1 /* 2 * Program to generate cryptographic keys for ntp clients and servers 3 * 4 * This program generates password encrypted data files for use with the 5 * Autokey security protocol and Network Time Protocol Version 4. Files 6 * are prefixed with a header giving the name and date of creation 7 * followed by a type-specific descriptive label and PEM-encoded data 8 * structure compatible with programs of the OpenSSL library. 9 * 10 * All file names are like "ntpkey_<type>_<hostname>.<filestamp>", where 11 * <type> is the file type, <hostname> the generating host name and 12 * <filestamp> the generation time in NTP seconds. The NTP programs 13 * expect generic names such as "ntpkey_<type>_whimsy.udel.edu" with the 14 * association maintained by soft links. Following is a list of file 15 * types; the first line is the file name and the second link name. 16 * 17 * ntpkey_MD5key_<hostname>.<filestamp> 18 * MD5 (128-bit) keys used to compute message digests in symmetric 19 * key cryptography 20 * 21 * ntpkey_RSAhost_<hostname>.<filestamp> 22 * ntpkey_host_<hostname> 23 * RSA private/public host key pair used for public key signatures 24 * 25 * ntpkey_RSAsign_<hostname>.<filestamp> 26 * ntpkey_sign_<hostname> 27 * RSA private/public sign key pair used for public key signatures 28 * 29 * ntpkey_DSAsign_<hostname>.<filestamp> 30 * ntpkey_sign_<hostname> 31 * DSA Private/public sign key pair used for public key signatures 32 * 33 * Available digest/signature schemes 34 * 35 * RSA: RSA-MD2, RSA-MD5, RSA-SHA, RSA-SHA1, RSA-MDC2, EVP-RIPEMD160 36 * DSA: DSA-SHA, DSA-SHA1 37 * 38 * ntpkey_XXXcert_<hostname>.<filestamp> 39 * ntpkey_cert_<hostname> 40 * X509v3 certificate using RSA or DSA public keys and signatures. 41 * XXX is a code identifying the message digest and signature 42 * encryption algorithm 43 * 44 * Identity schemes. The key type par is used for the challenge; the key 45 * type key is used for the response. 46 * 47 * ntpkey_IFFkey_<groupname>.<filestamp> 48 * ntpkey_iffkey_<groupname> 49 * Schnorr (IFF) identity parameters and keys 50 * 51 * ntpkey_GQkey_<groupname>.<filestamp>, 52 * ntpkey_gqkey_<groupname> 53 * Guillou-Quisquater (GQ) identity parameters and keys 54 * 55 * ntpkey_MVkeyX_<groupname>.<filestamp>, 56 * ntpkey_mvkey_<groupname> 57 * Mu-Varadharajan (MV) identity parameters and keys 58 * 59 * Note: Once in a while because of some statistical fluke this program 60 * fails to generate and verify some cryptographic data, as indicated by 61 * exit status -1. In this case simply run the program again. If the 62 * program does complete with exit code 0, the data are correct as 63 * verified. 64 * 65 * These cryptographic routines are characterized by the prime modulus 66 * size in bits. The default value of 512 bits is a compromise between 67 * cryptographic strength and computing time and is ordinarily 68 * considered adequate for this application. The routines have been 69 * tested with sizes of 256, 512, 1024 and 2048 bits. Not all message 70 * digest and signature encryption schemes work with sizes less than 512 71 * bits. The computing time for sizes greater than 2048 bits is 72 * prohibitive on all but the fastest processors. An UltraSPARC Blade 73 * 1000 took something over nine minutes to generate and verify the 74 * values with size 2048. An old SPARC IPC would take a week. 75 * 76 * The OpenSSL library used by this program expects a random seed file. 77 * As described in the OpenSSL documentation, the file name defaults to 78 * first the RANDFILE environment variable in the user's home directory 79 * and then .rnd in the user's home directory. 80 */ 81 #ifdef HAVE_CONFIG_H 82 # include <config.h> 83 #endif 84 #include <string.h> 85 #include <stdio.h> 86 #include <stdlib.h> 87 #include <unistd.h> 88 #include <sys/stat.h> 89 #include <sys/time.h> 90 #include <sys/types.h> 91 92 #include "ntp.h" 93 #include "ntp_random.h" 94 #include "ntp_stdlib.h" 95 #include "ntp_assert.h" 96 #include "ntp_libopts.h" 97 #include "ntp_unixtime.h" 98 #include "ntp-keygen-opts.h" 99 100 #ifdef OPENSSL 101 #include "openssl/bn.h" 102 #include "openssl/evp.h" 103 #include "openssl/err.h" 104 #include "openssl/rand.h" 105 #include "openssl/pem.h" 106 #include "openssl/x509v3.h" 107 #include <openssl/objects.h> 108 #endif /* OPENSSL */ 109 #include <ssl_applink.c> 110 111 #define _UC(str) ((char *)(intptr_t)(str)) 112 /* 113 * Cryptodefines 114 */ 115 #define MD5KEYS 10 /* number of keys generated of each type */ 116 #define MD5SIZE 20 /* maximum key size */ 117 #ifdef AUTOKEY 118 #define PLEN 512 /* default prime modulus size (bits) */ 119 #define ILEN 256 /* default identity modulus size (bits) */ 120 #define MVMAX 100 /* max MV parameters */ 121 122 /* 123 * Strings used in X509v3 extension fields 124 */ 125 #define KEY_USAGE "digitalSignature,keyCertSign" 126 #define BASIC_CONSTRAINTS "critical,CA:TRUE" 127 #define EXT_KEY_PRIVATE "private" 128 #define EXT_KEY_TRUST "trustRoot" 129 #endif /* AUTOKEY */ 130 131 /* 132 * Prototypes 133 */ 134 FILE *fheader (const char *, const char *, const char *); 135 int gen_md5 (const char *); 136 void followlink (char *, size_t); 137 #ifdef AUTOKEY 138 EVP_PKEY *gen_rsa (const char *); 139 EVP_PKEY *gen_dsa (const char *); 140 EVP_PKEY *gen_iffkey (const char *); 141 EVP_PKEY *gen_gqkey (const char *); 142 EVP_PKEY *gen_mvkey (const char *, EVP_PKEY **); 143 void gen_mvserv (char *, EVP_PKEY **); 144 int x509 (EVP_PKEY *, const EVP_MD *, char *, const char *, 145 char *); 146 void cb (int, int, void *); 147 EVP_PKEY *genkey (const char *, const char *); 148 EVP_PKEY *readkey (char *, char *, u_int *, EVP_PKEY **); 149 void writekey (char *, char *, u_int *, EVP_PKEY **); 150 u_long asn2ntp (ASN1_TIME *); 151 #endif /* AUTOKEY */ 152 153 /* 154 * Program variables 155 */ 156 extern char *optarg; /* command line argument */ 157 char const *progname; 158 u_int lifetime = DAYSPERYEAR; /* certificate lifetime (days) */ 159 int nkeys; /* MV keys */ 160 time_t epoch; /* Unix epoch (seconds) since 1970 */ 161 u_int fstamp; /* NTP filestamp */ 162 char hostbuf[MAXHOSTNAME + 1]; 163 char *hostname = NULL; /* host, used in cert filenames */ 164 char *groupname = NULL; /* group name */ 165 char certnamebuf[2 * sizeof(hostbuf)]; 166 char *certname = NULL; /* certificate subject/issuer name */ 167 char *passwd1 = NULL; /* input private key password */ 168 char *passwd2 = NULL; /* output private key password */ 169 char filename[MAXFILENAME + 1]; /* file name */ 170 #ifdef AUTOKEY 171 u_int modulus = PLEN; /* prime modulus size (bits) */ 172 u_int modulus2 = ILEN; /* identity modulus size (bits) */ 173 long d0, d1, d2, d3; /* callback counters */ 174 const EVP_CIPHER * cipher = NULL; 175 #endif /* AUTOKEY */ 176 177 #ifdef SYS_WINNT 178 BOOL init_randfile(); 179 180 /* 181 * Don't try to follow symbolic links on Windows. Assume link == file. 182 */ 183 int 184 readlink( 185 char * link, 186 char * file, 187 int len 188 ) 189 { 190 return strlen(file); 191 } 192 193 /* 194 * Don't try to create symbolic links on Windows, that is supported on 195 * Vista and later only. Instead, if CreateHardLink is available (XP 196 * and later), hardlink the linkname to the original filename. On 197 * earlier systems, user must rename file to match expected link for 198 * ntpd to find it. To allow building a ntp-keygen.exe which loads on 199 * Windows pre-XP, runtime link to CreateHardLinkA(). 200 */ 201 int 202 symlink( 203 char * filename, 204 char* linkname 205 ) 206 { 207 typedef BOOL (WINAPI *PCREATEHARDLINKA)( 208 __in LPCSTR lpFileName, 209 __in LPCSTR lpExistingFileName, 210 __reserved LPSECURITY_ATTRIBUTES lpSA 211 ); 212 static PCREATEHARDLINKA pCreateHardLinkA; 213 static int tried; 214 HMODULE hDll; 215 FARPROC pfn; 216 int link_created; 217 int saved_errno; 218 219 if (!tried) { 220 tried = TRUE; 221 hDll = LoadLibrary("kernel32"); 222 pfn = GetProcAddress(hDll, "CreateHardLinkA"); 223 pCreateHardLinkA = (PCREATEHARDLINKA)pfn; 224 } 225 226 if (NULL == pCreateHardLinkA) { 227 errno = ENOSYS; 228 return -1; 229 } 230 231 link_created = (*pCreateHardLinkA)(linkname, filename, NULL); 232 233 if (link_created) 234 return 0; 235 236 saved_errno = GetLastError(); /* yes we play loose */ 237 mfprintf(stderr, "Create hard link %s to %s failed: %m\n", 238 linkname, filename); 239 errno = saved_errno; 240 return -1; 241 } 242 243 void 244 InitWin32Sockets() { 245 WORD wVersionRequested; 246 WSADATA wsaData; 247 wVersionRequested = MAKEWORD(2,0); 248 if (WSAStartup(wVersionRequested, &wsaData)) 249 { 250 fprintf(stderr, "No useable winsock.dll\n"); 251 exit(1); 252 } 253 } 254 #endif /* SYS_WINNT */ 255 256 257 /* 258 * followlink() - replace filename with its target if symlink. 259 * 260 * Some readlink() implementations do not null-terminate the result. 261 */ 262 void 263 followlink( 264 char * fname, 265 size_t bufsiz 266 ) 267 { 268 int len; 269 270 REQUIRE(bufsiz > 0); 271 272 len = readlink(fname, fname, (int)bufsiz); 273 if (len < 0 ) { 274 fname[0] = '\0'; 275 return; 276 } 277 if (len > (int)bufsiz - 1) 278 len = (int)bufsiz - 1; 279 fname[len] = '\0'; 280 } 281 282 283 /* 284 * Main program 285 */ 286 int 287 main( 288 int argc, /* command line options */ 289 char **argv 290 ) 291 { 292 struct timeval tv; /* initialization vector */ 293 int md5key = 0; /* generate MD5 keys */ 294 int optct; /* option count */ 295 #ifdef AUTOKEY 296 X509 *cert = NULL; /* X509 certificate */ 297 X509_EXTENSION *ext; /* X509v3 extension */ 298 EVP_PKEY *pkey_host = NULL; /* host key */ 299 EVP_PKEY *pkey_sign = NULL; /* sign key */ 300 EVP_PKEY *pkey_iffkey = NULL; /* IFF sever keys */ 301 EVP_PKEY *pkey_gqkey = NULL; /* GQ server keys */ 302 EVP_PKEY *pkey_mvkey = NULL; /* MV trusted agen keys */ 303 EVP_PKEY *pkey_mvpar[MVMAX]; /* MV cleient keys */ 304 int hostkey = 0; /* generate RSA keys */ 305 int iffkey = 0; /* generate IFF keys */ 306 int gqkey = 0; /* generate GQ keys */ 307 int mvkey = 0; /* update MV keys */ 308 int mvpar = 0; /* generate MV parameters */ 309 char *sign = NULL; /* sign key */ 310 EVP_PKEY *pkey = NULL; /* temp key */ 311 const EVP_MD *ectx; /* EVP digest */ 312 char pathbuf[MAXFILENAME + 1]; 313 const char *scheme = NULL; /* digest/signature scheme */ 314 const char *ciphername = NULL; /* to encrypt priv. key */ 315 const char *exten = NULL; /* private extension */ 316 char *grpkey = NULL; /* identity extension */ 317 int nid; /* X509 digest/signature scheme */ 318 FILE *fstr = NULL; /* file handle */ 319 char groupbuf[MAXHOSTNAME + 1]; 320 u_int temp; 321 BIO * bp; 322 int i, cnt; 323 char * ptr; 324 #endif /* AUTOKEY */ 325 326 progname = argv[0]; 327 328 #ifdef SYS_WINNT 329 /* Initialize before OpenSSL checks */ 330 InitWin32Sockets(); 331 if (!init_randfile()) 332 fprintf(stderr, "Unable to initialize .rnd file\n"); 333 ssl_applink(); 334 #endif 335 336 #ifdef OPENSSL 337 ssl_check_version(); 338 #endif /* OPENSSL */ 339 340 ntp_crypto_srandom(); 341 342 /* 343 * Process options, initialize host name and timestamp. 344 * gethostname() won't null-terminate if hostname is exactly the 345 * length provided for the buffer. 346 */ 347 gethostname(hostbuf, sizeof(hostbuf) - 1); 348 hostbuf[COUNTOF(hostbuf) - 1] = '\0'; 349 hostname = hostbuf; 350 groupname = hostbuf; 351 passwd1 = hostbuf; 352 passwd2 = NULL; 353 GETTIMEOFDAY(&tv, NULL); 354 epoch = tv.tv_sec; 355 fstamp = (u_int)(epoch + JAN_1970); 356 357 optct = ntpOptionProcess(&ntp_keygenOptions, argc, argv); 358 argc -= optct; // Just in case we care later. 359 argv += optct; // Just in case we care later. 360 361 #ifdef OPENSSL 362 if (SSLeay() == SSLEAY_VERSION_NUMBER) 363 fprintf(stderr, "Using OpenSSL version %s\n", 364 SSLeay_version(SSLEAY_VERSION)); 365 else 366 fprintf(stderr, "Built against OpenSSL %s, using version %s\n", 367 OPENSSL_VERSION_TEXT, SSLeay_version(SSLEAY_VERSION)); 368 #endif /* OPENSSL */ 369 370 debug = OPT_VALUE_SET_DEBUG_LEVEL; 371 372 if (HAVE_OPT( MD5KEY )) 373 md5key++; 374 #ifdef AUTOKEY 375 if (HAVE_OPT( PASSWORD )) 376 passwd1 = estrdup(OPT_ARG( PASSWORD )); 377 378 if (HAVE_OPT( EXPORT_PASSWD )) 379 passwd2 = estrdup(OPT_ARG( EXPORT_PASSWD )); 380 381 if (HAVE_OPT( HOST_KEY )) 382 hostkey++; 383 384 if (HAVE_OPT( SIGN_KEY )) 385 sign = estrdup(OPT_ARG( SIGN_KEY )); 386 387 if (HAVE_OPT( GQ_PARAMS )) 388 gqkey++; 389 390 if (HAVE_OPT( IFFKEY )) 391 iffkey++; 392 393 if (HAVE_OPT( MV_PARAMS )) { 394 mvkey++; 395 nkeys = OPT_VALUE_MV_PARAMS; 396 } 397 if (HAVE_OPT( MV_KEYS )) { 398 mvpar++; 399 nkeys = OPT_VALUE_MV_KEYS; 400 } 401 402 if (HAVE_OPT( IMBITS )) 403 modulus2 = OPT_VALUE_IMBITS; 404 405 if (HAVE_OPT( MODULUS )) 406 modulus = OPT_VALUE_MODULUS; 407 408 if (HAVE_OPT( CERTIFICATE )) 409 scheme = OPT_ARG( CERTIFICATE ); 410 411 if (HAVE_OPT( CIPHER )) 412 ciphername = OPT_ARG( CIPHER ); 413 414 if (HAVE_OPT( SUBJECT_NAME )) 415 hostname = estrdup(OPT_ARG( SUBJECT_NAME )); 416 417 if (HAVE_OPT( IDENT )) 418 groupname = estrdup(OPT_ARG( IDENT )); 419 420 if (HAVE_OPT( LIFETIME )) 421 lifetime = OPT_VALUE_LIFETIME; 422 423 if (HAVE_OPT( PVT_CERT )) 424 exten = EXT_KEY_PRIVATE; 425 426 if (HAVE_OPT( TRUSTED_CERT )) 427 exten = EXT_KEY_TRUST; 428 429 /* 430 * Remove the group name from the hostname variable used 431 * in host and sign certificate file names. 432 */ 433 if (hostname != hostbuf) 434 ptr = strchr(hostname, '@'); 435 else 436 ptr = NULL; 437 if (ptr != NULL) { 438 *ptr = '\0'; 439 groupname = estrdup(ptr + 1); 440 /* -s @group is equivalent to -i group, host unch. */ 441 if (ptr == hostname) 442 hostname = hostbuf; 443 } 444 445 /* 446 * Derive host certificate issuer/subject names from host name 447 * and optional group. If no groupname is provided, the issuer 448 * and subject is the hostname with no '@group', and the 449 * groupname variable is pointed to hostname for use in IFF, GQ, 450 * and MV parameters file names. 451 */ 452 if (groupname == hostbuf) { 453 certname = hostname; 454 } else { 455 snprintf(certnamebuf, sizeof(certnamebuf), "%s@%s", 456 hostname, groupname); 457 certname = certnamebuf; 458 } 459 460 /* 461 * Seed random number generator and grow weeds. 462 */ 463 ERR_load_crypto_strings(); 464 OpenSSL_add_all_algorithms(); 465 if (!RAND_status()) { 466 if (RAND_file_name(pathbuf, sizeof(pathbuf)) == NULL) { 467 fprintf(stderr, "RAND_file_name %s\n", 468 ERR_error_string(ERR_get_error(), NULL)); 469 exit (-1); 470 } 471 temp = RAND_load_file(pathbuf, -1); 472 if (temp == 0) { 473 fprintf(stderr, 474 "RAND_load_file %s not found or empty\n", 475 pathbuf); 476 exit (-1); 477 } 478 fprintf(stderr, 479 "Random seed file %s %u bytes\n", pathbuf, temp); 480 RAND_add(&epoch, sizeof(epoch), 4.0); 481 } 482 #endif /* AUTOKEY */ 483 484 /* 485 * Create new unencrypted MD5 keys file if requested. If this 486 * option is selected, ignore all other options. 487 */ 488 if (md5key) { 489 gen_md5("md5"); 490 exit (0); 491 } 492 493 #ifdef AUTOKEY 494 /* 495 * Load previous certificate if available. 496 */ 497 snprintf(filename, sizeof(filename), "ntpkey_cert_%s", hostname); 498 if ((fstr = fopen(filename, "r")) != NULL) { 499 cert = PEM_read_X509(fstr, NULL, NULL, NULL); 500 fclose(fstr); 501 } 502 if (cert != NULL) { 503 504 /* 505 * Extract subject name. 506 */ 507 X509_NAME_oneline(X509_get_subject_name(cert), groupbuf, 508 MAXFILENAME); 509 510 /* 511 * Extract digest/signature scheme. 512 */ 513 if (scheme == NULL) { 514 nid = OBJ_obj2nid(cert->cert_info-> 515 signature->algorithm); 516 scheme = OBJ_nid2sn(nid); 517 } 518 519 /* 520 * If a key_usage extension field is present, determine 521 * whether this is a trusted or private certificate. 522 */ 523 if (exten == NULL) { 524 ptr = strstr(groupbuf, "CN="); 525 cnt = X509_get_ext_count(cert); 526 for (i = 0; i < cnt; i++) { 527 ext = X509_get_ext(cert, i); 528 if (OBJ_obj2nid(ext->object) == 529 NID_ext_key_usage) { 530 bp = BIO_new(BIO_s_mem()); 531 X509V3_EXT_print(bp, ext, 0, 0); 532 BIO_gets(bp, pathbuf, 533 MAXFILENAME); 534 BIO_free(bp); 535 if (strcmp(pathbuf, 536 "Trust Root") == 0) 537 exten = EXT_KEY_TRUST; 538 else if (strcmp(pathbuf, 539 "Private") == 0) 540 exten = EXT_KEY_PRIVATE; 541 certname = estrdup(ptr + 3); 542 } 543 } 544 } 545 } 546 if (scheme == NULL) 547 scheme = "RSA-MD5"; 548 if (ciphername == NULL) 549 ciphername = "des-ede3-cbc"; 550 cipher = EVP_get_cipherbyname(ciphername); 551 if (cipher == NULL) { 552 fprintf(stderr, "Unknown cipher %s\n", ciphername); 553 exit(-1); 554 } 555 fprintf(stderr, "Using host %s group %s\n", hostname, 556 groupname); 557 558 /* 559 * Create a new encrypted RSA host key file if requested; 560 * otherwise, look for an existing host key file. If not found, 561 * create a new encrypted RSA host key file. If that fails, go 562 * no further. 563 */ 564 if (hostkey) 565 pkey_host = genkey("RSA", "host"); 566 if (pkey_host == NULL) { 567 snprintf(filename, sizeof(filename), "ntpkey_host_%s", hostname); 568 pkey_host = readkey(filename, passwd1, &fstamp, NULL); 569 if (pkey_host != NULL) { 570 followlink(filename, sizeof(filename)); 571 fprintf(stderr, "Using host key %s\n", 572 filename); 573 } else { 574 pkey_host = genkey("RSA", "host"); 575 } 576 } 577 if (pkey_host == NULL) { 578 fprintf(stderr, "Generating host key fails\n"); 579 exit(-1); 580 } 581 582 /* 583 * Create new encrypted RSA or DSA sign keys file if requested; 584 * otherwise, look for an existing sign key file. If not found, 585 * use the host key instead. 586 */ 587 if (sign != NULL) 588 pkey_sign = genkey(sign, "sign"); 589 if (pkey_sign == NULL) { 590 snprintf(filename, sizeof(filename), "ntpkey_sign_%s", 591 hostname); 592 pkey_sign = readkey(filename, passwd1, &fstamp, NULL); 593 if (pkey_sign != NULL) { 594 followlink(filename, sizeof(filename)); 595 fprintf(stderr, "Using sign key %s\n", 596 filename); 597 } else { 598 pkey_sign = pkey_host; 599 fprintf(stderr, "Using host key as sign key\n"); 600 } 601 } 602 603 /* 604 * Create new encrypted GQ server keys file if requested; 605 * otherwise, look for an exisiting file. If found, fetch the 606 * public key for the certificate. 607 */ 608 if (gqkey) 609 pkey_gqkey = gen_gqkey("gqkey"); 610 if (pkey_gqkey == NULL) { 611 snprintf(filename, sizeof(filename), "ntpkey_gqkey_%s", 612 groupname); 613 pkey_gqkey = readkey(filename, passwd1, &fstamp, NULL); 614 if (pkey_gqkey != NULL) { 615 followlink(filename, sizeof(filename)); 616 fprintf(stderr, "Using GQ parameters %s\n", 617 filename); 618 } 619 } 620 if (pkey_gqkey != NULL) 621 grpkey = BN_bn2hex(pkey_gqkey->pkey.rsa->q); 622 623 /* 624 * Write the nonencrypted GQ client parameters to the stdout 625 * stream. The parameter file is the server key file with the 626 * private key obscured. 627 */ 628 if (pkey_gqkey != NULL && HAVE_OPT(ID_KEY)) { 629 RSA *rsa; 630 631 snprintf(filename, sizeof(filename), 632 "ntpkey_gqpar_%s.%u", groupname, fstamp); 633 fprintf(stderr, "Writing GQ parameters %s to stdout\n", 634 filename); 635 fprintf(stdout, "# %s\n# %s\n", filename, 636 ctime(&epoch)); 637 rsa = pkey_gqkey->pkey.rsa; 638 BN_copy(rsa->p, BN_value_one()); 639 BN_copy(rsa->q, BN_value_one()); 640 pkey = EVP_PKEY_new(); 641 EVP_PKEY_assign_RSA(pkey, rsa); 642 PEM_write_PKCS8PrivateKey(stdout, pkey, NULL, NULL, 0, 643 NULL, NULL); 644 fflush(stdout); 645 if (debug) 646 RSA_print_fp(stderr, rsa, 0); 647 } 648 649 /* 650 * Write the encrypted GQ server keys to the stdout stream. 651 */ 652 if (pkey_gqkey != NULL && passwd2 != NULL) { 653 RSA *rsa; 654 655 snprintf(filename, sizeof(filename), 656 "ntpkey_gqkey_%s.%u", groupname, fstamp); 657 fprintf(stderr, "Writing GQ keys %s to stdout\n", 658 filename); 659 fprintf(stdout, "# %s\n# %s\n", filename, 660 ctime(&epoch)); 661 rsa = pkey_gqkey->pkey.rsa; 662 pkey = EVP_PKEY_new(); 663 EVP_PKEY_assign_RSA(pkey, rsa); 664 PEM_write_PKCS8PrivateKey(stdout, pkey, cipher, NULL, 0, 665 NULL, passwd2); 666 fflush(stdout); 667 if (debug) 668 RSA_print_fp(stderr, rsa, 0); 669 } 670 671 /* 672 * Create new encrypted IFF server keys file if requested; 673 * otherwise, look for existing file. 674 */ 675 if (iffkey) 676 pkey_iffkey = gen_iffkey("iffkey"); 677 if (pkey_iffkey == NULL) { 678 snprintf(filename, sizeof(filename), "ntpkey_iffkey_%s", 679 groupname); 680 pkey_iffkey = readkey(filename, passwd1, &fstamp, NULL); 681 if (pkey_iffkey != NULL) { 682 followlink(filename, sizeof(filename)); 683 fprintf(stderr, "Using IFF keys %s\n", 684 filename); 685 } 686 } 687 688 /* 689 * Write the nonencrypted IFF client parameters to the stdout 690 * stream. The parameter file is the server key file with the 691 * private key obscured. 692 */ 693 if (pkey_iffkey != NULL && HAVE_OPT(ID_KEY)) { 694 DSA *dsa; 695 696 snprintf(filename, sizeof(filename), 697 "ntpkey_iffpar_%s.%u", groupname, fstamp); 698 fprintf(stderr, "Writing IFF parameters %s to stdout\n", 699 filename); 700 fprintf(stdout, "# %s\n# %s\n", filename, 701 ctime(&epoch)); 702 dsa = pkey_iffkey->pkey.dsa; 703 BN_copy(dsa->priv_key, BN_value_one()); 704 pkey = EVP_PKEY_new(); 705 EVP_PKEY_assign_DSA(pkey, dsa); 706 PEM_write_PKCS8PrivateKey(stdout, pkey, NULL, NULL, 0, 707 NULL, NULL); 708 fflush(stdout); 709 if (debug) 710 DSA_print_fp(stderr, dsa, 0); 711 } 712 713 /* 714 * Write the encrypted IFF server keys to the stdout stream. 715 */ 716 if (pkey_iffkey != NULL && passwd2 != NULL) { 717 DSA *dsa; 718 719 snprintf(filename, sizeof(filename), 720 "ntpkey_iffkey_%s.%u", groupname, fstamp); 721 fprintf(stderr, "Writing IFF keys %s to stdout\n", 722 filename); 723 fprintf(stdout, "# %s\n# %s\n", filename, 724 ctime(&epoch)); 725 dsa = pkey_iffkey->pkey.dsa; 726 pkey = EVP_PKEY_new(); 727 EVP_PKEY_assign_DSA(pkey, dsa); 728 PEM_write_PKCS8PrivateKey(stdout, pkey, cipher, NULL, 0, 729 NULL, passwd2); 730 fflush(stdout); 731 if (debug) 732 DSA_print_fp(stderr, dsa, 0); 733 } 734 735 /* 736 * Create new encrypted MV trusted-authority keys file if 737 * requested; otherwise, look for existing keys file. 738 */ 739 if (mvkey) 740 pkey_mvkey = gen_mvkey("mv", pkey_mvpar); 741 if (pkey_mvkey == NULL) { 742 snprintf(filename, sizeof(filename), "ntpkey_mvta_%s", 743 groupname); 744 pkey_mvkey = readkey(filename, passwd1, &fstamp, 745 pkey_mvpar); 746 if (pkey_mvkey != NULL) { 747 followlink(filename, sizeof(filename)); 748 fprintf(stderr, "Using MV keys %s\n", 749 filename); 750 } 751 } 752 753 /* 754 * Write the nonencrypted MV client parameters to the stdout 755 * stream. For the moment, we always use the client parameters 756 * associated with client key 1. 757 */ 758 if (pkey_mvkey != NULL && HAVE_OPT(ID_KEY)) { 759 snprintf(filename, sizeof(filename), 760 "ntpkey_mvpar_%s.%u", groupname, fstamp); 761 fprintf(stderr, "Writing MV parameters %s to stdout\n", 762 filename); 763 fprintf(stdout, "# %s\n# %s\n", filename, 764 ctime(&epoch)); 765 pkey = pkey_mvpar[2]; 766 PEM_write_PKCS8PrivateKey(stdout, pkey, NULL, NULL, 0, 767 NULL, NULL); 768 fflush(stdout); 769 if (debug) 770 DSA_print_fp(stderr, pkey->pkey.dsa, 0); 771 } 772 773 /* 774 * Write the encrypted MV server keys to the stdout stream. 775 */ 776 if (pkey_mvkey != NULL && passwd2 != NULL) { 777 snprintf(filename, sizeof(filename), 778 "ntpkey_mvkey_%s.%u", groupname, fstamp); 779 fprintf(stderr, "Writing MV keys %s to stdout\n", 780 filename); 781 fprintf(stdout, "# %s\n# %s\n", filename, 782 ctime(&epoch)); 783 pkey = pkey_mvpar[1]; 784 PEM_write_PKCS8PrivateKey(stdout, pkey, cipher, NULL, 0, 785 NULL, passwd2); 786 fflush(stdout); 787 if (debug) 788 DSA_print_fp(stderr, pkey->pkey.dsa, 0); 789 } 790 791 /* 792 * Decode the digest/signature scheme and create the 793 * certificate. Do this every time we run the program. 794 */ 795 ectx = EVP_get_digestbyname(scheme); 796 if (ectx == NULL) { 797 fprintf(stderr, 798 "Invalid digest/signature combination %s\n", 799 scheme); 800 exit (-1); 801 } 802 x509(pkey_sign, ectx, grpkey, exten, certname); 803 #endif /* AUTOKEY */ 804 exit(0); 805 } 806 807 808 /* 809 * Generate semi-random MD5 keys compatible with NTPv3 and NTPv4. Also, 810 * if OpenSSL is around, generate random SHA1 keys compatible with 811 * symmetric key cryptography. 812 */ 813 int 814 gen_md5( 815 const char *id /* file name id */ 816 ) 817 { 818 u_char md5key[MD5SIZE + 1]; /* MD5 key */ 819 FILE *str; 820 int i, j; 821 #ifdef OPENSSL 822 u_char keystr[MD5SIZE]; 823 u_char hexstr[2 * MD5SIZE + 1]; 824 u_char hex[] = "0123456789abcdef"; 825 #endif /* OPENSSL */ 826 827 str = fheader("MD5key", id, groupname); 828 for (i = 1; i <= MD5KEYS; i++) { 829 for (j = 0; j < MD5SIZE; j++) { 830 u_char temp; 831 832 while (1) { 833 int rc; 834 835 rc = ntp_crypto_random_buf( 836 &temp, sizeof(temp)); 837 if (-1 == rc) { 838 fprintf(stderr, "ntp_crypto_random_buf() failed.\n"); 839 exit (-1); 840 } 841 if (temp == '#') 842 continue; 843 844 if (temp > 0x20 && temp < 0x7f) 845 break; 846 } 847 md5key[j] = temp; 848 } 849 md5key[j] = '\0'; 850 fprintf(str, "%2d MD5 %s # MD5 key\n", i, 851 md5key); 852 } 853 #ifdef OPENSSL 854 for (i = 1; i <= MD5KEYS; i++) { 855 RAND_bytes(keystr, 20); 856 for (j = 0; j < MD5SIZE; j++) { 857 hexstr[2 * j] = hex[keystr[j] >> 4]; 858 hexstr[2 * j + 1] = hex[keystr[j] & 0xf]; 859 } 860 hexstr[2 * MD5SIZE] = '\0'; 861 fprintf(str, "%2d SHA1 %s # SHA1 key\n", i + MD5KEYS, 862 hexstr); 863 } 864 #endif /* OPENSSL */ 865 fclose(str); 866 return (1); 867 } 868 869 870 #ifdef AUTOKEY 871 /* 872 * readkey - load cryptographic parameters and keys 873 * 874 * This routine loads a PEM-encoded file of given name and password and 875 * extracts the filestamp from the file name. It returns a pointer to 876 * the first key if valid, NULL if not. 877 */ 878 EVP_PKEY * /* public/private key pair */ 879 readkey( 880 char *cp, /* file name */ 881 char *passwd, /* password */ 882 u_int *estamp, /* file stamp */ 883 EVP_PKEY **evpars /* parameter list pointer */ 884 ) 885 { 886 FILE *str; /* file handle */ 887 EVP_PKEY *pkey = NULL; /* public/private key */ 888 u_int gstamp; /* filestamp */ 889 char linkname[MAXFILENAME]; /* filestamp buffer) */ 890 EVP_PKEY *parkey; 891 char *ptr; 892 int i; 893 894 /* 895 * Open the key file. 896 */ 897 str = fopen(cp, "r"); 898 if (str == NULL) 899 return (NULL); 900 901 /* 902 * Read the filestamp, which is contained in the first line. 903 */ 904 if ((ptr = fgets(linkname, MAXFILENAME, str)) == NULL) { 905 fprintf(stderr, "Empty key file %s\n", cp); 906 fclose(str); 907 return (NULL); 908 } 909 if ((ptr = strrchr(ptr, '.')) == NULL) { 910 fprintf(stderr, "No filestamp found in %s\n", cp); 911 fclose(str); 912 return (NULL); 913 } 914 if (sscanf(++ptr, "%u", &gstamp) != 1) { 915 fprintf(stderr, "Invalid filestamp found in %s\n", cp); 916 fclose(str); 917 return (NULL); 918 } 919 920 /* 921 * Read and decrypt PEM-encoded private keys. The first one 922 * found is returned. If others are expected, add them to the 923 * parameter list. 924 */ 925 for (i = 0; i <= MVMAX - 1;) { 926 parkey = PEM_read_PrivateKey(str, NULL, NULL, passwd); 927 if (evpars != NULL) { 928 evpars[i++] = parkey; 929 evpars[i] = NULL; 930 } 931 if (parkey == NULL) 932 break; 933 934 if (pkey == NULL) 935 pkey = parkey; 936 if (debug) { 937 if (parkey->type == EVP_PKEY_DSA) 938 DSA_print_fp(stderr, parkey->pkey.dsa, 939 0); 940 else if (parkey->type == EVP_PKEY_RSA) 941 RSA_print_fp(stderr, parkey->pkey.rsa, 942 0); 943 } 944 } 945 fclose(str); 946 if (pkey == NULL) { 947 fprintf(stderr, "Corrupt file %s or wrong key %s\n%s\n", 948 cp, passwd, ERR_error_string(ERR_get_error(), 949 NULL)); 950 exit (-1); 951 } 952 *estamp = gstamp; 953 return (pkey); 954 } 955 956 957 /* 958 * Generate RSA public/private key pair 959 */ 960 EVP_PKEY * /* public/private key pair */ 961 gen_rsa( 962 const char *id /* file name id */ 963 ) 964 { 965 EVP_PKEY *pkey; /* private key */ 966 RSA *rsa; /* RSA parameters and key pair */ 967 FILE *str; 968 969 fprintf(stderr, "Generating RSA keys (%d bits)...\n", modulus); 970 rsa = RSA_generate_key(modulus, 65537, cb, _UC("RSA")); 971 fprintf(stderr, "\n"); 972 if (rsa == NULL) { 973 fprintf(stderr, "RSA generate keys fails\n%s\n", 974 ERR_error_string(ERR_get_error(), NULL)); 975 return (NULL); 976 } 977 978 /* 979 * For signature encryption it is not necessary that the RSA 980 * parameters be strictly groomed and once in a while the 981 * modulus turns out to be non-prime. Just for grins, we check 982 * the primality. 983 */ 984 if (!RSA_check_key(rsa)) { 985 fprintf(stderr, "Invalid RSA key\n%s\n", 986 ERR_error_string(ERR_get_error(), NULL)); 987 RSA_free(rsa); 988 return (NULL); 989 } 990 991 /* 992 * Write the RSA parameters and keys as a RSA private key 993 * encoded in PEM. 994 */ 995 if (strcmp(id, "sign") == 0) 996 str = fheader("RSAsign", id, hostname); 997 else 998 str = fheader("RSAhost", id, hostname); 999 pkey = EVP_PKEY_new(); 1000 EVP_PKEY_assign_RSA(pkey, rsa); 1001 PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL, 1002 passwd1); 1003 fclose(str); 1004 if (debug) 1005 RSA_print_fp(stderr, rsa, 0); 1006 return (pkey); 1007 } 1008 1009 1010 /* 1011 * Generate DSA public/private key pair 1012 */ 1013 EVP_PKEY * /* public/private key pair */ 1014 gen_dsa( 1015 const char *id /* file name id */ 1016 ) 1017 { 1018 EVP_PKEY *pkey; /* private key */ 1019 DSA *dsa; /* DSA parameters */ 1020 u_char seed[20]; /* seed for parameters */ 1021 FILE *str; 1022 1023 /* 1024 * Generate DSA parameters. 1025 */ 1026 fprintf(stderr, 1027 "Generating DSA parameters (%d bits)...\n", modulus); 1028 RAND_bytes(seed, sizeof(seed)); 1029 dsa = DSA_generate_parameters(modulus, seed, sizeof(seed), NULL, 1030 NULL, cb, _UC("DSA")); 1031 fprintf(stderr, "\n"); 1032 if (dsa == NULL) { 1033 fprintf(stderr, "DSA generate parameters fails\n%s\n", 1034 ERR_error_string(ERR_get_error(), NULL)); 1035 return (NULL); 1036 } 1037 1038 /* 1039 * Generate DSA keys. 1040 */ 1041 fprintf(stderr, "Generating DSA keys (%d bits)...\n", modulus); 1042 if (!DSA_generate_key(dsa)) { 1043 fprintf(stderr, "DSA generate keys fails\n%s\n", 1044 ERR_error_string(ERR_get_error(), NULL)); 1045 DSA_free(dsa); 1046 return (NULL); 1047 } 1048 1049 /* 1050 * Write the DSA parameters and keys as a DSA private key 1051 * encoded in PEM. 1052 */ 1053 str = fheader("DSAsign", id, hostname); 1054 pkey = EVP_PKEY_new(); 1055 EVP_PKEY_assign_DSA(pkey, dsa); 1056 PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL, 1057 passwd1); 1058 fclose(str); 1059 if (debug) 1060 DSA_print_fp(stderr, dsa, 0); 1061 return (pkey); 1062 } 1063 1064 1065 /* 1066 *********************************************************************** 1067 * * 1068 * The following routines implement the Schnorr (IFF) identity scheme * 1069 * * 1070 *********************************************************************** 1071 * 1072 * The Schnorr (IFF) identity scheme is intended for use when 1073 * certificates are generated by some other trusted certificate 1074 * authority and the certificate cannot be used to convey public 1075 * parameters. There are two kinds of files: encrypted server files that 1076 * contain private and public values and nonencrypted client files that 1077 * contain only public values. New generations of server files must be 1078 * securely transmitted to all servers of the group; client files can be 1079 * distributed by any means. The scheme is self contained and 1080 * independent of new generations of host keys, sign keys and 1081 * certificates. 1082 * 1083 * The IFF values hide in a DSA cuckoo structure which uses the same 1084 * parameters. The values are used by an identity scheme based on DSA 1085 * cryptography and described in Stimson p. 285. The p is a 512-bit 1086 * prime, g a generator of Zp* and q a 160-bit prime that divides p - 1 1087 * and is a qth root of 1 mod p; that is, g^q = 1 mod p. The TA rolls a 1088 * private random group key b (0 < b < q) and public key v = g^b, then 1089 * sends (p, q, g, b) to the servers and (p, q, g, v) to the clients. 1090 * Alice challenges Bob to confirm identity using the protocol described 1091 * below. 1092 * 1093 * How it works 1094 * 1095 * The scheme goes like this. Both Alice and Bob have the public primes 1096 * p, q and generator g. The TA gives private key b to Bob and public 1097 * key v to Alice. 1098 * 1099 * Alice rolls new random challenge r (o < r < q) and sends to Bob in 1100 * the IFF request message. Bob rolls new random k (0 < k < q), then 1101 * computes y = k + b r mod q and x = g^k mod p and sends (y, hash(x)) 1102 * to Alice in the response message. Besides making the response 1103 * shorter, the hash makes it effectivey impossible for an intruder to 1104 * solve for b by observing a number of these messages. 1105 * 1106 * Alice receives the response and computes g^y v^r mod p. After a bit 1107 * of algebra, this simplifies to g^k. If the hash of this result 1108 * matches hash(x), Alice knows that Bob has the group key b. The signed 1109 * response binds this knowledge to Bob's private key and the public key 1110 * previously received in his certificate. 1111 */ 1112 /* 1113 * Generate Schnorr (IFF) keys. 1114 */ 1115 EVP_PKEY * /* DSA cuckoo nest */ 1116 gen_iffkey( 1117 const char *id /* file name id */ 1118 ) 1119 { 1120 EVP_PKEY *pkey; /* private key */ 1121 DSA *dsa; /* DSA parameters */ 1122 u_char seed[20]; /* seed for parameters */ 1123 BN_CTX *ctx; /* BN working space */ 1124 BIGNUM *b, *r, *k, *u, *v, *w; /* BN temp */ 1125 FILE *str; 1126 u_int temp; 1127 1128 /* 1129 * Generate DSA parameters for use as IFF parameters. 1130 */ 1131 fprintf(stderr, "Generating IFF keys (%d bits)...\n", 1132 modulus2); 1133 RAND_bytes(seed, sizeof(seed)); 1134 dsa = DSA_generate_parameters(modulus2, seed, sizeof(seed), NULL, 1135 NULL, cb, _UC("IFF")); 1136 fprintf(stderr, "\n"); 1137 if (dsa == NULL) { 1138 fprintf(stderr, "DSA generate parameters fails\n%s\n", 1139 ERR_error_string(ERR_get_error(), NULL)); 1140 return (NULL);; 1141 } 1142 1143 /* 1144 * Generate the private and public keys. The DSA parameters and 1145 * private key are distributed to the servers, while all except 1146 * the private key are distributed to the clients. 1147 */ 1148 b = BN_new(); r = BN_new(); k = BN_new(); 1149 u = BN_new(); v = BN_new(); w = BN_new(); ctx = BN_CTX_new(); 1150 BN_rand(b, BN_num_bits(dsa->q), -1, 0); /* a */ 1151 BN_mod(b, b, dsa->q, ctx); 1152 BN_sub(v, dsa->q, b); 1153 BN_mod_exp(v, dsa->g, v, dsa->p, ctx); /* g^(q - b) mod p */ 1154 BN_mod_exp(u, dsa->g, b, dsa->p, ctx); /* g^b mod p */ 1155 BN_mod_mul(u, u, v, dsa->p, ctx); 1156 temp = BN_is_one(u); 1157 fprintf(stderr, 1158 "Confirm g^(q - b) g^b = 1 mod p: %s\n", temp == 1 ? 1159 "yes" : "no"); 1160 if (!temp) { 1161 BN_free(b); BN_free(r); BN_free(k); 1162 BN_free(u); BN_free(v); BN_free(w); BN_CTX_free(ctx); 1163 return (NULL); 1164 } 1165 dsa->priv_key = BN_dup(b); /* private key */ 1166 dsa->pub_key = BN_dup(v); /* public key */ 1167 1168 /* 1169 * Here is a trial round of the protocol. First, Alice rolls 1170 * random nonce r mod q and sends it to Bob. She needs only 1171 * q from parameters. 1172 */ 1173 BN_rand(r, BN_num_bits(dsa->q), -1, 0); /* r */ 1174 BN_mod(r, r, dsa->q, ctx); 1175 1176 /* 1177 * Bob rolls random nonce k mod q, computes y = k + b r mod q 1178 * and x = g^k mod p, then sends (y, x) to Alice. He needs 1179 * p, q and b from parameters and r from Alice. 1180 */ 1181 BN_rand(k, BN_num_bits(dsa->q), -1, 0); /* k, 0 < k < q */ 1182 BN_mod(k, k, dsa->q, ctx); 1183 BN_mod_mul(v, dsa->priv_key, r, dsa->q, ctx); /* b r mod q */ 1184 BN_add(v, v, k); 1185 BN_mod(v, v, dsa->q, ctx); /* y = k + b r mod q */ 1186 BN_mod_exp(u, dsa->g, k, dsa->p, ctx); /* x = g^k mod p */ 1187 1188 /* 1189 * Alice verifies x = g^y v^r to confirm that Bob has group key 1190 * b. She needs p, q, g from parameters, (y, x) from Bob and the 1191 * original r. We omit the detail here thatt only the hash of y 1192 * is sent. 1193 */ 1194 BN_mod_exp(v, dsa->g, v, dsa->p, ctx); /* g^y mod p */ 1195 BN_mod_exp(w, dsa->pub_key, r, dsa->p, ctx); /* v^r */ 1196 BN_mod_mul(v, w, v, dsa->p, ctx); /* product mod p */ 1197 temp = BN_cmp(u, v); 1198 fprintf(stderr, 1199 "Confirm g^k = g^(k + b r) g^(q - b) r: %s\n", temp == 1200 0 ? "yes" : "no"); 1201 BN_free(b); BN_free(r); BN_free(k); 1202 BN_free(u); BN_free(v); BN_free(w); BN_CTX_free(ctx); 1203 if (temp != 0) { 1204 DSA_free(dsa); 1205 return (NULL); 1206 } 1207 1208 /* 1209 * Write the IFF keys as an encrypted DSA private key encoded in 1210 * PEM. 1211 * 1212 * p modulus p 1213 * q modulus q 1214 * g generator g 1215 * priv_key b 1216 * public_key v 1217 * kinv not used 1218 * r not used 1219 */ 1220 str = fheader("IFFkey", id, groupname); 1221 pkey = EVP_PKEY_new(); 1222 EVP_PKEY_assign_DSA(pkey, dsa); 1223 PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL, 1224 passwd1); 1225 fclose(str); 1226 if (debug) 1227 DSA_print_fp(stderr, dsa, 0); 1228 return (pkey); 1229 } 1230 1231 1232 /* 1233 *********************************************************************** 1234 * * 1235 * The following routines implement the Guillou-Quisquater (GQ) * 1236 * identity scheme * 1237 * * 1238 *********************************************************************** 1239 * 1240 * The Guillou-Quisquater (GQ) identity scheme is intended for use when 1241 * the certificate can be used to convey public parameters. The scheme 1242 * uses a X509v3 certificate extension field do convey the public key of 1243 * a private key known only to servers. There are two kinds of files: 1244 * encrypted server files that contain private and public values and 1245 * nonencrypted client files that contain only public values. New 1246 * generations of server files must be securely transmitted to all 1247 * servers of the group; client files can be distributed by any means. 1248 * The scheme is self contained and independent of new generations of 1249 * host keys and sign keys. The scheme is self contained and independent 1250 * of new generations of host keys and sign keys. 1251 * 1252 * The GQ parameters hide in a RSA cuckoo structure which uses the same 1253 * parameters. The values are used by an identity scheme based on RSA 1254 * cryptography and described in Stimson p. 300 (with errors). The 512- 1255 * bit public modulus is n = p q, where p and q are secret large primes. 1256 * The TA rolls private random group key b as RSA exponent. These values 1257 * are known to all group members. 1258 * 1259 * When rolling new certificates, a server recomputes the private and 1260 * public keys. The private key u is a random roll, while the public key 1261 * is the inverse obscured by the group key v = (u^-1)^b. These values 1262 * replace the private and public keys normally generated by the RSA 1263 * scheme. Alice challenges Bob to confirm identity using the protocol 1264 * described below. 1265 * 1266 * How it works 1267 * 1268 * The scheme goes like this. Both Alice and Bob have the same modulus n 1269 * and some random b as the group key. These values are computed and 1270 * distributed in advance via secret means, although only the group key 1271 * b is truly secret. Each has a private random private key u and public 1272 * key (u^-1)^b, although not necessarily the same ones. Bob and Alice 1273 * can regenerate the key pair from time to time without affecting 1274 * operations. The public key is conveyed on the certificate in an 1275 * extension field; the private key is never revealed. 1276 * 1277 * Alice rolls new random challenge r and sends to Bob in the GQ 1278 * request message. Bob rolls new random k, then computes y = k u^r mod 1279 * n and x = k^b mod n and sends (y, hash(x)) to Alice in the response 1280 * message. Besides making the response shorter, the hash makes it 1281 * effectivey impossible for an intruder to solve for b by observing 1282 * a number of these messages. 1283 * 1284 * Alice receives the response and computes y^b v^r mod n. After a bit 1285 * of algebra, this simplifies to k^b. If the hash of this result 1286 * matches hash(x), Alice knows that Bob has the group key b. The signed 1287 * response binds this knowledge to Bob's private key and the public key 1288 * previously received in his certificate. 1289 */ 1290 /* 1291 * Generate Guillou-Quisquater (GQ) parameters file. 1292 */ 1293 EVP_PKEY * /* RSA cuckoo nest */ 1294 gen_gqkey( 1295 const char *id /* file name id */ 1296 ) 1297 { 1298 EVP_PKEY *pkey; /* private key */ 1299 RSA *rsa; /* RSA parameters */ 1300 BN_CTX *ctx; /* BN working space */ 1301 BIGNUM *u, *v, *g, *k, *r, *y; /* BN temps */ 1302 FILE *str; 1303 u_int temp; 1304 1305 /* 1306 * Generate RSA parameters for use as GQ parameters. 1307 */ 1308 fprintf(stderr, 1309 "Generating GQ parameters (%d bits)...\n", 1310 modulus2); 1311 rsa = RSA_generate_key(modulus2, 65537, cb, _UC("GQ")); 1312 fprintf(stderr, "\n"); 1313 if (rsa == NULL) { 1314 fprintf(stderr, "RSA generate keys fails\n%s\n", 1315 ERR_error_string(ERR_get_error(), NULL)); 1316 return (NULL); 1317 } 1318 u = BN_new(); v = BN_new(); g = BN_new(); 1319 k = BN_new(); r = BN_new(); y = BN_new(); 1320 1321 /* 1322 * Generate the group key b, which is saved in the e member of 1323 * the RSA structure. The group key is transmitted to each group 1324 * member encrypted by the member private key. 1325 */ 1326 ctx = BN_CTX_new(); 1327 BN_rand(rsa->e, BN_num_bits(rsa->n), -1, 0); /* b */ 1328 BN_mod(rsa->e, rsa->e, rsa->n, ctx); 1329 1330 /* 1331 * When generating his certificate, Bob rolls random private key 1332 * u, then computes inverse v = u^-1. 1333 */ 1334 BN_rand(u, BN_num_bits(rsa->n), -1, 0); /* u */ 1335 BN_mod(u, u, rsa->n, ctx); 1336 BN_mod_inverse(v, u, rsa->n, ctx); /* u^-1 mod n */ 1337 BN_mod_mul(k, v, u, rsa->n, ctx); 1338 1339 /* 1340 * Bob computes public key v = (u^-1)^b, which is saved in an 1341 * extension field on his certificate. We check that u^b v = 1342 * 1 mod n. 1343 */ 1344 BN_mod_exp(v, v, rsa->e, rsa->n, ctx); 1345 BN_mod_exp(g, u, rsa->e, rsa->n, ctx); /* u^b */ 1346 BN_mod_mul(g, g, v, rsa->n, ctx); /* u^b (u^-1)^b */ 1347 temp = BN_is_one(g); 1348 fprintf(stderr, 1349 "Confirm u^b (u^-1)^b = 1 mod n: %s\n", temp ? "yes" : 1350 "no"); 1351 if (!temp) { 1352 BN_free(u); BN_free(v); 1353 BN_free(g); BN_free(k); BN_free(r); BN_free(y); 1354 BN_CTX_free(ctx); 1355 RSA_free(rsa); 1356 return (NULL); 1357 } 1358 BN_copy(rsa->p, u); /* private key */ 1359 BN_copy(rsa->q, v); /* public key */ 1360 1361 /* 1362 * Here is a trial run of the protocol. First, Alice rolls 1363 * random nonce r mod n and sends it to Bob. She needs only n 1364 * from parameters. 1365 */ 1366 BN_rand(r, BN_num_bits(rsa->n), -1, 0); /* r */ 1367 BN_mod(r, r, rsa->n, ctx); 1368 1369 /* 1370 * Bob rolls random nonce k mod n, computes y = k u^r mod n and 1371 * g = k^b mod n, then sends (y, g) to Alice. He needs n, u, b 1372 * from parameters and r from Alice. 1373 */ 1374 BN_rand(k, BN_num_bits(rsa->n), -1, 0); /* k */ 1375 BN_mod(k, k, rsa->n, ctx); 1376 BN_mod_exp(y, rsa->p, r, rsa->n, ctx); /* u^r mod n */ 1377 BN_mod_mul(y, k, y, rsa->n, ctx); /* y = k u^r mod n */ 1378 BN_mod_exp(g, k, rsa->e, rsa->n, ctx); /* g = k^b mod n */ 1379 1380 /* 1381 * Alice verifies g = v^r y^b mod n to confirm that Bob has 1382 * private key u. She needs n, g from parameters, public key v = 1383 * (u^-1)^b from the certificate, (y, g) from Bob and the 1384 * original r. We omit the detaul here that only the hash of g 1385 * is sent. 1386 */ 1387 BN_mod_exp(v, rsa->q, r, rsa->n, ctx); /* v^r mod n */ 1388 BN_mod_exp(y, y, rsa->e, rsa->n, ctx); /* y^b mod n */ 1389 BN_mod_mul(y, v, y, rsa->n, ctx); /* v^r y^b mod n */ 1390 temp = BN_cmp(y, g); 1391 fprintf(stderr, "Confirm g^k = v^r y^b mod n: %s\n", temp == 0 ? 1392 "yes" : "no"); 1393 BN_CTX_free(ctx); BN_free(u); BN_free(v); 1394 BN_free(g); BN_free(k); BN_free(r); BN_free(y); 1395 if (temp != 0) { 1396 RSA_free(rsa); 1397 return (NULL); 1398 } 1399 1400 /* 1401 * Write the GQ parameter file as an encrypted RSA private key 1402 * encoded in PEM. 1403 * 1404 * n modulus n 1405 * e group key b 1406 * d not used 1407 * p private key u 1408 * q public key (u^-1)^b 1409 * dmp1 not used 1410 * dmq1 not used 1411 * iqmp not used 1412 */ 1413 BN_copy(rsa->d, BN_value_one()); 1414 BN_copy(rsa->dmp1, BN_value_one()); 1415 BN_copy(rsa->dmq1, BN_value_one()); 1416 BN_copy(rsa->iqmp, BN_value_one()); 1417 str = fheader("GQkey", id, groupname); 1418 pkey = EVP_PKEY_new(); 1419 EVP_PKEY_assign_RSA(pkey, rsa); 1420 PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL, 1421 passwd1); 1422 fclose(str); 1423 if (debug) 1424 RSA_print_fp(stderr, rsa, 0); 1425 return (pkey); 1426 } 1427 1428 1429 /* 1430 *********************************************************************** 1431 * * 1432 * The following routines implement the Mu-Varadharajan (MV) identity * 1433 * scheme * 1434 * * 1435 *********************************************************************** 1436 * 1437 * The Mu-Varadharajan (MV) cryptosystem was originally intended when 1438 * servers broadcast messages to clients, but clients never send 1439 * messages to servers. There is one encryption key for the server and a 1440 * separate decryption key for each client. It operated something like a 1441 * pay-per-view satellite broadcasting system where the session key is 1442 * encrypted by the broadcaster and the decryption keys are held in a 1443 * tamperproof set-top box. 1444 * 1445 * The MV parameters and private encryption key hide in a DSA cuckoo 1446 * structure which uses the same parameters, but generated in a 1447 * different way. The values are used in an encryption scheme similar to 1448 * El Gamal cryptography and a polynomial formed from the expansion of 1449 * product terms (x - x[j]), as described in Mu, Y., and V. 1450 * Varadharajan: Robust and Secure Broadcasting, Proc. Indocrypt 2001, 1451 * 223-231. The paper has significant errors and serious omissions. 1452 * 1453 * Let q be the product of n distinct primes s1[j] (j = 1...n), where 1454 * each s1[j] has m significant bits. Let p be a prime p = 2 * q + 1, so 1455 * that q and each s1[j] divide p - 1 and p has M = n * m + 1 1456 * significant bits. Let g be a generator of Zp; that is, gcd(g, p - 1) 1457 * = 1 and g^q = 1 mod p. We do modular arithmetic over Zq and then 1458 * project into Zp* as exponents of g. Sometimes we have to compute an 1459 * inverse b^-1 of random b in Zq, but for that purpose we require 1460 * gcd(b, q) = 1. We expect M to be in the 500-bit range and n 1461 * relatively small, like 30. These are the parameters of the scheme and 1462 * they are expensive to compute. 1463 * 1464 * We set up an instance of the scheme as follows. A set of random 1465 * values x[j] mod q (j = 1...n), are generated as the zeros of a 1466 * polynomial of order n. The product terms (x - x[j]) are expanded to 1467 * form coefficients a[i] mod q (i = 0...n) in powers of x. These are 1468 * used as exponents of the generator g mod p to generate the private 1469 * encryption key A. The pair (gbar, ghat) of public server keys and the 1470 * pairs (xbar[j], xhat[j]) (j = 1...n) of private client keys are used 1471 * to construct the decryption keys. The devil is in the details. 1472 * 1473 * This routine generates a private server encryption file including the 1474 * private encryption key E and partial decryption keys gbar and ghat. 1475 * It then generates public client decryption files including the public 1476 * keys xbar[j] and xhat[j] for each client j. The partial decryption 1477 * files are used to compute the inverse of E. These values are suitably 1478 * blinded so secrets are not revealed. 1479 * 1480 * The distinguishing characteristic of this scheme is the capability to 1481 * revoke keys. Included in the calculation of E, gbar and ghat is the 1482 * product s = prod(s1[j]) (j = 1...n) above. If the factor s1[j] is 1483 * subsequently removed from the product and E, gbar and ghat 1484 * recomputed, the jth client will no longer be able to compute E^-1 and 1485 * thus unable to decrypt the messageblock. 1486 * 1487 * How it works 1488 * 1489 * The scheme goes like this. Bob has the server values (p, E, q, 1490 * gbar, ghat) and Alice has the client values (p, xbar, xhat). 1491 * 1492 * Alice rolls new random nonce r mod p and sends to Bob in the MV 1493 * request message. Bob rolls random nonce k mod q, encrypts y = r E^k 1494 * mod p and sends (y, gbar^k, ghat^k) to Alice. 1495 * 1496 * Alice receives the response and computes the inverse (E^k)^-1 from 1497 * the partial decryption keys gbar^k, ghat^k, xbar and xhat. She then 1498 * decrypts y and verifies it matches the original r. The signed 1499 * response binds this knowledge to Bob's private key and the public key 1500 * previously received in his certificate. 1501 */ 1502 EVP_PKEY * /* DSA cuckoo nest */ 1503 gen_mvkey( 1504 const char *id, /* file name id */ 1505 EVP_PKEY **evpars /* parameter list pointer */ 1506 ) 1507 { 1508 EVP_PKEY *pkey, *pkey1; /* private keys */ 1509 DSA *dsa, *dsa2, *sdsa; /* DSA parameters */ 1510 BN_CTX *ctx; /* BN working space */ 1511 BIGNUM *a[MVMAX]; /* polynomial coefficient vector */ 1512 BIGNUM *g[MVMAX]; /* public key vector */ 1513 BIGNUM *s1[MVMAX]; /* private enabling keys */ 1514 BIGNUM *x[MVMAX]; /* polynomial zeros vector */ 1515 BIGNUM *xbar[MVMAX], *xhat[MVMAX]; /* private keys vector */ 1516 BIGNUM *b; /* group key */ 1517 BIGNUM *b1; /* inverse group key */ 1518 BIGNUM *s; /* enabling key */ 1519 BIGNUM *biga; /* master encryption key */ 1520 BIGNUM *bige; /* session encryption key */ 1521 BIGNUM *gbar, *ghat; /* public key */ 1522 BIGNUM *u, *v, *w; /* BN scratch */ 1523 int i, j, n; 1524 FILE *str; 1525 u_int temp; 1526 1527 /* 1528 * Generate MV parameters. 1529 * 1530 * The object is to generate a multiplicative group Zp* modulo a 1531 * prime p and a subset Zq mod q, where q is the product of n 1532 * distinct primes s1[j] (j = 1...n) and q divides p - 1. We 1533 * first generate n m-bit primes, where the product n m is in 1534 * the order of 512 bits. One or more of these may have to be 1535 * replaced later. As a practical matter, it is tough to find 1536 * more than 31 distinct primes for 512 bits or 61 primes for 1537 * 1024 bits. The latter can take several hundred iterations 1538 * and several minutes on a Sun Blade 1000. 1539 */ 1540 n = nkeys; 1541 fprintf(stderr, 1542 "Generating MV parameters for %d keys (%d bits)...\n", n, 1543 modulus2 / n); 1544 ctx = BN_CTX_new(); u = BN_new(); v = BN_new(); w = BN_new(); 1545 b = BN_new(); b1 = BN_new(); 1546 dsa = DSA_new(); 1547 dsa->p = BN_new(); dsa->q = BN_new(); dsa->g = BN_new(); 1548 dsa->priv_key = BN_new(); dsa->pub_key = BN_new(); 1549 temp = 0; 1550 for (j = 1; j <= n; j++) { 1551 s1[j] = BN_new(); 1552 while (1) { 1553 BN_generate_prime(s1[j], modulus2 / n, 0, NULL, 1554 NULL, NULL, NULL); 1555 for (i = 1; i < j; i++) { 1556 if (BN_cmp(s1[i], s1[j]) == 0) 1557 break; 1558 } 1559 if (i == j) 1560 break; 1561 temp++; 1562 } 1563 } 1564 fprintf(stderr, "Birthday keys regenerated %d\n", temp); 1565 1566 /* 1567 * Compute the modulus q as the product of the primes. Compute 1568 * the modulus p as 2 * q + 1 and test p for primality. If p 1569 * is composite, replace one of the primes with a new distinct 1570 * one and try again. Note that q will hardly be a secret since 1571 * we have to reveal p to servers, but not clients. However, 1572 * factoring q to find the primes should be adequately hard, as 1573 * this is the same problem considered hard in RSA. Question: is 1574 * it as hard to find n small prime factors totalling n bits as 1575 * it is to find two large prime factors totalling n bits? 1576 * Remember, the bad guy doesn't know n. 1577 */ 1578 temp = 0; 1579 while (1) { 1580 BN_one(dsa->q); 1581 for (j = 1; j <= n; j++) 1582 BN_mul(dsa->q, dsa->q, s1[j], ctx); 1583 BN_copy(dsa->p, dsa->q); 1584 BN_add(dsa->p, dsa->p, dsa->p); 1585 BN_add_word(dsa->p, 1); 1586 if (BN_is_prime(dsa->p, BN_prime_checks, NULL, ctx, 1587 NULL)) 1588 break; 1589 1590 temp++; 1591 j = temp % n + 1; 1592 while (1) { 1593 BN_generate_prime(u, modulus2 / n, 0, 0, NULL, 1594 NULL, NULL); 1595 for (i = 1; i <= n; i++) { 1596 if (BN_cmp(u, s1[i]) == 0) 1597 break; 1598 } 1599 if (i > n) 1600 break; 1601 } 1602 BN_copy(s1[j], u); 1603 } 1604 fprintf(stderr, "Defective keys regenerated %d\n", temp); 1605 1606 /* 1607 * Compute the generator g using a random roll such that 1608 * gcd(g, p - 1) = 1 and g^q = 1. This is a generator of p, not 1609 * q. This may take several iterations. 1610 */ 1611 BN_copy(v, dsa->p); 1612 BN_sub_word(v, 1); 1613 while (1) { 1614 BN_rand(dsa->g, BN_num_bits(dsa->p) - 1, 0, 0); 1615 BN_mod(dsa->g, dsa->g, dsa->p, ctx); 1616 BN_gcd(u, dsa->g, v, ctx); 1617 if (!BN_is_one(u)) 1618 continue; 1619 1620 BN_mod_exp(u, dsa->g, dsa->q, dsa->p, ctx); 1621 if (BN_is_one(u)) 1622 break; 1623 } 1624 1625 /* 1626 * Setup is now complete. Roll random polynomial roots x[j] 1627 * (j = 1...n) for all j. While it may not be strictly 1628 * necessary, Make sure each root has no factors in common with 1629 * q. 1630 */ 1631 fprintf(stderr, 1632 "Generating polynomial coefficients for %d roots (%d bits)\n", 1633 n, BN_num_bits(dsa->q)); 1634 for (j = 1; j <= n; j++) { 1635 x[j] = BN_new(); 1636 1637 while (1) { 1638 BN_rand(x[j], BN_num_bits(dsa->q), 0, 0); 1639 BN_mod(x[j], x[j], dsa->q, ctx); 1640 BN_gcd(u, x[j], dsa->q, ctx); 1641 if (BN_is_one(u)) 1642 break; 1643 } 1644 } 1645 1646 /* 1647 * Generate polynomial coefficients a[i] (i = 0...n) from the 1648 * expansion of root products (x - x[j]) mod q for all j. The 1649 * method is a present from Charlie Boncelet. 1650 */ 1651 for (i = 0; i <= n; i++) { 1652 a[i] = BN_new(); 1653 BN_one(a[i]); 1654 } 1655 for (j = 1; j <= n; j++) { 1656 BN_zero(w); 1657 for (i = 0; i < j; i++) { 1658 BN_copy(u, dsa->q); 1659 BN_mod_mul(v, a[i], x[j], dsa->q, ctx); 1660 BN_sub(u, u, v); 1661 BN_add(u, u, w); 1662 BN_copy(w, a[i]); 1663 BN_mod(a[i], u, dsa->q, ctx); 1664 } 1665 } 1666 1667 /* 1668 * Generate g[i] = g^a[i] mod p for all i and the generator g. 1669 */ 1670 for (i = 0; i <= n; i++) { 1671 g[i] = BN_new(); 1672 BN_mod_exp(g[i], dsa->g, a[i], dsa->p, ctx); 1673 } 1674 1675 /* 1676 * Verify prod(g[i]^(a[i] x[j]^i)) = 1 for all i, j. Note the 1677 * a[i] x[j]^i exponent is computed mod q, but the g[i] is 1678 * computed mod p. also note the expression given in the paper 1679 * is incorrect. 1680 */ 1681 temp = 1; 1682 for (j = 1; j <= n; j++) { 1683 BN_one(u); 1684 for (i = 0; i <= n; i++) { 1685 BN_set_word(v, i); 1686 BN_mod_exp(v, x[j], v, dsa->q, ctx); 1687 BN_mod_mul(v, v, a[i], dsa->q, ctx); 1688 BN_mod_exp(v, dsa->g, v, dsa->p, ctx); 1689 BN_mod_mul(u, u, v, dsa->p, ctx); 1690 } 1691 if (!BN_is_one(u)) 1692 temp = 0; 1693 } 1694 fprintf(stderr, 1695 "Confirm prod(g[i]^(x[j]^i)) = 1 for all i, j: %s\n", temp ? 1696 "yes" : "no"); 1697 if (!temp) { 1698 return (NULL); 1699 } 1700 1701 /* 1702 * Make private encryption key A. Keep it around for awhile, 1703 * since it is expensive to compute. 1704 */ 1705 biga = BN_new(); 1706 1707 BN_one(biga); 1708 for (j = 1; j <= n; j++) { 1709 for (i = 0; i < n; i++) { 1710 BN_set_word(v, i); 1711 BN_mod_exp(v, x[j], v, dsa->q, ctx); 1712 BN_mod_exp(v, g[i], v, dsa->p, ctx); 1713 BN_mod_mul(biga, biga, v, dsa->p, ctx); 1714 } 1715 } 1716 1717 /* 1718 * Roll private random group key b mod q (0 < b < q), where 1719 * gcd(b, q) = 1 to guarantee b^-1 exists, then compute b^-1 1720 * mod q. If b is changed, the client keys must be recomputed. 1721 */ 1722 while (1) { 1723 BN_rand(b, BN_num_bits(dsa->q), 0, 0); 1724 BN_mod(b, b, dsa->q, ctx); 1725 BN_gcd(u, b, dsa->q, ctx); 1726 if (BN_is_one(u)) 1727 break; 1728 } 1729 BN_mod_inverse(b1, b, dsa->q, ctx); 1730 1731 /* 1732 * Make private client keys (xbar[j], xhat[j]) for all j. Note 1733 * that the keys for the jth client do not s1[j] or the product 1734 * s1[j]) (j = 1...n) which is q by construction. 1735 * 1736 * Compute the factor w such that w s1[j] = s1[j] for all j. The 1737 * easy way to do this is to compute (q + s1[j]) / s1[j]. 1738 * Exercise for the student: prove the remainder is always zero. 1739 */ 1740 for (j = 1; j <= n; j++) { 1741 xbar[j] = BN_new(); xhat[j] = BN_new(); 1742 1743 BN_add(w, dsa->q, s1[j]); 1744 BN_div(w, u, w, s1[j], ctx); 1745 BN_zero(xbar[j]); 1746 BN_set_word(v, n); 1747 for (i = 1; i <= n; i++) { 1748 if (i == j) 1749 continue; 1750 1751 BN_mod_exp(u, x[i], v, dsa->q, ctx); 1752 BN_add(xbar[j], xbar[j], u); 1753 } 1754 BN_mod_mul(xbar[j], xbar[j], b1, dsa->q, ctx); 1755 BN_mod_exp(xhat[j], x[j], v, dsa->q, ctx); 1756 BN_mod_mul(xhat[j], xhat[j], w, dsa->q, ctx); 1757 } 1758 1759 /* 1760 * We revoke client j by dividing q by s1[j]. The quotient 1761 * becomes the enabling key s. Note we always have to revoke 1762 * one key; otherwise, the plaintext and cryptotext would be 1763 * identical. For the present there are no provisions to revoke 1764 * additional keys, so we sail on with only token revocations. 1765 */ 1766 s = BN_new(); 1767 BN_copy(s, dsa->q); 1768 BN_div(s, u, s, s1[n], ctx); 1769 1770 /* 1771 * For each combination of clients to be revoked, make private 1772 * encryption key E = A^s and partial decryption keys gbar = g^s 1773 * and ghat = g^(s b), all mod p. The servers use these keys to 1774 * compute the session encryption key and partial decryption 1775 * keys. These values must be regenerated if the enabling key is 1776 * changed. 1777 */ 1778 bige = BN_new(); gbar = BN_new(); ghat = BN_new(); 1779 BN_mod_exp(bige, biga, s, dsa->p, ctx); 1780 BN_mod_exp(gbar, dsa->g, s, dsa->p, ctx); 1781 BN_mod_mul(v, s, b, dsa->q, ctx); 1782 BN_mod_exp(ghat, dsa->g, v, dsa->p, ctx); 1783 1784 /* 1785 * Notes: We produce the key media in three steps. The first 1786 * step is to generate the system parameters p, q, g, b, A and 1787 * the enabling keys s1[j]. Associated with each s1[j] are 1788 * parameters xbar[j] and xhat[j]. All of these parameters are 1789 * retained in a data structure protecteted by the trusted-agent 1790 * password. The p, xbar[j] and xhat[j] paremeters are 1791 * distributed to the j clients. When the client keys are to be 1792 * activated, the enabled keys are multipied together to form 1793 * the master enabling key s. This and the other parameters are 1794 * used to compute the server encryption key E and the partial 1795 * decryption keys gbar and ghat. 1796 * 1797 * In the identity exchange the client rolls random r and sends 1798 * it to the server. The server rolls random k, which is used 1799 * only once, then computes the session key E^k and partial 1800 * decryption keys gbar^k and ghat^k. The server sends the 1801 * encrypted r along with gbar^k and ghat^k to the client. The 1802 * client completes the decryption and verifies it matches r. 1803 */ 1804 /* 1805 * Write the MV trusted-agent parameters and keys as a DSA 1806 * private key encoded in PEM. 1807 * 1808 * p modulus p 1809 * q modulus q 1810 * g generator g 1811 * priv_key A mod p 1812 * pub_key b mod q 1813 * (remaining values are not used) 1814 */ 1815 i = 0; 1816 str = fheader("MVta", "mvta", groupname); 1817 fprintf(stderr, "Generating MV trusted-authority keys\n"); 1818 BN_copy(dsa->priv_key, biga); 1819 BN_copy(dsa->pub_key, b); 1820 pkey = EVP_PKEY_new(); 1821 EVP_PKEY_assign_DSA(pkey, dsa); 1822 PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL, 1823 passwd1); 1824 evpars[i++] = pkey; 1825 if (debug) 1826 DSA_print_fp(stderr, dsa, 0); 1827 1828 /* 1829 * Append the MV server parameters and keys as a DSA key encoded 1830 * in PEM. 1831 * 1832 * p modulus p 1833 * q modulus q (used only when generating k) 1834 * g bige 1835 * priv_key gbar 1836 * pub_key ghat 1837 * (remaining values are not used) 1838 */ 1839 fprintf(stderr, "Generating MV server keys\n"); 1840 dsa2 = DSA_new(); 1841 dsa2->p = BN_dup(dsa->p); 1842 dsa2->q = BN_dup(dsa->q); 1843 dsa2->g = BN_dup(bige); 1844 dsa2->priv_key = BN_dup(gbar); 1845 dsa2->pub_key = BN_dup(ghat); 1846 pkey1 = EVP_PKEY_new(); 1847 EVP_PKEY_assign_DSA(pkey1, dsa2); 1848 PEM_write_PKCS8PrivateKey(str, pkey1, cipher, NULL, 0, NULL, 1849 passwd1); 1850 evpars[i++] = pkey1; 1851 if (debug) 1852 DSA_print_fp(stderr, dsa2, 0); 1853 1854 /* 1855 * Append the MV client parameters for each client j as DSA keys 1856 * encoded in PEM. 1857 * 1858 * p modulus p 1859 * priv_key xbar[j] mod q 1860 * pub_key xhat[j] mod q 1861 * (remaining values are not used) 1862 */ 1863 fprintf(stderr, "Generating %d MV client keys\n", n); 1864 for (j = 1; j <= n; j++) { 1865 sdsa = DSA_new(); 1866 sdsa->p = BN_dup(dsa->p); 1867 sdsa->q = BN_dup(BN_value_one()); 1868 sdsa->g = BN_dup(BN_value_one()); 1869 sdsa->priv_key = BN_dup(xbar[j]); 1870 sdsa->pub_key = BN_dup(xhat[j]); 1871 pkey1 = EVP_PKEY_new(); 1872 EVP_PKEY_set1_DSA(pkey1, sdsa); 1873 PEM_write_PKCS8PrivateKey(str, pkey1, cipher, NULL, 0, 1874 NULL, passwd1); 1875 evpars[i++] = pkey1; 1876 if (debug) 1877 DSA_print_fp(stderr, sdsa, 0); 1878 1879 /* 1880 * The product gbar^k)^xbar[j] (ghat^k)^xhat[j] and E 1881 * are inverses of each other. We check that the product 1882 * is one for each client except the ones that have been 1883 * revoked. 1884 */ 1885 BN_mod_exp(v, dsa2->priv_key, sdsa->pub_key, dsa->p, 1886 ctx); 1887 BN_mod_exp(u, dsa2->pub_key, sdsa->priv_key, dsa->p, 1888 ctx); 1889 BN_mod_mul(u, u, v, dsa->p, ctx); 1890 BN_mod_mul(u, u, bige, dsa->p, ctx); 1891 if (!BN_is_one(u)) { 1892 fprintf(stderr, "Revoke key %d\n", j); 1893 continue; 1894 } 1895 } 1896 evpars[i++] = NULL; 1897 fclose(str); 1898 1899 /* 1900 * Free the countries. 1901 */ 1902 for (i = 0; i <= n; i++) { 1903 BN_free(a[i]); BN_free(g[i]); 1904 } 1905 for (j = 1; j <= n; j++) { 1906 BN_free(x[j]); BN_free(xbar[j]); BN_free(xhat[j]); 1907 BN_free(s1[j]); 1908 } 1909 return (pkey); 1910 } 1911 1912 1913 /* 1914 * Generate X509v3 certificate. 1915 * 1916 * The certificate consists of the version number, serial number, 1917 * validity interval, issuer name, subject name and public key. For a 1918 * self-signed certificate, the issuer name is the same as the subject 1919 * name and these items are signed using the subject private key. The 1920 * validity interval extends from the current time to the same time one 1921 * year hence. For NTP purposes, it is convenient to use the NTP seconds 1922 * of the current time as the serial number. 1923 */ 1924 int 1925 x509 ( 1926 EVP_PKEY *pkey, /* signing key */ 1927 const EVP_MD *md, /* signature/digest scheme */ 1928 char *gqpub, /* identity extension (hex string) */ 1929 const char *exten, /* private cert extension */ 1930 char *name /* subject/issuer name */ 1931 ) 1932 { 1933 X509 *cert; /* X509 certificate */ 1934 X509_NAME *subj; /* distinguished (common) name */ 1935 X509_EXTENSION *ex; /* X509v3 extension */ 1936 FILE *str; /* file handle */ 1937 ASN1_INTEGER *serial; /* serial number */ 1938 const char *id; /* digest/signature scheme name */ 1939 char pathbuf[MAXFILENAME + 1]; 1940 1941 /* 1942 * Generate X509 self-signed certificate. 1943 * 1944 * Set the certificate serial to the NTP seconds for grins. Set 1945 * the version to 3. Set the initial validity to the current 1946 * time and the finalvalidity one year hence. 1947 */ 1948 id = OBJ_nid2sn(md->pkey_type); 1949 fprintf(stderr, "Generating new certificate %s %s\n", name, id); 1950 cert = X509_new(); 1951 X509_set_version(cert, 2L); 1952 serial = ASN1_INTEGER_new(); 1953 ASN1_INTEGER_set(serial, (long)epoch + JAN_1970); 1954 X509_set_serialNumber(cert, serial); 1955 ASN1_INTEGER_free(serial); 1956 X509_time_adj(X509_get_notBefore(cert), 0L, &epoch); 1957 X509_time_adj(X509_get_notAfter(cert), lifetime * SECSPERDAY, &epoch); 1958 subj = X509_get_subject_name(cert); 1959 X509_NAME_add_entry_by_txt(subj, "commonName", MBSTRING_ASC, 1960 (u_char *)name, strlen(name), -1, 0); 1961 subj = X509_get_issuer_name(cert); 1962 X509_NAME_add_entry_by_txt(subj, "commonName", MBSTRING_ASC, 1963 (u_char *)name, strlen(name), -1, 0); 1964 if (!X509_set_pubkey(cert, pkey)) { 1965 fprintf(stderr, "Assign certificate signing key fails\n%s\n", 1966 ERR_error_string(ERR_get_error(), NULL)); 1967 X509_free(cert); 1968 return (0); 1969 } 1970 1971 /* 1972 * Add X509v3 extensions if present. These represent the minimum 1973 * set defined in RFC3280 less the certificate_policy extension, 1974 * which is seriously obfuscated in OpenSSL. 1975 */ 1976 /* 1977 * The basic_constraints extension CA:TRUE allows servers to 1978 * sign client certficitates. 1979 */ 1980 fprintf(stderr, "%s: %s\n", LN_basic_constraints, 1981 BASIC_CONSTRAINTS); 1982 ex = X509V3_EXT_conf_nid(NULL, NULL, NID_basic_constraints, 1983 _UC(BASIC_CONSTRAINTS)); 1984 if (!X509_add_ext(cert, ex, -1)) { 1985 fprintf(stderr, "Add extension field fails\n%s\n", 1986 ERR_error_string(ERR_get_error(), NULL)); 1987 return (0); 1988 } 1989 X509_EXTENSION_free(ex); 1990 1991 /* 1992 * The key_usage extension designates the purposes the key can 1993 * be used for. 1994 */ 1995 fprintf(stderr, "%s: %s\n", LN_key_usage, KEY_USAGE); 1996 ex = X509V3_EXT_conf_nid(NULL, NULL, NID_key_usage, _UC(KEY_USAGE)); 1997 if (!X509_add_ext(cert, ex, -1)) { 1998 fprintf(stderr, "Add extension field fails\n%s\n", 1999 ERR_error_string(ERR_get_error(), NULL)); 2000 return (0); 2001 } 2002 X509_EXTENSION_free(ex); 2003 /* 2004 * The subject_key_identifier is used for the GQ public key. 2005 * This should not be controversial. 2006 */ 2007 if (gqpub != NULL) { 2008 fprintf(stderr, "%s\n", LN_subject_key_identifier); 2009 ex = X509V3_EXT_conf_nid(NULL, NULL, 2010 NID_subject_key_identifier, gqpub); 2011 if (!X509_add_ext(cert, ex, -1)) { 2012 fprintf(stderr, 2013 "Add extension field fails\n%s\n", 2014 ERR_error_string(ERR_get_error(), NULL)); 2015 return (0); 2016 } 2017 X509_EXTENSION_free(ex); 2018 } 2019 2020 /* 2021 * The extended key usage extension is used for special purpose 2022 * here. The semantics probably do not conform to the designer's 2023 * intent and will likely change in future. 2024 * 2025 * "trustRoot" designates a root authority 2026 * "private" designates a private certificate 2027 */ 2028 if (exten != NULL) { 2029 fprintf(stderr, "%s: %s\n", LN_ext_key_usage, exten); 2030 ex = X509V3_EXT_conf_nid(NULL, NULL, 2031 NID_ext_key_usage, _UC(exten)); 2032 if (!X509_add_ext(cert, ex, -1)) { 2033 fprintf(stderr, 2034 "Add extension field fails\n%s\n", 2035 ERR_error_string(ERR_get_error(), NULL)); 2036 return (0); 2037 } 2038 X509_EXTENSION_free(ex); 2039 } 2040 2041 /* 2042 * Sign and verify. 2043 */ 2044 X509_sign(cert, pkey, md); 2045 if (X509_verify(cert, pkey) <= 0) { 2046 fprintf(stderr, "Verify %s certificate fails\n%s\n", id, 2047 ERR_error_string(ERR_get_error(), NULL)); 2048 X509_free(cert); 2049 return (0); 2050 } 2051 2052 /* 2053 * Write the certificate encoded in PEM. 2054 */ 2055 snprintf(pathbuf, sizeof(pathbuf), "%scert", id); 2056 str = fheader(pathbuf, "cert", hostname); 2057 PEM_write_X509(str, cert); 2058 fclose(str); 2059 if (debug) 2060 X509_print_fp(stderr, cert); 2061 X509_free(cert); 2062 return (1); 2063 } 2064 2065 #if 0 /* asn2ntp is used only with commercial certificates */ 2066 /* 2067 * asn2ntp - convert ASN1_TIME time structure to NTP time 2068 */ 2069 u_long 2070 asn2ntp ( 2071 ASN1_TIME *asn1time /* pointer to ASN1_TIME structure */ 2072 ) 2073 { 2074 char *v; /* pointer to ASN1_TIME string */ 2075 struct tm tm; /* time decode structure time */ 2076 2077 /* 2078 * Extract time string YYMMDDHHMMSSZ from ASN.1 time structure. 2079 * Note that the YY, MM, DD fields start with one, the HH, MM, 2080 * SS fiels start with zero and the Z character should be 'Z' 2081 * for UTC. Also note that years less than 50 map to years 2082 * greater than 100. Dontcha love ASN.1? 2083 */ 2084 if (asn1time->length > 13) 2085 return (-1); 2086 v = (char *)asn1time->data; 2087 tm.tm_year = (v[0] - '0') * 10 + v[1] - '0'; 2088 if (tm.tm_year < 50) 2089 tm.tm_year += 100; 2090 tm.tm_mon = (v[2] - '0') * 10 + v[3] - '0' - 1; 2091 tm.tm_mday = (v[4] - '0') * 10 + v[5] - '0'; 2092 tm.tm_hour = (v[6] - '0') * 10 + v[7] - '0'; 2093 tm.tm_min = (v[8] - '0') * 10 + v[9] - '0'; 2094 tm.tm_sec = (v[10] - '0') * 10 + v[11] - '0'; 2095 tm.tm_wday = 0; 2096 tm.tm_yday = 0; 2097 tm.tm_isdst = 0; 2098 return (mktime(&tm) + JAN_1970); 2099 } 2100 #endif 2101 2102 /* 2103 * Callback routine 2104 */ 2105 void 2106 cb ( 2107 int n1, /* arg 1 */ 2108 int n2, /* arg 2 */ 2109 void *chr /* arg 3 */ 2110 ) 2111 { 2112 switch (n1) { 2113 case 0: 2114 d0++; 2115 fprintf(stderr, "%s %d %d %lu\r", (char *)chr, n1, n2, 2116 d0); 2117 break; 2118 case 1: 2119 d1++; 2120 fprintf(stderr, "%s\t\t%d %d %lu\r", (char *)chr, n1, 2121 n2, d1); 2122 break; 2123 case 2: 2124 d2++; 2125 fprintf(stderr, "%s\t\t\t\t%d %d %lu\r", (char *)chr, 2126 n1, n2, d2); 2127 break; 2128 case 3: 2129 d3++; 2130 fprintf(stderr, "%s\t\t\t\t\t\t%d %d %lu\r", 2131 (char *)chr, n1, n2, d3); 2132 break; 2133 } 2134 } 2135 2136 2137 /* 2138 * Generate key 2139 */ 2140 EVP_PKEY * /* public/private key pair */ 2141 genkey( 2142 const char *type, /* key type (RSA or DSA) */ 2143 const char *id /* file name id */ 2144 ) 2145 { 2146 if (type == NULL) 2147 return (NULL); 2148 if (strcmp(type, "RSA") == 0) 2149 return (gen_rsa(id)); 2150 2151 else if (strcmp(type, "DSA") == 0) 2152 return (gen_dsa(id)); 2153 2154 fprintf(stderr, "Invalid %s key type %s\n", id, type); 2155 return (NULL); 2156 } 2157 #endif /* AUTOKEY */ 2158 2159 2160 /* 2161 * Generate file header and link 2162 */ 2163 FILE * 2164 fheader ( 2165 const char *file, /* file name id */ 2166 const char *ulink, /* linkname */ 2167 const char *owner /* owner name */ 2168 ) 2169 { 2170 FILE *str; /* file handle */ 2171 char linkname[MAXFILENAME]; /* link name */ 2172 int temp; 2173 #ifdef HAVE_UMASK 2174 mode_t orig_umask; 2175 #endif 2176 2177 snprintf(filename, sizeof(filename), "ntpkey_%s_%s.%u", file, 2178 owner, fstamp); 2179 #ifdef HAVE_UMASK 2180 orig_umask = umask( S_IWGRP | S_IRWXO ); 2181 str = fopen(filename, "w"); 2182 (void) umask(orig_umask); 2183 #else 2184 str = fopen(filename, "w"); 2185 #endif 2186 if (str == NULL) { 2187 perror("Write"); 2188 exit (-1); 2189 } 2190 if (strcmp(ulink, "md5") == 0) { 2191 strcpy(linkname,"ntp.keys"); 2192 } else { 2193 snprintf(linkname, sizeof(linkname), "ntpkey_%s_%s", ulink, 2194 hostname); 2195 } 2196 (void)remove(linkname); /* The symlink() line below matters */ 2197 temp = symlink(filename, linkname); 2198 if (temp < 0) 2199 perror(file); 2200 fprintf(stderr, "Generating new %s file and link\n", ulink); 2201 fprintf(stderr, "%s->%s\n", linkname, filename); 2202 fprintf(str, "# %s\n# %s\n", filename, ctime(&epoch)); 2203 return (str); 2204 } 2205