xref: /freebsd/contrib/openbsm/libbsm/bsm_token.c (revision c243e4902be8df1e643c76b5f18b68bb77cc5268)
1 /*-
2  * Copyright (c) 2004-2009 Apple Inc.
3  * Copyright (c) 2005 SPARTA, Inc.
4  * All rights reserved.
5  *
6  * This code was developed in part by Robert N. M. Watson, Senior Principal
7  * Scientist, SPARTA, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1.  Redistributions of source code must retain the above copyright
13  *     notice, this list of conditions and the following disclaimer.
14  * 2.  Redistributions in binary form must reproduce the above copyright
15  *     notice, this list of conditions and the following disclaimer in the
16  *     documentation and/or other materials provided with the distribution.
17  * 3.  Neither the name of Apple Inc. ("Apple") nor the names of
18  *     its contributors may be used to endorse or promote products derived
19  *     from this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR
25  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
29  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
30  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $P4: //depot/projects/trustedbsd/openbsm/libbsm/bsm_token.c#93 $
34  */
35 
36 #include <sys/types.h>
37 
38 #include <config/config.h>
39 #if defined(HAVE_SYS_ENDIAN_H) && defined(HAVE_BE32ENC)
40 #include <sys/endian.h>
41 #else /* !HAVE_SYS_ENDIAN_H || !HAVE_BE32ENC */
42 #ifdef HAVE_MACHINE_ENDIAN_H
43 #include <machine/endian.h>
44 #else /* !HAVE_MACHINE_ENDIAN_H */
45 #ifdef HAVE_ENDIAN_H
46 #include <endian.h>
47 #else /* !HAVE_ENDIAN_H */
48 #error "No supported endian.h"
49 #endif /* !HAVE_ENDIAN_H */
50 #endif /* !HAVE_MACHINE_ENDIAN_H */
51 #include <compat/endian.h>
52 #endif /* !HAVE_SYS_ENDIAN_H || !HAVE_BE32ENC */
53 #ifdef HAVE_FULL_QUEUE_H
54 #include <sys/queue.h>
55 #else /* !HAVE_FULL_QUEUE_H */
56 #include <compat/queue.h>
57 #endif /* !HAVE_FULL_QUEUE_H */
58 
59 #include <sys/socket.h>
60 #include <sys/time.h>
61 #include <sys/un.h>
62 
63 #include <sys/ipc.h>
64 
65 #include <netinet/in.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/ip.h>
68 
69 #include <assert.h>
70 #include <errno.h>
71 #include <string.h>
72 #include <stdlib.h>
73 #include <unistd.h>
74 
75 #include <bsm/audit_internal.h>
76 #include <bsm/libbsm.h>
77 
78 #define	GET_TOKEN_AREA(t, dptr, length) do {				\
79 	(t) = malloc(sizeof(token_t));					\
80 	if ((t) != NULL) {						\
81 		(t)->len = (length);					\
82 		(dptr) = (t->t_data) = malloc((length) * sizeof(u_char)); \
83 		if ((dptr) == NULL) {					\
84 			free(t);					\
85 			(t) = NULL;					\
86 		} else							\
87 			memset((dptr), 0, (length));			\
88 	} else								\
89 		(dptr) = NULL;						\
90 	assert((t) == NULL || (dptr) != NULL);				\
91 } while (0)
92 
93 /*
94  * token ID                1 byte
95  * argument #              1 byte
96  * argument value          4 bytes/8 bytes (32-bit/64-bit value)
97  * text length             2 bytes
98  * text                    N bytes + 1 terminating NULL byte
99  */
100 token_t *
101 au_to_arg32(char n, const char *text, u_int32_t v)
102 {
103 	token_t *t;
104 	u_char *dptr = NULL;
105 	u_int16_t textlen;
106 
107 	textlen = strlen(text);
108 	textlen += 1;
109 
110 	GET_TOKEN_AREA(t, dptr, 2 * sizeof(u_char) + sizeof(u_int32_t) +
111 	    sizeof(u_int16_t) + textlen);
112 	if (t == NULL)
113 		return (NULL);
114 
115 	ADD_U_CHAR(dptr, AUT_ARG32);
116 	ADD_U_CHAR(dptr, n);
117 	ADD_U_INT32(dptr, v);
118 	ADD_U_INT16(dptr, textlen);
119 	ADD_STRING(dptr, text, textlen);
120 
121 	return (t);
122 }
123 
124 token_t *
125 au_to_arg64(char n, const char *text, u_int64_t v)
126 {
127 	token_t *t;
128 	u_char *dptr = NULL;
129 	u_int16_t textlen;
130 
131 	textlen = strlen(text);
132 	textlen += 1;
133 
134 	GET_TOKEN_AREA(t, dptr, 2 * sizeof(u_char) + sizeof(u_int64_t) +
135 	    sizeof(u_int16_t) + textlen);
136 	if (t == NULL)
137 		return (NULL);
138 
139 	ADD_U_CHAR(dptr, AUT_ARG64);
140 	ADD_U_CHAR(dptr, n);
141 	ADD_U_INT64(dptr, v);
142 	ADD_U_INT16(dptr, textlen);
143 	ADD_STRING(dptr, text, textlen);
144 
145 	return (t);
146 }
147 
148 token_t *
149 au_to_arg(char n, const char *text, u_int32_t v)
150 {
151 
152 	return (au_to_arg32(n, text, v));
153 }
154 
155 #if defined(_KERNEL) || defined(KERNEL)
156 /*
157  * token ID                1 byte
158  * file access mode        4 bytes
159  * owner user ID           4 bytes
160  * owner group ID          4 bytes
161  * file system ID          4 bytes
162  * node ID                 8 bytes
163  * device                  4 bytes/8 bytes (32-bit/64-bit)
164  */
165 token_t *
166 au_to_attr32(struct vnode_au_info *vni)
167 {
168 	token_t *t;
169 	u_char *dptr = NULL;
170 	u_int16_t pad0_16 = 0;
171 	u_int32_t pad0_32 = 0;
172 
173 	GET_TOKEN_AREA(t, dptr, sizeof(u_char) + 2 * sizeof(u_int16_t) +
174 	    3 * sizeof(u_int32_t) + sizeof(u_int64_t) + sizeof(u_int32_t));
175 	if (t == NULL)
176 		return (NULL);
177 
178 	ADD_U_CHAR(dptr, AUT_ATTR32);
179 
180 	/*
181 	 * BSD defines the size for the file mode as 2 bytes; BSM defines 4
182 	 * so pad with 0.
183 	 *
184 	 * XXXRW: Possibly should be conditionally compiled.
185 	 *
186 	 * XXXRW: Should any conversions take place on the mode?
187 	 */
188 	ADD_U_INT16(dptr, pad0_16);
189 	ADD_U_INT16(dptr, vni->vn_mode);
190 
191 	ADD_U_INT32(dptr, vni->vn_uid);
192 	ADD_U_INT32(dptr, vni->vn_gid);
193 	ADD_U_INT32(dptr, vni->vn_fsid);
194 
195 	/*
196 	 * Some systems use 32-bit file ID's, others use 64-bit file IDs.
197 	 * Attempt to handle both, and let the compiler sort it out.  If we
198 	 * could pick this out at compile-time, it would be better, so as to
199 	 * avoid the else case below.
200 	 */
201 	if (sizeof(vni->vn_fileid) == sizeof(uint32_t)) {
202 		ADD_U_INT32(dptr, pad0_32);
203 		ADD_U_INT32(dptr, vni->vn_fileid);
204 	} else if (sizeof(vni->vn_fileid) == sizeof(uint64_t))
205 		ADD_U_INT64(dptr, vni->vn_fileid);
206 	else
207 		ADD_U_INT64(dptr, 0LL);
208 
209 	ADD_U_INT32(dptr, vni->vn_dev);
210 
211 	return (t);
212 }
213 
214 token_t *
215 au_to_attr64(struct vnode_au_info *vni)
216 {
217 	token_t *t;
218 	u_char *dptr = NULL;
219 	u_int16_t pad0_16 = 0;
220 	u_int32_t pad0_32 = 0;
221 
222 	GET_TOKEN_AREA(t, dptr, sizeof(u_char) + 2 * sizeof(u_int16_t) +
223 	    3 * sizeof(u_int32_t) + sizeof(u_int64_t) * 2);
224 	if (t == NULL)
225 		return (NULL);
226 
227 	ADD_U_CHAR(dptr, AUT_ATTR64);
228 
229 	/*
230 	 * BSD defines the size for the file mode as 2 bytes; BSM defines 4
231 	 * so pad with 0.
232 	 *
233 	 * XXXRW: Possibly should be conditionally compiled.
234 	 *
235 	 * XXXRW: Should any conversions take place on the mode?
236 	 */
237 	ADD_U_INT16(dptr, pad0_16);
238 	ADD_U_INT16(dptr, vni->vn_mode);
239 
240 	ADD_U_INT32(dptr, vni->vn_uid);
241 	ADD_U_INT32(dptr, vni->vn_gid);
242 	ADD_U_INT32(dptr, vni->vn_fsid);
243 
244 	/*
245 	 * Some systems use 32-bit file ID's, other's use 64-bit file IDs.
246 	 * Attempt to handle both, and let the compiler sort it out.  If we
247 	 * could pick this out at compile-time, it would be better, so as to
248 	 * avoid the else case below.
249 	 */
250 	if (sizeof(vni->vn_fileid) == sizeof(uint32_t)) {
251 		ADD_U_INT32(dptr, pad0_32);
252 		ADD_U_INT32(dptr, vni->vn_fileid);
253 	} else if (sizeof(vni->vn_fileid) == sizeof(uint64_t))
254 		ADD_U_INT64(dptr, vni->vn_fileid);
255 	else
256 		ADD_U_INT64(dptr, 0LL);
257 
258 	ADD_U_INT64(dptr, vni->vn_dev);
259 
260 	return (t);
261 }
262 
263 token_t *
264 au_to_attr(struct vnode_au_info *vni)
265 {
266 
267 	return (au_to_attr32(vni));
268 }
269 #endif /* !(defined(_KERNEL) || defined(KERNEL) */
270 
271 /*
272  * token ID                1 byte
273  * how to print            1 byte
274  * basic unit              1 byte
275  * unit count              1 byte
276  * data items              (depends on basic unit)
277  */
278 token_t *
279 au_to_data(char unit_print, char unit_type, char unit_count, const char *p)
280 {
281 	token_t *t;
282 	u_char *dptr = NULL;
283 	size_t datasize, totdata;
284 
285 	/* Determine the size of the basic unit. */
286 	switch (unit_type) {
287 	case AUR_BYTE:
288 	/* case AUR_CHAR: */
289 		datasize = AUR_BYTE_SIZE;
290 		break;
291 
292 	case AUR_SHORT:
293 		datasize = AUR_SHORT_SIZE;
294 		break;
295 
296 	case AUR_INT32:
297 	/* case AUR_INT: */
298 		datasize = AUR_INT32_SIZE;
299 		break;
300 
301 	case AUR_INT64:
302 		datasize = AUR_INT64_SIZE;
303 		break;
304 
305 	default:
306 		errno = EINVAL;
307 		return (NULL);
308 	}
309 
310 	totdata = datasize * unit_count;
311 
312 	GET_TOKEN_AREA(t, dptr, 4 * sizeof(u_char) + totdata);
313 	if (t == NULL)
314 		return (NULL);
315 
316 	/*
317 	 * XXXRW: We should be byte-swapping each data item for multi-byte
318 	 * types.
319 	 */
320 	ADD_U_CHAR(dptr, AUT_DATA);
321 	ADD_U_CHAR(dptr, unit_print);
322 	ADD_U_CHAR(dptr, unit_type);
323 	ADD_U_CHAR(dptr, unit_count);
324 	ADD_MEM(dptr, p, totdata);
325 
326 	return (t);
327 }
328 
329 
330 /*
331  * token ID                1 byte
332  * status		   4 bytes
333  * return value            4 bytes
334  */
335 token_t *
336 au_to_exit(int retval, int err)
337 {
338 	token_t *t;
339 	u_char *dptr = NULL;
340 
341 	GET_TOKEN_AREA(t, dptr, sizeof(u_char) + 2 * sizeof(u_int32_t));
342 	if (t == NULL)
343 		return (NULL);
344 
345 	ADD_U_CHAR(dptr, AUT_EXIT);
346 	ADD_U_INT32(dptr, err);
347 	ADD_U_INT32(dptr, retval);
348 
349 	return (t);
350 }
351 
352 /*
353  */
354 token_t *
355 au_to_groups(int *groups)
356 {
357 
358 	return (au_to_newgroups(AUDIT_MAX_GROUPS, (gid_t *)groups));
359 }
360 
361 /*
362  * token ID                1 byte
363  * number groups           2 bytes
364  * group list              count * 4 bytes
365  */
366 token_t *
367 au_to_newgroups(u_int16_t n, gid_t *groups)
368 {
369 	token_t *t;
370 	u_char *dptr = NULL;
371 	int i;
372 
373 	GET_TOKEN_AREA(t, dptr, sizeof(u_char) + sizeof(u_int16_t) +
374 	    n * sizeof(u_int32_t));
375 	if (t == NULL)
376 		return (NULL);
377 
378 	ADD_U_CHAR(dptr, AUT_NEWGROUPS);
379 	ADD_U_INT16(dptr, n);
380 	for (i = 0; i < n; i++)
381 		ADD_U_INT32(dptr, groups[i]);
382 
383 	return (t);
384 }
385 
386 /*
387  * token ID                1 byte
388  * internet address        4 bytes
389  */
390 token_t *
391 au_to_in_addr(struct in_addr *internet_addr)
392 {
393 	token_t *t;
394 	u_char *dptr = NULL;
395 
396 	GET_TOKEN_AREA(t, dptr, sizeof(u_char) + sizeof(uint32_t));
397 	if (t == NULL)
398 		return (NULL);
399 
400 	ADD_U_CHAR(dptr, AUT_IN_ADDR);
401 	ADD_MEM(dptr, &internet_addr->s_addr, sizeof(uint32_t));
402 
403 	return (t);
404 }
405 
406 /*
407  * token ID                1 byte
408  * address type/length     4 bytes
409  * address                16 bytes
410  */
411 token_t *
412 au_to_in_addr_ex(struct in6_addr *internet_addr)
413 {
414 	token_t *t;
415 	u_char *dptr = NULL;
416 	u_int32_t type = AU_IPv6;
417 
418 	GET_TOKEN_AREA(t, dptr, sizeof(u_char) + 5 * sizeof(uint32_t));
419 	if (t == NULL)
420 		return (NULL);
421 
422 	ADD_U_CHAR(dptr, AUT_IN_ADDR_EX);
423 	ADD_U_INT32(dptr, type);
424 	ADD_MEM(dptr, internet_addr, 4 * sizeof(uint32_t));
425 
426 	return (t);
427 }
428 
429 /*
430  * token ID                1 byte
431  * ip header		   20 bytes
432  *
433  * The IP header should be submitted in network byte order.
434  */
435 token_t *
436 au_to_ip(struct ip *ip)
437 {
438 	token_t *t;
439 	u_char *dptr = NULL;
440 
441 	GET_TOKEN_AREA(t, dptr, sizeof(u_char) + sizeof(struct ip));
442 	if (t == NULL)
443 		return (NULL);
444 
445 	ADD_U_CHAR(dptr, AUT_IP);
446 	ADD_MEM(dptr, ip, sizeof(struct ip));
447 
448 	return (t);
449 }
450 
451 /*
452  * token ID                1 byte
453  * object ID type          1 byte
454  * object ID               4 bytes
455  */
456 token_t *
457 au_to_ipc(char type, int id)
458 {
459 	token_t *t;
460 	u_char *dptr = NULL;
461 
462 	GET_TOKEN_AREA(t, dptr, 2 * sizeof(u_char) + sizeof(u_int32_t));
463 	if (t == NULL)
464 		return (NULL);
465 
466 	ADD_U_CHAR(dptr, AUT_IPC);
467 	ADD_U_CHAR(dptr, type);
468 	ADD_U_INT32(dptr, id);
469 
470 	return (t);
471 }
472 
473 /*
474  * token ID                1 byte
475  * owner user ID           4 bytes
476  * owner group ID          4 bytes
477  * creator user ID         4 bytes
478  * creator group ID        4 bytes
479  * access mode             4 bytes
480  * slot sequence #         4 bytes
481  * key                     4 bytes
482  */
483 token_t *
484 au_to_ipc_perm(struct ipc_perm *perm)
485 {
486 	token_t *t;
487 	u_char *dptr = NULL;
488 	u_int16_t pad0 = 0;
489 
490 	GET_TOKEN_AREA(t, dptr, sizeof(u_char) + 12 * sizeof(u_int16_t) +
491 	    sizeof(u_int32_t));
492 	if (t == NULL)
493 		return (NULL);
494 
495 	ADD_U_CHAR(dptr, AUT_IPC_PERM);
496 
497 	/*
498 	 * Systems vary significantly in what types they use in struct
499 	 * ipc_perm; at least a few still use 16-bit uid's and gid's, so
500 	 * allow for that, as BSM define 32-bit values here.
501 	 * Some systems define the sizes for ipc_perm members as 2 bytes;
502 	 * BSM defines 4 so pad with 0.
503 	 *
504 	 * XXXRW: Possibly shoulid be conditionally compiled, and more cases
505 	 * need to be handled.
506 	 */
507 	if (sizeof(perm->uid) != sizeof(u_int32_t)) {
508 		ADD_U_INT16(dptr, pad0);
509 		ADD_U_INT16(dptr, perm->uid);
510 		ADD_U_INT16(dptr, pad0);
511 		ADD_U_INT16(dptr, perm->gid);
512 		ADD_U_INT16(dptr, pad0);
513 		ADD_U_INT16(dptr, perm->cuid);
514 		ADD_U_INT16(dptr, pad0);
515 		ADD_U_INT16(dptr, perm->cgid);
516 	} else {
517 		ADD_U_INT32(dptr, perm->uid);
518 		ADD_U_INT32(dptr, perm->gid);
519 		ADD_U_INT32(dptr, perm->cuid);
520 		ADD_U_INT32(dptr, perm->cgid);
521 	}
522 
523 	ADD_U_INT16(dptr, pad0);
524 	ADD_U_INT16(dptr, perm->mode);
525 
526 	ADD_U_INT16(dptr, pad0);
527 
528 #ifdef HAVE_IPC_PERM___SEQ
529 	ADD_U_INT16(dptr, perm->__seq);
530 #else	/* HAVE_IPC_PERM___SEQ */
531 #ifdef  HAVE_IPC_PERM__SEQ
532 	ADD_U_INT16(dptr, perm->_seq);
533 #else	/* HAVE_IPC_PERM__SEQ */
534 	ADD_U_INT16(dptr, perm->seq);
535 #endif	/* HAVE_IPC_PERM__SEQ */
536 #endif	/* HAVE_IPC_PERM___SEQ */
537 
538 #ifdef HAVE_IPC_PERM___KEY
539 	ADD_U_INT32(dptr, perm->__key);
540 #else	/* HAVE_IPC_PERM___KEY */
541 #ifdef  HAVE_IPC_PERM__KEY
542 	ADD_U_INT32(dptr, perm->_key);
543 #else	/* HAVE_IPC_PERM__KEY */
544 	ADD_U_INT32(dptr, perm->key);
545 #endif	/* HAVE_IPC_PERM__KEY */
546 #endif	/* HAVE_IPC_PERM___KEY */
547 
548 	return (t);
549 }
550 
551 /*
552  * token ID                1 byte
553  * port IP address         2 bytes
554  */
555 token_t *
556 au_to_iport(u_int16_t iport)
557 {
558 	token_t *t;
559 	u_char *dptr = NULL;
560 
561 	GET_TOKEN_AREA(t, dptr, sizeof(u_char) + sizeof(u_int16_t));
562 	if (t == NULL)
563 		return (NULL);
564 
565 	ADD_U_CHAR(dptr, AUT_IPORT);
566 	ADD_U_INT16(dptr, iport);
567 
568 	return (t);
569 }
570 
571 /*
572  * token ID                1 byte
573  * size                    2 bytes
574  * data                    size bytes
575  */
576 token_t *
577 au_to_opaque(const char *data, u_int16_t bytes)
578 {
579 	token_t *t;
580 	u_char *dptr = NULL;
581 
582 	GET_TOKEN_AREA(t, dptr, sizeof(u_char) + sizeof(u_int16_t) + bytes);
583 	if (t == NULL)
584 		return (NULL);
585 
586 	ADD_U_CHAR(dptr, AUT_OPAQUE);
587 	ADD_U_INT16(dptr, bytes);
588 	ADD_MEM(dptr, data, bytes);
589 
590 	return (t);
591 }
592 
593 /*
594  * token ID                1 byte
595  * seconds of time         4 bytes
596  * milliseconds of time    4 bytes
597  * file name len           2 bytes
598  * file pathname           N bytes + 1 terminating NULL byte
599  */
600 token_t *
601 au_to_file(const char *file, struct timeval tm)
602 {
603 	token_t *t;
604 	u_char *dptr = NULL;
605 	u_int16_t filelen;
606 	u_int32_t timems;
607 
608 	filelen = strlen(file);
609 	filelen += 1;
610 
611 	GET_TOKEN_AREA(t, dptr, sizeof(u_char) + 2 * sizeof(u_int32_t) +
612 	    sizeof(u_int16_t) + filelen);
613 	if (t == NULL)
614 		return (NULL);
615 
616 	timems = tm.tv_usec/1000;
617 
618 	ADD_U_CHAR(dptr, AUT_OTHER_FILE32);
619 	ADD_U_INT32(dptr, tm.tv_sec);
620 	ADD_U_INT32(dptr, timems);	/* We need time in ms. */
621 	ADD_U_INT16(dptr, filelen);
622 	ADD_STRING(dptr, file, filelen);
623 
624 	return (t);
625 }
626 
627 /*
628  * token ID                1 byte
629  * text length             2 bytes
630  * text                    N bytes + 1 terminating NULL byte
631  */
632 token_t *
633 au_to_text(const char *text)
634 {
635 	token_t *t;
636 	u_char *dptr = NULL;
637 	u_int16_t textlen;
638 
639 	textlen = strlen(text);
640 	textlen += 1;
641 
642 	/* XXXRW: Should validate length against token size limit. */
643 
644 	GET_TOKEN_AREA(t, dptr, sizeof(u_char) + sizeof(u_int16_t) + textlen);
645 	if (t == NULL)
646 		return (NULL);
647 
648 	ADD_U_CHAR(dptr, AUT_TEXT);
649 	ADD_U_INT16(dptr, textlen);
650 	ADD_STRING(dptr, text, textlen);
651 
652 	return (t);
653 }
654 
655 /*
656  * token ID                1 byte
657  * path length             2 bytes
658  * path                    N bytes + 1 terminating NULL byte
659  */
660 token_t *
661 au_to_path(const char *text)
662 {
663 	token_t *t;
664 	u_char *dptr = NULL;
665 	u_int16_t textlen;
666 
667 	textlen = strlen(text);
668 	textlen += 1;
669 
670 	GET_TOKEN_AREA(t, dptr, sizeof(u_char) + sizeof(u_int16_t) + textlen);
671 	if (t == NULL)
672 		return (NULL);
673 
674 	ADD_U_CHAR(dptr, AUT_PATH);
675 	ADD_U_INT16(dptr, textlen);
676 	ADD_STRING(dptr, text, textlen);
677 
678 	return (t);
679 }
680 
681 /*
682  * token ID                1 byte
683  * audit ID                4 bytes
684  * effective user ID       4 bytes
685  * effective group ID      4 bytes
686  * real user ID            4 bytes
687  * real group ID           4 bytes
688  * process ID              4 bytes
689  * session ID              4 bytes
690  * terminal ID
691  *   port ID               4 bytes/8 bytes (32-bit/64-bit value)
692  *   machine address       4 bytes
693  */
694 token_t *
695 au_to_process32(au_id_t auid, uid_t euid, gid_t egid, uid_t ruid, gid_t rgid,
696     pid_t pid, au_asid_t sid, au_tid_t *tid)
697 {
698 	token_t *t;
699 	u_char *dptr = NULL;
700 
701 	GET_TOKEN_AREA(t, dptr, sizeof(u_char) + 9 * sizeof(u_int32_t));
702 	if (t == NULL)
703 		return (NULL);
704 
705 	ADD_U_CHAR(dptr, AUT_PROCESS32);
706 	ADD_U_INT32(dptr, auid);
707 	ADD_U_INT32(dptr, euid);
708 	ADD_U_INT32(dptr, egid);
709 	ADD_U_INT32(dptr, ruid);
710 	ADD_U_INT32(dptr, rgid);
711 	ADD_U_INT32(dptr, pid);
712 	ADD_U_INT32(dptr, sid);
713 	ADD_U_INT32(dptr, tid->port);
714 
715 	/*
716 	 * Note: Solaris will write out IPv6 addresses here as a 32-bit
717 	 * address type and 16 bytes of address, but for IPv4 addresses it
718 	 * simply writes the 4-byte address directly.  We support only IPv4
719 	 * addresses for process32 tokens.
720 	 */
721 	ADD_MEM(dptr, &tid->machine, sizeof(u_int32_t));
722 
723 	return (t);
724 }
725 
726 token_t *
727 au_to_process64(au_id_t auid, uid_t euid, gid_t egid, uid_t ruid, gid_t rgid,
728     pid_t pid, au_asid_t sid, au_tid_t *tid)
729 {
730 	token_t *t;
731 	u_char *dptr = NULL;
732 
733 	GET_TOKEN_AREA(t, dptr, sizeof(u_char) + 8 * sizeof(u_int32_t) +
734 	    sizeof(u_int64_t));
735 	if (t == NULL)
736 		return (NULL);
737 
738 	ADD_U_CHAR(dptr, AUT_PROCESS64);
739 	ADD_U_INT32(dptr, auid);
740 	ADD_U_INT32(dptr, euid);
741 	ADD_U_INT32(dptr, egid);
742 	ADD_U_INT32(dptr, ruid);
743 	ADD_U_INT32(dptr, rgid);
744 	ADD_U_INT32(dptr, pid);
745 	ADD_U_INT32(dptr, sid);
746 	ADD_U_INT64(dptr, tid->port);
747 
748 	/*
749 	 * Note: Solaris will write out IPv6 addresses here as a 32-bit
750 	 * address type and 16 bytes of address, but for IPv4 addresses it
751 	 * simply writes the 4-byte address directly.  We support only IPv4
752 	 * addresses for process64 tokens.
753 	 */
754 	ADD_MEM(dptr, &tid->machine, sizeof(u_int32_t));
755 
756 	return (t);
757 }
758 
759 token_t *
760 au_to_process(au_id_t auid, uid_t euid, gid_t egid, uid_t ruid, gid_t rgid,
761     pid_t pid, au_asid_t sid, au_tid_t *tid)
762 {
763 
764 	return (au_to_process32(auid, euid, egid, ruid, rgid, pid, sid,
765 	    tid));
766 }
767 
768 /*
769  * token ID                1 byte
770  * audit ID                4 bytes
771  * effective user ID       4 bytes
772  * effective group ID      4 bytes
773  * real user ID            4 bytes
774  * real group ID           4 bytes
775  * process ID              4 bytes
776  * session ID              4 bytes
777  * terminal ID
778  *   port ID               4 bytes/8 bytes (32-bit/64-bit value)
779  *   address type-len      4 bytes
780  *   machine address      16 bytes
781  */
782 token_t *
783 au_to_process32_ex(au_id_t auid, uid_t euid, gid_t egid, uid_t ruid,
784     gid_t rgid, pid_t pid, au_asid_t sid, au_tid_addr_t *tid)
785 {
786 	token_t *t;
787 	u_char *dptr = NULL;
788 
789 	if (tid->at_type == AU_IPv4)
790 		GET_TOKEN_AREA(t, dptr, sizeof(u_char) +
791 		    10 * sizeof(u_int32_t));
792 	else if (tid->at_type == AU_IPv6)
793 		GET_TOKEN_AREA(t, dptr, sizeof(u_char) +
794 		    13 * sizeof(u_int32_t));
795 	else {
796 		errno = EINVAL;
797 		return (NULL);
798 	}
799 	if (t == NULL)
800 		return (NULL);
801 
802 	ADD_U_CHAR(dptr, AUT_PROCESS32_EX);
803 	ADD_U_INT32(dptr, auid);
804 	ADD_U_INT32(dptr, euid);
805 	ADD_U_INT32(dptr, egid);
806 	ADD_U_INT32(dptr, ruid);
807 	ADD_U_INT32(dptr, rgid);
808 	ADD_U_INT32(dptr, pid);
809 	ADD_U_INT32(dptr, sid);
810 	ADD_U_INT32(dptr, tid->at_port);
811 	ADD_U_INT32(dptr, tid->at_type);
812 	ADD_MEM(dptr, &tid->at_addr[0], sizeof(u_int32_t));
813 	if (tid->at_type == AU_IPv6) {
814 		ADD_MEM(dptr, &tid->at_addr[1], sizeof(u_int32_t));
815 		ADD_MEM(dptr, &tid->at_addr[2], sizeof(u_int32_t));
816 		ADD_MEM(dptr, &tid->at_addr[3], sizeof(u_int32_t));
817 	}
818 
819 	return (t);
820 }
821 
822 token_t *
823 au_to_process64_ex(au_id_t auid, uid_t euid, gid_t egid, uid_t ruid,
824     gid_t rgid, pid_t pid, au_asid_t sid, au_tid_addr_t *tid)
825 {
826 	token_t *t;
827 	u_char *dptr = NULL;
828 
829 	if (tid->at_type == AU_IPv4)
830 		GET_TOKEN_AREA(t, dptr, sizeof(u_char) +
831 		    7 * sizeof(u_int32_t) + sizeof(u_int64_t) +
832 		    2 * sizeof(u_int32_t));
833 	else if (tid->at_type == AU_IPv6)
834 		GET_TOKEN_AREA(t, dptr, sizeof(u_char) +
835 		    7 * sizeof(u_int32_t) + sizeof(u_int64_t) +
836 		    5 * sizeof(u_int32_t));
837 	else {
838 		errno = EINVAL;
839 		return (NULL);
840 	}
841 	if (t == NULL)
842 		return (NULL);
843 
844 	ADD_U_CHAR(dptr, AUT_PROCESS64_EX);
845 	ADD_U_INT32(dptr, auid);
846 	ADD_U_INT32(dptr, euid);
847 	ADD_U_INT32(dptr, egid);
848 	ADD_U_INT32(dptr, ruid);
849 	ADD_U_INT32(dptr, rgid);
850 	ADD_U_INT32(dptr, pid);
851 	ADD_U_INT32(dptr, sid);
852 	ADD_U_INT64(dptr, tid->at_port);
853 	ADD_U_INT32(dptr, tid->at_type);
854 	ADD_MEM(dptr, &tid->at_addr[0], sizeof(u_int32_t));
855 	if (tid->at_type == AU_IPv6) {
856 		ADD_MEM(dptr, &tid->at_addr[1], sizeof(u_int32_t));
857 		ADD_MEM(dptr, &tid->at_addr[2], sizeof(u_int32_t));
858 		ADD_MEM(dptr, &tid->at_addr[3], sizeof(u_int32_t));
859 	}
860 
861 	return (t);
862 }
863 
864 token_t *
865 au_to_process_ex(au_id_t auid, uid_t euid, gid_t egid, uid_t ruid,
866     gid_t rgid, pid_t pid, au_asid_t sid, au_tid_addr_t *tid)
867 {
868 
869 	return (au_to_process32_ex(auid, euid, egid, ruid, rgid, pid, sid,
870 	    tid));
871 }
872 
873 /*
874  * token ID                1 byte
875  * error status            1 byte
876  * return value            4 bytes/8 bytes (32-bit/64-bit value)
877  */
878 token_t *
879 au_to_return32(char status, u_int32_t ret)
880 {
881 	token_t *t;
882 	u_char *dptr = NULL;
883 
884 	GET_TOKEN_AREA(t, dptr, 2 * sizeof(u_char) + sizeof(u_int32_t));
885 	if (t == NULL)
886 		return (NULL);
887 
888 	ADD_U_CHAR(dptr, AUT_RETURN32);
889 	ADD_U_CHAR(dptr, status);
890 	ADD_U_INT32(dptr, ret);
891 
892 	return (t);
893 }
894 
895 token_t *
896 au_to_return64(char status, u_int64_t ret)
897 {
898 	token_t *t;
899 	u_char *dptr = NULL;
900 
901 	GET_TOKEN_AREA(t, dptr, 2 * sizeof(u_char) + sizeof(u_int64_t));
902 	if (t == NULL)
903 		return (NULL);
904 
905 	ADD_U_CHAR(dptr, AUT_RETURN64);
906 	ADD_U_CHAR(dptr, status);
907 	ADD_U_INT64(dptr, ret);
908 
909 	return (t);
910 }
911 
912 token_t *
913 au_to_return(char status, u_int32_t ret)
914 {
915 
916 	return (au_to_return32(status, ret));
917 }
918 
919 /*
920  * token ID                1 byte
921  * sequence number         4 bytes
922  */
923 token_t *
924 au_to_seq(long audit_count)
925 {
926 	token_t *t;
927 	u_char *dptr = NULL;
928 
929 	GET_TOKEN_AREA(t, dptr, sizeof(u_char) + sizeof(u_int32_t));
930 	if (t == NULL)
931 		return (NULL);
932 
933 	ADD_U_CHAR(dptr, AUT_SEQ);
934 	ADD_U_INT32(dptr, audit_count);
935 
936 	return (t);
937 }
938 
939 /*
940  * token ID                1 byte
941  * socket domain           2 bytes
942  * socket type             2 bytes
943  * address type            2 byte
944  * local port              2 bytes
945  * local address           4 bytes/16 bytes (IPv4/IPv6 address)
946  * remote port             2 bytes
947  * remote address          4 bytes/16 bytes (IPv4/IPv6 address)
948  *
949  * Domain and type arguments to this routine are assumed to already have been
950  * converted to the BSM constant space, so we don't do that here.
951  */
952 token_t *
953 au_to_socket_ex(u_short so_domain, u_short so_type,
954     struct sockaddr *sa_local, struct sockaddr *sa_remote)
955 {
956 	token_t *t;
957 	u_char *dptr = NULL;
958 	struct sockaddr_in *sin;
959 	struct sockaddr_in6 *sin6;
960 
961 	if (so_domain == AF_INET)
962 		GET_TOKEN_AREA(t, dptr, sizeof(u_char) +
963 		    5 * sizeof(u_int16_t) + 2 * sizeof(u_int32_t));
964 	else if (so_domain == AF_INET6)
965 		GET_TOKEN_AREA(t, dptr, sizeof(u_char) +
966 		    5 * sizeof(u_int16_t) + 8 * sizeof(u_int32_t));
967 	else {
968 		errno = EINVAL;
969 		return (NULL);
970 	}
971 
972 	ADD_U_CHAR(dptr, AUT_SOCKET_EX);
973 	ADD_U_INT16(dptr, au_domain_to_bsm(so_domain));
974 	ADD_U_INT16(dptr, au_socket_type_to_bsm(so_type));
975 	if (so_domain == AF_INET) {
976 		ADD_U_INT16(dptr, AU_IPv4);
977 		sin = (struct sockaddr_in *)sa_local;
978 		ADD_MEM(dptr, &sin->sin_port, sizeof(uint16_t));
979 		ADD_MEM(dptr, &sin->sin_addr.s_addr, sizeof(uint32_t));
980 		sin = (struct sockaddr_in *)sa_remote;
981 		ADD_MEM(dptr, &sin->sin_port, sizeof(uint16_t));
982 		ADD_MEM(dptr, &sin->sin_addr.s_addr, sizeof(uint32_t));
983 	} else {
984 		ADD_U_INT16(dptr, AU_IPv6);
985 		sin6 = (struct sockaddr_in6 *)sa_local;
986 		ADD_MEM(dptr, &sin6->sin6_port, sizeof(uint16_t));
987 		ADD_MEM(dptr, &sin6->sin6_addr, 4 * sizeof(uint32_t));
988 		sin6 = (struct sockaddr_in6 *)sa_remote;
989 		ADD_MEM(dptr, &sin6->sin6_port, sizeof(uint16_t));
990 		ADD_MEM(dptr, &sin6->sin6_addr, 4 * sizeof(uint32_t));
991 	}
992 
993 	return (t);
994 }
995 
996 /*
997  * token ID                1 byte
998  * socket family           2 bytes
999  * path                    (up to) 104 bytes + NULL  (NULL terminated string)
1000  */
1001 token_t *
1002 au_to_sock_unix(struct sockaddr_un *so)
1003 {
1004 	token_t *t;
1005 	u_char *dptr;
1006 
1007 	GET_TOKEN_AREA(t, dptr, 3 * sizeof(u_char) + strlen(so->sun_path) + 1);
1008 	if (t == NULL)
1009 		return (NULL);
1010 
1011 	ADD_U_CHAR(dptr, AUT_SOCKUNIX);
1012 	/* BSM token has two bytes for family */
1013 	ADD_U_CHAR(dptr, 0);
1014 	ADD_U_CHAR(dptr, so->sun_family);
1015 	ADD_STRING(dptr, so->sun_path, strlen(so->sun_path) + 1);
1016 
1017 	return (t);
1018 }
1019 
1020 /*
1021  * token ID                1 byte
1022  * socket family           2 bytes
1023  * local port              2 bytes
1024  * socket address          4 bytes
1025  */
1026 token_t *
1027 au_to_sock_inet32(struct sockaddr_in *so)
1028 {
1029 	token_t *t;
1030 	u_char *dptr = NULL;
1031 	uint16_t family;
1032 
1033 	GET_TOKEN_AREA(t, dptr, sizeof(u_char) + 2 * sizeof(uint16_t) +
1034 	    sizeof(uint32_t));
1035 	if (t == NULL)
1036 		return (NULL);
1037 
1038 	ADD_U_CHAR(dptr, AUT_SOCKINET32);
1039 	/*
1040 	 * BSM defines the family field as 16 bits, but many operating
1041 	 * systems have an 8-bit sin_family field.  Extend to 16 bits before
1042 	 * writing into the token.  Assume that both the port and the address
1043 	 * in the sockaddr_in are already in network byte order, but family
1044 	 * is in local byte order.
1045 	 *
1046 	 * XXXRW: Should a name space conversion be taking place on the value
1047 	 * of sin_family?
1048 	 */
1049 	family = so->sin_family;
1050 	ADD_U_INT16(dptr, family);
1051 	ADD_MEM(dptr, &so->sin_port, sizeof(uint16_t));
1052 	ADD_MEM(dptr, &so->sin_addr.s_addr, sizeof(uint32_t));
1053 
1054 	return (t);
1055 }
1056 
1057 token_t *
1058 au_to_sock_inet128(struct sockaddr_in6 *so)
1059 {
1060 	token_t *t;
1061 	u_char *dptr = NULL;
1062 
1063 	GET_TOKEN_AREA(t, dptr, 3 * sizeof(u_char) + sizeof(u_int16_t) +
1064 	    4 * sizeof(u_int32_t));
1065 	if (t == NULL)
1066 		return (NULL);
1067 
1068 	ADD_U_CHAR(dptr, AUT_SOCKINET128);
1069 	/*
1070 	 * In BSD, sin6_family is one octet, but BSM defines the token to
1071 	 * store two. So we copy in a 0 first.  XXXRW: Possibly should be
1072 	 * conditionally compiled.
1073 	 */
1074 	ADD_U_CHAR(dptr, 0);
1075 	ADD_U_CHAR(dptr, so->sin6_family);
1076 
1077 	ADD_U_INT16(dptr, so->sin6_port);
1078 	ADD_MEM(dptr, &so->sin6_addr, 4 * sizeof(uint32_t));
1079 
1080 	return (t);
1081 }
1082 
1083 token_t *
1084 au_to_sock_inet(struct sockaddr_in *so)
1085 {
1086 
1087 	return (au_to_sock_inet32(so));
1088 }
1089 
1090 /*
1091  * token ID                1 byte
1092  * audit ID                4 bytes
1093  * effective user ID       4 bytes
1094  * effective group ID      4 bytes
1095  * real user ID            4 bytes
1096  * real group ID           4 bytes
1097  * process ID              4 bytes
1098  * session ID              4 bytes
1099  * terminal ID
1100  *   port ID               4 bytes/8 bytes (32-bit/64-bit value)
1101  *   machine address       4 bytes
1102  */
1103 token_t *
1104 au_to_subject32(au_id_t auid, uid_t euid, gid_t egid, uid_t ruid, gid_t rgid,
1105     pid_t pid, au_asid_t sid, au_tid_t *tid)
1106 {
1107 	token_t *t;
1108 	u_char *dptr = NULL;
1109 
1110 	GET_TOKEN_AREA(t, dptr, sizeof(u_char) + 9 * sizeof(u_int32_t));
1111 	if (t == NULL)
1112 		return (NULL);
1113 
1114 	ADD_U_CHAR(dptr, AUT_SUBJECT32);
1115 	ADD_U_INT32(dptr, auid);
1116 	ADD_U_INT32(dptr, euid);
1117 	ADD_U_INT32(dptr, egid);
1118 	ADD_U_INT32(dptr, ruid);
1119 	ADD_U_INT32(dptr, rgid);
1120 	ADD_U_INT32(dptr, pid);
1121 	ADD_U_INT32(dptr, sid);
1122 	ADD_U_INT32(dptr, tid->port);
1123 	ADD_MEM(dptr, &tid->machine, sizeof(u_int32_t));
1124 
1125 	return (t);
1126 }
1127 
1128 token_t *
1129 au_to_subject64(au_id_t auid, uid_t euid, gid_t egid, uid_t ruid, gid_t rgid,
1130     pid_t pid, au_asid_t sid, au_tid_t *tid)
1131 {
1132 	token_t *t;
1133 	u_char *dptr = NULL;
1134 
1135 	GET_TOKEN_AREA(t, dptr, sizeof(u_char) + 7 * sizeof(u_int32_t) +
1136 	    sizeof(u_int64_t) + sizeof(u_int32_t));
1137 	if (t == NULL)
1138 		return (NULL);
1139 
1140 	ADD_U_CHAR(dptr, AUT_SUBJECT64);
1141 	ADD_U_INT32(dptr, auid);
1142 	ADD_U_INT32(dptr, euid);
1143 	ADD_U_INT32(dptr, egid);
1144 	ADD_U_INT32(dptr, ruid);
1145 	ADD_U_INT32(dptr, rgid);
1146 	ADD_U_INT32(dptr, pid);
1147 	ADD_U_INT32(dptr, sid);
1148 	ADD_U_INT64(dptr, tid->port);
1149 	ADD_MEM(dptr, &tid->machine, sizeof(u_int32_t));
1150 
1151 	return (t);
1152 }
1153 
1154 token_t *
1155 au_to_subject(au_id_t auid, uid_t euid, gid_t egid, uid_t ruid, gid_t rgid,
1156     pid_t pid, au_asid_t sid, au_tid_t *tid)
1157 {
1158 
1159 	return (au_to_subject32(auid, euid, egid, ruid, rgid, pid, sid,
1160 	    tid));
1161 }
1162 
1163 /*
1164  * token ID                1 byte
1165  * audit ID                4 bytes
1166  * effective user ID       4 bytes
1167  * effective group ID      4 bytes
1168  * real user ID            4 bytes
1169  * real group ID           4 bytes
1170  * process ID              4 bytes
1171  * session ID              4 bytes
1172  * terminal ID
1173  *   port ID               4 bytes/8 bytes (32-bit/64-bit value)
1174  *   address type/length   4 bytes
1175  *   machine address      16 bytes
1176  */
1177 token_t *
1178 au_to_subject32_ex(au_id_t auid, uid_t euid, gid_t egid, uid_t ruid,
1179     gid_t rgid, pid_t pid, au_asid_t sid, au_tid_addr_t *tid)
1180 {
1181 	token_t *t;
1182 	u_char *dptr = NULL;
1183 
1184 	if (tid->at_type == AU_IPv4)
1185 		GET_TOKEN_AREA(t, dptr, sizeof(u_char) + 10 *
1186 		    sizeof(u_int32_t));
1187 	else if (tid->at_type == AU_IPv6)
1188 		GET_TOKEN_AREA(t, dptr, sizeof(u_char) + 13 *
1189 		    sizeof(u_int32_t));
1190 	else {
1191 		errno = EINVAL;
1192 		return (NULL);
1193 	}
1194 	if (t == NULL)
1195 		return (NULL);
1196 
1197 	ADD_U_CHAR(dptr, AUT_SUBJECT32_EX);
1198 	ADD_U_INT32(dptr, auid);
1199 	ADD_U_INT32(dptr, euid);
1200 	ADD_U_INT32(dptr, egid);
1201 	ADD_U_INT32(dptr, ruid);
1202 	ADD_U_INT32(dptr, rgid);
1203 	ADD_U_INT32(dptr, pid);
1204 	ADD_U_INT32(dptr, sid);
1205 	ADD_U_INT32(dptr, tid->at_port);
1206 	ADD_U_INT32(dptr, tid->at_type);
1207 	if (tid->at_type == AU_IPv6)
1208 		ADD_MEM(dptr, &tid->at_addr[0], 4 * sizeof(u_int32_t));
1209 	else
1210 		ADD_MEM(dptr, &tid->at_addr[0], sizeof(u_int32_t));
1211 
1212 	return (t);
1213 }
1214 
1215 token_t *
1216 au_to_subject64_ex(au_id_t auid, uid_t euid, gid_t egid, uid_t ruid,
1217     gid_t rgid, pid_t pid, au_asid_t sid, au_tid_addr_t *tid)
1218 {
1219 	token_t *t;
1220 	u_char *dptr = NULL;
1221 
1222 	if (tid->at_type == AU_IPv4)
1223 		GET_TOKEN_AREA(t, dptr, sizeof(u_char) +
1224 		    7 * sizeof(u_int32_t) + sizeof(u_int64_t) +
1225 		    2 * sizeof(u_int32_t));
1226 	else if (tid->at_type == AU_IPv6)
1227 		GET_TOKEN_AREA(t, dptr, sizeof(u_char) +
1228 		    7 * sizeof(u_int32_t) + sizeof(u_int64_t) +
1229 		    5 * sizeof(u_int32_t));
1230 	else {
1231 		errno = EINVAL;
1232 		return (NULL);
1233 	}
1234 	if (t == NULL)
1235 		return (NULL);
1236 
1237 	ADD_U_CHAR(dptr, AUT_SUBJECT64_EX);
1238 	ADD_U_INT32(dptr, auid);
1239 	ADD_U_INT32(dptr, euid);
1240 	ADD_U_INT32(dptr, egid);
1241 	ADD_U_INT32(dptr, ruid);
1242 	ADD_U_INT32(dptr, rgid);
1243 	ADD_U_INT32(dptr, pid);
1244 	ADD_U_INT32(dptr, sid);
1245 	ADD_U_INT64(dptr, tid->at_port);
1246 	ADD_U_INT32(dptr, tid->at_type);
1247 	if (tid->at_type == AU_IPv6)
1248 		ADD_MEM(dptr, &tid->at_addr[0], 4 * sizeof(u_int32_t));
1249 	else
1250 		ADD_MEM(dptr, &tid->at_addr[0], sizeof(u_int32_t));
1251 
1252 	return (t);
1253 }
1254 
1255 token_t *
1256 au_to_subject_ex(au_id_t auid, uid_t euid, gid_t egid, uid_t ruid,
1257     gid_t rgid, pid_t pid, au_asid_t sid, au_tid_addr_t *tid)
1258 {
1259 
1260 	return (au_to_subject32_ex(auid, euid, egid, ruid, rgid, pid, sid,
1261 	    tid));
1262 }
1263 
1264 #if !defined(_KERNEL) && !defined(KERNEL) && defined(HAVE_AUDIT_SYSCALLS)
1265 /*
1266  * Collects audit information for the current process and creates a subject
1267  * token from it.
1268  */
1269 token_t *
1270 au_to_me(void)
1271 {
1272 	auditinfo_t auinfo;
1273 	auditinfo_addr_t aia;
1274 
1275 	/*
1276 	 * Try to use getaudit_addr(2) first.  If this kernel does not support
1277 	 * it, then fall back on to getaudit(2).
1278 	 */
1279 	if (getaudit_addr(&aia, sizeof(aia)) != 0) {
1280 		if (errno == ENOSYS) {
1281 			if (getaudit(&auinfo) != 0)
1282 				return (NULL);
1283 			return (au_to_subject32(auinfo.ai_auid, geteuid(),
1284 				getegid(), getuid(), getgid(), getpid(),
1285 				auinfo.ai_asid, &auinfo.ai_termid));
1286 		} else {
1287 			/* getaudit_addr(2) failed for some other reason. */
1288 			return (NULL);
1289 		}
1290 	}
1291 
1292 	return (au_to_subject32_ex(aia.ai_auid, geteuid(), getegid(), getuid(),
1293 		getgid(), getpid(), aia.ai_asid, &aia.ai_termid));
1294 }
1295 #endif
1296 
1297 /*
1298  * token ID				1 byte
1299  * count				4 bytes
1300  * text					count null-terminated strings
1301  */
1302 token_t *
1303 au_to_exec_args(char **argv)
1304 {
1305 	token_t *t;
1306 	u_char *dptr = NULL;
1307 	const char *nextarg;
1308 	int i, count = 0;
1309 	size_t totlen = 0;
1310 
1311 	nextarg = *argv;
1312 
1313 	while (nextarg != NULL) {
1314 		int nextlen;
1315 
1316 		nextlen = strlen(nextarg);
1317 		totlen += nextlen + 1;
1318 		count++;
1319 		nextarg = *(argv + count);
1320 	}
1321 
1322 	GET_TOKEN_AREA(t, dptr, sizeof(u_char) + sizeof(u_int32_t) + totlen);
1323 	if (t == NULL)
1324 		return (NULL);
1325 
1326 	ADD_U_CHAR(dptr, AUT_EXEC_ARGS);
1327 	ADD_U_INT32(dptr, count);
1328 
1329 	for (i = 0; i < count; i++) {
1330 		nextarg = *(argv + i);
1331 		ADD_MEM(dptr, nextarg, strlen(nextarg) + 1);
1332 	}
1333 
1334 	return (t);
1335 }
1336 
1337 /*
1338  * token ID				1 byte
1339  * count				4 bytes
1340  * text					count null-terminated strings
1341  */
1342 token_t *
1343 au_to_exec_env(char **envp)
1344 {
1345 	token_t *t;
1346 	u_char *dptr = NULL;
1347 	int i, count = 0;
1348 	size_t totlen = 0;
1349 	const char *nextenv;
1350 
1351 	nextenv = *envp;
1352 
1353 	while (nextenv != NULL) {
1354 		int nextlen;
1355 
1356 		nextlen = strlen(nextenv);
1357 		totlen += nextlen + 1;
1358 		count++;
1359 		nextenv = *(envp + count);
1360 	}
1361 
1362 	GET_TOKEN_AREA(t, dptr, sizeof(u_char) + sizeof(u_int32_t) + totlen);
1363 	if (t == NULL)
1364 		return (NULL);
1365 
1366 	ADD_U_CHAR(dptr, AUT_EXEC_ENV);
1367 	ADD_U_INT32(dptr, count);
1368 
1369 	for (i = 0; i < count; i++) {
1370 		nextenv = *(envp + i);
1371 		ADD_MEM(dptr, nextenv, strlen(nextenv) + 1);
1372 	}
1373 
1374 	return (t);
1375 }
1376 
1377 /*
1378  * token ID                1 byte
1379  * zonename length         2 bytes
1380  * zonename                N bytes + 1 terminating NULL byte
1381  */
1382 token_t *
1383 au_to_zonename(const char *zonename)
1384 {
1385 	u_char *dptr = NULL;
1386 	u_int16_t textlen;
1387 	token_t *t;
1388 
1389 	textlen = strlen(zonename) + 1;
1390 	GET_TOKEN_AREA(t, dptr, sizeof(u_char) + sizeof(u_int16_t) + textlen);
1391 	if (t == NULL)
1392 		return (NULL);
1393 
1394 	ADD_U_CHAR(dptr, AUT_ZONENAME);
1395 	ADD_U_INT16(dptr, textlen);
1396 	ADD_STRING(dptr, zonename, textlen);
1397 	return (t);
1398 }
1399 
1400 /*
1401  * token ID                1 byte
1402  * record byte count       4 bytes
1403  * version #               1 byte    [2]
1404  * event type              2 bytes
1405  * event modifier          2 bytes
1406  * seconds of time         4 bytes/8 bytes (32-bit/64-bit value)
1407  * milliseconds of time    4 bytes/8 bytes (32-bit/64-bit value)
1408  */
1409 token_t *
1410 au_to_header32_tm(int rec_size, au_event_t e_type, au_emod_t e_mod,
1411     struct timeval tm)
1412 {
1413 	token_t *t;
1414 	u_char *dptr = NULL;
1415 	u_int32_t timems;
1416 
1417 	GET_TOKEN_AREA(t, dptr, sizeof(u_char) + sizeof(u_int32_t) +
1418 	    sizeof(u_char) + 2 * sizeof(u_int16_t) + 2 * sizeof(u_int32_t));
1419 	if (t == NULL)
1420 		return (NULL);
1421 
1422 	ADD_U_CHAR(dptr, AUT_HEADER32);
1423 	ADD_U_INT32(dptr, rec_size);
1424 	ADD_U_CHAR(dptr, AUDIT_HEADER_VERSION_OPENBSM);
1425 	ADD_U_INT16(dptr, e_type);
1426 	ADD_U_INT16(dptr, e_mod);
1427 
1428 	timems = tm.tv_usec/1000;
1429 	/* Add the timestamp */
1430 	ADD_U_INT32(dptr, tm.tv_sec);
1431 	ADD_U_INT32(dptr, timems);	/* We need time in ms. */
1432 
1433 	return (t);
1434 }
1435 
1436 /*
1437  * token ID                1 byte
1438  * record byte count       4 bytes
1439  * version #               1 byte    [2]
1440  * event type              2 bytes
1441  * event modifier          2 bytes
1442  * address type/length     4 bytes
1443  * machine address         4 bytes/16 bytes (IPv4/IPv6 address)
1444  * seconds of time         4 bytes/8 bytes (32-bit/64-bit value)
1445  * milliseconds of time    4 bytes/8 bytes (32-bit/64-bit value)
1446  */
1447 token_t *
1448 au_to_header32_ex_tm(int rec_size, au_event_t e_type, au_emod_t e_mod,
1449     struct timeval tm, struct auditinfo_addr *aia)
1450 {
1451 	token_t *t;
1452 	u_char *dptr = NULL;
1453 	u_int32_t timems;
1454 	au_tid_addr_t *tid;
1455 
1456 	tid = &aia->ai_termid;
1457 	if (tid->at_type != AU_IPv4 && tid->at_type != AU_IPv6)
1458 		return (NULL);
1459 	GET_TOKEN_AREA(t, dptr, sizeof(u_char) + sizeof(u_int32_t) +
1460 	    sizeof(u_char) + 2 * sizeof(u_int16_t) + 3 *
1461 	    sizeof(u_int32_t) + tid->at_type);
1462 	if (t == NULL)
1463 		return (NULL);
1464 
1465 	ADD_U_CHAR(dptr, AUT_HEADER32_EX);
1466 	ADD_U_INT32(dptr, rec_size);
1467 	ADD_U_CHAR(dptr, AUDIT_HEADER_VERSION_OPENBSM);
1468 	ADD_U_INT16(dptr, e_type);
1469 	ADD_U_INT16(dptr, e_mod);
1470 
1471 	ADD_U_INT32(dptr, tid->at_type);
1472 	if (tid->at_type == AU_IPv6)
1473 		ADD_MEM(dptr, &tid->at_addr[0], 4 * sizeof(u_int32_t));
1474 	else
1475 		ADD_MEM(dptr, &tid->at_addr[0], sizeof(u_int32_t));
1476 	timems = tm.tv_usec/1000;
1477 	/* Add the timestamp */
1478 	ADD_U_INT32(dptr, tm.tv_sec);
1479 	ADD_U_INT32(dptr, timems);      /* We need time in ms. */
1480 
1481 	return (t);
1482 }
1483 
1484 token_t *
1485 au_to_header64_tm(int rec_size, au_event_t e_type, au_emod_t e_mod,
1486     struct timeval tm)
1487 {
1488 	token_t *t;
1489 	u_char *dptr = NULL;
1490 	u_int32_t timems;
1491 
1492 	GET_TOKEN_AREA(t, dptr, sizeof(u_char) + sizeof(u_int32_t) +
1493 	    sizeof(u_char) + 2 * sizeof(u_int16_t) + 2 * sizeof(u_int64_t));
1494 	if (t == NULL)
1495 		return (NULL);
1496 
1497 	ADD_U_CHAR(dptr, AUT_HEADER64);
1498 	ADD_U_INT32(dptr, rec_size);
1499 	ADD_U_CHAR(dptr, AUDIT_HEADER_VERSION_OPENBSM);
1500 	ADD_U_INT16(dptr, e_type);
1501 	ADD_U_INT16(dptr, e_mod);
1502 
1503 	timems = tm.tv_usec/1000;
1504 	/* Add the timestamp */
1505 	ADD_U_INT64(dptr, tm.tv_sec);
1506 	ADD_U_INT64(dptr, timems);	/* We need time in ms. */
1507 
1508 	return (t);
1509 }
1510 
1511 #if !defined(KERNEL) && !defined(_KERNEL)
1512 #ifdef HAVE_AUDIT_SYSCALLS
1513 token_t *
1514 au_to_header32_ex(int rec_size, au_event_t e_type, au_emod_t e_mod)
1515 {
1516 	struct timeval tm;
1517 	struct auditinfo_addr aia;
1518 
1519 	if (gettimeofday(&tm, NULL) == -1)
1520 		return (NULL);
1521 	if (audit_get_kaudit(&aia, sizeof(aia)) != 0) {
1522 		if (errno != ENOSYS)
1523 			return (NULL);
1524 		return (au_to_header32_tm(rec_size, e_type, e_mod, tm));
1525 	}
1526 	return (au_to_header32_ex_tm(rec_size, e_type, e_mod, tm, &aia));
1527 }
1528 #endif /* HAVE_AUDIT_SYSCALLS */
1529 
1530 token_t *
1531 au_to_header32(int rec_size, au_event_t e_type, au_emod_t e_mod)
1532 {
1533 	struct timeval tm;
1534 
1535 	if (gettimeofday(&tm, NULL) == -1)
1536 		return (NULL);
1537 	return (au_to_header32_tm(rec_size, e_type, e_mod, tm));
1538 }
1539 
1540 token_t *
1541 au_to_header64(__unused int rec_size, __unused au_event_t e_type,
1542     __unused au_emod_t e_mod)
1543 {
1544 	struct timeval tm;
1545 
1546 	if (gettimeofday(&tm, NULL) == -1)
1547 		return (NULL);
1548 	return (au_to_header64_tm(rec_size, e_type, e_mod, tm));
1549 }
1550 
1551 token_t *
1552 au_to_header(int rec_size, au_event_t e_type, au_emod_t e_mod)
1553 {
1554 
1555 	return (au_to_header32(rec_size, e_type, e_mod));
1556 }
1557 
1558 #ifdef HAVE_AUDIT_SYSCALLS
1559 token_t *
1560 au_to_header_ex(int rec_size, au_event_t e_type, au_emod_t e_mod)
1561 {
1562 
1563 	return (au_to_header32_ex(rec_size, e_type, e_mod));
1564 }
1565 #endif /* HAVE_AUDIT_SYSCALLS */
1566 #endif /* !defined(KERNEL) && !defined(_KERNEL) */
1567 
1568 /*
1569  * token ID                1 byte
1570  * trailer magic number    2 bytes
1571  * record byte count       4 bytes
1572  */
1573 token_t *
1574 au_to_trailer(int rec_size)
1575 {
1576 	token_t *t;
1577 	u_char *dptr = NULL;
1578 	u_int16_t magic = AUT_TRAILER_MAGIC;
1579 
1580 	GET_TOKEN_AREA(t, dptr, sizeof(u_char) + sizeof(u_int16_t) +
1581 	    sizeof(u_int32_t));
1582 	if (t == NULL)
1583 		return (NULL);
1584 
1585 	ADD_U_CHAR(dptr, AUT_TRAILER);
1586 	ADD_U_INT16(dptr, magic);
1587 	ADD_U_INT32(dptr, rec_size);
1588 
1589 	return (t);
1590 }
1591