xref: /freebsd/contrib/ntp/util/ntp-keygen.c (revision 63d1fd5970ec814904aa0f4580b10a0d302d08b2)
1 /*
2  * Program to generate cryptographic keys for ntp clients and servers
3  *
4  * This program generates password encrypted data files for use with the
5  * Autokey security protocol and Network Time Protocol Version 4. Files
6  * are prefixed with a header giving the name and date of creation
7  * followed by a type-specific descriptive label and PEM-encoded data
8  * structure compatible with programs of the OpenSSL library.
9  *
10  * All file names are like "ntpkey_<type>_<hostname>.<filestamp>", where
11  * <type> is the file type, <hostname> the generating host name and
12  * <filestamp> the generation time in NTP seconds. The NTP programs
13  * expect generic names such as "ntpkey_<type>_whimsy.udel.edu" with the
14  * association maintained by soft links. Following is a list of file
15  * types; the first line is the file name and the second link name.
16  *
17  * ntpkey_MD5key_<hostname>.<filestamp>
18  * 	MD5 (128-bit) keys used to compute message digests in symmetric
19  *	key cryptography
20  *
21  * ntpkey_RSAhost_<hostname>.<filestamp>
22  * ntpkey_host_<hostname>
23  *	RSA private/public host key pair used for public key signatures
24  *
25  * ntpkey_RSAsign_<hostname>.<filestamp>
26  * ntpkey_sign_<hostname>
27  *	RSA private/public sign key pair used for public key signatures
28  *
29  * ntpkey_DSAsign_<hostname>.<filestamp>
30  * ntpkey_sign_<hostname>
31  *	DSA Private/public sign key pair used for public key signatures
32  *
33  * Available digest/signature schemes
34  *
35  * RSA:	RSA-MD2, RSA-MD5, RSA-SHA, RSA-SHA1, RSA-MDC2, EVP-RIPEMD160
36  * DSA:	DSA-SHA, DSA-SHA1
37  *
38  * ntpkey_XXXcert_<hostname>.<filestamp>
39  * ntpkey_cert_<hostname>
40  *	X509v3 certificate using RSA or DSA public keys and signatures.
41  *	XXX is a code identifying the message digest and signature
42  *	encryption algorithm
43  *
44  * Identity schemes. The key type par is used for the challenge; the key
45  * type key is used for the response.
46  *
47  * ntpkey_IFFkey_<groupname>.<filestamp>
48  * ntpkey_iffkey_<groupname>
49  *	Schnorr (IFF) identity parameters and keys
50  *
51  * ntpkey_GQkey_<groupname>.<filestamp>,
52  * ntpkey_gqkey_<groupname>
53  *	Guillou-Quisquater (GQ) identity parameters and keys
54  *
55  * ntpkey_MVkeyX_<groupname>.<filestamp>,
56  * ntpkey_mvkey_<groupname>
57  *	Mu-Varadharajan (MV) identity parameters and keys
58  *
59  * Note: Once in a while because of some statistical fluke this program
60  * fails to generate and verify some cryptographic data, as indicated by
61  * exit status -1. In this case simply run the program again. If the
62  * program does complete with exit code 0, the data are correct as
63  * verified.
64  *
65  * These cryptographic routines are characterized by the prime modulus
66  * size in bits. The default value of 512 bits is a compromise between
67  * cryptographic strength and computing time and is ordinarily
68  * considered adequate for this application. The routines have been
69  * tested with sizes of 256, 512, 1024 and 2048 bits. Not all message
70  * digest and signature encryption schemes work with sizes less than 512
71  * bits. The computing time for sizes greater than 2048 bits is
72  * prohibitive on all but the fastest processors. An UltraSPARC Blade
73  * 1000 took something over nine minutes to generate and verify the
74  * values with size 2048. An old SPARC IPC would take a week.
75  *
76  * The OpenSSL library used by this program expects a random seed file.
77  * As described in the OpenSSL documentation, the file name defaults to
78  * first the RANDFILE environment variable in the user's home directory
79  * and then .rnd in the user's home directory.
80  */
81 #ifdef HAVE_CONFIG_H
82 # include <config.h>
83 #endif
84 #include <string.h>
85 #include <stdio.h>
86 #include <stdlib.h>
87 #include <unistd.h>
88 #include <sys/stat.h>
89 #include <sys/time.h>
90 #include <sys/types.h>
91 
92 #include "ntp.h"
93 #include "ntp_random.h"
94 #include "ntp_stdlib.h"
95 #include "ntp_assert.h"
96 #include "ntp_libopts.h"
97 #include "ntp_unixtime.h"
98 #include "ntp-keygen-opts.h"
99 
100 #ifdef OPENSSL
101 #include "openssl/bn.h"
102 #include "openssl/evp.h"
103 #include "openssl/err.h"
104 #include "openssl/rand.h"
105 #include "openssl/pem.h"
106 #include "openssl/x509v3.h"
107 #include <openssl/objects.h>
108 #include "libssl_compat.h"
109 #endif	/* OPENSSL */
110 #include <ssl_applink.c>
111 
112 #define _UC(str)	((char *)(intptr_t)(str))
113 /*
114  * Cryptodefines
115  */
116 #define	MD5KEYS		10	/* number of keys generated of each type */
117 #define	MD5SIZE		20	/* maximum key size */
118 #ifdef AUTOKEY
119 #define	PLEN		512	/* default prime modulus size (bits) */
120 #define	ILEN		256	/* default identity modulus size (bits) */
121 #define	MVMAX		100	/* max MV parameters */
122 
123 /*
124  * Strings used in X509v3 extension fields
125  */
126 #define KEY_USAGE		"digitalSignature,keyCertSign"
127 #define BASIC_CONSTRAINTS	"critical,CA:TRUE"
128 #define EXT_KEY_PRIVATE		"private"
129 #define EXT_KEY_TRUST		"trustRoot"
130 #endif	/* AUTOKEY */
131 
132 /*
133  * Prototypes
134  */
135 FILE	*fheader	(const char *, const char *, const char *);
136 int	gen_md5		(const char *);
137 void	followlink	(char *, size_t);
138 #ifdef AUTOKEY
139 EVP_PKEY *gen_rsa	(const char *);
140 EVP_PKEY *gen_dsa	(const char *);
141 EVP_PKEY *gen_iffkey	(const char *);
142 EVP_PKEY *gen_gqkey	(const char *);
143 EVP_PKEY *gen_mvkey	(const char *, EVP_PKEY **);
144 void	gen_mvserv	(char *, EVP_PKEY **);
145 int	x509		(EVP_PKEY *, const EVP_MD *, char *, const char *,
146 			    char *);
147 void	cb		(int, int, void *);
148 EVP_PKEY *genkey	(const char *, const char *);
149 EVP_PKEY *readkey	(char *, char *, u_int *, EVP_PKEY **);
150 void	writekey	(char *, char *, u_int *, EVP_PKEY **);
151 u_long	asn2ntp		(ASN1_TIME *);
152 
153 static DSA* genDsaParams(int, char*);
154 static RSA* genRsaKeyPair(int, char*);
155 
156 #endif	/* AUTOKEY */
157 
158 /*
159  * Program variables
160  */
161 extern char *optarg;		/* command line argument */
162 char	const *progname;
163 u_int	lifetime = DAYSPERYEAR;	/* certificate lifetime (days) */
164 int	nkeys;			/* MV keys */
165 time_t	epoch;			/* Unix epoch (seconds) since 1970 */
166 u_int	fstamp;			/* NTP filestamp */
167 char	hostbuf[MAXHOSTNAME + 1];
168 char	*hostname = NULL;	/* host, used in cert filenames */
169 char	*groupname = NULL;	/* group name */
170 char	certnamebuf[2 * sizeof(hostbuf)];
171 char	*certname = NULL;	/* certificate subject/issuer name */
172 char	*passwd1 = NULL;	/* input private key password */
173 char	*passwd2 = NULL;	/* output private key password */
174 char	filename[MAXFILENAME + 1]; /* file name */
175 #ifdef AUTOKEY
176 u_int	modulus = PLEN;		/* prime modulus size (bits) */
177 u_int	modulus2 = ILEN;	/* identity modulus size (bits) */
178 long	d0, d1, d2, d3;		/* callback counters */
179 const EVP_CIPHER * cipher = NULL;
180 #endif	/* AUTOKEY */
181 
182 #ifdef SYS_WINNT
183 BOOL init_randfile();
184 
185 /*
186  * Don't try to follow symbolic links on Windows.  Assume link == file.
187  */
188 int
189 readlink(
190 	char *	link,
191 	char *	file,
192 	int	len
193 	)
194 {
195 	return (int)strlen(file); /* assume no overflow possible */
196 }
197 
198 /*
199  * Don't try to create symbolic links on Windows, that is supported on
200  * Vista and later only.  Instead, if CreateHardLink is available (XP
201  * and later), hardlink the linkname to the original filename.  On
202  * earlier systems, user must rename file to match expected link for
203  * ntpd to find it.  To allow building a ntp-keygen.exe which loads on
204  * Windows pre-XP, runtime link to CreateHardLinkA().
205  */
206 int
207 symlink(
208 	char *	filename,
209 	char*	linkname
210 	)
211 {
212 	typedef BOOL (WINAPI *PCREATEHARDLINKA)(
213 		__in LPCSTR	lpFileName,
214 		__in LPCSTR	lpExistingFileName,
215 		__reserved LPSECURITY_ATTRIBUTES lpSA
216 		);
217 	static PCREATEHARDLINKA pCreateHardLinkA;
218 	static int		tried;
219 	HMODULE			hDll;
220 	FARPROC			pfn;
221 	int			link_created;
222 	int			saved_errno;
223 
224 	if (!tried) {
225 		tried = TRUE;
226 		hDll = LoadLibrary("kernel32");
227 		pfn = GetProcAddress(hDll, "CreateHardLinkA");
228 		pCreateHardLinkA = (PCREATEHARDLINKA)pfn;
229 	}
230 
231 	if (NULL == pCreateHardLinkA) {
232 		errno = ENOSYS;
233 		return -1;
234 	}
235 
236 	link_created = (*pCreateHardLinkA)(linkname, filename, NULL);
237 
238 	if (link_created)
239 		return 0;
240 
241 	saved_errno = GetLastError();	/* yes we play loose */
242 	mfprintf(stderr, "Create hard link %s to %s failed: %m\n",
243 		 linkname, filename);
244 	errno = saved_errno;
245 	return -1;
246 }
247 
248 void
249 InitWin32Sockets() {
250 	WORD wVersionRequested;
251 	WSADATA wsaData;
252 	wVersionRequested = MAKEWORD(2,0);
253 	if (WSAStartup(wVersionRequested, &wsaData))
254 	{
255 		fprintf(stderr, "No useable winsock.dll\n");
256 		exit(1);
257 	}
258 }
259 #endif /* SYS_WINNT */
260 
261 
262 /*
263  * followlink() - replace filename with its target if symlink.
264  *
265  * Some readlink() implementations do not null-terminate the result.
266  */
267 void
268 followlink(
269 	char *	fname,
270 	size_t	bufsiz
271 	)
272 {
273 	int len;
274 
275 	REQUIRE(bufsiz > 0);
276 
277 	len = readlink(fname, fname, (int)bufsiz);
278 	if (len < 0 ) {
279 		fname[0] = '\0';
280 		return;
281 	}
282 	if (len > (int)bufsiz - 1)
283 		len = (int)bufsiz - 1;
284 	fname[len] = '\0';
285 }
286 
287 
288 /*
289  * Main program
290  */
291 int
292 main(
293 	int	argc,		/* command line options */
294 	char	**argv
295 	)
296 {
297 	struct timeval tv;	/* initialization vector */
298 	int	md5key = 0;	/* generate MD5 keys */
299 	int	optct;		/* option count */
300 #ifdef AUTOKEY
301 	X509	*cert = NULL;	/* X509 certificate */
302 	EVP_PKEY *pkey_host = NULL; /* host key */
303 	EVP_PKEY *pkey_sign = NULL; /* sign key */
304 	EVP_PKEY *pkey_iffkey = NULL; /* IFF sever keys */
305 	EVP_PKEY *pkey_gqkey = NULL; /* GQ server keys */
306 	EVP_PKEY *pkey_mvkey = NULL; /* MV trusted agen keys */
307 	EVP_PKEY *pkey_mvpar[MVMAX]; /* MV cleient keys */
308 	int	hostkey = 0;	/* generate RSA keys */
309 	int	iffkey = 0;	/* generate IFF keys */
310 	int	gqkey = 0;	/* generate GQ keys */
311 	int	mvkey = 0;	/* update MV keys */
312 	int	mvpar = 0;	/* generate MV parameters */
313 	char	*sign = NULL;	/* sign key */
314 	EVP_PKEY *pkey = NULL;	/* temp key */
315 	const EVP_MD *ectx;	/* EVP digest */
316 	char	pathbuf[MAXFILENAME + 1];
317 	const char *scheme = NULL; /* digest/signature scheme */
318 	const char *ciphername = NULL; /* to encrypt priv. key */
319 	const char *exten = NULL;	/* private extension */
320 	char	*grpkey = NULL;	/* identity extension */
321 	int	nid;		/* X509 digest/signature scheme */
322 	FILE	*fstr = NULL;	/* file handle */
323 	char	groupbuf[MAXHOSTNAME + 1];
324 	u_int	temp;
325 	BIO *	bp;
326 	int	i, cnt;
327 	char *	ptr;
328 #endif	/* AUTOKEY */
329 
330 	progname = argv[0];
331 
332 #ifdef SYS_WINNT
333 	/* Initialize before OpenSSL checks */
334 	InitWin32Sockets();
335 	if (!init_randfile())
336 		fprintf(stderr, "Unable to initialize .rnd file\n");
337 	ssl_applink();
338 #endif
339 
340 #ifdef OPENSSL
341 	ssl_check_version();
342 #endif	/* OPENSSL */
343 
344 	ntp_crypto_srandom();
345 
346 	/*
347 	 * Process options, initialize host name and timestamp.
348 	 * gethostname() won't null-terminate if hostname is exactly the
349 	 * length provided for the buffer.
350 	 */
351 	gethostname(hostbuf, sizeof(hostbuf) - 1);
352 	hostbuf[COUNTOF(hostbuf) - 1] = '\0';
353 	hostname = hostbuf;
354 	groupname = hostbuf;
355 	passwd1 = hostbuf;
356 	passwd2 = NULL;
357 	GETTIMEOFDAY(&tv, NULL);
358 	epoch = tv.tv_sec;
359 	fstamp = (u_int)(epoch + JAN_1970);
360 
361 	optct = ntpOptionProcess(&ntp_keygenOptions, argc, argv);
362 	argc -= optct;	// Just in case we care later.
363 	argv += optct;	// Just in case we care later.
364 
365 #ifdef OPENSSL
366 	if (SSLeay() == SSLEAY_VERSION_NUMBER)
367 		fprintf(stderr, "Using OpenSSL version %s\n",
368 			SSLeay_version(SSLEAY_VERSION));
369 	else
370 		fprintf(stderr, "Built against OpenSSL %s, using version %s\n",
371 			OPENSSL_VERSION_TEXT, SSLeay_version(SSLEAY_VERSION));
372 #endif /* OPENSSL */
373 
374 	debug = OPT_VALUE_SET_DEBUG_LEVEL;
375 
376 	if (HAVE_OPT( MD5KEY ))
377 		md5key++;
378 #ifdef AUTOKEY
379 	if (HAVE_OPT( PASSWORD ))
380 		passwd1 = estrdup(OPT_ARG( PASSWORD ));
381 
382 	if (HAVE_OPT( EXPORT_PASSWD ))
383 		passwd2 = estrdup(OPT_ARG( EXPORT_PASSWD ));
384 
385 	if (HAVE_OPT( HOST_KEY ))
386 		hostkey++;
387 
388 	if (HAVE_OPT( SIGN_KEY ))
389 		sign = estrdup(OPT_ARG( SIGN_KEY ));
390 
391 	if (HAVE_OPT( GQ_PARAMS ))
392 		gqkey++;
393 
394 	if (HAVE_OPT( IFFKEY ))
395 		iffkey++;
396 
397 	if (HAVE_OPT( MV_PARAMS )) {
398 		mvkey++;
399 		nkeys = OPT_VALUE_MV_PARAMS;
400 	}
401 	if (HAVE_OPT( MV_KEYS )) {
402 		mvpar++;
403 		nkeys = OPT_VALUE_MV_KEYS;
404 	}
405 
406 	if (HAVE_OPT( IMBITS ))
407 		modulus2 = OPT_VALUE_IMBITS;
408 
409 	if (HAVE_OPT( MODULUS ))
410 		modulus = OPT_VALUE_MODULUS;
411 
412 	if (HAVE_OPT( CERTIFICATE ))
413 		scheme = OPT_ARG( CERTIFICATE );
414 
415 	if (HAVE_OPT( CIPHER ))
416 		ciphername = OPT_ARG( CIPHER );
417 
418 	if (HAVE_OPT( SUBJECT_NAME ))
419 		hostname = estrdup(OPT_ARG( SUBJECT_NAME ));
420 
421 	if (HAVE_OPT( IDENT ))
422 		groupname = estrdup(OPT_ARG( IDENT ));
423 
424 	if (HAVE_OPT( LIFETIME ))
425 		lifetime = OPT_VALUE_LIFETIME;
426 
427 	if (HAVE_OPT( PVT_CERT ))
428 		exten = EXT_KEY_PRIVATE;
429 
430 	if (HAVE_OPT( TRUSTED_CERT ))
431 		exten = EXT_KEY_TRUST;
432 
433 	/*
434 	 * Remove the group name from the hostname variable used
435 	 * in host and sign certificate file names.
436 	 */
437 	if (hostname != hostbuf)
438 		ptr = strchr(hostname, '@');
439 	else
440 		ptr = NULL;
441 	if (ptr != NULL) {
442 		*ptr = '\0';
443 		groupname = estrdup(ptr + 1);
444 		/* -s @group is equivalent to -i group, host unch. */
445 		if (ptr == hostname)
446 			hostname = hostbuf;
447 	}
448 
449 	/*
450 	 * Derive host certificate issuer/subject names from host name
451 	 * and optional group.  If no groupname is provided, the issuer
452 	 * and subject is the hostname with no '@group', and the
453 	 * groupname variable is pointed to hostname for use in IFF, GQ,
454 	 * and MV parameters file names.
455 	 */
456 	if (groupname == hostbuf) {
457 		certname = hostname;
458 	} else {
459 		snprintf(certnamebuf, sizeof(certnamebuf), "%s@%s",
460 			 hostname, groupname);
461 		certname = certnamebuf;
462 	}
463 
464 	/*
465 	 * Seed random number generator and grow weeds.
466 	 */
467 	ERR_load_crypto_strings();
468 	OpenSSL_add_all_algorithms();
469 	if (!RAND_status()) {
470 		if (RAND_file_name(pathbuf, sizeof(pathbuf)) == NULL) {
471 			fprintf(stderr, "RAND_file_name %s\n",
472 			    ERR_error_string(ERR_get_error(), NULL));
473 			exit (-1);
474 		}
475 		temp = RAND_load_file(pathbuf, -1);
476 		if (temp == 0) {
477 			fprintf(stderr,
478 			    "RAND_load_file %s not found or empty\n",
479 			    pathbuf);
480 			exit (-1);
481 		}
482 		fprintf(stderr,
483 		    "Random seed file %s %u bytes\n", pathbuf, temp);
484 		RAND_add(&epoch, sizeof(epoch), 4.0);
485 	}
486 #endif	/* AUTOKEY */
487 
488 	/*
489 	 * Create new unencrypted MD5 keys file if requested. If this
490 	 * option is selected, ignore all other options.
491 	 */
492 	if (md5key) {
493 		gen_md5("md5");
494 		exit (0);
495 	}
496 
497 #ifdef AUTOKEY
498 	/*
499 	 * Load previous certificate if available.
500 	 */
501 	snprintf(filename, sizeof(filename), "ntpkey_cert_%s", hostname);
502 	if ((fstr = fopen(filename, "r")) != NULL) {
503 		cert = PEM_read_X509(fstr, NULL, NULL, NULL);
504 		fclose(fstr);
505 	}
506 	if (cert != NULL) {
507 
508 		/*
509 		 * Extract subject name.
510 		 */
511 		X509_NAME_oneline(X509_get_subject_name(cert), groupbuf,
512 		    MAXFILENAME);
513 
514 		/*
515 		 * Extract digest/signature scheme.
516 		 */
517 		if (scheme == NULL) {
518 			nid = X509_get_signature_nid(cert);
519 			scheme = OBJ_nid2sn(nid);
520 		}
521 
522 		/*
523 		 * If a key_usage extension field is present, determine
524 		 * whether this is a trusted or private certificate.
525 		 */
526 		if (exten == NULL) {
527 			ptr = strstr(groupbuf, "CN=");
528 			cnt = X509_get_ext_count(cert);
529 			for (i = 0; i < cnt; i++) {
530 				X509_EXTENSION *ext;
531 				ASN1_OBJECT *obj;
532 
533 				ext = X509_get_ext(cert, i);
534 				obj = X509_EXTENSION_get_object(ext);
535 
536 				if (OBJ_obj2nid(obj) ==
537 				    NID_ext_key_usage) {
538 					bp = BIO_new(BIO_s_mem());
539 					X509V3_EXT_print(bp, ext, 0, 0);
540 					BIO_gets(bp, pathbuf,
541 					    MAXFILENAME);
542 					BIO_free(bp);
543 					if (strcmp(pathbuf,
544 					    "Trust Root") == 0)
545 						exten = EXT_KEY_TRUST;
546 					else if (strcmp(pathbuf,
547 					    "Private") == 0)
548 						exten = EXT_KEY_PRIVATE;
549 					certname = estrdup(ptr + 3);
550 				}
551 			}
552 		}
553 	}
554 	if (scheme == NULL)
555 		scheme = "RSA-MD5";
556 	if (ciphername == NULL)
557 		ciphername = "des-ede3-cbc";
558 	cipher = EVP_get_cipherbyname(ciphername);
559 	if (cipher == NULL) {
560 		fprintf(stderr, "Unknown cipher %s\n", ciphername);
561 		exit(-1);
562 	}
563 	fprintf(stderr, "Using host %s group %s\n", hostname,
564 	    groupname);
565 
566 	/*
567 	 * Create a new encrypted RSA host key file if requested;
568 	 * otherwise, look for an existing host key file. If not found,
569 	 * create a new encrypted RSA host key file. If that fails, go
570 	 * no further.
571 	 */
572 	if (hostkey)
573 		pkey_host = genkey("RSA", "host");
574 	if (pkey_host == NULL) {
575 		snprintf(filename, sizeof(filename), "ntpkey_host_%s", hostname);
576 		pkey_host = readkey(filename, passwd1, &fstamp, NULL);
577 		if (pkey_host != NULL) {
578 			followlink(filename, sizeof(filename));
579 			fprintf(stderr, "Using host key %s\n",
580 			    filename);
581 		} else {
582 			pkey_host = genkey("RSA", "host");
583 		}
584 	}
585 	if (pkey_host == NULL) {
586 		fprintf(stderr, "Generating host key fails\n");
587 		exit(-1);
588 	}
589 
590 	/*
591 	 * Create new encrypted RSA or DSA sign keys file if requested;
592 	 * otherwise, look for an existing sign key file. If not found,
593 	 * use the host key instead.
594 	 */
595 	if (sign != NULL)
596 		pkey_sign = genkey(sign, "sign");
597 	if (pkey_sign == NULL) {
598 		snprintf(filename, sizeof(filename), "ntpkey_sign_%s",
599 			 hostname);
600 		pkey_sign = readkey(filename, passwd1, &fstamp, NULL);
601 		if (pkey_sign != NULL) {
602 			followlink(filename, sizeof(filename));
603 			fprintf(stderr, "Using sign key %s\n",
604 			    filename);
605 		} else {
606 			pkey_sign = pkey_host;
607 			fprintf(stderr, "Using host key as sign key\n");
608 		}
609 	}
610 
611 	/*
612 	 * Create new encrypted GQ server keys file if requested;
613 	 * otherwise, look for an exisiting file. If found, fetch the
614 	 * public key for the certificate.
615 	 */
616 	if (gqkey)
617 		pkey_gqkey = gen_gqkey("gqkey");
618 	if (pkey_gqkey == NULL) {
619 		snprintf(filename, sizeof(filename), "ntpkey_gqkey_%s",
620 		    groupname);
621 		pkey_gqkey = readkey(filename, passwd1, &fstamp, NULL);
622 		if (pkey_gqkey != NULL) {
623 			followlink(filename, sizeof(filename));
624 			fprintf(stderr, "Using GQ parameters %s\n",
625 			    filename);
626 		}
627 	}
628 	if (pkey_gqkey != NULL) {
629 		RSA	*rsa;
630 		const BIGNUM *q;
631 
632 		rsa = EVP_PKEY_get0_RSA(pkey_gqkey);
633 		RSA_get0_factors(rsa, NULL, &q);
634 		grpkey = BN_bn2hex(q);
635 	}
636 
637 	/*
638 	 * Write the nonencrypted GQ client parameters to the stdout
639 	 * stream. The parameter file is the server key file with the
640 	 * private key obscured.
641 	 */
642 	if (pkey_gqkey != NULL && HAVE_OPT(ID_KEY)) {
643 		RSA	*rsa;
644 
645 		snprintf(filename, sizeof(filename),
646 		    "ntpkey_gqpar_%s.%u", groupname, fstamp);
647 		fprintf(stderr, "Writing GQ parameters %s to stdout\n",
648 		    filename);
649 		fprintf(stdout, "# %s\n# %s\n", filename,
650 		    ctime(&epoch));
651 		/* XXX: This modifies the private key and should probably use a
652 		 * copy of it instead. */
653 		rsa = EVP_PKEY_get0_RSA(pkey_gqkey);
654 		RSA_set0_factors(rsa, BN_dup(BN_value_one()), BN_dup(BN_value_one()));
655 		pkey = EVP_PKEY_new();
656 		EVP_PKEY_assign_RSA(pkey, rsa);
657 		PEM_write_PKCS8PrivateKey(stdout, pkey, NULL, NULL, 0,
658 		    NULL, NULL);
659 		fflush(stdout);
660 		if (debug)
661 			RSA_print_fp(stderr, rsa, 0);
662 	}
663 
664 	/*
665 	 * Write the encrypted GQ server keys to the stdout stream.
666 	 */
667 	if (pkey_gqkey != NULL && passwd2 != NULL) {
668 		RSA	*rsa;
669 
670 		snprintf(filename, sizeof(filename),
671 		    "ntpkey_gqkey_%s.%u", groupname, fstamp);
672 		fprintf(stderr, "Writing GQ keys %s to stdout\n",
673 		    filename);
674 		fprintf(stdout, "# %s\n# %s\n", filename,
675 		    ctime(&epoch));
676 		rsa = EVP_PKEY_get0_RSA(pkey_gqkey);
677 		pkey = EVP_PKEY_new();
678 		EVP_PKEY_assign_RSA(pkey, rsa);
679 		PEM_write_PKCS8PrivateKey(stdout, pkey, cipher, NULL, 0,
680 		    NULL, passwd2);
681 		fflush(stdout);
682 		if (debug)
683 			RSA_print_fp(stderr, rsa, 0);
684 	}
685 
686 	/*
687 	 * Create new encrypted IFF server keys file if requested;
688 	 * otherwise, look for existing file.
689 	 */
690 	if (iffkey)
691 		pkey_iffkey = gen_iffkey("iffkey");
692 	if (pkey_iffkey == NULL) {
693 		snprintf(filename, sizeof(filename), "ntpkey_iffkey_%s",
694 		    groupname);
695 		pkey_iffkey = readkey(filename, passwd1, &fstamp, NULL);
696 		if (pkey_iffkey != NULL) {
697 			followlink(filename, sizeof(filename));
698 			fprintf(stderr, "Using IFF keys %s\n",
699 			    filename);
700 		}
701 	}
702 
703 	/*
704 	 * Write the nonencrypted IFF client parameters to the stdout
705 	 * stream. The parameter file is the server key file with the
706 	 * private key obscured.
707 	 */
708 	if (pkey_iffkey != NULL && HAVE_OPT(ID_KEY)) {
709 		DSA	*dsa;
710 
711 		snprintf(filename, sizeof(filename),
712 		    "ntpkey_iffpar_%s.%u", groupname, fstamp);
713 		fprintf(stderr, "Writing IFF parameters %s to stdout\n",
714 		    filename);
715 		fprintf(stdout, "# %s\n# %s\n", filename,
716 		    ctime(&epoch));
717 		/* XXX: This modifies the private key and should probably use a
718 		 * copy of it instead. */
719 		dsa = EVP_PKEY_get0_DSA(pkey_iffkey);
720 		DSA_set0_key(dsa, NULL, BN_dup(BN_value_one()));
721 		pkey = EVP_PKEY_new();
722 		EVP_PKEY_assign_DSA(pkey, dsa);
723 		PEM_write_PKCS8PrivateKey(stdout, pkey, NULL, NULL, 0,
724 		    NULL, NULL);
725 		fflush(stdout);
726 		if (debug)
727 			DSA_print_fp(stderr, dsa, 0);
728 	}
729 
730 	/*
731 	 * Write the encrypted IFF server keys to the stdout stream.
732 	 */
733 	if (pkey_iffkey != NULL && passwd2 != NULL) {
734 		DSA	*dsa;
735 
736 		snprintf(filename, sizeof(filename),
737 		    "ntpkey_iffkey_%s.%u", groupname, fstamp);
738 		fprintf(stderr, "Writing IFF keys %s to stdout\n",
739 		    filename);
740 		fprintf(stdout, "# %s\n# %s\n", filename,
741 		    ctime(&epoch));
742 		dsa = EVP_PKEY_get0_DSA(pkey_iffkey);
743 		pkey = EVP_PKEY_new();
744 		EVP_PKEY_assign_DSA(pkey, dsa);
745 		PEM_write_PKCS8PrivateKey(stdout, pkey, cipher, NULL, 0,
746 		    NULL, passwd2);
747 		fflush(stdout);
748 		if (debug)
749 			DSA_print_fp(stderr, dsa, 0);
750 	}
751 
752 	/*
753 	 * Create new encrypted MV trusted-authority keys file if
754 	 * requested; otherwise, look for existing keys file.
755 	 */
756 	if (mvkey)
757 		pkey_mvkey = gen_mvkey("mv", pkey_mvpar);
758 	if (pkey_mvkey == NULL) {
759 		snprintf(filename, sizeof(filename), "ntpkey_mvta_%s",
760 		    groupname);
761 		pkey_mvkey = readkey(filename, passwd1, &fstamp,
762 		    pkey_mvpar);
763 		if (pkey_mvkey != NULL) {
764 			followlink(filename, sizeof(filename));
765 			fprintf(stderr, "Using MV keys %s\n",
766 			    filename);
767 		}
768 	}
769 
770 	/*
771 	 * Write the nonencrypted MV client parameters to the stdout
772 	 * stream. For the moment, we always use the client parameters
773 	 * associated with client key 1.
774 	 */
775 	if (pkey_mvkey != NULL && HAVE_OPT(ID_KEY)) {
776 		snprintf(filename, sizeof(filename),
777 		    "ntpkey_mvpar_%s.%u", groupname, fstamp);
778 		fprintf(stderr, "Writing MV parameters %s to stdout\n",
779 		    filename);
780 		fprintf(stdout, "# %s\n# %s\n", filename,
781 		    ctime(&epoch));
782 		pkey = pkey_mvpar[2];
783 		PEM_write_PKCS8PrivateKey(stdout, pkey, NULL, NULL, 0,
784 		    NULL, NULL);
785 		fflush(stdout);
786 		if (debug)
787 			DSA_print_fp(stderr, EVP_PKEY_get0_DSA(pkey), 0);
788 	}
789 
790 	/*
791 	 * Write the encrypted MV server keys to the stdout stream.
792 	 */
793 	if (pkey_mvkey != NULL && passwd2 != NULL) {
794 		snprintf(filename, sizeof(filename),
795 		    "ntpkey_mvkey_%s.%u", groupname, fstamp);
796 		fprintf(stderr, "Writing MV keys %s to stdout\n",
797 		    filename);
798 		fprintf(stdout, "# %s\n# %s\n", filename,
799 		    ctime(&epoch));
800 		pkey = pkey_mvpar[1];
801 		PEM_write_PKCS8PrivateKey(stdout, pkey, cipher, NULL, 0,
802 		    NULL, passwd2);
803 		fflush(stdout);
804 		if (debug)
805 			DSA_print_fp(stderr, EVP_PKEY_get0_DSA(pkey), 0);
806 	}
807 
808 	/*
809 	 * Decode the digest/signature scheme and create the
810 	 * certificate. Do this every time we run the program.
811 	 */
812 	ectx = EVP_get_digestbyname(scheme);
813 	if (ectx == NULL) {
814 		fprintf(stderr,
815 		    "Invalid digest/signature combination %s\n",
816 		    scheme);
817 			exit (-1);
818 	}
819 	x509(pkey_sign, ectx, grpkey, exten, certname);
820 #endif	/* AUTOKEY */
821 	exit(0);
822 }
823 
824 
825 /*
826  * Generate semi-random MD5 keys compatible with NTPv3 and NTPv4. Also,
827  * if OpenSSL is around, generate random SHA1 keys compatible with
828  * symmetric key cryptography.
829  */
830 int
831 gen_md5(
832 	const char *id		/* file name id */
833 	)
834 {
835 	u_char	md5key[MD5SIZE + 1];	/* MD5 key */
836 	FILE	*str;
837 	int	i, j;
838 #ifdef OPENSSL
839 	u_char	keystr[MD5SIZE];
840 	u_char	hexstr[2 * MD5SIZE + 1];
841 	u_char	hex[] = "0123456789abcdef";
842 #endif	/* OPENSSL */
843 
844 	str = fheader("MD5key", id, groupname);
845 	for (i = 1; i <= MD5KEYS; i++) {
846 		for (j = 0; j < MD5SIZE; j++) {
847 			u_char temp;
848 
849 			while (1) {
850 				int rc;
851 
852 				rc = ntp_crypto_random_buf(
853 				    &temp, sizeof(temp));
854 				if (-1 == rc) {
855 					fprintf(stderr, "ntp_crypto_random_buf() failed.\n");
856 					exit (-1);
857 				}
858 				if (temp == '#')
859 					continue;
860 
861 				if (temp > 0x20 && temp < 0x7f)
862 					break;
863 			}
864 			md5key[j] = temp;
865 		}
866 		md5key[j] = '\0';
867 		fprintf(str, "%2d MD5 %s  # MD5 key\n", i,
868 		    md5key);
869 	}
870 #ifdef OPENSSL
871 	for (i = 1; i <= MD5KEYS; i++) {
872 		RAND_bytes(keystr, 20);
873 		for (j = 0; j < MD5SIZE; j++) {
874 			hexstr[2 * j] = hex[keystr[j] >> 4];
875 			hexstr[2 * j + 1] = hex[keystr[j] & 0xf];
876 		}
877 		hexstr[2 * MD5SIZE] = '\0';
878 		fprintf(str, "%2d SHA1 %s  # SHA1 key\n", i + MD5KEYS,
879 		    hexstr);
880 	}
881 #endif	/* OPENSSL */
882 	fclose(str);
883 	return (1);
884 }
885 
886 
887 #ifdef AUTOKEY
888 /*
889  * readkey - load cryptographic parameters and keys
890  *
891  * This routine loads a PEM-encoded file of given name and password and
892  * extracts the filestamp from the file name. It returns a pointer to
893  * the first key if valid, NULL if not.
894  */
895 EVP_PKEY *			/* public/private key pair */
896 readkey(
897 	char	*cp,		/* file name */
898 	char	*passwd,	/* password */
899 	u_int	*estamp,	/* file stamp */
900 	EVP_PKEY **evpars	/* parameter list pointer */
901 	)
902 {
903 	FILE	*str;		/* file handle */
904 	EVP_PKEY *pkey = NULL;	/* public/private key */
905 	u_int	gstamp;		/* filestamp */
906 	char	linkname[MAXFILENAME]; /* filestamp buffer) */
907 	EVP_PKEY *parkey;
908 	char	*ptr;
909 	int	i;
910 
911 	/*
912 	 * Open the key file.
913 	 */
914 	str = fopen(cp, "r");
915 	if (str == NULL)
916 		return (NULL);
917 
918 	/*
919 	 * Read the filestamp, which is contained in the first line.
920 	 */
921 	if ((ptr = fgets(linkname, MAXFILENAME, str)) == NULL) {
922 		fprintf(stderr, "Empty key file %s\n", cp);
923 		fclose(str);
924 		return (NULL);
925 	}
926 	if ((ptr = strrchr(ptr, '.')) == NULL) {
927 		fprintf(stderr, "No filestamp found in %s\n", cp);
928 		fclose(str);
929 		return (NULL);
930 	}
931 	if (sscanf(++ptr, "%u", &gstamp) != 1) {
932 		fprintf(stderr, "Invalid filestamp found in %s\n", cp);
933 		fclose(str);
934 		return (NULL);
935 	}
936 
937 	/*
938 	 * Read and decrypt PEM-encoded private keys. The first one
939 	 * found is returned. If others are expected, add them to the
940 	 * parameter list.
941 	 */
942 	for (i = 0; i <= MVMAX - 1;) {
943 		parkey = PEM_read_PrivateKey(str, NULL, NULL, passwd);
944 		if (evpars != NULL) {
945 			evpars[i++] = parkey;
946 			evpars[i] = NULL;
947 		}
948 		if (parkey == NULL)
949 			break;
950 
951 		if (pkey == NULL)
952 			pkey = parkey;
953 		if (debug) {
954 			if (EVP_PKEY_base_id(parkey) == EVP_PKEY_DSA)
955 				DSA_print_fp(stderr, EVP_PKEY_get0_DSA(parkey),
956 				    0);
957 			else if (EVP_PKEY_base_id(parkey) == EVP_PKEY_RSA)
958 				RSA_print_fp(stderr, EVP_PKEY_get0_RSA(parkey),
959 				    0);
960 		}
961 	}
962 	fclose(str);
963 	if (pkey == NULL) {
964 		fprintf(stderr, "Corrupt file %s or wrong key %s\n%s\n",
965 		    cp, passwd, ERR_error_string(ERR_get_error(),
966 		    NULL));
967 		exit (-1);
968 	}
969 	*estamp = gstamp;
970 	return (pkey);
971 }
972 
973 
974 /*
975  * Generate RSA public/private key pair
976  */
977 EVP_PKEY *			/* public/private key pair */
978 gen_rsa(
979 	const char *id		/* file name id */
980 	)
981 {
982 	EVP_PKEY *pkey;		/* private key */
983 	RSA	*rsa;		/* RSA parameters and key pair */
984 	FILE	*str;
985 
986 	fprintf(stderr, "Generating RSA keys (%d bits)...\n", modulus);
987 	rsa = genRsaKeyPair(modulus, _UC("RSA"));
988 	fprintf(stderr, "\n");
989 	if (rsa == NULL) {
990 		fprintf(stderr, "RSA generate keys fails\n%s\n",
991 		    ERR_error_string(ERR_get_error(), NULL));
992 		return (NULL);
993 	}
994 
995 	/*
996 	 * For signature encryption it is not necessary that the RSA
997 	 * parameters be strictly groomed and once in a while the
998 	 * modulus turns out to be non-prime. Just for grins, we check
999 	 * the primality.
1000 	 */
1001 	if (!RSA_check_key(rsa)) {
1002 		fprintf(stderr, "Invalid RSA key\n%s\n",
1003 		    ERR_error_string(ERR_get_error(), NULL));
1004 		RSA_free(rsa);
1005 		return (NULL);
1006 	}
1007 
1008 	/*
1009 	 * Write the RSA parameters and keys as a RSA private key
1010 	 * encoded in PEM.
1011 	 */
1012 	if (strcmp(id, "sign") == 0)
1013 		str = fheader("RSAsign", id, hostname);
1014 	else
1015 		str = fheader("RSAhost", id, hostname);
1016 	pkey = EVP_PKEY_new();
1017 	EVP_PKEY_assign_RSA(pkey, rsa);
1018 	PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL,
1019 	    passwd1);
1020 	fclose(str);
1021 	if (debug)
1022 		RSA_print_fp(stderr, rsa, 0);
1023 	return (pkey);
1024 }
1025 
1026 
1027 /*
1028  * Generate DSA public/private key pair
1029  */
1030 EVP_PKEY *			/* public/private key pair */
1031 gen_dsa(
1032 	const char *id		/* file name id */
1033 	)
1034 {
1035 	EVP_PKEY *pkey;		/* private key */
1036 	DSA	*dsa;		/* DSA parameters */
1037 	FILE	*str;
1038 
1039 	/*
1040 	 * Generate DSA parameters.
1041 	 */
1042 	fprintf(stderr,
1043 	    "Generating DSA parameters (%d bits)...\n", modulus);
1044 	dsa = genDsaParams(modulus, _UC("DSA"));
1045 	fprintf(stderr, "\n");
1046 	if (dsa == NULL) {
1047 		fprintf(stderr, "DSA generate parameters fails\n%s\n",
1048 		    ERR_error_string(ERR_get_error(), NULL));
1049 		return (NULL);
1050 	}
1051 
1052 	/*
1053 	 * Generate DSA keys.
1054 	 */
1055 	fprintf(stderr, "Generating DSA keys (%d bits)...\n", modulus);
1056 	if (!DSA_generate_key(dsa)) {
1057 		fprintf(stderr, "DSA generate keys fails\n%s\n",
1058 		    ERR_error_string(ERR_get_error(), NULL));
1059 		DSA_free(dsa);
1060 		return (NULL);
1061 	}
1062 
1063 	/*
1064 	 * Write the DSA parameters and keys as a DSA private key
1065 	 * encoded in PEM.
1066 	 */
1067 	str = fheader("DSAsign", id, hostname);
1068 	pkey = EVP_PKEY_new();
1069 	EVP_PKEY_assign_DSA(pkey, dsa);
1070 	PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL,
1071 	    passwd1);
1072 	fclose(str);
1073 	if (debug)
1074 		DSA_print_fp(stderr, dsa, 0);
1075 	return (pkey);
1076 }
1077 
1078 
1079 /*
1080  ***********************************************************************
1081  *								       *
1082  * The following routines implement the Schnorr (IFF) identity scheme  *
1083  *								       *
1084  ***********************************************************************
1085  *
1086  * The Schnorr (IFF) identity scheme is intended for use when
1087  * certificates are generated by some other trusted certificate
1088  * authority and the certificate cannot be used to convey public
1089  * parameters. There are two kinds of files: encrypted server files that
1090  * contain private and public values and nonencrypted client files that
1091  * contain only public values. New generations of server files must be
1092  * securely transmitted to all servers of the group; client files can be
1093  * distributed by any means. The scheme is self contained and
1094  * independent of new generations of host keys, sign keys and
1095  * certificates.
1096  *
1097  * The IFF values hide in a DSA cuckoo structure which uses the same
1098  * parameters. The values are used by an identity scheme based on DSA
1099  * cryptography and described in Stimson p. 285. The p is a 512-bit
1100  * prime, g a generator of Zp* and q a 160-bit prime that divides p - 1
1101  * and is a qth root of 1 mod p; that is, g^q = 1 mod p. The TA rolls a
1102  * private random group key b (0 < b < q) and public key v = g^b, then
1103  * sends (p, q, g, b) to the servers and (p, q, g, v) to the clients.
1104  * Alice challenges Bob to confirm identity using the protocol described
1105  * below.
1106  *
1107  * How it works
1108  *
1109  * The scheme goes like this. Both Alice and Bob have the public primes
1110  * p, q and generator g. The TA gives private key b to Bob and public
1111  * key v to Alice.
1112  *
1113  * Alice rolls new random challenge r (o < r < q) and sends to Bob in
1114  * the IFF request message. Bob rolls new random k (0 < k < q), then
1115  * computes y = k + b r mod q and x = g^k mod p and sends (y, hash(x))
1116  * to Alice in the response message. Besides making the response
1117  * shorter, the hash makes it effectivey impossible for an intruder to
1118  * solve for b by observing a number of these messages.
1119  *
1120  * Alice receives the response and computes g^y v^r mod p. After a bit
1121  * of algebra, this simplifies to g^k. If the hash of this result
1122  * matches hash(x), Alice knows that Bob has the group key b. The signed
1123  * response binds this knowledge to Bob's private key and the public key
1124  * previously received in his certificate.
1125  */
1126 /*
1127  * Generate Schnorr (IFF) keys.
1128  */
1129 EVP_PKEY *			/* DSA cuckoo nest */
1130 gen_iffkey(
1131 	const char *id		/* file name id */
1132 	)
1133 {
1134 	EVP_PKEY *pkey;		/* private key */
1135 	DSA	*dsa;		/* DSA parameters */
1136 	BN_CTX	*ctx;		/* BN working space */
1137 	BIGNUM	*b, *r, *k, *u, *v, *w; /* BN temp */
1138 	FILE	*str;
1139 	u_int	temp;
1140 	const BIGNUM *p, *q, *g;
1141 	BIGNUM *pub_key, *priv_key;
1142 
1143 	/*
1144 	 * Generate DSA parameters for use as IFF parameters.
1145 	 */
1146 	fprintf(stderr, "Generating IFF keys (%d bits)...\n",
1147 	    modulus2);
1148 	dsa = genDsaParams(modulus2, _UC("IFF"));
1149 	fprintf(stderr, "\n");
1150 	if (dsa == NULL) {
1151 		fprintf(stderr, "DSA generate parameters fails\n%s\n",
1152 		    ERR_error_string(ERR_get_error(), NULL));
1153 		return (NULL);
1154 	}
1155 	DSA_get0_pqg(dsa, &p, &q, &g);
1156 
1157 	/*
1158 	 * Generate the private and public keys. The DSA parameters and
1159 	 * private key are distributed to the servers, while all except
1160 	 * the private key are distributed to the clients.
1161 	 */
1162 	b = BN_new(); r = BN_new(); k = BN_new();
1163 	u = BN_new(); v = BN_new(); w = BN_new(); ctx = BN_CTX_new();
1164 	BN_rand(b, BN_num_bits(q), -1, 0);	/* a */
1165 	BN_mod(b, b, q, ctx);
1166 	BN_sub(v, q, b);
1167 	BN_mod_exp(v, g, v, p, ctx); /* g^(q - b) mod p */
1168 	BN_mod_exp(u, g, b, p, ctx);	/* g^b mod p */
1169 	BN_mod_mul(u, u, v, p, ctx);
1170 	temp = BN_is_one(u);
1171 	fprintf(stderr,
1172 	    "Confirm g^(q - b) g^b = 1 mod p: %s\n", temp == 1 ?
1173 	    "yes" : "no");
1174 	if (!temp) {
1175 		BN_free(b); BN_free(r); BN_free(k);
1176 		BN_free(u); BN_free(v); BN_free(w); BN_CTX_free(ctx);
1177 		return (NULL);
1178 	}
1179 	pub_key = BN_dup(v);
1180 	priv_key = BN_dup(b);
1181 	DSA_set0_key(dsa, pub_key, priv_key);
1182 
1183 	/*
1184 	 * Here is a trial round of the protocol. First, Alice rolls
1185 	 * random nonce r mod q and sends it to Bob. She needs only
1186 	 * q from parameters.
1187 	 */
1188 	BN_rand(r, BN_num_bits(q), -1, 0);	/* r */
1189 	BN_mod(r, r, q, ctx);
1190 
1191 	/*
1192 	 * Bob rolls random nonce k mod q, computes y = k + b r mod q
1193 	 * and x = g^k mod p, then sends (y, x) to Alice. He needs
1194 	 * p, q and b from parameters and r from Alice.
1195 	 */
1196 	BN_rand(k, BN_num_bits(q), -1, 0);	/* k, 0 < k < q  */
1197 	BN_mod(k, k, q, ctx);
1198 	BN_mod_mul(v, priv_key, r, q, ctx); /* b r mod q */
1199 	BN_add(v, v, k);
1200 	BN_mod(v, v, q, ctx);		/* y = k + b r mod q */
1201 	BN_mod_exp(u, g, k, p, ctx);	/* x = g^k mod p */
1202 
1203 	/*
1204 	 * Alice verifies x = g^y v^r to confirm that Bob has group key
1205 	 * b. She needs p, q, g from parameters, (y, x) from Bob and the
1206 	 * original r. We omit the detail here thatt only the hash of y
1207 	 * is sent.
1208 	 */
1209 	BN_mod_exp(v, g, v, p, ctx); /* g^y mod p */
1210 	BN_mod_exp(w, pub_key, r, p, ctx); /* v^r */
1211 	BN_mod_mul(v, w, v, p, ctx);	/* product mod p */
1212 	temp = BN_cmp(u, v);
1213 	fprintf(stderr,
1214 	    "Confirm g^k = g^(k + b r) g^(q - b) r: %s\n", temp ==
1215 	    0 ? "yes" : "no");
1216 	BN_free(b); BN_free(r);	BN_free(k);
1217 	BN_free(u); BN_free(v); BN_free(w); BN_CTX_free(ctx);
1218 	if (temp != 0) {
1219 		DSA_free(dsa);
1220 		return (NULL);
1221 	}
1222 
1223 	/*
1224 	 * Write the IFF keys as an encrypted DSA private key encoded in
1225 	 * PEM.
1226 	 *
1227 	 * p	modulus p
1228 	 * q	modulus q
1229 	 * g	generator g
1230 	 * priv_key b
1231 	 * public_key v
1232 	 * kinv	not used
1233 	 * r	not used
1234 	 */
1235 	str = fheader("IFFkey", id, groupname);
1236 	pkey = EVP_PKEY_new();
1237 	EVP_PKEY_assign_DSA(pkey, dsa);
1238 	PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL,
1239 	    passwd1);
1240 	fclose(str);
1241 	if (debug)
1242 		DSA_print_fp(stderr, dsa, 0);
1243 	return (pkey);
1244 }
1245 
1246 
1247 /*
1248  ***********************************************************************
1249  *								       *
1250  * The following routines implement the Guillou-Quisquater (GQ)        *
1251  * identity scheme                                                     *
1252  *								       *
1253  ***********************************************************************
1254  *
1255  * The Guillou-Quisquater (GQ) identity scheme is intended for use when
1256  * the certificate can be used to convey public parameters. The scheme
1257  * uses a X509v3 certificate extension field do convey the public key of
1258  * a private key known only to servers. There are two kinds of files:
1259  * encrypted server files that contain private and public values and
1260  * nonencrypted client files that contain only public values. New
1261  * generations of server files must be securely transmitted to all
1262  * servers of the group; client files can be distributed by any means.
1263  * The scheme is self contained and independent of new generations of
1264  * host keys and sign keys. The scheme is self contained and independent
1265  * of new generations of host keys and sign keys.
1266  *
1267  * The GQ parameters hide in a RSA cuckoo structure which uses the same
1268  * parameters. The values are used by an identity scheme based on RSA
1269  * cryptography and described in Stimson p. 300 (with errors). The 512-
1270  * bit public modulus is n = p q, where p and q are secret large primes.
1271  * The TA rolls private random group key b as RSA exponent. These values
1272  * are known to all group members.
1273  *
1274  * When rolling new certificates, a server recomputes the private and
1275  * public keys. The private key u is a random roll, while the public key
1276  * is the inverse obscured by the group key v = (u^-1)^b. These values
1277  * replace the private and public keys normally generated by the RSA
1278  * scheme. Alice challenges Bob to confirm identity using the protocol
1279  * described below.
1280  *
1281  * How it works
1282  *
1283  * The scheme goes like this. Both Alice and Bob have the same modulus n
1284  * and some random b as the group key. These values are computed and
1285  * distributed in advance via secret means, although only the group key
1286  * b is truly secret. Each has a private random private key u and public
1287  * key (u^-1)^b, although not necessarily the same ones. Bob and Alice
1288  * can regenerate the key pair from time to time without affecting
1289  * operations. The public key is conveyed on the certificate in an
1290  * extension field; the private key is never revealed.
1291  *
1292  * Alice rolls new random challenge r and sends to Bob in the GQ
1293  * request message. Bob rolls new random k, then computes y = k u^r mod
1294  * n and x = k^b mod n and sends (y, hash(x)) to Alice in the response
1295  * message. Besides making the response shorter, the hash makes it
1296  * effectivey impossible for an intruder to solve for b by observing
1297  * a number of these messages.
1298  *
1299  * Alice receives the response and computes y^b v^r mod n. After a bit
1300  * of algebra, this simplifies to k^b. If the hash of this result
1301  * matches hash(x), Alice knows that Bob has the group key b. The signed
1302  * response binds this knowledge to Bob's private key and the public key
1303  * previously received in his certificate.
1304  */
1305 /*
1306  * Generate Guillou-Quisquater (GQ) parameters file.
1307  */
1308 EVP_PKEY *			/* RSA cuckoo nest */
1309 gen_gqkey(
1310 	const char *id		/* file name id */
1311 	)
1312 {
1313 	EVP_PKEY *pkey;		/* private key */
1314 	RSA	*rsa;		/* RSA parameters */
1315 	BN_CTX	*ctx;		/* BN working space */
1316 	BIGNUM	*u, *v, *g, *k, *r, *y; /* BN temps */
1317 	FILE	*str;
1318 	u_int	temp;
1319 	BIGNUM	*b;
1320 	const BIGNUM	*n;
1321 
1322 	/*
1323 	 * Generate RSA parameters for use as GQ parameters.
1324 	 */
1325 	fprintf(stderr,
1326 	    "Generating GQ parameters (%d bits)...\n",
1327 	     modulus2);
1328 	rsa = genRsaKeyPair(modulus2, _UC("GQ"));
1329 	fprintf(stderr, "\n");
1330 	if (rsa == NULL) {
1331 		fprintf(stderr, "RSA generate keys fails\n%s\n",
1332 		    ERR_error_string(ERR_get_error(), NULL));
1333 		return (NULL);
1334 	}
1335 	RSA_get0_key(rsa, &n, NULL, NULL);
1336 	u = BN_new(); v = BN_new(); g = BN_new();
1337 	k = BN_new(); r = BN_new(); y = BN_new();
1338 	b = BN_new();
1339 
1340 	/*
1341 	 * Generate the group key b, which is saved in the e member of
1342 	 * the RSA structure. The group key is transmitted to each group
1343 	 * member encrypted by the member private key.
1344 	 */
1345 	ctx = BN_CTX_new();
1346 	BN_rand(b, BN_num_bits(n), -1, 0); /* b */
1347 	BN_mod(b, b, n, ctx);
1348 
1349 	/*
1350 	 * When generating his certificate, Bob rolls random private key
1351 	 * u, then computes inverse v = u^-1.
1352 	 */
1353 	BN_rand(u, BN_num_bits(n), -1, 0); /* u */
1354 	BN_mod(u, u, n, ctx);
1355 	BN_mod_inverse(v, u, n, ctx);	/* u^-1 mod n */
1356 	BN_mod_mul(k, v, u, n, ctx);
1357 
1358 	/*
1359 	 * Bob computes public key v = (u^-1)^b, which is saved in an
1360 	 * extension field on his certificate. We check that u^b v =
1361 	 * 1 mod n.
1362 	 */
1363 	BN_mod_exp(v, v, b, n, ctx);
1364 	BN_mod_exp(g, u, b, n, ctx); /* u^b */
1365 	BN_mod_mul(g, g, v, n, ctx); /* u^b (u^-1)^b */
1366 	temp = BN_is_one(g);
1367 	fprintf(stderr,
1368 	    "Confirm u^b (u^-1)^b = 1 mod n: %s\n", temp ? "yes" :
1369 	    "no");
1370 	if (!temp) {
1371 		BN_free(u); BN_free(v);
1372 		BN_free(g); BN_free(k); BN_free(r); BN_free(y);
1373 		BN_CTX_free(ctx);
1374 		RSA_free(rsa);
1375 		return (NULL);
1376 	}
1377 	/* setting 'u' and 'v' into a RSA object takes over ownership.
1378 	 * Since we use these values again, we have to pass in dupes,
1379 	 * or we'll corrupt the program!
1380 	 */
1381 	RSA_set0_factors(rsa, BN_dup(u), BN_dup(v));
1382 
1383 	/*
1384 	 * Here is a trial run of the protocol. First, Alice rolls
1385 	 * random nonce r mod n and sends it to Bob. She needs only n
1386 	 * from parameters.
1387 	 */
1388 	BN_rand(r, BN_num_bits(n), -1, 0);	/* r */
1389 	BN_mod(r, r, n, ctx);
1390 
1391 	/*
1392 	 * Bob rolls random nonce k mod n, computes y = k u^r mod n and
1393 	 * g = k^b mod n, then sends (y, g) to Alice. He needs n, u, b
1394 	 * from parameters and r from Alice.
1395 	 */
1396 	BN_rand(k, BN_num_bits(n), -1, 0);	/* k */
1397 	BN_mod(k, k, n, ctx);
1398 	BN_mod_exp(y, u, r, n, ctx);	/* u^r mod n */
1399 	BN_mod_mul(y, k, y, n, ctx);	/* y = k u^r mod n */
1400 	BN_mod_exp(g, k, b, n, ctx);	/* g = k^b mod n */
1401 
1402 	/*
1403 	 * Alice verifies g = v^r y^b mod n to confirm that Bob has
1404 	 * private key u. She needs n, g from parameters, public key v =
1405 	 * (u^-1)^b from the certificate, (y, g) from Bob and the
1406 	 * original r. We omit the detaul here that only the hash of g
1407 	 * is sent.
1408 	 */
1409 	BN_mod_exp(v, v, r, n, ctx);	/* v^r mod n */
1410 	BN_mod_exp(y, y, b, n, ctx);	/* y^b mod n */
1411 	BN_mod_mul(y, v, y, n, ctx);	/* v^r y^b mod n */
1412 	temp = BN_cmp(y, g);
1413 	fprintf(stderr, "Confirm g^k = v^r y^b mod n: %s\n", temp == 0 ?
1414 	    "yes" : "no");
1415 	BN_CTX_free(ctx); BN_free(u); BN_free(v);
1416 	BN_free(g); BN_free(k); BN_free(r); BN_free(y);
1417 	if (temp != 0) {
1418 		RSA_free(rsa);
1419 		return (NULL);
1420 	}
1421 
1422 	/*
1423 	 * Write the GQ parameter file as an encrypted RSA private key
1424 	 * encoded in PEM.
1425 	 *
1426 	 * n	modulus n
1427 	 * e	group key b
1428 	 * d	not used
1429 	 * p	private key u
1430 	 * q	public key (u^-1)^b
1431 	 * dmp1	not used
1432 	 * dmq1	not used
1433 	 * iqmp	not used
1434 	 */
1435 	RSA_set0_key(rsa, NULL, b, BN_dup(BN_value_one()));
1436 	RSA_set0_crt_params(rsa, BN_dup(BN_value_one()), BN_dup(BN_value_one()),
1437 		BN_dup(BN_value_one()));
1438 	str = fheader("GQkey", id, groupname);
1439 	pkey = EVP_PKEY_new();
1440 	EVP_PKEY_assign_RSA(pkey, rsa);
1441 	PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL,
1442 	    passwd1);
1443 	fclose(str);
1444 	if (debug)
1445 		RSA_print_fp(stderr, rsa, 0);
1446 	return (pkey);
1447 }
1448 
1449 
1450 /*
1451  ***********************************************************************
1452  *								       *
1453  * The following routines implement the Mu-Varadharajan (MV) identity  *
1454  * scheme                                                              *
1455  *								       *
1456  ***********************************************************************
1457  *
1458  * The Mu-Varadharajan (MV) cryptosystem was originally intended when
1459  * servers broadcast messages to clients, but clients never send
1460  * messages to servers. There is one encryption key for the server and a
1461  * separate decryption key for each client. It operated something like a
1462  * pay-per-view satellite broadcasting system where the session key is
1463  * encrypted by the broadcaster and the decryption keys are held in a
1464  * tamperproof set-top box.
1465  *
1466  * The MV parameters and private encryption key hide in a DSA cuckoo
1467  * structure which uses the same parameters, but generated in a
1468  * different way. The values are used in an encryption scheme similar to
1469  * El Gamal cryptography and a polynomial formed from the expansion of
1470  * product terms (x - x[j]), as described in Mu, Y., and V.
1471  * Varadharajan: Robust and Secure Broadcasting, Proc. Indocrypt 2001,
1472  * 223-231. The paper has significant errors and serious omissions.
1473  *
1474  * Let q be the product of n distinct primes s1[j] (j = 1...n), where
1475  * each s1[j] has m significant bits. Let p be a prime p = 2 * q + 1, so
1476  * that q and each s1[j] divide p - 1 and p has M = n * m + 1
1477  * significant bits. Let g be a generator of Zp; that is, gcd(g, p - 1)
1478  * = 1 and g^q = 1 mod p. We do modular arithmetic over Zq and then
1479  * project into Zp* as exponents of g. Sometimes we have to compute an
1480  * inverse b^-1 of random b in Zq, but for that purpose we require
1481  * gcd(b, q) = 1. We expect M to be in the 500-bit range and n
1482  * relatively small, like 30. These are the parameters of the scheme and
1483  * they are expensive to compute.
1484  *
1485  * We set up an instance of the scheme as follows. A set of random
1486  * values x[j] mod q (j = 1...n), are generated as the zeros of a
1487  * polynomial of order n. The product terms (x - x[j]) are expanded to
1488  * form coefficients a[i] mod q (i = 0...n) in powers of x. These are
1489  * used as exponents of the generator g mod p to generate the private
1490  * encryption key A. The pair (gbar, ghat) of public server keys and the
1491  * pairs (xbar[j], xhat[j]) (j = 1...n) of private client keys are used
1492  * to construct the decryption keys. The devil is in the details.
1493  *
1494  * This routine generates a private server encryption file including the
1495  * private encryption key E and partial decryption keys gbar and ghat.
1496  * It then generates public client decryption files including the public
1497  * keys xbar[j] and xhat[j] for each client j. The partial decryption
1498  * files are used to compute the inverse of E. These values are suitably
1499  * blinded so secrets are not revealed.
1500  *
1501  * The distinguishing characteristic of this scheme is the capability to
1502  * revoke keys. Included in the calculation of E, gbar and ghat is the
1503  * product s = prod(s1[j]) (j = 1...n) above. If the factor s1[j] is
1504  * subsequently removed from the product and E, gbar and ghat
1505  * recomputed, the jth client will no longer be able to compute E^-1 and
1506  * thus unable to decrypt the messageblock.
1507  *
1508  * How it works
1509  *
1510  * The scheme goes like this. Bob has the server values (p, E, q,
1511  * gbar, ghat) and Alice has the client values (p, xbar, xhat).
1512  *
1513  * Alice rolls new random nonce r mod p and sends to Bob in the MV
1514  * request message. Bob rolls random nonce k mod q, encrypts y = r E^k
1515  * mod p and sends (y, gbar^k, ghat^k) to Alice.
1516  *
1517  * Alice receives the response and computes the inverse (E^k)^-1 from
1518  * the partial decryption keys gbar^k, ghat^k, xbar and xhat. She then
1519  * decrypts y and verifies it matches the original r. The signed
1520  * response binds this knowledge to Bob's private key and the public key
1521  * previously received in his certificate.
1522  */
1523 EVP_PKEY *			/* DSA cuckoo nest */
1524 gen_mvkey(
1525 	const char *id,		/* file name id */
1526 	EVP_PKEY **evpars	/* parameter list pointer */
1527 	)
1528 {
1529 	EVP_PKEY *pkey, *pkey1;	/* private keys */
1530 	DSA	*dsa, *dsa2, *sdsa; /* DSA parameters */
1531 	BN_CTX	*ctx;		/* BN working space */
1532 	BIGNUM	*a[MVMAX];	/* polynomial coefficient vector */
1533 	BIGNUM	*gs[MVMAX];	/* public key vector */
1534 	BIGNUM	*s1[MVMAX];	/* private enabling keys */
1535 	BIGNUM	*x[MVMAX];	/* polynomial zeros vector */
1536 	BIGNUM	*xbar[MVMAX], *xhat[MVMAX]; /* private keys vector */
1537 	BIGNUM	*b;		/* group key */
1538 	BIGNUM	*b1;		/* inverse group key */
1539 	BIGNUM	*s;		/* enabling key */
1540 	BIGNUM	*biga;		/* master encryption key */
1541 	BIGNUM	*bige;		/* session encryption key */
1542 	BIGNUM	*gbar, *ghat;	/* public key */
1543 	BIGNUM	*u, *v, *w;	/* BN scratch */
1544 	BIGNUM	*p, *q, *g, *priv_key, *pub_key;
1545 	int	i, j, n;
1546 	FILE	*str;
1547 	u_int	temp;
1548 
1549 	/*
1550 	 * Generate MV parameters.
1551 	 *
1552 	 * The object is to generate a multiplicative group Zp* modulo a
1553 	 * prime p and a subset Zq mod q, where q is the product of n
1554 	 * distinct primes s1[j] (j = 1...n) and q divides p - 1. We
1555 	 * first generate n m-bit primes, where the product n m is in
1556 	 * the order of 512 bits. One or more of these may have to be
1557 	 * replaced later. As a practical matter, it is tough to find
1558 	 * more than 31 distinct primes for 512 bits or 61 primes for
1559 	 * 1024 bits. The latter can take several hundred iterations
1560 	 * and several minutes on a Sun Blade 1000.
1561 	 */
1562 	n = nkeys;
1563 	fprintf(stderr,
1564 	    "Generating MV parameters for %d keys (%d bits)...\n", n,
1565 	    modulus2 / n);
1566 	ctx = BN_CTX_new(); u = BN_new(); v = BN_new(); w = BN_new();
1567 	b = BN_new(); b1 = BN_new();
1568 	dsa = DSA_new();
1569 	p = BN_new(); q = BN_new(); g = BN_new();
1570 	priv_key = BN_new(); pub_key = BN_new();
1571 	temp = 0;
1572 	for (j = 1; j <= n; j++) {
1573 		s1[j] = BN_new();
1574 		while (1) {
1575 			BN_generate_prime_ex(s1[j], modulus2 / n, 0,
1576 					     NULL, NULL, NULL);
1577 			for (i = 1; i < j; i++) {
1578 				if (BN_cmp(s1[i], s1[j]) == 0)
1579 					break;
1580 			}
1581 			if (i == j)
1582 				break;
1583 			temp++;
1584 		}
1585 	}
1586 	fprintf(stderr, "Birthday keys regenerated %d\n", temp);
1587 
1588 	/*
1589 	 * Compute the modulus q as the product of the primes. Compute
1590 	 * the modulus p as 2 * q + 1 and test p for primality. If p
1591 	 * is composite, replace one of the primes with a new distinct
1592 	 * one and try again. Note that q will hardly be a secret since
1593 	 * we have to reveal p to servers, but not clients. However,
1594 	 * factoring q to find the primes should be adequately hard, as
1595 	 * this is the same problem considered hard in RSA. Question: is
1596 	 * it as hard to find n small prime factors totalling n bits as
1597 	 * it is to find two large prime factors totalling n bits?
1598 	 * Remember, the bad guy doesn't know n.
1599 	 */
1600 	temp = 0;
1601 	while (1) {
1602 		BN_one(q);
1603 		for (j = 1; j <= n; j++)
1604 			BN_mul(q, q, s1[j], ctx);
1605 		BN_copy(p, q);
1606 		BN_add(p, p, p);
1607 		BN_add_word(p, 1);
1608 		if (BN_is_prime_ex(p, BN_prime_checks, ctx, NULL))
1609 			break;
1610 
1611 		temp++;
1612 		j = temp % n + 1;
1613 		while (1) {
1614 			BN_generate_prime_ex(u, modulus2 / n, 0,
1615 					     NULL, NULL, NULL);
1616 			for (i = 1; i <= n; i++) {
1617 				if (BN_cmp(u, s1[i]) == 0)
1618 					break;
1619 			}
1620 			if (i > n)
1621 				break;
1622 		}
1623 		BN_copy(s1[j], u);
1624 	}
1625 	fprintf(stderr, "Defective keys regenerated %d\n", temp);
1626 
1627 	/*
1628 	 * Compute the generator g using a random roll such that
1629 	 * gcd(g, p - 1) = 1 and g^q = 1. This is a generator of p, not
1630 	 * q. This may take several iterations.
1631 	 */
1632 	BN_copy(v, p);
1633 	BN_sub_word(v, 1);
1634 	while (1) {
1635 		BN_rand(g, BN_num_bits(p) - 1, 0, 0);
1636 		BN_mod(g, g, p, ctx);
1637 		BN_gcd(u, g, v, ctx);
1638 		if (!BN_is_one(u))
1639 			continue;
1640 
1641 		BN_mod_exp(u, g, q, p, ctx);
1642 		if (BN_is_one(u))
1643 			break;
1644 	}
1645 
1646 	DSA_set0_pqg(dsa, p, q, g);
1647 
1648 	/*
1649 	 * Setup is now complete. Roll random polynomial roots x[j]
1650 	 * (j = 1...n) for all j. While it may not be strictly
1651 	 * necessary, Make sure each root has no factors in common with
1652 	 * q.
1653 	 */
1654 	fprintf(stderr,
1655 	    "Generating polynomial coefficients for %d roots (%d bits)\n",
1656 	    n, BN_num_bits(q));
1657 	for (j = 1; j <= n; j++) {
1658 		x[j] = BN_new();
1659 
1660 		while (1) {
1661 			BN_rand(x[j], BN_num_bits(q), 0, 0);
1662 			BN_mod(x[j], x[j], q, ctx);
1663 			BN_gcd(u, x[j], q, ctx);
1664 			if (BN_is_one(u))
1665 				break;
1666 		}
1667 	}
1668 
1669 	/*
1670 	 * Generate polynomial coefficients a[i] (i = 0...n) from the
1671 	 * expansion of root products (x - x[j]) mod q for all j. The
1672 	 * method is a present from Charlie Boncelet.
1673 	 */
1674 	for (i = 0; i <= n; i++) {
1675 		a[i] = BN_new();
1676 		BN_one(a[i]);
1677 	}
1678 	for (j = 1; j <= n; j++) {
1679 		BN_zero(w);
1680 		for (i = 0; i < j; i++) {
1681 			BN_copy(u, q);
1682 			BN_mod_mul(v, a[i], x[j], q, ctx);
1683 			BN_sub(u, u, v);
1684 			BN_add(u, u, w);
1685 			BN_copy(w, a[i]);
1686 			BN_mod(a[i], u, q, ctx);
1687 		}
1688 	}
1689 
1690 	/*
1691 	 * Generate gs[i] = g^a[i] mod p for all i and the generator g.
1692 	 */
1693 	for (i = 0; i <= n; i++) {
1694 		gs[i] = BN_new();
1695 		BN_mod_exp(gs[i], g, a[i], p, ctx);
1696 	}
1697 
1698 	/*
1699 	 * Verify prod(gs[i]^(a[i] x[j]^i)) = 1 for all i, j. Note the
1700 	 * a[i] x[j]^i exponent is computed mod q, but the gs[i] is
1701 	 * computed mod p. also note the expression given in the paper
1702 	 * is incorrect.
1703 	 */
1704 	temp = 1;
1705 	for (j = 1; j <= n; j++) {
1706 		BN_one(u);
1707 		for (i = 0; i <= n; i++) {
1708 			BN_set_word(v, i);
1709 			BN_mod_exp(v, x[j], v, q, ctx);
1710 			BN_mod_mul(v, v, a[i], q, ctx);
1711 			BN_mod_exp(v, g, v, p, ctx);
1712 			BN_mod_mul(u, u, v, p, ctx);
1713 		}
1714 		if (!BN_is_one(u))
1715 			temp = 0;
1716 	}
1717 	fprintf(stderr,
1718 	    "Confirm prod(gs[i]^(x[j]^i)) = 1 for all i, j: %s\n", temp ?
1719 	    "yes" : "no");
1720 	if (!temp) {
1721 		return (NULL);
1722 	}
1723 
1724 	/*
1725 	 * Make private encryption key A. Keep it around for awhile,
1726 	 * since it is expensive to compute.
1727 	 */
1728 	biga = BN_new();
1729 
1730 	BN_one(biga);
1731 	for (j = 1; j <= n; j++) {
1732 		for (i = 0; i < n; i++) {
1733 			BN_set_word(v, i);
1734 			BN_mod_exp(v, x[j], v, q, ctx);
1735 			BN_mod_exp(v, gs[i], v, p, ctx);
1736 			BN_mod_mul(biga, biga, v, p, ctx);
1737 		}
1738 	}
1739 
1740 	/*
1741 	 * Roll private random group key b mod q (0 < b < q), where
1742 	 * gcd(b, q) = 1 to guarantee b^-1 exists, then compute b^-1
1743 	 * mod q. If b is changed, the client keys must be recomputed.
1744 	 */
1745 	while (1) {
1746 		BN_rand(b, BN_num_bits(q), 0, 0);
1747 		BN_mod(b, b, q, ctx);
1748 		BN_gcd(u, b, q, ctx);
1749 		if (BN_is_one(u))
1750 			break;
1751 	}
1752 	BN_mod_inverse(b1, b, q, ctx);
1753 
1754 	/*
1755 	 * Make private client keys (xbar[j], xhat[j]) for all j. Note
1756 	 * that the keys for the jth client do not s1[j] or the product
1757 	 * s1[j]) (j = 1...n) which is q by construction.
1758 	 *
1759 	 * Compute the factor w such that w s1[j] = s1[j] for all j. The
1760 	 * easy way to do this is to compute (q + s1[j]) / s1[j].
1761 	 * Exercise for the student: prove the remainder is always zero.
1762 	 */
1763 	for (j = 1; j <= n; j++) {
1764 		xbar[j] = BN_new(); xhat[j] = BN_new();
1765 
1766 		BN_add(w, q, s1[j]);
1767 		BN_div(w, u, w, s1[j], ctx);
1768 		BN_zero(xbar[j]);
1769 		BN_set_word(v, n);
1770 		for (i = 1; i <= n; i++) {
1771 			if (i == j)
1772 				continue;
1773 
1774 			BN_mod_exp(u, x[i], v, q, ctx);
1775 			BN_add(xbar[j], xbar[j], u);
1776 		}
1777 		BN_mod_mul(xbar[j], xbar[j], b1, q, ctx);
1778 		BN_mod_exp(xhat[j], x[j], v, q, ctx);
1779 		BN_mod_mul(xhat[j], xhat[j], w, q, ctx);
1780 	}
1781 
1782 	/*
1783 	 * We revoke client j by dividing q by s1[j]. The quotient
1784 	 * becomes the enabling key s. Note we always have to revoke
1785 	 * one key; otherwise, the plaintext and cryptotext would be
1786 	 * identical. For the present there are no provisions to revoke
1787 	 * additional keys, so we sail on with only token revocations.
1788 	 */
1789 	s = BN_new();
1790 	BN_copy(s, q);
1791 	BN_div(s, u, s, s1[n], ctx);
1792 
1793 	/*
1794 	 * For each combination of clients to be revoked, make private
1795 	 * encryption key E = A^s and partial decryption keys gbar = g^s
1796 	 * and ghat = g^(s b), all mod p. The servers use these keys to
1797 	 * compute the session encryption key and partial decryption
1798 	 * keys. These values must be regenerated if the enabling key is
1799 	 * changed.
1800 	 */
1801 	bige = BN_new(); gbar = BN_new(); ghat = BN_new();
1802 	BN_mod_exp(bige, biga, s, p, ctx);
1803 	BN_mod_exp(gbar, g, s, p, ctx);
1804 	BN_mod_mul(v, s, b, q, ctx);
1805 	BN_mod_exp(ghat, g, v, p, ctx);
1806 
1807 	/*
1808 	 * Notes: We produce the key media in three steps. The first
1809 	 * step is to generate the system parameters p, q, g, b, A and
1810 	 * the enabling keys s1[j]. Associated with each s1[j] are
1811 	 * parameters xbar[j] and xhat[j]. All of these parameters are
1812 	 * retained in a data structure protecteted by the trusted-agent
1813 	 * password. The p, xbar[j] and xhat[j] paremeters are
1814 	 * distributed to the j clients. When the client keys are to be
1815 	 * activated, the enabled keys are multipied together to form
1816 	 * the master enabling key s. This and the other parameters are
1817 	 * used to compute the server encryption key E and the partial
1818 	 * decryption keys gbar and ghat.
1819 	 *
1820 	 * In the identity exchange the client rolls random r and sends
1821 	 * it to the server. The server rolls random k, which is used
1822 	 * only once, then computes the session key E^k and partial
1823 	 * decryption keys gbar^k and ghat^k. The server sends the
1824 	 * encrypted r along with gbar^k and ghat^k to the client. The
1825 	 * client completes the decryption and verifies it matches r.
1826 	 */
1827 	/*
1828 	 * Write the MV trusted-agent parameters and keys as a DSA
1829 	 * private key encoded in PEM.
1830 	 *
1831 	 * p	modulus p
1832 	 * q	modulus q
1833 	 * g	generator g
1834 	 * priv_key A mod p
1835 	 * pub_key b mod q
1836 	 * (remaining values are not used)
1837 	 */
1838 	i = 0;
1839 	str = fheader("MVta", "mvta", groupname);
1840 	fprintf(stderr, "Generating MV trusted-authority keys\n");
1841 	BN_copy(priv_key, biga);
1842 	BN_copy(pub_key, b);
1843 	DSA_set0_key(dsa, pub_key, priv_key);
1844 	pkey = EVP_PKEY_new();
1845 	EVP_PKEY_assign_DSA(pkey, dsa);
1846 	PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL,
1847 	    passwd1);
1848 	evpars[i++] = pkey;
1849 	if (debug)
1850 		DSA_print_fp(stderr, dsa, 0);
1851 
1852 	/*
1853 	 * Append the MV server parameters and keys as a DSA key encoded
1854 	 * in PEM.
1855 	 *
1856 	 * p	modulus p
1857 	 * q	modulus q (used only when generating k)
1858 	 * g	bige
1859 	 * priv_key gbar
1860 	 * pub_key ghat
1861 	 * (remaining values are not used)
1862 	 */
1863 	fprintf(stderr, "Generating MV server keys\n");
1864 	dsa2 = DSA_new();
1865 	DSA_set0_pqg(dsa2, BN_dup(p), BN_dup(q), BN_dup(bige));
1866 	DSA_set0_key(dsa2, BN_dup(ghat), BN_dup(gbar));
1867 	pkey1 = EVP_PKEY_new();
1868 	EVP_PKEY_assign_DSA(pkey1, dsa2);
1869 	PEM_write_PKCS8PrivateKey(str, pkey1, cipher, NULL, 0, NULL,
1870 	    passwd1);
1871 	evpars[i++] = pkey1;
1872 	if (debug)
1873 		DSA_print_fp(stderr, dsa2, 0);
1874 
1875 	/*
1876 	 * Append the MV client parameters for each client j as DSA keys
1877 	 * encoded in PEM.
1878 	 *
1879 	 * p	modulus p
1880 	 * priv_key xbar[j] mod q
1881 	 * pub_key xhat[j] mod q
1882 	 * (remaining values are not used)
1883 	 */
1884 	fprintf(stderr, "Generating %d MV client keys\n", n);
1885 	for (j = 1; j <= n; j++) {
1886 		sdsa = DSA_new();
1887 		DSA_set0_pqg(sdsa, BN_dup(p), BN_dup(BN_value_one()),
1888 			BN_dup(BN_value_one()));
1889 		DSA_set0_key(sdsa, BN_dup(xhat[j]), BN_dup(xbar[j]));
1890 		pkey1 = EVP_PKEY_new();
1891 		EVP_PKEY_set1_DSA(pkey1, sdsa);
1892 		PEM_write_PKCS8PrivateKey(str, pkey1, cipher, NULL, 0,
1893 		    NULL, passwd1);
1894 		evpars[i++] = pkey1;
1895 		if (debug)
1896 			DSA_print_fp(stderr, sdsa, 0);
1897 
1898 		/*
1899 		 * The product (gbar^k)^xbar[j] (ghat^k)^xhat[j] and E
1900 		 * are inverses of each other. We check that the product
1901 		 * is one for each client except the ones that have been
1902 		 * revoked.
1903 		 */
1904 		BN_mod_exp(v, gbar, xhat[j], p, ctx);
1905 		BN_mod_exp(u, ghat, xbar[j], p, ctx);
1906 		BN_mod_mul(u, u, v, p, ctx);
1907 		BN_mod_mul(u, u, bige, p, ctx);
1908 		if (!BN_is_one(u)) {
1909 			fprintf(stderr, "Revoke key %d\n", j);
1910 			continue;
1911 		}
1912 	}
1913 	evpars[i++] = NULL;
1914 	fclose(str);
1915 
1916 	/*
1917 	 * Free the countries.
1918 	 */
1919 	for (i = 0; i <= n; i++) {
1920 		BN_free(a[i]); BN_free(gs[i]);
1921 	}
1922 	for (j = 1; j <= n; j++) {
1923 		BN_free(x[j]); BN_free(xbar[j]); BN_free(xhat[j]);
1924 		BN_free(s1[j]);
1925 	}
1926 	return (pkey);
1927 }
1928 
1929 
1930 /*
1931  * Generate X509v3 certificate.
1932  *
1933  * The certificate consists of the version number, serial number,
1934  * validity interval, issuer name, subject name and public key. For a
1935  * self-signed certificate, the issuer name is the same as the subject
1936  * name and these items are signed using the subject private key. The
1937  * validity interval extends from the current time to the same time one
1938  * year hence. For NTP purposes, it is convenient to use the NTP seconds
1939  * of the current time as the serial number.
1940  */
1941 int
1942 x509	(
1943 	EVP_PKEY *pkey,		/* signing key */
1944 	const EVP_MD *md,	/* signature/digest scheme */
1945 	char	*gqpub,		/* identity extension (hex string) */
1946 	const char *exten,	/* private cert extension */
1947 	char	*name		/* subject/issuer name */
1948 	)
1949 {
1950 	X509	*cert;		/* X509 certificate */
1951 	X509_NAME *subj;	/* distinguished (common) name */
1952 	X509_EXTENSION *ex;	/* X509v3 extension */
1953 	FILE	*str;		/* file handle */
1954 	ASN1_INTEGER *serial;	/* serial number */
1955 	const char *id;		/* digest/signature scheme name */
1956 	char	pathbuf[MAXFILENAME + 1];
1957 
1958 	/*
1959 	 * Generate X509 self-signed certificate.
1960 	 *
1961 	 * Set the certificate serial to the NTP seconds for grins. Set
1962 	 * the version to 3. Set the initial validity to the current
1963 	 * time and the finalvalidity one year hence.
1964 	 */
1965  	id = OBJ_nid2sn(EVP_MD_pkey_type(md));
1966 	fprintf(stderr, "Generating new certificate %s %s\n", name, id);
1967 	cert = X509_new();
1968 	X509_set_version(cert, 2L);
1969 	serial = ASN1_INTEGER_new();
1970 	ASN1_INTEGER_set(serial, (long)epoch + JAN_1970);
1971 	X509_set_serialNumber(cert, serial);
1972 	ASN1_INTEGER_free(serial);
1973 	X509_time_adj(X509_get_notBefore(cert), 0L, &epoch);
1974 	X509_time_adj(X509_get_notAfter(cert), lifetime * SECSPERDAY, &epoch);
1975 	subj = X509_get_subject_name(cert);
1976 	X509_NAME_add_entry_by_txt(subj, "commonName", MBSTRING_ASC,
1977 	    (u_char *)name, -1, -1, 0);
1978 	subj = X509_get_issuer_name(cert);
1979 	X509_NAME_add_entry_by_txt(subj, "commonName", MBSTRING_ASC,
1980 	    (u_char *)name, -1, -1, 0);
1981 	if (!X509_set_pubkey(cert, pkey)) {
1982 		fprintf(stderr, "Assign certificate signing key fails\n%s\n",
1983 		    ERR_error_string(ERR_get_error(), NULL));
1984 		X509_free(cert);
1985 		return (0);
1986 	}
1987 
1988 	/*
1989 	 * Add X509v3 extensions if present. These represent the minimum
1990 	 * set defined in RFC3280 less the certificate_policy extension,
1991 	 * which is seriously obfuscated in OpenSSL.
1992 	 */
1993 	/*
1994 	 * The basic_constraints extension CA:TRUE allows servers to
1995 	 * sign client certficitates.
1996 	 */
1997 	fprintf(stderr, "%s: %s\n", LN_basic_constraints,
1998 	    BASIC_CONSTRAINTS);
1999 	ex = X509V3_EXT_conf_nid(NULL, NULL, NID_basic_constraints,
2000 	    _UC(BASIC_CONSTRAINTS));
2001 	if (!X509_add_ext(cert, ex, -1)) {
2002 		fprintf(stderr, "Add extension field fails\n%s\n",
2003 		    ERR_error_string(ERR_get_error(), NULL));
2004 		return (0);
2005 	}
2006 	X509_EXTENSION_free(ex);
2007 
2008 	/*
2009 	 * The key_usage extension designates the purposes the key can
2010 	 * be used for.
2011 	 */
2012 	fprintf(stderr, "%s: %s\n", LN_key_usage, KEY_USAGE);
2013 	ex = X509V3_EXT_conf_nid(NULL, NULL, NID_key_usage, _UC(KEY_USAGE));
2014 	if (!X509_add_ext(cert, ex, -1)) {
2015 		fprintf(stderr, "Add extension field fails\n%s\n",
2016 		    ERR_error_string(ERR_get_error(), NULL));
2017 		return (0);
2018 	}
2019 	X509_EXTENSION_free(ex);
2020 	/*
2021 	 * The subject_key_identifier is used for the GQ public key.
2022 	 * This should not be controversial.
2023 	 */
2024 	if (gqpub != NULL) {
2025 		fprintf(stderr, "%s\n", LN_subject_key_identifier);
2026 		ex = X509V3_EXT_conf_nid(NULL, NULL,
2027 		    NID_subject_key_identifier, gqpub);
2028 		if (!X509_add_ext(cert, ex, -1)) {
2029 			fprintf(stderr,
2030 			    "Add extension field fails\n%s\n",
2031 			    ERR_error_string(ERR_get_error(), NULL));
2032 			return (0);
2033 		}
2034 		X509_EXTENSION_free(ex);
2035 	}
2036 
2037 	/*
2038 	 * The extended key usage extension is used for special purpose
2039 	 * here. The semantics probably do not conform to the designer's
2040 	 * intent and will likely change in future.
2041 	 *
2042 	 * "trustRoot" designates a root authority
2043 	 * "private" designates a private certificate
2044 	 */
2045 	if (exten != NULL) {
2046 		fprintf(stderr, "%s: %s\n", LN_ext_key_usage, exten);
2047 		ex = X509V3_EXT_conf_nid(NULL, NULL,
2048 		    NID_ext_key_usage, _UC(exten));
2049 		if (!X509_add_ext(cert, ex, -1)) {
2050 			fprintf(stderr,
2051 			    "Add extension field fails\n%s\n",
2052 			    ERR_error_string(ERR_get_error(), NULL));
2053 			return (0);
2054 		}
2055 		X509_EXTENSION_free(ex);
2056 	}
2057 
2058 	/*
2059 	 * Sign and verify.
2060 	 */
2061 	X509_sign(cert, pkey, md);
2062 	if (X509_verify(cert, pkey) <= 0) {
2063 		fprintf(stderr, "Verify %s certificate fails\n%s\n", id,
2064 		    ERR_error_string(ERR_get_error(), NULL));
2065 		X509_free(cert);
2066 		return (0);
2067 	}
2068 
2069 	/*
2070 	 * Write the certificate encoded in PEM.
2071 	 */
2072 	snprintf(pathbuf, sizeof(pathbuf), "%scert", id);
2073 	str = fheader(pathbuf, "cert", hostname);
2074 	PEM_write_X509(str, cert);
2075 	fclose(str);
2076 	if (debug)
2077 		X509_print_fp(stderr, cert);
2078 	X509_free(cert);
2079 	return (1);
2080 }
2081 
2082 #if 0	/* asn2ntp is used only with commercial certificates */
2083 /*
2084  * asn2ntp - convert ASN1_TIME time structure to NTP time
2085  */
2086 u_long
2087 asn2ntp	(
2088 	ASN1_TIME *asn1time	/* pointer to ASN1_TIME structure */
2089 	)
2090 {
2091 	char	*v;		/* pointer to ASN1_TIME string */
2092 	struct	tm tm;		/* time decode structure time */
2093 
2094 	/*
2095 	 * Extract time string YYMMDDHHMMSSZ from ASN.1 time structure.
2096 	 * Note that the YY, MM, DD fields start with one, the HH, MM,
2097 	 * SS fiels start with zero and the Z character should be 'Z'
2098 	 * for UTC. Also note that years less than 50 map to years
2099 	 * greater than 100. Dontcha love ASN.1?
2100 	 */
2101 	if (asn1time->length > 13)
2102 		return (-1);
2103 	v = (char *)asn1time->data;
2104 	tm.tm_year = (v[0] - '0') * 10 + v[1] - '0';
2105 	if (tm.tm_year < 50)
2106 		tm.tm_year += 100;
2107 	tm.tm_mon = (v[2] - '0') * 10 + v[3] - '0' - 1;
2108 	tm.tm_mday = (v[4] - '0') * 10 + v[5] - '0';
2109 	tm.tm_hour = (v[6] - '0') * 10 + v[7] - '0';
2110 	tm.tm_min = (v[8] - '0') * 10 + v[9] - '0';
2111 	tm.tm_sec = (v[10] - '0') * 10 + v[11] - '0';
2112 	tm.tm_wday = 0;
2113 	tm.tm_yday = 0;
2114 	tm.tm_isdst = 0;
2115 	return (mktime(&tm) + JAN_1970);
2116 }
2117 #endif
2118 
2119 /*
2120  * Callback routine
2121  */
2122 void
2123 cb	(
2124 	int	n1,		/* arg 1 */
2125 	int	n2,		/* arg 2 */
2126 	void	*chr		/* arg 3 */
2127 	)
2128 {
2129 	switch (n1) {
2130 	case 0:
2131 		d0++;
2132 		fprintf(stderr, "%s %d %d %lu\r", (char *)chr, n1, n2,
2133 		    d0);
2134 		break;
2135 	case 1:
2136 		d1++;
2137 		fprintf(stderr, "%s\t\t%d %d %lu\r", (char *)chr, n1,
2138 		    n2, d1);
2139 		break;
2140 	case 2:
2141 		d2++;
2142 		fprintf(stderr, "%s\t\t\t\t%d %d %lu\r", (char *)chr,
2143 		    n1, n2, d2);
2144 		break;
2145 	case 3:
2146 		d3++;
2147 		fprintf(stderr, "%s\t\t\t\t\t\t%d %d %lu\r",
2148 		    (char *)chr, n1, n2, d3);
2149 		break;
2150 	}
2151 }
2152 
2153 
2154 /*
2155  * Generate key
2156  */
2157 EVP_PKEY *			/* public/private key pair */
2158 genkey(
2159 	const char *type,	/* key type (RSA or DSA) */
2160 	const char *id		/* file name id */
2161 	)
2162 {
2163 	if (type == NULL)
2164 		return (NULL);
2165 	if (strcmp(type, "RSA") == 0)
2166 		return (gen_rsa(id));
2167 
2168 	else if (strcmp(type, "DSA") == 0)
2169 		return (gen_dsa(id));
2170 
2171 	fprintf(stderr, "Invalid %s key type %s\n", id, type);
2172 	return (NULL);
2173 }
2174 
2175 static RSA*
2176 genRsaKeyPair(
2177 	int	bits,
2178 	char *	what
2179 	)
2180 {
2181 	RSA *		rsa = RSA_new();
2182 	BN_GENCB *	gcb = BN_GENCB_new();
2183 	BIGNUM *	bne = BN_new();
2184 
2185 	if (gcb)
2186 		BN_GENCB_set_old(gcb, cb, what);
2187 	if (bne)
2188 		BN_set_word(bne, 65537);
2189 	if (!(rsa && gcb && bne && RSA_generate_key_ex(
2190 		      rsa, bits, bne, gcb)))
2191 	{
2192 		RSA_free(rsa);
2193 		rsa = NULL;
2194 	}
2195 	BN_GENCB_free(gcb);
2196 	BN_free(bne);
2197 	return rsa;
2198 }
2199 
2200 static DSA*
2201 genDsaParams(
2202 	int	bits,
2203 	char *	what
2204 	)
2205 {
2206 
2207 	DSA *		dsa = DSA_new();
2208 	BN_GENCB *	gcb = BN_GENCB_new();
2209 	u_char		seed[20];
2210 
2211 	if (gcb)
2212 		BN_GENCB_set_old(gcb, cb, what);
2213 	RAND_bytes(seed, sizeof(seed));
2214 	if (!(dsa && gcb && DSA_generate_parameters_ex(
2215 		      dsa, bits, seed, sizeof(seed), NULL, NULL, gcb)))
2216 	{
2217 		DSA_free(dsa);
2218 		dsa = NULL;
2219 	}
2220 	BN_GENCB_free(gcb);
2221 	return dsa;
2222 }
2223 
2224 #endif	/* AUTOKEY */
2225 
2226 
2227 /*
2228  * Generate file header and link
2229  */
2230 FILE *
2231 fheader	(
2232 	const char *file,	/* file name id */
2233 	const char *ulink,	/* linkname */
2234 	const char *owner	/* owner name */
2235 	)
2236 {
2237 	FILE	*str;		/* file handle */
2238 	char	linkname[MAXFILENAME]; /* link name */
2239 	int	temp;
2240 #ifdef HAVE_UMASK
2241         mode_t  orig_umask;
2242 #endif
2243 
2244 	snprintf(filename, sizeof(filename), "ntpkey_%s_%s.%u", file,
2245 	    owner, fstamp);
2246 #ifdef HAVE_UMASK
2247         orig_umask = umask( S_IWGRP | S_IRWXO );
2248         str = fopen(filename, "w");
2249         (void) umask(orig_umask);
2250 #else
2251         str = fopen(filename, "w");
2252 #endif
2253 	if (str == NULL) {
2254 		perror("Write");
2255 		exit (-1);
2256 	}
2257         if (strcmp(ulink, "md5") == 0) {
2258           strcpy(linkname,"ntp.keys");
2259         } else {
2260           snprintf(linkname, sizeof(linkname), "ntpkey_%s_%s", ulink,
2261                    hostname);
2262         }
2263 	(void)remove(linkname);		/* The symlink() line below matters */
2264 	temp = symlink(filename, linkname);
2265 	if (temp < 0)
2266 		perror(file);
2267 	fprintf(stderr, "Generating new %s file and link\n", ulink);
2268 	fprintf(stderr, "%s->%s\n", linkname, filename);
2269 	fprintf(str, "# %s\n# %s\n", filename, ctime(&epoch));
2270 	return (str);
2271 }
2272