xref: /freebsd/contrib/ntp/util/ntp-keygen.c (revision 6be3386466ab79a84b48429ae66244f21526d3df)
1 /*
2  * Program to generate cryptographic keys for ntp clients and servers
3  *
4  * This program generates password encrypted data files for use with the
5  * Autokey security protocol and Network Time Protocol Version 4. Files
6  * are prefixed with a header giving the name and date of creation
7  * followed by a type-specific descriptive label and PEM-encoded data
8  * structure compatible with programs of the OpenSSL library.
9  *
10  * All file names are like "ntpkey_<type>_<hostname>.<filestamp>", where
11  * <type> is the file type, <hostname> the generating host name and
12  * <filestamp> the generation time in NTP seconds. The NTP programs
13  * expect generic names such as "ntpkey_<type>_whimsy.udel.edu" with the
14  * association maintained by soft links. Following is a list of file
15  * types; the first line is the file name and the second link name.
16  *
17  * ntpkey_MD5key_<hostname>.<filestamp>
18  * 	MD5 (128-bit) keys used to compute message digests in symmetric
19  *	key cryptography
20  *
21  * ntpkey_RSAhost_<hostname>.<filestamp>
22  * ntpkey_host_<hostname>
23  *	RSA private/public host key pair used for public key signatures
24  *
25  * ntpkey_RSAsign_<hostname>.<filestamp>
26  * ntpkey_sign_<hostname>
27  *	RSA private/public sign key pair used for public key signatures
28  *
29  * ntpkey_DSAsign_<hostname>.<filestamp>
30  * ntpkey_sign_<hostname>
31  *	DSA Private/public sign key pair used for public key signatures
32  *
33  * Available digest/signature schemes
34  *
35  * RSA:	RSA-MD2, RSA-MD5, RSA-SHA, RSA-SHA1, RSA-MDC2, EVP-RIPEMD160
36  * DSA:	DSA-SHA, DSA-SHA1
37  *
38  * ntpkey_XXXcert_<hostname>.<filestamp>
39  * ntpkey_cert_<hostname>
40  *	X509v3 certificate using RSA or DSA public keys and signatures.
41  *	XXX is a code identifying the message digest and signature
42  *	encryption algorithm
43  *
44  * Identity schemes. The key type par is used for the challenge; the key
45  * type key is used for the response.
46  *
47  * ntpkey_IFFkey_<groupname>.<filestamp>
48  * ntpkey_iffkey_<groupname>
49  *	Schnorr (IFF) identity parameters and keys
50  *
51  * ntpkey_GQkey_<groupname>.<filestamp>,
52  * ntpkey_gqkey_<groupname>
53  *	Guillou-Quisquater (GQ) identity parameters and keys
54  *
55  * ntpkey_MVkeyX_<groupname>.<filestamp>,
56  * ntpkey_mvkey_<groupname>
57  *	Mu-Varadharajan (MV) identity parameters and keys
58  *
59  * Note: Once in a while because of some statistical fluke this program
60  * fails to generate and verify some cryptographic data, as indicated by
61  * exit status -1. In this case simply run the program again. If the
62  * program does complete with exit code 0, the data are correct as
63  * verified.
64  *
65  * These cryptographic routines are characterized by the prime modulus
66  * size in bits. The default value of 512 bits is a compromise between
67  * cryptographic strength and computing time and is ordinarily
68  * considered adequate for this application. The routines have been
69  * tested with sizes of 256, 512, 1024 and 2048 bits. Not all message
70  * digest and signature encryption schemes work with sizes less than 512
71  * bits. The computing time for sizes greater than 2048 bits is
72  * prohibitive on all but the fastest processors. An UltraSPARC Blade
73  * 1000 took something over nine minutes to generate and verify the
74  * values with size 2048. An old SPARC IPC would take a week.
75  *
76  * The OpenSSL library used by this program expects a random seed file.
77  * As described in the OpenSSL documentation, the file name defaults to
78  * first the RANDFILE environment variable in the user's home directory
79  * and then .rnd in the user's home directory.
80  */
81 #ifdef HAVE_CONFIG_H
82 # include <config.h>
83 #endif
84 #include <string.h>
85 #include <stdio.h>
86 #include <stdlib.h>
87 #include <unistd.h>
88 #include <sys/stat.h>
89 #include <sys/time.h>
90 #include <sys/types.h>
91 
92 #include "ntp.h"
93 #include "ntp_random.h"
94 #include "ntp_stdlib.h"
95 #include "ntp_assert.h"
96 #include "ntp_libopts.h"
97 #include "ntp_unixtime.h"
98 #include "ntp-keygen-opts.h"
99 
100 #ifdef OPENSSL
101 #include "openssl/asn1.h"
102 #include "openssl/bn.h"
103 #include "openssl/crypto.h"
104 #include "openssl/evp.h"
105 #include "openssl/err.h"
106 #include "openssl/rand.h"
107 #include "openssl/opensslv.h"
108 #include "openssl/pem.h"
109 #include "openssl/x509.h"
110 #include "openssl/x509v3.h"
111 #include <openssl/objects.h>
112 #include "libssl_compat.h"
113 #endif	/* OPENSSL */
114 #include <ssl_applink.c>
115 
116 #define _UC(str)	((char *)(intptr_t)(str))
117 /*
118  * Cryptodefines
119  */
120 #define	MD5KEYS		10	/* number of keys generated of each type */
121 #define	MD5SIZE		20	/* maximum key size */
122 #ifdef AUTOKEY
123 #define	PLEN		512	/* default prime modulus size (bits) */
124 #define	ILEN		256	/* default identity modulus size (bits) */
125 #define	MVMAX		100	/* max MV parameters */
126 
127 /*
128  * Strings used in X509v3 extension fields
129  */
130 #define KEY_USAGE		"digitalSignature,keyCertSign"
131 #define BASIC_CONSTRAINTS	"critical,CA:TRUE"
132 #define EXT_KEY_PRIVATE		"private"
133 #define EXT_KEY_TRUST		"trustRoot"
134 #endif	/* AUTOKEY */
135 
136 /*
137  * Prototypes
138  */
139 FILE	*fheader	(const char *, const char *, const char *);
140 int	gen_md5		(const char *);
141 void	followlink	(char *, size_t);
142 #ifdef AUTOKEY
143 EVP_PKEY *gen_rsa	(const char *);
144 EVP_PKEY *gen_dsa	(const char *);
145 EVP_PKEY *gen_iffkey	(const char *);
146 EVP_PKEY *gen_gqkey	(const char *);
147 EVP_PKEY *gen_mvkey	(const char *, EVP_PKEY **);
148 void	gen_mvserv	(char *, EVP_PKEY **);
149 int	x509		(EVP_PKEY *, const EVP_MD *, char *, const char *,
150 			    char *);
151 void	cb		(int, int, void *);
152 EVP_PKEY *genkey	(const char *, const char *);
153 EVP_PKEY *readkey	(char *, char *, u_int *, EVP_PKEY **);
154 void	writekey	(char *, char *, u_int *, EVP_PKEY **);
155 u_long	asn2ntp		(ASN1_TIME *);
156 
157 static DSA* genDsaParams(int, char*);
158 static RSA* genRsaKeyPair(int, char*);
159 
160 #endif	/* AUTOKEY */
161 
162 /*
163  * Program variables
164  */
165 extern char *optarg;		/* command line argument */
166 char	const *progname;
167 u_int	lifetime = DAYSPERYEAR;	/* certificate lifetime (days) */
168 int	nkeys;			/* MV keys */
169 time_t	epoch;			/* Unix epoch (seconds) since 1970 */
170 u_int	fstamp;			/* NTP filestamp */
171 char	hostbuf[MAXHOSTNAME + 1];
172 char	*hostname = NULL;	/* host, used in cert filenames */
173 char	*groupname = NULL;	/* group name */
174 char	certnamebuf[2 * sizeof(hostbuf)];
175 char	*certname = NULL;	/* certificate subject/issuer name */
176 char	*passwd1 = NULL;	/* input private key password */
177 char	*passwd2 = NULL;	/* output private key password */
178 char	filename[MAXFILENAME + 1]; /* file name */
179 #ifdef AUTOKEY
180 u_int	modulus = PLEN;		/* prime modulus size (bits) */
181 u_int	modulus2 = ILEN;	/* identity modulus size (bits) */
182 long	d0, d1, d2, d3;		/* callback counters */
183 const EVP_CIPHER * cipher = NULL;
184 #endif	/* AUTOKEY */
185 
186 #ifdef SYS_WINNT
187 BOOL init_randfile();
188 
189 /*
190  * Don't try to follow symbolic links on Windows.  Assume link == file.
191  */
192 int
193 readlink(
194 	char *	link,
195 	char *	file,
196 	int	len
197 	)
198 {
199 	return (int)strlen(file); /* assume no overflow possible */
200 }
201 
202 /*
203  * Don't try to create symbolic links on Windows, that is supported on
204  * Vista and later only.  Instead, if CreateHardLink is available (XP
205  * and later), hardlink the linkname to the original filename.  On
206  * earlier systems, user must rename file to match expected link for
207  * ntpd to find it.  To allow building a ntp-keygen.exe which loads on
208  * Windows pre-XP, runtime link to CreateHardLinkA().
209  */
210 int
211 symlink(
212 	char *	filename,
213 	char*	linkname
214 	)
215 {
216 	typedef BOOL (WINAPI *PCREATEHARDLINKA)(
217 		__in LPCSTR	lpFileName,
218 		__in LPCSTR	lpExistingFileName,
219 		__reserved LPSECURITY_ATTRIBUTES lpSA
220 		);
221 	static PCREATEHARDLINKA pCreateHardLinkA;
222 	static int		tried;
223 	HMODULE			hDll;
224 	FARPROC			pfn;
225 	int			link_created;
226 	int			saved_errno;
227 
228 	if (!tried) {
229 		tried = TRUE;
230 		hDll = LoadLibrary("kernel32");
231 		pfn = GetProcAddress(hDll, "CreateHardLinkA");
232 		pCreateHardLinkA = (PCREATEHARDLINKA)pfn;
233 	}
234 
235 	if (NULL == pCreateHardLinkA) {
236 		errno = ENOSYS;
237 		return -1;
238 	}
239 
240 	link_created = (*pCreateHardLinkA)(linkname, filename, NULL);
241 
242 	if (link_created)
243 		return 0;
244 
245 	saved_errno = GetLastError();	/* yes we play loose */
246 	mfprintf(stderr, "Create hard link %s to %s failed: %m\n",
247 		 linkname, filename);
248 	errno = saved_errno;
249 	return -1;
250 }
251 
252 void
253 InitWin32Sockets() {
254 	WORD wVersionRequested;
255 	WSADATA wsaData;
256 	wVersionRequested = MAKEWORD(2,0);
257 	if (WSAStartup(wVersionRequested, &wsaData))
258 	{
259 		fprintf(stderr, "No useable winsock.dll\n");
260 		exit(1);
261 	}
262 }
263 #endif /* SYS_WINNT */
264 
265 
266 /*
267  * followlink() - replace filename with its target if symlink.
268  *
269  * Some readlink() implementations do not null-terminate the result.
270  */
271 void
272 followlink(
273 	char *	fname,
274 	size_t	bufsiz
275 	)
276 {
277 	int len;
278 
279 	REQUIRE(bufsiz > 0);
280 
281 	len = readlink(fname, fname, (int)bufsiz);
282 	if (len < 0 ) {
283 		fname[0] = '\0';
284 		return;
285 	}
286 	if (len > (int)bufsiz - 1)
287 		len = (int)bufsiz - 1;
288 	fname[len] = '\0';
289 }
290 
291 
292 /*
293  * Main program
294  */
295 int
296 main(
297 	int	argc,		/* command line options */
298 	char	**argv
299 	)
300 {
301 	struct timeval tv;	/* initialization vector */
302 	int	md5key = 0;	/* generate MD5 keys */
303 	int	optct;		/* option count */
304 #ifdef AUTOKEY
305 	X509	*cert = NULL;	/* X509 certificate */
306 	EVP_PKEY *pkey_host = NULL; /* host key */
307 	EVP_PKEY *pkey_sign = NULL; /* sign key */
308 	EVP_PKEY *pkey_iffkey = NULL; /* IFF sever keys */
309 	EVP_PKEY *pkey_gqkey = NULL; /* GQ server keys */
310 	EVP_PKEY *pkey_mvkey = NULL; /* MV trusted agen keys */
311 	EVP_PKEY *pkey_mvpar[MVMAX]; /* MV cleient keys */
312 	int	hostkey = 0;	/* generate RSA keys */
313 	int	iffkey = 0;	/* generate IFF keys */
314 	int	gqkey = 0;	/* generate GQ keys */
315 	int	mvkey = 0;	/* update MV keys */
316 	int	mvpar = 0;	/* generate MV parameters */
317 	char	*sign = NULL;	/* sign key */
318 	EVP_PKEY *pkey = NULL;	/* temp key */
319 	const EVP_MD *ectx;	/* EVP digest */
320 	char	pathbuf[MAXFILENAME + 1];
321 	const char *scheme = NULL; /* digest/signature scheme */
322 	const char *ciphername = NULL; /* to encrypt priv. key */
323 	const char *exten = NULL;	/* private extension */
324 	char	*grpkey = NULL;	/* identity extension */
325 	int	nid;		/* X509 digest/signature scheme */
326 	FILE	*fstr = NULL;	/* file handle */
327 	char	groupbuf[MAXHOSTNAME + 1];
328 	u_int	temp;
329 	BIO *	bp;
330 	int	i, cnt;
331 	char *	ptr;
332 #endif	/* AUTOKEY */
333 #ifdef OPENSSL
334 	const char *sslvtext;
335 	int sslvmatch;
336 #endif /* OPENSSL */
337 
338 	progname = argv[0];
339 
340 #ifdef SYS_WINNT
341 	/* Initialize before OpenSSL checks */
342 	InitWin32Sockets();
343 	if (!init_randfile())
344 		fprintf(stderr, "Unable to initialize .rnd file\n");
345 	ssl_applink();
346 #endif
347 
348 #ifdef OPENSSL
349 	ssl_check_version();
350 #endif	/* OPENSSL */
351 
352 	ntp_crypto_srandom();
353 
354 	/*
355 	 * Process options, initialize host name and timestamp.
356 	 * gethostname() won't null-terminate if hostname is exactly the
357 	 * length provided for the buffer.
358 	 */
359 	gethostname(hostbuf, sizeof(hostbuf) - 1);
360 	hostbuf[COUNTOF(hostbuf) - 1] = '\0';
361 	hostname = hostbuf;
362 	groupname = hostbuf;
363 	passwd1 = hostbuf;
364 	passwd2 = NULL;
365 	GETTIMEOFDAY(&tv, NULL);
366 	epoch = tv.tv_sec;
367 	fstamp = (u_int)(epoch + JAN_1970);
368 
369 	optct = ntpOptionProcess(&ntp_keygenOptions, argc, argv);
370 	argc -= optct;	// Just in case we care later.
371 	argv += optct;	// Just in case we care later.
372 
373 #ifdef OPENSSL
374 	sslvtext = OpenSSL_version(OPENSSL_VERSION);
375 	sslvmatch = OpenSSL_version_num() == OPENSSL_VERSION_NUMBER;
376 	if (sslvmatch)
377 		fprintf(stderr, "Using OpenSSL version %s\n",
378 			sslvtext);
379 	else
380 		fprintf(stderr, "Built against OpenSSL %s, using version %s\n",
381 			OPENSSL_VERSION_TEXT, sslvtext);
382 #endif /* OPENSSL */
383 
384 	debug = OPT_VALUE_SET_DEBUG_LEVEL;
385 
386 	if (HAVE_OPT( MD5KEY ))
387 		md5key++;
388 #ifdef AUTOKEY
389 	if (HAVE_OPT( PASSWORD ))
390 		passwd1 = estrdup(OPT_ARG( PASSWORD ));
391 
392 	if (HAVE_OPT( EXPORT_PASSWD ))
393 		passwd2 = estrdup(OPT_ARG( EXPORT_PASSWD ));
394 
395 	if (HAVE_OPT( HOST_KEY ))
396 		hostkey++;
397 
398 	if (HAVE_OPT( SIGN_KEY ))
399 		sign = estrdup(OPT_ARG( SIGN_KEY ));
400 
401 	if (HAVE_OPT( GQ_PARAMS ))
402 		gqkey++;
403 
404 	if (HAVE_OPT( IFFKEY ))
405 		iffkey++;
406 
407 	if (HAVE_OPT( MV_PARAMS )) {
408 		mvkey++;
409 		nkeys = OPT_VALUE_MV_PARAMS;
410 	}
411 	if (HAVE_OPT( MV_KEYS )) {
412 		mvpar++;
413 		nkeys = OPT_VALUE_MV_KEYS;
414 	}
415 
416 	if (HAVE_OPT( IMBITS ))
417 		modulus2 = OPT_VALUE_IMBITS;
418 
419 	if (HAVE_OPT( MODULUS ))
420 		modulus = OPT_VALUE_MODULUS;
421 
422 	if (HAVE_OPT( CERTIFICATE ))
423 		scheme = OPT_ARG( CERTIFICATE );
424 
425 	if (HAVE_OPT( CIPHER ))
426 		ciphername = OPT_ARG( CIPHER );
427 
428 	if (HAVE_OPT( SUBJECT_NAME ))
429 		hostname = estrdup(OPT_ARG( SUBJECT_NAME ));
430 
431 	if (HAVE_OPT( IDENT ))
432 		groupname = estrdup(OPT_ARG( IDENT ));
433 
434 	if (HAVE_OPT( LIFETIME ))
435 		lifetime = OPT_VALUE_LIFETIME;
436 
437 	if (HAVE_OPT( PVT_CERT ))
438 		exten = EXT_KEY_PRIVATE;
439 
440 	if (HAVE_OPT( TRUSTED_CERT ))
441 		exten = EXT_KEY_TRUST;
442 
443 	/*
444 	 * Remove the group name from the hostname variable used
445 	 * in host and sign certificate file names.
446 	 */
447 	if (hostname != hostbuf)
448 		ptr = strchr(hostname, '@');
449 	else
450 		ptr = NULL;
451 	if (ptr != NULL) {
452 		*ptr = '\0';
453 		groupname = estrdup(ptr + 1);
454 		/* -s @group is equivalent to -i group, host unch. */
455 		if (ptr == hostname)
456 			hostname = hostbuf;
457 	}
458 
459 	/*
460 	 * Derive host certificate issuer/subject names from host name
461 	 * and optional group.  If no groupname is provided, the issuer
462 	 * and subject is the hostname with no '@group', and the
463 	 * groupname variable is pointed to hostname for use in IFF, GQ,
464 	 * and MV parameters file names.
465 	 */
466 	if (groupname == hostbuf) {
467 		certname = hostname;
468 	} else {
469 		snprintf(certnamebuf, sizeof(certnamebuf), "%s@%s",
470 			 hostname, groupname);
471 		certname = certnamebuf;
472 	}
473 
474 	/*
475 	 * Seed random number generator and grow weeds.
476 	 */
477 #if OPENSSL_VERSION_NUMBER < 0x10100000L
478 	ERR_load_crypto_strings();
479 	OpenSSL_add_all_algorithms();
480 #endif /* OPENSSL_VERSION_NUMBER */
481 	if (!RAND_status()) {
482 		if (RAND_file_name(pathbuf, sizeof(pathbuf)) == NULL) {
483 			fprintf(stderr, "RAND_file_name %s\n",
484 			    ERR_error_string(ERR_get_error(), NULL));
485 			exit (-1);
486 		}
487 		temp = RAND_load_file(pathbuf, -1);
488 		if (temp == 0) {
489 			fprintf(stderr,
490 			    "RAND_load_file %s not found or empty\n",
491 			    pathbuf);
492 			exit (-1);
493 		}
494 		fprintf(stderr,
495 		    "Random seed file %s %u bytes\n", pathbuf, temp);
496 		RAND_add(&epoch, sizeof(epoch), 4.0);
497 	}
498 #endif	/* AUTOKEY */
499 
500 	/*
501 	 * Create new unencrypted MD5 keys file if requested. If this
502 	 * option is selected, ignore all other options.
503 	 */
504 	if (md5key) {
505 		gen_md5("md5");
506 		exit (0);
507 	}
508 
509 #ifdef AUTOKEY
510 	/*
511 	 * Load previous certificate if available.
512 	 */
513 	snprintf(filename, sizeof(filename), "ntpkey_cert_%s", hostname);
514 	if ((fstr = fopen(filename, "r")) != NULL) {
515 		cert = PEM_read_X509(fstr, NULL, NULL, NULL);
516 		fclose(fstr);
517 	}
518 	if (cert != NULL) {
519 
520 		/*
521 		 * Extract subject name.
522 		 */
523 		X509_NAME_oneline(X509_get_subject_name(cert), groupbuf,
524 		    MAXFILENAME);
525 
526 		/*
527 		 * Extract digest/signature scheme.
528 		 */
529 		if (scheme == NULL) {
530 			nid = X509_get_signature_nid(cert);
531 			scheme = OBJ_nid2sn(nid);
532 		}
533 
534 		/*
535 		 * If a key_usage extension field is present, determine
536 		 * whether this is a trusted or private certificate.
537 		 */
538 		if (exten == NULL) {
539 			ptr = strstr(groupbuf, "CN=");
540 			cnt = X509_get_ext_count(cert);
541 			for (i = 0; i < cnt; i++) {
542 				X509_EXTENSION *ext;
543 				ASN1_OBJECT *obj;
544 
545 				ext = X509_get_ext(cert, i);
546 				obj = X509_EXTENSION_get_object(ext);
547 
548 				if (OBJ_obj2nid(obj) ==
549 				    NID_ext_key_usage) {
550 					bp = BIO_new(BIO_s_mem());
551 					X509V3_EXT_print(bp, ext, 0, 0);
552 					BIO_gets(bp, pathbuf,
553 					    MAXFILENAME);
554 					BIO_free(bp);
555 					if (strcmp(pathbuf,
556 					    "Trust Root") == 0)
557 						exten = EXT_KEY_TRUST;
558 					else if (strcmp(pathbuf,
559 					    "Private") == 0)
560 						exten = EXT_KEY_PRIVATE;
561 					certname = estrdup(ptr + 3);
562 				}
563 			}
564 		}
565 	}
566 	if (scheme == NULL)
567 		scheme = "RSA-MD5";
568 	if (ciphername == NULL)
569 		ciphername = "des-ede3-cbc";
570 	cipher = EVP_get_cipherbyname(ciphername);
571 	if (cipher == NULL) {
572 		fprintf(stderr, "Unknown cipher %s\n", ciphername);
573 		exit(-1);
574 	}
575 	fprintf(stderr, "Using host %s group %s\n", hostname,
576 	    groupname);
577 
578 	/*
579 	 * Create a new encrypted RSA host key file if requested;
580 	 * otherwise, look for an existing host key file. If not found,
581 	 * create a new encrypted RSA host key file. If that fails, go
582 	 * no further.
583 	 */
584 	if (hostkey)
585 		pkey_host = genkey("RSA", "host");
586 	if (pkey_host == NULL) {
587 		snprintf(filename, sizeof(filename), "ntpkey_host_%s", hostname);
588 		pkey_host = readkey(filename, passwd1, &fstamp, NULL);
589 		if (pkey_host != NULL) {
590 			followlink(filename, sizeof(filename));
591 			fprintf(stderr, "Using host key %s\n",
592 			    filename);
593 		} else {
594 			pkey_host = genkey("RSA", "host");
595 		}
596 	}
597 	if (pkey_host == NULL) {
598 		fprintf(stderr, "Generating host key fails\n");
599 		exit(-1);
600 	}
601 
602 	/*
603 	 * Create new encrypted RSA or DSA sign keys file if requested;
604 	 * otherwise, look for an existing sign key file. If not found,
605 	 * use the host key instead.
606 	 */
607 	if (sign != NULL)
608 		pkey_sign = genkey(sign, "sign");
609 	if (pkey_sign == NULL) {
610 		snprintf(filename, sizeof(filename), "ntpkey_sign_%s",
611 			 hostname);
612 		pkey_sign = readkey(filename, passwd1, &fstamp, NULL);
613 		if (pkey_sign != NULL) {
614 			followlink(filename, sizeof(filename));
615 			fprintf(stderr, "Using sign key %s\n",
616 			    filename);
617 		} else {
618 			pkey_sign = pkey_host;
619 			fprintf(stderr, "Using host key as sign key\n");
620 		}
621 	}
622 
623 	/*
624 	 * Create new encrypted GQ server keys file if requested;
625 	 * otherwise, look for an exisiting file. If found, fetch the
626 	 * public key for the certificate.
627 	 */
628 	if (gqkey)
629 		pkey_gqkey = gen_gqkey("gqkey");
630 	if (pkey_gqkey == NULL) {
631 		snprintf(filename, sizeof(filename), "ntpkey_gqkey_%s",
632 		    groupname);
633 		pkey_gqkey = readkey(filename, passwd1, &fstamp, NULL);
634 		if (pkey_gqkey != NULL) {
635 			followlink(filename, sizeof(filename));
636 			fprintf(stderr, "Using GQ parameters %s\n",
637 			    filename);
638 		}
639 	}
640 	if (pkey_gqkey != NULL) {
641 		RSA	*rsa;
642 		const BIGNUM *q;
643 
644 		rsa = EVP_PKEY_get0_RSA(pkey_gqkey);
645 		RSA_get0_factors(rsa, NULL, &q);
646 		grpkey = BN_bn2hex(q);
647 	}
648 
649 	/*
650 	 * Write the nonencrypted GQ client parameters to the stdout
651 	 * stream. The parameter file is the server key file with the
652 	 * private key obscured.
653 	 */
654 	if (pkey_gqkey != NULL && HAVE_OPT(ID_KEY)) {
655 		RSA	*rsa;
656 
657 		snprintf(filename, sizeof(filename),
658 		    "ntpkey_gqpar_%s.%u", groupname, fstamp);
659 		fprintf(stderr, "Writing GQ parameters %s to stdout\n",
660 		    filename);
661 		fprintf(stdout, "# %s\n# %s\n", filename,
662 		    ctime(&epoch));
663 		/* XXX: This modifies the private key and should probably use a
664 		 * copy of it instead. */
665 		rsa = EVP_PKEY_get0_RSA(pkey_gqkey);
666 		RSA_set0_factors(rsa, BN_dup(BN_value_one()), BN_dup(BN_value_one()));
667 		pkey = EVP_PKEY_new();
668 		EVP_PKEY_assign_RSA(pkey, rsa);
669 		PEM_write_PKCS8PrivateKey(stdout, pkey, NULL, NULL, 0,
670 		    NULL, NULL);
671 		fflush(stdout);
672 		if (debug)
673 			RSA_print_fp(stderr, rsa, 0);
674 	}
675 
676 	/*
677 	 * Write the encrypted GQ server keys to the stdout stream.
678 	 */
679 	if (pkey_gqkey != NULL && passwd2 != NULL) {
680 		RSA	*rsa;
681 
682 		snprintf(filename, sizeof(filename),
683 		    "ntpkey_gqkey_%s.%u", groupname, fstamp);
684 		fprintf(stderr, "Writing GQ keys %s to stdout\n",
685 		    filename);
686 		fprintf(stdout, "# %s\n# %s\n", filename,
687 		    ctime(&epoch));
688 		rsa = EVP_PKEY_get0_RSA(pkey_gqkey);
689 		pkey = EVP_PKEY_new();
690 		EVP_PKEY_assign_RSA(pkey, rsa);
691 		PEM_write_PKCS8PrivateKey(stdout, pkey, cipher, NULL, 0,
692 		    NULL, passwd2);
693 		fflush(stdout);
694 		if (debug)
695 			RSA_print_fp(stderr, rsa, 0);
696 	}
697 
698 	/*
699 	 * Create new encrypted IFF server keys file if requested;
700 	 * otherwise, look for existing file.
701 	 */
702 	if (iffkey)
703 		pkey_iffkey = gen_iffkey("iffkey");
704 	if (pkey_iffkey == NULL) {
705 		snprintf(filename, sizeof(filename), "ntpkey_iffkey_%s",
706 		    groupname);
707 		pkey_iffkey = readkey(filename, passwd1, &fstamp, NULL);
708 		if (pkey_iffkey != NULL) {
709 			followlink(filename, sizeof(filename));
710 			fprintf(stderr, "Using IFF keys %s\n",
711 			    filename);
712 		}
713 	}
714 
715 	/*
716 	 * Write the nonencrypted IFF client parameters to the stdout
717 	 * stream. The parameter file is the server key file with the
718 	 * private key obscured.
719 	 */
720 	if (pkey_iffkey != NULL && HAVE_OPT(ID_KEY)) {
721 		DSA	*dsa;
722 
723 		snprintf(filename, sizeof(filename),
724 		    "ntpkey_iffpar_%s.%u", groupname, fstamp);
725 		fprintf(stderr, "Writing IFF parameters %s to stdout\n",
726 		    filename);
727 		fprintf(stdout, "# %s\n# %s\n", filename,
728 		    ctime(&epoch));
729 		/* XXX: This modifies the private key and should probably use a
730 		 * copy of it instead. */
731 		dsa = EVP_PKEY_get0_DSA(pkey_iffkey);
732 		DSA_set0_key(dsa, NULL, BN_dup(BN_value_one()));
733 		pkey = EVP_PKEY_new();
734 		EVP_PKEY_assign_DSA(pkey, dsa);
735 		PEM_write_PKCS8PrivateKey(stdout, pkey, NULL, NULL, 0,
736 		    NULL, NULL);
737 		fflush(stdout);
738 		if (debug)
739 			DSA_print_fp(stderr, dsa, 0);
740 	}
741 
742 	/*
743 	 * Write the encrypted IFF server keys to the stdout stream.
744 	 */
745 	if (pkey_iffkey != NULL && passwd2 != NULL) {
746 		DSA	*dsa;
747 
748 		snprintf(filename, sizeof(filename),
749 		    "ntpkey_iffkey_%s.%u", groupname, fstamp);
750 		fprintf(stderr, "Writing IFF keys %s to stdout\n",
751 		    filename);
752 		fprintf(stdout, "# %s\n# %s\n", filename,
753 		    ctime(&epoch));
754 		dsa = EVP_PKEY_get0_DSA(pkey_iffkey);
755 		pkey = EVP_PKEY_new();
756 		EVP_PKEY_assign_DSA(pkey, dsa);
757 		PEM_write_PKCS8PrivateKey(stdout, pkey, cipher, NULL, 0,
758 		    NULL, passwd2);
759 		fflush(stdout);
760 		if (debug)
761 			DSA_print_fp(stderr, dsa, 0);
762 	}
763 
764 	/*
765 	 * Create new encrypted MV trusted-authority keys file if
766 	 * requested; otherwise, look for existing keys file.
767 	 */
768 	if (mvkey)
769 		pkey_mvkey = gen_mvkey("mv", pkey_mvpar);
770 	if (pkey_mvkey == NULL) {
771 		snprintf(filename, sizeof(filename), "ntpkey_mvta_%s",
772 		    groupname);
773 		pkey_mvkey = readkey(filename, passwd1, &fstamp,
774 		    pkey_mvpar);
775 		if (pkey_mvkey != NULL) {
776 			followlink(filename, sizeof(filename));
777 			fprintf(stderr, "Using MV keys %s\n",
778 			    filename);
779 		}
780 	}
781 
782 	/*
783 	 * Write the nonencrypted MV client parameters to the stdout
784 	 * stream. For the moment, we always use the client parameters
785 	 * associated with client key 1.
786 	 */
787 	if (pkey_mvkey != NULL && HAVE_OPT(ID_KEY)) {
788 		snprintf(filename, sizeof(filename),
789 		    "ntpkey_mvpar_%s.%u", groupname, fstamp);
790 		fprintf(stderr, "Writing MV parameters %s to stdout\n",
791 		    filename);
792 		fprintf(stdout, "# %s\n# %s\n", filename,
793 		    ctime(&epoch));
794 		pkey = pkey_mvpar[2];
795 		PEM_write_PKCS8PrivateKey(stdout, pkey, NULL, NULL, 0,
796 		    NULL, NULL);
797 		fflush(stdout);
798 		if (debug)
799 			DSA_print_fp(stderr, EVP_PKEY_get0_DSA(pkey), 0);
800 	}
801 
802 	/*
803 	 * Write the encrypted MV server keys to the stdout stream.
804 	 */
805 	if (pkey_mvkey != NULL && passwd2 != NULL) {
806 		snprintf(filename, sizeof(filename),
807 		    "ntpkey_mvkey_%s.%u", groupname, fstamp);
808 		fprintf(stderr, "Writing MV keys %s to stdout\n",
809 		    filename);
810 		fprintf(stdout, "# %s\n# %s\n", filename,
811 		    ctime(&epoch));
812 		pkey = pkey_mvpar[1];
813 		PEM_write_PKCS8PrivateKey(stdout, pkey, cipher, NULL, 0,
814 		    NULL, passwd2);
815 		fflush(stdout);
816 		if (debug)
817 			DSA_print_fp(stderr, EVP_PKEY_get0_DSA(pkey), 0);
818 	}
819 
820 	/*
821 	 * Decode the digest/signature scheme and create the
822 	 * certificate. Do this every time we run the program.
823 	 */
824 	ectx = EVP_get_digestbyname(scheme);
825 	if (ectx == NULL) {
826 		fprintf(stderr,
827 		    "Invalid digest/signature combination %s\n",
828 		    scheme);
829 			exit (-1);
830 	}
831 	x509(pkey_sign, ectx, grpkey, exten, certname);
832 #endif	/* AUTOKEY */
833 	exit(0);
834 }
835 
836 
837 /*
838  * Generate semi-random MD5 keys compatible with NTPv3 and NTPv4. Also,
839  * if OpenSSL is around, generate random SHA1 keys compatible with
840  * symmetric key cryptography.
841  */
842 int
843 gen_md5(
844 	const char *id		/* file name id */
845 	)
846 {
847 	u_char	md5key[MD5SIZE + 1];	/* MD5 key */
848 	FILE	*str;
849 	int	i, j;
850 #ifdef OPENSSL
851 	u_char	keystr[MD5SIZE];
852 	u_char	hexstr[2 * MD5SIZE + 1];
853 	u_char	hex[] = "0123456789abcdef";
854 #endif	/* OPENSSL */
855 
856 	str = fheader("MD5key", id, groupname);
857 	for (i = 1; i <= MD5KEYS; i++) {
858 		for (j = 0; j < MD5SIZE; j++) {
859 			u_char temp;
860 
861 			while (1) {
862 				int rc;
863 
864 				rc = ntp_crypto_random_buf(
865 				    &temp, sizeof(temp));
866 				if (-1 == rc) {
867 					fprintf(stderr, "ntp_crypto_random_buf() failed.\n");
868 					exit (-1);
869 				}
870 				if (temp == '#')
871 					continue;
872 
873 				if (temp > 0x20 && temp < 0x7f)
874 					break;
875 			}
876 			md5key[j] = temp;
877 		}
878 		md5key[j] = '\0';
879 		fprintf(str, "%2d MD5 %s  # MD5 key\n", i,
880 		    md5key);
881 	}
882 #ifdef OPENSSL
883 	for (i = 1; i <= MD5KEYS; i++) {
884 		RAND_bytes(keystr, 20);
885 		for (j = 0; j < MD5SIZE; j++) {
886 			hexstr[2 * j] = hex[keystr[j] >> 4];
887 			hexstr[2 * j + 1] = hex[keystr[j] & 0xf];
888 		}
889 		hexstr[2 * MD5SIZE] = '\0';
890 		fprintf(str, "%2d SHA1 %s  # SHA1 key\n", i + MD5KEYS,
891 		    hexstr);
892 	}
893 #endif	/* OPENSSL */
894 	fclose(str);
895 	return (1);
896 }
897 
898 
899 #ifdef AUTOKEY
900 /*
901  * readkey - load cryptographic parameters and keys
902  *
903  * This routine loads a PEM-encoded file of given name and password and
904  * extracts the filestamp from the file name. It returns a pointer to
905  * the first key if valid, NULL if not.
906  */
907 EVP_PKEY *			/* public/private key pair */
908 readkey(
909 	char	*cp,		/* file name */
910 	char	*passwd,	/* password */
911 	u_int	*estamp,	/* file stamp */
912 	EVP_PKEY **evpars	/* parameter list pointer */
913 	)
914 {
915 	FILE	*str;		/* file handle */
916 	EVP_PKEY *pkey = NULL;	/* public/private key */
917 	u_int	gstamp;		/* filestamp */
918 	char	linkname[MAXFILENAME]; /* filestamp buffer) */
919 	EVP_PKEY *parkey;
920 	char	*ptr;
921 	int	i;
922 
923 	/*
924 	 * Open the key file.
925 	 */
926 	str = fopen(cp, "r");
927 	if (str == NULL)
928 		return (NULL);
929 
930 	/*
931 	 * Read the filestamp, which is contained in the first line.
932 	 */
933 	if ((ptr = fgets(linkname, MAXFILENAME, str)) == NULL) {
934 		fprintf(stderr, "Empty key file %s\n", cp);
935 		fclose(str);
936 		return (NULL);
937 	}
938 	if ((ptr = strrchr(ptr, '.')) == NULL) {
939 		fprintf(stderr, "No filestamp found in %s\n", cp);
940 		fclose(str);
941 		return (NULL);
942 	}
943 	if (sscanf(++ptr, "%u", &gstamp) != 1) {
944 		fprintf(stderr, "Invalid filestamp found in %s\n", cp);
945 		fclose(str);
946 		return (NULL);
947 	}
948 
949 	/*
950 	 * Read and decrypt PEM-encoded private keys. The first one
951 	 * found is returned. If others are expected, add them to the
952 	 * parameter list.
953 	 */
954 	for (i = 0; i <= MVMAX - 1;) {
955 		parkey = PEM_read_PrivateKey(str, NULL, NULL, passwd);
956 		if (evpars != NULL) {
957 			evpars[i++] = parkey;
958 			evpars[i] = NULL;
959 		}
960 		if (parkey == NULL)
961 			break;
962 
963 		if (pkey == NULL)
964 			pkey = parkey;
965 		if (debug) {
966 			if (EVP_PKEY_base_id(parkey) == EVP_PKEY_DSA)
967 				DSA_print_fp(stderr, EVP_PKEY_get0_DSA(parkey),
968 				    0);
969 			else if (EVP_PKEY_base_id(parkey) == EVP_PKEY_RSA)
970 				RSA_print_fp(stderr, EVP_PKEY_get0_RSA(parkey),
971 				    0);
972 		}
973 	}
974 	fclose(str);
975 	if (pkey == NULL) {
976 		fprintf(stderr, "Corrupt file %s or wrong key %s\n%s\n",
977 		    cp, passwd, ERR_error_string(ERR_get_error(),
978 		    NULL));
979 		exit (-1);
980 	}
981 	*estamp = gstamp;
982 	return (pkey);
983 }
984 
985 
986 /*
987  * Generate RSA public/private key pair
988  */
989 EVP_PKEY *			/* public/private key pair */
990 gen_rsa(
991 	const char *id		/* file name id */
992 	)
993 {
994 	EVP_PKEY *pkey;		/* private key */
995 	RSA	*rsa;		/* RSA parameters and key pair */
996 	FILE	*str;
997 
998 	fprintf(stderr, "Generating RSA keys (%d bits)...\n", modulus);
999 	rsa = genRsaKeyPair(modulus, _UC("RSA"));
1000 	fprintf(stderr, "\n");
1001 	if (rsa == NULL) {
1002 		fprintf(stderr, "RSA generate keys fails\n%s\n",
1003 		    ERR_error_string(ERR_get_error(), NULL));
1004 		return (NULL);
1005 	}
1006 
1007 	/*
1008 	 * For signature encryption it is not necessary that the RSA
1009 	 * parameters be strictly groomed and once in a while the
1010 	 * modulus turns out to be non-prime. Just for grins, we check
1011 	 * the primality.
1012 	 */
1013 	if (!RSA_check_key(rsa)) {
1014 		fprintf(stderr, "Invalid RSA key\n%s\n",
1015 		    ERR_error_string(ERR_get_error(), NULL));
1016 		RSA_free(rsa);
1017 		return (NULL);
1018 	}
1019 
1020 	/*
1021 	 * Write the RSA parameters and keys as a RSA private key
1022 	 * encoded in PEM.
1023 	 */
1024 	if (strcmp(id, "sign") == 0)
1025 		str = fheader("RSAsign", id, hostname);
1026 	else
1027 		str = fheader("RSAhost", id, hostname);
1028 	pkey = EVP_PKEY_new();
1029 	EVP_PKEY_assign_RSA(pkey, rsa);
1030 	PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL,
1031 	    passwd1);
1032 	fclose(str);
1033 	if (debug)
1034 		RSA_print_fp(stderr, rsa, 0);
1035 	return (pkey);
1036 }
1037 
1038 
1039 /*
1040  * Generate DSA public/private key pair
1041  */
1042 EVP_PKEY *			/* public/private key pair */
1043 gen_dsa(
1044 	const char *id		/* file name id */
1045 	)
1046 {
1047 	EVP_PKEY *pkey;		/* private key */
1048 	DSA	*dsa;		/* DSA parameters */
1049 	FILE	*str;
1050 
1051 	/*
1052 	 * Generate DSA parameters.
1053 	 */
1054 	fprintf(stderr,
1055 	    "Generating DSA parameters (%d bits)...\n", modulus);
1056 	dsa = genDsaParams(modulus, _UC("DSA"));
1057 	fprintf(stderr, "\n");
1058 	if (dsa == NULL) {
1059 		fprintf(stderr, "DSA generate parameters fails\n%s\n",
1060 		    ERR_error_string(ERR_get_error(), NULL));
1061 		return (NULL);
1062 	}
1063 
1064 	/*
1065 	 * Generate DSA keys.
1066 	 */
1067 	fprintf(stderr, "Generating DSA keys (%d bits)...\n", modulus);
1068 	if (!DSA_generate_key(dsa)) {
1069 		fprintf(stderr, "DSA generate keys fails\n%s\n",
1070 		    ERR_error_string(ERR_get_error(), NULL));
1071 		DSA_free(dsa);
1072 		return (NULL);
1073 	}
1074 
1075 	/*
1076 	 * Write the DSA parameters and keys as a DSA private key
1077 	 * encoded in PEM.
1078 	 */
1079 	str = fheader("DSAsign", id, hostname);
1080 	pkey = EVP_PKEY_new();
1081 	EVP_PKEY_assign_DSA(pkey, dsa);
1082 	PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL,
1083 	    passwd1);
1084 	fclose(str);
1085 	if (debug)
1086 		DSA_print_fp(stderr, dsa, 0);
1087 	return (pkey);
1088 }
1089 
1090 
1091 /*
1092  ***********************************************************************
1093  *								       *
1094  * The following routines implement the Schnorr (IFF) identity scheme  *
1095  *								       *
1096  ***********************************************************************
1097  *
1098  * The Schnorr (IFF) identity scheme is intended for use when
1099  * certificates are generated by some other trusted certificate
1100  * authority and the certificate cannot be used to convey public
1101  * parameters. There are two kinds of files: encrypted server files that
1102  * contain private and public values and nonencrypted client files that
1103  * contain only public values. New generations of server files must be
1104  * securely transmitted to all servers of the group; client files can be
1105  * distributed by any means. The scheme is self contained and
1106  * independent of new generations of host keys, sign keys and
1107  * certificates.
1108  *
1109  * The IFF values hide in a DSA cuckoo structure which uses the same
1110  * parameters. The values are used by an identity scheme based on DSA
1111  * cryptography and described in Stimson p. 285. The p is a 512-bit
1112  * prime, g a generator of Zp* and q a 160-bit prime that divides p - 1
1113  * and is a qth root of 1 mod p; that is, g^q = 1 mod p. The TA rolls a
1114  * private random group key b (0 < b < q) and public key v = g^b, then
1115  * sends (p, q, g, b) to the servers and (p, q, g, v) to the clients.
1116  * Alice challenges Bob to confirm identity using the protocol described
1117  * below.
1118  *
1119  * How it works
1120  *
1121  * The scheme goes like this. Both Alice and Bob have the public primes
1122  * p, q and generator g. The TA gives private key b to Bob and public
1123  * key v to Alice.
1124  *
1125  * Alice rolls new random challenge r (o < r < q) and sends to Bob in
1126  * the IFF request message. Bob rolls new random k (0 < k < q), then
1127  * computes y = k + b r mod q and x = g^k mod p and sends (y, hash(x))
1128  * to Alice in the response message. Besides making the response
1129  * shorter, the hash makes it effectivey impossible for an intruder to
1130  * solve for b by observing a number of these messages.
1131  *
1132  * Alice receives the response and computes g^y v^r mod p. After a bit
1133  * of algebra, this simplifies to g^k. If the hash of this result
1134  * matches hash(x), Alice knows that Bob has the group key b. The signed
1135  * response binds this knowledge to Bob's private key and the public key
1136  * previously received in his certificate.
1137  */
1138 /*
1139  * Generate Schnorr (IFF) keys.
1140  */
1141 EVP_PKEY *			/* DSA cuckoo nest */
1142 gen_iffkey(
1143 	const char *id		/* file name id */
1144 	)
1145 {
1146 	EVP_PKEY *pkey;		/* private key */
1147 	DSA	*dsa;		/* DSA parameters */
1148 	BN_CTX	*ctx;		/* BN working space */
1149 	BIGNUM	*b, *r, *k, *u, *v, *w; /* BN temp */
1150 	FILE	*str;
1151 	u_int	temp;
1152 	const BIGNUM *p, *q, *g;
1153 	BIGNUM *pub_key, *priv_key;
1154 
1155 	/*
1156 	 * Generate DSA parameters for use as IFF parameters.
1157 	 */
1158 	fprintf(stderr, "Generating IFF keys (%d bits)...\n",
1159 	    modulus2);
1160 	dsa = genDsaParams(modulus2, _UC("IFF"));
1161 	fprintf(stderr, "\n");
1162 	if (dsa == NULL) {
1163 		fprintf(stderr, "DSA generate parameters fails\n%s\n",
1164 		    ERR_error_string(ERR_get_error(), NULL));
1165 		return (NULL);
1166 	}
1167 	DSA_get0_pqg(dsa, &p, &q, &g);
1168 
1169 	/*
1170 	 * Generate the private and public keys. The DSA parameters and
1171 	 * private key are distributed to the servers, while all except
1172 	 * the private key are distributed to the clients.
1173 	 */
1174 	b = BN_new(); r = BN_new(); k = BN_new();
1175 	u = BN_new(); v = BN_new(); w = BN_new(); ctx = BN_CTX_new();
1176 	BN_rand(b, BN_num_bits(q), -1, 0);	/* a */
1177 	BN_mod(b, b, q, ctx);
1178 	BN_sub(v, q, b);
1179 	BN_mod_exp(v, g, v, p, ctx); /* g^(q - b) mod p */
1180 	BN_mod_exp(u, g, b, p, ctx);	/* g^b mod p */
1181 	BN_mod_mul(u, u, v, p, ctx);
1182 	temp = BN_is_one(u);
1183 	fprintf(stderr,
1184 	    "Confirm g^(q - b) g^b = 1 mod p: %s\n", temp == 1 ?
1185 	    "yes" : "no");
1186 	if (!temp) {
1187 		BN_free(b); BN_free(r); BN_free(k);
1188 		BN_free(u); BN_free(v); BN_free(w); BN_CTX_free(ctx);
1189 		return (NULL);
1190 	}
1191 	pub_key = BN_dup(v);
1192 	priv_key = BN_dup(b);
1193 	DSA_set0_key(dsa, pub_key, priv_key);
1194 
1195 	/*
1196 	 * Here is a trial round of the protocol. First, Alice rolls
1197 	 * random nonce r mod q and sends it to Bob. She needs only
1198 	 * q from parameters.
1199 	 */
1200 	BN_rand(r, BN_num_bits(q), -1, 0);	/* r */
1201 	BN_mod(r, r, q, ctx);
1202 
1203 	/*
1204 	 * Bob rolls random nonce k mod q, computes y = k + b r mod q
1205 	 * and x = g^k mod p, then sends (y, x) to Alice. He needs
1206 	 * p, q and b from parameters and r from Alice.
1207 	 */
1208 	BN_rand(k, BN_num_bits(q), -1, 0);	/* k, 0 < k < q  */
1209 	BN_mod(k, k, q, ctx);
1210 	BN_mod_mul(v, priv_key, r, q, ctx); /* b r mod q */
1211 	BN_add(v, v, k);
1212 	BN_mod(v, v, q, ctx);		/* y = k + b r mod q */
1213 	BN_mod_exp(u, g, k, p, ctx);	/* x = g^k mod p */
1214 
1215 	/*
1216 	 * Alice verifies x = g^y v^r to confirm that Bob has group key
1217 	 * b. She needs p, q, g from parameters, (y, x) from Bob and the
1218 	 * original r. We omit the detail here thatt only the hash of y
1219 	 * is sent.
1220 	 */
1221 	BN_mod_exp(v, g, v, p, ctx); /* g^y mod p */
1222 	BN_mod_exp(w, pub_key, r, p, ctx); /* v^r */
1223 	BN_mod_mul(v, w, v, p, ctx);	/* product mod p */
1224 	temp = BN_cmp(u, v);
1225 	fprintf(stderr,
1226 	    "Confirm g^k = g^(k + b r) g^(q - b) r: %s\n", temp ==
1227 	    0 ? "yes" : "no");
1228 	BN_free(b); BN_free(r);	BN_free(k);
1229 	BN_free(u); BN_free(v); BN_free(w); BN_CTX_free(ctx);
1230 	if (temp != 0) {
1231 		DSA_free(dsa);
1232 		return (NULL);
1233 	}
1234 
1235 	/*
1236 	 * Write the IFF keys as an encrypted DSA private key encoded in
1237 	 * PEM.
1238 	 *
1239 	 * p	modulus p
1240 	 * q	modulus q
1241 	 * g	generator g
1242 	 * priv_key b
1243 	 * public_key v
1244 	 * kinv	not used
1245 	 * r	not used
1246 	 */
1247 	str = fheader("IFFkey", id, groupname);
1248 	pkey = EVP_PKEY_new();
1249 	EVP_PKEY_assign_DSA(pkey, dsa);
1250 	PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL,
1251 	    passwd1);
1252 	fclose(str);
1253 	if (debug)
1254 		DSA_print_fp(stderr, dsa, 0);
1255 	return (pkey);
1256 }
1257 
1258 
1259 /*
1260  ***********************************************************************
1261  *								       *
1262  * The following routines implement the Guillou-Quisquater (GQ)        *
1263  * identity scheme                                                     *
1264  *								       *
1265  ***********************************************************************
1266  *
1267  * The Guillou-Quisquater (GQ) identity scheme is intended for use when
1268  * the certificate can be used to convey public parameters. The scheme
1269  * uses a X509v3 certificate extension field do convey the public key of
1270  * a private key known only to servers. There are two kinds of files:
1271  * encrypted server files that contain private and public values and
1272  * nonencrypted client files that contain only public values. New
1273  * generations of server files must be securely transmitted to all
1274  * servers of the group; client files can be distributed by any means.
1275  * The scheme is self contained and independent of new generations of
1276  * host keys and sign keys. The scheme is self contained and independent
1277  * of new generations of host keys and sign keys.
1278  *
1279  * The GQ parameters hide in a RSA cuckoo structure which uses the same
1280  * parameters. The values are used by an identity scheme based on RSA
1281  * cryptography and described in Stimson p. 300 (with errors). The 512-
1282  * bit public modulus is n = p q, where p and q are secret large primes.
1283  * The TA rolls private random group key b as RSA exponent. These values
1284  * are known to all group members.
1285  *
1286  * When rolling new certificates, a server recomputes the private and
1287  * public keys. The private key u is a random roll, while the public key
1288  * is the inverse obscured by the group key v = (u^-1)^b. These values
1289  * replace the private and public keys normally generated by the RSA
1290  * scheme. Alice challenges Bob to confirm identity using the protocol
1291  * described below.
1292  *
1293  * How it works
1294  *
1295  * The scheme goes like this. Both Alice and Bob have the same modulus n
1296  * and some random b as the group key. These values are computed and
1297  * distributed in advance via secret means, although only the group key
1298  * b is truly secret. Each has a private random private key u and public
1299  * key (u^-1)^b, although not necessarily the same ones. Bob and Alice
1300  * can regenerate the key pair from time to time without affecting
1301  * operations. The public key is conveyed on the certificate in an
1302  * extension field; the private key is never revealed.
1303  *
1304  * Alice rolls new random challenge r and sends to Bob in the GQ
1305  * request message. Bob rolls new random k, then computes y = k u^r mod
1306  * n and x = k^b mod n and sends (y, hash(x)) to Alice in the response
1307  * message. Besides making the response shorter, the hash makes it
1308  * effectivey impossible for an intruder to solve for b by observing
1309  * a number of these messages.
1310  *
1311  * Alice receives the response and computes y^b v^r mod n. After a bit
1312  * of algebra, this simplifies to k^b. If the hash of this result
1313  * matches hash(x), Alice knows that Bob has the group key b. The signed
1314  * response binds this knowledge to Bob's private key and the public key
1315  * previously received in his certificate.
1316  */
1317 /*
1318  * Generate Guillou-Quisquater (GQ) parameters file.
1319  */
1320 EVP_PKEY *			/* RSA cuckoo nest */
1321 gen_gqkey(
1322 	const char *id		/* file name id */
1323 	)
1324 {
1325 	EVP_PKEY *pkey;		/* private key */
1326 	RSA	*rsa;		/* RSA parameters */
1327 	BN_CTX	*ctx;		/* BN working space */
1328 	BIGNUM	*u, *v, *g, *k, *r, *y; /* BN temps */
1329 	FILE	*str;
1330 	u_int	temp;
1331 	BIGNUM	*b;
1332 	const BIGNUM	*n;
1333 
1334 	/*
1335 	 * Generate RSA parameters for use as GQ parameters.
1336 	 */
1337 	fprintf(stderr,
1338 	    "Generating GQ parameters (%d bits)...\n",
1339 	     modulus2);
1340 	rsa = genRsaKeyPair(modulus2, _UC("GQ"));
1341 	fprintf(stderr, "\n");
1342 	if (rsa == NULL) {
1343 		fprintf(stderr, "RSA generate keys fails\n%s\n",
1344 		    ERR_error_string(ERR_get_error(), NULL));
1345 		return (NULL);
1346 	}
1347 	RSA_get0_key(rsa, &n, NULL, NULL);
1348 	u = BN_new(); v = BN_new(); g = BN_new();
1349 	k = BN_new(); r = BN_new(); y = BN_new();
1350 	b = BN_new();
1351 
1352 	/*
1353 	 * Generate the group key b, which is saved in the e member of
1354 	 * the RSA structure. The group key is transmitted to each group
1355 	 * member encrypted by the member private key.
1356 	 */
1357 	ctx = BN_CTX_new();
1358 	BN_rand(b, BN_num_bits(n), -1, 0); /* b */
1359 	BN_mod(b, b, n, ctx);
1360 
1361 	/*
1362 	 * When generating his certificate, Bob rolls random private key
1363 	 * u, then computes inverse v = u^-1.
1364 	 */
1365 	BN_rand(u, BN_num_bits(n), -1, 0); /* u */
1366 	BN_mod(u, u, n, ctx);
1367 	BN_mod_inverse(v, u, n, ctx);	/* u^-1 mod n */
1368 	BN_mod_mul(k, v, u, n, ctx);
1369 
1370 	/*
1371 	 * Bob computes public key v = (u^-1)^b, which is saved in an
1372 	 * extension field on his certificate. We check that u^b v =
1373 	 * 1 mod n.
1374 	 */
1375 	BN_mod_exp(v, v, b, n, ctx);
1376 	BN_mod_exp(g, u, b, n, ctx); /* u^b */
1377 	BN_mod_mul(g, g, v, n, ctx); /* u^b (u^-1)^b */
1378 	temp = BN_is_one(g);
1379 	fprintf(stderr,
1380 	    "Confirm u^b (u^-1)^b = 1 mod n: %s\n", temp ? "yes" :
1381 	    "no");
1382 	if (!temp) {
1383 		BN_free(u); BN_free(v);
1384 		BN_free(g); BN_free(k); BN_free(r); BN_free(y);
1385 		BN_CTX_free(ctx);
1386 		RSA_free(rsa);
1387 		return (NULL);
1388 	}
1389 	/* setting 'u' and 'v' into a RSA object takes over ownership.
1390 	 * Since we use these values again, we have to pass in dupes,
1391 	 * or we'll corrupt the program!
1392 	 */
1393 	RSA_set0_factors(rsa, BN_dup(u), BN_dup(v));
1394 
1395 	/*
1396 	 * Here is a trial run of the protocol. First, Alice rolls
1397 	 * random nonce r mod n and sends it to Bob. She needs only n
1398 	 * from parameters.
1399 	 */
1400 	BN_rand(r, BN_num_bits(n), -1, 0);	/* r */
1401 	BN_mod(r, r, n, ctx);
1402 
1403 	/*
1404 	 * Bob rolls random nonce k mod n, computes y = k u^r mod n and
1405 	 * g = k^b mod n, then sends (y, g) to Alice. He needs n, u, b
1406 	 * from parameters and r from Alice.
1407 	 */
1408 	BN_rand(k, BN_num_bits(n), -1, 0);	/* k */
1409 	BN_mod(k, k, n, ctx);
1410 	BN_mod_exp(y, u, r, n, ctx);	/* u^r mod n */
1411 	BN_mod_mul(y, k, y, n, ctx);	/* y = k u^r mod n */
1412 	BN_mod_exp(g, k, b, n, ctx);	/* g = k^b mod n */
1413 
1414 	/*
1415 	 * Alice verifies g = v^r y^b mod n to confirm that Bob has
1416 	 * private key u. She needs n, g from parameters, public key v =
1417 	 * (u^-1)^b from the certificate, (y, g) from Bob and the
1418 	 * original r. We omit the detaul here that only the hash of g
1419 	 * is sent.
1420 	 */
1421 	BN_mod_exp(v, v, r, n, ctx);	/* v^r mod n */
1422 	BN_mod_exp(y, y, b, n, ctx);	/* y^b mod n */
1423 	BN_mod_mul(y, v, y, n, ctx);	/* v^r y^b mod n */
1424 	temp = BN_cmp(y, g);
1425 	fprintf(stderr, "Confirm g^k = v^r y^b mod n: %s\n", temp == 0 ?
1426 	    "yes" : "no");
1427 	BN_CTX_free(ctx); BN_free(u); BN_free(v);
1428 	BN_free(g); BN_free(k); BN_free(r); BN_free(y);
1429 	if (temp != 0) {
1430 		RSA_free(rsa);
1431 		return (NULL);
1432 	}
1433 
1434 	/*
1435 	 * Write the GQ parameter file as an encrypted RSA private key
1436 	 * encoded in PEM.
1437 	 *
1438 	 * n	modulus n
1439 	 * e	group key b
1440 	 * d	not used
1441 	 * p	private key u
1442 	 * q	public key (u^-1)^b
1443 	 * dmp1	not used
1444 	 * dmq1	not used
1445 	 * iqmp	not used
1446 	 */
1447 	RSA_set0_key(rsa, NULL, b, BN_dup(BN_value_one()));
1448 	RSA_set0_crt_params(rsa, BN_dup(BN_value_one()), BN_dup(BN_value_one()),
1449 		BN_dup(BN_value_one()));
1450 	str = fheader("GQkey", id, groupname);
1451 	pkey = EVP_PKEY_new();
1452 	EVP_PKEY_assign_RSA(pkey, rsa);
1453 	PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL,
1454 	    passwd1);
1455 	fclose(str);
1456 	if (debug)
1457 		RSA_print_fp(stderr, rsa, 0);
1458 	return (pkey);
1459 }
1460 
1461 
1462 /*
1463  ***********************************************************************
1464  *								       *
1465  * The following routines implement the Mu-Varadharajan (MV) identity  *
1466  * scheme                                                              *
1467  *								       *
1468  ***********************************************************************
1469  *
1470  * The Mu-Varadharajan (MV) cryptosystem was originally intended when
1471  * servers broadcast messages to clients, but clients never send
1472  * messages to servers. There is one encryption key for the server and a
1473  * separate decryption key for each client. It operated something like a
1474  * pay-per-view satellite broadcasting system where the session key is
1475  * encrypted by the broadcaster and the decryption keys are held in a
1476  * tamperproof set-top box.
1477  *
1478  * The MV parameters and private encryption key hide in a DSA cuckoo
1479  * structure which uses the same parameters, but generated in a
1480  * different way. The values are used in an encryption scheme similar to
1481  * El Gamal cryptography and a polynomial formed from the expansion of
1482  * product terms (x - x[j]), as described in Mu, Y., and V.
1483  * Varadharajan: Robust and Secure Broadcasting, Proc. Indocrypt 2001,
1484  * 223-231. The paper has significant errors and serious omissions.
1485  *
1486  * Let q be the product of n distinct primes s1[j] (j = 1...n), where
1487  * each s1[j] has m significant bits. Let p be a prime p = 2 * q + 1, so
1488  * that q and each s1[j] divide p - 1 and p has M = n * m + 1
1489  * significant bits. Let g be a generator of Zp; that is, gcd(g, p - 1)
1490  * = 1 and g^q = 1 mod p. We do modular arithmetic over Zq and then
1491  * project into Zp* as exponents of g. Sometimes we have to compute an
1492  * inverse b^-1 of random b in Zq, but for that purpose we require
1493  * gcd(b, q) = 1. We expect M to be in the 500-bit range and n
1494  * relatively small, like 30. These are the parameters of the scheme and
1495  * they are expensive to compute.
1496  *
1497  * We set up an instance of the scheme as follows. A set of random
1498  * values x[j] mod q (j = 1...n), are generated as the zeros of a
1499  * polynomial of order n. The product terms (x - x[j]) are expanded to
1500  * form coefficients a[i] mod q (i = 0...n) in powers of x. These are
1501  * used as exponents of the generator g mod p to generate the private
1502  * encryption key A. The pair (gbar, ghat) of public server keys and the
1503  * pairs (xbar[j], xhat[j]) (j = 1...n) of private client keys are used
1504  * to construct the decryption keys. The devil is in the details.
1505  *
1506  * This routine generates a private server encryption file including the
1507  * private encryption key E and partial decryption keys gbar and ghat.
1508  * It then generates public client decryption files including the public
1509  * keys xbar[j] and xhat[j] for each client j. The partial decryption
1510  * files are used to compute the inverse of E. These values are suitably
1511  * blinded so secrets are not revealed.
1512  *
1513  * The distinguishing characteristic of this scheme is the capability to
1514  * revoke keys. Included in the calculation of E, gbar and ghat is the
1515  * product s = prod(s1[j]) (j = 1...n) above. If the factor s1[j] is
1516  * subsequently removed from the product and E, gbar and ghat
1517  * recomputed, the jth client will no longer be able to compute E^-1 and
1518  * thus unable to decrypt the messageblock.
1519  *
1520  * How it works
1521  *
1522  * The scheme goes like this. Bob has the server values (p, E, q,
1523  * gbar, ghat) and Alice has the client values (p, xbar, xhat).
1524  *
1525  * Alice rolls new random nonce r mod p and sends to Bob in the MV
1526  * request message. Bob rolls random nonce k mod q, encrypts y = r E^k
1527  * mod p and sends (y, gbar^k, ghat^k) to Alice.
1528  *
1529  * Alice receives the response and computes the inverse (E^k)^-1 from
1530  * the partial decryption keys gbar^k, ghat^k, xbar and xhat. She then
1531  * decrypts y and verifies it matches the original r. The signed
1532  * response binds this knowledge to Bob's private key and the public key
1533  * previously received in his certificate.
1534  */
1535 EVP_PKEY *			/* DSA cuckoo nest */
1536 gen_mvkey(
1537 	const char *id,		/* file name id */
1538 	EVP_PKEY **evpars	/* parameter list pointer */
1539 	)
1540 {
1541 	EVP_PKEY *pkey, *pkey1;	/* private keys */
1542 	DSA	*dsa, *dsa2, *sdsa; /* DSA parameters */
1543 	BN_CTX	*ctx;		/* BN working space */
1544 	BIGNUM	*a[MVMAX];	/* polynomial coefficient vector */
1545 	BIGNUM	*gs[MVMAX];	/* public key vector */
1546 	BIGNUM	*s1[MVMAX];	/* private enabling keys */
1547 	BIGNUM	*x[MVMAX];	/* polynomial zeros vector */
1548 	BIGNUM	*xbar[MVMAX], *xhat[MVMAX]; /* private keys vector */
1549 	BIGNUM	*b;		/* group key */
1550 	BIGNUM	*b1;		/* inverse group key */
1551 	BIGNUM	*s;		/* enabling key */
1552 	BIGNUM	*biga;		/* master encryption key */
1553 	BIGNUM	*bige;		/* session encryption key */
1554 	BIGNUM	*gbar, *ghat;	/* public key */
1555 	BIGNUM	*u, *v, *w;	/* BN scratch */
1556 	BIGNUM	*p, *q, *g, *priv_key, *pub_key;
1557 	int	i, j, n;
1558 	FILE	*str;
1559 	u_int	temp;
1560 
1561 	/*
1562 	 * Generate MV parameters.
1563 	 *
1564 	 * The object is to generate a multiplicative group Zp* modulo a
1565 	 * prime p and a subset Zq mod q, where q is the product of n
1566 	 * distinct primes s1[j] (j = 1...n) and q divides p - 1. We
1567 	 * first generate n m-bit primes, where the product n m is in
1568 	 * the order of 512 bits. One or more of these may have to be
1569 	 * replaced later. As a practical matter, it is tough to find
1570 	 * more than 31 distinct primes for 512 bits or 61 primes for
1571 	 * 1024 bits. The latter can take several hundred iterations
1572 	 * and several minutes on a Sun Blade 1000.
1573 	 */
1574 	n = nkeys;
1575 	fprintf(stderr,
1576 	    "Generating MV parameters for %d keys (%d bits)...\n", n,
1577 	    modulus2 / n);
1578 	ctx = BN_CTX_new(); u = BN_new(); v = BN_new(); w = BN_new();
1579 	b = BN_new(); b1 = BN_new();
1580 	dsa = DSA_new();
1581 	p = BN_new(); q = BN_new(); g = BN_new();
1582 	priv_key = BN_new(); pub_key = BN_new();
1583 	temp = 0;
1584 	for (j = 1; j <= n; j++) {
1585 		s1[j] = BN_new();
1586 		while (1) {
1587 			BN_generate_prime_ex(s1[j], modulus2 / n, 0,
1588 					     NULL, NULL, NULL);
1589 			for (i = 1; i < j; i++) {
1590 				if (BN_cmp(s1[i], s1[j]) == 0)
1591 					break;
1592 			}
1593 			if (i == j)
1594 				break;
1595 			temp++;
1596 		}
1597 	}
1598 	fprintf(stderr, "Birthday keys regenerated %d\n", temp);
1599 
1600 	/*
1601 	 * Compute the modulus q as the product of the primes. Compute
1602 	 * the modulus p as 2 * q + 1 and test p for primality. If p
1603 	 * is composite, replace one of the primes with a new distinct
1604 	 * one and try again. Note that q will hardly be a secret since
1605 	 * we have to reveal p to servers, but not clients. However,
1606 	 * factoring q to find the primes should be adequately hard, as
1607 	 * this is the same problem considered hard in RSA. Question: is
1608 	 * it as hard to find n small prime factors totalling n bits as
1609 	 * it is to find two large prime factors totalling n bits?
1610 	 * Remember, the bad guy doesn't know n.
1611 	 */
1612 	temp = 0;
1613 	while (1) {
1614 		BN_one(q);
1615 		for (j = 1; j <= n; j++)
1616 			BN_mul(q, q, s1[j], ctx);
1617 		BN_copy(p, q);
1618 		BN_add(p, p, p);
1619 		BN_add_word(p, 1);
1620 		if (BN_is_prime_ex(p, BN_prime_checks, ctx, NULL))
1621 			break;
1622 
1623 		temp++;
1624 		j = temp % n + 1;
1625 		while (1) {
1626 			BN_generate_prime_ex(u, modulus2 / n, 0,
1627 					     NULL, NULL, NULL);
1628 			for (i = 1; i <= n; i++) {
1629 				if (BN_cmp(u, s1[i]) == 0)
1630 					break;
1631 			}
1632 			if (i > n)
1633 				break;
1634 		}
1635 		BN_copy(s1[j], u);
1636 	}
1637 	fprintf(stderr, "Defective keys regenerated %d\n", temp);
1638 
1639 	/*
1640 	 * Compute the generator g using a random roll such that
1641 	 * gcd(g, p - 1) = 1 and g^q = 1. This is a generator of p, not
1642 	 * q. This may take several iterations.
1643 	 */
1644 	BN_copy(v, p);
1645 	BN_sub_word(v, 1);
1646 	while (1) {
1647 		BN_rand(g, BN_num_bits(p) - 1, 0, 0);
1648 		BN_mod(g, g, p, ctx);
1649 		BN_gcd(u, g, v, ctx);
1650 		if (!BN_is_one(u))
1651 			continue;
1652 
1653 		BN_mod_exp(u, g, q, p, ctx);
1654 		if (BN_is_one(u))
1655 			break;
1656 	}
1657 
1658 	DSA_set0_pqg(dsa, p, q, g);
1659 
1660 	/*
1661 	 * Setup is now complete. Roll random polynomial roots x[j]
1662 	 * (j = 1...n) for all j. While it may not be strictly
1663 	 * necessary, Make sure each root has no factors in common with
1664 	 * q.
1665 	 */
1666 	fprintf(stderr,
1667 	    "Generating polynomial coefficients for %d roots (%d bits)\n",
1668 	    n, BN_num_bits(q));
1669 	for (j = 1; j <= n; j++) {
1670 		x[j] = BN_new();
1671 
1672 		while (1) {
1673 			BN_rand(x[j], BN_num_bits(q), 0, 0);
1674 			BN_mod(x[j], x[j], q, ctx);
1675 			BN_gcd(u, x[j], q, ctx);
1676 			if (BN_is_one(u))
1677 				break;
1678 		}
1679 	}
1680 
1681 	/*
1682 	 * Generate polynomial coefficients a[i] (i = 0...n) from the
1683 	 * expansion of root products (x - x[j]) mod q for all j. The
1684 	 * method is a present from Charlie Boncelet.
1685 	 */
1686 	for (i = 0; i <= n; i++) {
1687 		a[i] = BN_new();
1688 		BN_one(a[i]);
1689 	}
1690 	for (j = 1; j <= n; j++) {
1691 		BN_zero(w);
1692 		for (i = 0; i < j; i++) {
1693 			BN_copy(u, q);
1694 			BN_mod_mul(v, a[i], x[j], q, ctx);
1695 			BN_sub(u, u, v);
1696 			BN_add(u, u, w);
1697 			BN_copy(w, a[i]);
1698 			BN_mod(a[i], u, q, ctx);
1699 		}
1700 	}
1701 
1702 	/*
1703 	 * Generate gs[i] = g^a[i] mod p for all i and the generator g.
1704 	 */
1705 	for (i = 0; i <= n; i++) {
1706 		gs[i] = BN_new();
1707 		BN_mod_exp(gs[i], g, a[i], p, ctx);
1708 	}
1709 
1710 	/*
1711 	 * Verify prod(gs[i]^(a[i] x[j]^i)) = 1 for all i, j. Note the
1712 	 * a[i] x[j]^i exponent is computed mod q, but the gs[i] is
1713 	 * computed mod p. also note the expression given in the paper
1714 	 * is incorrect.
1715 	 */
1716 	temp = 1;
1717 	for (j = 1; j <= n; j++) {
1718 		BN_one(u);
1719 		for (i = 0; i <= n; i++) {
1720 			BN_set_word(v, i);
1721 			BN_mod_exp(v, x[j], v, q, ctx);
1722 			BN_mod_mul(v, v, a[i], q, ctx);
1723 			BN_mod_exp(v, g, v, p, ctx);
1724 			BN_mod_mul(u, u, v, p, ctx);
1725 		}
1726 		if (!BN_is_one(u))
1727 			temp = 0;
1728 	}
1729 	fprintf(stderr,
1730 	    "Confirm prod(gs[i]^(x[j]^i)) = 1 for all i, j: %s\n", temp ?
1731 	    "yes" : "no");
1732 	if (!temp) {
1733 		return (NULL);
1734 	}
1735 
1736 	/*
1737 	 * Make private encryption key A. Keep it around for awhile,
1738 	 * since it is expensive to compute.
1739 	 */
1740 	biga = BN_new();
1741 
1742 	BN_one(biga);
1743 	for (j = 1; j <= n; j++) {
1744 		for (i = 0; i < n; i++) {
1745 			BN_set_word(v, i);
1746 			BN_mod_exp(v, x[j], v, q, ctx);
1747 			BN_mod_exp(v, gs[i], v, p, ctx);
1748 			BN_mod_mul(biga, biga, v, p, ctx);
1749 		}
1750 	}
1751 
1752 	/*
1753 	 * Roll private random group key b mod q (0 < b < q), where
1754 	 * gcd(b, q) = 1 to guarantee b^-1 exists, then compute b^-1
1755 	 * mod q. If b is changed, the client keys must be recomputed.
1756 	 */
1757 	while (1) {
1758 		BN_rand(b, BN_num_bits(q), 0, 0);
1759 		BN_mod(b, b, q, ctx);
1760 		BN_gcd(u, b, q, ctx);
1761 		if (BN_is_one(u))
1762 			break;
1763 	}
1764 	BN_mod_inverse(b1, b, q, ctx);
1765 
1766 	/*
1767 	 * Make private client keys (xbar[j], xhat[j]) for all j. Note
1768 	 * that the keys for the jth client do not s1[j] or the product
1769 	 * s1[j]) (j = 1...n) which is q by construction.
1770 	 *
1771 	 * Compute the factor w such that w s1[j] = s1[j] for all j. The
1772 	 * easy way to do this is to compute (q + s1[j]) / s1[j].
1773 	 * Exercise for the student: prove the remainder is always zero.
1774 	 */
1775 	for (j = 1; j <= n; j++) {
1776 		xbar[j] = BN_new(); xhat[j] = BN_new();
1777 
1778 		BN_add(w, q, s1[j]);
1779 		BN_div(w, u, w, s1[j], ctx);
1780 		BN_zero(xbar[j]);
1781 		BN_set_word(v, n);
1782 		for (i = 1; i <= n; i++) {
1783 			if (i == j)
1784 				continue;
1785 
1786 			BN_mod_exp(u, x[i], v, q, ctx);
1787 			BN_add(xbar[j], xbar[j], u);
1788 		}
1789 		BN_mod_mul(xbar[j], xbar[j], b1, q, ctx);
1790 		BN_mod_exp(xhat[j], x[j], v, q, ctx);
1791 		BN_mod_mul(xhat[j], xhat[j], w, q, ctx);
1792 	}
1793 
1794 	/*
1795 	 * We revoke client j by dividing q by s1[j]. The quotient
1796 	 * becomes the enabling key s. Note we always have to revoke
1797 	 * one key; otherwise, the plaintext and cryptotext would be
1798 	 * identical. For the present there are no provisions to revoke
1799 	 * additional keys, so we sail on with only token revocations.
1800 	 */
1801 	s = BN_new();
1802 	BN_copy(s, q);
1803 	BN_div(s, u, s, s1[n], ctx);
1804 
1805 	/*
1806 	 * For each combination of clients to be revoked, make private
1807 	 * encryption key E = A^s and partial decryption keys gbar = g^s
1808 	 * and ghat = g^(s b), all mod p. The servers use these keys to
1809 	 * compute the session encryption key and partial decryption
1810 	 * keys. These values must be regenerated if the enabling key is
1811 	 * changed.
1812 	 */
1813 	bige = BN_new(); gbar = BN_new(); ghat = BN_new();
1814 	BN_mod_exp(bige, biga, s, p, ctx);
1815 	BN_mod_exp(gbar, g, s, p, ctx);
1816 	BN_mod_mul(v, s, b, q, ctx);
1817 	BN_mod_exp(ghat, g, v, p, ctx);
1818 
1819 	/*
1820 	 * Notes: We produce the key media in three steps. The first
1821 	 * step is to generate the system parameters p, q, g, b, A and
1822 	 * the enabling keys s1[j]. Associated with each s1[j] are
1823 	 * parameters xbar[j] and xhat[j]. All of these parameters are
1824 	 * retained in a data structure protecteted by the trusted-agent
1825 	 * password. The p, xbar[j] and xhat[j] paremeters are
1826 	 * distributed to the j clients. When the client keys are to be
1827 	 * activated, the enabled keys are multipied together to form
1828 	 * the master enabling key s. This and the other parameters are
1829 	 * used to compute the server encryption key E and the partial
1830 	 * decryption keys gbar and ghat.
1831 	 *
1832 	 * In the identity exchange the client rolls random r and sends
1833 	 * it to the server. The server rolls random k, which is used
1834 	 * only once, then computes the session key E^k and partial
1835 	 * decryption keys gbar^k and ghat^k. The server sends the
1836 	 * encrypted r along with gbar^k and ghat^k to the client. The
1837 	 * client completes the decryption and verifies it matches r.
1838 	 */
1839 	/*
1840 	 * Write the MV trusted-agent parameters and keys as a DSA
1841 	 * private key encoded in PEM.
1842 	 *
1843 	 * p	modulus p
1844 	 * q	modulus q
1845 	 * g	generator g
1846 	 * priv_key A mod p
1847 	 * pub_key b mod q
1848 	 * (remaining values are not used)
1849 	 */
1850 	i = 0;
1851 	str = fheader("MVta", "mvta", groupname);
1852 	fprintf(stderr, "Generating MV trusted-authority keys\n");
1853 	BN_copy(priv_key, biga);
1854 	BN_copy(pub_key, b);
1855 	DSA_set0_key(dsa, pub_key, priv_key);
1856 	pkey = EVP_PKEY_new();
1857 	EVP_PKEY_assign_DSA(pkey, dsa);
1858 	PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL,
1859 	    passwd1);
1860 	evpars[i++] = pkey;
1861 	if (debug)
1862 		DSA_print_fp(stderr, dsa, 0);
1863 
1864 	/*
1865 	 * Append the MV server parameters and keys as a DSA key encoded
1866 	 * in PEM.
1867 	 *
1868 	 * p	modulus p
1869 	 * q	modulus q (used only when generating k)
1870 	 * g	bige
1871 	 * priv_key gbar
1872 	 * pub_key ghat
1873 	 * (remaining values are not used)
1874 	 */
1875 	fprintf(stderr, "Generating MV server keys\n");
1876 	dsa2 = DSA_new();
1877 	DSA_set0_pqg(dsa2, BN_dup(p), BN_dup(q), BN_dup(bige));
1878 	DSA_set0_key(dsa2, BN_dup(ghat), BN_dup(gbar));
1879 	pkey1 = EVP_PKEY_new();
1880 	EVP_PKEY_assign_DSA(pkey1, dsa2);
1881 	PEM_write_PKCS8PrivateKey(str, pkey1, cipher, NULL, 0, NULL,
1882 	    passwd1);
1883 	evpars[i++] = pkey1;
1884 	if (debug)
1885 		DSA_print_fp(stderr, dsa2, 0);
1886 
1887 	/*
1888 	 * Append the MV client parameters for each client j as DSA keys
1889 	 * encoded in PEM.
1890 	 *
1891 	 * p	modulus p
1892 	 * priv_key xbar[j] mod q
1893 	 * pub_key xhat[j] mod q
1894 	 * (remaining values are not used)
1895 	 */
1896 	fprintf(stderr, "Generating %d MV client keys\n", n);
1897 	for (j = 1; j <= n; j++) {
1898 		sdsa = DSA_new();
1899 		DSA_set0_pqg(sdsa, BN_dup(p), BN_dup(BN_value_one()),
1900 			BN_dup(BN_value_one()));
1901 		DSA_set0_key(sdsa, BN_dup(xhat[j]), BN_dup(xbar[j]));
1902 		pkey1 = EVP_PKEY_new();
1903 		EVP_PKEY_set1_DSA(pkey1, sdsa);
1904 		PEM_write_PKCS8PrivateKey(str, pkey1, cipher, NULL, 0,
1905 		    NULL, passwd1);
1906 		evpars[i++] = pkey1;
1907 		if (debug)
1908 			DSA_print_fp(stderr, sdsa, 0);
1909 
1910 		/*
1911 		 * The product (gbar^k)^xbar[j] (ghat^k)^xhat[j] and E
1912 		 * are inverses of each other. We check that the product
1913 		 * is one for each client except the ones that have been
1914 		 * revoked.
1915 		 */
1916 		BN_mod_exp(v, gbar, xhat[j], p, ctx);
1917 		BN_mod_exp(u, ghat, xbar[j], p, ctx);
1918 		BN_mod_mul(u, u, v, p, ctx);
1919 		BN_mod_mul(u, u, bige, p, ctx);
1920 		if (!BN_is_one(u)) {
1921 			fprintf(stderr, "Revoke key %d\n", j);
1922 			continue;
1923 		}
1924 	}
1925 	evpars[i++] = NULL;
1926 	fclose(str);
1927 
1928 	/*
1929 	 * Free the countries.
1930 	 */
1931 	for (i = 0; i <= n; i++) {
1932 		BN_free(a[i]); BN_free(gs[i]);
1933 	}
1934 	for (j = 1; j <= n; j++) {
1935 		BN_free(x[j]); BN_free(xbar[j]); BN_free(xhat[j]);
1936 		BN_free(s1[j]);
1937 	}
1938 	return (pkey);
1939 }
1940 
1941 
1942 /*
1943  * Generate X509v3 certificate.
1944  *
1945  * The certificate consists of the version number, serial number,
1946  * validity interval, issuer name, subject name and public key. For a
1947  * self-signed certificate, the issuer name is the same as the subject
1948  * name and these items are signed using the subject private key. The
1949  * validity interval extends from the current time to the same time one
1950  * year hence. For NTP purposes, it is convenient to use the NTP seconds
1951  * of the current time as the serial number.
1952  */
1953 int
1954 x509	(
1955 	EVP_PKEY *pkey,		/* signing key */
1956 	const EVP_MD *md,	/* signature/digest scheme */
1957 	char	*gqpub,		/* identity extension (hex string) */
1958 	const char *exten,	/* private cert extension */
1959 	char	*name		/* subject/issuer name */
1960 	)
1961 {
1962 	X509	*cert;		/* X509 certificate */
1963 	X509_NAME *subj;	/* distinguished (common) name */
1964 	X509_EXTENSION *ex;	/* X509v3 extension */
1965 	FILE	*str;		/* file handle */
1966 	ASN1_INTEGER *serial;	/* serial number */
1967 	const char *id;		/* digest/signature scheme name */
1968 	char	pathbuf[MAXFILENAME + 1];
1969 
1970 	/*
1971 	 * Generate X509 self-signed certificate.
1972 	 *
1973 	 * Set the certificate serial to the NTP seconds for grins. Set
1974 	 * the version to 3. Set the initial validity to the current
1975 	 * time and the finalvalidity one year hence.
1976 	 */
1977  	id = OBJ_nid2sn(EVP_MD_pkey_type(md));
1978 	fprintf(stderr, "Generating new certificate %s %s\n", name, id);
1979 	cert = X509_new();
1980 	X509_set_version(cert, 2L);
1981 	serial = ASN1_INTEGER_new();
1982 	ASN1_INTEGER_set(serial, (long)epoch + JAN_1970);
1983 	X509_set_serialNumber(cert, serial);
1984 	ASN1_INTEGER_free(serial);
1985 	X509_time_adj(X509_getm_notBefore(cert), 0L, &epoch);
1986 	X509_time_adj(X509_getm_notAfter(cert), lifetime * SECSPERDAY, &epoch);
1987 	subj = X509_get_subject_name(cert);
1988 	X509_NAME_add_entry_by_txt(subj, "commonName", MBSTRING_ASC,
1989 	    (u_char *)name, -1, -1, 0);
1990 	subj = X509_get_issuer_name(cert);
1991 	X509_NAME_add_entry_by_txt(subj, "commonName", MBSTRING_ASC,
1992 	    (u_char *)name, -1, -1, 0);
1993 	if (!X509_set_pubkey(cert, pkey)) {
1994 		fprintf(stderr, "Assign certificate signing key fails\n%s\n",
1995 		    ERR_error_string(ERR_get_error(), NULL));
1996 		X509_free(cert);
1997 		return (0);
1998 	}
1999 
2000 	/*
2001 	 * Add X509v3 extensions if present. These represent the minimum
2002 	 * set defined in RFC3280 less the certificate_policy extension,
2003 	 * which is seriously obfuscated in OpenSSL.
2004 	 */
2005 	/*
2006 	 * The basic_constraints extension CA:TRUE allows servers to
2007 	 * sign client certficitates.
2008 	 */
2009 	fprintf(stderr, "%s: %s\n", LN_basic_constraints,
2010 	    BASIC_CONSTRAINTS);
2011 	ex = X509V3_EXT_conf_nid(NULL, NULL, NID_basic_constraints,
2012 	    _UC(BASIC_CONSTRAINTS));
2013 	if (!X509_add_ext(cert, ex, -1)) {
2014 		fprintf(stderr, "Add extension field fails\n%s\n",
2015 		    ERR_error_string(ERR_get_error(), NULL));
2016 		return (0);
2017 	}
2018 	X509_EXTENSION_free(ex);
2019 
2020 	/*
2021 	 * The key_usage extension designates the purposes the key can
2022 	 * be used for.
2023 	 */
2024 	fprintf(stderr, "%s: %s\n", LN_key_usage, KEY_USAGE);
2025 	ex = X509V3_EXT_conf_nid(NULL, NULL, NID_key_usage, _UC(KEY_USAGE));
2026 	if (!X509_add_ext(cert, ex, -1)) {
2027 		fprintf(stderr, "Add extension field fails\n%s\n",
2028 		    ERR_error_string(ERR_get_error(), NULL));
2029 		return (0);
2030 	}
2031 	X509_EXTENSION_free(ex);
2032 	/*
2033 	 * The subject_key_identifier is used for the GQ public key.
2034 	 * This should not be controversial.
2035 	 */
2036 	if (gqpub != NULL) {
2037 		fprintf(stderr, "%s\n", LN_subject_key_identifier);
2038 		ex = X509V3_EXT_conf_nid(NULL, NULL,
2039 		    NID_subject_key_identifier, gqpub);
2040 		if (!X509_add_ext(cert, ex, -1)) {
2041 			fprintf(stderr,
2042 			    "Add extension field fails\n%s\n",
2043 			    ERR_error_string(ERR_get_error(), NULL));
2044 			return (0);
2045 		}
2046 		X509_EXTENSION_free(ex);
2047 	}
2048 
2049 	/*
2050 	 * The extended key usage extension is used for special purpose
2051 	 * here. The semantics probably do not conform to the designer's
2052 	 * intent and will likely change in future.
2053 	 *
2054 	 * "trustRoot" designates a root authority
2055 	 * "private" designates a private certificate
2056 	 */
2057 	if (exten != NULL) {
2058 		fprintf(stderr, "%s: %s\n", LN_ext_key_usage, exten);
2059 		ex = X509V3_EXT_conf_nid(NULL, NULL,
2060 		    NID_ext_key_usage, _UC(exten));
2061 		if (!X509_add_ext(cert, ex, -1)) {
2062 			fprintf(stderr,
2063 			    "Add extension field fails\n%s\n",
2064 			    ERR_error_string(ERR_get_error(), NULL));
2065 			return (0);
2066 		}
2067 		X509_EXTENSION_free(ex);
2068 	}
2069 
2070 	/*
2071 	 * Sign and verify.
2072 	 */
2073 	X509_sign(cert, pkey, md);
2074 	if (X509_verify(cert, pkey) <= 0) {
2075 		fprintf(stderr, "Verify %s certificate fails\n%s\n", id,
2076 		    ERR_error_string(ERR_get_error(), NULL));
2077 		X509_free(cert);
2078 		return (0);
2079 	}
2080 
2081 	/*
2082 	 * Write the certificate encoded in PEM.
2083 	 */
2084 	snprintf(pathbuf, sizeof(pathbuf), "%scert", id);
2085 	str = fheader(pathbuf, "cert", hostname);
2086 	PEM_write_X509(str, cert);
2087 	fclose(str);
2088 	if (debug)
2089 		X509_print_fp(stderr, cert);
2090 	X509_free(cert);
2091 	return (1);
2092 }
2093 
2094 #if 0	/* asn2ntp is used only with commercial certificates */
2095 /*
2096  * asn2ntp - convert ASN1_TIME time structure to NTP time
2097  */
2098 u_long
2099 asn2ntp	(
2100 	ASN1_TIME *asn1time	/* pointer to ASN1_TIME structure */
2101 	)
2102 {
2103 	char	*v;		/* pointer to ASN1_TIME string */
2104 	struct	tm tm;		/* time decode structure time */
2105 
2106 	/*
2107 	 * Extract time string YYMMDDHHMMSSZ from ASN.1 time structure.
2108 	 * Note that the YY, MM, DD fields start with one, the HH, MM,
2109 	 * SS fiels start with zero and the Z character should be 'Z'
2110 	 * for UTC. Also note that years less than 50 map to years
2111 	 * greater than 100. Dontcha love ASN.1?
2112 	 */
2113 	if (asn1time->length > 13)
2114 		return (-1);
2115 	v = (char *)asn1time->data;
2116 	tm.tm_year = (v[0] - '0') * 10 + v[1] - '0';
2117 	if (tm.tm_year < 50)
2118 		tm.tm_year += 100;
2119 	tm.tm_mon = (v[2] - '0') * 10 + v[3] - '0' - 1;
2120 	tm.tm_mday = (v[4] - '0') * 10 + v[5] - '0';
2121 	tm.tm_hour = (v[6] - '0') * 10 + v[7] - '0';
2122 	tm.tm_min = (v[8] - '0') * 10 + v[9] - '0';
2123 	tm.tm_sec = (v[10] - '0') * 10 + v[11] - '0';
2124 	tm.tm_wday = 0;
2125 	tm.tm_yday = 0;
2126 	tm.tm_isdst = 0;
2127 	return (mktime(&tm) + JAN_1970);
2128 }
2129 #endif
2130 
2131 /*
2132  * Callback routine
2133  */
2134 void
2135 cb	(
2136 	int	n1,		/* arg 1 */
2137 	int	n2,		/* arg 2 */
2138 	void	*chr		/* arg 3 */
2139 	)
2140 {
2141 	switch (n1) {
2142 	case 0:
2143 		d0++;
2144 		fprintf(stderr, "%s %d %d %lu\r", (char *)chr, n1, n2,
2145 		    d0);
2146 		break;
2147 	case 1:
2148 		d1++;
2149 		fprintf(stderr, "%s\t\t%d %d %lu\r", (char *)chr, n1,
2150 		    n2, d1);
2151 		break;
2152 	case 2:
2153 		d2++;
2154 		fprintf(stderr, "%s\t\t\t\t%d %d %lu\r", (char *)chr,
2155 		    n1, n2, d2);
2156 		break;
2157 	case 3:
2158 		d3++;
2159 		fprintf(stderr, "%s\t\t\t\t\t\t%d %d %lu\r",
2160 		    (char *)chr, n1, n2, d3);
2161 		break;
2162 	}
2163 }
2164 
2165 
2166 /*
2167  * Generate key
2168  */
2169 EVP_PKEY *			/* public/private key pair */
2170 genkey(
2171 	const char *type,	/* key type (RSA or DSA) */
2172 	const char *id		/* file name id */
2173 	)
2174 {
2175 	if (type == NULL)
2176 		return (NULL);
2177 	if (strcmp(type, "RSA") == 0)
2178 		return (gen_rsa(id));
2179 
2180 	else if (strcmp(type, "DSA") == 0)
2181 		return (gen_dsa(id));
2182 
2183 	fprintf(stderr, "Invalid %s key type %s\n", id, type);
2184 	return (NULL);
2185 }
2186 
2187 static RSA*
2188 genRsaKeyPair(
2189 	int	bits,
2190 	char *	what
2191 	)
2192 {
2193 	RSA *		rsa = RSA_new();
2194 	BN_GENCB *	gcb = BN_GENCB_new();
2195 	BIGNUM *	bne = BN_new();
2196 
2197 	if (gcb)
2198 		BN_GENCB_set_old(gcb, cb, what);
2199 	if (bne)
2200 		BN_set_word(bne, 65537);
2201 	if (!(rsa && gcb && bne && RSA_generate_key_ex(
2202 		      rsa, bits, bne, gcb)))
2203 	{
2204 		RSA_free(rsa);
2205 		rsa = NULL;
2206 	}
2207 	BN_GENCB_free(gcb);
2208 	BN_free(bne);
2209 	return rsa;
2210 }
2211 
2212 static DSA*
2213 genDsaParams(
2214 	int	bits,
2215 	char *	what
2216 	)
2217 {
2218 
2219 	DSA *		dsa = DSA_new();
2220 	BN_GENCB *	gcb = BN_GENCB_new();
2221 	u_char		seed[20];
2222 
2223 	if (gcb)
2224 		BN_GENCB_set_old(gcb, cb, what);
2225 	RAND_bytes(seed, sizeof(seed));
2226 	if (!(dsa && gcb && DSA_generate_parameters_ex(
2227 		      dsa, bits, seed, sizeof(seed), NULL, NULL, gcb)))
2228 	{
2229 		DSA_free(dsa);
2230 		dsa = NULL;
2231 	}
2232 	BN_GENCB_free(gcb);
2233 	return dsa;
2234 }
2235 
2236 #endif	/* AUTOKEY */
2237 
2238 
2239 /*
2240  * Generate file header and link
2241  */
2242 FILE *
2243 fheader	(
2244 	const char *file,	/* file name id */
2245 	const char *ulink,	/* linkname */
2246 	const char *owner	/* owner name */
2247 	)
2248 {
2249 	FILE	*str;		/* file handle */
2250 	char	linkname[MAXFILENAME]; /* link name */
2251 	int	temp;
2252 #ifdef HAVE_UMASK
2253         mode_t  orig_umask;
2254 #endif
2255 
2256 	snprintf(filename, sizeof(filename), "ntpkey_%s_%s.%u", file,
2257 	    owner, fstamp);
2258 #ifdef HAVE_UMASK
2259         orig_umask = umask( S_IWGRP | S_IRWXO );
2260         str = fopen(filename, "w");
2261         (void) umask(orig_umask);
2262 #else
2263         str = fopen(filename, "w");
2264 #endif
2265 	if (str == NULL) {
2266 		perror("Write");
2267 		exit (-1);
2268 	}
2269         if (strcmp(ulink, "md5") == 0) {
2270           strcpy(linkname,"ntp.keys");
2271         } else {
2272           snprintf(linkname, sizeof(linkname), "ntpkey_%s_%s", ulink,
2273                    hostname);
2274         }
2275 	(void)remove(linkname);		/* The symlink() line below matters */
2276 	temp = symlink(filename, linkname);
2277 	if (temp < 0)
2278 		perror(file);
2279 	fprintf(stderr, "Generating new %s file and link\n", ulink);
2280 	fprintf(stderr, "%s->%s\n", linkname, filename);
2281 	fprintf(str, "# %s\n# %s\n", filename, ctime(&epoch));
2282 	return (str);
2283 }
2284