xref: /freebsd/contrib/ofed/libcxgb4/t4.h (revision b077aed33b7b6aefca7b17ddb250cf521f938613)
1 /*
2  * Copyright (c) 2006-2016 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *      - Redistributions in binary form must reproduce the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer in the documentation and/or other materials
20  *        provided with the distribution.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29  * SOFTWARE.
30  */
31 #ifndef __T4_H__
32 #define __T4_H__
33 
34 #include <assert.h>
35 #include <errno.h>
36 #include <stddef.h>
37 #include <stdint.h>
38 #include <syslog.h>
39 #include <infiniband/types.h>
40 #include <infiniband/udma_barrier.h>
41 #include <infiniband/endian.h>
42 
43 /*
44  * Try and minimize the changes from the kernel code that is pull in
45  * here for kernel bypass ops.
46  */
47 #define u8 uint8_t
48 #define u16 uint16_t
49 #define u32 uint32_t
50 #define u64 uint64_t
51 #define DECLARE_PCI_UNMAP_ADDR(a)
52 #define __iomem
53 #define BUG_ON(c) assert(!(c))
54 #define ROUND_UP(x, n) (((x) + (n) - 1u) & ~((n) - 1u))
55 #define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d))
56 
57 /* FIXME: Move me to a generic PCI mmio accessor */
58 #define cpu_to_pci32(val) htole32(val)
59 
60 #define writel(v, a) do { *((volatile u32 *)(a)) = cpu_to_pci32(v); } while (0)
61 
62 #include "t4_regs.h"
63 #include "t4_chip_type.h"
64 #include "t4fw_api.h"
65 #include "t4fw_ri_api.h"
66 
67 #ifdef DEBUG
68 #define DBGLOG(s)
69 #define PDBG(fmt, args...) do {syslog(LOG_DEBUG, fmt, ##args); } while (0)
70 #else
71 #define DBGLOG(s)
72 #define PDBG(fmt, args...) do {} while (0)
73 #endif
74 
75 #define A_PCIE_MA_SYNC 0x30b4
76 
77 #define T4_MAX_READ_DEPTH 16
78 #define T4_QID_BASE 1024
79 #define T4_MAX_QIDS 256
80 #define T4_MAX_NUM_PD 65536
81 #define T4_EQ_STATUS_ENTRIES (L1_CACHE_BYTES > 64 ? 2 : 1)
82 #define T4_MAX_EQ_SIZE (65520 - T4_EQ_STATUS_ENTRIES)
83 #define T4_MAX_IQ_SIZE (65520 - 1)
84 #define T4_MAX_RQ_SIZE (8192 - T4_EQ_STATUS_ENTRIES)
85 #define T4_MAX_SQ_SIZE (T4_MAX_EQ_SIZE - 1)
86 #define T4_MAX_QP_DEPTH (T4_MAX_RQ_SIZE - 1)
87 #define T4_MAX_CQ_DEPTH (T4_MAX_IQ_SIZE - 1)
88 #define T4_MAX_NUM_STAG (1<<15)
89 #define T4_MAX_MR_SIZE (~0ULL - 1)
90 #define T4_PAGESIZE_MASK 0xffffffff000  /* 4KB-8TB */
91 #define T4_STAG_UNSET 0xffffffff
92 #define T4_FW_MAJ 0
93 
94 struct t4_status_page {
95 	__be32 rsvd1;	/* flit 0 - hw owns */
96 	__be16 rsvd2;
97 	__be16 qid;
98 	__be16 cidx;
99 	__be16 pidx;
100 	u8 qp_err;	/* flit 1 - sw owns */
101 	u8 db_off;
102 	u8 pad;
103 	u16 host_wq_pidx;
104 	u16 host_cidx;
105 	u16 host_pidx;
106 };
107 
108 #define T4_EQ_ENTRY_SIZE 64
109 
110 #define T4_SQ_NUM_SLOTS 5
111 #define T4_SQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_SQ_NUM_SLOTS)
112 #define T4_MAX_SEND_SGE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - sizeof(struct fw_ri_isgl)) / sizeof (struct fw_ri_sge))
113 #define T4_MAX_SEND_INLINE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - sizeof(struct fw_ri_immd)))
114 #define T4_MAX_WRITE_INLINE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_rdma_write_wr) - sizeof(struct fw_ri_immd)))
115 #define T4_MAX_WRITE_SGE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_rdma_write_wr) - sizeof(struct fw_ri_isgl)) / sizeof (struct fw_ri_sge))
116 #define T4_MAX_FR_IMMD ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_fr_nsmr_wr) - sizeof(struct fw_ri_immd)))
117 #define T4_MAX_FR_DEPTH 255
118 
119 #define T4_RQ_NUM_SLOTS 2
120 #define T4_RQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_RQ_NUM_SLOTS)
121 #define T4_MAX_RECV_SGE 4
122 
123 union t4_wr {
124 	struct fw_ri_res_wr res;
125 	struct fw_ri_wr init;
126 	struct fw_ri_rdma_write_wr write;
127 	struct fw_ri_send_wr send;
128 	struct fw_ri_rdma_read_wr read;
129 	struct fw_ri_bind_mw_wr bind;
130 	struct fw_ri_fr_nsmr_wr fr;
131 	struct fw_ri_inv_lstag_wr inv;
132 	struct t4_status_page status;
133 	__be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_SQ_NUM_SLOTS];
134 };
135 
136 union t4_recv_wr {
137 	struct fw_ri_recv_wr recv;
138 	struct t4_status_page status;
139 	__be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_RQ_NUM_SLOTS];
140 };
141 
142 static inline void init_wr_hdr(union t4_wr *wqe, u16 wrid,
143 			       enum fw_wr_opcodes opcode, u8 flags, u8 len16)
144 {
145 	wqe->send.opcode = (u8)opcode;
146 	wqe->send.flags = flags;
147 	wqe->send.wrid = wrid;
148 	wqe->send.r1[0] = 0;
149 	wqe->send.r1[1] = 0;
150 	wqe->send.r1[2] = 0;
151 	wqe->send.len16 = len16;
152 }
153 
154 /* CQE/AE status codes */
155 #define T4_ERR_SUCCESS                     0x0
156 #define T4_ERR_STAG                        0x1	/* STAG invalid: either the */
157 						/* STAG is offlimt, being 0, */
158 						/* or STAG_key mismatch */
159 #define T4_ERR_PDID                        0x2	/* PDID mismatch */
160 #define T4_ERR_QPID                        0x3	/* QPID mismatch */
161 #define T4_ERR_ACCESS                      0x4	/* Invalid access right */
162 #define T4_ERR_WRAP                        0x5	/* Wrap error */
163 #define T4_ERR_BOUND                       0x6	/* base and bounds voilation */
164 #define T4_ERR_INVALIDATE_SHARED_MR        0x7	/* attempt to invalidate a  */
165 						/* shared memory region */
166 #define T4_ERR_INVALIDATE_MR_WITH_MW_BOUND 0x8	/* attempt to invalidate a  */
167 						/* shared memory region */
168 #define T4_ERR_ECC                         0x9	/* ECC error detected */
169 #define T4_ERR_ECC_PSTAG                   0xA	/* ECC error detected when  */
170 						/* reading PSTAG for a MW  */
171 						/* Invalidate */
172 #define T4_ERR_PBL_ADDR_BOUND              0xB	/* pbl addr out of bounds:  */
173 						/* software error */
174 #define T4_ERR_SWFLUSH			   0xC	/* SW FLUSHED */
175 #define T4_ERR_CRC                         0x10 /* CRC error */
176 #define T4_ERR_MARKER                      0x11 /* Marker error */
177 #define T4_ERR_PDU_LEN_ERR                 0x12 /* invalid PDU length */
178 #define T4_ERR_OUT_OF_RQE                  0x13 /* out of RQE */
179 #define T4_ERR_DDP_VERSION                 0x14 /* wrong DDP version */
180 #define T4_ERR_RDMA_VERSION                0x15 /* wrong RDMA version */
181 #define T4_ERR_OPCODE                      0x16 /* invalid rdma opcode */
182 #define T4_ERR_DDP_QUEUE_NUM               0x17 /* invalid ddp queue number */
183 #define T4_ERR_MSN                         0x18 /* MSN error */
184 #define T4_ERR_TBIT                        0x19 /* tag bit not set correctly */
185 #define T4_ERR_MO                          0x1A /* MO not 0 for TERMINATE  */
186 						/* or READ_REQ */
187 #define T4_ERR_MSN_GAP                     0x1B
188 #define T4_ERR_MSN_RANGE                   0x1C
189 #define T4_ERR_IRD_OVERFLOW                0x1D
190 #define T4_ERR_RQE_ADDR_BOUND              0x1E /* RQE addr out of bounds:  */
191 						/* software error */
192 #define T4_ERR_INTERNAL_ERR                0x1F /* internal error (opcode  */
193 						/* mismatch) */
194 /*
195  * CQE defs
196  */
197 struct t4_cqe {
198 	__be32 header;
199 	__be32 len;
200 	union {
201 		struct {
202 			__be32 stag;
203 			__be32 msn;
204 		} rcqe;
205 		struct {
206 			u32 nada1;
207 			u16 nada2;
208 			u16 cidx;
209 		} scqe;
210 		struct {
211 			__be32 wrid_hi;
212 			__be32 wrid_low;
213 		} gen;
214 	} u;
215 	__be64 reserved;
216 	__be64 bits_type_ts;
217 };
218 
219 /* macros for flit 0 of the cqe */
220 
221 #define S_CQE_QPID        12
222 #define M_CQE_QPID        0xFFFFF
223 #define G_CQE_QPID(x)     ((((x) >> S_CQE_QPID)) & M_CQE_QPID)
224 #define V_CQE_QPID(x)	  ((x)<<S_CQE_QPID)
225 
226 #define S_CQE_SWCQE       11
227 #define M_CQE_SWCQE       0x1
228 #define G_CQE_SWCQE(x)    ((((x) >> S_CQE_SWCQE)) & M_CQE_SWCQE)
229 #define V_CQE_SWCQE(x)	  ((x)<<S_CQE_SWCQE)
230 
231 #define S_CQE_STATUS      5
232 #define M_CQE_STATUS      0x1F
233 #define G_CQE_STATUS(x)   ((((x) >> S_CQE_STATUS)) & M_CQE_STATUS)
234 #define V_CQE_STATUS(x)   ((x)<<S_CQE_STATUS)
235 
236 #define S_CQE_TYPE        4
237 #define M_CQE_TYPE        0x1
238 #define G_CQE_TYPE(x)     ((((x) >> S_CQE_TYPE)) & M_CQE_TYPE)
239 #define V_CQE_TYPE(x)     ((x)<<S_CQE_TYPE)
240 
241 #define S_CQE_OPCODE      0
242 #define M_CQE_OPCODE      0xF
243 #define G_CQE_OPCODE(x)   ((((x) >> S_CQE_OPCODE)) & M_CQE_OPCODE)
244 #define V_CQE_OPCODE(x)   ((x)<<S_CQE_OPCODE)
245 
246 #define SW_CQE(x)         (G_CQE_SWCQE(be32toh((x)->header)))
247 #define CQE_QPID(x)       (G_CQE_QPID(be32toh((x)->header)))
248 #define CQE_TYPE(x)       (G_CQE_TYPE(be32toh((x)->header)))
249 #define SQ_TYPE(x)	  (CQE_TYPE((x)))
250 #define RQ_TYPE(x)	  (!CQE_TYPE((x)))
251 #define CQE_STATUS(x)     (G_CQE_STATUS(be32toh((x)->header)))
252 #define CQE_OPCODE(x)     (G_CQE_OPCODE(be32toh((x)->header)))
253 
254 #define CQE_SEND_OPCODE(x)( \
255 	(G_CQE_OPCODE(be32toh((x)->header)) == FW_RI_SEND) || \
256 	(G_CQE_OPCODE(be32toh((x)->header)) == FW_RI_SEND_WITH_SE) || \
257 	(G_CQE_OPCODE(be32toh((x)->header)) == FW_RI_SEND_WITH_INV) || \
258 	(G_CQE_OPCODE(be32toh((x)->header)) == FW_RI_SEND_WITH_SE_INV))
259 
260 #define CQE_LEN(x)        (be32toh((x)->len))
261 
262 /* used for RQ completion processing */
263 #define CQE_WRID_STAG(x)  (be32toh((x)->u.rcqe.stag))
264 #define CQE_WRID_MSN(x)   (be32toh((x)->u.rcqe.msn))
265 
266 /* used for SQ completion processing */
267 #define CQE_WRID_SQ_IDX(x)	(x)->u.scqe.cidx
268 
269 /* generic accessor macros */
270 #define CQE_WRID_HI(x)		((x)->u.gen.wrid_hi)
271 #define CQE_WRID_LOW(x)		((x)->u.gen.wrid_low)
272 
273 /* macros for flit 3 of the cqe */
274 #define S_CQE_GENBIT	63
275 #define M_CQE_GENBIT	0x1
276 #define G_CQE_GENBIT(x)	(((x) >> S_CQE_GENBIT) & M_CQE_GENBIT)
277 #define V_CQE_GENBIT(x) ((x)<<S_CQE_GENBIT)
278 
279 #define S_CQE_OVFBIT	62
280 #define M_CQE_OVFBIT	0x1
281 #define G_CQE_OVFBIT(x)	((((x) >> S_CQE_OVFBIT)) & M_CQE_OVFBIT)
282 
283 #define S_CQE_IQTYPE	60
284 #define M_CQE_IQTYPE	0x3
285 #define G_CQE_IQTYPE(x)	((((x) >> S_CQE_IQTYPE)) & M_CQE_IQTYPE)
286 
287 #define M_CQE_TS	0x0fffffffffffffffULL
288 #define G_CQE_TS(x)	((x) & M_CQE_TS)
289 
290 #define CQE_OVFBIT(x)	((unsigned)G_CQE_OVFBIT(be64toh((x)->bits_type_ts)))
291 #define CQE_GENBIT(x)	((unsigned)G_CQE_GENBIT(be64toh((x)->bits_type_ts)))
292 #define CQE_TS(x)	(G_CQE_TS(be64toh((x)->bits_type_ts)))
293 
294 struct t4_swsqe {
295 	u64			wr_id;
296 	struct t4_cqe		cqe;
297 	__be32			read_len;
298 	int			opcode;
299 	int			complete;
300 	int			signaled;
301 	u16			idx;
302 	int			flushed;
303 };
304 
305 enum {
306 	T4_SQ_ONCHIP = (1<<0),
307 };
308 
309 struct t4_sq {
310 	/* queue is either host memory or WC MMIO memory if
311 	 * t4_sq_onchip(). */
312 	union t4_wr *queue;
313 	struct t4_swsqe *sw_sq;
314 	struct t4_swsqe *oldest_read;
315 	/* udb is either UC or WC MMIO memory depending on device version. */
316 	volatile u32 *udb;
317 	size_t memsize;
318 	u32 qid;
319 	u32 bar2_qid;
320 	void *ma_sync;
321 	u16 in_use;
322 	u16 size;
323 	u16 cidx;
324 	u16 pidx;
325 	u16 wq_pidx;
326 	u16 flags;
327 	short flush_cidx;
328 	int wc_reg_available;
329 };
330 
331 struct t4_swrqe {
332 	u64 wr_id;
333 };
334 
335 struct t4_rq {
336 	union  t4_recv_wr *queue;
337 	struct t4_swrqe *sw_rq;
338 	volatile u32 *udb;
339 	size_t memsize;
340 	u32 qid;
341 	u32 bar2_qid;
342 	u32 msn;
343 	u32 rqt_hwaddr;
344 	u16 rqt_size;
345 	u16 in_use;
346 	u16 size;
347 	u16 cidx;
348 	u16 pidx;
349 	u16 wq_pidx;
350 	int wc_reg_available;
351 };
352 
353 struct t4_wq {
354 	struct t4_sq sq;
355 	struct t4_rq rq;
356 	struct c4iw_rdev *rdev;
357 	u32 qid_mask;
358 	int error;
359 	int flushed;
360 	u8 *db_offp;
361 };
362 
363 static inline int t4_rqes_posted(struct t4_wq *wq)
364 {
365 	return wq->rq.in_use;
366 }
367 
368 static inline int t4_rq_empty(struct t4_wq *wq)
369 {
370 	return wq->rq.in_use == 0;
371 }
372 
373 static inline int t4_rq_full(struct t4_wq *wq)
374 {
375 	return wq->rq.in_use == (wq->rq.size - 1);
376 }
377 
378 static inline u32 t4_rq_avail(struct t4_wq *wq)
379 {
380 	return wq->rq.size - 1 - wq->rq.in_use;
381 }
382 
383 static inline void t4_rq_produce(struct t4_wq *wq, u8 len16)
384 {
385 	wq->rq.in_use++;
386 	if (++wq->rq.pidx == wq->rq.size)
387 		wq->rq.pidx = 0;
388 	wq->rq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
389 	if (wq->rq.wq_pidx >= wq->rq.size * T4_RQ_NUM_SLOTS)
390 		wq->rq.wq_pidx %= wq->rq.size * T4_RQ_NUM_SLOTS;
391 	if (!wq->error)
392 		wq->rq.queue[wq->rq.size].status.host_pidx = wq->rq.pidx;
393 }
394 
395 static inline void t4_rq_consume(struct t4_wq *wq)
396 {
397 	wq->rq.in_use--;
398 	wq->rq.msn++;
399 	if (++wq->rq.cidx == wq->rq.size)
400 		wq->rq.cidx = 0;
401 	assert((wq->rq.cidx != wq->rq.pidx) || wq->rq.in_use == 0);
402 	if (!wq->error)
403 		wq->rq.queue[wq->rq.size].status.host_cidx = wq->rq.cidx;
404 }
405 
406 static inline int t4_sq_empty(struct t4_wq *wq)
407 {
408 	return wq->sq.in_use == 0;
409 }
410 
411 static inline int t4_sq_full(struct t4_wq *wq)
412 {
413 	return wq->sq.in_use == (wq->sq.size - 1);
414 }
415 
416 static inline u32 t4_sq_avail(struct t4_wq *wq)
417 {
418 	return wq->sq.size - 1 - wq->sq.in_use;
419 }
420 
421 static inline int t4_sq_onchip(struct t4_wq *wq)
422 {
423 	return wq->sq.flags & T4_SQ_ONCHIP;
424 }
425 
426 static inline void t4_sq_produce(struct t4_wq *wq, u8 len16)
427 {
428 	wq->sq.in_use++;
429 	if (++wq->sq.pidx == wq->sq.size)
430 		wq->sq.pidx = 0;
431 	wq->sq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
432 	if (wq->sq.wq_pidx >= wq->sq.size * T4_SQ_NUM_SLOTS)
433 		wq->sq.wq_pidx %= wq->sq.size * T4_SQ_NUM_SLOTS;
434 	if (!wq->error) {
435 		/* This write is only for debugging, the value does not matter
436 		 * for DMA */
437 		wq->sq.queue[wq->sq.size].status.host_pidx = (wq->sq.pidx);
438 	}
439 }
440 
441 static inline void t4_sq_consume(struct t4_wq *wq)
442 {
443 	assert(wq->sq.in_use >= 1);
444 	if (wq->sq.cidx == wq->sq.flush_cidx)
445                 wq->sq.flush_cidx = -1;
446 	wq->sq.in_use--;
447 	if (++wq->sq.cidx == wq->sq.size)
448 		wq->sq.cidx = 0;
449 	assert((wq->sq.cidx != wq->sq.pidx) || wq->sq.in_use == 0);
450 	if (!wq->error){
451 		/* This write is only for debugging, the value does not matter
452 		 * for DMA */
453 		wq->sq.queue[wq->sq.size].status.host_cidx = wq->sq.cidx;
454 	}
455 }
456 
457 /* Copies to WC MMIO memory */
458 static void copy_wqe_to_udb(volatile u32 *udb_offset, void *wqe)
459 {
460 	u64 *src, *dst;
461 	int len16 = 4;
462 
463 	src = (u64 *)wqe;
464 	dst = (u64 *)udb_offset;
465 
466 	while (len16) {
467 		*dst++ = *src++;
468 		*dst++ = *src++;
469 		len16--;
470 	}
471 }
472 
473 extern int ma_wr;
474 extern int t5_en_wc;
475 
476 static inline void t4_ring_sq_db(struct t4_wq *wq, u16 inc, u8 t4, u8 len16,
477 				 union t4_wr *wqe)
478 {
479 	if (!t4) {
480 		mmio_wc_start();
481 		if (t5_en_wc && inc == 1 && wq->sq.wc_reg_available) {
482 			PDBG("%s: WC wq->sq.pidx = %d; len16=%d\n",
483 			     __func__, wq->sq.pidx, len16);
484 			copy_wqe_to_udb(wq->sq.udb + 14, wqe);
485 		} else {
486 			PDBG("%s: DB wq->sq.pidx = %d; len16=%d\n",
487 			     __func__, wq->sq.pidx, len16);
488 			writel(QID_V(wq->sq.bar2_qid) | PIDX_T5_V(inc),
489 			       wq->sq.udb);
490 		}
491 		/* udb is WC for > t4 devices */
492 		mmio_flush_writes();
493 		return;
494 	}
495 
496 	udma_to_device_barrier();
497 	if (ma_wr) {
498 		if (t4_sq_onchip(wq)) {
499 			int i;
500 
501 			mmio_wc_start();
502 			for (i = 0; i < 16; i++)
503 				*(volatile u32 *)&wq->sq.queue[wq->sq.size].flits[2+i] = i;
504 			mmio_flush_writes();
505 		}
506 	} else {
507 		if (t4_sq_onchip(wq)) {
508 			int i;
509 
510 			mmio_wc_start();
511 			for (i = 0; i < 16; i++)
512 				/* FIXME: What is this supposed to be doing?
513 				 * Writing to the same address multiple times
514 				 * with WC memory is not guarenteed to
515 				 * generate any more than one TLP. Why isn't
516 				 * writing to WC memory marked volatile? */
517 				*(u32 *)&wq->sq.queue[wq->sq.size].flits[2] = i;
518 			mmio_flush_writes();
519 		}
520 	}
521 	/* udb is UC for t4 devices */
522 	writel(QID_V(wq->sq.qid & wq->qid_mask) | PIDX_V(inc), wq->sq.udb);
523 }
524 
525 static inline void t4_ring_rq_db(struct t4_wq *wq, u16 inc, u8 t4, u8 len16,
526 				 union t4_recv_wr *wqe)
527 {
528 	if (!t4) {
529 		mmio_wc_start();
530 		if (t5_en_wc && inc == 1 && wq->sq.wc_reg_available) {
531 			PDBG("%s: WC wq->rq.pidx = %d; len16=%d\n",
532 			     __func__, wq->rq.pidx, len16);
533 			copy_wqe_to_udb(wq->rq.udb + 14, wqe);
534 		} else {
535 			PDBG("%s: DB wq->rq.pidx = %d; len16=%d\n",
536 			     __func__, wq->rq.pidx, len16);
537 			writel(QID_V(wq->rq.bar2_qid) | PIDX_T5_V(inc),
538 			       wq->rq.udb);
539 		}
540 		/* udb is WC for > t4 devices */
541 		mmio_flush_writes();
542 		return;
543 	}
544 	/* udb is UC for t4 devices */
545 	udma_to_device_barrier();
546 	writel(QID_V(wq->rq.qid & wq->qid_mask) | PIDX_V(inc), wq->rq.udb);
547 }
548 
549 static inline int t4_wq_in_error(struct t4_wq *wq)
550 {
551 	return wq->error || wq->rq.queue[wq->rq.size].status.qp_err;
552 }
553 
554 static inline void t4_set_wq_in_error(struct t4_wq *wq)
555 {
556 	wq->rq.queue[wq->rq.size].status.qp_err = 1;
557 }
558 
559 extern int c4iw_abi_version;
560 
561 static inline int t4_wq_db_enabled(struct t4_wq *wq)
562 {
563 	/*
564 	 * If iw_cxgb4 driver supports door bell drop recovery then its
565 	 * c4iw_abi_version would be greater than or equal to 2. In such
566 	 * case return the status of db_off flag to ring the kernel mode
567 	 * DB from user mode library.
568 	 */
569 	if ( c4iw_abi_version >= 2 )
570 		return ! *wq->db_offp;
571 	else
572 		return 1;
573 }
574 
575 struct t4_cq {
576 	struct t4_cqe *queue;
577 	struct t4_cqe *sw_queue;
578 	struct c4iw_rdev *rdev;
579 	volatile u32 *ugts;
580 	size_t memsize;
581 	u64 bits_type_ts;
582 	u32 cqid;
583 	u32 qid_mask;
584 	u16 size; /* including status page */
585 	u16 cidx;
586 	u16 sw_pidx;
587 	u16 sw_cidx;
588 	u16 sw_in_use;
589 	u16 cidx_inc;
590 	u8 gen;
591 	u8 error;
592 };
593 
594 static inline int t4_arm_cq(struct t4_cq *cq, int se)
595 {
596 	u32 val;
597 
598 	while (cq->cidx_inc > CIDXINC_M) {
599 		val = SEINTARM_V(0) | CIDXINC_V(CIDXINC_M) | TIMERREG_V(7) |
600 		      INGRESSQID_V(cq->cqid & cq->qid_mask);
601 		writel(val, cq->ugts);
602 		cq->cidx_inc -= CIDXINC_M;
603 	}
604 	val = SEINTARM_V(se) | CIDXINC_V(cq->cidx_inc) | TIMERREG_V(6) |
605 	      INGRESSQID_V(cq->cqid & cq->qid_mask);
606 	writel(val, cq->ugts);
607 	cq->cidx_inc = 0;
608 	return 0;
609 }
610 
611 static inline void t4_swcq_produce(struct t4_cq *cq)
612 {
613 	cq->sw_in_use++;
614 	if (cq->sw_in_use == cq->size) {
615 		syslog(LOG_NOTICE, "cxgb4 sw cq overflow cqid %u\n", cq->cqid);
616 		cq->error = 1;
617 		assert(0);
618 	}
619 	if (++cq->sw_pidx == cq->size)
620 		cq->sw_pidx = 0;
621 }
622 
623 static inline void t4_swcq_consume(struct t4_cq *cq)
624 {
625 	assert(cq->sw_in_use >= 1);
626 	cq->sw_in_use--;
627 	if (++cq->sw_cidx == cq->size)
628 		cq->sw_cidx = 0;
629 }
630 
631 static inline void t4_hwcq_consume(struct t4_cq *cq)
632 {
633 	cq->bits_type_ts = cq->queue[cq->cidx].bits_type_ts;
634 	if (++cq->cidx_inc == (cq->size >> 4) || cq->cidx_inc == CIDXINC_M) {
635 		uint32_t val;
636 
637 		val = SEINTARM_V(0) | CIDXINC_V(cq->cidx_inc) | TIMERREG_V(7) |
638 			INGRESSQID_V(cq->cqid & cq->qid_mask);
639 		writel(val, cq->ugts);
640 		cq->cidx_inc = 0;
641 	}
642 	if (++cq->cidx == cq->size) {
643 		cq->cidx = 0;
644 		cq->gen ^= 1;
645 	}
646 	((struct t4_status_page *)&cq->queue[cq->size])->host_cidx = cq->cidx;
647 }
648 
649 static inline int t4_valid_cqe(struct t4_cq *cq, struct t4_cqe *cqe)
650 {
651 	return (CQE_GENBIT(cqe) == cq->gen);
652 }
653 
654 static inline int t4_next_hw_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
655 {
656 	int ret;
657 	u16 prev_cidx;
658 
659 	if (cq->cidx == 0)
660 		prev_cidx = cq->size - 1;
661 	else
662 		prev_cidx = cq->cidx - 1;
663 
664 	if (cq->queue[prev_cidx].bits_type_ts != cq->bits_type_ts) {
665 		ret = -EOVERFLOW;
666 		syslog(LOG_NOTICE, "cxgb4 cq overflow cqid %u\n", cq->cqid);
667 		cq->error = 1;
668 		assert(0);
669 	} else if (t4_valid_cqe(cq, &cq->queue[cq->cidx])) {
670 		udma_from_device_barrier();
671 		*cqe = &cq->queue[cq->cidx];
672 		ret = 0;
673 	} else
674 		ret = -ENODATA;
675 	return ret;
676 }
677 
678 static inline struct t4_cqe *t4_next_sw_cqe(struct t4_cq *cq)
679 {
680 	if (cq->sw_in_use == cq->size) {
681 		syslog(LOG_NOTICE, "cxgb4 sw cq overflow cqid %u\n", cq->cqid);
682 		cq->error = 1;
683 		assert(0);
684 		return NULL;
685 	}
686 	if (cq->sw_in_use)
687 		return &cq->sw_queue[cq->sw_cidx];
688 	return NULL;
689 }
690 
691 static inline int t4_cq_notempty(struct t4_cq *cq)
692 {
693 	return cq->sw_in_use || t4_valid_cqe(cq, &cq->queue[cq->cidx]);
694 }
695 
696 static inline int t4_next_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
697 {
698 	int ret = 0;
699 
700 	if (cq->error)
701 		ret = -ENODATA;
702 	else if (cq->sw_in_use)
703 		*cqe = &cq->sw_queue[cq->sw_cidx];
704 	else ret = t4_next_hw_cqe(cq, cqe);
705 	return ret;
706 }
707 
708 static inline int t4_cq_in_error(struct t4_cq *cq)
709 {
710 	return ((struct t4_status_page *)&cq->queue[cq->size])->qp_err;
711 }
712 
713 static inline void t4_set_cq_in_error(struct t4_cq *cq)
714 {
715 	((struct t4_status_page *)&cq->queue[cq->size])->qp_err = 1;
716 }
717 
718 static inline void t4_reset_cq_in_error(struct t4_cq *cq)
719 {
720 	((struct t4_status_page *)&cq->queue[cq->size])->qp_err = 0;
721 }
722 
723 struct t4_dev_status_page
724 {
725 	u8 db_off;
726 	u8 wc_supported;
727 	u16 pad2;
728 	u32 pad3;
729 	u64 qp_start;
730 	u64 qp_size;
731 	u64 cq_start;
732 	u64 cq_size;
733 };
734 
735 #endif
736