1 /*- 2 * Copyright (c) 1991, 1993, 1994 3 * The Regents of the University of California. All rights reserved. 4 * Copyright (c) 1991, 1993, 1994, 1995, 1996 5 * Keith Bostic. All rights reserved. 6 * 7 * See the LICENSE file for redistribution information. 8 */ 9 10 #include "config.h" 11 12 #ifndef lint 13 static const char sccsid[] = "$Id: key.c,v 10.54 2013/11/13 12:15:27 zy Exp $"; 14 #endif /* not lint */ 15 16 #include <sys/types.h> 17 #include <sys/queue.h> 18 #include <sys/time.h> 19 20 #include <bitstring.h> 21 #include <ctype.h> 22 #include <errno.h> 23 #include <limits.h> 24 #include <stdio.h> 25 #include <stdlib.h> 26 #include <string.h> 27 #include <strings.h> 28 #include <unistd.h> 29 30 #include "common.h" 31 #include "../vi/vi.h" 32 33 static int v_event_append __P((SCR *, EVENT *)); 34 static int v_event_grow __P((SCR *, int)); 35 static int v_key_cmp __P((const void *, const void *)); 36 static void v_keyval __P((SCR *, int, scr_keyval_t)); 37 static void v_sync __P((SCR *, int)); 38 39 /* 40 * !!! 41 * Historic vi always used: 42 * 43 * ^D: autoindent deletion 44 * ^H: last character deletion 45 * ^W: last word deletion 46 * ^Q: quote the next character (if not used in flow control). 47 * ^V: quote the next character 48 * 49 * regardless of the user's choices for these characters. The user's erase 50 * and kill characters worked in addition to these characters. Nvi wires 51 * down the above characters, but in addition permits the VEOF, VERASE, VKILL 52 * and VWERASE characters described by the user's termios structure. 53 * 54 * Ex was not consistent with this scheme, as it historically ran in tty 55 * cooked mode. This meant that the scroll command and autoindent erase 56 * characters were mapped to the user's EOF character, and the character 57 * and word deletion characters were the user's tty character and word 58 * deletion characters. This implementation makes it all consistent, as 59 * described above for vi. 60 * 61 * !!! 62 * This means that all screens share a special key set. 63 */ 64 KEYLIST keylist[] = { 65 {K_BACKSLASH, '\\'}, /* \ */ 66 {K_CARAT, '^'}, /* ^ */ 67 {K_CNTRLD, '\004'}, /* ^D */ 68 {K_CNTRLR, '\022'}, /* ^R */ 69 {K_CNTRLT, '\024'}, /* ^T */ 70 {K_CNTRLZ, '\032'}, /* ^Z */ 71 {K_COLON, ':'}, /* : */ 72 {K_CR, '\r'}, /* \r */ 73 {K_ESCAPE, '\033'}, /* ^[ */ 74 {K_FORMFEED, '\f'}, /* \f */ 75 {K_HEXCHAR, '\030'}, /* ^X */ 76 {K_NL, '\n'}, /* \n */ 77 {K_RIGHTBRACE, '}'}, /* } */ 78 {K_RIGHTPAREN, ')'}, /* ) */ 79 {K_TAB, '\t'}, /* \t */ 80 {K_VERASE, '\b'}, /* \b */ 81 {K_VKILL, '\025'}, /* ^U */ 82 {K_VLNEXT, '\021'}, /* ^Q */ 83 {K_VLNEXT, '\026'}, /* ^V */ 84 {K_VWERASE, '\027'}, /* ^W */ 85 {K_ZERO, '0'}, /* 0 */ 86 87 #define ADDITIONAL_CHARACTERS 4 88 {K_NOTUSED, 0}, /* VEOF, VERASE, VKILL, VWERASE */ 89 {K_NOTUSED, 0}, 90 {K_NOTUSED, 0}, 91 {K_NOTUSED, 0}, 92 }; 93 static int nkeylist = 94 (sizeof(keylist) / sizeof(keylist[0])) - ADDITIONAL_CHARACTERS; 95 96 /* 97 * v_key_init -- 98 * Initialize the special key lookup table. 99 * 100 * PUBLIC: int v_key_init __P((SCR *)); 101 */ 102 int 103 v_key_init(SCR *sp) 104 { 105 int ch; 106 GS *gp; 107 KEYLIST *kp; 108 int cnt; 109 110 gp = sp->gp; 111 112 v_key_ilookup(sp); 113 114 v_keyval(sp, K_CNTRLD, KEY_VEOF); 115 v_keyval(sp, K_VERASE, KEY_VERASE); 116 v_keyval(sp, K_VKILL, KEY_VKILL); 117 v_keyval(sp, K_VWERASE, KEY_VWERASE); 118 119 /* Sort the special key list. */ 120 qsort(keylist, nkeylist, sizeof(keylist[0]), v_key_cmp); 121 122 /* Initialize the fast lookup table. */ 123 for (kp = keylist, cnt = nkeylist; cnt--; ++kp) 124 gp->special_key[kp->ch] = kp->value; 125 126 /* Find a non-printable character to use as a message separator. */ 127 for (ch = 1; ch <= UCHAR_MAX; ++ch) 128 if (!isprint(ch)) { 129 gp->noprint = ch; 130 break; 131 } 132 if (ch != gp->noprint) { 133 msgq(sp, M_ERR, "079|No non-printable character found"); 134 return (1); 135 } 136 return (0); 137 } 138 139 /* 140 * v_keyval -- 141 * Set key values. 142 * 143 * We've left some open slots in the keylist table, and if these values exist, 144 * we put them into place. Note, they may reset (or duplicate) values already 145 * in the table, so we check for that first. 146 */ 147 static void 148 v_keyval( 149 SCR *sp, 150 int val, 151 scr_keyval_t name) 152 { 153 KEYLIST *kp; 154 CHAR_T ch; 155 int dne; 156 157 /* Get the key's value from the screen. */ 158 if (sp->gp->scr_keyval(sp, name, &ch, &dne)) 159 return; 160 if (dne) 161 return; 162 163 /* Check for duplication. */ 164 for (kp = keylist; kp->value != K_NOTUSED; ++kp) 165 if (kp->ch == ch) { 166 kp->value = val; 167 return; 168 } 169 170 /* Add a new entry. */ 171 if (kp->value == K_NOTUSED) { 172 keylist[nkeylist].ch = ch; 173 keylist[nkeylist].value = val; 174 ++nkeylist; 175 } 176 } 177 178 /* 179 * v_key_ilookup -- 180 * Build the fast-lookup key display array. 181 * 182 * PUBLIC: void v_key_ilookup __P((SCR *)); 183 */ 184 void 185 v_key_ilookup(SCR *sp) 186 { 187 UCHAR_T ch; 188 char *p, *t; 189 GS *gp; 190 size_t len; 191 192 for (gp = sp->gp, ch = 0;; ++ch) { 193 for (p = gp->cname[ch].name, t = v_key_name(sp, ch), 194 len = gp->cname[ch].len = sp->clen; len--;) 195 *p++ = *t++; 196 if (ch == MAX_FAST_KEY) 197 break; 198 } 199 } 200 201 /* 202 * v_key_len -- 203 * Return the length of the string that will display the key. 204 * This routine is the backup for the KEY_LEN() macro. 205 * 206 * PUBLIC: size_t v_key_len __P((SCR *, ARG_CHAR_T)); 207 */ 208 size_t 209 v_key_len( 210 SCR *sp, 211 ARG_CHAR_T ch) 212 { 213 (void)v_key_name(sp, ch); 214 return (sp->clen); 215 } 216 217 /* 218 * v_key_name -- 219 * Return the string that will display the key. This routine 220 * is the backup for the KEY_NAME() macro. 221 * 222 * PUBLIC: char *v_key_name __P((SCR *, ARG_CHAR_T)); 223 */ 224 char * 225 v_key_name( 226 SCR *sp, 227 ARG_CHAR_T ach) 228 { 229 static const char hexdigit[] = "0123456789abcdef"; 230 static const char octdigit[] = "01234567"; 231 int ch; 232 size_t len; 233 char *chp; 234 235 /* 236 * Cache the last checked character. It won't be a problem 237 * since nvi will rescan the mapping when settings changed. 238 */ 239 if (ach && sp->lastc == ach) 240 return (sp->cname); 241 sp->lastc = ach; 242 243 #ifdef USE_WIDECHAR 244 len = wctomb(sp->cname, ach); 245 if (len > MB_CUR_MAX) 246 #endif 247 sp->cname[(len = 1)-1] = (u_char)ach; 248 249 ch = (u_char)sp->cname[0]; 250 sp->cname[len] = '\0'; 251 252 /* See if the character was explicitly declared printable or not. */ 253 if ((chp = O_STR(sp, O_PRINT)) != NULL) 254 if (strstr(chp, sp->cname) != NULL) 255 goto done; 256 if ((chp = O_STR(sp, O_NOPRINT)) != NULL) 257 if (strstr(chp, sp->cname) != NULL) 258 goto nopr; 259 260 /* 261 * Historical (ARPA standard) mappings. Printable characters are left 262 * alone. Control characters less than 0x20 are represented as '^' 263 * followed by the character offset from the '@' character in the ASCII 264 * character set. Del (0x7f) is represented as '^' followed by '?'. 265 * 266 * XXX 267 * The following code depends on the current locale being identical to 268 * the ASCII map from 0x40 to 0x5f (since 0x1f + 0x40 == 0x5f). I'm 269 * told that this is a reasonable assumption... 270 * 271 * XXX 272 * The code prints non-printable wide characters in 4 or 5 digits 273 * Unicode escape sequences, so only supports plane 0 to 15. 274 */ 275 if (CAN_PRINT(sp, ach)) 276 goto done; 277 nopr: if (iscntrl(ch) && (ch < 0x20 || ch == 0x7f)) { 278 sp->cname[0] = '^'; 279 sp->cname[1] = ch == 0x7f ? '?' : '@' + ch; 280 len = 2; 281 goto done; 282 } 283 #ifdef USE_WIDECHAR 284 if (INTISWIDE(ach)) { 285 int uc = -1; 286 287 if (!strcmp(codeset(), "UTF-8")) 288 uc = decode_utf8(sp->cname); 289 #ifdef USE_ICONV 290 else { 291 char buf[sizeof(sp->cname)] = ""; 292 size_t left = sizeof(sp->cname); 293 char *in = sp->cname; 294 char *out = buf; 295 iconv(sp->conv.id[IC_IE_TO_UTF16], 296 (iconv_src_t)&in, &len, &out, &left); 297 iconv(sp->conv.id[IC_IE_TO_UTF16], 298 NULL, NULL, NULL, NULL); 299 uc = decode_utf16(buf, 1); 300 } 301 #endif 302 if (uc >= 0) { 303 len = snprintf(sp->cname, sizeof(sp->cname), 304 uc < 0x10000 ? "\\u%04x" : "\\U%05X", uc); 305 goto done; 306 } 307 } 308 #endif 309 if (O_ISSET(sp, O_OCTAL)) { 310 sp->cname[0] = '\\'; 311 sp->cname[1] = octdigit[(ch & 0300) >> 6]; 312 sp->cname[2] = octdigit[(ch & 070) >> 3]; 313 sp->cname[3] = octdigit[ ch & 07 ]; 314 } else { 315 sp->cname[0] = '\\'; 316 sp->cname[1] = 'x'; 317 sp->cname[2] = hexdigit[(ch & 0xf0) >> 4]; 318 sp->cname[3] = hexdigit[ ch & 0x0f ]; 319 } 320 len = 4; 321 done: sp->cname[sp->clen = len] = '\0'; 322 return (sp->cname); 323 } 324 325 /* 326 * v_key_val -- 327 * Fill in the value for a key. This routine is the backup 328 * for the KEY_VAL() macro. 329 * 330 * PUBLIC: e_key_t v_key_val __P((SCR *, ARG_CHAR_T)); 331 */ 332 e_key_t 333 v_key_val( 334 SCR *sp, 335 ARG_CHAR_T ch) 336 { 337 KEYLIST k, *kp; 338 339 k.ch = ch; 340 kp = bsearch(&k, keylist, nkeylist, sizeof(keylist[0]), v_key_cmp); 341 return (kp == NULL ? K_NOTUSED : kp->value); 342 } 343 344 /* 345 * v_event_push -- 346 * Push events/keys onto the front of the buffer. 347 * 348 * There is a single input buffer in ex/vi. Characters are put onto the 349 * end of the buffer by the terminal input routines, and pushed onto the 350 * front of the buffer by various other functions in ex/vi. Each key has 351 * an associated flag value, which indicates if it has already been quoted, 352 * and if it is the result of a mapping or an abbreviation. 353 * 354 * PUBLIC: int v_event_push __P((SCR *, EVENT *, CHAR_T *, size_t, u_int)); 355 */ 356 int 357 v_event_push( 358 SCR *sp, 359 EVENT *p_evp, /* Push event. */ 360 CHAR_T *p_s, /* Push characters. */ 361 size_t nitems, /* Number of items to push. */ 362 u_int flags) /* CH_* flags. */ 363 { 364 EVENT *evp; 365 GS *gp; 366 size_t total; 367 368 /* If we have room, stuff the items into the buffer. */ 369 gp = sp->gp; 370 if (nitems <= gp->i_next || 371 (gp->i_event != NULL && gp->i_cnt == 0 && nitems <= gp->i_nelem)) { 372 if (gp->i_cnt != 0) 373 gp->i_next -= nitems; 374 goto copy; 375 } 376 377 /* 378 * If there are currently items in the queue, shift them up, 379 * leaving some extra room. Get enough space plus a little 380 * extra. 381 */ 382 #define TERM_PUSH_SHIFT 30 383 total = gp->i_cnt + gp->i_next + nitems + TERM_PUSH_SHIFT; 384 if (total >= gp->i_nelem && v_event_grow(sp, MAX(total, 64))) 385 return (1); 386 if (gp->i_cnt) 387 BCOPY(gp->i_event + gp->i_next, 388 gp->i_event + TERM_PUSH_SHIFT + nitems, gp->i_cnt); 389 gp->i_next = TERM_PUSH_SHIFT; 390 391 /* Put the new items into the queue. */ 392 copy: gp->i_cnt += nitems; 393 for (evp = gp->i_event + gp->i_next; nitems--; ++evp) { 394 if (p_evp != NULL) 395 *evp = *p_evp++; 396 else { 397 evp->e_event = E_CHARACTER; 398 evp->e_c = *p_s++; 399 evp->e_value = KEY_VAL(sp, evp->e_c); 400 F_INIT(&evp->e_ch, flags); 401 } 402 } 403 return (0); 404 } 405 406 /* 407 * v_event_append -- 408 * Append events onto the tail of the buffer. 409 */ 410 static int 411 v_event_append( 412 SCR *sp, 413 EVENT *argp) 414 { 415 CHAR_T *s; /* Characters. */ 416 EVENT *evp; 417 GS *gp; 418 size_t nevents; /* Number of events. */ 419 420 /* Grow the buffer as necessary. */ 421 nevents = argp->e_event == E_STRING ? argp->e_len : 1; 422 gp = sp->gp; 423 if (gp->i_event == NULL || 424 nevents > gp->i_nelem - (gp->i_next + gp->i_cnt)) 425 v_event_grow(sp, MAX(nevents, 64)); 426 evp = gp->i_event + gp->i_next + gp->i_cnt; 427 gp->i_cnt += nevents; 428 429 /* Transform strings of characters into single events. */ 430 if (argp->e_event == E_STRING) 431 for (s = argp->e_csp; nevents--; ++evp) { 432 evp->e_event = E_CHARACTER; 433 evp->e_c = *s++; 434 evp->e_value = KEY_VAL(sp, evp->e_c); 435 evp->e_flags = 0; 436 } 437 else 438 *evp = *argp; 439 return (0); 440 } 441 442 /* Remove events from the queue. */ 443 #define QREM(len) { \ 444 if ((gp->i_cnt -= len) == 0) \ 445 gp->i_next = 0; \ 446 else \ 447 gp->i_next += len; \ 448 } 449 450 /* 451 * v_event_get -- 452 * Return the next event. 453 * 454 * !!! 455 * The flag EC_NODIGIT probably needs some explanation. First, the idea of 456 * mapping keys is that one or more keystrokes act like a function key. 457 * What's going on is that vi is reading a number, and the character following 458 * the number may or may not be mapped (EC_MAPCOMMAND). For example, if the 459 * user is entering the z command, a valid command is "z40+", and we don't want 460 * to map the '+', i.e. if '+' is mapped to "xxx", we don't want to change it 461 * into "z40xxx". However, if the user enters "35x", we want to put all of the 462 * characters through the mapping code. 463 * 464 * Historical practice is a bit muddled here. (Surprise!) It always permitted 465 * mapping digits as long as they weren't the first character of the map, e.g. 466 * ":map ^A1 xxx" was okay. It also permitted the mapping of the digits 1-9 467 * (the digit 0 was a special case as it doesn't indicate the start of a count) 468 * as the first character of the map, but then ignored those mappings. While 469 * it's probably stupid to map digits, vi isn't your mother. 470 * 471 * The way this works is that the EC_MAPNODIGIT causes term_key to return the 472 * end-of-digit without "looking" at the next character, i.e. leaving it as the 473 * user entered it. Presumably, the next term_key call will tell us how the 474 * user wants it handled. 475 * 476 * There is one more complication. Users might map keys to digits, and, as 477 * it's described above, the commands: 478 * 479 * :map g 1G 480 * d2g 481 * 482 * would return the keys "d2<end-of-digits>1G", when the user probably wanted 483 * "d21<end-of-digits>G". So, if a map starts off with a digit we continue as 484 * before, otherwise, we pretend we haven't mapped the character, and return 485 * <end-of-digits>. 486 * 487 * Now that that's out of the way, let's talk about Energizer Bunny macros. 488 * It's easy to create macros that expand to a loop, e.g. map x 3x. It's 489 * fairly easy to detect this example, because it's all internal to term_key. 490 * If we're expanding a macro and it gets big enough, at some point we can 491 * assume it's looping and kill it. The examples that are tough are the ones 492 * where the parser is involved, e.g. map x "ayyx"byy. We do an expansion 493 * on 'x', and get "ayyx"byy. We then return the first 4 characters, and then 494 * find the looping macro again. There is no way that we can detect this 495 * without doing a full parse of the command, because the character that might 496 * cause the loop (in this case 'x') may be a literal character, e.g. the map 497 * map x "ayy"xyy"byy is perfectly legal and won't cause a loop. 498 * 499 * Historic vi tried to detect looping macros by disallowing obvious cases in 500 * the map command, maps that that ended with the same letter as they started 501 * (which wrongly disallowed "map x 'x"), and detecting macros that expanded 502 * too many times before keys were returned to the command parser. It didn't 503 * get many (most?) of the tricky cases right, however, and it was certainly 504 * possible to create macros that ran forever. And, even if it did figure out 505 * what was going on, the user was usually tossed into ex mode. Finally, any 506 * changes made before vi realized that the macro was recursing were left in 507 * place. We recover gracefully, but the only recourse the user has in an 508 * infinite macro loop is to interrupt. 509 * 510 * !!! 511 * It is historic practice that mapping characters to themselves as the first 512 * part of the mapped string was legal, and did not cause infinite loops, i.e. 513 * ":map! { {^M^T" and ":map n nz." were known to work. The initial, matching 514 * characters were returned instead of being remapped. 515 * 516 * !!! 517 * It is also historic practice that the macro "map ] ]]^" caused a single ] 518 * keypress to behave as the command ]] (the ^ got the map past the vi check 519 * for "tail recursion"). Conversely, the mapping "map n nn^" went recursive. 520 * What happened was that, in the historic vi, maps were expanded as the keys 521 * were retrieved, but not all at once and not centrally. So, the keypress ] 522 * pushed ]]^ on the stack, and then the first ] from the stack was passed to 523 * the ]] command code. The ]] command then retrieved a key without entering 524 * the mapping code. This could bite us anytime a user has a map that depends 525 * on secondary keys NOT being mapped. I can't see any possible way to make 526 * this work in here without the complete abandonment of Rationality Itself. 527 * 528 * XXX 529 * The final issue is recovery. It would be possible to undo all of the work 530 * that was done by the macro if we entered a record into the log so that we 531 * knew when the macro started, and, in fact, this might be worth doing at some 532 * point. Given that this might make the log grow unacceptably (consider that 533 * cursor keys are done with maps), for now we leave any changes made in place. 534 * 535 * PUBLIC: int v_event_get __P((SCR *, EVENT *, int, u_int32_t)); 536 */ 537 int 538 v_event_get( 539 SCR *sp, 540 EVENT *argp, 541 int timeout, 542 u_int32_t flags) 543 { 544 EVENT *evp, ev; 545 GS *gp; 546 SEQ *qp; 547 int init_nomap, ispartial, istimeout, remap_cnt; 548 549 gp = sp->gp; 550 551 /* If simply checking for interrupts, argp may be NULL. */ 552 if (argp == NULL) 553 argp = &ev; 554 555 retry: istimeout = remap_cnt = 0; 556 557 /* 558 * If the queue isn't empty and we're timing out for characters, 559 * return immediately. 560 */ 561 if (gp->i_cnt != 0 && LF_ISSET(EC_TIMEOUT)) 562 return (0); 563 564 /* 565 * If the queue is empty, we're checking for interrupts, or we're 566 * timing out for characters, get more events. 567 */ 568 if (gp->i_cnt == 0 || LF_ISSET(EC_INTERRUPT | EC_TIMEOUT)) { 569 /* 570 * If we're reading new characters, check any scripting 571 * windows for input. 572 */ 573 if (F_ISSET(gp, G_SCRWIN) && sscr_input(sp)) 574 return (1); 575 loop: if (gp->scr_event(sp, argp, 576 LF_ISSET(EC_INTERRUPT | EC_QUOTED | EC_RAW), timeout)) 577 return (1); 578 switch (argp->e_event) { 579 case E_ERR: 580 case E_SIGHUP: 581 case E_SIGTERM: 582 /* 583 * Fatal conditions cause the file to be synced to 584 * disk immediately. 585 */ 586 v_sync(sp, RCV_ENDSESSION | RCV_PRESERVE | 587 (argp->e_event == E_SIGTERM ? 0: RCV_EMAIL)); 588 return (1); 589 case E_TIMEOUT: 590 istimeout = 1; 591 break; 592 case E_INTERRUPT: 593 /* Set the global interrupt flag. */ 594 F_SET(sp->gp, G_INTERRUPTED); 595 596 /* 597 * If the caller was interested in interrupts, return 598 * immediately. 599 */ 600 if (LF_ISSET(EC_INTERRUPT)) 601 return (0); 602 goto append; 603 default: 604 append: if (v_event_append(sp, argp)) 605 return (1); 606 break; 607 } 608 } 609 610 /* 611 * If the caller was only interested in interrupts or timeouts, return 612 * immediately. (We may have gotten characters, and that's okay, they 613 * were queued up for later use.) 614 */ 615 if (LF_ISSET(EC_INTERRUPT | EC_TIMEOUT)) 616 return (0); 617 618 newmap: evp = &gp->i_event[gp->i_next]; 619 620 /* 621 * If the next event in the queue isn't a character event, return 622 * it, we're done. 623 */ 624 if (evp->e_event != E_CHARACTER) { 625 *argp = *evp; 626 QREM(1); 627 return (0); 628 } 629 630 /* 631 * If the key isn't mappable because: 632 * 633 * + ... the timeout has expired 634 * + ... it's not a mappable key 635 * + ... neither the command or input map flags are set 636 * + ... there are no maps that can apply to it 637 * 638 * return it forthwith. 639 */ 640 if (istimeout || F_ISSET(&evp->e_ch, CH_NOMAP) || 641 !LF_ISSET(EC_MAPCOMMAND | EC_MAPINPUT) || 642 ((evp->e_c & ~MAX_BIT_SEQ) == 0 && 643 !bit_test(gp->seqb, evp->e_c))) 644 goto nomap; 645 646 /* Search the map. */ 647 qp = seq_find(sp, NULL, evp, NULL, gp->i_cnt, 648 LF_ISSET(EC_MAPCOMMAND) ? SEQ_COMMAND : SEQ_INPUT, &ispartial); 649 650 /* 651 * If get a partial match, get more characters and retry the map. 652 * If time out without further characters, return the characters 653 * unmapped. 654 * 655 * !!! 656 * <escape> characters are a problem. Cursor keys start with <escape> 657 * characters, so there's almost always a map in place that begins with 658 * an <escape> character. If we timeout <escape> keys in the same way 659 * that we timeout other keys, the user will get a noticeable pause as 660 * they enter <escape> to terminate input mode. If key timeout is set 661 * for a slow link, users will get an even longer pause. Nvi used to 662 * simply timeout <escape> characters at 1/10th of a second, but this 663 * loses over PPP links where the latency is greater than 100Ms. 664 */ 665 if (ispartial) { 666 if (O_ISSET(sp, O_TIMEOUT)) 667 timeout = (evp->e_value == K_ESCAPE ? 668 O_VAL(sp, O_ESCAPETIME) : 669 O_VAL(sp, O_KEYTIME)) * 100; 670 else 671 timeout = 0; 672 goto loop; 673 } 674 675 /* If no map, return the character. */ 676 if (qp == NULL) { 677 nomap: if (!ISDIGIT(evp->e_c) && LF_ISSET(EC_MAPNODIGIT)) 678 goto not_digit; 679 *argp = *evp; 680 QREM(1); 681 return (0); 682 } 683 684 /* 685 * If looking for the end of a digit string, and the first character 686 * of the map is it, pretend we haven't seen the character. 687 */ 688 if (LF_ISSET(EC_MAPNODIGIT) && 689 qp->output != NULL && !ISDIGIT(qp->output[0])) { 690 not_digit: argp->e_c = CH_NOT_DIGIT; 691 argp->e_value = K_NOTUSED; 692 argp->e_event = E_CHARACTER; 693 F_INIT(&argp->e_ch, 0); 694 return (0); 695 } 696 697 /* Find out if the initial segments are identical. */ 698 init_nomap = !e_memcmp(qp->output, &gp->i_event[gp->i_next], qp->ilen); 699 700 /* Delete the mapped characters from the queue. */ 701 QREM(qp->ilen); 702 703 /* If keys mapped to nothing, go get more. */ 704 if (qp->output == NULL) 705 goto retry; 706 707 /* If remapping characters... */ 708 if (O_ISSET(sp, O_REMAP)) { 709 /* 710 * Periodically check for interrupts. Always check the first 711 * time through, because it's possible to set up a map that 712 * will return a character every time, but will expand to more, 713 * e.g. "map! a aaaa" will always return a 'a', but we'll never 714 * get anywhere useful. 715 */ 716 if ((++remap_cnt == 1 || remap_cnt % 10 == 0) && 717 (gp->scr_event(sp, &ev, 718 EC_INTERRUPT, 0) || ev.e_event == E_INTERRUPT)) { 719 F_SET(sp->gp, G_INTERRUPTED); 720 argp->e_event = E_INTERRUPT; 721 return (0); 722 } 723 724 /* 725 * If an initial part of the characters mapped, they are not 726 * further remapped -- return the first one. Push the rest 727 * of the characters, or all of the characters if no initial 728 * part mapped, back on the queue. 729 */ 730 if (init_nomap) { 731 if (v_event_push(sp, NULL, qp->output + qp->ilen, 732 qp->olen - qp->ilen, CH_MAPPED)) 733 return (1); 734 if (v_event_push(sp, NULL, 735 qp->output, qp->ilen, CH_NOMAP | CH_MAPPED)) 736 return (1); 737 evp = &gp->i_event[gp->i_next]; 738 goto nomap; 739 } 740 if (v_event_push(sp, NULL, qp->output, qp->olen, CH_MAPPED)) 741 return (1); 742 goto newmap; 743 } 744 745 /* Else, push the characters on the queue and return one. */ 746 if (v_event_push(sp, NULL, qp->output, qp->olen, CH_MAPPED | CH_NOMAP)) 747 return (1); 748 749 goto nomap; 750 } 751 752 /* 753 * v_sync -- 754 * Walk the screen lists, sync'ing files to their backup copies. 755 */ 756 static void 757 v_sync( 758 SCR *sp, 759 int flags) 760 { 761 GS *gp; 762 763 gp = sp->gp; 764 TAILQ_FOREACH(sp, gp->dq, q) 765 rcv_sync(sp, flags); 766 TAILQ_FOREACH(sp, gp->hq, q) 767 rcv_sync(sp, flags); 768 } 769 770 /* 771 * v_event_err -- 772 * Unexpected event. 773 * 774 * PUBLIC: void v_event_err __P((SCR *, EVENT *)); 775 */ 776 void 777 v_event_err( 778 SCR *sp, 779 EVENT *evp) 780 { 781 switch (evp->e_event) { 782 case E_CHARACTER: 783 msgq(sp, M_ERR, "276|Unexpected character event"); 784 break; 785 case E_EOF: 786 msgq(sp, M_ERR, "277|Unexpected end-of-file event"); 787 break; 788 case E_INTERRUPT: 789 msgq(sp, M_ERR, "279|Unexpected interrupt event"); 790 break; 791 case E_REPAINT: 792 msgq(sp, M_ERR, "281|Unexpected repaint event"); 793 break; 794 case E_STRING: 795 msgq(sp, M_ERR, "285|Unexpected string event"); 796 break; 797 case E_TIMEOUT: 798 msgq(sp, M_ERR, "286|Unexpected timeout event"); 799 break; 800 case E_WRESIZE: 801 msgq(sp, M_ERR, "316|Unexpected resize event"); 802 break; 803 804 /* 805 * Theoretically, none of these can occur, as they're handled at the 806 * top editor level. 807 */ 808 case E_ERR: 809 case E_SIGHUP: 810 case E_SIGTERM: 811 default: 812 abort(); 813 } 814 815 /* Free any allocated memory. */ 816 if (evp->e_asp != NULL) 817 free(evp->e_asp); 818 } 819 820 /* 821 * v_event_flush -- 822 * Flush any flagged keys, returning if any keys were flushed. 823 * 824 * PUBLIC: int v_event_flush __P((SCR *, u_int)); 825 */ 826 int 827 v_event_flush( 828 SCR *sp, 829 u_int flags) 830 { 831 GS *gp; 832 int rval; 833 834 for (rval = 0, gp = sp->gp; gp->i_cnt != 0 && 835 F_ISSET(&gp->i_event[gp->i_next].e_ch, flags); rval = 1) 836 QREM(1); 837 return (rval); 838 } 839 840 /* 841 * v_event_grow -- 842 * Grow the terminal queue. 843 */ 844 static int 845 v_event_grow( 846 SCR *sp, 847 int add) 848 { 849 GS *gp; 850 size_t new_nelem, olen; 851 852 gp = sp->gp; 853 new_nelem = gp->i_nelem + add; 854 olen = gp->i_nelem * sizeof(gp->i_event[0]); 855 BINC_RET(sp, EVENT, gp->i_event, olen, new_nelem * sizeof(gp->i_event[0])); 856 gp->i_nelem = olen / sizeof(gp->i_event[0]); 857 return (0); 858 } 859 860 /* 861 * v_key_cmp -- 862 * Compare two keys for sorting. 863 */ 864 static int 865 v_key_cmp( 866 const void *ap, 867 const void *bp) 868 { 869 return (((KEYLIST *)ap)->ch - ((KEYLIST *)bp)->ch); 870 } 871