pNew, pOld));
83202   }
83203   return 0;
83204 #else
83205   return (nEqNew==nEqOld && pNew->iHash>pOld->iHash);
83206 #endif
83207 }
83208 
83209 /*
83210 ** Copy the contents of sample *pNew into the p->a[] array. If necessary,
83211 ** remove the least desirable sample from p->a[] to make room.
83212 */
83213 static void sampleInsert(Stat4Accum *p, Stat4Sample *pNew, int nEqZero){
83214   Stat4Sample *pSample = 0;
83215   int i;
83216 
83217   assert( IsStat4 || nEqZero==0 );
83218 
83219 #ifdef SQLITE_ENABLE_STAT4
83220   if( pNew->isPSample==0 ){
83221     Stat4Sample *pUpgrade = 0;
83222     assert( pNew->anEq[pNew->iCol]>0 );
83223 
83224     /* This sample is being added because the prefix that ends in column
83225     ** iCol occurs many times in the table. However, if we have already
83226     ** added a sample that shares this prefix, there is no need to add
83227     ** this one. Instead, upgrade the priority of the highest priority
83228     ** existing sample that shares this prefix.  */
83229     for(i=p->nSample-1; i>=0; i--){
83230       Stat4Sample *pOld = &p->a[i];
83231       if( pOld->anEq[pNew->iCol]==0 ){
83232         if( pOld->isPSample ) return;
83233         assert( pOld->iCol>pNew->iCol );
83234         assert( sampleIsBetter(p, pNew, pOld) );
83235         if( pUpgrade==0 || sampleIsBetter(p, pOld, pUpgrade) ){
83236           pUpgrade = pOld;
83237         }
83238       }
83239     }
83240     if( pUpgrade ){
83241       pUpgrade->iCol = pNew->iCol;
83242       pUpgrade->anEq[pUpgrade->iCol] = pNew->anEq[pUpgrade->iCol];
83243       goto find_new_min;
83244     }
83245   }
83246 #endif
83247 
83248   /* If necessary, remove sample iMin to make room for the new sample. */
83249   if( p->nSample>=p->mxSample ){
83250     Stat4Sample *pMin = &p->a[p->iMin];
83251     tRowcnt *anEq = pMin->anEq;
83252     tRowcnt *anLt = pMin->anLt;
83253     tRowcnt *anDLt = pMin->anDLt;
83254     sampleClear(p->db, pMin);
83255     memmove(pMin, &pMin[1], sizeof(p->a[0])*(p->nSample-p->iMin-1));
83256     pSample = &p->a[p->nSample-1];
83257     pSample->nRowid = 0;
83258     pSample->anEq = anEq;
83259     pSample->anDLt = anDLt;
83260     pSample->anLt = anLt;
83261     p->nSample = p->mxSample-1;
83262   }
83263 
83264   /* The "rows less-than" for the rowid column must be greater than that
83265   ** for the last sample in the p->a[] array. Otherwise, the samples would
83266   ** be out of order. */
83267 #ifdef SQLITE_ENABLE_STAT4
83268   assert( p->nSample==0
83269        || pNew->anLt[p->nCol-1] > p->a[p->nSample-1].anLt[p->nCol-1] );
83270 #endif
83271 
83272   /* Insert the new sample */
83273   pSample = &p->a[p->nSample];
83274   sampleCopy(p, pSample, pNew);
83275   p->nSample++;
83276 
83277   /* Zero the first nEqZero entries in the anEq[] array. */
83278   memset(pSample->anEq, 0, sizeof(tRowcnt)*nEqZero);
83279 
83280 #ifdef SQLITE_ENABLE_STAT4
83281  find_new_min:
83282 #endif
83283   if( p->nSample>=p->mxSample ){
83284     int iMin = -1;
83285     for(i=0; i<p->mxSample; i++){
83286       if( p->a[i].isPSample ) continue;
83287       if( iMin<0 || sampleIsBetter(p, &p->a[iMin], &p->a[i]) ){
83288         iMin = i;
83289       }
83290     }
83291     assert( iMin>=0 );
83292     p->iMin = iMin;
83293   }
83294 }
83295 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
83296 
83297 /*
83298 ** Field iChng of the index being scanned has changed. So at this point
83299 ** p->current contains a sample that reflects the previous row of the
83300 ** index. The value of anEq[iChng] and subsequent anEq[] elements are
83301 ** correct at this point.
83302 */
83303 static void samplePushPrevious(Stat4Accum *p, int iChng){
83304 #ifdef SQLITE_ENABLE_STAT4
83305   int i;
83306 
83307   /* Check if any samples from the aBest[] array should be pushed
83308   ** into IndexSample.a[] at this point.  */
83309   for(i=(p->nCol-2); i>=iChng; i--){
83310     Stat4Sample *pBest = &p->aBest[i];
83311     pBest->anEq[i] = p->current.anEq[i];
83312     if( p->nSample<p->mxSample || sampleIsBetter(p, pBest, &p->a[p->iMin]) ){
83313       sampleInsert(p, pBest, i);
83314     }
83315   }
83316 
83317   /* Update the anEq[] fields of any samples already collected. */
83318   for(i=p->nSample-1; i>=0; i--){
83319     int j;
83320     for(j=iChng; j<p->nCol; j++){
83321       if( p->a[i].anEq[j]==0 ) p->a[i].anEq[j] = p->current.anEq[j];
83322     }
83323   }
83324 #endif
83325 
83326 #if defined(SQLITE_ENABLE_STAT3) && !defined(SQLITE_ENABLE_STAT4)
83327   if( iChng==0 ){
83328     tRowcnt nLt = p->current.anLt[0];
83329     tRowcnt nEq = p->current.anEq[0];
83330 
83331     /* Check if this is to be a periodic sample. If so, add it. */
83332     if( (nLt/p->nPSample)!=(nLt+nEq)/p->nPSample ){
83333       p->current.isPSample = 1;
83334       sampleInsert(p, &p->current, 0);
83335       p->current.isPSample = 0;
83336     }else
83337 
83338     /* Or if it is a non-periodic sample. Add it in this case too. */
83339     if( p->nSample<p->mxSample
83340      || sampleIsBetter(p, &p->current, &p->a[p->iMin])
83341     ){
83342       sampleInsert(p, &p->current, 0);
83343     }
83344   }
83345 #endif
83346 
83347 #ifndef SQLITE_ENABLE_STAT3_OR_STAT4
83348   UNUSED_PARAMETER( p );
83349   UNUSED_PARAMETER( iChng );
83350 #endif
83351 }
83352 
83353 /*
83354 ** Implementation of the stat_push SQL function:  stat_push(P,C,R)
83355 ** Arguments:
83356 **
83357 **    P     Pointer to the Stat4Accum object created by stat_init()
83358 **    C     Index of left-most column to differ from previous row
83359 **    R     Rowid for the current row.  Might be a key record for
83360 **          WITHOUT ROWID tables.
83361 **
83362 ** The SQL function always returns NULL.
83363 **
83364 ** The R parameter is only used for STAT3 and STAT4
83365 */
83366 static void statPush(
83367   sqlite3_context *context,
83368   int argc,
83369   sqlite3_value **argv
83370 ){
83371   int i;
83372 
83373   /* The three function arguments */
83374   Stat4Accum *p = (Stat4Accum*)sqlite3_value_blob(argv[0]);
83375   int iChng = sqlite3_value_int(argv[1]);
83376 
83377   UNUSED_PARAMETER( argc );
83378   UNUSED_PARAMETER( context );
83379   assert( p->nCol>1 );        /* Includes rowid field */
83380   assert( iChng<p->nCol );
83381 
83382   if( p->nRow==0 ){
83383     /* This is the first call to this function. Do initialization. */
83384     for(i=0; i<p->nCol; i++) p->current.anEq[i] = 1;
83385   }else{
83386     /* Second and subsequent calls get processed here */
83387     samplePushPrevious(p, iChng);
83388 
83389     /* Update anDLt[], anLt[] and anEq[] to reflect the values that apply
83390     ** to the current row of the index. */
83391     for(i=0; i<iChng; i++){
83392       p->current.anEq[i]++;
83393     }
83394     for(i=iChng; i<p->nCol; i++){
83395       p->current.anDLt[i]++;
83396 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
83397       p->current.anLt[i] += p->current.anEq[i];
83398 #endif
83399       p->current.anEq[i] = 1;
83400     }
83401   }
83402   p->nRow++;
83403 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
83404   if( sqlite3_value_type(argv[2])==SQLITE_INTEGER ){
83405     sampleSetRowidInt64(p->db, &p->current, sqlite3_value_int64(argv[2]));
83406   }else{
83407     sampleSetRowid(p->db, &p->current, sqlite3_value_bytes(argv[2]),
83408                                        sqlite3_value_blob(argv[2]));
83409   }
83410   p->current.iHash = p->iPrn = p->iPrn*1103515245 + 12345;
83411 #endif
83412 
83413 #ifdef SQLITE_ENABLE_STAT4
83414   {
83415     tRowcnt nLt = p->current.anLt[p->nCol-1];
83416 
83417     /* Check if this is to be a periodic sample. If so, add it. */
83418     if( (nLt/p->nPSample)!=(nLt+1)/p->nPSample ){
83419       p->current.isPSample = 1;
83420       p->current.iCol = 0;
83421       sampleInsert(p, &p->current, p->nCol-1);
83422       p->current.isPSample = 0;
83423     }
83424 
83425     /* Update the aBest[] array. */
83426     for(i=0; i<(p->nCol-1); i++){
83427       p->current.iCol = i;
83428       if( i>=iChng || sampleIsBetterPost(p, &p->current, &p->aBest[i]) ){
83429         sampleCopy(p, &p->aBest[i], &p->current);
83430       }
83431     }
83432   }
83433 #endif
83434 }
83435 static const FuncDef statPushFuncdef = {
83436   2+IsStat34,      /* nArg */
83437   SQLITE_UTF8,     /* funcFlags */
83438   0,               /* pUserData */
83439   0,               /* pNext */
83440   statPush,        /* xFunc */
83441   0,               /* xStep */
83442   0,               /* xFinalize */
83443   "stat_push",     /* zName */
83444   0,               /* pHash */
83445   0                /* pDestructor */
83446 };
83447 
83448 #define STAT_GET_STAT1 0          /* "stat" column of stat1 table */
83449 #define STAT_GET_ROWID 1          /* "rowid" column of stat[34] entry */
83450 #define STAT_GET_NEQ   2          /* "neq" column of stat[34] entry */
83451 #define STAT_GET_NLT   3          /* "nlt" column of stat[34] entry */
83452 #define STAT_GET_NDLT  4          /* "ndlt" column of stat[34] entry */
83453 
83454 /*
83455 ** Implementation of the stat_get(P,J) SQL function.  This routine is
83456 ** used to query the results.  Content is returned for parameter J
83457 ** which is one of the STAT_GET_xxxx values defined above.
83458 **
83459 ** If neither STAT3 nor STAT4 are enabled, then J is always
83460 ** STAT_GET_STAT1 and is hence omitted and this routine becomes
83461 ** a one-parameter function, stat_get(P), that always returns the
83462 ** stat1 table entry information.
83463 */
83464 static void statGet(
83465   sqlite3_context *context,
83466   int argc,
83467   sqlite3_value **argv
83468 ){
83469   Stat4Accum *p = (Stat4Accum*)sqlite3_value_blob(argv[0]);
83470 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
83471   /* STAT3 and STAT4 have a parameter on this routine. */
83472   int eCall = sqlite3_value_int(argv[1]);
83473   assert( argc==2 );
83474   assert( eCall==STAT_GET_STAT1 || eCall==STAT_GET_NEQ
83475        || eCall==STAT_GET_ROWID || eCall==STAT_GET_NLT
83476        || eCall==STAT_GET_NDLT
83477   );
83478   if( eCall==STAT_GET_STAT1 )
83479 #else
83480   assert( argc==1 );
83481 #endif
83482   {
83483     /* Return the value to store in the "stat" column of the sqlite_stat1
83484     ** table for this index.
83485     **
83486     ** The value is a string composed of a list of integers describing
83487     ** the index. The first integer in the list is the total number of
83488     ** entries in the index. There is one additional integer in the list
83489     ** for each indexed column. This additional integer is an estimate of
83490     ** the number of rows matched by a stabbing query on the index using
83491     ** a key with the corresponding number of fields. In other words,
83492     ** if the index is on columns (a,b) and the sqlite_stat1 value is
83493     ** "100 10 2", then SQLite estimates that:
83494     **
83495     **   * the index contains 100 rows,
83496     **   * "WHERE a=?" matches 10 rows, and
83497     **   * "WHERE a=? AND b=?" matches 2 rows.
83498     **
83499     ** If D is the count of distinct values and K is the total number of
83500     ** rows, then each estimate is computed as:
83501     **
83502     **        I = (K+D-1)/D
83503     */
83504     char *z;
83505     int i;
83506 
83507     char *zRet = sqlite3MallocZero(p->nCol * 25);
83508     if( zRet==0 ){
83509       sqlite3_result_error_nomem(context);
83510       return;
83511     }
83512 
83513     sqlite3_snprintf(24, zRet, "%llu", (u64)p->nRow);
83514     z = zRet + sqlite3Strlen30(zRet);
83515     for(i=0; i<(p->nCol-1); i++){
83516       u64 nDistinct = p->current.anDLt[i] + 1;
83517       u64 iVal = (p->nRow + nDistinct - 1) / nDistinct;
83518       sqlite3_snprintf(24, z, " %llu", iVal);
83519       z += sqlite3Strlen30(z);
83520       assert( p->current.anEq[i] );
83521     }
83522     assert( z[0]=='\0' && z>zRet );
83523 
83524     sqlite3_result_text(context, zRet, -1, sqlite3_free);
83525   }
83526 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
83527   else if( eCall==STAT_GET_ROWID ){
83528     if( p->iGet<0 ){
83529       samplePushPrevious(p, 0);
83530       p->iGet = 0;
83531     }
83532     if( p->iGet<p->nSample ){
83533       Stat4Sample *pS = p->a + p->iGet;
83534       if( pS->nRowid==0 ){
83535         sqlite3_result_int64(context, pS->u.iRowid);
83536       }else{
83537         sqlite3_result_blob(context, pS->u.aRowid, pS->nRowid,
83538                             SQLITE_TRANSIENT);
83539       }
83540     }
83541   }else{
83542     tRowcnt *aCnt = 0;
83543 
83544     assert( p->iGet<p->nSample );
83545     switch( eCall ){
83546       case STAT_GET_NEQ:  aCnt = p->a[p->iGet].anEq; break;
83547       case STAT_GET_NLT:  aCnt = p->a[p->iGet].anLt; break;
83548       default: {
83549         aCnt = p->a[p->iGet].anDLt;
83550         p->iGet++;
83551         break;
83552       }
83553     }
83554 
83555     if( IsStat3 ){
83556       sqlite3_result_int64(context, (i64)aCnt[0]);
83557     }else{
83558       char *zRet = sqlite3MallocZero(p->nCol * 25);
83559       if( zRet==0 ){
83560         sqlite3_result_error_nomem(context);
83561       }else{
83562         int i;
83563         char *z = zRet;
83564         for(i=0; i<p->nCol; i++){
83565           sqlite3_snprintf(24, z, "%llu ", (u64)aCnt[i]);
83566           z += sqlite3Strlen30(z);
83567         }
83568         assert( z[0]=='\0' && z>zRet );
83569         z[-1] = '\0';
83570         sqlite3_result_text(context, zRet, -1, sqlite3_free);
83571       }
83572     }
83573   }
83574 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
83575 #ifndef SQLITE_DEBUG
83576   UNUSED_PARAMETER( argc );
83577 #endif
83578 }
83579 static const FuncDef statGetFuncdef = {
83580   1+IsStat34,      /* nArg */
83581   SQLITE_UTF8,     /* funcFlags */
83582   0,               /* pUserData */
83583   0,               /* pNext */
83584   statGet,         /* xFunc */
83585   0,               /* xStep */
83586   0,               /* xFinalize */
83587   "stat_get",      /* zName */
83588   0,               /* pHash */
83589   0                /* pDestructor */
83590 };
83591 
83592 static void callStatGet(Vdbe *v, int regStat4, int iParam, int regOut){
83593   assert( regOut!=regStat4 && regOut!=regStat4+1 );
83594 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
83595   sqlite3VdbeAddOp2(v, OP_Integer, iParam, regStat4+1);
83596 #elif SQLITE_DEBUG
83597   assert( iParam==STAT_GET_STAT1 );
83598 #else
83599   UNUSED_PARAMETER( iParam );
83600 #endif
83601   sqlite3VdbeAddOp3(v, OP_Function, 0, regStat4, regOut);
83602   sqlite3VdbeChangeP4(v, -1, (char*)&statGetFuncdef, P4_FUNCDEF);
83603   sqlite3VdbeChangeP5(v, 1 + IsStat34);
83604 }
83605 
83606 /*
83607 ** Generate code to do an analysis of all indices associated with
83608 ** a single table.
83609 */
83610 static void analyzeOneTable(
83611   Parse *pParse,   /* Parser context */
83612   Table *pTab,     /* Table whose indices are to be analyzed */
83613   Index *pOnlyIdx, /* If not NULL, only analyze this one index */
83614   int iStatCur,    /* Index of VdbeCursor that writes the sqlite_stat1 table */
83615   int iMem,        /* Available memory locations begin here */
83616   int iTab         /* Next available cursor */
83617 ){
83618   sqlite3 *db = pParse->db;    /* Database handle */
83619   Index *pIdx;                 /* An index to being analyzed */
83620   int iIdxCur;                 /* Cursor open on index being analyzed */
83621   int iTabCur;                 /* Table cursor */
83622   Vdbe *v;                     /* The virtual machine being built up */
83623   int i;                       /* Loop counter */
83624   int jZeroRows = -1;          /* Jump from here if number of rows is zero */
83625   int iDb;                     /* Index of database containing pTab */
83626   u8 needTableCnt = 1;         /* True to count the table */
83627   int regNewRowid = iMem++;    /* Rowid for the inserted record */
83628   int regStat4 = iMem++;       /* Register to hold Stat4Accum object */
83629   int regChng = iMem++;        /* Index of changed index field */
83630 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
83631   int regRowid = iMem++;       /* Rowid argument passed to stat_push() */
83632 #endif
83633   int regTemp = iMem++;        /* Temporary use register */
83634   int regTabname = iMem++;     /* Register containing table name */
83635   int regIdxname = iMem++;     /* Register containing index name */
83636   int regStat1 = iMem++;       /* Value for the stat column of sqlite_stat1 */
83637   int regPrev = iMem;          /* MUST BE LAST (see below) */
83638 
83639   pParse->nMem = MAX(pParse->nMem, iMem);
83640   v = sqlite3GetVdbe(pParse);
83641   if( v==0 || NEVER(pTab==0) ){
83642     return;
83643   }
83644   if( pTab->tnum==0 ){
83645     /* Do not gather statistics on views or virtual tables */
83646     return;
83647   }
83648   if( sqlite3_strnicmp(pTab->zName, "sqlite_", 7)==0 ){
83649     /* Do not gather statistics on system tables */
83650     return;
83651   }
83652   assert( sqlite3BtreeHoldsAllMutexes(db) );
83653   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
83654   assert( iDb>=0 );
83655   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
83656 #ifndef SQLITE_OMIT_AUTHORIZATION
83657   if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0,
83658       db->aDb[iDb].zName ) ){
83659     return;
83660   }
83661 #endif
83662 
83663   /* Establish a read-lock on the table at the shared-cache level.
83664   ** Open a read-only cursor on the table. Also allocate a cursor number
83665   ** to use for scanning indexes (iIdxCur). No index cursor is opened at
83666   ** this time though.  */
83667   sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
83668   iTabCur = iTab++;
83669   iIdxCur = iTab++;
83670   pParse->nTab = MAX(pParse->nTab, iTab);
83671   sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead);
83672   sqlite3VdbeAddOp4(v, OP_String8, 0, regTabname, 0, pTab->zName, 0);
83673 
83674   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
83675     int nCol;                     /* Number of columns indexed by pIdx */
83676     int *aGotoChng;               /* Array of jump instruction addresses */
83677     int addrRewind;               /* Address of "OP_Rewind iIdxCur" */
83678     int addrGotoChng0;            /* Address of "Goto addr_chng_0" */
83679     int addrNextRow;              /* Address of "next_row:" */
83680     const char *zIdxName;         /* Name of the index */
83681 
83682     if( pOnlyIdx && pOnlyIdx!=pIdx ) continue;
83683     if( pIdx->pPartIdxWhere==0 ) needTableCnt = 0;
83684     VdbeNoopComment((v, "Begin analysis of %s", pIdx->zName));
83685     nCol = pIdx->nKeyCol;
83686     aGotoChng = sqlite3DbMallocRaw(db, sizeof(int)*(nCol+1));
83687     if( aGotoChng==0 ) continue;
83688 
83689     /* Populate the register containing the index name. */
83690     if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
83691       zIdxName = pTab->zName;
83692     }else{
83693       zIdxName = pIdx->zName;
83694     }
83695     sqlite3VdbeAddOp4(v, OP_String8, 0, regIdxname, 0, zIdxName, 0);
83696 
83697     /*
83698     ** Pseudo-code for loop that calls stat_push():
83699     **
83700     **   Rewind csr
83701     **   if eof(csr) goto end_of_scan;
83702     **   regChng = 0
83703     **   goto chng_addr_0;
83704     **
83705     **  next_row:
83706     **   regChng = 0
83707     **   if( idx(0) != regPrev(0) ) goto chng_addr_0
83708     **   regChng = 1
83709     **   if( idx(1) != regPrev(1) ) goto chng_addr_1
83710     **   ...
83711     **   regChng = N
83712     **   goto chng_addr_N
83713     **
83714     **  chng_addr_0:
83715     **   regPrev(0) = idx(0)
83716     **  chng_addr_1:
83717     **   regPrev(1) = idx(1)
83718     **  ...
83719     **
83720     **  chng_addr_N:
83721     **   regRowid = idx(rowid)
83722     **   stat_push(P, regChng, regRowid)
83723     **   Next csr
83724     **   if !eof(csr) goto next_row;
83725     **
83726     **  end_of_scan:
83727     */
83728 
83729     /* Make sure there are enough memory cells allocated to accommodate
83730     ** the regPrev array and a trailing rowid (the rowid slot is required
83731     ** when building a record to insert into the sample column of
83732     ** the sqlite_stat4 table.  */
83733     pParse->nMem = MAX(pParse->nMem, regPrev+nCol);
83734 
83735     /* Open a read-only cursor on the index being analyzed. */
83736     assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) );
83737     sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb);
83738     sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
83739     VdbeComment((v, "%s", pIdx->zName));
83740 
83741     /* Invoke the stat_init() function. The arguments are:
83742     **
83743     **    (1) the number of columns in the index including the rowid,
83744     **    (2) the number of rows in the index,
83745     **
83746     ** The second argument is only used for STAT3 and STAT4
83747     */
83748 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
83749     sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regStat4+2);
83750 #endif
83751     sqlite3VdbeAddOp2(v, OP_Integer, nCol+1, regStat4+1);
83752     sqlite3VdbeAddOp3(v, OP_Function, 0, regStat4+1, regStat4);
83753     sqlite3VdbeChangeP4(v, -1, (char*)&statInitFuncdef, P4_FUNCDEF);
83754     sqlite3VdbeChangeP5(v, 1+IsStat34);
83755 
83756     /* Implementation of the following:
83757     **
83758     **   Rewind csr
83759     **   if eof(csr) goto end_of_scan;
83760     **   regChng = 0
83761     **   goto next_push_0;
83762     **
83763     */
83764     addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur);
83765     VdbeCoverage(v);
83766     sqlite3VdbeAddOp2(v, OP_Integer, 0, regChng);
83767     addrGotoChng0 = sqlite3VdbeAddOp0(v, OP_Goto);
83768 
83769     /*
83770     **  next_row:
83771     **   regChng = 0
83772     **   if( idx(0) != regPrev(0) ) goto chng_addr_0
83773     **   regChng = 1
83774     **   if( idx(1) != regPrev(1) ) goto chng_addr_1
83775     **   ...
83776     **   regChng = N
83777     **   goto chng_addr_N
83778     */
83779     addrNextRow = sqlite3VdbeCurrentAddr(v);
83780     for(i=0; i<nCol; i++){
83781       char *pColl = (char*)sqlite3LocateCollSeq(pParse, pIdx->azColl[i]);
83782       sqlite3VdbeAddOp2(v, OP_Integer, i, regChng);
83783       sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regTemp);
83784       aGotoChng[i] =
83785       sqlite3VdbeAddOp4(v, OP_Ne, regTemp, 0, regPrev+i, pColl, P4_COLLSEQ);
83786       sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
83787       VdbeCoverage(v);
83788     }
83789     sqlite3VdbeAddOp2(v, OP_Integer, nCol, regChng);
83790     aGotoChng[nCol] = sqlite3VdbeAddOp0(v, OP_Goto);
83791 
83792     /*
83793     **  chng_addr_0:
83794     **   regPrev(0) = idx(0)
83795     **  chng_addr_1:
83796     **   regPrev(1) = idx(1)
83797     **  ...
83798     */
83799     sqlite3VdbeJumpHere(v, addrGotoChng0);
83800     for(i=0; i<nCol; i++){
83801       sqlite3VdbeJumpHere(v, aGotoChng[i]);
83802       sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regPrev+i);
83803     }
83804 
83805     /*
83806     **  chng_addr_N:
83807     **   regRowid = idx(rowid)            // STAT34 only
83808     **   stat_push(P, regChng, regRowid)  // 3rd parameter STAT34 only
83809     **   Next csr
83810     **   if !eof(csr) goto next_row;
83811     */
83812     sqlite3VdbeJumpHere(v, aGotoChng[nCol]);
83813 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
83814     assert( regRowid==(regStat4+2) );
83815     if( HasRowid(pTab) ){
83816       sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, regRowid);
83817     }else{
83818       Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
83819       int j, k, regKey;
83820       regKey = sqlite3GetTempRange(pParse, pPk->nKeyCol);
83821       for(j=0; j<pPk->nKeyCol; j++){
83822         k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]);
83823         sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, regKey+j);
83824         VdbeComment((v, "%s", pTab->aCol[pPk->aiColumn[j]].zName));
83825       }
83826       sqlite3VdbeAddOp3(v, OP_MakeRecord, regKey, pPk->nKeyCol, regRowid);
83827       sqlite3ReleaseTempRange(pParse, regKey, pPk->nKeyCol);
83828     }
83829 #endif
83830     assert( regChng==(regStat4+1) );
83831     sqlite3VdbeAddOp3(v, OP_Function, 1, regStat4, regTemp);
83832     sqlite3VdbeChangeP4(v, -1, (char*)&statPushFuncdef, P4_FUNCDEF);
83833     sqlite3VdbeChangeP5(v, 2+IsStat34);
83834     sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v);
83835 
83836     /* Add the entry to the stat1 table. */
83837     callStatGet(v, regStat4, STAT_GET_STAT1, regStat1);
83838     sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "aaa", 0);
83839     sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
83840     sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid);
83841     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
83842 
83843     /* Add the entries to the stat3 or stat4 table. */
83844 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
83845     {
83846       int regEq = regStat1;
83847       int regLt = regStat1+1;
83848       int regDLt = regStat1+2;
83849       int regSample = regStat1+3;
83850       int regCol = regStat1+4;
83851       int regSampleRowid = regCol + nCol;
83852       int addrNext;
83853       int addrIsNull;
83854       u8 seekOp = HasRowid(pTab) ? OP_NotExists : OP_NotFound;
83855 
83856       pParse->nMem = MAX(pParse->nMem, regCol+nCol+1);
83857 
83858       addrNext = sqlite3VdbeCurrentAddr(v);
83859       callStatGet(v, regStat4, STAT_GET_ROWID, regSampleRowid);
83860       addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regSampleRowid);
83861       VdbeCoverage(v);
83862       callStatGet(v, regStat4, STAT_GET_NEQ, regEq);
83863       callStatGet(v, regStat4, STAT_GET_NLT, regLt);
83864       callStatGet(v, regStat4, STAT_GET_NDLT, regDLt);
83865       sqlite3VdbeAddOp4Int(v, seekOp, iTabCur, addrNext, regSampleRowid, 0);
83866       /* We know that the regSampleRowid row exists because it was read by
83867       ** the previous loop.  Thus the not-found jump of seekOp will never
83868       ** be taken */
83869       VdbeCoverageNeverTaken(v);
83870 #ifdef SQLITE_ENABLE_STAT3
83871       sqlite3ExprCodeGetColumnOfTable(v, pTab, iTabCur,
83872                                       pIdx->aiColumn[0], regSample);
83873 #else
83874       for(i=0; i<nCol; i++){
83875         i16 iCol = pIdx->aiColumn[i];
83876         sqlite3ExprCodeGetColumnOfTable(v, pTab, iTabCur, iCol, regCol+i);
83877       }
83878       sqlite3VdbeAddOp3(v, OP_MakeRecord, regCol, nCol+1, regSample);
83879 #endif
83880       sqlite3VdbeAddOp3(v, OP_MakeRecord, regTabname, 6, regTemp);
83881       sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regNewRowid);
83882       sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regTemp, regNewRowid);
83883       sqlite3VdbeAddOp2(v, OP_Goto, 1, addrNext); /* P1==1 for end-of-loop */
83884       sqlite3VdbeJumpHere(v, addrIsNull);
83885     }
83886 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
83887 
83888     /* End of analysis */
83889     sqlite3VdbeJumpHere(v, addrRewind);
83890     sqlite3DbFree(db, aGotoChng);
83891   }
83892 
83893 
83894   /* Create a single sqlite_stat1 entry containing NULL as the index
83895   ** name and the row count as the content.
83896   */
83897   if( pOnlyIdx==0 && needTableCnt ){
83898     VdbeComment((v, "%s", pTab->zName));
83899     sqlite3VdbeAddOp2(v, OP_Count, iTabCur, regStat1);
83900     jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1); VdbeCoverage(v);
83901     sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname);
83902     sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "aaa", 0);
83903     sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
83904     sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid);
83905     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
83906     sqlite3VdbeJumpHere(v, jZeroRows);
83907   }
83908 }
83909 
83910 
83911 /*
83912 ** Generate code that will cause the most recent index analysis to
83913 ** be loaded into internal hash tables where is can be used.
83914 */
83915 static void loadAnalysis(Parse *pParse, int iDb){
83916   Vdbe *v = sqlite3GetVdbe(pParse);
83917   if( v ){
83918     sqlite3VdbeAddOp1(v, OP_LoadAnalysis, iDb);
83919   }
83920 }
83921 
83922 /*
83923 ** Generate code that will do an analysis of an entire database
83924 */
83925 static void analyzeDatabase(Parse *pParse, int iDb){
83926   sqlite3 *db = pParse->db;
83927   Schema *pSchema = db->aDb[iDb].pSchema;    /* Schema of database iDb */
83928   HashElem *k;
83929   int iStatCur;
83930   int iMem;
83931   int iTab;
83932 
83933   sqlite3BeginWriteOperation(pParse, 0, iDb);
83934   iStatCur = pParse->nTab;
83935   pParse->nTab += 3;
83936   openStatTable(pParse, iDb, iStatCur, 0, 0);
83937   iMem = pParse->nMem+1;
83938   iTab = pParse->nTab;
83939   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
83940   for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
83941     Table *pTab = (Table*)sqliteHashData(k);
83942     analyzeOneTable(pParse, pTab, 0, iStatCur, iMem, iTab);
83943   }
83944   loadAnalysis(pParse, iDb);
83945 }
83946 
83947 /*
83948 ** Generate code that will do an analysis of a single table in
83949 ** a database.  If pOnlyIdx is not NULL then it is a single index
83950 ** in pTab that should be analyzed.
83951 */
83952 static void analyzeTable(Parse *pParse, Table *pTab, Index *pOnlyIdx){
83953   int iDb;
83954   int iStatCur;
83955 
83956   assert( pTab!=0 );
83957   assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
83958   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
83959   sqlite3BeginWriteOperation(pParse, 0, iDb);
83960   iStatCur = pParse->nTab;
83961   pParse->nTab += 3;
83962   if( pOnlyIdx ){
83963     openStatTable(pParse, iDb, iStatCur, pOnlyIdx->zName, "idx");
83964   }else{
83965     openStatTable(pParse, iDb, iStatCur, pTab->zName, "tbl");
83966   }
83967   analyzeOneTable(pParse, pTab, pOnlyIdx, iStatCur,pParse->nMem+1,pParse->nTab);
83968   loadAnalysis(pParse, iDb);
83969 }
83970 
83971 /*
83972 ** Generate code for the ANALYZE command.  The parser calls this routine
83973 ** when it recognizes an ANALYZE command.
83974 **
83975 **        ANALYZE                            -- 1
83976 **        ANALYZE  <database>                -- 2
83977 **        ANALYZE  ?<database>.?<tablename>  -- 3
83978 **
83979 ** Form 1 causes all indices in all attached databases to be analyzed.
83980 ** Form 2 analyzes all indices the single database named.
83981 ** Form 3 analyzes all indices associated with the named table.
83982 */
83983 SQLITE_PRIVATE void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){
83984   sqlite3 *db = pParse->db;
83985   int iDb;
83986   int i;
83987   char *z, *zDb;
83988   Table *pTab;
83989   Index *pIdx;
83990   Token *pTableName;
83991 
83992   /* Read the database schema. If an error occurs, leave an error message
83993   ** and code in pParse and return NULL. */
83994   assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
83995   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
83996     return;
83997   }
83998 
83999   assert( pName2!=0 || pName1==0 );
84000   if( pName1==0 ){
84001     /* Form 1:  Analyze everything */
84002     for(i=0; i<db->nDb; i++){
84003       if( i==1 ) continue;  /* Do not analyze the TEMP database */
84004       analyzeDatabase(pParse, i);
84005     }
84006   }else if( pName2->n==0 ){
84007     /* Form 2:  Analyze the database or table named */
84008     iDb = sqlite3FindDb(db, pName1);
84009     if( iDb>=0 ){
84010       analyzeDatabase(pParse, iDb);
84011     }else{
84012       z = sqlite3NameFromToken(db, pName1);
84013       if( z ){
84014         if( (pIdx = sqlite3FindIndex(db, z, 0))!=0 ){
84015           analyzeTable(pParse, pIdx->pTable, pIdx);
84016         }else if( (pTab = sqlite3LocateTable(pParse, 0, z, 0))!=0 ){
84017           analyzeTable(pParse, pTab, 0);
84018         }
84019         sqlite3DbFree(db, z);
84020       }
84021     }
84022   }else{
84023     /* Form 3: Analyze the fully qualified table name */
84024     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName);
84025     if( iDb>=0 ){
84026       zDb = db->aDb[iDb].zName;
84027       z = sqlite3NameFromToken(db, pTableName);
84028       if( z ){
84029         if( (pIdx = sqlite3FindIndex(db, z, zDb))!=0 ){
84030           analyzeTable(pParse, pIdx->pTable, pIdx);
84031         }else if( (pTab = sqlite3LocateTable(pParse, 0, z, zDb))!=0 ){
84032           analyzeTable(pParse, pTab, 0);
84033         }
84034         sqlite3DbFree(db, z);
84035       }
84036     }
84037   }
84038 }
84039 
84040 /*
84041 ** Used to pass information from the analyzer reader through to the
84042 ** callback routine.
84043 */
84044 typedef struct analysisInfo analysisInfo;
84045 struct analysisInfo {
84046   sqlite3 *db;
84047   const char *zDatabase;
84048 };
84049 
84050 /*
84051 ** The first argument points to a nul-terminated string containing a
84052 ** list of space separated integers. Read the first nOut of these into
84053 ** the array aOut[].
84054 */
84055 static void decodeIntArray(
84056   char *zIntArray,       /* String containing int array to decode */
84057   int nOut,              /* Number of slots in aOut[] */
84058   tRowcnt *aOut,         /* Store integers here */
84059   LogEst *aLog,          /* Or, if aOut==0, here */
84060   Index *pIndex          /* Handle extra flags for this index, if not NULL */
84061 ){
84062   char *z = zIntArray;
84063   int c;
84064   int i;
84065   tRowcnt v;
84066 
84067 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
84068   if( z==0 ) z = "";
84069 #else
84070   if( NEVER(z==0) ) z = "";
84071 #endif
84072   for(i=0; *z && i<nOut; i++){
84073     v = 0;
84074     while( (c=z[0])>='0' && c<='9' ){
84075       v = v*10 + c - '0';
84076       z++;
84077     }
84078 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
84079     if( aOut ){
84080       aOut[i] = v;
84081     }else
84082 #else
84083     assert( aOut==0 );
84084     UNUSED_PARAMETER(aOut);
84085 #endif
84086     {
84087       aLog[i] = sqlite3LogEst(v);
84088     }
84089     if( *z==' ' ) z++;
84090   }
84091 #ifndef SQLITE_ENABLE_STAT3_OR_STAT4
84092   assert( pIndex!=0 );
84093 #else
84094   if( pIndex )
84095 #endif
84096   {
84097     if( strcmp(z, "unordered")==0 ){
84098       pIndex->bUnordered = 1;
84099     }else if( sqlite3_strglob("sz=[0-9]*", z)==0 ){
84100       int v32 = 0;
84101       sqlite3GetInt32(z+3, &v32);
84102       pIndex->szIdxRow = sqlite3LogEst(v32);
84103     }
84104   }
84105 }
84106 
84107 /*
84108 ** This callback is invoked once for each index when reading the
84109 ** sqlite_stat1 table.
84110 **
84111 **     argv[0] = name of the table
84112 **     argv[1] = name of the index (might be NULL)
84113 **     argv[2] = results of analysis - on integer for each column
84114 **
84115 ** Entries for which argv[1]==NULL simply record the number of rows in
84116 ** the table.
84117 */
84118 static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){
84119   analysisInfo *pInfo = (analysisInfo*)pData;
84120   Index *pIndex;
84121   Table *pTable;
84122   const char *z;
84123 
84124   assert( argc==3 );
84125   UNUSED_PARAMETER2(NotUsed, argc);
84126 
84127   if( argv==0 || argv[0]==0 || argv[2]==0 ){
84128     return 0;
84129   }
84130   pTable = sqlite3FindTable(pInfo->db, argv[0], pInfo->zDatabase);
84131   if( pTable==0 ){
84132     return 0;
84133   }
84134   if( argv[1]==0 ){
84135     pIndex = 0;
84136   }else if( sqlite3_stricmp(argv[0],argv[1])==0 ){
84137     pIndex = sqlite3PrimaryKeyIndex(pTable);
84138   }else{
84139     pIndex = sqlite3FindIndex(pInfo->db, argv[1], pInfo->zDatabase);
84140   }
84141   z = argv[2];
84142 
84143   if( pIndex ){
84144     decodeIntArray((char*)z, pIndex->nKeyCol+1, 0, pIndex->aiRowLogEst, pIndex);
84145     if( pIndex->pPartIdxWhere==0 ) pTable->nRowLogEst = pIndex->aiRowLogEst[0];
84146   }else{
84147     Index fakeIdx;
84148     fakeIdx.szIdxRow = pTable->szTabRow;
84149     decodeIntArray((char*)z, 1, 0, &pTable->nRowLogEst, &fakeIdx);
84150     pTable->szTabRow = fakeIdx.szIdxRow;
84151   }
84152 
84153   return 0;
84154 }
84155 
84156 /*
84157 ** If the Index.aSample variable is not NULL, delete the aSample[] array
84158 ** and its contents.
84159 */
84160 SQLITE_PRIVATE void sqlite3DeleteIndexSamples(sqlite3 *db, Index *pIdx){
84161 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
84162   if( pIdx->aSample ){
84163     int j;
84164     for(j=0; j<pIdx->nSample; j++){
84165       IndexSample *p = &pIdx->aSample[j];
84166       sqlite3DbFree(db, p->p);
84167     }
84168     sqlite3DbFree(db, pIdx->aSample);
84169   }
84170   if( db && db->pnBytesFreed==0 ){
84171     pIdx->nSample = 0;
84172     pIdx->aSample = 0;
84173   }
84174 #else
84175   UNUSED_PARAMETER(db);
84176   UNUSED_PARAMETER(pIdx);
84177 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
84178 }
84179 
84180 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
84181 /*
84182 ** Populate the pIdx->aAvgEq[] array based on the samples currently
84183 ** stored in pIdx->aSample[].
84184 */
84185 static void initAvgEq(Index *pIdx){
84186   if( pIdx ){
84187     IndexSample *aSample = pIdx->aSample;
84188     IndexSample *pFinal = &aSample[pIdx->nSample-1];
84189     int iCol;
84190     for(iCol=0; iCol<pIdx->nKeyCol; iCol++){
84191       int i;                    /* Used to iterate through samples */
84192       tRowcnt sumEq = 0;        /* Sum of the nEq values */
84193       tRowcnt nSum = 0;         /* Number of terms contributing to sumEq */
84194       tRowcnt avgEq = 0;
84195       tRowcnt nDLt = pFinal->anDLt[iCol];
84196 
84197       /* Set nSum to the number of distinct (iCol+1) field prefixes that
84198       ** occur in the stat4 table for this index before pFinal. Set
84199       ** sumEq to the sum of the nEq values for column iCol for the same
84200       ** set (adding the value only once where there exist dupicate
84201       ** prefixes).  */
84202       for(i=0; i<(pIdx->nSample-1); i++){
84203         if( aSample[i].anDLt[iCol]!=aSample[i+1].anDLt[iCol] ){
84204           sumEq += aSample[i].anEq[iCol];
84205           nSum++;
84206         }
84207       }
84208       if( nDLt>nSum ){
84209         avgEq = (pFinal->anLt[iCol] - sumEq)/(nDLt - nSum);
84210       }
84211       if( avgEq==0 ) avgEq = 1;
84212       pIdx->aAvgEq[iCol] = avgEq;
84213       if( pIdx->nSampleCol==1 ) break;
84214     }
84215   }
84216 }
84217 
84218 /*
84219 ** Look up an index by name.  Or, if the name of a WITHOUT ROWID table
84220 ** is supplied instead, find the PRIMARY KEY index for that table.
84221 */
84222 static Index *findIndexOrPrimaryKey(
84223   sqlite3 *db,
84224   const char *zName,
84225   const char *zDb
84226 ){
84227   Index *pIdx = sqlite3FindIndex(db, zName, zDb);
84228   if( pIdx==0 ){
84229     Table *pTab = sqlite3FindTable(db, zName, zDb);
84230     if( pTab && !HasRowid(pTab) ) pIdx = sqlite3PrimaryKeyIndex(pTab);
84231   }
84232   return pIdx;
84233 }
84234 
84235 /*
84236 ** Load the content from either the sqlite_stat4 or sqlite_stat3 table
84237 ** into the relevant Index.aSample[] arrays.
84238 **
84239 ** Arguments zSql1 and zSql2 must point to SQL statements that return
84240 ** data equivalent to the following (statements are different for stat3,
84241 ** see the caller of this function for details):
84242 **
84243 **    zSql1: SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx
84244 **    zSql2: SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4
84245 **
84246 ** where %Q is replaced with the database name before the SQL is executed.
84247 */
84248 static int loadStatTbl(
84249   sqlite3 *db,                  /* Database handle */
84250   int bStat3,                   /* Assume single column records only */
84251   const char *zSql1,            /* SQL statement 1 (see above) */
84252   const char *zSql2,            /* SQL statement 2 (see above) */
84253   const char *zDb               /* Database name (e.g. "main") */
84254 ){
84255   int rc;                       /* Result codes from subroutines */
84256   sqlite3_stmt *pStmt = 0;      /* An SQL statement being run */
84257   char *zSql;                   /* Text of the SQL statement */
84258   Index *pPrevIdx = 0;          /* Previous index in the loop */
84259   IndexSample *pSample;         /* A slot in pIdx->aSample[] */
84260 
84261   assert( db->lookaside.bEnabled==0 );
84262   zSql = sqlite3MPrintf(db, zSql1, zDb);
84263   if( !zSql ){
84264     return SQLITE_NOMEM;
84265   }
84266   rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
84267   sqlite3DbFree(db, zSql);
84268   if( rc ) return rc;
84269 
84270   while( sqlite3_step(pStmt)==SQLITE_ROW ){
84271     int nIdxCol = 1;              /* Number of columns in stat4 records */
84272     int nAvgCol = 1;              /* Number of entries in Index.aAvgEq */
84273 
84274     char *zIndex;   /* Index name */
84275     Index *pIdx;    /* Pointer to the index object */
84276     int nSample;    /* Number of samples */
84277     int nByte;      /* Bytes of space required */
84278     int i;          /* Bytes of space required */
84279     tRowcnt *pSpace;
84280 
84281     zIndex = (char *)sqlite3_column_text(pStmt, 0);
84282     if( zIndex==0 ) continue;
84283     nSample = sqlite3_column_int(pStmt, 1);
84284     pIdx = findIndexOrPrimaryKey(db, zIndex, zDb);
84285     assert( pIdx==0 || bStat3 || pIdx->nSample==0 );
84286     /* Index.nSample is non-zero at this point if data has already been
84287     ** loaded from the stat4 table. In this case ignore stat3 data.  */
84288     if( pIdx==0 || pIdx->nSample ) continue;
84289     if( bStat3==0 ){
84290       nIdxCol = pIdx->nKeyCol+1;
84291       nAvgCol = pIdx->nKeyCol;
84292     }
84293     pIdx->nSampleCol = nIdxCol;
84294     nByte = sizeof(IndexSample) * nSample;
84295     nByte += sizeof(tRowcnt) * nIdxCol * 3 * nSample;
84296     nByte += nAvgCol * sizeof(tRowcnt);     /* Space for Index.aAvgEq[] */
84297 
84298     pIdx->aSample = sqlite3DbMallocZero(db, nByte);
84299     if( pIdx->aSample==0 ){
84300       sqlite3_finalize(pStmt);
84301       return SQLITE_NOMEM;
84302     }
84303     pSpace = (tRowcnt*)&pIdx->aSample[nSample];
84304     pIdx->aAvgEq = pSpace; pSpace += nAvgCol;
84305     for(i=0; i<nSample; i++){
84306       pIdx->aSample[i].anEq = pSpace; pSpace += nIdxCol;
84307       pIdx->aSample[i].anLt = pSpace; pSpace += nIdxCol;
84308       pIdx->aSample[i].anDLt = pSpace; pSpace += nIdxCol;
84309     }
84310     assert( ((u8*)pSpace)-nByte==(u8*)(pIdx->aSample) );
84311   }
84312   rc = sqlite3_finalize(pStmt);
84313   if( rc ) return rc;
84314 
84315   zSql = sqlite3MPrintf(db, zSql2, zDb);
84316   if( !zSql ){
84317     return SQLITE_NOMEM;
84318   }
84319   rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
84320   sqlite3DbFree(db, zSql);
84321   if( rc ) return rc;
84322 
84323   while( sqlite3_step(pStmt)==SQLITE_ROW ){
84324     char *zIndex;                 /* Index name */
84325     Index *pIdx;                  /* Pointer to the index object */
84326     int nCol = 1;                 /* Number of columns in index */
84327 
84328     zIndex = (char *)sqlite3_column_text(pStmt, 0);
84329     if( zIndex==0 ) continue;
84330     pIdx = findIndexOrPrimaryKey(db, zIndex, zDb);
84331     if( pIdx==0 ) continue;
84332     /* This next condition is true if data has already been loaded from
84333     ** the sqlite_stat4 table. In this case ignore stat3 data.  */
84334     nCol = pIdx->nSampleCol;
84335     if( bStat3 && nCol>1 ) continue;
84336     if( pIdx!=pPrevIdx ){
84337       initAvgEq(pPrevIdx);
84338       pPrevIdx = pIdx;
84339     }
84340     pSample = &pIdx->aSample[pIdx->nSample];
84341     decodeIntArray((char*)sqlite3_column_text(pStmt,1),nCol,pSample->anEq,0,0);
84342     decodeIntArray((char*)sqlite3_column_text(pStmt,2),nCol,pSample->anLt,0,0);
84343     decodeIntArray((char*)sqlite3_column_text(pStmt,3),nCol,pSample->anDLt,0,0);
84344 
84345     /* Take a copy of the sample. Add two 0x00 bytes the end of the buffer.
84346     ** This is in case the sample record is corrupted. In that case, the
84347     ** sqlite3VdbeRecordCompare() may read up to two varints past the
84348     ** end of the allocated buffer before it realizes it is dealing with
84349     ** a corrupt record. Adding the two 0x00 bytes prevents this from causing
84350     ** a buffer overread.  */
84351     pSample->n = sqlite3_column_bytes(pStmt, 4);
84352     pSample->p = sqlite3DbMallocZero(db, pSample->n + 2);
84353     if( pSample->p==0 ){
84354       sqlite3_finalize(pStmt);
84355       return SQLITE_NOMEM;
84356     }
84357     memcpy(pSample->p, sqlite3_column_blob(pStmt, 4), pSample->n);
84358     pIdx->nSample++;
84359   }
84360   rc = sqlite3_finalize(pStmt);
84361   if( rc==SQLITE_OK ) initAvgEq(pPrevIdx);
84362   return rc;
84363 }
84364 
84365 /*
84366 ** Load content from the sqlite_stat4 and sqlite_stat3 tables into
84367 ** the Index.aSample[] arrays of all indices.
84368 */
84369 static int loadStat4(sqlite3 *db, const char *zDb){
84370   int rc = SQLITE_OK;             /* Result codes from subroutines */
84371 
84372   assert( db->lookaside.bEnabled==0 );
84373   if( sqlite3FindTable(db, "sqlite_stat4", zDb) ){
84374     rc = loadStatTbl(db, 0,
84375       "SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx",
84376       "SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4",
84377       zDb
84378     );
84379   }
84380 
84381   if( rc==SQLITE_OK && sqlite3FindTable(db, "sqlite_stat3", zDb) ){
84382     rc = loadStatTbl(db, 1,
84383       "SELECT idx,count(*) FROM %Q.sqlite_stat3 GROUP BY idx",
84384       "SELECT idx,neq,nlt,ndlt,sqlite_record(sample) FROM %Q.sqlite_stat3",
84385       zDb
84386     );
84387   }
84388 
84389   return rc;
84390 }
84391 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
84392 
84393 /*
84394 ** Load the content of the sqlite_stat1 and sqlite_stat3/4 tables. The
84395 ** contents of sqlite_stat1 are used to populate the Index.aiRowEst[]
84396 ** arrays. The contents of sqlite_stat3/4 are used to populate the
84397 ** Index.aSample[] arrays.
84398 **
84399 ** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR
84400 ** is returned. In this case, even if SQLITE_ENABLE_STAT3/4 was defined
84401 ** during compilation and the sqlite_stat3/4 table is present, no data is
84402 ** read from it.
84403 **
84404 ** If SQLITE_ENABLE_STAT3/4 was defined during compilation and the
84405 ** sqlite_stat4 table is not present in the database, SQLITE_ERROR is
84406 ** returned. However, in this case, data is read from the sqlite_stat1
84407 ** table (if it is present) before returning.
84408 **
84409 ** If an OOM error occurs, this function always sets db->mallocFailed.
84410 ** This means if the caller does not care about other errors, the return
84411 ** code may be ignored.
84412 */
84413 SQLITE_PRIVATE int sqlite3AnalysisLoad(sqlite3 *db, int iDb){
84414   analysisInfo sInfo;
84415   HashElem *i;
84416   char *zSql;
84417   int rc;
84418 
84419   assert( iDb>=0 && iDb<db->nDb );
84420   assert( db->aDb[iDb].pBt!=0 );
84421 
84422   /* Clear any prior statistics */
84423   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
84424   for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){
84425     Index *pIdx = sqliteHashData(i);
84426     sqlite3DefaultRowEst(pIdx);
84427 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
84428     sqlite3DeleteIndexSamples(db, pIdx);
84429     pIdx->aSample = 0;
84430 #endif
84431   }
84432 
84433   /* Check to make sure the sqlite_stat1 table exists */
84434   sInfo.db = db;
84435   sInfo.zDatabase = db->aDb[iDb].zName;
84436   if( sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase)==0 ){
84437     return SQLITE_ERROR;
84438   }
84439 
84440   /* Load new statistics out of the sqlite_stat1 table */
84441   zSql = sqlite3MPrintf(db,
84442       "SELECT tbl,idx,stat FROM %Q.sqlite_stat1", sInfo.zDatabase);
84443   if( zSql==0 ){
84444     rc = SQLITE_NOMEM;
84445   }else{
84446     rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0);
84447     sqlite3DbFree(db, zSql);
84448   }
84449 
84450 
84451   /* Load the statistics from the sqlite_stat4 table. */
84452 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
84453   if( rc==SQLITE_OK ){
84454     int lookasideEnabled = db->lookaside.bEnabled;
84455     db->lookaside.bEnabled = 0;
84456     rc = loadStat4(db, sInfo.zDatabase);
84457     db->lookaside.bEnabled = lookasideEnabled;
84458   }
84459 #endif
84460 
84461   if( rc==SQLITE_NOMEM ){
84462     db->mallocFailed = 1;
84463   }
84464   return rc;
84465 }
84466 
84467 
84468 #endif /* SQLITE_OMIT_ANALYZE */
84469 
84470 /************** End of analyze.c *********************************************/
84471 /************** Begin file attach.c ******************************************/
84472 /*
84473 ** 2003 April 6
84474 **
84475 ** The author disclaims copyright to this source code.  In place of
84476 ** a legal notice, here is a blessing:
84477 **
84478 **    May you do good and not evil.
84479 **    May you find forgiveness for yourself and forgive others.
84480 **    May you share freely, never taking more than you give.
84481 **
84482 *************************************************************************
84483 ** This file contains code used to implement the ATTACH and DETACH commands.
84484 */
84485 
84486 #ifndef SQLITE_OMIT_ATTACH
84487 /*
84488 ** Resolve an expression that was part of an ATTACH or DETACH statement. This
84489 ** is slightly different from resolving a normal SQL expression, because simple
84490 ** identifiers are treated as strings, not possible column names or aliases.
84491 **
84492 ** i.e. if the parser sees:
84493 **
84494 **     ATTACH DATABASE abc AS def
84495 **
84496 ** it treats the two expressions as literal strings 'abc' and 'def' instead of
84497 ** looking for columns of the same name.
84498 **
84499 ** This only applies to the root node of pExpr, so the statement:
84500 **
84501 **     ATTACH DATABASE abc||def AS 'db2'
84502 **
84503 ** will fail because neither abc or def can be resolved.
84504 */
84505 static int resolveAttachExpr(NameContext *pName, Expr *pExpr)
84506 {
84507   int rc = SQLITE_OK;
84508   if( pExpr ){
84509     if( pExpr->op!=TK_ID ){
84510       rc = sqlite3ResolveExprNames(pName, pExpr);
84511     }else{
84512       pExpr->op = TK_STRING;
84513     }
84514   }
84515   return rc;
84516 }
84517 
84518 /*
84519 ** An SQL user-function registered to do the work of an ATTACH statement. The
84520 ** three arguments to the function come directly from an attach statement:
84521 **
84522 **     ATTACH DATABASE x AS y KEY z
84523 **
84524 **     SELECT sqlite_attach(x, y, z)
84525 **
84526 ** If the optional "KEY z" syntax is omitted, an SQL NULL is passed as the
84527 ** third argument.
84528 */
84529 static void attachFunc(
84530   sqlite3_context *context,
84531   int NotUsed,
84532   sqlite3_value **argv
84533 ){
84534   int i;
84535   int rc = 0;
84536   sqlite3 *db = sqlite3_context_db_handle(context);
84537   const char *zName;
84538   const char *zFile;
84539   char *zPath = 0;
84540   char *zErr = 0;
84541   unsigned int flags;
84542   Db *aNew;
84543   char *zErrDyn = 0;
84544   sqlite3_vfs *pVfs;
84545 
84546   UNUSED_PARAMETER(NotUsed);
84547 
84548   zFile = (const char *)sqlite3_value_text(argv[0]);
84549   zName = (const char *)sqlite3_value_text(argv[1]);
84550   if( zFile==0 ) zFile = "";
84551   if( zName==0 ) zName = "";
84552 
84553   /* Check for the following errors:
84554   **
84555   **     * Too many attached databases,
84556   **     * Transaction currently open
84557   **     * Specified database name already being used.
84558   */
84559   if( db->nDb>=db->aLimit[SQLITE_LIMIT_ATTACHED]+2 ){
84560     zErrDyn = sqlite3MPrintf(db, "too many attached databases - max %d",
84561       db->aLimit[SQLITE_LIMIT_ATTACHED]
84562     );
84563     goto attach_error;
84564   }
84565   if( !db->autoCommit ){
84566     zErrDyn = sqlite3MPrintf(db, "cannot ATTACH database within transaction");
84567     goto attach_error;
84568   }
84569   for(i=0; i<db->nDb; i++){
84570     char *z = db->aDb[i].zName;
84571     assert( z && zName );
84572     if( sqlite3StrICmp(z, zName)==0 ){
84573       zErrDyn = sqlite3MPrintf(db, "database %s is already in use", zName);
84574       goto attach_error;
84575     }
84576   }
84577 
84578   /* Allocate the new entry in the db->aDb[] array and initialize the schema
84579   ** hash tables.
84580   */
84581   if( db->aDb==db->aDbStatic ){
84582     aNew = sqlite3DbMallocRaw(db, sizeof(db->aDb[0])*3 );
84583     if( aNew==0 ) return;
84584     memcpy(aNew, db->aDb, sizeof(db->aDb[0])*2);
84585   }else{
84586     aNew = sqlite3DbRealloc(db, db->aDb, sizeof(db->aDb[0])*(db->nDb+1) );
84587     if( aNew==0 ) return;
84588   }
84589   db->aDb = aNew;
84590   aNew = &db->aDb[db->nDb];
84591   memset(aNew, 0, sizeof(*aNew));
84592 
84593   /* Open the database file. If the btree is successfully opened, use
84594   ** it to obtain the database schema. At this point the schema may
84595   ** or may not be initialized.
84596   */
84597   flags = db->openFlags;
84598   rc = sqlite3ParseUri(db->pVfs->zName, zFile, &flags, &pVfs, &zPath, &zErr);
84599   if( rc!=SQLITE_OK ){
84600     if( rc==SQLITE_NOMEM ) db->mallocFailed = 1;
84601     sqlite3_result_error(context, zErr, -1);
84602     sqlite3_free(zErr);
84603     return;
84604   }
84605   assert( pVfs );
84606   flags |= SQLITE_OPEN_MAIN_DB;
84607   rc = sqlite3BtreeOpen(pVfs, zPath, db, &aNew->pBt, 0, flags);
84608   sqlite3_free( zPath );
84609   db->nDb++;
84610   if( rc==SQLITE_CONSTRAINT ){
84611     rc = SQLITE_ERROR;
84612     zErrDyn = sqlite3MPrintf(db, "database is already attached");
84613   }else if( rc==SQLITE_OK ){
84614     Pager *pPager;
84615     aNew->pSchema = sqlite3SchemaGet(db, aNew->pBt);
84616     if( !aNew->pSchema ){
84617       rc = SQLITE_NOMEM;
84618     }else if( aNew->pSchema->file_format && aNew->pSchema->enc!=ENC(db) ){
84619       zErrDyn = sqlite3MPrintf(db,
84620         "attached databases must use the same text encoding as main database");
84621       rc = SQLITE_ERROR;
84622     }
84623     pPager = sqlite3BtreePager(aNew->pBt);
84624     sqlite3PagerLockingMode(pPager, db->dfltLockMode);
84625     sqlite3BtreeSecureDelete(aNew->pBt,
84626                              sqlite3BtreeSecureDelete(db->aDb[0].pBt,-1) );
84627 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
84628     sqlite3BtreeSetPagerFlags(aNew->pBt, 3 | (db->flags & PAGER_FLAGS_MASK));
84629 #endif
84630   }
84631   aNew->safety_level = 3;
84632   aNew->zName = sqlite3DbStrDup(db, zName);
84633   if( rc==SQLITE_OK && aNew->zName==0 ){
84634     rc = SQLITE_NOMEM;
84635   }
84636 
84637 
84638 #ifdef SQLITE_HAS_CODEC
84639   if( rc==SQLITE_OK ){
84640     extern int sqlite3CodecAttach(sqlite3*, int, const void*, int);
84641     extern void sqlite3CodecGetKey(sqlite3*, int, void**, int*);
84642     int nKey;
84643     char *zKey;
84644     int t = sqlite3_value_type(argv[2]);
84645     switch( t ){
84646       case SQLITE_INTEGER:
84647       case SQLITE_FLOAT:
84648         zErrDyn = sqlite3DbStrDup(db, "Invalid key value");
84649         rc = SQLITE_ERROR;
84650         break;
84651 
84652       case SQLITE_TEXT:
84653       case SQLITE_BLOB:
84654         nKey = sqlite3_value_bytes(argv[2]);
84655         zKey = (char *)sqlite3_value_blob(argv[2]);
84656         rc = sqlite3CodecAttach(db, db->nDb-1, zKey, nKey);
84657         break;
84658 
84659       case SQLITE_NULL:
84660         /* No key specified.  Use the key from the main database */
84661         sqlite3CodecGetKey(db, 0, (void**)&zKey, &nKey);
84662         if( nKey>0 || sqlite3BtreeGetReserve(db->aDb[0].pBt)>0 ){
84663           rc = sqlite3CodecAttach(db, db->nDb-1, zKey, nKey);
84664         }
84665         break;
84666     }
84667   }
84668 #endif
84669 
84670   /* If the file was opened successfully, read the schema for the new database.
84671   ** If this fails, or if opening the file failed, then close the file and
84672   ** remove the entry from the db->aDb[] array. i.e. put everything back the way
84673   ** we found it.
84674   */
84675   if( rc==SQLITE_OK ){
84676     sqlite3BtreeEnterAll(db);
84677     rc = sqlite3Init(db, &zErrDyn);
84678     sqlite3BtreeLeaveAll(db);
84679   }
84680   if( rc ){
84681     int iDb = db->nDb - 1;
84682     assert( iDb>=2 );
84683     if( db->aDb[iDb].pBt ){
84684       sqlite3BtreeClose(db->aDb[iDb].pBt);
84685       db->aDb[iDb].pBt = 0;
84686       db->aDb[iDb].pSchema = 0;
84687     }
84688     sqlite3ResetAllSchemasOfConnection(db);
84689     db->nDb = iDb;
84690     if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){
84691       db->mallocFailed = 1;
84692       sqlite3DbFree(db, zErrDyn);
84693       zErrDyn = sqlite3MPrintf(db, "out of memory");
84694     }else if( zErrDyn==0 ){
84695       zErrDyn = sqlite3MPrintf(db, "unable to open database: %s", zFile);
84696     }
84697     goto attach_error;
84698   }
84699 
84700   return;
84701 
84702 attach_error:
84703   /* Return an error if we get here */
84704   if( zErrDyn ){
84705     sqlite3_result_error(context, zErrDyn, -1);
84706     sqlite3DbFree(db, zErrDyn);
84707   }
84708   if( rc ) sqlite3_result_error_code(context, rc);
84709 }
84710 
84711 /*
84712 ** An SQL user-function registered to do the work of an DETACH statement. The
84713 ** three arguments to the function come directly from a detach statement:
84714 **
84715 **     DETACH DATABASE x
84716 **
84717 **     SELECT sqlite_detach(x)
84718 */
84719 static void detachFunc(
84720   sqlite3_context *context,
84721   int NotUsed,
84722   sqlite3_value **argv
84723 ){
84724   const char *zName = (const char *)sqlite3_value_text(argv[0]);
84725   sqlite3 *db = sqlite3_context_db_handle(context);
84726   int i;
84727   Db *pDb = 0;
84728   char zErr[128];
84729 
84730   UNUSED_PARAMETER(NotUsed);
84731 
84732   if( zName==0 ) zName = "";
84733   for(i=0; i<db->nDb; i++){
84734     pDb = &db->aDb[i];
84735     if( pDb->pBt==0 ) continue;
84736     if( sqlite3StrICmp(pDb->zName, zName)==0 ) break;
84737   }
84738 
84739   if( i>=db->nDb ){
84740     sqlite3_snprintf(sizeof(zErr),zErr, "no such database: %s", zName);
84741     goto detach_error;
84742   }
84743   if( i<2 ){
84744     sqlite3_snprintf(sizeof(zErr),zErr, "cannot detach database %s", zName);
84745     goto detach_error;
84746   }
84747   if( !db->autoCommit ){
84748     sqlite3_snprintf(sizeof(zErr), zErr,
84749                      "cannot DETACH database within transaction");
84750     goto detach_error;
84751   }
84752   if( sqlite3BtreeIsInReadTrans(pDb->pBt) || sqlite3BtreeIsInBackup(pDb->pBt) ){
84753     sqlite3_snprintf(sizeof(zErr),zErr, "database %s is locked", zName);
84754     goto detach_error;
84755   }
84756 
84757   sqlite3BtreeClose(pDb->pBt);
84758   pDb->pBt = 0;
84759   pDb->pSchema = 0;
84760   sqlite3ResetAllSchemasOfConnection(db);
84761   return;
84762 
84763 detach_error:
84764   sqlite3_result_error(context, zErr, -1);
84765 }
84766 
84767 /*
84768 ** This procedure generates VDBE code for a single invocation of either the
84769 ** sqlite_detach() or sqlite_attach() SQL user functions.
84770 */
84771 static void codeAttach(
84772   Parse *pParse,       /* The parser context */
84773   int type,            /* Either SQLITE_ATTACH or SQLITE_DETACH */
84774   FuncDef const *pFunc,/* FuncDef wrapper for detachFunc() or attachFunc() */
84775   Expr *pAuthArg,      /* Expression to pass to authorization callback */
84776   Expr *pFilename,     /* Name of database file */
84777   Expr *pDbname,       /* Name of the database to use internally */
84778   Expr *pKey           /* Database key for encryption extension */
84779 ){
84780   int rc;
84781   NameContext sName;
84782   Vdbe *v;
84783   sqlite3* db = pParse->db;
84784   int regArgs;
84785 
84786   memset(&sName, 0, sizeof(NameContext));
84787   sName.pParse = pParse;
84788 
84789   if(
84790       SQLITE_OK!=(rc = resolveAttachExpr(&sName, pFilename)) ||
84791       SQLITE_OK!=(rc = resolveAttachExpr(&sName, pDbname)) ||
84792       SQLITE_OK!=(rc = resolveAttachExpr(&sName, pKey))
84793   ){
84794     pParse->nErr++;
84795     goto attach_end;
84796   }
84797 
84798 #ifndef SQLITE_OMIT_AUTHORIZATION
84799   if( pAuthArg ){
84800     char *zAuthArg;
84801     if( pAuthArg->op==TK_STRING ){
84802       zAuthArg = pAuthArg->u.zToken;
84803     }else{
84804       zAuthArg = 0;
84805     }
84806     rc = sqlite3AuthCheck(pParse, type, zAuthArg, 0, 0);
84807     if(rc!=SQLITE_OK ){
84808       goto attach_end;
84809     }
84810   }
84811 #endif /* SQLITE_OMIT_AUTHORIZATION */
84812 
84813 
84814   v = sqlite3GetVdbe(pParse);
84815   regArgs = sqlite3GetTempRange(pParse, 4);
84816   sqlite3ExprCode(pParse, pFilename, regArgs);
84817   sqlite3ExprCode(pParse, pDbname, regArgs+1);
84818   sqlite3ExprCode(pParse, pKey, regArgs+2);
84819 
84820   assert( v || db->mallocFailed );
84821   if( v ){
84822     sqlite3VdbeAddOp3(v, OP_Function, 0, regArgs+3-pFunc->nArg, regArgs+3);
84823     assert( pFunc->nArg==-1 || (pFunc->nArg&0xff)==pFunc->nArg );
84824     sqlite3VdbeChangeP5(v, (u8)(pFunc->nArg));
84825     sqlite3VdbeChangeP4(v, -1, (char *)pFunc, P4_FUNCDEF);
84826 
84827     /* Code an OP_Expire. For an ATTACH statement, set P1 to true (expire this
84828     ** statement only). For DETACH, set it to false (expire all existing
84829     ** statements).
84830     */
84831     sqlite3VdbeAddOp1(v, OP_Expire, (type==SQLITE_ATTACH));
84832   }
84833 
84834 attach_end:
84835   sqlite3ExprDelete(db, pFilename);
84836   sqlite3ExprDelete(db, pDbname);
84837   sqlite3ExprDelete(db, pKey);
84838 }
84839 
84840 /*
84841 ** Called by the parser to compile a DETACH statement.
84842 **
84843 **     DETACH pDbname
84844 */
84845 SQLITE_PRIVATE void sqlite3Detach(Parse *pParse, Expr *pDbname){
84846   static const FuncDef detach_func = {
84847     1,                /* nArg */
84848     SQLITE_UTF8,      /* funcFlags */
84849     0,                /* pUserData */
84850     0,                /* pNext */
84851     detachFunc,       /* xFunc */
84852     0,                /* xStep */
84853     0,                /* xFinalize */
84854     "sqlite_detach",  /* zName */
84855     0,                /* pHash */
84856     0                 /* pDestructor */
84857   };
84858   codeAttach(pParse, SQLITE_DETACH, &detach_func, pDbname, 0, 0, pDbname);
84859 }
84860 
84861 /*
84862 ** Called by the parser to compile an ATTACH statement.
84863 **
84864 **     ATTACH p AS pDbname KEY pKey
84865 */
84866 SQLITE_PRIVATE void sqlite3Attach(Parse *pParse, Expr *p, Expr *pDbname, Expr *pKey){
84867   static const FuncDef attach_func = {
84868     3,                /* nArg */
84869     SQLITE_UTF8,      /* funcFlags */
84870     0,                /* pUserData */
84871     0,                /* pNext */
84872     attachFunc,       /* xFunc */
84873     0,                /* xStep */
84874     0,                /* xFinalize */
84875     "sqlite_attach",  /* zName */
84876     0,                /* pHash */
84877     0                 /* pDestructor */
84878   };
84879   codeAttach(pParse, SQLITE_ATTACH, &attach_func, p, p, pDbname, pKey);
84880 }
84881 #endif /* SQLITE_OMIT_ATTACH */
84882 
84883 /*
84884 ** Initialize a DbFixer structure.  This routine must be called prior
84885 ** to passing the structure to one of the sqliteFixAAAA() routines below.
84886 */
84887 SQLITE_PRIVATE void sqlite3FixInit(
84888   DbFixer *pFix,      /* The fixer to be initialized */
84889   Parse *pParse,      /* Error messages will be written here */
84890   int iDb,            /* This is the database that must be used */
84891   const char *zType,  /* "view", "trigger", or "index" */
84892   const Token *pName  /* Name of the view, trigger, or index */
84893 ){
84894   sqlite3 *db;
84895 
84896   db = pParse->db;
84897   assert( db->nDb>iDb );
84898   pFix->pParse = pParse;
84899   pFix->zDb = db->aDb[iDb].zName;
84900   pFix->pSchema = db->aDb[iDb].pSchema;
84901   pFix->zType = zType;
84902   pFix->pName = pName;
84903   pFix->bVarOnly = (iDb==1);
84904 }
84905 
84906 /*
84907 ** The following set of routines walk through the parse tree and assign
84908 ** a specific database to all table references where the database name
84909 ** was left unspecified in the original SQL statement.  The pFix structure
84910 ** must have been initialized by a prior call to sqlite3FixInit().
84911 **
84912 ** These routines are used to make sure that an index, trigger, or
84913 ** view in one database does not refer to objects in a different database.
84914 ** (Exception: indices, triggers, and views in the TEMP database are
84915 ** allowed to refer to anything.)  If a reference is explicitly made
84916 ** to an object in a different database, an error message is added to
84917 ** pParse->zErrMsg and these routines return non-zero.  If everything
84918 ** checks out, these routines return 0.
84919 */
84920 SQLITE_PRIVATE int sqlite3FixSrcList(
84921   DbFixer *pFix,       /* Context of the fixation */
84922   SrcList *pList       /* The Source list to check and modify */
84923 ){
84924   int i;
84925   const char *zDb;
84926   struct SrcList_item *pItem;
84927 
84928   if( NEVER(pList==0) ) return 0;
84929   zDb = pFix->zDb;
84930   for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
84931     if( pFix->bVarOnly==0 ){
84932       if( pItem->zDatabase && sqlite3StrICmp(pItem->zDatabase, zDb) ){
84933         sqlite3ErrorMsg(pFix->pParse,
84934             "%s %T cannot reference objects in database %s",
84935             pFix->zType, pFix->pName, pItem->zDatabase);
84936         return 1;
84937       }
84938       sqlite3DbFree(pFix->pParse->db, pItem->zDatabase);
84939       pItem->zDatabase = 0;
84940       pItem->pSchema = pFix->pSchema;
84941     }
84942 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER)
84943     if( sqlite3FixSelect(pFix, pItem->pSelect) ) return 1;
84944     if( sqlite3FixExpr(pFix, pItem->pOn) ) return 1;
84945 #endif
84946   }
84947   return 0;
84948 }
84949 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER)
84950 SQLITE_PRIVATE int sqlite3FixSelect(
84951   DbFixer *pFix,       /* Context of the fixation */
84952   Select *pSelect      /* The SELECT statement to be fixed to one database */
84953 ){
84954   while( pSelect ){
84955     if( sqlite3FixExprList(pFix, pSelect->pEList) ){
84956       return 1;
84957     }
84958     if( sqlite3FixSrcList(pFix, pSelect->pSrc) ){
84959       return 1;
84960     }
84961     if( sqlite3FixExpr(pFix, pSelect->pWhere) ){
84962       return 1;
84963     }
84964     if( sqlite3FixExprList(pFix, pSelect->pGroupBy) ){
84965       return 1;
84966     }
84967     if( sqlite3FixExpr(pFix, pSelect->pHaving) ){
84968       return 1;
84969     }
84970     if( sqlite3FixExprList(pFix, pSelect->pOrderBy) ){
84971       return 1;
84972     }
84973     if( sqlite3FixExpr(pFix, pSelect->pLimit) ){
84974       return 1;
84975     }
84976     if( sqlite3FixExpr(pFix, pSelect->pOffset) ){
84977       return 1;
84978     }
84979     pSelect = pSelect->pPrior;
84980   }
84981   return 0;
84982 }
84983 SQLITE_PRIVATE int sqlite3FixExpr(
84984   DbFixer *pFix,     /* Context of the fixation */
84985   Expr *pExpr        /* The expression to be fixed to one database */
84986 ){
84987   while( pExpr ){
84988     if( pExpr->op==TK_VARIABLE ){
84989       if( pFix->pParse->db->init.busy ){
84990         pExpr->op = TK_NULL;
84991       }else{
84992         sqlite3ErrorMsg(pFix->pParse, "%s cannot use variables", pFix->zType);
84993         return 1;
84994       }
84995     }
84996     if( ExprHasProperty(pExpr, EP_TokenOnly) ) break;
84997     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
84998       if( sqlite3FixSelect(pFix, pExpr->x.pSelect) ) return 1;
84999     }else{
85000       if( sqlite3FixExprList(pFix, pExpr->x.pList) ) return 1;
85001     }
85002     if( sqlite3FixExpr(pFix, pExpr->pRight) ){
85003       return 1;
85004     }
85005     pExpr = pExpr->pLeft;
85006   }
85007   return 0;
85008 }
85009 SQLITE_PRIVATE int sqlite3FixExprList(
85010   DbFixer *pFix,     /* Context of the fixation */
85011   ExprList *pList    /* The expression to be fixed to one database */
85012 ){
85013   int i;
85014   struct ExprList_item *pItem;
85015   if( pList==0 ) return 0;
85016   for(i=0, pItem=pList->a; i<pList->nExpr; i++, pItem++){
85017     if( sqlite3FixExpr(pFix, pItem->pExpr) ){
85018       return 1;
85019     }
85020   }
85021   return 0;
85022 }
85023 #endif
85024 
85025 #ifndef SQLITE_OMIT_TRIGGER
85026 SQLITE_PRIVATE int sqlite3FixTriggerStep(
85027   DbFixer *pFix,     /* Context of the fixation */
85028   TriggerStep *pStep /* The trigger step be fixed to one database */
85029 ){
85030   while( pStep ){
85031     if( sqlite3FixSelect(pFix, pStep->pSelect) ){
85032       return 1;
85033     }
85034     if( sqlite3FixExpr(pFix, pStep->pWhere) ){
85035       return 1;
85036     }
85037     if( sqlite3FixExprList(pFix, pStep->pExprList) ){
85038       return 1;
85039     }
85040     pStep = pStep->pNext;
85041   }
85042   return 0;
85043 }
85044 #endif
85045 
85046 /************** End of attach.c **********************************************/
85047 /************** Begin file auth.c ********************************************/
85048 /*
85049 ** 2003 January 11
85050 **
85051 ** The author disclaims copyright to this source code.  In place of
85052 ** a legal notice, here is a blessing:
85053 **
85054 **    May you do good and not evil.
85055 **    May you find forgiveness for yourself and forgive others.
85056 **    May you share freely, never taking more than you give.
85057 **
85058 *************************************************************************
85059 ** This file contains code used to implement the sqlite3_set_authorizer()
85060 ** API.  This facility is an optional feature of the library.  Embedded
85061 ** systems that do not need this facility may omit it by recompiling
85062 ** the library with -DSQLITE_OMIT_AUTHORIZATION=1
85063 */
85064 
85065 /*
85066 ** All of the code in this file may be omitted by defining a single
85067 ** macro.
85068 */
85069 #ifndef SQLITE_OMIT_AUTHORIZATION
85070 
85071 /*
85072 ** Set or clear the access authorization function.
85073 **
85074 ** The access authorization function is be called during the compilation
85075 ** phase to verify that the user has read and/or write access permission on
85076 ** various fields of the database.  The first argument to the auth function
85077 ** is a copy of the 3rd argument to this routine.  The second argument
85078 ** to the auth function is one of these constants:
85079 **
85080 **       SQLITE_CREATE_INDEX
85081 **       SQLITE_CREATE_TABLE
85082 **       SQLITE_CREATE_TEMP_INDEX
85083 **       SQLITE_CREATE_TEMP_TABLE
85084 **       SQLITE_CREATE_TEMP_TRIGGER
85085 **       SQLITE_CREATE_TEMP_VIEW
85086 **       SQLITE_CREATE_TRIGGER
85087 **       SQLITE_CREATE_VIEW
85088 **       SQLITE_DELETE
85089 **       SQLITE_DROP_INDEX
85090 **       SQLITE_DROP_TABLE
85091 **       SQLITE_DROP_TEMP_INDEX
85092 **       SQLITE_DROP_TEMP_TABLE
85093 **       SQLITE_DROP_TEMP_TRIGGER
85094 **       SQLITE_DROP_TEMP_VIEW
85095 **       SQLITE_DROP_TRIGGER
85096 **       SQLITE_DROP_VIEW
85097 **       SQLITE_INSERT
85098 **       SQLITE_PRAGMA
85099 **       SQLITE_READ
85100 **       SQLITE_SELECT
85101 **       SQLITE_TRANSACTION
85102 **       SQLITE_UPDATE
85103 **
85104 ** The third and fourth arguments to the auth function are the name of
85105 ** the table and the column that are being accessed.  The auth function
85106 ** should return either SQLITE_OK, SQLITE_DENY, or SQLITE_IGNORE.  If
85107 ** SQLITE_OK is returned, it means that access is allowed.  SQLITE_DENY
85108 ** means that the SQL statement will never-run - the sqlite3_exec() call
85109 ** will return with an error.  SQLITE_IGNORE means that the SQL statement
85110 ** should run but attempts to read the specified column will return NULL
85111 ** and attempts to write the column will be ignored.
85112 **
85113 ** Setting the auth function to NULL disables this hook.  The default
85114 ** setting of the auth function is NULL.
85115 */
85116 SQLITE_API int sqlite3_set_authorizer(
85117   sqlite3 *db,
85118   int (*xAuth)(void*,int,const char*,const char*,const char*,const char*),
85119   void *pArg
85120 ){
85121   sqlite3_mutex_enter(db->mutex);
85122   db->xAuth = xAuth;
85123   db->pAuthArg = pArg;
85124   sqlite3ExpirePreparedStatements(db);
85125   sqlite3_mutex_leave(db->mutex);
85126   return SQLITE_OK;
85127 }
85128 
85129 /*
85130 ** Write an error message into pParse->zErrMsg that explains that the
85131 ** user-supplied authorization function returned an illegal value.
85132 */
85133 static void sqliteAuthBadReturnCode(Parse *pParse){
85134   sqlite3ErrorMsg(pParse, "authorizer malfunction");
85135   pParse->rc = SQLITE_ERROR;
85136 }
85137 
85138 /*
85139 ** Invoke the authorization callback for permission to read column zCol from
85140 ** table zTab in database zDb. This function assumes that an authorization
85141 ** callback has been registered (i.e. that sqlite3.xAuth is not NULL).
85142 **
85143 ** If SQLITE_IGNORE is returned and pExpr is not NULL, then pExpr is changed
85144 ** to an SQL NULL expression. Otherwise, if pExpr is NULL, then SQLITE_IGNORE
85145 ** is treated as SQLITE_DENY. In this case an error is left in pParse.
85146 */
85147 SQLITE_PRIVATE int sqlite3AuthReadCol(
85148   Parse *pParse,                  /* The parser context */
85149   const char *zTab,               /* Table name */
85150   const char *zCol,               /* Column name */
85151   int iDb                         /* Index of containing database. */
85152 ){
85153   sqlite3 *db = pParse->db;       /* Database handle */
85154   char *zDb = db->aDb[iDb].zName; /* Name of attached database */
85155   int rc;                         /* Auth callback return code */
85156 
85157   rc = db->xAuth(db->pAuthArg, SQLITE_READ, zTab,zCol,zDb,pParse->zAuthContext);
85158   if( rc==SQLITE_DENY ){
85159     if( db->nDb>2 || iDb!=0 ){
85160       sqlite3ErrorMsg(pParse, "access to %s.%s.%s is prohibited",zDb,zTab,zCol);
85161     }else{
85162       sqlite3ErrorMsg(pParse, "access to %s.%s is prohibited", zTab, zCol);
85163     }
85164     pParse->rc = SQLITE_AUTH;
85165   }else if( rc!=SQLITE_IGNORE && rc!=SQLITE_OK ){
85166     sqliteAuthBadReturnCode(pParse);
85167   }
85168   return rc;
85169 }
85170 
85171 /*
85172 ** The pExpr should be a TK_COLUMN expression.  The table referred to
85173 ** is in pTabList or else it is the NEW or OLD table of a trigger.
85174 ** Check to see if it is OK to read this particular column.
85175 **
85176 ** If the auth function returns SQLITE_IGNORE, change the TK_COLUMN
85177 ** instruction into a TK_NULL.  If the auth function returns SQLITE_DENY,
85178 ** then generate an error.
85179 */
85180 SQLITE_PRIVATE void sqlite3AuthRead(
85181   Parse *pParse,        /* The parser context */
85182   Expr *pExpr,          /* The expression to check authorization on */
85183   Schema *pSchema,      /* The schema of the expression */
85184   SrcList *pTabList     /* All table that pExpr might refer to */
85185 ){
85186   sqlite3 *db = pParse->db;
85187   Table *pTab = 0;      /* The table being read */
85188   const char *zCol;     /* Name of the column of the table */
85189   int iSrc;             /* Index in pTabList->a[] of table being read */
85190   int iDb;              /* The index of the database the expression refers to */
85191   int iCol;             /* Index of column in table */
85192 
85193   if( db->xAuth==0 ) return;
85194   iDb = sqlite3SchemaToIndex(pParse->db, pSchema);
85195   if( iDb<0 ){
85196     /* An attempt to read a column out of a subquery or other
85197     ** temporary table. */
85198     return;
85199   }
85200 
85201   assert( pExpr->op==TK_COLUMN || pExpr->op==TK_TRIGGER );
85202   if( pExpr->op==TK_TRIGGER ){
85203     pTab = pParse->pTriggerTab;
85204   }else{
85205     assert( pTabList );
85206     for(iSrc=0; ALWAYS(iSrc<pTabList->nSrc); iSrc++){
85207       if( pExpr->iTable==pTabList->a[iSrc].iCursor ){
85208         pTab = pTabList->a[iSrc].pTab;
85209         break;
85210       }
85211     }
85212   }
85213   iCol = pExpr->iColumn;
85214   if( NEVER(pTab==0) ) return;
85215 
85216   if( iCol>=0 ){
85217     assert( iCol<pTab->nCol );
85218     zCol = pTab->aCol[iCol].zName;
85219   }else if( pTab->iPKey>=0 ){
85220     assert( pTab->iPKey<pTab->nCol );
85221     zCol = pTab->aCol[pTab->iPKey].zName;
85222   }else{
85223     zCol = "ROWID";
85224   }
85225   assert( iDb>=0 && iDb<db->nDb );
85226   if( SQLITE_IGNORE==sqlite3AuthReadCol(pParse, pTab->zName, zCol, iDb) ){
85227     pExpr->op = TK_NULL;
85228   }
85229 }
85230 
85231 /*
85232 ** Do an authorization check using the code and arguments given.  Return
85233 ** either SQLITE_OK (zero) or SQLITE_IGNORE or SQLITE_DENY.  If SQLITE_DENY
85234 ** is returned, then the error count and error message in pParse are
85235 ** modified appropriately.
85236 */
85237 SQLITE_PRIVATE int sqlite3AuthCheck(
85238   Parse *pParse,
85239   int code,
85240   const char *zArg1,
85241   const char *zArg2,
85242   const char *zArg3
85243 ){
85244   sqlite3 *db = pParse->db;
85245   int rc;
85246 
85247   /* Don't do any authorization checks if the database is initialising
85248   ** or if the parser is being invoked from within sqlite3_declare_vtab.
85249   */
85250   if( db->init.busy || IN_DECLARE_VTAB ){
85251     return SQLITE_OK;
85252   }
85253 
85254   if( db->xAuth==0 ){
85255     return SQLITE_OK;
85256   }
85257   rc = db->xAuth(db->pAuthArg, code, zArg1, zArg2, zArg3, pParse->zAuthContext);
85258   if( rc==SQLITE_DENY ){
85259     sqlite3ErrorMsg(pParse, "not authorized");
85260     pParse->rc = SQLITE_AUTH;
85261   }else if( rc!=SQLITE_OK && rc!=SQLITE_IGNORE ){
85262     rc = SQLITE_DENY;
85263     sqliteAuthBadReturnCode(pParse);
85264   }
85265   return rc;
85266 }
85267 
85268 /*
85269 ** Push an authorization context.  After this routine is called, the
85270 ** zArg3 argument to authorization callbacks will be zContext until
85271 ** popped.  Or if pParse==0, this routine is a no-op.
85272 */
85273 SQLITE_PRIVATE void sqlite3AuthContextPush(
85274   Parse *pParse,
85275   AuthContext *pContext,
85276   const char *zContext
85277 ){
85278   assert( pParse );
85279   pContext->pParse = pParse;
85280   pContext->zAuthContext = pParse->zAuthContext;
85281   pParse->zAuthContext = zContext;
85282 }
85283 
85284 /*
85285 ** Pop an authorization context that was previously pushed
85286 ** by sqlite3AuthContextPush
85287 */
85288 SQLITE_PRIVATE void sqlite3AuthContextPop(AuthContext *pContext){
85289   if( pContext->pParse ){
85290     pContext->pParse->zAuthContext = pContext->zAuthContext;
85291     pContext->pParse = 0;
85292   }
85293 }
85294 
85295 #endif /* SQLITE_OMIT_AUTHORIZATION */
85296 
85297 /************** End of auth.c ************************************************/
85298 /************** Begin file build.c *******************************************/
85299 /*
85300 ** 2001 September 15
85301 **
85302 ** The author disclaims copyright to this source code.  In place of
85303 ** a legal notice, here is a blessing:
85304 **
85305 **    May you do good and not evil.
85306 **    May you find forgiveness for yourself and forgive others.
85307 **    May you share freely, never taking more than you give.
85308 **
85309 *************************************************************************
85310 ** This file contains C code routines that are called by the SQLite parser
85311 ** when syntax rules are reduced.  The routines in this file handle the
85312 ** following kinds of SQL syntax:
85313 **
85314 **     CREATE TABLE
85315 **     DROP TABLE
85316 **     CREATE INDEX
85317 **     DROP INDEX
85318 **     creating ID lists
85319 **     BEGIN TRANSACTION
85320 **     COMMIT
85321 **     ROLLBACK
85322 */
85323 
85324 /*
85325 ** This routine is called when a new SQL statement is beginning to
85326 ** be parsed.  Initialize the pParse structure as needed.
85327 */
85328 SQLITE_PRIVATE void sqlite3BeginParse(Parse *pParse, int explainFlag){
85329   pParse->explain = (u8)explainFlag;
85330   pParse->nVar = 0;
85331 }
85332 
85333 #ifndef SQLITE_OMIT_SHARED_CACHE
85334 /*
85335 ** The TableLock structure is only used by the sqlite3TableLock() and
85336 ** codeTableLocks() functions.
85337 */
85338 struct TableLock {
85339   int iDb;             /* The database containing the table to be locked */
85340   int iTab;            /* The root page of the table to be locked */
85341   u8 isWriteLock;      /* True for write lock.  False for a read lock */
85342   const char *zName;   /* Name of the table */
85343 };
85344 
85345 /*
85346 ** Record the fact that we want to lock a table at run-time.
85347 **
85348 ** The table to be locked has root page iTab and is found in database iDb.
85349 ** A read or a write lock can be taken depending on isWritelock.
85350 **
85351 ** This routine just records the fact that the lock is desired.  The
85352 ** code to make the lock occur is generated by a later call to
85353 ** codeTableLocks() which occurs during sqlite3FinishCoding().
85354 */
85355 SQLITE_PRIVATE void sqlite3TableLock(
85356   Parse *pParse,     /* Parsing context */
85357   int iDb,           /* Index of the database containing the table to lock */
85358   int iTab,          /* Root page number of the table to be locked */
85359   u8 isWriteLock,    /* True for a write lock */
85360   const char *zName  /* Name of the table to be locked */
85361 ){
85362   Parse *pToplevel = sqlite3ParseToplevel(pParse);
85363   int i;
85364   int nBytes;
85365   TableLock *p;
85366   assert( iDb>=0 );
85367 
85368   for(i=0; i<pToplevel->nTableLock; i++){
85369     p = &pToplevel->aTableLock[i];
85370     if( p->iDb==iDb && p->iTab==iTab ){
85371       p->isWriteLock = (p->isWriteLock || isWriteLock);
85372       return;
85373     }
85374   }
85375 
85376   nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1);
85377   pToplevel->aTableLock =
85378       sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes);
85379   if( pToplevel->aTableLock ){
85380     p = &pToplevel->aTableLock[pToplevel->nTableLock++];
85381     p->iDb = iDb;
85382     p->iTab = iTab;
85383     p->isWriteLock = isWriteLock;
85384     p->zName = zName;
85385   }else{
85386     pToplevel->nTableLock = 0;
85387     pToplevel->db->mallocFailed = 1;
85388   }
85389 }
85390 
85391 /*
85392 ** Code an OP_TableLock instruction for each table locked by the
85393 ** statement (configured by calls to sqlite3TableLock()).
85394 */
85395 static void codeTableLocks(Parse *pParse){
85396   int i;
85397   Vdbe *pVdbe;
85398 
85399   pVdbe = sqlite3GetVdbe(pParse);
85400   assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */
85401 
85402   for(i=0; i<pParse->nTableLock; i++){
85403     TableLock *p = &pParse->aTableLock[i];
85404     int p1 = p->iDb;
85405     sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
85406                       p->zName, P4_STATIC);
85407   }
85408 }
85409 #else
85410   #define codeTableLocks(x)
85411 #endif
85412 
85413 /*
85414 ** This routine is called after a single SQL statement has been
85415 ** parsed and a VDBE program to execute that statement has been
85416 ** prepared.  This routine puts the finishing touches on the
85417 ** VDBE program and resets the pParse structure for the next
85418 ** parse.
85419 **
85420 ** Note that if an error occurred, it might be the case that
85421 ** no VDBE code was generated.
85422 */
85423 SQLITE_PRIVATE void sqlite3FinishCoding(Parse *pParse){
85424   sqlite3 *db;
85425   Vdbe *v;
85426 
85427   assert( pParse->pToplevel==0 );
85428   db = pParse->db;
85429   if( db->mallocFailed ) return;
85430   if( pParse->nested ) return;
85431   if( pParse->nErr ) return;
85432 
85433   /* Begin by generating some termination code at the end of the
85434   ** vdbe program
85435   */
85436   v = sqlite3GetVdbe(pParse);
85437   assert( !pParse->isMultiWrite
85438        || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort));
85439   if( v ){
85440     while( sqlite3VdbeDeletePriorOpcode(v, OP_Close) ){}
85441     sqlite3VdbeAddOp0(v, OP_Halt);
85442 
85443     /* The cookie mask contains one bit for each database file open.
85444     ** (Bit 0 is for main, bit 1 is for temp, and so forth.)  Bits are
85445     ** set for each database that is used.  Generate code to start a
85446     ** transaction on each used database and to verify the schema cookie
85447     ** on each used database.
85448     */
85449     if( db->mallocFailed==0 && (pParse->cookieMask || pParse->pConstExpr) ){
85450       yDbMask mask;
85451       int iDb, i;
85452       assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init );
85453       sqlite3VdbeJumpHere(v, 0);
85454       for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){
85455         if( (mask & pParse->cookieMask)==0 ) continue;
85456         sqlite3VdbeUsesBtree(v, iDb);
85457         sqlite3VdbeAddOp4Int(v,
85458           OP_Transaction,                    /* Opcode */
85459           iDb,                               /* P1 */
85460           (mask & pParse->writeMask)!=0,     /* P2 */
85461           pParse->cookieValue[iDb],          /* P3 */
85462           db->aDb[iDb].pSchema->iGeneration  /* P4 */
85463         );
85464         if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1);
85465       }
85466 #ifndef SQLITE_OMIT_VIRTUALTABLE
85467       for(i=0; i<pParse->nVtabLock; i++){
85468         char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]);
85469         sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
85470       }
85471       pParse->nVtabLock = 0;
85472 #endif
85473 
85474       /* Once all the cookies have been verified and transactions opened,
85475       ** obtain the required table-locks. This is a no-op unless the
85476       ** shared-cache feature is enabled.
85477       */
85478       codeTableLocks(pParse);
85479 
85480       /* Initialize any AUTOINCREMENT data structures required.
85481       */
85482       sqlite3AutoincrementBegin(pParse);
85483 
85484       /* Code constant expressions that where factored out of inner loops */
85485       if( pParse->pConstExpr ){
85486         ExprList *pEL = pParse->pConstExpr;
85487         pParse->okConstFactor = 0;
85488         for(i=0; i<pEL->nExpr; i++){
85489           sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg);
85490         }
85491       }
85492 
85493       /* Finally, jump back to the beginning of the executable code. */
85494       sqlite3VdbeAddOp2(v, OP_Goto, 0, 1);
85495     }
85496   }
85497 
85498 
85499   /* Get the VDBE program ready for execution
85500   */
85501   if( v && ALWAYS(pParse->nErr==0) && !db->mallocFailed ){
85502     assert( pParse->iCacheLevel==0 );  /* Disables and re-enables match */
85503     /* A minimum of one cursor is required if autoincrement is used
85504     *  See ticket [a696379c1f08866] */
85505     if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1;
85506     sqlite3VdbeMakeReady(v, pParse);
85507     pParse->rc = SQLITE_DONE;
85508     pParse->colNamesSet = 0;
85509   }else{
85510     pParse->rc = SQLITE_ERROR;
85511   }
85512   pParse->nTab = 0;
85513   pParse->nMem = 0;
85514   pParse->nSet = 0;
85515   pParse->nVar = 0;
85516   pParse->cookieMask = 0;
85517 }
85518 
85519 /*
85520 ** Run the parser and code generator recursively in order to generate
85521 ** code for the SQL statement given onto the end of the pParse context
85522 ** currently under construction.  When the parser is run recursively
85523 ** this way, the final OP_Halt is not appended and other initialization
85524 ** and finalization steps are omitted because those are handling by the
85525 ** outermost parser.
85526 **
85527 ** Not everything is nestable.  This facility is designed to permit
85528 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER.  Use
85529 ** care if you decide to try to use this routine for some other purposes.
85530 */
85531 SQLITE_PRIVATE void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
85532   va_list ap;
85533   char *zSql;
85534   char *zErrMsg = 0;
85535   sqlite3 *db = pParse->db;
85536 # define SAVE_SZ  (sizeof(Parse) - offsetof(Parse,nVar))
85537   char saveBuf[SAVE_SZ];
85538 
85539   if( pParse->nErr ) return;
85540   assert( pParse->nested<10 );  /* Nesting should only be of limited depth */
85541   va_start(ap, zFormat);
85542   zSql = sqlite3VMPrintf(db, zFormat, ap);
85543   va_end(ap);
85544   if( zSql==0 ){
85545     return;   /* A malloc must have failed */
85546   }
85547   pParse->nested++;
85548   memcpy(saveBuf, &pParse->nVar, SAVE_SZ);
85549   memset(&pParse->nVar, 0, SAVE_SZ);
85550   sqlite3RunParser(pParse, zSql, &zErrMsg);
85551   sqlite3DbFree(db, zErrMsg);
85552   sqlite3DbFree(db, zSql);
85553   memcpy(&pParse->nVar, saveBuf, SAVE_SZ);
85554   pParse->nested--;
85555 }
85556 
85557 /*
85558 ** Locate the in-memory structure that describes a particular database
85559 ** table given the name of that table and (optionally) the name of the
85560 ** database containing the table.  Return NULL if not found.
85561 **
85562 ** If zDatabase is 0, all databases are searched for the table and the
85563 ** first matching table is returned.  (No checking for duplicate table
85564 ** names is done.)  The search order is TEMP first, then MAIN, then any
85565 ** auxiliary databases added using the ATTACH command.
85566 **
85567 ** See also sqlite3LocateTable().
85568 */
85569 SQLITE_PRIVATE Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
85570   Table *p = 0;
85571   int i;
85572   int nName;
85573   assert( zName!=0 );
85574   nName = sqlite3Strlen30(zName);
85575   /* All mutexes are required for schema access.  Make sure we hold them. */
85576   assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );
85577   for(i=OMIT_TEMPDB; i<db->nDb; i++){
85578     int j = (i<2) ? i^1 : i;   /* Search TEMP before MAIN */
85579     if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue;
85580     assert( sqlite3SchemaMutexHeld(db, j, 0) );
85581     p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, nName);
85582     if( p ) break;
85583   }
85584   return p;
85585 }
85586 
85587 /*
85588 ** Locate the in-memory structure that describes a particular database
85589 ** table given the name of that table and (optionally) the name of the
85590 ** database containing the table.  Return NULL if not found.  Also leave an
85591 ** error message in pParse->zErrMsg.
85592 **
85593 ** The difference between this routine and sqlite3FindTable() is that this
85594 ** routine leaves an error message in pParse->zErrMsg where
85595 ** sqlite3FindTable() does not.
85596 */
85597 SQLITE_PRIVATE Table *sqlite3LocateTable(
85598   Parse *pParse,         /* context in which to report errors */
85599   int isView,            /* True if looking for a VIEW rather than a TABLE */
85600   const char *zName,     /* Name of the table we are looking for */
85601   const char *zDbase     /* Name of the database.  Might be NULL */
85602 ){
85603   Table *p;
85604 
85605   /* Read the database schema. If an error occurs, leave an error message
85606   ** and code in pParse and return NULL. */
85607   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
85608     return 0;
85609   }
85610 
85611   p = sqlite3FindTable(pParse->db, zName, zDbase);
85612   if( p==0 ){
85613     const char *zMsg = isView ? "no such view" : "no such table";
85614     if( zDbase ){
85615       sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
85616     }else{
85617       sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
85618     }
85619     pParse->checkSchema = 1;
85620   }
85621   return p;
85622 }
85623 
85624 /*
85625 ** Locate the table identified by *p.
85626 **
85627 ** This is a wrapper around sqlite3LocateTable(). The difference between
85628 ** sqlite3LocateTable() and this function is that this function restricts
85629 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be
85630 ** non-NULL if it is part of a view or trigger program definition. See
85631 ** sqlite3FixSrcList() for details.
85632 */
85633 SQLITE_PRIVATE Table *sqlite3LocateTableItem(
85634   Parse *pParse,
85635   int isView,
85636   struct SrcList_item *p
85637 ){
85638   const char *zDb;
85639   assert( p->pSchema==0 || p->zDatabase==0 );
85640   if( p->pSchema ){
85641     int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema);
85642     zDb = pParse->db->aDb[iDb].zName;
85643   }else{
85644     zDb = p->zDatabase;
85645   }
85646   return sqlite3LocateTable(pParse, isView, p->zName, zDb);
85647 }
85648 
85649 /*
85650 ** Locate the in-memory structure that describes
85651 ** a particular index given the name of that index
85652 ** and the name of the database that contains the index.
85653 ** Return NULL if not found.
85654 **
85655 ** If zDatabase is 0, all databases are searched for the
85656 ** table and the first matching index is returned.  (No checking
85657 ** for duplicate index names is done.)  The search order is
85658 ** TEMP first, then MAIN, then any auxiliary databases added
85659 ** using the ATTACH command.
85660 */
85661 SQLITE_PRIVATE Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
85662   Index *p = 0;
85663   int i;
85664   int nName = sqlite3Strlen30(zName);
85665   /* All mutexes are required for schema access.  Make sure we hold them. */
85666   assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) );
85667   for(i=OMIT_TEMPDB; i<db->nDb; i++){
85668     int j = (i<2) ? i^1 : i;  /* Search TEMP before MAIN */
85669     Schema *pSchema = db->aDb[j].pSchema;
85670     assert( pSchema );
85671     if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue;
85672     assert( sqlite3SchemaMutexHeld(db, j, 0) );
85673     p = sqlite3HashFind(&pSchema->idxHash, zName, nName);
85674     if( p ) break;
85675   }
85676   return p;
85677 }
85678 
85679 /*
85680 ** Reclaim the memory used by an index
85681 */
85682 static void freeIndex(sqlite3 *db, Index *p){
85683 #ifndef SQLITE_OMIT_ANALYZE
85684   sqlite3DeleteIndexSamples(db, p);
85685 #endif
85686   if( db==0 || db->pnBytesFreed==0 ) sqlite3KeyInfoUnref(p->pKeyInfo);
85687   sqlite3ExprDelete(db, p->pPartIdxWhere);
85688   sqlite3DbFree(db, p->zColAff);
85689   if( p->isResized ) sqlite3DbFree(db, p->azColl);
85690   sqlite3DbFree(db, p);
85691 }
85692 
85693 /*
85694 ** For the index called zIdxName which is found in the database iDb,
85695 ** unlike that index from its Table then remove the index from
85696 ** the index hash table and free all memory structures associated
85697 ** with the index.
85698 */
85699 SQLITE_PRIVATE void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
85700   Index *pIndex;
85701   int len;
85702   Hash *pHash;
85703 
85704   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
85705   pHash = &db->aDb[iDb].pSchema->idxHash;
85706   len = sqlite3Strlen30(zIdxName);
85707   pIndex = sqlite3HashInsert(pHash, zIdxName, len, 0);
85708   if( ALWAYS(pIndex) ){
85709     if( pIndex->pTable->pIndex==pIndex ){
85710       pIndex->pTable->pIndex = pIndex->pNext;
85711     }else{
85712       Index *p;
85713       /* Justification of ALWAYS();  The index must be on the list of
85714       ** indices. */
85715       p = pIndex->pTable->pIndex;
85716       while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; }
85717       if( ALWAYS(p && p->pNext==pIndex) ){
85718         p->pNext = pIndex->pNext;
85719       }
85720     }
85721     freeIndex(db, pIndex);
85722   }
85723   db->flags |= SQLITE_InternChanges;
85724 }
85725 
85726 /*
85727 ** Look through the list of open database files in db->aDb[] and if
85728 ** any have been closed, remove them from the list.  Reallocate the
85729 ** db->aDb[] structure to a smaller size, if possible.
85730 **
85731 ** Entry 0 (the "main" database) and entry 1 (the "temp" database)
85732 ** are never candidates for being collapsed.
85733 */
85734 SQLITE_PRIVATE void sqlite3CollapseDatabaseArray(sqlite3 *db){
85735   int i, j;
85736   for(i=j=2; i<db->nDb; i++){
85737     struct Db *pDb = &db->aDb[i];
85738     if( pDb->pBt==0 ){
85739       sqlite3DbFree(db, pDb->zName);
85740       pDb->zName = 0;
85741       continue;
85742     }
85743     if( j<i ){
85744       db->aDb[j] = db->aDb[i];
85745     }
85746     j++;
85747   }
85748   memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j]));
85749   db->nDb = j;
85750   if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
85751     memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
85752     sqlite3DbFree(db, db->aDb);
85753     db->aDb = db->aDbStatic;
85754   }
85755 }
85756 
85757 /*
85758 ** Reset the schema for the database at index iDb.  Also reset the
85759 ** TEMP schema.
85760 */
85761 SQLITE_PRIVATE void sqlite3ResetOneSchema(sqlite3 *db, int iDb){
85762   Db *pDb;
85763   assert( iDb<db->nDb );
85764 
85765   /* Case 1:  Reset the single schema identified by iDb */
85766   pDb = &db->aDb[iDb];
85767   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
85768   assert( pDb->pSchema!=0 );
85769   sqlite3SchemaClear(pDb->pSchema);
85770 
85771   /* If any database other than TEMP is reset, then also reset TEMP
85772   ** since TEMP might be holding triggers that reference tables in the
85773   ** other database.
85774   */
85775   if( iDb!=1 ){
85776     pDb = &db->aDb[1];
85777     assert( pDb->pSchema!=0 );
85778     sqlite3SchemaClear(pDb->pSchema);
85779   }
85780   return;
85781 }
85782 
85783 /*
85784 ** Erase all schema information from all attached databases (including
85785 ** "main" and "temp") for a single database connection.
85786 */
85787 SQLITE_PRIVATE void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){
85788   int i;
85789   sqlite3BtreeEnterAll(db);
85790   for(i=0; i<db->nDb; i++){
85791     Db *pDb = &db->aDb[i];
85792     if( pDb->pSchema ){
85793       sqlite3SchemaClear(pDb->pSchema);
85794     }
85795   }
85796   db->flags &= ~SQLITE_InternChanges;
85797   sqlite3VtabUnlockList(db);
85798   sqlite3BtreeLeaveAll(db);
85799   sqlite3CollapseDatabaseArray(db);
85800 }
85801 
85802 /*
85803 ** This routine is called when a commit occurs.
85804 */
85805 SQLITE_PRIVATE void sqlite3CommitInternalChanges(sqlite3 *db){
85806   db->flags &= ~SQLITE_InternChanges;
85807 }
85808 
85809 /*
85810 ** Delete memory allocated for the column names of a table or view (the
85811 ** Table.aCol[] array).
85812 */
85813 static void sqliteDeleteColumnNames(sqlite3 *db, Table *pTable){
85814   int i;
85815   Column *pCol;
85816   assert( pTable!=0 );
85817   if( (pCol = pTable->aCol)!=0 ){
85818     for(i=0; i<pTable->nCol; i++, pCol++){
85819       sqlite3DbFree(db, pCol->zName);
85820       sqlite3ExprDelete(db, pCol->pDflt);
85821       sqlite3DbFree(db, pCol->zDflt);
85822       sqlite3DbFree(db, pCol->zType);
85823       sqlite3DbFree(db, pCol->zColl);
85824     }
85825     sqlite3DbFree(db, pTable->aCol);
85826   }
85827 }
85828 
85829 /*
85830 ** Remove the memory data structures associated with the given
85831 ** Table.  No changes are made to disk by this routine.
85832 **
85833 ** This routine just deletes the data structure.  It does not unlink
85834 ** the table data structure from the hash table.  But it does destroy
85835 ** memory structures of the indices and foreign keys associated with
85836 ** the table.
85837 **
85838 ** The db parameter is optional.  It is needed if the Table object
85839 ** contains lookaside memory.  (Table objects in the schema do not use
85840 ** lookaside memory, but some ephemeral Table objects do.)  Or the
85841 ** db parameter can be used with db->pnBytesFreed to measure the memory
85842 ** used by the Table object.
85843 */
85844 SQLITE_PRIVATE void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
85845   Index *pIndex, *pNext;
85846   TESTONLY( int nLookaside; ) /* Used to verify lookaside not used for schema */
85847 
85848   assert( !pTable || pTable->nRef>0 );
85849 
85850   /* Do not delete the table until the reference count reaches zero. */
85851   if( !pTable ) return;
85852   if( ((!db || db->pnBytesFreed==0) && (--pTable->nRef)>0) ) return;
85853 
85854   /* Record the number of outstanding lookaside allocations in schema Tables
85855   ** prior to doing any free() operations.  Since schema Tables do not use
85856   ** lookaside, this number should not change. */
85857   TESTONLY( nLookaside = (db && (pTable->tabFlags & TF_Ephemeral)==0) ?
85858                          db->lookaside.nOut : 0 );
85859 
85860   /* Delete all indices associated with this table. */
85861   for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
85862     pNext = pIndex->pNext;
85863     assert( pIndex->pSchema==pTable->pSchema );
85864     if( !db || db->pnBytesFreed==0 ){
85865       char *zName = pIndex->zName;
85866       TESTONLY ( Index *pOld = ) sqlite3HashInsert(
85867          &pIndex->pSchema->idxHash, zName, sqlite3Strlen30(zName), 0
85868       );
85869       assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
85870       assert( pOld==pIndex || pOld==0 );
85871     }
85872     freeIndex(db, pIndex);
85873   }
85874 
85875   /* Delete any foreign keys attached to this table. */
85876   sqlite3FkDelete(db, pTable);
85877 
85878   /* Delete the Table structure itself.
85879   */
85880   sqliteDeleteColumnNames(db, pTable);
85881   sqlite3DbFree(db, pTable->zName);
85882   sqlite3DbFree(db, pTable->zColAff);
85883   sqlite3SelectDelete(db, pTable->pSelect);
85884 #ifndef SQLITE_OMIT_CHECK
85885   sqlite3ExprListDelete(db, pTable->pCheck);
85886 #endif
85887 #ifndef SQLITE_OMIT_VIRTUALTABLE
85888   sqlite3VtabClear(db, pTable);
85889 #endif
85890   sqlite3DbFree(db, pTable);
85891 
85892   /* Verify that no lookaside memory was used by schema tables */
85893   assert( nLookaside==0 || nLookaside==db->lookaside.nOut );
85894 }
85895 
85896 /*
85897 ** Unlink the given table from the hash tables and the delete the
85898 ** table structure with all its indices and foreign keys.
85899 */
85900 SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
85901   Table *p;
85902   Db *pDb;
85903 
85904   assert( db!=0 );
85905   assert( iDb>=0 && iDb<db->nDb );
85906   assert( zTabName );
85907   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
85908   testcase( zTabName[0]==0 );  /* Zero-length table names are allowed */
85909   pDb = &db->aDb[iDb];
85910   p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName,
85911                         sqlite3Strlen30(zTabName),0);
85912   sqlite3DeleteTable(db, p);
85913   db->flags |= SQLITE_InternChanges;
85914 }
85915 
85916 /*
85917 ** Given a token, return a string that consists of the text of that
85918 ** token.  Space to hold the returned string
85919 ** is obtained from sqliteMalloc() and must be freed by the calling
85920 ** function.
85921 **
85922 ** Any quotation marks (ex:  "name", 'name', [name], or `name`) that
85923 ** surround the body of the token are removed.
85924 **
85925 ** Tokens are often just pointers into the original SQL text and so
85926 ** are not \000 terminated and are not persistent.  The returned string
85927 ** is \000 terminated and is persistent.
85928 */
85929 SQLITE_PRIVATE char *sqlite3NameFromToken(sqlite3 *db, Token *pName){
85930   char *zName;
85931   if( pName ){
85932     zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n);
85933     sqlite3Dequote(zName);
85934   }else{
85935     zName = 0;
85936   }
85937   return zName;
85938 }
85939 
85940 /*
85941 ** Open the sqlite_master table stored in database number iDb for
85942 ** writing. The table is opened using cursor 0.
85943 */
85944 SQLITE_PRIVATE void sqlite3OpenMasterTable(Parse *p, int iDb){
85945   Vdbe *v = sqlite3GetVdbe(p);
85946   sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb));
85947   sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5);
85948   if( p->nTab==0 ){
85949     p->nTab = 1;
85950   }
85951 }
85952 
85953 /*
85954 ** Parameter zName points to a nul-terminated buffer containing the name
85955 ** of a database ("main", "temp" or the name of an attached db). This
85956 ** function returns the index of the named database in db->aDb[], or
85957 ** -1 if the named db cannot be found.
85958 */
85959 SQLITE_PRIVATE int sqlite3FindDbName(sqlite3 *db, const char *zName){
85960   int i = -1;         /* Database number */
85961   if( zName ){
85962     Db *pDb;
85963     int n = sqlite3Strlen30(zName);
85964     for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
85965       if( (!OMIT_TEMPDB || i!=1 ) && n==sqlite3Strlen30(pDb->zName) &&
85966           0==sqlite3StrICmp(pDb->zName, zName) ){
85967         break;
85968       }
85969     }
85970   }
85971   return i;
85972 }
85973 
85974 /*
85975 ** The token *pName contains the name of a database (either "main" or
85976 ** "temp" or the name of an attached db). This routine returns the
85977 ** index of the named database in db->aDb[], or -1 if the named db
85978 ** does not exist.
85979 */
85980 SQLITE_PRIVATE int sqlite3FindDb(sqlite3 *db, Token *pName){
85981   int i;                               /* Database number */
85982   char *zName;                         /* Name we are searching for */
85983   zName = sqlite3NameFromToken(db, pName);
85984   i = sqlite3FindDbName(db, zName);
85985   sqlite3DbFree(db, zName);
85986   return i;
85987 }
85988 
85989 /* The table or view or trigger name is passed to this routine via tokens
85990 ** pName1 and pName2. If the table name was fully qualified, for example:
85991 **
85992 ** CREATE TABLE xxx.yyy (...);
85993 **
85994 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
85995 ** the table name is not fully qualified, i.e.:
85996 **
85997 ** CREATE TABLE yyy(...);
85998 **
85999 ** Then pName1 is set to "yyy" and pName2 is "".
86000 **
86001 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
86002 ** pName2) that stores the unqualified table name.  The index of the
86003 ** database "xxx" is returned.
86004 */
86005 SQLITE_PRIVATE int sqlite3TwoPartName(
86006   Parse *pParse,      /* Parsing and code generating context */
86007   Token *pName1,      /* The "xxx" in the name "xxx.yyy" or "xxx" */
86008   Token *pName2,      /* The "yyy" in the name "xxx.yyy" */
86009   Token **pUnqual     /* Write the unqualified object name here */
86010 ){
86011   int iDb;                    /* Database holding the object */
86012   sqlite3 *db = pParse->db;
86013 
86014   if( ALWAYS(pName2!=0) && pName2->n>0 ){
86015     if( db->init.busy ) {
86016       sqlite3ErrorMsg(pParse, "corrupt database");
86017       pParse->nErr++;
86018       return -1;
86019     }
86020     *pUnqual = pName2;
86021     iDb = sqlite3FindDb(db, pName1);
86022     if( iDb<0 ){
86023       sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
86024       pParse->nErr++;
86025       return -1;
86026     }
86027   }else{
86028     assert( db->init.iDb==0 || db->init.busy );
86029     iDb = db->init.iDb;
86030     *pUnqual = pName1;
86031   }
86032   return iDb;
86033 }
86034 
86035 /*
86036 ** This routine is used to check if the UTF-8 string zName is a legal
86037 ** unqualified name for a new schema object (table, index, view or
86038 ** trigger). All names are legal except those that begin with the string
86039 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
86040 ** is reserved for internal use.
86041 */
86042 SQLITE_PRIVATE int sqlite3CheckObjectName(Parse *pParse, const char *zName){
86043   if( !pParse->db->init.busy && pParse->nested==0
86044           && (pParse->db->flags & SQLITE_WriteSchema)==0
86045           && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
86046     sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
86047     return SQLITE_ERROR;
86048   }
86049   return SQLITE_OK;
86050 }
86051 
86052 /*
86053 ** Return the PRIMARY KEY index of a table
86054 */
86055 SQLITE_PRIVATE Index *sqlite3PrimaryKeyIndex(Table *pTab){
86056   Index *p;
86057   for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){}
86058   return p;
86059 }
86060 
86061 /*
86062 ** Return the column of index pIdx that corresponds to table
86063 ** column iCol.  Return -1 if not found.
86064 */
86065 SQLITE_PRIVATE i16 sqlite3ColumnOfIndex(Index *pIdx, i16 iCol){
86066   int i;
86067   for(i=0; i<pIdx->nColumn; i++){
86068     if( iCol==pIdx->aiColumn[i] ) return i;
86069   }
86070   return -1;
86071 }
86072 
86073 /*
86074 ** Begin constructing a new table representation in memory.  This is
86075 ** the first of several action routines that get called in response
86076 ** to a CREATE TABLE statement.  In particular, this routine is called
86077 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
86078 ** flag is true if the table should be stored in the auxiliary database
86079 ** file instead of in the main database file.  This is normally the case
86080 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
86081 ** CREATE and TABLE.
86082 **
86083 ** The new table record is initialized and put in pParse->pNewTable.
86084 ** As more of the CREATE TABLE statement is parsed, additional action
86085 ** routines will be called to add more information to this record.
86086 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
86087 ** is called to complete the construction of the new table record.
86088 */
86089 SQLITE_PRIVATE void sqlite3StartTable(
86090   Parse *pParse,   /* Parser context */
86091   Token *pName1,   /* First part of the name of the table or view */
86092   Token *pName2,   /* Second part of the name of the table or view */
86093   int isTemp,      /* True if this is a TEMP table */
86094   int isView,      /* True if this is a VIEW */
86095   int isVirtual,   /* True if this is a VIRTUAL table */
86096   int noErr        /* Do nothing if table already exists */
86097 ){
86098   Table *pTable;
86099   char *zName = 0; /* The name of the new table */
86100   sqlite3 *db = pParse->db;
86101   Vdbe *v;
86102   int iDb;         /* Database number to create the table in */
86103   Token *pName;    /* Unqualified name of the table to create */
86104 
86105   /* The table or view name to create is passed to this routine via tokens
86106   ** pName1 and pName2. If the table name was fully qualified, for example:
86107   **
86108   ** CREATE TABLE xxx.yyy (...);
86109   **
86110   ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
86111   ** the table name is not fully qualified, i.e.:
86112   **
86113   ** CREATE TABLE yyy(...);
86114   **
86115   ** Then pName1 is set to "yyy" and pName2 is "".
86116   **
86117   ** The call below sets the pName pointer to point at the token (pName1 or
86118   ** pName2) that stores the unqualified table name. The variable iDb is
86119   ** set to the index of the database that the table or view is to be
86120   ** created in.
86121   */
86122   iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
86123   if( iDb<0 ) return;
86124   if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){
86125     /* If creating a temp table, the name may not be qualified. Unless
86126     ** the database name is "temp" anyway.  */
86127     sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
86128     return;
86129   }
86130   if( !OMIT_TEMPDB && isTemp ) iDb = 1;
86131 
86132   pParse->sNameToken = *pName;
86133   zName = sqlite3NameFromToken(db, pName);
86134   if( zName==0 ) return;
86135   if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
86136     goto begin_table_error;
86137   }
86138   if( db->init.iDb==1 ) isTemp = 1;
86139 #ifndef SQLITE_OMIT_AUTHORIZATION
86140   assert( (isTemp & 1)==isTemp );
86141   {
86142     int code;
86143     char *zDb = db->aDb[iDb].zName;
86144     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
86145       goto begin_table_error;
86146     }
86147     if( isView ){
86148       if( !OMIT_TEMPDB && isTemp ){
86149         code = SQLITE_CREATE_TEMP_VIEW;
86150       }else{
86151         code = SQLITE_CREATE_VIEW;
86152       }
86153     }else{
86154       if( !OMIT_TEMPDB && isTemp ){
86155         code = SQLITE_CREATE_TEMP_TABLE;
86156       }else{
86157         code = SQLITE_CREATE_TABLE;
86158       }
86159     }
86160     if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){
86161       goto begin_table_error;
86162     }
86163   }
86164 #endif
86165 
86166   /* Make sure the new table name does not collide with an existing
86167   ** index or table name in the same database.  Issue an error message if
86168   ** it does. The exception is if the statement being parsed was passed
86169   ** to an sqlite3_declare_vtab() call. In that case only the column names
86170   ** and types will be used, so there is no need to test for namespace
86171   ** collisions.
86172   */
86173   if( !IN_DECLARE_VTAB ){
86174     char *zDb = db->aDb[iDb].zName;
86175     if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
86176       goto begin_table_error;
86177     }
86178     pTable = sqlite3FindTable(db, zName, zDb);
86179     if( pTable ){
86180       if( !noErr ){
86181         sqlite3ErrorMsg(pParse, "table %T already exists", pName);
86182       }else{
86183         assert( !db->init.busy );
86184         sqlite3CodeVerifySchema(pParse, iDb);
86185       }
86186       goto begin_table_error;
86187     }
86188     if( sqlite3FindIndex(db, zName, zDb)!=0 ){
86189       sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
86190       goto begin_table_error;
86191     }
86192   }
86193 
86194   pTable = sqlite3DbMallocZero(db, sizeof(Table));
86195   if( pTable==0 ){
86196     db->mallocFailed = 1;
86197     pParse->rc = SQLITE_NOMEM;
86198     pParse->nErr++;
86199     goto begin_table_error;
86200   }
86201   pTable->zName = zName;
86202   pTable->iPKey = -1;
86203   pTable->pSchema = db->aDb[iDb].pSchema;
86204   pTable->nRef = 1;
86205   pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
86206   assert( pParse->pNewTable==0 );
86207   pParse->pNewTable = pTable;
86208 
86209   /* If this is the magic sqlite_sequence table used by autoincrement,
86210   ** then record a pointer to this table in the main database structure
86211   ** so that INSERT can find the table easily.
86212   */
86213 #ifndef SQLITE_OMIT_AUTOINCREMENT
86214   if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
86215     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
86216     pTable->pSchema->pSeqTab = pTable;
86217   }
86218 #endif
86219 
86220   /* Begin generating the code that will insert the table record into
86221   ** the SQLITE_MASTER table.  Note in particular that we must go ahead
86222   ** and allocate the record number for the table entry now.  Before any
86223   ** PRIMARY KEY or UNIQUE keywords are parsed.  Those keywords will cause
86224   ** indices to be created and the table record must come before the
86225   ** indices.  Hence, the record number for the table must be allocated
86226   ** now.
86227   */
86228   if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
86229     int j1;
86230     int fileFormat;
86231     int reg1, reg2, reg3;
86232     sqlite3BeginWriteOperation(pParse, 0, iDb);
86233 
86234 #ifndef SQLITE_OMIT_VIRTUALTABLE
86235     if( isVirtual ){
86236       sqlite3VdbeAddOp0(v, OP_VBegin);
86237     }
86238 #endif
86239 
86240     /* If the file format and encoding in the database have not been set,
86241     ** set them now.
86242     */
86243     reg1 = pParse->regRowid = ++pParse->nMem;
86244     reg2 = pParse->regRoot = ++pParse->nMem;
86245     reg3 = ++pParse->nMem;
86246     sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
86247     sqlite3VdbeUsesBtree(v, iDb);
86248     j1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v);
86249     fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
86250                   1 : SQLITE_MAX_FILE_FORMAT;
86251     sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3);
86252     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, reg3);
86253     sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3);
86254     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, reg3);
86255     sqlite3VdbeJumpHere(v, j1);
86256 
86257     /* This just creates a place-holder record in the sqlite_master table.
86258     ** The record created does not contain anything yet.  It will be replaced
86259     ** by the real entry in code generated at sqlite3EndTable().
86260     **
86261     ** The rowid for the new entry is left in register pParse->regRowid.
86262     ** The root page number of the new table is left in reg pParse->regRoot.
86263     ** The rowid and root page number values are needed by the code that
86264     ** sqlite3EndTable will generate.
86265     */
86266 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
86267     if( isView || isVirtual ){
86268       sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
86269     }else
86270 #endif
86271     {
86272       pParse->addrCrTab = sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2);
86273     }
86274     sqlite3OpenMasterTable(pParse, iDb);
86275     sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
86276     sqlite3VdbeAddOp2(v, OP_Null, 0, reg3);
86277     sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
86278     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
86279     sqlite3VdbeAddOp0(v, OP_Close);
86280   }
86281 
86282   /* Normal (non-error) return. */
86283   return;
86284 
86285   /* If an error occurs, we jump here */
86286 begin_table_error:
86287   sqlite3DbFree(db, zName);
86288   return;
86289 }
86290 
86291 /*
86292 ** This macro is used to compare two strings in a case-insensitive manner.
86293 ** It is slightly faster than calling sqlite3StrICmp() directly, but
86294 ** produces larger code.
86295 **
86296 ** WARNING: This macro is not compatible with the strcmp() family. It
86297 ** returns true if the two strings are equal, otherwise false.
86298 */
86299 #define STRICMP(x, y) (\
86300 sqlite3UpperToLower[*(unsigned char *)(x)]==   \
86301 sqlite3UpperToLower[*(unsigned char *)(y)]     \
86302 && sqlite3StrICmp((x)+1,(y)+1)==0 )
86303 
86304 /*
86305 ** Add a new column to the table currently being constructed.
86306 **
86307 ** The parser calls this routine once for each column declaration
86308 ** in a CREATE TABLE statement.  sqlite3StartTable() gets called
86309 ** first to get things going.  Then this routine is called for each
86310 ** column.
86311 */
86312 SQLITE_PRIVATE void sqlite3AddColumn(Parse *pParse, Token *pName){
86313   Table *p;
86314   int i;
86315   char *z;
86316   Column *pCol;
86317   sqlite3 *db = pParse->db;
86318   if( (p = pParse->pNewTable)==0 ) return;
86319 #if SQLITE_MAX_COLUMN
86320   if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
86321     sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
86322     return;
86323   }
86324 #endif
86325   z = sqlite3NameFromToken(db, pName);
86326   if( z==0 ) return;
86327   for(i=0; i<p->nCol; i++){
86328     if( STRICMP(z, p->aCol[i].zName) ){
86329       sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
86330       sqlite3DbFree(db, z);
86331       return;
86332     }
86333   }
86334   if( (p->nCol & 0x7)==0 ){
86335     Column *aNew;
86336     aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
86337     if( aNew==0 ){
86338       sqlite3DbFree(db, z);
86339       return;
86340     }
86341     p->aCol = aNew;
86342   }
86343   pCol = &p->aCol[p->nCol];
86344   memset(pCol, 0, sizeof(p->aCol[0]));
86345   pCol->zName = z;
86346 
86347   /* If there is no type specified, columns have the default affinity
86348   ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will
86349   ** be called next to set pCol->affinity correctly.
86350   */
86351   pCol->affinity = SQLITE_AFF_NONE;
86352   pCol->szEst = 1;
86353   p->nCol++;
86354 }
86355 
86356 /*
86357 ** This routine is called by the parser while in the middle of
86358 ** parsing a CREATE TABLE statement.  A "NOT NULL" constraint has
86359 ** been seen on a column.  This routine sets the notNull flag on
86360 ** the column currently under construction.
86361 */
86362 SQLITE_PRIVATE void sqlite3AddNotNull(Parse *pParse, int onError){
86363   Table *p;
86364   p = pParse->pNewTable;
86365   if( p==0 || NEVER(p->nCol<1) ) return;
86366   p->aCol[p->nCol-1].notNull = (u8)onError;
86367 }
86368 
86369 /*
86370 ** Scan the column type name zType (length nType) and return the
86371 ** associated affinity type.
86372 **
86373 ** This routine does a case-independent search of zType for the
86374 ** substrings in the following table. If one of the substrings is
86375 ** found, the corresponding affinity is returned. If zType contains
86376 ** more than one of the substrings, entries toward the top of
86377 ** the table take priority. For example, if zType is 'BLOBINT',
86378 ** SQLITE_AFF_INTEGER is returned.
86379 **
86380 ** Substring     | Affinity
86381 ** --------------------------------
86382 ** 'INT'         | SQLITE_AFF_INTEGER
86383 ** 'CHAR'        | SQLITE_AFF_TEXT
86384 ** 'CLOB'        | SQLITE_AFF_TEXT
86385 ** 'TEXT'        | SQLITE_AFF_TEXT
86386 ** 'BLOB'        | SQLITE_AFF_NONE
86387 ** 'REAL'        | SQLITE_AFF_REAL
86388 ** 'FLOA'        | SQLITE_AFF_REAL
86389 ** 'DOUB'        | SQLITE_AFF_REAL
86390 **
86391 ** If none of the substrings in the above table are found,
86392 ** SQLITE_AFF_NUMERIC is returned.
86393 */
86394 SQLITE_PRIVATE char sqlite3AffinityType(const char *zIn, u8 *pszEst){
86395   u32 h = 0;
86396   char aff = SQLITE_AFF_NUMERIC;
86397   const char *zChar = 0;
86398 
86399   if( zIn==0 ) return aff;
86400   while( zIn[0] ){
86401     h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff];
86402     zIn++;
86403     if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){             /* CHAR */
86404       aff = SQLITE_AFF_TEXT;
86405       zChar = zIn;
86406     }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){       /* CLOB */
86407       aff = SQLITE_AFF_TEXT;
86408     }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){       /* TEXT */
86409       aff = SQLITE_AFF_TEXT;
86410     }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b')          /* BLOB */
86411         && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
86412       aff = SQLITE_AFF_NONE;
86413       if( zIn[0]=='(' ) zChar = zIn;
86414 #ifndef SQLITE_OMIT_FLOATING_POINT
86415     }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l')          /* REAL */
86416         && aff==SQLITE_AFF_NUMERIC ){
86417       aff = SQLITE_AFF_REAL;
86418     }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a')          /* FLOA */
86419         && aff==SQLITE_AFF_NUMERIC ){
86420       aff = SQLITE_AFF_REAL;
86421     }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b')          /* DOUB */
86422         && aff==SQLITE_AFF_NUMERIC ){
86423       aff = SQLITE_AFF_REAL;
86424 #endif
86425     }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){    /* INT */
86426       aff = SQLITE_AFF_INTEGER;
86427       break;
86428     }
86429   }
86430 
86431   /* If pszEst is not NULL, store an estimate of the field size.  The
86432   ** estimate is scaled so that the size of an integer is 1.  */
86433   if( pszEst ){
86434     *pszEst = 1;   /* default size is approx 4 bytes */
86435     if( aff<=SQLITE_AFF_NONE ){
86436       if( zChar ){
86437         while( zChar[0] ){
86438           if( sqlite3Isdigit(zChar[0]) ){
86439             int v = 0;
86440             sqlite3GetInt32(zChar, &v);
86441             v = v/4 + 1;
86442             if( v>255 ) v = 255;
86443             *pszEst = v; /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */
86444             break;
86445           }
86446           zChar++;
86447         }
86448       }else{
86449         *pszEst = 5;   /* BLOB, TEXT, CLOB -> r=5  (approx 20 bytes)*/
86450       }
86451     }
86452   }
86453   return aff;
86454 }
86455 
86456 /*
86457 ** This routine is called by the parser while in the middle of
86458 ** parsing a CREATE TABLE statement.  The pFirst token is the first
86459 ** token in the sequence of tokens that describe the type of the
86460 ** column currently under construction.   pLast is the last token
86461 ** in the sequence.  Use this information to construct a string
86462 ** that contains the typename of the column and store that string
86463 ** in zType.
86464 */
86465 SQLITE_PRIVATE void sqlite3AddColumnType(Parse *pParse, Token *pType){
86466   Table *p;
86467   Column *pCol;
86468 
86469   p = pParse->pNewTable;
86470   if( p==0 || NEVER(p->nCol<1) ) return;
86471   pCol = &p->aCol[p->nCol-1];
86472   assert( pCol->zType==0 );
86473   pCol->zType = sqlite3NameFromToken(pParse->db, pType);
86474   pCol->affinity = sqlite3AffinityType(pCol->zType, &pCol->szEst);
86475 }
86476 
86477 /*
86478 ** The expression is the default value for the most recently added column
86479 ** of the table currently under construction.
86480 **
86481 ** Default value expressions must be constant.  Raise an exception if this
86482 ** is not the case.
86483 **
86484 ** This routine is called by the parser while in the middle of
86485 ** parsing a CREATE TABLE statement.
86486 */
86487 SQLITE_PRIVATE void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){
86488   Table *p;
86489   Column *pCol;
86490   sqlite3 *db = pParse->db;
86491   p = pParse->pNewTable;
86492   if( p!=0 ){
86493     pCol = &(p->aCol[p->nCol-1]);
86494     if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr) ){
86495       sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
86496           pCol->zName);
86497     }else{
86498       /* A copy of pExpr is used instead of the original, as pExpr contains
86499       ** tokens that point to volatile memory. The 'span' of the expression
86500       ** is required by pragma table_info.
86501       */
86502       sqlite3ExprDelete(db, pCol->pDflt);
86503       pCol->pDflt = sqlite3ExprDup(db, pSpan->pExpr, EXPRDUP_REDUCE);
86504       sqlite3DbFree(db, pCol->zDflt);
86505       pCol->zDflt = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
86506                                      (int)(pSpan->zEnd - pSpan->zStart));
86507     }
86508   }
86509   sqlite3ExprDelete(db, pSpan->pExpr);
86510 }
86511 
86512 /*
86513 ** Designate the PRIMARY KEY for the table.  pList is a list of names
86514 ** of columns that form the primary key.  If pList is NULL, then the
86515 ** most recently added column of the table is the primary key.
86516 **
86517 ** A table can have at most one primary key.  If the table already has
86518 ** a primary key (and this is the second primary key) then create an
86519 ** error.
86520 **
86521 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
86522 ** then we will try to use that column as the rowid.  Set the Table.iPKey
86523 ** field of the table under construction to be the index of the
86524 ** INTEGER PRIMARY KEY column.  Table.iPKey is set to -1 if there is
86525 ** no INTEGER PRIMARY KEY.
86526 **
86527 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
86528 ** index for the key.  No index is created for INTEGER PRIMARY KEYs.
86529 */
86530 SQLITE_PRIVATE void sqlite3AddPrimaryKey(
86531   Parse *pParse,    /* Parsing context */
86532   ExprList *pList,  /* List of field names to be indexed */
86533   int onError,      /* What to do with a uniqueness conflict */
86534   int autoInc,      /* True if the AUTOINCREMENT keyword is present */
86535   int sortOrder     /* SQLITE_SO_ASC or SQLITE_SO_DESC */
86536 ){
86537   Table *pTab = pParse->pNewTable;
86538   char *zType = 0;
86539   int iCol = -1, i;
86540   int nTerm;
86541   if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit;
86542   if( pTab->tabFlags & TF_HasPrimaryKey ){
86543     sqlite3ErrorMsg(pParse,
86544       "table \"%s\" has more than one primary key", pTab->zName);
86545     goto primary_key_exit;
86546   }
86547   pTab->tabFlags |= TF_HasPrimaryKey;
86548   if( pList==0 ){
86549     iCol = pTab->nCol - 1;
86550     pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY;
86551     zType = pTab->aCol[iCol].zType;
86552     nTerm = 1;
86553   }else{
86554     nTerm = pList->nExpr;
86555     for(i=0; i<nTerm; i++){
86556       for(iCol=0; iCol<pTab->nCol; iCol++){
86557         if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){
86558           pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY;
86559           zType = pTab->aCol[iCol].zType;
86560           break;
86561         }
86562       }
86563     }
86564   }
86565   if( nTerm==1
86566    && zType && sqlite3StrICmp(zType, "INTEGER")==0
86567    && sortOrder==SQLITE_SO_ASC
86568   ){
86569     pTab->iPKey = iCol;
86570     pTab->keyConf = (u8)onError;
86571     assert( autoInc==0 || autoInc==1 );
86572     pTab->tabFlags |= autoInc*TF_Autoincrement;
86573     if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder;
86574   }else if( autoInc ){
86575 #ifndef SQLITE_OMIT_AUTOINCREMENT
86576     sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
86577        "INTEGER PRIMARY KEY");
86578 #endif
86579   }else{
86580     Vdbe *v = pParse->pVdbe;
86581     Index *p;
86582     if( v ) pParse->addrSkipPK = sqlite3VdbeAddOp0(v, OP_Noop);
86583     p = sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0,
86584                            0, sortOrder, 0);
86585     if( p ){
86586       p->idxType = SQLITE_IDXTYPE_PRIMARYKEY;
86587       if( v ) sqlite3VdbeJumpHere(v, pParse->addrSkipPK);
86588     }
86589     pList = 0;
86590   }
86591 
86592 primary_key_exit:
86593   sqlite3ExprListDelete(pParse->db, pList);
86594   return;
86595 }
86596 
86597 /*
86598 ** Add a new CHECK constraint to the table currently under construction.
86599 */
86600 SQLITE_PRIVATE void sqlite3AddCheckConstraint(
86601   Parse *pParse,    /* Parsing context */
86602   Expr *pCheckExpr  /* The check expression */
86603 ){
86604 #ifndef SQLITE_OMIT_CHECK
86605   Table *pTab = pParse->pNewTable;
86606   sqlite3 *db = pParse->db;
86607   if( pTab && !IN_DECLARE_VTAB
86608    && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt)
86609   ){
86610     pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr);
86611     if( pParse->constraintName.n ){
86612       sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1);
86613     }
86614   }else
86615 #endif
86616   {
86617     sqlite3ExprDelete(pParse->db, pCheckExpr);
86618   }
86619 }
86620 
86621 /*
86622 ** Set the collation function of the most recently parsed table column
86623 ** to the CollSeq given.
86624 */
86625 SQLITE_PRIVATE void sqlite3AddCollateType(Parse *pParse, Token *pToken){
86626   Table *p;
86627   int i;
86628   char *zColl;              /* Dequoted name of collation sequence */
86629   sqlite3 *db;
86630 
86631   if( (p = pParse->pNewTable)==0 ) return;
86632   i = p->nCol-1;
86633   db = pParse->db;
86634   zColl = sqlite3NameFromToken(db, pToken);
86635   if( !zColl ) return;
86636 
86637   if( sqlite3LocateCollSeq(pParse, zColl) ){
86638     Index *pIdx;
86639     sqlite3DbFree(db, p->aCol[i].zColl);
86640     p->aCol[i].zColl = zColl;
86641 
86642     /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
86643     ** then an index may have been created on this column before the
86644     ** collation type was added. Correct this if it is the case.
86645     */
86646     for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
86647       assert( pIdx->nKeyCol==1 );
86648       if( pIdx->aiColumn[0]==i ){
86649         pIdx->azColl[0] = p->aCol[i].zColl;
86650       }
86651     }
86652   }else{
86653     sqlite3DbFree(db, zColl);
86654   }
86655 }
86656 
86657 /*
86658 ** This function returns the collation sequence for database native text
86659 ** encoding identified by the string zName, length nName.
86660 **
86661 ** If the requested collation sequence is not available, or not available
86662 ** in the database native encoding, the collation factory is invoked to
86663 ** request it. If the collation factory does not supply such a sequence,
86664 ** and the sequence is available in another text encoding, then that is
86665 ** returned instead.
86666 **
86667 ** If no versions of the requested collations sequence are available, or
86668 ** another error occurs, NULL is returned and an error message written into
86669 ** pParse.
86670 **
86671 ** This routine is a wrapper around sqlite3FindCollSeq().  This routine
86672 ** invokes the collation factory if the named collation cannot be found
86673 ** and generates an error message.
86674 **
86675 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq()
86676 */
86677 SQLITE_PRIVATE CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){
86678   sqlite3 *db = pParse->db;
86679   u8 enc = ENC(db);
86680   u8 initbusy = db->init.busy;
86681   CollSeq *pColl;
86682 
86683   pColl = sqlite3FindCollSeq(db, enc, zName, initbusy);
86684   if( !initbusy && (!pColl || !pColl->xCmp) ){
86685     pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName);
86686   }
86687 
86688   return pColl;
86689 }
86690 
86691 
86692 /*
86693 ** Generate code that will increment the schema cookie.
86694 **
86695 ** The schema cookie is used to determine when the schema for the
86696 ** database changes.  After each schema change, the cookie value
86697 ** changes.  When a process first reads the schema it records the
86698 ** cookie.  Thereafter, whenever it goes to access the database,
86699 ** it checks the cookie to make sure the schema has not changed
86700 ** since it was last read.
86701 **
86702 ** This plan is not completely bullet-proof.  It is possible for
86703 ** the schema to change multiple times and for the cookie to be
86704 ** set back to prior value.  But schema changes are infrequent
86705 ** and the probability of hitting the same cookie value is only
86706 ** 1 chance in 2^32.  So we're safe enough.
86707 */
86708 SQLITE_PRIVATE void sqlite3ChangeCookie(Parse *pParse, int iDb){
86709   int r1 = sqlite3GetTempReg(pParse);
86710   sqlite3 *db = pParse->db;
86711   Vdbe *v = pParse->pVdbe;
86712   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
86713   sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1);
86714   sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, r1);
86715   sqlite3ReleaseTempReg(pParse, r1);
86716 }
86717 
86718 /*
86719 ** Measure the number of characters needed to output the given
86720 ** identifier.  The number returned includes any quotes used
86721 ** but does not include the null terminator.
86722 **
86723 ** The estimate is conservative.  It might be larger that what is
86724 ** really needed.
86725 */
86726 static int identLength(const char *z){
86727   int n;
86728   for(n=0; *z; n++, z++){
86729     if( *z=='"' ){ n++; }
86730   }
86731   return n + 2;
86732 }
86733 
86734 /*
86735 ** The first parameter is a pointer to an output buffer. The second
86736 ** parameter is a pointer to an integer that contains the offset at
86737 ** which to write into the output buffer. This function copies the
86738 ** nul-terminated string pointed to by the third parameter, zSignedIdent,
86739 ** to the specified offset in the buffer and updates *pIdx to refer
86740 ** to the first byte after the last byte written before returning.
86741 **
86742 ** If the string zSignedIdent consists entirely of alpha-numeric
86743 ** characters, does not begin with a digit and is not an SQL keyword,
86744 ** then it is copied to the output buffer exactly as it is. Otherwise,
86745 ** it is quoted using double-quotes.
86746 */
86747 static void identPut(char *z, int *pIdx, char *zSignedIdent){
86748   unsigned char *zIdent = (unsigned char*)zSignedIdent;
86749   int i, j, needQuote;
86750   i = *pIdx;
86751 
86752   for(j=0; zIdent[j]; j++){
86753     if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
86754   }
86755   needQuote = sqlite3Isdigit(zIdent[0])
86756             || sqlite3KeywordCode(zIdent, j)!=TK_ID
86757             || zIdent[j]!=0
86758             || j==0;
86759 
86760   if( needQuote ) z[i++] = '"';
86761   for(j=0; zIdent[j]; j++){
86762     z[i++] = zIdent[j];
86763     if( zIdent[j]=='"' ) z[i++] = '"';
86764   }
86765   if( needQuote ) z[i++] = '"';
86766   z[i] = 0;
86767   *pIdx = i;
86768 }
86769 
86770 /*
86771 ** Generate a CREATE TABLE statement appropriate for the given
86772 ** table.  Memory to hold the text of the statement is obtained
86773 ** from sqliteMalloc() and must be freed by the calling function.
86774 */
86775 static char *createTableStmt(sqlite3 *db, Table *p){
86776   int i, k, n;
86777   char *zStmt;
86778   char *zSep, *zSep2, *zEnd;
86779   Column *pCol;
86780   n = 0;
86781   for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
86782     n += identLength(pCol->zName) + 5;
86783   }
86784   n += identLength(p->zName);
86785   if( n<50 ){
86786     zSep = "";
86787     zSep2 = ",";
86788     zEnd = ")";
86789   }else{
86790     zSep = "\n  ";
86791     zSep2 = ",\n  ";
86792     zEnd = "\n)";
86793   }
86794   n += 35 + 6*p->nCol;
86795   zStmt = sqlite3DbMallocRaw(0, n);
86796   if( zStmt==0 ){
86797     db->mallocFailed = 1;
86798     return 0;
86799   }
86800   sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
86801   k = sqlite3Strlen30(zStmt);
86802   identPut(zStmt, &k, p->zName);
86803   zStmt[k++] = '(';
86804   for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
86805     static const char * const azType[] = {
86806         /* SQLITE_AFF_TEXT    */ " TEXT",
86807         /* SQLITE_AFF_NONE    */ "",
86808         /* SQLITE_AFF_NUMERIC */ " NUM",
86809         /* SQLITE_AFF_INTEGER */ " INT",
86810         /* SQLITE_AFF_REAL    */ " REAL"
86811     };
86812     int len;
86813     const char *zType;
86814 
86815     sqlite3_snprintf(n-k, &zStmt[k], zSep);
86816     k += sqlite3Strlen30(&zStmt[k]);
86817     zSep = zSep2;
86818     identPut(zStmt, &k, pCol->zName);
86819     assert( pCol->affinity-SQLITE_AFF_TEXT >= 0 );
86820     assert( pCol->affinity-SQLITE_AFF_TEXT < ArraySize(azType) );
86821     testcase( pCol->affinity==SQLITE_AFF_TEXT );
86822     testcase( pCol->affinity==SQLITE_AFF_NONE );
86823     testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
86824     testcase( pCol->affinity==SQLITE_AFF_INTEGER );
86825     testcase( pCol->affinity==SQLITE_AFF_REAL );
86826 
86827     zType = azType[pCol->affinity - SQLITE_AFF_TEXT];
86828     len = sqlite3Strlen30(zType);
86829     assert( pCol->affinity==SQLITE_AFF_NONE
86830             || pCol->affinity==sqlite3AffinityType(zType, 0) );
86831     memcpy(&zStmt[k], zType, len);
86832     k += len;
86833     assert( k<=n );
86834   }
86835   sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
86836   return zStmt;
86837 }
86838 
86839 /*
86840 ** Resize an Index object to hold N columns total.  Return SQLITE_OK
86841 ** on success and SQLITE_NOMEM on an OOM error.
86842 */
86843 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){
86844   char *zExtra;
86845   int nByte;
86846   if( pIdx->nColumn>=N ) return SQLITE_OK;
86847   assert( pIdx->isResized==0 );
86848   nByte = (sizeof(char*) + sizeof(i16) + 1)*N;
86849   zExtra = sqlite3DbMallocZero(db, nByte);
86850   if( zExtra==0 ) return SQLITE_NOMEM;
86851   memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn);
86852   pIdx->azColl = (char**)zExtra;
86853   zExtra += sizeof(char*)*N;
86854   memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn);
86855   pIdx->aiColumn = (i16*)zExtra;
86856   zExtra += sizeof(i16)*N;
86857   memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn);
86858   pIdx->aSortOrder = (u8*)zExtra;
86859   pIdx->nColumn = N;
86860   pIdx->isResized = 1;
86861   return SQLITE_OK;
86862 }
86863 
86864 /*
86865 ** Estimate the total row width for a table.
86866 */
86867 static void estimateTableWidth(Table *pTab){
86868   unsigned wTable = 0;
86869   const Column *pTabCol;
86870   int i;
86871   for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){
86872     wTable += pTabCol->szEst;
86873   }
86874   if( pTab->iPKey<0 ) wTable++;
86875   pTab->szTabRow = sqlite3LogEst(wTable*4);
86876 }
86877 
86878 /*
86879 ** Estimate the average size of a row for an index.
86880 */
86881 static void estimateIndexWidth(Index *pIdx){
86882   unsigned wIndex = 0;
86883   int i;
86884   const Column *aCol = pIdx->pTable->aCol;
86885   for(i=0; i<pIdx->nColumn; i++){
86886     i16 x = pIdx->aiColumn[i];
86887     assert( x<pIdx->pTable->nCol );
86888     wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst;
86889   }
86890   pIdx->szIdxRow = sqlite3LogEst(wIndex*4);
86891 }
86892 
86893 /* Return true if value x is found any of the first nCol entries of aiCol[]
86894 */
86895 static int hasColumn(const i16 *aiCol, int nCol, int x){
86896   while( nCol-- > 0 ) if( x==*(aiCol++) ) return 1;
86897   return 0;
86898 }
86899 
86900 /*
86901 ** This routine runs at the end of parsing a CREATE TABLE statement that
86902 ** has a WITHOUT ROWID clause.  The job of this routine is to convert both
86903 ** internal schema data structures and the generated VDBE code so that they
86904 ** are appropriate for a WITHOUT ROWID table instead of a rowid table.
86905 ** Changes include:
86906 **
86907 **     (1)  Convert the OP_CreateTable into an OP_CreateIndex.  There is
86908 **          no rowid btree for a WITHOUT ROWID.  Instead, the canonical
86909 **          data storage is a covering index btree.
86910 **     (2)  Bypass the creation of the sqlite_master table entry
86911 **          for the PRIMARY KEY as the the primary key index is now
86912 **          identified by the sqlite_master table entry of the table itself.
86913 **     (3)  Set the Index.tnum of the PRIMARY KEY Index object in the
86914 **          schema to the rootpage from the main table.
86915 **     (4)  Set all columns of the PRIMARY KEY schema object to be NOT NULL.
86916 **     (5)  Add all table columns to the PRIMARY KEY Index object
86917 **          so that the PRIMARY KEY is a covering index.  The surplus
86918 **          columns are part of KeyInfo.nXField and are not used for
86919 **          sorting or lookup or uniqueness checks.
86920 **     (6)  Replace the rowid tail on all automatically generated UNIQUE
86921 **          indices with the PRIMARY KEY columns.
86922 */
86923 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){
86924   Index *pIdx;
86925   Index *pPk;
86926   int nPk;
86927   int i, j;
86928   sqlite3 *db = pParse->db;
86929   Vdbe *v = pParse->pVdbe;
86930 
86931   /* Convert the OP_CreateTable opcode that would normally create the
86932   ** root-page for the table into a OP_CreateIndex opcode.  The index
86933   ** created will become the PRIMARY KEY index.
86934   */
86935   if( pParse->addrCrTab ){
86936     assert( v );
86937     sqlite3VdbeGetOp(v, pParse->addrCrTab)->opcode = OP_CreateIndex;
86938   }
86939 
86940   /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master
86941   ** table entry.
86942   */
86943   if( pParse->addrSkipPK ){
86944     assert( v );
86945     sqlite3VdbeGetOp(v, pParse->addrSkipPK)->opcode = OP_Goto;
86946   }
86947 
86948   /* Locate the PRIMARY KEY index.  Or, if this table was originally
86949   ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index.
86950   */
86951   if( pTab->iPKey>=0 ){
86952     ExprList *pList;
86953     pList = sqlite3ExprListAppend(pParse, 0, 0);
86954     if( pList==0 ) return;
86955     pList->a[0].zName = sqlite3DbStrDup(pParse->db,
86956                                         pTab->aCol[pTab->iPKey].zName);
86957     pList->a[0].sortOrder = pParse->iPkSortOrder;
86958     assert( pParse->pNewTable==pTab );
86959     pPk = sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0);
86960     if( pPk==0 ) return;
86961     pPk->idxType = SQLITE_IDXTYPE_PRIMARYKEY;
86962     pTab->iPKey = -1;
86963   }else{
86964     pPk = sqlite3PrimaryKeyIndex(pTab);
86965   }
86966   pPk->isCovering = 1;
86967   assert( pPk!=0 );
86968   nPk = pPk->nKeyCol;
86969 
86970   /* Make sure every column of the PRIMARY KEY is NOT NULL */
86971   for(i=0; i<nPk; i++){
86972     pTab->aCol[pPk->aiColumn[i]].notNull = 1;
86973   }
86974   pPk->uniqNotNull = 1;
86975 
86976   /* The root page of the PRIMARY KEY is the table root page */
86977   pPk->tnum = pTab->tnum;
86978 
86979   /* Update the in-memory representation of all UNIQUE indices by converting
86980   ** the final rowid column into one or more columns of the PRIMARY KEY.
86981   */
86982   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
86983     int n;
86984     if( IsPrimaryKeyIndex(pIdx) ) continue;
86985     for(i=n=0; i<nPk; i++){
86986       if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ) n++;
86987     }
86988     if( n==0 ){
86989       /* This index is a superset of the primary key */
86990       pIdx->nColumn = pIdx->nKeyCol;
86991       continue;
86992     }
86993     if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return;
86994     for(i=0, j=pIdx->nKeyCol; i<nPk; i++){
86995       if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ){
86996         pIdx->aiColumn[j] = pPk->aiColumn[i];
86997         pIdx->azColl[j] = pPk->azColl[i];
86998         j++;
86999       }
87000     }
87001     assert( pIdx->nColumn>=pIdx->nKeyCol+n );
87002     assert( pIdx->nColumn>=j );
87003   }
87004 
87005   /* Add all table columns to the PRIMARY KEY index
87006   */
87007   if( nPk<pTab->nCol ){
87008     if( resizeIndexObject(db, pPk, pTab->nCol) ) return;
87009     for(i=0, j=nPk; i<pTab->nCol; i++){
87010       if( !hasColumn(pPk->aiColumn, j, i) ){
87011         assert( j<pPk->nColumn );
87012         pPk->aiColumn[j] = i;
87013         pPk->azColl[j] = "BINARY";
87014         j++;
87015       }
87016     }
87017     assert( pPk->nColumn==j );
87018     assert( pTab->nCol==j );
87019   }else{
87020     pPk->nColumn = pTab->nCol;
87021   }
87022 }
87023 
87024 /*
87025 ** This routine is called to report the final ")" that terminates
87026 ** a CREATE TABLE statement.
87027 **
87028 ** The table structure that other action routines have been building
87029 ** is added to the internal hash tables, assuming no errors have
87030 ** occurred.
87031 **
87032 ** An entry for the table is made in the master table on disk, unless
87033 ** this is a temporary table or db->init.busy==1.  When db->init.busy==1
87034 ** it means we are reading the sqlite_master table because we just
87035 ** connected to the database or because the sqlite_master table has
87036 ** recently changed, so the entry for this table already exists in
87037 ** the sqlite_master table.  We do not want to create it again.
87038 **
87039 ** If the pSelect argument is not NULL, it means that this routine
87040 ** was called to create a table generated from a
87041 ** "CREATE TABLE ... AS SELECT ..." statement.  The column names of
87042 ** the new table will match the result set of the SELECT.
87043 */
87044 SQLITE_PRIVATE void sqlite3EndTable(
87045   Parse *pParse,          /* Parse context */
87046   Token *pCons,           /* The ',' token after the last column defn. */
87047   Token *pEnd,            /* The ')' before options in the CREATE TABLE */
87048   u8 tabOpts,             /* Extra table options. Usually 0. */
87049   Select *pSelect         /* Select from a "CREATE ... AS SELECT" */
87050 ){
87051   Table *p;                 /* The new table */
87052   sqlite3 *db = pParse->db; /* The database connection */
87053   int iDb;                  /* Database in which the table lives */
87054   Index *pIdx;              /* An implied index of the table */
87055 
87056   if( (pEnd==0 && pSelect==0) || db->mallocFailed ){
87057     return;
87058   }
87059   p = pParse->pNewTable;
87060   if( p==0 ) return;
87061 
87062   assert( !db->init.busy || !pSelect );
87063 
87064   /* If the db->init.busy is 1 it means we are reading the SQL off the
87065   ** "sqlite_master" or "sqlite_temp_master" table on the disk.
87066   ** So do not write to the disk again.  Extract the root page number
87067   ** for the table from the db->init.newTnum field.  (The page number
87068   ** should have been put there by the sqliteOpenCb routine.)
87069   */
87070   if( db->init.busy ){
87071     p->tnum = db->init.newTnum;
87072   }
87073 
87074   /* Special processing for WITHOUT ROWID Tables */
87075   if( tabOpts & TF_WithoutRowid ){
87076     if( (p->tabFlags & TF_Autoincrement) ){
87077       sqlite3ErrorMsg(pParse,
87078           "AUTOINCREMENT not allowed on WITHOUT ROWID tables");
87079       return;
87080     }
87081     if( (p->tabFlags & TF_HasPrimaryKey)==0 ){
87082       sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName);
87083     }else{
87084       p->tabFlags |= TF_WithoutRowid;
87085       convertToWithoutRowidTable(pParse, p);
87086     }
87087   }
87088 
87089   iDb = sqlite3SchemaToIndex(db, p->pSchema);
87090 
87091 #ifndef SQLITE_OMIT_CHECK
87092   /* Resolve names in all CHECK constraint expressions.
87093   */
87094   if( p->pCheck ){
87095     sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck);
87096   }
87097 #endif /* !defined(SQLITE_OMIT_CHECK) */
87098 
87099   /* Estimate the average row size for the table and for all implied indices */
87100   estimateTableWidth(p);
87101   for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
87102     estimateIndexWidth(pIdx);
87103   }
87104 
87105   /* If not initializing, then create a record for the new table
87106   ** in the SQLITE_MASTER table of the database.
87107   **
87108   ** If this is a TEMPORARY table, write the entry into the auxiliary
87109   ** file instead of into the main database file.
87110   */
87111   if( !db->init.busy ){
87112     int n;
87113     Vdbe *v;
87114     char *zType;    /* "view" or "table" */
87115     char *zType2;   /* "VIEW" or "TABLE" */
87116     char *zStmt;    /* Text of the CREATE TABLE or CREATE VIEW statement */
87117 
87118     v = sqlite3GetVdbe(pParse);
87119     if( NEVER(v==0) ) return;
87120 
87121     sqlite3VdbeAddOp1(v, OP_Close, 0);
87122 
87123     /*
87124     ** Initialize zType for the new view or table.
87125     */
87126     if( p->pSelect==0 ){
87127       /* A regular table */
87128       zType = "table";
87129       zType2 = "TABLE";
87130 #ifndef SQLITE_OMIT_VIEW
87131     }else{
87132       /* A view */
87133       zType = "view";
87134       zType2 = "VIEW";
87135 #endif
87136     }
87137 
87138     /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
87139     ** statement to populate the new table. The root-page number for the
87140     ** new table is in register pParse->regRoot.
87141     **
87142     ** Once the SELECT has been coded by sqlite3Select(), it is in a
87143     ** suitable state to query for the column names and types to be used
87144     ** by the new table.
87145     **
87146     ** A shared-cache write-lock is not required to write to the new table,
87147     ** as a schema-lock must have already been obtained to create it. Since
87148     ** a schema-lock excludes all other database users, the write-lock would
87149     ** be redundant.
87150     */
87151     if( pSelect ){
87152       SelectDest dest;
87153       Table *pSelTab;
87154 
87155       assert(pParse->nTab==1);
87156       sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
87157       sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG);
87158       pParse->nTab = 2;
87159       sqlite3SelectDestInit(&dest, SRT_Table, 1);
87160       sqlite3Select(pParse, pSelect, &dest);
87161       sqlite3VdbeAddOp1(v, OP_Close, 1);
87162       if( pParse->nErr==0 ){
87163         pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect);
87164         if( pSelTab==0 ) return;
87165         assert( p->aCol==0 );
87166         p->nCol = pSelTab->nCol;
87167         p->aCol = pSelTab->aCol;
87168         pSelTab->nCol = 0;
87169         pSelTab->aCol = 0;
87170         sqlite3DeleteTable(db, pSelTab);
87171       }
87172     }
87173 
87174     /* Compute the complete text of the CREATE statement */
87175     if( pSelect ){
87176       zStmt = createTableStmt(db, p);
87177     }else{
87178       Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd;
87179       n = (int)(pEnd2->z - pParse->sNameToken.z);
87180       if( pEnd2->z[0]!=';' ) n += pEnd2->n;
87181       zStmt = sqlite3MPrintf(db,
87182           "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
87183       );
87184     }
87185 
87186     /* A slot for the record has already been allocated in the
87187     ** SQLITE_MASTER table.  We just need to update that slot with all
87188     ** the information we've collected.
87189     */
87190     sqlite3NestedParse(pParse,
87191       "UPDATE %Q.%s "
87192          "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q "
87193        "WHERE rowid=#%d",
87194       db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
87195       zType,
87196       p->zName,
87197       p->zName,
87198       pParse->regRoot,
87199       zStmt,
87200       pParse->regRowid
87201     );
87202     sqlite3DbFree(db, zStmt);
87203     sqlite3ChangeCookie(pParse, iDb);
87204 
87205 #ifndef SQLITE_OMIT_AUTOINCREMENT
87206     /* Check to see if we need to create an sqlite_sequence table for
87207     ** keeping track of autoincrement keys.
87208     */
87209     if( p->tabFlags & TF_Autoincrement ){
87210       Db *pDb = &db->aDb[iDb];
87211       assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
87212       if( pDb->pSchema->pSeqTab==0 ){
87213         sqlite3NestedParse(pParse,
87214           "CREATE TABLE %Q.sqlite_sequence(name,seq)",
87215           pDb->zName
87216         );
87217       }
87218     }
87219 #endif
87220 
87221     /* Reparse everything to update our internal data structures */
87222     sqlite3VdbeAddParseSchemaOp(v, iDb,
87223            sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName));
87224   }
87225 
87226 
87227   /* Add the table to the in-memory representation of the database.
87228   */
87229   if( db->init.busy ){
87230     Table *pOld;
87231     Schema *pSchema = p->pSchema;
87232     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
87233     pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName,
87234                              sqlite3Strlen30(p->zName),p);
87235     if( pOld ){
87236       assert( p==pOld );  /* Malloc must have failed inside HashInsert() */
87237       db->mallocFailed = 1;
87238       return;
87239     }
87240     pParse->pNewTable = 0;
87241     db->flags |= SQLITE_InternChanges;
87242 
87243 #ifndef SQLITE_OMIT_ALTERTABLE
87244     if( !p->pSelect ){
87245       const char *zName = (const char *)pParse->sNameToken.z;
87246       int nName;
87247       assert( !pSelect && pCons && pEnd );
87248       if( pCons->z==0 ){
87249         pCons = pEnd;
87250       }
87251       nName = (int)((const char *)pCons->z - zName);
87252       p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName);
87253     }
87254 #endif
87255   }
87256 }
87257 
87258 #ifndef SQLITE_OMIT_VIEW
87259 /*
87260 ** The parser calls this routine in order to create a new VIEW
87261 */
87262 SQLITE_PRIVATE void sqlite3CreateView(
87263   Parse *pParse,     /* The parsing context */
87264   Token *pBegin,     /* The CREATE token that begins the statement */
87265   Token *pName1,     /* The token that holds the name of the view */
87266   Token *pName2,     /* The token that holds the name of the view */
87267   Select *pSelect,   /* A SELECT statement that will become the new view */
87268   int isTemp,        /* TRUE for a TEMPORARY view */
87269   int noErr          /* Suppress error messages if VIEW already exists */
87270 ){
87271   Table *p;
87272   int n;
87273   const char *z;
87274   Token sEnd;
87275   DbFixer sFix;
87276   Token *pName = 0;
87277   int iDb;
87278   sqlite3 *db = pParse->db;
87279 
87280   if( pParse->nVar>0 ){
87281     sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
87282     sqlite3SelectDelete(db, pSelect);
87283     return;
87284   }
87285   sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
87286   p = pParse->pNewTable;
87287   if( p==0 || pParse->nErr ){
87288     sqlite3SelectDelete(db, pSelect);
87289     return;
87290   }
87291   sqlite3TwoPartName(pParse, pName1, pName2, &pName);
87292   iDb = sqlite3SchemaToIndex(db, p->pSchema);
87293   sqlite3FixInit(&sFix, pParse, iDb, "view", pName);
87294   if( sqlite3FixSelect(&sFix, pSelect) ){
87295     sqlite3SelectDelete(db, pSelect);
87296     return;
87297   }
87298 
87299   /* Make a copy of the entire SELECT statement that defines the view.
87300   ** This will force all the Expr.token.z values to be dynamically
87301   ** allocated rather than point to the input string - which means that
87302   ** they will persist after the current sqlite3_exec() call returns.
87303   */
87304   p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
87305   sqlite3SelectDelete(db, pSelect);
87306   if( db->mallocFailed ){
87307     return;
87308   }
87309   if( !db->init.busy ){
87310     sqlite3ViewGetColumnNames(pParse, p);
87311   }
87312 
87313   /* Locate the end of the CREATE VIEW statement.  Make sEnd point to
87314   ** the end.
87315   */
87316   sEnd = pParse->sLastToken;
87317   if( ALWAYS(sEnd.z[0]!=0) && sEnd.z[0]!=';' ){
87318     sEnd.z += sEnd.n;
87319   }
87320   sEnd.n = 0;
87321   n = (int)(sEnd.z - pBegin->z);
87322   z = pBegin->z;
87323   while( ALWAYS(n>0) && sqlite3Isspace(z[n-1]) ){ n--; }
87324   sEnd.z = &z[n-1];
87325   sEnd.n = 1;
87326 
87327   /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
87328   sqlite3EndTable(pParse, 0, &sEnd, 0, 0);
87329   return;
87330 }
87331 #endif /* SQLITE_OMIT_VIEW */
87332 
87333 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
87334 /*
87335 ** The Table structure pTable is really a VIEW.  Fill in the names of
87336 ** the columns of the view in the pTable structure.  Return the number
87337 ** of errors.  If an error is seen leave an error message in pParse->zErrMsg.
87338 */
87339 SQLITE_PRIVATE int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
87340   Table *pSelTab;   /* A fake table from which we get the result set */
87341   Select *pSel;     /* Copy of the SELECT that implements the view */
87342   int nErr = 0;     /* Number of errors encountered */
87343   int n;            /* Temporarily holds the number of cursors assigned */
87344   sqlite3 *db = pParse->db;  /* Database connection for malloc errors */
87345   int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
87346 
87347   assert( pTable );
87348 
87349 #ifndef SQLITE_OMIT_VIRTUALTABLE
87350   if( sqlite3VtabCallConnect(pParse, pTable) ){
87351     return SQLITE_ERROR;
87352   }
87353   if( IsVirtual(pTable) ) return 0;
87354 #endif
87355 
87356 #ifndef SQLITE_OMIT_VIEW
87357   /* A positive nCol means the columns names for this view are
87358   ** already known.
87359   */
87360   if( pTable->nCol>0 ) return 0;
87361 
87362   /* A negative nCol is a special marker meaning that we are currently
87363   ** trying to compute the column names.  If we enter this routine with
87364   ** a negative nCol, it means two or more views form a loop, like this:
87365   **
87366   **     CREATE VIEW one AS SELECT * FROM two;
87367   **     CREATE VIEW two AS SELECT * FROM one;
87368   **
87369   ** Actually, the error above is now caught prior to reaching this point.
87370   ** But the following test is still important as it does come up
87371   ** in the following:
87372   **
87373   **     CREATE TABLE main.ex1(a);
87374   **     CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
87375   **     SELECT * FROM temp.ex1;
87376   */
87377   if( pTable->nCol<0 ){
87378     sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
87379     return 1;
87380   }
87381   assert( pTable->nCol>=0 );
87382 
87383   /* If we get this far, it means we need to compute the table names.
87384   ** Note that the call to sqlite3ResultSetOfSelect() will expand any
87385   ** "*" elements in the results set of the view and will assign cursors
87386   ** to the elements of the FROM clause.  But we do not want these changes
87387   ** to be permanent.  So the computation is done on a copy of the SELECT
87388   ** statement that defines the view.
87389   */
87390   assert( pTable->pSelect );
87391   pSel = sqlite3SelectDup(db, pTable->pSelect, 0);
87392   if( pSel ){
87393     u8 enableLookaside = db->lookaside.bEnabled;
87394     n = pParse->nTab;
87395     sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
87396     pTable->nCol = -1;
87397     db->lookaside.bEnabled = 0;
87398 #ifndef SQLITE_OMIT_AUTHORIZATION
87399     xAuth = db->xAuth;
87400     db->xAuth = 0;
87401     pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
87402     db->xAuth = xAuth;
87403 #else
87404     pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
87405 #endif
87406     db->lookaside.bEnabled = enableLookaside;
87407     pParse->nTab = n;
87408     if( pSelTab ){
87409       assert( pTable->aCol==0 );
87410       pTable->nCol = pSelTab->nCol;
87411       pTable->aCol = pSelTab->aCol;
87412       pSelTab->nCol = 0;
87413       pSelTab->aCol = 0;
87414       sqlite3DeleteTable(db, pSelTab);
87415       assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) );
87416       pTable->pSchema->flags |= DB_UnresetViews;
87417     }else{
87418       pTable->nCol = 0;
87419       nErr++;
87420     }
87421     sqlite3SelectDelete(db, pSel);
87422   } else {
87423     nErr++;
87424   }
87425 #endif /* SQLITE_OMIT_VIEW */
87426   return nErr;
87427 }
87428 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
87429 
87430 #ifndef SQLITE_OMIT_VIEW
87431 /*
87432 ** Clear the column names from every VIEW in database idx.
87433 */
87434 static void sqliteViewResetAll(sqlite3 *db, int idx){
87435   HashElem *i;
87436   assert( sqlite3SchemaMutexHeld(db, idx, 0) );
87437   if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
87438   for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
87439     Table *pTab = sqliteHashData(i);
87440     if( pTab->pSelect ){
87441       sqliteDeleteColumnNames(db, pTab);
87442       pTab->aCol = 0;
87443       pTab->nCol = 0;
87444     }
87445   }
87446   DbClearProperty(db, idx, DB_UnresetViews);
87447 }
87448 #else
87449 # define sqliteViewResetAll(A,B)
87450 #endif /* SQLITE_OMIT_VIEW */
87451 
87452 /*
87453 ** This function is called by the VDBE to adjust the internal schema
87454 ** used by SQLite when the btree layer moves a table root page. The
87455 ** root-page of a table or index in database iDb has changed from iFrom
87456 ** to iTo.
87457 **
87458 ** Ticket #1728:  The symbol table might still contain information
87459 ** on tables and/or indices that are the process of being deleted.
87460 ** If you are unlucky, one of those deleted indices or tables might
87461 ** have the same rootpage number as the real table or index that is
87462 ** being moved.  So we cannot stop searching after the first match
87463 ** because the first match might be for one of the deleted indices
87464 ** or tables and not the table/index that is actually being moved.
87465 ** We must continue looping until all tables and indices with
87466 ** rootpage==iFrom have been converted to have a rootpage of iTo
87467 ** in order to be certain that we got the right one.
87468 */
87469 #ifndef SQLITE_OMIT_AUTOVACUUM
87470 SQLITE_PRIVATE void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){
87471   HashElem *pElem;
87472   Hash *pHash;
87473   Db *pDb;
87474 
87475   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
87476   pDb = &db->aDb[iDb];
87477   pHash = &pDb->pSchema->tblHash;
87478   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
87479     Table *pTab = sqliteHashData(pElem);
87480     if( pTab->tnum==iFrom ){
87481       pTab->tnum = iTo;
87482     }
87483   }
87484   pHash = &pDb->pSchema->idxHash;
87485   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
87486     Index *pIdx = sqliteHashData(pElem);
87487     if( pIdx->tnum==iFrom ){
87488       pIdx->tnum = iTo;
87489     }
87490   }
87491 }
87492 #endif
87493 
87494 /*
87495 ** Write code to erase the table with root-page iTable from database iDb.
87496 ** Also write code to modify the sqlite_master table and internal schema
87497 ** if a root-page of another table is moved by the btree-layer whilst
87498 ** erasing iTable (this can happen with an auto-vacuum database).
87499 */
87500 static void destroyRootPage(Parse *pParse, int iTable, int iDb){
87501   Vdbe *v = sqlite3GetVdbe(pParse);
87502   int r1 = sqlite3GetTempReg(pParse);
87503   sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
87504   sqlite3MayAbort(pParse);
87505 #ifndef SQLITE_OMIT_AUTOVACUUM
87506   /* OP_Destroy stores an in integer r1. If this integer
87507   ** is non-zero, then it is the root page number of a table moved to
87508   ** location iTable. The following code modifies the sqlite_master table to
87509   ** reflect this.
87510   **
87511   ** The "#NNN" in the SQL is a special constant that means whatever value
87512   ** is in register NNN.  See grammar rules associated with the TK_REGISTER
87513   ** token for additional information.
87514   */
87515   sqlite3NestedParse(pParse,
87516      "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d",
87517      pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1);
87518 #endif
87519   sqlite3ReleaseTempReg(pParse, r1);
87520 }
87521 
87522 /*
87523 ** Write VDBE code to erase table pTab and all associated indices on disk.
87524 ** Code to update the sqlite_master tables and internal schema definitions
87525 ** in case a root-page belonging to another table is moved by the btree layer
87526 ** is also added (this can happen with an auto-vacuum database).
87527 */
87528 static void destroyTable(Parse *pParse, Table *pTab){
87529 #ifdef SQLITE_OMIT_AUTOVACUUM
87530   Index *pIdx;
87531   int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
87532   destroyRootPage(pParse, pTab->tnum, iDb);
87533   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
87534     destroyRootPage(pParse, pIdx->tnum, iDb);
87535   }
87536 #else
87537   /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
87538   ** is not defined), then it is important to call OP_Destroy on the
87539   ** table and index root-pages in order, starting with the numerically
87540   ** largest root-page number. This guarantees that none of the root-pages
87541   ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
87542   ** following were coded:
87543   **
87544   ** OP_Destroy 4 0
87545   ** ...
87546   ** OP_Destroy 5 0
87547   **
87548   ** and root page 5 happened to be the largest root-page number in the
87549   ** database, then root page 5 would be moved to page 4 by the
87550   ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
87551   ** a free-list page.
87552   */
87553   int iTab = pTab->tnum;
87554   int iDestroyed = 0;
87555 
87556   while( 1 ){
87557     Index *pIdx;
87558     int iLargest = 0;
87559 
87560     if( iDestroyed==0 || iTab<iDestroyed ){
87561       iLargest = iTab;
87562     }
87563     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
87564       int iIdx = pIdx->tnum;
87565       assert( pIdx->pSchema==pTab->pSchema );
87566       if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
87567         iLargest = iIdx;
87568       }
87569     }
87570     if( iLargest==0 ){
87571       return;
87572     }else{
87573       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
87574       assert( iDb>=0 && iDb<pParse->db->nDb );
87575       destroyRootPage(pParse, iLargest, iDb);
87576       iDestroyed = iLargest;
87577     }
87578   }
87579 #endif
87580 }
87581 
87582 /*
87583 ** Remove entries from the sqlite_statN tables (for N in (1,2,3))
87584 ** after a DROP INDEX or DROP TABLE command.
87585 */
87586 static void sqlite3ClearStatTables(
87587   Parse *pParse,         /* The parsing context */
87588   int iDb,               /* The database number */
87589   const char *zType,     /* "idx" or "tbl" */
87590   const char *zName      /* Name of index or table */
87591 ){
87592   int i;
87593   const char *zDbName = pParse->db->aDb[iDb].zName;
87594   for(i=1; i<=4; i++){
87595     char zTab[24];
87596     sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i);
87597     if( sqlite3FindTable(pParse->db, zTab, zDbName) ){
87598       sqlite3NestedParse(pParse,
87599         "DELETE FROM %Q.%s WHERE %s=%Q",
87600         zDbName, zTab, zType, zName
87601       );
87602     }
87603   }
87604 }
87605 
87606 /*
87607 ** Generate code to drop a table.
87608 */
87609 SQLITE_PRIVATE void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){
87610   Vdbe *v;
87611   sqlite3 *db = pParse->db;
87612   Trigger *pTrigger;
87613   Db *pDb = &db->aDb[iDb];
87614 
87615   v = sqlite3GetVdbe(pParse);
87616   assert( v!=0 );
87617   sqlite3BeginWriteOperation(pParse, 1, iDb);
87618 
87619 #ifndef SQLITE_OMIT_VIRTUALTABLE
87620   if( IsVirtual(pTab) ){
87621     sqlite3VdbeAddOp0(v, OP_VBegin);
87622   }
87623 #endif
87624 
87625   /* Drop all triggers associated with the table being dropped. Code
87626   ** is generated to remove entries from sqlite_master and/or
87627   ** sqlite_temp_master if required.
87628   */
87629   pTrigger = sqlite3TriggerList(pParse, pTab);
87630   while( pTrigger ){
87631     assert( pTrigger->pSchema==pTab->pSchema ||
87632         pTrigger->pSchema==db->aDb[1].pSchema );
87633     sqlite3DropTriggerPtr(pParse, pTrigger);
87634     pTrigger = pTrigger->pNext;
87635   }
87636 
87637 #ifndef SQLITE_OMIT_AUTOINCREMENT
87638   /* Remove any entries of the sqlite_sequence table associated with
87639   ** the table being dropped. This is done before the table is dropped
87640   ** at the btree level, in case the sqlite_sequence table needs to
87641   ** move as a result of the drop (can happen in auto-vacuum mode).
87642   */
87643   if( pTab->tabFlags & TF_Autoincrement ){
87644     sqlite3NestedParse(pParse,
87645       "DELETE FROM %Q.sqlite_sequence WHERE name=%Q",
87646       pDb->zName, pTab->zName
87647     );
87648   }
87649 #endif
87650 
87651   /* Drop all SQLITE_MASTER table and index entries that refer to the
87652   ** table. The program name loops through the master table and deletes
87653   ** every row that refers to a table of the same name as the one being
87654   ** dropped. Triggers are handled separately because a trigger can be
87655   ** created in the temp database that refers to a table in another
87656   ** database.
87657   */
87658   sqlite3NestedParse(pParse,
87659       "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
87660       pDb->zName, SCHEMA_TABLE(iDb), pTab->zName);
87661   if( !isView && !IsVirtual(pTab) ){
87662     destroyTable(pParse, pTab);
87663   }
87664 
87665   /* Remove the table entry from SQLite's internal schema and modify
87666   ** the schema cookie.
87667   */
87668   if( IsVirtual(pTab) ){
87669     sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
87670   }
87671   sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
87672   sqlite3ChangeCookie(pParse, iDb);
87673   sqliteViewResetAll(db, iDb);
87674 }
87675 
87676 /*
87677 ** This routine is called to do the work of a DROP TABLE statement.
87678 ** pName is the name of the table to be dropped.
87679 */
87680 SQLITE_PRIVATE void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
87681   Table *pTab;
87682   Vdbe *v;
87683   sqlite3 *db = pParse->db;
87684   int iDb;
87685 
87686   if( db->mallocFailed ){
87687     goto exit_drop_table;
87688   }
87689   assert( pParse->nErr==0 );
87690   assert( pName->nSrc==1 );
87691   if( noErr ) db->suppressErr++;
87692   pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]);
87693   if( noErr ) db->suppressErr--;
87694 
87695   if( pTab==0 ){
87696     if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
87697     goto exit_drop_table;
87698   }
87699   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
87700   assert( iDb>=0 && iDb<db->nDb );
87701 
87702   /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
87703   ** it is initialized.
87704   */
87705   if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
87706     goto exit_drop_table;
87707   }
87708 #ifndef SQLITE_OMIT_AUTHORIZATION
87709   {
87710     int code;
87711     const char *zTab = SCHEMA_TABLE(iDb);
87712     const char *zDb = db->aDb[iDb].zName;
87713     const char *zArg2 = 0;
87714     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
87715       goto exit_drop_table;
87716     }
87717     if( isView ){
87718       if( !OMIT_TEMPDB && iDb==1 ){
87719         code = SQLITE_DROP_TEMP_VIEW;
87720       }else{
87721         code = SQLITE_DROP_VIEW;
87722       }
87723 #ifndef SQLITE_OMIT_VIRTUALTABLE
87724     }else if( IsVirtual(pTab) ){
87725       code = SQLITE_DROP_VTABLE;
87726       zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName;
87727 #endif
87728     }else{
87729       if( !OMIT_TEMPDB && iDb==1 ){
87730         code = SQLITE_DROP_TEMP_TABLE;
87731       }else{
87732         code = SQLITE_DROP_TABLE;
87733       }
87734     }
87735     if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
87736       goto exit_drop_table;
87737     }
87738     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
87739       goto exit_drop_table;
87740     }
87741   }
87742 #endif
87743   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
87744     && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){
87745     sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
87746     goto exit_drop_table;
87747   }
87748 
87749 #ifndef SQLITE_OMIT_VIEW
87750   /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
87751   ** on a table.
87752   */
87753   if( isView && pTab->pSelect==0 ){
87754     sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
87755     goto exit_drop_table;
87756   }
87757   if( !isView && pTab->pSelect ){
87758     sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
87759     goto exit_drop_table;
87760   }
87761 #endif
87762 
87763   /* Generate code to remove the table from the master table
87764   ** on disk.
87765   */
87766   v = sqlite3GetVdbe(pParse);
87767   if( v ){
87768     sqlite3BeginWriteOperation(pParse, 1, iDb);
87769     sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName);
87770     sqlite3FkDropTable(pParse, pName, pTab);
87771     sqlite3CodeDropTable(pParse, pTab, iDb, isView);
87772   }
87773 
87774 exit_drop_table:
87775   sqlite3SrcListDelete(db, pName);
87776 }
87777 
87778 /*
87779 ** This routine is called to create a new foreign key on the table
87780 ** currently under construction.  pFromCol determines which columns
87781 ** in the current table point to the foreign key.  If pFromCol==0 then
87782 ** connect the key to the last column inserted.  pTo is the name of
87783 ** the table referred to (a.k.a the "parent" table).  pToCol is a list
87784 ** of tables in the parent pTo table.  flags contains all
87785 ** information about the conflict resolution algorithms specified
87786 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
87787 **
87788 ** An FKey structure is created and added to the table currently
87789 ** under construction in the pParse->pNewTable field.
87790 **
87791 ** The foreign key is set for IMMEDIATE processing.  A subsequent call
87792 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
87793 */
87794 SQLITE_PRIVATE void sqlite3CreateForeignKey(
87795   Parse *pParse,       /* Parsing context */
87796   ExprList *pFromCol,  /* Columns in this table that point to other table */
87797   Token *pTo,          /* Name of the other table */
87798   ExprList *pToCol,    /* Columns in the other table */
87799   int flags            /* Conflict resolution algorithms. */
87800 ){
87801   sqlite3 *db = pParse->db;
87802 #ifndef SQLITE_OMIT_FOREIGN_KEY
87803   FKey *pFKey = 0;
87804   FKey *pNextTo;
87805   Table *p = pParse->pNewTable;
87806   int nByte;
87807   int i;
87808   int nCol;
87809   char *z;
87810 
87811   assert( pTo!=0 );
87812   if( p==0 || IN_DECLARE_VTAB ) goto fk_end;
87813   if( pFromCol==0 ){
87814     int iCol = p->nCol-1;
87815     if( NEVER(iCol<0) ) goto fk_end;
87816     if( pToCol && pToCol->nExpr!=1 ){
87817       sqlite3ErrorMsg(pParse, "foreign key on %s"
87818          " should reference only one column of table %T",
87819          p->aCol[iCol].zName, pTo);
87820       goto fk_end;
87821     }
87822     nCol = 1;
87823   }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
87824     sqlite3ErrorMsg(pParse,
87825         "number of columns in foreign key does not match the number of "
87826         "columns in the referenced table");
87827     goto fk_end;
87828   }else{
87829     nCol = pFromCol->nExpr;
87830   }
87831   nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1;
87832   if( pToCol ){
87833     for(i=0; i<pToCol->nExpr; i++){
87834       nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1;
87835     }
87836   }
87837   pFKey = sqlite3DbMallocZero(db, nByte );
87838   if( pFKey==0 ){
87839     goto fk_end;
87840   }
87841   pFKey->pFrom = p;
87842   pFKey->pNextFrom = p->pFKey;
87843   z = (char*)&pFKey->aCol[nCol];
87844   pFKey->zTo = z;
87845   memcpy(z, pTo->z, pTo->n);
87846   z[pTo->n] = 0;
87847   sqlite3Dequote(z);
87848   z += pTo->n+1;
87849   pFKey->nCol = nCol;
87850   if( pFromCol==0 ){
87851     pFKey->aCol[0].iFrom = p->nCol-1;
87852   }else{
87853     for(i=0; i<nCol; i++){
87854       int j;
87855       for(j=0; j<p->nCol; j++){
87856         if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
87857           pFKey->aCol[i].iFrom = j;
87858           break;
87859         }
87860       }
87861       if( j>=p->nCol ){
87862         sqlite3ErrorMsg(pParse,
87863           "unknown column \"%s\" in foreign key definition",
87864           pFromCol->a[i].zName);
87865         goto fk_end;
87866       }
87867     }
87868   }
87869   if( pToCol ){
87870     for(i=0; i<nCol; i++){
87871       int n = sqlite3Strlen30(pToCol->a[i].zName);
87872       pFKey->aCol[i].zCol = z;
87873       memcpy(z, pToCol->a[i].zName, n);
87874       z[n] = 0;
87875       z += n+1;
87876     }
87877   }
87878   pFKey->isDeferred = 0;
87879   pFKey->aAction[0] = (u8)(flags & 0xff);            /* ON DELETE action */
87880   pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff);    /* ON UPDATE action */
87881 
87882   assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
87883   pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash,
87884       pFKey->zTo, sqlite3Strlen30(pFKey->zTo), (void *)pFKey
87885   );
87886   if( pNextTo==pFKey ){
87887     db->mallocFailed = 1;
87888     goto fk_end;
87889   }
87890   if( pNextTo ){
87891     assert( pNextTo->pPrevTo==0 );
87892     pFKey->pNextTo = pNextTo;
87893     pNextTo->pPrevTo = pFKey;
87894   }
87895 
87896   /* Link the foreign key to the table as the last step.
87897   */
87898   p->pFKey = pFKey;
87899   pFKey = 0;
87900 
87901 fk_end:
87902   sqlite3DbFree(db, pFKey);
87903 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
87904   sqlite3ExprListDelete(db, pFromCol);
87905   sqlite3ExprListDelete(db, pToCol);
87906 }
87907 
87908 /*
87909 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
87910 ** clause is seen as part of a foreign key definition.  The isDeferred
87911 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
87912 ** The behavior of the most recently created foreign key is adjusted
87913 ** accordingly.
87914 */
87915 SQLITE_PRIVATE void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
87916 #ifndef SQLITE_OMIT_FOREIGN_KEY
87917   Table *pTab;
87918   FKey *pFKey;
87919   if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
87920   assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */
87921   pFKey->isDeferred = (u8)isDeferred;
87922 #endif
87923 }
87924 
87925 /*
87926 ** Generate code that will erase and refill index *pIdx.  This is
87927 ** used to initialize a newly created index or to recompute the
87928 ** content of an index in response to a REINDEX command.
87929 **
87930 ** if memRootPage is not negative, it means that the index is newly
87931 ** created.  The register specified by memRootPage contains the
87932 ** root page number of the index.  If memRootPage is negative, then
87933 ** the index already exists and must be cleared before being refilled and
87934 ** the root page number of the index is taken from pIndex->tnum.
87935 */
87936 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
87937   Table *pTab = pIndex->pTable;  /* The table that is indexed */
87938   int iTab = pParse->nTab++;     /* Btree cursor used for pTab */
87939   int iIdx = pParse->nTab++;     /* Btree cursor used for pIndex */
87940   int iSorter;                   /* Cursor opened by OpenSorter (if in use) */
87941   int addr1;                     /* Address of top of loop */
87942   int addr2;                     /* Address to jump to for next iteration */
87943   int tnum;                      /* Root page of index */
87944   int iPartIdxLabel;             /* Jump to this label to skip a row */
87945   Vdbe *v;                       /* Generate code into this virtual machine */
87946   KeyInfo *pKey;                 /* KeyInfo for index */
87947   int regRecord;                 /* Register holding assemblied index record */
87948   sqlite3 *db = pParse->db;      /* The database connection */
87949   int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
87950 
87951 #ifndef SQLITE_OMIT_AUTHORIZATION
87952   if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
87953       db->aDb[iDb].zName ) ){
87954     return;
87955   }
87956 #endif
87957 
87958   /* Require a write-lock on the table to perform this operation */
87959   sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
87960 
87961   v = sqlite3GetVdbe(pParse);
87962   if( v==0 ) return;
87963   if( memRootPage>=0 ){
87964     tnum = memRootPage;
87965   }else{
87966     tnum = pIndex->tnum;
87967   }
87968   pKey = sqlite3KeyInfoOfIndex(pParse, pIndex);
87969 
87970   /* Open the sorter cursor if we are to use one. */
87971   iSorter = pParse->nTab++;
87972   sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, 0, (char*)
87973                     sqlite3KeyInfoRef(pKey), P4_KEYINFO);
87974 
87975   /* Open the table. Loop through all rows of the table, inserting index
87976   ** records into the sorter. */
87977   sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
87978   addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v);
87979   regRecord = sqlite3GetTempReg(pParse);
87980 
87981   sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0);
87982   sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord);
87983   sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel);
87984   sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v);
87985   sqlite3VdbeJumpHere(v, addr1);
87986   if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
87987   sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb,
87988                     (char *)pKey, P4_KEYINFO);
87989   sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0));
87990 
87991   addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v);
87992   assert( pKey!=0 || db->mallocFailed || pParse->nErr );
87993   if( pIndex->onError!=OE_None && pKey!=0 ){
87994     int j2 = sqlite3VdbeCurrentAddr(v) + 3;
87995     sqlite3VdbeAddOp2(v, OP_Goto, 0, j2);
87996     addr2 = sqlite3VdbeCurrentAddr(v);
87997     sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord,
87998                          pKey->nField - pIndex->nKeyCol); VdbeCoverage(v);
87999     sqlite3UniqueConstraint(pParse, OE_Abort, pIndex);
88000   }else{
88001     addr2 = sqlite3VdbeCurrentAddr(v);
88002   }
88003   sqlite3VdbeAddOp2(v, OP_SorterData, iSorter, regRecord);
88004   sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 1);
88005   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
88006   sqlite3ReleaseTempReg(pParse, regRecord);
88007   sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v);
88008   sqlite3VdbeJumpHere(v, addr1);
88009 
88010   sqlite3VdbeAddOp1(v, OP_Close, iTab);
88011   sqlite3VdbeAddOp1(v, OP_Close, iIdx);
88012   sqlite3VdbeAddOp1(v, OP_Close, iSorter);
88013 }
88014 
88015 /*
88016 ** Allocate heap space to hold an Index object with nCol columns.
88017 **
88018 ** Increase the allocation size to provide an extra nExtra bytes
88019 ** of 8-byte aligned space after the Index object and return a
88020 ** pointer to this extra space in *ppExtra.
88021 */
88022 SQLITE_PRIVATE Index *sqlite3AllocateIndexObject(
88023   sqlite3 *db,         /* Database connection */
88024   i16 nCol,            /* Total number of columns in the index */
88025   int nExtra,          /* Number of bytes of extra space to alloc */
88026   char **ppExtra       /* Pointer to the "extra" space */
88027 ){
88028   Index *p;            /* Allocated index object */
88029   int nByte;           /* Bytes of space for Index object + arrays */
88030 
88031   nByte = ROUND8(sizeof(Index)) +              /* Index structure  */
88032           ROUND8(sizeof(char*)*nCol) +         /* Index.azColl     */
88033           ROUND8(sizeof(LogEst)*(nCol+1) +     /* Index.aiRowLogEst   */
88034                  sizeof(i16)*nCol +            /* Index.aiColumn   */
88035                  sizeof(u8)*nCol);             /* Index.aSortOrder */
88036   p = sqlite3DbMallocZero(db, nByte + nExtra);
88037   if( p ){
88038     char *pExtra = ((char*)p)+ROUND8(sizeof(Index));
88039     p->azColl = (char**)pExtra;       pExtra += ROUND8(sizeof(char*)*nCol);
88040     p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1);
88041     p->aiColumn = (i16*)pExtra;       pExtra += sizeof(i16)*nCol;
88042     p->aSortOrder = (u8*)pExtra;
88043     p->nColumn = nCol;
88044     p->nKeyCol = nCol - 1;
88045     *ppExtra = ((char*)p) + nByte;
88046   }
88047   return p;
88048 }
88049 
88050 /*
88051 ** Create a new index for an SQL table.  pName1.pName2 is the name of the index
88052 ** and pTblList is the name of the table that is to be indexed.  Both will
88053 ** be NULL for a primary key or an index that is created to satisfy a
88054 ** UNIQUE constraint.  If pTable and pIndex are NULL, use pParse->pNewTable
88055 ** as the table to be indexed.  pParse->pNewTable is a table that is
88056 ** currently being constructed by a CREATE TABLE statement.
88057 **
88058 ** pList is a list of columns to be indexed.  pList will be NULL if this
88059 ** is a primary key or unique-constraint on the most recent column added
88060 ** to the table currently under construction.
88061 **
88062 ** If the index is created successfully, return a pointer to the new Index
88063 ** structure. This is used by sqlite3AddPrimaryKey() to mark the index
88064 ** as the tables primary key (Index.idxType==SQLITE_IDXTYPE_PRIMARYKEY)
88065 */
88066 SQLITE_PRIVATE Index *sqlite3CreateIndex(
88067   Parse *pParse,     /* All information about this parse */
88068   Token *pName1,     /* First part of index name. May be NULL */
88069   Token *pName2,     /* Second part of index name. May be NULL */
88070   SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
88071   ExprList *pList,   /* A list of columns to be indexed */
88072   int onError,       /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
88073   Token *pStart,     /* The CREATE token that begins this statement */
88074   Expr *pPIWhere,    /* WHERE clause for partial indices */
88075   int sortOrder,     /* Sort order of primary key when pList==NULL */
88076   int ifNotExist     /* Omit error if index already exists */
88077 ){
88078   Index *pRet = 0;     /* Pointer to return */
88079   Table *pTab = 0;     /* Table to be indexed */
88080   Index *pIndex = 0;   /* The index to be created */
88081   char *zName = 0;     /* Name of the index */
88082   int nName;           /* Number of characters in zName */
88083   int i, j;
88084   DbFixer sFix;        /* For assigning database names to pTable */
88085   int sortOrderMask;   /* 1 to honor DESC in index.  0 to ignore. */
88086   sqlite3 *db = pParse->db;
88087   Db *pDb;             /* The specific table containing the indexed database */
88088   int iDb;             /* Index of the database that is being written */
88089   Token *pName = 0;    /* Unqualified name of the index to create */
88090   struct ExprList_item *pListItem; /* For looping over pList */
88091   const Column *pTabCol;           /* A column in the table */
88092   int nExtra = 0;                  /* Space allocated for zExtra[] */
88093   int nExtraCol;                   /* Number of extra columns needed */
88094   char *zExtra = 0;                /* Extra space after the Index object */
88095   Index *pPk = 0;      /* PRIMARY KEY index for WITHOUT ROWID tables */
88096 
88097   assert( pParse->nErr==0 );      /* Never called with prior errors */
88098   if( db->mallocFailed || IN_DECLARE_VTAB ){
88099     goto exit_create_index;
88100   }
88101   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
88102     goto exit_create_index;
88103   }
88104 
88105   /*
88106   ** Find the table that is to be indexed.  Return early if not found.
88107   */
88108   if( pTblName!=0 ){
88109 
88110     /* Use the two-part index name to determine the database
88111     ** to search for the table. 'Fix' the table name to this db
88112     ** before looking up the table.
88113     */
88114     assert( pName1 && pName2 );
88115     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
88116     if( iDb<0 ) goto exit_create_index;
88117     assert( pName && pName->z );
88118 
88119 #ifndef SQLITE_OMIT_TEMPDB
88120     /* If the index name was unqualified, check if the table
88121     ** is a temp table. If so, set the database to 1. Do not do this
88122     ** if initialising a database schema.
88123     */
88124     if( !db->init.busy ){
88125       pTab = sqlite3SrcListLookup(pParse, pTblName);
88126       if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
88127         iDb = 1;
88128       }
88129     }
88130 #endif
88131 
88132     sqlite3FixInit(&sFix, pParse, iDb, "index", pName);
88133     if( sqlite3FixSrcList(&sFix, pTblName) ){
88134       /* Because the parser constructs pTblName from a single identifier,
88135       ** sqlite3FixSrcList can never fail. */
88136       assert(0);
88137     }
88138     pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]);
88139     assert( db->mallocFailed==0 || pTab==0 );
88140     if( pTab==0 ) goto exit_create_index;
88141     if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){
88142       sqlite3ErrorMsg(pParse,
88143            "cannot create a TEMP index on non-TEMP table \"%s\"",
88144            pTab->zName);
88145       goto exit_create_index;
88146     }
88147     if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab);
88148   }else{
88149     assert( pName==0 );
88150     assert( pStart==0 );
88151     pTab = pParse->pNewTable;
88152     if( !pTab ) goto exit_create_index;
88153     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
88154   }
88155   pDb = &db->aDb[iDb];
88156 
88157   assert( pTab!=0 );
88158   assert( pParse->nErr==0 );
88159   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
88160        && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){
88161     sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
88162     goto exit_create_index;
88163   }
88164 #ifndef SQLITE_OMIT_VIEW
88165   if( pTab->pSelect ){
88166     sqlite3ErrorMsg(pParse, "views may not be indexed");
88167     goto exit_create_index;
88168   }
88169 #endif
88170 #ifndef SQLITE_OMIT_VIRTUALTABLE
88171   if( IsVirtual(pTab) ){
88172     sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
88173     goto exit_create_index;
88174   }
88175 #endif
88176 
88177   /*
88178   ** Find the name of the index.  Make sure there is not already another
88179   ** index or table with the same name.
88180   **
88181   ** Exception:  If we are reading the names of permanent indices from the
88182   ** sqlite_master table (because some other process changed the schema) and
88183   ** one of the index names collides with the name of a temporary table or
88184   ** index, then we will continue to process this index.
88185   **
88186   ** If pName==0 it means that we are
88187   ** dealing with a primary key or UNIQUE constraint.  We have to invent our
88188   ** own name.
88189   */
88190   if( pName ){
88191     zName = sqlite3NameFromToken(db, pName);
88192     if( zName==0 ) goto exit_create_index;
88193     assert( pName->z!=0 );
88194     if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
88195       goto exit_create_index;
88196     }
88197     if( !db->init.busy ){
88198       if( sqlite3FindTable(db, zName, 0)!=0 ){
88199         sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
88200         goto exit_create_index;
88201       }
88202     }
88203     if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){
88204       if( !ifNotExist ){
88205         sqlite3ErrorMsg(pParse, "index %s already exists", zName);
88206       }else{
88207         assert( !db->init.busy );
88208         sqlite3CodeVerifySchema(pParse, iDb);
88209       }
88210       goto exit_create_index;
88211     }
88212   }else{
88213     int n;
88214     Index *pLoop;
88215     for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
88216     zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
88217     if( zName==0 ){
88218       goto exit_create_index;
88219     }
88220   }
88221 
88222   /* Check for authorization to create an index.
88223   */
88224 #ifndef SQLITE_OMIT_AUTHORIZATION
88225   {
88226     const char *zDb = pDb->zName;
88227     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
88228       goto exit_create_index;
88229     }
88230     i = SQLITE_CREATE_INDEX;
88231     if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
88232     if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
88233       goto exit_create_index;
88234     }
88235   }
88236 #endif
88237 
88238   /* If pList==0, it means this routine was called to make a primary
88239   ** key out of the last column added to the table under construction.
88240   ** So create a fake list to simulate this.
88241   */
88242   if( pList==0 ){
88243     pList = sqlite3ExprListAppend(pParse, 0, 0);
88244     if( pList==0 ) goto exit_create_index;
88245     pList->a[0].zName = sqlite3DbStrDup(pParse->db,
88246                                         pTab->aCol[pTab->nCol-1].zName);
88247     pList->a[0].sortOrder = (u8)sortOrder;
88248   }
88249 
88250   /* Figure out how many bytes of space are required to store explicitly
88251   ** specified collation sequence names.
88252   */
88253   for(i=0; i<pList->nExpr; i++){
88254     Expr *pExpr = pList->a[i].pExpr;
88255     if( pExpr ){
88256       assert( pExpr->op==TK_COLLATE );
88257       nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken));
88258     }
88259   }
88260 
88261   /*
88262   ** Allocate the index structure.
88263   */
88264   nName = sqlite3Strlen30(zName);
88265   nExtraCol = pPk ? pPk->nKeyCol : 1;
88266   pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol,
88267                                       nName + nExtra + 1, &zExtra);
88268   if( db->mallocFailed ){
88269     goto exit_create_index;
88270   }
88271   assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) );
88272   assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) );
88273   pIndex->zName = zExtra;
88274   zExtra += nName + 1;
88275   memcpy(pIndex->zName, zName, nName+1);
88276   pIndex->pTable = pTab;
88277   pIndex->onError = (u8)onError;
88278   pIndex->uniqNotNull = onError!=OE_None;
88279   pIndex->idxType = pName ? SQLITE_IDXTYPE_APPDEF : SQLITE_IDXTYPE_UNIQUE;
88280   pIndex->pSchema = db->aDb[iDb].pSchema;
88281   pIndex->nKeyCol = pList->nExpr;
88282   if( pPIWhere ){
88283     sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0);
88284     pIndex->pPartIdxWhere = pPIWhere;
88285     pPIWhere = 0;
88286   }
88287   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
88288 
88289   /* Check to see if we should honor DESC requests on index columns
88290   */
88291   if( pDb->pSchema->file_format>=4 ){
88292     sortOrderMask = -1;   /* Honor DESC */
88293   }else{
88294     sortOrderMask = 0;    /* Ignore DESC */
88295   }
88296 
88297   /* Scan the names of the columns of the table to be indexed and
88298   ** load the column indices into the Index structure.  Report an error
88299   ** if any column is not found.
88300   **
88301   ** TODO:  Add a test to make sure that the same column is not named
88302   ** more than once within the same index.  Only the first instance of
88303   ** the column will ever be used by the optimizer.  Note that using the
88304   ** same column more than once cannot be an error because that would
88305   ** break backwards compatibility - it needs to be a warning.
88306   */
88307   for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){
88308     const char *zColName = pListItem->zName;
88309     int requestedSortOrder;
88310     char *zColl;                   /* Collation sequence name */
88311 
88312     for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){
88313       if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break;
88314     }
88315     if( j>=pTab->nCol ){
88316       sqlite3ErrorMsg(pParse, "table %s has no column named %s",
88317         pTab->zName, zColName);
88318       pParse->checkSchema = 1;
88319       goto exit_create_index;
88320     }
88321     assert( pTab->nCol<=0x7fff && j<=0x7fff );
88322     pIndex->aiColumn[i] = (i16)j;
88323     if( pListItem->pExpr ){
88324       int nColl;
88325       assert( pListItem->pExpr->op==TK_COLLATE );
88326       zColl = pListItem->pExpr->u.zToken;
88327       nColl = sqlite3Strlen30(zColl) + 1;
88328       assert( nExtra>=nColl );
88329       memcpy(zExtra, zColl, nColl);
88330       zColl = zExtra;
88331       zExtra += nColl;
88332       nExtra -= nColl;
88333     }else{
88334       zColl = pTab->aCol[j].zColl;
88335       if( !zColl ) zColl = "BINARY";
88336     }
88337     if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
88338       goto exit_create_index;
88339     }
88340     pIndex->azColl[i] = zColl;
88341     requestedSortOrder = pListItem->sortOrder & sortOrderMask;
88342     pIndex->aSortOrder[i] = (u8)requestedSortOrder;
88343     if( pTab->aCol[j].notNull==0 ) pIndex->uniqNotNull = 0;
88344   }
88345   if( pPk ){
88346     for(j=0; j<pPk->nKeyCol; j++){
88347       int x = pPk->aiColumn[j];
88348       if( hasColumn(pIndex->aiColumn, pIndex->nKeyCol, x) ){
88349         pIndex->nColumn--;
88350       }else{
88351         pIndex->aiColumn[i] = x;
88352         pIndex->azColl[i] = pPk->azColl[j];
88353         pIndex->aSortOrder[i] = pPk->aSortOrder[j];
88354         i++;
88355       }
88356     }
88357     assert( i==pIndex->nColumn );
88358   }else{
88359     pIndex->aiColumn[i] = -1;
88360     pIndex->azColl[i] = "BINARY";
88361   }
88362   sqlite3DefaultRowEst(pIndex);
88363   if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex);
88364 
88365   if( pTab==pParse->pNewTable ){
88366     /* This routine has been called to create an automatic index as a
88367     ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
88368     ** a PRIMARY KEY or UNIQUE clause following the column definitions.
88369     ** i.e. one of:
88370     **
88371     ** CREATE TABLE t(x PRIMARY KEY, y);
88372     ** CREATE TABLE t(x, y, UNIQUE(x, y));
88373     **
88374     ** Either way, check to see if the table already has such an index. If
88375     ** so, don't bother creating this one. This only applies to
88376     ** automatically created indices. Users can do as they wish with
88377     ** explicit indices.
88378     **
88379     ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
88380     ** (and thus suppressing the second one) even if they have different
88381     ** sort orders.
88382     **
88383     ** If there are different collating sequences or if the columns of
88384     ** the constraint occur in different orders, then the constraints are
88385     ** considered distinct and both result in separate indices.
88386     */
88387     Index *pIdx;
88388     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
88389       int k;
88390       assert( pIdx->onError!=OE_None );
88391       assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF );
88392       assert( pIndex->onError!=OE_None );
88393 
88394       if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue;
88395       for(k=0; k<pIdx->nKeyCol; k++){
88396         const char *z1;
88397         const char *z2;
88398         if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
88399         z1 = pIdx->azColl[k];
88400         z2 = pIndex->azColl[k];
88401         if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break;
88402       }
88403       if( k==pIdx->nKeyCol ){
88404         if( pIdx->onError!=pIndex->onError ){
88405           /* This constraint creates the same index as a previous
88406           ** constraint specified somewhere in the CREATE TABLE statement.
88407           ** However the ON CONFLICT clauses are different. If both this
88408           ** constraint and the previous equivalent constraint have explicit
88409           ** ON CONFLICT clauses this is an error. Otherwise, use the
88410           ** explicitly specified behavior for the index.
88411           */
88412           if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
88413             sqlite3ErrorMsg(pParse,
88414                 "conflicting ON CONFLICT clauses specified", 0);
88415           }
88416           if( pIdx->onError==OE_Default ){
88417             pIdx->onError = pIndex->onError;
88418           }
88419         }
88420         goto exit_create_index;
88421       }
88422     }
88423   }
88424 
88425   /* Link the new Index structure to its table and to the other
88426   ** in-memory database structures.
88427   */
88428   if( db->init.busy ){
88429     Index *p;
88430     assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
88431     p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
88432                           pIndex->zName, sqlite3Strlen30(pIndex->zName),
88433                           pIndex);
88434     if( p ){
88435       assert( p==pIndex );  /* Malloc must have failed */
88436       db->mallocFailed = 1;
88437       goto exit_create_index;
88438     }
88439     db->flags |= SQLITE_InternChanges;
88440     if( pTblName!=0 ){
88441       pIndex->tnum = db->init.newTnum;
88442     }
88443   }
88444 
88445   /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the
88446   ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then
88447   ** emit code to allocate the index rootpage on disk and make an entry for
88448   ** the index in the sqlite_master table and populate the index with
88449   ** content.  But, do not do this if we are simply reading the sqlite_master
88450   ** table to parse the schema, or if this index is the PRIMARY KEY index
88451   ** of a WITHOUT ROWID table.
88452   **
88453   ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY
88454   ** or UNIQUE index in a CREATE TABLE statement.  Since the table
88455   ** has just been created, it contains no data and the index initialization
88456   ** step can be skipped.
88457   */
88458   else if( pParse->nErr==0 && (HasRowid(pTab) || pTblName!=0) ){
88459     Vdbe *v;
88460     char *zStmt;
88461     int iMem = ++pParse->nMem;
88462 
88463     v = sqlite3GetVdbe(pParse);
88464     if( v==0 ) goto exit_create_index;
88465 
88466 
88467     /* Create the rootpage for the index
88468     */
88469     sqlite3BeginWriteOperation(pParse, 1, iDb);
88470     sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem);
88471 
88472     /* Gather the complete text of the CREATE INDEX statement into
88473     ** the zStmt variable
88474     */
88475     if( pStart ){
88476       int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n;
88477       if( pName->z[n-1]==';' ) n--;
88478       /* A named index with an explicit CREATE INDEX statement */
88479       zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
88480         onError==OE_None ? "" : " UNIQUE", n, pName->z);
88481     }else{
88482       /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
88483       /* zStmt = sqlite3MPrintf(""); */
88484       zStmt = 0;
88485     }
88486 
88487     /* Add an entry in sqlite_master for this index
88488     */
88489     sqlite3NestedParse(pParse,
88490         "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);",
88491         db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
88492         pIndex->zName,
88493         pTab->zName,
88494         iMem,
88495         zStmt
88496     );
88497     sqlite3DbFree(db, zStmt);
88498 
88499     /* Fill the index with data and reparse the schema. Code an OP_Expire
88500     ** to invalidate all pre-compiled statements.
88501     */
88502     if( pTblName ){
88503       sqlite3RefillIndex(pParse, pIndex, iMem);
88504       sqlite3ChangeCookie(pParse, iDb);
88505       sqlite3VdbeAddParseSchemaOp(v, iDb,
88506          sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName));
88507       sqlite3VdbeAddOp1(v, OP_Expire, 0);
88508     }
88509   }
88510 
88511   /* When adding an index to the list of indices for a table, make
88512   ** sure all indices labeled OE_Replace come after all those labeled
88513   ** OE_Ignore.  This is necessary for the correct constraint check
88514   ** processing (in sqlite3GenerateConstraintChecks()) as part of
88515   ** UPDATE and INSERT statements.
88516   */
88517   if( db->init.busy || pTblName==0 ){
88518     if( onError!=OE_Replace || pTab->pIndex==0
88519          || pTab->pIndex->onError==OE_Replace){
88520       pIndex->pNext = pTab->pIndex;
88521       pTab->pIndex = pIndex;
88522     }else{
88523       Index *pOther = pTab->pIndex;
88524       while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
88525         pOther = pOther->pNext;
88526       }
88527       pIndex->pNext = pOther->pNext;
88528       pOther->pNext = pIndex;
88529     }
88530     pRet = pIndex;
88531     pIndex = 0;
88532   }
88533 
88534   /* Clean up before exiting */
88535 exit_create_index:
88536   if( pIndex ) freeIndex(db, pIndex);
88537   sqlite3ExprDelete(db, pPIWhere);
88538   sqlite3ExprListDelete(db, pList);
88539   sqlite3SrcListDelete(db, pTblName);
88540   sqlite3DbFree(db, zName);
88541   return pRet;
88542 }
88543 
88544 /*
88545 ** Fill the Index.aiRowEst[] array with default information - information
88546 ** to be used when we have not run the ANALYZE command.
88547 **
88548 ** aiRowEst[0] is suppose to contain the number of elements in the index.
88549 ** Since we do not know, guess 1 million.  aiRowEst[1] is an estimate of the
88550 ** number of rows in the table that match any particular value of the
88551 ** first column of the index.  aiRowEst[2] is an estimate of the number
88552 ** of rows that match any particular combination of the first 2 columns
88553 ** of the index.  And so forth.  It must always be the case that
88554 *
88555 **           aiRowEst[N]<=aiRowEst[N-1]
88556 **           aiRowEst[N]>=1
88557 **
88558 ** Apart from that, we have little to go on besides intuition as to
88559 ** how aiRowEst[] should be initialized.  The numbers generated here
88560 ** are based on typical values found in actual indices.
88561 */
88562 SQLITE_PRIVATE void sqlite3DefaultRowEst(Index *pIdx){
88563   /*                10,  9,  8,  7,  6 */
88564   LogEst aVal[] = { 33, 32, 30, 28, 26 };
88565   LogEst *a = pIdx->aiRowLogEst;
88566   int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol);
88567   int i;
88568 
88569   /* Set the first entry (number of rows in the index) to the estimated
88570   ** number of rows in the table. Or 10, if the estimated number of rows
88571   ** in the table is less than that.  */
88572   a[0] = pIdx->pTable->nRowLogEst;
88573   if( a[0]<33 ) a[0] = 33;        assert( 33==sqlite3LogEst(10) );
88574 
88575   /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is
88576   ** 6 and each subsequent value (if any) is 5.  */
88577   memcpy(&a[1], aVal, nCopy*sizeof(LogEst));
88578   for(i=nCopy+1; i<=pIdx->nKeyCol; i++){
88579     a[i] = 23;                    assert( 23==sqlite3LogEst(5) );
88580   }
88581 
88582   assert( 0==sqlite3LogEst(1) );
88583   if( pIdx->onError!=OE_None ) a[pIdx->nKeyCol] = 0;
88584 }
88585 
88586 /*
88587 ** This routine will drop an existing named index.  This routine
88588 ** implements the DROP INDEX statement.
88589 */
88590 SQLITE_PRIVATE void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
88591   Index *pIndex;
88592   Vdbe *v;
88593   sqlite3 *db = pParse->db;
88594   int iDb;
88595 
88596   assert( pParse->nErr==0 );   /* Never called with prior errors */
88597   if( db->mallocFailed ){
88598     goto exit_drop_index;
88599   }
88600   assert( pName->nSrc==1 );
88601   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
88602     goto exit_drop_index;
88603   }
88604   pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
88605   if( pIndex==0 ){
88606     if( !ifExists ){
88607       sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
88608     }else{
88609       sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
88610     }
88611     pParse->checkSchema = 1;
88612     goto exit_drop_index;
88613   }
88614   if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){
88615     sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
88616       "or PRIMARY KEY constraint cannot be dropped", 0);
88617     goto exit_drop_index;
88618   }
88619   iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
88620 #ifndef SQLITE_OMIT_AUTHORIZATION
88621   {
88622     int code = SQLITE_DROP_INDEX;
88623     Table *pTab = pIndex->pTable;
88624     const char *zDb = db->aDb[iDb].zName;
88625     const char *zTab = SCHEMA_TABLE(iDb);
88626     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
88627       goto exit_drop_index;
88628     }
88629     if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
88630     if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
88631       goto exit_drop_index;
88632     }
88633   }
88634 #endif
88635 
88636   /* Generate code to remove the index and from the master table */
88637   v = sqlite3GetVdbe(pParse);
88638   if( v ){
88639     sqlite3BeginWriteOperation(pParse, 1, iDb);
88640     sqlite3NestedParse(pParse,
88641        "DELETE FROM %Q.%s WHERE name=%Q AND type='index'",
88642        db->aDb[iDb].zName, SCHEMA_TABLE(iDb), pIndex->zName
88643     );
88644     sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName);
88645     sqlite3ChangeCookie(pParse, iDb);
88646     destroyRootPage(pParse, pIndex->tnum, iDb);
88647     sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
88648   }
88649 
88650 exit_drop_index:
88651   sqlite3SrcListDelete(db, pName);
88652 }
88653 
88654 /*
88655 ** pArray is a pointer to an array of objects. Each object in the
88656 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc()
88657 ** to extend the array so that there is space for a new object at the end.
88658 **
88659 ** When this function is called, *pnEntry contains the current size of
88660 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes
88661 ** in total).
88662 **
88663 ** If the realloc() is successful (i.e. if no OOM condition occurs), the
88664 ** space allocated for the new object is zeroed, *pnEntry updated to
88665 ** reflect the new size of the array and a pointer to the new allocation
88666 ** returned. *pIdx is set to the index of the new array entry in this case.
88667 **
88668 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains
88669 ** unchanged and a copy of pArray returned.
88670 */
88671 SQLITE_PRIVATE void *sqlite3ArrayAllocate(
88672   sqlite3 *db,      /* Connection to notify of malloc failures */
88673   void *pArray,     /* Array of objects.  Might be reallocated */
88674   int szEntry,      /* Size of each object in the array */
88675   int *pnEntry,     /* Number of objects currently in use */
88676   int *pIdx         /* Write the index of a new slot here */
88677 ){
88678   char *z;
88679   int n = *pnEntry;
88680   if( (n & (n-1))==0 ){
88681     int sz = (n==0) ? 1 : 2*n;
88682     void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry);
88683     if( pNew==0 ){
88684       *pIdx = -1;
88685       return pArray;
88686     }
88687     pArray = pNew;
88688   }
88689   z = (char*)pArray;
88690   memset(&z[n * szEntry], 0, szEntry);
88691   *pIdx = n;
88692   ++*pnEntry;
88693   return pArray;
88694 }
88695 
88696 /*
88697 ** Append a new element to the given IdList.  Create a new IdList if
88698 ** need be.
88699 **
88700 ** A new IdList is returned, or NULL if malloc() fails.
88701 */
88702 SQLITE_PRIVATE IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){
88703   int i;
88704   if( pList==0 ){
88705     pList = sqlite3DbMallocZero(db, sizeof(IdList) );
88706     if( pList==0 ) return 0;
88707   }
88708   pList->a = sqlite3ArrayAllocate(
88709       db,
88710       pList->a,
88711       sizeof(pList->a[0]),
88712       &pList->nId,
88713       &i
88714   );
88715   if( i<0 ){
88716     sqlite3IdListDelete(db, pList);
88717     return 0;
88718   }
88719   pList->a[i].zName = sqlite3NameFromToken(db, pToken);
88720   return pList;
88721 }
88722 
88723 /*
88724 ** Delete an IdList.
88725 */
88726 SQLITE_PRIVATE void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
88727   int i;
88728   if( pList==0 ) return;
88729   for(i=0; i<pList->nId; i++){
88730     sqlite3DbFree(db, pList->a[i].zName);
88731   }
88732   sqlite3DbFree(db, pList->a);
88733   sqlite3DbFree(db, pList);
88734 }
88735 
88736 /*
88737 ** Return the index in pList of the identifier named zId.  Return -1
88738 ** if not found.
88739 */
88740 SQLITE_PRIVATE int sqlite3IdListIndex(IdList *pList, const char *zName){
88741   int i;
88742   if( pList==0 ) return -1;
88743   for(i=0; i<pList->nId; i++){
88744     if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
88745   }
88746   return -1;
88747 }
88748 
88749 /*
88750 ** Expand the space allocated for the given SrcList object by
88751 ** creating nExtra new slots beginning at iStart.  iStart is zero based.
88752 ** New slots are zeroed.
88753 **
88754 ** For example, suppose a SrcList initially contains two entries: A,B.
88755 ** To append 3 new entries onto the end, do this:
88756 **
88757 **    sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
88758 **
88759 ** After the call above it would contain:  A, B, nil, nil, nil.
88760 ** If the iStart argument had been 1 instead of 2, then the result
88761 ** would have been:  A, nil, nil, nil, B.  To prepend the new slots,
88762 ** the iStart value would be 0.  The result then would
88763 ** be: nil, nil, nil, A, B.
88764 **
88765 ** If a memory allocation fails the SrcList is unchanged.  The
88766 ** db->mallocFailed flag will be set to true.
88767 */
88768 SQLITE_PRIVATE SrcList *sqlite3SrcListEnlarge(
88769   sqlite3 *db,       /* Database connection to notify of OOM errors */
88770   SrcList *pSrc,     /* The SrcList to be enlarged */
88771   int nExtra,        /* Number of new slots to add to pSrc->a[] */
88772   int iStart         /* Index in pSrc->a[] of first new slot */
88773 ){
88774   int i;
88775 
88776   /* Sanity checking on calling parameters */
88777   assert( iStart>=0 );
88778   assert( nExtra>=1 );
88779   assert( pSrc!=0 );
88780   assert( iStart<=pSrc->nSrc );
88781 
88782   /* Allocate additional space if needed */
88783   if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){
88784     SrcList *pNew;
88785     int nAlloc = pSrc->nSrc+nExtra;
88786     int nGot;
88787     pNew = sqlite3DbRealloc(db, pSrc,
88788                sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
88789     if( pNew==0 ){
88790       assert( db->mallocFailed );
88791       return pSrc;
88792     }
88793     pSrc = pNew;
88794     nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1;
88795     pSrc->nAlloc = nGot;
88796   }
88797 
88798   /* Move existing slots that come after the newly inserted slots
88799   ** out of the way */
88800   for(i=pSrc->nSrc-1; i>=iStart; i--){
88801     pSrc->a[i+nExtra] = pSrc->a[i];
88802   }
88803   pSrc->nSrc += nExtra;
88804 
88805   /* Zero the newly allocated slots */
88806   memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
88807   for(i=iStart; i<iStart+nExtra; i++){
88808     pSrc->a[i].iCursor = -1;
88809   }
88810 
88811   /* Return a pointer to the enlarged SrcList */
88812   return pSrc;
88813 }
88814 
88815 
88816 /*
88817 ** Append a new table name to the given SrcList.  Create a new SrcList if
88818 ** need be.  A new entry is created in the SrcList even if pTable is NULL.
88819 **
88820 ** A SrcList is returned, or NULL if there is an OOM error.  The returned
88821 ** SrcList might be the same as the SrcList that was input or it might be
88822 ** a new one.  If an OOM error does occurs, then the prior value of pList
88823 ** that is input to this routine is automatically freed.
88824 **
88825 ** If pDatabase is not null, it means that the table has an optional
88826 ** database name prefix.  Like this:  "database.table".  The pDatabase
88827 ** points to the table name and the pTable points to the database name.
88828 ** The SrcList.a[].zName field is filled with the table name which might
88829 ** come from pTable (if pDatabase is NULL) or from pDatabase.
88830 ** SrcList.a[].zDatabase is filled with the database name from pTable,
88831 ** or with NULL if no database is specified.
88832 **
88833 ** In other words, if call like this:
88834 **
88835 **         sqlite3SrcListAppend(D,A,B,0);
88836 **
88837 ** Then B is a table name and the database name is unspecified.  If called
88838 ** like this:
88839 **
88840 **         sqlite3SrcListAppend(D,A,B,C);
88841 **
88842 ** Then C is the table name and B is the database name.  If C is defined
88843 ** then so is B.  In other words, we never have a case where:
88844 **
88845 **         sqlite3SrcListAppend(D,A,0,C);
88846 **
88847 ** Both pTable and pDatabase are assumed to be quoted.  They are dequoted
88848 ** before being added to the SrcList.
88849 */
88850 SQLITE_PRIVATE SrcList *sqlite3SrcListAppend(
88851   sqlite3 *db,        /* Connection to notify of malloc failures */
88852   SrcList *pList,     /* Append to this SrcList. NULL creates a new SrcList */
88853   Token *pTable,      /* Table to append */
88854   Token *pDatabase    /* Database of the table */
88855 ){
88856   struct SrcList_item *pItem;
88857   assert( pDatabase==0 || pTable!=0 );  /* Cannot have C without B */
88858   if( pList==0 ){
88859     pList = sqlite3DbMallocZero(db, sizeof(SrcList) );
88860     if( pList==0 ) return 0;
88861     pList->nAlloc = 1;
88862   }
88863   pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc);
88864   if( db->mallocFailed ){
88865     sqlite3SrcListDelete(db, pList);
88866     return 0;
88867   }
88868   pItem = &pList->a[pList->nSrc-1];
88869   if( pDatabase && pDatabase->z==0 ){
88870     pDatabase = 0;
88871   }
88872   if( pDatabase ){
88873     Token *pTemp = pDatabase;
88874     pDatabase = pTable;
88875     pTable = pTemp;
88876   }
88877   pItem->zName = sqlite3NameFromToken(db, pTable);
88878   pItem->zDatabase = sqlite3NameFromToken(db, pDatabase);
88879   return pList;
88880 }
88881 
88882 /*
88883 ** Assign VdbeCursor index numbers to all tables in a SrcList
88884 */
88885 SQLITE_PRIVATE void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
88886   int i;
88887   struct SrcList_item *pItem;
88888   assert(pList || pParse->db->mallocFailed );
88889   if( pList ){
88890     for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
88891       if( pItem->iCursor>=0 ) break;
88892       pItem->iCursor = pParse->nTab++;
88893       if( pItem->pSelect ){
88894         sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
88895       }
88896     }
88897   }
88898 }
88899 
88900 /*
88901 ** Delete an entire SrcList including all its substructure.
88902 */
88903 SQLITE_PRIVATE void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
88904   int i;
88905   struct SrcList_item *pItem;
88906   if( pList==0 ) return;
88907   for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
88908     sqlite3DbFree(db, pItem->zDatabase);
88909     sqlite3DbFree(db, pItem->zName);
88910     sqlite3DbFree(db, pItem->zAlias);
88911     sqlite3DbFree(db, pItem->zIndex);
88912     sqlite3DeleteTable(db, pItem->pTab);
88913     sqlite3SelectDelete(db, pItem->pSelect);
88914     sqlite3ExprDelete(db, pItem->pOn);
88915     sqlite3IdListDelete(db, pItem->pUsing);
88916   }
88917   sqlite3DbFree(db, pList);
88918 }
88919 
88920 /*
88921 ** This routine is called by the parser to add a new term to the
88922 ** end of a growing FROM clause.  The "p" parameter is the part of
88923 ** the FROM clause that has already been constructed.  "p" is NULL
88924 ** if this is the first term of the FROM clause.  pTable and pDatabase
88925 ** are the name of the table and database named in the FROM clause term.
88926 ** pDatabase is NULL if the database name qualifier is missing - the
88927 ** usual case.  If the term has a alias, then pAlias points to the
88928 ** alias token.  If the term is a subquery, then pSubquery is the
88929 ** SELECT statement that the subquery encodes.  The pTable and
88930 ** pDatabase parameters are NULL for subqueries.  The pOn and pUsing
88931 ** parameters are the content of the ON and USING clauses.
88932 **
88933 ** Return a new SrcList which encodes is the FROM with the new
88934 ** term added.
88935 */
88936 SQLITE_PRIVATE SrcList *sqlite3SrcListAppendFromTerm(
88937   Parse *pParse,          /* Parsing context */
88938   SrcList *p,             /* The left part of the FROM clause already seen */
88939   Token *pTable,          /* Name of the table to add to the FROM clause */
88940   Token *pDatabase,       /* Name of the database containing pTable */
88941   Token *pAlias,          /* The right-hand side of the AS subexpression */
88942   Select *pSubquery,      /* A subquery used in place of a table name */
88943   Expr *pOn,              /* The ON clause of a join */
88944   IdList *pUsing          /* The USING clause of a join */
88945 ){
88946   struct SrcList_item *pItem;
88947   sqlite3 *db = pParse->db;
88948   if( !p && (pOn || pUsing) ){
88949     sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s",
88950       (pOn ? "ON" : "USING")
88951     );
88952     goto append_from_error;
88953   }
88954   p = sqlite3SrcListAppend(db, p, pTable, pDatabase);
88955   if( p==0 || NEVER(p->nSrc==0) ){
88956     goto append_from_error;
88957   }
88958   pItem = &p->a[p->nSrc-1];
88959   assert( pAlias!=0 );
88960   if( pAlias->n ){
88961     pItem->zAlias = sqlite3NameFromToken(db, pAlias);
88962   }
88963   pItem->pSelect = pSubquery;
88964   pItem->pOn = pOn;
88965   pItem->pUsing = pUsing;
88966   return p;
88967 
88968  append_from_error:
88969   assert( p==0 );
88970   sqlite3ExprDelete(db, pOn);
88971   sqlite3IdListDelete(db, pUsing);
88972   sqlite3SelectDelete(db, pSubquery);
88973   return 0;
88974 }
88975 
88976 /*
88977 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added
88978 ** element of the source-list passed as the second argument.
88979 */
88980 SQLITE_PRIVATE void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){
88981   assert( pIndexedBy!=0 );
88982   if( p && ALWAYS(p->nSrc>0) ){
88983     struct SrcList_item *pItem = &p->a[p->nSrc-1];
88984     assert( pItem->notIndexed==0 && pItem->zIndex==0 );
88985     if( pIndexedBy->n==1 && !pIndexedBy->z ){
88986       /* A "NOT INDEXED" clause was supplied. See parse.y
88987       ** construct "indexed_opt" for details. */
88988       pItem->notIndexed = 1;
88989     }else{
88990       pItem->zIndex = sqlite3NameFromToken(pParse->db, pIndexedBy);
88991     }
88992   }
88993 }
88994 
88995 /*
88996 ** When building up a FROM clause in the parser, the join operator
88997 ** is initially attached to the left operand.  But the code generator
88998 ** expects the join operator to be on the right operand.  This routine
88999 ** Shifts all join operators from left to right for an entire FROM
89000 ** clause.
89001 **
89002 ** Example: Suppose the join is like this:
89003 **
89004 **           A natural cross join B
89005 **
89006 ** The operator is "natural cross join".  The A and B operands are stored
89007 ** in p->a[0] and p->a[1], respectively.  The parser initially stores the
89008 ** operator with A.  This routine shifts that operator over to B.
89009 */
89010 SQLITE_PRIVATE void sqlite3SrcListShiftJoinType(SrcList *p){
89011   if( p ){
89012     int i;
89013     assert( p->a || p->nSrc==0 );
89014     for(i=p->nSrc-1; i>0; i--){
89015       p->a[i].jointype = p->a[i-1].jointype;
89016     }
89017     p->a[0].jointype = 0;
89018   }
89019 }
89020 
89021 /*
89022 ** Begin a transaction
89023 */
89024 SQLITE_PRIVATE void sqlite3BeginTransaction(Parse *pParse, int type){
89025   sqlite3 *db;
89026   Vdbe *v;
89027   int i;
89028 
89029   assert( pParse!=0 );
89030   db = pParse->db;
89031   assert( db!=0 );
89032 /*  if( db->aDb[0].pBt==0 ) return; */
89033   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
89034     return;
89035   }
89036   v = sqlite3GetVdbe(pParse);
89037   if( !v ) return;
89038   if( type!=TK_DEFERRED ){
89039     for(i=0; i<db->nDb; i++){
89040       sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
89041       sqlite3VdbeUsesBtree(v, i);
89042     }
89043   }
89044   sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0);
89045 }
89046 
89047 /*
89048 ** Commit a transaction
89049 */
89050 SQLITE_PRIVATE void sqlite3CommitTransaction(Parse *pParse){
89051   Vdbe *v;
89052 
89053   assert( pParse!=0 );
89054   assert( pParse->db!=0 );
89055   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){
89056     return;
89057   }
89058   v = sqlite3GetVdbe(pParse);
89059   if( v ){
89060     sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0);
89061   }
89062 }
89063 
89064 /*
89065 ** Rollback a transaction
89066 */
89067 SQLITE_PRIVATE void sqlite3RollbackTransaction(Parse *pParse){
89068   Vdbe *v;
89069 
89070   assert( pParse!=0 );
89071   assert( pParse->db!=0 );
89072   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){
89073     return;
89074   }
89075   v = sqlite3GetVdbe(pParse);
89076   if( v ){
89077     sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1);
89078   }
89079 }
89080 
89081 /*
89082 ** This function is called by the parser when it parses a command to create,
89083 ** release or rollback an SQL savepoint.
89084 */
89085 SQLITE_PRIVATE void sqlite3Savepoint(Parse *pParse, int op, Token *pName){
89086   char *zName = sqlite3NameFromToken(pParse->db, pName);
89087   if( zName ){
89088     Vdbe *v = sqlite3GetVdbe(pParse);
89089 #ifndef SQLITE_OMIT_AUTHORIZATION
89090     static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" };
89091     assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 );
89092 #endif
89093     if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){
89094       sqlite3DbFree(pParse->db, zName);
89095       return;
89096     }
89097     sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC);
89098   }
89099 }
89100 
89101 /*
89102 ** Make sure the TEMP database is open and available for use.  Return
89103 ** the number of errors.  Leave any error messages in the pParse structure.
89104 */
89105 SQLITE_PRIVATE int sqlite3OpenTempDatabase(Parse *pParse){
89106   sqlite3 *db = pParse->db;
89107   if( db->aDb[1].pBt==0 && !pParse->explain ){
89108     int rc;
89109     Btree *pBt;
89110     static const int flags =
89111           SQLITE_OPEN_READWRITE |
89112           SQLITE_OPEN_CREATE |
89113           SQLITE_OPEN_EXCLUSIVE |
89114           SQLITE_OPEN_DELETEONCLOSE |
89115           SQLITE_OPEN_TEMP_DB;
89116 
89117     rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags);
89118     if( rc!=SQLITE_OK ){
89119       sqlite3ErrorMsg(pParse, "unable to open a temporary database "
89120         "file for storing temporary tables");
89121       pParse->rc = rc;
89122       return 1;
89123     }
89124     db->aDb[1].pBt = pBt;
89125     assert( db->aDb[1].pSchema );
89126     if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){
89127       db->mallocFailed = 1;
89128       return 1;
89129     }
89130   }
89131   return 0;
89132 }
89133 
89134 /*
89135 ** Record the fact that the schema cookie will need to be verified
89136 ** for database iDb.  The code to actually verify the schema cookie
89137 ** will occur at the end of the top-level VDBE and will be generated
89138 ** later, by sqlite3FinishCoding().
89139 */
89140 SQLITE_PRIVATE void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
89141   Parse *pToplevel = sqlite3ParseToplevel(pParse);
89142   sqlite3 *db = pToplevel->db;
89143   yDbMask mask;
89144 
89145   assert( iDb>=0 && iDb<db->nDb );
89146   assert( db->aDb[iDb].pBt!=0 || iDb==1 );
89147   assert( iDb<SQLITE_MAX_ATTACHED+2 );
89148   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
89149   mask = ((yDbMask)1)<<iDb;
89150   if( (pToplevel->cookieMask & mask)==0 ){
89151     pToplevel->cookieMask |= mask;
89152     pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie;
89153     if( !OMIT_TEMPDB && iDb==1 ){
89154       sqlite3OpenTempDatabase(pToplevel);
89155     }
89156   }
89157 }
89158 
89159 /*
89160 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
89161 ** attached database. Otherwise, invoke it for the database named zDb only.
89162 */
89163 SQLITE_PRIVATE void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){
89164   sqlite3 *db = pParse->db;
89165   int i;
89166   for(i=0; i<db->nDb; i++){
89167     Db *pDb = &db->aDb[i];
89168     if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zName)) ){
89169       sqlite3CodeVerifySchema(pParse, i);
89170     }
89171   }
89172 }
89173 
89174 /*
89175 ** Generate VDBE code that prepares for doing an operation that
89176 ** might change the database.
89177 **
89178 ** This routine starts a new transaction if we are not already within
89179 ** a transaction.  If we are already within a transaction, then a checkpoint
89180 ** is set if the setStatement parameter is true.  A checkpoint should
89181 ** be set for operations that might fail (due to a constraint) part of
89182 ** the way through and which will need to undo some writes without having to
89183 ** rollback the whole transaction.  For operations where all constraints
89184 ** can be checked before any changes are made to the database, it is never
89185 ** necessary to undo a write and the checkpoint should not be set.
89186 */
89187 SQLITE_PRIVATE void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
89188   Parse *pToplevel = sqlite3ParseToplevel(pParse);
89189   sqlite3CodeVerifySchema(pParse, iDb);
89190   pToplevel->writeMask |= ((yDbMask)1)<<iDb;
89191   pToplevel->isMultiWrite |= setStatement;
89192 }
89193 
89194 /*
89195 ** Indicate that the statement currently under construction might write
89196 ** more than one entry (example: deleting one row then inserting another,
89197 ** inserting multiple rows in a table, or inserting a row and index entries.)
89198 ** If an abort occurs after some of these writes have completed, then it will
89199 ** be necessary to undo the completed writes.
89200 */
89201 SQLITE_PRIVATE void sqlite3MultiWrite(Parse *pParse){
89202   Parse *pToplevel = sqlite3ParseToplevel(pParse);
89203   pToplevel->isMultiWrite = 1;
89204 }
89205 
89206 /*
89207 ** The code generator calls this routine if is discovers that it is
89208 ** possible to abort a statement prior to completion.  In order to
89209 ** perform this abort without corrupting the database, we need to make
89210 ** sure that the statement is protected by a statement transaction.
89211 **
89212 ** Technically, we only need to set the mayAbort flag if the
89213 ** isMultiWrite flag was previously set.  There is a time dependency
89214 ** such that the abort must occur after the multiwrite.  This makes
89215 ** some statements involving the REPLACE conflict resolution algorithm
89216 ** go a little faster.  But taking advantage of this time dependency
89217 ** makes it more difficult to prove that the code is correct (in
89218 ** particular, it prevents us from writing an effective
89219 ** implementation of sqlite3AssertMayAbort()) and so we have chosen
89220 ** to take the safe route and skip the optimization.
89221 */
89222 SQLITE_PRIVATE void sqlite3MayAbort(Parse *pParse){
89223   Parse *pToplevel = sqlite3ParseToplevel(pParse);
89224   pToplevel->mayAbort = 1;
89225 }
89226 
89227 /*
89228 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
89229 ** error. The onError parameter determines which (if any) of the statement
89230 ** and/or current transaction is rolled back.
89231 */
89232 SQLITE_PRIVATE void sqlite3HaltConstraint(
89233   Parse *pParse,    /* Parsing context */
89234   int errCode,      /* extended error code */
89235   int onError,      /* Constraint type */
89236   char *p4,         /* Error message */
89237   i8 p4type,        /* P4_STATIC or P4_TRANSIENT */
89238   u8 p5Errmsg       /* P5_ErrMsg type */
89239 ){
89240   Vdbe *v = sqlite3GetVdbe(pParse);
89241   assert( (errCode&0xff)==SQLITE_CONSTRAINT );
89242   if( onError==OE_Abort ){
89243     sqlite3MayAbort(pParse);
89244   }
89245   sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type);
89246   if( p5Errmsg ) sqlite3VdbeChangeP5(v, p5Errmsg);
89247 }
89248 
89249 /*
89250 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation.
89251 */
89252 SQLITE_PRIVATE void sqlite3UniqueConstraint(
89253   Parse *pParse,    /* Parsing context */
89254   int onError,      /* Constraint type */
89255   Index *pIdx       /* The index that triggers the constraint */
89256 ){
89257   char *zErr;
89258   int j;
89259   StrAccum errMsg;
89260   Table *pTab = pIdx->pTable;
89261 
89262   sqlite3StrAccumInit(&errMsg, 0, 0, 200);
89263   errMsg.db = pParse->db;
89264   for(j=0; j<pIdx->nKeyCol; j++){
89265     char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
89266     if( j ) sqlite3StrAccumAppend(&errMsg, ", ", 2);
89267     sqlite3StrAccumAppendAll(&errMsg, pTab->zName);
89268     sqlite3StrAccumAppend(&errMsg, ".", 1);
89269     sqlite3StrAccumAppendAll(&errMsg, zCol);
89270   }
89271   zErr = sqlite3StrAccumFinish(&errMsg);
89272   sqlite3HaltConstraint(pParse,
89273     IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY
89274                             : SQLITE_CONSTRAINT_UNIQUE,
89275     onError, zErr, P4_DYNAMIC, P5_ConstraintUnique);
89276 }
89277 
89278 
89279 /*
89280 ** Code an OP_Halt due to non-unique rowid.
89281 */
89282 SQLITE_PRIVATE void sqlite3RowidConstraint(
89283   Parse *pParse,    /* Parsing context */
89284   int onError,      /* Conflict resolution algorithm */
89285   Table *pTab       /* The table with the non-unique rowid */
89286 ){
89287   char *zMsg;
89288   int rc;
89289   if( pTab->iPKey>=0 ){
89290     zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName,
89291                           pTab->aCol[pTab->iPKey].zName);
89292     rc = SQLITE_CONSTRAINT_PRIMARYKEY;
89293   }else{
89294     zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName);
89295     rc = SQLITE_CONSTRAINT_ROWID;
89296   }
89297   sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC,
89298                         P5_ConstraintUnique);
89299 }
89300 
89301 /*
89302 ** Check to see if pIndex uses the collating sequence pColl.  Return
89303 ** true if it does and false if it does not.
89304 */
89305 #ifndef SQLITE_OMIT_REINDEX
89306 static int collationMatch(const char *zColl, Index *pIndex){
89307   int i;
89308   assert( zColl!=0 );
89309   for(i=0; i<pIndex->nColumn; i++){
89310     const char *z = pIndex->azColl[i];
89311     assert( z!=0 || pIndex->aiColumn[i]<0 );
89312     if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){
89313       return 1;
89314     }
89315   }
89316   return 0;
89317 }
89318 #endif
89319 
89320 /*
89321 ** Recompute all indices of pTab that use the collating sequence pColl.
89322 ** If pColl==0 then recompute all indices of pTab.
89323 */
89324 #ifndef SQLITE_OMIT_REINDEX
89325 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
89326   Index *pIndex;              /* An index associated with pTab */
89327 
89328   for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
89329     if( zColl==0 || collationMatch(zColl, pIndex) ){
89330       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
89331       sqlite3BeginWriteOperation(pParse, 0, iDb);
89332       sqlite3RefillIndex(pParse, pIndex, -1);
89333     }
89334   }
89335 }
89336 #endif
89337 
89338 /*
89339 ** Recompute all indices of all tables in all databases where the
89340 ** indices use the collating sequence pColl.  If pColl==0 then recompute
89341 ** all indices everywhere.
89342 */
89343 #ifndef SQLITE_OMIT_REINDEX
89344 static void reindexDatabases(Parse *pParse, char const *zColl){
89345   Db *pDb;                    /* A single database */
89346   int iDb;                    /* The database index number */
89347   sqlite3 *db = pParse->db;   /* The database connection */
89348   HashElem *k;                /* For looping over tables in pDb */
89349   Table *pTab;                /* A table in the database */
89350 
89351   assert( sqlite3BtreeHoldsAllMutexes(db) );  /* Needed for schema access */
89352   for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
89353     assert( pDb!=0 );
89354     for(k=sqliteHashFirst(&pDb->pSchema->tblHash);  k; k=sqliteHashNext(k)){
89355       pTab = (Table*)sqliteHashData(k);
89356       reindexTable(pParse, pTab, zColl);
89357     }
89358   }
89359 }
89360 #endif
89361 
89362 /*
89363 ** Generate code for the REINDEX command.
89364 **
89365 **        REINDEX                            -- 1
89366 **        REINDEX  <collation>               -- 2
89367 **        REINDEX  ?<database>.?<tablename>  -- 3
89368 **        REINDEX  ?<database>.?<indexname>  -- 4
89369 **
89370 ** Form 1 causes all indices in all attached databases to be rebuilt.
89371 ** Form 2 rebuilds all indices in all databases that use the named
89372 ** collating function.  Forms 3 and 4 rebuild the named index or all
89373 ** indices associated with the named table.
89374 */
89375 #ifndef SQLITE_OMIT_REINDEX
89376 SQLITE_PRIVATE void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
89377   CollSeq *pColl;             /* Collating sequence to be reindexed, or NULL */
89378   char *z;                    /* Name of a table or index */
89379   const char *zDb;            /* Name of the database */
89380   Table *pTab;                /* A table in the database */
89381   Index *pIndex;              /* An index associated with pTab */
89382   int iDb;                    /* The database index number */
89383   sqlite3 *db = pParse->db;   /* The database connection */
89384   Token *pObjName;            /* Name of the table or index to be reindexed */
89385 
89386   /* Read the database schema. If an error occurs, leave an error message
89387   ** and code in pParse and return NULL. */
89388   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
89389     return;
89390   }
89391 
89392   if( pName1==0 ){
89393     reindexDatabases(pParse, 0);
89394     return;
89395   }else if( NEVER(pName2==0) || pName2->z==0 ){
89396     char *zColl;
89397     assert( pName1->z );
89398     zColl = sqlite3NameFromToken(pParse->db, pName1);
89399     if( !zColl ) return;
89400     pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
89401     if( pColl ){
89402       reindexDatabases(pParse, zColl);
89403       sqlite3DbFree(db, zColl);
89404       return;
89405     }
89406     sqlite3DbFree(db, zColl);
89407   }
89408   iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
89409   if( iDb<0 ) return;
89410   z = sqlite3NameFromToken(db, pObjName);
89411   if( z==0 ) return;
89412   zDb = db->aDb[iDb].zName;
89413   pTab = sqlite3FindTable(db, z, zDb);
89414   if( pTab ){
89415     reindexTable(pParse, pTab, 0);
89416     sqlite3DbFree(db, z);
89417     return;
89418   }
89419   pIndex = sqlite3FindIndex(db, z, zDb);
89420   sqlite3DbFree(db, z);
89421   if( pIndex ){
89422     sqlite3BeginWriteOperation(pParse, 0, iDb);
89423     sqlite3RefillIndex(pParse, pIndex, -1);
89424     return;
89425   }
89426   sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
89427 }
89428 #endif
89429 
89430 /*
89431 ** Return a KeyInfo structure that is appropriate for the given Index.
89432 **
89433 ** The KeyInfo structure for an index is cached in the Index object.
89434 ** So there might be multiple references to the returned pointer.  The
89435 ** caller should not try to modify the KeyInfo object.
89436 **
89437 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object
89438 ** when it has finished using it.
89439 */
89440 SQLITE_PRIVATE KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){
89441   if( pParse->nErr ) return 0;
89442 #ifndef SQLITE_OMIT_SHARED_CACHE
89443   if( pIdx->pKeyInfo && pIdx->pKeyInfo->db!=pParse->db ){
89444     sqlite3KeyInfoUnref(pIdx->pKeyInfo);
89445     pIdx->pKeyInfo = 0;
89446   }
89447 #endif
89448   if( pIdx->pKeyInfo==0 ){
89449     int i;
89450     int nCol = pIdx->nColumn;
89451     int nKey = pIdx->nKeyCol;
89452     KeyInfo *pKey;
89453     if( pIdx->uniqNotNull ){
89454       pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey);
89455     }else{
89456       pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0);
89457     }
89458     if( pKey ){
89459       assert( sqlite3KeyInfoIsWriteable(pKey) );
89460       for(i=0; i<nCol; i++){
89461         char *zColl = pIdx->azColl[i];
89462         assert( zColl!=0 );
89463         pKey->aColl[i] = strcmp(zColl,"BINARY")==0 ? 0 :
89464                           sqlite3LocateCollSeq(pParse, zColl);
89465         pKey->aSortOrder[i] = pIdx->aSortOrder[i];
89466       }
89467       if( pParse->nErr ){
89468         sqlite3KeyInfoUnref(pKey);
89469       }else{
89470         pIdx->pKeyInfo = pKey;
89471       }
89472     }
89473   }
89474   return sqlite3KeyInfoRef(pIdx->pKeyInfo);
89475 }
89476 
89477 #ifndef SQLITE_OMIT_CTE
89478 /*
89479 ** This routine is invoked once per CTE by the parser while parsing a
89480 ** WITH clause.
89481 */
89482 SQLITE_PRIVATE With *sqlite3WithAdd(
89483   Parse *pParse,          /* Parsing context */
89484   With *pWith,            /* Existing WITH clause, or NULL */
89485   Token *pName,           /* Name of the common-table */
89486   ExprList *pArglist,     /* Optional column name list for the table */
89487   Select *pQuery          /* Query used to initialize the table */
89488 ){
89489   sqlite3 *db = pParse->db;
89490   With *pNew;
89491   char *zName;
89492 
89493   /* Check that the CTE name is unique within this WITH clause. If
89494   ** not, store an error in the Parse structure. */
89495   zName = sqlite3NameFromToken(pParse->db, pName);
89496   if( zName && pWith ){
89497     int i;
89498     for(i=0; i<pWith->nCte; i++){
89499       if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){
89500         sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName);
89501       }
89502     }
89503   }
89504 
89505   if( pWith ){
89506     int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte);
89507     pNew = sqlite3DbRealloc(db, pWith, nByte);
89508   }else{
89509     pNew = sqlite3DbMallocZero(db, sizeof(*pWith));
89510   }
89511   assert( zName!=0 || pNew==0 );
89512   assert( db->mallocFailed==0 || pNew==0 );
89513 
89514   if( pNew==0 ){
89515     sqlite3ExprListDelete(db, pArglist);
89516     sqlite3SelectDelete(db, pQuery);
89517     sqlite3DbFree(db, zName);
89518     pNew = pWith;
89519   }else{
89520     pNew->a[pNew->nCte].pSelect = pQuery;
89521     pNew->a[pNew->nCte].pCols = pArglist;
89522     pNew->a[pNew->nCte].zName = zName;
89523     pNew->a[pNew->nCte].zErr = 0;
89524     pNew->nCte++;
89525   }
89526 
89527   return pNew;
89528 }
89529 
89530 /*
89531 ** Free the contents of the With object passed as the second argument.
89532 */
89533 SQLITE_PRIVATE void sqlite3WithDelete(sqlite3 *db, With *pWith){
89534   if( pWith ){
89535     int i;
89536     for(i=0; i<pWith->nCte; i++){
89537       struct Cte *pCte = &pWith->a[i];
89538       sqlite3ExprListDelete(db, pCte->pCols);
89539       sqlite3SelectDelete(db, pCte->pSelect);
89540       sqlite3DbFree(db, pCte->zName);
89541     }
89542     sqlite3DbFree(db, pWith);
89543   }
89544 }
89545 #endif /* !defined(SQLITE_OMIT_CTE) */
89546 
89547 /************** End of build.c ***********************************************/
89548 /************** Begin file callback.c ****************************************/
89549 /*
89550 ** 2005 May 23
89551 **
89552 ** The author disclaims copyright to this source code.  In place of
89553 ** a legal notice, here is a blessing:
89554 **
89555 **    May you do good and not evil.
89556 **    May you find forgiveness for yourself and forgive others.
89557 **    May you share freely, never taking more than you give.
89558 **
89559 *************************************************************************
89560 **
89561 ** This file contains functions used to access the internal hash tables
89562 ** of user defined functions and collation sequences.
89563 */
89564 
89565 
89566 /*
89567 ** Invoke the 'collation needed' callback to request a collation sequence
89568 ** in the encoding enc of name zName, length nName.
89569 */
89570 static void callCollNeeded(sqlite3 *db, int enc, const char *zName){
89571   assert( !db->xCollNeeded || !db->xCollNeeded16 );
89572   if( db->xCollNeeded ){
89573     char *zExternal = sqlite3DbStrDup(db, zName);
89574     if( !zExternal ) return;
89575     db->xCollNeeded(db->pCollNeededArg, db, enc, zExternal);
89576     sqlite3DbFree(db, zExternal);
89577   }
89578 #ifndef SQLITE_OMIT_UTF16
89579   if( db->xCollNeeded16 ){
89580     char const *zExternal;
89581     sqlite3_value *pTmp = sqlite3ValueNew(db);
89582     sqlite3ValueSetStr(pTmp, -1, zName, SQLITE_UTF8, SQLITE_STATIC);
89583     zExternal = sqlite3ValueText(pTmp, SQLITE_UTF16NATIVE);
89584     if( zExternal ){
89585       db->xCollNeeded16(db->pCollNeededArg, db, (int)ENC(db), zExternal);
89586     }
89587     sqlite3ValueFree(pTmp);
89588   }
89589 #endif
89590 }
89591 
89592 /*
89593 ** This routine is called if the collation factory fails to deliver a
89594 ** collation function in the best encoding but there may be other versions
89595 ** of this collation function (for other text encodings) available. Use one
89596 ** of these instead if they exist. Avoid a UTF-8 <-> UTF-16 conversion if
89597 ** possible.
89598 */
89599 static int synthCollSeq(sqlite3 *db, CollSeq *pColl){
89600   CollSeq *pColl2;
89601   char *z = pColl->zName;
89602   int i;
89603   static const u8 aEnc[] = { SQLITE_UTF16BE, SQLITE_UTF16LE, SQLITE_UTF8 };
89604   for(i=0; i<3; i++){
89605     pColl2 = sqlite3FindCollSeq(db, aEnc[i], z, 0);
89606     if( pColl2->xCmp!=0 ){
89607       memcpy(pColl, pColl2, sizeof(CollSeq));
89608       pColl->xDel = 0;         /* Do not copy the destructor */
89609       return SQLITE_OK;
89610     }
89611   }
89612   return SQLITE_ERROR;
89613 }
89614 
89615 /*
89616 ** This function is responsible for invoking the collation factory callback
89617 ** or substituting a collation sequence of a different encoding when the
89618 ** requested collation sequence is not available in the desired encoding.
89619 **
89620 ** If it is not NULL, then pColl must point to the database native encoding
89621 ** collation sequence with name zName, length nName.
89622 **
89623 ** The return value is either the collation sequence to be used in database
89624 ** db for collation type name zName, length nName, or NULL, if no collation
89625 ** sequence can be found.  If no collation is found, leave an error message.
89626 **
89627 ** See also: sqlite3LocateCollSeq(), sqlite3FindCollSeq()
89628 */
89629 SQLITE_PRIVATE CollSeq *sqlite3GetCollSeq(
89630   Parse *pParse,        /* Parsing context */
89631   u8 enc,               /* The desired encoding for the collating sequence */
89632   CollSeq *pColl,       /* Collating sequence with native encoding, or NULL */
89633   const char *zName     /* Collating sequence name */
89634 ){
89635   CollSeq *p;
89636   sqlite3 *db = pParse->db;
89637 
89638   p = pColl;
89639   if( !p ){
89640     p = sqlite3FindCollSeq(db, enc, zName, 0);
89641   }
89642   if( !p || !p->xCmp ){
89643     /* No collation sequence of this type for this encoding is registered.
89644     ** Call the collation factory to see if it can supply us with one.
89645     */
89646     callCollNeeded(db, enc, zName);
89647     p = sqlite3FindCollSeq(db, enc, zName, 0);
89648   }
89649   if( p && !p->xCmp && synthCollSeq(db, p) ){
89650     p = 0;
89651   }
89652   assert( !p || p->xCmp );
89653   if( p==0 ){
89654     sqlite3ErrorMsg(pParse, "no such collation sequence: %s", zName);
89655   }
89656   return p;
89657 }
89658 
89659 /*
89660 ** This routine is called on a collation sequence before it is used to
89661 ** check that it is defined. An undefined collation sequence exists when
89662 ** a database is loaded that contains references to collation sequences
89663 ** that have not been defined by sqlite3_create_collation() etc.
89664 **
89665 ** If required, this routine calls the 'collation needed' callback to
89666 ** request a definition of the collating sequence. If this doesn't work,
89667 ** an equivalent collating sequence that uses a text encoding different
89668 ** from the main database is substituted, if one is available.
89669 */
89670 SQLITE_PRIVATE int sqlite3CheckCollSeq(Parse *pParse, CollSeq *pColl){
89671   if( pColl ){
89672     const char *zName = pColl->zName;
89673     sqlite3 *db = pParse->db;
89674     CollSeq *p = sqlite3GetCollSeq(pParse, ENC(db), pColl, zName);
89675     if( !p ){
89676       return SQLITE_ERROR;
89677     }
89678     assert( p==pColl );
89679   }
89680   return SQLITE_OK;
89681 }
89682 
89683 
89684 
89685 /*
89686 ** Locate and return an entry from the db.aCollSeq hash table. If the entry
89687 ** specified by zName and nName is not found and parameter 'create' is
89688 ** true, then create a new entry. Otherwise return NULL.
89689 **
89690 ** Each pointer stored in the sqlite3.aCollSeq hash table contains an
89691 ** array of three CollSeq structures. The first is the collation sequence
89692 ** prefferred for UTF-8, the second UTF-16le, and the third UTF-16be.
89693 **
89694 ** Stored immediately after the three collation sequences is a copy of
89695 ** the collation sequence name. A pointer to this string is stored in
89696 ** each collation sequence structure.
89697 */
89698 static CollSeq *findCollSeqEntry(
89699   sqlite3 *db,          /* Database connection */
89700   const char *zName,    /* Name of the collating sequence */
89701   int create            /* Create a new entry if true */
89702 ){
89703   CollSeq *pColl;
89704   int nName = sqlite3Strlen30(zName);
89705   pColl = sqlite3HashFind(&db->aCollSeq, zName, nName);
89706 
89707   if( 0==pColl && create ){
89708     pColl = sqlite3DbMallocZero(db, 3*sizeof(*pColl) + nName + 1 );
89709     if( pColl ){
89710       CollSeq *pDel = 0;
89711       pColl[0].zName = (char*)&pColl[3];
89712       pColl[0].enc = SQLITE_UTF8;
89713       pColl[1].zName = (char*)&pColl[3];
89714       pColl[1].enc = SQLITE_UTF16LE;
89715       pColl[2].zName = (char*)&pColl[3];
89716       pColl[2].enc = SQLITE_UTF16BE;
89717       memcpy(pColl[0].zName, zName, nName);
89718       pColl[0].zName[nName] = 0;
89719       pDel = sqlite3HashInsert(&db->aCollSeq, pColl[0].zName, nName, pColl);
89720 
89721       /* If a malloc() failure occurred in sqlite3HashInsert(), it will
89722       ** return the pColl pointer to be deleted (because it wasn't added
89723       ** to the hash table).
89724       */
89725       assert( pDel==0 || pDel==pColl );
89726       if( pDel!=0 ){
89727         db->mallocFailed = 1;
89728         sqlite3DbFree(db, pDel);
89729         pColl = 0;
89730       }
89731     }
89732   }
89733   return pColl;
89734 }
89735 
89736 /*
89737 ** Parameter zName points to a UTF-8 encoded string nName bytes long.
89738 ** Return the CollSeq* pointer for the collation sequence named zName
89739 ** for the encoding 'enc' from the database 'db'.
89740 **
89741 ** If the entry specified is not found and 'create' is true, then create a
89742 ** new entry.  Otherwise return NULL.
89743 **
89744 ** A separate function sqlite3LocateCollSeq() is a wrapper around
89745 ** this routine.  sqlite3LocateCollSeq() invokes the collation factory
89746 ** if necessary and generates an error message if the collating sequence
89747 ** cannot be found.
89748 **
89749 ** See also: sqlite3LocateCollSeq(), sqlite3GetCollSeq()
89750 */
89751 SQLITE_PRIVATE CollSeq *sqlite3FindCollSeq(
89752   sqlite3 *db,
89753   u8 enc,
89754   const char *zName,
89755   int create
89756 ){
89757   CollSeq *pColl;
89758   if( zName ){
89759     pColl = findCollSeqEntry(db, zName, create);
89760   }else{
89761     pColl = db->pDfltColl;
89762   }
89763   assert( SQLITE_UTF8==1 && SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
89764   assert( enc>=SQLITE_UTF8 && enc<=SQLITE_UTF16BE );
89765   if( pColl ) pColl += enc-1;
89766   return pColl;
89767 }
89768 
89769 /* During the search for the best function definition, this procedure
89770 ** is called to test how well the function passed as the first argument
89771 ** matches the request for a function with nArg arguments in a system
89772 ** that uses encoding enc. The value returned indicates how well the
89773 ** request is matched. A higher value indicates a better match.
89774 **
89775 ** If nArg is -1 that means to only return a match (non-zero) if p->nArg
89776 ** is also -1.  In other words, we are searching for a function that
89777 ** takes a variable number of arguments.
89778 **
89779 ** If nArg is -2 that means that we are searching for any function
89780 ** regardless of the number of arguments it uses, so return a positive
89781 ** match score for any
89782 **
89783 ** The returned value is always between 0 and 6, as follows:
89784 **
89785 ** 0: Not a match.
89786 ** 1: UTF8/16 conversion required and function takes any number of arguments.
89787 ** 2: UTF16 byte order change required and function takes any number of args.
89788 ** 3: encoding matches and function takes any number of arguments
89789 ** 4: UTF8/16 conversion required - argument count matches exactly
89790 ** 5: UTF16 byte order conversion required - argument count matches exactly
89791 ** 6: Perfect match:  encoding and argument count match exactly.
89792 **
89793 ** If nArg==(-2) then any function with a non-null xStep or xFunc is
89794 ** a perfect match and any function with both xStep and xFunc NULL is
89795 ** a non-match.
89796 */
89797 #define FUNC_PERFECT_MATCH 6  /* The score for a perfect match */
89798 static int matchQuality(
89799   FuncDef *p,     /* The function we are evaluating for match quality */
89800   int nArg,       /* Desired number of arguments.  (-1)==any */
89801   u8 enc          /* Desired text encoding */
89802 ){
89803   int match;
89804 
89805   /* nArg of -2 is a special case */
89806   if( nArg==(-2) ) return (p->xFunc==0 && p->xStep==0) ? 0 : FUNC_PERFECT_MATCH;
89807 
89808   /* Wrong number of arguments means "no match" */
89809   if( p->nArg!=nArg && p->nArg>=0 ) return 0;
89810 
89811   /* Give a better score to a function with a specific number of arguments
89812   ** than to function that accepts any number of arguments. */
89813   if( p->nArg==nArg ){
89814     match = 4;
89815   }else{
89816     match = 1;
89817   }
89818 
89819   /* Bonus points if the text encoding matches */
89820   if( enc==(p->funcFlags & SQLITE_FUNC_ENCMASK) ){
89821     match += 2;  /* Exact encoding match */
89822   }else if( (enc & p->funcFlags & 2)!=0 ){
89823     match += 1;  /* Both are UTF16, but with different byte orders */
89824   }
89825 
89826   return match;
89827 }
89828 
89829 /*
89830 ** Search a FuncDefHash for a function with the given name.  Return
89831 ** a pointer to the matching FuncDef if found, or 0 if there is no match.
89832 */
89833 static FuncDef *functionSearch(
89834   FuncDefHash *pHash,  /* Hash table to search */
89835   int h,               /* Hash of the name */
89836   const char *zFunc,   /* Name of function */
89837   int nFunc            /* Number of bytes in zFunc */
89838 ){
89839   FuncDef *p;
89840   for(p=pHash->a[h]; p; p=p->pHash){
89841     if( sqlite3StrNICmp(p->zName, zFunc, nFunc)==0 && p->zName[nFunc]==0 ){
89842       return p;
89843     }
89844   }
89845   return 0;
89846 }
89847 
89848 /*
89849 ** Insert a new FuncDef into a FuncDefHash hash table.
89850 */
89851 SQLITE_PRIVATE void sqlite3FuncDefInsert(
89852   FuncDefHash *pHash,  /* The hash table into which to insert */
89853   FuncDef *pDef        /* The function definition to insert */
89854 ){
89855   FuncDef *pOther;
89856   int nName = sqlite3Strlen30(pDef->zName);
89857   u8 c1 = (u8)pDef->zName[0];
89858   int h = (sqlite3UpperToLower[c1] + nName) % ArraySize(pHash->a);
89859   pOther = functionSearch(pHash, h, pDef->zName, nName);
89860   if( pOther ){
89861     assert( pOther!=pDef && pOther->pNext!=pDef );
89862     pDef->pNext = pOther->pNext;
89863     pOther->pNext = pDef;
89864   }else{
89865     pDef->pNext = 0;
89866     pDef->pHash = pHash->a[h];
89867     pHash->a[h] = pDef;
89868   }
89869 }
89870 
89871 
89872 
89873 /*
89874 ** Locate a user function given a name, a number of arguments and a flag
89875 ** indicating whether the function prefers UTF-16 over UTF-8.  Return a
89876 ** pointer to the FuncDef structure that defines that function, or return
89877 ** NULL if the function does not exist.
89878 **
89879 ** If the createFlag argument is true, then a new (blank) FuncDef
89880 ** structure is created and liked into the "db" structure if a
89881 ** no matching function previously existed.
89882 **
89883 ** If nArg is -2, then the first valid function found is returned.  A
89884 ** function is valid if either xFunc or xStep is non-zero.  The nArg==(-2)
89885 ** case is used to see if zName is a valid function name for some number
89886 ** of arguments.  If nArg is -2, then createFlag must be 0.
89887 **
89888 ** If createFlag is false, then a function with the required name and
89889 ** number of arguments may be returned even if the eTextRep flag does not
89890 ** match that requested.
89891 */
89892 SQLITE_PRIVATE FuncDef *sqlite3FindFunction(
89893   sqlite3 *db,       /* An open database */
89894   const char *zName, /* Name of the function.  Not null-terminated */
89895   int nName,         /* Number of characters in the name */
89896   int nArg,          /* Number of arguments.  -1 means any number */
89897   u8 enc,            /* Preferred text encoding */
89898   u8 createFlag      /* Create new entry if true and does not otherwise exist */
89899 ){
89900   FuncDef *p;         /* Iterator variable */
89901   FuncDef *pBest = 0; /* Best match found so far */
89902   int bestScore = 0;  /* Score of best match */
89903   int h;              /* Hash value */
89904 
89905   assert( nArg>=(-2) );
89906   assert( nArg>=(-1) || createFlag==0 );
89907   h = (sqlite3UpperToLower[(u8)zName[0]] + nName) % ArraySize(db->aFunc.a);
89908 
89909   /* First search for a match amongst the application-defined functions.
89910   */
89911   p = functionSearch(&db->aFunc, h, zName, nName);
89912   while( p ){
89913     int score = matchQuality(p, nArg, enc);
89914     if( score>bestScore ){
89915       pBest = p;
89916       bestScore = score;
89917     }
89918     p = p->pNext;
89919   }
89920 
89921   /* If no match is found, search the built-in functions.
89922   **
89923   ** If the SQLITE_PreferBuiltin flag is set, then search the built-in
89924   ** functions even if a prior app-defined function was found.  And give
89925   ** priority to built-in functions.
89926   **
89927   ** Except, if createFlag is true, that means that we are trying to
89928   ** install a new function.  Whatever FuncDef structure is returned it will
89929   ** have fields overwritten with new information appropriate for the
89930   ** new function.  But the FuncDefs for built-in functions are read-only.
89931   ** So we must not search for built-ins when creating a new function.
89932   */
89933   if( !createFlag && (pBest==0 || (db->flags & SQLITE_PreferBuiltin)!=0) ){
89934     FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions);
89935     bestScore = 0;
89936     p = functionSearch(pHash, h, zName, nName);
89937     while( p ){
89938       int score = matchQuality(p, nArg, enc);
89939       if( score>bestScore ){
89940         pBest = p;
89941         bestScore = score;
89942       }
89943       p = p->pNext;
89944     }
89945   }
89946 
89947   /* If the createFlag parameter is true and the search did not reveal an
89948   ** exact match for the name, number of arguments and encoding, then add a
89949   ** new entry to the hash table and return it.
89950   */
89951   if( createFlag && bestScore<FUNC_PERFECT_MATCH &&
89952       (pBest = sqlite3DbMallocZero(db, sizeof(*pBest)+nName+1))!=0 ){
89953     pBest->zName = (char *)&pBest[1];
89954     pBest->nArg = (u16)nArg;
89955     pBest->funcFlags = enc;
89956     memcpy(pBest->zName, zName, nName);
89957     pBest->zName[nName] = 0;
89958     sqlite3FuncDefInsert(&db->aFunc, pBest);
89959   }
89960 
89961   if( pBest && (pBest->xStep || pBest->xFunc || createFlag) ){
89962     return pBest;
89963   }
89964   return 0;
89965 }
89966 
89967 /*
89968 ** Free all resources held by the schema structure. The void* argument points
89969 ** at a Schema struct. This function does not call sqlite3DbFree(db, ) on the
89970 ** pointer itself, it just cleans up subsidiary resources (i.e. the contents
89971 ** of the schema hash tables).
89972 **
89973 ** The Schema.cache_size variable is not cleared.
89974 */
89975 SQLITE_PRIVATE void sqlite3SchemaClear(void *p){
89976   Hash temp1;
89977   Hash temp2;
89978   HashElem *pElem;
89979   Schema *pSchema = (Schema *)p;
89980 
89981   temp1 = pSchema->tblHash;
89982   temp2 = pSchema->trigHash;
89983   sqlite3HashInit(&pSchema->trigHash);
89984   sqlite3HashClear(&pSchema->idxHash);
89985   for(pElem=sqliteHashFirst(&temp2); pElem; pElem=sqliteHashNext(pElem)){
89986     sqlite3DeleteTrigger(0, (Trigger*)sqliteHashData(pElem));
89987   }
89988   sqlite3HashClear(&temp2);
89989   sqlite3HashInit(&pSchema->tblHash);
89990   for(pElem=sqliteHashFirst(&temp1); pElem; pElem=sqliteHashNext(pElem)){
89991     Table *pTab = sqliteHashData(pElem);
89992     sqlite3DeleteTable(0, pTab);
89993   }
89994   sqlite3HashClear(&temp1);
89995   sqlite3HashClear(&pSchema->fkeyHash);
89996   pSchema->pSeqTab = 0;
89997   if( pSchema->flags & DB_SchemaLoaded ){
89998     pSchema->iGeneration++;
89999     pSchema->flags &= ~DB_SchemaLoaded;
90000   }
90001 }
90002 
90003 /*
90004 ** Find and return the schema associated with a BTree.  Create
90005 ** a new one if necessary.
90006 */
90007 SQLITE_PRIVATE Schema *sqlite3SchemaGet(sqlite3 *db, Btree *pBt){
90008   Schema * p;
90009   if( pBt ){
90010     p = (Schema *)sqlite3BtreeSchema(pBt, sizeof(Schema), sqlite3SchemaClear);
90011   }else{
90012     p = (Schema *)sqlite3DbMallocZero(0, sizeof(Schema));
90013   }
90014   if( !p ){
90015     db->mallocFailed = 1;
90016   }else if ( 0==p->file_format ){
90017     sqlite3HashInit(&p->tblHash);
90018     sqlite3HashInit(&p->idxHash);
90019     sqlite3HashInit(&p->trigHash);
90020     sqlite3HashInit(&p->fkeyHash);
90021     p->enc = SQLITE_UTF8;
90022   }
90023   return p;
90024 }
90025 
90026 /************** End of callback.c ********************************************/
90027 /************** Begin file delete.c ******************************************/
90028 /*
90029 ** 2001 September 15
90030 **
90031 ** The author disclaims copyright to this source code.  In place of
90032 ** a legal notice, here is a blessing:
90033 **
90034 **    May you do good and not evil.
90035 **    May you find forgiveness for yourself and forgive others.
90036 **    May you share freely, never taking more than you give.
90037 **
90038 *************************************************************************
90039 ** This file contains C code routines that are called by the parser
90040 ** in order to generate code for DELETE FROM statements.
90041 */
90042 
90043 /*
90044 ** While a SrcList can in general represent multiple tables and subqueries
90045 ** (as in the FROM clause of a SELECT statement) in this case it contains
90046 ** the name of a single table, as one might find in an INSERT, DELETE,
90047 ** or UPDATE statement.  Look up that table in the symbol table and
90048 ** return a pointer.  Set an error message and return NULL if the table
90049 ** name is not found or if any other error occurs.
90050 **
90051 ** The following fields are initialized appropriate in pSrc:
90052 **
90053 **    pSrc->a[0].pTab       Pointer to the Table object
90054 **    pSrc->a[0].pIndex     Pointer to the INDEXED BY index, if there is one
90055 **
90056 */
90057 SQLITE_PRIVATE Table *sqlite3SrcListLookup(Parse *pParse, SrcList *pSrc){
90058   struct SrcList_item *pItem = pSrc->a;
90059   Table *pTab;
90060   assert( pItem && pSrc->nSrc==1 );
90061   pTab = sqlite3LocateTableItem(pParse, 0, pItem);
90062   sqlite3DeleteTable(pParse->db, pItem->pTab);
90063   pItem->pTab = pTab;
90064   if( pTab ){
90065     pTab->nRef++;
90066   }
90067   if( sqlite3IndexedByLookup(pParse, pItem) ){
90068     pTab = 0;
90069   }
90070   return pTab;
90071 }
90072 
90073 /*
90074 ** Check to make sure the given table is writable.  If it is not
90075 ** writable, generate an error message and return 1.  If it is
90076 ** writable return 0;
90077 */
90078 SQLITE_PRIVATE int sqlite3IsReadOnly(Parse *pParse, Table *pTab, int viewOk){
90079   /* A table is not writable under the following circumstances:
90080   **
90081   **   1) It is a virtual table and no implementation of the xUpdate method
90082   **      has been provided, or
90083   **   2) It is a system table (i.e. sqlite_master), this call is not
90084   **      part of a nested parse and writable_schema pragma has not
90085   **      been specified.
90086   **
90087   ** In either case leave an error message in pParse and return non-zero.
90088   */
90089   if( ( IsVirtual(pTab)
90090      && sqlite3GetVTable(pParse->db, pTab)->pMod->pModule->xUpdate==0 )
90091    || ( (pTab->tabFlags & TF_Readonly)!=0
90092      && (pParse->db->flags & SQLITE_WriteSchema)==0
90093      && pParse->nested==0 )
90094   ){
90095     sqlite3ErrorMsg(pParse, "table %s may not be modified", pTab->zName);
90096     return 1;
90097   }
90098 
90099 #ifndef SQLITE_OMIT_VIEW
90100   if( !viewOk && pTab->pSelect ){
90101     sqlite3ErrorMsg(pParse,"cannot modify %s because it is a view",pTab->zName);
90102     return 1;
90103   }
90104 #endif
90105   return 0;
90106 }
90107 
90108 
90109 #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
90110 /*
90111 ** Evaluate a view and store its result in an ephemeral table.  The
90112 ** pWhere argument is an optional WHERE clause that restricts the
90113 ** set of rows in the view that are to be added to the ephemeral table.
90114 */
90115 SQLITE_PRIVATE void sqlite3MaterializeView(
90116   Parse *pParse,       /* Parsing context */
90117   Table *pView,        /* View definition */
90118   Expr *pWhere,        /* Optional WHERE clause to be added */
90119   int iCur             /* Cursor number for ephemerial table */
90120 ){
90121   SelectDest dest;
90122   Select *pSel;
90123   SrcList *pFrom;
90124   sqlite3 *db = pParse->db;
90125   int iDb = sqlite3SchemaToIndex(db, pView->pSchema);
90126   pWhere = sqlite3ExprDup(db, pWhere, 0);
90127   pFrom = sqlite3SrcListAppend(db, 0, 0, 0);
90128   if( pFrom ){
90129     assert( pFrom->nSrc==1 );
90130     pFrom->a[0].zName = sqlite3DbStrDup(db, pView->zName);
90131     pFrom->a[0].zDatabase = sqlite3DbStrDup(db, db->aDb[iDb].zName);
90132     assert( pFrom->a[0].pOn==0 );
90133     assert( pFrom->a[0].pUsing==0 );
90134   }
90135   pSel = sqlite3SelectNew(pParse, 0, pFrom, pWhere, 0, 0, 0, 0, 0, 0);
90136   sqlite3SelectDestInit(&dest, SRT_EphemTab, iCur);
90137   sqlite3Select(pParse, pSel, &dest);
90138   sqlite3SelectDelete(db, pSel);
90139 }
90140 #endif /* !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) */
90141 
90142 #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY)
90143 /*
90144 ** Generate an expression tree to implement the WHERE, ORDER BY,
90145 ** and LIMIT/OFFSET portion of DELETE and UPDATE statements.
90146 **
90147 **     DELETE FROM table_wxyz WHERE a<5 ORDER BY a LIMIT 1;
90148 **                            \__________________________/
90149 **                               pLimitWhere (pInClause)
90150 */
90151 SQLITE_PRIVATE Expr *sqlite3LimitWhere(
90152   Parse *pParse,               /* The parser context */
90153   SrcList *pSrc,               /* the FROM clause -- which tables to scan */
90154   Expr *pWhere,                /* The WHERE clause.  May be null */
90155   ExprList *pOrderBy,          /* The ORDER BY clause.  May be null */
90156   Expr *pLimit,                /* The LIMIT clause.  May be null */
90157   Expr *pOffset,               /* The OFFSET clause.  May be null */
90158   char *zStmtType              /* Either DELETE or UPDATE.  For err msgs. */
90159 ){
90160   Expr *pWhereRowid = NULL;    /* WHERE rowid .. */
90161   Expr *pInClause = NULL;      /* WHERE rowid IN ( select ) */
90162   Expr *pSelectRowid = NULL;   /* SELECT rowid ... */
90163   ExprList *pEList = NULL;     /* Expression list contaning only pSelectRowid */
90164   SrcList *pSelectSrc = NULL;  /* SELECT rowid FROM x ... (dup of pSrc) */
90165   Select *pSelect = NULL;      /* Complete SELECT tree */
90166 
90167   /* Check that there isn't an ORDER BY without a LIMIT clause.
90168   */
90169   if( pOrderBy && (pLimit == 0) ) {
90170     sqlite3ErrorMsg(pParse, "ORDER BY without LIMIT on %s", zStmtType);
90171     goto limit_where_cleanup_2;
90172   }
90173 
90174   /* We only need to generate a select expression if there
90175   ** is a limit/offset term to enforce.
90176   */
90177   if( pLimit == 0 ) {
90178     /* if pLimit is null, pOffset will always be null as well. */
90179     assert( pOffset == 0 );
90180     return pWhere;
90181   }
90182 
90183   /* Generate a select expression tree to enforce the limit/offset
90184   ** term for the DELETE or UPDATE statement.  For example:
90185   **   DELETE FROM table_a WHERE col1=1 ORDER BY col2 LIMIT 1 OFFSET 1
90186   ** becomes:
90187   **   DELETE FROM table_a WHERE rowid IN (
90188   **     SELECT rowid FROM table_a WHERE col1=1 ORDER BY col2 LIMIT 1 OFFSET 1
90189   **   );
90190   */
90191 
90192   pSelectRowid = sqlite3PExpr(pParse, TK_ROW, 0, 0, 0);
90193   if( pSelectRowid == 0 ) goto limit_where_cleanup_2;
90194   pEList = sqlite3ExprListAppend(pParse, 0, pSelectRowid);
90195   if( pEList == 0 ) goto limit_where_cleanup_2;
90196 
90197   /* duplicate the FROM clause as it is needed by both the DELETE/UPDATE tree
90198   ** and the SELECT subtree. */
90199   pSelectSrc = sqlite3SrcListDup(pParse->db, pSrc, 0);
90200   if( pSelectSrc == 0 ) {
90201     sqlite3ExprListDelete(pParse->db, pEList);
90202     goto limit_where_cleanup_2;
90203   }
90204 
90205   /* generate the SELECT expression tree. */
90206   pSelect = sqlite3SelectNew(pParse,pEList,pSelectSrc,pWhere,0,0,
90207                              pOrderBy,0,pLimit,pOffset);
90208   if( pSelect == 0 ) return 0;
90209 
90210   /* now generate the new WHERE rowid IN clause for the DELETE/UDPATE */
90211   pWhereRowid = sqlite3PExpr(pParse, TK_ROW, 0, 0, 0);
90212   if( pWhereRowid == 0 ) goto limit_where_cleanup_1;
90213   pInClause = sqlite3PExpr(pParse, TK_IN, pWhereRowid, 0, 0);
90214   if( pInClause == 0 ) goto limit_where_cleanup_1;
90215 
90216   pInClause->x.pSelect = pSelect;
90217   pInClause->flags |= EP_xIsSelect;
90218   sqlite3ExprSetHeight(pParse, pInClause);
90219   return pInClause;
90220 
90221   /* something went wrong. clean up anything allocated. */
90222 limit_where_cleanup_1:
90223   sqlite3SelectDelete(pParse->db, pSelect);
90224   return 0;
90225 
90226 limit_where_cleanup_2:
90227   sqlite3ExprDelete(pParse->db, pWhere);
90228   sqlite3ExprListDelete(pParse->db, pOrderBy);
90229   sqlite3ExprDelete(pParse->db, pLimit);
90230   sqlite3ExprDelete(pParse->db, pOffset);
90231   return 0;
90232 }
90233 #endif /* defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) */
90234        /*      && !defined(SQLITE_OMIT_SUBQUERY) */
90235 
90236 /*
90237 ** Generate code for a DELETE FROM statement.
90238 **
90239 **     DELETE FROM table_wxyz WHERE a<5 AND b NOT NULL;
90240 **                 \________/       \________________/
90241 **                  pTabList              pWhere
90242 */
90243 SQLITE_PRIVATE void sqlite3DeleteFrom(
90244   Parse *pParse,         /* The parser context */
90245   SrcList *pTabList,     /* The table from which we should delete things */
90246   Expr *pWhere           /* The WHERE clause.  May be null */
90247 ){
90248   Vdbe *v;               /* The virtual database engine */
90249   Table *pTab;           /* The table from which records will be deleted */
90250   const char *zDb;       /* Name of database holding pTab */
90251   int i;                 /* Loop counter */
90252   WhereInfo *pWInfo;     /* Information about the WHERE clause */
90253   Index *pIdx;           /* For looping over indices of the table */
90254   int iTabCur;           /* Cursor number for the table */
90255   int iDataCur;          /* VDBE cursor for the canonical data source */
90256   int iIdxCur;           /* Cursor number of the first index */
90257   int nIdx;              /* Number of indices */
90258   sqlite3 *db;           /* Main database structure */
90259   AuthContext sContext;  /* Authorization context */
90260   NameContext sNC;       /* Name context to resolve expressions in */
90261   int iDb;               /* Database number */
90262   int memCnt = -1;       /* Memory cell used for change counting */
90263   int rcauth;            /* Value returned by authorization callback */
90264   int okOnePass;         /* True for one-pass algorithm without the FIFO */
90265   int aiCurOnePass[2];   /* The write cursors opened by WHERE_ONEPASS */
90266   u8 *aToOpen = 0;       /* Open cursor iTabCur+j if aToOpen[j] is true */
90267   Index *pPk;            /* The PRIMARY KEY index on the table */
90268   int iPk = 0;           /* First of nPk registers holding PRIMARY KEY value */
90269   i16 nPk = 1;           /* Number of columns in the PRIMARY KEY */
90270   int iKey;              /* Memory cell holding key of row to be deleted */
90271   i16 nKey;              /* Number of memory cells in the row key */
90272   int iEphCur = 0;       /* Ephemeral table holding all primary key values */
90273   int iRowSet = 0;       /* Register for rowset of rows to delete */
90274   int addrBypass = 0;    /* Address of jump over the delete logic */
90275   int addrLoop = 0;      /* Top of the delete loop */
90276   int addrDelete = 0;    /* Jump directly to the delete logic */
90277   int addrEphOpen = 0;   /* Instruction to open the Ephermeral table */
90278 
90279 #ifndef SQLITE_OMIT_TRIGGER
90280   int isView;                  /* True if attempting to delete from a view */
90281   Trigger *pTrigger;           /* List of table triggers, if required */
90282 #endif
90283 
90284   memset(&sContext, 0, sizeof(sContext));
90285   db = pParse->db;
90286   if( pParse->nErr || db->mallocFailed ){
90287     goto delete_from_cleanup;
90288   }
90289   assert( pTabList->nSrc==1 );
90290 
90291   /* Locate the table which we want to delete.  This table has to be
90292   ** put in an SrcList structure because some of the subroutines we
90293   ** will be calling are designed to work with multiple tables and expect
90294   ** an SrcList* parameter instead of just a Table* parameter.
90295   */
90296   pTab = sqlite3SrcListLookup(pParse, pTabList);
90297   if( pTab==0 )  goto delete_from_cleanup;
90298 
90299   /* Figure out if we have any triggers and if the table being
90300   ** deleted from is a view
90301   */
90302 #ifndef SQLITE_OMIT_TRIGGER
90303   pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
90304   isView = pTab->pSelect!=0;
90305 #else
90306 # define pTrigger 0
90307 # define isView 0
90308 #endif
90309 #ifdef SQLITE_OMIT_VIEW
90310 # undef isView
90311 # define isView 0
90312 #endif
90313 
90314   /* If pTab is really a view, make sure it has been initialized.
90315   */
90316   if( sqlite3ViewGetColumnNames(pParse, pTab) ){
90317     goto delete_from_cleanup;
90318   }
90319 
90320   if( sqlite3IsReadOnly(pParse, pTab, (pTrigger?1:0)) ){
90321     goto delete_from_cleanup;
90322   }
90323   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
90324   assert( iDb<db->nDb );
90325   zDb = db->aDb[iDb].zName;
90326   rcauth = sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb);
90327   assert( rcauth==SQLITE_OK || rcauth==SQLITE_DENY || rcauth==SQLITE_IGNORE );
90328   if( rcauth==SQLITE_DENY ){
90329     goto delete_from_cleanup;
90330   }
90331   assert(!isView || pTrigger);
90332 
90333   /* Assign cursor numbers to the table and all its indices.
90334   */
90335   assert( pTabList->nSrc==1 );
90336   iTabCur = pTabList->a[0].iCursor = pParse->nTab++;
90337   for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){
90338     pParse->nTab++;
90339   }
90340 
90341   /* Start the view context
90342   */
90343   if( isView ){
90344     sqlite3AuthContextPush(pParse, &sContext, pTab->zName);
90345   }
90346 
90347   /* Begin generating code.
90348   */
90349   v = sqlite3GetVdbe(pParse);
90350   if( v==0 ){
90351     goto delete_from_cleanup;
90352   }
90353   if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
90354   sqlite3BeginWriteOperation(pParse, 1, iDb);
90355 
90356   /* If we are trying to delete from a view, realize that view into
90357   ** a ephemeral table.
90358   */
90359 #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
90360   if( isView ){
90361     sqlite3MaterializeView(pParse, pTab, pWhere, iTabCur);
90362     iDataCur = iIdxCur = iTabCur;
90363   }
90364 #endif
90365 
90366   /* Resolve the column names in the WHERE clause.
90367   */
90368   memset(&sNC, 0, sizeof(sNC));
90369   sNC.pParse = pParse;
90370   sNC.pSrcList = pTabList;
90371   if( sqlite3ResolveExprNames(&sNC, pWhere) ){
90372     goto delete_from_cleanup;
90373   }
90374 
90375   /* Initialize the counter of the number of rows deleted, if
90376   ** we are counting rows.
90377   */
90378   if( db->flags & SQLITE_CountRows ){
90379     memCnt = ++pParse->nMem;
90380     sqlite3VdbeAddOp2(v, OP_Integer, 0, memCnt);
90381   }
90382 
90383 #ifndef SQLITE_OMIT_TRUNCATE_OPTIMIZATION
90384   /* Special case: A DELETE without a WHERE clause deletes everything.
90385   ** It is easier just to erase the whole table. Prior to version 3.6.5,
90386   ** this optimization caused the row change count (the value returned by
90387   ** API function sqlite3_count_changes) to be set incorrectly.  */
90388   if( rcauth==SQLITE_OK && pWhere==0 && !pTrigger && !IsVirtual(pTab)
90389    && 0==sqlite3FkRequired(pParse, pTab, 0, 0)
90390   ){
90391     assert( !isView );
90392     sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
90393     if( HasRowid(pTab) ){
90394       sqlite3VdbeAddOp4(v, OP_Clear, pTab->tnum, iDb, memCnt,
90395                         pTab->zName, P4_STATIC);
90396     }
90397     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
90398       assert( pIdx->pSchema==pTab->pSchema );
90399       sqlite3VdbeAddOp2(v, OP_Clear, pIdx->tnum, iDb);
90400     }
90401   }else
90402 #endif /* SQLITE_OMIT_TRUNCATE_OPTIMIZATION */
90403   {
90404     if( HasRowid(pTab) ){
90405       /* For a rowid table, initialize the RowSet to an empty set */
90406       pPk = 0;
90407       nPk = 1;
90408       iRowSet = ++pParse->nMem;
90409       sqlite3VdbeAddOp2(v, OP_Null, 0, iRowSet);
90410     }else{
90411       /* For a WITHOUT ROWID table, create an ephermeral table used to
90412       ** hold all primary keys for rows to be deleted. */
90413       pPk = sqlite3PrimaryKeyIndex(pTab);
90414       assert( pPk!=0 );
90415       nPk = pPk->nKeyCol;
90416       iPk = pParse->nMem+1;
90417       pParse->nMem += nPk;
90418       iEphCur = pParse->nTab++;
90419       addrEphOpen = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iEphCur, nPk);
90420       sqlite3VdbeSetP4KeyInfo(pParse, pPk);
90421     }
90422 
90423     /* Construct a query to find the rowid or primary key for every row
90424     ** to be deleted, based on the WHERE clause.
90425     */
90426     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0, 0,
90427                                WHERE_ONEPASS_DESIRED|WHERE_DUPLICATES_OK,
90428                                iTabCur+1);
90429     if( pWInfo==0 ) goto delete_from_cleanup;
90430     okOnePass = sqlite3WhereOkOnePass(pWInfo, aiCurOnePass);
90431 
90432     /* Keep track of the number of rows to be deleted */
90433     if( db->flags & SQLITE_CountRows ){
90434       sqlite3VdbeAddOp2(v, OP_AddImm, memCnt, 1);
90435     }
90436 
90437     /* Extract the rowid or primary key for the current row */
90438     if( pPk ){
90439       for(i=0; i<nPk; i++){
90440         sqlite3ExprCodeGetColumnOfTable(v, pTab, iTabCur,
90441                                         pPk->aiColumn[i], iPk+i);
90442       }
90443       iKey = iPk;
90444     }else{
90445       iKey = pParse->nMem + 1;
90446       iKey = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iTabCur, iKey, 0);
90447       if( iKey>pParse->nMem ) pParse->nMem = iKey;
90448     }
90449 
90450     if( okOnePass ){
90451       /* For ONEPASS, no need to store the rowid/primary-key.  There is only
90452       ** one, so just keep it in its register(s) and fall through to the
90453       ** delete code.
90454       */
90455       nKey = nPk; /* OP_Found will use an unpacked key */
90456       aToOpen = sqlite3DbMallocRaw(db, nIdx+2);
90457       if( aToOpen==0 ){
90458         sqlite3WhereEnd(pWInfo);
90459         goto delete_from_cleanup;
90460       }
90461       memset(aToOpen, 1, nIdx+1);
90462       aToOpen[nIdx+1] = 0;
90463       if( aiCurOnePass[0]>=0 ) aToOpen[aiCurOnePass[0]-iTabCur] = 0;
90464       if( aiCurOnePass[1]>=0 ) aToOpen[aiCurOnePass[1]-iTabCur] = 0;
90465       if( addrEphOpen ) sqlite3VdbeChangeToNoop(v, addrEphOpen);
90466       addrDelete = sqlite3VdbeAddOp0(v, OP_Goto); /* Jump to DELETE logic */
90467     }else if( pPk ){
90468       /* Construct a composite key for the row to be deleted and remember it */
90469       iKey = ++pParse->nMem;
90470       nKey = 0;   /* Zero tells OP_Found to use a composite key */
90471       sqlite3VdbeAddOp4(v, OP_MakeRecord, iPk, nPk, iKey,
90472                         sqlite3IndexAffinityStr(v, pPk), nPk);
90473       sqlite3VdbeAddOp2(v, OP_IdxInsert, iEphCur, iKey);
90474     }else{
90475       /* Get the rowid of the row to be deleted and remember it in the RowSet */
90476       nKey = 1;  /* OP_Seek always uses a single rowid */
90477       sqlite3VdbeAddOp2(v, OP_RowSetAdd, iRowSet, iKey);
90478     }
90479 
90480     /* End of the WHERE loop */
90481     sqlite3WhereEnd(pWInfo);
90482     if( okOnePass ){
90483       /* Bypass the delete logic below if the WHERE loop found zero rows */
90484       addrBypass = sqlite3VdbeMakeLabel(v);
90485       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrBypass);
90486       sqlite3VdbeJumpHere(v, addrDelete);
90487     }
90488 
90489     /* Unless this is a view, open cursors for the table we are
90490     ** deleting from and all its indices. If this is a view, then the
90491     ** only effect this statement has is to fire the INSTEAD OF
90492     ** triggers.
90493     */
90494     if( !isView ){
90495       sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, iTabCur, aToOpen,
90496                                  &iDataCur, &iIdxCur);
90497       assert( pPk || iDataCur==iTabCur );
90498       assert( pPk || iIdxCur==iDataCur+1 );
90499     }
90500 
90501     /* Set up a loop over the rowids/primary-keys that were found in the
90502     ** where-clause loop above.
90503     */
90504     if( okOnePass ){
90505       /* Just one row.  Hence the top-of-loop is a no-op */
90506       assert( nKey==nPk ); /* OP_Found will use an unpacked key */
90507       if( aToOpen[iDataCur-iTabCur] ){
90508         assert( pPk!=0 );
90509         sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, addrBypass, iKey, nKey);
90510         VdbeCoverage(v);
90511       }
90512     }else if( pPk ){
90513       addrLoop = sqlite3VdbeAddOp1(v, OP_Rewind, iEphCur); VdbeCoverage(v);
90514       sqlite3VdbeAddOp2(v, OP_RowKey, iEphCur, iKey);
90515       assert( nKey==0 );  /* OP_Found will use a composite key */
90516     }else{
90517       addrLoop = sqlite3VdbeAddOp3(v, OP_RowSetRead, iRowSet, 0, iKey);
90518       VdbeCoverage(v);
90519       assert( nKey==1 );
90520     }
90521 
90522     /* Delete the row */
90523 #ifndef SQLITE_OMIT_VIRTUALTABLE
90524     if( IsVirtual(pTab) ){
90525       const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
90526       sqlite3VtabMakeWritable(pParse, pTab);
90527       sqlite3VdbeAddOp4(v, OP_VUpdate, 0, 1, iKey, pVTab, P4_VTAB);
90528       sqlite3VdbeChangeP5(v, OE_Abort);
90529       sqlite3MayAbort(pParse);
90530     }else
90531 #endif
90532     {
90533       int count = (pParse->nested==0);    /* True to count changes */
90534       sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
90535                                iKey, nKey, count, OE_Default, okOnePass);
90536     }
90537 
90538     /* End of the loop over all rowids/primary-keys. */
90539     if( okOnePass ){
90540       sqlite3VdbeResolveLabel(v, addrBypass);
90541     }else if( pPk ){
90542       sqlite3VdbeAddOp2(v, OP_Next, iEphCur, addrLoop+1); VdbeCoverage(v);
90543       sqlite3VdbeJumpHere(v, addrLoop);
90544     }else{
90545       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrLoop);
90546       sqlite3VdbeJumpHere(v, addrLoop);
90547     }
90548 
90549     /* Close the cursors open on the table and its indexes. */
90550     if( !isView && !IsVirtual(pTab) ){
90551       if( !pPk ) sqlite3VdbeAddOp1(v, OP_Close, iDataCur);
90552       for(i=0, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){
90553         sqlite3VdbeAddOp1(v, OP_Close, iIdxCur + i);
90554       }
90555     }
90556   } /* End non-truncate path */
90557 
90558   /* Update the sqlite_sequence table by storing the content of the
90559   ** maximum rowid counter values recorded while inserting into
90560   ** autoincrement tables.
90561   */
90562   if( pParse->nested==0 && pParse->pTriggerTab==0 ){
90563     sqlite3AutoincrementEnd(pParse);
90564   }
90565 
90566   /* Return the number of rows that were deleted. If this routine is
90567   ** generating code because of a call to sqlite3NestedParse(), do not
90568   ** invoke the callback function.
90569   */
90570   if( (db->flags&SQLITE_CountRows) && !pParse->nested && !pParse->pTriggerTab ){
90571     sqlite3VdbeAddOp2(v, OP_ResultRow, memCnt, 1);
90572     sqlite3VdbeSetNumCols(v, 1);
90573     sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows deleted", SQLITE_STATIC);
90574   }
90575 
90576 delete_from_cleanup:
90577   sqlite3AuthContextPop(&sContext);
90578   sqlite3SrcListDelete(db, pTabList);
90579   sqlite3ExprDelete(db, pWhere);
90580   sqlite3DbFree(db, aToOpen);
90581   return;
90582 }
90583 /* Make sure "isView" and other macros defined above are undefined. Otherwise
90584 ** thely may interfere with compilation of other functions in this file
90585 ** (or in another file, if this file becomes part of the amalgamation).  */
90586 #ifdef isView
90587  #undef isView
90588 #endif
90589 #ifdef pTrigger
90590  #undef pTrigger
90591 #endif
90592 
90593 /*
90594 ** This routine generates VDBE code that causes a single row of a
90595 ** single table to be deleted.  Both the original table entry and
90596 ** all indices are removed.
90597 **
90598 ** Preconditions:
90599 **
90600 **   1.  iDataCur is an open cursor on the btree that is the canonical data
90601 **       store for the table.  (This will be either the table itself,
90602 **       in the case of a rowid table, or the PRIMARY KEY index in the case
90603 **       of a WITHOUT ROWID table.)
90604 **
90605 **   2.  Read/write cursors for all indices of pTab must be open as
90606 **       cursor number iIdxCur+i for the i-th index.
90607 **
90608 **   3.  The primary key for the row to be deleted must be stored in a
90609 **       sequence of nPk memory cells starting at iPk.  If nPk==0 that means
90610 **       that a search record formed from OP_MakeRecord is contained in the
90611 **       single memory location iPk.
90612 */
90613 SQLITE_PRIVATE void sqlite3GenerateRowDelete(
90614   Parse *pParse,     /* Parsing context */
90615   Table *pTab,       /* Table containing the row to be deleted */
90616   Trigger *pTrigger, /* List of triggers to (potentially) fire */
90617   int iDataCur,      /* Cursor from which column data is extracted */
90618   int iIdxCur,       /* First index cursor */
90619   int iPk,           /* First memory cell containing the PRIMARY KEY */
90620   i16 nPk,           /* Number of PRIMARY KEY memory cells */
90621   u8 count,          /* If non-zero, increment the row change counter */
90622   u8 onconf,         /* Default ON CONFLICT policy for triggers */
90623   u8 bNoSeek         /* iDataCur is already pointing to the row to delete */
90624 ){
90625   Vdbe *v = pParse->pVdbe;        /* Vdbe */
90626   int iOld = 0;                   /* First register in OLD.* array */
90627   int iLabel;                     /* Label resolved to end of generated code */
90628   u8 opSeek;                      /* Seek opcode */
90629 
90630   /* Vdbe is guaranteed to have been allocated by this stage. */
90631   assert( v );
90632   VdbeModuleComment((v, "BEGIN: GenRowDel(%d,%d,%d,%d)",
90633                          iDataCur, iIdxCur, iPk, (int)nPk));
90634 
90635   /* Seek cursor iCur to the row to delete. If this row no longer exists
90636   ** (this can happen if a trigger program has already deleted it), do
90637   ** not attempt to delete it or fire any DELETE triggers.  */
90638   iLabel = sqlite3VdbeMakeLabel(v);
90639   opSeek = HasRowid(pTab) ? OP_NotExists : OP_NotFound;
90640   if( !bNoSeek ){
90641     sqlite3VdbeAddOp4Int(v, opSeek, iDataCur, iLabel, iPk, nPk);
90642     VdbeCoverageIf(v, opSeek==OP_NotExists);
90643     VdbeCoverageIf(v, opSeek==OP_NotFound);
90644   }
90645 
90646   /* If there are any triggers to fire, allocate a range of registers to
90647   ** use for the old.* references in the triggers.  */
90648   if( sqlite3FkRequired(pParse, pTab, 0, 0) || pTrigger ){
90649     u32 mask;                     /* Mask of OLD.* columns in use */
90650     int iCol;                     /* Iterator used while populating OLD.* */
90651     int addrStart;                /* Start of BEFORE trigger programs */
90652 
90653     /* TODO: Could use temporary registers here. Also could attempt to
90654     ** avoid copying the contents of the rowid register.  */
90655     mask = sqlite3TriggerColmask(
90656         pParse, pTrigger, 0, 0, TRIGGER_BEFORE|TRIGGER_AFTER, pTab, onconf
90657     );
90658     mask |= sqlite3FkOldmask(pParse, pTab);
90659     iOld = pParse->nMem+1;
90660     pParse->nMem += (1 + pTab->nCol);
90661 
90662     /* Populate the OLD.* pseudo-table register array. These values will be
90663     ** used by any BEFORE and AFTER triggers that exist.  */
90664     sqlite3VdbeAddOp2(v, OP_Copy, iPk, iOld);
90665     for(iCol=0; iCol<pTab->nCol; iCol++){
90666       testcase( mask!=0xffffffff && iCol==31 );
90667       testcase( mask!=0xffffffff && iCol==32 );
90668       if( mask==0xffffffff || (iCol<=31 && (mask & MASKBIT32(iCol))!=0) ){
90669         sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, iCol, iOld+iCol+1);
90670       }
90671     }
90672 
90673     /* Invoke BEFORE DELETE trigger programs. */
90674     addrStart = sqlite3VdbeCurrentAddr(v);
90675     sqlite3CodeRowTrigger(pParse, pTrigger,
90676         TK_DELETE, 0, TRIGGER_BEFORE, pTab, iOld, onconf, iLabel
90677     );
90678 
90679     /* If any BEFORE triggers were coded, then seek the cursor to the
90680     ** row to be deleted again. It may be that the BEFORE triggers moved
90681     ** the cursor or of already deleted the row that the cursor was
90682     ** pointing to.
90683     */
90684     if( addrStart<sqlite3VdbeCurrentAddr(v) ){
90685       sqlite3VdbeAddOp4Int(v, opSeek, iDataCur, iLabel, iPk, nPk);
90686       VdbeCoverageIf(v, opSeek==OP_NotExists);
90687       VdbeCoverageIf(v, opSeek==OP_NotFound);
90688     }
90689 
90690     /* Do FK processing. This call checks that any FK constraints that
90691     ** refer to this table (i.e. constraints attached to other tables)
90692     ** are not violated by deleting this row.  */
90693     sqlite3FkCheck(pParse, pTab, iOld, 0, 0, 0);
90694   }
90695 
90696   /* Delete the index and table entries. Skip this step if pTab is really
90697   ** a view (in which case the only effect of the DELETE statement is to
90698   ** fire the INSTEAD OF triggers).  */
90699   if( pTab->pSelect==0 ){
90700     sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur, 0);
90701     sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, (count?OPFLAG_NCHANGE:0));
90702     if( count ){
90703       sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_TRANSIENT);
90704     }
90705   }
90706 
90707   /* Do any ON CASCADE, SET NULL or SET DEFAULT operations required to
90708   ** handle rows (possibly in other tables) that refer via a foreign key
90709   ** to the row just deleted. */
90710   sqlite3FkActions(pParse, pTab, 0, iOld, 0, 0);
90711 
90712   /* Invoke AFTER DELETE trigger programs. */
90713   sqlite3CodeRowTrigger(pParse, pTrigger,
90714       TK_DELETE, 0, TRIGGER_AFTER, pTab, iOld, onconf, iLabel
90715   );
90716 
90717   /* Jump here if the row had already been deleted before any BEFORE
90718   ** trigger programs were invoked. Or if a trigger program throws a
90719   ** RAISE(IGNORE) exception.  */
90720   sqlite3VdbeResolveLabel(v, iLabel);
90721   VdbeModuleComment((v, "END: GenRowDel()"));
90722 }
90723 
90724 /*
90725 ** This routine generates VDBE code that causes the deletion of all
90726 ** index entries associated with a single row of a single table, pTab
90727 **
90728 ** Preconditions:
90729 **
90730 **   1.  A read/write cursor "iDataCur" must be open on the canonical storage
90731 **       btree for the table pTab.  (This will be either the table itself
90732 **       for rowid tables or to the primary key index for WITHOUT ROWID
90733 **       tables.)
90734 **
90735 **   2.  Read/write cursors for all indices of pTab must be open as
90736 **       cursor number iIdxCur+i for the i-th index.  (The pTab->pIndex
90737 **       index is the 0-th index.)
90738 **
90739 **   3.  The "iDataCur" cursor must be already be positioned on the row
90740 **       that is to be deleted.
90741 */
90742 SQLITE_PRIVATE void sqlite3GenerateRowIndexDelete(
90743   Parse *pParse,     /* Parsing and code generating context */
90744   Table *pTab,       /* Table containing the row to be deleted */
90745   int iDataCur,      /* Cursor of table holding data. */
90746   int iIdxCur,       /* First index cursor */
90747   int *aRegIdx       /* Only delete if aRegIdx!=0 && aRegIdx[i]>0 */
90748 ){
90749   int i;             /* Index loop counter */
90750   int r1 = -1;       /* Register holding an index key */
90751   int iPartIdxLabel; /* Jump destination for skipping partial index entries */
90752   Index *pIdx;       /* Current index */
90753   Index *pPrior = 0; /* Prior index */
90754   Vdbe *v;           /* The prepared statement under construction */
90755   Index *pPk;        /* PRIMARY KEY index, or NULL for rowid tables */
90756 
90757   v = pParse->pVdbe;
90758   pPk = HasRowid(pTab) ? 0 : sqlite3PrimaryKeyIndex(pTab);
90759   for(i=0, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){
90760     assert( iIdxCur+i!=iDataCur || pPk==pIdx );
90761     if( aRegIdx!=0 && aRegIdx[i]==0 ) continue;
90762     if( pIdx==pPk ) continue;
90763     VdbeModuleComment((v, "GenRowIdxDel for %s", pIdx->zName));
90764     r1 = sqlite3GenerateIndexKey(pParse, pIdx, iDataCur, 0, 1,
90765                                  &iPartIdxLabel, pPrior, r1);
90766     sqlite3VdbeAddOp3(v, OP_IdxDelete, iIdxCur+i, r1,
90767                       pIdx->uniqNotNull ? pIdx->nKeyCol : pIdx->nColumn);
90768     sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel);
90769     pPrior = pIdx;
90770   }
90771 }
90772 
90773 /*
90774 ** Generate code that will assemble an index key and stores it in register
90775 ** regOut.  The key with be for index pIdx which is an index on pTab.
90776 ** iCur is the index of a cursor open on the pTab table and pointing to
90777 ** the entry that needs indexing.  If pTab is a WITHOUT ROWID table, then
90778 ** iCur must be the cursor of the PRIMARY KEY index.
90779 **
90780 ** Return a register number which is the first in a block of
90781 ** registers that holds the elements of the index key.  The
90782 ** block of registers has already been deallocated by the time
90783 ** this routine returns.
90784 **
90785 ** If *piPartIdxLabel is not NULL, fill it in with a label and jump
90786 ** to that label if pIdx is a partial index that should be skipped.
90787 ** The label should be resolved using sqlite3ResolvePartIdxLabel().
90788 ** A partial index should be skipped if its WHERE clause evaluates
90789 ** to false or null.  If pIdx is not a partial index, *piPartIdxLabel
90790 ** will be set to zero which is an empty label that is ignored by
90791 ** sqlite3ResolvePartIdxLabel().
90792 **
90793 ** The pPrior and regPrior parameters are used to implement a cache to
90794 ** avoid unnecessary register loads.  If pPrior is not NULL, then it is
90795 ** a pointer to a different index for which an index key has just been
90796 ** computed into register regPrior.  If the current pIdx index is generating
90797 ** its key into the same sequence of registers and if pPrior and pIdx share
90798 ** a column in common, then the register corresponding to that column already
90799 ** holds the correct value and the loading of that register is skipped.
90800 ** This optimization is helpful when doing a DELETE or an INTEGRITY_CHECK
90801 ** on a table with multiple indices, and especially with the ROWID or
90802 ** PRIMARY KEY columns of the index.
90803 */
90804 SQLITE_PRIVATE int sqlite3GenerateIndexKey(
90805   Parse *pParse,       /* Parsing context */
90806   Index *pIdx,         /* The index for which to generate a key */
90807   int iDataCur,        /* Cursor number from which to take column data */
90808   int regOut,          /* Put the new key into this register if not 0 */
90809   int prefixOnly,      /* Compute only a unique prefix of the key */
90810   int *piPartIdxLabel, /* OUT: Jump to this label to skip partial index */
90811   Index *pPrior,       /* Previously generated index key */
90812   int regPrior         /* Register holding previous generated key */
90813 ){
90814   Vdbe *v = pParse->pVdbe;
90815   int j;
90816   Table *pTab = pIdx->pTable;
90817   int regBase;
90818   int nCol;
90819 
90820   if( piPartIdxLabel ){
90821     if( pIdx->pPartIdxWhere ){
90822       *piPartIdxLabel = sqlite3VdbeMakeLabel(v);
90823       pParse->iPartIdxTab = iDataCur;
90824       sqlite3ExprCachePush(pParse);
90825       sqlite3ExprIfFalse(pParse, pIdx->pPartIdxWhere, *piPartIdxLabel,
90826                          SQLITE_JUMPIFNULL);
90827     }else{
90828       *piPartIdxLabel = 0;
90829     }
90830   }
90831   nCol = (prefixOnly && pIdx->uniqNotNull) ? pIdx->nKeyCol : pIdx->nColumn;
90832   regBase = sqlite3GetTempRange(pParse, nCol);
90833   if( pPrior && (regBase!=regPrior || pPrior->pPartIdxWhere) ) pPrior = 0;
90834   for(j=0; j<nCol; j++){
90835     if( pPrior && pPrior->aiColumn[j]==pIdx->aiColumn[j] ) continue;
90836     sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, pIdx->aiColumn[j],
90837                                     regBase+j);
90838     /* If the column affinity is REAL but the number is an integer, then it
90839     ** might be stored in the table as an integer (using a compact
90840     ** representation) then converted to REAL by an OP_RealAffinity opcode.
90841     ** But we are getting ready to store this value back into an index, where
90842     ** it should be converted by to INTEGER again.  So omit the OP_RealAffinity
90843     ** opcode if it is present */
90844     sqlite3VdbeDeletePriorOpcode(v, OP_RealAffinity);
90845   }
90846   if( regOut ){
90847     sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regOut);
90848   }
90849   sqlite3ReleaseTempRange(pParse, regBase, nCol);
90850   return regBase;
90851 }
90852 
90853 /*
90854 ** If a prior call to sqlite3GenerateIndexKey() generated a jump-over label
90855 ** because it was a partial index, then this routine should be called to
90856 ** resolve that label.
90857 */
90858 SQLITE_PRIVATE void sqlite3ResolvePartIdxLabel(Parse *pParse, int iLabel){
90859   if( iLabel ){
90860     sqlite3VdbeResolveLabel(pParse->pVdbe, iLabel);
90861     sqlite3ExprCachePop(pParse);
90862   }
90863 }
90864 
90865 /************** End of delete.c **********************************************/
90866 /************** Begin file func.c ********************************************/
90867 /*
90868 ** 2002 February 23
90869 **
90870 ** The author disclaims copyright to this source code.  In place of
90871 ** a legal notice, here is a blessing:
90872 **
90873 **    May you do good and not evil.
90874 **    May you find forgiveness for yourself and forgive others.
90875 **    May you share freely, never taking more than you give.
90876 **
90877 *************************************************************************
90878 ** This file contains the C functions that implement various SQL
90879 ** functions of SQLite.
90880 **
90881 ** There is only one exported symbol in this file - the function
90882 ** sqliteRegisterBuildinFunctions() found at the bottom of the file.
90883 ** All other code has file scope.
90884 */
90885 /* #include <stdlib.h> */
90886 /* #include <assert.h> */
90887 
90888 /*
90889 ** Return the collating function associated with a function.
90890 */
90891 static CollSeq *sqlite3GetFuncCollSeq(sqlite3_context *context){
90892   return context->pColl;
90893 }
90894 
90895 /*
90896 ** Indicate that the accumulator load should be skipped on this
90897 ** iteration of the aggregate loop.
90898 */
90899 static void sqlite3SkipAccumulatorLoad(sqlite3_context *context){
90900   context->skipFlag = 1;
90901 }
90902 
90903 /*
90904 ** Implementation of the non-aggregate min() and max() functions
90905 */
90906 static void minmaxFunc(
90907   sqlite3_context *context,
90908   int argc,
90909   sqlite3_value **argv
90910 ){
90911   int i;
90912   int mask;    /* 0 for min() or 0xffffffff for max() */
90913   int iBest;
90914   CollSeq *pColl;
90915 
90916   assert( argc>1 );
90917   mask = sqlite3_user_data(context)==0 ? 0 : -1;
90918   pColl = sqlite3GetFuncCollSeq(context);
90919   assert( pColl );
90920   assert( mask==-1 || mask==0 );
90921   iBest = 0;
90922   if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
90923   for(i=1; i<argc; i++){
90924     if( sqlite3_value_type(argv[i])==SQLITE_NULL ) return;
90925     if( (sqlite3MemCompare(argv[iBest], argv[i], pColl)^mask)>=0 ){
90926       testcase( mask==0 );
90927       iBest = i;
90928     }
90929   }
90930   sqlite3_result_value(context, argv[iBest]);
90931 }
90932 
90933 /*
90934 ** Return the type of the argument.
90935 */
90936 static void typeofFunc(
90937   sqlite3_context *context,
90938   int NotUsed,
90939   sqlite3_value **argv
90940 ){
90941   const char *z = 0;
90942   UNUSED_PARAMETER(NotUsed);
90943   switch( sqlite3_value_type(argv[0]) ){
90944     case SQLITE_INTEGER: z = "integer"; break;
90945     case SQLITE_TEXT:    z = "text";    break;
90946     case SQLITE_FLOAT:   z = "real";    break;
90947     case SQLITE_BLOB:    z = "blob";    break;
90948     default:             z = "null";    break;
90949   }
90950   sqlite3_result_text(context, z, -1, SQLITE_STATIC);
90951 }
90952 
90953 
90954 /*
90955 ** Implementation of the length() function
90956 */
90957 static void lengthFunc(
90958   sqlite3_context *context,
90959   int argc,
90960   sqlite3_value **argv
90961 ){
90962   int len;
90963 
90964   assert( argc==1 );
90965   UNUSED_PARAMETER(argc);
90966   switch( sqlite3_value_type(argv[0]) ){
90967     case SQLITE_BLOB:
90968     case SQLITE_INTEGER:
90969     case SQLITE_FLOAT: {
90970       sqlite3_result_int(context, sqlite3_value_bytes(argv[0]));
90971       break;
90972     }
90973     case SQLITE_TEXT: {
90974       const unsigned char *z = sqlite3_value_text(argv[0]);
90975       if( z==0 ) return;
90976       len = 0;
90977       while( *z ){
90978         len++;
90979         SQLITE_SKIP_UTF8(z);
90980       }
90981       sqlite3_result_int(context, len);
90982       break;
90983     }
90984     default: {
90985       sqlite3_result_null(context);
90986       break;
90987     }
90988   }
90989 }
90990 
90991 /*
90992 ** Implementation of the abs() function.
90993 **
90994 ** IMP: R-23979-26855 The abs(X) function returns the absolute value of
90995 ** the numeric argument X.
90996 */
90997 static void absFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
90998   assert( argc==1 );
90999   UNUSED_PARAMETER(argc);
91000   switch( sqlite3_value_type(argv[0]) ){
91001     case SQLITE_INTEGER: {
91002       i64 iVal = sqlite3_value_int64(argv[0]);
91003       if( iVal<0 ){
91004         if( iVal==SMALLEST_INT64 ){
91005           /* IMP: R-31676-45509 If X is the integer -9223372036854775808
91006           ** then abs(X) throws an integer overflow error since there is no
91007           ** equivalent positive 64-bit two complement value. */
91008           sqlite3_result_error(context, "integer overflow", -1);
91009           return;
91010         }
91011         iVal = -iVal;
91012       }
91013       sqlite3_result_int64(context, iVal);
91014       break;
91015     }
91016     case SQLITE_NULL: {
91017       /* IMP: R-37434-19929 Abs(X) returns NULL if X is NULL. */
91018       sqlite3_result_null(context);
91019       break;
91020     }
91021     default: {
91022       /* Because sqlite3_value_double() returns 0.0 if the argument is not
91023       ** something that can be converted into a number, we have:
91024       ** IMP: R-57326-31541 Abs(X) return 0.0 if X is a string or blob that
91025       ** cannot be converted to a numeric value.
91026       */
91027       double rVal = sqlite3_value_double(argv[0]);
91028       if( rVal<0 ) rVal = -rVal;
91029       sqlite3_result_double(context, rVal);
91030       break;
91031     }
91032   }
91033 }
91034 
91035 /*
91036 ** Implementation of the instr() function.
91037 **
91038 ** instr(haystack,needle) finds the first occurrence of needle
91039 ** in haystack and returns the number of previous characters plus 1,
91040 ** or 0 if needle does not occur within haystack.
91041 **
91042 ** If both haystack and needle are BLOBs, then the result is one more than
91043 ** the number of bytes in haystack prior to the first occurrence of needle,
91044 ** or 0 if needle never occurs in haystack.
91045 */
91046 static void instrFunc(
91047   sqlite3_context *context,
91048   int argc,
91049   sqlite3_value **argv
91050 ){
91051   const unsigned char *zHaystack;
91052   const unsigned char *zNeedle;
91053   int nHaystack;
91054   int nNeedle;
91055   int typeHaystack, typeNeedle;
91056   int N = 1;
91057   int isText;
91058 
91059   UNUSED_PARAMETER(argc);
91060   typeHaystack = sqlite3_value_type(argv[0]);
91061   typeNeedle = sqlite3_value_type(argv[1]);
91062   if( typeHaystack==SQLITE_NULL || typeNeedle==SQLITE_NULL ) return;
91063   nHaystack = sqlite3_value_bytes(argv[0]);
91064   nNeedle = sqlite3_value_bytes(argv[1]);
91065   if( typeHaystack==SQLITE_BLOB && typeNeedle==SQLITE_BLOB ){
91066     zHaystack = sqlite3_value_blob(argv[0]);
91067     zNeedle = sqlite3_value_blob(argv[1]);
91068     isText = 0;
91069   }else{
91070     zHaystack = sqlite3_value_text(argv[0]);
91071     zNeedle = sqlite3_value_text(argv[1]);
91072     isText = 1;
91073   }
91074   while( nNeedle<=nHaystack && memcmp(zHaystack, zNeedle, nNeedle)!=0 ){
91075     N++;
91076     do{
91077       nHaystack--;
91078       zHaystack++;
91079     }while( isText && (zHaystack[0]&0xc0)==0x80 );
91080   }
91081   if( nNeedle>nHaystack ) N = 0;
91082   sqlite3_result_int(context, N);
91083 }
91084 
91085 /*
91086 ** Implementation of the printf() function.
91087 */
91088 static void printfFunc(
91089   sqlite3_context *context,
91090   int argc,
91091   sqlite3_value **argv
91092 ){
91093   PrintfArguments x;
91094   StrAccum str;
91095   const char *zFormat;
91096   int n;
91097 
91098   if( argc>=1 && (zFormat = (const char*)sqlite3_value_text(argv[0]))!=0 ){
91099     x.nArg = argc-1;
91100     x.nUsed = 0;
91101     x.apArg = argv+1;
91102     sqlite3StrAccumInit(&str, 0, 0, SQLITE_MAX_LENGTH);
91103     str.db = sqlite3_context_db_handle(context);
91104     sqlite3XPrintf(&str, SQLITE_PRINTF_SQLFUNC, zFormat, &x);
91105     n = str.nChar;
91106     sqlite3_result_text(context, sqlite3StrAccumFinish(&str), n,
91107                         SQLITE_DYNAMIC);
91108   }
91109 }
91110 
91111 /*
91112 ** Implementation of the substr() function.
91113 **
91114 ** substr(x,p1,p2)  returns p2 characters of x[] beginning with p1.
91115 ** p1 is 1-indexed.  So substr(x,1,1) returns the first character
91116 ** of x.  If x is text, then we actually count UTF-8 characters.
91117 ** If x is a blob, then we count bytes.
91118 **
91119 ** If p1 is negative, then we begin abs(p1) from the end of x[].
91120 **
91121 ** If p2 is negative, return the p2 characters preceding p1.
91122 */
91123 static void substrFunc(
91124   sqlite3_context *context,
91125   int argc,
91126   sqlite3_value **argv
91127 ){
91128   const unsigned char *z;
91129   const unsigned char *z2;
91130   int len;
91131   int p0type;
91132   i64 p1, p2;
91133   int negP2 = 0;
91134 
91135   assert( argc==3 || argc==2 );
91136   if( sqlite3_value_type(argv[1])==SQLITE_NULL
91137    || (argc==3 && sqlite3_value_type(argv[2])==SQLITE_NULL)
91138   ){
91139     return;
91140   }
91141   p0type = sqlite3_value_type(argv[0]);
91142   p1 = sqlite3_value_int(argv[1]);
91143   if( p0type==SQLITE_BLOB ){
91144     len = sqlite3_value_bytes(argv[0]);
91145     z = sqlite3_value_blob(argv[0]);
91146     if( z==0 ) return;
91147     assert( len==sqlite3_value_bytes(argv[0]) );
91148   }else{
91149     z = sqlite3_value_text(argv[0]);
91150     if( z==0 ) return;
91151     len = 0;
91152     if( p1<0 ){
91153       for(z2=z; *z2; len++){
91154         SQLITE_SKIP_UTF8(z2);
91155       }
91156     }
91157   }
91158   if( argc==3 ){
91159     p2 = sqlite3_value_int(argv[2]);
91160     if( p2<0 ){
91161       p2 = -p2;
91162       negP2 = 1;
91163     }
91164   }else{
91165     p2 = sqlite3_context_db_handle(context)->aLimit[SQLITE_LIMIT_LENGTH];
91166   }
91167   if( p1<0 ){
91168     p1 += len;
91169     if( p1<0 ){
91170       p2 += p1;
91171       if( p2<0 ) p2 = 0;
91172       p1 = 0;
91173     }
91174   }else if( p1>0 ){
91175     p1--;
91176   }else if( p2>0 ){
91177     p2--;
91178   }
91179   if( negP2 ){
91180     p1 -= p2;
91181     if( p1<0 ){
91182       p2 += p1;
91183       p1 = 0;
91184     }
91185   }
91186   assert( p1>=0 && p2>=0 );
91187   if( p0type!=SQLITE_BLOB ){
91188     while( *z && p1 ){
91189       SQLITE_SKIP_UTF8(z);
91190       p1--;
91191     }
91192     for(z2=z; *z2 && p2; p2--){
91193       SQLITE_SKIP_UTF8(z2);
91194     }
91195     sqlite3_result_text(context, (char*)z, (int)(z2-z), SQLITE_TRANSIENT);
91196   }else{
91197     if( p1+p2>len ){
91198       p2 = len-p1;
91199       if( p2<0 ) p2 = 0;
91200     }
91201     sqlite3_result_blob(context, (char*)&z[p1], (int)p2, SQLITE_TRANSIENT);
91202   }
91203 }
91204 
91205 /*
91206 ** Implementation of the round() function
91207 */
91208 #ifndef SQLITE_OMIT_FLOATING_POINT
91209 static void roundFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
91210   int n = 0;
91211   double r;
91212   char *zBuf;
91213   assert( argc==1 || argc==2 );
91214   if( argc==2 ){
91215     if( SQLITE_NULL==sqlite3_value_type(argv[1]) ) return;
91216     n = sqlite3_value_int(argv[1]);
91217     if( n>30 ) n = 30;
91218     if( n<0 ) n = 0;
91219   }
91220   if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
91221   r = sqlite3_value_double(argv[0]);
91222   /* If Y==0 and X will fit in a 64-bit int,
91223   ** handle the rounding directly,
91224   ** otherwise use printf.
91225   */
91226   if( n==0 && r>=0 && r<LARGEST_INT64-1 ){
91227     r = (double)((sqlite_int64)(r+0.5));
91228   }else if( n==0 && r<0 && (-r)<LARGEST_INT64-1 ){
91229     r = -(double)((sqlite_int64)((-r)+0.5));
91230   }else{
91231     zBuf = sqlite3_mprintf("%.*f",n,r);
91232     if( zBuf==0 ){
91233       sqlite3_result_error_nomem(context);
91234       return;
91235     }
91236     sqlite3AtoF(zBuf, &r, sqlite3Strlen30(zBuf), SQLITE_UTF8);
91237     sqlite3_free(zBuf);
91238   }
91239   sqlite3_result_double(context, r);
91240 }
91241 #endif
91242 
91243 /*
91244 ** Allocate nByte bytes of space using sqlite3_malloc(). If the
91245 ** allocation fails, call sqlite3_result_error_nomem() to notify
91246 ** the database handle that malloc() has failed and return NULL.
91247 ** If nByte is larger than the maximum string or blob length, then
91248 ** raise an SQLITE_TOOBIG exception and return NULL.
91249 */
91250 static void *contextMalloc(sqlite3_context *context, i64 nByte){
91251   char *z;
91252   sqlite3 *db = sqlite3_context_db_handle(context);
91253   assert( nByte>0 );
91254   testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH] );
91255   testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH]+1 );
91256   if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
91257     sqlite3_result_error_toobig(context);
91258     z = 0;
91259   }else{
91260     z = sqlite3Malloc((int)nByte);
91261     if( !z ){
91262       sqlite3_result_error_nomem(context);
91263     }
91264   }
91265   return z;
91266 }
91267 
91268 /*
91269 ** Implementation of the upper() and lower() SQL functions.
91270 */
91271 static void upperFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
91272   char *z1;
91273   const char *z2;
91274   int i, n;
91275   UNUSED_PARAMETER(argc);
91276   z2 = (char*)sqlite3_value_text(argv[0]);
91277   n = sqlite3_value_bytes(argv[0]);
91278   /* Verify that the call to _bytes() does not invalidate the _text() pointer */
91279   assert( z2==(char*)sqlite3_value_text(argv[0]) );
91280   if( z2 ){
91281     z1 = contextMalloc(context, ((i64)n)+1);
91282     if( z1 ){
91283       for(i=0; i<n; i++){
91284         z1[i] = (char)sqlite3Toupper(z2[i]);
91285       }
91286       sqlite3_result_text(context, z1, n, sqlite3_free);
91287     }
91288   }
91289 }
91290 static void lowerFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
91291   char *z1;
91292   const char *z2;
91293   int i, n;
91294   UNUSED_PARAMETER(argc);
91295   z2 = (char*)sqlite3_value_text(argv[0]);
91296   n = sqlite3_value_bytes(argv[0]);
91297   /* Verify that the call to _bytes() does not invalidate the _text() pointer */
91298   assert( z2==(char*)sqlite3_value_text(argv[0]) );
91299   if( z2 ){
91300     z1 = contextMalloc(context, ((i64)n)+1);
91301     if( z1 ){
91302       for(i=0; i<n; i++){
91303         z1[i] = sqlite3Tolower(z2[i]);
91304       }
91305       sqlite3_result_text(context, z1, n, sqlite3_free);
91306     }
91307   }
91308 }
91309 
91310 /*
91311 ** Some functions like COALESCE() and IFNULL() and UNLIKELY() are implemented
91312 ** as VDBE code so that unused argument values do not have to be computed.
91313 ** However, we still need some kind of function implementation for this
91314 ** routines in the function table.  The noopFunc macro provides this.
91315 ** noopFunc will never be called so it doesn't matter what the implementation
91316 ** is.  We might as well use the "version()" function as a substitute.
91317 */
91318 #define noopFunc versionFunc   /* Substitute function - never called */
91319 
91320 /*
91321 ** Implementation of random().  Return a random integer.
91322 */
91323 static void randomFunc(
91324   sqlite3_context *context,
91325   int NotUsed,
91326   sqlite3_value **NotUsed2
91327 ){
91328   sqlite_int64 r;
91329   UNUSED_PARAMETER2(NotUsed, NotUsed2);
91330   sqlite3_randomness(sizeof(r), &r);
91331   if( r<0 ){
91332     /* We need to prevent a random number of 0x8000000000000000
91333     ** (or -9223372036854775808) since when you do abs() of that
91334     ** number of you get the same value back again.  To do this
91335     ** in a way that is testable, mask the sign bit off of negative
91336     ** values, resulting in a positive value.  Then take the
91337     ** 2s complement of that positive value.  The end result can
91338     ** therefore be no less than -9223372036854775807.
91339     */
91340     r = -(r & LARGEST_INT64);
91341   }
91342   sqlite3_result_int64(context, r);
91343 }
91344 
91345 /*
91346 ** Implementation of randomblob(N).  Return a random blob
91347 ** that is N bytes long.
91348 */
91349 static void randomBlob(
91350   sqlite3_context *context,
91351   int argc,
91352   sqlite3_value **argv
91353 ){
91354   int n;
91355   unsigned char *p;
91356   assert( argc==1 );
91357   UNUSED_PARAMETER(argc);
91358   n = sqlite3_value_int(argv[0]);
91359   if( n<1 ){
91360     n = 1;
91361   }
91362   p = contextMalloc(context, n);
91363   if( p ){
91364     sqlite3_randomness(n, p);
91365     sqlite3_result_blob(context, (char*)p, n, sqlite3_free);
91366   }
91367 }
91368 
91369 /*
91370 ** Implementation of the last_insert_rowid() SQL function.  The return
91371 ** value is the same as the sqlite3_last_insert_rowid() API function.
91372 */
91373 static void last_insert_rowid(
91374   sqlite3_context *context,
91375   int NotUsed,
91376   sqlite3_value **NotUsed2
91377 ){
91378   sqlite3 *db = sqlite3_context_db_handle(context);
91379   UNUSED_PARAMETER2(NotUsed, NotUsed2);
91380   /* IMP: R-51513-12026 The last_insert_rowid() SQL function is a
91381   ** wrapper around the sqlite3_last_insert_rowid() C/C++ interface
91382   ** function. */
91383   sqlite3_result_int64(context, sqlite3_last_insert_rowid(db));
91384 }
91385 
91386 /*
91387 ** Implementation of the changes() SQL function.
91388 **
91389 ** IMP: R-62073-11209 The changes() SQL function is a wrapper
91390 ** around the sqlite3_changes() C/C++ function and hence follows the same
91391 ** rules for counting changes.
91392 */
91393 static void changes(
91394   sqlite3_context *context,
91395   int NotUsed,
91396   sqlite3_value **NotUsed2
91397 ){
91398   sqlite3 *db = sqlite3_context_db_handle(context);
91399   UNUSED_PARAMETER2(NotUsed, NotUsed2);
91400   sqlite3_result_int(context, sqlite3_changes(db));
91401 }
91402 
91403 /*
91404 ** Implementation of the total_changes() SQL function.  The return value is
91405 ** the same as the sqlite3_total_changes() API function.
91406 */
91407 static void total_changes(
91408   sqlite3_context *context,
91409   int NotUsed,
91410   sqlite3_value **NotUsed2
91411 ){
91412   sqlite3 *db = sqlite3_context_db_handle(context);
91413   UNUSED_PARAMETER2(NotUsed, NotUsed2);
91414   /* IMP: R-52756-41993 This function is a wrapper around the
91415   ** sqlite3_total_changes() C/C++ interface. */
91416   sqlite3_result_int(context, sqlite3_total_changes(db));
91417 }
91418 
91419 /*
91420 ** A structure defining how to do GLOB-style comparisons.
91421 */
91422 struct compareInfo {
91423   u8 matchAll;
91424   u8 matchOne;
91425   u8 matchSet;
91426   u8 noCase;
91427 };
91428 
91429 /*
91430 ** For LIKE and GLOB matching on EBCDIC machines, assume that every
91431 ** character is exactly one byte in size.  Also, all characters are
91432 ** able to participate in upper-case-to-lower-case mappings in EBCDIC
91433 ** whereas only characters less than 0x80 do in ASCII.
91434 */
91435 #if defined(SQLITE_EBCDIC)
91436 # define sqlite3Utf8Read(A)    (*((*A)++))
91437 # define GlobUpperToLower(A)   A = sqlite3UpperToLower[A]
91438 #else
91439 # define GlobUpperToLower(A)   if( !((A)&~0x7f) ){ A = sqlite3UpperToLower[A]; }
91440 #endif
91441 
91442 static const struct compareInfo globInfo = { '*', '?', '[', 0 };
91443 /* The correct SQL-92 behavior is for the LIKE operator to ignore
91444 ** case.  Thus  'a' LIKE 'A' would be true. */
91445 static const struct compareInfo likeInfoNorm = { '%', '_',   0, 1 };
91446 /* If SQLITE_CASE_SENSITIVE_LIKE is defined, then the LIKE operator
91447 ** is case sensitive causing 'a' LIKE 'A' to be false */
91448 static const struct compareInfo likeInfoAlt = { '%', '_',   0, 0 };
91449 
91450 /*
91451 ** Compare two UTF-8 strings for equality where the first string can
91452 ** potentially be a "glob" expression.  Return true (1) if they
91453 ** are the same and false (0) if they are different.
91454 **
91455 ** Globbing rules:
91456 **
91457 **      '*'       Matches any sequence of zero or more characters.
91458 **
91459 **      '?'       Matches exactly one character.
91460 **
91461 **     [...]      Matches one character from the enclosed list of
91462 **                characters.
91463 **
91464 **     [^...]     Matches one character not in the enclosed list.
91465 **
91466 ** With the [...] and [^...] matching, a ']' character can be included
91467 ** in the list by making it the first character after '[' or '^'.  A
91468 ** range of characters can be specified using '-'.  Example:
91469 ** "[a-z]" matches any single lower-case letter.  To match a '-', make
91470 ** it the last character in the list.
91471 **
91472 ** This routine is usually quick, but can be N**2 in the worst case.
91473 **
91474 ** Hints: to match '*' or '?', put them in "[]".  Like this:
91475 **
91476 **         abc[*]xyz        Matches "abc*xyz" only
91477 */
91478 static int patternCompare(
91479   const u8 *zPattern,              /* The glob pattern */
91480   const u8 *zString,               /* The string to compare against the glob */
91481   const struct compareInfo *pInfo, /* Information about how to do the compare */
91482   u32 esc                          /* The escape character */
91483 ){
91484   u32 c, c2;
91485   int invert;
91486   int seen;
91487   u8 matchOne = pInfo->matchOne;
91488   u8 matchAll = pInfo->matchAll;
91489   u8 matchSet = pInfo->matchSet;
91490   u8 noCase = pInfo->noCase;
91491   int prevEscape = 0;     /* True if the previous character was 'escape' */
91492 
91493   while( (c = sqlite3Utf8Read(&zPattern))!=0 ){
91494     if( c==matchAll && !prevEscape ){
91495       while( (c=sqlite3Utf8Read(&zPattern)) == matchAll
91496                || c == matchOne ){
91497         if( c==matchOne && sqlite3Utf8Read(&zString)==0 ){
91498           return 0;
91499         }
91500       }
91501       if( c==0 ){
91502         return 1;
91503       }else if( c==esc ){
91504         c = sqlite3Utf8Read(&zPattern);
91505         if( c==0 ){
91506           return 0;
91507         }
91508       }else if( c==matchSet ){
91509         assert( esc==0 );         /* This is GLOB, not LIKE */
91510         assert( matchSet<0x80 );  /* '[' is a single-byte character */
91511         while( *zString && patternCompare(&zPattern[-1],zString,pInfo,esc)==0 ){
91512           SQLITE_SKIP_UTF8(zString);
91513         }
91514         return *zString!=0;
91515       }
91516       while( (c2 = sqlite3Utf8Read(&zString))!=0 ){
91517         if( noCase ){
91518           GlobUpperToLower(c2);
91519           GlobUpperToLower(c);
91520           while( c2 != 0 && c2 != c ){
91521             c2 = sqlite3Utf8Read(&zString);
91522             GlobUpperToLower(c2);
91523           }
91524         }else{
91525           while( c2 != 0 && c2 != c ){
91526             c2 = sqlite3Utf8Read(&zString);
91527           }
91528         }
91529         if( c2==0 ) return 0;
91530         if( patternCompare(zPattern,zString,pInfo,esc) ) return 1;
91531       }
91532       return 0;
91533     }else if( c==matchOne && !prevEscape ){
91534       if( sqlite3Utf8Read(&zString)==0 ){
91535         return 0;
91536       }
91537     }else if( c==matchSet ){
91538       u32 prior_c = 0;
91539       assert( esc==0 );    /* This only occurs for GLOB, not LIKE */
91540       seen = 0;
91541       invert = 0;
91542       c = sqlite3Utf8Read(&zString);
91543       if( c==0 ) return 0;
91544       c2 = sqlite3Utf8Read(&zPattern);
91545       if( c2=='^' ){
91546         invert = 1;
91547         c2 = sqlite3Utf8Read(&zPattern);
91548       }
91549       if( c2==']' ){
91550         if( c==']' ) seen = 1;
91551         c2 = sqlite3Utf8Read(&zPattern);
91552       }
91553       while( c2 && c2!=']' ){
91554         if( c2=='-' && zPattern[0]!=']' && zPattern[0]!=0 && prior_c>0 ){
91555           c2 = sqlite3Utf8Read(&zPattern);
91556           if( c>=prior_c && c<=c2 ) seen = 1;
91557           prior_c = 0;
91558         }else{
91559           if( c==c2 ){
91560             seen = 1;
91561           }
91562           prior_c = c2;
91563         }
91564         c2 = sqlite3Utf8Read(&zPattern);
91565       }
91566       if( c2==0 || (seen ^ invert)==0 ){
91567         return 0;
91568       }
91569     }else if( esc==c && !prevEscape ){
91570       prevEscape = 1;
91571     }else{
91572       c2 = sqlite3Utf8Read(&zString);
91573       if( noCase ){
91574         GlobUpperToLower(c);
91575         GlobUpperToLower(c2);
91576       }
91577       if( c!=c2 ){
91578         return 0;
91579       }
91580       prevEscape = 0;
91581     }
91582   }
91583   return *zString==0;
91584 }
91585 
91586 /*
91587 ** The sqlite3_strglob() interface.
91588 */
91589 SQLITE_API int sqlite3_strglob(const char *zGlobPattern, const char *zString){
91590   return patternCompare((u8*)zGlobPattern, (u8*)zString, &globInfo, 0)==0;
91591 }
91592 
91593 /*
91594 ** Count the number of times that the LIKE operator (or GLOB which is
91595 ** just a variation of LIKE) gets called.  This is used for testing
91596 ** only.
91597 */
91598 #ifdef SQLITE_TEST
91599 SQLITE_API int sqlite3_like_count = 0;
91600 #endif
91601 
91602 
91603 /*
91604 ** Implementation of the like() SQL function.  This function implements
91605 ** the build-in LIKE operator.  The first argument to the function is the
91606 ** pattern and the second argument is the string.  So, the SQL statements:
91607 **
91608 **       A LIKE B
91609 **
91610 ** is implemented as like(B,A).
91611 **
91612 ** This same function (with a different compareInfo structure) computes
91613 ** the GLOB operator.
91614 */
91615 static void likeFunc(
91616   sqlite3_context *context,
91617   int argc,
91618   sqlite3_value **argv
91619 ){
91620   const unsigned char *zA, *zB;
91621   u32 escape = 0;
91622   int nPat;
91623   sqlite3 *db = sqlite3_context_db_handle(context);
91624 
91625   zB = sqlite3_value_text(argv[0]);
91626   zA = sqlite3_value_text(argv[1]);
91627 
91628   /* Limit the length of the LIKE or GLOB pattern to avoid problems
91629   ** of deep recursion and N*N behavior in patternCompare().
91630   */
91631   nPat = sqlite3_value_bytes(argv[0]);
91632   testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] );
91633   testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]+1 );
91634   if( nPat > db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] ){
91635     sqlite3_result_error(context, "LIKE or GLOB pattern too complex", -1);
91636     return;
91637   }
91638   assert( zB==sqlite3_value_text(argv[0]) );  /* Encoding did not change */
91639 
91640   if( argc==3 ){
91641     /* The escape character string must consist of a single UTF-8 character.
91642     ** Otherwise, return an error.
91643     */
91644     const unsigned char *zEsc = sqlite3_value_text(argv[2]);
91645     if( zEsc==0 ) return;
91646     if( sqlite3Utf8CharLen((char*)zEsc, -1)!=1 ){
91647       sqlite3_result_error(context,
91648           "ESCAPE expression must be a single character", -1);
91649       return;
91650     }
91651     escape = sqlite3Utf8Read(&zEsc);
91652   }
91653   if( zA && zB ){
91654     struct compareInfo *pInfo = sqlite3_user_data(context);
91655 #ifdef SQLITE_TEST
91656     sqlite3_like_count++;
91657 #endif
91658 
91659     sqlite3_result_int(context, patternCompare(zB, zA, pInfo, escape));
91660   }
91661 }
91662 
91663 /*
91664 ** Implementation of the NULLIF(x,y) function.  The result is the first
91665 ** argument if the arguments are different.  The result is NULL if the
91666 ** arguments are equal to each other.
91667 */
91668 static void nullifFunc(
91669   sqlite3_context *context,
91670   int NotUsed,
91671   sqlite3_value **argv
91672 ){
91673   CollSeq *pColl = sqlite3GetFuncCollSeq(context);
91674   UNUSED_PARAMETER(NotUsed);
91675   if( sqlite3MemCompare(argv[0], argv[1], pColl)!=0 ){
91676     sqlite3_result_value(context, argv[0]);
91677   }
91678 }
91679 
91680 /*
91681 ** Implementation of the sqlite_version() function.  The result is the version
91682 ** of the SQLite library that is running.
91683 */
91684 static void versionFunc(
91685   sqlite3_context *context,
91686   int NotUsed,
91687   sqlite3_value **NotUsed2
91688 ){
91689   UNUSED_PARAMETER2(NotUsed, NotUsed2);
91690   /* IMP: R-48699-48617 This function is an SQL wrapper around the
91691   ** sqlite3_libversion() C-interface. */
91692   sqlite3_result_text(context, sqlite3_libversion(), -1, SQLITE_STATIC);
91693 }
91694 
91695 /*
91696 ** Implementation of the sqlite_source_id() function. The result is a string
91697 ** that identifies the particular version of the source code used to build
91698 ** SQLite.
91699 */
91700 static void sourceidFunc(
91701   sqlite3_context *context,
91702   int NotUsed,
91703   sqlite3_value **NotUsed2
91704 ){
91705   UNUSED_PARAMETER2(NotUsed, NotUsed2);
91706   /* IMP: R-24470-31136 This function is an SQL wrapper around the
91707   ** sqlite3_sourceid() C interface. */
91708   sqlite3_result_text(context, sqlite3_sourceid(), -1, SQLITE_STATIC);
91709 }
91710 
91711 /*
91712 ** Implementation of the sqlite_log() function.  This is a wrapper around
91713 ** sqlite3_log().  The return value is NULL.  The function exists purely for
91714 ** its side-effects.
91715 */
91716 static void errlogFunc(
91717   sqlite3_context *context,
91718   int argc,
91719   sqlite3_value **argv
91720 ){
91721   UNUSED_PARAMETER(argc);
91722   UNUSED_PARAMETER(context);
91723   sqlite3_log(sqlite3_value_int(argv[0]), "%s", sqlite3_value_text(argv[1]));
91724 }
91725 
91726 /*
91727 ** Implementation of the sqlite_compileoption_used() function.
91728 ** The result is an integer that identifies if the compiler option
91729 ** was used to build SQLite.
91730 */
91731 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
91732 static void compileoptionusedFunc(
91733   sqlite3_context *context,
91734   int argc,
91735   sqlite3_value **argv
91736 ){
91737   const char *zOptName;
91738   assert( argc==1 );
91739   UNUSED_PARAMETER(argc);
91740   /* IMP: R-39564-36305 The sqlite_compileoption_used() SQL
91741   ** function is a wrapper around the sqlite3_compileoption_used() C/C++
91742   ** function.
91743   */
91744   if( (zOptName = (const char*)sqlite3_value_text(argv[0]))!=0 ){
91745     sqlite3_result_int(context, sqlite3_compileoption_used(zOptName));
91746   }
91747 }
91748 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
91749 
91750 /*
91751 ** Implementation of the sqlite_compileoption_get() function.
91752 ** The result is a string that identifies the compiler options
91753 ** used to build SQLite.
91754 */
91755 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
91756 static void compileoptiongetFunc(
91757   sqlite3_context *context,
91758   int argc,
91759   sqlite3_value **argv
91760 ){
91761   int n;
91762   assert( argc==1 );
91763   UNUSED_PARAMETER(argc);
91764   /* IMP: R-04922-24076 The sqlite_compileoption_get() SQL function
91765   ** is a wrapper around the sqlite3_compileoption_get() C/C++ function.
91766   */
91767   n = sqlite3_value_int(argv[0]);
91768   sqlite3_result_text(context, sqlite3_compileoption_get(n), -1, SQLITE_STATIC);
91769 }
91770 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
91771 
91772 /* Array for converting from half-bytes (nybbles) into ASCII hex
91773 ** digits. */
91774 static const char hexdigits[] = {
91775   '0', '1', '2', '3', '4', '5', '6', '7',
91776   '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'
91777 };
91778 
91779 /*
91780 ** Implementation of the QUOTE() function.  This function takes a single
91781 ** argument.  If the argument is numeric, the return value is the same as
91782 ** the argument.  If the argument is NULL, the return value is the string
91783 ** "NULL".  Otherwise, the argument is enclosed in single quotes with
91784 ** single-quote escapes.
91785 */
91786 static void quoteFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
91787   assert( argc==1 );
91788   UNUSED_PARAMETER(argc);
91789   switch( sqlite3_value_type(argv[0]) ){
91790     case SQLITE_FLOAT: {
91791       double r1, r2;
91792       char zBuf[50];
91793       r1 = sqlite3_value_double(argv[0]);
91794       sqlite3_snprintf(sizeof(zBuf), zBuf, "%!.15g", r1);
91795       sqlite3AtoF(zBuf, &r2, 20, SQLITE_UTF8);
91796       if( r1!=r2 ){
91797         sqlite3_snprintf(sizeof(zBuf), zBuf, "%!.20e", r1);
91798       }
91799       sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
91800       break;
91801     }
91802     case SQLITE_INTEGER: {
91803       sqlite3_result_value(context, argv[0]);
91804       break;
91805     }
91806     case SQLITE_BLOB: {
91807       char *zText = 0;
91808       char const *zBlob = sqlite3_value_blob(argv[0]);
91809       int nBlob = sqlite3_value_bytes(argv[0]);
91810       assert( zBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */
91811       zText = (char *)contextMalloc(context, (2*(i64)nBlob)+4);
91812       if( zText ){
91813         int i;
91814         for(i=0; i<nBlob; i++){
91815           zText[(i*2)+2] = hexdigits[(zBlob[i]>>4)&0x0F];
91816           zText[(i*2)+3] = hexdigits[(zBlob[i])&0x0F];
91817         }
91818         zText[(nBlob*2)+2] = '\'';
91819         zText[(nBlob*2)+3] = '\0';
91820         zText[0] = 'X';
91821         zText[1] = '\'';
91822         sqlite3_result_text(context, zText, -1, SQLITE_TRANSIENT);
91823         sqlite3_free(zText);
91824       }
91825       break;
91826     }
91827     case SQLITE_TEXT: {
91828       int i,j;
91829       u64 n;
91830       const unsigned char *zArg = sqlite3_value_text(argv[0]);
91831       char *z;
91832 
91833       if( zArg==0 ) return;
91834       for(i=0, n=0; zArg[i]; i++){ if( zArg[i]=='\'' ) n++; }
91835       z = contextMalloc(context, ((i64)i)+((i64)n)+3);
91836       if( z ){
91837         z[0] = '\'';
91838         for(i=0, j=1; zArg[i]; i++){
91839           z[j++] = zArg[i];
91840           if( zArg[i]=='\'' ){
91841             z[j++] = '\'';
91842           }
91843         }
91844         z[j++] = '\'';
91845         z[j] = 0;
91846         sqlite3_result_text(context, z, j, sqlite3_free);
91847       }
91848       break;
91849     }
91850     default: {
91851       assert( sqlite3_value_type(argv[0])==SQLITE_NULL );
91852       sqlite3_result_text(context, "NULL", 4, SQLITE_STATIC);
91853       break;
91854     }
91855   }
91856 }
91857 
91858 /*
91859 ** The unicode() function.  Return the integer unicode code-point value
91860 ** for the first character of the input string.
91861 */
91862 static void unicodeFunc(
91863   sqlite3_context *context,
91864   int argc,
91865   sqlite3_value **argv
91866 ){
91867   const unsigned char *z = sqlite3_value_text(argv[0]);
91868   (void)argc;
91869   if( z && z[0] ) sqlite3_result_int(context, sqlite3Utf8Read(&z));
91870 }
91871 
91872 /*
91873 ** The char() function takes zero or more arguments, each of which is
91874 ** an integer.  It constructs a string where each character of the string
91875 ** is the unicode character for the corresponding integer argument.
91876 */
91877 static void charFunc(
91878   sqlite3_context *context,
91879   int argc,
91880   sqlite3_value **argv
91881 ){
91882   unsigned char *z, *zOut;
91883   int i;
91884   zOut = z = sqlite3_malloc( argc*4+1 );
91885   if( z==0 ){
91886     sqlite3_result_error_nomem(context);
91887     return;
91888   }
91889   for(i=0; i<argc; i++){
91890     sqlite3_int64 x;
91891     unsigned c;
91892     x = sqlite3_value_int64(argv[i]);
91893     if( x<0 || x>0x10ffff ) x = 0xfffd;
91894     c = (unsigned)(x & 0x1fffff);
91895     if( c<0x00080 ){
91896       *zOut++ = (u8)(c&0xFF);
91897     }else if( c<0x00800 ){
91898       *zOut++ = 0xC0 + (u8)((c>>6)&0x1F);
91899       *zOut++ = 0x80 + (u8)(c & 0x3F);
91900     }else if( c<0x10000 ){
91901       *zOut++ = 0xE0 + (u8)((c>>12)&0x0F);
91902       *zOut++ = 0x80 + (u8)((c>>6) & 0x3F);
91903       *zOut++ = 0x80 + (u8)(c & 0x3F);
91904     }else{
91905       *zOut++ = 0xF0 + (u8)((c>>18) & 0x07);
91906       *zOut++ = 0x80 + (u8)((c>>12) & 0x3F);
91907       *zOut++ = 0x80 + (u8)((c>>6) & 0x3F);
91908       *zOut++ = 0x80 + (u8)(c & 0x3F);
91909     }                                                    \
91910   }
91911   sqlite3_result_text(context, (char*)z, (int)(zOut-z), sqlite3_free);
91912 }
91913 
91914 /*
91915 ** The hex() function.  Interpret the argument as a blob.  Return
91916 ** a hexadecimal rendering as text.
91917 */
91918 static void hexFunc(
91919   sqlite3_context *context,
91920   int argc,
91921   sqlite3_value **argv
91922 ){
91923   int i, n;
91924   const unsigned char *pBlob;
91925   char *zHex, *z;
91926   assert( argc==1 );
91927   UNUSED_PARAMETER(argc);
91928   pBlob = sqlite3_value_blob(argv[0]);
91929   n = sqlite3_value_bytes(argv[0]);
91930   assert( pBlob==sqlite3_value_blob(argv[0]) );  /* No encoding change */
91931   z = zHex = contextMalloc(context, ((i64)n)*2 + 1);
91932   if( zHex ){
91933     for(i=0; i<n; i++, pBlob++){
91934       unsigned char c = *pBlob;
91935       *(z++) = hexdigits[(c>>4)&0xf];
91936       *(z++) = hexdigits[c&0xf];
91937     }
91938     *z = 0;
91939     sqlite3_result_text(context, zHex, n*2, sqlite3_free);
91940   }
91941 }
91942 
91943 /*
91944 ** The zeroblob(N) function returns a zero-filled blob of size N bytes.
91945 */
91946 static void zeroblobFunc(
91947   sqlite3_context *context,
91948   int argc,
91949   sqlite3_value **argv
91950 ){
91951   i64 n;
91952   sqlite3 *db = sqlite3_context_db_handle(context);
91953   assert( argc==1 );
91954   UNUSED_PARAMETER(argc);
91955   n = sqlite3_value_int64(argv[0]);
91956   testcase( n==db->aLimit[SQLITE_LIMIT_LENGTH] );
91957   testcase( n==db->aLimit[SQLITE_LIMIT_LENGTH]+1 );
91958   if( n>db->aLimit[SQLITE_LIMIT_LENGTH] ){
91959     sqlite3_result_error_toobig(context);
91960   }else{
91961     sqlite3_result_zeroblob(context, (int)n); /* IMP: R-00293-64994 */
91962   }
91963 }
91964 
91965 /*
91966 ** The replace() function.  Three arguments are all strings: call
91967 ** them A, B, and C. The result is also a string which is derived
91968 ** from A by replacing every occurrence of B with C.  The match
91969 ** must be exact.  Collating sequences are not used.
91970 */
91971 static void replaceFunc(
91972   sqlite3_context *context,
91973   int argc,
91974   sqlite3_value **argv
91975 ){
91976   const unsigned char *zStr;        /* The input string A */
91977   const unsigned char *zPattern;    /* The pattern string B */
91978   const unsigned char *zRep;        /* The replacement string C */
91979   unsigned char *zOut;              /* The output */
91980   int nStr;                /* Size of zStr */
91981   int nPattern;            /* Size of zPattern */
91982   int nRep;                /* Size of zRep */
91983   i64 nOut;                /* Maximum size of zOut */
91984   int loopLimit;           /* Last zStr[] that might match zPattern[] */
91985   int i, j;                /* Loop counters */
91986 
91987   assert( argc==3 );
91988   UNUSED_PARAMETER(argc);
91989   zStr = sqlite3_value_text(argv[0]);
91990   if( zStr==0 ) return;
91991   nStr = sqlite3_value_bytes(argv[0]);
91992   assert( zStr==sqlite3_value_text(argv[0]) );  /* No encoding change */
91993   zPattern = sqlite3_value_text(argv[1]);
91994   if( zPattern==0 ){
91995     assert( sqlite3_value_type(argv[1])==SQLITE_NULL
91996             || sqlite3_context_db_handle(context)->mallocFailed );
91997     return;
91998   }
91999   if( zPattern[0]==0 ){
92000     assert( sqlite3_value_type(argv[1])!=SQLITE_NULL );
92001     sqlite3_result_value(context, argv[0]);
92002     return;
92003   }
92004   nPattern = sqlite3_value_bytes(argv[1]);
92005   assert( zPattern==sqlite3_value_text(argv[1]) );  /* No encoding change */
92006   zRep = sqlite3_value_text(argv[2]);
92007   if( zRep==0 ) return;
92008   nRep = sqlite3_value_bytes(argv[2]);
92009   assert( zRep==sqlite3_value_text(argv[2]) );
92010   nOut = nStr + 1;
92011   assert( nOut<SQLITE_MAX_LENGTH );
92012   zOut = contextMalloc(context, (i64)nOut);
92013   if( zOut==0 ){
92014     return;
92015   }
92016   loopLimit = nStr - nPattern;
92017   for(i=j=0; i<=loopLimit; i++){
92018     if( zStr[i]!=zPattern[0] || memcmp(&zStr[i], zPattern, nPattern) ){
92019       zOut[j++] = zStr[i];
92020     }else{
92021       u8 *zOld;
92022       sqlite3 *db = sqlite3_context_db_handle(context);
92023       nOut += nRep - nPattern;
92024       testcase( nOut-1==db->aLimit[SQLITE_LIMIT_LENGTH] );
92025       testcase( nOut-2==db->aLimit[SQLITE_LIMIT_LENGTH] );
92026       if( nOut-1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
92027         sqlite3_result_error_toobig(context);
92028         sqlite3_free(zOut);
92029         return;
92030       }
92031       zOld = zOut;
92032       zOut = sqlite3_realloc(zOut, (int)nOut);
92033       if( zOut==0 ){
92034         sqlite3_result_error_nomem(context);
92035         sqlite3_free(zOld);
92036         return;
92037       }
92038       memcpy(&zOut[j], zRep, nRep);
92039       j += nRep;
92040       i += nPattern-1;
92041     }
92042   }
92043   assert( j+nStr-i+1==nOut );
92044   memcpy(&zOut[j], &zStr[i], nStr-i);
92045   j += nStr - i;
92046   assert( j<=nOut );
92047   zOut[j] = 0;
92048   sqlite3_result_text(context, (char*)zOut, j, sqlite3_free);
92049 }
92050 
92051 /*
92052 ** Implementation of the TRIM(), LTRIM(), and RTRIM() functions.
92053 ** The userdata is 0x1 for left trim, 0x2 for right trim, 0x3 for both.
92054 */
92055 static void trimFunc(
92056   sqlite3_context *context,
92057   int argc,
92058   sqlite3_value **argv
92059 ){
92060   const unsigned char *zIn;         /* Input string */
92061   const unsigned char *zCharSet;    /* Set of characters to trim */
92062   int nIn;                          /* Number of bytes in input */
92063   int flags;                        /* 1: trimleft  2: trimright  3: trim */
92064   int i;                            /* Loop counter */
92065   unsigned char *aLen = 0;          /* Length of each character in zCharSet */
92066   unsigned char **azChar = 0;       /* Individual characters in zCharSet */
92067   int nChar;                        /* Number of characters in zCharSet */
92068 
92069   if( sqlite3_value_type(argv[0])==SQLITE_NULL ){
92070     return;
92071   }
92072   zIn = sqlite3_value_text(argv[0]);
92073   if( zIn==0 ) return;
92074   nIn = sqlite3_value_bytes(argv[0]);
92075   assert( zIn==sqlite3_value_text(argv[0]) );
92076   if( argc==1 ){
92077     static const unsigned char lenOne[] = { 1 };
92078     static unsigned char * const azOne[] = { (u8*)" " };
92079     nChar = 1;
92080     aLen = (u8*)lenOne;
92081     azChar = (unsigned char **)azOne;
92082     zCharSet = 0;
92083   }else if( (zCharSet = sqlite3_value_text(argv[1]))==0 ){
92084     return;
92085   }else{
92086     const unsigned char *z;
92087     for(z=zCharSet, nChar=0; *z; nChar++){
92088       SQLITE_SKIP_UTF8(z);
92089     }
92090     if( nChar>0 ){
92091       azChar = contextMalloc(context, ((i64)nChar)*(sizeof(char*)+1));
92092       if( azChar==0 ){
92093         return;
92094       }
92095       aLen = (unsigned char*)&azChar[nChar];
92096       for(z=zCharSet, nChar=0; *z; nChar++){
92097         azChar[nChar] = (unsigned char *)z;
92098         SQLITE_SKIP_UTF8(z);
92099         aLen[nChar] = (u8)(z - azChar[nChar]);
92100       }
92101     }
92102   }
92103   if( nChar>0 ){
92104     flags = SQLITE_PTR_TO_INT(sqlite3_user_data(context));
92105     if( flags & 1 ){
92106       while( nIn>0 ){
92107         int len = 0;
92108         for(i=0; i<nChar; i++){
92109           len = aLen[i];
92110           if( len<=nIn && memcmp(zIn, azChar[i], len)==0 ) break;
92111         }
92112         if( i>=nChar ) break;
92113         zIn += len;
92114         nIn -= len;
92115       }
92116     }
92117     if( flags & 2 ){
92118       while( nIn>0 ){
92119         int len = 0;
92120         for(i=0; i<nChar; i++){
92121           len = aLen[i];
92122           if( len<=nIn && memcmp(&zIn[nIn-len],azChar[i],len)==0 ) break;
92123         }
92124         if( i>=nChar ) break;
92125         nIn -= len;
92126       }
92127     }
92128     if( zCharSet ){
92129       sqlite3_free(azChar);
92130     }
92131   }
92132   sqlite3_result_text(context, (char*)zIn, nIn, SQLITE_TRANSIENT);
92133 }
92134 
92135 
92136 /* IMP: R-25361-16150 This function is omitted from SQLite by default. It
92137 ** is only available if the SQLITE_SOUNDEX compile-time option is used
92138 ** when SQLite is built.
92139 */
92140 #ifdef SQLITE_SOUNDEX
92141 /*
92142 ** Compute the soundex encoding of a word.
92143 **
92144 ** IMP: R-59782-00072 The soundex(X) function returns a string that is the
92145 ** soundex encoding of the string X.
92146 */
92147 static void soundexFunc(
92148   sqlite3_context *context,
92149   int argc,
92150   sqlite3_value **argv
92151 ){
92152   char zResult[8];
92153   const u8 *zIn;
92154   int i, j;
92155   static const unsigned char iCode[] = {
92156     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
92157     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
92158     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
92159     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
92160     0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
92161     1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
92162     0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
92163     1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
92164   };
92165   assert( argc==1 );
92166   zIn = (u8*)sqlite3_value_text(argv[0]);
92167   if( zIn==0 ) zIn = (u8*)"";
92168   for(i=0; zIn[i] && !sqlite3Isalpha(zIn[i]); i++){}
92169   if( zIn[i] ){
92170     u8 prevcode = iCode[zIn[i]&0x7f];
92171     zResult[0] = sqlite3Toupper(zIn[i]);
92172     for(j=1; j<4 && zIn[i]; i++){
92173       int code = iCode[zIn[i]&0x7f];
92174       if( code>0 ){
92175         if( code!=prevcode ){
92176           prevcode = code;
92177           zResult[j++] = code + '0';
92178         }
92179       }else{
92180         prevcode = 0;
92181       }
92182     }
92183     while( j<4 ){
92184       zResult[j++] = '0';
92185     }
92186     zResult[j] = 0;
92187     sqlite3_result_text(context, zResult, 4, SQLITE_TRANSIENT);
92188   }else{
92189     /* IMP: R-64894-50321 The string "?000" is returned if the argument
92190     ** is NULL or contains no ASCII alphabetic characters. */
92191     sqlite3_result_text(context, "?000", 4, SQLITE_STATIC);
92192   }
92193 }
92194 #endif /* SQLITE_SOUNDEX */
92195 
92196 #ifndef SQLITE_OMIT_LOAD_EXTENSION
92197 /*
92198 ** A function that loads a shared-library extension then returns NULL.
92199 */
92200 static void loadExt(sqlite3_context *context, int argc, sqlite3_value **argv){
92201   const char *zFile = (const char *)sqlite3_value_text(argv[0]);
92202   const char *zProc;
92203   sqlite3 *db = sqlite3_context_db_handle(context);
92204   char *zErrMsg = 0;
92205 
92206   if( argc==2 ){
92207     zProc = (const char *)sqlite3_value_text(argv[1]);
92208   }else{
92209     zProc = 0;
92210   }
92211   if( zFile && sqlite3_load_extension(db, zFile, zProc, &zErrMsg) ){
92212     sqlite3_result_error(context, zErrMsg, -1);
92213     sqlite3_free(zErrMsg);
92214   }
92215 }
92216 #endif
92217 
92218 
92219 /*
92220 ** An instance of the following structure holds the context of a
92221 ** sum() or avg() aggregate computation.
92222 */
92223 typedef struct SumCtx SumCtx;
92224 struct SumCtx {
92225   double rSum;      /* Floating point sum */
92226   i64 iSum;         /* Integer sum */
92227   i64 cnt;          /* Number of elements summed */
92228   u8 overflow;      /* True if integer overflow seen */
92229   u8 approx;        /* True if non-integer value was input to the sum */
92230 };
92231 
92232 /*
92233 ** Routines used to compute the sum, average, and total.
92234 **
92235 ** The SUM() function follows the (broken) SQL standard which means
92236 ** that it returns NULL if it sums over no inputs.  TOTAL returns
92237 ** 0.0 in that case.  In addition, TOTAL always returns a float where
92238 ** SUM might return an integer if it never encounters a floating point
92239 ** value.  TOTAL never fails, but SUM might through an exception if
92240 ** it overflows an integer.
92241 */
92242 static void sumStep(sqlite3_context *context, int argc, sqlite3_value **argv){
92243   SumCtx *p;
92244   int type;
92245   assert( argc==1 );
92246   UNUSED_PARAMETER(argc);
92247   p = sqlite3_aggregate_context(context, sizeof(*p));
92248   type = sqlite3_value_numeric_type(argv[0]);
92249   if( p && type!=SQLITE_NULL ){
92250     p->cnt++;
92251     if( type==SQLITE_INTEGER ){
92252       i64 v = sqlite3_value_int64(argv[0]);
92253       p->rSum += v;
92254       if( (p->approx|p->overflow)==0 && sqlite3AddInt64(&p->iSum, v) ){
92255         p->overflow = 1;
92256       }
92257     }else{
92258       p->rSum += sqlite3_value_double(argv[0]);
92259       p->approx = 1;
92260     }
92261   }
92262 }
92263 static void sumFinalize(sqlite3_context *context){
92264   SumCtx *p;
92265   p = sqlite3_aggregate_context(context, 0);
92266   if( p && p->cnt>0 ){
92267     if( p->overflow ){
92268       sqlite3_result_error(context,"integer overflow",-1);
92269     }else if( p->approx ){
92270       sqlite3_result_double(context, p->rSum);
92271     }else{
92272       sqlite3_result_int64(context, p->iSum);
92273     }
92274   }
92275 }
92276 static void avgFinalize(sqlite3_context *context){
92277   SumCtx *p;
92278   p = sqlite3_aggregate_context(context, 0);
92279   if( p && p->cnt>0 ){
92280     sqlite3_result_double(context, p->rSum/(double)p->cnt);
92281   }
92282 }
92283 static void totalFinalize(sqlite3_context *context){
92284   SumCtx *p;
92285   p = sqlite3_aggregate_context(context, 0);
92286   /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
92287   sqlite3_result_double(context, p ? p->rSum : (double)0);
92288 }
92289 
92290 /*
92291 ** The following structure keeps track of state information for the
92292 ** count() aggregate function.
92293 */
92294 typedef struct CountCtx CountCtx;
92295 struct CountCtx {
92296   i64 n;
92297 };
92298 
92299 /*
92300 ** Routines to implement the count() aggregate function.
92301 */
92302 static void countStep(sqlite3_context *context, int argc, sqlite3_value **argv){
92303   CountCtx *p;
92304   p = sqlite3_aggregate_context(context, sizeof(*p));
92305   if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && p ){
92306     p->n++;
92307   }
92308 
92309 #ifndef SQLITE_OMIT_DEPRECATED
92310   /* The sqlite3_aggregate_count() function is deprecated.  But just to make
92311   ** sure it still operates correctly, verify that its count agrees with our
92312   ** internal count when using count(*) and when the total count can be
92313   ** expressed as a 32-bit integer. */
92314   assert( argc==1 || p==0 || p->n>0x7fffffff
92315           || p->n==sqlite3_aggregate_count(context) );
92316 #endif
92317 }
92318 static void countFinalize(sqlite3_context *context){
92319   CountCtx *p;
92320   p = sqlite3_aggregate_context(context, 0);
92321   sqlite3_result_int64(context, p ? p->n : 0);
92322 }
92323 
92324 /*
92325 ** Routines to implement min() and max() aggregate functions.
92326 */
92327 static void minmaxStep(
92328   sqlite3_context *context,
92329   int NotUsed,
92330   sqlite3_value **argv
92331 ){
92332   Mem *pArg  = (Mem *)argv[0];
92333   Mem *pBest;
92334   UNUSED_PARAMETER(NotUsed);
92335 
92336   pBest = (Mem *)sqlite3_aggregate_context(context, sizeof(*pBest));
92337   if( !pBest ) return;
92338 
92339   if( sqlite3_value_type(argv[0])==SQLITE_NULL ){
92340     if( pBest->flags ) sqlite3SkipAccumulatorLoad(context);
92341   }else if( pBest->flags ){
92342     int max;
92343     int cmp;
92344     CollSeq *pColl = sqlite3GetFuncCollSeq(context);
92345     /* This step function is used for both the min() and max() aggregates,
92346     ** the only difference between the two being that the sense of the
92347     ** comparison is inverted. For the max() aggregate, the
92348     ** sqlite3_user_data() function returns (void *)-1. For min() it
92349     ** returns (void *)db, where db is the sqlite3* database pointer.
92350     ** Therefore the next statement sets variable 'max' to 1 for the max()
92351     ** aggregate, or 0 for min().
92352     */
92353     max = sqlite3_user_data(context)!=0;
92354     cmp = sqlite3MemCompare(pBest, pArg, pColl);
92355     if( (max && cmp<0) || (!max && cmp>0) ){
92356       sqlite3VdbeMemCopy(pBest, pArg);
92357     }else{
92358       sqlite3SkipAccumulatorLoad(context);
92359     }
92360   }else{
92361     sqlite3VdbeMemCopy(pBest, pArg);
92362   }
92363 }
92364 static void minMaxFinalize(sqlite3_context *context){
92365   sqlite3_value *pRes;
92366   pRes = (sqlite3_value *)sqlite3_aggregate_context(context, 0);
92367   if( pRes ){
92368     if( pRes->flags ){
92369       sqlite3_result_value(context, pRes);
92370     }
92371     sqlite3VdbeMemRelease(pRes);
92372   }
92373 }
92374 
92375 /*
92376 ** group_concat(EXPR, ?SEPARATOR?)
92377 */
92378 static void groupConcatStep(
92379   sqlite3_context *context,
92380   int argc,
92381   sqlite3_value **argv
92382 ){
92383   const char *zVal;
92384   StrAccum *pAccum;
92385   const char *zSep;
92386   int nVal, nSep;
92387   assert( argc==1 || argc==2 );
92388   if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
92389   pAccum = (StrAccum*)sqlite3_aggregate_context(context, sizeof(*pAccum));
92390 
92391   if( pAccum ){
92392     sqlite3 *db = sqlite3_context_db_handle(context);
92393     int firstTerm = pAccum->useMalloc==0;
92394     pAccum->useMalloc = 2;
92395     pAccum->mxAlloc = db->aLimit[SQLITE_LIMIT_LENGTH];
92396     if( !firstTerm ){
92397       if( argc==2 ){
92398         zSep = (char*)sqlite3_value_text(argv[1]);
92399         nSep = sqlite3_value_bytes(argv[1]);
92400       }else{
92401         zSep = ",";
92402         nSep = 1;
92403       }
92404       if( nSep ) sqlite3StrAccumAppend(pAccum, zSep, nSep);
92405     }
92406     zVal = (char*)sqlite3_value_text(argv[0]);
92407     nVal = sqlite3_value_bytes(argv[0]);
92408     if( zVal ) sqlite3StrAccumAppend(pAccum, zVal, nVal);
92409   }
92410 }
92411 static void groupConcatFinalize(sqlite3_context *context){
92412   StrAccum *pAccum;
92413   pAccum = sqlite3_aggregate_context(context, 0);
92414   if( pAccum ){
92415     if( pAccum->accError==STRACCUM_TOOBIG ){
92416       sqlite3_result_error_toobig(context);
92417     }else if( pAccum->accError==STRACCUM_NOMEM ){
92418       sqlite3_result_error_nomem(context);
92419     }else{
92420       sqlite3_result_text(context, sqlite3StrAccumFinish(pAccum), -1,
92421                           sqlite3_free);
92422     }
92423   }
92424 }
92425 
92426 /*
92427 ** This routine does per-connection function registration.  Most
92428 ** of the built-in functions above are part of the global function set.
92429 ** This routine only deals with those that are not global.
92430 */
92431 SQLITE_PRIVATE void sqlite3RegisterBuiltinFunctions(sqlite3 *db){
92432   int rc = sqlite3_overload_function(db, "MATCH", 2);
92433   assert( rc==SQLITE_NOMEM || rc==SQLITE_OK );
92434   if( rc==SQLITE_NOMEM ){
92435     db->mallocFailed = 1;
92436   }
92437 }
92438 
92439 /*
92440 ** Set the LIKEOPT flag on the 2-argument function with the given name.
92441 */
92442 static void setLikeOptFlag(sqlite3 *db, const char *zName, u8 flagVal){
92443   FuncDef *pDef;
92444   pDef = sqlite3FindFunction(db, zName, sqlite3Strlen30(zName),
92445                              2, SQLITE_UTF8, 0);
92446   if( ALWAYS(pDef) ){
92447     pDef->funcFlags |= flagVal;
92448   }
92449 }
92450 
92451 /*
92452 ** Register the built-in LIKE and GLOB functions.  The caseSensitive
92453 ** parameter determines whether or not the LIKE operator is case
92454 ** sensitive.  GLOB is always case sensitive.
92455 */
92456 SQLITE_PRIVATE void sqlite3RegisterLikeFunctions(sqlite3 *db, int caseSensitive){
92457   struct compareInfo *pInfo;
92458   if( caseSensitive ){
92459     pInfo = (struct compareInfo*)&likeInfoAlt;
92460   }else{
92461     pInfo = (struct compareInfo*)&likeInfoNorm;
92462   }
92463   sqlite3CreateFunc(db, "like", 2, SQLITE_UTF8, pInfo, likeFunc, 0, 0, 0);
92464   sqlite3CreateFunc(db, "like", 3, SQLITE_UTF8, pInfo, likeFunc, 0, 0, 0);
92465   sqlite3CreateFunc(db, "glob", 2, SQLITE_UTF8,
92466       (struct compareInfo*)&globInfo, likeFunc, 0, 0, 0);
92467   setLikeOptFlag(db, "glob", SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE);
92468   setLikeOptFlag(db, "like",
92469       caseSensitive ? (SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE) : SQLITE_FUNC_LIKE);
92470 }
92471 
92472 /*
92473 ** pExpr points to an expression which implements a function.  If
92474 ** it is appropriate to apply the LIKE optimization to that function
92475 ** then set aWc[0] through aWc[2] to the wildcard characters and
92476 ** return TRUE.  If the function is not a LIKE-style function then
92477 ** return FALSE.
92478 */
92479 SQLITE_PRIVATE int sqlite3IsLikeFunction(sqlite3 *db, Expr *pExpr, int *pIsNocase, char *aWc){
92480   FuncDef *pDef;
92481   if( pExpr->op!=TK_FUNCTION
92482    || !pExpr->x.pList
92483    || pExpr->x.pList->nExpr!=2
92484   ){
92485     return 0;
92486   }
92487   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
92488   pDef = sqlite3FindFunction(db, pExpr->u.zToken,
92489                              sqlite3Strlen30(pExpr->u.zToken),
92490                              2, SQLITE_UTF8, 0);
92491   if( NEVER(pDef==0) || (pDef->funcFlags & SQLITE_FUNC_LIKE)==0 ){
92492     return 0;
92493   }
92494 
92495   /* The memcpy() statement assumes that the wildcard characters are
92496   ** the first three statements in the compareInfo structure.  The
92497   ** asserts() that follow verify that assumption
92498   */
92499   memcpy(aWc, pDef->pUserData, 3);
92500   assert( (char*)&likeInfoAlt == (char*)&likeInfoAlt.matchAll );
92501   assert( &((char*)&likeInfoAlt)[1] == (char*)&likeInfoAlt.matchOne );
92502   assert( &((char*)&likeInfoAlt)[2] == (char*)&likeInfoAlt.matchSet );
92503   *pIsNocase = (pDef->funcFlags & SQLITE_FUNC_CASE)==0;
92504   return 1;
92505 }
92506 
92507 /*
92508 ** All all of the FuncDef structures in the aBuiltinFunc[] array above
92509 ** to the global function hash table.  This occurs at start-time (as
92510 ** a consequence of calling sqlite3_initialize()).
92511 **
92512 ** After this routine runs
92513 */
92514 SQLITE_PRIVATE void sqlite3RegisterGlobalFunctions(void){
92515   /*
92516   ** The following array holds FuncDef structures for all of the functions
92517   ** defined in this file.
92518   **
92519   ** The array cannot be constant since changes are made to the
92520   ** FuncDef.pHash elements at start-time.  The elements of this array
92521   ** are read-only after initialization is complete.
92522   */
92523   static SQLITE_WSD FuncDef aBuiltinFunc[] = {
92524     FUNCTION(ltrim,              1, 1, 0, trimFunc         ),
92525     FUNCTION(ltrim,              2, 1, 0, trimFunc         ),
92526     FUNCTION(rtrim,              1, 2, 0, trimFunc         ),
92527     FUNCTION(rtrim,              2, 2, 0, trimFunc         ),
92528     FUNCTION(trim,               1, 3, 0, trimFunc         ),
92529     FUNCTION(trim,               2, 3, 0, trimFunc         ),
92530     FUNCTION(min,               -1, 0, 1, minmaxFunc       ),
92531     FUNCTION(min,                0, 0, 1, 0                ),
92532     AGGREGATE(min,               1, 0, 1, minmaxStep,      minMaxFinalize ),
92533     FUNCTION(max,               -1, 1, 1, minmaxFunc       ),
92534     FUNCTION(max,                0, 1, 1, 0                ),
92535     AGGREGATE(max,               1, 1, 1, minmaxStep,      minMaxFinalize ),
92536     FUNCTION2(typeof,            1, 0, 0, typeofFunc,  SQLITE_FUNC_TYPEOF),
92537     FUNCTION2(length,            1, 0, 0, lengthFunc,  SQLITE_FUNC_LENGTH),
92538     FUNCTION(instr,              2, 0, 0, instrFunc        ),
92539     FUNCTION(substr,             2, 0, 0, substrFunc       ),
92540     FUNCTION(substr,             3, 0, 0, substrFunc       ),
92541     FUNCTION(printf,            -1, 0, 0, printfFunc       ),
92542     FUNCTION(unicode,            1, 0, 0, unicodeFunc      ),
92543     FUNCTION(char,              -1, 0, 0, charFunc         ),
92544     FUNCTION(abs,                1, 0, 0, absFunc          ),
92545 #ifndef SQLITE_OMIT_FLOATING_POINT
92546     FUNCTION(round,              1, 0, 0, roundFunc        ),
92547     FUNCTION(round,              2, 0, 0, roundFunc        ),
92548 #endif
92549     FUNCTION(upper,              1, 0, 0, upperFunc        ),
92550     FUNCTION(lower,              1, 0, 0, lowerFunc        ),
92551     FUNCTION(coalesce,           1, 0, 0, 0                ),
92552     FUNCTION(coalesce,           0, 0, 0, 0                ),
92553     FUNCTION2(coalesce,         -1, 0, 0, noopFunc,  SQLITE_FUNC_COALESCE),
92554     FUNCTION(hex,                1, 0, 0, hexFunc          ),
92555     FUNCTION2(ifnull,            2, 0, 0, noopFunc,  SQLITE_FUNC_COALESCE),
92556     FUNCTION2(unlikely,          1, 0, 0, noopFunc,  SQLITE_FUNC_UNLIKELY),
92557     FUNCTION2(likelihood,        2, 0, 0, noopFunc,  SQLITE_FUNC_UNLIKELY),
92558     VFUNCTION(random,            0, 0, 0, randomFunc       ),
92559     VFUNCTION(randomblob,        1, 0, 0, randomBlob       ),
92560     FUNCTION(nullif,             2, 0, 1, nullifFunc       ),
92561     FUNCTION(sqlite_version,     0, 0, 0, versionFunc      ),
92562     FUNCTION(sqlite_source_id,   0, 0, 0, sourceidFunc     ),
92563     FUNCTION(sqlite_log,         2, 0, 0, errlogFunc       ),
92564 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
92565     FUNCTION(sqlite_compileoption_used,1, 0, 0, compileoptionusedFunc  ),
92566     FUNCTION(sqlite_compileoption_get, 1, 0, 0, compileoptiongetFunc  ),
92567 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
92568     FUNCTION(quote,              1, 0, 0, quoteFunc        ),
92569     VFUNCTION(last_insert_rowid, 0, 0, 0, last_insert_rowid),
92570     VFUNCTION(changes,           0, 0, 0, changes          ),
92571     VFUNCTION(total_changes,     0, 0, 0, total_changes    ),
92572     FUNCTION(replace,            3, 0, 0, replaceFunc      ),
92573     FUNCTION(zeroblob,           1, 0, 0, zeroblobFunc     ),
92574   #ifdef SQLITE_SOUNDEX
92575     FUNCTION(soundex,            1, 0, 0, soundexFunc      ),
92576   #endif
92577   #ifndef SQLITE_OMIT_LOAD_EXTENSION
92578     FUNCTION(load_extension,     1, 0, 0, loadExt          ),
92579     FUNCTION(load_extension,     2, 0, 0, loadExt          ),
92580   #endif
92581     AGGREGATE(sum,               1, 0, 0, sumStep,         sumFinalize    ),
92582     AGGREGATE(total,             1, 0, 0, sumStep,         totalFinalize    ),
92583     AGGREGATE(avg,               1, 0, 0, sumStep,         avgFinalize    ),
92584  /* AGGREGATE(count,             0, 0, 0, countStep,       countFinalize  ), */
92585     {0,SQLITE_UTF8|SQLITE_FUNC_COUNT,0,0,0,countStep,countFinalize,"count",0,0},
92586     AGGREGATE(count,             1, 0, 0, countStep,       countFinalize  ),
92587     AGGREGATE(group_concat,      1, 0, 0, groupConcatStep, groupConcatFinalize),
92588     AGGREGATE(group_concat,      2, 0, 0, groupConcatStep, groupConcatFinalize),
92589 
92590     LIKEFUNC(glob, 2, &globInfo, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
92591   #ifdef SQLITE_CASE_SENSITIVE_LIKE
92592     LIKEFUNC(like, 2, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
92593     LIKEFUNC(like, 3, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
92594   #else
92595     LIKEFUNC(like, 2, &likeInfoNorm, SQLITE_FUNC_LIKE),
92596     LIKEFUNC(like, 3, &likeInfoNorm, SQLITE_FUNC_LIKE),
92597   #endif
92598   };
92599 
92600   int i;
92601   FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions);
92602   FuncDef *aFunc = (FuncDef*)&GLOBAL(FuncDef, aBuiltinFunc);
92603 
92604   for(i=0; i<ArraySize(aBuiltinFunc); i++){
92605     sqlite3FuncDefInsert(pHash, &aFunc[i]);
92606   }
92607   sqlite3RegisterDateTimeFunctions();
92608 #ifndef SQLITE_OMIT_ALTERTABLE
92609   sqlite3AlterFunctions();
92610 #endif
92611 #if defined(SQLITE_ENABLE_STAT3) || defined(SQLITE_ENABLE_STAT4)
92612   sqlite3AnalyzeFunctions();
92613 #endif
92614 }
92615 
92616 /************** End of func.c ************************************************/
92617 /************** Begin file fkey.c ********************************************/
92618 /*
92619 **
92620 ** The author disclaims copyright to this source code.  In place of
92621 ** a legal notice, here is a blessing:
92622 **
92623 **    May you do good and not evil.
92624 **    May you find forgiveness for yourself and forgive others.
92625 **    May you share freely, never taking more than you give.
92626 **
92627 *************************************************************************
92628 ** This file contains code used by the compiler to add foreign key
92629 ** support to compiled SQL statements.
92630 */
92631 
92632 #ifndef SQLITE_OMIT_FOREIGN_KEY
92633 #ifndef SQLITE_OMIT_TRIGGER
92634 
92635 /*
92636 ** Deferred and Immediate FKs
92637 ** --------------------------
92638 **
92639 ** Foreign keys in SQLite come in two flavours: deferred and immediate.
92640 ** If an immediate foreign key constraint is violated,
92641 ** SQLITE_CONSTRAINT_FOREIGNKEY is returned and the current
92642 ** statement transaction rolled back. If a
92643 ** deferred foreign key constraint is violated, no action is taken
92644 ** immediately. However if the application attempts to commit the
92645 ** transaction before fixing the constraint violation, the attempt fails.
92646 **
92647 ** Deferred constraints are implemented using a simple counter associated
92648 ** with the database handle. The counter is set to zero each time a
92649 ** database transaction is opened. Each time a statement is executed
92650 ** that causes a foreign key violation, the counter is incremented. Each
92651 ** time a statement is executed that removes an existing violation from
92652 ** the database, the counter is decremented. When the transaction is
92653 ** committed, the commit fails if the current value of the counter is
92654 ** greater than zero. This scheme has two big drawbacks:
92655 **
92656 **   * When a commit fails due to a deferred foreign key constraint,
92657 **     there is no way to tell which foreign constraint is not satisfied,
92658 **     or which row it is not satisfied for.
92659 **
92660 **   * If the database contains foreign key violations when the
92661 **     transaction is opened, this may cause the mechanism to malfunction.
92662 **
92663 ** Despite these problems, this approach is adopted as it seems simpler
92664 ** than the alternatives.
92665 **
92666 ** INSERT operations:
92667 **
92668 **   I.1) For each FK for which the table is the child table, search
92669 **        the parent table for a match. If none is found increment the
92670 **        constraint counter.
92671 **
92672 **   I.2) For each FK for which the table is the parent table,
92673 **        search the child table for rows that correspond to the new
92674 **        row in the parent table. Decrement the counter for each row
92675 **        found (as the constraint is now satisfied).
92676 **
92677 ** DELETE operations:
92678 **
92679 **   D.1) For each FK for which the table is the child table,
92680 **        search the parent table for a row that corresponds to the
92681 **        deleted row in the child table. If such a row is not found,
92682 **        decrement the counter.
92683 **
92684 **   D.2) For each FK for which the table is the parent table, search
92685 **        the child table for rows that correspond to the deleted row
92686 **        in the parent table. For each found increment the counter.
92687 **
92688 ** UPDATE operations:
92689 **
92690 **   An UPDATE command requires that all 4 steps above are taken, but only
92691 **   for FK constraints for which the affected columns are actually
92692 **   modified (values must be compared at runtime).
92693 **
92694 ** Note that I.1 and D.1 are very similar operations, as are I.2 and D.2.
92695 ** This simplifies the implementation a bit.
92696 **
92697 ** For the purposes of immediate FK constraints, the OR REPLACE conflict
92698 ** resolution is considered to delete rows before the new row is inserted.
92699 ** If a delete caused by OR REPLACE violates an FK constraint, an exception
92700 ** is thrown, even if the FK constraint would be satisfied after the new
92701 ** row is inserted.
92702 **
92703 ** Immediate constraints are usually handled similarly. The only difference
92704 ** is that the counter used is stored as part of each individual statement
92705 ** object (struct Vdbe). If, after the statement has run, its immediate
92706 ** constraint counter is greater than zero,
92707 ** it returns SQLITE_CONSTRAINT_FOREIGNKEY
92708 ** and the statement transaction is rolled back. An exception is an INSERT
92709 ** statement that inserts a single row only (no triggers). In this case,
92710 ** instead of using a counter, an exception is thrown immediately if the
92711 ** INSERT violates a foreign key constraint. This is necessary as such
92712 ** an INSERT does not open a statement transaction.
92713 **
92714 ** TODO: How should dropping a table be handled? How should renaming a
92715 ** table be handled?
92716 **
92717 **
92718 ** Query API Notes
92719 ** ---------------
92720 **
92721 ** Before coding an UPDATE or DELETE row operation, the code-generator
92722 ** for those two operations needs to know whether or not the operation
92723 ** requires any FK processing and, if so, which columns of the original
92724 ** row are required by the FK processing VDBE code (i.e. if FKs were
92725 ** implemented using triggers, which of the old.* columns would be
92726 ** accessed). No information is required by the code-generator before
92727 ** coding an INSERT operation. The functions used by the UPDATE/DELETE
92728 ** generation code to query for this information are:
92729 **
92730 **   sqlite3FkRequired() - Test to see if FK processing is required.
92731 **   sqlite3FkOldmask()  - Query for the set of required old.* columns.
92732 **
92733 **
92734 ** Externally accessible module functions
92735 ** --------------------------------------
92736 **
92737 **   sqlite3FkCheck()    - Check for foreign key violations.
92738 **   sqlite3FkActions()  - Code triggers for ON UPDATE/ON DELETE actions.
92739 **   sqlite3FkDelete()   - Delete an FKey structure.
92740 */
92741 
92742 /*
92743 ** VDBE Calling Convention
92744 ** -----------------------
92745 **
92746 ** Example:
92747 **
92748 **   For the following INSERT statement:
92749 **
92750 **     CREATE TABLE t1(a, b INTEGER PRIMARY KEY, c);
92751 **     INSERT INTO t1 VALUES(1, 2, 3.1);
92752 **
92753 **   Register (x):        2    (type integer)
92754 **   Register (x+1):      1    (type integer)
92755 **   Register (x+2):      NULL (type NULL)
92756 **   Register (x+3):      3.1  (type real)
92757 */
92758 
92759 /*
92760 ** A foreign key constraint requires that the key columns in the parent
92761 ** table are collectively subject to a UNIQUE or PRIMARY KEY constraint.
92762 ** Given that pParent is the parent table for foreign key constraint pFKey,
92763 ** search the schema for a unique index on the parent key columns.
92764 **
92765 ** If successful, zero is returned. If the parent key is an INTEGER PRIMARY
92766 ** KEY column, then output variable *ppIdx is set to NULL. Otherwise, *ppIdx
92767 ** is set to point to the unique index.
92768 **
92769 ** If the parent key consists of a single column (the foreign key constraint
92770 ** is not a composite foreign key), output variable *paiCol is set to NULL.
92771 ** Otherwise, it is set to point to an allocated array of size N, where
92772 ** N is the number of columns in the parent key. The first element of the
92773 ** array is the index of the child table column that is mapped by the FK
92774 ** constraint to the parent table column stored in the left-most column
92775 ** of index *ppIdx. The second element of the array is the index of the
92776 ** child table column that corresponds to the second left-most column of
92777 ** *ppIdx, and so on.
92778 **
92779 ** If the required index cannot be found, either because:
92780 **
92781 **   1) The named parent key columns do not exist, or
92782 **
92783 **   2) The named parent key columns do exist, but are not subject to a
92784 **      UNIQUE or PRIMARY KEY constraint, or
92785 **
92786 **   3) No parent key columns were provided explicitly as part of the
92787 **      foreign key definition, and the parent table does not have a
92788 **      PRIMARY KEY, or
92789 **
92790 **   4) No parent key columns were provided explicitly as part of the
92791 **      foreign key definition, and the PRIMARY KEY of the parent table
92792 **      consists of a a different number of columns to the child key in
92793 **      the child table.
92794 **
92795 ** then non-zero is returned, and a "foreign key mismatch" error loaded
92796 ** into pParse. If an OOM error occurs, non-zero is returned and the
92797 ** pParse->db->mallocFailed flag is set.
92798 */
92799 SQLITE_PRIVATE int sqlite3FkLocateIndex(
92800   Parse *pParse,                  /* Parse context to store any error in */
92801   Table *pParent,                 /* Parent table of FK constraint pFKey */
92802   FKey *pFKey,                    /* Foreign key to find index for */
92803   Index **ppIdx,                  /* OUT: Unique index on parent table */
92804   int **paiCol                    /* OUT: Map of index columns in pFKey */
92805 ){
92806   Index *pIdx = 0;                    /* Value to return via *ppIdx */
92807   int *aiCol = 0;                     /* Value to return via *paiCol */
92808   int nCol = pFKey->nCol;             /* Number of columns in parent key */
92809   char *zKey = pFKey->aCol[0].zCol;   /* Name of left-most parent key column */
92810 
92811   /* The caller is responsible for zeroing output parameters. */
92812   assert( ppIdx && *ppIdx==0 );
92813   assert( !paiCol || *paiCol==0 );
92814   assert( pParse );
92815 
92816   /* If this is a non-composite (single column) foreign key, check if it
92817   ** maps to the INTEGER PRIMARY KEY of table pParent. If so, leave *ppIdx
92818   ** and *paiCol set to zero and return early.
92819   **
92820   ** Otherwise, for a composite foreign key (more than one column), allocate
92821   ** space for the aiCol array (returned via output parameter *paiCol).
92822   ** Non-composite foreign keys do not require the aiCol array.
92823   */
92824   if( nCol==1 ){
92825     /* The FK maps to the IPK if any of the following are true:
92826     **
92827     **   1) There is an INTEGER PRIMARY KEY column and the FK is implicitly
92828     **      mapped to the primary key of table pParent, or
92829     **   2) The FK is explicitly mapped to a column declared as INTEGER
92830     **      PRIMARY KEY.
92831     */
92832     if( pParent->iPKey>=0 ){
92833       if( !zKey ) return 0;
92834       if( !sqlite3StrICmp(pParent->aCol[pParent->iPKey].zName, zKey) ) return 0;
92835     }
92836   }else if( paiCol ){
92837     assert( nCol>1 );
92838     aiCol = (int *)sqlite3DbMallocRaw(pParse->db, nCol*sizeof(int));
92839     if( !aiCol ) return 1;
92840     *paiCol = aiCol;
92841   }
92842 
92843   for(pIdx=pParent->pIndex; pIdx; pIdx=pIdx->pNext){
92844     if( pIdx->nKeyCol==nCol && pIdx->onError!=OE_None ){
92845       /* pIdx is a UNIQUE index (or a PRIMARY KEY) and has the right number
92846       ** of columns. If each indexed column corresponds to a foreign key
92847       ** column of pFKey, then this index is a winner.  */
92848 
92849       if( zKey==0 ){
92850         /* If zKey is NULL, then this foreign key is implicitly mapped to
92851         ** the PRIMARY KEY of table pParent. The PRIMARY KEY index may be
92852         ** identified by the test.  */
92853         if( IsPrimaryKeyIndex(pIdx) ){
92854           if( aiCol ){
92855             int i;
92856             for(i=0; i<nCol; i++) aiCol[i] = pFKey->aCol[i].iFrom;
92857           }
92858           break;
92859         }
92860       }else{
92861         /* If zKey is non-NULL, then this foreign key was declared to
92862         ** map to an explicit list of columns in table pParent. Check if this
92863         ** index matches those columns. Also, check that the index uses
92864         ** the default collation sequences for each column. */
92865         int i, j;
92866         for(i=0; i<nCol; i++){
92867           i16 iCol = pIdx->aiColumn[i];     /* Index of column in parent tbl */
92868           char *zDfltColl;                  /* Def. collation for column */
92869           char *zIdxCol;                    /* Name of indexed column */
92870 
92871           /* If the index uses a collation sequence that is different from
92872           ** the default collation sequence for the column, this index is
92873           ** unusable. Bail out early in this case.  */
92874           zDfltColl = pParent->aCol[iCol].zColl;
92875           if( !zDfltColl ){
92876             zDfltColl = "BINARY";
92877           }
92878           if( sqlite3StrICmp(pIdx->azColl[i], zDfltColl) ) break;
92879 
92880           zIdxCol = pParent->aCol[iCol].zName;
92881           for(j=0; j<nCol; j++){
92882             if( sqlite3StrICmp(pFKey->aCol[j].zCol, zIdxCol)==0 ){
92883               if( aiCol ) aiCol[i] = pFKey->aCol[j].iFrom;
92884               break;
92885             }
92886           }
92887           if( j==nCol ) break;
92888         }
92889         if( i==nCol ) break;      /* pIdx is usable */
92890       }
92891     }
92892   }
92893 
92894   if( !pIdx ){
92895     if( !pParse->disableTriggers ){
92896       sqlite3ErrorMsg(pParse,
92897            "foreign key mismatch - \"%w\" referencing \"%w\"",
92898            pFKey->pFrom->zName, pFKey->zTo);
92899     }
92900     sqlite3DbFree(pParse->db, aiCol);
92901     return 1;
92902   }
92903 
92904   *ppIdx = pIdx;
92905   return 0;
92906 }
92907 
92908 /*
92909 ** This function is called when a row is inserted into or deleted from the
92910 ** child table of foreign key constraint pFKey. If an SQL UPDATE is executed
92911 ** on the child table of pFKey, this function is invoked twice for each row
92912 ** affected - once to "delete" the old row, and then again to "insert" the
92913 ** new row.
92914 **
92915 ** Each time it is called, this function generates VDBE code to locate the
92916 ** row in the parent table that corresponds to the row being inserted into
92917 ** or deleted from the child table. If the parent row can be found, no
92918 ** special action is taken. Otherwise, if the parent row can *not* be
92919 ** found in the parent table:
92920 **
92921 **   Operation | FK type   | Action taken
92922 **   --------------------------------------------------------------------------
92923 **   INSERT      immediate   Increment the "immediate constraint counter".
92924 **
92925 **   DELETE      immediate   Decrement the "immediate constraint counter".
92926 **
92927 **   INSERT      deferred    Increment the "deferred constraint counter".
92928 **
92929 **   DELETE      deferred    Decrement the "deferred constraint counter".
92930 **
92931 ** These operations are identified in the comment at the top of this file
92932 ** (fkey.c) as "I.1" and "D.1".
92933 */
92934 static void fkLookupParent(
92935   Parse *pParse,        /* Parse context */
92936   int iDb,              /* Index of database housing pTab */
92937   Table *pTab,          /* Parent table of FK pFKey */
92938   Index *pIdx,          /* Unique index on parent key columns in pTab */
92939   FKey *pFKey,          /* Foreign key constraint */
92940   int *aiCol,           /* Map from parent key columns to child table columns */
92941   int regData,          /* Address of array containing child table row */
92942   int nIncr,            /* Increment constraint counter by this */
92943   int isIgnore          /* If true, pretend pTab contains all NULL values */
92944 ){
92945   int i;                                    /* Iterator variable */
92946   Vdbe *v = sqlite3GetVdbe(pParse);         /* Vdbe to add code to */
92947   int iCur = pParse->nTab - 1;              /* Cursor number to use */
92948   int iOk = sqlite3VdbeMakeLabel(v);        /* jump here if parent key found */
92949 
92950   /* If nIncr is less than zero, then check at runtime if there are any
92951   ** outstanding constraints to resolve. If there are not, there is no need
92952   ** to check if deleting this row resolves any outstanding violations.
92953   **
92954   ** Check if any of the key columns in the child table row are NULL. If
92955   ** any are, then the constraint is considered satisfied. No need to
92956   ** search for a matching row in the parent table.  */
92957   if( nIncr<0 ){
92958     sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, iOk);
92959     VdbeCoverage(v);
92960   }
92961   for(i=0; i<pFKey->nCol; i++){
92962     int iReg = aiCol[i] + regData + 1;
92963     sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iOk); VdbeCoverage(v);
92964   }
92965 
92966   if( isIgnore==0 ){
92967     if( pIdx==0 ){
92968       /* If pIdx is NULL, then the parent key is the INTEGER PRIMARY KEY
92969       ** column of the parent table (table pTab).  */
92970       int iMustBeInt;               /* Address of MustBeInt instruction */
92971       int regTemp = sqlite3GetTempReg(pParse);
92972 
92973       /* Invoke MustBeInt to coerce the child key value to an integer (i.e.
92974       ** apply the affinity of the parent key). If this fails, then there
92975       ** is no matching parent key. Before using MustBeInt, make a copy of
92976       ** the value. Otherwise, the value inserted into the child key column
92977       ** will have INTEGER affinity applied to it, which may not be correct.  */
92978       sqlite3VdbeAddOp2(v, OP_SCopy, aiCol[0]+1+regData, regTemp);
92979       iMustBeInt = sqlite3VdbeAddOp2(v, OP_MustBeInt, regTemp, 0);
92980       VdbeCoverage(v);
92981 
92982       /* If the parent table is the same as the child table, and we are about
92983       ** to increment the constraint-counter (i.e. this is an INSERT operation),
92984       ** then check if the row being inserted matches itself. If so, do not
92985       ** increment the constraint-counter.  */
92986       if( pTab==pFKey->pFrom && nIncr==1 ){
92987         sqlite3VdbeAddOp3(v, OP_Eq, regData, iOk, regTemp); VdbeCoverage(v);
92988         sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
92989       }
92990 
92991       sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead);
92992       sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regTemp); VdbeCoverage(v);
92993       sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk);
92994       sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
92995       sqlite3VdbeJumpHere(v, iMustBeInt);
92996       sqlite3ReleaseTempReg(pParse, regTemp);
92997     }else{
92998       int nCol = pFKey->nCol;
92999       int regTemp = sqlite3GetTempRange(pParse, nCol);
93000       int regRec = sqlite3GetTempReg(pParse);
93001 
93002       sqlite3VdbeAddOp3(v, OP_OpenRead, iCur, pIdx->tnum, iDb);
93003       sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
93004       for(i=0; i<nCol; i++){
93005         sqlite3VdbeAddOp2(v, OP_Copy, aiCol[i]+1+regData, regTemp+i);
93006       }
93007 
93008       /* If the parent table is the same as the child table, and we are about
93009       ** to increment the constraint-counter (i.e. this is an INSERT operation),
93010       ** then check if the row being inserted matches itself. If so, do not
93011       ** increment the constraint-counter.
93012       **
93013       ** If any of the parent-key values are NULL, then the row cannot match
93014       ** itself. So set JUMPIFNULL to make sure we do the OP_Found if any
93015       ** of the parent-key values are NULL (at this point it is known that
93016       ** none of the child key values are).
93017       */
93018       if( pTab==pFKey->pFrom && nIncr==1 ){
93019         int iJump = sqlite3VdbeCurrentAddr(v) + nCol + 1;
93020         for(i=0; i<nCol; i++){
93021           int iChild = aiCol[i]+1+regData;
93022           int iParent = pIdx->aiColumn[i]+1+regData;
93023           assert( aiCol[i]!=pTab->iPKey );
93024           if( pIdx->aiColumn[i]==pTab->iPKey ){
93025             /* The parent key is a composite key that includes the IPK column */
93026             iParent = regData;
93027           }
93028           sqlite3VdbeAddOp3(v, OP_Ne, iChild, iJump, iParent); VdbeCoverage(v);
93029           sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
93030         }
93031         sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk);
93032       }
93033 
93034       sqlite3VdbeAddOp4(v, OP_MakeRecord, regTemp, nCol, regRec,
93035                         sqlite3IndexAffinityStr(v,pIdx), nCol);
93036       sqlite3VdbeAddOp4Int(v, OP_Found, iCur, iOk, regRec, 0); VdbeCoverage(v);
93037 
93038       sqlite3ReleaseTempReg(pParse, regRec);
93039       sqlite3ReleaseTempRange(pParse, regTemp, nCol);
93040     }
93041   }
93042 
93043   if( !pFKey->isDeferred && !(pParse->db->flags & SQLITE_DeferFKs)
93044    && !pParse->pToplevel
93045    && !pParse->isMultiWrite
93046   ){
93047     /* Special case: If this is an INSERT statement that will insert exactly
93048     ** one row into the table, raise a constraint immediately instead of
93049     ** incrementing a counter. This is necessary as the VM code is being
93050     ** generated for will not open a statement transaction.  */
93051     assert( nIncr==1 );
93052     sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY,
93053         OE_Abort, 0, P4_STATIC, P5_ConstraintFK);
93054   }else{
93055     if( nIncr>0 && pFKey->isDeferred==0 ){
93056       sqlite3ParseToplevel(pParse)->mayAbort = 1;
93057     }
93058     sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
93059   }
93060 
93061   sqlite3VdbeResolveLabel(v, iOk);
93062   sqlite3VdbeAddOp1(v, OP_Close, iCur);
93063 }
93064 
93065 
93066 /*
93067 ** Return an Expr object that refers to a memory register corresponding
93068 ** to column iCol of table pTab.
93069 **
93070 ** regBase is the first of an array of register that contains the data
93071 ** for pTab.  regBase itself holds the rowid.  regBase+1 holds the first
93072 ** column.  regBase+2 holds the second column, and so forth.
93073 */
93074 static Expr *exprTableRegister(
93075   Parse *pParse,     /* Parsing and code generating context */
93076   Table *pTab,       /* The table whose content is at r[regBase]... */
93077   int regBase,       /* Contents of table pTab */
93078   i16 iCol           /* Which column of pTab is desired */
93079 ){
93080   Expr *pExpr;
93081   Column *pCol;
93082   const char *zColl;
93083   sqlite3 *db = pParse->db;
93084 
93085   pExpr = sqlite3Expr(db, TK_REGISTER, 0);
93086   if( pExpr ){
93087     if( iCol>=0 && iCol!=pTab->iPKey ){
93088       pCol = &pTab->aCol[iCol];
93089       pExpr->iTable = regBase + iCol + 1;
93090       pExpr->affinity = pCol->affinity;
93091       zColl = pCol->zColl;
93092       if( zColl==0 ) zColl = db->pDfltColl->zName;
93093       pExpr = sqlite3ExprAddCollateString(pParse, pExpr, zColl);
93094     }else{
93095       pExpr->iTable = regBase;
93096       pExpr->affinity = SQLITE_AFF_INTEGER;
93097     }
93098   }
93099   return pExpr;
93100 }
93101 
93102 /*
93103 ** Return an Expr object that refers to column iCol of table pTab which
93104 ** has cursor iCur.
93105 */
93106 static Expr *exprTableColumn(
93107   sqlite3 *db,      /* The database connection */
93108   Table *pTab,      /* The table whose column is desired */
93109   int iCursor,      /* The open cursor on the table */
93110   i16 iCol          /* The column that is wanted */
93111 ){
93112   Expr *pExpr = sqlite3Expr(db, TK_COLUMN, 0);
93113   if( pExpr ){
93114     pExpr->pTab = pTab;
93115     pExpr->iTable = iCursor;
93116     pExpr->iColumn = iCol;
93117   }
93118   return pExpr;
93119 }
93120 
93121 /*
93122 ** This function is called to generate code executed when a row is deleted
93123 ** from the parent table of foreign key constraint pFKey and, if pFKey is
93124 ** deferred, when a row is inserted into the same table. When generating
93125 ** code for an SQL UPDATE operation, this function may be called twice -
93126 ** once to "delete" the old row and once to "insert" the new row.
93127 **
93128 ** The code generated by this function scans through the rows in the child
93129 ** table that correspond to the parent table row being deleted or inserted.
93130 ** For each child row found, one of the following actions is taken:
93131 **
93132 **   Operation | FK type   | Action taken
93133 **   --------------------------------------------------------------------------
93134 **   DELETE      immediate   Increment the "immediate constraint counter".
93135 **                           Or, if the ON (UPDATE|DELETE) action is RESTRICT,
93136 **                           throw a "FOREIGN KEY constraint failed" exception.
93137 **
93138 **   INSERT      immediate   Decrement the "immediate constraint counter".
93139 **
93140 **   DELETE      deferred    Increment the "deferred constraint counter".
93141 **                           Or, if the ON (UPDATE|DELETE) action is RESTRICT,
93142 **                           throw a "FOREIGN KEY constraint failed" exception.
93143 **
93144 **   INSERT      deferred    Decrement the "deferred constraint counter".
93145 **
93146 ** These operations are identified in the comment at the top of this file
93147 ** (fkey.c) as "I.2" and "D.2".
93148 */
93149 static void fkScanChildren(
93150   Parse *pParse,                  /* Parse context */
93151   SrcList *pSrc,                  /* The child table to be scanned */
93152   Table *pTab,                    /* The parent table */
93153   Index *pIdx,                    /* Index on parent covering the foreign key */
93154   FKey *pFKey,                    /* The foreign key linking pSrc to pTab */
93155   int *aiCol,                     /* Map from pIdx cols to child table cols */
93156   int regData,                    /* Parent row data starts here */
93157   int nIncr                       /* Amount to increment deferred counter by */
93158 ){
93159   sqlite3 *db = pParse->db;       /* Database handle */
93160   int i;                          /* Iterator variable */
93161   Expr *pWhere = 0;               /* WHERE clause to scan with */
93162   NameContext sNameContext;       /* Context used to resolve WHERE clause */
93163   WhereInfo *pWInfo;              /* Context used by sqlite3WhereXXX() */
93164   int iFkIfZero = 0;              /* Address of OP_FkIfZero */
93165   Vdbe *v = sqlite3GetVdbe(pParse);
93166 
93167   assert( pIdx==0 || pIdx->pTable==pTab );
93168   assert( pIdx==0 || pIdx->nKeyCol==pFKey->nCol );
93169   assert( pIdx!=0 || pFKey->nCol==1 );
93170   assert( pIdx!=0 || HasRowid(pTab) );
93171 
93172   if( nIncr<0 ){
93173     iFkIfZero = sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, 0);
93174     VdbeCoverage(v);
93175   }
93176 
93177   /* Create an Expr object representing an SQL expression like:
93178   **
93179   **   <parent-key1> = <child-key1> AND <parent-key2> = <child-key2> ...
93180   **
93181   ** The collation sequence used for the comparison should be that of
93182   ** the parent key columns. The affinity of the parent key column should
93183   ** be applied to each child key value before the comparison takes place.
93184   */
93185   for(i=0; i<pFKey->nCol; i++){
93186     Expr *pLeft;                  /* Value from parent table row */
93187     Expr *pRight;                 /* Column ref to child table */
93188     Expr *pEq;                    /* Expression (pLeft = pRight) */
93189     i16 iCol;                     /* Index of column in child table */
93190     const char *zCol;             /* Name of column in child table */
93191 
93192     iCol = pIdx ? pIdx->aiColumn[i] : -1;
93193     pLeft = exprTableRegister(pParse, pTab, regData, iCol);
93194     iCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom;
93195     assert( iCol>=0 );
93196     zCol = pFKey->pFrom->aCol[iCol].zName;
93197     pRight = sqlite3Expr(db, TK_ID, zCol);
93198     pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight, 0);
93199     pWhere = sqlite3ExprAnd(db, pWhere, pEq);
93200   }
93201 
93202   /* If the child table is the same as the parent table, then add terms
93203   ** to the WHERE clause that prevent this entry from being scanned.
93204   ** The added WHERE clause terms are like this:
93205   **
93206   **     $current_rowid!=rowid
93207   **     NOT( $current_a==a AND $current_b==b AND ... )
93208   **
93209   ** The first form is used for rowid tables.  The second form is used
93210   ** for WITHOUT ROWID tables.  In the second form, the primary key is
93211   ** (a,b,...)
93212   */
93213   if( pTab==pFKey->pFrom && nIncr>0 ){
93214     Expr *pNe;                    /* Expression (pLeft != pRight) */
93215     Expr *pLeft;                  /* Value from parent table row */
93216     Expr *pRight;                 /* Column ref to child table */
93217     if( HasRowid(pTab) ){
93218       pLeft = exprTableRegister(pParse, pTab, regData, -1);
93219       pRight = exprTableColumn(db, pTab, pSrc->a[0].iCursor, -1);
93220       pNe = sqlite3PExpr(pParse, TK_NE, pLeft, pRight, 0);
93221     }else{
93222       Expr *pEq, *pAll = 0;
93223       Index *pPk = sqlite3PrimaryKeyIndex(pTab);
93224       assert( pIdx!=0 );
93225       for(i=0; i<pPk->nKeyCol; i++){
93226         i16 iCol = pIdx->aiColumn[i];
93227         pLeft = exprTableRegister(pParse, pTab, regData, iCol);
93228         pRight = exprTableColumn(db, pTab, pSrc->a[0].iCursor, iCol);
93229         pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight, 0);
93230         pAll = sqlite3ExprAnd(db, pAll, pEq);
93231       }
93232       pNe = sqlite3PExpr(pParse, TK_NOT, pAll, 0, 0);
93233     }
93234     pWhere = sqlite3ExprAnd(db, pWhere, pNe);
93235   }
93236 
93237   /* Resolve the references in the WHERE clause. */
93238   memset(&sNameContext, 0, sizeof(NameContext));
93239   sNameContext.pSrcList = pSrc;
93240   sNameContext.pParse = pParse;
93241   sqlite3ResolveExprNames(&sNameContext, pWhere);
93242 
93243   /* Create VDBE to loop through the entries in pSrc that match the WHERE
93244   ** clause. If the constraint is not deferred, throw an exception for
93245   ** each row found. Otherwise, for deferred constraints, increment the
93246   ** deferred constraint counter by nIncr for each row selected.  */
93247   pWInfo = sqlite3WhereBegin(pParse, pSrc, pWhere, 0, 0, 0, 0);
93248   if( nIncr>0 && pFKey->isDeferred==0 ){
93249     sqlite3ParseToplevel(pParse)->mayAbort = 1;
93250   }
93251   sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
93252   if( pWInfo ){
93253     sqlite3WhereEnd(pWInfo);
93254   }
93255 
93256   /* Clean up the WHERE clause constructed above. */
93257   sqlite3ExprDelete(db, pWhere);
93258   if( iFkIfZero ){
93259     sqlite3VdbeJumpHere(v, iFkIfZero);
93260   }
93261 }
93262 
93263 /*
93264 ** This function returns a linked list of FKey objects (connected by
93265 ** FKey.pNextTo) holding all children of table pTab.  For example,
93266 ** given the following schema:
93267 **
93268 **   CREATE TABLE t1(a PRIMARY KEY);
93269 **   CREATE TABLE t2(b REFERENCES t1(a);
93270 **
93271 ** Calling this function with table "t1" as an argument returns a pointer
93272 ** to the FKey structure representing the foreign key constraint on table
93273 ** "t2". Calling this function with "t2" as the argument would return a
93274 ** NULL pointer (as there are no FK constraints for which t2 is the parent
93275 ** table).
93276 */
93277 SQLITE_PRIVATE FKey *sqlite3FkReferences(Table *pTab){
93278   int nName = sqlite3Strlen30(pTab->zName);
93279   return (FKey *)sqlite3HashFind(&pTab->pSchema->fkeyHash, pTab->zName, nName);
93280 }
93281 
93282 /*
93283 ** The second argument is a Trigger structure allocated by the
93284 ** fkActionTrigger() routine. This function deletes the Trigger structure
93285 ** and all of its sub-components.
93286 **
93287 ** The Trigger structure or any of its sub-components may be allocated from
93288 ** the lookaside buffer belonging to database handle dbMem.
93289 */
93290 static void fkTriggerDelete(sqlite3 *dbMem, Trigger *p){
93291   if( p ){
93292     TriggerStep *pStep = p->step_list;
93293     sqlite3ExprDelete(dbMem, pStep->pWhere);
93294     sqlite3ExprListDelete(dbMem, pStep->pExprList);
93295     sqlite3SelectDelete(dbMem, pStep->pSelect);
93296     sqlite3ExprDelete(dbMem, p->pWhen);
93297     sqlite3DbFree(dbMem, p);
93298   }
93299 }
93300 
93301 /*
93302 ** This function is called to generate code that runs when table pTab is
93303 ** being dropped from the database. The SrcList passed as the second argument
93304 ** to this function contains a single entry guaranteed to resolve to
93305 ** table pTab.
93306 **
93307 ** Normally, no code is required. However, if either
93308 **
93309 **   (a) The table is the parent table of a FK constraint, or
93310 **   (b) The table is the child table of a deferred FK constraint and it is
93311 **       determined at runtime that there are outstanding deferred FK
93312 **       constraint violations in the database,
93313 **
93314 ** then the equivalent of "DELETE FROM <tbl>" is executed before dropping
93315 ** the table from the database. Triggers are disabled while running this
93316 ** DELETE, but foreign key actions are not.
93317 */
93318 SQLITE_PRIVATE void sqlite3FkDropTable(Parse *pParse, SrcList *pName, Table *pTab){
93319   sqlite3 *db = pParse->db;
93320   if( (db->flags&SQLITE_ForeignKeys) && !IsVirtual(pTab) && !pTab->pSelect ){
93321     int iSkip = 0;
93322     Vdbe *v = sqlite3GetVdbe(pParse);
93323 
93324     assert( v );                  /* VDBE has already been allocated */
93325     if( sqlite3FkReferences(pTab)==0 ){
93326       /* Search for a deferred foreign key constraint for which this table
93327       ** is the child table. If one cannot be found, return without
93328       ** generating any VDBE code. If one can be found, then jump over
93329       ** the entire DELETE if there are no outstanding deferred constraints
93330       ** when this statement is run.  */
93331       FKey *p;
93332       for(p=pTab->pFKey; p; p=p->pNextFrom){
93333         if( p->isDeferred || (db->flags & SQLITE_DeferFKs) ) break;
93334       }
93335       if( !p ) return;
93336       iSkip = sqlite3VdbeMakeLabel(v);
93337       sqlite3VdbeAddOp2(v, OP_FkIfZero, 1, iSkip); VdbeCoverage(v);
93338     }
93339 
93340     pParse->disableTriggers = 1;
93341     sqlite3DeleteFrom(pParse, sqlite3SrcListDup(db, pName, 0), 0);
93342     pParse->disableTriggers = 0;
93343 
93344     /* If the DELETE has generated immediate foreign key constraint
93345     ** violations, halt the VDBE and return an error at this point, before
93346     ** any modifications to the schema are made. This is because statement
93347     ** transactions are not able to rollback schema changes.
93348     **
93349     ** If the SQLITE_DeferFKs flag is set, then this is not required, as
93350     ** the statement transaction will not be rolled back even if FK
93351     ** constraints are violated.
93352     */
93353     if( (db->flags & SQLITE_DeferFKs)==0 ){
93354       sqlite3VdbeAddOp2(v, OP_FkIfZero, 0, sqlite3VdbeCurrentAddr(v)+2);
93355       VdbeCoverage(v);
93356       sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY,
93357           OE_Abort, 0, P4_STATIC, P5_ConstraintFK);
93358     }
93359 
93360     if( iSkip ){
93361       sqlite3VdbeResolveLabel(v, iSkip);
93362     }
93363   }
93364 }
93365 
93366 
93367 /*
93368 ** The second argument points to an FKey object representing a foreign key
93369 ** for which pTab is the child table. An UPDATE statement against pTab
93370 ** is currently being processed. For each column of the table that is
93371 ** actually updated, the corresponding element in the aChange[] array
93372 ** is zero or greater (if a column is unmodified the corresponding element
93373 ** is set to -1). If the rowid column is modified by the UPDATE statement
93374 ** the bChngRowid argument is non-zero.
93375 **
93376 ** This function returns true if any of the columns that are part of the
93377 ** child key for FK constraint *p are modified.
93378 */
93379 static int fkChildIsModified(
93380   Table *pTab,                    /* Table being updated */
93381   FKey *p,                        /* Foreign key for which pTab is the child */
93382   int *aChange,                   /* Array indicating modified columns */
93383   int bChngRowid                  /* True if rowid is modified by this update */
93384 ){
93385   int i;
93386   for(i=0; i<p->nCol; i++){
93387     int iChildKey = p->aCol[i].iFrom;
93388     if( aChange[iChildKey]>=0 ) return 1;
93389     if( iChildKey==pTab->iPKey && bChngRowid ) return 1;
93390   }
93391   return 0;
93392 }
93393 
93394 /*
93395 ** The second argument points to an FKey object representing a foreign key
93396 ** for which pTab is the parent table. An UPDATE statement against pTab
93397 ** is currently being processed. For each column of the table that is
93398 ** actually updated, the corresponding element in the aChange[] array
93399 ** is zero or greater (if a column is unmodified the corresponding element
93400 ** is set to -1). If the rowid column is modified by the UPDATE statement
93401 ** the bChngRowid argument is non-zero.
93402 **
93403 ** This function returns true if any of the columns that are part of the
93404 ** parent key for FK constraint *p are modified.
93405 */
93406 static int fkParentIsModified(
93407   Table *pTab,
93408   FKey *p,
93409   int *aChange,
93410   int bChngRowid
93411 ){
93412   int i;
93413   for(i=0; i<p->nCol; i++){
93414     char *zKey = p->aCol[i].zCol;
93415     int iKey;
93416     for(iKey=0; iKey<pTab->nCol; iKey++){
93417       if( aChange[iKey]>=0 || (iKey==pTab->iPKey && bChngRowid) ){
93418         Column *pCol = &pTab->aCol[iKey];
93419         if( zKey ){
93420           if( 0==sqlite3StrICmp(pCol->zName, zKey) ) return 1;
93421         }else if( pCol->colFlags & COLFLAG_PRIMKEY ){
93422           return 1;
93423         }
93424       }
93425     }
93426   }
93427   return 0;
93428 }
93429 
93430 /*
93431 ** This function is called when inserting, deleting or updating a row of
93432 ** table pTab to generate VDBE code to perform foreign key constraint
93433 ** processing for the operation.
93434 **
93435 ** For a DELETE operation, parameter regOld is passed the index of the
93436 ** first register in an array of (pTab->nCol+1) registers containing the
93437 ** rowid of the row being deleted, followed by each of the column values
93438 ** of the row being deleted, from left to right. Parameter regNew is passed
93439 ** zero in this case.
93440 **
93441 ** For an INSERT operation, regOld is passed zero and regNew is passed the
93442 ** first register of an array of (pTab->nCol+1) registers containing the new
93443 ** row data.
93444 **
93445 ** For an UPDATE operation, this function is called twice. Once before
93446 ** the original record is deleted from the table using the calling convention
93447 ** described for DELETE. Then again after the original record is deleted
93448 ** but before the new record is inserted using the INSERT convention.
93449 */
93450 SQLITE_PRIVATE void sqlite3FkCheck(
93451   Parse *pParse,                  /* Parse context */
93452   Table *pTab,                    /* Row is being deleted from this table */
93453   int regOld,                     /* Previous row data is stored here */
93454   int regNew,                     /* New row data is stored here */
93455   int *aChange,                   /* Array indicating UPDATEd columns (or 0) */
93456   int bChngRowid                  /* True if rowid is UPDATEd */
93457 ){
93458   sqlite3 *db = pParse->db;       /* Database handle */
93459   FKey *pFKey;                    /* Used to iterate through FKs */
93460   int iDb;                        /* Index of database containing pTab */
93461   const char *zDb;                /* Name of database containing pTab */
93462   int isIgnoreErrors = pParse->disableTriggers;
93463 
93464   /* Exactly one of regOld and regNew should be non-zero. */
93465   assert( (regOld==0)!=(regNew==0) );
93466 
93467   /* If foreign-keys are disabled, this function is a no-op. */
93468   if( (db->flags&SQLITE_ForeignKeys)==0 ) return;
93469 
93470   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
93471   zDb = db->aDb[iDb].zName;
93472 
93473   /* Loop through all the foreign key constraints for which pTab is the
93474   ** child table (the table that the foreign key definition is part of).  */
93475   for(pFKey=pTab->pFKey; pFKey; pFKey=pFKey->pNextFrom){
93476     Table *pTo;                   /* Parent table of foreign key pFKey */
93477     Index *pIdx = 0;              /* Index on key columns in pTo */
93478     int *aiFree = 0;
93479     int *aiCol;
93480     int iCol;
93481     int i;
93482     int isIgnore = 0;
93483 
93484     if( aChange
93485      && sqlite3_stricmp(pTab->zName, pFKey->zTo)!=0
93486      && fkChildIsModified(pTab, pFKey, aChange, bChngRowid)==0
93487     ){
93488       continue;
93489     }
93490 
93491     /* Find the parent table of this foreign key. Also find a unique index
93492     ** on the parent key columns in the parent table. If either of these
93493     ** schema items cannot be located, set an error in pParse and return
93494     ** early.  */
93495     if( pParse->disableTriggers ){
93496       pTo = sqlite3FindTable(db, pFKey->zTo, zDb);
93497     }else{
93498       pTo = sqlite3LocateTable(pParse, 0, pFKey->zTo, zDb);
93499     }
93500     if( !pTo || sqlite3FkLocateIndex(pParse, pTo, pFKey, &pIdx, &aiFree) ){
93501       assert( isIgnoreErrors==0 || (regOld!=0 && regNew==0) );
93502       if( !isIgnoreErrors || db->mallocFailed ) return;
93503       if( pTo==0 ){
93504         /* If isIgnoreErrors is true, then a table is being dropped. In this
93505         ** case SQLite runs a "DELETE FROM xxx" on the table being dropped
93506         ** before actually dropping it in order to check FK constraints.
93507         ** If the parent table of an FK constraint on the current table is
93508         ** missing, behave as if it is empty. i.e. decrement the relevant
93509         ** FK counter for each row of the current table with non-NULL keys.
93510         */
93511         Vdbe *v = sqlite3GetVdbe(pParse);
93512         int iJump = sqlite3VdbeCurrentAddr(v) + pFKey->nCol + 1;
93513         for(i=0; i<pFKey->nCol; i++){
93514           int iReg = pFKey->aCol[i].iFrom + regOld + 1;
93515           sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iJump); VdbeCoverage(v);
93516         }
93517         sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, -1);
93518       }
93519       continue;
93520     }
93521     assert( pFKey->nCol==1 || (aiFree && pIdx) );
93522 
93523     if( aiFree ){
93524       aiCol = aiFree;
93525     }else{
93526       iCol = pFKey->aCol[0].iFrom;
93527       aiCol = &iCol;
93528     }
93529     for(i=0; i<pFKey->nCol; i++){
93530       if( aiCol[i]==pTab->iPKey ){
93531         aiCol[i] = -1;
93532       }
93533 #ifndef SQLITE_OMIT_AUTHORIZATION
93534       /* Request permission to read the parent key columns. If the
93535       ** authorization callback returns SQLITE_IGNORE, behave as if any
93536       ** values read from the parent table are NULL. */
93537       if( db->xAuth ){
93538         int rcauth;
93539         char *zCol = pTo->aCol[pIdx ? pIdx->aiColumn[i] : pTo->iPKey].zName;
93540         rcauth = sqlite3AuthReadCol(pParse, pTo->zName, zCol, iDb);
93541         isIgnore = (rcauth==SQLITE_IGNORE);
93542       }
93543 #endif
93544     }
93545 
93546     /* Take a shared-cache advisory read-lock on the parent table. Allocate
93547     ** a cursor to use to search the unique index on the parent key columns
93548     ** in the parent table.  */
93549     sqlite3TableLock(pParse, iDb, pTo->tnum, 0, pTo->zName);
93550     pParse->nTab++;
93551 
93552     if( regOld!=0 ){
93553       /* A row is being removed from the child table. Search for the parent.
93554       ** If the parent does not exist, removing the child row resolves an
93555       ** outstanding foreign key constraint violation. */
93556       fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regOld, -1,isIgnore);
93557     }
93558     if( regNew!=0 ){
93559       /* A row is being added to the child table. If a parent row cannot
93560       ** be found, adding the child row has violated the FK constraint. */
93561       fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regNew, +1,isIgnore);
93562     }
93563 
93564     sqlite3DbFree(db, aiFree);
93565   }
93566 
93567   /* Loop through all the foreign key constraints that refer to this table.
93568   ** (the "child" constraints) */
93569   for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){
93570     Index *pIdx = 0;              /* Foreign key index for pFKey */
93571     SrcList *pSrc;
93572     int *aiCol = 0;
93573 
93574     if( aChange && fkParentIsModified(pTab, pFKey, aChange, bChngRowid)==0 ){
93575       continue;
93576     }
93577 
93578     if( !pFKey->isDeferred && !(db->flags & SQLITE_DeferFKs)
93579      && !pParse->pToplevel && !pParse->isMultiWrite
93580     ){
93581       assert( regOld==0 && regNew!=0 );
93582       /* Inserting a single row into a parent table cannot cause an immediate
93583       ** foreign key violation. So do nothing in this case.  */
93584       continue;
93585     }
93586 
93587     if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ){
93588       if( !isIgnoreErrors || db->mallocFailed ) return;
93589       continue;
93590     }
93591     assert( aiCol || pFKey->nCol==1 );
93592 
93593     /* Create a SrcList structure containing the child table.  We need the
93594     ** child table as a SrcList for sqlite3WhereBegin() */
93595     pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
93596     if( pSrc ){
93597       struct SrcList_item *pItem = pSrc->a;
93598       pItem->pTab = pFKey->pFrom;
93599       pItem->zName = pFKey->pFrom->zName;
93600       pItem->pTab->nRef++;
93601       pItem->iCursor = pParse->nTab++;
93602 
93603       if( regNew!=0 ){
93604         fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regNew, -1);
93605       }
93606       if( regOld!=0 ){
93607         /* If there is a RESTRICT action configured for the current operation
93608         ** on the parent table of this FK, then throw an exception
93609         ** immediately if the FK constraint is violated, even if this is a
93610         ** deferred trigger. That's what RESTRICT means. To defer checking
93611         ** the constraint, the FK should specify NO ACTION (represented
93612         ** using OE_None). NO ACTION is the default.  */
93613         fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regOld, 1);
93614       }
93615       pItem->zName = 0;
93616       sqlite3SrcListDelete(db, pSrc);
93617     }
93618     sqlite3DbFree(db, aiCol);
93619   }
93620 }
93621 
93622 #define COLUMN_MASK(x) (((x)>31) ? 0xffffffff : ((u32)1<<(x)))
93623 
93624 /*
93625 ** This function is called before generating code to update or delete a
93626 ** row contained in table pTab.
93627 */
93628 SQLITE_PRIVATE u32 sqlite3FkOldmask(
93629   Parse *pParse,                  /* Parse context */
93630   Table *pTab                     /* Table being modified */
93631 ){
93632   u32 mask = 0;
93633   if( pParse->db->flags&SQLITE_ForeignKeys ){
93634     FKey *p;
93635     int i;
93636     for(p=pTab->pFKey; p; p=p->pNextFrom){
93637       for(i=0; i<p->nCol; i++) mask |= COLUMN_MASK(p->aCol[i].iFrom);
93638     }
93639     for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
93640       Index *pIdx = 0;
93641       sqlite3FkLocateIndex(pParse, pTab, p, &pIdx, 0);
93642       if( pIdx ){
93643         for(i=0; i<pIdx->nKeyCol; i++) mask |= COLUMN_MASK(pIdx->aiColumn[i]);
93644       }
93645     }
93646   }
93647   return mask;
93648 }
93649 
93650 
93651 /*
93652 ** This function is called before generating code to update or delete a
93653 ** row contained in table pTab. If the operation is a DELETE, then
93654 ** parameter aChange is passed a NULL value. For an UPDATE, aChange points
93655 ** to an array of size N, where N is the number of columns in table pTab.
93656 ** If the i'th column is not modified by the UPDATE, then the corresponding
93657 ** entry in the aChange[] array is set to -1. If the column is modified,
93658 ** the value is 0 or greater. Parameter chngRowid is set to true if the
93659 ** UPDATE statement modifies the rowid fields of the table.
93660 **
93661 ** If any foreign key processing will be required, this function returns
93662 ** true. If there is no foreign key related processing, this function
93663 ** returns false.
93664 */
93665 SQLITE_PRIVATE int sqlite3FkRequired(
93666   Parse *pParse,                  /* Parse context */
93667   Table *pTab,                    /* Table being modified */
93668   int *aChange,                   /* Non-NULL for UPDATE operations */
93669   int chngRowid                   /* True for UPDATE that affects rowid */
93670 ){
93671   if( pParse->db->flags&SQLITE_ForeignKeys ){
93672     if( !aChange ){
93673       /* A DELETE operation. Foreign key processing is required if the
93674       ** table in question is either the child or parent table for any
93675       ** foreign key constraint.  */
93676       return (sqlite3FkReferences(pTab) || pTab->pFKey);
93677     }else{
93678       /* This is an UPDATE. Foreign key processing is only required if the
93679       ** operation modifies one or more child or parent key columns. */
93680       FKey *p;
93681 
93682       /* Check if any child key columns are being modified. */
93683       for(p=pTab->pFKey; p; p=p->pNextFrom){
93684         if( fkChildIsModified(pTab, p, aChange, chngRowid) ) return 1;
93685       }
93686 
93687       /* Check if any parent key columns are being modified. */
93688       for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
93689         if( fkParentIsModified(pTab, p, aChange, chngRowid) ) return 1;
93690       }
93691     }
93692   }
93693   return 0;
93694 }
93695 
93696 /*
93697 ** This function is called when an UPDATE or DELETE operation is being
93698 ** compiled on table pTab, which is the parent table of foreign-key pFKey.
93699 ** If the current operation is an UPDATE, then the pChanges parameter is
93700 ** passed a pointer to the list of columns being modified. If it is a
93701 ** DELETE, pChanges is passed a NULL pointer.
93702 **
93703 ** It returns a pointer to a Trigger structure containing a trigger
93704 ** equivalent to the ON UPDATE or ON DELETE action specified by pFKey.
93705 ** If the action is "NO ACTION" or "RESTRICT", then a NULL pointer is
93706 ** returned (these actions require no special handling by the triggers
93707 ** sub-system, code for them is created by fkScanChildren()).
93708 **
93709 ** For example, if pFKey is the foreign key and pTab is table "p" in
93710 ** the following schema:
93711 **
93712 **   CREATE TABLE p(pk PRIMARY KEY);
93713 **   CREATE TABLE c(ck REFERENCES p ON DELETE CASCADE);
93714 **
93715 ** then the returned trigger structure is equivalent to:
93716 **
93717 **   CREATE TRIGGER ... DELETE ON p BEGIN
93718 **     DELETE FROM c WHERE ck = old.pk;
93719 **   END;
93720 **
93721 ** The returned pointer is cached as part of the foreign key object. It
93722 ** is eventually freed along with the rest of the foreign key object by
93723 ** sqlite3FkDelete().
93724 */
93725 static Trigger *fkActionTrigger(
93726   Parse *pParse,                  /* Parse context */
93727   Table *pTab,                    /* Table being updated or deleted from */
93728   FKey *pFKey,                    /* Foreign key to get action for */
93729   ExprList *pChanges              /* Change-list for UPDATE, NULL for DELETE */
93730 ){
93731   sqlite3 *db = pParse->db;       /* Database handle */
93732   int action;                     /* One of OE_None, OE_Cascade etc. */
93733   Trigger *pTrigger;              /* Trigger definition to return */
93734   int iAction = (pChanges!=0);    /* 1 for UPDATE, 0 for DELETE */
93735 
93736   action = pFKey->aAction[iAction];
93737   pTrigger = pFKey->apTrigger[iAction];
93738 
93739   if( action!=OE_None && !pTrigger ){
93740     u8 enableLookaside;           /* Copy of db->lookaside.bEnabled */
93741     char const *zFrom;            /* Name of child table */
93742     int nFrom;                    /* Length in bytes of zFrom */
93743     Index *pIdx = 0;              /* Parent key index for this FK */
93744     int *aiCol = 0;               /* child table cols -> parent key cols */
93745     TriggerStep *pStep = 0;        /* First (only) step of trigger program */
93746     Expr *pWhere = 0;             /* WHERE clause of trigger step */
93747     ExprList *pList = 0;          /* Changes list if ON UPDATE CASCADE */
93748     Select *pSelect = 0;          /* If RESTRICT, "SELECT RAISE(...)" */
93749     int i;                        /* Iterator variable */
93750     Expr *pWhen = 0;              /* WHEN clause for the trigger */
93751 
93752     if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return 0;
93753     assert( aiCol || pFKey->nCol==1 );
93754 
93755     for(i=0; i<pFKey->nCol; i++){
93756       Token tOld = { "old", 3 };  /* Literal "old" token */
93757       Token tNew = { "new", 3 };  /* Literal "new" token */
93758       Token tFromCol;             /* Name of column in child table */
93759       Token tToCol;               /* Name of column in parent table */
93760       int iFromCol;               /* Idx of column in child table */
93761       Expr *pEq;                  /* tFromCol = OLD.tToCol */
93762 
93763       iFromCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom;
93764       assert( iFromCol>=0 );
93765       tToCol.z = pIdx ? pTab->aCol[pIdx->aiColumn[i]].zName : "oid";
93766       tFromCol.z = pFKey->pFrom->aCol[iFromCol].zName;
93767 
93768       tToCol.n = sqlite3Strlen30(tToCol.z);
93769       tFromCol.n = sqlite3Strlen30(tFromCol.z);
93770 
93771       /* Create the expression "OLD.zToCol = zFromCol". It is important
93772       ** that the "OLD.zToCol" term is on the LHS of the = operator, so
93773       ** that the affinity and collation sequence associated with the
93774       ** parent table are used for the comparison. */
93775       pEq = sqlite3PExpr(pParse, TK_EQ,
93776           sqlite3PExpr(pParse, TK_DOT,
93777             sqlite3PExpr(pParse, TK_ID, 0, 0, &tOld),
93778             sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol)
93779           , 0),
93780           sqlite3PExpr(pParse, TK_ID, 0, 0, &tFromCol)
93781       , 0);
93782       pWhere = sqlite3ExprAnd(db, pWhere, pEq);
93783 
93784       /* For ON UPDATE, construct the next term of the WHEN clause.
93785       ** The final WHEN clause will be like this:
93786       **
93787       **    WHEN NOT(old.col1 IS new.col1 AND ... AND old.colN IS new.colN)
93788       */
93789       if( pChanges ){
93790         pEq = sqlite3PExpr(pParse, TK_IS,
93791             sqlite3PExpr(pParse, TK_DOT,
93792               sqlite3PExpr(pParse, TK_ID, 0, 0, &tOld),
93793               sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol),
93794               0),
93795             sqlite3PExpr(pParse, TK_DOT,
93796               sqlite3PExpr(pParse, TK_ID, 0, 0, &tNew),
93797               sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol),
93798               0),
93799             0);
93800         pWhen = sqlite3ExprAnd(db, pWhen, pEq);
93801       }
93802 
93803       if( action!=OE_Restrict && (action!=OE_Cascade || pChanges) ){
93804         Expr *pNew;
93805         if( action==OE_Cascade ){
93806           pNew = sqlite3PExpr(pParse, TK_DOT,
93807             sqlite3PExpr(pParse, TK_ID, 0, 0, &tNew),
93808             sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol)
93809           , 0);
93810         }else if( action==OE_SetDflt ){
93811           Expr *pDflt = pFKey->pFrom->aCol[iFromCol].pDflt;
93812           if( pDflt ){
93813             pNew = sqlite3ExprDup(db, pDflt, 0);
93814           }else{
93815             pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
93816           }
93817         }else{
93818           pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
93819         }
93820         pList = sqlite3ExprListAppend(pParse, pList, pNew);
93821         sqlite3ExprListSetName(pParse, pList, &tFromCol, 0);
93822       }
93823     }
93824     sqlite3DbFree(db, aiCol);
93825 
93826     zFrom = pFKey->pFrom->zName;
93827     nFrom = sqlite3Strlen30(zFrom);
93828 
93829     if( action==OE_Restrict ){
93830       Token tFrom;
93831       Expr *pRaise;
93832 
93833       tFrom.z = zFrom;
93834       tFrom.n = nFrom;
93835       pRaise = sqlite3Expr(db, TK_RAISE, "FOREIGN KEY constraint failed");
93836       if( pRaise ){
93837         pRaise->affinity = OE_Abort;
93838       }
93839       pSelect = sqlite3SelectNew(pParse,
93840           sqlite3ExprListAppend(pParse, 0, pRaise),
93841           sqlite3SrcListAppend(db, 0, &tFrom, 0),
93842           pWhere,
93843           0, 0, 0, 0, 0, 0
93844       );
93845       pWhere = 0;
93846     }
93847 
93848     /* Disable lookaside memory allocation */
93849     enableLookaside = db->lookaside.bEnabled;
93850     db->lookaside.bEnabled = 0;
93851 
93852     pTrigger = (Trigger *)sqlite3DbMallocZero(db,
93853         sizeof(Trigger) +         /* struct Trigger */
93854         sizeof(TriggerStep) +     /* Single step in trigger program */
93855         nFrom + 1                 /* Space for pStep->target.z */
93856     );
93857     if( pTrigger ){
93858       pStep = pTrigger->step_list = (TriggerStep *)&pTrigger[1];
93859       pStep->target.z = (char *)&pStep[1];
93860       pStep->target.n = nFrom;
93861       memcpy((char *)pStep->target.z, zFrom, nFrom);
93862 
93863       pStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE);
93864       pStep->pExprList = sqlite3ExprListDup(db, pList, EXPRDUP_REDUCE);
93865       pStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
93866       if( pWhen ){
93867         pWhen = sqlite3PExpr(pParse, TK_NOT, pWhen, 0, 0);
93868         pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE);
93869       }
93870     }
93871 
93872     /* Re-enable the lookaside buffer, if it was disabled earlier. */
93873     db->lookaside.bEnabled = enableLookaside;
93874 
93875     sqlite3ExprDelete(db, pWhere);
93876     sqlite3ExprDelete(db, pWhen);
93877     sqlite3ExprListDelete(db, pList);
93878     sqlite3SelectDelete(db, pSelect);
93879     if( db->mallocFailed==1 ){
93880       fkTriggerDelete(db, pTrigger);
93881       return 0;
93882     }
93883     assert( pStep!=0 );
93884 
93885     switch( action ){
93886       case OE_Restrict:
93887         pStep->op = TK_SELECT;
93888         break;
93889       case OE_Cascade:
93890         if( !pChanges ){
93891           pStep->op = TK_DELETE;
93892           break;
93893         }
93894       default:
93895         pStep->op = TK_UPDATE;
93896     }
93897     pStep->pTrig = pTrigger;
93898     pTrigger->pSchema = pTab->pSchema;
93899     pTrigger->pTabSchema = pTab->pSchema;
93900     pFKey->apTrigger[iAction] = pTrigger;
93901     pTrigger->op = (pChanges ? TK_UPDATE : TK_DELETE);
93902   }
93903 
93904   return pTrigger;
93905 }
93906 
93907 /*
93908 ** This function is called when deleting or updating a row to implement
93909 ** any required CASCADE, SET NULL or SET DEFAULT actions.
93910 */
93911 SQLITE_PRIVATE void sqlite3FkActions(
93912   Parse *pParse,                  /* Parse context */
93913   Table *pTab,                    /* Table being updated or deleted from */
93914   ExprList *pChanges,             /* Change-list for UPDATE, NULL for DELETE */
93915   int regOld,                     /* Address of array containing old row */
93916   int *aChange,                   /* Array indicating UPDATEd columns (or 0) */
93917   int bChngRowid                  /* True if rowid is UPDATEd */
93918 ){
93919   /* If foreign-key support is enabled, iterate through all FKs that
93920   ** refer to table pTab. If there is an action associated with the FK
93921   ** for this operation (either update or delete), invoke the associated
93922   ** trigger sub-program.  */
93923   if( pParse->db->flags&SQLITE_ForeignKeys ){
93924     FKey *pFKey;                  /* Iterator variable */
93925     for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){
93926       if( aChange==0 || fkParentIsModified(pTab, pFKey, aChange, bChngRowid) ){
93927         Trigger *pAct = fkActionTrigger(pParse, pTab, pFKey, pChanges);
93928         if( pAct ){
93929           sqlite3CodeRowTriggerDirect(pParse, pAct, pTab, regOld, OE_Abort, 0);
93930         }
93931       }
93932     }
93933   }
93934 }
93935 
93936 #endif /* ifndef SQLITE_OMIT_TRIGGER */
93937 
93938 /*
93939 ** Free all memory associated with foreign key definitions attached to
93940 ** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash
93941 ** hash table.
93942 */
93943 SQLITE_PRIVATE void sqlite3FkDelete(sqlite3 *db, Table *pTab){
93944   FKey *pFKey;                    /* Iterator variable */
93945   FKey *pNext;                    /* Copy of pFKey->pNextFrom */
93946 
93947   assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pTab->pSchema) );
93948   for(pFKey=pTab->pFKey; pFKey; pFKey=pNext){
93949 
93950     /* Remove the FK from the fkeyHash hash table. */
93951     if( !db || db->pnBytesFreed==0 ){
93952       if( pFKey->pPrevTo ){
93953         pFKey->pPrevTo->pNextTo = pFKey->pNextTo;
93954       }else{
93955         void *p = (void *)pFKey->pNextTo;
93956         const char *z = (p ? pFKey->pNextTo->zTo : pFKey->zTo);
93957         sqlite3HashInsert(&pTab->pSchema->fkeyHash, z, sqlite3Strlen30(z), p);
93958       }
93959       if( pFKey->pNextTo ){
93960         pFKey->pNextTo->pPrevTo = pFKey->pPrevTo;
93961       }
93962     }
93963 
93964     /* EV: R-30323-21917 Each foreign key constraint in SQLite is
93965     ** classified as either immediate or deferred.
93966     */
93967     assert( pFKey->isDeferred==0 || pFKey->isDeferred==1 );
93968 
93969     /* Delete any triggers created to implement actions for this FK. */
93970 #ifndef SQLITE_OMIT_TRIGGER
93971     fkTriggerDelete(db, pFKey->apTrigger[0]);
93972     fkTriggerDelete(db, pFKey->apTrigger[1]);
93973 #endif
93974 
93975     pNext = pFKey->pNextFrom;
93976     sqlite3DbFree(db, pFKey);
93977   }
93978 }
93979 #endif /* ifndef SQLITE_OMIT_FOREIGN_KEY */
93980 
93981 /************** End of fkey.c ************************************************/
93982 /************** Begin file insert.c ******************************************/
93983 /*
93984 ** 2001 September 15
93985 **
93986 ** The author disclaims copyright to this source code.  In place of
93987 ** a legal notice, here is a blessing:
93988 **
93989 **    May you do good and not evil.
93990 **    May you find forgiveness for yourself and forgive others.
93991 **    May you share freely, never taking more than you give.
93992 **
93993 *************************************************************************
93994 ** This file contains C code routines that are called by the parser
93995 ** to handle INSERT statements in SQLite.
93996 */
93997 
93998 /*
93999 ** Generate code that will
94000 **
94001 **   (1) acquire a lock for table pTab then
94002 **   (2) open pTab as cursor iCur.
94003 **
94004 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index
94005 ** for that table that is actually opened.
94006 */
94007 SQLITE_PRIVATE void sqlite3OpenTable(
94008   Parse *pParse,  /* Generate code into this VDBE */
94009   int iCur,       /* The cursor number of the table */
94010   int iDb,        /* The database index in sqlite3.aDb[] */
94011   Table *pTab,    /* The table to be opened */
94012   int opcode      /* OP_OpenRead or OP_OpenWrite */
94013 ){
94014   Vdbe *v;
94015   assert( !IsVirtual(pTab) );
94016   v = sqlite3GetVdbe(pParse);
94017   assert( opcode==OP_OpenWrite || opcode==OP_OpenRead );
94018   sqlite3TableLock(pParse, iDb, pTab->tnum,
94019                    (opcode==OP_OpenWrite)?1:0, pTab->zName);
94020   if( HasRowid(pTab) ){
94021     sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nCol);
94022     VdbeComment((v, "%s", pTab->zName));
94023   }else{
94024     Index *pPk = sqlite3PrimaryKeyIndex(pTab);
94025     assert( pPk!=0 );
94026     assert( pPk->tnum=pTab->tnum );
94027     sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb);
94028     sqlite3VdbeSetP4KeyInfo(pParse, pPk);
94029     VdbeComment((v, "%s", pTab->zName));
94030   }
94031 }
94032 
94033 /*
94034 ** Return a pointer to the column affinity string associated with index
94035 ** pIdx. A column affinity string has one character for each column in
94036 ** the table, according to the affinity of the column:
94037 **
94038 **  Character      Column affinity
94039 **  ------------------------------
94040 **  'a'            TEXT
94041 **  'b'            NONE
94042 **  'c'            NUMERIC
94043 **  'd'            INTEGER
94044 **  'e'            REAL
94045 **
94046 ** An extra 'd' is appended to the end of the string to cover the
94047 ** rowid that appears as the last column in every index.
94048 **
94049 ** Memory for the buffer containing the column index affinity string
94050 ** is managed along with the rest of the Index structure. It will be
94051 ** released when sqlite3DeleteIndex() is called.
94052 */
94053 SQLITE_PRIVATE const char *sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){
94054   if( !pIdx->zColAff ){
94055     /* The first time a column affinity string for a particular index is
94056     ** required, it is allocated and populated here. It is then stored as
94057     ** a member of the Index structure for subsequent use.
94058     **
94059     ** The column affinity string will eventually be deleted by
94060     ** sqliteDeleteIndex() when the Index structure itself is cleaned
94061     ** up.
94062     */
94063     int n;
94064     Table *pTab = pIdx->pTable;
94065     sqlite3 *db = sqlite3VdbeDb(v);
94066     pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1);
94067     if( !pIdx->zColAff ){
94068       db->mallocFailed = 1;
94069       return 0;
94070     }
94071     for(n=0; n<pIdx->nColumn; n++){
94072       i16 x = pIdx->aiColumn[n];
94073       pIdx->zColAff[n] = x<0 ? SQLITE_AFF_INTEGER : pTab->aCol[x].affinity;
94074     }
94075     pIdx->zColAff[n] = 0;
94076   }
94077 
94078   return pIdx->zColAff;
94079 }
94080 
94081 /*
94082 ** Compute the affinity string for table pTab, if it has not already been
94083 ** computed.  As an optimization, omit trailing SQLITE_AFF_NONE affinities.
94084 **
94085 ** If the affinity exists (if it is no entirely SQLITE_AFF_NONE values) and
94086 ** if iReg>0 then code an OP_Affinity opcode that will set the affinities
94087 ** for register iReg and following.  Or if affinities exists and iReg==0,
94088 ** then just set the P4 operand of the previous opcode (which should  be
94089 ** an OP_MakeRecord) to the affinity string.
94090 **
94091 ** A column affinity string has one character per column:
94092 **
94093 **  Character      Column affinity
94094 **  ------------------------------
94095 **  'a'            TEXT
94096 **  'b'            NONE
94097 **  'c'            NUMERIC
94098 **  'd'            INTEGER
94099 **  'e'            REAL
94100 */
94101 SQLITE_PRIVATE void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){
94102   int i;
94103   char *zColAff = pTab->zColAff;
94104   if( zColAff==0 ){
94105     sqlite3 *db = sqlite3VdbeDb(v);
94106     zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1);
94107     if( !zColAff ){
94108       db->mallocFailed = 1;
94109       return;
94110     }
94111 
94112     for(i=0; i<pTab->nCol; i++){
94113       zColAff[i] = pTab->aCol[i].affinity;
94114     }
94115     do{
94116       zColAff[i--] = 0;
94117     }while( i>=0 && zColAff[i]==SQLITE_AFF_NONE );
94118     pTab->zColAff = zColAff;
94119   }
94120   i = sqlite3Strlen30(zColAff);
94121   if( i ){
94122     if( iReg ){
94123       sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i);
94124     }else{
94125       sqlite3VdbeChangeP4(v, -1, zColAff, i);
94126     }
94127   }
94128 }
94129 
94130 /*
94131 ** Return non-zero if the table pTab in database iDb or any of its indices
94132 ** have been opened at any point in the VDBE program. This is used to see if
94133 ** a statement of the form  "INSERT INTO <iDb, pTab> SELECT ..." can
94134 ** run without using a temporary table for the results of the SELECT.
94135 */
94136 static int readsTable(Parse *p, int iDb, Table *pTab){
94137   Vdbe *v = sqlite3GetVdbe(p);
94138   int i;
94139   int iEnd = sqlite3VdbeCurrentAddr(v);
94140 #ifndef SQLITE_OMIT_VIRTUALTABLE
94141   VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0;
94142 #endif
94143 
94144   for(i=1; i<iEnd; i++){
94145     VdbeOp *pOp = sqlite3VdbeGetOp(v, i);
94146     assert( pOp!=0 );
94147     if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){
94148       Index *pIndex;
94149       int tnum = pOp->p2;
94150       if( tnum==pTab->tnum ){
94151         return 1;
94152       }
94153       for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
94154         if( tnum==pIndex->tnum ){
94155           return 1;
94156         }
94157       }
94158     }
94159 #ifndef SQLITE_OMIT_VIRTUALTABLE
94160     if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){
94161       assert( pOp->p4.pVtab!=0 );
94162       assert( pOp->p4type==P4_VTAB );
94163       return 1;
94164     }
94165 #endif
94166   }
94167   return 0;
94168 }
94169 
94170 #ifndef SQLITE_OMIT_AUTOINCREMENT
94171 /*
94172 ** Locate or create an AutoincInfo structure associated with table pTab
94173 ** which is in database iDb.  Return the register number for the register
94174 ** that holds the maximum rowid.
94175 **
94176 ** There is at most one AutoincInfo structure per table even if the
94177 ** same table is autoincremented multiple times due to inserts within
94178 ** triggers.  A new AutoincInfo structure is created if this is the
94179 ** first use of table pTab.  On 2nd and subsequent uses, the original
94180 ** AutoincInfo structure is used.
94181 **
94182 ** Three memory locations are allocated:
94183 **
94184 **   (1)  Register to hold the name of the pTab table.
94185 **   (2)  Register to hold the maximum ROWID of pTab.
94186 **   (3)  Register to hold the rowid in sqlite_sequence of pTab
94187 **
94188 ** The 2nd register is the one that is returned.  That is all the
94189 ** insert routine needs to know about.
94190 */
94191 static int autoIncBegin(
94192   Parse *pParse,      /* Parsing context */
94193   int iDb,            /* Index of the database holding pTab */
94194   Table *pTab         /* The table we are writing to */
94195 ){
94196   int memId = 0;      /* Register holding maximum rowid */
94197   if( pTab->tabFlags & TF_Autoincrement ){
94198     Parse *pToplevel = sqlite3ParseToplevel(pParse);
94199     AutoincInfo *pInfo;
94200 
94201     pInfo = pToplevel->pAinc;
94202     while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; }
94203     if( pInfo==0 ){
94204       pInfo = sqlite3DbMallocRaw(pParse->db, sizeof(*pInfo));
94205       if( pInfo==0 ) return 0;
94206       pInfo->pNext = pToplevel->pAinc;
94207       pToplevel->pAinc = pInfo;
94208       pInfo->pTab = pTab;
94209       pInfo->iDb = iDb;
94210       pToplevel->nMem++;                  /* Register to hold name of table */
94211       pInfo->regCtr = ++pToplevel->nMem;  /* Max rowid register */
94212       pToplevel->nMem++;                  /* Rowid in sqlite_sequence */
94213     }
94214     memId = pInfo->regCtr;
94215   }
94216   return memId;
94217 }
94218 
94219 /*
94220 ** This routine generates code that will initialize all of the
94221 ** register used by the autoincrement tracker.
94222 */
94223 SQLITE_PRIVATE void sqlite3AutoincrementBegin(Parse *pParse){
94224   AutoincInfo *p;            /* Information about an AUTOINCREMENT */
94225   sqlite3 *db = pParse->db;  /* The database connection */
94226   Db *pDb;                   /* Database only autoinc table */
94227   int memId;                 /* Register holding max rowid */
94228   int addr;                  /* A VDBE address */
94229   Vdbe *v = pParse->pVdbe;   /* VDBE under construction */
94230 
94231   /* This routine is never called during trigger-generation.  It is
94232   ** only called from the top-level */
94233   assert( pParse->pTriggerTab==0 );
94234   assert( pParse==sqlite3ParseToplevel(pParse) );
94235 
94236   assert( v );   /* We failed long ago if this is not so */
94237   for(p = pParse->pAinc; p; p = p->pNext){
94238     pDb = &db->aDb[p->iDb];
94239     memId = p->regCtr;
94240     assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
94241     sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
94242     sqlite3VdbeAddOp3(v, OP_Null, 0, memId, memId+1);
94243     addr = sqlite3VdbeCurrentAddr(v);
94244     sqlite3VdbeAddOp4(v, OP_String8, 0, memId-1, 0, p->pTab->zName, 0);
94245     sqlite3VdbeAddOp2(v, OP_Rewind, 0, addr+9); VdbeCoverage(v);
94246     sqlite3VdbeAddOp3(v, OP_Column, 0, 0, memId);
94247     sqlite3VdbeAddOp3(v, OP_Ne, memId-1, addr+7, memId); VdbeCoverage(v);
94248     sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
94249     sqlite3VdbeAddOp2(v, OP_Rowid, 0, memId+1);
94250     sqlite3VdbeAddOp3(v, OP_Column, 0, 1, memId);
94251     sqlite3VdbeAddOp2(v, OP_Goto, 0, addr+9);
94252     sqlite3VdbeAddOp2(v, OP_Next, 0, addr+2); VdbeCoverage(v);
94253     sqlite3VdbeAddOp2(v, OP_Integer, 0, memId);
94254     sqlite3VdbeAddOp0(v, OP_Close);
94255   }
94256 }
94257 
94258 /*
94259 ** Update the maximum rowid for an autoincrement calculation.
94260 **
94261 ** This routine should be called when the top of the stack holds a
94262 ** new rowid that is about to be inserted.  If that new rowid is
94263 ** larger than the maximum rowid in the memId memory cell, then the
94264 ** memory cell is updated.  The stack is unchanged.
94265 */
94266 static void autoIncStep(Parse *pParse, int memId, int regRowid){
94267   if( memId>0 ){
94268     sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid);
94269   }
94270 }
94271 
94272 /*
94273 ** This routine generates the code needed to write autoincrement
94274 ** maximum rowid values back into the sqlite_sequence register.
94275 ** Every statement that might do an INSERT into an autoincrement
94276 ** table (either directly or through triggers) needs to call this
94277 ** routine just before the "exit" code.
94278 */
94279 SQLITE_PRIVATE void sqlite3AutoincrementEnd(Parse *pParse){
94280   AutoincInfo *p;
94281   Vdbe *v = pParse->pVdbe;
94282   sqlite3 *db = pParse->db;
94283 
94284   assert( v );
94285   for(p = pParse->pAinc; p; p = p->pNext){
94286     Db *pDb = &db->aDb[p->iDb];
94287     int j1;
94288     int iRec;
94289     int memId = p->regCtr;
94290 
94291     iRec = sqlite3GetTempReg(pParse);
94292     assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
94293     sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
94294     j1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId+1); VdbeCoverage(v);
94295     sqlite3VdbeAddOp2(v, OP_NewRowid, 0, memId+1);
94296     sqlite3VdbeJumpHere(v, j1);
94297     sqlite3VdbeAddOp3(v, OP_MakeRecord, memId-1, 2, iRec);
94298     sqlite3VdbeAddOp3(v, OP_Insert, 0, iRec, memId+1);
94299     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
94300     sqlite3VdbeAddOp0(v, OP_Close);
94301     sqlite3ReleaseTempReg(pParse, iRec);
94302   }
94303 }
94304 #else
94305 /*
94306 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
94307 ** above are all no-ops
94308 */
94309 # define autoIncBegin(A,B,C) (0)
94310 # define autoIncStep(A,B,C)
94311 #endif /* SQLITE_OMIT_AUTOINCREMENT */
94312 
94313 
94314 /* Forward declaration */
94315 static int xferOptimization(
94316   Parse *pParse,        /* Parser context */
94317   Table *pDest,         /* The table we are inserting into */
94318   Select *pSelect,      /* A SELECT statement to use as the data source */
94319   int onError,          /* How to handle constraint errors */
94320   int iDbDest           /* The database of pDest */
94321 );
94322 
94323 /*
94324 ** This routine is called to handle SQL of the following forms:
94325 **
94326 **    insert into TABLE (IDLIST) values(EXPRLIST)
94327 **    insert into TABLE (IDLIST) select
94328 **
94329 ** The IDLIST following the table name is always optional.  If omitted,
94330 ** then a list of all columns for the table is substituted.  The IDLIST
94331 ** appears in the pColumn parameter.  pColumn is NULL if IDLIST is omitted.
94332 **
94333 ** The pList parameter holds EXPRLIST in the first form of the INSERT
94334 ** statement above, and pSelect is NULL.  For the second form, pList is
94335 ** NULL and pSelect is a pointer to the select statement used to generate
94336 ** data for the insert.
94337 **
94338 ** The code generated follows one of four templates.  For a simple
94339 ** insert with data coming from a VALUES clause, the code executes
94340 ** once straight down through.  Pseudo-code follows (we call this
94341 ** the "1st template"):
94342 **
94343 **         open write cursor to <table> and its indices
94344 **         put VALUES clause expressions into registers
94345 **         write the resulting record into <table>
94346 **         cleanup
94347 **
94348 ** The three remaining templates assume the statement is of the form
94349 **
94350 **   INSERT INTO <table> SELECT ...
94351 **
94352 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
94353 ** in other words if the SELECT pulls all columns from a single table
94354 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
94355 ** if <table2> and <table1> are distinct tables but have identical
94356 ** schemas, including all the same indices, then a special optimization
94357 ** is invoked that copies raw records from <table2> over to <table1>.
94358 ** See the xferOptimization() function for the implementation of this
94359 ** template.  This is the 2nd template.
94360 **
94361 **         open a write cursor to <table>
94362 **         open read cursor on <table2>
94363 **         transfer all records in <table2> over to <table>
94364 **         close cursors
94365 **         foreach index on <table>
94366 **           open a write cursor on the <table> index
94367 **           open a read cursor on the corresponding <table2> index
94368 **           transfer all records from the read to the write cursors
94369 **           close cursors
94370 **         end foreach
94371 **
94372 ** The 3rd template is for when the second template does not apply
94373 ** and the SELECT clause does not read from <table> at any time.
94374 ** The generated code follows this template:
94375 **
94376 **         X <- A
94377 **         goto B
94378 **      A: setup for the SELECT
94379 **         loop over the rows in the SELECT
94380 **           load values into registers R..R+n
94381 **           yield X
94382 **         end loop
94383 **         cleanup after the SELECT
94384 **         end-coroutine X
94385 **      B: open write cursor to <table> and its indices
94386 **      C: yield X, at EOF goto D
94387 **         insert the select result into <table> from R..R+n
94388 **         goto C
94389 **      D: cleanup
94390 **
94391 ** The 4th template is used if the insert statement takes its
94392 ** values from a SELECT but the data is being inserted into a table
94393 ** that is also read as part of the SELECT.  In the third form,
94394 ** we have to use a intermediate table to store the results of
94395 ** the select.  The template is like this:
94396 **
94397 **         X <- A
94398 **         goto B
94399 **      A: setup for the SELECT
94400 **         loop over the tables in the SELECT
94401 **           load value into register R..R+n
94402 **           yield X
94403 **         end loop
94404 **         cleanup after the SELECT
94405 **         end co-routine R
94406 **      B: open temp table
94407 **      L: yield X, at EOF goto M
94408 **         insert row from R..R+n into temp table
94409 **         goto L
94410 **      M: open write cursor to <table> and its indices
94411 **         rewind temp table
94412 **      C: loop over rows of intermediate table
94413 **           transfer values form intermediate table into <table>
94414 **         end loop
94415 **      D: cleanup
94416 */
94417 SQLITE_PRIVATE void sqlite3Insert(
94418   Parse *pParse,        /* Parser context */
94419   SrcList *pTabList,    /* Name of table into which we are inserting */
94420   Select *pSelect,      /* A SELECT statement to use as the data source */
94421   IdList *pColumn,      /* Column names corresponding to IDLIST. */
94422   int onError           /* How to handle constraint errors */
94423 ){
94424   sqlite3 *db;          /* The main database structure */
94425   Table *pTab;          /* The table to insert into.  aka TABLE */
94426   char *zTab;           /* Name of the table into which we are inserting */
94427   const char *zDb;      /* Name of the database holding this table */
94428   int i, j, idx;        /* Loop counters */
94429   Vdbe *v;              /* Generate code into this virtual machine */
94430   Index *pIdx;          /* For looping over indices of the table */
94431   int nColumn;          /* Number of columns in the data */
94432   int nHidden = 0;      /* Number of hidden columns if TABLE is virtual */
94433   int iDataCur = 0;     /* VDBE cursor that is the main data repository */
94434   int iIdxCur = 0;      /* First index cursor */
94435   int ipkColumn = -1;   /* Column that is the INTEGER PRIMARY KEY */
94436   int endOfLoop;        /* Label for the end of the insertion loop */
94437   int srcTab = 0;       /* Data comes from this temporary cursor if >=0 */
94438   int addrInsTop = 0;   /* Jump to label "D" */
94439   int addrCont = 0;     /* Top of insert loop. Label "C" in templates 3 and 4 */
94440   SelectDest dest;      /* Destination for SELECT on rhs of INSERT */
94441   int iDb;              /* Index of database holding TABLE */
94442   Db *pDb;              /* The database containing table being inserted into */
94443   u8 useTempTable = 0;  /* Store SELECT results in intermediate table */
94444   u8 appendFlag = 0;    /* True if the insert is likely to be an append */
94445   u8 withoutRowid;      /* 0 for normal table.  1 for WITHOUT ROWID table */
94446   u8 bIdListInOrder = 1; /* True if IDLIST is in table order */
94447   ExprList *pList = 0;  /* List of VALUES() to be inserted  */
94448 
94449   /* Register allocations */
94450   int regFromSelect = 0;/* Base register for data coming from SELECT */
94451   int regAutoinc = 0;   /* Register holding the AUTOINCREMENT counter */
94452   int regRowCount = 0;  /* Memory cell used for the row counter */
94453   int regIns;           /* Block of regs holding rowid+data being inserted */
94454   int regRowid;         /* registers holding insert rowid */
94455   int regData;          /* register holding first column to insert */
94456   int *aRegIdx = 0;     /* One register allocated to each index */
94457 
94458 #ifndef SQLITE_OMIT_TRIGGER
94459   int isView;                 /* True if attempting to insert into a view */
94460   Trigger *pTrigger;          /* List of triggers on pTab, if required */
94461   int tmask;                  /* Mask of trigger times */
94462 #endif
94463 
94464   db = pParse->db;
94465   memset(&dest, 0, sizeof(dest));
94466   if( pParse->nErr || db->mallocFailed ){
94467     goto insert_cleanup;
94468   }
94469 
94470   /* If the Select object is really just a simple VALUES() list with a
94471   ** single row values (the common case) then keep that one row of values
94472   ** and go ahead and discard the Select object
94473   */
94474   if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){
94475     pList = pSelect->pEList;
94476     pSelect->pEList = 0;
94477     sqlite3SelectDelete(db, pSelect);
94478     pSelect = 0;
94479   }
94480 
94481   /* Locate the table into which we will be inserting new information.
94482   */
94483   assert( pTabList->nSrc==1 );
94484   zTab = pTabList->a[0].zName;
94485   if( NEVER(zTab==0) ) goto insert_cleanup;
94486   pTab = sqlite3SrcListLookup(pParse, pTabList);
94487   if( pTab==0 ){
94488     goto insert_cleanup;
94489   }
94490   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
94491   assert( iDb<db->nDb );
94492   pDb = &db->aDb[iDb];
94493   zDb = pDb->zName;
94494   if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){
94495     goto insert_cleanup;
94496   }
94497   withoutRowid = !HasRowid(pTab);
94498 
94499   /* Figure out if we have any triggers and if the table being
94500   ** inserted into is a view
94501   */
94502 #ifndef SQLITE_OMIT_TRIGGER
94503   pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask);
94504   isView = pTab->pSelect!=0;
94505 #else
94506 # define pTrigger 0
94507 # define tmask 0
94508 # define isView 0
94509 #endif
94510 #ifdef SQLITE_OMIT_VIEW
94511 # undef isView
94512 # define isView 0
94513 #endif
94514   assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) );
94515 
94516   /* If pTab is really a view, make sure it has been initialized.
94517   ** ViewGetColumnNames() is a no-op if pTab is not a view.
94518   */
94519   if( sqlite3ViewGetColumnNames(pParse, pTab) ){
94520     goto insert_cleanup;
94521   }
94522 
94523   /* Cannot insert into a read-only table.
94524   */
94525   if( sqlite3IsReadOnly(pParse, pTab, tmask) ){
94526     goto insert_cleanup;
94527   }
94528 
94529   /* Allocate a VDBE
94530   */
94531   v = sqlite3GetVdbe(pParse);
94532   if( v==0 ) goto insert_cleanup;
94533   if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
94534   sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb);
94535 
94536 #ifndef SQLITE_OMIT_XFER_OPT
94537   /* If the statement is of the form
94538   **
94539   **       INSERT INTO <table1> SELECT * FROM <table2>;
94540   **
94541   ** Then special optimizations can be applied that make the transfer
94542   ** very fast and which reduce fragmentation of indices.
94543   **
94544   ** This is the 2nd template.
94545   */
94546   if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){
94547     assert( !pTrigger );
94548     assert( pList==0 );
94549     goto insert_end;
94550   }
94551 #endif /* SQLITE_OMIT_XFER_OPT */
94552 
94553   /* If this is an AUTOINCREMENT table, look up the sequence number in the
94554   ** sqlite_sequence table and store it in memory cell regAutoinc.
94555   */
94556   regAutoinc = autoIncBegin(pParse, iDb, pTab);
94557 
94558   /* Allocate registers for holding the rowid of the new row,
94559   ** the content of the new row, and the assemblied row record.
94560   */
94561   regRowid = regIns = pParse->nMem+1;
94562   pParse->nMem += pTab->nCol + 1;
94563   if( IsVirtual(pTab) ){
94564     regRowid++;
94565     pParse->nMem++;
94566   }
94567   regData = regRowid+1;
94568 
94569   /* If the INSERT statement included an IDLIST term, then make sure
94570   ** all elements of the IDLIST really are columns of the table and
94571   ** remember the column indices.
94572   **
94573   ** If the table has an INTEGER PRIMARY KEY column and that column
94574   ** is named in the IDLIST, then record in the ipkColumn variable
94575   ** the index into IDLIST of the primary key column.  ipkColumn is
94576   ** the index of the primary key as it appears in IDLIST, not as
94577   ** is appears in the original table.  (The index of the INTEGER
94578   ** PRIMARY KEY in the original table is pTab->iPKey.)
94579   */
94580   if( pColumn ){
94581     for(i=0; i<pColumn->nId; i++){
94582       pColumn->a[i].idx = -1;
94583     }
94584     for(i=0; i<pColumn->nId; i++){
94585       for(j=0; j<pTab->nCol; j++){
94586         if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){
94587           pColumn->a[i].idx = j;
94588           if( i!=j ) bIdListInOrder = 0;
94589           if( j==pTab->iPKey ){
94590             ipkColumn = i;  assert( !withoutRowid );
94591           }
94592           break;
94593         }
94594       }
94595       if( j>=pTab->nCol ){
94596         if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){
94597           ipkColumn = i;
94598           bIdListInOrder = 0;
94599         }else{
94600           sqlite3ErrorMsg(pParse, "table %S has no column named %s",
94601               pTabList, 0, pColumn->a[i].zName);
94602           pParse->checkSchema = 1;
94603           goto insert_cleanup;
94604         }
94605       }
94606     }
94607   }
94608 
94609   /* Figure out how many columns of data are supplied.  If the data
94610   ** is coming from a SELECT statement, then generate a co-routine that
94611   ** produces a single row of the SELECT on each invocation.  The
94612   ** co-routine is the common header to the 3rd and 4th templates.
94613   */
94614   if( pSelect ){
94615     /* Data is coming from a SELECT.  Generate a co-routine to run the SELECT */
94616     int regYield;       /* Register holding co-routine entry-point */
94617     int addrTop;        /* Top of the co-routine */
94618     int rc;             /* Result code */
94619 
94620     regYield = ++pParse->nMem;
94621     addrTop = sqlite3VdbeCurrentAddr(v) + 1;
94622     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
94623     sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
94624     dest.iSdst = bIdListInOrder ? regData : 0;
94625     dest.nSdst = pTab->nCol;
94626     rc = sqlite3Select(pParse, pSelect, &dest);
94627     regFromSelect = dest.iSdst;
94628     assert( pParse->nErr==0 || rc );
94629     if( rc || db->mallocFailed ) goto insert_cleanup;
94630     sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);
94631     sqlite3VdbeJumpHere(v, addrTop - 1);                       /* label B: */
94632     assert( pSelect->pEList );
94633     nColumn = pSelect->pEList->nExpr;
94634 
94635     /* Set useTempTable to TRUE if the result of the SELECT statement
94636     ** should be written into a temporary table (template 4).  Set to
94637     ** FALSE if each output row of the SELECT can be written directly into
94638     ** the destination table (template 3).
94639     **
94640     ** A temp table must be used if the table being updated is also one
94641     ** of the tables being read by the SELECT statement.  Also use a
94642     ** temp table in the case of row triggers.
94643     */
94644     if( pTrigger || readsTable(pParse, iDb, pTab) ){
94645       useTempTable = 1;
94646     }
94647 
94648     if( useTempTable ){
94649       /* Invoke the coroutine to extract information from the SELECT
94650       ** and add it to a transient table srcTab.  The code generated
94651       ** here is from the 4th template:
94652       **
94653       **      B: open temp table
94654       **      L: yield X, goto M at EOF
94655       **         insert row from R..R+n into temp table
94656       **         goto L
94657       **      M: ...
94658       */
94659       int regRec;          /* Register to hold packed record */
94660       int regTempRowid;    /* Register to hold temp table ROWID */
94661       int addrL;           /* Label "L" */
94662 
94663       srcTab = pParse->nTab++;
94664       regRec = sqlite3GetTempReg(pParse);
94665       regTempRowid = sqlite3GetTempReg(pParse);
94666       sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn);
94667       addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v);
94668       sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec);
94669       sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid);
94670       sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid);
94671       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrL);
94672       sqlite3VdbeJumpHere(v, addrL);
94673       sqlite3ReleaseTempReg(pParse, regRec);
94674       sqlite3ReleaseTempReg(pParse, regTempRowid);
94675     }
94676   }else{
94677     /* This is the case if the data for the INSERT is coming from a VALUES
94678     ** clause
94679     */
94680     NameContext sNC;
94681     memset(&sNC, 0, sizeof(sNC));
94682     sNC.pParse = pParse;
94683     srcTab = -1;
94684     assert( useTempTable==0 );
94685     nColumn = pList ? pList->nExpr : 0;
94686     for(i=0; i<nColumn; i++){
94687       if( sqlite3ResolveExprNames(&sNC, pList->a[i].pExpr) ){
94688         goto insert_cleanup;
94689       }
94690     }
94691   }
94692 
94693   /* If there is no IDLIST term but the table has an integer primary
94694   ** key, the set the ipkColumn variable to the integer primary key
94695   ** column index in the original table definition.
94696   */
94697   if( pColumn==0 && nColumn>0 ){
94698     ipkColumn = pTab->iPKey;
94699   }
94700 
94701   /* Make sure the number of columns in the source data matches the number
94702   ** of columns to be inserted into the table.
94703   */
94704   if( IsVirtual(pTab) ){
94705     for(i=0; i<pTab->nCol; i++){
94706       nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0);
94707     }
94708   }
94709   if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){
94710     sqlite3ErrorMsg(pParse,
94711        "table %S has %d columns but %d values were supplied",
94712        pTabList, 0, pTab->nCol-nHidden, nColumn);
94713     goto insert_cleanup;
94714   }
94715   if( pColumn!=0 && nColumn!=pColumn->nId ){
94716     sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
94717     goto insert_cleanup;
94718   }
94719 
94720   /* Initialize the count of rows to be inserted
94721   */
94722   if( db->flags & SQLITE_CountRows ){
94723     regRowCount = ++pParse->nMem;
94724     sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
94725   }
94726 
94727   /* If this is not a view, open the table and and all indices */
94728   if( !isView ){
94729     int nIdx;
94730     nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, -1, 0,
94731                                       &iDataCur, &iIdxCur);
94732     aRegIdx = sqlite3DbMallocRaw(db, sizeof(int)*(nIdx+1));
94733     if( aRegIdx==0 ){
94734       goto insert_cleanup;
94735     }
94736     for(i=0; i<nIdx; i++){
94737       aRegIdx[i] = ++pParse->nMem;
94738     }
94739   }
94740 
94741   /* This is the top of the main insertion loop */
94742   if( useTempTable ){
94743     /* This block codes the top of loop only.  The complete loop is the
94744     ** following pseudocode (template 4):
94745     **
94746     **         rewind temp table, if empty goto D
94747     **      C: loop over rows of intermediate table
94748     **           transfer values form intermediate table into <table>
94749     **         end loop
94750     **      D: ...
94751     */
94752     addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v);
94753     addrCont = sqlite3VdbeCurrentAddr(v);
94754   }else if( pSelect ){
94755     /* This block codes the top of loop only.  The complete loop is the
94756     ** following pseudocode (template 3):
94757     **
94758     **      C: yield X, at EOF goto D
94759     **         insert the select result into <table> from R..R+n
94760     **         goto C
94761     **      D: ...
94762     */
94763     addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
94764     VdbeCoverage(v);
94765   }
94766 
94767   /* Run the BEFORE and INSTEAD OF triggers, if there are any
94768   */
94769   endOfLoop = sqlite3VdbeMakeLabel(v);
94770   if( tmask & TRIGGER_BEFORE ){
94771     int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1);
94772 
94773     /* build the NEW.* reference row.  Note that if there is an INTEGER
94774     ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
94775     ** translated into a unique ID for the row.  But on a BEFORE trigger,
94776     ** we do not know what the unique ID will be (because the insert has
94777     ** not happened yet) so we substitute a rowid of -1
94778     */
94779     if( ipkColumn<0 ){
94780       sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
94781     }else{
94782       int j1;
94783       assert( !withoutRowid );
94784       if( useTempTable ){
94785         sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols);
94786       }else{
94787         assert( pSelect==0 );  /* Otherwise useTempTable is true */
94788         sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols);
94789       }
94790       j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v);
94791       sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
94792       sqlite3VdbeJumpHere(v, j1);
94793       sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v);
94794     }
94795 
94796     /* Cannot have triggers on a virtual table. If it were possible,
94797     ** this block would have to account for hidden column.
94798     */
94799     assert( !IsVirtual(pTab) );
94800 
94801     /* Create the new column data
94802     */
94803     for(i=0; i<pTab->nCol; i++){
94804       if( pColumn==0 ){
94805         j = i;
94806       }else{
94807         for(j=0; j<pColumn->nId; j++){
94808           if( pColumn->a[j].idx==i ) break;
94809         }
94810       }
94811       if( (!useTempTable && !pList) || (pColumn && j>=pColumn->nId) ){
94812         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i+1);
94813       }else if( useTempTable ){
94814         sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i+1);
94815       }else{
94816         assert( pSelect==0 ); /* Otherwise useTempTable is true */
94817         sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i+1);
94818       }
94819     }
94820 
94821     /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
94822     ** do not attempt any conversions before assembling the record.
94823     ** If this is a real table, attempt conversions as required by the
94824     ** table column affinities.
94825     */
94826     if( !isView ){
94827       sqlite3TableAffinity(v, pTab, regCols+1);
94828     }
94829 
94830     /* Fire BEFORE or INSTEAD OF triggers */
94831     sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE,
94832         pTab, regCols-pTab->nCol-1, onError, endOfLoop);
94833 
94834     sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1);
94835   }
94836 
94837   /* Compute the content of the next row to insert into a range of
94838   ** registers beginning at regIns.
94839   */
94840   if( !isView ){
94841     if( IsVirtual(pTab) ){
94842       /* The row that the VUpdate opcode will delete: none */
94843       sqlite3VdbeAddOp2(v, OP_Null, 0, regIns);
94844     }
94845     if( ipkColumn>=0 ){
94846       if( useTempTable ){
94847         sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid);
94848       }else if( pSelect ){
94849         sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid);
94850       }else{
94851         VdbeOp *pOp;
94852         sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid);
94853         pOp = sqlite3VdbeGetOp(v, -1);
94854         if( ALWAYS(pOp) && pOp->opcode==OP_Null && !IsVirtual(pTab) ){
94855           appendFlag = 1;
94856           pOp->opcode = OP_NewRowid;
94857           pOp->p1 = iDataCur;
94858           pOp->p2 = regRowid;
94859           pOp->p3 = regAutoinc;
94860         }
94861       }
94862       /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
94863       ** to generate a unique primary key value.
94864       */
94865       if( !appendFlag ){
94866         int j1;
94867         if( !IsVirtual(pTab) ){
94868           j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v);
94869           sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
94870           sqlite3VdbeJumpHere(v, j1);
94871         }else{
94872           j1 = sqlite3VdbeCurrentAddr(v);
94873           sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, j1+2); VdbeCoverage(v);
94874         }
94875         sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v);
94876       }
94877     }else if( IsVirtual(pTab) || withoutRowid ){
94878       sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid);
94879     }else{
94880       sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
94881       appendFlag = 1;
94882     }
94883     autoIncStep(pParse, regAutoinc, regRowid);
94884 
94885     /* Compute data for all columns of the new entry, beginning
94886     ** with the first column.
94887     */
94888     nHidden = 0;
94889     for(i=0; i<pTab->nCol; i++){
94890       int iRegStore = regRowid+1+i;
94891       if( i==pTab->iPKey ){
94892         /* The value of the INTEGER PRIMARY KEY column is always a NULL.
94893         ** Whenever this column is read, the rowid will be substituted
94894         ** in its place.  Hence, fill this column with a NULL to avoid
94895         ** taking up data space with information that will never be used.
94896         ** As there may be shallow copies of this value, make it a soft-NULL */
94897         sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore);
94898         continue;
94899       }
94900       if( pColumn==0 ){
94901         if( IsHiddenColumn(&pTab->aCol[i]) ){
94902           assert( IsVirtual(pTab) );
94903           j = -1;
94904           nHidden++;
94905         }else{
94906           j = i - nHidden;
94907         }
94908       }else{
94909         for(j=0; j<pColumn->nId; j++){
94910           if( pColumn->a[j].idx==i ) break;
94911         }
94912       }
94913       if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){
94914         sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore);
94915       }else if( useTempTable ){
94916         sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore);
94917       }else if( pSelect ){
94918         if( regFromSelect!=regData ){
94919           sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore);
94920         }
94921       }else{
94922         sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore);
94923       }
94924     }
94925 
94926     /* Generate code to check constraints and generate index keys and
94927     ** do the insertion.
94928     */
94929 #ifndef SQLITE_OMIT_VIRTUALTABLE
94930     if( IsVirtual(pTab) ){
94931       const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
94932       sqlite3VtabMakeWritable(pParse, pTab);
94933       sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB);
94934       sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError);
94935       sqlite3MayAbort(pParse);
94936     }else
94937 #endif
94938     {
94939       int isReplace;    /* Set to true if constraints may cause a replace */
94940       sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur,
94941           regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace
94942       );
94943       sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0);
94944       sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur,
94945                                regIns, aRegIdx, 0, appendFlag, isReplace==0);
94946     }
94947   }
94948 
94949   /* Update the count of rows that are inserted
94950   */
94951   if( (db->flags & SQLITE_CountRows)!=0 ){
94952     sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
94953   }
94954 
94955   if( pTrigger ){
94956     /* Code AFTER triggers */
94957     sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER,
94958         pTab, regData-2-pTab->nCol, onError, endOfLoop);
94959   }
94960 
94961   /* The bottom of the main insertion loop, if the data source
94962   ** is a SELECT statement.
94963   */
94964   sqlite3VdbeResolveLabel(v, endOfLoop);
94965   if( useTempTable ){
94966     sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v);
94967     sqlite3VdbeJumpHere(v, addrInsTop);
94968     sqlite3VdbeAddOp1(v, OP_Close, srcTab);
94969   }else if( pSelect ){
94970     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrCont);
94971     sqlite3VdbeJumpHere(v, addrInsTop);
94972   }
94973 
94974   if( !IsVirtual(pTab) && !isView ){
94975     /* Close all tables opened */
94976     if( iDataCur<iIdxCur ) sqlite3VdbeAddOp1(v, OP_Close, iDataCur);
94977     for(idx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
94978       sqlite3VdbeAddOp1(v, OP_Close, idx+iIdxCur);
94979     }
94980   }
94981 
94982 insert_end:
94983   /* Update the sqlite_sequence table by storing the content of the
94984   ** maximum rowid counter values recorded while inserting into
94985   ** autoincrement tables.
94986   */
94987   if( pParse->nested==0 && pParse->pTriggerTab==0 ){
94988     sqlite3AutoincrementEnd(pParse);
94989   }
94990 
94991   /*
94992   ** Return the number of rows inserted. If this routine is
94993   ** generating code because of a call to sqlite3NestedParse(), do not
94994   ** invoke the callback function.
94995   */
94996   if( (db->flags&SQLITE_CountRows) && !pParse->nested && !pParse->pTriggerTab ){
94997     sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1);
94998     sqlite3VdbeSetNumCols(v, 1);
94999     sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC);
95000   }
95001 
95002 insert_cleanup:
95003   sqlite3SrcListDelete(db, pTabList);
95004   sqlite3ExprListDelete(db, pList);
95005   sqlite3SelectDelete(db, pSelect);
95006   sqlite3IdListDelete(db, pColumn);
95007   sqlite3DbFree(db, aRegIdx);
95008 }
95009 
95010 /* Make sure "isView" and other macros defined above are undefined. Otherwise
95011 ** thely may interfere with compilation of other functions in this file
95012 ** (or in another file, if this file becomes part of the amalgamation).  */
95013 #ifdef isView
95014  #undef isView
95015 #endif
95016 #ifdef pTrigger
95017  #undef pTrigger
95018 #endif
95019 #ifdef tmask
95020  #undef tmask
95021 #endif
95022 
95023 /*
95024 ** Generate code to do constraint checks prior to an INSERT or an UPDATE
95025 ** on table pTab.
95026 **
95027 ** The regNewData parameter is the first register in a range that contains
95028 ** the data to be inserted or the data after the update.  There will be
95029 ** pTab->nCol+1 registers in this range.  The first register (the one
95030 ** that regNewData points to) will contain the new rowid, or NULL in the
95031 ** case of a WITHOUT ROWID table.  The second register in the range will
95032 ** contain the content of the first table column.  The third register will
95033 ** contain the content of the second table column.  And so forth.
95034 **
95035 ** The regOldData parameter is similar to regNewData except that it contains
95036 ** the data prior to an UPDATE rather than afterwards.  regOldData is zero
95037 ** for an INSERT.  This routine can distinguish between UPDATE and INSERT by
95038 ** checking regOldData for zero.
95039 **
95040 ** For an UPDATE, the pkChng boolean is true if the true primary key (the
95041 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table)
95042 ** might be modified by the UPDATE.  If pkChng is false, then the key of
95043 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE.
95044 **
95045 ** For an INSERT, the pkChng boolean indicates whether or not the rowid
95046 ** was explicitly specified as part of the INSERT statement.  If pkChng
95047 ** is zero, it means that the either rowid is computed automatically or
95048 ** that the table is a WITHOUT ROWID table and has no rowid.  On an INSERT,
95049 ** pkChng will only be true if the INSERT statement provides an integer
95050 ** value for either the rowid column or its INTEGER PRIMARY KEY alias.
95051 **
95052 ** The code generated by this routine will store new index entries into
95053 ** registers identified by aRegIdx[].  No index entry is created for
95054 ** indices where aRegIdx[i]==0.  The order of indices in aRegIdx[] is
95055 ** the same as the order of indices on the linked list of indices
95056 ** at pTab->pIndex.
95057 **
95058 ** The caller must have already opened writeable cursors on the main
95059 ** table and all applicable indices (that is to say, all indices for which
95060 ** aRegIdx[] is not zero).  iDataCur is the cursor for the main table when
95061 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY
95062 ** index when operating on a WITHOUT ROWID table.  iIdxCur is the cursor
95063 ** for the first index in the pTab->pIndex list.  Cursors for other indices
95064 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list.
95065 **
95066 ** This routine also generates code to check constraints.  NOT NULL,
95067 ** CHECK, and UNIQUE constraints are all checked.  If a constraint fails,
95068 ** then the appropriate action is performed.  There are five possible
95069 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
95070 **
95071 **  Constraint type  Action       What Happens
95072 **  ---------------  ----------   ----------------------------------------
95073 **  any              ROLLBACK     The current transaction is rolled back and
95074 **                                sqlite3_step() returns immediately with a
95075 **                                return code of SQLITE_CONSTRAINT.
95076 **
95077 **  any              ABORT        Back out changes from the current command
95078 **                                only (do not do a complete rollback) then
95079 **                                cause sqlite3_step() to return immediately
95080 **                                with SQLITE_CONSTRAINT.
95081 **
95082 **  any              FAIL         Sqlite3_step() returns immediately with a
95083 **                                return code of SQLITE_CONSTRAINT.  The
95084 **                                transaction is not rolled back and any
95085 **                                changes to prior rows are retained.
95086 **
95087 **  any              IGNORE       The attempt in insert or update the current
95088 **                                row is skipped, without throwing an error.
95089 **                                Processing continues with the next row.
95090 **                                (There is an immediate jump to ignoreDest.)
95091 **
95092 **  NOT NULL         REPLACE      The NULL value is replace by the default
95093 **                                value for that column.  If the default value
95094 **                                is NULL, the action is the same as ABORT.
95095 **
95096 **  UNIQUE           REPLACE      The other row that conflicts with the row
95097 **                                being inserted is removed.
95098 **
95099 **  CHECK            REPLACE      Illegal.  The results in an exception.
95100 **
95101 ** Which action to take is determined by the overrideError parameter.
95102 ** Or if overrideError==OE_Default, then the pParse->onError parameter
95103 ** is used.  Or if pParse->onError==OE_Default then the onError value
95104 ** for the constraint is used.
95105 */
95106 SQLITE_PRIVATE void sqlite3GenerateConstraintChecks(
95107   Parse *pParse,       /* The parser context */
95108   Table *pTab,         /* The table being inserted or updated */
95109   int *aRegIdx,        /* Use register aRegIdx[i] for index i.  0 for unused */
95110   int iDataCur,        /* Canonical data cursor (main table or PK index) */
95111   int iIdxCur,         /* First index cursor */
95112   int regNewData,      /* First register in a range holding values to insert */
95113   int regOldData,      /* Previous content.  0 for INSERTs */
95114   u8 pkChng,           /* Non-zero if the rowid or PRIMARY KEY changed */
95115   u8 overrideError,    /* Override onError to this if not OE_Default */
95116   int ignoreDest,      /* Jump to this label on an OE_Ignore resolution */
95117   int *pbMayReplace    /* OUT: Set to true if constraint may cause a replace */
95118 ){
95119   Vdbe *v;             /* VDBE under constrution */
95120   Index *pIdx;         /* Pointer to one of the indices */
95121   Index *pPk = 0;      /* The PRIMARY KEY index */
95122   sqlite3 *db;         /* Database connection */
95123   int i;               /* loop counter */
95124   int ix;              /* Index loop counter */
95125   int nCol;            /* Number of columns */
95126   int onError;         /* Conflict resolution strategy */
95127   int j1;              /* Addresss of jump instruction */
95128   int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */
95129   int nPkField;        /* Number of fields in PRIMARY KEY. 1 for ROWID tables */
95130   int ipkTop = 0;      /* Top of the rowid change constraint check */
95131   int ipkBottom = 0;   /* Bottom of the rowid change constraint check */
95132   u8 isUpdate;         /* True if this is an UPDATE operation */
95133   u8 bAffinityDone = 0;  /* True if the OP_Affinity operation has been run */
95134   int regRowid = -1;   /* Register holding ROWID value */
95135 
95136   isUpdate = regOldData!=0;
95137   db = pParse->db;
95138   v = sqlite3GetVdbe(pParse);
95139   assert( v!=0 );
95140   assert( pTab->pSelect==0 );  /* This table is not a VIEW */
95141   nCol = pTab->nCol;
95142 
95143   /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for
95144   ** normal rowid tables.  nPkField is the number of key fields in the
95145   ** pPk index or 1 for a rowid table.  In other words, nPkField is the
95146   ** number of fields in the true primary key of the table. */
95147   if( HasRowid(pTab) ){
95148     pPk = 0;
95149     nPkField = 1;
95150   }else{
95151     pPk = sqlite3PrimaryKeyIndex(pTab);
95152     nPkField = pPk->nKeyCol;
95153   }
95154 
95155   /* Record that this module has started */
95156   VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)",
95157                      iDataCur, iIdxCur, regNewData, regOldData, pkChng));
95158 
95159   /* Test all NOT NULL constraints.
95160   */
95161   for(i=0; i<nCol; i++){
95162     if( i==pTab->iPKey ){
95163       continue;
95164     }
95165     onError = pTab->aCol[i].notNull;
95166     if( onError==OE_None ) continue;
95167     if( overrideError!=OE_Default ){
95168       onError = overrideError;
95169     }else if( onError==OE_Default ){
95170       onError = OE_Abort;
95171     }
95172     if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){
95173       onError = OE_Abort;
95174     }
95175     assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
95176         || onError==OE_Ignore || onError==OE_Replace );
95177     switch( onError ){
95178       case OE_Abort:
95179         sqlite3MayAbort(pParse);
95180         /* Fall through */
95181       case OE_Rollback:
95182       case OE_Fail: {
95183         char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName,
95184                                     pTab->aCol[i].zName);
95185         sqlite3VdbeAddOp4(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, onError,
95186                           regNewData+1+i, zMsg, P4_DYNAMIC);
95187         sqlite3VdbeChangeP5(v, P5_ConstraintNotNull);
95188         VdbeCoverage(v);
95189         break;
95190       }
95191       case OE_Ignore: {
95192         sqlite3VdbeAddOp2(v, OP_IsNull, regNewData+1+i, ignoreDest);
95193         VdbeCoverage(v);
95194         break;
95195       }
95196       default: {
95197         assert( onError==OE_Replace );
95198         j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regNewData+1+i); VdbeCoverage(v);
95199         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regNewData+1+i);
95200         sqlite3VdbeJumpHere(v, j1);
95201         break;
95202       }
95203     }
95204   }
95205 
95206   /* Test all CHECK constraints
95207   */
95208 #ifndef SQLITE_OMIT_CHECK
95209   if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){
95210     ExprList *pCheck = pTab->pCheck;
95211     pParse->ckBase = regNewData+1;
95212     onError = overrideError!=OE_Default ? overrideError : OE_Abort;
95213     for(i=0; i<pCheck->nExpr; i++){
95214       int allOk = sqlite3VdbeMakeLabel(v);
95215       sqlite3ExprIfTrue(pParse, pCheck->a[i].pExpr, allOk, SQLITE_JUMPIFNULL);
95216       if( onError==OE_Ignore ){
95217         sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
95218       }else{
95219         char *zName = pCheck->a[i].zName;
95220         if( zName==0 ) zName = pTab->zName;
95221         if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-15569-63625 */
95222         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK,
95223                               onError, zName, P4_TRANSIENT,
95224                               P5_ConstraintCheck);
95225       }
95226       sqlite3VdbeResolveLabel(v, allOk);
95227     }
95228   }
95229 #endif /* !defined(SQLITE_OMIT_CHECK) */
95230 
95231   /* If rowid is changing, make sure the new rowid does not previously
95232   ** exist in the table.
95233   */
95234   if( pkChng && pPk==0 ){
95235     int addrRowidOk = sqlite3VdbeMakeLabel(v);
95236 
95237     /* Figure out what action to take in case of a rowid collision */
95238     onError = pTab->keyConf;
95239     if( overrideError!=OE_Default ){
95240       onError = overrideError;
95241     }else if( onError==OE_Default ){
95242       onError = OE_Abort;
95243     }
95244 
95245     if( isUpdate ){
95246       /* pkChng!=0 does not mean that the rowid has change, only that
95247       ** it might have changed.  Skip the conflict logic below if the rowid
95248       ** is unchanged. */
95249       sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData);
95250       sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
95251       VdbeCoverage(v);
95252     }
95253 
95254     /* If the response to a rowid conflict is REPLACE but the response
95255     ** to some other UNIQUE constraint is FAIL or IGNORE, then we need
95256     ** to defer the running of the rowid conflict checking until after
95257     ** the UNIQUE constraints have run.
95258     */
95259     if( onError==OE_Replace && overrideError!=OE_Replace ){
95260       for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
95261         if( pIdx->onError==OE_Ignore || pIdx->onError==OE_Fail ){
95262           ipkTop = sqlite3VdbeAddOp0(v, OP_Goto);
95263           break;
95264         }
95265       }
95266     }
95267 
95268     /* Check to see if the new rowid already exists in the table.  Skip
95269     ** the following conflict logic if it does not. */
95270     sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData);
95271     VdbeCoverage(v);
95272 
95273     /* Generate code that deals with a rowid collision */
95274     switch( onError ){
95275       default: {
95276         onError = OE_Abort;
95277         /* Fall thru into the next case */
95278       }
95279       case OE_Rollback:
95280       case OE_Abort:
95281       case OE_Fail: {
95282         sqlite3RowidConstraint(pParse, onError, pTab);
95283         break;
95284       }
95285       case OE_Replace: {
95286         /* If there are DELETE triggers on this table and the
95287         ** recursive-triggers flag is set, call GenerateRowDelete() to
95288         ** remove the conflicting row from the table. This will fire
95289         ** the triggers and remove both the table and index b-tree entries.
95290         **
95291         ** Otherwise, if there are no triggers or the recursive-triggers
95292         ** flag is not set, but the table has one or more indexes, call
95293         ** GenerateRowIndexDelete(). This removes the index b-tree entries
95294         ** only. The table b-tree entry will be replaced by the new entry
95295         ** when it is inserted.
95296         **
95297         ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called,
95298         ** also invoke MultiWrite() to indicate that this VDBE may require
95299         ** statement rollback (if the statement is aborted after the delete
95300         ** takes place). Earlier versions called sqlite3MultiWrite() regardless,
95301         ** but being more selective here allows statements like:
95302         **
95303         **   REPLACE INTO t(rowid) VALUES($newrowid)
95304         **
95305         ** to run without a statement journal if there are no indexes on the
95306         ** table.
95307         */
95308         Trigger *pTrigger = 0;
95309         if( db->flags&SQLITE_RecTriggers ){
95310           pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
95311         }
95312         if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){
95313           sqlite3MultiWrite(pParse);
95314           sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
95315                                    regNewData, 1, 0, OE_Replace, 1);
95316         }else if( pTab->pIndex ){
95317           sqlite3MultiWrite(pParse);
95318           sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur, 0);
95319         }
95320         seenReplace = 1;
95321         break;
95322       }
95323       case OE_Ignore: {
95324         /*assert( seenReplace==0 );*/
95325         sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
95326         break;
95327       }
95328     }
95329     sqlite3VdbeResolveLabel(v, addrRowidOk);
95330     if( ipkTop ){
95331       ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto);
95332       sqlite3VdbeJumpHere(v, ipkTop);
95333     }
95334   }
95335 
95336   /* Test all UNIQUE constraints by creating entries for each UNIQUE
95337   ** index and making sure that duplicate entries do not already exist.
95338   ** Compute the revised record entries for indices as we go.
95339   **
95340   ** This loop also handles the case of the PRIMARY KEY index for a
95341   ** WITHOUT ROWID table.
95342   */
95343   for(ix=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, ix++){
95344     int regIdx;          /* Range of registers hold conent for pIdx */
95345     int regR;            /* Range of registers holding conflicting PK */
95346     int iThisCur;        /* Cursor for this UNIQUE index */
95347     int addrUniqueOk;    /* Jump here if the UNIQUE constraint is satisfied */
95348 
95349     if( aRegIdx[ix]==0 ) continue;  /* Skip indices that do not change */
95350     if( bAffinityDone==0 ){
95351       sqlite3TableAffinity(v, pTab, regNewData+1);
95352       bAffinityDone = 1;
95353     }
95354     iThisCur = iIdxCur+ix;
95355     addrUniqueOk = sqlite3VdbeMakeLabel(v);
95356 
95357     /* Skip partial indices for which the WHERE clause is not true */
95358     if( pIdx->pPartIdxWhere ){
95359       sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]);
95360       pParse->ckBase = regNewData+1;
95361       sqlite3ExprIfFalse(pParse, pIdx->pPartIdxWhere, addrUniqueOk,
95362                          SQLITE_JUMPIFNULL);
95363       pParse->ckBase = 0;
95364     }
95365 
95366     /* Create a record for this index entry as it should appear after
95367     ** the insert or update.  Store that record in the aRegIdx[ix] register
95368     */
95369     regIdx = sqlite3GetTempRange(pParse, pIdx->nColumn);
95370     for(i=0; i<pIdx->nColumn; i++){
95371       int iField = pIdx->aiColumn[i];
95372       int x;
95373       if( iField<0 || iField==pTab->iPKey ){
95374         if( regRowid==regIdx+i ) continue; /* ROWID already in regIdx+i */
95375         x = regNewData;
95376         regRowid =  pIdx->pPartIdxWhere ? -1 : regIdx+i;
95377       }else{
95378         x = iField + regNewData + 1;
95379       }
95380       sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i);
95381       VdbeComment((v, "%s", iField<0 ? "rowid" : pTab->aCol[iField].zName));
95382     }
95383     sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]);
95384     VdbeComment((v, "for %s", pIdx->zName));
95385     sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn);
95386 
95387     /* In an UPDATE operation, if this index is the PRIMARY KEY index
95388     ** of a WITHOUT ROWID table and there has been no change the
95389     ** primary key, then no collision is possible.  The collision detection
95390     ** logic below can all be skipped. */
95391     if( isUpdate && pPk==pIdx && pkChng==0 ){
95392       sqlite3VdbeResolveLabel(v, addrUniqueOk);
95393       continue;
95394     }
95395 
95396     /* Find out what action to take in case there is a uniqueness conflict */
95397     onError = pIdx->onError;
95398     if( onError==OE_None ){
95399       sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn);
95400       sqlite3VdbeResolveLabel(v, addrUniqueOk);
95401       continue;  /* pIdx is not a UNIQUE index */
95402     }
95403     if( overrideError!=OE_Default ){
95404       onError = overrideError;
95405     }else if( onError==OE_Default ){
95406       onError = OE_Abort;
95407     }
95408 
95409     /* Check to see if the new index entry will be unique */
95410     sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk,
95411                          regIdx, pIdx->nKeyCol); VdbeCoverage(v);
95412 
95413     /* Generate code to handle collisions */
95414     regR = (pIdx==pPk) ? regIdx : sqlite3GetTempRange(pParse, nPkField);
95415     if( isUpdate || onError==OE_Replace ){
95416       if( HasRowid(pTab) ){
95417         sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR);
95418         /* Conflict only if the rowid of the existing index entry
95419         ** is different from old-rowid */
95420         if( isUpdate ){
95421           sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData);
95422           sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
95423           VdbeCoverage(v);
95424         }
95425       }else{
95426         int x;
95427         /* Extract the PRIMARY KEY from the end of the index entry and
95428         ** store it in registers regR..regR+nPk-1 */
95429         if( pIdx!=pPk ){
95430           for(i=0; i<pPk->nKeyCol; i++){
95431             x = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[i]);
95432             sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i);
95433             VdbeComment((v, "%s.%s", pTab->zName,
95434                          pTab->aCol[pPk->aiColumn[i]].zName));
95435           }
95436         }
95437         if( isUpdate ){
95438           /* If currently processing the PRIMARY KEY of a WITHOUT ROWID
95439           ** table, only conflict if the new PRIMARY KEY values are actually
95440           ** different from the old.
95441           **
95442           ** For a UNIQUE index, only conflict if the PRIMARY KEY values
95443           ** of the matched index row are different from the original PRIMARY
95444           ** KEY values of this row before the update.  */
95445           int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol;
95446           int op = OP_Ne;
95447           int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR);
95448 
95449           for(i=0; i<pPk->nKeyCol; i++){
95450             char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]);
95451             x = pPk->aiColumn[i];
95452             if( i==(pPk->nKeyCol-1) ){
95453               addrJump = addrUniqueOk;
95454               op = OP_Eq;
95455             }
95456             sqlite3VdbeAddOp4(v, op,
95457                 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ
95458             );
95459             sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
95460             VdbeCoverageIf(v, op==OP_Eq);
95461             VdbeCoverageIf(v, op==OP_Ne);
95462           }
95463         }
95464       }
95465     }
95466 
95467     /* Generate code that executes if the new index entry is not unique */
95468     assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
95469         || onError==OE_Ignore || onError==OE_Replace );
95470     switch( onError ){
95471       case OE_Rollback:
95472       case OE_Abort:
95473       case OE_Fail: {
95474         sqlite3UniqueConstraint(pParse, onError, pIdx);
95475         break;
95476       }
95477       case OE_Ignore: {
95478         sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
95479         break;
95480       }
95481       default: {
95482         Trigger *pTrigger = 0;
95483         assert( onError==OE_Replace );
95484         sqlite3MultiWrite(pParse);
95485         if( db->flags&SQLITE_RecTriggers ){
95486           pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
95487         }
95488         sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
95489                                  regR, nPkField, 0, OE_Replace, pIdx==pPk);
95490         seenReplace = 1;
95491         break;
95492       }
95493     }
95494     sqlite3VdbeResolveLabel(v, addrUniqueOk);
95495     sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn);
95496     if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField);
95497   }
95498   if( ipkTop ){
95499     sqlite3VdbeAddOp2(v, OP_Goto, 0, ipkTop+1);
95500     sqlite3VdbeJumpHere(v, ipkBottom);
95501   }
95502 
95503   *pbMayReplace = seenReplace;
95504   VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace));
95505 }
95506 
95507 /*
95508 ** This routine generates code to finish the INSERT or UPDATE operation
95509 ** that was started by a prior call to sqlite3GenerateConstraintChecks.
95510 ** A consecutive range of registers starting at regNewData contains the
95511 ** rowid and the content to be inserted.
95512 **
95513 ** The arguments to this routine should be the same as the first six
95514 ** arguments to sqlite3GenerateConstraintChecks.
95515 */
95516 SQLITE_PRIVATE void sqlite3CompleteInsertion(
95517   Parse *pParse,      /* The parser context */
95518   Table *pTab,        /* the table into which we are inserting */
95519   int iDataCur,       /* Cursor of the canonical data source */
95520   int iIdxCur,        /* First index cursor */
95521   int regNewData,     /* Range of content */
95522   int *aRegIdx,       /* Register used by each index.  0 for unused indices */
95523   int isUpdate,       /* True for UPDATE, False for INSERT */
95524   int appendBias,     /* True if this is likely to be an append */
95525   int useSeekResult   /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */
95526 ){
95527   Vdbe *v;            /* Prepared statements under construction */
95528   Index *pIdx;        /* An index being inserted or updated */
95529   u8 pik_flags;       /* flag values passed to the btree insert */
95530   int regData;        /* Content registers (after the rowid) */
95531   int regRec;         /* Register holding assemblied record for the table */
95532   int i;              /* Loop counter */
95533   u8 bAffinityDone = 0; /* True if OP_Affinity has been run already */
95534 
95535   v = sqlite3GetVdbe(pParse);
95536   assert( v!=0 );
95537   assert( pTab->pSelect==0 );  /* This table is not a VIEW */
95538   for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
95539     if( aRegIdx[i]==0 ) continue;
95540     bAffinityDone = 1;
95541     if( pIdx->pPartIdxWhere ){
95542       sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2);
95543       VdbeCoverage(v);
95544     }
95545     sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i]);
95546     pik_flags = 0;
95547     if( useSeekResult ) pik_flags = OPFLAG_USESEEKRESULT;
95548     if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
95549       assert( pParse->nested==0 );
95550       pik_flags |= OPFLAG_NCHANGE;
95551     }
95552     if( pik_flags )  sqlite3VdbeChangeP5(v, pik_flags);
95553   }
95554   if( !HasRowid(pTab) ) return;
95555   regData = regNewData + 1;
95556   regRec = sqlite3GetTempReg(pParse);
95557   sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec);
95558   if( !bAffinityDone ) sqlite3TableAffinity(v, pTab, 0);
95559   sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol);
95560   if( pParse->nested ){
95561     pik_flags = 0;
95562   }else{
95563     pik_flags = OPFLAG_NCHANGE;
95564     pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID);
95565   }
95566   if( appendBias ){
95567     pik_flags |= OPFLAG_APPEND;
95568   }
95569   if( useSeekResult ){
95570     pik_flags |= OPFLAG_USESEEKRESULT;
95571   }
95572   sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, regRec, regNewData);
95573   if( !pParse->nested ){
95574     sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_TRANSIENT);
95575   }
95576   sqlite3VdbeChangeP5(v, pik_flags);
95577 }
95578 
95579 /*
95580 ** Allocate cursors for the pTab table and all its indices and generate
95581 ** code to open and initialized those cursors.
95582 **
95583 ** The cursor for the object that contains the complete data (normally
95584 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT
95585 ** ROWID table) is returned in *piDataCur.  The first index cursor is
95586 ** returned in *piIdxCur.  The number of indices is returned.
95587 **
95588 ** Use iBase as the first cursor (either the *piDataCur for rowid tables
95589 ** or the first index for WITHOUT ROWID tables) if it is non-negative.
95590 ** If iBase is negative, then allocate the next available cursor.
95591 **
95592 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur.
95593 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range
95594 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the
95595 ** pTab->pIndex list.
95596 */
95597 SQLITE_PRIVATE int sqlite3OpenTableAndIndices(
95598   Parse *pParse,   /* Parsing context */
95599   Table *pTab,     /* Table to be opened */
95600   int op,          /* OP_OpenRead or OP_OpenWrite */
95601   int iBase,       /* Use this for the table cursor, if there is one */
95602   u8 *aToOpen,     /* If not NULL: boolean for each table and index */
95603   int *piDataCur,  /* Write the database source cursor number here */
95604   int *piIdxCur    /* Write the first index cursor number here */
95605 ){
95606   int i;
95607   int iDb;
95608   int iDataCur;
95609   Index *pIdx;
95610   Vdbe *v;
95611 
95612   assert( op==OP_OpenRead || op==OP_OpenWrite );
95613   if( IsVirtual(pTab) ){
95614     assert( aToOpen==0 );
95615     *piDataCur = 0;
95616     *piIdxCur = 1;
95617     return 0;
95618   }
95619   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
95620   v = sqlite3GetVdbe(pParse);
95621   assert( v!=0 );
95622   if( iBase<0 ) iBase = pParse->nTab;
95623   iDataCur = iBase++;
95624   if( piDataCur ) *piDataCur = iDataCur;
95625   if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){
95626     sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op);
95627   }else{
95628     sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName);
95629   }
95630   if( piIdxCur ) *piIdxCur = iBase;
95631   for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
95632     int iIdxCur = iBase++;
95633     assert( pIdx->pSchema==pTab->pSchema );
95634     if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) && piDataCur ){
95635       *piDataCur = iIdxCur;
95636     }
95637     if( aToOpen==0 || aToOpen[i+1] ){
95638       sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb);
95639       sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
95640       VdbeComment((v, "%s", pIdx->zName));
95641     }
95642   }
95643   if( iBase>pParse->nTab ) pParse->nTab = iBase;
95644   return i;
95645 }
95646 
95647 
95648 #ifdef SQLITE_TEST
95649 /*
95650 ** The following global variable is incremented whenever the
95651 ** transfer optimization is used.  This is used for testing
95652 ** purposes only - to make sure the transfer optimization really
95653 ** is happening when it is suppose to.
95654 */
95655 SQLITE_API int sqlite3_xferopt_count;
95656 #endif /* SQLITE_TEST */
95657 
95658 
95659 #ifndef SQLITE_OMIT_XFER_OPT
95660 /*
95661 ** Check to collation names to see if they are compatible.
95662 */
95663 static int xferCompatibleCollation(const char *z1, const char *z2){
95664   if( z1==0 ){
95665     return z2==0;
95666   }
95667   if( z2==0 ){
95668     return 0;
95669   }
95670   return sqlite3StrICmp(z1, z2)==0;
95671 }
95672 
95673 
95674 /*
95675 ** Check to see if index pSrc is compatible as a source of data
95676 ** for index pDest in an insert transfer optimization.  The rules
95677 ** for a compatible index:
95678 **
95679 **    *   The index is over the same set of columns
95680 **    *   The same DESC and ASC markings occurs on all columns
95681 **    *   The same onError processing (OE_Abort, OE_Ignore, etc)
95682 **    *   The same collating sequence on each column
95683 **    *   The index has the exact same WHERE clause
95684 */
95685 static int xferCompatibleIndex(Index *pDest, Index *pSrc){
95686   int i;
95687   assert( pDest && pSrc );
95688   assert( pDest->pTable!=pSrc->pTable );
95689   if( pDest->nKeyCol!=pSrc->nKeyCol ){
95690     return 0;   /* Different number of columns */
95691   }
95692   if( pDest->onError!=pSrc->onError ){
95693     return 0;   /* Different conflict resolution strategies */
95694   }
95695   for(i=0; i<pSrc->nKeyCol; i++){
95696     if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){
95697       return 0;   /* Different columns indexed */
95698     }
95699     if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
95700       return 0;   /* Different sort orders */
95701     }
95702     if( !xferCompatibleCollation(pSrc->azColl[i],pDest->azColl[i]) ){
95703       return 0;   /* Different collating sequences */
95704     }
95705   }
95706   if( sqlite3ExprCompare(pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){
95707     return 0;     /* Different WHERE clauses */
95708   }
95709 
95710   /* If no test above fails then the indices must be compatible */
95711   return 1;
95712 }
95713 
95714 /*
95715 ** Attempt the transfer optimization on INSERTs of the form
95716 **
95717 **     INSERT INTO tab1 SELECT * FROM tab2;
95718 **
95719 ** The xfer optimization transfers raw records from tab2 over to tab1.
95720 ** Columns are not decoded and reassemblied, which greatly improves
95721 ** performance.  Raw index records are transferred in the same way.
95722 **
95723 ** The xfer optimization is only attempted if tab1 and tab2 are compatible.
95724 ** There are lots of rules for determining compatibility - see comments
95725 ** embedded in the code for details.
95726 **
95727 ** This routine returns TRUE if the optimization is guaranteed to be used.
95728 ** Sometimes the xfer optimization will only work if the destination table
95729 ** is empty - a factor that can only be determined at run-time.  In that
95730 ** case, this routine generates code for the xfer optimization but also
95731 ** does a test to see if the destination table is empty and jumps over the
95732 ** xfer optimization code if the test fails.  In that case, this routine
95733 ** returns FALSE so that the caller will know to go ahead and generate
95734 ** an unoptimized transfer.  This routine also returns FALSE if there
95735 ** is no chance that the xfer optimization can be applied.
95736 **
95737 ** This optimization is particularly useful at making VACUUM run faster.
95738 */
95739 static int xferOptimization(
95740   Parse *pParse,        /* Parser context */
95741   Table *pDest,         /* The table we are inserting into */
95742   Select *pSelect,      /* A SELECT statement to use as the data source */
95743   int onError,          /* How to handle constraint errors */
95744   int iDbDest           /* The database of pDest */
95745 ){
95746   ExprList *pEList;                /* The result set of the SELECT */
95747   Table *pSrc;                     /* The table in the FROM clause of SELECT */
95748   Index *pSrcIdx, *pDestIdx;       /* Source and destination indices */
95749   struct SrcList_item *pItem;      /* An element of pSelect->pSrc */
95750   int i;                           /* Loop counter */
95751   int iDbSrc;                      /* The database of pSrc */
95752   int iSrc, iDest;                 /* Cursors from source and destination */
95753   int addr1, addr2;                /* Loop addresses */
95754   int emptyDestTest = 0;           /* Address of test for empty pDest */
95755   int emptySrcTest = 0;            /* Address of test for empty pSrc */
95756   Vdbe *v;                         /* The VDBE we are building */
95757   int regAutoinc;                  /* Memory register used by AUTOINC */
95758   int destHasUniqueIdx = 0;        /* True if pDest has a UNIQUE index */
95759   int regData, regRowid;           /* Registers holding data and rowid */
95760 
95761   if( pSelect==0 ){
95762     return 0;   /* Must be of the form  INSERT INTO ... SELECT ... */
95763   }
95764   if( pParse->pWith || pSelect->pWith ){
95765     /* Do not attempt to process this query if there are an WITH clauses
95766     ** attached to it. Proceeding may generate a false "no such table: xxx"
95767     ** error if pSelect reads from a CTE named "xxx".  */
95768     return 0;
95769   }
95770   if( sqlite3TriggerList(pParse, pDest) ){
95771     return 0;   /* tab1 must not have triggers */
95772   }
95773 #ifndef SQLITE_OMIT_VIRTUALTABLE
95774   if( pDest->tabFlags & TF_Virtual ){
95775     return 0;   /* tab1 must not be a virtual table */
95776   }
95777 #endif
95778   if( onError==OE_Default ){
95779     if( pDest->iPKey>=0 ) onError = pDest->keyConf;
95780     if( onError==OE_Default ) onError = OE_Abort;
95781   }
95782   assert(pSelect->pSrc);   /* allocated even if there is no FROM clause */
95783   if( pSelect->pSrc->nSrc!=1 ){
95784     return 0;   /* FROM clause must have exactly one term */
95785   }
95786   if( pSelect->pSrc->a[0].pSelect ){
95787     return 0;   /* FROM clause cannot contain a subquery */
95788   }
95789   if( pSelect->pWhere ){
95790     return 0;   /* SELECT may not have a WHERE clause */
95791   }
95792   if( pSelect->pOrderBy ){
95793     return 0;   /* SELECT may not have an ORDER BY clause */
95794   }
95795   /* Do not need to test for a HAVING clause.  If HAVING is present but
95796   ** there is no ORDER BY, we will get an error. */
95797   if( pSelect->pGroupBy ){
95798     return 0;   /* SELECT may not have a GROUP BY clause */
95799   }
95800   if( pSelect->pLimit ){
95801     return 0;   /* SELECT may not have a LIMIT clause */
95802   }
95803   assert( pSelect->pOffset==0 );  /* Must be so if pLimit==0 */
95804   if( pSelect->pPrior ){
95805     return 0;   /* SELECT may not be a compound query */
95806   }
95807   if( pSelect->selFlags & SF_Distinct ){
95808     return 0;   /* SELECT may not be DISTINCT */
95809   }
95810   pEList = pSelect->pEList;
95811   assert( pEList!=0 );
95812   if( pEList->nExpr!=1 ){
95813     return 0;   /* The result set must have exactly one column */
95814   }
95815   assert( pEList->a[0].pExpr );
95816   if( pEList->a[0].pExpr->op!=TK_ALL ){
95817     return 0;   /* The result set must be the special operator "*" */
95818   }
95819 
95820   /* At this point we have established that the statement is of the
95821   ** correct syntactic form to participate in this optimization.  Now
95822   ** we have to check the semantics.
95823   */
95824   pItem = pSelect->pSrc->a;
95825   pSrc = sqlite3LocateTableItem(pParse, 0, pItem);
95826   if( pSrc==0 ){
95827     return 0;   /* FROM clause does not contain a real table */
95828   }
95829   if( pSrc==pDest ){
95830     return 0;   /* tab1 and tab2 may not be the same table */
95831   }
95832   if( HasRowid(pDest)!=HasRowid(pSrc) ){
95833     return 0;   /* source and destination must both be WITHOUT ROWID or not */
95834   }
95835 #ifndef SQLITE_OMIT_VIRTUALTABLE
95836   if( pSrc->tabFlags & TF_Virtual ){
95837     return 0;   /* tab2 must not be a virtual table */
95838   }
95839 #endif
95840   if( pSrc->pSelect ){
95841     return 0;   /* tab2 may not be a view */
95842   }
95843   if( pDest->nCol!=pSrc->nCol ){
95844     return 0;   /* Number of columns must be the same in tab1 and tab2 */
95845   }
95846   if( pDest->iPKey!=pSrc->iPKey ){
95847     return 0;   /* Both tables must have the same INTEGER PRIMARY KEY */
95848   }
95849   for(i=0; i<pDest->nCol; i++){
95850     Column *pDestCol = &pDest->aCol[i];
95851     Column *pSrcCol = &pSrc->aCol[i];
95852     if( pDestCol->affinity!=pSrcCol->affinity ){
95853       return 0;    /* Affinity must be the same on all columns */
95854     }
95855     if( !xferCompatibleCollation(pDestCol->zColl, pSrcCol->zColl) ){
95856       return 0;    /* Collating sequence must be the same on all columns */
95857     }
95858     if( pDestCol->notNull && !pSrcCol->notNull ){
95859       return 0;    /* tab2 must be NOT NULL if tab1 is */
95860     }
95861     /* Default values for second and subsequent columns need to match. */
95862     if( i>0
95863      && ((pDestCol->zDflt==0)!=(pSrcCol->zDflt==0)
95864          || (pDestCol->zDflt && strcmp(pDestCol->zDflt, pSrcCol->zDflt)!=0))
95865     ){
95866       return 0;    /* Default values must be the same for all columns */
95867     }
95868   }
95869   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
95870     if( pDestIdx->onError!=OE_None ){
95871       destHasUniqueIdx = 1;
95872     }
95873     for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
95874       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
95875     }
95876     if( pSrcIdx==0 ){
95877       return 0;    /* pDestIdx has no corresponding index in pSrc */
95878     }
95879   }
95880 #ifndef SQLITE_OMIT_CHECK
95881   if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){
95882     return 0;   /* Tables have different CHECK constraints.  Ticket #2252 */
95883   }
95884 #endif
95885 #ifndef SQLITE_OMIT_FOREIGN_KEY
95886   /* Disallow the transfer optimization if the destination table constains
95887   ** any foreign key constraints.  This is more restrictive than necessary.
95888   ** But the main beneficiary of the transfer optimization is the VACUUM
95889   ** command, and the VACUUM command disables foreign key constraints.  So
95890   ** the extra complication to make this rule less restrictive is probably
95891   ** not worth the effort.  Ticket [6284df89debdfa61db8073e062908af0c9b6118e]
95892   */
95893   if( (pParse->db->flags & SQLITE_ForeignKeys)!=0 && pDest->pFKey!=0 ){
95894     return 0;
95895   }
95896 #endif
95897   if( (pParse->db->flags & SQLITE_CountRows)!=0 ){
95898     return 0;  /* xfer opt does not play well with PRAGMA count_changes */
95899   }
95900 
95901   /* If we get this far, it means that the xfer optimization is at
95902   ** least a possibility, though it might only work if the destination
95903   ** table (tab1) is initially empty.
95904   */
95905 #ifdef SQLITE_TEST
95906   sqlite3_xferopt_count++;
95907 #endif
95908   iDbSrc = sqlite3SchemaToIndex(pParse->db, pSrc->pSchema);
95909   v = sqlite3GetVdbe(pParse);
95910   sqlite3CodeVerifySchema(pParse, iDbSrc);
95911   iSrc = pParse->nTab++;
95912   iDest = pParse->nTab++;
95913   regAutoinc = autoIncBegin(pParse, iDbDest, pDest);
95914   regData = sqlite3GetTempReg(pParse);
95915   regRowid = sqlite3GetTempReg(pParse);
95916   sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
95917   assert( HasRowid(pDest) || destHasUniqueIdx );
95918   if( (pDest->iPKey<0 && pDest->pIndex!=0)          /* (1) */
95919    || destHasUniqueIdx                              /* (2) */
95920    || (onError!=OE_Abort && onError!=OE_Rollback)   /* (3) */
95921   ){
95922     /* In some circumstances, we are able to run the xfer optimization
95923     ** only if the destination table is initially empty.  This code makes
95924     ** that determination.  Conditions under which the destination must
95925     ** be empty:
95926     **
95927     ** (1) There is no INTEGER PRIMARY KEY but there are indices.
95928     **     (If the destination is not initially empty, the rowid fields
95929     **     of index entries might need to change.)
95930     **
95931     ** (2) The destination has a unique index.  (The xfer optimization
95932     **     is unable to test uniqueness.)
95933     **
95934     ** (3) onError is something other than OE_Abort and OE_Rollback.
95935     */
95936     addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v);
95937     emptyDestTest = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
95938     sqlite3VdbeJumpHere(v, addr1);
95939   }
95940   if( HasRowid(pSrc) ){
95941     sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
95942     emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
95943     if( pDest->iPKey>=0 ){
95944       addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
95945       addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
95946       VdbeCoverage(v);
95947       sqlite3RowidConstraint(pParse, onError, pDest);
95948       sqlite3VdbeJumpHere(v, addr2);
95949       autoIncStep(pParse, regAutoinc, regRowid);
95950     }else if( pDest->pIndex==0 ){
95951       addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
95952     }else{
95953       addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
95954       assert( (pDest->tabFlags & TF_Autoincrement)==0 );
95955     }
95956     sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData);
95957     sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid);
95958     sqlite3VdbeChangeP5(v, OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND);
95959     sqlite3VdbeChangeP4(v, -1, pDest->zName, 0);
95960     sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v);
95961     sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
95962     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
95963   }else{
95964     sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName);
95965     sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName);
95966   }
95967   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
95968     for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){
95969       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
95970     }
95971     assert( pSrcIdx );
95972     sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc);
95973     sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx);
95974     VdbeComment((v, "%s", pSrcIdx->zName));
95975     sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest);
95976     sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx);
95977     sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR);
95978     VdbeComment((v, "%s", pDestIdx->zName));
95979     addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
95980     sqlite3VdbeAddOp2(v, OP_RowKey, iSrc, regData);
95981     sqlite3VdbeAddOp3(v, OP_IdxInsert, iDest, regData, 1);
95982     sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v);
95983     sqlite3VdbeJumpHere(v, addr1);
95984     sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
95985     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
95986   }
95987   if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest);
95988   sqlite3ReleaseTempReg(pParse, regRowid);
95989   sqlite3ReleaseTempReg(pParse, regData);
95990   if( emptyDestTest ){
95991     sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0);
95992     sqlite3VdbeJumpHere(v, emptyDestTest);
95993     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
95994     return 0;
95995   }else{
95996     return 1;
95997   }
95998 }
95999 #endif /* SQLITE_OMIT_XFER_OPT */
96000 
96001 /************** End of insert.c **********************************************/
96002 /************** Begin file legacy.c ******************************************/
96003 /*
96004 ** 2001 September 15
96005 **
96006 ** The author disclaims copyright to this source code.  In place of
96007 ** a legal notice, here is a blessing:
96008 **
96009 **    May you do good and not evil.
96010 **    May you find forgiveness for yourself and forgive others.
96011 **    May you share freely, never taking more than you give.
96012 **
96013 *************************************************************************
96014 ** Main file for the SQLite library.  The routines in this file
96015 ** implement the programmer interface to the library.  Routines in
96016 ** other files are for internal use by SQLite and should not be
96017 ** accessed by users of the library.
96018 */
96019 
96020 
96021 /*
96022 ** Execute SQL code.  Return one of the SQLITE_ success/failure
96023 ** codes.  Also write an error message into memory obtained from
96024 ** malloc() and make *pzErrMsg point to that message.
96025 **
96026 ** If the SQL is a query, then for each row in the query result
96027 ** the xCallback() function is called.  pArg becomes the first
96028 ** argument to xCallback().  If xCallback=NULL then no callback
96029 ** is invoked, even for queries.
96030 */
96031 SQLITE_API int sqlite3_exec(
96032   sqlite3 *db,                /* The database on which the SQL executes */
96033   const char *zSql,           /* The SQL to be executed */
96034   sqlite3_callback xCallback, /* Invoke this callback routine */
96035   void *pArg,                 /* First argument to xCallback() */
96036   char **pzErrMsg             /* Write error messages here */
96037 ){
96038   int rc = SQLITE_OK;         /* Return code */
96039   const char *zLeftover;      /* Tail of unprocessed SQL */
96040   sqlite3_stmt *pStmt = 0;    /* The current SQL statement */
96041   char **azCols = 0;          /* Names of result columns */
96042   int callbackIsInit;         /* True if callback data is initialized */
96043 
96044   if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
96045   if( zSql==0 ) zSql = "";
96046 
96047   sqlite3_mutex_enter(db->mutex);
96048   sqlite3Error(db, SQLITE_OK, 0);
96049   while( rc==SQLITE_OK && zSql[0] ){
96050     int nCol;
96051     char **azVals = 0;
96052 
96053     pStmt = 0;
96054     rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, &zLeftover);
96055     assert( rc==SQLITE_OK || pStmt==0 );
96056     if( rc!=SQLITE_OK ){
96057       continue;
96058     }
96059     if( !pStmt ){
96060       /* this happens for a comment or white-space */
96061       zSql = zLeftover;
96062       continue;
96063     }
96064 
96065     callbackIsInit = 0;
96066     nCol = sqlite3_column_count(pStmt);
96067 
96068     while( 1 ){
96069       int i;
96070       rc = sqlite3_step(pStmt);
96071 
96072       /* Invoke the callback function if required */
96073       if( xCallback && (SQLITE_ROW==rc ||
96074           (SQLITE_DONE==rc && !callbackIsInit
96075                            && db->flags&SQLITE_NullCallback)) ){
96076         if( !callbackIsInit ){
96077           azCols = sqlite3DbMallocZero(db, 2*nCol*sizeof(const char*) + 1);
96078           if( azCols==0 ){
96079             goto exec_out;
96080           }
96081           for(i=0; i<nCol; i++){
96082             azCols[i] = (char *)sqlite3_column_name(pStmt, i);
96083             /* sqlite3VdbeSetColName() installs column names as UTF8
96084             ** strings so there is no way for sqlite3_column_name() to fail. */
96085             assert( azCols[i]!=0 );
96086           }
96087           callbackIsInit = 1;
96088         }
96089         if( rc==SQLITE_ROW ){
96090           azVals = &azCols[nCol];
96091           for(i=0; i<nCol; i++){
96092             azVals[i] = (char *)sqlite3_column_text(pStmt, i);
96093             if( !azVals[i] && sqlite3_column_type(pStmt, i)!=SQLITE_NULL ){
96094               db->mallocFailed = 1;
96095               goto exec_out;
96096             }
96097           }
96098         }
96099         if( xCallback(pArg, nCol, azVals, azCols) ){
96100           rc = SQLITE_ABORT;
96101           sqlite3VdbeFinalize((Vdbe *)pStmt);
96102           pStmt = 0;
96103           sqlite3Error(db, SQLITE_ABORT, 0);
96104           goto exec_out;
96105         }
96106       }
96107 
96108       if( rc!=SQLITE_ROW ){
96109         rc = sqlite3VdbeFinalize((Vdbe *)pStmt);
96110         pStmt = 0;
96111         zSql = zLeftover;
96112         while( sqlite3Isspace(zSql[0]) ) zSql++;
96113         break;
96114       }
96115     }
96116 
96117     sqlite3DbFree(db, azCols);
96118     azCols = 0;
96119   }
96120 
96121 exec_out:
96122   if( pStmt ) sqlite3VdbeFinalize((Vdbe *)pStmt);
96123   sqlite3DbFree(db, azCols);
96124 
96125   rc = sqlite3ApiExit(db, rc);
96126   if( rc!=SQLITE_OK && ALWAYS(rc==sqlite3_errcode(db)) && pzErrMsg ){
96127     int nErrMsg = 1 + sqlite3Strlen30(sqlite3_errmsg(db));
96128     *pzErrMsg = sqlite3Malloc(nErrMsg);
96129     if( *pzErrMsg ){
96130       memcpy(*pzErrMsg, sqlite3_errmsg(db), nErrMsg);
96131     }else{
96132       rc = SQLITE_NOMEM;
96133       sqlite3Error(db, SQLITE_NOMEM, 0);
96134     }
96135   }else if( pzErrMsg ){
96136     *pzErrMsg = 0;
96137   }
96138 
96139   assert( (rc&db->errMask)==rc );
96140   sqlite3_mutex_leave(db->mutex);
96141   return rc;
96142 }
96143 
96144 /************** End of legacy.c **********************************************/
96145 /************** Begin file loadext.c *****************************************/
96146 /*
96147 ** 2006 June 7
96148 **
96149 ** The author disclaims copyright to this source code.  In place of
96150 ** a legal notice, here is a blessing:
96151 **
96152 **    May you do good and not evil.
96153 **    May you find forgiveness for yourself and forgive others.
96154 **    May you share freely, never taking more than you give.
96155 **
96156 *************************************************************************
96157 ** This file contains code used to dynamically load extensions into
96158 ** the SQLite library.
96159 */
96160 
96161 #ifndef SQLITE_CORE
96162   #define SQLITE_CORE 1  /* Disable the API redefinition in sqlite3ext.h */
96163 #endif
96164 /************** Include sqlite3ext.h in the middle of loadext.c **************/
96165 /************** Begin file sqlite3ext.h **************************************/
96166 /*
96167 ** 2006 June 7
96168 **
96169 ** The author disclaims copyright to this source code.  In place of
96170 ** a legal notice, here is a blessing:
96171 **
96172 **    May you do good and not evil.
96173 **    May you find forgiveness for yourself and forgive others.
96174 **    May you share freely, never taking more than you give.
96175 **
96176 *************************************************************************
96177 ** This header file defines the SQLite interface for use by
96178 ** shared libraries that want to be imported as extensions into
96179 ** an SQLite instance.  Shared libraries that intend to be loaded
96180 ** as extensions by SQLite should #include this file instead of
96181 ** sqlite3.h.
96182 */
96183 #ifndef _SQLITE3EXT_H_
96184 #define _SQLITE3EXT_H_
96185 
96186 typedef struct sqlite3_api_routines sqlite3_api_routines;
96187 
96188 /*
96189 ** The following structure holds pointers to all of the SQLite API
96190 ** routines.
96191 **
96192 ** WARNING:  In order to maintain backwards compatibility, add new
96193 ** interfaces to the end of this structure only.  If you insert new
96194 ** interfaces in the middle of this structure, then older different
96195 ** versions of SQLite will not be able to load each others' shared
96196 ** libraries!
96197 */
96198 struct sqlite3_api_routines {
96199   void * (*aggregate_context)(sqlite3_context*,int nBytes);
96200   int  (*aggregate_count)(sqlite3_context*);
96201   int  (*bind_blob)(sqlite3_stmt*,int,const void*,int n,void(*)(void*));
96202   int  (*bind_double)(sqlite3_stmt*,int,double);
96203   int  (*bind_int)(sqlite3_stmt*,int,int);
96204   int  (*bind_int64)(sqlite3_stmt*,int,sqlite_int64);
96205   int  (*bind_null)(sqlite3_stmt*,int);
96206   int  (*bind_parameter_count)(sqlite3_stmt*);
96207   int  (*bind_parameter_index)(sqlite3_stmt*,const char*zName);
96208   const char * (*bind_parameter_name)(sqlite3_stmt*,int);
96209   int  (*bind_text)(sqlite3_stmt*,int,const char*,int n,void(*)(void*));
96210   int  (*bind_text16)(sqlite3_stmt*,int,const void*,int,void(*)(void*));
96211   int  (*bind_value)(sqlite3_stmt*,int,const sqlite3_value*);
96212   int  (*busy_handler)(sqlite3*,int(*)(void*,int),void*);
96213   int  (*busy_timeout)(sqlite3*,int ms);
96214   int  (*changes)(sqlite3*);
96215   int  (*close)(sqlite3*);
96216   int  (*collation_needed)(sqlite3*,void*,void(*)(void*,sqlite3*,
96217                            int eTextRep,const char*));
96218   int  (*collation_needed16)(sqlite3*,void*,void(*)(void*,sqlite3*,
96219                              int eTextRep,const void*));
96220   const void * (*column_blob)(sqlite3_stmt*,int iCol);
96221   int  (*column_bytes)(sqlite3_stmt*,int iCol);
96222   int  (*column_bytes16)(sqlite3_stmt*,int iCol);
96223   int  (*column_count)(sqlite3_stmt*pStmt);
96224   const char * (*column_database_name)(sqlite3_stmt*,int);
96225   const void * (*column_database_name16)(sqlite3_stmt*,int);
96226   const char * (*column_decltype)(sqlite3_stmt*,int i);
96227   const void * (*column_decltype16)(sqlite3_stmt*,int);
96228   double  (*column_double)(sqlite3_stmt*,int iCol);
96229   int  (*column_int)(sqlite3_stmt*,int iCol);
96230   sqlite_int64  (*column_int64)(sqlite3_stmt*,int iCol);
96231   const char * (*column_name)(sqlite3_stmt*,int);
96232   const void * (*column_name16)(sqlite3_stmt*,int);
96233   const char * (*column_origin_name)(sqlite3_stmt*,int);
96234   const void * (*column_origin_name16)(sqlite3_stmt*,int);
96235   const char * (*column_table_name)(sqlite3_stmt*,int);
96236   const void * (*column_table_name16)(sqlite3_stmt*,int);
96237   const unsigned char * (*column_text)(sqlite3_stmt*,int iCol);
96238   const void * (*column_text16)(sqlite3_stmt*,int iCol);
96239   int  (*column_type)(sqlite3_stmt*,int iCol);
96240   sqlite3_value* (*column_value)(sqlite3_stmt*,int iCol);
96241   void * (*commit_hook)(sqlite3*,int(*)(void*),void*);
96242   int  (*complete)(const char*sql);
96243   int  (*complete16)(const void*sql);
96244   int  (*create_collation)(sqlite3*,const char*,int,void*,
96245                            int(*)(void*,int,const void*,int,const void*));
96246   int  (*create_collation16)(sqlite3*,const void*,int,void*,
96247                              int(*)(void*,int,const void*,int,const void*));
96248   int  (*create_function)(sqlite3*,const char*,int,int,void*,
96249                           void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
96250                           void (*xStep)(sqlite3_context*,int,sqlite3_value**),
96251                           void (*xFinal)(sqlite3_context*));
96252   int  (*create_function16)(sqlite3*,const void*,int,int,void*,
96253                             void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
96254                             void (*xStep)(sqlite3_context*,int,sqlite3_value**),
96255                             void (*xFinal)(sqlite3_context*));
96256   int (*create_module)(sqlite3*,const char*,const sqlite3_module*,void*);
96257   int  (*data_count)(sqlite3_stmt*pStmt);
96258   sqlite3 * (*db_handle)(sqlite3_stmt*);
96259   int (*declare_vtab)(sqlite3*,const char*);
96260   int  (*enable_shared_cache)(int);
96261   int  (*errcode)(sqlite3*db);
96262   const char * (*errmsg)(sqlite3*);
96263   const void * (*errmsg16)(sqlite3*);
96264   int  (*exec)(sqlite3*,const char*,sqlite3_callback,void*,char**);
96265   int  (*expired)(sqlite3_stmt*);
96266   int  (*finalize)(sqlite3_stmt*pStmt);
96267   void  (*free)(void*);
96268   void  (*free_table)(char**result);
96269   int  (*get_autocommit)(sqlite3*);
96270   void * (*get_auxdata)(sqlite3_context*,int);
96271   int  (*get_table)(sqlite3*,const char*,char***,int*,int*,char**);
96272   int  (*global_recover)(void);
96273   void  (*interruptx)(sqlite3*);
96274   sqlite_int64  (*last_insert_rowid)(sqlite3*);
96275   const char * (*libversion)(void);
96276   int  (*libversion_number)(void);
96277   void *(*malloc)(int);
96278   char * (*mprintf)(const char*,...);
96279   int  (*open)(const char*,sqlite3**);
96280   int  (*open16)(const void*,sqlite3**);
96281   int  (*prepare)(sqlite3*,const char*,int,sqlite3_stmt**,const char**);
96282   int  (*prepare16)(sqlite3*,const void*,int,sqlite3_stmt**,const void**);
96283   void * (*profile)(sqlite3*,void(*)(void*,const char*,sqlite_uint64),void*);
96284   void  (*progress_handler)(sqlite3*,int,int(*)(void*),void*);
96285   void *(*realloc)(void*,int);
96286   int  (*reset)(sqlite3_stmt*pStmt);
96287   void  (*result_blob)(sqlite3_context*,const void*,int,void(*)(void*));
96288   void  (*result_double)(sqlite3_context*,double);
96289   void  (*result_error)(sqlite3_context*,const char*,int);
96290   void  (*result_error16)(sqlite3_context*,const void*,int);
96291   void  (*result_int)(sqlite3_context*,int);
96292   void  (*result_int64)(sqlite3_context*,sqlite_int64);
96293   void  (*result_null)(sqlite3_context*);
96294   void  (*result_text)(sqlite3_context*,const char*,int,void(*)(void*));
96295   void  (*result_text16)(sqlite3_context*,const void*,int,void(*)(void*));
96296   void  (*result_text16be)(sqlite3_context*,const void*,int,void(*)(void*));
96297   void  (*result_text16le)(sqlite3_context*,const void*,int,void(*)(void*));
96298   void  (*result_value)(sqlite3_context*,sqlite3_value*);
96299   void * (*rollback_hook)(sqlite3*,void(*)(void*),void*);
96300   int  (*set_authorizer)(sqlite3*,int(*)(void*,int,const char*,const char*,
96301                          const char*,const char*),void*);
96302   void  (*set_auxdata)(sqlite3_context*,int,void*,void (*)(void*));
96303   char * (*snprintf)(int,char*,const char*,...);
96304   int  (*step)(sqlite3_stmt*);
96305   int  (*table_column_metadata)(sqlite3*,const char*,const char*,const char*,
96306                                 char const**,char const**,int*,int*,int*);
96307   void  (*thread_cleanup)(void);
96308   int  (*total_changes)(sqlite3*);
96309   void * (*trace)(sqlite3*,void(*xTrace)(void*,const char*),void*);
96310   int  (*transfer_bindings)(sqlite3_stmt*,sqlite3_stmt*);
96311   void * (*update_hook)(sqlite3*,void(*)(void*,int ,char const*,char const*,
96312                                          sqlite_int64),void*);
96313   void * (*user_data)(sqlite3_context*);
96314   const void * (*value_blob)(sqlite3_value*);
96315   int  (*value_bytes)(sqlite3_value*);
96316   int  (*value_bytes16)(sqlite3_value*);
96317   double  (*value_double)(sqlite3_value*);
96318   int  (*value_int)(sqlite3_value*);
96319   sqlite_int64  (*value_int64)(sqlite3_value*);
96320   int  (*value_numeric_type)(sqlite3_value*);
96321   const unsigned char * (*value_text)(sqlite3_value*);
96322   const void * (*value_text16)(sqlite3_value*);
96323   const void * (*value_text16be)(sqlite3_value*);
96324   const void * (*value_text16le)(sqlite3_value*);
96325   int  (*value_type)(sqlite3_value*);
96326   char *(*vmprintf)(const char*,va_list);
96327   /* Added ??? */
96328   int (*overload_function)(sqlite3*, const char *zFuncName, int nArg);
96329   /* Added by 3.3.13 */
96330   int (*prepare_v2)(sqlite3*,const char*,int,sqlite3_stmt**,const char**);
96331   int (*prepare16_v2)(sqlite3*,const void*,int,sqlite3_stmt**,const void**);
96332   int (*clear_bindings)(sqlite3_stmt*);
96333   /* Added by 3.4.1 */
96334   int (*create_module_v2)(sqlite3*,const char*,const sqlite3_module*,void*,
96335                           void (*xDestroy)(void *));
96336   /* Added by 3.5.0 */
96337   int (*bind_zeroblob)(sqlite3_stmt*,int,int);
96338   int (*blob_bytes)(sqlite3_blob*);
96339   int (*blob_close)(sqlite3_blob*);
96340   int (*blob_open)(sqlite3*,const char*,const char*,const char*,sqlite3_int64,
96341                    int,sqlite3_blob**);
96342   int (*blob_read)(sqlite3_blob*,void*,int,int);
96343   int (*blob_write)(sqlite3_blob*,const void*,int,int);
96344   int (*create_collation_v2)(sqlite3*,const char*,int,void*,
96345                              int(*)(void*,int,const void*,int,const void*),
96346                              void(*)(void*));
96347   int (*file_control)(sqlite3*,const char*,int,void*);
96348   sqlite3_int64 (*memory_highwater)(int);
96349   sqlite3_int64 (*memory_used)(void);
96350   sqlite3_mutex *(*mutex_alloc)(int);
96351   void (*mutex_enter)(sqlite3_mutex*);
96352   void (*mutex_free)(sqlite3_mutex*);
96353   void (*mutex_leave)(sqlite3_mutex*);
96354   int (*mutex_try)(sqlite3_mutex*);
96355   int (*open_v2)(const char*,sqlite3**,int,const char*);
96356   int (*release_memory)(int);
96357   void (*result_error_nomem)(sqlite3_context*);
96358   void (*result_error_toobig)(sqlite3_context*);
96359   int (*sleep)(int);
96360   void (*soft_heap_limit)(int);
96361   sqlite3_vfs *(*vfs_find)(const char*);
96362   int (*vfs_register)(sqlite3_vfs*,int);
96363   int (*vfs_unregister)(sqlite3_vfs*);
96364   int (*xthreadsafe)(void);
96365   void (*result_zeroblob)(sqlite3_context*,int);
96366   void (*result_error_code)(sqlite3_context*,int);
96367   int (*test_control)(int, ...);
96368   void (*randomness)(int,void*);
96369   sqlite3 *(*context_db_handle)(sqlite3_context*);
96370   int (*extended_result_codes)(sqlite3*,int);
96371   int (*limit)(sqlite3*,int,int);
96372   sqlite3_stmt *(*next_stmt)(sqlite3*,sqlite3_stmt*);
96373   const char *(*sql)(sqlite3_stmt*);
96374   int (*status)(int,int*,int*,int);
96375   int (*backup_finish)(sqlite3_backup*);
96376   sqlite3_backup *(*backup_init)(sqlite3*,const char*,sqlite3*,const char*);
96377   int (*backup_pagecount)(sqlite3_backup*);
96378   int (*backup_remaining)(sqlite3_backup*);
96379   int (*backup_step)(sqlite3_backup*,int);
96380   const char *(*compileoption_get)(int);
96381   int (*compileoption_used)(const char*);
96382   int (*create_function_v2)(sqlite3*,const char*,int,int,void*,
96383                             void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
96384                             void (*xStep)(sqlite3_context*,int,sqlite3_value**),
96385                             void (*xFinal)(sqlite3_context*),
96386                             void(*xDestroy)(void*));
96387   int (*db_config)(sqlite3*,int,...);
96388   sqlite3_mutex *(*db_mutex)(sqlite3*);
96389   int (*db_status)(sqlite3*,int,int*,int*,int);
96390   int (*extended_errcode)(sqlite3*);
96391   void (*log)(int,const char*,...);
96392   sqlite3_int64 (*soft_heap_limit64)(sqlite3_int64);
96393   const char *(*sourceid)(void);
96394   int (*stmt_status)(sqlite3_stmt*,int,int);
96395   int (*strnicmp)(const char*,const char*,int);
96396   int (*unlock_notify)(sqlite3*,void(*)(void**,int),void*);
96397   int (*wal_autocheckpoint)(sqlite3*,int);
96398   int (*wal_checkpoint)(sqlite3*,const char*);
96399   void *(*wal_hook)(sqlite3*,int(*)(void*,sqlite3*,const char*,int),void*);
96400   int (*blob_reopen)(sqlite3_blob*,sqlite3_int64);
96401   int (*vtab_config)(sqlite3*,int op,...);
96402   int (*vtab_on_conflict)(sqlite3*);
96403   /* Version 3.7.16 and later */
96404   int (*close_v2)(sqlite3*);
96405   const char *(*db_filename)(sqlite3*,const char*);
96406   int (*db_readonly)(sqlite3*,const char*);
96407   int (*db_release_memory)(sqlite3*);
96408   const char *(*errstr)(int);
96409   int (*stmt_busy)(sqlite3_stmt*);
96410   int (*stmt_readonly)(sqlite3_stmt*);
96411   int (*stricmp)(const char*,const char*);
96412   int (*uri_boolean)(const char*,const char*,int);
96413   sqlite3_int64 (*uri_int64)(const char*,const char*,sqlite3_int64);
96414   const char *(*uri_parameter)(const char*,const char*);
96415   char *(*vsnprintf)(int,char*,const char*,va_list);
96416   int (*wal_checkpoint_v2)(sqlite3*,const char*,int,int*,int*);
96417 };
96418 
96419 /*
96420 ** The following macros redefine the API routines so that they are
96421 ** redirected throught the global sqlite3_api structure.
96422 **
96423 ** This header file is also used by the loadext.c source file
96424 ** (part of the main SQLite library - not an extension) so that
96425 ** it can get access to the sqlite3_api_routines structure
96426 ** definition.  But the main library does not want to redefine
96427 ** the API.  So the redefinition macros are only valid if the
96428 ** SQLITE_CORE macros is undefined.
96429 */
96430 #ifndef SQLITE_CORE
96431 #define sqlite3_aggregate_context      sqlite3_api->aggregate_context
96432 #ifndef SQLITE_OMIT_DEPRECATED
96433 #define sqlite3_aggregate_count        sqlite3_api->aggregate_count
96434 #endif
96435 #define sqlite3_bind_blob              sqlite3_api->bind_blob
96436 #define sqlite3_bind_double            sqlite3_api->bind_double
96437 #define sqlite3_bind_int               sqlite3_api->bind_int
96438 #define sqlite3_bind_int64             sqlite3_api->bind_int64
96439 #define sqlite3_bind_null              sqlite3_api->bind_null
96440 #define sqlite3_bind_parameter_count   sqlite3_api->bind_parameter_count
96441 #define sqlite3_bind_parameter_index   sqlite3_api->bind_parameter_index
96442 #define sqlite3_bind_parameter_name    sqlite3_api->bind_parameter_name
96443 #define sqlite3_bind_text              sqlite3_api->bind_text
96444 #define sqlite3_bind_text16            sqlite3_api->bind_text16
96445 #define sqlite3_bind_value             sqlite3_api->bind_value
96446 #define sqlite3_busy_handler           sqlite3_api->busy_handler
96447 #define sqlite3_busy_timeout           sqlite3_api->busy_timeout
96448 #define sqlite3_changes                sqlite3_api->changes
96449 #define sqlite3_close                  sqlite3_api->close
96450 #define sqlite3_collation_needed       sqlite3_api->collation_needed
96451 #define sqlite3_collation_needed16     sqlite3_api->collation_needed16
96452 #define sqlite3_column_blob            sqlite3_api->column_blob
96453 #define sqlite3_column_bytes           sqlite3_api->column_bytes
96454 #define sqlite3_column_bytes16         sqlite3_api->column_bytes16
96455 #define sqlite3_column_count           sqlite3_api->column_count
96456 #define sqlite3_column_database_name   sqlite3_api->column_database_name
96457 #define sqlite3_column_database_name16 sqlite3_api->column_database_name16
96458 #define sqlite3_column_decltype        sqlite3_api->column_decltype
96459 #define sqlite3_column_decltype16      sqlite3_api->column_decltype16
96460 #define sqlite3_column_double          sqlite3_api->column_double
96461 #define sqlite3_column_int             sqlite3_api->column_int
96462 #define sqlite3_column_int64           sqlite3_api->column_int64
96463 #define sqlite3_column_name            sqlite3_api->column_name
96464 #define sqlite3_column_name16          sqlite3_api->column_name16
96465 #define sqlite3_column_origin_name     sqlite3_api->column_origin_name
96466 #define sqlite3_column_origin_name16   sqlite3_api->column_origin_name16
96467 #define sqlite3_column_table_name      sqlite3_api->column_table_name
96468 #define sqlite3_column_table_name16    sqlite3_api->column_table_name16
96469 #define sqlite3_column_text            sqlite3_api->column_text
96470 #define sqlite3_column_text16          sqlite3_api->column_text16
96471 #define sqlite3_column_type            sqlite3_api->column_type
96472 #define sqlite3_column_value           sqlite3_api->column_value
96473 #define sqlite3_commit_hook            sqlite3_api->commit_hook
96474 #define sqlite3_complete               sqlite3_api->complete
96475 #define sqlite3_complete16             sqlite3_api->complete16
96476 #define sqlite3_create_collation       sqlite3_api->create_collation
96477 #define sqlite3_create_collation16     sqlite3_api->create_collation16
96478 #define sqlite3_create_function        sqlite3_api->create_function
96479 #define sqlite3_create_function16      sqlite3_api->create_function16
96480 #define sqlite3_create_module          sqlite3_api->create_module
96481 #define sqlite3_create_module_v2       sqlite3_api->create_module_v2
96482 #define sqlite3_data_count             sqlite3_api->data_count
96483 #define sqlite3_db_handle              sqlite3_api->db_handle
96484 #define sqlite3_declare_vtab           sqlite3_api->declare_vtab
96485 #define sqlite3_enable_shared_cache    sqlite3_api->enable_shared_cache
96486 #define sqlite3_errcode                sqlite3_api->errcode
96487 #define sqlite3_errmsg                 sqlite3_api->errmsg
96488 #define sqlite3_errmsg16               sqlite3_api->errmsg16
96489 #define sqlite3_exec                   sqlite3_api->exec
96490 #ifndef SQLITE_OMIT_DEPRECATED
96491 #define sqlite3_expired                sqlite3_api->expired
96492 #endif
96493 #define sqlite3_finalize               sqlite3_api->finalize
96494 #define sqlite3_free                   sqlite3_api->free
96495 #define sqlite3_free_table             sqlite3_api->free_table
96496 #define sqlite3_get_autocommit         sqlite3_api->get_autocommit
96497 #define sqlite3_get_auxdata            sqlite3_api->get_auxdata
96498 #define sqlite3_get_table              sqlite3_api->get_table
96499 #ifndef SQLITE_OMIT_DEPRECATED
96500 #define sqlite3_global_recover         sqlite3_api->global_recover
96501 #endif
96502 #define sqlite3_interrupt              sqlite3_api->interruptx
96503 #define sqlite3_last_insert_rowid      sqlite3_api->last_insert_rowid
96504 #define sqlite3_libversion             sqlite3_api->libversion
96505 #define sqlite3_libversion_number      sqlite3_api->libversion_number
96506 #define sqlite3_malloc                 sqlite3_api->malloc
96507 #define sqlite3_mprintf                sqlite3_api->mprintf
96508 #define sqlite3_open                   sqlite3_api->open
96509 #define sqlite3_open16                 sqlite3_api->open16
96510 #define sqlite3_prepare                sqlite3_api->prepare
96511 #define sqlite3_prepare16              sqlite3_api->prepare16
96512 #define sqlite3_prepare_v2             sqlite3_api->prepare_v2
96513 #define sqlite3_prepare16_v2           sqlite3_api->prepare16_v2
96514 #define sqlite3_profile                sqlite3_api->profile
96515 #define sqlite3_progress_handler       sqlite3_api->progress_handler
96516 #define sqlite3_realloc                sqlite3_api->realloc
96517 #define sqlite3_reset                  sqlite3_api->reset
96518 #define sqlite3_result_blob            sqlite3_api->result_blob
96519 #define sqlite3_result_double          sqlite3_api->result_double
96520 #define sqlite3_result_error           sqlite3_api->result_error
96521 #define sqlite3_result_error16         sqlite3_api->result_error16
96522 #define sqlite3_result_int             sqlite3_api->result_int
96523 #define sqlite3_result_int64           sqlite3_api->result_int64
96524 #define sqlite3_result_null            sqlite3_api->result_null
96525 #define sqlite3_result_text            sqlite3_api->result_text
96526 #define sqlite3_result_text16          sqlite3_api->result_text16
96527 #define sqlite3_result_text16be        sqlite3_api->result_text16be
96528 #define sqlite3_result_text16le        sqlite3_api->result_text16le
96529 #define sqlite3_result_value           sqlite3_api->result_value
96530 #define sqlite3_rollback_hook          sqlite3_api->rollback_hook
96531 #define sqlite3_set_authorizer         sqlite3_api->set_authorizer
96532 #define sqlite3_set_auxdata            sqlite3_api->set_auxdata
96533 #define sqlite3_snprintf               sqlite3_api->snprintf
96534 #define sqlite3_step                   sqlite3_api->step
96535 #define sqlite3_table_column_metadata  sqlite3_api->table_column_metadata
96536 #define sqlite3_thread_cleanup         sqlite3_api->thread_cleanup
96537 #define sqlite3_total_changes          sqlite3_api->total_changes
96538 #define sqlite3_trace                  sqlite3_api->trace
96539 #ifndef SQLITE_OMIT_DEPRECATED
96540 #define sqlite3_transfer_bindings      sqlite3_api->transfer_bindings
96541 #endif
96542 #define sqlite3_update_hook            sqlite3_api->update_hook
96543 #define sqlite3_user_data              sqlite3_api->user_data
96544 #define sqlite3_value_blob             sqlite3_api->value_blob
96545 #define sqlite3_value_bytes            sqlite3_api->value_bytes
96546 #define sqlite3_value_bytes16          sqlite3_api->value_bytes16
96547 #define sqlite3_value_double           sqlite3_api->value_double
96548 #define sqlite3_value_int              sqlite3_api->value_int
96549 #define sqlite3_value_int64            sqlite3_api->value_int64
96550 #define sqlite3_value_numeric_type     sqlite3_api->value_numeric_type
96551 #define sqlite3_value_text             sqlite3_api->value_text
96552 #define sqlite3_value_text16           sqlite3_api->value_text16
96553 #define sqlite3_value_text16be         sqlite3_api->value_text16be
96554 #define sqlite3_value_text16le         sqlite3_api->value_text16le
96555 #define sqlite3_value_type             sqlite3_api->value_type
96556 #define sqlite3_vmprintf               sqlite3_api->vmprintf
96557 #define sqlite3_overload_function      sqlite3_api->overload_function
96558 #define sqlite3_prepare_v2             sqlite3_api->prepare_v2
96559 #define sqlite3_prepare16_v2           sqlite3_api->prepare16_v2
96560 #define sqlite3_clear_bindings         sqlite3_api->clear_bindings
96561 #define sqlite3_bind_zeroblob          sqlite3_api->bind_zeroblob
96562 #define sqlite3_blob_bytes             sqlite3_api->blob_bytes
96563 #define sqlite3_blob_close             sqlite3_api->blob_close
96564 #define sqlite3_blob_open              sqlite3_api->blob_open
96565 #define sqlite3_blob_read              sqlite3_api->blob_read
96566 #define sqlite3_blob_write             sqlite3_api->blob_write
96567 #define sqlite3_create_collation_v2    sqlite3_api->create_collation_v2
96568 #define sqlite3_file_control           sqlite3_api->file_control
96569 #define sqlite3_memory_highwater       sqlite3_api->memory_highwater
96570 #define sqlite3_memory_used            sqlite3_api->memory_used
96571 #define sqlite3_mutex_alloc            sqlite3_api->mutex_alloc
96572 #define sqlite3_mutex_enter            sqlite3_api->mutex_enter
96573 #define sqlite3_mutex_free             sqlite3_api->mutex_free
96574 #define sqlite3_mutex_leave            sqlite3_api->mutex_leave
96575 #define sqlite3_mutex_try              sqlite3_api->mutex_try
96576 #define sqlite3_open_v2                sqlite3_api->open_v2
96577 #define sqlite3_release_memory         sqlite3_api->release_memory
96578 #define sqlite3_result_error_nomem     sqlite3_api->result_error_nomem
96579 #define sqlite3_result_error_toobig    sqlite3_api->result_error_toobig
96580 #define sqlite3_sleep                  sqlite3_api->sleep
96581 #define sqlite3_soft_heap_limit        sqlite3_api->soft_heap_limit
96582 #define sqlite3_vfs_find               sqlite3_api->vfs_find
96583 #define sqlite3_vfs_register           sqlite3_api->vfs_register
96584 #define sqlite3_vfs_unregister         sqlite3_api->vfs_unregister
96585 #define sqlite3_threadsafe             sqlite3_api->xthreadsafe
96586 #define sqlite3_result_zeroblob        sqlite3_api->result_zeroblob
96587 #define sqlite3_result_error_code      sqlite3_api->result_error_code
96588 #define sqlite3_test_control           sqlite3_api->test_control
96589 #define sqlite3_randomness             sqlite3_api->randomness
96590 #define sqlite3_context_db_handle      sqlite3_api->context_db_handle
96591 #define sqlite3_extended_result_codes  sqlite3_api->extended_result_codes
96592 #define sqlite3_limit                  sqlite3_api->limit
96593 #define sqlite3_next_stmt              sqlite3_api->next_stmt
96594 #define sqlite3_sql                    sqlite3_api->sql
96595 #define sqlite3_status                 sqlite3_api->status
96596 #define sqlite3_backup_finish          sqlite3_api->backup_finish
96597 #define sqlite3_backup_init            sqlite3_api->backup_init
96598 #define sqlite3_backup_pagecount       sqlite3_api->backup_pagecount
96599 #define sqlite3_backup_remaining       sqlite3_api->backup_remaining
96600 #define sqlite3_backup_step            sqlite3_api->backup_step
96601 #define sqlite3_compileoption_get      sqlite3_api->compileoption_get
96602 #define sqlite3_compileoption_used     sqlite3_api->compileoption_used
96603 #define sqlite3_create_function_v2     sqlite3_api->create_function_v2
96604 #define sqlite3_db_config              sqlite3_api->db_config
96605 #define sqlite3_db_mutex               sqlite3_api->db_mutex
96606 #define sqlite3_db_status              sqlite3_api->db_status
96607 #define sqlite3_extended_errcode       sqlite3_api->extended_errcode
96608 #define sqlite3_log                    sqlite3_api->log
96609 #define sqlite3_soft_heap_limit64      sqlite3_api->soft_heap_limit64
96610 #define sqlite3_sourceid               sqlite3_api->sourceid
96611 #define sqlite3_stmt_status            sqlite3_api->stmt_status
96612 #define sqlite3_strnicmp               sqlite3_api->strnicmp
96613 #define sqlite3_unlock_notify          sqlite3_api->unlock_notify
96614 #define sqlite3_wal_autocheckpoint     sqlite3_api->wal_autocheckpoint
96615 #define sqlite3_wal_checkpoint         sqlite3_api->wal_checkpoint
96616 #define sqlite3_wal_hook               sqlite3_api->wal_hook
96617 #define sqlite3_blob_reopen            sqlite3_api->blob_reopen
96618 #define sqlite3_vtab_config            sqlite3_api->vtab_config
96619 #define sqlite3_vtab_on_conflict       sqlite3_api->vtab_on_conflict
96620 /* Version 3.7.16 and later */
96621 #define sqlite3_close_v2               sqlite3_api->close_v2
96622 #define sqlite3_db_filename            sqlite3_api->db_filename
96623 #define sqlite3_db_readonly            sqlite3_api->db_readonly
96624 #define sqlite3_db_release_memory      sqlite3_api->db_release_memory
96625 #define sqlite3_errstr                 sqlite3_api->errstr
96626 #define sqlite3_stmt_busy              sqlite3_api->stmt_busy
96627 #define sqlite3_stmt_readonly          sqlite3_api->stmt_readonly
96628 #define sqlite3_stricmp                sqlite3_api->stricmp
96629 #define sqlite3_uri_boolean            sqlite3_api->uri_boolean
96630 #define sqlite3_uri_int64              sqlite3_api->uri_int64
96631 #define sqlite3_uri_parameter          sqlite3_api->uri_parameter
96632 #define sqlite3_uri_vsnprintf          sqlite3_api->vsnprintf
96633 #define sqlite3_wal_checkpoint_v2      sqlite3_api->wal_checkpoint_v2
96634 #endif /* SQLITE_CORE */
96635 
96636 #ifndef SQLITE_CORE
96637   /* This case when the file really is being compiled as a loadable
96638   ** extension */
96639 # define SQLITE_EXTENSION_INIT1     const sqlite3_api_routines *sqlite3_api=0;
96640 # define SQLITE_EXTENSION_INIT2(v)  sqlite3_api=v;
96641 # define SQLITE_EXTENSION_INIT3     \
96642     extern const sqlite3_api_routines *sqlite3_api;
96643 #else
96644   /* This case when the file is being statically linked into the
96645   ** application */
96646 # define SQLITE_EXTENSION_INIT1     /*no-op*/
96647 # define SQLITE_EXTENSION_INIT2(v)  (void)v; /* unused parameter */
96648 # define SQLITE_EXTENSION_INIT3     /*no-op*/
96649 #endif
96650 
96651 #endif /* _SQLITE3EXT_H_ */
96652 
96653 /************** End of sqlite3ext.h ******************************************/
96654 /************** Continuing where we left off in loadext.c ********************/
96655 /* #include <string.h> */
96656 
96657 #ifndef SQLITE_OMIT_LOAD_EXTENSION
96658 
96659 /*
96660 ** Some API routines are omitted when various features are
96661 ** excluded from a build of SQLite.  Substitute a NULL pointer
96662 ** for any missing APIs.
96663 */
96664 #ifndef SQLITE_ENABLE_COLUMN_METADATA
96665 # define sqlite3_column_database_name   0
96666 # define sqlite3_column_database_name16 0
96667 # define sqlite3_column_table_name      0
96668 # define sqlite3_column_table_name16    0
96669 # define sqlite3_column_origin_name     0
96670 # define sqlite3_column_origin_name16   0
96671 # define sqlite3_table_column_metadata  0
96672 #endif
96673 
96674 #ifdef SQLITE_OMIT_AUTHORIZATION
96675 # define sqlite3_set_authorizer         0
96676 #endif
96677 
96678 #ifdef SQLITE_OMIT_UTF16
96679 # define sqlite3_bind_text16            0
96680 # define sqlite3_collation_needed16     0
96681 # define sqlite3_column_decltype16      0
96682 # define sqlite3_column_name16          0
96683 # define sqlite3_column_text16          0
96684 # define sqlite3_complete16             0
96685 # define sqlite3_create_collation16     0
96686 # define sqlite3_create_function16      0
96687 # define sqlite3_errmsg16               0
96688 # define sqlite3_open16                 0
96689 # define sqlite3_prepare16              0
96690 # define sqlite3_prepare16_v2           0
96691 # define sqlite3_result_error16         0
96692 # define sqlite3_result_text16          0
96693 # define sqlite3_result_text16be        0
96694 # define sqlite3_result_text16le        0
96695 # define sqlite3_value_text16           0
96696 # define sqlite3_value_text16be         0
96697 # define sqlite3_value_text16le         0
96698 # define sqlite3_column_database_name16 0
96699 # define sqlite3_column_table_name16    0
96700 # define sqlite3_column_origin_name16   0
96701 #endif
96702 
96703 #ifdef SQLITE_OMIT_COMPLETE
96704 # define sqlite3_complete 0
96705 # define sqlite3_complete16 0
96706 #endif
96707 
96708 #ifdef SQLITE_OMIT_DECLTYPE
96709 # define sqlite3_column_decltype16      0
96710 # define sqlite3_column_decltype        0
96711 #endif
96712 
96713 #ifdef SQLITE_OMIT_PROGRESS_CALLBACK
96714 # define sqlite3_progress_handler 0
96715 #endif
96716 
96717 #ifdef SQLITE_OMIT_VIRTUALTABLE
96718 # define sqlite3_create_module 0
96719 # define sqlite3_create_module_v2 0
96720 # define sqlite3_declare_vtab 0
96721 # define sqlite3_vtab_config 0
96722 # define sqlite3_vtab_on_conflict 0
96723 #endif
96724 
96725 #ifdef SQLITE_OMIT_SHARED_CACHE
96726 # define sqlite3_enable_shared_cache 0
96727 #endif
96728 
96729 #ifdef SQLITE_OMIT_TRACE
96730 # define sqlite3_profile       0
96731 # define sqlite3_trace         0
96732 #endif
96733 
96734 #ifdef SQLITE_OMIT_GET_TABLE
96735 # define sqlite3_free_table    0
96736 # define sqlite3_get_table     0
96737 #endif
96738 
96739 #ifdef SQLITE_OMIT_INCRBLOB
96740 #define sqlite3_bind_zeroblob  0
96741 #define sqlite3_blob_bytes     0
96742 #define sqlite3_blob_close     0
96743 #define sqlite3_blob_open      0
96744 #define sqlite3_blob_read      0
96745 #define sqlite3_blob_write     0
96746 #define sqlite3_blob_reopen    0
96747 #endif
96748 
96749 /*
96750 ** The following structure contains pointers to all SQLite API routines.
96751 ** A pointer to this structure is passed into extensions when they are
96752 ** loaded so that the extension can make calls back into the SQLite
96753 ** library.
96754 **
96755 ** When adding new APIs, add them to the bottom of this structure
96756 ** in order to preserve backwards compatibility.
96757 **
96758 ** Extensions that use newer APIs should first call the
96759 ** sqlite3_libversion_number() to make sure that the API they
96760 ** intend to use is supported by the library.  Extensions should
96761 ** also check to make sure that the pointer to the function is
96762 ** not NULL before calling it.
96763 */
96764 static const sqlite3_api_routines sqlite3Apis = {
96765   sqlite3_aggregate_context,
96766 #ifndef SQLITE_OMIT_DEPRECATED
96767   sqlite3_aggregate_count,
96768 #else
96769   0,
96770 #endif
96771   sqlite3_bind_blob,
96772   sqlite3_bind_double,
96773   sqlite3_bind_int,
96774   sqlite3_bind_int64,
96775   sqlite3_bind_null,
96776   sqlite3_bind_parameter_count,
96777   sqlite3_bind_parameter_index,
96778   sqlite3_bind_parameter_name,
96779   sqlite3_bind_text,
96780   sqlite3_bind_text16,
96781   sqlite3_bind_value,
96782   sqlite3_busy_handler,
96783   sqlite3_busy_timeout,
96784   sqlite3_changes,
96785   sqlite3_close,
96786   sqlite3_collation_needed,
96787   sqlite3_collation_needed16,
96788   sqlite3_column_blob,
96789   sqlite3_column_bytes,
96790   sqlite3_column_bytes16,
96791   sqlite3_column_count,
96792   sqlite3_column_database_name,
96793   sqlite3_column_database_name16,
96794   sqlite3_column_decltype,
96795   sqlite3_column_decltype16,
96796   sqlite3_column_double,
96797   sqlite3_column_int,
96798   sqlite3_column_int64,
96799   sqlite3_column_name,
96800   sqlite3_column_name16,
96801   sqlite3_column_origin_name,
96802   sqlite3_column_origin_name16,
96803   sqlite3_column_table_name,
96804   sqlite3_column_table_name16,
96805   sqlite3_column_text,
96806   sqlite3_column_text16,
96807   sqlite3_column_type,
96808   sqlite3_column_value,
96809   sqlite3_commit_hook,
96810   sqlite3_complete,
96811   sqlite3_complete16,
96812   sqlite3_create_collation,
96813   sqlite3_create_collation16,
96814   sqlite3_create_function,
96815   sqlite3_create_function16,
96816   sqlite3_create_module,
96817   sqlite3_data_count,
96818   sqlite3_db_handle,
96819   sqlite3_declare_vtab,
96820   sqlite3_enable_shared_cache,
96821   sqlite3_errcode,
96822   sqlite3_errmsg,
96823   sqlite3_errmsg16,
96824   sqlite3_exec,
96825 #ifndef SQLITE_OMIT_DEPRECATED
96826   sqlite3_expired,
96827 #else
96828   0,
96829 #endif
96830   sqlite3_finalize,
96831   sqlite3_free,
96832   sqlite3_free_table,
96833   sqlite3_get_autocommit,
96834   sqlite3_get_auxdata,
96835   sqlite3_get_table,
96836   0,     /* Was sqlite3_global_recover(), but that function is deprecated */
96837   sqlite3_interrupt,
96838   sqlite3_last_insert_rowid,
96839   sqlite3_libversion,
96840   sqlite3_libversion_number,
96841   sqlite3_malloc,
96842   sqlite3_mprintf,
96843   sqlite3_open,
96844   sqlite3_open16,
96845   sqlite3_prepare,
96846   sqlite3_prepare16,
96847   sqlite3_profile,
96848   sqlite3_progress_handler,
96849   sqlite3_realloc,
96850   sqlite3_reset,
96851   sqlite3_result_blob,
96852   sqlite3_result_double,
96853   sqlite3_result_error,
96854   sqlite3_result_error16,
96855   sqlite3_result_int,
96856   sqlite3_result_int64,
96857   sqlite3_result_null,
96858   sqlite3_result_text,
96859   sqlite3_result_text16,
96860   sqlite3_result_text16be,
96861   sqlite3_result_text16le,
96862   sqlite3_result_value,
96863   sqlite3_rollback_hook,
96864   sqlite3_set_authorizer,
96865   sqlite3_set_auxdata,
96866   sqlite3_snprintf,
96867   sqlite3_step,
96868   sqlite3_table_column_metadata,
96869 #ifndef SQLITE_OMIT_DEPRECATED
96870   sqlite3_thread_cleanup,
96871 #else
96872   0,
96873 #endif
96874   sqlite3_total_changes,
96875   sqlite3_trace,
96876 #ifndef SQLITE_OMIT_DEPRECATED
96877   sqlite3_transfer_bindings,
96878 #else
96879   0,
96880 #endif
96881   sqlite3_update_hook,
96882   sqlite3_user_data,
96883   sqlite3_value_blob,
96884   sqlite3_value_bytes,
96885   sqlite3_value_bytes16,
96886   sqlite3_value_double,
96887   sqlite3_value_int,
96888   sqlite3_value_int64,
96889   sqlite3_value_numeric_type,
96890   sqlite3_value_text,
96891   sqlite3_value_text16,
96892   sqlite3_value_text16be,
96893   sqlite3_value_text16le,
96894   sqlite3_value_type,
96895   sqlite3_vmprintf,
96896   /*
96897   ** The original API set ends here.  All extensions can call any
96898   ** of the APIs above provided that the pointer is not NULL.  But
96899   ** before calling APIs that follow, extension should check the
96900   ** sqlite3_libversion_number() to make sure they are dealing with
96901   ** a library that is new enough to support that API.
96902   *************************************************************************
96903   */
96904   sqlite3_overload_function,
96905 
96906   /*
96907   ** Added after 3.3.13
96908   */
96909   sqlite3_prepare_v2,
96910   sqlite3_prepare16_v2,
96911   sqlite3_clear_bindings,
96912 
96913   /*
96914   ** Added for 3.4.1
96915   */
96916   sqlite3_create_module_v2,
96917 
96918   /*
96919   ** Added for 3.5.0
96920   */
96921   sqlite3_bind_zeroblob,
96922   sqlite3_blob_bytes,
96923   sqlite3_blob_close,
96924   sqlite3_blob_open,
96925   sqlite3_blob_read,
96926   sqlite3_blob_write,
96927   sqlite3_create_collation_v2,
96928   sqlite3_file_control,
96929   sqlite3_memory_highwater,
96930   sqlite3_memory_used,
96931 #ifdef SQLITE_MUTEX_OMIT
96932   0,
96933   0,
96934   0,
96935   0,
96936   0,
96937 #else
96938   sqlite3_mutex_alloc,
96939   sqlite3_mutex_enter,
96940   sqlite3_mutex_free,
96941   sqlite3_mutex_leave,
96942   sqlite3_mutex_try,
96943 #endif
96944   sqlite3_open_v2,
96945   sqlite3_release_memory,
96946   sqlite3_result_error_nomem,
96947   sqlite3_result_error_toobig,
96948   sqlite3_sleep,
96949   sqlite3_soft_heap_limit,
96950   sqlite3_vfs_find,
96951   sqlite3_vfs_register,
96952   sqlite3_vfs_unregister,
96953 
96954   /*
96955   ** Added for 3.5.8
96956   */
96957   sqlite3_threadsafe,
96958   sqlite3_result_zeroblob,
96959   sqlite3_result_error_code,
96960   sqlite3_test_control,
96961   sqlite3_randomness,
96962   sqlite3_context_db_handle,
96963 
96964   /*
96965   ** Added for 3.6.0
96966   */
96967   sqlite3_extended_result_codes,
96968   sqlite3_limit,
96969   sqlite3_next_stmt,
96970   sqlite3_sql,
96971   sqlite3_status,
96972 
96973   /*
96974   ** Added for 3.7.4
96975   */
96976   sqlite3_backup_finish,
96977   sqlite3_backup_init,
96978   sqlite3_backup_pagecount,
96979   sqlite3_backup_remaining,
96980   sqlite3_backup_step,
96981 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
96982   sqlite3_compileoption_get,
96983   sqlite3_compileoption_used,
96984 #else
96985   0,
96986   0,
96987 #endif
96988   sqlite3_create_function_v2,
96989   sqlite3_db_config,
96990   sqlite3_db_mutex,
96991   sqlite3_db_status,
96992   sqlite3_extended_errcode,
96993   sqlite3_log,
96994   sqlite3_soft_heap_limit64,
96995   sqlite3_sourceid,
96996   sqlite3_stmt_status,
96997   sqlite3_strnicmp,
96998 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
96999   sqlite3_unlock_notify,
97000 #else
97001   0,
97002 #endif
97003 #ifndef SQLITE_OMIT_WAL
97004   sqlite3_wal_autocheckpoint,
97005   sqlite3_wal_checkpoint,
97006   sqlite3_wal_hook,
97007 #else
97008   0,
97009   0,
97010   0,
97011 #endif
97012   sqlite3_blob_reopen,
97013   sqlite3_vtab_config,
97014   sqlite3_vtab_on_conflict,
97015   sqlite3_close_v2,
97016   sqlite3_db_filename,
97017   sqlite3_db_readonly,
97018   sqlite3_db_release_memory,
97019   sqlite3_errstr,
97020   sqlite3_stmt_busy,
97021   sqlite3_stmt_readonly,
97022   sqlite3_stricmp,
97023   sqlite3_uri_boolean,
97024   sqlite3_uri_int64,
97025   sqlite3_uri_parameter,
97026   sqlite3_vsnprintf,
97027   sqlite3_wal_checkpoint_v2
97028 };
97029 
97030 /*
97031 ** Attempt to load an SQLite extension library contained in the file
97032 ** zFile.  The entry point is zProc.  zProc may be 0 in which case a
97033 ** default entry point name (sqlite3_extension_init) is used.  Use
97034 ** of the default name is recommended.
97035 **
97036 ** Return SQLITE_OK on success and SQLITE_ERROR if something goes wrong.
97037 **
97038 ** If an error occurs and pzErrMsg is not 0, then fill *pzErrMsg with
97039 ** error message text.  The calling function should free this memory
97040 ** by calling sqlite3DbFree(db, ).
97041 */
97042 static int sqlite3LoadExtension(
97043   sqlite3 *db,          /* Load the extension into this database connection */
97044   const char *zFile,    /* Name of the shared library containing extension */
97045   const char *zProc,    /* Entry point.  Use "sqlite3_extension_init" if 0 */
97046   char **pzErrMsg       /* Put error message here if not 0 */
97047 ){
97048   sqlite3_vfs *pVfs = db->pVfs;
97049   void *handle;
97050   int (*xInit)(sqlite3*,char**,const sqlite3_api_routines*);
97051   char *zErrmsg = 0;
97052   const char *zEntry;
97053   char *zAltEntry = 0;
97054   void **aHandle;
97055   int nMsg = 300 + sqlite3Strlen30(zFile);
97056   int ii;
97057 
97058   /* Shared library endings to try if zFile cannot be loaded as written */
97059   static const char *azEndings[] = {
97060 #if SQLITE_OS_WIN
97061      "dll"
97062 #elif defined(__APPLE__)
97063      "dylib"
97064 #else
97065      "so"
97066 #endif
97067   };
97068 
97069 
97070   if( pzErrMsg ) *pzErrMsg = 0;
97071 
97072   /* Ticket #1863.  To avoid a creating security problems for older
97073   ** applications that relink against newer versions of SQLite, the
97074   ** ability to run load_extension is turned off by default.  One
97075   ** must call sqlite3_enable_load_extension() to turn on extension
97076   ** loading.  Otherwise you get the following error.
97077   */
97078   if( (db->flags & SQLITE_LoadExtension)==0 ){
97079     if( pzErrMsg ){
97080       *pzErrMsg = sqlite3_mprintf("not authorized");
97081     }
97082     return SQLITE_ERROR;
97083   }
97084 
97085   zEntry = zProc ? zProc : "sqlite3_extension_init";
97086 
97087   handle = sqlite3OsDlOpen(pVfs, zFile);
97088 #if SQLITE_OS_UNIX || SQLITE_OS_WIN
97089   for(ii=0; ii<ArraySize(azEndings) && handle==0; ii++){
97090     char *zAltFile = sqlite3_mprintf("%s.%s", zFile, azEndings[ii]);
97091     if( zAltFile==0 ) return SQLITE_NOMEM;
97092     handle = sqlite3OsDlOpen(pVfs, zAltFile);
97093     sqlite3_free(zAltFile);
97094   }
97095 #endif
97096   if( handle==0 ){
97097     if( pzErrMsg ){
97098       *pzErrMsg = zErrmsg = sqlite3_malloc(nMsg);
97099       if( zErrmsg ){
97100         sqlite3_snprintf(nMsg, zErrmsg,
97101             "unable to open shared library [%s]", zFile);
97102         sqlite3OsDlError(pVfs, nMsg-1, zErrmsg);
97103       }
97104     }
97105     return SQLITE_ERROR;
97106   }
97107   xInit = (int(*)(sqlite3*,char**,const sqlite3_api_routines*))
97108                    sqlite3OsDlSym(pVfs, handle, zEntry);
97109 
97110   /* If no entry point was specified and the default legacy
97111   ** entry point name "sqlite3_extension_init" was not found, then
97112   ** construct an entry point name "sqlite3_X_init" where the X is
97113   ** replaced by the lowercase value of every ASCII alphabetic
97114   ** character in the filename after the last "/" upto the first ".",
97115   ** and eliding the first three characters if they are "lib".
97116   ** Examples:
97117   **
97118   **    /usr/local/lib/libExample5.4.3.so ==>  sqlite3_example_init
97119   **    C:/lib/mathfuncs.dll              ==>  sqlite3_mathfuncs_init
97120   */
97121   if( xInit==0 && zProc==0 ){
97122     int iFile, iEntry, c;
97123     int ncFile = sqlite3Strlen30(zFile);
97124     zAltEntry = sqlite3_malloc(ncFile+30);
97125     if( zAltEntry==0 ){
97126       sqlite3OsDlClose(pVfs, handle);
97127       return SQLITE_NOMEM;
97128     }
97129     memcpy(zAltEntry, "sqlite3_", 8);
97130     for(iFile=ncFile-1; iFile>=0 && zFile[iFile]!='/'; iFile--){}
97131     iFile++;
97132     if( sqlite3_strnicmp(zFile+iFile, "lib", 3)==0 ) iFile += 3;
97133     for(iEntry=8; (c = zFile[iFile])!=0 && c!='.'; iFile++){
97134       if( sqlite3Isalpha(c) ){
97135         zAltEntry[iEntry++] = (char)sqlite3UpperToLower[(unsigned)c];
97136       }
97137     }
97138     memcpy(zAltEntry+iEntry, "_init", 6);
97139     zEntry = zAltEntry;
97140     xInit = (int(*)(sqlite3*,char**,const sqlite3_api_routines*))
97141                      sqlite3OsDlSym(pVfs, handle, zEntry);
97142   }
97143   if( xInit==0 ){
97144     if( pzErrMsg ){
97145       nMsg += sqlite3Strlen30(zEntry);
97146       *pzErrMsg = zErrmsg = sqlite3_malloc(nMsg);
97147       if( zErrmsg ){
97148         sqlite3_snprintf(nMsg, zErrmsg,
97149             "no entry point [%s] in shared library [%s]", zEntry, zFile);
97150         sqlite3OsDlError(pVfs, nMsg-1, zErrmsg);
97151       }
97152     }
97153     sqlite3OsDlClose(pVfs, handle);
97154     sqlite3_free(zAltEntry);
97155     return SQLITE_ERROR;
97156   }
97157   sqlite3_free(zAltEntry);
97158   if( xInit(db, &zErrmsg, &sqlite3Apis) ){
97159     if( pzErrMsg ){
97160       *pzErrMsg = sqlite3_mprintf("error during initialization: %s", zErrmsg);
97161     }
97162     sqlite3_free(zErrmsg);
97163     sqlite3OsDlClose(pVfs, handle);
97164     return SQLITE_ERROR;
97165   }
97166 
97167   /* Append the new shared library handle to the db->aExtension array. */
97168   aHandle = sqlite3DbMallocZero(db, sizeof(handle)*(db->nExtension+1));
97169   if( aHandle==0 ){
97170     return SQLITE_NOMEM;
97171   }
97172   if( db->nExtension>0 ){
97173     memcpy(aHandle, db->aExtension, sizeof(handle)*db->nExtension);
97174   }
97175   sqlite3DbFree(db, db->aExtension);
97176   db->aExtension = aHandle;
97177 
97178   db->aExtension[db->nExtension++] = handle;
97179   return SQLITE_OK;
97180 }
97181 SQLITE_API int sqlite3_load_extension(
97182   sqlite3 *db,          /* Load the extension into this database connection */
97183   const char *zFile,    /* Name of the shared library containing extension */
97184   const char *zProc,    /* Entry point.  Use "sqlite3_extension_init" if 0 */
97185   char **pzErrMsg       /* Put error message here if not 0 */
97186 ){
97187   int rc;
97188   sqlite3_mutex_enter(db->mutex);
97189   rc = sqlite3LoadExtension(db, zFile, zProc, pzErrMsg);
97190   rc = sqlite3ApiExit(db, rc);
97191   sqlite3_mutex_leave(db->mutex);
97192   return rc;
97193 }
97194 
97195 /*
97196 ** Call this routine when the database connection is closing in order
97197 ** to clean up loaded extensions
97198 */
97199 SQLITE_PRIVATE void sqlite3CloseExtensions(sqlite3 *db){
97200   int i;
97201   assert( sqlite3_mutex_held(db->mutex) );
97202   for(i=0; i<db->nExtension; i++){
97203     sqlite3OsDlClose(db->pVfs, db->aExtension[i]);
97204   }
97205   sqlite3DbFree(db, db->aExtension);
97206 }
97207 
97208 /*
97209 ** Enable or disable extension loading.  Extension loading is disabled by
97210 ** default so as not to open security holes in older applications.
97211 */
97212 SQLITE_API int sqlite3_enable_load_extension(sqlite3 *db, int onoff){
97213   sqlite3_mutex_enter(db->mutex);
97214   if( onoff ){
97215     db->flags |= SQLITE_LoadExtension;
97216   }else{
97217     db->flags &= ~SQLITE_LoadExtension;
97218   }
97219   sqlite3_mutex_leave(db->mutex);
97220   return SQLITE_OK;
97221 }
97222 
97223 #endif /* SQLITE_OMIT_LOAD_EXTENSION */
97224 
97225 /*
97226 ** The auto-extension code added regardless of whether or not extension
97227 ** loading is supported.  We need a dummy sqlite3Apis pointer for that
97228 ** code if regular extension loading is not available.  This is that
97229 ** dummy pointer.
97230 */
97231 #ifdef SQLITE_OMIT_LOAD_EXTENSION
97232 static const sqlite3_api_routines sqlite3Apis = { 0 };
97233 #endif
97234 
97235 
97236 /*
97237 ** The following object holds the list of automatically loaded
97238 ** extensions.
97239 **
97240 ** This list is shared across threads.  The SQLITE_MUTEX_STATIC_MASTER
97241 ** mutex must be held while accessing this list.
97242 */
97243 typedef struct sqlite3AutoExtList sqlite3AutoExtList;
97244 static SQLITE_WSD struct sqlite3AutoExtList {
97245   int nExt;              /* Number of entries in aExt[] */
97246   void (**aExt)(void);   /* Pointers to the extension init functions */
97247 } sqlite3Autoext = { 0, 0 };
97248 
97249 /* The "wsdAutoext" macro will resolve to the autoextension
97250 ** state vector.  If writable static data is unsupported on the target,
97251 ** we have to locate the state vector at run-time.  In the more common
97252 ** case where writable static data is supported, wsdStat can refer directly
97253 ** to the "sqlite3Autoext" state vector declared above.
97254 */
97255 #ifdef SQLITE_OMIT_WSD
97256 # define wsdAutoextInit \
97257   sqlite3AutoExtList *x = &GLOBAL(sqlite3AutoExtList,sqlite3Autoext)
97258 # define wsdAutoext x[0]
97259 #else
97260 # define wsdAutoextInit
97261 # define wsdAutoext sqlite3Autoext
97262 #endif
97263 
97264 
97265 /*
97266 ** Register a statically linked extension that is automatically
97267 ** loaded by every new database connection.
97268 */
97269 SQLITE_API int sqlite3_auto_extension(void (*xInit)(void)){
97270   int rc = SQLITE_OK;
97271 #ifndef SQLITE_OMIT_AUTOINIT
97272   rc = sqlite3_initialize();
97273   if( rc ){
97274     return rc;
97275   }else
97276 #endif
97277   {
97278     int i;
97279 #if SQLITE_THREADSAFE
97280     sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
97281 #endif
97282     wsdAutoextInit;
97283     sqlite3_mutex_enter(mutex);
97284     for(i=0; i<wsdAutoext.nExt; i++){
97285       if( wsdAutoext.aExt[i]==xInit ) break;
97286     }
97287     if( i==wsdAutoext.nExt ){
97288       int nByte = (wsdAutoext.nExt+1)*sizeof(wsdAutoext.aExt[0]);
97289       void (**aNew)(void);
97290       aNew = sqlite3_realloc(wsdAutoext.aExt, nByte);
97291       if( aNew==0 ){
97292         rc = SQLITE_NOMEM;
97293       }else{
97294         wsdAutoext.aExt = aNew;
97295         wsdAutoext.aExt[wsdAutoext.nExt] = xInit;
97296         wsdAutoext.nExt++;
97297       }
97298     }
97299     sqlite3_mutex_leave(mutex);
97300     assert( (rc&0xff)==rc );
97301     return rc;
97302   }
97303 }
97304 
97305 /*
97306 ** Cancel a prior call to sqlite3_auto_extension.  Remove xInit from the
97307 ** set of routines that is invoked for each new database connection, if it
97308 ** is currently on the list.  If xInit is not on the list, then this
97309 ** routine is a no-op.
97310 **
97311 ** Return 1 if xInit was found on the list and removed.  Return 0 if xInit
97312 ** was not on the list.
97313 */
97314 SQLITE_API int sqlite3_cancel_auto_extension(void (*xInit)(void)){
97315 #if SQLITE_THREADSAFE
97316   sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
97317 #endif
97318   int i;
97319   int n = 0;
97320   wsdAutoextInit;
97321   sqlite3_mutex_enter(mutex);
97322   for(i=wsdAutoext.nExt-1; i>=0; i--){
97323     if( wsdAutoext.aExt[i]==xInit ){
97324       wsdAutoext.nExt--;
97325       wsdAutoext.aExt[i] = wsdAutoext.aExt[wsdAutoext.nExt];
97326       n++;
97327       break;
97328     }
97329   }
97330   sqlite3_mutex_leave(mutex);
97331   return n;
97332 }
97333 
97334 /*
97335 ** Reset the automatic extension loading mechanism.
97336 */
97337 SQLITE_API void sqlite3_reset_auto_extension(void){
97338 #ifndef SQLITE_OMIT_AUTOINIT
97339   if( sqlite3_initialize()==SQLITE_OK )
97340 #endif
97341   {
97342 #if SQLITE_THREADSAFE
97343     sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
97344 #endif
97345     wsdAutoextInit;
97346     sqlite3_mutex_enter(mutex);
97347     sqlite3_free(wsdAutoext.aExt);
97348     wsdAutoext.aExt = 0;
97349     wsdAutoext.nExt = 0;
97350     sqlite3_mutex_leave(mutex);
97351   }
97352 }
97353 
97354 /*
97355 ** Load all automatic extensions.
97356 **
97357 ** If anything goes wrong, set an error in the database connection.
97358 */
97359 SQLITE_PRIVATE void sqlite3AutoLoadExtensions(sqlite3 *db){
97360   int i;
97361   int go = 1;
97362   int rc;
97363   int (*xInit)(sqlite3*,char**,const sqlite3_api_routines*);
97364 
97365   wsdAutoextInit;
97366   if( wsdAutoext.nExt==0 ){
97367     /* Common case: early out without every having to acquire a mutex */
97368     return;
97369   }
97370   for(i=0; go; i++){
97371     char *zErrmsg;
97372 #if SQLITE_THREADSAFE
97373     sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
97374 #endif
97375     sqlite3_mutex_enter(mutex);
97376     if( i>=wsdAutoext.nExt ){
97377       xInit = 0;
97378       go = 0;
97379     }else{
97380       xInit = (int(*)(sqlite3*,char**,const sqlite3_api_routines*))
97381               wsdAutoext.aExt[i];
97382     }
97383     sqlite3_mutex_leave(mutex);
97384     zErrmsg = 0;
97385     if( xInit && (rc = xInit(db, &zErrmsg, &sqlite3Apis))!=0 ){
97386       sqlite3Error(db, rc,
97387             "automatic extension loading failed: %s", zErrmsg);
97388       go = 0;
97389     }
97390     sqlite3_free(zErrmsg);
97391   }
97392 }
97393 
97394 /************** End of loadext.c *********************************************/
97395 /************** Begin file pragma.c ******************************************/
97396 /*
97397 ** 2003 April 6
97398 **
97399 ** The author disclaims copyright to this source code.  In place of
97400 ** a legal notice, here is a blessing:
97401 **
97402 **    May you do good and not evil.
97403 **    May you find forgiveness for yourself and forgive others.
97404 **    May you share freely, never taking more than you give.
97405 **
97406 *************************************************************************
97407 ** This file contains code used to implement the PRAGMA command.
97408 */
97409 
97410 #if !defined(SQLITE_ENABLE_LOCKING_STYLE)
97411 #  if defined(__APPLE__)
97412 #    define SQLITE_ENABLE_LOCKING_STYLE 1
97413 #  else
97414 #    define SQLITE_ENABLE_LOCKING_STYLE 0
97415 #  endif
97416 #endif
97417 
97418 /***************************************************************************
97419 ** The next block of code, including the PragTyp_XXXX macro definitions and
97420 ** the aPragmaName[] object is composed of generated code. DO NOT EDIT.
97421 **
97422 ** To add new pragmas, edit the code in ../tool/mkpragmatab.tcl and rerun
97423 ** that script.  Then copy/paste the output in place of the following:
97424 */
97425 #define PragTyp_HEADER_VALUE                   0
97426 #define PragTyp_AUTO_VACUUM                    1
97427 #define PragTyp_FLAG                           2
97428 #define PragTyp_BUSY_TIMEOUT                   3
97429 #define PragTyp_CACHE_SIZE                     4
97430 #define PragTyp_CASE_SENSITIVE_LIKE            5
97431 #define PragTyp_COLLATION_LIST                 6
97432 #define PragTyp_COMPILE_OPTIONS                7
97433 #define PragTyp_DATA_STORE_DIRECTORY           8
97434 #define PragTyp_DATABASE_LIST                  9
97435 #define PragTyp_DEFAULT_CACHE_SIZE            10
97436 #define PragTyp_ENCODING                      11
97437 #define PragTyp_FOREIGN_KEY_CHECK             12
97438 #define PragTyp_FOREIGN_KEY_LIST              13
97439 #define PragTyp_INCREMENTAL_VACUUM            14
97440 #define PragTyp_INDEX_INFO                    15
97441 #define PragTyp_INDEX_LIST                    16
97442 #define PragTyp_INTEGRITY_CHECK               17
97443 #define PragTyp_JOURNAL_MODE                  18
97444 #define PragTyp_JOURNAL_SIZE_LIMIT            19
97445 #define PragTyp_LOCK_PROXY_FILE               20
97446 #define PragTyp_LOCKING_MODE                  21
97447 #define PragTyp_PAGE_COUNT                    22
97448 #define PragTyp_MMAP_SIZE                     23
97449 #define PragTyp_PAGE_SIZE                     24
97450 #define PragTyp_SECURE_DELETE                 25
97451 #define PragTyp_SHRINK_MEMORY                 26
97452 #define PragTyp_SOFT_HEAP_LIMIT               27
97453 #define PragTyp_STATS                         28
97454 #define PragTyp_SYNCHRONOUS                   29
97455 #define PragTyp_TABLE_INFO                    30
97456 #define PragTyp_TEMP_STORE                    31
97457 #define PragTyp_TEMP_STORE_DIRECTORY          32
97458 #define PragTyp_WAL_AUTOCHECKPOINT            33
97459 #define PragTyp_WAL_CHECKPOINT                34
97460 #define PragTyp_ACTIVATE_EXTENSIONS           35
97461 #define PragTyp_HEXKEY                        36
97462 #define PragTyp_KEY                           37
97463 #define PragTyp_REKEY                         38
97464 #define PragTyp_LOCK_STATUS                   39
97465 #define PragTyp_PARSER_TRACE                  40
97466 #define PragFlag_NeedSchema           0x01
97467 static const struct sPragmaNames {
97468   const char *const zName;  /* Name of pragma */
97469   u8 ePragTyp;              /* PragTyp_XXX value */
97470   u8 mPragFlag;             /* Zero or more PragFlag_XXX values */
97471   u32 iArg;                 /* Extra argument */
97472 } aPragmaNames[] = {
97473 #if defined(SQLITE_HAS_CODEC) || defined(SQLITE_ENABLE_CEROD)
97474   { /* zName:     */ "activate_extensions",
97475     /* ePragTyp:  */ PragTyp_ACTIVATE_EXTENSIONS,
97476     /* ePragFlag: */ 0,
97477     /* iArg:      */ 0 },
97478 #endif
97479 #if !defined(SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS)
97480   { /* zName:     */ "application_id",
97481     /* ePragTyp:  */ PragTyp_HEADER_VALUE,
97482     /* ePragFlag: */ 0,
97483     /* iArg:      */ 0 },
97484 #endif
97485 #if !defined(SQLITE_OMIT_AUTOVACUUM)
97486   { /* zName:     */ "auto_vacuum",
97487     /* ePragTyp:  */ PragTyp_AUTO_VACUUM,
97488     /* ePragFlag: */ PragFlag_NeedSchema,
97489     /* iArg:      */ 0 },
97490 #endif
97491 #if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
97492 #if !defined(SQLITE_OMIT_AUTOMATIC_INDEX)
97493   { /* zName:     */ "automatic_index",
97494     /* ePragTyp:  */ PragTyp_FLAG,
97495     /* ePragFlag: */ 0,
97496     /* iArg:      */ SQLITE_AutoIndex },
97497 #endif
97498 #endif
97499   { /* zName:     */ "busy_timeout",
97500     /* ePragTyp:  */ PragTyp_BUSY_TIMEOUT,
97501     /* ePragFlag: */ 0,
97502     /* iArg:      */ 0 },
97503 #if !defined(SQLITE_OMIT_PAGER_PRAGMAS)
97504   { /* zName:     */ "cache_size",
97505     /* ePragTyp:  */ PragTyp_CACHE_SIZE,
97506     /* ePragFlag: */ PragFlag_NeedSchema,
97507     /* iArg:      */ 0 },
97508 #endif
97509 #if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
97510   { /* zName:     */ "cache_spill",
97511     /* ePragTyp:  */ PragTyp_FLAG,
97512     /* ePragFlag: */ 0,
97513     /* iArg:      */ SQLITE_CacheSpill },
97514 #endif
97515   { /* zName:     */ "case_sensitive_like",
97516     /* ePragTyp:  */ PragTyp_CASE_SENSITIVE_LIKE,
97517     /* ePragFlag: */ 0,
97518     /* iArg:      */ 0 },
97519 #if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
97520   { /* zName:     */ "checkpoint_fullfsync",
97521     /* ePragTyp:  */ PragTyp_FLAG,
97522     /* ePragFlag: */ 0,
97523     /* iArg:      */ SQLITE_CkptFullFSync },
97524 #endif
97525 #if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS)
97526   { /* zName:     */ "collation_list",
97527     /* ePragTyp:  */ PragTyp_COLLATION_LIST,
97528     /* ePragFlag: */ 0,
97529     /* iArg:      */ 0 },
97530 #endif
97531 #if !defined(SQLITE_OMIT_COMPILEOPTION_DIAGS)
97532   { /* zName:     */ "compile_options",
97533     /* ePragTyp:  */ PragTyp_COMPILE_OPTIONS,
97534     /* ePragFlag: */ 0,
97535     /* iArg:      */ 0 },
97536 #endif
97537 #if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
97538   { /* zName:     */ "count_changes",
97539     /* ePragTyp:  */ PragTyp_FLAG,
97540     /* ePragFlag: */ 0,
97541     /* iArg:      */ SQLITE_CountRows },
97542 #endif
97543 #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) && SQLITE_OS_WIN
97544   { /* zName:     */ "data_store_directory",
97545     /* ePragTyp:  */ PragTyp_DATA_STORE_DIRECTORY,
97546     /* ePragFlag: */ 0,
97547     /* iArg:      */ 0 },
97548 #endif
97549 #if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS)
97550   { /* zName:     */ "database_list",
97551     /* ePragTyp:  */ PragTyp_DATABASE_LIST,
97552     /* ePragFlag: */ PragFlag_NeedSchema,
97553     /* iArg:      */ 0 },
97554 #endif
97555 #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) && !defined(SQLITE_OMIT_DEPRECATED)
97556   { /* zName:     */ "default_cache_size",
97557     /* ePragTyp:  */ PragTyp_DEFAULT_CACHE_SIZE,
97558     /* ePragFlag: */ PragFlag_NeedSchema,
97559     /* iArg:      */ 0 },
97560 #endif
97561 #if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
97562 #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER)
97563   { /* zName:     */ "defer_foreign_keys",
97564     /* ePragTyp:  */ PragTyp_FLAG,
97565     /* ePragFlag: */ 0,
97566     /* iArg:      */ SQLITE_DeferFKs },
97567 #endif
97568 #endif
97569 #if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
97570   { /* zName:     */ "empty_result_callbacks",
97571     /* ePragTyp:  */ PragTyp_FLAG,
97572     /* ePragFlag: */ 0,
97573     /* iArg:      */ SQLITE_NullCallback },
97574 #endif
97575 #if !defined(SQLITE_OMIT_UTF16)
97576   { /* zName:     */ "encoding",
97577     /* ePragTyp:  */ PragTyp_ENCODING,
97578     /* ePragFlag: */ 0,
97579     /* iArg:      */ 0 },
97580 #endif
97581 #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER)
97582   { /* zName:     */ "foreign_key_check",
97583     /* ePragTyp:  */ PragTyp_FOREIGN_KEY_CHECK,
97584     /* ePragFlag: */ PragFlag_NeedSchema,
97585     /* iArg:      */ 0 },
97586 #endif
97587 #if !defined(SQLITE_OMIT_FOREIGN_KEY)
97588   { /* zName:     */ "foreign_key_list",
97589     /* ePragTyp:  */ PragTyp_FOREIGN_KEY_LIST,
97590     /* ePragFlag: */ PragFlag_NeedSchema,
97591     /* iArg:      */ 0 },
97592 #endif
97593 #if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
97594 #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER)
97595   { /* zName:     */ "foreign_keys",
97596     /* ePragTyp:  */ PragTyp_FLAG,
97597     /* ePragFlag: */ 0,
97598     /* iArg:      */ SQLITE_ForeignKeys },
97599 #endif
97600 #endif
97601 #if !defined(SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS)
97602   { /* zName:     */ "freelist_count",
97603     /* ePragTyp:  */ PragTyp_HEADER_VALUE,
97604     /* ePragFlag: */ 0,
97605     /* iArg:      */ 0 },
97606 #endif
97607 #if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
97608   { /* zName:     */ "full_column_names",
97609     /* ePragTyp:  */ PragTyp_FLAG,
97610     /* ePragFlag: */ 0,
97611     /* iArg:      */ SQLITE_FullColNames },
97612   { /* zName:     */ "fullfsync",
97613     /* ePragTyp:  */ PragTyp_FLAG,
97614     /* ePragFlag: */ 0,
97615     /* iArg:      */ SQLITE_FullFSync },
97616 #endif
97617 #if defined(SQLITE_HAS_CODEC)
97618   { /* zName:     */ "hexkey",
97619     /* ePragTyp:  */ PragTyp_HEXKEY,
97620     /* ePragFlag: */ 0,
97621     /* iArg:      */ 0 },
97622   { /* zName:     */ "hexrekey",
97623     /* ePragTyp:  */ PragTyp_HEXKEY,
97624     /* ePragFlag: */ 0,
97625     /* iArg:      */ 0 },
97626 #endif
97627 #if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
97628 #if !defined(SQLITE_OMIT_CHECK)
97629   { /* zName:     */ "ignore_check_constraints",
97630     /* ePragTyp:  */ PragTyp_FLAG,
97631     /* ePragFlag: */ 0,
97632     /* iArg:      */ SQLITE_IgnoreChecks },
97633 #endif
97634 #endif
97635 #if !defined(SQLITE_OMIT_AUTOVACUUM)
97636   { /* zName:     */ "incremental_vacuum",
97637     /* ePragTyp:  */ PragTyp_INCREMENTAL_VACUUM,
97638     /* ePragFlag: */ PragFlag_NeedSchema,
97639     /* iArg:      */ 0 },
97640 #endif
97641 #if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS)
97642   { /* zName:     */ "index_info",
97643     /* ePragTyp:  */ PragTyp_INDEX_INFO,
97644     /* ePragFlag: */ PragFlag_NeedSchema,
97645     /* iArg:      */ 0 },
97646   { /* zName:     */ "index_list",
97647     /* ePragTyp:  */ PragTyp_INDEX_LIST,
97648     /* ePragFlag: */ PragFlag_NeedSchema,
97649     /* iArg:      */ 0 },
97650 #endif
97651 #if !defined(SQLITE_OMIT_INTEGRITY_CHECK)
97652   { /* zName:     */ "integrity_check",
97653     /* ePragTyp:  */ PragTyp_INTEGRITY_CHECK,
97654     /* ePragFlag: */ PragFlag_NeedSchema,
97655     /* iArg:      */ 0 },
97656 #endif
97657 #if !defined(SQLITE_OMIT_PAGER_PRAGMAS)
97658   { /* zName:     */ "journal_mode",
97659     /* ePragTyp:  */ PragTyp_JOURNAL_MODE,
97660     /* ePragFlag: */ PragFlag_NeedSchema,
97661     /* iArg:      */ 0 },
97662   { /* zName:     */ "journal_size_limit",
97663     /* ePragTyp:  */ PragTyp_JOURNAL_SIZE_LIMIT,
97664     /* ePragFlag: */ 0,
97665     /* iArg:      */ 0 },
97666 #endif
97667 #if defined(SQLITE_HAS_CODEC)
97668   { /* zName:     */ "key",
97669     /* ePragTyp:  */ PragTyp_KEY,
97670     /* ePragFlag: */ 0,
97671     /* iArg:      */ 0 },
97672 #endif
97673 #if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
97674   { /* zName:     */ "legacy_file_format",
97675     /* ePragTyp:  */ PragTyp_FLAG,
97676     /* ePragFlag: */ 0,
97677     /* iArg:      */ SQLITE_LegacyFileFmt },
97678 #endif
97679 #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) && SQLITE_ENABLE_LOCKING_STYLE
97680   { /* zName:     */ "lock_proxy_file",
97681     /* ePragTyp:  */ PragTyp_LOCK_PROXY_FILE,
97682     /* ePragFlag: */ 0,
97683     /* iArg:      */ 0 },
97684 #endif
97685 #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
97686   { /* zName:     */ "lock_status",
97687     /* ePragTyp:  */ PragTyp_LOCK_STATUS,
97688     /* ePragFlag: */ 0,
97689     /* iArg:      */ 0 },
97690 #endif
97691 #if !defined(SQLITE_OMIT_PAGER_PRAGMAS)
97692   { /* zName:     */ "locking_mode",
97693     /* ePragTyp:  */ PragTyp_LOCKING_MODE,
97694     /* ePragFlag: */ 0,
97695     /* iArg:      */ 0 },
97696   { /* zName:     */ "max_page_count",
97697     /* ePragTyp:  */ PragTyp_PAGE_COUNT,
97698     /* ePragFlag: */ PragFlag_NeedSchema,
97699     /* iArg:      */ 0 },
97700   { /* zName:     */ "mmap_size",
97701     /* ePragTyp:  */ PragTyp_MMAP_SIZE,
97702     /* ePragFlag: */ 0,
97703     /* iArg:      */ 0 },
97704   { /* zName:     */ "page_count",
97705     /* ePragTyp:  */ PragTyp_PAGE_COUNT,
97706     /* ePragFlag: */ PragFlag_NeedSchema,
97707     /* iArg:      */ 0 },
97708   { /* zName:     */ "page_size",
97709     /* ePragTyp:  */ PragTyp_PAGE_SIZE,
97710     /* ePragFlag: */ 0,
97711     /* iArg:      */ 0 },
97712 #endif
97713 #if defined(SQLITE_DEBUG)
97714   { /* zName:     */ "parser_trace",
97715     /* ePragTyp:  */ PragTyp_PARSER_TRACE,
97716     /* ePragFlag: */ 0,
97717     /* iArg:      */ 0 },
97718 #endif
97719 #if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
97720   { /* zName:     */ "query_only",
97721     /* ePragTyp:  */ PragTyp_FLAG,
97722     /* ePragFlag: */ 0,
97723     /* iArg:      */ SQLITE_QueryOnly },
97724 #endif
97725 #if !defined(SQLITE_OMIT_INTEGRITY_CHECK)
97726   { /* zName:     */ "quick_check",
97727     /* ePragTyp:  */ PragTyp_INTEGRITY_CHECK,
97728     /* ePragFlag: */ PragFlag_NeedSchema,
97729     /* iArg:      */ 0 },
97730 #endif
97731 #if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
97732   { /* zName:     */ "read_uncommitted",
97733     /* ePragTyp:  */ PragTyp_FLAG,
97734     /* ePragFlag: */ 0,
97735     /* iArg:      */ SQLITE_ReadUncommitted },
97736   { /* zName:     */ "recursive_triggers",
97737     /* ePragTyp:  */ PragTyp_FLAG,
97738     /* ePragFlag: */ 0,
97739     /* iArg:      */ SQLITE_RecTriggers },
97740 #endif
97741 #if defined(SQLITE_HAS_CODEC)
97742   { /* zName:     */ "rekey",
97743     /* ePragTyp:  */ PragTyp_REKEY,
97744     /* ePragFlag: */ 0,
97745     /* iArg:      */ 0 },
97746 #endif
97747 #if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
97748   { /* zName:     */ "reverse_unordered_selects",
97749     /* ePragTyp:  */ PragTyp_FLAG,
97750     /* ePragFlag: */ 0,
97751     /* iArg:      */ SQLITE_ReverseOrder },
97752 #endif
97753 #if !defined(SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS)
97754   { /* zName:     */ "schema_version",
97755     /* ePragTyp:  */ PragTyp_HEADER_VALUE,
97756     /* ePragFlag: */ 0,
97757     /* iArg:      */ 0 },
97758 #endif
97759 #if !defined(SQLITE_OMIT_PAGER_PRAGMAS)
97760   { /* zName:     */ "secure_delete",
97761     /* ePragTyp:  */ PragTyp_SECURE_DELETE,
97762     /* ePragFlag: */ 0,
97763     /* iArg:      */ 0 },
97764 #endif
97765 #if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
97766   { /* zName:     */ "short_column_names",
97767     /* ePragTyp:  */ PragTyp_FLAG,
97768     /* ePragFlag: */ 0,
97769     /* iArg:      */ SQLITE_ShortColNames },
97770 #endif
97771   { /* zName:     */ "shrink_memory",
97772     /* ePragTyp:  */ PragTyp_SHRINK_MEMORY,
97773     /* ePragFlag: */ 0,
97774     /* iArg:      */ 0 },
97775   { /* zName:     */ "soft_heap_limit",
97776     /* ePragTyp:  */ PragTyp_SOFT_HEAP_LIMIT,
97777     /* ePragFlag: */ 0,
97778     /* iArg:      */ 0 },
97779 #if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
97780 #if defined(SQLITE_DEBUG)
97781   { /* zName:     */ "sql_trace",
97782     /* ePragTyp:  */ PragTyp_FLAG,
97783     /* ePragFlag: */ 0,
97784     /* iArg:      */ SQLITE_SqlTrace },
97785 #endif
97786 #endif
97787 #if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS)
97788   { /* zName:     */ "stats",
97789     /* ePragTyp:  */ PragTyp_STATS,
97790     /* ePragFlag: */ PragFlag_NeedSchema,
97791     /* iArg:      */ 0 },
97792 #endif
97793 #if !defined(SQLITE_OMIT_PAGER_PRAGMAS)
97794   { /* zName:     */ "synchronous",
97795     /* ePragTyp:  */ PragTyp_SYNCHRONOUS,
97796     /* ePragFlag: */ PragFlag_NeedSchema,
97797     /* iArg:      */ 0 },
97798 #endif
97799 #if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS)
97800   { /* zName:     */ "table_info",
97801     /* ePragTyp:  */ PragTyp_TABLE_INFO,
97802     /* ePragFlag: */ PragFlag_NeedSchema,
97803     /* iArg:      */ 0 },
97804 #endif
97805 #if !defined(SQLITE_OMIT_PAGER_PRAGMAS)
97806   { /* zName:     */ "temp_store",
97807     /* ePragTyp:  */ PragTyp_TEMP_STORE,
97808     /* ePragFlag: */ 0,
97809     /* iArg:      */ 0 },
97810   { /* zName:     */ "temp_store_directory",
97811     /* ePragTyp:  */ PragTyp_TEMP_STORE_DIRECTORY,
97812     /* ePragFlag: */ 0,
97813     /* iArg:      */ 0 },
97814 #endif
97815 #if !defined(SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS)
97816   { /* zName:     */ "user_version",
97817     /* ePragTyp:  */ PragTyp_HEADER_VALUE,
97818     /* ePragFlag: */ 0,
97819     /* iArg:      */ 0 },
97820 #endif
97821 #if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
97822 #if defined(SQLITE_DEBUG)
97823   { /* zName:     */ "vdbe_addoptrace",
97824     /* ePragTyp:  */ PragTyp_FLAG,
97825     /* ePragFlag: */ 0,
97826     /* iArg:      */ SQLITE_VdbeAddopTrace },
97827   { /* zName:     */ "vdbe_debug",
97828     /* ePragTyp:  */ PragTyp_FLAG,
97829     /* ePragFlag: */ 0,
97830     /* iArg:      */ SQLITE_SqlTrace|SQLITE_VdbeListing|SQLITE_VdbeTrace },
97831   { /* zName:     */ "vdbe_eqp",
97832     /* ePragTyp:  */ PragTyp_FLAG,
97833     /* ePragFlag: */ 0,
97834     /* iArg:      */ SQLITE_VdbeEQP },
97835   { /* zName:     */ "vdbe_listing",
97836     /* ePragTyp:  */ PragTyp_FLAG,
97837     /* ePragFlag: */ 0,
97838     /* iArg:      */ SQLITE_VdbeListing },
97839   { /* zName:     */ "vdbe_trace",
97840     /* ePragTyp:  */ PragTyp_FLAG,
97841     /* ePragFlag: */ 0,
97842     /* iArg:      */ SQLITE_VdbeTrace },
97843 #endif
97844 #endif
97845 #if !defined(SQLITE_OMIT_WAL)
97846   { /* zName:     */ "wal_autocheckpoint",
97847     /* ePragTyp:  */ PragTyp_WAL_AUTOCHECKPOINT,
97848     /* ePragFlag: */ 0,
97849     /* iArg:      */ 0 },
97850   { /* zName:     */ "wal_checkpoint",
97851     /* ePragTyp:  */ PragTyp_WAL_CHECKPOINT,
97852     /* ePragFlag: */ PragFlag_NeedSchema,
97853     /* iArg:      */ 0 },
97854 #endif
97855 #if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
97856   { /* zName:     */ "writable_schema",
97857     /* ePragTyp:  */ PragTyp_FLAG,
97858     /* ePragFlag: */ 0,
97859     /* iArg:      */ SQLITE_WriteSchema|SQLITE_RecoveryMode },
97860 #endif
97861 };
97862 /* Number of pragmas: 56 on by default, 69 total. */
97863 /* End of the automatically generated pragma table.
97864 ***************************************************************************/
97865 
97866 /*
97867 ** Interpret the given string as a safety level.  Return 0 for OFF,
97868 ** 1 for ON or NORMAL and 2 for FULL.  Return 1 for an empty or
97869 ** unrecognized string argument.  The FULL option is disallowed
97870 ** if the omitFull parameter it 1.
97871 **
97872 ** Note that the values returned are one less that the values that
97873 ** should be passed into sqlite3BtreeSetSafetyLevel().  The is done
97874 ** to support legacy SQL code.  The safety level used to be boolean
97875 ** and older scripts may have used numbers 0 for OFF and 1 for ON.
97876 */
97877 static u8 getSafetyLevel(const char *z, int omitFull, int dflt){
97878                              /* 123456789 123456789 */
97879   static const char zText[] = "onoffalseyestruefull";
97880   static const u8 iOffset[] = {0, 1, 2, 4, 9, 12, 16};
97881   static const u8 iLength[] = {2, 2, 3, 5, 3, 4, 4};
97882   static const u8 iValue[] =  {1, 0, 0, 0, 1, 1, 2};
97883   int i, n;
97884   if( sqlite3Isdigit(*z) ){
97885     return (u8)sqlite3Atoi(z);
97886   }
97887   n = sqlite3Strlen30(z);
97888   for(i=0; i<ArraySize(iLength)-omitFull; i++){
97889     if( iLength[i]==n && sqlite3StrNICmp(&zText[iOffset[i]],z,n)==0 ){
97890       return iValue[i];
97891     }
97892   }
97893   return dflt;
97894 }
97895 
97896 /*
97897 ** Interpret the given string as a boolean value.
97898 */
97899 SQLITE_PRIVATE u8 sqlite3GetBoolean(const char *z, int dflt){
97900   return getSafetyLevel(z,1,dflt)!=0;
97901 }
97902 
97903 /* The sqlite3GetBoolean() function is used by other modules but the
97904 ** remainder of this file is specific to PRAGMA processing.  So omit
97905 ** the rest of the file if PRAGMAs are omitted from the build.
97906 */
97907 #if !defined(SQLITE_OMIT_PRAGMA)
97908 
97909 /*
97910 ** Interpret the given string as a locking mode value.
97911 */
97912 static int getLockingMode(const char *z){
97913   if( z ){
97914     if( 0==sqlite3StrICmp(z, "exclusive") ) return PAGER_LOCKINGMODE_EXCLUSIVE;
97915     if( 0==sqlite3StrICmp(z, "normal") ) return PAGER_LOCKINGMODE_NORMAL;
97916   }
97917   return PAGER_LOCKINGMODE_QUERY;
97918 }
97919 
97920 #ifndef SQLITE_OMIT_AUTOVACUUM
97921 /*
97922 ** Interpret the given string as an auto-vacuum mode value.
97923 **
97924 ** The following strings, "none", "full" and "incremental" are
97925 ** acceptable, as are their numeric equivalents: 0, 1 and 2 respectively.
97926 */
97927 static int getAutoVacuum(const char *z){
97928   int i;
97929   if( 0==sqlite3StrICmp(z, "none") ) return BTREE_AUTOVACUUM_NONE;
97930   if( 0==sqlite3StrICmp(z, "full") ) return BTREE_AUTOVACUUM_FULL;
97931   if( 0==sqlite3StrICmp(z, "incremental") ) return BTREE_AUTOVACUUM_INCR;
97932   i = sqlite3Atoi(z);
97933   return (u8)((i>=0&&i<=2)?i:0);
97934 }
97935 #endif /* ifndef SQLITE_OMIT_AUTOVACUUM */
97936 
97937 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
97938 /*
97939 ** Interpret the given string as a temp db location. Return 1 for file
97940 ** backed temporary databases, 2 for the Red-Black tree in memory database
97941 ** and 0 to use the compile-time default.
97942 */
97943 static int getTempStore(const char *z){
97944   if( z[0]>='0' && z[0]<='2' ){
97945     return z[0] - '0';
97946   }else if( sqlite3StrICmp(z, "file")==0 ){
97947     return 1;
97948   }else if( sqlite3StrICmp(z, "memory")==0 ){
97949     return 2;
97950   }else{
97951     return 0;
97952   }
97953 }
97954 #endif /* SQLITE_PAGER_PRAGMAS */
97955 
97956 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
97957 /*
97958 ** Invalidate temp storage, either when the temp storage is changed
97959 ** from default, or when 'file' and the temp_store_directory has changed
97960 */
97961 static int invalidateTempStorage(Parse *pParse){
97962   sqlite3 *db = pParse->db;
97963   if( db->aDb[1].pBt!=0 ){
97964     if( !db->autoCommit || sqlite3BtreeIsInReadTrans(db->aDb[1].pBt) ){
97965       sqlite3ErrorMsg(pParse, "temporary storage cannot be changed "
97966         "from within a transaction");
97967       return SQLITE_ERROR;
97968     }
97969     sqlite3BtreeClose(db->aDb[1].pBt);
97970     db->aDb[1].pBt = 0;
97971     sqlite3ResetAllSchemasOfConnection(db);
97972   }
97973   return SQLITE_OK;
97974 }
97975 #endif /* SQLITE_PAGER_PRAGMAS */
97976 
97977 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
97978 /*
97979 ** If the TEMP database is open, close it and mark the database schema
97980 ** as needing reloading.  This must be done when using the SQLITE_TEMP_STORE
97981 ** or DEFAULT_TEMP_STORE pragmas.
97982 */
97983 static int changeTempStorage(Parse *pParse, const char *zStorageType){
97984   int ts = getTempStore(zStorageType);
97985   sqlite3 *db = pParse->db;
97986   if( db->temp_store==ts ) return SQLITE_OK;
97987   if( invalidateTempStorage( pParse ) != SQLITE_OK ){
97988     return SQLITE_ERROR;
97989   }
97990   db->temp_store = (u8)ts;
97991   return SQLITE_OK;
97992 }
97993 #endif /* SQLITE_PAGER_PRAGMAS */
97994 
97995 /*
97996 ** Generate code to return a single integer value.
97997 */
97998 static void returnSingleInt(Parse *pParse, const char *zLabel, i64 value){
97999   Vdbe *v = sqlite3GetVdbe(pParse);
98000   int mem = ++pParse->nMem;
98001   i64 *pI64 = sqlite3DbMallocRaw(pParse->db, sizeof(value));
98002   if( pI64 ){
98003     memcpy(pI64, &value, sizeof(value));
98004   }
98005   sqlite3VdbeAddOp4(v, OP_Int64, 0, mem, 0, (char*)pI64, P4_INT64);
98006   sqlite3VdbeSetNumCols(v, 1);
98007   sqlite3VdbeSetColName(v, 0, COLNAME_NAME, zLabel, SQLITE_STATIC);
98008   sqlite3VdbeAddOp2(v, OP_ResultRow, mem, 1);
98009 }
98010 
98011 
98012 /*
98013 ** Set the safety_level and pager flags for pager iDb.  Or if iDb<0
98014 ** set these values for all pagers.
98015 */
98016 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
98017 static void setAllPagerFlags(sqlite3 *db){
98018   if( db->autoCommit ){
98019     Db *pDb = db->aDb;
98020     int n = db->nDb;
98021     assert( SQLITE_FullFSync==PAGER_FULLFSYNC );
98022     assert( SQLITE_CkptFullFSync==PAGER_CKPT_FULLFSYNC );
98023     assert( SQLITE_CacheSpill==PAGER_CACHESPILL );
98024     assert( (PAGER_FULLFSYNC | PAGER_CKPT_FULLFSYNC | PAGER_CACHESPILL)
98025              ==  PAGER_FLAGS_MASK );
98026     assert( (pDb->safety_level & PAGER_SYNCHRONOUS_MASK)==pDb->safety_level );
98027     while( (n--) > 0 ){
98028       if( pDb->pBt ){
98029         sqlite3BtreeSetPagerFlags(pDb->pBt,
98030                  pDb->safety_level | (db->flags & PAGER_FLAGS_MASK) );
98031       }
98032       pDb++;
98033     }
98034   }
98035 }
98036 #else
98037 # define setAllPagerFlags(X)  /* no-op */
98038 #endif
98039 
98040 
98041 /*
98042 ** Return a human-readable name for a constraint resolution action.
98043 */
98044 #ifndef SQLITE_OMIT_FOREIGN_KEY
98045 static const char *actionName(u8 action){
98046   const char *zName;
98047   switch( action ){
98048     case OE_SetNull:  zName = "SET NULL";        break;
98049     case OE_SetDflt:  zName = "SET DEFAULT";     break;
98050     case OE_Cascade:  zName = "CASCADE";         break;
98051     case OE_Restrict: zName = "RESTRICT";        break;
98052     default:          zName = "NO ACTION";
98053                       assert( action==OE_None ); break;
98054   }
98055   return zName;
98056 }
98057 #endif
98058 
98059 
98060 /*
98061 ** Parameter eMode must be one of the PAGER_JOURNALMODE_XXX constants
98062 ** defined in pager.h. This function returns the associated lowercase
98063 ** journal-mode name.
98064 */
98065 SQLITE_PRIVATE const char *sqlite3JournalModename(int eMode){
98066   static char * const azModeName[] = {
98067     "delete", "persist", "off", "truncate", "memory"
98068 #ifndef SQLITE_OMIT_WAL
98069      , "wal"
98070 #endif
98071   };
98072   assert( PAGER_JOURNALMODE_DELETE==0 );
98073   assert( PAGER_JOURNALMODE_PERSIST==1 );
98074   assert( PAGER_JOURNALMODE_OFF==2 );
98075   assert( PAGER_JOURNALMODE_TRUNCATE==3 );
98076   assert( PAGER_JOURNALMODE_MEMORY==4 );
98077   assert( PAGER_JOURNALMODE_WAL==5 );
98078   assert( eMode>=0 && eMode<=ArraySize(azModeName) );
98079 
98080   if( eMode==ArraySize(azModeName) ) return 0;
98081   return azModeName[eMode];
98082 }
98083 
98084 /*
98085 ** Process a pragma statement.
98086 **
98087 ** Pragmas are of this form:
98088 **
98089 **      PRAGMA [database.]id [= value]
98090 **
98091 ** The identifier might also be a string.  The value is a string, and
98092 ** identifier, or a number.  If minusFlag is true, then the value is
98093 ** a number that was preceded by a minus sign.
98094 **
98095 ** If the left side is "database.id" then pId1 is the database name
98096 ** and pId2 is the id.  If the left side is just "id" then pId1 is the
98097 ** id and pId2 is any empty string.
98098 */
98099 SQLITE_PRIVATE void sqlite3Pragma(
98100   Parse *pParse,
98101   Token *pId1,        /* First part of [database.]id field */
98102   Token *pId2,        /* Second part of [database.]id field, or NULL */
98103   Token *pValue,      /* Token for <value>, or NULL */
98104   int minusFlag       /* True if a '-' sign preceded <value> */
98105 ){
98106   char *zLeft = 0;       /* Nul-terminated UTF-8 string <id> */
98107   char *zRight = 0;      /* Nul-terminated UTF-8 string <value>, or NULL */
98108   const char *zDb = 0;   /* The database name */
98109   Token *pId;            /* Pointer to <id> token */
98110   char *aFcntl[4];       /* Argument to SQLITE_FCNTL_PRAGMA */
98111   int iDb;               /* Database index for <database> */
98112   int lwr, upr, mid;           /* Binary search bounds */
98113   int rc;                      /* return value form SQLITE_FCNTL_PRAGMA */
98114   sqlite3 *db = pParse->db;    /* The database connection */
98115   Db *pDb;                     /* The specific database being pragmaed */
98116   Vdbe *v = sqlite3GetVdbe(pParse);  /* Prepared statement */
98117 
98118   if( v==0 ) return;
98119   sqlite3VdbeRunOnlyOnce(v);
98120   pParse->nMem = 2;
98121 
98122   /* Interpret the [database.] part of the pragma statement. iDb is the
98123   ** index of the database this pragma is being applied to in db.aDb[]. */
98124   iDb = sqlite3TwoPartName(pParse, pId1, pId2, &pId);
98125   if( iDb<0 ) return;
98126   pDb = &db->aDb[iDb];
98127 
98128   /* If the temp database has been explicitly named as part of the
98129   ** pragma, make sure it is open.
98130   */
98131   if( iDb==1 && sqlite3OpenTempDatabase(pParse) ){
98132     return;
98133   }
98134 
98135   zLeft = sqlite3NameFromToken(db, pId);
98136   if( !zLeft ) return;
98137   if( minusFlag ){
98138     zRight = sqlite3MPrintf(db, "-%T", pValue);
98139   }else{
98140     zRight = sqlite3NameFromToken(db, pValue);
98141   }
98142 
98143   assert( pId2 );
98144   zDb = pId2->n>0 ? pDb->zName : 0;
98145   if( sqlite3AuthCheck(pParse, SQLITE_PRAGMA, zLeft, zRight, zDb) ){
98146     goto pragma_out;
98147   }
98148 
98149   /* Send an SQLITE_FCNTL_PRAGMA file-control to the underlying VFS
98150   ** connection.  If it returns SQLITE_OK, then assume that the VFS
98151   ** handled the pragma and generate a no-op prepared statement.
98152   */
98153   aFcntl[0] = 0;
98154   aFcntl[1] = zLeft;
98155   aFcntl[2] = zRight;
98156   aFcntl[3] = 0;
98157   db->busyHandler.nBusy = 0;
98158   rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_PRAGMA, (void*)aFcntl);
98159   if( rc==SQLITE_OK ){
98160     if( aFcntl[0] ){
98161       int mem = ++pParse->nMem;
98162       sqlite3VdbeAddOp4(v, OP_String8, 0, mem, 0, aFcntl[0], 0);
98163       sqlite3VdbeSetNumCols(v, 1);
98164       sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "result", SQLITE_STATIC);
98165       sqlite3VdbeAddOp2(v, OP_ResultRow, mem, 1);
98166       sqlite3_free(aFcntl[0]);
98167     }
98168     goto pragma_out;
98169   }
98170   if( rc!=SQLITE_NOTFOUND ){
98171     if( aFcntl[0] ){
98172       sqlite3ErrorMsg(pParse, "%s", aFcntl[0]);
98173       sqlite3_free(aFcntl[0]);
98174     }
98175     pParse->nErr++;
98176     pParse->rc = rc;
98177     goto pragma_out;
98178   }
98179 
98180   /* Locate the pragma in the lookup table */
98181   lwr = 0;
98182   upr = ArraySize(aPragmaNames)-1;
98183   while( lwr<=upr ){
98184     mid = (lwr+upr)/2;
98185     rc = sqlite3_stricmp(zLeft, aPragmaNames[mid].zName);
98186     if( rc==0 ) break;
98187     if( rc<0 ){
98188       upr = mid - 1;
98189     }else{
98190       lwr = mid + 1;
98191     }
98192   }
98193   if( lwr>upr ) goto pragma_out;
98194 
98195   /* Make sure the database schema is loaded if the pragma requires that */
98196   if( (aPragmaNames[mid].mPragFlag & PragFlag_NeedSchema)!=0 ){
98197     if( sqlite3ReadSchema(pParse) ) goto pragma_out;
98198   }
98199 
98200   /* Jump to the appropriate pragma handler */
98201   switch( aPragmaNames[mid].ePragTyp ){
98202 
98203 #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) && !defined(SQLITE_OMIT_DEPRECATED)
98204   /*
98205   **  PRAGMA [database.]default_cache_size
98206   **  PRAGMA [database.]default_cache_size=N
98207   **
98208   ** The first form reports the current persistent setting for the
98209   ** page cache size.  The value returned is the maximum number of
98210   ** pages in the page cache.  The second form sets both the current
98211   ** page cache size value and the persistent page cache size value
98212   ** stored in the database file.
98213   **
98214   ** Older versions of SQLite would set the default cache size to a
98215   ** negative number to indicate synchronous=OFF.  These days, synchronous
98216   ** is always on by default regardless of the sign of the default cache
98217   ** size.  But continue to take the absolute value of the default cache
98218   ** size of historical compatibility.
98219   */
98220   case PragTyp_DEFAULT_CACHE_SIZE: {
98221     static const int iLn = VDBE_OFFSET_LINENO(2);
98222     static const VdbeOpList getCacheSize[] = {
98223       { OP_Transaction, 0, 0,        0},                         /* 0 */
98224       { OP_ReadCookie,  0, 1,        BTREE_DEFAULT_CACHE_SIZE},  /* 1 */
98225       { OP_IfPos,       1, 8,        0},
98226       { OP_Integer,     0, 2,        0},
98227       { OP_Subtract,    1, 2,        1},
98228       { OP_IfPos,       1, 8,        0},
98229       { OP_Integer,     0, 1,        0},                         /* 6 */
98230       { OP_Noop,        0, 0,        0},
98231       { OP_ResultRow,   1, 1,        0},
98232     };
98233     int addr;
98234     sqlite3VdbeUsesBtree(v, iDb);
98235     if( !zRight ){
98236       sqlite3VdbeSetNumCols(v, 1);
98237       sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "cache_size", SQLITE_STATIC);
98238       pParse->nMem += 2;
98239       addr = sqlite3VdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize,iLn);
98240       sqlite3VdbeChangeP1(v, addr, iDb);
98241       sqlite3VdbeChangeP1(v, addr+1, iDb);
98242       sqlite3VdbeChangeP1(v, addr+6, SQLITE_DEFAULT_CACHE_SIZE);
98243     }else{
98244       int size = sqlite3AbsInt32(sqlite3Atoi(zRight));
98245       sqlite3BeginWriteOperation(pParse, 0, iDb);
98246       sqlite3VdbeAddOp2(v, OP_Integer, size, 1);
98247       sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_DEFAULT_CACHE_SIZE, 1);
98248       assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
98249       pDb->pSchema->cache_size = size;
98250       sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
98251     }
98252     break;
98253   }
98254 #endif /* !SQLITE_OMIT_PAGER_PRAGMAS && !SQLITE_OMIT_DEPRECATED */
98255 
98256 #if !defined(SQLITE_OMIT_PAGER_PRAGMAS)
98257   /*
98258   **  PRAGMA [database.]page_size
98259   **  PRAGMA [database.]page_size=N
98260   **
98261   ** The first form reports the current setting for the
98262   ** database page size in bytes.  The second form sets the
98263   ** database page size value.  The value can only be set if
98264   ** the database has not yet been created.
98265   */
98266   case PragTyp_PAGE_SIZE: {
98267     Btree *pBt = pDb->pBt;
98268     assert( pBt!=0 );
98269     if( !zRight ){
98270       int size = ALWAYS(pBt) ? sqlite3BtreeGetPageSize(pBt) : 0;
98271       returnSingleInt(pParse, "page_size", size);
98272     }else{
98273       /* Malloc may fail when setting the page-size, as there is an internal
98274       ** buffer that the pager module resizes using sqlite3_realloc().
98275       */
98276       db->nextPagesize = sqlite3Atoi(zRight);
98277       if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize,-1,0) ){
98278         db->mallocFailed = 1;
98279       }
98280     }
98281     break;
98282   }
98283 
98284   /*
98285   **  PRAGMA [database.]secure_delete
98286   **  PRAGMA [database.]secure_delete=ON/OFF
98287   **
98288   ** The first form reports the current setting for the
98289   ** secure_delete flag.  The second form changes the secure_delete
98290   ** flag setting and reports thenew value.
98291   */
98292   case PragTyp_SECURE_DELETE: {
98293     Btree *pBt = pDb->pBt;
98294     int b = -1;
98295     assert( pBt!=0 );
98296     if( zRight ){
98297       b = sqlite3GetBoolean(zRight, 0);
98298     }
98299     if( pId2->n==0 && b>=0 ){
98300       int ii;
98301       for(ii=0; ii<db->nDb; ii++){
98302         sqlite3BtreeSecureDelete(db->aDb[ii].pBt, b);
98303       }
98304     }
98305     b = sqlite3BtreeSecureDelete(pBt, b);
98306     returnSingleInt(pParse, "secure_delete", b);
98307     break;
98308   }
98309 
98310   /*
98311   **  PRAGMA [database.]max_page_count
98312   **  PRAGMA [database.]max_page_count=N
98313   **
98314   ** The first form reports the current setting for the
98315   ** maximum number of pages in the database file.  The
98316   ** second form attempts to change this setting.  Both
98317   ** forms return the current setting.
98318   **
98319   ** The absolute value of N is used.  This is undocumented and might
98320   ** change.  The only purpose is to provide an easy way to test
98321   ** the sqlite3AbsInt32() function.
98322   **
98323   **  PRAGMA [database.]page_count
98324   **
98325   ** Return the number of pages in the specified database.
98326   */
98327   case PragTyp_PAGE_COUNT: {
98328     int iReg;
98329     sqlite3CodeVerifySchema(pParse, iDb);
98330     iReg = ++pParse->nMem;
98331     if( sqlite3Tolower(zLeft[0])=='p' ){
98332       sqlite3VdbeAddOp2(v, OP_Pagecount, iDb, iReg);
98333     }else{
98334       sqlite3VdbeAddOp3(v, OP_MaxPgcnt, iDb, iReg,
98335                         sqlite3AbsInt32(sqlite3Atoi(zRight)));
98336     }
98337     sqlite3VdbeAddOp2(v, OP_ResultRow, iReg, 1);
98338     sqlite3VdbeSetNumCols(v, 1);
98339     sqlite3VdbeSetColName(v, 0, COLNAME_NAME, zLeft, SQLITE_TRANSIENT);
98340     break;
98341   }
98342 
98343   /*
98344   **  PRAGMA [database.]locking_mode
98345   **  PRAGMA [database.]locking_mode = (normal|exclusive)
98346   */
98347   case PragTyp_LOCKING_MODE: {
98348     const char *zRet = "normal";
98349     int eMode = getLockingMode(zRight);
98350 
98351     if( pId2->n==0 && eMode==PAGER_LOCKINGMODE_QUERY ){
98352       /* Simple "PRAGMA locking_mode;" statement. This is a query for
98353       ** the current default locking mode (which may be different to
98354       ** the locking-mode of the main database).
98355       */
98356       eMode = db->dfltLockMode;
98357     }else{
98358       Pager *pPager;
98359       if( pId2->n==0 ){
98360         /* This indicates that no database name was specified as part
98361         ** of the PRAGMA command. In this case the locking-mode must be
98362         ** set on all attached databases, as well as the main db file.
98363         **
98364         ** Also, the sqlite3.dfltLockMode variable is set so that
98365         ** any subsequently attached databases also use the specified
98366         ** locking mode.
98367         */
98368         int ii;
98369         assert(pDb==&db->aDb[0]);
98370         for(ii=2; ii<db->nDb; ii++){
98371           pPager = sqlite3BtreePager(db->aDb[ii].pBt);
98372           sqlite3PagerLockingMode(pPager, eMode);
98373         }
98374         db->dfltLockMode = (u8)eMode;
98375       }
98376       pPager = sqlite3BtreePager(pDb->pBt);
98377       eMode = sqlite3PagerLockingMode(pPager, eMode);
98378     }
98379 
98380     assert( eMode==PAGER_LOCKINGMODE_NORMAL
98381             || eMode==PAGER_LOCKINGMODE_EXCLUSIVE );
98382     if( eMode==PAGER_LOCKINGMODE_EXCLUSIVE ){
98383       zRet = "exclusive";
98384     }
98385     sqlite3VdbeSetNumCols(v, 1);
98386     sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "locking_mode", SQLITE_STATIC);
98387     sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, zRet, 0);
98388     sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
98389     break;
98390   }
98391 
98392   /*
98393   **  PRAGMA [database.]journal_mode
98394   **  PRAGMA [database.]journal_mode =
98395   **                      (delete|persist|off|truncate|memory|wal|off)
98396   */
98397   case PragTyp_JOURNAL_MODE: {
98398     int eMode;        /* One of the PAGER_JOURNALMODE_XXX symbols */
98399     int ii;           /* Loop counter */
98400 
98401     sqlite3VdbeSetNumCols(v, 1);
98402     sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "journal_mode", SQLITE_STATIC);
98403 
98404     if( zRight==0 ){
98405       /* If there is no "=MODE" part of the pragma, do a query for the
98406       ** current mode */
98407       eMode = PAGER_JOURNALMODE_QUERY;
98408     }else{
98409       const char *zMode;
98410       int n = sqlite3Strlen30(zRight);
98411       for(eMode=0; (zMode = sqlite3JournalModename(eMode))!=0; eMode++){
98412         if( sqlite3StrNICmp(zRight, zMode, n)==0 ) break;
98413       }
98414       if( !zMode ){
98415         /* If the "=MODE" part does not match any known journal mode,
98416         ** then do a query */
98417         eMode = PAGER_JOURNALMODE_QUERY;
98418       }
98419     }
98420     if( eMode==PAGER_JOURNALMODE_QUERY && pId2->n==0 ){
98421       /* Convert "PRAGMA journal_mode" into "PRAGMA main.journal_mode" */
98422       iDb = 0;
98423       pId2->n = 1;
98424     }
98425     for(ii=db->nDb-1; ii>=0; ii--){
98426       if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){
98427         sqlite3VdbeUsesBtree(v, ii);
98428         sqlite3VdbeAddOp3(v, OP_JournalMode, ii, 1, eMode);
98429       }
98430     }
98431     sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
98432     break;
98433   }
98434 
98435   /*
98436   **  PRAGMA [database.]journal_size_limit
98437   **  PRAGMA [database.]journal_size_limit=N
98438   **
98439   ** Get or set the size limit on rollback journal files.
98440   */
98441   case PragTyp_JOURNAL_SIZE_LIMIT: {
98442     Pager *pPager = sqlite3BtreePager(pDb->pBt);
98443     i64 iLimit = -2;
98444     if( zRight ){
98445       sqlite3Atoi64(zRight, &iLimit, sqlite3Strlen30(zRight), SQLITE_UTF8);
98446       if( iLimit<-1 ) iLimit = -1;
98447     }
98448     iLimit = sqlite3PagerJournalSizeLimit(pPager, iLimit);
98449     returnSingleInt(pParse, "journal_size_limit", iLimit);
98450     break;
98451   }
98452 
98453 #endif /* SQLITE_OMIT_PAGER_PRAGMAS */
98454 
98455   /*
98456   **  PRAGMA [database.]auto_vacuum
98457   **  PRAGMA [database.]auto_vacuum=N
98458   **
98459   ** Get or set the value of the database 'auto-vacuum' parameter.
98460   ** The value is one of:  0 NONE 1 FULL 2 INCREMENTAL
98461   */
98462 #ifndef SQLITE_OMIT_AUTOVACUUM
98463   case PragTyp_AUTO_VACUUM: {
98464     Btree *pBt = pDb->pBt;
98465     assert( pBt!=0 );
98466     if( !zRight ){
98467       returnSingleInt(pParse, "auto_vacuum", sqlite3BtreeGetAutoVacuum(pBt));
98468     }else{
98469       int eAuto = getAutoVacuum(zRight);
98470       assert( eAuto>=0 && eAuto<=2 );
98471       db->nextAutovac = (u8)eAuto;
98472       /* Call SetAutoVacuum() to set initialize the internal auto and
98473       ** incr-vacuum flags. This is required in case this connection
98474       ** creates the database file. It is important that it is created
98475       ** as an auto-vacuum capable db.
98476       */
98477       rc = sqlite3BtreeSetAutoVacuum(pBt, eAuto);
98478       if( rc==SQLITE_OK && (eAuto==1 || eAuto==2) ){
98479         /* When setting the auto_vacuum mode to either "full" or
98480         ** "incremental", write the value of meta[6] in the database
98481         ** file. Before writing to meta[6], check that meta[3] indicates
98482         ** that this really is an auto-vacuum capable database.
98483         */
98484         static const int iLn = VDBE_OFFSET_LINENO(2);
98485         static const VdbeOpList setMeta6[] = {
98486           { OP_Transaction,    0,         1,                 0},    /* 0 */
98487           { OP_ReadCookie,     0,         1,         BTREE_LARGEST_ROOT_PAGE},
98488           { OP_If,             1,         0,                 0},    /* 2 */
98489           { OP_Halt,           SQLITE_OK, OE_Abort,          0},    /* 3 */
98490           { OP_Integer,        0,         1,                 0},    /* 4 */
98491           { OP_SetCookie,      0,         BTREE_INCR_VACUUM, 1},    /* 5 */
98492         };
98493         int iAddr;
98494         iAddr = sqlite3VdbeAddOpList(v, ArraySize(setMeta6), setMeta6, iLn);
98495         sqlite3VdbeChangeP1(v, iAddr, iDb);
98496         sqlite3VdbeChangeP1(v, iAddr+1, iDb);
98497         sqlite3VdbeChangeP2(v, iAddr+2, iAddr+4);
98498         sqlite3VdbeChangeP1(v, iAddr+4, eAuto-1);
98499         sqlite3VdbeChangeP1(v, iAddr+5, iDb);
98500         sqlite3VdbeUsesBtree(v, iDb);
98501       }
98502     }
98503     break;
98504   }
98505 #endif
98506 
98507   /*
98508   **  PRAGMA [database.]incremental_vacuum(N)
98509   **
98510   ** Do N steps of incremental vacuuming on a database.
98511   */
98512 #ifndef SQLITE_OMIT_AUTOVACUUM
98513   case PragTyp_INCREMENTAL_VACUUM: {
98514     int iLimit, addr;
98515     if( zRight==0 || !sqlite3GetInt32(zRight, &iLimit) || iLimit<=0 ){
98516       iLimit = 0x7fffffff;
98517     }
98518     sqlite3BeginWriteOperation(pParse, 0, iDb);
98519     sqlite3VdbeAddOp2(v, OP_Integer, iLimit, 1);
98520     addr = sqlite3VdbeAddOp1(v, OP_IncrVacuum, iDb); VdbeCoverage(v);
98521     sqlite3VdbeAddOp1(v, OP_ResultRow, 1);
98522     sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1);
98523     sqlite3VdbeAddOp2(v, OP_IfPos, 1, addr); VdbeCoverage(v);
98524     sqlite3VdbeJumpHere(v, addr);
98525     break;
98526   }
98527 #endif
98528 
98529 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
98530   /*
98531   **  PRAGMA [database.]cache_size
98532   **  PRAGMA [database.]cache_size=N
98533   **
98534   ** The first form reports the current local setting for the
98535   ** page cache size. The second form sets the local
98536   ** page cache size value.  If N is positive then that is the
98537   ** number of pages in the cache.  If N is negative, then the
98538   ** number of pages is adjusted so that the cache uses -N kibibytes
98539   ** of memory.
98540   */
98541   case PragTyp_CACHE_SIZE: {
98542     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
98543     if( !zRight ){
98544       returnSingleInt(pParse, "cache_size", pDb->pSchema->cache_size);
98545     }else{
98546       int size = sqlite3Atoi(zRight);
98547       pDb->pSchema->cache_size = size;
98548       sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
98549     }
98550     break;
98551   }
98552 
98553   /*
98554   **  PRAGMA [database.]mmap_size(N)
98555   **
98556   ** Used to set mapping size limit. The mapping size limit is
98557   ** used to limit the aggregate size of all memory mapped regions of the
98558   ** database file. If this parameter is set to zero, then memory mapping
98559   ** is not used at all.  If N is negative, then the default memory map
98560   ** limit determined by sqlite3_config(SQLITE_CONFIG_MMAP_SIZE) is set.
98561   ** The parameter N is measured in bytes.
98562   **
98563   ** This value is advisory.  The underlying VFS is free to memory map
98564   ** as little or as much as it wants.  Except, if N is set to 0 then the
98565   ** upper layers will never invoke the xFetch interfaces to the VFS.
98566   */
98567   case PragTyp_MMAP_SIZE: {
98568     sqlite3_int64 sz;
98569 #if SQLITE_MAX_MMAP_SIZE>0
98570     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
98571     if( zRight ){
98572       int ii;
98573       sqlite3Atoi64(zRight, &sz, sqlite3Strlen30(zRight), SQLITE_UTF8);
98574       if( sz<0 ) sz = sqlite3GlobalConfig.szMmap;
98575       if( pId2->n==0 ) db->szMmap = sz;
98576       for(ii=db->nDb-1; ii>=0; ii--){
98577         if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){
98578           sqlite3BtreeSetMmapLimit(db->aDb[ii].pBt, sz);
98579         }
98580       }
98581     }
98582     sz = -1;
98583     rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_MMAP_SIZE, &sz);
98584 #else
98585     sz = 0;
98586     rc = SQLITE_OK;
98587 #endif
98588     if( rc==SQLITE_OK ){
98589       returnSingleInt(pParse, "mmap_size", sz);
98590     }else if( rc!=SQLITE_NOTFOUND ){
98591       pParse->nErr++;
98592       pParse->rc = rc;
98593     }
98594     break;
98595   }
98596 
98597   /*
98598   **   PRAGMA temp_store
98599   **   PRAGMA temp_store = "default"|"memory"|"file"
98600   **
98601   ** Return or set the local value of the temp_store flag.  Changing
98602   ** the local value does not make changes to the disk file and the default
98603   ** value will be restored the next time the database is opened.
98604   **
98605   ** Note that it is possible for the library compile-time options to
98606   ** override this setting
98607   */
98608   case PragTyp_TEMP_STORE: {
98609     if( !zRight ){
98610       returnSingleInt(pParse, "temp_store", db->temp_store);
98611     }else{
98612       changeTempStorage(pParse, zRight);
98613     }
98614     break;
98615   }
98616 
98617   /*
98618   **   PRAGMA temp_store_directory
98619   **   PRAGMA temp_store_directory = ""|"directory_name"
98620   **
98621   ** Return or set the local value of the temp_store_directory flag.  Changing
98622   ** the value sets a specific directory to be used for temporary files.
98623   ** Setting to a null string reverts to the default temporary directory search.
98624   ** If temporary directory is changed, then invalidateTempStorage.
98625   **
98626   */
98627   case PragTyp_TEMP_STORE_DIRECTORY: {
98628     if( !zRight ){
98629       if( sqlite3_temp_directory ){
98630         sqlite3VdbeSetNumCols(v, 1);
98631         sqlite3VdbeSetColName(v, 0, COLNAME_NAME,
98632             "temp_store_directory", SQLITE_STATIC);
98633         sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, sqlite3_temp_directory, 0);
98634         sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
98635       }
98636     }else{
98637 #ifndef SQLITE_OMIT_WSD
98638       if( zRight[0] ){
98639         int res;
98640         rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res);
98641         if( rc!=SQLITE_OK || res==0 ){
98642           sqlite3ErrorMsg(pParse, "not a writable directory");
98643           goto pragma_out;
98644         }
98645       }
98646       if( SQLITE_TEMP_STORE==0
98647        || (SQLITE_TEMP_STORE==1 && db->temp_store<=1)
98648        || (SQLITE_TEMP_STORE==2 && db->temp_store==1)
98649       ){
98650         invalidateTempStorage(pParse);
98651       }
98652       sqlite3_free(sqlite3_temp_directory);
98653       if( zRight[0] ){
98654         sqlite3_temp_directory = sqlite3_mprintf("%s", zRight);
98655       }else{
98656         sqlite3_temp_directory = 0;
98657       }
98658 #endif /* SQLITE_OMIT_WSD */
98659     }
98660     break;
98661   }
98662 
98663 #if SQLITE_OS_WIN
98664   /*
98665   **   PRAGMA data_store_directory
98666   **   PRAGMA data_store_directory = ""|"directory_name"
98667   **
98668   ** Return or set the local value of the data_store_directory flag.  Changing
98669   ** the value sets a specific directory to be used for database files that
98670   ** were specified with a relative pathname.  Setting to a null string reverts
98671   ** to the default database directory, which for database files specified with
98672   ** a relative path will probably be based on the current directory for the
98673   ** process.  Database file specified with an absolute path are not impacted
98674   ** by this setting, regardless of its value.
98675   **
98676   */
98677   case PragTyp_DATA_STORE_DIRECTORY: {
98678     if( !zRight ){
98679       if( sqlite3_data_directory ){
98680         sqlite3VdbeSetNumCols(v, 1);
98681         sqlite3VdbeSetColName(v, 0, COLNAME_NAME,
98682             "data_store_directory", SQLITE_STATIC);
98683         sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, sqlite3_data_directory, 0);
98684         sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
98685       }
98686     }else{
98687 #ifndef SQLITE_OMIT_WSD
98688       if( zRight[0] ){
98689         int res;
98690         rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res);
98691         if( rc!=SQLITE_OK || res==0 ){
98692           sqlite3ErrorMsg(pParse, "not a writable directory");
98693           goto pragma_out;
98694         }
98695       }
98696       sqlite3_free(sqlite3_data_directory);
98697       if( zRight[0] ){
98698         sqlite3_data_directory = sqlite3_mprintf("%s", zRight);
98699       }else{
98700         sqlite3_data_directory = 0;
98701       }
98702 #endif /* SQLITE_OMIT_WSD */
98703     }
98704     break;
98705   }
98706 #endif
98707 
98708 #if SQLITE_ENABLE_LOCKING_STYLE
98709   /*
98710   **   PRAGMA [database.]lock_proxy_file
98711   **   PRAGMA [database.]lock_proxy_file = ":auto:"|"lock_file_path"
98712   **
98713   ** Return or set the value of the lock_proxy_file flag.  Changing
98714   ** the value sets a specific file to be used for database access locks.
98715   **
98716   */
98717   case PragTyp_LOCK_PROXY_FILE: {
98718     if( !zRight ){
98719       Pager *pPager = sqlite3BtreePager(pDb->pBt);
98720       char *proxy_file_path = NULL;
98721       sqlite3_file *pFile = sqlite3PagerFile(pPager);
98722       sqlite3OsFileControlHint(pFile, SQLITE_GET_LOCKPROXYFILE,
98723                            &proxy_file_path);
98724 
98725       if( proxy_file_path ){
98726         sqlite3VdbeSetNumCols(v, 1);
98727         sqlite3VdbeSetColName(v, 0, COLNAME_NAME,
98728                               "lock_proxy_file", SQLITE_STATIC);
98729         sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, proxy_file_path, 0);
98730         sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
98731       }
98732     }else{
98733       Pager *pPager = sqlite3BtreePager(pDb->pBt);
98734       sqlite3_file *pFile = sqlite3PagerFile(pPager);
98735       int res;
98736       if( zRight[0] ){
98737         res=sqlite3OsFileControl(pFile, SQLITE_SET_LOCKPROXYFILE,
98738                                      zRight);
98739       } else {
98740         res=sqlite3OsFileControl(pFile, SQLITE_SET_LOCKPROXYFILE,
98741                                      NULL);
98742       }
98743       if( res!=SQLITE_OK ){
98744         sqlite3ErrorMsg(pParse, "failed to set lock proxy file");
98745         goto pragma_out;
98746       }
98747     }
98748     break;
98749   }
98750 #endif /* SQLITE_ENABLE_LOCKING_STYLE */
98751 
98752   /*
98753   **   PRAGMA [database.]synchronous
98754   **   PRAGMA [database.]synchronous=OFF|ON|NORMAL|FULL
98755   **
98756   ** Return or set the local value of the synchronous flag.  Changing
98757   ** the local value does not make changes to the disk file and the
98758   ** default value will be restored the next time the database is
98759   ** opened.
98760   */
98761   case PragTyp_SYNCHRONOUS: {
98762     if( !zRight ){
98763       returnSingleInt(pParse, "synchronous", pDb->safety_level-1);
98764     }else{
98765       if( !db->autoCommit ){
98766         sqlite3ErrorMsg(pParse,
98767             "Safety level may not be changed inside a transaction");
98768       }else{
98769         pDb->safety_level = getSafetyLevel(zRight,0,1)+1;
98770         setAllPagerFlags(db);
98771       }
98772     }
98773     break;
98774   }
98775 #endif /* SQLITE_OMIT_PAGER_PRAGMAS */
98776 
98777 #ifndef SQLITE_OMIT_FLAG_PRAGMAS
98778   case PragTyp_FLAG: {
98779     if( zRight==0 ){
98780       returnSingleInt(pParse, aPragmaNames[mid].zName,
98781                      (db->flags & aPragmaNames[mid].iArg)!=0 );
98782     }else{
98783       int mask = aPragmaNames[mid].iArg;    /* Mask of bits to set or clear. */
98784       if( db->autoCommit==0 ){
98785         /* Foreign key support may not be enabled or disabled while not
98786         ** in auto-commit mode.  */
98787         mask &= ~(SQLITE_ForeignKeys);
98788       }
98789 
98790       if( sqlite3GetBoolean(zRight, 0) ){
98791         db->flags |= mask;
98792       }else{
98793         db->flags &= ~mask;
98794         if( mask==SQLITE_DeferFKs ) db->nDeferredImmCons = 0;
98795       }
98796 
98797       /* Many of the flag-pragmas modify the code generated by the SQL
98798       ** compiler (eg. count_changes). So add an opcode to expire all
98799       ** compiled SQL statements after modifying a pragma value.
98800       */
98801       sqlite3VdbeAddOp2(v, OP_Expire, 0, 0);
98802       setAllPagerFlags(db);
98803     }
98804     break;
98805   }
98806 #endif /* SQLITE_OMIT_FLAG_PRAGMAS */
98807 
98808 #ifndef SQLITE_OMIT_SCHEMA_PRAGMAS
98809   /*
98810   **   PRAGMA table_info(<table>)
98811   **
98812   ** Return a single row for each column of the named table. The columns of
98813   ** the returned data set are:
98814   **
98815   ** cid:        Column id (numbered from left to right, starting at 0)
98816   ** name:       Column name
98817   ** type:       Column declaration type.
98818   ** notnull:    True if 'NOT NULL' is part of column declaration
98819   ** dflt_value: The default value for the column, if any.
98820   */
98821   case PragTyp_TABLE_INFO: if( zRight ){
98822     Table *pTab;
98823     pTab = sqlite3FindTable(db, zRight, zDb);
98824     if( pTab ){
98825       int i, k;
98826       int nHidden = 0;
98827       Column *pCol;
98828       Index *pPk = sqlite3PrimaryKeyIndex(pTab);
98829       sqlite3VdbeSetNumCols(v, 6);
98830       pParse->nMem = 6;
98831       sqlite3CodeVerifySchema(pParse, iDb);
98832       sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "cid", SQLITE_STATIC);
98833       sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", SQLITE_STATIC);
98834       sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "type", SQLITE_STATIC);
98835       sqlite3VdbeSetColName(v, 3, COLNAME_NAME, "notnull", SQLITE_STATIC);
98836       sqlite3VdbeSetColName(v, 4, COLNAME_NAME, "dflt_value", SQLITE_STATIC);
98837       sqlite3VdbeSetColName(v, 5, COLNAME_NAME, "pk", SQLITE_STATIC);
98838       sqlite3ViewGetColumnNames(pParse, pTab);
98839       for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
98840         if( IsHiddenColumn(pCol) ){
98841           nHidden++;
98842           continue;
98843         }
98844         sqlite3VdbeAddOp2(v, OP_Integer, i-nHidden, 1);
98845         sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, pCol->zName, 0);
98846         sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0,
98847            pCol->zType ? pCol->zType : "", 0);
98848         sqlite3VdbeAddOp2(v, OP_Integer, (pCol->notNull ? 1 : 0), 4);
98849         if( pCol->zDflt ){
98850           sqlite3VdbeAddOp4(v, OP_String8, 0, 5, 0, (char*)pCol->zDflt, 0);
98851         }else{
98852           sqlite3VdbeAddOp2(v, OP_Null, 0, 5);
98853         }
98854         if( (pCol->colFlags & COLFLAG_PRIMKEY)==0 ){
98855           k = 0;
98856         }else if( pPk==0 ){
98857           k = 1;
98858         }else{
98859           for(k=1; ALWAYS(k<=pTab->nCol) && pPk->aiColumn[k-1]!=i; k++){}
98860         }
98861         sqlite3VdbeAddOp2(v, OP_Integer, k, 6);
98862         sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 6);
98863       }
98864     }
98865   }
98866   break;
98867 
98868   case PragTyp_STATS: {
98869     Index *pIdx;
98870     HashElem *i;
98871     v = sqlite3GetVdbe(pParse);
98872     sqlite3VdbeSetNumCols(v, 4);
98873     pParse->nMem = 4;
98874     sqlite3CodeVerifySchema(pParse, iDb);
98875     sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "table", SQLITE_STATIC);
98876     sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "index", SQLITE_STATIC);
98877     sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "width", SQLITE_STATIC);
98878     sqlite3VdbeSetColName(v, 3, COLNAME_NAME, "height", SQLITE_STATIC);
98879     for(i=sqliteHashFirst(&pDb->pSchema->tblHash); i; i=sqliteHashNext(i)){
98880       Table *pTab = sqliteHashData(i);
98881       sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, pTab->zName, 0);
98882       sqlite3VdbeAddOp2(v, OP_Null, 0, 2);
98883       sqlite3VdbeAddOp2(v, OP_Integer,
98884                            (int)sqlite3LogEstToInt(pTab->szTabRow), 3);
98885       sqlite3VdbeAddOp2(v, OP_Integer,
98886           (int)sqlite3LogEstToInt(pTab->nRowLogEst), 4);
98887       sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 4);
98888       for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
98889         sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, pIdx->zName, 0);
98890         sqlite3VdbeAddOp2(v, OP_Integer,
98891                              (int)sqlite3LogEstToInt(pIdx->szIdxRow), 3);
98892         sqlite3VdbeAddOp2(v, OP_Integer,
98893             (int)sqlite3LogEstToInt(pIdx->aiRowLogEst[0]), 4);
98894         sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 4);
98895       }
98896     }
98897   }
98898   break;
98899 
98900   case PragTyp_INDEX_INFO: if( zRight ){
98901     Index *pIdx;
98902     Table *pTab;
98903     pIdx = sqlite3FindIndex(db, zRight, zDb);
98904     if( pIdx ){
98905       int i;
98906       pTab = pIdx->pTable;
98907       sqlite3VdbeSetNumCols(v, 3);
98908       pParse->nMem = 3;
98909       sqlite3CodeVerifySchema(pParse, iDb);
98910       sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seqno", SQLITE_STATIC);
98911       sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "cid", SQLITE_STATIC);
98912       sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "name", SQLITE_STATIC);
98913       for(i=0; i<pIdx->nKeyCol; i++){
98914         i16 cnum = pIdx->aiColumn[i];
98915         sqlite3VdbeAddOp2(v, OP_Integer, i, 1);
98916         sqlite3VdbeAddOp2(v, OP_Integer, cnum, 2);
98917         assert( pTab->nCol>cnum );
98918         sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, pTab->aCol[cnum].zName, 0);
98919         sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3);
98920       }
98921     }
98922   }
98923   break;
98924 
98925   case PragTyp_INDEX_LIST: if( zRight ){
98926     Index *pIdx;
98927     Table *pTab;
98928     int i;
98929     pTab = sqlite3FindTable(db, zRight, zDb);
98930     if( pTab ){
98931       v = sqlite3GetVdbe(pParse);
98932       sqlite3VdbeSetNumCols(v, 3);
98933       pParse->nMem = 3;
98934       sqlite3CodeVerifySchema(pParse, iDb);
98935       sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", SQLITE_STATIC);
98936       sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", SQLITE_STATIC);
98937       sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "unique", SQLITE_STATIC);
98938       for(pIdx=pTab->pIndex, i=0; pIdx; pIdx=pIdx->pNext, i++){
98939         sqlite3VdbeAddOp2(v, OP_Integer, i, 1);
98940         sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, pIdx->zName, 0);
98941         sqlite3VdbeAddOp2(v, OP_Integer, pIdx->onError!=OE_None, 3);
98942         sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3);
98943       }
98944     }
98945   }
98946   break;
98947 
98948   case PragTyp_DATABASE_LIST: {
98949     int i;
98950     sqlite3VdbeSetNumCols(v, 3);
98951     pParse->nMem = 3;
98952     sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", SQLITE_STATIC);
98953     sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", SQLITE_STATIC);
98954     sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "file", SQLITE_STATIC);
98955     for(i=0; i<db->nDb; i++){
98956       if( db->aDb[i].pBt==0 ) continue;
98957       assert( db->aDb[i].zName!=0 );
98958       sqlite3VdbeAddOp2(v, OP_Integer, i, 1);
98959       sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, db->aDb[i].zName, 0);
98960       sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0,
98961            sqlite3BtreeGetFilename(db->aDb[i].pBt), 0);
98962       sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3);
98963     }
98964   }
98965   break;
98966 
98967   case PragTyp_COLLATION_LIST: {
98968     int i = 0;
98969     HashElem *p;
98970     sqlite3VdbeSetNumCols(v, 2);
98971     pParse->nMem = 2;
98972     sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", SQLITE_STATIC);
98973     sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", SQLITE_STATIC);
98974     for(p=sqliteHashFirst(&db->aCollSeq); p; p=sqliteHashNext(p)){
98975       CollSeq *pColl = (CollSeq *)sqliteHashData(p);
98976       sqlite3VdbeAddOp2(v, OP_Integer, i++, 1);
98977       sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, pColl->zName, 0);
98978       sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 2);
98979     }
98980   }
98981   break;
98982 #endif /* SQLITE_OMIT_SCHEMA_PRAGMAS */
98983 
98984 #ifndef SQLITE_OMIT_FOREIGN_KEY
98985   case PragTyp_FOREIGN_KEY_LIST: if( zRight ){
98986     FKey *pFK;
98987     Table *pTab;
98988     pTab = sqlite3FindTable(db, zRight, zDb);
98989     if( pTab ){
98990       v = sqlite3GetVdbe(pParse);
98991       pFK = pTab->pFKey;
98992       if( pFK ){
98993         int i = 0;
98994         sqlite3VdbeSetNumCols(v, 8);
98995         pParse->nMem = 8;
98996         sqlite3CodeVerifySchema(pParse, iDb);
98997         sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "id", SQLITE_STATIC);
98998         sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "seq", SQLITE_STATIC);
98999         sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "table", SQLITE_STATIC);
99000         sqlite3VdbeSetColName(v, 3, COLNAME_NAME, "from", SQLITE_STATIC);
99001         sqlite3VdbeSetColName(v, 4, COLNAME_NAME, "to", SQLITE_STATIC);
99002         sqlite3VdbeSetColName(v, 5, COLNAME_NAME, "on_update", SQLITE_STATIC);
99003         sqlite3VdbeSetColName(v, 6, COLNAME_NAME, "on_delete", SQLITE_STATIC);
99004         sqlite3VdbeSetColName(v, 7, COLNAME_NAME, "match", SQLITE_STATIC);
99005         while(pFK){
99006           int j;
99007           for(j=0; j<pFK->nCol; j++){
99008             char *zCol = pFK->aCol[j].zCol;
99009             char *zOnDelete = (char *)actionName(pFK->aAction[0]);
99010             char *zOnUpdate = (char *)actionName(pFK->aAction[1]);
99011             sqlite3VdbeAddOp2(v, OP_Integer, i, 1);
99012             sqlite3VdbeAddOp2(v, OP_Integer, j, 2);
99013             sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, pFK->zTo, 0);
99014             sqlite3VdbeAddOp4(v, OP_String8, 0, 4, 0,
99015                               pTab->aCol[pFK->aCol[j].iFrom].zName, 0);
99016             sqlite3VdbeAddOp4(v, zCol ? OP_String8 : OP_Null, 0, 5, 0, zCol, 0);
99017             sqlite3VdbeAddOp4(v, OP_String8, 0, 6, 0, zOnUpdate, 0);
99018             sqlite3VdbeAddOp4(v, OP_String8, 0, 7, 0, zOnDelete, 0);
99019             sqlite3VdbeAddOp4(v, OP_String8, 0, 8, 0, "NONE", 0);
99020             sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 8);
99021           }
99022           ++i;
99023           pFK = pFK->pNextFrom;
99024         }
99025       }
99026     }
99027   }
99028   break;
99029 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
99030 
99031 #ifndef SQLITE_OMIT_FOREIGN_KEY
99032 #ifndef SQLITE_OMIT_TRIGGER
99033   case PragTyp_FOREIGN_KEY_CHECK: {
99034     FKey *pFK;             /* A foreign key constraint */
99035     Table *pTab;           /* Child table contain "REFERENCES" keyword */
99036     Table *pParent;        /* Parent table that child points to */
99037     Index *pIdx;           /* Index in the parent table */
99038     int i;                 /* Loop counter:  Foreign key number for pTab */
99039     int j;                 /* Loop counter:  Field of the foreign key */
99040     HashElem *k;           /* Loop counter:  Next table in schema */
99041     int x;                 /* result variable */
99042     int regResult;         /* 3 registers to hold a result row */
99043     int regKey;            /* Register to hold key for checking the FK */
99044     int regRow;            /* Registers to hold a row from pTab */
99045     int addrTop;           /* Top of a loop checking foreign keys */
99046     int addrOk;            /* Jump here if the key is OK */
99047     int *aiCols;           /* child to parent column mapping */
99048 
99049     regResult = pParse->nMem+1;
99050     pParse->nMem += 4;
99051     regKey = ++pParse->nMem;
99052     regRow = ++pParse->nMem;
99053     v = sqlite3GetVdbe(pParse);
99054     sqlite3VdbeSetNumCols(v, 4);
99055     sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "table", SQLITE_STATIC);
99056     sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "rowid", SQLITE_STATIC);
99057     sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "parent", SQLITE_STATIC);
99058     sqlite3VdbeSetColName(v, 3, COLNAME_NAME, "fkid", SQLITE_STATIC);
99059     sqlite3CodeVerifySchema(pParse, iDb);
99060     k = sqliteHashFirst(&db->aDb[iDb].pSchema->tblHash);
99061     while( k ){
99062       if( zRight ){
99063         pTab = sqlite3LocateTable(pParse, 0, zRight, zDb);
99064         k = 0;
99065       }else{
99066         pTab = (Table*)sqliteHashData(k);
99067         k = sqliteHashNext(k);
99068       }
99069       if( pTab==0 || pTab->pFKey==0 ) continue;
99070       sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
99071       if( pTab->nCol+regRow>pParse->nMem ) pParse->nMem = pTab->nCol + regRow;
99072       sqlite3OpenTable(pParse, 0, iDb, pTab, OP_OpenRead);
99073       sqlite3VdbeAddOp4(v, OP_String8, 0, regResult, 0, pTab->zName,
99074                         P4_TRANSIENT);
99075       for(i=1, pFK=pTab->pFKey; pFK; i++, pFK=pFK->pNextFrom){
99076         pParent = sqlite3FindTable(db, pFK->zTo, zDb);
99077         if( pParent==0 ) continue;
99078         pIdx = 0;
99079         sqlite3TableLock(pParse, iDb, pParent->tnum, 0, pParent->zName);
99080         x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, 0);
99081         if( x==0 ){
99082           if( pIdx==0 ){
99083             sqlite3OpenTable(pParse, i, iDb, pParent, OP_OpenRead);
99084           }else{
99085             sqlite3VdbeAddOp3(v, OP_OpenRead, i, pIdx->tnum, iDb);
99086             sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
99087           }
99088         }else{
99089           k = 0;
99090           break;
99091         }
99092       }
99093       assert( pParse->nErr>0 || pFK==0 );
99094       if( pFK ) break;
99095       if( pParse->nTab<i ) pParse->nTab = i;
99096       addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, 0); VdbeCoverage(v);
99097       for(i=1, pFK=pTab->pFKey; pFK; i++, pFK=pFK->pNextFrom){
99098         pParent = sqlite3FindTable(db, pFK->zTo, zDb);
99099         pIdx = 0;
99100         aiCols = 0;
99101         if( pParent ){
99102           x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, &aiCols);
99103           assert( x==0 );
99104         }
99105         addrOk = sqlite3VdbeMakeLabel(v);
99106         if( pParent && pIdx==0 ){
99107           int iKey = pFK->aCol[0].iFrom;
99108           assert( iKey>=0 && iKey<pTab->nCol );
99109           if( iKey!=pTab->iPKey ){
99110             sqlite3VdbeAddOp3(v, OP_Column, 0, iKey, regRow);
99111             sqlite3ColumnDefault(v, pTab, iKey, regRow);
99112             sqlite3VdbeAddOp2(v, OP_IsNull, regRow, addrOk); VdbeCoverage(v);
99113             sqlite3VdbeAddOp2(v, OP_MustBeInt, regRow,
99114                sqlite3VdbeCurrentAddr(v)+3); VdbeCoverage(v);
99115           }else{
99116             sqlite3VdbeAddOp2(v, OP_Rowid, 0, regRow);
99117           }
99118           sqlite3VdbeAddOp3(v, OP_NotExists, i, 0, regRow); VdbeCoverage(v);
99119           sqlite3VdbeAddOp2(v, OP_Goto, 0, addrOk);
99120           sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
99121         }else{
99122           for(j=0; j<pFK->nCol; j++){
99123             sqlite3ExprCodeGetColumnOfTable(v, pTab, 0,
99124                             aiCols ? aiCols[j] : pFK->aCol[j].iFrom, regRow+j);
99125             sqlite3VdbeAddOp2(v, OP_IsNull, regRow+j, addrOk); VdbeCoverage(v);
99126           }
99127           if( pParent ){
99128             sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, pFK->nCol, regKey,
99129                               sqlite3IndexAffinityStr(v,pIdx), pFK->nCol);
99130             sqlite3VdbeAddOp4Int(v, OP_Found, i, addrOk, regKey, 0);
99131             VdbeCoverage(v);
99132           }
99133         }
99134         sqlite3VdbeAddOp2(v, OP_Rowid, 0, regResult+1);
99135         sqlite3VdbeAddOp4(v, OP_String8, 0, regResult+2, 0,
99136                           pFK->zTo, P4_TRANSIENT);
99137         sqlite3VdbeAddOp2(v, OP_Integer, i-1, regResult+3);
99138         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, 4);
99139         sqlite3VdbeResolveLabel(v, addrOk);
99140         sqlite3DbFree(db, aiCols);
99141       }
99142       sqlite3VdbeAddOp2(v, OP_Next, 0, addrTop+1); VdbeCoverage(v);
99143       sqlite3VdbeJumpHere(v, addrTop);
99144     }
99145   }
99146   break;
99147 #endif /* !defined(SQLITE_OMIT_TRIGGER) */
99148 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
99149 
99150 #ifndef NDEBUG
99151   case PragTyp_PARSER_TRACE: {
99152     if( zRight ){
99153       if( sqlite3GetBoolean(zRight, 0) ){
99154         sqlite3ParserTrace(stderr, "parser: ");
99155       }else{
99156         sqlite3ParserTrace(0, 0);
99157       }
99158     }
99159   }
99160   break;
99161 #endif
99162 
99163   /* Reinstall the LIKE and GLOB functions.  The variant of LIKE
99164   ** used will be case sensitive or not depending on the RHS.
99165   */
99166   case PragTyp_CASE_SENSITIVE_LIKE: {
99167     if( zRight ){
99168       sqlite3RegisterLikeFunctions(db, sqlite3GetBoolean(zRight, 0));
99169     }
99170   }
99171   break;
99172 
99173 #ifndef SQLITE_INTEGRITY_CHECK_ERROR_MAX
99174 # define SQLITE_INTEGRITY_CHECK_ERROR_MAX 100
99175 #endif
99176 
99177 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
99178   /* Pragma "quick_check" is reduced version of
99179   ** integrity_check designed to detect most database corruption
99180   ** without most of the overhead of a full integrity-check.
99181   */
99182   case PragTyp_INTEGRITY_CHECK: {
99183     int i, j, addr, mxErr;
99184 
99185     /* Code that appears at the end of the integrity check.  If no error
99186     ** messages have been generated, output OK.  Otherwise output the
99187     ** error message
99188     */
99189     static const int iLn = VDBE_OFFSET_LINENO(2);
99190     static const VdbeOpList endCode[] = {
99191       { OP_AddImm,      1, 0,        0},    /* 0 */
99192       { OP_IfNeg,       1, 0,        0},    /* 1 */
99193       { OP_String8,     0, 3,        0},    /* 2 */
99194       { OP_ResultRow,   3, 1,        0},
99195     };
99196 
99197     int isQuick = (sqlite3Tolower(zLeft[0])=='q');
99198 
99199     /* If the PRAGMA command was of the form "PRAGMA <db>.integrity_check",
99200     ** then iDb is set to the index of the database identified by <db>.
99201     ** In this case, the integrity of database iDb only is verified by
99202     ** the VDBE created below.
99203     **
99204     ** Otherwise, if the command was simply "PRAGMA integrity_check" (or
99205     ** "PRAGMA quick_check"), then iDb is set to 0. In this case, set iDb
99206     ** to -1 here, to indicate that the VDBE should verify the integrity
99207     ** of all attached databases.  */
99208     assert( iDb>=0 );
99209     assert( iDb==0 || pId2->z );
99210     if( pId2->z==0 ) iDb = -1;
99211 
99212     /* Initialize the VDBE program */
99213     pParse->nMem = 6;
99214     sqlite3VdbeSetNumCols(v, 1);
99215     sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "integrity_check", SQLITE_STATIC);
99216 
99217     /* Set the maximum error count */
99218     mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX;
99219     if( zRight ){
99220       sqlite3GetInt32(zRight, &mxErr);
99221       if( mxErr<=0 ){
99222         mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX;
99223       }
99224     }
99225     sqlite3VdbeAddOp2(v, OP_Integer, mxErr, 1);  /* reg[1] holds errors left */
99226 
99227     /* Do an integrity check on each database file */
99228     for(i=0; i<db->nDb; i++){
99229       HashElem *x;
99230       Hash *pTbls;
99231       int cnt = 0;
99232 
99233       if( OMIT_TEMPDB && i==1 ) continue;
99234       if( iDb>=0 && i!=iDb ) continue;
99235 
99236       sqlite3CodeVerifySchema(pParse, i);
99237       addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1); /* Halt if out of errors */
99238       VdbeCoverage(v);
99239       sqlite3VdbeAddOp2(v, OP_Halt, 0, 0);
99240       sqlite3VdbeJumpHere(v, addr);
99241 
99242       /* Do an integrity check of the B-Tree
99243       **
99244       ** Begin by filling registers 2, 3, ... with the root pages numbers
99245       ** for all tables and indices in the database.
99246       */
99247       assert( sqlite3SchemaMutexHeld(db, i, 0) );
99248       pTbls = &db->aDb[i].pSchema->tblHash;
99249       for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
99250         Table *pTab = sqliteHashData(x);
99251         Index *pIdx;
99252         if( HasRowid(pTab) ){
99253           sqlite3VdbeAddOp2(v, OP_Integer, pTab->tnum, 2+cnt);
99254           VdbeComment((v, "%s", pTab->zName));
99255           cnt++;
99256         }
99257         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
99258           sqlite3VdbeAddOp2(v, OP_Integer, pIdx->tnum, 2+cnt);
99259           VdbeComment((v, "%s", pIdx->zName));
99260           cnt++;
99261         }
99262       }
99263 
99264       /* Make sure sufficient number of registers have been allocated */
99265       pParse->nMem = MAX( pParse->nMem, cnt+8 );
99266 
99267       /* Do the b-tree integrity checks */
99268       sqlite3VdbeAddOp3(v, OP_IntegrityCk, 2, cnt, 1);
99269       sqlite3VdbeChangeP5(v, (u8)i);
99270       addr = sqlite3VdbeAddOp1(v, OP_IsNull, 2); VdbeCoverage(v);
99271       sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0,
99272          sqlite3MPrintf(db, "*** in database %s ***\n", db->aDb[i].zName),
99273          P4_DYNAMIC);
99274       sqlite3VdbeAddOp3(v, OP_Move, 2, 4, 1);
99275       sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 2);
99276       sqlite3VdbeAddOp2(v, OP_ResultRow, 2, 1);
99277       sqlite3VdbeJumpHere(v, addr);
99278 
99279       /* Make sure all the indices are constructed correctly.
99280       */
99281       for(x=sqliteHashFirst(pTbls); x && !isQuick; x=sqliteHashNext(x)){
99282         Table *pTab = sqliteHashData(x);
99283         Index *pIdx, *pPk;
99284         Index *pPrior = 0;
99285         int loopTop;
99286         int iDataCur, iIdxCur;
99287         int r1 = -1;
99288 
99289         if( pTab->pIndex==0 ) continue;
99290         pPk = HasRowid(pTab) ? 0 : sqlite3PrimaryKeyIndex(pTab);
99291         addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1);  /* Stop if out of errors */
99292         VdbeCoverage(v);
99293         sqlite3VdbeAddOp2(v, OP_Halt, 0, 0);
99294         sqlite3VdbeJumpHere(v, addr);
99295         sqlite3ExprCacheClear(pParse);
99296         sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenRead,
99297                                    1, 0, &iDataCur, &iIdxCur);
99298         sqlite3VdbeAddOp2(v, OP_Integer, 0, 7);
99299         for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
99300           sqlite3VdbeAddOp2(v, OP_Integer, 0, 8+j); /* index entries counter */
99301         }
99302         pParse->nMem = MAX(pParse->nMem, 8+j);
99303         sqlite3VdbeAddOp2(v, OP_Rewind, iDataCur, 0); VdbeCoverage(v);
99304         loopTop = sqlite3VdbeAddOp2(v, OP_AddImm, 7, 1);
99305         for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
99306           int jmp2, jmp3, jmp4;
99307           if( pPk==pIdx ) continue;
99308           r1 = sqlite3GenerateIndexKey(pParse, pIdx, iDataCur, 0, 0, &jmp3,
99309                                        pPrior, r1);
99310           pPrior = pIdx;
99311           sqlite3VdbeAddOp2(v, OP_AddImm, 8+j, 1);  /* increment entry count */
99312           jmp2 = sqlite3VdbeAddOp4Int(v, OP_Found, iIdxCur+j, 0, r1,
99313                                       pIdx->nColumn); VdbeCoverage(v);
99314           sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1); /* Decrement error limit */
99315           sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, "row ", P4_STATIC);
99316           sqlite3VdbeAddOp3(v, OP_Concat, 7, 3, 3);
99317           sqlite3VdbeAddOp4(v, OP_String8, 0, 4, 0, " missing from index ",
99318                             P4_STATIC);
99319           sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3);
99320           sqlite3VdbeAddOp4(v, OP_String8, 0, 4, 0, pIdx->zName, P4_TRANSIENT);
99321           sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3);
99322           sqlite3VdbeAddOp2(v, OP_ResultRow, 3, 1);
99323           jmp4 = sqlite3VdbeAddOp1(v, OP_IfPos, 1); VdbeCoverage(v);
99324           sqlite3VdbeAddOp0(v, OP_Halt);
99325           sqlite3VdbeJumpHere(v, jmp4);
99326           sqlite3VdbeJumpHere(v, jmp2);
99327           sqlite3ResolvePartIdxLabel(pParse, jmp3);
99328         }
99329         sqlite3VdbeAddOp2(v, OP_Next, iDataCur, loopTop); VdbeCoverage(v);
99330         sqlite3VdbeJumpHere(v, loopTop-1);
99331 #ifndef SQLITE_OMIT_BTREECOUNT
99332         sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0,
99333                      "wrong # of entries in index ", P4_STATIC);
99334         for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
99335           if( pPk==pIdx ) continue;
99336           addr = sqlite3VdbeCurrentAddr(v);
99337           sqlite3VdbeAddOp2(v, OP_IfPos, 1, addr+2); VdbeCoverage(v);
99338           sqlite3VdbeAddOp2(v, OP_Halt, 0, 0);
99339           sqlite3VdbeAddOp2(v, OP_Count, iIdxCur+j, 3);
99340           sqlite3VdbeAddOp3(v, OP_Eq, 8+j, addr+8, 3); VdbeCoverage(v);
99341           sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
99342           sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1);
99343           sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, pIdx->zName, P4_TRANSIENT);
99344           sqlite3VdbeAddOp3(v, OP_Concat, 3, 2, 7);
99345           sqlite3VdbeAddOp2(v, OP_ResultRow, 7, 1);
99346         }
99347 #endif /* SQLITE_OMIT_BTREECOUNT */
99348       }
99349     }
99350     addr = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode, iLn);
99351     sqlite3VdbeChangeP2(v, addr, -mxErr);
99352     sqlite3VdbeJumpHere(v, addr+1);
99353     sqlite3VdbeChangeP4(v, addr+2, "ok", P4_STATIC);
99354   }
99355   break;
99356 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
99357 
99358 #ifndef SQLITE_OMIT_UTF16
99359   /*
99360   **   PRAGMA encoding
99361   **   PRAGMA encoding = "utf-8"|"utf-16"|"utf-16le"|"utf-16be"
99362   **
99363   ** In its first form, this pragma returns the encoding of the main
99364   ** database. If the database is not initialized, it is initialized now.
99365   **
99366   ** The second form of this pragma is a no-op if the main database file
99367   ** has not already been initialized. In this case it sets the default
99368   ** encoding that will be used for the main database file if a new file
99369   ** is created. If an existing main database file is opened, then the
99370   ** default text encoding for the existing database is used.
99371   **
99372   ** In all cases new databases created using the ATTACH command are
99373   ** created to use the same default text encoding as the main database. If
99374   ** the main database has not been initialized and/or created when ATTACH
99375   ** is executed, this is done before the ATTACH operation.
99376   **
99377   ** In the second form this pragma sets the text encoding to be used in
99378   ** new database files created using this database handle. It is only
99379   ** useful if invoked immediately after the main database i
99380   */
99381   case PragTyp_ENCODING: {
99382     static const struct EncName {
99383       char *zName;
99384       u8 enc;
99385     } encnames[] = {
99386       { "UTF8",     SQLITE_UTF8        },
99387       { "UTF-8",    SQLITE_UTF8        },  /* Must be element [1] */
99388       { "UTF-16le", SQLITE_UTF16LE     },  /* Must be element [2] */
99389       { "UTF-16be", SQLITE_UTF16BE     },  /* Must be element [3] */
99390       { "UTF16le",  SQLITE_UTF16LE     },
99391       { "UTF16be",  SQLITE_UTF16BE     },
99392       { "UTF-16",   0                  }, /* SQLITE_UTF16NATIVE */
99393       { "UTF16",    0                  }, /* SQLITE_UTF16NATIVE */
99394       { 0, 0 }
99395     };
99396     const struct EncName *pEnc;
99397     if( !zRight ){    /* "PRAGMA encoding" */
99398       if( sqlite3ReadSchema(pParse) ) goto pragma_out;
99399       sqlite3VdbeSetNumCols(v, 1);
99400       sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "encoding", SQLITE_STATIC);
99401       sqlite3VdbeAddOp2(v, OP_String8, 0, 1);
99402       assert( encnames[SQLITE_UTF8].enc==SQLITE_UTF8 );
99403       assert( encnames[SQLITE_UTF16LE].enc==SQLITE_UTF16LE );
99404       assert( encnames[SQLITE_UTF16BE].enc==SQLITE_UTF16BE );
99405       sqlite3VdbeChangeP4(v, -1, encnames[ENC(pParse->db)].zName, P4_STATIC);
99406       sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
99407     }else{                        /* "PRAGMA encoding = XXX" */
99408       /* Only change the value of sqlite.enc if the database handle is not
99409       ** initialized. If the main database exists, the new sqlite.enc value
99410       ** will be overwritten when the schema is next loaded. If it does not
99411       ** already exists, it will be created to use the new encoding value.
99412       */
99413       if(
99414         !(DbHasProperty(db, 0, DB_SchemaLoaded)) ||
99415         DbHasProperty(db, 0, DB_Empty)
99416       ){
99417         for(pEnc=&encnames[0]; pEnc->zName; pEnc++){
99418           if( 0==sqlite3StrICmp(zRight, pEnc->zName) ){
99419             ENC(pParse->db) = pEnc->enc ? pEnc->enc : SQLITE_UTF16NATIVE;
99420             break;
99421           }
99422         }
99423         if( !pEnc->zName ){
99424           sqlite3ErrorMsg(pParse, "unsupported encoding: %s", zRight);
99425         }
99426       }
99427     }
99428   }
99429   break;
99430 #endif /* SQLITE_OMIT_UTF16 */
99431 
99432 #ifndef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS
99433   /*
99434   **   PRAGMA [database.]schema_version
99435   **   PRAGMA [database.]schema_version = <integer>
99436   **
99437   **   PRAGMA [database.]user_version
99438   **   PRAGMA [database.]user_version = <integer>
99439   **
99440   **   PRAGMA [database.]freelist_count = <integer>
99441   **
99442   **   PRAGMA [database.]application_id
99443   **   PRAGMA [database.]application_id = <integer>
99444   **
99445   ** The pragma's schema_version and user_version are used to set or get
99446   ** the value of the schema-version and user-version, respectively. Both
99447   ** the schema-version and the user-version are 32-bit signed integers
99448   ** stored in the database header.
99449   **
99450   ** The schema-cookie is usually only manipulated internally by SQLite. It
99451   ** is incremented by SQLite whenever the database schema is modified (by
99452   ** creating or dropping a table or index). The schema version is used by
99453   ** SQLite each time a query is executed to ensure that the internal cache
99454   ** of the schema used when compiling the SQL query matches the schema of
99455   ** the database against which the compiled query is actually executed.
99456   ** Subverting this mechanism by using "PRAGMA schema_version" to modify
99457   ** the schema-version is potentially dangerous and may lead to program
99458   ** crashes or database corruption. Use with caution!
99459   **
99460   ** The user-version is not used internally by SQLite. It may be used by
99461   ** applications for any purpose.
99462   */
99463   case PragTyp_HEADER_VALUE: {
99464     int iCookie;   /* Cookie index. 1 for schema-cookie, 6 for user-cookie. */
99465     sqlite3VdbeUsesBtree(v, iDb);
99466     switch( zLeft[0] ){
99467       case 'a': case 'A':
99468         iCookie = BTREE_APPLICATION_ID;
99469         break;
99470       case 'f': case 'F':
99471         iCookie = BTREE_FREE_PAGE_COUNT;
99472         break;
99473       case 's': case 'S':
99474         iCookie = BTREE_SCHEMA_VERSION;
99475         break;
99476       default:
99477         iCookie = BTREE_USER_VERSION;
99478         break;
99479     }
99480 
99481     if( zRight && iCookie!=BTREE_FREE_PAGE_COUNT ){
99482       /* Write the specified cookie value */
99483       static const VdbeOpList setCookie[] = {
99484         { OP_Transaction,    0,  1,  0},    /* 0 */
99485         { OP_Integer,        0,  1,  0},    /* 1 */
99486         { OP_SetCookie,      0,  0,  1},    /* 2 */
99487       };
99488       int addr = sqlite3VdbeAddOpList(v, ArraySize(setCookie), setCookie, 0);
99489       sqlite3VdbeChangeP1(v, addr, iDb);
99490       sqlite3VdbeChangeP1(v, addr+1, sqlite3Atoi(zRight));
99491       sqlite3VdbeChangeP1(v, addr+2, iDb);
99492       sqlite3VdbeChangeP2(v, addr+2, iCookie);
99493     }else{
99494       /* Read the specified cookie value */
99495       static const VdbeOpList readCookie[] = {
99496         { OP_Transaction,     0,  0,  0},    /* 0 */
99497         { OP_ReadCookie,      0,  1,  0},    /* 1 */
99498         { OP_ResultRow,       1,  1,  0}
99499       };
99500       int addr = sqlite3VdbeAddOpList(v, ArraySize(readCookie), readCookie, 0);
99501       sqlite3VdbeChangeP1(v, addr, iDb);
99502       sqlite3VdbeChangeP1(v, addr+1, iDb);
99503       sqlite3VdbeChangeP3(v, addr+1, iCookie);
99504       sqlite3VdbeSetNumCols(v, 1);
99505       sqlite3VdbeSetColName(v, 0, COLNAME_NAME, zLeft, SQLITE_TRANSIENT);
99506     }
99507   }
99508   break;
99509 #endif /* SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS */
99510 
99511 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
99512   /*
99513   **   PRAGMA compile_options
99514   **
99515   ** Return the names of all compile-time options used in this build,
99516   ** one option per row.
99517   */
99518   case PragTyp_COMPILE_OPTIONS: {
99519     int i = 0;
99520     const char *zOpt;
99521     sqlite3VdbeSetNumCols(v, 1);
99522     pParse->nMem = 1;
99523     sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "compile_option", SQLITE_STATIC);
99524     while( (zOpt = sqlite3_compileoption_get(i++))!=0 ){
99525       sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, zOpt, 0);
99526       sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
99527     }
99528   }
99529   break;
99530 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
99531 
99532 #ifndef SQLITE_OMIT_WAL
99533   /*
99534   **   PRAGMA [database.]wal_checkpoint = passive|full|restart
99535   **
99536   ** Checkpoint the database.
99537   */
99538   case PragTyp_WAL_CHECKPOINT: {
99539     int iBt = (pId2->z?iDb:SQLITE_MAX_ATTACHED);
99540     int eMode = SQLITE_CHECKPOINT_PASSIVE;
99541     if( zRight ){
99542       if( sqlite3StrICmp(zRight, "full")==0 ){
99543         eMode = SQLITE_CHECKPOINT_FULL;
99544       }else if( sqlite3StrICmp(zRight, "restart")==0 ){
99545         eMode = SQLITE_CHECKPOINT_RESTART;
99546       }
99547     }
99548     sqlite3VdbeSetNumCols(v, 3);
99549     pParse->nMem = 3;
99550     sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "busy", SQLITE_STATIC);
99551     sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "log", SQLITE_STATIC);
99552     sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "checkpointed", SQLITE_STATIC);
99553 
99554     sqlite3VdbeAddOp3(v, OP_Checkpoint, iBt, eMode, 1);
99555     sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3);
99556   }
99557   break;
99558 
99559   /*
99560   **   PRAGMA wal_autocheckpoint
99561   **   PRAGMA wal_autocheckpoint = N
99562   **
99563   ** Configure a database connection to automatically checkpoint a database
99564   ** after accumulating N frames in the log. Or query for the current value
99565   ** of N.
99566   */
99567   case PragTyp_WAL_AUTOCHECKPOINT: {
99568     if( zRight ){
99569       sqlite3_wal_autocheckpoint(db, sqlite3Atoi(zRight));
99570     }
99571     returnSingleInt(pParse, "wal_autocheckpoint",
99572        db->xWalCallback==sqlite3WalDefaultHook ?
99573            SQLITE_PTR_TO_INT(db->pWalArg) : 0);
99574   }
99575   break;
99576 #endif
99577 
99578   /*
99579   **  PRAGMA shrink_memory
99580   **
99581   ** This pragma attempts to free as much memory as possible from the
99582   ** current database connection.
99583   */
99584   case PragTyp_SHRINK_MEMORY: {
99585     sqlite3_db_release_memory(db);
99586     break;
99587   }
99588 
99589   /*
99590   **   PRAGMA busy_timeout
99591   **   PRAGMA busy_timeout = N
99592   **
99593   ** Call sqlite3_busy_timeout(db, N).  Return the current timeout value
99594   ** if one is set.  If no busy handler or a different busy handler is set
99595   ** then 0 is returned.  Setting the busy_timeout to 0 or negative
99596   ** disables the timeout.
99597   */
99598   /*case PragTyp_BUSY_TIMEOUT*/ default: {
99599     assert( aPragmaNames[mid].ePragTyp==PragTyp_BUSY_TIMEOUT );
99600     if( zRight ){
99601       sqlite3_busy_timeout(db, sqlite3Atoi(zRight));
99602     }
99603     returnSingleInt(pParse, "timeout",  db->busyTimeout);
99604     break;
99605   }
99606 
99607   /*
99608   **   PRAGMA soft_heap_limit
99609   **   PRAGMA soft_heap_limit = N
99610   **
99611   ** Call sqlite3_soft_heap_limit64(N).  Return the result.  If N is omitted,
99612   ** use -1.
99613   */
99614   case PragTyp_SOFT_HEAP_LIMIT: {
99615     sqlite3_int64 N;
99616     if( zRight && sqlite3Atoi64(zRight, &N, 1000000, SQLITE_UTF8)==SQLITE_OK ){
99617       sqlite3_soft_heap_limit64(N);
99618     }
99619     returnSingleInt(pParse, "soft_heap_limit",  sqlite3_soft_heap_limit64(-1));
99620     break;
99621   }
99622 
99623 #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
99624   /*
99625   ** Report the current state of file logs for all databases
99626   */
99627   case PragTyp_LOCK_STATUS: {
99628     static const char *const azLockName[] = {
99629       "unlocked", "shared", "reserved", "pending", "exclusive"
99630     };
99631     int i;
99632     sqlite3VdbeSetNumCols(v, 2);
99633     pParse->nMem = 2;
99634     sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "database", SQLITE_STATIC);
99635     sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "status", SQLITE_STATIC);
99636     for(i=0; i<db->nDb; i++){
99637       Btree *pBt;
99638       const char *zState = "unknown";
99639       int j;
99640       if( db->aDb[i].zName==0 ) continue;
99641       sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, db->aDb[i].zName, P4_STATIC);
99642       pBt = db->aDb[i].pBt;
99643       if( pBt==0 || sqlite3BtreePager(pBt)==0 ){
99644         zState = "closed";
99645       }else if( sqlite3_file_control(db, i ? db->aDb[i].zName : 0,
99646                                      SQLITE_FCNTL_LOCKSTATE, &j)==SQLITE_OK ){
99647          zState = azLockName[j];
99648       }
99649       sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, zState, P4_STATIC);
99650       sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 2);
99651     }
99652     break;
99653   }
99654 #endif
99655 
99656 #ifdef SQLITE_HAS_CODEC
99657   case PragTyp_KEY: {
99658     if( zRight ) sqlite3_key_v2(db, zDb, zRight, sqlite3Strlen30(zRight));
99659     break;
99660   }
99661   case PragTyp_REKEY: {
99662     if( zRight ) sqlite3_rekey_v2(db, zDb, zRight, sqlite3Strlen30(zRight));
99663     break;
99664   }
99665   case PragTyp_HEXKEY: {
99666     if( zRight ){
99667       u8 iByte;
99668       int i;
99669       char zKey[40];
99670       for(i=0, iByte=0; i<sizeof(zKey)*2 && sqlite3Isxdigit(zRight[i]); i++){
99671         iByte = (iByte<<4) + sqlite3HexToInt(zRight[i]);
99672         if( (i&1)!=0 ) zKey[i/2] = iByte;
99673       }
99674       if( (zLeft[3] & 0xf)==0xb ){
99675         sqlite3_key_v2(db, zDb, zKey, i/2);
99676       }else{
99677         sqlite3_rekey_v2(db, zDb, zKey, i/2);
99678       }
99679     }
99680     break;
99681   }
99682 #endif
99683 #if defined(SQLITE_HAS_CODEC) || defined(SQLITE_ENABLE_CEROD)
99684   case PragTyp_ACTIVATE_EXTENSIONS: if( zRight ){
99685 #ifdef SQLITE_HAS_CODEC
99686     if( sqlite3StrNICmp(zRight, "see-", 4)==0 ){
99687       sqlite3_activate_see(&zRight[4]);
99688     }
99689 #endif
99690 #ifdef SQLITE_ENABLE_CEROD
99691     if( sqlite3StrNICmp(zRight, "cerod-", 6)==0 ){
99692       sqlite3_activate_cerod(&zRight[6]);
99693     }
99694 #endif
99695   }
99696   break;
99697 #endif
99698 
99699   } /* End of the PRAGMA switch */
99700 
99701 pragma_out:
99702   sqlite3DbFree(db, zLeft);
99703   sqlite3DbFree(db, zRight);
99704 }
99705 
99706 #endif /* SQLITE_OMIT_PRAGMA */
99707 
99708 /************** End of pragma.c **********************************************/
99709 /************** Begin file prepare.c *****************************************/
99710 /*
99711 ** 2005 May 25
99712 **
99713 ** The author disclaims copyright to this source code.  In place of
99714 ** a legal notice, here is a blessing:
99715 **
99716 **    May you do good and not evil.
99717 **    May you find forgiveness for yourself and forgive others.
99718 **    May you share freely, never taking more than you give.
99719 **
99720 *************************************************************************
99721 ** This file contains the implementation of the sqlite3_prepare()
99722 ** interface, and routines that contribute to loading the database schema
99723 ** from disk.
99724 */
99725 
99726 /*
99727 ** Fill the InitData structure with an error message that indicates
99728 ** that the database is corrupt.
99729 */
99730 static void corruptSchema(
99731   InitData *pData,     /* Initialization context */
99732   const char *zObj,    /* Object being parsed at the point of error */
99733   const char *zExtra   /* Error information */
99734 ){
99735   sqlite3 *db = pData->db;
99736   if( !db->mallocFailed && (db->flags & SQLITE_RecoveryMode)==0 ){
99737     if( zObj==0 ) zObj = "?";
99738     sqlite3SetString(pData->pzErrMsg, db,
99739       "malformed database schema (%s)", zObj);
99740     if( zExtra ){
99741       *pData->pzErrMsg = sqlite3MAppendf(db, *pData->pzErrMsg,
99742                                  "%s - %s", *pData->pzErrMsg, zExtra);
99743     }
99744   }
99745   pData->rc = db->mallocFailed ? SQLITE_NOMEM : SQLITE_CORRUPT_BKPT;
99746 }
99747 
99748 /*
99749 ** This is the callback routine for the code that initializes the
99750 ** database.  See sqlite3Init() below for additional information.
99751 ** This routine is also called from the OP_ParseSchema opcode of the VDBE.
99752 **
99753 ** Each callback contains the following information:
99754 **
99755 **     argv[0] = name of thing being created
99756 **     argv[1] = root page number for table or index. 0 for trigger or view.
99757 **     argv[2] = SQL text for the CREATE statement.
99758 **
99759 */
99760 SQLITE_PRIVATE int sqlite3InitCallback(void *pInit, int argc, char **argv, char **NotUsed){
99761   InitData *pData = (InitData*)pInit;
99762   sqlite3 *db = pData->db;
99763   int iDb = pData->iDb;
99764 
99765   assert( argc==3 );
99766   UNUSED_PARAMETER2(NotUsed, argc);
99767   assert( sqlite3_mutex_held(db->mutex) );
99768   DbClearProperty(db, iDb, DB_Empty);
99769   if( db->mallocFailed ){
99770     corruptSchema(pData, argv[0], 0);
99771     return 1;
99772   }
99773 
99774   assert( iDb>=0 && iDb<db->nDb );
99775   if( argv==0 ) return 0;   /* Might happen if EMPTY_RESULT_CALLBACKS are on */
99776   if( argv[1]==0 ){
99777     corruptSchema(pData, argv[0], 0);
99778   }else if( argv[2] && argv[2][0] ){
99779     /* Call the parser to process a CREATE TABLE, INDEX or VIEW.
99780     ** But because db->init.busy is set to 1, no VDBE code is generated
99781     ** or executed.  All the parser does is build the internal data
99782     ** structures that describe the table, index, or view.
99783     */
99784     int rc;
99785     sqlite3_stmt *pStmt;
99786     TESTONLY(int rcp);            /* Return code from sqlite3_prepare() */
99787 
99788     assert( db->init.busy );
99789     db->init.iDb = iDb;
99790     db->init.newTnum = sqlite3Atoi(argv[1]);
99791     db->init.orphanTrigger = 0;
99792     TESTONLY(rcp = ) sqlite3_prepare(db, argv[2], -1, &pStmt, 0);
99793     rc = db->errCode;
99794     assert( (rc&0xFF)==(rcp&0xFF) );
99795     db->init.iDb = 0;
99796     if( SQLITE_OK!=rc ){
99797       if( db->init.orphanTrigger ){
99798         assert( iDb==1 );
99799       }else{
99800         pData->rc = rc;
99801         if( rc==SQLITE_NOMEM ){
99802           db->mallocFailed = 1;
99803         }else if( rc!=SQLITE_INTERRUPT && (rc&0xFF)!=SQLITE_LOCKED ){
99804           corruptSchema(pData, argv[0], sqlite3_errmsg(db));
99805         }
99806       }
99807     }
99808     sqlite3_finalize(pStmt);
99809   }else if( argv[0]==0 ){
99810     corruptSchema(pData, 0, 0);
99811   }else{
99812     /* If the SQL column is blank it means this is an index that
99813     ** was created to be the PRIMARY KEY or to fulfill a UNIQUE
99814     ** constraint for a CREATE TABLE.  The index should have already
99815     ** been created when we processed the CREATE TABLE.  All we have
99816     ** to do here is record the root page number for that index.
99817     */
99818     Index *pIndex;
99819     pIndex = sqlite3FindIndex(db, argv[0], db->aDb[iDb].zName);
99820     if( pIndex==0 ){
99821       /* This can occur if there exists an index on a TEMP table which
99822       ** has the same name as another index on a permanent index.  Since
99823       ** the permanent table is hidden by the TEMP table, we can also
99824       ** safely ignore the index on the permanent table.
99825       */
99826       /* Do Nothing */;
99827     }else if( sqlite3GetInt32(argv[1], &pIndex->tnum)==0 ){
99828       corruptSchema(pData, argv[0], "invalid rootpage");
99829     }
99830   }
99831   return 0;
99832 }
99833 
99834 /*
99835 ** Attempt to read the database schema and initialize internal
99836 ** data structures for a single database file.  The index of the
99837 ** database file is given by iDb.  iDb==0 is used for the main
99838 ** database.  iDb==1 should never be used.  iDb>=2 is used for
99839 ** auxiliary databases.  Return one of the SQLITE_ error codes to
99840 ** indicate success or failure.
99841 */
99842 static int sqlite3InitOne(sqlite3 *db, int iDb, char **pzErrMsg){
99843   int rc;
99844   int i;
99845 #ifndef SQLITE_OMIT_DEPRECATED
99846   int size;
99847 #endif
99848   Table *pTab;
99849   Db *pDb;
99850   char const *azArg[4];
99851   int meta[5];
99852   InitData initData;
99853   char const *zMasterSchema;
99854   char const *zMasterName;
99855   int openedTransaction = 0;
99856 
99857   /*
99858   ** The master database table has a structure like this
99859   */
99860   static const char master_schema[] =
99861      "CREATE TABLE sqlite_master(\n"
99862      "  type text,\n"
99863      "  name text,\n"
99864      "  tbl_name text,\n"
99865      "  rootpage integer,\n"
99866      "  sql text\n"
99867      ")"
99868   ;
99869 #ifndef SQLITE_OMIT_TEMPDB
99870   static const char temp_master_schema[] =
99871      "CREATE TEMP TABLE sqlite_temp_master(\n"
99872      "  type text,\n"
99873      "  name text,\n"
99874      "  tbl_name text,\n"
99875      "  rootpage integer,\n"
99876      "  sql text\n"
99877      ")"
99878   ;
99879 #else
99880   #define temp_master_schema 0
99881 #endif
99882 
99883   assert( iDb>=0 && iDb<db->nDb );
99884   assert( db->aDb[iDb].pSchema );
99885   assert( sqlite3_mutex_held(db->mutex) );
99886   assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
99887 
99888   /* zMasterSchema and zInitScript are set to point at the master schema
99889   ** and initialisation script appropriate for the database being
99890   ** initialized. zMasterName is the name of the master table.
99891   */
99892   if( !OMIT_TEMPDB && iDb==1 ){
99893     zMasterSchema = temp_master_schema;
99894   }else{
99895     zMasterSchema = master_schema;
99896   }
99897   zMasterName = SCHEMA_TABLE(iDb);
99898 
99899   /* Construct the schema tables.  */
99900   azArg[0] = zMasterName;
99901   azArg[1] = "1";
99902   azArg[2] = zMasterSchema;
99903   azArg[3] = 0;
99904   initData.db = db;
99905   initData.iDb = iDb;
99906   initData.rc = SQLITE_OK;
99907   initData.pzErrMsg = pzErrMsg;
99908   sqlite3InitCallback(&initData, 3, (char **)azArg, 0);
99909   if( initData.rc ){
99910     rc = initData.rc;
99911     goto error_out;
99912   }
99913   pTab = sqlite3FindTable(db, zMasterName, db->aDb[iDb].zName);
99914   if( ALWAYS(pTab) ){
99915     pTab->tabFlags |= TF_Readonly;
99916   }
99917 
99918   /* Create a cursor to hold the database open
99919   */
99920   pDb = &db->aDb[iDb];
99921   if( pDb->pBt==0 ){
99922     if( !OMIT_TEMPDB && ALWAYS(iDb==1) ){
99923       DbSetProperty(db, 1, DB_SchemaLoaded);
99924     }
99925     return SQLITE_OK;
99926   }
99927 
99928   /* If there is not already a read-only (or read-write) transaction opened
99929   ** on the b-tree database, open one now. If a transaction is opened, it
99930   ** will be closed before this function returns.  */
99931   sqlite3BtreeEnter(pDb->pBt);
99932   if( !sqlite3BtreeIsInReadTrans(pDb->pBt) ){
99933     rc = sqlite3BtreeBeginTrans(pDb->pBt, 0);
99934     if( rc!=SQLITE_OK ){
99935       sqlite3SetString(pzErrMsg, db, "%s", sqlite3ErrStr(rc));
99936       goto initone_error_out;
99937     }
99938     openedTransaction = 1;
99939   }
99940 
99941   /* Get the database meta information.
99942   **
99943   ** Meta values are as follows:
99944   **    meta[0]   Schema cookie.  Changes with each schema change.
99945   **    meta[1]   File format of schema layer.
99946   **    meta[2]   Size of the page cache.
99947   **    meta[3]   Largest rootpage (auto/incr_vacuum mode)
99948   **    meta[4]   Db text encoding. 1:UTF-8 2:UTF-16LE 3:UTF-16BE
99949   **    meta[5]   User version
99950   **    meta[6]   Incremental vacuum mode
99951   **    meta[7]   unused
99952   **    meta[8]   unused
99953   **    meta[9]   unused
99954   **
99955   ** Note: The #defined SQLITE_UTF* symbols in sqliteInt.h correspond to
99956   ** the possible values of meta[4].
99957   */
99958   for(i=0; i<ArraySize(meta); i++){
99959     sqlite3BtreeGetMeta(pDb->pBt, i+1, (u32 *)&meta[i]);
99960   }
99961   pDb->pSchema->schema_cookie = meta[BTREE_SCHEMA_VERSION-1];
99962 
99963   /* If opening a non-empty database, check the text encoding. For the
99964   ** main database, set sqlite3.enc to the encoding of the main database.
99965   ** For an attached db, it is an error if the encoding is not the same
99966   ** as sqlite3.enc.
99967   */
99968   if( meta[BTREE_TEXT_ENCODING-1] ){  /* text encoding */
99969     if( iDb==0 ){
99970 #ifndef SQLITE_OMIT_UTF16
99971       u8 encoding;
99972       /* If opening the main database, set ENC(db). */
99973       encoding = (u8)meta[BTREE_TEXT_ENCODING-1] & 3;
99974       if( encoding==0 ) encoding = SQLITE_UTF8;
99975       ENC(db) = encoding;
99976 #else
99977       ENC(db) = SQLITE_UTF8;
99978 #endif
99979     }else{
99980       /* If opening an attached database, the encoding much match ENC(db) */
99981       if( meta[BTREE_TEXT_ENCODING-1]!=ENC(db) ){
99982         sqlite3SetString(pzErrMsg, db, "attached databases must use the same"
99983             " text encoding as main database");
99984         rc = SQLITE_ERROR;
99985         goto initone_error_out;
99986       }
99987     }
99988   }else{
99989     DbSetProperty(db, iDb, DB_Empty);
99990   }
99991   pDb->pSchema->enc = ENC(db);
99992 
99993   if( pDb->pSchema->cache_size==0 ){
99994 #ifndef SQLITE_OMIT_DEPRECATED
99995     size = sqlite3AbsInt32(meta[BTREE_DEFAULT_CACHE_SIZE-1]);
99996     if( size==0 ){ size = SQLITE_DEFAULT_CACHE_SIZE; }
99997     pDb->pSchema->cache_size = size;
99998 #else
99999     pDb->pSchema->cache_size = SQLITE_DEFAULT_CACHE_SIZE;
100000 #endif
100001     sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
100002   }
100003 
100004   /*
100005   ** file_format==1    Version 3.0.0.
100006   ** file_format==2    Version 3.1.3.  // ALTER TABLE ADD COLUMN
100007   ** file_format==3    Version 3.1.4.  // ditto but with non-NULL defaults
100008   ** file_format==4    Version 3.3.0.  // DESC indices.  Boolean constants
100009   */
100010   pDb->pSchema->file_format = (u8)meta[BTREE_FILE_FORMAT-1];
100011   if( pDb->pSchema->file_format==0 ){
100012     pDb->pSchema->file_format = 1;
100013   }
100014   if( pDb->pSchema->file_format>SQLITE_MAX_FILE_FORMAT ){
100015     sqlite3SetString(pzErrMsg, db, "unsupported file format");
100016     rc = SQLITE_ERROR;
100017     goto initone_error_out;
100018   }
100019 
100020   /* Ticket #2804:  When we open a database in the newer file format,
100021   ** clear the legacy_file_format pragma flag so that a VACUUM will
100022   ** not downgrade the database and thus invalidate any descending
100023   ** indices that the user might have created.
100024   */
100025   if( iDb==0 && meta[BTREE_FILE_FORMAT-1]>=4 ){
100026     db->flags &= ~SQLITE_LegacyFileFmt;
100027   }
100028 
100029   /* Read the schema information out of the schema tables
100030   */
100031   assert( db->init.busy );
100032   {
100033     char *zSql;
100034     zSql = sqlite3MPrintf(db,
100035         "SELECT name, rootpage, sql FROM '%q'.%s ORDER BY rowid",
100036         db->aDb[iDb].zName, zMasterName);
100037 #ifndef SQLITE_OMIT_AUTHORIZATION
100038     {
100039       int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
100040       xAuth = db->xAuth;
100041       db->xAuth = 0;
100042 #endif
100043       rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
100044 #ifndef SQLITE_OMIT_AUTHORIZATION
100045       db->xAuth = xAuth;
100046     }
100047 #endif
100048     if( rc==SQLITE_OK ) rc = initData.rc;
100049     sqlite3DbFree(db, zSql);
100050 #ifndef SQLITE_OMIT_ANALYZE
100051     if( rc==SQLITE_OK ){
100052       sqlite3AnalysisLoad(db, iDb);
100053     }
100054 #endif
100055   }
100056   if( db->mallocFailed ){
100057     rc = SQLITE_NOMEM;
100058     sqlite3ResetAllSchemasOfConnection(db);
100059   }
100060   if( rc==SQLITE_OK || (db->flags&SQLITE_RecoveryMode)){
100061     /* Black magic: If the SQLITE_RecoveryMode flag is set, then consider
100062     ** the schema loaded, even if errors occurred. In this situation the
100063     ** current sqlite3_prepare() operation will fail, but the following one
100064     ** will attempt to compile the supplied statement against whatever subset
100065     ** of the schema was loaded before the error occurred. The primary
100066     ** purpose of this is to allow access to the sqlite_master table
100067     ** even when its contents have been corrupted.
100068     */
100069     DbSetProperty(db, iDb, DB_SchemaLoaded);
100070     rc = SQLITE_OK;
100071   }
100072 
100073   /* Jump here for an error that occurs after successfully allocating
100074   ** curMain and calling sqlite3BtreeEnter(). For an error that occurs
100075   ** before that point, jump to error_out.
100076   */
100077 initone_error_out:
100078   if( openedTransaction ){
100079     sqlite3BtreeCommit(pDb->pBt);
100080   }
100081   sqlite3BtreeLeave(pDb->pBt);
100082 
100083 error_out:
100084   if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){
100085     db->mallocFailed = 1;
100086   }
100087   return rc;
100088 }
100089 
100090 /*
100091 ** Initialize all database files - the main database file, the file
100092 ** used to store temporary tables, and any additional database files
100093 ** created using ATTACH statements.  Return a success code.  If an
100094 ** error occurs, write an error message into *pzErrMsg.
100095 **
100096 ** After a database is initialized, the DB_SchemaLoaded bit is set
100097 ** bit is set in the flags field of the Db structure. If the database
100098 ** file was of zero-length, then the DB_Empty flag is also set.
100099 */
100100 SQLITE_PRIVATE int sqlite3Init(sqlite3 *db, char **pzErrMsg){
100101   int i, rc;
100102   int commit_internal = !(db->flags&SQLITE_InternChanges);
100103 
100104   assert( sqlite3_mutex_held(db->mutex) );
100105   rc = SQLITE_OK;
100106   db->init.busy = 1;
100107   for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
100108     if( DbHasProperty(db, i, DB_SchemaLoaded) || i==1 ) continue;
100109     rc = sqlite3InitOne(db, i, pzErrMsg);
100110     if( rc ){
100111       sqlite3ResetOneSchema(db, i);
100112     }
100113   }
100114 
100115   /* Once all the other databases have been initialized, load the schema
100116   ** for the TEMP database. This is loaded last, as the TEMP database
100117   ** schema may contain references to objects in other databases.
100118   */
100119 #ifndef SQLITE_OMIT_TEMPDB
100120   if( rc==SQLITE_OK && ALWAYS(db->nDb>1)
100121                     && !DbHasProperty(db, 1, DB_SchemaLoaded) ){
100122     rc = sqlite3InitOne(db, 1, pzErrMsg);
100123     if( rc ){
100124       sqlite3ResetOneSchema(db, 1);
100125     }
100126   }
100127 #endif
100128 
100129   db->init.busy = 0;
100130   if( rc==SQLITE_OK && commit_internal ){
100131     sqlite3CommitInternalChanges(db);
100132   }
100133 
100134   return rc;
100135 }
100136 
100137 /*
100138 ** This routine is a no-op if the database schema is already initialized.
100139 ** Otherwise, the schema is loaded. An error code is returned.
100140 */
100141 SQLITE_PRIVATE int sqlite3ReadSchema(Parse *pParse){
100142   int rc = SQLITE_OK;
100143   sqlite3 *db = pParse->db;
100144   assert( sqlite3_mutex_held(db->mutex) );
100145   if( !db->init.busy ){
100146     rc = sqlite3Init(db, &pParse->zErrMsg);
100147   }
100148   if( rc!=SQLITE_OK ){
100149     pParse->rc = rc;
100150     pParse->nErr++;
100151   }
100152   return rc;
100153 }
100154 
100155 
100156 /*
100157 ** Check schema cookies in all databases.  If any cookie is out
100158 ** of date set pParse->rc to SQLITE_SCHEMA.  If all schema cookies
100159 ** make no changes to pParse->rc.
100160 */
100161 static void schemaIsValid(Parse *pParse){
100162   sqlite3 *db = pParse->db;
100163   int iDb;
100164   int rc;
100165   int cookie;
100166 
100167   assert( pParse->checkSchema );
100168   assert( sqlite3_mutex_held(db->mutex) );
100169   for(iDb=0; iDb<db->nDb; iDb++){
100170     int openedTransaction = 0;         /* True if a transaction is opened */
100171     Btree *pBt = db->aDb[iDb].pBt;     /* Btree database to read cookie from */
100172     if( pBt==0 ) continue;
100173 
100174     /* If there is not already a read-only (or read-write) transaction opened
100175     ** on the b-tree database, open one now. If a transaction is opened, it
100176     ** will be closed immediately after reading the meta-value. */
100177     if( !sqlite3BtreeIsInReadTrans(pBt) ){
100178       rc = sqlite3BtreeBeginTrans(pBt, 0);
100179       if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){
100180         db->mallocFailed = 1;
100181       }
100182       if( rc!=SQLITE_OK ) return;
100183       openedTransaction = 1;
100184     }
100185 
100186     /* Read the schema cookie from the database. If it does not match the
100187     ** value stored as part of the in-memory schema representation,
100188     ** set Parse.rc to SQLITE_SCHEMA. */
100189     sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&cookie);
100190     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
100191     if( cookie!=db->aDb[iDb].pSchema->schema_cookie ){
100192       sqlite3ResetOneSchema(db, iDb);
100193       pParse->rc = SQLITE_SCHEMA;
100194     }
100195 
100196     /* Close the transaction, if one was opened. */
100197     if( openedTransaction ){
100198       sqlite3BtreeCommit(pBt);
100199     }
100200   }
100201 }
100202 
100203 /*
100204 ** Convert a schema pointer into the iDb index that indicates
100205 ** which database file in db->aDb[] the schema refers to.
100206 **
100207 ** If the same database is attached more than once, the first
100208 ** attached database is returned.
100209 */
100210 SQLITE_PRIVATE int sqlite3SchemaToIndex(sqlite3 *db, Schema *pSchema){
100211   int i = -1000000;
100212 
100213   /* If pSchema is NULL, then return -1000000. This happens when code in
100214   ** expr.c is trying to resolve a reference to a transient table (i.e. one
100215   ** created by a sub-select). In this case the return value of this
100216   ** function should never be used.
100217   **
100218   ** We return -1000000 instead of the more usual -1 simply because using
100219   ** -1000000 as the incorrect index into db->aDb[] is much
100220   ** more likely to cause a segfault than -1 (of course there are assert()
100221   ** statements too, but it never hurts to play the odds).
100222   */
100223   assert( sqlite3_mutex_held(db->mutex) );
100224   if( pSchema ){
100225     for(i=0; ALWAYS(i<db->nDb); i++){
100226       if( db->aDb[i].pSchema==pSchema ){
100227         break;
100228       }
100229     }
100230     assert( i>=0 && i<db->nDb );
100231   }
100232   return i;
100233 }
100234 
100235 /*
100236 ** Free all memory allocations in the pParse object
100237 */
100238 SQLITE_PRIVATE void sqlite3ParserReset(Parse *pParse){
100239   if( pParse ){
100240     sqlite3 *db = pParse->db;
100241     sqlite3DbFree(db, pParse->aLabel);
100242     sqlite3ExprListDelete(db, pParse->pConstExpr);
100243   }
100244 }
100245 
100246 /*
100247 ** Compile the UTF-8 encoded SQL statement zSql into a statement handle.
100248 */
100249 static int sqlite3Prepare(
100250   sqlite3 *db,              /* Database handle. */
100251   const char *zSql,         /* UTF-8 encoded SQL statement. */
100252   int nBytes,               /* Length of zSql in bytes. */
100253   int saveSqlFlag,          /* True to copy SQL text into the sqlite3_stmt */
100254   Vdbe *pReprepare,         /* VM being reprepared */
100255   sqlite3_stmt **ppStmt,    /* OUT: A pointer to the prepared statement */
100256   const char **pzTail       /* OUT: End of parsed string */
100257 ){
100258   Parse *pParse;            /* Parsing context */
100259   char *zErrMsg = 0;        /* Error message */
100260   int rc = SQLITE_OK;       /* Result code */
100261   int i;                    /* Loop counter */
100262 
100263   /* Allocate the parsing context */
100264   pParse = sqlite3StackAllocZero(db, sizeof(*pParse));
100265   if( pParse==0 ){
100266     rc = SQLITE_NOMEM;
100267     goto end_prepare;
100268   }
100269   pParse->pReprepare = pReprepare;
100270   assert( ppStmt && *ppStmt==0 );
100271   assert( !db->mallocFailed );
100272   assert( sqlite3_mutex_held(db->mutex) );
100273 
100274   /* Check to verify that it is possible to get a read lock on all
100275   ** database schemas.  The inability to get a read lock indicates that
100276   ** some other database connection is holding a write-lock, which in
100277   ** turn means that the other connection has made uncommitted changes
100278   ** to the schema.
100279   **
100280   ** Were we to proceed and prepare the statement against the uncommitted
100281   ** schema changes and if those schema changes are subsequently rolled
100282   ** back and different changes are made in their place, then when this
100283   ** prepared statement goes to run the schema cookie would fail to detect
100284   ** the schema change.  Disaster would follow.
100285   **
100286   ** This thread is currently holding mutexes on all Btrees (because
100287   ** of the sqlite3BtreeEnterAll() in sqlite3LockAndPrepare()) so it
100288   ** is not possible for another thread to start a new schema change
100289   ** while this routine is running.  Hence, we do not need to hold
100290   ** locks on the schema, we just need to make sure nobody else is
100291   ** holding them.
100292   **
100293   ** Note that setting READ_UNCOMMITTED overrides most lock detection,
100294   ** but it does *not* override schema lock detection, so this all still
100295   ** works even if READ_UNCOMMITTED is set.
100296   */
100297   for(i=0; i<db->nDb; i++) {
100298     Btree *pBt = db->aDb[i].pBt;
100299     if( pBt ){
100300       assert( sqlite3BtreeHoldsMutex(pBt) );
100301       rc = sqlite3BtreeSchemaLocked(pBt);
100302       if( rc ){
100303         const char *zDb = db->aDb[i].zName;
100304         sqlite3Error(db, rc, "database schema is locked: %s", zDb);
100305         testcase( db->flags & SQLITE_ReadUncommitted );
100306         goto end_prepare;
100307       }
100308     }
100309   }
100310 
100311   sqlite3VtabUnlockList(db);
100312 
100313   pParse->db = db;
100314   pParse->nQueryLoop = 0;  /* Logarithmic, so 0 really means 1 */
100315   if( nBytes>=0 && (nBytes==0 || zSql[nBytes-1]!=0) ){
100316     char *zSqlCopy;
100317     int mxLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH];
100318     testcase( nBytes==mxLen );
100319     testcase( nBytes==mxLen+1 );
100320     if( nBytes>mxLen ){
100321       sqlite3Error(db, SQLITE_TOOBIG, "statement too long");
100322       rc = sqlite3ApiExit(db, SQLITE_TOOBIG);
100323       goto end_prepare;
100324     }
100325     zSqlCopy = sqlite3DbStrNDup(db, zSql, nBytes);
100326     if( zSqlCopy ){
100327       sqlite3RunParser(pParse, zSqlCopy, &zErrMsg);
100328       sqlite3DbFree(db, zSqlCopy);
100329       pParse->zTail = &zSql[pParse->zTail-zSqlCopy];
100330     }else{
100331       pParse->zTail = &zSql[nBytes];
100332     }
100333   }else{
100334     sqlite3RunParser(pParse, zSql, &zErrMsg);
100335   }
100336   assert( 0==pParse->nQueryLoop );
100337 
100338   if( db->mallocFailed ){
100339     pParse->rc = SQLITE_NOMEM;
100340   }
100341   if( pParse->rc==SQLITE_DONE ) pParse->rc = SQLITE_OK;
100342   if( pParse->checkSchema ){
100343     schemaIsValid(pParse);
100344   }
100345   if( db->mallocFailed ){
100346     pParse->rc = SQLITE_NOMEM;
100347   }
100348   if( pzTail ){
100349     *pzTail = pParse->zTail;
100350   }
100351   rc = pParse->rc;
100352 
100353 #ifndef SQLITE_OMIT_EXPLAIN
100354   if( rc==SQLITE_OK && pParse->pVdbe && pParse->explain ){
100355     static const char * const azColName[] = {
100356        "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment",
100357        "selectid", "order", "from", "detail"
100358     };
100359     int iFirst, mx;
100360     if( pParse->explain==2 ){
100361       sqlite3VdbeSetNumCols(pParse->pVdbe, 4);
100362       iFirst = 8;
100363       mx = 12;
100364     }else{
100365       sqlite3VdbeSetNumCols(pParse->pVdbe, 8);
100366       iFirst = 0;
100367       mx = 8;
100368     }
100369     for(i=iFirst; i<mx; i++){
100370       sqlite3VdbeSetColName(pParse->pVdbe, i-iFirst, COLNAME_NAME,
100371                             azColName[i], SQLITE_STATIC);
100372     }
100373   }
100374 #endif
100375 
100376   if( db->init.busy==0 ){
100377     Vdbe *pVdbe = pParse->pVdbe;
100378     sqlite3VdbeSetSql(pVdbe, zSql, (int)(pParse->zTail-zSql), saveSqlFlag);
100379   }
100380   if( pParse->pVdbe && (rc!=SQLITE_OK || db->mallocFailed) ){
100381     sqlite3VdbeFinalize(pParse->pVdbe);
100382     assert(!(*ppStmt));
100383   }else{
100384     *ppStmt = (sqlite3_stmt*)pParse->pVdbe;
100385   }
100386 
100387   if( zErrMsg ){
100388     sqlite3Error(db, rc, "%s", zErrMsg);
100389     sqlite3DbFree(db, zErrMsg);
100390   }else{
100391     sqlite3Error(db, rc, 0);
100392   }
100393 
100394   /* Delete any TriggerPrg structures allocated while parsing this statement. */
100395   while( pParse->pTriggerPrg ){
100396     TriggerPrg *pT = pParse->pTriggerPrg;
100397     pParse->pTriggerPrg = pT->pNext;
100398     sqlite3DbFree(db, pT);
100399   }
100400 
100401 end_prepare:
100402 
100403   sqlite3ParserReset(pParse);
100404   sqlite3StackFree(db, pParse);
100405   rc = sqlite3ApiExit(db, rc);
100406   assert( (rc&db->errMask)==rc );
100407   return rc;
100408 }
100409 static int sqlite3LockAndPrepare(
100410   sqlite3 *db,              /* Database handle. */
100411   const char *zSql,         /* UTF-8 encoded SQL statement. */
100412   int nBytes,               /* Length of zSql in bytes. */
100413   int saveSqlFlag,          /* True to copy SQL text into the sqlite3_stmt */
100414   Vdbe *pOld,               /* VM being reprepared */
100415   sqlite3_stmt **ppStmt,    /* OUT: A pointer to the prepared statement */
100416   const char **pzTail       /* OUT: End of parsed string */
100417 ){
100418   int rc;
100419   assert( ppStmt!=0 );
100420   *ppStmt = 0;
100421   if( !sqlite3SafetyCheckOk(db) ){
100422     return SQLITE_MISUSE_BKPT;
100423   }
100424   sqlite3_mutex_enter(db->mutex);
100425   sqlite3BtreeEnterAll(db);
100426   rc = sqlite3Prepare(db, zSql, nBytes, saveSqlFlag, pOld, ppStmt, pzTail);
100427   if( rc==SQLITE_SCHEMA ){
100428     sqlite3_finalize(*ppStmt);
100429     rc = sqlite3Prepare(db, zSql, nBytes, saveSqlFlag, pOld, ppStmt, pzTail);
100430   }
100431   sqlite3BtreeLeaveAll(db);
100432   sqlite3_mutex_leave(db->mutex);
100433   assert( rc==SQLITE_OK || *ppStmt==0 );
100434   return rc;
100435 }
100436 
100437 /*
100438 ** Rerun the compilation of a statement after a schema change.
100439 **
100440 ** If the statement is successfully recompiled, return SQLITE_OK. Otherwise,
100441 ** if the statement cannot be recompiled because another connection has
100442 ** locked the sqlite3_master table, return SQLITE_LOCKED. If any other error
100443 ** occurs, return SQLITE_SCHEMA.
100444 */
100445 SQLITE_PRIVATE int sqlite3Reprepare(Vdbe *p){
100446   int rc;
100447   sqlite3_stmt *pNew;
100448   const char *zSql;
100449   sqlite3 *db;
100450 
100451   assert( sqlite3_mutex_held(sqlite3VdbeDb(p)->mutex) );
100452   zSql = sqlite3_sql((sqlite3_stmt *)p);
100453   assert( zSql!=0 );  /* Reprepare only called for prepare_v2() statements */
100454   db = sqlite3VdbeDb(p);
100455   assert( sqlite3_mutex_held(db->mutex) );
100456   rc = sqlite3LockAndPrepare(db, zSql, -1, 0, p, &pNew, 0);
100457   if( rc ){
100458     if( rc==SQLITE_NOMEM ){
100459       db->mallocFailed = 1;
100460     }
100461     assert( pNew==0 );
100462     return rc;
100463   }else{
100464     assert( pNew!=0 );
100465   }
100466   sqlite3VdbeSwap((Vdbe*)pNew, p);
100467   sqlite3TransferBindings(pNew, (sqlite3_stmt*)p);
100468   sqlite3VdbeResetStepResult((Vdbe*)pNew);
100469   sqlite3VdbeFinalize((Vdbe*)pNew);
100470   return SQLITE_OK;
100471 }
100472 
100473 
100474 /*
100475 ** Two versions of the official API.  Legacy and new use.  In the legacy
100476 ** version, the original SQL text is not saved in the prepared statement
100477 ** and so if a schema change occurs, SQLITE_SCHEMA is returned by
100478 ** sqlite3_step().  In the new version, the original SQL text is retained
100479 ** and the statement is automatically recompiled if an schema change
100480 ** occurs.
100481 */
100482 SQLITE_API int sqlite3_prepare(
100483   sqlite3 *db,              /* Database handle. */
100484   const char *zSql,         /* UTF-8 encoded SQL statement. */
100485   int nBytes,               /* Length of zSql in bytes. */
100486   sqlite3_stmt **ppStmt,    /* OUT: A pointer to the prepared statement */
100487   const char **pzTail       /* OUT: End of parsed string */
100488 ){
100489   int rc;
100490   rc = sqlite3LockAndPrepare(db,zSql,nBytes,0,0,ppStmt,pzTail);
100491   assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 );  /* VERIFY: F13021 */
100492   return rc;
100493 }
100494 SQLITE_API int sqlite3_prepare_v2(
100495   sqlite3 *db,              /* Database handle. */
100496   const char *zSql,         /* UTF-8 encoded SQL statement. */
100497   int nBytes,               /* Length of zSql in bytes. */
100498   sqlite3_stmt **ppStmt,    /* OUT: A pointer to the prepared statement */
100499   const char **pzTail       /* OUT: End of parsed string */
100500 ){
100501   int rc;
100502   rc = sqlite3LockAndPrepare(db,zSql,nBytes,1,0,ppStmt,pzTail);
100503   assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 );  /* VERIFY: F13021 */
100504   return rc;
100505 }
100506 
100507 
100508 #ifndef SQLITE_OMIT_UTF16
100509 /*
100510 ** Compile the UTF-16 encoded SQL statement zSql into a statement handle.
100511 */
100512 static int sqlite3Prepare16(
100513   sqlite3 *db,              /* Database handle. */
100514   const void *zSql,         /* UTF-16 encoded SQL statement. */
100515   int nBytes,               /* Length of zSql in bytes. */
100516   int saveSqlFlag,          /* True to save SQL text into the sqlite3_stmt */
100517   sqlite3_stmt **ppStmt,    /* OUT: A pointer to the prepared statement */
100518   const void **pzTail       /* OUT: End of parsed string */
100519 ){
100520   /* This function currently works by first transforming the UTF-16
100521   ** encoded string to UTF-8, then invoking sqlite3_prepare(). The
100522   ** tricky bit is figuring out the pointer to return in *pzTail.
100523   */
100524   char *zSql8;
100525   const char *zTail8 = 0;
100526   int rc = SQLITE_OK;
100527 
100528   assert( ppStmt );
100529   *ppStmt = 0;
100530   if( !sqlite3SafetyCheckOk(db) ){
100531     return SQLITE_MISUSE_BKPT;
100532   }
100533   if( nBytes>=0 ){
100534     int sz;
100535     const char *z = (const char*)zSql;
100536     for(sz=0; sz<nBytes && (z[sz]!=0 || z[sz+1]!=0); sz += 2){}
100537     nBytes = sz;
100538   }
100539   sqlite3_mutex_enter(db->mutex);
100540   zSql8 = sqlite3Utf16to8(db, zSql, nBytes, SQLITE_UTF16NATIVE);
100541   if( zSql8 ){
100542     rc = sqlite3LockAndPrepare(db, zSql8, -1, saveSqlFlag, 0, ppStmt, &zTail8);
100543   }
100544 
100545   if( zTail8 && pzTail ){
100546     /* If sqlite3_prepare returns a tail pointer, we calculate the
100547     ** equivalent pointer into the UTF-16 string by counting the unicode
100548     ** characters between zSql8 and zTail8, and then returning a pointer
100549     ** the same number of characters into the UTF-16 string.
100550     */
100551     int chars_parsed = sqlite3Utf8CharLen(zSql8, (int)(zTail8-zSql8));
100552     *pzTail = (u8 *)zSql + sqlite3Utf16ByteLen(zSql, chars_parsed);
100553   }
100554   sqlite3DbFree(db, zSql8);
100555   rc = sqlite3ApiExit(db, rc);
100556   sqlite3_mutex_leave(db->mutex);
100557   return rc;
100558 }
100559 
100560 /*
100561 ** Two versions of the official API.  Legacy and new use.  In the legacy
100562 ** version, the original SQL text is not saved in the prepared statement
100563 ** and so if a schema change occurs, SQLITE_SCHEMA is returned by
100564 ** sqlite3_step().  In the new version, the original SQL text is retained
100565 ** and the statement is automatically recompiled if an schema change
100566 ** occurs.
100567 */
100568 SQLITE_API int sqlite3_prepare16(
100569   sqlite3 *db,              /* Database handle. */
100570   const void *zSql,         /* UTF-16 encoded SQL statement. */
100571   int nBytes,               /* Length of zSql in bytes. */
100572   sqlite3_stmt **ppStmt,    /* OUT: A pointer to the prepared statement */
100573   const void **pzTail       /* OUT: End of parsed string */
100574 ){
100575   int rc;
100576   rc = sqlite3Prepare16(db,zSql,nBytes,0,ppStmt,pzTail);
100577   assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 );  /* VERIFY: F13021 */
100578   return rc;
100579 }
100580 SQLITE_API int sqlite3_prepare16_v2(
100581   sqlite3 *db,              /* Database handle. */
100582   const void *zSql,         /* UTF-16 encoded SQL statement. */
100583   int nBytes,               /* Length of zSql in bytes. */
100584   sqlite3_stmt **ppStmt,    /* OUT: A pointer to the prepared statement */
100585   const void **pzTail       /* OUT: End of parsed string */
100586 ){
100587   int rc;
100588   rc = sqlite3Prepare16(db,zSql,nBytes,1,ppStmt,pzTail);
100589   assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 );  /* VERIFY: F13021 */
100590   return rc;
100591 }
100592 
100593 #endif /* SQLITE_OMIT_UTF16 */
100594 
100595 /************** End of prepare.c *********************************************/
100596 /************** Begin file select.c ******************************************/
100597 /*
100598 ** 2001 September 15
100599 **
100600 ** The author disclaims copyright to this source code.  In place of
100601 ** a legal notice, here is a blessing:
100602 **
100603 **    May you do good and not evil.
100604 **    May you find forgiveness for yourself and forgive others.
100605 **    May you share freely, never taking more than you give.
100606 **
100607 *************************************************************************
100608 ** This file contains C code routines that are called by the parser
100609 ** to handle SELECT statements in SQLite.
100610 */
100611 
100612 /*
100613 ** An instance of the following object is used to record information about
100614 ** how to process the DISTINCT keyword, to simplify passing that information
100615 ** into the selectInnerLoop() routine.
100616 */
100617 typedef struct DistinctCtx DistinctCtx;
100618 struct DistinctCtx {
100619   u8 isTnct;      /* True if the DISTINCT keyword is present */
100620   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
100621   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
100622   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
100623 };
100624 
100625 /*
100626 ** An instance of the following object is used to record information about
100627 ** the ORDER BY (or GROUP BY) clause of query is being coded.
100628 */
100629 typedef struct SortCtx SortCtx;
100630 struct SortCtx {
100631   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
100632   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
100633   int iECursor;         /* Cursor number for the sorter */
100634   int regReturn;        /* Register holding block-output return address */
100635   int labelBkOut;       /* Start label for the block-output subroutine */
100636   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
100637   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
100638 };
100639 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
100640 
100641 /*
100642 ** Delete all the content of a Select structure but do not deallocate
100643 ** the select structure itself.
100644 */
100645 static void clearSelect(sqlite3 *db, Select *p){
100646   sqlite3ExprListDelete(db, p->pEList);
100647   sqlite3SrcListDelete(db, p->pSrc);
100648   sqlite3ExprDelete(db, p->pWhere);
100649   sqlite3ExprListDelete(db, p->pGroupBy);
100650   sqlite3ExprDelete(db, p->pHaving);
100651   sqlite3ExprListDelete(db, p->pOrderBy);
100652   sqlite3SelectDelete(db, p->pPrior);
100653   sqlite3ExprDelete(db, p->pLimit);
100654   sqlite3ExprDelete(db, p->pOffset);
100655   sqlite3WithDelete(db, p->pWith);
100656 }
100657 
100658 /*
100659 ** Initialize a SelectDest structure.
100660 */
100661 SQLITE_PRIVATE void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
100662   pDest->eDest = (u8)eDest;
100663   pDest->iSDParm = iParm;
100664   pDest->affSdst = 0;
100665   pDest->iSdst = 0;
100666   pDest->nSdst = 0;
100667 }
100668 
100669 
100670 /*
100671 ** Allocate a new Select structure and return a pointer to that
100672 ** structure.
100673 */
100674 SQLITE_PRIVATE Select *sqlite3SelectNew(
100675   Parse *pParse,        /* Parsing context */
100676   ExprList *pEList,     /* which columns to include in the result */
100677   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
100678   Expr *pWhere,         /* the WHERE clause */
100679   ExprList *pGroupBy,   /* the GROUP BY clause */
100680   Expr *pHaving,        /* the HAVING clause */
100681   ExprList *pOrderBy,   /* the ORDER BY clause */
100682   u16 selFlags,         /* Flag parameters, such as SF_Distinct */
100683   Expr *pLimit,         /* LIMIT value.  NULL means not used */
100684   Expr *pOffset         /* OFFSET value.  NULL means no offset */
100685 ){
100686   Select *pNew;
100687   Select standin;
100688   sqlite3 *db = pParse->db;
100689   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
100690   assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */
100691   if( pNew==0 ){
100692     assert( db->mallocFailed );
100693     pNew = &standin;
100694     memset(pNew, 0, sizeof(*pNew));
100695   }
100696   if( pEList==0 ){
100697     pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0));
100698   }
100699   pNew->pEList = pEList;
100700   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc));
100701   pNew->pSrc = pSrc;
100702   pNew->pWhere = pWhere;
100703   pNew->pGroupBy = pGroupBy;
100704   pNew->pHaving = pHaving;
100705   pNew->pOrderBy = pOrderBy;
100706   pNew->selFlags = selFlags;
100707   pNew->op = TK_SELECT;
100708   pNew->pLimit = pLimit;
100709   pNew->pOffset = pOffset;
100710   assert( pOffset==0 || pLimit!=0 );
100711   pNew->addrOpenEphm[0] = -1;
100712   pNew->addrOpenEphm[1] = -1;
100713   if( db->mallocFailed ) {
100714     clearSelect(db, pNew);
100715     if( pNew!=&standin ) sqlite3DbFree(db, pNew);
100716     pNew = 0;
100717   }else{
100718     assert( pNew->pSrc!=0 || pParse->nErr>0 );
100719   }
100720   assert( pNew!=&standin );
100721   return pNew;
100722 }
100723 
100724 /*
100725 ** Delete the given Select structure and all of its substructures.
100726 */
100727 SQLITE_PRIVATE void sqlite3SelectDelete(sqlite3 *db, Select *p){
100728   if( p ){
100729     clearSelect(db, p);
100730     sqlite3DbFree(db, p);
100731   }
100732 }
100733 
100734 /*
100735 ** Return a pointer to the right-most SELECT statement in a compound.
100736 */
100737 static Select *findRightmost(Select *p){
100738   while( p->pNext ) p = p->pNext;
100739   return p;
100740 }
100741 
100742 /*
100743 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
100744 ** type of join.  Return an integer constant that expresses that type
100745 ** in terms of the following bit values:
100746 **
100747 **     JT_INNER
100748 **     JT_CROSS
100749 **     JT_OUTER
100750 **     JT_NATURAL
100751 **     JT_LEFT
100752 **     JT_RIGHT
100753 **
100754 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
100755 **
100756 ** If an illegal or unsupported join type is seen, then still return
100757 ** a join type, but put an error in the pParse structure.
100758 */
100759 SQLITE_PRIVATE int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
100760   int jointype = 0;
100761   Token *apAll[3];
100762   Token *p;
100763                              /*   0123456789 123456789 123456789 123 */
100764   static const char zKeyText[] = "naturaleftouterightfullinnercross";
100765   static const struct {
100766     u8 i;        /* Beginning of keyword text in zKeyText[] */
100767     u8 nChar;    /* Length of the keyword in characters */
100768     u8 code;     /* Join type mask */
100769   } aKeyword[] = {
100770     /* natural */ { 0,  7, JT_NATURAL                },
100771     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
100772     /* outer   */ { 10, 5, JT_OUTER                  },
100773     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
100774     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
100775     /* inner   */ { 23, 5, JT_INNER                  },
100776     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
100777   };
100778   int i, j;
100779   apAll[0] = pA;
100780   apAll[1] = pB;
100781   apAll[2] = pC;
100782   for(i=0; i<3 && apAll[i]; i++){
100783     p = apAll[i];
100784     for(j=0; j<ArraySize(aKeyword); j++){
100785       if( p->n==aKeyword[j].nChar
100786           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
100787         jointype |= aKeyword[j].code;
100788         break;
100789       }
100790     }
100791     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
100792     if( j>=ArraySize(aKeyword) ){
100793       jointype |= JT_ERROR;
100794       break;
100795     }
100796   }
100797   if(
100798      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
100799      (jointype & JT_ERROR)!=0
100800   ){
100801     const char *zSp = " ";
100802     assert( pB!=0 );
100803     if( pC==0 ){ zSp++; }
100804     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
100805        "%T %T%s%T", pA, pB, zSp, pC);
100806     jointype = JT_INNER;
100807   }else if( (jointype & JT_OUTER)!=0
100808          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
100809     sqlite3ErrorMsg(pParse,
100810       "RIGHT and FULL OUTER JOINs are not currently supported");
100811     jointype = JT_INNER;
100812   }
100813   return jointype;
100814 }
100815 
100816 /*
100817 ** Return the index of a column in a table.  Return -1 if the column
100818 ** is not contained in the table.
100819 */
100820 static int columnIndex(Table *pTab, const char *zCol){
100821   int i;
100822   for(i=0; i<pTab->nCol; i++){
100823     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
100824   }
100825   return -1;
100826 }
100827 
100828 /*
100829 ** Search the first N tables in pSrc, from left to right, looking for a
100830 ** table that has a column named zCol.
100831 **
100832 ** When found, set *piTab and *piCol to the table index and column index
100833 ** of the matching column and return TRUE.
100834 **
100835 ** If not found, return FALSE.
100836 */
100837 static int tableAndColumnIndex(
100838   SrcList *pSrc,       /* Array of tables to search */
100839   int N,               /* Number of tables in pSrc->a[] to search */
100840   const char *zCol,    /* Name of the column we are looking for */
100841   int *piTab,          /* Write index of pSrc->a[] here */
100842   int *piCol           /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
100843 ){
100844   int i;               /* For looping over tables in pSrc */
100845   int iCol;            /* Index of column matching zCol */
100846 
100847   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
100848   for(i=0; i<N; i++){
100849     iCol = columnIndex(pSrc->a[i].pTab, zCol);
100850     if( iCol>=0 ){
100851       if( piTab ){
100852         *piTab = i;
100853         *piCol = iCol;
100854       }
100855       return 1;
100856     }
100857   }
100858   return 0;
100859 }
100860 
100861 /*
100862 ** This function is used to add terms implied by JOIN syntax to the
100863 ** WHERE clause expression of a SELECT statement. The new term, which
100864 ** is ANDed with the existing WHERE clause, is of the form:
100865 **
100866 **    (tab1.col1 = tab2.col2)
100867 **
100868 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
100869 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
100870 ** column iColRight of tab2.
100871 */
100872 static void addWhereTerm(
100873   Parse *pParse,                  /* Parsing context */
100874   SrcList *pSrc,                  /* List of tables in FROM clause */
100875   int iLeft,                      /* Index of first table to join in pSrc */
100876   int iColLeft,                   /* Index of column in first table */
100877   int iRight,                     /* Index of second table in pSrc */
100878   int iColRight,                  /* Index of column in second table */
100879   int isOuterJoin,                /* True if this is an OUTER join */
100880   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
100881 ){
100882   sqlite3 *db = pParse->db;
100883   Expr *pE1;
100884   Expr *pE2;
100885   Expr *pEq;
100886 
100887   assert( iLeft<iRight );
100888   assert( pSrc->nSrc>iRight );
100889   assert( pSrc->a[iLeft].pTab );
100890   assert( pSrc->a[iRight].pTab );
100891 
100892   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
100893   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
100894 
100895   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0);
100896   if( pEq && isOuterJoin ){
100897     ExprSetProperty(pEq, EP_FromJoin);
100898     assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
100899     ExprSetVVAProperty(pEq, EP_NoReduce);
100900     pEq->iRightJoinTable = (i16)pE2->iTable;
100901   }
100902   *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
100903 }
100904 
100905 /*
100906 ** Set the EP_FromJoin property on all terms of the given expression.
100907 ** And set the Expr.iRightJoinTable to iTable for every term in the
100908 ** expression.
100909 **
100910 ** The EP_FromJoin property is used on terms of an expression to tell
100911 ** the LEFT OUTER JOIN processing logic that this term is part of the
100912 ** join restriction specified in the ON or USING clause and not a part
100913 ** of the more general WHERE clause.  These terms are moved over to the
100914 ** WHERE clause during join processing but we need to remember that they
100915 ** originated in the ON or USING clause.
100916 **
100917 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
100918 ** expression depends on table iRightJoinTable even if that table is not
100919 ** explicitly mentioned in the expression.  That information is needed
100920 ** for cases like this:
100921 **
100922 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
100923 **
100924 ** The where clause needs to defer the handling of the t1.x=5
100925 ** term until after the t2 loop of the join.  In that way, a
100926 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
100927 ** defer the handling of t1.x=5, it will be processed immediately
100928 ** after the t1 loop and rows with t1.x!=5 will never appear in
100929 ** the output, which is incorrect.
100930 */
100931 static void setJoinExpr(Expr *p, int iTable){
100932   while( p ){
100933     ExprSetProperty(p, EP_FromJoin);
100934     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
100935     ExprSetVVAProperty(p, EP_NoReduce);
100936     p->iRightJoinTable = (i16)iTable;
100937     setJoinExpr(p->pLeft, iTable);
100938     p = p->pRight;
100939   }
100940 }
100941 
100942 /*
100943 ** This routine processes the join information for a SELECT statement.
100944 ** ON and USING clauses are converted into extra terms of the WHERE clause.
100945 ** NATURAL joins also create extra WHERE clause terms.
100946 **
100947 ** The terms of a FROM clause are contained in the Select.pSrc structure.
100948 ** The left most table is the first entry in Select.pSrc.  The right-most
100949 ** table is the last entry.  The join operator is held in the entry to
100950 ** the left.  Thus entry 0 contains the join operator for the join between
100951 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
100952 ** also attached to the left entry.
100953 **
100954 ** This routine returns the number of errors encountered.
100955 */
100956 static int sqliteProcessJoin(Parse *pParse, Select *p){
100957   SrcList *pSrc;                  /* All tables in the FROM clause */
100958   int i, j;                       /* Loop counters */
100959   struct SrcList_item *pLeft;     /* Left table being joined */
100960   struct SrcList_item *pRight;    /* Right table being joined */
100961 
100962   pSrc = p->pSrc;
100963   pLeft = &pSrc->a[0];
100964   pRight = &pLeft[1];
100965   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
100966     Table *pLeftTab = pLeft->pTab;
100967     Table *pRightTab = pRight->pTab;
100968     int isOuter;
100969 
100970     if( NEVER(pLeftTab==0 || pRightTab==0) ) continue;
100971     isOuter = (pRight->jointype & JT_OUTER)!=0;
100972 
100973     /* When the NATURAL keyword is present, add WHERE clause terms for
100974     ** every column that the two tables have in common.
100975     */
100976     if( pRight->jointype & JT_NATURAL ){
100977       if( pRight->pOn || pRight->pUsing ){
100978         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
100979            "an ON or USING clause", 0);
100980         return 1;
100981       }
100982       for(j=0; j<pRightTab->nCol; j++){
100983         char *zName;   /* Name of column in the right table */
100984         int iLeft;     /* Matching left table */
100985         int iLeftCol;  /* Matching column in the left table */
100986 
100987         zName = pRightTab->aCol[j].zName;
100988         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
100989           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
100990                        isOuter, &p->pWhere);
100991         }
100992       }
100993     }
100994 
100995     /* Disallow both ON and USING clauses in the same join
100996     */
100997     if( pRight->pOn && pRight->pUsing ){
100998       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
100999         "clauses in the same join");
101000       return 1;
101001     }
101002 
101003     /* Add the ON clause to the end of the WHERE clause, connected by
101004     ** an AND operator.
101005     */
101006     if( pRight->pOn ){
101007       if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
101008       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
101009       pRight->pOn = 0;
101010     }
101011 
101012     /* Create extra terms on the WHERE clause for each column named
101013     ** in the USING clause.  Example: If the two tables to be joined are
101014     ** A and B and the USING clause names X, Y, and Z, then add this
101015     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
101016     ** Report an error if any column mentioned in the USING clause is
101017     ** not contained in both tables to be joined.
101018     */
101019     if( pRight->pUsing ){
101020       IdList *pList = pRight->pUsing;
101021       for(j=0; j<pList->nId; j++){
101022         char *zName;     /* Name of the term in the USING clause */
101023         int iLeft;       /* Table on the left with matching column name */
101024         int iLeftCol;    /* Column number of matching column on the left */
101025         int iRightCol;   /* Column number of matching column on the right */
101026 
101027         zName = pList->a[j].zName;
101028         iRightCol = columnIndex(pRightTab, zName);
101029         if( iRightCol<0
101030          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
101031         ){
101032           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
101033             "not present in both tables", zName);
101034           return 1;
101035         }
101036         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
101037                      isOuter, &p->pWhere);
101038       }
101039     }
101040   }
101041   return 0;
101042 }
101043 
101044 /* Forward reference */
101045 static KeyInfo *keyInfoFromExprList(
101046   Parse *pParse,       /* Parsing context */
101047   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
101048   int iStart,          /* Begin with this column of pList */
101049   int nExtra           /* Add this many extra columns to the end */
101050 );
101051 
101052 /*
101053 ** Insert code into "v" that will push the record in register regData
101054 ** into the sorter.
101055 */
101056 static void pushOntoSorter(
101057   Parse *pParse,         /* Parser context */
101058   SortCtx *pSort,        /* Information about the ORDER BY clause */
101059   Select *pSelect,       /* The whole SELECT statement */
101060   int regData            /* Register holding data to be sorted */
101061 ){
101062   Vdbe *v = pParse->pVdbe;
101063   int nExpr = pSort->pOrderBy->nExpr;
101064   int regRecord = ++pParse->nMem;
101065   int regBase = pParse->nMem+1;
101066   int nOBSat = pSort->nOBSat;
101067   int op;
101068 
101069   pParse->nMem += nExpr+2;        /* nExpr+2 registers allocated at regBase */
101070   sqlite3ExprCacheClear(pParse);
101071   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, 0);
101072   sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
101073   sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1);
101074   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nExpr+2-nOBSat,regRecord);
101075   if( nOBSat>0 ){
101076     int regPrevKey;   /* The first nOBSat columns of the previous row */
101077     int addrFirst;    /* Address of the OP_IfNot opcode */
101078     int addrJmp;      /* Address of the OP_Jump opcode */
101079     VdbeOp *pOp;      /* Opcode that opens the sorter */
101080     int nKey;         /* Number of sorting key columns, including OP_Sequence */
101081     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
101082 
101083     regPrevKey = pParse->nMem+1;
101084     pParse->nMem += pSort->nOBSat;
101085     nKey = nExpr - pSort->nOBSat + 1;
101086     addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); VdbeCoverage(v);
101087     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
101088     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
101089     if( pParse->db->mallocFailed ) return;
101090     pOp->p2 = nKey + 1;
101091     pKI = pOp->p4.pKeyInfo;
101092     memset(pKI->aSortOrder, 0, pKI->nField); /* Makes OP_Jump below testable */
101093     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
101094     pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat, 1);
101095     addrJmp = sqlite3VdbeCurrentAddr(v);
101096     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
101097     pSort->labelBkOut = sqlite3VdbeMakeLabel(v);
101098     pSort->regReturn = ++pParse->nMem;
101099     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
101100     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
101101     sqlite3VdbeJumpHere(v, addrFirst);
101102     sqlite3VdbeAddOp3(v, OP_Move, regBase, regPrevKey, pSort->nOBSat);
101103     sqlite3VdbeJumpHere(v, addrJmp);
101104   }
101105   if( pSort->sortFlags & SORTFLAG_UseSorter ){
101106     op = OP_SorterInsert;
101107   }else{
101108     op = OP_IdxInsert;
101109   }
101110   sqlite3VdbeAddOp2(v, op, pSort->iECursor, regRecord);
101111   if( pSelect->iLimit ){
101112     int addr1, addr2;
101113     int iLimit;
101114     if( pSelect->iOffset ){
101115       iLimit = pSelect->iOffset+1;
101116     }else{
101117       iLimit = pSelect->iLimit;
101118     }
101119     addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit); VdbeCoverage(v);
101120     sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1);
101121     addr2 = sqlite3VdbeAddOp0(v, OP_Goto);
101122     sqlite3VdbeJumpHere(v, addr1);
101123     sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor);
101124     sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor);
101125     sqlite3VdbeJumpHere(v, addr2);
101126   }
101127 }
101128 
101129 /*
101130 ** Add code to implement the OFFSET
101131 */
101132 static void codeOffset(
101133   Vdbe *v,          /* Generate code into this VM */
101134   int iOffset,      /* Register holding the offset counter */
101135   int iContinue     /* Jump here to skip the current record */
101136 ){
101137   if( iOffset>0 ){
101138     int addr;
101139     sqlite3VdbeAddOp2(v, OP_AddImm, iOffset, -1);
101140     addr = sqlite3VdbeAddOp1(v, OP_IfNeg, iOffset); VdbeCoverage(v);
101141     sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue);
101142     VdbeComment((v, "skip OFFSET records"));
101143     sqlite3VdbeJumpHere(v, addr);
101144   }
101145 }
101146 
101147 /*
101148 ** Add code that will check to make sure the N registers starting at iMem
101149 ** form a distinct entry.  iTab is a sorting index that holds previously
101150 ** seen combinations of the N values.  A new entry is made in iTab
101151 ** if the current N values are new.
101152 **
101153 ** A jump to addrRepeat is made and the N+1 values are popped from the
101154 ** stack if the top N elements are not distinct.
101155 */
101156 static void codeDistinct(
101157   Parse *pParse,     /* Parsing and code generating context */
101158   int iTab,          /* A sorting index used to test for distinctness */
101159   int addrRepeat,    /* Jump to here if not distinct */
101160   int N,             /* Number of elements */
101161   int iMem           /* First element */
101162 ){
101163   Vdbe *v;
101164   int r1;
101165 
101166   v = pParse->pVdbe;
101167   r1 = sqlite3GetTempReg(pParse);
101168   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
101169   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
101170   sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
101171   sqlite3ReleaseTempReg(pParse, r1);
101172 }
101173 
101174 #ifndef SQLITE_OMIT_SUBQUERY
101175 /*
101176 ** Generate an error message when a SELECT is used within a subexpression
101177 ** (example:  "a IN (SELECT * FROM table)") but it has more than 1 result
101178 ** column.  We do this in a subroutine because the error used to occur
101179 ** in multiple places.  (The error only occurs in one place now, but we
101180 ** retain the subroutine to minimize code disruption.)
101181 */
101182 static int checkForMultiColumnSelectError(
101183   Parse *pParse,       /* Parse context. */
101184   SelectDest *pDest,   /* Destination of SELECT results */
101185   int nExpr            /* Number of result columns returned by SELECT */
101186 ){
101187   int eDest = pDest->eDest;
101188   if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
101189     sqlite3ErrorMsg(pParse, "only a single result allowed for "
101190        "a SELECT that is part of an expression");
101191     return 1;
101192   }else{
101193     return 0;
101194   }
101195 }
101196 #endif
101197 
101198 /*
101199 ** This routine generates the code for the inside of the inner loop
101200 ** of a SELECT.
101201 **
101202 ** If srcTab is negative, then the pEList expressions
101203 ** are evaluated in order to get the data for this row.  If srcTab is
101204 ** zero or more, then data is pulled from srcTab and pEList is used only
101205 ** to get number columns and the datatype for each column.
101206 */
101207 static void selectInnerLoop(
101208   Parse *pParse,          /* The parser context */
101209   Select *p,              /* The complete select statement being coded */
101210   ExprList *pEList,       /* List of values being extracted */
101211   int srcTab,             /* Pull data from this table */
101212   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
101213   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
101214   SelectDest *pDest,      /* How to dispose of the results */
101215   int iContinue,          /* Jump here to continue with next row */
101216   int iBreak              /* Jump here to break out of the inner loop */
101217 ){
101218   Vdbe *v = pParse->pVdbe;
101219   int i;
101220   int hasDistinct;        /* True if the DISTINCT keyword is present */
101221   int regResult;              /* Start of memory holding result set */
101222   int eDest = pDest->eDest;   /* How to dispose of results */
101223   int iParm = pDest->iSDParm; /* First argument to disposal method */
101224   int nResultCol;             /* Number of result columns */
101225 
101226   assert( v );
101227   assert( pEList!=0 );
101228   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
101229   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
101230   if( pSort==0 && !hasDistinct ){
101231     assert( iContinue!=0 );
101232     codeOffset(v, p->iOffset, iContinue);
101233   }
101234 
101235   /* Pull the requested columns.
101236   */
101237   nResultCol = pEList->nExpr;
101238 
101239   if( pDest->iSdst==0 ){
101240     pDest->iSdst = pParse->nMem+1;
101241     pParse->nMem += nResultCol;
101242   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
101243     /* This is an error condition that can result, for example, when a SELECT
101244     ** on the right-hand side of an INSERT contains more result columns than
101245     ** there are columns in the table on the left.  The error will be caught
101246     ** and reported later.  But we need to make sure enough memory is allocated
101247     ** to avoid other spurious errors in the meantime. */
101248     pParse->nMem += nResultCol;
101249   }
101250   pDest->nSdst = nResultCol;
101251   regResult = pDest->iSdst;
101252   if( srcTab>=0 ){
101253     for(i=0; i<nResultCol; i++){
101254       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
101255       VdbeComment((v, "%s", pEList->a[i].zName));
101256     }
101257   }else if( eDest!=SRT_Exists ){
101258     /* If the destination is an EXISTS(...) expression, the actual
101259     ** values returned by the SELECT are not required.
101260     */
101261     sqlite3ExprCodeExprList(pParse, pEList, regResult,
101262                   (eDest==SRT_Output||eDest==SRT_Coroutine)?SQLITE_ECEL_DUP:0);
101263   }
101264 
101265   /* If the DISTINCT keyword was present on the SELECT statement
101266   ** and this row has been seen before, then do not make this row
101267   ** part of the result.
101268   */
101269   if( hasDistinct ){
101270     switch( pDistinct->eTnctType ){
101271       case WHERE_DISTINCT_ORDERED: {
101272         VdbeOp *pOp;            /* No longer required OpenEphemeral instr. */
101273         int iJump;              /* Jump destination */
101274         int regPrev;            /* Previous row content */
101275 
101276         /* Allocate space for the previous row */
101277         regPrev = pParse->nMem+1;
101278         pParse->nMem += nResultCol;
101279 
101280         /* Change the OP_OpenEphemeral coded earlier to an OP_Null
101281         ** sets the MEM_Cleared bit on the first register of the
101282         ** previous value.  This will cause the OP_Ne below to always
101283         ** fail on the first iteration of the loop even if the first
101284         ** row is all NULLs.
101285         */
101286         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
101287         pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
101288         pOp->opcode = OP_Null;
101289         pOp->p1 = 1;
101290         pOp->p2 = regPrev;
101291 
101292         iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
101293         for(i=0; i<nResultCol; i++){
101294           CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr);
101295           if( i<nResultCol-1 ){
101296             sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
101297             VdbeCoverage(v);
101298           }else{
101299             sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
101300             VdbeCoverage(v);
101301            }
101302           sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
101303           sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
101304         }
101305         assert( sqlite3VdbeCurrentAddr(v)==iJump );
101306         sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
101307         break;
101308       }
101309 
101310       case WHERE_DISTINCT_UNIQUE: {
101311         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
101312         break;
101313       }
101314 
101315       default: {
101316         assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
101317         codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, regResult);
101318         break;
101319       }
101320     }
101321     if( pSort==0 ){
101322       codeOffset(v, p->iOffset, iContinue);
101323     }
101324   }
101325 
101326   switch( eDest ){
101327     /* In this mode, write each query result to the key of the temporary
101328     ** table iParm.
101329     */
101330 #ifndef SQLITE_OMIT_COMPOUND_SELECT
101331     case SRT_Union: {
101332       int r1;
101333       r1 = sqlite3GetTempReg(pParse);
101334       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
101335       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
101336       sqlite3ReleaseTempReg(pParse, r1);
101337       break;
101338     }
101339 
101340     /* Construct a record from the query result, but instead of
101341     ** saving that record, use it as a key to delete elements from
101342     ** the temporary table iParm.
101343     */
101344     case SRT_Except: {
101345       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
101346       break;
101347     }
101348 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
101349 
101350     /* Store the result as data using a unique key.
101351     */
101352     case SRT_Fifo:
101353     case SRT_DistFifo:
101354     case SRT_Table:
101355     case SRT_EphemTab: {
101356       int r1 = sqlite3GetTempReg(pParse);
101357       testcase( eDest==SRT_Table );
101358       testcase( eDest==SRT_EphemTab );
101359       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
101360 #ifndef SQLITE_OMIT_CTE
101361       if( eDest==SRT_DistFifo ){
101362         /* If the destination is DistFifo, then cursor (iParm+1) is open
101363         ** on an ephemeral index. If the current row is already present
101364         ** in the index, do not write it to the output. If not, add the
101365         ** current row to the index and proceed with writing it to the
101366         ** output table as well.  */
101367         int addr = sqlite3VdbeCurrentAddr(v) + 4;
101368         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); VdbeCoverage(v);
101369         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1);
101370         assert( pSort==0 );
101371       }
101372 #endif
101373       if( pSort ){
101374         pushOntoSorter(pParse, pSort, p, r1);
101375       }else{
101376         int r2 = sqlite3GetTempReg(pParse);
101377         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
101378         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
101379         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
101380         sqlite3ReleaseTempReg(pParse, r2);
101381       }
101382       sqlite3ReleaseTempReg(pParse, r1);
101383       break;
101384     }
101385 
101386 #ifndef SQLITE_OMIT_SUBQUERY
101387     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
101388     ** then there should be a single item on the stack.  Write this
101389     ** item into the set table with bogus data.
101390     */
101391     case SRT_Set: {
101392       assert( nResultCol==1 );
101393       pDest->affSdst =
101394                   sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst);
101395       if( pSort ){
101396         /* At first glance you would think we could optimize out the
101397         ** ORDER BY in this case since the order of entries in the set
101398         ** does not matter.  But there might be a LIMIT clause, in which
101399         ** case the order does matter */
101400         pushOntoSorter(pParse, pSort, p, regResult);
101401       }else{
101402         int r1 = sqlite3GetTempReg(pParse);
101403         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult,1,r1, &pDest->affSdst, 1);
101404         sqlite3ExprCacheAffinityChange(pParse, regResult, 1);
101405         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
101406         sqlite3ReleaseTempReg(pParse, r1);
101407       }
101408       break;
101409     }
101410 
101411     /* If any row exist in the result set, record that fact and abort.
101412     */
101413     case SRT_Exists: {
101414       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
101415       /* The LIMIT clause will terminate the loop for us */
101416       break;
101417     }
101418 
101419     /* If this is a scalar select that is part of an expression, then
101420     ** store the results in the appropriate memory cell and break out
101421     ** of the scan loop.
101422     */
101423     case SRT_Mem: {
101424       assert( nResultCol==1 );
101425       if( pSort ){
101426         pushOntoSorter(pParse, pSort, p, regResult);
101427       }else{
101428         sqlite3ExprCodeMove(pParse, regResult, iParm, 1);
101429         /* The LIMIT clause will jump out of the loop for us */
101430       }
101431       break;
101432     }
101433 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
101434 
101435     case SRT_Coroutine:       /* Send data to a co-routine */
101436     case SRT_Output: {        /* Return the results */
101437       testcase( eDest==SRT_Coroutine );
101438       testcase( eDest==SRT_Output );
101439       if( pSort ){
101440         int r1 = sqlite3GetTempReg(pParse);
101441         sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
101442         pushOntoSorter(pParse, pSort, p, r1);
101443         sqlite3ReleaseTempReg(pParse, r1);
101444       }else if( eDest==SRT_Coroutine ){
101445         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
101446       }else{
101447         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
101448         sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
101449       }
101450       break;
101451     }
101452 
101453 #ifndef SQLITE_OMIT_CTE
101454     /* Write the results into a priority queue that is order according to
101455     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
101456     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
101457     ** pSO->nExpr columns, then make sure all keys are unique by adding a
101458     ** final OP_Sequence column.  The last column is the record as a blob.
101459     */
101460     case SRT_DistQueue:
101461     case SRT_Queue: {
101462       int nKey;
101463       int r1, r2, r3;
101464       int addrTest = 0;
101465       ExprList *pSO;
101466       pSO = pDest->pOrderBy;
101467       assert( pSO );
101468       nKey = pSO->nExpr;
101469       r1 = sqlite3GetTempReg(pParse);
101470       r2 = sqlite3GetTempRange(pParse, nKey+2);
101471       r3 = r2+nKey+1;
101472       if( eDest==SRT_DistQueue ){
101473         /* If the destination is DistQueue, then cursor (iParm+1) is open
101474         ** on a second ephemeral index that holds all values every previously
101475         ** added to the queue. */
101476         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
101477                                         regResult, nResultCol);
101478         VdbeCoverage(v);
101479       }
101480       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
101481       if( eDest==SRT_DistQueue ){
101482         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
101483         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
101484       }
101485       for(i=0; i<nKey; i++){
101486         sqlite3VdbeAddOp2(v, OP_SCopy,
101487                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
101488                           r2+i);
101489       }
101490       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
101491       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
101492       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
101493       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
101494       sqlite3ReleaseTempReg(pParse, r1);
101495       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
101496       break;
101497     }
101498 #endif /* SQLITE_OMIT_CTE */
101499 
101500 
101501 
101502 #if !defined(SQLITE_OMIT_TRIGGER)
101503     /* Discard the results.  This is used for SELECT statements inside
101504     ** the body of a TRIGGER.  The purpose of such selects is to call
101505     ** user-defined functions that have side effects.  We do not care
101506     ** about the actual results of the select.
101507     */
101508     default: {
101509       assert( eDest==SRT_Discard );
101510       break;
101511     }
101512 #endif
101513   }
101514 
101515   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
101516   ** there is a sorter, in which case the sorter has already limited
101517   ** the output for us.
101518   */
101519   if( pSort==0 && p->iLimit ){
101520     sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); VdbeCoverage(v);
101521   }
101522 }
101523 
101524 /*
101525 ** Allocate a KeyInfo object sufficient for an index of N key columns and
101526 ** X extra columns.
101527 */
101528 SQLITE_PRIVATE KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
101529   KeyInfo *p = sqlite3DbMallocZero(0,
101530                    sizeof(KeyInfo) + (N+X)*(sizeof(CollSeq*)+1));
101531   if( p ){
101532     p->aSortOrder = (u8*)&p->aColl[N+X];
101533     p->nField = (u16)N;
101534     p->nXField = (u16)X;
101535     p->enc = ENC(db);
101536     p->db = db;
101537     p->nRef = 1;
101538   }else{
101539     db->mallocFailed = 1;
101540   }
101541   return p;
101542 }
101543 
101544 /*
101545 ** Deallocate a KeyInfo object
101546 */
101547 SQLITE_PRIVATE void sqlite3KeyInfoUnref(KeyInfo *p){
101548   if( p ){
101549     assert( p->nRef>0 );
101550     p->nRef--;
101551     if( p->nRef==0 ) sqlite3DbFree(0, p);
101552   }
101553 }
101554 
101555 /*
101556 ** Make a new pointer to a KeyInfo object
101557 */
101558 SQLITE_PRIVATE KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
101559   if( p ){
101560     assert( p->nRef>0 );
101561     p->nRef++;
101562   }
101563   return p;
101564 }
101565 
101566 #ifdef SQLITE_DEBUG
101567 /*
101568 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
101569 ** can only be changed if this is just a single reference to the object.
101570 **
101571 ** This routine is used only inside of assert() statements.
101572 */
101573 SQLITE_PRIVATE int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
101574 #endif /* SQLITE_DEBUG */
101575 
101576 /*
101577 ** Given an expression list, generate a KeyInfo structure that records
101578 ** the collating sequence for each expression in that expression list.
101579 **
101580 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
101581 ** KeyInfo structure is appropriate for initializing a virtual index to
101582 ** implement that clause.  If the ExprList is the result set of a SELECT
101583 ** then the KeyInfo structure is appropriate for initializing a virtual
101584 ** index to implement a DISTINCT test.
101585 **
101586 ** Space to hold the KeyInfo structure is obtain from malloc.  The calling
101587 ** function is responsible for seeing that this structure is eventually
101588 ** freed.
101589 */
101590 static KeyInfo *keyInfoFromExprList(
101591   Parse *pParse,       /* Parsing context */
101592   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
101593   int iStart,          /* Begin with this column of pList */
101594   int nExtra           /* Add this many extra columns to the end */
101595 ){
101596   int nExpr;
101597   KeyInfo *pInfo;
101598   struct ExprList_item *pItem;
101599   sqlite3 *db = pParse->db;
101600   int i;
101601 
101602   nExpr = pList->nExpr;
101603   pInfo = sqlite3KeyInfoAlloc(db, nExpr+nExtra-iStart, 1);
101604   if( pInfo ){
101605     assert( sqlite3KeyInfoIsWriteable(pInfo) );
101606     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
101607       CollSeq *pColl;
101608       pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
101609       if( !pColl ) pColl = db->pDfltColl;
101610       pInfo->aColl[i-iStart] = pColl;
101611       pInfo->aSortOrder[i-iStart] = pItem->sortOrder;
101612     }
101613   }
101614   return pInfo;
101615 }
101616 
101617 #ifndef SQLITE_OMIT_COMPOUND_SELECT
101618 /*
101619 ** Name of the connection operator, used for error messages.
101620 */
101621 static const char *selectOpName(int id){
101622   char *z;
101623   switch( id ){
101624     case TK_ALL:       z = "UNION ALL";   break;
101625     case TK_INTERSECT: z = "INTERSECT";   break;
101626     case TK_EXCEPT:    z = "EXCEPT";      break;
101627     default:           z = "UNION";       break;
101628   }
101629   return z;
101630 }
101631 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
101632 
101633 #ifndef SQLITE_OMIT_EXPLAIN
101634 /*
101635 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
101636 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
101637 ** where the caption is of the form:
101638 **
101639 **   "USE TEMP B-TREE FOR xxx"
101640 **
101641 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
101642 ** is determined by the zUsage argument.
101643 */
101644 static void explainTempTable(Parse *pParse, const char *zUsage){
101645   if( pParse->explain==2 ){
101646     Vdbe *v = pParse->pVdbe;
101647     char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage);
101648     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
101649   }
101650 }
101651 
101652 /*
101653 ** Assign expression b to lvalue a. A second, no-op, version of this macro
101654 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
101655 ** in sqlite3Select() to assign values to structure member variables that
101656 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
101657 ** code with #ifndef directives.
101658 */
101659 # define explainSetInteger(a, b) a = b
101660 
101661 #else
101662 /* No-op versions of the explainXXX() functions and macros. */
101663 # define explainTempTable(y,z)
101664 # define explainSetInteger(y,z)
101665 #endif
101666 
101667 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT)
101668 /*
101669 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
101670 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
101671 ** where the caption is of one of the two forms:
101672 **
101673 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)"
101674 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)"
101675 **
101676 ** where iSub1 and iSub2 are the integers passed as the corresponding
101677 ** function parameters, and op is the text representation of the parameter
101678 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT,
101679 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is
101680 ** false, or the second form if it is true.
101681 */
101682 static void explainComposite(
101683   Parse *pParse,                  /* Parse context */
101684   int op,                         /* One of TK_UNION, TK_EXCEPT etc. */
101685   int iSub1,                      /* Subquery id 1 */
101686   int iSub2,                      /* Subquery id 2 */
101687   int bUseTmp                     /* True if a temp table was used */
101688 ){
101689   assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL );
101690   if( pParse->explain==2 ){
101691     Vdbe *v = pParse->pVdbe;
101692     char *zMsg = sqlite3MPrintf(
101693         pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2,
101694         bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op)
101695     );
101696     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
101697   }
101698 }
101699 #else
101700 /* No-op versions of the explainXXX() functions and macros. */
101701 # define explainComposite(v,w,x,y,z)
101702 #endif
101703 
101704 /*
101705 ** If the inner loop was generated using a non-null pOrderBy argument,
101706 ** then the results were placed in a sorter.  After the loop is terminated
101707 ** we need to run the sorter and output the results.  The following
101708 ** routine generates the code needed to do that.
101709 */
101710 static void generateSortTail(
101711   Parse *pParse,    /* Parsing context */
101712   Select *p,        /* The SELECT statement */
101713   SortCtx *pSort,   /* Information on the ORDER BY clause */
101714   int nColumn,      /* Number of columns of data */
101715   SelectDest *pDest /* Write the sorted results here */
101716 ){
101717   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
101718   int addrBreak = sqlite3VdbeMakeLabel(v);     /* Jump here to exit loop */
101719   int addrContinue = sqlite3VdbeMakeLabel(v);  /* Jump here for next cycle */
101720   int addr;
101721   int addrOnce = 0;
101722   int iTab;
101723   int pseudoTab = 0;
101724   ExprList *pOrderBy = pSort->pOrderBy;
101725   int eDest = pDest->eDest;
101726   int iParm = pDest->iSDParm;
101727   int regRow;
101728   int regRowid;
101729   int nKey;
101730 
101731   if( pSort->labelBkOut ){
101732     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
101733     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrBreak);
101734     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
101735     addrOnce = sqlite3CodeOnce(pParse); VdbeCoverage(v);
101736   }
101737   iTab = pSort->iECursor;
101738   regRow = sqlite3GetTempReg(pParse);
101739   if( eDest==SRT_Output || eDest==SRT_Coroutine ){
101740     pseudoTab = pParse->nTab++;
101741     sqlite3VdbeAddOp3(v, OP_OpenPseudo, pseudoTab, regRow, nColumn);
101742     regRowid = 0;
101743   }else{
101744     regRowid = sqlite3GetTempReg(pParse);
101745   }
101746   nKey = pOrderBy->nExpr - pSort->nOBSat;
101747   if( pSort->sortFlags & SORTFLAG_UseSorter ){
101748     int regSortOut = ++pParse->nMem;
101749     int ptab2 = pParse->nTab++;
101750     sqlite3VdbeAddOp3(v, OP_OpenPseudo, ptab2, regSortOut, nKey+2);
101751     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
101752     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
101753     VdbeCoverage(v);
101754     codeOffset(v, p->iOffset, addrContinue);
101755     sqlite3VdbeAddOp2(v, OP_SorterData, iTab, regSortOut);
101756     sqlite3VdbeAddOp3(v, OP_Column, ptab2, nKey+1, regRow);
101757     sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE);
101758   }else{
101759     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
101760     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
101761     codeOffset(v, p->iOffset, addrContinue);
101762     sqlite3VdbeAddOp3(v, OP_Column, iTab, nKey+1, regRow);
101763   }
101764   switch( eDest ){
101765     case SRT_Table:
101766     case SRT_EphemTab: {
101767       testcase( eDest==SRT_Table );
101768       testcase( eDest==SRT_EphemTab );
101769       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
101770       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
101771       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
101772       break;
101773     }
101774 #ifndef SQLITE_OMIT_SUBQUERY
101775     case SRT_Set: {
101776       assert( nColumn==1 );
101777       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid,
101778                         &pDest->affSdst, 1);
101779       sqlite3ExprCacheAffinityChange(pParse, regRow, 1);
101780       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
101781       break;
101782     }
101783     case SRT_Mem: {
101784       assert( nColumn==1 );
101785       sqlite3ExprCodeMove(pParse, regRow, iParm, 1);
101786       /* The LIMIT clause will terminate the loop for us */
101787       break;
101788     }
101789 #endif
101790     default: {
101791       int i;
101792       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
101793       testcase( eDest==SRT_Output );
101794       testcase( eDest==SRT_Coroutine );
101795       for(i=0; i<nColumn; i++){
101796         assert( regRow!=pDest->iSdst+i );
101797         sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iSdst+i);
101798         if( i==0 ){
101799           sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE);
101800         }
101801       }
101802       if( eDest==SRT_Output ){
101803         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
101804         sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn);
101805       }else{
101806         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
101807       }
101808       break;
101809     }
101810   }
101811   sqlite3ReleaseTempReg(pParse, regRow);
101812   sqlite3ReleaseTempReg(pParse, regRowid);
101813 
101814   /* The bottom of the loop
101815   */
101816   sqlite3VdbeResolveLabel(v, addrContinue);
101817   if( pSort->sortFlags & SORTFLAG_UseSorter ){
101818     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
101819   }else{
101820     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
101821   }
101822   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
101823   sqlite3VdbeResolveLabel(v, addrBreak);
101824 }
101825 
101826 /*
101827 ** Return a pointer to a string containing the 'declaration type' of the
101828 ** expression pExpr. The string may be treated as static by the caller.
101829 **
101830 ** Also try to estimate the size of the returned value and return that
101831 ** result in *pEstWidth.
101832 **
101833 ** The declaration type is the exact datatype definition extracted from the
101834 ** original CREATE TABLE statement if the expression is a column. The
101835 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
101836 ** is considered a column can be complex in the presence of subqueries. The
101837 ** result-set expression in all of the following SELECT statements is
101838 ** considered a column by this function.
101839 **
101840 **   SELECT col FROM tbl;
101841 **   SELECT (SELECT col FROM tbl;
101842 **   SELECT (SELECT col FROM tbl);
101843 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
101844 **
101845 ** The declaration type for any expression other than a column is NULL.
101846 **
101847 ** This routine has either 3 or 6 parameters depending on whether or not
101848 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
101849 */
101850 #ifdef SQLITE_ENABLE_COLUMN_METADATA
101851 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F)
101852 static const char *columnTypeImpl(
101853   NameContext *pNC,
101854   Expr *pExpr,
101855   const char **pzOrigDb,
101856   const char **pzOrigTab,
101857   const char **pzOrigCol,
101858   u8 *pEstWidth
101859 ){
101860   char const *zOrigDb = 0;
101861   char const *zOrigTab = 0;
101862   char const *zOrigCol = 0;
101863 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
101864 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F)
101865 static const char *columnTypeImpl(
101866   NameContext *pNC,
101867   Expr *pExpr,
101868   u8 *pEstWidth
101869 ){
101870 #endif /* !defined(SQLITE_ENABLE_COLUMN_METADATA) */
101871   char const *zType = 0;
101872   int j;
101873   u8 estWidth = 1;
101874 
101875   if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0;
101876   switch( pExpr->op ){
101877     case TK_AGG_COLUMN:
101878     case TK_COLUMN: {
101879       /* The expression is a column. Locate the table the column is being
101880       ** extracted from in NameContext.pSrcList. This table may be real
101881       ** database table or a subquery.
101882       */
101883       Table *pTab = 0;            /* Table structure column is extracted from */
101884       Select *pS = 0;             /* Select the column is extracted from */
101885       int iCol = pExpr->iColumn;  /* Index of column in pTab */
101886       testcase( pExpr->op==TK_AGG_COLUMN );
101887       testcase( pExpr->op==TK_COLUMN );
101888       while( pNC && !pTab ){
101889         SrcList *pTabList = pNC->pSrcList;
101890         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
101891         if( j<pTabList->nSrc ){
101892           pTab = pTabList->a[j].pTab;
101893           pS = pTabList->a[j].pSelect;
101894         }else{
101895           pNC = pNC->pNext;
101896         }
101897       }
101898 
101899       if( pTab==0 ){
101900         /* At one time, code such as "SELECT new.x" within a trigger would
101901         ** cause this condition to run.  Since then, we have restructured how
101902         ** trigger code is generated and so this condition is no longer
101903         ** possible. However, it can still be true for statements like
101904         ** the following:
101905         **
101906         **   CREATE TABLE t1(col INTEGER);
101907         **   SELECT (SELECT t1.col) FROM FROM t1;
101908         **
101909         ** when columnType() is called on the expression "t1.col" in the
101910         ** sub-select. In this case, set the column type to NULL, even
101911         ** though it should really be "INTEGER".
101912         **
101913         ** This is not a problem, as the column type of "t1.col" is never
101914         ** used. When columnType() is called on the expression
101915         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
101916         ** branch below.  */
101917         break;
101918       }
101919 
101920       assert( pTab && pExpr->pTab==pTab );
101921       if( pS ){
101922         /* The "table" is actually a sub-select or a view in the FROM clause
101923         ** of the SELECT statement. Return the declaration type and origin
101924         ** data for the result-set column of the sub-select.
101925         */
101926         if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){
101927           /* If iCol is less than zero, then the expression requests the
101928           ** rowid of the sub-select or view. This expression is legal (see
101929           ** test case misc2.2.2) - it always evaluates to NULL.
101930           */
101931           NameContext sNC;
101932           Expr *p = pS->pEList->a[iCol].pExpr;
101933           sNC.pSrcList = pS->pSrc;
101934           sNC.pNext = pNC;
101935           sNC.pParse = pNC->pParse;
101936           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth);
101937         }
101938       }else if( pTab->pSchema ){
101939         /* A real table */
101940         assert( !pS );
101941         if( iCol<0 ) iCol = pTab->iPKey;
101942         assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
101943 #ifdef SQLITE_ENABLE_COLUMN_METADATA
101944         if( iCol<0 ){
101945           zType = "INTEGER";
101946           zOrigCol = "rowid";
101947         }else{
101948           zType = pTab->aCol[iCol].zType;
101949           zOrigCol = pTab->aCol[iCol].zName;
101950           estWidth = pTab->aCol[iCol].szEst;
101951         }
101952         zOrigTab = pTab->zName;
101953         if( pNC->pParse ){
101954           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
101955           zOrigDb = pNC->pParse->db->aDb[iDb].zName;
101956         }
101957 #else
101958         if( iCol<0 ){
101959           zType = "INTEGER";
101960         }else{
101961           zType = pTab->aCol[iCol].zType;
101962           estWidth = pTab->aCol[iCol].szEst;
101963         }
101964 #endif
101965       }
101966       break;
101967     }
101968 #ifndef SQLITE_OMIT_SUBQUERY
101969     case TK_SELECT: {
101970       /* The expression is a sub-select. Return the declaration type and
101971       ** origin info for the single column in the result set of the SELECT
101972       ** statement.
101973       */
101974       NameContext sNC;
101975       Select *pS = pExpr->x.pSelect;
101976       Expr *p = pS->pEList->a[0].pExpr;
101977       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
101978       sNC.pSrcList = pS->pSrc;
101979       sNC.pNext = pNC;
101980       sNC.pParse = pNC->pParse;
101981       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth);
101982       break;
101983     }
101984 #endif
101985   }
101986 
101987 #ifdef SQLITE_ENABLE_COLUMN_METADATA
101988   if( pzOrigDb ){
101989     assert( pzOrigTab && pzOrigCol );
101990     *pzOrigDb = zOrigDb;
101991     *pzOrigTab = zOrigTab;
101992     *pzOrigCol = zOrigCol;
101993   }
101994 #endif
101995   if( pEstWidth ) *pEstWidth = estWidth;
101996   return zType;
101997 }
101998 
101999 /*
102000 ** Generate code that will tell the VDBE the declaration types of columns
102001 ** in the result set.
102002 */
102003 static void generateColumnTypes(
102004   Parse *pParse,      /* Parser context */
102005   SrcList *pTabList,  /* List of tables */
102006   ExprList *pEList    /* Expressions defining the result set */
102007 ){
102008 #ifndef SQLITE_OMIT_DECLTYPE
102009   Vdbe *v = pParse->pVdbe;
102010   int i;
102011   NameContext sNC;
102012   sNC.pSrcList = pTabList;
102013   sNC.pParse = pParse;
102014   for(i=0; i<pEList->nExpr; i++){
102015     Expr *p = pEList->a[i].pExpr;
102016     const char *zType;
102017 #ifdef SQLITE_ENABLE_COLUMN_METADATA
102018     const char *zOrigDb = 0;
102019     const char *zOrigTab = 0;
102020     const char *zOrigCol = 0;
102021     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0);
102022 
102023     /* The vdbe must make its own copy of the column-type and other
102024     ** column specific strings, in case the schema is reset before this
102025     ** virtual machine is deleted.
102026     */
102027     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
102028     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
102029     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
102030 #else
102031     zType = columnType(&sNC, p, 0, 0, 0, 0);
102032 #endif
102033     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
102034   }
102035 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
102036 }
102037 
102038 /*
102039 ** Generate code that will tell the VDBE the names of columns
102040 ** in the result set.  This information is used to provide the
102041 ** azCol[] values in the callback.
102042 */
102043 static void generateColumnNames(
102044   Parse *pParse,      /* Parser context */
102045   SrcList *pTabList,  /* List of tables */
102046   ExprList *pEList    /* Expressions defining the result set */
102047 ){
102048   Vdbe *v = pParse->pVdbe;
102049   int i, j;
102050   sqlite3 *db = pParse->db;
102051   int fullNames, shortNames;
102052 
102053 #ifndef SQLITE_OMIT_EXPLAIN
102054   /* If this is an EXPLAIN, skip this step */
102055   if( pParse->explain ){
102056     return;
102057   }
102058 #endif
102059 
102060   if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return;
102061   pParse->colNamesSet = 1;
102062   fullNames = (db->flags & SQLITE_FullColNames)!=0;
102063   shortNames = (db->flags & SQLITE_ShortColNames)!=0;
102064   sqlite3VdbeSetNumCols(v, pEList->nExpr);
102065   for(i=0; i<pEList->nExpr; i++){
102066     Expr *p;
102067     p = pEList->a[i].pExpr;
102068     if( NEVER(p==0) ) continue;
102069     if( pEList->a[i].zName ){
102070       char *zName = pEList->a[i].zName;
102071       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
102072     }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){
102073       Table *pTab;
102074       char *zCol;
102075       int iCol = p->iColumn;
102076       for(j=0; ALWAYS(j<pTabList->nSrc); j++){
102077         if( pTabList->a[j].iCursor==p->iTable ) break;
102078       }
102079       assert( j<pTabList->nSrc );
102080       pTab = pTabList->a[j].pTab;
102081       if( iCol<0 ) iCol = pTab->iPKey;
102082       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
102083       if( iCol<0 ){
102084         zCol = "rowid";
102085       }else{
102086         zCol = pTab->aCol[iCol].zName;
102087       }
102088       if( !shortNames && !fullNames ){
102089         sqlite3VdbeSetColName(v, i, COLNAME_NAME,
102090             sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
102091       }else if( fullNames ){
102092         char *zName = 0;
102093         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
102094         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
102095       }else{
102096         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
102097       }
102098     }else{
102099       const char *z = pEList->a[i].zSpan;
102100       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
102101       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
102102     }
102103   }
102104   generateColumnTypes(pParse, pTabList, pEList);
102105 }
102106 
102107 /*
102108 ** Given a an expression list (which is really the list of expressions
102109 ** that form the result set of a SELECT statement) compute appropriate
102110 ** column names for a table that would hold the expression list.
102111 **
102112 ** All column names will be unique.
102113 **
102114 ** Only the column names are computed.  Column.zType, Column.zColl,
102115 ** and other fields of Column are zeroed.
102116 **
102117 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
102118 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
102119 */
102120 static int selectColumnsFromExprList(
102121   Parse *pParse,          /* Parsing context */
102122   ExprList *pEList,       /* Expr list from which to derive column names */
102123   i16 *pnCol,             /* Write the number of columns here */
102124   Column **paCol          /* Write the new column list here */
102125 ){
102126   sqlite3 *db = pParse->db;   /* Database connection */
102127   int i, j;                   /* Loop counters */
102128   int cnt;                    /* Index added to make the name unique */
102129   Column *aCol, *pCol;        /* For looping over result columns */
102130   int nCol;                   /* Number of columns in the result set */
102131   Expr *p;                    /* Expression for a single result column */
102132   char *zName;                /* Column name */
102133   int nName;                  /* Size of name in zName[] */
102134 
102135   if( pEList ){
102136     nCol = pEList->nExpr;
102137     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
102138     testcase( aCol==0 );
102139   }else{
102140     nCol = 0;
102141     aCol = 0;
102142   }
102143   *pnCol = nCol;
102144   *paCol = aCol;
102145 
102146   for(i=0, pCol=aCol; i<nCol; i++, pCol++){
102147     /* Get an appropriate name for the column
102148     */
102149     p = sqlite3ExprSkipCollate(pEList->a[i].pExpr);
102150     if( (zName = pEList->a[i].zName)!=0 ){
102151       /* If the column contains an "AS <name>" phrase, use <name> as the name */
102152       zName = sqlite3DbStrDup(db, zName);
102153     }else{
102154       Expr *pColExpr = p;  /* The expression that is the result column name */
102155       Table *pTab;         /* Table associated with this expression */
102156       while( pColExpr->op==TK_DOT ){
102157         pColExpr = pColExpr->pRight;
102158         assert( pColExpr!=0 );
102159       }
102160       if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){
102161         /* For columns use the column name name */
102162         int iCol = pColExpr->iColumn;
102163         pTab = pColExpr->pTab;
102164         if( iCol<0 ) iCol = pTab->iPKey;
102165         zName = sqlite3MPrintf(db, "%s",
102166                  iCol>=0 ? pTab->aCol[iCol].zName : "rowid");
102167       }else if( pColExpr->op==TK_ID ){
102168         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
102169         zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken);
102170       }else{
102171         /* Use the original text of the column expression as its name */
102172         zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan);
102173       }
102174     }
102175     if( db->mallocFailed ){
102176       sqlite3DbFree(db, zName);
102177       break;
102178     }
102179 
102180     /* Make sure the column name is unique.  If the name is not unique,
102181     ** append a integer to the name so that it becomes unique.
102182     */
102183     nName = sqlite3Strlen30(zName);
102184     for(j=cnt=0; j<i; j++){
102185       if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
102186         char *zNewName;
102187         int k;
102188         for(k=nName-1; k>1 && sqlite3Isdigit(zName[k]); k--){}
102189         if( k>=0 && zName[k]==':' ) nName = k;
102190         zName[nName] = 0;
102191         zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt);
102192         sqlite3DbFree(db, zName);
102193         zName = zNewName;
102194         j = -1;
102195         if( zName==0 ) break;
102196       }
102197     }
102198     pCol->zName = zName;
102199   }
102200   if( db->mallocFailed ){
102201     for(j=0; j<i; j++){
102202       sqlite3DbFree(db, aCol[j].zName);
102203     }
102204     sqlite3DbFree(db, aCol);
102205     *paCol = 0;
102206     *pnCol = 0;
102207     return SQLITE_NOMEM;
102208   }
102209   return SQLITE_OK;
102210 }
102211 
102212 /*
102213 ** Add type and collation information to a column list based on
102214 ** a SELECT statement.
102215 **
102216 ** The column list presumably came from selectColumnNamesFromExprList().
102217 ** The column list has only names, not types or collations.  This
102218 ** routine goes through and adds the types and collations.
102219 **
102220 ** This routine requires that all identifiers in the SELECT
102221 ** statement be resolved.
102222 */
102223 static void selectAddColumnTypeAndCollation(
102224   Parse *pParse,        /* Parsing contexts */
102225   Table *pTab,          /* Add column type information to this table */
102226   Select *pSelect       /* SELECT used to determine types and collations */
102227 ){
102228   sqlite3 *db = pParse->db;
102229   NameContext sNC;
102230   Column *pCol;
102231   CollSeq *pColl;
102232   int i;
102233   Expr *p;
102234   struct ExprList_item *a;
102235   u64 szAll = 0;
102236 
102237   assert( pSelect!=0 );
102238   assert( (pSelect->selFlags & SF_Resolved)!=0 );
102239   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
102240   if( db->mallocFailed ) return;
102241   memset(&sNC, 0, sizeof(sNC));
102242   sNC.pSrcList = pSelect->pSrc;
102243   a = pSelect->pEList->a;
102244   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
102245     p = a[i].pExpr;
102246     pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p,0,0,0, &pCol->szEst));
102247     szAll += pCol->szEst;
102248     pCol->affinity = sqlite3ExprAffinity(p);
102249     if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE;
102250     pColl = sqlite3ExprCollSeq(pParse, p);
102251     if( pColl ){
102252       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
102253     }
102254   }
102255   pTab->szTabRow = sqlite3LogEst(szAll*4);
102256 }
102257 
102258 /*
102259 ** Given a SELECT statement, generate a Table structure that describes
102260 ** the result set of that SELECT.
102261 */
102262 SQLITE_PRIVATE Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
102263   Table *pTab;
102264   sqlite3 *db = pParse->db;
102265   int savedFlags;
102266 
102267   savedFlags = db->flags;
102268   db->flags &= ~SQLITE_FullColNames;
102269   db->flags |= SQLITE_ShortColNames;
102270   sqlite3SelectPrep(pParse, pSelect, 0);
102271   if( pParse->nErr ) return 0;
102272   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
102273   db->flags = savedFlags;
102274   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
102275   if( pTab==0 ){
102276     return 0;
102277   }
102278   /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
102279   ** is disabled */
102280   assert( db->lookaside.bEnabled==0 );
102281   pTab->nRef = 1;
102282   pTab->zName = 0;
102283   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
102284   selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
102285   selectAddColumnTypeAndCollation(pParse, pTab, pSelect);
102286   pTab->iPKey = -1;
102287   if( db->mallocFailed ){
102288     sqlite3DeleteTable(db, pTab);
102289     return 0;
102290   }
102291   return pTab;
102292 }
102293 
102294 /*
102295 ** Get a VDBE for the given parser context.  Create a new one if necessary.
102296 ** If an error occurs, return NULL and leave a message in pParse.
102297 */
102298 SQLITE_PRIVATE Vdbe *sqlite3GetVdbe(Parse *pParse){
102299   Vdbe *v = pParse->pVdbe;
102300   if( v==0 ){
102301     v = pParse->pVdbe = sqlite3VdbeCreate(pParse);
102302     if( v ) sqlite3VdbeAddOp0(v, OP_Init);
102303     if( pParse->pToplevel==0
102304      && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
102305     ){
102306       pParse->okConstFactor = 1;
102307     }
102308 
102309   }
102310   return v;
102311 }
102312 
102313 
102314 /*
102315 ** Compute the iLimit and iOffset fields of the SELECT based on the
102316 ** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
102317 ** that appear in the original SQL statement after the LIMIT and OFFSET
102318 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
102319 ** are the integer memory register numbers for counters used to compute
102320 ** the limit and offset.  If there is no limit and/or offset, then
102321 ** iLimit and iOffset are negative.
102322 **
102323 ** This routine changes the values of iLimit and iOffset only if
102324 ** a limit or offset is defined by pLimit and pOffset.  iLimit and
102325 ** iOffset should have been preset to appropriate default values (zero)
102326 ** prior to calling this routine.
102327 **
102328 ** The iOffset register (if it exists) is initialized to the value
102329 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
102330 ** iOffset+1 is initialized to LIMIT+OFFSET.
102331 **
102332 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
102333 ** redefined.  The UNION ALL operator uses this property to force
102334 ** the reuse of the same limit and offset registers across multiple
102335 ** SELECT statements.
102336 */
102337 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
102338   Vdbe *v = 0;
102339   int iLimit = 0;
102340   int iOffset;
102341   int addr1, n;
102342   if( p->iLimit ) return;
102343 
102344   /*
102345   ** "LIMIT -1" always shows all rows.  There is some
102346   ** controversy about what the correct behavior should be.
102347   ** The current implementation interprets "LIMIT 0" to mean
102348   ** no rows.
102349   */
102350   sqlite3ExprCacheClear(pParse);
102351   assert( p->pOffset==0 || p->pLimit!=0 );
102352   if( p->pLimit ){
102353     p->iLimit = iLimit = ++pParse->nMem;
102354     v = sqlite3GetVdbe(pParse);
102355     assert( v!=0 );
102356     if( sqlite3ExprIsInteger(p->pLimit, &n) ){
102357       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
102358       VdbeComment((v, "LIMIT counter"));
102359       if( n==0 ){
102360         sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
102361       }else if( n>=0 && p->nSelectRow>(u64)n ){
102362         p->nSelectRow = n;
102363       }
102364     }else{
102365       sqlite3ExprCode(pParse, p->pLimit, iLimit);
102366       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
102367       VdbeComment((v, "LIMIT counter"));
102368       sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak); VdbeCoverage(v);
102369     }
102370     if( p->pOffset ){
102371       p->iOffset = iOffset = ++pParse->nMem;
102372       pParse->nMem++;   /* Allocate an extra register for limit+offset */
102373       sqlite3ExprCode(pParse, p->pOffset, iOffset);
102374       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
102375       VdbeComment((v, "OFFSET counter"));
102376       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); VdbeCoverage(v);
102377       sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset);
102378       sqlite3VdbeJumpHere(v, addr1);
102379       sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1);
102380       VdbeComment((v, "LIMIT+OFFSET"));
102381       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); VdbeCoverage(v);
102382       sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1);
102383       sqlite3VdbeJumpHere(v, addr1);
102384     }
102385   }
102386 }
102387 
102388 #ifndef SQLITE_OMIT_COMPOUND_SELECT
102389 /*
102390 ** Return the appropriate collating sequence for the iCol-th column of
102391 ** the result set for the compound-select statement "p".  Return NULL if
102392 ** the column has no default collating sequence.
102393 **
102394 ** The collating sequence for the compound select is taken from the
102395 ** left-most term of the select that has a collating sequence.
102396 */
102397 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
102398   CollSeq *pRet;
102399   if( p->pPrior ){
102400     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
102401   }else{
102402     pRet = 0;
102403   }
102404   assert( iCol>=0 );
102405   if( pRet==0 && iCol<p->pEList->nExpr ){
102406     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
102407   }
102408   return pRet;
102409 }
102410 
102411 /*
102412 ** The select statement passed as the second parameter is a compound SELECT
102413 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
102414 ** structure suitable for implementing the ORDER BY.
102415 **
102416 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
102417 ** function is responsible for ensuring that this structure is eventually
102418 ** freed.
102419 */
102420 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
102421   ExprList *pOrderBy = p->pOrderBy;
102422   int nOrderBy = p->pOrderBy->nExpr;
102423   sqlite3 *db = pParse->db;
102424   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
102425   if( pRet ){
102426     int i;
102427     for(i=0; i<nOrderBy; i++){
102428       struct ExprList_item *pItem = &pOrderBy->a[i];
102429       Expr *pTerm = pItem->pExpr;
102430       CollSeq *pColl;
102431 
102432       if( pTerm->flags & EP_Collate ){
102433         pColl = sqlite3ExprCollSeq(pParse, pTerm);
102434       }else{
102435         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
102436         if( pColl==0 ) pColl = db->pDfltColl;
102437         pOrderBy->a[i].pExpr =
102438           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
102439       }
102440       assert( sqlite3KeyInfoIsWriteable(pRet) );
102441       pRet->aColl[i] = pColl;
102442       pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder;
102443     }
102444   }
102445 
102446   return pRet;
102447 }
102448 
102449 #ifndef SQLITE_OMIT_CTE
102450 /*
102451 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
102452 ** query of the form:
102453 **
102454 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
102455 **                         \___________/             \_______________/
102456 **                           p->pPrior                      p
102457 **
102458 **
102459 ** There is exactly one reference to the recursive-table in the FROM clause
102460 ** of recursive-query, marked with the SrcList->a[].isRecursive flag.
102461 **
102462 ** The setup-query runs once to generate an initial set of rows that go
102463 ** into a Queue table.  Rows are extracted from the Queue table one by
102464 ** one.  Each row extracted from Queue is output to pDest.  Then the single
102465 ** extracted row (now in the iCurrent table) becomes the content of the
102466 ** recursive-table for a recursive-query run.  The output of the recursive-query
102467 ** is added back into the Queue table.  Then another row is extracted from Queue
102468 ** and the iteration continues until the Queue table is empty.
102469 **
102470 ** If the compound query operator is UNION then no duplicate rows are ever
102471 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
102472 ** that have ever been inserted into Queue and causes duplicates to be
102473 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
102474 **
102475 ** If the query has an ORDER BY, then entries in the Queue table are kept in
102476 ** ORDER BY order and the first entry is extracted for each cycle.  Without
102477 ** an ORDER BY, the Queue table is just a FIFO.
102478 **
102479 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
102480 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
102481 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
102482 ** with a positive value, then the first OFFSET outputs are discarded rather
102483 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
102484 ** rows have been skipped.
102485 */
102486 static void generateWithRecursiveQuery(
102487   Parse *pParse,        /* Parsing context */
102488   Select *p,            /* The recursive SELECT to be coded */
102489   SelectDest *pDest     /* What to do with query results */
102490 ){
102491   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
102492   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
102493   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
102494   Select *pSetup = p->pPrior;   /* The setup query */
102495   int addrTop;                  /* Top of the loop */
102496   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
102497   int iCurrent = 0;             /* The Current table */
102498   int regCurrent;               /* Register holding Current table */
102499   int iQueue;                   /* The Queue table */
102500   int iDistinct = 0;            /* To ensure unique results if UNION */
102501   int eDest = SRT_Fifo;         /* How to write to Queue */
102502   SelectDest destQueue;         /* SelectDest targetting the Queue table */
102503   int i;                        /* Loop counter */
102504   int rc;                       /* Result code */
102505   ExprList *pOrderBy;           /* The ORDER BY clause */
102506   Expr *pLimit, *pOffset;       /* Saved LIMIT and OFFSET */
102507   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
102508 
102509   /* Obtain authorization to do a recursive query */
102510   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
102511 
102512   /* Process the LIMIT and OFFSET clauses, if they exist */
102513   addrBreak = sqlite3VdbeMakeLabel(v);
102514   computeLimitRegisters(pParse, p, addrBreak);
102515   pLimit = p->pLimit;
102516   pOffset = p->pOffset;
102517   regLimit = p->iLimit;
102518   regOffset = p->iOffset;
102519   p->pLimit = p->pOffset = 0;
102520   p->iLimit = p->iOffset = 0;
102521   pOrderBy = p->pOrderBy;
102522 
102523   /* Locate the cursor number of the Current table */
102524   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
102525     if( pSrc->a[i].isRecursive ){
102526       iCurrent = pSrc->a[i].iCursor;
102527       break;
102528     }
102529   }
102530 
102531   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
102532   ** the Distinct table must be exactly one greater than Queue in order
102533   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
102534   iQueue = pParse->nTab++;
102535   if( p->op==TK_UNION ){
102536     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
102537     iDistinct = pParse->nTab++;
102538   }else{
102539     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
102540   }
102541   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
102542 
102543   /* Allocate cursors for Current, Queue, and Distinct. */
102544   regCurrent = ++pParse->nMem;
102545   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
102546   if( pOrderBy ){
102547     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
102548     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
102549                       (char*)pKeyInfo, P4_KEYINFO);
102550     destQueue.pOrderBy = pOrderBy;
102551   }else{
102552     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
102553   }
102554   VdbeComment((v, "Queue table"));
102555   if( iDistinct ){
102556     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
102557     p->selFlags |= SF_UsesEphemeral;
102558   }
102559 
102560   /* Detach the ORDER BY clause from the compound SELECT */
102561   p->pOrderBy = 0;
102562 
102563   /* Store the results of the setup-query in Queue. */
102564   pSetup->pNext = 0;
102565   rc = sqlite3Select(pParse, pSetup, &destQueue);
102566   pSetup->pNext = p;
102567   if( rc ) goto end_of_recursive_query;
102568 
102569   /* Find the next row in the Queue and output that row */
102570   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
102571 
102572   /* Transfer the next row in Queue over to Current */
102573   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
102574   if( pOrderBy ){
102575     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
102576   }else{
102577     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
102578   }
102579   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
102580 
102581   /* Output the single row in Current */
102582   addrCont = sqlite3VdbeMakeLabel(v);
102583   codeOffset(v, regOffset, addrCont);
102584   selectInnerLoop(pParse, p, p->pEList, iCurrent,
102585       0, 0, pDest, addrCont, addrBreak);
102586   if( regLimit ){
102587     sqlite3VdbeAddOp3(v, OP_IfZero, regLimit, addrBreak, -1);
102588     VdbeCoverage(v);
102589   }
102590   sqlite3VdbeResolveLabel(v, addrCont);
102591 
102592   /* Execute the recursive SELECT taking the single row in Current as
102593   ** the value for the recursive-table. Store the results in the Queue.
102594   */
102595   p->pPrior = 0;
102596   sqlite3Select(pParse, p, &destQueue);
102597   assert( p->pPrior==0 );
102598   p->pPrior = pSetup;
102599 
102600   /* Keep running the loop until the Queue is empty */
102601   sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop);
102602   sqlite3VdbeResolveLabel(v, addrBreak);
102603 
102604 end_of_recursive_query:
102605   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
102606   p->pOrderBy = pOrderBy;
102607   p->pLimit = pLimit;
102608   p->pOffset = pOffset;
102609   return;
102610 }
102611 #endif /* SQLITE_OMIT_CTE */
102612 
102613 /* Forward references */
102614 static int multiSelectOrderBy(
102615   Parse *pParse,        /* Parsing context */
102616   Select *p,            /* The right-most of SELECTs to be coded */
102617   SelectDest *pDest     /* What to do with query results */
102618 );
102619 
102620 
102621 /*
102622 ** This routine is called to process a compound query form from
102623 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
102624 ** INTERSECT
102625 **
102626 ** "p" points to the right-most of the two queries.  the query on the
102627 ** left is p->pPrior.  The left query could also be a compound query
102628 ** in which case this routine will be called recursively.
102629 **
102630 ** The results of the total query are to be written into a destination
102631 ** of type eDest with parameter iParm.
102632 **
102633 ** Example 1:  Consider a three-way compound SQL statement.
102634 **
102635 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
102636 **
102637 ** This statement is parsed up as follows:
102638 **
102639 **     SELECT c FROM t3
102640 **      |
102641 **      `----->  SELECT b FROM t2
102642 **                |
102643 **                `------>  SELECT a FROM t1
102644 **
102645 ** The arrows in the diagram above represent the Select.pPrior pointer.
102646 ** So if this routine is called with p equal to the t3 query, then
102647 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
102648 **
102649 ** Notice that because of the way SQLite parses compound SELECTs, the
102650 ** individual selects always group from left to right.
102651 */
102652 static int multiSelect(
102653   Parse *pParse,        /* Parsing context */
102654   Select *p,            /* The right-most of SELECTs to be coded */
102655   SelectDest *pDest     /* What to do with query results */
102656 ){
102657   int rc = SQLITE_OK;   /* Success code from a subroutine */
102658   Select *pPrior;       /* Another SELECT immediately to our left */
102659   Vdbe *v;              /* Generate code to this VDBE */
102660   SelectDest dest;      /* Alternative data destination */
102661   Select *pDelete = 0;  /* Chain of simple selects to delete */
102662   sqlite3 *db;          /* Database connection */
102663 #ifndef SQLITE_OMIT_EXPLAIN
102664   int iSub1 = 0;        /* EQP id of left-hand query */
102665   int iSub2 = 0;        /* EQP id of right-hand query */
102666 #endif
102667 
102668   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
102669   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
102670   */
102671   assert( p && p->pPrior );  /* Calling function guarantees this much */
102672   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
102673   db = pParse->db;
102674   pPrior = p->pPrior;
102675   dest = *pDest;
102676   if( pPrior->pOrderBy ){
102677     sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
102678       selectOpName(p->op));
102679     rc = 1;
102680     goto multi_select_end;
102681   }
102682   if( pPrior->pLimit ){
102683     sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
102684       selectOpName(p->op));
102685     rc = 1;
102686     goto multi_select_end;
102687   }
102688 
102689   v = sqlite3GetVdbe(pParse);
102690   assert( v!=0 );  /* The VDBE already created by calling function */
102691 
102692   /* Create the destination temporary table if necessary
102693   */
102694   if( dest.eDest==SRT_EphemTab ){
102695     assert( p->pEList );
102696     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
102697     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
102698     dest.eDest = SRT_Table;
102699   }
102700 
102701   /* Make sure all SELECTs in the statement have the same number of elements
102702   ** in their result sets.
102703   */
102704   assert( p->pEList && pPrior->pEList );
102705   if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
102706     if( p->selFlags & SF_Values ){
102707       sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
102708     }else{
102709       sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
102710         " do not have the same number of result columns", selectOpName(p->op));
102711     }
102712     rc = 1;
102713     goto multi_select_end;
102714   }
102715 
102716 #ifndef SQLITE_OMIT_CTE
102717   if( p->selFlags & SF_Recursive ){
102718     generateWithRecursiveQuery(pParse, p, &dest);
102719   }else
102720 #endif
102721 
102722   /* Compound SELECTs that have an ORDER BY clause are handled separately.
102723   */
102724   if( p->pOrderBy ){
102725     return multiSelectOrderBy(pParse, p, pDest);
102726   }else
102727 
102728   /* Generate code for the left and right SELECT statements.
102729   */
102730   switch( p->op ){
102731     case TK_ALL: {
102732       int addr = 0;
102733       int nLimit;
102734       assert( !pPrior->pLimit );
102735       pPrior->iLimit = p->iLimit;
102736       pPrior->iOffset = p->iOffset;
102737       pPrior->pLimit = p->pLimit;
102738       pPrior->pOffset = p->pOffset;
102739       explainSetInteger(iSub1, pParse->iNextSelectId);
102740       rc = sqlite3Select(pParse, pPrior, &dest);
102741       p->pLimit = 0;
102742       p->pOffset = 0;
102743       if( rc ){
102744         goto multi_select_end;
102745       }
102746       p->pPrior = 0;
102747       p->iLimit = pPrior->iLimit;
102748       p->iOffset = pPrior->iOffset;
102749       if( p->iLimit ){
102750         addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit); VdbeCoverage(v);
102751         VdbeComment((v, "Jump ahead if LIMIT reached"));
102752       }
102753       explainSetInteger(iSub2, pParse->iNextSelectId);
102754       rc = sqlite3Select(pParse, p, &dest);
102755       testcase( rc!=SQLITE_OK );
102756       pDelete = p->pPrior;
102757       p->pPrior = pPrior;
102758       p->nSelectRow += pPrior->nSelectRow;
102759       if( pPrior->pLimit
102760        && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit)
102761        && nLimit>0 && p->nSelectRow > (u64)nLimit
102762       ){
102763         p->nSelectRow = nLimit;
102764       }
102765       if( addr ){
102766         sqlite3VdbeJumpHere(v, addr);
102767       }
102768       break;
102769     }
102770     case TK_EXCEPT:
102771     case TK_UNION: {
102772       int unionTab;    /* Cursor number of the temporary table holding result */
102773       u8 op = 0;       /* One of the SRT_ operations to apply to self */
102774       int priorOp;     /* The SRT_ operation to apply to prior selects */
102775       Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
102776       int addr;
102777       SelectDest uniondest;
102778 
102779       testcase( p->op==TK_EXCEPT );
102780       testcase( p->op==TK_UNION );
102781       priorOp = SRT_Union;
102782       if( dest.eDest==priorOp ){
102783         /* We can reuse a temporary table generated by a SELECT to our
102784         ** right.
102785         */
102786         assert( p->pLimit==0 );      /* Not allowed on leftward elements */
102787         assert( p->pOffset==0 );     /* Not allowed on leftward elements */
102788         unionTab = dest.iSDParm;
102789       }else{
102790         /* We will need to create our own temporary table to hold the
102791         ** intermediate results.
102792         */
102793         unionTab = pParse->nTab++;
102794         assert( p->pOrderBy==0 );
102795         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
102796         assert( p->addrOpenEphm[0] == -1 );
102797         p->addrOpenEphm[0] = addr;
102798         findRightmost(p)->selFlags |= SF_UsesEphemeral;
102799         assert( p->pEList );
102800       }
102801 
102802       /* Code the SELECT statements to our left
102803       */
102804       assert( !pPrior->pOrderBy );
102805       sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
102806       explainSetInteger(iSub1, pParse->iNextSelectId);
102807       rc = sqlite3Select(pParse, pPrior, &uniondest);
102808       if( rc ){
102809         goto multi_select_end;
102810       }
102811 
102812       /* Code the current SELECT statement
102813       */
102814       if( p->op==TK_EXCEPT ){
102815         op = SRT_Except;
102816       }else{
102817         assert( p->op==TK_UNION );
102818         op = SRT_Union;
102819       }
102820       p->pPrior = 0;
102821       pLimit = p->pLimit;
102822       p->pLimit = 0;
102823       pOffset = p->pOffset;
102824       p->pOffset = 0;
102825       uniondest.eDest = op;
102826       explainSetInteger(iSub2, pParse->iNextSelectId);
102827       rc = sqlite3Select(pParse, p, &uniondest);
102828       testcase( rc!=SQLITE_OK );
102829       /* Query flattening in sqlite3Select() might refill p->pOrderBy.
102830       ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
102831       sqlite3ExprListDelete(db, p->pOrderBy);
102832       pDelete = p->pPrior;
102833       p->pPrior = pPrior;
102834       p->pOrderBy = 0;
102835       if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow;
102836       sqlite3ExprDelete(db, p->pLimit);
102837       p->pLimit = pLimit;
102838       p->pOffset = pOffset;
102839       p->iLimit = 0;
102840       p->iOffset = 0;
102841 
102842       /* Convert the data in the temporary table into whatever form
102843       ** it is that we currently need.
102844       */
102845       assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
102846       if( dest.eDest!=priorOp ){
102847         int iCont, iBreak, iStart;
102848         assert( p->pEList );
102849         if( dest.eDest==SRT_Output ){
102850           Select *pFirst = p;
102851           while( pFirst->pPrior ) pFirst = pFirst->pPrior;
102852           generateColumnNames(pParse, 0, pFirst->pEList);
102853         }
102854         iBreak = sqlite3VdbeMakeLabel(v);
102855         iCont = sqlite3VdbeMakeLabel(v);
102856         computeLimitRegisters(pParse, p, iBreak);
102857         sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
102858         iStart = sqlite3VdbeCurrentAddr(v);
102859         selectInnerLoop(pParse, p, p->pEList, unionTab,
102860                         0, 0, &dest, iCont, iBreak);
102861         sqlite3VdbeResolveLabel(v, iCont);
102862         sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
102863         sqlite3VdbeResolveLabel(v, iBreak);
102864         sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
102865       }
102866       break;
102867     }
102868     default: assert( p->op==TK_INTERSECT ); {
102869       int tab1, tab2;
102870       int iCont, iBreak, iStart;
102871       Expr *pLimit, *pOffset;
102872       int addr;
102873       SelectDest intersectdest;
102874       int r1;
102875 
102876       /* INTERSECT is different from the others since it requires
102877       ** two temporary tables.  Hence it has its own case.  Begin
102878       ** by allocating the tables we will need.
102879       */
102880       tab1 = pParse->nTab++;
102881       tab2 = pParse->nTab++;
102882       assert( p->pOrderBy==0 );
102883 
102884       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
102885       assert( p->addrOpenEphm[0] == -1 );
102886       p->addrOpenEphm[0] = addr;
102887       findRightmost(p)->selFlags |= SF_UsesEphemeral;
102888       assert( p->pEList );
102889 
102890       /* Code the SELECTs to our left into temporary table "tab1".
102891       */
102892       sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
102893       explainSetInteger(iSub1, pParse->iNextSelectId);
102894       rc = sqlite3Select(pParse, pPrior, &intersectdest);
102895       if( rc ){
102896         goto multi_select_end;
102897       }
102898 
102899       /* Code the current SELECT into temporary table "tab2"
102900       */
102901       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
102902       assert( p->addrOpenEphm[1] == -1 );
102903       p->addrOpenEphm[1] = addr;
102904       p->pPrior = 0;
102905       pLimit = p->pLimit;
102906       p->pLimit = 0;
102907       pOffset = p->pOffset;
102908       p->pOffset = 0;
102909       intersectdest.iSDParm = tab2;
102910       explainSetInteger(iSub2, pParse->iNextSelectId);
102911       rc = sqlite3Select(pParse, p, &intersectdest);
102912       testcase( rc!=SQLITE_OK );
102913       pDelete = p->pPrior;
102914       p->pPrior = pPrior;
102915       if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
102916       sqlite3ExprDelete(db, p->pLimit);
102917       p->pLimit = pLimit;
102918       p->pOffset = pOffset;
102919 
102920       /* Generate code to take the intersection of the two temporary
102921       ** tables.
102922       */
102923       assert( p->pEList );
102924       if( dest.eDest==SRT_Output ){
102925         Select *pFirst = p;
102926         while( pFirst->pPrior ) pFirst = pFirst->pPrior;
102927         generateColumnNames(pParse, 0, pFirst->pEList);
102928       }
102929       iBreak = sqlite3VdbeMakeLabel(v);
102930       iCont = sqlite3VdbeMakeLabel(v);
102931       computeLimitRegisters(pParse, p, iBreak);
102932       sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
102933       r1 = sqlite3GetTempReg(pParse);
102934       iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
102935       sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v);
102936       sqlite3ReleaseTempReg(pParse, r1);
102937       selectInnerLoop(pParse, p, p->pEList, tab1,
102938                       0, 0, &dest, iCont, iBreak);
102939       sqlite3VdbeResolveLabel(v, iCont);
102940       sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
102941       sqlite3VdbeResolveLabel(v, iBreak);
102942       sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
102943       sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
102944       break;
102945     }
102946   }
102947 
102948   explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL);
102949 
102950   /* Compute collating sequences used by
102951   ** temporary tables needed to implement the compound select.
102952   ** Attach the KeyInfo structure to all temporary tables.
102953   **
102954   ** This section is run by the right-most SELECT statement only.
102955   ** SELECT statements to the left always skip this part.  The right-most
102956   ** SELECT might also skip this part if it has no ORDER BY clause and
102957   ** no temp tables are required.
102958   */
102959   if( p->selFlags & SF_UsesEphemeral ){
102960     int i;                        /* Loop counter */
102961     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
102962     Select *pLoop;                /* For looping through SELECT statements */
102963     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
102964     int nCol;                     /* Number of columns in result set */
102965 
102966     assert( p->pNext==0 );
102967     nCol = p->pEList->nExpr;
102968     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
102969     if( !pKeyInfo ){
102970       rc = SQLITE_NOMEM;
102971       goto multi_select_end;
102972     }
102973     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
102974       *apColl = multiSelectCollSeq(pParse, p, i);
102975       if( 0==*apColl ){
102976         *apColl = db->pDfltColl;
102977       }
102978     }
102979 
102980     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
102981       for(i=0; i<2; i++){
102982         int addr = pLoop->addrOpenEphm[i];
102983         if( addr<0 ){
102984           /* If [0] is unused then [1] is also unused.  So we can
102985           ** always safely abort as soon as the first unused slot is found */
102986           assert( pLoop->addrOpenEphm[1]<0 );
102987           break;
102988         }
102989         sqlite3VdbeChangeP2(v, addr, nCol);
102990         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
102991                             P4_KEYINFO);
102992         pLoop->addrOpenEphm[i] = -1;
102993       }
102994     }
102995     sqlite3KeyInfoUnref(pKeyInfo);
102996   }
102997 
102998 multi_select_end:
102999   pDest->iSdst = dest.iSdst;
103000   pDest->nSdst = dest.nSdst;
103001   sqlite3SelectDelete(db, pDelete);
103002   return rc;
103003 }
103004 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
103005 
103006 /*
103007 ** Code an output subroutine for a coroutine implementation of a
103008 ** SELECT statment.
103009 **
103010 ** The data to be output is contained in pIn->iSdst.  There are
103011 ** pIn->nSdst columns to be output.  pDest is where the output should
103012 ** be sent.
103013 **
103014 ** regReturn is the number of the register holding the subroutine
103015 ** return address.
103016 **
103017 ** If regPrev>0 then it is the first register in a vector that
103018 ** records the previous output.  mem[regPrev] is a flag that is false
103019 ** if there has been no previous output.  If regPrev>0 then code is
103020 ** generated to suppress duplicates.  pKeyInfo is used for comparing
103021 ** keys.
103022 **
103023 ** If the LIMIT found in p->iLimit is reached, jump immediately to
103024 ** iBreak.
103025 */
103026 static int generateOutputSubroutine(
103027   Parse *pParse,          /* Parsing context */
103028   Select *p,              /* The SELECT statement */
103029   SelectDest *pIn,        /* Coroutine supplying data */
103030   SelectDest *pDest,      /* Where to send the data */
103031   int regReturn,          /* The return address register */
103032   int regPrev,            /* Previous result register.  No uniqueness if 0 */
103033   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
103034   int iBreak              /* Jump here if we hit the LIMIT */
103035 ){
103036   Vdbe *v = pParse->pVdbe;
103037   int iContinue;
103038   int addr;
103039 
103040   addr = sqlite3VdbeCurrentAddr(v);
103041   iContinue = sqlite3VdbeMakeLabel(v);
103042 
103043   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
103044   */
103045   if( regPrev ){
103046     int j1, j2;
103047     j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
103048     j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
103049                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
103050     sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); VdbeCoverage(v);
103051     sqlite3VdbeJumpHere(v, j1);
103052     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
103053     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
103054   }
103055   if( pParse->db->mallocFailed ) return 0;
103056 
103057   /* Suppress the first OFFSET entries if there is an OFFSET clause
103058   */
103059   codeOffset(v, p->iOffset, iContinue);
103060 
103061   switch( pDest->eDest ){
103062     /* Store the result as data using a unique key.
103063     */
103064     case SRT_Table:
103065     case SRT_EphemTab: {
103066       int r1 = sqlite3GetTempReg(pParse);
103067       int r2 = sqlite3GetTempReg(pParse);
103068       testcase( pDest->eDest==SRT_Table );
103069       testcase( pDest->eDest==SRT_EphemTab );
103070       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
103071       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
103072       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
103073       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
103074       sqlite3ReleaseTempReg(pParse, r2);
103075       sqlite3ReleaseTempReg(pParse, r1);
103076       break;
103077     }
103078 
103079 #ifndef SQLITE_OMIT_SUBQUERY
103080     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
103081     ** then there should be a single item on the stack.  Write this
103082     ** item into the set table with bogus data.
103083     */
103084     case SRT_Set: {
103085       int r1;
103086       assert( pIn->nSdst==1 );
103087       pDest->affSdst =
103088          sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affSdst);
103089       r1 = sqlite3GetTempReg(pParse);
103090       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, 1, r1, &pDest->affSdst,1);
103091       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, 1);
103092       sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1);
103093       sqlite3ReleaseTempReg(pParse, r1);
103094       break;
103095     }
103096 
103097 #if 0  /* Never occurs on an ORDER BY query */
103098     /* If any row exist in the result set, record that fact and abort.
103099     */
103100     case SRT_Exists: {
103101       sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iSDParm);
103102       /* The LIMIT clause will terminate the loop for us */
103103       break;
103104     }
103105 #endif
103106 
103107     /* If this is a scalar select that is part of an expression, then
103108     ** store the results in the appropriate memory cell and break out
103109     ** of the scan loop.
103110     */
103111     case SRT_Mem: {
103112       assert( pIn->nSdst==1 );
103113       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1);
103114       /* The LIMIT clause will jump out of the loop for us */
103115       break;
103116     }
103117 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
103118 
103119     /* The results are stored in a sequence of registers
103120     ** starting at pDest->iSdst.  Then the co-routine yields.
103121     */
103122     case SRT_Coroutine: {
103123       if( pDest->iSdst==0 ){
103124         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
103125         pDest->nSdst = pIn->nSdst;
103126       }
103127       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pDest->nSdst);
103128       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
103129       break;
103130     }
103131 
103132     /* If none of the above, then the result destination must be
103133     ** SRT_Output.  This routine is never called with any other
103134     ** destination other than the ones handled above or SRT_Output.
103135     **
103136     ** For SRT_Output, results are stored in a sequence of registers.
103137     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
103138     ** return the next row of result.
103139     */
103140     default: {
103141       assert( pDest->eDest==SRT_Output );
103142       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
103143       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
103144       break;
103145     }
103146   }
103147 
103148   /* Jump to the end of the loop if the LIMIT is reached.
103149   */
103150   if( p->iLimit ){
103151     sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); VdbeCoverage(v);
103152   }
103153 
103154   /* Generate the subroutine return
103155   */
103156   sqlite3VdbeResolveLabel(v, iContinue);
103157   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
103158 
103159   return addr;
103160 }
103161 
103162 /*
103163 ** Alternative compound select code generator for cases when there
103164 ** is an ORDER BY clause.
103165 **
103166 ** We assume a query of the following form:
103167 **
103168 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
103169 **
103170 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
103171 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
103172 ** co-routines.  Then run the co-routines in parallel and merge the results
103173 ** into the output.  In addition to the two coroutines (called selectA and
103174 ** selectB) there are 7 subroutines:
103175 **
103176 **    outA:    Move the output of the selectA coroutine into the output
103177 **             of the compound query.
103178 **
103179 **    outB:    Move the output of the selectB coroutine into the output
103180 **             of the compound query.  (Only generated for UNION and
103181 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
103182 **             appears only in B.)
103183 **
103184 **    AltB:    Called when there is data from both coroutines and A<B.
103185 **
103186 **    AeqB:    Called when there is data from both coroutines and A==B.
103187 **
103188 **    AgtB:    Called when there is data from both coroutines and A>B.
103189 **
103190 **    EofA:    Called when data is exhausted from selectA.
103191 **
103192 **    EofB:    Called when data is exhausted from selectB.
103193 **
103194 ** The implementation of the latter five subroutines depend on which
103195 ** <operator> is used:
103196 **
103197 **
103198 **             UNION ALL         UNION            EXCEPT          INTERSECT
103199 **          -------------  -----------------  --------------  -----------------
103200 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
103201 **
103202 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
103203 **
103204 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
103205 **
103206 **   EofA:   outB, nextB      outB, nextB          halt             halt
103207 **
103208 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
103209 **
103210 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
103211 ** causes an immediate jump to EofA and an EOF on B following nextB causes
103212 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
103213 ** following nextX causes a jump to the end of the select processing.
103214 **
103215 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
103216 ** within the output subroutine.  The regPrev register set holds the previously
103217 ** output value.  A comparison is made against this value and the output
103218 ** is skipped if the next results would be the same as the previous.
103219 **
103220 ** The implementation plan is to implement the two coroutines and seven
103221 ** subroutines first, then put the control logic at the bottom.  Like this:
103222 **
103223 **          goto Init
103224 **     coA: coroutine for left query (A)
103225 **     coB: coroutine for right query (B)
103226 **    outA: output one row of A
103227 **    outB: output one row of B (UNION and UNION ALL only)
103228 **    EofA: ...
103229 **    EofB: ...
103230 **    AltB: ...
103231 **    AeqB: ...
103232 **    AgtB: ...
103233 **    Init: initialize coroutine registers
103234 **          yield coA
103235 **          if eof(A) goto EofA
103236 **          yield coB
103237 **          if eof(B) goto EofB
103238 **    Cmpr: Compare A, B
103239 **          Jump AltB, AeqB, AgtB
103240 **     End: ...
103241 **
103242 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
103243 ** actually called using Gosub and they do not Return.  EofA and EofB loop
103244 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
103245 ** and AgtB jump to either L2 or to one of EofA or EofB.
103246 */
103247 #ifndef SQLITE_OMIT_COMPOUND_SELECT
103248 static int multiSelectOrderBy(
103249   Parse *pParse,        /* Parsing context */
103250   Select *p,            /* The right-most of SELECTs to be coded */
103251   SelectDest *pDest     /* What to do with query results */
103252 ){
103253   int i, j;             /* Loop counters */
103254   Select *pPrior;       /* Another SELECT immediately to our left */
103255   Vdbe *v;              /* Generate code to this VDBE */
103256   SelectDest destA;     /* Destination for coroutine A */
103257   SelectDest destB;     /* Destination for coroutine B */
103258   int regAddrA;         /* Address register for select-A coroutine */
103259   int regAddrB;         /* Address register for select-B coroutine */
103260   int addrSelectA;      /* Address of the select-A coroutine */
103261   int addrSelectB;      /* Address of the select-B coroutine */
103262   int regOutA;          /* Address register for the output-A subroutine */
103263   int regOutB;          /* Address register for the output-B subroutine */
103264   int addrOutA;         /* Address of the output-A subroutine */
103265   int addrOutB = 0;     /* Address of the output-B subroutine */
103266   int addrEofA;         /* Address of the select-A-exhausted subroutine */
103267   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
103268   int addrEofB;         /* Address of the select-B-exhausted subroutine */
103269   int addrAltB;         /* Address of the A<B subroutine */
103270   int addrAeqB;         /* Address of the A==B subroutine */
103271   int addrAgtB;         /* Address of the A>B subroutine */
103272   int regLimitA;        /* Limit register for select-A */
103273   int regLimitB;        /* Limit register for select-A */
103274   int regPrev;          /* A range of registers to hold previous output */
103275   int savedLimit;       /* Saved value of p->iLimit */
103276   int savedOffset;      /* Saved value of p->iOffset */
103277   int labelCmpr;        /* Label for the start of the merge algorithm */
103278   int labelEnd;         /* Label for the end of the overall SELECT stmt */
103279   int j1;               /* Jump instructions that get retargetted */
103280   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
103281   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
103282   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
103283   sqlite3 *db;          /* Database connection */
103284   ExprList *pOrderBy;   /* The ORDER BY clause */
103285   int nOrderBy;         /* Number of terms in the ORDER BY clause */
103286   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
103287 #ifndef SQLITE_OMIT_EXPLAIN
103288   int iSub1;            /* EQP id of left-hand query */
103289   int iSub2;            /* EQP id of right-hand query */
103290 #endif
103291 
103292   assert( p->pOrderBy!=0 );
103293   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
103294   db = pParse->db;
103295   v = pParse->pVdbe;
103296   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
103297   labelEnd = sqlite3VdbeMakeLabel(v);
103298   labelCmpr = sqlite3VdbeMakeLabel(v);
103299 
103300 
103301   /* Patch up the ORDER BY clause
103302   */
103303   op = p->op;
103304   pPrior = p->pPrior;
103305   assert( pPrior->pOrderBy==0 );
103306   pOrderBy = p->pOrderBy;
103307   assert( pOrderBy );
103308   nOrderBy = pOrderBy->nExpr;
103309 
103310   /* For operators other than UNION ALL we have to make sure that
103311   ** the ORDER BY clause covers every term of the result set.  Add
103312   ** terms to the ORDER BY clause as necessary.
103313   */
103314   if( op!=TK_ALL ){
103315     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
103316       struct ExprList_item *pItem;
103317       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
103318         assert( pItem->u.x.iOrderByCol>0 );
103319         if( pItem->u.x.iOrderByCol==i ) break;
103320       }
103321       if( j==nOrderBy ){
103322         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
103323         if( pNew==0 ) return SQLITE_NOMEM;
103324         pNew->flags |= EP_IntValue;
103325         pNew->u.iValue = i;
103326         pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
103327         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
103328       }
103329     }
103330   }
103331 
103332   /* Compute the comparison permutation and keyinfo that is used with
103333   ** the permutation used to determine if the next
103334   ** row of results comes from selectA or selectB.  Also add explicit
103335   ** collations to the ORDER BY clause terms so that when the subqueries
103336   ** to the right and the left are evaluated, they use the correct
103337   ** collation.
103338   */
103339   aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy);
103340   if( aPermute ){
103341     struct ExprList_item *pItem;
103342     for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){
103343       assert( pItem->u.x.iOrderByCol>0
103344           && pItem->u.x.iOrderByCol<=p->pEList->nExpr );
103345       aPermute[i] = pItem->u.x.iOrderByCol - 1;
103346     }
103347     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
103348   }else{
103349     pKeyMerge = 0;
103350   }
103351 
103352   /* Reattach the ORDER BY clause to the query.
103353   */
103354   p->pOrderBy = pOrderBy;
103355   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
103356 
103357   /* Allocate a range of temporary registers and the KeyInfo needed
103358   ** for the logic that removes duplicate result rows when the
103359   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
103360   */
103361   if( op==TK_ALL ){
103362     regPrev = 0;
103363   }else{
103364     int nExpr = p->pEList->nExpr;
103365     assert( nOrderBy>=nExpr || db->mallocFailed );
103366     regPrev = pParse->nMem+1;
103367     pParse->nMem += nExpr+1;
103368     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
103369     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
103370     if( pKeyDup ){
103371       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
103372       for(i=0; i<nExpr; i++){
103373         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
103374         pKeyDup->aSortOrder[i] = 0;
103375       }
103376     }
103377   }
103378 
103379   /* Separate the left and the right query from one another
103380   */
103381   p->pPrior = 0;
103382   pPrior->pNext = 0;
103383   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
103384   if( pPrior->pPrior==0 ){
103385     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
103386   }
103387 
103388   /* Compute the limit registers */
103389   computeLimitRegisters(pParse, p, labelEnd);
103390   if( p->iLimit && op==TK_ALL ){
103391     regLimitA = ++pParse->nMem;
103392     regLimitB = ++pParse->nMem;
103393     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
103394                                   regLimitA);
103395     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
103396   }else{
103397     regLimitA = regLimitB = 0;
103398   }
103399   sqlite3ExprDelete(db, p->pLimit);
103400   p->pLimit = 0;
103401   sqlite3ExprDelete(db, p->pOffset);
103402   p->pOffset = 0;
103403 
103404   regAddrA = ++pParse->nMem;
103405   regAddrB = ++pParse->nMem;
103406   regOutA = ++pParse->nMem;
103407   regOutB = ++pParse->nMem;
103408   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
103409   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
103410 
103411   /* Generate a coroutine to evaluate the SELECT statement to the
103412   ** left of the compound operator - the "A" select.
103413   */
103414   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
103415   j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
103416   VdbeComment((v, "left SELECT"));
103417   pPrior->iLimit = regLimitA;
103418   explainSetInteger(iSub1, pParse->iNextSelectId);
103419   sqlite3Select(pParse, pPrior, &destA);
103420   sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrA);
103421   sqlite3VdbeJumpHere(v, j1);
103422 
103423   /* Generate a coroutine to evaluate the SELECT statement on
103424   ** the right - the "B" select
103425   */
103426   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
103427   j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
103428   VdbeComment((v, "right SELECT"));
103429   savedLimit = p->iLimit;
103430   savedOffset = p->iOffset;
103431   p->iLimit = regLimitB;
103432   p->iOffset = 0;
103433   explainSetInteger(iSub2, pParse->iNextSelectId);
103434   sqlite3Select(pParse, p, &destB);
103435   p->iLimit = savedLimit;
103436   p->iOffset = savedOffset;
103437   sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrB);
103438 
103439   /* Generate a subroutine that outputs the current row of the A
103440   ** select as the next output row of the compound select.
103441   */
103442   VdbeNoopComment((v, "Output routine for A"));
103443   addrOutA = generateOutputSubroutine(pParse,
103444                  p, &destA, pDest, regOutA,
103445                  regPrev, pKeyDup, labelEnd);
103446 
103447   /* Generate a subroutine that outputs the current row of the B
103448   ** select as the next output row of the compound select.
103449   */
103450   if( op==TK_ALL || op==TK_UNION ){
103451     VdbeNoopComment((v, "Output routine for B"));
103452     addrOutB = generateOutputSubroutine(pParse,
103453                  p, &destB, pDest, regOutB,
103454                  regPrev, pKeyDup, labelEnd);
103455   }
103456   sqlite3KeyInfoUnref(pKeyDup);
103457 
103458   /* Generate a subroutine to run when the results from select A
103459   ** are exhausted and only data in select B remains.
103460   */
103461   if( op==TK_EXCEPT || op==TK_INTERSECT ){
103462     addrEofA_noB = addrEofA = labelEnd;
103463   }else{
103464     VdbeNoopComment((v, "eof-A subroutine"));
103465     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
103466     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
103467                                      VdbeCoverage(v);
103468     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA);
103469     p->nSelectRow += pPrior->nSelectRow;
103470   }
103471 
103472   /* Generate a subroutine to run when the results from select B
103473   ** are exhausted and only data in select A remains.
103474   */
103475   if( op==TK_INTERSECT ){
103476     addrEofB = addrEofA;
103477     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
103478   }else{
103479     VdbeNoopComment((v, "eof-B subroutine"));
103480     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
103481     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
103482     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB);
103483   }
103484 
103485   /* Generate code to handle the case of A<B
103486   */
103487   VdbeNoopComment((v, "A-lt-B subroutine"));
103488   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
103489   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
103490   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
103491 
103492   /* Generate code to handle the case of A==B
103493   */
103494   if( op==TK_ALL ){
103495     addrAeqB = addrAltB;
103496   }else if( op==TK_INTERSECT ){
103497     addrAeqB = addrAltB;
103498     addrAltB++;
103499   }else{
103500     VdbeNoopComment((v, "A-eq-B subroutine"));
103501     addrAeqB =
103502     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
103503     sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
103504   }
103505 
103506   /* Generate code to handle the case of A>B
103507   */
103508   VdbeNoopComment((v, "A-gt-B subroutine"));
103509   addrAgtB = sqlite3VdbeCurrentAddr(v);
103510   if( op==TK_ALL || op==TK_UNION ){
103511     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
103512   }
103513   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
103514   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
103515 
103516   /* This code runs once to initialize everything.
103517   */
103518   sqlite3VdbeJumpHere(v, j1);
103519   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
103520   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
103521 
103522   /* Implement the main merge loop
103523   */
103524   sqlite3VdbeResolveLabel(v, labelCmpr);
103525   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
103526   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
103527                          (char*)pKeyMerge, P4_KEYINFO);
103528   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
103529   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
103530 
103531   /* Jump to the this point in order to terminate the query.
103532   */
103533   sqlite3VdbeResolveLabel(v, labelEnd);
103534 
103535   /* Set the number of output columns
103536   */
103537   if( pDest->eDest==SRT_Output ){
103538     Select *pFirst = pPrior;
103539     while( pFirst->pPrior ) pFirst = pFirst->pPrior;
103540     generateColumnNames(pParse, 0, pFirst->pEList);
103541   }
103542 
103543   /* Reassembly the compound query so that it will be freed correctly
103544   ** by the calling function */
103545   if( p->pPrior ){
103546     sqlite3SelectDelete(db, p->pPrior);
103547   }
103548   p->pPrior = pPrior;
103549   pPrior->pNext = p;
103550 
103551   /*** TBD:  Insert subroutine calls to close cursors on incomplete
103552   **** subqueries ****/
103553   explainComposite(pParse, p->op, iSub1, iSub2, 0);
103554   return SQLITE_OK;
103555 }
103556 #endif
103557 
103558 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
103559 /* Forward Declarations */
103560 static void substExprList(sqlite3*, ExprList*, int, ExprList*);
103561 static void substSelect(sqlite3*, Select *, int, ExprList *);
103562 
103563 /*
103564 ** Scan through the expression pExpr.  Replace every reference to
103565 ** a column in table number iTable with a copy of the iColumn-th
103566 ** entry in pEList.  (But leave references to the ROWID column
103567 ** unchanged.)
103568 **
103569 ** This routine is part of the flattening procedure.  A subquery
103570 ** whose result set is defined by pEList appears as entry in the
103571 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
103572 ** FORM clause entry is iTable.  This routine make the necessary
103573 ** changes to pExpr so that it refers directly to the source table
103574 ** of the subquery rather the result set of the subquery.
103575 */
103576 static Expr *substExpr(
103577   sqlite3 *db,        /* Report malloc errors to this connection */
103578   Expr *pExpr,        /* Expr in which substitution occurs */
103579   int iTable,         /* Table to be substituted */
103580   ExprList *pEList    /* Substitute expressions */
103581 ){
103582   if( pExpr==0 ) return 0;
103583   if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
103584     if( pExpr->iColumn<0 ){
103585       pExpr->op = TK_NULL;
103586     }else{
103587       Expr *pNew;
103588       assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
103589       assert( pExpr->pLeft==0 && pExpr->pRight==0 );
103590       pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0);
103591       sqlite3ExprDelete(db, pExpr);
103592       pExpr = pNew;
103593     }
103594   }else{
103595     pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList);
103596     pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList);
103597     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
103598       substSelect(db, pExpr->x.pSelect, iTable, pEList);
103599     }else{
103600       substExprList(db, pExpr->x.pList, iTable, pEList);
103601     }
103602   }
103603   return pExpr;
103604 }
103605 static void substExprList(
103606   sqlite3 *db,         /* Report malloc errors here */
103607   ExprList *pList,     /* List to scan and in which to make substitutes */
103608   int iTable,          /* Table to be substituted */
103609   ExprList *pEList     /* Substitute values */
103610 ){
103611   int i;
103612   if( pList==0 ) return;
103613   for(i=0; i<pList->nExpr; i++){
103614     pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList);
103615   }
103616 }
103617 static void substSelect(
103618   sqlite3 *db,         /* Report malloc errors here */
103619   Select *p,           /* SELECT statement in which to make substitutions */
103620   int iTable,          /* Table to be replaced */
103621   ExprList *pEList     /* Substitute values */
103622 ){
103623   SrcList *pSrc;
103624   struct SrcList_item *pItem;
103625   int i;
103626   if( !p ) return;
103627   substExprList(db, p->pEList, iTable, pEList);
103628   substExprList(db, p->pGroupBy, iTable, pEList);
103629   substExprList(db, p->pOrderBy, iTable, pEList);
103630   p->pHaving = substExpr(db, p->pHaving, iTable, pEList);
103631   p->pWhere = substExpr(db, p->pWhere, iTable, pEList);
103632   substSelect(db, p->pPrior, iTable, pEList);
103633   pSrc = p->pSrc;
103634   assert( pSrc );  /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */
103635   if( ALWAYS(pSrc) ){
103636     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
103637       substSelect(db, pItem->pSelect, iTable, pEList);
103638     }
103639   }
103640 }
103641 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
103642 
103643 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
103644 /*
103645 ** This routine attempts to flatten subqueries as a performance optimization.
103646 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
103647 **
103648 ** To understand the concept of flattening, consider the following
103649 ** query:
103650 **
103651 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
103652 **
103653 ** The default way of implementing this query is to execute the
103654 ** subquery first and store the results in a temporary table, then
103655 ** run the outer query on that temporary table.  This requires two
103656 ** passes over the data.  Furthermore, because the temporary table
103657 ** has no indices, the WHERE clause on the outer query cannot be
103658 ** optimized.
103659 **
103660 ** This routine attempts to rewrite queries such as the above into
103661 ** a single flat select, like this:
103662 **
103663 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
103664 **
103665 ** The code generated for this simpification gives the same result
103666 ** but only has to scan the data once.  And because indices might
103667 ** exist on the table t1, a complete scan of the data might be
103668 ** avoided.
103669 **
103670 ** Flattening is only attempted if all of the following are true:
103671 **
103672 **   (1)  The subquery and the outer query do not both use aggregates.
103673 **
103674 **   (2)  The subquery is not an aggregate or the outer query is not a join.
103675 **
103676 **   (3)  The subquery is not the right operand of a left outer join
103677 **        (Originally ticket #306.  Strengthened by ticket #3300)
103678 **
103679 **   (4)  The subquery is not DISTINCT.
103680 **
103681 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
103682 **        sub-queries that were excluded from this optimization. Restriction
103683 **        (4) has since been expanded to exclude all DISTINCT subqueries.
103684 **
103685 **   (6)  The subquery does not use aggregates or the outer query is not
103686 **        DISTINCT.
103687 **
103688 **   (7)  The subquery has a FROM clause.  TODO:  For subqueries without
103689 **        A FROM clause, consider adding a FROM close with the special
103690 **        table sqlite_once that consists of a single row containing a
103691 **        single NULL.
103692 **
103693 **   (8)  The subquery does not use LIMIT or the outer query is not a join.
103694 **
103695 **   (9)  The subquery does not use LIMIT or the outer query does not use
103696 **        aggregates.
103697 **
103698 **  (10)  The subquery does not use aggregates or the outer query does not
103699 **        use LIMIT.
103700 **
103701 **  (11)  The subquery and the outer query do not both have ORDER BY clauses.
103702 **
103703 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
103704 **        a separate restriction deriving from ticket #350.
103705 **
103706 **  (13)  The subquery and outer query do not both use LIMIT.
103707 **
103708 **  (14)  The subquery does not use OFFSET.
103709 **
103710 **  (15)  The outer query is not part of a compound select or the
103711 **        subquery does not have a LIMIT clause.
103712 **        (See ticket #2339 and ticket [02a8e81d44]).
103713 **
103714 **  (16)  The outer query is not an aggregate or the subquery does
103715 **        not contain ORDER BY.  (Ticket #2942)  This used to not matter
103716 **        until we introduced the group_concat() function.
103717 **
103718 **  (17)  The sub-query is not a compound select, or it is a UNION ALL
103719 **        compound clause made up entirely of non-aggregate queries, and
103720 **        the parent query:
103721 **
103722 **          * is not itself part of a compound select,
103723 **          * is not an aggregate or DISTINCT query, and
103724 **          * is not a join
103725 **
103726 **        The parent and sub-query may contain WHERE clauses. Subject to
103727 **        rules (11), (13) and (14), they may also contain ORDER BY,
103728 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
103729 **        operator other than UNION ALL because all the other compound
103730 **        operators have an implied DISTINCT which is disallowed by
103731 **        restriction (4).
103732 **
103733 **        Also, each component of the sub-query must return the same number
103734 **        of result columns. This is actually a requirement for any compound
103735 **        SELECT statement, but all the code here does is make sure that no
103736 **        such (illegal) sub-query is flattened. The caller will detect the
103737 **        syntax error and return a detailed message.
103738 **
103739 **  (18)  If the sub-query is a compound select, then all terms of the
103740 **        ORDER by clause of the parent must be simple references to
103741 **        columns of the sub-query.
103742 **
103743 **  (19)  The subquery does not use LIMIT or the outer query does not
103744 **        have a WHERE clause.
103745 **
103746 **  (20)  If the sub-query is a compound select, then it must not use
103747 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
103748 **        somewhat by saying that the terms of the ORDER BY clause must
103749 **        appear as unmodified result columns in the outer query.  But we
103750 **        have other optimizations in mind to deal with that case.
103751 **
103752 **  (21)  The subquery does not use LIMIT or the outer query is not
103753 **        DISTINCT.  (See ticket [752e1646fc]).
103754 **
103755 **  (22)  The subquery is not a recursive CTE.
103756 **
103757 **  (23)  The parent is not a recursive CTE, or the sub-query is not a
103758 **        compound query. This restriction is because transforming the
103759 **        parent to a compound query confuses the code that handles
103760 **        recursive queries in multiSelect().
103761 **
103762 **
103763 ** In this routine, the "p" parameter is a pointer to the outer query.
103764 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
103765 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
103766 **
103767 ** If flattening is not attempted, this routine is a no-op and returns 0.
103768 ** If flattening is attempted this routine returns 1.
103769 **
103770 ** All of the expression analysis must occur on both the outer query and
103771 ** the subquery before this routine runs.
103772 */
103773 static int flattenSubquery(
103774   Parse *pParse,       /* Parsing context */
103775   Select *p,           /* The parent or outer SELECT statement */
103776   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
103777   int isAgg,           /* True if outer SELECT uses aggregate functions */
103778   int subqueryIsAgg    /* True if the subquery uses aggregate functions */
103779 ){
103780   const char *zSavedAuthContext = pParse->zAuthContext;
103781   Select *pParent;
103782   Select *pSub;       /* The inner query or "subquery" */
103783   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
103784   SrcList *pSrc;      /* The FROM clause of the outer query */
103785   SrcList *pSubSrc;   /* The FROM clause of the subquery */
103786   ExprList *pList;    /* The result set of the outer query */
103787   int iParent;        /* VDBE cursor number of the pSub result set temp table */
103788   int i;              /* Loop counter */
103789   Expr *pWhere;                    /* The WHERE clause */
103790   struct SrcList_item *pSubitem;   /* The subquery */
103791   sqlite3 *db = pParse->db;
103792 
103793   /* Check to see if flattening is permitted.  Return 0 if not.
103794   */
103795   assert( p!=0 );
103796   assert( p->pPrior==0 );  /* Unable to flatten compound queries */
103797   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
103798   pSrc = p->pSrc;
103799   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
103800   pSubitem = &pSrc->a[iFrom];
103801   iParent = pSubitem->iCursor;
103802   pSub = pSubitem->pSelect;
103803   assert( pSub!=0 );
103804   if( isAgg && subqueryIsAgg ) return 0;                 /* Restriction (1)  */
103805   if( subqueryIsAgg && pSrc->nSrc>1 ) return 0;          /* Restriction (2)  */
103806   pSubSrc = pSub->pSrc;
103807   assert( pSubSrc );
103808   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
103809   ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET
103810   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
103811   ** became arbitrary expressions, we were forced to add restrictions (13)
103812   ** and (14). */
103813   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
103814   if( pSub->pOffset ) return 0;                          /* Restriction (14) */
103815   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
103816     return 0;                                            /* Restriction (15) */
103817   }
103818   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
103819   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (5)  */
103820   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
103821      return 0;         /* Restrictions (8)(9) */
103822   }
103823   if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){
103824      return 0;         /* Restriction (6)  */
103825   }
103826   if( p->pOrderBy && pSub->pOrderBy ){
103827      return 0;                                           /* Restriction (11) */
103828   }
103829   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
103830   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
103831   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
103832      return 0;         /* Restriction (21) */
103833   }
103834   if( pSub->selFlags & SF_Recursive ) return 0;          /* Restriction (22)  */
103835   if( (p->selFlags & SF_Recursive) && pSub->pPrior ) return 0;       /* (23)  */
103836 
103837   /* OBSOLETE COMMENT 1:
103838   ** Restriction 3:  If the subquery is a join, make sure the subquery is
103839   ** not used as the right operand of an outer join.  Examples of why this
103840   ** is not allowed:
103841   **
103842   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
103843   **
103844   ** If we flatten the above, we would get
103845   **
103846   **         (t1 LEFT OUTER JOIN t2) JOIN t3
103847   **
103848   ** which is not at all the same thing.
103849   **
103850   ** OBSOLETE COMMENT 2:
103851   ** Restriction 12:  If the subquery is the right operand of a left outer
103852   ** join, make sure the subquery has no WHERE clause.
103853   ** An examples of why this is not allowed:
103854   **
103855   **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
103856   **
103857   ** If we flatten the above, we would get
103858   **
103859   **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
103860   **
103861   ** But the t2.x>0 test will always fail on a NULL row of t2, which
103862   ** effectively converts the OUTER JOIN into an INNER JOIN.
103863   **
103864   ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE:
103865   ** Ticket #3300 shows that flattening the right term of a LEFT JOIN
103866   ** is fraught with danger.  Best to avoid the whole thing.  If the
103867   ** subquery is the right term of a LEFT JOIN, then do not flatten.
103868   */
103869   if( (pSubitem->jointype & JT_OUTER)!=0 ){
103870     return 0;
103871   }
103872 
103873   /* Restriction 17: If the sub-query is a compound SELECT, then it must
103874   ** use only the UNION ALL operator. And none of the simple select queries
103875   ** that make up the compound SELECT are allowed to be aggregate or distinct
103876   ** queries.
103877   */
103878   if( pSub->pPrior ){
103879     if( pSub->pOrderBy ){
103880       return 0;  /* Restriction 20 */
103881     }
103882     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
103883       return 0;
103884     }
103885     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
103886       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
103887       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
103888       assert( pSub->pSrc!=0 );
103889       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
103890        || (pSub1->pPrior && pSub1->op!=TK_ALL)
103891        || pSub1->pSrc->nSrc<1
103892        || pSub->pEList->nExpr!=pSub1->pEList->nExpr
103893       ){
103894         return 0;
103895       }
103896       testcase( pSub1->pSrc->nSrc>1 );
103897     }
103898 
103899     /* Restriction 18. */
103900     if( p->pOrderBy ){
103901       int ii;
103902       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
103903         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
103904       }
103905     }
103906   }
103907 
103908   /***** If we reach this point, flattening is permitted. *****/
103909 
103910   /* Authorize the subquery */
103911   pParse->zAuthContext = pSubitem->zName;
103912   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
103913   testcase( i==SQLITE_DENY );
103914   pParse->zAuthContext = zSavedAuthContext;
103915 
103916   /* If the sub-query is a compound SELECT statement, then (by restrictions
103917   ** 17 and 18 above) it must be a UNION ALL and the parent query must
103918   ** be of the form:
103919   **
103920   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
103921   **
103922   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
103923   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
103924   ** OFFSET clauses and joins them to the left-hand-side of the original
103925   ** using UNION ALL operators. In this case N is the number of simple
103926   ** select statements in the compound sub-query.
103927   **
103928   ** Example:
103929   **
103930   **     SELECT a+1 FROM (
103931   **        SELECT x FROM tab
103932   **        UNION ALL
103933   **        SELECT y FROM tab
103934   **        UNION ALL
103935   **        SELECT abs(z*2) FROM tab2
103936   **     ) WHERE a!=5 ORDER BY 1
103937   **
103938   ** Transformed into:
103939   **
103940   **     SELECT x+1 FROM tab WHERE x+1!=5
103941   **     UNION ALL
103942   **     SELECT y+1 FROM tab WHERE y+1!=5
103943   **     UNION ALL
103944   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
103945   **     ORDER BY 1
103946   **
103947   ** We call this the "compound-subquery flattening".
103948   */
103949   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
103950     Select *pNew;
103951     ExprList *pOrderBy = p->pOrderBy;
103952     Expr *pLimit = p->pLimit;
103953     Expr *pOffset = p->pOffset;
103954     Select *pPrior = p->pPrior;
103955     p->pOrderBy = 0;
103956     p->pSrc = 0;
103957     p->pPrior = 0;
103958     p->pLimit = 0;
103959     p->pOffset = 0;
103960     pNew = sqlite3SelectDup(db, p, 0);
103961     p->pOffset = pOffset;
103962     p->pLimit = pLimit;
103963     p->pOrderBy = pOrderBy;
103964     p->pSrc = pSrc;
103965     p->op = TK_ALL;
103966     if( pNew==0 ){
103967       p->pPrior = pPrior;
103968     }else{
103969       pNew->pPrior = pPrior;
103970       if( pPrior ) pPrior->pNext = pNew;
103971       pNew->pNext = p;
103972       p->pPrior = pNew;
103973     }
103974     if( db->mallocFailed ) return 1;
103975   }
103976 
103977   /* Begin flattening the iFrom-th entry of the FROM clause
103978   ** in the outer query.
103979   */
103980   pSub = pSub1 = pSubitem->pSelect;
103981 
103982   /* Delete the transient table structure associated with the
103983   ** subquery
103984   */
103985   sqlite3DbFree(db, pSubitem->zDatabase);
103986   sqlite3DbFree(db, pSubitem->zName);
103987   sqlite3DbFree(db, pSubitem->zAlias);
103988   pSubitem->zDatabase = 0;
103989   pSubitem->zName = 0;
103990   pSubitem->zAlias = 0;
103991   pSubitem->pSelect = 0;
103992 
103993   /* Defer deleting the Table object associated with the
103994   ** subquery until code generation is
103995   ** complete, since there may still exist Expr.pTab entries that
103996   ** refer to the subquery even after flattening.  Ticket #3346.
103997   **
103998   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
103999   */
104000   if( ALWAYS(pSubitem->pTab!=0) ){
104001     Table *pTabToDel = pSubitem->pTab;
104002     if( pTabToDel->nRef==1 ){
104003       Parse *pToplevel = sqlite3ParseToplevel(pParse);
104004       pTabToDel->pNextZombie = pToplevel->pZombieTab;
104005       pToplevel->pZombieTab = pTabToDel;
104006     }else{
104007       pTabToDel->nRef--;
104008     }
104009     pSubitem->pTab = 0;
104010   }
104011 
104012   /* The following loop runs once for each term in a compound-subquery
104013   ** flattening (as described above).  If we are doing a different kind
104014   ** of flattening - a flattening other than a compound-subquery flattening -
104015   ** then this loop only runs once.
104016   **
104017   ** This loop moves all of the FROM elements of the subquery into the
104018   ** the FROM clause of the outer query.  Before doing this, remember
104019   ** the cursor number for the original outer query FROM element in
104020   ** iParent.  The iParent cursor will never be used.  Subsequent code
104021   ** will scan expressions looking for iParent references and replace
104022   ** those references with expressions that resolve to the subquery FROM
104023   ** elements we are now copying in.
104024   */
104025   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
104026     int nSubSrc;
104027     u8 jointype = 0;
104028     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
104029     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
104030     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
104031 
104032     if( pSrc ){
104033       assert( pParent==p );  /* First time through the loop */
104034       jointype = pSubitem->jointype;
104035     }else{
104036       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
104037       pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
104038       if( pSrc==0 ){
104039         assert( db->mallocFailed );
104040         break;
104041       }
104042     }
104043 
104044     /* The subquery uses a single slot of the FROM clause of the outer
104045     ** query.  If the subquery has more than one element in its FROM clause,
104046     ** then expand the outer query to make space for it to hold all elements
104047     ** of the subquery.
104048     **
104049     ** Example:
104050     **
104051     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
104052     **
104053     ** The outer query has 3 slots in its FROM clause.  One slot of the
104054     ** outer query (the middle slot) is used by the subquery.  The next
104055     ** block of code will expand the out query to 4 slots.  The middle
104056     ** slot is expanded to two slots in order to make space for the
104057     ** two elements in the FROM clause of the subquery.
104058     */
104059     if( nSubSrc>1 ){
104060       pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
104061       if( db->mallocFailed ){
104062         break;
104063       }
104064     }
104065 
104066     /* Transfer the FROM clause terms from the subquery into the
104067     ** outer query.
104068     */
104069     for(i=0; i<nSubSrc; i++){
104070       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
104071       pSrc->a[i+iFrom] = pSubSrc->a[i];
104072       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
104073     }
104074     pSrc->a[iFrom].jointype = jointype;
104075 
104076     /* Now begin substituting subquery result set expressions for
104077     ** references to the iParent in the outer query.
104078     **
104079     ** Example:
104080     **
104081     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
104082     **   \                     \_____________ subquery __________/          /
104083     **    \_____________________ outer query ______________________________/
104084     **
104085     ** We look at every expression in the outer query and every place we see
104086     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
104087     */
104088     pList = pParent->pEList;
104089     for(i=0; i<pList->nExpr; i++){
104090       if( pList->a[i].zName==0 ){
104091         char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan);
104092         sqlite3Dequote(zName);
104093         pList->a[i].zName = zName;
104094       }
104095     }
104096     substExprList(db, pParent->pEList, iParent, pSub->pEList);
104097     if( isAgg ){
104098       substExprList(db, pParent->pGroupBy, iParent, pSub->pEList);
104099       pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
104100     }
104101     if( pSub->pOrderBy ){
104102       assert( pParent->pOrderBy==0 );
104103       pParent->pOrderBy = pSub->pOrderBy;
104104       pSub->pOrderBy = 0;
104105     }else if( pParent->pOrderBy ){
104106       substExprList(db, pParent->pOrderBy, iParent, pSub->pEList);
104107     }
104108     if( pSub->pWhere ){
104109       pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
104110     }else{
104111       pWhere = 0;
104112     }
104113     if( subqueryIsAgg ){
104114       assert( pParent->pHaving==0 );
104115       pParent->pHaving = pParent->pWhere;
104116       pParent->pWhere = pWhere;
104117       pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
104118       pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving,
104119                                   sqlite3ExprDup(db, pSub->pHaving, 0));
104120       assert( pParent->pGroupBy==0 );
104121       pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0);
104122     }else{
104123       pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList);
104124       pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere);
104125     }
104126 
104127     /* The flattened query is distinct if either the inner or the
104128     ** outer query is distinct.
104129     */
104130     pParent->selFlags |= pSub->selFlags & SF_Distinct;
104131 
104132     /*
104133     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
104134     **
104135     ** One is tempted to try to add a and b to combine the limits.  But this
104136     ** does not work if either limit is negative.
104137     */
104138     if( pSub->pLimit ){
104139       pParent->pLimit = pSub->pLimit;
104140       pSub->pLimit = 0;
104141     }
104142   }
104143 
104144   /* Finially, delete what is left of the subquery and return
104145   ** success.
104146   */
104147   sqlite3SelectDelete(db, pSub1);
104148 
104149   return 1;
104150 }
104151 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
104152 
104153 /*
104154 ** Based on the contents of the AggInfo structure indicated by the first
104155 ** argument, this function checks if the following are true:
104156 **
104157 **    * the query contains just a single aggregate function,
104158 **    * the aggregate function is either min() or max(), and
104159 **    * the argument to the aggregate function is a column value.
104160 **
104161 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX
104162 ** is returned as appropriate. Also, *ppMinMax is set to point to the
104163 ** list of arguments passed to the aggregate before returning.
104164 **
104165 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and
104166 ** WHERE_ORDERBY_NORMAL is returned.
104167 */
104168 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){
104169   int eRet = WHERE_ORDERBY_NORMAL;          /* Return value */
104170 
104171   *ppMinMax = 0;
104172   if( pAggInfo->nFunc==1 ){
104173     Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */
104174     ExprList *pEList = pExpr->x.pList;      /* Arguments to agg function */
104175 
104176     assert( pExpr->op==TK_AGG_FUNCTION );
104177     if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){
104178       const char *zFunc = pExpr->u.zToken;
104179       if( sqlite3StrICmp(zFunc, "min")==0 ){
104180         eRet = WHERE_ORDERBY_MIN;
104181         *ppMinMax = pEList;
104182       }else if( sqlite3StrICmp(zFunc, "max")==0 ){
104183         eRet = WHERE_ORDERBY_MAX;
104184         *ppMinMax = pEList;
104185       }
104186     }
104187   }
104188 
104189   assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 );
104190   return eRet;
104191 }
104192 
104193 /*
104194 ** The select statement passed as the first argument is an aggregate query.
104195 ** The second argment is the associated aggregate-info object. This
104196 ** function tests if the SELECT is of the form:
104197 **
104198 **   SELECT count(*) FROM <tbl>
104199 **
104200 ** where table is a database table, not a sub-select or view. If the query
104201 ** does match this pattern, then a pointer to the Table object representing
104202 ** <tbl> is returned. Otherwise, 0 is returned.
104203 */
104204 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
104205   Table *pTab;
104206   Expr *pExpr;
104207 
104208   assert( !p->pGroupBy );
104209 
104210   if( p->pWhere || p->pEList->nExpr!=1
104211    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
104212   ){
104213     return 0;
104214   }
104215   pTab = p->pSrc->a[0].pTab;
104216   pExpr = p->pEList->a[0].pExpr;
104217   assert( pTab && !pTab->pSelect && pExpr );
104218 
104219   if( IsVirtual(pTab) ) return 0;
104220   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
104221   if( NEVER(pAggInfo->nFunc==0) ) return 0;
104222   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
104223   if( pExpr->flags&EP_Distinct ) return 0;
104224 
104225   return pTab;
104226 }
104227 
104228 /*
104229 ** If the source-list item passed as an argument was augmented with an
104230 ** INDEXED BY clause, then try to locate the specified index. If there
104231 ** was such a clause and the named index cannot be found, return
104232 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
104233 ** pFrom->pIndex and return SQLITE_OK.
104234 */
104235 SQLITE_PRIVATE int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
104236   if( pFrom->pTab && pFrom->zIndex ){
104237     Table *pTab = pFrom->pTab;
104238     char *zIndex = pFrom->zIndex;
104239     Index *pIdx;
104240     for(pIdx=pTab->pIndex;
104241         pIdx && sqlite3StrICmp(pIdx->zName, zIndex);
104242         pIdx=pIdx->pNext
104243     );
104244     if( !pIdx ){
104245       sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0);
104246       pParse->checkSchema = 1;
104247       return SQLITE_ERROR;
104248     }
104249     pFrom->pIndex = pIdx;
104250   }
104251   return SQLITE_OK;
104252 }
104253 /*
104254 ** Detect compound SELECT statements that use an ORDER BY clause with
104255 ** an alternative collating sequence.
104256 **
104257 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
104258 **
104259 ** These are rewritten as a subquery:
104260 **
104261 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
104262 **     ORDER BY ... COLLATE ...
104263 **
104264 ** This transformation is necessary because the multiSelectOrderBy() routine
104265 ** above that generates the code for a compound SELECT with an ORDER BY clause
104266 ** uses a merge algorithm that requires the same collating sequence on the
104267 ** result columns as on the ORDER BY clause.  See ticket
104268 ** http://www.sqlite.org/src/info/6709574d2a
104269 **
104270 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
104271 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
104272 ** there are COLLATE terms in the ORDER BY.
104273 */
104274 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
104275   int i;
104276   Select *pNew;
104277   Select *pX;
104278   sqlite3 *db;
104279   struct ExprList_item *a;
104280   SrcList *pNewSrc;
104281   Parse *pParse;
104282   Token dummy;
104283 
104284   if( p->pPrior==0 ) return WRC_Continue;
104285   if( p->pOrderBy==0 ) return WRC_Continue;
104286   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
104287   if( pX==0 ) return WRC_Continue;
104288   a = p->pOrderBy->a;
104289   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
104290     if( a[i].pExpr->flags & EP_Collate ) break;
104291   }
104292   if( i<0 ) return WRC_Continue;
104293 
104294   /* If we reach this point, that means the transformation is required. */
104295 
104296   pParse = pWalker->pParse;
104297   db = pParse->db;
104298   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
104299   if( pNew==0 ) return WRC_Abort;
104300   memset(&dummy, 0, sizeof(dummy));
104301   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
104302   if( pNewSrc==0 ) return WRC_Abort;
104303   *pNew = *p;
104304   p->pSrc = pNewSrc;
104305   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ALL, 0));
104306   p->op = TK_SELECT;
104307   p->pWhere = 0;
104308   pNew->pGroupBy = 0;
104309   pNew->pHaving = 0;
104310   pNew->pOrderBy = 0;
104311   p->pPrior = 0;
104312   p->pNext = 0;
104313   p->selFlags &= ~SF_Compound;
104314   assert( pNew->pPrior!=0 );
104315   pNew->pPrior->pNext = pNew;
104316   pNew->pLimit = 0;
104317   pNew->pOffset = 0;
104318   return WRC_Continue;
104319 }
104320 
104321 #ifndef SQLITE_OMIT_CTE
104322 /*
104323 ** Argument pWith (which may be NULL) points to a linked list of nested
104324 ** WITH contexts, from inner to outermost. If the table identified by
104325 ** FROM clause element pItem is really a common-table-expression (CTE)
104326 ** then return a pointer to the CTE definition for that table. Otherwise
104327 ** return NULL.
104328 **
104329 ** If a non-NULL value is returned, set *ppContext to point to the With
104330 ** object that the returned CTE belongs to.
104331 */
104332 static struct Cte *searchWith(
104333   With *pWith,                    /* Current outermost WITH clause */
104334   struct SrcList_item *pItem,     /* FROM clause element to resolve */
104335   With **ppContext                /* OUT: WITH clause return value belongs to */
104336 ){
104337   const char *zName;
104338   if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
104339     With *p;
104340     for(p=pWith; p; p=p->pOuter){
104341       int i;
104342       for(i=0; i<p->nCte; i++){
104343         if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
104344           *ppContext = p;
104345           return &p->a[i];
104346         }
104347       }
104348     }
104349   }
104350   return 0;
104351 }
104352 
104353 /* The code generator maintains a stack of active WITH clauses
104354 ** with the inner-most WITH clause being at the top of the stack.
104355 **
104356 ** This routine pushes the WITH clause passed as the second argument
104357 ** onto the top of the stack. If argument bFree is true, then this
104358 ** WITH clause will never be popped from the stack. In this case it
104359 ** should be freed along with the Parse object. In other cases, when
104360 ** bFree==0, the With object will be freed along with the SELECT
104361 ** statement with which it is associated.
104362 */
104363 SQLITE_PRIVATE void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
104364   assert( bFree==0 || pParse->pWith==0 );
104365   if( pWith ){
104366     pWith->pOuter = pParse->pWith;
104367     pParse->pWith = pWith;
104368     pParse->bFreeWith = bFree;
104369   }
104370 }
104371 
104372 /*
104373 ** This function checks if argument pFrom refers to a CTE declared by
104374 ** a WITH clause on the stack currently maintained by the parser. And,
104375 ** if currently processing a CTE expression, if it is a recursive
104376 ** reference to the current CTE.
104377 **
104378 ** If pFrom falls into either of the two categories above, pFrom->pTab
104379 ** and other fields are populated accordingly. The caller should check
104380 ** (pFrom->pTab!=0) to determine whether or not a successful match
104381 ** was found.
104382 **
104383 ** Whether or not a match is found, SQLITE_OK is returned if no error
104384 ** occurs. If an error does occur, an error message is stored in the
104385 ** parser and some error code other than SQLITE_OK returned.
104386 */
104387 static int withExpand(
104388   Walker *pWalker,
104389   struct SrcList_item *pFrom
104390 ){
104391   Parse *pParse = pWalker->pParse;
104392   sqlite3 *db = pParse->db;
104393   struct Cte *pCte;               /* Matched CTE (or NULL if no match) */
104394   With *pWith;                    /* WITH clause that pCte belongs to */
104395 
104396   assert( pFrom->pTab==0 );
104397 
104398   pCte = searchWith(pParse->pWith, pFrom, &pWith);
104399   if( pCte ){
104400     Table *pTab;
104401     ExprList *pEList;
104402     Select *pSel;
104403     Select *pLeft;                /* Left-most SELECT statement */
104404     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
104405     With *pSavedWith;             /* Initial value of pParse->pWith */
104406 
104407     /* If pCte->zErr is non-NULL at this point, then this is an illegal
104408     ** recursive reference to CTE pCte. Leave an error in pParse and return
104409     ** early. If pCte->zErr is NULL, then this is not a recursive reference.
104410     ** In this case, proceed.  */
104411     if( pCte->zErr ){
104412       sqlite3ErrorMsg(pParse, pCte->zErr, pCte->zName);
104413       return SQLITE_ERROR;
104414     }
104415 
104416     assert( pFrom->pTab==0 );
104417     pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
104418     if( pTab==0 ) return WRC_Abort;
104419     pTab->nRef = 1;
104420     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
104421     pTab->iPKey = -1;
104422     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
104423     pTab->tabFlags |= TF_Ephemeral;
104424     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
104425     if( db->mallocFailed ) return SQLITE_NOMEM;
104426     assert( pFrom->pSelect );
104427 
104428     /* Check if this is a recursive CTE. */
104429     pSel = pFrom->pSelect;
104430     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
104431     if( bMayRecursive ){
104432       int i;
104433       SrcList *pSrc = pFrom->pSelect->pSrc;
104434       for(i=0; i<pSrc->nSrc; i++){
104435         struct SrcList_item *pItem = &pSrc->a[i];
104436         if( pItem->zDatabase==0
104437          && pItem->zName!=0
104438          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
104439           ){
104440           pItem->pTab = pTab;
104441           pItem->isRecursive = 1;
104442           pTab->nRef++;
104443           pSel->selFlags |= SF_Recursive;
104444         }
104445       }
104446     }
104447 
104448     /* Only one recursive reference is permitted. */
104449     if( pTab->nRef>2 ){
104450       sqlite3ErrorMsg(
104451           pParse, "multiple references to recursive table: %s", pCte->zName
104452       );
104453       return SQLITE_ERROR;
104454     }
104455     assert( pTab->nRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nRef==2 ));
104456 
104457     pCte->zErr = "circular reference: %s";
104458     pSavedWith = pParse->pWith;
104459     pParse->pWith = pWith;
104460     sqlite3WalkSelect(pWalker, bMayRecursive ? pSel->pPrior : pSel);
104461 
104462     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
104463     pEList = pLeft->pEList;
104464     if( pCte->pCols ){
104465       if( pEList->nExpr!=pCte->pCols->nExpr ){
104466         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
104467             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
104468         );
104469         pParse->pWith = pSavedWith;
104470         return SQLITE_ERROR;
104471       }
104472       pEList = pCte->pCols;
104473     }
104474 
104475     selectColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
104476     if( bMayRecursive ){
104477       if( pSel->selFlags & SF_Recursive ){
104478         pCte->zErr = "multiple recursive references: %s";
104479       }else{
104480         pCte->zErr = "recursive reference in a subquery: %s";
104481       }
104482       sqlite3WalkSelect(pWalker, pSel);
104483     }
104484     pCte->zErr = 0;
104485     pParse->pWith = pSavedWith;
104486   }
104487 
104488   return SQLITE_OK;
104489 }
104490 #endif
104491 
104492 #ifndef SQLITE_OMIT_CTE
104493 /*
104494 ** If the SELECT passed as the second argument has an associated WITH
104495 ** clause, pop it from the stack stored as part of the Parse object.
104496 **
104497 ** This function is used as the xSelectCallback2() callback by
104498 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
104499 ** names and other FROM clause elements.
104500 */
104501 static void selectPopWith(Walker *pWalker, Select *p){
104502   Parse *pParse = pWalker->pParse;
104503   With *pWith = findRightmost(p)->pWith;
104504   if( pWith!=0 ){
104505     assert( pParse->pWith==pWith );
104506     pParse->pWith = pWith->pOuter;
104507   }
104508 }
104509 #else
104510 #define selectPopWith 0
104511 #endif
104512 
104513 /*
104514 ** This routine is a Walker callback for "expanding" a SELECT statement.
104515 ** "Expanding" means to do the following:
104516 **
104517 **    (1)  Make sure VDBE cursor numbers have been assigned to every
104518 **         element of the FROM clause.
104519 **
104520 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
104521 **         defines FROM clause.  When views appear in the FROM clause,
104522 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
104523 **         that implements the view.  A copy is made of the view's SELECT
104524 **         statement so that we can freely modify or delete that statement
104525 **         without worrying about messing up the presistent representation
104526 **         of the view.
104527 **
104528 **    (3)  Add terms to the WHERE clause to accomodate the NATURAL keyword
104529 **         on joins and the ON and USING clause of joins.
104530 **
104531 **    (4)  Scan the list of columns in the result set (pEList) looking
104532 **         for instances of the "*" operator or the TABLE.* operator.
104533 **         If found, expand each "*" to be every column in every table
104534 **         and TABLE.* to be every column in TABLE.
104535 **
104536 */
104537 static int selectExpander(Walker *pWalker, Select *p){
104538   Parse *pParse = pWalker->pParse;
104539   int i, j, k;
104540   SrcList *pTabList;
104541   ExprList *pEList;
104542   struct SrcList_item *pFrom;
104543   sqlite3 *db = pParse->db;
104544   Expr *pE, *pRight, *pExpr;
104545   u16 selFlags = p->selFlags;
104546 
104547   p->selFlags |= SF_Expanded;
104548   if( db->mallocFailed  ){
104549     return WRC_Abort;
104550   }
104551   if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){
104552     return WRC_Prune;
104553   }
104554   pTabList = p->pSrc;
104555   pEList = p->pEList;
104556   sqlite3WithPush(pParse, findRightmost(p)->pWith, 0);
104557 
104558   /* Make sure cursor numbers have been assigned to all entries in
104559   ** the FROM clause of the SELECT statement.
104560   */
104561   sqlite3SrcListAssignCursors(pParse, pTabList);
104562 
104563   /* Look up every table named in the FROM clause of the select.  If
104564   ** an entry of the FROM clause is a subquery instead of a table or view,
104565   ** then create a transient table structure to describe the subquery.
104566   */
104567   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
104568     Table *pTab;
104569     assert( pFrom->isRecursive==0 || pFrom->pTab );
104570     if( pFrom->isRecursive ) continue;
104571     if( pFrom->pTab!=0 ){
104572       /* This statement has already been prepared.  There is no need
104573       ** to go further. */
104574       assert( i==0 );
104575 #ifndef SQLITE_OMIT_CTE
104576       selectPopWith(pWalker, p);
104577 #endif
104578       return WRC_Prune;
104579     }
104580 #ifndef SQLITE_OMIT_CTE
104581     if( withExpand(pWalker, pFrom) ) return WRC_Abort;
104582     if( pFrom->pTab ) {} else
104583 #endif
104584     if( pFrom->zName==0 ){
104585 #ifndef SQLITE_OMIT_SUBQUERY
104586       Select *pSel = pFrom->pSelect;
104587       /* A sub-query in the FROM clause of a SELECT */
104588       assert( pSel!=0 );
104589       assert( pFrom->pTab==0 );
104590       sqlite3WalkSelect(pWalker, pSel);
104591       pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
104592       if( pTab==0 ) return WRC_Abort;
104593       pTab->nRef = 1;
104594       pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab);
104595       while( pSel->pPrior ){ pSel = pSel->pPrior; }
104596       selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol);
104597       pTab->iPKey = -1;
104598       pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
104599       pTab->tabFlags |= TF_Ephemeral;
104600 #endif
104601     }else{
104602       /* An ordinary table or view name in the FROM clause */
104603       assert( pFrom->pTab==0 );
104604       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
104605       if( pTab==0 ) return WRC_Abort;
104606       if( pTab->nRef==0xffff ){
104607         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
104608            pTab->zName);
104609         pFrom->pTab = 0;
104610         return WRC_Abort;
104611       }
104612       pTab->nRef++;
104613 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
104614       if( pTab->pSelect || IsVirtual(pTab) ){
104615         /* We reach here if the named table is a really a view */
104616         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
104617         assert( pFrom->pSelect==0 );
104618         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
104619         sqlite3WalkSelect(pWalker, pFrom->pSelect);
104620       }
104621 #endif
104622     }
104623 
104624     /* Locate the index named by the INDEXED BY clause, if any. */
104625     if( sqlite3IndexedByLookup(pParse, pFrom) ){
104626       return WRC_Abort;
104627     }
104628   }
104629 
104630   /* Process NATURAL keywords, and ON and USING clauses of joins.
104631   */
104632   if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
104633     return WRC_Abort;
104634   }
104635 
104636   /* For every "*" that occurs in the column list, insert the names of
104637   ** all columns in all tables.  And for every TABLE.* insert the names
104638   ** of all columns in TABLE.  The parser inserted a special expression
104639   ** with the TK_ALL operator for each "*" that it found in the column list.
104640   ** The following code just has to locate the TK_ALL expressions and expand
104641   ** each one to the list of all columns in all tables.
104642   **
104643   ** The first loop just checks to see if there are any "*" operators
104644   ** that need expanding.
104645   */
104646   for(k=0; k<pEList->nExpr; k++){
104647     pE = pEList->a[k].pExpr;
104648     if( pE->op==TK_ALL ) break;
104649     assert( pE->op!=TK_DOT || pE->pRight!=0 );
104650     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
104651     if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break;
104652   }
104653   if( k<pEList->nExpr ){
104654     /*
104655     ** If we get here it means the result set contains one or more "*"
104656     ** operators that need to be expanded.  Loop through each expression
104657     ** in the result set and expand them one by one.
104658     */
104659     struct ExprList_item *a = pEList->a;
104660     ExprList *pNew = 0;
104661     int flags = pParse->db->flags;
104662     int longNames = (flags & SQLITE_FullColNames)!=0
104663                       && (flags & SQLITE_ShortColNames)==0;
104664 
104665     /* When processing FROM-clause subqueries, it is always the case
104666     ** that full_column_names=OFF and short_column_names=ON.  The
104667     ** sqlite3ResultSetOfSelect() routine makes it so. */
104668     assert( (p->selFlags & SF_NestedFrom)==0
104669           || ((flags & SQLITE_FullColNames)==0 &&
104670               (flags & SQLITE_ShortColNames)!=0) );
104671 
104672     for(k=0; k<pEList->nExpr; k++){
104673       pE = a[k].pExpr;
104674       pRight = pE->pRight;
104675       assert( pE->op!=TK_DOT || pRight!=0 );
104676       if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pRight->op!=TK_ALL) ){
104677         /* This particular expression does not need to be expanded.
104678         */
104679         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
104680         if( pNew ){
104681           pNew->a[pNew->nExpr-1].zName = a[k].zName;
104682           pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
104683           a[k].zName = 0;
104684           a[k].zSpan = 0;
104685         }
104686         a[k].pExpr = 0;
104687       }else{
104688         /* This expression is a "*" or a "TABLE.*" and needs to be
104689         ** expanded. */
104690         int tableSeen = 0;      /* Set to 1 when TABLE matches */
104691         char *zTName = 0;       /* text of name of TABLE */
104692         if( pE->op==TK_DOT ){
104693           assert( pE->pLeft!=0 );
104694           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
104695           zTName = pE->pLeft->u.zToken;
104696         }
104697         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
104698           Table *pTab = pFrom->pTab;
104699           Select *pSub = pFrom->pSelect;
104700           char *zTabName = pFrom->zAlias;
104701           const char *zSchemaName = 0;
104702           int iDb;
104703           if( zTabName==0 ){
104704             zTabName = pTab->zName;
104705           }
104706           if( db->mallocFailed ) break;
104707           if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
104708             pSub = 0;
104709             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
104710               continue;
104711             }
104712             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
104713             zSchemaName = iDb>=0 ? db->aDb[iDb].zName : "*";
104714           }
104715           for(j=0; j<pTab->nCol; j++){
104716             char *zName = pTab->aCol[j].zName;
104717             char *zColname;  /* The computed column name */
104718             char *zToFree;   /* Malloced string that needs to be freed */
104719             Token sColname;  /* Computed column name as a token */
104720 
104721             assert( zName );
104722             if( zTName && pSub
104723              && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0
104724             ){
104725               continue;
104726             }
104727 
104728             /* If a column is marked as 'hidden' (currently only possible
104729             ** for virtual tables), do not include it in the expanded
104730             ** result-set list.
104731             */
104732             if( IsHiddenColumn(&pTab->aCol[j]) ){
104733               assert(IsVirtual(pTab));
104734               continue;
104735             }
104736             tableSeen = 1;
104737 
104738             if( i>0 && zTName==0 ){
104739               if( (pFrom->jointype & JT_NATURAL)!=0
104740                 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
104741               ){
104742                 /* In a NATURAL join, omit the join columns from the
104743                 ** table to the right of the join */
104744                 continue;
104745               }
104746               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
104747                 /* In a join with a USING clause, omit columns in the
104748                 ** using clause from the table on the right. */
104749                 continue;
104750               }
104751             }
104752             pRight = sqlite3Expr(db, TK_ID, zName);
104753             zColname = zName;
104754             zToFree = 0;
104755             if( longNames || pTabList->nSrc>1 ){
104756               Expr *pLeft;
104757               pLeft = sqlite3Expr(db, TK_ID, zTabName);
104758               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
104759               if( zSchemaName ){
104760                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
104761                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr, 0);
104762               }
104763               if( longNames ){
104764                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
104765                 zToFree = zColname;
104766               }
104767             }else{
104768               pExpr = pRight;
104769             }
104770             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
104771             sColname.z = zColname;
104772             sColname.n = sqlite3Strlen30(zColname);
104773             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
104774             if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
104775               struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
104776               if( pSub ){
104777                 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan);
104778                 testcase( pX->zSpan==0 );
104779               }else{
104780                 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s",
104781                                            zSchemaName, zTabName, zColname);
104782                 testcase( pX->zSpan==0 );
104783               }
104784               pX->bSpanIsTab = 1;
104785             }
104786             sqlite3DbFree(db, zToFree);
104787           }
104788         }
104789         if( !tableSeen ){
104790           if( zTName ){
104791             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
104792           }else{
104793             sqlite3ErrorMsg(pParse, "no tables specified");
104794           }
104795         }
104796       }
104797     }
104798     sqlite3ExprListDelete(db, pEList);
104799     p->pEList = pNew;
104800   }
104801 #if SQLITE_MAX_COLUMN
104802   if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
104803     sqlite3ErrorMsg(pParse, "too many columns in result set");
104804   }
104805 #endif
104806   return WRC_Continue;
104807 }
104808 
104809 /*
104810 ** No-op routine for the parse-tree walker.
104811 **
104812 ** When this routine is the Walker.xExprCallback then expression trees
104813 ** are walked without any actions being taken at each node.  Presumably,
104814 ** when this routine is used for Walker.xExprCallback then
104815 ** Walker.xSelectCallback is set to do something useful for every
104816 ** subquery in the parser tree.
104817 */
104818 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
104819   UNUSED_PARAMETER2(NotUsed, NotUsed2);
104820   return WRC_Continue;
104821 }
104822 
104823 /*
104824 ** This routine "expands" a SELECT statement and all of its subqueries.
104825 ** For additional information on what it means to "expand" a SELECT
104826 ** statement, see the comment on the selectExpand worker callback above.
104827 **
104828 ** Expanding a SELECT statement is the first step in processing a
104829 ** SELECT statement.  The SELECT statement must be expanded before
104830 ** name resolution is performed.
104831 **
104832 ** If anything goes wrong, an error message is written into pParse.
104833 ** The calling function can detect the problem by looking at pParse->nErr
104834 ** and/or pParse->db->mallocFailed.
104835 */
104836 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
104837   Walker w;
104838   memset(&w, 0, sizeof(w));
104839   w.xExprCallback = exprWalkNoop;
104840   w.pParse = pParse;
104841   if( pParse->hasCompound ){
104842     w.xSelectCallback = convertCompoundSelectToSubquery;
104843     sqlite3WalkSelect(&w, pSelect);
104844   }
104845   w.xSelectCallback = selectExpander;
104846   w.xSelectCallback2 = selectPopWith;
104847   sqlite3WalkSelect(&w, pSelect);
104848 }
104849 
104850 
104851 #ifndef SQLITE_OMIT_SUBQUERY
104852 /*
104853 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
104854 ** interface.
104855 **
104856 ** For each FROM-clause subquery, add Column.zType and Column.zColl
104857 ** information to the Table structure that represents the result set
104858 ** of that subquery.
104859 **
104860 ** The Table structure that represents the result set was constructed
104861 ** by selectExpander() but the type and collation information was omitted
104862 ** at that point because identifiers had not yet been resolved.  This
104863 ** routine is called after identifier resolution.
104864 */
104865 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
104866   Parse *pParse;
104867   int i;
104868   SrcList *pTabList;
104869   struct SrcList_item *pFrom;
104870 
104871   assert( p->selFlags & SF_Resolved );
104872   if( (p->selFlags & SF_HasTypeInfo)==0 ){
104873     p->selFlags |= SF_HasTypeInfo;
104874     pParse = pWalker->pParse;
104875     pTabList = p->pSrc;
104876     for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
104877       Table *pTab = pFrom->pTab;
104878       if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){
104879         /* A sub-query in the FROM clause of a SELECT */
104880         Select *pSel = pFrom->pSelect;
104881         if( pSel ){
104882           while( pSel->pPrior ) pSel = pSel->pPrior;
104883           selectAddColumnTypeAndCollation(pParse, pTab, pSel);
104884         }
104885       }
104886     }
104887   }
104888 }
104889 #endif
104890 
104891 
104892 /*
104893 ** This routine adds datatype and collating sequence information to
104894 ** the Table structures of all FROM-clause subqueries in a
104895 ** SELECT statement.
104896 **
104897 ** Use this routine after name resolution.
104898 */
104899 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
104900 #ifndef SQLITE_OMIT_SUBQUERY
104901   Walker w;
104902   memset(&w, 0, sizeof(w));
104903   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
104904   w.xExprCallback = exprWalkNoop;
104905   w.pParse = pParse;
104906   sqlite3WalkSelect(&w, pSelect);
104907 #endif
104908 }
104909 
104910 
104911 /*
104912 ** This routine sets up a SELECT statement for processing.  The
104913 ** following is accomplished:
104914 **
104915 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
104916 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
104917 **     *  ON and USING clauses are shifted into WHERE statements
104918 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
104919 **     *  Identifiers in expression are matched to tables.
104920 **
104921 ** This routine acts recursively on all subqueries within the SELECT.
104922 */
104923 SQLITE_PRIVATE void sqlite3SelectPrep(
104924   Parse *pParse,         /* The parser context */
104925   Select *p,             /* The SELECT statement being coded. */
104926   NameContext *pOuterNC  /* Name context for container */
104927 ){
104928   sqlite3 *db;
104929   if( NEVER(p==0) ) return;
104930   db = pParse->db;
104931   if( db->mallocFailed ) return;
104932   if( p->selFlags & SF_HasTypeInfo ) return;
104933   sqlite3SelectExpand(pParse, p);
104934   if( pParse->nErr || db->mallocFailed ) return;
104935   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
104936   if( pParse->nErr || db->mallocFailed ) return;
104937   sqlite3SelectAddTypeInfo(pParse, p);
104938 }
104939 
104940 /*
104941 ** Reset the aggregate accumulator.
104942 **
104943 ** The aggregate accumulator is a set of memory cells that hold
104944 ** intermediate results while calculating an aggregate.  This
104945 ** routine generates code that stores NULLs in all of those memory
104946 ** cells.
104947 */
104948 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
104949   Vdbe *v = pParse->pVdbe;
104950   int i;
104951   struct AggInfo_func *pFunc;
104952   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
104953   if( nReg==0 ) return;
104954 #ifdef SQLITE_DEBUG
104955   /* Verify that all AggInfo registers are within the range specified by
104956   ** AggInfo.mnReg..AggInfo.mxReg */
104957   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
104958   for(i=0; i<pAggInfo->nColumn; i++){
104959     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
104960          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
104961   }
104962   for(i=0; i<pAggInfo->nFunc; i++){
104963     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
104964          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
104965   }
104966 #endif
104967   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
104968   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
104969     if( pFunc->iDistinct>=0 ){
104970       Expr *pE = pFunc->pExpr;
104971       assert( !ExprHasProperty(pE, EP_xIsSelect) );
104972       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
104973         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
104974            "argument");
104975         pFunc->iDistinct = -1;
104976       }else{
104977         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0);
104978         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
104979                           (char*)pKeyInfo, P4_KEYINFO);
104980       }
104981     }
104982   }
104983 }
104984 
104985 /*
104986 ** Invoke the OP_AggFinalize opcode for every aggregate function
104987 ** in the AggInfo structure.
104988 */
104989 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
104990   Vdbe *v = pParse->pVdbe;
104991   int i;
104992   struct AggInfo_func *pF;
104993   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
104994     ExprList *pList = pF->pExpr->x.pList;
104995     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
104996     sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
104997                       (void*)pF->pFunc, P4_FUNCDEF);
104998   }
104999 }
105000 
105001 /*
105002 ** Update the accumulator memory cells for an aggregate based on
105003 ** the current cursor position.
105004 */
105005 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
105006   Vdbe *v = pParse->pVdbe;
105007   int i;
105008   int regHit = 0;
105009   int addrHitTest = 0;
105010   struct AggInfo_func *pF;
105011   struct AggInfo_col *pC;
105012 
105013   pAggInfo->directMode = 1;
105014   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
105015     int nArg;
105016     int addrNext = 0;
105017     int regAgg;
105018     ExprList *pList = pF->pExpr->x.pList;
105019     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
105020     if( pList ){
105021       nArg = pList->nExpr;
105022       regAgg = sqlite3GetTempRange(pParse, nArg);
105023       sqlite3ExprCodeExprList(pParse, pList, regAgg, SQLITE_ECEL_DUP);
105024     }else{
105025       nArg = 0;
105026       regAgg = 0;
105027     }
105028     if( pF->iDistinct>=0 ){
105029       addrNext = sqlite3VdbeMakeLabel(v);
105030       assert( nArg==1 );
105031       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
105032     }
105033     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
105034       CollSeq *pColl = 0;
105035       struct ExprList_item *pItem;
105036       int j;
105037       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
105038       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
105039         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
105040       }
105041       if( !pColl ){
105042         pColl = pParse->db->pDfltColl;
105043       }
105044       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
105045       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
105046     }
105047     sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem,
105048                       (void*)pF->pFunc, P4_FUNCDEF);
105049     sqlite3VdbeChangeP5(v, (u8)nArg);
105050     sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
105051     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
105052     if( addrNext ){
105053       sqlite3VdbeResolveLabel(v, addrNext);
105054       sqlite3ExprCacheClear(pParse);
105055     }
105056   }
105057 
105058   /* Before populating the accumulator registers, clear the column cache.
105059   ** Otherwise, if any of the required column values are already present
105060   ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
105061   ** to pC->iMem. But by the time the value is used, the original register
105062   ** may have been used, invalidating the underlying buffer holding the
105063   ** text or blob value. See ticket [883034dcb5].
105064   **
105065   ** Another solution would be to change the OP_SCopy used to copy cached
105066   ** values to an OP_Copy.
105067   */
105068   if( regHit ){
105069     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
105070   }
105071   sqlite3ExprCacheClear(pParse);
105072   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
105073     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
105074   }
105075   pAggInfo->directMode = 0;
105076   sqlite3ExprCacheClear(pParse);
105077   if( addrHitTest ){
105078     sqlite3VdbeJumpHere(v, addrHitTest);
105079   }
105080 }
105081 
105082 /*
105083 ** Add a single OP_Explain instruction to the VDBE to explain a simple
105084 ** count(*) query ("SELECT count(*) FROM pTab").
105085 */
105086 #ifndef SQLITE_OMIT_EXPLAIN
105087 static void explainSimpleCount(
105088   Parse *pParse,                  /* Parse context */
105089   Table *pTab,                    /* Table being queried */
105090   Index *pIdx                     /* Index used to optimize scan, or NULL */
105091 ){
105092   if( pParse->explain==2 ){
105093     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
105094     char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s",
105095         pTab->zName,
105096         bCover ? " USING COVERING INDEX " : "",
105097         bCover ? pIdx->zName : ""
105098     );
105099     sqlite3VdbeAddOp4(
105100         pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
105101     );
105102   }
105103 }
105104 #else
105105 # define explainSimpleCount(a,b,c)
105106 #endif
105107 
105108 /*
105109 ** Generate code for the SELECT statement given in the p argument.
105110 **
105111 ** The results are returned according to the SelectDest structure.
105112 ** See comments in sqliteInt.h for further information.
105113 **
105114 ** This routine returns the number of errors.  If any errors are
105115 ** encountered, then an appropriate error message is left in
105116 ** pParse->zErrMsg.
105117 **
105118 ** This routine does NOT free the Select structure passed in.  The
105119 ** calling function needs to do that.
105120 */
105121 SQLITE_PRIVATE int sqlite3Select(
105122   Parse *pParse,         /* The parser context */
105123   Select *p,             /* The SELECT statement being coded. */
105124   SelectDest *pDest      /* What to do with the query results */
105125 ){
105126   int i, j;              /* Loop counters */
105127   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
105128   Vdbe *v;               /* The virtual machine under construction */
105129   int isAgg;             /* True for select lists like "count(*)" */
105130   ExprList *pEList;      /* List of columns to extract. */
105131   SrcList *pTabList;     /* List of tables to select from */
105132   Expr *pWhere;          /* The WHERE clause.  May be NULL */
105133   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
105134   Expr *pHaving;         /* The HAVING clause.  May be NULL */
105135   int rc = 1;            /* Value to return from this function */
105136   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
105137   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
105138   AggInfo sAggInfo;      /* Information used by aggregate queries */
105139   int iEnd;              /* Address of the end of the query */
105140   sqlite3 *db;           /* The database connection */
105141 
105142 #ifndef SQLITE_OMIT_EXPLAIN
105143   int iRestoreSelectId = pParse->iSelectId;
105144   pParse->iSelectId = pParse->iNextSelectId++;
105145 #endif
105146 
105147   db = pParse->db;
105148   if( p==0 || db->mallocFailed || pParse->nErr ){
105149     return 1;
105150   }
105151   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
105152   memset(&sAggInfo, 0, sizeof(sAggInfo));
105153 
105154   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
105155   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
105156   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
105157   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
105158   if( IgnorableOrderby(pDest) ){
105159     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
105160            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
105161            pDest->eDest==SRT_Queue  || pDest->eDest==SRT_DistFifo ||
105162            pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo);
105163     /* If ORDER BY makes no difference in the output then neither does
105164     ** DISTINCT so it can be removed too. */
105165     sqlite3ExprListDelete(db, p->pOrderBy);
105166     p->pOrderBy = 0;
105167     p->selFlags &= ~SF_Distinct;
105168   }
105169   sqlite3SelectPrep(pParse, p, 0);
105170   memset(&sSort, 0, sizeof(sSort));
105171   sSort.pOrderBy = p->pOrderBy;
105172   pTabList = p->pSrc;
105173   pEList = p->pEList;
105174   if( pParse->nErr || db->mallocFailed ){
105175     goto select_end;
105176   }
105177   isAgg = (p->selFlags & SF_Aggregate)!=0;
105178   assert( pEList!=0 );
105179 
105180   /* Begin generating code.
105181   */
105182   v = sqlite3GetVdbe(pParse);
105183   if( v==0 ) goto select_end;
105184 
105185   /* If writing to memory or generating a set
105186   ** only a single column may be output.
105187   */
105188 #ifndef SQLITE_OMIT_SUBQUERY
105189   if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
105190     goto select_end;
105191   }
105192 #endif
105193 
105194   /* Generate code for all sub-queries in the FROM clause
105195   */
105196 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
105197   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
105198     struct SrcList_item *pItem = &pTabList->a[i];
105199     SelectDest dest;
105200     Select *pSub = pItem->pSelect;
105201     int isAggSub;
105202 
105203     if( pSub==0 ) continue;
105204 
105205     /* Sometimes the code for a subquery will be generated more than
105206     ** once, if the subquery is part of the WHERE clause in a LEFT JOIN,
105207     ** for example.  In that case, do not regenerate the code to manifest
105208     ** a view or the co-routine to implement a view.  The first instance
105209     ** is sufficient, though the subroutine to manifest the view does need
105210     ** to be invoked again. */
105211     if( pItem->addrFillSub ){
105212       if( pItem->viaCoroutine==0 ){
105213         sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub);
105214       }
105215       continue;
105216     }
105217 
105218     /* Increment Parse.nHeight by the height of the largest expression
105219     ** tree referred to by this, the parent select. The child select
105220     ** may contain expression trees of at most
105221     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
105222     ** more conservative than necessary, but much easier than enforcing
105223     ** an exact limit.
105224     */
105225     pParse->nHeight += sqlite3SelectExprHeight(p);
105226 
105227     isAggSub = (pSub->selFlags & SF_Aggregate)!=0;
105228     if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
105229       /* This subquery can be absorbed into its parent. */
105230       if( isAggSub ){
105231         isAgg = 1;
105232         p->selFlags |= SF_Aggregate;
105233       }
105234       i = -1;
105235     }else if( pTabList->nSrc==1
105236            && OptimizationEnabled(db, SQLITE_SubqCoroutine)
105237     ){
105238       /* Implement a co-routine that will return a single row of the result
105239       ** set on each invocation.
105240       */
105241       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
105242       pItem->regReturn = ++pParse->nMem;
105243       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
105244       VdbeComment((v, "%s", pItem->pTab->zName));
105245       pItem->addrFillSub = addrTop;
105246       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
105247       explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
105248       sqlite3Select(pParse, pSub, &dest);
105249       pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow);
105250       pItem->viaCoroutine = 1;
105251       pItem->regResult = dest.iSdst;
105252       sqlite3VdbeAddOp1(v, OP_EndCoroutine, pItem->regReturn);
105253       sqlite3VdbeJumpHere(v, addrTop-1);
105254       sqlite3ClearTempRegCache(pParse);
105255     }else{
105256       /* Generate a subroutine that will fill an ephemeral table with
105257       ** the content of this subquery.  pItem->addrFillSub will point
105258       ** to the address of the generated subroutine.  pItem->regReturn
105259       ** is a register allocated to hold the subroutine return address
105260       */
105261       int topAddr;
105262       int onceAddr = 0;
105263       int retAddr;
105264       assert( pItem->addrFillSub==0 );
105265       pItem->regReturn = ++pParse->nMem;
105266       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
105267       pItem->addrFillSub = topAddr+1;
105268       if( pItem->isCorrelated==0 ){
105269         /* If the subquery is not correlated and if we are not inside of
105270         ** a trigger, then we only need to compute the value of the subquery
105271         ** once. */
105272         onceAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v);
105273         VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
105274       }else{
105275         VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
105276       }
105277       sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
105278       explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
105279       sqlite3Select(pParse, pSub, &dest);
105280       pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow);
105281       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
105282       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
105283       VdbeComment((v, "end %s", pItem->pTab->zName));
105284       sqlite3VdbeChangeP1(v, topAddr, retAddr);
105285       sqlite3ClearTempRegCache(pParse);
105286     }
105287     if( /*pParse->nErr ||*/ db->mallocFailed ){
105288       goto select_end;
105289     }
105290     pParse->nHeight -= sqlite3SelectExprHeight(p);
105291     pTabList = p->pSrc;
105292     if( !IgnorableOrderby(pDest) ){
105293       sSort.pOrderBy = p->pOrderBy;
105294     }
105295   }
105296   pEList = p->pEList;
105297 #endif
105298   pWhere = p->pWhere;
105299   pGroupBy = p->pGroupBy;
105300   pHaving = p->pHaving;
105301   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
105302 
105303 #ifndef SQLITE_OMIT_COMPOUND_SELECT
105304   /* If there is are a sequence of queries, do the earlier ones first.
105305   */
105306   if( p->pPrior ){
105307     rc = multiSelect(pParse, p, pDest);
105308     explainSetInteger(pParse->iSelectId, iRestoreSelectId);
105309     return rc;
105310   }
105311 #endif
105312 
105313   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
105314   ** if the select-list is the same as the ORDER BY list, then this query
105315   ** can be rewritten as a GROUP BY. In other words, this:
105316   **
105317   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
105318   **
105319   ** is transformed to:
105320   **
105321   **     SELECT xyz FROM ... GROUP BY xyz
105322   **
105323   ** The second form is preferred as a single index (or temp-table) may be
105324   ** used for both the ORDER BY and DISTINCT processing. As originally
105325   ** written the query must use a temp-table for at least one of the ORDER
105326   ** BY and DISTINCT, and an index or separate temp-table for the other.
105327   */
105328   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
105329    && sqlite3ExprListCompare(sSort.pOrderBy, p->pEList, -1)==0
105330   ){
105331     p->selFlags &= ~SF_Distinct;
105332     p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0);
105333     pGroupBy = p->pGroupBy;
105334     sSort.pOrderBy = 0;
105335     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
105336     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
105337     ** original setting of the SF_Distinct flag, not the current setting */
105338     assert( sDistinct.isTnct );
105339   }
105340 
105341   /* If there is an ORDER BY clause, then this sorting
105342   ** index might end up being unused if the data can be
105343   ** extracted in pre-sorted order.  If that is the case, then the
105344   ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
105345   ** we figure out that the sorting index is not needed.  The addrSortIndex
105346   ** variable is used to facilitate that change.
105347   */
105348   if( sSort.pOrderBy ){
105349     KeyInfo *pKeyInfo;
105350     pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, 0);
105351     sSort.iECursor = pParse->nTab++;
105352     sSort.addrSortIndex =
105353       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
105354                            sSort.iECursor, sSort.pOrderBy->nExpr+2, 0,
105355                            (char*)pKeyInfo, P4_KEYINFO);
105356   }else{
105357     sSort.addrSortIndex = -1;
105358   }
105359 
105360   /* If the output is destined for a temporary table, open that table.
105361   */
105362   if( pDest->eDest==SRT_EphemTab ){
105363     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
105364   }
105365 
105366   /* Set the limiter.
105367   */
105368   iEnd = sqlite3VdbeMakeLabel(v);
105369   p->nSelectRow = LARGEST_INT64;
105370   computeLimitRegisters(pParse, p, iEnd);
105371   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
105372     sqlite3VdbeGetOp(v, sSort.addrSortIndex)->opcode = OP_SorterOpen;
105373     sSort.sortFlags |= SORTFLAG_UseSorter;
105374   }
105375 
105376   /* Open a virtual index to use for the distinct set.
105377   */
105378   if( p->selFlags & SF_Distinct ){
105379     sDistinct.tabTnct = pParse->nTab++;
105380     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
105381                                 sDistinct.tabTnct, 0, 0,
105382                                 (char*)keyInfoFromExprList(pParse, p->pEList,0,0),
105383                                 P4_KEYINFO);
105384     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
105385     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
105386   }else{
105387     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
105388   }
105389 
105390   if( !isAgg && pGroupBy==0 ){
105391     /* No aggregate functions and no GROUP BY clause */
105392     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0);
105393 
105394     /* Begin the database scan. */
105395     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
105396                                p->pEList, wctrlFlags, 0);
105397     if( pWInfo==0 ) goto select_end;
105398     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
105399       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
105400     }
105401     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
105402       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
105403     }
105404     if( sSort.pOrderBy ){
105405       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
105406       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
105407         sSort.pOrderBy = 0;
105408       }
105409     }
105410 
105411     /* If sorting index that was created by a prior OP_OpenEphemeral
105412     ** instruction ended up not being needed, then change the OP_OpenEphemeral
105413     ** into an OP_Noop.
105414     */
105415     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
105416       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
105417     }
105418 
105419     /* Use the standard inner loop. */
105420     selectInnerLoop(pParse, p, pEList, -1, &sSort, &sDistinct, pDest,
105421                     sqlite3WhereContinueLabel(pWInfo),
105422                     sqlite3WhereBreakLabel(pWInfo));
105423 
105424     /* End the database scan loop.
105425     */
105426     sqlite3WhereEnd(pWInfo);
105427   }else{
105428     /* This case when there exist aggregate functions or a GROUP BY clause
105429     ** or both */
105430     NameContext sNC;    /* Name context for processing aggregate information */
105431     int iAMem;          /* First Mem address for storing current GROUP BY */
105432     int iBMem;          /* First Mem address for previous GROUP BY */
105433     int iUseFlag;       /* Mem address holding flag indicating that at least
105434                         ** one row of the input to the aggregator has been
105435                         ** processed */
105436     int iAbortFlag;     /* Mem address which causes query abort if positive */
105437     int groupBySort;    /* Rows come from source in GROUP BY order */
105438     int addrEnd;        /* End of processing for this SELECT */
105439     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
105440     int sortOut = 0;    /* Output register from the sorter */
105441     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
105442 
105443     /* Remove any and all aliases between the result set and the
105444     ** GROUP BY clause.
105445     */
105446     if( pGroupBy ){
105447       int k;                        /* Loop counter */
105448       struct ExprList_item *pItem;  /* For looping over expression in a list */
105449 
105450       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
105451         pItem->u.x.iAlias = 0;
105452       }
105453       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
105454         pItem->u.x.iAlias = 0;
105455       }
105456       if( p->nSelectRow>100 ) p->nSelectRow = 100;
105457     }else{
105458       p->nSelectRow = 1;
105459     }
105460 
105461 
105462     /* If there is both a GROUP BY and an ORDER BY clause and they are
105463     ** identical, then it may be possible to disable the ORDER BY clause
105464     ** on the grounds that the GROUP BY will cause elements to come out
105465     ** in the correct order. It also may not - the GROUP BY may use a
105466     ** database index that causes rows to be grouped together as required
105467     ** but not actually sorted. Either way, record the fact that the
105468     ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
105469     ** variable.  */
105470     if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
105471       orderByGrp = 1;
105472     }
105473 
105474     /* Create a label to jump to when we want to abort the query */
105475     addrEnd = sqlite3VdbeMakeLabel(v);
105476 
105477     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
105478     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
105479     ** SELECT statement.
105480     */
105481     memset(&sNC, 0, sizeof(sNC));
105482     sNC.pParse = pParse;
105483     sNC.pSrcList = pTabList;
105484     sNC.pAggInfo = &sAggInfo;
105485     sAggInfo.mnReg = pParse->nMem+1;
105486     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0;
105487     sAggInfo.pGroupBy = pGroupBy;
105488     sqlite3ExprAnalyzeAggList(&sNC, pEList);
105489     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
105490     if( pHaving ){
105491       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
105492     }
105493     sAggInfo.nAccumulator = sAggInfo.nColumn;
105494     for(i=0; i<sAggInfo.nFunc; i++){
105495       assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
105496       sNC.ncFlags |= NC_InAggFunc;
105497       sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
105498       sNC.ncFlags &= ~NC_InAggFunc;
105499     }
105500     sAggInfo.mxReg = pParse->nMem;
105501     if( db->mallocFailed ) goto select_end;
105502 
105503     /* Processing for aggregates with GROUP BY is very different and
105504     ** much more complex than aggregates without a GROUP BY.
105505     */
105506     if( pGroupBy ){
105507       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
105508       int j1;             /* A-vs-B comparision jump */
105509       int addrOutputRow;  /* Start of subroutine that outputs a result row */
105510       int regOutputRow;   /* Return address register for output subroutine */
105511       int addrSetAbort;   /* Set the abort flag and return */
105512       int addrTopOfLoop;  /* Top of the input loop */
105513       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
105514       int addrReset;      /* Subroutine for resetting the accumulator */
105515       int regReset;       /* Return address register for reset subroutine */
105516 
105517       /* If there is a GROUP BY clause we might need a sorting index to
105518       ** implement it.  Allocate that sorting index now.  If it turns out
105519       ** that we do not need it after all, the OP_SorterOpen instruction
105520       ** will be converted into a Noop.
105521       */
105522       sAggInfo.sortingIdx = pParse->nTab++;
105523       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, 0);
105524       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
105525           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
105526           0, (char*)pKeyInfo, P4_KEYINFO);
105527 
105528       /* Initialize memory locations used by GROUP BY aggregate processing
105529       */
105530       iUseFlag = ++pParse->nMem;
105531       iAbortFlag = ++pParse->nMem;
105532       regOutputRow = ++pParse->nMem;
105533       addrOutputRow = sqlite3VdbeMakeLabel(v);
105534       regReset = ++pParse->nMem;
105535       addrReset = sqlite3VdbeMakeLabel(v);
105536       iAMem = pParse->nMem + 1;
105537       pParse->nMem += pGroupBy->nExpr;
105538       iBMem = pParse->nMem + 1;
105539       pParse->nMem += pGroupBy->nExpr;
105540       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
105541       VdbeComment((v, "clear abort flag"));
105542       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
105543       VdbeComment((v, "indicate accumulator empty"));
105544       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
105545 
105546       /* Begin a loop that will extract all source rows in GROUP BY order.
105547       ** This might involve two separate loops with an OP_Sort in between, or
105548       ** it might be a single loop that uses an index to extract information
105549       ** in the right order to begin with.
105550       */
105551       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
105552       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
105553           WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
105554       );
105555       if( pWInfo==0 ) goto select_end;
105556       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
105557         /* The optimizer is able to deliver rows in group by order so
105558         ** we do not have to sort.  The OP_OpenEphemeral table will be
105559         ** cancelled later because we still need to use the pKeyInfo
105560         */
105561         groupBySort = 0;
105562       }else{
105563         /* Rows are coming out in undetermined order.  We have to push
105564         ** each row into a sorting index, terminate the first loop,
105565         ** then loop over the sorting index in order to get the output
105566         ** in sorted order
105567         */
105568         int regBase;
105569         int regRecord;
105570         int nCol;
105571         int nGroupBy;
105572 
105573         explainTempTable(pParse,
105574             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
105575                     "DISTINCT" : "GROUP BY");
105576 
105577         groupBySort = 1;
105578         nGroupBy = pGroupBy->nExpr;
105579         nCol = nGroupBy + 1;
105580         j = nGroupBy+1;
105581         for(i=0; i<sAggInfo.nColumn; i++){
105582           if( sAggInfo.aCol[i].iSorterColumn>=j ){
105583             nCol++;
105584             j++;
105585           }
105586         }
105587         regBase = sqlite3GetTempRange(pParse, nCol);
105588         sqlite3ExprCacheClear(pParse);
105589         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0);
105590         sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy);
105591         j = nGroupBy+1;
105592         for(i=0; i<sAggInfo.nColumn; i++){
105593           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
105594           if( pCol->iSorterColumn>=j ){
105595             int r1 = j + regBase;
105596             int r2;
105597 
105598             r2 = sqlite3ExprCodeGetColumn(pParse,
105599                                pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0);
105600             if( r1!=r2 ){
105601               sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1);
105602             }
105603             j++;
105604           }
105605         }
105606         regRecord = sqlite3GetTempReg(pParse);
105607         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
105608         sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
105609         sqlite3ReleaseTempReg(pParse, regRecord);
105610         sqlite3ReleaseTempRange(pParse, regBase, nCol);
105611         sqlite3WhereEnd(pWInfo);
105612         sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
105613         sortOut = sqlite3GetTempReg(pParse);
105614         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
105615         sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
105616         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
105617         sAggInfo.useSortingIdx = 1;
105618         sqlite3ExprCacheClear(pParse);
105619 
105620       }
105621 
105622       /* If the index or temporary table used by the GROUP BY sort
105623       ** will naturally deliver rows in the order required by the ORDER BY
105624       ** clause, cancel the ephemeral table open coded earlier.
105625       **
105626       ** This is an optimization - the correct answer should result regardless.
105627       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
105628       ** disable this optimization for testing purposes.  */
105629       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
105630        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
105631       ){
105632         sSort.pOrderBy = 0;
105633         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
105634       }
105635 
105636       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
105637       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
105638       ** Then compare the current GROUP BY terms against the GROUP BY terms
105639       ** from the previous row currently stored in a0, a1, a2...
105640       */
105641       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
105642       sqlite3ExprCacheClear(pParse);
105643       if( groupBySort ){
105644         sqlite3VdbeAddOp2(v, OP_SorterData, sAggInfo.sortingIdx, sortOut);
105645       }
105646       for(j=0; j<pGroupBy->nExpr; j++){
105647         if( groupBySort ){
105648           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
105649           if( j==0 ) sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE);
105650         }else{
105651           sAggInfo.directMode = 1;
105652           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
105653         }
105654       }
105655       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
105656                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
105657       j1 = sqlite3VdbeCurrentAddr(v);
105658       sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); VdbeCoverage(v);
105659 
105660       /* Generate code that runs whenever the GROUP BY changes.
105661       ** Changes in the GROUP BY are detected by the previous code
105662       ** block.  If there were no changes, this block is skipped.
105663       **
105664       ** This code copies current group by terms in b0,b1,b2,...
105665       ** over to a0,a1,a2.  It then calls the output subroutine
105666       ** and resets the aggregate accumulator registers in preparation
105667       ** for the next GROUP BY batch.
105668       */
105669       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
105670       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
105671       VdbeComment((v, "output one row"));
105672       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
105673       VdbeComment((v, "check abort flag"));
105674       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
105675       VdbeComment((v, "reset accumulator"));
105676 
105677       /* Update the aggregate accumulators based on the content of
105678       ** the current row
105679       */
105680       sqlite3VdbeJumpHere(v, j1);
105681       updateAccumulator(pParse, &sAggInfo);
105682       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
105683       VdbeComment((v, "indicate data in accumulator"));
105684 
105685       /* End of the loop
105686       */
105687       if( groupBySort ){
105688         sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
105689         VdbeCoverage(v);
105690       }else{
105691         sqlite3WhereEnd(pWInfo);
105692         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
105693       }
105694 
105695       /* Output the final row of result
105696       */
105697       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
105698       VdbeComment((v, "output final row"));
105699 
105700       /* Jump over the subroutines
105701       */
105702       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd);
105703 
105704       /* Generate a subroutine that outputs a single row of the result
105705       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
105706       ** is less than or equal to zero, the subroutine is a no-op.  If
105707       ** the processing calls for the query to abort, this subroutine
105708       ** increments the iAbortFlag memory location before returning in
105709       ** order to signal the caller to abort.
105710       */
105711       addrSetAbort = sqlite3VdbeCurrentAddr(v);
105712       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
105713       VdbeComment((v, "set abort flag"));
105714       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
105715       sqlite3VdbeResolveLabel(v, addrOutputRow);
105716       addrOutputRow = sqlite3VdbeCurrentAddr(v);
105717       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); VdbeCoverage(v);
105718       VdbeComment((v, "Groupby result generator entry point"));
105719       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
105720       finalizeAggFunctions(pParse, &sAggInfo);
105721       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
105722       selectInnerLoop(pParse, p, p->pEList, -1, &sSort,
105723                       &sDistinct, pDest,
105724                       addrOutputRow+1, addrSetAbort);
105725       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
105726       VdbeComment((v, "end groupby result generator"));
105727 
105728       /* Generate a subroutine that will reset the group-by accumulator
105729       */
105730       sqlite3VdbeResolveLabel(v, addrReset);
105731       resetAccumulator(pParse, &sAggInfo);
105732       sqlite3VdbeAddOp1(v, OP_Return, regReset);
105733 
105734     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
105735     else {
105736       ExprList *pDel = 0;
105737 #ifndef SQLITE_OMIT_BTREECOUNT
105738       Table *pTab;
105739       if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
105740         /* If isSimpleCount() returns a pointer to a Table structure, then
105741         ** the SQL statement is of the form:
105742         **
105743         **   SELECT count(*) FROM <tbl>
105744         **
105745         ** where the Table structure returned represents table <tbl>.
105746         **
105747         ** This statement is so common that it is optimized specially. The
105748         ** OP_Count instruction is executed either on the intkey table that
105749         ** contains the data for table <tbl> or on one of its indexes. It
105750         ** is better to execute the op on an index, as indexes are almost
105751         ** always spread across less pages than their corresponding tables.
105752         */
105753         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
105754         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
105755         Index *pIdx;                         /* Iterator variable */
105756         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
105757         Index *pBest = 0;                    /* Best index found so far */
105758         int iRoot = pTab->tnum;              /* Root page of scanned b-tree */
105759 
105760         sqlite3CodeVerifySchema(pParse, iDb);
105761         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
105762 
105763         /* Search for the index that has the lowest scan cost.
105764         **
105765         ** (2011-04-15) Do not do a full scan of an unordered index.
105766         **
105767         ** (2013-10-03) Do not count the entries in a partial index.
105768         **
105769         ** In practice the KeyInfo structure will not be used. It is only
105770         ** passed to keep OP_OpenRead happy.
105771         */
105772         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
105773         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
105774           if( pIdx->bUnordered==0
105775            && pIdx->szIdxRow<pTab->szTabRow
105776            && pIdx->pPartIdxWhere==0
105777            && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
105778           ){
105779             pBest = pIdx;
105780           }
105781         }
105782         if( pBest ){
105783           iRoot = pBest->tnum;
105784           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
105785         }
105786 
105787         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
105788         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1);
105789         if( pKeyInfo ){
105790           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
105791         }
105792         sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
105793         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
105794         explainSimpleCount(pParse, pTab, pBest);
105795       }else
105796 #endif /* SQLITE_OMIT_BTREECOUNT */
105797       {
105798         /* Check if the query is of one of the following forms:
105799         **
105800         **   SELECT min(x) FROM ...
105801         **   SELECT max(x) FROM ...
105802         **
105803         ** If it is, then ask the code in where.c to attempt to sort results
105804         ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
105805         ** If where.c is able to produce results sorted in this order, then
105806         ** add vdbe code to break out of the processing loop after the
105807         ** first iteration (since the first iteration of the loop is
105808         ** guaranteed to operate on the row with the minimum or maximum
105809         ** value of x, the only row required).
105810         **
105811         ** A special flag must be passed to sqlite3WhereBegin() to slightly
105812         ** modify behavior as follows:
105813         **
105814         **   + If the query is a "SELECT min(x)", then the loop coded by
105815         **     where.c should not iterate over any values with a NULL value
105816         **     for x.
105817         **
105818         **   + The optimizer code in where.c (the thing that decides which
105819         **     index or indices to use) should place a different priority on
105820         **     satisfying the 'ORDER BY' clause than it does in other cases.
105821         **     Refer to code and comments in where.c for details.
105822         */
105823         ExprList *pMinMax = 0;
105824         u8 flag = WHERE_ORDERBY_NORMAL;
105825 
105826         assert( p->pGroupBy==0 );
105827         assert( flag==0 );
105828         if( p->pHaving==0 ){
105829           flag = minMaxQuery(&sAggInfo, &pMinMax);
105830         }
105831         assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) );
105832 
105833         if( flag ){
105834           pMinMax = sqlite3ExprListDup(db, pMinMax, 0);
105835           pDel = pMinMax;
105836           if( pMinMax && !db->mallocFailed ){
105837             pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0;
105838             pMinMax->a[0].pExpr->op = TK_COLUMN;
105839           }
105840         }
105841 
105842         /* This case runs if the aggregate has no GROUP BY clause.  The
105843         ** processing is much simpler since there is only a single row
105844         ** of output.
105845         */
105846         resetAccumulator(pParse, &sAggInfo);
105847         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0);
105848         if( pWInfo==0 ){
105849           sqlite3ExprListDelete(db, pDel);
105850           goto select_end;
105851         }
105852         updateAccumulator(pParse, &sAggInfo);
105853         assert( pMinMax==0 || pMinMax->nExpr==1 );
105854         if( sqlite3WhereIsOrdered(pWInfo)>0 ){
105855           sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3WhereBreakLabel(pWInfo));
105856           VdbeComment((v, "%s() by index",
105857                 (flag==WHERE_ORDERBY_MIN?"min":"max")));
105858         }
105859         sqlite3WhereEnd(pWInfo);
105860         finalizeAggFunctions(pParse, &sAggInfo);
105861       }
105862 
105863       sSort.pOrderBy = 0;
105864       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
105865       selectInnerLoop(pParse, p, p->pEList, -1, 0, 0,
105866                       pDest, addrEnd, addrEnd);
105867       sqlite3ExprListDelete(db, pDel);
105868     }
105869     sqlite3VdbeResolveLabel(v, addrEnd);
105870 
105871   } /* endif aggregate query */
105872 
105873   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
105874     explainTempTable(pParse, "DISTINCT");
105875   }
105876 
105877   /* If there is an ORDER BY clause, then we need to sort the results
105878   ** and send them to the callback one by one.
105879   */
105880   if( sSort.pOrderBy ){
105881     explainTempTable(pParse, sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
105882     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
105883   }
105884 
105885   /* Jump here to skip this query
105886   */
105887   sqlite3VdbeResolveLabel(v, iEnd);
105888 
105889   /* The SELECT was successfully coded.   Set the return code to 0
105890   ** to indicate no errors.
105891   */
105892   rc = 0;
105893 
105894   /* Control jumps to here if an error is encountered above, or upon
105895   ** successful coding of the SELECT.
105896   */
105897 select_end:
105898   explainSetInteger(pParse->iSelectId, iRestoreSelectId);
105899 
105900   /* Identify column names if results of the SELECT are to be output.
105901   */
105902   if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){
105903     generateColumnNames(pParse, pTabList, pEList);
105904   }
105905 
105906   sqlite3DbFree(db, sAggInfo.aCol);
105907   sqlite3DbFree(db, sAggInfo.aFunc);
105908   return rc;
105909 }
105910 
105911 #if defined(SQLITE_ENABLE_TREE_EXPLAIN)
105912 /*
105913 ** Generate a human-readable description of a the Select object.
105914 */
105915 static void explainOneSelect(Vdbe *pVdbe, Select *p){
105916   sqlite3ExplainPrintf(pVdbe, "SELECT ");
105917   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
105918     if( p->selFlags & SF_Distinct ){
105919       sqlite3ExplainPrintf(pVdbe, "DISTINCT ");
105920     }
105921     if( p->selFlags & SF_Aggregate ){
105922       sqlite3ExplainPrintf(pVdbe, "agg_flag ");
105923     }
105924     sqlite3ExplainNL(pVdbe);
105925     sqlite3ExplainPrintf(pVdbe, "   ");
105926   }
105927   sqlite3ExplainExprList(pVdbe, p->pEList);
105928   sqlite3ExplainNL(pVdbe);
105929   if( p->pSrc && p->pSrc->nSrc ){
105930     int i;
105931     sqlite3ExplainPrintf(pVdbe, "FROM ");
105932     sqlite3ExplainPush(pVdbe);
105933     for(i=0; i<p->pSrc->nSrc; i++){
105934       struct SrcList_item *pItem = &p->pSrc->a[i];
105935       sqlite3ExplainPrintf(pVdbe, "{%d,*} = ", pItem->iCursor);
105936       if( pItem->pSelect ){
105937         sqlite3ExplainSelect(pVdbe, pItem->pSelect);
105938         if( pItem->pTab ){
105939           sqlite3ExplainPrintf(pVdbe, " (tabname=%s)", pItem->pTab->zName);
105940         }
105941       }else if( pItem->zName ){
105942         sqlite3ExplainPrintf(pVdbe, "%s", pItem->zName);
105943       }
105944       if( pItem->zAlias ){
105945         sqlite3ExplainPrintf(pVdbe, " (AS %s)", pItem->zAlias);
105946       }
105947       if( pItem->jointype & JT_LEFT ){
105948         sqlite3ExplainPrintf(pVdbe, " LEFT-JOIN");
105949       }
105950       sqlite3ExplainNL(pVdbe);
105951     }
105952     sqlite3ExplainPop(pVdbe);
105953   }
105954   if( p->pWhere ){
105955     sqlite3ExplainPrintf(pVdbe, "WHERE ");
105956     sqlite3ExplainExpr(pVdbe, p->pWhere);
105957     sqlite3ExplainNL(pVdbe);
105958   }
105959   if( p->pGroupBy ){
105960     sqlite3ExplainPrintf(pVdbe, "GROUPBY ");
105961     sqlite3ExplainExprList(pVdbe, p->pGroupBy);
105962     sqlite3ExplainNL(pVdbe);
105963   }
105964   if( p->pHaving ){
105965     sqlite3ExplainPrintf(pVdbe, "HAVING ");
105966     sqlite3ExplainExpr(pVdbe, p->pHaving);
105967     sqlite3ExplainNL(pVdbe);
105968   }
105969   if( p->pOrderBy ){
105970     sqlite3ExplainPrintf(pVdbe, "ORDERBY ");
105971     sqlite3ExplainExprList(pVdbe, p->pOrderBy);
105972     sqlite3ExplainNL(pVdbe);
105973   }
105974   if( p->pLimit ){
105975     sqlite3ExplainPrintf(pVdbe, "LIMIT ");
105976     sqlite3ExplainExpr(pVdbe, p->pLimit);
105977     sqlite3ExplainNL(pVdbe);
105978   }
105979   if( p->pOffset ){
105980     sqlite3ExplainPrintf(pVdbe, "OFFSET ");
105981     sqlite3ExplainExpr(pVdbe, p->pOffset);
105982     sqlite3ExplainNL(pVdbe);
105983   }
105984 }
105985 SQLITE_PRIVATE void sqlite3ExplainSelect(Vdbe *pVdbe, Select *p){
105986   if( p==0 ){
105987     sqlite3ExplainPrintf(pVdbe, "(null-select)");
105988     return;
105989   }
105990   sqlite3ExplainPush(pVdbe);
105991   while( p ){
105992     explainOneSelect(pVdbe, p);
105993     p = p->pNext;
105994     if( p==0 ) break;
105995     sqlite3ExplainNL(pVdbe);
105996     sqlite3ExplainPrintf(pVdbe, "%s\n", selectOpName(p->op));
105997   }
105998   sqlite3ExplainPrintf(pVdbe, "END");
105999   sqlite3ExplainPop(pVdbe);
106000 }
106001 
106002 /* End of the structure debug printing code
106003 *****************************************************************************/
106004 #endif /* defined(SQLITE_ENABLE_TREE_EXPLAIN) */
106005 
106006 /************** End of select.c **********************************************/
106007 /************** Begin file table.c *******************************************/
106008 /*
106009 ** 2001 September 15
106010 **
106011 ** The author disclaims copyright to this source code.  In place of
106012 ** a legal notice, here is a blessing:
106013 **
106014 **    May you do good and not evil.
106015 **    May you find forgiveness for yourself and forgive others.
106016 **    May you share freely, never taking more than you give.
106017 **
106018 *************************************************************************
106019 ** This file contains the sqlite3_get_table() and sqlite3_free_table()
106020 ** interface routines.  These are just wrappers around the main
106021 ** interface routine of sqlite3_exec().
106022 **
106023 ** These routines are in a separate files so that they will not be linked
106024 ** if they are not used.
106025 */
106026 /* #include <stdlib.h> */
106027 /* #include <string.h> */
106028 
106029 #ifndef SQLITE_OMIT_GET_TABLE
106030 
106031 /*
106032 ** This structure is used to pass data from sqlite3_get_table() through
106033 ** to the callback function is uses to build the result.
106034 */
106035 typedef struct TabResult {
106036   char **azResult;   /* Accumulated output */
106037   char *zErrMsg;     /* Error message text, if an error occurs */
106038   int nAlloc;        /* Slots allocated for azResult[] */
106039   int nRow;          /* Number of rows in the result */
106040   int nColumn;       /* Number of columns in the result */
106041   int nData;         /* Slots used in azResult[].  (nRow+1)*nColumn */
106042   int rc;            /* Return code from sqlite3_exec() */
106043 } TabResult;
106044 
106045 /*
106046 ** This routine is called once for each row in the result table.  Its job
106047 ** is to fill in the TabResult structure appropriately, allocating new
106048 ** memory as necessary.
106049 */
106050 static int sqlite3_get_table_cb(void *pArg, int nCol, char **argv, char **colv){
106051   TabResult *p = (TabResult*)pArg;  /* Result accumulator */
106052   int need;                         /* Slots needed in p->azResult[] */
106053   int i;                            /* Loop counter */
106054   char *z;                          /* A single column of result */
106055 
106056   /* Make sure there is enough space in p->azResult to hold everything
106057   ** we need to remember from this invocation of the callback.
106058   */
106059   if( p->nRow==0 && argv!=0 ){
106060     need = nCol*2;
106061   }else{
106062     need = nCol;
106063   }
106064   if( p->nData + need > p->nAlloc ){
106065     char **azNew;
106066     p->nAlloc = p->nAlloc*2 + need;
106067     azNew = sqlite3_realloc( p->azResult, sizeof(char*)*p->nAlloc );
106068     if( azNew==0 ) goto malloc_failed;
106069     p->azResult = azNew;
106070   }
106071 
106072   /* If this is the first row, then generate an extra row containing
106073   ** the names of all columns.
106074   */
106075   if( p->nRow==0 ){
106076     p->nColumn = nCol;
106077     for(i=0; i<nCol; i++){
106078       z = sqlite3_mprintf("%s", colv[i]);
106079       if( z==0 ) goto malloc_failed;
106080       p->azResult[p->nData++] = z;
106081     }
106082   }else if( p->nColumn!=nCol ){
106083     sqlite3_free(p->zErrMsg);
106084     p->zErrMsg = sqlite3_mprintf(
106085        "sqlite3_get_table() called with two or more incompatible queries"
106086     );
106087     p->rc = SQLITE_ERROR;
106088     return 1;
106089   }
106090 
106091   /* Copy over the row data
106092   */
106093   if( argv!=0 ){
106094     for(i=0; i<nCol; i++){
106095       if( argv[i]==0 ){
106096         z = 0;
106097       }else{
106098         int n = sqlite3Strlen30(argv[i])+1;
106099         z = sqlite3_malloc( n );
106100         if( z==0 ) goto malloc_failed;
106101         memcpy(z, argv[i], n);
106102       }
106103       p->azResult[p->nData++] = z;
106104     }
106105     p->nRow++;
106106   }
106107   return 0;
106108 
106109 malloc_failed:
106110   p->rc = SQLITE_NOMEM;
106111   return 1;
106112 }
106113 
106114 /*
106115 ** Query the database.  But instead of invoking a callback for each row,
106116 ** malloc() for space to hold the result and return the entire results
106117 ** at the conclusion of the call.
106118 **
106119 ** The result that is written to ***pazResult is held in memory obtained
106120 ** from malloc().  But the caller cannot free this memory directly.
106121 ** Instead, the entire table should be passed to sqlite3_free_table() when
106122 ** the calling procedure is finished using it.
106123 */
106124 SQLITE_API int sqlite3_get_table(
106125   sqlite3 *db,                /* The database on which the SQL executes */
106126   const char *zSql,           /* The SQL to be executed */
106127   char ***pazResult,          /* Write the result table here */
106128   int *pnRow,                 /* Write the number of rows in the result here */
106129   int *pnColumn,              /* Write the number of columns of result here */
106130   char **pzErrMsg             /* Write error messages here */
106131 ){
106132   int rc;
106133   TabResult res;
106134 
106135   *pazResult = 0;
106136   if( pnColumn ) *pnColumn = 0;
106137   if( pnRow ) *pnRow = 0;
106138   if( pzErrMsg ) *pzErrMsg = 0;
106139   res.zErrMsg = 0;
106140   res.nRow = 0;
106141   res.nColumn = 0;
106142   res.nData = 1;
106143   res.nAlloc = 20;
106144   res.rc = SQLITE_OK;
106145   res.azResult = sqlite3_malloc(sizeof(char*)*res.nAlloc );
106146   if( res.azResult==0 ){
106147      db->errCode = SQLITE_NOMEM;
106148      return SQLITE_NOMEM;
106149   }
106150   res.azResult[0] = 0;
106151   rc = sqlite3_exec(db, zSql, sqlite3_get_table_cb, &res, pzErrMsg);
106152   assert( sizeof(res.azResult[0])>= sizeof(res.nData) );
106153   res.azResult[0] = SQLITE_INT_TO_PTR(res.nData);
106154   if( (rc&0xff)==SQLITE_ABORT ){
106155     sqlite3_free_table(&res.azResult[1]);
106156     if( res.zErrMsg ){
106157       if( pzErrMsg ){
106158         sqlite3_free(*pzErrMsg);
106159         *pzErrMsg = sqlite3_mprintf("%s",res.zErrMsg);
106160       }
106161       sqlite3_free(res.zErrMsg);
106162     }
106163     db->errCode = res.rc;  /* Assume 32-bit assignment is atomic */
106164     return res.rc;
106165   }
106166   sqlite3_free(res.zErrMsg);
106167   if( rc!=SQLITE_OK ){
106168     sqlite3_free_table(&res.azResult[1]);
106169     return rc;
106170   }
106171   if( res.nAlloc>res.nData ){
106172     char **azNew;
106173     azNew = sqlite3_realloc( res.azResult, sizeof(char*)*res.nData );
106174     if( azNew==0 ){
106175       sqlite3_free_table(&res.azResult[1]);
106176       db->errCode = SQLITE_NOMEM;
106177       return SQLITE_NOMEM;
106178     }
106179     res.azResult = azNew;
106180   }
106181   *pazResult = &res.azResult[1];
106182   if( pnColumn ) *pnColumn = res.nColumn;
106183   if( pnRow ) *pnRow = res.nRow;
106184   return rc;
106185 }
106186 
106187 /*
106188 ** This routine frees the space the sqlite3_get_table() malloced.
106189 */
106190 SQLITE_API void sqlite3_free_table(
106191   char **azResult            /* Result returned from from sqlite3_get_table() */
106192 ){
106193   if( azResult ){
106194     int i, n;
106195     azResult--;
106196     assert( azResult!=0 );
106197     n = SQLITE_PTR_TO_INT(azResult[0]);
106198     for(i=1; i<n; i++){ if( azResult[i] ) sqlite3_free(azResult[i]); }
106199     sqlite3_free(azResult);
106200   }
106201 }
106202 
106203 #endif /* SQLITE_OMIT_GET_TABLE */
106204 
106205 /************** End of table.c ***********************************************/
106206 /************** Begin file trigger.c *****************************************/
106207 /*
106208 **
106209 ** The author disclaims copyright to this source code.  In place of
106210 ** a legal notice, here is a blessing:
106211 **
106212 **    May you do good and not evil.
106213 **    May you find forgiveness for yourself and forgive others.
106214 **    May you share freely, never taking more than you give.
106215 **
106216 *************************************************************************
106217 ** This file contains the implementation for TRIGGERs
106218 */
106219 
106220 #ifndef SQLITE_OMIT_TRIGGER
106221 /*
106222 ** Delete a linked list of TriggerStep structures.
106223 */
106224 SQLITE_PRIVATE void sqlite3DeleteTriggerStep(sqlite3 *db, TriggerStep *pTriggerStep){
106225   while( pTriggerStep ){
106226     TriggerStep * pTmp = pTriggerStep;
106227     pTriggerStep = pTriggerStep->pNext;
106228 
106229     sqlite3ExprDelete(db, pTmp->pWhere);
106230     sqlite3ExprListDelete(db, pTmp->pExprList);
106231     sqlite3SelectDelete(db, pTmp->pSelect);
106232     sqlite3IdListDelete(db, pTmp->pIdList);
106233 
106234     sqlite3DbFree(db, pTmp);
106235   }
106236 }
106237 
106238 /*
106239 ** Given table pTab, return a list of all the triggers attached to
106240 ** the table. The list is connected by Trigger.pNext pointers.
106241 **
106242 ** All of the triggers on pTab that are in the same database as pTab
106243 ** are already attached to pTab->pTrigger.  But there might be additional
106244 ** triggers on pTab in the TEMP schema.  This routine prepends all
106245 ** TEMP triggers on pTab to the beginning of the pTab->pTrigger list
106246 ** and returns the combined list.
106247 **
106248 ** To state it another way:  This routine returns a list of all triggers
106249 ** that fire off of pTab.  The list will include any TEMP triggers on
106250 ** pTab as well as the triggers lised in pTab->pTrigger.
106251 */
106252 SQLITE_PRIVATE Trigger *sqlite3TriggerList(Parse *pParse, Table *pTab){
106253   Schema * const pTmpSchema = pParse->db->aDb[1].pSchema;
106254   Trigger *pList = 0;                  /* List of triggers to return */
106255 
106256   if( pParse->disableTriggers ){
106257     return 0;
106258   }
106259 
106260   if( pTmpSchema!=pTab->pSchema ){
106261     HashElem *p;
106262     assert( sqlite3SchemaMutexHeld(pParse->db, 0, pTmpSchema) );
106263     for(p=sqliteHashFirst(&pTmpSchema->trigHash); p; p=sqliteHashNext(p)){
106264       Trigger *pTrig = (Trigger *)sqliteHashData(p);
106265       if( pTrig->pTabSchema==pTab->pSchema
106266        && 0==sqlite3StrICmp(pTrig->table, pTab->zName)
106267       ){
106268         pTrig->pNext = (pList ? pList : pTab->pTrigger);
106269         pList = pTrig;
106270       }
106271     }
106272   }
106273 
106274   return (pList ? pList : pTab->pTrigger);
106275 }
106276 
106277 /*
106278 ** This is called by the parser when it sees a CREATE TRIGGER statement
106279 ** up to the point of the BEGIN before the trigger actions.  A Trigger
106280 ** structure is generated based on the information available and stored
106281 ** in pParse->pNewTrigger.  After the trigger actions have been parsed, the
106282 ** sqlite3FinishTrigger() function is called to complete the trigger
106283 ** construction process.
106284 */
106285 SQLITE_PRIVATE void sqlite3BeginTrigger(
106286   Parse *pParse,      /* The parse context of the CREATE TRIGGER statement */
106287   Token *pName1,      /* The name of the trigger */
106288   Token *pName2,      /* The name of the trigger */
106289   int tr_tm,          /* One of TK_BEFORE, TK_AFTER, TK_INSTEAD */
106290   int op,             /* One of TK_INSERT, TK_UPDATE, TK_DELETE */
106291   IdList *pColumns,   /* column list if this is an UPDATE OF trigger */
106292   SrcList *pTableName,/* The name of the table/view the trigger applies to */
106293   Expr *pWhen,        /* WHEN clause */
106294   int isTemp,         /* True if the TEMPORARY keyword is present */
106295   int noErr           /* Suppress errors if the trigger already exists */
106296 ){
106297   Trigger *pTrigger = 0;  /* The new trigger */
106298   Table *pTab;            /* Table that the trigger fires off of */
106299   char *zName = 0;        /* Name of the trigger */
106300   sqlite3 *db = pParse->db;  /* The database connection */
106301   int iDb;                /* The database to store the trigger in */
106302   Token *pName;           /* The unqualified db name */
106303   DbFixer sFix;           /* State vector for the DB fixer */
106304   int iTabDb;             /* Index of the database holding pTab */
106305 
106306   assert( pName1!=0 );   /* pName1->z might be NULL, but not pName1 itself */
106307   assert( pName2!=0 );
106308   assert( op==TK_INSERT || op==TK_UPDATE || op==TK_DELETE );
106309   assert( op>0 && op<0xff );
106310   if( isTemp ){
106311     /* If TEMP was specified, then the trigger name may not be qualified. */
106312     if( pName2->n>0 ){
106313       sqlite3ErrorMsg(pParse, "temporary trigger may not have qualified name");
106314       goto trigger_cleanup;
106315     }
106316     iDb = 1;
106317     pName = pName1;
106318   }else{
106319     /* Figure out the db that the trigger will be created in */
106320     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
106321     if( iDb<0 ){
106322       goto trigger_cleanup;
106323     }
106324   }
106325   if( !pTableName || db->mallocFailed ){
106326     goto trigger_cleanup;
106327   }
106328 
106329   /* A long-standing parser bug is that this syntax was allowed:
106330   **
106331   **    CREATE TRIGGER attached.demo AFTER INSERT ON attached.tab ....
106332   **                                                 ^^^^^^^^
106333   **
106334   ** To maintain backwards compatibility, ignore the database
106335   ** name on pTableName if we are reparsing our of SQLITE_MASTER.
106336   */
106337   if( db->init.busy && iDb!=1 ){
106338     sqlite3DbFree(db, pTableName->a[0].zDatabase);
106339     pTableName->a[0].zDatabase = 0;
106340   }
106341 
106342   /* If the trigger name was unqualified, and the table is a temp table,
106343   ** then set iDb to 1 to create the trigger in the temporary database.
106344   ** If sqlite3SrcListLookup() returns 0, indicating the table does not
106345   ** exist, the error is caught by the block below.
106346   */
106347   pTab = sqlite3SrcListLookup(pParse, pTableName);
106348   if( db->init.busy==0 && pName2->n==0 && pTab
106349         && pTab->pSchema==db->aDb[1].pSchema ){
106350     iDb = 1;
106351   }
106352 
106353   /* Ensure the table name matches database name and that the table exists */
106354   if( db->mallocFailed ) goto trigger_cleanup;
106355   assert( pTableName->nSrc==1 );
106356   sqlite3FixInit(&sFix, pParse, iDb, "trigger", pName);
106357   if( sqlite3FixSrcList(&sFix, pTableName) ){
106358     goto trigger_cleanup;
106359   }
106360   pTab = sqlite3SrcListLookup(pParse, pTableName);
106361   if( !pTab ){
106362     /* The table does not exist. */
106363     if( db->init.iDb==1 ){
106364       /* Ticket #3810.
106365       ** Normally, whenever a table is dropped, all associated triggers are
106366       ** dropped too.  But if a TEMP trigger is created on a non-TEMP table
106367       ** and the table is dropped by a different database connection, the
106368       ** trigger is not visible to the database connection that does the
106369       ** drop so the trigger cannot be dropped.  This results in an
106370       ** "orphaned trigger" - a trigger whose associated table is missing.
106371       */
106372       db->init.orphanTrigger = 1;
106373     }
106374     goto trigger_cleanup;
106375   }
106376   if( IsVirtual(pTab) ){
106377     sqlite3ErrorMsg(pParse, "cannot create triggers on virtual tables");
106378     goto trigger_cleanup;
106379   }
106380 
106381   /* Check that the trigger name is not reserved and that no trigger of the
106382   ** specified name exists */
106383   zName = sqlite3NameFromToken(db, pName);
106384   if( !zName || SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
106385     goto trigger_cleanup;
106386   }
106387   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
106388   if( sqlite3HashFind(&(db->aDb[iDb].pSchema->trigHash),
106389                       zName, sqlite3Strlen30(zName)) ){
106390     if( !noErr ){
106391       sqlite3ErrorMsg(pParse, "trigger %T already exists", pName);
106392     }else{
106393       assert( !db->init.busy );
106394       sqlite3CodeVerifySchema(pParse, iDb);
106395     }
106396     goto trigger_cleanup;
106397   }
106398 
106399   /* Do not create a trigger on a system table */
106400   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){
106401     sqlite3ErrorMsg(pParse, "cannot create trigger on system table");
106402     pParse->nErr++;
106403     goto trigger_cleanup;
106404   }
106405 
106406   /* INSTEAD of triggers are only for views and views only support INSTEAD
106407   ** of triggers.
106408   */
106409   if( pTab->pSelect && tr_tm!=TK_INSTEAD ){
106410     sqlite3ErrorMsg(pParse, "cannot create %s trigger on view: %S",
106411         (tr_tm == TK_BEFORE)?"BEFORE":"AFTER", pTableName, 0);
106412     goto trigger_cleanup;
106413   }
106414   if( !pTab->pSelect && tr_tm==TK_INSTEAD ){
106415     sqlite3ErrorMsg(pParse, "cannot create INSTEAD OF"
106416         " trigger on table: %S", pTableName, 0);
106417     goto trigger_cleanup;
106418   }
106419   iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema);
106420 
106421 #ifndef SQLITE_OMIT_AUTHORIZATION
106422   {
106423     int code = SQLITE_CREATE_TRIGGER;
106424     const char *zDb = db->aDb[iTabDb].zName;
106425     const char *zDbTrig = isTemp ? db->aDb[1].zName : zDb;
106426     if( iTabDb==1 || isTemp ) code = SQLITE_CREATE_TEMP_TRIGGER;
106427     if( sqlite3AuthCheck(pParse, code, zName, pTab->zName, zDbTrig) ){
106428       goto trigger_cleanup;
106429     }
106430     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iTabDb),0,zDb)){
106431       goto trigger_cleanup;
106432     }
106433   }
106434 #endif
106435 
106436   /* INSTEAD OF triggers can only appear on views and BEFORE triggers
106437   ** cannot appear on views.  So we might as well translate every
106438   ** INSTEAD OF trigger into a BEFORE trigger.  It simplifies code
106439   ** elsewhere.
106440   */
106441   if (tr_tm == TK_INSTEAD){
106442     tr_tm = TK_BEFORE;
106443   }
106444 
106445   /* Build the Trigger object */
106446   pTrigger = (Trigger*)sqlite3DbMallocZero(db, sizeof(Trigger));
106447   if( pTrigger==0 ) goto trigger_cleanup;
106448   pTrigger->zName = zName;
106449   zName = 0;
106450   pTrigger->table = sqlite3DbStrDup(db, pTableName->a[0].zName);
106451   pTrigger->pSchema = db->aDb[iDb].pSchema;
106452   pTrigger->pTabSchema = pTab->pSchema;
106453   pTrigger->op = (u8)op;
106454   pTrigger->tr_tm = tr_tm==TK_BEFORE ? TRIGGER_BEFORE : TRIGGER_AFTER;
106455   pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE);
106456   pTrigger->pColumns = sqlite3IdListDup(db, pColumns);
106457   assert( pParse->pNewTrigger==0 );
106458   pParse->pNewTrigger = pTrigger;
106459 
106460 trigger_cleanup:
106461   sqlite3DbFree(db, zName);
106462   sqlite3SrcListDelete(db, pTableName);
106463   sqlite3IdListDelete(db, pColumns);
106464   sqlite3ExprDelete(db, pWhen);
106465   if( !pParse->pNewTrigger ){
106466     sqlite3DeleteTrigger(db, pTrigger);
106467   }else{
106468     assert( pParse->pNewTrigger==pTrigger );
106469   }
106470 }
106471 
106472 /*
106473 ** This routine is called after all of the trigger actions have been parsed
106474 ** in order to complete the process of building the trigger.
106475 */
106476 SQLITE_PRIVATE void sqlite3FinishTrigger(
106477   Parse *pParse,          /* Parser context */
106478   TriggerStep *pStepList, /* The triggered program */
106479   Token *pAll             /* Token that describes the complete CREATE TRIGGER */
106480 ){
106481   Trigger *pTrig = pParse->pNewTrigger;   /* Trigger being finished */
106482   char *zName;                            /* Name of trigger */
106483   sqlite3 *db = pParse->db;               /* The database */
106484   DbFixer sFix;                           /* Fixer object */
106485   int iDb;                                /* Database containing the trigger */
106486   Token nameToken;                        /* Trigger name for error reporting */
106487 
106488   pParse->pNewTrigger = 0;
106489   if( NEVER(pParse->nErr) || !pTrig ) goto triggerfinish_cleanup;
106490   zName = pTrig->zName;
106491   iDb = sqlite3SchemaToIndex(pParse->db, pTrig->pSchema);
106492   pTrig->step_list = pStepList;
106493   while( pStepList ){
106494     pStepList->pTrig = pTrig;
106495     pStepList = pStepList->pNext;
106496   }
106497   nameToken.z = pTrig->zName;
106498   nameToken.n = sqlite3Strlen30(nameToken.z);
106499   sqlite3FixInit(&sFix, pParse, iDb, "trigger", &nameToken);
106500   if( sqlite3FixTriggerStep(&sFix, pTrig->step_list)
106501    || sqlite3FixExpr(&sFix, pTrig->pWhen)
106502   ){
106503     goto triggerfinish_cleanup;
106504   }
106505 
106506   /* if we are not initializing,
106507   ** build the sqlite_master entry
106508   */
106509   if( !db->init.busy ){
106510     Vdbe *v;
106511     char *z;
106512 
106513     /* Make an entry in the sqlite_master table */
106514     v = sqlite3GetVdbe(pParse);
106515     if( v==0 ) goto triggerfinish_cleanup;
106516     sqlite3BeginWriteOperation(pParse, 0, iDb);
106517     z = sqlite3DbStrNDup(db, (char*)pAll->z, pAll->n);
106518     sqlite3NestedParse(pParse,
106519        "INSERT INTO %Q.%s VALUES('trigger',%Q,%Q,0,'CREATE TRIGGER %q')",
106520        db->aDb[iDb].zName, SCHEMA_TABLE(iDb), zName,
106521        pTrig->table, z);
106522     sqlite3DbFree(db, z);
106523     sqlite3ChangeCookie(pParse, iDb);
106524     sqlite3VdbeAddParseSchemaOp(v, iDb,
106525         sqlite3MPrintf(db, "type='trigger' AND name='%q'", zName));
106526   }
106527 
106528   if( db->init.busy ){
106529     Trigger *pLink = pTrig;
106530     Hash *pHash = &db->aDb[iDb].pSchema->trigHash;
106531     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
106532     pTrig = sqlite3HashInsert(pHash, zName, sqlite3Strlen30(zName), pTrig);
106533     if( pTrig ){
106534       db->mallocFailed = 1;
106535     }else if( pLink->pSchema==pLink->pTabSchema ){
106536       Table *pTab;
106537       int n = sqlite3Strlen30(pLink->table);
106538       pTab = sqlite3HashFind(&pLink->pTabSchema->tblHash, pLink->table, n);
106539       assert( pTab!=0 );
106540       pLink->pNext = pTab->pTrigger;
106541       pTab->pTrigger = pLink;
106542     }
106543   }
106544 
106545 triggerfinish_cleanup:
106546   sqlite3DeleteTrigger(db, pTrig);
106547   assert( !pParse->pNewTrigger );
106548   sqlite3DeleteTriggerStep(db, pStepList);
106549 }
106550 
106551 /*
106552 ** Turn a SELECT statement (that the pSelect parameter points to) into
106553 ** a trigger step.  Return a pointer to a TriggerStep structure.
106554 **
106555 ** The parser calls this routine when it finds a SELECT statement in
106556 ** body of a TRIGGER.
106557 */
106558 SQLITE_PRIVATE TriggerStep *sqlite3TriggerSelectStep(sqlite3 *db, Select *pSelect){
106559   TriggerStep *pTriggerStep = sqlite3DbMallocZero(db, sizeof(TriggerStep));
106560   if( pTriggerStep==0 ) {
106561     sqlite3SelectDelete(db, pSelect);
106562     return 0;
106563   }
106564   pTriggerStep->op = TK_SELECT;
106565   pTriggerStep->pSelect = pSelect;
106566   pTriggerStep->orconf = OE_Default;
106567   return pTriggerStep;
106568 }
106569 
106570 /*
106571 ** Allocate space to hold a new trigger step.  The allocated space
106572 ** holds both the TriggerStep object and the TriggerStep.target.z string.
106573 **
106574 ** If an OOM error occurs, NULL is returned and db->mallocFailed is set.
106575 */
106576 static TriggerStep *triggerStepAllocate(
106577   sqlite3 *db,                /* Database connection */
106578   u8 op,                      /* Trigger opcode */
106579   Token *pName                /* The target name */
106580 ){
106581   TriggerStep *pTriggerStep;
106582 
106583   pTriggerStep = sqlite3DbMallocZero(db, sizeof(TriggerStep) + pName->n);
106584   if( pTriggerStep ){
106585     char *z = (char*)&pTriggerStep[1];
106586     memcpy(z, pName->z, pName->n);
106587     pTriggerStep->target.z = z;
106588     pTriggerStep->target.n = pName->n;
106589     pTriggerStep->op = op;
106590   }
106591   return pTriggerStep;
106592 }
106593 
106594 /*
106595 ** Build a trigger step out of an INSERT statement.  Return a pointer
106596 ** to the new trigger step.
106597 **
106598 ** The parser calls this routine when it sees an INSERT inside the
106599 ** body of a trigger.
106600 */
106601 SQLITE_PRIVATE TriggerStep *sqlite3TriggerInsertStep(
106602   sqlite3 *db,        /* The database connection */
106603   Token *pTableName,  /* Name of the table into which we insert */
106604   IdList *pColumn,    /* List of columns in pTableName to insert into */
106605   Select *pSelect,    /* A SELECT statement that supplies values */
106606   u8 orconf           /* The conflict algorithm (OE_Abort, OE_Replace, etc.) */
106607 ){
106608   TriggerStep *pTriggerStep;
106609 
106610   assert(pSelect != 0 || db->mallocFailed);
106611 
106612   pTriggerStep = triggerStepAllocate(db, TK_INSERT, pTableName);
106613   if( pTriggerStep ){
106614     pTriggerStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
106615     pTriggerStep->pIdList = pColumn;
106616     pTriggerStep->orconf = orconf;
106617   }else{
106618     sqlite3IdListDelete(db, pColumn);
106619   }
106620   sqlite3SelectDelete(db, pSelect);
106621 
106622   return pTriggerStep;
106623 }
106624 
106625 /*
106626 ** Construct a trigger step that implements an UPDATE statement and return
106627 ** a pointer to that trigger step.  The parser calls this routine when it
106628 ** sees an UPDATE statement inside the body of a CREATE TRIGGER.
106629 */
106630 SQLITE_PRIVATE TriggerStep *sqlite3TriggerUpdateStep(
106631   sqlite3 *db,         /* The database connection */
106632   Token *pTableName,   /* Name of the table to be updated */
106633   ExprList *pEList,    /* The SET clause: list of column and new values */
106634   Expr *pWhere,        /* The WHERE clause */
106635   u8 orconf            /* The conflict algorithm. (OE_Abort, OE_Ignore, etc) */
106636 ){
106637   TriggerStep *pTriggerStep;
106638 
106639   pTriggerStep = triggerStepAllocate(db, TK_UPDATE, pTableName);
106640   if( pTriggerStep ){
106641     pTriggerStep->pExprList = sqlite3ExprListDup(db, pEList, EXPRDUP_REDUCE);
106642     pTriggerStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE);
106643     pTriggerStep->orconf = orconf;
106644   }
106645   sqlite3ExprListDelete(db, pEList);
106646   sqlite3ExprDelete(db, pWhere);
106647   return pTriggerStep;
106648 }
106649 
106650 /*
106651 ** Construct a trigger step that implements a DELETE statement and return
106652 ** a pointer to that trigger step.  The parser calls this routine when it
106653 ** sees a DELETE statement inside the body of a CREATE TRIGGER.
106654 */
106655 SQLITE_PRIVATE TriggerStep *sqlite3TriggerDeleteStep(
106656   sqlite3 *db,            /* Database connection */
106657   Token *pTableName,      /* The table from which rows are deleted */
106658   Expr *pWhere            /* The WHERE clause */
106659 ){
106660   TriggerStep *pTriggerStep;
106661 
106662   pTriggerStep = triggerStepAllocate(db, TK_DELETE, pTableName);
106663   if( pTriggerStep ){
106664     pTriggerStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE);
106665     pTriggerStep->orconf = OE_Default;
106666   }
106667   sqlite3ExprDelete(db, pWhere);
106668   return pTriggerStep;
106669 }
106670 
106671 /*
106672 ** Recursively delete a Trigger structure
106673 */
106674 SQLITE_PRIVATE void sqlite3DeleteTrigger(sqlite3 *db, Trigger *pTrigger){
106675   if( pTrigger==0 ) return;
106676   sqlite3DeleteTriggerStep(db, pTrigger->step_list);
106677   sqlite3DbFree(db, pTrigger->zName);
106678   sqlite3DbFree(db, pTrigger->table);
106679   sqlite3ExprDelete(db, pTrigger->pWhen);
106680   sqlite3IdListDelete(db, pTrigger->pColumns);
106681   sqlite3DbFree(db, pTrigger);
106682 }
106683 
106684 /*
106685 ** This function is called to drop a trigger from the database schema.
106686 **
106687 ** This may be called directly from the parser and therefore identifies
106688 ** the trigger by name.  The sqlite3DropTriggerPtr() routine does the
106689 ** same job as this routine except it takes a pointer to the trigger
106690 ** instead of the trigger name.
106691 **/
106692 SQLITE_PRIVATE void sqlite3DropTrigger(Parse *pParse, SrcList *pName, int noErr){
106693   Trigger *pTrigger = 0;
106694   int i;
106695   const char *zDb;
106696   const char *zName;
106697   int nName;
106698   sqlite3 *db = pParse->db;
106699 
106700   if( db->mallocFailed ) goto drop_trigger_cleanup;
106701   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
106702     goto drop_trigger_cleanup;
106703   }
106704 
106705   assert( pName->nSrc==1 );
106706   zDb = pName->a[0].zDatabase;
106707   zName = pName->a[0].zName;
106708   nName = sqlite3Strlen30(zName);
106709   assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) );
106710   for(i=OMIT_TEMPDB; i<db->nDb; i++){
106711     int j = (i<2) ? i^1 : i;  /* Search TEMP before MAIN */
106712     if( zDb && sqlite3StrICmp(db->aDb[j].zName, zDb) ) continue;
106713     assert( sqlite3SchemaMutexHeld(db, j, 0) );
106714     pTrigger = sqlite3HashFind(&(db->aDb[j].pSchema->trigHash), zName, nName);
106715     if( pTrigger ) break;
106716   }
106717   if( !pTrigger ){
106718     if( !noErr ){
106719       sqlite3ErrorMsg(pParse, "no such trigger: %S", pName, 0);
106720     }else{
106721       sqlite3CodeVerifyNamedSchema(pParse, zDb);
106722     }
106723     pParse->checkSchema = 1;
106724     goto drop_trigger_cleanup;
106725   }
106726   sqlite3DropTriggerPtr(pParse, pTrigger);
106727 
106728 drop_trigger_cleanup:
106729   sqlite3SrcListDelete(db, pName);
106730 }
106731 
106732 /*
106733 ** Return a pointer to the Table structure for the table that a trigger
106734 ** is set on.
106735 */
106736 static Table *tableOfTrigger(Trigger *pTrigger){
106737   int n = sqlite3Strlen30(pTrigger->table);
106738   return sqlite3HashFind(&pTrigger->pTabSchema->tblHash, pTrigger->table, n);
106739 }
106740 
106741 
106742 /*
106743 ** Drop a trigger given a pointer to that trigger.
106744 */
106745 SQLITE_PRIVATE void sqlite3DropTriggerPtr(Parse *pParse, Trigger *pTrigger){
106746   Table   *pTable;
106747   Vdbe *v;
106748   sqlite3 *db = pParse->db;
106749   int iDb;
106750 
106751   iDb = sqlite3SchemaToIndex(pParse->db, pTrigger->pSchema);
106752   assert( iDb>=0 && iDb<db->nDb );
106753   pTable = tableOfTrigger(pTrigger);
106754   assert( pTable );
106755   assert( pTable->pSchema==pTrigger->pSchema || iDb==1 );
106756 #ifndef SQLITE_OMIT_AUTHORIZATION
106757   {
106758     int code = SQLITE_DROP_TRIGGER;
106759     const char *zDb = db->aDb[iDb].zName;
106760     const char *zTab = SCHEMA_TABLE(iDb);
106761     if( iDb==1 ) code = SQLITE_DROP_TEMP_TRIGGER;
106762     if( sqlite3AuthCheck(pParse, code, pTrigger->zName, pTable->zName, zDb) ||
106763       sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
106764       return;
106765     }
106766   }
106767 #endif
106768 
106769   /* Generate code to destroy the database record of the trigger.
106770   */
106771   assert( pTable!=0 );
106772   if( (v = sqlite3GetVdbe(pParse))!=0 ){
106773     int base;
106774     static const int iLn = VDBE_OFFSET_LINENO(2);
106775     static const VdbeOpList dropTrigger[] = {
106776       { OP_Rewind,     0, ADDR(9),  0},
106777       { OP_String8,    0, 1,        0}, /* 1 */
106778       { OP_Column,     0, 1,        2},
106779       { OP_Ne,         2, ADDR(8),  1},
106780       { OP_String8,    0, 1,        0}, /* 4: "trigger" */
106781       { OP_Column,     0, 0,        2},
106782       { OP_Ne,         2, ADDR(8),  1},
106783       { OP_Delete,     0, 0,        0},
106784       { OP_Next,       0, ADDR(1),  0}, /* 8 */
106785     };
106786 
106787     sqlite3BeginWriteOperation(pParse, 0, iDb);
106788     sqlite3OpenMasterTable(pParse, iDb);
106789     base = sqlite3VdbeAddOpList(v,  ArraySize(dropTrigger), dropTrigger, iLn);
106790     sqlite3VdbeChangeP4(v, base+1, pTrigger->zName, P4_TRANSIENT);
106791     sqlite3VdbeChangeP4(v, base+4, "trigger", P4_STATIC);
106792     sqlite3ChangeCookie(pParse, iDb);
106793     sqlite3VdbeAddOp2(v, OP_Close, 0, 0);
106794     sqlite3VdbeAddOp4(v, OP_DropTrigger, iDb, 0, 0, pTrigger->zName, 0);
106795     if( pParse->nMem<3 ){
106796       pParse->nMem = 3;
106797     }
106798   }
106799 }
106800 
106801 /*
106802 ** Remove a trigger from the hash tables of the sqlite* pointer.
106803 */
106804 SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTrigger(sqlite3 *db, int iDb, const char *zName){
106805   Trigger *pTrigger;
106806   Hash *pHash;
106807 
106808   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
106809   pHash = &(db->aDb[iDb].pSchema->trigHash);
106810   pTrigger = sqlite3HashInsert(pHash, zName, sqlite3Strlen30(zName), 0);
106811   if( ALWAYS(pTrigger) ){
106812     if( pTrigger->pSchema==pTrigger->pTabSchema ){
106813       Table *pTab = tableOfTrigger(pTrigger);
106814       Trigger **pp;
106815       for(pp=&pTab->pTrigger; *pp!=pTrigger; pp=&((*pp)->pNext));
106816       *pp = (*pp)->pNext;
106817     }
106818     sqlite3DeleteTrigger(db, pTrigger);
106819     db->flags |= SQLITE_InternChanges;
106820   }
106821 }
106822 
106823 /*
106824 ** pEList is the SET clause of an UPDATE statement.  Each entry
106825 ** in pEList is of the format <id>=<expr>.  If any of the entries
106826 ** in pEList have an <id> which matches an identifier in pIdList,
106827 ** then return TRUE.  If pIdList==NULL, then it is considered a
106828 ** wildcard that matches anything.  Likewise if pEList==NULL then
106829 ** it matches anything so always return true.  Return false only
106830 ** if there is no match.
106831 */
106832 static int checkColumnOverlap(IdList *pIdList, ExprList *pEList){
106833   int e;
106834   if( pIdList==0 || NEVER(pEList==0) ) return 1;
106835   for(e=0; e<pEList->nExpr; e++){
106836     if( sqlite3IdListIndex(pIdList, pEList->a[e].zName)>=0 ) return 1;
106837   }
106838   return 0;
106839 }
106840 
106841 /*
106842 ** Return a list of all triggers on table pTab if there exists at least
106843 ** one trigger that must be fired when an operation of type 'op' is
106844 ** performed on the table, and, if that operation is an UPDATE, if at
106845 ** least one of the columns in pChanges is being modified.
106846 */
106847 SQLITE_PRIVATE Trigger *sqlite3TriggersExist(
106848   Parse *pParse,          /* Parse context */
106849   Table *pTab,            /* The table the contains the triggers */
106850   int op,                 /* one of TK_DELETE, TK_INSERT, TK_UPDATE */
106851   ExprList *pChanges,     /* Columns that change in an UPDATE statement */
106852   int *pMask              /* OUT: Mask of TRIGGER_BEFORE|TRIGGER_AFTER */
106853 ){
106854   int mask = 0;
106855   Trigger *pList = 0;
106856   Trigger *p;
106857 
106858   if( (pParse->db->flags & SQLITE_EnableTrigger)!=0 ){
106859     pList = sqlite3TriggerList(pParse, pTab);
106860   }
106861   assert( pList==0 || IsVirtual(pTab)==0 );
106862   for(p=pList; p; p=p->pNext){
106863     if( p->op==op && checkColumnOverlap(p->pColumns, pChanges) ){
106864       mask |= p->tr_tm;
106865     }
106866   }
106867   if( pMask ){
106868     *pMask = mask;
106869   }
106870   return (mask ? pList : 0);
106871 }
106872 
106873 /*
106874 ** Convert the pStep->target token into a SrcList and return a pointer
106875 ** to that SrcList.
106876 **
106877 ** This routine adds a specific database name, if needed, to the target when
106878 ** forming the SrcList.  This prevents a trigger in one database from
106879 ** referring to a target in another database.  An exception is when the
106880 ** trigger is in TEMP in which case it can refer to any other database it
106881 ** wants.
106882 */
106883 static SrcList *targetSrcList(
106884   Parse *pParse,       /* The parsing context */
106885   TriggerStep *pStep   /* The trigger containing the target token */
106886 ){
106887   int iDb;             /* Index of the database to use */
106888   SrcList *pSrc;       /* SrcList to be returned */
106889 
106890   pSrc = sqlite3SrcListAppend(pParse->db, 0, &pStep->target, 0);
106891   if( pSrc ){
106892     assert( pSrc->nSrc>0 );
106893     assert( pSrc->a!=0 );
106894     iDb = sqlite3SchemaToIndex(pParse->db, pStep->pTrig->pSchema);
106895     if( iDb==0 || iDb>=2 ){
106896       sqlite3 *db = pParse->db;
106897       assert( iDb<pParse->db->nDb );
106898       pSrc->a[pSrc->nSrc-1].zDatabase = sqlite3DbStrDup(db, db->aDb[iDb].zName);
106899     }
106900   }
106901   return pSrc;
106902 }
106903 
106904 /*
106905 ** Generate VDBE code for the statements inside the body of a single
106906 ** trigger.
106907 */
106908 static int codeTriggerProgram(
106909   Parse *pParse,            /* The parser context */
106910   TriggerStep *pStepList,   /* List of statements inside the trigger body */
106911   int orconf                /* Conflict algorithm. (OE_Abort, etc) */
106912 ){
106913   TriggerStep *pStep;
106914   Vdbe *v = pParse->pVdbe;
106915   sqlite3 *db = pParse->db;
106916 
106917   assert( pParse->pTriggerTab && pParse->pToplevel );
106918   assert( pStepList );
106919   assert( v!=0 );
106920   for(pStep=pStepList; pStep; pStep=pStep->pNext){
106921     /* Figure out the ON CONFLICT policy that will be used for this step
106922     ** of the trigger program. If the statement that caused this trigger
106923     ** to fire had an explicit ON CONFLICT, then use it. Otherwise, use
106924     ** the ON CONFLICT policy that was specified as part of the trigger
106925     ** step statement. Example:
106926     **
106927     **   CREATE TRIGGER AFTER INSERT ON t1 BEGIN;
106928     **     INSERT OR REPLACE INTO t2 VALUES(new.a, new.b);
106929     **   END;
106930     **
106931     **   INSERT INTO t1 ... ;            -- insert into t2 uses REPLACE policy
106932     **   INSERT OR IGNORE INTO t1 ... ;  -- insert into t2 uses IGNORE policy
106933     */
106934     pParse->eOrconf = (orconf==OE_Default)?pStep->orconf:(u8)orconf;
106935     assert( pParse->okConstFactor==0 );
106936 
106937     switch( pStep->op ){
106938       case TK_UPDATE: {
106939         sqlite3Update(pParse,
106940           targetSrcList(pParse, pStep),
106941           sqlite3ExprListDup(db, pStep->pExprList, 0),
106942           sqlite3ExprDup(db, pStep->pWhere, 0),
106943           pParse->eOrconf
106944         );
106945         break;
106946       }
106947       case TK_INSERT: {
106948         sqlite3Insert(pParse,
106949           targetSrcList(pParse, pStep),
106950           sqlite3SelectDup(db, pStep->pSelect, 0),
106951           sqlite3IdListDup(db, pStep->pIdList),
106952           pParse->eOrconf
106953         );
106954         break;
106955       }
106956       case TK_DELETE: {
106957         sqlite3DeleteFrom(pParse,
106958           targetSrcList(pParse, pStep),
106959           sqlite3ExprDup(db, pStep->pWhere, 0)
106960         );
106961         break;
106962       }
106963       default: assert( pStep->op==TK_SELECT ); {
106964         SelectDest sDest;
106965         Select *pSelect = sqlite3SelectDup(db, pStep->pSelect, 0);
106966         sqlite3SelectDestInit(&sDest, SRT_Discard, 0);
106967         sqlite3Select(pParse, pSelect, &sDest);
106968         sqlite3SelectDelete(db, pSelect);
106969         break;
106970       }
106971     }
106972     if( pStep->op!=TK_SELECT ){
106973       sqlite3VdbeAddOp0(v, OP_ResetCount);
106974     }
106975   }
106976 
106977   return 0;
106978 }
106979 
106980 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
106981 /*
106982 ** This function is used to add VdbeComment() annotations to a VDBE
106983 ** program. It is not used in production code, only for debugging.
106984 */
106985 static const char *onErrorText(int onError){
106986   switch( onError ){
106987     case OE_Abort:    return "abort";
106988     case OE_Rollback: return "rollback";
106989     case OE_Fail:     return "fail";
106990     case OE_Replace:  return "replace";
106991     case OE_Ignore:   return "ignore";
106992     case OE_Default:  return "default";
106993   }
106994   return "n/a";
106995 }
106996 #endif
106997 
106998 /*
106999 ** Parse context structure pFrom has just been used to create a sub-vdbe
107000 ** (trigger program). If an error has occurred, transfer error information
107001 ** from pFrom to pTo.
107002 */
107003 static void transferParseError(Parse *pTo, Parse *pFrom){
107004   assert( pFrom->zErrMsg==0 || pFrom->nErr );
107005   assert( pTo->zErrMsg==0 || pTo->nErr );
107006   if( pTo->nErr==0 ){
107007     pTo->zErrMsg = pFrom->zErrMsg;
107008     pTo->nErr = pFrom->nErr;
107009   }else{
107010     sqlite3DbFree(pFrom->db, pFrom->zErrMsg);
107011   }
107012 }
107013 
107014 /*
107015 ** Create and populate a new TriggerPrg object with a sub-program
107016 ** implementing trigger pTrigger with ON CONFLICT policy orconf.
107017 */
107018 static TriggerPrg *codeRowTrigger(
107019   Parse *pParse,       /* Current parse context */
107020   Trigger *pTrigger,   /* Trigger to code */
107021   Table *pTab,         /* The table pTrigger is attached to */
107022   int orconf           /* ON CONFLICT policy to code trigger program with */
107023 ){
107024   Parse *pTop = sqlite3ParseToplevel(pParse);
107025   sqlite3 *db = pParse->db;   /* Database handle */
107026   TriggerPrg *pPrg;           /* Value to return */
107027   Expr *pWhen = 0;            /* Duplicate of trigger WHEN expression */
107028   Vdbe *v;                    /* Temporary VM */
107029   NameContext sNC;            /* Name context for sub-vdbe */
107030   SubProgram *pProgram = 0;   /* Sub-vdbe for trigger program */
107031   Parse *pSubParse;           /* Parse context for sub-vdbe */
107032   int iEndTrigger = 0;        /* Label to jump to if WHEN is false */
107033 
107034   assert( pTrigger->zName==0 || pTab==tableOfTrigger(pTrigger) );
107035   assert( pTop->pVdbe );
107036 
107037   /* Allocate the TriggerPrg and SubProgram objects. To ensure that they
107038   ** are freed if an error occurs, link them into the Parse.pTriggerPrg
107039   ** list of the top-level Parse object sooner rather than later.  */
107040   pPrg = sqlite3DbMallocZero(db, sizeof(TriggerPrg));
107041   if( !pPrg ) return 0;
107042   pPrg->pNext = pTop->pTriggerPrg;
107043   pTop->pTriggerPrg = pPrg;
107044   pPrg->pProgram = pProgram = sqlite3DbMallocZero(db, sizeof(SubProgram));
107045   if( !pProgram ) return 0;
107046   sqlite3VdbeLinkSubProgram(pTop->pVdbe, pProgram);
107047   pPrg->pTrigger = pTrigger;
107048   pPrg->orconf = orconf;
107049   pPrg->aColmask[0] = 0xffffffff;
107050   pPrg->aColmask[1] = 0xffffffff;
107051 
107052   /* Allocate and populate a new Parse context to use for coding the
107053   ** trigger sub-program.  */
107054   pSubParse = sqlite3StackAllocZero(db, sizeof(Parse));
107055   if( !pSubParse ) return 0;
107056   memset(&sNC, 0, sizeof(sNC));
107057   sNC.pParse = pSubParse;
107058   pSubParse->db = db;
107059   pSubParse->pTriggerTab = pTab;
107060   pSubParse->pToplevel = pTop;
107061   pSubParse->zAuthContext = pTrigger->zName;
107062   pSubParse->eTriggerOp = pTrigger->op;
107063   pSubParse->nQueryLoop = pParse->nQueryLoop;
107064 
107065   v = sqlite3GetVdbe(pSubParse);
107066   if( v ){
107067     VdbeComment((v, "Start: %s.%s (%s %s%s%s ON %s)",
107068       pTrigger->zName, onErrorText(orconf),
107069       (pTrigger->tr_tm==TRIGGER_BEFORE ? "BEFORE" : "AFTER"),
107070         (pTrigger->op==TK_UPDATE ? "UPDATE" : ""),
107071         (pTrigger->op==TK_INSERT ? "INSERT" : ""),
107072         (pTrigger->op==TK_DELETE ? "DELETE" : ""),
107073       pTab->zName
107074     ));
107075 #ifndef SQLITE_OMIT_TRACE
107076     sqlite3VdbeChangeP4(v, -1,
107077       sqlite3MPrintf(db, "-- TRIGGER %s", pTrigger->zName), P4_DYNAMIC
107078     );
107079 #endif
107080 
107081     /* If one was specified, code the WHEN clause. If it evaluates to false
107082     ** (or NULL) the sub-vdbe is immediately halted by jumping to the
107083     ** OP_Halt inserted at the end of the program.  */
107084     if( pTrigger->pWhen ){
107085       pWhen = sqlite3ExprDup(db, pTrigger->pWhen, 0);
107086       if( SQLITE_OK==sqlite3ResolveExprNames(&sNC, pWhen)
107087        && db->mallocFailed==0
107088       ){
107089         iEndTrigger = sqlite3VdbeMakeLabel(v);
107090         sqlite3ExprIfFalse(pSubParse, pWhen, iEndTrigger, SQLITE_JUMPIFNULL);
107091       }
107092       sqlite3ExprDelete(db, pWhen);
107093     }
107094 
107095     /* Code the trigger program into the sub-vdbe. */
107096     codeTriggerProgram(pSubParse, pTrigger->step_list, orconf);
107097 
107098     /* Insert an OP_Halt at the end of the sub-program. */
107099     if( iEndTrigger ){
107100       sqlite3VdbeResolveLabel(v, iEndTrigger);
107101     }
107102     sqlite3VdbeAddOp0(v, OP_Halt);
107103     VdbeComment((v, "End: %s.%s", pTrigger->zName, onErrorText(orconf)));
107104 
107105     transferParseError(pParse, pSubParse);
107106     if( db->mallocFailed==0 ){
107107       pProgram->aOp = sqlite3VdbeTakeOpArray(v, &pProgram->nOp, &pTop->nMaxArg);
107108     }
107109     pProgram->nMem = pSubParse->nMem;
107110     pProgram->nCsr = pSubParse->nTab;
107111     pProgram->nOnce = pSubParse->nOnce;
107112     pProgram->token = (void *)pTrigger;
107113     pPrg->aColmask[0] = pSubParse->oldmask;
107114     pPrg->aColmask[1] = pSubParse->newmask;
107115     sqlite3VdbeDelete(v);
107116   }
107117 
107118   assert( !pSubParse->pAinc       && !pSubParse->pZombieTab );
107119   assert( !pSubParse->pTriggerPrg && !pSubParse->nMaxArg );
107120   sqlite3ParserReset(pSubParse);
107121   sqlite3StackFree(db, pSubParse);
107122 
107123   return pPrg;
107124 }
107125 
107126 /*
107127 ** Return a pointer to a TriggerPrg object containing the sub-program for
107128 ** trigger pTrigger with default ON CONFLICT algorithm orconf. If no such
107129 ** TriggerPrg object exists, a new object is allocated and populated before
107130 ** being returned.
107131 */
107132 static TriggerPrg *getRowTrigger(
107133   Parse *pParse,       /* Current parse context */
107134   Trigger *pTrigger,   /* Trigger to code */
107135   Table *pTab,         /* The table trigger pTrigger is attached to */
107136   int orconf           /* ON CONFLICT algorithm. */
107137 ){
107138   Parse *pRoot = sqlite3ParseToplevel(pParse);
107139   TriggerPrg *pPrg;
107140 
107141   assert( pTrigger->zName==0 || pTab==tableOfTrigger(pTrigger) );
107142 
107143   /* It may be that this trigger has already been coded (or is in the
107144   ** process of being coded). If this is the case, then an entry with
107145   ** a matching TriggerPrg.pTrigger field will be present somewhere
107146   ** in the Parse.pTriggerPrg list. Search for such an entry.  */
107147   for(pPrg=pRoot->pTriggerPrg;
107148       pPrg && (pPrg->pTrigger!=pTrigger || pPrg->orconf!=orconf);
107149       pPrg=pPrg->pNext
107150   );
107151 
107152   /* If an existing TriggerPrg could not be located, create a new one. */
107153   if( !pPrg ){
107154     pPrg = codeRowTrigger(pParse, pTrigger, pTab, orconf);
107155   }
107156 
107157   return pPrg;
107158 }
107159 
107160 /*
107161 ** Generate code for the trigger program associated with trigger p on
107162 ** table pTab. The reg, orconf and ignoreJump parameters passed to this
107163 ** function are the same as those described in the header function for
107164 ** sqlite3CodeRowTrigger()
107165 */
107166 SQLITE_PRIVATE void sqlite3CodeRowTriggerDirect(
107167   Parse *pParse,       /* Parse context */
107168   Trigger *p,          /* Trigger to code */
107169   Table *pTab,         /* The table to code triggers from */
107170   int reg,             /* Reg array containing OLD.* and NEW.* values */
107171   int orconf,          /* ON CONFLICT policy */
107172   int ignoreJump       /* Instruction to jump to for RAISE(IGNORE) */
107173 ){
107174   Vdbe *v = sqlite3GetVdbe(pParse); /* Main VM */
107175   TriggerPrg *pPrg;
107176   pPrg = getRowTrigger(pParse, p, pTab, orconf);
107177   assert( pPrg || pParse->nErr || pParse->db->mallocFailed );
107178 
107179   /* Code the OP_Program opcode in the parent VDBE. P4 of the OP_Program
107180   ** is a pointer to the sub-vdbe containing the trigger program.  */
107181   if( pPrg ){
107182     int bRecursive = (p->zName && 0==(pParse->db->flags&SQLITE_RecTriggers));
107183 
107184     sqlite3VdbeAddOp3(v, OP_Program, reg, ignoreJump, ++pParse->nMem);
107185     sqlite3VdbeChangeP4(v, -1, (const char *)pPrg->pProgram, P4_SUBPROGRAM);
107186     VdbeComment(
107187         (v, "Call: %s.%s", (p->zName?p->zName:"fkey"), onErrorText(orconf)));
107188 
107189     /* Set the P5 operand of the OP_Program instruction to non-zero if
107190     ** recursive invocation of this trigger program is disallowed. Recursive
107191     ** invocation is disallowed if (a) the sub-program is really a trigger,
107192     ** not a foreign key action, and (b) the flag to enable recursive triggers
107193     ** is clear.  */
107194     sqlite3VdbeChangeP5(v, (u8)bRecursive);
107195   }
107196 }
107197 
107198 /*
107199 ** This is called to code the required FOR EACH ROW triggers for an operation
107200 ** on table pTab. The operation to code triggers for (INSERT, UPDATE or DELETE)
107201 ** is given by the op parameter. The tr_tm parameter determines whether the
107202 ** BEFORE or AFTER triggers are coded. If the operation is an UPDATE, then
107203 ** parameter pChanges is passed the list of columns being modified.
107204 **
107205 ** If there are no triggers that fire at the specified time for the specified
107206 ** operation on pTab, this function is a no-op.
107207 **
107208 ** The reg argument is the address of the first in an array of registers
107209 ** that contain the values substituted for the new.* and old.* references
107210 ** in the trigger program. If N is the number of columns in table pTab
107211 ** (a copy of pTab->nCol), then registers are populated as follows:
107212 **
107213 **   Register       Contains
107214 **   ------------------------------------------------------
107215 **   reg+0          OLD.rowid
107216 **   reg+1          OLD.* value of left-most column of pTab
107217 **   ...            ...
107218 **   reg+N          OLD.* value of right-most column of pTab
107219 **   reg+N+1        NEW.rowid
107220 **   reg+N+2        OLD.* value of left-most column of pTab
107221 **   ...            ...
107222 **   reg+N+N+1      NEW.* value of right-most column of pTab
107223 **
107224 ** For ON DELETE triggers, the registers containing the NEW.* values will
107225 ** never be accessed by the trigger program, so they are not allocated or
107226 ** populated by the caller (there is no data to populate them with anyway).
107227 ** Similarly, for ON INSERT triggers the values stored in the OLD.* registers
107228 ** are never accessed, and so are not allocated by the caller. So, for an
107229 ** ON INSERT trigger, the value passed to this function as parameter reg
107230 ** is not a readable register, although registers (reg+N) through
107231 ** (reg+N+N+1) are.
107232 **
107233 ** Parameter orconf is the default conflict resolution algorithm for the
107234 ** trigger program to use (REPLACE, IGNORE etc.). Parameter ignoreJump
107235 ** is the instruction that control should jump to if a trigger program
107236 ** raises an IGNORE exception.
107237 */
107238 SQLITE_PRIVATE void sqlite3CodeRowTrigger(
107239   Parse *pParse,       /* Parse context */
107240   Trigger *pTrigger,   /* List of triggers on table pTab */
107241   int op,              /* One of TK_UPDATE, TK_INSERT, TK_DELETE */
107242   ExprList *pChanges,  /* Changes list for any UPDATE OF triggers */
107243   int tr_tm,           /* One of TRIGGER_BEFORE, TRIGGER_AFTER */
107244   Table *pTab,         /* The table to code triggers from */
107245   int reg,             /* The first in an array of registers (see above) */
107246   int orconf,          /* ON CONFLICT policy */
107247   int ignoreJump       /* Instruction to jump to for RAISE(IGNORE) */
107248 ){
107249   Trigger *p;          /* Used to iterate through pTrigger list */
107250 
107251   assert( op==TK_UPDATE || op==TK_INSERT || op==TK_DELETE );
107252   assert( tr_tm==TRIGGER_BEFORE || tr_tm==TRIGGER_AFTER );
107253   assert( (op==TK_UPDATE)==(pChanges!=0) );
107254 
107255   for(p=pTrigger; p; p=p->pNext){
107256 
107257     /* Sanity checking:  The schema for the trigger and for the table are
107258     ** always defined.  The trigger must be in the same schema as the table
107259     ** or else it must be a TEMP trigger. */
107260     assert( p->pSchema!=0 );
107261     assert( p->pTabSchema!=0 );
107262     assert( p->pSchema==p->pTabSchema
107263          || p->pSchema==pParse->db->aDb[1].pSchema );
107264 
107265     /* Determine whether we should code this trigger */
107266     if( p->op==op
107267      && p->tr_tm==tr_tm
107268      && checkColumnOverlap(p->pColumns, pChanges)
107269     ){
107270       sqlite3CodeRowTriggerDirect(pParse, p, pTab, reg, orconf, ignoreJump);
107271     }
107272   }
107273 }
107274 
107275 /*
107276 ** Triggers may access values stored in the old.* or new.* pseudo-table.
107277 ** This function returns a 32-bit bitmask indicating which columns of the
107278 ** old.* or new.* tables actually are used by triggers. This information
107279 ** may be used by the caller, for example, to avoid having to load the entire
107280 ** old.* record into memory when executing an UPDATE or DELETE command.
107281 **
107282 ** Bit 0 of the returned mask is set if the left-most column of the
107283 ** table may be accessed using an [old|new].<col> reference. Bit 1 is set if
107284 ** the second leftmost column value is required, and so on. If there
107285 ** are more than 32 columns in the table, and at least one of the columns
107286 ** with an index greater than 32 may be accessed, 0xffffffff is returned.
107287 **
107288 ** It is not possible to determine if the old.rowid or new.rowid column is
107289 ** accessed by triggers. The caller must always assume that it is.
107290 **
107291 ** Parameter isNew must be either 1 or 0. If it is 0, then the mask returned
107292 ** applies to the old.* table. If 1, the new.* table.
107293 **
107294 ** Parameter tr_tm must be a mask with one or both of the TRIGGER_BEFORE
107295 ** and TRIGGER_AFTER bits set. Values accessed by BEFORE triggers are only
107296 ** included in the returned mask if the TRIGGER_BEFORE bit is set in the
107297 ** tr_tm parameter. Similarly, values accessed by AFTER triggers are only
107298 ** included in the returned mask if the TRIGGER_AFTER bit is set in tr_tm.
107299 */
107300 SQLITE_PRIVATE u32 sqlite3TriggerColmask(
107301   Parse *pParse,       /* Parse context */
107302   Trigger *pTrigger,   /* List of triggers on table pTab */
107303   ExprList *pChanges,  /* Changes list for any UPDATE OF triggers */
107304   int isNew,           /* 1 for new.* ref mask, 0 for old.* ref mask */
107305   int tr_tm,           /* Mask of TRIGGER_BEFORE|TRIGGER_AFTER */
107306   Table *pTab,         /* The table to code triggers from */
107307   int orconf           /* Default ON CONFLICT policy for trigger steps */
107308 ){
107309   const int op = pChanges ? TK_UPDATE : TK_DELETE;
107310   u32 mask = 0;
107311   Trigger *p;
107312 
107313   assert( isNew==1 || isNew==0 );
107314   for(p=pTrigger; p; p=p->pNext){
107315     if( p->op==op && (tr_tm&p->tr_tm)
107316      && checkColumnOverlap(p->pColumns,pChanges)
107317     ){
107318       TriggerPrg *pPrg;
107319       pPrg = getRowTrigger(pParse, p, pTab, orconf);
107320       if( pPrg ){
107321         mask |= pPrg->aColmask[isNew];
107322       }
107323     }
107324   }
107325 
107326   return mask;
107327 }
107328 
107329 #endif /* !defined(SQLITE_OMIT_TRIGGER) */
107330 
107331 /************** End of trigger.c *********************************************/
107332 /************** Begin file update.c ******************************************/
107333 /*
107334 ** 2001 September 15
107335 **
107336 ** The author disclaims copyright to this source code.  In place of
107337 ** a legal notice, here is a blessing:
107338 **
107339 **    May you do good and not evil.
107340 **    May you find forgiveness for yourself and forgive others.
107341 **    May you share freely, never taking more than you give.
107342 **
107343 *************************************************************************
107344 ** This file contains C code routines that are called by the parser
107345 ** to handle UPDATE statements.
107346 */
107347 
107348 #ifndef SQLITE_OMIT_VIRTUALTABLE
107349 /* Forward declaration */
107350 static void updateVirtualTable(
107351   Parse *pParse,       /* The parsing context */
107352   SrcList *pSrc,       /* The virtual table to be modified */
107353   Table *pTab,         /* The virtual table */
107354   ExprList *pChanges,  /* The columns to change in the UPDATE statement */
107355   Expr *pRowidExpr,    /* Expression used to recompute the rowid */
107356   int *aXRef,          /* Mapping from columns of pTab to entries in pChanges */
107357   Expr *pWhere,        /* WHERE clause of the UPDATE statement */
107358   int onError          /* ON CONFLICT strategy */
107359 );
107360 #endif /* SQLITE_OMIT_VIRTUALTABLE */
107361 
107362 /*
107363 ** The most recently coded instruction was an OP_Column to retrieve the
107364 ** i-th column of table pTab. This routine sets the P4 parameter of the
107365 ** OP_Column to the default value, if any.
107366 **
107367 ** The default value of a column is specified by a DEFAULT clause in the
107368 ** column definition. This was either supplied by the user when the table
107369 ** was created, or added later to the table definition by an ALTER TABLE
107370 ** command. If the latter, then the row-records in the table btree on disk
107371 ** may not contain a value for the column and the default value, taken
107372 ** from the P4 parameter of the OP_Column instruction, is returned instead.
107373 ** If the former, then all row-records are guaranteed to include a value
107374 ** for the column and the P4 value is not required.
107375 **
107376 ** Column definitions created by an ALTER TABLE command may only have
107377 ** literal default values specified: a number, null or a string. (If a more
107378 ** complicated default expression value was provided, it is evaluated
107379 ** when the ALTER TABLE is executed and one of the literal values written
107380 ** into the sqlite_master table.)
107381 **
107382 ** Therefore, the P4 parameter is only required if the default value for
107383 ** the column is a literal number, string or null. The sqlite3ValueFromExpr()
107384 ** function is capable of transforming these types of expressions into
107385 ** sqlite3_value objects.
107386 **
107387 ** If parameter iReg is not negative, code an OP_RealAffinity instruction
107388 ** on register iReg. This is used when an equivalent integer value is
107389 ** stored in place of an 8-byte floating point value in order to save
107390 ** space.
107391 */
107392 SQLITE_PRIVATE void sqlite3ColumnDefault(Vdbe *v, Table *pTab, int i, int iReg){
107393   assert( pTab!=0 );
107394   if( !pTab->pSelect ){
107395     sqlite3_value *pValue = 0;
107396     u8 enc = ENC(sqlite3VdbeDb(v));
107397     Column *pCol = &pTab->aCol[i];
107398     VdbeComment((v, "%s.%s", pTab->zName, pCol->zName));
107399     assert( i<pTab->nCol );
107400     sqlite3ValueFromExpr(sqlite3VdbeDb(v), pCol->pDflt, enc,
107401                          pCol->affinity, &pValue);
107402     if( pValue ){
107403       sqlite3VdbeChangeP4(v, -1, (const char *)pValue, P4_MEM);
107404     }
107405 #ifndef SQLITE_OMIT_FLOATING_POINT
107406     if( pTab->aCol[i].affinity==SQLITE_AFF_REAL ){
107407       sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg);
107408     }
107409 #endif
107410   }
107411 }
107412 
107413 /*
107414 ** Process an UPDATE statement.
107415 **
107416 **   UPDATE OR IGNORE table_wxyz SET a=b, c=d WHERE e<5 AND f NOT NULL;
107417 **          \_______/ \________/     \______/       \________________/
107418 *            onError   pTabList      pChanges             pWhere
107419 */
107420 SQLITE_PRIVATE void sqlite3Update(
107421   Parse *pParse,         /* The parser context */
107422   SrcList *pTabList,     /* The table in which we should change things */
107423   ExprList *pChanges,    /* Things to be changed */
107424   Expr *pWhere,          /* The WHERE clause.  May be null */
107425   int onError            /* How to handle constraint errors */
107426 ){
107427   int i, j;              /* Loop counters */
107428   Table *pTab;           /* The table to be updated */
107429   int addrTop = 0;       /* VDBE instruction address of the start of the loop */
107430   WhereInfo *pWInfo;     /* Information about the WHERE clause */
107431   Vdbe *v;               /* The virtual database engine */
107432   Index *pIdx;           /* For looping over indices */
107433   Index *pPk;            /* The PRIMARY KEY index for WITHOUT ROWID tables */
107434   int nIdx;              /* Number of indices that need updating */
107435   int iBaseCur;          /* Base cursor number */
107436   int iDataCur;          /* Cursor for the canonical data btree */
107437   int iIdxCur;           /* Cursor for the first index */
107438   sqlite3 *db;           /* The database structure */
107439   int *aRegIdx = 0;      /* One register assigned to each index to be updated */
107440   int *aXRef = 0;        /* aXRef[i] is the index in pChanges->a[] of the
107441                          ** an expression for the i-th column of the table.
107442                          ** aXRef[i]==-1 if the i-th column is not changed. */
107443   u8 *aToOpen;           /* 1 for tables and indices to be opened */
107444   u8 chngPk;             /* PRIMARY KEY changed in a WITHOUT ROWID table */
107445   u8 chngRowid;          /* Rowid changed in a normal table */
107446   u8 chngKey;            /* Either chngPk or chngRowid */
107447   Expr *pRowidExpr = 0;  /* Expression defining the new record number */
107448   AuthContext sContext;  /* The authorization context */
107449   NameContext sNC;       /* The name-context to resolve expressions in */
107450   int iDb;               /* Database containing the table being updated */
107451   int okOnePass;         /* True for one-pass algorithm without the FIFO */
107452   int hasFK;             /* True if foreign key processing is required */
107453   int labelBreak;        /* Jump here to break out of UPDATE loop */
107454   int labelContinue;     /* Jump here to continue next step of UPDATE loop */
107455 
107456 #ifndef SQLITE_OMIT_TRIGGER
107457   int isView;            /* True when updating a view (INSTEAD OF trigger) */
107458   Trigger *pTrigger;     /* List of triggers on pTab, if required */
107459   int tmask;             /* Mask of TRIGGER_BEFORE|TRIGGER_AFTER */
107460 #endif
107461   int newmask;           /* Mask of NEW.* columns accessed by BEFORE triggers */
107462   int iEph = 0;          /* Ephemeral table holding all primary key values */
107463   int nKey = 0;          /* Number of elements in regKey for WITHOUT ROWID */
107464   int aiCurOnePass[2];   /* The write cursors opened by WHERE_ONEPASS */
107465 
107466   /* Register Allocations */
107467   int regRowCount = 0;   /* A count of rows changed */
107468   int regOldRowid;       /* The old rowid */
107469   int regNewRowid;       /* The new rowid */
107470   int regNew;            /* Content of the NEW.* table in triggers */
107471   int regOld = 0;        /* Content of OLD.* table in triggers */
107472   int regRowSet = 0;     /* Rowset of rows to be updated */
107473   int regKey = 0;        /* composite PRIMARY KEY value */
107474 
107475   memset(&sContext, 0, sizeof(sContext));
107476   db = pParse->db;
107477   if( pParse->nErr || db->mallocFailed ){
107478     goto update_cleanup;
107479   }
107480   assert( pTabList->nSrc==1 );
107481 
107482   /* Locate the table which we want to update.
107483   */
107484   pTab = sqlite3SrcListLookup(pParse, pTabList);
107485   if( pTab==0 ) goto update_cleanup;
107486   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
107487 
107488   /* Figure out if we have any triggers and if the table being
107489   ** updated is a view.
107490   */
107491 #ifndef SQLITE_OMIT_TRIGGER
107492   pTrigger = sqlite3TriggersExist(pParse, pTab, TK_UPDATE, pChanges, &tmask);
107493   isView = pTab->pSelect!=0;
107494   assert( pTrigger || tmask==0 );
107495 #else
107496 # define pTrigger 0
107497 # define isView 0
107498 # define tmask 0
107499 #endif
107500 #ifdef SQLITE_OMIT_VIEW
107501 # undef isView
107502 # define isView 0
107503 #endif
107504 
107505   if( sqlite3ViewGetColumnNames(pParse, pTab) ){
107506     goto update_cleanup;
107507   }
107508   if( sqlite3IsReadOnly(pParse, pTab, tmask) ){
107509     goto update_cleanup;
107510   }
107511 
107512   /* Allocate a cursors for the main database table and for all indices.
107513   ** The index cursors might not be used, but if they are used they
107514   ** need to occur right after the database cursor.  So go ahead and
107515   ** allocate enough space, just in case.
107516   */
107517   pTabList->a[0].iCursor = iBaseCur = iDataCur = pParse->nTab++;
107518   iIdxCur = iDataCur+1;
107519   pPk = HasRowid(pTab) ? 0 : sqlite3PrimaryKeyIndex(pTab);
107520   for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){
107521     if( IsPrimaryKeyIndex(pIdx) && pPk!=0 ){
107522       iDataCur = pParse->nTab;
107523       pTabList->a[0].iCursor = iDataCur;
107524     }
107525     pParse->nTab++;
107526   }
107527 
107528   /* Allocate space for aXRef[], aRegIdx[], and aToOpen[].
107529   ** Initialize aXRef[] and aToOpen[] to their default values.
107530   */
107531   aXRef = sqlite3DbMallocRaw(db, sizeof(int) * (pTab->nCol+nIdx) + nIdx+2 );
107532   if( aXRef==0 ) goto update_cleanup;
107533   aRegIdx = aXRef+pTab->nCol;
107534   aToOpen = (u8*)(aRegIdx+nIdx);
107535   memset(aToOpen, 1, nIdx+1);
107536   aToOpen[nIdx+1] = 0;
107537   for(i=0; i<pTab->nCol; i++) aXRef[i] = -1;
107538 
107539   /* Initialize the name-context */
107540   memset(&sNC, 0, sizeof(sNC));
107541   sNC.pParse = pParse;
107542   sNC.pSrcList = pTabList;
107543 
107544   /* Resolve the column names in all the expressions of the
107545   ** of the UPDATE statement.  Also find the column index
107546   ** for each column to be updated in the pChanges array.  For each
107547   ** column to be updated, make sure we have authorization to change
107548   ** that column.
107549   */
107550   chngRowid = chngPk = 0;
107551   for(i=0; i<pChanges->nExpr; i++){
107552     if( sqlite3ResolveExprNames(&sNC, pChanges->a[i].pExpr) ){
107553       goto update_cleanup;
107554     }
107555     for(j=0; j<pTab->nCol; j++){
107556       if( sqlite3StrICmp(pTab->aCol[j].zName, pChanges->a[i].zName)==0 ){
107557         if( j==pTab->iPKey ){
107558           chngRowid = 1;
107559           pRowidExpr = pChanges->a[i].pExpr;
107560         }else if( pPk && (pTab->aCol[j].colFlags & COLFLAG_PRIMKEY)!=0 ){
107561           chngPk = 1;
107562         }
107563         aXRef[j] = i;
107564         break;
107565       }
107566     }
107567     if( j>=pTab->nCol ){
107568       if( pPk==0 && sqlite3IsRowid(pChanges->a[i].zName) ){
107569         j = -1;
107570         chngRowid = 1;
107571         pRowidExpr = pChanges->a[i].pExpr;
107572       }else{
107573         sqlite3ErrorMsg(pParse, "no such column: %s", pChanges->a[i].zName);
107574         pParse->checkSchema = 1;
107575         goto update_cleanup;
107576       }
107577     }
107578 #ifndef SQLITE_OMIT_AUTHORIZATION
107579     {
107580       int rc;
107581       rc = sqlite3AuthCheck(pParse, SQLITE_UPDATE, pTab->zName,
107582                             j<0 ? "ROWID" : pTab->aCol[j].zName,
107583                             db->aDb[iDb].zName);
107584       if( rc==SQLITE_DENY ){
107585         goto update_cleanup;
107586       }else if( rc==SQLITE_IGNORE ){
107587         aXRef[j] = -1;
107588       }
107589     }
107590 #endif
107591   }
107592   assert( (chngRowid & chngPk)==0 );
107593   assert( chngRowid==0 || chngRowid==1 );
107594   assert( chngPk==0 || chngPk==1 );
107595   chngKey = chngRowid + chngPk;
107596 
107597   /* The SET expressions are not actually used inside the WHERE loop.
107598   ** So reset the colUsed mask
107599   */
107600   pTabList->a[0].colUsed = 0;
107601 
107602   hasFK = sqlite3FkRequired(pParse, pTab, aXRef, chngKey);
107603 
107604   /* There is one entry in the aRegIdx[] array for each index on the table
107605   ** being updated.  Fill in aRegIdx[] with a register number that will hold
107606   ** the key for accessing each index.
107607   */
107608   for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
107609     int reg;
107610     if( chngKey || hasFK || pIdx->pPartIdxWhere || pIdx==pPk ){
107611       reg = ++pParse->nMem;
107612     }else{
107613       reg = 0;
107614       for(i=0; i<pIdx->nKeyCol; i++){
107615         if( aXRef[pIdx->aiColumn[i]]>=0 ){
107616           reg = ++pParse->nMem;
107617           break;
107618         }
107619       }
107620     }
107621     if( reg==0 ) aToOpen[j+1] = 0;
107622     aRegIdx[j] = reg;
107623   }
107624 
107625   /* Begin generating code. */
107626   v = sqlite3GetVdbe(pParse);
107627   if( v==0 ) goto update_cleanup;
107628   if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
107629   sqlite3BeginWriteOperation(pParse, 1, iDb);
107630 
107631 #ifndef SQLITE_OMIT_VIRTUALTABLE
107632   /* Virtual tables must be handled separately */
107633   if( IsVirtual(pTab) ){
107634     updateVirtualTable(pParse, pTabList, pTab, pChanges, pRowidExpr, aXRef,
107635                        pWhere, onError);
107636     pWhere = 0;
107637     pTabList = 0;
107638     goto update_cleanup;
107639   }
107640 #endif
107641 
107642   /* Allocate required registers. */
107643   regRowSet = ++pParse->nMem;
107644   regOldRowid = regNewRowid = ++pParse->nMem;
107645   if( chngPk || pTrigger || hasFK ){
107646     regOld = pParse->nMem + 1;
107647     pParse->nMem += pTab->nCol;
107648   }
107649   if( chngKey || pTrigger || hasFK ){
107650     regNewRowid = ++pParse->nMem;
107651   }
107652   regNew = pParse->nMem + 1;
107653   pParse->nMem += pTab->nCol;
107654 
107655   /* Start the view context. */
107656   if( isView ){
107657     sqlite3AuthContextPush(pParse, &sContext, pTab->zName);
107658   }
107659 
107660   /* If we are trying to update a view, realize that view into
107661   ** a ephemeral table.
107662   */
107663 #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
107664   if( isView ){
107665     sqlite3MaterializeView(pParse, pTab, pWhere, iDataCur);
107666   }
107667 #endif
107668 
107669   /* Resolve the column names in all the expressions in the
107670   ** WHERE clause.
107671   */
107672   if( sqlite3ResolveExprNames(&sNC, pWhere) ){
107673     goto update_cleanup;
107674   }
107675 
107676   /* Begin the database scan
107677   */
107678   if( HasRowid(pTab) ){
107679     sqlite3VdbeAddOp3(v, OP_Null, 0, regRowSet, regOldRowid);
107680     pWInfo = sqlite3WhereBegin(
107681         pParse, pTabList, pWhere, 0, 0, WHERE_ONEPASS_DESIRED, iIdxCur
107682     );
107683     if( pWInfo==0 ) goto update_cleanup;
107684     okOnePass = sqlite3WhereOkOnePass(pWInfo, aiCurOnePass);
107685 
107686     /* Remember the rowid of every item to be updated.
107687     */
107688     sqlite3VdbeAddOp2(v, OP_Rowid, iDataCur, regOldRowid);
107689     if( !okOnePass ){
107690       sqlite3VdbeAddOp2(v, OP_RowSetAdd, regRowSet, regOldRowid);
107691     }
107692 
107693     /* End the database scan loop.
107694     */
107695     sqlite3WhereEnd(pWInfo);
107696   }else{
107697     int iPk;         /* First of nPk memory cells holding PRIMARY KEY value */
107698     i16 nPk;         /* Number of components of the PRIMARY KEY */
107699     int addrOpen;    /* Address of the OpenEphemeral instruction */
107700 
107701     assert( pPk!=0 );
107702     nPk = pPk->nKeyCol;
107703     iPk = pParse->nMem+1;
107704     pParse->nMem += nPk;
107705     regKey = ++pParse->nMem;
107706     iEph = pParse->nTab++;
107707     sqlite3VdbeAddOp2(v, OP_Null, 0, iPk);
107708     addrOpen = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iEph, nPk);
107709     sqlite3VdbeSetP4KeyInfo(pParse, pPk);
107710     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0, 0,
107711                                WHERE_ONEPASS_DESIRED, iIdxCur);
107712     if( pWInfo==0 ) goto update_cleanup;
107713     okOnePass = sqlite3WhereOkOnePass(pWInfo, aiCurOnePass);
107714     for(i=0; i<nPk; i++){
107715       sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, pPk->aiColumn[i],
107716                                       iPk+i);
107717     }
107718     if( okOnePass ){
107719       sqlite3VdbeChangeToNoop(v, addrOpen);
107720       nKey = nPk;
107721       regKey = iPk;
107722     }else{
107723       sqlite3VdbeAddOp4(v, OP_MakeRecord, iPk, nPk, regKey,
107724                         sqlite3IndexAffinityStr(v, pPk), nPk);
107725       sqlite3VdbeAddOp2(v, OP_IdxInsert, iEph, regKey);
107726     }
107727     sqlite3WhereEnd(pWInfo);
107728   }
107729 
107730   /* Initialize the count of updated rows
107731   */
107732   if( (db->flags & SQLITE_CountRows) && !pParse->pTriggerTab ){
107733     regRowCount = ++pParse->nMem;
107734     sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
107735   }
107736 
107737   labelBreak = sqlite3VdbeMakeLabel(v);
107738   if( !isView ){
107739     /*
107740     ** Open every index that needs updating.  Note that if any
107741     ** index could potentially invoke a REPLACE conflict resolution
107742     ** action, then we need to open all indices because we might need
107743     ** to be deleting some records.
107744     */
107745     if( onError==OE_Replace ){
107746       memset(aToOpen, 1, nIdx+1);
107747     }else{
107748       for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
107749         if( pIdx->onError==OE_Replace ){
107750           memset(aToOpen, 1, nIdx+1);
107751           break;
107752         }
107753       }
107754     }
107755     if( okOnePass ){
107756       if( aiCurOnePass[0]>=0 ) aToOpen[aiCurOnePass[0]-iBaseCur] = 0;
107757       if( aiCurOnePass[1]>=0 ) aToOpen[aiCurOnePass[1]-iBaseCur] = 0;
107758     }
107759     sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, iBaseCur, aToOpen,
107760                                0, 0);
107761   }
107762 
107763   /* Top of the update loop */
107764   if( okOnePass ){
107765     if( aToOpen[iDataCur-iBaseCur] ){
107766       assert( pPk!=0 );
107767       sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, labelBreak, regKey, nKey);
107768       VdbeCoverageNeverTaken(v);
107769     }
107770     labelContinue = labelBreak;
107771     sqlite3VdbeAddOp2(v, OP_IsNull, pPk ? regKey : regOldRowid, labelBreak);
107772     VdbeCoverage(v);
107773   }else if( pPk ){
107774     labelContinue = sqlite3VdbeMakeLabel(v);
107775     sqlite3VdbeAddOp2(v, OP_Rewind, iEph, labelBreak); VdbeCoverage(v);
107776     addrTop = sqlite3VdbeAddOp2(v, OP_RowKey, iEph, regKey);
107777     sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, labelContinue, regKey, 0);
107778     VdbeCoverage(v);
107779   }else{
107780     labelContinue = sqlite3VdbeAddOp3(v, OP_RowSetRead, regRowSet, labelBreak,
107781                              regOldRowid);
107782     VdbeCoverage(v);
107783     sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, labelContinue, regOldRowid);
107784     VdbeCoverage(v);
107785   }
107786 
107787   /* If the record number will change, set register regNewRowid to
107788   ** contain the new value. If the record number is not being modified,
107789   ** then regNewRowid is the same register as regOldRowid, which is
107790   ** already populated.  */
107791   assert( chngKey || pTrigger || hasFK || regOldRowid==regNewRowid );
107792   if( chngRowid ){
107793     sqlite3ExprCode(pParse, pRowidExpr, regNewRowid);
107794     sqlite3VdbeAddOp1(v, OP_MustBeInt, regNewRowid); VdbeCoverage(v);
107795   }
107796 
107797   /* Compute the old pre-UPDATE content of the row being changed, if that
107798   ** information is needed */
107799   if( chngPk || hasFK || pTrigger ){
107800     u32 oldmask = (hasFK ? sqlite3FkOldmask(pParse, pTab) : 0);
107801     oldmask |= sqlite3TriggerColmask(pParse,
107802         pTrigger, pChanges, 0, TRIGGER_BEFORE|TRIGGER_AFTER, pTab, onError
107803     );
107804     for(i=0; i<pTab->nCol; i++){
107805       if( oldmask==0xffffffff
107806        || (i<32 && (oldmask & MASKBIT32(i))!=0)
107807        || (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0
107808       ){
107809         testcase(  oldmask!=0xffffffff && i==31 );
107810         sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, i, regOld+i);
107811       }else{
107812         sqlite3VdbeAddOp2(v, OP_Null, 0, regOld+i);
107813       }
107814     }
107815     if( chngRowid==0 && pPk==0 ){
107816       sqlite3VdbeAddOp2(v, OP_Copy, regOldRowid, regNewRowid);
107817     }
107818   }
107819 
107820   /* Populate the array of registers beginning at regNew with the new
107821   ** row data. This array is used to check constaints, create the new
107822   ** table and index records, and as the values for any new.* references
107823   ** made by triggers.
107824   **
107825   ** If there are one or more BEFORE triggers, then do not populate the
107826   ** registers associated with columns that are (a) not modified by
107827   ** this UPDATE statement and (b) not accessed by new.* references. The
107828   ** values for registers not modified by the UPDATE must be reloaded from
107829   ** the database after the BEFORE triggers are fired anyway (as the trigger
107830   ** may have modified them). So not loading those that are not going to
107831   ** be used eliminates some redundant opcodes.
107832   */
107833   newmask = sqlite3TriggerColmask(
107834       pParse, pTrigger, pChanges, 1, TRIGGER_BEFORE, pTab, onError
107835   );
107836   /*sqlite3VdbeAddOp3(v, OP_Null, 0, regNew, regNew+pTab->nCol-1);*/
107837   for(i=0; i<pTab->nCol; i++){
107838     if( i==pTab->iPKey ){
107839       sqlite3VdbeAddOp2(v, OP_Null, 0, regNew+i);
107840     }else{
107841       j = aXRef[i];
107842       if( j>=0 ){
107843         sqlite3ExprCode(pParse, pChanges->a[j].pExpr, regNew+i);
107844       }else if( 0==(tmask&TRIGGER_BEFORE) || i>31 || (newmask & MASKBIT32(i)) ){
107845         /* This branch loads the value of a column that will not be changed
107846         ** into a register. This is done if there are no BEFORE triggers, or
107847         ** if there are one or more BEFORE triggers that use this value via
107848         ** a new.* reference in a trigger program.
107849         */
107850         testcase( i==31 );
107851         testcase( i==32 );
107852         sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, i, regNew+i);
107853       }else{
107854         sqlite3VdbeAddOp2(v, OP_Null, 0, regNew+i);
107855       }
107856     }
107857   }
107858 
107859   /* Fire any BEFORE UPDATE triggers. This happens before constraints are
107860   ** verified. One could argue that this is wrong.
107861   */
107862   if( tmask&TRIGGER_BEFORE ){
107863     sqlite3TableAffinity(v, pTab, regNew);
107864     sqlite3CodeRowTrigger(pParse, pTrigger, TK_UPDATE, pChanges,
107865         TRIGGER_BEFORE, pTab, regOldRowid, onError, labelContinue);
107866 
107867     /* The row-trigger may have deleted the row being updated. In this
107868     ** case, jump to the next row. No updates or AFTER triggers are
107869     ** required. This behavior - what happens when the row being updated
107870     ** is deleted or renamed by a BEFORE trigger - is left undefined in the
107871     ** documentation.
107872     */
107873     if( pPk ){
107874       sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, labelContinue,regKey,nKey);
107875       VdbeCoverage(v);
107876     }else{
107877       sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, labelContinue, regOldRowid);
107878       VdbeCoverage(v);
107879     }
107880 
107881     /* If it did not delete it, the row-trigger may still have modified
107882     ** some of the columns of the row being updated. Load the values for
107883     ** all columns not modified by the update statement into their
107884     ** registers in case this has happened.
107885     */
107886     for(i=0; i<pTab->nCol; i++){
107887       if( aXRef[i]<0 && i!=pTab->iPKey ){
107888         sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, i, regNew+i);
107889       }
107890     }
107891   }
107892 
107893   if( !isView ){
107894     int j1 = 0;           /* Address of jump instruction */
107895     int bReplace = 0;     /* True if REPLACE conflict resolution might happen */
107896 
107897     /* Do constraint checks. */
107898     assert( regOldRowid>0 );
107899     sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur,
107900         regNewRowid, regOldRowid, chngKey, onError, labelContinue, &bReplace);
107901 
107902     /* Do FK constraint checks. */
107903     if( hasFK ){
107904       sqlite3FkCheck(pParse, pTab, regOldRowid, 0, aXRef, chngKey);
107905     }
107906 
107907     /* Delete the index entries associated with the current record.  */
107908     if( bReplace || chngKey ){
107909       if( pPk ){
107910         j1 = sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, 0, regKey, nKey);
107911       }else{
107912         j1 = sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, 0, regOldRowid);
107913       }
107914       VdbeCoverageNeverTaken(v);
107915     }
107916     sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur, aRegIdx);
107917 
107918     /* If changing the record number, delete the old record.  */
107919     if( hasFK || chngKey || pPk!=0 ){
107920       sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, 0);
107921     }
107922     if( bReplace || chngKey ){
107923       sqlite3VdbeJumpHere(v, j1);
107924     }
107925 
107926     if( hasFK ){
107927       sqlite3FkCheck(pParse, pTab, 0, regNewRowid, aXRef, chngKey);
107928     }
107929 
107930     /* Insert the new index entries and the new record. */
107931     sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur,
107932                              regNewRowid, aRegIdx, 1, 0, 0);
107933 
107934     /* Do any ON CASCADE, SET NULL or SET DEFAULT operations required to
107935     ** handle rows (possibly in other tables) that refer via a foreign key
107936     ** to the row just updated. */
107937     if( hasFK ){
107938       sqlite3FkActions(pParse, pTab, pChanges, regOldRowid, aXRef, chngKey);
107939     }
107940   }
107941 
107942   /* Increment the row counter
107943   */
107944   if( (db->flags & SQLITE_CountRows) && !pParse->pTriggerTab){
107945     sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
107946   }
107947 
107948   sqlite3CodeRowTrigger(pParse, pTrigger, TK_UPDATE, pChanges,
107949       TRIGGER_AFTER, pTab, regOldRowid, onError, labelContinue);
107950 
107951   /* Repeat the above with the next record to be updated, until
107952   ** all record selected by the WHERE clause have been updated.
107953   */
107954   if( okOnePass ){
107955     /* Nothing to do at end-of-loop for a single-pass */
107956   }else if( pPk ){
107957     sqlite3VdbeResolveLabel(v, labelContinue);
107958     sqlite3VdbeAddOp2(v, OP_Next, iEph, addrTop); VdbeCoverage(v);
107959   }else{
107960     sqlite3VdbeAddOp2(v, OP_Goto, 0, labelContinue);
107961   }
107962   sqlite3VdbeResolveLabel(v, labelBreak);
107963 
107964   /* Close all tables */
107965   for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
107966     assert( aRegIdx );
107967     if( aToOpen[i+1] ){
107968       sqlite3VdbeAddOp2(v, OP_Close, iIdxCur+i, 0);
107969     }
107970   }
107971   if( iDataCur<iIdxCur ) sqlite3VdbeAddOp2(v, OP_Close, iDataCur, 0);
107972 
107973   /* Update the sqlite_sequence table by storing the content of the
107974   ** maximum rowid counter values recorded while inserting into
107975   ** autoincrement tables.
107976   */
107977   if( pParse->nested==0 && pParse->pTriggerTab==0 ){
107978     sqlite3AutoincrementEnd(pParse);
107979   }
107980 
107981   /*
107982   ** Return the number of rows that were changed. If this routine is
107983   ** generating code because of a call to sqlite3NestedParse(), do not
107984   ** invoke the callback function.
107985   */
107986   if( (db->flags&SQLITE_CountRows) && !pParse->pTriggerTab && !pParse->nested ){
107987     sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1);
107988     sqlite3VdbeSetNumCols(v, 1);
107989     sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows updated", SQLITE_STATIC);
107990   }
107991 
107992 update_cleanup:
107993   sqlite3AuthContextPop(&sContext);
107994   sqlite3DbFree(db, aXRef); /* Also frees aRegIdx[] and aToOpen[] */
107995   sqlite3SrcListDelete(db, pTabList);
107996   sqlite3ExprListDelete(db, pChanges);
107997   sqlite3ExprDelete(db, pWhere);
107998   return;
107999 }
108000 /* Make sure "isView" and other macros defined above are undefined. Otherwise
108001 ** thely may interfere with compilation of other functions in this file
108002 ** (or in another file, if this file becomes part of the amalgamation).  */
108003 #ifdef isView
108004  #undef isView
108005 #endif
108006 #ifdef pTrigger
108007  #undef pTrigger
108008 #endif
108009 
108010 #ifndef SQLITE_OMIT_VIRTUALTABLE
108011 /*
108012 ** Generate code for an UPDATE of a virtual table.
108013 **
108014 ** The strategy is that we create an ephemerial table that contains
108015 ** for each row to be changed:
108016 **
108017 **   (A)  The original rowid of that row.
108018 **   (B)  The revised rowid for the row. (note1)
108019 **   (C)  The content of every column in the row.
108020 **
108021 ** Then we loop over this ephemeral table and for each row in
108022 ** the ephermeral table call VUpdate.
108023 **
108024 ** When finished, drop the ephemeral table.
108025 **
108026 ** (note1) Actually, if we know in advance that (A) is always the same
108027 ** as (B) we only store (A), then duplicate (A) when pulling
108028 ** it out of the ephemeral table before calling VUpdate.
108029 */
108030 static void updateVirtualTable(
108031   Parse *pParse,       /* The parsing context */
108032   SrcList *pSrc,       /* The virtual table to be modified */
108033   Table *pTab,         /* The virtual table */
108034   ExprList *pChanges,  /* The columns to change in the UPDATE statement */
108035   Expr *pRowid,        /* Expression used to recompute the rowid */
108036   int *aXRef,          /* Mapping from columns of pTab to entries in pChanges */
108037   Expr *pWhere,        /* WHERE clause of the UPDATE statement */
108038   int onError          /* ON CONFLICT strategy */
108039 ){
108040   Vdbe *v = pParse->pVdbe;  /* Virtual machine under construction */
108041   ExprList *pEList = 0;     /* The result set of the SELECT statement */
108042   Select *pSelect = 0;      /* The SELECT statement */
108043   Expr *pExpr;              /* Temporary expression */
108044   int ephemTab;             /* Table holding the result of the SELECT */
108045   int i;                    /* Loop counter */
108046   int addr;                 /* Address of top of loop */
108047   int iReg;                 /* First register in set passed to OP_VUpdate */
108048   sqlite3 *db = pParse->db; /* Database connection */
108049   const char *pVTab = (const char*)sqlite3GetVTable(db, pTab);
108050   SelectDest dest;
108051 
108052   /* Construct the SELECT statement that will find the new values for
108053   ** all updated rows.
108054   */
108055   pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ID, "_rowid_"));
108056   if( pRowid ){
108057     pEList = sqlite3ExprListAppend(pParse, pEList,
108058                                    sqlite3ExprDup(db, pRowid, 0));
108059   }
108060   assert( pTab->iPKey<0 );
108061   for(i=0; i<pTab->nCol; i++){
108062     if( aXRef[i]>=0 ){
108063       pExpr = sqlite3ExprDup(db, pChanges->a[aXRef[i]].pExpr, 0);
108064     }else{
108065       pExpr = sqlite3Expr(db, TK_ID, pTab->aCol[i].zName);
108066     }
108067     pEList = sqlite3ExprListAppend(pParse, pEList, pExpr);
108068   }
108069   pSelect = sqlite3SelectNew(pParse, pEList, pSrc, pWhere, 0, 0, 0, 0, 0, 0);
108070 
108071   /* Create the ephemeral table into which the update results will
108072   ** be stored.
108073   */
108074   assert( v );
108075   ephemTab = pParse->nTab++;
108076   sqlite3VdbeAddOp2(v, OP_OpenEphemeral, ephemTab, pTab->nCol+1+(pRowid!=0));
108077   sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
108078 
108079   /* fill the ephemeral table
108080   */
108081   sqlite3SelectDestInit(&dest, SRT_Table, ephemTab);
108082   sqlite3Select(pParse, pSelect, &dest);
108083 
108084   /* Generate code to scan the ephemeral table and call VUpdate. */
108085   iReg = ++pParse->nMem;
108086   pParse->nMem += pTab->nCol+1;
108087   addr = sqlite3VdbeAddOp2(v, OP_Rewind, ephemTab, 0); VdbeCoverage(v);
108088   sqlite3VdbeAddOp3(v, OP_Column,  ephemTab, 0, iReg);
108089   sqlite3VdbeAddOp3(v, OP_Column, ephemTab, (pRowid?1:0), iReg+1);
108090   for(i=0; i<pTab->nCol; i++){
108091     sqlite3VdbeAddOp3(v, OP_Column, ephemTab, i+1+(pRowid!=0), iReg+2+i);
108092   }
108093   sqlite3VtabMakeWritable(pParse, pTab);
108094   sqlite3VdbeAddOp4(v, OP_VUpdate, 0, pTab->nCol+2, iReg, pVTab, P4_VTAB);
108095   sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError);
108096   sqlite3MayAbort(pParse);
108097   sqlite3VdbeAddOp2(v, OP_Next, ephemTab, addr+1); VdbeCoverage(v);
108098   sqlite3VdbeJumpHere(v, addr);
108099   sqlite3VdbeAddOp2(v, OP_Close, ephemTab, 0);
108100 
108101   /* Cleanup */
108102   sqlite3SelectDelete(db, pSelect);
108103 }
108104 #endif /* SQLITE_OMIT_VIRTUALTABLE */
108105 
108106 /************** End of update.c **********************************************/
108107 /************** Begin file vacuum.c ******************************************/
108108 /*
108109 ** 2003 April 6
108110 **
108111 ** The author disclaims copyright to this source code.  In place of
108112 ** a legal notice, here is a blessing:
108113 **
108114 **    May you do good and not evil.
108115 **    May you find forgiveness for yourself and forgive others.
108116 **    May you share freely, never taking more than you give.
108117 **
108118 *************************************************************************
108119 ** This file contains code used to implement the VACUUM command.
108120 **
108121 ** Most of the code in this file may be omitted by defining the
108122 ** SQLITE_OMIT_VACUUM macro.
108123 */
108124 
108125 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
108126 /*
108127 ** Finalize a prepared statement.  If there was an error, store the
108128 ** text of the error message in *pzErrMsg.  Return the result code.
108129 */
108130 static int vacuumFinalize(sqlite3 *db, sqlite3_stmt *pStmt, char **pzErrMsg){
108131   int rc;
108132   rc = sqlite3VdbeFinalize((Vdbe*)pStmt);
108133   if( rc ){
108134     sqlite3SetString(pzErrMsg, db, sqlite3_errmsg(db));
108135   }
108136   return rc;
108137 }
108138 
108139 /*
108140 ** Execute zSql on database db. Return an error code.
108141 */
108142 static int execSql(sqlite3 *db, char **pzErrMsg, const char *zSql){
108143   sqlite3_stmt *pStmt;
108144   VVA_ONLY( int rc; )
108145   if( !zSql ){
108146     return SQLITE_NOMEM;
108147   }
108148   if( SQLITE_OK!=sqlite3_prepare(db, zSql, -1, &pStmt, 0) ){
108149     sqlite3SetString(pzErrMsg, db, sqlite3_errmsg(db));
108150     return sqlite3_errcode(db);
108151   }
108152   VVA_ONLY( rc = ) sqlite3_step(pStmt);
108153   assert( rc!=SQLITE_ROW || (db->flags&SQLITE_CountRows) );
108154   return vacuumFinalize(db, pStmt, pzErrMsg);
108155 }
108156 
108157 /*
108158 ** Execute zSql on database db. The statement returns exactly
108159 ** one column. Execute this as SQL on the same database.
108160 */
108161 static int execExecSql(sqlite3 *db, char **pzErrMsg, const char *zSql){
108162   sqlite3_stmt *pStmt;
108163   int rc;
108164 
108165   rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
108166   if( rc!=SQLITE_OK ) return rc;
108167 
108168   while( SQLITE_ROW==sqlite3_step(pStmt) ){
108169     rc = execSql(db, pzErrMsg, (char*)sqlite3_column_text(pStmt, 0));
108170     if( rc!=SQLITE_OK ){
108171       vacuumFinalize(db, pStmt, pzErrMsg);
108172       return rc;
108173     }
108174   }
108175 
108176   return vacuumFinalize(db, pStmt, pzErrMsg);
108177 }
108178 
108179 /*
108180 ** The VACUUM command is used to clean up the database,
108181 ** collapse free space, etc.  It is modelled after the VACUUM command
108182 ** in PostgreSQL.  The VACUUM command works as follows:
108183 **
108184 **   (1)  Create a new transient database file
108185 **   (2)  Copy all content from the database being vacuumed into
108186 **        the new transient database file
108187 **   (3)  Copy content from the transient database back into the
108188 **        original database.
108189 **
108190 ** The transient database requires temporary disk space approximately
108191 ** equal to the size of the original database.  The copy operation of
108192 ** step (3) requires additional temporary disk space approximately equal
108193 ** to the size of the original database for the rollback journal.
108194 ** Hence, temporary disk space that is approximately 2x the size of the
108195 ** orginal database is required.  Every page of the database is written
108196 ** approximately 3 times:  Once for step (2) and twice for step (3).
108197 ** Two writes per page are required in step (3) because the original
108198 ** database content must be written into the rollback journal prior to
108199 ** overwriting the database with the vacuumed content.
108200 **
108201 ** Only 1x temporary space and only 1x writes would be required if
108202 ** the copy of step (3) were replace by deleting the original database
108203 ** and renaming the transient database as the original.  But that will
108204 ** not work if other processes are attached to the original database.
108205 ** And a power loss in between deleting the original and renaming the
108206 ** transient would cause the database file to appear to be deleted
108207 ** following reboot.
108208 */
108209 SQLITE_PRIVATE void sqlite3Vacuum(Parse *pParse){
108210   Vdbe *v = sqlite3GetVdbe(pParse);
108211   if( v ){
108212     sqlite3VdbeAddOp2(v, OP_Vacuum, 0, 0);
108213     sqlite3VdbeUsesBtree(v, 0);
108214   }
108215   return;
108216 }
108217 
108218 /*
108219 ** This routine implements the OP_Vacuum opcode of the VDBE.
108220 */
108221 SQLITE_PRIVATE int sqlite3RunVacuum(char **pzErrMsg, sqlite3 *db){
108222   int rc = SQLITE_OK;     /* Return code from service routines */
108223   Btree *pMain;           /* The database being vacuumed */
108224   Btree *pTemp;           /* The temporary database we vacuum into */
108225   char *zSql = 0;         /* SQL statements */
108226   int saved_flags;        /* Saved value of the db->flags */
108227   int saved_nChange;      /* Saved value of db->nChange */
108228   int saved_nTotalChange; /* Saved value of db->nTotalChange */
108229   void (*saved_xTrace)(void*,const char*);  /* Saved db->xTrace */
108230   Db *pDb = 0;            /* Database to detach at end of vacuum */
108231   int isMemDb;            /* True if vacuuming a :memory: database */
108232   int nRes;               /* Bytes of reserved space at the end of each page */
108233   int nDb;                /* Number of attached databases */
108234 
108235   if( !db->autoCommit ){
108236     sqlite3SetString(pzErrMsg, db, "cannot VACUUM from within a transaction");
108237     return SQLITE_ERROR;
108238   }
108239   if( db->nVdbeActive>1 ){
108240     sqlite3SetString(pzErrMsg, db,"cannot VACUUM - SQL statements in progress");
108241     return SQLITE_ERROR;
108242   }
108243 
108244   /* Save the current value of the database flags so that it can be
108245   ** restored before returning. Then set the writable-schema flag, and
108246   ** disable CHECK and foreign key constraints.  */
108247   saved_flags = db->flags;
108248   saved_nChange = db->nChange;
108249   saved_nTotalChange = db->nTotalChange;
108250   saved_xTrace = db->xTrace;
108251   db->flags |= SQLITE_WriteSchema | SQLITE_IgnoreChecks | SQLITE_PreferBuiltin;
108252   db->flags &= ~(SQLITE_ForeignKeys | SQLITE_ReverseOrder);
108253   db->xTrace = 0;
108254 
108255   pMain = db->aDb[0].pBt;
108256   isMemDb = sqlite3PagerIsMemdb(sqlite3BtreePager(pMain));
108257 
108258   /* Attach the temporary database as 'vacuum_db'. The synchronous pragma
108259   ** can be set to 'off' for this file, as it is not recovered if a crash
108260   ** occurs anyway. The integrity of the database is maintained by a
108261   ** (possibly synchronous) transaction opened on the main database before
108262   ** sqlite3BtreeCopyFile() is called.
108263   **
108264   ** An optimisation would be to use a non-journaled pager.
108265   ** (Later:) I tried setting "PRAGMA vacuum_db.journal_mode=OFF" but
108266   ** that actually made the VACUUM run slower.  Very little journalling
108267   ** actually occurs when doing a vacuum since the vacuum_db is initially
108268   ** empty.  Only the journal header is written.  Apparently it takes more
108269   ** time to parse and run the PRAGMA to turn journalling off than it does
108270   ** to write the journal header file.
108271   */
108272   nDb = db->nDb;
108273   if( sqlite3TempInMemory(db) ){
108274     zSql = "ATTACH ':memory:' AS vacuum_db;";
108275   }else{
108276     zSql = "ATTACH '' AS vacuum_db;";
108277   }
108278   rc = execSql(db, pzErrMsg, zSql);
108279   if( db->nDb>nDb ){
108280     pDb = &db->aDb[db->nDb-1];
108281     assert( strcmp(pDb->zName,"vacuum_db")==0 );
108282   }
108283   if( rc!=SQLITE_OK ) goto end_of_vacuum;
108284   pTemp = db->aDb[db->nDb-1].pBt;
108285 
108286   /* The call to execSql() to attach the temp database has left the file
108287   ** locked (as there was more than one active statement when the transaction
108288   ** to read the schema was concluded. Unlock it here so that this doesn't
108289   ** cause problems for the call to BtreeSetPageSize() below.  */
108290   sqlite3BtreeCommit(pTemp);
108291 
108292   nRes = sqlite3BtreeGetReserve(pMain);
108293 
108294   /* A VACUUM cannot change the pagesize of an encrypted database. */
108295 #ifdef SQLITE_HAS_CODEC
108296   if( db->nextPagesize ){
108297     extern void sqlite3CodecGetKey(sqlite3*, int, void**, int*);
108298     int nKey;
108299     char *zKey;
108300     sqlite3CodecGetKey(db, 0, (void**)&zKey, &nKey);
108301     if( nKey ) db->nextPagesize = 0;
108302   }
108303 #endif
108304 
108305   rc = execSql(db, pzErrMsg, "PRAGMA vacuum_db.synchronous=OFF");
108306   if( rc!=SQLITE_OK ) goto end_of_vacuum;
108307 
108308   /* Begin a transaction and take an exclusive lock on the main database
108309   ** file. This is done before the sqlite3BtreeGetPageSize(pMain) call below,
108310   ** to ensure that we do not try to change the page-size on a WAL database.
108311   */
108312   rc = execSql(db, pzErrMsg, "BEGIN;");
108313   if( rc!=SQLITE_OK ) goto end_of_vacuum;
108314   rc = sqlite3BtreeBeginTrans(pMain, 2);
108315   if( rc!=SQLITE_OK ) goto end_of_vacuum;
108316 
108317   /* Do not attempt to change the page size for a WAL database */
108318   if( sqlite3PagerGetJournalMode(sqlite3BtreePager(pMain))
108319                                                ==PAGER_JOURNALMODE_WAL ){
108320     db->nextPagesize = 0;
108321   }
108322 
108323   if( sqlite3BtreeSetPageSize(pTemp, sqlite3BtreeGetPageSize(pMain), nRes, 0)
108324    || (!isMemDb && sqlite3BtreeSetPageSize(pTemp, db->nextPagesize, nRes, 0))
108325    || NEVER(db->mallocFailed)
108326   ){
108327     rc = SQLITE_NOMEM;
108328     goto end_of_vacuum;
108329   }
108330 
108331 #ifndef SQLITE_OMIT_AUTOVACUUM
108332   sqlite3BtreeSetAutoVacuum(pTemp, db->nextAutovac>=0 ? db->nextAutovac :
108333                                            sqlite3BtreeGetAutoVacuum(pMain));
108334 #endif
108335 
108336   /* Query the schema of the main database. Create a mirror schema
108337   ** in the temporary database.
108338   */
108339   rc = execExecSql(db, pzErrMsg,
108340       "SELECT 'CREATE TABLE vacuum_db.' || substr(sql,14) "
108341       "  FROM sqlite_master WHERE type='table' AND name!='sqlite_sequence'"
108342       "   AND coalesce(rootpage,1)>0"
108343   );
108344   if( rc!=SQLITE_OK ) goto end_of_vacuum;
108345   rc = execExecSql(db, pzErrMsg,
108346       "SELECT 'CREATE INDEX vacuum_db.' || substr(sql,14)"
108347       "  FROM sqlite_master WHERE sql LIKE 'CREATE INDEX %' ");
108348   if( rc!=SQLITE_OK ) goto end_of_vacuum;
108349   rc = execExecSql(db, pzErrMsg,
108350       "SELECT 'CREATE UNIQUE INDEX vacuum_db.' || substr(sql,21) "
108351       "  FROM sqlite_master WHERE sql LIKE 'CREATE UNIQUE INDEX %'");
108352   if( rc!=SQLITE_OK ) goto end_of_vacuum;
108353 
108354   /* Loop through the tables in the main database. For each, do
108355   ** an "INSERT INTO vacuum_db.xxx SELECT * FROM main.xxx;" to copy
108356   ** the contents to the temporary database.
108357   */
108358   rc = execExecSql(db, pzErrMsg,
108359       "SELECT 'INSERT INTO vacuum_db.' || quote(name) "
108360       "|| ' SELECT * FROM main.' || quote(name) || ';'"
108361       "FROM main.sqlite_master "
108362       "WHERE type = 'table' AND name!='sqlite_sequence' "
108363       "  AND coalesce(rootpage,1)>0"
108364   );
108365   if( rc!=SQLITE_OK ) goto end_of_vacuum;
108366 
108367   /* Copy over the sequence table
108368   */
108369   rc = execExecSql(db, pzErrMsg,
108370       "SELECT 'DELETE FROM vacuum_db.' || quote(name) || ';' "
108371       "FROM vacuum_db.sqlite_master WHERE name='sqlite_sequence' "
108372   );
108373   if( rc!=SQLITE_OK ) goto end_of_vacuum;
108374   rc = execExecSql(db, pzErrMsg,
108375       "SELECT 'INSERT INTO vacuum_db.' || quote(name) "
108376       "|| ' SELECT * FROM main.' || quote(name) || ';' "
108377       "FROM vacuum_db.sqlite_master WHERE name=='sqlite_sequence';"
108378   );
108379   if( rc!=SQLITE_OK ) goto end_of_vacuum;
108380 
108381 
108382   /* Copy the triggers, views, and virtual tables from the main database
108383   ** over to the temporary database.  None of these objects has any
108384   ** associated storage, so all we have to do is copy their entries
108385   ** from the SQLITE_MASTER table.
108386   */
108387   rc = execSql(db, pzErrMsg,
108388       "INSERT INTO vacuum_db.sqlite_master "
108389       "  SELECT type, name, tbl_name, rootpage, sql"
108390       "    FROM main.sqlite_master"
108391       "   WHERE type='view' OR type='trigger'"
108392       "      OR (type='table' AND rootpage=0)"
108393   );
108394   if( rc ) goto end_of_vacuum;
108395 
108396   /* At this point, there is a write transaction open on both the
108397   ** vacuum database and the main database. Assuming no error occurs,
108398   ** both transactions are closed by this block - the main database
108399   ** transaction by sqlite3BtreeCopyFile() and the other by an explicit
108400   ** call to sqlite3BtreeCommit().
108401   */
108402   {
108403     u32 meta;
108404     int i;
108405 
108406     /* This array determines which meta meta values are preserved in the
108407     ** vacuum.  Even entries are the meta value number and odd entries
108408     ** are an increment to apply to the meta value after the vacuum.
108409     ** The increment is used to increase the schema cookie so that other
108410     ** connections to the same database will know to reread the schema.
108411     */
108412     static const unsigned char aCopy[] = {
108413        BTREE_SCHEMA_VERSION,     1,  /* Add one to the old schema cookie */
108414        BTREE_DEFAULT_CACHE_SIZE, 0,  /* Preserve the default page cache size */
108415        BTREE_TEXT_ENCODING,      0,  /* Preserve the text encoding */
108416        BTREE_USER_VERSION,       0,  /* Preserve the user version */
108417        BTREE_APPLICATION_ID,     0,  /* Preserve the application id */
108418     };
108419 
108420     assert( 1==sqlite3BtreeIsInTrans(pTemp) );
108421     assert( 1==sqlite3BtreeIsInTrans(pMain) );
108422 
108423     /* Copy Btree meta values */
108424     for(i=0; i<ArraySize(aCopy); i+=2){
108425       /* GetMeta() and UpdateMeta() cannot fail in this context because
108426       ** we already have page 1 loaded into cache and marked dirty. */
108427       sqlite3BtreeGetMeta(pMain, aCopy[i], &meta);
108428       rc = sqlite3BtreeUpdateMeta(pTemp, aCopy[i], meta+aCopy[i+1]);
108429       if( NEVER(rc!=SQLITE_OK) ) goto end_of_vacuum;
108430     }
108431 
108432     rc = sqlite3BtreeCopyFile(pMain, pTemp);
108433     if( rc!=SQLITE_OK ) goto end_of_vacuum;
108434     rc = sqlite3BtreeCommit(pTemp);
108435     if( rc!=SQLITE_OK ) goto end_of_vacuum;
108436 #ifndef SQLITE_OMIT_AUTOVACUUM
108437     sqlite3BtreeSetAutoVacuum(pMain, sqlite3BtreeGetAutoVacuum(pTemp));
108438 #endif
108439   }
108440 
108441   assert( rc==SQLITE_OK );
108442   rc = sqlite3BtreeSetPageSize(pMain, sqlite3BtreeGetPageSize(pTemp), nRes,1);
108443 
108444 end_of_vacuum:
108445   /* Restore the original value of db->flags */
108446   db->flags = saved_flags;
108447   db->nChange = saved_nChange;
108448   db->nTotalChange = saved_nTotalChange;
108449   db->xTrace = saved_xTrace;
108450   sqlite3BtreeSetPageSize(pMain, -1, -1, 1);
108451 
108452   /* Currently there is an SQL level transaction open on the vacuum
108453   ** database. No locks are held on any other files (since the main file
108454   ** was committed at the btree level). So it safe to end the transaction
108455   ** by manually setting the autoCommit flag to true and detaching the
108456   ** vacuum database. The vacuum_db journal file is deleted when the pager
108457   ** is closed by the DETACH.
108458   */
108459   db->autoCommit = 1;
108460 
108461   if( pDb ){
108462     sqlite3BtreeClose(pDb->pBt);
108463     pDb->pBt = 0;
108464     pDb->pSchema = 0;
108465   }
108466 
108467   /* This both clears the schemas and reduces the size of the db->aDb[]
108468   ** array. */
108469   sqlite3ResetAllSchemasOfConnection(db);
108470 
108471   return rc;
108472 }
108473 
108474 #endif  /* SQLITE_OMIT_VACUUM && SQLITE_OMIT_ATTACH */
108475 
108476 /************** End of vacuum.c **********************************************/
108477 /************** Begin file vtab.c ********************************************/
108478 /*
108479 ** 2006 June 10
108480 **
108481 ** The author disclaims copyright to this source code.  In place of
108482 ** a legal notice, here is a blessing:
108483 **
108484 **    May you do good and not evil.
108485 **    May you find forgiveness for yourself and forgive others.
108486 **    May you share freely, never taking more than you give.
108487 **
108488 *************************************************************************
108489 ** This file contains code used to help implement virtual tables.
108490 */
108491 #ifndef SQLITE_OMIT_VIRTUALTABLE
108492 
108493 /*
108494 ** Before a virtual table xCreate() or xConnect() method is invoked, the
108495 ** sqlite3.pVtabCtx member variable is set to point to an instance of
108496 ** this struct allocated on the stack. It is used by the implementation of
108497 ** the sqlite3_declare_vtab() and sqlite3_vtab_config() APIs, both of which
108498 ** are invoked only from within xCreate and xConnect methods.
108499 */
108500 struct VtabCtx {
108501   VTable *pVTable;    /* The virtual table being constructed */
108502   Table *pTab;        /* The Table object to which the virtual table belongs */
108503 };
108504 
108505 /*
108506 ** The actual function that does the work of creating a new module.
108507 ** This function implements the sqlite3_create_module() and
108508 ** sqlite3_create_module_v2() interfaces.
108509 */
108510 static int createModule(
108511   sqlite3 *db,                    /* Database in which module is registered */
108512   const char *zName,              /* Name assigned to this module */
108513   const sqlite3_module *pModule,  /* The definition of the module */
108514   void *pAux,                     /* Context pointer for xCreate/xConnect */
108515   void (*xDestroy)(void *)        /* Module destructor function */
108516 ){
108517   int rc = SQLITE_OK;
108518   int nName;
108519 
108520   sqlite3_mutex_enter(db->mutex);
108521   nName = sqlite3Strlen30(zName);
108522   if( sqlite3HashFind(&db->aModule, zName, nName) ){
108523     rc = SQLITE_MISUSE_BKPT;
108524   }else{
108525     Module *pMod;
108526     pMod = (Module *)sqlite3DbMallocRaw(db, sizeof(Module) + nName + 1);
108527     if( pMod ){
108528       Module *pDel;
108529       char *zCopy = (char *)(&pMod[1]);
108530       memcpy(zCopy, zName, nName+1);
108531       pMod->zName = zCopy;
108532       pMod->pModule = pModule;
108533       pMod->pAux = pAux;
108534       pMod->xDestroy = xDestroy;
108535       pDel = (Module *)sqlite3HashInsert(&db->aModule,zCopy,nName,(void*)pMod);
108536       assert( pDel==0 || pDel==pMod );
108537       if( pDel ){
108538         db->mallocFailed = 1;
108539         sqlite3DbFree(db, pDel);
108540       }
108541     }
108542   }
108543   rc = sqlite3ApiExit(db, rc);
108544   if( rc!=SQLITE_OK && xDestroy ) xDestroy(pAux);
108545 
108546   sqlite3_mutex_leave(db->mutex);
108547   return rc;
108548 }
108549 
108550 
108551 /*
108552 ** External API function used to create a new virtual-table module.
108553 */
108554 SQLITE_API int sqlite3_create_module(
108555   sqlite3 *db,                    /* Database in which module is registered */
108556   const char *zName,              /* Name assigned to this module */
108557   const sqlite3_module *pModule,  /* The definition of the module */
108558   void *pAux                      /* Context pointer for xCreate/xConnect */
108559 ){
108560   return createModule(db, zName, pModule, pAux, 0);
108561 }
108562 
108563 /*
108564 ** External API function used to create a new virtual-table module.
108565 */
108566 SQLITE_API int sqlite3_create_module_v2(
108567   sqlite3 *db,                    /* Database in which module is registered */
108568   const char *zName,              /* Name assigned to this module */
108569   const sqlite3_module *pModule,  /* The definition of the module */
108570   void *pAux,                     /* Context pointer for xCreate/xConnect */
108571   void (*xDestroy)(void *)        /* Module destructor function */
108572 ){
108573   return createModule(db, zName, pModule, pAux, xDestroy);
108574 }
108575 
108576 /*
108577 ** Lock the virtual table so that it cannot be disconnected.
108578 ** Locks nest.  Every lock should have a corresponding unlock.
108579 ** If an unlock is omitted, resources leaks will occur.
108580 **
108581 ** If a disconnect is attempted while a virtual table is locked,
108582 ** the disconnect is deferred until all locks have been removed.
108583 */
108584 SQLITE_PRIVATE void sqlite3VtabLock(VTable *pVTab){
108585   pVTab->nRef++;
108586 }
108587 
108588 
108589 /*
108590 ** pTab is a pointer to a Table structure representing a virtual-table.
108591 ** Return a pointer to the VTable object used by connection db to access
108592 ** this virtual-table, if one has been created, or NULL otherwise.
108593 */
108594 SQLITE_PRIVATE VTable *sqlite3GetVTable(sqlite3 *db, Table *pTab){
108595   VTable *pVtab;
108596   assert( IsVirtual(pTab) );
108597   for(pVtab=pTab->pVTable; pVtab && pVtab->db!=db; pVtab=pVtab->pNext);
108598   return pVtab;
108599 }
108600 
108601 /*
108602 ** Decrement the ref-count on a virtual table object. When the ref-count
108603 ** reaches zero, call the xDisconnect() method to delete the object.
108604 */
108605 SQLITE_PRIVATE void sqlite3VtabUnlock(VTable *pVTab){
108606   sqlite3 *db = pVTab->db;
108607 
108608   assert( db );
108609   assert( pVTab->nRef>0 );
108610   assert( db->magic==SQLITE_MAGIC_OPEN || db->magic==SQLITE_MAGIC_ZOMBIE );
108611 
108612   pVTab->nRef--;
108613   if( pVTab->nRef==0 ){
108614     sqlite3_vtab *p = pVTab->pVtab;
108615     if( p ){
108616       p->pModule->xDisconnect(p);
108617     }
108618     sqlite3DbFree(db, pVTab);
108619   }
108620 }
108621 
108622 /*
108623 ** Table p is a virtual table. This function moves all elements in the
108624 ** p->pVTable list to the sqlite3.pDisconnect lists of their associated
108625 ** database connections to be disconnected at the next opportunity.
108626 ** Except, if argument db is not NULL, then the entry associated with
108627 ** connection db is left in the p->pVTable list.
108628 */
108629 static VTable *vtabDisconnectAll(sqlite3 *db, Table *p){
108630   VTable *pRet = 0;
108631   VTable *pVTable = p->pVTable;
108632   p->pVTable = 0;
108633 
108634   /* Assert that the mutex (if any) associated with the BtShared database
108635   ** that contains table p is held by the caller. See header comments
108636   ** above function sqlite3VtabUnlockList() for an explanation of why
108637   ** this makes it safe to access the sqlite3.pDisconnect list of any
108638   ** database connection that may have an entry in the p->pVTable list.
108639   */
108640   assert( db==0 || sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
108641 
108642   while( pVTable ){
108643     sqlite3 *db2 = pVTable->db;
108644     VTable *pNext = pVTable->pNext;
108645     assert( db2 );
108646     if( db2==db ){
108647       pRet = pVTable;
108648       p->pVTable = pRet;
108649       pRet->pNext = 0;
108650     }else{
108651       pVTable->pNext = db2->pDisconnect;
108652       db2->pDisconnect = pVTable;
108653     }
108654     pVTable = pNext;
108655   }
108656 
108657   assert( !db || pRet );
108658   return pRet;
108659 }
108660 
108661 /*
108662 ** Table *p is a virtual table. This function removes the VTable object
108663 ** for table *p associated with database connection db from the linked
108664 ** list in p->pVTab. It also decrements the VTable ref count. This is
108665 ** used when closing database connection db to free all of its VTable
108666 ** objects without disturbing the rest of the Schema object (which may
108667 ** be being used by other shared-cache connections).
108668 */
108669 SQLITE_PRIVATE void sqlite3VtabDisconnect(sqlite3 *db, Table *p){
108670   VTable **ppVTab;
108671 
108672   assert( IsVirtual(p) );
108673   assert( sqlite3BtreeHoldsAllMutexes(db) );
108674   assert( sqlite3_mutex_held(db->mutex) );
108675 
108676   for(ppVTab=&p->pVTable; *ppVTab; ppVTab=&(*ppVTab)->pNext){
108677     if( (*ppVTab)->db==db  ){
108678       VTable *pVTab = *ppVTab;
108679       *ppVTab = pVTab->pNext;
108680       sqlite3VtabUnlock(pVTab);
108681       break;
108682     }
108683   }
108684 }
108685 
108686 
108687 /*
108688 ** Disconnect all the virtual table objects in the sqlite3.pDisconnect list.
108689 **
108690 ** This function may only be called when the mutexes associated with all
108691 ** shared b-tree databases opened using connection db are held by the
108692 ** caller. This is done to protect the sqlite3.pDisconnect list. The
108693 ** sqlite3.pDisconnect list is accessed only as follows:
108694 **
108695 **   1) By this function. In this case, all BtShared mutexes and the mutex
108696 **      associated with the database handle itself must be held.
108697 **
108698 **   2) By function vtabDisconnectAll(), when it adds a VTable entry to
108699 **      the sqlite3.pDisconnect list. In this case either the BtShared mutex
108700 **      associated with the database the virtual table is stored in is held
108701 **      or, if the virtual table is stored in a non-sharable database, then
108702 **      the database handle mutex is held.
108703 **
108704 ** As a result, a sqlite3.pDisconnect cannot be accessed simultaneously
108705 ** by multiple threads. It is thread-safe.
108706 */
108707 SQLITE_PRIVATE void sqlite3VtabUnlockList(sqlite3 *db){
108708   VTable *p = db->pDisconnect;
108709   db->pDisconnect = 0;
108710 
108711   assert( sqlite3BtreeHoldsAllMutexes(db) );
108712   assert( sqlite3_mutex_held(db->mutex) );
108713 
108714   if( p ){
108715     sqlite3ExpirePreparedStatements(db);
108716     do {
108717       VTable *pNext = p->pNext;
108718       sqlite3VtabUnlock(p);
108719       p = pNext;
108720     }while( p );
108721   }
108722 }
108723 
108724 /*
108725 ** Clear any and all virtual-table information from the Table record.
108726 ** This routine is called, for example, just before deleting the Table
108727 ** record.
108728 **
108729 ** Since it is a virtual-table, the Table structure contains a pointer
108730 ** to the head of a linked list of VTable structures. Each VTable
108731 ** structure is associated with a single sqlite3* user of the schema.
108732 ** The reference count of the VTable structure associated with database
108733 ** connection db is decremented immediately (which may lead to the
108734 ** structure being xDisconnected and free). Any other VTable structures
108735 ** in the list are moved to the sqlite3.pDisconnect list of the associated
108736 ** database connection.
108737 */
108738 SQLITE_PRIVATE void sqlite3VtabClear(sqlite3 *db, Table *p){
108739   if( !db || db->pnBytesFreed==0 ) vtabDisconnectAll(0, p);
108740   if( p->azModuleArg ){
108741     int i;
108742     for(i=0; i<p->nModuleArg; i++){
108743       if( i!=1 ) sqlite3DbFree(db, p->azModuleArg[i]);
108744     }
108745     sqlite3DbFree(db, p->azModuleArg);
108746   }
108747 }
108748 
108749 /*
108750 ** Add a new module argument to pTable->azModuleArg[].
108751 ** The string is not copied - the pointer is stored.  The
108752 ** string will be freed automatically when the table is
108753 ** deleted.
108754 */
108755 static void addModuleArgument(sqlite3 *db, Table *pTable, char *zArg){
108756   int i = pTable->nModuleArg++;
108757   int nBytes = sizeof(char *)*(1+pTable->nModuleArg);
108758   char **azModuleArg;
108759   azModuleArg = sqlite3DbRealloc(db, pTable->azModuleArg, nBytes);
108760   if( azModuleArg==0 ){
108761     int j;
108762     for(j=0; j<i; j++){
108763       sqlite3DbFree(db, pTable->azModuleArg[j]);
108764     }
108765     sqlite3DbFree(db, zArg);
108766     sqlite3DbFree(db, pTable->azModuleArg);
108767     pTable->nModuleArg = 0;
108768   }else{
108769     azModuleArg[i] = zArg;
108770     azModuleArg[i+1] = 0;
108771   }
108772   pTable->azModuleArg = azModuleArg;
108773 }
108774 
108775 /*
108776 ** The parser calls this routine when it first sees a CREATE VIRTUAL TABLE
108777 ** statement.  The module name has been parsed, but the optional list
108778 ** of parameters that follow the module name are still pending.
108779 */
108780 SQLITE_PRIVATE void sqlite3VtabBeginParse(
108781   Parse *pParse,        /* Parsing context */
108782   Token *pName1,        /* Name of new table, or database name */
108783   Token *pName2,        /* Name of new table or NULL */
108784   Token *pModuleName,   /* Name of the module for the virtual table */
108785   int ifNotExists       /* No error if the table already exists */
108786 ){
108787   int iDb;              /* The database the table is being created in */
108788   Table *pTable;        /* The new virtual table */
108789   sqlite3 *db;          /* Database connection */
108790 
108791   sqlite3StartTable(pParse, pName1, pName2, 0, 0, 1, ifNotExists);
108792   pTable = pParse->pNewTable;
108793   if( pTable==0 ) return;
108794   assert( 0==pTable->pIndex );
108795 
108796   db = pParse->db;
108797   iDb = sqlite3SchemaToIndex(db, pTable->pSchema);
108798   assert( iDb>=0 );
108799 
108800   pTable->tabFlags |= TF_Virtual;
108801   pTable->nModuleArg = 0;
108802   addModuleArgument(db, pTable, sqlite3NameFromToken(db, pModuleName));
108803   addModuleArgument(db, pTable, 0);
108804   addModuleArgument(db, pTable, sqlite3DbStrDup(db, pTable->zName));
108805   pParse->sNameToken.n = (int)(&pModuleName->z[pModuleName->n] - pName1->z);
108806 
108807 #ifndef SQLITE_OMIT_AUTHORIZATION
108808   /* Creating a virtual table invokes the authorization callback twice.
108809   ** The first invocation, to obtain permission to INSERT a row into the
108810   ** sqlite_master table, has already been made by sqlite3StartTable().
108811   ** The second call, to obtain permission to create the table, is made now.
108812   */
108813   if( pTable->azModuleArg ){
108814     sqlite3AuthCheck(pParse, SQLITE_CREATE_VTABLE, pTable->zName,
108815             pTable->azModuleArg[0], pParse->db->aDb[iDb].zName);
108816   }
108817 #endif
108818 }
108819 
108820 /*
108821 ** This routine takes the module argument that has been accumulating
108822 ** in pParse->zArg[] and appends it to the list of arguments on the
108823 ** virtual table currently under construction in pParse->pTable.
108824 */
108825 static void addArgumentToVtab(Parse *pParse){
108826   if( pParse->sArg.z && pParse->pNewTable ){
108827     const char *z = (const char*)pParse->sArg.z;
108828     int n = pParse->sArg.n;
108829     sqlite3 *db = pParse->db;
108830     addModuleArgument(db, pParse->pNewTable, sqlite3DbStrNDup(db, z, n));
108831   }
108832 }
108833 
108834 /*
108835 ** The parser calls this routine after the CREATE VIRTUAL TABLE statement
108836 ** has been completely parsed.
108837 */
108838 SQLITE_PRIVATE void sqlite3VtabFinishParse(Parse *pParse, Token *pEnd){
108839   Table *pTab = pParse->pNewTable;  /* The table being constructed */
108840   sqlite3 *db = pParse->db;         /* The database connection */
108841 
108842   if( pTab==0 ) return;
108843   addArgumentToVtab(pParse);
108844   pParse->sArg.z = 0;
108845   if( pTab->nModuleArg<1 ) return;
108846 
108847   /* If the CREATE VIRTUAL TABLE statement is being entered for the
108848   ** first time (in other words if the virtual table is actually being
108849   ** created now instead of just being read out of sqlite_master) then
108850   ** do additional initialization work and store the statement text
108851   ** in the sqlite_master table.
108852   */
108853   if( !db->init.busy ){
108854     char *zStmt;
108855     char *zWhere;
108856     int iDb;
108857     Vdbe *v;
108858 
108859     /* Compute the complete text of the CREATE VIRTUAL TABLE statement */
108860     if( pEnd ){
108861       pParse->sNameToken.n = (int)(pEnd->z - pParse->sNameToken.z) + pEnd->n;
108862     }
108863     zStmt = sqlite3MPrintf(db, "CREATE VIRTUAL TABLE %T", &pParse->sNameToken);
108864 
108865     /* A slot for the record has already been allocated in the
108866     ** SQLITE_MASTER table.  We just need to update that slot with all
108867     ** the information we've collected.
108868     **
108869     ** The VM register number pParse->regRowid holds the rowid of an
108870     ** entry in the sqlite_master table tht was created for this vtab
108871     ** by sqlite3StartTable().
108872     */
108873     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
108874     sqlite3NestedParse(pParse,
108875       "UPDATE %Q.%s "
108876          "SET type='table', name=%Q, tbl_name=%Q, rootpage=0, sql=%Q "
108877        "WHERE rowid=#%d",
108878       db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
108879       pTab->zName,
108880       pTab->zName,
108881       zStmt,
108882       pParse->regRowid
108883     );
108884     sqlite3DbFree(db, zStmt);
108885     v = sqlite3GetVdbe(pParse);
108886     sqlite3ChangeCookie(pParse, iDb);
108887 
108888     sqlite3VdbeAddOp2(v, OP_Expire, 0, 0);
108889     zWhere = sqlite3MPrintf(db, "name='%q' AND type='table'", pTab->zName);
108890     sqlite3VdbeAddParseSchemaOp(v, iDb, zWhere);
108891     sqlite3VdbeAddOp4(v, OP_VCreate, iDb, 0, 0,
108892                          pTab->zName, sqlite3Strlen30(pTab->zName) + 1);
108893   }
108894 
108895   /* If we are rereading the sqlite_master table create the in-memory
108896   ** record of the table. The xConnect() method is not called until
108897   ** the first time the virtual table is used in an SQL statement. This
108898   ** allows a schema that contains virtual tables to be loaded before
108899   ** the required virtual table implementations are registered.  */
108900   else {
108901     Table *pOld;
108902     Schema *pSchema = pTab->pSchema;
108903     const char *zName = pTab->zName;
108904     int nName = sqlite3Strlen30(zName);
108905     assert( sqlite3SchemaMutexHeld(db, 0, pSchema) );
108906     pOld = sqlite3HashInsert(&pSchema->tblHash, zName, nName, pTab);
108907     if( pOld ){
108908       db->mallocFailed = 1;
108909       assert( pTab==pOld );  /* Malloc must have failed inside HashInsert() */
108910       return;
108911     }
108912     pParse->pNewTable = 0;
108913   }
108914 }
108915 
108916 /*
108917 ** The parser calls this routine when it sees the first token
108918 ** of an argument to the module name in a CREATE VIRTUAL TABLE statement.
108919 */
108920 SQLITE_PRIVATE void sqlite3VtabArgInit(Parse *pParse){
108921   addArgumentToVtab(pParse);
108922   pParse->sArg.z = 0;
108923   pParse->sArg.n = 0;
108924 }
108925 
108926 /*
108927 ** The parser calls this routine for each token after the first token
108928 ** in an argument to the module name in a CREATE VIRTUAL TABLE statement.
108929 */
108930 SQLITE_PRIVATE void sqlite3VtabArgExtend(Parse *pParse, Token *p){
108931   Token *pArg = &pParse->sArg;
108932   if( pArg->z==0 ){
108933     pArg->z = p->z;
108934     pArg->n = p->n;
108935   }else{
108936     assert(pArg->z < p->z);
108937     pArg->n = (int)(&p->z[p->n] - pArg->z);
108938   }
108939 }
108940 
108941 /*
108942 ** Invoke a virtual table constructor (either xCreate or xConnect). The
108943 ** pointer to the function to invoke is passed as the fourth parameter
108944 ** to this procedure.
108945 */
108946 static int vtabCallConstructor(
108947   sqlite3 *db,
108948   Table *pTab,
108949   Module *pMod,
108950   int (*xConstruct)(sqlite3*,void*,int,const char*const*,sqlite3_vtab**,char**),
108951   char **pzErr
108952 ){
108953   VtabCtx sCtx, *pPriorCtx;
108954   VTable *pVTable;
108955   int rc;
108956   const char *const*azArg = (const char *const*)pTab->azModuleArg;
108957   int nArg = pTab->nModuleArg;
108958   char *zErr = 0;
108959   char *zModuleName = sqlite3MPrintf(db, "%s", pTab->zName);
108960   int iDb;
108961 
108962   if( !zModuleName ){
108963     return SQLITE_NOMEM;
108964   }
108965 
108966   pVTable = sqlite3DbMallocZero(db, sizeof(VTable));
108967   if( !pVTable ){
108968     sqlite3DbFree(db, zModuleName);
108969     return SQLITE_NOMEM;
108970   }
108971   pVTable->db = db;
108972   pVTable->pMod = pMod;
108973 
108974   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
108975   pTab->azModuleArg[1] = db->aDb[iDb].zName;
108976 
108977   /* Invoke the virtual table constructor */
108978   assert( &db->pVtabCtx );
108979   assert( xConstruct );
108980   sCtx.pTab = pTab;
108981   sCtx.pVTable = pVTable;
108982   pPriorCtx = db->pVtabCtx;
108983   db->pVtabCtx = &sCtx;
108984   rc = xConstruct(db, pMod->pAux, nArg, azArg, &pVTable->pVtab, &zErr);
108985   db->pVtabCtx = pPriorCtx;
108986   if( rc==SQLITE_NOMEM ) db->mallocFailed = 1;
108987 
108988   if( SQLITE_OK!=rc ){
108989     if( zErr==0 ){
108990       *pzErr = sqlite3MPrintf(db, "vtable constructor failed: %s", zModuleName);
108991     }else {
108992       *pzErr = sqlite3MPrintf(db, "%s", zErr);
108993       sqlite3_free(zErr);
108994     }
108995     sqlite3DbFree(db, pVTable);
108996   }else if( ALWAYS(pVTable->pVtab) ){
108997     /* Justification of ALWAYS():  A correct vtab constructor must allocate
108998     ** the sqlite3_vtab object if successful.  */
108999     pVTable->pVtab->pModule = pMod->pModule;
109000     pVTable->nRef = 1;
109001     if( sCtx.pTab ){
109002       const char *zFormat = "vtable constructor did not declare schema: %s";
109003       *pzErr = sqlite3MPrintf(db, zFormat, pTab->zName);
109004       sqlite3VtabUnlock(pVTable);
109005       rc = SQLITE_ERROR;
109006     }else{
109007       int iCol;
109008       /* If everything went according to plan, link the new VTable structure
109009       ** into the linked list headed by pTab->pVTable. Then loop through the
109010       ** columns of the table to see if any of them contain the token "hidden".
109011       ** If so, set the Column COLFLAG_HIDDEN flag and remove the token from
109012       ** the type string.  */
109013       pVTable->pNext = pTab->pVTable;
109014       pTab->pVTable = pVTable;
109015 
109016       for(iCol=0; iCol<pTab->nCol; iCol++){
109017         char *zType = pTab->aCol[iCol].zType;
109018         int nType;
109019         int i = 0;
109020         if( !zType ) continue;
109021         nType = sqlite3Strlen30(zType);
109022         if( sqlite3StrNICmp("hidden", zType, 6)||(zType[6] && zType[6]!=' ') ){
109023           for(i=0; i<nType; i++){
109024             if( (0==sqlite3StrNICmp(" hidden", &zType[i], 7))
109025              && (zType[i+7]=='\0' || zType[i+7]==' ')
109026             ){
109027               i++;
109028               break;
109029             }
109030           }
109031         }
109032         if( i<nType ){
109033           int j;
109034           int nDel = 6 + (zType[i+6] ? 1 : 0);
109035           for(j=i; (j+nDel)<=nType; j++){
109036             zType[j] = zType[j+nDel];
109037           }
109038           if( zType[i]=='\0' && i>0 ){
109039             assert(zType[i-1]==' ');
109040             zType[i-1] = '\0';
109041           }
109042           pTab->aCol[iCol].colFlags |= COLFLAG_HIDDEN;
109043         }
109044       }
109045     }
109046   }
109047 
109048   sqlite3DbFree(db, zModuleName);
109049   return rc;
109050 }
109051 
109052 /*
109053 ** This function is invoked by the parser to call the xConnect() method
109054 ** of the virtual table pTab. If an error occurs, an error code is returned
109055 ** and an error left in pParse.
109056 **
109057 ** This call is a no-op if table pTab is not a virtual table.
109058 */
109059 SQLITE_PRIVATE int sqlite3VtabCallConnect(Parse *pParse, Table *pTab){
109060   sqlite3 *db = pParse->db;
109061   const char *zMod;
109062   Module *pMod;
109063   int rc;
109064 
109065   assert( pTab );
109066   if( (pTab->tabFlags & TF_Virtual)==0 || sqlite3GetVTable(db, pTab) ){
109067     return SQLITE_OK;
109068   }
109069 
109070   /* Locate the required virtual table module */
109071   zMod = pTab->azModuleArg[0];
109072   pMod = (Module*)sqlite3HashFind(&db->aModule, zMod, sqlite3Strlen30(zMod));
109073 
109074   if( !pMod ){
109075     const char *zModule = pTab->azModuleArg[0];
109076     sqlite3ErrorMsg(pParse, "no such module: %s", zModule);
109077     rc = SQLITE_ERROR;
109078   }else{
109079     char *zErr = 0;
109080     rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xConnect, &zErr);
109081     if( rc!=SQLITE_OK ){
109082       sqlite3ErrorMsg(pParse, "%s", zErr);
109083     }
109084     sqlite3DbFree(db, zErr);
109085   }
109086 
109087   return rc;
109088 }
109089 /*
109090 ** Grow the db->aVTrans[] array so that there is room for at least one
109091 ** more v-table. Return SQLITE_NOMEM if a malloc fails, or SQLITE_OK otherwise.
109092 */
109093 static int growVTrans(sqlite3 *db){
109094   const int ARRAY_INCR = 5;
109095 
109096   /* Grow the sqlite3.aVTrans array if required */
109097   if( (db->nVTrans%ARRAY_INCR)==0 ){
109098     VTable **aVTrans;
109099     int nBytes = sizeof(sqlite3_vtab *) * (db->nVTrans + ARRAY_INCR);
109100     aVTrans = sqlite3DbRealloc(db, (void *)db->aVTrans, nBytes);
109101     if( !aVTrans ){
109102       return SQLITE_NOMEM;
109103     }
109104     memset(&aVTrans[db->nVTrans], 0, sizeof(sqlite3_vtab *)*ARRAY_INCR);
109105     db->aVTrans = aVTrans;
109106   }
109107 
109108   return SQLITE_OK;
109109 }
109110 
109111 /*
109112 ** Add the virtual table pVTab to the array sqlite3.aVTrans[]. Space should
109113 ** have already been reserved using growVTrans().
109114 */
109115 static void addToVTrans(sqlite3 *db, VTable *pVTab){
109116   /* Add pVtab to the end of sqlite3.aVTrans */
109117   db->aVTrans[db->nVTrans++] = pVTab;
109118   sqlite3VtabLock(pVTab);
109119 }
109120 
109121 /*
109122 ** This function is invoked by the vdbe to call the xCreate method
109123 ** of the virtual table named zTab in database iDb.
109124 **
109125 ** If an error occurs, *pzErr is set to point an an English language
109126 ** description of the error and an SQLITE_XXX error code is returned.
109127 ** In this case the caller must call sqlite3DbFree(db, ) on *pzErr.
109128 */
109129 SQLITE_PRIVATE int sqlite3VtabCallCreate(sqlite3 *db, int iDb, const char *zTab, char **pzErr){
109130   int rc = SQLITE_OK;
109131   Table *pTab;
109132   Module *pMod;
109133   const char *zMod;
109134 
109135   pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName);
109136   assert( pTab && (pTab->tabFlags & TF_Virtual)!=0 && !pTab->pVTable );
109137 
109138   /* Locate the required virtual table module */
109139   zMod = pTab->azModuleArg[0];
109140   pMod = (Module*)sqlite3HashFind(&db->aModule, zMod, sqlite3Strlen30(zMod));
109141 
109142   /* If the module has been registered and includes a Create method,
109143   ** invoke it now. If the module has not been registered, return an
109144   ** error. Otherwise, do nothing.
109145   */
109146   if( !pMod ){
109147     *pzErr = sqlite3MPrintf(db, "no such module: %s", zMod);
109148     rc = SQLITE_ERROR;
109149   }else{
109150     rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xCreate, pzErr);
109151   }
109152 
109153   /* Justification of ALWAYS():  The xConstructor method is required to
109154   ** create a valid sqlite3_vtab if it returns SQLITE_OK. */
109155   if( rc==SQLITE_OK && ALWAYS(sqlite3GetVTable(db, pTab)) ){
109156     rc = growVTrans(db);
109157     if( rc==SQLITE_OK ){
109158       addToVTrans(db, sqlite3GetVTable(db, pTab));
109159     }
109160   }
109161 
109162   return rc;
109163 }
109164 
109165 /*
109166 ** This function is used to set the schema of a virtual table.  It is only
109167 ** valid to call this function from within the xCreate() or xConnect() of a
109168 ** virtual table module.
109169 */
109170 SQLITE_API int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){
109171   Parse *pParse;
109172 
109173   int rc = SQLITE_OK;
109174   Table *pTab;
109175   char *zErr = 0;
109176 
109177   sqlite3_mutex_enter(db->mutex);
109178   if( !db->pVtabCtx || !(pTab = db->pVtabCtx->pTab) ){
109179     sqlite3Error(db, SQLITE_MISUSE, 0);
109180     sqlite3_mutex_leave(db->mutex);
109181     return SQLITE_MISUSE_BKPT;
109182   }
109183   assert( (pTab->tabFlags & TF_Virtual)!=0 );
109184 
109185   pParse = sqlite3StackAllocZero(db, sizeof(*pParse));
109186   if( pParse==0 ){
109187     rc = SQLITE_NOMEM;
109188   }else{
109189     pParse->declareVtab = 1;
109190     pParse->db = db;
109191     pParse->nQueryLoop = 1;
109192 
109193     if( SQLITE_OK==sqlite3RunParser(pParse, zCreateTable, &zErr)
109194      && pParse->pNewTable
109195      && !db->mallocFailed
109196      && !pParse->pNewTable->pSelect
109197      && (pParse->pNewTable->tabFlags & TF_Virtual)==0
109198     ){
109199       if( !pTab->aCol ){
109200         pTab->aCol = pParse->pNewTable->aCol;
109201         pTab->nCol = pParse->pNewTable->nCol;
109202         pParse->pNewTable->nCol = 0;
109203         pParse->pNewTable->aCol = 0;
109204       }
109205       db->pVtabCtx->pTab = 0;
109206     }else{
109207       sqlite3Error(db, SQLITE_ERROR, (zErr ? "%s" : 0), zErr);
109208       sqlite3DbFree(db, zErr);
109209       rc = SQLITE_ERROR;
109210     }
109211     pParse->declareVtab = 0;
109212 
109213     if( pParse->pVdbe ){
109214       sqlite3VdbeFinalize(pParse->pVdbe);
109215     }
109216     sqlite3DeleteTable(db, pParse->pNewTable);
109217     sqlite3ParserReset(pParse);
109218     sqlite3StackFree(db, pParse);
109219   }
109220 
109221   assert( (rc&0xff)==rc );
109222   rc = sqlite3ApiExit(db, rc);
109223   sqlite3_mutex_leave(db->mutex);
109224   return rc;
109225 }
109226 
109227 /*
109228 ** This function is invoked by the vdbe to call the xDestroy method
109229 ** of the virtual table named zTab in database iDb. This occurs
109230 ** when a DROP TABLE is mentioned.
109231 **
109232 ** This call is a no-op if zTab is not a virtual table.
109233 */
109234 SQLITE_PRIVATE int sqlite3VtabCallDestroy(sqlite3 *db, int iDb, const char *zTab){
109235   int rc = SQLITE_OK;
109236   Table *pTab;
109237 
109238   pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName);
109239   if( ALWAYS(pTab!=0 && pTab->pVTable!=0) ){
109240     VTable *p = vtabDisconnectAll(db, pTab);
109241 
109242     assert( rc==SQLITE_OK );
109243     rc = p->pMod->pModule->xDestroy(p->pVtab);
109244 
109245     /* Remove the sqlite3_vtab* from the aVTrans[] array, if applicable */
109246     if( rc==SQLITE_OK ){
109247       assert( pTab->pVTable==p && p->pNext==0 );
109248       p->pVtab = 0;
109249       pTab->pVTable = 0;
109250       sqlite3VtabUnlock(p);
109251     }
109252   }
109253 
109254   return rc;
109255 }
109256 
109257 /*
109258 ** This function invokes either the xRollback or xCommit method
109259 ** of each of the virtual tables in the sqlite3.aVTrans array. The method
109260 ** called is identified by the second argument, "offset", which is
109261 ** the offset of the method to call in the sqlite3_module structure.
109262 **
109263 ** The array is cleared after invoking the callbacks.
109264 */
109265 static void callFinaliser(sqlite3 *db, int offset){
109266   int i;
109267   if( db->aVTrans ){
109268     for(i=0; i<db->nVTrans; i++){
109269       VTable *pVTab = db->aVTrans[i];
109270       sqlite3_vtab *p = pVTab->pVtab;
109271       if( p ){
109272         int (*x)(sqlite3_vtab *);
109273         x = *(int (**)(sqlite3_vtab *))((char *)p->pModule + offset);
109274         if( x ) x(p);
109275       }
109276       pVTab->iSavepoint = 0;
109277       sqlite3VtabUnlock(pVTab);
109278     }
109279     sqlite3DbFree(db, db->aVTrans);
109280     db->nVTrans = 0;
109281     db->aVTrans = 0;
109282   }
109283 }
109284 
109285 /*
109286 ** Invoke the xSync method of all virtual tables in the sqlite3.aVTrans
109287 ** array. Return the error code for the first error that occurs, or
109288 ** SQLITE_OK if all xSync operations are successful.
109289 **
109290 ** If an error message is available, leave it in p->zErrMsg.
109291 */
109292 SQLITE_PRIVATE int sqlite3VtabSync(sqlite3 *db, Vdbe *p){
109293   int i;
109294   int rc = SQLITE_OK;
109295   VTable **aVTrans = db->aVTrans;
109296 
109297   db->aVTrans = 0;
109298   for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){
109299     int (*x)(sqlite3_vtab *);
109300     sqlite3_vtab *pVtab = aVTrans[i]->pVtab;
109301     if( pVtab && (x = pVtab->pModule->xSync)!=0 ){
109302       rc = x(pVtab);
109303       sqlite3VtabImportErrmsg(p, pVtab);
109304     }
109305   }
109306   db->aVTrans = aVTrans;
109307   return rc;
109308 }
109309 
109310 /*
109311 ** Invoke the xRollback method of all virtual tables in the
109312 ** sqlite3.aVTrans array. Then clear the array itself.
109313 */
109314 SQLITE_PRIVATE int sqlite3VtabRollback(sqlite3 *db){
109315   callFinaliser(db, offsetof(sqlite3_module,xRollback));
109316   return SQLITE_OK;
109317 }
109318 
109319 /*
109320 ** Invoke the xCommit method of all virtual tables in the
109321 ** sqlite3.aVTrans array. Then clear the array itself.
109322 */
109323 SQLITE_PRIVATE int sqlite3VtabCommit(sqlite3 *db){
109324   callFinaliser(db, offsetof(sqlite3_module,xCommit));
109325   return SQLITE_OK;
109326 }
109327 
109328 /*
109329 ** If the virtual table pVtab supports the transaction interface
109330 ** (xBegin/xRollback/xCommit and optionally xSync) and a transaction is
109331 ** not currently open, invoke the xBegin method now.
109332 **
109333 ** If the xBegin call is successful, place the sqlite3_vtab pointer
109334 ** in the sqlite3.aVTrans array.
109335 */
109336 SQLITE_PRIVATE int sqlite3VtabBegin(sqlite3 *db, VTable *pVTab){
109337   int rc = SQLITE_OK;
109338   const sqlite3_module *pModule;
109339 
109340   /* Special case: If db->aVTrans is NULL and db->nVTrans is greater
109341   ** than zero, then this function is being called from within a
109342   ** virtual module xSync() callback. It is illegal to write to
109343   ** virtual module tables in this case, so return SQLITE_LOCKED.
109344   */
109345   if( sqlite3VtabInSync(db) ){
109346     return SQLITE_LOCKED;
109347   }
109348   if( !pVTab ){
109349     return SQLITE_OK;
109350   }
109351   pModule = pVTab->pVtab->pModule;
109352 
109353   if( pModule->xBegin ){
109354     int i;
109355 
109356     /* If pVtab is already in the aVTrans array, return early */
109357     for(i=0; i<db->nVTrans; i++){
109358       if( db->aVTrans[i]==pVTab ){
109359         return SQLITE_OK;
109360       }
109361     }
109362 
109363     /* Invoke the xBegin method. If successful, add the vtab to the
109364     ** sqlite3.aVTrans[] array. */
109365     rc = growVTrans(db);
109366     if( rc==SQLITE_OK ){
109367       rc = pModule->xBegin(pVTab->pVtab);
109368       if( rc==SQLITE_OK ){
109369         addToVTrans(db, pVTab);
109370       }
109371     }
109372   }
109373   return rc;
109374 }
109375 
109376 /*
109377 ** Invoke either the xSavepoint, xRollbackTo or xRelease method of all
109378 ** virtual tables that currently have an open transaction. Pass iSavepoint
109379 ** as the second argument to the virtual table method invoked.
109380 **
109381 ** If op is SAVEPOINT_BEGIN, the xSavepoint method is invoked. If it is
109382 ** SAVEPOINT_ROLLBACK, the xRollbackTo method. Otherwise, if op is
109383 ** SAVEPOINT_RELEASE, then the xRelease method of each virtual table with
109384 ** an open transaction is invoked.
109385 **
109386 ** If any virtual table method returns an error code other than SQLITE_OK,
109387 ** processing is abandoned and the error returned to the caller of this
109388 ** function immediately. If all calls to virtual table methods are successful,
109389 ** SQLITE_OK is returned.
109390 */
109391 SQLITE_PRIVATE int sqlite3VtabSavepoint(sqlite3 *db, int op, int iSavepoint){
109392   int rc = SQLITE_OK;
109393 
109394   assert( op==SAVEPOINT_RELEASE||op==SAVEPOINT_ROLLBACK||op==SAVEPOINT_BEGIN );
109395   assert( iSavepoint>=0 );
109396   if( db->aVTrans ){
109397     int i;
109398     for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){
109399       VTable *pVTab = db->aVTrans[i];
109400       const sqlite3_module *pMod = pVTab->pMod->pModule;
109401       if( pVTab->pVtab && pMod->iVersion>=2 ){
109402         int (*xMethod)(sqlite3_vtab *, int);
109403         switch( op ){
109404           case SAVEPOINT_BEGIN:
109405             xMethod = pMod->xSavepoint;
109406             pVTab->iSavepoint = iSavepoint+1;
109407             break;
109408           case SAVEPOINT_ROLLBACK:
109409             xMethod = pMod->xRollbackTo;
109410             break;
109411           default:
109412             xMethod = pMod->xRelease;
109413             break;
109414         }
109415         if( xMethod && pVTab->iSavepoint>iSavepoint ){
109416           rc = xMethod(pVTab->pVtab, iSavepoint);
109417         }
109418       }
109419     }
109420   }
109421   return rc;
109422 }
109423 
109424 /*
109425 ** The first parameter (pDef) is a function implementation.  The
109426 ** second parameter (pExpr) is the first argument to this function.
109427 ** If pExpr is a column in a virtual table, then let the virtual
109428 ** table implementation have an opportunity to overload the function.
109429 **
109430 ** This routine is used to allow virtual table implementations to
109431 ** overload MATCH, LIKE, GLOB, and REGEXP operators.
109432 **
109433 ** Return either the pDef argument (indicating no change) or a
109434 ** new FuncDef structure that is marked as ephemeral using the
109435 ** SQLITE_FUNC_EPHEM flag.
109436 */
109437 SQLITE_PRIVATE FuncDef *sqlite3VtabOverloadFunction(
109438   sqlite3 *db,    /* Database connection for reporting malloc problems */
109439   FuncDef *pDef,  /* Function to possibly overload */
109440   int nArg,       /* Number of arguments to the function */
109441   Expr *pExpr     /* First argument to the function */
109442 ){
109443   Table *pTab;
109444   sqlite3_vtab *pVtab;
109445   sqlite3_module *pMod;
109446   void (*xFunc)(sqlite3_context*,int,sqlite3_value**) = 0;
109447   void *pArg = 0;
109448   FuncDef *pNew;
109449   int rc = 0;
109450   char *zLowerName;
109451   unsigned char *z;
109452 
109453 
109454   /* Check to see the left operand is a column in a virtual table */
109455   if( NEVER(pExpr==0) ) return pDef;
109456   if( pExpr->op!=TK_COLUMN ) return pDef;
109457   pTab = pExpr->pTab;
109458   if( NEVER(pTab==0) ) return pDef;
109459   if( (pTab->tabFlags & TF_Virtual)==0 ) return pDef;
109460   pVtab = sqlite3GetVTable(db, pTab)->pVtab;
109461   assert( pVtab!=0 );
109462   assert( pVtab->pModule!=0 );
109463   pMod = (sqlite3_module *)pVtab->pModule;
109464   if( pMod->xFindFunction==0 ) return pDef;
109465 
109466   /* Call the xFindFunction method on the virtual table implementation
109467   ** to see if the implementation wants to overload this function
109468   */
109469   zLowerName = sqlite3DbStrDup(db, pDef->zName);
109470   if( zLowerName ){
109471     for(z=(unsigned char*)zLowerName; *z; z++){
109472       *z = sqlite3UpperToLower[*z];
109473     }
109474     rc = pMod->xFindFunction(pVtab, nArg, zLowerName, &xFunc, &pArg);
109475     sqlite3DbFree(db, zLowerName);
109476   }
109477   if( rc==0 ){
109478     return pDef;
109479   }
109480 
109481   /* Create a new ephemeral function definition for the overloaded
109482   ** function */
109483   pNew = sqlite3DbMallocZero(db, sizeof(*pNew)
109484                              + sqlite3Strlen30(pDef->zName) + 1);
109485   if( pNew==0 ){
109486     return pDef;
109487   }
109488   *pNew = *pDef;
109489   pNew->zName = (char *)&pNew[1];
109490   memcpy(pNew->zName, pDef->zName, sqlite3Strlen30(pDef->zName)+1);
109491   pNew->xFunc = xFunc;
109492   pNew->pUserData = pArg;
109493   pNew->funcFlags |= SQLITE_FUNC_EPHEM;
109494   return pNew;
109495 }
109496 
109497 /*
109498 ** Make sure virtual table pTab is contained in the pParse->apVirtualLock[]
109499 ** array so that an OP_VBegin will get generated for it.  Add pTab to the
109500 ** array if it is missing.  If pTab is already in the array, this routine
109501 ** is a no-op.
109502 */
109503 SQLITE_PRIVATE void sqlite3VtabMakeWritable(Parse *pParse, Table *pTab){
109504   Parse *pToplevel = sqlite3ParseToplevel(pParse);
109505   int i, n;
109506   Table **apVtabLock;
109507 
109508   assert( IsVirtual(pTab) );
109509   for(i=0; i<pToplevel->nVtabLock; i++){
109510     if( pTab==pToplevel->apVtabLock[i] ) return;
109511   }
109512   n = (pToplevel->nVtabLock+1)*sizeof(pToplevel->apVtabLock[0]);
109513   apVtabLock = sqlite3_realloc(pToplevel->apVtabLock, n);
109514   if( apVtabLock ){
109515     pToplevel->apVtabLock = apVtabLock;
109516     pToplevel->apVtabLock[pToplevel->nVtabLock++] = pTab;
109517   }else{
109518     pToplevel->db->mallocFailed = 1;
109519   }
109520 }
109521 
109522 /*
109523 ** Return the ON CONFLICT resolution mode in effect for the virtual
109524 ** table update operation currently in progress.
109525 **
109526 ** The results of this routine are undefined unless it is called from
109527 ** within an xUpdate method.
109528 */
109529 SQLITE_API int sqlite3_vtab_on_conflict(sqlite3 *db){
109530   static const unsigned char aMap[] = {
109531     SQLITE_ROLLBACK, SQLITE_ABORT, SQLITE_FAIL, SQLITE_IGNORE, SQLITE_REPLACE
109532   };
109533   assert( OE_Rollback==1 && OE_Abort==2 && OE_Fail==3 );
109534   assert( OE_Ignore==4 && OE_Replace==5 );
109535   assert( db->vtabOnConflict>=1 && db->vtabOnConflict<=5 );
109536   return (int)aMap[db->vtabOnConflict-1];
109537 }
109538 
109539 /*
109540 ** Call from within the xCreate() or xConnect() methods to provide
109541 ** the SQLite core with additional information about the behavior
109542 ** of the virtual table being implemented.
109543 */
109544 SQLITE_API int sqlite3_vtab_config(sqlite3 *db, int op, ...){
109545   va_list ap;
109546   int rc = SQLITE_OK;
109547 
109548   sqlite3_mutex_enter(db->mutex);
109549 
109550   va_start(ap, op);
109551   switch( op ){
109552     case SQLITE_VTAB_CONSTRAINT_SUPPORT: {
109553       VtabCtx *p = db->pVtabCtx;
109554       if( !p ){
109555         rc = SQLITE_MISUSE_BKPT;
109556       }else{
109557         assert( p->pTab==0 || (p->pTab->tabFlags & TF_Virtual)!=0 );
109558         p->pVTable->bConstraint = (u8)va_arg(ap, int);
109559       }
109560       break;
109561     }
109562     default:
109563       rc = SQLITE_MISUSE_BKPT;
109564       break;
109565   }
109566   va_end(ap);
109567 
109568   if( rc!=SQLITE_OK ) sqlite3Error(db, rc, 0);
109569   sqlite3_mutex_leave(db->mutex);
109570   return rc;
109571 }
109572 
109573 #endif /* SQLITE_OMIT_VIRTUALTABLE */
109574 
109575 /************** End of vtab.c ************************************************/
109576 /************** Begin file where.c *******************************************/
109577 /*
109578 ** 2001 September 15
109579 **
109580 ** The author disclaims copyright to this source code.  In place of
109581 ** a legal notice, here is a blessing:
109582 **
109583 **    May you do good and not evil.
109584 **    May you find forgiveness for yourself and forgive others.
109585 **    May you share freely, never taking more than you give.
109586 **
109587 *************************************************************************
109588 ** This module contains C code that generates VDBE code used to process
109589 ** the WHERE clause of SQL statements.  This module is responsible for
109590 ** generating the code that loops through a table looking for applicable
109591 ** rows.  Indices are selected and used to speed the search when doing
109592 ** so is applicable.  Because this module is responsible for selecting
109593 ** indices, you might also think of this module as the "query optimizer".
109594 */
109595 /************** Include whereInt.h in the middle of where.c ******************/
109596 /************** Begin file whereInt.h ****************************************/
109597 /*
109598 ** 2013-11-12
109599 **
109600 ** The author disclaims copyright to this source code.  In place of
109601 ** a legal notice, here is a blessing:
109602 **
109603 **    May you do good and not evil.
109604 **    May you find forgiveness for yourself and forgive others.
109605 **    May you share freely, never taking more than you give.
109606 **
109607 *************************************************************************
109608 **
109609 ** This file contains structure and macro definitions for the query
109610 ** planner logic in "where.c".  These definitions are broken out into
109611 ** a separate source file for easier editing.
109612 */
109613 
109614 /*
109615 ** Trace output macros
109616 */
109617 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
109618 /***/ int sqlite3WhereTrace = 0;
109619 #endif
109620 #if defined(SQLITE_DEBUG) \
109621     && (defined(SQLITE_TEST) || defined(SQLITE_ENABLE_WHERETRACE))
109622 # define WHERETRACE(K,X)  if(sqlite3WhereTrace&(K)) sqlite3DebugPrintf X
109623 # define WHERETRACE_ENABLED 1
109624 #else
109625 # define WHERETRACE(K,X)
109626 #endif
109627 
109628 /* Forward references
109629 */
109630 typedef struct WhereClause WhereClause;
109631 typedef struct WhereMaskSet WhereMaskSet;
109632 typedef struct WhereOrInfo WhereOrInfo;
109633 typedef struct WhereAndInfo WhereAndInfo;
109634 typedef struct WhereLevel WhereLevel;
109635 typedef struct WhereLoop WhereLoop;
109636 typedef struct WherePath WherePath;
109637 typedef struct WhereTerm WhereTerm;
109638 typedef struct WhereLoopBuilder WhereLoopBuilder;
109639 typedef struct WhereScan WhereScan;
109640 typedef struct WhereOrCost WhereOrCost;
109641 typedef struct WhereOrSet WhereOrSet;
109642 
109643 /*
109644 ** This object contains information needed to implement a single nested
109645 ** loop in WHERE clause.
109646 **
109647 ** Contrast this object with WhereLoop.  This object describes the
109648 ** implementation of the loop.  WhereLoop describes the algorithm.
109649 ** This object contains a pointer to the WhereLoop algorithm as one of
109650 ** its elements.
109651 **
109652 ** The WhereInfo object contains a single instance of this object for
109653 ** each term in the FROM clause (which is to say, for each of the
109654 ** nested loops as implemented).  The order of WhereLevel objects determines
109655 ** the loop nested order, with WhereInfo.a[0] being the outer loop and
109656 ** WhereInfo.a[WhereInfo.nLevel-1] being the inner loop.
109657 */
109658 struct WhereLevel {
109659   int iLeftJoin;        /* Memory cell used to implement LEFT OUTER JOIN */
109660   int iTabCur;          /* The VDBE cursor used to access the table */
109661   int iIdxCur;          /* The VDBE cursor used to access pIdx */
109662   int addrBrk;          /* Jump here to break out of the loop */
109663   int addrNxt;          /* Jump here to start the next IN combination */
109664   int addrSkip;         /* Jump here for next iteration of skip-scan */
109665   int addrCont;         /* Jump here to continue with the next loop cycle */
109666   int addrFirst;        /* First instruction of interior of the loop */
109667   int addrBody;         /* Beginning of the body of this loop */
109668   u8 iFrom;             /* Which entry in the FROM clause */
109669   u8 op, p3, p5;        /* Opcode, P3 & P5 of the opcode that ends the loop */
109670   int p1, p2;           /* Operands of the opcode used to ends the loop */
109671   union {               /* Information that depends on pWLoop->wsFlags */
109672     struct {
109673       int nIn;              /* Number of entries in aInLoop[] */
109674       struct InLoop {
109675         int iCur;              /* The VDBE cursor used by this IN operator */
109676         int addrInTop;         /* Top of the IN loop */
109677         u8 eEndLoopOp;         /* IN Loop terminator. OP_Next or OP_Prev */
109678       } *aInLoop;           /* Information about each nested IN operator */
109679     } in;                 /* Used when pWLoop->wsFlags&WHERE_IN_ABLE */
109680     Index *pCovidx;       /* Possible covering index for WHERE_MULTI_OR */
109681   } u;
109682   struct WhereLoop *pWLoop;  /* The selected WhereLoop object */
109683   Bitmask notReady;          /* FROM entries not usable at this level */
109684 };
109685 
109686 /*
109687 ** Each instance of this object represents an algorithm for evaluating one
109688 ** term of a join.  Every term of the FROM clause will have at least
109689 ** one corresponding WhereLoop object (unless INDEXED BY constraints
109690 ** prevent a query solution - which is an error) and many terms of the
109691 ** FROM clause will have multiple WhereLoop objects, each describing a
109692 ** potential way of implementing that FROM-clause term, together with
109693 ** dependencies and cost estimates for using the chosen algorithm.
109694 **
109695 ** Query planning consists of building up a collection of these WhereLoop
109696 ** objects, then computing a particular sequence of WhereLoop objects, with
109697 ** one WhereLoop object per FROM clause term, that satisfy all dependencies
109698 ** and that minimize the overall cost.
109699 */
109700 struct WhereLoop {
109701   Bitmask prereq;       /* Bitmask of other loops that must run first */
109702   Bitmask maskSelf;     /* Bitmask identifying table iTab */
109703 #ifdef SQLITE_DEBUG
109704   char cId;             /* Symbolic ID of this loop for debugging use */
109705 #endif
109706   u8 iTab;              /* Position in FROM clause of table for this loop */
109707   u8 iSortIdx;          /* Sorting index number.  0==None */
109708   LogEst rSetup;        /* One-time setup cost (ex: create transient index) */
109709   LogEst rRun;          /* Cost of running each loop */
109710   LogEst nOut;          /* Estimated number of output rows */
109711   union {
109712     struct {               /* Information for internal btree tables */
109713       u16 nEq;               /* Number of equality constraints */
109714       u16 nSkip;             /* Number of initial index columns to skip */
109715       Index *pIndex;         /* Index used, or NULL */
109716     } btree;
109717     struct {               /* Information for virtual tables */
109718       int idxNum;            /* Index number */
109719       u8 needFree;           /* True if sqlite3_free(idxStr) is needed */
109720       i8 isOrdered;          /* True if satisfies ORDER BY */
109721       u16 omitMask;          /* Terms that may be omitted */
109722       char *idxStr;          /* Index identifier string */
109723     } vtab;
109724   } u;
109725   u32 wsFlags;          /* WHERE_* flags describing the plan */
109726   u16 nLTerm;           /* Number of entries in aLTerm[] */
109727   /**** whereLoopXfer() copies fields above ***********************/
109728 # define WHERE_LOOP_XFER_SZ offsetof(WhereLoop,nLSlot)
109729   u16 nLSlot;           /* Number of slots allocated for aLTerm[] */
109730   WhereTerm **aLTerm;   /* WhereTerms used */
109731   WhereLoop *pNextLoop; /* Next WhereLoop object in the WhereClause */
109732   WhereTerm *aLTermSpace[4];  /* Initial aLTerm[] space */
109733 };
109734 
109735 /* This object holds the prerequisites and the cost of running a
109736 ** subquery on one operand of an OR operator in the WHERE clause.
109737 ** See WhereOrSet for additional information
109738 */
109739 struct WhereOrCost {
109740   Bitmask prereq;     /* Prerequisites */
109741   LogEst rRun;        /* Cost of running this subquery */
109742   LogEst nOut;        /* Number of outputs for this subquery */
109743 };
109744 
109745 /* The WhereOrSet object holds a set of possible WhereOrCosts that
109746 ** correspond to the subquery(s) of OR-clause processing.  Only the
109747 ** best N_OR_COST elements are retained.
109748 */
109749 #define N_OR_COST 3
109750 struct WhereOrSet {
109751   u16 n;                      /* Number of valid a[] entries */
109752   WhereOrCost a[N_OR_COST];   /* Set of best costs */
109753 };
109754 
109755 
109756 /* Forward declaration of methods */
109757 static int whereLoopResize(sqlite3*, WhereLoop*, int);
109758 
109759 /*
109760 ** Each instance of this object holds a sequence of WhereLoop objects
109761 ** that implement some or all of a query plan.
109762 **
109763 ** Think of each WhereLoop object as a node in a graph with arcs
109764 ** showing dependencies and costs for travelling between nodes.  (That is
109765 ** not a completely accurate description because WhereLoop costs are a
109766 ** vector, not a scalar, and because dependencies are many-to-one, not
109767 ** one-to-one as are graph nodes.  But it is a useful visualization aid.)
109768 ** Then a WherePath object is a path through the graph that visits some
109769 ** or all of the WhereLoop objects once.
109770 **
109771 ** The "solver" works by creating the N best WherePath objects of length
109772 ** 1.  Then using those as a basis to compute the N best WherePath objects
109773 ** of length 2.  And so forth until the length of WherePaths equals the
109774 ** number of nodes in the FROM clause.  The best (lowest cost) WherePath
109775 ** at the end is the choosen query plan.
109776 */
109777 struct WherePath {
109778   Bitmask maskLoop;     /* Bitmask of all WhereLoop objects in this path */
109779   Bitmask revLoop;      /* aLoop[]s that should be reversed for ORDER BY */
109780   LogEst nRow;          /* Estimated number of rows generated by this path */
109781   LogEst rCost;         /* Total cost of this path */
109782   i8 isOrdered;         /* No. of ORDER BY terms satisfied. -1 for unknown */
109783   WhereLoop **aLoop;    /* Array of WhereLoop objects implementing this path */
109784 };
109785 
109786 /*
109787 ** The query generator uses an array of instances of this structure to
109788 ** help it analyze the subexpressions of the WHERE clause.  Each WHERE
109789 ** clause subexpression is separated from the others by AND operators,
109790 ** usually, or sometimes subexpressions separated by OR.
109791 **
109792 ** All WhereTerms are collected into a single WhereClause structure.
109793 ** The following identity holds:
109794 **
109795 **        WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm
109796 **
109797 ** When a term is of the form:
109798 **
109799 **              X <op> <expr>
109800 **
109801 ** where X is a column name and <op> is one of certain operators,
109802 ** then WhereTerm.leftCursor and WhereTerm.u.leftColumn record the
109803 ** cursor number and column number for X.  WhereTerm.eOperator records
109804 ** the <op> using a bitmask encoding defined by WO_xxx below.  The
109805 ** use of a bitmask encoding for the operator allows us to search
109806 ** quickly for terms that match any of several different operators.
109807 **
109808 ** A WhereTerm might also be two or more subterms connected by OR:
109809 **
109810 **         (t1.X <op> <expr>) OR (t1.Y <op> <expr>) OR ....
109811 **
109812 ** In this second case, wtFlag has the TERM_ORINFO bit set and eOperator==WO_OR
109813 ** and the WhereTerm.u.pOrInfo field points to auxiliary information that
109814 ** is collected about the OR clause.
109815 **
109816 ** If a term in the WHERE clause does not match either of the two previous
109817 ** categories, then eOperator==0.  The WhereTerm.pExpr field is still set
109818 ** to the original subexpression content and wtFlags is set up appropriately
109819 ** but no other fields in the WhereTerm object are meaningful.
109820 **
109821 ** When eOperator!=0, prereqRight and prereqAll record sets of cursor numbers,
109822 ** but they do so indirectly.  A single WhereMaskSet structure translates
109823 ** cursor number into bits and the translated bit is stored in the prereq
109824 ** fields.  The translation is used in order to maximize the number of
109825 ** bits that will fit in a Bitmask.  The VDBE cursor numbers might be
109826 ** spread out over the non-negative integers.  For example, the cursor
109827 ** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45.  The WhereMaskSet
109828 ** translates these sparse cursor numbers into consecutive integers
109829 ** beginning with 0 in order to make the best possible use of the available
109830 ** bits in the Bitmask.  So, in the example above, the cursor numbers
109831 ** would be mapped into integers 0 through 7.
109832 **
109833 ** The number of terms in a join is limited by the number of bits
109834 ** in prereqRight and prereqAll.  The default is 64 bits, hence SQLite
109835 ** is only able to process joins with 64 or fewer tables.
109836 */
109837 struct WhereTerm {
109838   Expr *pExpr;            /* Pointer to the subexpression that is this term */
109839   int iParent;            /* Disable pWC->a[iParent] when this term disabled */
109840   int leftCursor;         /* Cursor number of X in "X <op> <expr>" */
109841   union {
109842     int leftColumn;         /* Column number of X in "X <op> <expr>" */
109843     WhereOrInfo *pOrInfo;   /* Extra information if (eOperator & WO_OR)!=0 */
109844     WhereAndInfo *pAndInfo; /* Extra information if (eOperator& WO_AND)!=0 */
109845   } u;
109846   LogEst truthProb;       /* Probability of truth for this expression */
109847   u16 eOperator;          /* A WO_xx value describing <op> */
109848   u8 wtFlags;             /* TERM_xxx bit flags.  See below */
109849   u8 nChild;              /* Number of children that must disable us */
109850   WhereClause *pWC;       /* The clause this term is part of */
109851   Bitmask prereqRight;    /* Bitmask of tables used by pExpr->pRight */
109852   Bitmask prereqAll;      /* Bitmask of tables referenced by pExpr */
109853 };
109854 
109855 /*
109856 ** Allowed values of WhereTerm.wtFlags
109857 */
109858 #define TERM_DYNAMIC    0x01   /* Need to call sqlite3ExprDelete(db, pExpr) */
109859 #define TERM_VIRTUAL    0x02   /* Added by the optimizer.  Do not code */
109860 #define TERM_CODED      0x04   /* This term is already coded */
109861 #define TERM_COPIED     0x08   /* Has a child */
109862 #define TERM_ORINFO     0x10   /* Need to free the WhereTerm.u.pOrInfo object */
109863 #define TERM_ANDINFO    0x20   /* Need to free the WhereTerm.u.pAndInfo obj */
109864 #define TERM_OR_OK      0x40   /* Used during OR-clause processing */
109865 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
109866 #  define TERM_VNULL    0x80   /* Manufactured x>NULL or x<=NULL term */
109867 #else
109868 #  define TERM_VNULL    0x00   /* Disabled if not using stat3 */
109869 #endif
109870 
109871 /*
109872 ** An instance of the WhereScan object is used as an iterator for locating
109873 ** terms in the WHERE clause that are useful to the query planner.
109874 */
109875 struct WhereScan {
109876   WhereClause *pOrigWC;      /* Original, innermost WhereClause */
109877   WhereClause *pWC;          /* WhereClause currently being scanned */
109878   char *zCollName;           /* Required collating sequence, if not NULL */
109879   char idxaff;               /* Must match this affinity, if zCollName!=NULL */
109880   unsigned char nEquiv;      /* Number of entries in aEquiv[] */
109881   unsigned char iEquiv;      /* Next unused slot in aEquiv[] */
109882   u32 opMask;                /* Acceptable operators */
109883   int k;                     /* Resume scanning at this->pWC->a[this->k] */
109884   int aEquiv[22];            /* Cursor,Column pairs for equivalence classes */
109885 };
109886 
109887 /*
109888 ** An instance of the following structure holds all information about a
109889 ** WHERE clause.  Mostly this is a container for one or more WhereTerms.
109890 **
109891 ** Explanation of pOuter:  For a WHERE clause of the form
109892 **
109893 **           a AND ((b AND c) OR (d AND e)) AND f
109894 **
109895 ** There are separate WhereClause objects for the whole clause and for
109896 ** the subclauses "(b AND c)" and "(d AND e)".  The pOuter field of the
109897 ** subclauses points to the WhereClause object for the whole clause.
109898 */
109899 struct WhereClause {
109900   WhereInfo *pWInfo;       /* WHERE clause processing context */
109901   WhereClause *pOuter;     /* Outer conjunction */
109902   u8 op;                   /* Split operator.  TK_AND or TK_OR */
109903   int nTerm;               /* Number of terms */
109904   int nSlot;               /* Number of entries in a[] */
109905   WhereTerm *a;            /* Each a[] describes a term of the WHERE cluase */
109906 #if defined(SQLITE_SMALL_STACK)
109907   WhereTerm aStatic[1];    /* Initial static space for a[] */
109908 #else
109909   WhereTerm aStatic[8];    /* Initial static space for a[] */
109910 #endif
109911 };
109912 
109913 /*
109914 ** A WhereTerm with eOperator==WO_OR has its u.pOrInfo pointer set to
109915 ** a dynamically allocated instance of the following structure.
109916 */
109917 struct WhereOrInfo {
109918   WhereClause wc;          /* Decomposition into subterms */
109919   Bitmask indexable;       /* Bitmask of all indexable tables in the clause */
109920 };
109921 
109922 /*
109923 ** A WhereTerm with eOperator==WO_AND has its u.pAndInfo pointer set to
109924 ** a dynamically allocated instance of the following structure.
109925 */
109926 struct WhereAndInfo {
109927   WhereClause wc;          /* The subexpression broken out */
109928 };
109929 
109930 /*
109931 ** An instance of the following structure keeps track of a mapping
109932 ** between VDBE cursor numbers and bits of the bitmasks in WhereTerm.
109933 **
109934 ** The VDBE cursor numbers are small integers contained in
109935 ** SrcList_item.iCursor and Expr.iTable fields.  For any given WHERE
109936 ** clause, the cursor numbers might not begin with 0 and they might
109937 ** contain gaps in the numbering sequence.  But we want to make maximum
109938 ** use of the bits in our bitmasks.  This structure provides a mapping
109939 ** from the sparse cursor numbers into consecutive integers beginning
109940 ** with 0.
109941 **
109942 ** If WhereMaskSet.ix[A]==B it means that The A-th bit of a Bitmask
109943 ** corresponds VDBE cursor number B.  The A-th bit of a bitmask is 1<<A.
109944 **
109945 ** For example, if the WHERE clause expression used these VDBE
109946 ** cursors:  4, 5, 8, 29, 57, 73.  Then the  WhereMaskSet structure
109947 ** would map those cursor numbers into bits 0 through 5.
109948 **
109949 ** Note that the mapping is not necessarily ordered.  In the example
109950 ** above, the mapping might go like this:  4->3, 5->1, 8->2, 29->0,
109951 ** 57->5, 73->4.  Or one of 719 other combinations might be used. It
109952 ** does not really matter.  What is important is that sparse cursor
109953 ** numbers all get mapped into bit numbers that begin with 0 and contain
109954 ** no gaps.
109955 */
109956 struct WhereMaskSet {
109957   int n;                        /* Number of assigned cursor values */
109958   int ix[BMS];                  /* Cursor assigned to each bit */
109959 };
109960 
109961 /*
109962 ** This object is a convenience wrapper holding all information needed
109963 ** to construct WhereLoop objects for a particular query.
109964 */
109965 struct WhereLoopBuilder {
109966   WhereInfo *pWInfo;        /* Information about this WHERE */
109967   WhereClause *pWC;         /* WHERE clause terms */
109968   ExprList *pOrderBy;       /* ORDER BY clause */
109969   WhereLoop *pNew;          /* Template WhereLoop */
109970   WhereOrSet *pOrSet;       /* Record best loops here, if not NULL */
109971 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
109972   UnpackedRecord *pRec;     /* Probe for stat4 (if required) */
109973   int nRecValid;            /* Number of valid fields currently in pRec */
109974 #endif
109975 };
109976 
109977 /*
109978 ** The WHERE clause processing routine has two halves.  The
109979 ** first part does the start of the WHERE loop and the second
109980 ** half does the tail of the WHERE loop.  An instance of
109981 ** this structure is returned by the first half and passed
109982 ** into the second half to give some continuity.
109983 **
109984 ** An instance of this object holds the complete state of the query
109985 ** planner.
109986 */
109987 struct WhereInfo {
109988   Parse *pParse;            /* Parsing and code generating context */
109989   SrcList *pTabList;        /* List of tables in the join */
109990   ExprList *pOrderBy;       /* The ORDER BY clause or NULL */
109991   ExprList *pResultSet;     /* Result set. DISTINCT operates on these */
109992   WhereLoop *pLoops;        /* List of all WhereLoop objects */
109993   Bitmask revMask;          /* Mask of ORDER BY terms that need reversing */
109994   LogEst nRowOut;           /* Estimated number of output rows */
109995   u16 wctrlFlags;           /* Flags originally passed to sqlite3WhereBegin() */
109996   i8 nOBSat;                /* Number of ORDER BY terms satisfied by indices */
109997   u8 sorted;                /* True if really sorted (not just grouped) */
109998   u8 okOnePass;             /* Ok to use one-pass algorithm for UPDATE/DELETE */
109999   u8 untestedTerms;         /* Not all WHERE terms resolved by outer loop */
110000   u8 eDistinct;             /* One of the WHERE_DISTINCT_* values below */
110001   u8 nLevel;                /* Number of nested loop */
110002   int iTop;                 /* The very beginning of the WHERE loop */
110003   int iContinue;            /* Jump here to continue with next record */
110004   int iBreak;               /* Jump here to break out of the loop */
110005   int savedNQueryLoop;      /* pParse->nQueryLoop outside the WHERE loop */
110006   int aiCurOnePass[2];      /* OP_OpenWrite cursors for the ONEPASS opt */
110007   WhereMaskSet sMaskSet;    /* Map cursor numbers to bitmasks */
110008   WhereClause sWC;          /* Decomposition of the WHERE clause */
110009   WhereLevel a[1];          /* Information about each nest loop in WHERE */
110010 };
110011 
110012 /*
110013 ** Bitmasks for the operators on WhereTerm objects.  These are all
110014 ** operators that are of interest to the query planner.  An
110015 ** OR-ed combination of these values can be used when searching for
110016 ** particular WhereTerms within a WhereClause.
110017 */
110018 #define WO_IN     0x001
110019 #define WO_EQ     0x002
110020 #define WO_LT     (WO_EQ<<(TK_LT-TK_EQ))
110021 #define WO_LE     (WO_EQ<<(TK_LE-TK_EQ))
110022 #define WO_GT     (WO_EQ<<(TK_GT-TK_EQ))
110023 #define WO_GE     (WO_EQ<<(TK_GE-TK_EQ))
110024 #define WO_MATCH  0x040
110025 #define WO_ISNULL 0x080
110026 #define WO_OR     0x100       /* Two or more OR-connected terms */
110027 #define WO_AND    0x200       /* Two or more AND-connected terms */
110028 #define WO_EQUIV  0x400       /* Of the form A==B, both columns */
110029 #define WO_NOOP   0x800       /* This term does not restrict search space */
110030 
110031 #define WO_ALL    0xfff       /* Mask of all possible WO_* values */
110032 #define WO_SINGLE 0x0ff       /* Mask of all non-compound WO_* values */
110033 
110034 /*
110035 ** These are definitions of bits in the WhereLoop.wsFlags field.
110036 ** The particular combination of bits in each WhereLoop help to
110037 ** determine the algorithm that WhereLoop represents.
110038 */
110039 #define WHERE_COLUMN_EQ    0x00000001  /* x=EXPR */
110040 #define WHERE_COLUMN_RANGE 0x00000002  /* x<EXPR and/or x>EXPR */
110041 #define WHERE_COLUMN_IN    0x00000004  /* x IN (...) */
110042 #define WHERE_COLUMN_NULL  0x00000008  /* x IS NULL */
110043 #define WHERE_CONSTRAINT   0x0000000f  /* Any of the WHERE_COLUMN_xxx values */
110044 #define WHERE_TOP_LIMIT    0x00000010  /* x<EXPR or x<=EXPR constraint */
110045 #define WHERE_BTM_LIMIT    0x00000020  /* x>EXPR or x>=EXPR constraint */
110046 #define WHERE_BOTH_LIMIT   0x00000030  /* Both x>EXPR and x<EXPR */
110047 #define WHERE_IDX_ONLY     0x00000040  /* Use index only - omit table */
110048 #define WHERE_IPK          0x00000100  /* x is the INTEGER PRIMARY KEY */
110049 #define WHERE_INDEXED      0x00000200  /* WhereLoop.u.btree.pIndex is valid */
110050 #define WHERE_VIRTUALTABLE 0x00000400  /* WhereLoop.u.vtab is valid */
110051 #define WHERE_IN_ABLE      0x00000800  /* Able to support an IN operator */
110052 #define WHERE_ONEROW       0x00001000  /* Selects no more than one row */
110053 #define WHERE_MULTI_OR     0x00002000  /* OR using multiple indices */
110054 #define WHERE_AUTO_INDEX   0x00004000  /* Uses an ephemeral index */
110055 #define WHERE_SKIPSCAN     0x00008000  /* Uses the skip-scan algorithm */
110056 #define WHERE_UNQ_WANTED   0x00010000  /* WHERE_ONEROW would have been helpful*/
110057 
110058 /************** End of whereInt.h ********************************************/
110059 /************** Continuing where we left off in where.c **********************/
110060 
110061 /*
110062 ** Return the estimated number of output rows from a WHERE clause
110063 */
110064 SQLITE_PRIVATE u64 sqlite3WhereOutputRowCount(WhereInfo *pWInfo){
110065   return sqlite3LogEstToInt(pWInfo->nRowOut);
110066 }
110067 
110068 /*
110069 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this
110070 ** WHERE clause returns outputs for DISTINCT processing.
110071 */
110072 SQLITE_PRIVATE int sqlite3WhereIsDistinct(WhereInfo *pWInfo){
110073   return pWInfo->eDistinct;
110074 }
110075 
110076 /*
110077 ** Return TRUE if the WHERE clause returns rows in ORDER BY order.
110078 ** Return FALSE if the output needs to be sorted.
110079 */
110080 SQLITE_PRIVATE int sqlite3WhereIsOrdered(WhereInfo *pWInfo){
110081   return pWInfo->nOBSat;
110082 }
110083 
110084 /*
110085 ** Return the VDBE address or label to jump to in order to continue
110086 ** immediately with the next row of a WHERE clause.
110087 */
110088 SQLITE_PRIVATE int sqlite3WhereContinueLabel(WhereInfo *pWInfo){
110089   assert( pWInfo->iContinue!=0 );
110090   return pWInfo->iContinue;
110091 }
110092 
110093 /*
110094 ** Return the VDBE address or label to jump to in order to break
110095 ** out of a WHERE loop.
110096 */
110097 SQLITE_PRIVATE int sqlite3WhereBreakLabel(WhereInfo *pWInfo){
110098   return pWInfo->iBreak;
110099 }
110100 
110101 /*
110102 ** Return TRUE if an UPDATE or DELETE statement can operate directly on
110103 ** the rowids returned by a WHERE clause.  Return FALSE if doing an
110104 ** UPDATE or DELETE might change subsequent WHERE clause results.
110105 **
110106 ** If the ONEPASS optimization is used (if this routine returns true)
110107 ** then also write the indices of open cursors used by ONEPASS
110108 ** into aiCur[0] and aiCur[1].  iaCur[0] gets the cursor of the data
110109 ** table and iaCur[1] gets the cursor used by an auxiliary index.
110110 ** Either value may be -1, indicating that cursor is not used.
110111 ** Any cursors returned will have been opened for writing.
110112 **
110113 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is
110114 ** unable to use the ONEPASS optimization.
110115 */
110116 SQLITE_PRIVATE int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){
110117   memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2);
110118   return pWInfo->okOnePass;
110119 }
110120 
110121 /*
110122 ** Move the content of pSrc into pDest
110123 */
110124 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){
110125   pDest->n = pSrc->n;
110126   memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0]));
110127 }
110128 
110129 /*
110130 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet.
110131 **
110132 ** The new entry might overwrite an existing entry, or it might be
110133 ** appended, or it might be discarded.  Do whatever is the right thing
110134 ** so that pSet keeps the N_OR_COST best entries seen so far.
110135 */
110136 static int whereOrInsert(
110137   WhereOrSet *pSet,      /* The WhereOrSet to be updated */
110138   Bitmask prereq,        /* Prerequisites of the new entry */
110139   LogEst rRun,           /* Run-cost of the new entry */
110140   LogEst nOut            /* Number of outputs for the new entry */
110141 ){
110142   u16 i;
110143   WhereOrCost *p;
110144   for(i=pSet->n, p=pSet->a; i>0; i--, p++){
110145     if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){
110146       goto whereOrInsert_done;
110147     }
110148     if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){
110149       return 0;
110150     }
110151   }
110152   if( pSet->n<N_OR_COST ){
110153     p = &pSet->a[pSet->n++];
110154     p->nOut = nOut;
110155   }else{
110156     p = pSet->a;
110157     for(i=1; i<pSet->n; i++){
110158       if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i;
110159     }
110160     if( p->rRun<=rRun ) return 0;
110161   }
110162 whereOrInsert_done:
110163   p->prereq = prereq;
110164   p->rRun = rRun;
110165   if( p->nOut>nOut ) p->nOut = nOut;
110166   return 1;
110167 }
110168 
110169 /*
110170 ** Initialize a preallocated WhereClause structure.
110171 */
110172 static void whereClauseInit(
110173   WhereClause *pWC,        /* The WhereClause to be initialized */
110174   WhereInfo *pWInfo        /* The WHERE processing context */
110175 ){
110176   pWC->pWInfo = pWInfo;
110177   pWC->pOuter = 0;
110178   pWC->nTerm = 0;
110179   pWC->nSlot = ArraySize(pWC->aStatic);
110180   pWC->a = pWC->aStatic;
110181 }
110182 
110183 /* Forward reference */
110184 static void whereClauseClear(WhereClause*);
110185 
110186 /*
110187 ** Deallocate all memory associated with a WhereOrInfo object.
110188 */
110189 static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){
110190   whereClauseClear(&p->wc);
110191   sqlite3DbFree(db, p);
110192 }
110193 
110194 /*
110195 ** Deallocate all memory associated with a WhereAndInfo object.
110196 */
110197 static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){
110198   whereClauseClear(&p->wc);
110199   sqlite3DbFree(db, p);
110200 }
110201 
110202 /*
110203 ** Deallocate a WhereClause structure.  The WhereClause structure
110204 ** itself is not freed.  This routine is the inverse of whereClauseInit().
110205 */
110206 static void whereClauseClear(WhereClause *pWC){
110207   int i;
110208   WhereTerm *a;
110209   sqlite3 *db = pWC->pWInfo->pParse->db;
110210   for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){
110211     if( a->wtFlags & TERM_DYNAMIC ){
110212       sqlite3ExprDelete(db, a->pExpr);
110213     }
110214     if( a->wtFlags & TERM_ORINFO ){
110215       whereOrInfoDelete(db, a->u.pOrInfo);
110216     }else if( a->wtFlags & TERM_ANDINFO ){
110217       whereAndInfoDelete(db, a->u.pAndInfo);
110218     }
110219   }
110220   if( pWC->a!=pWC->aStatic ){
110221     sqlite3DbFree(db, pWC->a);
110222   }
110223 }
110224 
110225 /*
110226 ** Add a single new WhereTerm entry to the WhereClause object pWC.
110227 ** The new WhereTerm object is constructed from Expr p and with wtFlags.
110228 ** The index in pWC->a[] of the new WhereTerm is returned on success.
110229 ** 0 is returned if the new WhereTerm could not be added due to a memory
110230 ** allocation error.  The memory allocation failure will be recorded in
110231 ** the db->mallocFailed flag so that higher-level functions can detect it.
110232 **
110233 ** This routine will increase the size of the pWC->a[] array as necessary.
110234 **
110235 ** If the wtFlags argument includes TERM_DYNAMIC, then responsibility
110236 ** for freeing the expression p is assumed by the WhereClause object pWC.
110237 ** This is true even if this routine fails to allocate a new WhereTerm.
110238 **
110239 ** WARNING:  This routine might reallocate the space used to store
110240 ** WhereTerms.  All pointers to WhereTerms should be invalidated after
110241 ** calling this routine.  Such pointers may be reinitialized by referencing
110242 ** the pWC->a[] array.
110243 */
110244 static int whereClauseInsert(WhereClause *pWC, Expr *p, u8 wtFlags){
110245   WhereTerm *pTerm;
110246   int idx;
110247   testcase( wtFlags & TERM_VIRTUAL );
110248   if( pWC->nTerm>=pWC->nSlot ){
110249     WhereTerm *pOld = pWC->a;
110250     sqlite3 *db = pWC->pWInfo->pParse->db;
110251     pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 );
110252     if( pWC->a==0 ){
110253       if( wtFlags & TERM_DYNAMIC ){
110254         sqlite3ExprDelete(db, p);
110255       }
110256       pWC->a = pOld;
110257       return 0;
110258     }
110259     memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm);
110260     if( pOld!=pWC->aStatic ){
110261       sqlite3DbFree(db, pOld);
110262     }
110263     pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]);
110264   }
110265   pTerm = &pWC->a[idx = pWC->nTerm++];
110266   if( p && ExprHasProperty(p, EP_Unlikely) ){
110267     pTerm->truthProb = sqlite3LogEst(p->iTable) - 99;
110268   }else{
110269     pTerm->truthProb = 1;
110270   }
110271   pTerm->pExpr = sqlite3ExprSkipCollate(p);
110272   pTerm->wtFlags = wtFlags;
110273   pTerm->pWC = pWC;
110274   pTerm->iParent = -1;
110275   return idx;
110276 }
110277 
110278 /*
110279 ** This routine identifies subexpressions in the WHERE clause where
110280 ** each subexpression is separated by the AND operator or some other
110281 ** operator specified in the op parameter.  The WhereClause structure
110282 ** is filled with pointers to subexpressions.  For example:
110283 **
110284 **    WHERE  a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
110285 **           \________/     \_______________/     \________________/
110286 **            slot[0]            slot[1]               slot[2]
110287 **
110288 ** The original WHERE clause in pExpr is unaltered.  All this routine
110289 ** does is make slot[] entries point to substructure within pExpr.
110290 **
110291 ** In the previous sentence and in the diagram, "slot[]" refers to
110292 ** the WhereClause.a[] array.  The slot[] array grows as needed to contain
110293 ** all terms of the WHERE clause.
110294 */
110295 static void whereSplit(WhereClause *pWC, Expr *pExpr, u8 op){
110296   pWC->op = op;
110297   if( pExpr==0 ) return;
110298   if( pExpr->op!=op ){
110299     whereClauseInsert(pWC, pExpr, 0);
110300   }else{
110301     whereSplit(pWC, pExpr->pLeft, op);
110302     whereSplit(pWC, pExpr->pRight, op);
110303   }
110304 }
110305 
110306 /*
110307 ** Initialize a WhereMaskSet object
110308 */
110309 #define initMaskSet(P)  (P)->n=0
110310 
110311 /*
110312 ** Return the bitmask for the given cursor number.  Return 0 if
110313 ** iCursor is not in the set.
110314 */
110315 static Bitmask getMask(WhereMaskSet *pMaskSet, int iCursor){
110316   int i;
110317   assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 );
110318   for(i=0; i<pMaskSet->n; i++){
110319     if( pMaskSet->ix[i]==iCursor ){
110320       return MASKBIT(i);
110321     }
110322   }
110323   return 0;
110324 }
110325 
110326 /*
110327 ** Create a new mask for cursor iCursor.
110328 **
110329 ** There is one cursor per table in the FROM clause.  The number of
110330 ** tables in the FROM clause is limited by a test early in the
110331 ** sqlite3WhereBegin() routine.  So we know that the pMaskSet->ix[]
110332 ** array will never overflow.
110333 */
110334 static void createMask(WhereMaskSet *pMaskSet, int iCursor){
110335   assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
110336   pMaskSet->ix[pMaskSet->n++] = iCursor;
110337 }
110338 
110339 /*
110340 ** These routines walk (recursively) an expression tree and generate
110341 ** a bitmask indicating which tables are used in that expression
110342 ** tree.
110343 */
110344 static Bitmask exprListTableUsage(WhereMaskSet*, ExprList*);
110345 static Bitmask exprSelectTableUsage(WhereMaskSet*, Select*);
110346 static Bitmask exprTableUsage(WhereMaskSet *pMaskSet, Expr *p){
110347   Bitmask mask = 0;
110348   if( p==0 ) return 0;
110349   if( p->op==TK_COLUMN ){
110350     mask = getMask(pMaskSet, p->iTable);
110351     return mask;
110352   }
110353   mask = exprTableUsage(pMaskSet, p->pRight);
110354   mask |= exprTableUsage(pMaskSet, p->pLeft);
110355   if( ExprHasProperty(p, EP_xIsSelect) ){
110356     mask |= exprSelectTableUsage(pMaskSet, p->x.pSelect);
110357   }else{
110358     mask |= exprListTableUsage(pMaskSet, p->x.pList);
110359   }
110360   return mask;
110361 }
110362 static Bitmask exprListTableUsage(WhereMaskSet *pMaskSet, ExprList *pList){
110363   int i;
110364   Bitmask mask = 0;
110365   if( pList ){
110366     for(i=0; i<pList->nExpr; i++){
110367       mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr);
110368     }
110369   }
110370   return mask;
110371 }
110372 static Bitmask exprSelectTableUsage(WhereMaskSet *pMaskSet, Select *pS){
110373   Bitmask mask = 0;
110374   while( pS ){
110375     SrcList *pSrc = pS->pSrc;
110376     mask |= exprListTableUsage(pMaskSet, pS->pEList);
110377     mask |= exprListTableUsage(pMaskSet, pS->pGroupBy);
110378     mask |= exprListTableUsage(pMaskSet, pS->pOrderBy);
110379     mask |= exprTableUsage(pMaskSet, pS->pWhere);
110380     mask |= exprTableUsage(pMaskSet, pS->pHaving);
110381     if( ALWAYS(pSrc!=0) ){
110382       int i;
110383       for(i=0; i<pSrc->nSrc; i++){
110384         mask |= exprSelectTableUsage(pMaskSet, pSrc->a[i].pSelect);
110385         mask |= exprTableUsage(pMaskSet, pSrc->a[i].pOn);
110386       }
110387     }
110388     pS = pS->pPrior;
110389   }
110390   return mask;
110391 }
110392 
110393 /*
110394 ** Return TRUE if the given operator is one of the operators that is
110395 ** allowed for an indexable WHERE clause term.  The allowed operators are
110396 ** "=", "<", ">", "<=", ">=", "IN", and "IS NULL"
110397 */
110398 static int allowedOp(int op){
110399   assert( TK_GT>TK_EQ && TK_GT<TK_GE );
110400   assert( TK_LT>TK_EQ && TK_LT<TK_GE );
110401   assert( TK_LE>TK_EQ && TK_LE<TK_GE );
110402   assert( TK_GE==TK_EQ+4 );
110403   return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL;
110404 }
110405 
110406 /*
110407 ** Swap two objects of type TYPE.
110408 */
110409 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
110410 
110411 /*
110412 ** Commute a comparison operator.  Expressions of the form "X op Y"
110413 ** are converted into "Y op X".
110414 **
110415 ** If left/right precedence rules come into play when determining the
110416 ** collating sequence, then COLLATE operators are adjusted to ensure
110417 ** that the collating sequence does not change.  For example:
110418 ** "Y collate NOCASE op X" becomes "X op Y" because any collation sequence on
110419 ** the left hand side of a comparison overrides any collation sequence
110420 ** attached to the right. For the same reason the EP_Collate flag
110421 ** is not commuted.
110422 */
110423 static void exprCommute(Parse *pParse, Expr *pExpr){
110424   u16 expRight = (pExpr->pRight->flags & EP_Collate);
110425   u16 expLeft = (pExpr->pLeft->flags & EP_Collate);
110426   assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN );
110427   if( expRight==expLeft ){
110428     /* Either X and Y both have COLLATE operator or neither do */
110429     if( expRight ){
110430       /* Both X and Y have COLLATE operators.  Make sure X is always
110431       ** used by clearing the EP_Collate flag from Y. */
110432       pExpr->pRight->flags &= ~EP_Collate;
110433     }else if( sqlite3ExprCollSeq(pParse, pExpr->pLeft)!=0 ){
110434       /* Neither X nor Y have COLLATE operators, but X has a non-default
110435       ** collating sequence.  So add the EP_Collate marker on X to cause
110436       ** it to be searched first. */
110437       pExpr->pLeft->flags |= EP_Collate;
110438     }
110439   }
110440   SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
110441   if( pExpr->op>=TK_GT ){
110442     assert( TK_LT==TK_GT+2 );
110443     assert( TK_GE==TK_LE+2 );
110444     assert( TK_GT>TK_EQ );
110445     assert( TK_GT<TK_LE );
110446     assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE );
110447     pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT;
110448   }
110449 }
110450 
110451 /*
110452 ** Translate from TK_xx operator to WO_xx bitmask.
110453 */
110454 static u16 operatorMask(int op){
110455   u16 c;
110456   assert( allowedOp(op) );
110457   if( op==TK_IN ){
110458     c = WO_IN;
110459   }else if( op==TK_ISNULL ){
110460     c = WO_ISNULL;
110461   }else{
110462     assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff );
110463     c = (u16)(WO_EQ<<(op-TK_EQ));
110464   }
110465   assert( op!=TK_ISNULL || c==WO_ISNULL );
110466   assert( op!=TK_IN || c==WO_IN );
110467   assert( op!=TK_EQ || c==WO_EQ );
110468   assert( op!=TK_LT || c==WO_LT );
110469   assert( op!=TK_LE || c==WO_LE );
110470   assert( op!=TK_GT || c==WO_GT );
110471   assert( op!=TK_GE || c==WO_GE );
110472   return c;
110473 }
110474 
110475 /*
110476 ** Advance to the next WhereTerm that matches according to the criteria
110477 ** established when the pScan object was initialized by whereScanInit().
110478 ** Return NULL if there are no more matching WhereTerms.
110479 */
110480 static WhereTerm *whereScanNext(WhereScan *pScan){
110481   int iCur;            /* The cursor on the LHS of the term */
110482   int iColumn;         /* The column on the LHS of the term.  -1 for IPK */
110483   Expr *pX;            /* An expression being tested */
110484   WhereClause *pWC;    /* Shorthand for pScan->pWC */
110485   WhereTerm *pTerm;    /* The term being tested */
110486   int k = pScan->k;    /* Where to start scanning */
110487 
110488   while( pScan->iEquiv<=pScan->nEquiv ){
110489     iCur = pScan->aEquiv[pScan->iEquiv-2];
110490     iColumn = pScan->aEquiv[pScan->iEquiv-1];
110491     while( (pWC = pScan->pWC)!=0 ){
110492       for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){
110493         if( pTerm->leftCursor==iCur
110494          && pTerm->u.leftColumn==iColumn
110495          && (pScan->iEquiv<=2 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin))
110496         ){
110497           if( (pTerm->eOperator & WO_EQUIV)!=0
110498            && pScan->nEquiv<ArraySize(pScan->aEquiv)
110499           ){
110500             int j;
110501             pX = sqlite3ExprSkipCollate(pTerm->pExpr->pRight);
110502             assert( pX->op==TK_COLUMN );
110503             for(j=0; j<pScan->nEquiv; j+=2){
110504               if( pScan->aEquiv[j]==pX->iTable
110505                && pScan->aEquiv[j+1]==pX->iColumn ){
110506                   break;
110507               }
110508             }
110509             if( j==pScan->nEquiv ){
110510               pScan->aEquiv[j] = pX->iTable;
110511               pScan->aEquiv[j+1] = pX->iColumn;
110512               pScan->nEquiv += 2;
110513             }
110514           }
110515           if( (pTerm->eOperator & pScan->opMask)!=0 ){
110516             /* Verify the affinity and collating sequence match */
110517             if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){
110518               CollSeq *pColl;
110519               Parse *pParse = pWC->pWInfo->pParse;
110520               pX = pTerm->pExpr;
110521               if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){
110522                 continue;
110523               }
110524               assert(pX->pLeft);
110525               pColl = sqlite3BinaryCompareCollSeq(pParse,
110526                                                   pX->pLeft, pX->pRight);
110527               if( pColl==0 ) pColl = pParse->db->pDfltColl;
110528               if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){
110529                 continue;
110530               }
110531             }
110532             if( (pTerm->eOperator & WO_EQ)!=0
110533              && (pX = pTerm->pExpr->pRight)->op==TK_COLUMN
110534              && pX->iTable==pScan->aEquiv[0]
110535              && pX->iColumn==pScan->aEquiv[1]
110536             ){
110537               continue;
110538             }
110539             pScan->k = k+1;
110540             return pTerm;
110541           }
110542         }
110543       }
110544       pScan->pWC = pScan->pWC->pOuter;
110545       k = 0;
110546     }
110547     pScan->pWC = pScan->pOrigWC;
110548     k = 0;
110549     pScan->iEquiv += 2;
110550   }
110551   return 0;
110552 }
110553 
110554 /*
110555 ** Initialize a WHERE clause scanner object.  Return a pointer to the
110556 ** first match.  Return NULL if there are no matches.
110557 **
110558 ** The scanner will be searching the WHERE clause pWC.  It will look
110559 ** for terms of the form "X <op> <expr>" where X is column iColumn of table
110560 ** iCur.  The <op> must be one of the operators described by opMask.
110561 **
110562 ** If the search is for X and the WHERE clause contains terms of the
110563 ** form X=Y then this routine might also return terms of the form
110564 ** "Y <op> <expr>".  The number of levels of transitivity is limited,
110565 ** but is enough to handle most commonly occurring SQL statements.
110566 **
110567 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with
110568 ** index pIdx.
110569 */
110570 static WhereTerm *whereScanInit(
110571   WhereScan *pScan,       /* The WhereScan object being initialized */
110572   WhereClause *pWC,       /* The WHERE clause to be scanned */
110573   int iCur,               /* Cursor to scan for */
110574   int iColumn,            /* Column to scan for */
110575   u32 opMask,             /* Operator(s) to scan for */
110576   Index *pIdx             /* Must be compatible with this index */
110577 ){
110578   int j;
110579 
110580   /* memset(pScan, 0, sizeof(*pScan)); */
110581   pScan->pOrigWC = pWC;
110582   pScan->pWC = pWC;
110583   if( pIdx && iColumn>=0 ){
110584     pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity;
110585     for(j=0; pIdx->aiColumn[j]!=iColumn; j++){
110586       if( NEVER(j>=pIdx->nKeyCol) ) return 0;
110587     }
110588     pScan->zCollName = pIdx->azColl[j];
110589   }else{
110590     pScan->idxaff = 0;
110591     pScan->zCollName = 0;
110592   }
110593   pScan->opMask = opMask;
110594   pScan->k = 0;
110595   pScan->aEquiv[0] = iCur;
110596   pScan->aEquiv[1] = iColumn;
110597   pScan->nEquiv = 2;
110598   pScan->iEquiv = 2;
110599   return whereScanNext(pScan);
110600 }
110601 
110602 /*
110603 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
110604 ** where X is a reference to the iColumn of table iCur and <op> is one of
110605 ** the WO_xx operator codes specified by the op parameter.
110606 ** Return a pointer to the term.  Return 0 if not found.
110607 **
110608 ** The term returned might by Y=<expr> if there is another constraint in
110609 ** the WHERE clause that specifies that X=Y.  Any such constraints will be
110610 ** identified by the WO_EQUIV bit in the pTerm->eOperator field.  The
110611 ** aEquiv[] array holds X and all its equivalents, with each SQL variable
110612 ** taking up two slots in aEquiv[].  The first slot is for the cursor number
110613 ** and the second is for the column number.  There are 22 slots in aEquiv[]
110614 ** so that means we can look for X plus up to 10 other equivalent values.
110615 ** Hence a search for X will return <expr> if X=A1 and A1=A2 and A2=A3
110616 ** and ... and A9=A10 and A10=<expr>.
110617 **
110618 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>"
110619 ** then try for the one with no dependencies on <expr> - in other words where
110620 ** <expr> is a constant expression of some kind.  Only return entries of
110621 ** the form "X <op> Y" where Y is a column in another table if no terms of
110622 ** the form "X <op> <const-expr>" exist.   If no terms with a constant RHS
110623 ** exist, try to return a term that does not use WO_EQUIV.
110624 */
110625 static WhereTerm *findTerm(
110626   WhereClause *pWC,     /* The WHERE clause to be searched */
110627   int iCur,             /* Cursor number of LHS */
110628   int iColumn,          /* Column number of LHS */
110629   Bitmask notReady,     /* RHS must not overlap with this mask */
110630   u32 op,               /* Mask of WO_xx values describing operator */
110631   Index *pIdx           /* Must be compatible with this index, if not NULL */
110632 ){
110633   WhereTerm *pResult = 0;
110634   WhereTerm *p;
110635   WhereScan scan;
110636 
110637   p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx);
110638   while( p ){
110639     if( (p->prereqRight & notReady)==0 ){
110640       if( p->prereqRight==0 && (p->eOperator&WO_EQ)!=0 ){
110641         return p;
110642       }
110643       if( pResult==0 ) pResult = p;
110644     }
110645     p = whereScanNext(&scan);
110646   }
110647   return pResult;
110648 }
110649 
110650 /* Forward reference */
110651 static void exprAnalyze(SrcList*, WhereClause*, int);
110652 
110653 /*
110654 ** Call exprAnalyze on all terms in a WHERE clause.
110655 */
110656 static void exprAnalyzeAll(
110657   SrcList *pTabList,       /* the FROM clause */
110658   WhereClause *pWC         /* the WHERE clause to be analyzed */
110659 ){
110660   int i;
110661   for(i=pWC->nTerm-1; i>=0; i--){
110662     exprAnalyze(pTabList, pWC, i);
110663   }
110664 }
110665 
110666 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
110667 /*
110668 ** Check to see if the given expression is a LIKE or GLOB operator that
110669 ** can be optimized using inequality constraints.  Return TRUE if it is
110670 ** so and false if not.
110671 **
110672 ** In order for the operator to be optimizible, the RHS must be a string
110673 ** literal that does not begin with a wildcard.
110674 */
110675 static int isLikeOrGlob(
110676   Parse *pParse,    /* Parsing and code generating context */
110677   Expr *pExpr,      /* Test this expression */
110678   Expr **ppPrefix,  /* Pointer to TK_STRING expression with pattern prefix */
110679   int *pisComplete, /* True if the only wildcard is % in the last character */
110680   int *pnoCase      /* True if uppercase is equivalent to lowercase */
110681 ){
110682   const char *z = 0;         /* String on RHS of LIKE operator */
110683   Expr *pRight, *pLeft;      /* Right and left size of LIKE operator */
110684   ExprList *pList;           /* List of operands to the LIKE operator */
110685   int c;                     /* One character in z[] */
110686   int cnt;                   /* Number of non-wildcard prefix characters */
110687   char wc[3];                /* Wildcard characters */
110688   sqlite3 *db = pParse->db;  /* Database connection */
110689   sqlite3_value *pVal = 0;
110690   int op;                    /* Opcode of pRight */
110691 
110692   if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){
110693     return 0;
110694   }
110695 #ifdef SQLITE_EBCDIC
110696   if( *pnoCase ) return 0;
110697 #endif
110698   pList = pExpr->x.pList;
110699   pLeft = pList->a[1].pExpr;
110700   if( pLeft->op!=TK_COLUMN
110701    || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT
110702    || IsVirtual(pLeft->pTab)
110703   ){
110704     /* IMP: R-02065-49465 The left-hand side of the LIKE or GLOB operator must
110705     ** be the name of an indexed column with TEXT affinity. */
110706     return 0;
110707   }
110708   assert( pLeft->iColumn!=(-1) ); /* Because IPK never has AFF_TEXT */
110709 
110710   pRight = sqlite3ExprSkipCollate(pList->a[0].pExpr);
110711   op = pRight->op;
110712   if( op==TK_VARIABLE ){
110713     Vdbe *pReprepare = pParse->pReprepare;
110714     int iCol = pRight->iColumn;
110715     pVal = sqlite3VdbeGetBoundValue(pReprepare, iCol, SQLITE_AFF_NONE);
110716     if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){
110717       z = (char *)sqlite3_value_text(pVal);
110718     }
110719     sqlite3VdbeSetVarmask(pParse->pVdbe, iCol);
110720     assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER );
110721   }else if( op==TK_STRING ){
110722     z = pRight->u.zToken;
110723   }
110724   if( z ){
110725     cnt = 0;
110726     while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){
110727       cnt++;
110728     }
110729     if( cnt!=0 && 255!=(u8)z[cnt-1] ){
110730       Expr *pPrefix;
110731       *pisComplete = c==wc[0] && z[cnt+1]==0;
110732       pPrefix = sqlite3Expr(db, TK_STRING, z);
110733       if( pPrefix ) pPrefix->u.zToken[cnt] = 0;
110734       *ppPrefix = pPrefix;
110735       if( op==TK_VARIABLE ){
110736         Vdbe *v = pParse->pVdbe;
110737         sqlite3VdbeSetVarmask(v, pRight->iColumn);
110738         if( *pisComplete && pRight->u.zToken[1] ){
110739           /* If the rhs of the LIKE expression is a variable, and the current
110740           ** value of the variable means there is no need to invoke the LIKE
110741           ** function, then no OP_Variable will be added to the program.
110742           ** This causes problems for the sqlite3_bind_parameter_name()
110743           ** API. To workaround them, add a dummy OP_Variable here.
110744           */
110745           int r1 = sqlite3GetTempReg(pParse);
110746           sqlite3ExprCodeTarget(pParse, pRight, r1);
110747           sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0);
110748           sqlite3ReleaseTempReg(pParse, r1);
110749         }
110750       }
110751     }else{
110752       z = 0;
110753     }
110754   }
110755 
110756   sqlite3ValueFree(pVal);
110757   return (z!=0);
110758 }
110759 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
110760 
110761 
110762 #ifndef SQLITE_OMIT_VIRTUALTABLE
110763 /*
110764 ** Check to see if the given expression is of the form
110765 **
110766 **         column MATCH expr
110767 **
110768 ** If it is then return TRUE.  If not, return FALSE.
110769 */
110770 static int isMatchOfColumn(
110771   Expr *pExpr      /* Test this expression */
110772 ){
110773   ExprList *pList;
110774 
110775   if( pExpr->op!=TK_FUNCTION ){
110776     return 0;
110777   }
110778   if( sqlite3StrICmp(pExpr->u.zToken,"match")!=0 ){
110779     return 0;
110780   }
110781   pList = pExpr->x.pList;
110782   if( pList->nExpr!=2 ){
110783     return 0;
110784   }
110785   if( pList->a[1].pExpr->op != TK_COLUMN ){
110786     return 0;
110787   }
110788   return 1;
110789 }
110790 #endif /* SQLITE_OMIT_VIRTUALTABLE */
110791 
110792 /*
110793 ** If the pBase expression originated in the ON or USING clause of
110794 ** a join, then transfer the appropriate markings over to derived.
110795 */
110796 static void transferJoinMarkings(Expr *pDerived, Expr *pBase){
110797   if( pDerived ){
110798     pDerived->flags |= pBase->flags & EP_FromJoin;
110799     pDerived->iRightJoinTable = pBase->iRightJoinTable;
110800   }
110801 }
110802 
110803 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
110804 /*
110805 ** Analyze a term that consists of two or more OR-connected
110806 ** subterms.  So in:
110807 **
110808 **     ... WHERE  (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13)
110809 **                          ^^^^^^^^^^^^^^^^^^^^
110810 **
110811 ** This routine analyzes terms such as the middle term in the above example.
110812 ** A WhereOrTerm object is computed and attached to the term under
110813 ** analysis, regardless of the outcome of the analysis.  Hence:
110814 **
110815 **     WhereTerm.wtFlags   |=  TERM_ORINFO
110816 **     WhereTerm.u.pOrInfo  =  a dynamically allocated WhereOrTerm object
110817 **
110818 ** The term being analyzed must have two or more of OR-connected subterms.
110819 ** A single subterm might be a set of AND-connected sub-subterms.
110820 ** Examples of terms under analysis:
110821 **
110822 **     (A)     t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5
110823 **     (B)     x=expr1 OR expr2=x OR x=expr3
110824 **     (C)     t1.x=t2.y OR (t1.x=t2.z AND t1.y=15)
110825 **     (D)     x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*')
110826 **     (E)     (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6)
110827 **
110828 ** CASE 1:
110829 **
110830 ** If all subterms are of the form T.C=expr for some single column of C and
110831 ** a single table T (as shown in example B above) then create a new virtual
110832 ** term that is an equivalent IN expression.  In other words, if the term
110833 ** being analyzed is:
110834 **
110835 **      x = expr1  OR  expr2 = x  OR  x = expr3
110836 **
110837 ** then create a new virtual term like this:
110838 **
110839 **      x IN (expr1,expr2,expr3)
110840 **
110841 ** CASE 2:
110842 **
110843 ** If all subterms are indexable by a single table T, then set
110844 **
110845 **     WhereTerm.eOperator              =  WO_OR
110846 **     WhereTerm.u.pOrInfo->indexable  |=  the cursor number for table T
110847 **
110848 ** A subterm is "indexable" if it is of the form
110849 ** "T.C <op> <expr>" where C is any column of table T and
110850 ** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN".
110851 ** A subterm is also indexable if it is an AND of two or more
110852 ** subsubterms at least one of which is indexable.  Indexable AND
110853 ** subterms have their eOperator set to WO_AND and they have
110854 ** u.pAndInfo set to a dynamically allocated WhereAndTerm object.
110855 **
110856 ** From another point of view, "indexable" means that the subterm could
110857 ** potentially be used with an index if an appropriate index exists.
110858 ** This analysis does not consider whether or not the index exists; that
110859 ** is decided elsewhere.  This analysis only looks at whether subterms
110860 ** appropriate for indexing exist.
110861 **
110862 ** All examples A through E above satisfy case 2.  But if a term
110863 ** also statisfies case 1 (such as B) we know that the optimizer will
110864 ** always prefer case 1, so in that case we pretend that case 2 is not
110865 ** satisfied.
110866 **
110867 ** It might be the case that multiple tables are indexable.  For example,
110868 ** (E) above is indexable on tables P, Q, and R.
110869 **
110870 ** Terms that satisfy case 2 are candidates for lookup by using
110871 ** separate indices to find rowids for each subterm and composing
110872 ** the union of all rowids using a RowSet object.  This is similar
110873 ** to "bitmap indices" in other database engines.
110874 **
110875 ** OTHERWISE:
110876 **
110877 ** If neither case 1 nor case 2 apply, then leave the eOperator set to
110878 ** zero.  This term is not useful for search.
110879 */
110880 static void exprAnalyzeOrTerm(
110881   SrcList *pSrc,            /* the FROM clause */
110882   WhereClause *pWC,         /* the complete WHERE clause */
110883   int idxTerm               /* Index of the OR-term to be analyzed */
110884 ){
110885   WhereInfo *pWInfo = pWC->pWInfo;        /* WHERE clause processing context */
110886   Parse *pParse = pWInfo->pParse;         /* Parser context */
110887   sqlite3 *db = pParse->db;               /* Database connection */
110888   WhereTerm *pTerm = &pWC->a[idxTerm];    /* The term to be analyzed */
110889   Expr *pExpr = pTerm->pExpr;             /* The expression of the term */
110890   int i;                                  /* Loop counters */
110891   WhereClause *pOrWc;       /* Breakup of pTerm into subterms */
110892   WhereTerm *pOrTerm;       /* A Sub-term within the pOrWc */
110893   WhereOrInfo *pOrInfo;     /* Additional information associated with pTerm */
110894   Bitmask chngToIN;         /* Tables that might satisfy case 1 */
110895   Bitmask indexable;        /* Tables that are indexable, satisfying case 2 */
110896 
110897   /*
110898   ** Break the OR clause into its separate subterms.  The subterms are
110899   ** stored in a WhereClause structure containing within the WhereOrInfo
110900   ** object that is attached to the original OR clause term.
110901   */
110902   assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 );
110903   assert( pExpr->op==TK_OR );
110904   pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo));
110905   if( pOrInfo==0 ) return;
110906   pTerm->wtFlags |= TERM_ORINFO;
110907   pOrWc = &pOrInfo->wc;
110908   whereClauseInit(pOrWc, pWInfo);
110909   whereSplit(pOrWc, pExpr, TK_OR);
110910   exprAnalyzeAll(pSrc, pOrWc);
110911   if( db->mallocFailed ) return;
110912   assert( pOrWc->nTerm>=2 );
110913 
110914   /*
110915   ** Compute the set of tables that might satisfy cases 1 or 2.
110916   */
110917   indexable = ~(Bitmask)0;
110918   chngToIN = ~(Bitmask)0;
110919   for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){
110920     if( (pOrTerm->eOperator & WO_SINGLE)==0 ){
110921       WhereAndInfo *pAndInfo;
110922       assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 );
110923       chngToIN = 0;
110924       pAndInfo = sqlite3DbMallocRaw(db, sizeof(*pAndInfo));
110925       if( pAndInfo ){
110926         WhereClause *pAndWC;
110927         WhereTerm *pAndTerm;
110928         int j;
110929         Bitmask b = 0;
110930         pOrTerm->u.pAndInfo = pAndInfo;
110931         pOrTerm->wtFlags |= TERM_ANDINFO;
110932         pOrTerm->eOperator = WO_AND;
110933         pAndWC = &pAndInfo->wc;
110934         whereClauseInit(pAndWC, pWC->pWInfo);
110935         whereSplit(pAndWC, pOrTerm->pExpr, TK_AND);
110936         exprAnalyzeAll(pSrc, pAndWC);
110937         pAndWC->pOuter = pWC;
110938         testcase( db->mallocFailed );
110939         if( !db->mallocFailed ){
110940           for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){
110941             assert( pAndTerm->pExpr );
110942             if( allowedOp(pAndTerm->pExpr->op) ){
110943               b |= getMask(&pWInfo->sMaskSet, pAndTerm->leftCursor);
110944             }
110945           }
110946         }
110947         indexable &= b;
110948       }
110949     }else if( pOrTerm->wtFlags & TERM_COPIED ){
110950       /* Skip this term for now.  We revisit it when we process the
110951       ** corresponding TERM_VIRTUAL term */
110952     }else{
110953       Bitmask b;
110954       b = getMask(&pWInfo->sMaskSet, pOrTerm->leftCursor);
110955       if( pOrTerm->wtFlags & TERM_VIRTUAL ){
110956         WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent];
110957         b |= getMask(&pWInfo->sMaskSet, pOther->leftCursor);
110958       }
110959       indexable &= b;
110960       if( (pOrTerm->eOperator & WO_EQ)==0 ){
110961         chngToIN = 0;
110962       }else{
110963         chngToIN &= b;
110964       }
110965     }
110966   }
110967 
110968   /*
110969   ** Record the set of tables that satisfy case 2.  The set might be
110970   ** empty.
110971   */
110972   pOrInfo->indexable = indexable;
110973   pTerm->eOperator = indexable==0 ? 0 : WO_OR;
110974 
110975   /*
110976   ** chngToIN holds a set of tables that *might* satisfy case 1.  But
110977   ** we have to do some additional checking to see if case 1 really
110978   ** is satisfied.
110979   **
110980   ** chngToIN will hold either 0, 1, or 2 bits.  The 0-bit case means
110981   ** that there is no possibility of transforming the OR clause into an
110982   ** IN operator because one or more terms in the OR clause contain
110983   ** something other than == on a column in the single table.  The 1-bit
110984   ** case means that every term of the OR clause is of the form
110985   ** "table.column=expr" for some single table.  The one bit that is set
110986   ** will correspond to the common table.  We still need to check to make
110987   ** sure the same column is used on all terms.  The 2-bit case is when
110988   ** the all terms are of the form "table1.column=table2.column".  It
110989   ** might be possible to form an IN operator with either table1.column
110990   ** or table2.column as the LHS if either is common to every term of
110991   ** the OR clause.
110992   **
110993   ** Note that terms of the form "table.column1=table.column2" (the
110994   ** same table on both sizes of the ==) cannot be optimized.
110995   */
110996   if( chngToIN ){
110997     int okToChngToIN = 0;     /* True if the conversion to IN is valid */
110998     int iColumn = -1;         /* Column index on lhs of IN operator */
110999     int iCursor = -1;         /* Table cursor common to all terms */
111000     int j = 0;                /* Loop counter */
111001 
111002     /* Search for a table and column that appears on one side or the
111003     ** other of the == operator in every subterm.  That table and column
111004     ** will be recorded in iCursor and iColumn.  There might not be any
111005     ** such table and column.  Set okToChngToIN if an appropriate table
111006     ** and column is found but leave okToChngToIN false if not found.
111007     */
111008     for(j=0; j<2 && !okToChngToIN; j++){
111009       pOrTerm = pOrWc->a;
111010       for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){
111011         assert( pOrTerm->eOperator & WO_EQ );
111012         pOrTerm->wtFlags &= ~TERM_OR_OK;
111013         if( pOrTerm->leftCursor==iCursor ){
111014           /* This is the 2-bit case and we are on the second iteration and
111015           ** current term is from the first iteration.  So skip this term. */
111016           assert( j==1 );
111017           continue;
111018         }
111019         if( (chngToIN & getMask(&pWInfo->sMaskSet, pOrTerm->leftCursor))==0 ){
111020           /* This term must be of the form t1.a==t2.b where t2 is in the
111021           ** chngToIN set but t1 is not.  This term will be either preceeded
111022           ** or follwed by an inverted copy (t2.b==t1.a).  Skip this term
111023           ** and use its inversion. */
111024           testcase( pOrTerm->wtFlags & TERM_COPIED );
111025           testcase( pOrTerm->wtFlags & TERM_VIRTUAL );
111026           assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) );
111027           continue;
111028         }
111029         iColumn = pOrTerm->u.leftColumn;
111030         iCursor = pOrTerm->leftCursor;
111031         break;
111032       }
111033       if( i<0 ){
111034         /* No candidate table+column was found.  This can only occur
111035         ** on the second iteration */
111036         assert( j==1 );
111037         assert( IsPowerOfTwo(chngToIN) );
111038         assert( chngToIN==getMask(&pWInfo->sMaskSet, iCursor) );
111039         break;
111040       }
111041       testcase( j==1 );
111042 
111043       /* We have found a candidate table and column.  Check to see if that
111044       ** table and column is common to every term in the OR clause */
111045       okToChngToIN = 1;
111046       for(; i>=0 && okToChngToIN; i--, pOrTerm++){
111047         assert( pOrTerm->eOperator & WO_EQ );
111048         if( pOrTerm->leftCursor!=iCursor ){
111049           pOrTerm->wtFlags &= ~TERM_OR_OK;
111050         }else if( pOrTerm->u.leftColumn!=iColumn ){
111051           okToChngToIN = 0;
111052         }else{
111053           int affLeft, affRight;
111054           /* If the right-hand side is also a column, then the affinities
111055           ** of both right and left sides must be such that no type
111056           ** conversions are required on the right.  (Ticket #2249)
111057           */
111058           affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight);
111059           affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft);
111060           if( affRight!=0 && affRight!=affLeft ){
111061             okToChngToIN = 0;
111062           }else{
111063             pOrTerm->wtFlags |= TERM_OR_OK;
111064           }
111065         }
111066       }
111067     }
111068 
111069     /* At this point, okToChngToIN is true if original pTerm satisfies
111070     ** case 1.  In that case, construct a new virtual term that is
111071     ** pTerm converted into an IN operator.
111072     */
111073     if( okToChngToIN ){
111074       Expr *pDup;            /* A transient duplicate expression */
111075       ExprList *pList = 0;   /* The RHS of the IN operator */
111076       Expr *pLeft = 0;       /* The LHS of the IN operator */
111077       Expr *pNew;            /* The complete IN operator */
111078 
111079       for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){
111080         if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue;
111081         assert( pOrTerm->eOperator & WO_EQ );
111082         assert( pOrTerm->leftCursor==iCursor );
111083         assert( pOrTerm->u.leftColumn==iColumn );
111084         pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0);
111085         pList = sqlite3ExprListAppend(pWInfo->pParse, pList, pDup);
111086         pLeft = pOrTerm->pExpr->pLeft;
111087       }
111088       assert( pLeft!=0 );
111089       pDup = sqlite3ExprDup(db, pLeft, 0);
111090       pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0, 0);
111091       if( pNew ){
111092         int idxNew;
111093         transferJoinMarkings(pNew, pExpr);
111094         assert( !ExprHasProperty(pNew, EP_xIsSelect) );
111095         pNew->x.pList = pList;
111096         idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
111097         testcase( idxNew==0 );
111098         exprAnalyze(pSrc, pWC, idxNew);
111099         pTerm = &pWC->a[idxTerm];
111100         pWC->a[idxNew].iParent = idxTerm;
111101         pTerm->nChild = 1;
111102       }else{
111103         sqlite3ExprListDelete(db, pList);
111104       }
111105       pTerm->eOperator = WO_NOOP;  /* case 1 trumps case 2 */
111106     }
111107   }
111108 }
111109 #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */
111110 
111111 /*
111112 ** The input to this routine is an WhereTerm structure with only the
111113 ** "pExpr" field filled in.  The job of this routine is to analyze the
111114 ** subexpression and populate all the other fields of the WhereTerm
111115 ** structure.
111116 **
111117 ** If the expression is of the form "<expr> <op> X" it gets commuted
111118 ** to the standard form of "X <op> <expr>".
111119 **
111120 ** If the expression is of the form "X <op> Y" where both X and Y are
111121 ** columns, then the original expression is unchanged and a new virtual
111122 ** term of the form "Y <op> X" is added to the WHERE clause and
111123 ** analyzed separately.  The original term is marked with TERM_COPIED
111124 ** and the new term is marked with TERM_DYNAMIC (because it's pExpr
111125 ** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it
111126 ** is a commuted copy of a prior term.)  The original term has nChild=1
111127 ** and the copy has idxParent set to the index of the original term.
111128 */
111129 static void exprAnalyze(
111130   SrcList *pSrc,            /* the FROM clause */
111131   WhereClause *pWC,         /* the WHERE clause */
111132   int idxTerm               /* Index of the term to be analyzed */
111133 ){
111134   WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */
111135   WhereTerm *pTerm;                /* The term to be analyzed */
111136   WhereMaskSet *pMaskSet;          /* Set of table index masks */
111137   Expr *pExpr;                     /* The expression to be analyzed */
111138   Bitmask prereqLeft;              /* Prerequesites of the pExpr->pLeft */
111139   Bitmask prereqAll;               /* Prerequesites of pExpr */
111140   Bitmask extraRight = 0;          /* Extra dependencies on LEFT JOIN */
111141   Expr *pStr1 = 0;                 /* RHS of LIKE/GLOB operator */
111142   int isComplete = 0;              /* RHS of LIKE/GLOB ends with wildcard */
111143   int noCase = 0;                  /* LIKE/GLOB distinguishes case */
111144   int op;                          /* Top-level operator.  pExpr->op */
111145   Parse *pParse = pWInfo->pParse;  /* Parsing context */
111146   sqlite3 *db = pParse->db;        /* Database connection */
111147 
111148   if( db->mallocFailed ){
111149     return;
111150   }
111151   pTerm = &pWC->a[idxTerm];
111152   pMaskSet = &pWInfo->sMaskSet;
111153   pExpr = pTerm->pExpr;
111154   assert( pExpr->op!=TK_AS && pExpr->op!=TK_COLLATE );
111155   prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
111156   op = pExpr->op;
111157   if( op==TK_IN ){
111158     assert( pExpr->pRight==0 );
111159     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
111160       pTerm->prereqRight = exprSelectTableUsage(pMaskSet, pExpr->x.pSelect);
111161     }else{
111162       pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->x.pList);
111163     }
111164   }else if( op==TK_ISNULL ){
111165     pTerm->prereqRight = 0;
111166   }else{
111167     pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight);
111168   }
111169   prereqAll = exprTableUsage(pMaskSet, pExpr);
111170   if( ExprHasProperty(pExpr, EP_FromJoin) ){
111171     Bitmask x = getMask(pMaskSet, pExpr->iRightJoinTable);
111172     prereqAll |= x;
111173     extraRight = x-1;  /* ON clause terms may not be used with an index
111174                        ** on left table of a LEFT JOIN.  Ticket #3015 */
111175   }
111176   pTerm->prereqAll = prereqAll;
111177   pTerm->leftCursor = -1;
111178   pTerm->iParent = -1;
111179   pTerm->eOperator = 0;
111180   if( allowedOp(op) ){
111181     Expr *pLeft = sqlite3ExprSkipCollate(pExpr->pLeft);
111182     Expr *pRight = sqlite3ExprSkipCollate(pExpr->pRight);
111183     u16 opMask = (pTerm->prereqRight & prereqLeft)==0 ? WO_ALL : WO_EQUIV;
111184     if( pLeft->op==TK_COLUMN ){
111185       pTerm->leftCursor = pLeft->iTable;
111186       pTerm->u.leftColumn = pLeft->iColumn;
111187       pTerm->eOperator = operatorMask(op) & opMask;
111188     }
111189     if( pRight && pRight->op==TK_COLUMN ){
111190       WhereTerm *pNew;
111191       Expr *pDup;
111192       u16 eExtraOp = 0;        /* Extra bits for pNew->eOperator */
111193       if( pTerm->leftCursor>=0 ){
111194         int idxNew;
111195         pDup = sqlite3ExprDup(db, pExpr, 0);
111196         if( db->mallocFailed ){
111197           sqlite3ExprDelete(db, pDup);
111198           return;
111199         }
111200         idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
111201         if( idxNew==0 ) return;
111202         pNew = &pWC->a[idxNew];
111203         pNew->iParent = idxTerm;
111204         pTerm = &pWC->a[idxTerm];
111205         pTerm->nChild = 1;
111206         pTerm->wtFlags |= TERM_COPIED;
111207         if( pExpr->op==TK_EQ
111208          && !ExprHasProperty(pExpr, EP_FromJoin)
111209          && OptimizationEnabled(db, SQLITE_Transitive)
111210         ){
111211           pTerm->eOperator |= WO_EQUIV;
111212           eExtraOp = WO_EQUIV;
111213         }
111214       }else{
111215         pDup = pExpr;
111216         pNew = pTerm;
111217       }
111218       exprCommute(pParse, pDup);
111219       pLeft = sqlite3ExprSkipCollate(pDup->pLeft);
111220       pNew->leftCursor = pLeft->iTable;
111221       pNew->u.leftColumn = pLeft->iColumn;
111222       testcase( (prereqLeft | extraRight) != prereqLeft );
111223       pNew->prereqRight = prereqLeft | extraRight;
111224       pNew->prereqAll = prereqAll;
111225       pNew->eOperator = (operatorMask(pDup->op) + eExtraOp) & opMask;
111226     }
111227   }
111228 
111229 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
111230   /* If a term is the BETWEEN operator, create two new virtual terms
111231   ** that define the range that the BETWEEN implements.  For example:
111232   **
111233   **      a BETWEEN b AND c
111234   **
111235   ** is converted into:
111236   **
111237   **      (a BETWEEN b AND c) AND (a>=b) AND (a<=c)
111238   **
111239   ** The two new terms are added onto the end of the WhereClause object.
111240   ** The new terms are "dynamic" and are children of the original BETWEEN
111241   ** term.  That means that if the BETWEEN term is coded, the children are
111242   ** skipped.  Or, if the children are satisfied by an index, the original
111243   ** BETWEEN term is skipped.
111244   */
111245   else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){
111246     ExprList *pList = pExpr->x.pList;
111247     int i;
111248     static const u8 ops[] = {TK_GE, TK_LE};
111249     assert( pList!=0 );
111250     assert( pList->nExpr==2 );
111251     for(i=0; i<2; i++){
111252       Expr *pNewExpr;
111253       int idxNew;
111254       pNewExpr = sqlite3PExpr(pParse, ops[i],
111255                              sqlite3ExprDup(db, pExpr->pLeft, 0),
111256                              sqlite3ExprDup(db, pList->a[i].pExpr, 0), 0);
111257       transferJoinMarkings(pNewExpr, pExpr);
111258       idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
111259       testcase( idxNew==0 );
111260       exprAnalyze(pSrc, pWC, idxNew);
111261       pTerm = &pWC->a[idxTerm];
111262       pWC->a[idxNew].iParent = idxTerm;
111263     }
111264     pTerm->nChild = 2;
111265   }
111266 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */
111267 
111268 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
111269   /* Analyze a term that is composed of two or more subterms connected by
111270   ** an OR operator.
111271   */
111272   else if( pExpr->op==TK_OR ){
111273     assert( pWC->op==TK_AND );
111274     exprAnalyzeOrTerm(pSrc, pWC, idxTerm);
111275     pTerm = &pWC->a[idxTerm];
111276   }
111277 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
111278 
111279 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
111280   /* Add constraints to reduce the search space on a LIKE or GLOB
111281   ** operator.
111282   **
111283   ** A like pattern of the form "x LIKE 'abc%'" is changed into constraints
111284   **
111285   **          x>='abc' AND x<'abd' AND x LIKE 'abc%'
111286   **
111287   ** The last character of the prefix "abc" is incremented to form the
111288   ** termination condition "abd".
111289   */
111290   if( pWC->op==TK_AND
111291    && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase)
111292   ){
111293     Expr *pLeft;       /* LHS of LIKE/GLOB operator */
111294     Expr *pStr2;       /* Copy of pStr1 - RHS of LIKE/GLOB operator */
111295     Expr *pNewExpr1;
111296     Expr *pNewExpr2;
111297     int idxNew1;
111298     int idxNew2;
111299     Token sCollSeqName;  /* Name of collating sequence */
111300 
111301     pLeft = pExpr->x.pList->a[1].pExpr;
111302     pStr2 = sqlite3ExprDup(db, pStr1, 0);
111303     if( !db->mallocFailed ){
111304       u8 c, *pC;       /* Last character before the first wildcard */
111305       pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1];
111306       c = *pC;
111307       if( noCase ){
111308         /* The point is to increment the last character before the first
111309         ** wildcard.  But if we increment '@', that will push it into the
111310         ** alphabetic range where case conversions will mess up the
111311         ** inequality.  To avoid this, make sure to also run the full
111312         ** LIKE on all candidate expressions by clearing the isComplete flag
111313         */
111314         if( c=='A'-1 ) isComplete = 0;
111315         c = sqlite3UpperToLower[c];
111316       }
111317       *pC = c + 1;
111318     }
111319     sCollSeqName.z = noCase ? "NOCASE" : "BINARY";
111320     sCollSeqName.n = 6;
111321     pNewExpr1 = sqlite3ExprDup(db, pLeft, 0);
111322     pNewExpr1 = sqlite3PExpr(pParse, TK_GE,
111323            sqlite3ExprAddCollateToken(pParse,pNewExpr1,&sCollSeqName),
111324            pStr1, 0);
111325     transferJoinMarkings(pNewExpr1, pExpr);
111326     idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC);
111327     testcase( idxNew1==0 );
111328     exprAnalyze(pSrc, pWC, idxNew1);
111329     pNewExpr2 = sqlite3ExprDup(db, pLeft, 0);
111330     pNewExpr2 = sqlite3PExpr(pParse, TK_LT,
111331            sqlite3ExprAddCollateToken(pParse,pNewExpr2,&sCollSeqName),
111332            pStr2, 0);
111333     transferJoinMarkings(pNewExpr2, pExpr);
111334     idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC);
111335     testcase( idxNew2==0 );
111336     exprAnalyze(pSrc, pWC, idxNew2);
111337     pTerm = &pWC->a[idxTerm];
111338     if( isComplete ){
111339       pWC->a[idxNew1].iParent = idxTerm;
111340       pWC->a[idxNew2].iParent = idxTerm;
111341       pTerm->nChild = 2;
111342     }
111343   }
111344 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
111345 
111346 #ifndef SQLITE_OMIT_VIRTUALTABLE
111347   /* Add a WO_MATCH auxiliary term to the constraint set if the
111348   ** current expression is of the form:  column MATCH expr.
111349   ** This information is used by the xBestIndex methods of
111350   ** virtual tables.  The native query optimizer does not attempt
111351   ** to do anything with MATCH functions.
111352   */
111353   if( isMatchOfColumn(pExpr) ){
111354     int idxNew;
111355     Expr *pRight, *pLeft;
111356     WhereTerm *pNewTerm;
111357     Bitmask prereqColumn, prereqExpr;
111358 
111359     pRight = pExpr->x.pList->a[0].pExpr;
111360     pLeft = pExpr->x.pList->a[1].pExpr;
111361     prereqExpr = exprTableUsage(pMaskSet, pRight);
111362     prereqColumn = exprTableUsage(pMaskSet, pLeft);
111363     if( (prereqExpr & prereqColumn)==0 ){
111364       Expr *pNewExpr;
111365       pNewExpr = sqlite3PExpr(pParse, TK_MATCH,
111366                               0, sqlite3ExprDup(db, pRight, 0), 0);
111367       idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
111368       testcase( idxNew==0 );
111369       pNewTerm = &pWC->a[idxNew];
111370       pNewTerm->prereqRight = prereqExpr;
111371       pNewTerm->leftCursor = pLeft->iTable;
111372       pNewTerm->u.leftColumn = pLeft->iColumn;
111373       pNewTerm->eOperator = WO_MATCH;
111374       pNewTerm->iParent = idxTerm;
111375       pTerm = &pWC->a[idxTerm];
111376       pTerm->nChild = 1;
111377       pTerm->wtFlags |= TERM_COPIED;
111378       pNewTerm->prereqAll = pTerm->prereqAll;
111379     }
111380   }
111381 #endif /* SQLITE_OMIT_VIRTUALTABLE */
111382 
111383 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
111384   /* When sqlite_stat3 histogram data is available an operator of the
111385   ** form "x IS NOT NULL" can sometimes be evaluated more efficiently
111386   ** as "x>NULL" if x is not an INTEGER PRIMARY KEY.  So construct a
111387   ** virtual term of that form.
111388   **
111389   ** Note that the virtual term must be tagged with TERM_VNULL.  This
111390   ** TERM_VNULL tag will suppress the not-null check at the beginning
111391   ** of the loop.  Without the TERM_VNULL flag, the not-null check at
111392   ** the start of the loop will prevent any results from being returned.
111393   */
111394   if( pExpr->op==TK_NOTNULL
111395    && pExpr->pLeft->op==TK_COLUMN
111396    && pExpr->pLeft->iColumn>=0
111397    && OptimizationEnabled(db, SQLITE_Stat3)
111398   ){
111399     Expr *pNewExpr;
111400     Expr *pLeft = pExpr->pLeft;
111401     int idxNew;
111402     WhereTerm *pNewTerm;
111403 
111404     pNewExpr = sqlite3PExpr(pParse, TK_GT,
111405                             sqlite3ExprDup(db, pLeft, 0),
111406                             sqlite3PExpr(pParse, TK_NULL, 0, 0, 0), 0);
111407 
111408     idxNew = whereClauseInsert(pWC, pNewExpr,
111409                               TERM_VIRTUAL|TERM_DYNAMIC|TERM_VNULL);
111410     if( idxNew ){
111411       pNewTerm = &pWC->a[idxNew];
111412       pNewTerm->prereqRight = 0;
111413       pNewTerm->leftCursor = pLeft->iTable;
111414       pNewTerm->u.leftColumn = pLeft->iColumn;
111415       pNewTerm->eOperator = WO_GT;
111416       pNewTerm->iParent = idxTerm;
111417       pTerm = &pWC->a[idxTerm];
111418       pTerm->nChild = 1;
111419       pTerm->wtFlags |= TERM_COPIED;
111420       pNewTerm->prereqAll = pTerm->prereqAll;
111421     }
111422   }
111423 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
111424 
111425   /* Prevent ON clause terms of a LEFT JOIN from being used to drive
111426   ** an index for tables to the left of the join.
111427   */
111428   pTerm->prereqRight |= extraRight;
111429 }
111430 
111431 /*
111432 ** This function searches pList for a entry that matches the iCol-th column
111433 ** of index pIdx.
111434 **
111435 ** If such an expression is found, its index in pList->a[] is returned. If
111436 ** no expression is found, -1 is returned.
111437 */
111438 static int findIndexCol(
111439   Parse *pParse,                  /* Parse context */
111440   ExprList *pList,                /* Expression list to search */
111441   int iBase,                      /* Cursor for table associated with pIdx */
111442   Index *pIdx,                    /* Index to match column of */
111443   int iCol                        /* Column of index to match */
111444 ){
111445   int i;
111446   const char *zColl = pIdx->azColl[iCol];
111447 
111448   for(i=0; i<pList->nExpr; i++){
111449     Expr *p = sqlite3ExprSkipCollate(pList->a[i].pExpr);
111450     if( p->op==TK_COLUMN
111451      && p->iColumn==pIdx->aiColumn[iCol]
111452      && p->iTable==iBase
111453     ){
111454       CollSeq *pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr);
111455       if( ALWAYS(pColl) && 0==sqlite3StrICmp(pColl->zName, zColl) ){
111456         return i;
111457       }
111458     }
111459   }
111460 
111461   return -1;
111462 }
111463 
111464 /*
111465 ** Return true if the DISTINCT expression-list passed as the third argument
111466 ** is redundant.
111467 **
111468 ** A DISTINCT list is redundant if the database contains some subset of
111469 ** columns that are unique and non-null.
111470 */
111471 static int isDistinctRedundant(
111472   Parse *pParse,            /* Parsing context */
111473   SrcList *pTabList,        /* The FROM clause */
111474   WhereClause *pWC,         /* The WHERE clause */
111475   ExprList *pDistinct       /* The result set that needs to be DISTINCT */
111476 ){
111477   Table *pTab;
111478   Index *pIdx;
111479   int i;
111480   int iBase;
111481 
111482   /* If there is more than one table or sub-select in the FROM clause of
111483   ** this query, then it will not be possible to show that the DISTINCT
111484   ** clause is redundant. */
111485   if( pTabList->nSrc!=1 ) return 0;
111486   iBase = pTabList->a[0].iCursor;
111487   pTab = pTabList->a[0].pTab;
111488 
111489   /* If any of the expressions is an IPK column on table iBase, then return
111490   ** true. Note: The (p->iTable==iBase) part of this test may be false if the
111491   ** current SELECT is a correlated sub-query.
111492   */
111493   for(i=0; i<pDistinct->nExpr; i++){
111494     Expr *p = sqlite3ExprSkipCollate(pDistinct->a[i].pExpr);
111495     if( p->op==TK_COLUMN && p->iTable==iBase && p->iColumn<0 ) return 1;
111496   }
111497 
111498   /* Loop through all indices on the table, checking each to see if it makes
111499   ** the DISTINCT qualifier redundant. It does so if:
111500   **
111501   **   1. The index is itself UNIQUE, and
111502   **
111503   **   2. All of the columns in the index are either part of the pDistinct
111504   **      list, or else the WHERE clause contains a term of the form "col=X",
111505   **      where X is a constant value. The collation sequences of the
111506   **      comparison and select-list expressions must match those of the index.
111507   **
111508   **   3. All of those index columns for which the WHERE clause does not
111509   **      contain a "col=X" term are subject to a NOT NULL constraint.
111510   */
111511   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
111512     if( pIdx->onError==OE_None ) continue;
111513     for(i=0; i<pIdx->nKeyCol; i++){
111514       i16 iCol = pIdx->aiColumn[i];
111515       if( 0==findTerm(pWC, iBase, iCol, ~(Bitmask)0, WO_EQ, pIdx) ){
111516         int iIdxCol = findIndexCol(pParse, pDistinct, iBase, pIdx, i);
111517         if( iIdxCol<0 || pTab->aCol[iCol].notNull==0 ){
111518           break;
111519         }
111520       }
111521     }
111522     if( i==pIdx->nKeyCol ){
111523       /* This index implies that the DISTINCT qualifier is redundant. */
111524       return 1;
111525     }
111526   }
111527 
111528   return 0;
111529 }
111530 
111531 
111532 /*
111533 ** Estimate the logarithm of the input value to base 2.
111534 */
111535 static LogEst estLog(LogEst N){
111536   LogEst x = sqlite3LogEst(N);
111537   return x>33 ? x - 33 : 0;
111538 }
111539 
111540 /*
111541 ** Two routines for printing the content of an sqlite3_index_info
111542 ** structure.  Used for testing and debugging only.  If neither
111543 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
111544 ** are no-ops.
111545 */
111546 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED)
111547 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){
111548   int i;
111549   if( !sqlite3WhereTrace ) return;
111550   for(i=0; i<p->nConstraint; i++){
111551     sqlite3DebugPrintf("  constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
111552        i,
111553        p->aConstraint[i].iColumn,
111554        p->aConstraint[i].iTermOffset,
111555        p->aConstraint[i].op,
111556        p->aConstraint[i].usable);
111557   }
111558   for(i=0; i<p->nOrderBy; i++){
111559     sqlite3DebugPrintf("  orderby[%d]: col=%d desc=%d\n",
111560        i,
111561        p->aOrderBy[i].iColumn,
111562        p->aOrderBy[i].desc);
111563   }
111564 }
111565 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){
111566   int i;
111567   if( !sqlite3WhereTrace ) return;
111568   for(i=0; i<p->nConstraint; i++){
111569     sqlite3DebugPrintf("  usage[%d]: argvIdx=%d omit=%d\n",
111570        i,
111571        p->aConstraintUsage[i].argvIndex,
111572        p->aConstraintUsage[i].omit);
111573   }
111574   sqlite3DebugPrintf("  idxNum=%d\n", p->idxNum);
111575   sqlite3DebugPrintf("  idxStr=%s\n", p->idxStr);
111576   sqlite3DebugPrintf("  orderByConsumed=%d\n", p->orderByConsumed);
111577   sqlite3DebugPrintf("  estimatedCost=%g\n", p->estimatedCost);
111578   sqlite3DebugPrintf("  estimatedRows=%lld\n", p->estimatedRows);
111579 }
111580 #else
111581 #define TRACE_IDX_INPUTS(A)
111582 #define TRACE_IDX_OUTPUTS(A)
111583 #endif
111584 
111585 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
111586 /*
111587 ** Return TRUE if the WHERE clause term pTerm is of a form where it
111588 ** could be used with an index to access pSrc, assuming an appropriate
111589 ** index existed.
111590 */
111591 static int termCanDriveIndex(
111592   WhereTerm *pTerm,              /* WHERE clause term to check */
111593   struct SrcList_item *pSrc,     /* Table we are trying to access */
111594   Bitmask notReady               /* Tables in outer loops of the join */
111595 ){
111596   char aff;
111597   if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
111598   if( (pTerm->eOperator & WO_EQ)==0 ) return 0;
111599   if( (pTerm->prereqRight & notReady)!=0 ) return 0;
111600   if( pTerm->u.leftColumn<0 ) return 0;
111601   aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity;
111602   if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
111603   return 1;
111604 }
111605 #endif
111606 
111607 
111608 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
111609 /*
111610 ** Generate code to construct the Index object for an automatic index
111611 ** and to set up the WhereLevel object pLevel so that the code generator
111612 ** makes use of the automatic index.
111613 */
111614 static void constructAutomaticIndex(
111615   Parse *pParse,              /* The parsing context */
111616   WhereClause *pWC,           /* The WHERE clause */
111617   struct SrcList_item *pSrc,  /* The FROM clause term to get the next index */
111618   Bitmask notReady,           /* Mask of cursors that are not available */
111619   WhereLevel *pLevel          /* Write new index here */
111620 ){
111621   int nKeyCol;                /* Number of columns in the constructed index */
111622   WhereTerm *pTerm;           /* A single term of the WHERE clause */
111623   WhereTerm *pWCEnd;          /* End of pWC->a[] */
111624   Index *pIdx;                /* Object describing the transient index */
111625   Vdbe *v;                    /* Prepared statement under construction */
111626   int addrInit;               /* Address of the initialization bypass jump */
111627   Table *pTable;              /* The table being indexed */
111628   int addrTop;                /* Top of the index fill loop */
111629   int regRecord;              /* Register holding an index record */
111630   int n;                      /* Column counter */
111631   int i;                      /* Loop counter */
111632   int mxBitCol;               /* Maximum column in pSrc->colUsed */
111633   CollSeq *pColl;             /* Collating sequence to on a column */
111634   WhereLoop *pLoop;           /* The Loop object */
111635   char *zNotUsed;             /* Extra space on the end of pIdx */
111636   Bitmask idxCols;            /* Bitmap of columns used for indexing */
111637   Bitmask extraCols;          /* Bitmap of additional columns */
111638   u8 sentWarning = 0;         /* True if a warnning has been issued */
111639 
111640   /* Generate code to skip over the creation and initialization of the
111641   ** transient index on 2nd and subsequent iterations of the loop. */
111642   v = pParse->pVdbe;
111643   assert( v!=0 );
111644   addrInit = sqlite3CodeOnce(pParse); VdbeCoverage(v);
111645 
111646   /* Count the number of columns that will be added to the index
111647   ** and used to match WHERE clause constraints */
111648   nKeyCol = 0;
111649   pTable = pSrc->pTab;
111650   pWCEnd = &pWC->a[pWC->nTerm];
111651   pLoop = pLevel->pWLoop;
111652   idxCols = 0;
111653   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
111654     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
111655       int iCol = pTerm->u.leftColumn;
111656       Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
111657       testcase( iCol==BMS );
111658       testcase( iCol==BMS-1 );
111659       if( !sentWarning ){
111660         sqlite3_log(SQLITE_WARNING_AUTOINDEX,
111661             "automatic index on %s(%s)", pTable->zName,
111662             pTable->aCol[iCol].zName);
111663         sentWarning = 1;
111664       }
111665       if( (idxCols & cMask)==0 ){
111666         if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ) return;
111667         pLoop->aLTerm[nKeyCol++] = pTerm;
111668         idxCols |= cMask;
111669       }
111670     }
111671   }
111672   assert( nKeyCol>0 );
111673   pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol;
111674   pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED
111675                      | WHERE_AUTO_INDEX;
111676 
111677   /* Count the number of additional columns needed to create a
111678   ** covering index.  A "covering index" is an index that contains all
111679   ** columns that are needed by the query.  With a covering index, the
111680   ** original table never needs to be accessed.  Automatic indices must
111681   ** be a covering index because the index will not be updated if the
111682   ** original table changes and the index and table cannot both be used
111683   ** if they go out of sync.
111684   */
111685   extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1));
111686   mxBitCol = (pTable->nCol >= BMS-1) ? BMS-1 : pTable->nCol;
111687   testcase( pTable->nCol==BMS-1 );
111688   testcase( pTable->nCol==BMS-2 );
111689   for(i=0; i<mxBitCol; i++){
111690     if( extraCols & MASKBIT(i) ) nKeyCol++;
111691   }
111692   if( pSrc->colUsed & MASKBIT(BMS-1) ){
111693     nKeyCol += pTable->nCol - BMS + 1;
111694   }
111695   pLoop->wsFlags |= WHERE_COLUMN_EQ | WHERE_IDX_ONLY;
111696 
111697   /* Construct the Index object to describe this index */
111698   pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed);
111699   if( pIdx==0 ) return;
111700   pLoop->u.btree.pIndex = pIdx;
111701   pIdx->zName = "auto-index";
111702   pIdx->pTable = pTable;
111703   n = 0;
111704   idxCols = 0;
111705   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
111706     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
111707       int iCol = pTerm->u.leftColumn;
111708       Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
111709       testcase( iCol==BMS-1 );
111710       testcase( iCol==BMS );
111711       if( (idxCols & cMask)==0 ){
111712         Expr *pX = pTerm->pExpr;
111713         idxCols |= cMask;
111714         pIdx->aiColumn[n] = pTerm->u.leftColumn;
111715         pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
111716         pIdx->azColl[n] = ALWAYS(pColl) ? pColl->zName : "BINARY";
111717         n++;
111718       }
111719     }
111720   }
111721   assert( (u32)n==pLoop->u.btree.nEq );
111722 
111723   /* Add additional columns needed to make the automatic index into
111724   ** a covering index */
111725   for(i=0; i<mxBitCol; i++){
111726     if( extraCols & MASKBIT(i) ){
111727       pIdx->aiColumn[n] = i;
111728       pIdx->azColl[n] = "BINARY";
111729       n++;
111730     }
111731   }
111732   if( pSrc->colUsed & MASKBIT(BMS-1) ){
111733     for(i=BMS-1; i<pTable->nCol; i++){
111734       pIdx->aiColumn[n] = i;
111735       pIdx->azColl[n] = "BINARY";
111736       n++;
111737     }
111738   }
111739   assert( n==nKeyCol );
111740   pIdx->aiColumn[n] = -1;
111741   pIdx->azColl[n] = "BINARY";
111742 
111743   /* Create the automatic index */
111744   assert( pLevel->iIdxCur>=0 );
111745   pLevel->iIdxCur = pParse->nTab++;
111746   sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1);
111747   sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
111748   VdbeComment((v, "for %s", pTable->zName));
111749 
111750   /* Fill the automatic index with content */
111751   addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v);
111752   regRecord = sqlite3GetTempReg(pParse);
111753   sqlite3GenerateIndexKey(pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0);
111754   sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
111755   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
111756   sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v);
111757   sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
111758   sqlite3VdbeJumpHere(v, addrTop);
111759   sqlite3ReleaseTempReg(pParse, regRecord);
111760 
111761   /* Jump here when skipping the initialization */
111762   sqlite3VdbeJumpHere(v, addrInit);
111763 }
111764 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
111765 
111766 #ifndef SQLITE_OMIT_VIRTUALTABLE
111767 /*
111768 ** Allocate and populate an sqlite3_index_info structure. It is the
111769 ** responsibility of the caller to eventually release the structure
111770 ** by passing the pointer returned by this function to sqlite3_free().
111771 */
111772 static sqlite3_index_info *allocateIndexInfo(
111773   Parse *pParse,
111774   WhereClause *pWC,
111775   struct SrcList_item *pSrc,
111776   ExprList *pOrderBy
111777 ){
111778   int i, j;
111779   int nTerm;
111780   struct sqlite3_index_constraint *pIdxCons;
111781   struct sqlite3_index_orderby *pIdxOrderBy;
111782   struct sqlite3_index_constraint_usage *pUsage;
111783   WhereTerm *pTerm;
111784   int nOrderBy;
111785   sqlite3_index_info *pIdxInfo;
111786 
111787   /* Count the number of possible WHERE clause constraints referring
111788   ** to this virtual table */
111789   for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
111790     if( pTerm->leftCursor != pSrc->iCursor ) continue;
111791     assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
111792     testcase( pTerm->eOperator & WO_IN );
111793     testcase( pTerm->eOperator & WO_ISNULL );
111794     testcase( pTerm->eOperator & WO_ALL );
111795     if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV))==0 ) continue;
111796     if( pTerm->wtFlags & TERM_VNULL ) continue;
111797     nTerm++;
111798   }
111799 
111800   /* If the ORDER BY clause contains only columns in the current
111801   ** virtual table then allocate space for the aOrderBy part of
111802   ** the sqlite3_index_info structure.
111803   */
111804   nOrderBy = 0;
111805   if( pOrderBy ){
111806     int n = pOrderBy->nExpr;
111807     for(i=0; i<n; i++){
111808       Expr *pExpr = pOrderBy->a[i].pExpr;
111809       if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
111810     }
111811     if( i==n){
111812       nOrderBy = n;
111813     }
111814   }
111815 
111816   /* Allocate the sqlite3_index_info structure
111817   */
111818   pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
111819                            + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
111820                            + sizeof(*pIdxOrderBy)*nOrderBy );
111821   if( pIdxInfo==0 ){
111822     sqlite3ErrorMsg(pParse, "out of memory");
111823     return 0;
111824   }
111825 
111826   /* Initialize the structure.  The sqlite3_index_info structure contains
111827   ** many fields that are declared "const" to prevent xBestIndex from
111828   ** changing them.  We have to do some funky casting in order to
111829   ** initialize those fields.
111830   */
111831   pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1];
111832   pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
111833   pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
111834   *(int*)&pIdxInfo->nConstraint = nTerm;
111835   *(int*)&pIdxInfo->nOrderBy = nOrderBy;
111836   *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons;
111837   *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy;
111838   *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage =
111839                                                                    pUsage;
111840 
111841   for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
111842     u8 op;
111843     if( pTerm->leftCursor != pSrc->iCursor ) continue;
111844     assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
111845     testcase( pTerm->eOperator & WO_IN );
111846     testcase( pTerm->eOperator & WO_ISNULL );
111847     testcase( pTerm->eOperator & WO_ALL );
111848     if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV))==0 ) continue;
111849     if( pTerm->wtFlags & TERM_VNULL ) continue;
111850     pIdxCons[j].iColumn = pTerm->u.leftColumn;
111851     pIdxCons[j].iTermOffset = i;
111852     op = (u8)pTerm->eOperator & WO_ALL;
111853     if( op==WO_IN ) op = WO_EQ;
111854     pIdxCons[j].op = op;
111855     /* The direct assignment in the previous line is possible only because
111856     ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical.  The
111857     ** following asserts verify this fact. */
111858     assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
111859     assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
111860     assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
111861     assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
111862     assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
111863     assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH );
111864     assert( pTerm->eOperator & (WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) );
111865     j++;
111866   }
111867   for(i=0; i<nOrderBy; i++){
111868     Expr *pExpr = pOrderBy->a[i].pExpr;
111869     pIdxOrderBy[i].iColumn = pExpr->iColumn;
111870     pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder;
111871   }
111872 
111873   return pIdxInfo;
111874 }
111875 
111876 /*
111877 ** The table object reference passed as the second argument to this function
111878 ** must represent a virtual table. This function invokes the xBestIndex()
111879 ** method of the virtual table with the sqlite3_index_info object that
111880 ** comes in as the 3rd argument to this function.
111881 **
111882 ** If an error occurs, pParse is populated with an error message and a
111883 ** non-zero value is returned. Otherwise, 0 is returned and the output
111884 ** part of the sqlite3_index_info structure is left populated.
111885 **
111886 ** Whether or not an error is returned, it is the responsibility of the
111887 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
111888 ** that this is required.
111889 */
111890 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
111891   sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
111892   int i;
111893   int rc;
111894 
111895   TRACE_IDX_INPUTS(p);
111896   rc = pVtab->pModule->xBestIndex(pVtab, p);
111897   TRACE_IDX_OUTPUTS(p);
111898 
111899   if( rc!=SQLITE_OK ){
111900     if( rc==SQLITE_NOMEM ){
111901       pParse->db->mallocFailed = 1;
111902     }else if( !pVtab->zErrMsg ){
111903       sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
111904     }else{
111905       sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
111906     }
111907   }
111908   sqlite3_free(pVtab->zErrMsg);
111909   pVtab->zErrMsg = 0;
111910 
111911   for(i=0; i<p->nConstraint; i++){
111912     if( !p->aConstraint[i].usable && p->aConstraintUsage[i].argvIndex>0 ){
111913       sqlite3ErrorMsg(pParse,
111914           "table %s: xBestIndex returned an invalid plan", pTab->zName);
111915     }
111916   }
111917 
111918   return pParse->nErr;
111919 }
111920 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */
111921 
111922 
111923 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
111924 /*
111925 ** Estimate the location of a particular key among all keys in an
111926 ** index.  Store the results in aStat as follows:
111927 **
111928 **    aStat[0]      Est. number of rows less than pVal
111929 **    aStat[1]      Est. number of rows equal to pVal
111930 **
111931 ** Return SQLITE_OK on success.
111932 */
111933 static void whereKeyStats(
111934   Parse *pParse,              /* Database connection */
111935   Index *pIdx,                /* Index to consider domain of */
111936   UnpackedRecord *pRec,       /* Vector of values to consider */
111937   int roundUp,                /* Round up if true.  Round down if false */
111938   tRowcnt *aStat              /* OUT: stats written here */
111939 ){
111940   IndexSample *aSample = pIdx->aSample;
111941   int iCol;                   /* Index of required stats in anEq[] etc. */
111942   int iMin = 0;               /* Smallest sample not yet tested */
111943   int i = pIdx->nSample;      /* Smallest sample larger than or equal to pRec */
111944   int iTest;                  /* Next sample to test */
111945   int res;                    /* Result of comparison operation */
111946 
111947 #ifndef SQLITE_DEBUG
111948   UNUSED_PARAMETER( pParse );
111949 #endif
111950   assert( pRec!=0 );
111951   iCol = pRec->nField - 1;
111952   assert( pIdx->nSample>0 );
111953   assert( pRec->nField>0 && iCol<pIdx->nSampleCol );
111954   do{
111955     iTest = (iMin+i)/2;
111956     res = sqlite3VdbeRecordCompare(aSample[iTest].n, aSample[iTest].p, pRec, 0);
111957     if( res<0 ){
111958       iMin = iTest+1;
111959     }else{
111960       i = iTest;
111961     }
111962   }while( res && iMin<i );
111963 
111964 #ifdef SQLITE_DEBUG
111965   /* The following assert statements check that the binary search code
111966   ** above found the right answer. This block serves no purpose other
111967   ** than to invoke the asserts.  */
111968   if( res==0 ){
111969     /* If (res==0) is true, then sample $i must be equal to pRec */
111970     assert( i<pIdx->nSample );
111971     assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec, 0)
111972          || pParse->db->mallocFailed );
111973   }else{
111974     /* Otherwise, pRec must be smaller than sample $i and larger than
111975     ** sample ($i-1).  */
111976     assert( i==pIdx->nSample
111977          || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec, 0)>0
111978          || pParse->db->mallocFailed );
111979     assert( i==0
111980          || sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec, 0)<0
111981          || pParse->db->mallocFailed );
111982   }
111983 #endif /* ifdef SQLITE_DEBUG */
111984 
111985   /* At this point, aSample[i] is the first sample that is greater than
111986   ** or equal to pVal.  Or if i==pIdx->nSample, then all samples are less
111987   ** than pVal.  If aSample[i]==pVal, then res==0.
111988   */
111989   if( res==0 ){
111990     aStat[0] = aSample[i].anLt[iCol];
111991     aStat[1] = aSample[i].anEq[iCol];
111992   }else{
111993     tRowcnt iLower, iUpper, iGap;
111994     if( i==0 ){
111995       iLower = 0;
111996       iUpper = aSample[0].anLt[iCol];
111997     }else{
111998       i64 nRow0 = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]);
111999       iUpper = i>=pIdx->nSample ? nRow0 : aSample[i].anLt[iCol];
112000       iLower = aSample[i-1].anEq[iCol] + aSample[i-1].anLt[iCol];
112001     }
112002     aStat[1] = (pIdx->nKeyCol>iCol ? pIdx->aAvgEq[iCol] : 1);
112003     if( iLower>=iUpper ){
112004       iGap = 0;
112005     }else{
112006       iGap = iUpper - iLower;
112007     }
112008     if( roundUp ){
112009       iGap = (iGap*2)/3;
112010     }else{
112011       iGap = iGap/3;
112012     }
112013     aStat[0] = iLower + iGap;
112014   }
112015 }
112016 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
112017 
112018 /*
112019 ** If it is not NULL, pTerm is a term that provides an upper or lower
112020 ** bound on a range scan. Without considering pTerm, it is estimated
112021 ** that the scan will visit nNew rows. This function returns the number
112022 ** estimated to be visited after taking pTerm into account.
112023 **
112024 ** If the user explicitly specified a likelihood() value for this term,
112025 ** then the return value is the likelihood multiplied by the number of
112026 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term
112027 ** has a likelihood of 0.50, and any other term a likelihood of 0.25.
112028 */
112029 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){
112030   LogEst nRet = nNew;
112031   if( pTerm ){
112032     if( pTerm->truthProb<=0 ){
112033       nRet += pTerm->truthProb;
112034     }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){
112035       nRet -= 20;        assert( 20==sqlite3LogEst(4) );
112036     }
112037   }
112038   return nRet;
112039 }
112040 
112041 /*
112042 ** This function is used to estimate the number of rows that will be visited
112043 ** by scanning an index for a range of values. The range may have an upper
112044 ** bound, a lower bound, or both. The WHERE clause terms that set the upper
112045 ** and lower bounds are represented by pLower and pUpper respectively. For
112046 ** example, assuming that index p is on t1(a):
112047 **
112048 **   ... FROM t1 WHERE a > ? AND a < ? ...
112049 **                    |_____|   |_____|
112050 **                       |         |
112051 **                     pLower    pUpper
112052 **
112053 ** If either of the upper or lower bound is not present, then NULL is passed in
112054 ** place of the corresponding WhereTerm.
112055 **
112056 ** The value in (pBuilder->pNew->u.btree.nEq) is the index of the index
112057 ** column subject to the range constraint. Or, equivalently, the number of
112058 ** equality constraints optimized by the proposed index scan. For example,
112059 ** assuming index p is on t1(a, b), and the SQL query is:
112060 **
112061 **   ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
112062 **
112063 ** then nEq is set to 1 (as the range restricted column, b, is the second
112064 ** left-most column of the index). Or, if the query is:
112065 **
112066 **   ... FROM t1 WHERE a > ? AND a < ? ...
112067 **
112068 ** then nEq is set to 0.
112069 **
112070 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the
112071 ** number of rows that the index scan is expected to visit without
112072 ** considering the range constraints. If nEq is 0, this is the number of
112073 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced)
112074 ** to account for the range contraints pLower and pUpper.
112075 **
112076 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be
112077 ** used, each range inequality reduces the search space by a factor of 4.
112078 ** Hence a pair of constraints (x>? AND x<?) reduces the expected number of
112079 ** rows visited by a factor of 16.
112080 */
112081 static int whereRangeScanEst(
112082   Parse *pParse,       /* Parsing & code generating context */
112083   WhereLoopBuilder *pBuilder,
112084   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
112085   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
112086   WhereLoop *pLoop     /* Modify the .nOut and maybe .rRun fields */
112087 ){
112088   int rc = SQLITE_OK;
112089   int nOut = pLoop->nOut;
112090   LogEst nNew;
112091 
112092 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
112093   Index *p = pLoop->u.btree.pIndex;
112094   int nEq = pLoop->u.btree.nEq;
112095 
112096   if( p->nSample>0
112097    && nEq==pBuilder->nRecValid
112098    && nEq<p->nSampleCol
112099    && OptimizationEnabled(pParse->db, SQLITE_Stat3)
112100   ){
112101     UnpackedRecord *pRec = pBuilder->pRec;
112102     tRowcnt a[2];
112103     u8 aff;
112104 
112105     /* Variable iLower will be set to the estimate of the number of rows in
112106     ** the index that are less than the lower bound of the range query. The
112107     ** lower bound being the concatenation of $P and $L, where $P is the
112108     ** key-prefix formed by the nEq values matched against the nEq left-most
112109     ** columns of the index, and $L is the value in pLower.
112110     **
112111     ** Or, if pLower is NULL or $L cannot be extracted from it (because it
112112     ** is not a simple variable or literal value), the lower bound of the
112113     ** range is $P. Due to a quirk in the way whereKeyStats() works, even
112114     ** if $L is available, whereKeyStats() is called for both ($P) and
112115     ** ($P:$L) and the larger of the two returned values used.
112116     **
112117     ** Similarly, iUpper is to be set to the estimate of the number of rows
112118     ** less than the upper bound of the range query. Where the upper bound
112119     ** is either ($P) or ($P:$U). Again, even if $U is available, both values
112120     ** of iUpper are requested of whereKeyStats() and the smaller used.
112121     */
112122     tRowcnt iLower;
112123     tRowcnt iUpper;
112124 
112125     if( nEq==p->nKeyCol ){
112126       aff = SQLITE_AFF_INTEGER;
112127     }else{
112128       aff = p->pTable->aCol[p->aiColumn[nEq]].affinity;
112129     }
112130     /* Determine iLower and iUpper using ($P) only. */
112131     if( nEq==0 ){
112132       iLower = 0;
112133       iUpper = sqlite3LogEstToInt(p->aiRowLogEst[0]);
112134     }else{
112135       /* Note: this call could be optimized away - since the same values must
112136       ** have been requested when testing key $P in whereEqualScanEst().  */
112137       whereKeyStats(pParse, p, pRec, 0, a);
112138       iLower = a[0];
112139       iUpper = a[0] + a[1];
112140     }
112141 
112142     /* If possible, improve on the iLower estimate using ($P:$L). */
112143     if( pLower ){
112144       int bOk;                    /* True if value is extracted from pExpr */
112145       Expr *pExpr = pLower->pExpr->pRight;
112146       assert( (pLower->eOperator & (WO_GT|WO_GE))!=0 );
112147       rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk);
112148       if( rc==SQLITE_OK && bOk ){
112149         tRowcnt iNew;
112150         whereKeyStats(pParse, p, pRec, 0, a);
112151         iNew = a[0] + ((pLower->eOperator & WO_GT) ? a[1] : 0);
112152         if( iNew>iLower ) iLower = iNew;
112153         nOut--;
112154       }
112155     }
112156 
112157     /* If possible, improve on the iUpper estimate using ($P:$U). */
112158     if( pUpper ){
112159       int bOk;                    /* True if value is extracted from pExpr */
112160       Expr *pExpr = pUpper->pExpr->pRight;
112161       assert( (pUpper->eOperator & (WO_LT|WO_LE))!=0 );
112162       rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk);
112163       if( rc==SQLITE_OK && bOk ){
112164         tRowcnt iNew;
112165         whereKeyStats(pParse, p, pRec, 1, a);
112166         iNew = a[0] + ((pUpper->eOperator & WO_LE) ? a[1] : 0);
112167         if( iNew<iUpper ) iUpper = iNew;
112168         nOut--;
112169       }
112170     }
112171 
112172     pBuilder->pRec = pRec;
112173     if( rc==SQLITE_OK ){
112174       if( iUpper>iLower ){
112175         nNew = sqlite3LogEst(iUpper - iLower);
112176       }else{
112177         nNew = 10;        assert( 10==sqlite3LogEst(2) );
112178       }
112179       if( nNew<nOut ){
112180         nOut = nNew;
112181       }
112182       pLoop->nOut = (LogEst)nOut;
112183       WHERETRACE(0x10, ("range scan regions: %u..%u  est=%d\n",
112184                          (u32)iLower, (u32)iUpper, nOut));
112185       return SQLITE_OK;
112186     }
112187   }
112188 #else
112189   UNUSED_PARAMETER(pParse);
112190   UNUSED_PARAMETER(pBuilder);
112191 #endif
112192   assert( pLower || pUpper );
112193   assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 );
112194   nNew = whereRangeAdjust(pLower, nOut);
112195   nNew = whereRangeAdjust(pUpper, nNew);
112196 
112197   /* TUNING: If there is both an upper and lower limit, assume the range is
112198   ** reduced by an additional 75%. This means that, by default, an open-ended
112199   ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the
112200   ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to
112201   ** match 1/64 of the index. */
112202   if( pLower && pUpper ) nNew -= 20;
112203 
112204   nOut -= (pLower!=0) + (pUpper!=0);
112205   if( nNew<10 ) nNew = 10;
112206   if( nNew<nOut ) nOut = nNew;
112207   pLoop->nOut = (LogEst)nOut;
112208   return rc;
112209 }
112210 
112211 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
112212 /*
112213 ** Estimate the number of rows that will be returned based on
112214 ** an equality constraint x=VALUE and where that VALUE occurs in
112215 ** the histogram data.  This only works when x is the left-most
112216 ** column of an index and sqlite_stat3 histogram data is available
112217 ** for that index.  When pExpr==NULL that means the constraint is
112218 ** "x IS NULL" instead of "x=VALUE".
112219 **
112220 ** Write the estimated row count into *pnRow and return SQLITE_OK.
112221 ** If unable to make an estimate, leave *pnRow unchanged and return
112222 ** non-zero.
112223 **
112224 ** This routine can fail if it is unable to load a collating sequence
112225 ** required for string comparison, or if unable to allocate memory
112226 ** for a UTF conversion required for comparison.  The error is stored
112227 ** in the pParse structure.
112228 */
112229 static int whereEqualScanEst(
112230   Parse *pParse,       /* Parsing & code generating context */
112231   WhereLoopBuilder *pBuilder,
112232   Expr *pExpr,         /* Expression for VALUE in the x=VALUE constraint */
112233   tRowcnt *pnRow       /* Write the revised row estimate here */
112234 ){
112235   Index *p = pBuilder->pNew->u.btree.pIndex;
112236   int nEq = pBuilder->pNew->u.btree.nEq;
112237   UnpackedRecord *pRec = pBuilder->pRec;
112238   u8 aff;                   /* Column affinity */
112239   int rc;                   /* Subfunction return code */
112240   tRowcnt a[2];             /* Statistics */
112241   int bOk;
112242 
112243   assert( nEq>=1 );
112244   assert( nEq<=(p->nKeyCol+1) );
112245   assert( p->aSample!=0 );
112246   assert( p->nSample>0 );
112247   assert( pBuilder->nRecValid<nEq );
112248 
112249   /* If values are not available for all fields of the index to the left
112250   ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */
112251   if( pBuilder->nRecValid<(nEq-1) ){
112252     return SQLITE_NOTFOUND;
112253   }
112254 
112255   /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue()
112256   ** below would return the same value.  */
112257   if( nEq>p->nKeyCol ){
112258     *pnRow = 1;
112259     return SQLITE_OK;
112260   }
112261 
112262   aff = p->pTable->aCol[p->aiColumn[nEq-1]].affinity;
112263   rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq-1, &bOk);
112264   pBuilder->pRec = pRec;
112265   if( rc!=SQLITE_OK ) return rc;
112266   if( bOk==0 ) return SQLITE_NOTFOUND;
112267   pBuilder->nRecValid = nEq;
112268 
112269   whereKeyStats(pParse, p, pRec, 0, a);
112270   WHERETRACE(0x10,("equality scan regions: %d\n", (int)a[1]));
112271   *pnRow = a[1];
112272 
112273   return rc;
112274 }
112275 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
112276 
112277 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
112278 /*
112279 ** Estimate the number of rows that will be returned based on
112280 ** an IN constraint where the right-hand side of the IN operator
112281 ** is a list of values.  Example:
112282 **
112283 **        WHERE x IN (1,2,3,4)
112284 **
112285 ** Write the estimated row count into *pnRow and return SQLITE_OK.
112286 ** If unable to make an estimate, leave *pnRow unchanged and return
112287 ** non-zero.
112288 **
112289 ** This routine can fail if it is unable to load a collating sequence
112290 ** required for string comparison, or if unable to allocate memory
112291 ** for a UTF conversion required for comparison.  The error is stored
112292 ** in the pParse structure.
112293 */
112294 static int whereInScanEst(
112295   Parse *pParse,       /* Parsing & code generating context */
112296   WhereLoopBuilder *pBuilder,
112297   ExprList *pList,     /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
112298   tRowcnt *pnRow       /* Write the revised row estimate here */
112299 ){
112300   Index *p = pBuilder->pNew->u.btree.pIndex;
112301   i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]);
112302   int nRecValid = pBuilder->nRecValid;
112303   int rc = SQLITE_OK;     /* Subfunction return code */
112304   tRowcnt nEst;           /* Number of rows for a single term */
112305   tRowcnt nRowEst = 0;    /* New estimate of the number of rows */
112306   int i;                  /* Loop counter */
112307 
112308   assert( p->aSample!=0 );
112309   for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){
112310     nEst = nRow0;
112311     rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst);
112312     nRowEst += nEst;
112313     pBuilder->nRecValid = nRecValid;
112314   }
112315 
112316   if( rc==SQLITE_OK ){
112317     if( nRowEst > nRow0 ) nRowEst = nRow0;
112318     *pnRow = nRowEst;
112319     WHERETRACE(0x10,("IN row estimate: est=%g\n", nRowEst));
112320   }
112321   assert( pBuilder->nRecValid==nRecValid );
112322   return rc;
112323 }
112324 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
112325 
112326 /*
112327 ** Disable a term in the WHERE clause.  Except, do not disable the term
112328 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
112329 ** or USING clause of that join.
112330 **
112331 ** Consider the term t2.z='ok' in the following queries:
112332 **
112333 **   (1)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
112334 **   (2)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
112335 **   (3)  SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
112336 **
112337 ** The t2.z='ok' is disabled in the in (2) because it originates
112338 ** in the ON clause.  The term is disabled in (3) because it is not part
112339 ** of a LEFT OUTER JOIN.  In (1), the term is not disabled.
112340 **
112341 ** Disabling a term causes that term to not be tested in the inner loop
112342 ** of the join.  Disabling is an optimization.  When terms are satisfied
112343 ** by indices, we disable them to prevent redundant tests in the inner
112344 ** loop.  We would get the correct results if nothing were ever disabled,
112345 ** but joins might run a little slower.  The trick is to disable as much
112346 ** as we can without disabling too much.  If we disabled in (1), we'd get
112347 ** the wrong answer.  See ticket #813.
112348 */
112349 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
112350   if( pTerm
112351       && (pTerm->wtFlags & TERM_CODED)==0
112352       && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
112353       && (pLevel->notReady & pTerm->prereqAll)==0
112354   ){
112355     pTerm->wtFlags |= TERM_CODED;
112356     if( pTerm->iParent>=0 ){
112357       WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent];
112358       if( (--pOther->nChild)==0 ){
112359         disableTerm(pLevel, pOther);
112360       }
112361     }
112362   }
112363 }
112364 
112365 /*
112366 ** Code an OP_Affinity opcode to apply the column affinity string zAff
112367 ** to the n registers starting at base.
112368 **
112369 ** As an optimization, SQLITE_AFF_NONE entries (which are no-ops) at the
112370 ** beginning and end of zAff are ignored.  If all entries in zAff are
112371 ** SQLITE_AFF_NONE, then no code gets generated.
112372 **
112373 ** This routine makes its own copy of zAff so that the caller is free
112374 ** to modify zAff after this routine returns.
112375 */
112376 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
112377   Vdbe *v = pParse->pVdbe;
112378   if( zAff==0 ){
112379     assert( pParse->db->mallocFailed );
112380     return;
112381   }
112382   assert( v!=0 );
112383 
112384   /* Adjust base and n to skip over SQLITE_AFF_NONE entries at the beginning
112385   ** and end of the affinity string.
112386   */
112387   while( n>0 && zAff[0]==SQLITE_AFF_NONE ){
112388     n--;
112389     base++;
112390     zAff++;
112391   }
112392   while( n>1 && zAff[n-1]==SQLITE_AFF_NONE ){
112393     n--;
112394   }
112395 
112396   /* Code the OP_Affinity opcode if there is anything left to do. */
112397   if( n>0 ){
112398     sqlite3VdbeAddOp2(v, OP_Affinity, base, n);
112399     sqlite3VdbeChangeP4(v, -1, zAff, n);
112400     sqlite3ExprCacheAffinityChange(pParse, base, n);
112401   }
112402 }
112403 
112404 
112405 /*
112406 ** Generate code for a single equality term of the WHERE clause.  An equality
112407 ** term can be either X=expr or X IN (...).   pTerm is the term to be
112408 ** coded.
112409 **
112410 ** The current value for the constraint is left in register iReg.
112411 **
112412 ** For a constraint of the form X=expr, the expression is evaluated and its
112413 ** result is left on the stack.  For constraints of the form X IN (...)
112414 ** this routine sets up a loop that will iterate over all values of X.
112415 */
112416 static int codeEqualityTerm(
112417   Parse *pParse,      /* The parsing context */
112418   WhereTerm *pTerm,   /* The term of the WHERE clause to be coded */
112419   WhereLevel *pLevel, /* The level of the FROM clause we are working on */
112420   int iEq,            /* Index of the equality term within this level */
112421   int bRev,           /* True for reverse-order IN operations */
112422   int iTarget         /* Attempt to leave results in this register */
112423 ){
112424   Expr *pX = pTerm->pExpr;
112425   Vdbe *v = pParse->pVdbe;
112426   int iReg;                  /* Register holding results */
112427 
112428   assert( iTarget>0 );
112429   if( pX->op==TK_EQ ){
112430     iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
112431   }else if( pX->op==TK_ISNULL ){
112432     iReg = iTarget;
112433     sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
112434 #ifndef SQLITE_OMIT_SUBQUERY
112435   }else{
112436     int eType;
112437     int iTab;
112438     struct InLoop *pIn;
112439     WhereLoop *pLoop = pLevel->pWLoop;
112440 
112441     if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
112442       && pLoop->u.btree.pIndex!=0
112443       && pLoop->u.btree.pIndex->aSortOrder[iEq]
112444     ){
112445       testcase( iEq==0 );
112446       testcase( bRev );
112447       bRev = !bRev;
112448     }
112449     assert( pX->op==TK_IN );
112450     iReg = iTarget;
112451     eType = sqlite3FindInIndex(pParse, pX, 0);
112452     if( eType==IN_INDEX_INDEX_DESC ){
112453       testcase( bRev );
112454       bRev = !bRev;
112455     }
112456     iTab = pX->iTable;
112457     sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0);
112458     VdbeCoverageIf(v, bRev);
112459     VdbeCoverageIf(v, !bRev);
112460     assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
112461     pLoop->wsFlags |= WHERE_IN_ABLE;
112462     if( pLevel->u.in.nIn==0 ){
112463       pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
112464     }
112465     pLevel->u.in.nIn++;
112466     pLevel->u.in.aInLoop =
112467        sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
112468                               sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
112469     pIn = pLevel->u.in.aInLoop;
112470     if( pIn ){
112471       pIn += pLevel->u.in.nIn - 1;
112472       pIn->iCur = iTab;
112473       if( eType==IN_INDEX_ROWID ){
112474         pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg);
112475       }else{
112476         pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg);
112477       }
112478       pIn->eEndLoopOp = bRev ? OP_PrevIfOpen : OP_NextIfOpen;
112479       sqlite3VdbeAddOp1(v, OP_IsNull, iReg); VdbeCoverage(v);
112480     }else{
112481       pLevel->u.in.nIn = 0;
112482     }
112483 #endif
112484   }
112485   disableTerm(pLevel, pTerm);
112486   return iReg;
112487 }
112488 
112489 /*
112490 ** Generate code that will evaluate all == and IN constraints for an
112491 ** index scan.
112492 **
112493 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
112494 ** Suppose the WHERE clause is this:  a==5 AND b IN (1,2,3) AND c>5 AND c<10
112495 ** The index has as many as three equality constraints, but in this
112496 ** example, the third "c" value is an inequality.  So only two
112497 ** constraints are coded.  This routine will generate code to evaluate
112498 ** a==5 and b IN (1,2,3).  The current values for a and b will be stored
112499 ** in consecutive registers and the index of the first register is returned.
112500 **
112501 ** In the example above nEq==2.  But this subroutine works for any value
112502 ** of nEq including 0.  If nEq==0, this routine is nearly a no-op.
112503 ** The only thing it does is allocate the pLevel->iMem memory cell and
112504 ** compute the affinity string.
112505 **
112506 ** The nExtraReg parameter is 0 or 1.  It is 0 if all WHERE clause constraints
112507 ** are == or IN and are covered by the nEq.  nExtraReg is 1 if there is
112508 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that
112509 ** occurs after the nEq quality constraints.
112510 **
112511 ** This routine allocates a range of nEq+nExtraReg memory cells and returns
112512 ** the index of the first memory cell in that range. The code that
112513 ** calls this routine will use that memory range to store keys for
112514 ** start and termination conditions of the loop.
112515 ** key value of the loop.  If one or more IN operators appear, then
112516 ** this routine allocates an additional nEq memory cells for internal
112517 ** use.
112518 **
112519 ** Before returning, *pzAff is set to point to a buffer containing a
112520 ** copy of the column affinity string of the index allocated using
112521 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated
112522 ** with equality constraints that use NONE affinity are set to
112523 ** SQLITE_AFF_NONE. This is to deal with SQL such as the following:
112524 **
112525 **   CREATE TABLE t1(a TEXT PRIMARY KEY, b);
112526 **   SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
112527 **
112528 ** In the example above, the index on t1(a) has TEXT affinity. But since
112529 ** the right hand side of the equality constraint (t2.b) has NONE affinity,
112530 ** no conversion should be attempted before using a t2.b value as part of
112531 ** a key to search the index. Hence the first byte in the returned affinity
112532 ** string in this example would be set to SQLITE_AFF_NONE.
112533 */
112534 static int codeAllEqualityTerms(
112535   Parse *pParse,        /* Parsing context */
112536   WhereLevel *pLevel,   /* Which nested loop of the FROM we are coding */
112537   int bRev,             /* Reverse the order of IN operators */
112538   int nExtraReg,        /* Number of extra registers to allocate */
112539   char **pzAff          /* OUT: Set to point to affinity string */
112540 ){
112541   u16 nEq;                      /* The number of == or IN constraints to code */
112542   u16 nSkip;                    /* Number of left-most columns to skip */
112543   Vdbe *v = pParse->pVdbe;      /* The vm under construction */
112544   Index *pIdx;                  /* The index being used for this loop */
112545   WhereTerm *pTerm;             /* A single constraint term */
112546   WhereLoop *pLoop;             /* The WhereLoop object */
112547   int j;                        /* Loop counter */
112548   int regBase;                  /* Base register */
112549   int nReg;                     /* Number of registers to allocate */
112550   char *zAff;                   /* Affinity string to return */
112551 
112552   /* This module is only called on query plans that use an index. */
112553   pLoop = pLevel->pWLoop;
112554   assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 );
112555   nEq = pLoop->u.btree.nEq;
112556   nSkip = pLoop->u.btree.nSkip;
112557   pIdx = pLoop->u.btree.pIndex;
112558   assert( pIdx!=0 );
112559 
112560   /* Figure out how many memory cells we will need then allocate them.
112561   */
112562   regBase = pParse->nMem + 1;
112563   nReg = pLoop->u.btree.nEq + nExtraReg;
112564   pParse->nMem += nReg;
112565 
112566   zAff = sqlite3DbStrDup(pParse->db, sqlite3IndexAffinityStr(v, pIdx));
112567   if( !zAff ){
112568     pParse->db->mallocFailed = 1;
112569   }
112570 
112571   if( nSkip ){
112572     int iIdxCur = pLevel->iIdxCur;
112573     sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur);
112574     VdbeCoverageIf(v, bRev==0);
112575     VdbeCoverageIf(v, bRev!=0);
112576     VdbeComment((v, "begin skip-scan on %s", pIdx->zName));
112577     j = sqlite3VdbeAddOp0(v, OP_Goto);
112578     pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT),
112579                             iIdxCur, 0, regBase, nSkip);
112580     VdbeCoverageIf(v, bRev==0);
112581     VdbeCoverageIf(v, bRev!=0);
112582     sqlite3VdbeJumpHere(v, j);
112583     for(j=0; j<nSkip; j++){
112584       sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j);
112585       assert( pIdx->aiColumn[j]>=0 );
112586       VdbeComment((v, "%s", pIdx->pTable->aCol[pIdx->aiColumn[j]].zName));
112587     }
112588   }
112589 
112590   /* Evaluate the equality constraints
112591   */
112592   assert( zAff==0 || (int)strlen(zAff)>=nEq );
112593   for(j=nSkip; j<nEq; j++){
112594     int r1;
112595     pTerm = pLoop->aLTerm[j];
112596     assert( pTerm!=0 );
112597     /* The following testcase is true for indices with redundant columns.
112598     ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
112599     testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
112600     testcase( pTerm->wtFlags & TERM_VIRTUAL );
112601     r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j);
112602     if( r1!=regBase+j ){
112603       if( nReg==1 ){
112604         sqlite3ReleaseTempReg(pParse, regBase);
112605         regBase = r1;
112606       }else{
112607         sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
112608       }
112609     }
112610     testcase( pTerm->eOperator & WO_ISNULL );
112611     testcase( pTerm->eOperator & WO_IN );
112612     if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){
112613       Expr *pRight = pTerm->pExpr->pRight;
112614       if( sqlite3ExprCanBeNull(pRight) ){
112615         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk);
112616         VdbeCoverage(v);
112617       }
112618       if( zAff ){
112619         if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_NONE ){
112620           zAff[j] = SQLITE_AFF_NONE;
112621         }
112622         if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){
112623           zAff[j] = SQLITE_AFF_NONE;
112624         }
112625       }
112626     }
112627   }
112628   *pzAff = zAff;
112629   return regBase;
112630 }
112631 
112632 #ifndef SQLITE_OMIT_EXPLAIN
112633 /*
112634 ** This routine is a helper for explainIndexRange() below
112635 **
112636 ** pStr holds the text of an expression that we are building up one term
112637 ** at a time.  This routine adds a new term to the end of the expression.
112638 ** Terms are separated by AND so add the "AND" text for second and subsequent
112639 ** terms only.
112640 */
112641 static void explainAppendTerm(
112642   StrAccum *pStr,             /* The text expression being built */
112643   int iTerm,                  /* Index of this term.  First is zero */
112644   const char *zColumn,        /* Name of the column */
112645   const char *zOp             /* Name of the operator */
112646 ){
112647   if( iTerm ) sqlite3StrAccumAppend(pStr, " AND ", 5);
112648   sqlite3StrAccumAppendAll(pStr, zColumn);
112649   sqlite3StrAccumAppend(pStr, zOp, 1);
112650   sqlite3StrAccumAppend(pStr, "?", 1);
112651 }
112652 
112653 /*
112654 ** Argument pLevel describes a strategy for scanning table pTab. This
112655 ** function returns a pointer to a string buffer containing a description
112656 ** of the subset of table rows scanned by the strategy in the form of an
112657 ** SQL expression. Or, if all rows are scanned, NULL is returned.
112658 **
112659 ** For example, if the query:
112660 **
112661 **   SELECT * FROM t1 WHERE a=1 AND b>2;
112662 **
112663 ** is run and there is an index on (a, b), then this function returns a
112664 ** string similar to:
112665 **
112666 **   "a=? AND b>?"
112667 **
112668 ** The returned pointer points to memory obtained from sqlite3DbMalloc().
112669 ** It is the responsibility of the caller to free the buffer when it is
112670 ** no longer required.
112671 */
112672 static char *explainIndexRange(sqlite3 *db, WhereLoop *pLoop, Table *pTab){
112673   Index *pIndex = pLoop->u.btree.pIndex;
112674   u16 nEq = pLoop->u.btree.nEq;
112675   u16 nSkip = pLoop->u.btree.nSkip;
112676   int i, j;
112677   Column *aCol = pTab->aCol;
112678   i16 *aiColumn = pIndex->aiColumn;
112679   StrAccum txt;
112680 
112681   if( nEq==0 && (pLoop->wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ){
112682     return 0;
112683   }
112684   sqlite3StrAccumInit(&txt, 0, 0, SQLITE_MAX_LENGTH);
112685   txt.db = db;
112686   sqlite3StrAccumAppend(&txt, " (", 2);
112687   for(i=0; i<nEq; i++){
112688     char *z = (i==pIndex->nKeyCol ) ? "rowid" : aCol[aiColumn[i]].zName;
112689     if( i>=nSkip ){
112690       explainAppendTerm(&txt, i, z, "=");
112691     }else{
112692       if( i ) sqlite3StrAccumAppend(&txt, " AND ", 5);
112693       sqlite3StrAccumAppend(&txt, "ANY(", 4);
112694       sqlite3StrAccumAppendAll(&txt, z);
112695       sqlite3StrAccumAppend(&txt, ")", 1);
112696     }
112697   }
112698 
112699   j = i;
112700   if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
112701     char *z = (j==pIndex->nKeyCol ) ? "rowid" : aCol[aiColumn[j]].zName;
112702     explainAppendTerm(&txt, i++, z, ">");
112703   }
112704   if( pLoop->wsFlags&WHERE_TOP_LIMIT ){
112705     char *z = (j==pIndex->nKeyCol ) ? "rowid" : aCol[aiColumn[j]].zName;
112706     explainAppendTerm(&txt, i, z, "<");
112707   }
112708   sqlite3StrAccumAppend(&txt, ")", 1);
112709   return sqlite3StrAccumFinish(&txt);
112710 }
112711 
112712 /*
112713 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
112714 ** command. If the query being compiled is an EXPLAIN QUERY PLAN, a single
112715 ** record is added to the output to describe the table scan strategy in
112716 ** pLevel.
112717 */
112718 static void explainOneScan(
112719   Parse *pParse,                  /* Parse context */
112720   SrcList *pTabList,              /* Table list this loop refers to */
112721   WhereLevel *pLevel,             /* Scan to write OP_Explain opcode for */
112722   int iLevel,                     /* Value for "level" column of output */
112723   int iFrom,                      /* Value for "from" column of output */
112724   u16 wctrlFlags                  /* Flags passed to sqlite3WhereBegin() */
112725 ){
112726 #ifndef SQLITE_DEBUG
112727   if( pParse->explain==2 )
112728 #endif
112729   {
112730     struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
112731     Vdbe *v = pParse->pVdbe;      /* VM being constructed */
112732     sqlite3 *db = pParse->db;     /* Database handle */
112733     char *zMsg;                   /* Text to add to EQP output */
112734     int iId = pParse->iSelectId;  /* Select id (left-most output column) */
112735     int isSearch;                 /* True for a SEARCH. False for SCAN. */
112736     WhereLoop *pLoop;             /* The controlling WhereLoop object */
112737     u32 flags;                    /* Flags that describe this loop */
112738 
112739     pLoop = pLevel->pWLoop;
112740     flags = pLoop->wsFlags;
112741     if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_ONETABLE_ONLY) ) return;
112742 
112743     isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
112744             || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
112745             || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));
112746 
112747     zMsg = sqlite3MPrintf(db, "%s", isSearch?"SEARCH":"SCAN");
112748     if( pItem->pSelect ){
112749       zMsg = sqlite3MAppendf(db, zMsg, "%s SUBQUERY %d", zMsg,pItem->iSelectId);
112750     }else{
112751       zMsg = sqlite3MAppendf(db, zMsg, "%s TABLE %s", zMsg, pItem->zName);
112752     }
112753 
112754     if( pItem->zAlias ){
112755       zMsg = sqlite3MAppendf(db, zMsg, "%s AS %s", zMsg, pItem->zAlias);
112756     }
112757     if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0
112758      && ALWAYS(pLoop->u.btree.pIndex!=0)
112759     ){
112760       const char *zFmt;
112761       Index *pIdx = pLoop->u.btree.pIndex;
112762       char *zWhere = explainIndexRange(db, pLoop, pItem->pTab);
112763       assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) );
112764       if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){
112765         zFmt = zWhere ? "%s USING PRIMARY KEY%.0s%s" : "%s%.0s%s";
112766       }else if( flags & WHERE_AUTO_INDEX ){
112767         zFmt = "%s USING AUTOMATIC COVERING INDEX%.0s%s";
112768       }else if( flags & WHERE_IDX_ONLY ){
112769         zFmt = "%s USING COVERING INDEX %s%s";
112770       }else{
112771         zFmt = "%s USING INDEX %s%s";
112772       }
112773       zMsg = sqlite3MAppendf(db, zMsg, zFmt, zMsg, pIdx->zName, zWhere);
112774       sqlite3DbFree(db, zWhere);
112775     }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){
112776       zMsg = sqlite3MAppendf(db, zMsg, "%s USING INTEGER PRIMARY KEY", zMsg);
112777 
112778       if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){
112779         zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid=?)", zMsg);
112780       }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
112781         zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid>? AND rowid<?)", zMsg);
112782       }else if( flags&WHERE_BTM_LIMIT ){
112783         zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid>?)", zMsg);
112784       }else if( ALWAYS(flags&WHERE_TOP_LIMIT) ){
112785         zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid<?)", zMsg);
112786       }
112787     }
112788 #ifndef SQLITE_OMIT_VIRTUALTABLE
112789     else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
112790       zMsg = sqlite3MAppendf(db, zMsg, "%s VIRTUAL TABLE INDEX %d:%s", zMsg,
112791                   pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr);
112792     }
112793 #endif
112794     zMsg = sqlite3MAppendf(db, zMsg, "%s", zMsg);
112795     sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg, P4_DYNAMIC);
112796   }
112797 }
112798 #else
112799 # define explainOneScan(u,v,w,x,y,z)
112800 #endif /* SQLITE_OMIT_EXPLAIN */
112801 
112802 
112803 /*
112804 ** Generate code for the start of the iLevel-th loop in the WHERE clause
112805 ** implementation described by pWInfo.
112806 */
112807 static Bitmask codeOneLoopStart(
112808   WhereInfo *pWInfo,   /* Complete information about the WHERE clause */
112809   int iLevel,          /* Which level of pWInfo->a[] should be coded */
112810   Bitmask notReady     /* Which tables are currently available */
112811 ){
112812   int j, k;            /* Loop counters */
112813   int iCur;            /* The VDBE cursor for the table */
112814   int addrNxt;         /* Where to jump to continue with the next IN case */
112815   int omitTable;       /* True if we use the index only */
112816   int bRev;            /* True if we need to scan in reverse order */
112817   WhereLevel *pLevel;  /* The where level to be coded */
112818   WhereLoop *pLoop;    /* The WhereLoop object being coded */
112819   WhereClause *pWC;    /* Decomposition of the entire WHERE clause */
112820   WhereTerm *pTerm;               /* A WHERE clause term */
112821   Parse *pParse;                  /* Parsing context */
112822   sqlite3 *db;                    /* Database connection */
112823   Vdbe *v;                        /* The prepared stmt under constructions */
112824   struct SrcList_item *pTabItem;  /* FROM clause term being coded */
112825   int addrBrk;                    /* Jump here to break out of the loop */
112826   int addrCont;                   /* Jump here to continue with next cycle */
112827   int iRowidReg = 0;        /* Rowid is stored in this register, if not zero */
112828   int iReleaseReg = 0;      /* Temp register to free before returning */
112829 
112830   pParse = pWInfo->pParse;
112831   v = pParse->pVdbe;
112832   pWC = &pWInfo->sWC;
112833   db = pParse->db;
112834   pLevel = &pWInfo->a[iLevel];
112835   pLoop = pLevel->pWLoop;
112836   pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
112837   iCur = pTabItem->iCursor;
112838   pLevel->notReady = notReady & ~getMask(&pWInfo->sMaskSet, iCur);
112839   bRev = (pWInfo->revMask>>iLevel)&1;
112840   omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0
112841            && (pWInfo->wctrlFlags & WHERE_FORCE_TABLE)==0;
112842   VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName));
112843 
112844   /* Create labels for the "break" and "continue" instructions
112845   ** for the current loop.  Jump to addrBrk to break out of a loop.
112846   ** Jump to cont to go immediately to the next iteration of the
112847   ** loop.
112848   **
112849   ** When there is an IN operator, we also have a "addrNxt" label that
112850   ** means to continue with the next IN value combination.  When
112851   ** there are no IN operators in the constraints, the "addrNxt" label
112852   ** is the same as "addrBrk".
112853   */
112854   addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
112855   addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v);
112856 
112857   /* If this is the right table of a LEFT OUTER JOIN, allocate and
112858   ** initialize a memory cell that records if this table matches any
112859   ** row of the left table of the join.
112860   */
112861   if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){
112862     pLevel->iLeftJoin = ++pParse->nMem;
112863     sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
112864     VdbeComment((v, "init LEFT JOIN no-match flag"));
112865   }
112866 
112867   /* Special case of a FROM clause subquery implemented as a co-routine */
112868   if( pTabItem->viaCoroutine ){
112869     int regYield = pTabItem->regReturn;
112870     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
112871     pLevel->p2 =  sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk);
112872     VdbeCoverage(v);
112873     VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName));
112874     pLevel->op = OP_Goto;
112875   }else
112876 
112877 #ifndef SQLITE_OMIT_VIRTUALTABLE
112878   if(  (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
112879     /* Case 1:  The table is a virtual-table.  Use the VFilter and VNext
112880     **          to access the data.
112881     */
112882     int iReg;   /* P3 Value for OP_VFilter */
112883     int addrNotFound;
112884     int nConstraint = pLoop->nLTerm;
112885 
112886     sqlite3ExprCachePush(pParse);
112887     iReg = sqlite3GetTempRange(pParse, nConstraint+2);
112888     addrNotFound = pLevel->addrBrk;
112889     for(j=0; j<nConstraint; j++){
112890       int iTarget = iReg+j+2;
112891       pTerm = pLoop->aLTerm[j];
112892       if( pTerm==0 ) continue;
112893       if( pTerm->eOperator & WO_IN ){
112894         codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget);
112895         addrNotFound = pLevel->addrNxt;
112896       }else{
112897         sqlite3ExprCode(pParse, pTerm->pExpr->pRight, iTarget);
112898       }
112899     }
112900     sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg);
112901     sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1);
112902     sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg,
112903                       pLoop->u.vtab.idxStr,
112904                       pLoop->u.vtab.needFree ? P4_MPRINTF : P4_STATIC);
112905     VdbeCoverage(v);
112906     pLoop->u.vtab.needFree = 0;
112907     for(j=0; j<nConstraint && j<16; j++){
112908       if( (pLoop->u.vtab.omitMask>>j)&1 ){
112909         disableTerm(pLevel, pLoop->aLTerm[j]);
112910       }
112911     }
112912     pLevel->op = OP_VNext;
112913     pLevel->p1 = iCur;
112914     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
112915     sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
112916     sqlite3ExprCachePop(pParse);
112917   }else
112918 #endif /* SQLITE_OMIT_VIRTUALTABLE */
112919 
112920   if( (pLoop->wsFlags & WHERE_IPK)!=0
112921    && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0
112922   ){
112923     /* Case 2:  We can directly reference a single row using an
112924     **          equality comparison against the ROWID field.  Or
112925     **          we reference multiple rows using a "rowid IN (...)"
112926     **          construct.
112927     */
112928     assert( pLoop->u.btree.nEq==1 );
112929     pTerm = pLoop->aLTerm[0];
112930     assert( pTerm!=0 );
112931     assert( pTerm->pExpr!=0 );
112932     assert( omitTable==0 );
112933     testcase( pTerm->wtFlags & TERM_VIRTUAL );
112934     iReleaseReg = ++pParse->nMem;
112935     iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg);
112936     if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg);
112937     addrNxt = pLevel->addrNxt;
112938     sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt); VdbeCoverage(v);
112939     sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg);
112940     VdbeCoverage(v);
112941     sqlite3ExprCacheAffinityChange(pParse, iRowidReg, 1);
112942     sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
112943     VdbeComment((v, "pk"));
112944     pLevel->op = OP_Noop;
112945   }else if( (pLoop->wsFlags & WHERE_IPK)!=0
112946          && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0
112947   ){
112948     /* Case 3:  We have an inequality comparison against the ROWID field.
112949     */
112950     int testOp = OP_Noop;
112951     int start;
112952     int memEndValue = 0;
112953     WhereTerm *pStart, *pEnd;
112954 
112955     assert( omitTable==0 );
112956     j = 0;
112957     pStart = pEnd = 0;
112958     if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++];
112959     if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++];
112960     assert( pStart!=0 || pEnd!=0 );
112961     if( bRev ){
112962       pTerm = pStart;
112963       pStart = pEnd;
112964       pEnd = pTerm;
112965     }
112966     if( pStart ){
112967       Expr *pX;             /* The expression that defines the start bound */
112968       int r1, rTemp;        /* Registers for holding the start boundary */
112969 
112970       /* The following constant maps TK_xx codes into corresponding
112971       ** seek opcodes.  It depends on a particular ordering of TK_xx
112972       */
112973       const u8 aMoveOp[] = {
112974            /* TK_GT */  OP_SeekGT,
112975            /* TK_LE */  OP_SeekLE,
112976            /* TK_LT */  OP_SeekLT,
112977            /* TK_GE */  OP_SeekGE
112978       };
112979       assert( TK_LE==TK_GT+1 );      /* Make sure the ordering.. */
112980       assert( TK_LT==TK_GT+2 );      /*  ... of the TK_xx values... */
112981       assert( TK_GE==TK_GT+3 );      /*  ... is correcct. */
112982 
112983       assert( (pStart->wtFlags & TERM_VNULL)==0 );
112984       testcase( pStart->wtFlags & TERM_VIRTUAL );
112985       pX = pStart->pExpr;
112986       assert( pX!=0 );
112987       testcase( pStart->leftCursor!=iCur ); /* transitive constraints */
112988       r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
112989       sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1);
112990       VdbeComment((v, "pk"));
112991       VdbeCoverageIf(v, pX->op==TK_GT);
112992       VdbeCoverageIf(v, pX->op==TK_LE);
112993       VdbeCoverageIf(v, pX->op==TK_LT);
112994       VdbeCoverageIf(v, pX->op==TK_GE);
112995       sqlite3ExprCacheAffinityChange(pParse, r1, 1);
112996       sqlite3ReleaseTempReg(pParse, rTemp);
112997       disableTerm(pLevel, pStart);
112998     }else{
112999       sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk);
113000       VdbeCoverageIf(v, bRev==0);
113001       VdbeCoverageIf(v, bRev!=0);
113002     }
113003     if( pEnd ){
113004       Expr *pX;
113005       pX = pEnd->pExpr;
113006       assert( pX!=0 );
113007       assert( (pEnd->wtFlags & TERM_VNULL)==0 );
113008       testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */
113009       testcase( pEnd->wtFlags & TERM_VIRTUAL );
113010       memEndValue = ++pParse->nMem;
113011       sqlite3ExprCode(pParse, pX->pRight, memEndValue);
113012       if( pX->op==TK_LT || pX->op==TK_GT ){
113013         testOp = bRev ? OP_Le : OP_Ge;
113014       }else{
113015         testOp = bRev ? OP_Lt : OP_Gt;
113016       }
113017       disableTerm(pLevel, pEnd);
113018     }
113019     start = sqlite3VdbeCurrentAddr(v);
113020     pLevel->op = bRev ? OP_Prev : OP_Next;
113021     pLevel->p1 = iCur;
113022     pLevel->p2 = start;
113023     assert( pLevel->p5==0 );
113024     if( testOp!=OP_Noop ){
113025       iRowidReg = ++pParse->nMem;
113026       sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
113027       sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
113028       sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
113029       VdbeCoverageIf(v, testOp==OP_Le);
113030       VdbeCoverageIf(v, testOp==OP_Lt);
113031       VdbeCoverageIf(v, testOp==OP_Ge);
113032       VdbeCoverageIf(v, testOp==OP_Gt);
113033       sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
113034     }
113035   }else if( pLoop->wsFlags & WHERE_INDEXED ){
113036     /* Case 4: A scan using an index.
113037     **
113038     **         The WHERE clause may contain zero or more equality
113039     **         terms ("==" or "IN" operators) that refer to the N
113040     **         left-most columns of the index. It may also contain
113041     **         inequality constraints (>, <, >= or <=) on the indexed
113042     **         column that immediately follows the N equalities. Only
113043     **         the right-most column can be an inequality - the rest must
113044     **         use the "==" and "IN" operators. For example, if the
113045     **         index is on (x,y,z), then the following clauses are all
113046     **         optimized:
113047     **
113048     **            x=5
113049     **            x=5 AND y=10
113050     **            x=5 AND y<10
113051     **            x=5 AND y>5 AND y<10
113052     **            x=5 AND y=5 AND z<=10
113053     **
113054     **         The z<10 term of the following cannot be used, only
113055     **         the x=5 term:
113056     **
113057     **            x=5 AND z<10
113058     **
113059     **         N may be zero if there are inequality constraints.
113060     **         If there are no inequality constraints, then N is at
113061     **         least one.
113062     **
113063     **         This case is also used when there are no WHERE clause
113064     **         constraints but an index is selected anyway, in order
113065     **         to force the output order to conform to an ORDER BY.
113066     */
113067     static const u8 aStartOp[] = {
113068       0,
113069       0,
113070       OP_Rewind,           /* 2: (!start_constraints && startEq &&  !bRev) */
113071       OP_Last,             /* 3: (!start_constraints && startEq &&   bRev) */
113072       OP_SeekGT,           /* 4: (start_constraints  && !startEq && !bRev) */
113073       OP_SeekLT,           /* 5: (start_constraints  && !startEq &&  bRev) */
113074       OP_SeekGE,           /* 6: (start_constraints  &&  startEq && !bRev) */
113075       OP_SeekLE            /* 7: (start_constraints  &&  startEq &&  bRev) */
113076     };
113077     static const u8 aEndOp[] = {
113078       OP_IdxGE,            /* 0: (end_constraints && !bRev && !endEq) */
113079       OP_IdxGT,            /* 1: (end_constraints && !bRev &&  endEq) */
113080       OP_IdxLE,            /* 2: (end_constraints &&  bRev && !endEq) */
113081       OP_IdxLT,            /* 3: (end_constraints &&  bRev &&  endEq) */
113082     };
113083     u16 nEq = pLoop->u.btree.nEq;     /* Number of == or IN terms */
113084     int regBase;                 /* Base register holding constraint values */
113085     WhereTerm *pRangeStart = 0;  /* Inequality constraint at range start */
113086     WhereTerm *pRangeEnd = 0;    /* Inequality constraint at range end */
113087     int startEq;                 /* True if range start uses ==, >= or <= */
113088     int endEq;                   /* True if range end uses ==, >= or <= */
113089     int start_constraints;       /* Start of range is constrained */
113090     int nConstraint;             /* Number of constraint terms */
113091     Index *pIdx;                 /* The index we will be using */
113092     int iIdxCur;                 /* The VDBE cursor for the index */
113093     int nExtraReg = 0;           /* Number of extra registers needed */
113094     int op;                      /* Instruction opcode */
113095     char *zStartAff;             /* Affinity for start of range constraint */
113096     char cEndAff = 0;            /* Affinity for end of range constraint */
113097     u8 bSeekPastNull = 0;        /* True to seek past initial nulls */
113098     u8 bStopAtNull = 0;          /* Add condition to terminate at NULLs */
113099 
113100     pIdx = pLoop->u.btree.pIndex;
113101     iIdxCur = pLevel->iIdxCur;
113102     assert( nEq>=pLoop->u.btree.nSkip );
113103 
113104     /* If this loop satisfies a sort order (pOrderBy) request that
113105     ** was passed to this function to implement a "SELECT min(x) ..."
113106     ** query, then the caller will only allow the loop to run for
113107     ** a single iteration. This means that the first row returned
113108     ** should not have a NULL value stored in 'x'. If column 'x' is
113109     ** the first one after the nEq equality constraints in the index,
113110     ** this requires some special handling.
113111     */
113112     assert( pWInfo->pOrderBy==0
113113          || pWInfo->pOrderBy->nExpr==1
113114          || (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 );
113115     if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0
113116      && pWInfo->nOBSat>0
113117      && (pIdx->nKeyCol>nEq)
113118     ){
113119       assert( pLoop->u.btree.nSkip==0 );
113120       bSeekPastNull = 1;
113121       nExtraReg = 1;
113122     }
113123 
113124     /* Find any inequality constraint terms for the start and end
113125     ** of the range.
113126     */
113127     j = nEq;
113128     if( pLoop->wsFlags & WHERE_BTM_LIMIT ){
113129       pRangeStart = pLoop->aLTerm[j++];
113130       nExtraReg = 1;
113131     }
113132     if( pLoop->wsFlags & WHERE_TOP_LIMIT ){
113133       pRangeEnd = pLoop->aLTerm[j++];
113134       nExtraReg = 1;
113135       if( pRangeStart==0
113136        && (j = pIdx->aiColumn[nEq])>=0
113137        && pIdx->pTable->aCol[j].notNull==0
113138       ){
113139         bSeekPastNull = 1;
113140       }
113141     }
113142     assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 );
113143 
113144     /* Generate code to evaluate all constraint terms using == or IN
113145     ** and store the values of those terms in an array of registers
113146     ** starting at regBase.
113147     */
113148     regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff);
113149     assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq );
113150     if( zStartAff ) cEndAff = zStartAff[nEq];
113151     addrNxt = pLevel->addrNxt;
113152 
113153     /* If we are doing a reverse order scan on an ascending index, or
113154     ** a forward order scan on a descending index, interchange the
113155     ** start and end terms (pRangeStart and pRangeEnd).
113156     */
113157     if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC))
113158      || (bRev && pIdx->nKeyCol==nEq)
113159     ){
113160       SWAP(WhereTerm *, pRangeEnd, pRangeStart);
113161       SWAP(u8, bSeekPastNull, bStopAtNull);
113162     }
113163 
113164     testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 );
113165     testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 );
113166     testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 );
113167     testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 );
113168     startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
113169     endEq =   !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
113170     start_constraints = pRangeStart || nEq>0;
113171 
113172     /* Seek the index cursor to the start of the range. */
113173     nConstraint = nEq;
113174     if( pRangeStart ){
113175       Expr *pRight = pRangeStart->pExpr->pRight;
113176       sqlite3ExprCode(pParse, pRight, regBase+nEq);
113177       if( (pRangeStart->wtFlags & TERM_VNULL)==0
113178        && sqlite3ExprCanBeNull(pRight)
113179       ){
113180         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
113181         VdbeCoverage(v);
113182       }
113183       if( zStartAff ){
113184         if( sqlite3CompareAffinity(pRight, zStartAff[nEq])==SQLITE_AFF_NONE){
113185           /* Since the comparison is to be performed with no conversions
113186           ** applied to the operands, set the affinity to apply to pRight to
113187           ** SQLITE_AFF_NONE.  */
113188           zStartAff[nEq] = SQLITE_AFF_NONE;
113189         }
113190         if( sqlite3ExprNeedsNoAffinityChange(pRight, zStartAff[nEq]) ){
113191           zStartAff[nEq] = SQLITE_AFF_NONE;
113192         }
113193       }
113194       nConstraint++;
113195       testcase( pRangeStart->wtFlags & TERM_VIRTUAL );
113196     }else if( bSeekPastNull ){
113197       sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
113198       nConstraint++;
113199       startEq = 0;
113200       start_constraints = 1;
113201     }
113202     codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff);
113203     op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
113204     assert( op!=0 );
113205     sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
113206     VdbeCoverage(v);
113207     VdbeCoverageIf(v, op==OP_Rewind);  testcase( op==OP_Rewind );
113208     VdbeCoverageIf(v, op==OP_Last);    testcase( op==OP_Last );
113209     VdbeCoverageIf(v, op==OP_SeekGT);  testcase( op==OP_SeekGT );
113210     VdbeCoverageIf(v, op==OP_SeekGE);  testcase( op==OP_SeekGE );
113211     VdbeCoverageIf(v, op==OP_SeekLE);  testcase( op==OP_SeekLE );
113212     VdbeCoverageIf(v, op==OP_SeekLT);  testcase( op==OP_SeekLT );
113213 
113214     /* Load the value for the inequality constraint at the end of the
113215     ** range (if any).
113216     */
113217     nConstraint = nEq;
113218     if( pRangeEnd ){
113219       Expr *pRight = pRangeEnd->pExpr->pRight;
113220       sqlite3ExprCacheRemove(pParse, regBase+nEq, 1);
113221       sqlite3ExprCode(pParse, pRight, regBase+nEq);
113222       if( (pRangeEnd->wtFlags & TERM_VNULL)==0
113223        && sqlite3ExprCanBeNull(pRight)
113224       ){
113225         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
113226         VdbeCoverage(v);
113227       }
113228       if( sqlite3CompareAffinity(pRight, cEndAff)!=SQLITE_AFF_NONE
113229        && !sqlite3ExprNeedsNoAffinityChange(pRight, cEndAff)
113230       ){
113231         codeApplyAffinity(pParse, regBase+nEq, 1, &cEndAff);
113232       }
113233       nConstraint++;
113234       testcase( pRangeEnd->wtFlags & TERM_VIRTUAL );
113235     }else if( bStopAtNull ){
113236       sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
113237       endEq = 0;
113238       nConstraint++;
113239     }
113240     sqlite3DbFree(db, zStartAff);
113241 
113242     /* Top of the loop body */
113243     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
113244 
113245     /* Check if the index cursor is past the end of the range. */
113246     if( nConstraint ){
113247       op = aEndOp[bRev*2 + endEq];
113248       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
113249       testcase( op==OP_IdxGT );  VdbeCoverageIf(v, op==OP_IdxGT );
113250       testcase( op==OP_IdxGE );  VdbeCoverageIf(v, op==OP_IdxGE );
113251       testcase( op==OP_IdxLT );  VdbeCoverageIf(v, op==OP_IdxLT );
113252       testcase( op==OP_IdxLE );  VdbeCoverageIf(v, op==OP_IdxLE );
113253     }
113254 
113255     /* Seek the table cursor, if required */
113256     disableTerm(pLevel, pRangeStart);
113257     disableTerm(pLevel, pRangeEnd);
113258     if( omitTable ){
113259       /* pIdx is a covering index.  No need to access the main table. */
113260     }else if( HasRowid(pIdx->pTable) ){
113261       iRowidReg = ++pParse->nMem;
113262       sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg);
113263       sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
113264       sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg);  /* Deferred seek */
113265     }else if( iCur!=iIdxCur ){
113266       Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
113267       iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol);
113268       for(j=0; j<pPk->nKeyCol; j++){
113269         k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]);
113270         sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j);
113271       }
113272       sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont,
113273                            iRowidReg, pPk->nKeyCol); VdbeCoverage(v);
113274     }
113275 
113276     /* Record the instruction used to terminate the loop. Disable
113277     ** WHERE clause terms made redundant by the index range scan.
113278     */
113279     if( pLoop->wsFlags & WHERE_ONEROW ){
113280       pLevel->op = OP_Noop;
113281     }else if( bRev ){
113282       pLevel->op = OP_Prev;
113283     }else{
113284       pLevel->op = OP_Next;
113285     }
113286     pLevel->p1 = iIdxCur;
113287     pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0;
113288     if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){
113289       pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
113290     }else{
113291       assert( pLevel->p5==0 );
113292     }
113293   }else
113294 
113295 #ifndef SQLITE_OMIT_OR_OPTIMIZATION
113296   if( pLoop->wsFlags & WHERE_MULTI_OR ){
113297     /* Case 5:  Two or more separately indexed terms connected by OR
113298     **
113299     ** Example:
113300     **
113301     **   CREATE TABLE t1(a,b,c,d);
113302     **   CREATE INDEX i1 ON t1(a);
113303     **   CREATE INDEX i2 ON t1(b);
113304     **   CREATE INDEX i3 ON t1(c);
113305     **
113306     **   SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
113307     **
113308     ** In the example, there are three indexed terms connected by OR.
113309     ** The top of the loop looks like this:
113310     **
113311     **          Null       1                # Zero the rowset in reg 1
113312     **
113313     ** Then, for each indexed term, the following. The arguments to
113314     ** RowSetTest are such that the rowid of the current row is inserted
113315     ** into the RowSet. If it is already present, control skips the
113316     ** Gosub opcode and jumps straight to the code generated by WhereEnd().
113317     **
113318     **        sqlite3WhereBegin(<term>)
113319     **          RowSetTest                  # Insert rowid into rowset
113320     **          Gosub      2 A
113321     **        sqlite3WhereEnd()
113322     **
113323     ** Following the above, code to terminate the loop. Label A, the target
113324     ** of the Gosub above, jumps to the instruction right after the Goto.
113325     **
113326     **          Null       1                # Zero the rowset in reg 1
113327     **          Goto       B                # The loop is finished.
113328     **
113329     **       A: <loop body>                 # Return data, whatever.
113330     **
113331     **          Return     2                # Jump back to the Gosub
113332     **
113333     **       B: <after the loop>
113334     **
113335     ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then
113336     ** use an ephermeral index instead of a RowSet to record the primary
113337     ** keys of the rows we have already seen.
113338     **
113339     */
113340     WhereClause *pOrWc;    /* The OR-clause broken out into subterms */
113341     SrcList *pOrTab;       /* Shortened table list or OR-clause generation */
113342     Index *pCov = 0;             /* Potential covering index (or NULL) */
113343     int iCovCur = pParse->nTab++;  /* Cursor used for index scans (if any) */
113344 
113345     int regReturn = ++pParse->nMem;           /* Register used with OP_Gosub */
113346     int regRowset = 0;                        /* Register for RowSet object */
113347     int regRowid = 0;                         /* Register holding rowid */
113348     int iLoopBody = sqlite3VdbeMakeLabel(v);  /* Start of loop body */
113349     int iRetInit;                             /* Address of regReturn init */
113350     int untestedTerms = 0;             /* Some terms not completely tested */
113351     int ii;                            /* Loop counter */
113352     Expr *pAndExpr = 0;                /* An ".. AND (...)" expression */
113353     Table *pTab = pTabItem->pTab;
113354 
113355     pTerm = pLoop->aLTerm[0];
113356     assert( pTerm!=0 );
113357     assert( pTerm->eOperator & WO_OR );
113358     assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
113359     pOrWc = &pTerm->u.pOrInfo->wc;
113360     pLevel->op = OP_Return;
113361     pLevel->p1 = regReturn;
113362 
113363     /* Set up a new SrcList in pOrTab containing the table being scanned
113364     ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
113365     ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
113366     */
113367     if( pWInfo->nLevel>1 ){
113368       int nNotReady;                 /* The number of notReady tables */
113369       struct SrcList_item *origSrc;     /* Original list of tables */
113370       nNotReady = pWInfo->nLevel - iLevel - 1;
113371       pOrTab = sqlite3StackAllocRaw(db,
113372                             sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
113373       if( pOrTab==0 ) return notReady;
113374       pOrTab->nAlloc = (u8)(nNotReady + 1);
113375       pOrTab->nSrc = pOrTab->nAlloc;
113376       memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
113377       origSrc = pWInfo->pTabList->a;
113378       for(k=1; k<=nNotReady; k++){
113379         memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
113380       }
113381     }else{
113382       pOrTab = pWInfo->pTabList;
113383     }
113384 
113385     /* Initialize the rowset register to contain NULL. An SQL NULL is
113386     ** equivalent to an empty rowset.  Or, create an ephermeral index
113387     ** capable of holding primary keys in the case of a WITHOUT ROWID.
113388     **
113389     ** Also initialize regReturn to contain the address of the instruction
113390     ** immediately following the OP_Return at the bottom of the loop. This
113391     ** is required in a few obscure LEFT JOIN cases where control jumps
113392     ** over the top of the loop into the body of it. In this case the
113393     ** correct response for the end-of-loop code (the OP_Return) is to
113394     ** fall through to the next instruction, just as an OP_Next does if
113395     ** called on an uninitialized cursor.
113396     */
113397     if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
113398       if( HasRowid(pTab) ){
113399         regRowset = ++pParse->nMem;
113400         sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
113401       }else{
113402         Index *pPk = sqlite3PrimaryKeyIndex(pTab);
113403         regRowset = pParse->nTab++;
113404         sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol);
113405         sqlite3VdbeSetP4KeyInfo(pParse, pPk);
113406       }
113407       regRowid = ++pParse->nMem;
113408     }
113409     iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
113410 
113411     /* If the original WHERE clause is z of the form:  (x1 OR x2 OR ...) AND y
113412     ** Then for every term xN, evaluate as the subexpression: xN AND z
113413     ** That way, terms in y that are factored into the disjunction will
113414     ** be picked up by the recursive calls to sqlite3WhereBegin() below.
113415     **
113416     ** Actually, each subexpression is converted to "xN AND w" where w is
113417     ** the "interesting" terms of z - terms that did not originate in the
113418     ** ON or USING clause of a LEFT JOIN, and terms that are usable as
113419     ** indices.
113420     **
113421     ** This optimization also only applies if the (x1 OR x2 OR ...) term
113422     ** is not contained in the ON clause of a LEFT JOIN.
113423     ** See ticket http://www.sqlite.org/src/info/f2369304e4
113424     */
113425     if( pWC->nTerm>1 ){
113426       int iTerm;
113427       for(iTerm=0; iTerm<pWC->nTerm; iTerm++){
113428         Expr *pExpr = pWC->a[iTerm].pExpr;
113429         if( &pWC->a[iTerm] == pTerm ) continue;
113430         if( ExprHasProperty(pExpr, EP_FromJoin) ) continue;
113431         testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO );
113432         testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL );
113433         if( pWC->a[iTerm].wtFlags & (TERM_ORINFO|TERM_VIRTUAL) ) continue;
113434         if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue;
113435         pExpr = sqlite3ExprDup(db, pExpr, 0);
113436         pAndExpr = sqlite3ExprAnd(db, pAndExpr, pExpr);
113437       }
113438       if( pAndExpr ){
113439         pAndExpr = sqlite3PExpr(pParse, TK_AND, 0, pAndExpr, 0);
113440       }
113441     }
113442 
113443     /* Run a separate WHERE clause for each term of the OR clause.  After
113444     ** eliminating duplicates from other WHERE clauses, the action for each
113445     ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
113446     */
113447     for(ii=0; ii<pOrWc->nTerm; ii++){
113448       WhereTerm *pOrTerm = &pOrWc->a[ii];
113449       if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
113450         WhereInfo *pSubWInfo;           /* Info for single OR-term scan */
113451         Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */
113452         int j1 = 0;                     /* Address of jump operation */
113453         if( pAndExpr && !ExprHasProperty(pOrExpr, EP_FromJoin) ){
113454           pAndExpr->pLeft = pOrExpr;
113455           pOrExpr = pAndExpr;
113456         }
113457         /* Loop through table entries that match term pOrTerm. */
113458         pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0,
113459                         WHERE_OMIT_OPEN_CLOSE | WHERE_AND_ONLY |
113460                         WHERE_FORCE_TABLE | WHERE_ONETABLE_ONLY, iCovCur);
113461         assert( pSubWInfo || pParse->nErr || db->mallocFailed );
113462         if( pSubWInfo ){
113463           WhereLoop *pSubLoop;
113464           explainOneScan(
113465               pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0
113466           );
113467           /* This is the sub-WHERE clause body.  First skip over
113468           ** duplicate rows from prior sub-WHERE clauses, and record the
113469           ** rowid (or PRIMARY KEY) for the current row so that the same
113470           ** row will be skipped in subsequent sub-WHERE clauses.
113471           */
113472           if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
113473             int r;
113474             int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
113475             if( HasRowid(pTab) ){
113476               r = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iCur, regRowid, 0);
113477               j1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0, r,iSet);
113478               VdbeCoverage(v);
113479             }else{
113480               Index *pPk = sqlite3PrimaryKeyIndex(pTab);
113481               int nPk = pPk->nKeyCol;
113482               int iPk;
113483 
113484               /* Read the PK into an array of temp registers. */
113485               r = sqlite3GetTempRange(pParse, nPk);
113486               for(iPk=0; iPk<nPk; iPk++){
113487                 int iCol = pPk->aiColumn[iPk];
113488                 sqlite3ExprCodeGetColumn(pParse, pTab, iCol, iCur, r+iPk, 0);
113489               }
113490 
113491               /* Check if the temp table already contains this key. If so,
113492               ** the row has already been included in the result set and
113493               ** can be ignored (by jumping past the Gosub below). Otherwise,
113494               ** insert the key into the temp table and proceed with processing
113495               ** the row.
113496               **
113497               ** Use some of the same optimizations as OP_RowSetTest: If iSet
113498               ** is zero, assume that the key cannot already be present in
113499               ** the temp table. And if iSet is -1, assume that there is no
113500               ** need to insert the key into the temp table, as it will never
113501               ** be tested for.  */
113502               if( iSet ){
113503                 j1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk);
113504                 VdbeCoverage(v);
113505               }
113506               if( iSet>=0 ){
113507                 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid);
113508                 sqlite3VdbeAddOp3(v, OP_IdxInsert, regRowset, regRowid, 0);
113509                 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
113510               }
113511 
113512               /* Release the array of temp registers */
113513               sqlite3ReleaseTempRange(pParse, r, nPk);
113514             }
113515           }
113516 
113517           /* Invoke the main loop body as a subroutine */
113518           sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
113519 
113520           /* Jump here (skipping the main loop body subroutine) if the
113521           ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */
113522           if( j1 ) sqlite3VdbeJumpHere(v, j1);
113523 
113524           /* The pSubWInfo->untestedTerms flag means that this OR term
113525           ** contained one or more AND term from a notReady table.  The
113526           ** terms from the notReady table could not be tested and will
113527           ** need to be tested later.
113528           */
113529           if( pSubWInfo->untestedTerms ) untestedTerms = 1;
113530 
113531           /* If all of the OR-connected terms are optimized using the same
113532           ** index, and the index is opened using the same cursor number
113533           ** by each call to sqlite3WhereBegin() made by this loop, it may
113534           ** be possible to use that index as a covering index.
113535           **
113536           ** If the call to sqlite3WhereBegin() above resulted in a scan that
113537           ** uses an index, and this is either the first OR-connected term
113538           ** processed or the index is the same as that used by all previous
113539           ** terms, set pCov to the candidate covering index. Otherwise, set
113540           ** pCov to NULL to indicate that no candidate covering index will
113541           ** be available.
113542           */
113543           pSubLoop = pSubWInfo->a[0].pWLoop;
113544           assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
113545           if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0
113546            && (ii==0 || pSubLoop->u.btree.pIndex==pCov)
113547            && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex))
113548           ){
113549             assert( pSubWInfo->a[0].iIdxCur==iCovCur );
113550             pCov = pSubLoop->u.btree.pIndex;
113551           }else{
113552             pCov = 0;
113553           }
113554 
113555           /* Finish the loop through table entries that match term pOrTerm. */
113556           sqlite3WhereEnd(pSubWInfo);
113557         }
113558       }
113559     }
113560     pLevel->u.pCovidx = pCov;
113561     if( pCov ) pLevel->iIdxCur = iCovCur;
113562     if( pAndExpr ){
113563       pAndExpr->pLeft = 0;
113564       sqlite3ExprDelete(db, pAndExpr);
113565     }
113566     sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
113567     sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrBrk);
113568     sqlite3VdbeResolveLabel(v, iLoopBody);
113569 
113570     if( pWInfo->nLevel>1 ) sqlite3StackFree(db, pOrTab);
113571     if( !untestedTerms ) disableTerm(pLevel, pTerm);
113572   }else
113573 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
113574 
113575   {
113576     /* Case 6:  There is no usable index.  We must do a complete
113577     **          scan of the entire table.
113578     */
113579     static const u8 aStep[] = { OP_Next, OP_Prev };
113580     static const u8 aStart[] = { OP_Rewind, OP_Last };
113581     assert( bRev==0 || bRev==1 );
113582     if( pTabItem->isRecursive ){
113583       /* Tables marked isRecursive have only a single row that is stored in
113584       ** a pseudo-cursor.  No need to Rewind or Next such cursors. */
113585       pLevel->op = OP_Noop;
113586     }else{
113587       pLevel->op = aStep[bRev];
113588       pLevel->p1 = iCur;
113589       pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk);
113590       VdbeCoverageIf(v, bRev==0);
113591       VdbeCoverageIf(v, bRev!=0);
113592       pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
113593     }
113594   }
113595 
113596   /* Insert code to test every subexpression that can be completely
113597   ** computed using the current set of tables.
113598   */
113599   for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
113600     Expr *pE;
113601     testcase( pTerm->wtFlags & TERM_VIRTUAL );
113602     testcase( pTerm->wtFlags & TERM_CODED );
113603     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
113604     if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
113605       testcase( pWInfo->untestedTerms==0
113606                && (pWInfo->wctrlFlags & WHERE_ONETABLE_ONLY)!=0 );
113607       pWInfo->untestedTerms = 1;
113608       continue;
113609     }
113610     pE = pTerm->pExpr;
113611     assert( pE!=0 );
113612     if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
113613       continue;
113614     }
113615     sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
113616     pTerm->wtFlags |= TERM_CODED;
113617   }
113618 
113619   /* Insert code to test for implied constraints based on transitivity
113620   ** of the "==" operator.
113621   **
113622   ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123"
113623   ** and we are coding the t1 loop and the t2 loop has not yet coded,
113624   ** then we cannot use the "t1.a=t2.b" constraint, but we can code
113625   ** the implied "t1.a=123" constraint.
113626   */
113627   for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
113628     Expr *pE, *pEAlt;
113629     WhereTerm *pAlt;
113630     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
113631     if( pTerm->eOperator!=(WO_EQUIV|WO_EQ) ) continue;
113632     if( pTerm->leftCursor!=iCur ) continue;
113633     if( pLevel->iLeftJoin ) continue;
113634     pE = pTerm->pExpr;
113635     assert( !ExprHasProperty(pE, EP_FromJoin) );
113636     assert( (pTerm->prereqRight & pLevel->notReady)!=0 );
113637     pAlt = findTerm(pWC, iCur, pTerm->u.leftColumn, notReady, WO_EQ|WO_IN, 0);
113638     if( pAlt==0 ) continue;
113639     if( pAlt->wtFlags & (TERM_CODED) ) continue;
113640     testcase( pAlt->eOperator & WO_EQ );
113641     testcase( pAlt->eOperator & WO_IN );
113642     VdbeModuleComment((v, "begin transitive constraint"));
113643     pEAlt = sqlite3StackAllocRaw(db, sizeof(*pEAlt));
113644     if( pEAlt ){
113645       *pEAlt = *pAlt->pExpr;
113646       pEAlt->pLeft = pE->pLeft;
113647       sqlite3ExprIfFalse(pParse, pEAlt, addrCont, SQLITE_JUMPIFNULL);
113648       sqlite3StackFree(db, pEAlt);
113649     }
113650   }
113651 
113652   /* For a LEFT OUTER JOIN, generate code that will record the fact that
113653   ** at least one row of the right table has matched the left table.
113654   */
113655   if( pLevel->iLeftJoin ){
113656     pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
113657     sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
113658     VdbeComment((v, "record LEFT JOIN hit"));
113659     sqlite3ExprCacheClear(pParse);
113660     for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){
113661       testcase( pTerm->wtFlags & TERM_VIRTUAL );
113662       testcase( pTerm->wtFlags & TERM_CODED );
113663       if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
113664       if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
113665         assert( pWInfo->untestedTerms );
113666         continue;
113667       }
113668       assert( pTerm->pExpr );
113669       sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
113670       pTerm->wtFlags |= TERM_CODED;
113671     }
113672   }
113673 
113674   return pLevel->notReady;
113675 }
113676 
113677 #if defined(WHERETRACE_ENABLED) && defined(SQLITE_ENABLE_TREE_EXPLAIN)
113678 /*
113679 ** Generate "Explanation" text for a WhereTerm.
113680 */
113681 static void whereExplainTerm(Vdbe *v, WhereTerm *pTerm){
113682   char zType[4];
113683   memcpy(zType, "...", 4);
113684   if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V';
113685   if( pTerm->eOperator & WO_EQUIV  ) zType[1] = 'E';
113686   if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L';
113687   sqlite3ExplainPrintf(v, "%s ", zType);
113688   sqlite3ExplainExpr(v, pTerm->pExpr);
113689 }
113690 #endif /* WHERETRACE_ENABLED && SQLITE_ENABLE_TREE_EXPLAIN */
113691 
113692 
113693 #ifdef WHERETRACE_ENABLED
113694 /*
113695 ** Print a WhereLoop object for debugging purposes
113696 */
113697 static void whereLoopPrint(WhereLoop *p, WhereClause *pWC){
113698   WhereInfo *pWInfo = pWC->pWInfo;
113699   int nb = 1+(pWInfo->pTabList->nSrc+7)/8;
113700   struct SrcList_item *pItem = pWInfo->pTabList->a + p->iTab;
113701   Table *pTab = pItem->pTab;
113702   sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId,
113703                      p->iTab, nb, p->maskSelf, nb, p->prereq);
113704   sqlite3DebugPrintf(" %12s",
113705                      pItem->zAlias ? pItem->zAlias : pTab->zName);
113706   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
113707      const char *zName;
113708      if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){
113709       if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){
113710         int i = sqlite3Strlen30(zName) - 1;
113711         while( zName[i]!='_' ) i--;
113712         zName += i;
113713       }
113714       sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq);
113715     }else{
113716       sqlite3DebugPrintf("%20s","");
113717     }
113718   }else{
113719     char *z;
113720     if( p->u.vtab.idxStr ){
113721       z = sqlite3_mprintf("(%d,\"%s\",%x)",
113722                 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask);
113723     }else{
113724       z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask);
113725     }
113726     sqlite3DebugPrintf(" %-19s", z);
113727     sqlite3_free(z);
113728   }
113729   sqlite3DebugPrintf(" f %04x N %d", p->wsFlags, p->nLTerm);
113730   sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut);
113731 #ifdef SQLITE_ENABLE_TREE_EXPLAIN
113732   /* If the 0x100 bit of wheretracing is set, then show all of the constraint
113733   ** expressions in the WhereLoop.aLTerm[] array.
113734   */
113735   if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){  /* WHERETRACE 0x100 */
113736     int i;
113737     Vdbe *v = pWInfo->pParse->pVdbe;
113738     sqlite3ExplainBegin(v);
113739     for(i=0; i<p->nLTerm; i++){
113740       WhereTerm *pTerm = p->aLTerm[i];
113741       if( pTerm==0 ) continue;
113742       sqlite3ExplainPrintf(v, "  (%d) #%-2d ", i+1, (int)(pTerm-pWC->a));
113743       sqlite3ExplainPush(v);
113744       whereExplainTerm(v, pTerm);
113745       sqlite3ExplainPop(v);
113746       sqlite3ExplainNL(v);
113747     }
113748     sqlite3ExplainFinish(v);
113749     sqlite3DebugPrintf("%s", sqlite3VdbeExplanation(v));
113750   }
113751 #endif
113752 }
113753 #endif
113754 
113755 /*
113756 ** Convert bulk memory into a valid WhereLoop that can be passed
113757 ** to whereLoopClear harmlessly.
113758 */
113759 static void whereLoopInit(WhereLoop *p){
113760   p->aLTerm = p->aLTermSpace;
113761   p->nLTerm = 0;
113762   p->nLSlot = ArraySize(p->aLTermSpace);
113763   p->wsFlags = 0;
113764 }
113765 
113766 /*
113767 ** Clear the WhereLoop.u union.  Leave WhereLoop.pLTerm intact.
113768 */
113769 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){
113770   if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){
113771     if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){
113772       sqlite3_free(p->u.vtab.idxStr);
113773       p->u.vtab.needFree = 0;
113774       p->u.vtab.idxStr = 0;
113775     }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){
113776       sqlite3DbFree(db, p->u.btree.pIndex->zColAff);
113777       sqlite3KeyInfoUnref(p->u.btree.pIndex->pKeyInfo);
113778       sqlite3DbFree(db, p->u.btree.pIndex);
113779       p->u.btree.pIndex = 0;
113780     }
113781   }
113782 }
113783 
113784 /*
113785 ** Deallocate internal memory used by a WhereLoop object
113786 */
113787 static void whereLoopClear(sqlite3 *db, WhereLoop *p){
113788   if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFree(db, p->aLTerm);
113789   whereLoopClearUnion(db, p);
113790   whereLoopInit(p);
113791 }
113792 
113793 /*
113794 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n.
113795 */
113796 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){
113797   WhereTerm **paNew;
113798   if( p->nLSlot>=n ) return SQLITE_OK;
113799   n = (n+7)&~7;
113800   paNew = sqlite3DbMallocRaw(db, sizeof(p->aLTerm[0])*n);
113801   if( paNew==0 ) return SQLITE_NOMEM;
113802   memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot);
113803   if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFree(db, p->aLTerm);
113804   p->aLTerm = paNew;
113805   p->nLSlot = n;
113806   return SQLITE_OK;
113807 }
113808 
113809 /*
113810 ** Transfer content from the second pLoop into the first.
113811 */
113812 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){
113813   whereLoopClearUnion(db, pTo);
113814   if( whereLoopResize(db, pTo, pFrom->nLTerm) ){
113815     memset(&pTo->u, 0, sizeof(pTo->u));
113816     return SQLITE_NOMEM;
113817   }
113818   memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ);
113819   memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0]));
113820   if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){
113821     pFrom->u.vtab.needFree = 0;
113822   }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){
113823     pFrom->u.btree.pIndex = 0;
113824   }
113825   return SQLITE_OK;
113826 }
113827 
113828 /*
113829 ** Delete a WhereLoop object
113830 */
113831 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){
113832   whereLoopClear(db, p);
113833   sqlite3DbFree(db, p);
113834 }
113835 
113836 /*
113837 ** Free a WhereInfo structure
113838 */
113839 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
113840   if( ALWAYS(pWInfo) ){
113841     whereClauseClear(&pWInfo->sWC);
113842     while( pWInfo->pLoops ){
113843       WhereLoop *p = pWInfo->pLoops;
113844       pWInfo->pLoops = p->pNextLoop;
113845       whereLoopDelete(db, p);
113846     }
113847     sqlite3DbFree(db, pWInfo);
113848   }
113849 }
113850 
113851 /*
113852 ** Return TRUE if both of the following are true:
113853 **
113854 **   (1)  X has the same or lower cost that Y
113855 **   (2)  X is a proper subset of Y
113856 **
113857 ** By "proper subset" we mean that X uses fewer WHERE clause terms
113858 ** than Y and that every WHERE clause term used by X is also used
113859 ** by Y.
113860 **
113861 ** If X is a proper subset of Y then Y is a better choice and ought
113862 ** to have a lower cost.  This routine returns TRUE when that cost
113863 ** relationship is inverted and needs to be adjusted.
113864 */
113865 static int whereLoopCheaperProperSubset(
113866   const WhereLoop *pX,       /* First WhereLoop to compare */
113867   const WhereLoop *pY        /* Compare against this WhereLoop */
113868 ){
113869   int i, j;
113870   if( pX->nLTerm >= pY->nLTerm ) return 0; /* X is not a subset of Y */
113871   if( pX->rRun >= pY->rRun ){
113872     if( pX->rRun > pY->rRun ) return 0;    /* X costs more than Y */
113873     if( pX->nOut > pY->nOut ) return 0;    /* X costs more than Y */
113874   }
113875   for(i=pX->nLTerm-1; i>=0; i--){
113876     for(j=pY->nLTerm-1; j>=0; j--){
113877       if( pY->aLTerm[j]==pX->aLTerm[i] ) break;
113878     }
113879     if( j<0 ) return 0;  /* X not a subset of Y since term X[i] not used by Y */
113880   }
113881   return 1;  /* All conditions meet */
113882 }
113883 
113884 /*
113885 ** Try to adjust the cost of WhereLoop pTemplate upwards or downwards so
113886 ** that:
113887 **
113888 **   (1) pTemplate costs less than any other WhereLoops that are a proper
113889 **       subset of pTemplate
113890 **
113891 **   (2) pTemplate costs more than any other WhereLoops for which pTemplate
113892 **       is a proper subset.
113893 **
113894 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer
113895 ** WHERE clause terms than Y and that every WHERE clause term used by X is
113896 ** also used by Y.
113897 **
113898 ** This adjustment is omitted for SKIPSCAN loops.  In a SKIPSCAN loop, the
113899 ** WhereLoop.nLTerm field is not an accurate measure of the number of WHERE
113900 ** clause terms covered, since some of the first nLTerm entries in aLTerm[]
113901 ** will be NULL (because they are skipped).  That makes it more difficult
113902 ** to compare the loops.  We could add extra code to do the comparison, and
113903 ** perhaps we will someday.  But SKIPSCAN is sufficiently uncommon, and this
113904 ** adjustment is sufficient minor, that it is very difficult to construct
113905 ** a test case where the extra code would improve the query plan.  Better
113906 ** to avoid the added complexity and just omit cost adjustments to SKIPSCAN
113907 ** loops.
113908 */
113909 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){
113910   if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return;
113911   if( (pTemplate->wsFlags & WHERE_SKIPSCAN)!=0 ) return;
113912   for(; p; p=p->pNextLoop){
113913     if( p->iTab!=pTemplate->iTab ) continue;
113914     if( (p->wsFlags & WHERE_INDEXED)==0 ) continue;
113915     if( (p->wsFlags & WHERE_SKIPSCAN)!=0 ) continue;
113916     if( whereLoopCheaperProperSubset(p, pTemplate) ){
113917       /* Adjust pTemplate cost downward so that it is cheaper than its
113918       ** subset p */
113919       pTemplate->rRun = p->rRun;
113920       pTemplate->nOut = p->nOut - 1;
113921     }else if( whereLoopCheaperProperSubset(pTemplate, p) ){
113922       /* Adjust pTemplate cost upward so that it is costlier than p since
113923       ** pTemplate is a proper subset of p */
113924       pTemplate->rRun = p->rRun;
113925       pTemplate->nOut = p->nOut + 1;
113926     }
113927   }
113928 }
113929 
113930 /*
113931 ** Search the list of WhereLoops in *ppPrev looking for one that can be
113932 ** supplanted by pTemplate.
113933 **
113934 ** Return NULL if the WhereLoop list contains an entry that can supplant
113935 ** pTemplate, in other words if pTemplate does not belong on the list.
113936 **
113937 ** If pX is a WhereLoop that pTemplate can supplant, then return the
113938 ** link that points to pX.
113939 **
113940 ** If pTemplate cannot supplant any existing element of the list but needs
113941 ** to be added to the list, then return a pointer to the tail of the list.
113942 */
113943 static WhereLoop **whereLoopFindLesser(
113944   WhereLoop **ppPrev,
113945   const WhereLoop *pTemplate
113946 ){
113947   WhereLoop *p;
113948   for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){
113949     if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){
113950       /* If either the iTab or iSortIdx values for two WhereLoop are different
113951       ** then those WhereLoops need to be considered separately.  Neither is
113952       ** a candidate to replace the other. */
113953       continue;
113954     }
113955     /* In the current implementation, the rSetup value is either zero
113956     ** or the cost of building an automatic index (NlogN) and the NlogN
113957     ** is the same for compatible WhereLoops. */
113958     assert( p->rSetup==0 || pTemplate->rSetup==0
113959                  || p->rSetup==pTemplate->rSetup );
113960 
113961     /* whereLoopAddBtree() always generates and inserts the automatic index
113962     ** case first.  Hence compatible candidate WhereLoops never have a larger
113963     ** rSetup. Call this SETUP-INVARIANT */
113964     assert( p->rSetup>=pTemplate->rSetup );
113965 
113966     /* If existing WhereLoop p is better than pTemplate, pTemplate can be
113967     ** discarded.  WhereLoop p is better if:
113968     **   (1)  p has no more dependencies than pTemplate, and
113969     **   (2)  p has an equal or lower cost than pTemplate
113970     */
113971     if( (p->prereq & pTemplate->prereq)==p->prereq    /* (1)  */
113972      && p->rSetup<=pTemplate->rSetup                  /* (2a) */
113973      && p->rRun<=pTemplate->rRun                      /* (2b) */
113974      && p->nOut<=pTemplate->nOut                      /* (2c) */
113975     ){
113976       return 0;  /* Discard pTemplate */
113977     }
113978 
113979     /* If pTemplate is always better than p, then cause p to be overwritten
113980     ** with pTemplate.  pTemplate is better than p if:
113981     **   (1)  pTemplate has no more dependences than p, and
113982     **   (2)  pTemplate has an equal or lower cost than p.
113983     */
113984     if( (p->prereq & pTemplate->prereq)==pTemplate->prereq   /* (1)  */
113985      && p->rRun>=pTemplate->rRun                             /* (2a) */
113986      && p->nOut>=pTemplate->nOut                             /* (2b) */
113987     ){
113988       assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */
113989       break;   /* Cause p to be overwritten by pTemplate */
113990     }
113991   }
113992   return ppPrev;
113993 }
113994 
113995 /*
113996 ** Insert or replace a WhereLoop entry using the template supplied.
113997 **
113998 ** An existing WhereLoop entry might be overwritten if the new template
113999 ** is better and has fewer dependencies.  Or the template will be ignored
114000 ** and no insert will occur if an existing WhereLoop is faster and has
114001 ** fewer dependencies than the template.  Otherwise a new WhereLoop is
114002 ** added based on the template.
114003 **
114004 ** If pBuilder->pOrSet is not NULL then we care about only the
114005 ** prerequisites and rRun and nOut costs of the N best loops.  That
114006 ** information is gathered in the pBuilder->pOrSet object.  This special
114007 ** processing mode is used only for OR clause processing.
114008 **
114009 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we
114010 ** still might overwrite similar loops with the new template if the
114011 ** new template is better.  Loops may be overwritten if the following
114012 ** conditions are met:
114013 **
114014 **    (1)  They have the same iTab.
114015 **    (2)  They have the same iSortIdx.
114016 **    (3)  The template has same or fewer dependencies than the current loop
114017 **    (4)  The template has the same or lower cost than the current loop
114018 */
114019 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){
114020   WhereLoop **ppPrev, *p;
114021   WhereInfo *pWInfo = pBuilder->pWInfo;
114022   sqlite3 *db = pWInfo->pParse->db;
114023 
114024   /* If pBuilder->pOrSet is defined, then only keep track of the costs
114025   ** and prereqs.
114026   */
114027   if( pBuilder->pOrSet!=0 ){
114028 #if WHERETRACE_ENABLED
114029     u16 n = pBuilder->pOrSet->n;
114030     int x =
114031 #endif
114032     whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun,
114033                                     pTemplate->nOut);
114034 #if WHERETRACE_ENABLED /* 0x8 */
114035     if( sqlite3WhereTrace & 0x8 ){
114036       sqlite3DebugPrintf(x?"   or-%d:  ":"   or-X:  ", n);
114037       whereLoopPrint(pTemplate, pBuilder->pWC);
114038     }
114039 #endif
114040     return SQLITE_OK;
114041   }
114042 
114043   /* Look for an existing WhereLoop to replace with pTemplate
114044   */
114045   whereLoopAdjustCost(pWInfo->pLoops, pTemplate);
114046   ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate);
114047 
114048   if( ppPrev==0 ){
114049     /* There already exists a WhereLoop on the list that is better
114050     ** than pTemplate, so just ignore pTemplate */
114051 #if WHERETRACE_ENABLED /* 0x8 */
114052     if( sqlite3WhereTrace & 0x8 ){
114053       sqlite3DebugPrintf("ins-noop: ");
114054       whereLoopPrint(pTemplate, pBuilder->pWC);
114055     }
114056 #endif
114057     return SQLITE_OK;
114058   }else{
114059     p = *ppPrev;
114060   }
114061 
114062   /* If we reach this point it means that either p[] should be overwritten
114063   ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new
114064   ** WhereLoop and insert it.
114065   */
114066 #if WHERETRACE_ENABLED /* 0x8 */
114067   if( sqlite3WhereTrace & 0x8 ){
114068     if( p!=0 ){
114069       sqlite3DebugPrintf("ins-del:  ");
114070       whereLoopPrint(p, pBuilder->pWC);
114071     }
114072     sqlite3DebugPrintf("ins-new:  ");
114073     whereLoopPrint(pTemplate, pBuilder->pWC);
114074   }
114075 #endif
114076   if( p==0 ){
114077     /* Allocate a new WhereLoop to add to the end of the list */
114078     *ppPrev = p = sqlite3DbMallocRaw(db, sizeof(WhereLoop));
114079     if( p==0 ) return SQLITE_NOMEM;
114080     whereLoopInit(p);
114081     p->pNextLoop = 0;
114082   }else{
114083     /* We will be overwriting WhereLoop p[].  But before we do, first
114084     ** go through the rest of the list and delete any other entries besides
114085     ** p[] that are also supplated by pTemplate */
114086     WhereLoop **ppTail = &p->pNextLoop;
114087     WhereLoop *pToDel;
114088     while( *ppTail ){
114089       ppTail = whereLoopFindLesser(ppTail, pTemplate);
114090       if( NEVER(ppTail==0) ) break;
114091       pToDel = *ppTail;
114092       if( pToDel==0 ) break;
114093       *ppTail = pToDel->pNextLoop;
114094 #if WHERETRACE_ENABLED /* 0x8 */
114095       if( sqlite3WhereTrace & 0x8 ){
114096         sqlite3DebugPrintf("ins-del: ");
114097         whereLoopPrint(pToDel, pBuilder->pWC);
114098       }
114099 #endif
114100       whereLoopDelete(db, pToDel);
114101     }
114102   }
114103   whereLoopXfer(db, p, pTemplate);
114104   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
114105     Index *pIndex = p->u.btree.pIndex;
114106     if( pIndex && pIndex->tnum==0 ){
114107       p->u.btree.pIndex = 0;
114108     }
114109   }
114110   return SQLITE_OK;
114111 }
114112 
114113 /*
114114 ** Adjust the WhereLoop.nOut value downward to account for terms of the
114115 ** WHERE clause that reference the loop but which are not used by an
114116 ** index.
114117 **
114118 ** In the current implementation, the first extra WHERE clause term reduces
114119 ** the number of output rows by a factor of 10 and each additional term
114120 ** reduces the number of output rows by sqrt(2).
114121 */
114122 static void whereLoopOutputAdjust(WhereClause *pWC, WhereLoop *pLoop){
114123   WhereTerm *pTerm, *pX;
114124   Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf);
114125   int i, j;
114126 
114127   if( !OptimizationEnabled(pWC->pWInfo->pParse->db, SQLITE_AdjustOutEst) ){
114128     return;
114129   }
114130   for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){
114131     if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break;
114132     if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue;
114133     if( (pTerm->prereqAll & notAllowed)!=0 ) continue;
114134     for(j=pLoop->nLTerm-1; j>=0; j--){
114135       pX = pLoop->aLTerm[j];
114136       if( pX==0 ) continue;
114137       if( pX==pTerm ) break;
114138       if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break;
114139     }
114140     if( j<0 ){
114141       pLoop->nOut += (pTerm->truthProb<=0 ? pTerm->truthProb : -1);
114142     }
114143   }
114144 }
114145 
114146 /*
114147 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the
114148 ** index pIndex. Try to match one more.
114149 **
114150 ** When this function is called, pBuilder->pNew->nOut contains the
114151 ** number of rows expected to be visited by filtering using the nEq
114152 ** terms only. If it is modified, this value is restored before this
114153 ** function returns.
114154 **
114155 ** If pProbe->tnum==0, that means pIndex is a fake index used for the
114156 ** INTEGER PRIMARY KEY.
114157 */
114158 static int whereLoopAddBtreeIndex(
114159   WhereLoopBuilder *pBuilder,     /* The WhereLoop factory */
114160   struct SrcList_item *pSrc,      /* FROM clause term being analyzed */
114161   Index *pProbe,                  /* An index on pSrc */
114162   LogEst nInMul                   /* log(Number of iterations due to IN) */
114163 ){
114164   WhereInfo *pWInfo = pBuilder->pWInfo;  /* WHERE analyse context */
114165   Parse *pParse = pWInfo->pParse;        /* Parsing context */
114166   sqlite3 *db = pParse->db;       /* Database connection malloc context */
114167   WhereLoop *pNew;                /* Template WhereLoop under construction */
114168   WhereTerm *pTerm;               /* A WhereTerm under consideration */
114169   int opMask;                     /* Valid operators for constraints */
114170   WhereScan scan;                 /* Iterator for WHERE terms */
114171   Bitmask saved_prereq;           /* Original value of pNew->prereq */
114172   u16 saved_nLTerm;               /* Original value of pNew->nLTerm */
114173   u16 saved_nEq;                  /* Original value of pNew->u.btree.nEq */
114174   u16 saved_nSkip;                /* Original value of pNew->u.btree.nSkip */
114175   u32 saved_wsFlags;              /* Original value of pNew->wsFlags */
114176   LogEst saved_nOut;              /* Original value of pNew->nOut */
114177   int iCol;                       /* Index of the column in the table */
114178   int rc = SQLITE_OK;             /* Return code */
114179   LogEst rLogSize;                /* Logarithm of table size */
114180   WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */
114181 
114182   pNew = pBuilder->pNew;
114183   if( db->mallocFailed ) return SQLITE_NOMEM;
114184 
114185   assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 );
114186   assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 );
114187   if( pNew->wsFlags & WHERE_BTM_LIMIT ){
114188     opMask = WO_LT|WO_LE;
114189   }else if( pProbe->tnum<=0 || (pSrc->jointype & JT_LEFT)!=0 ){
114190     opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE;
114191   }else{
114192     opMask = WO_EQ|WO_IN|WO_ISNULL|WO_GT|WO_GE|WO_LT|WO_LE;
114193   }
114194   if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE);
114195 
114196   assert( pNew->u.btree.nEq<=pProbe->nKeyCol );
114197   if( pNew->u.btree.nEq < pProbe->nKeyCol ){
114198     iCol = pProbe->aiColumn[pNew->u.btree.nEq];
114199   }else{
114200     iCol = -1;
114201   }
114202   pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, iCol,
114203                         opMask, pProbe);
114204   saved_nEq = pNew->u.btree.nEq;
114205   saved_nSkip = pNew->u.btree.nSkip;
114206   saved_nLTerm = pNew->nLTerm;
114207   saved_wsFlags = pNew->wsFlags;
114208   saved_prereq = pNew->prereq;
114209   saved_nOut = pNew->nOut;
114210   pNew->rSetup = 0;
114211   rLogSize = estLog(pProbe->aiRowLogEst[0]);
114212 
114213   /* Consider using a skip-scan if there are no WHERE clause constraints
114214   ** available for the left-most terms of the index, and if the average
114215   ** number of repeats in the left-most terms is at least 18.
114216   **
114217   ** The magic number 18 is selected on the basis that scanning 17 rows
114218   ** is almost always quicker than an index seek (even though if the index
114219   ** contains fewer than 2^17 rows we assume otherwise in other parts of
114220   ** the code). And, even if it is not, it should not be too much slower.
114221   ** On the other hand, the extra seeks could end up being significantly
114222   ** more expensive.  */
114223   assert( 42==sqlite3LogEst(18) );
114224   if( pTerm==0
114225    && saved_nEq==saved_nSkip
114226    && saved_nEq+1<pProbe->nKeyCol
114227    && pProbe->aiRowLogEst[saved_nEq+1]>=42  /* TUNING: Minimum for skip-scan */
114228    && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK
114229   ){
114230     LogEst nIter;
114231     pNew->u.btree.nEq++;
114232     pNew->u.btree.nSkip++;
114233     pNew->aLTerm[pNew->nLTerm++] = 0;
114234     pNew->wsFlags |= WHERE_SKIPSCAN;
114235     nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1];
114236     pNew->nOut -= nIter;
114237     whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul);
114238     pNew->nOut = saved_nOut;
114239   }
114240   for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){
114241     u16 eOp = pTerm->eOperator;   /* Shorthand for pTerm->eOperator */
114242     LogEst rCostIdx;
114243     LogEst nOutUnadjusted;        /* nOut before IN() and WHERE adjustments */
114244     int nIn = 0;
114245 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
114246     int nRecValid = pBuilder->nRecValid;
114247 #endif
114248     if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0)
114249      && (iCol<0 || pSrc->pTab->aCol[iCol].notNull)
114250     ){
114251       continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */
114252     }
114253     if( pTerm->prereqRight & pNew->maskSelf ) continue;
114254 
114255     pNew->wsFlags = saved_wsFlags;
114256     pNew->u.btree.nEq = saved_nEq;
114257     pNew->nLTerm = saved_nLTerm;
114258     if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
114259     pNew->aLTerm[pNew->nLTerm++] = pTerm;
114260     pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf;
114261 
114262     assert( nInMul==0
114263         || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0
114264         || (pNew->wsFlags & WHERE_COLUMN_IN)!=0
114265         || (pNew->wsFlags & WHERE_SKIPSCAN)!=0
114266     );
114267 
114268     if( eOp & WO_IN ){
114269       Expr *pExpr = pTerm->pExpr;
114270       pNew->wsFlags |= WHERE_COLUMN_IN;
114271       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
114272         /* "x IN (SELECT ...)":  TUNING: the SELECT returns 25 rows */
114273         nIn = 46;  assert( 46==sqlite3LogEst(25) );
114274       }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
114275         /* "x IN (value, value, ...)" */
114276         nIn = sqlite3LogEst(pExpr->x.pList->nExpr);
114277       }
114278       assert( nIn>0 );  /* RHS always has 2 or more terms...  The parser
114279                         ** changes "x IN (?)" into "x=?". */
114280 
114281     }else if( eOp & (WO_EQ) ){
114282       pNew->wsFlags |= WHERE_COLUMN_EQ;
114283       if( iCol<0 || (nInMul==0 && pNew->u.btree.nEq==pProbe->nKeyCol-1) ){
114284         if( iCol>=0 && pProbe->onError==OE_None ){
114285           pNew->wsFlags |= WHERE_UNQ_WANTED;
114286         }else{
114287           pNew->wsFlags |= WHERE_ONEROW;
114288         }
114289       }
114290     }else if( eOp & WO_ISNULL ){
114291       pNew->wsFlags |= WHERE_COLUMN_NULL;
114292     }else if( eOp & (WO_GT|WO_GE) ){
114293       testcase( eOp & WO_GT );
114294       testcase( eOp & WO_GE );
114295       pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT;
114296       pBtm = pTerm;
114297       pTop = 0;
114298     }else{
114299       assert( eOp & (WO_LT|WO_LE) );
114300       testcase( eOp & WO_LT );
114301       testcase( eOp & WO_LE );
114302       pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT;
114303       pTop = pTerm;
114304       pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ?
114305                      pNew->aLTerm[pNew->nLTerm-2] : 0;
114306     }
114307 
114308     /* At this point pNew->nOut is set to the number of rows expected to
114309     ** be visited by the index scan before considering term pTerm, or the
114310     ** values of nIn and nInMul. In other words, assuming that all
114311     ** "x IN(...)" terms are replaced with "x = ?". This block updates
114312     ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul).  */
114313     assert( pNew->nOut==saved_nOut );
114314     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
114315       /* Adjust nOut using stat3/stat4 data. Or, if there is no stat3/stat4
114316       ** data, using some other estimate.  */
114317       whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew);
114318     }else{
114319       int nEq = ++pNew->u.btree.nEq;
114320       assert( eOp & (WO_ISNULL|WO_EQ|WO_IN) );
114321 
114322       assert( pNew->nOut==saved_nOut );
114323       if( pTerm->truthProb<=0 && iCol>=0 ){
114324         assert( (eOp & WO_IN) || nIn==0 );
114325         testcase( eOp & WO_IN );
114326         pNew->nOut += pTerm->truthProb;
114327         pNew->nOut -= nIn;
114328       }else{
114329 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
114330         tRowcnt nOut = 0;
114331         if( nInMul==0
114332          && pProbe->nSample
114333          && pNew->u.btree.nEq<=pProbe->nSampleCol
114334          && OptimizationEnabled(db, SQLITE_Stat3)
114335          && ((eOp & WO_IN)==0 || !ExprHasProperty(pTerm->pExpr, EP_xIsSelect))
114336         ){
114337           Expr *pExpr = pTerm->pExpr;
114338           if( (eOp & (WO_EQ|WO_ISNULL))!=0 ){
114339             testcase( eOp & WO_EQ );
114340             testcase( eOp & WO_ISNULL );
114341             rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut);
114342           }else{
114343             rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut);
114344           }
114345           assert( rc!=SQLITE_OK || nOut>0 );
114346           if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK;
114347           if( rc!=SQLITE_OK ) break;          /* Jump out of the pTerm loop */
114348           if( nOut ){
114349             pNew->nOut = sqlite3LogEst(nOut);
114350             if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut;
114351             pNew->nOut -= nIn;
114352           }
114353         }
114354         if( nOut==0 )
114355 #endif
114356         {
114357           pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]);
114358           if( eOp & WO_ISNULL ){
114359             /* TUNING: If there is no likelihood() value, assume that a
114360             ** "col IS NULL" expression matches twice as many rows
114361             ** as (col=?). */
114362             pNew->nOut += 10;
114363           }
114364         }
114365       }
114366     }
114367 
114368     /* Set rCostIdx to the cost of visiting selected rows in index. Add
114369     ** it to pNew->rRun, which is currently set to the cost of the index
114370     ** seek only. Then, if this is a non-covering index, add the cost of
114371     ** visiting the rows in the main table.  */
114372     rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow;
114373     pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx);
114374     if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){
114375       pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16);
114376     }
114377 
114378     nOutUnadjusted = pNew->nOut;
114379     pNew->rRun += nInMul + nIn;
114380     pNew->nOut += nInMul + nIn;
114381     whereLoopOutputAdjust(pBuilder->pWC, pNew);
114382     rc = whereLoopInsert(pBuilder, pNew);
114383 
114384     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
114385       pNew->nOut = saved_nOut;
114386     }else{
114387       pNew->nOut = nOutUnadjusted;
114388     }
114389 
114390     if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0
114391      && pNew->u.btree.nEq<(pProbe->nKeyCol + (pProbe->zName!=0))
114392     ){
114393       whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn);
114394     }
114395     pNew->nOut = saved_nOut;
114396 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
114397     pBuilder->nRecValid = nRecValid;
114398 #endif
114399   }
114400   pNew->prereq = saved_prereq;
114401   pNew->u.btree.nEq = saved_nEq;
114402   pNew->u.btree.nSkip = saved_nSkip;
114403   pNew->wsFlags = saved_wsFlags;
114404   pNew->nOut = saved_nOut;
114405   pNew->nLTerm = saved_nLTerm;
114406   return rc;
114407 }
114408 
114409 /*
114410 ** Return True if it is possible that pIndex might be useful in
114411 ** implementing the ORDER BY clause in pBuilder.
114412 **
114413 ** Return False if pBuilder does not contain an ORDER BY clause or
114414 ** if there is no way for pIndex to be useful in implementing that
114415 ** ORDER BY clause.
114416 */
114417 static int indexMightHelpWithOrderBy(
114418   WhereLoopBuilder *pBuilder,
114419   Index *pIndex,
114420   int iCursor
114421 ){
114422   ExprList *pOB;
114423   int ii, jj;
114424 
114425   if( pIndex->bUnordered ) return 0;
114426   if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0;
114427   for(ii=0; ii<pOB->nExpr; ii++){
114428     Expr *pExpr = sqlite3ExprSkipCollate(pOB->a[ii].pExpr);
114429     if( pExpr->op!=TK_COLUMN ) return 0;
114430     if( pExpr->iTable==iCursor ){
114431       for(jj=0; jj<pIndex->nKeyCol; jj++){
114432         if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1;
114433       }
114434     }
114435   }
114436   return 0;
114437 }
114438 
114439 /*
114440 ** Return a bitmask where 1s indicate that the corresponding column of
114441 ** the table is used by an index.  Only the first 63 columns are considered.
114442 */
114443 static Bitmask columnsInIndex(Index *pIdx){
114444   Bitmask m = 0;
114445   int j;
114446   for(j=pIdx->nColumn-1; j>=0; j--){
114447     int x = pIdx->aiColumn[j];
114448     if( x>=0 ){
114449       testcase( x==BMS-1 );
114450       testcase( x==BMS-2 );
114451       if( x<BMS-1 ) m |= MASKBIT(x);
114452     }
114453   }
114454   return m;
114455 }
114456 
114457 /* Check to see if a partial index with pPartIndexWhere can be used
114458 ** in the current query.  Return true if it can be and false if not.
114459 */
114460 static int whereUsablePartialIndex(int iTab, WhereClause *pWC, Expr *pWhere){
114461   int i;
114462   WhereTerm *pTerm;
114463   for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
114464     if( sqlite3ExprImpliesExpr(pTerm->pExpr, pWhere, iTab) ) return 1;
114465   }
114466   return 0;
114467 }
114468 
114469 /*
114470 ** Add all WhereLoop objects for a single table of the join where the table
114471 ** is idenfied by pBuilder->pNew->iTab.  That table is guaranteed to be
114472 ** a b-tree table, not a virtual table.
114473 **
114474 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function
114475 ** are calculated as follows:
114476 **
114477 ** For a full scan, assuming the table (or index) contains nRow rows:
114478 **
114479 **     cost = nRow * 3.0                    // full-table scan
114480 **     cost = nRow * K                      // scan of covering index
114481 **     cost = nRow * (K+3.0)                // scan of non-covering index
114482 **
114483 ** where K is a value between 1.1 and 3.0 set based on the relative
114484 ** estimated average size of the index and table records.
114485 **
114486 ** For an index scan, where nVisit is the number of index rows visited
114487 ** by the scan, and nSeek is the number of seek operations required on
114488 ** the index b-tree:
114489 **
114490 **     cost = nSeek * (log(nRow) + K * nVisit)          // covering index
114491 **     cost = nSeek * (log(nRow) + (K+3.0) * nVisit)    // non-covering index
114492 **
114493 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the
114494 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when
114495 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans.
114496 */
114497 static int whereLoopAddBtree(
114498   WhereLoopBuilder *pBuilder, /* WHERE clause information */
114499   Bitmask mExtra              /* Extra prerequesites for using this table */
114500 ){
114501   WhereInfo *pWInfo;          /* WHERE analysis context */
114502   Index *pProbe;              /* An index we are evaluating */
114503   Index sPk;                  /* A fake index object for the primary key */
114504   LogEst aiRowEstPk[2];       /* The aiRowLogEst[] value for the sPk index */
114505   i16 aiColumnPk = -1;        /* The aColumn[] value for the sPk index */
114506   SrcList *pTabList;          /* The FROM clause */
114507   struct SrcList_item *pSrc;  /* The FROM clause btree term to add */
114508   WhereLoop *pNew;            /* Template WhereLoop object */
114509   int rc = SQLITE_OK;         /* Return code */
114510   int iSortIdx = 1;           /* Index number */
114511   int b;                      /* A boolean value */
114512   LogEst rSize;               /* number of rows in the table */
114513   LogEst rLogSize;            /* Logarithm of the number of rows in the table */
114514   WhereClause *pWC;           /* The parsed WHERE clause */
114515   Table *pTab;                /* Table being queried */
114516 
114517   pNew = pBuilder->pNew;
114518   pWInfo = pBuilder->pWInfo;
114519   pTabList = pWInfo->pTabList;
114520   pSrc = pTabList->a + pNew->iTab;
114521   pTab = pSrc->pTab;
114522   pWC = pBuilder->pWC;
114523   assert( !IsVirtual(pSrc->pTab) );
114524 
114525   if( pSrc->pIndex ){
114526     /* An INDEXED BY clause specifies a particular index to use */
114527     pProbe = pSrc->pIndex;
114528   }else if( !HasRowid(pTab) ){
114529     pProbe = pTab->pIndex;
114530   }else{
114531     /* There is no INDEXED BY clause.  Create a fake Index object in local
114532     ** variable sPk to represent the rowid primary key index.  Make this
114533     ** fake index the first in a chain of Index objects with all of the real
114534     ** indices to follow */
114535     Index *pFirst;                  /* First of real indices on the table */
114536     memset(&sPk, 0, sizeof(Index));
114537     sPk.nKeyCol = 1;
114538     sPk.aiColumn = &aiColumnPk;
114539     sPk.aiRowLogEst = aiRowEstPk;
114540     sPk.onError = OE_Replace;
114541     sPk.pTable = pTab;
114542     sPk.szIdxRow = pTab->szTabRow;
114543     aiRowEstPk[0] = pTab->nRowLogEst;
114544     aiRowEstPk[1] = 0;
114545     pFirst = pSrc->pTab->pIndex;
114546     if( pSrc->notIndexed==0 ){
114547       /* The real indices of the table are only considered if the
114548       ** NOT INDEXED qualifier is omitted from the FROM clause */
114549       sPk.pNext = pFirst;
114550     }
114551     pProbe = &sPk;
114552   }
114553   rSize = pTab->nRowLogEst;
114554   rLogSize = estLog(rSize);
114555 
114556 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
114557   /* Automatic indexes */
114558   if( !pBuilder->pOrSet
114559    && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0
114560    && pSrc->pIndex==0
114561    && !pSrc->viaCoroutine
114562    && !pSrc->notIndexed
114563    && HasRowid(pTab)
114564    && !pSrc->isCorrelated
114565    && !pSrc->isRecursive
114566   ){
114567     /* Generate auto-index WhereLoops */
114568     WhereTerm *pTerm;
114569     WhereTerm *pWCEnd = pWC->a + pWC->nTerm;
114570     for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){
114571       if( pTerm->prereqRight & pNew->maskSelf ) continue;
114572       if( termCanDriveIndex(pTerm, pSrc, 0) ){
114573         pNew->u.btree.nEq = 1;
114574         pNew->u.btree.nSkip = 0;
114575         pNew->u.btree.pIndex = 0;
114576         pNew->nLTerm = 1;
114577         pNew->aLTerm[0] = pTerm;
114578         /* TUNING: One-time cost for computing the automatic index is
114579         ** approximately 7*N*log2(N) where N is the number of rows in
114580         ** the table being indexed. */
114581         pNew->rSetup = rLogSize + rSize + 28;  assert( 28==sqlite3LogEst(7) );
114582         /* TUNING: Each index lookup yields 20 rows in the table.  This
114583         ** is more than the usual guess of 10 rows, since we have no way
114584         ** of knowning how selective the index will ultimately be.  It would
114585         ** not be unreasonable to make this value much larger. */
114586         pNew->nOut = 43;  assert( 43==sqlite3LogEst(20) );
114587         pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut);
114588         pNew->wsFlags = WHERE_AUTO_INDEX;
114589         pNew->prereq = mExtra | pTerm->prereqRight;
114590         rc = whereLoopInsert(pBuilder, pNew);
114591       }
114592     }
114593   }
114594 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
114595 
114596   /* Loop over all indices
114597   */
114598   for(; rc==SQLITE_OK && pProbe; pProbe=pProbe->pNext, iSortIdx++){
114599     if( pProbe->pPartIdxWhere!=0
114600      && !whereUsablePartialIndex(pNew->iTab, pWC, pProbe->pPartIdxWhere) ){
114601       continue;  /* Partial index inappropriate for this query */
114602     }
114603     rSize = pProbe->aiRowLogEst[0];
114604     pNew->u.btree.nEq = 0;
114605     pNew->u.btree.nSkip = 0;
114606     pNew->nLTerm = 0;
114607     pNew->iSortIdx = 0;
114608     pNew->rSetup = 0;
114609     pNew->prereq = mExtra;
114610     pNew->nOut = rSize;
114611     pNew->u.btree.pIndex = pProbe;
114612     b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor);
114613     /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */
114614     assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 );
114615     if( pProbe->tnum<=0 ){
114616       /* Integer primary key index */
114617       pNew->wsFlags = WHERE_IPK;
114618 
114619       /* Full table scan */
114620       pNew->iSortIdx = b ? iSortIdx : 0;
114621       /* TUNING: Cost of full table scan is (N*3.0). */
114622       pNew->rRun = rSize + 16;
114623       whereLoopOutputAdjust(pWC, pNew);
114624       rc = whereLoopInsert(pBuilder, pNew);
114625       pNew->nOut = rSize;
114626       if( rc ) break;
114627     }else{
114628       Bitmask m;
114629       if( pProbe->isCovering ){
114630         pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED;
114631         m = 0;
114632       }else{
114633         m = pSrc->colUsed & ~columnsInIndex(pProbe);
114634         pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED;
114635       }
114636 
114637       /* Full scan via index */
114638       if( b
114639        || !HasRowid(pTab)
114640        || ( m==0
114641          && pProbe->bUnordered==0
114642          && (pProbe->szIdxRow<pTab->szTabRow)
114643          && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0
114644          && sqlite3GlobalConfig.bUseCis
114645          && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan)
114646           )
114647       ){
114648         pNew->iSortIdx = b ? iSortIdx : 0;
114649 
114650         /* The cost of visiting the index rows is N*K, where K is
114651         ** between 1.1 and 3.0, depending on the relative sizes of the
114652         ** index and table rows. If this is a non-covering index scan,
114653         ** also add the cost of visiting table rows (N*3.0).  */
114654         pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow;
114655         if( m!=0 ){
114656           pNew->rRun = sqlite3LogEstAdd(pNew->rRun, rSize+16);
114657         }
114658 
114659         whereLoopOutputAdjust(pWC, pNew);
114660         rc = whereLoopInsert(pBuilder, pNew);
114661         pNew->nOut = rSize;
114662         if( rc ) break;
114663       }
114664     }
114665 
114666     rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0);
114667 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
114668     sqlite3Stat4ProbeFree(pBuilder->pRec);
114669     pBuilder->nRecValid = 0;
114670     pBuilder->pRec = 0;
114671 #endif
114672 
114673     /* If there was an INDEXED BY clause, then only that one index is
114674     ** considered. */
114675     if( pSrc->pIndex ) break;
114676   }
114677   return rc;
114678 }
114679 
114680 #ifndef SQLITE_OMIT_VIRTUALTABLE
114681 /*
114682 ** Add all WhereLoop objects for a table of the join identified by
114683 ** pBuilder->pNew->iTab.  That table is guaranteed to be a virtual table.
114684 */
114685 static int whereLoopAddVirtual(
114686   WhereLoopBuilder *pBuilder,  /* WHERE clause information */
114687   Bitmask mExtra
114688 ){
114689   WhereInfo *pWInfo;           /* WHERE analysis context */
114690   Parse *pParse;               /* The parsing context */
114691   WhereClause *pWC;            /* The WHERE clause */
114692   struct SrcList_item *pSrc;   /* The FROM clause term to search */
114693   Table *pTab;
114694   sqlite3 *db;
114695   sqlite3_index_info *pIdxInfo;
114696   struct sqlite3_index_constraint *pIdxCons;
114697   struct sqlite3_index_constraint_usage *pUsage;
114698   WhereTerm *pTerm;
114699   int i, j;
114700   int iTerm, mxTerm;
114701   int nConstraint;
114702   int seenIn = 0;              /* True if an IN operator is seen */
114703   int seenVar = 0;             /* True if a non-constant constraint is seen */
114704   int iPhase;                  /* 0: const w/o IN, 1: const, 2: no IN,  2: IN */
114705   WhereLoop *pNew;
114706   int rc = SQLITE_OK;
114707 
114708   pWInfo = pBuilder->pWInfo;
114709   pParse = pWInfo->pParse;
114710   db = pParse->db;
114711   pWC = pBuilder->pWC;
114712   pNew = pBuilder->pNew;
114713   pSrc = &pWInfo->pTabList->a[pNew->iTab];
114714   pTab = pSrc->pTab;
114715   assert( IsVirtual(pTab) );
114716   pIdxInfo = allocateIndexInfo(pParse, pWC, pSrc, pBuilder->pOrderBy);
114717   if( pIdxInfo==0 ) return SQLITE_NOMEM;
114718   pNew->prereq = 0;
114719   pNew->rSetup = 0;
114720   pNew->wsFlags = WHERE_VIRTUALTABLE;
114721   pNew->nLTerm = 0;
114722   pNew->u.vtab.needFree = 0;
114723   pUsage = pIdxInfo->aConstraintUsage;
114724   nConstraint = pIdxInfo->nConstraint;
114725   if( whereLoopResize(db, pNew, nConstraint) ){
114726     sqlite3DbFree(db, pIdxInfo);
114727     return SQLITE_NOMEM;
114728   }
114729 
114730   for(iPhase=0; iPhase<=3; iPhase++){
114731     if( !seenIn && (iPhase&1)!=0 ){
114732       iPhase++;
114733       if( iPhase>3 ) break;
114734     }
114735     if( !seenVar && iPhase>1 ) break;
114736     pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
114737     for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){
114738       j = pIdxCons->iTermOffset;
114739       pTerm = &pWC->a[j];
114740       switch( iPhase ){
114741         case 0:    /* Constants without IN operator */
114742           pIdxCons->usable = 0;
114743           if( (pTerm->eOperator & WO_IN)!=0 ){
114744             seenIn = 1;
114745           }
114746           if( pTerm->prereqRight!=0 ){
114747             seenVar = 1;
114748           }else if( (pTerm->eOperator & WO_IN)==0 ){
114749             pIdxCons->usable = 1;
114750           }
114751           break;
114752         case 1:    /* Constants with IN operators */
114753           assert( seenIn );
114754           pIdxCons->usable = (pTerm->prereqRight==0);
114755           break;
114756         case 2:    /* Variables without IN */
114757           assert( seenVar );
114758           pIdxCons->usable = (pTerm->eOperator & WO_IN)==0;
114759           break;
114760         default:   /* Variables with IN */
114761           assert( seenVar && seenIn );
114762           pIdxCons->usable = 1;
114763           break;
114764       }
114765     }
114766     memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint);
114767     if( pIdxInfo->needToFreeIdxStr ) sqlite3_free(pIdxInfo->idxStr);
114768     pIdxInfo->idxStr = 0;
114769     pIdxInfo->idxNum = 0;
114770     pIdxInfo->needToFreeIdxStr = 0;
114771     pIdxInfo->orderByConsumed = 0;
114772     pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2;
114773     pIdxInfo->estimatedRows = 25;
114774     rc = vtabBestIndex(pParse, pTab, pIdxInfo);
114775     if( rc ) goto whereLoopAddVtab_exit;
114776     pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
114777     pNew->prereq = mExtra;
114778     mxTerm = -1;
114779     assert( pNew->nLSlot>=nConstraint );
114780     for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0;
114781     pNew->u.vtab.omitMask = 0;
114782     for(i=0; i<nConstraint; i++, pIdxCons++){
114783       if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){
114784         j = pIdxCons->iTermOffset;
114785         if( iTerm>=nConstraint
114786          || j<0
114787          || j>=pWC->nTerm
114788          || pNew->aLTerm[iTerm]!=0
114789         ){
114790           rc = SQLITE_ERROR;
114791           sqlite3ErrorMsg(pParse, "%s.xBestIndex() malfunction", pTab->zName);
114792           goto whereLoopAddVtab_exit;
114793         }
114794         testcase( iTerm==nConstraint-1 );
114795         testcase( j==0 );
114796         testcase( j==pWC->nTerm-1 );
114797         pTerm = &pWC->a[j];
114798         pNew->prereq |= pTerm->prereqRight;
114799         assert( iTerm<pNew->nLSlot );
114800         pNew->aLTerm[iTerm] = pTerm;
114801         if( iTerm>mxTerm ) mxTerm = iTerm;
114802         testcase( iTerm==15 );
114803         testcase( iTerm==16 );
114804         if( iTerm<16 && pUsage[i].omit ) pNew->u.vtab.omitMask |= 1<<iTerm;
114805         if( (pTerm->eOperator & WO_IN)!=0 ){
114806           if( pUsage[i].omit==0 ){
114807             /* Do not attempt to use an IN constraint if the virtual table
114808             ** says that the equivalent EQ constraint cannot be safely omitted.
114809             ** If we do attempt to use such a constraint, some rows might be
114810             ** repeated in the output. */
114811             break;
114812           }
114813           /* A virtual table that is constrained by an IN clause may not
114814           ** consume the ORDER BY clause because (1) the order of IN terms
114815           ** is not necessarily related to the order of output terms and
114816           ** (2) Multiple outputs from a single IN value will not merge
114817           ** together.  */
114818           pIdxInfo->orderByConsumed = 0;
114819         }
114820       }
114821     }
114822     if( i>=nConstraint ){
114823       pNew->nLTerm = mxTerm+1;
114824       assert( pNew->nLTerm<=pNew->nLSlot );
114825       pNew->u.vtab.idxNum = pIdxInfo->idxNum;
114826       pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr;
114827       pIdxInfo->needToFreeIdxStr = 0;
114828       pNew->u.vtab.idxStr = pIdxInfo->idxStr;
114829       pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ?
114830                                       pIdxInfo->nOrderBy : 0);
114831       pNew->rSetup = 0;
114832       pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost);
114833       pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows);
114834       whereLoopInsert(pBuilder, pNew);
114835       if( pNew->u.vtab.needFree ){
114836         sqlite3_free(pNew->u.vtab.idxStr);
114837         pNew->u.vtab.needFree = 0;
114838       }
114839     }
114840   }
114841 
114842 whereLoopAddVtab_exit:
114843   if( pIdxInfo->needToFreeIdxStr ) sqlite3_free(pIdxInfo->idxStr);
114844   sqlite3DbFree(db, pIdxInfo);
114845   return rc;
114846 }
114847 #endif /* SQLITE_OMIT_VIRTUALTABLE */
114848 
114849 /*
114850 ** Add WhereLoop entries to handle OR terms.  This works for either
114851 ** btrees or virtual tables.
114852 */
114853 static int whereLoopAddOr(WhereLoopBuilder *pBuilder, Bitmask mExtra){
114854   WhereInfo *pWInfo = pBuilder->pWInfo;
114855   WhereClause *pWC;
114856   WhereLoop *pNew;
114857   WhereTerm *pTerm, *pWCEnd;
114858   int rc = SQLITE_OK;
114859   int iCur;
114860   WhereClause tempWC;
114861   WhereLoopBuilder sSubBuild;
114862   WhereOrSet sSum, sCur;
114863   struct SrcList_item *pItem;
114864 
114865   pWC = pBuilder->pWC;
114866   if( pWInfo->wctrlFlags & WHERE_AND_ONLY ) return SQLITE_OK;
114867   pWCEnd = pWC->a + pWC->nTerm;
114868   pNew = pBuilder->pNew;
114869   memset(&sSum, 0, sizeof(sSum));
114870   pItem = pWInfo->pTabList->a + pNew->iTab;
114871   iCur = pItem->iCursor;
114872 
114873   for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){
114874     if( (pTerm->eOperator & WO_OR)!=0
114875      && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0
114876     ){
114877       WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
114878       WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
114879       WhereTerm *pOrTerm;
114880       int once = 1;
114881       int i, j;
114882 
114883       sSubBuild = *pBuilder;
114884       sSubBuild.pOrderBy = 0;
114885       sSubBuild.pOrSet = &sCur;
114886 
114887       for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
114888         if( (pOrTerm->eOperator & WO_AND)!=0 ){
114889           sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc;
114890         }else if( pOrTerm->leftCursor==iCur ){
114891           tempWC.pWInfo = pWC->pWInfo;
114892           tempWC.pOuter = pWC;
114893           tempWC.op = TK_AND;
114894           tempWC.nTerm = 1;
114895           tempWC.a = pOrTerm;
114896           sSubBuild.pWC = &tempWC;
114897         }else{
114898           continue;
114899         }
114900         sCur.n = 0;
114901 #ifndef SQLITE_OMIT_VIRTUALTABLE
114902         if( IsVirtual(pItem->pTab) ){
114903           rc = whereLoopAddVirtual(&sSubBuild, mExtra);
114904         }else
114905 #endif
114906         {
114907           rc = whereLoopAddBtree(&sSubBuild, mExtra);
114908         }
114909         assert( rc==SQLITE_OK || sCur.n==0 );
114910         if( sCur.n==0 ){
114911           sSum.n = 0;
114912           break;
114913         }else if( once ){
114914           whereOrMove(&sSum, &sCur);
114915           once = 0;
114916         }else{
114917           WhereOrSet sPrev;
114918           whereOrMove(&sPrev, &sSum);
114919           sSum.n = 0;
114920           for(i=0; i<sPrev.n; i++){
114921             for(j=0; j<sCur.n; j++){
114922               whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq,
114923                             sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun),
114924                             sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut));
114925             }
114926           }
114927         }
114928       }
114929       pNew->nLTerm = 1;
114930       pNew->aLTerm[0] = pTerm;
114931       pNew->wsFlags = WHERE_MULTI_OR;
114932       pNew->rSetup = 0;
114933       pNew->iSortIdx = 0;
114934       memset(&pNew->u, 0, sizeof(pNew->u));
114935       for(i=0; rc==SQLITE_OK && i<sSum.n; i++){
114936         /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs
114937         ** of all sub-scans required by the OR-scan. However, due to rounding
114938         ** errors, it may be that the cost of the OR-scan is equal to its
114939         ** most expensive sub-scan. Add the smallest possible penalty
114940         ** (equivalent to multiplying the cost by 1.07) to ensure that
114941         ** this does not happen. Otherwise, for WHERE clauses such as the
114942         ** following where there is an index on "y":
114943         **
114944         **     WHERE likelihood(x=?, 0.99) OR y=?
114945         **
114946         ** the planner may elect to "OR" together a full-table scan and an
114947         ** index lookup. And other similarly odd results.  */
114948         pNew->rRun = sSum.a[i].rRun + 1;
114949         pNew->nOut = sSum.a[i].nOut;
114950         pNew->prereq = sSum.a[i].prereq;
114951         rc = whereLoopInsert(pBuilder, pNew);
114952       }
114953     }
114954   }
114955   return rc;
114956 }
114957 
114958 /*
114959 ** Add all WhereLoop objects for all tables
114960 */
114961 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){
114962   WhereInfo *pWInfo = pBuilder->pWInfo;
114963   Bitmask mExtra = 0;
114964   Bitmask mPrior = 0;
114965   int iTab;
114966   SrcList *pTabList = pWInfo->pTabList;
114967   struct SrcList_item *pItem;
114968   sqlite3 *db = pWInfo->pParse->db;
114969   int nTabList = pWInfo->nLevel;
114970   int rc = SQLITE_OK;
114971   u8 priorJoinType = 0;
114972   WhereLoop *pNew;
114973 
114974   /* Loop over the tables in the join, from left to right */
114975   pNew = pBuilder->pNew;
114976   whereLoopInit(pNew);
114977   for(iTab=0, pItem=pTabList->a; iTab<nTabList; iTab++, pItem++){
114978     pNew->iTab = iTab;
114979     pNew->maskSelf = getMask(&pWInfo->sMaskSet, pItem->iCursor);
114980     if( ((pItem->jointype|priorJoinType) & (JT_LEFT|JT_CROSS))!=0 ){
114981       mExtra = mPrior;
114982     }
114983     priorJoinType = pItem->jointype;
114984     if( IsVirtual(pItem->pTab) ){
114985       rc = whereLoopAddVirtual(pBuilder, mExtra);
114986     }else{
114987       rc = whereLoopAddBtree(pBuilder, mExtra);
114988     }
114989     if( rc==SQLITE_OK ){
114990       rc = whereLoopAddOr(pBuilder, mExtra);
114991     }
114992     mPrior |= pNew->maskSelf;
114993     if( rc || db->mallocFailed ) break;
114994   }
114995   whereLoopClear(db, pNew);
114996   return rc;
114997 }
114998 
114999 /*
115000 ** Examine a WherePath (with the addition of the extra WhereLoop of the 5th
115001 ** parameters) to see if it outputs rows in the requested ORDER BY
115002 ** (or GROUP BY) without requiring a separate sort operation.  Return N:
115003 **
115004 **   N>0:   N terms of the ORDER BY clause are satisfied
115005 **   N==0:  No terms of the ORDER BY clause are satisfied
115006 **   N<0:   Unknown yet how many terms of ORDER BY might be satisfied.
115007 **
115008 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as
115009 ** strict.  With GROUP BY and DISTINCT the only requirement is that
115010 ** equivalent rows appear immediately adjacent to one another.  GROUP BY
115011 ** and DISTINCT do not require rows to appear in any particular order as long
115012 ** as equivelent rows are grouped together.  Thus for GROUP BY and DISTINCT
115013 ** the pOrderBy terms can be matched in any order.  With ORDER BY, the
115014 ** pOrderBy terms must be matched in strict left-to-right order.
115015 */
115016 static i8 wherePathSatisfiesOrderBy(
115017   WhereInfo *pWInfo,    /* The WHERE clause */
115018   ExprList *pOrderBy,   /* ORDER BY or GROUP BY or DISTINCT clause to check */
115019   WherePath *pPath,     /* The WherePath to check */
115020   u16 wctrlFlags,       /* Might contain WHERE_GROUPBY or WHERE_DISTINCTBY */
115021   u16 nLoop,            /* Number of entries in pPath->aLoop[] */
115022   WhereLoop *pLast,     /* Add this WhereLoop to the end of pPath->aLoop[] */
115023   Bitmask *pRevMask     /* OUT: Mask of WhereLoops to run in reverse order */
115024 ){
115025   u8 revSet;            /* True if rev is known */
115026   u8 rev;               /* Composite sort order */
115027   u8 revIdx;            /* Index sort order */
115028   u8 isOrderDistinct;   /* All prior WhereLoops are order-distinct */
115029   u8 distinctColumns;   /* True if the loop has UNIQUE NOT NULL columns */
115030   u8 isMatch;           /* iColumn matches a term of the ORDER BY clause */
115031   u16 nKeyCol;          /* Number of key columns in pIndex */
115032   u16 nColumn;          /* Total number of ordered columns in the index */
115033   u16 nOrderBy;         /* Number terms in the ORDER BY clause */
115034   int iLoop;            /* Index of WhereLoop in pPath being processed */
115035   int i, j;             /* Loop counters */
115036   int iCur;             /* Cursor number for current WhereLoop */
115037   int iColumn;          /* A column number within table iCur */
115038   WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */
115039   WhereTerm *pTerm;     /* A single term of the WHERE clause */
115040   Expr *pOBExpr;        /* An expression from the ORDER BY clause */
115041   CollSeq *pColl;       /* COLLATE function from an ORDER BY clause term */
115042   Index *pIndex;        /* The index associated with pLoop */
115043   sqlite3 *db = pWInfo->pParse->db;  /* Database connection */
115044   Bitmask obSat = 0;    /* Mask of ORDER BY terms satisfied so far */
115045   Bitmask obDone;       /* Mask of all ORDER BY terms */
115046   Bitmask orderDistinctMask;  /* Mask of all well-ordered loops */
115047   Bitmask ready;              /* Mask of inner loops */
115048 
115049   /*
115050   ** We say the WhereLoop is "one-row" if it generates no more than one
115051   ** row of output.  A WhereLoop is one-row if all of the following are true:
115052   **  (a) All index columns match with WHERE_COLUMN_EQ.
115053   **  (b) The index is unique
115054   ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row.
115055   ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags.
115056   **
115057   ** We say the WhereLoop is "order-distinct" if the set of columns from
115058   ** that WhereLoop that are in the ORDER BY clause are different for every
115059   ** row of the WhereLoop.  Every one-row WhereLoop is automatically
115060   ** order-distinct.   A WhereLoop that has no columns in the ORDER BY clause
115061   ** is not order-distinct. To be order-distinct is not quite the same as being
115062   ** UNIQUE since a UNIQUE column or index can have multiple rows that
115063   ** are NULL and NULL values are equivalent for the purpose of order-distinct.
115064   ** To be order-distinct, the columns must be UNIQUE and NOT NULL.
115065   **
115066   ** The rowid for a table is always UNIQUE and NOT NULL so whenever the
115067   ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is
115068   ** automatically order-distinct.
115069   */
115070 
115071   assert( pOrderBy!=0 );
115072   if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0;
115073 
115074   nOrderBy = pOrderBy->nExpr;
115075   testcase( nOrderBy==BMS-1 );
115076   if( nOrderBy>BMS-1 ) return 0;  /* Cannot optimize overly large ORDER BYs */
115077   isOrderDistinct = 1;
115078   obDone = MASKBIT(nOrderBy)-1;
115079   orderDistinctMask = 0;
115080   ready = 0;
115081   for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){
115082     if( iLoop>0 ) ready |= pLoop->maskSelf;
115083     pLoop = iLoop<nLoop ? pPath->aLoop[iLoop] : pLast;
115084     if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){
115085       if( pLoop->u.vtab.isOrdered ) obSat = obDone;
115086       break;
115087     }
115088     iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor;
115089 
115090     /* Mark off any ORDER BY term X that is a column in the table of
115091     ** the current loop for which there is term in the WHERE
115092     ** clause of the form X IS NULL or X=? that reference only outer
115093     ** loops.
115094     */
115095     for(i=0; i<nOrderBy; i++){
115096       if( MASKBIT(i) & obSat ) continue;
115097       pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr);
115098       if( pOBExpr->op!=TK_COLUMN ) continue;
115099       if( pOBExpr->iTable!=iCur ) continue;
115100       pTerm = findTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn,
115101                        ~ready, WO_EQ|WO_ISNULL, 0);
115102       if( pTerm==0 ) continue;
115103       if( (pTerm->eOperator&WO_EQ)!=0 && pOBExpr->iColumn>=0 ){
115104         const char *z1, *z2;
115105         pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
115106         if( !pColl ) pColl = db->pDfltColl;
115107         z1 = pColl->zName;
115108         pColl = sqlite3ExprCollSeq(pWInfo->pParse, pTerm->pExpr);
115109         if( !pColl ) pColl = db->pDfltColl;
115110         z2 = pColl->zName;
115111         if( sqlite3StrICmp(z1, z2)!=0 ) continue;
115112       }
115113       obSat |= MASKBIT(i);
115114     }
115115 
115116     if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){
115117       if( pLoop->wsFlags & WHERE_IPK ){
115118         pIndex = 0;
115119         nKeyCol = 0;
115120         nColumn = 1;
115121       }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){
115122         return 0;
115123       }else{
115124         nKeyCol = pIndex->nKeyCol;
115125         nColumn = pIndex->nColumn;
115126         assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) );
115127         assert( pIndex->aiColumn[nColumn-1]==(-1) || !HasRowid(pIndex->pTable));
115128         isOrderDistinct = pIndex->onError!=OE_None;
115129       }
115130 
115131       /* Loop through all columns of the index and deal with the ones
115132       ** that are not constrained by == or IN.
115133       */
115134       rev = revSet = 0;
115135       distinctColumns = 0;
115136       for(j=0; j<nColumn; j++){
115137         u8 bOnce;   /* True to run the ORDER BY search loop */
115138 
115139         /* Skip over == and IS NULL terms */
115140         if( j<pLoop->u.btree.nEq
115141          && pLoop->u.btree.nSkip==0
115142          && ((i = pLoop->aLTerm[j]->eOperator) & (WO_EQ|WO_ISNULL))!=0
115143         ){
115144           if( i & WO_ISNULL ){
115145             testcase( isOrderDistinct );
115146             isOrderDistinct = 0;
115147           }
115148           continue;
115149         }
115150 
115151         /* Get the column number in the table (iColumn) and sort order
115152         ** (revIdx) for the j-th column of the index.
115153         */
115154         if( pIndex ){
115155           iColumn = pIndex->aiColumn[j];
115156           revIdx = pIndex->aSortOrder[j];
115157           if( iColumn==pIndex->pTable->iPKey ) iColumn = -1;
115158         }else{
115159           iColumn = -1;
115160           revIdx = 0;
115161         }
115162 
115163         /* An unconstrained column that might be NULL means that this
115164         ** WhereLoop is not well-ordered
115165         */
115166         if( isOrderDistinct
115167          && iColumn>=0
115168          && j>=pLoop->u.btree.nEq
115169          && pIndex->pTable->aCol[iColumn].notNull==0
115170         ){
115171           isOrderDistinct = 0;
115172         }
115173 
115174         /* Find the ORDER BY term that corresponds to the j-th column
115175         ** of the index and mark that ORDER BY term off
115176         */
115177         bOnce = 1;
115178         isMatch = 0;
115179         for(i=0; bOnce && i<nOrderBy; i++){
115180           if( MASKBIT(i) & obSat ) continue;
115181           pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr);
115182           testcase( wctrlFlags & WHERE_GROUPBY );
115183           testcase( wctrlFlags & WHERE_DISTINCTBY );
115184           if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0;
115185           if( pOBExpr->op!=TK_COLUMN ) continue;
115186           if( pOBExpr->iTable!=iCur ) continue;
115187           if( pOBExpr->iColumn!=iColumn ) continue;
115188           if( iColumn>=0 ){
115189             pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
115190             if( !pColl ) pColl = db->pDfltColl;
115191             if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue;
115192           }
115193           isMatch = 1;
115194           break;
115195         }
115196         if( isMatch && (pWInfo->wctrlFlags & WHERE_GROUPBY)==0 ){
115197           /* Make sure the sort order is compatible in an ORDER BY clause.
115198           ** Sort order is irrelevant for a GROUP BY clause. */
115199           if( revSet ){
115200             if( (rev ^ revIdx)!=pOrderBy->a[i].sortOrder ) isMatch = 0;
115201           }else{
115202             rev = revIdx ^ pOrderBy->a[i].sortOrder;
115203             if( rev ) *pRevMask |= MASKBIT(iLoop);
115204             revSet = 1;
115205           }
115206         }
115207         if( isMatch ){
115208           if( iColumn<0 ){
115209             testcase( distinctColumns==0 );
115210             distinctColumns = 1;
115211           }
115212           obSat |= MASKBIT(i);
115213         }else{
115214           /* No match found */
115215           if( j==0 || j<nKeyCol ){
115216             testcase( isOrderDistinct!=0 );
115217             isOrderDistinct = 0;
115218           }
115219           break;
115220         }
115221       } /* end Loop over all index columns */
115222       if( distinctColumns ){
115223         testcase( isOrderDistinct==0 );
115224         isOrderDistinct = 1;
115225       }
115226     } /* end-if not one-row */
115227 
115228     /* Mark off any other ORDER BY terms that reference pLoop */
115229     if( isOrderDistinct ){
115230       orderDistinctMask |= pLoop->maskSelf;
115231       for(i=0; i<nOrderBy; i++){
115232         Expr *p;
115233         Bitmask mTerm;
115234         if( MASKBIT(i) & obSat ) continue;
115235         p = pOrderBy->a[i].pExpr;
115236         mTerm = exprTableUsage(&pWInfo->sMaskSet,p);
115237         if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue;
115238         if( (mTerm&~orderDistinctMask)==0 ){
115239           obSat |= MASKBIT(i);
115240         }
115241       }
115242     }
115243   } /* End the loop over all WhereLoops from outer-most down to inner-most */
115244   if( obSat==obDone ) return (i8)nOrderBy;
115245   if( !isOrderDistinct ){
115246     for(i=nOrderBy-1; i>0; i--){
115247       Bitmask m = MASKBIT(i) - 1;
115248       if( (obSat&m)==m ) return i;
115249     }
115250     return 0;
115251   }
115252   return -1;
115253 }
115254 
115255 
115256 /*
115257 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(),
115258 ** the planner assumes that the specified pOrderBy list is actually a GROUP
115259 ** BY clause - and so any order that groups rows as required satisfies the
115260 ** request.
115261 **
115262 ** Normally, in this case it is not possible for the caller to determine
115263 ** whether or not the rows are really being delivered in sorted order, or
115264 ** just in some other order that provides the required grouping. However,
115265 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then
115266 ** this function may be called on the returned WhereInfo object. It returns
115267 ** true if the rows really will be sorted in the specified order, or false
115268 ** otherwise.
115269 **
115270 ** For example, assuming:
115271 **
115272 **   CREATE INDEX i1 ON t1(x, Y);
115273 **
115274 ** then
115275 **
115276 **   SELECT * FROM t1 GROUP BY x,y ORDER BY x,y;   -- IsSorted()==1
115277 **   SELECT * FROM t1 GROUP BY y,x ORDER BY y,x;   -- IsSorted()==0
115278 */
115279 SQLITE_PRIVATE int sqlite3WhereIsSorted(WhereInfo *pWInfo){
115280   assert( pWInfo->wctrlFlags & WHERE_GROUPBY );
115281   assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP );
115282   return pWInfo->sorted;
115283 }
115284 
115285 #ifdef WHERETRACE_ENABLED
115286 /* For debugging use only: */
115287 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){
115288   static char zName[65];
115289   int i;
115290   for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; }
115291   if( pLast ) zName[i++] = pLast->cId;
115292   zName[i] = 0;
115293   return zName;
115294 }
115295 #endif
115296 
115297 /*
115298 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine
115299 ** attempts to find the lowest cost path that visits each WhereLoop
115300 ** once.  This path is then loaded into the pWInfo->a[].pWLoop fields.
115301 **
115302 ** Assume that the total number of output rows that will need to be sorted
115303 ** will be nRowEst (in the 10*log2 representation).  Or, ignore sorting
115304 ** costs if nRowEst==0.
115305 **
115306 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation
115307 ** error occurs.
115308 */
115309 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){
115310   int mxChoice;             /* Maximum number of simultaneous paths tracked */
115311   int nLoop;                /* Number of terms in the join */
115312   Parse *pParse;            /* Parsing context */
115313   sqlite3 *db;              /* The database connection */
115314   int iLoop;                /* Loop counter over the terms of the join */
115315   int ii, jj;               /* Loop counters */
115316   int mxI = 0;              /* Index of next entry to replace */
115317   int nOrderBy;             /* Number of ORDER BY clause terms */
115318   LogEst rCost;             /* Cost of a path */
115319   LogEst nOut;              /* Number of outputs */
115320   LogEst mxCost = 0;        /* Maximum cost of a set of paths */
115321   LogEst mxOut = 0;         /* Maximum nOut value on the set of paths */
115322   int nTo, nFrom;           /* Number of valid entries in aTo[] and aFrom[] */
115323   WherePath *aFrom;         /* All nFrom paths at the previous level */
115324   WherePath *aTo;           /* The nTo best paths at the current level */
115325   WherePath *pFrom;         /* An element of aFrom[] that we are working on */
115326   WherePath *pTo;           /* An element of aTo[] that we are working on */
115327   WhereLoop *pWLoop;        /* One of the WhereLoop objects */
115328   WhereLoop **pX;           /* Used to divy up the pSpace memory */
115329   char *pSpace;             /* Temporary memory used by this routine */
115330 
115331   pParse = pWInfo->pParse;
115332   db = pParse->db;
115333   nLoop = pWInfo->nLevel;
115334   /* TUNING: For simple queries, only the best path is tracked.
115335   ** For 2-way joins, the 5 best paths are followed.
115336   ** For joins of 3 or more tables, track the 10 best paths */
115337   mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10);
115338   assert( nLoop<=pWInfo->pTabList->nSrc );
115339   WHERETRACE(0x002, ("---- begin solver\n"));
115340 
115341   /* Allocate and initialize space for aTo and aFrom */
115342   ii = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2;
115343   pSpace = sqlite3DbMallocRaw(db, ii);
115344   if( pSpace==0 ) return SQLITE_NOMEM;
115345   aTo = (WherePath*)pSpace;
115346   aFrom = aTo+mxChoice;
115347   memset(aFrom, 0, sizeof(aFrom[0]));
115348   pX = (WhereLoop**)(aFrom+mxChoice);
115349   for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){
115350     pFrom->aLoop = pX;
115351   }
115352 
115353   /* Seed the search with a single WherePath containing zero WhereLoops.
115354   **
115355   ** TUNING: Do not let the number of iterations go above 25.  If the cost
115356   ** of computing an automatic index is not paid back within the first 25
115357   ** rows, then do not use the automatic index. */
115358   aFrom[0].nRow = MIN(pParse->nQueryLoop, 46);  assert( 46==sqlite3LogEst(25) );
115359   nFrom = 1;
115360 
115361   /* Precompute the cost of sorting the final result set, if the caller
115362   ** to sqlite3WhereBegin() was concerned about sorting */
115363   if( pWInfo->pOrderBy==0 || nRowEst==0 ){
115364     aFrom[0].isOrdered = 0;
115365     nOrderBy = 0;
115366   }else{
115367     aFrom[0].isOrdered = nLoop>0 ? -1 : 1;
115368     nOrderBy = pWInfo->pOrderBy->nExpr;
115369   }
115370 
115371   /* Compute successively longer WherePaths using the previous generation
115372   ** of WherePaths as the basis for the next.  Keep track of the mxChoice
115373   ** best paths at each generation */
115374   for(iLoop=0; iLoop<nLoop; iLoop++){
115375     nTo = 0;
115376     for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){
115377       for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){
115378         Bitmask maskNew;
115379         Bitmask revMask = 0;
115380         i8 isOrdered = pFrom->isOrdered;
115381         if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue;
115382         if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue;
115383         /* At this point, pWLoop is a candidate to be the next loop.
115384         ** Compute its cost */
115385         rCost = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow);
115386         rCost = sqlite3LogEstAdd(rCost, pFrom->rCost);
115387         nOut = pFrom->nRow + pWLoop->nOut;
115388         maskNew = pFrom->maskLoop | pWLoop->maskSelf;
115389         if( isOrdered<0 ){
115390           isOrdered = wherePathSatisfiesOrderBy(pWInfo,
115391                        pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags,
115392                        iLoop, pWLoop, &revMask);
115393           if( isOrdered>=0 && isOrdered<nOrderBy ){
115394             /* TUNING: Estimated cost of a full external sort, where N is
115395             ** the number of rows to sort is:
115396             **
115397             **   cost = (3.0 * N * log(N)).
115398             **
115399             ** Or, if the order-by clause has X terms but only the last Y
115400             ** terms are out of order, then block-sorting will reduce the
115401             ** sorting cost to:
115402             **
115403             **   cost = (3.0 * N * log(N)) * (Y/X)
115404             **
115405             ** The (Y/X) term is implemented using stack variable rScale
115406             ** below.  */
115407             LogEst rScale, rSortCost;
115408             assert( nOrderBy>0 && 66==sqlite3LogEst(100) );
115409             rScale = sqlite3LogEst((nOrderBy-isOrdered)*100/nOrderBy) - 66;
115410             rSortCost = nRowEst + estLog(nRowEst) + rScale + 16;
115411 
115412             /* TUNING: The cost of implementing DISTINCT using a B-TREE is
115413             ** similar but with a larger constant of proportionality.
115414             ** Multiply by an additional factor of 3.0.  */
115415             if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){
115416               rSortCost += 16;
115417             }
115418             WHERETRACE(0x002,
115419                ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n",
115420                 rSortCost, (nOrderBy-isOrdered), nOrderBy, rCost,
115421                 sqlite3LogEstAdd(rCost,rSortCost)));
115422             rCost = sqlite3LogEstAdd(rCost, rSortCost);
115423           }
115424         }else{
115425           revMask = pFrom->revLoop;
115426         }
115427         /* Check to see if pWLoop should be added to the mxChoice best so far */
115428         for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){
115429           if( pTo->maskLoop==maskNew
115430            && ((pTo->isOrdered^isOrdered)&80)==0
115431            && ((pTo->rCost<=rCost && pTo->nRow<=nOut) ||
115432                 (pTo->rCost>=rCost && pTo->nRow>=nOut))
115433           ){
115434             testcase( jj==nTo-1 );
115435             break;
115436           }
115437         }
115438         if( jj>=nTo ){
115439           if( nTo>=mxChoice && rCost>=mxCost ){
115440 #ifdef WHERETRACE_ENABLED /* 0x4 */
115441             if( sqlite3WhereTrace&0x4 ){
115442               sqlite3DebugPrintf("Skip   %s cost=%-3d,%3d order=%c\n",
115443                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut,
115444                   isOrdered>=0 ? isOrdered+'0' : '?');
115445             }
115446 #endif
115447             continue;
115448           }
115449           /* Add a new Path to the aTo[] set */
115450           if( nTo<mxChoice ){
115451             /* Increase the size of the aTo set by one */
115452             jj = nTo++;
115453           }else{
115454             /* New path replaces the prior worst to keep count below mxChoice */
115455             jj = mxI;
115456           }
115457           pTo = &aTo[jj];
115458 #ifdef WHERETRACE_ENABLED /* 0x4 */
115459           if( sqlite3WhereTrace&0x4 ){
115460             sqlite3DebugPrintf("New    %s cost=%-3d,%3d order=%c\n",
115461                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut,
115462                 isOrdered>=0 ? isOrdered+'0' : '?');
115463           }
115464 #endif
115465         }else{
115466           if( pTo->rCost<=rCost && pTo->nRow<=nOut ){
115467 #ifdef WHERETRACE_ENABLED /* 0x4 */
115468             if( sqlite3WhereTrace&0x4 ){
115469               sqlite3DebugPrintf(
115470                   "Skip   %s cost=%-3d,%3d order=%c",
115471                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut,
115472                   isOrdered>=0 ? isOrdered+'0' : '?');
115473               sqlite3DebugPrintf("   vs %s cost=%-3d,%d order=%c\n",
115474                   wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
115475                   pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
115476             }
115477 #endif
115478             testcase( pTo->rCost==rCost );
115479             continue;
115480           }
115481           testcase( pTo->rCost==rCost+1 );
115482           /* A new and better score for a previously created equivalent path */
115483 #ifdef WHERETRACE_ENABLED /* 0x4 */
115484           if( sqlite3WhereTrace&0x4 ){
115485             sqlite3DebugPrintf(
115486                 "Update %s cost=%-3d,%3d order=%c",
115487                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut,
115488                 isOrdered>=0 ? isOrdered+'0' : '?');
115489             sqlite3DebugPrintf("  was %s cost=%-3d,%3d order=%c\n",
115490                 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
115491                 pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
115492           }
115493 #endif
115494         }
115495         /* pWLoop is a winner.  Add it to the set of best so far */
115496         pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf;
115497         pTo->revLoop = revMask;
115498         pTo->nRow = nOut;
115499         pTo->rCost = rCost;
115500         pTo->isOrdered = isOrdered;
115501         memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop);
115502         pTo->aLoop[iLoop] = pWLoop;
115503         if( nTo>=mxChoice ){
115504           mxI = 0;
115505           mxCost = aTo[0].rCost;
115506           mxOut = aTo[0].nRow;
115507           for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){
115508             if( pTo->rCost>mxCost || (pTo->rCost==mxCost && pTo->nRow>mxOut) ){
115509               mxCost = pTo->rCost;
115510               mxOut = pTo->nRow;
115511               mxI = jj;
115512             }
115513           }
115514         }
115515       }
115516     }
115517 
115518 #ifdef WHERETRACE_ENABLED  /* >=2 */
115519     if( sqlite3WhereTrace>=2 ){
115520       sqlite3DebugPrintf("---- after round %d ----\n", iLoop);
115521       for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){
115522         sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c",
115523            wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
115524            pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?');
115525         if( pTo->isOrdered>0 ){
115526           sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop);
115527         }else{
115528           sqlite3DebugPrintf("\n");
115529         }
115530       }
115531     }
115532 #endif
115533 
115534     /* Swap the roles of aFrom and aTo for the next generation */
115535     pFrom = aTo;
115536     aTo = aFrom;
115537     aFrom = pFrom;
115538     nFrom = nTo;
115539   }
115540 
115541   if( nFrom==0 ){
115542     sqlite3ErrorMsg(pParse, "no query solution");
115543     sqlite3DbFree(db, pSpace);
115544     return SQLITE_ERROR;
115545   }
115546 
115547   /* Find the lowest cost path.  pFrom will be left pointing to that path */
115548   pFrom = aFrom;
115549   for(ii=1; ii<nFrom; ii++){
115550     if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii];
115551   }
115552   assert( pWInfo->nLevel==nLoop );
115553   /* Load the lowest cost path into pWInfo */
115554   for(iLoop=0; iLoop<nLoop; iLoop++){
115555     WhereLevel *pLevel = pWInfo->a + iLoop;
115556     pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop];
115557     pLevel->iFrom = pWLoop->iTab;
115558     pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor;
115559   }
115560   if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0
115561    && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0
115562    && pWInfo->eDistinct==WHERE_DISTINCT_NOOP
115563    && nRowEst
115564   ){
115565     Bitmask notUsed;
115566     int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom,
115567                  WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], &notUsed);
115568     if( rc==pWInfo->pResultSet->nExpr ){
115569       pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
115570     }
115571   }
115572   if( pWInfo->pOrderBy ){
115573     if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){
115574       if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){
115575         pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
115576       }
115577     }else{
115578       pWInfo->nOBSat = pFrom->isOrdered;
115579       if( pWInfo->nOBSat<0 ) pWInfo->nOBSat = 0;
115580       pWInfo->revMask = pFrom->revLoop;
115581     }
115582     if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP)
115583         && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr
115584     ){
115585       Bitmask notUsed = 0;
115586       int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy,
115587           pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &notUsed
115588       );
115589       assert( pWInfo->sorted==0 );
115590       pWInfo->sorted = (nOrder==pWInfo->pOrderBy->nExpr);
115591     }
115592   }
115593 
115594 
115595   pWInfo->nRowOut = pFrom->nRow;
115596 
115597   /* Free temporary memory and return success */
115598   sqlite3DbFree(db, pSpace);
115599   return SQLITE_OK;
115600 }
115601 
115602 /*
115603 ** Most queries use only a single table (they are not joins) and have
115604 ** simple == constraints against indexed fields.  This routine attempts
115605 ** to plan those simple cases using much less ceremony than the
115606 ** general-purpose query planner, and thereby yield faster sqlite3_prepare()
115607 ** times for the common case.
115608 **
115609 ** Return non-zero on success, if this query can be handled by this
115610 ** no-frills query planner.  Return zero if this query needs the
115611 ** general-purpose query planner.
115612 */
115613 static int whereShortCut(WhereLoopBuilder *pBuilder){
115614   WhereInfo *pWInfo;
115615   struct SrcList_item *pItem;
115616   WhereClause *pWC;
115617   WhereTerm *pTerm;
115618   WhereLoop *pLoop;
115619   int iCur;
115620   int j;
115621   Table *pTab;
115622   Index *pIdx;
115623 
115624   pWInfo = pBuilder->pWInfo;
115625   if( pWInfo->wctrlFlags & WHERE_FORCE_TABLE ) return 0;
115626   assert( pWInfo->pTabList->nSrc>=1 );
115627   pItem = pWInfo->pTabList->a;
115628   pTab = pItem->pTab;
115629   if( IsVirtual(pTab) ) return 0;
115630   if( pItem->zIndex ) return 0;
115631   iCur = pItem->iCursor;
115632   pWC = &pWInfo->sWC;
115633   pLoop = pBuilder->pNew;
115634   pLoop->wsFlags = 0;
115635   pLoop->u.btree.nSkip = 0;
115636   pTerm = findTerm(pWC, iCur, -1, 0, WO_EQ, 0);
115637   if( pTerm ){
115638     pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW;
115639     pLoop->aLTerm[0] = pTerm;
115640     pLoop->nLTerm = 1;
115641     pLoop->u.btree.nEq = 1;
115642     /* TUNING: Cost of a rowid lookup is 10 */
115643     pLoop->rRun = 33;  /* 33==sqlite3LogEst(10) */
115644   }else{
115645     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
115646       assert( pLoop->aLTermSpace==pLoop->aLTerm );
115647       assert( ArraySize(pLoop->aLTermSpace)==4 );
115648       if( pIdx->onError==OE_None
115649        || pIdx->pPartIdxWhere!=0
115650        || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace)
115651       ) continue;
115652       for(j=0; j<pIdx->nKeyCol; j++){
115653         pTerm = findTerm(pWC, iCur, pIdx->aiColumn[j], 0, WO_EQ, pIdx);
115654         if( pTerm==0 ) break;
115655         pLoop->aLTerm[j] = pTerm;
115656       }
115657       if( j!=pIdx->nKeyCol ) continue;
115658       pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED;
115659       if( pIdx->isCovering || (pItem->colUsed & ~columnsInIndex(pIdx))==0 ){
115660         pLoop->wsFlags |= WHERE_IDX_ONLY;
115661       }
115662       pLoop->nLTerm = j;
115663       pLoop->u.btree.nEq = j;
115664       pLoop->u.btree.pIndex = pIdx;
115665       /* TUNING: Cost of a unique index lookup is 15 */
115666       pLoop->rRun = 39;  /* 39==sqlite3LogEst(15) */
115667       break;
115668     }
115669   }
115670   if( pLoop->wsFlags ){
115671     pLoop->nOut = (LogEst)1;
115672     pWInfo->a[0].pWLoop = pLoop;
115673     pLoop->maskSelf = getMask(&pWInfo->sMaskSet, iCur);
115674     pWInfo->a[0].iTabCur = iCur;
115675     pWInfo->nRowOut = 1;
115676     if( pWInfo->pOrderBy ) pWInfo->nOBSat =  pWInfo->pOrderBy->nExpr;
115677     if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){
115678       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
115679     }
115680 #ifdef SQLITE_DEBUG
115681     pLoop->cId = '0';
115682 #endif
115683     return 1;
115684   }
115685   return 0;
115686 }
115687 
115688 /*
115689 ** Generate the beginning of the loop used for WHERE clause processing.
115690 ** The return value is a pointer to an opaque structure that contains
115691 ** information needed to terminate the loop.  Later, the calling routine
115692 ** should invoke sqlite3WhereEnd() with the return value of this function
115693 ** in order to complete the WHERE clause processing.
115694 **
115695 ** If an error occurs, this routine returns NULL.
115696 **
115697 ** The basic idea is to do a nested loop, one loop for each table in
115698 ** the FROM clause of a select.  (INSERT and UPDATE statements are the
115699 ** same as a SELECT with only a single table in the FROM clause.)  For
115700 ** example, if the SQL is this:
115701 **
115702 **       SELECT * FROM t1, t2, t3 WHERE ...;
115703 **
115704 ** Then the code generated is conceptually like the following:
115705 **
115706 **      foreach row1 in t1 do       \    Code generated
115707 **        foreach row2 in t2 do      |-- by sqlite3WhereBegin()
115708 **          foreach row3 in t3 do   /
115709 **            ...
115710 **          end                     \    Code generated
115711 **        end                        |-- by sqlite3WhereEnd()
115712 **      end                         /
115713 **
115714 ** Note that the loops might not be nested in the order in which they
115715 ** appear in the FROM clause if a different order is better able to make
115716 ** use of indices.  Note also that when the IN operator appears in
115717 ** the WHERE clause, it might result in additional nested loops for
115718 ** scanning through all values on the right-hand side of the IN.
115719 **
115720 ** There are Btree cursors associated with each table.  t1 uses cursor
115721 ** number pTabList->a[0].iCursor.  t2 uses the cursor pTabList->a[1].iCursor.
115722 ** And so forth.  This routine generates code to open those VDBE cursors
115723 ** and sqlite3WhereEnd() generates the code to close them.
115724 **
115725 ** The code that sqlite3WhereBegin() generates leaves the cursors named
115726 ** in pTabList pointing at their appropriate entries.  The [...] code
115727 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
115728 ** data from the various tables of the loop.
115729 **
115730 ** If the WHERE clause is empty, the foreach loops must each scan their
115731 ** entire tables.  Thus a three-way join is an O(N^3) operation.  But if
115732 ** the tables have indices and there are terms in the WHERE clause that
115733 ** refer to those indices, a complete table scan can be avoided and the
115734 ** code will run much faster.  Most of the work of this routine is checking
115735 ** to see if there are indices that can be used to speed up the loop.
115736 **
115737 ** Terms of the WHERE clause are also used to limit which rows actually
115738 ** make it to the "..." in the middle of the loop.  After each "foreach",
115739 ** terms of the WHERE clause that use only terms in that loop and outer
115740 ** loops are evaluated and if false a jump is made around all subsequent
115741 ** inner loops (or around the "..." if the test occurs within the inner-
115742 ** most loop)
115743 **
115744 ** OUTER JOINS
115745 **
115746 ** An outer join of tables t1 and t2 is conceptally coded as follows:
115747 **
115748 **    foreach row1 in t1 do
115749 **      flag = 0
115750 **      foreach row2 in t2 do
115751 **        start:
115752 **          ...
115753 **          flag = 1
115754 **      end
115755 **      if flag==0 then
115756 **        move the row2 cursor to a null row
115757 **        goto start
115758 **      fi
115759 **    end
115760 **
115761 ** ORDER BY CLAUSE PROCESSING
115762 **
115763 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause
115764 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement
115765 ** if there is one.  If there is no ORDER BY clause or if this routine
115766 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL.
115767 **
115768 ** The iIdxCur parameter is the cursor number of an index.  If
115769 ** WHERE_ONETABLE_ONLY is set, iIdxCur is the cursor number of an index
115770 ** to use for OR clause processing.  The WHERE clause should use this
115771 ** specific cursor.  If WHERE_ONEPASS_DESIRED is set, then iIdxCur is
115772 ** the first cursor in an array of cursors for all indices.  iIdxCur should
115773 ** be used to compute the appropriate cursor depending on which index is
115774 ** used.
115775 */
115776 SQLITE_PRIVATE WhereInfo *sqlite3WhereBegin(
115777   Parse *pParse,        /* The parser context */
115778   SrcList *pTabList,    /* FROM clause: A list of all tables to be scanned */
115779   Expr *pWhere,         /* The WHERE clause */
115780   ExprList *pOrderBy,   /* An ORDER BY (or GROUP BY) clause, or NULL */
115781   ExprList *pResultSet, /* Result set of the query */
115782   u16 wctrlFlags,       /* One of the WHERE_* flags defined in sqliteInt.h */
115783   int iIdxCur           /* If WHERE_ONETABLE_ONLY is set, index cursor number */
115784 ){
115785   int nByteWInfo;            /* Num. bytes allocated for WhereInfo struct */
115786   int nTabList;              /* Number of elements in pTabList */
115787   WhereInfo *pWInfo;         /* Will become the return value of this function */
115788   Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
115789   Bitmask notReady;          /* Cursors that are not yet positioned */
115790   WhereLoopBuilder sWLB;     /* The WhereLoop builder */
115791   WhereMaskSet *pMaskSet;    /* The expression mask set */
115792   WhereLevel *pLevel;        /* A single level in pWInfo->a[] */
115793   WhereLoop *pLoop;          /* Pointer to a single WhereLoop object */
115794   int ii;                    /* Loop counter */
115795   sqlite3 *db;               /* Database connection */
115796   int rc;                    /* Return code */
115797 
115798 
115799   /* Variable initialization */
115800   db = pParse->db;
115801   memset(&sWLB, 0, sizeof(sWLB));
115802 
115803   /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */
115804   testcase( pOrderBy && pOrderBy->nExpr==BMS-1 );
115805   if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0;
115806   sWLB.pOrderBy = pOrderBy;
115807 
115808   /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
115809   ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
115810   if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){
115811     wctrlFlags &= ~WHERE_WANT_DISTINCT;
115812   }
115813 
115814   /* The number of tables in the FROM clause is limited by the number of
115815   ** bits in a Bitmask
115816   */
115817   testcase( pTabList->nSrc==BMS );
115818   if( pTabList->nSrc>BMS ){
115819     sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
115820     return 0;
115821   }
115822 
115823   /* This function normally generates a nested loop for all tables in
115824   ** pTabList.  But if the WHERE_ONETABLE_ONLY flag is set, then we should
115825   ** only generate code for the first table in pTabList and assume that
115826   ** any cursors associated with subsequent tables are uninitialized.
115827   */
115828   nTabList = (wctrlFlags & WHERE_ONETABLE_ONLY) ? 1 : pTabList->nSrc;
115829 
115830   /* Allocate and initialize the WhereInfo structure that will become the
115831   ** return value. A single allocation is used to store the WhereInfo
115832   ** struct, the contents of WhereInfo.a[], the WhereClause structure
115833   ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
115834   ** field (type Bitmask) it must be aligned on an 8-byte boundary on
115835   ** some architectures. Hence the ROUND8() below.
115836   */
115837   nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel));
115838   pWInfo = sqlite3DbMallocZero(db, nByteWInfo + sizeof(WhereLoop));
115839   if( db->mallocFailed ){
115840     sqlite3DbFree(db, pWInfo);
115841     pWInfo = 0;
115842     goto whereBeginError;
115843   }
115844   pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1;
115845   pWInfo->nLevel = nTabList;
115846   pWInfo->pParse = pParse;
115847   pWInfo->pTabList = pTabList;
115848   pWInfo->pOrderBy = pOrderBy;
115849   pWInfo->pResultSet = pResultSet;
115850   pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(v);
115851   pWInfo->wctrlFlags = wctrlFlags;
115852   pWInfo->savedNQueryLoop = pParse->nQueryLoop;
115853   pMaskSet = &pWInfo->sMaskSet;
115854   sWLB.pWInfo = pWInfo;
115855   sWLB.pWC = &pWInfo->sWC;
115856   sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo);
115857   assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) );
115858   whereLoopInit(sWLB.pNew);
115859 #ifdef SQLITE_DEBUG
115860   sWLB.pNew->cId = '*';
115861 #endif
115862 
115863   /* Split the WHERE clause into separate subexpressions where each
115864   ** subexpression is separated by an AND operator.
115865   */
115866   initMaskSet(pMaskSet);
115867   whereClauseInit(&pWInfo->sWC, pWInfo);
115868   whereSplit(&pWInfo->sWC, pWhere, TK_AND);
115869 
115870   /* Special case: a WHERE clause that is constant.  Evaluate the
115871   ** expression and either jump over all of the code or fall thru.
115872   */
115873   for(ii=0; ii<sWLB.pWC->nTerm; ii++){
115874     if( nTabList==0 || sqlite3ExprIsConstantNotJoin(sWLB.pWC->a[ii].pExpr) ){
115875       sqlite3ExprIfFalse(pParse, sWLB.pWC->a[ii].pExpr, pWInfo->iBreak,
115876                          SQLITE_JUMPIFNULL);
115877       sWLB.pWC->a[ii].wtFlags |= TERM_CODED;
115878     }
115879   }
115880 
115881   /* Special case: No FROM clause
115882   */
115883   if( nTabList==0 ){
115884     if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr;
115885     if( wctrlFlags & WHERE_WANT_DISTINCT ){
115886       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
115887     }
115888   }
115889 
115890   /* Assign a bit from the bitmask to every term in the FROM clause.
115891   **
115892   ** When assigning bitmask values to FROM clause cursors, it must be
115893   ** the case that if X is the bitmask for the N-th FROM clause term then
115894   ** the bitmask for all FROM clause terms to the left of the N-th term
115895   ** is (X-1).   An expression from the ON clause of a LEFT JOIN can use
115896   ** its Expr.iRightJoinTable value to find the bitmask of the right table
115897   ** of the join.  Subtracting one from the right table bitmask gives a
115898   ** bitmask for all tables to the left of the join.  Knowing the bitmask
115899   ** for all tables to the left of a left join is important.  Ticket #3015.
115900   **
115901   ** Note that bitmasks are created for all pTabList->nSrc tables in
115902   ** pTabList, not just the first nTabList tables.  nTabList is normally
115903   ** equal to pTabList->nSrc but might be shortened to 1 if the
115904   ** WHERE_ONETABLE_ONLY flag is set.
115905   */
115906   for(ii=0; ii<pTabList->nSrc; ii++){
115907     createMask(pMaskSet, pTabList->a[ii].iCursor);
115908   }
115909 #ifndef NDEBUG
115910   {
115911     Bitmask toTheLeft = 0;
115912     for(ii=0; ii<pTabList->nSrc; ii++){
115913       Bitmask m = getMask(pMaskSet, pTabList->a[ii].iCursor);
115914       assert( (m-1)==toTheLeft );
115915       toTheLeft |= m;
115916     }
115917   }
115918 #endif
115919 
115920   /* Analyze all of the subexpressions.  Note that exprAnalyze() might
115921   ** add new virtual terms onto the end of the WHERE clause.  We do not
115922   ** want to analyze these virtual terms, so start analyzing at the end
115923   ** and work forward so that the added virtual terms are never processed.
115924   */
115925   exprAnalyzeAll(pTabList, &pWInfo->sWC);
115926   if( db->mallocFailed ){
115927     goto whereBeginError;
115928   }
115929 
115930   if( wctrlFlags & WHERE_WANT_DISTINCT ){
115931     if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){
115932       /* The DISTINCT marking is pointless.  Ignore it. */
115933       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
115934     }else if( pOrderBy==0 ){
115935       /* Try to ORDER BY the result set to make distinct processing easier */
115936       pWInfo->wctrlFlags |= WHERE_DISTINCTBY;
115937       pWInfo->pOrderBy = pResultSet;
115938     }
115939   }
115940 
115941   /* Construct the WhereLoop objects */
115942   WHERETRACE(0xffff,("*** Optimizer Start ***\n"));
115943   /* Display all terms of the WHERE clause */
115944 #if defined(WHERETRACE_ENABLED) && defined(SQLITE_ENABLE_TREE_EXPLAIN)
115945   if( sqlite3WhereTrace & 0x100 ){
115946     int i;
115947     Vdbe *v = pParse->pVdbe;
115948     sqlite3ExplainBegin(v);
115949     for(i=0; i<sWLB.pWC->nTerm; i++){
115950       sqlite3ExplainPrintf(v, "#%-2d ", i);
115951       sqlite3ExplainPush(v);
115952       whereExplainTerm(v, &sWLB.pWC->a[i]);
115953       sqlite3ExplainPop(v);
115954       sqlite3ExplainNL(v);
115955     }
115956     sqlite3ExplainFinish(v);
115957     sqlite3DebugPrintf("%s", sqlite3VdbeExplanation(v));
115958   }
115959 #endif
115960   if( nTabList!=1 || whereShortCut(&sWLB)==0 ){
115961     rc = whereLoopAddAll(&sWLB);
115962     if( rc ) goto whereBeginError;
115963 
115964     /* Display all of the WhereLoop objects if wheretrace is enabled */
115965 #ifdef WHERETRACE_ENABLED /* !=0 */
115966     if( sqlite3WhereTrace ){
115967       WhereLoop *p;
115968       int i;
115969       static char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz"
115970                                        "ABCDEFGHIJKLMNOPQRSTUVWYXZ";
115971       for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){
115972         p->cId = zLabel[i%sizeof(zLabel)];
115973         whereLoopPrint(p, sWLB.pWC);
115974       }
115975     }
115976 #endif
115977 
115978     wherePathSolver(pWInfo, 0);
115979     if( db->mallocFailed ) goto whereBeginError;
115980     if( pWInfo->pOrderBy ){
115981        wherePathSolver(pWInfo, pWInfo->nRowOut+1);
115982        if( db->mallocFailed ) goto whereBeginError;
115983     }
115984   }
115985   if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){
115986      pWInfo->revMask = (Bitmask)(-1);
115987   }
115988   if( pParse->nErr || NEVER(db->mallocFailed) ){
115989     goto whereBeginError;
115990   }
115991 #ifdef WHERETRACE_ENABLED /* !=0 */
115992   if( sqlite3WhereTrace ){
115993     int ii;
115994     sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut);
115995     if( pWInfo->nOBSat>0 ){
115996       sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask);
115997     }
115998     switch( pWInfo->eDistinct ){
115999       case WHERE_DISTINCT_UNIQUE: {
116000         sqlite3DebugPrintf("  DISTINCT=unique");
116001         break;
116002       }
116003       case WHERE_DISTINCT_ORDERED: {
116004         sqlite3DebugPrintf("  DISTINCT=ordered");
116005         break;
116006       }
116007       case WHERE_DISTINCT_UNORDERED: {
116008         sqlite3DebugPrintf("  DISTINCT=unordered");
116009         break;
116010       }
116011     }
116012     sqlite3DebugPrintf("\n");
116013     for(ii=0; ii<pWInfo->nLevel; ii++){
116014       whereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC);
116015     }
116016   }
116017 #endif
116018   /* Attempt to omit tables from the join that do not effect the result */
116019   if( pWInfo->nLevel>=2
116020    && pResultSet!=0
116021    && OptimizationEnabled(db, SQLITE_OmitNoopJoin)
116022   ){
116023     Bitmask tabUsed = exprListTableUsage(pMaskSet, pResultSet);
116024     if( sWLB.pOrderBy ) tabUsed |= exprListTableUsage(pMaskSet, sWLB.pOrderBy);
116025     while( pWInfo->nLevel>=2 ){
116026       WhereTerm *pTerm, *pEnd;
116027       pLoop = pWInfo->a[pWInfo->nLevel-1].pWLoop;
116028       if( (pWInfo->pTabList->a[pLoop->iTab].jointype & JT_LEFT)==0 ) break;
116029       if( (wctrlFlags & WHERE_WANT_DISTINCT)==0
116030        && (pLoop->wsFlags & WHERE_ONEROW)==0
116031       ){
116032         break;
116033       }
116034       if( (tabUsed & pLoop->maskSelf)!=0 ) break;
116035       pEnd = sWLB.pWC->a + sWLB.pWC->nTerm;
116036       for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){
116037         if( (pTerm->prereqAll & pLoop->maskSelf)!=0
116038          && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
116039         ){
116040           break;
116041         }
116042       }
116043       if( pTerm<pEnd ) break;
116044       WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId));
116045       pWInfo->nLevel--;
116046       nTabList--;
116047     }
116048   }
116049   WHERETRACE(0xffff,("*** Optimizer Finished ***\n"));
116050   pWInfo->pParse->nQueryLoop += pWInfo->nRowOut;
116051 
116052   /* If the caller is an UPDATE or DELETE statement that is requesting
116053   ** to use a one-pass algorithm, determine if this is appropriate.
116054   ** The one-pass algorithm only works if the WHERE clause constrains
116055   ** the statement to update a single row.
116056   */
116057   assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
116058   if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0
116059    && (pWInfo->a[0].pWLoop->wsFlags & WHERE_ONEROW)!=0 ){
116060     pWInfo->okOnePass = 1;
116061     if( HasRowid(pTabList->a[0].pTab) ){
116062       pWInfo->a[0].pWLoop->wsFlags &= ~WHERE_IDX_ONLY;
116063     }
116064   }
116065 
116066   /* Open all tables in the pTabList and any indices selected for
116067   ** searching those tables.
116068   */
116069   notReady = ~(Bitmask)0;
116070   for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){
116071     Table *pTab;     /* Table to open */
116072     int iDb;         /* Index of database containing table/index */
116073     struct SrcList_item *pTabItem;
116074 
116075     pTabItem = &pTabList->a[pLevel->iFrom];
116076     pTab = pTabItem->pTab;
116077     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
116078     pLoop = pLevel->pWLoop;
116079     if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){
116080       /* Do nothing */
116081     }else
116082 #ifndef SQLITE_OMIT_VIRTUALTABLE
116083     if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
116084       const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
116085       int iCur = pTabItem->iCursor;
116086       sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
116087     }else if( IsVirtual(pTab) ){
116088       /* noop */
116089     }else
116090 #endif
116091     if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
116092          && (wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 ){
116093       int op = OP_OpenRead;
116094       if( pWInfo->okOnePass ){
116095         op = OP_OpenWrite;
116096         pWInfo->aiCurOnePass[0] = pTabItem->iCursor;
116097       };
116098       sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
116099       assert( pTabItem->iCursor==pLevel->iTabCur );
116100       testcase( !pWInfo->okOnePass && pTab->nCol==BMS-1 );
116101       testcase( !pWInfo->okOnePass && pTab->nCol==BMS );
116102       if( !pWInfo->okOnePass && pTab->nCol<BMS && HasRowid(pTab) ){
116103         Bitmask b = pTabItem->colUsed;
116104         int n = 0;
116105         for(; b; b=b>>1, n++){}
116106         sqlite3VdbeChangeP4(v, sqlite3VdbeCurrentAddr(v)-1,
116107                             SQLITE_INT_TO_PTR(n), P4_INT32);
116108         assert( n<=pTab->nCol );
116109       }
116110     }else{
116111       sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
116112     }
116113     if( pLoop->wsFlags & WHERE_INDEXED ){
116114       Index *pIx = pLoop->u.btree.pIndex;
116115       int iIndexCur;
116116       int op = OP_OpenRead;
116117       /* iIdxCur is always set if to a positive value if ONEPASS is possible */
116118       assert( iIdxCur!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 );
116119       if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx)
116120        && (wctrlFlags & WHERE_ONETABLE_ONLY)!=0
116121       ){
116122         /* This is one term of an OR-optimization using the PRIMARY KEY of a
116123         ** WITHOUT ROWID table.  No need for a separate index */
116124         iIndexCur = pLevel->iTabCur;
116125         op = 0;
116126       }else if( pWInfo->okOnePass ){
116127         Index *pJ = pTabItem->pTab->pIndex;
116128         iIndexCur = iIdxCur;
116129         assert( wctrlFlags & WHERE_ONEPASS_DESIRED );
116130         while( ALWAYS(pJ) && pJ!=pIx ){
116131           iIndexCur++;
116132           pJ = pJ->pNext;
116133         }
116134         op = OP_OpenWrite;
116135         pWInfo->aiCurOnePass[1] = iIndexCur;
116136       }else if( iIdxCur && (wctrlFlags & WHERE_ONETABLE_ONLY)!=0 ){
116137         iIndexCur = iIdxCur;
116138       }else{
116139         iIndexCur = pParse->nTab++;
116140       }
116141       pLevel->iIdxCur = iIndexCur;
116142       assert( pIx->pSchema==pTab->pSchema );
116143       assert( iIndexCur>=0 );
116144       if( op ){
116145         sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb);
116146         sqlite3VdbeSetP4KeyInfo(pParse, pIx);
116147         VdbeComment((v, "%s", pIx->zName));
116148       }
116149     }
116150     if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb);
116151     notReady &= ~getMask(&pWInfo->sMaskSet, pTabItem->iCursor);
116152   }
116153   pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
116154   if( db->mallocFailed ) goto whereBeginError;
116155 
116156   /* Generate the code to do the search.  Each iteration of the for
116157   ** loop below generates code for a single nested loop of the VM
116158   ** program.
116159   */
116160   notReady = ~(Bitmask)0;
116161   for(ii=0; ii<nTabList; ii++){
116162     pLevel = &pWInfo->a[ii];
116163 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
116164     if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){
116165       constructAutomaticIndex(pParse, &pWInfo->sWC,
116166                 &pTabList->a[pLevel->iFrom], notReady, pLevel);
116167       if( db->mallocFailed ) goto whereBeginError;
116168     }
116169 #endif
116170     explainOneScan(pParse, pTabList, pLevel, ii, pLevel->iFrom, wctrlFlags);
116171     pLevel->addrBody = sqlite3VdbeCurrentAddr(v);
116172     notReady = codeOneLoopStart(pWInfo, ii, notReady);
116173     pWInfo->iContinue = pLevel->addrCont;
116174   }
116175 
116176   /* Done. */
116177   VdbeModuleComment((v, "Begin WHERE-core"));
116178   return pWInfo;
116179 
116180   /* Jump here if malloc fails */
116181 whereBeginError:
116182   if( pWInfo ){
116183     pParse->nQueryLoop = pWInfo->savedNQueryLoop;
116184     whereInfoFree(db, pWInfo);
116185   }
116186   return 0;
116187 }
116188 
116189 /*
116190 ** Generate the end of the WHERE loop.  See comments on
116191 ** sqlite3WhereBegin() for additional information.
116192 */
116193 SQLITE_PRIVATE void sqlite3WhereEnd(WhereInfo *pWInfo){
116194   Parse *pParse = pWInfo->pParse;
116195   Vdbe *v = pParse->pVdbe;
116196   int i;
116197   WhereLevel *pLevel;
116198   WhereLoop *pLoop;
116199   SrcList *pTabList = pWInfo->pTabList;
116200   sqlite3 *db = pParse->db;
116201 
116202   /* Generate loop termination code.
116203   */
116204   VdbeModuleComment((v, "End WHERE-core"));
116205   sqlite3ExprCacheClear(pParse);
116206   for(i=pWInfo->nLevel-1; i>=0; i--){
116207     int addr;
116208     pLevel = &pWInfo->a[i];
116209     pLoop = pLevel->pWLoop;
116210     sqlite3VdbeResolveLabel(v, pLevel->addrCont);
116211     if( pLevel->op!=OP_Noop ){
116212       sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3);
116213       sqlite3VdbeChangeP5(v, pLevel->p5);
116214       VdbeCoverage(v);
116215       VdbeCoverageIf(v, pLevel->op==OP_Next);
116216       VdbeCoverageIf(v, pLevel->op==OP_Prev);
116217       VdbeCoverageIf(v, pLevel->op==OP_VNext);
116218     }
116219     if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
116220       struct InLoop *pIn;
116221       int j;
116222       sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
116223       for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
116224         sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
116225         sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop);
116226         VdbeCoverage(v);
116227         VdbeCoverageIf(v, pIn->eEndLoopOp==OP_PrevIfOpen);
116228         VdbeCoverageIf(v, pIn->eEndLoopOp==OP_NextIfOpen);
116229         sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
116230       }
116231       sqlite3DbFree(db, pLevel->u.in.aInLoop);
116232     }
116233     sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
116234     if( pLevel->addrSkip ){
116235       sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrSkip);
116236       VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName));
116237       sqlite3VdbeJumpHere(v, pLevel->addrSkip);
116238       sqlite3VdbeJumpHere(v, pLevel->addrSkip-2);
116239     }
116240     if( pLevel->iLeftJoin ){
116241       addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v);
116242       assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
116243            || (pLoop->wsFlags & WHERE_INDEXED)!=0 );
116244       if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 ){
116245         sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor);
116246       }
116247       if( pLoop->wsFlags & WHERE_INDEXED ){
116248         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
116249       }
116250       if( pLevel->op==OP_Return ){
116251         sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
116252       }else{
116253         sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrFirst);
116254       }
116255       sqlite3VdbeJumpHere(v, addr);
116256     }
116257     VdbeModuleComment((v, "End WHERE-loop%d: %s", i,
116258                      pWInfo->pTabList->a[pLevel->iFrom].pTab->zName));
116259   }
116260 
116261   /* The "break" point is here, just past the end of the outer loop.
116262   ** Set it.
116263   */
116264   sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
116265 
116266   assert( pWInfo->nLevel<=pTabList->nSrc );
116267   for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
116268     int k, last;
116269     VdbeOp *pOp;
116270     Index *pIdx = 0;
116271     struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
116272     Table *pTab = pTabItem->pTab;
116273     assert( pTab!=0 );
116274     pLoop = pLevel->pWLoop;
116275 
116276     /* For a co-routine, change all OP_Column references to the table of
116277     ** the co-routine into OP_SCopy of result contained in a register.
116278     ** OP_Rowid becomes OP_Null.
116279     */
116280     if( pTabItem->viaCoroutine && !db->mallocFailed ){
116281       last = sqlite3VdbeCurrentAddr(v);
116282       k = pLevel->addrBody;
116283       pOp = sqlite3VdbeGetOp(v, k);
116284       for(; k<last; k++, pOp++){
116285         if( pOp->p1!=pLevel->iTabCur ) continue;
116286         if( pOp->opcode==OP_Column ){
116287           pOp->opcode = OP_Copy;
116288           pOp->p1 = pOp->p2 + pTabItem->regResult;
116289           pOp->p2 = pOp->p3;
116290           pOp->p3 = 0;
116291         }else if( pOp->opcode==OP_Rowid ){
116292           pOp->opcode = OP_Null;
116293           pOp->p1 = 0;
116294           pOp->p3 = 0;
116295         }
116296       }
116297       continue;
116298     }
116299 
116300     /* Close all of the cursors that were opened by sqlite3WhereBegin.
116301     ** Except, do not close cursors that will be reused by the OR optimization
116302     ** (WHERE_OMIT_OPEN_CLOSE).  And do not close the OP_OpenWrite cursors
116303     ** created for the ONEPASS optimization.
116304     */
116305     if( (pTab->tabFlags & TF_Ephemeral)==0
116306      && pTab->pSelect==0
116307      && (pWInfo->wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0
116308     ){
116309       int ws = pLoop->wsFlags;
116310       if( !pWInfo->okOnePass && (ws & WHERE_IDX_ONLY)==0 ){
116311         sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor);
116312       }
116313       if( (ws & WHERE_INDEXED)!=0
116314        && (ws & (WHERE_IPK|WHERE_AUTO_INDEX))==0
116315        && pLevel->iIdxCur!=pWInfo->aiCurOnePass[1]
116316       ){
116317         sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur);
116318       }
116319     }
116320 
116321     /* If this scan uses an index, make VDBE code substitutions to read data
116322     ** from the index instead of from the table where possible.  In some cases
116323     ** this optimization prevents the table from ever being read, which can
116324     ** yield a significant performance boost.
116325     **
116326     ** Calls to the code generator in between sqlite3WhereBegin and
116327     ** sqlite3WhereEnd will have created code that references the table
116328     ** directly.  This loop scans all that code looking for opcodes
116329     ** that reference the table and converts them into opcodes that
116330     ** reference the index.
116331     */
116332     if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){
116333       pIdx = pLoop->u.btree.pIndex;
116334     }else if( pLoop->wsFlags & WHERE_MULTI_OR ){
116335       pIdx = pLevel->u.pCovidx;
116336     }
116337     if( pIdx && !db->mallocFailed ){
116338       last = sqlite3VdbeCurrentAddr(v);
116339       k = pLevel->addrBody;
116340       pOp = sqlite3VdbeGetOp(v, k);
116341       for(; k<last; k++, pOp++){
116342         if( pOp->p1!=pLevel->iTabCur ) continue;
116343         if( pOp->opcode==OP_Column ){
116344           int x = pOp->p2;
116345           assert( pIdx->pTable==pTab );
116346           if( !HasRowid(pTab) ){
116347             Index *pPk = sqlite3PrimaryKeyIndex(pTab);
116348             x = pPk->aiColumn[x];
116349           }
116350           x = sqlite3ColumnOfIndex(pIdx, x);
116351           if( x>=0 ){
116352             pOp->p2 = x;
116353             pOp->p1 = pLevel->iIdxCur;
116354           }
116355           assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0 );
116356         }else if( pOp->opcode==OP_Rowid ){
116357           pOp->p1 = pLevel->iIdxCur;
116358           pOp->opcode = OP_IdxRowid;
116359         }
116360       }
116361     }
116362   }
116363 
116364   /* Final cleanup
116365   */
116366   pParse->nQueryLoop = pWInfo->savedNQueryLoop;
116367   whereInfoFree(db, pWInfo);
116368   return;
116369 }
116370 
116371 /************** End of where.c ***********************************************/
116372 /************** Begin file parse.c *******************************************/
116373 /* Driver template for the LEMON parser generator.
116374 ** The author disclaims copyright to this source code.
116375 **
116376 ** This version of "lempar.c" is modified, slightly, for use by SQLite.
116377 ** The only modifications are the addition of a couple of NEVER()
116378 ** macros to disable tests that are needed in the case of a general
116379 ** LALR(1) grammar but which are always false in the
116380 ** specific grammar used by SQLite.
116381 */
116382 /* First off, code is included that follows the "include" declaration
116383 ** in the input grammar file. */
116384 /* #include <stdio.h> */
116385 
116386 
116387 /*
116388 ** Disable all error recovery processing in the parser push-down
116389 ** automaton.
116390 */
116391 #define YYNOERRORRECOVERY 1
116392 
116393 /*
116394 ** Make yytestcase() the same as testcase()
116395 */
116396 #define yytestcase(X) testcase(X)
116397 
116398 /*
116399 ** An instance of this structure holds information about the
116400 ** LIMIT clause of a SELECT statement.
116401 */
116402 struct LimitVal {
116403   Expr *pLimit;    /* The LIMIT expression.  NULL if there is no limit */
116404   Expr *pOffset;   /* The OFFSET expression.  NULL if there is none */
116405 };
116406 
116407 /*
116408 ** An instance of this structure is used to store the LIKE,
116409 ** GLOB, NOT LIKE, and NOT GLOB operators.
116410 */
116411 struct LikeOp {
116412   Token eOperator;  /* "like" or "glob" or "regexp" */
116413   int bNot;         /* True if the NOT keyword is present */
116414 };
116415 
116416 /*
116417 ** An instance of the following structure describes the event of a
116418 ** TRIGGER.  "a" is the event type, one of TK_UPDATE, TK_INSERT,
116419 ** TK_DELETE, or TK_INSTEAD.  If the event is of the form
116420 **
116421 **      UPDATE ON (a,b,c)
116422 **
116423 ** Then the "b" IdList records the list "a,b,c".
116424 */
116425 struct TrigEvent { int a; IdList * b; };
116426 
116427 /*
116428 ** An instance of this structure holds the ATTACH key and the key type.
116429 */
116430 struct AttachKey { int type;  Token key; };
116431 
116432 
116433   /* This is a utility routine used to set the ExprSpan.zStart and
116434   ** ExprSpan.zEnd values of pOut so that the span covers the complete
116435   ** range of text beginning with pStart and going to the end of pEnd.
116436   */
116437   static void spanSet(ExprSpan *pOut, Token *pStart, Token *pEnd){
116438     pOut->zStart = pStart->z;
116439     pOut->zEnd = &pEnd->z[pEnd->n];
116440   }
116441 
116442   /* Construct a new Expr object from a single identifier.  Use the
116443   ** new Expr to populate pOut.  Set the span of pOut to be the identifier
116444   ** that created the expression.
116445   */
116446   static void spanExpr(ExprSpan *pOut, Parse *pParse, int op, Token *pValue){
116447     pOut->pExpr = sqlite3PExpr(pParse, op, 0, 0, pValue);
116448     pOut->zStart = pValue->z;
116449     pOut->zEnd = &pValue->z[pValue->n];
116450   }
116451 
116452   /* This routine constructs a binary expression node out of two ExprSpan
116453   ** objects and uses the result to populate a new ExprSpan object.
116454   */
116455   static void spanBinaryExpr(
116456     ExprSpan *pOut,     /* Write the result here */
116457     Parse *pParse,      /* The parsing context.  Errors accumulate here */
116458     int op,             /* The binary operation */
116459     ExprSpan *pLeft,    /* The left operand */
116460     ExprSpan *pRight    /* The right operand */
116461   ){
116462     pOut->pExpr = sqlite3PExpr(pParse, op, pLeft->pExpr, pRight->pExpr, 0);
116463     pOut->zStart = pLeft->zStart;
116464     pOut->zEnd = pRight->zEnd;
116465   }
116466 
116467   /* Construct an expression node for a unary postfix operator
116468   */
116469   static void spanUnaryPostfix(
116470     ExprSpan *pOut,        /* Write the new expression node here */
116471     Parse *pParse,         /* Parsing context to record errors */
116472     int op,                /* The operator */
116473     ExprSpan *pOperand,    /* The operand */
116474     Token *pPostOp         /* The operand token for setting the span */
116475   ){
116476     pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0);
116477     pOut->zStart = pOperand->zStart;
116478     pOut->zEnd = &pPostOp->z[pPostOp->n];
116479   }
116480 
116481   /* A routine to convert a binary TK_IS or TK_ISNOT expression into a
116482   ** unary TK_ISNULL or TK_NOTNULL expression. */
116483   static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){
116484     sqlite3 *db = pParse->db;
116485     if( db->mallocFailed==0 && pY->op==TK_NULL ){
116486       pA->op = (u8)op;
116487       sqlite3ExprDelete(db, pA->pRight);
116488       pA->pRight = 0;
116489     }
116490   }
116491 
116492   /* Construct an expression node for a unary prefix operator
116493   */
116494   static void spanUnaryPrefix(
116495     ExprSpan *pOut,        /* Write the new expression node here */
116496     Parse *pParse,         /* Parsing context to record errors */
116497     int op,                /* The operator */
116498     ExprSpan *pOperand,    /* The operand */
116499     Token *pPreOp         /* The operand token for setting the span */
116500   ){
116501     pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0);
116502     pOut->zStart = pPreOp->z;
116503     pOut->zEnd = pOperand->zEnd;
116504   }
116505 /* Next is all token values, in a form suitable for use by makeheaders.
116506 ** This section will be null unless lemon is run with the -m switch.
116507 */
116508 /*
116509 ** These constants (all generated automatically by the parser generator)
116510 ** specify the various kinds of tokens (terminals) that the parser
116511 ** understands.
116512 **
116513 ** Each symbol here is a terminal symbol in the grammar.
116514 */
116515 /* Make sure the INTERFACE macro is defined.
116516 */
116517 #ifndef INTERFACE
116518 # define INTERFACE 1
116519 #endif
116520 /* The next thing included is series of defines which control
116521 ** various aspects of the generated parser.
116522 **    YYCODETYPE         is the data type used for storing terminal
116523 **                       and nonterminal numbers.  "unsigned char" is
116524 **                       used if there are fewer than 250 terminals
116525 **                       and nonterminals.  "int" is used otherwise.
116526 **    YYNOCODE           is a number of type YYCODETYPE which corresponds
116527 **                       to no legal terminal or nonterminal number.  This
116528 **                       number is used to fill in empty slots of the hash
116529 **                       table.
116530 **    YYFALLBACK         If defined, this indicates that one or more tokens
116531 **                       have fall-back values which should be used if the
116532 **                       original value of the token will not parse.
116533 **    YYACTIONTYPE       is the data type used for storing terminal
116534 **                       and nonterminal numbers.  "unsigned char" is
116535 **                       used if there are fewer than 250 rules and
116536 **                       states combined.  "int" is used otherwise.
116537 **    sqlite3ParserTOKENTYPE     is the data type used for minor tokens given
116538 **                       directly to the parser from the tokenizer.
116539 **    YYMINORTYPE        is the data type used for all minor tokens.
116540 **                       This is typically a union of many types, one of
116541 **                       which is sqlite3ParserTOKENTYPE.  The entry in the union
116542 **                       for base tokens is called "yy0".
116543 **    YYSTACKDEPTH       is the maximum depth of the parser's stack.  If
116544 **                       zero the stack is dynamically sized using realloc()
116545 **    sqlite3ParserARG_SDECL     A static variable declaration for the %extra_argument
116546 **    sqlite3ParserARG_PDECL     A parameter declaration for the %extra_argument
116547 **    sqlite3ParserARG_STORE     Code to store %extra_argument into yypParser
116548 **    sqlite3ParserARG_FETCH     Code to extract %extra_argument from yypParser
116549 **    YYNSTATE           the combined number of states.
116550 **    YYNRULE            the number of rules in the grammar
116551 **    YYERRORSYMBOL      is the code number of the error symbol.  If not
116552 **                       defined, then do no error processing.
116553 */
116554 #define YYCODETYPE unsigned char
116555 #define YYNOCODE 254
116556 #define YYACTIONTYPE unsigned short int
116557 #define YYWILDCARD 70
116558 #define sqlite3ParserTOKENTYPE Token
116559 typedef union {
116560   int yyinit;
116561   sqlite3ParserTOKENTYPE yy0;
116562   Select* yy3;
116563   ExprList* yy14;
116564   With* yy59;
116565   SrcList* yy65;
116566   struct LikeOp yy96;
116567   Expr* yy132;
116568   u8 yy186;
116569   int yy328;
116570   ExprSpan yy346;
116571   struct TrigEvent yy378;
116572   u16 yy381;
116573   IdList* yy408;
116574   struct {int value; int mask;} yy429;
116575   TriggerStep* yy473;
116576   struct LimitVal yy476;
116577 } YYMINORTYPE;
116578 #ifndef YYSTACKDEPTH
116579 #define YYSTACKDEPTH 100
116580 #endif
116581 #define sqlite3ParserARG_SDECL Parse *pParse;
116582 #define sqlite3ParserARG_PDECL ,Parse *pParse
116583 #define sqlite3ParserARG_FETCH Parse *pParse = yypParser->pParse
116584 #define sqlite3ParserARG_STORE yypParser->pParse = pParse
116585 #define YYNSTATE 642
116586 #define YYNRULE 327
116587 #define YYFALLBACK 1
116588 #define YY_NO_ACTION      (YYNSTATE+YYNRULE+2)
116589 #define YY_ACCEPT_ACTION  (YYNSTATE+YYNRULE+1)
116590 #define YY_ERROR_ACTION   (YYNSTATE+YYNRULE)
116591 
116592 /* The yyzerominor constant is used to initialize instances of
116593 ** YYMINORTYPE objects to zero. */
116594 static const YYMINORTYPE yyzerominor = { 0 };
116595 
116596 /* Define the yytestcase() macro to be a no-op if is not already defined
116597 ** otherwise.
116598 **
116599 ** Applications can choose to define yytestcase() in the %include section
116600 ** to a macro that can assist in verifying code coverage.  For production
116601 ** code the yytestcase() macro should be turned off.  But it is useful
116602 ** for testing.
116603 */
116604 #ifndef yytestcase
116605 # define yytestcase(X)
116606 #endif
116607 
116608 
116609 /* Next are the tables used to determine what action to take based on the
116610 ** current state and lookahead token.  These tables are used to implement
116611 ** functions that take a state number and lookahead value and return an
116612 ** action integer.
116613 **
116614 ** Suppose the action integer is N.  Then the action is determined as
116615 ** follows
116616 **
116617 **   0 <= N < YYNSTATE                  Shift N.  That is, push the lookahead
116618 **                                      token onto the stack and goto state N.
116619 **
116620 **   YYNSTATE <= N < YYNSTATE+YYNRULE   Reduce by rule N-YYNSTATE.
116621 **
116622 **   N == YYNSTATE+YYNRULE              A syntax error has occurred.
116623 **
116624 **   N == YYNSTATE+YYNRULE+1            The parser accepts its input.
116625 **
116626 **   N == YYNSTATE+YYNRULE+2            No such action.  Denotes unused
116627 **                                      slots in the yy_action[] table.
116628 **
116629 ** The action table is constructed as a single large table named yy_action[].
116630 ** Given state S and lookahead X, the action is computed as
116631 **
116632 **      yy_action[ yy_shift_ofst[S] + X ]
116633 **
116634 ** If the index value yy_shift_ofst[S]+X is out of range or if the value
116635 ** yy_lookahead[yy_shift_ofst[S]+X] is not equal to X or if yy_shift_ofst[S]
116636 ** is equal to YY_SHIFT_USE_DFLT, it means that the action is not in the table
116637 ** and that yy_default[S] should be used instead.
116638 **
116639 ** The formula above is for computing the action when the lookahead is
116640 ** a terminal symbol.  If the lookahead is a non-terminal (as occurs after
116641 ** a reduce action) then the yy_reduce_ofst[] array is used in place of
116642 ** the yy_shift_ofst[] array and YY_REDUCE_USE_DFLT is used in place of
116643 ** YY_SHIFT_USE_DFLT.
116644 **
116645 ** The following are the tables generated in this section:
116646 **
116647 **  yy_action[]        A single table containing all actions.
116648 **  yy_lookahead[]     A table containing the lookahead for each entry in
116649 **                     yy_action.  Used to detect hash collisions.
116650 **  yy_shift_ofst[]    For each state, the offset into yy_action for
116651 **                     shifting terminals.
116652 **  yy_reduce_ofst[]   For each state, the offset into yy_action for
116653 **                     shifting non-terminals after a reduce.
116654 **  yy_default[]       Default action for each state.
116655 */
116656 #define YY_ACTTAB_COUNT (1497)
116657 static const YYACTIONTYPE yy_action[] = {
116658  /*     0 */   306,  212,  432,  955,  639,  191,  955,  295,  559,   88,
116659  /*    10 */    88,   88,   88,   81,   86,   86,   86,   86,   85,   85,
116660  /*    20 */    84,   84,   84,   83,  330,  185,  184,  183,  635,  635,
116661  /*    30 */   292,  606,  606,   88,   88,   88,   88,  683,   86,   86,
116662  /*    40 */    86,   86,   85,   85,   84,   84,   84,   83,  330,   16,
116663  /*    50 */   436,  597,   89,   90,   80,  600,  599,  601,  601,   87,
116664  /*    60 */    87,   88,   88,   88,   88,  684,   86,   86,   86,   86,
116665  /*    70 */    85,   85,   84,   84,   84,   83,  330,  306,  559,   84,
116666  /*    80 */    84,   84,   83,  330,   65,   86,   86,   86,   86,   85,
116667  /*    90 */    85,   84,   84,   84,   83,  330,  635,  635,  634,  633,
116668  /*   100 */   182,  682,  550,  379,  376,  375,   17,  322,  606,  606,
116669  /*   110 */   371,  198,  479,   91,  374,   82,   79,  165,   85,   85,
116670  /*   120 */    84,   84,   84,   83,  330,  598,  635,  635,  107,   89,
116671  /*   130 */    90,   80,  600,  599,  601,  601,   87,   87,   88,   88,
116672  /*   140 */    88,   88,  186,   86,   86,   86,   86,   85,   85,   84,
116673  /*   150 */    84,   84,   83,  330,  306,  594,  594,  142,  328,  327,
116674  /*   160 */   484,  249,  344,  238,  635,  635,  634,  633,  585,  448,
116675  /*   170 */   526,  525,  229,  388,    1,  394,  450,  584,  449,  635,
116676  /*   180 */   635,  635,  635,  319,  395,  606,  606,  199,  157,  273,
116677  /*   190 */   382,  268,  381,  187,  635,  635,  634,  633,  311,  555,
116678  /*   200 */   266,  593,  593,  266,  347,  588,   89,   90,   80,  600,
116679  /*   210 */   599,  601,  601,   87,   87,   88,   88,   88,   88,  478,
116680  /*   220 */    86,   86,   86,   86,   85,   85,   84,   84,   84,   83,
116681  /*   230 */   330,  306,  272,  536,  634,  633,  146,  610,  197,  310,
116682  /*   240 */   575,  182,  482,  271,  379,  376,  375,  506,   21,  634,
116683  /*   250 */   633,  634,  633,  635,  635,  374,  611,  574,  548,  440,
116684  /*   260 */   111,  563,  606,  606,  634,  633,  324,  479,  608,  608,
116685  /*   270 */   608,  300,  435,  573,  119,  407,  210,  162,  562,  883,
116686  /*   280 */   592,  592,  306,   89,   90,   80,  600,  599,  601,  601,
116687  /*   290 */    87,   87,   88,   88,   88,   88,  506,   86,   86,   86,
116688  /*   300 */    86,   85,   85,   84,   84,   84,   83,  330,  620,  111,
116689  /*   310 */   635,  635,  361,  606,  606,  358,  249,  349,  248,  433,
116690  /*   320 */   243,  479,  586,  634,  633,  195,  611,   93,  119,  221,
116691  /*   330 */   575,  497,  534,  534,   89,   90,   80,  600,  599,  601,
116692  /*   340 */   601,   87,   87,   88,   88,   88,   88,  574,   86,   86,
116693  /*   350 */    86,   86,   85,   85,   84,   84,   84,   83,  330,  306,
116694  /*   360 */    77,  429,  638,  573,  589,  530,  240,  230,  242,  105,
116695  /*   370 */   249,  349,  248,  515,  588,  208,  460,  529,  564,  173,
116696  /*   380 */   634,  633,  970,  144,  430,    2,  424,  228,  380,  557,
116697  /*   390 */   606,  606,  190,  153,  159,  158,  514,   51,  632,  631,
116698  /*   400 */   630,   71,  536,  432,  954,  196,  610,  954,  614,   45,
116699  /*   410 */    18,   89,   90,   80,  600,  599,  601,  601,   87,   87,
116700  /*   420 */    88,   88,   88,   88,  261,   86,   86,   86,   86,   85,
116701  /*   430 */    85,   84,   84,   84,   83,  330,  306,  608,  608,  608,
116702  /*   440 */   542,  424,  402,  385,  241,  506,  451,  320,  211,  543,
116703  /*   450 */   164,  436,  386,  293,  451,  587,  108,  496,  111,  334,
116704  /*   460 */   391,  591,  424,  614,   27,  452,  453,  606,  606,   72,
116705  /*   470 */   257,   70,  259,  452,  339,  342,  564,  582,   68,  415,
116706  /*   480 */   469,  328,  327,   62,  614,   45,  110,  393,   89,   90,
116707  /*   490 */    80,  600,  599,  601,  601,   87,   87,   88,   88,   88,
116708  /*   500 */    88,  152,   86,   86,   86,   86,   85,   85,   84,   84,
116709  /*   510 */    84,   83,  330,  306,  110,  499,  520,  538,  402,  389,
116710  /*   520 */   424,  110,  566,  500,  593,  593,  454,   82,   79,  165,
116711  /*   530 */   424,  591,  384,  564,  340,  615,  188,  162,  424,  350,
116712  /*   540 */   616,  424,  614,   44,  606,  606,  445,  582,  300,  434,
116713  /*   550 */   151,   19,  614,    9,  568,  580,  348,  615,  469,  567,
116714  /*   560 */   614,   26,  616,  614,   45,   89,   90,   80,  600,  599,
116715  /*   570 */   601,  601,   87,   87,   88,   88,   88,   88,  411,   86,
116716  /*   580 */    86,   86,   86,   85,   85,   84,   84,   84,   83,  330,
116717  /*   590 */   306,  579,  110,  578,  521,  282,  433,  398,  400,  255,
116718  /*   600 */   486,   82,   79,  165,  487,  164,   82,   79,  165,  488,
116719  /*   610 */   488,  364,  387,  424,  544,  544,  509,  350,  362,  155,
116720  /*   620 */   191,  606,  606,  559,  642,  640,  333,   82,   79,  165,
116721  /*   630 */   305,  564,  507,  312,  357,  614,   45,  329,  596,  595,
116722  /*   640 */   194,  337,   89,   90,   80,  600,  599,  601,  601,   87,
116723  /*   650 */    87,   88,   88,   88,   88,  424,   86,   86,   86,   86,
116724  /*   660 */    85,   85,   84,   84,   84,   83,  330,  306,   20,  323,
116725  /*   670 */   150,  263,  211,  543,  421,  596,  595,  614,   22,  424,
116726  /*   680 */   193,  424,  284,  424,  391,  424,  509,  424,  577,  424,
116727  /*   690 */   186,  335,  424,  559,  424,  313,  120,  546,  606,  606,
116728  /*   700 */    67,  614,   47,  614,   50,  614,   48,  614,  100,  614,
116729  /*   710 */    99,  614,  101,  576,  614,  102,  614,  109,  326,   89,
116730  /*   720 */    90,   80,  600,  599,  601,  601,   87,   87,   88,   88,
116731  /*   730 */    88,   88,  424,   86,   86,   86,   86,   85,   85,   84,
116732  /*   740 */    84,   84,   83,  330,  306,  424,  311,  424,  585,   54,
116733  /*   750 */   424,  516,  517,  590,  614,  112,  424,  584,  424,  572,
116734  /*   760 */   424,  195,  424,  571,  424,   67,  424,  614,   94,  614,
116735  /*   770 */    98,  424,  614,   97,  264,  606,  606,  195,  614,   46,
116736  /*   780 */   614,   96,  614,   30,  614,   49,  614,  115,  614,  114,
116737  /*   790 */   418,  229,  388,  614,  113,  306,   89,   90,   80,  600,
116738  /*   800 */   599,  601,  601,   87,   87,   88,   88,   88,   88,  424,
116739  /*   810 */    86,   86,   86,   86,   85,   85,   84,   84,   84,   83,
116740  /*   820 */   330,  119,  424,  590,  110,  372,  606,  606,  195,   53,
116741  /*   830 */   250,  614,   29,  195,  472,  438,  729,  190,  302,  498,
116742  /*   840 */    14,  523,  641,    2,  614,   43,  306,   89,   90,   80,
116743  /*   850 */   600,  599,  601,  601,   87,   87,   88,   88,   88,   88,
116744  /*   860 */   424,   86,   86,   86,   86,   85,   85,   84,   84,   84,
116745  /*   870 */    83,  330,  424,  613,  964,  964,  354,  606,  606,  420,
116746  /*   880 */   312,   64,  614,   42,  391,  355,  283,  437,  301,  255,
116747  /*   890 */   414,  410,  495,  492,  614,   28,  471,  306,   89,   90,
116748  /*   900 */    80,  600,  599,  601,  601,   87,   87,   88,   88,   88,
116749  /*   910 */    88,  424,   86,   86,   86,   86,   85,   85,   84,   84,
116750  /*   920 */    84,   83,  330,  424,  110,  110,  110,  110,  606,  606,
116751  /*   930 */   110,  254,   13,  614,   41,  532,  531,  283,  481,  531,
116752  /*   940 */   457,  284,  119,  561,  356,  614,   40,  284,  306,   89,
116753  /*   950 */    78,   80,  600,  599,  601,  601,   87,   87,   88,   88,
116754  /*   960 */    88,   88,  424,   86,   86,   86,   86,   85,   85,   84,
116755  /*   970 */    84,   84,   83,  330,  110,  424,  341,  220,  555,  606,
116756  /*   980 */   606,  351,  555,  318,  614,   95,  413,  255,   83,  330,
116757  /*   990 */   284,  284,  255,  640,  333,  356,  255,  614,   39,  306,
116758  /*  1000 */   356,   90,   80,  600,  599,  601,  601,   87,   87,   88,
116759  /*  1010 */    88,   88,   88,  424,   86,   86,   86,   86,   85,   85,
116760  /*  1020 */    84,   84,   84,   83,  330,  424,  317,  316,  141,  465,
116761  /*  1030 */   606,  606,  219,  619,  463,  614,   10,  417,  462,  255,
116762  /*  1040 */   189,  510,  553,  351,  207,  363,  161,  614,   38,  315,
116763  /*  1050 */   218,  255,  255,   80,  600,  599,  601,  601,   87,   87,
116764  /*  1060 */    88,   88,   88,   88,  424,   86,   86,   86,   86,   85,
116765  /*  1070 */    85,   84,   84,   84,   83,  330,   76,  419,  255,    3,
116766  /*  1080 */   878,  461,  424,  247,  331,  331,  614,   37,  217,   76,
116767  /*  1090 */   419,  390,    3,  216,  215,  422,    4,  331,  331,  424,
116768  /*  1100 */   547,   12,  424,  545,  614,   36,  424,  541,  422,  424,
116769  /*  1110 */   540,  424,  214,  424,  408,  424,  539,  403,  605,  605,
116770  /*  1120 */   237,  614,   25,  119,  614,   24,  588,  408,  614,   45,
116771  /*  1130 */   118,  614,   35,  614,   34,  614,   33,  614,   23,  588,
116772  /*  1140 */    60,  223,  603,  602,  513,  378,   73,   74,  140,  139,
116773  /*  1150 */   424,  110,  265,   75,  426,  425,   59,  424,  610,   73,
116774  /*  1160 */    74,  549,  402,  404,  424,  373,   75,  426,  425,  604,
116775  /*  1170 */   138,  610,  614,   11,  392,   76,  419,  181,    3,  614,
116776  /*  1180 */    32,  271,  369,  331,  331,  493,  614,   31,  149,  608,
116777  /*  1190 */   608,  608,  607,   15,  422,  365,  614,    8,  137,  489,
116778  /*  1200 */   136,  190,  608,  608,  608,  607,   15,  485,  176,  135,
116779  /*  1210 */     7,  252,  477,  408,  174,  133,  175,  474,   57,   56,
116780  /*  1220 */   132,  130,  119,   76,  419,  588,    3,  468,  245,  464,
116781  /*  1230 */   171,  331,  331,  125,  123,  456,  447,  122,  446,  104,
116782  /*  1240 */   336,  231,  422,  166,  154,   73,   74,  332,  116,  431,
116783  /*  1250 */   121,  309,   75,  426,  425,  222,  106,  610,  308,  637,
116784  /*  1260 */   204,  408,  629,  627,  628,    6,  200,  428,  427,  290,
116785  /*  1270 */   203,  622,  201,  588,   62,   63,  289,   66,  419,  399,
116786  /*  1280 */     3,  401,  288,   92,  143,  331,  331,  287,  608,  608,
116787  /*  1290 */   608,  607,   15,   73,   74,  227,  422,  325,   69,  416,
116788  /*  1300 */    75,  426,  425,  612,  412,  610,  192,   61,  569,  209,
116789  /*  1310 */   396,  226,  278,  225,  383,  408,  527,  558,  276,  533,
116790  /*  1320 */   552,  528,  321,  523,  370,  508,  180,  588,  494,  179,
116791  /*  1330 */   366,  117,  253,  269,  522,  503,  608,  608,  608,  607,
116792  /*  1340 */    15,  551,  502,   58,  274,  524,  178,   73,   74,  304,
116793  /*  1350 */   501,  368,  303,  206,   75,  426,  425,  491,  360,  610,
116794  /*  1360 */   213,  177,  483,  131,  345,  298,  297,  296,  202,  294,
116795  /*  1370 */   480,  490,  466,  134,  172,  129,  444,  346,  470,  128,
116796  /*  1380 */   314,  459,  103,  127,  126,  148,  124,  167,  443,  235,
116797  /*  1390 */   608,  608,  608,  607,   15,  442,  439,  623,  234,  299,
116798  /*  1400 */   145,  583,  291,  377,  581,  160,  119,  156,  270,  636,
116799  /*  1410 */   971,  169,  279,  626,  520,  625,  473,  624,  170,  621,
116800  /*  1420 */   618,  119,  168,   55,  409,  423,  537,  609,  286,  285,
116801  /*  1430 */   405,  570,  560,  556,    5,   52,  458,  554,  147,  267,
116802  /*  1440 */   519,  504,  518,  406,  262,  239,  260,  512,  343,  511,
116803  /*  1450 */   258,  353,  565,  256,  224,  251,  359,  277,  275,  476,
116804  /*  1460 */   475,  246,  352,  244,  467,  455,  236,  233,  232,  307,
116805  /*  1470 */   441,  281,  205,  163,  397,  280,  535,  505,  330,  617,
116806  /*  1480 */   971,  971,  971,  971,  367,  971,  971,  971,  971,  971,
116807  /*  1490 */   971,  971,  971,  971,  971,  971,  338,
116808 };
116809 static const YYCODETYPE yy_lookahead[] = {
116810  /*     0 */    19,   22,   22,   23,    1,   24,   26,   15,   27,   80,
116811  /*    10 */    81,   82,   83,   84,   85,   86,   87,   88,   89,   90,
116812  /*    20 */    91,   92,   93,   94,   95,  108,  109,  110,   27,   28,
116813  /*    30 */    23,   50,   51,   80,   81,   82,   83,  122,   85,   86,
116814  /*    40 */    87,   88,   89,   90,   91,   92,   93,   94,   95,   22,
116815  /*    50 */    70,   23,   71,   72,   73,   74,   75,   76,   77,   78,
116816  /*    60 */    79,   80,   81,   82,   83,  122,   85,   86,   87,   88,
116817  /*    70 */    89,   90,   91,   92,   93,   94,   95,   19,   97,   91,
116818  /*    80 */    92,   93,   94,   95,   26,   85,   86,   87,   88,   89,
116819  /*    90 */    90,   91,   92,   93,   94,   95,   27,   28,   97,   98,
116820  /*   100 */    99,  122,  211,  102,  103,  104,   79,   19,   50,   51,
116821  /*   110 */    19,  122,   59,   55,  113,  224,  225,  226,   89,   90,
116822  /*   120 */    91,   92,   93,   94,   95,   23,   27,   28,   26,   71,
116823  /*   130 */    72,   73,   74,   75,   76,   77,   78,   79,   80,   81,
116824  /*   140 */    82,   83,   51,   85,   86,   87,   88,   89,   90,   91,
116825  /*   150 */    92,   93,   94,   95,   19,  132,  133,   58,   89,   90,
116826  /*   160 */    21,  108,  109,  110,   27,   28,   97,   98,   33,  100,
116827  /*   170 */     7,    8,  119,  120,   22,   19,  107,   42,  109,   27,
116828  /*   180 */    28,   27,   28,   95,   28,   50,   51,   99,  100,  101,
116829  /*   190 */   102,  103,  104,  105,   27,   28,   97,   98,  107,  152,
116830  /*   200 */   112,  132,  133,  112,   65,   69,   71,   72,   73,   74,
116831  /*   210 */    75,   76,   77,   78,   79,   80,   81,   82,   83,   11,
116832  /*   220 */    85,   86,   87,   88,   89,   90,   91,   92,   93,   94,
116833  /*   230 */    95,   19,  101,   97,   97,   98,   24,  101,  122,  157,
116834  /*   240 */    12,   99,  103,  112,  102,  103,  104,  152,   22,   97,
116835  /*   250 */    98,   97,   98,   27,   28,  113,   27,   29,   91,  164,
116836  /*   260 */   165,  124,   50,   51,   97,   98,  219,   59,  132,  133,
116837  /*   270 */   134,   22,   23,   45,   66,   47,  212,  213,  124,  140,
116838  /*   280 */   132,  133,   19,   71,   72,   73,   74,   75,   76,   77,
116839  /*   290 */    78,   79,   80,   81,   82,   83,  152,   85,   86,   87,
116840  /*   300 */    88,   89,   90,   91,   92,   93,   94,   95,  164,  165,
116841  /*   310 */    27,   28,  230,   50,   51,  233,  108,  109,  110,   70,
116842  /*   320 */    16,   59,   23,   97,   98,   26,   97,   22,   66,  185,
116843  /*   330 */    12,  187,   27,   28,   71,   72,   73,   74,   75,   76,
116844  /*   340 */    77,   78,   79,   80,   81,   82,   83,   29,   85,   86,
116845  /*   350 */    87,   88,   89,   90,   91,   92,   93,   94,   95,   19,
116846  /*   360 */    22,  148,  149,   45,   23,   47,   62,  154,   64,  156,
116847  /*   370 */   108,  109,  110,   37,   69,   23,  163,   59,   26,   26,
116848  /*   380 */    97,   98,  144,  145,  146,  147,  152,  200,   52,   23,
116849  /*   390 */    50,   51,   26,   22,   89,   90,   60,  210,    7,    8,
116850  /*   400 */     9,  138,   97,   22,   23,   26,  101,   26,  174,  175,
116851  /*   410 */   197,   71,   72,   73,   74,   75,   76,   77,   78,   79,
116852  /*   420 */    80,   81,   82,   83,   16,   85,   86,   87,   88,   89,
116853  /*   430 */    90,   91,   92,   93,   94,   95,   19,  132,  133,  134,
116854  /*   440 */    23,  152,  208,  209,  140,  152,  152,  111,  195,  196,
116855  /*   450 */    98,   70,  163,  160,  152,   23,   22,  164,  165,  246,
116856  /*   460 */   207,   27,  152,  174,  175,  171,  172,   50,   51,  137,
116857  /*   470 */    62,  139,   64,  171,  172,  222,  124,   27,  138,   24,
116858  /*   480 */   163,   89,   90,  130,  174,  175,  197,  163,   71,   72,
116859  /*   490 */    73,   74,   75,   76,   77,   78,   79,   80,   81,   82,
116860  /*   500 */    83,   22,   85,   86,   87,   88,   89,   90,   91,   92,
116861  /*   510 */    93,   94,   95,   19,  197,  181,  182,   23,  208,  209,
116862  /*   520 */   152,  197,   26,  189,  132,  133,  232,  224,  225,  226,
116863  /*   530 */   152,   97,   91,   26,  232,  116,  212,  213,  152,  222,
116864  /*   540 */   121,  152,  174,  175,   50,   51,  243,   97,   22,   23,
116865  /*   550 */    22,  234,  174,  175,  177,   23,  239,  116,  163,  177,
116866  /*   560 */   174,  175,  121,  174,  175,   71,   72,   73,   74,   75,
116867  /*   570 */    76,   77,   78,   79,   80,   81,   82,   83,   24,   85,
116868  /*   580 */    86,   87,   88,   89,   90,   91,   92,   93,   94,   95,
116869  /*   590 */    19,   23,  197,   11,   23,  227,   70,  208,  220,  152,
116870  /*   600 */    31,  224,  225,  226,   35,   98,  224,  225,  226,  108,
116871  /*   610 */   109,  110,  115,  152,  117,  118,   27,  222,   49,  123,
116872  /*   620 */    24,   50,   51,   27,    0,    1,    2,  224,  225,  226,
116873  /*   630 */   166,  124,  168,  169,  239,  174,  175,  170,  171,  172,
116874  /*   640 */    22,  194,   71,   72,   73,   74,   75,   76,   77,   78,
116875  /*   650 */    79,   80,   81,   82,   83,  152,   85,   86,   87,   88,
116876  /*   660 */    89,   90,   91,   92,   93,   94,   95,   19,   22,  208,
116877  /*   670 */    24,   23,  195,  196,  170,  171,  172,  174,  175,  152,
116878  /*   680 */    26,  152,  152,  152,  207,  152,   97,  152,   23,  152,
116879  /*   690 */    51,  244,  152,   97,  152,  247,  248,   23,   50,   51,
116880  /*   700 */    26,  174,  175,  174,  175,  174,  175,  174,  175,  174,
116881  /*   710 */   175,  174,  175,   23,  174,  175,  174,  175,  188,   71,
116882  /*   720 */    72,   73,   74,   75,   76,   77,   78,   79,   80,   81,
116883  /*   730 */    82,   83,  152,   85,   86,   87,   88,   89,   90,   91,
116884  /*   740 */    92,   93,   94,   95,   19,  152,  107,  152,   33,   24,
116885  /*   750 */   152,  100,  101,   27,  174,  175,  152,   42,  152,   23,
116886  /*   760 */   152,   26,  152,   23,  152,   26,  152,  174,  175,  174,
116887  /*   770 */   175,  152,  174,  175,   23,   50,   51,   26,  174,  175,
116888  /*   780 */   174,  175,  174,  175,  174,  175,  174,  175,  174,  175,
116889  /*   790 */   163,  119,  120,  174,  175,   19,   71,   72,   73,   74,
116890  /*   800 */    75,   76,   77,   78,   79,   80,   81,   82,   83,  152,
116891  /*   810 */    85,   86,   87,   88,   89,   90,   91,   92,   93,   94,
116892  /*   820 */    95,   66,  152,   97,  197,   23,   50,   51,   26,   53,
116893  /*   830 */    23,  174,  175,   26,   23,   23,   23,   26,   26,   26,
116894  /*   840 */    36,  106,  146,  147,  174,  175,   19,   71,   72,   73,
116895  /*   850 */    74,   75,   76,   77,   78,   79,   80,   81,   82,   83,
116896  /*   860 */   152,   85,   86,   87,   88,   89,   90,   91,   92,   93,
116897  /*   870 */    94,   95,  152,  196,  119,  120,   19,   50,   51,  168,
116898  /*   880 */   169,   26,  174,  175,  207,   28,  152,  249,  250,  152,
116899  /*   890 */   163,  163,  163,  163,  174,  175,  163,   19,   71,   72,
116900  /*   900 */    73,   74,   75,   76,   77,   78,   79,   80,   81,   82,
116901  /*   910 */    83,  152,   85,   86,   87,   88,   89,   90,   91,   92,
116902  /*   920 */    93,   94,   95,  152,  197,  197,  197,  197,   50,   51,
116903  /*   930 */   197,  194,   36,  174,  175,  191,  192,  152,  191,  192,
116904  /*   940 */   163,  152,   66,  124,  152,  174,  175,  152,   19,   71,
116905  /*   950 */    72,   73,   74,   75,   76,   77,   78,   79,   80,   81,
116906  /*   960 */    82,   83,  152,   85,   86,   87,   88,   89,   90,   91,
116907  /*   970 */    92,   93,   94,   95,  197,  152,  100,  188,  152,   50,
116908  /*   980 */    51,  152,  152,  188,  174,  175,  252,  152,   94,   95,
116909  /*   990 */   152,  152,  152,    1,    2,  152,  152,  174,  175,   19,
116910  /*  1000 */   152,   72,   73,   74,   75,   76,   77,   78,   79,   80,
116911  /*  1010 */    81,   82,   83,  152,   85,   86,   87,   88,   89,   90,
116912  /*  1020 */    91,   92,   93,   94,   95,  152,  188,  188,   22,  194,
116913  /*  1030 */    50,   51,  240,  173,  194,  174,  175,  252,  194,  152,
116914  /*  1040 */    36,  181,   28,  152,   23,  219,  122,  174,  175,  219,
116915  /*  1050 */   221,  152,  152,   73,   74,   75,   76,   77,   78,   79,
116916  /*  1060 */    80,   81,   82,   83,  152,   85,   86,   87,   88,   89,
116917  /*  1070 */    90,   91,   92,   93,   94,   95,   19,   20,  152,   22,
116918  /*  1080 */    23,  194,  152,  240,   27,   28,  174,  175,  240,   19,
116919  /*  1090 */    20,   26,   22,  194,  194,   38,   22,   27,   28,  152,
116920  /*  1100 */    23,   22,  152,  116,  174,  175,  152,   23,   38,  152,
116921  /*  1110 */    23,  152,  221,  152,   57,  152,   23,  163,   50,   51,
116922  /*  1120 */   194,  174,  175,   66,  174,  175,   69,   57,  174,  175,
116923  /*  1130 */    40,  174,  175,  174,  175,  174,  175,  174,  175,   69,
116924  /*  1140 */    22,   53,   74,   75,   30,   53,   89,   90,   22,   22,
116925  /*  1150 */   152,  197,   23,   96,   97,   98,   22,  152,  101,   89,
116926  /*  1160 */    90,   91,  208,  209,  152,   53,   96,   97,   98,  101,
116927  /*  1170 */    22,  101,  174,  175,  152,   19,   20,  105,   22,  174,
116928  /*  1180 */   175,  112,   19,   27,   28,   20,  174,  175,   24,  132,
116929  /*  1190 */   133,  134,  135,  136,   38,   44,  174,  175,  107,   61,
116930  /*  1200 */    54,   26,  132,  133,  134,  135,  136,   54,  107,   22,
116931  /*  1210 */     5,  140,    1,   57,   36,  111,  122,   28,   79,   79,
116932  /*  1220 */   131,  123,   66,   19,   20,   69,   22,    1,   16,   20,
116933  /*  1230 */   125,   27,   28,  123,  111,  120,   23,  131,   23,   16,
116934  /*  1240 */    68,  142,   38,   15,   22,   89,   90,    3,  167,    4,
116935  /*  1250 */   248,  251,   96,   97,   98,  180,  180,  101,  251,  151,
116936  /*  1260 */     6,   57,  151,   13,  151,   26,   25,  151,  161,  202,
116937  /*  1270 */   153,  162,  153,   69,  130,  128,  203,   19,   20,  127,
116938  /*  1280 */    22,  126,  204,  129,   22,   27,   28,  205,  132,  133,
116939  /*  1290 */   134,  135,  136,   89,   90,  231,   38,   95,  137,  179,
116940  /*  1300 */    96,   97,   98,  206,  179,  101,  122,  107,  159,  159,
116941  /*  1310 */   125,  231,  216,  228,  107,   57,  184,  217,  216,  176,
116942  /*  1320 */   217,  176,   48,  106,   18,  184,  158,   69,  159,  158,
116943  /*  1330 */    46,   71,  237,  176,  176,  176,  132,  133,  134,  135,
116944  /*  1340 */   136,  217,  176,  137,  216,  178,  158,   89,   90,  179,
116945  /*  1350 */   176,  159,  179,  159,   96,   97,   98,  159,  159,  101,
116946  /*  1360 */     5,  158,  202,   22,   18,   10,   11,   12,   13,   14,
116947  /*  1370 */   190,  238,   17,  190,  158,  193,   41,  159,  202,  193,
116948  /*  1380 */   159,  202,  245,  193,  193,  223,  190,   32,  159,   34,
116949  /*  1390 */   132,  133,  134,  135,  136,  159,   39,  155,   43,  150,
116950  /*  1400 */   223,  177,  201,  178,  177,  186,   66,  199,  177,  152,
116951  /*  1410 */   253,   56,  215,  152,  182,  152,  202,  152,   63,  152,
116952  /*  1420 */   152,   66,   67,  242,  229,  152,  174,  152,  152,  152,
116953  /*  1430 */   152,  152,  152,  152,  199,  242,  202,  152,  198,  152,
116954  /*  1440 */   152,  152,  183,  192,  152,  215,  152,  183,  215,  183,
116955  /*  1450 */   152,  241,  214,  152,  211,  152,  152,  211,  211,  152,
116956  /*  1460 */   152,  241,  152,  152,  152,  152,  152,  152,  152,  114,
116957  /*  1470 */   152,  152,  235,  152,  152,  152,  174,  187,   95,  174,
116958  /*  1480 */   253,  253,  253,  253,  236,  253,  253,  253,  253,  253,
116959  /*  1490 */   253,  253,  253,  253,  253,  253,  141,
116960 };
116961 #define YY_SHIFT_USE_DFLT (-86)
116962 #define YY_SHIFT_COUNT (429)
116963 #define YY_SHIFT_MIN   (-85)
116964 #define YY_SHIFT_MAX   (1383)
116965 static const short yy_shift_ofst[] = {
116966  /*     0 */   992, 1057, 1355, 1156, 1204, 1204,    1,  262,  -19,  135,
116967  /*    10 */   135,  776, 1204, 1204, 1204, 1204,   69,   69,   53,  208,
116968  /*    20 */   283,  755,   58,  725,  648,  571,  494,  417,  340,  263,
116969  /*    30 */   212,  827,  827,  827,  827,  827,  827,  827,  827,  827,
116970  /*    40 */   827,  827,  827,  827,  827,  827,  878,  827,  929,  980,
116971  /*    50 */   980, 1070, 1204, 1204, 1204, 1204, 1204, 1204, 1204, 1204,
116972  /*    60 */  1204, 1204, 1204, 1204, 1204, 1204, 1204, 1204, 1204, 1204,
116973  /*    70 */  1204, 1204, 1204, 1204, 1204, 1204, 1204, 1204, 1204, 1204,
116974  /*    80 */  1258, 1204, 1204, 1204, 1204, 1204, 1204, 1204, 1204, 1204,
116975  /*    90 */  1204, 1204, 1204, 1204,  -71,  -47,  -47,  -47,  -47,  -47,
116976  /*   100 */     0,   29,  -12,  283,  283,  139,   91,  392,  392,  894,
116977  /*   110 */   672,  726, 1383,  -86,  -86,  -86,   88,  318,  318,   99,
116978  /*   120 */   381,  -20,  283,  283,  283,  283,  283,  283,  283,  283,
116979  /*   130 */   283,  283,  283,  283,  283,  283,  283,  283,  283,  283,
116980  /*   140 */   283,  283,  283,  283,  624,  876,  726,  672, 1340, 1340,
116981  /*   150 */  1340, 1340, 1340, 1340,  -86,  -86,  -86,  305,  136,  136,
116982  /*   160 */   142,  167,  226,  154,  137,  152,  283,  283,  283,  283,
116983  /*   170 */   283,  283,  283,  283,  283,  283,  283,  283,  283,  283,
116984  /*   180 */   283,  283,  283,  336,  336,  336,  283,  283,  352,  283,
116985  /*   190 */   283,  283,  283,  283,  228,  283,  283,  283,  283,  283,
116986  /*   200 */   283,  283,  283,  283,  283,  501,  569,  596,  596,  596,
116987  /*   210 */   507,  497,  441,  391,  353,  156,  156,  857,  353,  857,
116988  /*   220 */   735,  813,  639,  715,  156,  332,  715,  715,  496,  419,
116989  /*   230 */   646, 1357, 1184, 1184, 1335, 1335, 1184, 1341, 1260, 1144,
116990  /*   240 */  1346, 1346, 1346, 1346, 1184, 1306, 1144, 1341, 1260, 1260,
116991  /*   250 */  1144, 1184, 1306, 1206, 1284, 1184, 1184, 1306, 1184, 1306,
116992  /*   260 */  1184, 1306, 1262, 1207, 1207, 1207, 1274, 1262, 1207, 1217,
116993  /*   270 */  1207, 1274, 1207, 1207, 1185, 1200, 1185, 1200, 1185, 1200,
116994  /*   280 */  1184, 1184, 1161, 1262, 1202, 1202, 1262, 1154, 1155, 1147,
116995  /*   290 */  1152, 1144, 1241, 1239, 1250, 1250, 1254, 1254, 1254, 1254,
116996  /*   300 */   -86,  -86,  -86,  -86,  -86,  -86, 1068,  304,  526,  249,
116997  /*   310 */   408,  -83,  434,  812,   27,  811,  807,  802,  751,  589,
116998  /*   320 */   651,  163,  131,  674,  366,  450,  299,  148,   23,  102,
116999  /*   330 */   229,  -21, 1245, 1244, 1222, 1099, 1228, 1172, 1223, 1215,
117000  /*   340 */  1213, 1115, 1106, 1123, 1110, 1209, 1105, 1212, 1226, 1098,
117001  /*   350 */  1089, 1140, 1139, 1104, 1189, 1178, 1094, 1211, 1205, 1187,
117002  /*   360 */  1101, 1071, 1153, 1175, 1146, 1138, 1151, 1091, 1164, 1165,
117003  /*   370 */  1163, 1069, 1072, 1148, 1112, 1134, 1127, 1129, 1126, 1092,
117004  /*   380 */  1114, 1118, 1088, 1090, 1093, 1087, 1084,  987, 1079, 1077,
117005  /*   390 */  1074, 1065,  924, 1021, 1014, 1004, 1006,  819,  739,  896,
117006  /*   400 */   855,  804,  739,  740,  736,  690,  654,  665,  618,  582,
117007  /*   410 */   568,  528,  554,  379,  532,  479,  455,  379,  432,  371,
117008  /*   420 */   341,   28,  338,  116,  -11,  -57,  -85,    7,   -8,    3,
117009 };
117010 #define YY_REDUCE_USE_DFLT (-110)
117011 #define YY_REDUCE_COUNT (305)
117012 #define YY_REDUCE_MIN   (-109)
117013 #define YY_REDUCE_MAX   (1323)
117014 static const short yy_reduce_ofst[] = {
117015  /*     0 */   238,  954,  213,  289,  310,  234,  144,  317, -109,  382,
117016  /*    10 */   377,  303,  461,  389,  378,  368,  302,  294,  253,  395,
117017  /*    20 */   293,  324,  403,  403,  403,  403,  403,  403,  403,  403,
117018  /*    30 */   403,  403,  403,  403,  403,  403,  403,  403,  403,  403,
117019  /*    40 */   403,  403,  403,  403,  403,  403,  403,  403,  403,  403,
117020  /*    50 */   403, 1022, 1012, 1005,  998,  963,  961,  959,  957,  950,
117021  /*    60 */   947,  930,  912,  873,  861,  823,  810,  771,  759,  720,
117022  /*    70 */   708,  670,  657,  619,  614,  612,  610,  608,  606,  604,
117023  /*    80 */   598,  595,  593,  580,  542,  540,  537,  535,  533,  531,
117024  /*    90 */   529,  527,  503,  386,  403,  403,  403,  403,  403,  403,
117025  /*   100 */   403,  403,  403,   95,  447,   82,  334,  504,  467,  403,
117026  /*   110 */   477,  464,  403,  403,  403,  403,  860,  747,  744,  785,
117027  /*   120 */   638,  638,  926,  891,  900,  899,  887,  844,  840,  835,
117028  /*   130 */   848,  830,  843,  829,  792,  839,  826,  737,  838,  795,
117029  /*   140 */   789,   47,  734,  530,  696,  777,  711,  677,  733,  730,
117030  /*   150 */   729,  728,  727,  627,  448,   64,  187, 1305, 1302, 1252,
117031  /*   160 */  1290, 1273, 1323, 1322, 1321, 1319, 1318, 1316, 1315, 1314,
117032  /*   170 */  1313, 1312, 1311, 1310, 1308, 1307, 1304, 1303, 1301, 1298,
117033  /*   180 */  1294, 1292, 1289, 1266, 1264, 1259, 1288, 1287, 1238, 1285,
117034  /*   190 */  1281, 1280, 1279, 1278, 1251, 1277, 1276, 1275, 1273, 1268,
117035  /*   200 */  1267, 1265, 1263, 1261, 1257, 1248, 1237, 1247, 1246, 1243,
117036  /*   210 */  1238, 1240, 1235, 1249, 1234, 1233, 1230, 1220, 1214, 1210,
117037  /*   220 */  1225, 1219, 1232, 1231, 1197, 1195, 1227, 1224, 1201, 1208,
117038  /*   230 */  1242, 1137, 1236, 1229, 1193, 1181, 1221, 1177, 1196, 1179,
117039  /*   240 */  1191, 1190, 1186, 1182, 1218, 1216, 1176, 1162, 1183, 1180,
117040  /*   250 */  1160, 1199, 1203, 1133, 1095, 1198, 1194, 1188, 1192, 1171,
117041  /*   260 */  1169, 1168, 1173, 1174, 1166, 1159, 1141, 1170, 1158, 1167,
117042  /*   270 */  1157, 1132, 1145, 1143, 1124, 1128, 1103, 1102, 1100, 1096,
117043  /*   280 */  1150, 1149, 1085, 1125, 1080, 1064, 1120, 1097, 1082, 1078,
117044  /*   290 */  1073, 1067, 1109, 1107, 1119, 1117, 1116, 1113, 1111, 1108,
117045  /*   300 */  1007, 1000, 1002, 1076, 1075, 1081,
117046 };
117047 static const YYACTIONTYPE yy_default[] = {
117048  /*     0 */   647,  964,  964,  964,  878,  878,  969,  964,  774,  802,
117049  /*    10 */   802,  938,  969,  969,  969,  876,  969,  969,  969,  964,
117050  /*    20 */   969,  778,  808,  969,  969,  969,  969,  969,  969,  969,
117051  /*    30 */   969,  937,  939,  816,  815,  918,  789,  813,  806,  810,
117052  /*    40 */   879,  872,  873,  871,  875,  880,  969,  809,  841,  856,
117053  /*    50 */   840,  969,  969,  969,  969,  969,  969,  969,  969,  969,
117054  /*    60 */   969,  969,  969,  969,  969,  969,  969,  969,  969,  969,
117055  /*    70 */   969,  969,  969,  969,  969,  969,  969,  969,  969,  969,
117056  /*    80 */   969,  969,  969,  969,  969,  969,  969,  969,  969,  969,
117057  /*    90 */   969,  969,  969,  969,  850,  855,  862,  854,  851,  843,
117058  /*   100 */   842,  844,  845,  969,  969,  673,  739,  969,  969,  846,
117059  /*   110 */   969,  685,  847,  859,  858,  857,  680,  969,  969,  969,
117060  /*   120 */   969,  969,  969,  969,  969,  969,  969,  969,  969,  969,
117061  /*   130 */   969,  969,  969,  969,  969,  969,  969,  969,  969,  969,
117062  /*   140 */   969,  969,  969,  969,  647,  964,  969,  969,  964,  964,
117063  /*   150 */   964,  964,  964,  964,  956,  778,  768,  969,  969,  969,
117064  /*   160 */   969,  969,  969,  969,  969,  969,  969,  944,  942,  969,
117065  /*   170 */   891,  969,  969,  969,  969,  969,  969,  969,  969,  969,
117066  /*   180 */   969,  969,  969,  969,  969,  969,  969,  969,  969,  969,
117067  /*   190 */   969,  969,  969,  969,  969,  969,  969,  969,  969,  969,
117068  /*   200 */   969,  969,  969,  969,  653,  969,  911,  774,  774,  774,
117069  /*   210 */   776,  754,  766,  655,  812,  791,  791,  923,  812,  923,
117070  /*   220 */   710,  733,  707,  802,  791,  874,  802,  802,  775,  766,
117071  /*   230 */   969,  949,  782,  782,  941,  941,  782,  821,  743,  812,
117072  /*   240 */   750,  750,  750,  750,  782,  670,  812,  821,  743,  743,
117073  /*   250 */   812,  782,  670,  917,  915,  782,  782,  670,  782,  670,
117074  /*   260 */   782,  670,  884,  741,  741,  741,  725,  884,  741,  710,
117075  /*   270 */   741,  725,  741,  741,  795,  790,  795,  790,  795,  790,
117076  /*   280 */   782,  782,  969,  884,  888,  888,  884,  807,  796,  805,
117077  /*   290 */   803,  812,  676,  728,  663,  663,  652,  652,  652,  652,
117078  /*   300 */   961,  961,  956,  712,  712,  695,  969,  969,  969,  969,
117079  /*   310 */   969,  969,  687,  969,  893,  969,  969,  969,  969,  969,
117080  /*   320 */   969,  969,  969,  969,  969,  969,  969,  969,  969,  969,
117081  /*   330 */   969,  828,  969,  648,  951,  969,  969,  948,  969,  969,
117082  /*   340 */   969,  969,  969,  969,  969,  969,  969,  969,  969,  969,
117083  /*   350 */   969,  969,  969,  969,  969,  969,  921,  969,  969,  969,
117084  /*   360 */   969,  969,  969,  914,  913,  969,  969,  969,  969,  969,
117085  /*   370 */   969,  969,  969,  969,  969,  969,  969,  969,  969,  969,
117086  /*   380 */   969,  969,  969,  969,  969,  969,  969,  757,  969,  969,
117087  /*   390 */   969,  761,  969,  969,  969,  969,  969,  969,  804,  969,
117088  /*   400 */   797,  969,  877,  969,  969,  969,  969,  969,  969,  969,
117089  /*   410 */   969,  969,  969,  966,  969,  969,  969,  965,  969,  969,
117090  /*   420 */   969,  969,  969,  830,  969,  829,  833,  969,  661,  969,
117091  /*   430 */   644,  649,  960,  963,  962,  959,  958,  957,  952,  950,
117092  /*   440 */   947,  946,  945,  943,  940,  936,  897,  895,  902,  901,
117093  /*   450 */   900,  899,  898,  896,  894,  892,  818,  817,  814,  811,
117094  /*   460 */   753,  935,  890,  752,  749,  748,  669,  953,  920,  929,
117095  /*   470 */   928,  927,  822,  926,  925,  924,  922,  919,  906,  820,
117096  /*   480 */   819,  744,  882,  881,  672,  910,  909,  908,  912,  916,
117097  /*   490 */   907,  784,  751,  671,  668,  675,  679,  731,  732,  740,
117098  /*   500 */   738,  737,  736,  735,  734,  730,  681,  686,  724,  709,
117099  /*   510 */   708,  717,  716,  722,  721,  720,  719,  718,  715,  714,
117100  /*   520 */   713,  706,  705,  711,  704,  727,  726,  723,  703,  747,
117101  /*   530 */   746,  745,  742,  702,  701,  700,  833,  699,  698,  838,
117102  /*   540 */   837,  866,  826,  755,  759,  758,  762,  763,  771,  770,
117103  /*   550 */   769,  780,  781,  793,  792,  824,  823,  794,  779,  773,
117104  /*   560 */   772,  788,  787,  786,  785,  777,  767,  799,  798,  868,
117105  /*   570 */   783,  867,  865,  934,  933,  932,  931,  930,  870,  967,
117106  /*   580 */   968,  887,  889,  886,  801,  800,  885,  869,  839,  836,
117107  /*   590 */   690,  691,  905,  904,  903,  693,  692,  689,  688,  863,
117108  /*   600 */   860,  852,  864,  861,  853,  849,  848,  834,  832,  831,
117109  /*   610 */   827,  835,  760,  756,  825,  765,  764,  697,  696,  694,
117110  /*   620 */   678,  677,  674,  667,  665,  664,  666,  662,  660,  659,
117111  /*   630 */   658,  657,  656,  684,  683,  682,  654,  651,  650,  646,
117112  /*   640 */   645,  643,
117113 };
117114 
117115 /* The next table maps tokens into fallback tokens.  If a construct
117116 ** like the following:
117117 **
117118 **      %fallback ID X Y Z.
117119 **
117120 ** appears in the grammar, then ID becomes a fallback token for X, Y,
117121 ** and Z.  Whenever one of the tokens X, Y, or Z is input to the parser
117122 ** but it does not parse, the type of the token is changed to ID and
117123 ** the parse is retried before an error is thrown.
117124 */
117125 #ifdef YYFALLBACK
117126 static const YYCODETYPE yyFallback[] = {
117127     0,  /*          $ => nothing */
117128     0,  /*       SEMI => nothing */
117129    27,  /*    EXPLAIN => ID */
117130    27,  /*      QUERY => ID */
117131    27,  /*       PLAN => ID */
117132    27,  /*      BEGIN => ID */
117133     0,  /* TRANSACTION => nothing */
117134    27,  /*   DEFERRED => ID */
117135    27,  /*  IMMEDIATE => ID */
117136    27,  /*  EXCLUSIVE => ID */
117137     0,  /*     COMMIT => nothing */
117138    27,  /*        END => ID */
117139    27,  /*   ROLLBACK => ID */
117140    27,  /*  SAVEPOINT => ID */
117141    27,  /*    RELEASE => ID */
117142     0,  /*         TO => nothing */
117143     0,  /*      TABLE => nothing */
117144     0,  /*     CREATE => nothing */
117145    27,  /*         IF => ID */
117146     0,  /*        NOT => nothing */
117147     0,  /*     EXISTS => nothing */
117148    27,  /*       TEMP => ID */
117149     0,  /*         LP => nothing */
117150     0,  /*         RP => nothing */
117151     0,  /*         AS => nothing */
117152    27,  /*    WITHOUT => ID */
117153     0,  /*      COMMA => nothing */
117154     0,  /*         ID => nothing */
117155     0,  /*    INDEXED => nothing */
117156    27,  /*      ABORT => ID */
117157    27,  /*     ACTION => ID */
117158    27,  /*      AFTER => ID */
117159    27,  /*    ANALYZE => ID */
117160    27,  /*        ASC => ID */
117161    27,  /*     ATTACH => ID */
117162    27,  /*     BEFORE => ID */
117163    27,  /*         BY => ID */
117164    27,  /*    CASCADE => ID */
117165    27,  /*       CAST => ID */
117166    27,  /*   COLUMNKW => ID */
117167    27,  /*   CONFLICT => ID */
117168    27,  /*   DATABASE => ID */
117169    27,  /*       DESC => ID */
117170    27,  /*     DETACH => ID */
117171    27,  /*       EACH => ID */
117172    27,  /*       FAIL => ID */
117173    27,  /*        FOR => ID */
117174    27,  /*     IGNORE => ID */
117175    27,  /*  INITIALLY => ID */
117176    27,  /*    INSTEAD => ID */
117177    27,  /*    LIKE_KW => ID */
117178    27,  /*      MATCH => ID */
117179    27,  /*         NO => ID */
117180    27,  /*        KEY => ID */
117181    27,  /*         OF => ID */
117182    27,  /*     OFFSET => ID */
117183    27,  /*     PRAGMA => ID */
117184    27,  /*      RAISE => ID */
117185    27,  /*  RECURSIVE => ID */
117186    27,  /*    REPLACE => ID */
117187    27,  /*   RESTRICT => ID */
117188    27,  /*        ROW => ID */
117189    27,  /*    TRIGGER => ID */
117190    27,  /*     VACUUM => ID */
117191    27,  /*       VIEW => ID */
117192    27,  /*    VIRTUAL => ID */
117193    27,  /*       WITH => ID */
117194    27,  /*    REINDEX => ID */
117195    27,  /*     RENAME => ID */
117196    27,  /*   CTIME_KW => ID */
117197 };
117198 #endif /* YYFALLBACK */
117199 
117200 /* The following structure represents a single element of the
117201 ** parser's stack.  Information stored includes:
117202 **
117203 **   +  The state number for the parser at this level of the stack.
117204 **
117205 **   +  The value of the token stored at this level of the stack.
117206 **      (In other words, the "major" token.)
117207 **
117208 **   +  The semantic value stored at this level of the stack.  This is
117209 **      the information used by the action routines in the grammar.
117210 **      It is sometimes called the "minor" token.
117211 */
117212 struct yyStackEntry {
117213   YYACTIONTYPE stateno;  /* The state-number */
117214   YYCODETYPE major;      /* The major token value.  This is the code
117215                          ** number for the token at this stack level */
117216   YYMINORTYPE minor;     /* The user-supplied minor token value.  This
117217                          ** is the value of the token  */
117218 };
117219 typedef struct yyStackEntry yyStackEntry;
117220 
117221 /* The state of the parser is completely contained in an instance of
117222 ** the following structure */
117223 struct yyParser {
117224   int yyidx;                    /* Index of top element in stack */
117225 #ifdef YYTRACKMAXSTACKDEPTH
117226   int yyidxMax;                 /* Maximum value of yyidx */
117227 #endif
117228   int yyerrcnt;                 /* Shifts left before out of the error */
117229   sqlite3ParserARG_SDECL                /* A place to hold %extra_argument */
117230 #if YYSTACKDEPTH<=0
117231   int yystksz;                  /* Current side of the stack */
117232   yyStackEntry *yystack;        /* The parser's stack */
117233 #else
117234   yyStackEntry yystack[YYSTACKDEPTH];  /* The parser's stack */
117235 #endif
117236 };
117237 typedef struct yyParser yyParser;
117238 
117239 #ifndef NDEBUG
117240 /* #include <stdio.h> */
117241 static FILE *yyTraceFILE = 0;
117242 static char *yyTracePrompt = 0;
117243 #endif /* NDEBUG */
117244 
117245 #ifndef NDEBUG
117246 /*
117247 ** Turn parser tracing on by giving a stream to which to write the trace
117248 ** and a prompt to preface each trace message.  Tracing is turned off
117249 ** by making either argument NULL
117250 **
117251 ** Inputs:
117252 ** <ul>
117253 ** <li> A FILE* to which trace output should be written.
117254 **      If NULL, then tracing is turned off.
117255 ** <li> A prefix string written at the beginning of every
117256 **      line of trace output.  If NULL, then tracing is
117257 **      turned off.
117258 ** </ul>
117259 **
117260 ** Outputs:
117261 ** None.
117262 */
117263 SQLITE_PRIVATE void sqlite3ParserTrace(FILE *TraceFILE, char *zTracePrompt){
117264   yyTraceFILE = TraceFILE;
117265   yyTracePrompt = zTracePrompt;
117266   if( yyTraceFILE==0 ) yyTracePrompt = 0;
117267   else if( yyTracePrompt==0 ) yyTraceFILE = 0;
117268 }
117269 #endif /* NDEBUG */
117270 
117271 #ifndef NDEBUG
117272 /* For tracing shifts, the names of all terminals and nonterminals
117273 ** are required.  The following table supplies these names */
117274 static const char *const yyTokenName[] = {
117275   "$",             "SEMI",          "EXPLAIN",       "QUERY",
117276   "PLAN",          "BEGIN",         "TRANSACTION",   "DEFERRED",
117277   "IMMEDIATE",     "EXCLUSIVE",     "COMMIT",        "END",
117278   "ROLLBACK",      "SAVEPOINT",     "RELEASE",       "TO",
117279   "TABLE",         "CREATE",        "IF",            "NOT",
117280   "EXISTS",        "TEMP",          "LP",            "RP",
117281   "AS",            "WITHOUT",       "COMMA",         "ID",
117282   "INDEXED",       "ABORT",         "ACTION",        "AFTER",
117283   "ANALYZE",       "ASC",           "ATTACH",        "BEFORE",
117284   "BY",            "CASCADE",       "CAST",          "COLUMNKW",
117285   "CONFLICT",      "DATABASE",      "DESC",          "DETACH",
117286   "EACH",          "FAIL",          "FOR",           "IGNORE",
117287   "INITIALLY",     "INSTEAD",       "LIKE_KW",       "MATCH",
117288   "NO",            "KEY",           "OF",            "OFFSET",
117289   "PRAGMA",        "RAISE",         "RECURSIVE",     "REPLACE",
117290   "RESTRICT",      "ROW",           "TRIGGER",       "VACUUM",
117291   "VIEW",          "VIRTUAL",       "WITH",          "REINDEX",
117292   "RENAME",        "CTIME_KW",      "ANY",           "OR",
117293   "AND",           "IS",            "BETWEEN",       "IN",
117294   "ISNULL",        "NOTNULL",       "NE",            "EQ",
117295   "GT",            "LE",            "LT",            "GE",
117296   "ESCAPE",        "BITAND",        "BITOR",         "LSHIFT",
117297   "RSHIFT",        "PLUS",          "MINUS",         "STAR",
117298   "SLASH",         "REM",           "CONCAT",        "COLLATE",
117299   "BITNOT",        "STRING",        "JOIN_KW",       "CONSTRAINT",
117300   "DEFAULT",       "NULL",          "PRIMARY",       "UNIQUE",
117301   "CHECK",         "REFERENCES",    "AUTOINCR",      "ON",
117302   "INSERT",        "DELETE",        "UPDATE",        "SET",
117303   "DEFERRABLE",    "FOREIGN",       "DROP",          "UNION",
117304   "ALL",           "EXCEPT",        "INTERSECT",     "SELECT",
117305   "VALUES",        "DISTINCT",      "DOT",           "FROM",
117306   "JOIN",          "USING",         "ORDER",         "GROUP",
117307   "HAVING",        "LIMIT",         "WHERE",         "INTO",
117308   "INTEGER",       "FLOAT",         "BLOB",          "VARIABLE",
117309   "CASE",          "WHEN",          "THEN",          "ELSE",
117310   "INDEX",         "ALTER",         "ADD",           "error",
117311   "input",         "cmdlist",       "ecmd",          "explain",
117312   "cmdx",          "cmd",           "transtype",     "trans_opt",
117313   "nm",            "savepoint_opt",  "create_table",  "create_table_args",
117314   "createkw",      "temp",          "ifnotexists",   "dbnm",
117315   "columnlist",    "conslist_opt",  "table_options",  "select",
117316   "column",        "columnid",      "type",          "carglist",
117317   "typetoken",     "typename",      "signed",        "plus_num",
117318   "minus_num",     "ccons",         "term",          "expr",
117319   "onconf",        "sortorder",     "autoinc",       "idxlist_opt",
117320   "refargs",       "defer_subclause",  "refarg",        "refact",
117321   "init_deferred_pred_opt",  "conslist",      "tconscomma",    "tcons",
117322   "idxlist",       "defer_subclause_opt",  "orconf",        "resolvetype",
117323   "raisetype",     "ifexists",      "fullname",      "selectnowith",
117324   "oneselect",     "with",          "multiselect_op",  "distinct",
117325   "selcollist",    "from",          "where_opt",     "groupby_opt",
117326   "having_opt",    "orderby_opt",   "limit_opt",     "values",
117327   "nexprlist",     "exprlist",      "sclp",          "as",
117328   "seltablist",    "stl_prefix",    "joinop",        "indexed_opt",
117329   "on_opt",        "using_opt",     "joinop2",       "idlist",
117330   "sortlist",      "setlist",       "insert_cmd",    "inscollist_opt",
117331   "likeop",        "between_op",    "in_op",         "case_operand",
117332   "case_exprlist",  "case_else",     "uniqueflag",    "collate",
117333   "nmnum",         "trigger_decl",  "trigger_cmd_list",  "trigger_time",
117334   "trigger_event",  "foreach_clause",  "when_clause",   "trigger_cmd",
117335   "trnm",          "tridxby",       "database_kw_opt",  "key_opt",
117336   "add_column_fullname",  "kwcolumn_opt",  "create_vtab",   "vtabarglist",
117337   "vtabarg",       "vtabargtoken",  "lp",            "anylist",
117338   "wqlist",
117339 };
117340 #endif /* NDEBUG */
117341 
117342 #ifndef NDEBUG
117343 /* For tracing reduce actions, the names of all rules are required.
117344 */
117345 static const char *const yyRuleName[] = {
117346  /*   0 */ "input ::= cmdlist",
117347  /*   1 */ "cmdlist ::= cmdlist ecmd",
117348  /*   2 */ "cmdlist ::= ecmd",
117349  /*   3 */ "ecmd ::= SEMI",
117350  /*   4 */ "ecmd ::= explain cmdx SEMI",
117351  /*   5 */ "explain ::=",
117352  /*   6 */ "explain ::= EXPLAIN",
117353  /*   7 */ "explain ::= EXPLAIN QUERY PLAN",
117354  /*   8 */ "cmdx ::= cmd",
117355  /*   9 */ "cmd ::= BEGIN transtype trans_opt",
117356  /*  10 */ "trans_opt ::=",
117357  /*  11 */ "trans_opt ::= TRANSACTION",
117358  /*  12 */ "trans_opt ::= TRANSACTION nm",
117359  /*  13 */ "transtype ::=",
117360  /*  14 */ "transtype ::= DEFERRED",
117361  /*  15 */ "transtype ::= IMMEDIATE",
117362  /*  16 */ "transtype ::= EXCLUSIVE",
117363  /*  17 */ "cmd ::= COMMIT trans_opt",
117364  /*  18 */ "cmd ::= END trans_opt",
117365  /*  19 */ "cmd ::= ROLLBACK trans_opt",
117366  /*  20 */ "savepoint_opt ::= SAVEPOINT",
117367  /*  21 */ "savepoint_opt ::=",
117368  /*  22 */ "cmd ::= SAVEPOINT nm",
117369  /*  23 */ "cmd ::= RELEASE savepoint_opt nm",
117370  /*  24 */ "cmd ::= ROLLBACK trans_opt TO savepoint_opt nm",
117371  /*  25 */ "cmd ::= create_table create_table_args",
117372  /*  26 */ "create_table ::= createkw temp TABLE ifnotexists nm dbnm",
117373  /*  27 */ "createkw ::= CREATE",
117374  /*  28 */ "ifnotexists ::=",
117375  /*  29 */ "ifnotexists ::= IF NOT EXISTS",
117376  /*  30 */ "temp ::= TEMP",
117377  /*  31 */ "temp ::=",
117378  /*  32 */ "create_table_args ::= LP columnlist conslist_opt RP table_options",
117379  /*  33 */ "create_table_args ::= AS select",
117380  /*  34 */ "table_options ::=",
117381  /*  35 */ "table_options ::= WITHOUT nm",
117382  /*  36 */ "columnlist ::= columnlist COMMA column",
117383  /*  37 */ "columnlist ::= column",
117384  /*  38 */ "column ::= columnid type carglist",
117385  /*  39 */ "columnid ::= nm",
117386  /*  40 */ "nm ::= ID|INDEXED",
117387  /*  41 */ "nm ::= STRING",
117388  /*  42 */ "nm ::= JOIN_KW",
117389  /*  43 */ "type ::=",
117390  /*  44 */ "type ::= typetoken",
117391  /*  45 */ "typetoken ::= typename",
117392  /*  46 */ "typetoken ::= typename LP signed RP",
117393  /*  47 */ "typetoken ::= typename LP signed COMMA signed RP",
117394  /*  48 */ "typename ::= ID|STRING",
117395  /*  49 */ "typename ::= typename ID|STRING",
117396  /*  50 */ "signed ::= plus_num",
117397  /*  51 */ "signed ::= minus_num",
117398  /*  52 */ "carglist ::= carglist ccons",
117399  /*  53 */ "carglist ::=",
117400  /*  54 */ "ccons ::= CONSTRAINT nm",
117401  /*  55 */ "ccons ::= DEFAULT term",
117402  /*  56 */ "ccons ::= DEFAULT LP expr RP",
117403  /*  57 */ "ccons ::= DEFAULT PLUS term",
117404  /*  58 */ "ccons ::= DEFAULT MINUS term",
117405  /*  59 */ "ccons ::= DEFAULT ID|INDEXED",
117406  /*  60 */ "ccons ::= NULL onconf",
117407  /*  61 */ "ccons ::= NOT NULL onconf",
117408  /*  62 */ "ccons ::= PRIMARY KEY sortorder onconf autoinc",
117409  /*  63 */ "ccons ::= UNIQUE onconf",
117410  /*  64 */ "ccons ::= CHECK LP expr RP",
117411  /*  65 */ "ccons ::= REFERENCES nm idxlist_opt refargs",
117412  /*  66 */ "ccons ::= defer_subclause",
117413  /*  67 */ "ccons ::= COLLATE ID|STRING",
117414  /*  68 */ "autoinc ::=",
117415  /*  69 */ "autoinc ::= AUTOINCR",
117416  /*  70 */ "refargs ::=",
117417  /*  71 */ "refargs ::= refargs refarg",
117418  /*  72 */ "refarg ::= MATCH nm",
117419  /*  73 */ "refarg ::= ON INSERT refact",
117420  /*  74 */ "refarg ::= ON DELETE refact",
117421  /*  75 */ "refarg ::= ON UPDATE refact",
117422  /*  76 */ "refact ::= SET NULL",
117423  /*  77 */ "refact ::= SET DEFAULT",
117424  /*  78 */ "refact ::= CASCADE",
117425  /*  79 */ "refact ::= RESTRICT",
117426  /*  80 */ "refact ::= NO ACTION",
117427  /*  81 */ "defer_subclause ::= NOT DEFERRABLE init_deferred_pred_opt",
117428  /*  82 */ "defer_subclause ::= DEFERRABLE init_deferred_pred_opt",
117429  /*  83 */ "init_deferred_pred_opt ::=",
117430  /*  84 */ "init_deferred_pred_opt ::= INITIALLY DEFERRED",
117431  /*  85 */ "init_deferred_pred_opt ::= INITIALLY IMMEDIATE",
117432  /*  86 */ "conslist_opt ::=",
117433  /*  87 */ "conslist_opt ::= COMMA conslist",
117434  /*  88 */ "conslist ::= conslist tconscomma tcons",
117435  /*  89 */ "conslist ::= tcons",
117436  /*  90 */ "tconscomma ::= COMMA",
117437  /*  91 */ "tconscomma ::=",
117438  /*  92 */ "tcons ::= CONSTRAINT nm",
117439  /*  93 */ "tcons ::= PRIMARY KEY LP idxlist autoinc RP onconf",
117440  /*  94 */ "tcons ::= UNIQUE LP idxlist RP onconf",
117441  /*  95 */ "tcons ::= CHECK LP expr RP onconf",
117442  /*  96 */ "tcons ::= FOREIGN KEY LP idxlist RP REFERENCES nm idxlist_opt refargs defer_subclause_opt",
117443  /*  97 */ "defer_subclause_opt ::=",
117444  /*  98 */ "defer_subclause_opt ::= defer_subclause",
117445  /*  99 */ "onconf ::=",
117446  /* 100 */ "onconf ::= ON CONFLICT resolvetype",
117447  /* 101 */ "orconf ::=",
117448  /* 102 */ "orconf ::= OR resolvetype",
117449  /* 103 */ "resolvetype ::= raisetype",
117450  /* 104 */ "resolvetype ::= IGNORE",
117451  /* 105 */ "resolvetype ::= REPLACE",
117452  /* 106 */ "cmd ::= DROP TABLE ifexists fullname",
117453  /* 107 */ "ifexists ::= IF EXISTS",
117454  /* 108 */ "ifexists ::=",
117455  /* 109 */ "cmd ::= createkw temp VIEW ifnotexists nm dbnm AS select",
117456  /* 110 */ "cmd ::= DROP VIEW ifexists fullname",
117457  /* 111 */ "cmd ::= select",
117458  /* 112 */ "select ::= with selectnowith",
117459  /* 113 */ "selectnowith ::= oneselect",
117460  /* 114 */ "selectnowith ::= selectnowith multiselect_op oneselect",
117461  /* 115 */ "multiselect_op ::= UNION",
117462  /* 116 */ "multiselect_op ::= UNION ALL",
117463  /* 117 */ "multiselect_op ::= EXCEPT|INTERSECT",
117464  /* 118 */ "oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt orderby_opt limit_opt",
117465  /* 119 */ "oneselect ::= values",
117466  /* 120 */ "values ::= VALUES LP nexprlist RP",
117467  /* 121 */ "values ::= values COMMA LP exprlist RP",
117468  /* 122 */ "distinct ::= DISTINCT",
117469  /* 123 */ "distinct ::= ALL",
117470  /* 124 */ "distinct ::=",
117471  /* 125 */ "sclp ::= selcollist COMMA",
117472  /* 126 */ "sclp ::=",
117473  /* 127 */ "selcollist ::= sclp expr as",
117474  /* 128 */ "selcollist ::= sclp STAR",
117475  /* 129 */ "selcollist ::= sclp nm DOT STAR",
117476  /* 130 */ "as ::= AS nm",
117477  /* 131 */ "as ::= ID|STRING",
117478  /* 132 */ "as ::=",
117479  /* 133 */ "from ::=",
117480  /* 134 */ "from ::= FROM seltablist",
117481  /* 135 */ "stl_prefix ::= seltablist joinop",
117482  /* 136 */ "stl_prefix ::=",
117483  /* 137 */ "seltablist ::= stl_prefix nm dbnm as indexed_opt on_opt using_opt",
117484  /* 138 */ "seltablist ::= stl_prefix LP select RP as on_opt using_opt",
117485  /* 139 */ "seltablist ::= stl_prefix LP seltablist RP as on_opt using_opt",
117486  /* 140 */ "dbnm ::=",
117487  /* 141 */ "dbnm ::= DOT nm",
117488  /* 142 */ "fullname ::= nm dbnm",
117489  /* 143 */ "joinop ::= COMMA|JOIN",
117490  /* 144 */ "joinop ::= JOIN_KW JOIN",
117491  /* 145 */ "joinop ::= JOIN_KW nm JOIN",
117492  /* 146 */ "joinop ::= JOIN_KW nm nm JOIN",
117493  /* 147 */ "on_opt ::= ON expr",
117494  /* 148 */ "on_opt ::=",
117495  /* 149 */ "indexed_opt ::=",
117496  /* 150 */ "indexed_opt ::= INDEXED BY nm",
117497  /* 151 */ "indexed_opt ::= NOT INDEXED",
117498  /* 152 */ "using_opt ::= USING LP idlist RP",
117499  /* 153 */ "using_opt ::=",
117500  /* 154 */ "orderby_opt ::=",
117501  /* 155 */ "orderby_opt ::= ORDER BY sortlist",
117502  /* 156 */ "sortlist ::= sortlist COMMA expr sortorder",
117503  /* 157 */ "sortlist ::= expr sortorder",
117504  /* 158 */ "sortorder ::= ASC",
117505  /* 159 */ "sortorder ::= DESC",
117506  /* 160 */ "sortorder ::=",
117507  /* 161 */ "groupby_opt ::=",
117508  /* 162 */ "groupby_opt ::= GROUP BY nexprlist",
117509  /* 163 */ "having_opt ::=",
117510  /* 164 */ "having_opt ::= HAVING expr",
117511  /* 165 */ "limit_opt ::=",
117512  /* 166 */ "limit_opt ::= LIMIT expr",
117513  /* 167 */ "limit_opt ::= LIMIT expr OFFSET expr",
117514  /* 168 */ "limit_opt ::= LIMIT expr COMMA expr",
117515  /* 169 */ "cmd ::= with DELETE FROM fullname indexed_opt where_opt",
117516  /* 170 */ "where_opt ::=",
117517  /* 171 */ "where_opt ::= WHERE expr",
117518  /* 172 */ "cmd ::= with UPDATE orconf fullname indexed_opt SET setlist where_opt",
117519  /* 173 */ "setlist ::= setlist COMMA nm EQ expr",
117520  /* 174 */ "setlist ::= nm EQ expr",
117521  /* 175 */ "cmd ::= with insert_cmd INTO fullname inscollist_opt select",
117522  /* 176 */ "cmd ::= with insert_cmd INTO fullname inscollist_opt DEFAULT VALUES",
117523  /* 177 */ "insert_cmd ::= INSERT orconf",
117524  /* 178 */ "insert_cmd ::= REPLACE",
117525  /* 179 */ "inscollist_opt ::=",
117526  /* 180 */ "inscollist_opt ::= LP idlist RP",
117527  /* 181 */ "idlist ::= idlist COMMA nm",
117528  /* 182 */ "idlist ::= nm",
117529  /* 183 */ "expr ::= term",
117530  /* 184 */ "expr ::= LP expr RP",
117531  /* 185 */ "term ::= NULL",
117532  /* 186 */ "expr ::= ID|INDEXED",
117533  /* 187 */ "expr ::= JOIN_KW",
117534  /* 188 */ "expr ::= nm DOT nm",
117535  /* 189 */ "expr ::= nm DOT nm DOT nm",
117536  /* 190 */ "term ::= INTEGER|FLOAT|BLOB",
117537  /* 191 */ "term ::= STRING",
117538  /* 192 */ "expr ::= VARIABLE",
117539  /* 193 */ "expr ::= expr COLLATE ID|STRING",
117540  /* 194 */ "expr ::= CAST LP expr AS typetoken RP",
117541  /* 195 */ "expr ::= ID|INDEXED LP distinct exprlist RP",
117542  /* 196 */ "expr ::= ID|INDEXED LP STAR RP",
117543  /* 197 */ "term ::= CTIME_KW",
117544  /* 198 */ "expr ::= expr AND expr",
117545  /* 199 */ "expr ::= expr OR expr",
117546  /* 200 */ "expr ::= expr LT|GT|GE|LE expr",
117547  /* 201 */ "expr ::= expr EQ|NE expr",
117548  /* 202 */ "expr ::= expr BITAND|BITOR|LSHIFT|RSHIFT expr",
117549  /* 203 */ "expr ::= expr PLUS|MINUS expr",
117550  /* 204 */ "expr ::= expr STAR|SLASH|REM expr",
117551  /* 205 */ "expr ::= expr CONCAT expr",
117552  /* 206 */ "likeop ::= LIKE_KW|MATCH",
117553  /* 207 */ "likeop ::= NOT LIKE_KW|MATCH",
117554  /* 208 */ "expr ::= expr likeop expr",
117555  /* 209 */ "expr ::= expr likeop expr ESCAPE expr",
117556  /* 210 */ "expr ::= expr ISNULL|NOTNULL",
117557  /* 211 */ "expr ::= expr NOT NULL",
117558  /* 212 */ "expr ::= expr IS expr",
117559  /* 213 */ "expr ::= expr IS NOT expr",
117560  /* 214 */ "expr ::= NOT expr",
117561  /* 215 */ "expr ::= BITNOT expr",
117562  /* 216 */ "expr ::= MINUS expr",
117563  /* 217 */ "expr ::= PLUS expr",
117564  /* 218 */ "between_op ::= BETWEEN",
117565  /* 219 */ "between_op ::= NOT BETWEEN",
117566  /* 220 */ "expr ::= expr between_op expr AND expr",
117567  /* 221 */ "in_op ::= IN",
117568  /* 222 */ "in_op ::= NOT IN",
117569  /* 223 */ "expr ::= expr in_op LP exprlist RP",
117570  /* 224 */ "expr ::= LP select RP",
117571  /* 225 */ "expr ::= expr in_op LP select RP",
117572  /* 226 */ "expr ::= expr in_op nm dbnm",
117573  /* 227 */ "expr ::= EXISTS LP select RP",
117574  /* 228 */ "expr ::= CASE case_operand case_exprlist case_else END",
117575  /* 229 */ "case_exprlist ::= case_exprlist WHEN expr THEN expr",
117576  /* 230 */ "case_exprlist ::= WHEN expr THEN expr",
117577  /* 231 */ "case_else ::= ELSE expr",
117578  /* 232 */ "case_else ::=",
117579  /* 233 */ "case_operand ::= expr",
117580  /* 234 */ "case_operand ::=",
117581  /* 235 */ "exprlist ::= nexprlist",
117582  /* 236 */ "exprlist ::=",
117583  /* 237 */ "nexprlist ::= nexprlist COMMA expr",
117584  /* 238 */ "nexprlist ::= expr",
117585  /* 239 */ "cmd ::= createkw uniqueflag INDEX ifnotexists nm dbnm ON nm LP idxlist RP where_opt",
117586  /* 240 */ "uniqueflag ::= UNIQUE",
117587  /* 241 */ "uniqueflag ::=",
117588  /* 242 */ "idxlist_opt ::=",
117589  /* 243 */ "idxlist_opt ::= LP idxlist RP",
117590  /* 244 */ "idxlist ::= idxlist COMMA nm collate sortorder",
117591  /* 245 */ "idxlist ::= nm collate sortorder",
117592  /* 246 */ "collate ::=",
117593  /* 247 */ "collate ::= COLLATE ID|STRING",
117594  /* 248 */ "cmd ::= DROP INDEX ifexists fullname",
117595  /* 249 */ "cmd ::= VACUUM",
117596  /* 250 */ "cmd ::= VACUUM nm",
117597  /* 251 */ "cmd ::= PRAGMA nm dbnm",
117598  /* 252 */ "cmd ::= PRAGMA nm dbnm EQ nmnum",
117599  /* 253 */ "cmd ::= PRAGMA nm dbnm LP nmnum RP",
117600  /* 254 */ "cmd ::= PRAGMA nm dbnm EQ minus_num",
117601  /* 255 */ "cmd ::= PRAGMA nm dbnm LP minus_num RP",
117602  /* 256 */ "nmnum ::= plus_num",
117603  /* 257 */ "nmnum ::= nm",
117604  /* 258 */ "nmnum ::= ON",
117605  /* 259 */ "nmnum ::= DELETE",
117606  /* 260 */ "nmnum ::= DEFAULT",
117607  /* 261 */ "plus_num ::= PLUS INTEGER|FLOAT",
117608  /* 262 */ "plus_num ::= INTEGER|FLOAT",
117609  /* 263 */ "minus_num ::= MINUS INTEGER|FLOAT",
117610  /* 264 */ "cmd ::= createkw trigger_decl BEGIN trigger_cmd_list END",
117611  /* 265 */ "trigger_decl ::= temp TRIGGER ifnotexists nm dbnm trigger_time trigger_event ON fullname foreach_clause when_clause",
117612  /* 266 */ "trigger_time ::= BEFORE",
117613  /* 267 */ "trigger_time ::= AFTER",
117614  /* 268 */ "trigger_time ::= INSTEAD OF",
117615  /* 269 */ "trigger_time ::=",
117616  /* 270 */ "trigger_event ::= DELETE|INSERT",
117617  /* 271 */ "trigger_event ::= UPDATE",
117618  /* 272 */ "trigger_event ::= UPDATE OF idlist",
117619  /* 273 */ "foreach_clause ::=",
117620  /* 274 */ "foreach_clause ::= FOR EACH ROW",
117621  /* 275 */ "when_clause ::=",
117622  /* 276 */ "when_clause ::= WHEN expr",
117623  /* 277 */ "trigger_cmd_list ::= trigger_cmd_list trigger_cmd SEMI",
117624  /* 278 */ "trigger_cmd_list ::= trigger_cmd SEMI",
117625  /* 279 */ "trnm ::= nm",
117626  /* 280 */ "trnm ::= nm DOT nm",
117627  /* 281 */ "tridxby ::=",
117628  /* 282 */ "tridxby ::= INDEXED BY nm",
117629  /* 283 */ "tridxby ::= NOT INDEXED",
117630  /* 284 */ "trigger_cmd ::= UPDATE orconf trnm tridxby SET setlist where_opt",
117631  /* 285 */ "trigger_cmd ::= insert_cmd INTO trnm inscollist_opt select",
117632  /* 286 */ "trigger_cmd ::= DELETE FROM trnm tridxby where_opt",
117633  /* 287 */ "trigger_cmd ::= select",
117634  /* 288 */ "expr ::= RAISE LP IGNORE RP",
117635  /* 289 */ "expr ::= RAISE LP raisetype COMMA nm RP",
117636  /* 290 */ "raisetype ::= ROLLBACK",
117637  /* 291 */ "raisetype ::= ABORT",
117638  /* 292 */ "raisetype ::= FAIL",
117639  /* 293 */ "cmd ::= DROP TRIGGER ifexists fullname",
117640  /* 294 */ "cmd ::= ATTACH database_kw_opt expr AS expr key_opt",
117641  /* 295 */ "cmd ::= DETACH database_kw_opt expr",
117642  /* 296 */ "key_opt ::=",
117643  /* 297 */ "key_opt ::= KEY expr",
117644  /* 298 */ "database_kw_opt ::= DATABASE",
117645  /* 299 */ "database_kw_opt ::=",
117646  /* 300 */ "cmd ::= REINDEX",
117647  /* 301 */ "cmd ::= REINDEX nm dbnm",
117648  /* 302 */ "cmd ::= ANALYZE",
117649  /* 303 */ "cmd ::= ANALYZE nm dbnm",
117650  /* 304 */ "cmd ::= ALTER TABLE fullname RENAME TO nm",
117651  /* 305 */ "cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt column",
117652  /* 306 */ "add_column_fullname ::= fullname",
117653  /* 307 */ "kwcolumn_opt ::=",
117654  /* 308 */ "kwcolumn_opt ::= COLUMNKW",
117655  /* 309 */ "cmd ::= create_vtab",
117656  /* 310 */ "cmd ::= create_vtab LP vtabarglist RP",
117657  /* 311 */ "create_vtab ::= createkw VIRTUAL TABLE ifnotexists nm dbnm USING nm",
117658  /* 312 */ "vtabarglist ::= vtabarg",
117659  /* 313 */ "vtabarglist ::= vtabarglist COMMA vtabarg",
117660  /* 314 */ "vtabarg ::=",
117661  /* 315 */ "vtabarg ::= vtabarg vtabargtoken",
117662  /* 316 */ "vtabargtoken ::= ANY",
117663  /* 317 */ "vtabargtoken ::= lp anylist RP",
117664  /* 318 */ "lp ::= LP",
117665  /* 319 */ "anylist ::=",
117666  /* 320 */ "anylist ::= anylist LP anylist RP",
117667  /* 321 */ "anylist ::= anylist ANY",
117668  /* 322 */ "with ::=",
117669  /* 323 */ "with ::= WITH wqlist",
117670  /* 324 */ "with ::= WITH RECURSIVE wqlist",
117671  /* 325 */ "wqlist ::= nm idxlist_opt AS LP select RP",
117672  /* 326 */ "wqlist ::= wqlist COMMA nm idxlist_opt AS LP select RP",
117673 };
117674 #endif /* NDEBUG */
117675 
117676 
117677 #if YYSTACKDEPTH<=0
117678 /*
117679 ** Try to increase the size of the parser stack.
117680 */
117681 static void yyGrowStack(yyParser *p){
117682   int newSize;
117683   yyStackEntry *pNew;
117684 
117685   newSize = p->yystksz*2 + 100;
117686   pNew = realloc(p->yystack, newSize*sizeof(pNew[0]));
117687   if( pNew ){
117688     p->yystack = pNew;
117689     p->yystksz = newSize;
117690 #ifndef NDEBUG
117691     if( yyTraceFILE ){
117692       fprintf(yyTraceFILE,"%sStack grows to %d entries!\n",
117693               yyTracePrompt, p->yystksz);
117694     }
117695 #endif
117696   }
117697 }
117698 #endif
117699 
117700 /*
117701 ** This function allocates a new parser.
117702 ** The only argument is a pointer to a function which works like
117703 ** malloc.
117704 **
117705 ** Inputs:
117706 ** A pointer to the function used to allocate memory.
117707 **
117708 ** Outputs:
117709 ** A pointer to a parser.  This pointer is used in subsequent calls
117710 ** to sqlite3Parser and sqlite3ParserFree.
117711 */
117712 SQLITE_PRIVATE void *sqlite3ParserAlloc(void *(*mallocProc)(size_t)){
117713   yyParser *pParser;
117714   pParser = (yyParser*)(*mallocProc)( (size_t)sizeof(yyParser) );
117715   if( pParser ){
117716     pParser->yyidx = -1;
117717 #ifdef YYTRACKMAXSTACKDEPTH
117718     pParser->yyidxMax = 0;
117719 #endif
117720 #if YYSTACKDEPTH<=0
117721     pParser->yystack = NULL;
117722     pParser->yystksz = 0;
117723     yyGrowStack(pParser);
117724 #endif
117725   }
117726   return pParser;
117727 }
117728 
117729 /* The following function deletes the value associated with a
117730 ** symbol.  The symbol can be either a terminal or nonterminal.
117731 ** "yymajor" is the symbol code, and "yypminor" is a pointer to
117732 ** the value.
117733 */
117734 static void yy_destructor(
117735   yyParser *yypParser,    /* The parser */
117736   YYCODETYPE yymajor,     /* Type code for object to destroy */
117737   YYMINORTYPE *yypminor   /* The object to be destroyed */
117738 ){
117739   sqlite3ParserARG_FETCH;
117740   switch( yymajor ){
117741     /* Here is inserted the actions which take place when a
117742     ** terminal or non-terminal is destroyed.  This can happen
117743     ** when the symbol is popped from the stack during a
117744     ** reduce or during error processing or when a parser is
117745     ** being destroyed before it is finished parsing.
117746     **
117747     ** Note: during a reduce, the only symbols destroyed are those
117748     ** which appear on the RHS of the rule, but which are not used
117749     ** inside the C code.
117750     */
117751     case 163: /* select */
117752     case 195: /* selectnowith */
117753     case 196: /* oneselect */
117754     case 207: /* values */
117755 {
117756 sqlite3SelectDelete(pParse->db, (yypminor->yy3));
117757 }
117758       break;
117759     case 174: /* term */
117760     case 175: /* expr */
117761 {
117762 sqlite3ExprDelete(pParse->db, (yypminor->yy346).pExpr);
117763 }
117764       break;
117765     case 179: /* idxlist_opt */
117766     case 188: /* idxlist */
117767     case 200: /* selcollist */
117768     case 203: /* groupby_opt */
117769     case 205: /* orderby_opt */
117770     case 208: /* nexprlist */
117771     case 209: /* exprlist */
117772     case 210: /* sclp */
117773     case 220: /* sortlist */
117774     case 221: /* setlist */
117775     case 228: /* case_exprlist */
117776 {
117777 sqlite3ExprListDelete(pParse->db, (yypminor->yy14));
117778 }
117779       break;
117780     case 194: /* fullname */
117781     case 201: /* from */
117782     case 212: /* seltablist */
117783     case 213: /* stl_prefix */
117784 {
117785 sqlite3SrcListDelete(pParse->db, (yypminor->yy65));
117786 }
117787       break;
117788     case 197: /* with */
117789     case 252: /* wqlist */
117790 {
117791 sqlite3WithDelete(pParse->db, (yypminor->yy59));
117792 }
117793       break;
117794     case 202: /* where_opt */
117795     case 204: /* having_opt */
117796     case 216: /* on_opt */
117797     case 227: /* case_operand */
117798     case 229: /* case_else */
117799     case 238: /* when_clause */
117800     case 243: /* key_opt */
117801 {
117802 sqlite3ExprDelete(pParse->db, (yypminor->yy132));
117803 }
117804       break;
117805     case 217: /* using_opt */
117806     case 219: /* idlist */
117807     case 223: /* inscollist_opt */
117808 {
117809 sqlite3IdListDelete(pParse->db, (yypminor->yy408));
117810 }
117811       break;
117812     case 234: /* trigger_cmd_list */
117813     case 239: /* trigger_cmd */
117814 {
117815 sqlite3DeleteTriggerStep(pParse->db, (yypminor->yy473));
117816 }
117817       break;
117818     case 236: /* trigger_event */
117819 {
117820 sqlite3IdListDelete(pParse->db, (yypminor->yy378).b);
117821 }
117822       break;
117823     default:  break;   /* If no destructor action specified: do nothing */
117824   }
117825 }
117826 
117827 /*
117828 ** Pop the parser's stack once.
117829 **
117830 ** If there is a destructor routine associated with the token which
117831 ** is popped from the stack, then call it.
117832 **
117833 ** Return the major token number for the symbol popped.
117834 */
117835 static int yy_pop_parser_stack(yyParser *pParser){
117836   YYCODETYPE yymajor;
117837   yyStackEntry *yytos = &pParser->yystack[pParser->yyidx];
117838 
117839   /* There is no mechanism by which the parser stack can be popped below
117840   ** empty in SQLite.  */
117841   if( NEVER(pParser->yyidx<0) ) return 0;
117842 #ifndef NDEBUG
117843   if( yyTraceFILE && pParser->yyidx>=0 ){
117844     fprintf(yyTraceFILE,"%sPopping %s\n",
117845       yyTracePrompt,
117846       yyTokenName[yytos->major]);
117847   }
117848 #endif
117849   yymajor = yytos->major;
117850   yy_destructor(pParser, yymajor, &yytos->minor);
117851   pParser->yyidx--;
117852   return yymajor;
117853 }
117854 
117855 /*
117856 ** Deallocate and destroy a parser.  Destructors are all called for
117857 ** all stack elements before shutting the parser down.
117858 **
117859 ** Inputs:
117860 ** <ul>
117861 ** <li>  A pointer to the parser.  This should be a pointer
117862 **       obtained from sqlite3ParserAlloc.
117863 ** <li>  A pointer to a function used to reclaim memory obtained
117864 **       from malloc.
117865 ** </ul>
117866 */
117867 SQLITE_PRIVATE void sqlite3ParserFree(
117868   void *p,                    /* The parser to be deleted */
117869   void (*freeProc)(void*)     /* Function used to reclaim memory */
117870 ){
117871   yyParser *pParser = (yyParser*)p;
117872   /* In SQLite, we never try to destroy a parser that was not successfully
117873   ** created in the first place. */
117874   if( NEVER(pParser==0) ) return;
117875   while( pParser->yyidx>=0 ) yy_pop_parser_stack(pParser);
117876 #if YYSTACKDEPTH<=0
117877   free(pParser->yystack);
117878 #endif
117879   (*freeProc)((void*)pParser);
117880 }
117881 
117882 /*
117883 ** Return the peak depth of the stack for a parser.
117884 */
117885 #ifdef YYTRACKMAXSTACKDEPTH
117886 SQLITE_PRIVATE int sqlite3ParserStackPeak(void *p){
117887   yyParser *pParser = (yyParser*)p;
117888   return pParser->yyidxMax;
117889 }
117890 #endif
117891 
117892 /*
117893 ** Find the appropriate action for a parser given the terminal
117894 ** look-ahead token iLookAhead.
117895 **
117896 ** If the look-ahead token is YYNOCODE, then check to see if the action is
117897 ** independent of the look-ahead.  If it is, return the action, otherwise
117898 ** return YY_NO_ACTION.
117899 */
117900 static int yy_find_shift_action(
117901   yyParser *pParser,        /* The parser */
117902   YYCODETYPE iLookAhead     /* The look-ahead token */
117903 ){
117904   int i;
117905   int stateno = pParser->yystack[pParser->yyidx].stateno;
117906 
117907   if( stateno>YY_SHIFT_COUNT
117908    || (i = yy_shift_ofst[stateno])==YY_SHIFT_USE_DFLT ){
117909     return yy_default[stateno];
117910   }
117911   assert( iLookAhead!=YYNOCODE );
117912   i += iLookAhead;
117913   if( i<0 || i>=YY_ACTTAB_COUNT || yy_lookahead[i]!=iLookAhead ){
117914     if( iLookAhead>0 ){
117915 #ifdef YYFALLBACK
117916       YYCODETYPE iFallback;            /* Fallback token */
117917       if( iLookAhead<sizeof(yyFallback)/sizeof(yyFallback[0])
117918              && (iFallback = yyFallback[iLookAhead])!=0 ){
117919 #ifndef NDEBUG
117920         if( yyTraceFILE ){
117921           fprintf(yyTraceFILE, "%sFALLBACK %s => %s\n",
117922              yyTracePrompt, yyTokenName[iLookAhead], yyTokenName[iFallback]);
117923         }
117924 #endif
117925         return yy_find_shift_action(pParser, iFallback);
117926       }
117927 #endif
117928 #ifdef YYWILDCARD
117929       {
117930         int j = i - iLookAhead + YYWILDCARD;
117931         if(
117932 #if YY_SHIFT_MIN+YYWILDCARD<0
117933           j>=0 &&
117934 #endif
117935 #if YY_SHIFT_MAX+YYWILDCARD>=YY_ACTTAB_COUNT
117936           j<YY_ACTTAB_COUNT &&
117937 #endif
117938           yy_lookahead[j]==YYWILDCARD
117939         ){
117940 #ifndef NDEBUG
117941           if( yyTraceFILE ){
117942             fprintf(yyTraceFILE, "%sWILDCARD %s => %s\n",
117943                yyTracePrompt, yyTokenName[iLookAhead], yyTokenName[YYWILDCARD]);
117944           }
117945 #endif /* NDEBUG */
117946           return yy_action[j];
117947         }
117948       }
117949 #endif /* YYWILDCARD */
117950     }
117951     return yy_default[stateno];
117952   }else{
117953     return yy_action[i];
117954   }
117955 }
117956 
117957 /*
117958 ** Find the appropriate action for a parser given the non-terminal
117959 ** look-ahead token iLookAhead.
117960 **
117961 ** If the look-ahead token is YYNOCODE, then check to see if the action is
117962 ** independent of the look-ahead.  If it is, return the action, otherwise
117963 ** return YY_NO_ACTION.
117964 */
117965 static int yy_find_reduce_action(
117966   int stateno,              /* Current state number */
117967   YYCODETYPE iLookAhead     /* The look-ahead token */
117968 ){
117969   int i;
117970 #ifdef YYERRORSYMBOL
117971   if( stateno>YY_REDUCE_COUNT ){
117972     return yy_default[stateno];
117973   }
117974 #else
117975   assert( stateno<=YY_REDUCE_COUNT );
117976 #endif
117977   i = yy_reduce_ofst[stateno];
117978   assert( i!=YY_REDUCE_USE_DFLT );
117979   assert( iLookAhead!=YYNOCODE );
117980   i += iLookAhead;
117981 #ifdef YYERRORSYMBOL
117982   if( i<0 || i>=YY_ACTTAB_COUNT || yy_lookahead[i]!=iLookAhead ){
117983     return yy_default[stateno];
117984   }
117985 #else
117986   assert( i>=0 && i<YY_ACTTAB_COUNT );
117987   assert( yy_lookahead[i]==iLookAhead );
117988 #endif
117989   return yy_action[i];
117990 }
117991 
117992 /*
117993 ** The following routine is called if the stack overflows.
117994 */
117995 static void yyStackOverflow(yyParser *yypParser, YYMINORTYPE *yypMinor){
117996    sqlite3ParserARG_FETCH;
117997    yypParser->yyidx--;
117998 #ifndef NDEBUG
117999    if( yyTraceFILE ){
118000      fprintf(yyTraceFILE,"%sStack Overflow!\n",yyTracePrompt);
118001    }
118002 #endif
118003    while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser);
118004    /* Here code is inserted which will execute if the parser
118005    ** stack every overflows */
118006 
118007   UNUSED_PARAMETER(yypMinor); /* Silence some compiler warnings */
118008   sqlite3ErrorMsg(pParse, "parser stack overflow");
118009    sqlite3ParserARG_STORE; /* Suppress warning about unused %extra_argument var */
118010 }
118011 
118012 /*
118013 ** Perform a shift action.
118014 */
118015 static void yy_shift(
118016   yyParser *yypParser,          /* The parser to be shifted */
118017   int yyNewState,               /* The new state to shift in */
118018   int yyMajor,                  /* The major token to shift in */
118019   YYMINORTYPE *yypMinor         /* Pointer to the minor token to shift in */
118020 ){
118021   yyStackEntry *yytos;
118022   yypParser->yyidx++;
118023 #ifdef YYTRACKMAXSTACKDEPTH
118024   if( yypParser->yyidx>yypParser->yyidxMax ){
118025     yypParser->yyidxMax = yypParser->yyidx;
118026   }
118027 #endif
118028 #if YYSTACKDEPTH>0
118029   if( yypParser->yyidx>=YYSTACKDEPTH ){
118030     yyStackOverflow(yypParser, yypMinor);
118031     return;
118032   }
118033 #else
118034   if( yypParser->yyidx>=yypParser->yystksz ){
118035     yyGrowStack(yypParser);
118036     if( yypParser->yyidx>=yypParser->yystksz ){
118037       yyStackOverflow(yypParser, yypMinor);
118038       return;
118039     }
118040   }
118041 #endif
118042   yytos = &yypParser->yystack[yypParser->yyidx];
118043   yytos->stateno = (YYACTIONTYPE)yyNewState;
118044   yytos->major = (YYCODETYPE)yyMajor;
118045   yytos->minor = *yypMinor;
118046 #ifndef NDEBUG
118047   if( yyTraceFILE && yypParser->yyidx>0 ){
118048     int i;
118049     fprintf(yyTraceFILE,"%sShift %d\n",yyTracePrompt,yyNewState);
118050     fprintf(yyTraceFILE,"%sStack:",yyTracePrompt);
118051     for(i=1; i<=yypParser->yyidx; i++)
118052       fprintf(yyTraceFILE," %s",yyTokenName[yypParser->yystack[i].major]);
118053     fprintf(yyTraceFILE,"\n");
118054   }
118055 #endif
118056 }
118057 
118058 /* The following table contains information about every rule that
118059 ** is used during the reduce.
118060 */
118061 static const struct {
118062   YYCODETYPE lhs;         /* Symbol on the left-hand side of the rule */
118063   unsigned char nrhs;     /* Number of right-hand side symbols in the rule */
118064 } yyRuleInfo[] = {
118065   { 144, 1 },
118066   { 145, 2 },
118067   { 145, 1 },
118068   { 146, 1 },
118069   { 146, 3 },
118070   { 147, 0 },
118071   { 147, 1 },
118072   { 147, 3 },
118073   { 148, 1 },
118074   { 149, 3 },
118075   { 151, 0 },
118076   { 151, 1 },
118077   { 151, 2 },
118078   { 150, 0 },
118079   { 150, 1 },
118080   { 150, 1 },
118081   { 150, 1 },
118082   { 149, 2 },
118083   { 149, 2 },
118084   { 149, 2 },
118085   { 153, 1 },
118086   { 153, 0 },
118087   { 149, 2 },
118088   { 149, 3 },
118089   { 149, 5 },
118090   { 149, 2 },
118091   { 154, 6 },
118092   { 156, 1 },
118093   { 158, 0 },
118094   { 158, 3 },
118095   { 157, 1 },
118096   { 157, 0 },
118097   { 155, 5 },
118098   { 155, 2 },
118099   { 162, 0 },
118100   { 162, 2 },
118101   { 160, 3 },
118102   { 160, 1 },
118103   { 164, 3 },
118104   { 165, 1 },
118105   { 152, 1 },
118106   { 152, 1 },
118107   { 152, 1 },
118108   { 166, 0 },
118109   { 166, 1 },
118110   { 168, 1 },
118111   { 168, 4 },
118112   { 168, 6 },
118113   { 169, 1 },
118114   { 169, 2 },
118115   { 170, 1 },
118116   { 170, 1 },
118117   { 167, 2 },
118118   { 167, 0 },
118119   { 173, 2 },
118120   { 173, 2 },
118121   { 173, 4 },
118122   { 173, 3 },
118123   { 173, 3 },
118124   { 173, 2 },
118125   { 173, 2 },
118126   { 173, 3 },
118127   { 173, 5 },
118128   { 173, 2 },
118129   { 173, 4 },
118130   { 173, 4 },
118131   { 173, 1 },
118132   { 173, 2 },
118133   { 178, 0 },
118134   { 178, 1 },
118135   { 180, 0 },
118136   { 180, 2 },
118137   { 182, 2 },
118138   { 182, 3 },
118139   { 182, 3 },
118140   { 182, 3 },
118141   { 183, 2 },
118142   { 183, 2 },
118143   { 183, 1 },
118144   { 183, 1 },
118145   { 183, 2 },
118146   { 181, 3 },
118147   { 181, 2 },
118148   { 184, 0 },
118149   { 184, 2 },
118150   { 184, 2 },
118151   { 161, 0 },
118152   { 161, 2 },
118153   { 185, 3 },
118154   { 185, 1 },
118155   { 186, 1 },
118156   { 186, 0 },
118157   { 187, 2 },
118158   { 187, 7 },
118159   { 187, 5 },
118160   { 187, 5 },
118161   { 187, 10 },
118162   { 189, 0 },
118163   { 189, 1 },
118164   { 176, 0 },
118165   { 176, 3 },
118166   { 190, 0 },
118167   { 190, 2 },
118168   { 191, 1 },
118169   { 191, 1 },
118170   { 191, 1 },
118171   { 149, 4 },
118172   { 193, 2 },
118173   { 193, 0 },
118174   { 149, 8 },
118175   { 149, 4 },
118176   { 149, 1 },
118177   { 163, 2 },
118178   { 195, 1 },
118179   { 195, 3 },
118180   { 198, 1 },
118181   { 198, 2 },
118182   { 198, 1 },
118183   { 196, 9 },
118184   { 196, 1 },
118185   { 207, 4 },
118186   { 207, 5 },
118187   { 199, 1 },
118188   { 199, 1 },
118189   { 199, 0 },
118190   { 210, 2 },
118191   { 210, 0 },
118192   { 200, 3 },
118193   { 200, 2 },
118194   { 200, 4 },
118195   { 211, 2 },
118196   { 211, 1 },
118197   { 211, 0 },
118198   { 201, 0 },
118199   { 201, 2 },
118200   { 213, 2 },
118201   { 213, 0 },
118202   { 212, 7 },
118203   { 212, 7 },
118204   { 212, 7 },
118205   { 159, 0 },
118206   { 159, 2 },
118207   { 194, 2 },
118208   { 214, 1 },
118209   { 214, 2 },
118210   { 214, 3 },
118211   { 214, 4 },
118212   { 216, 2 },
118213   { 216, 0 },
118214   { 215, 0 },
118215   { 215, 3 },
118216   { 215, 2 },
118217   { 217, 4 },
118218   { 217, 0 },
118219   { 205, 0 },
118220   { 205, 3 },
118221   { 220, 4 },
118222   { 220, 2 },
118223   { 177, 1 },
118224   { 177, 1 },
118225   { 177, 0 },
118226   { 203, 0 },
118227   { 203, 3 },
118228   { 204, 0 },
118229   { 204, 2 },
118230   { 206, 0 },
118231   { 206, 2 },
118232   { 206, 4 },
118233   { 206, 4 },
118234   { 149, 6 },
118235   { 202, 0 },
118236   { 202, 2 },
118237   { 149, 8 },
118238   { 221, 5 },
118239   { 221, 3 },
118240   { 149, 6 },
118241   { 149, 7 },
118242   { 222, 2 },
118243   { 222, 1 },
118244   { 223, 0 },
118245   { 223, 3 },
118246   { 219, 3 },
118247   { 219, 1 },
118248   { 175, 1 },
118249   { 175, 3 },
118250   { 174, 1 },
118251   { 175, 1 },
118252   { 175, 1 },
118253   { 175, 3 },
118254   { 175, 5 },
118255   { 174, 1 },
118256   { 174, 1 },
118257   { 175, 1 },
118258   { 175, 3 },
118259   { 175, 6 },
118260   { 175, 5 },
118261   { 175, 4 },
118262   { 174, 1 },
118263   { 175, 3 },
118264   { 175, 3 },
118265   { 175, 3 },
118266   { 175, 3 },
118267   { 175, 3 },
118268   { 175, 3 },
118269   { 175, 3 },
118270   { 175, 3 },
118271   { 224, 1 },
118272   { 224, 2 },
118273   { 175, 3 },
118274   { 175, 5 },
118275   { 175, 2 },
118276   { 175, 3 },
118277   { 175, 3 },
118278   { 175, 4 },
118279   { 175, 2 },
118280   { 175, 2 },
118281   { 175, 2 },
118282   { 175, 2 },
118283   { 225, 1 },
118284   { 225, 2 },
118285   { 175, 5 },
118286   { 226, 1 },
118287   { 226, 2 },
118288   { 175, 5 },
118289   { 175, 3 },
118290   { 175, 5 },
118291   { 175, 4 },
118292   { 175, 4 },
118293   { 175, 5 },
118294   { 228, 5 },
118295   { 228, 4 },
118296   { 229, 2 },
118297   { 229, 0 },
118298   { 227, 1 },
118299   { 227, 0 },
118300   { 209, 1 },
118301   { 209, 0 },
118302   { 208, 3 },
118303   { 208, 1 },
118304   { 149, 12 },
118305   { 230, 1 },
118306   { 230, 0 },
118307   { 179, 0 },
118308   { 179, 3 },
118309   { 188, 5 },
118310   { 188, 3 },
118311   { 231, 0 },
118312   { 231, 2 },
118313   { 149, 4 },
118314   { 149, 1 },
118315   { 149, 2 },
118316   { 149, 3 },
118317   { 149, 5 },
118318   { 149, 6 },
118319   { 149, 5 },
118320   { 149, 6 },
118321   { 232, 1 },
118322   { 232, 1 },
118323   { 232, 1 },
118324   { 232, 1 },
118325   { 232, 1 },
118326   { 171, 2 },
118327   { 171, 1 },
118328   { 172, 2 },
118329   { 149, 5 },
118330   { 233, 11 },
118331   { 235, 1 },
118332   { 235, 1 },
118333   { 235, 2 },
118334   { 235, 0 },
118335   { 236, 1 },
118336   { 236, 1 },
118337   { 236, 3 },
118338   { 237, 0 },
118339   { 237, 3 },
118340   { 238, 0 },
118341   { 238, 2 },
118342   { 234, 3 },
118343   { 234, 2 },
118344   { 240, 1 },
118345   { 240, 3 },
118346   { 241, 0 },
118347   { 241, 3 },
118348   { 241, 2 },
118349   { 239, 7 },
118350   { 239, 5 },
118351   { 239, 5 },
118352   { 239, 1 },
118353   { 175, 4 },
118354   { 175, 6 },
118355   { 192, 1 },
118356   { 192, 1 },
118357   { 192, 1 },
118358   { 149, 4 },
118359   { 149, 6 },
118360   { 149, 3 },
118361   { 243, 0 },
118362   { 243, 2 },
118363   { 242, 1 },
118364   { 242, 0 },
118365   { 149, 1 },
118366   { 149, 3 },
118367   { 149, 1 },
118368   { 149, 3 },
118369   { 149, 6 },
118370   { 149, 6 },
118371   { 244, 1 },
118372   { 245, 0 },
118373   { 245, 1 },
118374   { 149, 1 },
118375   { 149, 4 },
118376   { 246, 8 },
118377   { 247, 1 },
118378   { 247, 3 },
118379   { 248, 0 },
118380   { 248, 2 },
118381   { 249, 1 },
118382   { 249, 3 },
118383   { 250, 1 },
118384   { 251, 0 },
118385   { 251, 4 },
118386   { 251, 2 },
118387   { 197, 0 },
118388   { 197, 2 },
118389   { 197, 3 },
118390   { 252, 6 },
118391   { 252, 8 },
118392 };
118393 
118394 static void yy_accept(yyParser*);  /* Forward Declaration */
118395 
118396 /*
118397 ** Perform a reduce action and the shift that must immediately
118398 ** follow the reduce.
118399 */
118400 static void yy_reduce(
118401   yyParser *yypParser,         /* The parser */
118402   int yyruleno                 /* Number of the rule by which to reduce */
118403 ){
118404   int yygoto;                     /* The next state */
118405   int yyact;                      /* The next action */
118406   YYMINORTYPE yygotominor;        /* The LHS of the rule reduced */
118407   yyStackEntry *yymsp;            /* The top of the parser's stack */
118408   int yysize;                     /* Amount to pop the stack */
118409   sqlite3ParserARG_FETCH;
118410   yymsp = &yypParser->yystack[yypParser->yyidx];
118411 #ifndef NDEBUG
118412   if( yyTraceFILE && yyruleno>=0
118413         && yyruleno<(int)(sizeof(yyRuleName)/sizeof(yyRuleName[0])) ){
118414     fprintf(yyTraceFILE, "%sReduce [%s].\n", yyTracePrompt,
118415       yyRuleName[yyruleno]);
118416   }
118417 #endif /* NDEBUG */
118418 
118419   /* Silence complaints from purify about yygotominor being uninitialized
118420   ** in some cases when it is copied into the stack after the following
118421   ** switch.  yygotominor is uninitialized when a rule reduces that does
118422   ** not set the value of its left-hand side nonterminal.  Leaving the
118423   ** value of the nonterminal uninitialized is utterly harmless as long
118424   ** as the value is never used.  So really the only thing this code
118425   ** accomplishes is to quieten purify.
118426   **
118427   ** 2007-01-16:  The wireshark project (www.wireshark.org) reports that
118428   ** without this code, their parser segfaults.  I'm not sure what there
118429   ** parser is doing to make this happen.  This is the second bug report
118430   ** from wireshark this week.  Clearly they are stressing Lemon in ways
118431   ** that it has not been previously stressed...  (SQLite ticket #2172)
118432   */
118433   /*memset(&yygotominor, 0, sizeof(yygotominor));*/
118434   yygotominor = yyzerominor;
118435 
118436 
118437   switch( yyruleno ){
118438   /* Beginning here are the reduction cases.  A typical example
118439   ** follows:
118440   **   case 0:
118441   **  #line <lineno> <grammarfile>
118442   **     { ... }           // User supplied code
118443   **  #line <lineno> <thisfile>
118444   **     break;
118445   */
118446       case 5: /* explain ::= */
118447 { sqlite3BeginParse(pParse, 0); }
118448         break;
118449       case 6: /* explain ::= EXPLAIN */
118450 { sqlite3BeginParse(pParse, 1); }
118451         break;
118452       case 7: /* explain ::= EXPLAIN QUERY PLAN */
118453 { sqlite3BeginParse(pParse, 2); }
118454         break;
118455       case 8: /* cmdx ::= cmd */
118456 { sqlite3FinishCoding(pParse); }
118457         break;
118458       case 9: /* cmd ::= BEGIN transtype trans_opt */
118459 {sqlite3BeginTransaction(pParse, yymsp[-1].minor.yy328);}
118460         break;
118461       case 13: /* transtype ::= */
118462 {yygotominor.yy328 = TK_DEFERRED;}
118463         break;
118464       case 14: /* transtype ::= DEFERRED */
118465       case 15: /* transtype ::= IMMEDIATE */ yytestcase(yyruleno==15);
118466       case 16: /* transtype ::= EXCLUSIVE */ yytestcase(yyruleno==16);
118467       case 115: /* multiselect_op ::= UNION */ yytestcase(yyruleno==115);
118468       case 117: /* multiselect_op ::= EXCEPT|INTERSECT */ yytestcase(yyruleno==117);
118469 {yygotominor.yy328 = yymsp[0].major;}
118470         break;
118471       case 17: /* cmd ::= COMMIT trans_opt */
118472       case 18: /* cmd ::= END trans_opt */ yytestcase(yyruleno==18);
118473 {sqlite3CommitTransaction(pParse);}
118474         break;
118475       case 19: /* cmd ::= ROLLBACK trans_opt */
118476 {sqlite3RollbackTransaction(pParse);}
118477         break;
118478       case 22: /* cmd ::= SAVEPOINT nm */
118479 {
118480   sqlite3Savepoint(pParse, SAVEPOINT_BEGIN, &yymsp[0].minor.yy0);
118481 }
118482         break;
118483       case 23: /* cmd ::= RELEASE savepoint_opt nm */
118484 {
118485   sqlite3Savepoint(pParse, SAVEPOINT_RELEASE, &yymsp[0].minor.yy0);
118486 }
118487         break;
118488       case 24: /* cmd ::= ROLLBACK trans_opt TO savepoint_opt nm */
118489 {
118490   sqlite3Savepoint(pParse, SAVEPOINT_ROLLBACK, &yymsp[0].minor.yy0);
118491 }
118492         break;
118493       case 26: /* create_table ::= createkw temp TABLE ifnotexists nm dbnm */
118494 {
118495    sqlite3StartTable(pParse,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy0,yymsp[-4].minor.yy328,0,0,yymsp[-2].minor.yy328);
118496 }
118497         break;
118498       case 27: /* createkw ::= CREATE */
118499 {
118500   pParse->db->lookaside.bEnabled = 0;
118501   yygotominor.yy0 = yymsp[0].minor.yy0;
118502 }
118503         break;
118504       case 28: /* ifnotexists ::= */
118505       case 31: /* temp ::= */ yytestcase(yyruleno==31);
118506       case 68: /* autoinc ::= */ yytestcase(yyruleno==68);
118507       case 81: /* defer_subclause ::= NOT DEFERRABLE init_deferred_pred_opt */ yytestcase(yyruleno==81);
118508       case 83: /* init_deferred_pred_opt ::= */ yytestcase(yyruleno==83);
118509       case 85: /* init_deferred_pred_opt ::= INITIALLY IMMEDIATE */ yytestcase(yyruleno==85);
118510       case 97: /* defer_subclause_opt ::= */ yytestcase(yyruleno==97);
118511       case 108: /* ifexists ::= */ yytestcase(yyruleno==108);
118512       case 218: /* between_op ::= BETWEEN */ yytestcase(yyruleno==218);
118513       case 221: /* in_op ::= IN */ yytestcase(yyruleno==221);
118514 {yygotominor.yy328 = 0;}
118515         break;
118516       case 29: /* ifnotexists ::= IF NOT EXISTS */
118517       case 30: /* temp ::= TEMP */ yytestcase(yyruleno==30);
118518       case 69: /* autoinc ::= AUTOINCR */ yytestcase(yyruleno==69);
118519       case 84: /* init_deferred_pred_opt ::= INITIALLY DEFERRED */ yytestcase(yyruleno==84);
118520       case 107: /* ifexists ::= IF EXISTS */ yytestcase(yyruleno==107);
118521       case 219: /* between_op ::= NOT BETWEEN */ yytestcase(yyruleno==219);
118522       case 222: /* in_op ::= NOT IN */ yytestcase(yyruleno==222);
118523 {yygotominor.yy328 = 1;}
118524         break;
118525       case 32: /* create_table_args ::= LP columnlist conslist_opt RP table_options */
118526 {
118527   sqlite3EndTable(pParse,&yymsp[-2].minor.yy0,&yymsp[-1].minor.yy0,yymsp[0].minor.yy186,0);
118528 }
118529         break;
118530       case 33: /* create_table_args ::= AS select */
118531 {
118532   sqlite3EndTable(pParse,0,0,0,yymsp[0].minor.yy3);
118533   sqlite3SelectDelete(pParse->db, yymsp[0].minor.yy3);
118534 }
118535         break;
118536       case 34: /* table_options ::= */
118537 {yygotominor.yy186 = 0;}
118538         break;
118539       case 35: /* table_options ::= WITHOUT nm */
118540 {
118541   if( yymsp[0].minor.yy0.n==5 && sqlite3_strnicmp(yymsp[0].minor.yy0.z,"rowid",5)==0 ){
118542     yygotominor.yy186 = TF_WithoutRowid;
118543   }else{
118544     yygotominor.yy186 = 0;
118545     sqlite3ErrorMsg(pParse, "unknown table option: %.*s", yymsp[0].minor.yy0.n, yymsp[0].minor.yy0.z);
118546   }
118547 }
118548         break;
118549       case 38: /* column ::= columnid type carglist */
118550 {
118551   yygotominor.yy0.z = yymsp[-2].minor.yy0.z;
118552   yygotominor.yy0.n = (int)(pParse->sLastToken.z-yymsp[-2].minor.yy0.z) + pParse->sLastToken.n;
118553 }
118554         break;
118555       case 39: /* columnid ::= nm */
118556 {
118557   sqlite3AddColumn(pParse,&yymsp[0].minor.yy0);
118558   yygotominor.yy0 = yymsp[0].minor.yy0;
118559   pParse->constraintName.n = 0;
118560 }
118561         break;
118562       case 40: /* nm ::= ID|INDEXED */
118563       case 41: /* nm ::= STRING */ yytestcase(yyruleno==41);
118564       case 42: /* nm ::= JOIN_KW */ yytestcase(yyruleno==42);
118565       case 45: /* typetoken ::= typename */ yytestcase(yyruleno==45);
118566       case 48: /* typename ::= ID|STRING */ yytestcase(yyruleno==48);
118567       case 130: /* as ::= AS nm */ yytestcase(yyruleno==130);
118568       case 131: /* as ::= ID|STRING */ yytestcase(yyruleno==131);
118569       case 141: /* dbnm ::= DOT nm */ yytestcase(yyruleno==141);
118570       case 150: /* indexed_opt ::= INDEXED BY nm */ yytestcase(yyruleno==150);
118571       case 247: /* collate ::= COLLATE ID|STRING */ yytestcase(yyruleno==247);
118572       case 256: /* nmnum ::= plus_num */ yytestcase(yyruleno==256);
118573       case 257: /* nmnum ::= nm */ yytestcase(yyruleno==257);
118574       case 258: /* nmnum ::= ON */ yytestcase(yyruleno==258);
118575       case 259: /* nmnum ::= DELETE */ yytestcase(yyruleno==259);
118576       case 260: /* nmnum ::= DEFAULT */ yytestcase(yyruleno==260);
118577       case 261: /* plus_num ::= PLUS INTEGER|FLOAT */ yytestcase(yyruleno==261);
118578       case 262: /* plus_num ::= INTEGER|FLOAT */ yytestcase(yyruleno==262);
118579       case 263: /* minus_num ::= MINUS INTEGER|FLOAT */ yytestcase(yyruleno==263);
118580       case 279: /* trnm ::= nm */ yytestcase(yyruleno==279);
118581 {yygotominor.yy0 = yymsp[0].minor.yy0;}
118582         break;
118583       case 44: /* type ::= typetoken */
118584 {sqlite3AddColumnType(pParse,&yymsp[0].minor.yy0);}
118585         break;
118586       case 46: /* typetoken ::= typename LP signed RP */
118587 {
118588   yygotominor.yy0.z = yymsp[-3].minor.yy0.z;
118589   yygotominor.yy0.n = (int)(&yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n] - yymsp[-3].minor.yy0.z);
118590 }
118591         break;
118592       case 47: /* typetoken ::= typename LP signed COMMA signed RP */
118593 {
118594   yygotominor.yy0.z = yymsp[-5].minor.yy0.z;
118595   yygotominor.yy0.n = (int)(&yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n] - yymsp[-5].minor.yy0.z);
118596 }
118597         break;
118598       case 49: /* typename ::= typename ID|STRING */
118599 {yygotominor.yy0.z=yymsp[-1].minor.yy0.z; yygotominor.yy0.n=yymsp[0].minor.yy0.n+(int)(yymsp[0].minor.yy0.z-yymsp[-1].minor.yy0.z);}
118600         break;
118601       case 54: /* ccons ::= CONSTRAINT nm */
118602       case 92: /* tcons ::= CONSTRAINT nm */ yytestcase(yyruleno==92);
118603 {pParse->constraintName = yymsp[0].minor.yy0;}
118604         break;
118605       case 55: /* ccons ::= DEFAULT term */
118606       case 57: /* ccons ::= DEFAULT PLUS term */ yytestcase(yyruleno==57);
118607 {sqlite3AddDefaultValue(pParse,&yymsp[0].minor.yy346);}
118608         break;
118609       case 56: /* ccons ::= DEFAULT LP expr RP */
118610 {sqlite3AddDefaultValue(pParse,&yymsp[-1].minor.yy346);}
118611         break;
118612       case 58: /* ccons ::= DEFAULT MINUS term */
118613 {
118614   ExprSpan v;
118615   v.pExpr = sqlite3PExpr(pParse, TK_UMINUS, yymsp[0].minor.yy346.pExpr, 0, 0);
118616   v.zStart = yymsp[-1].minor.yy0.z;
118617   v.zEnd = yymsp[0].minor.yy346.zEnd;
118618   sqlite3AddDefaultValue(pParse,&v);
118619 }
118620         break;
118621       case 59: /* ccons ::= DEFAULT ID|INDEXED */
118622 {
118623   ExprSpan v;
118624   spanExpr(&v, pParse, TK_STRING, &yymsp[0].minor.yy0);
118625   sqlite3AddDefaultValue(pParse,&v);
118626 }
118627         break;
118628       case 61: /* ccons ::= NOT NULL onconf */
118629 {sqlite3AddNotNull(pParse, yymsp[0].minor.yy328);}
118630         break;
118631       case 62: /* ccons ::= PRIMARY KEY sortorder onconf autoinc */
118632 {sqlite3AddPrimaryKey(pParse,0,yymsp[-1].minor.yy328,yymsp[0].minor.yy328,yymsp[-2].minor.yy328);}
118633         break;
118634       case 63: /* ccons ::= UNIQUE onconf */
118635 {sqlite3CreateIndex(pParse,0,0,0,0,yymsp[0].minor.yy328,0,0,0,0);}
118636         break;
118637       case 64: /* ccons ::= CHECK LP expr RP */
118638 {sqlite3AddCheckConstraint(pParse,yymsp[-1].minor.yy346.pExpr);}
118639         break;
118640       case 65: /* ccons ::= REFERENCES nm idxlist_opt refargs */
118641 {sqlite3CreateForeignKey(pParse,0,&yymsp[-2].minor.yy0,yymsp[-1].minor.yy14,yymsp[0].minor.yy328);}
118642         break;
118643       case 66: /* ccons ::= defer_subclause */
118644 {sqlite3DeferForeignKey(pParse,yymsp[0].minor.yy328);}
118645         break;
118646       case 67: /* ccons ::= COLLATE ID|STRING */
118647 {sqlite3AddCollateType(pParse, &yymsp[0].minor.yy0);}
118648         break;
118649       case 70: /* refargs ::= */
118650 { yygotominor.yy328 = OE_None*0x0101; /* EV: R-19803-45884 */}
118651         break;
118652       case 71: /* refargs ::= refargs refarg */
118653 { yygotominor.yy328 = (yymsp[-1].minor.yy328 & ~yymsp[0].minor.yy429.mask) | yymsp[0].minor.yy429.value; }
118654         break;
118655       case 72: /* refarg ::= MATCH nm */
118656       case 73: /* refarg ::= ON INSERT refact */ yytestcase(yyruleno==73);
118657 { yygotominor.yy429.value = 0;     yygotominor.yy429.mask = 0x000000; }
118658         break;
118659       case 74: /* refarg ::= ON DELETE refact */
118660 { yygotominor.yy429.value = yymsp[0].minor.yy328;     yygotominor.yy429.mask = 0x0000ff; }
118661         break;
118662       case 75: /* refarg ::= ON UPDATE refact */
118663 { yygotominor.yy429.value = yymsp[0].minor.yy328<<8;  yygotominor.yy429.mask = 0x00ff00; }
118664         break;
118665       case 76: /* refact ::= SET NULL */
118666 { yygotominor.yy328 = OE_SetNull;  /* EV: R-33326-45252 */}
118667         break;
118668       case 77: /* refact ::= SET DEFAULT */
118669 { yygotominor.yy328 = OE_SetDflt;  /* EV: R-33326-45252 */}
118670         break;
118671       case 78: /* refact ::= CASCADE */
118672 { yygotominor.yy328 = OE_Cascade;  /* EV: R-33326-45252 */}
118673         break;
118674       case 79: /* refact ::= RESTRICT */
118675 { yygotominor.yy328 = OE_Restrict; /* EV: R-33326-45252 */}
118676         break;
118677       case 80: /* refact ::= NO ACTION */
118678 { yygotominor.yy328 = OE_None;     /* EV: R-33326-45252 */}
118679         break;
118680       case 82: /* defer_subclause ::= DEFERRABLE init_deferred_pred_opt */
118681       case 98: /* defer_subclause_opt ::= defer_subclause */ yytestcase(yyruleno==98);
118682       case 100: /* onconf ::= ON CONFLICT resolvetype */ yytestcase(yyruleno==100);
118683       case 103: /* resolvetype ::= raisetype */ yytestcase(yyruleno==103);
118684 {yygotominor.yy328 = yymsp[0].minor.yy328;}
118685         break;
118686       case 86: /* conslist_opt ::= */
118687 {yygotominor.yy0.n = 0; yygotominor.yy0.z = 0;}
118688         break;
118689       case 87: /* conslist_opt ::= COMMA conslist */
118690 {yygotominor.yy0 = yymsp[-1].minor.yy0;}
118691         break;
118692       case 90: /* tconscomma ::= COMMA */
118693 {pParse->constraintName.n = 0;}
118694         break;
118695       case 93: /* tcons ::= PRIMARY KEY LP idxlist autoinc RP onconf */
118696 {sqlite3AddPrimaryKey(pParse,yymsp[-3].minor.yy14,yymsp[0].minor.yy328,yymsp[-2].minor.yy328,0);}
118697         break;
118698       case 94: /* tcons ::= UNIQUE LP idxlist RP onconf */
118699 {sqlite3CreateIndex(pParse,0,0,0,yymsp[-2].minor.yy14,yymsp[0].minor.yy328,0,0,0,0);}
118700         break;
118701       case 95: /* tcons ::= CHECK LP expr RP onconf */
118702 {sqlite3AddCheckConstraint(pParse,yymsp[-2].minor.yy346.pExpr);}
118703         break;
118704       case 96: /* tcons ::= FOREIGN KEY LP idxlist RP REFERENCES nm idxlist_opt refargs defer_subclause_opt */
118705 {
118706     sqlite3CreateForeignKey(pParse, yymsp[-6].minor.yy14, &yymsp[-3].minor.yy0, yymsp[-2].minor.yy14, yymsp[-1].minor.yy328);
118707     sqlite3DeferForeignKey(pParse, yymsp[0].minor.yy328);
118708 }
118709         break;
118710       case 99: /* onconf ::= */
118711 {yygotominor.yy328 = OE_Default;}
118712         break;
118713       case 101: /* orconf ::= */
118714 {yygotominor.yy186 = OE_Default;}
118715         break;
118716       case 102: /* orconf ::= OR resolvetype */
118717 {yygotominor.yy186 = (u8)yymsp[0].minor.yy328;}
118718         break;
118719       case 104: /* resolvetype ::= IGNORE */
118720 {yygotominor.yy328 = OE_Ignore;}
118721         break;
118722       case 105: /* resolvetype ::= REPLACE */
118723 {yygotominor.yy328 = OE_Replace;}
118724         break;
118725       case 106: /* cmd ::= DROP TABLE ifexists fullname */
118726 {
118727   sqlite3DropTable(pParse, yymsp[0].minor.yy65, 0, yymsp[-1].minor.yy328);
118728 }
118729         break;
118730       case 109: /* cmd ::= createkw temp VIEW ifnotexists nm dbnm AS select */
118731 {
118732   sqlite3CreateView(pParse, &yymsp[-7].minor.yy0, &yymsp[-3].minor.yy0, &yymsp[-2].minor.yy0, yymsp[0].minor.yy3, yymsp[-6].minor.yy328, yymsp[-4].minor.yy328);
118733 }
118734         break;
118735       case 110: /* cmd ::= DROP VIEW ifexists fullname */
118736 {
118737   sqlite3DropTable(pParse, yymsp[0].minor.yy65, 1, yymsp[-1].minor.yy328);
118738 }
118739         break;
118740       case 111: /* cmd ::= select */
118741 {
118742   SelectDest dest = {SRT_Output, 0, 0, 0, 0, 0};
118743   sqlite3Select(pParse, yymsp[0].minor.yy3, &dest);
118744   sqlite3ExplainBegin(pParse->pVdbe);
118745   sqlite3ExplainSelect(pParse->pVdbe, yymsp[0].minor.yy3);
118746   sqlite3ExplainFinish(pParse->pVdbe);
118747   sqlite3SelectDelete(pParse->db, yymsp[0].minor.yy3);
118748 }
118749         break;
118750       case 112: /* select ::= with selectnowith */
118751 {
118752   Select *p = yymsp[0].minor.yy3, *pNext, *pLoop;
118753   if( p ){
118754     int cnt = 0, mxSelect;
118755     p->pWith = yymsp[-1].minor.yy59;
118756     if( p->pPrior ){
118757       pNext = 0;
118758       for(pLoop=p; pLoop; pNext=pLoop, pLoop=pLoop->pPrior, cnt++){
118759         pLoop->pNext = pNext;
118760         pLoop->selFlags |= SF_Compound;
118761       }
118762       mxSelect = pParse->db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT];
118763       if( mxSelect && cnt>mxSelect ){
118764         sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
118765       }
118766     }
118767   }else{
118768     sqlite3WithDelete(pParse->db, yymsp[-1].minor.yy59);
118769   }
118770   yygotominor.yy3 = p;
118771 }
118772         break;
118773       case 113: /* selectnowith ::= oneselect */
118774       case 119: /* oneselect ::= values */ yytestcase(yyruleno==119);
118775 {yygotominor.yy3 = yymsp[0].minor.yy3;}
118776         break;
118777       case 114: /* selectnowith ::= selectnowith multiselect_op oneselect */
118778 {
118779   Select *pRhs = yymsp[0].minor.yy3;
118780   if( pRhs && pRhs->pPrior ){
118781     SrcList *pFrom;
118782     Token x;
118783     x.n = 0;
118784     pFrom = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&x,pRhs,0,0);
118785     pRhs = sqlite3SelectNew(pParse,0,pFrom,0,0,0,0,0,0,0);
118786   }
118787   if( pRhs ){
118788     pRhs->op = (u8)yymsp[-1].minor.yy328;
118789     pRhs->pPrior = yymsp[-2].minor.yy3;
118790     if( yymsp[-1].minor.yy328!=TK_ALL ) pParse->hasCompound = 1;
118791   }else{
118792     sqlite3SelectDelete(pParse->db, yymsp[-2].minor.yy3);
118793   }
118794   yygotominor.yy3 = pRhs;
118795 }
118796         break;
118797       case 116: /* multiselect_op ::= UNION ALL */
118798 {yygotominor.yy328 = TK_ALL;}
118799         break;
118800       case 118: /* oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt orderby_opt limit_opt */
118801 {
118802   yygotominor.yy3 = sqlite3SelectNew(pParse,yymsp[-6].minor.yy14,yymsp[-5].minor.yy65,yymsp[-4].minor.yy132,yymsp[-3].minor.yy14,yymsp[-2].minor.yy132,yymsp[-1].minor.yy14,yymsp[-7].minor.yy381,yymsp[0].minor.yy476.pLimit,yymsp[0].minor.yy476.pOffset);
118803 }
118804         break;
118805       case 120: /* values ::= VALUES LP nexprlist RP */
118806 {
118807   yygotominor.yy3 = sqlite3SelectNew(pParse,yymsp[-1].minor.yy14,0,0,0,0,0,SF_Values,0,0);
118808 }
118809         break;
118810       case 121: /* values ::= values COMMA LP exprlist RP */
118811 {
118812   Select *pRight = sqlite3SelectNew(pParse,yymsp[-1].minor.yy14,0,0,0,0,0,SF_Values,0,0);
118813   if( pRight ){
118814     pRight->op = TK_ALL;
118815     pRight->pPrior = yymsp[-4].minor.yy3;
118816     yygotominor.yy3 = pRight;
118817   }else{
118818     yygotominor.yy3 = yymsp[-4].minor.yy3;
118819   }
118820 }
118821         break;
118822       case 122: /* distinct ::= DISTINCT */
118823 {yygotominor.yy381 = SF_Distinct;}
118824         break;
118825       case 123: /* distinct ::= ALL */
118826       case 124: /* distinct ::= */ yytestcase(yyruleno==124);
118827 {yygotominor.yy381 = 0;}
118828         break;
118829       case 125: /* sclp ::= selcollist COMMA */
118830       case 243: /* idxlist_opt ::= LP idxlist RP */ yytestcase(yyruleno==243);
118831 {yygotominor.yy14 = yymsp[-1].minor.yy14;}
118832         break;
118833       case 126: /* sclp ::= */
118834       case 154: /* orderby_opt ::= */ yytestcase(yyruleno==154);
118835       case 161: /* groupby_opt ::= */ yytestcase(yyruleno==161);
118836       case 236: /* exprlist ::= */ yytestcase(yyruleno==236);
118837       case 242: /* idxlist_opt ::= */ yytestcase(yyruleno==242);
118838 {yygotominor.yy14 = 0;}
118839         break;
118840       case 127: /* selcollist ::= sclp expr as */
118841 {
118842    yygotominor.yy14 = sqlite3ExprListAppend(pParse, yymsp[-2].minor.yy14, yymsp[-1].minor.yy346.pExpr);
118843    if( yymsp[0].minor.yy0.n>0 ) sqlite3ExprListSetName(pParse, yygotominor.yy14, &yymsp[0].minor.yy0, 1);
118844    sqlite3ExprListSetSpan(pParse,yygotominor.yy14,&yymsp[-1].minor.yy346);
118845 }
118846         break;
118847       case 128: /* selcollist ::= sclp STAR */
118848 {
118849   Expr *p = sqlite3Expr(pParse->db, TK_ALL, 0);
118850   yygotominor.yy14 = sqlite3ExprListAppend(pParse, yymsp[-1].minor.yy14, p);
118851 }
118852         break;
118853       case 129: /* selcollist ::= sclp nm DOT STAR */
118854 {
118855   Expr *pRight = sqlite3PExpr(pParse, TK_ALL, 0, 0, &yymsp[0].minor.yy0);
118856   Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[-2].minor.yy0);
118857   Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
118858   yygotominor.yy14 = sqlite3ExprListAppend(pParse,yymsp[-3].minor.yy14, pDot);
118859 }
118860         break;
118861       case 132: /* as ::= */
118862 {yygotominor.yy0.n = 0;}
118863         break;
118864       case 133: /* from ::= */
118865 {yygotominor.yy65 = sqlite3DbMallocZero(pParse->db, sizeof(*yygotominor.yy65));}
118866         break;
118867       case 134: /* from ::= FROM seltablist */
118868 {
118869   yygotominor.yy65 = yymsp[0].minor.yy65;
118870   sqlite3SrcListShiftJoinType(yygotominor.yy65);
118871 }
118872         break;
118873       case 135: /* stl_prefix ::= seltablist joinop */
118874 {
118875    yygotominor.yy65 = yymsp[-1].minor.yy65;
118876    if( ALWAYS(yygotominor.yy65 && yygotominor.yy65->nSrc>0) ) yygotominor.yy65->a[yygotominor.yy65->nSrc-1].jointype = (u8)yymsp[0].minor.yy328;
118877 }
118878         break;
118879       case 136: /* stl_prefix ::= */
118880 {yygotominor.yy65 = 0;}
118881         break;
118882       case 137: /* seltablist ::= stl_prefix nm dbnm as indexed_opt on_opt using_opt */
118883 {
118884   yygotominor.yy65 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-6].minor.yy65,&yymsp[-5].minor.yy0,&yymsp[-4].minor.yy0,&yymsp[-3].minor.yy0,0,yymsp[-1].minor.yy132,yymsp[0].minor.yy408);
118885   sqlite3SrcListIndexedBy(pParse, yygotominor.yy65, &yymsp[-2].minor.yy0);
118886 }
118887         break;
118888       case 138: /* seltablist ::= stl_prefix LP select RP as on_opt using_opt */
118889 {
118890     yygotominor.yy65 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-6].minor.yy65,0,0,&yymsp[-2].minor.yy0,yymsp[-4].minor.yy3,yymsp[-1].minor.yy132,yymsp[0].minor.yy408);
118891   }
118892         break;
118893       case 139: /* seltablist ::= stl_prefix LP seltablist RP as on_opt using_opt */
118894 {
118895     if( yymsp[-6].minor.yy65==0 && yymsp[-2].minor.yy0.n==0 && yymsp[-1].minor.yy132==0 && yymsp[0].minor.yy408==0 ){
118896       yygotominor.yy65 = yymsp[-4].minor.yy65;
118897     }else if( yymsp[-4].minor.yy65->nSrc==1 ){
118898       yygotominor.yy65 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-6].minor.yy65,0,0,&yymsp[-2].minor.yy0,0,yymsp[-1].minor.yy132,yymsp[0].minor.yy408);
118899       if( yygotominor.yy65 ){
118900         struct SrcList_item *pNew = &yygotominor.yy65->a[yygotominor.yy65->nSrc-1];
118901         struct SrcList_item *pOld = yymsp[-4].minor.yy65->a;
118902         pNew->zName = pOld->zName;
118903         pNew->zDatabase = pOld->zDatabase;
118904         pNew->pSelect = pOld->pSelect;
118905         pOld->zName = pOld->zDatabase = 0;
118906         pOld->pSelect = 0;
118907       }
118908       sqlite3SrcListDelete(pParse->db, yymsp[-4].minor.yy65);
118909     }else{
118910       Select *pSubquery;
118911       sqlite3SrcListShiftJoinType(yymsp[-4].minor.yy65);
118912       pSubquery = sqlite3SelectNew(pParse,0,yymsp[-4].minor.yy65,0,0,0,0,SF_NestedFrom,0,0);
118913       yygotominor.yy65 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-6].minor.yy65,0,0,&yymsp[-2].minor.yy0,pSubquery,yymsp[-1].minor.yy132,yymsp[0].minor.yy408);
118914     }
118915   }
118916         break;
118917       case 140: /* dbnm ::= */
118918       case 149: /* indexed_opt ::= */ yytestcase(yyruleno==149);
118919 {yygotominor.yy0.z=0; yygotominor.yy0.n=0;}
118920         break;
118921       case 142: /* fullname ::= nm dbnm */
118922 {yygotominor.yy65 = sqlite3SrcListAppend(pParse->db,0,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy0);}
118923         break;
118924       case 143: /* joinop ::= COMMA|JOIN */
118925 { yygotominor.yy328 = JT_INNER; }
118926         break;
118927       case 144: /* joinop ::= JOIN_KW JOIN */
118928 { yygotominor.yy328 = sqlite3JoinType(pParse,&yymsp[-1].minor.yy0,0,0); }
118929         break;
118930       case 145: /* joinop ::= JOIN_KW nm JOIN */
118931 { yygotominor.yy328 = sqlite3JoinType(pParse,&yymsp[-2].minor.yy0,&yymsp[-1].minor.yy0,0); }
118932         break;
118933       case 146: /* joinop ::= JOIN_KW nm nm JOIN */
118934 { yygotominor.yy328 = sqlite3JoinType(pParse,&yymsp[-3].minor.yy0,&yymsp[-2].minor.yy0,&yymsp[-1].minor.yy0); }
118935         break;
118936       case 147: /* on_opt ::= ON expr */
118937       case 164: /* having_opt ::= HAVING expr */ yytestcase(yyruleno==164);
118938       case 171: /* where_opt ::= WHERE expr */ yytestcase(yyruleno==171);
118939       case 231: /* case_else ::= ELSE expr */ yytestcase(yyruleno==231);
118940       case 233: /* case_operand ::= expr */ yytestcase(yyruleno==233);
118941 {yygotominor.yy132 = yymsp[0].minor.yy346.pExpr;}
118942         break;
118943       case 148: /* on_opt ::= */
118944       case 163: /* having_opt ::= */ yytestcase(yyruleno==163);
118945       case 170: /* where_opt ::= */ yytestcase(yyruleno==170);
118946       case 232: /* case_else ::= */ yytestcase(yyruleno==232);
118947       case 234: /* case_operand ::= */ yytestcase(yyruleno==234);
118948 {yygotominor.yy132 = 0;}
118949         break;
118950       case 151: /* indexed_opt ::= NOT INDEXED */
118951 {yygotominor.yy0.z=0; yygotominor.yy0.n=1;}
118952         break;
118953       case 152: /* using_opt ::= USING LP idlist RP */
118954       case 180: /* inscollist_opt ::= LP idlist RP */ yytestcase(yyruleno==180);
118955 {yygotominor.yy408 = yymsp[-1].minor.yy408;}
118956         break;
118957       case 153: /* using_opt ::= */
118958       case 179: /* inscollist_opt ::= */ yytestcase(yyruleno==179);
118959 {yygotominor.yy408 = 0;}
118960         break;
118961       case 155: /* orderby_opt ::= ORDER BY sortlist */
118962       case 162: /* groupby_opt ::= GROUP BY nexprlist */ yytestcase(yyruleno==162);
118963       case 235: /* exprlist ::= nexprlist */ yytestcase(yyruleno==235);
118964 {yygotominor.yy14 = yymsp[0].minor.yy14;}
118965         break;
118966       case 156: /* sortlist ::= sortlist COMMA expr sortorder */
118967 {
118968   yygotominor.yy14 = sqlite3ExprListAppend(pParse,yymsp[-3].minor.yy14,yymsp[-1].minor.yy346.pExpr);
118969   if( yygotominor.yy14 ) yygotominor.yy14->a[yygotominor.yy14->nExpr-1].sortOrder = (u8)yymsp[0].minor.yy328;
118970 }
118971         break;
118972       case 157: /* sortlist ::= expr sortorder */
118973 {
118974   yygotominor.yy14 = sqlite3ExprListAppend(pParse,0,yymsp[-1].minor.yy346.pExpr);
118975   if( yygotominor.yy14 && ALWAYS(yygotominor.yy14->a) ) yygotominor.yy14->a[0].sortOrder = (u8)yymsp[0].minor.yy328;
118976 }
118977         break;
118978       case 158: /* sortorder ::= ASC */
118979       case 160: /* sortorder ::= */ yytestcase(yyruleno==160);
118980 {yygotominor.yy328 = SQLITE_SO_ASC;}
118981         break;
118982       case 159: /* sortorder ::= DESC */
118983 {yygotominor.yy328 = SQLITE_SO_DESC;}
118984         break;
118985       case 165: /* limit_opt ::= */
118986 {yygotominor.yy476.pLimit = 0; yygotominor.yy476.pOffset = 0;}
118987         break;
118988       case 166: /* limit_opt ::= LIMIT expr */
118989 {yygotominor.yy476.pLimit = yymsp[0].minor.yy346.pExpr; yygotominor.yy476.pOffset = 0;}
118990         break;
118991       case 167: /* limit_opt ::= LIMIT expr OFFSET expr */
118992 {yygotominor.yy476.pLimit = yymsp[-2].minor.yy346.pExpr; yygotominor.yy476.pOffset = yymsp[0].minor.yy346.pExpr;}
118993         break;
118994       case 168: /* limit_opt ::= LIMIT expr COMMA expr */
118995 {yygotominor.yy476.pOffset = yymsp[-2].minor.yy346.pExpr; yygotominor.yy476.pLimit = yymsp[0].minor.yy346.pExpr;}
118996         break;
118997       case 169: /* cmd ::= with DELETE FROM fullname indexed_opt where_opt */
118998 {
118999   sqlite3WithPush(pParse, yymsp[-5].minor.yy59, 1);
119000   sqlite3SrcListIndexedBy(pParse, yymsp[-2].minor.yy65, &yymsp[-1].minor.yy0);
119001   sqlite3DeleteFrom(pParse,yymsp[-2].minor.yy65,yymsp[0].minor.yy132);
119002 }
119003         break;
119004       case 172: /* cmd ::= with UPDATE orconf fullname indexed_opt SET setlist where_opt */
119005 {
119006   sqlite3WithPush(pParse, yymsp[-7].minor.yy59, 1);
119007   sqlite3SrcListIndexedBy(pParse, yymsp[-4].minor.yy65, &yymsp[-3].minor.yy0);
119008   sqlite3ExprListCheckLength(pParse,yymsp[-1].minor.yy14,"set list");
119009   sqlite3Update(pParse,yymsp[-4].minor.yy65,yymsp[-1].minor.yy14,yymsp[0].minor.yy132,yymsp[-5].minor.yy186);
119010 }
119011         break;
119012       case 173: /* setlist ::= setlist COMMA nm EQ expr */
119013 {
119014   yygotominor.yy14 = sqlite3ExprListAppend(pParse, yymsp[-4].minor.yy14, yymsp[0].minor.yy346.pExpr);
119015   sqlite3ExprListSetName(pParse, yygotominor.yy14, &yymsp[-2].minor.yy0, 1);
119016 }
119017         break;
119018       case 174: /* setlist ::= nm EQ expr */
119019 {
119020   yygotominor.yy14 = sqlite3ExprListAppend(pParse, 0, yymsp[0].minor.yy346.pExpr);
119021   sqlite3ExprListSetName(pParse, yygotominor.yy14, &yymsp[-2].minor.yy0, 1);
119022 }
119023         break;
119024       case 175: /* cmd ::= with insert_cmd INTO fullname inscollist_opt select */
119025 {
119026   sqlite3WithPush(pParse, yymsp[-5].minor.yy59, 1);
119027   sqlite3Insert(pParse, yymsp[-2].minor.yy65, yymsp[0].minor.yy3, yymsp[-1].minor.yy408, yymsp[-4].minor.yy186);
119028 }
119029         break;
119030       case 176: /* cmd ::= with insert_cmd INTO fullname inscollist_opt DEFAULT VALUES */
119031 {
119032   sqlite3WithPush(pParse, yymsp[-6].minor.yy59, 1);
119033   sqlite3Insert(pParse, yymsp[-3].minor.yy65, 0, yymsp[-2].minor.yy408, yymsp[-5].minor.yy186);
119034 }
119035         break;
119036       case 177: /* insert_cmd ::= INSERT orconf */
119037 {yygotominor.yy186 = yymsp[0].minor.yy186;}
119038         break;
119039       case 178: /* insert_cmd ::= REPLACE */
119040 {yygotominor.yy186 = OE_Replace;}
119041         break;
119042       case 181: /* idlist ::= idlist COMMA nm */
119043 {yygotominor.yy408 = sqlite3IdListAppend(pParse->db,yymsp[-2].minor.yy408,&yymsp[0].minor.yy0);}
119044         break;
119045       case 182: /* idlist ::= nm */
119046 {yygotominor.yy408 = sqlite3IdListAppend(pParse->db,0,&yymsp[0].minor.yy0);}
119047         break;
119048       case 183: /* expr ::= term */
119049 {yygotominor.yy346 = yymsp[0].minor.yy346;}
119050         break;
119051       case 184: /* expr ::= LP expr RP */
119052 {yygotominor.yy346.pExpr = yymsp[-1].minor.yy346.pExpr; spanSet(&yygotominor.yy346,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0);}
119053         break;
119054       case 185: /* term ::= NULL */
119055       case 190: /* term ::= INTEGER|FLOAT|BLOB */ yytestcase(yyruleno==190);
119056       case 191: /* term ::= STRING */ yytestcase(yyruleno==191);
119057 {spanExpr(&yygotominor.yy346, pParse, yymsp[0].major, &yymsp[0].minor.yy0);}
119058         break;
119059       case 186: /* expr ::= ID|INDEXED */
119060       case 187: /* expr ::= JOIN_KW */ yytestcase(yyruleno==187);
119061 {spanExpr(&yygotominor.yy346, pParse, TK_ID, &yymsp[0].minor.yy0);}
119062         break;
119063       case 188: /* expr ::= nm DOT nm */
119064 {
119065   Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[-2].minor.yy0);
119066   Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[0].minor.yy0);
119067   yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp2, 0);
119068   spanSet(&yygotominor.yy346,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0);
119069 }
119070         break;
119071       case 189: /* expr ::= nm DOT nm DOT nm */
119072 {
119073   Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[-4].minor.yy0);
119074   Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[-2].minor.yy0);
119075   Expr *temp3 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[0].minor.yy0);
119076   Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3, 0);
119077   yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp4, 0);
119078   spanSet(&yygotominor.yy346,&yymsp[-4].minor.yy0,&yymsp[0].minor.yy0);
119079 }
119080         break;
119081       case 192: /* expr ::= VARIABLE */
119082 {
119083   if( yymsp[0].minor.yy0.n>=2 && yymsp[0].minor.yy0.z[0]=='#' && sqlite3Isdigit(yymsp[0].minor.yy0.z[1]) ){
119084     /* When doing a nested parse, one can include terms in an expression
119085     ** that look like this:   #1 #2 ...  These terms refer to registers
119086     ** in the virtual machine.  #N is the N-th register. */
119087     if( pParse->nested==0 ){
119088       sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &yymsp[0].minor.yy0);
119089       yygotominor.yy346.pExpr = 0;
119090     }else{
119091       yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, &yymsp[0].minor.yy0);
119092       if( yygotominor.yy346.pExpr ) sqlite3GetInt32(&yymsp[0].minor.yy0.z[1], &yygotominor.yy346.pExpr->iTable);
119093     }
119094   }else{
119095     spanExpr(&yygotominor.yy346, pParse, TK_VARIABLE, &yymsp[0].minor.yy0);
119096     sqlite3ExprAssignVarNumber(pParse, yygotominor.yy346.pExpr);
119097   }
119098   spanSet(&yygotominor.yy346, &yymsp[0].minor.yy0, &yymsp[0].minor.yy0);
119099 }
119100         break;
119101       case 193: /* expr ::= expr COLLATE ID|STRING */
119102 {
119103   yygotominor.yy346.pExpr = sqlite3ExprAddCollateToken(pParse, yymsp[-2].minor.yy346.pExpr, &yymsp[0].minor.yy0);
119104   yygotominor.yy346.zStart = yymsp[-2].minor.yy346.zStart;
119105   yygotominor.yy346.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n];
119106 }
119107         break;
119108       case 194: /* expr ::= CAST LP expr AS typetoken RP */
119109 {
119110   yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_CAST, yymsp[-3].minor.yy346.pExpr, 0, &yymsp[-1].minor.yy0);
119111   spanSet(&yygotominor.yy346,&yymsp[-5].minor.yy0,&yymsp[0].minor.yy0);
119112 }
119113         break;
119114       case 195: /* expr ::= ID|INDEXED LP distinct exprlist RP */
119115 {
119116   if( yymsp[-1].minor.yy14 && yymsp[-1].minor.yy14->nExpr>pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){
119117     sqlite3ErrorMsg(pParse, "too many arguments on function %T", &yymsp[-4].minor.yy0);
119118   }
119119   yygotominor.yy346.pExpr = sqlite3ExprFunction(pParse, yymsp[-1].minor.yy14, &yymsp[-4].minor.yy0);
119120   spanSet(&yygotominor.yy346,&yymsp[-4].minor.yy0,&yymsp[0].minor.yy0);
119121   if( yymsp[-2].minor.yy381 && yygotominor.yy346.pExpr ){
119122     yygotominor.yy346.pExpr->flags |= EP_Distinct;
119123   }
119124 }
119125         break;
119126       case 196: /* expr ::= ID|INDEXED LP STAR RP */
119127 {
119128   yygotominor.yy346.pExpr = sqlite3ExprFunction(pParse, 0, &yymsp[-3].minor.yy0);
119129   spanSet(&yygotominor.yy346,&yymsp[-3].minor.yy0,&yymsp[0].minor.yy0);
119130 }
119131         break;
119132       case 197: /* term ::= CTIME_KW */
119133 {
119134   yygotominor.yy346.pExpr = sqlite3ExprFunction(pParse, 0, &yymsp[0].minor.yy0);
119135   spanSet(&yygotominor.yy346, &yymsp[0].minor.yy0, &yymsp[0].minor.yy0);
119136 }
119137         break;
119138       case 198: /* expr ::= expr AND expr */
119139       case 199: /* expr ::= expr OR expr */ yytestcase(yyruleno==199);
119140       case 200: /* expr ::= expr LT|GT|GE|LE expr */ yytestcase(yyruleno==200);
119141       case 201: /* expr ::= expr EQ|NE expr */ yytestcase(yyruleno==201);
119142       case 202: /* expr ::= expr BITAND|BITOR|LSHIFT|RSHIFT expr */ yytestcase(yyruleno==202);
119143       case 203: /* expr ::= expr PLUS|MINUS expr */ yytestcase(yyruleno==203);
119144       case 204: /* expr ::= expr STAR|SLASH|REM expr */ yytestcase(yyruleno==204);
119145       case 205: /* expr ::= expr CONCAT expr */ yytestcase(yyruleno==205);
119146 {spanBinaryExpr(&yygotominor.yy346,pParse,yymsp[-1].major,&yymsp[-2].minor.yy346,&yymsp[0].minor.yy346);}
119147         break;
119148       case 206: /* likeop ::= LIKE_KW|MATCH */
119149 {yygotominor.yy96.eOperator = yymsp[0].minor.yy0; yygotominor.yy96.bNot = 0;}
119150         break;
119151       case 207: /* likeop ::= NOT LIKE_KW|MATCH */
119152 {yygotominor.yy96.eOperator = yymsp[0].minor.yy0; yygotominor.yy96.bNot = 1;}
119153         break;
119154       case 208: /* expr ::= expr likeop expr */
119155 {
119156   ExprList *pList;
119157   pList = sqlite3ExprListAppend(pParse,0, yymsp[0].minor.yy346.pExpr);
119158   pList = sqlite3ExprListAppend(pParse,pList, yymsp[-2].minor.yy346.pExpr);
119159   yygotominor.yy346.pExpr = sqlite3ExprFunction(pParse, pList, &yymsp[-1].minor.yy96.eOperator);
119160   if( yymsp[-1].minor.yy96.bNot ) yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy346.pExpr, 0, 0);
119161   yygotominor.yy346.zStart = yymsp[-2].minor.yy346.zStart;
119162   yygotominor.yy346.zEnd = yymsp[0].minor.yy346.zEnd;
119163   if( yygotominor.yy346.pExpr ) yygotominor.yy346.pExpr->flags |= EP_InfixFunc;
119164 }
119165         break;
119166       case 209: /* expr ::= expr likeop expr ESCAPE expr */
119167 {
119168   ExprList *pList;
119169   pList = sqlite3ExprListAppend(pParse,0, yymsp[-2].minor.yy346.pExpr);
119170   pList = sqlite3ExprListAppend(pParse,pList, yymsp[-4].minor.yy346.pExpr);
119171   pList = sqlite3ExprListAppend(pParse,pList, yymsp[0].minor.yy346.pExpr);
119172   yygotominor.yy346.pExpr = sqlite3ExprFunction(pParse, pList, &yymsp[-3].minor.yy96.eOperator);
119173   if( yymsp[-3].minor.yy96.bNot ) yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy346.pExpr, 0, 0);
119174   yygotominor.yy346.zStart = yymsp[-4].minor.yy346.zStart;
119175   yygotominor.yy346.zEnd = yymsp[0].minor.yy346.zEnd;
119176   if( yygotominor.yy346.pExpr ) yygotominor.yy346.pExpr->flags |= EP_InfixFunc;
119177 }
119178         break;
119179       case 210: /* expr ::= expr ISNULL|NOTNULL */
119180 {spanUnaryPostfix(&yygotominor.yy346,pParse,yymsp[0].major,&yymsp[-1].minor.yy346,&yymsp[0].minor.yy0);}
119181         break;
119182       case 211: /* expr ::= expr NOT NULL */
119183 {spanUnaryPostfix(&yygotominor.yy346,pParse,TK_NOTNULL,&yymsp[-2].minor.yy346,&yymsp[0].minor.yy0);}
119184         break;
119185       case 212: /* expr ::= expr IS expr */
119186 {
119187   spanBinaryExpr(&yygotominor.yy346,pParse,TK_IS,&yymsp[-2].minor.yy346,&yymsp[0].minor.yy346);
119188   binaryToUnaryIfNull(pParse, yymsp[0].minor.yy346.pExpr, yygotominor.yy346.pExpr, TK_ISNULL);
119189 }
119190         break;
119191       case 213: /* expr ::= expr IS NOT expr */
119192 {
119193   spanBinaryExpr(&yygotominor.yy346,pParse,TK_ISNOT,&yymsp[-3].minor.yy346,&yymsp[0].minor.yy346);
119194   binaryToUnaryIfNull(pParse, yymsp[0].minor.yy346.pExpr, yygotominor.yy346.pExpr, TK_NOTNULL);
119195 }
119196         break;
119197       case 214: /* expr ::= NOT expr */
119198       case 215: /* expr ::= BITNOT expr */ yytestcase(yyruleno==215);
119199 {spanUnaryPrefix(&yygotominor.yy346,pParse,yymsp[-1].major,&yymsp[0].minor.yy346,&yymsp[-1].minor.yy0);}
119200         break;
119201       case 216: /* expr ::= MINUS expr */
119202 {spanUnaryPrefix(&yygotominor.yy346,pParse,TK_UMINUS,&yymsp[0].minor.yy346,&yymsp[-1].minor.yy0);}
119203         break;
119204       case 217: /* expr ::= PLUS expr */
119205 {spanUnaryPrefix(&yygotominor.yy346,pParse,TK_UPLUS,&yymsp[0].minor.yy346,&yymsp[-1].minor.yy0);}
119206         break;
119207       case 220: /* expr ::= expr between_op expr AND expr */
119208 {
119209   ExprList *pList = sqlite3ExprListAppend(pParse,0, yymsp[-2].minor.yy346.pExpr);
119210   pList = sqlite3ExprListAppend(pParse,pList, yymsp[0].minor.yy346.pExpr);
119211   yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_BETWEEN, yymsp[-4].minor.yy346.pExpr, 0, 0);
119212   if( yygotominor.yy346.pExpr ){
119213     yygotominor.yy346.pExpr->x.pList = pList;
119214   }else{
119215     sqlite3ExprListDelete(pParse->db, pList);
119216   }
119217   if( yymsp[-3].minor.yy328 ) yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy346.pExpr, 0, 0);
119218   yygotominor.yy346.zStart = yymsp[-4].minor.yy346.zStart;
119219   yygotominor.yy346.zEnd = yymsp[0].minor.yy346.zEnd;
119220 }
119221         break;
119222       case 223: /* expr ::= expr in_op LP exprlist RP */
119223 {
119224     if( yymsp[-1].minor.yy14==0 ){
119225       /* Expressions of the form
119226       **
119227       **      expr1 IN ()
119228       **      expr1 NOT IN ()
119229       **
119230       ** simplify to constants 0 (false) and 1 (true), respectively,
119231       ** regardless of the value of expr1.
119232       */
119233       yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &sqlite3IntTokens[yymsp[-3].minor.yy328]);
119234       sqlite3ExprDelete(pParse->db, yymsp[-4].minor.yy346.pExpr);
119235     }else if( yymsp[-1].minor.yy14->nExpr==1 ){
119236       /* Expressions of the form:
119237       **
119238       **      expr1 IN (?1)
119239       **      expr1 NOT IN (?2)
119240       **
119241       ** with exactly one value on the RHS can be simplified to something
119242       ** like this:
119243       **
119244       **      expr1 == ?1
119245       **      expr1 <> ?2
119246       **
119247       ** But, the RHS of the == or <> is marked with the EP_Generic flag
119248       ** so that it may not contribute to the computation of comparison
119249       ** affinity or the collating sequence to use for comparison.  Otherwise,
119250       ** the semantics would be subtly different from IN or NOT IN.
119251       */
119252       Expr *pRHS = yymsp[-1].minor.yy14->a[0].pExpr;
119253       yymsp[-1].minor.yy14->a[0].pExpr = 0;
119254       sqlite3ExprListDelete(pParse->db, yymsp[-1].minor.yy14);
119255       /* pRHS cannot be NULL because a malloc error would have been detected
119256       ** before now and control would have never reached this point */
119257       if( ALWAYS(pRHS) ){
119258         pRHS->flags &= ~EP_Collate;
119259         pRHS->flags |= EP_Generic;
119260       }
119261       yygotominor.yy346.pExpr = sqlite3PExpr(pParse, yymsp[-3].minor.yy328 ? TK_NE : TK_EQ, yymsp[-4].minor.yy346.pExpr, pRHS, 0);
119262     }else{
119263       yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_IN, yymsp[-4].minor.yy346.pExpr, 0, 0);
119264       if( yygotominor.yy346.pExpr ){
119265         yygotominor.yy346.pExpr->x.pList = yymsp[-1].minor.yy14;
119266         sqlite3ExprSetHeight(pParse, yygotominor.yy346.pExpr);
119267       }else{
119268         sqlite3ExprListDelete(pParse->db, yymsp[-1].minor.yy14);
119269       }
119270       if( yymsp[-3].minor.yy328 ) yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy346.pExpr, 0, 0);
119271     }
119272     yygotominor.yy346.zStart = yymsp[-4].minor.yy346.zStart;
119273     yygotominor.yy346.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n];
119274   }
119275         break;
119276       case 224: /* expr ::= LP select RP */
119277 {
119278     yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_SELECT, 0, 0, 0);
119279     if( yygotominor.yy346.pExpr ){
119280       yygotominor.yy346.pExpr->x.pSelect = yymsp[-1].minor.yy3;
119281       ExprSetProperty(yygotominor.yy346.pExpr, EP_xIsSelect);
119282       sqlite3ExprSetHeight(pParse, yygotominor.yy346.pExpr);
119283     }else{
119284       sqlite3SelectDelete(pParse->db, yymsp[-1].minor.yy3);
119285     }
119286     yygotominor.yy346.zStart = yymsp[-2].minor.yy0.z;
119287     yygotominor.yy346.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n];
119288   }
119289         break;
119290       case 225: /* expr ::= expr in_op LP select RP */
119291 {
119292     yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_IN, yymsp[-4].minor.yy346.pExpr, 0, 0);
119293     if( yygotominor.yy346.pExpr ){
119294       yygotominor.yy346.pExpr->x.pSelect = yymsp[-1].minor.yy3;
119295       ExprSetProperty(yygotominor.yy346.pExpr, EP_xIsSelect);
119296       sqlite3ExprSetHeight(pParse, yygotominor.yy346.pExpr);
119297     }else{
119298       sqlite3SelectDelete(pParse->db, yymsp[-1].minor.yy3);
119299     }
119300     if( yymsp[-3].minor.yy328 ) yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy346.pExpr, 0, 0);
119301     yygotominor.yy346.zStart = yymsp[-4].minor.yy346.zStart;
119302     yygotominor.yy346.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n];
119303   }
119304         break;
119305       case 226: /* expr ::= expr in_op nm dbnm */
119306 {
119307     SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy0);
119308     yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_IN, yymsp[-3].minor.yy346.pExpr, 0, 0);
119309     if( yygotominor.yy346.pExpr ){
119310       yygotominor.yy346.pExpr->x.pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0,0);
119311       ExprSetProperty(yygotominor.yy346.pExpr, EP_xIsSelect);
119312       sqlite3ExprSetHeight(pParse, yygotominor.yy346.pExpr);
119313     }else{
119314       sqlite3SrcListDelete(pParse->db, pSrc);
119315     }
119316     if( yymsp[-2].minor.yy328 ) yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy346.pExpr, 0, 0);
119317     yygotominor.yy346.zStart = yymsp[-3].minor.yy346.zStart;
119318     yygotominor.yy346.zEnd = yymsp[0].minor.yy0.z ? &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n] : &yymsp[-1].minor.yy0.z[yymsp[-1].minor.yy0.n];
119319   }
119320         break;
119321       case 227: /* expr ::= EXISTS LP select RP */
119322 {
119323     Expr *p = yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_EXISTS, 0, 0, 0);
119324     if( p ){
119325       p->x.pSelect = yymsp[-1].minor.yy3;
119326       ExprSetProperty(p, EP_xIsSelect);
119327       sqlite3ExprSetHeight(pParse, p);
119328     }else{
119329       sqlite3SelectDelete(pParse->db, yymsp[-1].minor.yy3);
119330     }
119331     yygotominor.yy346.zStart = yymsp[-3].minor.yy0.z;
119332     yygotominor.yy346.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n];
119333   }
119334         break;
119335       case 228: /* expr ::= CASE case_operand case_exprlist case_else END */
119336 {
119337   yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_CASE, yymsp[-3].minor.yy132, 0, 0);
119338   if( yygotominor.yy346.pExpr ){
119339     yygotominor.yy346.pExpr->x.pList = yymsp[-1].minor.yy132 ? sqlite3ExprListAppend(pParse,yymsp[-2].minor.yy14,yymsp[-1].minor.yy132) : yymsp[-2].minor.yy14;
119340     sqlite3ExprSetHeight(pParse, yygotominor.yy346.pExpr);
119341   }else{
119342     sqlite3ExprListDelete(pParse->db, yymsp[-2].minor.yy14);
119343     sqlite3ExprDelete(pParse->db, yymsp[-1].minor.yy132);
119344   }
119345   yygotominor.yy346.zStart = yymsp[-4].minor.yy0.z;
119346   yygotominor.yy346.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n];
119347 }
119348         break;
119349       case 229: /* case_exprlist ::= case_exprlist WHEN expr THEN expr */
119350 {
119351   yygotominor.yy14 = sqlite3ExprListAppend(pParse,yymsp[-4].minor.yy14, yymsp[-2].minor.yy346.pExpr);
119352   yygotominor.yy14 = sqlite3ExprListAppend(pParse,yygotominor.yy14, yymsp[0].minor.yy346.pExpr);
119353 }
119354         break;
119355       case 230: /* case_exprlist ::= WHEN expr THEN expr */
119356 {
119357   yygotominor.yy14 = sqlite3ExprListAppend(pParse,0, yymsp[-2].minor.yy346.pExpr);
119358   yygotominor.yy14 = sqlite3ExprListAppend(pParse,yygotominor.yy14, yymsp[0].minor.yy346.pExpr);
119359 }
119360         break;
119361       case 237: /* nexprlist ::= nexprlist COMMA expr */
119362 {yygotominor.yy14 = sqlite3ExprListAppend(pParse,yymsp[-2].minor.yy14,yymsp[0].minor.yy346.pExpr);}
119363         break;
119364       case 238: /* nexprlist ::= expr */
119365 {yygotominor.yy14 = sqlite3ExprListAppend(pParse,0,yymsp[0].minor.yy346.pExpr);}
119366         break;
119367       case 239: /* cmd ::= createkw uniqueflag INDEX ifnotexists nm dbnm ON nm LP idxlist RP where_opt */
119368 {
119369   sqlite3CreateIndex(pParse, &yymsp[-7].minor.yy0, &yymsp[-6].minor.yy0,
119370                      sqlite3SrcListAppend(pParse->db,0,&yymsp[-4].minor.yy0,0), yymsp[-2].minor.yy14, yymsp[-10].minor.yy328,
119371                       &yymsp[-11].minor.yy0, yymsp[0].minor.yy132, SQLITE_SO_ASC, yymsp[-8].minor.yy328);
119372 }
119373         break;
119374       case 240: /* uniqueflag ::= UNIQUE */
119375       case 291: /* raisetype ::= ABORT */ yytestcase(yyruleno==291);
119376 {yygotominor.yy328 = OE_Abort;}
119377         break;
119378       case 241: /* uniqueflag ::= */
119379 {yygotominor.yy328 = OE_None;}
119380         break;
119381       case 244: /* idxlist ::= idxlist COMMA nm collate sortorder */
119382 {
119383   Expr *p = sqlite3ExprAddCollateToken(pParse, 0, &yymsp[-1].minor.yy0);
119384   yygotominor.yy14 = sqlite3ExprListAppend(pParse,yymsp[-4].minor.yy14, p);
119385   sqlite3ExprListSetName(pParse,yygotominor.yy14,&yymsp[-2].minor.yy0,1);
119386   sqlite3ExprListCheckLength(pParse, yygotominor.yy14, "index");
119387   if( yygotominor.yy14 ) yygotominor.yy14->a[yygotominor.yy14->nExpr-1].sortOrder = (u8)yymsp[0].minor.yy328;
119388 }
119389         break;
119390       case 245: /* idxlist ::= nm collate sortorder */
119391 {
119392   Expr *p = sqlite3ExprAddCollateToken(pParse, 0, &yymsp[-1].minor.yy0);
119393   yygotominor.yy14 = sqlite3ExprListAppend(pParse,0, p);
119394   sqlite3ExprListSetName(pParse, yygotominor.yy14, &yymsp[-2].minor.yy0, 1);
119395   sqlite3ExprListCheckLength(pParse, yygotominor.yy14, "index");
119396   if( yygotominor.yy14 ) yygotominor.yy14->a[yygotominor.yy14->nExpr-1].sortOrder = (u8)yymsp[0].minor.yy328;
119397 }
119398         break;
119399       case 246: /* collate ::= */
119400 {yygotominor.yy0.z = 0; yygotominor.yy0.n = 0;}
119401         break;
119402       case 248: /* cmd ::= DROP INDEX ifexists fullname */
119403 {sqlite3DropIndex(pParse, yymsp[0].minor.yy65, yymsp[-1].minor.yy328);}
119404         break;
119405       case 249: /* cmd ::= VACUUM */
119406       case 250: /* cmd ::= VACUUM nm */ yytestcase(yyruleno==250);
119407 {sqlite3Vacuum(pParse);}
119408         break;
119409       case 251: /* cmd ::= PRAGMA nm dbnm */
119410 {sqlite3Pragma(pParse,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy0,0,0);}
119411         break;
119412       case 252: /* cmd ::= PRAGMA nm dbnm EQ nmnum */
119413 {sqlite3Pragma(pParse,&yymsp[-3].minor.yy0,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0,0);}
119414         break;
119415       case 253: /* cmd ::= PRAGMA nm dbnm LP nmnum RP */
119416 {sqlite3Pragma(pParse,&yymsp[-4].minor.yy0,&yymsp[-3].minor.yy0,&yymsp[-1].minor.yy0,0);}
119417         break;
119418       case 254: /* cmd ::= PRAGMA nm dbnm EQ minus_num */
119419 {sqlite3Pragma(pParse,&yymsp[-3].minor.yy0,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0,1);}
119420         break;
119421       case 255: /* cmd ::= PRAGMA nm dbnm LP minus_num RP */
119422 {sqlite3Pragma(pParse,&yymsp[-4].minor.yy0,&yymsp[-3].minor.yy0,&yymsp[-1].minor.yy0,1);}
119423         break;
119424       case 264: /* cmd ::= createkw trigger_decl BEGIN trigger_cmd_list END */
119425 {
119426   Token all;
119427   all.z = yymsp[-3].minor.yy0.z;
119428   all.n = (int)(yymsp[0].minor.yy0.z - yymsp[-3].minor.yy0.z) + yymsp[0].minor.yy0.n;
119429   sqlite3FinishTrigger(pParse, yymsp[-1].minor.yy473, &all);
119430 }
119431         break;
119432       case 265: /* trigger_decl ::= temp TRIGGER ifnotexists nm dbnm trigger_time trigger_event ON fullname foreach_clause when_clause */
119433 {
119434   sqlite3BeginTrigger(pParse, &yymsp[-7].minor.yy0, &yymsp[-6].minor.yy0, yymsp[-5].minor.yy328, yymsp[-4].minor.yy378.a, yymsp[-4].minor.yy378.b, yymsp[-2].minor.yy65, yymsp[0].minor.yy132, yymsp[-10].minor.yy328, yymsp[-8].minor.yy328);
119435   yygotominor.yy0 = (yymsp[-6].minor.yy0.n==0?yymsp[-7].minor.yy0:yymsp[-6].minor.yy0);
119436 }
119437         break;
119438       case 266: /* trigger_time ::= BEFORE */
119439       case 269: /* trigger_time ::= */ yytestcase(yyruleno==269);
119440 { yygotominor.yy328 = TK_BEFORE; }
119441         break;
119442       case 267: /* trigger_time ::= AFTER */
119443 { yygotominor.yy328 = TK_AFTER;  }
119444         break;
119445       case 268: /* trigger_time ::= INSTEAD OF */
119446 { yygotominor.yy328 = TK_INSTEAD;}
119447         break;
119448       case 270: /* trigger_event ::= DELETE|INSERT */
119449       case 271: /* trigger_event ::= UPDATE */ yytestcase(yyruleno==271);
119450 {yygotominor.yy378.a = yymsp[0].major; yygotominor.yy378.b = 0;}
119451         break;
119452       case 272: /* trigger_event ::= UPDATE OF idlist */
119453 {yygotominor.yy378.a = TK_UPDATE; yygotominor.yy378.b = yymsp[0].minor.yy408;}
119454         break;
119455       case 275: /* when_clause ::= */
119456       case 296: /* key_opt ::= */ yytestcase(yyruleno==296);
119457 { yygotominor.yy132 = 0; }
119458         break;
119459       case 276: /* when_clause ::= WHEN expr */
119460       case 297: /* key_opt ::= KEY expr */ yytestcase(yyruleno==297);
119461 { yygotominor.yy132 = yymsp[0].minor.yy346.pExpr; }
119462         break;
119463       case 277: /* trigger_cmd_list ::= trigger_cmd_list trigger_cmd SEMI */
119464 {
119465   assert( yymsp[-2].minor.yy473!=0 );
119466   yymsp[-2].minor.yy473->pLast->pNext = yymsp[-1].minor.yy473;
119467   yymsp[-2].minor.yy473->pLast = yymsp[-1].minor.yy473;
119468   yygotominor.yy473 = yymsp[-2].minor.yy473;
119469 }
119470         break;
119471       case 278: /* trigger_cmd_list ::= trigger_cmd SEMI */
119472 {
119473   assert( yymsp[-1].minor.yy473!=0 );
119474   yymsp[-1].minor.yy473->pLast = yymsp[-1].minor.yy473;
119475   yygotominor.yy473 = yymsp[-1].minor.yy473;
119476 }
119477         break;
119478       case 280: /* trnm ::= nm DOT nm */
119479 {
119480   yygotominor.yy0 = yymsp[0].minor.yy0;
119481   sqlite3ErrorMsg(pParse,
119482         "qualified table names are not allowed on INSERT, UPDATE, and DELETE "
119483         "statements within triggers");
119484 }
119485         break;
119486       case 282: /* tridxby ::= INDEXED BY nm */
119487 {
119488   sqlite3ErrorMsg(pParse,
119489         "the INDEXED BY clause is not allowed on UPDATE or DELETE statements "
119490         "within triggers");
119491 }
119492         break;
119493       case 283: /* tridxby ::= NOT INDEXED */
119494 {
119495   sqlite3ErrorMsg(pParse,
119496         "the NOT INDEXED clause is not allowed on UPDATE or DELETE statements "
119497         "within triggers");
119498 }
119499         break;
119500       case 284: /* trigger_cmd ::= UPDATE orconf trnm tridxby SET setlist where_opt */
119501 { yygotominor.yy473 = sqlite3TriggerUpdateStep(pParse->db, &yymsp[-4].minor.yy0, yymsp[-1].minor.yy14, yymsp[0].minor.yy132, yymsp[-5].minor.yy186); }
119502         break;
119503       case 285: /* trigger_cmd ::= insert_cmd INTO trnm inscollist_opt select */
119504 {yygotominor.yy473 = sqlite3TriggerInsertStep(pParse->db, &yymsp[-2].minor.yy0, yymsp[-1].minor.yy408, yymsp[0].minor.yy3, yymsp[-4].minor.yy186);}
119505         break;
119506       case 286: /* trigger_cmd ::= DELETE FROM trnm tridxby where_opt */
119507 {yygotominor.yy473 = sqlite3TriggerDeleteStep(pParse->db, &yymsp[-2].minor.yy0, yymsp[0].minor.yy132);}
119508         break;
119509       case 287: /* trigger_cmd ::= select */
119510 {yygotominor.yy473 = sqlite3TriggerSelectStep(pParse->db, yymsp[0].minor.yy3); }
119511         break;
119512       case 288: /* expr ::= RAISE LP IGNORE RP */
119513 {
119514   yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, 0);
119515   if( yygotominor.yy346.pExpr ){
119516     yygotominor.yy346.pExpr->affinity = OE_Ignore;
119517   }
119518   yygotominor.yy346.zStart = yymsp[-3].minor.yy0.z;
119519   yygotominor.yy346.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n];
119520 }
119521         break;
119522       case 289: /* expr ::= RAISE LP raisetype COMMA nm RP */
119523 {
119524   yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, &yymsp[-1].minor.yy0);
119525   if( yygotominor.yy346.pExpr ) {
119526     yygotominor.yy346.pExpr->affinity = (char)yymsp[-3].minor.yy328;
119527   }
119528   yygotominor.yy346.zStart = yymsp[-5].minor.yy0.z;
119529   yygotominor.yy346.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n];
119530 }
119531         break;
119532       case 290: /* raisetype ::= ROLLBACK */
119533 {yygotominor.yy328 = OE_Rollback;}
119534         break;
119535       case 292: /* raisetype ::= FAIL */
119536 {yygotominor.yy328 = OE_Fail;}
119537         break;
119538       case 293: /* cmd ::= DROP TRIGGER ifexists fullname */
119539 {
119540   sqlite3DropTrigger(pParse,yymsp[0].minor.yy65,yymsp[-1].minor.yy328);
119541 }
119542         break;
119543       case 294: /* cmd ::= ATTACH database_kw_opt expr AS expr key_opt */
119544 {
119545   sqlite3Attach(pParse, yymsp[-3].minor.yy346.pExpr, yymsp[-1].minor.yy346.pExpr, yymsp[0].minor.yy132);
119546 }
119547         break;
119548       case 295: /* cmd ::= DETACH database_kw_opt expr */
119549 {
119550   sqlite3Detach(pParse, yymsp[0].minor.yy346.pExpr);
119551 }
119552         break;
119553       case 300: /* cmd ::= REINDEX */
119554 {sqlite3Reindex(pParse, 0, 0);}
119555         break;
119556       case 301: /* cmd ::= REINDEX nm dbnm */
119557 {sqlite3Reindex(pParse, &yymsp[-1].minor.yy0, &yymsp[0].minor.yy0);}
119558         break;
119559       case 302: /* cmd ::= ANALYZE */
119560 {sqlite3Analyze(pParse, 0, 0);}
119561         break;
119562       case 303: /* cmd ::= ANALYZE nm dbnm */
119563 {sqlite3Analyze(pParse, &yymsp[-1].minor.yy0, &yymsp[0].minor.yy0);}
119564         break;
119565       case 304: /* cmd ::= ALTER TABLE fullname RENAME TO nm */
119566 {
119567   sqlite3AlterRenameTable(pParse,yymsp[-3].minor.yy65,&yymsp[0].minor.yy0);
119568 }
119569         break;
119570       case 305: /* cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt column */
119571 {
119572   sqlite3AlterFinishAddColumn(pParse, &yymsp[0].minor.yy0);
119573 }
119574         break;
119575       case 306: /* add_column_fullname ::= fullname */
119576 {
119577   pParse->db->lookaside.bEnabled = 0;
119578   sqlite3AlterBeginAddColumn(pParse, yymsp[0].minor.yy65);
119579 }
119580         break;
119581       case 309: /* cmd ::= create_vtab */
119582 {sqlite3VtabFinishParse(pParse,0);}
119583         break;
119584       case 310: /* cmd ::= create_vtab LP vtabarglist RP */
119585 {sqlite3VtabFinishParse(pParse,&yymsp[0].minor.yy0);}
119586         break;
119587       case 311: /* create_vtab ::= createkw VIRTUAL TABLE ifnotexists nm dbnm USING nm */
119588 {
119589     sqlite3VtabBeginParse(pParse, &yymsp[-3].minor.yy0, &yymsp[-2].minor.yy0, &yymsp[0].minor.yy0, yymsp[-4].minor.yy328);
119590 }
119591         break;
119592       case 314: /* vtabarg ::= */
119593 {sqlite3VtabArgInit(pParse);}
119594         break;
119595       case 316: /* vtabargtoken ::= ANY */
119596       case 317: /* vtabargtoken ::= lp anylist RP */ yytestcase(yyruleno==317);
119597       case 318: /* lp ::= LP */ yytestcase(yyruleno==318);
119598 {sqlite3VtabArgExtend(pParse,&yymsp[0].minor.yy0);}
119599         break;
119600       case 322: /* with ::= */
119601 {yygotominor.yy59 = 0;}
119602         break;
119603       case 323: /* with ::= WITH wqlist */
119604       case 324: /* with ::= WITH RECURSIVE wqlist */ yytestcase(yyruleno==324);
119605 { yygotominor.yy59 = yymsp[0].minor.yy59; }
119606         break;
119607       case 325: /* wqlist ::= nm idxlist_opt AS LP select RP */
119608 {
119609   yygotominor.yy59 = sqlite3WithAdd(pParse, 0, &yymsp[-5].minor.yy0, yymsp[-4].minor.yy14, yymsp[-1].minor.yy3);
119610 }
119611         break;
119612       case 326: /* wqlist ::= wqlist COMMA nm idxlist_opt AS LP select RP */
119613 {
119614   yygotominor.yy59 = sqlite3WithAdd(pParse, yymsp[-7].minor.yy59, &yymsp[-5].minor.yy0, yymsp[-4].minor.yy14, yymsp[-1].minor.yy3);
119615 }
119616         break;
119617       default:
119618       /* (0) input ::= cmdlist */ yytestcase(yyruleno==0);
119619       /* (1) cmdlist ::= cmdlist ecmd */ yytestcase(yyruleno==1);
119620       /* (2) cmdlist ::= ecmd */ yytestcase(yyruleno==2);
119621       /* (3) ecmd ::= SEMI */ yytestcase(yyruleno==3);
119622       /* (4) ecmd ::= explain cmdx SEMI */ yytestcase(yyruleno==4);
119623       /* (10) trans_opt ::= */ yytestcase(yyruleno==10);
119624       /* (11) trans_opt ::= TRANSACTION */ yytestcase(yyruleno==11);
119625       /* (12) trans_opt ::= TRANSACTION nm */ yytestcase(yyruleno==12);
119626       /* (20) savepoint_opt ::= SAVEPOINT */ yytestcase(yyruleno==20);
119627       /* (21) savepoint_opt ::= */ yytestcase(yyruleno==21);
119628       /* (25) cmd ::= create_table create_table_args */ yytestcase(yyruleno==25);
119629       /* (36) columnlist ::= columnlist COMMA column */ yytestcase(yyruleno==36);
119630       /* (37) columnlist ::= column */ yytestcase(yyruleno==37);
119631       /* (43) type ::= */ yytestcase(yyruleno==43);
119632       /* (50) signed ::= plus_num */ yytestcase(yyruleno==50);
119633       /* (51) signed ::= minus_num */ yytestcase(yyruleno==51);
119634       /* (52) carglist ::= carglist ccons */ yytestcase(yyruleno==52);
119635       /* (53) carglist ::= */ yytestcase(yyruleno==53);
119636       /* (60) ccons ::= NULL onconf */ yytestcase(yyruleno==60);
119637       /* (88) conslist ::= conslist tconscomma tcons */ yytestcase(yyruleno==88);
119638       /* (89) conslist ::= tcons */ yytestcase(yyruleno==89);
119639       /* (91) tconscomma ::= */ yytestcase(yyruleno==91);
119640       /* (273) foreach_clause ::= */ yytestcase(yyruleno==273);
119641       /* (274) foreach_clause ::= FOR EACH ROW */ yytestcase(yyruleno==274);
119642       /* (281) tridxby ::= */ yytestcase(yyruleno==281);
119643       /* (298) database_kw_opt ::= DATABASE */ yytestcase(yyruleno==298);
119644       /* (299) database_kw_opt ::= */ yytestcase(yyruleno==299);
119645       /* (307) kwcolumn_opt ::= */ yytestcase(yyruleno==307);
119646       /* (308) kwcolumn_opt ::= COLUMNKW */ yytestcase(yyruleno==308);
119647       /* (312) vtabarglist ::= vtabarg */ yytestcase(yyruleno==312);
119648       /* (313) vtabarglist ::= vtabarglist COMMA vtabarg */ yytestcase(yyruleno==313);
119649       /* (315) vtabarg ::= vtabarg vtabargtoken */ yytestcase(yyruleno==315);
119650       /* (319) anylist ::= */ yytestcase(yyruleno==319);
119651       /* (320) anylist ::= anylist LP anylist RP */ yytestcase(yyruleno==320);
119652       /* (321) anylist ::= anylist ANY */ yytestcase(yyruleno==321);
119653         break;
119654   };
119655   assert( yyruleno>=0 && yyruleno<sizeof(yyRuleInfo)/sizeof(yyRuleInfo[0]) );
119656   yygoto = yyRuleInfo[yyruleno].lhs;
119657   yysize = yyRuleInfo[yyruleno].nrhs;
119658   yypParser->yyidx -= yysize;
119659   yyact = yy_find_reduce_action(yymsp[-yysize].stateno,(YYCODETYPE)yygoto);
119660   if( yyact < YYNSTATE ){
119661 #ifdef NDEBUG
119662     /* If we are not debugging and the reduce action popped at least
119663     ** one element off the stack, then we can push the new element back
119664     ** onto the stack here, and skip the stack overflow test in yy_shift().
119665     ** That gives a significant speed improvement. */
119666     if( yysize ){
119667       yypParser->yyidx++;
119668       yymsp -= yysize-1;
119669       yymsp->stateno = (YYACTIONTYPE)yyact;
119670       yymsp->major = (YYCODETYPE)yygoto;
119671       yymsp->minor = yygotominor;
119672     }else
119673 #endif
119674     {
119675       yy_shift(yypParser,yyact,yygoto,&yygotominor);
119676     }
119677   }else{
119678     assert( yyact == YYNSTATE + YYNRULE + 1 );
119679     yy_accept(yypParser);
119680   }
119681 }
119682 
119683 /*
119684 ** The following code executes when the parse fails
119685 */
119686 #ifndef YYNOERRORRECOVERY
119687 static void yy_parse_failed(
119688   yyParser *yypParser           /* The parser */
119689 ){
119690   sqlite3ParserARG_FETCH;
119691 #ifndef NDEBUG
119692   if( yyTraceFILE ){
119693     fprintf(yyTraceFILE,"%sFail!\n",yyTracePrompt);
119694   }
119695 #endif
119696   while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser);
119697   /* Here code is inserted which will be executed whenever the
119698   ** parser fails */
119699   sqlite3ParserARG_STORE; /* Suppress warning about unused %extra_argument variable */
119700 }
119701 #endif /* YYNOERRORRECOVERY */
119702 
119703 /*
119704 ** The following code executes when a syntax error first occurs.
119705 */
119706 static void yy_syntax_error(
119707   yyParser *yypParser,           /* The parser */
119708   int yymajor,                   /* The major type of the error token */
119709   YYMINORTYPE yyminor            /* The minor type of the error token */
119710 ){
119711   sqlite3ParserARG_FETCH;
119712 #define TOKEN (yyminor.yy0)
119713 
119714   UNUSED_PARAMETER(yymajor);  /* Silence some compiler warnings */
119715   assert( TOKEN.z[0] );  /* The tokenizer always gives us a token */
119716   sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN);
119717   sqlite3ParserARG_STORE; /* Suppress warning about unused %extra_argument variable */
119718 }
119719 
119720 /*
119721 ** The following is executed when the parser accepts
119722 */
119723 static void yy_accept(
119724   yyParser *yypParser           /* The parser */
119725 ){
119726   sqlite3ParserARG_FETCH;
119727 #ifndef NDEBUG
119728   if( yyTraceFILE ){
119729     fprintf(yyTraceFILE,"%sAccept!\n",yyTracePrompt);
119730   }
119731 #endif
119732   while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser);
119733   /* Here code is inserted which will be executed whenever the
119734   ** parser accepts */
119735   sqlite3ParserARG_STORE; /* Suppress warning about unused %extra_argument variable */
119736 }
119737 
119738 /* The main parser program.
119739 ** The first argument is a pointer to a structure obtained from
119740 ** "sqlite3ParserAlloc" which describes the current state of the parser.
119741 ** The second argument is the major token number.  The third is
119742 ** the minor token.  The fourth optional argument is whatever the
119743 ** user wants (and specified in the grammar) and is available for
119744 ** use by the action routines.
119745 **
119746 ** Inputs:
119747 ** <ul>
119748 ** <li> A pointer to the parser (an opaque structure.)
119749 ** <li> The major token number.
119750 ** <li> The minor token number.
119751 ** <li> An option argument of a grammar-specified type.
119752 ** </ul>
119753 **
119754 ** Outputs:
119755 ** None.
119756 */
119757 SQLITE_PRIVATE void sqlite3Parser(
119758   void *yyp,                   /* The parser */
119759   int yymajor,                 /* The major token code number */
119760   sqlite3ParserTOKENTYPE yyminor       /* The value for the token */
119761   sqlite3ParserARG_PDECL               /* Optional %extra_argument parameter */
119762 ){
119763   YYMINORTYPE yyminorunion;
119764   int yyact;            /* The parser action. */
119765 #if !defined(YYERRORSYMBOL) && !defined(YYNOERRORRECOVERY)
119766   int yyendofinput;     /* True if we are at the end of input */
119767 #endif
119768 #ifdef YYERRORSYMBOL
119769   int yyerrorhit = 0;   /* True if yymajor has invoked an error */
119770 #endif
119771   yyParser *yypParser;  /* The parser */
119772 
119773   /* (re)initialize the parser, if necessary */
119774   yypParser = (yyParser*)yyp;
119775   if( yypParser->yyidx<0 ){
119776 #if YYSTACKDEPTH<=0
119777     if( yypParser->yystksz <=0 ){
119778       /*memset(&yyminorunion, 0, sizeof(yyminorunion));*/
119779       yyminorunion = yyzerominor;
119780       yyStackOverflow(yypParser, &yyminorunion);
119781       return;
119782     }
119783 #endif
119784     yypParser->yyidx = 0;
119785     yypParser->yyerrcnt = -1;
119786     yypParser->yystack[0].stateno = 0;
119787     yypParser->yystack[0].major = 0;
119788   }
119789   yyminorunion.yy0 = yyminor;
119790 #if !defined(YYERRORSYMBOL) && !defined(YYNOERRORRECOVERY)
119791   yyendofinput = (yymajor==0);
119792 #endif
119793   sqlite3ParserARG_STORE;
119794 
119795 #ifndef NDEBUG
119796   if( yyTraceFILE ){
119797     fprintf(yyTraceFILE,"%sInput %s\n",yyTracePrompt,yyTokenName[yymajor]);
119798   }
119799 #endif
119800 
119801   do{
119802     yyact = yy_find_shift_action(yypParser,(YYCODETYPE)yymajor);
119803     if( yyact<YYNSTATE ){
119804       yy_shift(yypParser,yyact,yymajor,&yyminorunion);
119805       yypParser->yyerrcnt--;
119806       yymajor = YYNOCODE;
119807     }else if( yyact < YYNSTATE + YYNRULE ){
119808       yy_reduce(yypParser,yyact-YYNSTATE);
119809     }else{
119810       assert( yyact == YY_ERROR_ACTION );
119811 #ifdef YYERRORSYMBOL
119812       int yymx;
119813 #endif
119814 #ifndef NDEBUG
119815       if( yyTraceFILE ){
119816         fprintf(yyTraceFILE,"%sSyntax Error!\n",yyTracePrompt);
119817       }
119818 #endif
119819 #ifdef YYERRORSYMBOL
119820       /* A syntax error has occurred.
119821       ** The response to an error depends upon whether or not the
119822       ** grammar defines an error token "ERROR".
119823       **
119824       ** This is what we do if the grammar does define ERROR:
119825       **
119826       **  * Call the %syntax_error function.
119827       **
119828       **  * Begin popping the stack until we enter a state where
119829       **    it is legal to shift the error symbol, then shift
119830       **    the error symbol.
119831       **
119832       **  * Set the error count to three.
119833       **
119834       **  * Begin accepting and shifting new tokens.  No new error
119835       **    processing will occur until three tokens have been
119836       **    shifted successfully.
119837       **
119838       */
119839       if( yypParser->yyerrcnt<0 ){
119840         yy_syntax_error(yypParser,yymajor,yyminorunion);
119841       }
119842       yymx = yypParser->yystack[yypParser->yyidx].major;
119843       if( yymx==YYERRORSYMBOL || yyerrorhit ){
119844 #ifndef NDEBUG
119845         if( yyTraceFILE ){
119846           fprintf(yyTraceFILE,"%sDiscard input token %s\n",
119847              yyTracePrompt,yyTokenName[yymajor]);
119848         }
119849 #endif
119850         yy_destructor(yypParser, (YYCODETYPE)yymajor,&yyminorunion);
119851         yymajor = YYNOCODE;
119852       }else{
119853          while(
119854           yypParser->yyidx >= 0 &&
119855           yymx != YYERRORSYMBOL &&
119856           (yyact = yy_find_reduce_action(
119857                         yypParser->yystack[yypParser->yyidx].stateno,
119858                         YYERRORSYMBOL)) >= YYNSTATE
119859         ){
119860           yy_pop_parser_stack(yypParser);
119861         }
119862         if( yypParser->yyidx < 0 || yymajor==0 ){
119863           yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion);
119864           yy_parse_failed(yypParser);
119865           yymajor = YYNOCODE;
119866         }else if( yymx!=YYERRORSYMBOL ){
119867           YYMINORTYPE u2;
119868           u2.YYERRSYMDT = 0;
119869           yy_shift(yypParser,yyact,YYERRORSYMBOL,&u2);
119870         }
119871       }
119872       yypParser->yyerrcnt = 3;
119873       yyerrorhit = 1;
119874 #elif defined(YYNOERRORRECOVERY)
119875       /* If the YYNOERRORRECOVERY macro is defined, then do not attempt to
119876       ** do any kind of error recovery.  Instead, simply invoke the syntax
119877       ** error routine and continue going as if nothing had happened.
119878       **
119879       ** Applications can set this macro (for example inside %include) if
119880       ** they intend to abandon the parse upon the first syntax error seen.
119881       */
119882       yy_syntax_error(yypParser,yymajor,yyminorunion);
119883       yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion);
119884       yymajor = YYNOCODE;
119885 
119886 #else  /* YYERRORSYMBOL is not defined */
119887       /* This is what we do if the grammar does not define ERROR:
119888       **
119889       **  * Report an error message, and throw away the input token.
119890       **
119891       **  * If the input token is $, then fail the parse.
119892       **
119893       ** As before, subsequent error messages are suppressed until
119894       ** three input tokens have been successfully shifted.
119895       */
119896       if( yypParser->yyerrcnt<=0 ){
119897         yy_syntax_error(yypParser,yymajor,yyminorunion);
119898       }
119899       yypParser->yyerrcnt = 3;
119900       yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion);
119901       if( yyendofinput ){
119902         yy_parse_failed(yypParser);
119903       }
119904       yymajor = YYNOCODE;
119905 #endif
119906     }
119907   }while( yymajor!=YYNOCODE && yypParser->yyidx>=0 );
119908   return;
119909 }
119910 
119911 /************** End of parse.c ***********************************************/
119912 /************** Begin file tokenize.c ****************************************/
119913 /*
119914 ** 2001 September 15
119915 **
119916 ** The author disclaims copyright to this source code.  In place of
119917 ** a legal notice, here is a blessing:
119918 **
119919 **    May you do good and not evil.
119920 **    May you find forgiveness for yourself and forgive others.
119921 **    May you share freely, never taking more than you give.
119922 **
119923 *************************************************************************
119924 ** An tokenizer for SQL
119925 **
119926 ** This file contains C code that splits an SQL input string up into
119927 ** individual tokens and sends those tokens one-by-one over to the
119928 ** parser for analysis.
119929 */
119930 /* #include <stdlib.h> */
119931 
119932 /*
119933 ** The charMap() macro maps alphabetic characters into their
119934 ** lower-case ASCII equivalent.  On ASCII machines, this is just
119935 ** an upper-to-lower case map.  On EBCDIC machines we also need
119936 ** to adjust the encoding.  Only alphabetic characters and underscores
119937 ** need to be translated.
119938 */
119939 #ifdef SQLITE_ASCII
119940 # define charMap(X) sqlite3UpperToLower[(unsigned char)X]
119941 #endif
119942 #ifdef SQLITE_EBCDIC
119943 # define charMap(X) ebcdicToAscii[(unsigned char)X]
119944 const unsigned char ebcdicToAscii[] = {
119945 /* 0   1   2   3   4   5   6   7   8   9   A   B   C   D   E   F */
119946    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  /* 0x */
119947    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  /* 1x */
119948    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  /* 2x */
119949    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  /* 3x */
119950    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  /* 4x */
119951    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  /* 5x */
119952    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0, 95,  0,  0,  /* 6x */
119953    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  /* 7x */
119954    0, 97, 98, 99,100,101,102,103,104,105,  0,  0,  0,  0,  0,  0,  /* 8x */
119955    0,106,107,108,109,110,111,112,113,114,  0,  0,  0,  0,  0,  0,  /* 9x */
119956    0,  0,115,116,117,118,119,120,121,122,  0,  0,  0,  0,  0,  0,  /* Ax */
119957    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  /* Bx */
119958    0, 97, 98, 99,100,101,102,103,104,105,  0,  0,  0,  0,  0,  0,  /* Cx */
119959    0,106,107,108,109,110,111,112,113,114,  0,  0,  0,  0,  0,  0,  /* Dx */
119960    0,  0,115,116,117,118,119,120,121,122,  0,  0,  0,  0,  0,  0,  /* Ex */
119961    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  /* Fx */
119962 };
119963 #endif
119964 
119965 /*
119966 ** The sqlite3KeywordCode function looks up an identifier to determine if
119967 ** it is a keyword.  If it is a keyword, the token code of that keyword is
119968 ** returned.  If the input is not a keyword, TK_ID is returned.
119969 **
119970 ** The implementation of this routine was generated by a program,
119971 ** mkkeywordhash.h, located in the tool subdirectory of the distribution.
119972 ** The output of the mkkeywordhash.c program is written into a file
119973 ** named keywordhash.h and then included into this source file by
119974 ** the #include below.
119975 */
119976 /************** Include keywordhash.h in the middle of tokenize.c ************/
119977 /************** Begin file keywordhash.h *************************************/
119978 /***** This file contains automatically generated code ******
119979 **
119980 ** The code in this file has been automatically generated by
119981 **
119982 **   sqlite/tool/mkkeywordhash.c
119983 **
119984 ** The code in this file implements a function that determines whether
119985 ** or not a given identifier is really an SQL keyword.  The same thing
119986 ** might be implemented more directly using a hand-written hash table.
119987 ** But by using this automatically generated code, the size of the code
119988 ** is substantially reduced.  This is important for embedded applications
119989 ** on platforms with limited memory.
119990 */
119991 /* Hash score: 182 */
119992 static int keywordCode(const char *z, int n){
119993   /* zText[] encodes 834 bytes of keywords in 554 bytes */
119994   /*   REINDEXEDESCAPEACHECKEYBEFOREIGNOREGEXPLAINSTEADDATABASELECT       */
119995   /*   ABLEFTHENDEFERRABLELSEXCEPTRANSACTIONATURALTERAISEXCLUSIVE         */
119996   /*   XISTSAVEPOINTERSECTRIGGEREFERENCESCONSTRAINTOFFSETEMPORARY         */
119997   /*   UNIQUERYWITHOUTERELEASEATTACHAVINGROUPDATEBEGINNERECURSIVE         */
119998   /*   BETWEENOTNULLIKECASCADELETECASECOLLATECREATECURRENT_DATEDETACH     */
119999   /*   IMMEDIATEJOINSERTMATCHPLANALYZEPRAGMABORTVALUESVIRTUALIMITWHEN     */
120000   /*   WHERENAMEAFTEREPLACEANDEFAULTAUTOINCREMENTCASTCOLUMNCOMMIT         */
120001   /*   CONFLICTCROSSCURRENT_TIMESTAMPRIMARYDEFERREDISTINCTDROPFAIL        */
120002   /*   FROMFULLGLOBYIFISNULLORDERESTRICTRIGHTROLLBACKROWUNIONUSING        */
120003   /*   VACUUMVIEWINITIALLY                                                */
120004   static const char zText[553] = {
120005     'R','E','I','N','D','E','X','E','D','E','S','C','A','P','E','A','C','H',
120006     'E','C','K','E','Y','B','E','F','O','R','E','I','G','N','O','R','E','G',
120007     'E','X','P','L','A','I','N','S','T','E','A','D','D','A','T','A','B','A',
120008     'S','E','L','E','C','T','A','B','L','E','F','T','H','E','N','D','E','F',
120009     'E','R','R','A','B','L','E','L','S','E','X','C','E','P','T','R','A','N',
120010     'S','A','C','T','I','O','N','A','T','U','R','A','L','T','E','R','A','I',
120011     'S','E','X','C','L','U','S','I','V','E','X','I','S','T','S','A','V','E',
120012     'P','O','I','N','T','E','R','S','E','C','T','R','I','G','G','E','R','E',
120013     'F','E','R','E','N','C','E','S','C','O','N','S','T','R','A','I','N','T',
120014     'O','F','F','S','E','T','E','M','P','O','R','A','R','Y','U','N','I','Q',
120015     'U','E','R','Y','W','I','T','H','O','U','T','E','R','E','L','E','A','S',
120016     'E','A','T','T','A','C','H','A','V','I','N','G','R','O','U','P','D','A',
120017     'T','E','B','E','G','I','N','N','E','R','E','C','U','R','S','I','V','E',
120018     'B','E','T','W','E','E','N','O','T','N','U','L','L','I','K','E','C','A',
120019     'S','C','A','D','E','L','E','T','E','C','A','S','E','C','O','L','L','A',
120020     'T','E','C','R','E','A','T','E','C','U','R','R','E','N','T','_','D','A',
120021     'T','E','D','E','T','A','C','H','I','M','M','E','D','I','A','T','E','J',
120022     'O','I','N','S','E','R','T','M','A','T','C','H','P','L','A','N','A','L',
120023     'Y','Z','E','P','R','A','G','M','A','B','O','R','T','V','A','L','U','E',
120024     'S','V','I','R','T','U','A','L','I','M','I','T','W','H','E','N','W','H',
120025     'E','R','E','N','A','M','E','A','F','T','E','R','E','P','L','A','C','E',
120026     'A','N','D','E','F','A','U','L','T','A','U','T','O','I','N','C','R','E',
120027     'M','E','N','T','C','A','S','T','C','O','L','U','M','N','C','O','M','M',
120028     'I','T','C','O','N','F','L','I','C','T','C','R','O','S','S','C','U','R',
120029     'R','E','N','T','_','T','I','M','E','S','T','A','M','P','R','I','M','A',
120030     'R','Y','D','E','F','E','R','R','E','D','I','S','T','I','N','C','T','D',
120031     'R','O','P','F','A','I','L','F','R','O','M','F','U','L','L','G','L','O',
120032     'B','Y','I','F','I','S','N','U','L','L','O','R','D','E','R','E','S','T',
120033     'R','I','C','T','R','I','G','H','T','R','O','L','L','B','A','C','K','R',
120034     'O','W','U','N','I','O','N','U','S','I','N','G','V','A','C','U','U','M',
120035     'V','I','E','W','I','N','I','T','I','A','L','L','Y',
120036   };
120037   static const unsigned char aHash[127] = {
120038       76, 105, 117,  74,   0,  45,   0,   0,  82,   0,  77,   0,   0,
120039       42,  12,  78,  15,   0, 116,  85,  54, 112,   0,  19,   0,   0,
120040      121,   0, 119, 115,   0,  22,  93,   0,   9,   0,   0,  70,  71,
120041        0,  69,   6,   0,  48,  90, 102,   0, 118, 101,   0,   0,  44,
120042        0, 103,  24,   0,  17,   0, 122,  53,  23,   0,   5, 110,  25,
120043       96,   0,   0, 124, 106,  60, 123,  57,  28,  55,   0,  91,   0,
120044      100,  26,   0,  99,   0,   0,   0,  95,  92,  97,  88, 109,  14,
120045       39, 108,   0,  81,   0,  18,  89, 111,  32,   0, 120,  80, 113,
120046       62,  46,  84,   0,   0,  94,  40,  59, 114,   0,  36,   0,   0,
120047       29,   0,  86,  63,  64,   0,  20,  61,   0,  56,
120048   };
120049   static const unsigned char aNext[124] = {
120050        0,   0,   0,   0,   4,   0,   0,   0,   0,   0,   0,   0,   0,
120051        0,   2,   0,   0,   0,   0,   0,   0,  13,   0,   0,   0,   0,
120052        0,   7,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
120053        0,   0,   0,   0,  33,   0,  21,   0,   0,   0,   0,   0,  50,
120054        0,  43,   3,  47,   0,   0,   0,   0,  30,   0,  58,   0,  38,
120055        0,   0,   0,   1,  66,   0,   0,  67,   0,  41,   0,   0,   0,
120056        0,   0,   0,  49,  65,   0,   0,   0,   0,  31,  52,  16,  34,
120057       10,   0,   0,   0,   0,   0,   0,   0,  11,  72,  79,   0,   8,
120058        0, 104,  98,   0, 107,   0,  87,   0,  75,  51,   0,  27,  37,
120059       73,  83,   0,  35,  68,   0,   0,
120060   };
120061   static const unsigned char aLen[124] = {
120062        7,   7,   5,   4,   6,   4,   5,   3,   6,   7,   3,   6,   6,
120063        7,   7,   3,   8,   2,   6,   5,   4,   4,   3,  10,   4,   6,
120064       11,   6,   2,   7,   5,   5,   9,   6,   9,   9,   7,  10,  10,
120065        4,   6,   2,   3,   9,   4,   2,   6,   5,   7,   4,   5,   7,
120066        6,   6,   5,   6,   5,   5,   9,   7,   7,   3,   2,   4,   4,
120067        7,   3,   6,   4,   7,   6,  12,   6,   9,   4,   6,   5,   4,
120068        7,   6,   5,   6,   7,   5,   4,   5,   6,   5,   7,   3,   7,
120069       13,   2,   2,   4,   6,   6,   8,   5,  17,  12,   7,   8,   8,
120070        2,   4,   4,   4,   4,   4,   2,   2,   6,   5,   8,   5,   8,
120071        3,   5,   5,   6,   4,   9,   3,
120072   };
120073   static const unsigned short int aOffset[124] = {
120074        0,   2,   2,   8,   9,  14,  16,  20,  23,  25,  25,  29,  33,
120075       36,  41,  46,  48,  53,  54,  59,  62,  65,  67,  69,  78,  81,
120076       86,  91,  95,  96, 101, 105, 109, 117, 122, 128, 136, 142, 152,
120077      159, 162, 162, 165, 167, 167, 171, 176, 179, 184, 184, 188, 192,
120078      199, 204, 209, 212, 218, 221, 225, 234, 240, 240, 240, 243, 246,
120079      250, 251, 255, 261, 265, 272, 278, 290, 296, 305, 307, 313, 318,
120080      320, 327, 332, 337, 343, 349, 354, 358, 361, 367, 371, 378, 380,
120081      387, 389, 391, 400, 404, 410, 416, 424, 429, 429, 445, 452, 459,
120082      460, 467, 471, 475, 479, 483, 486, 488, 490, 496, 500, 508, 513,
120083      521, 524, 529, 534, 540, 544, 549,
120084   };
120085   static const unsigned char aCode[124] = {
120086     TK_REINDEX,    TK_INDEXED,    TK_INDEX,      TK_DESC,       TK_ESCAPE,
120087     TK_EACH,       TK_CHECK,      TK_KEY,        TK_BEFORE,     TK_FOREIGN,
120088     TK_FOR,        TK_IGNORE,     TK_LIKE_KW,    TK_EXPLAIN,    TK_INSTEAD,
120089     TK_ADD,        TK_DATABASE,   TK_AS,         TK_SELECT,     TK_TABLE,
120090     TK_JOIN_KW,    TK_THEN,       TK_END,        TK_DEFERRABLE, TK_ELSE,
120091     TK_EXCEPT,     TK_TRANSACTION,TK_ACTION,     TK_ON,         TK_JOIN_KW,
120092     TK_ALTER,      TK_RAISE,      TK_EXCLUSIVE,  TK_EXISTS,     TK_SAVEPOINT,
120093     TK_INTERSECT,  TK_TRIGGER,    TK_REFERENCES, TK_CONSTRAINT, TK_INTO,
120094     TK_OFFSET,     TK_OF,         TK_SET,        TK_TEMP,       TK_TEMP,
120095     TK_OR,         TK_UNIQUE,     TK_QUERY,      TK_WITHOUT,    TK_WITH,
120096     TK_JOIN_KW,    TK_RELEASE,    TK_ATTACH,     TK_HAVING,     TK_GROUP,
120097     TK_UPDATE,     TK_BEGIN,      TK_JOIN_KW,    TK_RECURSIVE,  TK_BETWEEN,
120098     TK_NOTNULL,    TK_NOT,        TK_NO,         TK_NULL,       TK_LIKE_KW,
120099     TK_CASCADE,    TK_ASC,        TK_DELETE,     TK_CASE,       TK_COLLATE,
120100     TK_CREATE,     TK_CTIME_KW,   TK_DETACH,     TK_IMMEDIATE,  TK_JOIN,
120101     TK_INSERT,     TK_MATCH,      TK_PLAN,       TK_ANALYZE,    TK_PRAGMA,
120102     TK_ABORT,      TK_VALUES,     TK_VIRTUAL,    TK_LIMIT,      TK_WHEN,
120103     TK_WHERE,      TK_RENAME,     TK_AFTER,      TK_REPLACE,    TK_AND,
120104     TK_DEFAULT,    TK_AUTOINCR,   TK_TO,         TK_IN,         TK_CAST,
120105     TK_COLUMNKW,   TK_COMMIT,     TK_CONFLICT,   TK_JOIN_KW,    TK_CTIME_KW,
120106     TK_CTIME_KW,   TK_PRIMARY,    TK_DEFERRED,   TK_DISTINCT,   TK_IS,
120107     TK_DROP,       TK_FAIL,       TK_FROM,       TK_JOIN_KW,    TK_LIKE_KW,
120108     TK_BY,         TK_IF,         TK_ISNULL,     TK_ORDER,      TK_RESTRICT,
120109     TK_JOIN_KW,    TK_ROLLBACK,   TK_ROW,        TK_UNION,      TK_USING,
120110     TK_VACUUM,     TK_VIEW,       TK_INITIALLY,  TK_ALL,
120111   };
120112   int h, i;
120113   if( n<2 ) return TK_ID;
120114   h = ((charMap(z[0])*4) ^
120115       (charMap(z[n-1])*3) ^
120116       n) % 127;
120117   for(i=((int)aHash[h])-1; i>=0; i=((int)aNext[i])-1){
120118     if( aLen[i]==n && sqlite3StrNICmp(&zText[aOffset[i]],z,n)==0 ){
120119       testcase( i==0 ); /* REINDEX */
120120       testcase( i==1 ); /* INDEXED */
120121       testcase( i==2 ); /* INDEX */
120122       testcase( i==3 ); /* DESC */
120123       testcase( i==4 ); /* ESCAPE */
120124       testcase( i==5 ); /* EACH */
120125       testcase( i==6 ); /* CHECK */
120126       testcase( i==7 ); /* KEY */
120127       testcase( i==8 ); /* BEFORE */
120128       testcase( i==9 ); /* FOREIGN */
120129       testcase( i==10 ); /* FOR */
120130       testcase( i==11 ); /* IGNORE */
120131       testcase( i==12 ); /* REGEXP */
120132       testcase( i==13 ); /* EXPLAIN */
120133       testcase( i==14 ); /* INSTEAD */
120134       testcase( i==15 ); /* ADD */
120135       testcase( i==16 ); /* DATABASE */
120136       testcase( i==17 ); /* AS */
120137       testcase( i==18 ); /* SELECT */
120138       testcase( i==19 ); /* TABLE */
120139       testcase( i==20 ); /* LEFT */
120140       testcase( i==21 ); /* THEN */
120141       testcase( i==22 ); /* END */
120142       testcase( i==23 ); /* DEFERRABLE */
120143       testcase( i==24 ); /* ELSE */
120144       testcase( i==25 ); /* EXCEPT */
120145       testcase( i==26 ); /* TRANSACTION */
120146       testcase( i==27 ); /* ACTION */
120147       testcase( i==28 ); /* ON */
120148       testcase( i==29 ); /* NATURAL */
120149       testcase( i==30 ); /* ALTER */
120150       testcase( i==31 ); /* RAISE */
120151       testcase( i==32 ); /* EXCLUSIVE */
120152       testcase( i==33 ); /* EXISTS */
120153       testcase( i==34 ); /* SAVEPOINT */
120154       testcase( i==35 ); /* INTERSECT */
120155       testcase( i==36 ); /* TRIGGER */
120156       testcase( i==37 ); /* REFERENCES */
120157       testcase( i==38 ); /* CONSTRAINT */
120158       testcase( i==39 ); /* INTO */
120159       testcase( i==40 ); /* OFFSET */
120160       testcase( i==41 ); /* OF */
120161       testcase( i==42 ); /* SET */
120162       testcase( i==43 ); /* TEMPORARY */
120163       testcase( i==44 ); /* TEMP */
120164       testcase( i==45 ); /* OR */
120165       testcase( i==46 ); /* UNIQUE */
120166       testcase( i==47 ); /* QUERY */
120167       testcase( i==48 ); /* WITHOUT */
120168       testcase( i==49 ); /* WITH */
120169       testcase( i==50 ); /* OUTER */
120170       testcase( i==51 ); /* RELEASE */
120171       testcase( i==52 ); /* ATTACH */
120172       testcase( i==53 ); /* HAVING */
120173       testcase( i==54 ); /* GROUP */
120174       testcase( i==55 ); /* UPDATE */
120175       testcase( i==56 ); /* BEGIN */
120176       testcase( i==57 ); /* INNER */
120177       testcase( i==58 ); /* RECURSIVE */
120178       testcase( i==59 ); /* BETWEEN */
120179       testcase( i==60 ); /* NOTNULL */
120180       testcase( i==61 ); /* NOT */
120181       testcase( i==62 ); /* NO */
120182       testcase( i==63 ); /* NULL */
120183       testcase( i==64 ); /* LIKE */
120184       testcase( i==65 ); /* CASCADE */
120185       testcase( i==66 ); /* ASC */
120186       testcase( i==67 ); /* DELETE */
120187       testcase( i==68 ); /* CASE */
120188       testcase( i==69 ); /* COLLATE */
120189       testcase( i==70 ); /* CREATE */
120190       testcase( i==71 ); /* CURRENT_DATE */
120191       testcase( i==72 ); /* DETACH */
120192       testcase( i==73 ); /* IMMEDIATE */
120193       testcase( i==74 ); /* JOIN */
120194       testcase( i==75 ); /* INSERT */
120195       testcase( i==76 ); /* MATCH */
120196       testcase( i==77 ); /* PLAN */
120197       testcase( i==78 ); /* ANALYZE */
120198       testcase( i==79 ); /* PRAGMA */
120199       testcase( i==80 ); /* ABORT */
120200       testcase( i==81 ); /* VALUES */
120201       testcase( i==82 ); /* VIRTUAL */
120202       testcase( i==83 ); /* LIMIT */
120203       testcase( i==84 ); /* WHEN */
120204       testcase( i==85 ); /* WHERE */
120205       testcase( i==86 ); /* RENAME */
120206       testcase( i==87 ); /* AFTER */
120207       testcase( i==88 ); /* REPLACE */
120208       testcase( i==89 ); /* AND */
120209       testcase( i==90 ); /* DEFAULT */
120210       testcase( i==91 ); /* AUTOINCREMENT */
120211       testcase( i==92 ); /* TO */
120212       testcase( i==93 ); /* IN */
120213       testcase( i==94 ); /* CAST */
120214       testcase( i==95 ); /* COLUMN */
120215       testcase( i==96 ); /* COMMIT */
120216       testcase( i==97 ); /* CONFLICT */
120217       testcase( i==98 ); /* CROSS */
120218       testcase( i==99 ); /* CURRENT_TIMESTAMP */
120219       testcase( i==100 ); /* CURRENT_TIME */
120220       testcase( i==101 ); /* PRIMARY */
120221       testcase( i==102 ); /* DEFERRED */
120222       testcase( i==103 ); /* DISTINCT */
120223       testcase( i==104 ); /* IS */
120224       testcase( i==105 ); /* DROP */
120225       testcase( i==106 ); /* FAIL */
120226       testcase( i==107 ); /* FROM */
120227       testcase( i==108 ); /* FULL */
120228       testcase( i==109 ); /* GLOB */
120229       testcase( i==110 ); /* BY */
120230       testcase( i==111 ); /* IF */
120231       testcase( i==112 ); /* ISNULL */
120232       testcase( i==113 ); /* ORDER */
120233       testcase( i==114 ); /* RESTRICT */
120234       testcase( i==115 ); /* RIGHT */
120235       testcase( i==116 ); /* ROLLBACK */
120236       testcase( i==117 ); /* ROW */
120237       testcase( i==118 ); /* UNION */
120238       testcase( i==119 ); /* USING */
120239       testcase( i==120 ); /* VACUUM */
120240       testcase( i==121 ); /* VIEW */
120241       testcase( i==122 ); /* INITIALLY */
120242       testcase( i==123 ); /* ALL */
120243       return aCode[i];
120244     }
120245   }
120246   return TK_ID;
120247 }
120248 SQLITE_PRIVATE int sqlite3KeywordCode(const unsigned char *z, int n){
120249   return keywordCode((char*)z, n);
120250 }
120251 #define SQLITE_N_KEYWORD 124
120252 
120253 /************** End of keywordhash.h *****************************************/
120254 /************** Continuing where we left off in tokenize.c *******************/
120255 
120256 
120257 /*
120258 ** If X is a character that can be used in an identifier then
120259 ** IdChar(X) will be true.  Otherwise it is false.
120260 **
120261 ** For ASCII, any character with the high-order bit set is
120262 ** allowed in an identifier.  For 7-bit characters,
120263 ** sqlite3IsIdChar[X] must be 1.
120264 **
120265 ** For EBCDIC, the rules are more complex but have the same
120266 ** end result.
120267 **
120268 ** Ticket #1066.  the SQL standard does not allow '$' in the
120269 ** middle of identfiers.  But many SQL implementations do.
120270 ** SQLite will allow '$' in identifiers for compatibility.
120271 ** But the feature is undocumented.
120272 */
120273 #ifdef SQLITE_ASCII
120274 #define IdChar(C)  ((sqlite3CtypeMap[(unsigned char)C]&0x46)!=0)
120275 #endif
120276 #ifdef SQLITE_EBCDIC
120277 SQLITE_PRIVATE const char sqlite3IsEbcdicIdChar[] = {
120278 /* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
120279     0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,  /* 4x */
120280     0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0,  /* 5x */
120281     0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0,  /* 6x */
120282     0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0,  /* 7x */
120283     0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0,  /* 8x */
120284     0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0,  /* 9x */
120285     1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0,  /* Ax */
120286     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  /* Bx */
120287     0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,  /* Cx */
120288     0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,  /* Dx */
120289     0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,  /* Ex */
120290     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0,  /* Fx */
120291 };
120292 #define IdChar(C)  (((c=C)>=0x42 && sqlite3IsEbcdicIdChar[c-0x40]))
120293 #endif
120294 
120295 
120296 /*
120297 ** Return the length of the token that begins at z[0].
120298 ** Store the token type in *tokenType before returning.
120299 */
120300 SQLITE_PRIVATE int sqlite3GetToken(const unsigned char *z, int *tokenType){
120301   int i, c;
120302   switch( *z ){
120303     case ' ': case '\t': case '\n': case '\f': case '\r': {
120304       testcase( z[0]==' ' );
120305       testcase( z[0]=='\t' );
120306       testcase( z[0]=='\n' );
120307       testcase( z[0]=='\f' );
120308       testcase( z[0]=='\r' );
120309       for(i=1; sqlite3Isspace(z[i]); i++){}
120310       *tokenType = TK_SPACE;
120311       return i;
120312     }
120313     case '-': {
120314       if( z[1]=='-' ){
120315         for(i=2; (c=z[i])!=0 && c!='\n'; i++){}
120316         *tokenType = TK_SPACE;   /* IMP: R-22934-25134 */
120317         return i;
120318       }
120319       *tokenType = TK_MINUS;
120320       return 1;
120321     }
120322     case '(': {
120323       *tokenType = TK_LP;
120324       return 1;
120325     }
120326     case ')': {
120327       *tokenType = TK_RP;
120328       return 1;
120329     }
120330     case ';': {
120331       *tokenType = TK_SEMI;
120332       return 1;
120333     }
120334     case '+': {
120335       *tokenType = TK_PLUS;
120336       return 1;
120337     }
120338     case '*': {
120339       *tokenType = TK_STAR;
120340       return 1;
120341     }
120342     case '/': {
120343       if( z[1]!='*' || z[2]==0 ){
120344         *tokenType = TK_SLASH;
120345         return 1;
120346       }
120347       for(i=3, c=z[2]; (c!='*' || z[i]!='/') && (c=z[i])!=0; i++){}
120348       if( c ) i++;
120349       *tokenType = TK_SPACE;   /* IMP: R-22934-25134 */
120350       return i;
120351     }
120352     case '%': {
120353       *tokenType = TK_REM;
120354       return 1;
120355     }
120356     case '=': {
120357       *tokenType = TK_EQ;
120358       return 1 + (z[1]=='=');
120359     }
120360     case '<': {
120361       if( (c=z[1])=='=' ){
120362         *tokenType = TK_LE;
120363         return 2;
120364       }else if( c=='>' ){
120365         *tokenType = TK_NE;
120366         return 2;
120367       }else if( c=='<' ){
120368         *tokenType = TK_LSHIFT;
120369         return 2;
120370       }else{
120371         *tokenType = TK_LT;
120372         return 1;
120373       }
120374     }
120375     case '>': {
120376       if( (c=z[1])=='=' ){
120377         *tokenType = TK_GE;
120378         return 2;
120379       }else if( c=='>' ){
120380         *tokenType = TK_RSHIFT;
120381         return 2;
120382       }else{
120383         *tokenType = TK_GT;
120384         return 1;
120385       }
120386     }
120387     case '!': {
120388       if( z[1]!='=' ){
120389         *tokenType = TK_ILLEGAL;
120390         return 2;
120391       }else{
120392         *tokenType = TK_NE;
120393         return 2;
120394       }
120395     }
120396     case '|': {
120397       if( z[1]!='|' ){
120398         *tokenType = TK_BITOR;
120399         return 1;
120400       }else{
120401         *tokenType = TK_CONCAT;
120402         return 2;
120403       }
120404     }
120405     case ',': {
120406       *tokenType = TK_COMMA;
120407       return 1;
120408     }
120409     case '&': {
120410       *tokenType = TK_BITAND;
120411       return 1;
120412     }
120413     case '~': {
120414       *tokenType = TK_BITNOT;
120415       return 1;
120416     }
120417     case '`':
120418     case '\'':
120419     case '"': {
120420       int delim = z[0];
120421       testcase( delim=='`' );
120422       testcase( delim=='\'' );
120423       testcase( delim=='"' );
120424       for(i=1; (c=z[i])!=0; i++){
120425         if( c==delim ){
120426           if( z[i+1]==delim ){
120427             i++;
120428           }else{
120429             break;
120430           }
120431         }
120432       }
120433       if( c=='\'' ){
120434         *tokenType = TK_STRING;
120435         return i+1;
120436       }else if( c!=0 ){
120437         *tokenType = TK_ID;
120438         return i+1;
120439       }else{
120440         *tokenType = TK_ILLEGAL;
120441         return i;
120442       }
120443     }
120444     case '.': {
120445 #ifndef SQLITE_OMIT_FLOATING_POINT
120446       if( !sqlite3Isdigit(z[1]) )
120447 #endif
120448       {
120449         *tokenType = TK_DOT;
120450         return 1;
120451       }
120452       /* If the next character is a digit, this is a floating point
120453       ** number that begins with ".".  Fall thru into the next case */
120454     }
120455     case '0': case '1': case '2': case '3': case '4':
120456     case '5': case '6': case '7': case '8': case '9': {
120457       testcase( z[0]=='0' );  testcase( z[0]=='1' );  testcase( z[0]=='2' );
120458       testcase( z[0]=='3' );  testcase( z[0]=='4' );  testcase( z[0]=='5' );
120459       testcase( z[0]=='6' );  testcase( z[0]=='7' );  testcase( z[0]=='8' );
120460       testcase( z[0]=='9' );
120461       *tokenType = TK_INTEGER;
120462       for(i=0; sqlite3Isdigit(z[i]); i++){}
120463 #ifndef SQLITE_OMIT_FLOATING_POINT
120464       if( z[i]=='.' ){
120465         i++;
120466         while( sqlite3Isdigit(z[i]) ){ i++; }
120467         *tokenType = TK_FLOAT;
120468       }
120469       if( (z[i]=='e' || z[i]=='E') &&
120470            ( sqlite3Isdigit(z[i+1])
120471             || ((z[i+1]=='+' || z[i+1]=='-') && sqlite3Isdigit(z[i+2]))
120472            )
120473       ){
120474         i += 2;
120475         while( sqlite3Isdigit(z[i]) ){ i++; }
120476         *tokenType = TK_FLOAT;
120477       }
120478 #endif
120479       while( IdChar(z[i]) ){
120480         *tokenType = TK_ILLEGAL;
120481         i++;
120482       }
120483       return i;
120484     }
120485     case '[': {
120486       for(i=1, c=z[0]; c!=']' && (c=z[i])!=0; i++){}
120487       *tokenType = c==']' ? TK_ID : TK_ILLEGAL;
120488       return i;
120489     }
120490     case '?': {
120491       *tokenType = TK_VARIABLE;
120492       for(i=1; sqlite3Isdigit(z[i]); i++){}
120493       return i;
120494     }
120495 #ifndef SQLITE_OMIT_TCL_VARIABLE
120496     case '$':
120497 #endif
120498     case '@':  /* For compatibility with MS SQL Server */
120499     case '#':
120500     case ':': {
120501       int n = 0;
120502       testcase( z[0]=='$' );  testcase( z[0]=='@' );
120503       testcase( z[0]==':' );  testcase( z[0]=='#' );
120504       *tokenType = TK_VARIABLE;
120505       for(i=1; (c=z[i])!=0; i++){
120506         if( IdChar(c) ){
120507           n++;
120508 #ifndef SQLITE_OMIT_TCL_VARIABLE
120509         }else if( c=='(' && n>0 ){
120510           do{
120511             i++;
120512           }while( (c=z[i])!=0 && !sqlite3Isspace(c) && c!=')' );
120513           if( c==')' ){
120514             i++;
120515           }else{
120516             *tokenType = TK_ILLEGAL;
120517           }
120518           break;
120519         }else if( c==':' && z[i+1]==':' ){
120520           i++;
120521 #endif
120522         }else{
120523           break;
120524         }
120525       }
120526       if( n==0 ) *tokenType = TK_ILLEGAL;
120527       return i;
120528     }
120529 #ifndef SQLITE_OMIT_BLOB_LITERAL
120530     case 'x': case 'X': {
120531       testcase( z[0]=='x' ); testcase( z[0]=='X' );
120532       if( z[1]=='\'' ){
120533         *tokenType = TK_BLOB;
120534         for(i=2; sqlite3Isxdigit(z[i]); i++){}
120535         if( z[i]!='\'' || i%2 ){
120536           *tokenType = TK_ILLEGAL;
120537           while( z[i] && z[i]!='\'' ){ i++; }
120538         }
120539         if( z[i] ) i++;
120540         return i;
120541       }
120542       /* Otherwise fall through to the next case */
120543     }
120544 #endif
120545     default: {
120546       if( !IdChar(*z) ){
120547         break;
120548       }
120549       for(i=1; IdChar(z[i]); i++){}
120550       *tokenType = keywordCode((char*)z, i);
120551       return i;
120552     }
120553   }
120554   *tokenType = TK_ILLEGAL;
120555   return 1;
120556 }
120557 
120558 /*
120559 ** Run the parser on the given SQL string.  The parser structure is
120560 ** passed in.  An SQLITE_ status code is returned.  If an error occurs
120561 ** then an and attempt is made to write an error message into
120562 ** memory obtained from sqlite3_malloc() and to make *pzErrMsg point to that
120563 ** error message.
120564 */
120565 SQLITE_PRIVATE int sqlite3RunParser(Parse *pParse, const char *zSql, char **pzErrMsg){
120566   int nErr = 0;                   /* Number of errors encountered */
120567   int i;                          /* Loop counter */
120568   void *pEngine;                  /* The LEMON-generated LALR(1) parser */
120569   int tokenType;                  /* type of the next token */
120570   int lastTokenParsed = -1;       /* type of the previous token */
120571   u8 enableLookaside;             /* Saved value of db->lookaside.bEnabled */
120572   sqlite3 *db = pParse->db;       /* The database connection */
120573   int mxSqlLen;                   /* Max length of an SQL string */
120574 
120575 
120576   mxSqlLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH];
120577   if( db->nVdbeActive==0 ){
120578     db->u1.isInterrupted = 0;
120579   }
120580   pParse->rc = SQLITE_OK;
120581   pParse->zTail = zSql;
120582   i = 0;
120583   assert( pzErrMsg!=0 );
120584   pEngine = sqlite3ParserAlloc((void*(*)(size_t))sqlite3Malloc);
120585   if( pEngine==0 ){
120586     db->mallocFailed = 1;
120587     return SQLITE_NOMEM;
120588   }
120589   assert( pParse->pNewTable==0 );
120590   assert( pParse->pNewTrigger==0 );
120591   assert( pParse->nVar==0 );
120592   assert( pParse->nzVar==0 );
120593   assert( pParse->azVar==0 );
120594   enableLookaside = db->lookaside.bEnabled;
120595   if( db->lookaside.pStart ) db->lookaside.bEnabled = 1;
120596   while( !db->mallocFailed && zSql[i]!=0 ){
120597     assert( i>=0 );
120598     pParse->sLastToken.z = &zSql[i];
120599     pParse->sLastToken.n = sqlite3GetToken((unsigned char*)&zSql[i],&tokenType);
120600     i += pParse->sLastToken.n;
120601     if( i>mxSqlLen ){
120602       pParse->rc = SQLITE_TOOBIG;
120603       break;
120604     }
120605     switch( tokenType ){
120606       case TK_SPACE: {
120607         if( db->u1.isInterrupted ){
120608           sqlite3ErrorMsg(pParse, "interrupt");
120609           pParse->rc = SQLITE_INTERRUPT;
120610           goto abort_parse;
120611         }
120612         break;
120613       }
120614       case TK_ILLEGAL: {
120615         sqlite3DbFree(db, *pzErrMsg);
120616         *pzErrMsg = sqlite3MPrintf(db, "unrecognized token: \"%T\"",
120617                         &pParse->sLastToken);
120618         nErr++;
120619         goto abort_parse;
120620       }
120621       case TK_SEMI: {
120622         pParse->zTail = &zSql[i];
120623         /* Fall thru into the default case */
120624       }
120625       default: {
120626         sqlite3Parser(pEngine, tokenType, pParse->sLastToken, pParse);
120627         lastTokenParsed = tokenType;
120628         if( pParse->rc!=SQLITE_OK ){
120629           goto abort_parse;
120630         }
120631         break;
120632       }
120633     }
120634   }
120635 abort_parse:
120636   if( zSql[i]==0 && nErr==0 && pParse->rc==SQLITE_OK ){
120637     if( lastTokenParsed!=TK_SEMI ){
120638       sqlite3Parser(pEngine, TK_SEMI, pParse->sLastToken, pParse);
120639       pParse->zTail = &zSql[i];
120640     }
120641     sqlite3Parser(pEngine, 0, pParse->sLastToken, pParse);
120642   }
120643 #ifdef YYTRACKMAXSTACKDEPTH
120644   sqlite3StatusSet(SQLITE_STATUS_PARSER_STACK,
120645       sqlite3ParserStackPeak(pEngine)
120646   );
120647 #endif /* YYDEBUG */
120648   sqlite3ParserFree(pEngine, sqlite3_free);
120649   db->lookaside.bEnabled = enableLookaside;
120650   if( db->mallocFailed ){
120651     pParse->rc = SQLITE_NOMEM;
120652   }
120653   if( pParse->rc!=SQLITE_OK && pParse->rc!=SQLITE_DONE && pParse->zErrMsg==0 ){
120654     sqlite3SetString(&pParse->zErrMsg, db, "%s", sqlite3ErrStr(pParse->rc));
120655   }
120656   assert( pzErrMsg!=0 );
120657   if( pParse->zErrMsg ){
120658     *pzErrMsg = pParse->zErrMsg;
120659     sqlite3_log(pParse->rc, "%s", *pzErrMsg);
120660     pParse->zErrMsg = 0;
120661     nErr++;
120662   }
120663   if( pParse->pVdbe && pParse->nErr>0 && pParse->nested==0 ){
120664     sqlite3VdbeDelete(pParse->pVdbe);
120665     pParse->pVdbe = 0;
120666   }
120667 #ifndef SQLITE_OMIT_SHARED_CACHE
120668   if( pParse->nested==0 ){
120669     sqlite3DbFree(db, pParse->aTableLock);
120670     pParse->aTableLock = 0;
120671     pParse->nTableLock = 0;
120672   }
120673 #endif
120674 #ifndef SQLITE_OMIT_VIRTUALTABLE
120675   sqlite3_free(pParse->apVtabLock);
120676 #endif
120677 
120678   if( !IN_DECLARE_VTAB ){
120679     /* If the pParse->declareVtab flag is set, do not delete any table
120680     ** structure built up in pParse->pNewTable. The calling code (see vtab.c)
120681     ** will take responsibility for freeing the Table structure.
120682     */
120683     sqlite3DeleteTable(db, pParse->pNewTable);
120684   }
120685 
120686   if( pParse->bFreeWith ) sqlite3WithDelete(db, pParse->pWith);
120687   sqlite3DeleteTrigger(db, pParse->pNewTrigger);
120688   for(i=pParse->nzVar-1; i>=0; i--) sqlite3DbFree(db, pParse->azVar[i]);
120689   sqlite3DbFree(db, pParse->azVar);
120690   while( pParse->pAinc ){
120691     AutoincInfo *p = pParse->pAinc;
120692     pParse->pAinc = p->pNext;
120693     sqlite3DbFree(db, p);
120694   }
120695   while( pParse->pZombieTab ){
120696     Table *p = pParse->pZombieTab;
120697     pParse->pZombieTab = p->pNextZombie;
120698     sqlite3DeleteTable(db, p);
120699   }
120700   if( nErr>0 && pParse->rc==SQLITE_OK ){
120701     pParse->rc = SQLITE_ERROR;
120702   }
120703   return nErr;
120704 }
120705 
120706 /************** End of tokenize.c ********************************************/
120707 /************** Begin file complete.c ****************************************/
120708 /*
120709 ** 2001 September 15
120710 **
120711 ** The author disclaims copyright to this source code.  In place of
120712 ** a legal notice, here is a blessing:
120713 **
120714 **    May you do good and not evil.
120715 **    May you find forgiveness for yourself and forgive others.
120716 **    May you share freely, never taking more than you give.
120717 **
120718 *************************************************************************
120719 ** An tokenizer for SQL
120720 **
120721 ** This file contains C code that implements the sqlite3_complete() API.
120722 ** This code used to be part of the tokenizer.c source file.  But by
120723 ** separating it out, the code will be automatically omitted from
120724 ** static links that do not use it.
120725 */
120726 #ifndef SQLITE_OMIT_COMPLETE
120727 
120728 /*
120729 ** This is defined in tokenize.c.  We just have to import the definition.
120730 */
120731 #ifndef SQLITE_AMALGAMATION
120732 #ifdef SQLITE_ASCII
120733 #define IdChar(C)  ((sqlite3CtypeMap[(unsigned char)C]&0x46)!=0)
120734 #endif
120735 #ifdef SQLITE_EBCDIC
120736 SQLITE_PRIVATE const char sqlite3IsEbcdicIdChar[];
120737 #define IdChar(C)  (((c=C)>=0x42 && sqlite3IsEbcdicIdChar[c-0x40]))
120738 #endif
120739 #endif /* SQLITE_AMALGAMATION */
120740 
120741 
120742 /*
120743 ** Token types used by the sqlite3_complete() routine.  See the header
120744 ** comments on that procedure for additional information.
120745 */
120746 #define tkSEMI    0
120747 #define tkWS      1
120748 #define tkOTHER   2
120749 #ifndef SQLITE_OMIT_TRIGGER
120750 #define tkEXPLAIN 3
120751 #define tkCREATE  4
120752 #define tkTEMP    5
120753 #define tkTRIGGER 6
120754 #define tkEND     7
120755 #endif
120756 
120757 /*
120758 ** Return TRUE if the given SQL string ends in a semicolon.
120759 **
120760 ** Special handling is require for CREATE TRIGGER statements.
120761 ** Whenever the CREATE TRIGGER keywords are seen, the statement
120762 ** must end with ";END;".
120763 **
120764 ** This implementation uses a state machine with 8 states:
120765 **
120766 **   (0) INVALID   We have not yet seen a non-whitespace character.
120767 **
120768 **   (1) START     At the beginning or end of an SQL statement.  This routine
120769 **                 returns 1 if it ends in the START state and 0 if it ends
120770 **                 in any other state.
120771 **
120772 **   (2) NORMAL    We are in the middle of statement which ends with a single
120773 **                 semicolon.
120774 **
120775 **   (3) EXPLAIN   The keyword EXPLAIN has been seen at the beginning of
120776 **                 a statement.
120777 **
120778 **   (4) CREATE    The keyword CREATE has been seen at the beginning of a
120779 **                 statement, possibly preceeded by EXPLAIN and/or followed by
120780 **                 TEMP or TEMPORARY
120781 **
120782 **   (5) TRIGGER   We are in the middle of a trigger definition that must be
120783 **                 ended by a semicolon, the keyword END, and another semicolon.
120784 **
120785 **   (6) SEMI      We've seen the first semicolon in the ";END;" that occurs at
120786 **                 the end of a trigger definition.
120787 **
120788 **   (7) END       We've seen the ";END" of the ";END;" that occurs at the end
120789 **                 of a trigger difinition.
120790 **
120791 ** Transitions between states above are determined by tokens extracted
120792 ** from the input.  The following tokens are significant:
120793 **
120794 **   (0) tkSEMI      A semicolon.
120795 **   (1) tkWS        Whitespace.
120796 **   (2) tkOTHER     Any other SQL token.
120797 **   (3) tkEXPLAIN   The "explain" keyword.
120798 **   (4) tkCREATE    The "create" keyword.
120799 **   (5) tkTEMP      The "temp" or "temporary" keyword.
120800 **   (6) tkTRIGGER   The "trigger" keyword.
120801 **   (7) tkEND       The "end" keyword.
120802 **
120803 ** Whitespace never causes a state transition and is always ignored.
120804 ** This means that a SQL string of all whitespace is invalid.
120805 **
120806 ** If we compile with SQLITE_OMIT_TRIGGER, all of the computation needed
120807 ** to recognize the end of a trigger can be omitted.  All we have to do
120808 ** is look for a semicolon that is not part of an string or comment.
120809 */
120810 SQLITE_API int sqlite3_complete(const char *zSql){
120811   u8 state = 0;   /* Current state, using numbers defined in header comment */
120812   u8 token;       /* Value of the next token */
120813 
120814 #ifndef SQLITE_OMIT_TRIGGER
120815   /* A complex statement machine used to detect the end of a CREATE TRIGGER
120816   ** statement.  This is the normal case.
120817   */
120818   static const u8 trans[8][8] = {
120819                      /* Token:                                                */
120820      /* State:       **  SEMI  WS  OTHER  EXPLAIN  CREATE  TEMP  TRIGGER  END */
120821      /* 0 INVALID: */ {    1,  0,     2,       3,      4,    2,       2,   2, },
120822      /* 1   START: */ {    1,  1,     2,       3,      4,    2,       2,   2, },
120823      /* 2  NORMAL: */ {    1,  2,     2,       2,      2,    2,       2,   2, },
120824      /* 3 EXPLAIN: */ {    1,  3,     3,       2,      4,    2,       2,   2, },
120825      /* 4  CREATE: */ {    1,  4,     2,       2,      2,    4,       5,   2, },
120826      /* 5 TRIGGER: */ {    6,  5,     5,       5,      5,    5,       5,   5, },
120827      /* 6    SEMI: */ {    6,  6,     5,       5,      5,    5,       5,   7, },
120828      /* 7     END: */ {    1,  7,     5,       5,      5,    5,       5,   5, },
120829   };
120830 #else
120831   /* If triggers are not supported by this compile then the statement machine
120832   ** used to detect the end of a statement is much simplier
120833   */
120834   static const u8 trans[3][3] = {
120835                      /* Token:           */
120836      /* State:       **  SEMI  WS  OTHER */
120837      /* 0 INVALID: */ {    1,  0,     2, },
120838      /* 1   START: */ {    1,  1,     2, },
120839      /* 2  NORMAL: */ {    1,  2,     2, },
120840   };
120841 #endif /* SQLITE_OMIT_TRIGGER */
120842 
120843   while( *zSql ){
120844     switch( *zSql ){
120845       case ';': {  /* A semicolon */
120846         token = tkSEMI;
120847         break;
120848       }
120849       case ' ':
120850       case '\r':
120851       case '\t':
120852       case '\n':
120853       case '\f': {  /* White space is ignored */
120854         token = tkWS;
120855         break;
120856       }
120857       case '/': {   /* C-style comments */
120858         if( zSql[1]!='*' ){
120859           token = tkOTHER;
120860           break;
120861         }
120862         zSql += 2;
120863         while( zSql[0] && (zSql[0]!='*' || zSql[1]!='/') ){ zSql++; }
120864         if( zSql[0]==0 ) return 0;
120865         zSql++;
120866         token = tkWS;
120867         break;
120868       }
120869       case '-': {   /* SQL-style comments from "--" to end of line */
120870         if( zSql[1]!='-' ){
120871           token = tkOTHER;
120872           break;
120873         }
120874         while( *zSql && *zSql!='\n' ){ zSql++; }
120875         if( *zSql==0 ) return state==1;
120876         token = tkWS;
120877         break;
120878       }
120879       case '[': {   /* Microsoft-style identifiers in [...] */
120880         zSql++;
120881         while( *zSql && *zSql!=']' ){ zSql++; }
120882         if( *zSql==0 ) return 0;
120883         token = tkOTHER;
120884         break;
120885       }
120886       case '`':     /* Grave-accent quoted symbols used by MySQL */
120887       case '"':     /* single- and double-quoted strings */
120888       case '\'': {
120889         int c = *zSql;
120890         zSql++;
120891         while( *zSql && *zSql!=c ){ zSql++; }
120892         if( *zSql==0 ) return 0;
120893         token = tkOTHER;
120894         break;
120895       }
120896       default: {
120897 #ifdef SQLITE_EBCDIC
120898         unsigned char c;
120899 #endif
120900         if( IdChar((u8)*zSql) ){
120901           /* Keywords and unquoted identifiers */
120902           int nId;
120903           for(nId=1; IdChar(zSql[nId]); nId++){}
120904 #ifdef SQLITE_OMIT_TRIGGER
120905           token = tkOTHER;
120906 #else
120907           switch( *zSql ){
120908             case 'c': case 'C': {
120909               if( nId==6 && sqlite3StrNICmp(zSql, "create", 6)==0 ){
120910                 token = tkCREATE;
120911               }else{
120912                 token = tkOTHER;
120913               }
120914               break;
120915             }
120916             case 't': case 'T': {
120917               if( nId==7 && sqlite3StrNICmp(zSql, "trigger", 7)==0 ){
120918                 token = tkTRIGGER;
120919               }else if( nId==4 && sqlite3StrNICmp(zSql, "temp", 4)==0 ){
120920                 token = tkTEMP;
120921               }else if( nId==9 && sqlite3StrNICmp(zSql, "temporary", 9)==0 ){
120922                 token = tkTEMP;
120923               }else{
120924                 token = tkOTHER;
120925               }
120926               break;
120927             }
120928             case 'e':  case 'E': {
120929               if( nId==3 && sqlite3StrNICmp(zSql, "end", 3)==0 ){
120930                 token = tkEND;
120931               }else
120932 #ifndef SQLITE_OMIT_EXPLAIN
120933               if( nId==7 && sqlite3StrNICmp(zSql, "explain", 7)==0 ){
120934                 token = tkEXPLAIN;
120935               }else
120936 #endif
120937               {
120938                 token = tkOTHER;
120939               }
120940               break;
120941             }
120942             default: {
120943               token = tkOTHER;
120944               break;
120945             }
120946           }
120947 #endif /* SQLITE_OMIT_TRIGGER */
120948           zSql += nId-1;
120949         }else{
120950           /* Operators and special symbols */
120951           token = tkOTHER;
120952         }
120953         break;
120954       }
120955     }
120956     state = trans[state][token];
120957     zSql++;
120958   }
120959   return state==1;
120960 }
120961 
120962 #ifndef SQLITE_OMIT_UTF16
120963 /*
120964 ** This routine is the same as the sqlite3_complete() routine described
120965 ** above, except that the parameter is required to be UTF-16 encoded, not
120966 ** UTF-8.
120967 */
120968 SQLITE_API int sqlite3_complete16(const void *zSql){
120969   sqlite3_value *pVal;
120970   char const *zSql8;
120971   int rc = SQLITE_NOMEM;
120972 
120973 #ifndef SQLITE_OMIT_AUTOINIT
120974   rc = sqlite3_initialize();
120975   if( rc ) return rc;
120976 #endif
120977   pVal = sqlite3ValueNew(0);
120978   sqlite3ValueSetStr(pVal, -1, zSql, SQLITE_UTF16NATIVE, SQLITE_STATIC);
120979   zSql8 = sqlite3ValueText(pVal, SQLITE_UTF8);
120980   if( zSql8 ){
120981     rc = sqlite3_complete(zSql8);
120982   }else{
120983     rc = SQLITE_NOMEM;
120984   }
120985   sqlite3ValueFree(pVal);
120986   return sqlite3ApiExit(0, rc);
120987 }
120988 #endif /* SQLITE_OMIT_UTF16 */
120989 #endif /* SQLITE_OMIT_COMPLETE */
120990 
120991 /************** End of complete.c ********************************************/
120992 /************** Begin file main.c ********************************************/
120993 /*
120994 ** 2001 September 15
120995 **
120996 ** The author disclaims copyright to this source code.  In place of
120997 ** a legal notice, here is a blessing:
120998 **
120999 **    May you do good and not evil.
121000 **    May you find forgiveness for yourself and forgive others.
121001 **    May you share freely, never taking more than you give.
121002 **
121003 *************************************************************************
121004 ** Main file for the SQLite library.  The routines in this file
121005 ** implement the programmer interface to the library.  Routines in
121006 ** other files are for internal use by SQLite and should not be
121007 ** accessed by users of the library.
121008 */
121009 
121010 #ifdef SQLITE_ENABLE_FTS3
121011 /************** Include fts3.h in the middle of main.c ***********************/
121012 /************** Begin file fts3.h ********************************************/
121013 /*
121014 ** 2006 Oct 10
121015 **
121016 ** The author disclaims copyright to this source code.  In place of
121017 ** a legal notice, here is a blessing:
121018 **
121019 **    May you do good and not evil.
121020 **    May you find forgiveness for yourself and forgive others.
121021 **    May you share freely, never taking more than you give.
121022 **
121023 ******************************************************************************
121024 **
121025 ** This header file is used by programs that want to link against the
121026 ** FTS3 library.  All it does is declare the sqlite3Fts3Init() interface.
121027 */
121028 
121029 #if 0
121030 extern "C" {
121031 #endif  /* __cplusplus */
121032 
121033 SQLITE_PRIVATE int sqlite3Fts3Init(sqlite3 *db);
121034 
121035 #if 0
121036 }  /* extern "C" */
121037 #endif  /* __cplusplus */
121038 
121039 /************** End of fts3.h ************************************************/
121040 /************** Continuing where we left off in main.c ***********************/
121041 #endif
121042 #ifdef SQLITE_ENABLE_RTREE
121043 /************** Include rtree.h in the middle of main.c **********************/
121044 /************** Begin file rtree.h *******************************************/
121045 /*
121046 ** 2008 May 26
121047 **
121048 ** The author disclaims copyright to this source code.  In place of
121049 ** a legal notice, here is a blessing:
121050 **
121051 **    May you do good and not evil.
121052 **    May you find forgiveness for yourself and forgive others.
121053 **    May you share freely, never taking more than you give.
121054 **
121055 ******************************************************************************
121056 **
121057 ** This header file is used by programs that want to link against the
121058 ** RTREE library.  All it does is declare the sqlite3RtreeInit() interface.
121059 */
121060 
121061 #if 0
121062 extern "C" {
121063 #endif  /* __cplusplus */
121064 
121065 SQLITE_PRIVATE int sqlite3RtreeInit(sqlite3 *db);
121066 
121067 #if 0
121068 }  /* extern "C" */
121069 #endif  /* __cplusplus */
121070 
121071 /************** End of rtree.h ***********************************************/
121072 /************** Continuing where we left off in main.c ***********************/
121073 #endif
121074 #ifdef SQLITE_ENABLE_ICU
121075 /************** Include sqliteicu.h in the middle of main.c ******************/
121076 /************** Begin file sqliteicu.h ***************************************/
121077 /*
121078 ** 2008 May 26
121079 **
121080 ** The author disclaims copyright to this source code.  In place of
121081 ** a legal notice, here is a blessing:
121082 **
121083 **    May you do good and not evil.
121084 **    May you find forgiveness for yourself and forgive others.
121085 **    May you share freely, never taking more than you give.
121086 **
121087 ******************************************************************************
121088 **
121089 ** This header file is used by programs that want to link against the
121090 ** ICU extension.  All it does is declare the sqlite3IcuInit() interface.
121091 */
121092 
121093 #if 0
121094 extern "C" {
121095 #endif  /* __cplusplus */
121096 
121097 SQLITE_PRIVATE int sqlite3IcuInit(sqlite3 *db);
121098 
121099 #if 0
121100 }  /* extern "C" */
121101 #endif  /* __cplusplus */
121102 
121103 
121104 /************** End of sqliteicu.h *******************************************/
121105 /************** Continuing where we left off in main.c ***********************/
121106 #endif
121107 
121108 #ifndef SQLITE_AMALGAMATION
121109 /* IMPLEMENTATION-OF: R-46656-45156 The sqlite3_version[] string constant
121110 ** contains the text of SQLITE_VERSION macro.
121111 */
121112 SQLITE_API const char sqlite3_version[] = SQLITE_VERSION;
121113 #endif
121114 
121115 /* IMPLEMENTATION-OF: R-53536-42575 The sqlite3_libversion() function returns
121116 ** a pointer to the to the sqlite3_version[] string constant.
121117 */
121118 SQLITE_API const char *sqlite3_libversion(void){ return sqlite3_version; }
121119 
121120 /* IMPLEMENTATION-OF: R-63124-39300 The sqlite3_sourceid() function returns a
121121 ** pointer to a string constant whose value is the same as the
121122 ** SQLITE_SOURCE_ID C preprocessor macro.
121123 */
121124 SQLITE_API const char *sqlite3_sourceid(void){ return SQLITE_SOURCE_ID; }
121125 
121126 /* IMPLEMENTATION-OF: R-35210-63508 The sqlite3_libversion_number() function
121127 ** returns an integer equal to SQLITE_VERSION_NUMBER.
121128 */
121129 SQLITE_API int sqlite3_libversion_number(void){ return SQLITE_VERSION_NUMBER; }
121130 
121131 /* IMPLEMENTATION-OF: R-20790-14025 The sqlite3_threadsafe() function returns
121132 ** zero if and only if SQLite was compiled with mutexing code omitted due to
121133 ** the SQLITE_THREADSAFE compile-time option being set to 0.
121134 */
121135 SQLITE_API int sqlite3_threadsafe(void){ return SQLITE_THREADSAFE; }
121136 
121137 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
121138 /*
121139 ** If the following function pointer is not NULL and if
121140 ** SQLITE_ENABLE_IOTRACE is enabled, then messages describing
121141 ** I/O active are written using this function.  These messages
121142 ** are intended for debugging activity only.
121143 */
121144 SQLITE_PRIVATE void (*sqlite3IoTrace)(const char*, ...) = 0;
121145 #endif
121146 
121147 /*
121148 ** If the following global variable points to a string which is the
121149 ** name of a directory, then that directory will be used to store
121150 ** temporary files.
121151 **
121152 ** See also the "PRAGMA temp_store_directory" SQL command.
121153 */
121154 SQLITE_API char *sqlite3_temp_directory = 0;
121155 
121156 /*
121157 ** If the following global variable points to a string which is the
121158 ** name of a directory, then that directory will be used to store
121159 ** all database files specified with a relative pathname.
121160 **
121161 ** See also the "PRAGMA data_store_directory" SQL command.
121162 */
121163 SQLITE_API char *sqlite3_data_directory = 0;
121164 
121165 /*
121166 ** Initialize SQLite.
121167 **
121168 ** This routine must be called to initialize the memory allocation,
121169 ** VFS, and mutex subsystems prior to doing any serious work with
121170 ** SQLite.  But as long as you do not compile with SQLITE_OMIT_AUTOINIT
121171 ** this routine will be called automatically by key routines such as
121172 ** sqlite3_open().
121173 **
121174 ** This routine is a no-op except on its very first call for the process,
121175 ** or for the first call after a call to sqlite3_shutdown.
121176 **
121177 ** The first thread to call this routine runs the initialization to
121178 ** completion.  If subsequent threads call this routine before the first
121179 ** thread has finished the initialization process, then the subsequent
121180 ** threads must block until the first thread finishes with the initialization.
121181 **
121182 ** The first thread might call this routine recursively.  Recursive
121183 ** calls to this routine should not block, of course.  Otherwise the
121184 ** initialization process would never complete.
121185 **
121186 ** Let X be the first thread to enter this routine.  Let Y be some other
121187 ** thread.  Then while the initial invocation of this routine by X is
121188 ** incomplete, it is required that:
121189 **
121190 **    *  Calls to this routine from Y must block until the outer-most
121191 **       call by X completes.
121192 **
121193 **    *  Recursive calls to this routine from thread X return immediately
121194 **       without blocking.
121195 */
121196 SQLITE_API int sqlite3_initialize(void){
121197   MUTEX_LOGIC( sqlite3_mutex *pMaster; )       /* The main static mutex */
121198   int rc;                                      /* Result code */
121199 #ifdef SQLITE_EXTRA_INIT
121200   int bRunExtraInit = 0;                       /* Extra initialization needed */
121201 #endif
121202 
121203 #ifdef SQLITE_OMIT_WSD
121204   rc = sqlite3_wsd_init(4096, 24);
121205   if( rc!=SQLITE_OK ){
121206     return rc;
121207   }
121208 #endif
121209 
121210   /* If SQLite is already completely initialized, then this call
121211   ** to sqlite3_initialize() should be a no-op.  But the initialization
121212   ** must be complete.  So isInit must not be set until the very end
121213   ** of this routine.
121214   */
121215   if( sqlite3GlobalConfig.isInit ) return SQLITE_OK;
121216 
121217   /* Make sure the mutex subsystem is initialized.  If unable to
121218   ** initialize the mutex subsystem, return early with the error.
121219   ** If the system is so sick that we are unable to allocate a mutex,
121220   ** there is not much SQLite is going to be able to do.
121221   **
121222   ** The mutex subsystem must take care of serializing its own
121223   ** initialization.
121224   */
121225   rc = sqlite3MutexInit();
121226   if( rc ) return rc;
121227 
121228   /* Initialize the malloc() system and the recursive pInitMutex mutex.
121229   ** This operation is protected by the STATIC_MASTER mutex.  Note that
121230   ** MutexAlloc() is called for a static mutex prior to initializing the
121231   ** malloc subsystem - this implies that the allocation of a static
121232   ** mutex must not require support from the malloc subsystem.
121233   */
121234   MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
121235   sqlite3_mutex_enter(pMaster);
121236   sqlite3GlobalConfig.isMutexInit = 1;
121237   if( !sqlite3GlobalConfig.isMallocInit ){
121238     rc = sqlite3MallocInit();
121239   }
121240   if( rc==SQLITE_OK ){
121241     sqlite3GlobalConfig.isMallocInit = 1;
121242     if( !sqlite3GlobalConfig.pInitMutex ){
121243       sqlite3GlobalConfig.pInitMutex =
121244            sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE);
121245       if( sqlite3GlobalConfig.bCoreMutex && !sqlite3GlobalConfig.pInitMutex ){
121246         rc = SQLITE_NOMEM;
121247       }
121248     }
121249   }
121250   if( rc==SQLITE_OK ){
121251     sqlite3GlobalConfig.nRefInitMutex++;
121252   }
121253   sqlite3_mutex_leave(pMaster);
121254 
121255   /* If rc is not SQLITE_OK at this point, then either the malloc
121256   ** subsystem could not be initialized or the system failed to allocate
121257   ** the pInitMutex mutex. Return an error in either case.  */
121258   if( rc!=SQLITE_OK ){
121259     return rc;
121260   }
121261 
121262   /* Do the rest of the initialization under the recursive mutex so
121263   ** that we will be able to handle recursive calls into
121264   ** sqlite3_initialize().  The recursive calls normally come through
121265   ** sqlite3_os_init() when it invokes sqlite3_vfs_register(), but other
121266   ** recursive calls might also be possible.
121267   **
121268   ** IMPLEMENTATION-OF: R-00140-37445 SQLite automatically serializes calls
121269   ** to the xInit method, so the xInit method need not be threadsafe.
121270   **
121271   ** The following mutex is what serializes access to the appdef pcache xInit
121272   ** methods.  The sqlite3_pcache_methods.xInit() all is embedded in the
121273   ** call to sqlite3PcacheInitialize().
121274   */
121275   sqlite3_mutex_enter(sqlite3GlobalConfig.pInitMutex);
121276   if( sqlite3GlobalConfig.isInit==0 && sqlite3GlobalConfig.inProgress==0 ){
121277     FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions);
121278     sqlite3GlobalConfig.inProgress = 1;
121279     memset(pHash, 0, sizeof(sqlite3GlobalFunctions));
121280     sqlite3RegisterGlobalFunctions();
121281     if( sqlite3GlobalConfig.isPCacheInit==0 ){
121282       rc = sqlite3PcacheInitialize();
121283     }
121284     if( rc==SQLITE_OK ){
121285       sqlite3GlobalConfig.isPCacheInit = 1;
121286       rc = sqlite3OsInit();
121287     }
121288     if( rc==SQLITE_OK ){
121289       sqlite3PCacheBufferSetup( sqlite3GlobalConfig.pPage,
121290           sqlite3GlobalConfig.szPage, sqlite3GlobalConfig.nPage);
121291       sqlite3GlobalConfig.isInit = 1;
121292 #ifdef SQLITE_EXTRA_INIT
121293       bRunExtraInit = 1;
121294 #endif
121295     }
121296     sqlite3GlobalConfig.inProgress = 0;
121297   }
121298   sqlite3_mutex_leave(sqlite3GlobalConfig.pInitMutex);
121299 
121300   /* Go back under the static mutex and clean up the recursive
121301   ** mutex to prevent a resource leak.
121302   */
121303   sqlite3_mutex_enter(pMaster);
121304   sqlite3GlobalConfig.nRefInitMutex--;
121305   if( sqlite3GlobalConfig.nRefInitMutex<=0 ){
121306     assert( sqlite3GlobalConfig.nRefInitMutex==0 );
121307     sqlite3_mutex_free(sqlite3GlobalConfig.pInitMutex);
121308     sqlite3GlobalConfig.pInitMutex = 0;
121309   }
121310   sqlite3_mutex_leave(pMaster);
121311 
121312   /* The following is just a sanity check to make sure SQLite has
121313   ** been compiled correctly.  It is important to run this code, but
121314   ** we don't want to run it too often and soak up CPU cycles for no
121315   ** reason.  So we run it once during initialization.
121316   */
121317 #ifndef NDEBUG
121318 #ifndef SQLITE_OMIT_FLOATING_POINT
121319   /* This section of code's only "output" is via assert() statements. */
121320   if ( rc==SQLITE_OK ){
121321     u64 x = (((u64)1)<<63)-1;
121322     double y;
121323     assert(sizeof(x)==8);
121324     assert(sizeof(x)==sizeof(y));
121325     memcpy(&y, &x, 8);
121326     assert( sqlite3IsNaN(y) );
121327   }
121328 #endif
121329 #endif
121330 
121331   /* Do extra initialization steps requested by the SQLITE_EXTRA_INIT
121332   ** compile-time option.
121333   */
121334 #ifdef SQLITE_EXTRA_INIT
121335   if( bRunExtraInit ){
121336     int SQLITE_EXTRA_INIT(const char*);
121337     rc = SQLITE_EXTRA_INIT(0);
121338   }
121339 #endif
121340 
121341   return rc;
121342 }
121343 
121344 /*
121345 ** Undo the effects of sqlite3_initialize().  Must not be called while
121346 ** there are outstanding database connections or memory allocations or
121347 ** while any part of SQLite is otherwise in use in any thread.  This
121348 ** routine is not threadsafe.  But it is safe to invoke this routine
121349 ** on when SQLite is already shut down.  If SQLite is already shut down
121350 ** when this routine is invoked, then this routine is a harmless no-op.
121351 */
121352 SQLITE_API int sqlite3_shutdown(void){
121353   if( sqlite3GlobalConfig.isInit ){
121354 #ifdef SQLITE_EXTRA_SHUTDOWN
121355     void SQLITE_EXTRA_SHUTDOWN(void);
121356     SQLITE_EXTRA_SHUTDOWN();
121357 #endif
121358     sqlite3_os_end();
121359     sqlite3_reset_auto_extension();
121360     sqlite3GlobalConfig.isInit = 0;
121361   }
121362   if( sqlite3GlobalConfig.isPCacheInit ){
121363     sqlite3PcacheShutdown();
121364     sqlite3GlobalConfig.isPCacheInit = 0;
121365   }
121366   if( sqlite3GlobalConfig.isMallocInit ){
121367     sqlite3MallocEnd();
121368     sqlite3GlobalConfig.isMallocInit = 0;
121369 
121370 #ifndef SQLITE_OMIT_SHUTDOWN_DIRECTORIES
121371     /* The heap subsystem has now been shutdown and these values are supposed
121372     ** to be NULL or point to memory that was obtained from sqlite3_malloc(),
121373     ** which would rely on that heap subsystem; therefore, make sure these
121374     ** values cannot refer to heap memory that was just invalidated when the
121375     ** heap subsystem was shutdown.  This is only done if the current call to
121376     ** this function resulted in the heap subsystem actually being shutdown.
121377     */
121378     sqlite3_data_directory = 0;
121379     sqlite3_temp_directory = 0;
121380 #endif
121381   }
121382   if( sqlite3GlobalConfig.isMutexInit ){
121383     sqlite3MutexEnd();
121384     sqlite3GlobalConfig.isMutexInit = 0;
121385   }
121386 
121387   return SQLITE_OK;
121388 }
121389 
121390 /*
121391 ** This API allows applications to modify the global configuration of
121392 ** the SQLite library at run-time.
121393 **
121394 ** This routine should only be called when there are no outstanding
121395 ** database connections or memory allocations.  This routine is not
121396 ** threadsafe.  Failure to heed these warnings can lead to unpredictable
121397 ** behavior.
121398 */
121399 SQLITE_API int sqlite3_config(int op, ...){
121400   va_list ap;
121401   int rc = SQLITE_OK;
121402 
121403   /* sqlite3_config() shall return SQLITE_MISUSE if it is invoked while
121404   ** the SQLite library is in use. */
121405   if( sqlite3GlobalConfig.isInit ) return SQLITE_MISUSE_BKPT;
121406 
121407   va_start(ap, op);
121408   switch( op ){
121409 
121410     /* Mutex configuration options are only available in a threadsafe
121411     ** compile.
121412     */
121413 #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0
121414     case SQLITE_CONFIG_SINGLETHREAD: {
121415       /* Disable all mutexing */
121416       sqlite3GlobalConfig.bCoreMutex = 0;
121417       sqlite3GlobalConfig.bFullMutex = 0;
121418       break;
121419     }
121420     case SQLITE_CONFIG_MULTITHREAD: {
121421       /* Disable mutexing of database connections */
121422       /* Enable mutexing of core data structures */
121423       sqlite3GlobalConfig.bCoreMutex = 1;
121424       sqlite3GlobalConfig.bFullMutex = 0;
121425       break;
121426     }
121427     case SQLITE_CONFIG_SERIALIZED: {
121428       /* Enable all mutexing */
121429       sqlite3GlobalConfig.bCoreMutex = 1;
121430       sqlite3GlobalConfig.bFullMutex = 1;
121431       break;
121432     }
121433     case SQLITE_CONFIG_MUTEX: {
121434       /* Specify an alternative mutex implementation */
121435       sqlite3GlobalConfig.mutex = *va_arg(ap, sqlite3_mutex_methods*);
121436       break;
121437     }
121438     case SQLITE_CONFIG_GETMUTEX: {
121439       /* Retrieve the current mutex implementation */
121440       *va_arg(ap, sqlite3_mutex_methods*) = sqlite3GlobalConfig.mutex;
121441       break;
121442     }
121443 #endif
121444 
121445 
121446     case SQLITE_CONFIG_MALLOC: {
121447       /* Specify an alternative malloc implementation */
121448       sqlite3GlobalConfig.m = *va_arg(ap, sqlite3_mem_methods*);
121449       break;
121450     }
121451     case SQLITE_CONFIG_GETMALLOC: {
121452       /* Retrieve the current malloc() implementation */
121453       if( sqlite3GlobalConfig.m.xMalloc==0 ) sqlite3MemSetDefault();
121454       *va_arg(ap, sqlite3_mem_methods*) = sqlite3GlobalConfig.m;
121455       break;
121456     }
121457     case SQLITE_CONFIG_MEMSTATUS: {
121458       /* Enable or disable the malloc status collection */
121459       sqlite3GlobalConfig.bMemstat = va_arg(ap, int);
121460       break;
121461     }
121462     case SQLITE_CONFIG_SCRATCH: {
121463       /* Designate a buffer for scratch memory space */
121464       sqlite3GlobalConfig.pScratch = va_arg(ap, void*);
121465       sqlite3GlobalConfig.szScratch = va_arg(ap, int);
121466       sqlite3GlobalConfig.nScratch = va_arg(ap, int);
121467       break;
121468     }
121469     case SQLITE_CONFIG_PAGECACHE: {
121470       /* Designate a buffer for page cache memory space */
121471       sqlite3GlobalConfig.pPage = va_arg(ap, void*);
121472       sqlite3GlobalConfig.szPage = va_arg(ap, int);
121473       sqlite3GlobalConfig.nPage = va_arg(ap, int);
121474       break;
121475     }
121476 
121477     case SQLITE_CONFIG_PCACHE: {
121478       /* no-op */
121479       break;
121480     }
121481     case SQLITE_CONFIG_GETPCACHE: {
121482       /* now an error */
121483       rc = SQLITE_ERROR;
121484       break;
121485     }
121486 
121487     case SQLITE_CONFIG_PCACHE2: {
121488       /* Specify an alternative page cache implementation */
121489       sqlite3GlobalConfig.pcache2 = *va_arg(ap, sqlite3_pcache_methods2*);
121490       break;
121491     }
121492     case SQLITE_CONFIG_GETPCACHE2: {
121493       if( sqlite3GlobalConfig.pcache2.xInit==0 ){
121494         sqlite3PCacheSetDefault();
121495       }
121496       *va_arg(ap, sqlite3_pcache_methods2*) = sqlite3GlobalConfig.pcache2;
121497       break;
121498     }
121499 
121500 #if defined(SQLITE_ENABLE_MEMSYS3) || defined(SQLITE_ENABLE_MEMSYS5)
121501     case SQLITE_CONFIG_HEAP: {
121502       /* Designate a buffer for heap memory space */
121503       sqlite3GlobalConfig.pHeap = va_arg(ap, void*);
121504       sqlite3GlobalConfig.nHeap = va_arg(ap, int);
121505       sqlite3GlobalConfig.mnReq = va_arg(ap, int);
121506 
121507       if( sqlite3GlobalConfig.mnReq<1 ){
121508         sqlite3GlobalConfig.mnReq = 1;
121509       }else if( sqlite3GlobalConfig.mnReq>(1<<12) ){
121510         /* cap min request size at 2^12 */
121511         sqlite3GlobalConfig.mnReq = (1<<12);
121512       }
121513 
121514       if( sqlite3GlobalConfig.pHeap==0 ){
121515         /* If the heap pointer is NULL, then restore the malloc implementation
121516         ** back to NULL pointers too.  This will cause the malloc to go
121517         ** back to its default implementation when sqlite3_initialize() is
121518         ** run.
121519         */
121520         memset(&sqlite3GlobalConfig.m, 0, sizeof(sqlite3GlobalConfig.m));
121521       }else{
121522         /* The heap pointer is not NULL, then install one of the
121523         ** mem5.c/mem3.c methods.  The enclosing #if guarantees at
121524         ** least one of these methods is currently enabled.
121525         */
121526 #ifdef SQLITE_ENABLE_MEMSYS3
121527         sqlite3GlobalConfig.m = *sqlite3MemGetMemsys3();
121528 #endif
121529 #ifdef SQLITE_ENABLE_MEMSYS5
121530         sqlite3GlobalConfig.m = *sqlite3MemGetMemsys5();
121531 #endif
121532       }
121533       break;
121534     }
121535 #endif
121536 
121537     case SQLITE_CONFIG_LOOKASIDE: {
121538       sqlite3GlobalConfig.szLookaside = va_arg(ap, int);
121539       sqlite3GlobalConfig.nLookaside = va_arg(ap, int);
121540       break;
121541     }
121542 
121543     /* Record a pointer to the logger function and its first argument.
121544     ** The default is NULL.  Logging is disabled if the function pointer is
121545     ** NULL.
121546     */
121547     case SQLITE_CONFIG_LOG: {
121548       /* MSVC is picky about pulling func ptrs from va lists.
121549       ** http://support.microsoft.com/kb/47961
121550       ** sqlite3GlobalConfig.xLog = va_arg(ap, void(*)(void*,int,const char*));
121551       */
121552       typedef void(*LOGFUNC_t)(void*,int,const char*);
121553       sqlite3GlobalConfig.xLog = va_arg(ap, LOGFUNC_t);
121554       sqlite3GlobalConfig.pLogArg = va_arg(ap, void*);
121555       break;
121556     }
121557 
121558     case SQLITE_CONFIG_URI: {
121559       sqlite3GlobalConfig.bOpenUri = va_arg(ap, int);
121560       break;
121561     }
121562 
121563     case SQLITE_CONFIG_COVERING_INDEX_SCAN: {
121564       sqlite3GlobalConfig.bUseCis = va_arg(ap, int);
121565       break;
121566     }
121567 
121568 #ifdef SQLITE_ENABLE_SQLLOG
121569     case SQLITE_CONFIG_SQLLOG: {
121570       typedef void(*SQLLOGFUNC_t)(void*, sqlite3*, const char*, int);
121571       sqlite3GlobalConfig.xSqllog = va_arg(ap, SQLLOGFUNC_t);
121572       sqlite3GlobalConfig.pSqllogArg = va_arg(ap, void *);
121573       break;
121574     }
121575 #endif
121576 
121577     case SQLITE_CONFIG_MMAP_SIZE: {
121578       sqlite3_int64 szMmap = va_arg(ap, sqlite3_int64);
121579       sqlite3_int64 mxMmap = va_arg(ap, sqlite3_int64);
121580       if( mxMmap<0 || mxMmap>SQLITE_MAX_MMAP_SIZE ){
121581         mxMmap = SQLITE_MAX_MMAP_SIZE;
121582       }
121583       sqlite3GlobalConfig.mxMmap = mxMmap;
121584       if( szMmap<0 ) szMmap = SQLITE_DEFAULT_MMAP_SIZE;
121585       if( szMmap>mxMmap) szMmap = mxMmap;
121586       sqlite3GlobalConfig.szMmap = szMmap;
121587       break;
121588     }
121589 
121590 #if SQLITE_OS_WIN && defined(SQLITE_WIN32_MALLOC)
121591     case SQLITE_CONFIG_WIN32_HEAPSIZE: {
121592       sqlite3GlobalConfig.nHeap = va_arg(ap, int);
121593       break;
121594     }
121595 #endif
121596 
121597     default: {
121598       rc = SQLITE_ERROR;
121599       break;
121600     }
121601   }
121602   va_end(ap);
121603   return rc;
121604 }
121605 
121606 /*
121607 ** Set up the lookaside buffers for a database connection.
121608 ** Return SQLITE_OK on success.
121609 ** If lookaside is already active, return SQLITE_BUSY.
121610 **
121611 ** The sz parameter is the number of bytes in each lookaside slot.
121612 ** The cnt parameter is the number of slots.  If pStart is NULL the
121613 ** space for the lookaside memory is obtained from sqlite3_malloc().
121614 ** If pStart is not NULL then it is sz*cnt bytes of memory to use for
121615 ** the lookaside memory.
121616 */
121617 static int setupLookaside(sqlite3 *db, void *pBuf, int sz, int cnt){
121618   void *pStart;
121619   if( db->lookaside.nOut ){
121620     return SQLITE_BUSY;
121621   }
121622   /* Free any existing lookaside buffer for this handle before
121623   ** allocating a new one so we don't have to have space for
121624   ** both at the same time.
121625   */
121626   if( db->lookaside.bMalloced ){
121627     sqlite3_free(db->lookaside.pStart);
121628   }
121629   /* The size of a lookaside slot after ROUNDDOWN8 needs to be larger
121630   ** than a pointer to be useful.
121631   */
121632   sz = ROUNDDOWN8(sz);  /* IMP: R-33038-09382 */
121633   if( sz<=(int)sizeof(LookasideSlot*) ) sz = 0;
121634   if( cnt<0 ) cnt = 0;
121635   if( sz==0 || cnt==0 ){
121636     sz = 0;
121637     pStart = 0;
121638   }else if( pBuf==0 ){
121639     sqlite3BeginBenignMalloc();
121640     pStart = sqlite3Malloc( sz*cnt );  /* IMP: R-61949-35727 */
121641     sqlite3EndBenignMalloc();
121642     if( pStart ) cnt = sqlite3MallocSize(pStart)/sz;
121643   }else{
121644     pStart = pBuf;
121645   }
121646   db->lookaside.pStart = pStart;
121647   db->lookaside.pFree = 0;
121648   db->lookaside.sz = (u16)sz;
121649   if( pStart ){
121650     int i;
121651     LookasideSlot *p;
121652     assert( sz > (int)sizeof(LookasideSlot*) );
121653     p = (LookasideSlot*)pStart;
121654     for(i=cnt-1; i>=0; i--){
121655       p->pNext = db->lookaside.pFree;
121656       db->lookaside.pFree = p;
121657       p = (LookasideSlot*)&((u8*)p)[sz];
121658     }
121659     db->lookaside.pEnd = p;
121660     db->lookaside.bEnabled = 1;
121661     db->lookaside.bMalloced = pBuf==0 ?1:0;
121662   }else{
121663     db->lookaside.pStart = db;
121664     db->lookaside.pEnd = db;
121665     db->lookaside.bEnabled = 0;
121666     db->lookaside.bMalloced = 0;
121667   }
121668   return SQLITE_OK;
121669 }
121670 
121671 /*
121672 ** Return the mutex associated with a database connection.
121673 */
121674 SQLITE_API sqlite3_mutex *sqlite3_db_mutex(sqlite3 *db){
121675   return db->mutex;
121676 }
121677 
121678 /*
121679 ** Free up as much memory as we can from the given database
121680 ** connection.
121681 */
121682 SQLITE_API int sqlite3_db_release_memory(sqlite3 *db){
121683   int i;
121684   sqlite3_mutex_enter(db->mutex);
121685   sqlite3BtreeEnterAll(db);
121686   for(i=0; i<db->nDb; i++){
121687     Btree *pBt = db->aDb[i].pBt;
121688     if( pBt ){
121689       Pager *pPager = sqlite3BtreePager(pBt);
121690       sqlite3PagerShrink(pPager);
121691     }
121692   }
121693   sqlite3BtreeLeaveAll(db);
121694   sqlite3_mutex_leave(db->mutex);
121695   return SQLITE_OK;
121696 }
121697 
121698 /*
121699 ** Configuration settings for an individual database connection
121700 */
121701 SQLITE_API int sqlite3_db_config(sqlite3 *db, int op, ...){
121702   va_list ap;
121703   int rc;
121704   va_start(ap, op);
121705   switch( op ){
121706     case SQLITE_DBCONFIG_LOOKASIDE: {
121707       void *pBuf = va_arg(ap, void*); /* IMP: R-26835-10964 */
121708       int sz = va_arg(ap, int);       /* IMP: R-47871-25994 */
121709       int cnt = va_arg(ap, int);      /* IMP: R-04460-53386 */
121710       rc = setupLookaside(db, pBuf, sz, cnt);
121711       break;
121712     }
121713     default: {
121714       static const struct {
121715         int op;      /* The opcode */
121716         u32 mask;    /* Mask of the bit in sqlite3.flags to set/clear */
121717       } aFlagOp[] = {
121718         { SQLITE_DBCONFIG_ENABLE_FKEY,    SQLITE_ForeignKeys    },
121719         { SQLITE_DBCONFIG_ENABLE_TRIGGER, SQLITE_EnableTrigger  },
121720       };
121721       unsigned int i;
121722       rc = SQLITE_ERROR; /* IMP: R-42790-23372 */
121723       for(i=0; i<ArraySize(aFlagOp); i++){
121724         if( aFlagOp[i].op==op ){
121725           int onoff = va_arg(ap, int);
121726           int *pRes = va_arg(ap, int*);
121727           int oldFlags = db->flags;
121728           if( onoff>0 ){
121729             db->flags |= aFlagOp[i].mask;
121730           }else if( onoff==0 ){
121731             db->flags &= ~aFlagOp[i].mask;
121732           }
121733           if( oldFlags!=db->flags ){
121734             sqlite3ExpirePreparedStatements(db);
121735           }
121736           if( pRes ){
121737             *pRes = (db->flags & aFlagOp[i].mask)!=0;
121738           }
121739           rc = SQLITE_OK;
121740           break;
121741         }
121742       }
121743       break;
121744     }
121745   }
121746   va_end(ap);
121747   return rc;
121748 }
121749 
121750 
121751 /*
121752 ** Return true if the buffer z[0..n-1] contains all spaces.
121753 */
121754 static int allSpaces(const char *z, int n){
121755   while( n>0 && z[n-1]==' ' ){ n--; }
121756   return n==0;
121757 }
121758 
121759 /*
121760 ** This is the default collating function named "BINARY" which is always
121761 ** available.
121762 **
121763 ** If the padFlag argument is not NULL then space padding at the end
121764 ** of strings is ignored.  This implements the RTRIM collation.
121765 */
121766 static int binCollFunc(
121767   void *padFlag,
121768   int nKey1, const void *pKey1,
121769   int nKey2, const void *pKey2
121770 ){
121771   int rc, n;
121772   n = nKey1<nKey2 ? nKey1 : nKey2;
121773   rc = memcmp(pKey1, pKey2, n);
121774   if( rc==0 ){
121775     if( padFlag
121776      && allSpaces(((char*)pKey1)+n, nKey1-n)
121777      && allSpaces(((char*)pKey2)+n, nKey2-n)
121778     ){
121779       /* Leave rc unchanged at 0 */
121780     }else{
121781       rc = nKey1 - nKey2;
121782     }
121783   }
121784   return rc;
121785 }
121786 
121787 /*
121788 ** Another built-in collating sequence: NOCASE.
121789 **
121790 ** This collating sequence is intended to be used for "case independent
121791 ** comparison". SQLite's knowledge of upper and lower case equivalents
121792 ** extends only to the 26 characters used in the English language.
121793 **
121794 ** At the moment there is only a UTF-8 implementation.
121795 */
121796 static int nocaseCollatingFunc(
121797   void *NotUsed,
121798   int nKey1, const void *pKey1,
121799   int nKey2, const void *pKey2
121800 ){
121801   int r = sqlite3StrNICmp(
121802       (const char *)pKey1, (const char *)pKey2, (nKey1<nKey2)?nKey1:nKey2);
121803   UNUSED_PARAMETER(NotUsed);
121804   if( 0==r ){
121805     r = nKey1-nKey2;
121806   }
121807   return r;
121808 }
121809 
121810 /*
121811 ** Return the ROWID of the most recent insert
121812 */
121813 SQLITE_API sqlite_int64 sqlite3_last_insert_rowid(sqlite3 *db){
121814   return db->lastRowid;
121815 }
121816 
121817 /*
121818 ** Return the number of changes in the most recent call to sqlite3_exec().
121819 */
121820 SQLITE_API int sqlite3_changes(sqlite3 *db){
121821   return db->nChange;
121822 }
121823 
121824 /*
121825 ** Return the number of changes since the database handle was opened.
121826 */
121827 SQLITE_API int sqlite3_total_changes(sqlite3 *db){
121828   return db->nTotalChange;
121829 }
121830 
121831 /*
121832 ** Close all open savepoints. This function only manipulates fields of the
121833 ** database handle object, it does not close any savepoints that may be open
121834 ** at the b-tree/pager level.
121835 */
121836 SQLITE_PRIVATE void sqlite3CloseSavepoints(sqlite3 *db){
121837   while( db->pSavepoint ){
121838     Savepoint *pTmp = db->pSavepoint;
121839     db->pSavepoint = pTmp->pNext;
121840     sqlite3DbFree(db, pTmp);
121841   }
121842   db->nSavepoint = 0;
121843   db->nStatement = 0;
121844   db->isTransactionSavepoint = 0;
121845 }
121846 
121847 /*
121848 ** Invoke the destructor function associated with FuncDef p, if any. Except,
121849 ** if this is not the last copy of the function, do not invoke it. Multiple
121850 ** copies of a single function are created when create_function() is called
121851 ** with SQLITE_ANY as the encoding.
121852 */
121853 static void functionDestroy(sqlite3 *db, FuncDef *p){
121854   FuncDestructor *pDestructor = p->pDestructor;
121855   if( pDestructor ){
121856     pDestructor->nRef--;
121857     if( pDestructor->nRef==0 ){
121858       pDestructor->xDestroy(pDestructor->pUserData);
121859       sqlite3DbFree(db, pDestructor);
121860     }
121861   }
121862 }
121863 
121864 /*
121865 ** Disconnect all sqlite3_vtab objects that belong to database connection
121866 ** db. This is called when db is being closed.
121867 */
121868 static void disconnectAllVtab(sqlite3 *db){
121869 #ifndef SQLITE_OMIT_VIRTUALTABLE
121870   int i;
121871   sqlite3BtreeEnterAll(db);
121872   for(i=0; i<db->nDb; i++){
121873     Schema *pSchema = db->aDb[i].pSchema;
121874     if( db->aDb[i].pSchema ){
121875       HashElem *p;
121876       for(p=sqliteHashFirst(&pSchema->tblHash); p; p=sqliteHashNext(p)){
121877         Table *pTab = (Table *)sqliteHashData(p);
121878         if( IsVirtual(pTab) ) sqlite3VtabDisconnect(db, pTab);
121879       }
121880     }
121881   }
121882   sqlite3VtabUnlockList(db);
121883   sqlite3BtreeLeaveAll(db);
121884 #else
121885   UNUSED_PARAMETER(db);
121886 #endif
121887 }
121888 
121889 /*
121890 ** Return TRUE if database connection db has unfinalized prepared
121891 ** statements or unfinished sqlite3_backup objects.
121892 */
121893 static int connectionIsBusy(sqlite3 *db){
121894   int j;
121895   assert( sqlite3_mutex_held(db->mutex) );
121896   if( db->pVdbe ) return 1;
121897   for(j=0; j<db->nDb; j++){
121898     Btree *pBt = db->aDb[j].pBt;
121899     if( pBt && sqlite3BtreeIsInBackup(pBt) ) return 1;
121900   }
121901   return 0;
121902 }
121903 
121904 /*
121905 ** Close an existing SQLite database
121906 */
121907 static int sqlite3Close(sqlite3 *db, int forceZombie){
121908   if( !db ){
121909     return SQLITE_OK;
121910   }
121911   if( !sqlite3SafetyCheckSickOrOk(db) ){
121912     return SQLITE_MISUSE_BKPT;
121913   }
121914   sqlite3_mutex_enter(db->mutex);
121915 
121916   /* Force xDisconnect calls on all virtual tables */
121917   disconnectAllVtab(db);
121918 
121919   /* If a transaction is open, the disconnectAllVtab() call above
121920   ** will not have called the xDisconnect() method on any virtual
121921   ** tables in the db->aVTrans[] array. The following sqlite3VtabRollback()
121922   ** call will do so. We need to do this before the check for active
121923   ** SQL statements below, as the v-table implementation may be storing
121924   ** some prepared statements internally.
121925   */
121926   sqlite3VtabRollback(db);
121927 
121928   /* Legacy behavior (sqlite3_close() behavior) is to return
121929   ** SQLITE_BUSY if the connection can not be closed immediately.
121930   */
121931   if( !forceZombie && connectionIsBusy(db) ){
121932     sqlite3Error(db, SQLITE_BUSY, "unable to close due to unfinalized "
121933        "statements or unfinished backups");
121934     sqlite3_mutex_leave(db->mutex);
121935     return SQLITE_BUSY;
121936   }
121937 
121938 #ifdef SQLITE_ENABLE_SQLLOG
121939   if( sqlite3GlobalConfig.xSqllog ){
121940     /* Closing the handle. Fourth parameter is passed the value 2. */
121941     sqlite3GlobalConfig.xSqllog(sqlite3GlobalConfig.pSqllogArg, db, 0, 2);
121942   }
121943 #endif
121944 
121945   /* Convert the connection into a zombie and then close it.
121946   */
121947   db->magic = SQLITE_MAGIC_ZOMBIE;
121948   sqlite3LeaveMutexAndCloseZombie(db);
121949   return SQLITE_OK;
121950 }
121951 
121952 /*
121953 ** Two variations on the public interface for closing a database
121954 ** connection. The sqlite3_close() version returns SQLITE_BUSY and
121955 ** leaves the connection option if there are unfinalized prepared
121956 ** statements or unfinished sqlite3_backups.  The sqlite3_close_v2()
121957 ** version forces the connection to become a zombie if there are
121958 ** unclosed resources, and arranges for deallocation when the last
121959 ** prepare statement or sqlite3_backup closes.
121960 */
121961 SQLITE_API int sqlite3_close(sqlite3 *db){ return sqlite3Close(db,0); }
121962 SQLITE_API int sqlite3_close_v2(sqlite3 *db){ return sqlite3Close(db,1); }
121963 
121964 
121965 /*
121966 ** Close the mutex on database connection db.
121967 **
121968 ** Furthermore, if database connection db is a zombie (meaning that there
121969 ** has been a prior call to sqlite3_close(db) or sqlite3_close_v2(db)) and
121970 ** every sqlite3_stmt has now been finalized and every sqlite3_backup has
121971 ** finished, then free all resources.
121972 */
121973 SQLITE_PRIVATE void sqlite3LeaveMutexAndCloseZombie(sqlite3 *db){
121974   HashElem *i;                    /* Hash table iterator */
121975   int j;
121976 
121977   /* If there are outstanding sqlite3_stmt or sqlite3_backup objects
121978   ** or if the connection has not yet been closed by sqlite3_close_v2(),
121979   ** then just leave the mutex and return.
121980   */
121981   if( db->magic!=SQLITE_MAGIC_ZOMBIE || connectionIsBusy(db) ){
121982     sqlite3_mutex_leave(db->mutex);
121983     return;
121984   }
121985 
121986   /* If we reach this point, it means that the database connection has
121987   ** closed all sqlite3_stmt and sqlite3_backup objects and has been
121988   ** passed to sqlite3_close (meaning that it is a zombie).  Therefore,
121989   ** go ahead and free all resources.
121990   */
121991 
121992   /* If a transaction is open, roll it back. This also ensures that if
121993   ** any database schemas have been modified by an uncommitted transaction
121994   ** they are reset. And that the required b-tree mutex is held to make
121995   ** the pager rollback and schema reset an atomic operation. */
121996   sqlite3RollbackAll(db, SQLITE_OK);
121997 
121998   /* Free any outstanding Savepoint structures. */
121999   sqlite3CloseSavepoints(db);
122000 
122001   /* Close all database connections */
122002   for(j=0; j<db->nDb; j++){
122003     struct Db *pDb = &db->aDb[j];
122004     if( pDb->pBt ){
122005       sqlite3BtreeClose(pDb->pBt);
122006       pDb->pBt = 0;
122007       if( j!=1 ){
122008         pDb->pSchema = 0;
122009       }
122010     }
122011   }
122012   /* Clear the TEMP schema separately and last */
122013   if( db->aDb[1].pSchema ){
122014     sqlite3SchemaClear(db->aDb[1].pSchema);
122015   }
122016   sqlite3VtabUnlockList(db);
122017 
122018   /* Free up the array of auxiliary databases */
122019   sqlite3CollapseDatabaseArray(db);
122020   assert( db->nDb<=2 );
122021   assert( db->aDb==db->aDbStatic );
122022 
122023   /* Tell the code in notify.c that the connection no longer holds any
122024   ** locks and does not require any further unlock-notify callbacks.
122025   */
122026   sqlite3ConnectionClosed(db);
122027 
122028   for(j=0; j<ArraySize(db->aFunc.a); j++){
122029     FuncDef *pNext, *pHash, *p;
122030     for(p=db->aFunc.a[j]; p; p=pHash){
122031       pHash = p->pHash;
122032       while( p ){
122033         functionDestroy(db, p);
122034         pNext = p->pNext;
122035         sqlite3DbFree(db, p);
122036         p = pNext;
122037       }
122038     }
122039   }
122040   for(i=sqliteHashFirst(&db->aCollSeq); i; i=sqliteHashNext(i)){
122041     CollSeq *pColl = (CollSeq *)sqliteHashData(i);
122042     /* Invoke any destructors registered for collation sequence user data. */
122043     for(j=0; j<3; j++){
122044       if( pColl[j].xDel ){
122045         pColl[j].xDel(pColl[j].pUser);
122046       }
122047     }
122048     sqlite3DbFree(db, pColl);
122049   }
122050   sqlite3HashClear(&db->aCollSeq);
122051 #ifndef SQLITE_OMIT_VIRTUALTABLE
122052   for(i=sqliteHashFirst(&db->aModule); i; i=sqliteHashNext(i)){
122053     Module *pMod = (Module *)sqliteHashData(i);
122054     if( pMod->xDestroy ){
122055       pMod->xDestroy(pMod->pAux);
122056     }
122057     sqlite3DbFree(db, pMod);
122058   }
122059   sqlite3HashClear(&db->aModule);
122060 #endif
122061 
122062   sqlite3Error(db, SQLITE_OK, 0); /* Deallocates any cached error strings. */
122063   sqlite3ValueFree(db->pErr);
122064   sqlite3CloseExtensions(db);
122065 
122066   db->magic = SQLITE_MAGIC_ERROR;
122067 
122068   /* The temp-database schema is allocated differently from the other schema
122069   ** objects (using sqliteMalloc() directly, instead of sqlite3BtreeSchema()).
122070   ** So it needs to be freed here. Todo: Why not roll the temp schema into
122071   ** the same sqliteMalloc() as the one that allocates the database
122072   ** structure?
122073   */
122074   sqlite3DbFree(db, db->aDb[1].pSchema);
122075   sqlite3_mutex_leave(db->mutex);
122076   db->magic = SQLITE_MAGIC_CLOSED;
122077   sqlite3_mutex_free(db->mutex);
122078   assert( db->lookaside.nOut==0 );  /* Fails on a lookaside memory leak */
122079   if( db->lookaside.bMalloced ){
122080     sqlite3_free(db->lookaside.pStart);
122081   }
122082   sqlite3_free(db);
122083 }
122084 
122085 /*
122086 ** Rollback all database files.  If tripCode is not SQLITE_OK, then
122087 ** any open cursors are invalidated ("tripped" - as in "tripping a circuit
122088 ** breaker") and made to return tripCode if there are any further
122089 ** attempts to use that cursor.
122090 */
122091 SQLITE_PRIVATE void sqlite3RollbackAll(sqlite3 *db, int tripCode){
122092   int i;
122093   int inTrans = 0;
122094   assert( sqlite3_mutex_held(db->mutex) );
122095   sqlite3BeginBenignMalloc();
122096 
122097   /* Obtain all b-tree mutexes before making any calls to BtreeRollback().
122098   ** This is important in case the transaction being rolled back has
122099   ** modified the database schema. If the b-tree mutexes are not taken
122100   ** here, then another shared-cache connection might sneak in between
122101   ** the database rollback and schema reset, which can cause false
122102   ** corruption reports in some cases.  */
122103   sqlite3BtreeEnterAll(db);
122104 
122105   for(i=0; i<db->nDb; i++){
122106     Btree *p = db->aDb[i].pBt;
122107     if( p ){
122108       if( sqlite3BtreeIsInTrans(p) ){
122109         inTrans = 1;
122110       }
122111       sqlite3BtreeRollback(p, tripCode);
122112     }
122113   }
122114   sqlite3VtabRollback(db);
122115   sqlite3EndBenignMalloc();
122116 
122117   if( (db->flags&SQLITE_InternChanges)!=0 && db->init.busy==0 ){
122118     sqlite3ExpirePreparedStatements(db);
122119     sqlite3ResetAllSchemasOfConnection(db);
122120   }
122121   sqlite3BtreeLeaveAll(db);
122122 
122123   /* Any deferred constraint violations have now been resolved. */
122124   db->nDeferredCons = 0;
122125   db->nDeferredImmCons = 0;
122126   db->flags &= ~SQLITE_DeferFKs;
122127 
122128   /* If one has been configured, invoke the rollback-hook callback */
122129   if( db->xRollbackCallback && (inTrans || !db->autoCommit) ){
122130     db->xRollbackCallback(db->pRollbackArg);
122131   }
122132 }
122133 
122134 /*
122135 ** Return a static string containing the name corresponding to the error code
122136 ** specified in the argument.
122137 */
122138 #if defined(SQLITE_TEST)
122139 SQLITE_PRIVATE const char *sqlite3ErrName(int rc){
122140   const char *zName = 0;
122141   int i, origRc = rc;
122142   for(i=0; i<2 && zName==0; i++, rc &= 0xff){
122143     switch( rc ){
122144       case SQLITE_OK:                 zName = "SQLITE_OK";                break;
122145       case SQLITE_ERROR:              zName = "SQLITE_ERROR";             break;
122146       case SQLITE_INTERNAL:           zName = "SQLITE_INTERNAL";          break;
122147       case SQLITE_PERM:               zName = "SQLITE_PERM";              break;
122148       case SQLITE_ABORT:              zName = "SQLITE_ABORT";             break;
122149       case SQLITE_ABORT_ROLLBACK:     zName = "SQLITE_ABORT_ROLLBACK";    break;
122150       case SQLITE_BUSY:               zName = "SQLITE_BUSY";              break;
122151       case SQLITE_BUSY_RECOVERY:      zName = "SQLITE_BUSY_RECOVERY";     break;
122152       case SQLITE_BUSY_SNAPSHOT:      zName = "SQLITE_BUSY_SNAPSHOT";     break;
122153       case SQLITE_LOCKED:             zName = "SQLITE_LOCKED";            break;
122154       case SQLITE_LOCKED_SHAREDCACHE: zName = "SQLITE_LOCKED_SHAREDCACHE";break;
122155       case SQLITE_NOMEM:              zName = "SQLITE_NOMEM";             break;
122156       case SQLITE_READONLY:           zName = "SQLITE_READONLY";          break;
122157       case SQLITE_READONLY_RECOVERY:  zName = "SQLITE_READONLY_RECOVERY"; break;
122158       case SQLITE_READONLY_CANTLOCK:  zName = "SQLITE_READONLY_CANTLOCK"; break;
122159       case SQLITE_READONLY_ROLLBACK:  zName = "SQLITE_READONLY_ROLLBACK"; break;
122160       case SQLITE_READONLY_DBMOVED:   zName = "SQLITE_READONLY_DBMOVED";  break;
122161       case SQLITE_INTERRUPT:          zName = "SQLITE_INTERRUPT";         break;
122162       case SQLITE_IOERR:              zName = "SQLITE_IOERR";             break;
122163       case SQLITE_IOERR_READ:         zName = "SQLITE_IOERR_READ";        break;
122164       case SQLITE_IOERR_SHORT_READ:   zName = "SQLITE_IOERR_SHORT_READ";  break;
122165       case SQLITE_IOERR_WRITE:        zName = "SQLITE_IOERR_WRITE";       break;
122166       case SQLITE_IOERR_FSYNC:        zName = "SQLITE_IOERR_FSYNC";       break;
122167       case SQLITE_IOERR_DIR_FSYNC:    zName = "SQLITE_IOERR_DIR_FSYNC";   break;
122168       case SQLITE_IOERR_TRUNCATE:     zName = "SQLITE_IOERR_TRUNCATE";    break;
122169       case SQLITE_IOERR_FSTAT:        zName = "SQLITE_IOERR_FSTAT";       break;
122170       case SQLITE_IOERR_UNLOCK:       zName = "SQLITE_IOERR_UNLOCK";      break;
122171       case SQLITE_IOERR_RDLOCK:       zName = "SQLITE_IOERR_RDLOCK";      break;
122172       case SQLITE_IOERR_DELETE:       zName = "SQLITE_IOERR_DELETE";      break;
122173       case SQLITE_IOERR_BLOCKED:      zName = "SQLITE_IOERR_BLOCKED";     break;
122174       case SQLITE_IOERR_NOMEM:        zName = "SQLITE_IOERR_NOMEM";       break;
122175       case SQLITE_IOERR_ACCESS:       zName = "SQLITE_IOERR_ACCESS";      break;
122176       case SQLITE_IOERR_CHECKRESERVEDLOCK:
122177                                 zName = "SQLITE_IOERR_CHECKRESERVEDLOCK"; break;
122178       case SQLITE_IOERR_LOCK:         zName = "SQLITE_IOERR_LOCK";        break;
122179       case SQLITE_IOERR_CLOSE:        zName = "SQLITE_IOERR_CLOSE";       break;
122180       case SQLITE_IOERR_DIR_CLOSE:    zName = "SQLITE_IOERR_DIR_CLOSE";   break;
122181       case SQLITE_IOERR_SHMOPEN:      zName = "SQLITE_IOERR_SHMOPEN";     break;
122182       case SQLITE_IOERR_SHMSIZE:      zName = "SQLITE_IOERR_SHMSIZE";     break;
122183       case SQLITE_IOERR_SHMLOCK:      zName = "SQLITE_IOERR_SHMLOCK";     break;
122184       case SQLITE_IOERR_SHMMAP:       zName = "SQLITE_IOERR_SHMMAP";      break;
122185       case SQLITE_IOERR_SEEK:         zName = "SQLITE_IOERR_SEEK";        break;
122186       case SQLITE_IOERR_DELETE_NOENT: zName = "SQLITE_IOERR_DELETE_NOENT";break;
122187       case SQLITE_IOERR_MMAP:         zName = "SQLITE_IOERR_MMAP";        break;
122188       case SQLITE_IOERR_GETTEMPPATH:  zName = "SQLITE_IOERR_GETTEMPPATH"; break;
122189       case SQLITE_IOERR_CONVPATH:     zName = "SQLITE_IOERR_CONVPATH";    break;
122190       case SQLITE_CORRUPT:            zName = "SQLITE_CORRUPT";           break;
122191       case SQLITE_CORRUPT_VTAB:       zName = "SQLITE_CORRUPT_VTAB";      break;
122192       case SQLITE_NOTFOUND:           zName = "SQLITE_NOTFOUND";          break;
122193       case SQLITE_FULL:               zName = "SQLITE_FULL";              break;
122194       case SQLITE_CANTOPEN:           zName = "SQLITE_CANTOPEN";          break;
122195       case SQLITE_CANTOPEN_NOTEMPDIR: zName = "SQLITE_CANTOPEN_NOTEMPDIR";break;
122196       case SQLITE_CANTOPEN_ISDIR:     zName = "SQLITE_CANTOPEN_ISDIR";    break;
122197       case SQLITE_CANTOPEN_FULLPATH:  zName = "SQLITE_CANTOPEN_FULLPATH"; break;
122198       case SQLITE_CANTOPEN_CONVPATH:  zName = "SQLITE_CANTOPEN_CONVPATH"; break;
122199       case SQLITE_PROTOCOL:           zName = "SQLITE_PROTOCOL";          break;
122200       case SQLITE_EMPTY:              zName = "SQLITE_EMPTY";             break;
122201       case SQLITE_SCHEMA:             zName = "SQLITE_SCHEMA";            break;
122202       case SQLITE_TOOBIG:             zName = "SQLITE_TOOBIG";            break;
122203       case SQLITE_CONSTRAINT:         zName = "SQLITE_CONSTRAINT";        break;
122204       case SQLITE_CONSTRAINT_UNIQUE:  zName = "SQLITE_CONSTRAINT_UNIQUE"; break;
122205       case SQLITE_CONSTRAINT_TRIGGER: zName = "SQLITE_CONSTRAINT_TRIGGER";break;
122206       case SQLITE_CONSTRAINT_FOREIGNKEY:
122207                                 zName = "SQLITE_CONSTRAINT_FOREIGNKEY";   break;
122208       case SQLITE_CONSTRAINT_CHECK:   zName = "SQLITE_CONSTRAINT_CHECK";  break;
122209       case SQLITE_CONSTRAINT_PRIMARYKEY:
122210                                 zName = "SQLITE_CONSTRAINT_PRIMARYKEY";   break;
122211       case SQLITE_CONSTRAINT_NOTNULL: zName = "SQLITE_CONSTRAINT_NOTNULL";break;
122212       case SQLITE_CONSTRAINT_COMMITHOOK:
122213                                 zName = "SQLITE_CONSTRAINT_COMMITHOOK";   break;
122214       case SQLITE_CONSTRAINT_VTAB:    zName = "SQLITE_CONSTRAINT_VTAB";   break;
122215       case SQLITE_CONSTRAINT_FUNCTION:
122216                                 zName = "SQLITE_CONSTRAINT_FUNCTION";     break;
122217       case SQLITE_CONSTRAINT_ROWID:   zName = "SQLITE_CONSTRAINT_ROWID";  break;
122218       case SQLITE_MISMATCH:           zName = "SQLITE_MISMATCH";          break;
122219       case SQLITE_MISUSE:             zName = "SQLITE_MISUSE";            break;
122220       case SQLITE_NOLFS:              zName = "SQLITE_NOLFS";             break;
122221       case SQLITE_AUTH:               zName = "SQLITE_AUTH";              break;
122222       case SQLITE_FORMAT:             zName = "SQLITE_FORMAT";            break;
122223       case SQLITE_RANGE:              zName = "SQLITE_RANGE";             break;
122224       case SQLITE_NOTADB:             zName = "SQLITE_NOTADB";            break;
122225       case SQLITE_ROW:                zName = "SQLITE_ROW";               break;
122226       case SQLITE_NOTICE:             zName = "SQLITE_NOTICE";            break;
122227       case SQLITE_NOTICE_RECOVER_WAL: zName = "SQLITE_NOTICE_RECOVER_WAL";break;
122228       case SQLITE_NOTICE_RECOVER_ROLLBACK:
122229                                 zName = "SQLITE_NOTICE_RECOVER_ROLLBACK"; break;
122230       case SQLITE_WARNING:            zName = "SQLITE_WARNING";           break;
122231       case SQLITE_WARNING_AUTOINDEX:  zName = "SQLITE_WARNING_AUTOINDEX"; break;
122232       case SQLITE_DONE:               zName = "SQLITE_DONE";              break;
122233     }
122234   }
122235   if( zName==0 ){
122236     static char zBuf[50];
122237     sqlite3_snprintf(sizeof(zBuf), zBuf, "SQLITE_UNKNOWN(%d)", origRc);
122238     zName = zBuf;
122239   }
122240   return zName;
122241 }
122242 #endif
122243 
122244 /*
122245 ** Return a static string that describes the kind of error specified in the
122246 ** argument.
122247 */
122248 SQLITE_PRIVATE const char *sqlite3ErrStr(int rc){
122249   static const char* const aMsg[] = {
122250     /* SQLITE_OK          */ "not an error",
122251     /* SQLITE_ERROR       */ "SQL logic error or missing database",
122252     /* SQLITE_INTERNAL    */ 0,
122253     /* SQLITE_PERM        */ "access permission denied",
122254     /* SQLITE_ABORT       */ "callback requested query abort",
122255     /* SQLITE_BUSY        */ "database is locked",
122256     /* SQLITE_LOCKED      */ "database table is locked",
122257     /* SQLITE_NOMEM       */ "out of memory",
122258     /* SQLITE_READONLY    */ "attempt to write a readonly database",
122259     /* SQLITE_INTERRUPT   */ "interrupted",
122260     /* SQLITE_IOERR       */ "disk I/O error",
122261     /* SQLITE_CORRUPT     */ "database disk image is malformed",
122262     /* SQLITE_NOTFOUND    */ "unknown operation",
122263     /* SQLITE_FULL        */ "database or disk is full",
122264     /* SQLITE_CANTOPEN    */ "unable to open database file",
122265     /* SQLITE_PROTOCOL    */ "locking protocol",
122266     /* SQLITE_EMPTY       */ "table contains no data",
122267     /* SQLITE_SCHEMA      */ "database schema has changed",
122268     /* SQLITE_TOOBIG      */ "string or blob too big",
122269     /* SQLITE_CONSTRAINT  */ "constraint failed",
122270     /* SQLITE_MISMATCH    */ "datatype mismatch",
122271     /* SQLITE_MISUSE      */ "library routine called out of sequence",
122272     /* SQLITE_NOLFS       */ "large file support is disabled",
122273     /* SQLITE_AUTH        */ "authorization denied",
122274     /* SQLITE_FORMAT      */ "auxiliary database format error",
122275     /* SQLITE_RANGE       */ "bind or column index out of range",
122276     /* SQLITE_NOTADB      */ "file is encrypted or is not a database",
122277   };
122278   const char *zErr = "unknown error";
122279   switch( rc ){
122280     case SQLITE_ABORT_ROLLBACK: {
122281       zErr = "abort due to ROLLBACK";
122282       break;
122283     }
122284     default: {
122285       rc &= 0xff;
122286       if( ALWAYS(rc>=0) && rc<ArraySize(aMsg) && aMsg[rc]!=0 ){
122287         zErr = aMsg[rc];
122288       }
122289       break;
122290     }
122291   }
122292   return zErr;
122293 }
122294 
122295 /*
122296 ** This routine implements a busy callback that sleeps and tries
122297 ** again until a timeout value is reached.  The timeout value is
122298 ** an integer number of milliseconds passed in as the first
122299 ** argument.
122300 */
122301 static int sqliteDefaultBusyCallback(
122302  void *ptr,               /* Database connection */
122303  int count                /* Number of times table has been busy */
122304 ){
122305 #if SQLITE_OS_WIN || (defined(HAVE_USLEEP) && HAVE_USLEEP)
122306   static const u8 delays[] =
122307      { 1, 2, 5, 10, 15, 20, 25, 25,  25,  50,  50, 100 };
122308   static const u8 totals[] =
122309      { 0, 1, 3,  8, 18, 33, 53, 78, 103, 128, 178, 228 };
122310 # define NDELAY ArraySize(delays)
122311   sqlite3 *db = (sqlite3 *)ptr;
122312   int timeout = db->busyTimeout;
122313   int delay, prior;
122314 
122315   assert( count>=0 );
122316   if( count < NDELAY ){
122317     delay = delays[count];
122318     prior = totals[count];
122319   }else{
122320     delay = delays[NDELAY-1];
122321     prior = totals[NDELAY-1] + delay*(count-(NDELAY-1));
122322   }
122323   if( prior + delay > timeout ){
122324     delay = timeout - prior;
122325     if( delay<=0 ) return 0;
122326   }
122327   sqlite3OsSleep(db->pVfs, delay*1000);
122328   return 1;
122329 #else
122330   sqlite3 *db = (sqlite3 *)ptr;
122331   int timeout = ((sqlite3 *)ptr)->busyTimeout;
122332   if( (count+1)*1000 > timeout ){
122333     return 0;
122334   }
122335   sqlite3OsSleep(db->pVfs, 1000000);
122336   return 1;
122337 #endif
122338 }
122339 
122340 /*
122341 ** Invoke the given busy handler.
122342 **
122343 ** This routine is called when an operation failed with a lock.
122344 ** If this routine returns non-zero, the lock is retried.  If it
122345 ** returns 0, the operation aborts with an SQLITE_BUSY error.
122346 */
122347 SQLITE_PRIVATE int sqlite3InvokeBusyHandler(BusyHandler *p){
122348   int rc;
122349   if( NEVER(p==0) || p->xFunc==0 || p->nBusy<0 ) return 0;
122350   rc = p->xFunc(p->pArg, p->nBusy);
122351   if( rc==0 ){
122352     p->nBusy = -1;
122353   }else{
122354     p->nBusy++;
122355   }
122356   return rc;
122357 }
122358 
122359 /*
122360 ** This routine sets the busy callback for an Sqlite database to the
122361 ** given callback function with the given argument.
122362 */
122363 SQLITE_API int sqlite3_busy_handler(
122364   sqlite3 *db,
122365   int (*xBusy)(void*,int),
122366   void *pArg
122367 ){
122368   sqlite3_mutex_enter(db->mutex);
122369   db->busyHandler.xFunc = xBusy;
122370   db->busyHandler.pArg = pArg;
122371   db->busyHandler.nBusy = 0;
122372   db->busyTimeout = 0;
122373   sqlite3_mutex_leave(db->mutex);
122374   return SQLITE_OK;
122375 }
122376 
122377 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
122378 /*
122379 ** This routine sets the progress callback for an Sqlite database to the
122380 ** given callback function with the given argument. The progress callback will
122381 ** be invoked every nOps opcodes.
122382 */
122383 SQLITE_API void sqlite3_progress_handler(
122384   sqlite3 *db,
122385   int nOps,
122386   int (*xProgress)(void*),
122387   void *pArg
122388 ){
122389   sqlite3_mutex_enter(db->mutex);
122390   if( nOps>0 ){
122391     db->xProgress = xProgress;
122392     db->nProgressOps = (unsigned)nOps;
122393     db->pProgressArg = pArg;
122394   }else{
122395     db->xProgress = 0;
122396     db->nProgressOps = 0;
122397     db->pProgressArg = 0;
122398   }
122399   sqlite3_mutex_leave(db->mutex);
122400 }
122401 #endif
122402 
122403 
122404 /*
122405 ** This routine installs a default busy handler that waits for the
122406 ** specified number of milliseconds before returning 0.
122407 */
122408 SQLITE_API int sqlite3_busy_timeout(sqlite3 *db, int ms){
122409   if( ms>0 ){
122410     sqlite3_busy_handler(db, sqliteDefaultBusyCallback, (void*)db);
122411     db->busyTimeout = ms;
122412   }else{
122413     sqlite3_busy_handler(db, 0, 0);
122414   }
122415   return SQLITE_OK;
122416 }
122417 
122418 /*
122419 ** Cause any pending operation to stop at its earliest opportunity.
122420 */
122421 SQLITE_API void sqlite3_interrupt(sqlite3 *db){
122422   db->u1.isInterrupted = 1;
122423 }
122424 
122425 
122426 /*
122427 ** This function is exactly the same as sqlite3_create_function(), except
122428 ** that it is designed to be called by internal code. The difference is
122429 ** that if a malloc() fails in sqlite3_create_function(), an error code
122430 ** is returned and the mallocFailed flag cleared.
122431 */
122432 SQLITE_PRIVATE int sqlite3CreateFunc(
122433   sqlite3 *db,
122434   const char *zFunctionName,
122435   int nArg,
122436   int enc,
122437   void *pUserData,
122438   void (*xFunc)(sqlite3_context*,int,sqlite3_value **),
122439   void (*xStep)(sqlite3_context*,int,sqlite3_value **),
122440   void (*xFinal)(sqlite3_context*),
122441   FuncDestructor *pDestructor
122442 ){
122443   FuncDef *p;
122444   int nName;
122445   int extraFlags;
122446 
122447   assert( sqlite3_mutex_held(db->mutex) );
122448   if( zFunctionName==0 ||
122449       (xFunc && (xFinal || xStep)) ||
122450       (!xFunc && (xFinal && !xStep)) ||
122451       (!xFunc && (!xFinal && xStep)) ||
122452       (nArg<-1 || nArg>SQLITE_MAX_FUNCTION_ARG) ||
122453       (255<(nName = sqlite3Strlen30( zFunctionName))) ){
122454     return SQLITE_MISUSE_BKPT;
122455   }
122456 
122457   assert( SQLITE_FUNC_CONSTANT==SQLITE_DETERMINISTIC );
122458   extraFlags = enc &  SQLITE_DETERMINISTIC;
122459   enc &= (SQLITE_FUNC_ENCMASK|SQLITE_ANY);
122460 
122461 #ifndef SQLITE_OMIT_UTF16
122462   /* If SQLITE_UTF16 is specified as the encoding type, transform this
122463   ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the
122464   ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally.
122465   **
122466   ** If SQLITE_ANY is specified, add three versions of the function
122467   ** to the hash table.
122468   */
122469   if( enc==SQLITE_UTF16 ){
122470     enc = SQLITE_UTF16NATIVE;
122471   }else if( enc==SQLITE_ANY ){
122472     int rc;
122473     rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF8|extraFlags,
122474          pUserData, xFunc, xStep, xFinal, pDestructor);
122475     if( rc==SQLITE_OK ){
122476       rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF16LE|extraFlags,
122477           pUserData, xFunc, xStep, xFinal, pDestructor);
122478     }
122479     if( rc!=SQLITE_OK ){
122480       return rc;
122481     }
122482     enc = SQLITE_UTF16BE;
122483   }
122484 #else
122485   enc = SQLITE_UTF8;
122486 #endif
122487 
122488   /* Check if an existing function is being overridden or deleted. If so,
122489   ** and there are active VMs, then return SQLITE_BUSY. If a function
122490   ** is being overridden/deleted but there are no active VMs, allow the
122491   ** operation to continue but invalidate all precompiled statements.
122492   */
122493   p = sqlite3FindFunction(db, zFunctionName, nName, nArg, (u8)enc, 0);
122494   if( p && (p->funcFlags & SQLITE_FUNC_ENCMASK)==enc && p->nArg==nArg ){
122495     if( db->nVdbeActive ){
122496       sqlite3Error(db, SQLITE_BUSY,
122497         "unable to delete/modify user-function due to active statements");
122498       assert( !db->mallocFailed );
122499       return SQLITE_BUSY;
122500     }else{
122501       sqlite3ExpirePreparedStatements(db);
122502     }
122503   }
122504 
122505   p = sqlite3FindFunction(db, zFunctionName, nName, nArg, (u8)enc, 1);
122506   assert(p || db->mallocFailed);
122507   if( !p ){
122508     return SQLITE_NOMEM;
122509   }
122510 
122511   /* If an older version of the function with a configured destructor is
122512   ** being replaced invoke the destructor function here. */
122513   functionDestroy(db, p);
122514 
122515   if( pDestructor ){
122516     pDestructor->nRef++;
122517   }
122518   p->pDestructor = pDestructor;
122519   p->funcFlags = (p->funcFlags & SQLITE_FUNC_ENCMASK) | extraFlags;
122520   testcase( p->funcFlags & SQLITE_DETERMINISTIC );
122521   p->xFunc = xFunc;
122522   p->xStep = xStep;
122523   p->xFinalize = xFinal;
122524   p->pUserData = pUserData;
122525   p->nArg = (u16)nArg;
122526   return SQLITE_OK;
122527 }
122528 
122529 /*
122530 ** Create new user functions.
122531 */
122532 SQLITE_API int sqlite3_create_function(
122533   sqlite3 *db,
122534   const char *zFunc,
122535   int nArg,
122536   int enc,
122537   void *p,
122538   void (*xFunc)(sqlite3_context*,int,sqlite3_value **),
122539   void (*xStep)(sqlite3_context*,int,sqlite3_value **),
122540   void (*xFinal)(sqlite3_context*)
122541 ){
122542   return sqlite3_create_function_v2(db, zFunc, nArg, enc, p, xFunc, xStep,
122543                                     xFinal, 0);
122544 }
122545 
122546 SQLITE_API int sqlite3_create_function_v2(
122547   sqlite3 *db,
122548   const char *zFunc,
122549   int nArg,
122550   int enc,
122551   void *p,
122552   void (*xFunc)(sqlite3_context*,int,sqlite3_value **),
122553   void (*xStep)(sqlite3_context*,int,sqlite3_value **),
122554   void (*xFinal)(sqlite3_context*),
122555   void (*xDestroy)(void *)
122556 ){
122557   int rc = SQLITE_ERROR;
122558   FuncDestructor *pArg = 0;
122559   sqlite3_mutex_enter(db->mutex);
122560   if( xDestroy ){
122561     pArg = (FuncDestructor *)sqlite3DbMallocZero(db, sizeof(FuncDestructor));
122562     if( !pArg ){
122563       xDestroy(p);
122564       goto out;
122565     }
122566     pArg->xDestroy = xDestroy;
122567     pArg->pUserData = p;
122568   }
122569   rc = sqlite3CreateFunc(db, zFunc, nArg, enc, p, xFunc, xStep, xFinal, pArg);
122570   if( pArg && pArg->nRef==0 ){
122571     assert( rc!=SQLITE_OK );
122572     xDestroy(p);
122573     sqlite3DbFree(db, pArg);
122574   }
122575 
122576  out:
122577   rc = sqlite3ApiExit(db, rc);
122578   sqlite3_mutex_leave(db->mutex);
122579   return rc;
122580 }
122581 
122582 #ifndef SQLITE_OMIT_UTF16
122583 SQLITE_API int sqlite3_create_function16(
122584   sqlite3 *db,
122585   const void *zFunctionName,
122586   int nArg,
122587   int eTextRep,
122588   void *p,
122589   void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
122590   void (*xStep)(sqlite3_context*,int,sqlite3_value**),
122591   void (*xFinal)(sqlite3_context*)
122592 ){
122593   int rc;
122594   char *zFunc8;
122595   sqlite3_mutex_enter(db->mutex);
122596   assert( !db->mallocFailed );
122597   zFunc8 = sqlite3Utf16to8(db, zFunctionName, -1, SQLITE_UTF16NATIVE);
122598   rc = sqlite3CreateFunc(db, zFunc8, nArg, eTextRep, p, xFunc, xStep, xFinal,0);
122599   sqlite3DbFree(db, zFunc8);
122600   rc = sqlite3ApiExit(db, rc);
122601   sqlite3_mutex_leave(db->mutex);
122602   return rc;
122603 }
122604 #endif
122605 
122606 
122607 /*
122608 ** Declare that a function has been overloaded by a virtual table.
122609 **
122610 ** If the function already exists as a regular global function, then
122611 ** this routine is a no-op.  If the function does not exist, then create
122612 ** a new one that always throws a run-time error.
122613 **
122614 ** When virtual tables intend to provide an overloaded function, they
122615 ** should call this routine to make sure the global function exists.
122616 ** A global function must exist in order for name resolution to work
122617 ** properly.
122618 */
122619 SQLITE_API int sqlite3_overload_function(
122620   sqlite3 *db,
122621   const char *zName,
122622   int nArg
122623 ){
122624   int nName = sqlite3Strlen30(zName);
122625   int rc = SQLITE_OK;
122626   sqlite3_mutex_enter(db->mutex);
122627   if( sqlite3FindFunction(db, zName, nName, nArg, SQLITE_UTF8, 0)==0 ){
122628     rc = sqlite3CreateFunc(db, zName, nArg, SQLITE_UTF8,
122629                            0, sqlite3InvalidFunction, 0, 0, 0);
122630   }
122631   rc = sqlite3ApiExit(db, rc);
122632   sqlite3_mutex_leave(db->mutex);
122633   return rc;
122634 }
122635 
122636 #ifndef SQLITE_OMIT_TRACE
122637 /*
122638 ** Register a trace function.  The pArg from the previously registered trace
122639 ** is returned.
122640 **
122641 ** A NULL trace function means that no tracing is executes.  A non-NULL
122642 ** trace is a pointer to a function that is invoked at the start of each
122643 ** SQL statement.
122644 */
122645 SQLITE_API void *sqlite3_trace(sqlite3 *db, void (*xTrace)(void*,const char*), void *pArg){
122646   void *pOld;
122647   sqlite3_mutex_enter(db->mutex);
122648   pOld = db->pTraceArg;
122649   db->xTrace = xTrace;
122650   db->pTraceArg = pArg;
122651   sqlite3_mutex_leave(db->mutex);
122652   return pOld;
122653 }
122654 /*
122655 ** Register a profile function.  The pArg from the previously registered
122656 ** profile function is returned.
122657 **
122658 ** A NULL profile function means that no profiling is executes.  A non-NULL
122659 ** profile is a pointer to a function that is invoked at the conclusion of
122660 ** each SQL statement that is run.
122661 */
122662 SQLITE_API void *sqlite3_profile(
122663   sqlite3 *db,
122664   void (*xProfile)(void*,const char*,sqlite_uint64),
122665   void *pArg
122666 ){
122667   void *pOld;
122668   sqlite3_mutex_enter(db->mutex);
122669   pOld = db->pProfileArg;
122670   db->xProfile = xProfile;
122671   db->pProfileArg = pArg;
122672   sqlite3_mutex_leave(db->mutex);
122673   return pOld;
122674 }
122675 #endif /* SQLITE_OMIT_TRACE */
122676 
122677 /*
122678 ** Register a function to be invoked when a transaction commits.
122679 ** If the invoked function returns non-zero, then the commit becomes a
122680 ** rollback.
122681 */
122682 SQLITE_API void *sqlite3_commit_hook(
122683   sqlite3 *db,              /* Attach the hook to this database */
122684   int (*xCallback)(void*),  /* Function to invoke on each commit */
122685   void *pArg                /* Argument to the function */
122686 ){
122687   void *pOld;
122688   sqlite3_mutex_enter(db->mutex);
122689   pOld = db->pCommitArg;
122690   db->xCommitCallback = xCallback;
122691   db->pCommitArg = pArg;
122692   sqlite3_mutex_leave(db->mutex);
122693   return pOld;
122694 }
122695 
122696 /*
122697 ** Register a callback to be invoked each time a row is updated,
122698 ** inserted or deleted using this database connection.
122699 */
122700 SQLITE_API void *sqlite3_update_hook(
122701   sqlite3 *db,              /* Attach the hook to this database */
122702   void (*xCallback)(void*,int,char const *,char const *,sqlite_int64),
122703   void *pArg                /* Argument to the function */
122704 ){
122705   void *pRet;
122706   sqlite3_mutex_enter(db->mutex);
122707   pRet = db->pUpdateArg;
122708   db->xUpdateCallback = xCallback;
122709   db->pUpdateArg = pArg;
122710   sqlite3_mutex_leave(db->mutex);
122711   return pRet;
122712 }
122713 
122714 /*
122715 ** Register a callback to be invoked each time a transaction is rolled
122716 ** back by this database connection.
122717 */
122718 SQLITE_API void *sqlite3_rollback_hook(
122719   sqlite3 *db,              /* Attach the hook to this database */
122720   void (*xCallback)(void*), /* Callback function */
122721   void *pArg                /* Argument to the function */
122722 ){
122723   void *pRet;
122724   sqlite3_mutex_enter(db->mutex);
122725   pRet = db->pRollbackArg;
122726   db->xRollbackCallback = xCallback;
122727   db->pRollbackArg = pArg;
122728   sqlite3_mutex_leave(db->mutex);
122729   return pRet;
122730 }
122731 
122732 #ifndef SQLITE_OMIT_WAL
122733 /*
122734 ** The sqlite3_wal_hook() callback registered by sqlite3_wal_autocheckpoint().
122735 ** Invoke sqlite3_wal_checkpoint if the number of frames in the log file
122736 ** is greater than sqlite3.pWalArg cast to an integer (the value configured by
122737 ** wal_autocheckpoint()).
122738 */
122739 SQLITE_PRIVATE int sqlite3WalDefaultHook(
122740   void *pClientData,     /* Argument */
122741   sqlite3 *db,           /* Connection */
122742   const char *zDb,       /* Database */
122743   int nFrame             /* Size of WAL */
122744 ){
122745   if( nFrame>=SQLITE_PTR_TO_INT(pClientData) ){
122746     sqlite3BeginBenignMalloc();
122747     sqlite3_wal_checkpoint(db, zDb);
122748     sqlite3EndBenignMalloc();
122749   }
122750   return SQLITE_OK;
122751 }
122752 #endif /* SQLITE_OMIT_WAL */
122753 
122754 /*
122755 ** Configure an sqlite3_wal_hook() callback to automatically checkpoint
122756 ** a database after committing a transaction if there are nFrame or
122757 ** more frames in the log file. Passing zero or a negative value as the
122758 ** nFrame parameter disables automatic checkpoints entirely.
122759 **
122760 ** The callback registered by this function replaces any existing callback
122761 ** registered using sqlite3_wal_hook(). Likewise, registering a callback
122762 ** using sqlite3_wal_hook() disables the automatic checkpoint mechanism
122763 ** configured by this function.
122764 */
122765 SQLITE_API int sqlite3_wal_autocheckpoint(sqlite3 *db, int nFrame){
122766 #ifdef SQLITE_OMIT_WAL
122767   UNUSED_PARAMETER(db);
122768   UNUSED_PARAMETER(nFrame);
122769 #else
122770   if( nFrame>0 ){
122771     sqlite3_wal_hook(db, sqlite3WalDefaultHook, SQLITE_INT_TO_PTR(nFrame));
122772   }else{
122773     sqlite3_wal_hook(db, 0, 0);
122774   }
122775 #endif
122776   return SQLITE_OK;
122777 }
122778 
122779 /*
122780 ** Register a callback to be invoked each time a transaction is written
122781 ** into the write-ahead-log by this database connection.
122782 */
122783 SQLITE_API void *sqlite3_wal_hook(
122784   sqlite3 *db,                    /* Attach the hook to this db handle */
122785   int(*xCallback)(void *, sqlite3*, const char*, int),
122786   void *pArg                      /* First argument passed to xCallback() */
122787 ){
122788 #ifndef SQLITE_OMIT_WAL
122789   void *pRet;
122790   sqlite3_mutex_enter(db->mutex);
122791   pRet = db->pWalArg;
122792   db->xWalCallback = xCallback;
122793   db->pWalArg = pArg;
122794   sqlite3_mutex_leave(db->mutex);
122795   return pRet;
122796 #else
122797   return 0;
122798 #endif
122799 }
122800 
122801 /*
122802 ** Checkpoint database zDb.
122803 */
122804 SQLITE_API int sqlite3_wal_checkpoint_v2(
122805   sqlite3 *db,                    /* Database handle */
122806   const char *zDb,                /* Name of attached database (or NULL) */
122807   int eMode,                      /* SQLITE_CHECKPOINT_* value */
122808   int *pnLog,                     /* OUT: Size of WAL log in frames */
122809   int *pnCkpt                     /* OUT: Total number of frames checkpointed */
122810 ){
122811 #ifdef SQLITE_OMIT_WAL
122812   return SQLITE_OK;
122813 #else
122814   int rc;                         /* Return code */
122815   int iDb = SQLITE_MAX_ATTACHED;  /* sqlite3.aDb[] index of db to checkpoint */
122816 
122817   /* Initialize the output variables to -1 in case an error occurs. */
122818   if( pnLog ) *pnLog = -1;
122819   if( pnCkpt ) *pnCkpt = -1;
122820 
122821   assert( SQLITE_CHECKPOINT_FULL>SQLITE_CHECKPOINT_PASSIVE );
122822   assert( SQLITE_CHECKPOINT_FULL<SQLITE_CHECKPOINT_RESTART );
122823   assert( SQLITE_CHECKPOINT_PASSIVE+2==SQLITE_CHECKPOINT_RESTART );
122824   if( eMode<SQLITE_CHECKPOINT_PASSIVE || eMode>SQLITE_CHECKPOINT_RESTART ){
122825     return SQLITE_MISUSE;
122826   }
122827 
122828   sqlite3_mutex_enter(db->mutex);
122829   if( zDb && zDb[0] ){
122830     iDb = sqlite3FindDbName(db, zDb);
122831   }
122832   if( iDb<0 ){
122833     rc = SQLITE_ERROR;
122834     sqlite3Error(db, SQLITE_ERROR, "unknown database: %s", zDb);
122835   }else{
122836     rc = sqlite3Checkpoint(db, iDb, eMode, pnLog, pnCkpt);
122837     sqlite3Error(db, rc, 0);
122838   }
122839   rc = sqlite3ApiExit(db, rc);
122840   sqlite3_mutex_leave(db->mutex);
122841   return rc;
122842 #endif
122843 }
122844 
122845 
122846 /*
122847 ** Checkpoint database zDb. If zDb is NULL, or if the buffer zDb points
122848 ** to contains a zero-length string, all attached databases are
122849 ** checkpointed.
122850 */
122851 SQLITE_API int sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb){
122852   return sqlite3_wal_checkpoint_v2(db, zDb, SQLITE_CHECKPOINT_PASSIVE, 0, 0);
122853 }
122854 
122855 #ifndef SQLITE_OMIT_WAL
122856 /*
122857 ** Run a checkpoint on database iDb. This is a no-op if database iDb is
122858 ** not currently open in WAL mode.
122859 **
122860 ** If a transaction is open on the database being checkpointed, this
122861 ** function returns SQLITE_LOCKED and a checkpoint is not attempted. If
122862 ** an error occurs while running the checkpoint, an SQLite error code is
122863 ** returned (i.e. SQLITE_IOERR). Otherwise, SQLITE_OK.
122864 **
122865 ** The mutex on database handle db should be held by the caller. The mutex
122866 ** associated with the specific b-tree being checkpointed is taken by
122867 ** this function while the checkpoint is running.
122868 **
122869 ** If iDb is passed SQLITE_MAX_ATTACHED, then all attached databases are
122870 ** checkpointed. If an error is encountered it is returned immediately -
122871 ** no attempt is made to checkpoint any remaining databases.
122872 **
122873 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
122874 */
122875 SQLITE_PRIVATE int sqlite3Checkpoint(sqlite3 *db, int iDb, int eMode, int *pnLog, int *pnCkpt){
122876   int rc = SQLITE_OK;             /* Return code */
122877   int i;                          /* Used to iterate through attached dbs */
122878   int bBusy = 0;                  /* True if SQLITE_BUSY has been encountered */
122879 
122880   assert( sqlite3_mutex_held(db->mutex) );
122881   assert( !pnLog || *pnLog==-1 );
122882   assert( !pnCkpt || *pnCkpt==-1 );
122883 
122884   for(i=0; i<db->nDb && rc==SQLITE_OK; i++){
122885     if( i==iDb || iDb==SQLITE_MAX_ATTACHED ){
122886       rc = sqlite3BtreeCheckpoint(db->aDb[i].pBt, eMode, pnLog, pnCkpt);
122887       pnLog = 0;
122888       pnCkpt = 0;
122889       if( rc==SQLITE_BUSY ){
122890         bBusy = 1;
122891         rc = SQLITE_OK;
122892       }
122893     }
122894   }
122895 
122896   return (rc==SQLITE_OK && bBusy) ? SQLITE_BUSY : rc;
122897 }
122898 #endif /* SQLITE_OMIT_WAL */
122899 
122900 /*
122901 ** This function returns true if main-memory should be used instead of
122902 ** a temporary file for transient pager files and statement journals.
122903 ** The value returned depends on the value of db->temp_store (runtime
122904 ** parameter) and the compile time value of SQLITE_TEMP_STORE. The
122905 ** following table describes the relationship between these two values
122906 ** and this functions return value.
122907 **
122908 **   SQLITE_TEMP_STORE     db->temp_store     Location of temporary database
122909 **   -----------------     --------------     ------------------------------
122910 **   0                     any                file      (return 0)
122911 **   1                     1                  file      (return 0)
122912 **   1                     2                  memory    (return 1)
122913 **   1                     0                  file      (return 0)
122914 **   2                     1                  file      (return 0)
122915 **   2                     2                  memory    (return 1)
122916 **   2                     0                  memory    (return 1)
122917 **   3                     any                memory    (return 1)
122918 */
122919 SQLITE_PRIVATE int sqlite3TempInMemory(const sqlite3 *db){
122920 #if SQLITE_TEMP_STORE==1
122921   return ( db->temp_store==2 );
122922 #endif
122923 #if SQLITE_TEMP_STORE==2
122924   return ( db->temp_store!=1 );
122925 #endif
122926 #if SQLITE_TEMP_STORE==3
122927   return 1;
122928 #endif
122929 #if SQLITE_TEMP_STORE<1 || SQLITE_TEMP_STORE>3
122930   return 0;
122931 #endif
122932 }
122933 
122934 /*
122935 ** Return UTF-8 encoded English language explanation of the most recent
122936 ** error.
122937 */
122938 SQLITE_API const char *sqlite3_errmsg(sqlite3 *db){
122939   const char *z;
122940   if( !db ){
122941     return sqlite3ErrStr(SQLITE_NOMEM);
122942   }
122943   if( !sqlite3SafetyCheckSickOrOk(db) ){
122944     return sqlite3ErrStr(SQLITE_MISUSE_BKPT);
122945   }
122946   sqlite3_mutex_enter(db->mutex);
122947   if( db->mallocFailed ){
122948     z = sqlite3ErrStr(SQLITE_NOMEM);
122949   }else{
122950     testcase( db->pErr==0 );
122951     z = (char*)sqlite3_value_text(db->pErr);
122952     assert( !db->mallocFailed );
122953     if( z==0 ){
122954       z = sqlite3ErrStr(db->errCode);
122955     }
122956   }
122957   sqlite3_mutex_leave(db->mutex);
122958   return z;
122959 }
122960 
122961 #ifndef SQLITE_OMIT_UTF16
122962 /*
122963 ** Return UTF-16 encoded English language explanation of the most recent
122964 ** error.
122965 */
122966 SQLITE_API const void *sqlite3_errmsg16(sqlite3 *db){
122967   static const u16 outOfMem[] = {
122968     'o', 'u', 't', ' ', 'o', 'f', ' ', 'm', 'e', 'm', 'o', 'r', 'y', 0
122969   };
122970   static const u16 misuse[] = {
122971     'l', 'i', 'b', 'r', 'a', 'r', 'y', ' ',
122972     'r', 'o', 'u', 't', 'i', 'n', 'e', ' ',
122973     'c', 'a', 'l', 'l', 'e', 'd', ' ',
122974     'o', 'u', 't', ' ',
122975     'o', 'f', ' ',
122976     's', 'e', 'q', 'u', 'e', 'n', 'c', 'e', 0
122977   };
122978 
122979   const void *z;
122980   if( !db ){
122981     return (void *)outOfMem;
122982   }
122983   if( !sqlite3SafetyCheckSickOrOk(db) ){
122984     return (void *)misuse;
122985   }
122986   sqlite3_mutex_enter(db->mutex);
122987   if( db->mallocFailed ){
122988     z = (void *)outOfMem;
122989   }else{
122990     z = sqlite3_value_text16(db->pErr);
122991     if( z==0 ){
122992       sqlite3Error(db, db->errCode, sqlite3ErrStr(db->errCode));
122993       z = sqlite3_value_text16(db->pErr);
122994     }
122995     /* A malloc() may have failed within the call to sqlite3_value_text16()
122996     ** above. If this is the case, then the db->mallocFailed flag needs to
122997     ** be cleared before returning. Do this directly, instead of via
122998     ** sqlite3ApiExit(), to avoid setting the database handle error message.
122999     */
123000     db->mallocFailed = 0;
123001   }
123002   sqlite3_mutex_leave(db->mutex);
123003   return z;
123004 }
123005 #endif /* SQLITE_OMIT_UTF16 */
123006 
123007 /*
123008 ** Return the most recent error code generated by an SQLite routine. If NULL is
123009 ** passed to this function, we assume a malloc() failed during sqlite3_open().
123010 */
123011 SQLITE_API int sqlite3_errcode(sqlite3 *db){
123012   if( db && !sqlite3SafetyCheckSickOrOk(db) ){
123013     return SQLITE_MISUSE_BKPT;
123014   }
123015   if( !db || db->mallocFailed ){
123016     return SQLITE_NOMEM;
123017   }
123018   return db->errCode & db->errMask;
123019 }
123020 SQLITE_API int sqlite3_extended_errcode(sqlite3 *db){
123021   if( db && !sqlite3SafetyCheckSickOrOk(db) ){
123022     return SQLITE_MISUSE_BKPT;
123023   }
123024   if( !db || db->mallocFailed ){
123025     return SQLITE_NOMEM;
123026   }
123027   return db->errCode;
123028 }
123029 
123030 /*
123031 ** Return a string that describes the kind of error specified in the
123032 ** argument.  For now, this simply calls the internal sqlite3ErrStr()
123033 ** function.
123034 */
123035 SQLITE_API const char *sqlite3_errstr(int rc){
123036   return sqlite3ErrStr(rc);
123037 }
123038 
123039 /*
123040 ** Invalidate all cached KeyInfo objects for database connection "db"
123041 */
123042 static void invalidateCachedKeyInfo(sqlite3 *db){
123043   Db *pDb;                    /* A single database */
123044   int iDb;                    /* The database index number */
123045   HashElem *k;                /* For looping over tables in pDb */
123046   Table *pTab;                /* A table in the database */
123047   Index *pIdx;                /* Each index */
123048 
123049   for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
123050     if( pDb->pBt==0 ) continue;
123051     sqlite3BtreeEnter(pDb->pBt);
123052     for(k=sqliteHashFirst(&pDb->pSchema->tblHash);  k; k=sqliteHashNext(k)){
123053       pTab = (Table*)sqliteHashData(k);
123054       for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
123055         if( pIdx->pKeyInfo && pIdx->pKeyInfo->db==db ){
123056           sqlite3KeyInfoUnref(pIdx->pKeyInfo);
123057           pIdx->pKeyInfo = 0;
123058         }
123059       }
123060     }
123061     sqlite3BtreeLeave(pDb->pBt);
123062   }
123063 }
123064 
123065 /*
123066 ** Create a new collating function for database "db".  The name is zName
123067 ** and the encoding is enc.
123068 */
123069 static int createCollation(
123070   sqlite3* db,
123071   const char *zName,
123072   u8 enc,
123073   void* pCtx,
123074   int(*xCompare)(void*,int,const void*,int,const void*),
123075   void(*xDel)(void*)
123076 ){
123077   CollSeq *pColl;
123078   int enc2;
123079   int nName = sqlite3Strlen30(zName);
123080 
123081   assert( sqlite3_mutex_held(db->mutex) );
123082 
123083   /* If SQLITE_UTF16 is specified as the encoding type, transform this
123084   ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the
123085   ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally.
123086   */
123087   enc2 = enc;
123088   testcase( enc2==SQLITE_UTF16 );
123089   testcase( enc2==SQLITE_UTF16_ALIGNED );
123090   if( enc2==SQLITE_UTF16 || enc2==SQLITE_UTF16_ALIGNED ){
123091     enc2 = SQLITE_UTF16NATIVE;
123092   }
123093   if( enc2<SQLITE_UTF8 || enc2>SQLITE_UTF16BE ){
123094     return SQLITE_MISUSE_BKPT;
123095   }
123096 
123097   /* Check if this call is removing or replacing an existing collation
123098   ** sequence. If so, and there are active VMs, return busy. If there
123099   ** are no active VMs, invalidate any pre-compiled statements.
123100   */
123101   pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 0);
123102   if( pColl && pColl->xCmp ){
123103     if( db->nVdbeActive ){
123104       sqlite3Error(db, SQLITE_BUSY,
123105         "unable to delete/modify collation sequence due to active statements");
123106       return SQLITE_BUSY;
123107     }
123108     sqlite3ExpirePreparedStatements(db);
123109     invalidateCachedKeyInfo(db);
123110 
123111     /* If collation sequence pColl was created directly by a call to
123112     ** sqlite3_create_collation, and not generated by synthCollSeq(),
123113     ** then any copies made by synthCollSeq() need to be invalidated.
123114     ** Also, collation destructor - CollSeq.xDel() - function may need
123115     ** to be called.
123116     */
123117     if( (pColl->enc & ~SQLITE_UTF16_ALIGNED)==enc2 ){
123118       CollSeq *aColl = sqlite3HashFind(&db->aCollSeq, zName, nName);
123119       int j;
123120       for(j=0; j<3; j++){
123121         CollSeq *p = &aColl[j];
123122         if( p->enc==pColl->enc ){
123123           if( p->xDel ){
123124             p->xDel(p->pUser);
123125           }
123126           p->xCmp = 0;
123127         }
123128       }
123129     }
123130   }
123131 
123132   pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 1);
123133   if( pColl==0 ) return SQLITE_NOMEM;
123134   pColl->xCmp = xCompare;
123135   pColl->pUser = pCtx;
123136   pColl->xDel = xDel;
123137   pColl->enc = (u8)(enc2 | (enc & SQLITE_UTF16_ALIGNED));
123138   sqlite3Error(db, SQLITE_OK, 0);
123139   return SQLITE_OK;
123140 }
123141 
123142 
123143 /*
123144 ** This array defines hard upper bounds on limit values.  The
123145 ** initializer must be kept in sync with the SQLITE_LIMIT_*
123146 ** #defines in sqlite3.h.
123147 */
123148 static const int aHardLimit[] = {
123149   SQLITE_MAX_LENGTH,
123150   SQLITE_MAX_SQL_LENGTH,
123151   SQLITE_MAX_COLUMN,
123152   SQLITE_MAX_EXPR_DEPTH,
123153   SQLITE_MAX_COMPOUND_SELECT,
123154   SQLITE_MAX_VDBE_OP,
123155   SQLITE_MAX_FUNCTION_ARG,
123156   SQLITE_MAX_ATTACHED,
123157   SQLITE_MAX_LIKE_PATTERN_LENGTH,
123158   SQLITE_MAX_VARIABLE_NUMBER,
123159   SQLITE_MAX_TRIGGER_DEPTH,
123160 };
123161 
123162 /*
123163 ** Make sure the hard limits are set to reasonable values
123164 */
123165 #if SQLITE_MAX_LENGTH<100
123166 # error SQLITE_MAX_LENGTH must be at least 100
123167 #endif
123168 #if SQLITE_MAX_SQL_LENGTH<100
123169 # error SQLITE_MAX_SQL_LENGTH must be at least 100
123170 #endif
123171 #if SQLITE_MAX_SQL_LENGTH>SQLITE_MAX_LENGTH
123172 # error SQLITE_MAX_SQL_LENGTH must not be greater than SQLITE_MAX_LENGTH
123173 #endif
123174 #if SQLITE_MAX_COMPOUND_SELECT<2
123175 # error SQLITE_MAX_COMPOUND_SELECT must be at least 2
123176 #endif
123177 #if SQLITE_MAX_VDBE_OP<40
123178 # error SQLITE_MAX_VDBE_OP must be at least 40
123179 #endif
123180 #if SQLITE_MAX_FUNCTION_ARG<0 || SQLITE_MAX_FUNCTION_ARG>1000
123181 # error SQLITE_MAX_FUNCTION_ARG must be between 0 and 1000
123182 #endif
123183 #if SQLITE_MAX_ATTACHED<0 || SQLITE_MAX_ATTACHED>62
123184 # error SQLITE_MAX_ATTACHED must be between 0 and 62
123185 #endif
123186 #if SQLITE_MAX_LIKE_PATTERN_LENGTH<1
123187 # error SQLITE_MAX_LIKE_PATTERN_LENGTH must be at least 1
123188 #endif
123189 #if SQLITE_MAX_COLUMN>32767
123190 # error SQLITE_MAX_COLUMN must not exceed 32767
123191 #endif
123192 #if SQLITE_MAX_TRIGGER_DEPTH<1
123193 # error SQLITE_MAX_TRIGGER_DEPTH must be at least 1
123194 #endif
123195 
123196 
123197 /*
123198 ** Change the value of a limit.  Report the old value.
123199 ** If an invalid limit index is supplied, report -1.
123200 ** Make no changes but still report the old value if the
123201 ** new limit is negative.
123202 **
123203 ** A new lower limit does not shrink existing constructs.
123204 ** It merely prevents new constructs that exceed the limit
123205 ** from forming.
123206 */
123207 SQLITE_API int sqlite3_limit(sqlite3 *db, int limitId, int newLimit){
123208   int oldLimit;
123209 
123210 
123211   /* EVIDENCE-OF: R-30189-54097 For each limit category SQLITE_LIMIT_NAME
123212   ** there is a hard upper bound set at compile-time by a C preprocessor
123213   ** macro called SQLITE_MAX_NAME. (The "_LIMIT_" in the name is changed to
123214   ** "_MAX_".)
123215   */
123216   assert( aHardLimit[SQLITE_LIMIT_LENGTH]==SQLITE_MAX_LENGTH );
123217   assert( aHardLimit[SQLITE_LIMIT_SQL_LENGTH]==SQLITE_MAX_SQL_LENGTH );
123218   assert( aHardLimit[SQLITE_LIMIT_COLUMN]==SQLITE_MAX_COLUMN );
123219   assert( aHardLimit[SQLITE_LIMIT_EXPR_DEPTH]==SQLITE_MAX_EXPR_DEPTH );
123220   assert( aHardLimit[SQLITE_LIMIT_COMPOUND_SELECT]==SQLITE_MAX_COMPOUND_SELECT);
123221   assert( aHardLimit[SQLITE_LIMIT_VDBE_OP]==SQLITE_MAX_VDBE_OP );
123222   assert( aHardLimit[SQLITE_LIMIT_FUNCTION_ARG]==SQLITE_MAX_FUNCTION_ARG );
123223   assert( aHardLimit[SQLITE_LIMIT_ATTACHED]==SQLITE_MAX_ATTACHED );
123224   assert( aHardLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]==
123225                                                SQLITE_MAX_LIKE_PATTERN_LENGTH );
123226   assert( aHardLimit[SQLITE_LIMIT_VARIABLE_NUMBER]==SQLITE_MAX_VARIABLE_NUMBER);
123227   assert( aHardLimit[SQLITE_LIMIT_TRIGGER_DEPTH]==SQLITE_MAX_TRIGGER_DEPTH );
123228   assert( SQLITE_LIMIT_TRIGGER_DEPTH==(SQLITE_N_LIMIT-1) );
123229 
123230 
123231   if( limitId<0 || limitId>=SQLITE_N_LIMIT ){
123232     return -1;
123233   }
123234   oldLimit = db->aLimit[limitId];
123235   if( newLimit>=0 ){                   /* IMP: R-52476-28732 */
123236     if( newLimit>aHardLimit[limitId] ){
123237       newLimit = aHardLimit[limitId];  /* IMP: R-51463-25634 */
123238     }
123239     db->aLimit[limitId] = newLimit;
123240   }
123241   return oldLimit;                     /* IMP: R-53341-35419 */
123242 }
123243 
123244 /*
123245 ** This function is used to parse both URIs and non-URI filenames passed by the
123246 ** user to API functions sqlite3_open() or sqlite3_open_v2(), and for database
123247 ** URIs specified as part of ATTACH statements.
123248 **
123249 ** The first argument to this function is the name of the VFS to use (or
123250 ** a NULL to signify the default VFS) if the URI does not contain a "vfs=xxx"
123251 ** query parameter. The second argument contains the URI (or non-URI filename)
123252 ** itself. When this function is called the *pFlags variable should contain
123253 ** the default flags to open the database handle with. The value stored in
123254 ** *pFlags may be updated before returning if the URI filename contains
123255 ** "cache=xxx" or "mode=xxx" query parameters.
123256 **
123257 ** If successful, SQLITE_OK is returned. In this case *ppVfs is set to point to
123258 ** the VFS that should be used to open the database file. *pzFile is set to
123259 ** point to a buffer containing the name of the file to open. It is the
123260 ** responsibility of the caller to eventually call sqlite3_free() to release
123261 ** this buffer.
123262 **
123263 ** If an error occurs, then an SQLite error code is returned and *pzErrMsg
123264 ** may be set to point to a buffer containing an English language error
123265 ** message. It is the responsibility of the caller to eventually release
123266 ** this buffer by calling sqlite3_free().
123267 */
123268 SQLITE_PRIVATE int sqlite3ParseUri(
123269   const char *zDefaultVfs,        /* VFS to use if no "vfs=xxx" query option */
123270   const char *zUri,               /* Nul-terminated URI to parse */
123271   unsigned int *pFlags,           /* IN/OUT: SQLITE_OPEN_XXX flags */
123272   sqlite3_vfs **ppVfs,            /* OUT: VFS to use */
123273   char **pzFile,                  /* OUT: Filename component of URI */
123274   char **pzErrMsg                 /* OUT: Error message (if rc!=SQLITE_OK) */
123275 ){
123276   int rc = SQLITE_OK;
123277   unsigned int flags = *pFlags;
123278   const char *zVfs = zDefaultVfs;
123279   char *zFile;
123280   char c;
123281   int nUri = sqlite3Strlen30(zUri);
123282 
123283   assert( *pzErrMsg==0 );
123284 
123285   if( ((flags & SQLITE_OPEN_URI) || sqlite3GlobalConfig.bOpenUri)
123286    && nUri>=5 && memcmp(zUri, "file:", 5)==0
123287   ){
123288     char *zOpt;
123289     int eState;                   /* Parser state when parsing URI */
123290     int iIn;                      /* Input character index */
123291     int iOut = 0;                 /* Output character index */
123292     int nByte = nUri+2;           /* Bytes of space to allocate */
123293 
123294     /* Make sure the SQLITE_OPEN_URI flag is set to indicate to the VFS xOpen
123295     ** method that there may be extra parameters following the file-name.  */
123296     flags |= SQLITE_OPEN_URI;
123297 
123298     for(iIn=0; iIn<nUri; iIn++) nByte += (zUri[iIn]=='&');
123299     zFile = sqlite3_malloc(nByte);
123300     if( !zFile ) return SQLITE_NOMEM;
123301 
123302     iIn = 5;
123303 #ifndef SQLITE_ALLOW_URI_AUTHORITY
123304     /* Discard the scheme and authority segments of the URI. */
123305     if( zUri[5]=='/' && zUri[6]=='/' ){
123306       iIn = 7;
123307       while( zUri[iIn] && zUri[iIn]!='/' ) iIn++;
123308       if( iIn!=7 && (iIn!=16 || memcmp("localhost", &zUri[7], 9)) ){
123309         *pzErrMsg = sqlite3_mprintf("invalid uri authority: %.*s",
123310             iIn-7, &zUri[7]);
123311         rc = SQLITE_ERROR;
123312         goto parse_uri_out;
123313       }
123314     }
123315 #endif
123316 
123317     /* Copy the filename and any query parameters into the zFile buffer.
123318     ** Decode %HH escape codes along the way.
123319     **
123320     ** Within this loop, variable eState may be set to 0, 1 or 2, depending
123321     ** on the parsing context. As follows:
123322     **
123323     **   0: Parsing file-name.
123324     **   1: Parsing name section of a name=value query parameter.
123325     **   2: Parsing value section of a name=value query parameter.
123326     */
123327     eState = 0;
123328     while( (c = zUri[iIn])!=0 && c!='#' ){
123329       iIn++;
123330       if( c=='%'
123331        && sqlite3Isxdigit(zUri[iIn])
123332        && sqlite3Isxdigit(zUri[iIn+1])
123333       ){
123334         int octet = (sqlite3HexToInt(zUri[iIn++]) << 4);
123335         octet += sqlite3HexToInt(zUri[iIn++]);
123336 
123337         assert( octet>=0 && octet<256 );
123338         if( octet==0 ){
123339           /* This branch is taken when "%00" appears within the URI. In this
123340           ** case we ignore all text in the remainder of the path, name or
123341           ** value currently being parsed. So ignore the current character
123342           ** and skip to the next "?", "=" or "&", as appropriate. */
123343           while( (c = zUri[iIn])!=0 && c!='#'
123344               && (eState!=0 || c!='?')
123345               && (eState!=1 || (c!='=' && c!='&'))
123346               && (eState!=2 || c!='&')
123347           ){
123348             iIn++;
123349           }
123350           continue;
123351         }
123352         c = octet;
123353       }else if( eState==1 && (c=='&' || c=='=') ){
123354         if( zFile[iOut-1]==0 ){
123355           /* An empty option name. Ignore this option altogether. */
123356           while( zUri[iIn] && zUri[iIn]!='#' && zUri[iIn-1]!='&' ) iIn++;
123357           continue;
123358         }
123359         if( c=='&' ){
123360           zFile[iOut++] = '\0';
123361         }else{
123362           eState = 2;
123363         }
123364         c = 0;
123365       }else if( (eState==0 && c=='?') || (eState==2 && c=='&') ){
123366         c = 0;
123367         eState = 1;
123368       }
123369       zFile[iOut++] = c;
123370     }
123371     if( eState==1 ) zFile[iOut++] = '\0';
123372     zFile[iOut++] = '\0';
123373     zFile[iOut++] = '\0';
123374 
123375     /* Check if there were any options specified that should be interpreted
123376     ** here. Options that are interpreted here include "vfs" and those that
123377     ** correspond to flags that may be passed to the sqlite3_open_v2()
123378     ** method. */
123379     zOpt = &zFile[sqlite3Strlen30(zFile)+1];
123380     while( zOpt[0] ){
123381       int nOpt = sqlite3Strlen30(zOpt);
123382       char *zVal = &zOpt[nOpt+1];
123383       int nVal = sqlite3Strlen30(zVal);
123384 
123385       if( nOpt==3 && memcmp("vfs", zOpt, 3)==0 ){
123386         zVfs = zVal;
123387       }else{
123388         struct OpenMode {
123389           const char *z;
123390           int mode;
123391         } *aMode = 0;
123392         char *zModeType = 0;
123393         int mask = 0;
123394         int limit = 0;
123395 
123396         if( nOpt==5 && memcmp("cache", zOpt, 5)==0 ){
123397           static struct OpenMode aCacheMode[] = {
123398             { "shared",  SQLITE_OPEN_SHAREDCACHE },
123399             { "private", SQLITE_OPEN_PRIVATECACHE },
123400             { 0, 0 }
123401           };
123402 
123403           mask = SQLITE_OPEN_SHAREDCACHE|SQLITE_OPEN_PRIVATECACHE;
123404           aMode = aCacheMode;
123405           limit = mask;
123406           zModeType = "cache";
123407         }
123408         if( nOpt==4 && memcmp("mode", zOpt, 4)==0 ){
123409           static struct OpenMode aOpenMode[] = {
123410             { "ro",  SQLITE_OPEN_READONLY },
123411             { "rw",  SQLITE_OPEN_READWRITE },
123412             { "rwc", SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE },
123413             { "memory", SQLITE_OPEN_MEMORY },
123414             { 0, 0 }
123415           };
123416 
123417           mask = SQLITE_OPEN_READONLY | SQLITE_OPEN_READWRITE
123418                    | SQLITE_OPEN_CREATE | SQLITE_OPEN_MEMORY;
123419           aMode = aOpenMode;
123420           limit = mask & flags;
123421           zModeType = "access";
123422         }
123423 
123424         if( aMode ){
123425           int i;
123426           int mode = 0;
123427           for(i=0; aMode[i].z; i++){
123428             const char *z = aMode[i].z;
123429             if( nVal==sqlite3Strlen30(z) && 0==memcmp(zVal, z, nVal) ){
123430               mode = aMode[i].mode;
123431               break;
123432             }
123433           }
123434           if( mode==0 ){
123435             *pzErrMsg = sqlite3_mprintf("no such %s mode: %s", zModeType, zVal);
123436             rc = SQLITE_ERROR;
123437             goto parse_uri_out;
123438           }
123439           if( (mode & ~SQLITE_OPEN_MEMORY)>limit ){
123440             *pzErrMsg = sqlite3_mprintf("%s mode not allowed: %s",
123441                                         zModeType, zVal);
123442             rc = SQLITE_PERM;
123443             goto parse_uri_out;
123444           }
123445           flags = (flags & ~mask) | mode;
123446         }
123447       }
123448 
123449       zOpt = &zVal[nVal+1];
123450     }
123451 
123452   }else{
123453     zFile = sqlite3_malloc(nUri+2);
123454     if( !zFile ) return SQLITE_NOMEM;
123455     memcpy(zFile, zUri, nUri);
123456     zFile[nUri] = '\0';
123457     zFile[nUri+1] = '\0';
123458     flags &= ~SQLITE_OPEN_URI;
123459   }
123460 
123461   *ppVfs = sqlite3_vfs_find(zVfs);
123462   if( *ppVfs==0 ){
123463     *pzErrMsg = sqlite3_mprintf("no such vfs: %s", zVfs);
123464     rc = SQLITE_ERROR;
123465   }
123466  parse_uri_out:
123467   if( rc!=SQLITE_OK ){
123468     sqlite3_free(zFile);
123469     zFile = 0;
123470   }
123471   *pFlags = flags;
123472   *pzFile = zFile;
123473   return rc;
123474 }
123475 
123476 
123477 /*
123478 ** This routine does the work of opening a database on behalf of
123479 ** sqlite3_open() and sqlite3_open16(). The database filename "zFilename"
123480 ** is UTF-8 encoded.
123481 */
123482 static int openDatabase(
123483   const char *zFilename, /* Database filename UTF-8 encoded */
123484   sqlite3 **ppDb,        /* OUT: Returned database handle */
123485   unsigned int flags,    /* Operational flags */
123486   const char *zVfs       /* Name of the VFS to use */
123487 ){
123488   sqlite3 *db;                    /* Store allocated handle here */
123489   int rc;                         /* Return code */
123490   int isThreadsafe;               /* True for threadsafe connections */
123491   char *zOpen = 0;                /* Filename argument to pass to BtreeOpen() */
123492   char *zErrMsg = 0;              /* Error message from sqlite3ParseUri() */
123493 
123494   *ppDb = 0;
123495 #ifndef SQLITE_OMIT_AUTOINIT
123496   rc = sqlite3_initialize();
123497   if( rc ) return rc;
123498 #endif
123499 
123500   /* Only allow sensible combinations of bits in the flags argument.
123501   ** Throw an error if any non-sense combination is used.  If we
123502   ** do not block illegal combinations here, it could trigger
123503   ** assert() statements in deeper layers.  Sensible combinations
123504   ** are:
123505   **
123506   **  1:  SQLITE_OPEN_READONLY
123507   **  2:  SQLITE_OPEN_READWRITE
123508   **  6:  SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE
123509   */
123510   assert( SQLITE_OPEN_READONLY  == 0x01 );
123511   assert( SQLITE_OPEN_READWRITE == 0x02 );
123512   assert( SQLITE_OPEN_CREATE    == 0x04 );
123513   testcase( (1<<(flags&7))==0x02 ); /* READONLY */
123514   testcase( (1<<(flags&7))==0x04 ); /* READWRITE */
123515   testcase( (1<<(flags&7))==0x40 ); /* READWRITE | CREATE */
123516   if( ((1<<(flags&7)) & 0x46)==0 ) return SQLITE_MISUSE_BKPT;
123517 
123518   if( sqlite3GlobalConfig.bCoreMutex==0 ){
123519     isThreadsafe = 0;
123520   }else if( flags & SQLITE_OPEN_NOMUTEX ){
123521     isThreadsafe = 0;
123522   }else if( flags & SQLITE_OPEN_FULLMUTEX ){
123523     isThreadsafe = 1;
123524   }else{
123525     isThreadsafe = sqlite3GlobalConfig.bFullMutex;
123526   }
123527   if( flags & SQLITE_OPEN_PRIVATECACHE ){
123528     flags &= ~SQLITE_OPEN_SHAREDCACHE;
123529   }else if( sqlite3GlobalConfig.sharedCacheEnabled ){
123530     flags |= SQLITE_OPEN_SHAREDCACHE;
123531   }
123532 
123533   /* Remove harmful bits from the flags parameter
123534   **
123535   ** The SQLITE_OPEN_NOMUTEX and SQLITE_OPEN_FULLMUTEX flags were
123536   ** dealt with in the previous code block.  Besides these, the only
123537   ** valid input flags for sqlite3_open_v2() are SQLITE_OPEN_READONLY,
123538   ** SQLITE_OPEN_READWRITE, SQLITE_OPEN_CREATE, SQLITE_OPEN_SHAREDCACHE,
123539   ** SQLITE_OPEN_PRIVATECACHE, and some reserved bits.  Silently mask
123540   ** off all other flags.
123541   */
123542   flags &=  ~( SQLITE_OPEN_DELETEONCLOSE |
123543                SQLITE_OPEN_EXCLUSIVE |
123544                SQLITE_OPEN_MAIN_DB |
123545                SQLITE_OPEN_TEMP_DB |
123546                SQLITE_OPEN_TRANSIENT_DB |
123547                SQLITE_OPEN_MAIN_JOURNAL |
123548                SQLITE_OPEN_TEMP_JOURNAL |
123549                SQLITE_OPEN_SUBJOURNAL |
123550                SQLITE_OPEN_MASTER_JOURNAL |
123551                SQLITE_OPEN_NOMUTEX |
123552                SQLITE_OPEN_FULLMUTEX |
123553                SQLITE_OPEN_WAL
123554              );
123555 
123556   /* Allocate the sqlite data structure */
123557   db = sqlite3MallocZero( sizeof(sqlite3) );
123558   if( db==0 ) goto opendb_out;
123559   if( isThreadsafe ){
123560     db->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE);
123561     if( db->mutex==0 ){
123562       sqlite3_free(db);
123563       db = 0;
123564       goto opendb_out;
123565     }
123566   }
123567   sqlite3_mutex_enter(db->mutex);
123568   db->errMask = 0xff;
123569   db->nDb = 2;
123570   db->magic = SQLITE_MAGIC_BUSY;
123571   db->aDb = db->aDbStatic;
123572 
123573   assert( sizeof(db->aLimit)==sizeof(aHardLimit) );
123574   memcpy(db->aLimit, aHardLimit, sizeof(db->aLimit));
123575   db->autoCommit = 1;
123576   db->nextAutovac = -1;
123577   db->szMmap = sqlite3GlobalConfig.szMmap;
123578   db->nextPagesize = 0;
123579   db->flags |= SQLITE_ShortColNames | SQLITE_EnableTrigger | SQLITE_CacheSpill
123580 #if !defined(SQLITE_DEFAULT_AUTOMATIC_INDEX) || SQLITE_DEFAULT_AUTOMATIC_INDEX
123581                  | SQLITE_AutoIndex
123582 #endif
123583 #if SQLITE_DEFAULT_FILE_FORMAT<4
123584                  | SQLITE_LegacyFileFmt
123585 #endif
123586 #ifdef SQLITE_ENABLE_LOAD_EXTENSION
123587                  | SQLITE_LoadExtension
123588 #endif
123589 #if SQLITE_DEFAULT_RECURSIVE_TRIGGERS
123590                  | SQLITE_RecTriggers
123591 #endif
123592 #if defined(SQLITE_DEFAULT_FOREIGN_KEYS) && SQLITE_DEFAULT_FOREIGN_KEYS
123593                  | SQLITE_ForeignKeys
123594 #endif
123595       ;
123596   sqlite3HashInit(&db->aCollSeq);
123597 #ifndef SQLITE_OMIT_VIRTUALTABLE
123598   sqlite3HashInit(&db->aModule);
123599 #endif
123600 
123601   /* Add the default collation sequence BINARY. BINARY works for both UTF-8
123602   ** and UTF-16, so add a version for each to avoid any unnecessary
123603   ** conversions. The only error that can occur here is a malloc() failure.
123604   */
123605   createCollation(db, "BINARY", SQLITE_UTF8, 0, binCollFunc, 0);
123606   createCollation(db, "BINARY", SQLITE_UTF16BE, 0, binCollFunc, 0);
123607   createCollation(db, "BINARY", SQLITE_UTF16LE, 0, binCollFunc, 0);
123608   createCollation(db, "RTRIM", SQLITE_UTF8, (void*)1, binCollFunc, 0);
123609   if( db->mallocFailed ){
123610     goto opendb_out;
123611   }
123612   db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 0);
123613   assert( db->pDfltColl!=0 );
123614 
123615   /* Also add a UTF-8 case-insensitive collation sequence. */
123616   createCollation(db, "NOCASE", SQLITE_UTF8, 0, nocaseCollatingFunc, 0);
123617 
123618   /* Parse the filename/URI argument. */
123619   db->openFlags = flags;
123620   rc = sqlite3ParseUri(zVfs, zFilename, &flags, &db->pVfs, &zOpen, &zErrMsg);
123621   if( rc!=SQLITE_OK ){
123622     if( rc==SQLITE_NOMEM ) db->mallocFailed = 1;
123623     sqlite3Error(db, rc, zErrMsg ? "%s" : 0, zErrMsg);
123624     sqlite3_free(zErrMsg);
123625     goto opendb_out;
123626   }
123627 
123628   /* Open the backend database driver */
123629   rc = sqlite3BtreeOpen(db->pVfs, zOpen, db, &db->aDb[0].pBt, 0,
123630                         flags | SQLITE_OPEN_MAIN_DB);
123631   if( rc!=SQLITE_OK ){
123632     if( rc==SQLITE_IOERR_NOMEM ){
123633       rc = SQLITE_NOMEM;
123634     }
123635     sqlite3Error(db, rc, 0);
123636     goto opendb_out;
123637   }
123638   db->aDb[0].pSchema = sqlite3SchemaGet(db, db->aDb[0].pBt);
123639   db->aDb[1].pSchema = sqlite3SchemaGet(db, 0);
123640 
123641 
123642   /* The default safety_level for the main database is 'full'; for the temp
123643   ** database it is 'NONE'. This matches the pager layer defaults.
123644   */
123645   db->aDb[0].zName = "main";
123646   db->aDb[0].safety_level = 3;
123647   db->aDb[1].zName = "temp";
123648   db->aDb[1].safety_level = 1;
123649 
123650   db->magic = SQLITE_MAGIC_OPEN;
123651   if( db->mallocFailed ){
123652     goto opendb_out;
123653   }
123654 
123655   /* Register all built-in functions, but do not attempt to read the
123656   ** database schema yet. This is delayed until the first time the database
123657   ** is accessed.
123658   */
123659   sqlite3Error(db, SQLITE_OK, 0);
123660   sqlite3RegisterBuiltinFunctions(db);
123661 
123662   /* Load automatic extensions - extensions that have been registered
123663   ** using the sqlite3_automatic_extension() API.
123664   */
123665   rc = sqlite3_errcode(db);
123666   if( rc==SQLITE_OK ){
123667     sqlite3AutoLoadExtensions(db);
123668     rc = sqlite3_errcode(db);
123669     if( rc!=SQLITE_OK ){
123670       goto opendb_out;
123671     }
123672   }
123673 
123674 #ifdef SQLITE_ENABLE_FTS1
123675   if( !db->mallocFailed ){
123676     extern int sqlite3Fts1Init(sqlite3*);
123677     rc = sqlite3Fts1Init(db);
123678   }
123679 #endif
123680 
123681 #ifdef SQLITE_ENABLE_FTS2
123682   if( !db->mallocFailed && rc==SQLITE_OK ){
123683     extern int sqlite3Fts2Init(sqlite3*);
123684     rc = sqlite3Fts2Init(db);
123685   }
123686 #endif
123687 
123688 #ifdef SQLITE_ENABLE_FTS3
123689   if( !db->mallocFailed && rc==SQLITE_OK ){
123690     rc = sqlite3Fts3Init(db);
123691   }
123692 #endif
123693 
123694 #ifdef SQLITE_ENABLE_ICU
123695   if( !db->mallocFailed && rc==SQLITE_OK ){
123696     rc = sqlite3IcuInit(db);
123697   }
123698 #endif
123699 
123700 #ifdef SQLITE_ENABLE_RTREE
123701   if( !db->mallocFailed && rc==SQLITE_OK){
123702     rc = sqlite3RtreeInit(db);
123703   }
123704 #endif
123705 
123706   /* -DSQLITE_DEFAULT_LOCKING_MODE=1 makes EXCLUSIVE the default locking
123707   ** mode.  -DSQLITE_DEFAULT_LOCKING_MODE=0 make NORMAL the default locking
123708   ** mode.  Doing nothing at all also makes NORMAL the default.
123709   */
123710 #ifdef SQLITE_DEFAULT_LOCKING_MODE
123711   db->dfltLockMode = SQLITE_DEFAULT_LOCKING_MODE;
123712   sqlite3PagerLockingMode(sqlite3BtreePager(db->aDb[0].pBt),
123713                           SQLITE_DEFAULT_LOCKING_MODE);
123714 #endif
123715 
123716   if( rc ) sqlite3Error(db, rc, 0);
123717 
123718   /* Enable the lookaside-malloc subsystem */
123719   setupLookaside(db, 0, sqlite3GlobalConfig.szLookaside,
123720                         sqlite3GlobalConfig.nLookaside);
123721 
123722   sqlite3_wal_autocheckpoint(db, SQLITE_DEFAULT_WAL_AUTOCHECKPOINT);
123723 
123724 opendb_out:
123725   sqlite3_free(zOpen);
123726   if( db ){
123727     assert( db->mutex!=0 || isThreadsafe==0 || sqlite3GlobalConfig.bFullMutex==0 );
123728     sqlite3_mutex_leave(db->mutex);
123729   }
123730   rc = sqlite3_errcode(db);
123731   assert( db!=0 || rc==SQLITE_NOMEM );
123732   if( rc==SQLITE_NOMEM ){
123733     sqlite3_close(db);
123734     db = 0;
123735   }else if( rc!=SQLITE_OK ){
123736     db->magic = SQLITE_MAGIC_SICK;
123737   }
123738   *ppDb = db;
123739 #ifdef SQLITE_ENABLE_SQLLOG
123740   if( sqlite3GlobalConfig.xSqllog ){
123741     /* Opening a db handle. Fourth parameter is passed 0. */
123742     void *pArg = sqlite3GlobalConfig.pSqllogArg;
123743     sqlite3GlobalConfig.xSqllog(pArg, db, zFilename, 0);
123744   }
123745 #endif
123746   return sqlite3ApiExit(0, rc);
123747 }
123748 
123749 /*
123750 ** Open a new database handle.
123751 */
123752 SQLITE_API int sqlite3_open(
123753   const char *zFilename,
123754   sqlite3 **ppDb
123755 ){
123756   return openDatabase(zFilename, ppDb,
123757                       SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0);
123758 }
123759 SQLITE_API int sqlite3_open_v2(
123760   const char *filename,   /* Database filename (UTF-8) */
123761   sqlite3 **ppDb,         /* OUT: SQLite db handle */
123762   int flags,              /* Flags */
123763   const char *zVfs        /* Name of VFS module to use */
123764 ){
123765   return openDatabase(filename, ppDb, (unsigned int)flags, zVfs);
123766 }
123767 
123768 #ifndef SQLITE_OMIT_UTF16
123769 /*
123770 ** Open a new database handle.
123771 */
123772 SQLITE_API int sqlite3_open16(
123773   const void *zFilename,
123774   sqlite3 **ppDb
123775 ){
123776   char const *zFilename8;   /* zFilename encoded in UTF-8 instead of UTF-16 */
123777   sqlite3_value *pVal;
123778   int rc;
123779 
123780   assert( zFilename );
123781   assert( ppDb );
123782   *ppDb = 0;
123783 #ifndef SQLITE_OMIT_AUTOINIT
123784   rc = sqlite3_initialize();
123785   if( rc ) return rc;
123786 #endif
123787   pVal = sqlite3ValueNew(0);
123788   sqlite3ValueSetStr(pVal, -1, zFilename, SQLITE_UTF16NATIVE, SQLITE_STATIC);
123789   zFilename8 = sqlite3ValueText(pVal, SQLITE_UTF8);
123790   if( zFilename8 ){
123791     rc = openDatabase(zFilename8, ppDb,
123792                       SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0);
123793     assert( *ppDb || rc==SQLITE_NOMEM );
123794     if( rc==SQLITE_OK && !DbHasProperty(*ppDb, 0, DB_SchemaLoaded) ){
123795       ENC(*ppDb) = SQLITE_UTF16NATIVE;
123796     }
123797   }else{
123798     rc = SQLITE_NOMEM;
123799   }
123800   sqlite3ValueFree(pVal);
123801 
123802   return sqlite3ApiExit(0, rc);
123803 }
123804 #endif /* SQLITE_OMIT_UTF16 */
123805 
123806 /*
123807 ** Register a new collation sequence with the database handle db.
123808 */
123809 SQLITE_API int sqlite3_create_collation(
123810   sqlite3* db,
123811   const char *zName,
123812   int enc,
123813   void* pCtx,
123814   int(*xCompare)(void*,int,const void*,int,const void*)
123815 ){
123816   int rc;
123817   sqlite3_mutex_enter(db->mutex);
123818   assert( !db->mallocFailed );
123819   rc = createCollation(db, zName, (u8)enc, pCtx, xCompare, 0);
123820   rc = sqlite3ApiExit(db, rc);
123821   sqlite3_mutex_leave(db->mutex);
123822   return rc;
123823 }
123824 
123825 /*
123826 ** Register a new collation sequence with the database handle db.
123827 */
123828 SQLITE_API int sqlite3_create_collation_v2(
123829   sqlite3* db,
123830   const char *zName,
123831   int enc,
123832   void* pCtx,
123833   int(*xCompare)(void*,int,const void*,int,const void*),
123834   void(*xDel)(void*)
123835 ){
123836   int rc;
123837   sqlite3_mutex_enter(db->mutex);
123838   assert( !db->mallocFailed );
123839   rc = createCollation(db, zName, (u8)enc, pCtx, xCompare, xDel);
123840   rc = sqlite3ApiExit(db, rc);
123841   sqlite3_mutex_leave(db->mutex);
123842   return rc;
123843 }
123844 
123845 #ifndef SQLITE_OMIT_UTF16
123846 /*
123847 ** Register a new collation sequence with the database handle db.
123848 */
123849 SQLITE_API int sqlite3_create_collation16(
123850   sqlite3* db,
123851   const void *zName,
123852   int enc,
123853   void* pCtx,
123854   int(*xCompare)(void*,int,const void*,int,const void*)
123855 ){
123856   int rc = SQLITE_OK;
123857   char *zName8;
123858   sqlite3_mutex_enter(db->mutex);
123859   assert( !db->mallocFailed );
123860   zName8 = sqlite3Utf16to8(db, zName, -1, SQLITE_UTF16NATIVE);
123861   if( zName8 ){
123862     rc = createCollation(db, zName8, (u8)enc, pCtx, xCompare, 0);
123863     sqlite3DbFree(db, zName8);
123864   }
123865   rc = sqlite3ApiExit(db, rc);
123866   sqlite3_mutex_leave(db->mutex);
123867   return rc;
123868 }
123869 #endif /* SQLITE_OMIT_UTF16 */
123870 
123871 /*
123872 ** Register a collation sequence factory callback with the database handle
123873 ** db. Replace any previously installed collation sequence factory.
123874 */
123875 SQLITE_API int sqlite3_collation_needed(
123876   sqlite3 *db,
123877   void *pCollNeededArg,
123878   void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*)
123879 ){
123880   sqlite3_mutex_enter(db->mutex);
123881   db->xCollNeeded = xCollNeeded;
123882   db->xCollNeeded16 = 0;
123883   db->pCollNeededArg = pCollNeededArg;
123884   sqlite3_mutex_leave(db->mutex);
123885   return SQLITE_OK;
123886 }
123887 
123888 #ifndef SQLITE_OMIT_UTF16
123889 /*
123890 ** Register a collation sequence factory callback with the database handle
123891 ** db. Replace any previously installed collation sequence factory.
123892 */
123893 SQLITE_API int sqlite3_collation_needed16(
123894   sqlite3 *db,
123895   void *pCollNeededArg,
123896   void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*)
123897 ){
123898   sqlite3_mutex_enter(db->mutex);
123899   db->xCollNeeded = 0;
123900   db->xCollNeeded16 = xCollNeeded16;
123901   db->pCollNeededArg = pCollNeededArg;
123902   sqlite3_mutex_leave(db->mutex);
123903   return SQLITE_OK;
123904 }
123905 #endif /* SQLITE_OMIT_UTF16 */
123906 
123907 #ifndef SQLITE_OMIT_DEPRECATED
123908 /*
123909 ** This function is now an anachronism. It used to be used to recover from a
123910 ** malloc() failure, but SQLite now does this automatically.
123911 */
123912 SQLITE_API int sqlite3_global_recover(void){
123913   return SQLITE_OK;
123914 }
123915 #endif
123916 
123917 /*
123918 ** Test to see whether or not the database connection is in autocommit
123919 ** mode.  Return TRUE if it is and FALSE if not.  Autocommit mode is on
123920 ** by default.  Autocommit is disabled by a BEGIN statement and reenabled
123921 ** by the next COMMIT or ROLLBACK.
123922 */
123923 SQLITE_API int sqlite3_get_autocommit(sqlite3 *db){
123924   return db->autoCommit;
123925 }
123926 
123927 /*
123928 ** The following routines are subtitutes for constants SQLITE_CORRUPT,
123929 ** SQLITE_MISUSE, SQLITE_CANTOPEN, SQLITE_IOERR and possibly other error
123930 ** constants.  They server two purposes:
123931 **
123932 **   1.  Serve as a convenient place to set a breakpoint in a debugger
123933 **       to detect when version error conditions occurs.
123934 **
123935 **   2.  Invoke sqlite3_log() to provide the source code location where
123936 **       a low-level error is first detected.
123937 */
123938 SQLITE_PRIVATE int sqlite3CorruptError(int lineno){
123939   testcase( sqlite3GlobalConfig.xLog!=0 );
123940   sqlite3_log(SQLITE_CORRUPT,
123941               "database corruption at line %d of [%.10s]",
123942               lineno, 20+sqlite3_sourceid());
123943   return SQLITE_CORRUPT;
123944 }
123945 SQLITE_PRIVATE int sqlite3MisuseError(int lineno){
123946   testcase( sqlite3GlobalConfig.xLog!=0 );
123947   sqlite3_log(SQLITE_MISUSE,
123948               "misuse at line %d of [%.10s]",
123949               lineno, 20+sqlite3_sourceid());
123950   return SQLITE_MISUSE;
123951 }
123952 SQLITE_PRIVATE int sqlite3CantopenError(int lineno){
123953   testcase( sqlite3GlobalConfig.xLog!=0 );
123954   sqlite3_log(SQLITE_CANTOPEN,
123955               "cannot open file at line %d of [%.10s]",
123956               lineno, 20+sqlite3_sourceid());
123957   return SQLITE_CANTOPEN;
123958 }
123959 
123960 
123961 #ifndef SQLITE_OMIT_DEPRECATED
123962 /*
123963 ** This is a convenience routine that makes sure that all thread-specific
123964 ** data for this thread has been deallocated.
123965 **
123966 ** SQLite no longer uses thread-specific data so this routine is now a
123967 ** no-op.  It is retained for historical compatibility.
123968 */
123969 SQLITE_API void sqlite3_thread_cleanup(void){
123970 }
123971 #endif
123972 
123973 /*
123974 ** Return meta information about a specific column of a database table.
123975 ** See comment in sqlite3.h (sqlite.h.in) for details.
123976 */
123977 #ifdef SQLITE_ENABLE_COLUMN_METADATA
123978 SQLITE_API int sqlite3_table_column_metadata(
123979   sqlite3 *db,                /* Connection handle */
123980   const char *zDbName,        /* Database name or NULL */
123981   const char *zTableName,     /* Table name */
123982   const char *zColumnName,    /* Column name */
123983   char const **pzDataType,    /* OUTPUT: Declared data type */
123984   char const **pzCollSeq,     /* OUTPUT: Collation sequence name */
123985   int *pNotNull,              /* OUTPUT: True if NOT NULL constraint exists */
123986   int *pPrimaryKey,           /* OUTPUT: True if column part of PK */
123987   int *pAutoinc               /* OUTPUT: True if column is auto-increment */
123988 ){
123989   int rc;
123990   char *zErrMsg = 0;
123991   Table *pTab = 0;
123992   Column *pCol = 0;
123993   int iCol;
123994 
123995   char const *zDataType = 0;
123996   char const *zCollSeq = 0;
123997   int notnull = 0;
123998   int primarykey = 0;
123999   int autoinc = 0;
124000 
124001   /* Ensure the database schema has been loaded */
124002   sqlite3_mutex_enter(db->mutex);
124003   sqlite3BtreeEnterAll(db);
124004   rc = sqlite3Init(db, &zErrMsg);
124005   if( SQLITE_OK!=rc ){
124006     goto error_out;
124007   }
124008 
124009   /* Locate the table in question */
124010   pTab = sqlite3FindTable(db, zTableName, zDbName);
124011   if( !pTab || pTab->pSelect ){
124012     pTab = 0;
124013     goto error_out;
124014   }
124015 
124016   /* Find the column for which info is requested */
124017   if( sqlite3IsRowid(zColumnName) ){
124018     iCol = pTab->iPKey;
124019     if( iCol>=0 ){
124020       pCol = &pTab->aCol[iCol];
124021     }
124022   }else{
124023     for(iCol=0; iCol<pTab->nCol; iCol++){
124024       pCol = &pTab->aCol[iCol];
124025       if( 0==sqlite3StrICmp(pCol->zName, zColumnName) ){
124026         break;
124027       }
124028     }
124029     if( iCol==pTab->nCol ){
124030       pTab = 0;
124031       goto error_out;
124032     }
124033   }
124034 
124035   /* The following block stores the meta information that will be returned
124036   ** to the caller in local variables zDataType, zCollSeq, notnull, primarykey
124037   ** and autoinc. At this point there are two possibilities:
124038   **
124039   **     1. The specified column name was rowid", "oid" or "_rowid_"
124040   **        and there is no explicitly declared IPK column.
124041   **
124042   **     2. The table is not a view and the column name identified an
124043   **        explicitly declared column. Copy meta information from *pCol.
124044   */
124045   if( pCol ){
124046     zDataType = pCol->zType;
124047     zCollSeq = pCol->zColl;
124048     notnull = pCol->notNull!=0;
124049     primarykey  = (pCol->colFlags & COLFLAG_PRIMKEY)!=0;
124050     autoinc = pTab->iPKey==iCol && (pTab->tabFlags & TF_Autoincrement)!=0;
124051   }else{
124052     zDataType = "INTEGER";
124053     primarykey = 1;
124054   }
124055   if( !zCollSeq ){
124056     zCollSeq = "BINARY";
124057   }
124058 
124059 error_out:
124060   sqlite3BtreeLeaveAll(db);
124061 
124062   /* Whether the function call succeeded or failed, set the output parameters
124063   ** to whatever their local counterparts contain. If an error did occur,
124064   ** this has the effect of zeroing all output parameters.
124065   */
124066   if( pzDataType ) *pzDataType = zDataType;
124067   if( pzCollSeq ) *pzCollSeq = zCollSeq;
124068   if( pNotNull ) *pNotNull = notnull;
124069   if( pPrimaryKey ) *pPrimaryKey = primarykey;
124070   if( pAutoinc ) *pAutoinc = autoinc;
124071 
124072   if( SQLITE_OK==rc && !pTab ){
124073     sqlite3DbFree(db, zErrMsg);
124074     zErrMsg = sqlite3MPrintf(db, "no such table column: %s.%s", zTableName,
124075         zColumnName);
124076     rc = SQLITE_ERROR;
124077   }
124078   sqlite3Error(db, rc, (zErrMsg?"%s":0), zErrMsg);
124079   sqlite3DbFree(db, zErrMsg);
124080   rc = sqlite3ApiExit(db, rc);
124081   sqlite3_mutex_leave(db->mutex);
124082   return rc;
124083 }
124084 #endif
124085 
124086 /*
124087 ** Sleep for a little while.  Return the amount of time slept.
124088 */
124089 SQLITE_API int sqlite3_sleep(int ms){
124090   sqlite3_vfs *pVfs;
124091   int rc;
124092   pVfs = sqlite3_vfs_find(0);
124093   if( pVfs==0 ) return 0;
124094 
124095   /* This function works in milliseconds, but the underlying OsSleep()
124096   ** API uses microseconds. Hence the 1000's.
124097   */
124098   rc = (sqlite3OsSleep(pVfs, 1000*ms)/1000);
124099   return rc;
124100 }
124101 
124102 /*
124103 ** Enable or disable the extended result codes.
124104 */
124105 SQLITE_API int sqlite3_extended_result_codes(sqlite3 *db, int onoff){
124106   sqlite3_mutex_enter(db->mutex);
124107   db->errMask = onoff ? 0xffffffff : 0xff;
124108   sqlite3_mutex_leave(db->mutex);
124109   return SQLITE_OK;
124110 }
124111 
124112 /*
124113 ** Invoke the xFileControl method on a particular database.
124114 */
124115 SQLITE_API int sqlite3_file_control(sqlite3 *db, const char *zDbName, int op, void *pArg){
124116   int rc = SQLITE_ERROR;
124117   Btree *pBtree;
124118 
124119   sqlite3_mutex_enter(db->mutex);
124120   pBtree = sqlite3DbNameToBtree(db, zDbName);
124121   if( pBtree ){
124122     Pager *pPager;
124123     sqlite3_file *fd;
124124     sqlite3BtreeEnter(pBtree);
124125     pPager = sqlite3BtreePager(pBtree);
124126     assert( pPager!=0 );
124127     fd = sqlite3PagerFile(pPager);
124128     assert( fd!=0 );
124129     if( op==SQLITE_FCNTL_FILE_POINTER ){
124130       *(sqlite3_file**)pArg = fd;
124131       rc = SQLITE_OK;
124132     }else if( fd->pMethods ){
124133       rc = sqlite3OsFileControl(fd, op, pArg);
124134     }else{
124135       rc = SQLITE_NOTFOUND;
124136     }
124137     sqlite3BtreeLeave(pBtree);
124138   }
124139   sqlite3_mutex_leave(db->mutex);
124140   return rc;
124141 }
124142 
124143 /*
124144 ** Interface to the testing logic.
124145 */
124146 SQLITE_API int sqlite3_test_control(int op, ...){
124147   int rc = 0;
124148 #ifndef SQLITE_OMIT_BUILTIN_TEST
124149   va_list ap;
124150   va_start(ap, op);
124151   switch( op ){
124152 
124153     /*
124154     ** Save the current state of the PRNG.
124155     */
124156     case SQLITE_TESTCTRL_PRNG_SAVE: {
124157       sqlite3PrngSaveState();
124158       break;
124159     }
124160 
124161     /*
124162     ** Restore the state of the PRNG to the last state saved using
124163     ** PRNG_SAVE.  If PRNG_SAVE has never before been called, then
124164     ** this verb acts like PRNG_RESET.
124165     */
124166     case SQLITE_TESTCTRL_PRNG_RESTORE: {
124167       sqlite3PrngRestoreState();
124168       break;
124169     }
124170 
124171     /*
124172     ** Reset the PRNG back to its uninitialized state.  The next call
124173     ** to sqlite3_randomness() will reseed the PRNG using a single call
124174     ** to the xRandomness method of the default VFS.
124175     */
124176     case SQLITE_TESTCTRL_PRNG_RESET: {
124177       sqlite3_randomness(0,0);
124178       break;
124179     }
124180 
124181     /*
124182     **  sqlite3_test_control(BITVEC_TEST, size, program)
124183     **
124184     ** Run a test against a Bitvec object of size.  The program argument
124185     ** is an array of integers that defines the test.  Return -1 on a
124186     ** memory allocation error, 0 on success, or non-zero for an error.
124187     ** See the sqlite3BitvecBuiltinTest() for additional information.
124188     */
124189     case SQLITE_TESTCTRL_BITVEC_TEST: {
124190       int sz = va_arg(ap, int);
124191       int *aProg = va_arg(ap, int*);
124192       rc = sqlite3BitvecBuiltinTest(sz, aProg);
124193       break;
124194     }
124195 
124196     /*
124197     **  sqlite3_test_control(FAULT_INSTALL, xCallback)
124198     **
124199     ** Arrange to invoke xCallback() whenever sqlite3FaultSim() is called,
124200     ** if xCallback is not NULL.
124201     **
124202     ** As a test of the fault simulator mechanism itself, sqlite3FaultSim(0)
124203     ** is called immediately after installing the new callback and the return
124204     ** value from sqlite3FaultSim(0) becomes the return from
124205     ** sqlite3_test_control().
124206     */
124207     case SQLITE_TESTCTRL_FAULT_INSTALL: {
124208       /* MSVC is picky about pulling func ptrs from va lists.
124209       ** http://support.microsoft.com/kb/47961
124210       ** sqlite3Config.xTestCallback = va_arg(ap, int(*)(int));
124211       */
124212       typedef int(*TESTCALLBACKFUNC_t)(int);
124213       sqlite3Config.xTestCallback = va_arg(ap, TESTCALLBACKFUNC_t);
124214       rc = sqlite3FaultSim(0);
124215       break;
124216     }
124217 
124218     /*
124219     **  sqlite3_test_control(BENIGN_MALLOC_HOOKS, xBegin, xEnd)
124220     **
124221     ** Register hooks to call to indicate which malloc() failures
124222     ** are benign.
124223     */
124224     case SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS: {
124225       typedef void (*void_function)(void);
124226       void_function xBenignBegin;
124227       void_function xBenignEnd;
124228       xBenignBegin = va_arg(ap, void_function);
124229       xBenignEnd = va_arg(ap, void_function);
124230       sqlite3BenignMallocHooks(xBenignBegin, xBenignEnd);
124231       break;
124232     }
124233 
124234     /*
124235     **  sqlite3_test_control(SQLITE_TESTCTRL_PENDING_BYTE, unsigned int X)
124236     **
124237     ** Set the PENDING byte to the value in the argument, if X>0.
124238     ** Make no changes if X==0.  Return the value of the pending byte
124239     ** as it existing before this routine was called.
124240     **
124241     ** IMPORTANT:  Changing the PENDING byte from 0x40000000 results in
124242     ** an incompatible database file format.  Changing the PENDING byte
124243     ** while any database connection is open results in undefined and
124244     ** dileterious behavior.
124245     */
124246     case SQLITE_TESTCTRL_PENDING_BYTE: {
124247       rc = PENDING_BYTE;
124248 #ifndef SQLITE_OMIT_WSD
124249       {
124250         unsigned int newVal = va_arg(ap, unsigned int);
124251         if( newVal ) sqlite3PendingByte = newVal;
124252       }
124253 #endif
124254       break;
124255     }
124256 
124257     /*
124258     **  sqlite3_test_control(SQLITE_TESTCTRL_ASSERT, int X)
124259     **
124260     ** This action provides a run-time test to see whether or not
124261     ** assert() was enabled at compile-time.  If X is true and assert()
124262     ** is enabled, then the return value is true.  If X is true and
124263     ** assert() is disabled, then the return value is zero.  If X is
124264     ** false and assert() is enabled, then the assertion fires and the
124265     ** process aborts.  If X is false and assert() is disabled, then the
124266     ** return value is zero.
124267     */
124268     case SQLITE_TESTCTRL_ASSERT: {
124269       volatile int x = 0;
124270       assert( (x = va_arg(ap,int))!=0 );
124271       rc = x;
124272       break;
124273     }
124274 
124275 
124276     /*
124277     **  sqlite3_test_control(SQLITE_TESTCTRL_ALWAYS, int X)
124278     **
124279     ** This action provides a run-time test to see how the ALWAYS and
124280     ** NEVER macros were defined at compile-time.
124281     **
124282     ** The return value is ALWAYS(X).
124283     **
124284     ** The recommended test is X==2.  If the return value is 2, that means
124285     ** ALWAYS() and NEVER() are both no-op pass-through macros, which is the
124286     ** default setting.  If the return value is 1, then ALWAYS() is either
124287     ** hard-coded to true or else it asserts if its argument is false.
124288     ** The first behavior (hard-coded to true) is the case if
124289     ** SQLITE_TESTCTRL_ASSERT shows that assert() is disabled and the second
124290     ** behavior (assert if the argument to ALWAYS() is false) is the case if
124291     ** SQLITE_TESTCTRL_ASSERT shows that assert() is enabled.
124292     **
124293     ** The run-time test procedure might look something like this:
124294     **
124295     **    if( sqlite3_test_control(SQLITE_TESTCTRL_ALWAYS, 2)==2 ){
124296     **      // ALWAYS() and NEVER() are no-op pass-through macros
124297     **    }else if( sqlite3_test_control(SQLITE_TESTCTRL_ASSERT, 1) ){
124298     **      // ALWAYS(x) asserts that x is true. NEVER(x) asserts x is false.
124299     **    }else{
124300     **      // ALWAYS(x) is a constant 1.  NEVER(x) is a constant 0.
124301     **    }
124302     */
124303     case SQLITE_TESTCTRL_ALWAYS: {
124304       int x = va_arg(ap,int);
124305       rc = ALWAYS(x);
124306       break;
124307     }
124308 
124309     /*
124310     **   sqlite3_test_control(SQLITE_TESTCTRL_BYTEORDER);
124311     **
124312     ** The integer returned reveals the byte-order of the computer on which
124313     ** SQLite is running:
124314     **
124315     **       1     big-endian,    determined at run-time
124316     **      10     little-endian, determined at run-time
124317     **  432101     big-endian,    determined at compile-time
124318     **  123410     little-endian, determined at compile-time
124319     */
124320     case SQLITE_TESTCTRL_BYTEORDER: {
124321       rc = SQLITE_BYTEORDER*100 + SQLITE_LITTLEENDIAN*10 + SQLITE_BIGENDIAN;
124322       break;
124323     }
124324 
124325     /*   sqlite3_test_control(SQLITE_TESTCTRL_RESERVE, sqlite3 *db, int N)
124326     **
124327     ** Set the nReserve size to N for the main database on the database
124328     ** connection db.
124329     */
124330     case SQLITE_TESTCTRL_RESERVE: {
124331       sqlite3 *db = va_arg(ap, sqlite3*);
124332       int x = va_arg(ap,int);
124333       sqlite3_mutex_enter(db->mutex);
124334       sqlite3BtreeSetPageSize(db->aDb[0].pBt, 0, x, 0);
124335       sqlite3_mutex_leave(db->mutex);
124336       break;
124337     }
124338 
124339     /*  sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS, sqlite3 *db, int N)
124340     **
124341     ** Enable or disable various optimizations for testing purposes.  The
124342     ** argument N is a bitmask of optimizations to be disabled.  For normal
124343     ** operation N should be 0.  The idea is that a test program (like the
124344     ** SQL Logic Test or SLT test module) can run the same SQL multiple times
124345     ** with various optimizations disabled to verify that the same answer
124346     ** is obtained in every case.
124347     */
124348     case SQLITE_TESTCTRL_OPTIMIZATIONS: {
124349       sqlite3 *db = va_arg(ap, sqlite3*);
124350       db->dbOptFlags = (u16)(va_arg(ap, int) & 0xffff);
124351       break;
124352     }
124353 
124354 #ifdef SQLITE_N_KEYWORD
124355     /* sqlite3_test_control(SQLITE_TESTCTRL_ISKEYWORD, const char *zWord)
124356     **
124357     ** If zWord is a keyword recognized by the parser, then return the
124358     ** number of keywords.  Or if zWord is not a keyword, return 0.
124359     **
124360     ** This test feature is only available in the amalgamation since
124361     ** the SQLITE_N_KEYWORD macro is not defined in this file if SQLite
124362     ** is built using separate source files.
124363     */
124364     case SQLITE_TESTCTRL_ISKEYWORD: {
124365       const char *zWord = va_arg(ap, const char*);
124366       int n = sqlite3Strlen30(zWord);
124367       rc = (sqlite3KeywordCode((u8*)zWord, n)!=TK_ID) ? SQLITE_N_KEYWORD : 0;
124368       break;
124369     }
124370 #endif
124371 
124372     /* sqlite3_test_control(SQLITE_TESTCTRL_SCRATCHMALLOC, sz, &pNew, pFree);
124373     **
124374     ** Pass pFree into sqlite3ScratchFree().
124375     ** If sz>0 then allocate a scratch buffer into pNew.
124376     */
124377     case SQLITE_TESTCTRL_SCRATCHMALLOC: {
124378       void *pFree, **ppNew;
124379       int sz;
124380       sz = va_arg(ap, int);
124381       ppNew = va_arg(ap, void**);
124382       pFree = va_arg(ap, void*);
124383       if( sz ) *ppNew = sqlite3ScratchMalloc(sz);
124384       sqlite3ScratchFree(pFree);
124385       break;
124386     }
124387 
124388     /*   sqlite3_test_control(SQLITE_TESTCTRL_LOCALTIME_FAULT, int onoff);
124389     **
124390     ** If parameter onoff is non-zero, configure the wrappers so that all
124391     ** subsequent calls to localtime() and variants fail. If onoff is zero,
124392     ** undo this setting.
124393     */
124394     case SQLITE_TESTCTRL_LOCALTIME_FAULT: {
124395       sqlite3GlobalConfig.bLocaltimeFault = va_arg(ap, int);
124396       break;
124397     }
124398 
124399 #if defined(SQLITE_ENABLE_TREE_EXPLAIN)
124400     /*   sqlite3_test_control(SQLITE_TESTCTRL_EXPLAIN_STMT,
124401     **                        sqlite3_stmt*,const char**);
124402     **
124403     ** If compiled with SQLITE_ENABLE_TREE_EXPLAIN, each sqlite3_stmt holds
124404     ** a string that describes the optimized parse tree.  This test-control
124405     ** returns a pointer to that string.
124406     */
124407     case SQLITE_TESTCTRL_EXPLAIN_STMT: {
124408       sqlite3_stmt *pStmt = va_arg(ap, sqlite3_stmt*);
124409       const char **pzRet = va_arg(ap, const char**);
124410       *pzRet = sqlite3VdbeExplanation((Vdbe*)pStmt);
124411       break;
124412     }
124413 #endif
124414 
124415     /*   sqlite3_test_control(SQLITE_TESTCTRL_NEVER_CORRUPT, int);
124416     **
124417     ** Set or clear a flag that indicates that the database file is always well-
124418     ** formed and never corrupt.  This flag is clear by default, indicating that
124419     ** database files might have arbitrary corruption.  Setting the flag during
124420     ** testing causes certain assert() statements in the code to be activated
124421     ** that demonstrat invariants on well-formed database files.
124422     */
124423     case SQLITE_TESTCTRL_NEVER_CORRUPT: {
124424       sqlite3GlobalConfig.neverCorrupt = va_arg(ap, int);
124425       break;
124426     }
124427 
124428 
124429     /*   sqlite3_test_control(SQLITE_TESTCTRL_VDBE_COVERAGE, xCallback, ptr);
124430     **
124431     ** Set the VDBE coverage callback function to xCallback with context
124432     ** pointer ptr.
124433     */
124434     case SQLITE_TESTCTRL_VDBE_COVERAGE: {
124435 #ifdef SQLITE_VDBE_COVERAGE
124436       typedef void (*branch_callback)(void*,int,u8,u8);
124437       sqlite3GlobalConfig.xVdbeBranch = va_arg(ap,branch_callback);
124438       sqlite3GlobalConfig.pVdbeBranchArg = va_arg(ap,void*);
124439 #endif
124440       break;
124441     }
124442 
124443   }
124444   va_end(ap);
124445 #endif /* SQLITE_OMIT_BUILTIN_TEST */
124446   return rc;
124447 }
124448 
124449 /*
124450 ** This is a utility routine, useful to VFS implementations, that checks
124451 ** to see if a database file was a URI that contained a specific query
124452 ** parameter, and if so obtains the value of the query parameter.
124453 **
124454 ** The zFilename argument is the filename pointer passed into the xOpen()
124455 ** method of a VFS implementation.  The zParam argument is the name of the
124456 ** query parameter we seek.  This routine returns the value of the zParam
124457 ** parameter if it exists.  If the parameter does not exist, this routine
124458 ** returns a NULL pointer.
124459 */
124460 SQLITE_API const char *sqlite3_uri_parameter(const char *zFilename, const char *zParam){
124461   if( zFilename==0 ) return 0;
124462   zFilename += sqlite3Strlen30(zFilename) + 1;
124463   while( zFilename[0] ){
124464     int x = strcmp(zFilename, zParam);
124465     zFilename += sqlite3Strlen30(zFilename) + 1;
124466     if( x==0 ) return zFilename;
124467     zFilename += sqlite3Strlen30(zFilename) + 1;
124468   }
124469   return 0;
124470 }
124471 
124472 /*
124473 ** Return a boolean value for a query parameter.
124474 */
124475 SQLITE_API int sqlite3_uri_boolean(const char *zFilename, const char *zParam, int bDflt){
124476   const char *z = sqlite3_uri_parameter(zFilename, zParam);
124477   bDflt = bDflt!=0;
124478   return z ? sqlite3GetBoolean(z, bDflt) : bDflt;
124479 }
124480 
124481 /*
124482 ** Return a 64-bit integer value for a query parameter.
124483 */
124484 SQLITE_API sqlite3_int64 sqlite3_uri_int64(
124485   const char *zFilename,    /* Filename as passed to xOpen */
124486   const char *zParam,       /* URI parameter sought */
124487   sqlite3_int64 bDflt       /* return if parameter is missing */
124488 ){
124489   const char *z = sqlite3_uri_parameter(zFilename, zParam);
124490   sqlite3_int64 v;
124491   if( z && sqlite3Atoi64(z, &v, sqlite3Strlen30(z), SQLITE_UTF8)==SQLITE_OK ){
124492     bDflt = v;
124493   }
124494   return bDflt;
124495 }
124496 
124497 /*
124498 ** Return the Btree pointer identified by zDbName.  Return NULL if not found.
124499 */
124500 SQLITE_PRIVATE Btree *sqlite3DbNameToBtree(sqlite3 *db, const char *zDbName){
124501   int i;
124502   for(i=0; i<db->nDb; i++){
124503     if( db->aDb[i].pBt
124504      && (zDbName==0 || sqlite3StrICmp(zDbName, db->aDb[i].zName)==0)
124505     ){
124506       return db->aDb[i].pBt;
124507     }
124508   }
124509   return 0;
124510 }
124511 
124512 /*
124513 ** Return the filename of the database associated with a database
124514 ** connection.
124515 */
124516 SQLITE_API const char *sqlite3_db_filename(sqlite3 *db, const char *zDbName){
124517   Btree *pBt = sqlite3DbNameToBtree(db, zDbName);
124518   return pBt ? sqlite3BtreeGetFilename(pBt) : 0;
124519 }
124520 
124521 /*
124522 ** Return 1 if database is read-only or 0 if read/write.  Return -1 if
124523 ** no such database exists.
124524 */
124525 SQLITE_API int sqlite3_db_readonly(sqlite3 *db, const char *zDbName){
124526   Btree *pBt = sqlite3DbNameToBtree(db, zDbName);
124527   return pBt ? sqlite3BtreeIsReadonly(pBt) : -1;
124528 }
124529 
124530 /************** End of main.c ************************************************/
124531 /************** Begin file notify.c ******************************************/
124532 /*
124533 ** 2009 March 3
124534 **
124535 ** The author disclaims copyright to this source code.  In place of
124536 ** a legal notice, here is a blessing:
124537 **
124538 **    May you do good and not evil.
124539 **    May you find forgiveness for yourself and forgive others.
124540 **    May you share freely, never taking more than you give.
124541 **
124542 *************************************************************************
124543 **
124544 ** This file contains the implementation of the sqlite3_unlock_notify()
124545 ** API method and its associated functionality.
124546 */
124547 
124548 /* Omit this entire file if SQLITE_ENABLE_UNLOCK_NOTIFY is not defined. */
124549 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
124550 
124551 /*
124552 ** Public interfaces:
124553 **
124554 **   sqlite3ConnectionBlocked()
124555 **   sqlite3ConnectionUnlocked()
124556 **   sqlite3ConnectionClosed()
124557 **   sqlite3_unlock_notify()
124558 */
124559 
124560 #define assertMutexHeld() \
124561   assert( sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)) )
124562 
124563 /*
124564 ** Head of a linked list of all sqlite3 objects created by this process
124565 ** for which either sqlite3.pBlockingConnection or sqlite3.pUnlockConnection
124566 ** is not NULL. This variable may only accessed while the STATIC_MASTER
124567 ** mutex is held.
124568 */
124569 static sqlite3 *SQLITE_WSD sqlite3BlockedList = 0;
124570 
124571 #ifndef NDEBUG
124572 /*
124573 ** This function is a complex assert() that verifies the following
124574 ** properties of the blocked connections list:
124575 **
124576 **   1) Each entry in the list has a non-NULL value for either
124577 **      pUnlockConnection or pBlockingConnection, or both.
124578 **
124579 **   2) All entries in the list that share a common value for
124580 **      xUnlockNotify are grouped together.
124581 **
124582 **   3) If the argument db is not NULL, then none of the entries in the
124583 **      blocked connections list have pUnlockConnection or pBlockingConnection
124584 **      set to db. This is used when closing connection db.
124585 */
124586 static void checkListProperties(sqlite3 *db){
124587   sqlite3 *p;
124588   for(p=sqlite3BlockedList; p; p=p->pNextBlocked){
124589     int seen = 0;
124590     sqlite3 *p2;
124591 
124592     /* Verify property (1) */
124593     assert( p->pUnlockConnection || p->pBlockingConnection );
124594 
124595     /* Verify property (2) */
124596     for(p2=sqlite3BlockedList; p2!=p; p2=p2->pNextBlocked){
124597       if( p2->xUnlockNotify==p->xUnlockNotify ) seen = 1;
124598       assert( p2->xUnlockNotify==p->xUnlockNotify || !seen );
124599       assert( db==0 || p->pUnlockConnection!=db );
124600       assert( db==0 || p->pBlockingConnection!=db );
124601     }
124602   }
124603 }
124604 #else
124605 # define checkListProperties(x)
124606 #endif
124607 
124608 /*
124609 ** Remove connection db from the blocked connections list. If connection
124610 ** db is not currently a part of the list, this function is a no-op.
124611 */
124612 static void removeFromBlockedList(sqlite3 *db){
124613   sqlite3 **pp;
124614   assertMutexHeld();
124615   for(pp=&sqlite3BlockedList; *pp; pp = &(*pp)->pNextBlocked){
124616     if( *pp==db ){
124617       *pp = (*pp)->pNextBlocked;
124618       break;
124619     }
124620   }
124621 }
124622 
124623 /*
124624 ** Add connection db to the blocked connections list. It is assumed
124625 ** that it is not already a part of the list.
124626 */
124627 static void addToBlockedList(sqlite3 *db){
124628   sqlite3 **pp;
124629   assertMutexHeld();
124630   for(
124631     pp=&sqlite3BlockedList;
124632     *pp && (*pp)->xUnlockNotify!=db->xUnlockNotify;
124633     pp=&(*pp)->pNextBlocked
124634   );
124635   db->pNextBlocked = *pp;
124636   *pp = db;
124637 }
124638 
124639 /*
124640 ** Obtain the STATIC_MASTER mutex.
124641 */
124642 static void enterMutex(void){
124643   sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
124644   checkListProperties(0);
124645 }
124646 
124647 /*
124648 ** Release the STATIC_MASTER mutex.
124649 */
124650 static void leaveMutex(void){
124651   assertMutexHeld();
124652   checkListProperties(0);
124653   sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
124654 }
124655 
124656 /*
124657 ** Register an unlock-notify callback.
124658 **
124659 ** This is called after connection "db" has attempted some operation
124660 ** but has received an SQLITE_LOCKED error because another connection
124661 ** (call it pOther) in the same process was busy using the same shared
124662 ** cache.  pOther is found by looking at db->pBlockingConnection.
124663 **
124664 ** If there is no blocking connection, the callback is invoked immediately,
124665 ** before this routine returns.
124666 **
124667 ** If pOther is already blocked on db, then report SQLITE_LOCKED, to indicate
124668 ** a deadlock.
124669 **
124670 ** Otherwise, make arrangements to invoke xNotify when pOther drops
124671 ** its locks.
124672 **
124673 ** Each call to this routine overrides any prior callbacks registered
124674 ** on the same "db".  If xNotify==0 then any prior callbacks are immediately
124675 ** cancelled.
124676 */
124677 SQLITE_API int sqlite3_unlock_notify(
124678   sqlite3 *db,
124679   void (*xNotify)(void **, int),
124680   void *pArg
124681 ){
124682   int rc = SQLITE_OK;
124683 
124684   sqlite3_mutex_enter(db->mutex);
124685   enterMutex();
124686 
124687   if( xNotify==0 ){
124688     removeFromBlockedList(db);
124689     db->pBlockingConnection = 0;
124690     db->pUnlockConnection = 0;
124691     db->xUnlockNotify = 0;
124692     db->pUnlockArg = 0;
124693   }else if( 0==db->pBlockingConnection ){
124694     /* The blocking transaction has been concluded. Or there never was a
124695     ** blocking transaction. In either case, invoke the notify callback
124696     ** immediately.
124697     */
124698     xNotify(&pArg, 1);
124699   }else{
124700     sqlite3 *p;
124701 
124702     for(p=db->pBlockingConnection; p && p!=db; p=p->pUnlockConnection){}
124703     if( p ){
124704       rc = SQLITE_LOCKED;              /* Deadlock detected. */
124705     }else{
124706       db->pUnlockConnection = db->pBlockingConnection;
124707       db->xUnlockNotify = xNotify;
124708       db->pUnlockArg = pArg;
124709       removeFromBlockedList(db);
124710       addToBlockedList(db);
124711     }
124712   }
124713 
124714   leaveMutex();
124715   assert( !db->mallocFailed );
124716   sqlite3Error(db, rc, (rc?"database is deadlocked":0));
124717   sqlite3_mutex_leave(db->mutex);
124718   return rc;
124719 }
124720 
124721 /*
124722 ** This function is called while stepping or preparing a statement
124723 ** associated with connection db. The operation will return SQLITE_LOCKED
124724 ** to the user because it requires a lock that will not be available
124725 ** until connection pBlocker concludes its current transaction.
124726 */
124727 SQLITE_PRIVATE void sqlite3ConnectionBlocked(sqlite3 *db, sqlite3 *pBlocker){
124728   enterMutex();
124729   if( db->pBlockingConnection==0 && db->pUnlockConnection==0 ){
124730     addToBlockedList(db);
124731   }
124732   db->pBlockingConnection = pBlocker;
124733   leaveMutex();
124734 }
124735 
124736 /*
124737 ** This function is called when
124738 ** the transaction opened by database db has just finished. Locks held
124739 ** by database connection db have been released.
124740 **
124741 ** This function loops through each entry in the blocked connections
124742 ** list and does the following:
124743 **
124744 **   1) If the sqlite3.pBlockingConnection member of a list entry is
124745 **      set to db, then set pBlockingConnection=0.
124746 **
124747 **   2) If the sqlite3.pUnlockConnection member of a list entry is
124748 **      set to db, then invoke the configured unlock-notify callback and
124749 **      set pUnlockConnection=0.
124750 **
124751 **   3) If the two steps above mean that pBlockingConnection==0 and
124752 **      pUnlockConnection==0, remove the entry from the blocked connections
124753 **      list.
124754 */
124755 SQLITE_PRIVATE void sqlite3ConnectionUnlocked(sqlite3 *db){
124756   void (*xUnlockNotify)(void **, int) = 0; /* Unlock-notify cb to invoke */
124757   int nArg = 0;                            /* Number of entries in aArg[] */
124758   sqlite3 **pp;                            /* Iterator variable */
124759   void **aArg;               /* Arguments to the unlock callback */
124760   void **aDyn = 0;           /* Dynamically allocated space for aArg[] */
124761   void *aStatic[16];         /* Starter space for aArg[].  No malloc required */
124762 
124763   aArg = aStatic;
124764   enterMutex();         /* Enter STATIC_MASTER mutex */
124765 
124766   /* This loop runs once for each entry in the blocked-connections list. */
124767   for(pp=&sqlite3BlockedList; *pp; /* no-op */ ){
124768     sqlite3 *p = *pp;
124769 
124770     /* Step 1. */
124771     if( p->pBlockingConnection==db ){
124772       p->pBlockingConnection = 0;
124773     }
124774 
124775     /* Step 2. */
124776     if( p->pUnlockConnection==db ){
124777       assert( p->xUnlockNotify );
124778       if( p->xUnlockNotify!=xUnlockNotify && nArg!=0 ){
124779         xUnlockNotify(aArg, nArg);
124780         nArg = 0;
124781       }
124782 
124783       sqlite3BeginBenignMalloc();
124784       assert( aArg==aDyn || (aDyn==0 && aArg==aStatic) );
124785       assert( nArg<=(int)ArraySize(aStatic) || aArg==aDyn );
124786       if( (!aDyn && nArg==(int)ArraySize(aStatic))
124787        || (aDyn && nArg==(int)(sqlite3MallocSize(aDyn)/sizeof(void*)))
124788       ){
124789         /* The aArg[] array needs to grow. */
124790         void **pNew = (void **)sqlite3Malloc(nArg*sizeof(void *)*2);
124791         if( pNew ){
124792           memcpy(pNew, aArg, nArg*sizeof(void *));
124793           sqlite3_free(aDyn);
124794           aDyn = aArg = pNew;
124795         }else{
124796           /* This occurs when the array of context pointers that need to
124797           ** be passed to the unlock-notify callback is larger than the
124798           ** aStatic[] array allocated on the stack and the attempt to
124799           ** allocate a larger array from the heap has failed.
124800           **
124801           ** This is a difficult situation to handle. Returning an error
124802           ** code to the caller is insufficient, as even if an error code
124803           ** is returned the transaction on connection db will still be
124804           ** closed and the unlock-notify callbacks on blocked connections
124805           ** will go unissued. This might cause the application to wait
124806           ** indefinitely for an unlock-notify callback that will never
124807           ** arrive.
124808           **
124809           ** Instead, invoke the unlock-notify callback with the context
124810           ** array already accumulated. We can then clear the array and
124811           ** begin accumulating any further context pointers without
124812           ** requiring any dynamic allocation. This is sub-optimal because
124813           ** it means that instead of one callback with a large array of
124814           ** context pointers the application will receive two or more
124815           ** callbacks with smaller arrays of context pointers, which will
124816           ** reduce the applications ability to prioritize multiple
124817           ** connections. But it is the best that can be done under the
124818           ** circumstances.
124819           */
124820           xUnlockNotify(aArg, nArg);
124821           nArg = 0;
124822         }
124823       }
124824       sqlite3EndBenignMalloc();
124825 
124826       aArg[nArg++] = p->pUnlockArg;
124827       xUnlockNotify = p->xUnlockNotify;
124828       p->pUnlockConnection = 0;
124829       p->xUnlockNotify = 0;
124830       p->pUnlockArg = 0;
124831     }
124832 
124833     /* Step 3. */
124834     if( p->pBlockingConnection==0 && p->pUnlockConnection==0 ){
124835       /* Remove connection p from the blocked connections list. */
124836       *pp = p->pNextBlocked;
124837       p->pNextBlocked = 0;
124838     }else{
124839       pp = &p->pNextBlocked;
124840     }
124841   }
124842 
124843   if( nArg!=0 ){
124844     xUnlockNotify(aArg, nArg);
124845   }
124846   sqlite3_free(aDyn);
124847   leaveMutex();         /* Leave STATIC_MASTER mutex */
124848 }
124849 
124850 /*
124851 ** This is called when the database connection passed as an argument is
124852 ** being closed. The connection is removed from the blocked list.
124853 */
124854 SQLITE_PRIVATE void sqlite3ConnectionClosed(sqlite3 *db){
124855   sqlite3ConnectionUnlocked(db);
124856   enterMutex();
124857   removeFromBlockedList(db);
124858   checkListProperties(db);
124859   leaveMutex();
124860 }
124861 #endif
124862 
124863 /************** End of notify.c **********************************************/
124864 /************** Begin file fts3.c ********************************************/
124865 /*
124866 ** 2006 Oct 10
124867 **
124868 ** The author disclaims copyright to this source code.  In place of
124869 ** a legal notice, here is a blessing:
124870 **
124871 **    May you do good and not evil.
124872 **    May you find forgiveness for yourself and forgive others.
124873 **    May you share freely, never taking more than you give.
124874 **
124875 ******************************************************************************
124876 **
124877 ** This is an SQLite module implementing full-text search.
124878 */
124879 
124880 /*
124881 ** The code in this file is only compiled if:
124882 **
124883 **     * The FTS3 module is being built as an extension
124884 **       (in which case SQLITE_CORE is not defined), or
124885 **
124886 **     * The FTS3 module is being built into the core of
124887 **       SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
124888 */
124889 
124890 /* The full-text index is stored in a series of b+tree (-like)
124891 ** structures called segments which map terms to doclists.  The
124892 ** structures are like b+trees in layout, but are constructed from the
124893 ** bottom up in optimal fashion and are not updatable.  Since trees
124894 ** are built from the bottom up, things will be described from the
124895 ** bottom up.
124896 **
124897 **
124898 **** Varints ****
124899 ** The basic unit of encoding is a variable-length integer called a
124900 ** varint.  We encode variable-length integers in little-endian order
124901 ** using seven bits * per byte as follows:
124902 **
124903 ** KEY:
124904 **         A = 0xxxxxxx    7 bits of data and one flag bit
124905 **         B = 1xxxxxxx    7 bits of data and one flag bit
124906 **
124907 **  7 bits - A
124908 ** 14 bits - BA
124909 ** 21 bits - BBA
124910 ** and so on.
124911 **
124912 ** This is similar in concept to how sqlite encodes "varints" but
124913 ** the encoding is not the same.  SQLite varints are big-endian
124914 ** are are limited to 9 bytes in length whereas FTS3 varints are
124915 ** little-endian and can be up to 10 bytes in length (in theory).
124916 **
124917 ** Example encodings:
124918 **
124919 **     1:    0x01
124920 **   127:    0x7f
124921 **   128:    0x81 0x00
124922 **
124923 **
124924 **** Document lists ****
124925 ** A doclist (document list) holds a docid-sorted list of hits for a
124926 ** given term.  Doclists hold docids and associated token positions.
124927 ** A docid is the unique integer identifier for a single document.
124928 ** A position is the index of a word within the document.  The first
124929 ** word of the document has a position of 0.
124930 **
124931 ** FTS3 used to optionally store character offsets using a compile-time
124932 ** option.  But that functionality is no longer supported.
124933 **
124934 ** A doclist is stored like this:
124935 **
124936 ** array {
124937 **   varint docid;          (delta from previous doclist)
124938 **   array {                (position list for column 0)
124939 **     varint position;     (2 more than the delta from previous position)
124940 **   }
124941 **   array {
124942 **     varint POS_COLUMN;   (marks start of position list for new column)
124943 **     varint column;       (index of new column)
124944 **     array {
124945 **       varint position;   (2 more than the delta from previous position)
124946 **     }
124947 **   }
124948 **   varint POS_END;        (marks end of positions for this document.
124949 ** }
124950 **
124951 ** Here, array { X } means zero or more occurrences of X, adjacent in
124952 ** memory.  A "position" is an index of a token in the token stream
124953 ** generated by the tokenizer. Note that POS_END and POS_COLUMN occur
124954 ** in the same logical place as the position element, and act as sentinals
124955 ** ending a position list array.  POS_END is 0.  POS_COLUMN is 1.
124956 ** The positions numbers are not stored literally but rather as two more
124957 ** than the difference from the prior position, or the just the position plus
124958 ** 2 for the first position.  Example:
124959 **
124960 **   label:       A B C D E  F  G H   I  J K
124961 **   value:     123 5 9 1 1 14 35 0 234 72 0
124962 **
124963 ** The 123 value is the first docid.  For column zero in this document
124964 ** there are two matches at positions 3 and 10 (5-2 and 9-2+3).  The 1
124965 ** at D signals the start of a new column; the 1 at E indicates that the
124966 ** new column is column number 1.  There are two positions at 12 and 45
124967 ** (14-2 and 35-2+12).  The 0 at H indicate the end-of-document.  The
124968 ** 234 at I is the delta to next docid (357).  It has one position 70
124969 ** (72-2) and then terminates with the 0 at K.
124970 **
124971 ** A "position-list" is the list of positions for multiple columns for
124972 ** a single docid.  A "column-list" is the set of positions for a single
124973 ** column.  Hence, a position-list consists of one or more column-lists,
124974 ** a document record consists of a docid followed by a position-list and
124975 ** a doclist consists of one or more document records.
124976 **
124977 ** A bare doclist omits the position information, becoming an
124978 ** array of varint-encoded docids.
124979 **
124980 **** Segment leaf nodes ****
124981 ** Segment leaf nodes store terms and doclists, ordered by term.  Leaf
124982 ** nodes are written using LeafWriter, and read using LeafReader (to
124983 ** iterate through a single leaf node's data) and LeavesReader (to
124984 ** iterate through a segment's entire leaf layer).  Leaf nodes have
124985 ** the format:
124986 **
124987 ** varint iHeight;             (height from leaf level, always 0)
124988 ** varint nTerm;               (length of first term)
124989 ** char pTerm[nTerm];          (content of first term)
124990 ** varint nDoclist;            (length of term's associated doclist)
124991 ** char pDoclist[nDoclist];    (content of doclist)
124992 ** array {
124993 **                             (further terms are delta-encoded)
124994 **   varint nPrefix;           (length of prefix shared with previous term)
124995 **   varint nSuffix;           (length of unshared suffix)
124996 **   char pTermSuffix[nSuffix];(unshared suffix of next term)
124997 **   varint nDoclist;          (length of term's associated doclist)
124998 **   char pDoclist[nDoclist];  (content of doclist)
124999 ** }
125000 **
125001 ** Here, array { X } means zero or more occurrences of X, adjacent in
125002 ** memory.
125003 **
125004 ** Leaf nodes are broken into blocks which are stored contiguously in
125005 ** the %_segments table in sorted order.  This means that when the end
125006 ** of a node is reached, the next term is in the node with the next
125007 ** greater node id.
125008 **
125009 ** New data is spilled to a new leaf node when the current node
125010 ** exceeds LEAF_MAX bytes (default 2048).  New data which itself is
125011 ** larger than STANDALONE_MIN (default 1024) is placed in a standalone
125012 ** node (a leaf node with a single term and doclist).  The goal of
125013 ** these settings is to pack together groups of small doclists while
125014 ** making it efficient to directly access large doclists.  The
125015 ** assumption is that large doclists represent terms which are more
125016 ** likely to be query targets.
125017 **
125018 ** TODO(shess) It may be useful for blocking decisions to be more
125019 ** dynamic.  For instance, it may make more sense to have a 2.5k leaf
125020 ** node rather than splitting into 2k and .5k nodes.  My intuition is
125021 ** that this might extend through 2x or 4x the pagesize.
125022 **
125023 **
125024 **** Segment interior nodes ****
125025 ** Segment interior nodes store blockids for subtree nodes and terms
125026 ** to describe what data is stored by the each subtree.  Interior
125027 ** nodes are written using InteriorWriter, and read using
125028 ** InteriorReader.  InteriorWriters are created as needed when
125029 ** SegmentWriter creates new leaf nodes, or when an interior node
125030 ** itself grows too big and must be split.  The format of interior
125031 ** nodes:
125032 **
125033 ** varint iHeight;           (height from leaf level, always >0)
125034 ** varint iBlockid;          (block id of node's leftmost subtree)
125035 ** optional {
125036 **   varint nTerm;           (length of first term)
125037 **   char pTerm[nTerm];      (content of first term)
125038 **   array {
125039 **                                (further terms are delta-encoded)
125040 **     varint nPrefix;            (length of shared prefix with previous term)
125041 **     varint nSuffix;            (length of unshared suffix)
125042 **     char pTermSuffix[nSuffix]; (unshared suffix of next term)
125043 **   }
125044 ** }
125045 **
125046 ** Here, optional { X } means an optional element, while array { X }
125047 ** means zero or more occurrences of X, adjacent in memory.
125048 **
125049 ** An interior node encodes n terms separating n+1 subtrees.  The
125050 ** subtree blocks are contiguous, so only the first subtree's blockid
125051 ** is encoded.  The subtree at iBlockid will contain all terms less
125052 ** than the first term encoded (or all terms if no term is encoded).
125053 ** Otherwise, for terms greater than or equal to pTerm[i] but less
125054 ** than pTerm[i+1], the subtree for that term will be rooted at
125055 ** iBlockid+i.  Interior nodes only store enough term data to
125056 ** distinguish adjacent children (if the rightmost term of the left
125057 ** child is "something", and the leftmost term of the right child is
125058 ** "wicked", only "w" is stored).
125059 **
125060 ** New data is spilled to a new interior node at the same height when
125061 ** the current node exceeds INTERIOR_MAX bytes (default 2048).
125062 ** INTERIOR_MIN_TERMS (default 7) keeps large terms from monopolizing
125063 ** interior nodes and making the tree too skinny.  The interior nodes
125064 ** at a given height are naturally tracked by interior nodes at
125065 ** height+1, and so on.
125066 **
125067 **
125068 **** Segment directory ****
125069 ** The segment directory in table %_segdir stores meta-information for
125070 ** merging and deleting segments, and also the root node of the
125071 ** segment's tree.
125072 **
125073 ** The root node is the top node of the segment's tree after encoding
125074 ** the entire segment, restricted to ROOT_MAX bytes (default 1024).
125075 ** This could be either a leaf node or an interior node.  If the top
125076 ** node requires more than ROOT_MAX bytes, it is flushed to %_segments
125077 ** and a new root interior node is generated (which should always fit
125078 ** within ROOT_MAX because it only needs space for 2 varints, the
125079 ** height and the blockid of the previous root).
125080 **
125081 ** The meta-information in the segment directory is:
125082 **   level               - segment level (see below)
125083 **   idx                 - index within level
125084 **                       - (level,idx uniquely identify a segment)
125085 **   start_block         - first leaf node
125086 **   leaves_end_block    - last leaf node
125087 **   end_block           - last block (including interior nodes)
125088 **   root                - contents of root node
125089 **
125090 ** If the root node is a leaf node, then start_block,
125091 ** leaves_end_block, and end_block are all 0.
125092 **
125093 **
125094 **** Segment merging ****
125095 ** To amortize update costs, segments are grouped into levels and
125096 ** merged in batches.  Each increase in level represents exponentially
125097 ** more documents.
125098 **
125099 ** New documents (actually, document updates) are tokenized and
125100 ** written individually (using LeafWriter) to a level 0 segment, with
125101 ** incrementing idx.  When idx reaches MERGE_COUNT (default 16), all
125102 ** level 0 segments are merged into a single level 1 segment.  Level 1
125103 ** is populated like level 0, and eventually MERGE_COUNT level 1
125104 ** segments are merged to a single level 2 segment (representing
125105 ** MERGE_COUNT^2 updates), and so on.
125106 **
125107 ** A segment merge traverses all segments at a given level in
125108 ** parallel, performing a straightforward sorted merge.  Since segment
125109 ** leaf nodes are written in to the %_segments table in order, this
125110 ** merge traverses the underlying sqlite disk structures efficiently.
125111 ** After the merge, all segment blocks from the merged level are
125112 ** deleted.
125113 **
125114 ** MERGE_COUNT controls how often we merge segments.  16 seems to be
125115 ** somewhat of a sweet spot for insertion performance.  32 and 64 show
125116 ** very similar performance numbers to 16 on insertion, though they're
125117 ** a tiny bit slower (perhaps due to more overhead in merge-time
125118 ** sorting).  8 is about 20% slower than 16, 4 about 50% slower than
125119 ** 16, 2 about 66% slower than 16.
125120 **
125121 ** At query time, high MERGE_COUNT increases the number of segments
125122 ** which need to be scanned and merged.  For instance, with 100k docs
125123 ** inserted:
125124 **
125125 **    MERGE_COUNT   segments
125126 **       16           25
125127 **        8           12
125128 **        4           10
125129 **        2            6
125130 **
125131 ** This appears to have only a moderate impact on queries for very
125132 ** frequent terms (which are somewhat dominated by segment merge
125133 ** costs), and infrequent and non-existent terms still seem to be fast
125134 ** even with many segments.
125135 **
125136 ** TODO(shess) That said, it would be nice to have a better query-side
125137 ** argument for MERGE_COUNT of 16.  Also, it is possible/likely that
125138 ** optimizations to things like doclist merging will swing the sweet
125139 ** spot around.
125140 **
125141 **
125142 **
125143 **** Handling of deletions and updates ****
125144 ** Since we're using a segmented structure, with no docid-oriented
125145 ** index into the term index, we clearly cannot simply update the term
125146 ** index when a document is deleted or updated.  For deletions, we
125147 ** write an empty doclist (varint(docid) varint(POS_END)), for updates
125148 ** we simply write the new doclist.  Segment merges overwrite older
125149 ** data for a particular docid with newer data, so deletes or updates
125150 ** will eventually overtake the earlier data and knock it out.  The
125151 ** query logic likewise merges doclists so that newer data knocks out
125152 ** older data.
125153 */
125154 
125155 /************** Include fts3Int.h in the middle of fts3.c ********************/
125156 /************** Begin file fts3Int.h *****************************************/
125157 /*
125158 ** 2009 Nov 12
125159 **
125160 ** The author disclaims copyright to this source code.  In place of
125161 ** a legal notice, here is a blessing:
125162 **
125163 **    May you do good and not evil.
125164 **    May you find forgiveness for yourself and forgive others.
125165 **    May you share freely, never taking more than you give.
125166 **
125167 ******************************************************************************
125168 **
125169 */
125170 #ifndef _FTSINT_H
125171 #define _FTSINT_H
125172 
125173 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG)
125174 # define NDEBUG 1
125175 #endif
125176 
125177 /*
125178 ** FTS4 is really an extension for FTS3.  It is enabled using the
125179 ** SQLITE_ENABLE_FTS3 macro.  But to avoid confusion we also all
125180 ** the SQLITE_ENABLE_FTS4 macro to serve as an alisse for SQLITE_ENABLE_FTS3.
125181 */
125182 #if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3)
125183 # define SQLITE_ENABLE_FTS3
125184 #endif
125185 
125186 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
125187 
125188 /* If not building as part of the core, include sqlite3ext.h. */
125189 #ifndef SQLITE_CORE
125190 SQLITE_EXTENSION_INIT3
125191 #endif
125192 
125193 /************** Include fts3_tokenizer.h in the middle of fts3Int.h **********/
125194 /************** Begin file fts3_tokenizer.h **********************************/
125195 /*
125196 ** 2006 July 10
125197 **
125198 ** The author disclaims copyright to this source code.
125199 **
125200 *************************************************************************
125201 ** Defines the interface to tokenizers used by fulltext-search.  There
125202 ** are three basic components:
125203 **
125204 ** sqlite3_tokenizer_module is a singleton defining the tokenizer
125205 ** interface functions.  This is essentially the class structure for
125206 ** tokenizers.
125207 **
125208 ** sqlite3_tokenizer is used to define a particular tokenizer, perhaps
125209 ** including customization information defined at creation time.
125210 **
125211 ** sqlite3_tokenizer_cursor is generated by a tokenizer to generate
125212 ** tokens from a particular input.
125213 */
125214 #ifndef _FTS3_TOKENIZER_H_
125215 #define _FTS3_TOKENIZER_H_
125216 
125217 /* TODO(shess) Only used for SQLITE_OK and SQLITE_DONE at this time.
125218 ** If tokenizers are to be allowed to call sqlite3_*() functions, then
125219 ** we will need a way to register the API consistently.
125220 */
125221 
125222 /*
125223 ** Structures used by the tokenizer interface. When a new tokenizer
125224 ** implementation is registered, the caller provides a pointer to
125225 ** an sqlite3_tokenizer_module containing pointers to the callback
125226 ** functions that make up an implementation.
125227 **
125228 ** When an fts3 table is created, it passes any arguments passed to
125229 ** the tokenizer clause of the CREATE VIRTUAL TABLE statement to the
125230 ** sqlite3_tokenizer_module.xCreate() function of the requested tokenizer
125231 ** implementation. The xCreate() function in turn returns an
125232 ** sqlite3_tokenizer structure representing the specific tokenizer to
125233 ** be used for the fts3 table (customized by the tokenizer clause arguments).
125234 **
125235 ** To tokenize an input buffer, the sqlite3_tokenizer_module.xOpen()
125236 ** method is called. It returns an sqlite3_tokenizer_cursor object
125237 ** that may be used to tokenize a specific input buffer based on
125238 ** the tokenization rules supplied by a specific sqlite3_tokenizer
125239 ** object.
125240 */
125241 typedef struct sqlite3_tokenizer_module sqlite3_tokenizer_module;
125242 typedef struct sqlite3_tokenizer sqlite3_tokenizer;
125243 typedef struct sqlite3_tokenizer_cursor sqlite3_tokenizer_cursor;
125244 
125245 struct sqlite3_tokenizer_module {
125246 
125247   /*
125248   ** Structure version. Should always be set to 0 or 1.
125249   */
125250   int iVersion;
125251 
125252   /*
125253   ** Create a new tokenizer. The values in the argv[] array are the
125254   ** arguments passed to the "tokenizer" clause of the CREATE VIRTUAL
125255   ** TABLE statement that created the fts3 table. For example, if
125256   ** the following SQL is executed:
125257   **
125258   **   CREATE .. USING fts3( ... , tokenizer <tokenizer-name> arg1 arg2)
125259   **
125260   ** then argc is set to 2, and the argv[] array contains pointers
125261   ** to the strings "arg1" and "arg2".
125262   **
125263   ** This method should return either SQLITE_OK (0), or an SQLite error
125264   ** code. If SQLITE_OK is returned, then *ppTokenizer should be set
125265   ** to point at the newly created tokenizer structure. The generic
125266   ** sqlite3_tokenizer.pModule variable should not be initialized by
125267   ** this callback. The caller will do so.
125268   */
125269   int (*xCreate)(
125270     int argc,                           /* Size of argv array */
125271     const char *const*argv,             /* Tokenizer argument strings */
125272     sqlite3_tokenizer **ppTokenizer     /* OUT: Created tokenizer */
125273   );
125274 
125275   /*
125276   ** Destroy an existing tokenizer. The fts3 module calls this method
125277   ** exactly once for each successful call to xCreate().
125278   */
125279   int (*xDestroy)(sqlite3_tokenizer *pTokenizer);
125280 
125281   /*
125282   ** Create a tokenizer cursor to tokenize an input buffer. The caller
125283   ** is responsible for ensuring that the input buffer remains valid
125284   ** until the cursor is closed (using the xClose() method).
125285   */
125286   int (*xOpen)(
125287     sqlite3_tokenizer *pTokenizer,       /* Tokenizer object */
125288     const char *pInput, int nBytes,      /* Input buffer */
125289     sqlite3_tokenizer_cursor **ppCursor  /* OUT: Created tokenizer cursor */
125290   );
125291 
125292   /*
125293   ** Destroy an existing tokenizer cursor. The fts3 module calls this
125294   ** method exactly once for each successful call to xOpen().
125295   */
125296   int (*xClose)(sqlite3_tokenizer_cursor *pCursor);
125297 
125298   /*
125299   ** Retrieve the next token from the tokenizer cursor pCursor. This
125300   ** method should either return SQLITE_OK and set the values of the
125301   ** "OUT" variables identified below, or SQLITE_DONE to indicate that
125302   ** the end of the buffer has been reached, or an SQLite error code.
125303   **
125304   ** *ppToken should be set to point at a buffer containing the
125305   ** normalized version of the token (i.e. after any case-folding and/or
125306   ** stemming has been performed). *pnBytes should be set to the length
125307   ** of this buffer in bytes. The input text that generated the token is
125308   ** identified by the byte offsets returned in *piStartOffset and
125309   ** *piEndOffset. *piStartOffset should be set to the index of the first
125310   ** byte of the token in the input buffer. *piEndOffset should be set
125311   ** to the index of the first byte just past the end of the token in
125312   ** the input buffer.
125313   **
125314   ** The buffer *ppToken is set to point at is managed by the tokenizer
125315   ** implementation. It is only required to be valid until the next call
125316   ** to xNext() or xClose().
125317   */
125318   /* TODO(shess) current implementation requires pInput to be
125319   ** nul-terminated.  This should either be fixed, or pInput/nBytes
125320   ** should be converted to zInput.
125321   */
125322   int (*xNext)(
125323     sqlite3_tokenizer_cursor *pCursor,   /* Tokenizer cursor */
125324     const char **ppToken, int *pnBytes,  /* OUT: Normalized text for token */
125325     int *piStartOffset,  /* OUT: Byte offset of token in input buffer */
125326     int *piEndOffset,    /* OUT: Byte offset of end of token in input buffer */
125327     int *piPosition      /* OUT: Number of tokens returned before this one */
125328   );
125329 
125330   /***********************************************************************
125331   ** Methods below this point are only available if iVersion>=1.
125332   */
125333 
125334   /*
125335   ** Configure the language id of a tokenizer cursor.
125336   */
125337   int (*xLanguageid)(sqlite3_tokenizer_cursor *pCsr, int iLangid);
125338 };
125339 
125340 struct sqlite3_tokenizer {
125341   const sqlite3_tokenizer_module *pModule;  /* The module for this tokenizer */
125342   /* Tokenizer implementations will typically add additional fields */
125343 };
125344 
125345 struct sqlite3_tokenizer_cursor {
125346   sqlite3_tokenizer *pTokenizer;       /* Tokenizer for this cursor. */
125347   /* Tokenizer implementations will typically add additional fields */
125348 };
125349 
125350 int fts3_global_term_cnt(int iTerm, int iCol);
125351 int fts3_term_cnt(int iTerm, int iCol);
125352 
125353 
125354 #endif /* _FTS3_TOKENIZER_H_ */
125355 
125356 /************** End of fts3_tokenizer.h **************************************/
125357 /************** Continuing where we left off in fts3Int.h ********************/
125358 /************** Include fts3_hash.h in the middle of fts3Int.h ***************/
125359 /************** Begin file fts3_hash.h ***************************************/
125360 /*
125361 ** 2001 September 22
125362 **
125363 ** The author disclaims copyright to this source code.  In place of
125364 ** a legal notice, here is a blessing:
125365 **
125366 **    May you do good and not evil.
125367 **    May you find forgiveness for yourself and forgive others.
125368 **    May you share freely, never taking more than you give.
125369 **
125370 *************************************************************************
125371 ** This is the header file for the generic hash-table implementation
125372 ** used in SQLite.  We've modified it slightly to serve as a standalone
125373 ** hash table implementation for the full-text indexing module.
125374 **
125375 */
125376 #ifndef _FTS3_HASH_H_
125377 #define _FTS3_HASH_H_
125378 
125379 /* Forward declarations of structures. */
125380 typedef struct Fts3Hash Fts3Hash;
125381 typedef struct Fts3HashElem Fts3HashElem;
125382 
125383 /* A complete hash table is an instance of the following structure.
125384 ** The internals of this structure are intended to be opaque -- client
125385 ** code should not attempt to access or modify the fields of this structure
125386 ** directly.  Change this structure only by using the routines below.
125387 ** However, many of the "procedures" and "functions" for modifying and
125388 ** accessing this structure are really macros, so we can't really make
125389 ** this structure opaque.
125390 */
125391 struct Fts3Hash {
125392   char keyClass;          /* HASH_INT, _POINTER, _STRING, _BINARY */
125393   char copyKey;           /* True if copy of key made on insert */
125394   int count;              /* Number of entries in this table */
125395   Fts3HashElem *first;    /* The first element of the array */
125396   int htsize;             /* Number of buckets in the hash table */
125397   struct _fts3ht {        /* the hash table */
125398     int count;               /* Number of entries with this hash */
125399     Fts3HashElem *chain;     /* Pointer to first entry with this hash */
125400   } *ht;
125401 };
125402 
125403 /* Each element in the hash table is an instance of the following
125404 ** structure.  All elements are stored on a single doubly-linked list.
125405 **
125406 ** Again, this structure is intended to be opaque, but it can't really
125407 ** be opaque because it is used by macros.
125408 */
125409 struct Fts3HashElem {
125410   Fts3HashElem *next, *prev; /* Next and previous elements in the table */
125411   void *data;                /* Data associated with this element */
125412   void *pKey; int nKey;      /* Key associated with this element */
125413 };
125414 
125415 /*
125416 ** There are 2 different modes of operation for a hash table:
125417 **
125418 **   FTS3_HASH_STRING        pKey points to a string that is nKey bytes long
125419 **                           (including the null-terminator, if any).  Case
125420 **                           is respected in comparisons.
125421 **
125422 **   FTS3_HASH_BINARY        pKey points to binary data nKey bytes long.
125423 **                           memcmp() is used to compare keys.
125424 **
125425 ** A copy of the key is made if the copyKey parameter to fts3HashInit is 1.
125426 */
125427 #define FTS3_HASH_STRING    1
125428 #define FTS3_HASH_BINARY    2
125429 
125430 /*
125431 ** Access routines.  To delete, insert a NULL pointer.
125432 */
125433 SQLITE_PRIVATE void sqlite3Fts3HashInit(Fts3Hash *pNew, char keyClass, char copyKey);
125434 SQLITE_PRIVATE void *sqlite3Fts3HashInsert(Fts3Hash*, const void *pKey, int nKey, void *pData);
125435 SQLITE_PRIVATE void *sqlite3Fts3HashFind(const Fts3Hash*, const void *pKey, int nKey);
125436 SQLITE_PRIVATE void sqlite3Fts3HashClear(Fts3Hash*);
125437 SQLITE_PRIVATE Fts3HashElem *sqlite3Fts3HashFindElem(const Fts3Hash *, const void *, int);
125438 
125439 /*
125440 ** Shorthand for the functions above
125441 */
125442 #define fts3HashInit     sqlite3Fts3HashInit
125443 #define fts3HashInsert   sqlite3Fts3HashInsert
125444 #define fts3HashFind     sqlite3Fts3HashFind
125445 #define fts3HashClear    sqlite3Fts3HashClear
125446 #define fts3HashFindElem sqlite3Fts3HashFindElem
125447 
125448 /*
125449 ** Macros for looping over all elements of a hash table.  The idiom is
125450 ** like this:
125451 **
125452 **   Fts3Hash h;
125453 **   Fts3HashElem *p;
125454 **   ...
125455 **   for(p=fts3HashFirst(&h); p; p=fts3HashNext(p)){
125456 **     SomeStructure *pData = fts3HashData(p);
125457 **     // do something with pData
125458 **   }
125459 */
125460 #define fts3HashFirst(H)  ((H)->first)
125461 #define fts3HashNext(E)   ((E)->next)
125462 #define fts3HashData(E)   ((E)->data)
125463 #define fts3HashKey(E)    ((E)->pKey)
125464 #define fts3HashKeysize(E) ((E)->nKey)
125465 
125466 /*
125467 ** Number of entries in a hash table
125468 */
125469 #define fts3HashCount(H)  ((H)->count)
125470 
125471 #endif /* _FTS3_HASH_H_ */
125472 
125473 /************** End of fts3_hash.h *******************************************/
125474 /************** Continuing where we left off in fts3Int.h ********************/
125475 
125476 /*
125477 ** This constant determines the maximum depth of an FTS expression tree
125478 ** that the library will create and use. FTS uses recursion to perform
125479 ** various operations on the query tree, so the disadvantage of a large
125480 ** limit is that it may allow very large queries to use large amounts
125481 ** of stack space (perhaps causing a stack overflow).
125482 */
125483 #ifndef SQLITE_FTS3_MAX_EXPR_DEPTH
125484 # define SQLITE_FTS3_MAX_EXPR_DEPTH 12
125485 #endif
125486 
125487 
125488 /*
125489 ** This constant controls how often segments are merged. Once there are
125490 ** FTS3_MERGE_COUNT segments of level N, they are merged into a single
125491 ** segment of level N+1.
125492 */
125493 #define FTS3_MERGE_COUNT 16
125494 
125495 /*
125496 ** This is the maximum amount of data (in bytes) to store in the
125497 ** Fts3Table.pendingTerms hash table. Normally, the hash table is
125498 ** populated as documents are inserted/updated/deleted in a transaction
125499 ** and used to create a new segment when the transaction is committed.
125500 ** However if this limit is reached midway through a transaction, a new
125501 ** segment is created and the hash table cleared immediately.
125502 */
125503 #define FTS3_MAX_PENDING_DATA (1*1024*1024)
125504 
125505 /*
125506 ** Macro to return the number of elements in an array. SQLite has a
125507 ** similar macro called ArraySize(). Use a different name to avoid
125508 ** a collision when building an amalgamation with built-in FTS3.
125509 */
125510 #define SizeofArray(X) ((int)(sizeof(X)/sizeof(X[0])))
125511 
125512 
125513 #ifndef MIN
125514 # define MIN(x,y) ((x)<(y)?(x):(y))
125515 #endif
125516 #ifndef MAX
125517 # define MAX(x,y) ((x)>(y)?(x):(y))
125518 #endif
125519 
125520 /*
125521 ** Maximum length of a varint encoded integer. The varint format is different
125522 ** from that used by SQLite, so the maximum length is 10, not 9.
125523 */
125524 #define FTS3_VARINT_MAX 10
125525 
125526 /*
125527 ** FTS4 virtual tables may maintain multiple indexes - one index of all terms
125528 ** in the document set and zero or more prefix indexes. All indexes are stored
125529 ** as one or more b+-trees in the %_segments and %_segdir tables.
125530 **
125531 ** It is possible to determine which index a b+-tree belongs to based on the
125532 ** value stored in the "%_segdir.level" column. Given this value L, the index
125533 ** that the b+-tree belongs to is (L<<10). In other words, all b+-trees with
125534 ** level values between 0 and 1023 (inclusive) belong to index 0, all levels
125535 ** between 1024 and 2047 to index 1, and so on.
125536 **
125537 ** It is considered impossible for an index to use more than 1024 levels. In
125538 ** theory though this may happen, but only after at least
125539 ** (FTS3_MERGE_COUNT^1024) separate flushes of the pending-terms tables.
125540 */
125541 #define FTS3_SEGDIR_MAXLEVEL      1024
125542 #define FTS3_SEGDIR_MAXLEVEL_STR "1024"
125543 
125544 /*
125545 ** The testcase() macro is only used by the amalgamation.  If undefined,
125546 ** make it a no-op.
125547 */
125548 #ifndef testcase
125549 # define testcase(X)
125550 #endif
125551 
125552 /*
125553 ** Terminator values for position-lists and column-lists.
125554 */
125555 #define POS_COLUMN  (1)     /* Column-list terminator */
125556 #define POS_END     (0)     /* Position-list terminator */
125557 
125558 /*
125559 ** This section provides definitions to allow the
125560 ** FTS3 extension to be compiled outside of the
125561 ** amalgamation.
125562 */
125563 #ifndef SQLITE_AMALGAMATION
125564 /*
125565 ** Macros indicating that conditional expressions are always true or
125566 ** false.
125567 */
125568 #ifdef SQLITE_COVERAGE_TEST
125569 # define ALWAYS(x) (1)
125570 # define NEVER(X)  (0)
125571 #else
125572 # define ALWAYS(x) (x)
125573 # define NEVER(x)  (x)
125574 #endif
125575 
125576 /*
125577 ** Internal types used by SQLite.
125578 */
125579 typedef unsigned char u8;         /* 1-byte (or larger) unsigned integer */
125580 typedef short int i16;            /* 2-byte (or larger) signed integer */
125581 typedef unsigned int u32;         /* 4-byte unsigned integer */
125582 typedef sqlite3_uint64 u64;       /* 8-byte unsigned integer */
125583 typedef sqlite3_int64 i64;        /* 8-byte signed integer */
125584 
125585 /*
125586 ** Macro used to suppress compiler warnings for unused parameters.
125587 */
125588 #define UNUSED_PARAMETER(x) (void)(x)
125589 
125590 /*
125591 ** Activate assert() only if SQLITE_TEST is enabled.
125592 */
125593 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG)
125594 # define NDEBUG 1
125595 #endif
125596 
125597 /*
125598 ** The TESTONLY macro is used to enclose variable declarations or
125599 ** other bits of code that are needed to support the arguments
125600 ** within testcase() and assert() macros.
125601 */
125602 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
125603 # define TESTONLY(X)  X
125604 #else
125605 # define TESTONLY(X)
125606 #endif
125607 
125608 #endif /* SQLITE_AMALGAMATION */
125609 
125610 #ifdef SQLITE_DEBUG
125611 SQLITE_PRIVATE int sqlite3Fts3Corrupt(void);
125612 # define FTS_CORRUPT_VTAB sqlite3Fts3Corrupt()
125613 #else
125614 # define FTS_CORRUPT_VTAB SQLITE_CORRUPT_VTAB
125615 #endif
125616 
125617 typedef struct Fts3Table Fts3Table;
125618 typedef struct Fts3Cursor Fts3Cursor;
125619 typedef struct Fts3Expr Fts3Expr;
125620 typedef struct Fts3Phrase Fts3Phrase;
125621 typedef struct Fts3PhraseToken Fts3PhraseToken;
125622 
125623 typedef struct Fts3Doclist Fts3Doclist;
125624 typedef struct Fts3SegFilter Fts3SegFilter;
125625 typedef struct Fts3DeferredToken Fts3DeferredToken;
125626 typedef struct Fts3SegReader Fts3SegReader;
125627 typedef struct Fts3MultiSegReader Fts3MultiSegReader;
125628 
125629 /*
125630 ** A connection to a fulltext index is an instance of the following
125631 ** structure. The xCreate and xConnect methods create an instance
125632 ** of this structure and xDestroy and xDisconnect free that instance.
125633 ** All other methods receive a pointer to the structure as one of their
125634 ** arguments.
125635 */
125636 struct Fts3Table {
125637   sqlite3_vtab base;              /* Base class used by SQLite core */
125638   sqlite3 *db;                    /* The database connection */
125639   const char *zDb;                /* logical database name */
125640   const char *zName;              /* virtual table name */
125641   int nColumn;                    /* number of named columns in virtual table */
125642   char **azColumn;                /* column names.  malloced */
125643   u8 *abNotindexed;               /* True for 'notindexed' columns */
125644   sqlite3_tokenizer *pTokenizer;  /* tokenizer for inserts and queries */
125645   char *zContentTbl;              /* content=xxx option, or NULL */
125646   char *zLanguageid;              /* languageid=xxx option, or NULL */
125647   int nAutoincrmerge;             /* Value configured by 'automerge' */
125648   u32 nLeafAdd;                   /* Number of leaf blocks added this trans */
125649 
125650   /* Precompiled statements used by the implementation. Each of these
125651   ** statements is run and reset within a single virtual table API call.
125652   */
125653   sqlite3_stmt *aStmt[40];
125654 
125655   char *zReadExprlist;
125656   char *zWriteExprlist;
125657 
125658   int nNodeSize;                  /* Soft limit for node size */
125659   u8 bFts4;                       /* True for FTS4, false for FTS3 */
125660   u8 bHasStat;                    /* True if %_stat table exists (2==unknown) */
125661   u8 bHasDocsize;                 /* True if %_docsize table exists */
125662   u8 bDescIdx;                    /* True if doclists are in reverse order */
125663   u8 bIgnoreSavepoint;            /* True to ignore xSavepoint invocations */
125664   int nPgsz;                      /* Page size for host database */
125665   char *zSegmentsTbl;             /* Name of %_segments table */
125666   sqlite3_blob *pSegments;        /* Blob handle open on %_segments table */
125667 
125668   /*
125669   ** The following array of hash tables is used to buffer pending index
125670   ** updates during transactions. All pending updates buffered at any one
125671   ** time must share a common language-id (see the FTS4 langid= feature).
125672   ** The current language id is stored in variable iPrevLangid.
125673   **
125674   ** A single FTS4 table may have multiple full-text indexes. For each index
125675   ** there is an entry in the aIndex[] array. Index 0 is an index of all the
125676   ** terms that appear in the document set. Each subsequent index in aIndex[]
125677   ** is an index of prefixes of a specific length.
125678   **
125679   ** Variable nPendingData contains an estimate the memory consumed by the
125680   ** pending data structures, including hash table overhead, but not including
125681   ** malloc overhead.  When nPendingData exceeds nMaxPendingData, all hash
125682   ** tables are flushed to disk. Variable iPrevDocid is the docid of the most
125683   ** recently inserted record.
125684   */
125685   int nIndex;                     /* Size of aIndex[] */
125686   struct Fts3Index {
125687     int nPrefix;                  /* Prefix length (0 for main terms index) */
125688     Fts3Hash hPending;            /* Pending terms table for this index */
125689   } *aIndex;
125690   int nMaxPendingData;            /* Max pending data before flush to disk */
125691   int nPendingData;               /* Current bytes of pending data */
125692   sqlite_int64 iPrevDocid;        /* Docid of most recently inserted document */
125693   int iPrevLangid;                /* Langid of recently inserted document */
125694 
125695 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
125696   /* State variables used for validating that the transaction control
125697   ** methods of the virtual table are called at appropriate times.  These
125698   ** values do not contribute to FTS functionality; they are used for
125699   ** verifying the operation of the SQLite core.
125700   */
125701   int inTransaction;     /* True after xBegin but before xCommit/xRollback */
125702   int mxSavepoint;       /* Largest valid xSavepoint integer */
125703 #endif
125704 
125705 #ifdef SQLITE_TEST
125706   /* True to disable the incremental doclist optimization. This is controled
125707   ** by special insert command 'test-no-incr-doclist'.  */
125708   int bNoIncrDoclist;
125709 #endif
125710 };
125711 
125712 /*
125713 ** When the core wants to read from the virtual table, it creates a
125714 ** virtual table cursor (an instance of the following structure) using
125715 ** the xOpen method. Cursors are destroyed using the xClose method.
125716 */
125717 struct Fts3Cursor {
125718   sqlite3_vtab_cursor base;       /* Base class used by SQLite core */
125719   i16 eSearch;                    /* Search strategy (see below) */
125720   u8 isEof;                       /* True if at End Of Results */
125721   u8 isRequireSeek;               /* True if must seek pStmt to %_content row */
125722   sqlite3_stmt *pStmt;            /* Prepared statement in use by the cursor */
125723   Fts3Expr *pExpr;                /* Parsed MATCH query string */
125724   int iLangid;                    /* Language being queried for */
125725   int nPhrase;                    /* Number of matchable phrases in query */
125726   Fts3DeferredToken *pDeferred;   /* Deferred search tokens, if any */
125727   sqlite3_int64 iPrevId;          /* Previous id read from aDoclist */
125728   char *pNextId;                  /* Pointer into the body of aDoclist */
125729   char *aDoclist;                 /* List of docids for full-text queries */
125730   int nDoclist;                   /* Size of buffer at aDoclist */
125731   u8 bDesc;                       /* True to sort in descending order */
125732   int eEvalmode;                  /* An FTS3_EVAL_XX constant */
125733   int nRowAvg;                    /* Average size of database rows, in pages */
125734   sqlite3_int64 nDoc;             /* Documents in table */
125735   i64 iMinDocid;                  /* Minimum docid to return */
125736   i64 iMaxDocid;                  /* Maximum docid to return */
125737   int isMatchinfoNeeded;          /* True when aMatchinfo[] needs filling in */
125738   u32 *aMatchinfo;                /* Information about most recent match */
125739   int nMatchinfo;                 /* Number of elements in aMatchinfo[] */
125740   char *zMatchinfo;               /* Matchinfo specification */
125741 };
125742 
125743 #define FTS3_EVAL_FILTER    0
125744 #define FTS3_EVAL_NEXT      1
125745 #define FTS3_EVAL_MATCHINFO 2
125746 
125747 /*
125748 ** The Fts3Cursor.eSearch member is always set to one of the following.
125749 ** Actualy, Fts3Cursor.eSearch can be greater than or equal to
125750 ** FTS3_FULLTEXT_SEARCH.  If so, then Fts3Cursor.eSearch - 2 is the index
125751 ** of the column to be searched.  For example, in
125752 **
125753 **     CREATE VIRTUAL TABLE ex1 USING fts3(a,b,c,d);
125754 **     SELECT docid FROM ex1 WHERE b MATCH 'one two three';
125755 **
125756 ** Because the LHS of the MATCH operator is 2nd column "b",
125757 ** Fts3Cursor.eSearch will be set to FTS3_FULLTEXT_SEARCH+1.  (+0 for a,
125758 ** +1 for b, +2 for c, +3 for d.)  If the LHS of MATCH were "ex1"
125759 ** indicating that all columns should be searched,
125760 ** then eSearch would be set to FTS3_FULLTEXT_SEARCH+4.
125761 */
125762 #define FTS3_FULLSCAN_SEARCH 0    /* Linear scan of %_content table */
125763 #define FTS3_DOCID_SEARCH    1    /* Lookup by rowid on %_content table */
125764 #define FTS3_FULLTEXT_SEARCH 2    /* Full-text index search */
125765 
125766 /*
125767 ** The lower 16-bits of the sqlite3_index_info.idxNum value set by
125768 ** the xBestIndex() method contains the Fts3Cursor.eSearch value described
125769 ** above. The upper 16-bits contain a combination of the following
125770 ** bits, used to describe extra constraints on full-text searches.
125771 */
125772 #define FTS3_HAVE_LANGID    0x00010000      /* languageid=? */
125773 #define FTS3_HAVE_DOCID_GE  0x00020000      /* docid>=? */
125774 #define FTS3_HAVE_DOCID_LE  0x00040000      /* docid<=? */
125775 
125776 struct Fts3Doclist {
125777   char *aAll;                    /* Array containing doclist (or NULL) */
125778   int nAll;                      /* Size of a[] in bytes */
125779   char *pNextDocid;              /* Pointer to next docid */
125780 
125781   sqlite3_int64 iDocid;          /* Current docid (if pList!=0) */
125782   int bFreeList;                 /* True if pList should be sqlite3_free()d */
125783   char *pList;                   /* Pointer to position list following iDocid */
125784   int nList;                     /* Length of position list */
125785 };
125786 
125787 /*
125788 ** A "phrase" is a sequence of one or more tokens that must match in
125789 ** sequence.  A single token is the base case and the most common case.
125790 ** For a sequence of tokens contained in double-quotes (i.e. "one two three")
125791 ** nToken will be the number of tokens in the string.
125792 */
125793 struct Fts3PhraseToken {
125794   char *z;                        /* Text of the token */
125795   int n;                          /* Number of bytes in buffer z */
125796   int isPrefix;                   /* True if token ends with a "*" character */
125797   int bFirst;                     /* True if token must appear at position 0 */
125798 
125799   /* Variables above this point are populated when the expression is
125800   ** parsed (by code in fts3_expr.c). Below this point the variables are
125801   ** used when evaluating the expression. */
125802   Fts3DeferredToken *pDeferred;   /* Deferred token object for this token */
125803   Fts3MultiSegReader *pSegcsr;    /* Segment-reader for this token */
125804 };
125805 
125806 struct Fts3Phrase {
125807   /* Cache of doclist for this phrase. */
125808   Fts3Doclist doclist;
125809   int bIncr;                 /* True if doclist is loaded incrementally */
125810   int iDoclistToken;
125811 
125812   /* Variables below this point are populated by fts3_expr.c when parsing
125813   ** a MATCH expression. Everything above is part of the evaluation phase.
125814   */
125815   int nToken;                /* Number of tokens in the phrase */
125816   int iColumn;               /* Index of column this phrase must match */
125817   Fts3PhraseToken aToken[1]; /* One entry for each token in the phrase */
125818 };
125819 
125820 /*
125821 ** A tree of these objects forms the RHS of a MATCH operator.
125822 **
125823 ** If Fts3Expr.eType is FTSQUERY_PHRASE and isLoaded is true, then aDoclist
125824 ** points to a malloced buffer, size nDoclist bytes, containing the results
125825 ** of this phrase query in FTS3 doclist format. As usual, the initial
125826 ** "Length" field found in doclists stored on disk is omitted from this
125827 ** buffer.
125828 **
125829 ** Variable aMI is used only for FTSQUERY_NEAR nodes to store the global
125830 ** matchinfo data. If it is not NULL, it points to an array of size nCol*3,
125831 ** where nCol is the number of columns in the queried FTS table. The array
125832 ** is populated as follows:
125833 **
125834 **   aMI[iCol*3 + 0] = Undefined
125835 **   aMI[iCol*3 + 1] = Number of occurrences
125836 **   aMI[iCol*3 + 2] = Number of rows containing at least one instance
125837 **
125838 ** The aMI array is allocated using sqlite3_malloc(). It should be freed
125839 ** when the expression node is.
125840 */
125841 struct Fts3Expr {
125842   int eType;                 /* One of the FTSQUERY_XXX values defined below */
125843   int nNear;                 /* Valid if eType==FTSQUERY_NEAR */
125844   Fts3Expr *pParent;         /* pParent->pLeft==this or pParent->pRight==this */
125845   Fts3Expr *pLeft;           /* Left operand */
125846   Fts3Expr *pRight;          /* Right operand */
125847   Fts3Phrase *pPhrase;       /* Valid if eType==FTSQUERY_PHRASE */
125848 
125849   /* The following are used by the fts3_eval.c module. */
125850   sqlite3_int64 iDocid;      /* Current docid */
125851   u8 bEof;                   /* True this expression is at EOF already */
125852   u8 bStart;                 /* True if iDocid is valid */
125853   u8 bDeferred;              /* True if this expression is entirely deferred */
125854 
125855   u32 *aMI;
125856 };
125857 
125858 /*
125859 ** Candidate values for Fts3Query.eType. Note that the order of the first
125860 ** four values is in order of precedence when parsing expressions. For
125861 ** example, the following:
125862 **
125863 **   "a OR b AND c NOT d NEAR e"
125864 **
125865 ** is equivalent to:
125866 **
125867 **   "a OR (b AND (c NOT (d NEAR e)))"
125868 */
125869 #define FTSQUERY_NEAR   1
125870 #define FTSQUERY_NOT    2
125871 #define FTSQUERY_AND    3
125872 #define FTSQUERY_OR     4
125873 #define FTSQUERY_PHRASE 5
125874 
125875 
125876 /* fts3_write.c */
125877 SQLITE_PRIVATE int sqlite3Fts3UpdateMethod(sqlite3_vtab*,int,sqlite3_value**,sqlite3_int64*);
125878 SQLITE_PRIVATE int sqlite3Fts3PendingTermsFlush(Fts3Table *);
125879 SQLITE_PRIVATE void sqlite3Fts3PendingTermsClear(Fts3Table *);
125880 SQLITE_PRIVATE int sqlite3Fts3Optimize(Fts3Table *);
125881 SQLITE_PRIVATE int sqlite3Fts3SegReaderNew(int, int, sqlite3_int64,
125882   sqlite3_int64, sqlite3_int64, const char *, int, Fts3SegReader**);
125883 SQLITE_PRIVATE int sqlite3Fts3SegReaderPending(
125884   Fts3Table*,int,const char*,int,int,Fts3SegReader**);
125885 SQLITE_PRIVATE void sqlite3Fts3SegReaderFree(Fts3SegReader *);
125886 SQLITE_PRIVATE int sqlite3Fts3AllSegdirs(Fts3Table*, int, int, int, sqlite3_stmt **);
125887 SQLITE_PRIVATE int sqlite3Fts3ReadBlock(Fts3Table*, sqlite3_int64, char **, int*, int*);
125888 
125889 SQLITE_PRIVATE int sqlite3Fts3SelectDoctotal(Fts3Table *, sqlite3_stmt **);
125890 SQLITE_PRIVATE int sqlite3Fts3SelectDocsize(Fts3Table *, sqlite3_int64, sqlite3_stmt **);
125891 
125892 #ifndef SQLITE_DISABLE_FTS4_DEFERRED
125893 SQLITE_PRIVATE void sqlite3Fts3FreeDeferredTokens(Fts3Cursor *);
125894 SQLITE_PRIVATE int sqlite3Fts3DeferToken(Fts3Cursor *, Fts3PhraseToken *, int);
125895 SQLITE_PRIVATE int sqlite3Fts3CacheDeferredDoclists(Fts3Cursor *);
125896 SQLITE_PRIVATE void sqlite3Fts3FreeDeferredDoclists(Fts3Cursor *);
125897 SQLITE_PRIVATE int sqlite3Fts3DeferredTokenList(Fts3DeferredToken *, char **, int *);
125898 #else
125899 # define sqlite3Fts3FreeDeferredTokens(x)
125900 # define sqlite3Fts3DeferToken(x,y,z) SQLITE_OK
125901 # define sqlite3Fts3CacheDeferredDoclists(x) SQLITE_OK
125902 # define sqlite3Fts3FreeDeferredDoclists(x)
125903 # define sqlite3Fts3DeferredTokenList(x,y,z) SQLITE_OK
125904 #endif
125905 
125906 SQLITE_PRIVATE void sqlite3Fts3SegmentsClose(Fts3Table *);
125907 SQLITE_PRIVATE int sqlite3Fts3MaxLevel(Fts3Table *, int *);
125908 
125909 /* Special values interpreted by sqlite3SegReaderCursor() */
125910 #define FTS3_SEGCURSOR_PENDING        -1
125911 #define FTS3_SEGCURSOR_ALL            -2
125912 
125913 SQLITE_PRIVATE int sqlite3Fts3SegReaderStart(Fts3Table*, Fts3MultiSegReader*, Fts3SegFilter*);
125914 SQLITE_PRIVATE int sqlite3Fts3SegReaderStep(Fts3Table *, Fts3MultiSegReader *);
125915 SQLITE_PRIVATE void sqlite3Fts3SegReaderFinish(Fts3MultiSegReader *);
125916 
125917 SQLITE_PRIVATE int sqlite3Fts3SegReaderCursor(Fts3Table *,
125918     int, int, int, const char *, int, int, int, Fts3MultiSegReader *);
125919 
125920 /* Flags allowed as part of the 4th argument to SegmentReaderIterate() */
125921 #define FTS3_SEGMENT_REQUIRE_POS   0x00000001
125922 #define FTS3_SEGMENT_IGNORE_EMPTY  0x00000002
125923 #define FTS3_SEGMENT_COLUMN_FILTER 0x00000004
125924 #define FTS3_SEGMENT_PREFIX        0x00000008
125925 #define FTS3_SEGMENT_SCAN          0x00000010
125926 #define FTS3_SEGMENT_FIRST         0x00000020
125927 
125928 /* Type passed as 4th argument to SegmentReaderIterate() */
125929 struct Fts3SegFilter {
125930   const char *zTerm;
125931   int nTerm;
125932   int iCol;
125933   int flags;
125934 };
125935 
125936 struct Fts3MultiSegReader {
125937   /* Used internally by sqlite3Fts3SegReaderXXX() calls */
125938   Fts3SegReader **apSegment;      /* Array of Fts3SegReader objects */
125939   int nSegment;                   /* Size of apSegment array */
125940   int nAdvance;                   /* How many seg-readers to advance */
125941   Fts3SegFilter *pFilter;         /* Pointer to filter object */
125942   char *aBuffer;                  /* Buffer to merge doclists in */
125943   int nBuffer;                    /* Allocated size of aBuffer[] in bytes */
125944 
125945   int iColFilter;                 /* If >=0, filter for this column */
125946   int bRestart;
125947 
125948   /* Used by fts3.c only. */
125949   int nCost;                      /* Cost of running iterator */
125950   int bLookup;                    /* True if a lookup of a single entry. */
125951 
125952   /* Output values. Valid only after Fts3SegReaderStep() returns SQLITE_ROW. */
125953   char *zTerm;                    /* Pointer to term buffer */
125954   int nTerm;                      /* Size of zTerm in bytes */
125955   char *aDoclist;                 /* Pointer to doclist buffer */
125956   int nDoclist;                   /* Size of aDoclist[] in bytes */
125957 };
125958 
125959 SQLITE_PRIVATE int sqlite3Fts3Incrmerge(Fts3Table*,int,int);
125960 
125961 #define fts3GetVarint32(p, piVal) (                                           \
125962   (*(u8*)(p)&0x80) ? sqlite3Fts3GetVarint32(p, piVal) : (*piVal=*(u8*)(p), 1) \
125963 )
125964 
125965 /* fts3.c */
125966 SQLITE_PRIVATE int sqlite3Fts3PutVarint(char *, sqlite3_int64);
125967 SQLITE_PRIVATE int sqlite3Fts3GetVarint(const char *, sqlite_int64 *);
125968 SQLITE_PRIVATE int sqlite3Fts3GetVarint32(const char *, int *);
125969 SQLITE_PRIVATE int sqlite3Fts3VarintLen(sqlite3_uint64);
125970 SQLITE_PRIVATE void sqlite3Fts3Dequote(char *);
125971 SQLITE_PRIVATE void sqlite3Fts3DoclistPrev(int,char*,int,char**,sqlite3_int64*,int*,u8*);
125972 SQLITE_PRIVATE int sqlite3Fts3EvalPhraseStats(Fts3Cursor *, Fts3Expr *, u32 *);
125973 SQLITE_PRIVATE int sqlite3Fts3FirstFilter(sqlite3_int64, char *, int, char *);
125974 SQLITE_PRIVATE void sqlite3Fts3CreateStatTable(int*, Fts3Table*);
125975 
125976 /* fts3_tokenizer.c */
125977 SQLITE_PRIVATE const char *sqlite3Fts3NextToken(const char *, int *);
125978 SQLITE_PRIVATE int sqlite3Fts3InitHashTable(sqlite3 *, Fts3Hash *, const char *);
125979 SQLITE_PRIVATE int sqlite3Fts3InitTokenizer(Fts3Hash *pHash, const char *,
125980     sqlite3_tokenizer **, char **
125981 );
125982 SQLITE_PRIVATE int sqlite3Fts3IsIdChar(char);
125983 
125984 /* fts3_snippet.c */
125985 SQLITE_PRIVATE void sqlite3Fts3Offsets(sqlite3_context*, Fts3Cursor*);
125986 SQLITE_PRIVATE void sqlite3Fts3Snippet(sqlite3_context *, Fts3Cursor *, const char *,
125987   const char *, const char *, int, int
125988 );
125989 SQLITE_PRIVATE void sqlite3Fts3Matchinfo(sqlite3_context *, Fts3Cursor *, const char *);
125990 
125991 /* fts3_expr.c */
125992 SQLITE_PRIVATE int sqlite3Fts3ExprParse(sqlite3_tokenizer *, int,
125993   char **, int, int, int, const char *, int, Fts3Expr **, char **
125994 );
125995 SQLITE_PRIVATE void sqlite3Fts3ExprFree(Fts3Expr *);
125996 #ifdef SQLITE_TEST
125997 SQLITE_PRIVATE int sqlite3Fts3ExprInitTestInterface(sqlite3 *db);
125998 SQLITE_PRIVATE int sqlite3Fts3InitTerm(sqlite3 *db);
125999 #endif
126000 
126001 SQLITE_PRIVATE int sqlite3Fts3OpenTokenizer(sqlite3_tokenizer *, int, const char *, int,
126002   sqlite3_tokenizer_cursor **
126003 );
126004 
126005 /* fts3_aux.c */
126006 SQLITE_PRIVATE int sqlite3Fts3InitAux(sqlite3 *db);
126007 
126008 SQLITE_PRIVATE void sqlite3Fts3EvalPhraseCleanup(Fts3Phrase *);
126009 
126010 SQLITE_PRIVATE int sqlite3Fts3MsrIncrStart(
126011     Fts3Table*, Fts3MultiSegReader*, int, const char*, int);
126012 SQLITE_PRIVATE int sqlite3Fts3MsrIncrNext(
126013     Fts3Table *, Fts3MultiSegReader *, sqlite3_int64 *, char **, int *);
126014 SQLITE_PRIVATE int sqlite3Fts3EvalPhrasePoslist(Fts3Cursor *, Fts3Expr *, int iCol, char **);
126015 SQLITE_PRIVATE int sqlite3Fts3MsrOvfl(Fts3Cursor *, Fts3MultiSegReader *, int *);
126016 SQLITE_PRIVATE int sqlite3Fts3MsrIncrRestart(Fts3MultiSegReader *pCsr);
126017 
126018 /* fts3_tokenize_vtab.c */
126019 SQLITE_PRIVATE int sqlite3Fts3InitTok(sqlite3*, Fts3Hash *);
126020 
126021 /* fts3_unicode2.c (functions generated by parsing unicode text files) */
126022 #ifdef SQLITE_ENABLE_FTS4_UNICODE61
126023 SQLITE_PRIVATE int sqlite3FtsUnicodeFold(int, int);
126024 SQLITE_PRIVATE int sqlite3FtsUnicodeIsalnum(int);
126025 SQLITE_PRIVATE int sqlite3FtsUnicodeIsdiacritic(int);
126026 #endif
126027 
126028 #endif /* !SQLITE_CORE || SQLITE_ENABLE_FTS3 */
126029 #endif /* _FTSINT_H */
126030 
126031 /************** End of fts3Int.h *********************************************/
126032 /************** Continuing where we left off in fts3.c ***********************/
126033 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
126034 
126035 #if defined(SQLITE_ENABLE_FTS3) && !defined(SQLITE_CORE)
126036 # define SQLITE_CORE 1
126037 #endif
126038 
126039 /* #include <assert.h> */
126040 /* #include <stdlib.h> */
126041 /* #include <stddef.h> */
126042 /* #include <stdio.h> */
126043 /* #include <string.h> */
126044 /* #include <stdarg.h> */
126045 
126046 #ifndef SQLITE_CORE
126047   SQLITE_EXTENSION_INIT1
126048 #endif
126049 
126050 static int fts3EvalNext(Fts3Cursor *pCsr);
126051 static int fts3EvalStart(Fts3Cursor *pCsr);
126052 static int fts3TermSegReaderCursor(
126053     Fts3Cursor *, const char *, int, int, Fts3MultiSegReader **);
126054 
126055 /*
126056 ** Write a 64-bit variable-length integer to memory starting at p[0].
126057 ** The length of data written will be between 1 and FTS3_VARINT_MAX bytes.
126058 ** The number of bytes written is returned.
126059 */
126060 SQLITE_PRIVATE int sqlite3Fts3PutVarint(char *p, sqlite_int64 v){
126061   unsigned char *q = (unsigned char *) p;
126062   sqlite_uint64 vu = v;
126063   do{
126064     *q++ = (unsigned char) ((vu & 0x7f) | 0x80);
126065     vu >>= 7;
126066   }while( vu!=0 );
126067   q[-1] &= 0x7f;  /* turn off high bit in final byte */
126068   assert( q - (unsigned char *)p <= FTS3_VARINT_MAX );
126069   return (int) (q - (unsigned char *)p);
126070 }
126071 
126072 #define GETVARINT_STEP(v, ptr, shift, mask1, mask2, var, ret) \
126073   v = (v & mask1) | ( (*ptr++) << shift );                    \
126074   if( (v & mask2)==0 ){ var = v; return ret; }
126075 #define GETVARINT_INIT(v, ptr, shift, mask1, mask2, var, ret) \
126076   v = (*ptr++);                                               \
126077   if( (v & mask2)==0 ){ var = v; return ret; }
126078 
126079 /*
126080 ** Read a 64-bit variable-length integer from memory starting at p[0].
126081 ** Return the number of bytes read, or 0 on error.
126082 ** The value is stored in *v.
126083 */
126084 SQLITE_PRIVATE int sqlite3Fts3GetVarint(const char *p, sqlite_int64 *v){
126085   const char *pStart = p;
126086   u32 a;
126087   u64 b;
126088   int shift;
126089 
126090   GETVARINT_INIT(a, p, 0,  0x00,     0x80, *v, 1);
126091   GETVARINT_STEP(a, p, 7,  0x7F,     0x4000, *v, 2);
126092   GETVARINT_STEP(a, p, 14, 0x3FFF,   0x200000, *v, 3);
126093   GETVARINT_STEP(a, p, 21, 0x1FFFFF, 0x10000000, *v, 4);
126094   b = (a & 0x0FFFFFFF );
126095 
126096   for(shift=28; shift<=63; shift+=7){
126097     u64 c = *p++;
126098     b += (c&0x7F) << shift;
126099     if( (c & 0x80)==0 ) break;
126100   }
126101   *v = b;
126102   return (int)(p - pStart);
126103 }
126104 
126105 /*
126106 ** Similar to sqlite3Fts3GetVarint(), except that the output is truncated to a
126107 ** 32-bit integer before it is returned.
126108 */
126109 SQLITE_PRIVATE int sqlite3Fts3GetVarint32(const char *p, int *pi){
126110   u32 a;
126111 
126112 #ifndef fts3GetVarint32
126113   GETVARINT_INIT(a, p, 0,  0x00,     0x80, *pi, 1);
126114 #else
126115   a = (*p++);
126116   assert( a & 0x80 );
126117 #endif
126118 
126119   GETVARINT_STEP(a, p, 7,  0x7F,     0x4000, *pi, 2);
126120   GETVARINT_STEP(a, p, 14, 0x3FFF,   0x200000, *pi, 3);
126121   GETVARINT_STEP(a, p, 21, 0x1FFFFF, 0x10000000, *pi, 4);
126122   a = (a & 0x0FFFFFFF );
126123   *pi = (int)(a | ((u32)(*p & 0x0F) << 28));
126124   return 5;
126125 }
126126 
126127 /*
126128 ** Return the number of bytes required to encode v as a varint
126129 */
126130 SQLITE_PRIVATE int sqlite3Fts3VarintLen(sqlite3_uint64 v){
126131   int i = 0;
126132   do{
126133     i++;
126134     v >>= 7;
126135   }while( v!=0 );
126136   return i;
126137 }
126138 
126139 /*
126140 ** Convert an SQL-style quoted string into a normal string by removing
126141 ** the quote characters.  The conversion is done in-place.  If the
126142 ** input does not begin with a quote character, then this routine
126143 ** is a no-op.
126144 **
126145 ** Examples:
126146 **
126147 **     "abc"   becomes   abc
126148 **     'xyz'   becomes   xyz
126149 **     [pqr]   becomes   pqr
126150 **     `mno`   becomes   mno
126151 **
126152 */
126153 SQLITE_PRIVATE void sqlite3Fts3Dequote(char *z){
126154   char quote;                     /* Quote character (if any ) */
126155 
126156   quote = z[0];
126157   if( quote=='[' || quote=='\'' || quote=='"' || quote=='`' ){
126158     int iIn = 1;                  /* Index of next byte to read from input */
126159     int iOut = 0;                 /* Index of next byte to write to output */
126160 
126161     /* If the first byte was a '[', then the close-quote character is a ']' */
126162     if( quote=='[' ) quote = ']';
126163 
126164     while( ALWAYS(z[iIn]) ){
126165       if( z[iIn]==quote ){
126166         if( z[iIn+1]!=quote ) break;
126167         z[iOut++] = quote;
126168         iIn += 2;
126169       }else{
126170         z[iOut++] = z[iIn++];
126171       }
126172     }
126173     z[iOut] = '\0';
126174   }
126175 }
126176 
126177 /*
126178 ** Read a single varint from the doclist at *pp and advance *pp to point
126179 ** to the first byte past the end of the varint.  Add the value of the varint
126180 ** to *pVal.
126181 */
126182 static void fts3GetDeltaVarint(char **pp, sqlite3_int64 *pVal){
126183   sqlite3_int64 iVal;
126184   *pp += sqlite3Fts3GetVarint(*pp, &iVal);
126185   *pVal += iVal;
126186 }
126187 
126188 /*
126189 ** When this function is called, *pp points to the first byte following a
126190 ** varint that is part of a doclist (or position-list, or any other list
126191 ** of varints). This function moves *pp to point to the start of that varint,
126192 ** and sets *pVal by the varint value.
126193 **
126194 ** Argument pStart points to the first byte of the doclist that the
126195 ** varint is part of.
126196 */
126197 static void fts3GetReverseVarint(
126198   char **pp,
126199   char *pStart,
126200   sqlite3_int64 *pVal
126201 ){
126202   sqlite3_int64 iVal;
126203   char *p;
126204 
126205   /* Pointer p now points at the first byte past the varint we are
126206   ** interested in. So, unless the doclist is corrupt, the 0x80 bit is
126207   ** clear on character p[-1]. */
126208   for(p = (*pp)-2; p>=pStart && *p&0x80; p--);
126209   p++;
126210   *pp = p;
126211 
126212   sqlite3Fts3GetVarint(p, &iVal);
126213   *pVal = iVal;
126214 }
126215 
126216 /*
126217 ** The xDisconnect() virtual table method.
126218 */
126219 static int fts3DisconnectMethod(sqlite3_vtab *pVtab){
126220   Fts3Table *p = (Fts3Table *)pVtab;
126221   int i;
126222 
126223   assert( p->nPendingData==0 );
126224   assert( p->pSegments==0 );
126225 
126226   /* Free any prepared statements held */
126227   for(i=0; i<SizeofArray(p->aStmt); i++){
126228     sqlite3_finalize(p->aStmt[i]);
126229   }
126230   sqlite3_free(p->zSegmentsTbl);
126231   sqlite3_free(p->zReadExprlist);
126232   sqlite3_free(p->zWriteExprlist);
126233   sqlite3_free(p->zContentTbl);
126234   sqlite3_free(p->zLanguageid);
126235 
126236   /* Invoke the tokenizer destructor to free the tokenizer. */
126237   p->pTokenizer->pModule->xDestroy(p->pTokenizer);
126238 
126239   sqlite3_free(p);
126240   return SQLITE_OK;
126241 }
126242 
126243 /*
126244 ** Construct one or more SQL statements from the format string given
126245 ** and then evaluate those statements. The success code is written
126246 ** into *pRc.
126247 **
126248 ** If *pRc is initially non-zero then this routine is a no-op.
126249 */
126250 static void fts3DbExec(
126251   int *pRc,              /* Success code */
126252   sqlite3 *db,           /* Database in which to run SQL */
126253   const char *zFormat,   /* Format string for SQL */
126254   ...                    /* Arguments to the format string */
126255 ){
126256   va_list ap;
126257   char *zSql;
126258   if( *pRc ) return;
126259   va_start(ap, zFormat);
126260   zSql = sqlite3_vmprintf(zFormat, ap);
126261   va_end(ap);
126262   if( zSql==0 ){
126263     *pRc = SQLITE_NOMEM;
126264   }else{
126265     *pRc = sqlite3_exec(db, zSql, 0, 0, 0);
126266     sqlite3_free(zSql);
126267   }
126268 }
126269 
126270 /*
126271 ** The xDestroy() virtual table method.
126272 */
126273 static int fts3DestroyMethod(sqlite3_vtab *pVtab){
126274   Fts3Table *p = (Fts3Table *)pVtab;
126275   int rc = SQLITE_OK;              /* Return code */
126276   const char *zDb = p->zDb;        /* Name of database (e.g. "main", "temp") */
126277   sqlite3 *db = p->db;             /* Database handle */
126278 
126279   /* Drop the shadow tables */
126280   if( p->zContentTbl==0 ){
126281     fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_content'", zDb, p->zName);
126282   }
126283   fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_segments'", zDb,p->zName);
126284   fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_segdir'", zDb, p->zName);
126285   fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_docsize'", zDb, p->zName);
126286   fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_stat'", zDb, p->zName);
126287 
126288   /* If everything has worked, invoke fts3DisconnectMethod() to free the
126289   ** memory associated with the Fts3Table structure and return SQLITE_OK.
126290   ** Otherwise, return an SQLite error code.
126291   */
126292   return (rc==SQLITE_OK ? fts3DisconnectMethod(pVtab) : rc);
126293 }
126294 
126295 
126296 /*
126297 ** Invoke sqlite3_declare_vtab() to declare the schema for the FTS3 table
126298 ** passed as the first argument. This is done as part of the xConnect()
126299 ** and xCreate() methods.
126300 **
126301 ** If *pRc is non-zero when this function is called, it is a no-op.
126302 ** Otherwise, if an error occurs, an SQLite error code is stored in *pRc
126303 ** before returning.
126304 */
126305 static void fts3DeclareVtab(int *pRc, Fts3Table *p){
126306   if( *pRc==SQLITE_OK ){
126307     int i;                        /* Iterator variable */
126308     int rc;                       /* Return code */
126309     char *zSql;                   /* SQL statement passed to declare_vtab() */
126310     char *zCols;                  /* List of user defined columns */
126311     const char *zLanguageid;
126312 
126313     zLanguageid = (p->zLanguageid ? p->zLanguageid : "__langid");
126314     sqlite3_vtab_config(p->db, SQLITE_VTAB_CONSTRAINT_SUPPORT, 1);
126315 
126316     /* Create a list of user columns for the virtual table */
126317     zCols = sqlite3_mprintf("%Q, ", p->azColumn[0]);
126318     for(i=1; zCols && i<p->nColumn; i++){
126319       zCols = sqlite3_mprintf("%z%Q, ", zCols, p->azColumn[i]);
126320     }
126321 
126322     /* Create the whole "CREATE TABLE" statement to pass to SQLite */
126323     zSql = sqlite3_mprintf(
126324         "CREATE TABLE x(%s %Q HIDDEN, docid HIDDEN, %Q HIDDEN)",
126325         zCols, p->zName, zLanguageid
126326     );
126327     if( !zCols || !zSql ){
126328       rc = SQLITE_NOMEM;
126329     }else{
126330       rc = sqlite3_declare_vtab(p->db, zSql);
126331     }
126332 
126333     sqlite3_free(zSql);
126334     sqlite3_free(zCols);
126335     *pRc = rc;
126336   }
126337 }
126338 
126339 /*
126340 ** Create the %_stat table if it does not already exist.
126341 */
126342 SQLITE_PRIVATE void sqlite3Fts3CreateStatTable(int *pRc, Fts3Table *p){
126343   fts3DbExec(pRc, p->db,
126344       "CREATE TABLE IF NOT EXISTS %Q.'%q_stat'"
126345           "(id INTEGER PRIMARY KEY, value BLOB);",
126346       p->zDb, p->zName
126347   );
126348   if( (*pRc)==SQLITE_OK ) p->bHasStat = 1;
126349 }
126350 
126351 /*
126352 ** Create the backing store tables (%_content, %_segments and %_segdir)
126353 ** required by the FTS3 table passed as the only argument. This is done
126354 ** as part of the vtab xCreate() method.
126355 **
126356 ** If the p->bHasDocsize boolean is true (indicating that this is an
126357 ** FTS4 table, not an FTS3 table) then also create the %_docsize and
126358 ** %_stat tables required by FTS4.
126359 */
126360 static int fts3CreateTables(Fts3Table *p){
126361   int rc = SQLITE_OK;             /* Return code */
126362   int i;                          /* Iterator variable */
126363   sqlite3 *db = p->db;            /* The database connection */
126364 
126365   if( p->zContentTbl==0 ){
126366     const char *zLanguageid = p->zLanguageid;
126367     char *zContentCols;           /* Columns of %_content table */
126368 
126369     /* Create a list of user columns for the content table */
126370     zContentCols = sqlite3_mprintf("docid INTEGER PRIMARY KEY");
126371     for(i=0; zContentCols && i<p->nColumn; i++){
126372       char *z = p->azColumn[i];
126373       zContentCols = sqlite3_mprintf("%z, 'c%d%q'", zContentCols, i, z);
126374     }
126375     if( zLanguageid && zContentCols ){
126376       zContentCols = sqlite3_mprintf("%z, langid", zContentCols, zLanguageid);
126377     }
126378     if( zContentCols==0 ) rc = SQLITE_NOMEM;
126379 
126380     /* Create the content table */
126381     fts3DbExec(&rc, db,
126382        "CREATE TABLE %Q.'%q_content'(%s)",
126383        p->zDb, p->zName, zContentCols
126384     );
126385     sqlite3_free(zContentCols);
126386   }
126387 
126388   /* Create other tables */
126389   fts3DbExec(&rc, db,
126390       "CREATE TABLE %Q.'%q_segments'(blockid INTEGER PRIMARY KEY, block BLOB);",
126391       p->zDb, p->zName
126392   );
126393   fts3DbExec(&rc, db,
126394       "CREATE TABLE %Q.'%q_segdir'("
126395         "level INTEGER,"
126396         "idx INTEGER,"
126397         "start_block INTEGER,"
126398         "leaves_end_block INTEGER,"
126399         "end_block INTEGER,"
126400         "root BLOB,"
126401         "PRIMARY KEY(level, idx)"
126402       ");",
126403       p->zDb, p->zName
126404   );
126405   if( p->bHasDocsize ){
126406     fts3DbExec(&rc, db,
126407         "CREATE TABLE %Q.'%q_docsize'(docid INTEGER PRIMARY KEY, size BLOB);",
126408         p->zDb, p->zName
126409     );
126410   }
126411   assert( p->bHasStat==p->bFts4 );
126412   if( p->bHasStat ){
126413     sqlite3Fts3CreateStatTable(&rc, p);
126414   }
126415   return rc;
126416 }
126417 
126418 /*
126419 ** Store the current database page-size in bytes in p->nPgsz.
126420 **
126421 ** If *pRc is non-zero when this function is called, it is a no-op.
126422 ** Otherwise, if an error occurs, an SQLite error code is stored in *pRc
126423 ** before returning.
126424 */
126425 static void fts3DatabasePageSize(int *pRc, Fts3Table *p){
126426   if( *pRc==SQLITE_OK ){
126427     int rc;                       /* Return code */
126428     char *zSql;                   /* SQL text "PRAGMA %Q.page_size" */
126429     sqlite3_stmt *pStmt;          /* Compiled "PRAGMA %Q.page_size" statement */
126430 
126431     zSql = sqlite3_mprintf("PRAGMA %Q.page_size", p->zDb);
126432     if( !zSql ){
126433       rc = SQLITE_NOMEM;
126434     }else{
126435       rc = sqlite3_prepare(p->db, zSql, -1, &pStmt, 0);
126436       if( rc==SQLITE_OK ){
126437         sqlite3_step(pStmt);
126438         p->nPgsz = sqlite3_column_int(pStmt, 0);
126439         rc = sqlite3_finalize(pStmt);
126440       }else if( rc==SQLITE_AUTH ){
126441         p->nPgsz = 1024;
126442         rc = SQLITE_OK;
126443       }
126444     }
126445     assert( p->nPgsz>0 || rc!=SQLITE_OK );
126446     sqlite3_free(zSql);
126447     *pRc = rc;
126448   }
126449 }
126450 
126451 /*
126452 ** "Special" FTS4 arguments are column specifications of the following form:
126453 **
126454 **   <key> = <value>
126455 **
126456 ** There may not be whitespace surrounding the "=" character. The <value>
126457 ** term may be quoted, but the <key> may not.
126458 */
126459 static int fts3IsSpecialColumn(
126460   const char *z,
126461   int *pnKey,
126462   char **pzValue
126463 ){
126464   char *zValue;
126465   const char *zCsr = z;
126466 
126467   while( *zCsr!='=' ){
126468     if( *zCsr=='\0' ) return 0;
126469     zCsr++;
126470   }
126471 
126472   *pnKey = (int)(zCsr-z);
126473   zValue = sqlite3_mprintf("%s", &zCsr[1]);
126474   if( zValue ){
126475     sqlite3Fts3Dequote(zValue);
126476   }
126477   *pzValue = zValue;
126478   return 1;
126479 }
126480 
126481 /*
126482 ** Append the output of a printf() style formatting to an existing string.
126483 */
126484 static void fts3Appendf(
126485   int *pRc,                       /* IN/OUT: Error code */
126486   char **pz,                      /* IN/OUT: Pointer to string buffer */
126487   const char *zFormat,            /* Printf format string to append */
126488   ...                             /* Arguments for printf format string */
126489 ){
126490   if( *pRc==SQLITE_OK ){
126491     va_list ap;
126492     char *z;
126493     va_start(ap, zFormat);
126494     z = sqlite3_vmprintf(zFormat, ap);
126495     va_end(ap);
126496     if( z && *pz ){
126497       char *z2 = sqlite3_mprintf("%s%s", *pz, z);
126498       sqlite3_free(z);
126499       z = z2;
126500     }
126501     if( z==0 ) *pRc = SQLITE_NOMEM;
126502     sqlite3_free(*pz);
126503     *pz = z;
126504   }
126505 }
126506 
126507 /*
126508 ** Return a copy of input string zInput enclosed in double-quotes (") and
126509 ** with all double quote characters escaped. For example:
126510 **
126511 **     fts3QuoteId("un \"zip\"")   ->    "un \"\"zip\"\""
126512 **
126513 ** The pointer returned points to memory obtained from sqlite3_malloc(). It
126514 ** is the callers responsibility to call sqlite3_free() to release this
126515 ** memory.
126516 */
126517 static char *fts3QuoteId(char const *zInput){
126518   int nRet;
126519   char *zRet;
126520   nRet = 2 + (int)strlen(zInput)*2 + 1;
126521   zRet = sqlite3_malloc(nRet);
126522   if( zRet ){
126523     int i;
126524     char *z = zRet;
126525     *(z++) = '"';
126526     for(i=0; zInput[i]; i++){
126527       if( zInput[i]=='"' ) *(z++) = '"';
126528       *(z++) = zInput[i];
126529     }
126530     *(z++) = '"';
126531     *(z++) = '\0';
126532   }
126533   return zRet;
126534 }
126535 
126536 /*
126537 ** Return a list of comma separated SQL expressions and a FROM clause that
126538 ** could be used in a SELECT statement such as the following:
126539 **
126540 **     SELECT <list of expressions> FROM %_content AS x ...
126541 **
126542 ** to return the docid, followed by each column of text data in order
126543 ** from left to write. If parameter zFunc is not NULL, then instead of
126544 ** being returned directly each column of text data is passed to an SQL
126545 ** function named zFunc first. For example, if zFunc is "unzip" and the
126546 ** table has the three user-defined columns "a", "b", and "c", the following
126547 ** string is returned:
126548 **
126549 **     "docid, unzip(x.'a'), unzip(x.'b'), unzip(x.'c') FROM %_content AS x"
126550 **
126551 ** The pointer returned points to a buffer allocated by sqlite3_malloc(). It
126552 ** is the responsibility of the caller to eventually free it.
126553 **
126554 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op (and
126555 ** a NULL pointer is returned). Otherwise, if an OOM error is encountered
126556 ** by this function, NULL is returned and *pRc is set to SQLITE_NOMEM. If
126557 ** no error occurs, *pRc is left unmodified.
126558 */
126559 static char *fts3ReadExprList(Fts3Table *p, const char *zFunc, int *pRc){
126560   char *zRet = 0;
126561   char *zFree = 0;
126562   char *zFunction;
126563   int i;
126564 
126565   if( p->zContentTbl==0 ){
126566     if( !zFunc ){
126567       zFunction = "";
126568     }else{
126569       zFree = zFunction = fts3QuoteId(zFunc);
126570     }
126571     fts3Appendf(pRc, &zRet, "docid");
126572     for(i=0; i<p->nColumn; i++){
126573       fts3Appendf(pRc, &zRet, ",%s(x.'c%d%q')", zFunction, i, p->azColumn[i]);
126574     }
126575     if( p->zLanguageid ){
126576       fts3Appendf(pRc, &zRet, ", x.%Q", "langid");
126577     }
126578     sqlite3_free(zFree);
126579   }else{
126580     fts3Appendf(pRc, &zRet, "rowid");
126581     for(i=0; i<p->nColumn; i++){
126582       fts3Appendf(pRc, &zRet, ", x.'%q'", p->azColumn[i]);
126583     }
126584     if( p->zLanguageid ){
126585       fts3Appendf(pRc, &zRet, ", x.%Q", p->zLanguageid);
126586     }
126587   }
126588   fts3Appendf(pRc, &zRet, " FROM '%q'.'%q%s' AS x",
126589       p->zDb,
126590       (p->zContentTbl ? p->zContentTbl : p->zName),
126591       (p->zContentTbl ? "" : "_content")
126592   );
126593   return zRet;
126594 }
126595 
126596 /*
126597 ** Return a list of N comma separated question marks, where N is the number
126598 ** of columns in the %_content table (one for the docid plus one for each
126599 ** user-defined text column).
126600 **
126601 ** If argument zFunc is not NULL, then all but the first question mark
126602 ** is preceded by zFunc and an open bracket, and followed by a closed
126603 ** bracket. For example, if zFunc is "zip" and the FTS3 table has three
126604 ** user-defined text columns, the following string is returned:
126605 **
126606 **     "?, zip(?), zip(?), zip(?)"
126607 **
126608 ** The pointer returned points to a buffer allocated by sqlite3_malloc(). It
126609 ** is the responsibility of the caller to eventually free it.
126610 **
126611 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op (and
126612 ** a NULL pointer is returned). Otherwise, if an OOM error is encountered
126613 ** by this function, NULL is returned and *pRc is set to SQLITE_NOMEM. If
126614 ** no error occurs, *pRc is left unmodified.
126615 */
126616 static char *fts3WriteExprList(Fts3Table *p, const char *zFunc, int *pRc){
126617   char *zRet = 0;
126618   char *zFree = 0;
126619   char *zFunction;
126620   int i;
126621 
126622   if( !zFunc ){
126623     zFunction = "";
126624   }else{
126625     zFree = zFunction = fts3QuoteId(zFunc);
126626   }
126627   fts3Appendf(pRc, &zRet, "?");
126628   for(i=0; i<p->nColumn; i++){
126629     fts3Appendf(pRc, &zRet, ",%s(?)", zFunction);
126630   }
126631   if( p->zLanguageid ){
126632     fts3Appendf(pRc, &zRet, ", ?");
126633   }
126634   sqlite3_free(zFree);
126635   return zRet;
126636 }
126637 
126638 /*
126639 ** This function interprets the string at (*pp) as a non-negative integer
126640 ** value. It reads the integer and sets *pnOut to the value read, then
126641 ** sets *pp to point to the byte immediately following the last byte of
126642 ** the integer value.
126643 **
126644 ** Only decimal digits ('0'..'9') may be part of an integer value.
126645 **
126646 ** If *pp does not being with a decimal digit SQLITE_ERROR is returned and
126647 ** the output value undefined. Otherwise SQLITE_OK is returned.
126648 **
126649 ** This function is used when parsing the "prefix=" FTS4 parameter.
126650 */
126651 static int fts3GobbleInt(const char **pp, int *pnOut){
126652   const char *p;                  /* Iterator pointer */
126653   int nInt = 0;                   /* Output value */
126654 
126655   for(p=*pp; p[0]>='0' && p[0]<='9'; p++){
126656     nInt = nInt * 10 + (p[0] - '0');
126657   }
126658   if( p==*pp ) return SQLITE_ERROR;
126659   *pnOut = nInt;
126660   *pp = p;
126661   return SQLITE_OK;
126662 }
126663 
126664 /*
126665 ** This function is called to allocate an array of Fts3Index structures
126666 ** representing the indexes maintained by the current FTS table. FTS tables
126667 ** always maintain the main "terms" index, but may also maintain one or
126668 ** more "prefix" indexes, depending on the value of the "prefix=" parameter
126669 ** (if any) specified as part of the CREATE VIRTUAL TABLE statement.
126670 **
126671 ** Argument zParam is passed the value of the "prefix=" option if one was
126672 ** specified, or NULL otherwise.
126673 **
126674 ** If no error occurs, SQLITE_OK is returned and *apIndex set to point to
126675 ** the allocated array. *pnIndex is set to the number of elements in the
126676 ** array. If an error does occur, an SQLite error code is returned.
126677 **
126678 ** Regardless of whether or not an error is returned, it is the responsibility
126679 ** of the caller to call sqlite3_free() on the output array to free it.
126680 */
126681 static int fts3PrefixParameter(
126682   const char *zParam,             /* ABC in prefix=ABC parameter to parse */
126683   int *pnIndex,                   /* OUT: size of *apIndex[] array */
126684   struct Fts3Index **apIndex      /* OUT: Array of indexes for this table */
126685 ){
126686   struct Fts3Index *aIndex;       /* Allocated array */
126687   int nIndex = 1;                 /* Number of entries in array */
126688 
126689   if( zParam && zParam[0] ){
126690     const char *p;
126691     nIndex++;
126692     for(p=zParam; *p; p++){
126693       if( *p==',' ) nIndex++;
126694     }
126695   }
126696 
126697   aIndex = sqlite3_malloc(sizeof(struct Fts3Index) * nIndex);
126698   *apIndex = aIndex;
126699   *pnIndex = nIndex;
126700   if( !aIndex ){
126701     return SQLITE_NOMEM;
126702   }
126703 
126704   memset(aIndex, 0, sizeof(struct Fts3Index) * nIndex);
126705   if( zParam ){
126706     const char *p = zParam;
126707     int i;
126708     for(i=1; i<nIndex; i++){
126709       int nPrefix;
126710       if( fts3GobbleInt(&p, &nPrefix) ) return SQLITE_ERROR;
126711       aIndex[i].nPrefix = nPrefix;
126712       p++;
126713     }
126714   }
126715 
126716   return SQLITE_OK;
126717 }
126718 
126719 /*
126720 ** This function is called when initializing an FTS4 table that uses the
126721 ** content=xxx option. It determines the number of and names of the columns
126722 ** of the new FTS4 table.
126723 **
126724 ** The third argument passed to this function is the value passed to the
126725 ** config=xxx option (i.e. "xxx"). This function queries the database for
126726 ** a table of that name. If found, the output variables are populated
126727 ** as follows:
126728 **
126729 **   *pnCol:   Set to the number of columns table xxx has,
126730 **
126731 **   *pnStr:   Set to the total amount of space required to store a copy
126732 **             of each columns name, including the nul-terminator.
126733 **
126734 **   *pazCol:  Set to point to an array of *pnCol strings. Each string is
126735 **             the name of the corresponding column in table xxx. The array
126736 **             and its contents are allocated using a single allocation. It
126737 **             is the responsibility of the caller to free this allocation
126738 **             by eventually passing the *pazCol value to sqlite3_free().
126739 **
126740 ** If the table cannot be found, an error code is returned and the output
126741 ** variables are undefined. Or, if an OOM is encountered, SQLITE_NOMEM is
126742 ** returned (and the output variables are undefined).
126743 */
126744 static int fts3ContentColumns(
126745   sqlite3 *db,                    /* Database handle */
126746   const char *zDb,                /* Name of db (i.e. "main", "temp" etc.) */
126747   const char *zTbl,               /* Name of content table */
126748   const char ***pazCol,           /* OUT: Malloc'd array of column names */
126749   int *pnCol,                     /* OUT: Size of array *pazCol */
126750   int *pnStr                      /* OUT: Bytes of string content */
126751 ){
126752   int rc = SQLITE_OK;             /* Return code */
126753   char *zSql;                     /* "SELECT *" statement on zTbl */
126754   sqlite3_stmt *pStmt = 0;        /* Compiled version of zSql */
126755 
126756   zSql = sqlite3_mprintf("SELECT * FROM %Q.%Q", zDb, zTbl);
126757   if( !zSql ){
126758     rc = SQLITE_NOMEM;
126759   }else{
126760     rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
126761   }
126762   sqlite3_free(zSql);
126763 
126764   if( rc==SQLITE_OK ){
126765     const char **azCol;           /* Output array */
126766     int nStr = 0;                 /* Size of all column names (incl. 0x00) */
126767     int nCol;                     /* Number of table columns */
126768     int i;                        /* Used to iterate through columns */
126769 
126770     /* Loop through the returned columns. Set nStr to the number of bytes of
126771     ** space required to store a copy of each column name, including the
126772     ** nul-terminator byte.  */
126773     nCol = sqlite3_column_count(pStmt);
126774     for(i=0; i<nCol; i++){
126775       const char *zCol = sqlite3_column_name(pStmt, i);
126776       nStr += (int)strlen(zCol) + 1;
126777     }
126778 
126779     /* Allocate and populate the array to return. */
126780     azCol = (const char **)sqlite3_malloc(sizeof(char *) * nCol + nStr);
126781     if( azCol==0 ){
126782       rc = SQLITE_NOMEM;
126783     }else{
126784       char *p = (char *)&azCol[nCol];
126785       for(i=0; i<nCol; i++){
126786         const char *zCol = sqlite3_column_name(pStmt, i);
126787         int n = (int)strlen(zCol)+1;
126788         memcpy(p, zCol, n);
126789         azCol[i] = p;
126790         p += n;
126791       }
126792     }
126793     sqlite3_finalize(pStmt);
126794 
126795     /* Set the output variables. */
126796     *pnCol = nCol;
126797     *pnStr = nStr;
126798     *pazCol = azCol;
126799   }
126800 
126801   return rc;
126802 }
126803 
126804 /*
126805 ** This function is the implementation of both the xConnect and xCreate
126806 ** methods of the FTS3 virtual table.
126807 **
126808 ** The argv[] array contains the following:
126809 **
126810 **   argv[0]   -> module name  ("fts3" or "fts4")
126811 **   argv[1]   -> database name
126812 **   argv[2]   -> table name
126813 **   argv[...] -> "column name" and other module argument fields.
126814 */
126815 static int fts3InitVtab(
126816   int isCreate,                   /* True for xCreate, false for xConnect */
126817   sqlite3 *db,                    /* The SQLite database connection */
126818   void *pAux,                     /* Hash table containing tokenizers */
126819   int argc,                       /* Number of elements in argv array */
126820   const char * const *argv,       /* xCreate/xConnect argument array */
126821   sqlite3_vtab **ppVTab,          /* Write the resulting vtab structure here */
126822   char **pzErr                    /* Write any error message here */
126823 ){
126824   Fts3Hash *pHash = (Fts3Hash *)pAux;
126825   Fts3Table *p = 0;               /* Pointer to allocated vtab */
126826   int rc = SQLITE_OK;             /* Return code */
126827   int i;                          /* Iterator variable */
126828   int nByte;                      /* Size of allocation used for *p */
126829   int iCol;                       /* Column index */
126830   int nString = 0;                /* Bytes required to hold all column names */
126831   int nCol = 0;                   /* Number of columns in the FTS table */
126832   char *zCsr;                     /* Space for holding column names */
126833   int nDb;                        /* Bytes required to hold database name */
126834   int nName;                      /* Bytes required to hold table name */
126835   int isFts4 = (argv[0][3]=='4'); /* True for FTS4, false for FTS3 */
126836   const char **aCol;              /* Array of column names */
126837   sqlite3_tokenizer *pTokenizer = 0;        /* Tokenizer for this table */
126838 
126839   int nIndex;                     /* Size of aIndex[] array */
126840   struct Fts3Index *aIndex = 0;   /* Array of indexes for this table */
126841 
126842   /* The results of parsing supported FTS4 key=value options: */
126843   int bNoDocsize = 0;             /* True to omit %_docsize table */
126844   int bDescIdx = 0;               /* True to store descending indexes */
126845   char *zPrefix = 0;              /* Prefix parameter value (or NULL) */
126846   char *zCompress = 0;            /* compress=? parameter (or NULL) */
126847   char *zUncompress = 0;          /* uncompress=? parameter (or NULL) */
126848   char *zContent = 0;             /* content=? parameter (or NULL) */
126849   char *zLanguageid = 0;          /* languageid=? parameter (or NULL) */
126850   char **azNotindexed = 0;        /* The set of notindexed= columns */
126851   int nNotindexed = 0;            /* Size of azNotindexed[] array */
126852 
126853   assert( strlen(argv[0])==4 );
126854   assert( (sqlite3_strnicmp(argv[0], "fts4", 4)==0 && isFts4)
126855        || (sqlite3_strnicmp(argv[0], "fts3", 4)==0 && !isFts4)
126856   );
126857 
126858   nDb = (int)strlen(argv[1]) + 1;
126859   nName = (int)strlen(argv[2]) + 1;
126860 
126861   nByte = sizeof(const char *) * (argc-2);
126862   aCol = (const char **)sqlite3_malloc(nByte);
126863   if( aCol ){
126864     memset((void*)aCol, 0, nByte);
126865     azNotindexed = (char **)sqlite3_malloc(nByte);
126866   }
126867   if( azNotindexed ){
126868     memset(azNotindexed, 0, nByte);
126869   }
126870   if( !aCol || !azNotindexed ){
126871     rc = SQLITE_NOMEM;
126872     goto fts3_init_out;
126873   }
126874 
126875   /* Loop through all of the arguments passed by the user to the FTS3/4
126876   ** module (i.e. all the column names and special arguments). This loop
126877   ** does the following:
126878   **
126879   **   + Figures out the number of columns the FTSX table will have, and
126880   **     the number of bytes of space that must be allocated to store copies
126881   **     of the column names.
126882   **
126883   **   + If there is a tokenizer specification included in the arguments,
126884   **     initializes the tokenizer pTokenizer.
126885   */
126886   for(i=3; rc==SQLITE_OK && i<argc; i++){
126887     char const *z = argv[i];
126888     int nKey;
126889     char *zVal;
126890 
126891     /* Check if this is a tokenizer specification */
126892     if( !pTokenizer
126893      && strlen(z)>8
126894      && 0==sqlite3_strnicmp(z, "tokenize", 8)
126895      && 0==sqlite3Fts3IsIdChar(z[8])
126896     ){
126897       rc = sqlite3Fts3InitTokenizer(pHash, &z[9], &pTokenizer, pzErr);
126898     }
126899 
126900     /* Check if it is an FTS4 special argument. */
126901     else if( isFts4 && fts3IsSpecialColumn(z, &nKey, &zVal) ){
126902       struct Fts4Option {
126903         const char *zOpt;
126904         int nOpt;
126905       } aFts4Opt[] = {
126906         { "matchinfo",   9 },     /* 0 -> MATCHINFO */
126907         { "prefix",      6 },     /* 1 -> PREFIX */
126908         { "compress",    8 },     /* 2 -> COMPRESS */
126909         { "uncompress", 10 },     /* 3 -> UNCOMPRESS */
126910         { "order",       5 },     /* 4 -> ORDER */
126911         { "content",     7 },     /* 5 -> CONTENT */
126912         { "languageid", 10 },     /* 6 -> LANGUAGEID */
126913         { "notindexed", 10 }      /* 7 -> NOTINDEXED */
126914       };
126915 
126916       int iOpt;
126917       if( !zVal ){
126918         rc = SQLITE_NOMEM;
126919       }else{
126920         for(iOpt=0; iOpt<SizeofArray(aFts4Opt); iOpt++){
126921           struct Fts4Option *pOp = &aFts4Opt[iOpt];
126922           if( nKey==pOp->nOpt && !sqlite3_strnicmp(z, pOp->zOpt, pOp->nOpt) ){
126923             break;
126924           }
126925         }
126926         if( iOpt==SizeofArray(aFts4Opt) ){
126927           *pzErr = sqlite3_mprintf("unrecognized parameter: %s", z);
126928           rc = SQLITE_ERROR;
126929         }else{
126930           switch( iOpt ){
126931             case 0:               /* MATCHINFO */
126932               if( strlen(zVal)!=4 || sqlite3_strnicmp(zVal, "fts3", 4) ){
126933                 *pzErr = sqlite3_mprintf("unrecognized matchinfo: %s", zVal);
126934                 rc = SQLITE_ERROR;
126935               }
126936               bNoDocsize = 1;
126937               break;
126938 
126939             case 1:               /* PREFIX */
126940               sqlite3_free(zPrefix);
126941               zPrefix = zVal;
126942               zVal = 0;
126943               break;
126944 
126945             case 2:               /* COMPRESS */
126946               sqlite3_free(zCompress);
126947               zCompress = zVal;
126948               zVal = 0;
126949               break;
126950 
126951             case 3:               /* UNCOMPRESS */
126952               sqlite3_free(zUncompress);
126953               zUncompress = zVal;
126954               zVal = 0;
126955               break;
126956 
126957             case 4:               /* ORDER */
126958               if( (strlen(zVal)!=3 || sqlite3_strnicmp(zVal, "asc", 3))
126959                && (strlen(zVal)!=4 || sqlite3_strnicmp(zVal, "desc", 4))
126960               ){
126961                 *pzErr = sqlite3_mprintf("unrecognized order: %s", zVal);
126962                 rc = SQLITE_ERROR;
126963               }
126964               bDescIdx = (zVal[0]=='d' || zVal[0]=='D');
126965               break;
126966 
126967             case 5:              /* CONTENT */
126968               sqlite3_free(zContent);
126969               zContent = zVal;
126970               zVal = 0;
126971               break;
126972 
126973             case 6:              /* LANGUAGEID */
126974               assert( iOpt==6 );
126975               sqlite3_free(zLanguageid);
126976               zLanguageid = zVal;
126977               zVal = 0;
126978               break;
126979 
126980             case 7:              /* NOTINDEXED */
126981               azNotindexed[nNotindexed++] = zVal;
126982               zVal = 0;
126983               break;
126984           }
126985         }
126986         sqlite3_free(zVal);
126987       }
126988     }
126989 
126990     /* Otherwise, the argument is a column name. */
126991     else {
126992       nString += (int)(strlen(z) + 1);
126993       aCol[nCol++] = z;
126994     }
126995   }
126996 
126997   /* If a content=xxx option was specified, the following:
126998   **
126999   **   1. Ignore any compress= and uncompress= options.
127000   **
127001   **   2. If no column names were specified as part of the CREATE VIRTUAL
127002   **      TABLE statement, use all columns from the content table.
127003   */
127004   if( rc==SQLITE_OK && zContent ){
127005     sqlite3_free(zCompress);
127006     sqlite3_free(zUncompress);
127007     zCompress = 0;
127008     zUncompress = 0;
127009     if( nCol==0 ){
127010       sqlite3_free((void*)aCol);
127011       aCol = 0;
127012       rc = fts3ContentColumns(db, argv[1], zContent, &aCol, &nCol, &nString);
127013 
127014       /* If a languageid= option was specified, remove the language id
127015       ** column from the aCol[] array. */
127016       if( rc==SQLITE_OK && zLanguageid ){
127017         int j;
127018         for(j=0; j<nCol; j++){
127019           if( sqlite3_stricmp(zLanguageid, aCol[j])==0 ){
127020             int k;
127021             for(k=j; k<nCol; k++) aCol[k] = aCol[k+1];
127022             nCol--;
127023             break;
127024           }
127025         }
127026       }
127027     }
127028   }
127029   if( rc!=SQLITE_OK ) goto fts3_init_out;
127030 
127031   if( nCol==0 ){
127032     assert( nString==0 );
127033     aCol[0] = "content";
127034     nString = 8;
127035     nCol = 1;
127036   }
127037 
127038   if( pTokenizer==0 ){
127039     rc = sqlite3Fts3InitTokenizer(pHash, "simple", &pTokenizer, pzErr);
127040     if( rc!=SQLITE_OK ) goto fts3_init_out;
127041   }
127042   assert( pTokenizer );
127043 
127044   rc = fts3PrefixParameter(zPrefix, &nIndex, &aIndex);
127045   if( rc==SQLITE_ERROR ){
127046     assert( zPrefix );
127047     *pzErr = sqlite3_mprintf("error parsing prefix parameter: %s", zPrefix);
127048   }
127049   if( rc!=SQLITE_OK ) goto fts3_init_out;
127050 
127051   /* Allocate and populate the Fts3Table structure. */
127052   nByte = sizeof(Fts3Table) +                  /* Fts3Table */
127053           nCol * sizeof(char *) +              /* azColumn */
127054           nIndex * sizeof(struct Fts3Index) +  /* aIndex */
127055           nCol * sizeof(u8) +                  /* abNotindexed */
127056           nName +                              /* zName */
127057           nDb +                                /* zDb */
127058           nString;                             /* Space for azColumn strings */
127059   p = (Fts3Table*)sqlite3_malloc(nByte);
127060   if( p==0 ){
127061     rc = SQLITE_NOMEM;
127062     goto fts3_init_out;
127063   }
127064   memset(p, 0, nByte);
127065   p->db = db;
127066   p->nColumn = nCol;
127067   p->nPendingData = 0;
127068   p->azColumn = (char **)&p[1];
127069   p->pTokenizer = pTokenizer;
127070   p->nMaxPendingData = FTS3_MAX_PENDING_DATA;
127071   p->bHasDocsize = (isFts4 && bNoDocsize==0);
127072   p->bHasStat = isFts4;
127073   p->bFts4 = isFts4;
127074   p->bDescIdx = bDescIdx;
127075   p->nAutoincrmerge = 0xff;   /* 0xff means setting unknown */
127076   p->zContentTbl = zContent;
127077   p->zLanguageid = zLanguageid;
127078   zContent = 0;
127079   zLanguageid = 0;
127080   TESTONLY( p->inTransaction = -1 );
127081   TESTONLY( p->mxSavepoint = -1 );
127082 
127083   p->aIndex = (struct Fts3Index *)&p->azColumn[nCol];
127084   memcpy(p->aIndex, aIndex, sizeof(struct Fts3Index) * nIndex);
127085   p->nIndex = nIndex;
127086   for(i=0; i<nIndex; i++){
127087     fts3HashInit(&p->aIndex[i].hPending, FTS3_HASH_STRING, 1);
127088   }
127089   p->abNotindexed = (u8 *)&p->aIndex[nIndex];
127090 
127091   /* Fill in the zName and zDb fields of the vtab structure. */
127092   zCsr = (char *)&p->abNotindexed[nCol];
127093   p->zName = zCsr;
127094   memcpy(zCsr, argv[2], nName);
127095   zCsr += nName;
127096   p->zDb = zCsr;
127097   memcpy(zCsr, argv[1], nDb);
127098   zCsr += nDb;
127099 
127100   /* Fill in the azColumn array */
127101   for(iCol=0; iCol<nCol; iCol++){
127102     char *z;
127103     int n = 0;
127104     z = (char *)sqlite3Fts3NextToken(aCol[iCol], &n);
127105     memcpy(zCsr, z, n);
127106     zCsr[n] = '\0';
127107     sqlite3Fts3Dequote(zCsr);
127108     p->azColumn[iCol] = zCsr;
127109     zCsr += n+1;
127110     assert( zCsr <= &((char *)p)[nByte] );
127111   }
127112 
127113   /* Fill in the abNotindexed array */
127114   for(iCol=0; iCol<nCol; iCol++){
127115     int n = (int)strlen(p->azColumn[iCol]);
127116     for(i=0; i<nNotindexed; i++){
127117       char *zNot = azNotindexed[i];
127118       if( zNot && n==(int)strlen(zNot)
127119        && 0==sqlite3_strnicmp(p->azColumn[iCol], zNot, n)
127120       ){
127121         p->abNotindexed[iCol] = 1;
127122         sqlite3_free(zNot);
127123         azNotindexed[i] = 0;
127124       }
127125     }
127126   }
127127   for(i=0; i<nNotindexed; i++){
127128     if( azNotindexed[i] ){
127129       *pzErr = sqlite3_mprintf("no such column: %s", azNotindexed[i]);
127130       rc = SQLITE_ERROR;
127131     }
127132   }
127133 
127134   if( rc==SQLITE_OK && (zCompress==0)!=(zUncompress==0) ){
127135     char const *zMiss = (zCompress==0 ? "compress" : "uncompress");
127136     rc = SQLITE_ERROR;
127137     *pzErr = sqlite3_mprintf("missing %s parameter in fts4 constructor", zMiss);
127138   }
127139   p->zReadExprlist = fts3ReadExprList(p, zUncompress, &rc);
127140   p->zWriteExprlist = fts3WriteExprList(p, zCompress, &rc);
127141   if( rc!=SQLITE_OK ) goto fts3_init_out;
127142 
127143   /* If this is an xCreate call, create the underlying tables in the
127144   ** database. TODO: For xConnect(), it could verify that said tables exist.
127145   */
127146   if( isCreate ){
127147     rc = fts3CreateTables(p);
127148   }
127149 
127150   /* Check to see if a legacy fts3 table has been "upgraded" by the
127151   ** addition of a %_stat table so that it can use incremental merge.
127152   */
127153   if( !isFts4 && !isCreate ){
127154     p->bHasStat = 2;
127155   }
127156 
127157   /* Figure out the page-size for the database. This is required in order to
127158   ** estimate the cost of loading large doclists from the database.  */
127159   fts3DatabasePageSize(&rc, p);
127160   p->nNodeSize = p->nPgsz-35;
127161 
127162   /* Declare the table schema to SQLite. */
127163   fts3DeclareVtab(&rc, p);
127164 
127165 fts3_init_out:
127166   sqlite3_free(zPrefix);
127167   sqlite3_free(aIndex);
127168   sqlite3_free(zCompress);
127169   sqlite3_free(zUncompress);
127170   sqlite3_free(zContent);
127171   sqlite3_free(zLanguageid);
127172   for(i=0; i<nNotindexed; i++) sqlite3_free(azNotindexed[i]);
127173   sqlite3_free((void *)aCol);
127174   sqlite3_free((void *)azNotindexed);
127175   if( rc!=SQLITE_OK ){
127176     if( p ){
127177       fts3DisconnectMethod((sqlite3_vtab *)p);
127178     }else if( pTokenizer ){
127179       pTokenizer->pModule->xDestroy(pTokenizer);
127180     }
127181   }else{
127182     assert( p->pSegments==0 );
127183     *ppVTab = &p->base;
127184   }
127185   return rc;
127186 }
127187 
127188 /*
127189 ** The xConnect() and xCreate() methods for the virtual table. All the
127190 ** work is done in function fts3InitVtab().
127191 */
127192 static int fts3ConnectMethod(
127193   sqlite3 *db,                    /* Database connection */
127194   void *pAux,                     /* Pointer to tokenizer hash table */
127195   int argc,                       /* Number of elements in argv array */
127196   const char * const *argv,       /* xCreate/xConnect argument array */
127197   sqlite3_vtab **ppVtab,          /* OUT: New sqlite3_vtab object */
127198   char **pzErr                    /* OUT: sqlite3_malloc'd error message */
127199 ){
127200   return fts3InitVtab(0, db, pAux, argc, argv, ppVtab, pzErr);
127201 }
127202 static int fts3CreateMethod(
127203   sqlite3 *db,                    /* Database connection */
127204   void *pAux,                     /* Pointer to tokenizer hash table */
127205   int argc,                       /* Number of elements in argv array */
127206   const char * const *argv,       /* xCreate/xConnect argument array */
127207   sqlite3_vtab **ppVtab,          /* OUT: New sqlite3_vtab object */
127208   char **pzErr                    /* OUT: sqlite3_malloc'd error message */
127209 ){
127210   return fts3InitVtab(1, db, pAux, argc, argv, ppVtab, pzErr);
127211 }
127212 
127213 /*
127214 ** Set the pIdxInfo->estimatedRows variable to nRow. Unless this
127215 ** extension is currently being used by a version of SQLite too old to
127216 ** support estimatedRows. In that case this function is a no-op.
127217 */
127218 static void fts3SetEstimatedRows(sqlite3_index_info *pIdxInfo, i64 nRow){
127219 #if SQLITE_VERSION_NUMBER>=3008002
127220   if( sqlite3_libversion_number()>=3008002 ){
127221     pIdxInfo->estimatedRows = nRow;
127222   }
127223 #endif
127224 }
127225 
127226 /*
127227 ** Implementation of the xBestIndex method for FTS3 tables. There
127228 ** are three possible strategies, in order of preference:
127229 **
127230 **   1. Direct lookup by rowid or docid.
127231 **   2. Full-text search using a MATCH operator on a non-docid column.
127232 **   3. Linear scan of %_content table.
127233 */
127234 static int fts3BestIndexMethod(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){
127235   Fts3Table *p = (Fts3Table *)pVTab;
127236   int i;                          /* Iterator variable */
127237   int iCons = -1;                 /* Index of constraint to use */
127238 
127239   int iLangidCons = -1;           /* Index of langid=x constraint, if present */
127240   int iDocidGe = -1;              /* Index of docid>=x constraint, if present */
127241   int iDocidLe = -1;              /* Index of docid<=x constraint, if present */
127242   int iIdx;
127243 
127244   /* By default use a full table scan. This is an expensive option,
127245   ** so search through the constraints to see if a more efficient
127246   ** strategy is possible.
127247   */
127248   pInfo->idxNum = FTS3_FULLSCAN_SEARCH;
127249   pInfo->estimatedCost = 5000000;
127250   for(i=0; i<pInfo->nConstraint; i++){
127251     int bDocid;                 /* True if this constraint is on docid */
127252     struct sqlite3_index_constraint *pCons = &pInfo->aConstraint[i];
127253     if( pCons->usable==0 ){
127254       if( pCons->op==SQLITE_INDEX_CONSTRAINT_MATCH ){
127255         /* There exists an unusable MATCH constraint. This means that if
127256         ** the planner does elect to use the results of this call as part
127257         ** of the overall query plan the user will see an "unable to use
127258         ** function MATCH in the requested context" error. To discourage
127259         ** this, return a very high cost here.  */
127260         pInfo->idxNum = FTS3_FULLSCAN_SEARCH;
127261         pInfo->estimatedCost = 1e50;
127262         fts3SetEstimatedRows(pInfo, ((sqlite3_int64)1) << 50);
127263         return SQLITE_OK;
127264       }
127265       continue;
127266     }
127267 
127268     bDocid = (pCons->iColumn<0 || pCons->iColumn==p->nColumn+1);
127269 
127270     /* A direct lookup on the rowid or docid column. Assign a cost of 1.0. */
127271     if( iCons<0 && pCons->op==SQLITE_INDEX_CONSTRAINT_EQ && bDocid ){
127272       pInfo->idxNum = FTS3_DOCID_SEARCH;
127273       pInfo->estimatedCost = 1.0;
127274       iCons = i;
127275     }
127276 
127277     /* A MATCH constraint. Use a full-text search.
127278     **
127279     ** If there is more than one MATCH constraint available, use the first
127280     ** one encountered. If there is both a MATCH constraint and a direct
127281     ** rowid/docid lookup, prefer the MATCH strategy. This is done even
127282     ** though the rowid/docid lookup is faster than a MATCH query, selecting
127283     ** it would lead to an "unable to use function MATCH in the requested
127284     ** context" error.
127285     */
127286     if( pCons->op==SQLITE_INDEX_CONSTRAINT_MATCH
127287      && pCons->iColumn>=0 && pCons->iColumn<=p->nColumn
127288     ){
127289       pInfo->idxNum = FTS3_FULLTEXT_SEARCH + pCons->iColumn;
127290       pInfo->estimatedCost = 2.0;
127291       iCons = i;
127292     }
127293 
127294     /* Equality constraint on the langid column */
127295     if( pCons->op==SQLITE_INDEX_CONSTRAINT_EQ
127296      && pCons->iColumn==p->nColumn + 2
127297     ){
127298       iLangidCons = i;
127299     }
127300 
127301     if( bDocid ){
127302       switch( pCons->op ){
127303         case SQLITE_INDEX_CONSTRAINT_GE:
127304         case SQLITE_INDEX_CONSTRAINT_GT:
127305           iDocidGe = i;
127306           break;
127307 
127308         case SQLITE_INDEX_CONSTRAINT_LE:
127309         case SQLITE_INDEX_CONSTRAINT_LT:
127310           iDocidLe = i;
127311           break;
127312       }
127313     }
127314   }
127315 
127316   iIdx = 1;
127317   if( iCons>=0 ){
127318     pInfo->aConstraintUsage[iCons].argvIndex = iIdx++;
127319     pInfo->aConstraintUsage[iCons].omit = 1;
127320   }
127321   if( iLangidCons>=0 ){
127322     pInfo->idxNum |= FTS3_HAVE_LANGID;
127323     pInfo->aConstraintUsage[iLangidCons].argvIndex = iIdx++;
127324   }
127325   if( iDocidGe>=0 ){
127326     pInfo->idxNum |= FTS3_HAVE_DOCID_GE;
127327     pInfo->aConstraintUsage[iDocidGe].argvIndex = iIdx++;
127328   }
127329   if( iDocidLe>=0 ){
127330     pInfo->idxNum |= FTS3_HAVE_DOCID_LE;
127331     pInfo->aConstraintUsage[iDocidLe].argvIndex = iIdx++;
127332   }
127333 
127334   /* Regardless of the strategy selected, FTS can deliver rows in rowid (or
127335   ** docid) order. Both ascending and descending are possible.
127336   */
127337   if( pInfo->nOrderBy==1 ){
127338     struct sqlite3_index_orderby *pOrder = &pInfo->aOrderBy[0];
127339     if( pOrder->iColumn<0 || pOrder->iColumn==p->nColumn+1 ){
127340       if( pOrder->desc ){
127341         pInfo->idxStr = "DESC";
127342       }else{
127343         pInfo->idxStr = "ASC";
127344       }
127345       pInfo->orderByConsumed = 1;
127346     }
127347   }
127348 
127349   assert( p->pSegments==0 );
127350   return SQLITE_OK;
127351 }
127352 
127353 /*
127354 ** Implementation of xOpen method.
127355 */
127356 static int fts3OpenMethod(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCsr){
127357   sqlite3_vtab_cursor *pCsr;               /* Allocated cursor */
127358 
127359   UNUSED_PARAMETER(pVTab);
127360 
127361   /* Allocate a buffer large enough for an Fts3Cursor structure. If the
127362   ** allocation succeeds, zero it and return SQLITE_OK. Otherwise,
127363   ** if the allocation fails, return SQLITE_NOMEM.
127364   */
127365   *ppCsr = pCsr = (sqlite3_vtab_cursor *)sqlite3_malloc(sizeof(Fts3Cursor));
127366   if( !pCsr ){
127367     return SQLITE_NOMEM;
127368   }
127369   memset(pCsr, 0, sizeof(Fts3Cursor));
127370   return SQLITE_OK;
127371 }
127372 
127373 /*
127374 ** Close the cursor.  For additional information see the documentation
127375 ** on the xClose method of the virtual table interface.
127376 */
127377 static int fts3CloseMethod(sqlite3_vtab_cursor *pCursor){
127378   Fts3Cursor *pCsr = (Fts3Cursor *)pCursor;
127379   assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 );
127380   sqlite3_finalize(pCsr->pStmt);
127381   sqlite3Fts3ExprFree(pCsr->pExpr);
127382   sqlite3Fts3FreeDeferredTokens(pCsr);
127383   sqlite3_free(pCsr->aDoclist);
127384   sqlite3_free(pCsr->aMatchinfo);
127385   assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 );
127386   sqlite3_free(pCsr);
127387   return SQLITE_OK;
127388 }
127389 
127390 /*
127391 ** If pCsr->pStmt has not been prepared (i.e. if pCsr->pStmt==0), then
127392 ** compose and prepare an SQL statement of the form:
127393 **
127394 **    "SELECT <columns> FROM %_content WHERE rowid = ?"
127395 **
127396 ** (or the equivalent for a content=xxx table) and set pCsr->pStmt to
127397 ** it. If an error occurs, return an SQLite error code.
127398 **
127399 ** Otherwise, set *ppStmt to point to pCsr->pStmt and return SQLITE_OK.
127400 */
127401 static int fts3CursorSeekStmt(Fts3Cursor *pCsr, sqlite3_stmt **ppStmt){
127402   int rc = SQLITE_OK;
127403   if( pCsr->pStmt==0 ){
127404     Fts3Table *p = (Fts3Table *)pCsr->base.pVtab;
127405     char *zSql;
127406     zSql = sqlite3_mprintf("SELECT %s WHERE rowid = ?", p->zReadExprlist);
127407     if( !zSql ) return SQLITE_NOMEM;
127408     rc = sqlite3_prepare_v2(p->db, zSql, -1, &pCsr->pStmt, 0);
127409     sqlite3_free(zSql);
127410   }
127411   *ppStmt = pCsr->pStmt;
127412   return rc;
127413 }
127414 
127415 /*
127416 ** Position the pCsr->pStmt statement so that it is on the row
127417 ** of the %_content table that contains the last match.  Return
127418 ** SQLITE_OK on success.
127419 */
127420 static int fts3CursorSeek(sqlite3_context *pContext, Fts3Cursor *pCsr){
127421   int rc = SQLITE_OK;
127422   if( pCsr->isRequireSeek ){
127423     sqlite3_stmt *pStmt = 0;
127424 
127425     rc = fts3CursorSeekStmt(pCsr, &pStmt);
127426     if( rc==SQLITE_OK ){
127427       sqlite3_bind_int64(pCsr->pStmt, 1, pCsr->iPrevId);
127428       pCsr->isRequireSeek = 0;
127429       if( SQLITE_ROW==sqlite3_step(pCsr->pStmt) ){
127430         return SQLITE_OK;
127431       }else{
127432         rc = sqlite3_reset(pCsr->pStmt);
127433         if( rc==SQLITE_OK && ((Fts3Table *)pCsr->base.pVtab)->zContentTbl==0 ){
127434           /* If no row was found and no error has occurred, then the %_content
127435           ** table is missing a row that is present in the full-text index.
127436           ** The data structures are corrupt.  */
127437           rc = FTS_CORRUPT_VTAB;
127438           pCsr->isEof = 1;
127439         }
127440       }
127441     }
127442   }
127443 
127444   if( rc!=SQLITE_OK && pContext ){
127445     sqlite3_result_error_code(pContext, rc);
127446   }
127447   return rc;
127448 }
127449 
127450 /*
127451 ** This function is used to process a single interior node when searching
127452 ** a b-tree for a term or term prefix. The node data is passed to this
127453 ** function via the zNode/nNode parameters. The term to search for is
127454 ** passed in zTerm/nTerm.
127455 **
127456 ** If piFirst is not NULL, then this function sets *piFirst to the blockid
127457 ** of the child node that heads the sub-tree that may contain the term.
127458 **
127459 ** If piLast is not NULL, then *piLast is set to the right-most child node
127460 ** that heads a sub-tree that may contain a term for which zTerm/nTerm is
127461 ** a prefix.
127462 **
127463 ** If an OOM error occurs, SQLITE_NOMEM is returned. Otherwise, SQLITE_OK.
127464 */
127465 static int fts3ScanInteriorNode(
127466   const char *zTerm,              /* Term to select leaves for */
127467   int nTerm,                      /* Size of term zTerm in bytes */
127468   const char *zNode,              /* Buffer containing segment interior node */
127469   int nNode,                      /* Size of buffer at zNode */
127470   sqlite3_int64 *piFirst,         /* OUT: Selected child node */
127471   sqlite3_int64 *piLast           /* OUT: Selected child node */
127472 ){
127473   int rc = SQLITE_OK;             /* Return code */
127474   const char *zCsr = zNode;       /* Cursor to iterate through node */
127475   const char *zEnd = &zCsr[nNode];/* End of interior node buffer */
127476   char *zBuffer = 0;              /* Buffer to load terms into */
127477   int nAlloc = 0;                 /* Size of allocated buffer */
127478   int isFirstTerm = 1;            /* True when processing first term on page */
127479   sqlite3_int64 iChild;           /* Block id of child node to descend to */
127480 
127481   /* Skip over the 'height' varint that occurs at the start of every
127482   ** interior node. Then load the blockid of the left-child of the b-tree
127483   ** node into variable iChild.
127484   **
127485   ** Even if the data structure on disk is corrupted, this (reading two
127486   ** varints from the buffer) does not risk an overread. If zNode is a
127487   ** root node, then the buffer comes from a SELECT statement. SQLite does
127488   ** not make this guarantee explicitly, but in practice there are always
127489   ** either more than 20 bytes of allocated space following the nNode bytes of
127490   ** contents, or two zero bytes. Or, if the node is read from the %_segments
127491   ** table, then there are always 20 bytes of zeroed padding following the
127492   ** nNode bytes of content (see sqlite3Fts3ReadBlock() for details).
127493   */
127494   zCsr += sqlite3Fts3GetVarint(zCsr, &iChild);
127495   zCsr += sqlite3Fts3GetVarint(zCsr, &iChild);
127496   if( zCsr>zEnd ){
127497     return FTS_CORRUPT_VTAB;
127498   }
127499 
127500   while( zCsr<zEnd && (piFirst || piLast) ){
127501     int cmp;                      /* memcmp() result */
127502     int nSuffix;                  /* Size of term suffix */
127503     int nPrefix = 0;              /* Size of term prefix */
127504     int nBuffer;                  /* Total term size */
127505 
127506     /* Load the next term on the node into zBuffer. Use realloc() to expand
127507     ** the size of zBuffer if required.  */
127508     if( !isFirstTerm ){
127509       zCsr += fts3GetVarint32(zCsr, &nPrefix);
127510     }
127511     isFirstTerm = 0;
127512     zCsr += fts3GetVarint32(zCsr, &nSuffix);
127513 
127514     if( nPrefix<0 || nSuffix<0 || &zCsr[nSuffix]>zEnd ){
127515       rc = FTS_CORRUPT_VTAB;
127516       goto finish_scan;
127517     }
127518     if( nPrefix+nSuffix>nAlloc ){
127519       char *zNew;
127520       nAlloc = (nPrefix+nSuffix) * 2;
127521       zNew = (char *)sqlite3_realloc(zBuffer, nAlloc);
127522       if( !zNew ){
127523         rc = SQLITE_NOMEM;
127524         goto finish_scan;
127525       }
127526       zBuffer = zNew;
127527     }
127528     assert( zBuffer );
127529     memcpy(&zBuffer[nPrefix], zCsr, nSuffix);
127530     nBuffer = nPrefix + nSuffix;
127531     zCsr += nSuffix;
127532 
127533     /* Compare the term we are searching for with the term just loaded from
127534     ** the interior node. If the specified term is greater than or equal
127535     ** to the term from the interior node, then all terms on the sub-tree
127536     ** headed by node iChild are smaller than zTerm. No need to search
127537     ** iChild.
127538     **
127539     ** If the interior node term is larger than the specified term, then
127540     ** the tree headed by iChild may contain the specified term.
127541     */
127542     cmp = memcmp(zTerm, zBuffer, (nBuffer>nTerm ? nTerm : nBuffer));
127543     if( piFirst && (cmp<0 || (cmp==0 && nBuffer>nTerm)) ){
127544       *piFirst = iChild;
127545       piFirst = 0;
127546     }
127547 
127548     if( piLast && cmp<0 ){
127549       *piLast = iChild;
127550       piLast = 0;
127551     }
127552 
127553     iChild++;
127554   };
127555 
127556   if( piFirst ) *piFirst = iChild;
127557   if( piLast ) *piLast = iChild;
127558 
127559  finish_scan:
127560   sqlite3_free(zBuffer);
127561   return rc;
127562 }
127563 
127564 
127565 /*
127566 ** The buffer pointed to by argument zNode (size nNode bytes) contains an
127567 ** interior node of a b-tree segment. The zTerm buffer (size nTerm bytes)
127568 ** contains a term. This function searches the sub-tree headed by the zNode
127569 ** node for the range of leaf nodes that may contain the specified term
127570 ** or terms for which the specified term is a prefix.
127571 **
127572 ** If piLeaf is not NULL, then *piLeaf is set to the blockid of the
127573 ** left-most leaf node in the tree that may contain the specified term.
127574 ** If piLeaf2 is not NULL, then *piLeaf2 is set to the blockid of the
127575 ** right-most leaf node that may contain a term for which the specified
127576 ** term is a prefix.
127577 **
127578 ** It is possible that the range of returned leaf nodes does not contain
127579 ** the specified term or any terms for which it is a prefix. However, if the
127580 ** segment does contain any such terms, they are stored within the identified
127581 ** range. Because this function only inspects interior segment nodes (and
127582 ** never loads leaf nodes into memory), it is not possible to be sure.
127583 **
127584 ** If an error occurs, an error code other than SQLITE_OK is returned.
127585 */
127586 static int fts3SelectLeaf(
127587   Fts3Table *p,                   /* Virtual table handle */
127588   const char *zTerm,              /* Term to select leaves for */
127589   int nTerm,                      /* Size of term zTerm in bytes */
127590   const char *zNode,              /* Buffer containing segment interior node */
127591   int nNode,                      /* Size of buffer at zNode */
127592   sqlite3_int64 *piLeaf,          /* Selected leaf node */
127593   sqlite3_int64 *piLeaf2          /* Selected leaf node */
127594 ){
127595   int rc;                         /* Return code */
127596   int iHeight;                    /* Height of this node in tree */
127597 
127598   assert( piLeaf || piLeaf2 );
127599 
127600   fts3GetVarint32(zNode, &iHeight);
127601   rc = fts3ScanInteriorNode(zTerm, nTerm, zNode, nNode, piLeaf, piLeaf2);
127602   assert( !piLeaf2 || !piLeaf || rc!=SQLITE_OK || (*piLeaf<=*piLeaf2) );
127603 
127604   if( rc==SQLITE_OK && iHeight>1 ){
127605     char *zBlob = 0;              /* Blob read from %_segments table */
127606     int nBlob;                    /* Size of zBlob in bytes */
127607 
127608     if( piLeaf && piLeaf2 && (*piLeaf!=*piLeaf2) ){
127609       rc = sqlite3Fts3ReadBlock(p, *piLeaf, &zBlob, &nBlob, 0);
127610       if( rc==SQLITE_OK ){
127611         rc = fts3SelectLeaf(p, zTerm, nTerm, zBlob, nBlob, piLeaf, 0);
127612       }
127613       sqlite3_free(zBlob);
127614       piLeaf = 0;
127615       zBlob = 0;
127616     }
127617 
127618     if( rc==SQLITE_OK ){
127619       rc = sqlite3Fts3ReadBlock(p, piLeaf?*piLeaf:*piLeaf2, &zBlob, &nBlob, 0);
127620     }
127621     if( rc==SQLITE_OK ){
127622       rc = fts3SelectLeaf(p, zTerm, nTerm, zBlob, nBlob, piLeaf, piLeaf2);
127623     }
127624     sqlite3_free(zBlob);
127625   }
127626 
127627   return rc;
127628 }
127629 
127630 /*
127631 ** This function is used to create delta-encoded serialized lists of FTS3
127632 ** varints. Each call to this function appends a single varint to a list.
127633 */
127634 static void fts3PutDeltaVarint(
127635   char **pp,                      /* IN/OUT: Output pointer */
127636   sqlite3_int64 *piPrev,          /* IN/OUT: Previous value written to list */
127637   sqlite3_int64 iVal              /* Write this value to the list */
127638 ){
127639   assert( iVal-*piPrev > 0 || (*piPrev==0 && iVal==0) );
127640   *pp += sqlite3Fts3PutVarint(*pp, iVal-*piPrev);
127641   *piPrev = iVal;
127642 }
127643 
127644 /*
127645 ** When this function is called, *ppPoslist is assumed to point to the
127646 ** start of a position-list. After it returns, *ppPoslist points to the
127647 ** first byte after the position-list.
127648 **
127649 ** A position list is list of positions (delta encoded) and columns for
127650 ** a single document record of a doclist.  So, in other words, this
127651 ** routine advances *ppPoslist so that it points to the next docid in
127652 ** the doclist, or to the first byte past the end of the doclist.
127653 **
127654 ** If pp is not NULL, then the contents of the position list are copied
127655 ** to *pp. *pp is set to point to the first byte past the last byte copied
127656 ** before this function returns.
127657 */
127658 static void fts3PoslistCopy(char **pp, char **ppPoslist){
127659   char *pEnd = *ppPoslist;
127660   char c = 0;
127661 
127662   /* The end of a position list is marked by a zero encoded as an FTS3
127663   ** varint. A single POS_END (0) byte. Except, if the 0 byte is preceded by
127664   ** a byte with the 0x80 bit set, then it is not a varint 0, but the tail
127665   ** of some other, multi-byte, value.
127666   **
127667   ** The following while-loop moves pEnd to point to the first byte that is not
127668   ** immediately preceded by a byte with the 0x80 bit set. Then increments
127669   ** pEnd once more so that it points to the byte immediately following the
127670   ** last byte in the position-list.
127671   */
127672   while( *pEnd | c ){
127673     c = *pEnd++ & 0x80;
127674     testcase( c!=0 && (*pEnd)==0 );
127675   }
127676   pEnd++;  /* Advance past the POS_END terminator byte */
127677 
127678   if( pp ){
127679     int n = (int)(pEnd - *ppPoslist);
127680     char *p = *pp;
127681     memcpy(p, *ppPoslist, n);
127682     p += n;
127683     *pp = p;
127684   }
127685   *ppPoslist = pEnd;
127686 }
127687 
127688 /*
127689 ** When this function is called, *ppPoslist is assumed to point to the
127690 ** start of a column-list. After it returns, *ppPoslist points to the
127691 ** to the terminator (POS_COLUMN or POS_END) byte of the column-list.
127692 **
127693 ** A column-list is list of delta-encoded positions for a single column
127694 ** within a single document within a doclist.
127695 **
127696 ** The column-list is terminated either by a POS_COLUMN varint (1) or
127697 ** a POS_END varint (0).  This routine leaves *ppPoslist pointing to
127698 ** the POS_COLUMN or POS_END that terminates the column-list.
127699 **
127700 ** If pp is not NULL, then the contents of the column-list are copied
127701 ** to *pp. *pp is set to point to the first byte past the last byte copied
127702 ** before this function returns.  The POS_COLUMN or POS_END terminator
127703 ** is not copied into *pp.
127704 */
127705 static void fts3ColumnlistCopy(char **pp, char **ppPoslist){
127706   char *pEnd = *ppPoslist;
127707   char c = 0;
127708 
127709   /* A column-list is terminated by either a 0x01 or 0x00 byte that is
127710   ** not part of a multi-byte varint.
127711   */
127712   while( 0xFE & (*pEnd | c) ){
127713     c = *pEnd++ & 0x80;
127714     testcase( c!=0 && ((*pEnd)&0xfe)==0 );
127715   }
127716   if( pp ){
127717     int n = (int)(pEnd - *ppPoslist);
127718     char *p = *pp;
127719     memcpy(p, *ppPoslist, n);
127720     p += n;
127721     *pp = p;
127722   }
127723   *ppPoslist = pEnd;
127724 }
127725 
127726 /*
127727 ** Value used to signify the end of an position-list. This is safe because
127728 ** it is not possible to have a document with 2^31 terms.
127729 */
127730 #define POSITION_LIST_END 0x7fffffff
127731 
127732 /*
127733 ** This function is used to help parse position-lists. When this function is
127734 ** called, *pp may point to the start of the next varint in the position-list
127735 ** being parsed, or it may point to 1 byte past the end of the position-list
127736 ** (in which case **pp will be a terminator bytes POS_END (0) or
127737 ** (1)).
127738 **
127739 ** If *pp points past the end of the current position-list, set *pi to
127740 ** POSITION_LIST_END and return. Otherwise, read the next varint from *pp,
127741 ** increment the current value of *pi by the value read, and set *pp to
127742 ** point to the next value before returning.
127743 **
127744 ** Before calling this routine *pi must be initialized to the value of
127745 ** the previous position, or zero if we are reading the first position
127746 ** in the position-list.  Because positions are delta-encoded, the value
127747 ** of the previous position is needed in order to compute the value of
127748 ** the next position.
127749 */
127750 static void fts3ReadNextPos(
127751   char **pp,                    /* IN/OUT: Pointer into position-list buffer */
127752   sqlite3_int64 *pi             /* IN/OUT: Value read from position-list */
127753 ){
127754   if( (**pp)&0xFE ){
127755     fts3GetDeltaVarint(pp, pi);
127756     *pi -= 2;
127757   }else{
127758     *pi = POSITION_LIST_END;
127759   }
127760 }
127761 
127762 /*
127763 ** If parameter iCol is not 0, write an POS_COLUMN (1) byte followed by
127764 ** the value of iCol encoded as a varint to *pp.   This will start a new
127765 ** column list.
127766 **
127767 ** Set *pp to point to the byte just after the last byte written before
127768 ** returning (do not modify it if iCol==0). Return the total number of bytes
127769 ** written (0 if iCol==0).
127770 */
127771 static int fts3PutColNumber(char **pp, int iCol){
127772   int n = 0;                      /* Number of bytes written */
127773   if( iCol ){
127774     char *p = *pp;                /* Output pointer */
127775     n = 1 + sqlite3Fts3PutVarint(&p[1], iCol);
127776     *p = 0x01;
127777     *pp = &p[n];
127778   }
127779   return n;
127780 }
127781 
127782 /*
127783 ** Compute the union of two position lists.  The output written
127784 ** into *pp contains all positions of both *pp1 and *pp2 in sorted
127785 ** order and with any duplicates removed.  All pointers are
127786 ** updated appropriately.   The caller is responsible for insuring
127787 ** that there is enough space in *pp to hold the complete output.
127788 */
127789 static void fts3PoslistMerge(
127790   char **pp,                      /* Output buffer */
127791   char **pp1,                     /* Left input list */
127792   char **pp2                      /* Right input list */
127793 ){
127794   char *p = *pp;
127795   char *p1 = *pp1;
127796   char *p2 = *pp2;
127797 
127798   while( *p1 || *p2 ){
127799     int iCol1;         /* The current column index in pp1 */
127800     int iCol2;         /* The current column index in pp2 */
127801 
127802     if( *p1==POS_COLUMN ) fts3GetVarint32(&p1[1], &iCol1);
127803     else if( *p1==POS_END ) iCol1 = POSITION_LIST_END;
127804     else iCol1 = 0;
127805 
127806     if( *p2==POS_COLUMN ) fts3GetVarint32(&p2[1], &iCol2);
127807     else if( *p2==POS_END ) iCol2 = POSITION_LIST_END;
127808     else iCol2 = 0;
127809 
127810     if( iCol1==iCol2 ){
127811       sqlite3_int64 i1 = 0;       /* Last position from pp1 */
127812       sqlite3_int64 i2 = 0;       /* Last position from pp2 */
127813       sqlite3_int64 iPrev = 0;
127814       int n = fts3PutColNumber(&p, iCol1);
127815       p1 += n;
127816       p2 += n;
127817 
127818       /* At this point, both p1 and p2 point to the start of column-lists
127819       ** for the same column (the column with index iCol1 and iCol2).
127820       ** A column-list is a list of non-negative delta-encoded varints, each
127821       ** incremented by 2 before being stored. Each list is terminated by a
127822       ** POS_END (0) or POS_COLUMN (1). The following block merges the two lists
127823       ** and writes the results to buffer p. p is left pointing to the byte
127824       ** after the list written. No terminator (POS_END or POS_COLUMN) is
127825       ** written to the output.
127826       */
127827       fts3GetDeltaVarint(&p1, &i1);
127828       fts3GetDeltaVarint(&p2, &i2);
127829       do {
127830         fts3PutDeltaVarint(&p, &iPrev, (i1<i2) ? i1 : i2);
127831         iPrev -= 2;
127832         if( i1==i2 ){
127833           fts3ReadNextPos(&p1, &i1);
127834           fts3ReadNextPos(&p2, &i2);
127835         }else if( i1<i2 ){
127836           fts3ReadNextPos(&p1, &i1);
127837         }else{
127838           fts3ReadNextPos(&p2, &i2);
127839         }
127840       }while( i1!=POSITION_LIST_END || i2!=POSITION_LIST_END );
127841     }else if( iCol1<iCol2 ){
127842       p1 += fts3PutColNumber(&p, iCol1);
127843       fts3ColumnlistCopy(&p, &p1);
127844     }else{
127845       p2 += fts3PutColNumber(&p, iCol2);
127846       fts3ColumnlistCopy(&p, &p2);
127847     }
127848   }
127849 
127850   *p++ = POS_END;
127851   *pp = p;
127852   *pp1 = p1 + 1;
127853   *pp2 = p2 + 1;
127854 }
127855 
127856 /*
127857 ** This function is used to merge two position lists into one. When it is
127858 ** called, *pp1 and *pp2 must both point to position lists. A position-list is
127859 ** the part of a doclist that follows each document id. For example, if a row
127860 ** contains:
127861 **
127862 **     'a b c'|'x y z'|'a b b a'
127863 **
127864 ** Then the position list for this row for token 'b' would consist of:
127865 **
127866 **     0x02 0x01 0x02 0x03 0x03 0x00
127867 **
127868 ** When this function returns, both *pp1 and *pp2 are left pointing to the
127869 ** byte following the 0x00 terminator of their respective position lists.
127870 **
127871 ** If isSaveLeft is 0, an entry is added to the output position list for
127872 ** each position in *pp2 for which there exists one or more positions in
127873 ** *pp1 so that (pos(*pp2)>pos(*pp1) && pos(*pp2)-pos(*pp1)<=nToken). i.e.
127874 ** when the *pp1 token appears before the *pp2 token, but not more than nToken
127875 ** slots before it.
127876 **
127877 ** e.g. nToken==1 searches for adjacent positions.
127878 */
127879 static int fts3PoslistPhraseMerge(
127880   char **pp,                      /* IN/OUT: Preallocated output buffer */
127881   int nToken,                     /* Maximum difference in token positions */
127882   int isSaveLeft,                 /* Save the left position */
127883   int isExact,                    /* If *pp1 is exactly nTokens before *pp2 */
127884   char **pp1,                     /* IN/OUT: Left input list */
127885   char **pp2                      /* IN/OUT: Right input list */
127886 ){
127887   char *p = *pp;
127888   char *p1 = *pp1;
127889   char *p2 = *pp2;
127890   int iCol1 = 0;
127891   int iCol2 = 0;
127892 
127893   /* Never set both isSaveLeft and isExact for the same invocation. */
127894   assert( isSaveLeft==0 || isExact==0 );
127895 
127896   assert( p!=0 && *p1!=0 && *p2!=0 );
127897   if( *p1==POS_COLUMN ){
127898     p1++;
127899     p1 += fts3GetVarint32(p1, &iCol1);
127900   }
127901   if( *p2==POS_COLUMN ){
127902     p2++;
127903     p2 += fts3GetVarint32(p2, &iCol2);
127904   }
127905 
127906   while( 1 ){
127907     if( iCol1==iCol2 ){
127908       char *pSave = p;
127909       sqlite3_int64 iPrev = 0;
127910       sqlite3_int64 iPos1 = 0;
127911       sqlite3_int64 iPos2 = 0;
127912 
127913       if( iCol1 ){
127914         *p++ = POS_COLUMN;
127915         p += sqlite3Fts3PutVarint(p, iCol1);
127916       }
127917 
127918       assert( *p1!=POS_END && *p1!=POS_COLUMN );
127919       assert( *p2!=POS_END && *p2!=POS_COLUMN );
127920       fts3GetDeltaVarint(&p1, &iPos1); iPos1 -= 2;
127921       fts3GetDeltaVarint(&p2, &iPos2); iPos2 -= 2;
127922 
127923       while( 1 ){
127924         if( iPos2==iPos1+nToken
127925          || (isExact==0 && iPos2>iPos1 && iPos2<=iPos1+nToken)
127926         ){
127927           sqlite3_int64 iSave;
127928           iSave = isSaveLeft ? iPos1 : iPos2;
127929           fts3PutDeltaVarint(&p, &iPrev, iSave+2); iPrev -= 2;
127930           pSave = 0;
127931           assert( p );
127932         }
127933         if( (!isSaveLeft && iPos2<=(iPos1+nToken)) || iPos2<=iPos1 ){
127934           if( (*p2&0xFE)==0 ) break;
127935           fts3GetDeltaVarint(&p2, &iPos2); iPos2 -= 2;
127936         }else{
127937           if( (*p1&0xFE)==0 ) break;
127938           fts3GetDeltaVarint(&p1, &iPos1); iPos1 -= 2;
127939         }
127940       }
127941 
127942       if( pSave ){
127943         assert( pp && p );
127944         p = pSave;
127945       }
127946 
127947       fts3ColumnlistCopy(0, &p1);
127948       fts3ColumnlistCopy(0, &p2);
127949       assert( (*p1&0xFE)==0 && (*p2&0xFE)==0 );
127950       if( 0==*p1 || 0==*p2 ) break;
127951 
127952       p1++;
127953       p1 += fts3GetVarint32(p1, &iCol1);
127954       p2++;
127955       p2 += fts3GetVarint32(p2, &iCol2);
127956     }
127957 
127958     /* Advance pointer p1 or p2 (whichever corresponds to the smaller of
127959     ** iCol1 and iCol2) so that it points to either the 0x00 that marks the
127960     ** end of the position list, or the 0x01 that precedes the next
127961     ** column-number in the position list.
127962     */
127963     else if( iCol1<iCol2 ){
127964       fts3ColumnlistCopy(0, &p1);
127965       if( 0==*p1 ) break;
127966       p1++;
127967       p1 += fts3GetVarint32(p1, &iCol1);
127968     }else{
127969       fts3ColumnlistCopy(0, &p2);
127970       if( 0==*p2 ) break;
127971       p2++;
127972       p2 += fts3GetVarint32(p2, &iCol2);
127973     }
127974   }
127975 
127976   fts3PoslistCopy(0, &p2);
127977   fts3PoslistCopy(0, &p1);
127978   *pp1 = p1;
127979   *pp2 = p2;
127980   if( *pp==p ){
127981     return 0;
127982   }
127983   *p++ = 0x00;
127984   *pp = p;
127985   return 1;
127986 }
127987 
127988 /*
127989 ** Merge two position-lists as required by the NEAR operator. The argument
127990 ** position lists correspond to the left and right phrases of an expression
127991 ** like:
127992 **
127993 **     "phrase 1" NEAR "phrase number 2"
127994 **
127995 ** Position list *pp1 corresponds to the left-hand side of the NEAR
127996 ** expression and *pp2 to the right. As usual, the indexes in the position
127997 ** lists are the offsets of the last token in each phrase (tokens "1" and "2"
127998 ** in the example above).
127999 **
128000 ** The output position list - written to *pp - is a copy of *pp2 with those
128001 ** entries that are not sufficiently NEAR entries in *pp1 removed.
128002 */
128003 static int fts3PoslistNearMerge(
128004   char **pp,                      /* Output buffer */
128005   char *aTmp,                     /* Temporary buffer space */
128006   int nRight,                     /* Maximum difference in token positions */
128007   int nLeft,                      /* Maximum difference in token positions */
128008   char **pp1,                     /* IN/OUT: Left input list */
128009   char **pp2                      /* IN/OUT: Right input list */
128010 ){
128011   char *p1 = *pp1;
128012   char *p2 = *pp2;
128013 
128014   char *pTmp1 = aTmp;
128015   char *pTmp2;
128016   char *aTmp2;
128017   int res = 1;
128018 
128019   fts3PoslistPhraseMerge(&pTmp1, nRight, 0, 0, pp1, pp2);
128020   aTmp2 = pTmp2 = pTmp1;
128021   *pp1 = p1;
128022   *pp2 = p2;
128023   fts3PoslistPhraseMerge(&pTmp2, nLeft, 1, 0, pp2, pp1);
128024   if( pTmp1!=aTmp && pTmp2!=aTmp2 ){
128025     fts3PoslistMerge(pp, &aTmp, &aTmp2);
128026   }else if( pTmp1!=aTmp ){
128027     fts3PoslistCopy(pp, &aTmp);
128028   }else if( pTmp2!=aTmp2 ){
128029     fts3PoslistCopy(pp, &aTmp2);
128030   }else{
128031     res = 0;
128032   }
128033 
128034   return res;
128035 }
128036 
128037 /*
128038 ** An instance of this function is used to merge together the (potentially
128039 ** large number of) doclists for each term that matches a prefix query.
128040 ** See function fts3TermSelectMerge() for details.
128041 */
128042 typedef struct TermSelect TermSelect;
128043 struct TermSelect {
128044   char *aaOutput[16];             /* Malloc'd output buffers */
128045   int anOutput[16];               /* Size each output buffer in bytes */
128046 };
128047 
128048 /*
128049 ** This function is used to read a single varint from a buffer. Parameter
128050 ** pEnd points 1 byte past the end of the buffer. When this function is
128051 ** called, if *pp points to pEnd or greater, then the end of the buffer
128052 ** has been reached. In this case *pp is set to 0 and the function returns.
128053 **
128054 ** If *pp does not point to or past pEnd, then a single varint is read
128055 ** from *pp. *pp is then set to point 1 byte past the end of the read varint.
128056 **
128057 ** If bDescIdx is false, the value read is added to *pVal before returning.
128058 ** If it is true, the value read is subtracted from *pVal before this
128059 ** function returns.
128060 */
128061 static void fts3GetDeltaVarint3(
128062   char **pp,                      /* IN/OUT: Point to read varint from */
128063   char *pEnd,                     /* End of buffer */
128064   int bDescIdx,                   /* True if docids are descending */
128065   sqlite3_int64 *pVal             /* IN/OUT: Integer value */
128066 ){
128067   if( *pp>=pEnd ){
128068     *pp = 0;
128069   }else{
128070     sqlite3_int64 iVal;
128071     *pp += sqlite3Fts3GetVarint(*pp, &iVal);
128072     if( bDescIdx ){
128073       *pVal -= iVal;
128074     }else{
128075       *pVal += iVal;
128076     }
128077   }
128078 }
128079 
128080 /*
128081 ** This function is used to write a single varint to a buffer. The varint
128082 ** is written to *pp. Before returning, *pp is set to point 1 byte past the
128083 ** end of the value written.
128084 **
128085 ** If *pbFirst is zero when this function is called, the value written to
128086 ** the buffer is that of parameter iVal.
128087 **
128088 ** If *pbFirst is non-zero when this function is called, then the value
128089 ** written is either (iVal-*piPrev) (if bDescIdx is zero) or (*piPrev-iVal)
128090 ** (if bDescIdx is non-zero).
128091 **
128092 ** Before returning, this function always sets *pbFirst to 1 and *piPrev
128093 ** to the value of parameter iVal.
128094 */
128095 static void fts3PutDeltaVarint3(
128096   char **pp,                      /* IN/OUT: Output pointer */
128097   int bDescIdx,                   /* True for descending docids */
128098   sqlite3_int64 *piPrev,          /* IN/OUT: Previous value written to list */
128099   int *pbFirst,                   /* IN/OUT: True after first int written */
128100   sqlite3_int64 iVal              /* Write this value to the list */
128101 ){
128102   sqlite3_int64 iWrite;
128103   if( bDescIdx==0 || *pbFirst==0 ){
128104     iWrite = iVal - *piPrev;
128105   }else{
128106     iWrite = *piPrev - iVal;
128107   }
128108   assert( *pbFirst || *piPrev==0 );
128109   assert( *pbFirst==0 || iWrite>0 );
128110   *pp += sqlite3Fts3PutVarint(*pp, iWrite);
128111   *piPrev = iVal;
128112   *pbFirst = 1;
128113 }
128114 
128115 
128116 /*
128117 ** This macro is used by various functions that merge doclists. The two
128118 ** arguments are 64-bit docid values. If the value of the stack variable
128119 ** bDescDoclist is 0 when this macro is invoked, then it returns (i1-i2).
128120 ** Otherwise, (i2-i1).
128121 **
128122 ** Using this makes it easier to write code that can merge doclists that are
128123 ** sorted in either ascending or descending order.
128124 */
128125 #define DOCID_CMP(i1, i2) ((bDescDoclist?-1:1) * (i1-i2))
128126 
128127 /*
128128 ** This function does an "OR" merge of two doclists (output contains all
128129 ** positions contained in either argument doclist). If the docids in the
128130 ** input doclists are sorted in ascending order, parameter bDescDoclist
128131 ** should be false. If they are sorted in ascending order, it should be
128132 ** passed a non-zero value.
128133 **
128134 ** If no error occurs, *paOut is set to point at an sqlite3_malloc'd buffer
128135 ** containing the output doclist and SQLITE_OK is returned. In this case
128136 ** *pnOut is set to the number of bytes in the output doclist.
128137 **
128138 ** If an error occurs, an SQLite error code is returned. The output values
128139 ** are undefined in this case.
128140 */
128141 static int fts3DoclistOrMerge(
128142   int bDescDoclist,               /* True if arguments are desc */
128143   char *a1, int n1,               /* First doclist */
128144   char *a2, int n2,               /* Second doclist */
128145   char **paOut, int *pnOut        /* OUT: Malloc'd doclist */
128146 ){
128147   sqlite3_int64 i1 = 0;
128148   sqlite3_int64 i2 = 0;
128149   sqlite3_int64 iPrev = 0;
128150   char *pEnd1 = &a1[n1];
128151   char *pEnd2 = &a2[n2];
128152   char *p1 = a1;
128153   char *p2 = a2;
128154   char *p;
128155   char *aOut;
128156   int bFirstOut = 0;
128157 
128158   *paOut = 0;
128159   *pnOut = 0;
128160 
128161   /* Allocate space for the output. Both the input and output doclists
128162   ** are delta encoded. If they are in ascending order (bDescDoclist==0),
128163   ** then the first docid in each list is simply encoded as a varint. For
128164   ** each subsequent docid, the varint stored is the difference between the
128165   ** current and previous docid (a positive number - since the list is in
128166   ** ascending order).
128167   **
128168   ** The first docid written to the output is therefore encoded using the
128169   ** same number of bytes as it is in whichever of the input lists it is
128170   ** read from. And each subsequent docid read from the same input list
128171   ** consumes either the same or less bytes as it did in the input (since
128172   ** the difference between it and the previous value in the output must
128173   ** be a positive value less than or equal to the delta value read from
128174   ** the input list). The same argument applies to all but the first docid
128175   ** read from the 'other' list. And to the contents of all position lists
128176   ** that will be copied and merged from the input to the output.
128177   **
128178   ** However, if the first docid copied to the output is a negative number,
128179   ** then the encoding of the first docid from the 'other' input list may
128180   ** be larger in the output than it was in the input (since the delta value
128181   ** may be a larger positive integer than the actual docid).
128182   **
128183   ** The space required to store the output is therefore the sum of the
128184   ** sizes of the two inputs, plus enough space for exactly one of the input
128185   ** docids to grow.
128186   **
128187   ** A symetric argument may be made if the doclists are in descending
128188   ** order.
128189   */
128190   aOut = sqlite3_malloc(n1+n2+FTS3_VARINT_MAX-1);
128191   if( !aOut ) return SQLITE_NOMEM;
128192 
128193   p = aOut;
128194   fts3GetDeltaVarint3(&p1, pEnd1, 0, &i1);
128195   fts3GetDeltaVarint3(&p2, pEnd2, 0, &i2);
128196   while( p1 || p2 ){
128197     sqlite3_int64 iDiff = DOCID_CMP(i1, i2);
128198 
128199     if( p2 && p1 && iDiff==0 ){
128200       fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i1);
128201       fts3PoslistMerge(&p, &p1, &p2);
128202       fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1);
128203       fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2);
128204     }else if( !p2 || (p1 && iDiff<0) ){
128205       fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i1);
128206       fts3PoslistCopy(&p, &p1);
128207       fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1);
128208     }else{
128209       fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i2);
128210       fts3PoslistCopy(&p, &p2);
128211       fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2);
128212     }
128213   }
128214 
128215   *paOut = aOut;
128216   *pnOut = (int)(p-aOut);
128217   assert( *pnOut<=n1+n2+FTS3_VARINT_MAX-1 );
128218   return SQLITE_OK;
128219 }
128220 
128221 /*
128222 ** This function does a "phrase" merge of two doclists. In a phrase merge,
128223 ** the output contains a copy of each position from the right-hand input
128224 ** doclist for which there is a position in the left-hand input doclist
128225 ** exactly nDist tokens before it.
128226 **
128227 ** If the docids in the input doclists are sorted in ascending order,
128228 ** parameter bDescDoclist should be false. If they are sorted in ascending
128229 ** order, it should be passed a non-zero value.
128230 **
128231 ** The right-hand input doclist is overwritten by this function.
128232 */
128233 static void fts3DoclistPhraseMerge(
128234   int bDescDoclist,               /* True if arguments are desc */
128235   int nDist,                      /* Distance from left to right (1=adjacent) */
128236   char *aLeft, int nLeft,         /* Left doclist */
128237   char *aRight, int *pnRight      /* IN/OUT: Right/output doclist */
128238 ){
128239   sqlite3_int64 i1 = 0;
128240   sqlite3_int64 i2 = 0;
128241   sqlite3_int64 iPrev = 0;
128242   char *pEnd1 = &aLeft[nLeft];
128243   char *pEnd2 = &aRight[*pnRight];
128244   char *p1 = aLeft;
128245   char *p2 = aRight;
128246   char *p;
128247   int bFirstOut = 0;
128248   char *aOut = aRight;
128249 
128250   assert( nDist>0 );
128251 
128252   p = aOut;
128253   fts3GetDeltaVarint3(&p1, pEnd1, 0, &i1);
128254   fts3GetDeltaVarint3(&p2, pEnd2, 0, &i2);
128255 
128256   while( p1 && p2 ){
128257     sqlite3_int64 iDiff = DOCID_CMP(i1, i2);
128258     if( iDiff==0 ){
128259       char *pSave = p;
128260       sqlite3_int64 iPrevSave = iPrev;
128261       int bFirstOutSave = bFirstOut;
128262 
128263       fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i1);
128264       if( 0==fts3PoslistPhraseMerge(&p, nDist, 0, 1, &p1, &p2) ){
128265         p = pSave;
128266         iPrev = iPrevSave;
128267         bFirstOut = bFirstOutSave;
128268       }
128269       fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1);
128270       fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2);
128271     }else if( iDiff<0 ){
128272       fts3PoslistCopy(0, &p1);
128273       fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1);
128274     }else{
128275       fts3PoslistCopy(0, &p2);
128276       fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2);
128277     }
128278   }
128279 
128280   *pnRight = (int)(p - aOut);
128281 }
128282 
128283 /*
128284 ** Argument pList points to a position list nList bytes in size. This
128285 ** function checks to see if the position list contains any entries for
128286 ** a token in position 0 (of any column). If so, it writes argument iDelta
128287 ** to the output buffer pOut, followed by a position list consisting only
128288 ** of the entries from pList at position 0, and terminated by an 0x00 byte.
128289 ** The value returned is the number of bytes written to pOut (if any).
128290 */
128291 SQLITE_PRIVATE int sqlite3Fts3FirstFilter(
128292   sqlite3_int64 iDelta,           /* Varint that may be written to pOut */
128293   char *pList,                    /* Position list (no 0x00 term) */
128294   int nList,                      /* Size of pList in bytes */
128295   char *pOut                      /* Write output here */
128296 ){
128297   int nOut = 0;
128298   int bWritten = 0;               /* True once iDelta has been written */
128299   char *p = pList;
128300   char *pEnd = &pList[nList];
128301 
128302   if( *p!=0x01 ){
128303     if( *p==0x02 ){
128304       nOut += sqlite3Fts3PutVarint(&pOut[nOut], iDelta);
128305       pOut[nOut++] = 0x02;
128306       bWritten = 1;
128307     }
128308     fts3ColumnlistCopy(0, &p);
128309   }
128310 
128311   while( p<pEnd && *p==0x01 ){
128312     sqlite3_int64 iCol;
128313     p++;
128314     p += sqlite3Fts3GetVarint(p, &iCol);
128315     if( *p==0x02 ){
128316       if( bWritten==0 ){
128317         nOut += sqlite3Fts3PutVarint(&pOut[nOut], iDelta);
128318         bWritten = 1;
128319       }
128320       pOut[nOut++] = 0x01;
128321       nOut += sqlite3Fts3PutVarint(&pOut[nOut], iCol);
128322       pOut[nOut++] = 0x02;
128323     }
128324     fts3ColumnlistCopy(0, &p);
128325   }
128326   if( bWritten ){
128327     pOut[nOut++] = 0x00;
128328   }
128329 
128330   return nOut;
128331 }
128332 
128333 
128334 /*
128335 ** Merge all doclists in the TermSelect.aaOutput[] array into a single
128336 ** doclist stored in TermSelect.aaOutput[0]. If successful, delete all
128337 ** other doclists (except the aaOutput[0] one) and return SQLITE_OK.
128338 **
128339 ** If an OOM error occurs, return SQLITE_NOMEM. In this case it is
128340 ** the responsibility of the caller to free any doclists left in the
128341 ** TermSelect.aaOutput[] array.
128342 */
128343 static int fts3TermSelectFinishMerge(Fts3Table *p, TermSelect *pTS){
128344   char *aOut = 0;
128345   int nOut = 0;
128346   int i;
128347 
128348   /* Loop through the doclists in the aaOutput[] array. Merge them all
128349   ** into a single doclist.
128350   */
128351   for(i=0; i<SizeofArray(pTS->aaOutput); i++){
128352     if( pTS->aaOutput[i] ){
128353       if( !aOut ){
128354         aOut = pTS->aaOutput[i];
128355         nOut = pTS->anOutput[i];
128356         pTS->aaOutput[i] = 0;
128357       }else{
128358         int nNew;
128359         char *aNew;
128360 
128361         int rc = fts3DoclistOrMerge(p->bDescIdx,
128362             pTS->aaOutput[i], pTS->anOutput[i], aOut, nOut, &aNew, &nNew
128363         );
128364         if( rc!=SQLITE_OK ){
128365           sqlite3_free(aOut);
128366           return rc;
128367         }
128368 
128369         sqlite3_free(pTS->aaOutput[i]);
128370         sqlite3_free(aOut);
128371         pTS->aaOutput[i] = 0;
128372         aOut = aNew;
128373         nOut = nNew;
128374       }
128375     }
128376   }
128377 
128378   pTS->aaOutput[0] = aOut;
128379   pTS->anOutput[0] = nOut;
128380   return SQLITE_OK;
128381 }
128382 
128383 /*
128384 ** Merge the doclist aDoclist/nDoclist into the TermSelect object passed
128385 ** as the first argument. The merge is an "OR" merge (see function
128386 ** fts3DoclistOrMerge() for details).
128387 **
128388 ** This function is called with the doclist for each term that matches
128389 ** a queried prefix. It merges all these doclists into one, the doclist
128390 ** for the specified prefix. Since there can be a very large number of
128391 ** doclists to merge, the merging is done pair-wise using the TermSelect
128392 ** object.
128393 **
128394 ** This function returns SQLITE_OK if the merge is successful, or an
128395 ** SQLite error code (SQLITE_NOMEM) if an error occurs.
128396 */
128397 static int fts3TermSelectMerge(
128398   Fts3Table *p,                   /* FTS table handle */
128399   TermSelect *pTS,                /* TermSelect object to merge into */
128400   char *aDoclist,                 /* Pointer to doclist */
128401   int nDoclist                    /* Size of aDoclist in bytes */
128402 ){
128403   if( pTS->aaOutput[0]==0 ){
128404     /* If this is the first term selected, copy the doclist to the output
128405     ** buffer using memcpy(). */
128406     pTS->aaOutput[0] = sqlite3_malloc(nDoclist);
128407     pTS->anOutput[0] = nDoclist;
128408     if( pTS->aaOutput[0] ){
128409       memcpy(pTS->aaOutput[0], aDoclist, nDoclist);
128410     }else{
128411       return SQLITE_NOMEM;
128412     }
128413   }else{
128414     char *aMerge = aDoclist;
128415     int nMerge = nDoclist;
128416     int iOut;
128417 
128418     for(iOut=0; iOut<SizeofArray(pTS->aaOutput); iOut++){
128419       if( pTS->aaOutput[iOut]==0 ){
128420         assert( iOut>0 );
128421         pTS->aaOutput[iOut] = aMerge;
128422         pTS->anOutput[iOut] = nMerge;
128423         break;
128424       }else{
128425         char *aNew;
128426         int nNew;
128427 
128428         int rc = fts3DoclistOrMerge(p->bDescIdx, aMerge, nMerge,
128429             pTS->aaOutput[iOut], pTS->anOutput[iOut], &aNew, &nNew
128430         );
128431         if( rc!=SQLITE_OK ){
128432           if( aMerge!=aDoclist ) sqlite3_free(aMerge);
128433           return rc;
128434         }
128435 
128436         if( aMerge!=aDoclist ) sqlite3_free(aMerge);
128437         sqlite3_free(pTS->aaOutput[iOut]);
128438         pTS->aaOutput[iOut] = 0;
128439 
128440         aMerge = aNew;
128441         nMerge = nNew;
128442         if( (iOut+1)==SizeofArray(pTS->aaOutput) ){
128443           pTS->aaOutput[iOut] = aMerge;
128444           pTS->anOutput[iOut] = nMerge;
128445         }
128446       }
128447     }
128448   }
128449   return SQLITE_OK;
128450 }
128451 
128452 /*
128453 ** Append SegReader object pNew to the end of the pCsr->apSegment[] array.
128454 */
128455 static int fts3SegReaderCursorAppend(
128456   Fts3MultiSegReader *pCsr,
128457   Fts3SegReader *pNew
128458 ){
128459   if( (pCsr->nSegment%16)==0 ){
128460     Fts3SegReader **apNew;
128461     int nByte = (pCsr->nSegment + 16)*sizeof(Fts3SegReader*);
128462     apNew = (Fts3SegReader **)sqlite3_realloc(pCsr->apSegment, nByte);
128463     if( !apNew ){
128464       sqlite3Fts3SegReaderFree(pNew);
128465       return SQLITE_NOMEM;
128466     }
128467     pCsr->apSegment = apNew;
128468   }
128469   pCsr->apSegment[pCsr->nSegment++] = pNew;
128470   return SQLITE_OK;
128471 }
128472 
128473 /*
128474 ** Add seg-reader objects to the Fts3MultiSegReader object passed as the
128475 ** 8th argument.
128476 **
128477 ** This function returns SQLITE_OK if successful, or an SQLite error code
128478 ** otherwise.
128479 */
128480 static int fts3SegReaderCursor(
128481   Fts3Table *p,                   /* FTS3 table handle */
128482   int iLangid,                    /* Language id */
128483   int iIndex,                     /* Index to search (from 0 to p->nIndex-1) */
128484   int iLevel,                     /* Level of segments to scan */
128485   const char *zTerm,              /* Term to query for */
128486   int nTerm,                      /* Size of zTerm in bytes */
128487   int isPrefix,                   /* True for a prefix search */
128488   int isScan,                     /* True to scan from zTerm to EOF */
128489   Fts3MultiSegReader *pCsr        /* Cursor object to populate */
128490 ){
128491   int rc = SQLITE_OK;             /* Error code */
128492   sqlite3_stmt *pStmt = 0;        /* Statement to iterate through segments */
128493   int rc2;                        /* Result of sqlite3_reset() */
128494 
128495   /* If iLevel is less than 0 and this is not a scan, include a seg-reader
128496   ** for the pending-terms. If this is a scan, then this call must be being
128497   ** made by an fts4aux module, not an FTS table. In this case calling
128498   ** Fts3SegReaderPending might segfault, as the data structures used by
128499   ** fts4aux are not completely populated. So it's easiest to filter these
128500   ** calls out here.  */
128501   if( iLevel<0 && p->aIndex ){
128502     Fts3SegReader *pSeg = 0;
128503     rc = sqlite3Fts3SegReaderPending(p, iIndex, zTerm, nTerm, isPrefix, &pSeg);
128504     if( rc==SQLITE_OK && pSeg ){
128505       rc = fts3SegReaderCursorAppend(pCsr, pSeg);
128506     }
128507   }
128508 
128509   if( iLevel!=FTS3_SEGCURSOR_PENDING ){
128510     if( rc==SQLITE_OK ){
128511       rc = sqlite3Fts3AllSegdirs(p, iLangid, iIndex, iLevel, &pStmt);
128512     }
128513 
128514     while( rc==SQLITE_OK && SQLITE_ROW==(rc = sqlite3_step(pStmt)) ){
128515       Fts3SegReader *pSeg = 0;
128516 
128517       /* Read the values returned by the SELECT into local variables. */
128518       sqlite3_int64 iStartBlock = sqlite3_column_int64(pStmt, 1);
128519       sqlite3_int64 iLeavesEndBlock = sqlite3_column_int64(pStmt, 2);
128520       sqlite3_int64 iEndBlock = sqlite3_column_int64(pStmt, 3);
128521       int nRoot = sqlite3_column_bytes(pStmt, 4);
128522       char const *zRoot = sqlite3_column_blob(pStmt, 4);
128523 
128524       /* If zTerm is not NULL, and this segment is not stored entirely on its
128525       ** root node, the range of leaves scanned can be reduced. Do this. */
128526       if( iStartBlock && zTerm ){
128527         sqlite3_int64 *pi = (isPrefix ? &iLeavesEndBlock : 0);
128528         rc = fts3SelectLeaf(p, zTerm, nTerm, zRoot, nRoot, &iStartBlock, pi);
128529         if( rc!=SQLITE_OK ) goto finished;
128530         if( isPrefix==0 && isScan==0 ) iLeavesEndBlock = iStartBlock;
128531       }
128532 
128533       rc = sqlite3Fts3SegReaderNew(pCsr->nSegment+1,
128534           (isPrefix==0 && isScan==0),
128535           iStartBlock, iLeavesEndBlock,
128536           iEndBlock, zRoot, nRoot, &pSeg
128537       );
128538       if( rc!=SQLITE_OK ) goto finished;
128539       rc = fts3SegReaderCursorAppend(pCsr, pSeg);
128540     }
128541   }
128542 
128543  finished:
128544   rc2 = sqlite3_reset(pStmt);
128545   if( rc==SQLITE_DONE ) rc = rc2;
128546 
128547   return rc;
128548 }
128549 
128550 /*
128551 ** Set up a cursor object for iterating through a full-text index or a
128552 ** single level therein.
128553 */
128554 SQLITE_PRIVATE int sqlite3Fts3SegReaderCursor(
128555   Fts3Table *p,                   /* FTS3 table handle */
128556   int iLangid,                    /* Language-id to search */
128557   int iIndex,                     /* Index to search (from 0 to p->nIndex-1) */
128558   int iLevel,                     /* Level of segments to scan */
128559   const char *zTerm,              /* Term to query for */
128560   int nTerm,                      /* Size of zTerm in bytes */
128561   int isPrefix,                   /* True for a prefix search */
128562   int isScan,                     /* True to scan from zTerm to EOF */
128563   Fts3MultiSegReader *pCsr       /* Cursor object to populate */
128564 ){
128565   assert( iIndex>=0 && iIndex<p->nIndex );
128566   assert( iLevel==FTS3_SEGCURSOR_ALL
128567       ||  iLevel==FTS3_SEGCURSOR_PENDING
128568       ||  iLevel>=0
128569   );
128570   assert( iLevel<FTS3_SEGDIR_MAXLEVEL );
128571   assert( FTS3_SEGCURSOR_ALL<0 && FTS3_SEGCURSOR_PENDING<0 );
128572   assert( isPrefix==0 || isScan==0 );
128573 
128574   memset(pCsr, 0, sizeof(Fts3MultiSegReader));
128575   return fts3SegReaderCursor(
128576       p, iLangid, iIndex, iLevel, zTerm, nTerm, isPrefix, isScan, pCsr
128577   );
128578 }
128579 
128580 /*
128581 ** In addition to its current configuration, have the Fts3MultiSegReader
128582 ** passed as the 4th argument also scan the doclist for term zTerm/nTerm.
128583 **
128584 ** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code.
128585 */
128586 static int fts3SegReaderCursorAddZero(
128587   Fts3Table *p,                   /* FTS virtual table handle */
128588   int iLangid,
128589   const char *zTerm,              /* Term to scan doclist of */
128590   int nTerm,                      /* Number of bytes in zTerm */
128591   Fts3MultiSegReader *pCsr        /* Fts3MultiSegReader to modify */
128592 ){
128593   return fts3SegReaderCursor(p,
128594       iLangid, 0, FTS3_SEGCURSOR_ALL, zTerm, nTerm, 0, 0,pCsr
128595   );
128596 }
128597 
128598 /*
128599 ** Open an Fts3MultiSegReader to scan the doclist for term zTerm/nTerm. Or,
128600 ** if isPrefix is true, to scan the doclist for all terms for which
128601 ** zTerm/nTerm is a prefix. If successful, return SQLITE_OK and write
128602 ** a pointer to the new Fts3MultiSegReader to *ppSegcsr. Otherwise, return
128603 ** an SQLite error code.
128604 **
128605 ** It is the responsibility of the caller to free this object by eventually
128606 ** passing it to fts3SegReaderCursorFree()
128607 **
128608 ** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code.
128609 ** Output parameter *ppSegcsr is set to 0 if an error occurs.
128610 */
128611 static int fts3TermSegReaderCursor(
128612   Fts3Cursor *pCsr,               /* Virtual table cursor handle */
128613   const char *zTerm,              /* Term to query for */
128614   int nTerm,                      /* Size of zTerm in bytes */
128615   int isPrefix,                   /* True for a prefix search */
128616   Fts3MultiSegReader **ppSegcsr   /* OUT: Allocated seg-reader cursor */
128617 ){
128618   Fts3MultiSegReader *pSegcsr;    /* Object to allocate and return */
128619   int rc = SQLITE_NOMEM;          /* Return code */
128620 
128621   pSegcsr = sqlite3_malloc(sizeof(Fts3MultiSegReader));
128622   if( pSegcsr ){
128623     int i;
128624     int bFound = 0;               /* True once an index has been found */
128625     Fts3Table *p = (Fts3Table *)pCsr->base.pVtab;
128626 
128627     if( isPrefix ){
128628       for(i=1; bFound==0 && i<p->nIndex; i++){
128629         if( p->aIndex[i].nPrefix==nTerm ){
128630           bFound = 1;
128631           rc = sqlite3Fts3SegReaderCursor(p, pCsr->iLangid,
128632               i, FTS3_SEGCURSOR_ALL, zTerm, nTerm, 0, 0, pSegcsr
128633           );
128634           pSegcsr->bLookup = 1;
128635         }
128636       }
128637 
128638       for(i=1; bFound==0 && i<p->nIndex; i++){
128639         if( p->aIndex[i].nPrefix==nTerm+1 ){
128640           bFound = 1;
128641           rc = sqlite3Fts3SegReaderCursor(p, pCsr->iLangid,
128642               i, FTS3_SEGCURSOR_ALL, zTerm, nTerm, 1, 0, pSegcsr
128643           );
128644           if( rc==SQLITE_OK ){
128645             rc = fts3SegReaderCursorAddZero(
128646                 p, pCsr->iLangid, zTerm, nTerm, pSegcsr
128647             );
128648           }
128649         }
128650       }
128651     }
128652 
128653     if( bFound==0 ){
128654       rc = sqlite3Fts3SegReaderCursor(p, pCsr->iLangid,
128655           0, FTS3_SEGCURSOR_ALL, zTerm, nTerm, isPrefix, 0, pSegcsr
128656       );
128657       pSegcsr->bLookup = !isPrefix;
128658     }
128659   }
128660 
128661   *ppSegcsr = pSegcsr;
128662   return rc;
128663 }
128664 
128665 /*
128666 ** Free an Fts3MultiSegReader allocated by fts3TermSegReaderCursor().
128667 */
128668 static void fts3SegReaderCursorFree(Fts3MultiSegReader *pSegcsr){
128669   sqlite3Fts3SegReaderFinish(pSegcsr);
128670   sqlite3_free(pSegcsr);
128671 }
128672 
128673 /*
128674 ** This function retrieves the doclist for the specified term (or term
128675 ** prefix) from the database.
128676 */
128677 static int fts3TermSelect(
128678   Fts3Table *p,                   /* Virtual table handle */
128679   Fts3PhraseToken *pTok,          /* Token to query for */
128680   int iColumn,                    /* Column to query (or -ve for all columns) */
128681   int *pnOut,                     /* OUT: Size of buffer at *ppOut */
128682   char **ppOut                    /* OUT: Malloced result buffer */
128683 ){
128684   int rc;                         /* Return code */
128685   Fts3MultiSegReader *pSegcsr;    /* Seg-reader cursor for this term */
128686   TermSelect tsc;                 /* Object for pair-wise doclist merging */
128687   Fts3SegFilter filter;           /* Segment term filter configuration */
128688 
128689   pSegcsr = pTok->pSegcsr;
128690   memset(&tsc, 0, sizeof(TermSelect));
128691 
128692   filter.flags = FTS3_SEGMENT_IGNORE_EMPTY | FTS3_SEGMENT_REQUIRE_POS
128693         | (pTok->isPrefix ? FTS3_SEGMENT_PREFIX : 0)
128694         | (pTok->bFirst ? FTS3_SEGMENT_FIRST : 0)
128695         | (iColumn<p->nColumn ? FTS3_SEGMENT_COLUMN_FILTER : 0);
128696   filter.iCol = iColumn;
128697   filter.zTerm = pTok->z;
128698   filter.nTerm = pTok->n;
128699 
128700   rc = sqlite3Fts3SegReaderStart(p, pSegcsr, &filter);
128701   while( SQLITE_OK==rc
128702       && SQLITE_ROW==(rc = sqlite3Fts3SegReaderStep(p, pSegcsr))
128703   ){
128704     rc = fts3TermSelectMerge(p, &tsc, pSegcsr->aDoclist, pSegcsr->nDoclist);
128705   }
128706 
128707   if( rc==SQLITE_OK ){
128708     rc = fts3TermSelectFinishMerge(p, &tsc);
128709   }
128710   if( rc==SQLITE_OK ){
128711     *ppOut = tsc.aaOutput[0];
128712     *pnOut = tsc.anOutput[0];
128713   }else{
128714     int i;
128715     for(i=0; i<SizeofArray(tsc.aaOutput); i++){
128716       sqlite3_free(tsc.aaOutput[i]);
128717     }
128718   }
128719 
128720   fts3SegReaderCursorFree(pSegcsr);
128721   pTok->pSegcsr = 0;
128722   return rc;
128723 }
128724 
128725 /*
128726 ** This function counts the total number of docids in the doclist stored
128727 ** in buffer aList[], size nList bytes.
128728 **
128729 ** If the isPoslist argument is true, then it is assumed that the doclist
128730 ** contains a position-list following each docid. Otherwise, it is assumed
128731 ** that the doclist is simply a list of docids stored as delta encoded
128732 ** varints.
128733 */
128734 static int fts3DoclistCountDocids(char *aList, int nList){
128735   int nDoc = 0;                   /* Return value */
128736   if( aList ){
128737     char *aEnd = &aList[nList];   /* Pointer to one byte after EOF */
128738     char *p = aList;              /* Cursor */
128739     while( p<aEnd ){
128740       nDoc++;
128741       while( (*p++)&0x80 );     /* Skip docid varint */
128742       fts3PoslistCopy(0, &p);   /* Skip over position list */
128743     }
128744   }
128745 
128746   return nDoc;
128747 }
128748 
128749 /*
128750 ** Advance the cursor to the next row in the %_content table that
128751 ** matches the search criteria.  For a MATCH search, this will be
128752 ** the next row that matches. For a full-table scan, this will be
128753 ** simply the next row in the %_content table.  For a docid lookup,
128754 ** this routine simply sets the EOF flag.
128755 **
128756 ** Return SQLITE_OK if nothing goes wrong.  SQLITE_OK is returned
128757 ** even if we reach end-of-file.  The fts3EofMethod() will be called
128758 ** subsequently to determine whether or not an EOF was hit.
128759 */
128760 static int fts3NextMethod(sqlite3_vtab_cursor *pCursor){
128761   int rc;
128762   Fts3Cursor *pCsr = (Fts3Cursor *)pCursor;
128763   if( pCsr->eSearch==FTS3_DOCID_SEARCH || pCsr->eSearch==FTS3_FULLSCAN_SEARCH ){
128764     if( SQLITE_ROW!=sqlite3_step(pCsr->pStmt) ){
128765       pCsr->isEof = 1;
128766       rc = sqlite3_reset(pCsr->pStmt);
128767     }else{
128768       pCsr->iPrevId = sqlite3_column_int64(pCsr->pStmt, 0);
128769       rc = SQLITE_OK;
128770     }
128771   }else{
128772     rc = fts3EvalNext((Fts3Cursor *)pCursor);
128773   }
128774   assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 );
128775   return rc;
128776 }
128777 
128778 /*
128779 ** The following are copied from sqliteInt.h.
128780 **
128781 ** Constants for the largest and smallest possible 64-bit signed integers.
128782 ** These macros are designed to work correctly on both 32-bit and 64-bit
128783 ** compilers.
128784 */
128785 #ifndef SQLITE_AMALGAMATION
128786 # define LARGEST_INT64  (0xffffffff|(((sqlite3_int64)0x7fffffff)<<32))
128787 # define SMALLEST_INT64 (((sqlite3_int64)-1) - LARGEST_INT64)
128788 #endif
128789 
128790 /*
128791 ** If the numeric type of argument pVal is "integer", then return it
128792 ** converted to a 64-bit signed integer. Otherwise, return a copy of
128793 ** the second parameter, iDefault.
128794 */
128795 static sqlite3_int64 fts3DocidRange(sqlite3_value *pVal, i64 iDefault){
128796   if( pVal ){
128797     int eType = sqlite3_value_numeric_type(pVal);
128798     if( eType==SQLITE_INTEGER ){
128799       return sqlite3_value_int64(pVal);
128800     }
128801   }
128802   return iDefault;
128803 }
128804 
128805 /*
128806 ** This is the xFilter interface for the virtual table.  See
128807 ** the virtual table xFilter method documentation for additional
128808 ** information.
128809 **
128810 ** If idxNum==FTS3_FULLSCAN_SEARCH then do a full table scan against
128811 ** the %_content table.
128812 **
128813 ** If idxNum==FTS3_DOCID_SEARCH then do a docid lookup for a single entry
128814 ** in the %_content table.
128815 **
128816 ** If idxNum>=FTS3_FULLTEXT_SEARCH then use the full text index.  The
128817 ** column on the left-hand side of the MATCH operator is column
128818 ** number idxNum-FTS3_FULLTEXT_SEARCH, 0 indexed.  argv[0] is the right-hand
128819 ** side of the MATCH operator.
128820 */
128821 static int fts3FilterMethod(
128822   sqlite3_vtab_cursor *pCursor,   /* The cursor used for this query */
128823   int idxNum,                     /* Strategy index */
128824   const char *idxStr,             /* Unused */
128825   int nVal,                       /* Number of elements in apVal */
128826   sqlite3_value **apVal           /* Arguments for the indexing scheme */
128827 ){
128828   int rc;
128829   char *zSql;                     /* SQL statement used to access %_content */
128830   int eSearch;
128831   Fts3Table *p = (Fts3Table *)pCursor->pVtab;
128832   Fts3Cursor *pCsr = (Fts3Cursor *)pCursor;
128833 
128834   sqlite3_value *pCons = 0;       /* The MATCH or rowid constraint, if any */
128835   sqlite3_value *pLangid = 0;     /* The "langid = ?" constraint, if any */
128836   sqlite3_value *pDocidGe = 0;    /* The "docid >= ?" constraint, if any */
128837   sqlite3_value *pDocidLe = 0;    /* The "docid <= ?" constraint, if any */
128838   int iIdx;
128839 
128840   UNUSED_PARAMETER(idxStr);
128841   UNUSED_PARAMETER(nVal);
128842 
128843   eSearch = (idxNum & 0x0000FFFF);
128844   assert( eSearch>=0 && eSearch<=(FTS3_FULLTEXT_SEARCH+p->nColumn) );
128845   assert( p->pSegments==0 );
128846 
128847   /* Collect arguments into local variables */
128848   iIdx = 0;
128849   if( eSearch!=FTS3_FULLSCAN_SEARCH ) pCons = apVal[iIdx++];
128850   if( idxNum & FTS3_HAVE_LANGID ) pLangid = apVal[iIdx++];
128851   if( idxNum & FTS3_HAVE_DOCID_GE ) pDocidGe = apVal[iIdx++];
128852   if( idxNum & FTS3_HAVE_DOCID_LE ) pDocidLe = apVal[iIdx++];
128853   assert( iIdx==nVal );
128854 
128855   /* In case the cursor has been used before, clear it now. */
128856   sqlite3_finalize(pCsr->pStmt);
128857   sqlite3_free(pCsr->aDoclist);
128858   sqlite3Fts3ExprFree(pCsr->pExpr);
128859   memset(&pCursor[1], 0, sizeof(Fts3Cursor)-sizeof(sqlite3_vtab_cursor));
128860 
128861   /* Set the lower and upper bounds on docids to return */
128862   pCsr->iMinDocid = fts3DocidRange(pDocidGe, SMALLEST_INT64);
128863   pCsr->iMaxDocid = fts3DocidRange(pDocidLe, LARGEST_INT64);
128864 
128865   if( idxStr ){
128866     pCsr->bDesc = (idxStr[0]=='D');
128867   }else{
128868     pCsr->bDesc = p->bDescIdx;
128869   }
128870   pCsr->eSearch = (i16)eSearch;
128871 
128872   if( eSearch!=FTS3_DOCID_SEARCH && eSearch!=FTS3_FULLSCAN_SEARCH ){
128873     int iCol = eSearch-FTS3_FULLTEXT_SEARCH;
128874     const char *zQuery = (const char *)sqlite3_value_text(pCons);
128875 
128876     if( zQuery==0 && sqlite3_value_type(pCons)!=SQLITE_NULL ){
128877       return SQLITE_NOMEM;
128878     }
128879 
128880     pCsr->iLangid = 0;
128881     if( pLangid ) pCsr->iLangid = sqlite3_value_int(pLangid);
128882 
128883     assert( p->base.zErrMsg==0 );
128884     rc = sqlite3Fts3ExprParse(p->pTokenizer, pCsr->iLangid,
128885         p->azColumn, p->bFts4, p->nColumn, iCol, zQuery, -1, &pCsr->pExpr,
128886         &p->base.zErrMsg
128887     );
128888     if( rc!=SQLITE_OK ){
128889       return rc;
128890     }
128891 
128892     rc = fts3EvalStart(pCsr);
128893     sqlite3Fts3SegmentsClose(p);
128894     if( rc!=SQLITE_OK ) return rc;
128895     pCsr->pNextId = pCsr->aDoclist;
128896     pCsr->iPrevId = 0;
128897   }
128898 
128899   /* Compile a SELECT statement for this cursor. For a full-table-scan, the
128900   ** statement loops through all rows of the %_content table. For a
128901   ** full-text query or docid lookup, the statement retrieves a single
128902   ** row by docid.
128903   */
128904   if( eSearch==FTS3_FULLSCAN_SEARCH ){
128905     zSql = sqlite3_mprintf(
128906         "SELECT %s ORDER BY rowid %s",
128907         p->zReadExprlist, (pCsr->bDesc ? "DESC" : "ASC")
128908     );
128909     if( zSql ){
128910       rc = sqlite3_prepare_v2(p->db, zSql, -1, &pCsr->pStmt, 0);
128911       sqlite3_free(zSql);
128912     }else{
128913       rc = SQLITE_NOMEM;
128914     }
128915   }else if( eSearch==FTS3_DOCID_SEARCH ){
128916     rc = fts3CursorSeekStmt(pCsr, &pCsr->pStmt);
128917     if( rc==SQLITE_OK ){
128918       rc = sqlite3_bind_value(pCsr->pStmt, 1, pCons);
128919     }
128920   }
128921   if( rc!=SQLITE_OK ) return rc;
128922 
128923   return fts3NextMethod(pCursor);
128924 }
128925 
128926 /*
128927 ** This is the xEof method of the virtual table. SQLite calls this
128928 ** routine to find out if it has reached the end of a result set.
128929 */
128930 static int fts3EofMethod(sqlite3_vtab_cursor *pCursor){
128931   return ((Fts3Cursor *)pCursor)->isEof;
128932 }
128933 
128934 /*
128935 ** This is the xRowid method. The SQLite core calls this routine to
128936 ** retrieve the rowid for the current row of the result set. fts3
128937 ** exposes %_content.docid as the rowid for the virtual table. The
128938 ** rowid should be written to *pRowid.
128939 */
128940 static int fts3RowidMethod(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){
128941   Fts3Cursor *pCsr = (Fts3Cursor *) pCursor;
128942   *pRowid = pCsr->iPrevId;
128943   return SQLITE_OK;
128944 }
128945 
128946 /*
128947 ** This is the xColumn method, called by SQLite to request a value from
128948 ** the row that the supplied cursor currently points to.
128949 **
128950 ** If:
128951 **
128952 **   (iCol <  p->nColumn)   -> The value of the iCol'th user column.
128953 **   (iCol == p->nColumn)   -> Magic column with the same name as the table.
128954 **   (iCol == p->nColumn+1) -> Docid column
128955 **   (iCol == p->nColumn+2) -> Langid column
128956 */
128957 static int fts3ColumnMethod(
128958   sqlite3_vtab_cursor *pCursor,   /* Cursor to retrieve value from */
128959   sqlite3_context *pCtx,          /* Context for sqlite3_result_xxx() calls */
128960   int iCol                        /* Index of column to read value from */
128961 ){
128962   int rc = SQLITE_OK;             /* Return Code */
128963   Fts3Cursor *pCsr = (Fts3Cursor *) pCursor;
128964   Fts3Table *p = (Fts3Table *)pCursor->pVtab;
128965 
128966   /* The column value supplied by SQLite must be in range. */
128967   assert( iCol>=0 && iCol<=p->nColumn+2 );
128968 
128969   if( iCol==p->nColumn+1 ){
128970     /* This call is a request for the "docid" column. Since "docid" is an
128971     ** alias for "rowid", use the xRowid() method to obtain the value.
128972     */
128973     sqlite3_result_int64(pCtx, pCsr->iPrevId);
128974   }else if( iCol==p->nColumn ){
128975     /* The extra column whose name is the same as the table.
128976     ** Return a blob which is a pointer to the cursor.  */
128977     sqlite3_result_blob(pCtx, &pCsr, sizeof(pCsr), SQLITE_TRANSIENT);
128978   }else if( iCol==p->nColumn+2 && pCsr->pExpr ){
128979     sqlite3_result_int64(pCtx, pCsr->iLangid);
128980   }else{
128981     /* The requested column is either a user column (one that contains
128982     ** indexed data), or the language-id column.  */
128983     rc = fts3CursorSeek(0, pCsr);
128984 
128985     if( rc==SQLITE_OK ){
128986       if( iCol==p->nColumn+2 ){
128987         int iLangid = 0;
128988         if( p->zLanguageid ){
128989           iLangid = sqlite3_column_int(pCsr->pStmt, p->nColumn+1);
128990         }
128991         sqlite3_result_int(pCtx, iLangid);
128992       }else if( sqlite3_data_count(pCsr->pStmt)>(iCol+1) ){
128993         sqlite3_result_value(pCtx, sqlite3_column_value(pCsr->pStmt, iCol+1));
128994       }
128995     }
128996   }
128997 
128998   assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 );
128999   return rc;
129000 }
129001 
129002 /*
129003 ** This function is the implementation of the xUpdate callback used by
129004 ** FTS3 virtual tables. It is invoked by SQLite each time a row is to be
129005 ** inserted, updated or deleted.
129006 */
129007 static int fts3UpdateMethod(
129008   sqlite3_vtab *pVtab,            /* Virtual table handle */
129009   int nArg,                       /* Size of argument array */
129010   sqlite3_value **apVal,          /* Array of arguments */
129011   sqlite_int64 *pRowid            /* OUT: The affected (or effected) rowid */
129012 ){
129013   return sqlite3Fts3UpdateMethod(pVtab, nArg, apVal, pRowid);
129014 }
129015 
129016 /*
129017 ** Implementation of xSync() method. Flush the contents of the pending-terms
129018 ** hash-table to the database.
129019 */
129020 static int fts3SyncMethod(sqlite3_vtab *pVtab){
129021 
129022   /* Following an incremental-merge operation, assuming that the input
129023   ** segments are not completely consumed (the usual case), they are updated
129024   ** in place to remove the entries that have already been merged. This
129025   ** involves updating the leaf block that contains the smallest unmerged
129026   ** entry and each block (if any) between the leaf and the root node. So
129027   ** if the height of the input segment b-trees is N, and input segments
129028   ** are merged eight at a time, updating the input segments at the end
129029   ** of an incremental-merge requires writing (8*(1+N)) blocks. N is usually
129030   ** small - often between 0 and 2. So the overhead of the incremental
129031   ** merge is somewhere between 8 and 24 blocks. To avoid this overhead
129032   ** dwarfing the actual productive work accomplished, the incremental merge
129033   ** is only attempted if it will write at least 64 leaf blocks. Hence
129034   ** nMinMerge.
129035   **
129036   ** Of course, updating the input segments also involves deleting a bunch
129037   ** of blocks from the segments table. But this is not considered overhead
129038   ** as it would also be required by a crisis-merge that used the same input
129039   ** segments.
129040   */
129041   const u32 nMinMerge = 64;       /* Minimum amount of incr-merge work to do */
129042 
129043   Fts3Table *p = (Fts3Table*)pVtab;
129044   int rc = sqlite3Fts3PendingTermsFlush(p);
129045 
129046   if( rc==SQLITE_OK
129047    && p->nLeafAdd>(nMinMerge/16)
129048    && p->nAutoincrmerge && p->nAutoincrmerge!=0xff
129049   ){
129050     int mxLevel = 0;              /* Maximum relative level value in db */
129051     int A;                        /* Incr-merge parameter A */
129052 
129053     rc = sqlite3Fts3MaxLevel(p, &mxLevel);
129054     assert( rc==SQLITE_OK || mxLevel==0 );
129055     A = p->nLeafAdd * mxLevel;
129056     A += (A/2);
129057     if( A>(int)nMinMerge ) rc = sqlite3Fts3Incrmerge(p, A, p->nAutoincrmerge);
129058   }
129059   sqlite3Fts3SegmentsClose(p);
129060   return rc;
129061 }
129062 
129063 /*
129064 ** If it is currently unknown whether or not the FTS table has an %_stat
129065 ** table (if p->bHasStat==2), attempt to determine this (set p->bHasStat
129066 ** to 0 or 1). Return SQLITE_OK if successful, or an SQLite error code
129067 ** if an error occurs.
129068 */
129069 static int fts3SetHasStat(Fts3Table *p){
129070   int rc = SQLITE_OK;
129071   if( p->bHasStat==2 ){
129072     const char *zFmt ="SELECT 1 FROM %Q.sqlite_master WHERE tbl_name='%q_stat'";
129073     char *zSql = sqlite3_mprintf(zFmt, p->zDb, p->zName);
129074     if( zSql ){
129075       sqlite3_stmt *pStmt = 0;
129076       rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0);
129077       if( rc==SQLITE_OK ){
129078         int bHasStat = (sqlite3_step(pStmt)==SQLITE_ROW);
129079         rc = sqlite3_finalize(pStmt);
129080         if( rc==SQLITE_OK ) p->bHasStat = bHasStat;
129081       }
129082       sqlite3_free(zSql);
129083     }else{
129084       rc = SQLITE_NOMEM;
129085     }
129086   }
129087   return rc;
129088 }
129089 
129090 /*
129091 ** Implementation of xBegin() method.
129092 */
129093 static int fts3BeginMethod(sqlite3_vtab *pVtab){
129094   Fts3Table *p = (Fts3Table*)pVtab;
129095   UNUSED_PARAMETER(pVtab);
129096   assert( p->pSegments==0 );
129097   assert( p->nPendingData==0 );
129098   assert( p->inTransaction!=1 );
129099   TESTONLY( p->inTransaction = 1 );
129100   TESTONLY( p->mxSavepoint = -1; );
129101   p->nLeafAdd = 0;
129102   return fts3SetHasStat(p);
129103 }
129104 
129105 /*
129106 ** Implementation of xCommit() method. This is a no-op. The contents of
129107 ** the pending-terms hash-table have already been flushed into the database
129108 ** by fts3SyncMethod().
129109 */
129110 static int fts3CommitMethod(sqlite3_vtab *pVtab){
129111   TESTONLY( Fts3Table *p = (Fts3Table*)pVtab );
129112   UNUSED_PARAMETER(pVtab);
129113   assert( p->nPendingData==0 );
129114   assert( p->inTransaction!=0 );
129115   assert( p->pSegments==0 );
129116   TESTONLY( p->inTransaction = 0 );
129117   TESTONLY( p->mxSavepoint = -1; );
129118   return SQLITE_OK;
129119 }
129120 
129121 /*
129122 ** Implementation of xRollback(). Discard the contents of the pending-terms
129123 ** hash-table. Any changes made to the database are reverted by SQLite.
129124 */
129125 static int fts3RollbackMethod(sqlite3_vtab *pVtab){
129126   Fts3Table *p = (Fts3Table*)pVtab;
129127   sqlite3Fts3PendingTermsClear(p);
129128   assert( p->inTransaction!=0 );
129129   TESTONLY( p->inTransaction = 0 );
129130   TESTONLY( p->mxSavepoint = -1; );
129131   return SQLITE_OK;
129132 }
129133 
129134 /*
129135 ** When called, *ppPoslist must point to the byte immediately following the
129136 ** end of a position-list. i.e. ( (*ppPoslist)[-1]==POS_END ). This function
129137 ** moves *ppPoslist so that it instead points to the first byte of the
129138 ** same position list.
129139 */
129140 static void fts3ReversePoslist(char *pStart, char **ppPoslist){
129141   char *p = &(*ppPoslist)[-2];
129142   char c = 0;
129143 
129144   while( p>pStart && (c=*p--)==0 );
129145   while( p>pStart && (*p & 0x80) | c ){
129146     c = *p--;
129147   }
129148   if( p>pStart ){ p = &p[2]; }
129149   while( *p++&0x80 );
129150   *ppPoslist = p;
129151 }
129152 
129153 /*
129154 ** Helper function used by the implementation of the overloaded snippet(),
129155 ** offsets() and optimize() SQL functions.
129156 **
129157 ** If the value passed as the third argument is a blob of size
129158 ** sizeof(Fts3Cursor*), then the blob contents are copied to the
129159 ** output variable *ppCsr and SQLITE_OK is returned. Otherwise, an error
129160 ** message is written to context pContext and SQLITE_ERROR returned. The
129161 ** string passed via zFunc is used as part of the error message.
129162 */
129163 static int fts3FunctionArg(
129164   sqlite3_context *pContext,      /* SQL function call context */
129165   const char *zFunc,              /* Function name */
129166   sqlite3_value *pVal,            /* argv[0] passed to function */
129167   Fts3Cursor **ppCsr              /* OUT: Store cursor handle here */
129168 ){
129169   Fts3Cursor *pRet;
129170   if( sqlite3_value_type(pVal)!=SQLITE_BLOB
129171    || sqlite3_value_bytes(pVal)!=sizeof(Fts3Cursor *)
129172   ){
129173     char *zErr = sqlite3_mprintf("illegal first argument to %s", zFunc);
129174     sqlite3_result_error(pContext, zErr, -1);
129175     sqlite3_free(zErr);
129176     return SQLITE_ERROR;
129177   }
129178   memcpy(&pRet, sqlite3_value_blob(pVal), sizeof(Fts3Cursor *));
129179   *ppCsr = pRet;
129180   return SQLITE_OK;
129181 }
129182 
129183 /*
129184 ** Implementation of the snippet() function for FTS3
129185 */
129186 static void fts3SnippetFunc(
129187   sqlite3_context *pContext,      /* SQLite function call context */
129188   int nVal,                       /* Size of apVal[] array */
129189   sqlite3_value **apVal           /* Array of arguments */
129190 ){
129191   Fts3Cursor *pCsr;               /* Cursor handle passed through apVal[0] */
129192   const char *zStart = "<b>";
129193   const char *zEnd = "</b>";
129194   const char *zEllipsis = "<b>...</b>";
129195   int iCol = -1;
129196   int nToken = 15;                /* Default number of tokens in snippet */
129197 
129198   /* There must be at least one argument passed to this function (otherwise
129199   ** the non-overloaded version would have been called instead of this one).
129200   */
129201   assert( nVal>=1 );
129202 
129203   if( nVal>6 ){
129204     sqlite3_result_error(pContext,
129205         "wrong number of arguments to function snippet()", -1);
129206     return;
129207   }
129208   if( fts3FunctionArg(pContext, "snippet", apVal[0], &pCsr) ) return;
129209 
129210   switch( nVal ){
129211     case 6: nToken = sqlite3_value_int(apVal[5]);
129212     case 5: iCol = sqlite3_value_int(apVal[4]);
129213     case 4: zEllipsis = (const char*)sqlite3_value_text(apVal[3]);
129214     case 3: zEnd = (const char*)sqlite3_value_text(apVal[2]);
129215     case 2: zStart = (const char*)sqlite3_value_text(apVal[1]);
129216   }
129217   if( !zEllipsis || !zEnd || !zStart ){
129218     sqlite3_result_error_nomem(pContext);
129219   }else if( SQLITE_OK==fts3CursorSeek(pContext, pCsr) ){
129220     sqlite3Fts3Snippet(pContext, pCsr, zStart, zEnd, zEllipsis, iCol, nToken);
129221   }
129222 }
129223 
129224 /*
129225 ** Implementation of the offsets() function for FTS3
129226 */
129227 static void fts3OffsetsFunc(
129228   sqlite3_context *pContext,      /* SQLite function call context */
129229   int nVal,                       /* Size of argument array */
129230   sqlite3_value **apVal           /* Array of arguments */
129231 ){
129232   Fts3Cursor *pCsr;               /* Cursor handle passed through apVal[0] */
129233 
129234   UNUSED_PARAMETER(nVal);
129235 
129236   assert( nVal==1 );
129237   if( fts3FunctionArg(pContext, "offsets", apVal[0], &pCsr) ) return;
129238   assert( pCsr );
129239   if( SQLITE_OK==fts3CursorSeek(pContext, pCsr) ){
129240     sqlite3Fts3Offsets(pContext, pCsr);
129241   }
129242 }
129243 
129244 /*
129245 ** Implementation of the special optimize() function for FTS3. This
129246 ** function merges all segments in the database to a single segment.
129247 ** Example usage is:
129248 **
129249 **   SELECT optimize(t) FROM t LIMIT 1;
129250 **
129251 ** where 't' is the name of an FTS3 table.
129252 */
129253 static void fts3OptimizeFunc(
129254   sqlite3_context *pContext,      /* SQLite function call context */
129255   int nVal,                       /* Size of argument array */
129256   sqlite3_value **apVal           /* Array of arguments */
129257 ){
129258   int rc;                         /* Return code */
129259   Fts3Table *p;                   /* Virtual table handle */
129260   Fts3Cursor *pCursor;            /* Cursor handle passed through apVal[0] */
129261 
129262   UNUSED_PARAMETER(nVal);
129263 
129264   assert( nVal==1 );
129265   if( fts3FunctionArg(pContext, "optimize", apVal[0], &pCursor) ) return;
129266   p = (Fts3Table *)pCursor->base.pVtab;
129267   assert( p );
129268 
129269   rc = sqlite3Fts3Optimize(p);
129270 
129271   switch( rc ){
129272     case SQLITE_OK:
129273       sqlite3_result_text(pContext, "Index optimized", -1, SQLITE_STATIC);
129274       break;
129275     case SQLITE_DONE:
129276       sqlite3_result_text(pContext, "Index already optimal", -1, SQLITE_STATIC);
129277       break;
129278     default:
129279       sqlite3_result_error_code(pContext, rc);
129280       break;
129281   }
129282 }
129283 
129284 /*
129285 ** Implementation of the matchinfo() function for FTS3
129286 */
129287 static void fts3MatchinfoFunc(
129288   sqlite3_context *pContext,      /* SQLite function call context */
129289   int nVal,                       /* Size of argument array */
129290   sqlite3_value **apVal           /* Array of arguments */
129291 ){
129292   Fts3Cursor *pCsr;               /* Cursor handle passed through apVal[0] */
129293   assert( nVal==1 || nVal==2 );
129294   if( SQLITE_OK==fts3FunctionArg(pContext, "matchinfo", apVal[0], &pCsr) ){
129295     const char *zArg = 0;
129296     if( nVal>1 ){
129297       zArg = (const char *)sqlite3_value_text(apVal[1]);
129298     }
129299     sqlite3Fts3Matchinfo(pContext, pCsr, zArg);
129300   }
129301 }
129302 
129303 /*
129304 ** This routine implements the xFindFunction method for the FTS3
129305 ** virtual table.
129306 */
129307 static int fts3FindFunctionMethod(
129308   sqlite3_vtab *pVtab,            /* Virtual table handle */
129309   int nArg,                       /* Number of SQL function arguments */
129310   const char *zName,              /* Name of SQL function */
129311   void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), /* OUT: Result */
129312   void **ppArg                    /* Unused */
129313 ){
129314   struct Overloaded {
129315     const char *zName;
129316     void (*xFunc)(sqlite3_context*,int,sqlite3_value**);
129317   } aOverload[] = {
129318     { "snippet", fts3SnippetFunc },
129319     { "offsets", fts3OffsetsFunc },
129320     { "optimize", fts3OptimizeFunc },
129321     { "matchinfo", fts3MatchinfoFunc },
129322   };
129323   int i;                          /* Iterator variable */
129324 
129325   UNUSED_PARAMETER(pVtab);
129326   UNUSED_PARAMETER(nArg);
129327   UNUSED_PARAMETER(ppArg);
129328 
129329   for(i=0; i<SizeofArray(aOverload); i++){
129330     if( strcmp(zName, aOverload[i].zName)==0 ){
129331       *pxFunc = aOverload[i].xFunc;
129332       return 1;
129333     }
129334   }
129335 
129336   /* No function of the specified name was found. Return 0. */
129337   return 0;
129338 }
129339 
129340 /*
129341 ** Implementation of FTS3 xRename method. Rename an fts3 table.
129342 */
129343 static int fts3RenameMethod(
129344   sqlite3_vtab *pVtab,            /* Virtual table handle */
129345   const char *zName               /* New name of table */
129346 ){
129347   Fts3Table *p = (Fts3Table *)pVtab;
129348   sqlite3 *db = p->db;            /* Database connection */
129349   int rc;                         /* Return Code */
129350 
129351   /* At this point it must be known if the %_stat table exists or not.
129352   ** So bHasStat may not be 2.  */
129353   rc = fts3SetHasStat(p);
129354 
129355   /* As it happens, the pending terms table is always empty here. This is
129356   ** because an "ALTER TABLE RENAME TABLE" statement inside a transaction
129357   ** always opens a savepoint transaction. And the xSavepoint() method
129358   ** flushes the pending terms table. But leave the (no-op) call to
129359   ** PendingTermsFlush() in in case that changes.
129360   */
129361   assert( p->nPendingData==0 );
129362   if( rc==SQLITE_OK ){
129363     rc = sqlite3Fts3PendingTermsFlush(p);
129364   }
129365 
129366   if( p->zContentTbl==0 ){
129367     fts3DbExec(&rc, db,
129368       "ALTER TABLE %Q.'%q_content'  RENAME TO '%q_content';",
129369       p->zDb, p->zName, zName
129370     );
129371   }
129372 
129373   if( p->bHasDocsize ){
129374     fts3DbExec(&rc, db,
129375       "ALTER TABLE %Q.'%q_docsize'  RENAME TO '%q_docsize';",
129376       p->zDb, p->zName, zName
129377     );
129378   }
129379   if( p->bHasStat ){
129380     fts3DbExec(&rc, db,
129381       "ALTER TABLE %Q.'%q_stat'  RENAME TO '%q_stat';",
129382       p->zDb, p->zName, zName
129383     );
129384   }
129385   fts3DbExec(&rc, db,
129386     "ALTER TABLE %Q.'%q_segments' RENAME TO '%q_segments';",
129387     p->zDb, p->zName, zName
129388   );
129389   fts3DbExec(&rc, db,
129390     "ALTER TABLE %Q.'%q_segdir'   RENAME TO '%q_segdir';",
129391     p->zDb, p->zName, zName
129392   );
129393   return rc;
129394 }
129395 
129396 /*
129397 ** The xSavepoint() method.
129398 **
129399 ** Flush the contents of the pending-terms table to disk.
129400 */
129401 static int fts3SavepointMethod(sqlite3_vtab *pVtab, int iSavepoint){
129402   int rc = SQLITE_OK;
129403   UNUSED_PARAMETER(iSavepoint);
129404   assert( ((Fts3Table *)pVtab)->inTransaction );
129405   assert( ((Fts3Table *)pVtab)->mxSavepoint < iSavepoint );
129406   TESTONLY( ((Fts3Table *)pVtab)->mxSavepoint = iSavepoint );
129407   if( ((Fts3Table *)pVtab)->bIgnoreSavepoint==0 ){
129408     rc = fts3SyncMethod(pVtab);
129409   }
129410   return rc;
129411 }
129412 
129413 /*
129414 ** The xRelease() method.
129415 **
129416 ** This is a no-op.
129417 */
129418 static int fts3ReleaseMethod(sqlite3_vtab *pVtab, int iSavepoint){
129419   TESTONLY( Fts3Table *p = (Fts3Table*)pVtab );
129420   UNUSED_PARAMETER(iSavepoint);
129421   UNUSED_PARAMETER(pVtab);
129422   assert( p->inTransaction );
129423   assert( p->mxSavepoint >= iSavepoint );
129424   TESTONLY( p->mxSavepoint = iSavepoint-1 );
129425   return SQLITE_OK;
129426 }
129427 
129428 /*
129429 ** The xRollbackTo() method.
129430 **
129431 ** Discard the contents of the pending terms table.
129432 */
129433 static int fts3RollbackToMethod(sqlite3_vtab *pVtab, int iSavepoint){
129434   Fts3Table *p = (Fts3Table*)pVtab;
129435   UNUSED_PARAMETER(iSavepoint);
129436   assert( p->inTransaction );
129437   assert( p->mxSavepoint >= iSavepoint );
129438   TESTONLY( p->mxSavepoint = iSavepoint );
129439   sqlite3Fts3PendingTermsClear(p);
129440   return SQLITE_OK;
129441 }
129442 
129443 static const sqlite3_module fts3Module = {
129444   /* iVersion      */ 2,
129445   /* xCreate       */ fts3CreateMethod,
129446   /* xConnect      */ fts3ConnectMethod,
129447   /* xBestIndex    */ fts3BestIndexMethod,
129448   /* xDisconnect   */ fts3DisconnectMethod,
129449   /* xDestroy      */ fts3DestroyMethod,
129450   /* xOpen         */ fts3OpenMethod,
129451   /* xClose        */ fts3CloseMethod,
129452   /* xFilter       */ fts3FilterMethod,
129453   /* xNext         */ fts3NextMethod,
129454   /* xEof          */ fts3EofMethod,
129455   /* xColumn       */ fts3ColumnMethod,
129456   /* xRowid        */ fts3RowidMethod,
129457   /* xUpdate       */ fts3UpdateMethod,
129458   /* xBegin        */ fts3BeginMethod,
129459   /* xSync         */ fts3SyncMethod,
129460   /* xCommit       */ fts3CommitMethod,
129461   /* xRollback     */ fts3RollbackMethod,
129462   /* xFindFunction */ fts3FindFunctionMethod,
129463   /* xRename */       fts3RenameMethod,
129464   /* xSavepoint    */ fts3SavepointMethod,
129465   /* xRelease      */ fts3ReleaseMethod,
129466   /* xRollbackTo   */ fts3RollbackToMethod,
129467 };
129468 
129469 /*
129470 ** This function is registered as the module destructor (called when an
129471 ** FTS3 enabled database connection is closed). It frees the memory
129472 ** allocated for the tokenizer hash table.
129473 */
129474 static void hashDestroy(void *p){
129475   Fts3Hash *pHash = (Fts3Hash *)p;
129476   sqlite3Fts3HashClear(pHash);
129477   sqlite3_free(pHash);
129478 }
129479 
129480 /*
129481 ** The fts3 built-in tokenizers - "simple", "porter" and "icu"- are
129482 ** implemented in files fts3_tokenizer1.c, fts3_porter.c and fts3_icu.c
129483 ** respectively. The following three forward declarations are for functions
129484 ** declared in these files used to retrieve the respective implementations.
129485 **
129486 ** Calling sqlite3Fts3SimpleTokenizerModule() sets the value pointed
129487 ** to by the argument to point to the "simple" tokenizer implementation.
129488 ** And so on.
129489 */
129490 SQLITE_PRIVATE void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule);
129491 SQLITE_PRIVATE void sqlite3Fts3PorterTokenizerModule(sqlite3_tokenizer_module const**ppModule);
129492 #ifdef SQLITE_ENABLE_FTS4_UNICODE61
129493 SQLITE_PRIVATE void sqlite3Fts3UnicodeTokenizer(sqlite3_tokenizer_module const**ppModule);
129494 #endif
129495 #ifdef SQLITE_ENABLE_ICU
129496 SQLITE_PRIVATE void sqlite3Fts3IcuTokenizerModule(sqlite3_tokenizer_module const**ppModule);
129497 #endif
129498 
129499 /*
129500 ** Initialize the fts3 extension. If this extension is built as part
129501 ** of the sqlite library, then this function is called directly by
129502 ** SQLite. If fts3 is built as a dynamically loadable extension, this
129503 ** function is called by the sqlite3_extension_init() entry point.
129504 */
129505 SQLITE_PRIVATE int sqlite3Fts3Init(sqlite3 *db){
129506   int rc = SQLITE_OK;
129507   Fts3Hash *pHash = 0;
129508   const sqlite3_tokenizer_module *pSimple = 0;
129509   const sqlite3_tokenizer_module *pPorter = 0;
129510 #ifdef SQLITE_ENABLE_FTS4_UNICODE61
129511   const sqlite3_tokenizer_module *pUnicode = 0;
129512 #endif
129513 
129514 #ifdef SQLITE_ENABLE_ICU
129515   const sqlite3_tokenizer_module *pIcu = 0;
129516   sqlite3Fts3IcuTokenizerModule(&pIcu);
129517 #endif
129518 
129519 #ifdef SQLITE_ENABLE_FTS4_UNICODE61
129520   sqlite3Fts3UnicodeTokenizer(&pUnicode);
129521 #endif
129522 
129523 #ifdef SQLITE_TEST
129524   rc = sqlite3Fts3InitTerm(db);
129525   if( rc!=SQLITE_OK ) return rc;
129526 #endif
129527 
129528   rc = sqlite3Fts3InitAux(db);
129529   if( rc!=SQLITE_OK ) return rc;
129530 
129531   sqlite3Fts3SimpleTokenizerModule(&pSimple);
129532   sqlite3Fts3PorterTokenizerModule(&pPorter);
129533 
129534   /* Allocate and initialize the hash-table used to store tokenizers. */
129535   pHash = sqlite3_malloc(sizeof(Fts3Hash));
129536   if( !pHash ){
129537     rc = SQLITE_NOMEM;
129538   }else{
129539     sqlite3Fts3HashInit(pHash, FTS3_HASH_STRING, 1);
129540   }
129541 
129542   /* Load the built-in tokenizers into the hash table */
129543   if( rc==SQLITE_OK ){
129544     if( sqlite3Fts3HashInsert(pHash, "simple", 7, (void *)pSimple)
129545      || sqlite3Fts3HashInsert(pHash, "porter", 7, (void *)pPorter)
129546 
129547 #ifdef SQLITE_ENABLE_FTS4_UNICODE61
129548      || sqlite3Fts3HashInsert(pHash, "unicode61", 10, (void *)pUnicode)
129549 #endif
129550 #ifdef SQLITE_ENABLE_ICU
129551      || (pIcu && sqlite3Fts3HashInsert(pHash, "icu", 4, (void *)pIcu))
129552 #endif
129553     ){
129554       rc = SQLITE_NOMEM;
129555     }
129556   }
129557 
129558 #ifdef SQLITE_TEST
129559   if( rc==SQLITE_OK ){
129560     rc = sqlite3Fts3ExprInitTestInterface(db);
129561   }
129562 #endif
129563 
129564   /* Create the virtual table wrapper around the hash-table and overload
129565   ** the two scalar functions. If this is successful, register the
129566   ** module with sqlite.
129567   */
129568   if( SQLITE_OK==rc
129569    && SQLITE_OK==(rc = sqlite3Fts3InitHashTable(db, pHash, "fts3_tokenizer"))
129570    && SQLITE_OK==(rc = sqlite3_overload_function(db, "snippet", -1))
129571    && SQLITE_OK==(rc = sqlite3_overload_function(db, "offsets", 1))
129572    && SQLITE_OK==(rc = sqlite3_overload_function(db, "matchinfo", 1))
129573    && SQLITE_OK==(rc = sqlite3_overload_function(db, "matchinfo", 2))
129574    && SQLITE_OK==(rc = sqlite3_overload_function(db, "optimize", 1))
129575   ){
129576     rc = sqlite3_create_module_v2(
129577         db, "fts3", &fts3Module, (void *)pHash, hashDestroy
129578     );
129579     if( rc==SQLITE_OK ){
129580       rc = sqlite3_create_module_v2(
129581           db, "fts4", &fts3Module, (void *)pHash, 0
129582       );
129583     }
129584     if( rc==SQLITE_OK ){
129585       rc = sqlite3Fts3InitTok(db, (void *)pHash);
129586     }
129587     return rc;
129588   }
129589 
129590 
129591   /* An error has occurred. Delete the hash table and return the error code. */
129592   assert( rc!=SQLITE_OK );
129593   if( pHash ){
129594     sqlite3Fts3HashClear(pHash);
129595     sqlite3_free(pHash);
129596   }
129597   return rc;
129598 }
129599 
129600 /*
129601 ** Allocate an Fts3MultiSegReader for each token in the expression headed
129602 ** by pExpr.
129603 **
129604 ** An Fts3SegReader object is a cursor that can seek or scan a range of
129605 ** entries within a single segment b-tree. An Fts3MultiSegReader uses multiple
129606 ** Fts3SegReader objects internally to provide an interface to seek or scan
129607 ** within the union of all segments of a b-tree. Hence the name.
129608 **
129609 ** If the allocated Fts3MultiSegReader just seeks to a single entry in a
129610 ** segment b-tree (if the term is not a prefix or it is a prefix for which
129611 ** there exists prefix b-tree of the right length) then it may be traversed
129612 ** and merged incrementally. Otherwise, it has to be merged into an in-memory
129613 ** doclist and then traversed.
129614 */
129615 static void fts3EvalAllocateReaders(
129616   Fts3Cursor *pCsr,               /* FTS cursor handle */
129617   Fts3Expr *pExpr,                /* Allocate readers for this expression */
129618   int *pnToken,                   /* OUT: Total number of tokens in phrase. */
129619   int *pnOr,                      /* OUT: Total number of OR nodes in expr. */
129620   int *pRc                        /* IN/OUT: Error code */
129621 ){
129622   if( pExpr && SQLITE_OK==*pRc ){
129623     if( pExpr->eType==FTSQUERY_PHRASE ){
129624       int i;
129625       int nToken = pExpr->pPhrase->nToken;
129626       *pnToken += nToken;
129627       for(i=0; i<nToken; i++){
129628         Fts3PhraseToken *pToken = &pExpr->pPhrase->aToken[i];
129629         int rc = fts3TermSegReaderCursor(pCsr,
129630             pToken->z, pToken->n, pToken->isPrefix, &pToken->pSegcsr
129631         );
129632         if( rc!=SQLITE_OK ){
129633           *pRc = rc;
129634           return;
129635         }
129636       }
129637       assert( pExpr->pPhrase->iDoclistToken==0 );
129638       pExpr->pPhrase->iDoclistToken = -1;
129639     }else{
129640       *pnOr += (pExpr->eType==FTSQUERY_OR);
129641       fts3EvalAllocateReaders(pCsr, pExpr->pLeft, pnToken, pnOr, pRc);
129642       fts3EvalAllocateReaders(pCsr, pExpr->pRight, pnToken, pnOr, pRc);
129643     }
129644   }
129645 }
129646 
129647 /*
129648 ** Arguments pList/nList contain the doclist for token iToken of phrase p.
129649 ** It is merged into the main doclist stored in p->doclist.aAll/nAll.
129650 **
129651 ** This function assumes that pList points to a buffer allocated using
129652 ** sqlite3_malloc(). This function takes responsibility for eventually
129653 ** freeing the buffer.
129654 */
129655 static void fts3EvalPhraseMergeToken(
129656   Fts3Table *pTab,                /* FTS Table pointer */
129657   Fts3Phrase *p,                  /* Phrase to merge pList/nList into */
129658   int iToken,                     /* Token pList/nList corresponds to */
129659   char *pList,                    /* Pointer to doclist */
129660   int nList                       /* Number of bytes in pList */
129661 ){
129662   assert( iToken!=p->iDoclistToken );
129663 
129664   if( pList==0 ){
129665     sqlite3_free(p->doclist.aAll);
129666     p->doclist.aAll = 0;
129667     p->doclist.nAll = 0;
129668   }
129669 
129670   else if( p->iDoclistToken<0 ){
129671     p->doclist.aAll = pList;
129672     p->doclist.nAll = nList;
129673   }
129674 
129675   else if( p->doclist.aAll==0 ){
129676     sqlite3_free(pList);
129677   }
129678 
129679   else {
129680     char *pLeft;
129681     char *pRight;
129682     int nLeft;
129683     int nRight;
129684     int nDiff;
129685 
129686     if( p->iDoclistToken<iToken ){
129687       pLeft = p->doclist.aAll;
129688       nLeft = p->doclist.nAll;
129689       pRight = pList;
129690       nRight = nList;
129691       nDiff = iToken - p->iDoclistToken;
129692     }else{
129693       pRight = p->doclist.aAll;
129694       nRight = p->doclist.nAll;
129695       pLeft = pList;
129696       nLeft = nList;
129697       nDiff = p->iDoclistToken - iToken;
129698     }
129699 
129700     fts3DoclistPhraseMerge(pTab->bDescIdx, nDiff, pLeft, nLeft, pRight,&nRight);
129701     sqlite3_free(pLeft);
129702     p->doclist.aAll = pRight;
129703     p->doclist.nAll = nRight;
129704   }
129705 
129706   if( iToken>p->iDoclistToken ) p->iDoclistToken = iToken;
129707 }
129708 
129709 /*
129710 ** Load the doclist for phrase p into p->doclist.aAll/nAll. The loaded doclist
129711 ** does not take deferred tokens into account.
129712 **
129713 ** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code.
129714 */
129715 static int fts3EvalPhraseLoad(
129716   Fts3Cursor *pCsr,               /* FTS Cursor handle */
129717   Fts3Phrase *p                   /* Phrase object */
129718 ){
129719   Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
129720   int iToken;
129721   int rc = SQLITE_OK;
129722 
129723   for(iToken=0; rc==SQLITE_OK && iToken<p->nToken; iToken++){
129724     Fts3PhraseToken *pToken = &p->aToken[iToken];
129725     assert( pToken->pDeferred==0 || pToken->pSegcsr==0 );
129726 
129727     if( pToken->pSegcsr ){
129728       int nThis = 0;
129729       char *pThis = 0;
129730       rc = fts3TermSelect(pTab, pToken, p->iColumn, &nThis, &pThis);
129731       if( rc==SQLITE_OK ){
129732         fts3EvalPhraseMergeToken(pTab, p, iToken, pThis, nThis);
129733       }
129734     }
129735     assert( pToken->pSegcsr==0 );
129736   }
129737 
129738   return rc;
129739 }
129740 
129741 /*
129742 ** This function is called on each phrase after the position lists for
129743 ** any deferred tokens have been loaded into memory. It updates the phrases
129744 ** current position list to include only those positions that are really
129745 ** instances of the phrase (after considering deferred tokens). If this
129746 ** means that the phrase does not appear in the current row, doclist.pList
129747 ** and doclist.nList are both zeroed.
129748 **
129749 ** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code.
129750 */
129751 static int fts3EvalDeferredPhrase(Fts3Cursor *pCsr, Fts3Phrase *pPhrase){
129752   int iToken;                     /* Used to iterate through phrase tokens */
129753   char *aPoslist = 0;             /* Position list for deferred tokens */
129754   int nPoslist = 0;               /* Number of bytes in aPoslist */
129755   int iPrev = -1;                 /* Token number of previous deferred token */
129756 
129757   assert( pPhrase->doclist.bFreeList==0 );
129758 
129759   for(iToken=0; iToken<pPhrase->nToken; iToken++){
129760     Fts3PhraseToken *pToken = &pPhrase->aToken[iToken];
129761     Fts3DeferredToken *pDeferred = pToken->pDeferred;
129762 
129763     if( pDeferred ){
129764       char *pList;
129765       int nList;
129766       int rc = sqlite3Fts3DeferredTokenList(pDeferred, &pList, &nList);
129767       if( rc!=SQLITE_OK ) return rc;
129768 
129769       if( pList==0 ){
129770         sqlite3_free(aPoslist);
129771         pPhrase->doclist.pList = 0;
129772         pPhrase->doclist.nList = 0;
129773         return SQLITE_OK;
129774 
129775       }else if( aPoslist==0 ){
129776         aPoslist = pList;
129777         nPoslist = nList;
129778 
129779       }else{
129780         char *aOut = pList;
129781         char *p1 = aPoslist;
129782         char *p2 = aOut;
129783 
129784         assert( iPrev>=0 );
129785         fts3PoslistPhraseMerge(&aOut, iToken-iPrev, 0, 1, &p1, &p2);
129786         sqlite3_free(aPoslist);
129787         aPoslist = pList;
129788         nPoslist = (int)(aOut - aPoslist);
129789         if( nPoslist==0 ){
129790           sqlite3_free(aPoslist);
129791           pPhrase->doclist.pList = 0;
129792           pPhrase->doclist.nList = 0;
129793           return SQLITE_OK;
129794         }
129795       }
129796       iPrev = iToken;
129797     }
129798   }
129799 
129800   if( iPrev>=0 ){
129801     int nMaxUndeferred = pPhrase->iDoclistToken;
129802     if( nMaxUndeferred<0 ){
129803       pPhrase->doclist.pList = aPoslist;
129804       pPhrase->doclist.nList = nPoslist;
129805       pPhrase->doclist.iDocid = pCsr->iPrevId;
129806       pPhrase->doclist.bFreeList = 1;
129807     }else{
129808       int nDistance;
129809       char *p1;
129810       char *p2;
129811       char *aOut;
129812 
129813       if( nMaxUndeferred>iPrev ){
129814         p1 = aPoslist;
129815         p2 = pPhrase->doclist.pList;
129816         nDistance = nMaxUndeferred - iPrev;
129817       }else{
129818         p1 = pPhrase->doclist.pList;
129819         p2 = aPoslist;
129820         nDistance = iPrev - nMaxUndeferred;
129821       }
129822 
129823       aOut = (char *)sqlite3_malloc(nPoslist+8);
129824       if( !aOut ){
129825         sqlite3_free(aPoslist);
129826         return SQLITE_NOMEM;
129827       }
129828 
129829       pPhrase->doclist.pList = aOut;
129830       if( fts3PoslistPhraseMerge(&aOut, nDistance, 0, 1, &p1, &p2) ){
129831         pPhrase->doclist.bFreeList = 1;
129832         pPhrase->doclist.nList = (int)(aOut - pPhrase->doclist.pList);
129833       }else{
129834         sqlite3_free(aOut);
129835         pPhrase->doclist.pList = 0;
129836         pPhrase->doclist.nList = 0;
129837       }
129838       sqlite3_free(aPoslist);
129839     }
129840   }
129841 
129842   return SQLITE_OK;
129843 }
129844 
129845 /*
129846 ** Maximum number of tokens a phrase may have to be considered for the
129847 ** incremental doclists strategy.
129848 */
129849 #define MAX_INCR_PHRASE_TOKENS 4
129850 
129851 /*
129852 ** This function is called for each Fts3Phrase in a full-text query
129853 ** expression to initialize the mechanism for returning rows. Once this
129854 ** function has been called successfully on an Fts3Phrase, it may be
129855 ** used with fts3EvalPhraseNext() to iterate through the matching docids.
129856 **
129857 ** If parameter bOptOk is true, then the phrase may (or may not) use the
129858 ** incremental loading strategy. Otherwise, the entire doclist is loaded into
129859 ** memory within this call.
129860 **
129861 ** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code.
129862 */
129863 static int fts3EvalPhraseStart(Fts3Cursor *pCsr, int bOptOk, Fts3Phrase *p){
129864   Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
129865   int rc = SQLITE_OK;             /* Error code */
129866   int i;
129867 
129868   /* Determine if doclists may be loaded from disk incrementally. This is
129869   ** possible if the bOptOk argument is true, the FTS doclists will be
129870   ** scanned in forward order, and the phrase consists of
129871   ** MAX_INCR_PHRASE_TOKENS or fewer tokens, none of which are are "^first"
129872   ** tokens or prefix tokens that cannot use a prefix-index.  */
129873   int bHaveIncr = 0;
129874   int bIncrOk = (bOptOk
129875    && pCsr->bDesc==pTab->bDescIdx
129876    && p->nToken<=MAX_INCR_PHRASE_TOKENS && p->nToken>0
129877    && p->nToken<=MAX_INCR_PHRASE_TOKENS && p->nToken>0
129878 #ifdef SQLITE_TEST
129879    && pTab->bNoIncrDoclist==0
129880 #endif
129881   );
129882   for(i=0; bIncrOk==1 && i<p->nToken; i++){
129883     Fts3PhraseToken *pToken = &p->aToken[i];
129884     if( pToken->bFirst || (pToken->pSegcsr!=0 && !pToken->pSegcsr->bLookup) ){
129885       bIncrOk = 0;
129886     }
129887     if( pToken->pSegcsr ) bHaveIncr = 1;
129888   }
129889 
129890   if( bIncrOk && bHaveIncr ){
129891     /* Use the incremental approach. */
129892     int iCol = (p->iColumn >= pTab->nColumn ? -1 : p->iColumn);
129893     for(i=0; rc==SQLITE_OK && i<p->nToken; i++){
129894       Fts3PhraseToken *pToken = &p->aToken[i];
129895       Fts3MultiSegReader *pSegcsr = pToken->pSegcsr;
129896       if( pSegcsr ){
129897         rc = sqlite3Fts3MsrIncrStart(pTab, pSegcsr, iCol, pToken->z, pToken->n);
129898       }
129899     }
129900     p->bIncr = 1;
129901   }else{
129902     /* Load the full doclist for the phrase into memory. */
129903     rc = fts3EvalPhraseLoad(pCsr, p);
129904     p->bIncr = 0;
129905   }
129906 
129907   assert( rc!=SQLITE_OK || p->nToken<1 || p->aToken[0].pSegcsr==0 || p->bIncr );
129908   return rc;
129909 }
129910 
129911 /*
129912 ** This function is used to iterate backwards (from the end to start)
129913 ** through doclists. It is used by this module to iterate through phrase
129914 ** doclists in reverse and by the fts3_write.c module to iterate through
129915 ** pending-terms lists when writing to databases with "order=desc".
129916 **
129917 ** The doclist may be sorted in ascending (parameter bDescIdx==0) or
129918 ** descending (parameter bDescIdx==1) order of docid. Regardless, this
129919 ** function iterates from the end of the doclist to the beginning.
129920 */
129921 SQLITE_PRIVATE void sqlite3Fts3DoclistPrev(
129922   int bDescIdx,                   /* True if the doclist is desc */
129923   char *aDoclist,                 /* Pointer to entire doclist */
129924   int nDoclist,                   /* Length of aDoclist in bytes */
129925   char **ppIter,                  /* IN/OUT: Iterator pointer */
129926   sqlite3_int64 *piDocid,         /* IN/OUT: Docid pointer */
129927   int *pnList,                    /* OUT: List length pointer */
129928   u8 *pbEof                       /* OUT: End-of-file flag */
129929 ){
129930   char *p = *ppIter;
129931 
129932   assert( nDoclist>0 );
129933   assert( *pbEof==0 );
129934   assert( p || *piDocid==0 );
129935   assert( !p || (p>aDoclist && p<&aDoclist[nDoclist]) );
129936 
129937   if( p==0 ){
129938     sqlite3_int64 iDocid = 0;
129939     char *pNext = 0;
129940     char *pDocid = aDoclist;
129941     char *pEnd = &aDoclist[nDoclist];
129942     int iMul = 1;
129943 
129944     while( pDocid<pEnd ){
129945       sqlite3_int64 iDelta;
129946       pDocid += sqlite3Fts3GetVarint(pDocid, &iDelta);
129947       iDocid += (iMul * iDelta);
129948       pNext = pDocid;
129949       fts3PoslistCopy(0, &pDocid);
129950       while( pDocid<pEnd && *pDocid==0 ) pDocid++;
129951       iMul = (bDescIdx ? -1 : 1);
129952     }
129953 
129954     *pnList = (int)(pEnd - pNext);
129955     *ppIter = pNext;
129956     *piDocid = iDocid;
129957   }else{
129958     int iMul = (bDescIdx ? -1 : 1);
129959     sqlite3_int64 iDelta;
129960     fts3GetReverseVarint(&p, aDoclist, &iDelta);
129961     *piDocid -= (iMul * iDelta);
129962 
129963     if( p==aDoclist ){
129964       *pbEof = 1;
129965     }else{
129966       char *pSave = p;
129967       fts3ReversePoslist(aDoclist, &p);
129968       *pnList = (int)(pSave - p);
129969     }
129970     *ppIter = p;
129971   }
129972 }
129973 
129974 /*
129975 ** Iterate forwards through a doclist.
129976 */
129977 SQLITE_PRIVATE void sqlite3Fts3DoclistNext(
129978   int bDescIdx,                   /* True if the doclist is desc */
129979   char *aDoclist,                 /* Pointer to entire doclist */
129980   int nDoclist,                   /* Length of aDoclist in bytes */
129981   char **ppIter,                  /* IN/OUT: Iterator pointer */
129982   sqlite3_int64 *piDocid,         /* IN/OUT: Docid pointer */
129983   u8 *pbEof                       /* OUT: End-of-file flag */
129984 ){
129985   char *p = *ppIter;
129986 
129987   assert( nDoclist>0 );
129988   assert( *pbEof==0 );
129989   assert( p || *piDocid==0 );
129990   assert( !p || (p>=aDoclist && p<=&aDoclist[nDoclist]) );
129991 
129992   if( p==0 ){
129993     p = aDoclist;
129994     p += sqlite3Fts3GetVarint(p, piDocid);
129995   }else{
129996     fts3PoslistCopy(0, &p);
129997     if( p>=&aDoclist[nDoclist] ){
129998       *pbEof = 1;
129999     }else{
130000       sqlite3_int64 iVar;
130001       p += sqlite3Fts3GetVarint(p, &iVar);
130002       *piDocid += ((bDescIdx ? -1 : 1) * iVar);
130003     }
130004   }
130005 
130006   *ppIter = p;
130007 }
130008 
130009 /*
130010 ** Advance the iterator pDL to the next entry in pDL->aAll/nAll. Set *pbEof
130011 ** to true if EOF is reached.
130012 */
130013 static void fts3EvalDlPhraseNext(
130014   Fts3Table *pTab,
130015   Fts3Doclist *pDL,
130016   u8 *pbEof
130017 ){
130018   char *pIter;                            /* Used to iterate through aAll */
130019   char *pEnd = &pDL->aAll[pDL->nAll];     /* 1 byte past end of aAll */
130020 
130021   if( pDL->pNextDocid ){
130022     pIter = pDL->pNextDocid;
130023   }else{
130024     pIter = pDL->aAll;
130025   }
130026 
130027   if( pIter>=pEnd ){
130028     /* We have already reached the end of this doclist. EOF. */
130029     *pbEof = 1;
130030   }else{
130031     sqlite3_int64 iDelta;
130032     pIter += sqlite3Fts3GetVarint(pIter, &iDelta);
130033     if( pTab->bDescIdx==0 || pDL->pNextDocid==0 ){
130034       pDL->iDocid += iDelta;
130035     }else{
130036       pDL->iDocid -= iDelta;
130037     }
130038     pDL->pList = pIter;
130039     fts3PoslistCopy(0, &pIter);
130040     pDL->nList = (int)(pIter - pDL->pList);
130041 
130042     /* pIter now points just past the 0x00 that terminates the position-
130043     ** list for document pDL->iDocid. However, if this position-list was
130044     ** edited in place by fts3EvalNearTrim(), then pIter may not actually
130045     ** point to the start of the next docid value. The following line deals
130046     ** with this case by advancing pIter past the zero-padding added by
130047     ** fts3EvalNearTrim().  */
130048     while( pIter<pEnd && *pIter==0 ) pIter++;
130049 
130050     pDL->pNextDocid = pIter;
130051     assert( pIter>=&pDL->aAll[pDL->nAll] || *pIter );
130052     *pbEof = 0;
130053   }
130054 }
130055 
130056 /*
130057 ** Helper type used by fts3EvalIncrPhraseNext() and incrPhraseTokenNext().
130058 */
130059 typedef struct TokenDoclist TokenDoclist;
130060 struct TokenDoclist {
130061   int bIgnore;
130062   sqlite3_int64 iDocid;
130063   char *pList;
130064   int nList;
130065 };
130066 
130067 /*
130068 ** Token pToken is an incrementally loaded token that is part of a
130069 ** multi-token phrase. Advance it to the next matching document in the
130070 ** database and populate output variable *p with the details of the new
130071 ** entry. Or, if the iterator has reached EOF, set *pbEof to true.
130072 **
130073 ** If an error occurs, return an SQLite error code. Otherwise, return
130074 ** SQLITE_OK.
130075 */
130076 static int incrPhraseTokenNext(
130077   Fts3Table *pTab,                /* Virtual table handle */
130078   Fts3Phrase *pPhrase,            /* Phrase to advance token of */
130079   int iToken,                     /* Specific token to advance */
130080   TokenDoclist *p,                /* OUT: Docid and doclist for new entry */
130081   u8 *pbEof                       /* OUT: True if iterator is at EOF */
130082 ){
130083   int rc = SQLITE_OK;
130084 
130085   if( pPhrase->iDoclistToken==iToken ){
130086     assert( p->bIgnore==0 );
130087     assert( pPhrase->aToken[iToken].pSegcsr==0 );
130088     fts3EvalDlPhraseNext(pTab, &pPhrase->doclist, pbEof);
130089     p->pList = pPhrase->doclist.pList;
130090     p->nList = pPhrase->doclist.nList;
130091     p->iDocid = pPhrase->doclist.iDocid;
130092   }else{
130093     Fts3PhraseToken *pToken = &pPhrase->aToken[iToken];
130094     assert( pToken->pDeferred==0 );
130095     assert( pToken->pSegcsr || pPhrase->iDoclistToken>=0 );
130096     if( pToken->pSegcsr ){
130097       assert( p->bIgnore==0 );
130098       rc = sqlite3Fts3MsrIncrNext(
130099           pTab, pToken->pSegcsr, &p->iDocid, &p->pList, &p->nList
130100       );
130101       if( p->pList==0 ) *pbEof = 1;
130102     }else{
130103       p->bIgnore = 1;
130104     }
130105   }
130106 
130107   return rc;
130108 }
130109 
130110 
130111 /*
130112 ** The phrase iterator passed as the second argument:
130113 **
130114 **   * features at least one token that uses an incremental doclist, and
130115 **
130116 **   * does not contain any deferred tokens.
130117 **
130118 ** Advance it to the next matching documnent in the database and populate
130119 ** the Fts3Doclist.pList and nList fields.
130120 **
130121 ** If there is no "next" entry and no error occurs, then *pbEof is set to
130122 ** 1 before returning. Otherwise, if no error occurs and the iterator is
130123 ** successfully advanced, *pbEof is set to 0.
130124 **
130125 ** If an error occurs, return an SQLite error code. Otherwise, return
130126 ** SQLITE_OK.
130127 */
130128 static int fts3EvalIncrPhraseNext(
130129   Fts3Cursor *pCsr,               /* FTS Cursor handle */
130130   Fts3Phrase *p,                  /* Phrase object to advance to next docid */
130131   u8 *pbEof                       /* OUT: Set to 1 if EOF */
130132 ){
130133   int rc = SQLITE_OK;
130134   Fts3Doclist *pDL = &p->doclist;
130135   Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
130136   u8 bEof = 0;
130137 
130138   /* This is only called if it is guaranteed that the phrase has at least
130139   ** one incremental token. In which case the bIncr flag is set. */
130140   assert( p->bIncr==1 );
130141 
130142   if( p->nToken==1 && p->bIncr ){
130143     rc = sqlite3Fts3MsrIncrNext(pTab, p->aToken[0].pSegcsr,
130144         &pDL->iDocid, &pDL->pList, &pDL->nList
130145     );
130146     if( pDL->pList==0 ) bEof = 1;
130147   }else{
130148     int bDescDoclist = pCsr->bDesc;
130149     struct TokenDoclist a[MAX_INCR_PHRASE_TOKENS];
130150 
130151     memset(a, 0, sizeof(a));
130152     assert( p->nToken<=MAX_INCR_PHRASE_TOKENS );
130153     assert( p->iDoclistToken<MAX_INCR_PHRASE_TOKENS );
130154 
130155     while( bEof==0 ){
130156       int bMaxSet = 0;
130157       sqlite3_int64 iMax = 0;     /* Largest docid for all iterators */
130158       int i;                      /* Used to iterate through tokens */
130159 
130160       /* Advance the iterator for each token in the phrase once. */
130161       for(i=0; rc==SQLITE_OK && i<p->nToken && bEof==0; i++){
130162         rc = incrPhraseTokenNext(pTab, p, i, &a[i], &bEof);
130163         if( a[i].bIgnore==0 && (bMaxSet==0 || DOCID_CMP(iMax, a[i].iDocid)<0) ){
130164           iMax = a[i].iDocid;
130165           bMaxSet = 1;
130166         }
130167       }
130168       assert( rc!=SQLITE_OK || a[p->nToken-1].bIgnore==0 );
130169       assert( rc!=SQLITE_OK || bMaxSet );
130170 
130171       /* Keep advancing iterators until they all point to the same document */
130172       for(i=0; i<p->nToken; i++){
130173         while( rc==SQLITE_OK && bEof==0
130174             && a[i].bIgnore==0 && DOCID_CMP(a[i].iDocid, iMax)<0
130175         ){
130176           rc = incrPhraseTokenNext(pTab, p, i, &a[i], &bEof);
130177           if( DOCID_CMP(a[i].iDocid, iMax)>0 ){
130178             iMax = a[i].iDocid;
130179             i = 0;
130180           }
130181         }
130182       }
130183 
130184       /* Check if the current entries really are a phrase match */
130185       if( bEof==0 ){
130186         int nList = 0;
130187         int nByte = a[p->nToken-1].nList;
130188         char *aDoclist = sqlite3_malloc(nByte+1);
130189         if( !aDoclist ) return SQLITE_NOMEM;
130190         memcpy(aDoclist, a[p->nToken-1].pList, nByte+1);
130191 
130192         for(i=0; i<(p->nToken-1); i++){
130193           if( a[i].bIgnore==0 ){
130194             char *pL = a[i].pList;
130195             char *pR = aDoclist;
130196             char *pOut = aDoclist;
130197             int nDist = p->nToken-1-i;
130198             int res = fts3PoslistPhraseMerge(&pOut, nDist, 0, 1, &pL, &pR);
130199             if( res==0 ) break;
130200             nList = (int)(pOut - aDoclist);
130201           }
130202         }
130203         if( i==(p->nToken-1) ){
130204           pDL->iDocid = iMax;
130205           pDL->pList = aDoclist;
130206           pDL->nList = nList;
130207           pDL->bFreeList = 1;
130208           break;
130209         }
130210         sqlite3_free(aDoclist);
130211       }
130212     }
130213   }
130214 
130215   *pbEof = bEof;
130216   return rc;
130217 }
130218 
130219 /*
130220 ** Attempt to move the phrase iterator to point to the next matching docid.
130221 ** If an error occurs, return an SQLite error code. Otherwise, return
130222 ** SQLITE_OK.
130223 **
130224 ** If there is no "next" entry and no error occurs, then *pbEof is set to
130225 ** 1 before returning. Otherwise, if no error occurs and the iterator is
130226 ** successfully advanced, *pbEof is set to 0.
130227 */
130228 static int fts3EvalPhraseNext(
130229   Fts3Cursor *pCsr,               /* FTS Cursor handle */
130230   Fts3Phrase *p,                  /* Phrase object to advance to next docid */
130231   u8 *pbEof                       /* OUT: Set to 1 if EOF */
130232 ){
130233   int rc = SQLITE_OK;
130234   Fts3Doclist *pDL = &p->doclist;
130235   Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
130236 
130237   if( p->bIncr ){
130238     rc = fts3EvalIncrPhraseNext(pCsr, p, pbEof);
130239   }else if( pCsr->bDesc!=pTab->bDescIdx && pDL->nAll ){
130240     sqlite3Fts3DoclistPrev(pTab->bDescIdx, pDL->aAll, pDL->nAll,
130241         &pDL->pNextDocid, &pDL->iDocid, &pDL->nList, pbEof
130242     );
130243     pDL->pList = pDL->pNextDocid;
130244   }else{
130245     fts3EvalDlPhraseNext(pTab, pDL, pbEof);
130246   }
130247 
130248   return rc;
130249 }
130250 
130251 /*
130252 **
130253 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op.
130254 ** Otherwise, fts3EvalPhraseStart() is called on all phrases within the
130255 ** expression. Also the Fts3Expr.bDeferred variable is set to true for any
130256 ** expressions for which all descendent tokens are deferred.
130257 **
130258 ** If parameter bOptOk is zero, then it is guaranteed that the
130259 ** Fts3Phrase.doclist.aAll/nAll variables contain the entire doclist for
130260 ** each phrase in the expression (subject to deferred token processing).
130261 ** Or, if bOptOk is non-zero, then one or more tokens within the expression
130262 ** may be loaded incrementally, meaning doclist.aAll/nAll is not available.
130263 **
130264 ** If an error occurs within this function, *pRc is set to an SQLite error
130265 ** code before returning.
130266 */
130267 static void fts3EvalStartReaders(
130268   Fts3Cursor *pCsr,               /* FTS Cursor handle */
130269   Fts3Expr *pExpr,                /* Expression to initialize phrases in */
130270   int *pRc                        /* IN/OUT: Error code */
130271 ){
130272   if( pExpr && SQLITE_OK==*pRc ){
130273     if( pExpr->eType==FTSQUERY_PHRASE ){
130274       int i;
130275       int nToken = pExpr->pPhrase->nToken;
130276       for(i=0; i<nToken; i++){
130277         if( pExpr->pPhrase->aToken[i].pDeferred==0 ) break;
130278       }
130279       pExpr->bDeferred = (i==nToken);
130280       *pRc = fts3EvalPhraseStart(pCsr, 1, pExpr->pPhrase);
130281     }else{
130282       fts3EvalStartReaders(pCsr, pExpr->pLeft, pRc);
130283       fts3EvalStartReaders(pCsr, pExpr->pRight, pRc);
130284       pExpr->bDeferred = (pExpr->pLeft->bDeferred && pExpr->pRight->bDeferred);
130285     }
130286   }
130287 }
130288 
130289 /*
130290 ** An array of the following structures is assembled as part of the process
130291 ** of selecting tokens to defer before the query starts executing (as part
130292 ** of the xFilter() method). There is one element in the array for each
130293 ** token in the FTS expression.
130294 **
130295 ** Tokens are divided into AND/NEAR clusters. All tokens in a cluster belong
130296 ** to phrases that are connected only by AND and NEAR operators (not OR or
130297 ** NOT). When determining tokens to defer, each AND/NEAR cluster is considered
130298 ** separately. The root of a tokens AND/NEAR cluster is stored in
130299 ** Fts3TokenAndCost.pRoot.
130300 */
130301 typedef struct Fts3TokenAndCost Fts3TokenAndCost;
130302 struct Fts3TokenAndCost {
130303   Fts3Phrase *pPhrase;            /* The phrase the token belongs to */
130304   int iToken;                     /* Position of token in phrase */
130305   Fts3PhraseToken *pToken;        /* The token itself */
130306   Fts3Expr *pRoot;                /* Root of NEAR/AND cluster */
130307   int nOvfl;                      /* Number of overflow pages to load doclist */
130308   int iCol;                       /* The column the token must match */
130309 };
130310 
130311 /*
130312 ** This function is used to populate an allocated Fts3TokenAndCost array.
130313 **
130314 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op.
130315 ** Otherwise, if an error occurs during execution, *pRc is set to an
130316 ** SQLite error code.
130317 */
130318 static void fts3EvalTokenCosts(
130319   Fts3Cursor *pCsr,               /* FTS Cursor handle */
130320   Fts3Expr *pRoot,                /* Root of current AND/NEAR cluster */
130321   Fts3Expr *pExpr,                /* Expression to consider */
130322   Fts3TokenAndCost **ppTC,        /* Write new entries to *(*ppTC)++ */
130323   Fts3Expr ***ppOr,               /* Write new OR root to *(*ppOr)++ */
130324   int *pRc                        /* IN/OUT: Error code */
130325 ){
130326   if( *pRc==SQLITE_OK ){
130327     if( pExpr->eType==FTSQUERY_PHRASE ){
130328       Fts3Phrase *pPhrase = pExpr->pPhrase;
130329       int i;
130330       for(i=0; *pRc==SQLITE_OK && i<pPhrase->nToken; i++){
130331         Fts3TokenAndCost *pTC = (*ppTC)++;
130332         pTC->pPhrase = pPhrase;
130333         pTC->iToken = i;
130334         pTC->pRoot = pRoot;
130335         pTC->pToken = &pPhrase->aToken[i];
130336         pTC->iCol = pPhrase->iColumn;
130337         *pRc = sqlite3Fts3MsrOvfl(pCsr, pTC->pToken->pSegcsr, &pTC->nOvfl);
130338       }
130339     }else if( pExpr->eType!=FTSQUERY_NOT ){
130340       assert( pExpr->eType==FTSQUERY_OR
130341            || pExpr->eType==FTSQUERY_AND
130342            || pExpr->eType==FTSQUERY_NEAR
130343       );
130344       assert( pExpr->pLeft && pExpr->pRight );
130345       if( pExpr->eType==FTSQUERY_OR ){
130346         pRoot = pExpr->pLeft;
130347         **ppOr = pRoot;
130348         (*ppOr)++;
130349       }
130350       fts3EvalTokenCosts(pCsr, pRoot, pExpr->pLeft, ppTC, ppOr, pRc);
130351       if( pExpr->eType==FTSQUERY_OR ){
130352         pRoot = pExpr->pRight;
130353         **ppOr = pRoot;
130354         (*ppOr)++;
130355       }
130356       fts3EvalTokenCosts(pCsr, pRoot, pExpr->pRight, ppTC, ppOr, pRc);
130357     }
130358   }
130359 }
130360 
130361 /*
130362 ** Determine the average document (row) size in pages. If successful,
130363 ** write this value to *pnPage and return SQLITE_OK. Otherwise, return
130364 ** an SQLite error code.
130365 **
130366 ** The average document size in pages is calculated by first calculating
130367 ** determining the average size in bytes, B. If B is less than the amount
130368 ** of data that will fit on a single leaf page of an intkey table in
130369 ** this database, then the average docsize is 1. Otherwise, it is 1 plus
130370 ** the number of overflow pages consumed by a record B bytes in size.
130371 */
130372 static int fts3EvalAverageDocsize(Fts3Cursor *pCsr, int *pnPage){
130373   if( pCsr->nRowAvg==0 ){
130374     /* The average document size, which is required to calculate the cost
130375     ** of each doclist, has not yet been determined. Read the required
130376     ** data from the %_stat table to calculate it.
130377     **
130378     ** Entry 0 of the %_stat table is a blob containing (nCol+1) FTS3
130379     ** varints, where nCol is the number of columns in the FTS3 table.
130380     ** The first varint is the number of documents currently stored in
130381     ** the table. The following nCol varints contain the total amount of
130382     ** data stored in all rows of each column of the table, from left
130383     ** to right.
130384     */
130385     int rc;
130386     Fts3Table *p = (Fts3Table*)pCsr->base.pVtab;
130387     sqlite3_stmt *pStmt;
130388     sqlite3_int64 nDoc = 0;
130389     sqlite3_int64 nByte = 0;
130390     const char *pEnd;
130391     const char *a;
130392 
130393     rc = sqlite3Fts3SelectDoctotal(p, &pStmt);
130394     if( rc!=SQLITE_OK ) return rc;
130395     a = sqlite3_column_blob(pStmt, 0);
130396     assert( a );
130397 
130398     pEnd = &a[sqlite3_column_bytes(pStmt, 0)];
130399     a += sqlite3Fts3GetVarint(a, &nDoc);
130400     while( a<pEnd ){
130401       a += sqlite3Fts3GetVarint(a, &nByte);
130402     }
130403     if( nDoc==0 || nByte==0 ){
130404       sqlite3_reset(pStmt);
130405       return FTS_CORRUPT_VTAB;
130406     }
130407 
130408     pCsr->nDoc = nDoc;
130409     pCsr->nRowAvg = (int)(((nByte / nDoc) + p->nPgsz) / p->nPgsz);
130410     assert( pCsr->nRowAvg>0 );
130411     rc = sqlite3_reset(pStmt);
130412     if( rc!=SQLITE_OK ) return rc;
130413   }
130414 
130415   *pnPage = pCsr->nRowAvg;
130416   return SQLITE_OK;
130417 }
130418 
130419 /*
130420 ** This function is called to select the tokens (if any) that will be
130421 ** deferred. The array aTC[] has already been populated when this is
130422 ** called.
130423 **
130424 ** This function is called once for each AND/NEAR cluster in the
130425 ** expression. Each invocation determines which tokens to defer within
130426 ** the cluster with root node pRoot. See comments above the definition
130427 ** of struct Fts3TokenAndCost for more details.
130428 **
130429 ** If no error occurs, SQLITE_OK is returned and sqlite3Fts3DeferToken()
130430 ** called on each token to defer. Otherwise, an SQLite error code is
130431 ** returned.
130432 */
130433 static int fts3EvalSelectDeferred(
130434   Fts3Cursor *pCsr,               /* FTS Cursor handle */
130435   Fts3Expr *pRoot,                /* Consider tokens with this root node */
130436   Fts3TokenAndCost *aTC,          /* Array of expression tokens and costs */
130437   int nTC                         /* Number of entries in aTC[] */
130438 ){
130439   Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
130440   int nDocSize = 0;               /* Number of pages per doc loaded */
130441   int rc = SQLITE_OK;             /* Return code */
130442   int ii;                         /* Iterator variable for various purposes */
130443   int nOvfl = 0;                  /* Total overflow pages used by doclists */
130444   int nToken = 0;                 /* Total number of tokens in cluster */
130445 
130446   int nMinEst = 0;                /* The minimum count for any phrase so far. */
130447   int nLoad4 = 1;                 /* (Phrases that will be loaded)^4. */
130448 
130449   /* Tokens are never deferred for FTS tables created using the content=xxx
130450   ** option. The reason being that it is not guaranteed that the content
130451   ** table actually contains the same data as the index. To prevent this from
130452   ** causing any problems, the deferred token optimization is completely
130453   ** disabled for content=xxx tables. */
130454   if( pTab->zContentTbl ){
130455     return SQLITE_OK;
130456   }
130457 
130458   /* Count the tokens in this AND/NEAR cluster. If none of the doclists
130459   ** associated with the tokens spill onto overflow pages, or if there is
130460   ** only 1 token, exit early. No tokens to defer in this case. */
130461   for(ii=0; ii<nTC; ii++){
130462     if( aTC[ii].pRoot==pRoot ){
130463       nOvfl += aTC[ii].nOvfl;
130464       nToken++;
130465     }
130466   }
130467   if( nOvfl==0 || nToken<2 ) return SQLITE_OK;
130468 
130469   /* Obtain the average docsize (in pages). */
130470   rc = fts3EvalAverageDocsize(pCsr, &nDocSize);
130471   assert( rc!=SQLITE_OK || nDocSize>0 );
130472 
130473 
130474   /* Iterate through all tokens in this AND/NEAR cluster, in ascending order
130475   ** of the number of overflow pages that will be loaded by the pager layer
130476   ** to retrieve the entire doclist for the token from the full-text index.
130477   ** Load the doclists for tokens that are either:
130478   **
130479   **   a. The cheapest token in the entire query (i.e. the one visited by the
130480   **      first iteration of this loop), or
130481   **
130482   **   b. Part of a multi-token phrase.
130483   **
130484   ** After each token doclist is loaded, merge it with the others from the
130485   ** same phrase and count the number of documents that the merged doclist
130486   ** contains. Set variable "nMinEst" to the smallest number of documents in
130487   ** any phrase doclist for which 1 or more token doclists have been loaded.
130488   ** Let nOther be the number of other phrases for which it is certain that
130489   ** one or more tokens will not be deferred.
130490   **
130491   ** Then, for each token, defer it if loading the doclist would result in
130492   ** loading N or more overflow pages into memory, where N is computed as:
130493   **
130494   **    (nMinEst + 4^nOther - 1) / (4^nOther)
130495   */
130496   for(ii=0; ii<nToken && rc==SQLITE_OK; ii++){
130497     int iTC;                      /* Used to iterate through aTC[] array. */
130498     Fts3TokenAndCost *pTC = 0;    /* Set to cheapest remaining token. */
130499 
130500     /* Set pTC to point to the cheapest remaining token. */
130501     for(iTC=0; iTC<nTC; iTC++){
130502       if( aTC[iTC].pToken && aTC[iTC].pRoot==pRoot
130503        && (!pTC || aTC[iTC].nOvfl<pTC->nOvfl)
130504       ){
130505         pTC = &aTC[iTC];
130506       }
130507     }
130508     assert( pTC );
130509 
130510     if( ii && pTC->nOvfl>=((nMinEst+(nLoad4/4)-1)/(nLoad4/4))*nDocSize ){
130511       /* The number of overflow pages to load for this (and therefore all
130512       ** subsequent) tokens is greater than the estimated number of pages
130513       ** that will be loaded if all subsequent tokens are deferred.
130514       */
130515       Fts3PhraseToken *pToken = pTC->pToken;
130516       rc = sqlite3Fts3DeferToken(pCsr, pToken, pTC->iCol);
130517       fts3SegReaderCursorFree(pToken->pSegcsr);
130518       pToken->pSegcsr = 0;
130519     }else{
130520       /* Set nLoad4 to the value of (4^nOther) for the next iteration of the
130521       ** for-loop. Except, limit the value to 2^24 to prevent it from
130522       ** overflowing the 32-bit integer it is stored in. */
130523       if( ii<12 ) nLoad4 = nLoad4*4;
130524 
130525       if( ii==0 || (pTC->pPhrase->nToken>1 && ii!=nToken-1) ){
130526         /* Either this is the cheapest token in the entire query, or it is
130527         ** part of a multi-token phrase. Either way, the entire doclist will
130528         ** (eventually) be loaded into memory. It may as well be now. */
130529         Fts3PhraseToken *pToken = pTC->pToken;
130530         int nList = 0;
130531         char *pList = 0;
130532         rc = fts3TermSelect(pTab, pToken, pTC->iCol, &nList, &pList);
130533         assert( rc==SQLITE_OK || pList==0 );
130534         if( rc==SQLITE_OK ){
130535           int nCount;
130536           fts3EvalPhraseMergeToken(pTab, pTC->pPhrase, pTC->iToken,pList,nList);
130537           nCount = fts3DoclistCountDocids(
130538               pTC->pPhrase->doclist.aAll, pTC->pPhrase->doclist.nAll
130539           );
130540           if( ii==0 || nCount<nMinEst ) nMinEst = nCount;
130541         }
130542       }
130543     }
130544     pTC->pToken = 0;
130545   }
130546 
130547   return rc;
130548 }
130549 
130550 /*
130551 ** This function is called from within the xFilter method. It initializes
130552 ** the full-text query currently stored in pCsr->pExpr. To iterate through
130553 ** the results of a query, the caller does:
130554 **
130555 **    fts3EvalStart(pCsr);
130556 **    while( 1 ){
130557 **      fts3EvalNext(pCsr);
130558 **      if( pCsr->bEof ) break;
130559 **      ... return row pCsr->iPrevId to the caller ...
130560 **    }
130561 */
130562 static int fts3EvalStart(Fts3Cursor *pCsr){
130563   Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
130564   int rc = SQLITE_OK;
130565   int nToken = 0;
130566   int nOr = 0;
130567 
130568   /* Allocate a MultiSegReader for each token in the expression. */
130569   fts3EvalAllocateReaders(pCsr, pCsr->pExpr, &nToken, &nOr, &rc);
130570 
130571   /* Determine which, if any, tokens in the expression should be deferred. */
130572 #ifndef SQLITE_DISABLE_FTS4_DEFERRED
130573   if( rc==SQLITE_OK && nToken>1 && pTab->bFts4 ){
130574     Fts3TokenAndCost *aTC;
130575     Fts3Expr **apOr;
130576     aTC = (Fts3TokenAndCost *)sqlite3_malloc(
130577         sizeof(Fts3TokenAndCost) * nToken
130578       + sizeof(Fts3Expr *) * nOr * 2
130579     );
130580     apOr = (Fts3Expr **)&aTC[nToken];
130581 
130582     if( !aTC ){
130583       rc = SQLITE_NOMEM;
130584     }else{
130585       int ii;
130586       Fts3TokenAndCost *pTC = aTC;
130587       Fts3Expr **ppOr = apOr;
130588 
130589       fts3EvalTokenCosts(pCsr, 0, pCsr->pExpr, &pTC, &ppOr, &rc);
130590       nToken = (int)(pTC-aTC);
130591       nOr = (int)(ppOr-apOr);
130592 
130593       if( rc==SQLITE_OK ){
130594         rc = fts3EvalSelectDeferred(pCsr, 0, aTC, nToken);
130595         for(ii=0; rc==SQLITE_OK && ii<nOr; ii++){
130596           rc = fts3EvalSelectDeferred(pCsr, apOr[ii], aTC, nToken);
130597         }
130598       }
130599 
130600       sqlite3_free(aTC);
130601     }
130602   }
130603 #endif
130604 
130605   fts3EvalStartReaders(pCsr, pCsr->pExpr, &rc);
130606   return rc;
130607 }
130608 
130609 /*
130610 ** Invalidate the current position list for phrase pPhrase.
130611 */
130612 static void fts3EvalInvalidatePoslist(Fts3Phrase *pPhrase){
130613   if( pPhrase->doclist.bFreeList ){
130614     sqlite3_free(pPhrase->doclist.pList);
130615   }
130616   pPhrase->doclist.pList = 0;
130617   pPhrase->doclist.nList = 0;
130618   pPhrase->doclist.bFreeList = 0;
130619 }
130620 
130621 /*
130622 ** This function is called to edit the position list associated with
130623 ** the phrase object passed as the fifth argument according to a NEAR
130624 ** condition. For example:
130625 **
130626 **     abc NEAR/5 "def ghi"
130627 **
130628 ** Parameter nNear is passed the NEAR distance of the expression (5 in
130629 ** the example above). When this function is called, *paPoslist points to
130630 ** the position list, and *pnToken is the number of phrase tokens in, the
130631 ** phrase on the other side of the NEAR operator to pPhrase. For example,
130632 ** if pPhrase refers to the "def ghi" phrase, then *paPoslist points to
130633 ** the position list associated with phrase "abc".
130634 **
130635 ** All positions in the pPhrase position list that are not sufficiently
130636 ** close to a position in the *paPoslist position list are removed. If this
130637 ** leaves 0 positions, zero is returned. Otherwise, non-zero.
130638 **
130639 ** Before returning, *paPoslist is set to point to the position lsit
130640 ** associated with pPhrase. And *pnToken is set to the number of tokens in
130641 ** pPhrase.
130642 */
130643 static int fts3EvalNearTrim(
130644   int nNear,                      /* NEAR distance. As in "NEAR/nNear". */
130645   char *aTmp,                     /* Temporary space to use */
130646   char **paPoslist,               /* IN/OUT: Position list */
130647   int *pnToken,                   /* IN/OUT: Tokens in phrase of *paPoslist */
130648   Fts3Phrase *pPhrase             /* The phrase object to trim the doclist of */
130649 ){
130650   int nParam1 = nNear + pPhrase->nToken;
130651   int nParam2 = nNear + *pnToken;
130652   int nNew;
130653   char *p2;
130654   char *pOut;
130655   int res;
130656 
130657   assert( pPhrase->doclist.pList );
130658 
130659   p2 = pOut = pPhrase->doclist.pList;
130660   res = fts3PoslistNearMerge(
130661     &pOut, aTmp, nParam1, nParam2, paPoslist, &p2
130662   );
130663   if( res ){
130664     nNew = (int)(pOut - pPhrase->doclist.pList) - 1;
130665     assert( pPhrase->doclist.pList[nNew]=='\0' );
130666     assert( nNew<=pPhrase->doclist.nList && nNew>0 );
130667     memset(&pPhrase->doclist.pList[nNew], 0, pPhrase->doclist.nList - nNew);
130668     pPhrase->doclist.nList = nNew;
130669     *paPoslist = pPhrase->doclist.pList;
130670     *pnToken = pPhrase->nToken;
130671   }
130672 
130673   return res;
130674 }
130675 
130676 /*
130677 ** This function is a no-op if *pRc is other than SQLITE_OK when it is called.
130678 ** Otherwise, it advances the expression passed as the second argument to
130679 ** point to the next matching row in the database. Expressions iterate through
130680 ** matching rows in docid order. Ascending order if Fts3Cursor.bDesc is zero,
130681 ** or descending if it is non-zero.
130682 **
130683 ** If an error occurs, *pRc is set to an SQLite error code. Otherwise, if
130684 ** successful, the following variables in pExpr are set:
130685 **
130686 **   Fts3Expr.bEof                (non-zero if EOF - there is no next row)
130687 **   Fts3Expr.iDocid              (valid if bEof==0. The docid of the next row)
130688 **
130689 ** If the expression is of type FTSQUERY_PHRASE, and the expression is not
130690 ** at EOF, then the following variables are populated with the position list
130691 ** for the phrase for the visited row:
130692 **
130693 **   FTs3Expr.pPhrase->doclist.nList        (length of pList in bytes)
130694 **   FTs3Expr.pPhrase->doclist.pList        (pointer to position list)
130695 **
130696 ** It says above that this function advances the expression to the next
130697 ** matching row. This is usually true, but there are the following exceptions:
130698 **
130699 **   1. Deferred tokens are not taken into account. If a phrase consists
130700 **      entirely of deferred tokens, it is assumed to match every row in
130701 **      the db. In this case the position-list is not populated at all.
130702 **
130703 **      Or, if a phrase contains one or more deferred tokens and one or
130704 **      more non-deferred tokens, then the expression is advanced to the
130705 **      next possible match, considering only non-deferred tokens. In other
130706 **      words, if the phrase is "A B C", and "B" is deferred, the expression
130707 **      is advanced to the next row that contains an instance of "A * C",
130708 **      where "*" may match any single token. The position list in this case
130709 **      is populated as for "A * C" before returning.
130710 **
130711 **   2. NEAR is treated as AND. If the expression is "x NEAR y", it is
130712 **      advanced to point to the next row that matches "x AND y".
130713 **
130714 ** See fts3EvalTestDeferredAndNear() for details on testing if a row is
130715 ** really a match, taking into account deferred tokens and NEAR operators.
130716 */
130717 static void fts3EvalNextRow(
130718   Fts3Cursor *pCsr,               /* FTS Cursor handle */
130719   Fts3Expr *pExpr,                /* Expr. to advance to next matching row */
130720   int *pRc                        /* IN/OUT: Error code */
130721 ){
130722   if( *pRc==SQLITE_OK ){
130723     int bDescDoclist = pCsr->bDesc;         /* Used by DOCID_CMP() macro */
130724     assert( pExpr->bEof==0 );
130725     pExpr->bStart = 1;
130726 
130727     switch( pExpr->eType ){
130728       case FTSQUERY_NEAR:
130729       case FTSQUERY_AND: {
130730         Fts3Expr *pLeft = pExpr->pLeft;
130731         Fts3Expr *pRight = pExpr->pRight;
130732         assert( !pLeft->bDeferred || !pRight->bDeferred );
130733 
130734         if( pLeft->bDeferred ){
130735           /* LHS is entirely deferred. So we assume it matches every row.
130736           ** Advance the RHS iterator to find the next row visited. */
130737           fts3EvalNextRow(pCsr, pRight, pRc);
130738           pExpr->iDocid = pRight->iDocid;
130739           pExpr->bEof = pRight->bEof;
130740         }else if( pRight->bDeferred ){
130741           /* RHS is entirely deferred. So we assume it matches every row.
130742           ** Advance the LHS iterator to find the next row visited. */
130743           fts3EvalNextRow(pCsr, pLeft, pRc);
130744           pExpr->iDocid = pLeft->iDocid;
130745           pExpr->bEof = pLeft->bEof;
130746         }else{
130747           /* Neither the RHS or LHS are deferred. */
130748           fts3EvalNextRow(pCsr, pLeft, pRc);
130749           fts3EvalNextRow(pCsr, pRight, pRc);
130750           while( !pLeft->bEof && !pRight->bEof && *pRc==SQLITE_OK ){
130751             sqlite3_int64 iDiff = DOCID_CMP(pLeft->iDocid, pRight->iDocid);
130752             if( iDiff==0 ) break;
130753             if( iDiff<0 ){
130754               fts3EvalNextRow(pCsr, pLeft, pRc);
130755             }else{
130756               fts3EvalNextRow(pCsr, pRight, pRc);
130757             }
130758           }
130759           pExpr->iDocid = pLeft->iDocid;
130760           pExpr->bEof = (pLeft->bEof || pRight->bEof);
130761         }
130762         break;
130763       }
130764 
130765       case FTSQUERY_OR: {
130766         Fts3Expr *pLeft = pExpr->pLeft;
130767         Fts3Expr *pRight = pExpr->pRight;
130768         sqlite3_int64 iCmp = DOCID_CMP(pLeft->iDocid, pRight->iDocid);
130769 
130770         assert( pLeft->bStart || pLeft->iDocid==pRight->iDocid );
130771         assert( pRight->bStart || pLeft->iDocid==pRight->iDocid );
130772 
130773         if( pRight->bEof || (pLeft->bEof==0 && iCmp<0) ){
130774           fts3EvalNextRow(pCsr, pLeft, pRc);
130775         }else if( pLeft->bEof || (pRight->bEof==0 && iCmp>0) ){
130776           fts3EvalNextRow(pCsr, pRight, pRc);
130777         }else{
130778           fts3EvalNextRow(pCsr, pLeft, pRc);
130779           fts3EvalNextRow(pCsr, pRight, pRc);
130780         }
130781 
130782         pExpr->bEof = (pLeft->bEof && pRight->bEof);
130783         iCmp = DOCID_CMP(pLeft->iDocid, pRight->iDocid);
130784         if( pRight->bEof || (pLeft->bEof==0 &&  iCmp<0) ){
130785           pExpr->iDocid = pLeft->iDocid;
130786         }else{
130787           pExpr->iDocid = pRight->iDocid;
130788         }
130789 
130790         break;
130791       }
130792 
130793       case FTSQUERY_NOT: {
130794         Fts3Expr *pLeft = pExpr->pLeft;
130795         Fts3Expr *pRight = pExpr->pRight;
130796 
130797         if( pRight->bStart==0 ){
130798           fts3EvalNextRow(pCsr, pRight, pRc);
130799           assert( *pRc!=SQLITE_OK || pRight->bStart );
130800         }
130801 
130802         fts3EvalNextRow(pCsr, pLeft, pRc);
130803         if( pLeft->bEof==0 ){
130804           while( !*pRc
130805               && !pRight->bEof
130806               && DOCID_CMP(pLeft->iDocid, pRight->iDocid)>0
130807           ){
130808             fts3EvalNextRow(pCsr, pRight, pRc);
130809           }
130810         }
130811         pExpr->iDocid = pLeft->iDocid;
130812         pExpr->bEof = pLeft->bEof;
130813         break;
130814       }
130815 
130816       default: {
130817         Fts3Phrase *pPhrase = pExpr->pPhrase;
130818         fts3EvalInvalidatePoslist(pPhrase);
130819         *pRc = fts3EvalPhraseNext(pCsr, pPhrase, &pExpr->bEof);
130820         pExpr->iDocid = pPhrase->doclist.iDocid;
130821         break;
130822       }
130823     }
130824   }
130825 }
130826 
130827 /*
130828 ** If *pRc is not SQLITE_OK, or if pExpr is not the root node of a NEAR
130829 ** cluster, then this function returns 1 immediately.
130830 **
130831 ** Otherwise, it checks if the current row really does match the NEAR
130832 ** expression, using the data currently stored in the position lists
130833 ** (Fts3Expr->pPhrase.doclist.pList/nList) for each phrase in the expression.
130834 **
130835 ** If the current row is a match, the position list associated with each
130836 ** phrase in the NEAR expression is edited in place to contain only those
130837 ** phrase instances sufficiently close to their peers to satisfy all NEAR
130838 ** constraints. In this case it returns 1. If the NEAR expression does not
130839 ** match the current row, 0 is returned. The position lists may or may not
130840 ** be edited if 0 is returned.
130841 */
130842 static int fts3EvalNearTest(Fts3Expr *pExpr, int *pRc){
130843   int res = 1;
130844 
130845   /* The following block runs if pExpr is the root of a NEAR query.
130846   ** For example, the query:
130847   **
130848   **         "w" NEAR "x" NEAR "y" NEAR "z"
130849   **
130850   ** which is represented in tree form as:
130851   **
130852   **                               |
130853   **                          +--NEAR--+      <-- root of NEAR query
130854   **                          |        |
130855   **                     +--NEAR--+   "z"
130856   **                     |        |
130857   **                +--NEAR--+   "y"
130858   **                |        |
130859   **               "w"      "x"
130860   **
130861   ** The right-hand child of a NEAR node is always a phrase. The
130862   ** left-hand child may be either a phrase or a NEAR node. There are
130863   ** no exceptions to this - it's the way the parser in fts3_expr.c works.
130864   */
130865   if( *pRc==SQLITE_OK
130866    && pExpr->eType==FTSQUERY_NEAR
130867    && pExpr->bEof==0
130868    && (pExpr->pParent==0 || pExpr->pParent->eType!=FTSQUERY_NEAR)
130869   ){
130870     Fts3Expr *p;
130871     int nTmp = 0;                 /* Bytes of temp space */
130872     char *aTmp;                   /* Temp space for PoslistNearMerge() */
130873 
130874     /* Allocate temporary working space. */
130875     for(p=pExpr; p->pLeft; p=p->pLeft){
130876       nTmp += p->pRight->pPhrase->doclist.nList;
130877     }
130878     nTmp += p->pPhrase->doclist.nList;
130879     if( nTmp==0 ){
130880       res = 0;
130881     }else{
130882       aTmp = sqlite3_malloc(nTmp*2);
130883       if( !aTmp ){
130884         *pRc = SQLITE_NOMEM;
130885         res = 0;
130886       }else{
130887         char *aPoslist = p->pPhrase->doclist.pList;
130888         int nToken = p->pPhrase->nToken;
130889 
130890         for(p=p->pParent;res && p && p->eType==FTSQUERY_NEAR; p=p->pParent){
130891           Fts3Phrase *pPhrase = p->pRight->pPhrase;
130892           int nNear = p->nNear;
130893           res = fts3EvalNearTrim(nNear, aTmp, &aPoslist, &nToken, pPhrase);
130894         }
130895 
130896         aPoslist = pExpr->pRight->pPhrase->doclist.pList;
130897         nToken = pExpr->pRight->pPhrase->nToken;
130898         for(p=pExpr->pLeft; p && res; p=p->pLeft){
130899           int nNear;
130900           Fts3Phrase *pPhrase;
130901           assert( p->pParent && p->pParent->pLeft==p );
130902           nNear = p->pParent->nNear;
130903           pPhrase = (
130904               p->eType==FTSQUERY_NEAR ? p->pRight->pPhrase : p->pPhrase
130905               );
130906           res = fts3EvalNearTrim(nNear, aTmp, &aPoslist, &nToken, pPhrase);
130907         }
130908       }
130909 
130910       sqlite3_free(aTmp);
130911     }
130912   }
130913 
130914   return res;
130915 }
130916 
130917 /*
130918 ** This function is a helper function for fts3EvalTestDeferredAndNear().
130919 ** Assuming no error occurs or has occurred, It returns non-zero if the
130920 ** expression passed as the second argument matches the row that pCsr
130921 ** currently points to, or zero if it does not.
130922 **
130923 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op.
130924 ** If an error occurs during execution of this function, *pRc is set to
130925 ** the appropriate SQLite error code. In this case the returned value is
130926 ** undefined.
130927 */
130928 static int fts3EvalTestExpr(
130929   Fts3Cursor *pCsr,               /* FTS cursor handle */
130930   Fts3Expr *pExpr,                /* Expr to test. May or may not be root. */
130931   int *pRc                        /* IN/OUT: Error code */
130932 ){
130933   int bHit = 1;                   /* Return value */
130934   if( *pRc==SQLITE_OK ){
130935     switch( pExpr->eType ){
130936       case FTSQUERY_NEAR:
130937       case FTSQUERY_AND:
130938         bHit = (
130939             fts3EvalTestExpr(pCsr, pExpr->pLeft, pRc)
130940          && fts3EvalTestExpr(pCsr, pExpr->pRight, pRc)
130941          && fts3EvalNearTest(pExpr, pRc)
130942         );
130943 
130944         /* If the NEAR expression does not match any rows, zero the doclist for
130945         ** all phrases involved in the NEAR. This is because the snippet(),
130946         ** offsets() and matchinfo() functions are not supposed to recognize
130947         ** any instances of phrases that are part of unmatched NEAR queries.
130948         ** For example if this expression:
130949         **
130950         **    ... MATCH 'a OR (b NEAR c)'
130951         **
130952         ** is matched against a row containing:
130953         **
130954         **        'a b d e'
130955         **
130956         ** then any snippet() should ony highlight the "a" term, not the "b"
130957         ** (as "b" is part of a non-matching NEAR clause).
130958         */
130959         if( bHit==0
130960          && pExpr->eType==FTSQUERY_NEAR
130961          && (pExpr->pParent==0 || pExpr->pParent->eType!=FTSQUERY_NEAR)
130962         ){
130963           Fts3Expr *p;
130964           for(p=pExpr; p->pPhrase==0; p=p->pLeft){
130965             if( p->pRight->iDocid==pCsr->iPrevId ){
130966               fts3EvalInvalidatePoslist(p->pRight->pPhrase);
130967             }
130968           }
130969           if( p->iDocid==pCsr->iPrevId ){
130970             fts3EvalInvalidatePoslist(p->pPhrase);
130971           }
130972         }
130973 
130974         break;
130975 
130976       case FTSQUERY_OR: {
130977         int bHit1 = fts3EvalTestExpr(pCsr, pExpr->pLeft, pRc);
130978         int bHit2 = fts3EvalTestExpr(pCsr, pExpr->pRight, pRc);
130979         bHit = bHit1 || bHit2;
130980         break;
130981       }
130982 
130983       case FTSQUERY_NOT:
130984         bHit = (
130985             fts3EvalTestExpr(pCsr, pExpr->pLeft, pRc)
130986          && !fts3EvalTestExpr(pCsr, pExpr->pRight, pRc)
130987         );
130988         break;
130989 
130990       default: {
130991 #ifndef SQLITE_DISABLE_FTS4_DEFERRED
130992         if( pCsr->pDeferred
130993          && (pExpr->iDocid==pCsr->iPrevId || pExpr->bDeferred)
130994         ){
130995           Fts3Phrase *pPhrase = pExpr->pPhrase;
130996           assert( pExpr->bDeferred || pPhrase->doclist.bFreeList==0 );
130997           if( pExpr->bDeferred ){
130998             fts3EvalInvalidatePoslist(pPhrase);
130999           }
131000           *pRc = fts3EvalDeferredPhrase(pCsr, pPhrase);
131001           bHit = (pPhrase->doclist.pList!=0);
131002           pExpr->iDocid = pCsr->iPrevId;
131003         }else
131004 #endif
131005         {
131006           bHit = (pExpr->bEof==0 && pExpr->iDocid==pCsr->iPrevId);
131007         }
131008         break;
131009       }
131010     }
131011   }
131012   return bHit;
131013 }
131014 
131015 /*
131016 ** This function is called as the second part of each xNext operation when
131017 ** iterating through the results of a full-text query. At this point the
131018 ** cursor points to a row that matches the query expression, with the
131019 ** following caveats:
131020 **
131021 **   * Up until this point, "NEAR" operators in the expression have been
131022 **     treated as "AND".
131023 **
131024 **   * Deferred tokens have not yet been considered.
131025 **
131026 ** If *pRc is not SQLITE_OK when this function is called, it immediately
131027 ** returns 0. Otherwise, it tests whether or not after considering NEAR
131028 ** operators and deferred tokens the current row is still a match for the
131029 ** expression. It returns 1 if both of the following are true:
131030 **
131031 **   1. *pRc is SQLITE_OK when this function returns, and
131032 **
131033 **   2. After scanning the current FTS table row for the deferred tokens,
131034 **      it is determined that the row does *not* match the query.
131035 **
131036 ** Or, if no error occurs and it seems the current row does match the FTS
131037 ** query, return 0.
131038 */
131039 static int fts3EvalTestDeferredAndNear(Fts3Cursor *pCsr, int *pRc){
131040   int rc = *pRc;
131041   int bMiss = 0;
131042   if( rc==SQLITE_OK ){
131043 
131044     /* If there are one or more deferred tokens, load the current row into
131045     ** memory and scan it to determine the position list for each deferred
131046     ** token. Then, see if this row is really a match, considering deferred
131047     ** tokens and NEAR operators (neither of which were taken into account
131048     ** earlier, by fts3EvalNextRow()).
131049     */
131050     if( pCsr->pDeferred ){
131051       rc = fts3CursorSeek(0, pCsr);
131052       if( rc==SQLITE_OK ){
131053         rc = sqlite3Fts3CacheDeferredDoclists(pCsr);
131054       }
131055     }
131056     bMiss = (0==fts3EvalTestExpr(pCsr, pCsr->pExpr, &rc));
131057 
131058     /* Free the position-lists accumulated for each deferred token above. */
131059     sqlite3Fts3FreeDeferredDoclists(pCsr);
131060     *pRc = rc;
131061   }
131062   return (rc==SQLITE_OK && bMiss);
131063 }
131064 
131065 /*
131066 ** Advance to the next document that matches the FTS expression in
131067 ** Fts3Cursor.pExpr.
131068 */
131069 static int fts3EvalNext(Fts3Cursor *pCsr){
131070   int rc = SQLITE_OK;             /* Return Code */
131071   Fts3Expr *pExpr = pCsr->pExpr;
131072   assert( pCsr->isEof==0 );
131073   if( pExpr==0 ){
131074     pCsr->isEof = 1;
131075   }else{
131076     do {
131077       if( pCsr->isRequireSeek==0 ){
131078         sqlite3_reset(pCsr->pStmt);
131079       }
131080       assert( sqlite3_data_count(pCsr->pStmt)==0 );
131081       fts3EvalNextRow(pCsr, pExpr, &rc);
131082       pCsr->isEof = pExpr->bEof;
131083       pCsr->isRequireSeek = 1;
131084       pCsr->isMatchinfoNeeded = 1;
131085       pCsr->iPrevId = pExpr->iDocid;
131086     }while( pCsr->isEof==0 && fts3EvalTestDeferredAndNear(pCsr, &rc) );
131087   }
131088 
131089   /* Check if the cursor is past the end of the docid range specified
131090   ** by Fts3Cursor.iMinDocid/iMaxDocid. If so, set the EOF flag.  */
131091   if( rc==SQLITE_OK && (
131092         (pCsr->bDesc==0 && pCsr->iPrevId>pCsr->iMaxDocid)
131093      || (pCsr->bDesc!=0 && pCsr->iPrevId<pCsr->iMinDocid)
131094   )){
131095     pCsr->isEof = 1;
131096   }
131097 
131098   return rc;
131099 }
131100 
131101 /*
131102 ** Restart interation for expression pExpr so that the next call to
131103 ** fts3EvalNext() visits the first row. Do not allow incremental
131104 ** loading or merging of phrase doclists for this iteration.
131105 **
131106 ** If *pRc is other than SQLITE_OK when this function is called, it is
131107 ** a no-op. If an error occurs within this function, *pRc is set to an
131108 ** SQLite error code before returning.
131109 */
131110 static void fts3EvalRestart(
131111   Fts3Cursor *pCsr,
131112   Fts3Expr *pExpr,
131113   int *pRc
131114 ){
131115   if( pExpr && *pRc==SQLITE_OK ){
131116     Fts3Phrase *pPhrase = pExpr->pPhrase;
131117 
131118     if( pPhrase ){
131119       fts3EvalInvalidatePoslist(pPhrase);
131120       if( pPhrase->bIncr ){
131121         int i;
131122         for(i=0; i<pPhrase->nToken; i++){
131123           Fts3PhraseToken *pToken = &pPhrase->aToken[i];
131124           assert( pToken->pDeferred==0 );
131125           if( pToken->pSegcsr ){
131126             sqlite3Fts3MsrIncrRestart(pToken->pSegcsr);
131127           }
131128         }
131129         *pRc = fts3EvalPhraseStart(pCsr, 0, pPhrase);
131130       }
131131       pPhrase->doclist.pNextDocid = 0;
131132       pPhrase->doclist.iDocid = 0;
131133     }
131134 
131135     pExpr->iDocid = 0;
131136     pExpr->bEof = 0;
131137     pExpr->bStart = 0;
131138 
131139     fts3EvalRestart(pCsr, pExpr->pLeft, pRc);
131140     fts3EvalRestart(pCsr, pExpr->pRight, pRc);
131141   }
131142 }
131143 
131144 /*
131145 ** After allocating the Fts3Expr.aMI[] array for each phrase in the
131146 ** expression rooted at pExpr, the cursor iterates through all rows matched
131147 ** by pExpr, calling this function for each row. This function increments
131148 ** the values in Fts3Expr.aMI[] according to the position-list currently
131149 ** found in Fts3Expr.pPhrase->doclist.pList for each of the phrase
131150 ** expression nodes.
131151 */
131152 static void fts3EvalUpdateCounts(Fts3Expr *pExpr){
131153   if( pExpr ){
131154     Fts3Phrase *pPhrase = pExpr->pPhrase;
131155     if( pPhrase && pPhrase->doclist.pList ){
131156       int iCol = 0;
131157       char *p = pPhrase->doclist.pList;
131158 
131159       assert( *p );
131160       while( 1 ){
131161         u8 c = 0;
131162         int iCnt = 0;
131163         while( 0xFE & (*p | c) ){
131164           if( (c&0x80)==0 ) iCnt++;
131165           c = *p++ & 0x80;
131166         }
131167 
131168         /* aMI[iCol*3 + 1] = Number of occurrences
131169         ** aMI[iCol*3 + 2] = Number of rows containing at least one instance
131170         */
131171         pExpr->aMI[iCol*3 + 1] += iCnt;
131172         pExpr->aMI[iCol*3 + 2] += (iCnt>0);
131173         if( *p==0x00 ) break;
131174         p++;
131175         p += fts3GetVarint32(p, &iCol);
131176       }
131177     }
131178 
131179     fts3EvalUpdateCounts(pExpr->pLeft);
131180     fts3EvalUpdateCounts(pExpr->pRight);
131181   }
131182 }
131183 
131184 /*
131185 ** Expression pExpr must be of type FTSQUERY_PHRASE.
131186 **
131187 ** If it is not already allocated and populated, this function allocates and
131188 ** populates the Fts3Expr.aMI[] array for expression pExpr. If pExpr is part
131189 ** of a NEAR expression, then it also allocates and populates the same array
131190 ** for all other phrases that are part of the NEAR expression.
131191 **
131192 ** SQLITE_OK is returned if the aMI[] array is successfully allocated and
131193 ** populated. Otherwise, if an error occurs, an SQLite error code is returned.
131194 */
131195 static int fts3EvalGatherStats(
131196   Fts3Cursor *pCsr,               /* Cursor object */
131197   Fts3Expr *pExpr                 /* FTSQUERY_PHRASE expression */
131198 ){
131199   int rc = SQLITE_OK;             /* Return code */
131200 
131201   assert( pExpr->eType==FTSQUERY_PHRASE );
131202   if( pExpr->aMI==0 ){
131203     Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
131204     Fts3Expr *pRoot;                /* Root of NEAR expression */
131205     Fts3Expr *p;                    /* Iterator used for several purposes */
131206 
131207     sqlite3_int64 iPrevId = pCsr->iPrevId;
131208     sqlite3_int64 iDocid;
131209     u8 bEof;
131210 
131211     /* Find the root of the NEAR expression */
131212     pRoot = pExpr;
131213     while( pRoot->pParent && pRoot->pParent->eType==FTSQUERY_NEAR ){
131214       pRoot = pRoot->pParent;
131215     }
131216     iDocid = pRoot->iDocid;
131217     bEof = pRoot->bEof;
131218     assert( pRoot->bStart );
131219 
131220     /* Allocate space for the aMSI[] array of each FTSQUERY_PHRASE node */
131221     for(p=pRoot; p; p=p->pLeft){
131222       Fts3Expr *pE = (p->eType==FTSQUERY_PHRASE?p:p->pRight);
131223       assert( pE->aMI==0 );
131224       pE->aMI = (u32 *)sqlite3_malloc(pTab->nColumn * 3 * sizeof(u32));
131225       if( !pE->aMI ) return SQLITE_NOMEM;
131226       memset(pE->aMI, 0, pTab->nColumn * 3 * sizeof(u32));
131227     }
131228 
131229     fts3EvalRestart(pCsr, pRoot, &rc);
131230 
131231     while( pCsr->isEof==0 && rc==SQLITE_OK ){
131232 
131233       do {
131234         /* Ensure the %_content statement is reset. */
131235         if( pCsr->isRequireSeek==0 ) sqlite3_reset(pCsr->pStmt);
131236         assert( sqlite3_data_count(pCsr->pStmt)==0 );
131237 
131238         /* Advance to the next document */
131239         fts3EvalNextRow(pCsr, pRoot, &rc);
131240         pCsr->isEof = pRoot->bEof;
131241         pCsr->isRequireSeek = 1;
131242         pCsr->isMatchinfoNeeded = 1;
131243         pCsr->iPrevId = pRoot->iDocid;
131244       }while( pCsr->isEof==0
131245            && pRoot->eType==FTSQUERY_NEAR
131246            && fts3EvalTestDeferredAndNear(pCsr, &rc)
131247       );
131248 
131249       if( rc==SQLITE_OK && pCsr->isEof==0 ){
131250         fts3EvalUpdateCounts(pRoot);
131251       }
131252     }
131253 
131254     pCsr->isEof = 0;
131255     pCsr->iPrevId = iPrevId;
131256 
131257     if( bEof ){
131258       pRoot->bEof = bEof;
131259     }else{
131260       /* Caution: pRoot may iterate through docids in ascending or descending
131261       ** order. For this reason, even though it seems more defensive, the
131262       ** do loop can not be written:
131263       **
131264       **   do {...} while( pRoot->iDocid<iDocid && rc==SQLITE_OK );
131265       */
131266       fts3EvalRestart(pCsr, pRoot, &rc);
131267       do {
131268         fts3EvalNextRow(pCsr, pRoot, &rc);
131269         assert( pRoot->bEof==0 );
131270       }while( pRoot->iDocid!=iDocid && rc==SQLITE_OK );
131271       fts3EvalTestDeferredAndNear(pCsr, &rc);
131272     }
131273   }
131274   return rc;
131275 }
131276 
131277 /*
131278 ** This function is used by the matchinfo() module to query a phrase
131279 ** expression node for the following information:
131280 **
131281 **   1. The total number of occurrences of the phrase in each column of
131282 **      the FTS table (considering all rows), and
131283 **
131284 **   2. For each column, the number of rows in the table for which the
131285 **      column contains at least one instance of the phrase.
131286 **
131287 ** If no error occurs, SQLITE_OK is returned and the values for each column
131288 ** written into the array aiOut as follows:
131289 **
131290 **   aiOut[iCol*3 + 1] = Number of occurrences
131291 **   aiOut[iCol*3 + 2] = Number of rows containing at least one instance
131292 **
131293 ** Caveats:
131294 **
131295 **   * If a phrase consists entirely of deferred tokens, then all output
131296 **     values are set to the number of documents in the table. In other
131297 **     words we assume that very common tokens occur exactly once in each
131298 **     column of each row of the table.
131299 **
131300 **   * If a phrase contains some deferred tokens (and some non-deferred
131301 **     tokens), count the potential occurrence identified by considering
131302 **     the non-deferred tokens instead of actual phrase occurrences.
131303 **
131304 **   * If the phrase is part of a NEAR expression, then only phrase instances
131305 **     that meet the NEAR constraint are included in the counts.
131306 */
131307 SQLITE_PRIVATE int sqlite3Fts3EvalPhraseStats(
131308   Fts3Cursor *pCsr,               /* FTS cursor handle */
131309   Fts3Expr *pExpr,                /* Phrase expression */
131310   u32 *aiOut                      /* Array to write results into (see above) */
131311 ){
131312   Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
131313   int rc = SQLITE_OK;
131314   int iCol;
131315 
131316   if( pExpr->bDeferred && pExpr->pParent->eType!=FTSQUERY_NEAR ){
131317     assert( pCsr->nDoc>0 );
131318     for(iCol=0; iCol<pTab->nColumn; iCol++){
131319       aiOut[iCol*3 + 1] = (u32)pCsr->nDoc;
131320       aiOut[iCol*3 + 2] = (u32)pCsr->nDoc;
131321     }
131322   }else{
131323     rc = fts3EvalGatherStats(pCsr, pExpr);
131324     if( rc==SQLITE_OK ){
131325       assert( pExpr->aMI );
131326       for(iCol=0; iCol<pTab->nColumn; iCol++){
131327         aiOut[iCol*3 + 1] = pExpr->aMI[iCol*3 + 1];
131328         aiOut[iCol*3 + 2] = pExpr->aMI[iCol*3 + 2];
131329       }
131330     }
131331   }
131332 
131333   return rc;
131334 }
131335 
131336 /*
131337 ** The expression pExpr passed as the second argument to this function
131338 ** must be of type FTSQUERY_PHRASE.
131339 **
131340 ** The returned value is either NULL or a pointer to a buffer containing
131341 ** a position-list indicating the occurrences of the phrase in column iCol
131342 ** of the current row.
131343 **
131344 ** More specifically, the returned buffer contains 1 varint for each
131345 ** occurrence of the phrase in the column, stored using the normal (delta+2)
131346 ** compression and is terminated by either an 0x01 or 0x00 byte. For example,
131347 ** if the requested column contains "a b X c d X X" and the position-list
131348 ** for 'X' is requested, the buffer returned may contain:
131349 **
131350 **     0x04 0x05 0x03 0x01   or   0x04 0x05 0x03 0x00
131351 **
131352 ** This function works regardless of whether or not the phrase is deferred,
131353 ** incremental, or neither.
131354 */
131355 SQLITE_PRIVATE int sqlite3Fts3EvalPhrasePoslist(
131356   Fts3Cursor *pCsr,               /* FTS3 cursor object */
131357   Fts3Expr *pExpr,                /* Phrase to return doclist for */
131358   int iCol,                       /* Column to return position list for */
131359   char **ppOut                    /* OUT: Pointer to position list */
131360 ){
131361   Fts3Phrase *pPhrase = pExpr->pPhrase;
131362   Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
131363   char *pIter;
131364   int iThis;
131365   sqlite3_int64 iDocid;
131366 
131367   /* If this phrase is applies specifically to some column other than
131368   ** column iCol, return a NULL pointer.  */
131369   *ppOut = 0;
131370   assert( iCol>=0 && iCol<pTab->nColumn );
131371   if( (pPhrase->iColumn<pTab->nColumn && pPhrase->iColumn!=iCol) ){
131372     return SQLITE_OK;
131373   }
131374 
131375   iDocid = pExpr->iDocid;
131376   pIter = pPhrase->doclist.pList;
131377   if( iDocid!=pCsr->iPrevId || pExpr->bEof ){
131378     int bDescDoclist = pTab->bDescIdx;      /* For DOCID_CMP macro */
131379     int iMul;                     /* +1 if csr dir matches index dir, else -1 */
131380     int bOr = 0;
131381     u8 bEof = 0;
131382     u8 bTreeEof = 0;
131383     Fts3Expr *p;                  /* Used to iterate from pExpr to root */
131384     Fts3Expr *pNear;              /* Most senior NEAR ancestor (or pExpr) */
131385 
131386     /* Check if this phrase descends from an OR expression node. If not,
131387     ** return NULL. Otherwise, the entry that corresponds to docid
131388     ** pCsr->iPrevId may lie earlier in the doclist buffer. Or, if the
131389     ** tree that the node is part of has been marked as EOF, but the node
131390     ** itself is not EOF, then it may point to an earlier entry. */
131391     pNear = pExpr;
131392     for(p=pExpr->pParent; p; p=p->pParent){
131393       if( p->eType==FTSQUERY_OR ) bOr = 1;
131394       if( p->eType==FTSQUERY_NEAR ) pNear = p;
131395       if( p->bEof ) bTreeEof = 1;
131396     }
131397     if( bOr==0 ) return SQLITE_OK;
131398 
131399     /* This is the descendent of an OR node. In this case we cannot use
131400     ** an incremental phrase. Load the entire doclist for the phrase
131401     ** into memory in this case.  */
131402     if( pPhrase->bIncr ){
131403       int rc = SQLITE_OK;
131404       int bEofSave = pExpr->bEof;
131405       fts3EvalRestart(pCsr, pExpr, &rc);
131406       while( rc==SQLITE_OK && !pExpr->bEof ){
131407         fts3EvalNextRow(pCsr, pExpr, &rc);
131408         if( bEofSave==0 && pExpr->iDocid==iDocid ) break;
131409       }
131410       pIter = pPhrase->doclist.pList;
131411       assert( rc!=SQLITE_OK || pPhrase->bIncr==0 );
131412       if( rc!=SQLITE_OK ) return rc;
131413     }
131414 
131415     iMul = ((pCsr->bDesc==bDescDoclist) ? 1 : -1);
131416     while( bTreeEof==1
131417         && pNear->bEof==0
131418         && (DOCID_CMP(pNear->iDocid, pCsr->iPrevId) * iMul)<0
131419     ){
131420       int rc = SQLITE_OK;
131421       fts3EvalNextRow(pCsr, pExpr, &rc);
131422       if( rc!=SQLITE_OK ) return rc;
131423       iDocid = pExpr->iDocid;
131424       pIter = pPhrase->doclist.pList;
131425     }
131426 
131427     bEof = (pPhrase->doclist.nAll==0);
131428     assert( bDescDoclist==0 || bDescDoclist==1 );
131429     assert( pCsr->bDesc==0 || pCsr->bDesc==1 );
131430 
131431     if( bEof==0 ){
131432       if( pCsr->bDesc==bDescDoclist ){
131433         int dummy;
131434         if( pNear->bEof ){
131435           /* This expression is already at EOF. So position it to point to the
131436           ** last entry in the doclist at pPhrase->doclist.aAll[]. Variable
131437           ** iDocid is already set for this entry, so all that is required is
131438           ** to set pIter to point to the first byte of the last position-list
131439           ** in the doclist.
131440           **
131441           ** It would also be correct to set pIter and iDocid to zero. In
131442           ** this case, the first call to sqltie3Fts4DoclistPrev() below
131443           ** would also move the iterator to point to the last entry in the
131444           ** doclist. However, this is expensive, as to do so it has to
131445           ** iterate through the entire doclist from start to finish (since
131446           ** it does not know the docid for the last entry).  */
131447           pIter = &pPhrase->doclist.aAll[pPhrase->doclist.nAll-1];
131448           fts3ReversePoslist(pPhrase->doclist.aAll, &pIter);
131449         }
131450         while( (pIter==0 || DOCID_CMP(iDocid, pCsr->iPrevId)>0 ) && bEof==0 ){
131451           sqlite3Fts3DoclistPrev(
131452               bDescDoclist, pPhrase->doclist.aAll, pPhrase->doclist.nAll,
131453               &pIter, &iDocid, &dummy, &bEof
131454           );
131455         }
131456       }else{
131457         if( pNear->bEof ){
131458           pIter = 0;
131459           iDocid = 0;
131460         }
131461         while( (pIter==0 || DOCID_CMP(iDocid, pCsr->iPrevId)<0 ) && bEof==0 ){
131462           sqlite3Fts3DoclistNext(
131463               bDescDoclist, pPhrase->doclist.aAll, pPhrase->doclist.nAll,
131464               &pIter, &iDocid, &bEof
131465           );
131466         }
131467       }
131468     }
131469 
131470     if( bEof || iDocid!=pCsr->iPrevId ) pIter = 0;
131471   }
131472   if( pIter==0 ) return SQLITE_OK;
131473 
131474   if( *pIter==0x01 ){
131475     pIter++;
131476     pIter += fts3GetVarint32(pIter, &iThis);
131477   }else{
131478     iThis = 0;
131479   }
131480   while( iThis<iCol ){
131481     fts3ColumnlistCopy(0, &pIter);
131482     if( *pIter==0x00 ) return 0;
131483     pIter++;
131484     pIter += fts3GetVarint32(pIter, &iThis);
131485   }
131486 
131487   *ppOut = ((iCol==iThis)?pIter:0);
131488   return SQLITE_OK;
131489 }
131490 
131491 /*
131492 ** Free all components of the Fts3Phrase structure that were allocated by
131493 ** the eval module. Specifically, this means to free:
131494 **
131495 **   * the contents of pPhrase->doclist, and
131496 **   * any Fts3MultiSegReader objects held by phrase tokens.
131497 */
131498 SQLITE_PRIVATE void sqlite3Fts3EvalPhraseCleanup(Fts3Phrase *pPhrase){
131499   if( pPhrase ){
131500     int i;
131501     sqlite3_free(pPhrase->doclist.aAll);
131502     fts3EvalInvalidatePoslist(pPhrase);
131503     memset(&pPhrase->doclist, 0, sizeof(Fts3Doclist));
131504     for(i=0; i<pPhrase->nToken; i++){
131505       fts3SegReaderCursorFree(pPhrase->aToken[i].pSegcsr);
131506       pPhrase->aToken[i].pSegcsr = 0;
131507     }
131508   }
131509 }
131510 
131511 
131512 /*
131513 ** Return SQLITE_CORRUPT_VTAB.
131514 */
131515 #ifdef SQLITE_DEBUG
131516 SQLITE_PRIVATE int sqlite3Fts3Corrupt(){
131517   return SQLITE_CORRUPT_VTAB;
131518 }
131519 #endif
131520 
131521 #if !SQLITE_CORE
131522 /*
131523 ** Initialize API pointer table, if required.
131524 */
131525 #ifdef _WIN32
131526 __declspec(dllexport)
131527 #endif
131528 SQLITE_API int sqlite3_fts3_init(
131529   sqlite3 *db,
131530   char **pzErrMsg,
131531   const sqlite3_api_routines *pApi
131532 ){
131533   SQLITE_EXTENSION_INIT2(pApi)
131534   return sqlite3Fts3Init(db);
131535 }
131536 #endif
131537 
131538 #endif
131539 
131540 /************** End of fts3.c ************************************************/
131541 /************** Begin file fts3_aux.c ****************************************/
131542 /*
131543 ** 2011 Jan 27
131544 **
131545 ** The author disclaims copyright to this source code.  In place of
131546 ** a legal notice, here is a blessing:
131547 **
131548 **    May you do good and not evil.
131549 **    May you find forgiveness for yourself and forgive others.
131550 **    May you share freely, never taking more than you give.
131551 **
131552 ******************************************************************************
131553 **
131554 */
131555 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
131556 
131557 /* #include <string.h> */
131558 /* #include <assert.h> */
131559 
131560 typedef struct Fts3auxTable Fts3auxTable;
131561 typedef struct Fts3auxCursor Fts3auxCursor;
131562 
131563 struct Fts3auxTable {
131564   sqlite3_vtab base;              /* Base class used by SQLite core */
131565   Fts3Table *pFts3Tab;
131566 };
131567 
131568 struct Fts3auxCursor {
131569   sqlite3_vtab_cursor base;       /* Base class used by SQLite core */
131570   Fts3MultiSegReader csr;        /* Must be right after "base" */
131571   Fts3SegFilter filter;
131572   char *zStop;
131573   int nStop;                      /* Byte-length of string zStop */
131574   int iLangid;                    /* Language id to query */
131575   int isEof;                      /* True if cursor is at EOF */
131576   sqlite3_int64 iRowid;           /* Current rowid */
131577 
131578   int iCol;                       /* Current value of 'col' column */
131579   int nStat;                      /* Size of aStat[] array */
131580   struct Fts3auxColstats {
131581     sqlite3_int64 nDoc;           /* 'documents' values for current csr row */
131582     sqlite3_int64 nOcc;           /* 'occurrences' values for current csr row */
131583   } *aStat;
131584 };
131585 
131586 /*
131587 ** Schema of the terms table.
131588 */
131589 #define FTS3_AUX_SCHEMA \
131590   "CREATE TABLE x(term, col, documents, occurrences, languageid HIDDEN)"
131591 
131592 /*
131593 ** This function does all the work for both the xConnect and xCreate methods.
131594 ** These tables have no persistent representation of their own, so xConnect
131595 ** and xCreate are identical operations.
131596 */
131597 static int fts3auxConnectMethod(
131598   sqlite3 *db,                    /* Database connection */
131599   void *pUnused,                  /* Unused */
131600   int argc,                       /* Number of elements in argv array */
131601   const char * const *argv,       /* xCreate/xConnect argument array */
131602   sqlite3_vtab **ppVtab,          /* OUT: New sqlite3_vtab object */
131603   char **pzErr                    /* OUT: sqlite3_malloc'd error message */
131604 ){
131605   char const *zDb;                /* Name of database (e.g. "main") */
131606   char const *zFts3;              /* Name of fts3 table */
131607   int nDb;                        /* Result of strlen(zDb) */
131608   int nFts3;                      /* Result of strlen(zFts3) */
131609   int nByte;                      /* Bytes of space to allocate here */
131610   int rc;                         /* value returned by declare_vtab() */
131611   Fts3auxTable *p;                /* Virtual table object to return */
131612 
131613   UNUSED_PARAMETER(pUnused);
131614 
131615   /* The user should invoke this in one of two forms:
131616   **
131617   **     CREATE VIRTUAL TABLE xxx USING fts4aux(fts4-table);
131618   **     CREATE VIRTUAL TABLE xxx USING fts4aux(fts4-table-db, fts4-table);
131619   */
131620   if( argc!=4 && argc!=5 ) goto bad_args;
131621 
131622   zDb = argv[1];
131623   nDb = (int)strlen(zDb);
131624   if( argc==5 ){
131625     if( nDb==4 && 0==sqlite3_strnicmp("temp", zDb, 4) ){
131626       zDb = argv[3];
131627       nDb = (int)strlen(zDb);
131628       zFts3 = argv[4];
131629     }else{
131630       goto bad_args;
131631     }
131632   }else{
131633     zFts3 = argv[3];
131634   }
131635   nFts3 = (int)strlen(zFts3);
131636 
131637   rc = sqlite3_declare_vtab(db, FTS3_AUX_SCHEMA);
131638   if( rc!=SQLITE_OK ) return rc;
131639 
131640   nByte = sizeof(Fts3auxTable) + sizeof(Fts3Table) + nDb + nFts3 + 2;
131641   p = (Fts3auxTable *)sqlite3_malloc(nByte);
131642   if( !p ) return SQLITE_NOMEM;
131643   memset(p, 0, nByte);
131644 
131645   p->pFts3Tab = (Fts3Table *)&p[1];
131646   p->pFts3Tab->zDb = (char *)&p->pFts3Tab[1];
131647   p->pFts3Tab->zName = &p->pFts3Tab->zDb[nDb+1];
131648   p->pFts3Tab->db = db;
131649   p->pFts3Tab->nIndex = 1;
131650 
131651   memcpy((char *)p->pFts3Tab->zDb, zDb, nDb);
131652   memcpy((char *)p->pFts3Tab->zName, zFts3, nFts3);
131653   sqlite3Fts3Dequote((char *)p->pFts3Tab->zName);
131654 
131655   *ppVtab = (sqlite3_vtab *)p;
131656   return SQLITE_OK;
131657 
131658  bad_args:
131659   *pzErr = sqlite3_mprintf("invalid arguments to fts4aux constructor");
131660   return SQLITE_ERROR;
131661 }
131662 
131663 /*
131664 ** This function does the work for both the xDisconnect and xDestroy methods.
131665 ** These tables have no persistent representation of their own, so xDisconnect
131666 ** and xDestroy are identical operations.
131667 */
131668 static int fts3auxDisconnectMethod(sqlite3_vtab *pVtab){
131669   Fts3auxTable *p = (Fts3auxTable *)pVtab;
131670   Fts3Table *pFts3 = p->pFts3Tab;
131671   int i;
131672 
131673   /* Free any prepared statements held */
131674   for(i=0; i<SizeofArray(pFts3->aStmt); i++){
131675     sqlite3_finalize(pFts3->aStmt[i]);
131676   }
131677   sqlite3_free(pFts3->zSegmentsTbl);
131678   sqlite3_free(p);
131679   return SQLITE_OK;
131680 }
131681 
131682 #define FTS4AUX_EQ_CONSTRAINT 1
131683 #define FTS4AUX_GE_CONSTRAINT 2
131684 #define FTS4AUX_LE_CONSTRAINT 4
131685 
131686 /*
131687 ** xBestIndex - Analyze a WHERE and ORDER BY clause.
131688 */
131689 static int fts3auxBestIndexMethod(
131690   sqlite3_vtab *pVTab,
131691   sqlite3_index_info *pInfo
131692 ){
131693   int i;
131694   int iEq = -1;
131695   int iGe = -1;
131696   int iLe = -1;
131697   int iLangid = -1;
131698   int iNext = 1;                  /* Next free argvIndex value */
131699 
131700   UNUSED_PARAMETER(pVTab);
131701 
131702   /* This vtab delivers always results in "ORDER BY term ASC" order. */
131703   if( pInfo->nOrderBy==1
131704    && pInfo->aOrderBy[0].iColumn==0
131705    && pInfo->aOrderBy[0].desc==0
131706   ){
131707     pInfo->orderByConsumed = 1;
131708   }
131709 
131710   /* Search for equality and range constraints on the "term" column.
131711   ** And equality constraints on the hidden "languageid" column. */
131712   for(i=0; i<pInfo->nConstraint; i++){
131713     if( pInfo->aConstraint[i].usable ){
131714       int op = pInfo->aConstraint[i].op;
131715       int iCol = pInfo->aConstraint[i].iColumn;
131716 
131717       if( iCol==0 ){
131718         if( op==SQLITE_INDEX_CONSTRAINT_EQ ) iEq = i;
131719         if( op==SQLITE_INDEX_CONSTRAINT_LT ) iLe = i;
131720         if( op==SQLITE_INDEX_CONSTRAINT_LE ) iLe = i;
131721         if( op==SQLITE_INDEX_CONSTRAINT_GT ) iGe = i;
131722         if( op==SQLITE_INDEX_CONSTRAINT_GE ) iGe = i;
131723       }
131724       if( iCol==4 ){
131725         if( op==SQLITE_INDEX_CONSTRAINT_EQ ) iLangid = i;
131726       }
131727     }
131728   }
131729 
131730   if( iEq>=0 ){
131731     pInfo->idxNum = FTS4AUX_EQ_CONSTRAINT;
131732     pInfo->aConstraintUsage[iEq].argvIndex = iNext++;
131733     pInfo->estimatedCost = 5;
131734   }else{
131735     pInfo->idxNum = 0;
131736     pInfo->estimatedCost = 20000;
131737     if( iGe>=0 ){
131738       pInfo->idxNum += FTS4AUX_GE_CONSTRAINT;
131739       pInfo->aConstraintUsage[iGe].argvIndex = iNext++;
131740       pInfo->estimatedCost /= 2;
131741     }
131742     if( iLe>=0 ){
131743       pInfo->idxNum += FTS4AUX_LE_CONSTRAINT;
131744       pInfo->aConstraintUsage[iLe].argvIndex = iNext++;
131745       pInfo->estimatedCost /= 2;
131746     }
131747   }
131748   if( iLangid>=0 ){
131749     pInfo->aConstraintUsage[iLangid].argvIndex = iNext++;
131750     pInfo->estimatedCost--;
131751   }
131752 
131753   return SQLITE_OK;
131754 }
131755 
131756 /*
131757 ** xOpen - Open a cursor.
131758 */
131759 static int fts3auxOpenMethod(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCsr){
131760   Fts3auxCursor *pCsr;            /* Pointer to cursor object to return */
131761 
131762   UNUSED_PARAMETER(pVTab);
131763 
131764   pCsr = (Fts3auxCursor *)sqlite3_malloc(sizeof(Fts3auxCursor));
131765   if( !pCsr ) return SQLITE_NOMEM;
131766   memset(pCsr, 0, sizeof(Fts3auxCursor));
131767 
131768   *ppCsr = (sqlite3_vtab_cursor *)pCsr;
131769   return SQLITE_OK;
131770 }
131771 
131772 /*
131773 ** xClose - Close a cursor.
131774 */
131775 static int fts3auxCloseMethod(sqlite3_vtab_cursor *pCursor){
131776   Fts3Table *pFts3 = ((Fts3auxTable *)pCursor->pVtab)->pFts3Tab;
131777   Fts3auxCursor *pCsr = (Fts3auxCursor *)pCursor;
131778 
131779   sqlite3Fts3SegmentsClose(pFts3);
131780   sqlite3Fts3SegReaderFinish(&pCsr->csr);
131781   sqlite3_free((void *)pCsr->filter.zTerm);
131782   sqlite3_free(pCsr->zStop);
131783   sqlite3_free(pCsr->aStat);
131784   sqlite3_free(pCsr);
131785   return SQLITE_OK;
131786 }
131787 
131788 static int fts3auxGrowStatArray(Fts3auxCursor *pCsr, int nSize){
131789   if( nSize>pCsr->nStat ){
131790     struct Fts3auxColstats *aNew;
131791     aNew = (struct Fts3auxColstats *)sqlite3_realloc(pCsr->aStat,
131792         sizeof(struct Fts3auxColstats) * nSize
131793     );
131794     if( aNew==0 ) return SQLITE_NOMEM;
131795     memset(&aNew[pCsr->nStat], 0,
131796         sizeof(struct Fts3auxColstats) * (nSize - pCsr->nStat)
131797     );
131798     pCsr->aStat = aNew;
131799     pCsr->nStat = nSize;
131800   }
131801   return SQLITE_OK;
131802 }
131803 
131804 /*
131805 ** xNext - Advance the cursor to the next row, if any.
131806 */
131807 static int fts3auxNextMethod(sqlite3_vtab_cursor *pCursor){
131808   Fts3auxCursor *pCsr = (Fts3auxCursor *)pCursor;
131809   Fts3Table *pFts3 = ((Fts3auxTable *)pCursor->pVtab)->pFts3Tab;
131810   int rc;
131811 
131812   /* Increment our pretend rowid value. */
131813   pCsr->iRowid++;
131814 
131815   for(pCsr->iCol++; pCsr->iCol<pCsr->nStat; pCsr->iCol++){
131816     if( pCsr->aStat[pCsr->iCol].nDoc>0 ) return SQLITE_OK;
131817   }
131818 
131819   rc = sqlite3Fts3SegReaderStep(pFts3, &pCsr->csr);
131820   if( rc==SQLITE_ROW ){
131821     int i = 0;
131822     int nDoclist = pCsr->csr.nDoclist;
131823     char *aDoclist = pCsr->csr.aDoclist;
131824     int iCol;
131825 
131826     int eState = 0;
131827 
131828     if( pCsr->zStop ){
131829       int n = (pCsr->nStop<pCsr->csr.nTerm) ? pCsr->nStop : pCsr->csr.nTerm;
131830       int mc = memcmp(pCsr->zStop, pCsr->csr.zTerm, n);
131831       if( mc<0 || (mc==0 && pCsr->csr.nTerm>pCsr->nStop) ){
131832         pCsr->isEof = 1;
131833         return SQLITE_OK;
131834       }
131835     }
131836 
131837     if( fts3auxGrowStatArray(pCsr, 2) ) return SQLITE_NOMEM;
131838     memset(pCsr->aStat, 0, sizeof(struct Fts3auxColstats) * pCsr->nStat);
131839     iCol = 0;
131840 
131841     while( i<nDoclist ){
131842       sqlite3_int64 v = 0;
131843 
131844       i += sqlite3Fts3GetVarint(&aDoclist[i], &v);
131845       switch( eState ){
131846         /* State 0. In this state the integer just read was a docid. */
131847         case 0:
131848           pCsr->aStat[0].nDoc++;
131849           eState = 1;
131850           iCol = 0;
131851           break;
131852 
131853         /* State 1. In this state we are expecting either a 1, indicating
131854         ** that the following integer will be a column number, or the
131855         ** start of a position list for column 0.
131856         **
131857         ** The only difference between state 1 and state 2 is that if the
131858         ** integer encountered in state 1 is not 0 or 1, then we need to
131859         ** increment the column 0 "nDoc" count for this term.
131860         */
131861         case 1:
131862           assert( iCol==0 );
131863           if( v>1 ){
131864             pCsr->aStat[1].nDoc++;
131865           }
131866           eState = 2;
131867           /* fall through */
131868 
131869         case 2:
131870           if( v==0 ){       /* 0x00. Next integer will be a docid. */
131871             eState = 0;
131872           }else if( v==1 ){ /* 0x01. Next integer will be a column number. */
131873             eState = 3;
131874           }else{            /* 2 or greater. A position. */
131875             pCsr->aStat[iCol+1].nOcc++;
131876             pCsr->aStat[0].nOcc++;
131877           }
131878           break;
131879 
131880         /* State 3. The integer just read is a column number. */
131881         default: assert( eState==3 );
131882           iCol = (int)v;
131883           if( fts3auxGrowStatArray(pCsr, iCol+2) ) return SQLITE_NOMEM;
131884           pCsr->aStat[iCol+1].nDoc++;
131885           eState = 2;
131886           break;
131887       }
131888     }
131889 
131890     pCsr->iCol = 0;
131891     rc = SQLITE_OK;
131892   }else{
131893     pCsr->isEof = 1;
131894   }
131895   return rc;
131896 }
131897 
131898 /*
131899 ** xFilter - Initialize a cursor to point at the start of its data.
131900 */
131901 static int fts3auxFilterMethod(
131902   sqlite3_vtab_cursor *pCursor,   /* The cursor used for this query */
131903   int idxNum,                     /* Strategy index */
131904   const char *idxStr,             /* Unused */
131905   int nVal,                       /* Number of elements in apVal */
131906   sqlite3_value **apVal           /* Arguments for the indexing scheme */
131907 ){
131908   Fts3auxCursor *pCsr = (Fts3auxCursor *)pCursor;
131909   Fts3Table *pFts3 = ((Fts3auxTable *)pCursor->pVtab)->pFts3Tab;
131910   int rc;
131911   int isScan = 0;
131912   int iLangVal = 0;               /* Language id to query */
131913 
131914   int iEq = -1;                   /* Index of term=? value in apVal */
131915   int iGe = -1;                   /* Index of term>=? value in apVal */
131916   int iLe = -1;                   /* Index of term<=? value in apVal */
131917   int iLangid = -1;               /* Index of languageid=? value in apVal */
131918   int iNext = 0;
131919 
131920   UNUSED_PARAMETER(nVal);
131921   UNUSED_PARAMETER(idxStr);
131922 
131923   assert( idxStr==0 );
131924   assert( idxNum==FTS4AUX_EQ_CONSTRAINT || idxNum==0
131925        || idxNum==FTS4AUX_LE_CONSTRAINT || idxNum==FTS4AUX_GE_CONSTRAINT
131926        || idxNum==(FTS4AUX_LE_CONSTRAINT|FTS4AUX_GE_CONSTRAINT)
131927   );
131928 
131929   if( idxNum==FTS4AUX_EQ_CONSTRAINT ){
131930     iEq = iNext++;
131931   }else{
131932     isScan = 1;
131933     if( idxNum & FTS4AUX_GE_CONSTRAINT ){
131934       iGe = iNext++;
131935     }
131936     if( idxNum & FTS4AUX_LE_CONSTRAINT ){
131937       iLe = iNext++;
131938     }
131939   }
131940   if( iNext<nVal ){
131941     iLangid = iNext++;
131942   }
131943 
131944   /* In case this cursor is being reused, close and zero it. */
131945   testcase(pCsr->filter.zTerm);
131946   sqlite3Fts3SegReaderFinish(&pCsr->csr);
131947   sqlite3_free((void *)pCsr->filter.zTerm);
131948   sqlite3_free(pCsr->aStat);
131949   memset(&pCsr->csr, 0, ((u8*)&pCsr[1]) - (u8*)&pCsr->csr);
131950 
131951   pCsr->filter.flags = FTS3_SEGMENT_REQUIRE_POS|FTS3_SEGMENT_IGNORE_EMPTY;
131952   if( isScan ) pCsr->filter.flags |= FTS3_SEGMENT_SCAN;
131953 
131954   if( iEq>=0 || iGe>=0 ){
131955     const unsigned char *zStr = sqlite3_value_text(apVal[0]);
131956     assert( (iEq==0 && iGe==-1) || (iEq==-1 && iGe==0) );
131957     if( zStr ){
131958       pCsr->filter.zTerm = sqlite3_mprintf("%s", zStr);
131959       pCsr->filter.nTerm = sqlite3_value_bytes(apVal[0]);
131960       if( pCsr->filter.zTerm==0 ) return SQLITE_NOMEM;
131961     }
131962   }
131963 
131964   if( iLe>=0 ){
131965     pCsr->zStop = sqlite3_mprintf("%s", sqlite3_value_text(apVal[iLe]));
131966     pCsr->nStop = sqlite3_value_bytes(apVal[iLe]);
131967     if( pCsr->zStop==0 ) return SQLITE_NOMEM;
131968   }
131969 
131970   if( iLangid>=0 ){
131971     iLangVal = sqlite3_value_int(apVal[iLangid]);
131972 
131973     /* If the user specified a negative value for the languageid, use zero
131974     ** instead. This works, as the "languageid=?" constraint will also
131975     ** be tested by the VDBE layer. The test will always be false (since
131976     ** this module will not return a row with a negative languageid), and
131977     ** so the overall query will return zero rows.  */
131978     if( iLangVal<0 ) iLangVal = 0;
131979   }
131980   pCsr->iLangid = iLangVal;
131981 
131982   rc = sqlite3Fts3SegReaderCursor(pFts3, iLangVal, 0, FTS3_SEGCURSOR_ALL,
131983       pCsr->filter.zTerm, pCsr->filter.nTerm, 0, isScan, &pCsr->csr
131984   );
131985   if( rc==SQLITE_OK ){
131986     rc = sqlite3Fts3SegReaderStart(pFts3, &pCsr->csr, &pCsr->filter);
131987   }
131988 
131989   if( rc==SQLITE_OK ) rc = fts3auxNextMethod(pCursor);
131990   return rc;
131991 }
131992 
131993 /*
131994 ** xEof - Return true if the cursor is at EOF, or false otherwise.
131995 */
131996 static int fts3auxEofMethod(sqlite3_vtab_cursor *pCursor){
131997   Fts3auxCursor *pCsr = (Fts3auxCursor *)pCursor;
131998   return pCsr->isEof;
131999 }
132000 
132001 /*
132002 ** xColumn - Return a column value.
132003 */
132004 static int fts3auxColumnMethod(
132005   sqlite3_vtab_cursor *pCursor,   /* Cursor to retrieve value from */
132006   sqlite3_context *pCtx,          /* Context for sqlite3_result_xxx() calls */
132007   int iCol                        /* Index of column to read value from */
132008 ){
132009   Fts3auxCursor *p = (Fts3auxCursor *)pCursor;
132010 
132011   assert( p->isEof==0 );
132012   switch( iCol ){
132013     case 0: /* term */
132014       sqlite3_result_text(pCtx, p->csr.zTerm, p->csr.nTerm, SQLITE_TRANSIENT);
132015       break;
132016 
132017     case 1: /* col */
132018       if( p->iCol ){
132019         sqlite3_result_int(pCtx, p->iCol-1);
132020       }else{
132021         sqlite3_result_text(pCtx, "*", -1, SQLITE_STATIC);
132022       }
132023       break;
132024 
132025     case 2: /* documents */
132026       sqlite3_result_int64(pCtx, p->aStat[p->iCol].nDoc);
132027       break;
132028 
132029     case 3: /* occurrences */
132030       sqlite3_result_int64(pCtx, p->aStat[p->iCol].nOcc);
132031       break;
132032 
132033     default: /* languageid */
132034       assert( iCol==4 );
132035       sqlite3_result_int(pCtx, p->iLangid);
132036       break;
132037   }
132038 
132039   return SQLITE_OK;
132040 }
132041 
132042 /*
132043 ** xRowid - Return the current rowid for the cursor.
132044 */
132045 static int fts3auxRowidMethod(
132046   sqlite3_vtab_cursor *pCursor,   /* Cursor to retrieve value from */
132047   sqlite_int64 *pRowid            /* OUT: Rowid value */
132048 ){
132049   Fts3auxCursor *pCsr = (Fts3auxCursor *)pCursor;
132050   *pRowid = pCsr->iRowid;
132051   return SQLITE_OK;
132052 }
132053 
132054 /*
132055 ** Register the fts3aux module with database connection db. Return SQLITE_OK
132056 ** if successful or an error code if sqlite3_create_module() fails.
132057 */
132058 SQLITE_PRIVATE int sqlite3Fts3InitAux(sqlite3 *db){
132059   static const sqlite3_module fts3aux_module = {
132060      0,                           /* iVersion      */
132061      fts3auxConnectMethod,        /* xCreate       */
132062      fts3auxConnectMethod,        /* xConnect      */
132063      fts3auxBestIndexMethod,      /* xBestIndex    */
132064      fts3auxDisconnectMethod,     /* xDisconnect   */
132065      fts3auxDisconnectMethod,     /* xDestroy      */
132066      fts3auxOpenMethod,           /* xOpen         */
132067      fts3auxCloseMethod,          /* xClose        */
132068      fts3auxFilterMethod,         /* xFilter       */
132069      fts3auxNextMethod,           /* xNext         */
132070      fts3auxEofMethod,            /* xEof          */
132071      fts3auxColumnMethod,         /* xColumn       */
132072      fts3auxRowidMethod,          /* xRowid        */
132073      0,                           /* xUpdate       */
132074      0,                           /* xBegin        */
132075      0,                           /* xSync         */
132076      0,                           /* xCommit       */
132077      0,                           /* xRollback     */
132078      0,                           /* xFindFunction */
132079      0,                           /* xRename       */
132080      0,                           /* xSavepoint    */
132081      0,                           /* xRelease      */
132082      0                            /* xRollbackTo   */
132083   };
132084   int rc;                         /* Return code */
132085 
132086   rc = sqlite3_create_module(db, "fts4aux", &fts3aux_module, 0);
132087   return rc;
132088 }
132089 
132090 #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
132091 
132092 /************** End of fts3_aux.c ********************************************/
132093 /************** Begin file fts3_expr.c ***************************************/
132094 /*
132095 ** 2008 Nov 28
132096 **
132097 ** The author disclaims copyright to this source code.  In place of
132098 ** a legal notice, here is a blessing:
132099 **
132100 **    May you do good and not evil.
132101 **    May you find forgiveness for yourself and forgive others.
132102 **    May you share freely, never taking more than you give.
132103 **
132104 ******************************************************************************
132105 **
132106 ** This module contains code that implements a parser for fts3 query strings
132107 ** (the right-hand argument to the MATCH operator). Because the supported
132108 ** syntax is relatively simple, the whole tokenizer/parser system is
132109 ** hand-coded.
132110 */
132111 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
132112 
132113 /*
132114 ** By default, this module parses the legacy syntax that has been
132115 ** traditionally used by fts3. Or, if SQLITE_ENABLE_FTS3_PARENTHESIS
132116 ** is defined, then it uses the new syntax. The differences between
132117 ** the new and the old syntaxes are:
132118 **
132119 **  a) The new syntax supports parenthesis. The old does not.
132120 **
132121 **  b) The new syntax supports the AND and NOT operators. The old does not.
132122 **
132123 **  c) The old syntax supports the "-" token qualifier. This is not
132124 **     supported by the new syntax (it is replaced by the NOT operator).
132125 **
132126 **  d) When using the old syntax, the OR operator has a greater precedence
132127 **     than an implicit AND. When using the new, both implicity and explicit
132128 **     AND operators have a higher precedence than OR.
132129 **
132130 ** If compiled with SQLITE_TEST defined, then this module exports the
132131 ** symbol "int sqlite3_fts3_enable_parentheses". Setting this variable
132132 ** to zero causes the module to use the old syntax. If it is set to
132133 ** non-zero the new syntax is activated. This is so both syntaxes can
132134 ** be tested using a single build of testfixture.
132135 **
132136 ** The following describes the syntax supported by the fts3 MATCH
132137 ** operator in a similar format to that used by the lemon parser
132138 ** generator. This module does not use actually lemon, it uses a
132139 ** custom parser.
132140 **
132141 **   query ::= andexpr (OR andexpr)*.
132142 **
132143 **   andexpr ::= notexpr (AND? notexpr)*.
132144 **
132145 **   notexpr ::= nearexpr (NOT nearexpr|-TOKEN)*.
132146 **   notexpr ::= LP query RP.
132147 **
132148 **   nearexpr ::= phrase (NEAR distance_opt nearexpr)*.
132149 **
132150 **   distance_opt ::= .
132151 **   distance_opt ::= / INTEGER.
132152 **
132153 **   phrase ::= TOKEN.
132154 **   phrase ::= COLUMN:TOKEN.
132155 **   phrase ::= "TOKEN TOKEN TOKEN...".
132156 */
132157 
132158 #ifdef SQLITE_TEST
132159 SQLITE_API int sqlite3_fts3_enable_parentheses = 0;
132160 #else
132161 # ifdef SQLITE_ENABLE_FTS3_PARENTHESIS
132162 #  define sqlite3_fts3_enable_parentheses 1
132163 # else
132164 #  define sqlite3_fts3_enable_parentheses 0
132165 # endif
132166 #endif
132167 
132168 /*
132169 ** Default span for NEAR operators.
132170 */
132171 #define SQLITE_FTS3_DEFAULT_NEAR_PARAM 10
132172 
132173 /* #include <string.h> */
132174 /* #include <assert.h> */
132175 
132176 /*
132177 ** isNot:
132178 **   This variable is used by function getNextNode(). When getNextNode() is
132179 **   called, it sets ParseContext.isNot to true if the 'next node' is a
132180 **   FTSQUERY_PHRASE with a unary "-" attached to it. i.e. "mysql" in the
132181 **   FTS3 query "sqlite -mysql". Otherwise, ParseContext.isNot is set to
132182 **   zero.
132183 */
132184 typedef struct ParseContext ParseContext;
132185 struct ParseContext {
132186   sqlite3_tokenizer *pTokenizer;      /* Tokenizer module */
132187   int iLangid;                        /* Language id used with tokenizer */
132188   const char **azCol;                 /* Array of column names for fts3 table */
132189   int bFts4;                          /* True to allow FTS4-only syntax */
132190   int nCol;                           /* Number of entries in azCol[] */
132191   int iDefaultCol;                    /* Default column to query */
132192   int isNot;                          /* True if getNextNode() sees a unary - */
132193   sqlite3_context *pCtx;              /* Write error message here */
132194   int nNest;                          /* Number of nested brackets */
132195 };
132196 
132197 /*
132198 ** This function is equivalent to the standard isspace() function.
132199 **
132200 ** The standard isspace() can be awkward to use safely, because although it
132201 ** is defined to accept an argument of type int, its behavior when passed
132202 ** an integer that falls outside of the range of the unsigned char type
132203 ** is undefined (and sometimes, "undefined" means segfault). This wrapper
132204 ** is defined to accept an argument of type char, and always returns 0 for
132205 ** any values that fall outside of the range of the unsigned char type (i.e.
132206 ** negative values).
132207 */
132208 static int fts3isspace(char c){
132209   return c==' ' || c=='\t' || c=='\n' || c=='\r' || c=='\v' || c=='\f';
132210 }
132211 
132212 /*
132213 ** Allocate nByte bytes of memory using sqlite3_malloc(). If successful,
132214 ** zero the memory before returning a pointer to it. If unsuccessful,
132215 ** return NULL.
132216 */
132217 static void *fts3MallocZero(int nByte){
132218   void *pRet = sqlite3_malloc(nByte);
132219   if( pRet ) memset(pRet, 0, nByte);
132220   return pRet;
132221 }
132222 
132223 SQLITE_PRIVATE int sqlite3Fts3OpenTokenizer(
132224   sqlite3_tokenizer *pTokenizer,
132225   int iLangid,
132226   const char *z,
132227   int n,
132228   sqlite3_tokenizer_cursor **ppCsr
132229 ){
132230   sqlite3_tokenizer_module const *pModule = pTokenizer->pModule;
132231   sqlite3_tokenizer_cursor *pCsr = 0;
132232   int rc;
132233 
132234   rc = pModule->xOpen(pTokenizer, z, n, &pCsr);
132235   assert( rc==SQLITE_OK || pCsr==0 );
132236   if( rc==SQLITE_OK ){
132237     pCsr->pTokenizer = pTokenizer;
132238     if( pModule->iVersion>=1 ){
132239       rc = pModule->xLanguageid(pCsr, iLangid);
132240       if( rc!=SQLITE_OK ){
132241         pModule->xClose(pCsr);
132242         pCsr = 0;
132243       }
132244     }
132245   }
132246   *ppCsr = pCsr;
132247   return rc;
132248 }
132249 
132250 /*
132251 ** Function getNextNode(), which is called by fts3ExprParse(), may itself
132252 ** call fts3ExprParse(). So this forward declaration is required.
132253 */
132254 static int fts3ExprParse(ParseContext *, const char *, int, Fts3Expr **, int *);
132255 
132256 /*
132257 ** Extract the next token from buffer z (length n) using the tokenizer
132258 ** and other information (column names etc.) in pParse. Create an Fts3Expr
132259 ** structure of type FTSQUERY_PHRASE containing a phrase consisting of this
132260 ** single token and set *ppExpr to point to it. If the end of the buffer is
132261 ** reached before a token is found, set *ppExpr to zero. It is the
132262 ** responsibility of the caller to eventually deallocate the allocated
132263 ** Fts3Expr structure (if any) by passing it to sqlite3_free().
132264 **
132265 ** Return SQLITE_OK if successful, or SQLITE_NOMEM if a memory allocation
132266 ** fails.
132267 */
132268 static int getNextToken(
132269   ParseContext *pParse,                   /* fts3 query parse context */
132270   int iCol,                               /* Value for Fts3Phrase.iColumn */
132271   const char *z, int n,                   /* Input string */
132272   Fts3Expr **ppExpr,                      /* OUT: expression */
132273   int *pnConsumed                         /* OUT: Number of bytes consumed */
132274 ){
132275   sqlite3_tokenizer *pTokenizer = pParse->pTokenizer;
132276   sqlite3_tokenizer_module const *pModule = pTokenizer->pModule;
132277   int rc;
132278   sqlite3_tokenizer_cursor *pCursor;
132279   Fts3Expr *pRet = 0;
132280   int i = 0;
132281 
132282   /* Set variable i to the maximum number of bytes of input to tokenize. */
132283   for(i=0; i<n; i++){
132284     if( sqlite3_fts3_enable_parentheses && (z[i]=='(' || z[i]==')') ) break;
132285     if( z[i]=='*' || z[i]=='"' ) break;
132286   }
132287 
132288   *pnConsumed = i;
132289   rc = sqlite3Fts3OpenTokenizer(pTokenizer, pParse->iLangid, z, i, &pCursor);
132290   if( rc==SQLITE_OK ){
132291     const char *zToken;
132292     int nToken = 0, iStart = 0, iEnd = 0, iPosition = 0;
132293     int nByte;                               /* total space to allocate */
132294 
132295     rc = pModule->xNext(pCursor, &zToken, &nToken, &iStart, &iEnd, &iPosition);
132296     if( rc==SQLITE_OK ){
132297       nByte = sizeof(Fts3Expr) + sizeof(Fts3Phrase) + nToken;
132298       pRet = (Fts3Expr *)fts3MallocZero(nByte);
132299       if( !pRet ){
132300         rc = SQLITE_NOMEM;
132301       }else{
132302         pRet->eType = FTSQUERY_PHRASE;
132303         pRet->pPhrase = (Fts3Phrase *)&pRet[1];
132304         pRet->pPhrase->nToken = 1;
132305         pRet->pPhrase->iColumn = iCol;
132306         pRet->pPhrase->aToken[0].n = nToken;
132307         pRet->pPhrase->aToken[0].z = (char *)&pRet->pPhrase[1];
132308         memcpy(pRet->pPhrase->aToken[0].z, zToken, nToken);
132309 
132310         if( iEnd<n && z[iEnd]=='*' ){
132311           pRet->pPhrase->aToken[0].isPrefix = 1;
132312           iEnd++;
132313         }
132314 
132315         while( 1 ){
132316           if( !sqlite3_fts3_enable_parentheses
132317            && iStart>0 && z[iStart-1]=='-'
132318           ){
132319             pParse->isNot = 1;
132320             iStart--;
132321           }else if( pParse->bFts4 && iStart>0 && z[iStart-1]=='^' ){
132322             pRet->pPhrase->aToken[0].bFirst = 1;
132323             iStart--;
132324           }else{
132325             break;
132326           }
132327         }
132328 
132329       }
132330       *pnConsumed = iEnd;
132331     }else if( i && rc==SQLITE_DONE ){
132332       rc = SQLITE_OK;
132333     }
132334 
132335     pModule->xClose(pCursor);
132336   }
132337 
132338   *ppExpr = pRet;
132339   return rc;
132340 }
132341 
132342 
132343 /*
132344 ** Enlarge a memory allocation.  If an out-of-memory allocation occurs,
132345 ** then free the old allocation.
132346 */
132347 static void *fts3ReallocOrFree(void *pOrig, int nNew){
132348   void *pRet = sqlite3_realloc(pOrig, nNew);
132349   if( !pRet ){
132350     sqlite3_free(pOrig);
132351   }
132352   return pRet;
132353 }
132354 
132355 /*
132356 ** Buffer zInput, length nInput, contains the contents of a quoted string
132357 ** that appeared as part of an fts3 query expression. Neither quote character
132358 ** is included in the buffer. This function attempts to tokenize the entire
132359 ** input buffer and create an Fts3Expr structure of type FTSQUERY_PHRASE
132360 ** containing the results.
132361 **
132362 ** If successful, SQLITE_OK is returned and *ppExpr set to point at the
132363 ** allocated Fts3Expr structure. Otherwise, either SQLITE_NOMEM (out of memory
132364 ** error) or SQLITE_ERROR (tokenization error) is returned and *ppExpr set
132365 ** to 0.
132366 */
132367 static int getNextString(
132368   ParseContext *pParse,                   /* fts3 query parse context */
132369   const char *zInput, int nInput,         /* Input string */
132370   Fts3Expr **ppExpr                       /* OUT: expression */
132371 ){
132372   sqlite3_tokenizer *pTokenizer = pParse->pTokenizer;
132373   sqlite3_tokenizer_module const *pModule = pTokenizer->pModule;
132374   int rc;
132375   Fts3Expr *p = 0;
132376   sqlite3_tokenizer_cursor *pCursor = 0;
132377   char *zTemp = 0;
132378   int nTemp = 0;
132379 
132380   const int nSpace = sizeof(Fts3Expr) + sizeof(Fts3Phrase);
132381   int nToken = 0;
132382 
132383   /* The final Fts3Expr data structure, including the Fts3Phrase,
132384   ** Fts3PhraseToken structures token buffers are all stored as a single
132385   ** allocation so that the expression can be freed with a single call to
132386   ** sqlite3_free(). Setting this up requires a two pass approach.
132387   **
132388   ** The first pass, in the block below, uses a tokenizer cursor to iterate
132389   ** through the tokens in the expression. This pass uses fts3ReallocOrFree()
132390   ** to assemble data in two dynamic buffers:
132391   **
132392   **   Buffer p: Points to the Fts3Expr structure, followed by the Fts3Phrase
132393   **             structure, followed by the array of Fts3PhraseToken
132394   **             structures. This pass only populates the Fts3PhraseToken array.
132395   **
132396   **   Buffer zTemp: Contains copies of all tokens.
132397   **
132398   ** The second pass, in the block that begins "if( rc==SQLITE_DONE )" below,
132399   ** appends buffer zTemp to buffer p, and fills in the Fts3Expr and Fts3Phrase
132400   ** structures.
132401   */
132402   rc = sqlite3Fts3OpenTokenizer(
132403       pTokenizer, pParse->iLangid, zInput, nInput, &pCursor);
132404   if( rc==SQLITE_OK ){
132405     int ii;
132406     for(ii=0; rc==SQLITE_OK; ii++){
132407       const char *zByte;
132408       int nByte = 0, iBegin = 0, iEnd = 0, iPos = 0;
132409       rc = pModule->xNext(pCursor, &zByte, &nByte, &iBegin, &iEnd, &iPos);
132410       if( rc==SQLITE_OK ){
132411         Fts3PhraseToken *pToken;
132412 
132413         p = fts3ReallocOrFree(p, nSpace + ii*sizeof(Fts3PhraseToken));
132414         if( !p ) goto no_mem;
132415 
132416         zTemp = fts3ReallocOrFree(zTemp, nTemp + nByte);
132417         if( !zTemp ) goto no_mem;
132418 
132419         assert( nToken==ii );
132420         pToken = &((Fts3Phrase *)(&p[1]))->aToken[ii];
132421         memset(pToken, 0, sizeof(Fts3PhraseToken));
132422 
132423         memcpy(&zTemp[nTemp], zByte, nByte);
132424         nTemp += nByte;
132425 
132426         pToken->n = nByte;
132427         pToken->isPrefix = (iEnd<nInput && zInput[iEnd]=='*');
132428         pToken->bFirst = (iBegin>0 && zInput[iBegin-1]=='^');
132429         nToken = ii+1;
132430       }
132431     }
132432 
132433     pModule->xClose(pCursor);
132434     pCursor = 0;
132435   }
132436 
132437   if( rc==SQLITE_DONE ){
132438     int jj;
132439     char *zBuf = 0;
132440 
132441     p = fts3ReallocOrFree(p, nSpace + nToken*sizeof(Fts3PhraseToken) + nTemp);
132442     if( !p ) goto no_mem;
132443     memset(p, 0, (char *)&(((Fts3Phrase *)&p[1])->aToken[0])-(char *)p);
132444     p->eType = FTSQUERY_PHRASE;
132445     p->pPhrase = (Fts3Phrase *)&p[1];
132446     p->pPhrase->iColumn = pParse->iDefaultCol;
132447     p->pPhrase->nToken = nToken;
132448 
132449     zBuf = (char *)&p->pPhrase->aToken[nToken];
132450     if( zTemp ){
132451       memcpy(zBuf, zTemp, nTemp);
132452       sqlite3_free(zTemp);
132453     }else{
132454       assert( nTemp==0 );
132455     }
132456 
132457     for(jj=0; jj<p->pPhrase->nToken; jj++){
132458       p->pPhrase->aToken[jj].z = zBuf;
132459       zBuf += p->pPhrase->aToken[jj].n;
132460     }
132461     rc = SQLITE_OK;
132462   }
132463 
132464   *ppExpr = p;
132465   return rc;
132466 no_mem:
132467 
132468   if( pCursor ){
132469     pModule->xClose(pCursor);
132470   }
132471   sqlite3_free(zTemp);
132472   sqlite3_free(p);
132473   *ppExpr = 0;
132474   return SQLITE_NOMEM;
132475 }
132476 
132477 /*
132478 ** The output variable *ppExpr is populated with an allocated Fts3Expr
132479 ** structure, or set to 0 if the end of the input buffer is reached.
132480 **
132481 ** Returns an SQLite error code. SQLITE_OK if everything works, SQLITE_NOMEM
132482 ** if a malloc failure occurs, or SQLITE_ERROR if a parse error is encountered.
132483 ** If SQLITE_ERROR is returned, pContext is populated with an error message.
132484 */
132485 static int getNextNode(
132486   ParseContext *pParse,                   /* fts3 query parse context */
132487   const char *z, int n,                   /* Input string */
132488   Fts3Expr **ppExpr,                      /* OUT: expression */
132489   int *pnConsumed                         /* OUT: Number of bytes consumed */
132490 ){
132491   static const struct Fts3Keyword {
132492     char *z;                              /* Keyword text */
132493     unsigned char n;                      /* Length of the keyword */
132494     unsigned char parenOnly;              /* Only valid in paren mode */
132495     unsigned char eType;                  /* Keyword code */
132496   } aKeyword[] = {
132497     { "OR" ,  2, 0, FTSQUERY_OR   },
132498     { "AND",  3, 1, FTSQUERY_AND  },
132499     { "NOT",  3, 1, FTSQUERY_NOT  },
132500     { "NEAR", 4, 0, FTSQUERY_NEAR }
132501   };
132502   int ii;
132503   int iCol;
132504   int iColLen;
132505   int rc;
132506   Fts3Expr *pRet = 0;
132507 
132508   const char *zInput = z;
132509   int nInput = n;
132510 
132511   pParse->isNot = 0;
132512 
132513   /* Skip over any whitespace before checking for a keyword, an open or
132514   ** close bracket, or a quoted string.
132515   */
132516   while( nInput>0 && fts3isspace(*zInput) ){
132517     nInput--;
132518     zInput++;
132519   }
132520   if( nInput==0 ){
132521     return SQLITE_DONE;
132522   }
132523 
132524   /* See if we are dealing with a keyword. */
132525   for(ii=0; ii<(int)(sizeof(aKeyword)/sizeof(struct Fts3Keyword)); ii++){
132526     const struct Fts3Keyword *pKey = &aKeyword[ii];
132527 
132528     if( (pKey->parenOnly & ~sqlite3_fts3_enable_parentheses)!=0 ){
132529       continue;
132530     }
132531 
132532     if( nInput>=pKey->n && 0==memcmp(zInput, pKey->z, pKey->n) ){
132533       int nNear = SQLITE_FTS3_DEFAULT_NEAR_PARAM;
132534       int nKey = pKey->n;
132535       char cNext;
132536 
132537       /* If this is a "NEAR" keyword, check for an explicit nearness. */
132538       if( pKey->eType==FTSQUERY_NEAR ){
132539         assert( nKey==4 );
132540         if( zInput[4]=='/' && zInput[5]>='0' && zInput[5]<='9' ){
132541           nNear = 0;
132542           for(nKey=5; zInput[nKey]>='0' && zInput[nKey]<='9'; nKey++){
132543             nNear = nNear * 10 + (zInput[nKey] - '0');
132544           }
132545         }
132546       }
132547 
132548       /* At this point this is probably a keyword. But for that to be true,
132549       ** the next byte must contain either whitespace, an open or close
132550       ** parenthesis, a quote character, or EOF.
132551       */
132552       cNext = zInput[nKey];
132553       if( fts3isspace(cNext)
132554        || cNext=='"' || cNext=='(' || cNext==')' || cNext==0
132555       ){
132556         pRet = (Fts3Expr *)fts3MallocZero(sizeof(Fts3Expr));
132557         if( !pRet ){
132558           return SQLITE_NOMEM;
132559         }
132560         pRet->eType = pKey->eType;
132561         pRet->nNear = nNear;
132562         *ppExpr = pRet;
132563         *pnConsumed = (int)((zInput - z) + nKey);
132564         return SQLITE_OK;
132565       }
132566 
132567       /* Turns out that wasn't a keyword after all. This happens if the
132568       ** user has supplied a token such as "ORacle". Continue.
132569       */
132570     }
132571   }
132572 
132573   /* See if we are dealing with a quoted phrase. If this is the case, then
132574   ** search for the closing quote and pass the whole string to getNextString()
132575   ** for processing. This is easy to do, as fts3 has no syntax for escaping
132576   ** a quote character embedded in a string.
132577   */
132578   if( *zInput=='"' ){
132579     for(ii=1; ii<nInput && zInput[ii]!='"'; ii++);
132580     *pnConsumed = (int)((zInput - z) + ii + 1);
132581     if( ii==nInput ){
132582       return SQLITE_ERROR;
132583     }
132584     return getNextString(pParse, &zInput[1], ii-1, ppExpr);
132585   }
132586 
132587   if( sqlite3_fts3_enable_parentheses ){
132588     if( *zInput=='(' ){
132589       int nConsumed = 0;
132590       pParse->nNest++;
132591       rc = fts3ExprParse(pParse, zInput+1, nInput-1, ppExpr, &nConsumed);
132592       if( rc==SQLITE_OK && !*ppExpr ){ rc = SQLITE_DONE; }
132593       *pnConsumed = (int)(zInput - z) + 1 + nConsumed;
132594       return rc;
132595     }else if( *zInput==')' ){
132596       pParse->nNest--;
132597       *pnConsumed = (int)((zInput - z) + 1);
132598       *ppExpr = 0;
132599       return SQLITE_DONE;
132600     }
132601   }
132602 
132603   /* If control flows to this point, this must be a regular token, or
132604   ** the end of the input. Read a regular token using the sqlite3_tokenizer
132605   ** interface. Before doing so, figure out if there is an explicit
132606   ** column specifier for the token.
132607   **
132608   ** TODO: Strangely, it is not possible to associate a column specifier
132609   ** with a quoted phrase, only with a single token. Not sure if this was
132610   ** an implementation artifact or an intentional decision when fts3 was
132611   ** first implemented. Whichever it was, this module duplicates the
132612   ** limitation.
132613   */
132614   iCol = pParse->iDefaultCol;
132615   iColLen = 0;
132616   for(ii=0; ii<pParse->nCol; ii++){
132617     const char *zStr = pParse->azCol[ii];
132618     int nStr = (int)strlen(zStr);
132619     if( nInput>nStr && zInput[nStr]==':'
132620      && sqlite3_strnicmp(zStr, zInput, nStr)==0
132621     ){
132622       iCol = ii;
132623       iColLen = (int)((zInput - z) + nStr + 1);
132624       break;
132625     }
132626   }
132627   rc = getNextToken(pParse, iCol, &z[iColLen], n-iColLen, ppExpr, pnConsumed);
132628   *pnConsumed += iColLen;
132629   return rc;
132630 }
132631 
132632 /*
132633 ** The argument is an Fts3Expr structure for a binary operator (any type
132634 ** except an FTSQUERY_PHRASE). Return an integer value representing the
132635 ** precedence of the operator. Lower values have a higher precedence (i.e.
132636 ** group more tightly). For example, in the C language, the == operator
132637 ** groups more tightly than ||, and would therefore have a higher precedence.
132638 **
132639 ** When using the new fts3 query syntax (when SQLITE_ENABLE_FTS3_PARENTHESIS
132640 ** is defined), the order of the operators in precedence from highest to
132641 ** lowest is:
132642 **
132643 **   NEAR
132644 **   NOT
132645 **   AND (including implicit ANDs)
132646 **   OR
132647 **
132648 ** Note that when using the old query syntax, the OR operator has a higher
132649 ** precedence than the AND operator.
132650 */
132651 static int opPrecedence(Fts3Expr *p){
132652   assert( p->eType!=FTSQUERY_PHRASE );
132653   if( sqlite3_fts3_enable_parentheses ){
132654     return p->eType;
132655   }else if( p->eType==FTSQUERY_NEAR ){
132656     return 1;
132657   }else if( p->eType==FTSQUERY_OR ){
132658     return 2;
132659   }
132660   assert( p->eType==FTSQUERY_AND );
132661   return 3;
132662 }
132663 
132664 /*
132665 ** Argument ppHead contains a pointer to the current head of a query
132666 ** expression tree being parsed. pPrev is the expression node most recently
132667 ** inserted into the tree. This function adds pNew, which is always a binary
132668 ** operator node, into the expression tree based on the relative precedence
132669 ** of pNew and the existing nodes of the tree. This may result in the head
132670 ** of the tree changing, in which case *ppHead is set to the new root node.
132671 */
132672 static void insertBinaryOperator(
132673   Fts3Expr **ppHead,       /* Pointer to the root node of a tree */
132674   Fts3Expr *pPrev,         /* Node most recently inserted into the tree */
132675   Fts3Expr *pNew           /* New binary node to insert into expression tree */
132676 ){
132677   Fts3Expr *pSplit = pPrev;
132678   while( pSplit->pParent && opPrecedence(pSplit->pParent)<=opPrecedence(pNew) ){
132679     pSplit = pSplit->pParent;
132680   }
132681 
132682   if( pSplit->pParent ){
132683     assert( pSplit->pParent->pRight==pSplit );
132684     pSplit->pParent->pRight = pNew;
132685     pNew->pParent = pSplit->pParent;
132686   }else{
132687     *ppHead = pNew;
132688   }
132689   pNew->pLeft = pSplit;
132690   pSplit->pParent = pNew;
132691 }
132692 
132693 /*
132694 ** Parse the fts3 query expression found in buffer z, length n. This function
132695 ** returns either when the end of the buffer is reached or an unmatched
132696 ** closing bracket - ')' - is encountered.
132697 **
132698 ** If successful, SQLITE_OK is returned, *ppExpr is set to point to the
132699 ** parsed form of the expression and *pnConsumed is set to the number of
132700 ** bytes read from buffer z. Otherwise, *ppExpr is set to 0 and SQLITE_NOMEM
132701 ** (out of memory error) or SQLITE_ERROR (parse error) is returned.
132702 */
132703 static int fts3ExprParse(
132704   ParseContext *pParse,                   /* fts3 query parse context */
132705   const char *z, int n,                   /* Text of MATCH query */
132706   Fts3Expr **ppExpr,                      /* OUT: Parsed query structure */
132707   int *pnConsumed                         /* OUT: Number of bytes consumed */
132708 ){
132709   Fts3Expr *pRet = 0;
132710   Fts3Expr *pPrev = 0;
132711   Fts3Expr *pNotBranch = 0;               /* Only used in legacy parse mode */
132712   int nIn = n;
132713   const char *zIn = z;
132714   int rc = SQLITE_OK;
132715   int isRequirePhrase = 1;
132716 
132717   while( rc==SQLITE_OK ){
132718     Fts3Expr *p = 0;
132719     int nByte = 0;
132720 
132721     rc = getNextNode(pParse, zIn, nIn, &p, &nByte);
132722     assert( nByte>0 || (rc!=SQLITE_OK && p==0) );
132723     if( rc==SQLITE_OK ){
132724       if( p ){
132725         int isPhrase;
132726 
132727         if( !sqlite3_fts3_enable_parentheses
132728             && p->eType==FTSQUERY_PHRASE && pParse->isNot
132729         ){
132730           /* Create an implicit NOT operator. */
132731           Fts3Expr *pNot = fts3MallocZero(sizeof(Fts3Expr));
132732           if( !pNot ){
132733             sqlite3Fts3ExprFree(p);
132734             rc = SQLITE_NOMEM;
132735             goto exprparse_out;
132736           }
132737           pNot->eType = FTSQUERY_NOT;
132738           pNot->pRight = p;
132739           p->pParent = pNot;
132740           if( pNotBranch ){
132741             pNot->pLeft = pNotBranch;
132742             pNotBranch->pParent = pNot;
132743           }
132744           pNotBranch = pNot;
132745           p = pPrev;
132746         }else{
132747           int eType = p->eType;
132748           isPhrase = (eType==FTSQUERY_PHRASE || p->pLeft);
132749 
132750           /* The isRequirePhrase variable is set to true if a phrase or
132751           ** an expression contained in parenthesis is required. If a
132752           ** binary operator (AND, OR, NOT or NEAR) is encounted when
132753           ** isRequirePhrase is set, this is a syntax error.
132754           */
132755           if( !isPhrase && isRequirePhrase ){
132756             sqlite3Fts3ExprFree(p);
132757             rc = SQLITE_ERROR;
132758             goto exprparse_out;
132759           }
132760 
132761           if( isPhrase && !isRequirePhrase ){
132762             /* Insert an implicit AND operator. */
132763             Fts3Expr *pAnd;
132764             assert( pRet && pPrev );
132765             pAnd = fts3MallocZero(sizeof(Fts3Expr));
132766             if( !pAnd ){
132767               sqlite3Fts3ExprFree(p);
132768               rc = SQLITE_NOMEM;
132769               goto exprparse_out;
132770             }
132771             pAnd->eType = FTSQUERY_AND;
132772             insertBinaryOperator(&pRet, pPrev, pAnd);
132773             pPrev = pAnd;
132774           }
132775 
132776           /* This test catches attempts to make either operand of a NEAR
132777            ** operator something other than a phrase. For example, either of
132778            ** the following:
132779            **
132780            **    (bracketed expression) NEAR phrase
132781            **    phrase NEAR (bracketed expression)
132782            **
132783            ** Return an error in either case.
132784            */
132785           if( pPrev && (
132786             (eType==FTSQUERY_NEAR && !isPhrase && pPrev->eType!=FTSQUERY_PHRASE)
132787          || (eType!=FTSQUERY_PHRASE && isPhrase && pPrev->eType==FTSQUERY_NEAR)
132788           )){
132789             sqlite3Fts3ExprFree(p);
132790             rc = SQLITE_ERROR;
132791             goto exprparse_out;
132792           }
132793 
132794           if( isPhrase ){
132795             if( pRet ){
132796               assert( pPrev && pPrev->pLeft && pPrev->pRight==0 );
132797               pPrev->pRight = p;
132798               p->pParent = pPrev;
132799             }else{
132800               pRet = p;
132801             }
132802           }else{
132803             insertBinaryOperator(&pRet, pPrev, p);
132804           }
132805           isRequirePhrase = !isPhrase;
132806         }
132807         pPrev = p;
132808       }
132809       assert( nByte>0 );
132810     }
132811     assert( rc!=SQLITE_OK || (nByte>0 && nByte<=nIn) );
132812     nIn -= nByte;
132813     zIn += nByte;
132814   }
132815 
132816   if( rc==SQLITE_DONE && pRet && isRequirePhrase ){
132817     rc = SQLITE_ERROR;
132818   }
132819 
132820   if( rc==SQLITE_DONE ){
132821     rc = SQLITE_OK;
132822     if( !sqlite3_fts3_enable_parentheses && pNotBranch ){
132823       if( !pRet ){
132824         rc = SQLITE_ERROR;
132825       }else{
132826         Fts3Expr *pIter = pNotBranch;
132827         while( pIter->pLeft ){
132828           pIter = pIter->pLeft;
132829         }
132830         pIter->pLeft = pRet;
132831         pRet->pParent = pIter;
132832         pRet = pNotBranch;
132833       }
132834     }
132835   }
132836   *pnConsumed = n - nIn;
132837 
132838 exprparse_out:
132839   if( rc!=SQLITE_OK ){
132840     sqlite3Fts3ExprFree(pRet);
132841     sqlite3Fts3ExprFree(pNotBranch);
132842     pRet = 0;
132843   }
132844   *ppExpr = pRet;
132845   return rc;
132846 }
132847 
132848 /*
132849 ** Return SQLITE_ERROR if the maximum depth of the expression tree passed
132850 ** as the only argument is more than nMaxDepth.
132851 */
132852 static int fts3ExprCheckDepth(Fts3Expr *p, int nMaxDepth){
132853   int rc = SQLITE_OK;
132854   if( p ){
132855     if( nMaxDepth<0 ){
132856       rc = SQLITE_TOOBIG;
132857     }else{
132858       rc = fts3ExprCheckDepth(p->pLeft, nMaxDepth-1);
132859       if( rc==SQLITE_OK ){
132860         rc = fts3ExprCheckDepth(p->pRight, nMaxDepth-1);
132861       }
132862     }
132863   }
132864   return rc;
132865 }
132866 
132867 /*
132868 ** This function attempts to transform the expression tree at (*pp) to
132869 ** an equivalent but more balanced form. The tree is modified in place.
132870 ** If successful, SQLITE_OK is returned and (*pp) set to point to the
132871 ** new root expression node.
132872 **
132873 ** nMaxDepth is the maximum allowable depth of the balanced sub-tree.
132874 **
132875 ** Otherwise, if an error occurs, an SQLite error code is returned and
132876 ** expression (*pp) freed.
132877 */
132878 static int fts3ExprBalance(Fts3Expr **pp, int nMaxDepth){
132879   int rc = SQLITE_OK;             /* Return code */
132880   Fts3Expr *pRoot = *pp;          /* Initial root node */
132881   Fts3Expr *pFree = 0;            /* List of free nodes. Linked by pParent. */
132882   int eType = pRoot->eType;       /* Type of node in this tree */
132883 
132884   if( nMaxDepth==0 ){
132885     rc = SQLITE_ERROR;
132886   }
132887 
132888   if( rc==SQLITE_OK && (eType==FTSQUERY_AND || eType==FTSQUERY_OR) ){
132889     Fts3Expr **apLeaf;
132890     apLeaf = (Fts3Expr **)sqlite3_malloc(sizeof(Fts3Expr *) * nMaxDepth);
132891     if( 0==apLeaf ){
132892       rc = SQLITE_NOMEM;
132893     }else{
132894       memset(apLeaf, 0, sizeof(Fts3Expr *) * nMaxDepth);
132895     }
132896 
132897     if( rc==SQLITE_OK ){
132898       int i;
132899       Fts3Expr *p;
132900 
132901       /* Set $p to point to the left-most leaf in the tree of eType nodes. */
132902       for(p=pRoot; p->eType==eType; p=p->pLeft){
132903         assert( p->pParent==0 || p->pParent->pLeft==p );
132904         assert( p->pLeft && p->pRight );
132905       }
132906 
132907       /* This loop runs once for each leaf in the tree of eType nodes. */
132908       while( 1 ){
132909         int iLvl;
132910         Fts3Expr *pParent = p->pParent;     /* Current parent of p */
132911 
132912         assert( pParent==0 || pParent->pLeft==p );
132913         p->pParent = 0;
132914         if( pParent ){
132915           pParent->pLeft = 0;
132916         }else{
132917           pRoot = 0;
132918         }
132919         rc = fts3ExprBalance(&p, nMaxDepth-1);
132920         if( rc!=SQLITE_OK ) break;
132921 
132922         for(iLvl=0; p && iLvl<nMaxDepth; iLvl++){
132923           if( apLeaf[iLvl]==0 ){
132924             apLeaf[iLvl] = p;
132925             p = 0;
132926           }else{
132927             assert( pFree );
132928             pFree->pLeft = apLeaf[iLvl];
132929             pFree->pRight = p;
132930             pFree->pLeft->pParent = pFree;
132931             pFree->pRight->pParent = pFree;
132932 
132933             p = pFree;
132934             pFree = pFree->pParent;
132935             p->pParent = 0;
132936             apLeaf[iLvl] = 0;
132937           }
132938         }
132939         if( p ){
132940           sqlite3Fts3ExprFree(p);
132941           rc = SQLITE_TOOBIG;
132942           break;
132943         }
132944 
132945         /* If that was the last leaf node, break out of the loop */
132946         if( pParent==0 ) break;
132947 
132948         /* Set $p to point to the next leaf in the tree of eType nodes */
132949         for(p=pParent->pRight; p->eType==eType; p=p->pLeft);
132950 
132951         /* Remove pParent from the original tree. */
132952         assert( pParent->pParent==0 || pParent->pParent->pLeft==pParent );
132953         pParent->pRight->pParent = pParent->pParent;
132954         if( pParent->pParent ){
132955           pParent->pParent->pLeft = pParent->pRight;
132956         }else{
132957           assert( pParent==pRoot );
132958           pRoot = pParent->pRight;
132959         }
132960 
132961         /* Link pParent into the free node list. It will be used as an
132962         ** internal node of the new tree.  */
132963         pParent->pParent = pFree;
132964         pFree = pParent;
132965       }
132966 
132967       if( rc==SQLITE_OK ){
132968         p = 0;
132969         for(i=0; i<nMaxDepth; i++){
132970           if( apLeaf[i] ){
132971             if( p==0 ){
132972               p = apLeaf[i];
132973               p->pParent = 0;
132974             }else{
132975               assert( pFree!=0 );
132976               pFree->pRight = p;
132977               pFree->pLeft = apLeaf[i];
132978               pFree->pLeft->pParent = pFree;
132979               pFree->pRight->pParent = pFree;
132980 
132981               p = pFree;
132982               pFree = pFree->pParent;
132983               p->pParent = 0;
132984             }
132985           }
132986         }
132987         pRoot = p;
132988       }else{
132989         /* An error occurred. Delete the contents of the apLeaf[] array
132990         ** and pFree list. Everything else is cleaned up by the call to
132991         ** sqlite3Fts3ExprFree(pRoot) below.  */
132992         Fts3Expr *pDel;
132993         for(i=0; i<nMaxDepth; i++){
132994           sqlite3Fts3ExprFree(apLeaf[i]);
132995         }
132996         while( (pDel=pFree)!=0 ){
132997           pFree = pDel->pParent;
132998           sqlite3_free(pDel);
132999         }
133000       }
133001 
133002       assert( pFree==0 );
133003       sqlite3_free( apLeaf );
133004     }
133005   }
133006 
133007   if( rc!=SQLITE_OK ){
133008     sqlite3Fts3ExprFree(pRoot);
133009     pRoot = 0;
133010   }
133011   *pp = pRoot;
133012   return rc;
133013 }
133014 
133015 /*
133016 ** This function is similar to sqlite3Fts3ExprParse(), with the following
133017 ** differences:
133018 **
133019 **   1. It does not do expression rebalancing.
133020 **   2. It does not check that the expression does not exceed the
133021 **      maximum allowable depth.
133022 **   3. Even if it fails, *ppExpr may still be set to point to an
133023 **      expression tree. It should be deleted using sqlite3Fts3ExprFree()
133024 **      in this case.
133025 */
133026 static int fts3ExprParseUnbalanced(
133027   sqlite3_tokenizer *pTokenizer,      /* Tokenizer module */
133028   int iLangid,                        /* Language id for tokenizer */
133029   char **azCol,                       /* Array of column names for fts3 table */
133030   int bFts4,                          /* True to allow FTS4-only syntax */
133031   int nCol,                           /* Number of entries in azCol[] */
133032   int iDefaultCol,                    /* Default column to query */
133033   const char *z, int n,               /* Text of MATCH query */
133034   Fts3Expr **ppExpr                   /* OUT: Parsed query structure */
133035 ){
133036   int nParsed;
133037   int rc;
133038   ParseContext sParse;
133039 
133040   memset(&sParse, 0, sizeof(ParseContext));
133041   sParse.pTokenizer = pTokenizer;
133042   sParse.iLangid = iLangid;
133043   sParse.azCol = (const char **)azCol;
133044   sParse.nCol = nCol;
133045   sParse.iDefaultCol = iDefaultCol;
133046   sParse.bFts4 = bFts4;
133047   if( z==0 ){
133048     *ppExpr = 0;
133049     return SQLITE_OK;
133050   }
133051   if( n<0 ){
133052     n = (int)strlen(z);
133053   }
133054   rc = fts3ExprParse(&sParse, z, n, ppExpr, &nParsed);
133055   assert( rc==SQLITE_OK || *ppExpr==0 );
133056 
133057   /* Check for mismatched parenthesis */
133058   if( rc==SQLITE_OK && sParse.nNest ){
133059     rc = SQLITE_ERROR;
133060   }
133061 
133062   return rc;
133063 }
133064 
133065 /*
133066 ** Parameters z and n contain a pointer to and length of a buffer containing
133067 ** an fts3 query expression, respectively. This function attempts to parse the
133068 ** query expression and create a tree of Fts3Expr structures representing the
133069 ** parsed expression. If successful, *ppExpr is set to point to the head
133070 ** of the parsed expression tree and SQLITE_OK is returned. If an error
133071 ** occurs, either SQLITE_NOMEM (out-of-memory error) or SQLITE_ERROR (parse
133072 ** error) is returned and *ppExpr is set to 0.
133073 **
133074 ** If parameter n is a negative number, then z is assumed to point to a
133075 ** nul-terminated string and the length is determined using strlen().
133076 **
133077 ** The first parameter, pTokenizer, is passed the fts3 tokenizer module to
133078 ** use to normalize query tokens while parsing the expression. The azCol[]
133079 ** array, which is assumed to contain nCol entries, should contain the names
133080 ** of each column in the target fts3 table, in order from left to right.
133081 ** Column names must be nul-terminated strings.
133082 **
133083 ** The iDefaultCol parameter should be passed the index of the table column
133084 ** that appears on the left-hand-side of the MATCH operator (the default
133085 ** column to match against for tokens for which a column name is not explicitly
133086 ** specified as part of the query string), or -1 if tokens may by default
133087 ** match any table column.
133088 */
133089 SQLITE_PRIVATE int sqlite3Fts3ExprParse(
133090   sqlite3_tokenizer *pTokenizer,      /* Tokenizer module */
133091   int iLangid,                        /* Language id for tokenizer */
133092   char **azCol,                       /* Array of column names for fts3 table */
133093   int bFts4,                          /* True to allow FTS4-only syntax */
133094   int nCol,                           /* Number of entries in azCol[] */
133095   int iDefaultCol,                    /* Default column to query */
133096   const char *z, int n,               /* Text of MATCH query */
133097   Fts3Expr **ppExpr,                  /* OUT: Parsed query structure */
133098   char **pzErr                        /* OUT: Error message (sqlite3_malloc) */
133099 ){
133100   int rc = fts3ExprParseUnbalanced(
133101       pTokenizer, iLangid, azCol, bFts4, nCol, iDefaultCol, z, n, ppExpr
133102   );
133103 
133104   /* Rebalance the expression. And check that its depth does not exceed
133105   ** SQLITE_FTS3_MAX_EXPR_DEPTH.  */
133106   if( rc==SQLITE_OK && *ppExpr ){
133107     rc = fts3ExprBalance(ppExpr, SQLITE_FTS3_MAX_EXPR_DEPTH);
133108     if( rc==SQLITE_OK ){
133109       rc = fts3ExprCheckDepth(*ppExpr, SQLITE_FTS3_MAX_EXPR_DEPTH);
133110     }
133111   }
133112 
133113   if( rc!=SQLITE_OK ){
133114     sqlite3Fts3ExprFree(*ppExpr);
133115     *ppExpr = 0;
133116     if( rc==SQLITE_TOOBIG ){
133117       *pzErr = sqlite3_mprintf(
133118           "FTS expression tree is too large (maximum depth %d)",
133119           SQLITE_FTS3_MAX_EXPR_DEPTH
133120       );
133121       rc = SQLITE_ERROR;
133122     }else if( rc==SQLITE_ERROR ){
133123       *pzErr = sqlite3_mprintf("malformed MATCH expression: [%s]", z);
133124     }
133125   }
133126 
133127   return rc;
133128 }
133129 
133130 /*
133131 ** Free a single node of an expression tree.
133132 */
133133 static void fts3FreeExprNode(Fts3Expr *p){
133134   assert( p->eType==FTSQUERY_PHRASE || p->pPhrase==0 );
133135   sqlite3Fts3EvalPhraseCleanup(p->pPhrase);
133136   sqlite3_free(p->aMI);
133137   sqlite3_free(p);
133138 }
133139 
133140 /*
133141 ** Free a parsed fts3 query expression allocated by sqlite3Fts3ExprParse().
133142 **
133143 ** This function would be simpler if it recursively called itself. But
133144 ** that would mean passing a sufficiently large expression to ExprParse()
133145 ** could cause a stack overflow.
133146 */
133147 SQLITE_PRIVATE void sqlite3Fts3ExprFree(Fts3Expr *pDel){
133148   Fts3Expr *p;
133149   assert( pDel==0 || pDel->pParent==0 );
133150   for(p=pDel; p && (p->pLeft||p->pRight); p=(p->pLeft ? p->pLeft : p->pRight)){
133151     assert( p->pParent==0 || p==p->pParent->pRight || p==p->pParent->pLeft );
133152   }
133153   while( p ){
133154     Fts3Expr *pParent = p->pParent;
133155     fts3FreeExprNode(p);
133156     if( pParent && p==pParent->pLeft && pParent->pRight ){
133157       p = pParent->pRight;
133158       while( p && (p->pLeft || p->pRight) ){
133159         assert( p==p->pParent->pRight || p==p->pParent->pLeft );
133160         p = (p->pLeft ? p->pLeft : p->pRight);
133161       }
133162     }else{
133163       p = pParent;
133164     }
133165   }
133166 }
133167 
133168 /****************************************************************************
133169 *****************************************************************************
133170 ** Everything after this point is just test code.
133171 */
133172 
133173 #ifdef SQLITE_TEST
133174 
133175 /* #include <stdio.h> */
133176 
133177 /*
133178 ** Function to query the hash-table of tokenizers (see README.tokenizers).
133179 */
133180 static int queryTestTokenizer(
133181   sqlite3 *db,
133182   const char *zName,
133183   const sqlite3_tokenizer_module **pp
133184 ){
133185   int rc;
133186   sqlite3_stmt *pStmt;
133187   const char zSql[] = "SELECT fts3_tokenizer(?)";
133188 
133189   *pp = 0;
133190   rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
133191   if( rc!=SQLITE_OK ){
133192     return rc;
133193   }
133194 
133195   sqlite3_bind_text(pStmt, 1, zName, -1, SQLITE_STATIC);
133196   if( SQLITE_ROW==sqlite3_step(pStmt) ){
133197     if( sqlite3_column_type(pStmt, 0)==SQLITE_BLOB ){
133198       memcpy((void *)pp, sqlite3_column_blob(pStmt, 0), sizeof(*pp));
133199     }
133200   }
133201 
133202   return sqlite3_finalize(pStmt);
133203 }
133204 
133205 /*
133206 ** Return a pointer to a buffer containing a text representation of the
133207 ** expression passed as the first argument. The buffer is obtained from
133208 ** sqlite3_malloc(). It is the responsibility of the caller to use
133209 ** sqlite3_free() to release the memory. If an OOM condition is encountered,
133210 ** NULL is returned.
133211 **
133212 ** If the second argument is not NULL, then its contents are prepended to
133213 ** the returned expression text and then freed using sqlite3_free().
133214 */
133215 static char *exprToString(Fts3Expr *pExpr, char *zBuf){
133216   if( pExpr==0 ){
133217     return sqlite3_mprintf("");
133218   }
133219   switch( pExpr->eType ){
133220     case FTSQUERY_PHRASE: {
133221       Fts3Phrase *pPhrase = pExpr->pPhrase;
133222       int i;
133223       zBuf = sqlite3_mprintf(
133224           "%zPHRASE %d 0", zBuf, pPhrase->iColumn);
133225       for(i=0; zBuf && i<pPhrase->nToken; i++){
133226         zBuf = sqlite3_mprintf("%z %.*s%s", zBuf,
133227             pPhrase->aToken[i].n, pPhrase->aToken[i].z,
133228             (pPhrase->aToken[i].isPrefix?"+":"")
133229         );
133230       }
133231       return zBuf;
133232     }
133233 
133234     case FTSQUERY_NEAR:
133235       zBuf = sqlite3_mprintf("%zNEAR/%d ", zBuf, pExpr->nNear);
133236       break;
133237     case FTSQUERY_NOT:
133238       zBuf = sqlite3_mprintf("%zNOT ", zBuf);
133239       break;
133240     case FTSQUERY_AND:
133241       zBuf = sqlite3_mprintf("%zAND ", zBuf);
133242       break;
133243     case FTSQUERY_OR:
133244       zBuf = sqlite3_mprintf("%zOR ", zBuf);
133245       break;
133246   }
133247 
133248   if( zBuf ) zBuf = sqlite3_mprintf("%z{", zBuf);
133249   if( zBuf ) zBuf = exprToString(pExpr->pLeft, zBuf);
133250   if( zBuf ) zBuf = sqlite3_mprintf("%z} {", zBuf);
133251 
133252   if( zBuf ) zBuf = exprToString(pExpr->pRight, zBuf);
133253   if( zBuf ) zBuf = sqlite3_mprintf("%z}", zBuf);
133254 
133255   return zBuf;
133256 }
133257 
133258 /*
133259 ** This is the implementation of a scalar SQL function used to test the
133260 ** expression parser. It should be called as follows:
133261 **
133262 **   fts3_exprtest(<tokenizer>, <expr>, <column 1>, ...);
133263 **
133264 ** The first argument, <tokenizer>, is the name of the fts3 tokenizer used
133265 ** to parse the query expression (see README.tokenizers). The second argument
133266 ** is the query expression to parse. Each subsequent argument is the name
133267 ** of a column of the fts3 table that the query expression may refer to.
133268 ** For example:
133269 **
133270 **   SELECT fts3_exprtest('simple', 'Bill col2:Bloggs', 'col1', 'col2');
133271 */
133272 static void fts3ExprTest(
133273   sqlite3_context *context,
133274   int argc,
133275   sqlite3_value **argv
133276 ){
133277   sqlite3_tokenizer_module const *pModule = 0;
133278   sqlite3_tokenizer *pTokenizer = 0;
133279   int rc;
133280   char **azCol = 0;
133281   const char *zExpr;
133282   int nExpr;
133283   int nCol;
133284   int ii;
133285   Fts3Expr *pExpr;
133286   char *zBuf = 0;
133287   sqlite3 *db = sqlite3_context_db_handle(context);
133288 
133289   if( argc<3 ){
133290     sqlite3_result_error(context,
133291         "Usage: fts3_exprtest(tokenizer, expr, col1, ...", -1
133292     );
133293     return;
133294   }
133295 
133296   rc = queryTestTokenizer(db,
133297                           (const char *)sqlite3_value_text(argv[0]), &pModule);
133298   if( rc==SQLITE_NOMEM ){
133299     sqlite3_result_error_nomem(context);
133300     goto exprtest_out;
133301   }else if( !pModule ){
133302     sqlite3_result_error(context, "No such tokenizer module", -1);
133303     goto exprtest_out;
133304   }
133305 
133306   rc = pModule->xCreate(0, 0, &pTokenizer);
133307   assert( rc==SQLITE_NOMEM || rc==SQLITE_OK );
133308   if( rc==SQLITE_NOMEM ){
133309     sqlite3_result_error_nomem(context);
133310     goto exprtest_out;
133311   }
133312   pTokenizer->pModule = pModule;
133313 
133314   zExpr = (const char *)sqlite3_value_text(argv[1]);
133315   nExpr = sqlite3_value_bytes(argv[1]);
133316   nCol = argc-2;
133317   azCol = (char **)sqlite3_malloc(nCol*sizeof(char *));
133318   if( !azCol ){
133319     sqlite3_result_error_nomem(context);
133320     goto exprtest_out;
133321   }
133322   for(ii=0; ii<nCol; ii++){
133323     azCol[ii] = (char *)sqlite3_value_text(argv[ii+2]);
133324   }
133325 
133326   if( sqlite3_user_data(context) ){
133327     char *zDummy = 0;
133328     rc = sqlite3Fts3ExprParse(
133329         pTokenizer, 0, azCol, 0, nCol, nCol, zExpr, nExpr, &pExpr, &zDummy
133330     );
133331     assert( rc==SQLITE_OK || pExpr==0 );
133332     sqlite3_free(zDummy);
133333   }else{
133334     rc = fts3ExprParseUnbalanced(
133335         pTokenizer, 0, azCol, 0, nCol, nCol, zExpr, nExpr, &pExpr
133336     );
133337   }
133338 
133339   if( rc!=SQLITE_OK && rc!=SQLITE_NOMEM ){
133340     sqlite3Fts3ExprFree(pExpr);
133341     sqlite3_result_error(context, "Error parsing expression", -1);
133342   }else if( rc==SQLITE_NOMEM || !(zBuf = exprToString(pExpr, 0)) ){
133343     sqlite3_result_error_nomem(context);
133344   }else{
133345     sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
133346     sqlite3_free(zBuf);
133347   }
133348 
133349   sqlite3Fts3ExprFree(pExpr);
133350 
133351 exprtest_out:
133352   if( pModule && pTokenizer ){
133353     rc = pModule->xDestroy(pTokenizer);
133354   }
133355   sqlite3_free(azCol);
133356 }
133357 
133358 /*
133359 ** Register the query expression parser test function fts3_exprtest()
133360 ** with database connection db.
133361 */
133362 SQLITE_PRIVATE int sqlite3Fts3ExprInitTestInterface(sqlite3* db){
133363   int rc = sqlite3_create_function(
133364       db, "fts3_exprtest", -1, SQLITE_UTF8, 0, fts3ExprTest, 0, 0
133365   );
133366   if( rc==SQLITE_OK ){
133367     rc = sqlite3_create_function(db, "fts3_exprtest_rebalance",
133368         -1, SQLITE_UTF8, (void *)1, fts3ExprTest, 0, 0
133369     );
133370   }
133371   return rc;
133372 }
133373 
133374 #endif
133375 #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
133376 
133377 /************** End of fts3_expr.c *******************************************/
133378 /************** Begin file fts3_hash.c ***************************************/
133379 /*
133380 ** 2001 September 22
133381 **
133382 ** The author disclaims copyright to this source code.  In place of
133383 ** a legal notice, here is a blessing:
133384 **
133385 **    May you do good and not evil.
133386 **    May you find forgiveness for yourself and forgive others.
133387 **    May you share freely, never taking more than you give.
133388 **
133389 *************************************************************************
133390 ** This is the implementation of generic hash-tables used in SQLite.
133391 ** We've modified it slightly to serve as a standalone hash table
133392 ** implementation for the full-text indexing module.
133393 */
133394 
133395 /*
133396 ** The code in this file is only compiled if:
133397 **
133398 **     * The FTS3 module is being built as an extension
133399 **       (in which case SQLITE_CORE is not defined), or
133400 **
133401 **     * The FTS3 module is being built into the core of
133402 **       SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
133403 */
133404 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
133405 
133406 /* #include <assert.h> */
133407 /* #include <stdlib.h> */
133408 /* #include <string.h> */
133409 
133410 
133411 /*
133412 ** Malloc and Free functions
133413 */
133414 static void *fts3HashMalloc(int n){
133415   void *p = sqlite3_malloc(n);
133416   if( p ){
133417     memset(p, 0, n);
133418   }
133419   return p;
133420 }
133421 static void fts3HashFree(void *p){
133422   sqlite3_free(p);
133423 }
133424 
133425 /* Turn bulk memory into a hash table object by initializing the
133426 ** fields of the Hash structure.
133427 **
133428 ** "pNew" is a pointer to the hash table that is to be initialized.
133429 ** keyClass is one of the constants
133430 ** FTS3_HASH_BINARY or FTS3_HASH_STRING.  The value of keyClass
133431 ** determines what kind of key the hash table will use.  "copyKey" is
133432 ** true if the hash table should make its own private copy of keys and
133433 ** false if it should just use the supplied pointer.
133434 */
133435 SQLITE_PRIVATE void sqlite3Fts3HashInit(Fts3Hash *pNew, char keyClass, char copyKey){
133436   assert( pNew!=0 );
133437   assert( keyClass>=FTS3_HASH_STRING && keyClass<=FTS3_HASH_BINARY );
133438   pNew->keyClass = keyClass;
133439   pNew->copyKey = copyKey;
133440   pNew->first = 0;
133441   pNew->count = 0;
133442   pNew->htsize = 0;
133443   pNew->ht = 0;
133444 }
133445 
133446 /* Remove all entries from a hash table.  Reclaim all memory.
133447 ** Call this routine to delete a hash table or to reset a hash table
133448 ** to the empty state.
133449 */
133450 SQLITE_PRIVATE void sqlite3Fts3HashClear(Fts3Hash *pH){
133451   Fts3HashElem *elem;         /* For looping over all elements of the table */
133452 
133453   assert( pH!=0 );
133454   elem = pH->first;
133455   pH->first = 0;
133456   fts3HashFree(pH->ht);
133457   pH->ht = 0;
133458   pH->htsize = 0;
133459   while( elem ){
133460     Fts3HashElem *next_elem = elem->next;
133461     if( pH->copyKey && elem->pKey ){
133462       fts3HashFree(elem->pKey);
133463     }
133464     fts3HashFree(elem);
133465     elem = next_elem;
133466   }
133467   pH->count = 0;
133468 }
133469 
133470 /*
133471 ** Hash and comparison functions when the mode is FTS3_HASH_STRING
133472 */
133473 static int fts3StrHash(const void *pKey, int nKey){
133474   const char *z = (const char *)pKey;
133475   unsigned h = 0;
133476   if( nKey<=0 ) nKey = (int) strlen(z);
133477   while( nKey > 0  ){
133478     h = (h<<3) ^ h ^ *z++;
133479     nKey--;
133480   }
133481   return (int)(h & 0x7fffffff);
133482 }
133483 static int fts3StrCompare(const void *pKey1, int n1, const void *pKey2, int n2){
133484   if( n1!=n2 ) return 1;
133485   return strncmp((const char*)pKey1,(const char*)pKey2,n1);
133486 }
133487 
133488 /*
133489 ** Hash and comparison functions when the mode is FTS3_HASH_BINARY
133490 */
133491 static int fts3BinHash(const void *pKey, int nKey){
133492   int h = 0;
133493   const char *z = (const char *)pKey;
133494   while( nKey-- > 0 ){
133495     h = (h<<3) ^ h ^ *(z++);
133496   }
133497   return h & 0x7fffffff;
133498 }
133499 static int fts3BinCompare(const void *pKey1, int n1, const void *pKey2, int n2){
133500   if( n1!=n2 ) return 1;
133501   return memcmp(pKey1,pKey2,n1);
133502 }
133503 
133504 /*
133505 ** Return a pointer to the appropriate hash function given the key class.
133506 **
133507 ** The C syntax in this function definition may be unfamilar to some
133508 ** programmers, so we provide the following additional explanation:
133509 **
133510 ** The name of the function is "ftsHashFunction".  The function takes a
133511 ** single parameter "keyClass".  The return value of ftsHashFunction()
133512 ** is a pointer to another function.  Specifically, the return value
133513 ** of ftsHashFunction() is a pointer to a function that takes two parameters
133514 ** with types "const void*" and "int" and returns an "int".
133515 */
133516 static int (*ftsHashFunction(int keyClass))(const void*,int){
133517   if( keyClass==FTS3_HASH_STRING ){
133518     return &fts3StrHash;
133519   }else{
133520     assert( keyClass==FTS3_HASH_BINARY );
133521     return &fts3BinHash;
133522   }
133523 }
133524 
133525 /*
133526 ** Return a pointer to the appropriate hash function given the key class.
133527 **
133528 ** For help in interpreted the obscure C code in the function definition,
133529 ** see the header comment on the previous function.
133530 */
133531 static int (*ftsCompareFunction(int keyClass))(const void*,int,const void*,int){
133532   if( keyClass==FTS3_HASH_STRING ){
133533     return &fts3StrCompare;
133534   }else{
133535     assert( keyClass==FTS3_HASH_BINARY );
133536     return &fts3BinCompare;
133537   }
133538 }
133539 
133540 /* Link an element into the hash table
133541 */
133542 static void fts3HashInsertElement(
133543   Fts3Hash *pH,            /* The complete hash table */
133544   struct _fts3ht *pEntry,  /* The entry into which pNew is inserted */
133545   Fts3HashElem *pNew       /* The element to be inserted */
133546 ){
133547   Fts3HashElem *pHead;     /* First element already in pEntry */
133548   pHead = pEntry->chain;
133549   if( pHead ){
133550     pNew->next = pHead;
133551     pNew->prev = pHead->prev;
133552     if( pHead->prev ){ pHead->prev->next = pNew; }
133553     else             { pH->first = pNew; }
133554     pHead->prev = pNew;
133555   }else{
133556     pNew->next = pH->first;
133557     if( pH->first ){ pH->first->prev = pNew; }
133558     pNew->prev = 0;
133559     pH->first = pNew;
133560   }
133561   pEntry->count++;
133562   pEntry->chain = pNew;
133563 }
133564 
133565 
133566 /* Resize the hash table so that it cantains "new_size" buckets.
133567 ** "new_size" must be a power of 2.  The hash table might fail
133568 ** to resize if sqliteMalloc() fails.
133569 **
133570 ** Return non-zero if a memory allocation error occurs.
133571 */
133572 static int fts3Rehash(Fts3Hash *pH, int new_size){
133573   struct _fts3ht *new_ht;          /* The new hash table */
133574   Fts3HashElem *elem, *next_elem;  /* For looping over existing elements */
133575   int (*xHash)(const void*,int);   /* The hash function */
133576 
133577   assert( (new_size & (new_size-1))==0 );
133578   new_ht = (struct _fts3ht *)fts3HashMalloc( new_size*sizeof(struct _fts3ht) );
133579   if( new_ht==0 ) return 1;
133580   fts3HashFree(pH->ht);
133581   pH->ht = new_ht;
133582   pH->htsize = new_size;
133583   xHash = ftsHashFunction(pH->keyClass);
133584   for(elem=pH->first, pH->first=0; elem; elem = next_elem){
133585     int h = (*xHash)(elem->pKey, elem->nKey) & (new_size-1);
133586     next_elem = elem->next;
133587     fts3HashInsertElement(pH, &new_ht[h], elem);
133588   }
133589   return 0;
133590 }
133591 
133592 /* This function (for internal use only) locates an element in an
133593 ** hash table that matches the given key.  The hash for this key has
133594 ** already been computed and is passed as the 4th parameter.
133595 */
133596 static Fts3HashElem *fts3FindElementByHash(
133597   const Fts3Hash *pH, /* The pH to be searched */
133598   const void *pKey,   /* The key we are searching for */
133599   int nKey,
133600   int h               /* The hash for this key. */
133601 ){
133602   Fts3HashElem *elem;            /* Used to loop thru the element list */
133603   int count;                     /* Number of elements left to test */
133604   int (*xCompare)(const void*,int,const void*,int);  /* comparison function */
133605 
133606   if( pH->ht ){
133607     struct _fts3ht *pEntry = &pH->ht[h];
133608     elem = pEntry->chain;
133609     count = pEntry->count;
133610     xCompare = ftsCompareFunction(pH->keyClass);
133611     while( count-- && elem ){
133612       if( (*xCompare)(elem->pKey,elem->nKey,pKey,nKey)==0 ){
133613         return elem;
133614       }
133615       elem = elem->next;
133616     }
133617   }
133618   return 0;
133619 }
133620 
133621 /* Remove a single entry from the hash table given a pointer to that
133622 ** element and a hash on the element's key.
133623 */
133624 static void fts3RemoveElementByHash(
133625   Fts3Hash *pH,         /* The pH containing "elem" */
133626   Fts3HashElem* elem,   /* The element to be removed from the pH */
133627   int h                 /* Hash value for the element */
133628 ){
133629   struct _fts3ht *pEntry;
133630   if( elem->prev ){
133631     elem->prev->next = elem->next;
133632   }else{
133633     pH->first = elem->next;
133634   }
133635   if( elem->next ){
133636     elem->next->prev = elem->prev;
133637   }
133638   pEntry = &pH->ht[h];
133639   if( pEntry->chain==elem ){
133640     pEntry->chain = elem->next;
133641   }
133642   pEntry->count--;
133643   if( pEntry->count<=0 ){
133644     pEntry->chain = 0;
133645   }
133646   if( pH->copyKey && elem->pKey ){
133647     fts3HashFree(elem->pKey);
133648   }
133649   fts3HashFree( elem );
133650   pH->count--;
133651   if( pH->count<=0 ){
133652     assert( pH->first==0 );
133653     assert( pH->count==0 );
133654     fts3HashClear(pH);
133655   }
133656 }
133657 
133658 SQLITE_PRIVATE Fts3HashElem *sqlite3Fts3HashFindElem(
133659   const Fts3Hash *pH,
133660   const void *pKey,
133661   int nKey
133662 ){
133663   int h;                          /* A hash on key */
133664   int (*xHash)(const void*,int);  /* The hash function */
133665 
133666   if( pH==0 || pH->ht==0 ) return 0;
133667   xHash = ftsHashFunction(pH->keyClass);
133668   assert( xHash!=0 );
133669   h = (*xHash)(pKey,nKey);
133670   assert( (pH->htsize & (pH->htsize-1))==0 );
133671   return fts3FindElementByHash(pH,pKey,nKey, h & (pH->htsize-1));
133672 }
133673 
133674 /*
133675 ** Attempt to locate an element of the hash table pH with a key
133676 ** that matches pKey,nKey.  Return the data for this element if it is
133677 ** found, or NULL if there is no match.
133678 */
133679 SQLITE_PRIVATE void *sqlite3Fts3HashFind(const Fts3Hash *pH, const void *pKey, int nKey){
133680   Fts3HashElem *pElem;            /* The element that matches key (if any) */
133681 
133682   pElem = sqlite3Fts3HashFindElem(pH, pKey, nKey);
133683   return pElem ? pElem->data : 0;
133684 }
133685 
133686 /* Insert an element into the hash table pH.  The key is pKey,nKey
133687 ** and the data is "data".
133688 **
133689 ** If no element exists with a matching key, then a new
133690 ** element is created.  A copy of the key is made if the copyKey
133691 ** flag is set.  NULL is returned.
133692 **
133693 ** If another element already exists with the same key, then the
133694 ** new data replaces the old data and the old data is returned.
133695 ** The key is not copied in this instance.  If a malloc fails, then
133696 ** the new data is returned and the hash table is unchanged.
133697 **
133698 ** If the "data" parameter to this function is NULL, then the
133699 ** element corresponding to "key" is removed from the hash table.
133700 */
133701 SQLITE_PRIVATE void *sqlite3Fts3HashInsert(
133702   Fts3Hash *pH,        /* The hash table to insert into */
133703   const void *pKey,    /* The key */
133704   int nKey,            /* Number of bytes in the key */
133705   void *data           /* The data */
133706 ){
133707   int hraw;                 /* Raw hash value of the key */
133708   int h;                    /* the hash of the key modulo hash table size */
133709   Fts3HashElem *elem;       /* Used to loop thru the element list */
133710   Fts3HashElem *new_elem;   /* New element added to the pH */
133711   int (*xHash)(const void*,int);  /* The hash function */
133712 
133713   assert( pH!=0 );
133714   xHash = ftsHashFunction(pH->keyClass);
133715   assert( xHash!=0 );
133716   hraw = (*xHash)(pKey, nKey);
133717   assert( (pH->htsize & (pH->htsize-1))==0 );
133718   h = hraw & (pH->htsize-1);
133719   elem = fts3FindElementByHash(pH,pKey,nKey,h);
133720   if( elem ){
133721     void *old_data = elem->data;
133722     if( data==0 ){
133723       fts3RemoveElementByHash(pH,elem,h);
133724     }else{
133725       elem->data = data;
133726     }
133727     return old_data;
133728   }
133729   if( data==0 ) return 0;
133730   if( (pH->htsize==0 && fts3Rehash(pH,8))
133731    || (pH->count>=pH->htsize && fts3Rehash(pH, pH->htsize*2))
133732   ){
133733     pH->count = 0;
133734     return data;
133735   }
133736   assert( pH->htsize>0 );
133737   new_elem = (Fts3HashElem*)fts3HashMalloc( sizeof(Fts3HashElem) );
133738   if( new_elem==0 ) return data;
133739   if( pH->copyKey && pKey!=0 ){
133740     new_elem->pKey = fts3HashMalloc( nKey );
133741     if( new_elem->pKey==0 ){
133742       fts3HashFree(new_elem);
133743       return data;
133744     }
133745     memcpy((void*)new_elem->pKey, pKey, nKey);
133746   }else{
133747     new_elem->pKey = (void*)pKey;
133748   }
133749   new_elem->nKey = nKey;
133750   pH->count++;
133751   assert( pH->htsize>0 );
133752   assert( (pH->htsize & (pH->htsize-1))==0 );
133753   h = hraw & (pH->htsize-1);
133754   fts3HashInsertElement(pH, &pH->ht[h], new_elem);
133755   new_elem->data = data;
133756   return 0;
133757 }
133758 
133759 #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
133760 
133761 /************** End of fts3_hash.c *******************************************/
133762 /************** Begin file fts3_porter.c *************************************/
133763 /*
133764 ** 2006 September 30
133765 **
133766 ** The author disclaims copyright to this source code.  In place of
133767 ** a legal notice, here is a blessing:
133768 **
133769 **    May you do good and not evil.
133770 **    May you find forgiveness for yourself and forgive others.
133771 **    May you share freely, never taking more than you give.
133772 **
133773 *************************************************************************
133774 ** Implementation of the full-text-search tokenizer that implements
133775 ** a Porter stemmer.
133776 */
133777 
133778 /*
133779 ** The code in this file is only compiled if:
133780 **
133781 **     * The FTS3 module is being built as an extension
133782 **       (in which case SQLITE_CORE is not defined), or
133783 **
133784 **     * The FTS3 module is being built into the core of
133785 **       SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
133786 */
133787 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
133788 
133789 /* #include <assert.h> */
133790 /* #include <stdlib.h> */
133791 /* #include <stdio.h> */
133792 /* #include <string.h> */
133793 
133794 
133795 /*
133796 ** Class derived from sqlite3_tokenizer
133797 */
133798 typedef struct porter_tokenizer {
133799   sqlite3_tokenizer base;      /* Base class */
133800 } porter_tokenizer;
133801 
133802 /*
133803 ** Class derived from sqlite3_tokenizer_cursor
133804 */
133805 typedef struct porter_tokenizer_cursor {
133806   sqlite3_tokenizer_cursor base;
133807   const char *zInput;          /* input we are tokenizing */
133808   int nInput;                  /* size of the input */
133809   int iOffset;                 /* current position in zInput */
133810   int iToken;                  /* index of next token to be returned */
133811   char *zToken;                /* storage for current token */
133812   int nAllocated;              /* space allocated to zToken buffer */
133813 } porter_tokenizer_cursor;
133814 
133815 
133816 /*
133817 ** Create a new tokenizer instance.
133818 */
133819 static int porterCreate(
133820   int argc, const char * const *argv,
133821   sqlite3_tokenizer **ppTokenizer
133822 ){
133823   porter_tokenizer *t;
133824 
133825   UNUSED_PARAMETER(argc);
133826   UNUSED_PARAMETER(argv);
133827 
133828   t = (porter_tokenizer *) sqlite3_malloc(sizeof(*t));
133829   if( t==NULL ) return SQLITE_NOMEM;
133830   memset(t, 0, sizeof(*t));
133831   *ppTokenizer = &t->base;
133832   return SQLITE_OK;
133833 }
133834 
133835 /*
133836 ** Destroy a tokenizer
133837 */
133838 static int porterDestroy(sqlite3_tokenizer *pTokenizer){
133839   sqlite3_free(pTokenizer);
133840   return SQLITE_OK;
133841 }
133842 
133843 /*
133844 ** Prepare to begin tokenizing a particular string.  The input
133845 ** string to be tokenized is zInput[0..nInput-1].  A cursor
133846 ** used to incrementally tokenize this string is returned in
133847 ** *ppCursor.
133848 */
133849 static int porterOpen(
133850   sqlite3_tokenizer *pTokenizer,         /* The tokenizer */
133851   const char *zInput, int nInput,        /* String to be tokenized */
133852   sqlite3_tokenizer_cursor **ppCursor    /* OUT: Tokenization cursor */
133853 ){
133854   porter_tokenizer_cursor *c;
133855 
133856   UNUSED_PARAMETER(pTokenizer);
133857 
133858   c = (porter_tokenizer_cursor *) sqlite3_malloc(sizeof(*c));
133859   if( c==NULL ) return SQLITE_NOMEM;
133860 
133861   c->zInput = zInput;
133862   if( zInput==0 ){
133863     c->nInput = 0;
133864   }else if( nInput<0 ){
133865     c->nInput = (int)strlen(zInput);
133866   }else{
133867     c->nInput = nInput;
133868   }
133869   c->iOffset = 0;                 /* start tokenizing at the beginning */
133870   c->iToken = 0;
133871   c->zToken = NULL;               /* no space allocated, yet. */
133872   c->nAllocated = 0;
133873 
133874   *ppCursor = &c->base;
133875   return SQLITE_OK;
133876 }
133877 
133878 /*
133879 ** Close a tokenization cursor previously opened by a call to
133880 ** porterOpen() above.
133881 */
133882 static int porterClose(sqlite3_tokenizer_cursor *pCursor){
133883   porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor;
133884   sqlite3_free(c->zToken);
133885   sqlite3_free(c);
133886   return SQLITE_OK;
133887 }
133888 /*
133889 ** Vowel or consonant
133890 */
133891 static const char cType[] = {
133892    0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0,
133893    1, 1, 1, 2, 1
133894 };
133895 
133896 /*
133897 ** isConsonant() and isVowel() determine if their first character in
133898 ** the string they point to is a consonant or a vowel, according
133899 ** to Porter ruls.
133900 **
133901 ** A consonate is any letter other than 'a', 'e', 'i', 'o', or 'u'.
133902 ** 'Y' is a consonant unless it follows another consonant,
133903 ** in which case it is a vowel.
133904 **
133905 ** In these routine, the letters are in reverse order.  So the 'y' rule
133906 ** is that 'y' is a consonant unless it is followed by another
133907 ** consonent.
133908 */
133909 static int isVowel(const char*);
133910 static int isConsonant(const char *z){
133911   int j;
133912   char x = *z;
133913   if( x==0 ) return 0;
133914   assert( x>='a' && x<='z' );
133915   j = cType[x-'a'];
133916   if( j<2 ) return j;
133917   return z[1]==0 || isVowel(z + 1);
133918 }
133919 static int isVowel(const char *z){
133920   int j;
133921   char x = *z;
133922   if( x==0 ) return 0;
133923   assert( x>='a' && x<='z' );
133924   j = cType[x-'a'];
133925   if( j<2 ) return 1-j;
133926   return isConsonant(z + 1);
133927 }
133928 
133929 /*
133930 ** Let any sequence of one or more vowels be represented by V and let
133931 ** C be sequence of one or more consonants.  Then every word can be
133932 ** represented as:
133933 **
133934 **           [C] (VC){m} [V]
133935 **
133936 ** In prose:  A word is an optional consonant followed by zero or
133937 ** vowel-consonant pairs followed by an optional vowel.  "m" is the
133938 ** number of vowel consonant pairs.  This routine computes the value
133939 ** of m for the first i bytes of a word.
133940 **
133941 ** Return true if the m-value for z is 1 or more.  In other words,
133942 ** return true if z contains at least one vowel that is followed
133943 ** by a consonant.
133944 **
133945 ** In this routine z[] is in reverse order.  So we are really looking
133946 ** for an instance of of a consonant followed by a vowel.
133947 */
133948 static int m_gt_0(const char *z){
133949   while( isVowel(z) ){ z++; }
133950   if( *z==0 ) return 0;
133951   while( isConsonant(z) ){ z++; }
133952   return *z!=0;
133953 }
133954 
133955 /* Like mgt0 above except we are looking for a value of m which is
133956 ** exactly 1
133957 */
133958 static int m_eq_1(const char *z){
133959   while( isVowel(z) ){ z++; }
133960   if( *z==0 ) return 0;
133961   while( isConsonant(z) ){ z++; }
133962   if( *z==0 ) return 0;
133963   while( isVowel(z) ){ z++; }
133964   if( *z==0 ) return 1;
133965   while( isConsonant(z) ){ z++; }
133966   return *z==0;
133967 }
133968 
133969 /* Like mgt0 above except we are looking for a value of m>1 instead
133970 ** or m>0
133971 */
133972 static int m_gt_1(const char *z){
133973   while( isVowel(z) ){ z++; }
133974   if( *z==0 ) return 0;
133975   while( isConsonant(z) ){ z++; }
133976   if( *z==0 ) return 0;
133977   while( isVowel(z) ){ z++; }
133978   if( *z==0 ) return 0;
133979   while( isConsonant(z) ){ z++; }
133980   return *z!=0;
133981 }
133982 
133983 /*
133984 ** Return TRUE if there is a vowel anywhere within z[0..n-1]
133985 */
133986 static int hasVowel(const char *z){
133987   while( isConsonant(z) ){ z++; }
133988   return *z!=0;
133989 }
133990 
133991 /*
133992 ** Return TRUE if the word ends in a double consonant.
133993 **
133994 ** The text is reversed here. So we are really looking at
133995 ** the first two characters of z[].
133996 */
133997 static int doubleConsonant(const char *z){
133998   return isConsonant(z) && z[0]==z[1];
133999 }
134000 
134001 /*
134002 ** Return TRUE if the word ends with three letters which
134003 ** are consonant-vowel-consonent and where the final consonant
134004 ** is not 'w', 'x', or 'y'.
134005 **
134006 ** The word is reversed here.  So we are really checking the
134007 ** first three letters and the first one cannot be in [wxy].
134008 */
134009 static int star_oh(const char *z){
134010   return
134011     isConsonant(z) &&
134012     z[0]!='w' && z[0]!='x' && z[0]!='y' &&
134013     isVowel(z+1) &&
134014     isConsonant(z+2);
134015 }
134016 
134017 /*
134018 ** If the word ends with zFrom and xCond() is true for the stem
134019 ** of the word that preceeds the zFrom ending, then change the
134020 ** ending to zTo.
134021 **
134022 ** The input word *pz and zFrom are both in reverse order.  zTo
134023 ** is in normal order.
134024 **
134025 ** Return TRUE if zFrom matches.  Return FALSE if zFrom does not
134026 ** match.  Not that TRUE is returned even if xCond() fails and
134027 ** no substitution occurs.
134028 */
134029 static int stem(
134030   char **pz,             /* The word being stemmed (Reversed) */
134031   const char *zFrom,     /* If the ending matches this... (Reversed) */
134032   const char *zTo,       /* ... change the ending to this (not reversed) */
134033   int (*xCond)(const char*)   /* Condition that must be true */
134034 ){
134035   char *z = *pz;
134036   while( *zFrom && *zFrom==*z ){ z++; zFrom++; }
134037   if( *zFrom!=0 ) return 0;
134038   if( xCond && !xCond(z) ) return 1;
134039   while( *zTo ){
134040     *(--z) = *(zTo++);
134041   }
134042   *pz = z;
134043   return 1;
134044 }
134045 
134046 /*
134047 ** This is the fallback stemmer used when the porter stemmer is
134048 ** inappropriate.  The input word is copied into the output with
134049 ** US-ASCII case folding.  If the input word is too long (more
134050 ** than 20 bytes if it contains no digits or more than 6 bytes if
134051 ** it contains digits) then word is truncated to 20 or 6 bytes
134052 ** by taking 10 or 3 bytes from the beginning and end.
134053 */
134054 static void copy_stemmer(const char *zIn, int nIn, char *zOut, int *pnOut){
134055   int i, mx, j;
134056   int hasDigit = 0;
134057   for(i=0; i<nIn; i++){
134058     char c = zIn[i];
134059     if( c>='A' && c<='Z' ){
134060       zOut[i] = c - 'A' + 'a';
134061     }else{
134062       if( c>='0' && c<='9' ) hasDigit = 1;
134063       zOut[i] = c;
134064     }
134065   }
134066   mx = hasDigit ? 3 : 10;
134067   if( nIn>mx*2 ){
134068     for(j=mx, i=nIn-mx; i<nIn; i++, j++){
134069       zOut[j] = zOut[i];
134070     }
134071     i = j;
134072   }
134073   zOut[i] = 0;
134074   *pnOut = i;
134075 }
134076 
134077 
134078 /*
134079 ** Stem the input word zIn[0..nIn-1].  Store the output in zOut.
134080 ** zOut is at least big enough to hold nIn bytes.  Write the actual
134081 ** size of the output word (exclusive of the '\0' terminator) into *pnOut.
134082 **
134083 ** Any upper-case characters in the US-ASCII character set ([A-Z])
134084 ** are converted to lower case.  Upper-case UTF characters are
134085 ** unchanged.
134086 **
134087 ** Words that are longer than about 20 bytes are stemmed by retaining
134088 ** a few bytes from the beginning and the end of the word.  If the
134089 ** word contains digits, 3 bytes are taken from the beginning and
134090 ** 3 bytes from the end.  For long words without digits, 10 bytes
134091 ** are taken from each end.  US-ASCII case folding still applies.
134092 **
134093 ** If the input word contains not digits but does characters not
134094 ** in [a-zA-Z] then no stemming is attempted and this routine just
134095 ** copies the input into the input into the output with US-ASCII
134096 ** case folding.
134097 **
134098 ** Stemming never increases the length of the word.  So there is
134099 ** no chance of overflowing the zOut buffer.
134100 */
134101 static void porter_stemmer(const char *zIn, int nIn, char *zOut, int *pnOut){
134102   int i, j;
134103   char zReverse[28];
134104   char *z, *z2;
134105   if( nIn<3 || nIn>=(int)sizeof(zReverse)-7 ){
134106     /* The word is too big or too small for the porter stemmer.
134107     ** Fallback to the copy stemmer */
134108     copy_stemmer(zIn, nIn, zOut, pnOut);
134109     return;
134110   }
134111   for(i=0, j=sizeof(zReverse)-6; i<nIn; i++, j--){
134112     char c = zIn[i];
134113     if( c>='A' && c<='Z' ){
134114       zReverse[j] = c + 'a' - 'A';
134115     }else if( c>='a' && c<='z' ){
134116       zReverse[j] = c;
134117     }else{
134118       /* The use of a character not in [a-zA-Z] means that we fallback
134119       ** to the copy stemmer */
134120       copy_stemmer(zIn, nIn, zOut, pnOut);
134121       return;
134122     }
134123   }
134124   memset(&zReverse[sizeof(zReverse)-5], 0, 5);
134125   z = &zReverse[j+1];
134126 
134127 
134128   /* Step 1a */
134129   if( z[0]=='s' ){
134130     if(
134131      !stem(&z, "sess", "ss", 0) &&
134132      !stem(&z, "sei", "i", 0)  &&
134133      !stem(&z, "ss", "ss", 0)
134134     ){
134135       z++;
134136     }
134137   }
134138 
134139   /* Step 1b */
134140   z2 = z;
134141   if( stem(&z, "dee", "ee", m_gt_0) ){
134142     /* Do nothing.  The work was all in the test */
134143   }else if(
134144      (stem(&z, "gni", "", hasVowel) || stem(&z, "de", "", hasVowel))
134145       && z!=z2
134146   ){
134147      if( stem(&z, "ta", "ate", 0) ||
134148          stem(&z, "lb", "ble", 0) ||
134149          stem(&z, "zi", "ize", 0) ){
134150        /* Do nothing.  The work was all in the test */
134151      }else if( doubleConsonant(z) && (*z!='l' && *z!='s' && *z!='z') ){
134152        z++;
134153      }else if( m_eq_1(z) && star_oh(z) ){
134154        *(--z) = 'e';
134155      }
134156   }
134157 
134158   /* Step 1c */
134159   if( z[0]=='y' && hasVowel(z+1) ){
134160     z[0] = 'i';
134161   }
134162 
134163   /* Step 2 */
134164   switch( z[1] ){
134165    case 'a':
134166      if( !stem(&z, "lanoita", "ate", m_gt_0) ){
134167        stem(&z, "lanoit", "tion", m_gt_0);
134168      }
134169      break;
134170    case 'c':
134171      if( !stem(&z, "icne", "ence", m_gt_0) ){
134172        stem(&z, "icna", "ance", m_gt_0);
134173      }
134174      break;
134175    case 'e':
134176      stem(&z, "rezi", "ize", m_gt_0);
134177      break;
134178    case 'g':
134179      stem(&z, "igol", "log", m_gt_0);
134180      break;
134181    case 'l':
134182      if( !stem(&z, "ilb", "ble", m_gt_0)
134183       && !stem(&z, "illa", "al", m_gt_0)
134184       && !stem(&z, "iltne", "ent", m_gt_0)
134185       && !stem(&z, "ile", "e", m_gt_0)
134186      ){
134187        stem(&z, "ilsuo", "ous", m_gt_0);
134188      }
134189      break;
134190    case 'o':
134191      if( !stem(&z, "noitazi", "ize", m_gt_0)
134192       && !stem(&z, "noita", "ate", m_gt_0)
134193      ){
134194        stem(&z, "rota", "ate", m_gt_0);
134195      }
134196      break;
134197    case 's':
134198      if( !stem(&z, "msila", "al", m_gt_0)
134199       && !stem(&z, "ssenevi", "ive", m_gt_0)
134200       && !stem(&z, "ssenluf", "ful", m_gt_0)
134201      ){
134202        stem(&z, "ssensuo", "ous", m_gt_0);
134203      }
134204      break;
134205    case 't':
134206      if( !stem(&z, "itila", "al", m_gt_0)
134207       && !stem(&z, "itivi", "ive", m_gt_0)
134208      ){
134209        stem(&z, "itilib", "ble", m_gt_0);
134210      }
134211      break;
134212   }
134213 
134214   /* Step 3 */
134215   switch( z[0] ){
134216    case 'e':
134217      if( !stem(&z, "etaci", "ic", m_gt_0)
134218       && !stem(&z, "evita", "", m_gt_0)
134219      ){
134220        stem(&z, "ezila", "al", m_gt_0);
134221      }
134222      break;
134223    case 'i':
134224      stem(&z, "itici", "ic", m_gt_0);
134225      break;
134226    case 'l':
134227      if( !stem(&z, "laci", "ic", m_gt_0) ){
134228        stem(&z, "luf", "", m_gt_0);
134229      }
134230      break;
134231    case 's':
134232      stem(&z, "ssen", "", m_gt_0);
134233      break;
134234   }
134235 
134236   /* Step 4 */
134237   switch( z[1] ){
134238    case 'a':
134239      if( z[0]=='l' && m_gt_1(z+2) ){
134240        z += 2;
134241      }
134242      break;
134243    case 'c':
134244      if( z[0]=='e' && z[2]=='n' && (z[3]=='a' || z[3]=='e')  && m_gt_1(z+4)  ){
134245        z += 4;
134246      }
134247      break;
134248    case 'e':
134249      if( z[0]=='r' && m_gt_1(z+2) ){
134250        z += 2;
134251      }
134252      break;
134253    case 'i':
134254      if( z[0]=='c' && m_gt_1(z+2) ){
134255        z += 2;
134256      }
134257      break;
134258    case 'l':
134259      if( z[0]=='e' && z[2]=='b' && (z[3]=='a' || z[3]=='i') && m_gt_1(z+4) ){
134260        z += 4;
134261      }
134262      break;
134263    case 'n':
134264      if( z[0]=='t' ){
134265        if( z[2]=='a' ){
134266          if( m_gt_1(z+3) ){
134267            z += 3;
134268          }
134269        }else if( z[2]=='e' ){
134270          if( !stem(&z, "tneme", "", m_gt_1)
134271           && !stem(&z, "tnem", "", m_gt_1)
134272          ){
134273            stem(&z, "tne", "", m_gt_1);
134274          }
134275        }
134276      }
134277      break;
134278    case 'o':
134279      if( z[0]=='u' ){
134280        if( m_gt_1(z+2) ){
134281          z += 2;
134282        }
134283      }else if( z[3]=='s' || z[3]=='t' ){
134284        stem(&z, "noi", "", m_gt_1);
134285      }
134286      break;
134287    case 's':
134288      if( z[0]=='m' && z[2]=='i' && m_gt_1(z+3) ){
134289        z += 3;
134290      }
134291      break;
134292    case 't':
134293      if( !stem(&z, "eta", "", m_gt_1) ){
134294        stem(&z, "iti", "", m_gt_1);
134295      }
134296      break;
134297    case 'u':
134298      if( z[0]=='s' && z[2]=='o' && m_gt_1(z+3) ){
134299        z += 3;
134300      }
134301      break;
134302    case 'v':
134303    case 'z':
134304      if( z[0]=='e' && z[2]=='i' && m_gt_1(z+3) ){
134305        z += 3;
134306      }
134307      break;
134308   }
134309 
134310   /* Step 5a */
134311   if( z[0]=='e' ){
134312     if( m_gt_1(z+1) ){
134313       z++;
134314     }else if( m_eq_1(z+1) && !star_oh(z+1) ){
134315       z++;
134316     }
134317   }
134318 
134319   /* Step 5b */
134320   if( m_gt_1(z) && z[0]=='l' && z[1]=='l' ){
134321     z++;
134322   }
134323 
134324   /* z[] is now the stemmed word in reverse order.  Flip it back
134325   ** around into forward order and return.
134326   */
134327   *pnOut = i = (int)strlen(z);
134328   zOut[i] = 0;
134329   while( *z ){
134330     zOut[--i] = *(z++);
134331   }
134332 }
134333 
134334 /*
134335 ** Characters that can be part of a token.  We assume any character
134336 ** whose value is greater than 0x80 (any UTF character) can be
134337 ** part of a token.  In other words, delimiters all must have
134338 ** values of 0x7f or lower.
134339 */
134340 static const char porterIdChar[] = {
134341 /* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
134342     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,  /* 3x */
134343     0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  /* 4x */
134344     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1,  /* 5x */
134345     0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  /* 6x */
134346     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,  /* 7x */
134347 };
134348 #define isDelim(C) (((ch=C)&0x80)==0 && (ch<0x30 || !porterIdChar[ch-0x30]))
134349 
134350 /*
134351 ** Extract the next token from a tokenization cursor.  The cursor must
134352 ** have been opened by a prior call to porterOpen().
134353 */
134354 static int porterNext(
134355   sqlite3_tokenizer_cursor *pCursor,  /* Cursor returned by porterOpen */
134356   const char **pzToken,               /* OUT: *pzToken is the token text */
134357   int *pnBytes,                       /* OUT: Number of bytes in token */
134358   int *piStartOffset,                 /* OUT: Starting offset of token */
134359   int *piEndOffset,                   /* OUT: Ending offset of token */
134360   int *piPosition                     /* OUT: Position integer of token */
134361 ){
134362   porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor;
134363   const char *z = c->zInput;
134364 
134365   while( c->iOffset<c->nInput ){
134366     int iStartOffset, ch;
134367 
134368     /* Scan past delimiter characters */
134369     while( c->iOffset<c->nInput && isDelim(z[c->iOffset]) ){
134370       c->iOffset++;
134371     }
134372 
134373     /* Count non-delimiter characters. */
134374     iStartOffset = c->iOffset;
134375     while( c->iOffset<c->nInput && !isDelim(z[c->iOffset]) ){
134376       c->iOffset++;
134377     }
134378 
134379     if( c->iOffset>iStartOffset ){
134380       int n = c->iOffset-iStartOffset;
134381       if( n>c->nAllocated ){
134382         char *pNew;
134383         c->nAllocated = n+20;
134384         pNew = sqlite3_realloc(c->zToken, c->nAllocated);
134385         if( !pNew ) return SQLITE_NOMEM;
134386         c->zToken = pNew;
134387       }
134388       porter_stemmer(&z[iStartOffset], n, c->zToken, pnBytes);
134389       *pzToken = c->zToken;
134390       *piStartOffset = iStartOffset;
134391       *piEndOffset = c->iOffset;
134392       *piPosition = c->iToken++;
134393       return SQLITE_OK;
134394     }
134395   }
134396   return SQLITE_DONE;
134397 }
134398 
134399 /*
134400 ** The set of routines that implement the porter-stemmer tokenizer
134401 */
134402 static const sqlite3_tokenizer_module porterTokenizerModule = {
134403   0,
134404   porterCreate,
134405   porterDestroy,
134406   porterOpen,
134407   porterClose,
134408   porterNext,
134409   0
134410 };
134411 
134412 /*
134413 ** Allocate a new porter tokenizer.  Return a pointer to the new
134414 ** tokenizer in *ppModule
134415 */
134416 SQLITE_PRIVATE void sqlite3Fts3PorterTokenizerModule(
134417   sqlite3_tokenizer_module const**ppModule
134418 ){
134419   *ppModule = &porterTokenizerModule;
134420 }
134421 
134422 #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
134423 
134424 /************** End of fts3_porter.c *****************************************/
134425 /************** Begin file fts3_tokenizer.c **********************************/
134426 /*
134427 ** 2007 June 22
134428 **
134429 ** The author disclaims copyright to this source code.  In place of
134430 ** a legal notice, here is a blessing:
134431 **
134432 **    May you do good and not evil.
134433 **    May you find forgiveness for yourself and forgive others.
134434 **    May you share freely, never taking more than you give.
134435 **
134436 ******************************************************************************
134437 **
134438 ** This is part of an SQLite module implementing full-text search.
134439 ** This particular file implements the generic tokenizer interface.
134440 */
134441 
134442 /*
134443 ** The code in this file is only compiled if:
134444 **
134445 **     * The FTS3 module is being built as an extension
134446 **       (in which case SQLITE_CORE is not defined), or
134447 **
134448 **     * The FTS3 module is being built into the core of
134449 **       SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
134450 */
134451 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
134452 
134453 /* #include <assert.h> */
134454 /* #include <string.h> */
134455 
134456 /*
134457 ** Implementation of the SQL scalar function for accessing the underlying
134458 ** hash table. This function may be called as follows:
134459 **
134460 **   SELECT <function-name>(<key-name>);
134461 **   SELECT <function-name>(<key-name>, <pointer>);
134462 **
134463 ** where <function-name> is the name passed as the second argument
134464 ** to the sqlite3Fts3InitHashTable() function (e.g. 'fts3_tokenizer').
134465 **
134466 ** If the <pointer> argument is specified, it must be a blob value
134467 ** containing a pointer to be stored as the hash data corresponding
134468 ** to the string <key-name>. If <pointer> is not specified, then
134469 ** the string <key-name> must already exist in the has table. Otherwise,
134470 ** an error is returned.
134471 **
134472 ** Whether or not the <pointer> argument is specified, the value returned
134473 ** is a blob containing the pointer stored as the hash data corresponding
134474 ** to string <key-name> (after the hash-table is updated, if applicable).
134475 */
134476 static void scalarFunc(
134477   sqlite3_context *context,
134478   int argc,
134479   sqlite3_value **argv
134480 ){
134481   Fts3Hash *pHash;
134482   void *pPtr = 0;
134483   const unsigned char *zName;
134484   int nName;
134485 
134486   assert( argc==1 || argc==2 );
134487 
134488   pHash = (Fts3Hash *)sqlite3_user_data(context);
134489 
134490   zName = sqlite3_value_text(argv[0]);
134491   nName = sqlite3_value_bytes(argv[0])+1;
134492 
134493   if( argc==2 ){
134494     void *pOld;
134495     int n = sqlite3_value_bytes(argv[1]);
134496     if( n!=sizeof(pPtr) ){
134497       sqlite3_result_error(context, "argument type mismatch", -1);
134498       return;
134499     }
134500     pPtr = *(void **)sqlite3_value_blob(argv[1]);
134501     pOld = sqlite3Fts3HashInsert(pHash, (void *)zName, nName, pPtr);
134502     if( pOld==pPtr ){
134503       sqlite3_result_error(context, "out of memory", -1);
134504       return;
134505     }
134506   }else{
134507     pPtr = sqlite3Fts3HashFind(pHash, zName, nName);
134508     if( !pPtr ){
134509       char *zErr = sqlite3_mprintf("unknown tokenizer: %s", zName);
134510       sqlite3_result_error(context, zErr, -1);
134511       sqlite3_free(zErr);
134512       return;
134513     }
134514   }
134515 
134516   sqlite3_result_blob(context, (void *)&pPtr, sizeof(pPtr), SQLITE_TRANSIENT);
134517 }
134518 
134519 SQLITE_PRIVATE int sqlite3Fts3IsIdChar(char c){
134520   static const char isFtsIdChar[] = {
134521       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  /* 0x */
134522       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  /* 1x */
134523       0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  /* 2x */
134524       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,  /* 3x */
134525       0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  /* 4x */
134526       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1,  /* 5x */
134527       0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  /* 6x */
134528       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,  /* 7x */
134529   };
134530   return (c&0x80 || isFtsIdChar[(int)(c)]);
134531 }
134532 
134533 SQLITE_PRIVATE const char *sqlite3Fts3NextToken(const char *zStr, int *pn){
134534   const char *z1;
134535   const char *z2 = 0;
134536 
134537   /* Find the start of the next token. */
134538   z1 = zStr;
134539   while( z2==0 ){
134540     char c = *z1;
134541     switch( c ){
134542       case '\0': return 0;        /* No more tokens here */
134543       case '\'':
134544       case '"':
134545       case '`': {
134546         z2 = z1;
134547         while( *++z2 && (*z2!=c || *++z2==c) );
134548         break;
134549       }
134550       case '[':
134551         z2 = &z1[1];
134552         while( *z2 && z2[0]!=']' ) z2++;
134553         if( *z2 ) z2++;
134554         break;
134555 
134556       default:
134557         if( sqlite3Fts3IsIdChar(*z1) ){
134558           z2 = &z1[1];
134559           while( sqlite3Fts3IsIdChar(*z2) ) z2++;
134560         }else{
134561           z1++;
134562         }
134563     }
134564   }
134565 
134566   *pn = (int)(z2-z1);
134567   return z1;
134568 }
134569 
134570 SQLITE_PRIVATE int sqlite3Fts3InitTokenizer(
134571   Fts3Hash *pHash,                /* Tokenizer hash table */
134572   const char *zArg,               /* Tokenizer name */
134573   sqlite3_tokenizer **ppTok,      /* OUT: Tokenizer (if applicable) */
134574   char **pzErr                    /* OUT: Set to malloced error message */
134575 ){
134576   int rc;
134577   char *z = (char *)zArg;
134578   int n = 0;
134579   char *zCopy;
134580   char *zEnd;                     /* Pointer to nul-term of zCopy */
134581   sqlite3_tokenizer_module *m;
134582 
134583   zCopy = sqlite3_mprintf("%s", zArg);
134584   if( !zCopy ) return SQLITE_NOMEM;
134585   zEnd = &zCopy[strlen(zCopy)];
134586 
134587   z = (char *)sqlite3Fts3NextToken(zCopy, &n);
134588   z[n] = '\0';
134589   sqlite3Fts3Dequote(z);
134590 
134591   m = (sqlite3_tokenizer_module *)sqlite3Fts3HashFind(pHash,z,(int)strlen(z)+1);
134592   if( !m ){
134593     *pzErr = sqlite3_mprintf("unknown tokenizer: %s", z);
134594     rc = SQLITE_ERROR;
134595   }else{
134596     char const **aArg = 0;
134597     int iArg = 0;
134598     z = &z[n+1];
134599     while( z<zEnd && (NULL!=(z = (char *)sqlite3Fts3NextToken(z, &n))) ){
134600       int nNew = sizeof(char *)*(iArg+1);
134601       char const **aNew = (const char **)sqlite3_realloc((void *)aArg, nNew);
134602       if( !aNew ){
134603         sqlite3_free(zCopy);
134604         sqlite3_free((void *)aArg);
134605         return SQLITE_NOMEM;
134606       }
134607       aArg = aNew;
134608       aArg[iArg++] = z;
134609       z[n] = '\0';
134610       sqlite3Fts3Dequote(z);
134611       z = &z[n+1];
134612     }
134613     rc = m->xCreate(iArg, aArg, ppTok);
134614     assert( rc!=SQLITE_OK || *ppTok );
134615     if( rc!=SQLITE_OK ){
134616       *pzErr = sqlite3_mprintf("unknown tokenizer");
134617     }else{
134618       (*ppTok)->pModule = m;
134619     }
134620     sqlite3_free((void *)aArg);
134621   }
134622 
134623   sqlite3_free(zCopy);
134624   return rc;
134625 }
134626 
134627 
134628 #ifdef SQLITE_TEST
134629 
134630 #include <tcl.h>
134631 /* #include <string.h> */
134632 
134633 /*
134634 ** Implementation of a special SQL scalar function for testing tokenizers
134635 ** designed to be used in concert with the Tcl testing framework. This
134636 ** function must be called with two or more arguments:
134637 **
134638 **   SELECT <function-name>(<key-name>, ..., <input-string>);
134639 **
134640 ** where <function-name> is the name passed as the second argument
134641 ** to the sqlite3Fts3InitHashTable() function (e.g. 'fts3_tokenizer')
134642 ** concatenated with the string '_test' (e.g. 'fts3_tokenizer_test').
134643 **
134644 ** The return value is a string that may be interpreted as a Tcl
134645 ** list. For each token in the <input-string>, three elements are
134646 ** added to the returned list. The first is the token position, the
134647 ** second is the token text (folded, stemmed, etc.) and the third is the
134648 ** substring of <input-string> associated with the token. For example,
134649 ** using the built-in "simple" tokenizer:
134650 **
134651 **   SELECT fts_tokenizer_test('simple', 'I don't see how');
134652 **
134653 ** will return the string:
134654 **
134655 **   "{0 i I 1 dont don't 2 see see 3 how how}"
134656 **
134657 */
134658 static void testFunc(
134659   sqlite3_context *context,
134660   int argc,
134661   sqlite3_value **argv
134662 ){
134663   Fts3Hash *pHash;
134664   sqlite3_tokenizer_module *p;
134665   sqlite3_tokenizer *pTokenizer = 0;
134666   sqlite3_tokenizer_cursor *pCsr = 0;
134667 
134668   const char *zErr = 0;
134669 
134670   const char *zName;
134671   int nName;
134672   const char *zInput;
134673   int nInput;
134674 
134675   const char *azArg[64];
134676 
134677   const char *zToken;
134678   int nToken = 0;
134679   int iStart = 0;
134680   int iEnd = 0;
134681   int iPos = 0;
134682   int i;
134683 
134684   Tcl_Obj *pRet;
134685 
134686   if( argc<2 ){
134687     sqlite3_result_error(context, "insufficient arguments", -1);
134688     return;
134689   }
134690 
134691   nName = sqlite3_value_bytes(argv[0]);
134692   zName = (const char *)sqlite3_value_text(argv[0]);
134693   nInput = sqlite3_value_bytes(argv[argc-1]);
134694   zInput = (const char *)sqlite3_value_text(argv[argc-1]);
134695 
134696   pHash = (Fts3Hash *)sqlite3_user_data(context);
134697   p = (sqlite3_tokenizer_module *)sqlite3Fts3HashFind(pHash, zName, nName+1);
134698 
134699   if( !p ){
134700     char *zErr = sqlite3_mprintf("unknown tokenizer: %s", zName);
134701     sqlite3_result_error(context, zErr, -1);
134702     sqlite3_free(zErr);
134703     return;
134704   }
134705 
134706   pRet = Tcl_NewObj();
134707   Tcl_IncrRefCount(pRet);
134708 
134709   for(i=1; i<argc-1; i++){
134710     azArg[i-1] = (const char *)sqlite3_value_text(argv[i]);
134711   }
134712 
134713   if( SQLITE_OK!=p->xCreate(argc-2, azArg, &pTokenizer) ){
134714     zErr = "error in xCreate()";
134715     goto finish;
134716   }
134717   pTokenizer->pModule = p;
134718   if( sqlite3Fts3OpenTokenizer(pTokenizer, 0, zInput, nInput, &pCsr) ){
134719     zErr = "error in xOpen()";
134720     goto finish;
134721   }
134722 
134723   while( SQLITE_OK==p->xNext(pCsr, &zToken, &nToken, &iStart, &iEnd, &iPos) ){
134724     Tcl_ListObjAppendElement(0, pRet, Tcl_NewIntObj(iPos));
134725     Tcl_ListObjAppendElement(0, pRet, Tcl_NewStringObj(zToken, nToken));
134726     zToken = &zInput[iStart];
134727     nToken = iEnd-iStart;
134728     Tcl_ListObjAppendElement(0, pRet, Tcl_NewStringObj(zToken, nToken));
134729   }
134730 
134731   if( SQLITE_OK!=p->xClose(pCsr) ){
134732     zErr = "error in xClose()";
134733     goto finish;
134734   }
134735   if( SQLITE_OK!=p->xDestroy(pTokenizer) ){
134736     zErr = "error in xDestroy()";
134737     goto finish;
134738   }
134739 
134740 finish:
134741   if( zErr ){
134742     sqlite3_result_error(context, zErr, -1);
134743   }else{
134744     sqlite3_result_text(context, Tcl_GetString(pRet), -1, SQLITE_TRANSIENT);
134745   }
134746   Tcl_DecrRefCount(pRet);
134747 }
134748 
134749 static
134750 int registerTokenizer(
134751   sqlite3 *db,
134752   char *zName,
134753   const sqlite3_tokenizer_module *p
134754 ){
134755   int rc;
134756   sqlite3_stmt *pStmt;
134757   const char zSql[] = "SELECT fts3_tokenizer(?, ?)";
134758 
134759   rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
134760   if( rc!=SQLITE_OK ){
134761     return rc;
134762   }
134763 
134764   sqlite3_bind_text(pStmt, 1, zName, -1, SQLITE_STATIC);
134765   sqlite3_bind_blob(pStmt, 2, &p, sizeof(p), SQLITE_STATIC);
134766   sqlite3_step(pStmt);
134767 
134768   return sqlite3_finalize(pStmt);
134769 }
134770 
134771 static
134772 int queryTokenizer(
134773   sqlite3 *db,
134774   char *zName,
134775   const sqlite3_tokenizer_module **pp
134776 ){
134777   int rc;
134778   sqlite3_stmt *pStmt;
134779   const char zSql[] = "SELECT fts3_tokenizer(?)";
134780 
134781   *pp = 0;
134782   rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
134783   if( rc!=SQLITE_OK ){
134784     return rc;
134785   }
134786 
134787   sqlite3_bind_text(pStmt, 1, zName, -1, SQLITE_STATIC);
134788   if( SQLITE_ROW==sqlite3_step(pStmt) ){
134789     if( sqlite3_column_type(pStmt, 0)==SQLITE_BLOB ){
134790       memcpy((void *)pp, sqlite3_column_blob(pStmt, 0), sizeof(*pp));
134791     }
134792   }
134793 
134794   return sqlite3_finalize(pStmt);
134795 }
134796 
134797 SQLITE_PRIVATE void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule);
134798 
134799 /*
134800 ** Implementation of the scalar function fts3_tokenizer_internal_test().
134801 ** This function is used for testing only, it is not included in the
134802 ** build unless SQLITE_TEST is defined.
134803 **
134804 ** The purpose of this is to test that the fts3_tokenizer() function
134805 ** can be used as designed by the C-code in the queryTokenizer and
134806 ** registerTokenizer() functions above. These two functions are repeated
134807 ** in the README.tokenizer file as an example, so it is important to
134808 ** test them.
134809 **
134810 ** To run the tests, evaluate the fts3_tokenizer_internal_test() scalar
134811 ** function with no arguments. An assert() will fail if a problem is
134812 ** detected. i.e.:
134813 **
134814 **     SELECT fts3_tokenizer_internal_test();
134815 **
134816 */
134817 static void intTestFunc(
134818   sqlite3_context *context,
134819   int argc,
134820   sqlite3_value **argv
134821 ){
134822   int rc;
134823   const sqlite3_tokenizer_module *p1;
134824   const sqlite3_tokenizer_module *p2;
134825   sqlite3 *db = (sqlite3 *)sqlite3_user_data(context);
134826 
134827   UNUSED_PARAMETER(argc);
134828   UNUSED_PARAMETER(argv);
134829 
134830   /* Test the query function */
134831   sqlite3Fts3SimpleTokenizerModule(&p1);
134832   rc = queryTokenizer(db, "simple", &p2);
134833   assert( rc==SQLITE_OK );
134834   assert( p1==p2 );
134835   rc = queryTokenizer(db, "nosuchtokenizer", &p2);
134836   assert( rc==SQLITE_ERROR );
134837   assert( p2==0 );
134838   assert( 0==strcmp(sqlite3_errmsg(db), "unknown tokenizer: nosuchtokenizer") );
134839 
134840   /* Test the storage function */
134841   rc = registerTokenizer(db, "nosuchtokenizer", p1);
134842   assert( rc==SQLITE_OK );
134843   rc = queryTokenizer(db, "nosuchtokenizer", &p2);
134844   assert( rc==SQLITE_OK );
134845   assert( p2==p1 );
134846 
134847   sqlite3_result_text(context, "ok", -1, SQLITE_STATIC);
134848 }
134849 
134850 #endif
134851 
134852 /*
134853 ** Set up SQL objects in database db used to access the contents of
134854 ** the hash table pointed to by argument pHash. The hash table must
134855 ** been initialized to use string keys, and to take a private copy
134856 ** of the key when a value is inserted. i.e. by a call similar to:
134857 **
134858 **    sqlite3Fts3HashInit(pHash, FTS3_HASH_STRING, 1);
134859 **
134860 ** This function adds a scalar function (see header comment above
134861 ** scalarFunc() in this file for details) and, if ENABLE_TABLE is
134862 ** defined at compilation time, a temporary virtual table (see header
134863 ** comment above struct HashTableVtab) to the database schema. Both
134864 ** provide read/write access to the contents of *pHash.
134865 **
134866 ** The third argument to this function, zName, is used as the name
134867 ** of both the scalar and, if created, the virtual table.
134868 */
134869 SQLITE_PRIVATE int sqlite3Fts3InitHashTable(
134870   sqlite3 *db,
134871   Fts3Hash *pHash,
134872   const char *zName
134873 ){
134874   int rc = SQLITE_OK;
134875   void *p = (void *)pHash;
134876   const int any = SQLITE_ANY;
134877 
134878 #ifdef SQLITE_TEST
134879   char *zTest = 0;
134880   char *zTest2 = 0;
134881   void *pdb = (void *)db;
134882   zTest = sqlite3_mprintf("%s_test", zName);
134883   zTest2 = sqlite3_mprintf("%s_internal_test", zName);
134884   if( !zTest || !zTest2 ){
134885     rc = SQLITE_NOMEM;
134886   }
134887 #endif
134888 
134889   if( SQLITE_OK==rc ){
134890     rc = sqlite3_create_function(db, zName, 1, any, p, scalarFunc, 0, 0);
134891   }
134892   if( SQLITE_OK==rc ){
134893     rc = sqlite3_create_function(db, zName, 2, any, p, scalarFunc, 0, 0);
134894   }
134895 #ifdef SQLITE_TEST
134896   if( SQLITE_OK==rc ){
134897     rc = sqlite3_create_function(db, zTest, -1, any, p, testFunc, 0, 0);
134898   }
134899   if( SQLITE_OK==rc ){
134900     rc = sqlite3_create_function(db, zTest2, 0, any, pdb, intTestFunc, 0, 0);
134901   }
134902 #endif
134903 
134904 #ifdef SQLITE_TEST
134905   sqlite3_free(zTest);
134906   sqlite3_free(zTest2);
134907 #endif
134908 
134909   return rc;
134910 }
134911 
134912 #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
134913 
134914 /************** End of fts3_tokenizer.c **************************************/
134915 /************** Begin file fts3_tokenizer1.c *********************************/
134916 /*
134917 ** 2006 Oct 10
134918 **
134919 ** The author disclaims copyright to this source code.  In place of
134920 ** a legal notice, here is a blessing:
134921 **
134922 **    May you do good and not evil.
134923 **    May you find forgiveness for yourself and forgive others.
134924 **    May you share freely, never taking more than you give.
134925 **
134926 ******************************************************************************
134927 **
134928 ** Implementation of the "simple" full-text-search tokenizer.
134929 */
134930 
134931 /*
134932 ** The code in this file is only compiled if:
134933 **
134934 **     * The FTS3 module is being built as an extension
134935 **       (in which case SQLITE_CORE is not defined), or
134936 **
134937 **     * The FTS3 module is being built into the core of
134938 **       SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
134939 */
134940 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
134941 
134942 /* #include <assert.h> */
134943 /* #include <stdlib.h> */
134944 /* #include <stdio.h> */
134945 /* #include <string.h> */
134946 
134947 
134948 typedef struct simple_tokenizer {
134949   sqlite3_tokenizer base;
134950   char delim[128];             /* flag ASCII delimiters */
134951 } simple_tokenizer;
134952 
134953 typedef struct simple_tokenizer_cursor {
134954   sqlite3_tokenizer_cursor base;
134955   const char *pInput;          /* input we are tokenizing */
134956   int nBytes;                  /* size of the input */
134957   int iOffset;                 /* current position in pInput */
134958   int iToken;                  /* index of next token to be returned */
134959   char *pToken;                /* storage for current token */
134960   int nTokenAllocated;         /* space allocated to zToken buffer */
134961 } simple_tokenizer_cursor;
134962 
134963 
134964 static int simpleDelim(simple_tokenizer *t, unsigned char c){
134965   return c<0x80 && t->delim[c];
134966 }
134967 static int fts3_isalnum(int x){
134968   return (x>='0' && x<='9') || (x>='A' && x<='Z') || (x>='a' && x<='z');
134969 }
134970 
134971 /*
134972 ** Create a new tokenizer instance.
134973 */
134974 static int simpleCreate(
134975   int argc, const char * const *argv,
134976   sqlite3_tokenizer **ppTokenizer
134977 ){
134978   simple_tokenizer *t;
134979 
134980   t = (simple_tokenizer *) sqlite3_malloc(sizeof(*t));
134981   if( t==NULL ) return SQLITE_NOMEM;
134982   memset(t, 0, sizeof(*t));
134983 
134984   /* TODO(shess) Delimiters need to remain the same from run to run,
134985   ** else we need to reindex.  One solution would be a meta-table to
134986   ** track such information in the database, then we'd only want this
134987   ** information on the initial create.
134988   */
134989   if( argc>1 ){
134990     int i, n = (int)strlen(argv[1]);
134991     for(i=0; i<n; i++){
134992       unsigned char ch = argv[1][i];
134993       /* We explicitly don't support UTF-8 delimiters for now. */
134994       if( ch>=0x80 ){
134995         sqlite3_free(t);
134996         return SQLITE_ERROR;
134997       }
134998       t->delim[ch] = 1;
134999     }
135000   } else {
135001     /* Mark non-alphanumeric ASCII characters as delimiters */
135002     int i;
135003     for(i=1; i<0x80; i++){
135004       t->delim[i] = !fts3_isalnum(i) ? -1 : 0;
135005     }
135006   }
135007 
135008   *ppTokenizer = &t->base;
135009   return SQLITE_OK;
135010 }
135011 
135012 /*
135013 ** Destroy a tokenizer
135014 */
135015 static int simpleDestroy(sqlite3_tokenizer *pTokenizer){
135016   sqlite3_free(pTokenizer);
135017   return SQLITE_OK;
135018 }
135019 
135020 /*
135021 ** Prepare to begin tokenizing a particular string.  The input
135022 ** string to be tokenized is pInput[0..nBytes-1].  A cursor
135023 ** used to incrementally tokenize this string is returned in
135024 ** *ppCursor.
135025 */
135026 static int simpleOpen(
135027   sqlite3_tokenizer *pTokenizer,         /* The tokenizer */
135028   const char *pInput, int nBytes,        /* String to be tokenized */
135029   sqlite3_tokenizer_cursor **ppCursor    /* OUT: Tokenization cursor */
135030 ){
135031   simple_tokenizer_cursor *c;
135032 
135033   UNUSED_PARAMETER(pTokenizer);
135034 
135035   c = (simple_tokenizer_cursor *) sqlite3_malloc(sizeof(*c));
135036   if( c==NULL ) return SQLITE_NOMEM;
135037 
135038   c->pInput = pInput;
135039   if( pInput==0 ){
135040     c->nBytes = 0;
135041   }else if( nBytes<0 ){
135042     c->nBytes = (int)strlen(pInput);
135043   }else{
135044     c->nBytes = nBytes;
135045   }
135046   c->iOffset = 0;                 /* start tokenizing at the beginning */
135047   c->iToken = 0;
135048   c->pToken = NULL;               /* no space allocated, yet. */
135049   c->nTokenAllocated = 0;
135050 
135051   *ppCursor = &c->base;
135052   return SQLITE_OK;
135053 }
135054 
135055 /*
135056 ** Close a tokenization cursor previously opened by a call to
135057 ** simpleOpen() above.
135058 */
135059 static int simpleClose(sqlite3_tokenizer_cursor *pCursor){
135060   simple_tokenizer_cursor *c = (simple_tokenizer_cursor *) pCursor;
135061   sqlite3_free(c->pToken);
135062   sqlite3_free(c);
135063   return SQLITE_OK;
135064 }
135065 
135066 /*
135067 ** Extract the next token from a tokenization cursor.  The cursor must
135068 ** have been opened by a prior call to simpleOpen().
135069 */
135070 static int simpleNext(
135071   sqlite3_tokenizer_cursor *pCursor,  /* Cursor returned by simpleOpen */
135072   const char **ppToken,               /* OUT: *ppToken is the token text */
135073   int *pnBytes,                       /* OUT: Number of bytes in token */
135074   int *piStartOffset,                 /* OUT: Starting offset of token */
135075   int *piEndOffset,                   /* OUT: Ending offset of token */
135076   int *piPosition                     /* OUT: Position integer of token */
135077 ){
135078   simple_tokenizer_cursor *c = (simple_tokenizer_cursor *) pCursor;
135079   simple_tokenizer *t = (simple_tokenizer *) pCursor->pTokenizer;
135080   unsigned char *p = (unsigned char *)c->pInput;
135081 
135082   while( c->iOffset<c->nBytes ){
135083     int iStartOffset;
135084 
135085     /* Scan past delimiter characters */
135086     while( c->iOffset<c->nBytes && simpleDelim(t, p[c->iOffset]) ){
135087       c->iOffset++;
135088     }
135089 
135090     /* Count non-delimiter characters. */
135091     iStartOffset = c->iOffset;
135092     while( c->iOffset<c->nBytes && !simpleDelim(t, p[c->iOffset]) ){
135093       c->iOffset++;
135094     }
135095 
135096     if( c->iOffset>iStartOffset ){
135097       int i, n = c->iOffset-iStartOffset;
135098       if( n>c->nTokenAllocated ){
135099         char *pNew;
135100         c->nTokenAllocated = n+20;
135101         pNew = sqlite3_realloc(c->pToken, c->nTokenAllocated);
135102         if( !pNew ) return SQLITE_NOMEM;
135103         c->pToken = pNew;
135104       }
135105       for(i=0; i<n; i++){
135106         /* TODO(shess) This needs expansion to handle UTF-8
135107         ** case-insensitivity.
135108         */
135109         unsigned char ch = p[iStartOffset+i];
135110         c->pToken[i] = (char)((ch>='A' && ch<='Z') ? ch-'A'+'a' : ch);
135111       }
135112       *ppToken = c->pToken;
135113       *pnBytes = n;
135114       *piStartOffset = iStartOffset;
135115       *piEndOffset = c->iOffset;
135116       *piPosition = c->iToken++;
135117 
135118       return SQLITE_OK;
135119     }
135120   }
135121   return SQLITE_DONE;
135122 }
135123 
135124 /*
135125 ** The set of routines that implement the simple tokenizer
135126 */
135127 static const sqlite3_tokenizer_module simpleTokenizerModule = {
135128   0,
135129   simpleCreate,
135130   simpleDestroy,
135131   simpleOpen,
135132   simpleClose,
135133   simpleNext,
135134   0,
135135 };
135136 
135137 /*
135138 ** Allocate a new simple tokenizer.  Return a pointer to the new
135139 ** tokenizer in *ppModule
135140 */
135141 SQLITE_PRIVATE void sqlite3Fts3SimpleTokenizerModule(
135142   sqlite3_tokenizer_module const**ppModule
135143 ){
135144   *ppModule = &simpleTokenizerModule;
135145 }
135146 
135147 #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
135148 
135149 /************** End of fts3_tokenizer1.c *************************************/
135150 /************** Begin file fts3_tokenize_vtab.c ******************************/
135151 /*
135152 ** 2013 Apr 22
135153 **
135154 ** The author disclaims copyright to this source code.  In place of
135155 ** a legal notice, here is a blessing:
135156 **
135157 **    May you do good and not evil.
135158 **    May you find forgiveness for yourself and forgive others.
135159 **    May you share freely, never taking more than you give.
135160 **
135161 ******************************************************************************
135162 **
135163 ** This file contains code for the "fts3tokenize" virtual table module.
135164 ** An fts3tokenize virtual table is created as follows:
135165 **
135166 **   CREATE VIRTUAL TABLE <tbl> USING fts3tokenize(
135167 **       <tokenizer-name>, <arg-1>, ...
135168 **   );
135169 **
135170 ** The table created has the following schema:
135171 **
135172 **   CREATE TABLE <tbl>(input, token, start, end, position)
135173 **
135174 ** When queried, the query must include a WHERE clause of type:
135175 **
135176 **   input = <string>
135177 **
135178 ** The virtual table module tokenizes this <string>, using the FTS3
135179 ** tokenizer specified by the arguments to the CREATE VIRTUAL TABLE
135180 ** statement and returns one row for each token in the result. With
135181 ** fields set as follows:
135182 **
135183 **   input:   Always set to a copy of <string>
135184 **   token:   A token from the input.
135185 **   start:   Byte offset of the token within the input <string>.
135186 **   end:     Byte offset of the byte immediately following the end of the
135187 **            token within the input string.
135188 **   pos:     Token offset of token within input.
135189 **
135190 */
135191 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
135192 
135193 /* #include <string.h> */
135194 /* #include <assert.h> */
135195 
135196 typedef struct Fts3tokTable Fts3tokTable;
135197 typedef struct Fts3tokCursor Fts3tokCursor;
135198 
135199 /*
135200 ** Virtual table structure.
135201 */
135202 struct Fts3tokTable {
135203   sqlite3_vtab base;              /* Base class used by SQLite core */
135204   const sqlite3_tokenizer_module *pMod;
135205   sqlite3_tokenizer *pTok;
135206 };
135207 
135208 /*
135209 ** Virtual table cursor structure.
135210 */
135211 struct Fts3tokCursor {
135212   sqlite3_vtab_cursor base;       /* Base class used by SQLite core */
135213   char *zInput;                   /* Input string */
135214   sqlite3_tokenizer_cursor *pCsr; /* Cursor to iterate through zInput */
135215   int iRowid;                     /* Current 'rowid' value */
135216   const char *zToken;             /* Current 'token' value */
135217   int nToken;                     /* Size of zToken in bytes */
135218   int iStart;                     /* Current 'start' value */
135219   int iEnd;                       /* Current 'end' value */
135220   int iPos;                       /* Current 'pos' value */
135221 };
135222 
135223 /*
135224 ** Query FTS for the tokenizer implementation named zName.
135225 */
135226 static int fts3tokQueryTokenizer(
135227   Fts3Hash *pHash,
135228   const char *zName,
135229   const sqlite3_tokenizer_module **pp,
135230   char **pzErr
135231 ){
135232   sqlite3_tokenizer_module *p;
135233   int nName = (int)strlen(zName);
135234 
135235   p = (sqlite3_tokenizer_module *)sqlite3Fts3HashFind(pHash, zName, nName+1);
135236   if( !p ){
135237     *pzErr = sqlite3_mprintf("unknown tokenizer: %s", zName);
135238     return SQLITE_ERROR;
135239   }
135240 
135241   *pp = p;
135242   return SQLITE_OK;
135243 }
135244 
135245 /*
135246 ** The second argument, argv[], is an array of pointers to nul-terminated
135247 ** strings. This function makes a copy of the array and strings into a
135248 ** single block of memory. It then dequotes any of the strings that appear
135249 ** to be quoted.
135250 **
135251 ** If successful, output parameter *pazDequote is set to point at the
135252 ** array of dequoted strings and SQLITE_OK is returned. The caller is
135253 ** responsible for eventually calling sqlite3_free() to free the array
135254 ** in this case. Or, if an error occurs, an SQLite error code is returned.
135255 ** The final value of *pazDequote is undefined in this case.
135256 */
135257 static int fts3tokDequoteArray(
135258   int argc,                       /* Number of elements in argv[] */
135259   const char * const *argv,       /* Input array */
135260   char ***pazDequote              /* Output array */
135261 ){
135262   int rc = SQLITE_OK;             /* Return code */
135263   if( argc==0 ){
135264     *pazDequote = 0;
135265   }else{
135266     int i;
135267     int nByte = 0;
135268     char **azDequote;
135269 
135270     for(i=0; i<argc; i++){
135271       nByte += (int)(strlen(argv[i]) + 1);
135272     }
135273 
135274     *pazDequote = azDequote = sqlite3_malloc(sizeof(char *)*argc + nByte);
135275     if( azDequote==0 ){
135276       rc = SQLITE_NOMEM;
135277     }else{
135278       char *pSpace = (char *)&azDequote[argc];
135279       for(i=0; i<argc; i++){
135280         int n = (int)strlen(argv[i]);
135281         azDequote[i] = pSpace;
135282         memcpy(pSpace, argv[i], n+1);
135283         sqlite3Fts3Dequote(pSpace);
135284         pSpace += (n+1);
135285       }
135286     }
135287   }
135288 
135289   return rc;
135290 }
135291 
135292 /*
135293 ** Schema of the tokenizer table.
135294 */
135295 #define FTS3_TOK_SCHEMA "CREATE TABLE x(input, token, start, end, position)"
135296 
135297 /*
135298 ** This function does all the work for both the xConnect and xCreate methods.
135299 ** These tables have no persistent representation of their own, so xConnect
135300 ** and xCreate are identical operations.
135301 **
135302 **   argv[0]: module name
135303 **   argv[1]: database name
135304 **   argv[2]: table name
135305 **   argv[3]: first argument (tokenizer name)
135306 */
135307 static int fts3tokConnectMethod(
135308   sqlite3 *db,                    /* Database connection */
135309   void *pHash,                    /* Hash table of tokenizers */
135310   int argc,                       /* Number of elements in argv array */
135311   const char * const *argv,       /* xCreate/xConnect argument array */
135312   sqlite3_vtab **ppVtab,          /* OUT: New sqlite3_vtab object */
135313   char **pzErr                    /* OUT: sqlite3_malloc'd error message */
135314 ){
135315   Fts3tokTable *pTab;
135316   const sqlite3_tokenizer_module *pMod = 0;
135317   sqlite3_tokenizer *pTok = 0;
135318   int rc;
135319   char **azDequote = 0;
135320   int nDequote;
135321 
135322   rc = sqlite3_declare_vtab(db, FTS3_TOK_SCHEMA);
135323   if( rc!=SQLITE_OK ) return rc;
135324 
135325   nDequote = argc-3;
135326   rc = fts3tokDequoteArray(nDequote, &argv[3], &azDequote);
135327 
135328   if( rc==SQLITE_OK ){
135329     const char *zModule;
135330     if( nDequote<1 ){
135331       zModule = "simple";
135332     }else{
135333       zModule = azDequote[0];
135334     }
135335     rc = fts3tokQueryTokenizer((Fts3Hash*)pHash, zModule, &pMod, pzErr);
135336   }
135337 
135338   assert( (rc==SQLITE_OK)==(pMod!=0) );
135339   if( rc==SQLITE_OK ){
135340     const char * const *azArg = (const char * const *)&azDequote[1];
135341     rc = pMod->xCreate((nDequote>1 ? nDequote-1 : 0), azArg, &pTok);
135342   }
135343 
135344   if( rc==SQLITE_OK ){
135345     pTab = (Fts3tokTable *)sqlite3_malloc(sizeof(Fts3tokTable));
135346     if( pTab==0 ){
135347       rc = SQLITE_NOMEM;
135348     }
135349   }
135350 
135351   if( rc==SQLITE_OK ){
135352     memset(pTab, 0, sizeof(Fts3tokTable));
135353     pTab->pMod = pMod;
135354     pTab->pTok = pTok;
135355     *ppVtab = &pTab->base;
135356   }else{
135357     if( pTok ){
135358       pMod->xDestroy(pTok);
135359     }
135360   }
135361 
135362   sqlite3_free(azDequote);
135363   return rc;
135364 }
135365 
135366 /*
135367 ** This function does the work for both the xDisconnect and xDestroy methods.
135368 ** These tables have no persistent representation of their own, so xDisconnect
135369 ** and xDestroy are identical operations.
135370 */
135371 static int fts3tokDisconnectMethod(sqlite3_vtab *pVtab){
135372   Fts3tokTable *pTab = (Fts3tokTable *)pVtab;
135373 
135374   pTab->pMod->xDestroy(pTab->pTok);
135375   sqlite3_free(pTab);
135376   return SQLITE_OK;
135377 }
135378 
135379 /*
135380 ** xBestIndex - Analyze a WHERE and ORDER BY clause.
135381 */
135382 static int fts3tokBestIndexMethod(
135383   sqlite3_vtab *pVTab,
135384   sqlite3_index_info *pInfo
135385 ){
135386   int i;
135387   UNUSED_PARAMETER(pVTab);
135388 
135389   for(i=0; i<pInfo->nConstraint; i++){
135390     if( pInfo->aConstraint[i].usable
135391      && pInfo->aConstraint[i].iColumn==0
135392      && pInfo->aConstraint[i].op==SQLITE_INDEX_CONSTRAINT_EQ
135393     ){
135394       pInfo->idxNum = 1;
135395       pInfo->aConstraintUsage[i].argvIndex = 1;
135396       pInfo->aConstraintUsage[i].omit = 1;
135397       pInfo->estimatedCost = 1;
135398       return SQLITE_OK;
135399     }
135400   }
135401 
135402   pInfo->idxNum = 0;
135403   assert( pInfo->estimatedCost>1000000.0 );
135404 
135405   return SQLITE_OK;
135406 }
135407 
135408 /*
135409 ** xOpen - Open a cursor.
135410 */
135411 static int fts3tokOpenMethod(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCsr){
135412   Fts3tokCursor *pCsr;
135413   UNUSED_PARAMETER(pVTab);
135414 
135415   pCsr = (Fts3tokCursor *)sqlite3_malloc(sizeof(Fts3tokCursor));
135416   if( pCsr==0 ){
135417     return SQLITE_NOMEM;
135418   }
135419   memset(pCsr, 0, sizeof(Fts3tokCursor));
135420 
135421   *ppCsr = (sqlite3_vtab_cursor *)pCsr;
135422   return SQLITE_OK;
135423 }
135424 
135425 /*
135426 ** Reset the tokenizer cursor passed as the only argument. As if it had
135427 ** just been returned by fts3tokOpenMethod().
135428 */
135429 static void fts3tokResetCursor(Fts3tokCursor *pCsr){
135430   if( pCsr->pCsr ){
135431     Fts3tokTable *pTab = (Fts3tokTable *)(pCsr->base.pVtab);
135432     pTab->pMod->xClose(pCsr->pCsr);
135433     pCsr->pCsr = 0;
135434   }
135435   sqlite3_free(pCsr->zInput);
135436   pCsr->zInput = 0;
135437   pCsr->zToken = 0;
135438   pCsr->nToken = 0;
135439   pCsr->iStart = 0;
135440   pCsr->iEnd = 0;
135441   pCsr->iPos = 0;
135442   pCsr->iRowid = 0;
135443 }
135444 
135445 /*
135446 ** xClose - Close a cursor.
135447 */
135448 static int fts3tokCloseMethod(sqlite3_vtab_cursor *pCursor){
135449   Fts3tokCursor *pCsr = (Fts3tokCursor *)pCursor;
135450 
135451   fts3tokResetCursor(pCsr);
135452   sqlite3_free(pCsr);
135453   return SQLITE_OK;
135454 }
135455 
135456 /*
135457 ** xNext - Advance the cursor to the next row, if any.
135458 */
135459 static int fts3tokNextMethod(sqlite3_vtab_cursor *pCursor){
135460   Fts3tokCursor *pCsr = (Fts3tokCursor *)pCursor;
135461   Fts3tokTable *pTab = (Fts3tokTable *)(pCursor->pVtab);
135462   int rc;                         /* Return code */
135463 
135464   pCsr->iRowid++;
135465   rc = pTab->pMod->xNext(pCsr->pCsr,
135466       &pCsr->zToken, &pCsr->nToken,
135467       &pCsr->iStart, &pCsr->iEnd, &pCsr->iPos
135468   );
135469 
135470   if( rc!=SQLITE_OK ){
135471     fts3tokResetCursor(pCsr);
135472     if( rc==SQLITE_DONE ) rc = SQLITE_OK;
135473   }
135474 
135475   return rc;
135476 }
135477 
135478 /*
135479 ** xFilter - Initialize a cursor to point at the start of its data.
135480 */
135481 static int fts3tokFilterMethod(
135482   sqlite3_vtab_cursor *pCursor,   /* The cursor used for this query */
135483   int idxNum,                     /* Strategy index */
135484   const char *idxStr,             /* Unused */
135485   int nVal,                       /* Number of elements in apVal */
135486   sqlite3_value **apVal           /* Arguments for the indexing scheme */
135487 ){
135488   int rc = SQLITE_ERROR;
135489   Fts3tokCursor *pCsr = (Fts3tokCursor *)pCursor;
135490   Fts3tokTable *pTab = (Fts3tokTable *)(pCursor->pVtab);
135491   UNUSED_PARAMETER(idxStr);
135492   UNUSED_PARAMETER(nVal);
135493 
135494   fts3tokResetCursor(pCsr);
135495   if( idxNum==1 ){
135496     const char *zByte = (const char *)sqlite3_value_text(apVal[0]);
135497     int nByte = sqlite3_value_bytes(apVal[0]);
135498     pCsr->zInput = sqlite3_malloc(nByte+1);
135499     if( pCsr->zInput==0 ){
135500       rc = SQLITE_NOMEM;
135501     }else{
135502       memcpy(pCsr->zInput, zByte, nByte);
135503       pCsr->zInput[nByte] = 0;
135504       rc = pTab->pMod->xOpen(pTab->pTok, pCsr->zInput, nByte, &pCsr->pCsr);
135505       if( rc==SQLITE_OK ){
135506         pCsr->pCsr->pTokenizer = pTab->pTok;
135507       }
135508     }
135509   }
135510 
135511   if( rc!=SQLITE_OK ) return rc;
135512   return fts3tokNextMethod(pCursor);
135513 }
135514 
135515 /*
135516 ** xEof - Return true if the cursor is at EOF, or false otherwise.
135517 */
135518 static int fts3tokEofMethod(sqlite3_vtab_cursor *pCursor){
135519   Fts3tokCursor *pCsr = (Fts3tokCursor *)pCursor;
135520   return (pCsr->zToken==0);
135521 }
135522 
135523 /*
135524 ** xColumn - Return a column value.
135525 */
135526 static int fts3tokColumnMethod(
135527   sqlite3_vtab_cursor *pCursor,   /* Cursor to retrieve value from */
135528   sqlite3_context *pCtx,          /* Context for sqlite3_result_xxx() calls */
135529   int iCol                        /* Index of column to read value from */
135530 ){
135531   Fts3tokCursor *pCsr = (Fts3tokCursor *)pCursor;
135532 
135533   /* CREATE TABLE x(input, token, start, end, position) */
135534   switch( iCol ){
135535     case 0:
135536       sqlite3_result_text(pCtx, pCsr->zInput, -1, SQLITE_TRANSIENT);
135537       break;
135538     case 1:
135539       sqlite3_result_text(pCtx, pCsr->zToken, pCsr->nToken, SQLITE_TRANSIENT);
135540       break;
135541     case 2:
135542       sqlite3_result_int(pCtx, pCsr->iStart);
135543       break;
135544     case 3:
135545       sqlite3_result_int(pCtx, pCsr->iEnd);
135546       break;
135547     default:
135548       assert( iCol==4 );
135549       sqlite3_result_int(pCtx, pCsr->iPos);
135550       break;
135551   }
135552   return SQLITE_OK;
135553 }
135554 
135555 /*
135556 ** xRowid - Return the current rowid for the cursor.
135557 */
135558 static int fts3tokRowidMethod(
135559   sqlite3_vtab_cursor *pCursor,   /* Cursor to retrieve value from */
135560   sqlite_int64 *pRowid            /* OUT: Rowid value */
135561 ){
135562   Fts3tokCursor *pCsr = (Fts3tokCursor *)pCursor;
135563   *pRowid = (sqlite3_int64)pCsr->iRowid;
135564   return SQLITE_OK;
135565 }
135566 
135567 /*
135568 ** Register the fts3tok module with database connection db. Return SQLITE_OK
135569 ** if successful or an error code if sqlite3_create_module() fails.
135570 */
135571 SQLITE_PRIVATE int sqlite3Fts3InitTok(sqlite3 *db, Fts3Hash *pHash){
135572   static const sqlite3_module fts3tok_module = {
135573      0,                           /* iVersion      */
135574      fts3tokConnectMethod,        /* xCreate       */
135575      fts3tokConnectMethod,        /* xConnect      */
135576      fts3tokBestIndexMethod,      /* xBestIndex    */
135577      fts3tokDisconnectMethod,     /* xDisconnect   */
135578      fts3tokDisconnectMethod,     /* xDestroy      */
135579      fts3tokOpenMethod,           /* xOpen         */
135580      fts3tokCloseMethod,          /* xClose        */
135581      fts3tokFilterMethod,         /* xFilter       */
135582      fts3tokNextMethod,           /* xNext         */
135583      fts3tokEofMethod,            /* xEof          */
135584      fts3tokColumnMethod,         /* xColumn       */
135585      fts3tokRowidMethod,          /* xRowid        */
135586      0,                           /* xUpdate       */
135587      0,                           /* xBegin        */
135588      0,                           /* xSync         */
135589      0,                           /* xCommit       */
135590      0,                           /* xRollback     */
135591      0,                           /* xFindFunction */
135592      0,                           /* xRename       */
135593      0,                           /* xSavepoint    */
135594      0,                           /* xRelease      */
135595      0                            /* xRollbackTo   */
135596   };
135597   int rc;                         /* Return code */
135598 
135599   rc = sqlite3_create_module(db, "fts3tokenize", &fts3tok_module, (void*)pHash);
135600   return rc;
135601 }
135602 
135603 #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
135604 
135605 /************** End of fts3_tokenize_vtab.c **********************************/
135606 /************** Begin file fts3_write.c **************************************/
135607 /*
135608 ** 2009 Oct 23
135609 **
135610 ** The author disclaims copyright to this source code.  In place of
135611 ** a legal notice, here is a blessing:
135612 **
135613 **    May you do good and not evil.
135614 **    May you find forgiveness for yourself and forgive others.
135615 **    May you share freely, never taking more than you give.
135616 **
135617 ******************************************************************************
135618 **
135619 ** This file is part of the SQLite FTS3 extension module. Specifically,
135620 ** this file contains code to insert, update and delete rows from FTS3
135621 ** tables. It also contains code to merge FTS3 b-tree segments. Some
135622 ** of the sub-routines used to merge segments are also used by the query
135623 ** code in fts3.c.
135624 */
135625 
135626 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
135627 
135628 /* #include <string.h> */
135629 /* #include <assert.h> */
135630 /* #include <stdlib.h> */
135631 
135632 
135633 #define FTS_MAX_APPENDABLE_HEIGHT 16
135634 
135635 /*
135636 ** When full-text index nodes are loaded from disk, the buffer that they
135637 ** are loaded into has the following number of bytes of padding at the end
135638 ** of it. i.e. if a full-text index node is 900 bytes in size, then a buffer
135639 ** of 920 bytes is allocated for it.
135640 **
135641 ** This means that if we have a pointer into a buffer containing node data,
135642 ** it is always safe to read up to two varints from it without risking an
135643 ** overread, even if the node data is corrupted.
135644 */
135645 #define FTS3_NODE_PADDING (FTS3_VARINT_MAX*2)
135646 
135647 /*
135648 ** Under certain circumstances, b-tree nodes (doclists) can be loaded into
135649 ** memory incrementally instead of all at once. This can be a big performance
135650 ** win (reduced IO and CPU) if SQLite stops calling the virtual table xNext()
135651 ** method before retrieving all query results (as may happen, for example,
135652 ** if a query has a LIMIT clause).
135653 **
135654 ** Incremental loading is used for b-tree nodes FTS3_NODE_CHUNK_THRESHOLD
135655 ** bytes and larger. Nodes are loaded in chunks of FTS3_NODE_CHUNKSIZE bytes.
135656 ** The code is written so that the hard lower-limit for each of these values
135657 ** is 1. Clearly such small values would be inefficient, but can be useful
135658 ** for testing purposes.
135659 **
135660 ** If this module is built with SQLITE_TEST defined, these constants may
135661 ** be overridden at runtime for testing purposes. File fts3_test.c contains
135662 ** a Tcl interface to read and write the values.
135663 */
135664 #ifdef SQLITE_TEST
135665 int test_fts3_node_chunksize = (4*1024);
135666 int test_fts3_node_chunk_threshold = (4*1024)*4;
135667 # define FTS3_NODE_CHUNKSIZE       test_fts3_node_chunksize
135668 # define FTS3_NODE_CHUNK_THRESHOLD test_fts3_node_chunk_threshold
135669 #else
135670 # define FTS3_NODE_CHUNKSIZE (4*1024)
135671 # define FTS3_NODE_CHUNK_THRESHOLD (FTS3_NODE_CHUNKSIZE*4)
135672 #endif
135673 
135674 /*
135675 ** The two values that may be meaningfully bound to the :1 parameter in
135676 ** statements SQL_REPLACE_STAT and SQL_SELECT_STAT.
135677 */
135678 #define FTS_STAT_DOCTOTAL      0
135679 #define FTS_STAT_INCRMERGEHINT 1
135680 #define FTS_STAT_AUTOINCRMERGE 2
135681 
135682 /*
135683 ** If FTS_LOG_MERGES is defined, call sqlite3_log() to report each automatic
135684 ** and incremental merge operation that takes place. This is used for
135685 ** debugging FTS only, it should not usually be turned on in production
135686 ** systems.
135687 */
135688 #ifdef FTS3_LOG_MERGES
135689 static void fts3LogMerge(int nMerge, sqlite3_int64 iAbsLevel){
135690   sqlite3_log(SQLITE_OK, "%d-way merge from level %d", nMerge, (int)iAbsLevel);
135691 }
135692 #else
135693 #define fts3LogMerge(x, y)
135694 #endif
135695 
135696 
135697 typedef struct PendingList PendingList;
135698 typedef struct SegmentNode SegmentNode;
135699 typedef struct SegmentWriter SegmentWriter;
135700 
135701 /*
135702 ** An instance of the following data structure is used to build doclists
135703 ** incrementally. See function fts3PendingListAppend() for details.
135704 */
135705 struct PendingList {
135706   int nData;
135707   char *aData;
135708   int nSpace;
135709   sqlite3_int64 iLastDocid;
135710   sqlite3_int64 iLastCol;
135711   sqlite3_int64 iLastPos;
135712 };
135713 
135714 
135715 /*
135716 ** Each cursor has a (possibly empty) linked list of the following objects.
135717 */
135718 struct Fts3DeferredToken {
135719   Fts3PhraseToken *pToken;        /* Pointer to corresponding expr token */
135720   int iCol;                       /* Column token must occur in */
135721   Fts3DeferredToken *pNext;       /* Next in list of deferred tokens */
135722   PendingList *pList;             /* Doclist is assembled here */
135723 };
135724 
135725 /*
135726 ** An instance of this structure is used to iterate through the terms on
135727 ** a contiguous set of segment b-tree leaf nodes. Although the details of
135728 ** this structure are only manipulated by code in this file, opaque handles
135729 ** of type Fts3SegReader* are also used by code in fts3.c to iterate through
135730 ** terms when querying the full-text index. See functions:
135731 **
135732 **   sqlite3Fts3SegReaderNew()
135733 **   sqlite3Fts3SegReaderFree()
135734 **   sqlite3Fts3SegReaderIterate()
135735 **
135736 ** Methods used to manipulate Fts3SegReader structures:
135737 **
135738 **   fts3SegReaderNext()
135739 **   fts3SegReaderFirstDocid()
135740 **   fts3SegReaderNextDocid()
135741 */
135742 struct Fts3SegReader {
135743   int iIdx;                       /* Index within level, or 0x7FFFFFFF for PT */
135744   u8 bLookup;                     /* True for a lookup only */
135745   u8 rootOnly;                    /* True for a root-only reader */
135746 
135747   sqlite3_int64 iStartBlock;      /* Rowid of first leaf block to traverse */
135748   sqlite3_int64 iLeafEndBlock;    /* Rowid of final leaf block to traverse */
135749   sqlite3_int64 iEndBlock;        /* Rowid of final block in segment (or 0) */
135750   sqlite3_int64 iCurrentBlock;    /* Current leaf block (or 0) */
135751 
135752   char *aNode;                    /* Pointer to node data (or NULL) */
135753   int nNode;                      /* Size of buffer at aNode (or 0) */
135754   int nPopulate;                  /* If >0, bytes of buffer aNode[] loaded */
135755   sqlite3_blob *pBlob;            /* If not NULL, blob handle to read node */
135756 
135757   Fts3HashElem **ppNextElem;
135758 
135759   /* Variables set by fts3SegReaderNext(). These may be read directly
135760   ** by the caller. They are valid from the time SegmentReaderNew() returns
135761   ** until SegmentReaderNext() returns something other than SQLITE_OK
135762   ** (i.e. SQLITE_DONE).
135763   */
135764   int nTerm;                      /* Number of bytes in current term */
135765   char *zTerm;                    /* Pointer to current term */
135766   int nTermAlloc;                 /* Allocated size of zTerm buffer */
135767   char *aDoclist;                 /* Pointer to doclist of current entry */
135768   int nDoclist;                   /* Size of doclist in current entry */
135769 
135770   /* The following variables are used by fts3SegReaderNextDocid() to iterate
135771   ** through the current doclist (aDoclist/nDoclist).
135772   */
135773   char *pOffsetList;
135774   int nOffsetList;                /* For descending pending seg-readers only */
135775   sqlite3_int64 iDocid;
135776 };
135777 
135778 #define fts3SegReaderIsPending(p) ((p)->ppNextElem!=0)
135779 #define fts3SegReaderIsRootOnly(p) ((p)->rootOnly!=0)
135780 
135781 /*
135782 ** An instance of this structure is used to create a segment b-tree in the
135783 ** database. The internal details of this type are only accessed by the
135784 ** following functions:
135785 **
135786 **   fts3SegWriterAdd()
135787 **   fts3SegWriterFlush()
135788 **   fts3SegWriterFree()
135789 */
135790 struct SegmentWriter {
135791   SegmentNode *pTree;             /* Pointer to interior tree structure */
135792   sqlite3_int64 iFirst;           /* First slot in %_segments written */
135793   sqlite3_int64 iFree;            /* Next free slot in %_segments */
135794   char *zTerm;                    /* Pointer to previous term buffer */
135795   int nTerm;                      /* Number of bytes in zTerm */
135796   int nMalloc;                    /* Size of malloc'd buffer at zMalloc */
135797   char *zMalloc;                  /* Malloc'd space (possibly) used for zTerm */
135798   int nSize;                      /* Size of allocation at aData */
135799   int nData;                      /* Bytes of data in aData */
135800   char *aData;                    /* Pointer to block from malloc() */
135801   i64 nLeafData;                  /* Number of bytes of leaf data written */
135802 };
135803 
135804 /*
135805 ** Type SegmentNode is used by the following three functions to create
135806 ** the interior part of the segment b+-tree structures (everything except
135807 ** the leaf nodes). These functions and type are only ever used by code
135808 ** within the fts3SegWriterXXX() family of functions described above.
135809 **
135810 **   fts3NodeAddTerm()
135811 **   fts3NodeWrite()
135812 **   fts3NodeFree()
135813 **
135814 ** When a b+tree is written to the database (either as a result of a merge
135815 ** or the pending-terms table being flushed), leaves are written into the
135816 ** database file as soon as they are completely populated. The interior of
135817 ** the tree is assembled in memory and written out only once all leaves have
135818 ** been populated and stored. This is Ok, as the b+-tree fanout is usually
135819 ** very large, meaning that the interior of the tree consumes relatively
135820 ** little memory.
135821 */
135822 struct SegmentNode {
135823   SegmentNode *pParent;           /* Parent node (or NULL for root node) */
135824   SegmentNode *pRight;            /* Pointer to right-sibling */
135825   SegmentNode *pLeftmost;         /* Pointer to left-most node of this depth */
135826   int nEntry;                     /* Number of terms written to node so far */
135827   char *zTerm;                    /* Pointer to previous term buffer */
135828   int nTerm;                      /* Number of bytes in zTerm */
135829   int nMalloc;                    /* Size of malloc'd buffer at zMalloc */
135830   char *zMalloc;                  /* Malloc'd space (possibly) used for zTerm */
135831   int nData;                      /* Bytes of valid data so far */
135832   char *aData;                    /* Node data */
135833 };
135834 
135835 /*
135836 ** Valid values for the second argument to fts3SqlStmt().
135837 */
135838 #define SQL_DELETE_CONTENT             0
135839 #define SQL_IS_EMPTY                   1
135840 #define SQL_DELETE_ALL_CONTENT         2
135841 #define SQL_DELETE_ALL_SEGMENTS        3
135842 #define SQL_DELETE_ALL_SEGDIR          4
135843 #define SQL_DELETE_ALL_DOCSIZE         5
135844 #define SQL_DELETE_ALL_STAT            6
135845 #define SQL_SELECT_CONTENT_BY_ROWID    7
135846 #define SQL_NEXT_SEGMENT_INDEX         8
135847 #define SQL_INSERT_SEGMENTS            9
135848 #define SQL_NEXT_SEGMENTS_ID          10
135849 #define SQL_INSERT_SEGDIR             11
135850 #define SQL_SELECT_LEVEL              12
135851 #define SQL_SELECT_LEVEL_RANGE        13
135852 #define SQL_SELECT_LEVEL_COUNT        14
135853 #define SQL_SELECT_SEGDIR_MAX_LEVEL   15
135854 #define SQL_DELETE_SEGDIR_LEVEL       16
135855 #define SQL_DELETE_SEGMENTS_RANGE     17
135856 #define SQL_CONTENT_INSERT            18
135857 #define SQL_DELETE_DOCSIZE            19
135858 #define SQL_REPLACE_DOCSIZE           20
135859 #define SQL_SELECT_DOCSIZE            21
135860 #define SQL_SELECT_STAT               22
135861 #define SQL_REPLACE_STAT              23
135862 
135863 #define SQL_SELECT_ALL_PREFIX_LEVEL   24
135864 #define SQL_DELETE_ALL_TERMS_SEGDIR   25
135865 #define SQL_DELETE_SEGDIR_RANGE       26
135866 #define SQL_SELECT_ALL_LANGID         27
135867 #define SQL_FIND_MERGE_LEVEL          28
135868 #define SQL_MAX_LEAF_NODE_ESTIMATE    29
135869 #define SQL_DELETE_SEGDIR_ENTRY       30
135870 #define SQL_SHIFT_SEGDIR_ENTRY        31
135871 #define SQL_SELECT_SEGDIR             32
135872 #define SQL_CHOMP_SEGDIR              33
135873 #define SQL_SEGMENT_IS_APPENDABLE     34
135874 #define SQL_SELECT_INDEXES            35
135875 #define SQL_SELECT_MXLEVEL            36
135876 
135877 #define SQL_SELECT_LEVEL_RANGE2       37
135878 #define SQL_UPDATE_LEVEL_IDX          38
135879 #define SQL_UPDATE_LEVEL              39
135880 
135881 /*
135882 ** This function is used to obtain an SQLite prepared statement handle
135883 ** for the statement identified by the second argument. If successful,
135884 ** *pp is set to the requested statement handle and SQLITE_OK returned.
135885 ** Otherwise, an SQLite error code is returned and *pp is set to 0.
135886 **
135887 ** If argument apVal is not NULL, then it must point to an array with
135888 ** at least as many entries as the requested statement has bound
135889 ** parameters. The values are bound to the statements parameters before
135890 ** returning.
135891 */
135892 static int fts3SqlStmt(
135893   Fts3Table *p,                   /* Virtual table handle */
135894   int eStmt,                      /* One of the SQL_XXX constants above */
135895   sqlite3_stmt **pp,              /* OUT: Statement handle */
135896   sqlite3_value **apVal           /* Values to bind to statement */
135897 ){
135898   const char *azSql[] = {
135899 /* 0  */  "DELETE FROM %Q.'%q_content' WHERE rowid = ?",
135900 /* 1  */  "SELECT NOT EXISTS(SELECT docid FROM %Q.'%q_content' WHERE rowid!=?)",
135901 /* 2  */  "DELETE FROM %Q.'%q_content'",
135902 /* 3  */  "DELETE FROM %Q.'%q_segments'",
135903 /* 4  */  "DELETE FROM %Q.'%q_segdir'",
135904 /* 5  */  "DELETE FROM %Q.'%q_docsize'",
135905 /* 6  */  "DELETE FROM %Q.'%q_stat'",
135906 /* 7  */  "SELECT %s WHERE rowid=?",
135907 /* 8  */  "SELECT (SELECT max(idx) FROM %Q.'%q_segdir' WHERE level = ?) + 1",
135908 /* 9  */  "REPLACE INTO %Q.'%q_segments'(blockid, block) VALUES(?, ?)",
135909 /* 10 */  "SELECT coalesce((SELECT max(blockid) FROM %Q.'%q_segments') + 1, 1)",
135910 /* 11 */  "REPLACE INTO %Q.'%q_segdir' VALUES(?,?,?,?,?,?)",
135911 
135912           /* Return segments in order from oldest to newest.*/
135913 /* 12 */  "SELECT idx, start_block, leaves_end_block, end_block, root "
135914             "FROM %Q.'%q_segdir' WHERE level = ? ORDER BY idx ASC",
135915 /* 13 */  "SELECT idx, start_block, leaves_end_block, end_block, root "
135916             "FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?"
135917             "ORDER BY level DESC, idx ASC",
135918 
135919 /* 14 */  "SELECT count(*) FROM %Q.'%q_segdir' WHERE level = ?",
135920 /* 15 */  "SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?",
135921 
135922 /* 16 */  "DELETE FROM %Q.'%q_segdir' WHERE level = ?",
135923 /* 17 */  "DELETE FROM %Q.'%q_segments' WHERE blockid BETWEEN ? AND ?",
135924 /* 18 */  "INSERT INTO %Q.'%q_content' VALUES(%s)",
135925 /* 19 */  "DELETE FROM %Q.'%q_docsize' WHERE docid = ?",
135926 /* 20 */  "REPLACE INTO %Q.'%q_docsize' VALUES(?,?)",
135927 /* 21 */  "SELECT size FROM %Q.'%q_docsize' WHERE docid=?",
135928 /* 22 */  "SELECT value FROM %Q.'%q_stat' WHERE id=?",
135929 /* 23 */  "REPLACE INTO %Q.'%q_stat' VALUES(?,?)",
135930 /* 24 */  "",
135931 /* 25 */  "",
135932 
135933 /* 26 */ "DELETE FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?",
135934 /* 27 */ "SELECT DISTINCT level / (1024 * ?) FROM %Q.'%q_segdir'",
135935 
135936 /* This statement is used to determine which level to read the input from
135937 ** when performing an incremental merge. It returns the absolute level number
135938 ** of the oldest level in the db that contains at least ? segments. Or,
135939 ** if no level in the FTS index contains more than ? segments, the statement
135940 ** returns zero rows.  */
135941 /* 28 */ "SELECT level FROM %Q.'%q_segdir' GROUP BY level HAVING count(*)>=?"
135942          "  ORDER BY (level %% 1024) ASC LIMIT 1",
135943 
135944 /* Estimate the upper limit on the number of leaf nodes in a new segment
135945 ** created by merging the oldest :2 segments from absolute level :1. See
135946 ** function sqlite3Fts3Incrmerge() for details.  */
135947 /* 29 */ "SELECT 2 * total(1 + leaves_end_block - start_block) "
135948          "  FROM %Q.'%q_segdir' WHERE level = ? AND idx < ?",
135949 
135950 /* SQL_DELETE_SEGDIR_ENTRY
135951 **   Delete the %_segdir entry on absolute level :1 with index :2.  */
135952 /* 30 */ "DELETE FROM %Q.'%q_segdir' WHERE level = ? AND idx = ?",
135953 
135954 /* SQL_SHIFT_SEGDIR_ENTRY
135955 **   Modify the idx value for the segment with idx=:3 on absolute level :2
135956 **   to :1.  */
135957 /* 31 */ "UPDATE %Q.'%q_segdir' SET idx = ? WHERE level=? AND idx=?",
135958 
135959 /* SQL_SELECT_SEGDIR
135960 **   Read a single entry from the %_segdir table. The entry from absolute
135961 **   level :1 with index value :2.  */
135962 /* 32 */  "SELECT idx, start_block, leaves_end_block, end_block, root "
135963             "FROM %Q.'%q_segdir' WHERE level = ? AND idx = ?",
135964 
135965 /* SQL_CHOMP_SEGDIR
135966 **   Update the start_block (:1) and root (:2) fields of the %_segdir
135967 **   entry located on absolute level :3 with index :4.  */
135968 /* 33 */  "UPDATE %Q.'%q_segdir' SET start_block = ?, root = ?"
135969             "WHERE level = ? AND idx = ?",
135970 
135971 /* SQL_SEGMENT_IS_APPENDABLE
135972 **   Return a single row if the segment with end_block=? is appendable. Or
135973 **   no rows otherwise.  */
135974 /* 34 */  "SELECT 1 FROM %Q.'%q_segments' WHERE blockid=? AND block IS NULL",
135975 
135976 /* SQL_SELECT_INDEXES
135977 **   Return the list of valid segment indexes for absolute level ?  */
135978 /* 35 */  "SELECT idx FROM %Q.'%q_segdir' WHERE level=? ORDER BY 1 ASC",
135979 
135980 /* SQL_SELECT_MXLEVEL
135981 **   Return the largest relative level in the FTS index or indexes.  */
135982 /* 36 */  "SELECT max( level %% 1024 ) FROM %Q.'%q_segdir'",
135983 
135984           /* Return segments in order from oldest to newest.*/
135985 /* 37 */  "SELECT level, idx, end_block "
135986             "FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ? "
135987             "ORDER BY level DESC, idx ASC",
135988 
135989           /* Update statements used while promoting segments */
135990 /* 38 */  "UPDATE OR FAIL %Q.'%q_segdir' SET level=-1,idx=? "
135991             "WHERE level=? AND idx=?",
135992 /* 39 */  "UPDATE OR FAIL %Q.'%q_segdir' SET level=? WHERE level=-1"
135993 
135994   };
135995   int rc = SQLITE_OK;
135996   sqlite3_stmt *pStmt;
135997 
135998   assert( SizeofArray(azSql)==SizeofArray(p->aStmt) );
135999   assert( eStmt<SizeofArray(azSql) && eStmt>=0 );
136000 
136001   pStmt = p->aStmt[eStmt];
136002   if( !pStmt ){
136003     char *zSql;
136004     if( eStmt==SQL_CONTENT_INSERT ){
136005       zSql = sqlite3_mprintf(azSql[eStmt], p->zDb, p->zName, p->zWriteExprlist);
136006     }else if( eStmt==SQL_SELECT_CONTENT_BY_ROWID ){
136007       zSql = sqlite3_mprintf(azSql[eStmt], p->zReadExprlist);
136008     }else{
136009       zSql = sqlite3_mprintf(azSql[eStmt], p->zDb, p->zName);
136010     }
136011     if( !zSql ){
136012       rc = SQLITE_NOMEM;
136013     }else{
136014       rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, NULL);
136015       sqlite3_free(zSql);
136016       assert( rc==SQLITE_OK || pStmt==0 );
136017       p->aStmt[eStmt] = pStmt;
136018     }
136019   }
136020   if( apVal ){
136021     int i;
136022     int nParam = sqlite3_bind_parameter_count(pStmt);
136023     for(i=0; rc==SQLITE_OK && i<nParam; i++){
136024       rc = sqlite3_bind_value(pStmt, i+1, apVal[i]);
136025     }
136026   }
136027   *pp = pStmt;
136028   return rc;
136029 }
136030 
136031 
136032 static int fts3SelectDocsize(
136033   Fts3Table *pTab,                /* FTS3 table handle */
136034   sqlite3_int64 iDocid,           /* Docid to bind for SQL_SELECT_DOCSIZE */
136035   sqlite3_stmt **ppStmt           /* OUT: Statement handle */
136036 ){
136037   sqlite3_stmt *pStmt = 0;        /* Statement requested from fts3SqlStmt() */
136038   int rc;                         /* Return code */
136039 
136040   rc = fts3SqlStmt(pTab, SQL_SELECT_DOCSIZE, &pStmt, 0);
136041   if( rc==SQLITE_OK ){
136042     sqlite3_bind_int64(pStmt, 1, iDocid);
136043     rc = sqlite3_step(pStmt);
136044     if( rc!=SQLITE_ROW || sqlite3_column_type(pStmt, 0)!=SQLITE_BLOB ){
136045       rc = sqlite3_reset(pStmt);
136046       if( rc==SQLITE_OK ) rc = FTS_CORRUPT_VTAB;
136047       pStmt = 0;
136048     }else{
136049       rc = SQLITE_OK;
136050     }
136051   }
136052 
136053   *ppStmt = pStmt;
136054   return rc;
136055 }
136056 
136057 SQLITE_PRIVATE int sqlite3Fts3SelectDoctotal(
136058   Fts3Table *pTab,                /* Fts3 table handle */
136059   sqlite3_stmt **ppStmt           /* OUT: Statement handle */
136060 ){
136061   sqlite3_stmt *pStmt = 0;
136062   int rc;
136063   rc = fts3SqlStmt(pTab, SQL_SELECT_STAT, &pStmt, 0);
136064   if( rc==SQLITE_OK ){
136065     sqlite3_bind_int(pStmt, 1, FTS_STAT_DOCTOTAL);
136066     if( sqlite3_step(pStmt)!=SQLITE_ROW
136067      || sqlite3_column_type(pStmt, 0)!=SQLITE_BLOB
136068     ){
136069       rc = sqlite3_reset(pStmt);
136070       if( rc==SQLITE_OK ) rc = FTS_CORRUPT_VTAB;
136071       pStmt = 0;
136072     }
136073   }
136074   *ppStmt = pStmt;
136075   return rc;
136076 }
136077 
136078 SQLITE_PRIVATE int sqlite3Fts3SelectDocsize(
136079   Fts3Table *pTab,                /* Fts3 table handle */
136080   sqlite3_int64 iDocid,           /* Docid to read size data for */
136081   sqlite3_stmt **ppStmt           /* OUT: Statement handle */
136082 ){
136083   return fts3SelectDocsize(pTab, iDocid, ppStmt);
136084 }
136085 
136086 /*
136087 ** Similar to fts3SqlStmt(). Except, after binding the parameters in
136088 ** array apVal[] to the SQL statement identified by eStmt, the statement
136089 ** is executed.
136090 **
136091 ** Returns SQLITE_OK if the statement is successfully executed, or an
136092 ** SQLite error code otherwise.
136093 */
136094 static void fts3SqlExec(
136095   int *pRC,                /* Result code */
136096   Fts3Table *p,            /* The FTS3 table */
136097   int eStmt,               /* Index of statement to evaluate */
136098   sqlite3_value **apVal    /* Parameters to bind */
136099 ){
136100   sqlite3_stmt *pStmt;
136101   int rc;
136102   if( *pRC ) return;
136103   rc = fts3SqlStmt(p, eStmt, &pStmt, apVal);
136104   if( rc==SQLITE_OK ){
136105     sqlite3_step(pStmt);
136106     rc = sqlite3_reset(pStmt);
136107   }
136108   *pRC = rc;
136109 }
136110 
136111 
136112 /*
136113 ** This function ensures that the caller has obtained an exclusive
136114 ** shared-cache table-lock on the %_segdir table. This is required before
136115 ** writing data to the fts3 table. If this lock is not acquired first, then
136116 ** the caller may end up attempting to take this lock as part of committing
136117 ** a transaction, causing SQLite to return SQLITE_LOCKED or
136118 ** LOCKED_SHAREDCACHEto a COMMIT command.
136119 **
136120 ** It is best to avoid this because if FTS3 returns any error when
136121 ** committing a transaction, the whole transaction will be rolled back.
136122 ** And this is not what users expect when they get SQLITE_LOCKED_SHAREDCACHE.
136123 ** It can still happen if the user locks the underlying tables directly
136124 ** instead of accessing them via FTS.
136125 */
136126 static int fts3Writelock(Fts3Table *p){
136127   int rc = SQLITE_OK;
136128 
136129   if( p->nPendingData==0 ){
136130     sqlite3_stmt *pStmt;
136131     rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_LEVEL, &pStmt, 0);
136132     if( rc==SQLITE_OK ){
136133       sqlite3_bind_null(pStmt, 1);
136134       sqlite3_step(pStmt);
136135       rc = sqlite3_reset(pStmt);
136136     }
136137   }
136138 
136139   return rc;
136140 }
136141 
136142 /*
136143 ** FTS maintains a separate indexes for each language-id (a 32-bit integer).
136144 ** Within each language id, a separate index is maintained to store the
136145 ** document terms, and each configured prefix size (configured the FTS
136146 ** "prefix=" option). And each index consists of multiple levels ("relative
136147 ** levels").
136148 **
136149 ** All three of these values (the language id, the specific index and the
136150 ** level within the index) are encoded in 64-bit integer values stored
136151 ** in the %_segdir table on disk. This function is used to convert three
136152 ** separate component values into the single 64-bit integer value that
136153 ** can be used to query the %_segdir table.
136154 **
136155 ** Specifically, each language-id/index combination is allocated 1024
136156 ** 64-bit integer level values ("absolute levels"). The main terms index
136157 ** for language-id 0 is allocate values 0-1023. The first prefix index
136158 ** (if any) for language-id 0 is allocated values 1024-2047. And so on.
136159 ** Language 1 indexes are allocated immediately following language 0.
136160 **
136161 ** So, for a system with nPrefix prefix indexes configured, the block of
136162 ** absolute levels that corresponds to language-id iLangid and index
136163 ** iIndex starts at absolute level ((iLangid * (nPrefix+1) + iIndex) * 1024).
136164 */
136165 static sqlite3_int64 getAbsoluteLevel(
136166   Fts3Table *p,                   /* FTS3 table handle */
136167   int iLangid,                    /* Language id */
136168   int iIndex,                     /* Index in p->aIndex[] */
136169   int iLevel                      /* Level of segments */
136170 ){
136171   sqlite3_int64 iBase;            /* First absolute level for iLangid/iIndex */
136172   assert( iLangid>=0 );
136173   assert( p->nIndex>0 );
136174   assert( iIndex>=0 && iIndex<p->nIndex );
136175 
136176   iBase = ((sqlite3_int64)iLangid * p->nIndex + iIndex) * FTS3_SEGDIR_MAXLEVEL;
136177   return iBase + iLevel;
136178 }
136179 
136180 /*
136181 ** Set *ppStmt to a statement handle that may be used to iterate through
136182 ** all rows in the %_segdir table, from oldest to newest. If successful,
136183 ** return SQLITE_OK. If an error occurs while preparing the statement,
136184 ** return an SQLite error code.
136185 **
136186 ** There is only ever one instance of this SQL statement compiled for
136187 ** each FTS3 table.
136188 **
136189 ** The statement returns the following columns from the %_segdir table:
136190 **
136191 **   0: idx
136192 **   1: start_block
136193 **   2: leaves_end_block
136194 **   3: end_block
136195 **   4: root
136196 */
136197 SQLITE_PRIVATE int sqlite3Fts3AllSegdirs(
136198   Fts3Table *p,                   /* FTS3 table */
136199   int iLangid,                    /* Language being queried */
136200   int iIndex,                     /* Index for p->aIndex[] */
136201   int iLevel,                     /* Level to select (relative level) */
136202   sqlite3_stmt **ppStmt           /* OUT: Compiled statement */
136203 ){
136204   int rc;
136205   sqlite3_stmt *pStmt = 0;
136206 
136207   assert( iLevel==FTS3_SEGCURSOR_ALL || iLevel>=0 );
136208   assert( iLevel<FTS3_SEGDIR_MAXLEVEL );
136209   assert( iIndex>=0 && iIndex<p->nIndex );
136210 
136211   if( iLevel<0 ){
136212     /* "SELECT * FROM %_segdir WHERE level BETWEEN ? AND ? ORDER BY ..." */
136213     rc = fts3SqlStmt(p, SQL_SELECT_LEVEL_RANGE, &pStmt, 0);
136214     if( rc==SQLITE_OK ){
136215       sqlite3_bind_int64(pStmt, 1, getAbsoluteLevel(p, iLangid, iIndex, 0));
136216       sqlite3_bind_int64(pStmt, 2,
136217           getAbsoluteLevel(p, iLangid, iIndex, FTS3_SEGDIR_MAXLEVEL-1)
136218       );
136219     }
136220   }else{
136221     /* "SELECT * FROM %_segdir WHERE level = ? ORDER BY ..." */
136222     rc = fts3SqlStmt(p, SQL_SELECT_LEVEL, &pStmt, 0);
136223     if( rc==SQLITE_OK ){
136224       sqlite3_bind_int64(pStmt, 1, getAbsoluteLevel(p, iLangid, iIndex,iLevel));
136225     }
136226   }
136227   *ppStmt = pStmt;
136228   return rc;
136229 }
136230 
136231 
136232 /*
136233 ** Append a single varint to a PendingList buffer. SQLITE_OK is returned
136234 ** if successful, or an SQLite error code otherwise.
136235 **
136236 ** This function also serves to allocate the PendingList structure itself.
136237 ** For example, to create a new PendingList structure containing two
136238 ** varints:
136239 **
136240 **   PendingList *p = 0;
136241 **   fts3PendingListAppendVarint(&p, 1);
136242 **   fts3PendingListAppendVarint(&p, 2);
136243 */
136244 static int fts3PendingListAppendVarint(
136245   PendingList **pp,               /* IN/OUT: Pointer to PendingList struct */
136246   sqlite3_int64 i                 /* Value to append to data */
136247 ){
136248   PendingList *p = *pp;
136249 
136250   /* Allocate or grow the PendingList as required. */
136251   if( !p ){
136252     p = sqlite3_malloc(sizeof(*p) + 100);
136253     if( !p ){
136254       return SQLITE_NOMEM;
136255     }
136256     p->nSpace = 100;
136257     p->aData = (char *)&p[1];
136258     p->nData = 0;
136259   }
136260   else if( p->nData+FTS3_VARINT_MAX+1>p->nSpace ){
136261     int nNew = p->nSpace * 2;
136262     p = sqlite3_realloc(p, sizeof(*p) + nNew);
136263     if( !p ){
136264       sqlite3_free(*pp);
136265       *pp = 0;
136266       return SQLITE_NOMEM;
136267     }
136268     p->nSpace = nNew;
136269     p->aData = (char *)&p[1];
136270   }
136271 
136272   /* Append the new serialized varint to the end of the list. */
136273   p->nData += sqlite3Fts3PutVarint(&p->aData[p->nData], i);
136274   p->aData[p->nData] = '\0';
136275   *pp = p;
136276   return SQLITE_OK;
136277 }
136278 
136279 /*
136280 ** Add a docid/column/position entry to a PendingList structure. Non-zero
136281 ** is returned if the structure is sqlite3_realloced as part of adding
136282 ** the entry. Otherwise, zero.
136283 **
136284 ** If an OOM error occurs, *pRc is set to SQLITE_NOMEM before returning.
136285 ** Zero is always returned in this case. Otherwise, if no OOM error occurs,
136286 ** it is set to SQLITE_OK.
136287 */
136288 static int fts3PendingListAppend(
136289   PendingList **pp,               /* IN/OUT: PendingList structure */
136290   sqlite3_int64 iDocid,           /* Docid for entry to add */
136291   sqlite3_int64 iCol,             /* Column for entry to add */
136292   sqlite3_int64 iPos,             /* Position of term for entry to add */
136293   int *pRc                        /* OUT: Return code */
136294 ){
136295   PendingList *p = *pp;
136296   int rc = SQLITE_OK;
136297 
136298   assert( !p || p->iLastDocid<=iDocid );
136299 
136300   if( !p || p->iLastDocid!=iDocid ){
136301     sqlite3_int64 iDelta = iDocid - (p ? p->iLastDocid : 0);
136302     if( p ){
136303       assert( p->nData<p->nSpace );
136304       assert( p->aData[p->nData]==0 );
136305       p->nData++;
136306     }
136307     if( SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, iDelta)) ){
136308       goto pendinglistappend_out;
136309     }
136310     p->iLastCol = -1;
136311     p->iLastPos = 0;
136312     p->iLastDocid = iDocid;
136313   }
136314   if( iCol>0 && p->iLastCol!=iCol ){
136315     if( SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, 1))
136316      || SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, iCol))
136317     ){
136318       goto pendinglistappend_out;
136319     }
136320     p->iLastCol = iCol;
136321     p->iLastPos = 0;
136322   }
136323   if( iCol>=0 ){
136324     assert( iPos>p->iLastPos || (iPos==0 && p->iLastPos==0) );
136325     rc = fts3PendingListAppendVarint(&p, 2+iPos-p->iLastPos);
136326     if( rc==SQLITE_OK ){
136327       p->iLastPos = iPos;
136328     }
136329   }
136330 
136331  pendinglistappend_out:
136332   *pRc = rc;
136333   if( p!=*pp ){
136334     *pp = p;
136335     return 1;
136336   }
136337   return 0;
136338 }
136339 
136340 /*
136341 ** Free a PendingList object allocated by fts3PendingListAppend().
136342 */
136343 static void fts3PendingListDelete(PendingList *pList){
136344   sqlite3_free(pList);
136345 }
136346 
136347 /*
136348 ** Add an entry to one of the pending-terms hash tables.
136349 */
136350 static int fts3PendingTermsAddOne(
136351   Fts3Table *p,
136352   int iCol,
136353   int iPos,
136354   Fts3Hash *pHash,                /* Pending terms hash table to add entry to */
136355   const char *zToken,
136356   int nToken
136357 ){
136358   PendingList *pList;
136359   int rc = SQLITE_OK;
136360 
136361   pList = (PendingList *)fts3HashFind(pHash, zToken, nToken);
136362   if( pList ){
136363     p->nPendingData -= (pList->nData + nToken + sizeof(Fts3HashElem));
136364   }
136365   if( fts3PendingListAppend(&pList, p->iPrevDocid, iCol, iPos, &rc) ){
136366     if( pList==fts3HashInsert(pHash, zToken, nToken, pList) ){
136367       /* Malloc failed while inserting the new entry. This can only
136368       ** happen if there was no previous entry for this token.
136369       */
136370       assert( 0==fts3HashFind(pHash, zToken, nToken) );
136371       sqlite3_free(pList);
136372       rc = SQLITE_NOMEM;
136373     }
136374   }
136375   if( rc==SQLITE_OK ){
136376     p->nPendingData += (pList->nData + nToken + sizeof(Fts3HashElem));
136377   }
136378   return rc;
136379 }
136380 
136381 /*
136382 ** Tokenize the nul-terminated string zText and add all tokens to the
136383 ** pending-terms hash-table. The docid used is that currently stored in
136384 ** p->iPrevDocid, and the column is specified by argument iCol.
136385 **
136386 ** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code.
136387 */
136388 static int fts3PendingTermsAdd(
136389   Fts3Table *p,                   /* Table into which text will be inserted */
136390   int iLangid,                    /* Language id to use */
136391   const char *zText,              /* Text of document to be inserted */
136392   int iCol,                       /* Column into which text is being inserted */
136393   u32 *pnWord                     /* IN/OUT: Incr. by number tokens inserted */
136394 ){
136395   int rc;
136396   int iStart = 0;
136397   int iEnd = 0;
136398   int iPos = 0;
136399   int nWord = 0;
136400 
136401   char const *zToken;
136402   int nToken = 0;
136403 
136404   sqlite3_tokenizer *pTokenizer = p->pTokenizer;
136405   sqlite3_tokenizer_module const *pModule = pTokenizer->pModule;
136406   sqlite3_tokenizer_cursor *pCsr;
136407   int (*xNext)(sqlite3_tokenizer_cursor *pCursor,
136408       const char**,int*,int*,int*,int*);
136409 
136410   assert( pTokenizer && pModule );
136411 
136412   /* If the user has inserted a NULL value, this function may be called with
136413   ** zText==0. In this case, add zero token entries to the hash table and
136414   ** return early. */
136415   if( zText==0 ){
136416     *pnWord = 0;
136417     return SQLITE_OK;
136418   }
136419 
136420   rc = sqlite3Fts3OpenTokenizer(pTokenizer, iLangid, zText, -1, &pCsr);
136421   if( rc!=SQLITE_OK ){
136422     return rc;
136423   }
136424 
136425   xNext = pModule->xNext;
136426   while( SQLITE_OK==rc
136427       && SQLITE_OK==(rc = xNext(pCsr, &zToken, &nToken, &iStart, &iEnd, &iPos))
136428   ){
136429     int i;
136430     if( iPos>=nWord ) nWord = iPos+1;
136431 
136432     /* Positions cannot be negative; we use -1 as a terminator internally.
136433     ** Tokens must have a non-zero length.
136434     */
136435     if( iPos<0 || !zToken || nToken<=0 ){
136436       rc = SQLITE_ERROR;
136437       break;
136438     }
136439 
136440     /* Add the term to the terms index */
136441     rc = fts3PendingTermsAddOne(
136442         p, iCol, iPos, &p->aIndex[0].hPending, zToken, nToken
136443     );
136444 
136445     /* Add the term to each of the prefix indexes that it is not too
136446     ** short for. */
136447     for(i=1; rc==SQLITE_OK && i<p->nIndex; i++){
136448       struct Fts3Index *pIndex = &p->aIndex[i];
136449       if( nToken<pIndex->nPrefix ) continue;
136450       rc = fts3PendingTermsAddOne(
136451           p, iCol, iPos, &pIndex->hPending, zToken, pIndex->nPrefix
136452       );
136453     }
136454   }
136455 
136456   pModule->xClose(pCsr);
136457   *pnWord += nWord;
136458   return (rc==SQLITE_DONE ? SQLITE_OK : rc);
136459 }
136460 
136461 /*
136462 ** Calling this function indicates that subsequent calls to
136463 ** fts3PendingTermsAdd() are to add term/position-list pairs for the
136464 ** contents of the document with docid iDocid.
136465 */
136466 static int fts3PendingTermsDocid(
136467   Fts3Table *p,                   /* Full-text table handle */
136468   int iLangid,                    /* Language id of row being written */
136469   sqlite_int64 iDocid             /* Docid of row being written */
136470 ){
136471   assert( iLangid>=0 );
136472 
136473   /* TODO(shess) Explore whether partially flushing the buffer on
136474   ** forced-flush would provide better performance.  I suspect that if
136475   ** we ordered the doclists by size and flushed the largest until the
136476   ** buffer was half empty, that would let the less frequent terms
136477   ** generate longer doclists.
136478   */
136479   if( iDocid<=p->iPrevDocid
136480    || p->iPrevLangid!=iLangid
136481    || p->nPendingData>p->nMaxPendingData
136482   ){
136483     int rc = sqlite3Fts3PendingTermsFlush(p);
136484     if( rc!=SQLITE_OK ) return rc;
136485   }
136486   p->iPrevDocid = iDocid;
136487   p->iPrevLangid = iLangid;
136488   return SQLITE_OK;
136489 }
136490 
136491 /*
136492 ** Discard the contents of the pending-terms hash tables.
136493 */
136494 SQLITE_PRIVATE void sqlite3Fts3PendingTermsClear(Fts3Table *p){
136495   int i;
136496   for(i=0; i<p->nIndex; i++){
136497     Fts3HashElem *pElem;
136498     Fts3Hash *pHash = &p->aIndex[i].hPending;
136499     for(pElem=fts3HashFirst(pHash); pElem; pElem=fts3HashNext(pElem)){
136500       PendingList *pList = (PendingList *)fts3HashData(pElem);
136501       fts3PendingListDelete(pList);
136502     }
136503     fts3HashClear(pHash);
136504   }
136505   p->nPendingData = 0;
136506 }
136507 
136508 /*
136509 ** This function is called by the xUpdate() method as part of an INSERT
136510 ** operation. It adds entries for each term in the new record to the
136511 ** pendingTerms hash table.
136512 **
136513 ** Argument apVal is the same as the similarly named argument passed to
136514 ** fts3InsertData(). Parameter iDocid is the docid of the new row.
136515 */
136516 static int fts3InsertTerms(
136517   Fts3Table *p,
136518   int iLangid,
136519   sqlite3_value **apVal,
136520   u32 *aSz
136521 ){
136522   int i;                          /* Iterator variable */
136523   for(i=2; i<p->nColumn+2; i++){
136524     int iCol = i-2;
136525     if( p->abNotindexed[iCol]==0 ){
136526       const char *zText = (const char *)sqlite3_value_text(apVal[i]);
136527       int rc = fts3PendingTermsAdd(p, iLangid, zText, iCol, &aSz[iCol]);
136528       if( rc!=SQLITE_OK ){
136529         return rc;
136530       }
136531       aSz[p->nColumn] += sqlite3_value_bytes(apVal[i]);
136532     }
136533   }
136534   return SQLITE_OK;
136535 }
136536 
136537 /*
136538 ** This function is called by the xUpdate() method for an INSERT operation.
136539 ** The apVal parameter is passed a copy of the apVal argument passed by
136540 ** SQLite to the xUpdate() method. i.e:
136541 **
136542 **   apVal[0]                Not used for INSERT.
136543 **   apVal[1]                rowid
136544 **   apVal[2]                Left-most user-defined column
136545 **   ...
136546 **   apVal[p->nColumn+1]     Right-most user-defined column
136547 **   apVal[p->nColumn+2]     Hidden column with same name as table
136548 **   apVal[p->nColumn+3]     Hidden "docid" column (alias for rowid)
136549 **   apVal[p->nColumn+4]     Hidden languageid column
136550 */
136551 static int fts3InsertData(
136552   Fts3Table *p,                   /* Full-text table */
136553   sqlite3_value **apVal,          /* Array of values to insert */
136554   sqlite3_int64 *piDocid          /* OUT: Docid for row just inserted */
136555 ){
136556   int rc;                         /* Return code */
136557   sqlite3_stmt *pContentInsert;   /* INSERT INTO %_content VALUES(...) */
136558 
136559   if( p->zContentTbl ){
136560     sqlite3_value *pRowid = apVal[p->nColumn+3];
136561     if( sqlite3_value_type(pRowid)==SQLITE_NULL ){
136562       pRowid = apVal[1];
136563     }
136564     if( sqlite3_value_type(pRowid)!=SQLITE_INTEGER ){
136565       return SQLITE_CONSTRAINT;
136566     }
136567     *piDocid = sqlite3_value_int64(pRowid);
136568     return SQLITE_OK;
136569   }
136570 
136571   /* Locate the statement handle used to insert data into the %_content
136572   ** table. The SQL for this statement is:
136573   **
136574   **   INSERT INTO %_content VALUES(?, ?, ?, ...)
136575   **
136576   ** The statement features N '?' variables, where N is the number of user
136577   ** defined columns in the FTS3 table, plus one for the docid field.
136578   */
136579   rc = fts3SqlStmt(p, SQL_CONTENT_INSERT, &pContentInsert, &apVal[1]);
136580   if( rc==SQLITE_OK && p->zLanguageid ){
136581     rc = sqlite3_bind_int(
136582         pContentInsert, p->nColumn+2,
136583         sqlite3_value_int(apVal[p->nColumn+4])
136584     );
136585   }
136586   if( rc!=SQLITE_OK ) return rc;
136587 
136588   /* There is a quirk here. The users INSERT statement may have specified
136589   ** a value for the "rowid" field, for the "docid" field, or for both.
136590   ** Which is a problem, since "rowid" and "docid" are aliases for the
136591   ** same value. For example:
136592   **
136593   **   INSERT INTO fts3tbl(rowid, docid) VALUES(1, 2);
136594   **
136595   ** In FTS3, this is an error. It is an error to specify non-NULL values
136596   ** for both docid and some other rowid alias.
136597   */
136598   if( SQLITE_NULL!=sqlite3_value_type(apVal[3+p->nColumn]) ){
136599     if( SQLITE_NULL==sqlite3_value_type(apVal[0])
136600      && SQLITE_NULL!=sqlite3_value_type(apVal[1])
136601     ){
136602       /* A rowid/docid conflict. */
136603       return SQLITE_ERROR;
136604     }
136605     rc = sqlite3_bind_value(pContentInsert, 1, apVal[3+p->nColumn]);
136606     if( rc!=SQLITE_OK ) return rc;
136607   }
136608 
136609   /* Execute the statement to insert the record. Set *piDocid to the
136610   ** new docid value.
136611   */
136612   sqlite3_step(pContentInsert);
136613   rc = sqlite3_reset(pContentInsert);
136614 
136615   *piDocid = sqlite3_last_insert_rowid(p->db);
136616   return rc;
136617 }
136618 
136619 
136620 
136621 /*
136622 ** Remove all data from the FTS3 table. Clear the hash table containing
136623 ** pending terms.
136624 */
136625 static int fts3DeleteAll(Fts3Table *p, int bContent){
136626   int rc = SQLITE_OK;             /* Return code */
136627 
136628   /* Discard the contents of the pending-terms hash table. */
136629   sqlite3Fts3PendingTermsClear(p);
136630 
136631   /* Delete everything from the shadow tables. Except, leave %_content as
136632   ** is if bContent is false.  */
136633   assert( p->zContentTbl==0 || bContent==0 );
136634   if( bContent ) fts3SqlExec(&rc, p, SQL_DELETE_ALL_CONTENT, 0);
136635   fts3SqlExec(&rc, p, SQL_DELETE_ALL_SEGMENTS, 0);
136636   fts3SqlExec(&rc, p, SQL_DELETE_ALL_SEGDIR, 0);
136637   if( p->bHasDocsize ){
136638     fts3SqlExec(&rc, p, SQL_DELETE_ALL_DOCSIZE, 0);
136639   }
136640   if( p->bHasStat ){
136641     fts3SqlExec(&rc, p, SQL_DELETE_ALL_STAT, 0);
136642   }
136643   return rc;
136644 }
136645 
136646 /*
136647 **
136648 */
136649 static int langidFromSelect(Fts3Table *p, sqlite3_stmt *pSelect){
136650   int iLangid = 0;
136651   if( p->zLanguageid ) iLangid = sqlite3_column_int(pSelect, p->nColumn+1);
136652   return iLangid;
136653 }
136654 
136655 /*
136656 ** The first element in the apVal[] array is assumed to contain the docid
136657 ** (an integer) of a row about to be deleted. Remove all terms from the
136658 ** full-text index.
136659 */
136660 static void fts3DeleteTerms(
136661   int *pRC,               /* Result code */
136662   Fts3Table *p,           /* The FTS table to delete from */
136663   sqlite3_value *pRowid,  /* The docid to be deleted */
136664   u32 *aSz,               /* Sizes of deleted document written here */
136665   int *pbFound            /* OUT: Set to true if row really does exist */
136666 ){
136667   int rc;
136668   sqlite3_stmt *pSelect;
136669 
136670   assert( *pbFound==0 );
136671   if( *pRC ) return;
136672   rc = fts3SqlStmt(p, SQL_SELECT_CONTENT_BY_ROWID, &pSelect, &pRowid);
136673   if( rc==SQLITE_OK ){
136674     if( SQLITE_ROW==sqlite3_step(pSelect) ){
136675       int i;
136676       int iLangid = langidFromSelect(p, pSelect);
136677       rc = fts3PendingTermsDocid(p, iLangid, sqlite3_column_int64(pSelect, 0));
136678       for(i=1; rc==SQLITE_OK && i<=p->nColumn; i++){
136679         int iCol = i-1;
136680         if( p->abNotindexed[iCol]==0 ){
136681           const char *zText = (const char *)sqlite3_column_text(pSelect, i);
136682           rc = fts3PendingTermsAdd(p, iLangid, zText, -1, &aSz[iCol]);
136683           aSz[p->nColumn] += sqlite3_column_bytes(pSelect, i);
136684         }
136685       }
136686       if( rc!=SQLITE_OK ){
136687         sqlite3_reset(pSelect);
136688         *pRC = rc;
136689         return;
136690       }
136691       *pbFound = 1;
136692     }
136693     rc = sqlite3_reset(pSelect);
136694   }else{
136695     sqlite3_reset(pSelect);
136696   }
136697   *pRC = rc;
136698 }
136699 
136700 /*
136701 ** Forward declaration to account for the circular dependency between
136702 ** functions fts3SegmentMerge() and fts3AllocateSegdirIdx().
136703 */
136704 static int fts3SegmentMerge(Fts3Table *, int, int, int);
136705 
136706 /*
136707 ** This function allocates a new level iLevel index in the segdir table.
136708 ** Usually, indexes are allocated within a level sequentially starting
136709 ** with 0, so the allocated index is one greater than the value returned
136710 ** by:
136711 **
136712 **   SELECT max(idx) FROM %_segdir WHERE level = :iLevel
136713 **
136714 ** However, if there are already FTS3_MERGE_COUNT indexes at the requested
136715 ** level, they are merged into a single level (iLevel+1) segment and the
136716 ** allocated index is 0.
136717 **
136718 ** If successful, *piIdx is set to the allocated index slot and SQLITE_OK
136719 ** returned. Otherwise, an SQLite error code is returned.
136720 */
136721 static int fts3AllocateSegdirIdx(
136722   Fts3Table *p,
136723   int iLangid,                    /* Language id */
136724   int iIndex,                     /* Index for p->aIndex */
136725   int iLevel,
136726   int *piIdx
136727 ){
136728   int rc;                         /* Return Code */
136729   sqlite3_stmt *pNextIdx;         /* Query for next idx at level iLevel */
136730   int iNext = 0;                  /* Result of query pNextIdx */
136731 
136732   assert( iLangid>=0 );
136733   assert( p->nIndex>=1 );
136734 
136735   /* Set variable iNext to the next available segdir index at level iLevel. */
136736   rc = fts3SqlStmt(p, SQL_NEXT_SEGMENT_INDEX, &pNextIdx, 0);
136737   if( rc==SQLITE_OK ){
136738     sqlite3_bind_int64(
136739         pNextIdx, 1, getAbsoluteLevel(p, iLangid, iIndex, iLevel)
136740     );
136741     if( SQLITE_ROW==sqlite3_step(pNextIdx) ){
136742       iNext = sqlite3_column_int(pNextIdx, 0);
136743     }
136744     rc = sqlite3_reset(pNextIdx);
136745   }
136746 
136747   if( rc==SQLITE_OK ){
136748     /* If iNext is FTS3_MERGE_COUNT, indicating that level iLevel is already
136749     ** full, merge all segments in level iLevel into a single iLevel+1
136750     ** segment and allocate (newly freed) index 0 at level iLevel. Otherwise,
136751     ** if iNext is less than FTS3_MERGE_COUNT, allocate index iNext.
136752     */
136753     if( iNext>=FTS3_MERGE_COUNT ){
136754       fts3LogMerge(16, getAbsoluteLevel(p, iLangid, iIndex, iLevel));
136755       rc = fts3SegmentMerge(p, iLangid, iIndex, iLevel);
136756       *piIdx = 0;
136757     }else{
136758       *piIdx = iNext;
136759     }
136760   }
136761 
136762   return rc;
136763 }
136764 
136765 /*
136766 ** The %_segments table is declared as follows:
136767 **
136768 **   CREATE TABLE %_segments(blockid INTEGER PRIMARY KEY, block BLOB)
136769 **
136770 ** This function reads data from a single row of the %_segments table. The
136771 ** specific row is identified by the iBlockid parameter. If paBlob is not
136772 ** NULL, then a buffer is allocated using sqlite3_malloc() and populated
136773 ** with the contents of the blob stored in the "block" column of the
136774 ** identified table row is. Whether or not paBlob is NULL, *pnBlob is set
136775 ** to the size of the blob in bytes before returning.
136776 **
136777 ** If an error occurs, or the table does not contain the specified row,
136778 ** an SQLite error code is returned. Otherwise, SQLITE_OK is returned. If
136779 ** paBlob is non-NULL, then it is the responsibility of the caller to
136780 ** eventually free the returned buffer.
136781 **
136782 ** This function may leave an open sqlite3_blob* handle in the
136783 ** Fts3Table.pSegments variable. This handle is reused by subsequent calls
136784 ** to this function. The handle may be closed by calling the
136785 ** sqlite3Fts3SegmentsClose() function. Reusing a blob handle is a handy
136786 ** performance improvement, but the blob handle should always be closed
136787 ** before control is returned to the user (to prevent a lock being held
136788 ** on the database file for longer than necessary). Thus, any virtual table
136789 ** method (xFilter etc.) that may directly or indirectly call this function
136790 ** must call sqlite3Fts3SegmentsClose() before returning.
136791 */
136792 SQLITE_PRIVATE int sqlite3Fts3ReadBlock(
136793   Fts3Table *p,                   /* FTS3 table handle */
136794   sqlite3_int64 iBlockid,         /* Access the row with blockid=$iBlockid */
136795   char **paBlob,                  /* OUT: Blob data in malloc'd buffer */
136796   int *pnBlob,                    /* OUT: Size of blob data */
136797   int *pnLoad                     /* OUT: Bytes actually loaded */
136798 ){
136799   int rc;                         /* Return code */
136800 
136801   /* pnBlob must be non-NULL. paBlob may be NULL or non-NULL. */
136802   assert( pnBlob );
136803 
136804   if( p->pSegments ){
136805     rc = sqlite3_blob_reopen(p->pSegments, iBlockid);
136806   }else{
136807     if( 0==p->zSegmentsTbl ){
136808       p->zSegmentsTbl = sqlite3_mprintf("%s_segments", p->zName);
136809       if( 0==p->zSegmentsTbl ) return SQLITE_NOMEM;
136810     }
136811     rc = sqlite3_blob_open(
136812        p->db, p->zDb, p->zSegmentsTbl, "block", iBlockid, 0, &p->pSegments
136813     );
136814   }
136815 
136816   if( rc==SQLITE_OK ){
136817     int nByte = sqlite3_blob_bytes(p->pSegments);
136818     *pnBlob = nByte;
136819     if( paBlob ){
136820       char *aByte = sqlite3_malloc(nByte + FTS3_NODE_PADDING);
136821       if( !aByte ){
136822         rc = SQLITE_NOMEM;
136823       }else{
136824         if( pnLoad && nByte>(FTS3_NODE_CHUNK_THRESHOLD) ){
136825           nByte = FTS3_NODE_CHUNKSIZE;
136826           *pnLoad = nByte;
136827         }
136828         rc = sqlite3_blob_read(p->pSegments, aByte, nByte, 0);
136829         memset(&aByte[nByte], 0, FTS3_NODE_PADDING);
136830         if( rc!=SQLITE_OK ){
136831           sqlite3_free(aByte);
136832           aByte = 0;
136833         }
136834       }
136835       *paBlob = aByte;
136836     }
136837   }
136838 
136839   return rc;
136840 }
136841 
136842 /*
136843 ** Close the blob handle at p->pSegments, if it is open. See comments above
136844 ** the sqlite3Fts3ReadBlock() function for details.
136845 */
136846 SQLITE_PRIVATE void sqlite3Fts3SegmentsClose(Fts3Table *p){
136847   sqlite3_blob_close(p->pSegments);
136848   p->pSegments = 0;
136849 }
136850 
136851 static int fts3SegReaderIncrRead(Fts3SegReader *pReader){
136852   int nRead;                      /* Number of bytes to read */
136853   int rc;                         /* Return code */
136854 
136855   nRead = MIN(pReader->nNode - pReader->nPopulate, FTS3_NODE_CHUNKSIZE);
136856   rc = sqlite3_blob_read(
136857       pReader->pBlob,
136858       &pReader->aNode[pReader->nPopulate],
136859       nRead,
136860       pReader->nPopulate
136861   );
136862 
136863   if( rc==SQLITE_OK ){
136864     pReader->nPopulate += nRead;
136865     memset(&pReader->aNode[pReader->nPopulate], 0, FTS3_NODE_PADDING);
136866     if( pReader->nPopulate==pReader->nNode ){
136867       sqlite3_blob_close(pReader->pBlob);
136868       pReader->pBlob = 0;
136869       pReader->nPopulate = 0;
136870     }
136871   }
136872   return rc;
136873 }
136874 
136875 static int fts3SegReaderRequire(Fts3SegReader *pReader, char *pFrom, int nByte){
136876   int rc = SQLITE_OK;
136877   assert( !pReader->pBlob
136878        || (pFrom>=pReader->aNode && pFrom<&pReader->aNode[pReader->nNode])
136879   );
136880   while( pReader->pBlob && rc==SQLITE_OK
136881      &&  (pFrom - pReader->aNode + nByte)>pReader->nPopulate
136882   ){
136883     rc = fts3SegReaderIncrRead(pReader);
136884   }
136885   return rc;
136886 }
136887 
136888 /*
136889 ** Set an Fts3SegReader cursor to point at EOF.
136890 */
136891 static void fts3SegReaderSetEof(Fts3SegReader *pSeg){
136892   if( !fts3SegReaderIsRootOnly(pSeg) ){
136893     sqlite3_free(pSeg->aNode);
136894     sqlite3_blob_close(pSeg->pBlob);
136895     pSeg->pBlob = 0;
136896   }
136897   pSeg->aNode = 0;
136898 }
136899 
136900 /*
136901 ** Move the iterator passed as the first argument to the next term in the
136902 ** segment. If successful, SQLITE_OK is returned. If there is no next term,
136903 ** SQLITE_DONE. Otherwise, an SQLite error code.
136904 */
136905 static int fts3SegReaderNext(
136906   Fts3Table *p,
136907   Fts3SegReader *pReader,
136908   int bIncr
136909 ){
136910   int rc;                         /* Return code of various sub-routines */
136911   char *pNext;                    /* Cursor variable */
136912   int nPrefix;                    /* Number of bytes in term prefix */
136913   int nSuffix;                    /* Number of bytes in term suffix */
136914 
136915   if( !pReader->aDoclist ){
136916     pNext = pReader->aNode;
136917   }else{
136918     pNext = &pReader->aDoclist[pReader->nDoclist];
136919   }
136920 
136921   if( !pNext || pNext>=&pReader->aNode[pReader->nNode] ){
136922 
136923     if( fts3SegReaderIsPending(pReader) ){
136924       Fts3HashElem *pElem = *(pReader->ppNextElem);
136925       if( pElem==0 ){
136926         pReader->aNode = 0;
136927       }else{
136928         PendingList *pList = (PendingList *)fts3HashData(pElem);
136929         pReader->zTerm = (char *)fts3HashKey(pElem);
136930         pReader->nTerm = fts3HashKeysize(pElem);
136931         pReader->nNode = pReader->nDoclist = pList->nData + 1;
136932         pReader->aNode = pReader->aDoclist = pList->aData;
136933         pReader->ppNextElem++;
136934         assert( pReader->aNode );
136935       }
136936       return SQLITE_OK;
136937     }
136938 
136939     fts3SegReaderSetEof(pReader);
136940 
136941     /* If iCurrentBlock>=iLeafEndBlock, this is an EOF condition. All leaf
136942     ** blocks have already been traversed.  */
136943     assert( pReader->iCurrentBlock<=pReader->iLeafEndBlock );
136944     if( pReader->iCurrentBlock>=pReader->iLeafEndBlock ){
136945       return SQLITE_OK;
136946     }
136947 
136948     rc = sqlite3Fts3ReadBlock(
136949         p, ++pReader->iCurrentBlock, &pReader->aNode, &pReader->nNode,
136950         (bIncr ? &pReader->nPopulate : 0)
136951     );
136952     if( rc!=SQLITE_OK ) return rc;
136953     assert( pReader->pBlob==0 );
136954     if( bIncr && pReader->nPopulate<pReader->nNode ){
136955       pReader->pBlob = p->pSegments;
136956       p->pSegments = 0;
136957     }
136958     pNext = pReader->aNode;
136959   }
136960 
136961   assert( !fts3SegReaderIsPending(pReader) );
136962 
136963   rc = fts3SegReaderRequire(pReader, pNext, FTS3_VARINT_MAX*2);
136964   if( rc!=SQLITE_OK ) return rc;
136965 
136966   /* Because of the FTS3_NODE_PADDING bytes of padding, the following is
136967   ** safe (no risk of overread) even if the node data is corrupted. */
136968   pNext += fts3GetVarint32(pNext, &nPrefix);
136969   pNext += fts3GetVarint32(pNext, &nSuffix);
136970   if( nPrefix<0 || nSuffix<=0
136971    || &pNext[nSuffix]>&pReader->aNode[pReader->nNode]
136972   ){
136973     return FTS_CORRUPT_VTAB;
136974   }
136975 
136976   if( nPrefix+nSuffix>pReader->nTermAlloc ){
136977     int nNew = (nPrefix+nSuffix)*2;
136978     char *zNew = sqlite3_realloc(pReader->zTerm, nNew);
136979     if( !zNew ){
136980       return SQLITE_NOMEM;
136981     }
136982     pReader->zTerm = zNew;
136983     pReader->nTermAlloc = nNew;
136984   }
136985 
136986   rc = fts3SegReaderRequire(pReader, pNext, nSuffix+FTS3_VARINT_MAX);
136987   if( rc!=SQLITE_OK ) return rc;
136988 
136989   memcpy(&pReader->zTerm[nPrefix], pNext, nSuffix);
136990   pReader->nTerm = nPrefix+nSuffix;
136991   pNext += nSuffix;
136992   pNext += fts3GetVarint32(pNext, &pReader->nDoclist);
136993   pReader->aDoclist = pNext;
136994   pReader->pOffsetList = 0;
136995 
136996   /* Check that the doclist does not appear to extend past the end of the
136997   ** b-tree node. And that the final byte of the doclist is 0x00. If either
136998   ** of these statements is untrue, then the data structure is corrupt.
136999   */
137000   if( &pReader->aDoclist[pReader->nDoclist]>&pReader->aNode[pReader->nNode]
137001    || (pReader->nPopulate==0 && pReader->aDoclist[pReader->nDoclist-1])
137002   ){
137003     return FTS_CORRUPT_VTAB;
137004   }
137005   return SQLITE_OK;
137006 }
137007 
137008 /*
137009 ** Set the SegReader to point to the first docid in the doclist associated
137010 ** with the current term.
137011 */
137012 static int fts3SegReaderFirstDocid(Fts3Table *pTab, Fts3SegReader *pReader){
137013   int rc = SQLITE_OK;
137014   assert( pReader->aDoclist );
137015   assert( !pReader->pOffsetList );
137016   if( pTab->bDescIdx && fts3SegReaderIsPending(pReader) ){
137017     u8 bEof = 0;
137018     pReader->iDocid = 0;
137019     pReader->nOffsetList = 0;
137020     sqlite3Fts3DoclistPrev(0,
137021         pReader->aDoclist, pReader->nDoclist, &pReader->pOffsetList,
137022         &pReader->iDocid, &pReader->nOffsetList, &bEof
137023     );
137024   }else{
137025     rc = fts3SegReaderRequire(pReader, pReader->aDoclist, FTS3_VARINT_MAX);
137026     if( rc==SQLITE_OK ){
137027       int n = sqlite3Fts3GetVarint(pReader->aDoclist, &pReader->iDocid);
137028       pReader->pOffsetList = &pReader->aDoclist[n];
137029     }
137030   }
137031   return rc;
137032 }
137033 
137034 /*
137035 ** Advance the SegReader to point to the next docid in the doclist
137036 ** associated with the current term.
137037 **
137038 ** If arguments ppOffsetList and pnOffsetList are not NULL, then
137039 ** *ppOffsetList is set to point to the first column-offset list
137040 ** in the doclist entry (i.e. immediately past the docid varint).
137041 ** *pnOffsetList is set to the length of the set of column-offset
137042 ** lists, not including the nul-terminator byte. For example:
137043 */
137044 static int fts3SegReaderNextDocid(
137045   Fts3Table *pTab,
137046   Fts3SegReader *pReader,         /* Reader to advance to next docid */
137047   char **ppOffsetList,            /* OUT: Pointer to current position-list */
137048   int *pnOffsetList               /* OUT: Length of *ppOffsetList in bytes */
137049 ){
137050   int rc = SQLITE_OK;
137051   char *p = pReader->pOffsetList;
137052   char c = 0;
137053 
137054   assert( p );
137055 
137056   if( pTab->bDescIdx && fts3SegReaderIsPending(pReader) ){
137057     /* A pending-terms seg-reader for an FTS4 table that uses order=desc.
137058     ** Pending-terms doclists are always built up in ascending order, so
137059     ** we have to iterate through them backwards here. */
137060     u8 bEof = 0;
137061     if( ppOffsetList ){
137062       *ppOffsetList = pReader->pOffsetList;
137063       *pnOffsetList = pReader->nOffsetList - 1;
137064     }
137065     sqlite3Fts3DoclistPrev(0,
137066         pReader->aDoclist, pReader->nDoclist, &p, &pReader->iDocid,
137067         &pReader->nOffsetList, &bEof
137068     );
137069     if( bEof ){
137070       pReader->pOffsetList = 0;
137071     }else{
137072       pReader->pOffsetList = p;
137073     }
137074   }else{
137075     char *pEnd = &pReader->aDoclist[pReader->nDoclist];
137076 
137077     /* Pointer p currently points at the first byte of an offset list. The
137078     ** following block advances it to point one byte past the end of
137079     ** the same offset list. */
137080     while( 1 ){
137081 
137082       /* The following line of code (and the "p++" below the while() loop) is
137083       ** normally all that is required to move pointer p to the desired
137084       ** position. The exception is if this node is being loaded from disk
137085       ** incrementally and pointer "p" now points to the first byte past
137086       ** the populated part of pReader->aNode[].
137087       */
137088       while( *p | c ) c = *p++ & 0x80;
137089       assert( *p==0 );
137090 
137091       if( pReader->pBlob==0 || p<&pReader->aNode[pReader->nPopulate] ) break;
137092       rc = fts3SegReaderIncrRead(pReader);
137093       if( rc!=SQLITE_OK ) return rc;
137094     }
137095     p++;
137096 
137097     /* If required, populate the output variables with a pointer to and the
137098     ** size of the previous offset-list.
137099     */
137100     if( ppOffsetList ){
137101       *ppOffsetList = pReader->pOffsetList;
137102       *pnOffsetList = (int)(p - pReader->pOffsetList - 1);
137103     }
137104 
137105     /* List may have been edited in place by fts3EvalNearTrim() */
137106     while( p<pEnd && *p==0 ) p++;
137107 
137108     /* If there are no more entries in the doclist, set pOffsetList to
137109     ** NULL. Otherwise, set Fts3SegReader.iDocid to the next docid and
137110     ** Fts3SegReader.pOffsetList to point to the next offset list before
137111     ** returning.
137112     */
137113     if( p>=pEnd ){
137114       pReader->pOffsetList = 0;
137115     }else{
137116       rc = fts3SegReaderRequire(pReader, p, FTS3_VARINT_MAX);
137117       if( rc==SQLITE_OK ){
137118         sqlite3_int64 iDelta;
137119         pReader->pOffsetList = p + sqlite3Fts3GetVarint(p, &iDelta);
137120         if( pTab->bDescIdx ){
137121           pReader->iDocid -= iDelta;
137122         }else{
137123           pReader->iDocid += iDelta;
137124         }
137125       }
137126     }
137127   }
137128 
137129   return SQLITE_OK;
137130 }
137131 
137132 
137133 SQLITE_PRIVATE int sqlite3Fts3MsrOvfl(
137134   Fts3Cursor *pCsr,
137135   Fts3MultiSegReader *pMsr,
137136   int *pnOvfl
137137 ){
137138   Fts3Table *p = (Fts3Table*)pCsr->base.pVtab;
137139   int nOvfl = 0;
137140   int ii;
137141   int rc = SQLITE_OK;
137142   int pgsz = p->nPgsz;
137143 
137144   assert( p->bFts4 );
137145   assert( pgsz>0 );
137146 
137147   for(ii=0; rc==SQLITE_OK && ii<pMsr->nSegment; ii++){
137148     Fts3SegReader *pReader = pMsr->apSegment[ii];
137149     if( !fts3SegReaderIsPending(pReader)
137150      && !fts3SegReaderIsRootOnly(pReader)
137151     ){
137152       sqlite3_int64 jj;
137153       for(jj=pReader->iStartBlock; jj<=pReader->iLeafEndBlock; jj++){
137154         int nBlob;
137155         rc = sqlite3Fts3ReadBlock(p, jj, 0, &nBlob, 0);
137156         if( rc!=SQLITE_OK ) break;
137157         if( (nBlob+35)>pgsz ){
137158           nOvfl += (nBlob + 34)/pgsz;
137159         }
137160       }
137161     }
137162   }
137163   *pnOvfl = nOvfl;
137164   return rc;
137165 }
137166 
137167 /*
137168 ** Free all allocations associated with the iterator passed as the
137169 ** second argument.
137170 */
137171 SQLITE_PRIVATE void sqlite3Fts3SegReaderFree(Fts3SegReader *pReader){
137172   if( pReader && !fts3SegReaderIsPending(pReader) ){
137173     sqlite3_free(pReader->zTerm);
137174     if( !fts3SegReaderIsRootOnly(pReader) ){
137175       sqlite3_free(pReader->aNode);
137176       sqlite3_blob_close(pReader->pBlob);
137177     }
137178   }
137179   sqlite3_free(pReader);
137180 }
137181 
137182 /*
137183 ** Allocate a new SegReader object.
137184 */
137185 SQLITE_PRIVATE int sqlite3Fts3SegReaderNew(
137186   int iAge,                       /* Segment "age". */
137187   int bLookup,                    /* True for a lookup only */
137188   sqlite3_int64 iStartLeaf,       /* First leaf to traverse */
137189   sqlite3_int64 iEndLeaf,         /* Final leaf to traverse */
137190   sqlite3_int64 iEndBlock,        /* Final block of segment */
137191   const char *zRoot,              /* Buffer containing root node */
137192   int nRoot,                      /* Size of buffer containing root node */
137193   Fts3SegReader **ppReader        /* OUT: Allocated Fts3SegReader */
137194 ){
137195   Fts3SegReader *pReader;         /* Newly allocated SegReader object */
137196   int nExtra = 0;                 /* Bytes to allocate segment root node */
137197 
137198   assert( iStartLeaf<=iEndLeaf );
137199   if( iStartLeaf==0 ){
137200     nExtra = nRoot + FTS3_NODE_PADDING;
137201   }
137202 
137203   pReader = (Fts3SegReader *)sqlite3_malloc(sizeof(Fts3SegReader) + nExtra);
137204   if( !pReader ){
137205     return SQLITE_NOMEM;
137206   }
137207   memset(pReader, 0, sizeof(Fts3SegReader));
137208   pReader->iIdx = iAge;
137209   pReader->bLookup = bLookup!=0;
137210   pReader->iStartBlock = iStartLeaf;
137211   pReader->iLeafEndBlock = iEndLeaf;
137212   pReader->iEndBlock = iEndBlock;
137213 
137214   if( nExtra ){
137215     /* The entire segment is stored in the root node. */
137216     pReader->aNode = (char *)&pReader[1];
137217     pReader->rootOnly = 1;
137218     pReader->nNode = nRoot;
137219     memcpy(pReader->aNode, zRoot, nRoot);
137220     memset(&pReader->aNode[nRoot], 0, FTS3_NODE_PADDING);
137221   }else{
137222     pReader->iCurrentBlock = iStartLeaf-1;
137223   }
137224   *ppReader = pReader;
137225   return SQLITE_OK;
137226 }
137227 
137228 /*
137229 ** This is a comparison function used as a qsort() callback when sorting
137230 ** an array of pending terms by term. This occurs as part of flushing
137231 ** the contents of the pending-terms hash table to the database.
137232 */
137233 static int fts3CompareElemByTerm(const void *lhs, const void *rhs){
137234   char *z1 = fts3HashKey(*(Fts3HashElem **)lhs);
137235   char *z2 = fts3HashKey(*(Fts3HashElem **)rhs);
137236   int n1 = fts3HashKeysize(*(Fts3HashElem **)lhs);
137237   int n2 = fts3HashKeysize(*(Fts3HashElem **)rhs);
137238 
137239   int n = (n1<n2 ? n1 : n2);
137240   int c = memcmp(z1, z2, n);
137241   if( c==0 ){
137242     c = n1 - n2;
137243   }
137244   return c;
137245 }
137246 
137247 /*
137248 ** This function is used to allocate an Fts3SegReader that iterates through
137249 ** a subset of the terms stored in the Fts3Table.pendingTerms array.
137250 **
137251 ** If the isPrefixIter parameter is zero, then the returned SegReader iterates
137252 ** through each term in the pending-terms table. Or, if isPrefixIter is
137253 ** non-zero, it iterates through each term and its prefixes. For example, if
137254 ** the pending terms hash table contains the terms "sqlite", "mysql" and
137255 ** "firebird", then the iterator visits the following 'terms' (in the order
137256 ** shown):
137257 **
137258 **   f fi fir fire fireb firebi firebir firebird
137259 **   m my mys mysq mysql
137260 **   s sq sql sqli sqlit sqlite
137261 **
137262 ** Whereas if isPrefixIter is zero, the terms visited are:
137263 **
137264 **   firebird mysql sqlite
137265 */
137266 SQLITE_PRIVATE int sqlite3Fts3SegReaderPending(
137267   Fts3Table *p,                   /* Virtual table handle */
137268   int iIndex,                     /* Index for p->aIndex */
137269   const char *zTerm,              /* Term to search for */
137270   int nTerm,                      /* Size of buffer zTerm */
137271   int bPrefix,                    /* True for a prefix iterator */
137272   Fts3SegReader **ppReader        /* OUT: SegReader for pending-terms */
137273 ){
137274   Fts3SegReader *pReader = 0;     /* Fts3SegReader object to return */
137275   Fts3HashElem *pE;               /* Iterator variable */
137276   Fts3HashElem **aElem = 0;       /* Array of term hash entries to scan */
137277   int nElem = 0;                  /* Size of array at aElem */
137278   int rc = SQLITE_OK;             /* Return Code */
137279   Fts3Hash *pHash;
137280 
137281   pHash = &p->aIndex[iIndex].hPending;
137282   if( bPrefix ){
137283     int nAlloc = 0;               /* Size of allocated array at aElem */
137284 
137285     for(pE=fts3HashFirst(pHash); pE; pE=fts3HashNext(pE)){
137286       char *zKey = (char *)fts3HashKey(pE);
137287       int nKey = fts3HashKeysize(pE);
137288       if( nTerm==0 || (nKey>=nTerm && 0==memcmp(zKey, zTerm, nTerm)) ){
137289         if( nElem==nAlloc ){
137290           Fts3HashElem **aElem2;
137291           nAlloc += 16;
137292           aElem2 = (Fts3HashElem **)sqlite3_realloc(
137293               aElem, nAlloc*sizeof(Fts3HashElem *)
137294           );
137295           if( !aElem2 ){
137296             rc = SQLITE_NOMEM;
137297             nElem = 0;
137298             break;
137299           }
137300           aElem = aElem2;
137301         }
137302 
137303         aElem[nElem++] = pE;
137304       }
137305     }
137306 
137307     /* If more than one term matches the prefix, sort the Fts3HashElem
137308     ** objects in term order using qsort(). This uses the same comparison
137309     ** callback as is used when flushing terms to disk.
137310     */
137311     if( nElem>1 ){
137312       qsort(aElem, nElem, sizeof(Fts3HashElem *), fts3CompareElemByTerm);
137313     }
137314 
137315   }else{
137316     /* The query is a simple term lookup that matches at most one term in
137317     ** the index. All that is required is a straight hash-lookup.
137318     **
137319     ** Because the stack address of pE may be accessed via the aElem pointer
137320     ** below, the "Fts3HashElem *pE" must be declared so that it is valid
137321     ** within this entire function, not just this "else{...}" block.
137322     */
137323     pE = fts3HashFindElem(pHash, zTerm, nTerm);
137324     if( pE ){
137325       aElem = &pE;
137326       nElem = 1;
137327     }
137328   }
137329 
137330   if( nElem>0 ){
137331     int nByte = sizeof(Fts3SegReader) + (nElem+1)*sizeof(Fts3HashElem *);
137332     pReader = (Fts3SegReader *)sqlite3_malloc(nByte);
137333     if( !pReader ){
137334       rc = SQLITE_NOMEM;
137335     }else{
137336       memset(pReader, 0, nByte);
137337       pReader->iIdx = 0x7FFFFFFF;
137338       pReader->ppNextElem = (Fts3HashElem **)&pReader[1];
137339       memcpy(pReader->ppNextElem, aElem, nElem*sizeof(Fts3HashElem *));
137340     }
137341   }
137342 
137343   if( bPrefix ){
137344     sqlite3_free(aElem);
137345   }
137346   *ppReader = pReader;
137347   return rc;
137348 }
137349 
137350 /*
137351 ** Compare the entries pointed to by two Fts3SegReader structures.
137352 ** Comparison is as follows:
137353 **
137354 **   1) EOF is greater than not EOF.
137355 **
137356 **   2) The current terms (if any) are compared using memcmp(). If one
137357 **      term is a prefix of another, the longer term is considered the
137358 **      larger.
137359 **
137360 **   3) By segment age. An older segment is considered larger.
137361 */
137362 static int fts3SegReaderCmp(Fts3SegReader *pLhs, Fts3SegReader *pRhs){
137363   int rc;
137364   if( pLhs->aNode && pRhs->aNode ){
137365     int rc2 = pLhs->nTerm - pRhs->nTerm;
137366     if( rc2<0 ){
137367       rc = memcmp(pLhs->zTerm, pRhs->zTerm, pLhs->nTerm);
137368     }else{
137369       rc = memcmp(pLhs->zTerm, pRhs->zTerm, pRhs->nTerm);
137370     }
137371     if( rc==0 ){
137372       rc = rc2;
137373     }
137374   }else{
137375     rc = (pLhs->aNode==0) - (pRhs->aNode==0);
137376   }
137377   if( rc==0 ){
137378     rc = pRhs->iIdx - pLhs->iIdx;
137379   }
137380   assert( rc!=0 );
137381   return rc;
137382 }
137383 
137384 /*
137385 ** A different comparison function for SegReader structures. In this
137386 ** version, it is assumed that each SegReader points to an entry in
137387 ** a doclist for identical terms. Comparison is made as follows:
137388 **
137389 **   1) EOF (end of doclist in this case) is greater than not EOF.
137390 **
137391 **   2) By current docid.
137392 **
137393 **   3) By segment age. An older segment is considered larger.
137394 */
137395 static int fts3SegReaderDoclistCmp(Fts3SegReader *pLhs, Fts3SegReader *pRhs){
137396   int rc = (pLhs->pOffsetList==0)-(pRhs->pOffsetList==0);
137397   if( rc==0 ){
137398     if( pLhs->iDocid==pRhs->iDocid ){
137399       rc = pRhs->iIdx - pLhs->iIdx;
137400     }else{
137401       rc = (pLhs->iDocid > pRhs->iDocid) ? 1 : -1;
137402     }
137403   }
137404   assert( pLhs->aNode && pRhs->aNode );
137405   return rc;
137406 }
137407 static int fts3SegReaderDoclistCmpRev(Fts3SegReader *pLhs, Fts3SegReader *pRhs){
137408   int rc = (pLhs->pOffsetList==0)-(pRhs->pOffsetList==0);
137409   if( rc==0 ){
137410     if( pLhs->iDocid==pRhs->iDocid ){
137411       rc = pRhs->iIdx - pLhs->iIdx;
137412     }else{
137413       rc = (pLhs->iDocid < pRhs->iDocid) ? 1 : -1;
137414     }
137415   }
137416   assert( pLhs->aNode && pRhs->aNode );
137417   return rc;
137418 }
137419 
137420 /*
137421 ** Compare the term that the Fts3SegReader object passed as the first argument
137422 ** points to with the term specified by arguments zTerm and nTerm.
137423 **
137424 ** If the pSeg iterator is already at EOF, return 0. Otherwise, return
137425 ** -ve if the pSeg term is less than zTerm/nTerm, 0 if the two terms are
137426 ** equal, or +ve if the pSeg term is greater than zTerm/nTerm.
137427 */
137428 static int fts3SegReaderTermCmp(
137429   Fts3SegReader *pSeg,            /* Segment reader object */
137430   const char *zTerm,              /* Term to compare to */
137431   int nTerm                       /* Size of term zTerm in bytes */
137432 ){
137433   int res = 0;
137434   if( pSeg->aNode ){
137435     if( pSeg->nTerm>nTerm ){
137436       res = memcmp(pSeg->zTerm, zTerm, nTerm);
137437     }else{
137438       res = memcmp(pSeg->zTerm, zTerm, pSeg->nTerm);
137439     }
137440     if( res==0 ){
137441       res = pSeg->nTerm-nTerm;
137442     }
137443   }
137444   return res;
137445 }
137446 
137447 /*
137448 ** Argument apSegment is an array of nSegment elements. It is known that
137449 ** the final (nSegment-nSuspect) members are already in sorted order
137450 ** (according to the comparison function provided). This function shuffles
137451 ** the array around until all entries are in sorted order.
137452 */
137453 static void fts3SegReaderSort(
137454   Fts3SegReader **apSegment,                     /* Array to sort entries of */
137455   int nSegment,                                  /* Size of apSegment array */
137456   int nSuspect,                                  /* Unsorted entry count */
137457   int (*xCmp)(Fts3SegReader *, Fts3SegReader *)  /* Comparison function */
137458 ){
137459   int i;                          /* Iterator variable */
137460 
137461   assert( nSuspect<=nSegment );
137462 
137463   if( nSuspect==nSegment ) nSuspect--;
137464   for(i=nSuspect-1; i>=0; i--){
137465     int j;
137466     for(j=i; j<(nSegment-1); j++){
137467       Fts3SegReader *pTmp;
137468       if( xCmp(apSegment[j], apSegment[j+1])<0 ) break;
137469       pTmp = apSegment[j+1];
137470       apSegment[j+1] = apSegment[j];
137471       apSegment[j] = pTmp;
137472     }
137473   }
137474 
137475 #ifndef NDEBUG
137476   /* Check that the list really is sorted now. */
137477   for(i=0; i<(nSuspect-1); i++){
137478     assert( xCmp(apSegment[i], apSegment[i+1])<0 );
137479   }
137480 #endif
137481 }
137482 
137483 /*
137484 ** Insert a record into the %_segments table.
137485 */
137486 static int fts3WriteSegment(
137487   Fts3Table *p,                   /* Virtual table handle */
137488   sqlite3_int64 iBlock,           /* Block id for new block */
137489   char *z,                        /* Pointer to buffer containing block data */
137490   int n                           /* Size of buffer z in bytes */
137491 ){
137492   sqlite3_stmt *pStmt;
137493   int rc = fts3SqlStmt(p, SQL_INSERT_SEGMENTS, &pStmt, 0);
137494   if( rc==SQLITE_OK ){
137495     sqlite3_bind_int64(pStmt, 1, iBlock);
137496     sqlite3_bind_blob(pStmt, 2, z, n, SQLITE_STATIC);
137497     sqlite3_step(pStmt);
137498     rc = sqlite3_reset(pStmt);
137499   }
137500   return rc;
137501 }
137502 
137503 /*
137504 ** Find the largest relative level number in the table. If successful, set
137505 ** *pnMax to this value and return SQLITE_OK. Otherwise, if an error occurs,
137506 ** set *pnMax to zero and return an SQLite error code.
137507 */
137508 SQLITE_PRIVATE int sqlite3Fts3MaxLevel(Fts3Table *p, int *pnMax){
137509   int rc;
137510   int mxLevel = 0;
137511   sqlite3_stmt *pStmt = 0;
137512 
137513   rc = fts3SqlStmt(p, SQL_SELECT_MXLEVEL, &pStmt, 0);
137514   if( rc==SQLITE_OK ){
137515     if( SQLITE_ROW==sqlite3_step(pStmt) ){
137516       mxLevel = sqlite3_column_int(pStmt, 0);
137517     }
137518     rc = sqlite3_reset(pStmt);
137519   }
137520   *pnMax = mxLevel;
137521   return rc;
137522 }
137523 
137524 /*
137525 ** Insert a record into the %_segdir table.
137526 */
137527 static int fts3WriteSegdir(
137528   Fts3Table *p,                   /* Virtual table handle */
137529   sqlite3_int64 iLevel,           /* Value for "level" field (absolute level) */
137530   int iIdx,                       /* Value for "idx" field */
137531   sqlite3_int64 iStartBlock,      /* Value for "start_block" field */
137532   sqlite3_int64 iLeafEndBlock,    /* Value for "leaves_end_block" field */
137533   sqlite3_int64 iEndBlock,        /* Value for "end_block" field */
137534   sqlite3_int64 nLeafData,        /* Bytes of leaf data in segment */
137535   char *zRoot,                    /* Blob value for "root" field */
137536   int nRoot                       /* Number of bytes in buffer zRoot */
137537 ){
137538   sqlite3_stmt *pStmt;
137539   int rc = fts3SqlStmt(p, SQL_INSERT_SEGDIR, &pStmt, 0);
137540   if( rc==SQLITE_OK ){
137541     sqlite3_bind_int64(pStmt, 1, iLevel);
137542     sqlite3_bind_int(pStmt, 2, iIdx);
137543     sqlite3_bind_int64(pStmt, 3, iStartBlock);
137544     sqlite3_bind_int64(pStmt, 4, iLeafEndBlock);
137545     if( nLeafData==0 ){
137546       sqlite3_bind_int64(pStmt, 5, iEndBlock);
137547     }else{
137548       char *zEnd = sqlite3_mprintf("%lld %lld", iEndBlock, nLeafData);
137549       if( !zEnd ) return SQLITE_NOMEM;
137550       sqlite3_bind_text(pStmt, 5, zEnd, -1, sqlite3_free);
137551     }
137552     sqlite3_bind_blob(pStmt, 6, zRoot, nRoot, SQLITE_STATIC);
137553     sqlite3_step(pStmt);
137554     rc = sqlite3_reset(pStmt);
137555   }
137556   return rc;
137557 }
137558 
137559 /*
137560 ** Return the size of the common prefix (if any) shared by zPrev and
137561 ** zNext, in bytes. For example,
137562 **
137563 **   fts3PrefixCompress("abc", 3, "abcdef", 6)   // returns 3
137564 **   fts3PrefixCompress("abX", 3, "abcdef", 6)   // returns 2
137565 **   fts3PrefixCompress("abX", 3, "Xbcdef", 6)   // returns 0
137566 */
137567 static int fts3PrefixCompress(
137568   const char *zPrev,              /* Buffer containing previous term */
137569   int nPrev,                      /* Size of buffer zPrev in bytes */
137570   const char *zNext,              /* Buffer containing next term */
137571   int nNext                       /* Size of buffer zNext in bytes */
137572 ){
137573   int n;
137574   UNUSED_PARAMETER(nNext);
137575   for(n=0; n<nPrev && zPrev[n]==zNext[n]; n++);
137576   return n;
137577 }
137578 
137579 /*
137580 ** Add term zTerm to the SegmentNode. It is guaranteed that zTerm is larger
137581 ** (according to memcmp) than the previous term.
137582 */
137583 static int fts3NodeAddTerm(
137584   Fts3Table *p,                   /* Virtual table handle */
137585   SegmentNode **ppTree,           /* IN/OUT: SegmentNode handle */
137586   int isCopyTerm,                 /* True if zTerm/nTerm is transient */
137587   const char *zTerm,              /* Pointer to buffer containing term */
137588   int nTerm                       /* Size of term in bytes */
137589 ){
137590   SegmentNode *pTree = *ppTree;
137591   int rc;
137592   SegmentNode *pNew;
137593 
137594   /* First try to append the term to the current node. Return early if
137595   ** this is possible.
137596   */
137597   if( pTree ){
137598     int nData = pTree->nData;     /* Current size of node in bytes */
137599     int nReq = nData;             /* Required space after adding zTerm */
137600     int nPrefix;                  /* Number of bytes of prefix compression */
137601     int nSuffix;                  /* Suffix length */
137602 
137603     nPrefix = fts3PrefixCompress(pTree->zTerm, pTree->nTerm, zTerm, nTerm);
137604     nSuffix = nTerm-nPrefix;
137605 
137606     nReq += sqlite3Fts3VarintLen(nPrefix)+sqlite3Fts3VarintLen(nSuffix)+nSuffix;
137607     if( nReq<=p->nNodeSize || !pTree->zTerm ){
137608 
137609       if( nReq>p->nNodeSize ){
137610         /* An unusual case: this is the first term to be added to the node
137611         ** and the static node buffer (p->nNodeSize bytes) is not large
137612         ** enough. Use a separately malloced buffer instead This wastes
137613         ** p->nNodeSize bytes, but since this scenario only comes about when
137614         ** the database contain two terms that share a prefix of almost 2KB,
137615         ** this is not expected to be a serious problem.
137616         */
137617         assert( pTree->aData==(char *)&pTree[1] );
137618         pTree->aData = (char *)sqlite3_malloc(nReq);
137619         if( !pTree->aData ){
137620           return SQLITE_NOMEM;
137621         }
137622       }
137623 
137624       if( pTree->zTerm ){
137625         /* There is no prefix-length field for first term in a node */
137626         nData += sqlite3Fts3PutVarint(&pTree->aData[nData], nPrefix);
137627       }
137628 
137629       nData += sqlite3Fts3PutVarint(&pTree->aData[nData], nSuffix);
137630       memcpy(&pTree->aData[nData], &zTerm[nPrefix], nSuffix);
137631       pTree->nData = nData + nSuffix;
137632       pTree->nEntry++;
137633 
137634       if( isCopyTerm ){
137635         if( pTree->nMalloc<nTerm ){
137636           char *zNew = sqlite3_realloc(pTree->zMalloc, nTerm*2);
137637           if( !zNew ){
137638             return SQLITE_NOMEM;
137639           }
137640           pTree->nMalloc = nTerm*2;
137641           pTree->zMalloc = zNew;
137642         }
137643         pTree->zTerm = pTree->zMalloc;
137644         memcpy(pTree->zTerm, zTerm, nTerm);
137645         pTree->nTerm = nTerm;
137646       }else{
137647         pTree->zTerm = (char *)zTerm;
137648         pTree->nTerm = nTerm;
137649       }
137650       return SQLITE_OK;
137651     }
137652   }
137653 
137654   /* If control flows to here, it was not possible to append zTerm to the
137655   ** current node. Create a new node (a right-sibling of the current node).
137656   ** If this is the first node in the tree, the term is added to it.
137657   **
137658   ** Otherwise, the term is not added to the new node, it is left empty for
137659   ** now. Instead, the term is inserted into the parent of pTree. If pTree
137660   ** has no parent, one is created here.
137661   */
137662   pNew = (SegmentNode *)sqlite3_malloc(sizeof(SegmentNode) + p->nNodeSize);
137663   if( !pNew ){
137664     return SQLITE_NOMEM;
137665   }
137666   memset(pNew, 0, sizeof(SegmentNode));
137667   pNew->nData = 1 + FTS3_VARINT_MAX;
137668   pNew->aData = (char *)&pNew[1];
137669 
137670   if( pTree ){
137671     SegmentNode *pParent = pTree->pParent;
137672     rc = fts3NodeAddTerm(p, &pParent, isCopyTerm, zTerm, nTerm);
137673     if( pTree->pParent==0 ){
137674       pTree->pParent = pParent;
137675     }
137676     pTree->pRight = pNew;
137677     pNew->pLeftmost = pTree->pLeftmost;
137678     pNew->pParent = pParent;
137679     pNew->zMalloc = pTree->zMalloc;
137680     pNew->nMalloc = pTree->nMalloc;
137681     pTree->zMalloc = 0;
137682   }else{
137683     pNew->pLeftmost = pNew;
137684     rc = fts3NodeAddTerm(p, &pNew, isCopyTerm, zTerm, nTerm);
137685   }
137686 
137687   *ppTree = pNew;
137688   return rc;
137689 }
137690 
137691 /*
137692 ** Helper function for fts3NodeWrite().
137693 */
137694 static int fts3TreeFinishNode(
137695   SegmentNode *pTree,
137696   int iHeight,
137697   sqlite3_int64 iLeftChild
137698 ){
137699   int nStart;
137700   assert( iHeight>=1 && iHeight<128 );
137701   nStart = FTS3_VARINT_MAX - sqlite3Fts3VarintLen(iLeftChild);
137702   pTree->aData[nStart] = (char)iHeight;
137703   sqlite3Fts3PutVarint(&pTree->aData[nStart+1], iLeftChild);
137704   return nStart;
137705 }
137706 
137707 /*
137708 ** Write the buffer for the segment node pTree and all of its peers to the
137709 ** database. Then call this function recursively to write the parent of
137710 ** pTree and its peers to the database.
137711 **
137712 ** Except, if pTree is a root node, do not write it to the database. Instead,
137713 ** set output variables *paRoot and *pnRoot to contain the root node.
137714 **
137715 ** If successful, SQLITE_OK is returned and output variable *piLast is
137716 ** set to the largest blockid written to the database (or zero if no
137717 ** blocks were written to the db). Otherwise, an SQLite error code is
137718 ** returned.
137719 */
137720 static int fts3NodeWrite(
137721   Fts3Table *p,                   /* Virtual table handle */
137722   SegmentNode *pTree,             /* SegmentNode handle */
137723   int iHeight,                    /* Height of this node in tree */
137724   sqlite3_int64 iLeaf,            /* Block id of first leaf node */
137725   sqlite3_int64 iFree,            /* Block id of next free slot in %_segments */
137726   sqlite3_int64 *piLast,          /* OUT: Block id of last entry written */
137727   char **paRoot,                  /* OUT: Data for root node */
137728   int *pnRoot                     /* OUT: Size of root node in bytes */
137729 ){
137730   int rc = SQLITE_OK;
137731 
137732   if( !pTree->pParent ){
137733     /* Root node of the tree. */
137734     int nStart = fts3TreeFinishNode(pTree, iHeight, iLeaf);
137735     *piLast = iFree-1;
137736     *pnRoot = pTree->nData - nStart;
137737     *paRoot = &pTree->aData[nStart];
137738   }else{
137739     SegmentNode *pIter;
137740     sqlite3_int64 iNextFree = iFree;
137741     sqlite3_int64 iNextLeaf = iLeaf;
137742     for(pIter=pTree->pLeftmost; pIter && rc==SQLITE_OK; pIter=pIter->pRight){
137743       int nStart = fts3TreeFinishNode(pIter, iHeight, iNextLeaf);
137744       int nWrite = pIter->nData - nStart;
137745 
137746       rc = fts3WriteSegment(p, iNextFree, &pIter->aData[nStart], nWrite);
137747       iNextFree++;
137748       iNextLeaf += (pIter->nEntry+1);
137749     }
137750     if( rc==SQLITE_OK ){
137751       assert( iNextLeaf==iFree );
137752       rc = fts3NodeWrite(
137753           p, pTree->pParent, iHeight+1, iFree, iNextFree, piLast, paRoot, pnRoot
137754       );
137755     }
137756   }
137757 
137758   return rc;
137759 }
137760 
137761 /*
137762 ** Free all memory allocations associated with the tree pTree.
137763 */
137764 static void fts3NodeFree(SegmentNode *pTree){
137765   if( pTree ){
137766     SegmentNode *p = pTree->pLeftmost;
137767     fts3NodeFree(p->pParent);
137768     while( p ){
137769       SegmentNode *pRight = p->pRight;
137770       if( p->aData!=(char *)&p[1] ){
137771         sqlite3_free(p->aData);
137772       }
137773       assert( pRight==0 || p->zMalloc==0 );
137774       sqlite3_free(p->zMalloc);
137775       sqlite3_free(p);
137776       p = pRight;
137777     }
137778   }
137779 }
137780 
137781 /*
137782 ** Add a term to the segment being constructed by the SegmentWriter object
137783 ** *ppWriter. When adding the first term to a segment, *ppWriter should
137784 ** be passed NULL. This function will allocate a new SegmentWriter object
137785 ** and return it via the input/output variable *ppWriter in this case.
137786 **
137787 ** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code.
137788 */
137789 static int fts3SegWriterAdd(
137790   Fts3Table *p,                   /* Virtual table handle */
137791   SegmentWriter **ppWriter,       /* IN/OUT: SegmentWriter handle */
137792   int isCopyTerm,                 /* True if buffer zTerm must be copied */
137793   const char *zTerm,              /* Pointer to buffer containing term */
137794   int nTerm,                      /* Size of term in bytes */
137795   const char *aDoclist,           /* Pointer to buffer containing doclist */
137796   int nDoclist                    /* Size of doclist in bytes */
137797 ){
137798   int nPrefix;                    /* Size of term prefix in bytes */
137799   int nSuffix;                    /* Size of term suffix in bytes */
137800   int nReq;                       /* Number of bytes required on leaf page */
137801   int nData;
137802   SegmentWriter *pWriter = *ppWriter;
137803 
137804   if( !pWriter ){
137805     int rc;
137806     sqlite3_stmt *pStmt;
137807 
137808     /* Allocate the SegmentWriter structure */
137809     pWriter = (SegmentWriter *)sqlite3_malloc(sizeof(SegmentWriter));
137810     if( !pWriter ) return SQLITE_NOMEM;
137811     memset(pWriter, 0, sizeof(SegmentWriter));
137812     *ppWriter = pWriter;
137813 
137814     /* Allocate a buffer in which to accumulate data */
137815     pWriter->aData = (char *)sqlite3_malloc(p->nNodeSize);
137816     if( !pWriter->aData ) return SQLITE_NOMEM;
137817     pWriter->nSize = p->nNodeSize;
137818 
137819     /* Find the next free blockid in the %_segments table */
137820     rc = fts3SqlStmt(p, SQL_NEXT_SEGMENTS_ID, &pStmt, 0);
137821     if( rc!=SQLITE_OK ) return rc;
137822     if( SQLITE_ROW==sqlite3_step(pStmt) ){
137823       pWriter->iFree = sqlite3_column_int64(pStmt, 0);
137824       pWriter->iFirst = pWriter->iFree;
137825     }
137826     rc = sqlite3_reset(pStmt);
137827     if( rc!=SQLITE_OK ) return rc;
137828   }
137829   nData = pWriter->nData;
137830 
137831   nPrefix = fts3PrefixCompress(pWriter->zTerm, pWriter->nTerm, zTerm, nTerm);
137832   nSuffix = nTerm-nPrefix;
137833 
137834   /* Figure out how many bytes are required by this new entry */
137835   nReq = sqlite3Fts3VarintLen(nPrefix) +    /* varint containing prefix size */
137836     sqlite3Fts3VarintLen(nSuffix) +         /* varint containing suffix size */
137837     nSuffix +                               /* Term suffix */
137838     sqlite3Fts3VarintLen(nDoclist) +        /* Size of doclist */
137839     nDoclist;                               /* Doclist data */
137840 
137841   if( nData>0 && nData+nReq>p->nNodeSize ){
137842     int rc;
137843 
137844     /* The current leaf node is full. Write it out to the database. */
137845     rc = fts3WriteSegment(p, pWriter->iFree++, pWriter->aData, nData);
137846     if( rc!=SQLITE_OK ) return rc;
137847     p->nLeafAdd++;
137848 
137849     /* Add the current term to the interior node tree. The term added to
137850     ** the interior tree must:
137851     **
137852     **   a) be greater than the largest term on the leaf node just written
137853     **      to the database (still available in pWriter->zTerm), and
137854     **
137855     **   b) be less than or equal to the term about to be added to the new
137856     **      leaf node (zTerm/nTerm).
137857     **
137858     ** In other words, it must be the prefix of zTerm 1 byte longer than
137859     ** the common prefix (if any) of zTerm and pWriter->zTerm.
137860     */
137861     assert( nPrefix<nTerm );
137862     rc = fts3NodeAddTerm(p, &pWriter->pTree, isCopyTerm, zTerm, nPrefix+1);
137863     if( rc!=SQLITE_OK ) return rc;
137864 
137865     nData = 0;
137866     pWriter->nTerm = 0;
137867 
137868     nPrefix = 0;
137869     nSuffix = nTerm;
137870     nReq = 1 +                              /* varint containing prefix size */
137871       sqlite3Fts3VarintLen(nTerm) +         /* varint containing suffix size */
137872       nTerm +                               /* Term suffix */
137873       sqlite3Fts3VarintLen(nDoclist) +      /* Size of doclist */
137874       nDoclist;                             /* Doclist data */
137875   }
137876 
137877   /* Increase the total number of bytes written to account for the new entry. */
137878   pWriter->nLeafData += nReq;
137879 
137880   /* If the buffer currently allocated is too small for this entry, realloc
137881   ** the buffer to make it large enough.
137882   */
137883   if( nReq>pWriter->nSize ){
137884     char *aNew = sqlite3_realloc(pWriter->aData, nReq);
137885     if( !aNew ) return SQLITE_NOMEM;
137886     pWriter->aData = aNew;
137887     pWriter->nSize = nReq;
137888   }
137889   assert( nData+nReq<=pWriter->nSize );
137890 
137891   /* Append the prefix-compressed term and doclist to the buffer. */
137892   nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nPrefix);
137893   nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nSuffix);
137894   memcpy(&pWriter->aData[nData], &zTerm[nPrefix], nSuffix);
137895   nData += nSuffix;
137896   nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nDoclist);
137897   memcpy(&pWriter->aData[nData], aDoclist, nDoclist);
137898   pWriter->nData = nData + nDoclist;
137899 
137900   /* Save the current term so that it can be used to prefix-compress the next.
137901   ** If the isCopyTerm parameter is true, then the buffer pointed to by
137902   ** zTerm is transient, so take a copy of the term data. Otherwise, just
137903   ** store a copy of the pointer.
137904   */
137905   if( isCopyTerm ){
137906     if( nTerm>pWriter->nMalloc ){
137907       char *zNew = sqlite3_realloc(pWriter->zMalloc, nTerm*2);
137908       if( !zNew ){
137909         return SQLITE_NOMEM;
137910       }
137911       pWriter->nMalloc = nTerm*2;
137912       pWriter->zMalloc = zNew;
137913       pWriter->zTerm = zNew;
137914     }
137915     assert( pWriter->zTerm==pWriter->zMalloc );
137916     memcpy(pWriter->zTerm, zTerm, nTerm);
137917   }else{
137918     pWriter->zTerm = (char *)zTerm;
137919   }
137920   pWriter->nTerm = nTerm;
137921 
137922   return SQLITE_OK;
137923 }
137924 
137925 /*
137926 ** Flush all data associated with the SegmentWriter object pWriter to the
137927 ** database. This function must be called after all terms have been added
137928 ** to the segment using fts3SegWriterAdd(). If successful, SQLITE_OK is
137929 ** returned. Otherwise, an SQLite error code.
137930 */
137931 static int fts3SegWriterFlush(
137932   Fts3Table *p,                   /* Virtual table handle */
137933   SegmentWriter *pWriter,         /* SegmentWriter to flush to the db */
137934   sqlite3_int64 iLevel,           /* Value for 'level' column of %_segdir */
137935   int iIdx                        /* Value for 'idx' column of %_segdir */
137936 ){
137937   int rc;                         /* Return code */
137938   if( pWriter->pTree ){
137939     sqlite3_int64 iLast = 0;      /* Largest block id written to database */
137940     sqlite3_int64 iLastLeaf;      /* Largest leaf block id written to db */
137941     char *zRoot = NULL;           /* Pointer to buffer containing root node */
137942     int nRoot = 0;                /* Size of buffer zRoot */
137943 
137944     iLastLeaf = pWriter->iFree;
137945     rc = fts3WriteSegment(p, pWriter->iFree++, pWriter->aData, pWriter->nData);
137946     if( rc==SQLITE_OK ){
137947       rc = fts3NodeWrite(p, pWriter->pTree, 1,
137948           pWriter->iFirst, pWriter->iFree, &iLast, &zRoot, &nRoot);
137949     }
137950     if( rc==SQLITE_OK ){
137951       rc = fts3WriteSegdir(p, iLevel, iIdx,
137952           pWriter->iFirst, iLastLeaf, iLast, pWriter->nLeafData, zRoot, nRoot);
137953     }
137954   }else{
137955     /* The entire tree fits on the root node. Write it to the segdir table. */
137956     rc = fts3WriteSegdir(p, iLevel, iIdx,
137957         0, 0, 0, pWriter->nLeafData, pWriter->aData, pWriter->nData);
137958   }
137959   p->nLeafAdd++;
137960   return rc;
137961 }
137962 
137963 /*
137964 ** Release all memory held by the SegmentWriter object passed as the
137965 ** first argument.
137966 */
137967 static void fts3SegWriterFree(SegmentWriter *pWriter){
137968   if( pWriter ){
137969     sqlite3_free(pWriter->aData);
137970     sqlite3_free(pWriter->zMalloc);
137971     fts3NodeFree(pWriter->pTree);
137972     sqlite3_free(pWriter);
137973   }
137974 }
137975 
137976 /*
137977 ** The first value in the apVal[] array is assumed to contain an integer.
137978 ** This function tests if there exist any documents with docid values that
137979 ** are different from that integer. i.e. if deleting the document with docid
137980 ** pRowid would mean the FTS3 table were empty.
137981 **
137982 ** If successful, *pisEmpty is set to true if the table is empty except for
137983 ** document pRowid, or false otherwise, and SQLITE_OK is returned. If an
137984 ** error occurs, an SQLite error code is returned.
137985 */
137986 static int fts3IsEmpty(Fts3Table *p, sqlite3_value *pRowid, int *pisEmpty){
137987   sqlite3_stmt *pStmt;
137988   int rc;
137989   if( p->zContentTbl ){
137990     /* If using the content=xxx option, assume the table is never empty */
137991     *pisEmpty = 0;
137992     rc = SQLITE_OK;
137993   }else{
137994     rc = fts3SqlStmt(p, SQL_IS_EMPTY, &pStmt, &pRowid);
137995     if( rc==SQLITE_OK ){
137996       if( SQLITE_ROW==sqlite3_step(pStmt) ){
137997         *pisEmpty = sqlite3_column_int(pStmt, 0);
137998       }
137999       rc = sqlite3_reset(pStmt);
138000     }
138001   }
138002   return rc;
138003 }
138004 
138005 /*
138006 ** Set *pnMax to the largest segment level in the database for the index
138007 ** iIndex.
138008 **
138009 ** Segment levels are stored in the 'level' column of the %_segdir table.
138010 **
138011 ** Return SQLITE_OK if successful, or an SQLite error code if not.
138012 */
138013 static int fts3SegmentMaxLevel(
138014   Fts3Table *p,
138015   int iLangid,
138016   int iIndex,
138017   sqlite3_int64 *pnMax
138018 ){
138019   sqlite3_stmt *pStmt;
138020   int rc;
138021   assert( iIndex>=0 && iIndex<p->nIndex );
138022 
138023   /* Set pStmt to the compiled version of:
138024   **
138025   **   SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?
138026   **
138027   ** (1024 is actually the value of macro FTS3_SEGDIR_PREFIXLEVEL_STR).
138028   */
138029   rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR_MAX_LEVEL, &pStmt, 0);
138030   if( rc!=SQLITE_OK ) return rc;
138031   sqlite3_bind_int64(pStmt, 1, getAbsoluteLevel(p, iLangid, iIndex, 0));
138032   sqlite3_bind_int64(pStmt, 2,
138033       getAbsoluteLevel(p, iLangid, iIndex, FTS3_SEGDIR_MAXLEVEL-1)
138034   );
138035   if( SQLITE_ROW==sqlite3_step(pStmt) ){
138036     *pnMax = sqlite3_column_int64(pStmt, 0);
138037   }
138038   return sqlite3_reset(pStmt);
138039 }
138040 
138041 /*
138042 ** iAbsLevel is an absolute level that may be assumed to exist within
138043 ** the database. This function checks if it is the largest level number
138044 ** within its index. Assuming no error occurs, *pbMax is set to 1 if
138045 ** iAbsLevel is indeed the largest level, or 0 otherwise, and SQLITE_OK
138046 ** is returned. If an error occurs, an error code is returned and the
138047 ** final value of *pbMax is undefined.
138048 */
138049 static int fts3SegmentIsMaxLevel(Fts3Table *p, i64 iAbsLevel, int *pbMax){
138050 
138051   /* Set pStmt to the compiled version of:
138052   **
138053   **   SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?
138054   **
138055   ** (1024 is actually the value of macro FTS3_SEGDIR_PREFIXLEVEL_STR).
138056   */
138057   sqlite3_stmt *pStmt;
138058   int rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR_MAX_LEVEL, &pStmt, 0);
138059   if( rc!=SQLITE_OK ) return rc;
138060   sqlite3_bind_int64(pStmt, 1, iAbsLevel+1);
138061   sqlite3_bind_int64(pStmt, 2,
138062       ((iAbsLevel/FTS3_SEGDIR_MAXLEVEL)+1) * FTS3_SEGDIR_MAXLEVEL
138063   );
138064 
138065   *pbMax = 0;
138066   if( SQLITE_ROW==sqlite3_step(pStmt) ){
138067     *pbMax = sqlite3_column_type(pStmt, 0)==SQLITE_NULL;
138068   }
138069   return sqlite3_reset(pStmt);
138070 }
138071 
138072 /*
138073 ** Delete all entries in the %_segments table associated with the segment
138074 ** opened with seg-reader pSeg. This function does not affect the contents
138075 ** of the %_segdir table.
138076 */
138077 static int fts3DeleteSegment(
138078   Fts3Table *p,                   /* FTS table handle */
138079   Fts3SegReader *pSeg             /* Segment to delete */
138080 ){
138081   int rc = SQLITE_OK;             /* Return code */
138082   if( pSeg->iStartBlock ){
138083     sqlite3_stmt *pDelete;        /* SQL statement to delete rows */
138084     rc = fts3SqlStmt(p, SQL_DELETE_SEGMENTS_RANGE, &pDelete, 0);
138085     if( rc==SQLITE_OK ){
138086       sqlite3_bind_int64(pDelete, 1, pSeg->iStartBlock);
138087       sqlite3_bind_int64(pDelete, 2, pSeg->iEndBlock);
138088       sqlite3_step(pDelete);
138089       rc = sqlite3_reset(pDelete);
138090     }
138091   }
138092   return rc;
138093 }
138094 
138095 /*
138096 ** This function is used after merging multiple segments into a single large
138097 ** segment to delete the old, now redundant, segment b-trees. Specifically,
138098 ** it:
138099 **
138100 **   1) Deletes all %_segments entries for the segments associated with
138101 **      each of the SegReader objects in the array passed as the third
138102 **      argument, and
138103 **
138104 **   2) deletes all %_segdir entries with level iLevel, or all %_segdir
138105 **      entries regardless of level if (iLevel<0).
138106 **
138107 ** SQLITE_OK is returned if successful, otherwise an SQLite error code.
138108 */
138109 static int fts3DeleteSegdir(
138110   Fts3Table *p,                   /* Virtual table handle */
138111   int iLangid,                    /* Language id */
138112   int iIndex,                     /* Index for p->aIndex */
138113   int iLevel,                     /* Level of %_segdir entries to delete */
138114   Fts3SegReader **apSegment,      /* Array of SegReader objects */
138115   int nReader                     /* Size of array apSegment */
138116 ){
138117   int rc = SQLITE_OK;             /* Return Code */
138118   int i;                          /* Iterator variable */
138119   sqlite3_stmt *pDelete = 0;      /* SQL statement to delete rows */
138120 
138121   for(i=0; rc==SQLITE_OK && i<nReader; i++){
138122     rc = fts3DeleteSegment(p, apSegment[i]);
138123   }
138124   if( rc!=SQLITE_OK ){
138125     return rc;
138126   }
138127 
138128   assert( iLevel>=0 || iLevel==FTS3_SEGCURSOR_ALL );
138129   if( iLevel==FTS3_SEGCURSOR_ALL ){
138130     rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_RANGE, &pDelete, 0);
138131     if( rc==SQLITE_OK ){
138132       sqlite3_bind_int64(pDelete, 1, getAbsoluteLevel(p, iLangid, iIndex, 0));
138133       sqlite3_bind_int64(pDelete, 2,
138134           getAbsoluteLevel(p, iLangid, iIndex, FTS3_SEGDIR_MAXLEVEL-1)
138135       );
138136     }
138137   }else{
138138     rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_LEVEL, &pDelete, 0);
138139     if( rc==SQLITE_OK ){
138140       sqlite3_bind_int64(
138141           pDelete, 1, getAbsoluteLevel(p, iLangid, iIndex, iLevel)
138142       );
138143     }
138144   }
138145 
138146   if( rc==SQLITE_OK ){
138147     sqlite3_step(pDelete);
138148     rc = sqlite3_reset(pDelete);
138149   }
138150 
138151   return rc;
138152 }
138153 
138154 /*
138155 ** When this function is called, buffer *ppList (size *pnList bytes) contains
138156 ** a position list that may (or may not) feature multiple columns. This
138157 ** function adjusts the pointer *ppList and the length *pnList so that they
138158 ** identify the subset of the position list that corresponds to column iCol.
138159 **
138160 ** If there are no entries in the input position list for column iCol, then
138161 ** *pnList is set to zero before returning.
138162 **
138163 ** If parameter bZero is non-zero, then any part of the input list following
138164 ** the end of the output list is zeroed before returning.
138165 */
138166 static void fts3ColumnFilter(
138167   int iCol,                       /* Column to filter on */
138168   int bZero,                      /* Zero out anything following *ppList */
138169   char **ppList,                  /* IN/OUT: Pointer to position list */
138170   int *pnList                     /* IN/OUT: Size of buffer *ppList in bytes */
138171 ){
138172   char *pList = *ppList;
138173   int nList = *pnList;
138174   char *pEnd = &pList[nList];
138175   int iCurrent = 0;
138176   char *p = pList;
138177 
138178   assert( iCol>=0 );
138179   while( 1 ){
138180     char c = 0;
138181     while( p<pEnd && (c | *p)&0xFE ) c = *p++ & 0x80;
138182 
138183     if( iCol==iCurrent ){
138184       nList = (int)(p - pList);
138185       break;
138186     }
138187 
138188     nList -= (int)(p - pList);
138189     pList = p;
138190     if( nList==0 ){
138191       break;
138192     }
138193     p = &pList[1];
138194     p += fts3GetVarint32(p, &iCurrent);
138195   }
138196 
138197   if( bZero && &pList[nList]!=pEnd ){
138198     memset(&pList[nList], 0, pEnd - &pList[nList]);
138199   }
138200   *ppList = pList;
138201   *pnList = nList;
138202 }
138203 
138204 /*
138205 ** Cache data in the Fts3MultiSegReader.aBuffer[] buffer (overwriting any
138206 ** existing data). Grow the buffer if required.
138207 **
138208 ** If successful, return SQLITE_OK. Otherwise, if an OOM error is encountered
138209 ** trying to resize the buffer, return SQLITE_NOMEM.
138210 */
138211 static int fts3MsrBufferData(
138212   Fts3MultiSegReader *pMsr,       /* Multi-segment-reader handle */
138213   char *pList,
138214   int nList
138215 ){
138216   if( nList>pMsr->nBuffer ){
138217     char *pNew;
138218     pMsr->nBuffer = nList*2;
138219     pNew = (char *)sqlite3_realloc(pMsr->aBuffer, pMsr->nBuffer);
138220     if( !pNew ) return SQLITE_NOMEM;
138221     pMsr->aBuffer = pNew;
138222   }
138223 
138224   memcpy(pMsr->aBuffer, pList, nList);
138225   return SQLITE_OK;
138226 }
138227 
138228 SQLITE_PRIVATE int sqlite3Fts3MsrIncrNext(
138229   Fts3Table *p,                   /* Virtual table handle */
138230   Fts3MultiSegReader *pMsr,       /* Multi-segment-reader handle */
138231   sqlite3_int64 *piDocid,         /* OUT: Docid value */
138232   char **paPoslist,               /* OUT: Pointer to position list */
138233   int *pnPoslist                  /* OUT: Size of position list in bytes */
138234 ){
138235   int nMerge = pMsr->nAdvance;
138236   Fts3SegReader **apSegment = pMsr->apSegment;
138237   int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = (
138238     p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp
138239   );
138240 
138241   if( nMerge==0 ){
138242     *paPoslist = 0;
138243     return SQLITE_OK;
138244   }
138245 
138246   while( 1 ){
138247     Fts3SegReader *pSeg;
138248     pSeg = pMsr->apSegment[0];
138249 
138250     if( pSeg->pOffsetList==0 ){
138251       *paPoslist = 0;
138252       break;
138253     }else{
138254       int rc;
138255       char *pList;
138256       int nList;
138257       int j;
138258       sqlite3_int64 iDocid = apSegment[0]->iDocid;
138259 
138260       rc = fts3SegReaderNextDocid(p, apSegment[0], &pList, &nList);
138261       j = 1;
138262       while( rc==SQLITE_OK
138263         && j<nMerge
138264         && apSegment[j]->pOffsetList
138265         && apSegment[j]->iDocid==iDocid
138266       ){
138267         rc = fts3SegReaderNextDocid(p, apSegment[j], 0, 0);
138268         j++;
138269       }
138270       if( rc!=SQLITE_OK ) return rc;
138271       fts3SegReaderSort(pMsr->apSegment, nMerge, j, xCmp);
138272 
138273       if( nList>0 && fts3SegReaderIsPending(apSegment[0]) ){
138274         rc = fts3MsrBufferData(pMsr, pList, nList+1);
138275         if( rc!=SQLITE_OK ) return rc;
138276         assert( (pMsr->aBuffer[nList] & 0xFE)==0x00 );
138277         pList = pMsr->aBuffer;
138278       }
138279 
138280       if( pMsr->iColFilter>=0 ){
138281         fts3ColumnFilter(pMsr->iColFilter, 1, &pList, &nList);
138282       }
138283 
138284       if( nList>0 ){
138285         *paPoslist = pList;
138286         *piDocid = iDocid;
138287         *pnPoslist = nList;
138288         break;
138289       }
138290     }
138291   }
138292 
138293   return SQLITE_OK;
138294 }
138295 
138296 static int fts3SegReaderStart(
138297   Fts3Table *p,                   /* Virtual table handle */
138298   Fts3MultiSegReader *pCsr,       /* Cursor object */
138299   const char *zTerm,              /* Term searched for (or NULL) */
138300   int nTerm                       /* Length of zTerm in bytes */
138301 ){
138302   int i;
138303   int nSeg = pCsr->nSegment;
138304 
138305   /* If the Fts3SegFilter defines a specific term (or term prefix) to search
138306   ** for, then advance each segment iterator until it points to a term of
138307   ** equal or greater value than the specified term. This prevents many
138308   ** unnecessary merge/sort operations for the case where single segment
138309   ** b-tree leaf nodes contain more than one term.
138310   */
138311   for(i=0; pCsr->bRestart==0 && i<pCsr->nSegment; i++){
138312     int res = 0;
138313     Fts3SegReader *pSeg = pCsr->apSegment[i];
138314     do {
138315       int rc = fts3SegReaderNext(p, pSeg, 0);
138316       if( rc!=SQLITE_OK ) return rc;
138317     }while( zTerm && (res = fts3SegReaderTermCmp(pSeg, zTerm, nTerm))<0 );
138318 
138319     if( pSeg->bLookup && res!=0 ){
138320       fts3SegReaderSetEof(pSeg);
138321     }
138322   }
138323   fts3SegReaderSort(pCsr->apSegment, nSeg, nSeg, fts3SegReaderCmp);
138324 
138325   return SQLITE_OK;
138326 }
138327 
138328 SQLITE_PRIVATE int sqlite3Fts3SegReaderStart(
138329   Fts3Table *p,                   /* Virtual table handle */
138330   Fts3MultiSegReader *pCsr,       /* Cursor object */
138331   Fts3SegFilter *pFilter          /* Restrictions on range of iteration */
138332 ){
138333   pCsr->pFilter = pFilter;
138334   return fts3SegReaderStart(p, pCsr, pFilter->zTerm, pFilter->nTerm);
138335 }
138336 
138337 SQLITE_PRIVATE int sqlite3Fts3MsrIncrStart(
138338   Fts3Table *p,                   /* Virtual table handle */
138339   Fts3MultiSegReader *pCsr,       /* Cursor object */
138340   int iCol,                       /* Column to match on. */
138341   const char *zTerm,              /* Term to iterate through a doclist for */
138342   int nTerm                       /* Number of bytes in zTerm */
138343 ){
138344   int i;
138345   int rc;
138346   int nSegment = pCsr->nSegment;
138347   int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = (
138348     p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp
138349   );
138350 
138351   assert( pCsr->pFilter==0 );
138352   assert( zTerm && nTerm>0 );
138353 
138354   /* Advance each segment iterator until it points to the term zTerm/nTerm. */
138355   rc = fts3SegReaderStart(p, pCsr, zTerm, nTerm);
138356   if( rc!=SQLITE_OK ) return rc;
138357 
138358   /* Determine how many of the segments actually point to zTerm/nTerm. */
138359   for(i=0; i<nSegment; i++){
138360     Fts3SegReader *pSeg = pCsr->apSegment[i];
138361     if( !pSeg->aNode || fts3SegReaderTermCmp(pSeg, zTerm, nTerm) ){
138362       break;
138363     }
138364   }
138365   pCsr->nAdvance = i;
138366 
138367   /* Advance each of the segments to point to the first docid. */
138368   for(i=0; i<pCsr->nAdvance; i++){
138369     rc = fts3SegReaderFirstDocid(p, pCsr->apSegment[i]);
138370     if( rc!=SQLITE_OK ) return rc;
138371   }
138372   fts3SegReaderSort(pCsr->apSegment, i, i, xCmp);
138373 
138374   assert( iCol<0 || iCol<p->nColumn );
138375   pCsr->iColFilter = iCol;
138376 
138377   return SQLITE_OK;
138378 }
138379 
138380 /*
138381 ** This function is called on a MultiSegReader that has been started using
138382 ** sqlite3Fts3MsrIncrStart(). One or more calls to MsrIncrNext() may also
138383 ** have been made. Calling this function puts the MultiSegReader in such
138384 ** a state that if the next two calls are:
138385 **
138386 **   sqlite3Fts3SegReaderStart()
138387 **   sqlite3Fts3SegReaderStep()
138388 **
138389 ** then the entire doclist for the term is available in
138390 ** MultiSegReader.aDoclist/nDoclist.
138391 */
138392 SQLITE_PRIVATE int sqlite3Fts3MsrIncrRestart(Fts3MultiSegReader *pCsr){
138393   int i;                          /* Used to iterate through segment-readers */
138394 
138395   assert( pCsr->zTerm==0 );
138396   assert( pCsr->nTerm==0 );
138397   assert( pCsr->aDoclist==0 );
138398   assert( pCsr->nDoclist==0 );
138399 
138400   pCsr->nAdvance = 0;
138401   pCsr->bRestart = 1;
138402   for(i=0; i<pCsr->nSegment; i++){
138403     pCsr->apSegment[i]->pOffsetList = 0;
138404     pCsr->apSegment[i]->nOffsetList = 0;
138405     pCsr->apSegment[i]->iDocid = 0;
138406   }
138407 
138408   return SQLITE_OK;
138409 }
138410 
138411 
138412 SQLITE_PRIVATE int sqlite3Fts3SegReaderStep(
138413   Fts3Table *p,                   /* Virtual table handle */
138414   Fts3MultiSegReader *pCsr        /* Cursor object */
138415 ){
138416   int rc = SQLITE_OK;
138417 
138418   int isIgnoreEmpty =  (pCsr->pFilter->flags & FTS3_SEGMENT_IGNORE_EMPTY);
138419   int isRequirePos =   (pCsr->pFilter->flags & FTS3_SEGMENT_REQUIRE_POS);
138420   int isColFilter =    (pCsr->pFilter->flags & FTS3_SEGMENT_COLUMN_FILTER);
138421   int isPrefix =       (pCsr->pFilter->flags & FTS3_SEGMENT_PREFIX);
138422   int isScan =         (pCsr->pFilter->flags & FTS3_SEGMENT_SCAN);
138423   int isFirst =        (pCsr->pFilter->flags & FTS3_SEGMENT_FIRST);
138424 
138425   Fts3SegReader **apSegment = pCsr->apSegment;
138426   int nSegment = pCsr->nSegment;
138427   Fts3SegFilter *pFilter = pCsr->pFilter;
138428   int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = (
138429     p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp
138430   );
138431 
138432   if( pCsr->nSegment==0 ) return SQLITE_OK;
138433 
138434   do {
138435     int nMerge;
138436     int i;
138437 
138438     /* Advance the first pCsr->nAdvance entries in the apSegment[] array
138439     ** forward. Then sort the list in order of current term again.
138440     */
138441     for(i=0; i<pCsr->nAdvance; i++){
138442       Fts3SegReader *pSeg = apSegment[i];
138443       if( pSeg->bLookup ){
138444         fts3SegReaderSetEof(pSeg);
138445       }else{
138446         rc = fts3SegReaderNext(p, pSeg, 0);
138447       }
138448       if( rc!=SQLITE_OK ) return rc;
138449     }
138450     fts3SegReaderSort(apSegment, nSegment, pCsr->nAdvance, fts3SegReaderCmp);
138451     pCsr->nAdvance = 0;
138452 
138453     /* If all the seg-readers are at EOF, we're finished. return SQLITE_OK. */
138454     assert( rc==SQLITE_OK );
138455     if( apSegment[0]->aNode==0 ) break;
138456 
138457     pCsr->nTerm = apSegment[0]->nTerm;
138458     pCsr->zTerm = apSegment[0]->zTerm;
138459 
138460     /* If this is a prefix-search, and if the term that apSegment[0] points
138461     ** to does not share a suffix with pFilter->zTerm/nTerm, then all
138462     ** required callbacks have been made. In this case exit early.
138463     **
138464     ** Similarly, if this is a search for an exact match, and the first term
138465     ** of segment apSegment[0] is not a match, exit early.
138466     */
138467     if( pFilter->zTerm && !isScan ){
138468       if( pCsr->nTerm<pFilter->nTerm
138469        || (!isPrefix && pCsr->nTerm>pFilter->nTerm)
138470        || memcmp(pCsr->zTerm, pFilter->zTerm, pFilter->nTerm)
138471       ){
138472         break;
138473       }
138474     }
138475 
138476     nMerge = 1;
138477     while( nMerge<nSegment
138478         && apSegment[nMerge]->aNode
138479         && apSegment[nMerge]->nTerm==pCsr->nTerm
138480         && 0==memcmp(pCsr->zTerm, apSegment[nMerge]->zTerm, pCsr->nTerm)
138481     ){
138482       nMerge++;
138483     }
138484 
138485     assert( isIgnoreEmpty || (isRequirePos && !isColFilter) );
138486     if( nMerge==1
138487      && !isIgnoreEmpty
138488      && !isFirst
138489      && (p->bDescIdx==0 || fts3SegReaderIsPending(apSegment[0])==0)
138490     ){
138491       pCsr->nDoclist = apSegment[0]->nDoclist;
138492       if( fts3SegReaderIsPending(apSegment[0]) ){
138493         rc = fts3MsrBufferData(pCsr, apSegment[0]->aDoclist, pCsr->nDoclist);
138494         pCsr->aDoclist = pCsr->aBuffer;
138495       }else{
138496         pCsr->aDoclist = apSegment[0]->aDoclist;
138497       }
138498       if( rc==SQLITE_OK ) rc = SQLITE_ROW;
138499     }else{
138500       int nDoclist = 0;           /* Size of doclist */
138501       sqlite3_int64 iPrev = 0;    /* Previous docid stored in doclist */
138502 
138503       /* The current term of the first nMerge entries in the array
138504       ** of Fts3SegReader objects is the same. The doclists must be merged
138505       ** and a single term returned with the merged doclist.
138506       */
138507       for(i=0; i<nMerge; i++){
138508         fts3SegReaderFirstDocid(p, apSegment[i]);
138509       }
138510       fts3SegReaderSort(apSegment, nMerge, nMerge, xCmp);
138511       while( apSegment[0]->pOffsetList ){
138512         int j;                    /* Number of segments that share a docid */
138513         char *pList = 0;
138514         int nList = 0;
138515         int nByte;
138516         sqlite3_int64 iDocid = apSegment[0]->iDocid;
138517         fts3SegReaderNextDocid(p, apSegment[0], &pList, &nList);
138518         j = 1;
138519         while( j<nMerge
138520             && apSegment[j]->pOffsetList
138521             && apSegment[j]->iDocid==iDocid
138522         ){
138523           fts3SegReaderNextDocid(p, apSegment[j], 0, 0);
138524           j++;
138525         }
138526 
138527         if( isColFilter ){
138528           fts3ColumnFilter(pFilter->iCol, 0, &pList, &nList);
138529         }
138530 
138531         if( !isIgnoreEmpty || nList>0 ){
138532 
138533           /* Calculate the 'docid' delta value to write into the merged
138534           ** doclist. */
138535           sqlite3_int64 iDelta;
138536           if( p->bDescIdx && nDoclist>0 ){
138537             iDelta = iPrev - iDocid;
138538           }else{
138539             iDelta = iDocid - iPrev;
138540           }
138541           assert( iDelta>0 || (nDoclist==0 && iDelta==iDocid) );
138542           assert( nDoclist>0 || iDelta==iDocid );
138543 
138544           nByte = sqlite3Fts3VarintLen(iDelta) + (isRequirePos?nList+1:0);
138545           if( nDoclist+nByte>pCsr->nBuffer ){
138546             char *aNew;
138547             pCsr->nBuffer = (nDoclist+nByte)*2;
138548             aNew = sqlite3_realloc(pCsr->aBuffer, pCsr->nBuffer);
138549             if( !aNew ){
138550               return SQLITE_NOMEM;
138551             }
138552             pCsr->aBuffer = aNew;
138553           }
138554 
138555           if( isFirst ){
138556             char *a = &pCsr->aBuffer[nDoclist];
138557             int nWrite;
138558 
138559             nWrite = sqlite3Fts3FirstFilter(iDelta, pList, nList, a);
138560             if( nWrite ){
138561               iPrev = iDocid;
138562               nDoclist += nWrite;
138563             }
138564           }else{
138565             nDoclist += sqlite3Fts3PutVarint(&pCsr->aBuffer[nDoclist], iDelta);
138566             iPrev = iDocid;
138567             if( isRequirePos ){
138568               memcpy(&pCsr->aBuffer[nDoclist], pList, nList);
138569               nDoclist += nList;
138570               pCsr->aBuffer[nDoclist++] = '\0';
138571             }
138572           }
138573         }
138574 
138575         fts3SegReaderSort(apSegment, nMerge, j, xCmp);
138576       }
138577       if( nDoclist>0 ){
138578         pCsr->aDoclist = pCsr->aBuffer;
138579         pCsr->nDoclist = nDoclist;
138580         rc = SQLITE_ROW;
138581       }
138582     }
138583     pCsr->nAdvance = nMerge;
138584   }while( rc==SQLITE_OK );
138585 
138586   return rc;
138587 }
138588 
138589 
138590 SQLITE_PRIVATE void sqlite3Fts3SegReaderFinish(
138591   Fts3MultiSegReader *pCsr       /* Cursor object */
138592 ){
138593   if( pCsr ){
138594     int i;
138595     for(i=0; i<pCsr->nSegment; i++){
138596       sqlite3Fts3SegReaderFree(pCsr->apSegment[i]);
138597     }
138598     sqlite3_free(pCsr->apSegment);
138599     sqlite3_free(pCsr->aBuffer);
138600 
138601     pCsr->nSegment = 0;
138602     pCsr->apSegment = 0;
138603     pCsr->aBuffer = 0;
138604   }
138605 }
138606 
138607 /*
138608 ** Decode the "end_block" field, selected by column iCol of the SELECT
138609 ** statement passed as the first argument.
138610 **
138611 ** The "end_block" field may contain either an integer, or a text field
138612 ** containing the text representation of two non-negative integers separated
138613 ** by one or more space (0x20) characters. In the first case, set *piEndBlock
138614 ** to the integer value and *pnByte to zero before returning. In the second,
138615 ** set *piEndBlock to the first value and *pnByte to the second.
138616 */
138617 static void fts3ReadEndBlockField(
138618   sqlite3_stmt *pStmt,
138619   int iCol,
138620   i64 *piEndBlock,
138621   i64 *pnByte
138622 ){
138623   const unsigned char *zText = sqlite3_column_text(pStmt, iCol);
138624   if( zText ){
138625     int i;
138626     int iMul = 1;
138627     i64 iVal = 0;
138628     for(i=0; zText[i]>='0' && zText[i]<='9'; i++){
138629       iVal = iVal*10 + (zText[i] - '0');
138630     }
138631     *piEndBlock = iVal;
138632     while( zText[i]==' ' ) i++;
138633     iVal = 0;
138634     if( zText[i]=='-' ){
138635       i++;
138636       iMul = -1;
138637     }
138638     for(/* no-op */; zText[i]>='0' && zText[i]<='9'; i++){
138639       iVal = iVal*10 + (zText[i] - '0');
138640     }
138641     *pnByte = (iVal * (i64)iMul);
138642   }
138643 }
138644 
138645 
138646 /*
138647 ** A segment of size nByte bytes has just been written to absolute level
138648 ** iAbsLevel. Promote any segments that should be promoted as a result.
138649 */
138650 static int fts3PromoteSegments(
138651   Fts3Table *p,                   /* FTS table handle */
138652   sqlite3_int64 iAbsLevel,        /* Absolute level just updated */
138653   sqlite3_int64 nByte             /* Size of new segment at iAbsLevel */
138654 ){
138655   int rc = SQLITE_OK;
138656   sqlite3_stmt *pRange;
138657 
138658   rc = fts3SqlStmt(p, SQL_SELECT_LEVEL_RANGE2, &pRange, 0);
138659 
138660   if( rc==SQLITE_OK ){
138661     int bOk = 0;
138662     i64 iLast = (iAbsLevel/FTS3_SEGDIR_MAXLEVEL + 1) * FTS3_SEGDIR_MAXLEVEL - 1;
138663     i64 nLimit = (nByte*3)/2;
138664 
138665     /* Loop through all entries in the %_segdir table corresponding to
138666     ** segments in this index on levels greater than iAbsLevel. If there is
138667     ** at least one such segment, and it is possible to determine that all
138668     ** such segments are smaller than nLimit bytes in size, they will be
138669     ** promoted to level iAbsLevel.  */
138670     sqlite3_bind_int64(pRange, 1, iAbsLevel+1);
138671     sqlite3_bind_int64(pRange, 2, iLast);
138672     while( SQLITE_ROW==sqlite3_step(pRange) ){
138673       i64 nSize = 0, dummy;
138674       fts3ReadEndBlockField(pRange, 2, &dummy, &nSize);
138675       if( nSize<=0 || nSize>nLimit ){
138676         /* If nSize==0, then the %_segdir.end_block field does not not
138677         ** contain a size value. This happens if it was written by an
138678         ** old version of FTS. In this case it is not possible to determine
138679         ** the size of the segment, and so segment promotion does not
138680         ** take place.  */
138681         bOk = 0;
138682         break;
138683       }
138684       bOk = 1;
138685     }
138686     rc = sqlite3_reset(pRange);
138687 
138688     if( bOk ){
138689       int iIdx = 0;
138690       sqlite3_stmt *pUpdate1;
138691       sqlite3_stmt *pUpdate2;
138692 
138693       if( rc==SQLITE_OK ){
138694         rc = fts3SqlStmt(p, SQL_UPDATE_LEVEL_IDX, &pUpdate1, 0);
138695       }
138696       if( rc==SQLITE_OK ){
138697         rc = fts3SqlStmt(p, SQL_UPDATE_LEVEL, &pUpdate2, 0);
138698       }
138699 
138700       if( rc==SQLITE_OK ){
138701 
138702         /* Loop through all %_segdir entries for segments in this index with
138703         ** levels equal to or greater than iAbsLevel. As each entry is visited,
138704         ** updated it to set (level = -1) and (idx = N), where N is 0 for the
138705         ** oldest segment in the range, 1 for the next oldest, and so on.
138706         **
138707         ** In other words, move all segments being promoted to level -1,
138708         ** setting the "idx" fields as appropriate to keep them in the same
138709         ** order. The contents of level -1 (which is never used, except
138710         ** transiently here), will be moved back to level iAbsLevel below.  */
138711         sqlite3_bind_int64(pRange, 1, iAbsLevel);
138712         while( SQLITE_ROW==sqlite3_step(pRange) ){
138713           sqlite3_bind_int(pUpdate1, 1, iIdx++);
138714           sqlite3_bind_int(pUpdate1, 2, sqlite3_column_int(pRange, 0));
138715           sqlite3_bind_int(pUpdate1, 3, sqlite3_column_int(pRange, 1));
138716           sqlite3_step(pUpdate1);
138717           rc = sqlite3_reset(pUpdate1);
138718           if( rc!=SQLITE_OK ){
138719             sqlite3_reset(pRange);
138720             break;
138721           }
138722         }
138723       }
138724       if( rc==SQLITE_OK ){
138725         rc = sqlite3_reset(pRange);
138726       }
138727 
138728       /* Move level -1 to level iAbsLevel */
138729       if( rc==SQLITE_OK ){
138730         sqlite3_bind_int64(pUpdate2, 1, iAbsLevel);
138731         sqlite3_step(pUpdate2);
138732         rc = sqlite3_reset(pUpdate2);
138733       }
138734     }
138735   }
138736 
138737 
138738   return rc;
138739 }
138740 
138741 /*
138742 ** Merge all level iLevel segments in the database into a single
138743 ** iLevel+1 segment. Or, if iLevel<0, merge all segments into a
138744 ** single segment with a level equal to the numerically largest level
138745 ** currently present in the database.
138746 **
138747 ** If this function is called with iLevel<0, but there is only one
138748 ** segment in the database, SQLITE_DONE is returned immediately.
138749 ** Otherwise, if successful, SQLITE_OK is returned. If an error occurs,
138750 ** an SQLite error code is returned.
138751 */
138752 static int fts3SegmentMerge(
138753   Fts3Table *p,
138754   int iLangid,                    /* Language id to merge */
138755   int iIndex,                     /* Index in p->aIndex[] to merge */
138756   int iLevel                      /* Level to merge */
138757 ){
138758   int rc;                         /* Return code */
138759   int iIdx = 0;                   /* Index of new segment */
138760   sqlite3_int64 iNewLevel = 0;    /* Level/index to create new segment at */
138761   SegmentWriter *pWriter = 0;     /* Used to write the new, merged, segment */
138762   Fts3SegFilter filter;           /* Segment term filter condition */
138763   Fts3MultiSegReader csr;         /* Cursor to iterate through level(s) */
138764   int bIgnoreEmpty = 0;           /* True to ignore empty segments */
138765   i64 iMaxLevel = 0;              /* Max level number for this index/langid */
138766 
138767   assert( iLevel==FTS3_SEGCURSOR_ALL
138768        || iLevel==FTS3_SEGCURSOR_PENDING
138769        || iLevel>=0
138770   );
138771   assert( iLevel<FTS3_SEGDIR_MAXLEVEL );
138772   assert( iIndex>=0 && iIndex<p->nIndex );
138773 
138774   rc = sqlite3Fts3SegReaderCursor(p, iLangid, iIndex, iLevel, 0, 0, 1, 0, &csr);
138775   if( rc!=SQLITE_OK || csr.nSegment==0 ) goto finished;
138776 
138777   if( iLevel!=FTS3_SEGCURSOR_PENDING ){
138778     rc = fts3SegmentMaxLevel(p, iLangid, iIndex, &iMaxLevel);
138779     if( rc!=SQLITE_OK ) goto finished;
138780   }
138781 
138782   if( iLevel==FTS3_SEGCURSOR_ALL ){
138783     /* This call is to merge all segments in the database to a single
138784     ** segment. The level of the new segment is equal to the numerically
138785     ** greatest segment level currently present in the database for this
138786     ** index. The idx of the new segment is always 0.  */
138787     if( csr.nSegment==1 ){
138788       rc = SQLITE_DONE;
138789       goto finished;
138790     }
138791     iNewLevel = iMaxLevel;
138792     bIgnoreEmpty = 1;
138793 
138794   }else{
138795     /* This call is to merge all segments at level iLevel. find the next
138796     ** available segment index at level iLevel+1. The call to
138797     ** fts3AllocateSegdirIdx() will merge the segments at level iLevel+1 to
138798     ** a single iLevel+2 segment if necessary.  */
138799     assert( FTS3_SEGCURSOR_PENDING==-1 );
138800     iNewLevel = getAbsoluteLevel(p, iLangid, iIndex, iLevel+1);
138801     rc = fts3AllocateSegdirIdx(p, iLangid, iIndex, iLevel+1, &iIdx);
138802     bIgnoreEmpty = (iLevel!=FTS3_SEGCURSOR_PENDING) && (iNewLevel>iMaxLevel);
138803   }
138804   if( rc!=SQLITE_OK ) goto finished;
138805 
138806   assert( csr.nSegment>0 );
138807   assert( iNewLevel>=getAbsoluteLevel(p, iLangid, iIndex, 0) );
138808   assert( iNewLevel<getAbsoluteLevel(p, iLangid, iIndex,FTS3_SEGDIR_MAXLEVEL) );
138809 
138810   memset(&filter, 0, sizeof(Fts3SegFilter));
138811   filter.flags = FTS3_SEGMENT_REQUIRE_POS;
138812   filter.flags |= (bIgnoreEmpty ? FTS3_SEGMENT_IGNORE_EMPTY : 0);
138813 
138814   rc = sqlite3Fts3SegReaderStart(p, &csr, &filter);
138815   while( SQLITE_OK==rc ){
138816     rc = sqlite3Fts3SegReaderStep(p, &csr);
138817     if( rc!=SQLITE_ROW ) break;
138818     rc = fts3SegWriterAdd(p, &pWriter, 1,
138819         csr.zTerm, csr.nTerm, csr.aDoclist, csr.nDoclist);
138820   }
138821   if( rc!=SQLITE_OK ) goto finished;
138822   assert( pWriter || bIgnoreEmpty );
138823 
138824   if( iLevel!=FTS3_SEGCURSOR_PENDING ){
138825     rc = fts3DeleteSegdir(
138826         p, iLangid, iIndex, iLevel, csr.apSegment, csr.nSegment
138827     );
138828     if( rc!=SQLITE_OK ) goto finished;
138829   }
138830   if( pWriter ){
138831     rc = fts3SegWriterFlush(p, pWriter, iNewLevel, iIdx);
138832     if( rc==SQLITE_OK ){
138833       if( iLevel==FTS3_SEGCURSOR_PENDING || iNewLevel<iMaxLevel ){
138834         rc = fts3PromoteSegments(p, iNewLevel, pWriter->nLeafData);
138835       }
138836     }
138837   }
138838 
138839  finished:
138840   fts3SegWriterFree(pWriter);
138841   sqlite3Fts3SegReaderFinish(&csr);
138842   return rc;
138843 }
138844 
138845 
138846 /*
138847 ** Flush the contents of pendingTerms to level 0 segments.
138848 */
138849 SQLITE_PRIVATE int sqlite3Fts3PendingTermsFlush(Fts3Table *p){
138850   int rc = SQLITE_OK;
138851   int i;
138852 
138853   for(i=0; rc==SQLITE_OK && i<p->nIndex; i++){
138854     rc = fts3SegmentMerge(p, p->iPrevLangid, i, FTS3_SEGCURSOR_PENDING);
138855     if( rc==SQLITE_DONE ) rc = SQLITE_OK;
138856   }
138857   sqlite3Fts3PendingTermsClear(p);
138858 
138859   /* Determine the auto-incr-merge setting if unknown.  If enabled,
138860   ** estimate the number of leaf blocks of content to be written
138861   */
138862   if( rc==SQLITE_OK && p->bHasStat
138863    && p->nAutoincrmerge==0xff && p->nLeafAdd>0
138864   ){
138865     sqlite3_stmt *pStmt = 0;
138866     rc = fts3SqlStmt(p, SQL_SELECT_STAT, &pStmt, 0);
138867     if( rc==SQLITE_OK ){
138868       sqlite3_bind_int(pStmt, 1, FTS_STAT_AUTOINCRMERGE);
138869       rc = sqlite3_step(pStmt);
138870       if( rc==SQLITE_ROW ){
138871         p->nAutoincrmerge = sqlite3_column_int(pStmt, 0);
138872         if( p->nAutoincrmerge==1 ) p->nAutoincrmerge = 8;
138873       }else if( rc==SQLITE_DONE ){
138874         p->nAutoincrmerge = 0;
138875       }
138876       rc = sqlite3_reset(pStmt);
138877     }
138878   }
138879   return rc;
138880 }
138881 
138882 /*
138883 ** Encode N integers as varints into a blob.
138884 */
138885 static void fts3EncodeIntArray(
138886   int N,             /* The number of integers to encode */
138887   u32 *a,            /* The integer values */
138888   char *zBuf,        /* Write the BLOB here */
138889   int *pNBuf         /* Write number of bytes if zBuf[] used here */
138890 ){
138891   int i, j;
138892   for(i=j=0; i<N; i++){
138893     j += sqlite3Fts3PutVarint(&zBuf[j], (sqlite3_int64)a[i]);
138894   }
138895   *pNBuf = j;
138896 }
138897 
138898 /*
138899 ** Decode a blob of varints into N integers
138900 */
138901 static void fts3DecodeIntArray(
138902   int N,             /* The number of integers to decode */
138903   u32 *a,            /* Write the integer values */
138904   const char *zBuf,  /* The BLOB containing the varints */
138905   int nBuf           /* size of the BLOB */
138906 ){
138907   int i, j;
138908   UNUSED_PARAMETER(nBuf);
138909   for(i=j=0; i<N; i++){
138910     sqlite3_int64 x;
138911     j += sqlite3Fts3GetVarint(&zBuf[j], &x);
138912     assert(j<=nBuf);
138913     a[i] = (u32)(x & 0xffffffff);
138914   }
138915 }
138916 
138917 /*
138918 ** Insert the sizes (in tokens) for each column of the document
138919 ** with docid equal to p->iPrevDocid.  The sizes are encoded as
138920 ** a blob of varints.
138921 */
138922 static void fts3InsertDocsize(
138923   int *pRC,                       /* Result code */
138924   Fts3Table *p,                   /* Table into which to insert */
138925   u32 *aSz                        /* Sizes of each column, in tokens */
138926 ){
138927   char *pBlob;             /* The BLOB encoding of the document size */
138928   int nBlob;               /* Number of bytes in the BLOB */
138929   sqlite3_stmt *pStmt;     /* Statement used to insert the encoding */
138930   int rc;                  /* Result code from subfunctions */
138931 
138932   if( *pRC ) return;
138933   pBlob = sqlite3_malloc( 10*p->nColumn );
138934   if( pBlob==0 ){
138935     *pRC = SQLITE_NOMEM;
138936     return;
138937   }
138938   fts3EncodeIntArray(p->nColumn, aSz, pBlob, &nBlob);
138939   rc = fts3SqlStmt(p, SQL_REPLACE_DOCSIZE, &pStmt, 0);
138940   if( rc ){
138941     sqlite3_free(pBlob);
138942     *pRC = rc;
138943     return;
138944   }
138945   sqlite3_bind_int64(pStmt, 1, p->iPrevDocid);
138946   sqlite3_bind_blob(pStmt, 2, pBlob, nBlob, sqlite3_free);
138947   sqlite3_step(pStmt);
138948   *pRC = sqlite3_reset(pStmt);
138949 }
138950 
138951 /*
138952 ** Record 0 of the %_stat table contains a blob consisting of N varints,
138953 ** where N is the number of user defined columns in the fts3 table plus
138954 ** two. If nCol is the number of user defined columns, then values of the
138955 ** varints are set as follows:
138956 **
138957 **   Varint 0:       Total number of rows in the table.
138958 **
138959 **   Varint 1..nCol: For each column, the total number of tokens stored in
138960 **                   the column for all rows of the table.
138961 **
138962 **   Varint 1+nCol:  The total size, in bytes, of all text values in all
138963 **                   columns of all rows of the table.
138964 **
138965 */
138966 static void fts3UpdateDocTotals(
138967   int *pRC,                       /* The result code */
138968   Fts3Table *p,                   /* Table being updated */
138969   u32 *aSzIns,                    /* Size increases */
138970   u32 *aSzDel,                    /* Size decreases */
138971   int nChng                       /* Change in the number of documents */
138972 ){
138973   char *pBlob;             /* Storage for BLOB written into %_stat */
138974   int nBlob;               /* Size of BLOB written into %_stat */
138975   u32 *a;                  /* Array of integers that becomes the BLOB */
138976   sqlite3_stmt *pStmt;     /* Statement for reading and writing */
138977   int i;                   /* Loop counter */
138978   int rc;                  /* Result code from subfunctions */
138979 
138980   const int nStat = p->nColumn+2;
138981 
138982   if( *pRC ) return;
138983   a = sqlite3_malloc( (sizeof(u32)+10)*nStat );
138984   if( a==0 ){
138985     *pRC = SQLITE_NOMEM;
138986     return;
138987   }
138988   pBlob = (char*)&a[nStat];
138989   rc = fts3SqlStmt(p, SQL_SELECT_STAT, &pStmt, 0);
138990   if( rc ){
138991     sqlite3_free(a);
138992     *pRC = rc;
138993     return;
138994   }
138995   sqlite3_bind_int(pStmt, 1, FTS_STAT_DOCTOTAL);
138996   if( sqlite3_step(pStmt)==SQLITE_ROW ){
138997     fts3DecodeIntArray(nStat, a,
138998          sqlite3_column_blob(pStmt, 0),
138999          sqlite3_column_bytes(pStmt, 0));
139000   }else{
139001     memset(a, 0, sizeof(u32)*(nStat) );
139002   }
139003   rc = sqlite3_reset(pStmt);
139004   if( rc!=SQLITE_OK ){
139005     sqlite3_free(a);
139006     *pRC = rc;
139007     return;
139008   }
139009   if( nChng<0 && a[0]<(u32)(-nChng) ){
139010     a[0] = 0;
139011   }else{
139012     a[0] += nChng;
139013   }
139014   for(i=0; i<p->nColumn+1; i++){
139015     u32 x = a[i+1];
139016     if( x+aSzIns[i] < aSzDel[i] ){
139017       x = 0;
139018     }else{
139019       x = x + aSzIns[i] - aSzDel[i];
139020     }
139021     a[i+1] = x;
139022   }
139023   fts3EncodeIntArray(nStat, a, pBlob, &nBlob);
139024   rc = fts3SqlStmt(p, SQL_REPLACE_STAT, &pStmt, 0);
139025   if( rc ){
139026     sqlite3_free(a);
139027     *pRC = rc;
139028     return;
139029   }
139030   sqlite3_bind_int(pStmt, 1, FTS_STAT_DOCTOTAL);
139031   sqlite3_bind_blob(pStmt, 2, pBlob, nBlob, SQLITE_STATIC);
139032   sqlite3_step(pStmt);
139033   *pRC = sqlite3_reset(pStmt);
139034   sqlite3_free(a);
139035 }
139036 
139037 /*
139038 ** Merge the entire database so that there is one segment for each
139039 ** iIndex/iLangid combination.
139040 */
139041 static int fts3DoOptimize(Fts3Table *p, int bReturnDone){
139042   int bSeenDone = 0;
139043   int rc;
139044   sqlite3_stmt *pAllLangid = 0;
139045 
139046   rc = fts3SqlStmt(p, SQL_SELECT_ALL_LANGID, &pAllLangid, 0);
139047   if( rc==SQLITE_OK ){
139048     int rc2;
139049     sqlite3_bind_int(pAllLangid, 1, p->nIndex);
139050     while( sqlite3_step(pAllLangid)==SQLITE_ROW ){
139051       int i;
139052       int iLangid = sqlite3_column_int(pAllLangid, 0);
139053       for(i=0; rc==SQLITE_OK && i<p->nIndex; i++){
139054         rc = fts3SegmentMerge(p, iLangid, i, FTS3_SEGCURSOR_ALL);
139055         if( rc==SQLITE_DONE ){
139056           bSeenDone = 1;
139057           rc = SQLITE_OK;
139058         }
139059       }
139060     }
139061     rc2 = sqlite3_reset(pAllLangid);
139062     if( rc==SQLITE_OK ) rc = rc2;
139063   }
139064 
139065   sqlite3Fts3SegmentsClose(p);
139066   sqlite3Fts3PendingTermsClear(p);
139067 
139068   return (rc==SQLITE_OK && bReturnDone && bSeenDone) ? SQLITE_DONE : rc;
139069 }
139070 
139071 /*
139072 ** This function is called when the user executes the following statement:
139073 **
139074 **     INSERT INTO <tbl>(<tbl>) VALUES('rebuild');
139075 **
139076 ** The entire FTS index is discarded and rebuilt. If the table is one
139077 ** created using the content=xxx option, then the new index is based on
139078 ** the current contents of the xxx table. Otherwise, it is rebuilt based
139079 ** on the contents of the %_content table.
139080 */
139081 static int fts3DoRebuild(Fts3Table *p){
139082   int rc;                         /* Return Code */
139083 
139084   rc = fts3DeleteAll(p, 0);
139085   if( rc==SQLITE_OK ){
139086     u32 *aSz = 0;
139087     u32 *aSzIns = 0;
139088     u32 *aSzDel = 0;
139089     sqlite3_stmt *pStmt = 0;
139090     int nEntry = 0;
139091 
139092     /* Compose and prepare an SQL statement to loop through the content table */
139093     char *zSql = sqlite3_mprintf("SELECT %s" , p->zReadExprlist);
139094     if( !zSql ){
139095       rc = SQLITE_NOMEM;
139096     }else{
139097       rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0);
139098       sqlite3_free(zSql);
139099     }
139100 
139101     if( rc==SQLITE_OK ){
139102       int nByte = sizeof(u32) * (p->nColumn+1)*3;
139103       aSz = (u32 *)sqlite3_malloc(nByte);
139104       if( aSz==0 ){
139105         rc = SQLITE_NOMEM;
139106       }else{
139107         memset(aSz, 0, nByte);
139108         aSzIns = &aSz[p->nColumn+1];
139109         aSzDel = &aSzIns[p->nColumn+1];
139110       }
139111     }
139112 
139113     while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){
139114       int iCol;
139115       int iLangid = langidFromSelect(p, pStmt);
139116       rc = fts3PendingTermsDocid(p, iLangid, sqlite3_column_int64(pStmt, 0));
139117       memset(aSz, 0, sizeof(aSz[0]) * (p->nColumn+1));
139118       for(iCol=0; rc==SQLITE_OK && iCol<p->nColumn; iCol++){
139119         if( p->abNotindexed[iCol]==0 ){
139120           const char *z = (const char *) sqlite3_column_text(pStmt, iCol+1);
139121           rc = fts3PendingTermsAdd(p, iLangid, z, iCol, &aSz[iCol]);
139122           aSz[p->nColumn] += sqlite3_column_bytes(pStmt, iCol+1);
139123         }
139124       }
139125       if( p->bHasDocsize ){
139126         fts3InsertDocsize(&rc, p, aSz);
139127       }
139128       if( rc!=SQLITE_OK ){
139129         sqlite3_finalize(pStmt);
139130         pStmt = 0;
139131       }else{
139132         nEntry++;
139133         for(iCol=0; iCol<=p->nColumn; iCol++){
139134           aSzIns[iCol] += aSz[iCol];
139135         }
139136       }
139137     }
139138     if( p->bFts4 ){
139139       fts3UpdateDocTotals(&rc, p, aSzIns, aSzDel, nEntry);
139140     }
139141     sqlite3_free(aSz);
139142 
139143     if( pStmt ){
139144       int rc2 = sqlite3_finalize(pStmt);
139145       if( rc==SQLITE_OK ){
139146         rc = rc2;
139147       }
139148     }
139149   }
139150 
139151   return rc;
139152 }
139153 
139154 
139155 /*
139156 ** This function opens a cursor used to read the input data for an
139157 ** incremental merge operation. Specifically, it opens a cursor to scan
139158 ** the oldest nSeg segments (idx=0 through idx=(nSeg-1)) in absolute
139159 ** level iAbsLevel.
139160 */
139161 static int fts3IncrmergeCsr(
139162   Fts3Table *p,                   /* FTS3 table handle */
139163   sqlite3_int64 iAbsLevel,        /* Absolute level to open */
139164   int nSeg,                       /* Number of segments to merge */
139165   Fts3MultiSegReader *pCsr        /* Cursor object to populate */
139166 ){
139167   int rc;                         /* Return Code */
139168   sqlite3_stmt *pStmt = 0;        /* Statement used to read %_segdir entry */
139169   int nByte;                      /* Bytes allocated at pCsr->apSegment[] */
139170 
139171   /* Allocate space for the Fts3MultiSegReader.aCsr[] array */
139172   memset(pCsr, 0, sizeof(*pCsr));
139173   nByte = sizeof(Fts3SegReader *) * nSeg;
139174   pCsr->apSegment = (Fts3SegReader **)sqlite3_malloc(nByte);
139175 
139176   if( pCsr->apSegment==0 ){
139177     rc = SQLITE_NOMEM;
139178   }else{
139179     memset(pCsr->apSegment, 0, nByte);
139180     rc = fts3SqlStmt(p, SQL_SELECT_LEVEL, &pStmt, 0);
139181   }
139182   if( rc==SQLITE_OK ){
139183     int i;
139184     int rc2;
139185     sqlite3_bind_int64(pStmt, 1, iAbsLevel);
139186     assert( pCsr->nSegment==0 );
139187     for(i=0; rc==SQLITE_OK && sqlite3_step(pStmt)==SQLITE_ROW && i<nSeg; i++){
139188       rc = sqlite3Fts3SegReaderNew(i, 0,
139189           sqlite3_column_int64(pStmt, 1),        /* segdir.start_block */
139190           sqlite3_column_int64(pStmt, 2),        /* segdir.leaves_end_block */
139191           sqlite3_column_int64(pStmt, 3),        /* segdir.end_block */
139192           sqlite3_column_blob(pStmt, 4),         /* segdir.root */
139193           sqlite3_column_bytes(pStmt, 4),        /* segdir.root */
139194           &pCsr->apSegment[i]
139195       );
139196       pCsr->nSegment++;
139197     }
139198     rc2 = sqlite3_reset(pStmt);
139199     if( rc==SQLITE_OK ) rc = rc2;
139200   }
139201 
139202   return rc;
139203 }
139204 
139205 typedef struct IncrmergeWriter IncrmergeWriter;
139206 typedef struct NodeWriter NodeWriter;
139207 typedef struct Blob Blob;
139208 typedef struct NodeReader NodeReader;
139209 
139210 /*
139211 ** An instance of the following structure is used as a dynamic buffer
139212 ** to build up nodes or other blobs of data in.
139213 **
139214 ** The function blobGrowBuffer() is used to extend the allocation.
139215 */
139216 struct Blob {
139217   char *a;                        /* Pointer to allocation */
139218   int n;                          /* Number of valid bytes of data in a[] */
139219   int nAlloc;                     /* Allocated size of a[] (nAlloc>=n) */
139220 };
139221 
139222 /*
139223 ** This structure is used to build up buffers containing segment b-tree
139224 ** nodes (blocks).
139225 */
139226 struct NodeWriter {
139227   sqlite3_int64 iBlock;           /* Current block id */
139228   Blob key;                       /* Last key written to the current block */
139229   Blob block;                     /* Current block image */
139230 };
139231 
139232 /*
139233 ** An object of this type contains the state required to create or append
139234 ** to an appendable b-tree segment.
139235 */
139236 struct IncrmergeWriter {
139237   int nLeafEst;                   /* Space allocated for leaf blocks */
139238   int nWork;                      /* Number of leaf pages flushed */
139239   sqlite3_int64 iAbsLevel;        /* Absolute level of input segments */
139240   int iIdx;                       /* Index of *output* segment in iAbsLevel+1 */
139241   sqlite3_int64 iStart;           /* Block number of first allocated block */
139242   sqlite3_int64 iEnd;             /* Block number of last allocated block */
139243   sqlite3_int64 nLeafData;        /* Bytes of leaf page data so far */
139244   u8 bNoLeafData;                 /* If true, store 0 for segment size */
139245   NodeWriter aNodeWriter[FTS_MAX_APPENDABLE_HEIGHT];
139246 };
139247 
139248 /*
139249 ** An object of the following type is used to read data from a single
139250 ** FTS segment node. See the following functions:
139251 **
139252 **     nodeReaderInit()
139253 **     nodeReaderNext()
139254 **     nodeReaderRelease()
139255 */
139256 struct NodeReader {
139257   const char *aNode;
139258   int nNode;
139259   int iOff;                       /* Current offset within aNode[] */
139260 
139261   /* Output variables. Containing the current node entry. */
139262   sqlite3_int64 iChild;           /* Pointer to child node */
139263   Blob term;                      /* Current term */
139264   const char *aDoclist;           /* Pointer to doclist */
139265   int nDoclist;                   /* Size of doclist in bytes */
139266 };
139267 
139268 /*
139269 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op.
139270 ** Otherwise, if the allocation at pBlob->a is not already at least nMin
139271 ** bytes in size, extend (realloc) it to be so.
139272 **
139273 ** If an OOM error occurs, set *pRc to SQLITE_NOMEM and leave pBlob->a
139274 ** unmodified. Otherwise, if the allocation succeeds, update pBlob->nAlloc
139275 ** to reflect the new size of the pBlob->a[] buffer.
139276 */
139277 static void blobGrowBuffer(Blob *pBlob, int nMin, int *pRc){
139278   if( *pRc==SQLITE_OK && nMin>pBlob->nAlloc ){
139279     int nAlloc = nMin;
139280     char *a = (char *)sqlite3_realloc(pBlob->a, nAlloc);
139281     if( a ){
139282       pBlob->nAlloc = nAlloc;
139283       pBlob->a = a;
139284     }else{
139285       *pRc = SQLITE_NOMEM;
139286     }
139287   }
139288 }
139289 
139290 /*
139291 ** Attempt to advance the node-reader object passed as the first argument to
139292 ** the next entry on the node.
139293 **
139294 ** Return an error code if an error occurs (SQLITE_NOMEM is possible).
139295 ** Otherwise return SQLITE_OK. If there is no next entry on the node
139296 ** (e.g. because the current entry is the last) set NodeReader->aNode to
139297 ** NULL to indicate EOF. Otherwise, populate the NodeReader structure output
139298 ** variables for the new entry.
139299 */
139300 static int nodeReaderNext(NodeReader *p){
139301   int bFirst = (p->term.n==0);    /* True for first term on the node */
139302   int nPrefix = 0;                /* Bytes to copy from previous term */
139303   int nSuffix = 0;                /* Bytes to append to the prefix */
139304   int rc = SQLITE_OK;             /* Return code */
139305 
139306   assert( p->aNode );
139307   if( p->iChild && bFirst==0 ) p->iChild++;
139308   if( p->iOff>=p->nNode ){
139309     /* EOF */
139310     p->aNode = 0;
139311   }else{
139312     if( bFirst==0 ){
139313       p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &nPrefix);
139314     }
139315     p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &nSuffix);
139316 
139317     blobGrowBuffer(&p->term, nPrefix+nSuffix, &rc);
139318     if( rc==SQLITE_OK ){
139319       memcpy(&p->term.a[nPrefix], &p->aNode[p->iOff], nSuffix);
139320       p->term.n = nPrefix+nSuffix;
139321       p->iOff += nSuffix;
139322       if( p->iChild==0 ){
139323         p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &p->nDoclist);
139324         p->aDoclist = &p->aNode[p->iOff];
139325         p->iOff += p->nDoclist;
139326       }
139327     }
139328   }
139329 
139330   assert( p->iOff<=p->nNode );
139331 
139332   return rc;
139333 }
139334 
139335 /*
139336 ** Release all dynamic resources held by node-reader object *p.
139337 */
139338 static void nodeReaderRelease(NodeReader *p){
139339   sqlite3_free(p->term.a);
139340 }
139341 
139342 /*
139343 ** Initialize a node-reader object to read the node in buffer aNode/nNode.
139344 **
139345 ** If successful, SQLITE_OK is returned and the NodeReader object set to
139346 ** point to the first entry on the node (if any). Otherwise, an SQLite
139347 ** error code is returned.
139348 */
139349 static int nodeReaderInit(NodeReader *p, const char *aNode, int nNode){
139350   memset(p, 0, sizeof(NodeReader));
139351   p->aNode = aNode;
139352   p->nNode = nNode;
139353 
139354   /* Figure out if this is a leaf or an internal node. */
139355   if( p->aNode[0] ){
139356     /* An internal node. */
139357     p->iOff = 1 + sqlite3Fts3GetVarint(&p->aNode[1], &p->iChild);
139358   }else{
139359     p->iOff = 1;
139360   }
139361 
139362   return nodeReaderNext(p);
139363 }
139364 
139365 /*
139366 ** This function is called while writing an FTS segment each time a leaf o
139367 ** node is finished and written to disk. The key (zTerm/nTerm) is guaranteed
139368 ** to be greater than the largest key on the node just written, but smaller
139369 ** than or equal to the first key that will be written to the next leaf
139370 ** node.
139371 **
139372 ** The block id of the leaf node just written to disk may be found in
139373 ** (pWriter->aNodeWriter[0].iBlock) when this function is called.
139374 */
139375 static int fts3IncrmergePush(
139376   Fts3Table *p,                   /* Fts3 table handle */
139377   IncrmergeWriter *pWriter,       /* Writer object */
139378   const char *zTerm,              /* Term to write to internal node */
139379   int nTerm                       /* Bytes at zTerm */
139380 ){
139381   sqlite3_int64 iPtr = pWriter->aNodeWriter[0].iBlock;
139382   int iLayer;
139383 
139384   assert( nTerm>0 );
139385   for(iLayer=1; ALWAYS(iLayer<FTS_MAX_APPENDABLE_HEIGHT); iLayer++){
139386     sqlite3_int64 iNextPtr = 0;
139387     NodeWriter *pNode = &pWriter->aNodeWriter[iLayer];
139388     int rc = SQLITE_OK;
139389     int nPrefix;
139390     int nSuffix;
139391     int nSpace;
139392 
139393     /* Figure out how much space the key will consume if it is written to
139394     ** the current node of layer iLayer. Due to the prefix compression,
139395     ** the space required changes depending on which node the key is to
139396     ** be added to.  */
139397     nPrefix = fts3PrefixCompress(pNode->key.a, pNode->key.n, zTerm, nTerm);
139398     nSuffix = nTerm - nPrefix;
139399     nSpace  = sqlite3Fts3VarintLen(nPrefix);
139400     nSpace += sqlite3Fts3VarintLen(nSuffix) + nSuffix;
139401 
139402     if( pNode->key.n==0 || (pNode->block.n + nSpace)<=p->nNodeSize ){
139403       /* If the current node of layer iLayer contains zero keys, or if adding
139404       ** the key to it will not cause it to grow to larger than nNodeSize
139405       ** bytes in size, write the key here.  */
139406 
139407       Blob *pBlk = &pNode->block;
139408       if( pBlk->n==0 ){
139409         blobGrowBuffer(pBlk, p->nNodeSize, &rc);
139410         if( rc==SQLITE_OK ){
139411           pBlk->a[0] = (char)iLayer;
139412           pBlk->n = 1 + sqlite3Fts3PutVarint(&pBlk->a[1], iPtr);
139413         }
139414       }
139415       blobGrowBuffer(pBlk, pBlk->n + nSpace, &rc);
139416       blobGrowBuffer(&pNode->key, nTerm, &rc);
139417 
139418       if( rc==SQLITE_OK ){
139419         if( pNode->key.n ){
139420           pBlk->n += sqlite3Fts3PutVarint(&pBlk->a[pBlk->n], nPrefix);
139421         }
139422         pBlk->n += sqlite3Fts3PutVarint(&pBlk->a[pBlk->n], nSuffix);
139423         memcpy(&pBlk->a[pBlk->n], &zTerm[nPrefix], nSuffix);
139424         pBlk->n += nSuffix;
139425 
139426         memcpy(pNode->key.a, zTerm, nTerm);
139427         pNode->key.n = nTerm;
139428       }
139429     }else{
139430       /* Otherwise, flush the current node of layer iLayer to disk.
139431       ** Then allocate a new, empty sibling node. The key will be written
139432       ** into the parent of this node. */
139433       rc = fts3WriteSegment(p, pNode->iBlock, pNode->block.a, pNode->block.n);
139434 
139435       assert( pNode->block.nAlloc>=p->nNodeSize );
139436       pNode->block.a[0] = (char)iLayer;
139437       pNode->block.n = 1 + sqlite3Fts3PutVarint(&pNode->block.a[1], iPtr+1);
139438 
139439       iNextPtr = pNode->iBlock;
139440       pNode->iBlock++;
139441       pNode->key.n = 0;
139442     }
139443 
139444     if( rc!=SQLITE_OK || iNextPtr==0 ) return rc;
139445     iPtr = iNextPtr;
139446   }
139447 
139448   assert( 0 );
139449   return 0;
139450 }
139451 
139452 /*
139453 ** Append a term and (optionally) doclist to the FTS segment node currently
139454 ** stored in blob *pNode. The node need not contain any terms, but the
139455 ** header must be written before this function is called.
139456 **
139457 ** A node header is a single 0x00 byte for a leaf node, or a height varint
139458 ** followed by the left-hand-child varint for an internal node.
139459 **
139460 ** The term to be appended is passed via arguments zTerm/nTerm. For a
139461 ** leaf node, the doclist is passed as aDoclist/nDoclist. For an internal
139462 ** node, both aDoclist and nDoclist must be passed 0.
139463 **
139464 ** If the size of the value in blob pPrev is zero, then this is the first
139465 ** term written to the node. Otherwise, pPrev contains a copy of the
139466 ** previous term. Before this function returns, it is updated to contain a
139467 ** copy of zTerm/nTerm.
139468 **
139469 ** It is assumed that the buffer associated with pNode is already large
139470 ** enough to accommodate the new entry. The buffer associated with pPrev
139471 ** is extended by this function if requrired.
139472 **
139473 ** If an error (i.e. OOM condition) occurs, an SQLite error code is
139474 ** returned. Otherwise, SQLITE_OK.
139475 */
139476 static int fts3AppendToNode(
139477   Blob *pNode,                    /* Current node image to append to */
139478   Blob *pPrev,                    /* Buffer containing previous term written */
139479   const char *zTerm,              /* New term to write */
139480   int nTerm,                      /* Size of zTerm in bytes */
139481   const char *aDoclist,           /* Doclist (or NULL) to write */
139482   int nDoclist                    /* Size of aDoclist in bytes */
139483 ){
139484   int rc = SQLITE_OK;             /* Return code */
139485   int bFirst = (pPrev->n==0);     /* True if this is the first term written */
139486   int nPrefix;                    /* Size of term prefix in bytes */
139487   int nSuffix;                    /* Size of term suffix in bytes */
139488 
139489   /* Node must have already been started. There must be a doclist for a
139490   ** leaf node, and there must not be a doclist for an internal node.  */
139491   assert( pNode->n>0 );
139492   assert( (pNode->a[0]=='\0')==(aDoclist!=0) );
139493 
139494   blobGrowBuffer(pPrev, nTerm, &rc);
139495   if( rc!=SQLITE_OK ) return rc;
139496 
139497   nPrefix = fts3PrefixCompress(pPrev->a, pPrev->n, zTerm, nTerm);
139498   nSuffix = nTerm - nPrefix;
139499   memcpy(pPrev->a, zTerm, nTerm);
139500   pPrev->n = nTerm;
139501 
139502   if( bFirst==0 ){
139503     pNode->n += sqlite3Fts3PutVarint(&pNode->a[pNode->n], nPrefix);
139504   }
139505   pNode->n += sqlite3Fts3PutVarint(&pNode->a[pNode->n], nSuffix);
139506   memcpy(&pNode->a[pNode->n], &zTerm[nPrefix], nSuffix);
139507   pNode->n += nSuffix;
139508 
139509   if( aDoclist ){
139510     pNode->n += sqlite3Fts3PutVarint(&pNode->a[pNode->n], nDoclist);
139511     memcpy(&pNode->a[pNode->n], aDoclist, nDoclist);
139512     pNode->n += nDoclist;
139513   }
139514 
139515   assert( pNode->n<=pNode->nAlloc );
139516 
139517   return SQLITE_OK;
139518 }
139519 
139520 /*
139521 ** Append the current term and doclist pointed to by cursor pCsr to the
139522 ** appendable b-tree segment opened for writing by pWriter.
139523 **
139524 ** Return SQLITE_OK if successful, or an SQLite error code otherwise.
139525 */
139526 static int fts3IncrmergeAppend(
139527   Fts3Table *p,                   /* Fts3 table handle */
139528   IncrmergeWriter *pWriter,       /* Writer object */
139529   Fts3MultiSegReader *pCsr        /* Cursor containing term and doclist */
139530 ){
139531   const char *zTerm = pCsr->zTerm;
139532   int nTerm = pCsr->nTerm;
139533   const char *aDoclist = pCsr->aDoclist;
139534   int nDoclist = pCsr->nDoclist;
139535   int rc = SQLITE_OK;           /* Return code */
139536   int nSpace;                   /* Total space in bytes required on leaf */
139537   int nPrefix;                  /* Size of prefix shared with previous term */
139538   int nSuffix;                  /* Size of suffix (nTerm - nPrefix) */
139539   NodeWriter *pLeaf;            /* Object used to write leaf nodes */
139540 
139541   pLeaf = &pWriter->aNodeWriter[0];
139542   nPrefix = fts3PrefixCompress(pLeaf->key.a, pLeaf->key.n, zTerm, nTerm);
139543   nSuffix = nTerm - nPrefix;
139544 
139545   nSpace  = sqlite3Fts3VarintLen(nPrefix);
139546   nSpace += sqlite3Fts3VarintLen(nSuffix) + nSuffix;
139547   nSpace += sqlite3Fts3VarintLen(nDoclist) + nDoclist;
139548 
139549   /* If the current block is not empty, and if adding this term/doclist
139550   ** to the current block would make it larger than Fts3Table.nNodeSize
139551   ** bytes, write this block out to the database. */
139552   if( pLeaf->block.n>0 && (pLeaf->block.n + nSpace)>p->nNodeSize ){
139553     rc = fts3WriteSegment(p, pLeaf->iBlock, pLeaf->block.a, pLeaf->block.n);
139554     pWriter->nWork++;
139555 
139556     /* Add the current term to the parent node. The term added to the
139557     ** parent must:
139558     **
139559     **   a) be greater than the largest term on the leaf node just written
139560     **      to the database (still available in pLeaf->key), and
139561     **
139562     **   b) be less than or equal to the term about to be added to the new
139563     **      leaf node (zTerm/nTerm).
139564     **
139565     ** In other words, it must be the prefix of zTerm 1 byte longer than
139566     ** the common prefix (if any) of zTerm and pWriter->zTerm.
139567     */
139568     if( rc==SQLITE_OK ){
139569       rc = fts3IncrmergePush(p, pWriter, zTerm, nPrefix+1);
139570     }
139571 
139572     /* Advance to the next output block */
139573     pLeaf->iBlock++;
139574     pLeaf->key.n = 0;
139575     pLeaf->block.n = 0;
139576 
139577     nSuffix = nTerm;
139578     nSpace  = 1;
139579     nSpace += sqlite3Fts3VarintLen(nSuffix) + nSuffix;
139580     nSpace += sqlite3Fts3VarintLen(nDoclist) + nDoclist;
139581   }
139582 
139583   pWriter->nLeafData += nSpace;
139584   blobGrowBuffer(&pLeaf->block, pLeaf->block.n + nSpace, &rc);
139585   if( rc==SQLITE_OK ){
139586     if( pLeaf->block.n==0 ){
139587       pLeaf->block.n = 1;
139588       pLeaf->block.a[0] = '\0';
139589     }
139590     rc = fts3AppendToNode(
139591         &pLeaf->block, &pLeaf->key, zTerm, nTerm, aDoclist, nDoclist
139592     );
139593   }
139594 
139595   return rc;
139596 }
139597 
139598 /*
139599 ** This function is called to release all dynamic resources held by the
139600 ** merge-writer object pWriter, and if no error has occurred, to flush
139601 ** all outstanding node buffers held by pWriter to disk.
139602 **
139603 ** If *pRc is not SQLITE_OK when this function is called, then no attempt
139604 ** is made to write any data to disk. Instead, this function serves only
139605 ** to release outstanding resources.
139606 **
139607 ** Otherwise, if *pRc is initially SQLITE_OK and an error occurs while
139608 ** flushing buffers to disk, *pRc is set to an SQLite error code before
139609 ** returning.
139610 */
139611 static void fts3IncrmergeRelease(
139612   Fts3Table *p,                   /* FTS3 table handle */
139613   IncrmergeWriter *pWriter,       /* Merge-writer object */
139614   int *pRc                        /* IN/OUT: Error code */
139615 ){
139616   int i;                          /* Used to iterate through non-root layers */
139617   int iRoot;                      /* Index of root in pWriter->aNodeWriter */
139618   NodeWriter *pRoot;              /* NodeWriter for root node */
139619   int rc = *pRc;                  /* Error code */
139620 
139621   /* Set iRoot to the index in pWriter->aNodeWriter[] of the output segment
139622   ** root node. If the segment fits entirely on a single leaf node, iRoot
139623   ** will be set to 0. If the root node is the parent of the leaves, iRoot
139624   ** will be 1. And so on.  */
139625   for(iRoot=FTS_MAX_APPENDABLE_HEIGHT-1; iRoot>=0; iRoot--){
139626     NodeWriter *pNode = &pWriter->aNodeWriter[iRoot];
139627     if( pNode->block.n>0 ) break;
139628     assert( *pRc || pNode->block.nAlloc==0 );
139629     assert( *pRc || pNode->key.nAlloc==0 );
139630     sqlite3_free(pNode->block.a);
139631     sqlite3_free(pNode->key.a);
139632   }
139633 
139634   /* Empty output segment. This is a no-op. */
139635   if( iRoot<0 ) return;
139636 
139637   /* The entire output segment fits on a single node. Normally, this means
139638   ** the node would be stored as a blob in the "root" column of the %_segdir
139639   ** table. However, this is not permitted in this case. The problem is that
139640   ** space has already been reserved in the %_segments table, and so the
139641   ** start_block and end_block fields of the %_segdir table must be populated.
139642   ** And, by design or by accident, released versions of FTS cannot handle
139643   ** segments that fit entirely on the root node with start_block!=0.
139644   **
139645   ** Instead, create a synthetic root node that contains nothing but a
139646   ** pointer to the single content node. So that the segment consists of a
139647   ** single leaf and a single interior (root) node.
139648   **
139649   ** Todo: Better might be to defer allocating space in the %_segments
139650   ** table until we are sure it is needed.
139651   */
139652   if( iRoot==0 ){
139653     Blob *pBlock = &pWriter->aNodeWriter[1].block;
139654     blobGrowBuffer(pBlock, 1 + FTS3_VARINT_MAX, &rc);
139655     if( rc==SQLITE_OK ){
139656       pBlock->a[0] = 0x01;
139657       pBlock->n = 1 + sqlite3Fts3PutVarint(
139658           &pBlock->a[1], pWriter->aNodeWriter[0].iBlock
139659       );
139660     }
139661     iRoot = 1;
139662   }
139663   pRoot = &pWriter->aNodeWriter[iRoot];
139664 
139665   /* Flush all currently outstanding nodes to disk. */
139666   for(i=0; i<iRoot; i++){
139667     NodeWriter *pNode = &pWriter->aNodeWriter[i];
139668     if( pNode->block.n>0 && rc==SQLITE_OK ){
139669       rc = fts3WriteSegment(p, pNode->iBlock, pNode->block.a, pNode->block.n);
139670     }
139671     sqlite3_free(pNode->block.a);
139672     sqlite3_free(pNode->key.a);
139673   }
139674 
139675   /* Write the %_segdir record. */
139676   if( rc==SQLITE_OK ){
139677     rc = fts3WriteSegdir(p,
139678         pWriter->iAbsLevel+1,               /* level */
139679         pWriter->iIdx,                      /* idx */
139680         pWriter->iStart,                    /* start_block */
139681         pWriter->aNodeWriter[0].iBlock,     /* leaves_end_block */
139682         pWriter->iEnd,                      /* end_block */
139683         (pWriter->bNoLeafData==0 ? pWriter->nLeafData : 0),   /* end_block */
139684         pRoot->block.a, pRoot->block.n      /* root */
139685     );
139686   }
139687   sqlite3_free(pRoot->block.a);
139688   sqlite3_free(pRoot->key.a);
139689 
139690   *pRc = rc;
139691 }
139692 
139693 /*
139694 ** Compare the term in buffer zLhs (size in bytes nLhs) with that in
139695 ** zRhs (size in bytes nRhs) using memcmp. If one term is a prefix of
139696 ** the other, it is considered to be smaller than the other.
139697 **
139698 ** Return -ve if zLhs is smaller than zRhs, 0 if it is equal, or +ve
139699 ** if it is greater.
139700 */
139701 static int fts3TermCmp(
139702   const char *zLhs, int nLhs,     /* LHS of comparison */
139703   const char *zRhs, int nRhs      /* RHS of comparison */
139704 ){
139705   int nCmp = MIN(nLhs, nRhs);
139706   int res;
139707 
139708   res = memcmp(zLhs, zRhs, nCmp);
139709   if( res==0 ) res = nLhs - nRhs;
139710 
139711   return res;
139712 }
139713 
139714 
139715 /*
139716 ** Query to see if the entry in the %_segments table with blockid iEnd is
139717 ** NULL. If no error occurs and the entry is NULL, set *pbRes 1 before
139718 ** returning. Otherwise, set *pbRes to 0.
139719 **
139720 ** Or, if an error occurs while querying the database, return an SQLite
139721 ** error code. The final value of *pbRes is undefined in this case.
139722 **
139723 ** This is used to test if a segment is an "appendable" segment. If it
139724 ** is, then a NULL entry has been inserted into the %_segments table
139725 ** with blockid %_segdir.end_block.
139726 */
139727 static int fts3IsAppendable(Fts3Table *p, sqlite3_int64 iEnd, int *pbRes){
139728   int bRes = 0;                   /* Result to set *pbRes to */
139729   sqlite3_stmt *pCheck = 0;       /* Statement to query database with */
139730   int rc;                         /* Return code */
139731 
139732   rc = fts3SqlStmt(p, SQL_SEGMENT_IS_APPENDABLE, &pCheck, 0);
139733   if( rc==SQLITE_OK ){
139734     sqlite3_bind_int64(pCheck, 1, iEnd);
139735     if( SQLITE_ROW==sqlite3_step(pCheck) ) bRes = 1;
139736     rc = sqlite3_reset(pCheck);
139737   }
139738 
139739   *pbRes = bRes;
139740   return rc;
139741 }
139742 
139743 /*
139744 ** This function is called when initializing an incremental-merge operation.
139745 ** It checks if the existing segment with index value iIdx at absolute level
139746 ** (iAbsLevel+1) can be appended to by the incremental merge. If it can, the
139747 ** merge-writer object *pWriter is initialized to write to it.
139748 **
139749 ** An existing segment can be appended to by an incremental merge if:
139750 **
139751 **   * It was initially created as an appendable segment (with all required
139752 **     space pre-allocated), and
139753 **
139754 **   * The first key read from the input (arguments zKey and nKey) is
139755 **     greater than the largest key currently stored in the potential
139756 **     output segment.
139757 */
139758 static int fts3IncrmergeLoad(
139759   Fts3Table *p,                   /* Fts3 table handle */
139760   sqlite3_int64 iAbsLevel,        /* Absolute level of input segments */
139761   int iIdx,                       /* Index of candidate output segment */
139762   const char *zKey,               /* First key to write */
139763   int nKey,                       /* Number of bytes in nKey */
139764   IncrmergeWriter *pWriter        /* Populate this object */
139765 ){
139766   int rc;                         /* Return code */
139767   sqlite3_stmt *pSelect = 0;      /* SELECT to read %_segdir entry */
139768 
139769   rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR, &pSelect, 0);
139770   if( rc==SQLITE_OK ){
139771     sqlite3_int64 iStart = 0;     /* Value of %_segdir.start_block */
139772     sqlite3_int64 iLeafEnd = 0;   /* Value of %_segdir.leaves_end_block */
139773     sqlite3_int64 iEnd = 0;       /* Value of %_segdir.end_block */
139774     const char *aRoot = 0;        /* Pointer to %_segdir.root buffer */
139775     int nRoot = 0;                /* Size of aRoot[] in bytes */
139776     int rc2;                      /* Return code from sqlite3_reset() */
139777     int bAppendable = 0;          /* Set to true if segment is appendable */
139778 
139779     /* Read the %_segdir entry for index iIdx absolute level (iAbsLevel+1) */
139780     sqlite3_bind_int64(pSelect, 1, iAbsLevel+1);
139781     sqlite3_bind_int(pSelect, 2, iIdx);
139782     if( sqlite3_step(pSelect)==SQLITE_ROW ){
139783       iStart = sqlite3_column_int64(pSelect, 1);
139784       iLeafEnd = sqlite3_column_int64(pSelect, 2);
139785       fts3ReadEndBlockField(pSelect, 3, &iEnd, &pWriter->nLeafData);
139786       if( pWriter->nLeafData<0 ){
139787         pWriter->nLeafData = pWriter->nLeafData * -1;
139788       }
139789       pWriter->bNoLeafData = (pWriter->nLeafData==0);
139790       nRoot = sqlite3_column_bytes(pSelect, 4);
139791       aRoot = sqlite3_column_blob(pSelect, 4);
139792     }else{
139793       return sqlite3_reset(pSelect);
139794     }
139795 
139796     /* Check for the zero-length marker in the %_segments table */
139797     rc = fts3IsAppendable(p, iEnd, &bAppendable);
139798 
139799     /* Check that zKey/nKey is larger than the largest key the candidate */
139800     if( rc==SQLITE_OK && bAppendable ){
139801       char *aLeaf = 0;
139802       int nLeaf = 0;
139803 
139804       rc = sqlite3Fts3ReadBlock(p, iLeafEnd, &aLeaf, &nLeaf, 0);
139805       if( rc==SQLITE_OK ){
139806         NodeReader reader;
139807         for(rc = nodeReaderInit(&reader, aLeaf, nLeaf);
139808             rc==SQLITE_OK && reader.aNode;
139809             rc = nodeReaderNext(&reader)
139810         ){
139811           assert( reader.aNode );
139812         }
139813         if( fts3TermCmp(zKey, nKey, reader.term.a, reader.term.n)<=0 ){
139814           bAppendable = 0;
139815         }
139816         nodeReaderRelease(&reader);
139817       }
139818       sqlite3_free(aLeaf);
139819     }
139820 
139821     if( rc==SQLITE_OK && bAppendable ){
139822       /* It is possible to append to this segment. Set up the IncrmergeWriter
139823       ** object to do so.  */
139824       int i;
139825       int nHeight = (int)aRoot[0];
139826       NodeWriter *pNode;
139827 
139828       pWriter->nLeafEst = (int)((iEnd - iStart) + 1)/FTS_MAX_APPENDABLE_HEIGHT;
139829       pWriter->iStart = iStart;
139830       pWriter->iEnd = iEnd;
139831       pWriter->iAbsLevel = iAbsLevel;
139832       pWriter->iIdx = iIdx;
139833 
139834       for(i=nHeight+1; i<FTS_MAX_APPENDABLE_HEIGHT; i++){
139835         pWriter->aNodeWriter[i].iBlock = pWriter->iStart + i*pWriter->nLeafEst;
139836       }
139837 
139838       pNode = &pWriter->aNodeWriter[nHeight];
139839       pNode->iBlock = pWriter->iStart + pWriter->nLeafEst*nHeight;
139840       blobGrowBuffer(&pNode->block, MAX(nRoot, p->nNodeSize), &rc);
139841       if( rc==SQLITE_OK ){
139842         memcpy(pNode->block.a, aRoot, nRoot);
139843         pNode->block.n = nRoot;
139844       }
139845 
139846       for(i=nHeight; i>=0 && rc==SQLITE_OK; i--){
139847         NodeReader reader;
139848         pNode = &pWriter->aNodeWriter[i];
139849 
139850         rc = nodeReaderInit(&reader, pNode->block.a, pNode->block.n);
139851         while( reader.aNode && rc==SQLITE_OK ) rc = nodeReaderNext(&reader);
139852         blobGrowBuffer(&pNode->key, reader.term.n, &rc);
139853         if( rc==SQLITE_OK ){
139854           memcpy(pNode->key.a, reader.term.a, reader.term.n);
139855           pNode->key.n = reader.term.n;
139856           if( i>0 ){
139857             char *aBlock = 0;
139858             int nBlock = 0;
139859             pNode = &pWriter->aNodeWriter[i-1];
139860             pNode->iBlock = reader.iChild;
139861             rc = sqlite3Fts3ReadBlock(p, reader.iChild, &aBlock, &nBlock, 0);
139862             blobGrowBuffer(&pNode->block, MAX(nBlock, p->nNodeSize), &rc);
139863             if( rc==SQLITE_OK ){
139864               memcpy(pNode->block.a, aBlock, nBlock);
139865               pNode->block.n = nBlock;
139866             }
139867             sqlite3_free(aBlock);
139868           }
139869         }
139870         nodeReaderRelease(&reader);
139871       }
139872     }
139873 
139874     rc2 = sqlite3_reset(pSelect);
139875     if( rc==SQLITE_OK ) rc = rc2;
139876   }
139877 
139878   return rc;
139879 }
139880 
139881 /*
139882 ** Determine the largest segment index value that exists within absolute
139883 ** level iAbsLevel+1. If no error occurs, set *piIdx to this value plus
139884 ** one before returning SQLITE_OK. Or, if there are no segments at all
139885 ** within level iAbsLevel, set *piIdx to zero.
139886 **
139887 ** If an error occurs, return an SQLite error code. The final value of
139888 ** *piIdx is undefined in this case.
139889 */
139890 static int fts3IncrmergeOutputIdx(
139891   Fts3Table *p,                   /* FTS Table handle */
139892   sqlite3_int64 iAbsLevel,        /* Absolute index of input segments */
139893   int *piIdx                      /* OUT: Next free index at iAbsLevel+1 */
139894 ){
139895   int rc;
139896   sqlite3_stmt *pOutputIdx = 0;   /* SQL used to find output index */
139897 
139898   rc = fts3SqlStmt(p, SQL_NEXT_SEGMENT_INDEX, &pOutputIdx, 0);
139899   if( rc==SQLITE_OK ){
139900     sqlite3_bind_int64(pOutputIdx, 1, iAbsLevel+1);
139901     sqlite3_step(pOutputIdx);
139902     *piIdx = sqlite3_column_int(pOutputIdx, 0);
139903     rc = sqlite3_reset(pOutputIdx);
139904   }
139905 
139906   return rc;
139907 }
139908 
139909 /*
139910 ** Allocate an appendable output segment on absolute level iAbsLevel+1
139911 ** with idx value iIdx.
139912 **
139913 ** In the %_segdir table, a segment is defined by the values in three
139914 ** columns:
139915 **
139916 **     start_block
139917 **     leaves_end_block
139918 **     end_block
139919 **
139920 ** When an appendable segment is allocated, it is estimated that the
139921 ** maximum number of leaf blocks that may be required is the sum of the
139922 ** number of leaf blocks consumed by the input segments, plus the number
139923 ** of input segments, multiplied by two. This value is stored in stack
139924 ** variable nLeafEst.
139925 **
139926 ** A total of 16*nLeafEst blocks are allocated when an appendable segment
139927 ** is created ((1 + end_block - start_block)==16*nLeafEst). The contiguous
139928 ** array of leaf nodes starts at the first block allocated. The array
139929 ** of interior nodes that are parents of the leaf nodes start at block
139930 ** (start_block + (1 + end_block - start_block) / 16). And so on.
139931 **
139932 ** In the actual code below, the value "16" is replaced with the
139933 ** pre-processor macro FTS_MAX_APPENDABLE_HEIGHT.
139934 */
139935 static int fts3IncrmergeWriter(
139936   Fts3Table *p,                   /* Fts3 table handle */
139937   sqlite3_int64 iAbsLevel,        /* Absolute level of input segments */
139938   int iIdx,                       /* Index of new output segment */
139939   Fts3MultiSegReader *pCsr,       /* Cursor that data will be read from */
139940   IncrmergeWriter *pWriter        /* Populate this object */
139941 ){
139942   int rc;                         /* Return Code */
139943   int i;                          /* Iterator variable */
139944   int nLeafEst = 0;               /* Blocks allocated for leaf nodes */
139945   sqlite3_stmt *pLeafEst = 0;     /* SQL used to determine nLeafEst */
139946   sqlite3_stmt *pFirstBlock = 0;  /* SQL used to determine first block */
139947 
139948   /* Calculate nLeafEst. */
139949   rc = fts3SqlStmt(p, SQL_MAX_LEAF_NODE_ESTIMATE, &pLeafEst, 0);
139950   if( rc==SQLITE_OK ){
139951     sqlite3_bind_int64(pLeafEst, 1, iAbsLevel);
139952     sqlite3_bind_int64(pLeafEst, 2, pCsr->nSegment);
139953     if( SQLITE_ROW==sqlite3_step(pLeafEst) ){
139954       nLeafEst = sqlite3_column_int(pLeafEst, 0);
139955     }
139956     rc = sqlite3_reset(pLeafEst);
139957   }
139958   if( rc!=SQLITE_OK ) return rc;
139959 
139960   /* Calculate the first block to use in the output segment */
139961   rc = fts3SqlStmt(p, SQL_NEXT_SEGMENTS_ID, &pFirstBlock, 0);
139962   if( rc==SQLITE_OK ){
139963     if( SQLITE_ROW==sqlite3_step(pFirstBlock) ){
139964       pWriter->iStart = sqlite3_column_int64(pFirstBlock, 0);
139965       pWriter->iEnd = pWriter->iStart - 1;
139966       pWriter->iEnd += nLeafEst * FTS_MAX_APPENDABLE_HEIGHT;
139967     }
139968     rc = sqlite3_reset(pFirstBlock);
139969   }
139970   if( rc!=SQLITE_OK ) return rc;
139971 
139972   /* Insert the marker in the %_segments table to make sure nobody tries
139973   ** to steal the space just allocated. This is also used to identify
139974   ** appendable segments.  */
139975   rc = fts3WriteSegment(p, pWriter->iEnd, 0, 0);
139976   if( rc!=SQLITE_OK ) return rc;
139977 
139978   pWriter->iAbsLevel = iAbsLevel;
139979   pWriter->nLeafEst = nLeafEst;
139980   pWriter->iIdx = iIdx;
139981 
139982   /* Set up the array of NodeWriter objects */
139983   for(i=0; i<FTS_MAX_APPENDABLE_HEIGHT; i++){
139984     pWriter->aNodeWriter[i].iBlock = pWriter->iStart + i*pWriter->nLeafEst;
139985   }
139986   return SQLITE_OK;
139987 }
139988 
139989 /*
139990 ** Remove an entry from the %_segdir table. This involves running the
139991 ** following two statements:
139992 **
139993 **   DELETE FROM %_segdir WHERE level = :iAbsLevel AND idx = :iIdx
139994 **   UPDATE %_segdir SET idx = idx - 1 WHERE level = :iAbsLevel AND idx > :iIdx
139995 **
139996 ** The DELETE statement removes the specific %_segdir level. The UPDATE
139997 ** statement ensures that the remaining segments have contiguously allocated
139998 ** idx values.
139999 */
140000 static int fts3RemoveSegdirEntry(
140001   Fts3Table *p,                   /* FTS3 table handle */
140002   sqlite3_int64 iAbsLevel,        /* Absolute level to delete from */
140003   int iIdx                        /* Index of %_segdir entry to delete */
140004 ){
140005   int rc;                         /* Return code */
140006   sqlite3_stmt *pDelete = 0;      /* DELETE statement */
140007 
140008   rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_ENTRY, &pDelete, 0);
140009   if( rc==SQLITE_OK ){
140010     sqlite3_bind_int64(pDelete, 1, iAbsLevel);
140011     sqlite3_bind_int(pDelete, 2, iIdx);
140012     sqlite3_step(pDelete);
140013     rc = sqlite3_reset(pDelete);
140014   }
140015 
140016   return rc;
140017 }
140018 
140019 /*
140020 ** One or more segments have just been removed from absolute level iAbsLevel.
140021 ** Update the 'idx' values of the remaining segments in the level so that
140022 ** the idx values are a contiguous sequence starting from 0.
140023 */
140024 static int fts3RepackSegdirLevel(
140025   Fts3Table *p,                   /* FTS3 table handle */
140026   sqlite3_int64 iAbsLevel         /* Absolute level to repack */
140027 ){
140028   int rc;                         /* Return code */
140029   int *aIdx = 0;                  /* Array of remaining idx values */
140030   int nIdx = 0;                   /* Valid entries in aIdx[] */
140031   int nAlloc = 0;                 /* Allocated size of aIdx[] */
140032   int i;                          /* Iterator variable */
140033   sqlite3_stmt *pSelect = 0;      /* Select statement to read idx values */
140034   sqlite3_stmt *pUpdate = 0;      /* Update statement to modify idx values */
140035 
140036   rc = fts3SqlStmt(p, SQL_SELECT_INDEXES, &pSelect, 0);
140037   if( rc==SQLITE_OK ){
140038     int rc2;
140039     sqlite3_bind_int64(pSelect, 1, iAbsLevel);
140040     while( SQLITE_ROW==sqlite3_step(pSelect) ){
140041       if( nIdx>=nAlloc ){
140042         int *aNew;
140043         nAlloc += 16;
140044         aNew = sqlite3_realloc(aIdx, nAlloc*sizeof(int));
140045         if( !aNew ){
140046           rc = SQLITE_NOMEM;
140047           break;
140048         }
140049         aIdx = aNew;
140050       }
140051       aIdx[nIdx++] = sqlite3_column_int(pSelect, 0);
140052     }
140053     rc2 = sqlite3_reset(pSelect);
140054     if( rc==SQLITE_OK ) rc = rc2;
140055   }
140056 
140057   if( rc==SQLITE_OK ){
140058     rc = fts3SqlStmt(p, SQL_SHIFT_SEGDIR_ENTRY, &pUpdate, 0);
140059   }
140060   if( rc==SQLITE_OK ){
140061     sqlite3_bind_int64(pUpdate, 2, iAbsLevel);
140062   }
140063 
140064   assert( p->bIgnoreSavepoint==0 );
140065   p->bIgnoreSavepoint = 1;
140066   for(i=0; rc==SQLITE_OK && i<nIdx; i++){
140067     if( aIdx[i]!=i ){
140068       sqlite3_bind_int(pUpdate, 3, aIdx[i]);
140069       sqlite3_bind_int(pUpdate, 1, i);
140070       sqlite3_step(pUpdate);
140071       rc = sqlite3_reset(pUpdate);
140072     }
140073   }
140074   p->bIgnoreSavepoint = 0;
140075 
140076   sqlite3_free(aIdx);
140077   return rc;
140078 }
140079 
140080 static void fts3StartNode(Blob *pNode, int iHeight, sqlite3_int64 iChild){
140081   pNode->a[0] = (char)iHeight;
140082   if( iChild ){
140083     assert( pNode->nAlloc>=1+sqlite3Fts3VarintLen(iChild) );
140084     pNode->n = 1 + sqlite3Fts3PutVarint(&pNode->a[1], iChild);
140085   }else{
140086     assert( pNode->nAlloc>=1 );
140087     pNode->n = 1;
140088   }
140089 }
140090 
140091 /*
140092 ** The first two arguments are a pointer to and the size of a segment b-tree
140093 ** node. The node may be a leaf or an internal node.
140094 **
140095 ** This function creates a new node image in blob object *pNew by copying
140096 ** all terms that are greater than or equal to zTerm/nTerm (for leaf nodes)
140097 ** or greater than zTerm/nTerm (for internal nodes) from aNode/nNode.
140098 */
140099 static int fts3TruncateNode(
140100   const char *aNode,              /* Current node image */
140101   int nNode,                      /* Size of aNode in bytes */
140102   Blob *pNew,                     /* OUT: Write new node image here */
140103   const char *zTerm,              /* Omit all terms smaller than this */
140104   int nTerm,                      /* Size of zTerm in bytes */
140105   sqlite3_int64 *piBlock          /* OUT: Block number in next layer down */
140106 ){
140107   NodeReader reader;              /* Reader object */
140108   Blob prev = {0, 0, 0};          /* Previous term written to new node */
140109   int rc = SQLITE_OK;             /* Return code */
140110   int bLeaf = aNode[0]=='\0';     /* True for a leaf node */
140111 
140112   /* Allocate required output space */
140113   blobGrowBuffer(pNew, nNode, &rc);
140114   if( rc!=SQLITE_OK ) return rc;
140115   pNew->n = 0;
140116 
140117   /* Populate new node buffer */
140118   for(rc = nodeReaderInit(&reader, aNode, nNode);
140119       rc==SQLITE_OK && reader.aNode;
140120       rc = nodeReaderNext(&reader)
140121   ){
140122     if( pNew->n==0 ){
140123       int res = fts3TermCmp(reader.term.a, reader.term.n, zTerm, nTerm);
140124       if( res<0 || (bLeaf==0 && res==0) ) continue;
140125       fts3StartNode(pNew, (int)aNode[0], reader.iChild);
140126       *piBlock = reader.iChild;
140127     }
140128     rc = fts3AppendToNode(
140129         pNew, &prev, reader.term.a, reader.term.n,
140130         reader.aDoclist, reader.nDoclist
140131     );
140132     if( rc!=SQLITE_OK ) break;
140133   }
140134   if( pNew->n==0 ){
140135     fts3StartNode(pNew, (int)aNode[0], reader.iChild);
140136     *piBlock = reader.iChild;
140137   }
140138   assert( pNew->n<=pNew->nAlloc );
140139 
140140   nodeReaderRelease(&reader);
140141   sqlite3_free(prev.a);
140142   return rc;
140143 }
140144 
140145 /*
140146 ** Remove all terms smaller than zTerm/nTerm from segment iIdx in absolute
140147 ** level iAbsLevel. This may involve deleting entries from the %_segments
140148 ** table, and modifying existing entries in both the %_segments and %_segdir
140149 ** tables.
140150 **
140151 ** SQLITE_OK is returned if the segment is updated successfully. Or an
140152 ** SQLite error code otherwise.
140153 */
140154 static int fts3TruncateSegment(
140155   Fts3Table *p,                   /* FTS3 table handle */
140156   sqlite3_int64 iAbsLevel,        /* Absolute level of segment to modify */
140157   int iIdx,                       /* Index within level of segment to modify */
140158   const char *zTerm,              /* Remove terms smaller than this */
140159   int nTerm                      /* Number of bytes in buffer zTerm */
140160 ){
140161   int rc = SQLITE_OK;             /* Return code */
140162   Blob root = {0,0,0};            /* New root page image */
140163   Blob block = {0,0,0};           /* Buffer used for any other block */
140164   sqlite3_int64 iBlock = 0;       /* Block id */
140165   sqlite3_int64 iNewStart = 0;    /* New value for iStartBlock */
140166   sqlite3_int64 iOldStart = 0;    /* Old value for iStartBlock */
140167   sqlite3_stmt *pFetch = 0;       /* Statement used to fetch segdir */
140168 
140169   rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR, &pFetch, 0);
140170   if( rc==SQLITE_OK ){
140171     int rc2;                      /* sqlite3_reset() return code */
140172     sqlite3_bind_int64(pFetch, 1, iAbsLevel);
140173     sqlite3_bind_int(pFetch, 2, iIdx);
140174     if( SQLITE_ROW==sqlite3_step(pFetch) ){
140175       const char *aRoot = sqlite3_column_blob(pFetch, 4);
140176       int nRoot = sqlite3_column_bytes(pFetch, 4);
140177       iOldStart = sqlite3_column_int64(pFetch, 1);
140178       rc = fts3TruncateNode(aRoot, nRoot, &root, zTerm, nTerm, &iBlock);
140179     }
140180     rc2 = sqlite3_reset(pFetch);
140181     if( rc==SQLITE_OK ) rc = rc2;
140182   }
140183 
140184   while( rc==SQLITE_OK && iBlock ){
140185     char *aBlock = 0;
140186     int nBlock = 0;
140187     iNewStart = iBlock;
140188 
140189     rc = sqlite3Fts3ReadBlock(p, iBlock, &aBlock, &nBlock, 0);
140190     if( rc==SQLITE_OK ){
140191       rc = fts3TruncateNode(aBlock, nBlock, &block, zTerm, nTerm, &iBlock);
140192     }
140193     if( rc==SQLITE_OK ){
140194       rc = fts3WriteSegment(p, iNewStart, block.a, block.n);
140195     }
140196     sqlite3_free(aBlock);
140197   }
140198 
140199   /* Variable iNewStart now contains the first valid leaf node. */
140200   if( rc==SQLITE_OK && iNewStart ){
140201     sqlite3_stmt *pDel = 0;
140202     rc = fts3SqlStmt(p, SQL_DELETE_SEGMENTS_RANGE, &pDel, 0);
140203     if( rc==SQLITE_OK ){
140204       sqlite3_bind_int64(pDel, 1, iOldStart);
140205       sqlite3_bind_int64(pDel, 2, iNewStart-1);
140206       sqlite3_step(pDel);
140207       rc = sqlite3_reset(pDel);
140208     }
140209   }
140210 
140211   if( rc==SQLITE_OK ){
140212     sqlite3_stmt *pChomp = 0;
140213     rc = fts3SqlStmt(p, SQL_CHOMP_SEGDIR, &pChomp, 0);
140214     if( rc==SQLITE_OK ){
140215       sqlite3_bind_int64(pChomp, 1, iNewStart);
140216       sqlite3_bind_blob(pChomp, 2, root.a, root.n, SQLITE_STATIC);
140217       sqlite3_bind_int64(pChomp, 3, iAbsLevel);
140218       sqlite3_bind_int(pChomp, 4, iIdx);
140219       sqlite3_step(pChomp);
140220       rc = sqlite3_reset(pChomp);
140221     }
140222   }
140223 
140224   sqlite3_free(root.a);
140225   sqlite3_free(block.a);
140226   return rc;
140227 }
140228 
140229 /*
140230 ** This function is called after an incrmental-merge operation has run to
140231 ** merge (or partially merge) two or more segments from absolute level
140232 ** iAbsLevel.
140233 **
140234 ** Each input segment is either removed from the db completely (if all of
140235 ** its data was copied to the output segment by the incrmerge operation)
140236 ** or modified in place so that it no longer contains those entries that
140237 ** have been duplicated in the output segment.
140238 */
140239 static int fts3IncrmergeChomp(
140240   Fts3Table *p,                   /* FTS table handle */
140241   sqlite3_int64 iAbsLevel,        /* Absolute level containing segments */
140242   Fts3MultiSegReader *pCsr,       /* Chomp all segments opened by this cursor */
140243   int *pnRem                      /* Number of segments not deleted */
140244 ){
140245   int i;
140246   int nRem = 0;
140247   int rc = SQLITE_OK;
140248 
140249   for(i=pCsr->nSegment-1; i>=0 && rc==SQLITE_OK; i--){
140250     Fts3SegReader *pSeg = 0;
140251     int j;
140252 
140253     /* Find the Fts3SegReader object with Fts3SegReader.iIdx==i. It is hiding
140254     ** somewhere in the pCsr->apSegment[] array.  */
140255     for(j=0; ALWAYS(j<pCsr->nSegment); j++){
140256       pSeg = pCsr->apSegment[j];
140257       if( pSeg->iIdx==i ) break;
140258     }
140259     assert( j<pCsr->nSegment && pSeg->iIdx==i );
140260 
140261     if( pSeg->aNode==0 ){
140262       /* Seg-reader is at EOF. Remove the entire input segment. */
140263       rc = fts3DeleteSegment(p, pSeg);
140264       if( rc==SQLITE_OK ){
140265         rc = fts3RemoveSegdirEntry(p, iAbsLevel, pSeg->iIdx);
140266       }
140267       *pnRem = 0;
140268     }else{
140269       /* The incremental merge did not copy all the data from this
140270       ** segment to the upper level. The segment is modified in place
140271       ** so that it contains no keys smaller than zTerm/nTerm. */
140272       const char *zTerm = pSeg->zTerm;
140273       int nTerm = pSeg->nTerm;
140274       rc = fts3TruncateSegment(p, iAbsLevel, pSeg->iIdx, zTerm, nTerm);
140275       nRem++;
140276     }
140277   }
140278 
140279   if( rc==SQLITE_OK && nRem!=pCsr->nSegment ){
140280     rc = fts3RepackSegdirLevel(p, iAbsLevel);
140281   }
140282 
140283   *pnRem = nRem;
140284   return rc;
140285 }
140286 
140287 /*
140288 ** Store an incr-merge hint in the database.
140289 */
140290 static int fts3IncrmergeHintStore(Fts3Table *p, Blob *pHint){
140291   sqlite3_stmt *pReplace = 0;
140292   int rc;                         /* Return code */
140293 
140294   rc = fts3SqlStmt(p, SQL_REPLACE_STAT, &pReplace, 0);
140295   if( rc==SQLITE_OK ){
140296     sqlite3_bind_int(pReplace, 1, FTS_STAT_INCRMERGEHINT);
140297     sqlite3_bind_blob(pReplace, 2, pHint->a, pHint->n, SQLITE_STATIC);
140298     sqlite3_step(pReplace);
140299     rc = sqlite3_reset(pReplace);
140300   }
140301 
140302   return rc;
140303 }
140304 
140305 /*
140306 ** Load an incr-merge hint from the database. The incr-merge hint, if one
140307 ** exists, is stored in the rowid==1 row of the %_stat table.
140308 **
140309 ** If successful, populate blob *pHint with the value read from the %_stat
140310 ** table and return SQLITE_OK. Otherwise, if an error occurs, return an
140311 ** SQLite error code.
140312 */
140313 static int fts3IncrmergeHintLoad(Fts3Table *p, Blob *pHint){
140314   sqlite3_stmt *pSelect = 0;
140315   int rc;
140316 
140317   pHint->n = 0;
140318   rc = fts3SqlStmt(p, SQL_SELECT_STAT, &pSelect, 0);
140319   if( rc==SQLITE_OK ){
140320     int rc2;
140321     sqlite3_bind_int(pSelect, 1, FTS_STAT_INCRMERGEHINT);
140322     if( SQLITE_ROW==sqlite3_step(pSelect) ){
140323       const char *aHint = sqlite3_column_blob(pSelect, 0);
140324       int nHint = sqlite3_column_bytes(pSelect, 0);
140325       if( aHint ){
140326         blobGrowBuffer(pHint, nHint, &rc);
140327         if( rc==SQLITE_OK ){
140328           memcpy(pHint->a, aHint, nHint);
140329           pHint->n = nHint;
140330         }
140331       }
140332     }
140333     rc2 = sqlite3_reset(pSelect);
140334     if( rc==SQLITE_OK ) rc = rc2;
140335   }
140336 
140337   return rc;
140338 }
140339 
140340 /*
140341 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op.
140342 ** Otherwise, append an entry to the hint stored in blob *pHint. Each entry
140343 ** consists of two varints, the absolute level number of the input segments
140344 ** and the number of input segments.
140345 **
140346 ** If successful, leave *pRc set to SQLITE_OK and return. If an error occurs,
140347 ** set *pRc to an SQLite error code before returning.
140348 */
140349 static void fts3IncrmergeHintPush(
140350   Blob *pHint,                    /* Hint blob to append to */
140351   i64 iAbsLevel,                  /* First varint to store in hint */
140352   int nInput,                     /* Second varint to store in hint */
140353   int *pRc                        /* IN/OUT: Error code */
140354 ){
140355   blobGrowBuffer(pHint, pHint->n + 2*FTS3_VARINT_MAX, pRc);
140356   if( *pRc==SQLITE_OK ){
140357     pHint->n += sqlite3Fts3PutVarint(&pHint->a[pHint->n], iAbsLevel);
140358     pHint->n += sqlite3Fts3PutVarint(&pHint->a[pHint->n], (i64)nInput);
140359   }
140360 }
140361 
140362 /*
140363 ** Read the last entry (most recently pushed) from the hint blob *pHint
140364 ** and then remove the entry. Write the two values read to *piAbsLevel and
140365 ** *pnInput before returning.
140366 **
140367 ** If no error occurs, return SQLITE_OK. If the hint blob in *pHint does
140368 ** not contain at least two valid varints, return SQLITE_CORRUPT_VTAB.
140369 */
140370 static int fts3IncrmergeHintPop(Blob *pHint, i64 *piAbsLevel, int *pnInput){
140371   const int nHint = pHint->n;
140372   int i;
140373 
140374   i = pHint->n-2;
140375   while( i>0 && (pHint->a[i-1] & 0x80) ) i--;
140376   while( i>0 && (pHint->a[i-1] & 0x80) ) i--;
140377 
140378   pHint->n = i;
140379   i += sqlite3Fts3GetVarint(&pHint->a[i], piAbsLevel);
140380   i += fts3GetVarint32(&pHint->a[i], pnInput);
140381   if( i!=nHint ) return SQLITE_CORRUPT_VTAB;
140382 
140383   return SQLITE_OK;
140384 }
140385 
140386 
140387 /*
140388 ** Attempt an incremental merge that writes nMerge leaf blocks.
140389 **
140390 ** Incremental merges happen nMin segments at a time. The segments
140391 ** to be merged are the nMin oldest segments (the ones with the smallest
140392 ** values for the _segdir.idx field) in the highest level that contains
140393 ** at least nMin segments. Multiple merges might occur in an attempt to
140394 ** write the quota of nMerge leaf blocks.
140395 */
140396 SQLITE_PRIVATE int sqlite3Fts3Incrmerge(Fts3Table *p, int nMerge, int nMin){
140397   int rc;                         /* Return code */
140398   int nRem = nMerge;              /* Number of leaf pages yet to  be written */
140399   Fts3MultiSegReader *pCsr;       /* Cursor used to read input data */
140400   Fts3SegFilter *pFilter;         /* Filter used with cursor pCsr */
140401   IncrmergeWriter *pWriter;       /* Writer object */
140402   int nSeg = 0;                   /* Number of input segments */
140403   sqlite3_int64 iAbsLevel = 0;    /* Absolute level number to work on */
140404   Blob hint = {0, 0, 0};          /* Hint read from %_stat table */
140405   int bDirtyHint = 0;             /* True if blob 'hint' has been modified */
140406 
140407   /* Allocate space for the cursor, filter and writer objects */
140408   const int nAlloc = sizeof(*pCsr) + sizeof(*pFilter) + sizeof(*pWriter);
140409   pWriter = (IncrmergeWriter *)sqlite3_malloc(nAlloc);
140410   if( !pWriter ) return SQLITE_NOMEM;
140411   pFilter = (Fts3SegFilter *)&pWriter[1];
140412   pCsr = (Fts3MultiSegReader *)&pFilter[1];
140413 
140414   rc = fts3IncrmergeHintLoad(p, &hint);
140415   while( rc==SQLITE_OK && nRem>0 ){
140416     const i64 nMod = FTS3_SEGDIR_MAXLEVEL * p->nIndex;
140417     sqlite3_stmt *pFindLevel = 0; /* SQL used to determine iAbsLevel */
140418     int bUseHint = 0;             /* True if attempting to append */
140419     int iIdx = 0;                 /* Largest idx in level (iAbsLevel+1) */
140420 
140421     /* Search the %_segdir table for the absolute level with the smallest
140422     ** relative level number that contains at least nMin segments, if any.
140423     ** If one is found, set iAbsLevel to the absolute level number and
140424     ** nSeg to nMin. If no level with at least nMin segments can be found,
140425     ** set nSeg to -1.
140426     */
140427     rc = fts3SqlStmt(p, SQL_FIND_MERGE_LEVEL, &pFindLevel, 0);
140428     sqlite3_bind_int(pFindLevel, 1, nMin);
140429     if( sqlite3_step(pFindLevel)==SQLITE_ROW ){
140430       iAbsLevel = sqlite3_column_int64(pFindLevel, 0);
140431       nSeg = nMin;
140432     }else{
140433       nSeg = -1;
140434     }
140435     rc = sqlite3_reset(pFindLevel);
140436 
140437     /* If the hint read from the %_stat table is not empty, check if the
140438     ** last entry in it specifies a relative level smaller than or equal
140439     ** to the level identified by the block above (if any). If so, this
140440     ** iteration of the loop will work on merging at the hinted level.
140441     */
140442     if( rc==SQLITE_OK && hint.n ){
140443       int nHint = hint.n;
140444       sqlite3_int64 iHintAbsLevel = 0;      /* Hint level */
140445       int nHintSeg = 0;                     /* Hint number of segments */
140446 
140447       rc = fts3IncrmergeHintPop(&hint, &iHintAbsLevel, &nHintSeg);
140448       if( nSeg<0 || (iAbsLevel % nMod) >= (iHintAbsLevel % nMod) ){
140449         iAbsLevel = iHintAbsLevel;
140450         nSeg = nHintSeg;
140451         bUseHint = 1;
140452         bDirtyHint = 1;
140453       }else{
140454         /* This undoes the effect of the HintPop() above - so that no entry
140455         ** is removed from the hint blob.  */
140456         hint.n = nHint;
140457       }
140458     }
140459 
140460     /* If nSeg is less that zero, then there is no level with at least
140461     ** nMin segments and no hint in the %_stat table. No work to do.
140462     ** Exit early in this case.  */
140463     if( nSeg<0 ) break;
140464 
140465     /* Open a cursor to iterate through the contents of the oldest nSeg
140466     ** indexes of absolute level iAbsLevel. If this cursor is opened using
140467     ** the 'hint' parameters, it is possible that there are less than nSeg
140468     ** segments available in level iAbsLevel. In this case, no work is
140469     ** done on iAbsLevel - fall through to the next iteration of the loop
140470     ** to start work on some other level.  */
140471     memset(pWriter, 0, nAlloc);
140472     pFilter->flags = FTS3_SEGMENT_REQUIRE_POS;
140473 
140474     if( rc==SQLITE_OK ){
140475       rc = fts3IncrmergeOutputIdx(p, iAbsLevel, &iIdx);
140476       assert( bUseHint==1 || bUseHint==0 );
140477       if( iIdx==0 || (bUseHint && iIdx==1) ){
140478         int bIgnore = 0;
140479         rc = fts3SegmentIsMaxLevel(p, iAbsLevel+1, &bIgnore);
140480         if( bIgnore ){
140481           pFilter->flags |= FTS3_SEGMENT_IGNORE_EMPTY;
140482         }
140483       }
140484     }
140485 
140486     if( rc==SQLITE_OK ){
140487       rc = fts3IncrmergeCsr(p, iAbsLevel, nSeg, pCsr);
140488     }
140489     if( SQLITE_OK==rc && pCsr->nSegment==nSeg
140490      && SQLITE_OK==(rc = sqlite3Fts3SegReaderStart(p, pCsr, pFilter))
140491      && SQLITE_ROW==(rc = sqlite3Fts3SegReaderStep(p, pCsr))
140492     ){
140493       if( bUseHint && iIdx>0 ){
140494         const char *zKey = pCsr->zTerm;
140495         int nKey = pCsr->nTerm;
140496         rc = fts3IncrmergeLoad(p, iAbsLevel, iIdx-1, zKey, nKey, pWriter);
140497       }else{
140498         rc = fts3IncrmergeWriter(p, iAbsLevel, iIdx, pCsr, pWriter);
140499       }
140500 
140501       if( rc==SQLITE_OK && pWriter->nLeafEst ){
140502         fts3LogMerge(nSeg, iAbsLevel);
140503         do {
140504           rc = fts3IncrmergeAppend(p, pWriter, pCsr);
140505           if( rc==SQLITE_OK ) rc = sqlite3Fts3SegReaderStep(p, pCsr);
140506           if( pWriter->nWork>=nRem && rc==SQLITE_ROW ) rc = SQLITE_OK;
140507         }while( rc==SQLITE_ROW );
140508 
140509         /* Update or delete the input segments */
140510         if( rc==SQLITE_OK ){
140511           nRem -= (1 + pWriter->nWork);
140512           rc = fts3IncrmergeChomp(p, iAbsLevel, pCsr, &nSeg);
140513           if( nSeg!=0 ){
140514             bDirtyHint = 1;
140515             fts3IncrmergeHintPush(&hint, iAbsLevel, nSeg, &rc);
140516           }
140517         }
140518       }
140519 
140520       if( nSeg!=0 ){
140521         pWriter->nLeafData = pWriter->nLeafData * -1;
140522       }
140523       fts3IncrmergeRelease(p, pWriter, &rc);
140524       if( nSeg==0 && pWriter->bNoLeafData==0 ){
140525         fts3PromoteSegments(p, iAbsLevel+1, pWriter->nLeafData);
140526       }
140527     }
140528 
140529     sqlite3Fts3SegReaderFinish(pCsr);
140530   }
140531 
140532   /* Write the hint values into the %_stat table for the next incr-merger */
140533   if( bDirtyHint && rc==SQLITE_OK ){
140534     rc = fts3IncrmergeHintStore(p, &hint);
140535   }
140536 
140537   sqlite3_free(pWriter);
140538   sqlite3_free(hint.a);
140539   return rc;
140540 }
140541 
140542 /*
140543 ** Convert the text beginning at *pz into an integer and return
140544 ** its value.  Advance *pz to point to the first character past
140545 ** the integer.
140546 */
140547 static int fts3Getint(const char **pz){
140548   const char *z = *pz;
140549   int i = 0;
140550   while( (*z)>='0' && (*z)<='9' ) i = 10*i + *(z++) - '0';
140551   *pz = z;
140552   return i;
140553 }
140554 
140555 /*
140556 ** Process statements of the form:
140557 **
140558 **    INSERT INTO table(table) VALUES('merge=A,B');
140559 **
140560 ** A and B are integers that decode to be the number of leaf pages
140561 ** written for the merge, and the minimum number of segments on a level
140562 ** before it will be selected for a merge, respectively.
140563 */
140564 static int fts3DoIncrmerge(
140565   Fts3Table *p,                   /* FTS3 table handle */
140566   const char *zParam              /* Nul-terminated string containing "A,B" */
140567 ){
140568   int rc;
140569   int nMin = (FTS3_MERGE_COUNT / 2);
140570   int nMerge = 0;
140571   const char *z = zParam;
140572 
140573   /* Read the first integer value */
140574   nMerge = fts3Getint(&z);
140575 
140576   /* If the first integer value is followed by a ',',  read the second
140577   ** integer value. */
140578   if( z[0]==',' && z[1]!='\0' ){
140579     z++;
140580     nMin = fts3Getint(&z);
140581   }
140582 
140583   if( z[0]!='\0' || nMin<2 ){
140584     rc = SQLITE_ERROR;
140585   }else{
140586     rc = SQLITE_OK;
140587     if( !p->bHasStat ){
140588       assert( p->bFts4==0 );
140589       sqlite3Fts3CreateStatTable(&rc, p);
140590     }
140591     if( rc==SQLITE_OK ){
140592       rc = sqlite3Fts3Incrmerge(p, nMerge, nMin);
140593     }
140594     sqlite3Fts3SegmentsClose(p);
140595   }
140596   return rc;
140597 }
140598 
140599 /*
140600 ** Process statements of the form:
140601 **
140602 **    INSERT INTO table(table) VALUES('automerge=X');
140603 **
140604 ** where X is an integer.  X==0 means to turn automerge off.  X!=0 means
140605 ** turn it on.  The setting is persistent.
140606 */
140607 static int fts3DoAutoincrmerge(
140608   Fts3Table *p,                   /* FTS3 table handle */
140609   const char *zParam              /* Nul-terminated string containing boolean */
140610 ){
140611   int rc = SQLITE_OK;
140612   sqlite3_stmt *pStmt = 0;
140613   p->nAutoincrmerge = fts3Getint(&zParam);
140614   if( p->nAutoincrmerge==1 || p->nAutoincrmerge>FTS3_MERGE_COUNT ){
140615     p->nAutoincrmerge = 8;
140616   }
140617   if( !p->bHasStat ){
140618     assert( p->bFts4==0 );
140619     sqlite3Fts3CreateStatTable(&rc, p);
140620     if( rc ) return rc;
140621   }
140622   rc = fts3SqlStmt(p, SQL_REPLACE_STAT, &pStmt, 0);
140623   if( rc ) return rc;
140624   sqlite3_bind_int(pStmt, 1, FTS_STAT_AUTOINCRMERGE);
140625   sqlite3_bind_int(pStmt, 2, p->nAutoincrmerge);
140626   sqlite3_step(pStmt);
140627   rc = sqlite3_reset(pStmt);
140628   return rc;
140629 }
140630 
140631 /*
140632 ** Return a 64-bit checksum for the FTS index entry specified by the
140633 ** arguments to this function.
140634 */
140635 static u64 fts3ChecksumEntry(
140636   const char *zTerm,              /* Pointer to buffer containing term */
140637   int nTerm,                      /* Size of zTerm in bytes */
140638   int iLangid,                    /* Language id for current row */
140639   int iIndex,                     /* Index (0..Fts3Table.nIndex-1) */
140640   i64 iDocid,                     /* Docid for current row. */
140641   int iCol,                       /* Column number */
140642   int iPos                        /* Position */
140643 ){
140644   int i;
140645   u64 ret = (u64)iDocid;
140646 
140647   ret += (ret<<3) + iLangid;
140648   ret += (ret<<3) + iIndex;
140649   ret += (ret<<3) + iCol;
140650   ret += (ret<<3) + iPos;
140651   for(i=0; i<nTerm; i++) ret += (ret<<3) + zTerm[i];
140652 
140653   return ret;
140654 }
140655 
140656 /*
140657 ** Return a checksum of all entries in the FTS index that correspond to
140658 ** language id iLangid. The checksum is calculated by XORing the checksums
140659 ** of each individual entry (see fts3ChecksumEntry()) together.
140660 **
140661 ** If successful, the checksum value is returned and *pRc set to SQLITE_OK.
140662 ** Otherwise, if an error occurs, *pRc is set to an SQLite error code. The
140663 ** return value is undefined in this case.
140664 */
140665 static u64 fts3ChecksumIndex(
140666   Fts3Table *p,                   /* FTS3 table handle */
140667   int iLangid,                    /* Language id to return cksum for */
140668   int iIndex,                     /* Index to cksum (0..p->nIndex-1) */
140669   int *pRc                        /* OUT: Return code */
140670 ){
140671   Fts3SegFilter filter;
140672   Fts3MultiSegReader csr;
140673   int rc;
140674   u64 cksum = 0;
140675 
140676   assert( *pRc==SQLITE_OK );
140677 
140678   memset(&filter, 0, sizeof(filter));
140679   memset(&csr, 0, sizeof(csr));
140680   filter.flags =  FTS3_SEGMENT_REQUIRE_POS|FTS3_SEGMENT_IGNORE_EMPTY;
140681   filter.flags |= FTS3_SEGMENT_SCAN;
140682 
140683   rc = sqlite3Fts3SegReaderCursor(
140684       p, iLangid, iIndex, FTS3_SEGCURSOR_ALL, 0, 0, 0, 1,&csr
140685   );
140686   if( rc==SQLITE_OK ){
140687     rc = sqlite3Fts3SegReaderStart(p, &csr, &filter);
140688   }
140689 
140690   if( rc==SQLITE_OK ){
140691     while( SQLITE_ROW==(rc = sqlite3Fts3SegReaderStep(p, &csr)) ){
140692       char *pCsr = csr.aDoclist;
140693       char *pEnd = &pCsr[csr.nDoclist];
140694 
140695       i64 iDocid = 0;
140696       i64 iCol = 0;
140697       i64 iPos = 0;
140698 
140699       pCsr += sqlite3Fts3GetVarint(pCsr, &iDocid);
140700       while( pCsr<pEnd ){
140701         i64 iVal = 0;
140702         pCsr += sqlite3Fts3GetVarint(pCsr, &iVal);
140703         if( pCsr<pEnd ){
140704           if( iVal==0 || iVal==1 ){
140705             iCol = 0;
140706             iPos = 0;
140707             if( iVal ){
140708               pCsr += sqlite3Fts3GetVarint(pCsr, &iCol);
140709             }else{
140710               pCsr += sqlite3Fts3GetVarint(pCsr, &iVal);
140711               iDocid += iVal;
140712             }
140713           }else{
140714             iPos += (iVal - 2);
140715             cksum = cksum ^ fts3ChecksumEntry(
140716                 csr.zTerm, csr.nTerm, iLangid, iIndex, iDocid,
140717                 (int)iCol, (int)iPos
140718             );
140719           }
140720         }
140721       }
140722     }
140723   }
140724   sqlite3Fts3SegReaderFinish(&csr);
140725 
140726   *pRc = rc;
140727   return cksum;
140728 }
140729 
140730 /*
140731 ** Check if the contents of the FTS index match the current contents of the
140732 ** content table. If no error occurs and the contents do match, set *pbOk
140733 ** to true and return SQLITE_OK. Or if the contents do not match, set *pbOk
140734 ** to false before returning.
140735 **
140736 ** If an error occurs (e.g. an OOM or IO error), return an SQLite error
140737 ** code. The final value of *pbOk is undefined in this case.
140738 */
140739 static int fts3IntegrityCheck(Fts3Table *p, int *pbOk){
140740   int rc = SQLITE_OK;             /* Return code */
140741   u64 cksum1 = 0;                 /* Checksum based on FTS index contents */
140742   u64 cksum2 = 0;                 /* Checksum based on %_content contents */
140743   sqlite3_stmt *pAllLangid = 0;   /* Statement to return all language-ids */
140744 
140745   /* This block calculates the checksum according to the FTS index. */
140746   rc = fts3SqlStmt(p, SQL_SELECT_ALL_LANGID, &pAllLangid, 0);
140747   if( rc==SQLITE_OK ){
140748     int rc2;
140749     sqlite3_bind_int(pAllLangid, 1, p->nIndex);
140750     while( rc==SQLITE_OK && sqlite3_step(pAllLangid)==SQLITE_ROW ){
140751       int iLangid = sqlite3_column_int(pAllLangid, 0);
140752       int i;
140753       for(i=0; i<p->nIndex; i++){
140754         cksum1 = cksum1 ^ fts3ChecksumIndex(p, iLangid, i, &rc);
140755       }
140756     }
140757     rc2 = sqlite3_reset(pAllLangid);
140758     if( rc==SQLITE_OK ) rc = rc2;
140759   }
140760 
140761   /* This block calculates the checksum according to the %_content table */
140762   rc = fts3SqlStmt(p, SQL_SELECT_ALL_LANGID, &pAllLangid, 0);
140763   if( rc==SQLITE_OK ){
140764     sqlite3_tokenizer_module const *pModule = p->pTokenizer->pModule;
140765     sqlite3_stmt *pStmt = 0;
140766     char *zSql;
140767 
140768     zSql = sqlite3_mprintf("SELECT %s" , p->zReadExprlist);
140769     if( !zSql ){
140770       rc = SQLITE_NOMEM;
140771     }else{
140772       rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0);
140773       sqlite3_free(zSql);
140774     }
140775 
140776     while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){
140777       i64 iDocid = sqlite3_column_int64(pStmt, 0);
140778       int iLang = langidFromSelect(p, pStmt);
140779       int iCol;
140780 
140781       for(iCol=0; rc==SQLITE_OK && iCol<p->nColumn; iCol++){
140782         const char *zText = (const char *)sqlite3_column_text(pStmt, iCol+1);
140783         int nText = sqlite3_column_bytes(pStmt, iCol+1);
140784         sqlite3_tokenizer_cursor *pT = 0;
140785 
140786         rc = sqlite3Fts3OpenTokenizer(p->pTokenizer, iLang, zText, nText, &pT);
140787         while( rc==SQLITE_OK ){
140788           char const *zToken;       /* Buffer containing token */
140789           int nToken = 0;           /* Number of bytes in token */
140790           int iDum1 = 0, iDum2 = 0; /* Dummy variables */
140791           int iPos = 0;             /* Position of token in zText */
140792 
140793           rc = pModule->xNext(pT, &zToken, &nToken, &iDum1, &iDum2, &iPos);
140794           if( rc==SQLITE_OK ){
140795             int i;
140796             cksum2 = cksum2 ^ fts3ChecksumEntry(
140797                 zToken, nToken, iLang, 0, iDocid, iCol, iPos
140798             );
140799             for(i=1; i<p->nIndex; i++){
140800               if( p->aIndex[i].nPrefix<=nToken ){
140801                 cksum2 = cksum2 ^ fts3ChecksumEntry(
140802                   zToken, p->aIndex[i].nPrefix, iLang, i, iDocid, iCol, iPos
140803                 );
140804               }
140805             }
140806           }
140807         }
140808         if( pT ) pModule->xClose(pT);
140809         if( rc==SQLITE_DONE ) rc = SQLITE_OK;
140810       }
140811     }
140812 
140813     sqlite3_finalize(pStmt);
140814   }
140815 
140816   *pbOk = (cksum1==cksum2);
140817   return rc;
140818 }
140819 
140820 /*
140821 ** Run the integrity-check. If no error occurs and the current contents of
140822 ** the FTS index are correct, return SQLITE_OK. Or, if the contents of the
140823 ** FTS index are incorrect, return SQLITE_CORRUPT_VTAB.
140824 **
140825 ** Or, if an error (e.g. an OOM or IO error) occurs, return an SQLite
140826 ** error code.
140827 **
140828 ** The integrity-check works as follows. For each token and indexed token
140829 ** prefix in the document set, a 64-bit checksum is calculated (by code
140830 ** in fts3ChecksumEntry()) based on the following:
140831 **
140832 **     + The index number (0 for the main index, 1 for the first prefix
140833 **       index etc.),
140834 **     + The token (or token prefix) text itself,
140835 **     + The language-id of the row it appears in,
140836 **     + The docid of the row it appears in,
140837 **     + The column it appears in, and
140838 **     + The tokens position within that column.
140839 **
140840 ** The checksums for all entries in the index are XORed together to create
140841 ** a single checksum for the entire index.
140842 **
140843 ** The integrity-check code calculates the same checksum in two ways:
140844 **
140845 **     1. By scanning the contents of the FTS index, and
140846 **     2. By scanning and tokenizing the content table.
140847 **
140848 ** If the two checksums are identical, the integrity-check is deemed to have
140849 ** passed.
140850 */
140851 static int fts3DoIntegrityCheck(
140852   Fts3Table *p                    /* FTS3 table handle */
140853 ){
140854   int rc;
140855   int bOk = 0;
140856   rc = fts3IntegrityCheck(p, &bOk);
140857   if( rc==SQLITE_OK && bOk==0 ) rc = SQLITE_CORRUPT_VTAB;
140858   return rc;
140859 }
140860 
140861 /*
140862 ** Handle a 'special' INSERT of the form:
140863 **
140864 **   "INSERT INTO tbl(tbl) VALUES(<expr>)"
140865 **
140866 ** Argument pVal contains the result of <expr>. Currently the only
140867 ** meaningful value to insert is the text 'optimize'.
140868 */
140869 static int fts3SpecialInsert(Fts3Table *p, sqlite3_value *pVal){
140870   int rc;                         /* Return Code */
140871   const char *zVal = (const char *)sqlite3_value_text(pVal);
140872   int nVal = sqlite3_value_bytes(pVal);
140873 
140874   if( !zVal ){
140875     return SQLITE_NOMEM;
140876   }else if( nVal==8 && 0==sqlite3_strnicmp(zVal, "optimize", 8) ){
140877     rc = fts3DoOptimize(p, 0);
140878   }else if( nVal==7 && 0==sqlite3_strnicmp(zVal, "rebuild", 7) ){
140879     rc = fts3DoRebuild(p);
140880   }else if( nVal==15 && 0==sqlite3_strnicmp(zVal, "integrity-check", 15) ){
140881     rc = fts3DoIntegrityCheck(p);
140882   }else if( nVal>6 && 0==sqlite3_strnicmp(zVal, "merge=", 6) ){
140883     rc = fts3DoIncrmerge(p, &zVal[6]);
140884   }else if( nVal>10 && 0==sqlite3_strnicmp(zVal, "automerge=", 10) ){
140885     rc = fts3DoAutoincrmerge(p, &zVal[10]);
140886 #ifdef SQLITE_TEST
140887   }else if( nVal>9 && 0==sqlite3_strnicmp(zVal, "nodesize=", 9) ){
140888     p->nNodeSize = atoi(&zVal[9]);
140889     rc = SQLITE_OK;
140890   }else if( nVal>11 && 0==sqlite3_strnicmp(zVal, "maxpending=", 9) ){
140891     p->nMaxPendingData = atoi(&zVal[11]);
140892     rc = SQLITE_OK;
140893   }else if( nVal>21 && 0==sqlite3_strnicmp(zVal, "test-no-incr-doclist=", 21) ){
140894     p->bNoIncrDoclist = atoi(&zVal[21]);
140895     rc = SQLITE_OK;
140896 #endif
140897   }else{
140898     rc = SQLITE_ERROR;
140899   }
140900 
140901   return rc;
140902 }
140903 
140904 #ifndef SQLITE_DISABLE_FTS4_DEFERRED
140905 /*
140906 ** Delete all cached deferred doclists. Deferred doclists are cached
140907 ** (allocated) by the sqlite3Fts3CacheDeferredDoclists() function.
140908 */
140909 SQLITE_PRIVATE void sqlite3Fts3FreeDeferredDoclists(Fts3Cursor *pCsr){
140910   Fts3DeferredToken *pDef;
140911   for(pDef=pCsr->pDeferred; pDef; pDef=pDef->pNext){
140912     fts3PendingListDelete(pDef->pList);
140913     pDef->pList = 0;
140914   }
140915 }
140916 
140917 /*
140918 ** Free all entries in the pCsr->pDeffered list. Entries are added to
140919 ** this list using sqlite3Fts3DeferToken().
140920 */
140921 SQLITE_PRIVATE void sqlite3Fts3FreeDeferredTokens(Fts3Cursor *pCsr){
140922   Fts3DeferredToken *pDef;
140923   Fts3DeferredToken *pNext;
140924   for(pDef=pCsr->pDeferred; pDef; pDef=pNext){
140925     pNext = pDef->pNext;
140926     fts3PendingListDelete(pDef->pList);
140927     sqlite3_free(pDef);
140928   }
140929   pCsr->pDeferred = 0;
140930 }
140931 
140932 /*
140933 ** Generate deferred-doclists for all tokens in the pCsr->pDeferred list
140934 ** based on the row that pCsr currently points to.
140935 **
140936 ** A deferred-doclist is like any other doclist with position information
140937 ** included, except that it only contains entries for a single row of the
140938 ** table, not for all rows.
140939 */
140940 SQLITE_PRIVATE int sqlite3Fts3CacheDeferredDoclists(Fts3Cursor *pCsr){
140941   int rc = SQLITE_OK;             /* Return code */
140942   if( pCsr->pDeferred ){
140943     int i;                        /* Used to iterate through table columns */
140944     sqlite3_int64 iDocid;         /* Docid of the row pCsr points to */
140945     Fts3DeferredToken *pDef;      /* Used to iterate through deferred tokens */
140946 
140947     Fts3Table *p = (Fts3Table *)pCsr->base.pVtab;
140948     sqlite3_tokenizer *pT = p->pTokenizer;
140949     sqlite3_tokenizer_module const *pModule = pT->pModule;
140950 
140951     assert( pCsr->isRequireSeek==0 );
140952     iDocid = sqlite3_column_int64(pCsr->pStmt, 0);
140953 
140954     for(i=0; i<p->nColumn && rc==SQLITE_OK; i++){
140955       if( p->abNotindexed[i]==0 ){
140956         const char *zText = (const char *)sqlite3_column_text(pCsr->pStmt, i+1);
140957         sqlite3_tokenizer_cursor *pTC = 0;
140958 
140959         rc = sqlite3Fts3OpenTokenizer(pT, pCsr->iLangid, zText, -1, &pTC);
140960         while( rc==SQLITE_OK ){
140961           char const *zToken;       /* Buffer containing token */
140962           int nToken = 0;           /* Number of bytes in token */
140963           int iDum1 = 0, iDum2 = 0; /* Dummy variables */
140964           int iPos = 0;             /* Position of token in zText */
140965 
140966           rc = pModule->xNext(pTC, &zToken, &nToken, &iDum1, &iDum2, &iPos);
140967           for(pDef=pCsr->pDeferred; pDef && rc==SQLITE_OK; pDef=pDef->pNext){
140968             Fts3PhraseToken *pPT = pDef->pToken;
140969             if( (pDef->iCol>=p->nColumn || pDef->iCol==i)
140970                 && (pPT->bFirst==0 || iPos==0)
140971                 && (pPT->n==nToken || (pPT->isPrefix && pPT->n<nToken))
140972                 && (0==memcmp(zToken, pPT->z, pPT->n))
140973               ){
140974               fts3PendingListAppend(&pDef->pList, iDocid, i, iPos, &rc);
140975             }
140976           }
140977         }
140978         if( pTC ) pModule->xClose(pTC);
140979         if( rc==SQLITE_DONE ) rc = SQLITE_OK;
140980       }
140981     }
140982 
140983     for(pDef=pCsr->pDeferred; pDef && rc==SQLITE_OK; pDef=pDef->pNext){
140984       if( pDef->pList ){
140985         rc = fts3PendingListAppendVarint(&pDef->pList, 0);
140986       }
140987     }
140988   }
140989 
140990   return rc;
140991 }
140992 
140993 SQLITE_PRIVATE int sqlite3Fts3DeferredTokenList(
140994   Fts3DeferredToken *p,
140995   char **ppData,
140996   int *pnData
140997 ){
140998   char *pRet;
140999   int nSkip;
141000   sqlite3_int64 dummy;
141001 
141002   *ppData = 0;
141003   *pnData = 0;
141004 
141005   if( p->pList==0 ){
141006     return SQLITE_OK;
141007   }
141008 
141009   pRet = (char *)sqlite3_malloc(p->pList->nData);
141010   if( !pRet ) return SQLITE_NOMEM;
141011 
141012   nSkip = sqlite3Fts3GetVarint(p->pList->aData, &dummy);
141013   *pnData = p->pList->nData - nSkip;
141014   *ppData = pRet;
141015 
141016   memcpy(pRet, &p->pList->aData[nSkip], *pnData);
141017   return SQLITE_OK;
141018 }
141019 
141020 /*
141021 ** Add an entry for token pToken to the pCsr->pDeferred list.
141022 */
141023 SQLITE_PRIVATE int sqlite3Fts3DeferToken(
141024   Fts3Cursor *pCsr,               /* Fts3 table cursor */
141025   Fts3PhraseToken *pToken,        /* Token to defer */
141026   int iCol                        /* Column that token must appear in (or -1) */
141027 ){
141028   Fts3DeferredToken *pDeferred;
141029   pDeferred = sqlite3_malloc(sizeof(*pDeferred));
141030   if( !pDeferred ){
141031     return SQLITE_NOMEM;
141032   }
141033   memset(pDeferred, 0, sizeof(*pDeferred));
141034   pDeferred->pToken = pToken;
141035   pDeferred->pNext = pCsr->pDeferred;
141036   pDeferred->iCol = iCol;
141037   pCsr->pDeferred = pDeferred;
141038 
141039   assert( pToken->pDeferred==0 );
141040   pToken->pDeferred = pDeferred;
141041 
141042   return SQLITE_OK;
141043 }
141044 #endif
141045 
141046 /*
141047 ** SQLite value pRowid contains the rowid of a row that may or may not be
141048 ** present in the FTS3 table. If it is, delete it and adjust the contents
141049 ** of subsiduary data structures accordingly.
141050 */
141051 static int fts3DeleteByRowid(
141052   Fts3Table *p,
141053   sqlite3_value *pRowid,
141054   int *pnChng,                    /* IN/OUT: Decrement if row is deleted */
141055   u32 *aSzDel
141056 ){
141057   int rc = SQLITE_OK;             /* Return code */
141058   int bFound = 0;                 /* True if *pRowid really is in the table */
141059 
141060   fts3DeleteTerms(&rc, p, pRowid, aSzDel, &bFound);
141061   if( bFound && rc==SQLITE_OK ){
141062     int isEmpty = 0;              /* Deleting *pRowid leaves the table empty */
141063     rc = fts3IsEmpty(p, pRowid, &isEmpty);
141064     if( rc==SQLITE_OK ){
141065       if( isEmpty ){
141066         /* Deleting this row means the whole table is empty. In this case
141067         ** delete the contents of all three tables and throw away any
141068         ** data in the pendingTerms hash table.  */
141069         rc = fts3DeleteAll(p, 1);
141070         *pnChng = 0;
141071         memset(aSzDel, 0, sizeof(u32) * (p->nColumn+1) * 2);
141072       }else{
141073         *pnChng = *pnChng - 1;
141074         if( p->zContentTbl==0 ){
141075           fts3SqlExec(&rc, p, SQL_DELETE_CONTENT, &pRowid);
141076         }
141077         if( p->bHasDocsize ){
141078           fts3SqlExec(&rc, p, SQL_DELETE_DOCSIZE, &pRowid);
141079         }
141080       }
141081     }
141082   }
141083 
141084   return rc;
141085 }
141086 
141087 /*
141088 ** This function does the work for the xUpdate method of FTS3 virtual
141089 ** tables. The schema of the virtual table being:
141090 **
141091 **     CREATE TABLE <table name>(
141092 **       <user columns>,
141093 **       <table name> HIDDEN,
141094 **       docid HIDDEN,
141095 **       <langid> HIDDEN
141096 **     );
141097 **
141098 **
141099 */
141100 SQLITE_PRIVATE int sqlite3Fts3UpdateMethod(
141101   sqlite3_vtab *pVtab,            /* FTS3 vtab object */
141102   int nArg,                       /* Size of argument array */
141103   sqlite3_value **apVal,          /* Array of arguments */
141104   sqlite_int64 *pRowid            /* OUT: The affected (or effected) rowid */
141105 ){
141106   Fts3Table *p = (Fts3Table *)pVtab;
141107   int rc = SQLITE_OK;             /* Return Code */
141108   int isRemove = 0;               /* True for an UPDATE or DELETE */
141109   u32 *aSzIns = 0;                /* Sizes of inserted documents */
141110   u32 *aSzDel = 0;                /* Sizes of deleted documents */
141111   int nChng = 0;                  /* Net change in number of documents */
141112   int bInsertDone = 0;
141113 
141114   /* At this point it must be known if the %_stat table exists or not.
141115   ** So bHasStat may not be 2.  */
141116   assert( p->bHasStat==0 || p->bHasStat==1 );
141117 
141118   assert( p->pSegments==0 );
141119   assert(
141120       nArg==1                     /* DELETE operations */
141121    || nArg==(2 + p->nColumn + 3)  /* INSERT or UPDATE operations */
141122   );
141123 
141124   /* Check for a "special" INSERT operation. One of the form:
141125   **
141126   **   INSERT INTO xyz(xyz) VALUES('command');
141127   */
141128   if( nArg>1
141129    && sqlite3_value_type(apVal[0])==SQLITE_NULL
141130    && sqlite3_value_type(apVal[p->nColumn+2])!=SQLITE_NULL
141131   ){
141132     rc = fts3SpecialInsert(p, apVal[p->nColumn+2]);
141133     goto update_out;
141134   }
141135 
141136   if( nArg>1 && sqlite3_value_int(apVal[2 + p->nColumn + 2])<0 ){
141137     rc = SQLITE_CONSTRAINT;
141138     goto update_out;
141139   }
141140 
141141   /* Allocate space to hold the change in document sizes */
141142   aSzDel = sqlite3_malloc( sizeof(aSzDel[0])*(p->nColumn+1)*2 );
141143   if( aSzDel==0 ){
141144     rc = SQLITE_NOMEM;
141145     goto update_out;
141146   }
141147   aSzIns = &aSzDel[p->nColumn+1];
141148   memset(aSzDel, 0, sizeof(aSzDel[0])*(p->nColumn+1)*2);
141149 
141150   rc = fts3Writelock(p);
141151   if( rc!=SQLITE_OK ) goto update_out;
141152 
141153   /* If this is an INSERT operation, or an UPDATE that modifies the rowid
141154   ** value, then this operation requires constraint handling.
141155   **
141156   ** If the on-conflict mode is REPLACE, this means that the existing row
141157   ** should be deleted from the database before inserting the new row. Or,
141158   ** if the on-conflict mode is other than REPLACE, then this method must
141159   ** detect the conflict and return SQLITE_CONSTRAINT before beginning to
141160   ** modify the database file.
141161   */
141162   if( nArg>1 && p->zContentTbl==0 ){
141163     /* Find the value object that holds the new rowid value. */
141164     sqlite3_value *pNewRowid = apVal[3+p->nColumn];
141165     if( sqlite3_value_type(pNewRowid)==SQLITE_NULL ){
141166       pNewRowid = apVal[1];
141167     }
141168 
141169     if( sqlite3_value_type(pNewRowid)!=SQLITE_NULL && (
141170         sqlite3_value_type(apVal[0])==SQLITE_NULL
141171      || sqlite3_value_int64(apVal[0])!=sqlite3_value_int64(pNewRowid)
141172     )){
141173       /* The new rowid is not NULL (in this case the rowid will be
141174       ** automatically assigned and there is no chance of a conflict), and
141175       ** the statement is either an INSERT or an UPDATE that modifies the
141176       ** rowid column. So if the conflict mode is REPLACE, then delete any
141177       ** existing row with rowid=pNewRowid.
141178       **
141179       ** Or, if the conflict mode is not REPLACE, insert the new record into
141180       ** the %_content table. If we hit the duplicate rowid constraint (or any
141181       ** other error) while doing so, return immediately.
141182       **
141183       ** This branch may also run if pNewRowid contains a value that cannot
141184       ** be losslessly converted to an integer. In this case, the eventual
141185       ** call to fts3InsertData() (either just below or further on in this
141186       ** function) will return SQLITE_MISMATCH. If fts3DeleteByRowid is
141187       ** invoked, it will delete zero rows (since no row will have
141188       ** docid=$pNewRowid if $pNewRowid is not an integer value).
141189       */
141190       if( sqlite3_vtab_on_conflict(p->db)==SQLITE_REPLACE ){
141191         rc = fts3DeleteByRowid(p, pNewRowid, &nChng, aSzDel);
141192       }else{
141193         rc = fts3InsertData(p, apVal, pRowid);
141194         bInsertDone = 1;
141195       }
141196     }
141197   }
141198   if( rc!=SQLITE_OK ){
141199     goto update_out;
141200   }
141201 
141202   /* If this is a DELETE or UPDATE operation, remove the old record. */
141203   if( sqlite3_value_type(apVal[0])!=SQLITE_NULL ){
141204     assert( sqlite3_value_type(apVal[0])==SQLITE_INTEGER );
141205     rc = fts3DeleteByRowid(p, apVal[0], &nChng, aSzDel);
141206     isRemove = 1;
141207   }
141208 
141209   /* If this is an INSERT or UPDATE operation, insert the new record. */
141210   if( nArg>1 && rc==SQLITE_OK ){
141211     int iLangid = sqlite3_value_int(apVal[2 + p->nColumn + 2]);
141212     if( bInsertDone==0 ){
141213       rc = fts3InsertData(p, apVal, pRowid);
141214       if( rc==SQLITE_CONSTRAINT && p->zContentTbl==0 ){
141215         rc = FTS_CORRUPT_VTAB;
141216       }
141217     }
141218     if( rc==SQLITE_OK && (!isRemove || *pRowid!=p->iPrevDocid ) ){
141219       rc = fts3PendingTermsDocid(p, iLangid, *pRowid);
141220     }
141221     if( rc==SQLITE_OK ){
141222       assert( p->iPrevDocid==*pRowid );
141223       rc = fts3InsertTerms(p, iLangid, apVal, aSzIns);
141224     }
141225     if( p->bHasDocsize ){
141226       fts3InsertDocsize(&rc, p, aSzIns);
141227     }
141228     nChng++;
141229   }
141230 
141231   if( p->bFts4 ){
141232     fts3UpdateDocTotals(&rc, p, aSzIns, aSzDel, nChng);
141233   }
141234 
141235  update_out:
141236   sqlite3_free(aSzDel);
141237   sqlite3Fts3SegmentsClose(p);
141238   return rc;
141239 }
141240 
141241 /*
141242 ** Flush any data in the pending-terms hash table to disk. If successful,
141243 ** merge all segments in the database (including the new segment, if
141244 ** there was any data to flush) into a single segment.
141245 */
141246 SQLITE_PRIVATE int sqlite3Fts3Optimize(Fts3Table *p){
141247   int rc;
141248   rc = sqlite3_exec(p->db, "SAVEPOINT fts3", 0, 0, 0);
141249   if( rc==SQLITE_OK ){
141250     rc = fts3DoOptimize(p, 1);
141251     if( rc==SQLITE_OK || rc==SQLITE_DONE ){
141252       int rc2 = sqlite3_exec(p->db, "RELEASE fts3", 0, 0, 0);
141253       if( rc2!=SQLITE_OK ) rc = rc2;
141254     }else{
141255       sqlite3_exec(p->db, "ROLLBACK TO fts3", 0, 0, 0);
141256       sqlite3_exec(p->db, "RELEASE fts3", 0, 0, 0);
141257     }
141258   }
141259   sqlite3Fts3SegmentsClose(p);
141260   return rc;
141261 }
141262 
141263 #endif
141264 
141265 /************** End of fts3_write.c ******************************************/
141266 /************** Begin file fts3_snippet.c ************************************/
141267 /*
141268 ** 2009 Oct 23
141269 **
141270 ** The author disclaims copyright to this source code.  In place of
141271 ** a legal notice, here is a blessing:
141272 **
141273 **    May you do good and not evil.
141274 **    May you find forgiveness for yourself and forgive others.
141275 **    May you share freely, never taking more than you give.
141276 **
141277 ******************************************************************************
141278 */
141279 
141280 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
141281 
141282 /* #include <string.h> */
141283 /* #include <assert.h> */
141284 
141285 /*
141286 ** Characters that may appear in the second argument to matchinfo().
141287 */
141288 #define FTS3_MATCHINFO_NPHRASE   'p'        /* 1 value */
141289 #define FTS3_MATCHINFO_NCOL      'c'        /* 1 value */
141290 #define FTS3_MATCHINFO_NDOC      'n'        /* 1 value */
141291 #define FTS3_MATCHINFO_AVGLENGTH 'a'        /* nCol values */
141292 #define FTS3_MATCHINFO_LENGTH    'l'        /* nCol values */
141293 #define FTS3_MATCHINFO_LCS       's'        /* nCol values */
141294 #define FTS3_MATCHINFO_HITS      'x'        /* 3*nCol*nPhrase values */
141295 
141296 /*
141297 ** The default value for the second argument to matchinfo().
141298 */
141299 #define FTS3_MATCHINFO_DEFAULT   "pcx"
141300 
141301 
141302 /*
141303 ** Used as an fts3ExprIterate() context when loading phrase doclists to
141304 ** Fts3Expr.aDoclist[]/nDoclist.
141305 */
141306 typedef struct LoadDoclistCtx LoadDoclistCtx;
141307 struct LoadDoclistCtx {
141308   Fts3Cursor *pCsr;               /* FTS3 Cursor */
141309   int nPhrase;                    /* Number of phrases seen so far */
141310   int nToken;                     /* Number of tokens seen so far */
141311 };
141312 
141313 /*
141314 ** The following types are used as part of the implementation of the
141315 ** fts3BestSnippet() routine.
141316 */
141317 typedef struct SnippetIter SnippetIter;
141318 typedef struct SnippetPhrase SnippetPhrase;
141319 typedef struct SnippetFragment SnippetFragment;
141320 
141321 struct SnippetIter {
141322   Fts3Cursor *pCsr;               /* Cursor snippet is being generated from */
141323   int iCol;                       /* Extract snippet from this column */
141324   int nSnippet;                   /* Requested snippet length (in tokens) */
141325   int nPhrase;                    /* Number of phrases in query */
141326   SnippetPhrase *aPhrase;         /* Array of size nPhrase */
141327   int iCurrent;                   /* First token of current snippet */
141328 };
141329 
141330 struct SnippetPhrase {
141331   int nToken;                     /* Number of tokens in phrase */
141332   char *pList;                    /* Pointer to start of phrase position list */
141333   int iHead;                      /* Next value in position list */
141334   char *pHead;                    /* Position list data following iHead */
141335   int iTail;                      /* Next value in trailing position list */
141336   char *pTail;                    /* Position list data following iTail */
141337 };
141338 
141339 struct SnippetFragment {
141340   int iCol;                       /* Column snippet is extracted from */
141341   int iPos;                       /* Index of first token in snippet */
141342   u64 covered;                    /* Mask of query phrases covered */
141343   u64 hlmask;                     /* Mask of snippet terms to highlight */
141344 };
141345 
141346 /*
141347 ** This type is used as an fts3ExprIterate() context object while
141348 ** accumulating the data returned by the matchinfo() function.
141349 */
141350 typedef struct MatchInfo MatchInfo;
141351 struct MatchInfo {
141352   Fts3Cursor *pCursor;            /* FTS3 Cursor */
141353   int nCol;                       /* Number of columns in table */
141354   int nPhrase;                    /* Number of matchable phrases in query */
141355   sqlite3_int64 nDoc;             /* Number of docs in database */
141356   u32 *aMatchinfo;                /* Pre-allocated buffer */
141357 };
141358 
141359 
141360 
141361 /*
141362 ** The snippet() and offsets() functions both return text values. An instance
141363 ** of the following structure is used to accumulate those values while the
141364 ** functions are running. See fts3StringAppend() for details.
141365 */
141366 typedef struct StrBuffer StrBuffer;
141367 struct StrBuffer {
141368   char *z;                        /* Pointer to buffer containing string */
141369   int n;                          /* Length of z in bytes (excl. nul-term) */
141370   int nAlloc;                     /* Allocated size of buffer z in bytes */
141371 };
141372 
141373 
141374 /*
141375 ** This function is used to help iterate through a position-list. A position
141376 ** list is a list of unique integers, sorted from smallest to largest. Each
141377 ** element of the list is represented by an FTS3 varint that takes the value
141378 ** of the difference between the current element and the previous one plus
141379 ** two. For example, to store the position-list:
141380 **
141381 **     4 9 113
141382 **
141383 ** the three varints:
141384 **
141385 **     6 7 106
141386 **
141387 ** are encoded.
141388 **
141389 ** When this function is called, *pp points to the start of an element of
141390 ** the list. *piPos contains the value of the previous entry in the list.
141391 ** After it returns, *piPos contains the value of the next element of the
141392 ** list and *pp is advanced to the following varint.
141393 */
141394 static void fts3GetDeltaPosition(char **pp, int *piPos){
141395   int iVal;
141396   *pp += fts3GetVarint32(*pp, &iVal);
141397   *piPos += (iVal-2);
141398 }
141399 
141400 /*
141401 ** Helper function for fts3ExprIterate() (see below).
141402 */
141403 static int fts3ExprIterate2(
141404   Fts3Expr *pExpr,                /* Expression to iterate phrases of */
141405   int *piPhrase,                  /* Pointer to phrase counter */
141406   int (*x)(Fts3Expr*,int,void*),  /* Callback function to invoke for phrases */
141407   void *pCtx                      /* Second argument to pass to callback */
141408 ){
141409   int rc;                         /* Return code */
141410   int eType = pExpr->eType;       /* Type of expression node pExpr */
141411 
141412   if( eType!=FTSQUERY_PHRASE ){
141413     assert( pExpr->pLeft && pExpr->pRight );
141414     rc = fts3ExprIterate2(pExpr->pLeft, piPhrase, x, pCtx);
141415     if( rc==SQLITE_OK && eType!=FTSQUERY_NOT ){
141416       rc = fts3ExprIterate2(pExpr->pRight, piPhrase, x, pCtx);
141417     }
141418   }else{
141419     rc = x(pExpr, *piPhrase, pCtx);
141420     (*piPhrase)++;
141421   }
141422   return rc;
141423 }
141424 
141425 /*
141426 ** Iterate through all phrase nodes in an FTS3 query, except those that
141427 ** are part of a sub-tree that is the right-hand-side of a NOT operator.
141428 ** For each phrase node found, the supplied callback function is invoked.
141429 **
141430 ** If the callback function returns anything other than SQLITE_OK,
141431 ** the iteration is abandoned and the error code returned immediately.
141432 ** Otherwise, SQLITE_OK is returned after a callback has been made for
141433 ** all eligible phrase nodes.
141434 */
141435 static int fts3ExprIterate(
141436   Fts3Expr *pExpr,                /* Expression to iterate phrases of */
141437   int (*x)(Fts3Expr*,int,void*),  /* Callback function to invoke for phrases */
141438   void *pCtx                      /* Second argument to pass to callback */
141439 ){
141440   int iPhrase = 0;                /* Variable used as the phrase counter */
141441   return fts3ExprIterate2(pExpr, &iPhrase, x, pCtx);
141442 }
141443 
141444 /*
141445 ** This is an fts3ExprIterate() callback used while loading the doclists
141446 ** for each phrase into Fts3Expr.aDoclist[]/nDoclist. See also
141447 ** fts3ExprLoadDoclists().
141448 */
141449 static int fts3ExprLoadDoclistsCb(Fts3Expr *pExpr, int iPhrase, void *ctx){
141450   int rc = SQLITE_OK;
141451   Fts3Phrase *pPhrase = pExpr->pPhrase;
141452   LoadDoclistCtx *p = (LoadDoclistCtx *)ctx;
141453 
141454   UNUSED_PARAMETER(iPhrase);
141455 
141456   p->nPhrase++;
141457   p->nToken += pPhrase->nToken;
141458 
141459   return rc;
141460 }
141461 
141462 /*
141463 ** Load the doclists for each phrase in the query associated with FTS3 cursor
141464 ** pCsr.
141465 **
141466 ** If pnPhrase is not NULL, then *pnPhrase is set to the number of matchable
141467 ** phrases in the expression (all phrases except those directly or
141468 ** indirectly descended from the right-hand-side of a NOT operator). If
141469 ** pnToken is not NULL, then it is set to the number of tokens in all
141470 ** matchable phrases of the expression.
141471 */
141472 static int fts3ExprLoadDoclists(
141473   Fts3Cursor *pCsr,               /* Fts3 cursor for current query */
141474   int *pnPhrase,                  /* OUT: Number of phrases in query */
141475   int *pnToken                    /* OUT: Number of tokens in query */
141476 ){
141477   int rc;                         /* Return Code */
141478   LoadDoclistCtx sCtx = {0,0,0};  /* Context for fts3ExprIterate() */
141479   sCtx.pCsr = pCsr;
141480   rc = fts3ExprIterate(pCsr->pExpr, fts3ExprLoadDoclistsCb, (void *)&sCtx);
141481   if( pnPhrase ) *pnPhrase = sCtx.nPhrase;
141482   if( pnToken ) *pnToken = sCtx.nToken;
141483   return rc;
141484 }
141485 
141486 static int fts3ExprPhraseCountCb(Fts3Expr *pExpr, int iPhrase, void *ctx){
141487   (*(int *)ctx)++;
141488   UNUSED_PARAMETER(pExpr);
141489   UNUSED_PARAMETER(iPhrase);
141490   return SQLITE_OK;
141491 }
141492 static int fts3ExprPhraseCount(Fts3Expr *pExpr){
141493   int nPhrase = 0;
141494   (void)fts3ExprIterate(pExpr, fts3ExprPhraseCountCb, (void *)&nPhrase);
141495   return nPhrase;
141496 }
141497 
141498 /*
141499 ** Advance the position list iterator specified by the first two
141500 ** arguments so that it points to the first element with a value greater
141501 ** than or equal to parameter iNext.
141502 */
141503 static void fts3SnippetAdvance(char **ppIter, int *piIter, int iNext){
141504   char *pIter = *ppIter;
141505   if( pIter ){
141506     int iIter = *piIter;
141507 
141508     while( iIter<iNext ){
141509       if( 0==(*pIter & 0xFE) ){
141510         iIter = -1;
141511         pIter = 0;
141512         break;
141513       }
141514       fts3GetDeltaPosition(&pIter, &iIter);
141515     }
141516 
141517     *piIter = iIter;
141518     *ppIter = pIter;
141519   }
141520 }
141521 
141522 /*
141523 ** Advance the snippet iterator to the next candidate snippet.
141524 */
141525 static int fts3SnippetNextCandidate(SnippetIter *pIter){
141526   int i;                          /* Loop counter */
141527 
141528   if( pIter->iCurrent<0 ){
141529     /* The SnippetIter object has just been initialized. The first snippet
141530     ** candidate always starts at offset 0 (even if this candidate has a
141531     ** score of 0.0).
141532     */
141533     pIter->iCurrent = 0;
141534 
141535     /* Advance the 'head' iterator of each phrase to the first offset that
141536     ** is greater than or equal to (iNext+nSnippet).
141537     */
141538     for(i=0; i<pIter->nPhrase; i++){
141539       SnippetPhrase *pPhrase = &pIter->aPhrase[i];
141540       fts3SnippetAdvance(&pPhrase->pHead, &pPhrase->iHead, pIter->nSnippet);
141541     }
141542   }else{
141543     int iStart;
141544     int iEnd = 0x7FFFFFFF;
141545 
141546     for(i=0; i<pIter->nPhrase; i++){
141547       SnippetPhrase *pPhrase = &pIter->aPhrase[i];
141548       if( pPhrase->pHead && pPhrase->iHead<iEnd ){
141549         iEnd = pPhrase->iHead;
141550       }
141551     }
141552     if( iEnd==0x7FFFFFFF ){
141553       return 1;
141554     }
141555 
141556     pIter->iCurrent = iStart = iEnd - pIter->nSnippet + 1;
141557     for(i=0; i<pIter->nPhrase; i++){
141558       SnippetPhrase *pPhrase = &pIter->aPhrase[i];
141559       fts3SnippetAdvance(&pPhrase->pHead, &pPhrase->iHead, iEnd+1);
141560       fts3SnippetAdvance(&pPhrase->pTail, &pPhrase->iTail, iStart);
141561     }
141562   }
141563 
141564   return 0;
141565 }
141566 
141567 /*
141568 ** Retrieve information about the current candidate snippet of snippet
141569 ** iterator pIter.
141570 */
141571 static void fts3SnippetDetails(
141572   SnippetIter *pIter,             /* Snippet iterator */
141573   u64 mCovered,                   /* Bitmask of phrases already covered */
141574   int *piToken,                   /* OUT: First token of proposed snippet */
141575   int *piScore,                   /* OUT: "Score" for this snippet */
141576   u64 *pmCover,                   /* OUT: Bitmask of phrases covered */
141577   u64 *pmHighlight                /* OUT: Bitmask of terms to highlight */
141578 ){
141579   int iStart = pIter->iCurrent;   /* First token of snippet */
141580   int iScore = 0;                 /* Score of this snippet */
141581   int i;                          /* Loop counter */
141582   u64 mCover = 0;                 /* Mask of phrases covered by this snippet */
141583   u64 mHighlight = 0;             /* Mask of tokens to highlight in snippet */
141584 
141585   for(i=0; i<pIter->nPhrase; i++){
141586     SnippetPhrase *pPhrase = &pIter->aPhrase[i];
141587     if( pPhrase->pTail ){
141588       char *pCsr = pPhrase->pTail;
141589       int iCsr = pPhrase->iTail;
141590 
141591       while( iCsr<(iStart+pIter->nSnippet) ){
141592         int j;
141593         u64 mPhrase = (u64)1 << i;
141594         u64 mPos = (u64)1 << (iCsr - iStart);
141595         assert( iCsr>=iStart );
141596         if( (mCover|mCovered)&mPhrase ){
141597           iScore++;
141598         }else{
141599           iScore += 1000;
141600         }
141601         mCover |= mPhrase;
141602 
141603         for(j=0; j<pPhrase->nToken; j++){
141604           mHighlight |= (mPos>>j);
141605         }
141606 
141607         if( 0==(*pCsr & 0x0FE) ) break;
141608         fts3GetDeltaPosition(&pCsr, &iCsr);
141609       }
141610     }
141611   }
141612 
141613   /* Set the output variables before returning. */
141614   *piToken = iStart;
141615   *piScore = iScore;
141616   *pmCover = mCover;
141617   *pmHighlight = mHighlight;
141618 }
141619 
141620 /*
141621 ** This function is an fts3ExprIterate() callback used by fts3BestSnippet().
141622 ** Each invocation populates an element of the SnippetIter.aPhrase[] array.
141623 */
141624 static int fts3SnippetFindPositions(Fts3Expr *pExpr, int iPhrase, void *ctx){
141625   SnippetIter *p = (SnippetIter *)ctx;
141626   SnippetPhrase *pPhrase = &p->aPhrase[iPhrase];
141627   char *pCsr;
141628   int rc;
141629 
141630   pPhrase->nToken = pExpr->pPhrase->nToken;
141631   rc = sqlite3Fts3EvalPhrasePoslist(p->pCsr, pExpr, p->iCol, &pCsr);
141632   assert( rc==SQLITE_OK || pCsr==0 );
141633   if( pCsr ){
141634     int iFirst = 0;
141635     pPhrase->pList = pCsr;
141636     fts3GetDeltaPosition(&pCsr, &iFirst);
141637     assert( iFirst>=0 );
141638     pPhrase->pHead = pCsr;
141639     pPhrase->pTail = pCsr;
141640     pPhrase->iHead = iFirst;
141641     pPhrase->iTail = iFirst;
141642   }else{
141643     assert( rc!=SQLITE_OK || (
141644        pPhrase->pList==0 && pPhrase->pHead==0 && pPhrase->pTail==0
141645     ));
141646   }
141647 
141648   return rc;
141649 }
141650 
141651 /*
141652 ** Select the fragment of text consisting of nFragment contiguous tokens
141653 ** from column iCol that represent the "best" snippet. The best snippet
141654 ** is the snippet with the highest score, where scores are calculated
141655 ** by adding:
141656 **
141657 **   (a) +1 point for each occurrence of a matchable phrase in the snippet.
141658 **
141659 **   (b) +1000 points for the first occurrence of each matchable phrase in
141660 **       the snippet for which the corresponding mCovered bit is not set.
141661 **
141662 ** The selected snippet parameters are stored in structure *pFragment before
141663 ** returning. The score of the selected snippet is stored in *piScore
141664 ** before returning.
141665 */
141666 static int fts3BestSnippet(
141667   int nSnippet,                   /* Desired snippet length */
141668   Fts3Cursor *pCsr,               /* Cursor to create snippet for */
141669   int iCol,                       /* Index of column to create snippet from */
141670   u64 mCovered,                   /* Mask of phrases already covered */
141671   u64 *pmSeen,                    /* IN/OUT: Mask of phrases seen */
141672   SnippetFragment *pFragment,     /* OUT: Best snippet found */
141673   int *piScore                    /* OUT: Score of snippet pFragment */
141674 ){
141675   int rc;                         /* Return Code */
141676   int nList;                      /* Number of phrases in expression */
141677   SnippetIter sIter;              /* Iterates through snippet candidates */
141678   int nByte;                      /* Number of bytes of space to allocate */
141679   int iBestScore = -1;            /* Best snippet score found so far */
141680   int i;                          /* Loop counter */
141681 
141682   memset(&sIter, 0, sizeof(sIter));
141683 
141684   /* Iterate through the phrases in the expression to count them. The same
141685   ** callback makes sure the doclists are loaded for each phrase.
141686   */
141687   rc = fts3ExprLoadDoclists(pCsr, &nList, 0);
141688   if( rc!=SQLITE_OK ){
141689     return rc;
141690   }
141691 
141692   /* Now that it is known how many phrases there are, allocate and zero
141693   ** the required space using malloc().
141694   */
141695   nByte = sizeof(SnippetPhrase) * nList;
141696   sIter.aPhrase = (SnippetPhrase *)sqlite3_malloc(nByte);
141697   if( !sIter.aPhrase ){
141698     return SQLITE_NOMEM;
141699   }
141700   memset(sIter.aPhrase, 0, nByte);
141701 
141702   /* Initialize the contents of the SnippetIter object. Then iterate through
141703   ** the set of phrases in the expression to populate the aPhrase[] array.
141704   */
141705   sIter.pCsr = pCsr;
141706   sIter.iCol = iCol;
141707   sIter.nSnippet = nSnippet;
141708   sIter.nPhrase = nList;
141709   sIter.iCurrent = -1;
141710   (void)fts3ExprIterate(pCsr->pExpr, fts3SnippetFindPositions, (void *)&sIter);
141711 
141712   /* Set the *pmSeen output variable. */
141713   for(i=0; i<nList; i++){
141714     if( sIter.aPhrase[i].pHead ){
141715       *pmSeen |= (u64)1 << i;
141716     }
141717   }
141718 
141719   /* Loop through all candidate snippets. Store the best snippet in
141720   ** *pFragment. Store its associated 'score' in iBestScore.
141721   */
141722   pFragment->iCol = iCol;
141723   while( !fts3SnippetNextCandidate(&sIter) ){
141724     int iPos;
141725     int iScore;
141726     u64 mCover;
141727     u64 mHighlight;
141728     fts3SnippetDetails(&sIter, mCovered, &iPos, &iScore, &mCover, &mHighlight);
141729     assert( iScore>=0 );
141730     if( iScore>iBestScore ){
141731       pFragment->iPos = iPos;
141732       pFragment->hlmask = mHighlight;
141733       pFragment->covered = mCover;
141734       iBestScore = iScore;
141735     }
141736   }
141737 
141738   sqlite3_free(sIter.aPhrase);
141739   *piScore = iBestScore;
141740   return SQLITE_OK;
141741 }
141742 
141743 
141744 /*
141745 ** Append a string to the string-buffer passed as the first argument.
141746 **
141747 ** If nAppend is negative, then the length of the string zAppend is
141748 ** determined using strlen().
141749 */
141750 static int fts3StringAppend(
141751   StrBuffer *pStr,                /* Buffer to append to */
141752   const char *zAppend,            /* Pointer to data to append to buffer */
141753   int nAppend                     /* Size of zAppend in bytes (or -1) */
141754 ){
141755   if( nAppend<0 ){
141756     nAppend = (int)strlen(zAppend);
141757   }
141758 
141759   /* If there is insufficient space allocated at StrBuffer.z, use realloc()
141760   ** to grow the buffer until so that it is big enough to accomadate the
141761   ** appended data.
141762   */
141763   if( pStr->n+nAppend+1>=pStr->nAlloc ){
141764     int nAlloc = pStr->nAlloc+nAppend+100;
141765     char *zNew = sqlite3_realloc(pStr->z, nAlloc);
141766     if( !zNew ){
141767       return SQLITE_NOMEM;
141768     }
141769     pStr->z = zNew;
141770     pStr->nAlloc = nAlloc;
141771   }
141772   assert( pStr->z!=0 && (pStr->nAlloc >= pStr->n+nAppend+1) );
141773 
141774   /* Append the data to the string buffer. */
141775   memcpy(&pStr->z[pStr->n], zAppend, nAppend);
141776   pStr->n += nAppend;
141777   pStr->z[pStr->n] = '\0';
141778 
141779   return SQLITE_OK;
141780 }
141781 
141782 /*
141783 ** The fts3BestSnippet() function often selects snippets that end with a
141784 ** query term. That is, the final term of the snippet is always a term
141785 ** that requires highlighting. For example, if 'X' is a highlighted term
141786 ** and '.' is a non-highlighted term, BestSnippet() may select:
141787 **
141788 **     ........X.....X
141789 **
141790 ** This function "shifts" the beginning of the snippet forward in the
141791 ** document so that there are approximately the same number of
141792 ** non-highlighted terms to the right of the final highlighted term as there
141793 ** are to the left of the first highlighted term. For example, to this:
141794 **
141795 **     ....X.....X....
141796 **
141797 ** This is done as part of extracting the snippet text, not when selecting
141798 ** the snippet. Snippet selection is done based on doclists only, so there
141799 ** is no way for fts3BestSnippet() to know whether or not the document
141800 ** actually contains terms that follow the final highlighted term.
141801 */
141802 static int fts3SnippetShift(
141803   Fts3Table *pTab,                /* FTS3 table snippet comes from */
141804   int iLangid,                    /* Language id to use in tokenizing */
141805   int nSnippet,                   /* Number of tokens desired for snippet */
141806   const char *zDoc,               /* Document text to extract snippet from */
141807   int nDoc,                       /* Size of buffer zDoc in bytes */
141808   int *piPos,                     /* IN/OUT: First token of snippet */
141809   u64 *pHlmask                    /* IN/OUT: Mask of tokens to highlight */
141810 ){
141811   u64 hlmask = *pHlmask;          /* Local copy of initial highlight-mask */
141812 
141813   if( hlmask ){
141814     int nLeft;                    /* Tokens to the left of first highlight */
141815     int nRight;                   /* Tokens to the right of last highlight */
141816     int nDesired;                 /* Ideal number of tokens to shift forward */
141817 
141818     for(nLeft=0; !(hlmask & ((u64)1 << nLeft)); nLeft++);
141819     for(nRight=0; !(hlmask & ((u64)1 << (nSnippet-1-nRight))); nRight++);
141820     nDesired = (nLeft-nRight)/2;
141821 
141822     /* Ideally, the start of the snippet should be pushed forward in the
141823     ** document nDesired tokens. This block checks if there are actually
141824     ** nDesired tokens to the right of the snippet. If so, *piPos and
141825     ** *pHlMask are updated to shift the snippet nDesired tokens to the
141826     ** right. Otherwise, the snippet is shifted by the number of tokens
141827     ** available.
141828     */
141829     if( nDesired>0 ){
141830       int nShift;                 /* Number of tokens to shift snippet by */
141831       int iCurrent = 0;           /* Token counter */
141832       int rc;                     /* Return Code */
141833       sqlite3_tokenizer_module *pMod;
141834       sqlite3_tokenizer_cursor *pC;
141835       pMod = (sqlite3_tokenizer_module *)pTab->pTokenizer->pModule;
141836 
141837       /* Open a cursor on zDoc/nDoc. Check if there are (nSnippet+nDesired)
141838       ** or more tokens in zDoc/nDoc.
141839       */
141840       rc = sqlite3Fts3OpenTokenizer(pTab->pTokenizer, iLangid, zDoc, nDoc, &pC);
141841       if( rc!=SQLITE_OK ){
141842         return rc;
141843       }
141844       while( rc==SQLITE_OK && iCurrent<(nSnippet+nDesired) ){
141845         const char *ZDUMMY; int DUMMY1 = 0, DUMMY2 = 0, DUMMY3 = 0;
141846         rc = pMod->xNext(pC, &ZDUMMY, &DUMMY1, &DUMMY2, &DUMMY3, &iCurrent);
141847       }
141848       pMod->xClose(pC);
141849       if( rc!=SQLITE_OK && rc!=SQLITE_DONE ){ return rc; }
141850 
141851       nShift = (rc==SQLITE_DONE)+iCurrent-nSnippet;
141852       assert( nShift<=nDesired );
141853       if( nShift>0 ){
141854         *piPos += nShift;
141855         *pHlmask = hlmask >> nShift;
141856       }
141857     }
141858   }
141859   return SQLITE_OK;
141860 }
141861 
141862 /*
141863 ** Extract the snippet text for fragment pFragment from cursor pCsr and
141864 ** append it to string buffer pOut.
141865 */
141866 static int fts3SnippetText(
141867   Fts3Cursor *pCsr,               /* FTS3 Cursor */
141868   SnippetFragment *pFragment,     /* Snippet to extract */
141869   int iFragment,                  /* Fragment number */
141870   int isLast,                     /* True for final fragment in snippet */
141871   int nSnippet,                   /* Number of tokens in extracted snippet */
141872   const char *zOpen,              /* String inserted before highlighted term */
141873   const char *zClose,             /* String inserted after highlighted term */
141874   const char *zEllipsis,          /* String inserted between snippets */
141875   StrBuffer *pOut                 /* Write output here */
141876 ){
141877   Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
141878   int rc;                         /* Return code */
141879   const char *zDoc;               /* Document text to extract snippet from */
141880   int nDoc;                       /* Size of zDoc in bytes */
141881   int iCurrent = 0;               /* Current token number of document */
141882   int iEnd = 0;                   /* Byte offset of end of current token */
141883   int isShiftDone = 0;            /* True after snippet is shifted */
141884   int iPos = pFragment->iPos;     /* First token of snippet */
141885   u64 hlmask = pFragment->hlmask; /* Highlight-mask for snippet */
141886   int iCol = pFragment->iCol+1;   /* Query column to extract text from */
141887   sqlite3_tokenizer_module *pMod; /* Tokenizer module methods object */
141888   sqlite3_tokenizer_cursor *pC;   /* Tokenizer cursor open on zDoc/nDoc */
141889 
141890   zDoc = (const char *)sqlite3_column_text(pCsr->pStmt, iCol);
141891   if( zDoc==0 ){
141892     if( sqlite3_column_type(pCsr->pStmt, iCol)!=SQLITE_NULL ){
141893       return SQLITE_NOMEM;
141894     }
141895     return SQLITE_OK;
141896   }
141897   nDoc = sqlite3_column_bytes(pCsr->pStmt, iCol);
141898 
141899   /* Open a token cursor on the document. */
141900   pMod = (sqlite3_tokenizer_module *)pTab->pTokenizer->pModule;
141901   rc = sqlite3Fts3OpenTokenizer(pTab->pTokenizer, pCsr->iLangid, zDoc,nDoc,&pC);
141902   if( rc!=SQLITE_OK ){
141903     return rc;
141904   }
141905 
141906   while( rc==SQLITE_OK ){
141907     const char *ZDUMMY;           /* Dummy argument used with tokenizer */
141908     int DUMMY1 = -1;              /* Dummy argument used with tokenizer */
141909     int iBegin = 0;               /* Offset in zDoc of start of token */
141910     int iFin = 0;                 /* Offset in zDoc of end of token */
141911     int isHighlight = 0;          /* True for highlighted terms */
141912 
141913     /* Variable DUMMY1 is initialized to a negative value above. Elsewhere
141914     ** in the FTS code the variable that the third argument to xNext points to
141915     ** is initialized to zero before the first (*but not necessarily
141916     ** subsequent*) call to xNext(). This is done for a particular application
141917     ** that needs to know whether or not the tokenizer is being used for
141918     ** snippet generation or for some other purpose.
141919     **
141920     ** Extreme care is required when writing code to depend on this
141921     ** initialization. It is not a documented part of the tokenizer interface.
141922     ** If a tokenizer is used directly by any code outside of FTS, this
141923     ** convention might not be respected.  */
141924     rc = pMod->xNext(pC, &ZDUMMY, &DUMMY1, &iBegin, &iFin, &iCurrent);
141925     if( rc!=SQLITE_OK ){
141926       if( rc==SQLITE_DONE ){
141927         /* Special case - the last token of the snippet is also the last token
141928         ** of the column. Append any punctuation that occurred between the end
141929         ** of the previous token and the end of the document to the output.
141930         ** Then break out of the loop. */
141931         rc = fts3StringAppend(pOut, &zDoc[iEnd], -1);
141932       }
141933       break;
141934     }
141935     if( iCurrent<iPos ){ continue; }
141936 
141937     if( !isShiftDone ){
141938       int n = nDoc - iBegin;
141939       rc = fts3SnippetShift(
141940           pTab, pCsr->iLangid, nSnippet, &zDoc[iBegin], n, &iPos, &hlmask
141941       );
141942       isShiftDone = 1;
141943 
141944       /* Now that the shift has been done, check if the initial "..." are
141945       ** required. They are required if (a) this is not the first fragment,
141946       ** or (b) this fragment does not begin at position 0 of its column.
141947       */
141948       if( rc==SQLITE_OK && (iPos>0 || iFragment>0) ){
141949         rc = fts3StringAppend(pOut, zEllipsis, -1);
141950       }
141951       if( rc!=SQLITE_OK || iCurrent<iPos ) continue;
141952     }
141953 
141954     if( iCurrent>=(iPos+nSnippet) ){
141955       if( isLast ){
141956         rc = fts3StringAppend(pOut, zEllipsis, -1);
141957       }
141958       break;
141959     }
141960 
141961     /* Set isHighlight to true if this term should be highlighted. */
141962     isHighlight = (hlmask & ((u64)1 << (iCurrent-iPos)))!=0;
141963 
141964     if( iCurrent>iPos ) rc = fts3StringAppend(pOut, &zDoc[iEnd], iBegin-iEnd);
141965     if( rc==SQLITE_OK && isHighlight ) rc = fts3StringAppend(pOut, zOpen, -1);
141966     if( rc==SQLITE_OK ) rc = fts3StringAppend(pOut, &zDoc[iBegin], iFin-iBegin);
141967     if( rc==SQLITE_OK && isHighlight ) rc = fts3StringAppend(pOut, zClose, -1);
141968 
141969     iEnd = iFin;
141970   }
141971 
141972   pMod->xClose(pC);
141973   return rc;
141974 }
141975 
141976 
141977 /*
141978 ** This function is used to count the entries in a column-list (a
141979 ** delta-encoded list of term offsets within a single column of a single
141980 ** row). When this function is called, *ppCollist should point to the
141981 ** beginning of the first varint in the column-list (the varint that
141982 ** contains the position of the first matching term in the column data).
141983 ** Before returning, *ppCollist is set to point to the first byte after
141984 ** the last varint in the column-list (either the 0x00 signifying the end
141985 ** of the position-list, or the 0x01 that precedes the column number of
141986 ** the next column in the position-list).
141987 **
141988 ** The number of elements in the column-list is returned.
141989 */
141990 static int fts3ColumnlistCount(char **ppCollist){
141991   char *pEnd = *ppCollist;
141992   char c = 0;
141993   int nEntry = 0;
141994 
141995   /* A column-list is terminated by either a 0x01 or 0x00. */
141996   while( 0xFE & (*pEnd | c) ){
141997     c = *pEnd++ & 0x80;
141998     if( !c ) nEntry++;
141999   }
142000 
142001   *ppCollist = pEnd;
142002   return nEntry;
142003 }
142004 
142005 /*
142006 ** fts3ExprIterate() callback used to collect the "global" matchinfo stats
142007 ** for a single query.
142008 **
142009 ** fts3ExprIterate() callback to load the 'global' elements of a
142010 ** FTS3_MATCHINFO_HITS matchinfo array. The global stats are those elements
142011 ** of the matchinfo array that are constant for all rows returned by the
142012 ** current query.
142013 **
142014 ** Argument pCtx is actually a pointer to a struct of type MatchInfo. This
142015 ** function populates Matchinfo.aMatchinfo[] as follows:
142016 **
142017 **   for(iCol=0; iCol<nCol; iCol++){
142018 **     aMatchinfo[3*iPhrase*nCol + 3*iCol + 1] = X;
142019 **     aMatchinfo[3*iPhrase*nCol + 3*iCol + 2] = Y;
142020 **   }
142021 **
142022 ** where X is the number of matches for phrase iPhrase is column iCol of all
142023 ** rows of the table. Y is the number of rows for which column iCol contains
142024 ** at least one instance of phrase iPhrase.
142025 **
142026 ** If the phrase pExpr consists entirely of deferred tokens, then all X and
142027 ** Y values are set to nDoc, where nDoc is the number of documents in the
142028 ** file system. This is done because the full-text index doclist is required
142029 ** to calculate these values properly, and the full-text index doclist is
142030 ** not available for deferred tokens.
142031 */
142032 static int fts3ExprGlobalHitsCb(
142033   Fts3Expr *pExpr,                /* Phrase expression node */
142034   int iPhrase,                    /* Phrase number (numbered from zero) */
142035   void *pCtx                      /* Pointer to MatchInfo structure */
142036 ){
142037   MatchInfo *p = (MatchInfo *)pCtx;
142038   return sqlite3Fts3EvalPhraseStats(
142039       p->pCursor, pExpr, &p->aMatchinfo[3*iPhrase*p->nCol]
142040   );
142041 }
142042 
142043 /*
142044 ** fts3ExprIterate() callback used to collect the "local" part of the
142045 ** FTS3_MATCHINFO_HITS array. The local stats are those elements of the
142046 ** array that are different for each row returned by the query.
142047 */
142048 static int fts3ExprLocalHitsCb(
142049   Fts3Expr *pExpr,                /* Phrase expression node */
142050   int iPhrase,                    /* Phrase number */
142051   void *pCtx                      /* Pointer to MatchInfo structure */
142052 ){
142053   int rc = SQLITE_OK;
142054   MatchInfo *p = (MatchInfo *)pCtx;
142055   int iStart = iPhrase * p->nCol * 3;
142056   int i;
142057 
142058   for(i=0; i<p->nCol && rc==SQLITE_OK; i++){
142059     char *pCsr;
142060     rc = sqlite3Fts3EvalPhrasePoslist(p->pCursor, pExpr, i, &pCsr);
142061     if( pCsr ){
142062       p->aMatchinfo[iStart+i*3] = fts3ColumnlistCount(&pCsr);
142063     }else{
142064       p->aMatchinfo[iStart+i*3] = 0;
142065     }
142066   }
142067 
142068   return rc;
142069 }
142070 
142071 static int fts3MatchinfoCheck(
142072   Fts3Table *pTab,
142073   char cArg,
142074   char **pzErr
142075 ){
142076   if( (cArg==FTS3_MATCHINFO_NPHRASE)
142077    || (cArg==FTS3_MATCHINFO_NCOL)
142078    || (cArg==FTS3_MATCHINFO_NDOC && pTab->bFts4)
142079    || (cArg==FTS3_MATCHINFO_AVGLENGTH && pTab->bFts4)
142080    || (cArg==FTS3_MATCHINFO_LENGTH && pTab->bHasDocsize)
142081    || (cArg==FTS3_MATCHINFO_LCS)
142082    || (cArg==FTS3_MATCHINFO_HITS)
142083   ){
142084     return SQLITE_OK;
142085   }
142086   *pzErr = sqlite3_mprintf("unrecognized matchinfo request: %c", cArg);
142087   return SQLITE_ERROR;
142088 }
142089 
142090 static int fts3MatchinfoSize(MatchInfo *pInfo, char cArg){
142091   int nVal;                       /* Number of integers output by cArg */
142092 
142093   switch( cArg ){
142094     case FTS3_MATCHINFO_NDOC:
142095     case FTS3_MATCHINFO_NPHRASE:
142096     case FTS3_MATCHINFO_NCOL:
142097       nVal = 1;
142098       break;
142099 
142100     case FTS3_MATCHINFO_AVGLENGTH:
142101     case FTS3_MATCHINFO_LENGTH:
142102     case FTS3_MATCHINFO_LCS:
142103       nVal = pInfo->nCol;
142104       break;
142105 
142106     default:
142107       assert( cArg==FTS3_MATCHINFO_HITS );
142108       nVal = pInfo->nCol * pInfo->nPhrase * 3;
142109       break;
142110   }
142111 
142112   return nVal;
142113 }
142114 
142115 static int fts3MatchinfoSelectDoctotal(
142116   Fts3Table *pTab,
142117   sqlite3_stmt **ppStmt,
142118   sqlite3_int64 *pnDoc,
142119   const char **paLen
142120 ){
142121   sqlite3_stmt *pStmt;
142122   const char *a;
142123   sqlite3_int64 nDoc;
142124 
142125   if( !*ppStmt ){
142126     int rc = sqlite3Fts3SelectDoctotal(pTab, ppStmt);
142127     if( rc!=SQLITE_OK ) return rc;
142128   }
142129   pStmt = *ppStmt;
142130   assert( sqlite3_data_count(pStmt)==1 );
142131 
142132   a = sqlite3_column_blob(pStmt, 0);
142133   a += sqlite3Fts3GetVarint(a, &nDoc);
142134   if( nDoc==0 ) return FTS_CORRUPT_VTAB;
142135   *pnDoc = (u32)nDoc;
142136 
142137   if( paLen ) *paLen = a;
142138   return SQLITE_OK;
142139 }
142140 
142141 /*
142142 ** An instance of the following structure is used to store state while
142143 ** iterating through a multi-column position-list corresponding to the
142144 ** hits for a single phrase on a single row in order to calculate the
142145 ** values for a matchinfo() FTS3_MATCHINFO_LCS request.
142146 */
142147 typedef struct LcsIterator LcsIterator;
142148 struct LcsIterator {
142149   Fts3Expr *pExpr;                /* Pointer to phrase expression */
142150   int iPosOffset;                 /* Tokens count up to end of this phrase */
142151   char *pRead;                    /* Cursor used to iterate through aDoclist */
142152   int iPos;                       /* Current position */
142153 };
142154 
142155 /*
142156 ** If LcsIterator.iCol is set to the following value, the iterator has
142157 ** finished iterating through all offsets for all columns.
142158 */
142159 #define LCS_ITERATOR_FINISHED 0x7FFFFFFF;
142160 
142161 static int fts3MatchinfoLcsCb(
142162   Fts3Expr *pExpr,                /* Phrase expression node */
142163   int iPhrase,                    /* Phrase number (numbered from zero) */
142164   void *pCtx                      /* Pointer to MatchInfo structure */
142165 ){
142166   LcsIterator *aIter = (LcsIterator *)pCtx;
142167   aIter[iPhrase].pExpr = pExpr;
142168   return SQLITE_OK;
142169 }
142170 
142171 /*
142172 ** Advance the iterator passed as an argument to the next position. Return
142173 ** 1 if the iterator is at EOF or if it now points to the start of the
142174 ** position list for the next column.
142175 */
142176 static int fts3LcsIteratorAdvance(LcsIterator *pIter){
142177   char *pRead = pIter->pRead;
142178   sqlite3_int64 iRead;
142179   int rc = 0;
142180 
142181   pRead += sqlite3Fts3GetVarint(pRead, &iRead);
142182   if( iRead==0 || iRead==1 ){
142183     pRead = 0;
142184     rc = 1;
142185   }else{
142186     pIter->iPos += (int)(iRead-2);
142187   }
142188 
142189   pIter->pRead = pRead;
142190   return rc;
142191 }
142192 
142193 /*
142194 ** This function implements the FTS3_MATCHINFO_LCS matchinfo() flag.
142195 **
142196 ** If the call is successful, the longest-common-substring lengths for each
142197 ** column are written into the first nCol elements of the pInfo->aMatchinfo[]
142198 ** array before returning. SQLITE_OK is returned in this case.
142199 **
142200 ** Otherwise, if an error occurs, an SQLite error code is returned and the
142201 ** data written to the first nCol elements of pInfo->aMatchinfo[] is
142202 ** undefined.
142203 */
142204 static int fts3MatchinfoLcs(Fts3Cursor *pCsr, MatchInfo *pInfo){
142205   LcsIterator *aIter;
142206   int i;
142207   int iCol;
142208   int nToken = 0;
142209 
142210   /* Allocate and populate the array of LcsIterator objects. The array
142211   ** contains one element for each matchable phrase in the query.
142212   **/
142213   aIter = sqlite3_malloc(sizeof(LcsIterator) * pCsr->nPhrase);
142214   if( !aIter ) return SQLITE_NOMEM;
142215   memset(aIter, 0, sizeof(LcsIterator) * pCsr->nPhrase);
142216   (void)fts3ExprIterate(pCsr->pExpr, fts3MatchinfoLcsCb, (void*)aIter);
142217 
142218   for(i=0; i<pInfo->nPhrase; i++){
142219     LcsIterator *pIter = &aIter[i];
142220     nToken -= pIter->pExpr->pPhrase->nToken;
142221     pIter->iPosOffset = nToken;
142222   }
142223 
142224   for(iCol=0; iCol<pInfo->nCol; iCol++){
142225     int nLcs = 0;                 /* LCS value for this column */
142226     int nLive = 0;                /* Number of iterators in aIter not at EOF */
142227 
142228     for(i=0; i<pInfo->nPhrase; i++){
142229       int rc;
142230       LcsIterator *pIt = &aIter[i];
142231       rc = sqlite3Fts3EvalPhrasePoslist(pCsr, pIt->pExpr, iCol, &pIt->pRead);
142232       if( rc!=SQLITE_OK ) return rc;
142233       if( pIt->pRead ){
142234         pIt->iPos = pIt->iPosOffset;
142235         fts3LcsIteratorAdvance(&aIter[i]);
142236         nLive++;
142237       }
142238     }
142239 
142240     while( nLive>0 ){
142241       LcsIterator *pAdv = 0;      /* The iterator to advance by one position */
142242       int nThisLcs = 0;           /* LCS for the current iterator positions */
142243 
142244       for(i=0; i<pInfo->nPhrase; i++){
142245         LcsIterator *pIter = &aIter[i];
142246         if( pIter->pRead==0 ){
142247           /* This iterator is already at EOF for this column. */
142248           nThisLcs = 0;
142249         }else{
142250           if( pAdv==0 || pIter->iPos<pAdv->iPos ){
142251             pAdv = pIter;
142252           }
142253           if( nThisLcs==0 || pIter->iPos==pIter[-1].iPos ){
142254             nThisLcs++;
142255           }else{
142256             nThisLcs = 1;
142257           }
142258           if( nThisLcs>nLcs ) nLcs = nThisLcs;
142259         }
142260       }
142261       if( fts3LcsIteratorAdvance(pAdv) ) nLive--;
142262     }
142263 
142264     pInfo->aMatchinfo[iCol] = nLcs;
142265   }
142266 
142267   sqlite3_free(aIter);
142268   return SQLITE_OK;
142269 }
142270 
142271 /*
142272 ** Populate the buffer pInfo->aMatchinfo[] with an array of integers to
142273 ** be returned by the matchinfo() function. Argument zArg contains the
142274 ** format string passed as the second argument to matchinfo (or the
142275 ** default value "pcx" if no second argument was specified). The format
142276 ** string has already been validated and the pInfo->aMatchinfo[] array
142277 ** is guaranteed to be large enough for the output.
142278 **
142279 ** If bGlobal is true, then populate all fields of the matchinfo() output.
142280 ** If it is false, then assume that those fields that do not change between
142281 ** rows (i.e. FTS3_MATCHINFO_NPHRASE, NCOL, NDOC, AVGLENGTH and part of HITS)
142282 ** have already been populated.
142283 **
142284 ** Return SQLITE_OK if successful, or an SQLite error code if an error
142285 ** occurs. If a value other than SQLITE_OK is returned, the state the
142286 ** pInfo->aMatchinfo[] buffer is left in is undefined.
142287 */
142288 static int fts3MatchinfoValues(
142289   Fts3Cursor *pCsr,               /* FTS3 cursor object */
142290   int bGlobal,                    /* True to grab the global stats */
142291   MatchInfo *pInfo,               /* Matchinfo context object */
142292   const char *zArg                /* Matchinfo format string */
142293 ){
142294   int rc = SQLITE_OK;
142295   int i;
142296   Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
142297   sqlite3_stmt *pSelect = 0;
142298 
142299   for(i=0; rc==SQLITE_OK && zArg[i]; i++){
142300 
142301     switch( zArg[i] ){
142302       case FTS3_MATCHINFO_NPHRASE:
142303         if( bGlobal ) pInfo->aMatchinfo[0] = pInfo->nPhrase;
142304         break;
142305 
142306       case FTS3_MATCHINFO_NCOL:
142307         if( bGlobal ) pInfo->aMatchinfo[0] = pInfo->nCol;
142308         break;
142309 
142310       case FTS3_MATCHINFO_NDOC:
142311         if( bGlobal ){
142312           sqlite3_int64 nDoc = 0;
142313           rc = fts3MatchinfoSelectDoctotal(pTab, &pSelect, &nDoc, 0);
142314           pInfo->aMatchinfo[0] = (u32)nDoc;
142315         }
142316         break;
142317 
142318       case FTS3_MATCHINFO_AVGLENGTH:
142319         if( bGlobal ){
142320           sqlite3_int64 nDoc;     /* Number of rows in table */
142321           const char *a;          /* Aggregate column length array */
142322 
142323           rc = fts3MatchinfoSelectDoctotal(pTab, &pSelect, &nDoc, &a);
142324           if( rc==SQLITE_OK ){
142325             int iCol;
142326             for(iCol=0; iCol<pInfo->nCol; iCol++){
142327               u32 iVal;
142328               sqlite3_int64 nToken;
142329               a += sqlite3Fts3GetVarint(a, &nToken);
142330               iVal = (u32)(((u32)(nToken&0xffffffff)+nDoc/2)/nDoc);
142331               pInfo->aMatchinfo[iCol] = iVal;
142332             }
142333           }
142334         }
142335         break;
142336 
142337       case FTS3_MATCHINFO_LENGTH: {
142338         sqlite3_stmt *pSelectDocsize = 0;
142339         rc = sqlite3Fts3SelectDocsize(pTab, pCsr->iPrevId, &pSelectDocsize);
142340         if( rc==SQLITE_OK ){
142341           int iCol;
142342           const char *a = sqlite3_column_blob(pSelectDocsize, 0);
142343           for(iCol=0; iCol<pInfo->nCol; iCol++){
142344             sqlite3_int64 nToken;
142345             a += sqlite3Fts3GetVarint(a, &nToken);
142346             pInfo->aMatchinfo[iCol] = (u32)nToken;
142347           }
142348         }
142349         sqlite3_reset(pSelectDocsize);
142350         break;
142351       }
142352 
142353       case FTS3_MATCHINFO_LCS:
142354         rc = fts3ExprLoadDoclists(pCsr, 0, 0);
142355         if( rc==SQLITE_OK ){
142356           rc = fts3MatchinfoLcs(pCsr, pInfo);
142357         }
142358         break;
142359 
142360       default: {
142361         Fts3Expr *pExpr;
142362         assert( zArg[i]==FTS3_MATCHINFO_HITS );
142363         pExpr = pCsr->pExpr;
142364         rc = fts3ExprLoadDoclists(pCsr, 0, 0);
142365         if( rc!=SQLITE_OK ) break;
142366         if( bGlobal ){
142367           if( pCsr->pDeferred ){
142368             rc = fts3MatchinfoSelectDoctotal(pTab, &pSelect, &pInfo->nDoc, 0);
142369             if( rc!=SQLITE_OK ) break;
142370           }
142371           rc = fts3ExprIterate(pExpr, fts3ExprGlobalHitsCb,(void*)pInfo);
142372           if( rc!=SQLITE_OK ) break;
142373         }
142374         (void)fts3ExprIterate(pExpr, fts3ExprLocalHitsCb,(void*)pInfo);
142375         break;
142376       }
142377     }
142378 
142379     pInfo->aMatchinfo += fts3MatchinfoSize(pInfo, zArg[i]);
142380   }
142381 
142382   sqlite3_reset(pSelect);
142383   return rc;
142384 }
142385 
142386 
142387 /*
142388 ** Populate pCsr->aMatchinfo[] with data for the current row. The
142389 ** 'matchinfo' data is an array of 32-bit unsigned integers (C type u32).
142390 */
142391 static int fts3GetMatchinfo(
142392   Fts3Cursor *pCsr,               /* FTS3 Cursor object */
142393   const char *zArg                /* Second argument to matchinfo() function */
142394 ){
142395   MatchInfo sInfo;
142396   Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
142397   int rc = SQLITE_OK;
142398   int bGlobal = 0;                /* Collect 'global' stats as well as local */
142399 
142400   memset(&sInfo, 0, sizeof(MatchInfo));
142401   sInfo.pCursor = pCsr;
142402   sInfo.nCol = pTab->nColumn;
142403 
142404   /* If there is cached matchinfo() data, but the format string for the
142405   ** cache does not match the format string for this request, discard
142406   ** the cached data. */
142407   if( pCsr->zMatchinfo && strcmp(pCsr->zMatchinfo, zArg) ){
142408     assert( pCsr->aMatchinfo );
142409     sqlite3_free(pCsr->aMatchinfo);
142410     pCsr->zMatchinfo = 0;
142411     pCsr->aMatchinfo = 0;
142412   }
142413 
142414   /* If Fts3Cursor.aMatchinfo[] is NULL, then this is the first time the
142415   ** matchinfo function has been called for this query. In this case
142416   ** allocate the array used to accumulate the matchinfo data and
142417   ** initialize those elements that are constant for every row.
142418   */
142419   if( pCsr->aMatchinfo==0 ){
142420     int nMatchinfo = 0;           /* Number of u32 elements in match-info */
142421     int nArg;                     /* Bytes in zArg */
142422     int i;                        /* Used to iterate through zArg */
142423 
142424     /* Determine the number of phrases in the query */
142425     pCsr->nPhrase = fts3ExprPhraseCount(pCsr->pExpr);
142426     sInfo.nPhrase = pCsr->nPhrase;
142427 
142428     /* Determine the number of integers in the buffer returned by this call. */
142429     for(i=0; zArg[i]; i++){
142430       nMatchinfo += fts3MatchinfoSize(&sInfo, zArg[i]);
142431     }
142432 
142433     /* Allocate space for Fts3Cursor.aMatchinfo[] and Fts3Cursor.zMatchinfo. */
142434     nArg = (int)strlen(zArg);
142435     pCsr->aMatchinfo = (u32 *)sqlite3_malloc(sizeof(u32)*nMatchinfo + nArg + 1);
142436     if( !pCsr->aMatchinfo ) return SQLITE_NOMEM;
142437 
142438     pCsr->zMatchinfo = (char *)&pCsr->aMatchinfo[nMatchinfo];
142439     pCsr->nMatchinfo = nMatchinfo;
142440     memcpy(pCsr->zMatchinfo, zArg, nArg+1);
142441     memset(pCsr->aMatchinfo, 0, sizeof(u32)*nMatchinfo);
142442     pCsr->isMatchinfoNeeded = 1;
142443     bGlobal = 1;
142444   }
142445 
142446   sInfo.aMatchinfo = pCsr->aMatchinfo;
142447   sInfo.nPhrase = pCsr->nPhrase;
142448   if( pCsr->isMatchinfoNeeded ){
142449     rc = fts3MatchinfoValues(pCsr, bGlobal, &sInfo, zArg);
142450     pCsr->isMatchinfoNeeded = 0;
142451   }
142452 
142453   return rc;
142454 }
142455 
142456 /*
142457 ** Implementation of snippet() function.
142458 */
142459 SQLITE_PRIVATE void sqlite3Fts3Snippet(
142460   sqlite3_context *pCtx,          /* SQLite function call context */
142461   Fts3Cursor *pCsr,               /* Cursor object */
142462   const char *zStart,             /* Snippet start text - "<b>" */
142463   const char *zEnd,               /* Snippet end text - "</b>" */
142464   const char *zEllipsis,          /* Snippet ellipsis text - "<b>...</b>" */
142465   int iCol,                       /* Extract snippet from this column */
142466   int nToken                      /* Approximate number of tokens in snippet */
142467 ){
142468   Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
142469   int rc = SQLITE_OK;
142470   int i;
142471   StrBuffer res = {0, 0, 0};
142472 
142473   /* The returned text includes up to four fragments of text extracted from
142474   ** the data in the current row. The first iteration of the for(...) loop
142475   ** below attempts to locate a single fragment of text nToken tokens in
142476   ** size that contains at least one instance of all phrases in the query
142477   ** expression that appear in the current row. If such a fragment of text
142478   ** cannot be found, the second iteration of the loop attempts to locate
142479   ** a pair of fragments, and so on.
142480   */
142481   int nSnippet = 0;               /* Number of fragments in this snippet */
142482   SnippetFragment aSnippet[4];    /* Maximum of 4 fragments per snippet */
142483   int nFToken = -1;               /* Number of tokens in each fragment */
142484 
142485   if( !pCsr->pExpr ){
142486     sqlite3_result_text(pCtx, "", 0, SQLITE_STATIC);
142487     return;
142488   }
142489 
142490   for(nSnippet=1; 1; nSnippet++){
142491 
142492     int iSnip;                    /* Loop counter 0..nSnippet-1 */
142493     u64 mCovered = 0;             /* Bitmask of phrases covered by snippet */
142494     u64 mSeen = 0;                /* Bitmask of phrases seen by BestSnippet() */
142495 
142496     if( nToken>=0 ){
142497       nFToken = (nToken+nSnippet-1) / nSnippet;
142498     }else{
142499       nFToken = -1 * nToken;
142500     }
142501 
142502     for(iSnip=0; iSnip<nSnippet; iSnip++){
142503       int iBestScore = -1;        /* Best score of columns checked so far */
142504       int iRead;                  /* Used to iterate through columns */
142505       SnippetFragment *pFragment = &aSnippet[iSnip];
142506 
142507       memset(pFragment, 0, sizeof(*pFragment));
142508 
142509       /* Loop through all columns of the table being considered for snippets.
142510       ** If the iCol argument to this function was negative, this means all
142511       ** columns of the FTS3 table. Otherwise, only column iCol is considered.
142512       */
142513       for(iRead=0; iRead<pTab->nColumn; iRead++){
142514         SnippetFragment sF = {0, 0, 0, 0};
142515         int iS;
142516         if( iCol>=0 && iRead!=iCol ) continue;
142517 
142518         /* Find the best snippet of nFToken tokens in column iRead. */
142519         rc = fts3BestSnippet(nFToken, pCsr, iRead, mCovered, &mSeen, &sF, &iS);
142520         if( rc!=SQLITE_OK ){
142521           goto snippet_out;
142522         }
142523         if( iS>iBestScore ){
142524           *pFragment = sF;
142525           iBestScore = iS;
142526         }
142527       }
142528 
142529       mCovered |= pFragment->covered;
142530     }
142531 
142532     /* If all query phrases seen by fts3BestSnippet() are present in at least
142533     ** one of the nSnippet snippet fragments, break out of the loop.
142534     */
142535     assert( (mCovered&mSeen)==mCovered );
142536     if( mSeen==mCovered || nSnippet==SizeofArray(aSnippet) ) break;
142537   }
142538 
142539   assert( nFToken>0 );
142540 
142541   for(i=0; i<nSnippet && rc==SQLITE_OK; i++){
142542     rc = fts3SnippetText(pCsr, &aSnippet[i],
142543         i, (i==nSnippet-1), nFToken, zStart, zEnd, zEllipsis, &res
142544     );
142545   }
142546 
142547  snippet_out:
142548   sqlite3Fts3SegmentsClose(pTab);
142549   if( rc!=SQLITE_OK ){
142550     sqlite3_result_error_code(pCtx, rc);
142551     sqlite3_free(res.z);
142552   }else{
142553     sqlite3_result_text(pCtx, res.z, -1, sqlite3_free);
142554   }
142555 }
142556 
142557 
142558 typedef struct TermOffset TermOffset;
142559 typedef struct TermOffsetCtx TermOffsetCtx;
142560 
142561 struct TermOffset {
142562   char *pList;                    /* Position-list */
142563   int iPos;                       /* Position just read from pList */
142564   int iOff;                       /* Offset of this term from read positions */
142565 };
142566 
142567 struct TermOffsetCtx {
142568   Fts3Cursor *pCsr;
142569   int iCol;                       /* Column of table to populate aTerm for */
142570   int iTerm;
142571   sqlite3_int64 iDocid;
142572   TermOffset *aTerm;
142573 };
142574 
142575 /*
142576 ** This function is an fts3ExprIterate() callback used by sqlite3Fts3Offsets().
142577 */
142578 static int fts3ExprTermOffsetInit(Fts3Expr *pExpr, int iPhrase, void *ctx){
142579   TermOffsetCtx *p = (TermOffsetCtx *)ctx;
142580   int nTerm;                      /* Number of tokens in phrase */
142581   int iTerm;                      /* For looping through nTerm phrase terms */
142582   char *pList;                    /* Pointer to position list for phrase */
142583   int iPos = 0;                   /* First position in position-list */
142584   int rc;
142585 
142586   UNUSED_PARAMETER(iPhrase);
142587   rc = sqlite3Fts3EvalPhrasePoslist(p->pCsr, pExpr, p->iCol, &pList);
142588   nTerm = pExpr->pPhrase->nToken;
142589   if( pList ){
142590     fts3GetDeltaPosition(&pList, &iPos);
142591     assert( iPos>=0 );
142592   }
142593 
142594   for(iTerm=0; iTerm<nTerm; iTerm++){
142595     TermOffset *pT = &p->aTerm[p->iTerm++];
142596     pT->iOff = nTerm-iTerm-1;
142597     pT->pList = pList;
142598     pT->iPos = iPos;
142599   }
142600 
142601   return rc;
142602 }
142603 
142604 /*
142605 ** Implementation of offsets() function.
142606 */
142607 SQLITE_PRIVATE void sqlite3Fts3Offsets(
142608   sqlite3_context *pCtx,          /* SQLite function call context */
142609   Fts3Cursor *pCsr                /* Cursor object */
142610 ){
142611   Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
142612   sqlite3_tokenizer_module const *pMod = pTab->pTokenizer->pModule;
142613   int rc;                         /* Return Code */
142614   int nToken;                     /* Number of tokens in query */
142615   int iCol;                       /* Column currently being processed */
142616   StrBuffer res = {0, 0, 0};      /* Result string */
142617   TermOffsetCtx sCtx;             /* Context for fts3ExprTermOffsetInit() */
142618 
142619   if( !pCsr->pExpr ){
142620     sqlite3_result_text(pCtx, "", 0, SQLITE_STATIC);
142621     return;
142622   }
142623 
142624   memset(&sCtx, 0, sizeof(sCtx));
142625   assert( pCsr->isRequireSeek==0 );
142626 
142627   /* Count the number of terms in the query */
142628   rc = fts3ExprLoadDoclists(pCsr, 0, &nToken);
142629   if( rc!=SQLITE_OK ) goto offsets_out;
142630 
142631   /* Allocate the array of TermOffset iterators. */
142632   sCtx.aTerm = (TermOffset *)sqlite3_malloc(sizeof(TermOffset)*nToken);
142633   if( 0==sCtx.aTerm ){
142634     rc = SQLITE_NOMEM;
142635     goto offsets_out;
142636   }
142637   sCtx.iDocid = pCsr->iPrevId;
142638   sCtx.pCsr = pCsr;
142639 
142640   /* Loop through the table columns, appending offset information to
142641   ** string-buffer res for each column.
142642   */
142643   for(iCol=0; iCol<pTab->nColumn; iCol++){
142644     sqlite3_tokenizer_cursor *pC; /* Tokenizer cursor */
142645     const char *ZDUMMY;           /* Dummy argument used with xNext() */
142646     int NDUMMY = 0;               /* Dummy argument used with xNext() */
142647     int iStart = 0;
142648     int iEnd = 0;
142649     int iCurrent = 0;
142650     const char *zDoc;
142651     int nDoc;
142652 
142653     /* Initialize the contents of sCtx.aTerm[] for column iCol. There is
142654     ** no way that this operation can fail, so the return code from
142655     ** fts3ExprIterate() can be discarded.
142656     */
142657     sCtx.iCol = iCol;
142658     sCtx.iTerm = 0;
142659     (void)fts3ExprIterate(pCsr->pExpr, fts3ExprTermOffsetInit, (void *)&sCtx);
142660 
142661     /* Retreive the text stored in column iCol. If an SQL NULL is stored
142662     ** in column iCol, jump immediately to the next iteration of the loop.
142663     ** If an OOM occurs while retrieving the data (this can happen if SQLite
142664     ** needs to transform the data from utf-16 to utf-8), return SQLITE_NOMEM
142665     ** to the caller.
142666     */
142667     zDoc = (const char *)sqlite3_column_text(pCsr->pStmt, iCol+1);
142668     nDoc = sqlite3_column_bytes(pCsr->pStmt, iCol+1);
142669     if( zDoc==0 ){
142670       if( sqlite3_column_type(pCsr->pStmt, iCol+1)==SQLITE_NULL ){
142671         continue;
142672       }
142673       rc = SQLITE_NOMEM;
142674       goto offsets_out;
142675     }
142676 
142677     /* Initialize a tokenizer iterator to iterate through column iCol. */
142678     rc = sqlite3Fts3OpenTokenizer(pTab->pTokenizer, pCsr->iLangid,
142679         zDoc, nDoc, &pC
142680     );
142681     if( rc!=SQLITE_OK ) goto offsets_out;
142682 
142683     rc = pMod->xNext(pC, &ZDUMMY, &NDUMMY, &iStart, &iEnd, &iCurrent);
142684     while( rc==SQLITE_OK ){
142685       int i;                      /* Used to loop through terms */
142686       int iMinPos = 0x7FFFFFFF;   /* Position of next token */
142687       TermOffset *pTerm = 0;      /* TermOffset associated with next token */
142688 
142689       for(i=0; i<nToken; i++){
142690         TermOffset *pT = &sCtx.aTerm[i];
142691         if( pT->pList && (pT->iPos-pT->iOff)<iMinPos ){
142692           iMinPos = pT->iPos-pT->iOff;
142693           pTerm = pT;
142694         }
142695       }
142696 
142697       if( !pTerm ){
142698         /* All offsets for this column have been gathered. */
142699         rc = SQLITE_DONE;
142700       }else{
142701         assert( iCurrent<=iMinPos );
142702         if( 0==(0xFE&*pTerm->pList) ){
142703           pTerm->pList = 0;
142704         }else{
142705           fts3GetDeltaPosition(&pTerm->pList, &pTerm->iPos);
142706         }
142707         while( rc==SQLITE_OK && iCurrent<iMinPos ){
142708           rc = pMod->xNext(pC, &ZDUMMY, &NDUMMY, &iStart, &iEnd, &iCurrent);
142709         }
142710         if( rc==SQLITE_OK ){
142711           char aBuffer[64];
142712           sqlite3_snprintf(sizeof(aBuffer), aBuffer,
142713               "%d %d %d %d ", iCol, pTerm-sCtx.aTerm, iStart, iEnd-iStart
142714           );
142715           rc = fts3StringAppend(&res, aBuffer, -1);
142716         }else if( rc==SQLITE_DONE && pTab->zContentTbl==0 ){
142717           rc = FTS_CORRUPT_VTAB;
142718         }
142719       }
142720     }
142721     if( rc==SQLITE_DONE ){
142722       rc = SQLITE_OK;
142723     }
142724 
142725     pMod->xClose(pC);
142726     if( rc!=SQLITE_OK ) goto offsets_out;
142727   }
142728 
142729  offsets_out:
142730   sqlite3_free(sCtx.aTerm);
142731   assert( rc!=SQLITE_DONE );
142732   sqlite3Fts3SegmentsClose(pTab);
142733   if( rc!=SQLITE_OK ){
142734     sqlite3_result_error_code(pCtx,  rc);
142735     sqlite3_free(res.z);
142736   }else{
142737     sqlite3_result_text(pCtx, res.z, res.n-1, sqlite3_free);
142738   }
142739   return;
142740 }
142741 
142742 /*
142743 ** Implementation of matchinfo() function.
142744 */
142745 SQLITE_PRIVATE void sqlite3Fts3Matchinfo(
142746   sqlite3_context *pContext,      /* Function call context */
142747   Fts3Cursor *pCsr,               /* FTS3 table cursor */
142748   const char *zArg                /* Second arg to matchinfo() function */
142749 ){
142750   Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
142751   int rc;
142752   int i;
142753   const char *zFormat;
142754 
142755   if( zArg ){
142756     for(i=0; zArg[i]; i++){
142757       char *zErr = 0;
142758       if( fts3MatchinfoCheck(pTab, zArg[i], &zErr) ){
142759         sqlite3_result_error(pContext, zErr, -1);
142760         sqlite3_free(zErr);
142761         return;
142762       }
142763     }
142764     zFormat = zArg;
142765   }else{
142766     zFormat = FTS3_MATCHINFO_DEFAULT;
142767   }
142768 
142769   if( !pCsr->pExpr ){
142770     sqlite3_result_blob(pContext, "", 0, SQLITE_STATIC);
142771     return;
142772   }
142773 
142774   /* Retrieve matchinfo() data. */
142775   rc = fts3GetMatchinfo(pCsr, zFormat);
142776   sqlite3Fts3SegmentsClose(pTab);
142777 
142778   if( rc!=SQLITE_OK ){
142779     sqlite3_result_error_code(pContext, rc);
142780   }else{
142781     int n = pCsr->nMatchinfo * sizeof(u32);
142782     sqlite3_result_blob(pContext, pCsr->aMatchinfo, n, SQLITE_TRANSIENT);
142783   }
142784 }
142785 
142786 #endif
142787 
142788 /************** End of fts3_snippet.c ****************************************/
142789 /************** Begin file fts3_unicode.c ************************************/
142790 /*
142791 ** 2012 May 24
142792 **
142793 ** The author disclaims copyright to this source code.  In place of
142794 ** a legal notice, here is a blessing:
142795 **
142796 **    May you do good and not evil.
142797 **    May you find forgiveness for yourself and forgive others.
142798 **    May you share freely, never taking more than you give.
142799 **
142800 ******************************************************************************
142801 **
142802 ** Implementation of the "unicode" full-text-search tokenizer.
142803 */
142804 
142805 #ifdef SQLITE_ENABLE_FTS4_UNICODE61
142806 
142807 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
142808 
142809 /* #include <assert.h> */
142810 /* #include <stdlib.h> */
142811 /* #include <stdio.h> */
142812 /* #include <string.h> */
142813 
142814 
142815 /*
142816 ** The following two macros - READ_UTF8 and WRITE_UTF8 - have been copied
142817 ** from the sqlite3 source file utf.c. If this file is compiled as part
142818 ** of the amalgamation, they are not required.
142819 */
142820 #ifndef SQLITE_AMALGAMATION
142821 
142822 static const unsigned char sqlite3Utf8Trans1[] = {
142823   0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
142824   0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
142825   0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
142826   0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
142827   0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
142828   0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
142829   0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
142830   0x00, 0x01, 0x02, 0x03, 0x00, 0x01, 0x00, 0x00,
142831 };
142832 
142833 #define READ_UTF8(zIn, zTerm, c)                           \
142834   c = *(zIn++);                                            \
142835   if( c>=0xc0 ){                                           \
142836     c = sqlite3Utf8Trans1[c-0xc0];                         \
142837     while( zIn!=zTerm && (*zIn & 0xc0)==0x80 ){            \
142838       c = (c<<6) + (0x3f & *(zIn++));                      \
142839     }                                                      \
142840     if( c<0x80                                             \
142841         || (c&0xFFFFF800)==0xD800                          \
142842         || (c&0xFFFFFFFE)==0xFFFE ){  c = 0xFFFD; }        \
142843   }
142844 
142845 #define WRITE_UTF8(zOut, c) {                          \
142846   if( c<0x00080 ){                                     \
142847     *zOut++ = (u8)(c&0xFF);                            \
142848   }                                                    \
142849   else if( c<0x00800 ){                                \
142850     *zOut++ = 0xC0 + (u8)((c>>6)&0x1F);                \
142851     *zOut++ = 0x80 + (u8)(c & 0x3F);                   \
142852   }                                                    \
142853   else if( c<0x10000 ){                                \
142854     *zOut++ = 0xE0 + (u8)((c>>12)&0x0F);               \
142855     *zOut++ = 0x80 + (u8)((c>>6) & 0x3F);              \
142856     *zOut++ = 0x80 + (u8)(c & 0x3F);                   \
142857   }else{                                               \
142858     *zOut++ = 0xF0 + (u8)((c>>18) & 0x07);             \
142859     *zOut++ = 0x80 + (u8)((c>>12) & 0x3F);             \
142860     *zOut++ = 0x80 + (u8)((c>>6) & 0x3F);              \
142861     *zOut++ = 0x80 + (u8)(c & 0x3F);                   \
142862   }                                                    \
142863 }
142864 
142865 #endif /* ifndef SQLITE_AMALGAMATION */
142866 
142867 typedef struct unicode_tokenizer unicode_tokenizer;
142868 typedef struct unicode_cursor unicode_cursor;
142869 
142870 struct unicode_tokenizer {
142871   sqlite3_tokenizer base;
142872   int bRemoveDiacritic;
142873   int nException;
142874   int *aiException;
142875 };
142876 
142877 struct unicode_cursor {
142878   sqlite3_tokenizer_cursor base;
142879   const unsigned char *aInput;    /* Input text being tokenized */
142880   int nInput;                     /* Size of aInput[] in bytes */
142881   int iOff;                       /* Current offset within aInput[] */
142882   int iToken;                     /* Index of next token to be returned */
142883   char *zToken;                   /* storage for current token */
142884   int nAlloc;                     /* space allocated at zToken */
142885 };
142886 
142887 
142888 /*
142889 ** Destroy a tokenizer allocated by unicodeCreate().
142890 */
142891 static int unicodeDestroy(sqlite3_tokenizer *pTokenizer){
142892   if( pTokenizer ){
142893     unicode_tokenizer *p = (unicode_tokenizer *)pTokenizer;
142894     sqlite3_free(p->aiException);
142895     sqlite3_free(p);
142896   }
142897   return SQLITE_OK;
142898 }
142899 
142900 /*
142901 ** As part of a tokenchars= or separators= option, the CREATE VIRTUAL TABLE
142902 ** statement has specified that the tokenizer for this table shall consider
142903 ** all characters in string zIn/nIn to be separators (if bAlnum==0) or
142904 ** token characters (if bAlnum==1).
142905 **
142906 ** For each codepoint in the zIn/nIn string, this function checks if the
142907 ** sqlite3FtsUnicodeIsalnum() function already returns the desired result.
142908 ** If so, no action is taken. Otherwise, the codepoint is added to the
142909 ** unicode_tokenizer.aiException[] array. For the purposes of tokenization,
142910 ** the return value of sqlite3FtsUnicodeIsalnum() is inverted for all
142911 ** codepoints in the aiException[] array.
142912 **
142913 ** If a standalone diacritic mark (one that sqlite3FtsUnicodeIsdiacritic()
142914 ** identifies as a diacritic) occurs in the zIn/nIn string it is ignored.
142915 ** It is not possible to change the behavior of the tokenizer with respect
142916 ** to these codepoints.
142917 */
142918 static int unicodeAddExceptions(
142919   unicode_tokenizer *p,           /* Tokenizer to add exceptions to */
142920   int bAlnum,                     /* Replace Isalnum() return value with this */
142921   const char *zIn,                /* Array of characters to make exceptions */
142922   int nIn                         /* Length of z in bytes */
142923 ){
142924   const unsigned char *z = (const unsigned char *)zIn;
142925   const unsigned char *zTerm = &z[nIn];
142926   int iCode;
142927   int nEntry = 0;
142928 
142929   assert( bAlnum==0 || bAlnum==1 );
142930 
142931   while( z<zTerm ){
142932     READ_UTF8(z, zTerm, iCode);
142933     assert( (sqlite3FtsUnicodeIsalnum(iCode) & 0xFFFFFFFE)==0 );
142934     if( sqlite3FtsUnicodeIsalnum(iCode)!=bAlnum
142935      && sqlite3FtsUnicodeIsdiacritic(iCode)==0
142936     ){
142937       nEntry++;
142938     }
142939   }
142940 
142941   if( nEntry ){
142942     int *aNew;                    /* New aiException[] array */
142943     int nNew;                     /* Number of valid entries in array aNew[] */
142944 
142945     aNew = sqlite3_realloc(p->aiException, (p->nException+nEntry)*sizeof(int));
142946     if( aNew==0 ) return SQLITE_NOMEM;
142947     nNew = p->nException;
142948 
142949     z = (const unsigned char *)zIn;
142950     while( z<zTerm ){
142951       READ_UTF8(z, zTerm, iCode);
142952       if( sqlite3FtsUnicodeIsalnum(iCode)!=bAlnum
142953        && sqlite3FtsUnicodeIsdiacritic(iCode)==0
142954       ){
142955         int i, j;
142956         for(i=0; i<nNew && aNew[i]<iCode; i++);
142957         for(j=nNew; j>i; j--) aNew[j] = aNew[j-1];
142958         aNew[i] = iCode;
142959         nNew++;
142960       }
142961     }
142962     p->aiException = aNew;
142963     p->nException = nNew;
142964   }
142965 
142966   return SQLITE_OK;
142967 }
142968 
142969 /*
142970 ** Return true if the p->aiException[] array contains the value iCode.
142971 */
142972 static int unicodeIsException(unicode_tokenizer *p, int iCode){
142973   if( p->nException>0 ){
142974     int *a = p->aiException;
142975     int iLo = 0;
142976     int iHi = p->nException-1;
142977 
142978     while( iHi>=iLo ){
142979       int iTest = (iHi + iLo) / 2;
142980       if( iCode==a[iTest] ){
142981         return 1;
142982       }else if( iCode>a[iTest] ){
142983         iLo = iTest+1;
142984       }else{
142985         iHi = iTest-1;
142986       }
142987     }
142988   }
142989 
142990   return 0;
142991 }
142992 
142993 /*
142994 ** Return true if, for the purposes of tokenization, codepoint iCode is
142995 ** considered a token character (not a separator).
142996 */
142997 static int unicodeIsAlnum(unicode_tokenizer *p, int iCode){
142998   assert( (sqlite3FtsUnicodeIsalnum(iCode) & 0xFFFFFFFE)==0 );
142999   return sqlite3FtsUnicodeIsalnum(iCode) ^ unicodeIsException(p, iCode);
143000 }
143001 
143002 /*
143003 ** Create a new tokenizer instance.
143004 */
143005 static int unicodeCreate(
143006   int nArg,                       /* Size of array argv[] */
143007   const char * const *azArg,      /* Tokenizer creation arguments */
143008   sqlite3_tokenizer **pp          /* OUT: New tokenizer handle */
143009 ){
143010   unicode_tokenizer *pNew;        /* New tokenizer object */
143011   int i;
143012   int rc = SQLITE_OK;
143013 
143014   pNew = (unicode_tokenizer *) sqlite3_malloc(sizeof(unicode_tokenizer));
143015   if( pNew==NULL ) return SQLITE_NOMEM;
143016   memset(pNew, 0, sizeof(unicode_tokenizer));
143017   pNew->bRemoveDiacritic = 1;
143018 
143019   for(i=0; rc==SQLITE_OK && i<nArg; i++){
143020     const char *z = azArg[i];
143021     int n = strlen(z);
143022 
143023     if( n==19 && memcmp("remove_diacritics=1", z, 19)==0 ){
143024       pNew->bRemoveDiacritic = 1;
143025     }
143026     else if( n==19 && memcmp("remove_diacritics=0", z, 19)==0 ){
143027       pNew->bRemoveDiacritic = 0;
143028     }
143029     else if( n>=11 && memcmp("tokenchars=", z, 11)==0 ){
143030       rc = unicodeAddExceptions(pNew, 1, &z[11], n-11);
143031     }
143032     else if( n>=11 && memcmp("separators=", z, 11)==0 ){
143033       rc = unicodeAddExceptions(pNew, 0, &z[11], n-11);
143034     }
143035     else{
143036       /* Unrecognized argument */
143037       rc  = SQLITE_ERROR;
143038     }
143039   }
143040 
143041   if( rc!=SQLITE_OK ){
143042     unicodeDestroy((sqlite3_tokenizer *)pNew);
143043     pNew = 0;
143044   }
143045   *pp = (sqlite3_tokenizer *)pNew;
143046   return rc;
143047 }
143048 
143049 /*
143050 ** Prepare to begin tokenizing a particular string.  The input
143051 ** string to be tokenized is pInput[0..nBytes-1].  A cursor
143052 ** used to incrementally tokenize this string is returned in
143053 ** *ppCursor.
143054 */
143055 static int unicodeOpen(
143056   sqlite3_tokenizer *p,           /* The tokenizer */
143057   const char *aInput,             /* Input string */
143058   int nInput,                     /* Size of string aInput in bytes */
143059   sqlite3_tokenizer_cursor **pp   /* OUT: New cursor object */
143060 ){
143061   unicode_cursor *pCsr;
143062 
143063   pCsr = (unicode_cursor *)sqlite3_malloc(sizeof(unicode_cursor));
143064   if( pCsr==0 ){
143065     return SQLITE_NOMEM;
143066   }
143067   memset(pCsr, 0, sizeof(unicode_cursor));
143068 
143069   pCsr->aInput = (const unsigned char *)aInput;
143070   if( aInput==0 ){
143071     pCsr->nInput = 0;
143072   }else if( nInput<0 ){
143073     pCsr->nInput = (int)strlen(aInput);
143074   }else{
143075     pCsr->nInput = nInput;
143076   }
143077 
143078   *pp = &pCsr->base;
143079   UNUSED_PARAMETER(p);
143080   return SQLITE_OK;
143081 }
143082 
143083 /*
143084 ** Close a tokenization cursor previously opened by a call to
143085 ** simpleOpen() above.
143086 */
143087 static int unicodeClose(sqlite3_tokenizer_cursor *pCursor){
143088   unicode_cursor *pCsr = (unicode_cursor *) pCursor;
143089   sqlite3_free(pCsr->zToken);
143090   sqlite3_free(pCsr);
143091   return SQLITE_OK;
143092 }
143093 
143094 /*
143095 ** Extract the next token from a tokenization cursor.  The cursor must
143096 ** have been opened by a prior call to simpleOpen().
143097 */
143098 static int unicodeNext(
143099   sqlite3_tokenizer_cursor *pC,   /* Cursor returned by simpleOpen */
143100   const char **paToken,           /* OUT: Token text */
143101   int *pnToken,                   /* OUT: Number of bytes at *paToken */
143102   int *piStart,                   /* OUT: Starting offset of token */
143103   int *piEnd,                     /* OUT: Ending offset of token */
143104   int *piPos                      /* OUT: Position integer of token */
143105 ){
143106   unicode_cursor *pCsr = (unicode_cursor *)pC;
143107   unicode_tokenizer *p = ((unicode_tokenizer *)pCsr->base.pTokenizer);
143108   int iCode;
143109   char *zOut;
143110   const unsigned char *z = &pCsr->aInput[pCsr->iOff];
143111   const unsigned char *zStart = z;
143112   const unsigned char *zEnd;
143113   const unsigned char *zTerm = &pCsr->aInput[pCsr->nInput];
143114 
143115   /* Scan past any delimiter characters before the start of the next token.
143116   ** Return SQLITE_DONE early if this takes us all the way to the end of
143117   ** the input.  */
143118   while( z<zTerm ){
143119     READ_UTF8(z, zTerm, iCode);
143120     if( unicodeIsAlnum(p, iCode) ) break;
143121     zStart = z;
143122   }
143123   if( zStart>=zTerm ) return SQLITE_DONE;
143124 
143125   zOut = pCsr->zToken;
143126   do {
143127     int iOut;
143128 
143129     /* Grow the output buffer if required. */
143130     if( (zOut-pCsr->zToken)>=(pCsr->nAlloc-4) ){
143131       char *zNew = sqlite3_realloc(pCsr->zToken, pCsr->nAlloc+64);
143132       if( !zNew ) return SQLITE_NOMEM;
143133       zOut = &zNew[zOut - pCsr->zToken];
143134       pCsr->zToken = zNew;
143135       pCsr->nAlloc += 64;
143136     }
143137 
143138     /* Write the folded case of the last character read to the output */
143139     zEnd = z;
143140     iOut = sqlite3FtsUnicodeFold(iCode, p->bRemoveDiacritic);
143141     if( iOut ){
143142       WRITE_UTF8(zOut, iOut);
143143     }
143144 
143145     /* If the cursor is not at EOF, read the next character */
143146     if( z>=zTerm ) break;
143147     READ_UTF8(z, zTerm, iCode);
143148   }while( unicodeIsAlnum(p, iCode)
143149        || sqlite3FtsUnicodeIsdiacritic(iCode)
143150   );
143151 
143152   /* Set the output variables and return. */
143153   pCsr->iOff = (z - pCsr->aInput);
143154   *paToken = pCsr->zToken;
143155   *pnToken = zOut - pCsr->zToken;
143156   *piStart = (zStart - pCsr->aInput);
143157   *piEnd = (zEnd - pCsr->aInput);
143158   *piPos = pCsr->iToken++;
143159   return SQLITE_OK;
143160 }
143161 
143162 /*
143163 ** Set *ppModule to a pointer to the sqlite3_tokenizer_module
143164 ** structure for the unicode tokenizer.
143165 */
143166 SQLITE_PRIVATE void sqlite3Fts3UnicodeTokenizer(sqlite3_tokenizer_module const **ppModule){
143167   static const sqlite3_tokenizer_module module = {
143168     0,
143169     unicodeCreate,
143170     unicodeDestroy,
143171     unicodeOpen,
143172     unicodeClose,
143173     unicodeNext,
143174     0,
143175   };
143176   *ppModule = &module;
143177 }
143178 
143179 #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
143180 #endif /* ifndef SQLITE_ENABLE_FTS4_UNICODE61 */
143181 
143182 /************** End of fts3_unicode.c ****************************************/
143183 /************** Begin file fts3_unicode2.c ***********************************/
143184 /*
143185 ** 2012 May 25
143186 **
143187 ** The author disclaims copyright to this source code.  In place of
143188 ** a legal notice, here is a blessing:
143189 **
143190 **    May you do good and not evil.
143191 **    May you find forgiveness for yourself and forgive others.
143192 **    May you share freely, never taking more than you give.
143193 **
143194 ******************************************************************************
143195 */
143196 
143197 /*
143198 ** DO NOT EDIT THIS MACHINE GENERATED FILE.
143199 */
143200 
143201 #if defined(SQLITE_ENABLE_FTS4_UNICODE61)
143202 #if defined(SQLITE_ENABLE_FTS3) || defined(SQLITE_ENABLE_FTS4)
143203 
143204 /* #include <assert.h> */
143205 
143206 /*
143207 ** Return true if the argument corresponds to a unicode codepoint
143208 ** classified as either a letter or a number. Otherwise false.
143209 **
143210 ** The results are undefined if the value passed to this function
143211 ** is less than zero.
143212 */
143213 SQLITE_PRIVATE int sqlite3FtsUnicodeIsalnum(int c){
143214   /* Each unsigned integer in the following array corresponds to a contiguous
143215   ** range of unicode codepoints that are not either letters or numbers (i.e.
143216   ** codepoints for which this function should return 0).
143217   **
143218   ** The most significant 22 bits in each 32-bit value contain the first
143219   ** codepoint in the range. The least significant 10 bits are used to store
143220   ** the size of the range (always at least 1). In other words, the value
143221   ** ((C<<22) + N) represents a range of N codepoints starting with codepoint
143222   ** C. It is not possible to represent a range larger than 1023 codepoints
143223   ** using this format.
143224   */
143225   const static unsigned int aEntry[] = {
143226     0x00000030, 0x0000E807, 0x00016C06, 0x0001EC2F, 0x0002AC07,
143227     0x0002D001, 0x0002D803, 0x0002EC01, 0x0002FC01, 0x00035C01,
143228     0x0003DC01, 0x000B0804, 0x000B480E, 0x000B9407, 0x000BB401,
143229     0x000BBC81, 0x000DD401, 0x000DF801, 0x000E1002, 0x000E1C01,
143230     0x000FD801, 0x00120808, 0x00156806, 0x00162402, 0x00163C01,
143231     0x00164437, 0x0017CC02, 0x00180005, 0x00181816, 0x00187802,
143232     0x00192C15, 0x0019A804, 0x0019C001, 0x001B5001, 0x001B580F,
143233     0x001B9C07, 0x001BF402, 0x001C000E, 0x001C3C01, 0x001C4401,
143234     0x001CC01B, 0x001E980B, 0x001FAC09, 0x001FD804, 0x00205804,
143235     0x00206C09, 0x00209403, 0x0020A405, 0x0020C00F, 0x00216403,
143236     0x00217801, 0x0023901B, 0x00240004, 0x0024E803, 0x0024F812,
143237     0x00254407, 0x00258804, 0x0025C001, 0x00260403, 0x0026F001,
143238     0x0026F807, 0x00271C02, 0x00272C03, 0x00275C01, 0x00278802,
143239     0x0027C802, 0x0027E802, 0x00280403, 0x0028F001, 0x0028F805,
143240     0x00291C02, 0x00292C03, 0x00294401, 0x0029C002, 0x0029D401,
143241     0x002A0403, 0x002AF001, 0x002AF808, 0x002B1C03, 0x002B2C03,
143242     0x002B8802, 0x002BC002, 0x002C0403, 0x002CF001, 0x002CF807,
143243     0x002D1C02, 0x002D2C03, 0x002D5802, 0x002D8802, 0x002DC001,
143244     0x002E0801, 0x002EF805, 0x002F1803, 0x002F2804, 0x002F5C01,
143245     0x002FCC08, 0x00300403, 0x0030F807, 0x00311803, 0x00312804,
143246     0x00315402, 0x00318802, 0x0031FC01, 0x00320802, 0x0032F001,
143247     0x0032F807, 0x00331803, 0x00332804, 0x00335402, 0x00338802,
143248     0x00340802, 0x0034F807, 0x00351803, 0x00352804, 0x00355C01,
143249     0x00358802, 0x0035E401, 0x00360802, 0x00372801, 0x00373C06,
143250     0x00375801, 0x00376008, 0x0037C803, 0x0038C401, 0x0038D007,
143251     0x0038FC01, 0x00391C09, 0x00396802, 0x003AC401, 0x003AD006,
143252     0x003AEC02, 0x003B2006, 0x003C041F, 0x003CD00C, 0x003DC417,
143253     0x003E340B, 0x003E6424, 0x003EF80F, 0x003F380D, 0x0040AC14,
143254     0x00412806, 0x00415804, 0x00417803, 0x00418803, 0x00419C07,
143255     0x0041C404, 0x0042080C, 0x00423C01, 0x00426806, 0x0043EC01,
143256     0x004D740C, 0x004E400A, 0x00500001, 0x0059B402, 0x005A0001,
143257     0x005A6C02, 0x005BAC03, 0x005C4803, 0x005CC805, 0x005D4802,
143258     0x005DC802, 0x005ED023, 0x005F6004, 0x005F7401, 0x0060000F,
143259     0x0062A401, 0x0064800C, 0x0064C00C, 0x00650001, 0x00651002,
143260     0x0066C011, 0x00672002, 0x00677822, 0x00685C05, 0x00687802,
143261     0x0069540A, 0x0069801D, 0x0069FC01, 0x006A8007, 0x006AA006,
143262     0x006C0005, 0x006CD011, 0x006D6823, 0x006E0003, 0x006E840D,
143263     0x006F980E, 0x006FF004, 0x00709014, 0x0070EC05, 0x0071F802,
143264     0x00730008, 0x00734019, 0x0073B401, 0x0073C803, 0x00770027,
143265     0x0077F004, 0x007EF401, 0x007EFC03, 0x007F3403, 0x007F7403,
143266     0x007FB403, 0x007FF402, 0x00800065, 0x0081A806, 0x0081E805,
143267     0x00822805, 0x0082801A, 0x00834021, 0x00840002, 0x00840C04,
143268     0x00842002, 0x00845001, 0x00845803, 0x00847806, 0x00849401,
143269     0x00849C01, 0x0084A401, 0x0084B801, 0x0084E802, 0x00850005,
143270     0x00852804, 0x00853C01, 0x00864264, 0x00900027, 0x0091000B,
143271     0x0092704E, 0x00940200, 0x009C0475, 0x009E53B9, 0x00AD400A,
143272     0x00B39406, 0x00B3BC03, 0x00B3E404, 0x00B3F802, 0x00B5C001,
143273     0x00B5FC01, 0x00B7804F, 0x00B8C00C, 0x00BA001A, 0x00BA6C59,
143274     0x00BC00D6, 0x00BFC00C, 0x00C00005, 0x00C02019, 0x00C0A807,
143275     0x00C0D802, 0x00C0F403, 0x00C26404, 0x00C28001, 0x00C3EC01,
143276     0x00C64002, 0x00C6580A, 0x00C70024, 0x00C8001F, 0x00C8A81E,
143277     0x00C94001, 0x00C98020, 0x00CA2827, 0x00CB003F, 0x00CC0100,
143278     0x01370040, 0x02924037, 0x0293F802, 0x02983403, 0x0299BC10,
143279     0x029A7C01, 0x029BC008, 0x029C0017, 0x029C8002, 0x029E2402,
143280     0x02A00801, 0x02A01801, 0x02A02C01, 0x02A08C09, 0x02A0D804,
143281     0x02A1D004, 0x02A20002, 0x02A2D011, 0x02A33802, 0x02A38012,
143282     0x02A3E003, 0x02A4980A, 0x02A51C0D, 0x02A57C01, 0x02A60004,
143283     0x02A6CC1B, 0x02A77802, 0x02A8A40E, 0x02A90C01, 0x02A93002,
143284     0x02A97004, 0x02A9DC03, 0x02A9EC01, 0x02AAC001, 0x02AAC803,
143285     0x02AADC02, 0x02AAF802, 0x02AB0401, 0x02AB7802, 0x02ABAC07,
143286     0x02ABD402, 0x02AF8C0B, 0x03600001, 0x036DFC02, 0x036FFC02,
143287     0x037FFC01, 0x03EC7801, 0x03ECA401, 0x03EEC810, 0x03F4F802,
143288     0x03F7F002, 0x03F8001A, 0x03F88007, 0x03F8C023, 0x03F95013,
143289     0x03F9A004, 0x03FBFC01, 0x03FC040F, 0x03FC6807, 0x03FCEC06,
143290     0x03FD6C0B, 0x03FF8007, 0x03FFA007, 0x03FFE405, 0x04040003,
143291     0x0404DC09, 0x0405E411, 0x0406400C, 0x0407402E, 0x040E7C01,
143292     0x040F4001, 0x04215C01, 0x04247C01, 0x0424FC01, 0x04280403,
143293     0x04281402, 0x04283004, 0x0428E003, 0x0428FC01, 0x04294009,
143294     0x0429FC01, 0x042CE407, 0x04400003, 0x0440E016, 0x04420003,
143295     0x0442C012, 0x04440003, 0x04449C0E, 0x04450004, 0x04460003,
143296     0x0446CC0E, 0x04471404, 0x045AAC0D, 0x0491C004, 0x05BD442E,
143297     0x05BE3C04, 0x074000F6, 0x07440027, 0x0744A4B5, 0x07480046,
143298     0x074C0057, 0x075B0401, 0x075B6C01, 0x075BEC01, 0x075C5401,
143299     0x075CD401, 0x075D3C01, 0x075DBC01, 0x075E2401, 0x075EA401,
143300     0x075F0C01, 0x07BBC002, 0x07C0002C, 0x07C0C064, 0x07C2800F,
143301     0x07C2C40E, 0x07C3040F, 0x07C3440F, 0x07C4401F, 0x07C4C03C,
143302     0x07C5C02B, 0x07C7981D, 0x07C8402B, 0x07C90009, 0x07C94002,
143303     0x07CC0021, 0x07CCC006, 0x07CCDC46, 0x07CE0014, 0x07CE8025,
143304     0x07CF1805, 0x07CF8011, 0x07D0003F, 0x07D10001, 0x07D108B6,
143305     0x07D3E404, 0x07D4003E, 0x07D50004, 0x07D54018, 0x07D7EC46,
143306     0x07D9140B, 0x07DA0046, 0x07DC0074, 0x38000401, 0x38008060,
143307     0x380400F0,
143308   };
143309   static const unsigned int aAscii[4] = {
143310     0xFFFFFFFF, 0xFC00FFFF, 0xF8000001, 0xF8000001,
143311   };
143312 
143313   if( c<128 ){
143314     return ( (aAscii[c >> 5] & (1 << (c & 0x001F)))==0 );
143315   }else if( c<(1<<22) ){
143316     unsigned int key = (((unsigned int)c)<<10) | 0x000003FF;
143317     int iRes;
143318     int iHi = sizeof(aEntry)/sizeof(aEntry[0]) - 1;
143319     int iLo = 0;
143320     while( iHi>=iLo ){
143321       int iTest = (iHi + iLo) / 2;
143322       if( key >= aEntry[iTest] ){
143323         iRes = iTest;
143324         iLo = iTest+1;
143325       }else{
143326         iHi = iTest-1;
143327       }
143328     }
143329     assert( aEntry[0]<key );
143330     assert( key>=aEntry[iRes] );
143331     return (((unsigned int)c) >= ((aEntry[iRes]>>10) + (aEntry[iRes]&0x3FF)));
143332   }
143333   return 1;
143334 }
143335 
143336 
143337 /*
143338 ** If the argument is a codepoint corresponding to a lowercase letter
143339 ** in the ASCII range with a diacritic added, return the codepoint
143340 ** of the ASCII letter only. For example, if passed 235 - "LATIN
143341 ** SMALL LETTER E WITH DIAERESIS" - return 65 ("LATIN SMALL LETTER
143342 ** E"). The resuls of passing a codepoint that corresponds to an
143343 ** uppercase letter are undefined.
143344 */
143345 static int remove_diacritic(int c){
143346   unsigned short aDia[] = {
143347         0,  1797,  1848,  1859,  1891,  1928,  1940,  1995,
143348      2024,  2040,  2060,  2110,  2168,  2206,  2264,  2286,
143349      2344,  2383,  2472,  2488,  2516,  2596,  2668,  2732,
143350      2782,  2842,  2894,  2954,  2984,  3000,  3028,  3336,
143351      3456,  3696,  3712,  3728,  3744,  3896,  3912,  3928,
143352      3968,  4008,  4040,  4106,  4138,  4170,  4202,  4234,
143353      4266,  4296,  4312,  4344,  4408,  4424,  4472,  4504,
143354      6148,  6198,  6264,  6280,  6360,  6429,  6505,  6529,
143355     61448, 61468, 61534, 61592, 61642, 61688, 61704, 61726,
143356     61784, 61800, 61836, 61880, 61914, 61948, 61998, 62122,
143357     62154, 62200, 62218, 62302, 62364, 62442, 62478, 62536,
143358     62554, 62584, 62604, 62640, 62648, 62656, 62664, 62730,
143359     62924, 63050, 63082, 63274, 63390,
143360   };
143361   char aChar[] = {
143362     '\0', 'a',  'c',  'e',  'i',  'n',  'o',  'u',  'y',  'y',  'a',  'c',
143363     'd',  'e',  'e',  'g',  'h',  'i',  'j',  'k',  'l',  'n',  'o',  'r',
143364     's',  't',  'u',  'u',  'w',  'y',  'z',  'o',  'u',  'a',  'i',  'o',
143365     'u',  'g',  'k',  'o',  'j',  'g',  'n',  'a',  'e',  'i',  'o',  'r',
143366     'u',  's',  't',  'h',  'a',  'e',  'o',  'y',  '\0', '\0', '\0', '\0',
143367     '\0', '\0', '\0', '\0', 'a',  'b',  'd',  'd',  'e',  'f',  'g',  'h',
143368     'h',  'i',  'k',  'l',  'l',  'm',  'n',  'p',  'r',  'r',  's',  't',
143369     'u',  'v',  'w',  'w',  'x',  'y',  'z',  'h',  't',  'w',  'y',  'a',
143370     'e',  'i',  'o',  'u',  'y',
143371   };
143372 
143373   unsigned int key = (((unsigned int)c)<<3) | 0x00000007;
143374   int iRes = 0;
143375   int iHi = sizeof(aDia)/sizeof(aDia[0]) - 1;
143376   int iLo = 0;
143377   while( iHi>=iLo ){
143378     int iTest = (iHi + iLo) / 2;
143379     if( key >= aDia[iTest] ){
143380       iRes = iTest;
143381       iLo = iTest+1;
143382     }else{
143383       iHi = iTest-1;
143384     }
143385   }
143386   assert( key>=aDia[iRes] );
143387   return ((c > (aDia[iRes]>>3) + (aDia[iRes]&0x07)) ? c : (int)aChar[iRes]);
143388 };
143389 
143390 
143391 /*
143392 ** Return true if the argument interpreted as a unicode codepoint
143393 ** is a diacritical modifier character.
143394 */
143395 SQLITE_PRIVATE int sqlite3FtsUnicodeIsdiacritic(int c){
143396   unsigned int mask0 = 0x08029FDF;
143397   unsigned int mask1 = 0x000361F8;
143398   if( c<768 || c>817 ) return 0;
143399   return (c < 768+32) ?
143400       (mask0 & (1 << (c-768))) :
143401       (mask1 & (1 << (c-768-32)));
143402 }
143403 
143404 
143405 /*
143406 ** Interpret the argument as a unicode codepoint. If the codepoint
143407 ** is an upper case character that has a lower case equivalent,
143408 ** return the codepoint corresponding to the lower case version.
143409 ** Otherwise, return a copy of the argument.
143410 **
143411 ** The results are undefined if the value passed to this function
143412 ** is less than zero.
143413 */
143414 SQLITE_PRIVATE int sqlite3FtsUnicodeFold(int c, int bRemoveDiacritic){
143415   /* Each entry in the following array defines a rule for folding a range
143416   ** of codepoints to lower case. The rule applies to a range of nRange
143417   ** codepoints starting at codepoint iCode.
143418   **
143419   ** If the least significant bit in flags is clear, then the rule applies
143420   ** to all nRange codepoints (i.e. all nRange codepoints are upper case and
143421   ** need to be folded). Or, if it is set, then the rule only applies to
143422   ** every second codepoint in the range, starting with codepoint C.
143423   **
143424   ** The 7 most significant bits in flags are an index into the aiOff[]
143425   ** array. If a specific codepoint C does require folding, then its lower
143426   ** case equivalent is ((C + aiOff[flags>>1]) & 0xFFFF).
143427   **
143428   ** The contents of this array are generated by parsing the CaseFolding.txt
143429   ** file distributed as part of the "Unicode Character Database". See
143430   ** http://www.unicode.org for details.
143431   */
143432   static const struct TableEntry {
143433     unsigned short iCode;
143434     unsigned char flags;
143435     unsigned char nRange;
143436   } aEntry[] = {
143437     {65, 14, 26},          {181, 64, 1},          {192, 14, 23},
143438     {216, 14, 7},          {256, 1, 48},          {306, 1, 6},
143439     {313, 1, 16},          {330, 1, 46},          {376, 116, 1},
143440     {377, 1, 6},           {383, 104, 1},         {385, 50, 1},
143441     {386, 1, 4},           {390, 44, 1},          {391, 0, 1},
143442     {393, 42, 2},          {395, 0, 1},           {398, 32, 1},
143443     {399, 38, 1},          {400, 40, 1},          {401, 0, 1},
143444     {403, 42, 1},          {404, 46, 1},          {406, 52, 1},
143445     {407, 48, 1},          {408, 0, 1},           {412, 52, 1},
143446     {413, 54, 1},          {415, 56, 1},          {416, 1, 6},
143447     {422, 60, 1},          {423, 0, 1},           {425, 60, 1},
143448     {428, 0, 1},           {430, 60, 1},          {431, 0, 1},
143449     {433, 58, 2},          {435, 1, 4},           {439, 62, 1},
143450     {440, 0, 1},           {444, 0, 1},           {452, 2, 1},
143451     {453, 0, 1},           {455, 2, 1},           {456, 0, 1},
143452     {458, 2, 1},           {459, 1, 18},          {478, 1, 18},
143453     {497, 2, 1},           {498, 1, 4},           {502, 122, 1},
143454     {503, 134, 1},         {504, 1, 40},          {544, 110, 1},
143455     {546, 1, 18},          {570, 70, 1},          {571, 0, 1},
143456     {573, 108, 1},         {574, 68, 1},          {577, 0, 1},
143457     {579, 106, 1},         {580, 28, 1},          {581, 30, 1},
143458     {582, 1, 10},          {837, 36, 1},          {880, 1, 4},
143459     {886, 0, 1},           {902, 18, 1},          {904, 16, 3},
143460     {908, 26, 1},          {910, 24, 2},          {913, 14, 17},
143461     {931, 14, 9},          {962, 0, 1},           {975, 4, 1},
143462     {976, 140, 1},         {977, 142, 1},         {981, 146, 1},
143463     {982, 144, 1},         {984, 1, 24},          {1008, 136, 1},
143464     {1009, 138, 1},        {1012, 130, 1},        {1013, 128, 1},
143465     {1015, 0, 1},          {1017, 152, 1},        {1018, 0, 1},
143466     {1021, 110, 3},        {1024, 34, 16},        {1040, 14, 32},
143467     {1120, 1, 34},         {1162, 1, 54},         {1216, 6, 1},
143468     {1217, 1, 14},         {1232, 1, 88},         {1329, 22, 38},
143469     {4256, 66, 38},        {4295, 66, 1},         {4301, 66, 1},
143470     {7680, 1, 150},        {7835, 132, 1},        {7838, 96, 1},
143471     {7840, 1, 96},         {7944, 150, 8},        {7960, 150, 6},
143472     {7976, 150, 8},        {7992, 150, 8},        {8008, 150, 6},
143473     {8025, 151, 8},        {8040, 150, 8},        {8072, 150, 8},
143474     {8088, 150, 8},        {8104, 150, 8},        {8120, 150, 2},
143475     {8122, 126, 2},        {8124, 148, 1},        {8126, 100, 1},
143476     {8136, 124, 4},        {8140, 148, 1},        {8152, 150, 2},
143477     {8154, 120, 2},        {8168, 150, 2},        {8170, 118, 2},
143478     {8172, 152, 1},        {8184, 112, 2},        {8186, 114, 2},
143479     {8188, 148, 1},        {8486, 98, 1},         {8490, 92, 1},
143480     {8491, 94, 1},         {8498, 12, 1},         {8544, 8, 16},
143481     {8579, 0, 1},          {9398, 10, 26},        {11264, 22, 47},
143482     {11360, 0, 1},         {11362, 88, 1},        {11363, 102, 1},
143483     {11364, 90, 1},        {11367, 1, 6},         {11373, 84, 1},
143484     {11374, 86, 1},        {11375, 80, 1},        {11376, 82, 1},
143485     {11378, 0, 1},         {11381, 0, 1},         {11390, 78, 2},
143486     {11392, 1, 100},       {11499, 1, 4},         {11506, 0, 1},
143487     {42560, 1, 46},        {42624, 1, 24},        {42786, 1, 14},
143488     {42802, 1, 62},        {42873, 1, 4},         {42877, 76, 1},
143489     {42878, 1, 10},        {42891, 0, 1},         {42893, 74, 1},
143490     {42896, 1, 4},         {42912, 1, 10},        {42922, 72, 1},
143491     {65313, 14, 26},
143492   };
143493   static const unsigned short aiOff[] = {
143494    1,     2,     8,     15,    16,    26,    28,    32,
143495    37,    38,    40,    48,    63,    64,    69,    71,
143496    79,    80,    116,   202,   203,   205,   206,   207,
143497    209,   210,   211,   213,   214,   217,   218,   219,
143498    775,   7264,  10792, 10795, 23228, 23256, 30204, 54721,
143499    54753, 54754, 54756, 54787, 54793, 54809, 57153, 57274,
143500    57921, 58019, 58363, 61722, 65268, 65341, 65373, 65406,
143501    65408, 65410, 65415, 65424, 65436, 65439, 65450, 65462,
143502    65472, 65476, 65478, 65480, 65482, 65488, 65506, 65511,
143503    65514, 65521, 65527, 65528, 65529,
143504   };
143505 
143506   int ret = c;
143507 
143508   assert( c>=0 );
143509   assert( sizeof(unsigned short)==2 && sizeof(unsigned char)==1 );
143510 
143511   if( c<128 ){
143512     if( c>='A' && c<='Z' ) ret = c + ('a' - 'A');
143513   }else if( c<65536 ){
143514     int iHi = sizeof(aEntry)/sizeof(aEntry[0]) - 1;
143515     int iLo = 0;
143516     int iRes = -1;
143517 
143518     while( iHi>=iLo ){
143519       int iTest = (iHi + iLo) / 2;
143520       int cmp = (c - aEntry[iTest].iCode);
143521       if( cmp>=0 ){
143522         iRes = iTest;
143523         iLo = iTest+1;
143524       }else{
143525         iHi = iTest-1;
143526       }
143527     }
143528     assert( iRes<0 || c>=aEntry[iRes].iCode );
143529 
143530     if( iRes>=0 ){
143531       const struct TableEntry *p = &aEntry[iRes];
143532       if( c<(p->iCode + p->nRange) && 0==(0x01 & p->flags & (p->iCode ^ c)) ){
143533         ret = (c + (aiOff[p->flags>>1])) & 0x0000FFFF;
143534         assert( ret>0 );
143535       }
143536     }
143537 
143538     if( bRemoveDiacritic ) ret = remove_diacritic(ret);
143539   }
143540 
143541   else if( c>=66560 && c<66600 ){
143542     ret = c + 40;
143543   }
143544 
143545   return ret;
143546 }
143547 #endif /* defined(SQLITE_ENABLE_FTS3) || defined(SQLITE_ENABLE_FTS4) */
143548 #endif /* !defined(SQLITE_ENABLE_FTS4_UNICODE61) */
143549 
143550 /************** End of fts3_unicode2.c ***************************************/
143551 /************** Begin file rtree.c *******************************************/
143552 /*
143553 ** 2001 September 15
143554 **
143555 ** The author disclaims copyright to this source code.  In place of
143556 ** a legal notice, here is a blessing:
143557 **
143558 **    May you do good and not evil.
143559 **    May you find forgiveness for yourself and forgive others.
143560 **    May you share freely, never taking more than you give.
143561 **
143562 *************************************************************************
143563 ** This file contains code for implementations of the r-tree and r*-tree
143564 ** algorithms packaged as an SQLite virtual table module.
143565 */
143566 
143567 /*
143568 ** Database Format of R-Tree Tables
143569 ** --------------------------------
143570 **
143571 ** The data structure for a single virtual r-tree table is stored in three
143572 ** native SQLite tables declared as follows. In each case, the '%' character
143573 ** in the table name is replaced with the user-supplied name of the r-tree
143574 ** table.
143575 **
143576 **   CREATE TABLE %_node(nodeno INTEGER PRIMARY KEY, data BLOB)
143577 **   CREATE TABLE %_parent(nodeno INTEGER PRIMARY KEY, parentnode INTEGER)
143578 **   CREATE TABLE %_rowid(rowid INTEGER PRIMARY KEY, nodeno INTEGER)
143579 **
143580 ** The data for each node of the r-tree structure is stored in the %_node
143581 ** table. For each node that is not the root node of the r-tree, there is
143582 ** an entry in the %_parent table associating the node with its parent.
143583 ** And for each row of data in the table, there is an entry in the %_rowid
143584 ** table that maps from the entries rowid to the id of the node that it
143585 ** is stored on.
143586 **
143587 ** The root node of an r-tree always exists, even if the r-tree table is
143588 ** empty. The nodeno of the root node is always 1. All other nodes in the
143589 ** table must be the same size as the root node. The content of each node
143590 ** is formatted as follows:
143591 **
143592 **   1. If the node is the root node (node 1), then the first 2 bytes
143593 **      of the node contain the tree depth as a big-endian integer.
143594 **      For non-root nodes, the first 2 bytes are left unused.
143595 **
143596 **   2. The next 2 bytes contain the number of entries currently
143597 **      stored in the node.
143598 **
143599 **   3. The remainder of the node contains the node entries. Each entry
143600 **      consists of a single 8-byte integer followed by an even number
143601 **      of 4-byte coordinates. For leaf nodes the integer is the rowid
143602 **      of a record. For internal nodes it is the node number of a
143603 **      child page.
143604 */
143605 
143606 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_RTREE)
143607 
143608 #ifndef SQLITE_CORE
143609   SQLITE_EXTENSION_INIT1
143610 #else
143611 #endif
143612 
143613 /* #include <string.h> */
143614 /* #include <assert.h> */
143615 /* #include <stdio.h> */
143616 
143617 #ifndef SQLITE_AMALGAMATION
143618 #include "sqlite3rtree.h"
143619 typedef sqlite3_int64 i64;
143620 typedef unsigned char u8;
143621 typedef unsigned short u16;
143622 typedef unsigned int u32;
143623 #endif
143624 
143625 /*  The following macro is used to suppress compiler warnings.
143626 */
143627 #ifndef UNUSED_PARAMETER
143628 # define UNUSED_PARAMETER(x) (void)(x)
143629 #endif
143630 
143631 typedef struct Rtree Rtree;
143632 typedef struct RtreeCursor RtreeCursor;
143633 typedef struct RtreeNode RtreeNode;
143634 typedef struct RtreeCell RtreeCell;
143635 typedef struct RtreeConstraint RtreeConstraint;
143636 typedef struct RtreeMatchArg RtreeMatchArg;
143637 typedef struct RtreeGeomCallback RtreeGeomCallback;
143638 typedef union RtreeCoord RtreeCoord;
143639 typedef struct RtreeSearchPoint RtreeSearchPoint;
143640 
143641 /* The rtree may have between 1 and RTREE_MAX_DIMENSIONS dimensions. */
143642 #define RTREE_MAX_DIMENSIONS 5
143643 
143644 /* Size of hash table Rtree.aHash. This hash table is not expected to
143645 ** ever contain very many entries, so a fixed number of buckets is
143646 ** used.
143647 */
143648 #define HASHSIZE 97
143649 
143650 /* The xBestIndex method of this virtual table requires an estimate of
143651 ** the number of rows in the virtual table to calculate the costs of
143652 ** various strategies. If possible, this estimate is loaded from the
143653 ** sqlite_stat1 table (with RTREE_MIN_ROWEST as a hard-coded minimum).
143654 ** Otherwise, if no sqlite_stat1 entry is available, use
143655 ** RTREE_DEFAULT_ROWEST.
143656 */
143657 #define RTREE_DEFAULT_ROWEST 1048576
143658 #define RTREE_MIN_ROWEST         100
143659 
143660 /*
143661 ** An rtree virtual-table object.
143662 */
143663 struct Rtree {
143664   sqlite3_vtab base;          /* Base class.  Must be first */
143665   sqlite3 *db;                /* Host database connection */
143666   int iNodeSize;              /* Size in bytes of each node in the node table */
143667   u8 nDim;                    /* Number of dimensions */
143668   u8 eCoordType;              /* RTREE_COORD_REAL32 or RTREE_COORD_INT32 */
143669   u8 nBytesPerCell;           /* Bytes consumed per cell */
143670   int iDepth;                 /* Current depth of the r-tree structure */
143671   char *zDb;                  /* Name of database containing r-tree table */
143672   char *zName;                /* Name of r-tree table */
143673   int nBusy;                  /* Current number of users of this structure */
143674   i64 nRowEst;                /* Estimated number of rows in this table */
143675 
143676   /* List of nodes removed during a CondenseTree operation. List is
143677   ** linked together via the pointer normally used for hash chains -
143678   ** RtreeNode.pNext. RtreeNode.iNode stores the depth of the sub-tree
143679   ** headed by the node (leaf nodes have RtreeNode.iNode==0).
143680   */
143681   RtreeNode *pDeleted;
143682   int iReinsertHeight;        /* Height of sub-trees Reinsert() has run on */
143683 
143684   /* Statements to read/write/delete a record from xxx_node */
143685   sqlite3_stmt *pReadNode;
143686   sqlite3_stmt *pWriteNode;
143687   sqlite3_stmt *pDeleteNode;
143688 
143689   /* Statements to read/write/delete a record from xxx_rowid */
143690   sqlite3_stmt *pReadRowid;
143691   sqlite3_stmt *pWriteRowid;
143692   sqlite3_stmt *pDeleteRowid;
143693 
143694   /* Statements to read/write/delete a record from xxx_parent */
143695   sqlite3_stmt *pReadParent;
143696   sqlite3_stmt *pWriteParent;
143697   sqlite3_stmt *pDeleteParent;
143698 
143699   RtreeNode *aHash[HASHSIZE]; /* Hash table of in-memory nodes. */
143700 };
143701 
143702 /* Possible values for Rtree.eCoordType: */
143703 #define RTREE_COORD_REAL32 0
143704 #define RTREE_COORD_INT32  1
143705 
143706 /*
143707 ** If SQLITE_RTREE_INT_ONLY is defined, then this virtual table will
143708 ** only deal with integer coordinates.  No floating point operations
143709 ** will be done.
143710 */
143711 #ifdef SQLITE_RTREE_INT_ONLY
143712   typedef sqlite3_int64 RtreeDValue;       /* High accuracy coordinate */
143713   typedef int RtreeValue;                  /* Low accuracy coordinate */
143714 # define RTREE_ZERO 0
143715 #else
143716   typedef double RtreeDValue;              /* High accuracy coordinate */
143717   typedef float RtreeValue;                /* Low accuracy coordinate */
143718 # define RTREE_ZERO 0.0
143719 #endif
143720 
143721 /*
143722 ** When doing a search of an r-tree, instances of the following structure
143723 ** record intermediate results from the tree walk.
143724 **
143725 ** The id is always a node-id.  For iLevel>=1 the id is the node-id of
143726 ** the node that the RtreeSearchPoint represents.  When iLevel==0, however,
143727 ** the id is of the parent node and the cell that RtreeSearchPoint
143728 ** represents is the iCell-th entry in the parent node.
143729 */
143730 struct RtreeSearchPoint {
143731   RtreeDValue rScore;    /* The score for this node.  Smallest goes first. */
143732   sqlite3_int64 id;      /* Node ID */
143733   u8 iLevel;             /* 0=entries.  1=leaf node.  2+ for higher */
143734   u8 eWithin;            /* PARTLY_WITHIN or FULLY_WITHIN */
143735   u8 iCell;              /* Cell index within the node */
143736 };
143737 
143738 /*
143739 ** The minimum number of cells allowed for a node is a third of the
143740 ** maximum. In Gutman's notation:
143741 **
143742 **     m = M/3
143743 **
143744 ** If an R*-tree "Reinsert" operation is required, the same number of
143745 ** cells are removed from the overfull node and reinserted into the tree.
143746 */
143747 #define RTREE_MINCELLS(p) ((((p)->iNodeSize-4)/(p)->nBytesPerCell)/3)
143748 #define RTREE_REINSERT(p) RTREE_MINCELLS(p)
143749 #define RTREE_MAXCELLS 51
143750 
143751 /*
143752 ** The smallest possible node-size is (512-64)==448 bytes. And the largest
143753 ** supported cell size is 48 bytes (8 byte rowid + ten 4 byte coordinates).
143754 ** Therefore all non-root nodes must contain at least 3 entries. Since
143755 ** 2^40 is greater than 2^64, an r-tree structure always has a depth of
143756 ** 40 or less.
143757 */
143758 #define RTREE_MAX_DEPTH 40
143759 
143760 
143761 /*
143762 ** Number of entries in the cursor RtreeNode cache.  The first entry is
143763 ** used to cache the RtreeNode for RtreeCursor.sPoint.  The remaining
143764 ** entries cache the RtreeNode for the first elements of the priority queue.
143765 */
143766 #define RTREE_CACHE_SZ  5
143767 
143768 /*
143769 ** An rtree cursor object.
143770 */
143771 struct RtreeCursor {
143772   sqlite3_vtab_cursor base;         /* Base class.  Must be first */
143773   u8 atEOF;                         /* True if at end of search */
143774   u8 bPoint;                        /* True if sPoint is valid */
143775   int iStrategy;                    /* Copy of idxNum search parameter */
143776   int nConstraint;                  /* Number of entries in aConstraint */
143777   RtreeConstraint *aConstraint;     /* Search constraints. */
143778   int nPointAlloc;                  /* Number of slots allocated for aPoint[] */
143779   int nPoint;                       /* Number of slots used in aPoint[] */
143780   int mxLevel;                      /* iLevel value for root of the tree */
143781   RtreeSearchPoint *aPoint;         /* Priority queue for search points */
143782   RtreeSearchPoint sPoint;          /* Cached next search point */
143783   RtreeNode *aNode[RTREE_CACHE_SZ]; /* Rtree node cache */
143784   u32 anQueue[RTREE_MAX_DEPTH+1];   /* Number of queued entries by iLevel */
143785 };
143786 
143787 /* Return the Rtree of a RtreeCursor */
143788 #define RTREE_OF_CURSOR(X)   ((Rtree*)((X)->base.pVtab))
143789 
143790 /*
143791 ** A coordinate can be either a floating point number or a integer.  All
143792 ** coordinates within a single R-Tree are always of the same time.
143793 */
143794 union RtreeCoord {
143795   RtreeValue f;      /* Floating point value */
143796   int i;             /* Integer value */
143797   u32 u;             /* Unsigned for byte-order conversions */
143798 };
143799 
143800 /*
143801 ** The argument is an RtreeCoord. Return the value stored within the RtreeCoord
143802 ** formatted as a RtreeDValue (double or int64). This macro assumes that local
143803 ** variable pRtree points to the Rtree structure associated with the
143804 ** RtreeCoord.
143805 */
143806 #ifdef SQLITE_RTREE_INT_ONLY
143807 # define DCOORD(coord) ((RtreeDValue)coord.i)
143808 #else
143809 # define DCOORD(coord) (                           \
143810     (pRtree->eCoordType==RTREE_COORD_REAL32) ?      \
143811       ((double)coord.f) :                           \
143812       ((double)coord.i)                             \
143813   )
143814 #endif
143815 
143816 /*
143817 ** A search constraint.
143818 */
143819 struct RtreeConstraint {
143820   int iCoord;                     /* Index of constrained coordinate */
143821   int op;                         /* Constraining operation */
143822   union {
143823     RtreeDValue rValue;             /* Constraint value. */
143824     int (*xGeom)(sqlite3_rtree_geometry*,int,RtreeDValue*,int*);
143825     int (*xQueryFunc)(sqlite3_rtree_query_info*);
143826   } u;
143827   sqlite3_rtree_query_info *pInfo;  /* xGeom and xQueryFunc argument */
143828 };
143829 
143830 /* Possible values for RtreeConstraint.op */
143831 #define RTREE_EQ    0x41  /* A */
143832 #define RTREE_LE    0x42  /* B */
143833 #define RTREE_LT    0x43  /* C */
143834 #define RTREE_GE    0x44  /* D */
143835 #define RTREE_GT    0x45  /* E */
143836 #define RTREE_MATCH 0x46  /* F: Old-style sqlite3_rtree_geometry_callback() */
143837 #define RTREE_QUERY 0x47  /* G: New-style sqlite3_rtree_query_callback() */
143838 
143839 
143840 /*
143841 ** An rtree structure node.
143842 */
143843 struct RtreeNode {
143844   RtreeNode *pParent;         /* Parent node */
143845   i64 iNode;                  /* The node number */
143846   int nRef;                   /* Number of references to this node */
143847   int isDirty;                /* True if the node needs to be written to disk */
143848   u8 *zData;                  /* Content of the node, as should be on disk */
143849   RtreeNode *pNext;           /* Next node in this hash collision chain */
143850 };
143851 
143852 /* Return the number of cells in a node  */
143853 #define NCELL(pNode) readInt16(&(pNode)->zData[2])
143854 
143855 /*
143856 ** A single cell from a node, deserialized
143857 */
143858 struct RtreeCell {
143859   i64 iRowid;                                 /* Node or entry ID */
143860   RtreeCoord aCoord[RTREE_MAX_DIMENSIONS*2];  /* Bounding box coordinates */
143861 };
143862 
143863 
143864 /*
143865 ** This object becomes the sqlite3_user_data() for the SQL functions
143866 ** that are created by sqlite3_rtree_geometry_callback() and
143867 ** sqlite3_rtree_query_callback() and which appear on the right of MATCH
143868 ** operators in order to constrain a search.
143869 **
143870 ** xGeom and xQueryFunc are the callback functions.  Exactly one of
143871 ** xGeom and xQueryFunc fields is non-NULL, depending on whether the
143872 ** SQL function was created using sqlite3_rtree_geometry_callback() or
143873 ** sqlite3_rtree_query_callback().
143874 **
143875 ** This object is deleted automatically by the destructor mechanism in
143876 ** sqlite3_create_function_v2().
143877 */
143878 struct RtreeGeomCallback {
143879   int (*xGeom)(sqlite3_rtree_geometry*, int, RtreeDValue*, int*);
143880   int (*xQueryFunc)(sqlite3_rtree_query_info*);
143881   void (*xDestructor)(void*);
143882   void *pContext;
143883 };
143884 
143885 
143886 /*
143887 ** Value for the first field of every RtreeMatchArg object. The MATCH
143888 ** operator tests that the first field of a blob operand matches this
143889 ** value to avoid operating on invalid blobs (which could cause a segfault).
143890 */
143891 #define RTREE_GEOMETRY_MAGIC 0x891245AB
143892 
143893 /*
143894 ** An instance of this structure (in the form of a BLOB) is returned by
143895 ** the SQL functions that sqlite3_rtree_geometry_callback() and
143896 ** sqlite3_rtree_query_callback() create, and is read as the right-hand
143897 ** operand to the MATCH operator of an R-Tree.
143898 */
143899 struct RtreeMatchArg {
143900   u32 magic;                  /* Always RTREE_GEOMETRY_MAGIC */
143901   RtreeGeomCallback cb;       /* Info about the callback functions */
143902   int nParam;                 /* Number of parameters to the SQL function */
143903   RtreeDValue aParam[1];      /* Values for parameters to the SQL function */
143904 };
143905 
143906 #ifndef MAX
143907 # define MAX(x,y) ((x) < (y) ? (y) : (x))
143908 #endif
143909 #ifndef MIN
143910 # define MIN(x,y) ((x) > (y) ? (y) : (x))
143911 #endif
143912 
143913 /*
143914 ** Functions to deserialize a 16 bit integer, 32 bit real number and
143915 ** 64 bit integer. The deserialized value is returned.
143916 */
143917 static int readInt16(u8 *p){
143918   return (p[0]<<8) + p[1];
143919 }
143920 static void readCoord(u8 *p, RtreeCoord *pCoord){
143921   u32 i = (
143922     (((u32)p[0]) << 24) +
143923     (((u32)p[1]) << 16) +
143924     (((u32)p[2]) <<  8) +
143925     (((u32)p[3]) <<  0)
143926   );
143927   *(u32 *)pCoord = i;
143928 }
143929 static i64 readInt64(u8 *p){
143930   return (
143931     (((i64)p[0]) << 56) +
143932     (((i64)p[1]) << 48) +
143933     (((i64)p[2]) << 40) +
143934     (((i64)p[3]) << 32) +
143935     (((i64)p[4]) << 24) +
143936     (((i64)p[5]) << 16) +
143937     (((i64)p[6]) <<  8) +
143938     (((i64)p[7]) <<  0)
143939   );
143940 }
143941 
143942 /*
143943 ** Functions to serialize a 16 bit integer, 32 bit real number and
143944 ** 64 bit integer. The value returned is the number of bytes written
143945 ** to the argument buffer (always 2, 4 and 8 respectively).
143946 */
143947 static int writeInt16(u8 *p, int i){
143948   p[0] = (i>> 8)&0xFF;
143949   p[1] = (i>> 0)&0xFF;
143950   return 2;
143951 }
143952 static int writeCoord(u8 *p, RtreeCoord *pCoord){
143953   u32 i;
143954   assert( sizeof(RtreeCoord)==4 );
143955   assert( sizeof(u32)==4 );
143956   i = *(u32 *)pCoord;
143957   p[0] = (i>>24)&0xFF;
143958   p[1] = (i>>16)&0xFF;
143959   p[2] = (i>> 8)&0xFF;
143960   p[3] = (i>> 0)&0xFF;
143961   return 4;
143962 }
143963 static int writeInt64(u8 *p, i64 i){
143964   p[0] = (i>>56)&0xFF;
143965   p[1] = (i>>48)&0xFF;
143966   p[2] = (i>>40)&0xFF;
143967   p[3] = (i>>32)&0xFF;
143968   p[4] = (i>>24)&0xFF;
143969   p[5] = (i>>16)&0xFF;
143970   p[6] = (i>> 8)&0xFF;
143971   p[7] = (i>> 0)&0xFF;
143972   return 8;
143973 }
143974 
143975 /*
143976 ** Increment the reference count of node p.
143977 */
143978 static void nodeReference(RtreeNode *p){
143979   if( p ){
143980     p->nRef++;
143981   }
143982 }
143983 
143984 /*
143985 ** Clear the content of node p (set all bytes to 0x00).
143986 */
143987 static void nodeZero(Rtree *pRtree, RtreeNode *p){
143988   memset(&p->zData[2], 0, pRtree->iNodeSize-2);
143989   p->isDirty = 1;
143990 }
143991 
143992 /*
143993 ** Given a node number iNode, return the corresponding key to use
143994 ** in the Rtree.aHash table.
143995 */
143996 static int nodeHash(i64 iNode){
143997   return iNode % HASHSIZE;
143998 }
143999 
144000 /*
144001 ** Search the node hash table for node iNode. If found, return a pointer
144002 ** to it. Otherwise, return 0.
144003 */
144004 static RtreeNode *nodeHashLookup(Rtree *pRtree, i64 iNode){
144005   RtreeNode *p;
144006   for(p=pRtree->aHash[nodeHash(iNode)]; p && p->iNode!=iNode; p=p->pNext);
144007   return p;
144008 }
144009 
144010 /*
144011 ** Add node pNode to the node hash table.
144012 */
144013 static void nodeHashInsert(Rtree *pRtree, RtreeNode *pNode){
144014   int iHash;
144015   assert( pNode->pNext==0 );
144016   iHash = nodeHash(pNode->iNode);
144017   pNode->pNext = pRtree->aHash[iHash];
144018   pRtree->aHash[iHash] = pNode;
144019 }
144020 
144021 /*
144022 ** Remove node pNode from the node hash table.
144023 */
144024 static void nodeHashDelete(Rtree *pRtree, RtreeNode *pNode){
144025   RtreeNode **pp;
144026   if( pNode->iNode!=0 ){
144027     pp = &pRtree->aHash[nodeHash(pNode->iNode)];
144028     for( ; (*pp)!=pNode; pp = &(*pp)->pNext){ assert(*pp); }
144029     *pp = pNode->pNext;
144030     pNode->pNext = 0;
144031   }
144032 }
144033 
144034 /*
144035 ** Allocate and return new r-tree node. Initially, (RtreeNode.iNode==0),
144036 ** indicating that node has not yet been assigned a node number. It is
144037 ** assigned a node number when nodeWrite() is called to write the
144038 ** node contents out to the database.
144039 */
144040 static RtreeNode *nodeNew(Rtree *pRtree, RtreeNode *pParent){
144041   RtreeNode *pNode;
144042   pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode) + pRtree->iNodeSize);
144043   if( pNode ){
144044     memset(pNode, 0, sizeof(RtreeNode) + pRtree->iNodeSize);
144045     pNode->zData = (u8 *)&pNode[1];
144046     pNode->nRef = 1;
144047     pNode->pParent = pParent;
144048     pNode->isDirty = 1;
144049     nodeReference(pParent);
144050   }
144051   return pNode;
144052 }
144053 
144054 /*
144055 ** Obtain a reference to an r-tree node.
144056 */
144057 static int nodeAcquire(
144058   Rtree *pRtree,             /* R-tree structure */
144059   i64 iNode,                 /* Node number to load */
144060   RtreeNode *pParent,        /* Either the parent node or NULL */
144061   RtreeNode **ppNode         /* OUT: Acquired node */
144062 ){
144063   int rc;
144064   int rc2 = SQLITE_OK;
144065   RtreeNode *pNode;
144066 
144067   /* Check if the requested node is already in the hash table. If so,
144068   ** increase its reference count and return it.
144069   */
144070   if( (pNode = nodeHashLookup(pRtree, iNode)) ){
144071     assert( !pParent || !pNode->pParent || pNode->pParent==pParent );
144072     if( pParent && !pNode->pParent ){
144073       nodeReference(pParent);
144074       pNode->pParent = pParent;
144075     }
144076     pNode->nRef++;
144077     *ppNode = pNode;
144078     return SQLITE_OK;
144079   }
144080 
144081   sqlite3_bind_int64(pRtree->pReadNode, 1, iNode);
144082   rc = sqlite3_step(pRtree->pReadNode);
144083   if( rc==SQLITE_ROW ){
144084     const u8 *zBlob = sqlite3_column_blob(pRtree->pReadNode, 0);
144085     if( pRtree->iNodeSize==sqlite3_column_bytes(pRtree->pReadNode, 0) ){
144086       pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode)+pRtree->iNodeSize);
144087       if( !pNode ){
144088         rc2 = SQLITE_NOMEM;
144089       }else{
144090         pNode->pParent = pParent;
144091         pNode->zData = (u8 *)&pNode[1];
144092         pNode->nRef = 1;
144093         pNode->iNode = iNode;
144094         pNode->isDirty = 0;
144095         pNode->pNext = 0;
144096         memcpy(pNode->zData, zBlob, pRtree->iNodeSize);
144097         nodeReference(pParent);
144098       }
144099     }
144100   }
144101   rc = sqlite3_reset(pRtree->pReadNode);
144102   if( rc==SQLITE_OK ) rc = rc2;
144103 
144104   /* If the root node was just loaded, set pRtree->iDepth to the height
144105   ** of the r-tree structure. A height of zero means all data is stored on
144106   ** the root node. A height of one means the children of the root node
144107   ** are the leaves, and so on. If the depth as specified on the root node
144108   ** is greater than RTREE_MAX_DEPTH, the r-tree structure must be corrupt.
144109   */
144110   if( pNode && iNode==1 ){
144111     pRtree->iDepth = readInt16(pNode->zData);
144112     if( pRtree->iDepth>RTREE_MAX_DEPTH ){
144113       rc = SQLITE_CORRUPT_VTAB;
144114     }
144115   }
144116 
144117   /* If no error has occurred so far, check if the "number of entries"
144118   ** field on the node is too large. If so, set the return code to
144119   ** SQLITE_CORRUPT_VTAB.
144120   */
144121   if( pNode && rc==SQLITE_OK ){
144122     if( NCELL(pNode)>((pRtree->iNodeSize-4)/pRtree->nBytesPerCell) ){
144123       rc = SQLITE_CORRUPT_VTAB;
144124     }
144125   }
144126 
144127   if( rc==SQLITE_OK ){
144128     if( pNode!=0 ){
144129       nodeHashInsert(pRtree, pNode);
144130     }else{
144131       rc = SQLITE_CORRUPT_VTAB;
144132     }
144133     *ppNode = pNode;
144134   }else{
144135     sqlite3_free(pNode);
144136     *ppNode = 0;
144137   }
144138 
144139   return rc;
144140 }
144141 
144142 /*
144143 ** Overwrite cell iCell of node pNode with the contents of pCell.
144144 */
144145 static void nodeOverwriteCell(
144146   Rtree *pRtree,             /* The overall R-Tree */
144147   RtreeNode *pNode,          /* The node into which the cell is to be written */
144148   RtreeCell *pCell,          /* The cell to write */
144149   int iCell                  /* Index into pNode into which pCell is written */
144150 ){
144151   int ii;
144152   u8 *p = &pNode->zData[4 + pRtree->nBytesPerCell*iCell];
144153   p += writeInt64(p, pCell->iRowid);
144154   for(ii=0; ii<(pRtree->nDim*2); ii++){
144155     p += writeCoord(p, &pCell->aCoord[ii]);
144156   }
144157   pNode->isDirty = 1;
144158 }
144159 
144160 /*
144161 ** Remove the cell with index iCell from node pNode.
144162 */
144163 static void nodeDeleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell){
144164   u8 *pDst = &pNode->zData[4 + pRtree->nBytesPerCell*iCell];
144165   u8 *pSrc = &pDst[pRtree->nBytesPerCell];
144166   int nByte = (NCELL(pNode) - iCell - 1) * pRtree->nBytesPerCell;
144167   memmove(pDst, pSrc, nByte);
144168   writeInt16(&pNode->zData[2], NCELL(pNode)-1);
144169   pNode->isDirty = 1;
144170 }
144171 
144172 /*
144173 ** Insert the contents of cell pCell into node pNode. If the insert
144174 ** is successful, return SQLITE_OK.
144175 **
144176 ** If there is not enough free space in pNode, return SQLITE_FULL.
144177 */
144178 static int nodeInsertCell(
144179   Rtree *pRtree,                /* The overall R-Tree */
144180   RtreeNode *pNode,             /* Write new cell into this node */
144181   RtreeCell *pCell              /* The cell to be inserted */
144182 ){
144183   int nCell;                    /* Current number of cells in pNode */
144184   int nMaxCell;                 /* Maximum number of cells for pNode */
144185 
144186   nMaxCell = (pRtree->iNodeSize-4)/pRtree->nBytesPerCell;
144187   nCell = NCELL(pNode);
144188 
144189   assert( nCell<=nMaxCell );
144190   if( nCell<nMaxCell ){
144191     nodeOverwriteCell(pRtree, pNode, pCell, nCell);
144192     writeInt16(&pNode->zData[2], nCell+1);
144193     pNode->isDirty = 1;
144194   }
144195 
144196   return (nCell==nMaxCell);
144197 }
144198 
144199 /*
144200 ** If the node is dirty, write it out to the database.
144201 */
144202 static int nodeWrite(Rtree *pRtree, RtreeNode *pNode){
144203   int rc = SQLITE_OK;
144204   if( pNode->isDirty ){
144205     sqlite3_stmt *p = pRtree->pWriteNode;
144206     if( pNode->iNode ){
144207       sqlite3_bind_int64(p, 1, pNode->iNode);
144208     }else{
144209       sqlite3_bind_null(p, 1);
144210     }
144211     sqlite3_bind_blob(p, 2, pNode->zData, pRtree->iNodeSize, SQLITE_STATIC);
144212     sqlite3_step(p);
144213     pNode->isDirty = 0;
144214     rc = sqlite3_reset(p);
144215     if( pNode->iNode==0 && rc==SQLITE_OK ){
144216       pNode->iNode = sqlite3_last_insert_rowid(pRtree->db);
144217       nodeHashInsert(pRtree, pNode);
144218     }
144219   }
144220   return rc;
144221 }
144222 
144223 /*
144224 ** Release a reference to a node. If the node is dirty and the reference
144225 ** count drops to zero, the node data is written to the database.
144226 */
144227 static int nodeRelease(Rtree *pRtree, RtreeNode *pNode){
144228   int rc = SQLITE_OK;
144229   if( pNode ){
144230     assert( pNode->nRef>0 );
144231     pNode->nRef--;
144232     if( pNode->nRef==0 ){
144233       if( pNode->iNode==1 ){
144234         pRtree->iDepth = -1;
144235       }
144236       if( pNode->pParent ){
144237         rc = nodeRelease(pRtree, pNode->pParent);
144238       }
144239       if( rc==SQLITE_OK ){
144240         rc = nodeWrite(pRtree, pNode);
144241       }
144242       nodeHashDelete(pRtree, pNode);
144243       sqlite3_free(pNode);
144244     }
144245   }
144246   return rc;
144247 }
144248 
144249 /*
144250 ** Return the 64-bit integer value associated with cell iCell of
144251 ** node pNode. If pNode is a leaf node, this is a rowid. If it is
144252 ** an internal node, then the 64-bit integer is a child page number.
144253 */
144254 static i64 nodeGetRowid(
144255   Rtree *pRtree,       /* The overall R-Tree */
144256   RtreeNode *pNode,    /* The node from which to extract the ID */
144257   int iCell            /* The cell index from which to extract the ID */
144258 ){
144259   assert( iCell<NCELL(pNode) );
144260   return readInt64(&pNode->zData[4 + pRtree->nBytesPerCell*iCell]);
144261 }
144262 
144263 /*
144264 ** Return coordinate iCoord from cell iCell in node pNode.
144265 */
144266 static void nodeGetCoord(
144267   Rtree *pRtree,               /* The overall R-Tree */
144268   RtreeNode *pNode,            /* The node from which to extract a coordinate */
144269   int iCell,                   /* The index of the cell within the node */
144270   int iCoord,                  /* Which coordinate to extract */
144271   RtreeCoord *pCoord           /* OUT: Space to write result to */
144272 ){
144273   readCoord(&pNode->zData[12 + pRtree->nBytesPerCell*iCell + 4*iCoord], pCoord);
144274 }
144275 
144276 /*
144277 ** Deserialize cell iCell of node pNode. Populate the structure pointed
144278 ** to by pCell with the results.
144279 */
144280 static void nodeGetCell(
144281   Rtree *pRtree,               /* The overall R-Tree */
144282   RtreeNode *pNode,            /* The node containing the cell to be read */
144283   int iCell,                   /* Index of the cell within the node */
144284   RtreeCell *pCell             /* OUT: Write the cell contents here */
144285 ){
144286   u8 *pData;
144287   u8 *pEnd;
144288   RtreeCoord *pCoord;
144289   pCell->iRowid = nodeGetRowid(pRtree, pNode, iCell);
144290   pData = pNode->zData + (12 + pRtree->nBytesPerCell*iCell);
144291   pEnd = pData + pRtree->nDim*8;
144292   pCoord = pCell->aCoord;
144293   for(; pData<pEnd; pData+=4, pCoord++){
144294     readCoord(pData, pCoord);
144295   }
144296 }
144297 
144298 
144299 /* Forward declaration for the function that does the work of
144300 ** the virtual table module xCreate() and xConnect() methods.
144301 */
144302 static int rtreeInit(
144303   sqlite3 *, void *, int, const char *const*, sqlite3_vtab **, char **, int
144304 );
144305 
144306 /*
144307 ** Rtree virtual table module xCreate method.
144308 */
144309 static int rtreeCreate(
144310   sqlite3 *db,
144311   void *pAux,
144312   int argc, const char *const*argv,
144313   sqlite3_vtab **ppVtab,
144314   char **pzErr
144315 ){
144316   return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 1);
144317 }
144318 
144319 /*
144320 ** Rtree virtual table module xConnect method.
144321 */
144322 static int rtreeConnect(
144323   sqlite3 *db,
144324   void *pAux,
144325   int argc, const char *const*argv,
144326   sqlite3_vtab **ppVtab,
144327   char **pzErr
144328 ){
144329   return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 0);
144330 }
144331 
144332 /*
144333 ** Increment the r-tree reference count.
144334 */
144335 static void rtreeReference(Rtree *pRtree){
144336   pRtree->nBusy++;
144337 }
144338 
144339 /*
144340 ** Decrement the r-tree reference count. When the reference count reaches
144341 ** zero the structure is deleted.
144342 */
144343 static void rtreeRelease(Rtree *pRtree){
144344   pRtree->nBusy--;
144345   if( pRtree->nBusy==0 ){
144346     sqlite3_finalize(pRtree->pReadNode);
144347     sqlite3_finalize(pRtree->pWriteNode);
144348     sqlite3_finalize(pRtree->pDeleteNode);
144349     sqlite3_finalize(pRtree->pReadRowid);
144350     sqlite3_finalize(pRtree->pWriteRowid);
144351     sqlite3_finalize(pRtree->pDeleteRowid);
144352     sqlite3_finalize(pRtree->pReadParent);
144353     sqlite3_finalize(pRtree->pWriteParent);
144354     sqlite3_finalize(pRtree->pDeleteParent);
144355     sqlite3_free(pRtree);
144356   }
144357 }
144358 
144359 /*
144360 ** Rtree virtual table module xDisconnect method.
144361 */
144362 static int rtreeDisconnect(sqlite3_vtab *pVtab){
144363   rtreeRelease((Rtree *)pVtab);
144364   return SQLITE_OK;
144365 }
144366 
144367 /*
144368 ** Rtree virtual table module xDestroy method.
144369 */
144370 static int rtreeDestroy(sqlite3_vtab *pVtab){
144371   Rtree *pRtree = (Rtree *)pVtab;
144372   int rc;
144373   char *zCreate = sqlite3_mprintf(
144374     "DROP TABLE '%q'.'%q_node';"
144375     "DROP TABLE '%q'.'%q_rowid';"
144376     "DROP TABLE '%q'.'%q_parent';",
144377     pRtree->zDb, pRtree->zName,
144378     pRtree->zDb, pRtree->zName,
144379     pRtree->zDb, pRtree->zName
144380   );
144381   if( !zCreate ){
144382     rc = SQLITE_NOMEM;
144383   }else{
144384     rc = sqlite3_exec(pRtree->db, zCreate, 0, 0, 0);
144385     sqlite3_free(zCreate);
144386   }
144387   if( rc==SQLITE_OK ){
144388     rtreeRelease(pRtree);
144389   }
144390 
144391   return rc;
144392 }
144393 
144394 /*
144395 ** Rtree virtual table module xOpen method.
144396 */
144397 static int rtreeOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
144398   int rc = SQLITE_NOMEM;
144399   RtreeCursor *pCsr;
144400 
144401   pCsr = (RtreeCursor *)sqlite3_malloc(sizeof(RtreeCursor));
144402   if( pCsr ){
144403     memset(pCsr, 0, sizeof(RtreeCursor));
144404     pCsr->base.pVtab = pVTab;
144405     rc = SQLITE_OK;
144406   }
144407   *ppCursor = (sqlite3_vtab_cursor *)pCsr;
144408 
144409   return rc;
144410 }
144411 
144412 
144413 /*
144414 ** Free the RtreeCursor.aConstraint[] array and its contents.
144415 */
144416 static void freeCursorConstraints(RtreeCursor *pCsr){
144417   if( pCsr->aConstraint ){
144418     int i;                        /* Used to iterate through constraint array */
144419     for(i=0; i<pCsr->nConstraint; i++){
144420       sqlite3_rtree_query_info *pInfo = pCsr->aConstraint[i].pInfo;
144421       if( pInfo ){
144422         if( pInfo->xDelUser ) pInfo->xDelUser(pInfo->pUser);
144423         sqlite3_free(pInfo);
144424       }
144425     }
144426     sqlite3_free(pCsr->aConstraint);
144427     pCsr->aConstraint = 0;
144428   }
144429 }
144430 
144431 /*
144432 ** Rtree virtual table module xClose method.
144433 */
144434 static int rtreeClose(sqlite3_vtab_cursor *cur){
144435   Rtree *pRtree = (Rtree *)(cur->pVtab);
144436   int ii;
144437   RtreeCursor *pCsr = (RtreeCursor *)cur;
144438   freeCursorConstraints(pCsr);
144439   sqlite3_free(pCsr->aPoint);
144440   for(ii=0; ii<RTREE_CACHE_SZ; ii++) nodeRelease(pRtree, pCsr->aNode[ii]);
144441   sqlite3_free(pCsr);
144442   return SQLITE_OK;
144443 }
144444 
144445 /*
144446 ** Rtree virtual table module xEof method.
144447 **
144448 ** Return non-zero if the cursor does not currently point to a valid
144449 ** record (i.e if the scan has finished), or zero otherwise.
144450 */
144451 static int rtreeEof(sqlite3_vtab_cursor *cur){
144452   RtreeCursor *pCsr = (RtreeCursor *)cur;
144453   return pCsr->atEOF;
144454 }
144455 
144456 /*
144457 ** Convert raw bits from the on-disk RTree record into a coordinate value.
144458 ** The on-disk format is big-endian and needs to be converted for little-
144459 ** endian platforms.  The on-disk record stores integer coordinates if
144460 ** eInt is true and it stores 32-bit floating point records if eInt is
144461 ** false.  a[] is the four bytes of the on-disk record to be decoded.
144462 ** Store the results in "r".
144463 **
144464 ** There are three versions of this macro, one each for little-endian and
144465 ** big-endian processors and a third generic implementation.  The endian-
144466 ** specific implementations are much faster and are preferred if the
144467 ** processor endianness is known at compile-time.  The SQLITE_BYTEORDER
144468 ** macro is part of sqliteInt.h and hence the endian-specific
144469 ** implementation will only be used if this module is compiled as part
144470 ** of the amalgamation.
144471 */
144472 #if defined(SQLITE_BYTEORDER) && SQLITE_BYTEORDER==1234
144473 #define RTREE_DECODE_COORD(eInt, a, r) {                        \
144474     RtreeCoord c;    /* Coordinate decoded */                   \
144475     memcpy(&c.u,a,4);                                           \
144476     c.u = ((c.u>>24)&0xff)|((c.u>>8)&0xff00)|                   \
144477           ((c.u&0xff)<<24)|((c.u&0xff00)<<8);                   \
144478     r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \
144479 }
144480 #elif defined(SQLITE_BYTEORDER) && SQLITE_BYTEORDER==4321
144481 #define RTREE_DECODE_COORD(eInt, a, r) {                        \
144482     RtreeCoord c;    /* Coordinate decoded */                   \
144483     memcpy(&c.u,a,4);                                           \
144484     r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \
144485 }
144486 #else
144487 #define RTREE_DECODE_COORD(eInt, a, r) {                        \
144488     RtreeCoord c;    /* Coordinate decoded */                   \
144489     c.u = ((u32)a[0]<<24) + ((u32)a[1]<<16)                     \
144490            +((u32)a[2]<<8) + a[3];                              \
144491     r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \
144492 }
144493 #endif
144494 
144495 /*
144496 ** Check the RTree node or entry given by pCellData and p against the MATCH
144497 ** constraint pConstraint.
144498 */
144499 static int rtreeCallbackConstraint(
144500   RtreeConstraint *pConstraint,  /* The constraint to test */
144501   int eInt,                      /* True if RTree holding integer coordinates */
144502   u8 *pCellData,                 /* Raw cell content */
144503   RtreeSearchPoint *pSearch,     /* Container of this cell */
144504   sqlite3_rtree_dbl *prScore,    /* OUT: score for the cell */
144505   int *peWithin                  /* OUT: visibility of the cell */
144506 ){
144507   int i;                                                /* Loop counter */
144508   sqlite3_rtree_query_info *pInfo = pConstraint->pInfo; /* Callback info */
144509   int nCoord = pInfo->nCoord;                           /* No. of coordinates */
144510   int rc;                                             /* Callback return code */
144511   sqlite3_rtree_dbl aCoord[RTREE_MAX_DIMENSIONS*2];   /* Decoded coordinates */
144512 
144513   assert( pConstraint->op==RTREE_MATCH || pConstraint->op==RTREE_QUERY );
144514   assert( nCoord==2 || nCoord==4 || nCoord==6 || nCoord==8 || nCoord==10 );
144515 
144516   if( pConstraint->op==RTREE_QUERY && pSearch->iLevel==1 ){
144517     pInfo->iRowid = readInt64(pCellData);
144518   }
144519   pCellData += 8;
144520   for(i=0; i<nCoord; i++, pCellData += 4){
144521     RTREE_DECODE_COORD(eInt, pCellData, aCoord[i]);
144522   }
144523   if( pConstraint->op==RTREE_MATCH ){
144524     rc = pConstraint->u.xGeom((sqlite3_rtree_geometry*)pInfo,
144525                               nCoord, aCoord, &i);
144526     if( i==0 ) *peWithin = NOT_WITHIN;
144527     *prScore = RTREE_ZERO;
144528   }else{
144529     pInfo->aCoord = aCoord;
144530     pInfo->iLevel = pSearch->iLevel - 1;
144531     pInfo->rScore = pInfo->rParentScore = pSearch->rScore;
144532     pInfo->eWithin = pInfo->eParentWithin = pSearch->eWithin;
144533     rc = pConstraint->u.xQueryFunc(pInfo);
144534     if( pInfo->eWithin<*peWithin ) *peWithin = pInfo->eWithin;
144535     if( pInfo->rScore<*prScore || *prScore<RTREE_ZERO ){
144536       *prScore = pInfo->rScore;
144537     }
144538   }
144539   return rc;
144540 }
144541 
144542 /*
144543 ** Check the internal RTree node given by pCellData against constraint p.
144544 ** If this constraint cannot be satisfied by any child within the node,
144545 ** set *peWithin to NOT_WITHIN.
144546 */
144547 static void rtreeNonleafConstraint(
144548   RtreeConstraint *p,        /* The constraint to test */
144549   int eInt,                  /* True if RTree holds integer coordinates */
144550   u8 *pCellData,             /* Raw cell content as appears on disk */
144551   int *peWithin              /* Adjust downward, as appropriate */
144552 ){
144553   sqlite3_rtree_dbl val;     /* Coordinate value convert to a double */
144554 
144555   /* p->iCoord might point to either a lower or upper bound coordinate
144556   ** in a coordinate pair.  But make pCellData point to the lower bound.
144557   */
144558   pCellData += 8 + 4*(p->iCoord&0xfe);
144559 
144560   assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE
144561       || p->op==RTREE_GT || p->op==RTREE_EQ );
144562   switch( p->op ){
144563     case RTREE_LE:
144564     case RTREE_LT:
144565     case RTREE_EQ:
144566       RTREE_DECODE_COORD(eInt, pCellData, val);
144567       /* val now holds the lower bound of the coordinate pair */
144568       if( p->u.rValue>=val ) return;
144569       if( p->op!=RTREE_EQ ) break;  /* RTREE_LE and RTREE_LT end here */
144570       /* Fall through for the RTREE_EQ case */
144571 
144572     default: /* RTREE_GT or RTREE_GE,  or fallthrough of RTREE_EQ */
144573       pCellData += 4;
144574       RTREE_DECODE_COORD(eInt, pCellData, val);
144575       /* val now holds the upper bound of the coordinate pair */
144576       if( p->u.rValue<=val ) return;
144577   }
144578   *peWithin = NOT_WITHIN;
144579 }
144580 
144581 /*
144582 ** Check the leaf RTree cell given by pCellData against constraint p.
144583 ** If this constraint is not satisfied, set *peWithin to NOT_WITHIN.
144584 ** If the constraint is satisfied, leave *peWithin unchanged.
144585 **
144586 ** The constraint is of the form:  xN op $val
144587 **
144588 ** The op is given by p->op.  The xN is p->iCoord-th coordinate in
144589 ** pCellData.  $val is given by p->u.rValue.
144590 */
144591 static void rtreeLeafConstraint(
144592   RtreeConstraint *p,        /* The constraint to test */
144593   int eInt,                  /* True if RTree holds integer coordinates */
144594   u8 *pCellData,             /* Raw cell content as appears on disk */
144595   int *peWithin              /* Adjust downward, as appropriate */
144596 ){
144597   RtreeDValue xN;      /* Coordinate value converted to a double */
144598 
144599   assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE
144600       || p->op==RTREE_GT || p->op==RTREE_EQ );
144601   pCellData += 8 + p->iCoord*4;
144602   RTREE_DECODE_COORD(eInt, pCellData, xN);
144603   switch( p->op ){
144604     case RTREE_LE: if( xN <= p->u.rValue ) return;  break;
144605     case RTREE_LT: if( xN <  p->u.rValue ) return;  break;
144606     case RTREE_GE: if( xN >= p->u.rValue ) return;  break;
144607     case RTREE_GT: if( xN >  p->u.rValue ) return;  break;
144608     default:       if( xN == p->u.rValue ) return;  break;
144609   }
144610   *peWithin = NOT_WITHIN;
144611 }
144612 
144613 /*
144614 ** One of the cells in node pNode is guaranteed to have a 64-bit
144615 ** integer value equal to iRowid. Return the index of this cell.
144616 */
144617 static int nodeRowidIndex(
144618   Rtree *pRtree,
144619   RtreeNode *pNode,
144620   i64 iRowid,
144621   int *piIndex
144622 ){
144623   int ii;
144624   int nCell = NCELL(pNode);
144625   assert( nCell<200 );
144626   for(ii=0; ii<nCell; ii++){
144627     if( nodeGetRowid(pRtree, pNode, ii)==iRowid ){
144628       *piIndex = ii;
144629       return SQLITE_OK;
144630     }
144631   }
144632   return SQLITE_CORRUPT_VTAB;
144633 }
144634 
144635 /*
144636 ** Return the index of the cell containing a pointer to node pNode
144637 ** in its parent. If pNode is the root node, return -1.
144638 */
144639 static int nodeParentIndex(Rtree *pRtree, RtreeNode *pNode, int *piIndex){
144640   RtreeNode *pParent = pNode->pParent;
144641   if( pParent ){
144642     return nodeRowidIndex(pRtree, pParent, pNode->iNode, piIndex);
144643   }
144644   *piIndex = -1;
144645   return SQLITE_OK;
144646 }
144647 
144648 /*
144649 ** Compare two search points.  Return negative, zero, or positive if the first
144650 ** is less than, equal to, or greater than the second.
144651 **
144652 ** The rScore is the primary key.  Smaller rScore values come first.
144653 ** If the rScore is a tie, then use iLevel as the tie breaker with smaller
144654 ** iLevel values coming first.  In this way, if rScore is the same for all
144655 ** SearchPoints, then iLevel becomes the deciding factor and the result
144656 ** is a depth-first search, which is the desired default behavior.
144657 */
144658 static int rtreeSearchPointCompare(
144659   const RtreeSearchPoint *pA,
144660   const RtreeSearchPoint *pB
144661 ){
144662   if( pA->rScore<pB->rScore ) return -1;
144663   if( pA->rScore>pB->rScore ) return +1;
144664   if( pA->iLevel<pB->iLevel ) return -1;
144665   if( pA->iLevel>pB->iLevel ) return +1;
144666   return 0;
144667 }
144668 
144669 /*
144670 ** Interchange to search points in a cursor.
144671 */
144672 static void rtreeSearchPointSwap(RtreeCursor *p, int i, int j){
144673   RtreeSearchPoint t = p->aPoint[i];
144674   assert( i<j );
144675   p->aPoint[i] = p->aPoint[j];
144676   p->aPoint[j] = t;
144677   i++; j++;
144678   if( i<RTREE_CACHE_SZ ){
144679     if( j>=RTREE_CACHE_SZ ){
144680       nodeRelease(RTREE_OF_CURSOR(p), p->aNode[i]);
144681       p->aNode[i] = 0;
144682     }else{
144683       RtreeNode *pTemp = p->aNode[i];
144684       p->aNode[i] = p->aNode[j];
144685       p->aNode[j] = pTemp;
144686     }
144687   }
144688 }
144689 
144690 /*
144691 ** Return the search point with the lowest current score.
144692 */
144693 static RtreeSearchPoint *rtreeSearchPointFirst(RtreeCursor *pCur){
144694   return pCur->bPoint ? &pCur->sPoint : pCur->nPoint ? pCur->aPoint : 0;
144695 }
144696 
144697 /*
144698 ** Get the RtreeNode for the search point with the lowest score.
144699 */
144700 static RtreeNode *rtreeNodeOfFirstSearchPoint(RtreeCursor *pCur, int *pRC){
144701   sqlite3_int64 id;
144702   int ii = 1 - pCur->bPoint;
144703   assert( ii==0 || ii==1 );
144704   assert( pCur->bPoint || pCur->nPoint );
144705   if( pCur->aNode[ii]==0 ){
144706     assert( pRC!=0 );
144707     id = ii ? pCur->aPoint[0].id : pCur->sPoint.id;
144708     *pRC = nodeAcquire(RTREE_OF_CURSOR(pCur), id, 0, &pCur->aNode[ii]);
144709   }
144710   return pCur->aNode[ii];
144711 }
144712 
144713 /*
144714 ** Push a new element onto the priority queue
144715 */
144716 static RtreeSearchPoint *rtreeEnqueue(
144717   RtreeCursor *pCur,    /* The cursor */
144718   RtreeDValue rScore,   /* Score for the new search point */
144719   u8 iLevel             /* Level for the new search point */
144720 ){
144721   int i, j;
144722   RtreeSearchPoint *pNew;
144723   if( pCur->nPoint>=pCur->nPointAlloc ){
144724     int nNew = pCur->nPointAlloc*2 + 8;
144725     pNew = sqlite3_realloc(pCur->aPoint, nNew*sizeof(pCur->aPoint[0]));
144726     if( pNew==0 ) return 0;
144727     pCur->aPoint = pNew;
144728     pCur->nPointAlloc = nNew;
144729   }
144730   i = pCur->nPoint++;
144731   pNew = pCur->aPoint + i;
144732   pNew->rScore = rScore;
144733   pNew->iLevel = iLevel;
144734   assert( iLevel>=0 && iLevel<=RTREE_MAX_DEPTH );
144735   while( i>0 ){
144736     RtreeSearchPoint *pParent;
144737     j = (i-1)/2;
144738     pParent = pCur->aPoint + j;
144739     if( rtreeSearchPointCompare(pNew, pParent)>=0 ) break;
144740     rtreeSearchPointSwap(pCur, j, i);
144741     i = j;
144742     pNew = pParent;
144743   }
144744   return pNew;
144745 }
144746 
144747 /*
144748 ** Allocate a new RtreeSearchPoint and return a pointer to it.  Return
144749 ** NULL if malloc fails.
144750 */
144751 static RtreeSearchPoint *rtreeSearchPointNew(
144752   RtreeCursor *pCur,    /* The cursor */
144753   RtreeDValue rScore,   /* Score for the new search point */
144754   u8 iLevel             /* Level for the new search point */
144755 ){
144756   RtreeSearchPoint *pNew, *pFirst;
144757   pFirst = rtreeSearchPointFirst(pCur);
144758   pCur->anQueue[iLevel]++;
144759   if( pFirst==0
144760    || pFirst->rScore>rScore
144761    || (pFirst->rScore==rScore && pFirst->iLevel>iLevel)
144762   ){
144763     if( pCur->bPoint ){
144764       int ii;
144765       pNew = rtreeEnqueue(pCur, rScore, iLevel);
144766       if( pNew==0 ) return 0;
144767       ii = (int)(pNew - pCur->aPoint) + 1;
144768       if( ii<RTREE_CACHE_SZ ){
144769         assert( pCur->aNode[ii]==0 );
144770         pCur->aNode[ii] = pCur->aNode[0];
144771        }else{
144772         nodeRelease(RTREE_OF_CURSOR(pCur), pCur->aNode[0]);
144773       }
144774       pCur->aNode[0] = 0;
144775       *pNew = pCur->sPoint;
144776     }
144777     pCur->sPoint.rScore = rScore;
144778     pCur->sPoint.iLevel = iLevel;
144779     pCur->bPoint = 1;
144780     return &pCur->sPoint;
144781   }else{
144782     return rtreeEnqueue(pCur, rScore, iLevel);
144783   }
144784 }
144785 
144786 #if 0
144787 /* Tracing routines for the RtreeSearchPoint queue */
144788 static void tracePoint(RtreeSearchPoint *p, int idx, RtreeCursor *pCur){
144789   if( idx<0 ){ printf(" s"); }else{ printf("%2d", idx); }
144790   printf(" %d.%05lld.%02d %g %d",
144791     p->iLevel, p->id, p->iCell, p->rScore, p->eWithin
144792   );
144793   idx++;
144794   if( idx<RTREE_CACHE_SZ ){
144795     printf(" %p\n", pCur->aNode[idx]);
144796   }else{
144797     printf("\n");
144798   }
144799 }
144800 static void traceQueue(RtreeCursor *pCur, const char *zPrefix){
144801   int ii;
144802   printf("=== %9s ", zPrefix);
144803   if( pCur->bPoint ){
144804     tracePoint(&pCur->sPoint, -1, pCur);
144805   }
144806   for(ii=0; ii<pCur->nPoint; ii++){
144807     if( ii>0 || pCur->bPoint ) printf("              ");
144808     tracePoint(&pCur->aPoint[ii], ii, pCur);
144809   }
144810 }
144811 # define RTREE_QUEUE_TRACE(A,B) traceQueue(A,B)
144812 #else
144813 # define RTREE_QUEUE_TRACE(A,B)   /* no-op */
144814 #endif
144815 
144816 /* Remove the search point with the lowest current score.
144817 */
144818 static void rtreeSearchPointPop(RtreeCursor *p){
144819   int i, j, k, n;
144820   i = 1 - p->bPoint;
144821   assert( i==0 || i==1 );
144822   if( p->aNode[i] ){
144823     nodeRelease(RTREE_OF_CURSOR(p), p->aNode[i]);
144824     p->aNode[i] = 0;
144825   }
144826   if( p->bPoint ){
144827     p->anQueue[p->sPoint.iLevel]--;
144828     p->bPoint = 0;
144829   }else if( p->nPoint ){
144830     p->anQueue[p->aPoint[0].iLevel]--;
144831     n = --p->nPoint;
144832     p->aPoint[0] = p->aPoint[n];
144833     if( n<RTREE_CACHE_SZ-1 ){
144834       p->aNode[1] = p->aNode[n+1];
144835       p->aNode[n+1] = 0;
144836     }
144837     i = 0;
144838     while( (j = i*2+1)<n ){
144839       k = j+1;
144840       if( k<n && rtreeSearchPointCompare(&p->aPoint[k], &p->aPoint[j])<0 ){
144841         if( rtreeSearchPointCompare(&p->aPoint[k], &p->aPoint[i])<0 ){
144842           rtreeSearchPointSwap(p, i, k);
144843           i = k;
144844         }else{
144845           break;
144846         }
144847       }else{
144848         if( rtreeSearchPointCompare(&p->aPoint[j], &p->aPoint[i])<0 ){
144849           rtreeSearchPointSwap(p, i, j);
144850           i = j;
144851         }else{
144852           break;
144853         }
144854       }
144855     }
144856   }
144857 }
144858 
144859 
144860 /*
144861 ** Continue the search on cursor pCur until the front of the queue
144862 ** contains an entry suitable for returning as a result-set row,
144863 ** or until the RtreeSearchPoint queue is empty, indicating that the
144864 ** query has completed.
144865 */
144866 static int rtreeStepToLeaf(RtreeCursor *pCur){
144867   RtreeSearchPoint *p;
144868   Rtree *pRtree = RTREE_OF_CURSOR(pCur);
144869   RtreeNode *pNode;
144870   int eWithin;
144871   int rc = SQLITE_OK;
144872   int nCell;
144873   int nConstraint = pCur->nConstraint;
144874   int ii;
144875   int eInt;
144876   RtreeSearchPoint x;
144877 
144878   eInt = pRtree->eCoordType==RTREE_COORD_INT32;
144879   while( (p = rtreeSearchPointFirst(pCur))!=0 && p->iLevel>0 ){
144880     pNode = rtreeNodeOfFirstSearchPoint(pCur, &rc);
144881     if( rc ) return rc;
144882     nCell = NCELL(pNode);
144883     assert( nCell<200 );
144884     while( p->iCell<nCell ){
144885       sqlite3_rtree_dbl rScore = (sqlite3_rtree_dbl)-1;
144886       u8 *pCellData = pNode->zData + (4+pRtree->nBytesPerCell*p->iCell);
144887       eWithin = FULLY_WITHIN;
144888       for(ii=0; ii<nConstraint; ii++){
144889         RtreeConstraint *pConstraint = pCur->aConstraint + ii;
144890         if( pConstraint->op>=RTREE_MATCH ){
144891           rc = rtreeCallbackConstraint(pConstraint, eInt, pCellData, p,
144892                                        &rScore, &eWithin);
144893           if( rc ) return rc;
144894         }else if( p->iLevel==1 ){
144895           rtreeLeafConstraint(pConstraint, eInt, pCellData, &eWithin);
144896         }else{
144897           rtreeNonleafConstraint(pConstraint, eInt, pCellData, &eWithin);
144898         }
144899         if( eWithin==NOT_WITHIN ) break;
144900       }
144901       p->iCell++;
144902       if( eWithin==NOT_WITHIN ) continue;
144903       x.iLevel = p->iLevel - 1;
144904       if( x.iLevel ){
144905         x.id = readInt64(pCellData);
144906         x.iCell = 0;
144907       }else{
144908         x.id = p->id;
144909         x.iCell = p->iCell - 1;
144910       }
144911       if( p->iCell>=nCell ){
144912         RTREE_QUEUE_TRACE(pCur, "POP-S:");
144913         rtreeSearchPointPop(pCur);
144914       }
144915       if( rScore<RTREE_ZERO ) rScore = RTREE_ZERO;
144916       p = rtreeSearchPointNew(pCur, rScore, x.iLevel);
144917       if( p==0 ) return SQLITE_NOMEM;
144918       p->eWithin = eWithin;
144919       p->id = x.id;
144920       p->iCell = x.iCell;
144921       RTREE_QUEUE_TRACE(pCur, "PUSH-S:");
144922       break;
144923     }
144924     if( p->iCell>=nCell ){
144925       RTREE_QUEUE_TRACE(pCur, "POP-Se:");
144926       rtreeSearchPointPop(pCur);
144927     }
144928   }
144929   pCur->atEOF = p==0;
144930   return SQLITE_OK;
144931 }
144932 
144933 /*
144934 ** Rtree virtual table module xNext method.
144935 */
144936 static int rtreeNext(sqlite3_vtab_cursor *pVtabCursor){
144937   RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor;
144938   int rc = SQLITE_OK;
144939 
144940   /* Move to the next entry that matches the configured constraints. */
144941   RTREE_QUEUE_TRACE(pCsr, "POP-Nx:");
144942   rtreeSearchPointPop(pCsr);
144943   rc = rtreeStepToLeaf(pCsr);
144944   return rc;
144945 }
144946 
144947 /*
144948 ** Rtree virtual table module xRowid method.
144949 */
144950 static int rtreeRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *pRowid){
144951   RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor;
144952   RtreeSearchPoint *p = rtreeSearchPointFirst(pCsr);
144953   int rc = SQLITE_OK;
144954   RtreeNode *pNode = rtreeNodeOfFirstSearchPoint(pCsr, &rc);
144955   if( rc==SQLITE_OK && p ){
144956     *pRowid = nodeGetRowid(RTREE_OF_CURSOR(pCsr), pNode, p->iCell);
144957   }
144958   return rc;
144959 }
144960 
144961 /*
144962 ** Rtree virtual table module xColumn method.
144963 */
144964 static int rtreeColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){
144965   Rtree *pRtree = (Rtree *)cur->pVtab;
144966   RtreeCursor *pCsr = (RtreeCursor *)cur;
144967   RtreeSearchPoint *p = rtreeSearchPointFirst(pCsr);
144968   RtreeCoord c;
144969   int rc = SQLITE_OK;
144970   RtreeNode *pNode = rtreeNodeOfFirstSearchPoint(pCsr, &rc);
144971 
144972   if( rc ) return rc;
144973   if( p==0 ) return SQLITE_OK;
144974   if( i==0 ){
144975     sqlite3_result_int64(ctx, nodeGetRowid(pRtree, pNode, p->iCell));
144976   }else{
144977     if( rc ) return rc;
144978     nodeGetCoord(pRtree, pNode, p->iCell, i-1, &c);
144979 #ifndef SQLITE_RTREE_INT_ONLY
144980     if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
144981       sqlite3_result_double(ctx, c.f);
144982     }else
144983 #endif
144984     {
144985       assert( pRtree->eCoordType==RTREE_COORD_INT32 );
144986       sqlite3_result_int(ctx, c.i);
144987     }
144988   }
144989   return SQLITE_OK;
144990 }
144991 
144992 /*
144993 ** Use nodeAcquire() to obtain the leaf node containing the record with
144994 ** rowid iRowid. If successful, set *ppLeaf to point to the node and
144995 ** return SQLITE_OK. If there is no such record in the table, set
144996 ** *ppLeaf to 0 and return SQLITE_OK. If an error occurs, set *ppLeaf
144997 ** to zero and return an SQLite error code.
144998 */
144999 static int findLeafNode(
145000   Rtree *pRtree,              /* RTree to search */
145001   i64 iRowid,                 /* The rowid searching for */
145002   RtreeNode **ppLeaf,         /* Write the node here */
145003   sqlite3_int64 *piNode       /* Write the node-id here */
145004 ){
145005   int rc;
145006   *ppLeaf = 0;
145007   sqlite3_bind_int64(pRtree->pReadRowid, 1, iRowid);
145008   if( sqlite3_step(pRtree->pReadRowid)==SQLITE_ROW ){
145009     i64 iNode = sqlite3_column_int64(pRtree->pReadRowid, 0);
145010     if( piNode ) *piNode = iNode;
145011     rc = nodeAcquire(pRtree, iNode, 0, ppLeaf);
145012     sqlite3_reset(pRtree->pReadRowid);
145013   }else{
145014     rc = sqlite3_reset(pRtree->pReadRowid);
145015   }
145016   return rc;
145017 }
145018 
145019 /*
145020 ** This function is called to configure the RtreeConstraint object passed
145021 ** as the second argument for a MATCH constraint. The value passed as the
145022 ** first argument to this function is the right-hand operand to the MATCH
145023 ** operator.
145024 */
145025 static int deserializeGeometry(sqlite3_value *pValue, RtreeConstraint *pCons){
145026   RtreeMatchArg *pBlob;              /* BLOB returned by geometry function */
145027   sqlite3_rtree_query_info *pInfo;   /* Callback information */
145028   int nBlob;                         /* Size of the geometry function blob */
145029   int nExpected;                     /* Expected size of the BLOB */
145030 
145031   /* Check that value is actually a blob. */
145032   if( sqlite3_value_type(pValue)!=SQLITE_BLOB ) return SQLITE_ERROR;
145033 
145034   /* Check that the blob is roughly the right size. */
145035   nBlob = sqlite3_value_bytes(pValue);
145036   if( nBlob<(int)sizeof(RtreeMatchArg)
145037    || ((nBlob-sizeof(RtreeMatchArg))%sizeof(RtreeDValue))!=0
145038   ){
145039     return SQLITE_ERROR;
145040   }
145041 
145042   pInfo = (sqlite3_rtree_query_info*)sqlite3_malloc( sizeof(*pInfo)+nBlob );
145043   if( !pInfo ) return SQLITE_NOMEM;
145044   memset(pInfo, 0, sizeof(*pInfo));
145045   pBlob = (RtreeMatchArg*)&pInfo[1];
145046 
145047   memcpy(pBlob, sqlite3_value_blob(pValue), nBlob);
145048   nExpected = (int)(sizeof(RtreeMatchArg) +
145049                     (pBlob->nParam-1)*sizeof(RtreeDValue));
145050   if( pBlob->magic!=RTREE_GEOMETRY_MAGIC || nBlob!=nExpected ){
145051     sqlite3_free(pInfo);
145052     return SQLITE_ERROR;
145053   }
145054   pInfo->pContext = pBlob->cb.pContext;
145055   pInfo->nParam = pBlob->nParam;
145056   pInfo->aParam = pBlob->aParam;
145057 
145058   if( pBlob->cb.xGeom ){
145059     pCons->u.xGeom = pBlob->cb.xGeom;
145060   }else{
145061     pCons->op = RTREE_QUERY;
145062     pCons->u.xQueryFunc = pBlob->cb.xQueryFunc;
145063   }
145064   pCons->pInfo = pInfo;
145065   return SQLITE_OK;
145066 }
145067 
145068 /*
145069 ** Rtree virtual table module xFilter method.
145070 */
145071 static int rtreeFilter(
145072   sqlite3_vtab_cursor *pVtabCursor,
145073   int idxNum, const char *idxStr,
145074   int argc, sqlite3_value **argv
145075 ){
145076   Rtree *pRtree = (Rtree *)pVtabCursor->pVtab;
145077   RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor;
145078   RtreeNode *pRoot = 0;
145079   int ii;
145080   int rc = SQLITE_OK;
145081   int iCell = 0;
145082 
145083   rtreeReference(pRtree);
145084 
145085   freeCursorConstraints(pCsr);
145086   pCsr->iStrategy = idxNum;
145087 
145088   if( idxNum==1 ){
145089     /* Special case - lookup by rowid. */
145090     RtreeNode *pLeaf;        /* Leaf on which the required cell resides */
145091     RtreeSearchPoint *p;     /* Search point for the the leaf */
145092     i64 iRowid = sqlite3_value_int64(argv[0]);
145093     i64 iNode = 0;
145094     rc = findLeafNode(pRtree, iRowid, &pLeaf, &iNode);
145095     if( rc==SQLITE_OK && pLeaf!=0 ){
145096       p = rtreeSearchPointNew(pCsr, RTREE_ZERO, 0);
145097       assert( p!=0 );  /* Always returns pCsr->sPoint */
145098       pCsr->aNode[0] = pLeaf;
145099       p->id = iNode;
145100       p->eWithin = PARTLY_WITHIN;
145101       rc = nodeRowidIndex(pRtree, pLeaf, iRowid, &iCell);
145102       p->iCell = iCell;
145103       RTREE_QUEUE_TRACE(pCsr, "PUSH-F1:");
145104     }else{
145105       pCsr->atEOF = 1;
145106     }
145107   }else{
145108     /* Normal case - r-tree scan. Set up the RtreeCursor.aConstraint array
145109     ** with the configured constraints.
145110     */
145111     rc = nodeAcquire(pRtree, 1, 0, &pRoot);
145112     if( rc==SQLITE_OK && argc>0 ){
145113       pCsr->aConstraint = sqlite3_malloc(sizeof(RtreeConstraint)*argc);
145114       pCsr->nConstraint = argc;
145115       if( !pCsr->aConstraint ){
145116         rc = SQLITE_NOMEM;
145117       }else{
145118         memset(pCsr->aConstraint, 0, sizeof(RtreeConstraint)*argc);
145119         memset(pCsr->anQueue, 0, sizeof(u32)*(pRtree->iDepth + 1));
145120         assert( (idxStr==0 && argc==0)
145121                 || (idxStr && (int)strlen(idxStr)==argc*2) );
145122         for(ii=0; ii<argc; ii++){
145123           RtreeConstraint *p = &pCsr->aConstraint[ii];
145124           p->op = idxStr[ii*2];
145125           p->iCoord = idxStr[ii*2+1]-'0';
145126           if( p->op>=RTREE_MATCH ){
145127             /* A MATCH operator. The right-hand-side must be a blob that
145128             ** can be cast into an RtreeMatchArg object. One created using
145129             ** an sqlite3_rtree_geometry_callback() SQL user function.
145130             */
145131             rc = deserializeGeometry(argv[ii], p);
145132             if( rc!=SQLITE_OK ){
145133               break;
145134             }
145135             p->pInfo->nCoord = pRtree->nDim*2;
145136             p->pInfo->anQueue = pCsr->anQueue;
145137             p->pInfo->mxLevel = pRtree->iDepth + 1;
145138           }else{
145139 #ifdef SQLITE_RTREE_INT_ONLY
145140             p->u.rValue = sqlite3_value_int64(argv[ii]);
145141 #else
145142             p->u.rValue = sqlite3_value_double(argv[ii]);
145143 #endif
145144           }
145145         }
145146       }
145147     }
145148     if( rc==SQLITE_OK ){
145149       RtreeSearchPoint *pNew;
145150       pNew = rtreeSearchPointNew(pCsr, RTREE_ZERO, pRtree->iDepth+1);
145151       if( pNew==0 ) return SQLITE_NOMEM;
145152       pNew->id = 1;
145153       pNew->iCell = 0;
145154       pNew->eWithin = PARTLY_WITHIN;
145155       assert( pCsr->bPoint==1 );
145156       pCsr->aNode[0] = pRoot;
145157       pRoot = 0;
145158       RTREE_QUEUE_TRACE(pCsr, "PUSH-Fm:");
145159       rc = rtreeStepToLeaf(pCsr);
145160     }
145161   }
145162 
145163   nodeRelease(pRtree, pRoot);
145164   rtreeRelease(pRtree);
145165   return rc;
145166 }
145167 
145168 /*
145169 ** Set the pIdxInfo->estimatedRows variable to nRow. Unless this
145170 ** extension is currently being used by a version of SQLite too old to
145171 ** support estimatedRows. In that case this function is a no-op.
145172 */
145173 static void setEstimatedRows(sqlite3_index_info *pIdxInfo, i64 nRow){
145174 #if SQLITE_VERSION_NUMBER>=3008002
145175   if( sqlite3_libversion_number()>=3008002 ){
145176     pIdxInfo->estimatedRows = nRow;
145177   }
145178 #endif
145179 }
145180 
145181 /*
145182 ** Rtree virtual table module xBestIndex method. There are three
145183 ** table scan strategies to choose from (in order from most to
145184 ** least desirable):
145185 **
145186 **   idxNum     idxStr        Strategy
145187 **   ------------------------------------------------
145188 **     1        Unused        Direct lookup by rowid.
145189 **     2        See below     R-tree query or full-table scan.
145190 **   ------------------------------------------------
145191 **
145192 ** If strategy 1 is used, then idxStr is not meaningful. If strategy
145193 ** 2 is used, idxStr is formatted to contain 2 bytes for each
145194 ** constraint used. The first two bytes of idxStr correspond to
145195 ** the constraint in sqlite3_index_info.aConstraintUsage[] with
145196 ** (argvIndex==1) etc.
145197 **
145198 ** The first of each pair of bytes in idxStr identifies the constraint
145199 ** operator as follows:
145200 **
145201 **   Operator    Byte Value
145202 **   ----------------------
145203 **      =        0x41 ('A')
145204 **     <=        0x42 ('B')
145205 **      <        0x43 ('C')
145206 **     >=        0x44 ('D')
145207 **      >        0x45 ('E')
145208 **   MATCH       0x46 ('F')
145209 **   ----------------------
145210 **
145211 ** The second of each pair of bytes identifies the coordinate column
145212 ** to which the constraint applies. The leftmost coordinate column
145213 ** is 'a', the second from the left 'b' etc.
145214 */
145215 static int rtreeBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
145216   Rtree *pRtree = (Rtree*)tab;
145217   int rc = SQLITE_OK;
145218   int ii;
145219   i64 nRow;                       /* Estimated rows returned by this scan */
145220 
145221   int iIdx = 0;
145222   char zIdxStr[RTREE_MAX_DIMENSIONS*8+1];
145223   memset(zIdxStr, 0, sizeof(zIdxStr));
145224 
145225   assert( pIdxInfo->idxStr==0 );
145226   for(ii=0; ii<pIdxInfo->nConstraint && iIdx<(int)(sizeof(zIdxStr)-1); ii++){
145227     struct sqlite3_index_constraint *p = &pIdxInfo->aConstraint[ii];
145228 
145229     if( p->usable && p->iColumn==0 && p->op==SQLITE_INDEX_CONSTRAINT_EQ ){
145230       /* We have an equality constraint on the rowid. Use strategy 1. */
145231       int jj;
145232       for(jj=0; jj<ii; jj++){
145233         pIdxInfo->aConstraintUsage[jj].argvIndex = 0;
145234         pIdxInfo->aConstraintUsage[jj].omit = 0;
145235       }
145236       pIdxInfo->idxNum = 1;
145237       pIdxInfo->aConstraintUsage[ii].argvIndex = 1;
145238       pIdxInfo->aConstraintUsage[jj].omit = 1;
145239 
145240       /* This strategy involves a two rowid lookups on an B-Tree structures
145241       ** and then a linear search of an R-Tree node. This should be
145242       ** considered almost as quick as a direct rowid lookup (for which
145243       ** sqlite uses an internal cost of 0.0). It is expected to return
145244       ** a single row.
145245       */
145246       pIdxInfo->estimatedCost = 30.0;
145247       setEstimatedRows(pIdxInfo, 1);
145248       return SQLITE_OK;
145249     }
145250 
145251     if( p->usable && (p->iColumn>0 || p->op==SQLITE_INDEX_CONSTRAINT_MATCH) ){
145252       u8 op;
145253       switch( p->op ){
145254         case SQLITE_INDEX_CONSTRAINT_EQ: op = RTREE_EQ; break;
145255         case SQLITE_INDEX_CONSTRAINT_GT: op = RTREE_GT; break;
145256         case SQLITE_INDEX_CONSTRAINT_LE: op = RTREE_LE; break;
145257         case SQLITE_INDEX_CONSTRAINT_LT: op = RTREE_LT; break;
145258         case SQLITE_INDEX_CONSTRAINT_GE: op = RTREE_GE; break;
145259         default:
145260           assert( p->op==SQLITE_INDEX_CONSTRAINT_MATCH );
145261           op = RTREE_MATCH;
145262           break;
145263       }
145264       zIdxStr[iIdx++] = op;
145265       zIdxStr[iIdx++] = p->iColumn - 1 + '0';
145266       pIdxInfo->aConstraintUsage[ii].argvIndex = (iIdx/2);
145267       pIdxInfo->aConstraintUsage[ii].omit = 1;
145268     }
145269   }
145270 
145271   pIdxInfo->idxNum = 2;
145272   pIdxInfo->needToFreeIdxStr = 1;
145273   if( iIdx>0 && 0==(pIdxInfo->idxStr = sqlite3_mprintf("%s", zIdxStr)) ){
145274     return SQLITE_NOMEM;
145275   }
145276 
145277   nRow = pRtree->nRowEst / (iIdx + 1);
145278   pIdxInfo->estimatedCost = (double)6.0 * (double)nRow;
145279   setEstimatedRows(pIdxInfo, nRow);
145280 
145281   return rc;
145282 }
145283 
145284 /*
145285 ** Return the N-dimensional volumn of the cell stored in *p.
145286 */
145287 static RtreeDValue cellArea(Rtree *pRtree, RtreeCell *p){
145288   RtreeDValue area = (RtreeDValue)1;
145289   int ii;
145290   for(ii=0; ii<(pRtree->nDim*2); ii+=2){
145291     area = (area * (DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii])));
145292   }
145293   return area;
145294 }
145295 
145296 /*
145297 ** Return the margin length of cell p. The margin length is the sum
145298 ** of the objects size in each dimension.
145299 */
145300 static RtreeDValue cellMargin(Rtree *pRtree, RtreeCell *p){
145301   RtreeDValue margin = (RtreeDValue)0;
145302   int ii;
145303   for(ii=0; ii<(pRtree->nDim*2); ii+=2){
145304     margin += (DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii]));
145305   }
145306   return margin;
145307 }
145308 
145309 /*
145310 ** Store the union of cells p1 and p2 in p1.
145311 */
145312 static void cellUnion(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){
145313   int ii;
145314   if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
145315     for(ii=0; ii<(pRtree->nDim*2); ii+=2){
145316       p1->aCoord[ii].f = MIN(p1->aCoord[ii].f, p2->aCoord[ii].f);
145317       p1->aCoord[ii+1].f = MAX(p1->aCoord[ii+1].f, p2->aCoord[ii+1].f);
145318     }
145319   }else{
145320     for(ii=0; ii<(pRtree->nDim*2); ii+=2){
145321       p1->aCoord[ii].i = MIN(p1->aCoord[ii].i, p2->aCoord[ii].i);
145322       p1->aCoord[ii+1].i = MAX(p1->aCoord[ii+1].i, p2->aCoord[ii+1].i);
145323     }
145324   }
145325 }
145326 
145327 /*
145328 ** Return true if the area covered by p2 is a subset of the area covered
145329 ** by p1. False otherwise.
145330 */
145331 static int cellContains(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){
145332   int ii;
145333   int isInt = (pRtree->eCoordType==RTREE_COORD_INT32);
145334   for(ii=0; ii<(pRtree->nDim*2); ii+=2){
145335     RtreeCoord *a1 = &p1->aCoord[ii];
145336     RtreeCoord *a2 = &p2->aCoord[ii];
145337     if( (!isInt && (a2[0].f<a1[0].f || a2[1].f>a1[1].f))
145338      || ( isInt && (a2[0].i<a1[0].i || a2[1].i>a1[1].i))
145339     ){
145340       return 0;
145341     }
145342   }
145343   return 1;
145344 }
145345 
145346 /*
145347 ** Return the amount cell p would grow by if it were unioned with pCell.
145348 */
145349 static RtreeDValue cellGrowth(Rtree *pRtree, RtreeCell *p, RtreeCell *pCell){
145350   RtreeDValue area;
145351   RtreeCell cell;
145352   memcpy(&cell, p, sizeof(RtreeCell));
145353   area = cellArea(pRtree, &cell);
145354   cellUnion(pRtree, &cell, pCell);
145355   return (cellArea(pRtree, &cell)-area);
145356 }
145357 
145358 static RtreeDValue cellOverlap(
145359   Rtree *pRtree,
145360   RtreeCell *p,
145361   RtreeCell *aCell,
145362   int nCell
145363 ){
145364   int ii;
145365   RtreeDValue overlap = RTREE_ZERO;
145366   for(ii=0; ii<nCell; ii++){
145367     int jj;
145368     RtreeDValue o = (RtreeDValue)1;
145369     for(jj=0; jj<(pRtree->nDim*2); jj+=2){
145370       RtreeDValue x1, x2;
145371       x1 = MAX(DCOORD(p->aCoord[jj]), DCOORD(aCell[ii].aCoord[jj]));
145372       x2 = MIN(DCOORD(p->aCoord[jj+1]), DCOORD(aCell[ii].aCoord[jj+1]));
145373       if( x2<x1 ){
145374         o = (RtreeDValue)0;
145375         break;
145376       }else{
145377         o = o * (x2-x1);
145378       }
145379     }
145380     overlap += o;
145381   }
145382   return overlap;
145383 }
145384 
145385 
145386 /*
145387 ** This function implements the ChooseLeaf algorithm from Gutman[84].
145388 ** ChooseSubTree in r*tree terminology.
145389 */
145390 static int ChooseLeaf(
145391   Rtree *pRtree,               /* Rtree table */
145392   RtreeCell *pCell,            /* Cell to insert into rtree */
145393   int iHeight,                 /* Height of sub-tree rooted at pCell */
145394   RtreeNode **ppLeaf           /* OUT: Selected leaf page */
145395 ){
145396   int rc;
145397   int ii;
145398   RtreeNode *pNode;
145399   rc = nodeAcquire(pRtree, 1, 0, &pNode);
145400 
145401   for(ii=0; rc==SQLITE_OK && ii<(pRtree->iDepth-iHeight); ii++){
145402     int iCell;
145403     sqlite3_int64 iBest = 0;
145404 
145405     RtreeDValue fMinGrowth = RTREE_ZERO;
145406     RtreeDValue fMinArea = RTREE_ZERO;
145407 
145408     int nCell = NCELL(pNode);
145409     RtreeCell cell;
145410     RtreeNode *pChild;
145411 
145412     RtreeCell *aCell = 0;
145413 
145414     /* Select the child node which will be enlarged the least if pCell
145415     ** is inserted into it. Resolve ties by choosing the entry with
145416     ** the smallest area.
145417     */
145418     for(iCell=0; iCell<nCell; iCell++){
145419       int bBest = 0;
145420       RtreeDValue growth;
145421       RtreeDValue area;
145422       nodeGetCell(pRtree, pNode, iCell, &cell);
145423       growth = cellGrowth(pRtree, &cell, pCell);
145424       area = cellArea(pRtree, &cell);
145425       if( iCell==0||growth<fMinGrowth||(growth==fMinGrowth && area<fMinArea) ){
145426         bBest = 1;
145427       }
145428       if( bBest ){
145429         fMinGrowth = growth;
145430         fMinArea = area;
145431         iBest = cell.iRowid;
145432       }
145433     }
145434 
145435     sqlite3_free(aCell);
145436     rc = nodeAcquire(pRtree, iBest, pNode, &pChild);
145437     nodeRelease(pRtree, pNode);
145438     pNode = pChild;
145439   }
145440 
145441   *ppLeaf = pNode;
145442   return rc;
145443 }
145444 
145445 /*
145446 ** A cell with the same content as pCell has just been inserted into
145447 ** the node pNode. This function updates the bounding box cells in
145448 ** all ancestor elements.
145449 */
145450 static int AdjustTree(
145451   Rtree *pRtree,                    /* Rtree table */
145452   RtreeNode *pNode,                 /* Adjust ancestry of this node. */
145453   RtreeCell *pCell                  /* This cell was just inserted */
145454 ){
145455   RtreeNode *p = pNode;
145456   while( p->pParent ){
145457     RtreeNode *pParent = p->pParent;
145458     RtreeCell cell;
145459     int iCell;
145460 
145461     if( nodeParentIndex(pRtree, p, &iCell) ){
145462       return SQLITE_CORRUPT_VTAB;
145463     }
145464 
145465     nodeGetCell(pRtree, pParent, iCell, &cell);
145466     if( !cellContains(pRtree, &cell, pCell) ){
145467       cellUnion(pRtree, &cell, pCell);
145468       nodeOverwriteCell(pRtree, pParent, &cell, iCell);
145469     }
145470 
145471     p = pParent;
145472   }
145473   return SQLITE_OK;
145474 }
145475 
145476 /*
145477 ** Write mapping (iRowid->iNode) to the <rtree>_rowid table.
145478 */
145479 static int rowidWrite(Rtree *pRtree, sqlite3_int64 iRowid, sqlite3_int64 iNode){
145480   sqlite3_bind_int64(pRtree->pWriteRowid, 1, iRowid);
145481   sqlite3_bind_int64(pRtree->pWriteRowid, 2, iNode);
145482   sqlite3_step(pRtree->pWriteRowid);
145483   return sqlite3_reset(pRtree->pWriteRowid);
145484 }
145485 
145486 /*
145487 ** Write mapping (iNode->iPar) to the <rtree>_parent table.
145488 */
145489 static int parentWrite(Rtree *pRtree, sqlite3_int64 iNode, sqlite3_int64 iPar){
145490   sqlite3_bind_int64(pRtree->pWriteParent, 1, iNode);
145491   sqlite3_bind_int64(pRtree->pWriteParent, 2, iPar);
145492   sqlite3_step(pRtree->pWriteParent);
145493   return sqlite3_reset(pRtree->pWriteParent);
145494 }
145495 
145496 static int rtreeInsertCell(Rtree *, RtreeNode *, RtreeCell *, int);
145497 
145498 
145499 /*
145500 ** Arguments aIdx, aDistance and aSpare all point to arrays of size
145501 ** nIdx. The aIdx array contains the set of integers from 0 to
145502 ** (nIdx-1) in no particular order. This function sorts the values
145503 ** in aIdx according to the indexed values in aDistance. For
145504 ** example, assuming the inputs:
145505 **
145506 **   aIdx      = { 0,   1,   2,   3 }
145507 **   aDistance = { 5.0, 2.0, 7.0, 6.0 }
145508 **
145509 ** this function sets the aIdx array to contain:
145510 **
145511 **   aIdx      = { 0,   1,   2,   3 }
145512 **
145513 ** The aSpare array is used as temporary working space by the
145514 ** sorting algorithm.
145515 */
145516 static void SortByDistance(
145517   int *aIdx,
145518   int nIdx,
145519   RtreeDValue *aDistance,
145520   int *aSpare
145521 ){
145522   if( nIdx>1 ){
145523     int iLeft = 0;
145524     int iRight = 0;
145525 
145526     int nLeft = nIdx/2;
145527     int nRight = nIdx-nLeft;
145528     int *aLeft = aIdx;
145529     int *aRight = &aIdx[nLeft];
145530 
145531     SortByDistance(aLeft, nLeft, aDistance, aSpare);
145532     SortByDistance(aRight, nRight, aDistance, aSpare);
145533 
145534     memcpy(aSpare, aLeft, sizeof(int)*nLeft);
145535     aLeft = aSpare;
145536 
145537     while( iLeft<nLeft || iRight<nRight ){
145538       if( iLeft==nLeft ){
145539         aIdx[iLeft+iRight] = aRight[iRight];
145540         iRight++;
145541       }else if( iRight==nRight ){
145542         aIdx[iLeft+iRight] = aLeft[iLeft];
145543         iLeft++;
145544       }else{
145545         RtreeDValue fLeft = aDistance[aLeft[iLeft]];
145546         RtreeDValue fRight = aDistance[aRight[iRight]];
145547         if( fLeft<fRight ){
145548           aIdx[iLeft+iRight] = aLeft[iLeft];
145549           iLeft++;
145550         }else{
145551           aIdx[iLeft+iRight] = aRight[iRight];
145552           iRight++;
145553         }
145554       }
145555     }
145556 
145557 #if 0
145558     /* Check that the sort worked */
145559     {
145560       int jj;
145561       for(jj=1; jj<nIdx; jj++){
145562         RtreeDValue left = aDistance[aIdx[jj-1]];
145563         RtreeDValue right = aDistance[aIdx[jj]];
145564         assert( left<=right );
145565       }
145566     }
145567 #endif
145568   }
145569 }
145570 
145571 /*
145572 ** Arguments aIdx, aCell and aSpare all point to arrays of size
145573 ** nIdx. The aIdx array contains the set of integers from 0 to
145574 ** (nIdx-1) in no particular order. This function sorts the values
145575 ** in aIdx according to dimension iDim of the cells in aCell. The
145576 ** minimum value of dimension iDim is considered first, the
145577 ** maximum used to break ties.
145578 **
145579 ** The aSpare array is used as temporary working space by the
145580 ** sorting algorithm.
145581 */
145582 static void SortByDimension(
145583   Rtree *pRtree,
145584   int *aIdx,
145585   int nIdx,
145586   int iDim,
145587   RtreeCell *aCell,
145588   int *aSpare
145589 ){
145590   if( nIdx>1 ){
145591 
145592     int iLeft = 0;
145593     int iRight = 0;
145594 
145595     int nLeft = nIdx/2;
145596     int nRight = nIdx-nLeft;
145597     int *aLeft = aIdx;
145598     int *aRight = &aIdx[nLeft];
145599 
145600     SortByDimension(pRtree, aLeft, nLeft, iDim, aCell, aSpare);
145601     SortByDimension(pRtree, aRight, nRight, iDim, aCell, aSpare);
145602 
145603     memcpy(aSpare, aLeft, sizeof(int)*nLeft);
145604     aLeft = aSpare;
145605     while( iLeft<nLeft || iRight<nRight ){
145606       RtreeDValue xleft1 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2]);
145607       RtreeDValue xleft2 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2+1]);
145608       RtreeDValue xright1 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2]);
145609       RtreeDValue xright2 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2+1]);
145610       if( (iLeft!=nLeft) && ((iRight==nRight)
145611        || (xleft1<xright1)
145612        || (xleft1==xright1 && xleft2<xright2)
145613       )){
145614         aIdx[iLeft+iRight] = aLeft[iLeft];
145615         iLeft++;
145616       }else{
145617         aIdx[iLeft+iRight] = aRight[iRight];
145618         iRight++;
145619       }
145620     }
145621 
145622 #if 0
145623     /* Check that the sort worked */
145624     {
145625       int jj;
145626       for(jj=1; jj<nIdx; jj++){
145627         RtreeDValue xleft1 = aCell[aIdx[jj-1]].aCoord[iDim*2];
145628         RtreeDValue xleft2 = aCell[aIdx[jj-1]].aCoord[iDim*2+1];
145629         RtreeDValue xright1 = aCell[aIdx[jj]].aCoord[iDim*2];
145630         RtreeDValue xright2 = aCell[aIdx[jj]].aCoord[iDim*2+1];
145631         assert( xleft1<=xright1 && (xleft1<xright1 || xleft2<=xright2) );
145632       }
145633     }
145634 #endif
145635   }
145636 }
145637 
145638 /*
145639 ** Implementation of the R*-tree variant of SplitNode from Beckman[1990].
145640 */
145641 static int splitNodeStartree(
145642   Rtree *pRtree,
145643   RtreeCell *aCell,
145644   int nCell,
145645   RtreeNode *pLeft,
145646   RtreeNode *pRight,
145647   RtreeCell *pBboxLeft,
145648   RtreeCell *pBboxRight
145649 ){
145650   int **aaSorted;
145651   int *aSpare;
145652   int ii;
145653 
145654   int iBestDim = 0;
145655   int iBestSplit = 0;
145656   RtreeDValue fBestMargin = RTREE_ZERO;
145657 
145658   int nByte = (pRtree->nDim+1)*(sizeof(int*)+nCell*sizeof(int));
145659 
145660   aaSorted = (int **)sqlite3_malloc(nByte);
145661   if( !aaSorted ){
145662     return SQLITE_NOMEM;
145663   }
145664 
145665   aSpare = &((int *)&aaSorted[pRtree->nDim])[pRtree->nDim*nCell];
145666   memset(aaSorted, 0, nByte);
145667   for(ii=0; ii<pRtree->nDim; ii++){
145668     int jj;
145669     aaSorted[ii] = &((int *)&aaSorted[pRtree->nDim])[ii*nCell];
145670     for(jj=0; jj<nCell; jj++){
145671       aaSorted[ii][jj] = jj;
145672     }
145673     SortByDimension(pRtree, aaSorted[ii], nCell, ii, aCell, aSpare);
145674   }
145675 
145676   for(ii=0; ii<pRtree->nDim; ii++){
145677     RtreeDValue margin = RTREE_ZERO;
145678     RtreeDValue fBestOverlap = RTREE_ZERO;
145679     RtreeDValue fBestArea = RTREE_ZERO;
145680     int iBestLeft = 0;
145681     int nLeft;
145682 
145683     for(
145684       nLeft=RTREE_MINCELLS(pRtree);
145685       nLeft<=(nCell-RTREE_MINCELLS(pRtree));
145686       nLeft++
145687     ){
145688       RtreeCell left;
145689       RtreeCell right;
145690       int kk;
145691       RtreeDValue overlap;
145692       RtreeDValue area;
145693 
145694       memcpy(&left, &aCell[aaSorted[ii][0]], sizeof(RtreeCell));
145695       memcpy(&right, &aCell[aaSorted[ii][nCell-1]], sizeof(RtreeCell));
145696       for(kk=1; kk<(nCell-1); kk++){
145697         if( kk<nLeft ){
145698           cellUnion(pRtree, &left, &aCell[aaSorted[ii][kk]]);
145699         }else{
145700           cellUnion(pRtree, &right, &aCell[aaSorted[ii][kk]]);
145701         }
145702       }
145703       margin += cellMargin(pRtree, &left);
145704       margin += cellMargin(pRtree, &right);
145705       overlap = cellOverlap(pRtree, &left, &right, 1);
145706       area = cellArea(pRtree, &left) + cellArea(pRtree, &right);
145707       if( (nLeft==RTREE_MINCELLS(pRtree))
145708        || (overlap<fBestOverlap)
145709        || (overlap==fBestOverlap && area<fBestArea)
145710       ){
145711         iBestLeft = nLeft;
145712         fBestOverlap = overlap;
145713         fBestArea = area;
145714       }
145715     }
145716 
145717     if( ii==0 || margin<fBestMargin ){
145718       iBestDim = ii;
145719       fBestMargin = margin;
145720       iBestSplit = iBestLeft;
145721     }
145722   }
145723 
145724   memcpy(pBboxLeft, &aCell[aaSorted[iBestDim][0]], sizeof(RtreeCell));
145725   memcpy(pBboxRight, &aCell[aaSorted[iBestDim][iBestSplit]], sizeof(RtreeCell));
145726   for(ii=0; ii<nCell; ii++){
145727     RtreeNode *pTarget = (ii<iBestSplit)?pLeft:pRight;
145728     RtreeCell *pBbox = (ii<iBestSplit)?pBboxLeft:pBboxRight;
145729     RtreeCell *pCell = &aCell[aaSorted[iBestDim][ii]];
145730     nodeInsertCell(pRtree, pTarget, pCell);
145731     cellUnion(pRtree, pBbox, pCell);
145732   }
145733 
145734   sqlite3_free(aaSorted);
145735   return SQLITE_OK;
145736 }
145737 
145738 
145739 static int updateMapping(
145740   Rtree *pRtree,
145741   i64 iRowid,
145742   RtreeNode *pNode,
145743   int iHeight
145744 ){
145745   int (*xSetMapping)(Rtree *, sqlite3_int64, sqlite3_int64);
145746   xSetMapping = ((iHeight==0)?rowidWrite:parentWrite);
145747   if( iHeight>0 ){
145748     RtreeNode *pChild = nodeHashLookup(pRtree, iRowid);
145749     if( pChild ){
145750       nodeRelease(pRtree, pChild->pParent);
145751       nodeReference(pNode);
145752       pChild->pParent = pNode;
145753     }
145754   }
145755   return xSetMapping(pRtree, iRowid, pNode->iNode);
145756 }
145757 
145758 static int SplitNode(
145759   Rtree *pRtree,
145760   RtreeNode *pNode,
145761   RtreeCell *pCell,
145762   int iHeight
145763 ){
145764   int i;
145765   int newCellIsRight = 0;
145766 
145767   int rc = SQLITE_OK;
145768   int nCell = NCELL(pNode);
145769   RtreeCell *aCell;
145770   int *aiUsed;
145771 
145772   RtreeNode *pLeft = 0;
145773   RtreeNode *pRight = 0;
145774 
145775   RtreeCell leftbbox;
145776   RtreeCell rightbbox;
145777 
145778   /* Allocate an array and populate it with a copy of pCell and
145779   ** all cells from node pLeft. Then zero the original node.
145780   */
145781   aCell = sqlite3_malloc((sizeof(RtreeCell)+sizeof(int))*(nCell+1));
145782   if( !aCell ){
145783     rc = SQLITE_NOMEM;
145784     goto splitnode_out;
145785   }
145786   aiUsed = (int *)&aCell[nCell+1];
145787   memset(aiUsed, 0, sizeof(int)*(nCell+1));
145788   for(i=0; i<nCell; i++){
145789     nodeGetCell(pRtree, pNode, i, &aCell[i]);
145790   }
145791   nodeZero(pRtree, pNode);
145792   memcpy(&aCell[nCell], pCell, sizeof(RtreeCell));
145793   nCell++;
145794 
145795   if( pNode->iNode==1 ){
145796     pRight = nodeNew(pRtree, pNode);
145797     pLeft = nodeNew(pRtree, pNode);
145798     pRtree->iDepth++;
145799     pNode->isDirty = 1;
145800     writeInt16(pNode->zData, pRtree->iDepth);
145801   }else{
145802     pLeft = pNode;
145803     pRight = nodeNew(pRtree, pLeft->pParent);
145804     nodeReference(pLeft);
145805   }
145806 
145807   if( !pLeft || !pRight ){
145808     rc = SQLITE_NOMEM;
145809     goto splitnode_out;
145810   }
145811 
145812   memset(pLeft->zData, 0, pRtree->iNodeSize);
145813   memset(pRight->zData, 0, pRtree->iNodeSize);
145814 
145815   rc = splitNodeStartree(pRtree, aCell, nCell, pLeft, pRight,
145816                          &leftbbox, &rightbbox);
145817   if( rc!=SQLITE_OK ){
145818     goto splitnode_out;
145819   }
145820 
145821   /* Ensure both child nodes have node numbers assigned to them by calling
145822   ** nodeWrite(). Node pRight always needs a node number, as it was created
145823   ** by nodeNew() above. But node pLeft sometimes already has a node number.
145824   ** In this case avoid the all to nodeWrite().
145825   */
145826   if( SQLITE_OK!=(rc = nodeWrite(pRtree, pRight))
145827    || (0==pLeft->iNode && SQLITE_OK!=(rc = nodeWrite(pRtree, pLeft)))
145828   ){
145829     goto splitnode_out;
145830   }
145831 
145832   rightbbox.iRowid = pRight->iNode;
145833   leftbbox.iRowid = pLeft->iNode;
145834 
145835   if( pNode->iNode==1 ){
145836     rc = rtreeInsertCell(pRtree, pLeft->pParent, &leftbbox, iHeight+1);
145837     if( rc!=SQLITE_OK ){
145838       goto splitnode_out;
145839     }
145840   }else{
145841     RtreeNode *pParent = pLeft->pParent;
145842     int iCell;
145843     rc = nodeParentIndex(pRtree, pLeft, &iCell);
145844     if( rc==SQLITE_OK ){
145845       nodeOverwriteCell(pRtree, pParent, &leftbbox, iCell);
145846       rc = AdjustTree(pRtree, pParent, &leftbbox);
145847     }
145848     if( rc!=SQLITE_OK ){
145849       goto splitnode_out;
145850     }
145851   }
145852   if( (rc = rtreeInsertCell(pRtree, pRight->pParent, &rightbbox, iHeight+1)) ){
145853     goto splitnode_out;
145854   }
145855 
145856   for(i=0; i<NCELL(pRight); i++){
145857     i64 iRowid = nodeGetRowid(pRtree, pRight, i);
145858     rc = updateMapping(pRtree, iRowid, pRight, iHeight);
145859     if( iRowid==pCell->iRowid ){
145860       newCellIsRight = 1;
145861     }
145862     if( rc!=SQLITE_OK ){
145863       goto splitnode_out;
145864     }
145865   }
145866   if( pNode->iNode==1 ){
145867     for(i=0; i<NCELL(pLeft); i++){
145868       i64 iRowid = nodeGetRowid(pRtree, pLeft, i);
145869       rc = updateMapping(pRtree, iRowid, pLeft, iHeight);
145870       if( rc!=SQLITE_OK ){
145871         goto splitnode_out;
145872       }
145873     }
145874   }else if( newCellIsRight==0 ){
145875     rc = updateMapping(pRtree, pCell->iRowid, pLeft, iHeight);
145876   }
145877 
145878   if( rc==SQLITE_OK ){
145879     rc = nodeRelease(pRtree, pRight);
145880     pRight = 0;
145881   }
145882   if( rc==SQLITE_OK ){
145883     rc = nodeRelease(pRtree, pLeft);
145884     pLeft = 0;
145885   }
145886 
145887 splitnode_out:
145888   nodeRelease(pRtree, pRight);
145889   nodeRelease(pRtree, pLeft);
145890   sqlite3_free(aCell);
145891   return rc;
145892 }
145893 
145894 /*
145895 ** If node pLeaf is not the root of the r-tree and its pParent pointer is
145896 ** still NULL, load all ancestor nodes of pLeaf into memory and populate
145897 ** the pLeaf->pParent chain all the way up to the root node.
145898 **
145899 ** This operation is required when a row is deleted (or updated - an update
145900 ** is implemented as a delete followed by an insert). SQLite provides the
145901 ** rowid of the row to delete, which can be used to find the leaf on which
145902 ** the entry resides (argument pLeaf). Once the leaf is located, this
145903 ** function is called to determine its ancestry.
145904 */
145905 static int fixLeafParent(Rtree *pRtree, RtreeNode *pLeaf){
145906   int rc = SQLITE_OK;
145907   RtreeNode *pChild = pLeaf;
145908   while( rc==SQLITE_OK && pChild->iNode!=1 && pChild->pParent==0 ){
145909     int rc2 = SQLITE_OK;          /* sqlite3_reset() return code */
145910     sqlite3_bind_int64(pRtree->pReadParent, 1, pChild->iNode);
145911     rc = sqlite3_step(pRtree->pReadParent);
145912     if( rc==SQLITE_ROW ){
145913       RtreeNode *pTest;           /* Used to test for reference loops */
145914       i64 iNode;                  /* Node number of parent node */
145915 
145916       /* Before setting pChild->pParent, test that we are not creating a
145917       ** loop of references (as we would if, say, pChild==pParent). We don't
145918       ** want to do this as it leads to a memory leak when trying to delete
145919       ** the referenced counted node structures.
145920       */
145921       iNode = sqlite3_column_int64(pRtree->pReadParent, 0);
145922       for(pTest=pLeaf; pTest && pTest->iNode!=iNode; pTest=pTest->pParent);
145923       if( !pTest ){
145924         rc2 = nodeAcquire(pRtree, iNode, 0, &pChild->pParent);
145925       }
145926     }
145927     rc = sqlite3_reset(pRtree->pReadParent);
145928     if( rc==SQLITE_OK ) rc = rc2;
145929     if( rc==SQLITE_OK && !pChild->pParent ) rc = SQLITE_CORRUPT_VTAB;
145930     pChild = pChild->pParent;
145931   }
145932   return rc;
145933 }
145934 
145935 static int deleteCell(Rtree *, RtreeNode *, int, int);
145936 
145937 static int removeNode(Rtree *pRtree, RtreeNode *pNode, int iHeight){
145938   int rc;
145939   int rc2;
145940   RtreeNode *pParent = 0;
145941   int iCell;
145942 
145943   assert( pNode->nRef==1 );
145944 
145945   /* Remove the entry in the parent cell. */
145946   rc = nodeParentIndex(pRtree, pNode, &iCell);
145947   if( rc==SQLITE_OK ){
145948     pParent = pNode->pParent;
145949     pNode->pParent = 0;
145950     rc = deleteCell(pRtree, pParent, iCell, iHeight+1);
145951   }
145952   rc2 = nodeRelease(pRtree, pParent);
145953   if( rc==SQLITE_OK ){
145954     rc = rc2;
145955   }
145956   if( rc!=SQLITE_OK ){
145957     return rc;
145958   }
145959 
145960   /* Remove the xxx_node entry. */
145961   sqlite3_bind_int64(pRtree->pDeleteNode, 1, pNode->iNode);
145962   sqlite3_step(pRtree->pDeleteNode);
145963   if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteNode)) ){
145964     return rc;
145965   }
145966 
145967   /* Remove the xxx_parent entry. */
145968   sqlite3_bind_int64(pRtree->pDeleteParent, 1, pNode->iNode);
145969   sqlite3_step(pRtree->pDeleteParent);
145970   if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteParent)) ){
145971     return rc;
145972   }
145973 
145974   /* Remove the node from the in-memory hash table and link it into
145975   ** the Rtree.pDeleted list. Its contents will be re-inserted later on.
145976   */
145977   nodeHashDelete(pRtree, pNode);
145978   pNode->iNode = iHeight;
145979   pNode->pNext = pRtree->pDeleted;
145980   pNode->nRef++;
145981   pRtree->pDeleted = pNode;
145982 
145983   return SQLITE_OK;
145984 }
145985 
145986 static int fixBoundingBox(Rtree *pRtree, RtreeNode *pNode){
145987   RtreeNode *pParent = pNode->pParent;
145988   int rc = SQLITE_OK;
145989   if( pParent ){
145990     int ii;
145991     int nCell = NCELL(pNode);
145992     RtreeCell box;                            /* Bounding box for pNode */
145993     nodeGetCell(pRtree, pNode, 0, &box);
145994     for(ii=1; ii<nCell; ii++){
145995       RtreeCell cell;
145996       nodeGetCell(pRtree, pNode, ii, &cell);
145997       cellUnion(pRtree, &box, &cell);
145998     }
145999     box.iRowid = pNode->iNode;
146000     rc = nodeParentIndex(pRtree, pNode, &ii);
146001     if( rc==SQLITE_OK ){
146002       nodeOverwriteCell(pRtree, pParent, &box, ii);
146003       rc = fixBoundingBox(pRtree, pParent);
146004     }
146005   }
146006   return rc;
146007 }
146008 
146009 /*
146010 ** Delete the cell at index iCell of node pNode. After removing the
146011 ** cell, adjust the r-tree data structure if required.
146012 */
146013 static int deleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell, int iHeight){
146014   RtreeNode *pParent;
146015   int rc;
146016 
146017   if( SQLITE_OK!=(rc = fixLeafParent(pRtree, pNode)) ){
146018     return rc;
146019   }
146020 
146021   /* Remove the cell from the node. This call just moves bytes around
146022   ** the in-memory node image, so it cannot fail.
146023   */
146024   nodeDeleteCell(pRtree, pNode, iCell);
146025 
146026   /* If the node is not the tree root and now has less than the minimum
146027   ** number of cells, remove it from the tree. Otherwise, update the
146028   ** cell in the parent node so that it tightly contains the updated
146029   ** node.
146030   */
146031   pParent = pNode->pParent;
146032   assert( pParent || pNode->iNode==1 );
146033   if( pParent ){
146034     if( NCELL(pNode)<RTREE_MINCELLS(pRtree) ){
146035       rc = removeNode(pRtree, pNode, iHeight);
146036     }else{
146037       rc = fixBoundingBox(pRtree, pNode);
146038     }
146039   }
146040 
146041   return rc;
146042 }
146043 
146044 static int Reinsert(
146045   Rtree *pRtree,
146046   RtreeNode *pNode,
146047   RtreeCell *pCell,
146048   int iHeight
146049 ){
146050   int *aOrder;
146051   int *aSpare;
146052   RtreeCell *aCell;
146053   RtreeDValue *aDistance;
146054   int nCell;
146055   RtreeDValue aCenterCoord[RTREE_MAX_DIMENSIONS];
146056   int iDim;
146057   int ii;
146058   int rc = SQLITE_OK;
146059   int n;
146060 
146061   memset(aCenterCoord, 0, sizeof(RtreeDValue)*RTREE_MAX_DIMENSIONS);
146062 
146063   nCell = NCELL(pNode)+1;
146064   n = (nCell+1)&(~1);
146065 
146066   /* Allocate the buffers used by this operation. The allocation is
146067   ** relinquished before this function returns.
146068   */
146069   aCell = (RtreeCell *)sqlite3_malloc(n * (
146070     sizeof(RtreeCell)     +         /* aCell array */
146071     sizeof(int)           +         /* aOrder array */
146072     sizeof(int)           +         /* aSpare array */
146073     sizeof(RtreeDValue)             /* aDistance array */
146074   ));
146075   if( !aCell ){
146076     return SQLITE_NOMEM;
146077   }
146078   aOrder    = (int *)&aCell[n];
146079   aSpare    = (int *)&aOrder[n];
146080   aDistance = (RtreeDValue *)&aSpare[n];
146081 
146082   for(ii=0; ii<nCell; ii++){
146083     if( ii==(nCell-1) ){
146084       memcpy(&aCell[ii], pCell, sizeof(RtreeCell));
146085     }else{
146086       nodeGetCell(pRtree, pNode, ii, &aCell[ii]);
146087     }
146088     aOrder[ii] = ii;
146089     for(iDim=0; iDim<pRtree->nDim; iDim++){
146090       aCenterCoord[iDim] += DCOORD(aCell[ii].aCoord[iDim*2]);
146091       aCenterCoord[iDim] += DCOORD(aCell[ii].aCoord[iDim*2+1]);
146092     }
146093   }
146094   for(iDim=0; iDim<pRtree->nDim; iDim++){
146095     aCenterCoord[iDim] = (aCenterCoord[iDim]/(nCell*(RtreeDValue)2));
146096   }
146097 
146098   for(ii=0; ii<nCell; ii++){
146099     aDistance[ii] = RTREE_ZERO;
146100     for(iDim=0; iDim<pRtree->nDim; iDim++){
146101       RtreeDValue coord = (DCOORD(aCell[ii].aCoord[iDim*2+1]) -
146102                                DCOORD(aCell[ii].aCoord[iDim*2]));
146103       aDistance[ii] += (coord-aCenterCoord[iDim])*(coord-aCenterCoord[iDim]);
146104     }
146105   }
146106 
146107   SortByDistance(aOrder, nCell, aDistance, aSpare);
146108   nodeZero(pRtree, pNode);
146109 
146110   for(ii=0; rc==SQLITE_OK && ii<(nCell-(RTREE_MINCELLS(pRtree)+1)); ii++){
146111     RtreeCell *p = &aCell[aOrder[ii]];
146112     nodeInsertCell(pRtree, pNode, p);
146113     if( p->iRowid==pCell->iRowid ){
146114       if( iHeight==0 ){
146115         rc = rowidWrite(pRtree, p->iRowid, pNode->iNode);
146116       }else{
146117         rc = parentWrite(pRtree, p->iRowid, pNode->iNode);
146118       }
146119     }
146120   }
146121   if( rc==SQLITE_OK ){
146122     rc = fixBoundingBox(pRtree, pNode);
146123   }
146124   for(; rc==SQLITE_OK && ii<nCell; ii++){
146125     /* Find a node to store this cell in. pNode->iNode currently contains
146126     ** the height of the sub-tree headed by the cell.
146127     */
146128     RtreeNode *pInsert;
146129     RtreeCell *p = &aCell[aOrder[ii]];
146130     rc = ChooseLeaf(pRtree, p, iHeight, &pInsert);
146131     if( rc==SQLITE_OK ){
146132       int rc2;
146133       rc = rtreeInsertCell(pRtree, pInsert, p, iHeight);
146134       rc2 = nodeRelease(pRtree, pInsert);
146135       if( rc==SQLITE_OK ){
146136         rc = rc2;
146137       }
146138     }
146139   }
146140 
146141   sqlite3_free(aCell);
146142   return rc;
146143 }
146144 
146145 /*
146146 ** Insert cell pCell into node pNode. Node pNode is the head of a
146147 ** subtree iHeight high (leaf nodes have iHeight==0).
146148 */
146149 static int rtreeInsertCell(
146150   Rtree *pRtree,
146151   RtreeNode *pNode,
146152   RtreeCell *pCell,
146153   int iHeight
146154 ){
146155   int rc = SQLITE_OK;
146156   if( iHeight>0 ){
146157     RtreeNode *pChild = nodeHashLookup(pRtree, pCell->iRowid);
146158     if( pChild ){
146159       nodeRelease(pRtree, pChild->pParent);
146160       nodeReference(pNode);
146161       pChild->pParent = pNode;
146162     }
146163   }
146164   if( nodeInsertCell(pRtree, pNode, pCell) ){
146165     if( iHeight<=pRtree->iReinsertHeight || pNode->iNode==1){
146166       rc = SplitNode(pRtree, pNode, pCell, iHeight);
146167     }else{
146168       pRtree->iReinsertHeight = iHeight;
146169       rc = Reinsert(pRtree, pNode, pCell, iHeight);
146170     }
146171   }else{
146172     rc = AdjustTree(pRtree, pNode, pCell);
146173     if( rc==SQLITE_OK ){
146174       if( iHeight==0 ){
146175         rc = rowidWrite(pRtree, pCell->iRowid, pNode->iNode);
146176       }else{
146177         rc = parentWrite(pRtree, pCell->iRowid, pNode->iNode);
146178       }
146179     }
146180   }
146181   return rc;
146182 }
146183 
146184 static int reinsertNodeContent(Rtree *pRtree, RtreeNode *pNode){
146185   int ii;
146186   int rc = SQLITE_OK;
146187   int nCell = NCELL(pNode);
146188 
146189   for(ii=0; rc==SQLITE_OK && ii<nCell; ii++){
146190     RtreeNode *pInsert;
146191     RtreeCell cell;
146192     nodeGetCell(pRtree, pNode, ii, &cell);
146193 
146194     /* Find a node to store this cell in. pNode->iNode currently contains
146195     ** the height of the sub-tree headed by the cell.
146196     */
146197     rc = ChooseLeaf(pRtree, &cell, (int)pNode->iNode, &pInsert);
146198     if( rc==SQLITE_OK ){
146199       int rc2;
146200       rc = rtreeInsertCell(pRtree, pInsert, &cell, (int)pNode->iNode);
146201       rc2 = nodeRelease(pRtree, pInsert);
146202       if( rc==SQLITE_OK ){
146203         rc = rc2;
146204       }
146205     }
146206   }
146207   return rc;
146208 }
146209 
146210 /*
146211 ** Select a currently unused rowid for a new r-tree record.
146212 */
146213 static int newRowid(Rtree *pRtree, i64 *piRowid){
146214   int rc;
146215   sqlite3_bind_null(pRtree->pWriteRowid, 1);
146216   sqlite3_bind_null(pRtree->pWriteRowid, 2);
146217   sqlite3_step(pRtree->pWriteRowid);
146218   rc = sqlite3_reset(pRtree->pWriteRowid);
146219   *piRowid = sqlite3_last_insert_rowid(pRtree->db);
146220   return rc;
146221 }
146222 
146223 /*
146224 ** Remove the entry with rowid=iDelete from the r-tree structure.
146225 */
146226 static int rtreeDeleteRowid(Rtree *pRtree, sqlite3_int64 iDelete){
146227   int rc;                         /* Return code */
146228   RtreeNode *pLeaf = 0;           /* Leaf node containing record iDelete */
146229   int iCell;                      /* Index of iDelete cell in pLeaf */
146230   RtreeNode *pRoot;               /* Root node of rtree structure */
146231 
146232 
146233   /* Obtain a reference to the root node to initialize Rtree.iDepth */
146234   rc = nodeAcquire(pRtree, 1, 0, &pRoot);
146235 
146236   /* Obtain a reference to the leaf node that contains the entry
146237   ** about to be deleted.
146238   */
146239   if( rc==SQLITE_OK ){
146240     rc = findLeafNode(pRtree, iDelete, &pLeaf, 0);
146241   }
146242 
146243   /* Delete the cell in question from the leaf node. */
146244   if( rc==SQLITE_OK ){
146245     int rc2;
146246     rc = nodeRowidIndex(pRtree, pLeaf, iDelete, &iCell);
146247     if( rc==SQLITE_OK ){
146248       rc = deleteCell(pRtree, pLeaf, iCell, 0);
146249     }
146250     rc2 = nodeRelease(pRtree, pLeaf);
146251     if( rc==SQLITE_OK ){
146252       rc = rc2;
146253     }
146254   }
146255 
146256   /* Delete the corresponding entry in the <rtree>_rowid table. */
146257   if( rc==SQLITE_OK ){
146258     sqlite3_bind_int64(pRtree->pDeleteRowid, 1, iDelete);
146259     sqlite3_step(pRtree->pDeleteRowid);
146260     rc = sqlite3_reset(pRtree->pDeleteRowid);
146261   }
146262 
146263   /* Check if the root node now has exactly one child. If so, remove
146264   ** it, schedule the contents of the child for reinsertion and
146265   ** reduce the tree height by one.
146266   **
146267   ** This is equivalent to copying the contents of the child into
146268   ** the root node (the operation that Gutman's paper says to perform
146269   ** in this scenario).
146270   */
146271   if( rc==SQLITE_OK && pRtree->iDepth>0 && NCELL(pRoot)==1 ){
146272     int rc2;
146273     RtreeNode *pChild;
146274     i64 iChild = nodeGetRowid(pRtree, pRoot, 0);
146275     rc = nodeAcquire(pRtree, iChild, pRoot, &pChild);
146276     if( rc==SQLITE_OK ){
146277       rc = removeNode(pRtree, pChild, pRtree->iDepth-1);
146278     }
146279     rc2 = nodeRelease(pRtree, pChild);
146280     if( rc==SQLITE_OK ) rc = rc2;
146281     if( rc==SQLITE_OK ){
146282       pRtree->iDepth--;
146283       writeInt16(pRoot->zData, pRtree->iDepth);
146284       pRoot->isDirty = 1;
146285     }
146286   }
146287 
146288   /* Re-insert the contents of any underfull nodes removed from the tree. */
146289   for(pLeaf=pRtree->pDeleted; pLeaf; pLeaf=pRtree->pDeleted){
146290     if( rc==SQLITE_OK ){
146291       rc = reinsertNodeContent(pRtree, pLeaf);
146292     }
146293     pRtree->pDeleted = pLeaf->pNext;
146294     sqlite3_free(pLeaf);
146295   }
146296 
146297   /* Release the reference to the root node. */
146298   if( rc==SQLITE_OK ){
146299     rc = nodeRelease(pRtree, pRoot);
146300   }else{
146301     nodeRelease(pRtree, pRoot);
146302   }
146303 
146304   return rc;
146305 }
146306 
146307 /*
146308 ** Rounding constants for float->double conversion.
146309 */
146310 #define RNDTOWARDS  (1.0 - 1.0/8388608.0)  /* Round towards zero */
146311 #define RNDAWAY     (1.0 + 1.0/8388608.0)  /* Round away from zero */
146312 
146313 #if !defined(SQLITE_RTREE_INT_ONLY)
146314 /*
146315 ** Convert an sqlite3_value into an RtreeValue (presumably a float)
146316 ** while taking care to round toward negative or positive, respectively.
146317 */
146318 static RtreeValue rtreeValueDown(sqlite3_value *v){
146319   double d = sqlite3_value_double(v);
146320   float f = (float)d;
146321   if( f>d ){
146322     f = (float)(d*(d<0 ? RNDAWAY : RNDTOWARDS));
146323   }
146324   return f;
146325 }
146326 static RtreeValue rtreeValueUp(sqlite3_value *v){
146327   double d = sqlite3_value_double(v);
146328   float f = (float)d;
146329   if( f<d ){
146330     f = (float)(d*(d<0 ? RNDTOWARDS : RNDAWAY));
146331   }
146332   return f;
146333 }
146334 #endif /* !defined(SQLITE_RTREE_INT_ONLY) */
146335 
146336 
146337 /*
146338 ** The xUpdate method for rtree module virtual tables.
146339 */
146340 static int rtreeUpdate(
146341   sqlite3_vtab *pVtab,
146342   int nData,
146343   sqlite3_value **azData,
146344   sqlite_int64 *pRowid
146345 ){
146346   Rtree *pRtree = (Rtree *)pVtab;
146347   int rc = SQLITE_OK;
146348   RtreeCell cell;                 /* New cell to insert if nData>1 */
146349   int bHaveRowid = 0;             /* Set to 1 after new rowid is determined */
146350 
146351   rtreeReference(pRtree);
146352   assert(nData>=1);
146353 
146354   /* Constraint handling. A write operation on an r-tree table may return
146355   ** SQLITE_CONSTRAINT for two reasons:
146356   **
146357   **   1. A duplicate rowid value, or
146358   **   2. The supplied data violates the "x2>=x1" constraint.
146359   **
146360   ** In the first case, if the conflict-handling mode is REPLACE, then
146361   ** the conflicting row can be removed before proceeding. In the second
146362   ** case, SQLITE_CONSTRAINT must be returned regardless of the
146363   ** conflict-handling mode specified by the user.
146364   */
146365   if( nData>1 ){
146366     int ii;
146367 
146368     /* Populate the cell.aCoord[] array. The first coordinate is azData[3]. */
146369     assert( nData==(pRtree->nDim*2 + 3) );
146370 #ifndef SQLITE_RTREE_INT_ONLY
146371     if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
146372       for(ii=0; ii<(pRtree->nDim*2); ii+=2){
146373         cell.aCoord[ii].f = rtreeValueDown(azData[ii+3]);
146374         cell.aCoord[ii+1].f = rtreeValueUp(azData[ii+4]);
146375         if( cell.aCoord[ii].f>cell.aCoord[ii+1].f ){
146376           rc = SQLITE_CONSTRAINT;
146377           goto constraint;
146378         }
146379       }
146380     }else
146381 #endif
146382     {
146383       for(ii=0; ii<(pRtree->nDim*2); ii+=2){
146384         cell.aCoord[ii].i = sqlite3_value_int(azData[ii+3]);
146385         cell.aCoord[ii+1].i = sqlite3_value_int(azData[ii+4]);
146386         if( cell.aCoord[ii].i>cell.aCoord[ii+1].i ){
146387           rc = SQLITE_CONSTRAINT;
146388           goto constraint;
146389         }
146390       }
146391     }
146392 
146393     /* If a rowid value was supplied, check if it is already present in
146394     ** the table. If so, the constraint has failed. */
146395     if( sqlite3_value_type(azData[2])!=SQLITE_NULL ){
146396       cell.iRowid = sqlite3_value_int64(azData[2]);
146397       if( sqlite3_value_type(azData[0])==SQLITE_NULL
146398        || sqlite3_value_int64(azData[0])!=cell.iRowid
146399       ){
146400         int steprc;
146401         sqlite3_bind_int64(pRtree->pReadRowid, 1, cell.iRowid);
146402         steprc = sqlite3_step(pRtree->pReadRowid);
146403         rc = sqlite3_reset(pRtree->pReadRowid);
146404         if( SQLITE_ROW==steprc ){
146405           if( sqlite3_vtab_on_conflict(pRtree->db)==SQLITE_REPLACE ){
146406             rc = rtreeDeleteRowid(pRtree, cell.iRowid);
146407           }else{
146408             rc = SQLITE_CONSTRAINT;
146409             goto constraint;
146410           }
146411         }
146412       }
146413       bHaveRowid = 1;
146414     }
146415   }
146416 
146417   /* If azData[0] is not an SQL NULL value, it is the rowid of a
146418   ** record to delete from the r-tree table. The following block does
146419   ** just that.
146420   */
146421   if( sqlite3_value_type(azData[0])!=SQLITE_NULL ){
146422     rc = rtreeDeleteRowid(pRtree, sqlite3_value_int64(azData[0]));
146423   }
146424 
146425   /* If the azData[] array contains more than one element, elements
146426   ** (azData[2]..azData[argc-1]) contain a new record to insert into
146427   ** the r-tree structure.
146428   */
146429   if( rc==SQLITE_OK && nData>1 ){
146430     /* Insert the new record into the r-tree */
146431     RtreeNode *pLeaf = 0;
146432 
146433     /* Figure out the rowid of the new row. */
146434     if( bHaveRowid==0 ){
146435       rc = newRowid(pRtree, &cell.iRowid);
146436     }
146437     *pRowid = cell.iRowid;
146438 
146439     if( rc==SQLITE_OK ){
146440       rc = ChooseLeaf(pRtree, &cell, 0, &pLeaf);
146441     }
146442     if( rc==SQLITE_OK ){
146443       int rc2;
146444       pRtree->iReinsertHeight = -1;
146445       rc = rtreeInsertCell(pRtree, pLeaf, &cell, 0);
146446       rc2 = nodeRelease(pRtree, pLeaf);
146447       if( rc==SQLITE_OK ){
146448         rc = rc2;
146449       }
146450     }
146451   }
146452 
146453 constraint:
146454   rtreeRelease(pRtree);
146455   return rc;
146456 }
146457 
146458 /*
146459 ** The xRename method for rtree module virtual tables.
146460 */
146461 static int rtreeRename(sqlite3_vtab *pVtab, const char *zNewName){
146462   Rtree *pRtree = (Rtree *)pVtab;
146463   int rc = SQLITE_NOMEM;
146464   char *zSql = sqlite3_mprintf(
146465     "ALTER TABLE %Q.'%q_node'   RENAME TO \"%w_node\";"
146466     "ALTER TABLE %Q.'%q_parent' RENAME TO \"%w_parent\";"
146467     "ALTER TABLE %Q.'%q_rowid'  RENAME TO \"%w_rowid\";"
146468     , pRtree->zDb, pRtree->zName, zNewName
146469     , pRtree->zDb, pRtree->zName, zNewName
146470     , pRtree->zDb, pRtree->zName, zNewName
146471   );
146472   if( zSql ){
146473     rc = sqlite3_exec(pRtree->db, zSql, 0, 0, 0);
146474     sqlite3_free(zSql);
146475   }
146476   return rc;
146477 }
146478 
146479 /*
146480 ** This function populates the pRtree->nRowEst variable with an estimate
146481 ** of the number of rows in the virtual table. If possible, this is based
146482 ** on sqlite_stat1 data. Otherwise, use RTREE_DEFAULT_ROWEST.
146483 */
146484 static int rtreeQueryStat1(sqlite3 *db, Rtree *pRtree){
146485   const char *zFmt = "SELECT stat FROM %Q.sqlite_stat1 WHERE tbl = '%q_rowid'";
146486   char *zSql;
146487   sqlite3_stmt *p;
146488   int rc;
146489   i64 nRow = 0;
146490 
146491   zSql = sqlite3_mprintf(zFmt, pRtree->zDb, pRtree->zName);
146492   if( zSql==0 ){
146493     rc = SQLITE_NOMEM;
146494   }else{
146495     rc = sqlite3_prepare_v2(db, zSql, -1, &p, 0);
146496     if( rc==SQLITE_OK ){
146497       if( sqlite3_step(p)==SQLITE_ROW ) nRow = sqlite3_column_int64(p, 0);
146498       rc = sqlite3_finalize(p);
146499     }else if( rc!=SQLITE_NOMEM ){
146500       rc = SQLITE_OK;
146501     }
146502 
146503     if( rc==SQLITE_OK ){
146504       if( nRow==0 ){
146505         pRtree->nRowEst = RTREE_DEFAULT_ROWEST;
146506       }else{
146507         pRtree->nRowEst = MAX(nRow, RTREE_MIN_ROWEST);
146508       }
146509     }
146510     sqlite3_free(zSql);
146511   }
146512 
146513   return rc;
146514 }
146515 
146516 static sqlite3_module rtreeModule = {
146517   0,                          /* iVersion */
146518   rtreeCreate,                /* xCreate - create a table */
146519   rtreeConnect,               /* xConnect - connect to an existing table */
146520   rtreeBestIndex,             /* xBestIndex - Determine search strategy */
146521   rtreeDisconnect,            /* xDisconnect - Disconnect from a table */
146522   rtreeDestroy,               /* xDestroy - Drop a table */
146523   rtreeOpen,                  /* xOpen - open a cursor */
146524   rtreeClose,                 /* xClose - close a cursor */
146525   rtreeFilter,                /* xFilter - configure scan constraints */
146526   rtreeNext,                  /* xNext - advance a cursor */
146527   rtreeEof,                   /* xEof */
146528   rtreeColumn,                /* xColumn - read data */
146529   rtreeRowid,                 /* xRowid - read data */
146530   rtreeUpdate,                /* xUpdate - write data */
146531   0,                          /* xBegin - begin transaction */
146532   0,                          /* xSync - sync transaction */
146533   0,                          /* xCommit - commit transaction */
146534   0,                          /* xRollback - rollback transaction */
146535   0,                          /* xFindFunction - function overloading */
146536   rtreeRename,                /* xRename - rename the table */
146537   0,                          /* xSavepoint */
146538   0,                          /* xRelease */
146539   0                           /* xRollbackTo */
146540 };
146541 
146542 static int rtreeSqlInit(
146543   Rtree *pRtree,
146544   sqlite3 *db,
146545   const char *zDb,
146546   const char *zPrefix,
146547   int isCreate
146548 ){
146549   int rc = SQLITE_OK;
146550 
146551   #define N_STATEMENT 9
146552   static const char *azSql[N_STATEMENT] = {
146553     /* Read and write the xxx_node table */
146554     "SELECT data FROM '%q'.'%q_node' WHERE nodeno = :1",
146555     "INSERT OR REPLACE INTO '%q'.'%q_node' VALUES(:1, :2)",
146556     "DELETE FROM '%q'.'%q_node' WHERE nodeno = :1",
146557 
146558     /* Read and write the xxx_rowid table */
146559     "SELECT nodeno FROM '%q'.'%q_rowid' WHERE rowid = :1",
146560     "INSERT OR REPLACE INTO '%q'.'%q_rowid' VALUES(:1, :2)",
146561     "DELETE FROM '%q'.'%q_rowid' WHERE rowid = :1",
146562 
146563     /* Read and write the xxx_parent table */
146564     "SELECT parentnode FROM '%q'.'%q_parent' WHERE nodeno = :1",
146565     "INSERT OR REPLACE INTO '%q'.'%q_parent' VALUES(:1, :2)",
146566     "DELETE FROM '%q'.'%q_parent' WHERE nodeno = :1"
146567   };
146568   sqlite3_stmt **appStmt[N_STATEMENT];
146569   int i;
146570 
146571   pRtree->db = db;
146572 
146573   if( isCreate ){
146574     char *zCreate = sqlite3_mprintf(
146575 "CREATE TABLE \"%w\".\"%w_node\"(nodeno INTEGER PRIMARY KEY, data BLOB);"
146576 "CREATE TABLE \"%w\".\"%w_rowid\"(rowid INTEGER PRIMARY KEY, nodeno INTEGER);"
146577 "CREATE TABLE \"%w\".\"%w_parent\"(nodeno INTEGER PRIMARY KEY,"
146578                                   " parentnode INTEGER);"
146579 "INSERT INTO '%q'.'%q_node' VALUES(1, zeroblob(%d))",
146580       zDb, zPrefix, zDb, zPrefix, zDb, zPrefix, zDb, zPrefix, pRtree->iNodeSize
146581     );
146582     if( !zCreate ){
146583       return SQLITE_NOMEM;
146584     }
146585     rc = sqlite3_exec(db, zCreate, 0, 0, 0);
146586     sqlite3_free(zCreate);
146587     if( rc!=SQLITE_OK ){
146588       return rc;
146589     }
146590   }
146591 
146592   appStmt[0] = &pRtree->pReadNode;
146593   appStmt[1] = &pRtree->pWriteNode;
146594   appStmt[2] = &pRtree->pDeleteNode;
146595   appStmt[3] = &pRtree->pReadRowid;
146596   appStmt[4] = &pRtree->pWriteRowid;
146597   appStmt[5] = &pRtree->pDeleteRowid;
146598   appStmt[6] = &pRtree->pReadParent;
146599   appStmt[7] = &pRtree->pWriteParent;
146600   appStmt[8] = &pRtree->pDeleteParent;
146601 
146602   rc = rtreeQueryStat1(db, pRtree);
146603   for(i=0; i<N_STATEMENT && rc==SQLITE_OK; i++){
146604     char *zSql = sqlite3_mprintf(azSql[i], zDb, zPrefix);
146605     if( zSql ){
146606       rc = sqlite3_prepare_v2(db, zSql, -1, appStmt[i], 0);
146607     }else{
146608       rc = SQLITE_NOMEM;
146609     }
146610     sqlite3_free(zSql);
146611   }
146612 
146613   return rc;
146614 }
146615 
146616 /*
146617 ** The second argument to this function contains the text of an SQL statement
146618 ** that returns a single integer value. The statement is compiled and executed
146619 ** using database connection db. If successful, the integer value returned
146620 ** is written to *piVal and SQLITE_OK returned. Otherwise, an SQLite error
146621 ** code is returned and the value of *piVal after returning is not defined.
146622 */
146623 static int getIntFromStmt(sqlite3 *db, const char *zSql, int *piVal){
146624   int rc = SQLITE_NOMEM;
146625   if( zSql ){
146626     sqlite3_stmt *pStmt = 0;
146627     rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
146628     if( rc==SQLITE_OK ){
146629       if( SQLITE_ROW==sqlite3_step(pStmt) ){
146630         *piVal = sqlite3_column_int(pStmt, 0);
146631       }
146632       rc = sqlite3_finalize(pStmt);
146633     }
146634   }
146635   return rc;
146636 }
146637 
146638 /*
146639 ** This function is called from within the xConnect() or xCreate() method to
146640 ** determine the node-size used by the rtree table being created or connected
146641 ** to. If successful, pRtree->iNodeSize is populated and SQLITE_OK returned.
146642 ** Otherwise, an SQLite error code is returned.
146643 **
146644 ** If this function is being called as part of an xConnect(), then the rtree
146645 ** table already exists. In this case the node-size is determined by inspecting
146646 ** the root node of the tree.
146647 **
146648 ** Otherwise, for an xCreate(), use 64 bytes less than the database page-size.
146649 ** This ensures that each node is stored on a single database page. If the
146650 ** database page-size is so large that more than RTREE_MAXCELLS entries
146651 ** would fit in a single node, use a smaller node-size.
146652 */
146653 static int getNodeSize(
146654   sqlite3 *db,                    /* Database handle */
146655   Rtree *pRtree,                  /* Rtree handle */
146656   int isCreate,                   /* True for xCreate, false for xConnect */
146657   char **pzErr                    /* OUT: Error message, if any */
146658 ){
146659   int rc;
146660   char *zSql;
146661   if( isCreate ){
146662     int iPageSize = 0;
146663     zSql = sqlite3_mprintf("PRAGMA %Q.page_size", pRtree->zDb);
146664     rc = getIntFromStmt(db, zSql, &iPageSize);
146665     if( rc==SQLITE_OK ){
146666       pRtree->iNodeSize = iPageSize-64;
146667       if( (4+pRtree->nBytesPerCell*RTREE_MAXCELLS)<pRtree->iNodeSize ){
146668         pRtree->iNodeSize = 4+pRtree->nBytesPerCell*RTREE_MAXCELLS;
146669       }
146670     }else{
146671       *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
146672     }
146673   }else{
146674     zSql = sqlite3_mprintf(
146675         "SELECT length(data) FROM '%q'.'%q_node' WHERE nodeno = 1",
146676         pRtree->zDb, pRtree->zName
146677     );
146678     rc = getIntFromStmt(db, zSql, &pRtree->iNodeSize);
146679     if( rc!=SQLITE_OK ){
146680       *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
146681     }
146682   }
146683 
146684   sqlite3_free(zSql);
146685   return rc;
146686 }
146687 
146688 /*
146689 ** This function is the implementation of both the xConnect and xCreate
146690 ** methods of the r-tree virtual table.
146691 **
146692 **   argv[0]   -> module name
146693 **   argv[1]   -> database name
146694 **   argv[2]   -> table name
146695 **   argv[...] -> column names...
146696 */
146697 static int rtreeInit(
146698   sqlite3 *db,                        /* Database connection */
146699   void *pAux,                         /* One of the RTREE_COORD_* constants */
146700   int argc, const char *const*argv,   /* Parameters to CREATE TABLE statement */
146701   sqlite3_vtab **ppVtab,              /* OUT: New virtual table */
146702   char **pzErr,                       /* OUT: Error message, if any */
146703   int isCreate                        /* True for xCreate, false for xConnect */
146704 ){
146705   int rc = SQLITE_OK;
146706   Rtree *pRtree;
146707   int nDb;              /* Length of string argv[1] */
146708   int nName;            /* Length of string argv[2] */
146709   int eCoordType = (pAux ? RTREE_COORD_INT32 : RTREE_COORD_REAL32);
146710 
146711   const char *aErrMsg[] = {
146712     0,                                                    /* 0 */
146713     "Wrong number of columns for an rtree table",         /* 1 */
146714     "Too few columns for an rtree table",                 /* 2 */
146715     "Too many columns for an rtree table"                 /* 3 */
146716   };
146717 
146718   int iErr = (argc<6) ? 2 : argc>(RTREE_MAX_DIMENSIONS*2+4) ? 3 : argc%2;
146719   if( aErrMsg[iErr] ){
146720     *pzErr = sqlite3_mprintf("%s", aErrMsg[iErr]);
146721     return SQLITE_ERROR;
146722   }
146723 
146724   sqlite3_vtab_config(db, SQLITE_VTAB_CONSTRAINT_SUPPORT, 1);
146725 
146726   /* Allocate the sqlite3_vtab structure */
146727   nDb = (int)strlen(argv[1]);
146728   nName = (int)strlen(argv[2]);
146729   pRtree = (Rtree *)sqlite3_malloc(sizeof(Rtree)+nDb+nName+2);
146730   if( !pRtree ){
146731     return SQLITE_NOMEM;
146732   }
146733   memset(pRtree, 0, sizeof(Rtree)+nDb+nName+2);
146734   pRtree->nBusy = 1;
146735   pRtree->base.pModule = &rtreeModule;
146736   pRtree->zDb = (char *)&pRtree[1];
146737   pRtree->zName = &pRtree->zDb[nDb+1];
146738   pRtree->nDim = (argc-4)/2;
146739   pRtree->nBytesPerCell = 8 + pRtree->nDim*4*2;
146740   pRtree->eCoordType = eCoordType;
146741   memcpy(pRtree->zDb, argv[1], nDb);
146742   memcpy(pRtree->zName, argv[2], nName);
146743 
146744   /* Figure out the node size to use. */
146745   rc = getNodeSize(db, pRtree, isCreate, pzErr);
146746 
146747   /* Create/Connect to the underlying relational database schema. If
146748   ** that is successful, call sqlite3_declare_vtab() to configure
146749   ** the r-tree table schema.
146750   */
146751   if( rc==SQLITE_OK ){
146752     if( (rc = rtreeSqlInit(pRtree, db, argv[1], argv[2], isCreate)) ){
146753       *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
146754     }else{
146755       char *zSql = sqlite3_mprintf("CREATE TABLE x(%s", argv[3]);
146756       char *zTmp;
146757       int ii;
146758       for(ii=4; zSql && ii<argc; ii++){
146759         zTmp = zSql;
146760         zSql = sqlite3_mprintf("%s, %s", zTmp, argv[ii]);
146761         sqlite3_free(zTmp);
146762       }
146763       if( zSql ){
146764         zTmp = zSql;
146765         zSql = sqlite3_mprintf("%s);", zTmp);
146766         sqlite3_free(zTmp);
146767       }
146768       if( !zSql ){
146769         rc = SQLITE_NOMEM;
146770       }else if( SQLITE_OK!=(rc = sqlite3_declare_vtab(db, zSql)) ){
146771         *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
146772       }
146773       sqlite3_free(zSql);
146774     }
146775   }
146776 
146777   if( rc==SQLITE_OK ){
146778     *ppVtab = (sqlite3_vtab *)pRtree;
146779   }else{
146780     assert( *ppVtab==0 );
146781     assert( pRtree->nBusy==1 );
146782     rtreeRelease(pRtree);
146783   }
146784   return rc;
146785 }
146786 
146787 
146788 /*
146789 ** Implementation of a scalar function that decodes r-tree nodes to
146790 ** human readable strings. This can be used for debugging and analysis.
146791 **
146792 ** The scalar function takes two arguments: (1) the number of dimensions
146793 ** to the rtree (between 1 and 5, inclusive) and (2) a blob of data containing
146794 ** an r-tree node.  For a two-dimensional r-tree structure called "rt", to
146795 ** deserialize all nodes, a statement like:
146796 **
146797 **   SELECT rtreenode(2, data) FROM rt_node;
146798 **
146799 ** The human readable string takes the form of a Tcl list with one
146800 ** entry for each cell in the r-tree node. Each entry is itself a
146801 ** list, containing the 8-byte rowid/pageno followed by the
146802 ** <num-dimension>*2 coordinates.
146803 */
146804 static void rtreenode(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){
146805   char *zText = 0;
146806   RtreeNode node;
146807   Rtree tree;
146808   int ii;
146809 
146810   UNUSED_PARAMETER(nArg);
146811   memset(&node, 0, sizeof(RtreeNode));
146812   memset(&tree, 0, sizeof(Rtree));
146813   tree.nDim = sqlite3_value_int(apArg[0]);
146814   tree.nBytesPerCell = 8 + 8 * tree.nDim;
146815   node.zData = (u8 *)sqlite3_value_blob(apArg[1]);
146816 
146817   for(ii=0; ii<NCELL(&node); ii++){
146818     char zCell[512];
146819     int nCell = 0;
146820     RtreeCell cell;
146821     int jj;
146822 
146823     nodeGetCell(&tree, &node, ii, &cell);
146824     sqlite3_snprintf(512-nCell,&zCell[nCell],"%lld", cell.iRowid);
146825     nCell = (int)strlen(zCell);
146826     for(jj=0; jj<tree.nDim*2; jj++){
146827 #ifndef SQLITE_RTREE_INT_ONLY
146828       sqlite3_snprintf(512-nCell,&zCell[nCell], " %g",
146829                        (double)cell.aCoord[jj].f);
146830 #else
146831       sqlite3_snprintf(512-nCell,&zCell[nCell], " %d",
146832                        cell.aCoord[jj].i);
146833 #endif
146834       nCell = (int)strlen(zCell);
146835     }
146836 
146837     if( zText ){
146838       char *zTextNew = sqlite3_mprintf("%s {%s}", zText, zCell);
146839       sqlite3_free(zText);
146840       zText = zTextNew;
146841     }else{
146842       zText = sqlite3_mprintf("{%s}", zCell);
146843     }
146844   }
146845 
146846   sqlite3_result_text(ctx, zText, -1, sqlite3_free);
146847 }
146848 
146849 /* This routine implements an SQL function that returns the "depth" parameter
146850 ** from the front of a blob that is an r-tree node.  For example:
146851 **
146852 **     SELECT rtreedepth(data) FROM rt_node WHERE nodeno=1;
146853 **
146854 ** The depth value is 0 for all nodes other than the root node, and the root
146855 ** node always has nodeno=1, so the example above is the primary use for this
146856 ** routine.  This routine is intended for testing and analysis only.
146857 */
146858 static void rtreedepth(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){
146859   UNUSED_PARAMETER(nArg);
146860   if( sqlite3_value_type(apArg[0])!=SQLITE_BLOB
146861    || sqlite3_value_bytes(apArg[0])<2
146862   ){
146863     sqlite3_result_error(ctx, "Invalid argument to rtreedepth()", -1);
146864   }else{
146865     u8 *zBlob = (u8 *)sqlite3_value_blob(apArg[0]);
146866     sqlite3_result_int(ctx, readInt16(zBlob));
146867   }
146868 }
146869 
146870 /*
146871 ** Register the r-tree module with database handle db. This creates the
146872 ** virtual table module "rtree" and the debugging/analysis scalar
146873 ** function "rtreenode".
146874 */
146875 SQLITE_PRIVATE int sqlite3RtreeInit(sqlite3 *db){
146876   const int utf8 = SQLITE_UTF8;
146877   int rc;
146878 
146879   rc = sqlite3_create_function(db, "rtreenode", 2, utf8, 0, rtreenode, 0, 0);
146880   if( rc==SQLITE_OK ){
146881     rc = sqlite3_create_function(db, "rtreedepth", 1, utf8, 0,rtreedepth, 0, 0);
146882   }
146883   if( rc==SQLITE_OK ){
146884 #ifdef SQLITE_RTREE_INT_ONLY
146885     void *c = (void *)RTREE_COORD_INT32;
146886 #else
146887     void *c = (void *)RTREE_COORD_REAL32;
146888 #endif
146889     rc = sqlite3_create_module_v2(db, "rtree", &rtreeModule, c, 0);
146890   }
146891   if( rc==SQLITE_OK ){
146892     void *c = (void *)RTREE_COORD_INT32;
146893     rc = sqlite3_create_module_v2(db, "rtree_i32", &rtreeModule, c, 0);
146894   }
146895 
146896   return rc;
146897 }
146898 
146899 /*
146900 ** This routine deletes the RtreeGeomCallback object that was attached
146901 ** one of the SQL functions create by sqlite3_rtree_geometry_callback()
146902 ** or sqlite3_rtree_query_callback().  In other words, this routine is the
146903 ** destructor for an RtreeGeomCallback objecct.  This routine is called when
146904 ** the corresponding SQL function is deleted.
146905 */
146906 static void rtreeFreeCallback(void *p){
146907   RtreeGeomCallback *pInfo = (RtreeGeomCallback*)p;
146908   if( pInfo->xDestructor ) pInfo->xDestructor(pInfo->pContext);
146909   sqlite3_free(p);
146910 }
146911 
146912 /*
146913 ** Each call to sqlite3_rtree_geometry_callback() or
146914 ** sqlite3_rtree_query_callback() creates an ordinary SQLite
146915 ** scalar function that is implemented by this routine.
146916 **
146917 ** All this function does is construct an RtreeMatchArg object that
146918 ** contains the geometry-checking callback routines and a list of
146919 ** parameters to this function, then return that RtreeMatchArg object
146920 ** as a BLOB.
146921 **
146922 ** The R-Tree MATCH operator will read the returned BLOB, deserialize
146923 ** the RtreeMatchArg object, and use the RtreeMatchArg object to figure
146924 ** out which elements of the R-Tree should be returned by the query.
146925 */
146926 static void geomCallback(sqlite3_context *ctx, int nArg, sqlite3_value **aArg){
146927   RtreeGeomCallback *pGeomCtx = (RtreeGeomCallback *)sqlite3_user_data(ctx);
146928   RtreeMatchArg *pBlob;
146929   int nBlob;
146930 
146931   nBlob = sizeof(RtreeMatchArg) + (nArg-1)*sizeof(RtreeDValue);
146932   pBlob = (RtreeMatchArg *)sqlite3_malloc(nBlob);
146933   if( !pBlob ){
146934     sqlite3_result_error_nomem(ctx);
146935   }else{
146936     int i;
146937     pBlob->magic = RTREE_GEOMETRY_MAGIC;
146938     pBlob->cb = pGeomCtx[0];
146939     pBlob->nParam = nArg;
146940     for(i=0; i<nArg; i++){
146941 #ifdef SQLITE_RTREE_INT_ONLY
146942       pBlob->aParam[i] = sqlite3_value_int64(aArg[i]);
146943 #else
146944       pBlob->aParam[i] = sqlite3_value_double(aArg[i]);
146945 #endif
146946     }
146947     sqlite3_result_blob(ctx, pBlob, nBlob, sqlite3_free);
146948   }
146949 }
146950 
146951 /*
146952 ** Register a new geometry function for use with the r-tree MATCH operator.
146953 */
146954 SQLITE_API int sqlite3_rtree_geometry_callback(
146955   sqlite3 *db,                  /* Register SQL function on this connection */
146956   const char *zGeom,            /* Name of the new SQL function */
146957   int (*xGeom)(sqlite3_rtree_geometry*,int,RtreeDValue*,int*), /* Callback */
146958   void *pContext                /* Extra data associated with the callback */
146959 ){
146960   RtreeGeomCallback *pGeomCtx;      /* Context object for new user-function */
146961 
146962   /* Allocate and populate the context object. */
146963   pGeomCtx = (RtreeGeomCallback *)sqlite3_malloc(sizeof(RtreeGeomCallback));
146964   if( !pGeomCtx ) return SQLITE_NOMEM;
146965   pGeomCtx->xGeom = xGeom;
146966   pGeomCtx->xQueryFunc = 0;
146967   pGeomCtx->xDestructor = 0;
146968   pGeomCtx->pContext = pContext;
146969   return sqlite3_create_function_v2(db, zGeom, -1, SQLITE_ANY,
146970       (void *)pGeomCtx, geomCallback, 0, 0, rtreeFreeCallback
146971   );
146972 }
146973 
146974 /*
146975 ** Register a new 2nd-generation geometry function for use with the
146976 ** r-tree MATCH operator.
146977 */
146978 SQLITE_API int sqlite3_rtree_query_callback(
146979   sqlite3 *db,                 /* Register SQL function on this connection */
146980   const char *zQueryFunc,      /* Name of new SQL function */
146981   int (*xQueryFunc)(sqlite3_rtree_query_info*), /* Callback */
146982   void *pContext,              /* Extra data passed into the callback */
146983   void (*xDestructor)(void*)   /* Destructor for the extra data */
146984 ){
146985   RtreeGeomCallback *pGeomCtx;      /* Context object for new user-function */
146986 
146987   /* Allocate and populate the context object. */
146988   pGeomCtx = (RtreeGeomCallback *)sqlite3_malloc(sizeof(RtreeGeomCallback));
146989   if( !pGeomCtx ) return SQLITE_NOMEM;
146990   pGeomCtx->xGeom = 0;
146991   pGeomCtx->xQueryFunc = xQueryFunc;
146992   pGeomCtx->xDestructor = xDestructor;
146993   pGeomCtx->pContext = pContext;
146994   return sqlite3_create_function_v2(db, zQueryFunc, -1, SQLITE_ANY,
146995       (void *)pGeomCtx, geomCallback, 0, 0, rtreeFreeCallback
146996   );
146997 }
146998 
146999 #if !SQLITE_CORE
147000 #ifdef _WIN32
147001 __declspec(dllexport)
147002 #endif
147003 SQLITE_API int sqlite3_rtree_init(
147004   sqlite3 *db,
147005   char **pzErrMsg,
147006   const sqlite3_api_routines *pApi
147007 ){
147008   SQLITE_EXTENSION_INIT2(pApi)
147009   return sqlite3RtreeInit(db);
147010 }
147011 #endif
147012 
147013 #endif
147014 
147015 /************** End of rtree.c ***********************************************/
147016 /************** Begin file icu.c *********************************************/
147017 /*
147018 ** 2007 May 6
147019 **
147020 ** The author disclaims copyright to this source code.  In place of
147021 ** a legal notice, here is a blessing:
147022 **
147023 **    May you do good and not evil.
147024 **    May you find forgiveness for yourself and forgive others.
147025 **    May you share freely, never taking more than you give.
147026 **
147027 *************************************************************************
147028 ** $Id: icu.c,v 1.7 2007/12/13 21:54:11 drh Exp $
147029 **
147030 ** This file implements an integration between the ICU library
147031 ** ("International Components for Unicode", an open-source library
147032 ** for handling unicode data) and SQLite. The integration uses
147033 ** ICU to provide the following to SQLite:
147034 **
147035 **   * An implementation of the SQL regexp() function (and hence REGEXP
147036 **     operator) using the ICU uregex_XX() APIs.
147037 **
147038 **   * Implementations of the SQL scalar upper() and lower() functions
147039 **     for case mapping.
147040 **
147041 **   * Integration of ICU and SQLite collation sequences.
147042 **
147043 **   * An implementation of the LIKE operator that uses ICU to
147044 **     provide case-independent matching.
147045 */
147046 
147047 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_ICU)
147048 
147049 /* Include ICU headers */
147050 #include <unicode/utypes.h>
147051 #include <unicode/uregex.h>
147052 #include <unicode/ustring.h>
147053 #include <unicode/ucol.h>
147054 
147055 /* #include <assert.h> */
147056 
147057 #ifndef SQLITE_CORE
147058   SQLITE_EXTENSION_INIT1
147059 #else
147060 #endif
147061 
147062 /*
147063 ** Maximum length (in bytes) of the pattern in a LIKE or GLOB
147064 ** operator.
147065 */
147066 #ifndef SQLITE_MAX_LIKE_PATTERN_LENGTH
147067 # define SQLITE_MAX_LIKE_PATTERN_LENGTH 50000
147068 #endif
147069 
147070 /*
147071 ** Version of sqlite3_free() that is always a function, never a macro.
147072 */
147073 static void xFree(void *p){
147074   sqlite3_free(p);
147075 }
147076 
147077 /*
147078 ** Compare two UTF-8 strings for equality where the first string is
147079 ** a "LIKE" expression. Return true (1) if they are the same and
147080 ** false (0) if they are different.
147081 */
147082 static int icuLikeCompare(
147083   const uint8_t *zPattern,   /* LIKE pattern */
147084   const uint8_t *zString,    /* The UTF-8 string to compare against */
147085   const UChar32 uEsc         /* The escape character */
147086 ){
147087   static const int MATCH_ONE = (UChar32)'_';
147088   static const int MATCH_ALL = (UChar32)'%';
147089 
147090   int iPattern = 0;       /* Current byte index in zPattern */
147091   int iString = 0;        /* Current byte index in zString */
147092 
147093   int prevEscape = 0;     /* True if the previous character was uEsc */
147094 
147095   while( zPattern[iPattern]!=0 ){
147096 
147097     /* Read (and consume) the next character from the input pattern. */
147098     UChar32 uPattern;
147099     U8_NEXT_UNSAFE(zPattern, iPattern, uPattern);
147100     assert(uPattern!=0);
147101 
147102     /* There are now 4 possibilities:
147103     **
147104     **     1. uPattern is an unescaped match-all character "%",
147105     **     2. uPattern is an unescaped match-one character "_",
147106     **     3. uPattern is an unescaped escape character, or
147107     **     4. uPattern is to be handled as an ordinary character
147108     */
147109     if( !prevEscape && uPattern==MATCH_ALL ){
147110       /* Case 1. */
147111       uint8_t c;
147112 
147113       /* Skip any MATCH_ALL or MATCH_ONE characters that follow a
147114       ** MATCH_ALL. For each MATCH_ONE, skip one character in the
147115       ** test string.
147116       */
147117       while( (c=zPattern[iPattern]) == MATCH_ALL || c == MATCH_ONE ){
147118         if( c==MATCH_ONE ){
147119           if( zString[iString]==0 ) return 0;
147120           U8_FWD_1_UNSAFE(zString, iString);
147121         }
147122         iPattern++;
147123       }
147124 
147125       if( zPattern[iPattern]==0 ) return 1;
147126 
147127       while( zString[iString] ){
147128         if( icuLikeCompare(&zPattern[iPattern], &zString[iString], uEsc) ){
147129           return 1;
147130         }
147131         U8_FWD_1_UNSAFE(zString, iString);
147132       }
147133       return 0;
147134 
147135     }else if( !prevEscape && uPattern==MATCH_ONE ){
147136       /* Case 2. */
147137       if( zString[iString]==0 ) return 0;
147138       U8_FWD_1_UNSAFE(zString, iString);
147139 
147140     }else if( !prevEscape && uPattern==uEsc){
147141       /* Case 3. */
147142       prevEscape = 1;
147143 
147144     }else{
147145       /* Case 4. */
147146       UChar32 uString;
147147       U8_NEXT_UNSAFE(zString, iString, uString);
147148       uString = u_foldCase(uString, U_FOLD_CASE_DEFAULT);
147149       uPattern = u_foldCase(uPattern, U_FOLD_CASE_DEFAULT);
147150       if( uString!=uPattern ){
147151         return 0;
147152       }
147153       prevEscape = 0;
147154     }
147155   }
147156 
147157   return zString[iString]==0;
147158 }
147159 
147160 /*
147161 ** Implementation of the like() SQL function.  This function implements
147162 ** the build-in LIKE operator.  The first argument to the function is the
147163 ** pattern and the second argument is the string.  So, the SQL statements:
147164 **
147165 **       A LIKE B
147166 **
147167 ** is implemented as like(B, A). If there is an escape character E,
147168 **
147169 **       A LIKE B ESCAPE E
147170 **
147171 ** is mapped to like(B, A, E).
147172 */
147173 static void icuLikeFunc(
147174   sqlite3_context *context,
147175   int argc,
147176   sqlite3_value **argv
147177 ){
147178   const unsigned char *zA = sqlite3_value_text(argv[0]);
147179   const unsigned char *zB = sqlite3_value_text(argv[1]);
147180   UChar32 uEsc = 0;
147181 
147182   /* Limit the length of the LIKE or GLOB pattern to avoid problems
147183   ** of deep recursion and N*N behavior in patternCompare().
147184   */
147185   if( sqlite3_value_bytes(argv[0])>SQLITE_MAX_LIKE_PATTERN_LENGTH ){
147186     sqlite3_result_error(context, "LIKE or GLOB pattern too complex", -1);
147187     return;
147188   }
147189 
147190 
147191   if( argc==3 ){
147192     /* The escape character string must consist of a single UTF-8 character.
147193     ** Otherwise, return an error.
147194     */
147195     int nE= sqlite3_value_bytes(argv[2]);
147196     const unsigned char *zE = sqlite3_value_text(argv[2]);
147197     int i = 0;
147198     if( zE==0 ) return;
147199     U8_NEXT(zE, i, nE, uEsc);
147200     if( i!=nE){
147201       sqlite3_result_error(context,
147202           "ESCAPE expression must be a single character", -1);
147203       return;
147204     }
147205   }
147206 
147207   if( zA && zB ){
147208     sqlite3_result_int(context, icuLikeCompare(zA, zB, uEsc));
147209   }
147210 }
147211 
147212 /*
147213 ** This function is called when an ICU function called from within
147214 ** the implementation of an SQL scalar function returns an error.
147215 **
147216 ** The scalar function context passed as the first argument is
147217 ** loaded with an error message based on the following two args.
147218 */
147219 static void icuFunctionError(
147220   sqlite3_context *pCtx,       /* SQLite scalar function context */
147221   const char *zName,           /* Name of ICU function that failed */
147222   UErrorCode e                 /* Error code returned by ICU function */
147223 ){
147224   char zBuf[128];
147225   sqlite3_snprintf(128, zBuf, "ICU error: %s(): %s", zName, u_errorName(e));
147226   zBuf[127] = '\0';
147227   sqlite3_result_error(pCtx, zBuf, -1);
147228 }
147229 
147230 /*
147231 ** Function to delete compiled regexp objects. Registered as
147232 ** a destructor function with sqlite3_set_auxdata().
147233 */
147234 static void icuRegexpDelete(void *p){
147235   URegularExpression *pExpr = (URegularExpression *)p;
147236   uregex_close(pExpr);
147237 }
147238 
147239 /*
147240 ** Implementation of SQLite REGEXP operator. This scalar function takes
147241 ** two arguments. The first is a regular expression pattern to compile
147242 ** the second is a string to match against that pattern. If either
147243 ** argument is an SQL NULL, then NULL Is returned. Otherwise, the result
147244 ** is 1 if the string matches the pattern, or 0 otherwise.
147245 **
147246 ** SQLite maps the regexp() function to the regexp() operator such
147247 ** that the following two are equivalent:
147248 **
147249 **     zString REGEXP zPattern
147250 **     regexp(zPattern, zString)
147251 **
147252 ** Uses the following ICU regexp APIs:
147253 **
147254 **     uregex_open()
147255 **     uregex_matches()
147256 **     uregex_close()
147257 */
147258 static void icuRegexpFunc(sqlite3_context *p, int nArg, sqlite3_value **apArg){
147259   UErrorCode status = U_ZERO_ERROR;
147260   URegularExpression *pExpr;
147261   UBool res;
147262   const UChar *zString = sqlite3_value_text16(apArg[1]);
147263 
147264   (void)nArg;  /* Unused parameter */
147265 
147266   /* If the left hand side of the regexp operator is NULL,
147267   ** then the result is also NULL.
147268   */
147269   if( !zString ){
147270     return;
147271   }
147272 
147273   pExpr = sqlite3_get_auxdata(p, 0);
147274   if( !pExpr ){
147275     const UChar *zPattern = sqlite3_value_text16(apArg[0]);
147276     if( !zPattern ){
147277       return;
147278     }
147279     pExpr = uregex_open(zPattern, -1, 0, 0, &status);
147280 
147281     if( U_SUCCESS(status) ){
147282       sqlite3_set_auxdata(p, 0, pExpr, icuRegexpDelete);
147283     }else{
147284       assert(!pExpr);
147285       icuFunctionError(p, "uregex_open", status);
147286       return;
147287     }
147288   }
147289 
147290   /* Configure the text that the regular expression operates on. */
147291   uregex_setText(pExpr, zString, -1, &status);
147292   if( !U_SUCCESS(status) ){
147293     icuFunctionError(p, "uregex_setText", status);
147294     return;
147295   }
147296 
147297   /* Attempt the match */
147298   res = uregex_matches(pExpr, 0, &status);
147299   if( !U_SUCCESS(status) ){
147300     icuFunctionError(p, "uregex_matches", status);
147301     return;
147302   }
147303 
147304   /* Set the text that the regular expression operates on to a NULL
147305   ** pointer. This is not really necessary, but it is tidier than
147306   ** leaving the regular expression object configured with an invalid
147307   ** pointer after this function returns.
147308   */
147309   uregex_setText(pExpr, 0, 0, &status);
147310 
147311   /* Return 1 or 0. */
147312   sqlite3_result_int(p, res ? 1 : 0);
147313 }
147314 
147315 /*
147316 ** Implementations of scalar functions for case mapping - upper() and
147317 ** lower(). Function upper() converts its input to upper-case (ABC).
147318 ** Function lower() converts to lower-case (abc).
147319 **
147320 ** ICU provides two types of case mapping, "general" case mapping and
147321 ** "language specific". Refer to ICU documentation for the differences
147322 ** between the two.
147323 **
147324 ** To utilise "general" case mapping, the upper() or lower() scalar
147325 ** functions are invoked with one argument:
147326 **
147327 **     upper('ABC') -> 'abc'
147328 **     lower('abc') -> 'ABC'
147329 **
147330 ** To access ICU "language specific" case mapping, upper() or lower()
147331 ** should be invoked with two arguments. The second argument is the name
147332 ** of the locale to use. Passing an empty string ("") or SQL NULL value
147333 ** as the second argument is the same as invoking the 1 argument version
147334 ** of upper() or lower().
147335 **
147336 **     lower('I', 'en_us') -> 'i'
147337 **     lower('I', 'tr_tr') -> 'ı' (small dotless i)
147338 **
147339 ** http://www.icu-project.org/userguide/posix.html#case_mappings
147340 */
147341 static void icuCaseFunc16(sqlite3_context *p, int nArg, sqlite3_value **apArg){
147342   const UChar *zInput;
147343   UChar *zOutput;
147344   int nInput;
147345   int nOutput;
147346 
147347   UErrorCode status = U_ZERO_ERROR;
147348   const char *zLocale = 0;
147349 
147350   assert(nArg==1 || nArg==2);
147351   if( nArg==2 ){
147352     zLocale = (const char *)sqlite3_value_text(apArg[1]);
147353   }
147354 
147355   zInput = sqlite3_value_text16(apArg[0]);
147356   if( !zInput ){
147357     return;
147358   }
147359   nInput = sqlite3_value_bytes16(apArg[0]);
147360 
147361   nOutput = nInput * 2 + 2;
147362   zOutput = sqlite3_malloc(nOutput);
147363   if( !zOutput ){
147364     return;
147365   }
147366 
147367   if( sqlite3_user_data(p) ){
147368     u_strToUpper(zOutput, nOutput/2, zInput, nInput/2, zLocale, &status);
147369   }else{
147370     u_strToLower(zOutput, nOutput/2, zInput, nInput/2, zLocale, &status);
147371   }
147372 
147373   if( !U_SUCCESS(status) ){
147374     icuFunctionError(p, "u_strToLower()/u_strToUpper", status);
147375     return;
147376   }
147377 
147378   sqlite3_result_text16(p, zOutput, -1, xFree);
147379 }
147380 
147381 /*
147382 ** Collation sequence destructor function. The pCtx argument points to
147383 ** a UCollator structure previously allocated using ucol_open().
147384 */
147385 static void icuCollationDel(void *pCtx){
147386   UCollator *p = (UCollator *)pCtx;
147387   ucol_close(p);
147388 }
147389 
147390 /*
147391 ** Collation sequence comparison function. The pCtx argument points to
147392 ** a UCollator structure previously allocated using ucol_open().
147393 */
147394 static int icuCollationColl(
147395   void *pCtx,
147396   int nLeft,
147397   const void *zLeft,
147398   int nRight,
147399   const void *zRight
147400 ){
147401   UCollationResult res;
147402   UCollator *p = (UCollator *)pCtx;
147403   res = ucol_strcoll(p, (UChar *)zLeft, nLeft/2, (UChar *)zRight, nRight/2);
147404   switch( res ){
147405     case UCOL_LESS:    return -1;
147406     case UCOL_GREATER: return +1;
147407     case UCOL_EQUAL:   return 0;
147408   }
147409   assert(!"Unexpected return value from ucol_strcoll()");
147410   return 0;
147411 }
147412 
147413 /*
147414 ** Implementation of the scalar function icu_load_collation().
147415 **
147416 ** This scalar function is used to add ICU collation based collation
147417 ** types to an SQLite database connection. It is intended to be called
147418 ** as follows:
147419 **
147420 **     SELECT icu_load_collation(<locale>, <collation-name>);
147421 **
147422 ** Where <locale> is a string containing an ICU locale identifier (i.e.
147423 ** "en_AU", "tr_TR" etc.) and <collation-name> is the name of the
147424 ** collation sequence to create.
147425 */
147426 static void icuLoadCollation(
147427   sqlite3_context *p,
147428   int nArg,
147429   sqlite3_value **apArg
147430 ){
147431   sqlite3 *db = (sqlite3 *)sqlite3_user_data(p);
147432   UErrorCode status = U_ZERO_ERROR;
147433   const char *zLocale;      /* Locale identifier - (eg. "jp_JP") */
147434   const char *zName;        /* SQL Collation sequence name (eg. "japanese") */
147435   UCollator *pUCollator;    /* ICU library collation object */
147436   int rc;                   /* Return code from sqlite3_create_collation_x() */
147437 
147438   assert(nArg==2);
147439   zLocale = (const char *)sqlite3_value_text(apArg[0]);
147440   zName = (const char *)sqlite3_value_text(apArg[1]);
147441 
147442   if( !zLocale || !zName ){
147443     return;
147444   }
147445 
147446   pUCollator = ucol_open(zLocale, &status);
147447   if( !U_SUCCESS(status) ){
147448     icuFunctionError(p, "ucol_open", status);
147449     return;
147450   }
147451   assert(p);
147452 
147453   rc = sqlite3_create_collation_v2(db, zName, SQLITE_UTF16, (void *)pUCollator,
147454       icuCollationColl, icuCollationDel
147455   );
147456   if( rc!=SQLITE_OK ){
147457     ucol_close(pUCollator);
147458     sqlite3_result_error(p, "Error registering collation function", -1);
147459   }
147460 }
147461 
147462 /*
147463 ** Register the ICU extension functions with database db.
147464 */
147465 SQLITE_PRIVATE int sqlite3IcuInit(sqlite3 *db){
147466   struct IcuScalar {
147467     const char *zName;                        /* Function name */
147468     int nArg;                                 /* Number of arguments */
147469     int enc;                                  /* Optimal text encoding */
147470     void *pContext;                           /* sqlite3_user_data() context */
147471     void (*xFunc)(sqlite3_context*,int,sqlite3_value**);
147472   } scalars[] = {
147473     {"regexp", 2, SQLITE_ANY,          0, icuRegexpFunc},
147474 
147475     {"lower",  1, SQLITE_UTF16,        0, icuCaseFunc16},
147476     {"lower",  2, SQLITE_UTF16,        0, icuCaseFunc16},
147477     {"upper",  1, SQLITE_UTF16, (void*)1, icuCaseFunc16},
147478     {"upper",  2, SQLITE_UTF16, (void*)1, icuCaseFunc16},
147479 
147480     {"lower",  1, SQLITE_UTF8,         0, icuCaseFunc16},
147481     {"lower",  2, SQLITE_UTF8,         0, icuCaseFunc16},
147482     {"upper",  1, SQLITE_UTF8,  (void*)1, icuCaseFunc16},
147483     {"upper",  2, SQLITE_UTF8,  (void*)1, icuCaseFunc16},
147484 
147485     {"like",   2, SQLITE_UTF8,         0, icuLikeFunc},
147486     {"like",   3, SQLITE_UTF8,         0, icuLikeFunc},
147487 
147488     {"icu_load_collation",  2, SQLITE_UTF8, (void*)db, icuLoadCollation},
147489   };
147490 
147491   int rc = SQLITE_OK;
147492   int i;
147493 
147494   for(i=0; rc==SQLITE_OK && i<(int)(sizeof(scalars)/sizeof(scalars[0])); i++){
147495     struct IcuScalar *p = &scalars[i];
147496     rc = sqlite3_create_function(
147497         db, p->zName, p->nArg, p->enc, p->pContext, p->xFunc, 0, 0
147498     );
147499   }
147500 
147501   return rc;
147502 }
147503 
147504 #if !SQLITE_CORE
147505 #ifdef _WIN32
147506 __declspec(dllexport)
147507 #endif
147508 SQLITE_API int sqlite3_icu_init(
147509   sqlite3 *db,
147510   char **pzErrMsg,
147511   const sqlite3_api_routines *pApi
147512 ){
147513   SQLITE_EXTENSION_INIT2(pApi)
147514   return sqlite3IcuInit(db);
147515 }
147516 #endif
147517 
147518 #endif
147519 
147520 /************** End of icu.c *************************************************/
147521 /************** Begin file fts3_icu.c ****************************************/
147522 /*
147523 ** 2007 June 22
147524 **
147525 ** The author disclaims copyright to this source code.  In place of
147526 ** a legal notice, here is a blessing:
147527 **
147528 **    May you do good and not evil.
147529 **    May you find forgiveness for yourself and forgive others.
147530 **    May you share freely, never taking more than you give.
147531 **
147532 *************************************************************************
147533 ** This file implements a tokenizer for fts3 based on the ICU library.
147534 */
147535 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
147536 #ifdef SQLITE_ENABLE_ICU
147537 
147538 /* #include <assert.h> */
147539 /* #include <string.h> */
147540 
147541 #include <unicode/ubrk.h>
147542 /* #include <unicode/ucol.h> */
147543 /* #include <unicode/ustring.h> */
147544 #include <unicode/utf16.h>
147545 
147546 typedef struct IcuTokenizer IcuTokenizer;
147547 typedef struct IcuCursor IcuCursor;
147548 
147549 struct IcuTokenizer {
147550   sqlite3_tokenizer base;
147551   char *zLocale;
147552 };
147553 
147554 struct IcuCursor {
147555   sqlite3_tokenizer_cursor base;
147556 
147557   UBreakIterator *pIter;      /* ICU break-iterator object */
147558   int nChar;                  /* Number of UChar elements in pInput */
147559   UChar *aChar;               /* Copy of input using utf-16 encoding */
147560   int *aOffset;               /* Offsets of each character in utf-8 input */
147561 
147562   int nBuffer;
147563   char *zBuffer;
147564 
147565   int iToken;
147566 };
147567 
147568 /*
147569 ** Create a new tokenizer instance.
147570 */
147571 static int icuCreate(
147572   int argc,                            /* Number of entries in argv[] */
147573   const char * const *argv,            /* Tokenizer creation arguments */
147574   sqlite3_tokenizer **ppTokenizer      /* OUT: Created tokenizer */
147575 ){
147576   IcuTokenizer *p;
147577   int n = 0;
147578 
147579   if( argc>0 ){
147580     n = strlen(argv[0])+1;
147581   }
147582   p = (IcuTokenizer *)sqlite3_malloc(sizeof(IcuTokenizer)+n);
147583   if( !p ){
147584     return SQLITE_NOMEM;
147585   }
147586   memset(p, 0, sizeof(IcuTokenizer));
147587 
147588   if( n ){
147589     p->zLocale = (char *)&p[1];
147590     memcpy(p->zLocale, argv[0], n);
147591   }
147592 
147593   *ppTokenizer = (sqlite3_tokenizer *)p;
147594 
147595   return SQLITE_OK;
147596 }
147597 
147598 /*
147599 ** Destroy a tokenizer
147600 */
147601 static int icuDestroy(sqlite3_tokenizer *pTokenizer){
147602   IcuTokenizer *p = (IcuTokenizer *)pTokenizer;
147603   sqlite3_free(p);
147604   return SQLITE_OK;
147605 }
147606 
147607 /*
147608 ** Prepare to begin tokenizing a particular string.  The input
147609 ** string to be tokenized is pInput[0..nBytes-1].  A cursor
147610 ** used to incrementally tokenize this string is returned in
147611 ** *ppCursor.
147612 */
147613 static int icuOpen(
147614   sqlite3_tokenizer *pTokenizer,         /* The tokenizer */
147615   const char *zInput,                    /* Input string */
147616   int nInput,                            /* Length of zInput in bytes */
147617   sqlite3_tokenizer_cursor **ppCursor    /* OUT: Tokenization cursor */
147618 ){
147619   IcuTokenizer *p = (IcuTokenizer *)pTokenizer;
147620   IcuCursor *pCsr;
147621 
147622   const int32_t opt = U_FOLD_CASE_DEFAULT;
147623   UErrorCode status = U_ZERO_ERROR;
147624   int nChar;
147625 
147626   UChar32 c;
147627   int iInput = 0;
147628   int iOut = 0;
147629 
147630   *ppCursor = 0;
147631 
147632   if( zInput==0 ){
147633     nInput = 0;
147634     zInput = "";
147635   }else if( nInput<0 ){
147636     nInput = strlen(zInput);
147637   }
147638   nChar = nInput+1;
147639   pCsr = (IcuCursor *)sqlite3_malloc(
147640       sizeof(IcuCursor) +                /* IcuCursor */
147641       ((nChar+3)&~3) * sizeof(UChar) +   /* IcuCursor.aChar[] */
147642       (nChar+1) * sizeof(int)            /* IcuCursor.aOffset[] */
147643   );
147644   if( !pCsr ){
147645     return SQLITE_NOMEM;
147646   }
147647   memset(pCsr, 0, sizeof(IcuCursor));
147648   pCsr->aChar = (UChar *)&pCsr[1];
147649   pCsr->aOffset = (int *)&pCsr->aChar[(nChar+3)&~3];
147650 
147651   pCsr->aOffset[iOut] = iInput;
147652   U8_NEXT(zInput, iInput, nInput, c);
147653   while( c>0 ){
147654     int isError = 0;
147655     c = u_foldCase(c, opt);
147656     U16_APPEND(pCsr->aChar, iOut, nChar, c, isError);
147657     if( isError ){
147658       sqlite3_free(pCsr);
147659       return SQLITE_ERROR;
147660     }
147661     pCsr->aOffset[iOut] = iInput;
147662 
147663     if( iInput<nInput ){
147664       U8_NEXT(zInput, iInput, nInput, c);
147665     }else{
147666       c = 0;
147667     }
147668   }
147669 
147670   pCsr->pIter = ubrk_open(UBRK_WORD, p->zLocale, pCsr->aChar, iOut, &status);
147671   if( !U_SUCCESS(status) ){
147672     sqlite3_free(pCsr);
147673     return SQLITE_ERROR;
147674   }
147675   pCsr->nChar = iOut;
147676 
147677   ubrk_first(pCsr->pIter);
147678   *ppCursor = (sqlite3_tokenizer_cursor *)pCsr;
147679   return SQLITE_OK;
147680 }
147681 
147682 /*
147683 ** Close a tokenization cursor previously opened by a call to icuOpen().
147684 */
147685 static int icuClose(sqlite3_tokenizer_cursor *pCursor){
147686   IcuCursor *pCsr = (IcuCursor *)pCursor;
147687   ubrk_close(pCsr->pIter);
147688   sqlite3_free(pCsr->zBuffer);
147689   sqlite3_free(pCsr);
147690   return SQLITE_OK;
147691 }
147692 
147693 /*
147694 ** Extract the next token from a tokenization cursor.
147695 */
147696 static int icuNext(
147697   sqlite3_tokenizer_cursor *pCursor,  /* Cursor returned by simpleOpen */
147698   const char **ppToken,               /* OUT: *ppToken is the token text */
147699   int *pnBytes,                       /* OUT: Number of bytes in token */
147700   int *piStartOffset,                 /* OUT: Starting offset of token */
147701   int *piEndOffset,                   /* OUT: Ending offset of token */
147702   int *piPosition                     /* OUT: Position integer of token */
147703 ){
147704   IcuCursor *pCsr = (IcuCursor *)pCursor;
147705 
147706   int iStart = 0;
147707   int iEnd = 0;
147708   int nByte = 0;
147709 
147710   while( iStart==iEnd ){
147711     UChar32 c;
147712 
147713     iStart = ubrk_current(pCsr->pIter);
147714     iEnd = ubrk_next(pCsr->pIter);
147715     if( iEnd==UBRK_DONE ){
147716       return SQLITE_DONE;
147717     }
147718 
147719     while( iStart<iEnd ){
147720       int iWhite = iStart;
147721       U16_NEXT(pCsr->aChar, iWhite, pCsr->nChar, c);
147722       if( u_isspace(c) ){
147723         iStart = iWhite;
147724       }else{
147725         break;
147726       }
147727     }
147728     assert(iStart<=iEnd);
147729   }
147730 
147731   do {
147732     UErrorCode status = U_ZERO_ERROR;
147733     if( nByte ){
147734       char *zNew = sqlite3_realloc(pCsr->zBuffer, nByte);
147735       if( !zNew ){
147736         return SQLITE_NOMEM;
147737       }
147738       pCsr->zBuffer = zNew;
147739       pCsr->nBuffer = nByte;
147740     }
147741 
147742     u_strToUTF8(
147743         pCsr->zBuffer, pCsr->nBuffer, &nByte,    /* Output vars */
147744         &pCsr->aChar[iStart], iEnd-iStart,       /* Input vars */
147745         &status                                  /* Output success/failure */
147746     );
147747   } while( nByte>pCsr->nBuffer );
147748 
147749   *ppToken = pCsr->zBuffer;
147750   *pnBytes = nByte;
147751   *piStartOffset = pCsr->aOffset[iStart];
147752   *piEndOffset = pCsr->aOffset[iEnd];
147753   *piPosition = pCsr->iToken++;
147754 
147755   return SQLITE_OK;
147756 }
147757 
147758 /*
147759 ** The set of routines that implement the simple tokenizer
147760 */
147761 static const sqlite3_tokenizer_module icuTokenizerModule = {
147762   0,                           /* iVersion */
147763   icuCreate,                   /* xCreate  */
147764   icuDestroy,                  /* xCreate  */
147765   icuOpen,                     /* xOpen    */
147766   icuClose,                    /* xClose   */
147767   icuNext,                     /* xNext    */
147768 };
147769 
147770 /*
147771 ** Set *ppModule to point at the implementation of the ICU tokenizer.
147772 */
147773 SQLITE_PRIVATE void sqlite3Fts3IcuTokenizerModule(
147774   sqlite3_tokenizer_module const**ppModule
147775 ){
147776   *ppModule = &icuTokenizerModule;
147777 }
147778 
147779 #endif /* defined(SQLITE_ENABLE_ICU) */
147780 #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
147781 
147782 /************** End of fts3_icu.c ********************************************/
147783