xref: /freebsd/contrib/nvi/common/key.c (revision 911f0260390e18cf85f3dbf2c719b593efdc1e3c)
1 /*-
2  * Copyright (c) 1991, 1993, 1994
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1991, 1993, 1994, 1995, 1996
5  *	Keith Bostic.  All rights reserved.
6  *
7  * See the LICENSE file for redistribution information.
8  */
9 
10 #include "config.h"
11 
12 #include <sys/types.h>
13 #include <sys/queue.h>
14 #include <sys/time.h>
15 
16 #include <bitstring.h>
17 #include <ctype.h>
18 #include <errno.h>
19 #include <limits.h>
20 #include <stdio.h>
21 #include <stdlib.h>
22 #include <string.h>
23 #include <strings.h>
24 #include <unistd.h>
25 
26 #include "common.h"
27 #include "../vi/vi.h"
28 
29 static int	v_event_append(SCR *, EVENT *);
30 static int	v_event_grow(SCR *, int);
31 static int	v_key_cmp(const void *, const void *);
32 static void	v_keyval(SCR *, int, scr_keyval_t);
33 static void	v_sync(SCR *, int);
34 
35 /*
36  * !!!
37  * Historic vi always used:
38  *
39  *	^D: autoindent deletion
40  *	^H: last character deletion
41  *	^W: last word deletion
42  *	^Q: quote the next character (if not used in flow control).
43  *	^V: quote the next character
44  *
45  * regardless of the user's choices for these characters.  The user's erase
46  * and kill characters worked in addition to these characters.  Nvi wires
47  * down the above characters, but in addition permits the VEOF, VERASE, VKILL
48  * and VWERASE characters described by the user's termios structure.
49  *
50  * Ex was not consistent with this scheme, as it historically ran in tty
51  * cooked mode.  This meant that the scroll command and autoindent erase
52  * characters were mapped to the user's EOF character, and the character
53  * and word deletion characters were the user's tty character and word
54  * deletion characters.  This implementation makes it all consistent, as
55  * described above for vi.
56  *
57  * !!!
58  * This means that all screens share a special key set.
59  */
60 KEYLIST keylist[] = {
61 	{K_BACKSLASH,	  '\\'},	/*  \ */
62 	{K_CARAT,	   '^'},	/*  ^ */
63 	{K_CNTRLD,	'\004'},	/* ^D */
64 	{K_CNTRLR,	'\022'},	/* ^R */
65 	{K_CNTRLT,	'\024'},	/* ^T */
66 	{K_CNTRLZ,	'\032'},	/* ^Z */
67 	{K_COLON,	   ':'},	/*  : */
68 	{K_CR,		  '\r'},	/* \r */
69 	{K_ESCAPE,	'\033'},	/* ^[ */
70 	{K_FORMFEED,	  '\f'},	/* \f */
71 	{K_HEXCHAR,	'\030'},	/* ^X */
72 	{K_NL,		  '\n'},	/* \n */
73 	{K_RIGHTBRACE,	   '}'},	/*  } */
74 	{K_RIGHTPAREN,	   ')'},	/*  ) */
75 	{K_TAB,		  '\t'},	/* \t */
76 	{K_VERASE,	  '\b'},	/* \b */
77 	{K_VKILL,	'\025'},	/* ^U */
78 	{K_VLNEXT,	'\021'},	/* ^Q */
79 	{K_VLNEXT,	'\026'},	/* ^V */
80 	{K_VWERASE,	'\027'},	/* ^W */
81 	{K_ZERO,	   '0'},	/*  0 */
82 
83 #define	ADDITIONAL_CHARACTERS	4
84 	{K_NOTUSED, 0},			/* VEOF, VERASE, VKILL, VWERASE */
85 	{K_NOTUSED, 0},
86 	{K_NOTUSED, 0},
87 	{K_NOTUSED, 0},
88 };
89 static int nkeylist =
90     (sizeof(keylist) / sizeof(keylist[0])) - ADDITIONAL_CHARACTERS;
91 
92 /*
93  * v_key_init --
94  *	Initialize the special key lookup table.
95  *
96  * PUBLIC: int v_key_init(SCR *);
97  */
98 int
99 v_key_init(SCR *sp)
100 {
101 	int ch;
102 	GS *gp;
103 	KEYLIST *kp;
104 	int cnt;
105 
106 	gp = sp->gp;
107 
108 	v_key_ilookup(sp);
109 
110 	v_keyval(sp, K_CNTRLD, KEY_VEOF);
111 	v_keyval(sp, K_VERASE, KEY_VERASE);
112 	v_keyval(sp, K_VKILL, KEY_VKILL);
113 	v_keyval(sp, K_VWERASE, KEY_VWERASE);
114 
115 	/* Sort the special key list. */
116 	qsort(keylist, nkeylist, sizeof(keylist[0]), v_key_cmp);
117 
118 	/* Initialize the fast lookup table. */
119 	for (kp = keylist, cnt = nkeylist; cnt--; ++kp)
120 		gp->special_key[kp->ch] = kp->value;
121 
122 	/* Find a non-printable character to use as a message separator. */
123 	for (ch = 1; ch <= UCHAR_MAX; ++ch)
124 		if (!isprint(ch)) {
125 			gp->noprint = ch;
126 			break;
127 		}
128 	if (ch != gp->noprint) {
129 		msgq(sp, M_ERR, "079|No non-printable character found");
130 		return (1);
131 	}
132 	return (0);
133 }
134 
135 /*
136  * v_keyval --
137  *	Set key values.
138  *
139  * We've left some open slots in the keylist table, and if these values exist,
140  * we put them into place.  Note, they may reset (or duplicate) values already
141  * in the table, so we check for that first.
142  */
143 static void
144 v_keyval(SCR *sp, int val, scr_keyval_t name)
145 {
146 	KEYLIST *kp;
147 	CHAR_T ch;
148 	int dne;
149 
150 	/* Get the key's value from the screen. */
151 	if (sp->gp->scr_keyval(sp, name, &ch, &dne))
152 		return;
153 	if (dne)
154 		return;
155 
156 	/* Check for duplication. */
157 	for (kp = keylist; kp->value != K_NOTUSED; ++kp)
158 		if (kp->ch == ch) {
159 			kp->value = val;
160 			return;
161 		}
162 
163 	/* Add a new entry. */
164 	if (kp->value == K_NOTUSED) {
165 		keylist[nkeylist].ch = ch;
166 		keylist[nkeylist].value = val;
167 		++nkeylist;
168 	}
169 }
170 
171 /*
172  * v_key_ilookup --
173  *	Build the fast-lookup key display array.
174  *
175  * PUBLIC: void v_key_ilookup(SCR *);
176  */
177 void
178 v_key_ilookup(SCR *sp)
179 {
180 	UCHAR_T ch;
181 	char *p, *t;
182 	GS *gp;
183 	size_t len;
184 
185 	for (gp = sp->gp, ch = 0;; ++ch) {
186 		for (p = gp->cname[ch].name, t = v_key_name(sp, ch),
187 		    len = gp->cname[ch].len = sp->clen; len--;)
188 			*p++ = *t++;
189 		if (ch == MAX_FAST_KEY)
190 			break;
191 	}
192 }
193 
194 /*
195  * v_key_len --
196  *	Return the length of the string that will display the key.
197  *	This routine is the backup for the KEY_LEN() macro.
198  *
199  * PUBLIC: size_t v_key_len(SCR *, ARG_CHAR_T);
200  */
201 size_t
202 v_key_len(SCR *sp, ARG_CHAR_T ch)
203 {
204 	(void)v_key_name(sp, ch);
205 	return (sp->clen);
206 }
207 
208 /*
209  * v_key_name --
210  *	Return the string that will display the key.  This routine
211  *	is the backup for the KEY_NAME() macro.
212  *
213  * PUBLIC: char *v_key_name(SCR *, ARG_CHAR_T);
214  */
215 char *
216 v_key_name(SCR *sp, ARG_CHAR_T ach)
217 {
218 	static const char hexdigit[] = "0123456789abcdef";
219 	static const char octdigit[] = "01234567";
220 	int ch;
221 	size_t len;
222 	char *chp;
223 
224 	/*
225 	 * Cache the last checked character.  It won't be a problem
226 	 * since nvi will rescan the mapping when settings changed.
227 	 */
228 	if (ach && sp->lastc == ach)
229 		return (sp->cname);
230 	sp->lastc = ach;
231 
232 #ifdef USE_WIDECHAR
233 	len = wctomb(sp->cname, ach);
234 	if (len > MB_CUR_MAX)
235 #endif
236 		sp->cname[(len = 1)-1] = (u_char)ach;
237 
238 	ch = (u_char)sp->cname[0];
239 	sp->cname[len] = '\0';
240 
241 	/* See if the character was explicitly declared printable or not. */
242 	if ((chp = O_STR(sp, O_PRINT)) != NULL)
243 		if (strstr(chp, sp->cname) != NULL)
244 			goto done;
245 	if ((chp = O_STR(sp, O_NOPRINT)) != NULL)
246 		if (strstr(chp, sp->cname) != NULL)
247 			goto nopr;
248 
249 	/*
250 	 * Historical (ARPA standard) mappings.  Printable characters are left
251 	 * alone.  Control characters less than 0x20 are represented as '^'
252 	 * followed by the character offset from the '@' character in the ASCII
253 	 * character set.  Del (0x7f) is represented as '^' followed by '?'.
254 	 *
255 	 * XXX
256 	 * The following code depends on the current locale being identical to
257 	 * the ASCII map from 0x40 to 0x5f (since 0x1f + 0x40 == 0x5f).  I'm
258 	 * told that this is a reasonable assumption...
259 	 *
260 	 * XXX
261 	 * The code prints non-printable wide characters in 4 or 5 digits
262 	 * Unicode escape sequences, so only supports plane 0 to 15.
263 	 */
264 	if (CAN_PRINT(sp, ach))
265 		goto done;
266 nopr:	if (iscntrl(ch) && (ch < 0x20 || ch == 0x7f)) {
267 		sp->cname[0] = '^';
268 		sp->cname[1] = ch == 0x7f ? '?' : '@' + ch;
269 		len = 2;
270 		goto done;
271 	}
272 #ifdef USE_WIDECHAR
273 	if (INTISWIDE(ach)) {
274 		int uc = -1;
275 
276 		if (!strcmp(codeset(), "UTF-8"))
277 			uc = decode_utf8(sp->cname);
278 #ifdef USE_ICONV
279 		else {
280 			char buf[sizeof(sp->cname)] = "";
281 			size_t left = sizeof(sp->cname);
282 			char *in = sp->cname;
283 			char *out = buf;
284 			iconv(sp->conv.id[IC_IE_TO_UTF16],
285 			    (iconv_src_t)&in, &len, &out, &left);
286 			iconv(sp->conv.id[IC_IE_TO_UTF16],
287 			    NULL, NULL, NULL, NULL);
288 			uc = decode_utf16(buf, 1);
289 		}
290 #endif
291 		if (uc >= 0) {
292 			len = snprintf(sp->cname, sizeof(sp->cname),
293 			    uc < 0x10000 ? "\\u%04x" : "\\U%05X", uc);
294 			goto done;
295 		}
296 	}
297 #endif
298 	if (O_ISSET(sp, O_OCTAL)) {
299 		sp->cname[0] = '\\';
300 		sp->cname[1] = octdigit[(ch & 0300) >> 6];
301 		sp->cname[2] = octdigit[(ch &  070) >> 3];
302 		sp->cname[3] = octdigit[ ch &   07      ];
303 	} else {
304 		sp->cname[0] = '\\';
305 		sp->cname[1] = 'x';
306 		sp->cname[2] = hexdigit[(ch & 0xf0) >> 4];
307 		sp->cname[3] = hexdigit[ ch & 0x0f      ];
308 	}
309 	len = 4;
310 done:	sp->cname[sp->clen = len] = '\0';
311 	return (sp->cname);
312 }
313 
314 /*
315  * v_key_val --
316  *	Fill in the value for a key.  This routine is the backup
317  *	for the KEY_VAL() macro.
318  *
319  * PUBLIC: e_key_t v_key_val(SCR *, ARG_CHAR_T);
320  */
321 e_key_t
322 v_key_val(SCR *sp, ARG_CHAR_T ch)
323 {
324 	KEYLIST k, *kp;
325 
326 	k.ch = ch;
327 	kp = bsearch(&k, keylist, nkeylist, sizeof(keylist[0]), v_key_cmp);
328 	return (kp == NULL ? K_NOTUSED : kp->value);
329 }
330 
331 /*
332  * v_event_push --
333  *	Push events/keys onto the front of the buffer.
334  *
335  * There is a single input buffer in ex/vi.  Characters are put onto the
336  * end of the buffer by the terminal input routines, and pushed onto the
337  * front of the buffer by various other functions in ex/vi.  Each key has
338  * an associated flag value, which indicates if it has already been quoted,
339  * and if it is the result of a mapping or an abbreviation.
340  *
341  * PUBLIC: int v_event_push(SCR *, EVENT *, CHAR_T *, size_t, u_int);
342  */
343 int
344 v_event_push(SCR *sp,
345 	EVENT *p_evp,			/* Push event. */
346 	CHAR_T *p_s,			/* Push characters. */
347 	size_t nitems,			/* Number of items to push. */
348 	u_int flags)			/* CH_* flags. */
349 {
350 	EVENT *evp;
351 	GS *gp;
352 	size_t total;
353 
354 	/* If we have room, stuff the items into the buffer. */
355 	gp = sp->gp;
356 	if (nitems <= gp->i_next ||
357 	    (gp->i_event != NULL && gp->i_cnt == 0 && nitems <= gp->i_nelem)) {
358 		if (gp->i_cnt != 0)
359 			gp->i_next -= nitems;
360 		goto copy;
361 	}
362 
363 	/*
364 	 * If there are currently items in the queue, shift them up,
365 	 * leaving some extra room.  Get enough space plus a little
366 	 * extra.
367 	 */
368 #define	TERM_PUSH_SHIFT	30
369 	total = gp->i_cnt + gp->i_next + nitems + TERM_PUSH_SHIFT;
370 	if (total >= gp->i_nelem && v_event_grow(sp, MAX(total, 64)))
371 		return (1);
372 	if (gp->i_cnt)
373 		memmove(gp->i_event + TERM_PUSH_SHIFT + nitems,
374 		    gp->i_event + gp->i_next, gp->i_cnt * sizeof(EVENT));
375 	gp->i_next = TERM_PUSH_SHIFT;
376 
377 	/* Put the new items into the queue. */
378 copy:	gp->i_cnt += nitems;
379 	for (evp = gp->i_event + gp->i_next; nitems--; ++evp) {
380 		if (p_evp != NULL)
381 			*evp = *p_evp++;
382 		else {
383 			evp->e_event = E_CHARACTER;
384 			evp->e_c = *p_s++;
385 			evp->e_value = KEY_VAL(sp, evp->e_c);
386 			F_INIT(&evp->e_ch, flags);
387 		}
388 	}
389 	return (0);
390 }
391 
392 /*
393  * v_event_append --
394  *	Append events onto the tail of the buffer.
395  */
396 static int
397 v_event_append(SCR *sp, EVENT *argp)
398 {
399 	CHAR_T *s;			/* Characters. */
400 	EVENT *evp;
401 	GS *gp;
402 	size_t nevents;			/* Number of events. */
403 
404 	/* Grow the buffer as necessary. */
405 	nevents = argp->e_event == E_STRING ? argp->e_len : 1;
406 	gp = sp->gp;
407 	if (gp->i_event == NULL ||
408 	    nevents > gp->i_nelem - (gp->i_next + gp->i_cnt))
409 		v_event_grow(sp, MAX(nevents, 64));
410 	evp = gp->i_event + gp->i_next + gp->i_cnt;
411 	gp->i_cnt += nevents;
412 
413 	/* Transform strings of characters into single events. */
414 	if (argp->e_event == E_STRING)
415 		for (s = argp->e_csp; nevents--; ++evp) {
416 			evp->e_event = E_CHARACTER;
417 			evp->e_c = *s++;
418 			evp->e_value = KEY_VAL(sp, evp->e_c);
419 			evp->e_flags = 0;
420 		}
421 	else
422 		*evp = *argp;
423 	return (0);
424 }
425 
426 /* Remove events from the queue. */
427 #define	QREM(len) do {							\
428 	if ((gp->i_cnt -= len) == 0)					\
429 		gp->i_next = 0;						\
430 	else								\
431 		gp->i_next += len;					\
432 } while (0)
433 
434 /*
435  * v_event_get --
436  *	Return the next event.
437  *
438  * !!!
439  * The flag EC_NODIGIT probably needs some explanation.  First, the idea of
440  * mapping keys is that one or more keystrokes act like a function key.
441  * What's going on is that vi is reading a number, and the character following
442  * the number may or may not be mapped (EC_MAPCOMMAND).  For example, if the
443  * user is entering the z command, a valid command is "z40+", and we don't want
444  * to map the '+', i.e. if '+' is mapped to "xxx", we don't want to change it
445  * into "z40xxx".  However, if the user enters "35x", we want to put all of the
446  * characters through the mapping code.
447  *
448  * Historical practice is a bit muddled here.  (Surprise!)  It always permitted
449  * mapping digits as long as they weren't the first character of the map, e.g.
450  * ":map ^A1 xxx" was okay.  It also permitted the mapping of the digits 1-9
451  * (the digit 0 was a special case as it doesn't indicate the start of a count)
452  * as the first character of the map, but then ignored those mappings.  While
453  * it's probably stupid to map digits, vi isn't your mother.
454  *
455  * The way this works is that the EC_MAPNODIGIT causes term_key to return the
456  * end-of-digit without "looking" at the next character, i.e. leaving it as the
457  * user entered it.  Presumably, the next term_key call will tell us how the
458  * user wants it handled.
459  *
460  * There is one more complication.  Users might map keys to digits, and, as
461  * it's described above, the commands:
462  *
463  *	:map g 1G
464  *	d2g
465  *
466  * would return the keys "d2<end-of-digits>1G", when the user probably wanted
467  * "d21<end-of-digits>G".  So, if a map starts off with a digit we continue as
468  * before, otherwise, we pretend we haven't mapped the character, and return
469  * <end-of-digits>.
470  *
471  * Now that that's out of the way, let's talk about Energizer Bunny macros.
472  * It's easy to create macros that expand to a loop, e.g. map x 3x.  It's
473  * fairly easy to detect this example, because it's all internal to term_key.
474  * If we're expanding a macro and it gets big enough, at some point we can
475  * assume it's looping and kill it.  The examples that are tough are the ones
476  * where the parser is involved, e.g. map x "ayyx"byy.  We do an expansion
477  * on 'x', and get "ayyx"byy.  We then return the first 4 characters, and then
478  * find the looping macro again.  There is no way that we can detect this
479  * without doing a full parse of the command, because the character that might
480  * cause the loop (in this case 'x') may be a literal character, e.g. the map
481  * map x "ayy"xyy"byy is perfectly legal and won't cause a loop.
482  *
483  * Historic vi tried to detect looping macros by disallowing obvious cases in
484  * the map command, maps that that ended with the same letter as they started
485  * (which wrongly disallowed "map x 'x"), and detecting macros that expanded
486  * too many times before keys were returned to the command parser.  It didn't
487  * get many (most?) of the tricky cases right, however, and it was certainly
488  * possible to create macros that ran forever.  And, even if it did figure out
489  * what was going on, the user was usually tossed into ex mode.  Finally, any
490  * changes made before vi realized that the macro was recursing were left in
491  * place.  We recover gracefully, but the only recourse the user has in an
492  * infinite macro loop is to interrupt.
493  *
494  * !!!
495  * It is historic practice that mapping characters to themselves as the first
496  * part of the mapped string was legal, and did not cause infinite loops, i.e.
497  * ":map! { {^M^T" and ":map n nz." were known to work.  The initial, matching
498  * characters were returned instead of being remapped.
499  *
500  * !!!
501  * It is also historic practice that the macro "map ] ]]^" caused a single ]
502  * keypress to behave as the command ]] (the ^ got the map past the vi check
503  * for "tail recursion").  Conversely, the mapping "map n nn^" went recursive.
504  * What happened was that, in the historic vi, maps were expanded as the keys
505  * were retrieved, but not all at once and not centrally.  So, the keypress ]
506  * pushed ]]^ on the stack, and then the first ] from the stack was passed to
507  * the ]] command code.  The ]] command then retrieved a key without entering
508  * the mapping code.  This could bite us anytime a user has a map that depends
509  * on secondary keys NOT being mapped.  I can't see any possible way to make
510  * this work in here without the complete abandonment of Rationality Itself.
511  *
512  * XXX
513  * The final issue is recovery.  It would be possible to undo all of the work
514  * that was done by the macro if we entered a record into the log so that we
515  * knew when the macro started, and, in fact, this might be worth doing at some
516  * point.  Given that this might make the log grow unacceptably (consider that
517  * cursor keys are done with maps), for now we leave any changes made in place.
518  *
519  * PUBLIC: int v_event_get(SCR *, EVENT *, int, u_int32_t);
520  */
521 int
522 v_event_get(SCR *sp, EVENT *argp, int timeout, u_int32_t flags)
523 {
524 	EVENT *evp, ev;
525 	GS *gp;
526 	SEQ *qp;
527 	int init_nomap, ispartial, istimeout, remap_cnt;
528 
529 	gp = sp->gp;
530 
531 	/* If simply checking for interrupts, argp may be NULL. */
532 	if (argp == NULL)
533 		argp = &ev;
534 
535 retry:	istimeout = remap_cnt = 0;
536 
537 	/*
538 	 * If the queue isn't empty and we're timing out for characters,
539 	 * return immediately.
540 	 */
541 	if (gp->i_cnt != 0 && LF_ISSET(EC_TIMEOUT))
542 		return (0);
543 
544 	/*
545 	 * If the queue is empty, we're checking for interrupts, or we're
546 	 * timing out for characters, get more events.
547 	 */
548 	if (gp->i_cnt == 0 || LF_ISSET(EC_INTERRUPT | EC_TIMEOUT)) {
549 		/*
550 		 * If we're reading new characters, check any scripting
551 		 * windows for input.
552 		 */
553 		if (F_ISSET(gp, G_SCRWIN) && sscr_input(sp))
554 			return (1);
555 loop:		if (gp->scr_event(sp, argp,
556 		    LF_ISSET(EC_INTERRUPT | EC_QUOTED | EC_RAW), timeout))
557 			return (1);
558 		switch (argp->e_event) {
559 		case E_ERR:
560 		case E_SIGHUP:
561 		case E_SIGTERM:
562 			/*
563 			 * Fatal conditions cause the file to be synced to
564 			 * disk immediately.
565 			 */
566 			v_sync(sp, RCV_ENDSESSION | RCV_PRESERVE |
567 			    (argp->e_event == E_SIGTERM ? 0: RCV_EMAIL));
568 			return (1);
569 		case E_TIMEOUT:
570 			istimeout = 1;
571 			break;
572 		case E_INTERRUPT:
573 			/* Set the global interrupt flag. */
574 			F_SET(sp->gp, G_INTERRUPTED);
575 
576 			/*
577 			 * If the caller was interested in interrupts, return
578 			 * immediately.
579 			 */
580 			if (LF_ISSET(EC_INTERRUPT))
581 				return (0);
582 			goto append;
583 		default:
584 append:			if (v_event_append(sp, argp))
585 				return (1);
586 			break;
587 		}
588 	}
589 
590 	/*
591 	 * If the caller was only interested in interrupts or timeouts, return
592 	 * immediately.  (We may have gotten characters, and that's okay, they
593 	 * were queued up for later use.)
594 	 */
595 	if (LF_ISSET(EC_INTERRUPT | EC_TIMEOUT))
596 		return (0);
597 
598 newmap:	evp = &gp->i_event[gp->i_next];
599 
600 	/*
601 	 * If the next event in the queue isn't a character event, return
602 	 * it, we're done.
603 	 */
604 	if (evp->e_event != E_CHARACTER) {
605 		*argp = *evp;
606 		QREM(1);
607 		return (0);
608 	}
609 
610 	/*
611 	 * If the key isn't mappable because:
612 	 *
613 	 *	+ ... the timeout has expired
614 	 *	+ ... it's not a mappable key
615 	 *	+ ... neither the command or input map flags are set
616 	 *	+ ... there are no maps that can apply to it
617 	 *
618 	 * return it forthwith.
619 	 */
620 	if (istimeout || F_ISSET(&evp->e_ch, CH_NOMAP) ||
621 	    !LF_ISSET(EC_MAPCOMMAND | EC_MAPINPUT) ||
622 	    ((evp->e_c & ~MAX_BIT_SEQ) == 0 &&
623 	    !bit_test(gp->seqb, evp->e_c)))
624 		goto nomap;
625 
626 	/* Search the map. */
627 	qp = seq_find(sp, NULL, evp, NULL, gp->i_cnt,
628 	    LF_ISSET(EC_MAPCOMMAND) ? SEQ_COMMAND : SEQ_INPUT, &ispartial);
629 
630 	/*
631 	 * If get a partial match, get more characters and retry the map.
632 	 * If time out without further characters, return the characters
633 	 * unmapped.
634 	 *
635 	 * !!!
636 	 * <escape> characters are a problem.  Cursor keys start with <escape>
637 	 * characters, so there's almost always a map in place that begins with
638 	 * an <escape> character.  If we timeout <escape> keys in the same way
639 	 * that we timeout other keys, the user will get a noticeable pause as
640 	 * they enter <escape> to terminate input mode.  If key timeout is set
641 	 * for a slow link, users will get an even longer pause.  Nvi used to
642 	 * simply timeout <escape> characters at 1/10th of a second, but this
643 	 * loses over PPP links where the latency is greater than 100Ms.
644 	 */
645 	if (ispartial) {
646 		if (O_ISSET(sp, O_TIMEOUT))
647 			timeout = (evp->e_value == K_ESCAPE ?
648 			    O_VAL(sp, O_ESCAPETIME) :
649 			    O_VAL(sp, O_KEYTIME)) * 100;
650 		else
651 			timeout = 0;
652 		goto loop;
653 	}
654 
655 	/* If no map, return the character. */
656 	if (qp == NULL) {
657 nomap:		if (!ISDIGIT(evp->e_c) && LF_ISSET(EC_MAPNODIGIT))
658 			goto not_digit;
659 		*argp = *evp;
660 		QREM(1);
661 		return (0);
662 	}
663 
664 	/*
665 	 * If looking for the end of a digit string, and the first character
666 	 * of the map is it, pretend we haven't seen the character.
667 	 */
668 	if (LF_ISSET(EC_MAPNODIGIT) &&
669 	    qp->output != NULL && !ISDIGIT(qp->output[0])) {
670 not_digit:	argp->e_c = CH_NOT_DIGIT;
671 		argp->e_value = K_NOTUSED;
672 		argp->e_event = E_CHARACTER;
673 		F_INIT(&argp->e_ch, 0);
674 		return (0);
675 	}
676 
677 	/* Find out if the initial segments are identical. */
678 	init_nomap = !e_memcmp(qp->output, &gp->i_event[gp->i_next], qp->ilen);
679 
680 	/* Delete the mapped characters from the queue. */
681 	QREM(qp->ilen);
682 
683 	/* If keys mapped to nothing, go get more. */
684 	if (qp->output == NULL)
685 		goto retry;
686 
687 	/* If remapping characters... */
688 	if (O_ISSET(sp, O_REMAP)) {
689 		/*
690 		 * Periodically check for interrupts.  Always check the first
691 		 * time through, because it's possible to set up a map that
692 		 * will return a character every time, but will expand to more,
693 		 * e.g. "map! a aaaa" will always return a 'a', but we'll never
694 		 * get anywhere useful.
695 		 */
696 		if ((++remap_cnt == 1 || remap_cnt % 10 == 0) &&
697 		    (gp->scr_event(sp, &ev,
698 		    EC_INTERRUPT, 0) || ev.e_event == E_INTERRUPT)) {
699 			F_SET(sp->gp, G_INTERRUPTED);
700 			argp->e_event = E_INTERRUPT;
701 			return (0);
702 		}
703 
704 		/*
705 		 * If an initial part of the characters mapped, they are not
706 		 * further remapped -- return the first one.  Push the rest
707 		 * of the characters, or all of the characters if no initial
708 		 * part mapped, back on the queue.
709 		 */
710 		if (init_nomap) {
711 			if (v_event_push(sp, NULL, qp->output + qp->ilen,
712 			    qp->olen - qp->ilen, CH_MAPPED))
713 				return (1);
714 			if (v_event_push(sp, NULL,
715 			    qp->output, qp->ilen, CH_NOMAP | CH_MAPPED))
716 				return (1);
717 			evp = &gp->i_event[gp->i_next];
718 			goto nomap;
719 		}
720 		if (v_event_push(sp, NULL, qp->output, qp->olen, CH_MAPPED))
721 			return (1);
722 		goto newmap;
723 	}
724 
725 	/* Else, push the characters on the queue and return one. */
726 	if (v_event_push(sp, NULL, qp->output, qp->olen, CH_MAPPED | CH_NOMAP))
727 		return (1);
728 
729 	goto nomap;
730 }
731 
732 /*
733  * v_sync --
734  *	Walk the screen lists, sync'ing files to their backup copies.
735  */
736 static void
737 v_sync(SCR *sp, int flags)
738 {
739 	GS *gp;
740 
741 	gp = sp->gp;
742 	TAILQ_FOREACH(sp, gp->dq, q)
743 		rcv_sync(sp, flags);
744 	TAILQ_FOREACH(sp, gp->hq, q)
745 		rcv_sync(sp, flags);
746 }
747 
748 /*
749  * v_event_err --
750  *	Unexpected event.
751  *
752  * PUBLIC: void v_event_err(SCR *, EVENT *);
753  */
754 void
755 v_event_err(SCR *sp, EVENT *evp)
756 {
757 	switch (evp->e_event) {
758 	case E_CHARACTER:
759 		msgq(sp, M_ERR, "276|Unexpected character event");
760 		break;
761 	case E_EOF:
762 		msgq(sp, M_ERR, "277|Unexpected end-of-file event");
763 		break;
764 	case E_INTERRUPT:
765 		msgq(sp, M_ERR, "279|Unexpected interrupt event");
766 		break;
767 	case E_REPAINT:
768 		msgq(sp, M_ERR, "281|Unexpected repaint event");
769 		break;
770 	case E_STRING:
771 		msgq(sp, M_ERR, "285|Unexpected string event");
772 		break;
773 	case E_TIMEOUT:
774 		msgq(sp, M_ERR, "286|Unexpected timeout event");
775 		break;
776 	case E_WRESIZE:
777 		msgq(sp, M_ERR, "316|Unexpected resize event");
778 		break;
779 
780 	/*
781 	 * Theoretically, none of these can occur, as they're handled at the
782 	 * top editor level.
783 	 */
784 	case E_ERR:
785 	case E_SIGHUP:
786 	case E_SIGTERM:
787 	default:
788 		abort();
789 	}
790 
791 	/* Free any allocated memory. */
792 	free(evp->e_asp);
793 }
794 
795 /*
796  * v_event_flush --
797  *	Flush any flagged keys, returning if any keys were flushed.
798  *
799  * PUBLIC: int v_event_flush(SCR *, u_int);
800  */
801 int
802 v_event_flush(SCR *sp, u_int flags)
803 {
804 	GS *gp;
805 	int rval;
806 
807 	for (rval = 0, gp = sp->gp; gp->i_cnt != 0 &&
808 	    F_ISSET(&gp->i_event[gp->i_next].e_ch, flags); rval = 1)
809 		QREM(1);
810 	return (rval);
811 }
812 
813 /*
814  * v_event_grow --
815  *	Grow the terminal queue.
816  */
817 static int
818 v_event_grow(SCR *sp, int add)
819 {
820 	GS *gp;
821 	size_t new_nelem, olen;
822 
823 	gp = sp->gp;
824 	new_nelem = gp->i_nelem + add;
825 	olen = gp->i_nelem * sizeof(gp->i_event[0]);
826 	BINC_RET(sp, EVENT, gp->i_event, olen, new_nelem * sizeof(gp->i_event[0]));
827 	gp->i_nelem = olen / sizeof(gp->i_event[0]);
828 	return (0);
829 }
830 
831 /*
832  * v_key_cmp --
833  *	Compare two keys for sorting.
834  */
835 static int
836 v_key_cmp(const void *ap, const void *bp)
837 {
838 	return (((KEYLIST *)ap)->ch - ((KEYLIST *)bp)->ch);
839 }
840