xref: /freebsd/contrib/nvi/common/key.c (revision 884a2a699669ec61e2366e3e358342dbc94be24a)
1 /*-
2  * Copyright (c) 1991, 1993, 1994
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1991, 1993, 1994, 1995, 1996
5  *	Keith Bostic.  All rights reserved.
6  *
7  * See the LICENSE file for redistribution information.
8  */
9 
10 #include "config.h"
11 
12 #ifndef lint
13 static const char sccsid[] = "@(#)key.c	10.33 (Berkeley) 9/24/96";
14 #endif /* not lint */
15 
16 #include <sys/types.h>
17 #include <sys/queue.h>
18 #include <sys/time.h>
19 
20 #include <bitstring.h>
21 #include <ctype.h>
22 #include <errno.h>
23 #include <limits.h>
24 #include <locale.h>
25 #include <stdio.h>
26 #include <stdlib.h>
27 #include <string.h>
28 #include <unistd.h>
29 
30 #include "common.h"
31 #include "../vi/vi.h"
32 
33 static int	v_event_append __P((SCR *, EVENT *));
34 static int	v_event_grow __P((SCR *, int));
35 static int	v_key_cmp __P((const void *, const void *));
36 static void	v_keyval __P((SCR *, int, scr_keyval_t));
37 static void	v_sync __P((SCR *, int));
38 
39 /*
40  * !!!
41  * Historic vi always used:
42  *
43  *	^D: autoindent deletion
44  *	^H: last character deletion
45  *	^W: last word deletion
46  *	^Q: quote the next character (if not used in flow control).
47  *	^V: quote the next character
48  *
49  * regardless of the user's choices for these characters.  The user's erase
50  * and kill characters worked in addition to these characters.  Nvi wires
51  * down the above characters, but in addition permits the VEOF, VERASE, VKILL
52  * and VWERASE characters described by the user's termios structure.
53  *
54  * Ex was not consistent with this scheme, as it historically ran in tty
55  * cooked mode.  This meant that the scroll command and autoindent erase
56  * characters were mapped to the user's EOF character, and the character
57  * and word deletion characters were the user's tty character and word
58  * deletion characters.  This implementation makes it all consistent, as
59  * described above for vi.
60  *
61  * !!!
62  * This means that all screens share a special key set.
63  */
64 KEYLIST keylist[] = {
65 	{K_BACKSLASH,	  '\\'},	/*  \ */
66 	{K_CARAT,	   '^'},	/*  ^ */
67 	{K_CNTRLD,	'\004'},	/* ^D */
68 	{K_CNTRLR,	'\022'},	/* ^R */
69 	{K_CNTRLT,	'\024'},	/* ^T */
70 	{K_CNTRLZ,	'\032'},	/* ^Z */
71 	{K_COLON,	   ':'},	/*  : */
72 	{K_CR,		  '\r'},	/* \r */
73 	{K_ESCAPE,	'\033'},	/* ^[ */
74 	{K_FORMFEED,	  '\f'},	/* \f */
75 	{K_HEXCHAR,	'\030'},	/* ^X */
76 	{K_NL,		  '\n'},	/* \n */
77 	{K_RIGHTBRACE,	   '}'},	/*  } */
78 	{K_RIGHTPAREN,	   ')'},	/*  ) */
79 	{K_TAB,		  '\t'},	/* \t */
80 	{K_VERASE,	  '\b'},	/* \b */
81 	{K_VKILL,	'\025'},	/* ^U */
82 	{K_VLNEXT,	'\021'},	/* ^Q */
83 	{K_VLNEXT,	'\026'},	/* ^V */
84 	{K_VWERASE,	'\027'},	/* ^W */
85 	{K_ZERO,	   '0'},	/*  0 */
86 
87 #define	ADDITIONAL_CHARACTERS	4
88 	{K_NOTUSED, 0},			/* VEOF, VERASE, VKILL, VWERASE */
89 	{K_NOTUSED, 0},
90 	{K_NOTUSED, 0},
91 	{K_NOTUSED, 0},
92 };
93 static int nkeylist =
94     (sizeof(keylist) / sizeof(keylist[0])) - ADDITIONAL_CHARACTERS;
95 
96 /*
97  * v_key_init --
98  *	Initialize the special key lookup table.
99  *
100  * PUBLIC: int v_key_init __P((SCR *));
101  */
102 int
103 v_key_init(sp)
104 	SCR *sp;
105 {
106 	CHAR_T ch;
107 	GS *gp;
108 	KEYLIST *kp;
109 	int cnt;
110 
111 	gp = sp->gp;
112 
113 	/*
114 	 * XXX
115 	 * 8-bit only, for now.  Recompilation should get you any 8-bit
116 	 * character set, as long as nul isn't a character.
117 	 */
118 	(void)setlocale(LC_ALL, "");
119 #if __linux__
120 	/*
121 	 * In libc 4.5.26, setlocale(LC_ALL, ""), doesn't setup the table
122 	 * for ctype(3c) correctly.  This bug is fixed in libc 4.6.x.
123 	 *
124 	 * This code works around this problem for libc 4.5.x users.
125 	 * Note that this code is harmless if you're using libc 4.6.x.
126 	 */
127 	(void)setlocale(LC_CTYPE, "");
128 #endif
129 	v_key_ilookup(sp);
130 
131 	v_keyval(sp, K_CNTRLD, KEY_VEOF);
132 	v_keyval(sp, K_VERASE, KEY_VERASE);
133 	v_keyval(sp, K_VKILL, KEY_VKILL);
134 	v_keyval(sp, K_VWERASE, KEY_VWERASE);
135 
136 	/* Sort the special key list. */
137 	qsort(keylist, nkeylist, sizeof(keylist[0]), v_key_cmp);
138 
139 	/* Initialize the fast lookup table. */
140 	for (gp->max_special = 0, kp = keylist, cnt = nkeylist; cnt--; ++kp) {
141 		if (gp->max_special < kp->value)
142 			gp->max_special = kp->value;
143 		if (kp->ch <= MAX_FAST_KEY)
144 			gp->special_key[kp->ch] = kp->value;
145 	}
146 
147 	/* Find a non-printable character to use as a message separator. */
148 	for (ch = 1; ch <= MAX_CHAR_T; ++ch)
149 		if (!isprint(ch)) {
150 			gp->noprint = ch;
151 			break;
152 		}
153 	if (ch != gp->noprint) {
154 		msgq(sp, M_ERR, "079|No non-printable character found");
155 		return (1);
156 	}
157 	return (0);
158 }
159 
160 /*
161  * v_keyval --
162  *	Set key values.
163  *
164  * We've left some open slots in the keylist table, and if these values exist,
165  * we put them into place.  Note, they may reset (or duplicate) values already
166  * in the table, so we check for that first.
167  */
168 static void
169 v_keyval(sp, val, name)
170 	SCR *sp;
171 	int val;
172 	scr_keyval_t name;
173 {
174 	KEYLIST *kp;
175 	CHAR_T ch;
176 	int dne;
177 
178 	/* Get the key's value from the screen. */
179 	if (sp->gp->scr_keyval(sp, name, &ch, &dne))
180 		return;
181 	if (dne)
182 		return;
183 
184 	/* Check for duplication. */
185 	for (kp = keylist; kp->value != K_NOTUSED; ++kp)
186 		if (kp->ch == ch) {
187 			kp->value = val;
188 			return;
189 		}
190 
191 	/* Add a new entry. */
192 	if (kp->value == K_NOTUSED) {
193 		keylist[nkeylist].ch = ch;
194 		keylist[nkeylist].value = val;
195 		++nkeylist;
196 	}
197 }
198 
199 /*
200  * v_key_ilookup --
201  *	Build the fast-lookup key display array.
202  *
203  * PUBLIC: void v_key_ilookup __P((SCR *));
204  */
205 void
206 v_key_ilookup(sp)
207 	SCR *sp;
208 {
209 	CHAR_T ch, *p, *t;
210 	GS *gp;
211 	size_t len;
212 
213 	for (gp = sp->gp, ch = 0; ch <= MAX_FAST_KEY; ++ch)
214 		for (p = gp->cname[ch].name, t = v_key_name(sp, ch),
215 		    len = gp->cname[ch].len = sp->clen; len--;)
216 			*p++ = *t++;
217 }
218 
219 /*
220  * v_key_len --
221  *	Return the length of the string that will display the key.
222  *	This routine is the backup for the KEY_LEN() macro.
223  *
224  * PUBLIC: size_t v_key_len __P((SCR *, ARG_CHAR_T));
225  */
226 size_t
227 v_key_len(sp, ch)
228 	SCR *sp;
229 	ARG_CHAR_T ch;
230 {
231 	(void)v_key_name(sp, ch);
232 	return (sp->clen);
233 }
234 
235 /*
236  * v_key_name --
237  *	Return the string that will display the key.  This routine
238  *	is the backup for the KEY_NAME() macro.
239  *
240  * PUBLIC: CHAR_T *v_key_name __P((SCR *, ARG_CHAR_T));
241  */
242 CHAR_T *
243 v_key_name(sp, ach)
244 	SCR *sp;
245 	ARG_CHAR_T ach;
246 {
247 	static const CHAR_T hexdigit[] = "0123456789abcdef";
248 	static const CHAR_T octdigit[] = "01234567";
249 	CHAR_T ch, *chp, mask;
250 	size_t len;
251 	int cnt, shift;
252 
253 	ch = ach;
254 
255 	/* See if the character was explicitly declared printable or not. */
256 	if ((chp = O_STR(sp, O_PRINT)) != NULL)
257 		for (; *chp != '\0'; ++chp)
258 			if (*chp == ch)
259 				goto pr;
260 	if ((chp = O_STR(sp, O_NOPRINT)) != NULL)
261 		for (; *chp != '\0'; ++chp)
262 			if (*chp == ch)
263 				goto nopr;
264 
265 	/*
266 	 * Historical (ARPA standard) mappings.  Printable characters are left
267 	 * alone.  Control characters less than 0x20 are represented as '^'
268 	 * followed by the character offset from the '@' character in the ASCII
269 	 * character set.  Del (0x7f) is represented as '^' followed by '?'.
270 	 *
271 	 * XXX
272 	 * The following code depends on the current locale being identical to
273 	 * the ASCII map from 0x40 to 0x5f (since 0x1f + 0x40 == 0x5f).  I'm
274 	 * told that this is a reasonable assumption...
275 	 *
276 	 * XXX
277 	 * This code will only work with CHAR_T's that are multiples of 8-bit
278 	 * bytes.
279 	 *
280 	 * XXX
281 	 * NB: There's an assumption here that all printable characters take
282 	 * up a single column on the screen.  This is not always correct.
283 	 */
284 	if (isprint(ch)) {
285 pr:		sp->cname[0] = ch;
286 		len = 1;
287 		goto done;
288 	}
289 nopr:	if (iscntrl(ch) && (ch < 0x20 || ch == 0x7f)) {
290 		sp->cname[0] = '^';
291 		sp->cname[1] = ch == 0x7f ? '?' : '@' + ch;
292 		len = 2;
293 	} else if (O_ISSET(sp, O_OCTAL)) {
294 #define	BITS	(sizeof(CHAR_T) * 8)
295 #define	SHIFT	(BITS - BITS % 3)
296 #define	TOPMASK	(BITS % 3 == 2 ? 3 : 1) << (BITS - BITS % 3)
297 		sp->cname[0] = '\\';
298 		sp->cname[1] = octdigit[(ch & TOPMASK) >> SHIFT];
299 		shift = SHIFT - 3;
300 		for (len = 2, mask = 7 << (SHIFT - 3),
301 		    cnt = BITS / 3; cnt-- > 0; mask >>= 3, shift -= 3)
302 			sp->cname[len++] = octdigit[(ch & mask) >> shift];
303 	} else {
304 		sp->cname[0] = '\\';
305 		sp->cname[1] = 'x';
306 		for (len = 2, chp = (u_int8_t *)&ch,
307 		    cnt = sizeof(CHAR_T); cnt-- > 0; ++chp) {
308 			sp->cname[len++] = hexdigit[(*chp & 0xf0) >> 4];
309 			sp->cname[len++] = hexdigit[*chp & 0x0f];
310 		}
311 	}
312 done:	sp->cname[sp->clen = len] = '\0';
313 	return (sp->cname);
314 }
315 
316 /*
317  * v_key_val --
318  *	Fill in the value for a key.  This routine is the backup
319  *	for the KEY_VAL() macro.
320  *
321  * PUBLIC: int v_key_val __P((SCR *, ARG_CHAR_T));
322  */
323 int
324 v_key_val(sp, ch)
325 	SCR *sp;
326 	ARG_CHAR_T ch;
327 {
328 	KEYLIST k, *kp;
329 
330 	k.ch = ch;
331 	kp = bsearch(&k, keylist, nkeylist, sizeof(keylist[0]), v_key_cmp);
332 	return (kp == NULL ? K_NOTUSED : kp->value);
333 }
334 
335 /*
336  * v_event_push --
337  *	Push events/keys onto the front of the buffer.
338  *
339  * There is a single input buffer in ex/vi.  Characters are put onto the
340  * end of the buffer by the terminal input routines, and pushed onto the
341  * front of the buffer by various other functions in ex/vi.  Each key has
342  * an associated flag value, which indicates if it has already been quoted,
343  * and if it is the result of a mapping or an abbreviation.
344  *
345  * PUBLIC: int v_event_push __P((SCR *, EVENT *, CHAR_T *, size_t, u_int));
346  */
347 int
348 v_event_push(sp, p_evp, p_s, nitems, flags)
349 	SCR *sp;
350 	EVENT *p_evp;			/* Push event. */
351 	CHAR_T *p_s;			/* Push characters. */
352 	size_t nitems;			/* Number of items to push. */
353 	u_int flags;			/* CH_* flags. */
354 {
355 	EVENT *evp;
356 	GS *gp;
357 	size_t total;
358 
359 	/* If we have room, stuff the items into the buffer. */
360 	gp = sp->gp;
361 	if (nitems <= gp->i_next ||
362 	    (gp->i_event != NULL && gp->i_cnt == 0 && nitems <= gp->i_nelem)) {
363 		if (gp->i_cnt != 0)
364 			gp->i_next -= nitems;
365 		goto copy;
366 	}
367 
368 	/*
369 	 * If there are currently items in the queue, shift them up,
370 	 * leaving some extra room.  Get enough space plus a little
371 	 * extra.
372 	 */
373 #define	TERM_PUSH_SHIFT	30
374 	total = gp->i_cnt + gp->i_next + nitems + TERM_PUSH_SHIFT;
375 	if (total >= gp->i_nelem && v_event_grow(sp, MAX(total, 64)))
376 		return (1);
377 	if (gp->i_cnt)
378 		MEMMOVE(gp->i_event + TERM_PUSH_SHIFT + nitems,
379 		    gp->i_event + gp->i_next, gp->i_cnt);
380 	gp->i_next = TERM_PUSH_SHIFT;
381 
382 	/* Put the new items into the queue. */
383 copy:	gp->i_cnt += nitems;
384 	for (evp = gp->i_event + gp->i_next; nitems--; ++evp) {
385 		if (p_evp != NULL)
386 			*evp = *p_evp++;
387 		else {
388 			evp->e_event = E_CHARACTER;
389 			evp->e_c = *p_s++;
390 			evp->e_value = KEY_VAL(sp, evp->e_c);
391 			F_INIT(&evp->e_ch, flags);
392 		}
393 	}
394 	return (0);
395 }
396 
397 /*
398  * v_event_append --
399  *	Append events onto the tail of the buffer.
400  */
401 static int
402 v_event_append(sp, argp)
403 	SCR *sp;
404 	EVENT *argp;
405 {
406 	CHAR_T *s;			/* Characters. */
407 	EVENT *evp;
408 	GS *gp;
409 	size_t nevents;			/* Number of events. */
410 
411 	/* Grow the buffer as necessary. */
412 	nevents = argp->e_event == E_STRING ? argp->e_len : 1;
413 	gp = sp->gp;
414 	if (gp->i_event == NULL ||
415 	    nevents > gp->i_nelem - (gp->i_next + gp->i_cnt))
416 		v_event_grow(sp, MAX(nevents, 64));
417 	evp = gp->i_event + gp->i_next + gp->i_cnt;
418 	gp->i_cnt += nevents;
419 
420 	/* Transform strings of characters into single events. */
421 	if (argp->e_event == E_STRING)
422 		for (s = argp->e_csp; nevents--; ++evp) {
423 			evp->e_event = E_CHARACTER;
424 			evp->e_c = *s++;
425 			evp->e_value = KEY_VAL(sp, evp->e_c);
426 			evp->e_flags = 0;
427 		}
428 	else
429 		*evp = *argp;
430 	return (0);
431 }
432 
433 /* Remove events from the queue. */
434 #define	QREM(len) {							\
435 	if ((gp->i_cnt -= len) == 0)					\
436 		gp->i_next = 0;						\
437 	else								\
438 		gp->i_next += len;					\
439 }
440 
441 /*
442  * v_event_get --
443  *	Return the next event.
444  *
445  * !!!
446  * The flag EC_NODIGIT probably needs some explanation.  First, the idea of
447  * mapping keys is that one or more keystrokes act like a function key.
448  * What's going on is that vi is reading a number, and the character following
449  * the number may or may not be mapped (EC_MAPCOMMAND).  For example, if the
450  * user is entering the z command, a valid command is "z40+", and we don't want
451  * to map the '+', i.e. if '+' is mapped to "xxx", we don't want to change it
452  * into "z40xxx".  However, if the user enters "35x", we want to put all of the
453  * characters through the mapping code.
454  *
455  * Historical practice is a bit muddled here.  (Surprise!)  It always permitted
456  * mapping digits as long as they weren't the first character of the map, e.g.
457  * ":map ^A1 xxx" was okay.  It also permitted the mapping of the digits 1-9
458  * (the digit 0 was a special case as it doesn't indicate the start of a count)
459  * as the first character of the map, but then ignored those mappings.  While
460  * it's probably stupid to map digits, vi isn't your mother.
461  *
462  * The way this works is that the EC_MAPNODIGIT causes term_key to return the
463  * end-of-digit without "looking" at the next character, i.e. leaving it as the
464  * user entered it.  Presumably, the next term_key call will tell us how the
465  * user wants it handled.
466  *
467  * There is one more complication.  Users might map keys to digits, and, as
468  * it's described above, the commands:
469  *
470  *	:map g 1G
471  *	d2g
472  *
473  * would return the keys "d2<end-of-digits>1G", when the user probably wanted
474  * "d21<end-of-digits>G".  So, if a map starts off with a digit we continue as
475  * before, otherwise, we pretend we haven't mapped the character, and return
476  * <end-of-digits>.
477  *
478  * Now that that's out of the way, let's talk about Energizer Bunny macros.
479  * It's easy to create macros that expand to a loop, e.g. map x 3x.  It's
480  * fairly easy to detect this example, because it's all internal to term_key.
481  * If we're expanding a macro and it gets big enough, at some point we can
482  * assume it's looping and kill it.  The examples that are tough are the ones
483  * where the parser is involved, e.g. map x "ayyx"byy.  We do an expansion
484  * on 'x', and get "ayyx"byy.  We then return the first 4 characters, and then
485  * find the looping macro again.  There is no way that we can detect this
486  * without doing a full parse of the command, because the character that might
487  * cause the loop (in this case 'x') may be a literal character, e.g. the map
488  * map x "ayy"xyy"byy is perfectly legal and won't cause a loop.
489  *
490  * Historic vi tried to detect looping macros by disallowing obvious cases in
491  * the map command, maps that that ended with the same letter as they started
492  * (which wrongly disallowed "map x 'x"), and detecting macros that expanded
493  * too many times before keys were returned to the command parser.  It didn't
494  * get many (most?) of the tricky cases right, however, and it was certainly
495  * possible to create macros that ran forever.  And, even if it did figure out
496  * what was going on, the user was usually tossed into ex mode.  Finally, any
497  * changes made before vi realized that the macro was recursing were left in
498  * place.  We recover gracefully, but the only recourse the user has in an
499  * infinite macro loop is to interrupt.
500  *
501  * !!!
502  * It is historic practice that mapping characters to themselves as the first
503  * part of the mapped string was legal, and did not cause infinite loops, i.e.
504  * ":map! { {^M^T" and ":map n nz." were known to work.  The initial, matching
505  * characters were returned instead of being remapped.
506  *
507  * !!!
508  * It is also historic practice that the macro "map ] ]]^" caused a single ]
509  * keypress to behave as the command ]] (the ^ got the map past the vi check
510  * for "tail recursion").  Conversely, the mapping "map n nn^" went recursive.
511  * What happened was that, in the historic vi, maps were expanded as the keys
512  * were retrieved, but not all at once and not centrally.  So, the keypress ]
513  * pushed ]]^ on the stack, and then the first ] from the stack was passed to
514  * the ]] command code.  The ]] command then retrieved a key without entering
515  * the mapping code.  This could bite us anytime a user has a map that depends
516  * on secondary keys NOT being mapped.  I can't see any possible way to make
517  * this work in here without the complete abandonment of Rationality Itself.
518  *
519  * XXX
520  * The final issue is recovery.  It would be possible to undo all of the work
521  * that was done by the macro if we entered a record into the log so that we
522  * knew when the macro started, and, in fact, this might be worth doing at some
523  * point.  Given that this might make the log grow unacceptably (consider that
524  * cursor keys are done with maps), for now we leave any changes made in place.
525  *
526  * PUBLIC: int v_event_get __P((SCR *, EVENT *, int, u_int32_t));
527  */
528 int
529 v_event_get(sp, argp, timeout, flags)
530 	SCR *sp;
531 	EVENT *argp;
532 	int timeout;
533 	u_int32_t flags;
534 {
535 	EVENT *evp, ev;
536 	GS *gp;
537 	SEQ *qp;
538 	int init_nomap, ispartial, istimeout, remap_cnt;
539 
540 	gp = sp->gp;
541 
542 	/* If simply checking for interrupts, argp may be NULL. */
543 	if (argp == NULL)
544 		argp = &ev;
545 
546 retry:	istimeout = remap_cnt = 0;
547 
548 	/*
549 	 * If the queue isn't empty and we're timing out for characters,
550 	 * return immediately.
551 	 */
552 	if (gp->i_cnt != 0 && LF_ISSET(EC_TIMEOUT))
553 		return (0);
554 
555 	/*
556 	 * If the queue is empty, we're checking for interrupts, or we're
557 	 * timing out for characters, get more events.
558 	 */
559 	if (gp->i_cnt == 0 || LF_ISSET(EC_INTERRUPT | EC_TIMEOUT)) {
560 		/*
561 		 * If we're reading new characters, check any scripting
562 		 * windows for input.
563 		 */
564 		if (F_ISSET(gp, G_SCRWIN) && sscr_input(sp))
565 			return (1);
566 loop:		if (gp->scr_event(sp, argp,
567 		    LF_ISSET(EC_INTERRUPT | EC_QUOTED | EC_RAW), timeout))
568 			return (1);
569 		switch (argp->e_event) {
570 		case E_ERR:
571 		case E_SIGHUP:
572 		case E_SIGTERM:
573 			/*
574 			 * Fatal conditions cause the file to be synced to
575 			 * disk immediately.
576 			 */
577 			v_sync(sp, RCV_ENDSESSION | RCV_PRESERVE |
578 			    (argp->e_event == E_SIGTERM ? 0: RCV_EMAIL));
579 			return (1);
580 		case E_TIMEOUT:
581 			istimeout = 1;
582 			break;
583 		case E_INTERRUPT:
584 			/* Set the global interrupt flag. */
585 			F_SET(sp->gp, G_INTERRUPTED);
586 
587 			/*
588 			 * If the caller was interested in interrupts, return
589 			 * immediately.
590 			 */
591 			if (LF_ISSET(EC_INTERRUPT))
592 				return (0);
593 			goto append;
594 		default:
595 append:			if (v_event_append(sp, argp))
596 				return (1);
597 			break;
598 		}
599 	}
600 
601 	/*
602 	 * If the caller was only interested in interrupts or timeouts, return
603 	 * immediately.  (We may have gotten characters, and that's okay, they
604 	 * were queued up for later use.)
605 	 */
606 	if (LF_ISSET(EC_INTERRUPT | EC_TIMEOUT))
607 		return (0);
608 
609 newmap:	evp = &gp->i_event[gp->i_next];
610 
611 	/*
612 	 * If the next event in the queue isn't a character event, return
613 	 * it, we're done.
614 	 */
615 	if (evp->e_event != E_CHARACTER) {
616 		*argp = *evp;
617 		QREM(1);
618 		return (0);
619 	}
620 
621 	/*
622 	 * If the key isn't mappable because:
623 	 *
624 	 *	+ ... the timeout has expired
625 	 *	+ ... it's not a mappable key
626 	 *	+ ... neither the command or input map flags are set
627 	 *	+ ... there are no maps that can apply to it
628 	 *
629 	 * return it forthwith.
630 	 */
631 	if (istimeout || F_ISSET(&evp->e_ch, CH_NOMAP) ||
632 	    !LF_ISSET(EC_MAPCOMMAND | EC_MAPINPUT) ||
633 	    evp->e_c < MAX_BIT_SEQ && !bit_test(gp->seqb, evp->e_c))
634 		goto nomap;
635 
636 	/* Search the map. */
637 	qp = seq_find(sp, NULL, evp, NULL, gp->i_cnt,
638 	    LF_ISSET(EC_MAPCOMMAND) ? SEQ_COMMAND : SEQ_INPUT, &ispartial);
639 
640 	/*
641 	 * If get a partial match, get more characters and retry the map.
642 	 * If time out without further characters, return the characters
643 	 * unmapped.
644 	 *
645 	 * !!!
646 	 * <escape> characters are a problem.  Cursor keys start with <escape>
647 	 * characters, so there's almost always a map in place that begins with
648 	 * an <escape> character.  If we timeout <escape> keys in the same way
649 	 * that we timeout other keys, the user will get a noticeable pause as
650 	 * they enter <escape> to terminate input mode.  If key timeout is set
651 	 * for a slow link, users will get an even longer pause.  Nvi used to
652 	 * simply timeout <escape> characters at 1/10th of a second, but this
653 	 * loses over PPP links where the latency is greater than 100Ms.
654 	 */
655 	if (ispartial) {
656 		if (O_ISSET(sp, O_TIMEOUT))
657 			timeout = (evp->e_value == K_ESCAPE ?
658 			    O_VAL(sp, O_ESCAPETIME) :
659 			    O_VAL(sp, O_KEYTIME)) * 100;
660 		else
661 			timeout = 0;
662 		goto loop;
663 	}
664 
665 	/* If no map, return the character. */
666 	if (qp == NULL) {
667 nomap:		if (!isdigit(evp->e_c) && LF_ISSET(EC_MAPNODIGIT))
668 			goto not_digit;
669 		*argp = *evp;
670 		QREM(1);
671 		return (0);
672 	}
673 
674 	/*
675 	 * If looking for the end of a digit string, and the first character
676 	 * of the map is it, pretend we haven't seen the character.
677 	 */
678 	if (LF_ISSET(EC_MAPNODIGIT) &&
679 	    qp->output != NULL && !isdigit(qp->output[0])) {
680 not_digit:	argp->e_c = CH_NOT_DIGIT;
681 		argp->e_value = K_NOTUSED;
682 		argp->e_event = E_CHARACTER;
683 		F_INIT(&argp->e_ch, 0);
684 		return (0);
685 	}
686 
687 	/* Find out if the initial segments are identical. */
688 	init_nomap = !e_memcmp(qp->output, &gp->i_event[gp->i_next], qp->ilen);
689 
690 	/* Delete the mapped characters from the queue. */
691 	QREM(qp->ilen);
692 
693 	/* If keys mapped to nothing, go get more. */
694 	if (qp->output == NULL)
695 		goto retry;
696 
697 	/* If remapping characters... */
698 	if (O_ISSET(sp, O_REMAP)) {
699 		/*
700 		 * Periodically check for interrupts.  Always check the first
701 		 * time through, because it's possible to set up a map that
702 		 * will return a character every time, but will expand to more,
703 		 * e.g. "map! a aaaa" will always return a 'a', but we'll never
704 		 * get anywhere useful.
705 		 */
706 		if ((++remap_cnt == 1 || remap_cnt % 10 == 0) &&
707 		    (gp->scr_event(sp, &ev,
708 		    EC_INTERRUPT, 0) || ev.e_event == E_INTERRUPT)) {
709 			F_SET(sp->gp, G_INTERRUPTED);
710 			argp->e_event = E_INTERRUPT;
711 			return (0);
712 		}
713 
714 		/*
715 		 * If an initial part of the characters mapped, they are not
716 		 * further remapped -- return the first one.  Push the rest
717 		 * of the characters, or all of the characters if no initial
718 		 * part mapped, back on the queue.
719 		 */
720 		if (init_nomap) {
721 			if (v_event_push(sp, NULL, qp->output + qp->ilen,
722 			    qp->olen - qp->ilen, CH_MAPPED))
723 				return (1);
724 			if (v_event_push(sp, NULL,
725 			    qp->output, qp->ilen, CH_NOMAP | CH_MAPPED))
726 				return (1);
727 			evp = &gp->i_event[gp->i_next];
728 			goto nomap;
729 		}
730 		if (v_event_push(sp, NULL, qp->output, qp->olen, CH_MAPPED))
731 			return (1);
732 		goto newmap;
733 	}
734 
735 	/* Else, push the characters on the queue and return one. */
736 	if (v_event_push(sp, NULL, qp->output, qp->olen, CH_MAPPED | CH_NOMAP))
737 		return (1);
738 
739 	goto nomap;
740 }
741 
742 /*
743  * v_sync --
744  *	Walk the screen lists, sync'ing files to their backup copies.
745  */
746 static void
747 v_sync(sp, flags)
748 	SCR *sp;
749 	int flags;
750 {
751 	GS *gp;
752 
753 	gp = sp->gp;
754 	for (sp = gp->dq.cqh_first; sp != (void *)&gp->dq; sp = sp->q.cqe_next)
755 		rcv_sync(sp, flags);
756 	for (sp = gp->hq.cqh_first; sp != (void *)&gp->hq; sp = sp->q.cqe_next)
757 		rcv_sync(sp, flags);
758 }
759 
760 /*
761  * v_event_err --
762  *	Unexpected event.
763  *
764  * PUBLIC: void v_event_err __P((SCR *, EVENT *));
765  */
766 void
767 v_event_err(sp, evp)
768 	SCR *sp;
769 	EVENT *evp;
770 {
771 	switch (evp->e_event) {
772 	case E_CHARACTER:
773 		msgq(sp, M_ERR, "276|Unexpected character event");
774 		break;
775 	case E_EOF:
776 		msgq(sp, M_ERR, "277|Unexpected end-of-file event");
777 		break;
778 	case E_INTERRUPT:
779 		msgq(sp, M_ERR, "279|Unexpected interrupt event");
780 		break;
781 	case E_QUIT:
782 		msgq(sp, M_ERR, "280|Unexpected quit event");
783 		break;
784 	case E_REPAINT:
785 		msgq(sp, M_ERR, "281|Unexpected repaint event");
786 		break;
787 	case E_STRING:
788 		msgq(sp, M_ERR, "285|Unexpected string event");
789 		break;
790 	case E_TIMEOUT:
791 		msgq(sp, M_ERR, "286|Unexpected timeout event");
792 		break;
793 	case E_WRESIZE:
794 		msgq(sp, M_ERR, "316|Unexpected resize event");
795 		break;
796 	case E_WRITE:
797 		msgq(sp, M_ERR, "287|Unexpected write event");
798 		break;
799 
800 	/*
801 	 * Theoretically, none of these can occur, as they're handled at the
802 	 * top editor level.
803 	 */
804 	case E_ERR:
805 	case E_SIGHUP:
806 	case E_SIGTERM:
807 	default:
808 		abort();
809 	}
810 
811 	/* Free any allocated memory. */
812 	if (evp->e_asp != NULL)
813 		free(evp->e_asp);
814 }
815 
816 /*
817  * v_event_flush --
818  *	Flush any flagged keys, returning if any keys were flushed.
819  *
820  * PUBLIC: int v_event_flush __P((SCR *, u_int));
821  */
822 int
823 v_event_flush(sp, flags)
824 	SCR *sp;
825 	u_int flags;
826 {
827 	GS *gp;
828 	int rval;
829 
830 	for (rval = 0, gp = sp->gp; gp->i_cnt != 0 &&
831 	    F_ISSET(&gp->i_event[gp->i_next].e_ch, flags); rval = 1)
832 		QREM(1);
833 	return (rval);
834 }
835 
836 /*
837  * v_event_grow --
838  *	Grow the terminal queue.
839  */
840 static int
841 v_event_grow(sp, add)
842 	SCR *sp;
843 	int add;
844 {
845 	GS *gp;
846 	size_t new_nelem, olen;
847 
848 	gp = sp->gp;
849 	new_nelem = gp->i_nelem + add;
850 	olen = gp->i_nelem * sizeof(gp->i_event[0]);
851 	BINC_RET(sp, gp->i_event, olen, new_nelem * sizeof(gp->i_event[0]));
852 	gp->i_nelem = olen / sizeof(gp->i_event[0]);
853 	return (0);
854 }
855 
856 /*
857  * v_key_cmp --
858  *	Compare two keys for sorting.
859  */
860 static int
861 v_key_cmp(ap, bp)
862 	const void *ap, *bp;
863 {
864 	return (((KEYLIST *)ap)->ch - ((KEYLIST *)bp)->ch);
865 }
866