1 /*- 2 * Copyright (c) 1991, 1993, 1994 3 * The Regents of the University of California. All rights reserved. 4 * Copyright (c) 1991, 1993, 1994, 1995, 1996 5 * Keith Bostic. All rights reserved. 6 * 7 * See the LICENSE file for redistribution information. 8 */ 9 10 #include "config.h" 11 12 #include <sys/types.h> 13 #include <sys/queue.h> 14 #include <sys/time.h> 15 16 #include <bitstring.h> 17 #include <ctype.h> 18 #include <errno.h> 19 #include <limits.h> 20 #include <stdio.h> 21 #include <stdlib.h> 22 #include <string.h> 23 #include <strings.h> 24 #include <unistd.h> 25 26 #include "common.h" 27 #include "../vi/vi.h" 28 29 static int v_event_append(SCR *, EVENT *); 30 static int v_event_grow(SCR *, int); 31 static int v_key_cmp(const void *, const void *); 32 static void v_keyval(SCR *, int, scr_keyval_t); 33 static void v_sync(SCR *, int); 34 35 /* 36 * !!! 37 * Historic vi always used: 38 * 39 * ^D: autoindent deletion 40 * ^H: last character deletion 41 * ^W: last word deletion 42 * ^Q: quote the next character (if not used in flow control). 43 * ^V: quote the next character 44 * 45 * regardless of the user's choices for these characters. The user's erase 46 * and kill characters worked in addition to these characters. Nvi wires 47 * down the above characters, but in addition permits the VEOF, VERASE, VKILL 48 * and VWERASE characters described by the user's termios structure. 49 * 50 * Ex was not consistent with this scheme, as it historically ran in tty 51 * cooked mode. This meant that the scroll command and autoindent erase 52 * characters were mapped to the user's EOF character, and the character 53 * and word deletion characters were the user's tty character and word 54 * deletion characters. This implementation makes it all consistent, as 55 * described above for vi. 56 * 57 * !!! 58 * This means that all screens share a special key set. 59 */ 60 KEYLIST keylist[] = { 61 {K_BACKSLASH, '\\'}, /* \ */ 62 {K_CARAT, '^'}, /* ^ */ 63 {K_CNTRLD, '\004'}, /* ^D */ 64 {K_CNTRLR, '\022'}, /* ^R */ 65 {K_CNTRLT, '\024'}, /* ^T */ 66 {K_CNTRLZ, '\032'}, /* ^Z */ 67 {K_COLON, ':'}, /* : */ 68 {K_CR, '\r'}, /* \r */ 69 {K_ESCAPE, '\033'}, /* ^[ */ 70 {K_FORMFEED, '\f'}, /* \f */ 71 {K_HEXCHAR, '\030'}, /* ^X */ 72 {K_NL, '\n'}, /* \n */ 73 {K_RIGHTBRACE, '}'}, /* } */ 74 {K_RIGHTPAREN, ')'}, /* ) */ 75 {K_TAB, '\t'}, /* \t */ 76 {K_VERASE, '\b'}, /* \b */ 77 {K_VKILL, '\025'}, /* ^U */ 78 {K_VLNEXT, '\021'}, /* ^Q */ 79 {K_VLNEXT, '\026'}, /* ^V */ 80 {K_VWERASE, '\027'}, /* ^W */ 81 {K_ZERO, '0'}, /* 0 */ 82 83 #define ADDITIONAL_CHARACTERS 4 84 {K_NOTUSED, 0}, /* VEOF, VERASE, VKILL, VWERASE */ 85 {K_NOTUSED, 0}, 86 {K_NOTUSED, 0}, 87 {K_NOTUSED, 0}, 88 }; 89 static int nkeylist = 90 (sizeof(keylist) / sizeof(keylist[0])) - ADDITIONAL_CHARACTERS; 91 92 /* 93 * v_key_init -- 94 * Initialize the special key lookup table. 95 * 96 * PUBLIC: int v_key_init(SCR *); 97 */ 98 int 99 v_key_init(SCR *sp) 100 { 101 int ch; 102 GS *gp; 103 KEYLIST *kp; 104 int cnt; 105 106 gp = sp->gp; 107 108 v_key_ilookup(sp); 109 110 v_keyval(sp, K_CNTRLD, KEY_VEOF); 111 v_keyval(sp, K_VERASE, KEY_VERASE); 112 v_keyval(sp, K_VKILL, KEY_VKILL); 113 v_keyval(sp, K_VWERASE, KEY_VWERASE); 114 115 /* Sort the special key list. */ 116 qsort(keylist, nkeylist, sizeof(keylist[0]), v_key_cmp); 117 118 /* Initialize the fast lookup table. */ 119 for (kp = keylist, cnt = nkeylist; cnt--; ++kp) 120 gp->special_key[kp->ch] = kp->value; 121 122 /* Find a non-printable character to use as a message separator. */ 123 for (ch = 1; ch <= UCHAR_MAX; ++ch) 124 if (!isprint(ch)) { 125 gp->noprint = ch; 126 break; 127 } 128 if (ch != gp->noprint) { 129 msgq(sp, M_ERR, "079|No non-printable character found"); 130 return (1); 131 } 132 return (0); 133 } 134 135 /* 136 * v_keyval -- 137 * Set key values. 138 * 139 * We've left some open slots in the keylist table, and if these values exist, 140 * we put them into place. Note, they may reset (or duplicate) values already 141 * in the table, so we check for that first. 142 */ 143 static void 144 v_keyval(SCR *sp, int val, scr_keyval_t name) 145 { 146 KEYLIST *kp; 147 CHAR_T ch; 148 int dne; 149 150 /* Get the key's value from the screen. */ 151 if (sp->gp->scr_keyval(sp, name, &ch, &dne)) 152 return; 153 if (dne) 154 return; 155 156 /* Check for duplication. */ 157 for (kp = keylist; kp->value != K_NOTUSED; ++kp) 158 if (kp->ch == ch) { 159 kp->value = val; 160 return; 161 } 162 163 /* Add a new entry. */ 164 if (kp->value == K_NOTUSED) { 165 keylist[nkeylist].ch = ch; 166 keylist[nkeylist].value = val; 167 ++nkeylist; 168 } 169 } 170 171 /* 172 * v_key_ilookup -- 173 * Build the fast-lookup key display array. 174 * 175 * PUBLIC: void v_key_ilookup(SCR *); 176 */ 177 void 178 v_key_ilookup(SCR *sp) 179 { 180 UCHAR_T ch; 181 char *p, *t; 182 GS *gp; 183 size_t len; 184 185 for (gp = sp->gp, ch = 0;; ++ch) { 186 for (p = gp->cname[ch].name, t = v_key_name(sp, ch), 187 len = gp->cname[ch].len = sp->clen; len--;) 188 *p++ = *t++; 189 if (ch == MAX_FAST_KEY) 190 break; 191 } 192 } 193 194 /* 195 * v_key_len -- 196 * Return the length of the string that will display the key. 197 * This routine is the backup for the KEY_LEN() macro. 198 * 199 * PUBLIC: size_t v_key_len(SCR *, ARG_CHAR_T); 200 */ 201 size_t 202 v_key_len(SCR *sp, ARG_CHAR_T ch) 203 { 204 (void)v_key_name(sp, ch); 205 return (sp->clen); 206 } 207 208 /* 209 * v_key_name -- 210 * Return the string that will display the key. This routine 211 * is the backup for the KEY_NAME() macro. 212 * 213 * PUBLIC: char *v_key_name(SCR *, ARG_CHAR_T); 214 */ 215 char * 216 v_key_name(SCR *sp, ARG_CHAR_T ach) 217 { 218 static const char hexdigit[] = "0123456789abcdef"; 219 static const char octdigit[] = "01234567"; 220 int ch; 221 size_t len; 222 char *chp; 223 224 /* 225 * Cache the last checked character. It won't be a problem 226 * since nvi will rescan the mapping when settings changed. 227 */ 228 if (ach && sp->lastc == ach) 229 return (sp->cname); 230 sp->lastc = ach; 231 232 #ifdef USE_WIDECHAR 233 len = wctomb(sp->cname, ach); 234 if (len > MB_CUR_MAX) 235 #endif 236 sp->cname[(len = 1)-1] = (u_char)ach; 237 238 ch = (u_char)sp->cname[0]; 239 sp->cname[len] = '\0'; 240 241 /* See if the character was explicitly declared printable or not. */ 242 if ((chp = O_STR(sp, O_PRINT)) != NULL) 243 if (strstr(chp, sp->cname) != NULL) 244 goto done; 245 if ((chp = O_STR(sp, O_NOPRINT)) != NULL) 246 if (strstr(chp, sp->cname) != NULL) 247 goto nopr; 248 249 /* 250 * Historical (ARPA standard) mappings. Printable characters are left 251 * alone. Control characters less than 0x20 are represented as '^' 252 * followed by the character offset from the '@' character in the ASCII 253 * character set. Del (0x7f) is represented as '^' followed by '?'. 254 * 255 * XXX 256 * The following code depends on the current locale being identical to 257 * the ASCII map from 0x40 to 0x5f (since 0x1f + 0x40 == 0x5f). I'm 258 * told that this is a reasonable assumption... 259 * 260 * XXX 261 * The code prints non-printable wide characters in 4 or 5 digits 262 * Unicode escape sequences, so only supports plane 0 to 15. 263 */ 264 if (CAN_PRINT(sp, ach)) 265 goto done; 266 nopr: if (iscntrl(ch) && (ch < 0x20 || ch == 0x7f)) { 267 sp->cname[0] = '^'; 268 sp->cname[1] = ch == 0x7f ? '?' : '@' + ch; 269 len = 2; 270 goto done; 271 } 272 #ifdef USE_WIDECHAR 273 if (INTISWIDE(ach)) { 274 int uc = -1; 275 276 if (!strcmp(codeset(), "UTF-8")) 277 uc = decode_utf8(sp->cname); 278 #ifdef USE_ICONV 279 else { 280 char buf[sizeof(sp->cname)] = ""; 281 size_t left = sizeof(sp->cname); 282 char *in = sp->cname; 283 char *out = buf; 284 iconv(sp->conv.id[IC_IE_TO_UTF16], 285 (iconv_src_t)&in, &len, &out, &left); 286 iconv(sp->conv.id[IC_IE_TO_UTF16], 287 NULL, NULL, NULL, NULL); 288 uc = decode_utf16(buf, 1); 289 } 290 #endif 291 if (uc >= 0) { 292 len = snprintf(sp->cname, sizeof(sp->cname), 293 uc < 0x10000 ? "\\u%04x" : "\\U%05X", uc); 294 goto done; 295 } 296 } 297 #endif 298 if (O_ISSET(sp, O_OCTAL)) { 299 sp->cname[0] = '\\'; 300 sp->cname[1] = octdigit[(ch & 0300) >> 6]; 301 sp->cname[2] = octdigit[(ch & 070) >> 3]; 302 sp->cname[3] = octdigit[ ch & 07 ]; 303 } else { 304 sp->cname[0] = '\\'; 305 sp->cname[1] = 'x'; 306 sp->cname[2] = hexdigit[(ch & 0xf0) >> 4]; 307 sp->cname[3] = hexdigit[ ch & 0x0f ]; 308 } 309 len = 4; 310 done: sp->cname[sp->clen = len] = '\0'; 311 return (sp->cname); 312 } 313 314 /* 315 * v_key_val -- 316 * Fill in the value for a key. This routine is the backup 317 * for the KEY_VAL() macro. 318 * 319 * PUBLIC: e_key_t v_key_val(SCR *, ARG_CHAR_T); 320 */ 321 e_key_t 322 v_key_val(SCR *sp, ARG_CHAR_T ch) 323 { 324 KEYLIST k, *kp; 325 326 k.ch = ch; 327 kp = bsearch(&k, keylist, nkeylist, sizeof(keylist[0]), v_key_cmp); 328 return (kp == NULL ? K_NOTUSED : kp->value); 329 } 330 331 /* 332 * v_event_push -- 333 * Push events/keys onto the front of the buffer. 334 * 335 * There is a single input buffer in ex/vi. Characters are put onto the 336 * end of the buffer by the terminal input routines, and pushed onto the 337 * front of the buffer by various other functions in ex/vi. Each key has 338 * an associated flag value, which indicates if it has already been quoted, 339 * and if it is the result of a mapping or an abbreviation. 340 * 341 * PUBLIC: int v_event_push(SCR *, EVENT *, CHAR_T *, size_t, u_int); 342 */ 343 int 344 v_event_push(SCR *sp, 345 EVENT *p_evp, /* Push event. */ 346 CHAR_T *p_s, /* Push characters. */ 347 size_t nitems, /* Number of items to push. */ 348 u_int flags) /* CH_* flags. */ 349 { 350 EVENT *evp; 351 GS *gp; 352 size_t total; 353 354 /* If we have room, stuff the items into the buffer. */ 355 gp = sp->gp; 356 if (nitems <= gp->i_next || 357 (gp->i_event != NULL && gp->i_cnt == 0 && nitems <= gp->i_nelem)) { 358 if (gp->i_cnt != 0) 359 gp->i_next -= nitems; 360 goto copy; 361 } 362 363 /* 364 * If there are currently items in the queue, shift them up, 365 * leaving some extra room. Get enough space plus a little 366 * extra. 367 */ 368 #define TERM_PUSH_SHIFT 30 369 total = gp->i_cnt + gp->i_next + nitems + TERM_PUSH_SHIFT; 370 if (total >= gp->i_nelem && v_event_grow(sp, MAX(total, 64))) 371 return (1); 372 if (gp->i_cnt) 373 memmove(gp->i_event + TERM_PUSH_SHIFT + nitems, 374 gp->i_event + gp->i_next, gp->i_cnt * sizeof(EVENT)); 375 gp->i_next = TERM_PUSH_SHIFT; 376 377 /* Put the new items into the queue. */ 378 copy: gp->i_cnt += nitems; 379 for (evp = gp->i_event + gp->i_next; nitems--; ++evp) { 380 if (p_evp != NULL) 381 *evp = *p_evp++; 382 else { 383 evp->e_event = E_CHARACTER; 384 evp->e_c = *p_s++; 385 evp->e_value = KEY_VAL(sp, evp->e_c); 386 F_INIT(&evp->e_ch, flags); 387 } 388 } 389 return (0); 390 } 391 392 /* 393 * v_event_append -- 394 * Append events onto the tail of the buffer. 395 */ 396 static int 397 v_event_append(SCR *sp, EVENT *argp) 398 { 399 CHAR_T *s; /* Characters. */ 400 EVENT *evp; 401 GS *gp; 402 size_t nevents; /* Number of events. */ 403 404 /* Grow the buffer as necessary. */ 405 nevents = argp->e_event == E_STRING ? argp->e_len : 1; 406 gp = sp->gp; 407 if (gp->i_event == NULL || 408 nevents > gp->i_nelem - (gp->i_next + gp->i_cnt)) 409 v_event_grow(sp, MAX(nevents, 64)); 410 evp = gp->i_event + gp->i_next + gp->i_cnt; 411 gp->i_cnt += nevents; 412 413 /* Transform strings of characters into single events. */ 414 if (argp->e_event == E_STRING) 415 for (s = argp->e_csp; nevents--; ++evp) { 416 evp->e_event = E_CHARACTER; 417 evp->e_c = *s++; 418 evp->e_value = KEY_VAL(sp, evp->e_c); 419 evp->e_flags = 0; 420 } 421 else 422 *evp = *argp; 423 return (0); 424 } 425 426 /* Remove events from the queue. */ 427 #define QREM(len) { \ 428 if ((gp->i_cnt -= len) == 0) \ 429 gp->i_next = 0; \ 430 else \ 431 gp->i_next += len; \ 432 } 433 434 /* 435 * v_event_get -- 436 * Return the next event. 437 * 438 * !!! 439 * The flag EC_NODIGIT probably needs some explanation. First, the idea of 440 * mapping keys is that one or more keystrokes act like a function key. 441 * What's going on is that vi is reading a number, and the character following 442 * the number may or may not be mapped (EC_MAPCOMMAND). For example, if the 443 * user is entering the z command, a valid command is "z40+", and we don't want 444 * to map the '+', i.e. if '+' is mapped to "xxx", we don't want to change it 445 * into "z40xxx". However, if the user enters "35x", we want to put all of the 446 * characters through the mapping code. 447 * 448 * Historical practice is a bit muddled here. (Surprise!) It always permitted 449 * mapping digits as long as they weren't the first character of the map, e.g. 450 * ":map ^A1 xxx" was okay. It also permitted the mapping of the digits 1-9 451 * (the digit 0 was a special case as it doesn't indicate the start of a count) 452 * as the first character of the map, but then ignored those mappings. While 453 * it's probably stupid to map digits, vi isn't your mother. 454 * 455 * The way this works is that the EC_MAPNODIGIT causes term_key to return the 456 * end-of-digit without "looking" at the next character, i.e. leaving it as the 457 * user entered it. Presumably, the next term_key call will tell us how the 458 * user wants it handled. 459 * 460 * There is one more complication. Users might map keys to digits, and, as 461 * it's described above, the commands: 462 * 463 * :map g 1G 464 * d2g 465 * 466 * would return the keys "d2<end-of-digits>1G", when the user probably wanted 467 * "d21<end-of-digits>G". So, if a map starts off with a digit we continue as 468 * before, otherwise, we pretend we haven't mapped the character, and return 469 * <end-of-digits>. 470 * 471 * Now that that's out of the way, let's talk about Energizer Bunny macros. 472 * It's easy to create macros that expand to a loop, e.g. map x 3x. It's 473 * fairly easy to detect this example, because it's all internal to term_key. 474 * If we're expanding a macro and it gets big enough, at some point we can 475 * assume it's looping and kill it. The examples that are tough are the ones 476 * where the parser is involved, e.g. map x "ayyx"byy. We do an expansion 477 * on 'x', and get "ayyx"byy. We then return the first 4 characters, and then 478 * find the looping macro again. There is no way that we can detect this 479 * without doing a full parse of the command, because the character that might 480 * cause the loop (in this case 'x') may be a literal character, e.g. the map 481 * map x "ayy"xyy"byy is perfectly legal and won't cause a loop. 482 * 483 * Historic vi tried to detect looping macros by disallowing obvious cases in 484 * the map command, maps that that ended with the same letter as they started 485 * (which wrongly disallowed "map x 'x"), and detecting macros that expanded 486 * too many times before keys were returned to the command parser. It didn't 487 * get many (most?) of the tricky cases right, however, and it was certainly 488 * possible to create macros that ran forever. And, even if it did figure out 489 * what was going on, the user was usually tossed into ex mode. Finally, any 490 * changes made before vi realized that the macro was recursing were left in 491 * place. We recover gracefully, but the only recourse the user has in an 492 * infinite macro loop is to interrupt. 493 * 494 * !!! 495 * It is historic practice that mapping characters to themselves as the first 496 * part of the mapped string was legal, and did not cause infinite loops, i.e. 497 * ":map! { {^M^T" and ":map n nz." were known to work. The initial, matching 498 * characters were returned instead of being remapped. 499 * 500 * !!! 501 * It is also historic practice that the macro "map ] ]]^" caused a single ] 502 * keypress to behave as the command ]] (the ^ got the map past the vi check 503 * for "tail recursion"). Conversely, the mapping "map n nn^" went recursive. 504 * What happened was that, in the historic vi, maps were expanded as the keys 505 * were retrieved, but not all at once and not centrally. So, the keypress ] 506 * pushed ]]^ on the stack, and then the first ] from the stack was passed to 507 * the ]] command code. The ]] command then retrieved a key without entering 508 * the mapping code. This could bite us anytime a user has a map that depends 509 * on secondary keys NOT being mapped. I can't see any possible way to make 510 * this work in here without the complete abandonment of Rationality Itself. 511 * 512 * XXX 513 * The final issue is recovery. It would be possible to undo all of the work 514 * that was done by the macro if we entered a record into the log so that we 515 * knew when the macro started, and, in fact, this might be worth doing at some 516 * point. Given that this might make the log grow unacceptably (consider that 517 * cursor keys are done with maps), for now we leave any changes made in place. 518 * 519 * PUBLIC: int v_event_get(SCR *, EVENT *, int, u_int32_t); 520 */ 521 int 522 v_event_get(SCR *sp, EVENT *argp, int timeout, u_int32_t flags) 523 { 524 EVENT *evp, ev; 525 GS *gp; 526 SEQ *qp; 527 int init_nomap, ispartial, istimeout, remap_cnt; 528 529 gp = sp->gp; 530 531 /* If simply checking for interrupts, argp may be NULL. */ 532 if (argp == NULL) 533 argp = &ev; 534 535 retry: istimeout = remap_cnt = 0; 536 537 /* 538 * If the queue isn't empty and we're timing out for characters, 539 * return immediately. 540 */ 541 if (gp->i_cnt != 0 && LF_ISSET(EC_TIMEOUT)) 542 return (0); 543 544 /* 545 * If the queue is empty, we're checking for interrupts, or we're 546 * timing out for characters, get more events. 547 */ 548 if (gp->i_cnt == 0 || LF_ISSET(EC_INTERRUPT | EC_TIMEOUT)) { 549 /* 550 * If we're reading new characters, check any scripting 551 * windows for input. 552 */ 553 if (F_ISSET(gp, G_SCRWIN) && sscr_input(sp)) 554 return (1); 555 loop: if (gp->scr_event(sp, argp, 556 LF_ISSET(EC_INTERRUPT | EC_QUOTED | EC_RAW), timeout)) 557 return (1); 558 switch (argp->e_event) { 559 case E_ERR: 560 case E_SIGHUP: 561 case E_SIGTERM: 562 /* 563 * Fatal conditions cause the file to be synced to 564 * disk immediately. 565 */ 566 v_sync(sp, RCV_ENDSESSION | RCV_PRESERVE | 567 (argp->e_event == E_SIGTERM ? 0: RCV_EMAIL)); 568 return (1); 569 case E_TIMEOUT: 570 istimeout = 1; 571 break; 572 case E_INTERRUPT: 573 /* Set the global interrupt flag. */ 574 F_SET(sp->gp, G_INTERRUPTED); 575 576 /* 577 * If the caller was interested in interrupts, return 578 * immediately. 579 */ 580 if (LF_ISSET(EC_INTERRUPT)) 581 return (0); 582 goto append; 583 default: 584 append: if (v_event_append(sp, argp)) 585 return (1); 586 break; 587 } 588 } 589 590 /* 591 * If the caller was only interested in interrupts or timeouts, return 592 * immediately. (We may have gotten characters, and that's okay, they 593 * were queued up for later use.) 594 */ 595 if (LF_ISSET(EC_INTERRUPT | EC_TIMEOUT)) 596 return (0); 597 598 newmap: evp = &gp->i_event[gp->i_next]; 599 600 /* 601 * If the next event in the queue isn't a character event, return 602 * it, we're done. 603 */ 604 if (evp->e_event != E_CHARACTER) { 605 *argp = *evp; 606 QREM(1); 607 return (0); 608 } 609 610 /* 611 * If the key isn't mappable because: 612 * 613 * + ... the timeout has expired 614 * + ... it's not a mappable key 615 * + ... neither the command or input map flags are set 616 * + ... there are no maps that can apply to it 617 * 618 * return it forthwith. 619 */ 620 if (istimeout || F_ISSET(&evp->e_ch, CH_NOMAP) || 621 !LF_ISSET(EC_MAPCOMMAND | EC_MAPINPUT) || 622 ((evp->e_c & ~MAX_BIT_SEQ) == 0 && 623 !bit_test(gp->seqb, evp->e_c))) 624 goto nomap; 625 626 /* Search the map. */ 627 qp = seq_find(sp, NULL, evp, NULL, gp->i_cnt, 628 LF_ISSET(EC_MAPCOMMAND) ? SEQ_COMMAND : SEQ_INPUT, &ispartial); 629 630 /* 631 * If get a partial match, get more characters and retry the map. 632 * If time out without further characters, return the characters 633 * unmapped. 634 * 635 * !!! 636 * <escape> characters are a problem. Cursor keys start with <escape> 637 * characters, so there's almost always a map in place that begins with 638 * an <escape> character. If we timeout <escape> keys in the same way 639 * that we timeout other keys, the user will get a noticeable pause as 640 * they enter <escape> to terminate input mode. If key timeout is set 641 * for a slow link, users will get an even longer pause. Nvi used to 642 * simply timeout <escape> characters at 1/10th of a second, but this 643 * loses over PPP links where the latency is greater than 100Ms. 644 */ 645 if (ispartial) { 646 if (O_ISSET(sp, O_TIMEOUT)) 647 timeout = (evp->e_value == K_ESCAPE ? 648 O_VAL(sp, O_ESCAPETIME) : 649 O_VAL(sp, O_KEYTIME)) * 100; 650 else 651 timeout = 0; 652 goto loop; 653 } 654 655 /* If no map, return the character. */ 656 if (qp == NULL) { 657 nomap: if (!ISDIGIT(evp->e_c) && LF_ISSET(EC_MAPNODIGIT)) 658 goto not_digit; 659 *argp = *evp; 660 QREM(1); 661 return (0); 662 } 663 664 /* 665 * If looking for the end of a digit string, and the first character 666 * of the map is it, pretend we haven't seen the character. 667 */ 668 if (LF_ISSET(EC_MAPNODIGIT) && 669 qp->output != NULL && !ISDIGIT(qp->output[0])) { 670 not_digit: argp->e_c = CH_NOT_DIGIT; 671 argp->e_value = K_NOTUSED; 672 argp->e_event = E_CHARACTER; 673 F_INIT(&argp->e_ch, 0); 674 return (0); 675 } 676 677 /* Find out if the initial segments are identical. */ 678 init_nomap = !e_memcmp(qp->output, &gp->i_event[gp->i_next], qp->ilen); 679 680 /* Delete the mapped characters from the queue. */ 681 QREM(qp->ilen); 682 683 /* If keys mapped to nothing, go get more. */ 684 if (qp->output == NULL) 685 goto retry; 686 687 /* If remapping characters... */ 688 if (O_ISSET(sp, O_REMAP)) { 689 /* 690 * Periodically check for interrupts. Always check the first 691 * time through, because it's possible to set up a map that 692 * will return a character every time, but will expand to more, 693 * e.g. "map! a aaaa" will always return a 'a', but we'll never 694 * get anywhere useful. 695 */ 696 if ((++remap_cnt == 1 || remap_cnt % 10 == 0) && 697 (gp->scr_event(sp, &ev, 698 EC_INTERRUPT, 0) || ev.e_event == E_INTERRUPT)) { 699 F_SET(sp->gp, G_INTERRUPTED); 700 argp->e_event = E_INTERRUPT; 701 return (0); 702 } 703 704 /* 705 * If an initial part of the characters mapped, they are not 706 * further remapped -- return the first one. Push the rest 707 * of the characters, or all of the characters if no initial 708 * part mapped, back on the queue. 709 */ 710 if (init_nomap) { 711 if (v_event_push(sp, NULL, qp->output + qp->ilen, 712 qp->olen - qp->ilen, CH_MAPPED)) 713 return (1); 714 if (v_event_push(sp, NULL, 715 qp->output, qp->ilen, CH_NOMAP | CH_MAPPED)) 716 return (1); 717 evp = &gp->i_event[gp->i_next]; 718 goto nomap; 719 } 720 if (v_event_push(sp, NULL, qp->output, qp->olen, CH_MAPPED)) 721 return (1); 722 goto newmap; 723 } 724 725 /* Else, push the characters on the queue and return one. */ 726 if (v_event_push(sp, NULL, qp->output, qp->olen, CH_MAPPED | CH_NOMAP)) 727 return (1); 728 729 goto nomap; 730 } 731 732 /* 733 * v_sync -- 734 * Walk the screen lists, sync'ing files to their backup copies. 735 */ 736 static void 737 v_sync(SCR *sp, int flags) 738 { 739 GS *gp; 740 741 gp = sp->gp; 742 TAILQ_FOREACH(sp, gp->dq, q) 743 rcv_sync(sp, flags); 744 TAILQ_FOREACH(sp, gp->hq, q) 745 rcv_sync(sp, flags); 746 } 747 748 /* 749 * v_event_err -- 750 * Unexpected event. 751 * 752 * PUBLIC: void v_event_err(SCR *, EVENT *); 753 */ 754 void 755 v_event_err(SCR *sp, EVENT *evp) 756 { 757 switch (evp->e_event) { 758 case E_CHARACTER: 759 msgq(sp, M_ERR, "276|Unexpected character event"); 760 break; 761 case E_EOF: 762 msgq(sp, M_ERR, "277|Unexpected end-of-file event"); 763 break; 764 case E_INTERRUPT: 765 msgq(sp, M_ERR, "279|Unexpected interrupt event"); 766 break; 767 case E_REPAINT: 768 msgq(sp, M_ERR, "281|Unexpected repaint event"); 769 break; 770 case E_STRING: 771 msgq(sp, M_ERR, "285|Unexpected string event"); 772 break; 773 case E_TIMEOUT: 774 msgq(sp, M_ERR, "286|Unexpected timeout event"); 775 break; 776 case E_WRESIZE: 777 msgq(sp, M_ERR, "316|Unexpected resize event"); 778 break; 779 780 /* 781 * Theoretically, none of these can occur, as they're handled at the 782 * top editor level. 783 */ 784 case E_ERR: 785 case E_SIGHUP: 786 case E_SIGTERM: 787 default: 788 abort(); 789 } 790 791 /* Free any allocated memory. */ 792 free(evp->e_asp); 793 } 794 795 /* 796 * v_event_flush -- 797 * Flush any flagged keys, returning if any keys were flushed. 798 * 799 * PUBLIC: int v_event_flush(SCR *, u_int); 800 */ 801 int 802 v_event_flush(SCR *sp, u_int flags) 803 { 804 GS *gp; 805 int rval; 806 807 for (rval = 0, gp = sp->gp; gp->i_cnt != 0 && 808 F_ISSET(&gp->i_event[gp->i_next].e_ch, flags); rval = 1) 809 QREM(1); 810 return (rval); 811 } 812 813 /* 814 * v_event_grow -- 815 * Grow the terminal queue. 816 */ 817 static int 818 v_event_grow(SCR *sp, int add) 819 { 820 GS *gp; 821 size_t new_nelem, olen; 822 823 gp = sp->gp; 824 new_nelem = gp->i_nelem + add; 825 olen = gp->i_nelem * sizeof(gp->i_event[0]); 826 BINC_RET(sp, EVENT, gp->i_event, olen, new_nelem * sizeof(gp->i_event[0])); 827 gp->i_nelem = olen / sizeof(gp->i_event[0]); 828 return (0); 829 } 830 831 /* 832 * v_key_cmp -- 833 * Compare two keys for sorting. 834 */ 835 static int 836 v_key_cmp(const void *ap, const void *bp) 837 { 838 return (((KEYLIST *)ap)->ch - ((KEYLIST *)bp)->ch); 839 } 840