1 /* 2 * Program to generate cryptographic keys for ntp clients and servers 3 * 4 * This program generates password encrypted data files for use with the 5 * Autokey security protocol and Network Time Protocol Version 4. Files 6 * are prefixed with a header giving the name and date of creation 7 * followed by a type-specific descriptive label and PEM-encoded data 8 * structure compatible with programs of the OpenSSL library. 9 * 10 * All file names are like "ntpkey_<type>_<hostname>.<filestamp>", where 11 * <type> is the file type, <hostname> the generating host name and 12 * <filestamp> the generation time in NTP seconds. The NTP programs 13 * expect generic names such as "ntpkey_<type>_whimsy.udel.edu" with the 14 * association maintained by soft links. Following is a list of file 15 * types; the first line is the file name and the second link name. 16 * 17 * ntpkey_MD5key_<hostname>.<filestamp> 18 * MD5 (128-bit) keys used to compute message digests in symmetric 19 * key cryptography 20 * 21 * ntpkey_RSAhost_<hostname>.<filestamp> 22 * ntpkey_host_<hostname> 23 * RSA private/public host key pair used for public key signatures 24 * 25 * ntpkey_RSAsign_<hostname>.<filestamp> 26 * ntpkey_sign_<hostname> 27 * RSA private/public sign key pair used for public key signatures 28 * 29 * ntpkey_DSAsign_<hostname>.<filestamp> 30 * ntpkey_sign_<hostname> 31 * DSA Private/public sign key pair used for public key signatures 32 * 33 * Available digest/signature schemes 34 * 35 * RSA: RSA-MD2, RSA-MD5, RSA-SHA, RSA-SHA1, RSA-MDC2, EVP-RIPEMD160 36 * DSA: DSA-SHA, DSA-SHA1 37 * 38 * ntpkey_XXXcert_<hostname>.<filestamp> 39 * ntpkey_cert_<hostname> 40 * X509v3 certificate using RSA or DSA public keys and signatures. 41 * XXX is a code identifying the message digest and signature 42 * encryption algorithm 43 * 44 * Identity schemes. The key type par is used for the challenge; the key 45 * type key is used for the response. 46 * 47 * ntpkey_IFFkey_<groupname>.<filestamp> 48 * ntpkey_iffkey_<groupname> 49 * Schnorr (IFF) identity parameters and keys 50 * 51 * ntpkey_GQkey_<groupname>.<filestamp>, 52 * ntpkey_gqkey_<groupname> 53 * Guillou-Quisquater (GQ) identity parameters and keys 54 * 55 * ntpkey_MVkeyX_<groupname>.<filestamp>, 56 * ntpkey_mvkey_<groupname> 57 * Mu-Varadharajan (MV) identity parameters and keys 58 * 59 * Note: Once in a while because of some statistical fluke this program 60 * fails to generate and verify some cryptographic data, as indicated by 61 * exit status -1. In this case simply run the program again. If the 62 * program does complete with exit code 0, the data are correct as 63 * verified. 64 * 65 * These cryptographic routines are characterized by the prime modulus 66 * size in bits. The default value of 512 bits is a compromise between 67 * cryptographic strength and computing time and is ordinarily 68 * considered adequate for this application. The routines have been 69 * tested with sizes of 256, 512, 1024 and 2048 bits. Not all message 70 * digest and signature encryption schemes work with sizes less than 512 71 * bits. The computing time for sizes greater than 2048 bits is 72 * prohibitive on all but the fastest processors. An UltraSPARC Blade 73 * 1000 took something over nine minutes to generate and verify the 74 * values with size 2048. An old SPARC IPC would take a week. 75 * 76 * The OpenSSL library used by this program expects a random seed file. 77 * As described in the OpenSSL documentation, the file name defaults to 78 * first the RANDFILE environment variable in the user's home directory 79 * and then .rnd in the user's home directory. 80 */ 81 #ifdef HAVE_CONFIG_H 82 # include <config.h> 83 #endif 84 #include <string.h> 85 #include <stdio.h> 86 #include <stdlib.h> 87 #include <unistd.h> 88 #include <sys/stat.h> 89 #include <sys/time.h> 90 #include <sys/types.h> 91 92 #include "ntp.h" 93 #include "ntp_random.h" 94 #include "ntp_stdlib.h" 95 #include "ntp_assert.h" 96 #include "ntp_libopts.h" 97 #include "ntp_unixtime.h" 98 #include "ntp-keygen-opts.h" 99 100 #ifdef OPENSSL 101 #include "openssl/asn1.h" 102 #include "openssl/bn.h" 103 #include "openssl/crypto.h" 104 #include "openssl/evp.h" 105 #include "openssl/err.h" 106 #include "openssl/rand.h" 107 #include "openssl/opensslv.h" 108 #include "openssl/pem.h" 109 #include "openssl/x509.h" 110 #include "openssl/x509v3.h" 111 #include <openssl/objects.h> 112 #include "libssl_compat.h" 113 #endif /* OPENSSL */ 114 #include <ssl_applink.c> 115 116 #define _UC(str) ((char *)(intptr_t)(str)) 117 /* 118 * Cryptodefines 119 */ 120 #define MD5KEYS 10 /* number of keys generated of each type */ 121 #define MD5SIZE 20 /* maximum key size */ 122 #ifdef AUTOKEY 123 #define PLEN 512 /* default prime modulus size (bits) */ 124 #define ILEN 256 /* default identity modulus size (bits) */ 125 #define MVMAX 100 /* max MV parameters */ 126 127 /* 128 * Strings used in X509v3 extension fields 129 */ 130 #define KEY_USAGE "digitalSignature,keyCertSign" 131 #define BASIC_CONSTRAINTS "critical,CA:TRUE" 132 #define EXT_KEY_PRIVATE "private" 133 #define EXT_KEY_TRUST "trustRoot" 134 #endif /* AUTOKEY */ 135 136 /* 137 * Prototypes 138 */ 139 FILE *fheader (const char *, const char *, const char *); 140 int gen_md5 (const char *); 141 void followlink (char *, size_t); 142 #ifdef AUTOKEY 143 EVP_PKEY *gen_rsa (const char *); 144 EVP_PKEY *gen_dsa (const char *); 145 EVP_PKEY *gen_iffkey (const char *); 146 EVP_PKEY *gen_gqkey (const char *); 147 EVP_PKEY *gen_mvkey (const char *, EVP_PKEY **); 148 void gen_mvserv (char *, EVP_PKEY **); 149 int x509 (EVP_PKEY *, const EVP_MD *, char *, const char *, 150 char *); 151 void cb (int, int, void *); 152 EVP_PKEY *genkey (const char *, const char *); 153 EVP_PKEY *readkey (char *, char *, u_int *, EVP_PKEY **); 154 void writekey (char *, char *, u_int *, EVP_PKEY **); 155 u_long asn2ntp (ASN1_TIME *); 156 157 static DSA* genDsaParams(int, char*); 158 static RSA* genRsaKeyPair(int, char*); 159 160 #endif /* AUTOKEY */ 161 162 /* 163 * Program variables 164 */ 165 extern char *optarg; /* command line argument */ 166 char const *progname; 167 u_int lifetime = DAYSPERYEAR; /* certificate lifetime (days) */ 168 int nkeys; /* MV keys */ 169 time_t epoch; /* Unix epoch (seconds) since 1970 */ 170 u_int fstamp; /* NTP filestamp */ 171 char hostbuf[MAXHOSTNAME + 1]; 172 char *hostname = NULL; /* host, used in cert filenames */ 173 char *groupname = NULL; /* group name */ 174 char certnamebuf[2 * sizeof(hostbuf)]; 175 char *certname = NULL; /* certificate subject/issuer name */ 176 char *passwd1 = NULL; /* input private key password */ 177 char *passwd2 = NULL; /* output private key password */ 178 char filename[MAXFILENAME + 1]; /* file name */ 179 #ifdef AUTOKEY 180 u_int modulus = PLEN; /* prime modulus size (bits) */ 181 u_int modulus2 = ILEN; /* identity modulus size (bits) */ 182 long d0, d1, d2, d3; /* callback counters */ 183 const EVP_CIPHER * cipher = NULL; 184 #endif /* AUTOKEY */ 185 186 #ifdef SYS_WINNT 187 BOOL init_randfile(); 188 189 /* 190 * Don't try to follow symbolic links on Windows. Assume link == file. 191 */ 192 int 193 readlink( 194 char * link, 195 char * file, 196 int len 197 ) 198 { 199 return (int)strlen(file); /* assume no overflow possible */ 200 } 201 202 /* 203 * Don't try to create symbolic links on Windows, that is supported on 204 * Vista and later only. Instead, if CreateHardLink is available (XP 205 * and later), hardlink the linkname to the original filename. On 206 * earlier systems, user must rename file to match expected link for 207 * ntpd to find it. To allow building a ntp-keygen.exe which loads on 208 * Windows pre-XP, runtime link to CreateHardLinkA(). 209 */ 210 int 211 symlink( 212 char * filename, 213 char* linkname 214 ) 215 { 216 typedef BOOL (WINAPI *PCREATEHARDLINKA)( 217 __in LPCSTR lpFileName, 218 __in LPCSTR lpExistingFileName, 219 __reserved LPSECURITY_ATTRIBUTES lpSA 220 ); 221 static PCREATEHARDLINKA pCreateHardLinkA; 222 static int tried; 223 HMODULE hDll; 224 FARPROC pfn; 225 int link_created; 226 int saved_errno; 227 228 if (!tried) { 229 tried = TRUE; 230 hDll = LoadLibrary("kernel32"); 231 pfn = GetProcAddress(hDll, "CreateHardLinkA"); 232 pCreateHardLinkA = (PCREATEHARDLINKA)pfn; 233 } 234 235 if (NULL == pCreateHardLinkA) { 236 errno = ENOSYS; 237 return -1; 238 } 239 240 link_created = (*pCreateHardLinkA)(linkname, filename, NULL); 241 242 if (link_created) 243 return 0; 244 245 saved_errno = GetLastError(); /* yes we play loose */ 246 mfprintf(stderr, "Create hard link %s to %s failed: %m\n", 247 linkname, filename); 248 errno = saved_errno; 249 return -1; 250 } 251 252 void 253 InitWin32Sockets() { 254 WORD wVersionRequested; 255 WSADATA wsaData; 256 wVersionRequested = MAKEWORD(2,0); 257 if (WSAStartup(wVersionRequested, &wsaData)) 258 { 259 fprintf(stderr, "No useable winsock.dll\n"); 260 exit(1); 261 } 262 } 263 #endif /* SYS_WINNT */ 264 265 266 /* 267 * followlink() - replace filename with its target if symlink. 268 * 269 * Some readlink() implementations do not null-terminate the result. 270 */ 271 void 272 followlink( 273 char * fname, 274 size_t bufsiz 275 ) 276 { 277 int len; 278 279 REQUIRE(bufsiz > 0); 280 281 len = readlink(fname, fname, (int)bufsiz); 282 if (len < 0 ) { 283 fname[0] = '\0'; 284 return; 285 } 286 if (len > (int)bufsiz - 1) 287 len = (int)bufsiz - 1; 288 fname[len] = '\0'; 289 } 290 291 292 /* 293 * Main program 294 */ 295 int 296 main( 297 int argc, /* command line options */ 298 char **argv 299 ) 300 { 301 struct timeval tv; /* initialization vector */ 302 int md5key = 0; /* generate MD5 keys */ 303 int optct; /* option count */ 304 #ifdef AUTOKEY 305 X509 *cert = NULL; /* X509 certificate */ 306 EVP_PKEY *pkey_host = NULL; /* host key */ 307 EVP_PKEY *pkey_sign = NULL; /* sign key */ 308 EVP_PKEY *pkey_iffkey = NULL; /* IFF sever keys */ 309 EVP_PKEY *pkey_gqkey = NULL; /* GQ server keys */ 310 EVP_PKEY *pkey_mvkey = NULL; /* MV trusted agen keys */ 311 EVP_PKEY *pkey_mvpar[MVMAX]; /* MV cleient keys */ 312 int hostkey = 0; /* generate RSA keys */ 313 int iffkey = 0; /* generate IFF keys */ 314 int gqkey = 0; /* generate GQ keys */ 315 int mvkey = 0; /* update MV keys */ 316 int mvpar = 0; /* generate MV parameters */ 317 char *sign = NULL; /* sign key */ 318 EVP_PKEY *pkey = NULL; /* temp key */ 319 const EVP_MD *ectx; /* EVP digest */ 320 char pathbuf[MAXFILENAME + 1]; 321 const char *scheme = NULL; /* digest/signature scheme */ 322 const char *ciphername = NULL; /* to encrypt priv. key */ 323 const char *exten = NULL; /* private extension */ 324 char *grpkey = NULL; /* identity extension */ 325 int nid; /* X509 digest/signature scheme */ 326 FILE *fstr = NULL; /* file handle */ 327 char groupbuf[MAXHOSTNAME + 1]; 328 u_int temp; 329 BIO * bp; 330 int i, cnt; 331 char * ptr; 332 #endif /* AUTOKEY */ 333 #ifdef OPENSSL 334 const char *sslvtext; 335 int sslvmatch; 336 #endif /* OPENSSL */ 337 338 progname = argv[0]; 339 340 #ifdef SYS_WINNT 341 /* Initialize before OpenSSL checks */ 342 InitWin32Sockets(); 343 if (!init_randfile()) 344 fprintf(stderr, "Unable to initialize .rnd file\n"); 345 ssl_applink(); 346 #endif 347 348 #ifdef OPENSSL 349 ssl_check_version(); 350 #endif /* OPENSSL */ 351 352 ntp_crypto_srandom(); 353 354 /* 355 * Process options, initialize host name and timestamp. 356 * gethostname() won't null-terminate if hostname is exactly the 357 * length provided for the buffer. 358 */ 359 gethostname(hostbuf, sizeof(hostbuf) - 1); 360 hostbuf[COUNTOF(hostbuf) - 1] = '\0'; 361 hostname = hostbuf; 362 groupname = hostbuf; 363 passwd1 = hostbuf; 364 passwd2 = NULL; 365 GETTIMEOFDAY(&tv, NULL); 366 epoch = tv.tv_sec; 367 fstamp = (u_int)(epoch + JAN_1970); 368 369 optct = ntpOptionProcess(&ntp_keygenOptions, argc, argv); 370 argc -= optct; // Just in case we care later. 371 argv += optct; // Just in case we care later. 372 373 #ifdef OPENSSL 374 sslvtext = OpenSSL_version(OPENSSL_VERSION); 375 sslvmatch = OpenSSL_version_num() == OPENSSL_VERSION_NUMBER; 376 if (sslvmatch) 377 fprintf(stderr, "Using OpenSSL version %s\n", 378 sslvtext); 379 else 380 fprintf(stderr, "Built against OpenSSL %s, using version %s\n", 381 OPENSSL_VERSION_TEXT, sslvtext); 382 #endif /* OPENSSL */ 383 384 debug = OPT_VALUE_SET_DEBUG_LEVEL; 385 386 if (HAVE_OPT( MD5KEY )) 387 md5key++; 388 #ifdef AUTOKEY 389 if (HAVE_OPT( PASSWORD )) 390 passwd1 = estrdup(OPT_ARG( PASSWORD )); 391 392 if (HAVE_OPT( EXPORT_PASSWD )) 393 passwd2 = estrdup(OPT_ARG( EXPORT_PASSWD )); 394 395 if (HAVE_OPT( HOST_KEY )) 396 hostkey++; 397 398 if (HAVE_OPT( SIGN_KEY )) 399 sign = estrdup(OPT_ARG( SIGN_KEY )); 400 401 if (HAVE_OPT( GQ_PARAMS )) 402 gqkey++; 403 404 if (HAVE_OPT( IFFKEY )) 405 iffkey++; 406 407 if (HAVE_OPT( MV_PARAMS )) { 408 mvkey++; 409 nkeys = OPT_VALUE_MV_PARAMS; 410 } 411 if (HAVE_OPT( MV_KEYS )) { 412 mvpar++; 413 nkeys = OPT_VALUE_MV_KEYS; 414 } 415 416 if (HAVE_OPT( IMBITS )) 417 modulus2 = OPT_VALUE_IMBITS; 418 419 if (HAVE_OPT( MODULUS )) 420 modulus = OPT_VALUE_MODULUS; 421 422 if (HAVE_OPT( CERTIFICATE )) 423 scheme = OPT_ARG( CERTIFICATE ); 424 425 if (HAVE_OPT( CIPHER )) 426 ciphername = OPT_ARG( CIPHER ); 427 428 if (HAVE_OPT( SUBJECT_NAME )) 429 hostname = estrdup(OPT_ARG( SUBJECT_NAME )); 430 431 if (HAVE_OPT( IDENT )) 432 groupname = estrdup(OPT_ARG( IDENT )); 433 434 if (HAVE_OPT( LIFETIME )) 435 lifetime = OPT_VALUE_LIFETIME; 436 437 if (HAVE_OPT( PVT_CERT )) 438 exten = EXT_KEY_PRIVATE; 439 440 if (HAVE_OPT( TRUSTED_CERT )) 441 exten = EXT_KEY_TRUST; 442 443 /* 444 * Remove the group name from the hostname variable used 445 * in host and sign certificate file names. 446 */ 447 if (hostname != hostbuf) 448 ptr = strchr(hostname, '@'); 449 else 450 ptr = NULL; 451 if (ptr != NULL) { 452 *ptr = '\0'; 453 groupname = estrdup(ptr + 1); 454 /* -s @group is equivalent to -i group, host unch. */ 455 if (ptr == hostname) 456 hostname = hostbuf; 457 } 458 459 /* 460 * Derive host certificate issuer/subject names from host name 461 * and optional group. If no groupname is provided, the issuer 462 * and subject is the hostname with no '@group', and the 463 * groupname variable is pointed to hostname for use in IFF, GQ, 464 * and MV parameters file names. 465 */ 466 if (groupname == hostbuf) { 467 certname = hostname; 468 } else { 469 snprintf(certnamebuf, sizeof(certnamebuf), "%s@%s", 470 hostname, groupname); 471 certname = certnamebuf; 472 } 473 474 /* 475 * Seed random number generator and grow weeds. 476 */ 477 #if OPENSSL_VERSION_NUMBER < 0x10100000L 478 ERR_load_crypto_strings(); 479 OpenSSL_add_all_algorithms(); 480 #endif /* OPENSSL_VERSION_NUMBER */ 481 if (!RAND_status()) { 482 if (RAND_file_name(pathbuf, sizeof(pathbuf)) == NULL) { 483 fprintf(stderr, "RAND_file_name %s\n", 484 ERR_error_string(ERR_get_error(), NULL)); 485 exit (-1); 486 } 487 temp = RAND_load_file(pathbuf, -1); 488 if (temp == 0) { 489 fprintf(stderr, 490 "RAND_load_file %s not found or empty\n", 491 pathbuf); 492 exit (-1); 493 } 494 fprintf(stderr, 495 "Random seed file %s %u bytes\n", pathbuf, temp); 496 RAND_add(&epoch, sizeof(epoch), 4.0); 497 } 498 #endif /* AUTOKEY */ 499 500 /* 501 * Create new unencrypted MD5 keys file if requested. If this 502 * option is selected, ignore all other options. 503 */ 504 if (md5key) { 505 gen_md5("md5"); 506 exit (0); 507 } 508 509 #ifdef AUTOKEY 510 /* 511 * Load previous certificate if available. 512 */ 513 snprintf(filename, sizeof(filename), "ntpkey_cert_%s", hostname); 514 if ((fstr = fopen(filename, "r")) != NULL) { 515 cert = PEM_read_X509(fstr, NULL, NULL, NULL); 516 fclose(fstr); 517 } 518 if (cert != NULL) { 519 520 /* 521 * Extract subject name. 522 */ 523 X509_NAME_oneline(X509_get_subject_name(cert), groupbuf, 524 MAXFILENAME); 525 526 /* 527 * Extract digest/signature scheme. 528 */ 529 if (scheme == NULL) { 530 nid = X509_get_signature_nid(cert); 531 scheme = OBJ_nid2sn(nid); 532 } 533 534 /* 535 * If a key_usage extension field is present, determine 536 * whether this is a trusted or private certificate. 537 */ 538 if (exten == NULL) { 539 ptr = strstr(groupbuf, "CN="); 540 cnt = X509_get_ext_count(cert); 541 for (i = 0; i < cnt; i++) { 542 X509_EXTENSION *ext; 543 ASN1_OBJECT *obj; 544 545 ext = X509_get_ext(cert, i); 546 obj = X509_EXTENSION_get_object(ext); 547 548 if (OBJ_obj2nid(obj) == 549 NID_ext_key_usage) { 550 bp = BIO_new(BIO_s_mem()); 551 X509V3_EXT_print(bp, ext, 0, 0); 552 BIO_gets(bp, pathbuf, 553 MAXFILENAME); 554 BIO_free(bp); 555 if (strcmp(pathbuf, 556 "Trust Root") == 0) 557 exten = EXT_KEY_TRUST; 558 else if (strcmp(pathbuf, 559 "Private") == 0) 560 exten = EXT_KEY_PRIVATE; 561 certname = estrdup(ptr + 3); 562 } 563 } 564 } 565 } 566 if (scheme == NULL) 567 scheme = "RSA-MD5"; 568 if (ciphername == NULL) 569 ciphername = "des-ede3-cbc"; 570 cipher = EVP_get_cipherbyname(ciphername); 571 if (cipher == NULL) { 572 fprintf(stderr, "Unknown cipher %s\n", ciphername); 573 exit(-1); 574 } 575 fprintf(stderr, "Using host %s group %s\n", hostname, 576 groupname); 577 578 /* 579 * Create a new encrypted RSA host key file if requested; 580 * otherwise, look for an existing host key file. If not found, 581 * create a new encrypted RSA host key file. If that fails, go 582 * no further. 583 */ 584 if (hostkey) 585 pkey_host = genkey("RSA", "host"); 586 if (pkey_host == NULL) { 587 snprintf(filename, sizeof(filename), "ntpkey_host_%s", hostname); 588 pkey_host = readkey(filename, passwd1, &fstamp, NULL); 589 if (pkey_host != NULL) { 590 followlink(filename, sizeof(filename)); 591 fprintf(stderr, "Using host key %s\n", 592 filename); 593 } else { 594 pkey_host = genkey("RSA", "host"); 595 } 596 } 597 if (pkey_host == NULL) { 598 fprintf(stderr, "Generating host key fails\n"); 599 exit(-1); 600 } 601 602 /* 603 * Create new encrypted RSA or DSA sign keys file if requested; 604 * otherwise, look for an existing sign key file. If not found, 605 * use the host key instead. 606 */ 607 if (sign != NULL) 608 pkey_sign = genkey(sign, "sign"); 609 if (pkey_sign == NULL) { 610 snprintf(filename, sizeof(filename), "ntpkey_sign_%s", 611 hostname); 612 pkey_sign = readkey(filename, passwd1, &fstamp, NULL); 613 if (pkey_sign != NULL) { 614 followlink(filename, sizeof(filename)); 615 fprintf(stderr, "Using sign key %s\n", 616 filename); 617 } else { 618 pkey_sign = pkey_host; 619 fprintf(stderr, "Using host key as sign key\n"); 620 } 621 } 622 623 /* 624 * Create new encrypted GQ server keys file if requested; 625 * otherwise, look for an exisiting file. If found, fetch the 626 * public key for the certificate. 627 */ 628 if (gqkey) 629 pkey_gqkey = gen_gqkey("gqkey"); 630 if (pkey_gqkey == NULL) { 631 snprintf(filename, sizeof(filename), "ntpkey_gqkey_%s", 632 groupname); 633 pkey_gqkey = readkey(filename, passwd1, &fstamp, NULL); 634 if (pkey_gqkey != NULL) { 635 followlink(filename, sizeof(filename)); 636 fprintf(stderr, "Using GQ parameters %s\n", 637 filename); 638 } 639 } 640 if (pkey_gqkey != NULL) { 641 RSA *rsa; 642 const BIGNUM *q; 643 644 rsa = EVP_PKEY_get0_RSA(pkey_gqkey); 645 RSA_get0_factors(rsa, NULL, &q); 646 grpkey = BN_bn2hex(q); 647 } 648 649 /* 650 * Write the nonencrypted GQ client parameters to the stdout 651 * stream. The parameter file is the server key file with the 652 * private key obscured. 653 */ 654 if (pkey_gqkey != NULL && HAVE_OPT(ID_KEY)) { 655 RSA *rsa; 656 657 snprintf(filename, sizeof(filename), 658 "ntpkey_gqpar_%s.%u", groupname, fstamp); 659 fprintf(stderr, "Writing GQ parameters %s to stdout\n", 660 filename); 661 fprintf(stdout, "# %s\n# %s\n", filename, 662 ctime(&epoch)); 663 /* XXX: This modifies the private key and should probably use a 664 * copy of it instead. */ 665 rsa = EVP_PKEY_get0_RSA(pkey_gqkey); 666 RSA_set0_factors(rsa, BN_dup(BN_value_one()), BN_dup(BN_value_one())); 667 pkey = EVP_PKEY_new(); 668 EVP_PKEY_assign_RSA(pkey, rsa); 669 PEM_write_PKCS8PrivateKey(stdout, pkey, NULL, NULL, 0, 670 NULL, NULL); 671 fflush(stdout); 672 if (debug) 673 RSA_print_fp(stderr, rsa, 0); 674 } 675 676 /* 677 * Write the encrypted GQ server keys to the stdout stream. 678 */ 679 if (pkey_gqkey != NULL && passwd2 != NULL) { 680 RSA *rsa; 681 682 snprintf(filename, sizeof(filename), 683 "ntpkey_gqkey_%s.%u", groupname, fstamp); 684 fprintf(stderr, "Writing GQ keys %s to stdout\n", 685 filename); 686 fprintf(stdout, "# %s\n# %s\n", filename, 687 ctime(&epoch)); 688 rsa = EVP_PKEY_get0_RSA(pkey_gqkey); 689 pkey = EVP_PKEY_new(); 690 EVP_PKEY_assign_RSA(pkey, rsa); 691 PEM_write_PKCS8PrivateKey(stdout, pkey, cipher, NULL, 0, 692 NULL, passwd2); 693 fflush(stdout); 694 if (debug) 695 RSA_print_fp(stderr, rsa, 0); 696 } 697 698 /* 699 * Create new encrypted IFF server keys file if requested; 700 * otherwise, look for existing file. 701 */ 702 if (iffkey) 703 pkey_iffkey = gen_iffkey("iffkey"); 704 if (pkey_iffkey == NULL) { 705 snprintf(filename, sizeof(filename), "ntpkey_iffkey_%s", 706 groupname); 707 pkey_iffkey = readkey(filename, passwd1, &fstamp, NULL); 708 if (pkey_iffkey != NULL) { 709 followlink(filename, sizeof(filename)); 710 fprintf(stderr, "Using IFF keys %s\n", 711 filename); 712 } 713 } 714 715 /* 716 * Write the nonencrypted IFF client parameters to the stdout 717 * stream. The parameter file is the server key file with the 718 * private key obscured. 719 */ 720 if (pkey_iffkey != NULL && HAVE_OPT(ID_KEY)) { 721 DSA *dsa; 722 723 snprintf(filename, sizeof(filename), 724 "ntpkey_iffpar_%s.%u", groupname, fstamp); 725 fprintf(stderr, "Writing IFF parameters %s to stdout\n", 726 filename); 727 fprintf(stdout, "# %s\n# %s\n", filename, 728 ctime(&epoch)); 729 /* XXX: This modifies the private key and should probably use a 730 * copy of it instead. */ 731 dsa = EVP_PKEY_get0_DSA(pkey_iffkey); 732 DSA_set0_key(dsa, NULL, BN_dup(BN_value_one())); 733 pkey = EVP_PKEY_new(); 734 EVP_PKEY_assign_DSA(pkey, dsa); 735 PEM_write_PKCS8PrivateKey(stdout, pkey, NULL, NULL, 0, 736 NULL, NULL); 737 fflush(stdout); 738 if (debug) 739 DSA_print_fp(stderr, dsa, 0); 740 } 741 742 /* 743 * Write the encrypted IFF server keys to the stdout stream. 744 */ 745 if (pkey_iffkey != NULL && passwd2 != NULL) { 746 DSA *dsa; 747 748 snprintf(filename, sizeof(filename), 749 "ntpkey_iffkey_%s.%u", groupname, fstamp); 750 fprintf(stderr, "Writing IFF keys %s to stdout\n", 751 filename); 752 fprintf(stdout, "# %s\n# %s\n", filename, 753 ctime(&epoch)); 754 dsa = EVP_PKEY_get0_DSA(pkey_iffkey); 755 pkey = EVP_PKEY_new(); 756 EVP_PKEY_assign_DSA(pkey, dsa); 757 PEM_write_PKCS8PrivateKey(stdout, pkey, cipher, NULL, 0, 758 NULL, passwd2); 759 fflush(stdout); 760 if (debug) 761 DSA_print_fp(stderr, dsa, 0); 762 } 763 764 /* 765 * Create new encrypted MV trusted-authority keys file if 766 * requested; otherwise, look for existing keys file. 767 */ 768 if (mvkey) 769 pkey_mvkey = gen_mvkey("mv", pkey_mvpar); 770 if (pkey_mvkey == NULL) { 771 snprintf(filename, sizeof(filename), "ntpkey_mvta_%s", 772 groupname); 773 pkey_mvkey = readkey(filename, passwd1, &fstamp, 774 pkey_mvpar); 775 if (pkey_mvkey != NULL) { 776 followlink(filename, sizeof(filename)); 777 fprintf(stderr, "Using MV keys %s\n", 778 filename); 779 } 780 } 781 782 /* 783 * Write the nonencrypted MV client parameters to the stdout 784 * stream. For the moment, we always use the client parameters 785 * associated with client key 1. 786 */ 787 if (pkey_mvkey != NULL && HAVE_OPT(ID_KEY)) { 788 snprintf(filename, sizeof(filename), 789 "ntpkey_mvpar_%s.%u", groupname, fstamp); 790 fprintf(stderr, "Writing MV parameters %s to stdout\n", 791 filename); 792 fprintf(stdout, "# %s\n# %s\n", filename, 793 ctime(&epoch)); 794 pkey = pkey_mvpar[2]; 795 PEM_write_PKCS8PrivateKey(stdout, pkey, NULL, NULL, 0, 796 NULL, NULL); 797 fflush(stdout); 798 if (debug) 799 DSA_print_fp(stderr, EVP_PKEY_get0_DSA(pkey), 0); 800 } 801 802 /* 803 * Write the encrypted MV server keys to the stdout stream. 804 */ 805 if (pkey_mvkey != NULL && passwd2 != NULL) { 806 snprintf(filename, sizeof(filename), 807 "ntpkey_mvkey_%s.%u", groupname, fstamp); 808 fprintf(stderr, "Writing MV keys %s to stdout\n", 809 filename); 810 fprintf(stdout, "# %s\n# %s\n", filename, 811 ctime(&epoch)); 812 pkey = pkey_mvpar[1]; 813 PEM_write_PKCS8PrivateKey(stdout, pkey, cipher, NULL, 0, 814 NULL, passwd2); 815 fflush(stdout); 816 if (debug) 817 DSA_print_fp(stderr, EVP_PKEY_get0_DSA(pkey), 0); 818 } 819 820 /* 821 * Decode the digest/signature scheme and create the 822 * certificate. Do this every time we run the program. 823 */ 824 ectx = EVP_get_digestbyname(scheme); 825 if (ectx == NULL) { 826 fprintf(stderr, 827 "Invalid digest/signature combination %s\n", 828 scheme); 829 exit (-1); 830 } 831 x509(pkey_sign, ectx, grpkey, exten, certname); 832 #endif /* AUTOKEY */ 833 exit(0); 834 } 835 836 837 /* 838 * Generate semi-random MD5 keys compatible with NTPv3 and NTPv4. Also, 839 * if OpenSSL is around, generate random SHA1 keys compatible with 840 * symmetric key cryptography. 841 */ 842 int 843 gen_md5( 844 const char *id /* file name id */ 845 ) 846 { 847 u_char md5key[MD5SIZE + 1]; /* MD5 key */ 848 FILE *str; 849 int i, j; 850 #ifdef OPENSSL 851 u_char keystr[MD5SIZE]; 852 u_char hexstr[2 * MD5SIZE + 1]; 853 u_char hex[] = "0123456789abcdef"; 854 #endif /* OPENSSL */ 855 856 str = fheader("MD5key", id, groupname); 857 for (i = 1; i <= MD5KEYS; i++) { 858 for (j = 0; j < MD5SIZE; j++) { 859 u_char temp; 860 861 while (1) { 862 int rc; 863 864 rc = ntp_crypto_random_buf( 865 &temp, sizeof(temp)); 866 if (-1 == rc) { 867 fprintf(stderr, "ntp_crypto_random_buf() failed.\n"); 868 exit (-1); 869 } 870 if (temp == '#') 871 continue; 872 873 if (temp > 0x20 && temp < 0x7f) 874 break; 875 } 876 md5key[j] = temp; 877 } 878 md5key[j] = '\0'; 879 fprintf(str, "%2d MD5 %s # MD5 key\n", i, 880 md5key); 881 } 882 #ifdef OPENSSL 883 for (i = 1; i <= MD5KEYS; i++) { 884 RAND_bytes(keystr, 20); 885 for (j = 0; j < MD5SIZE; j++) { 886 hexstr[2 * j] = hex[keystr[j] >> 4]; 887 hexstr[2 * j + 1] = hex[keystr[j] & 0xf]; 888 } 889 hexstr[2 * MD5SIZE] = '\0'; 890 fprintf(str, "%2d SHA1 %s # SHA1 key\n", i + MD5KEYS, 891 hexstr); 892 } 893 #endif /* OPENSSL */ 894 fclose(str); 895 return (1); 896 } 897 898 899 #ifdef AUTOKEY 900 /* 901 * readkey - load cryptographic parameters and keys 902 * 903 * This routine loads a PEM-encoded file of given name and password and 904 * extracts the filestamp from the file name. It returns a pointer to 905 * the first key if valid, NULL if not. 906 */ 907 EVP_PKEY * /* public/private key pair */ 908 readkey( 909 char *cp, /* file name */ 910 char *passwd, /* password */ 911 u_int *estamp, /* file stamp */ 912 EVP_PKEY **evpars /* parameter list pointer */ 913 ) 914 { 915 FILE *str; /* file handle */ 916 EVP_PKEY *pkey = NULL; /* public/private key */ 917 u_int gstamp; /* filestamp */ 918 char linkname[MAXFILENAME]; /* filestamp buffer) */ 919 EVP_PKEY *parkey; 920 char *ptr; 921 int i; 922 923 /* 924 * Open the key file. 925 */ 926 str = fopen(cp, "r"); 927 if (str == NULL) 928 return (NULL); 929 930 /* 931 * Read the filestamp, which is contained in the first line. 932 */ 933 if ((ptr = fgets(linkname, MAXFILENAME, str)) == NULL) { 934 fprintf(stderr, "Empty key file %s\n", cp); 935 fclose(str); 936 return (NULL); 937 } 938 if ((ptr = strrchr(ptr, '.')) == NULL) { 939 fprintf(stderr, "No filestamp found in %s\n", cp); 940 fclose(str); 941 return (NULL); 942 } 943 if (sscanf(++ptr, "%u", &gstamp) != 1) { 944 fprintf(stderr, "Invalid filestamp found in %s\n", cp); 945 fclose(str); 946 return (NULL); 947 } 948 949 /* 950 * Read and decrypt PEM-encoded private keys. The first one 951 * found is returned. If others are expected, add them to the 952 * parameter list. 953 */ 954 for (i = 0; i <= MVMAX - 1;) { 955 parkey = PEM_read_PrivateKey(str, NULL, NULL, passwd); 956 if (evpars != NULL) { 957 evpars[i++] = parkey; 958 evpars[i] = NULL; 959 } 960 if (parkey == NULL) 961 break; 962 963 if (pkey == NULL) 964 pkey = parkey; 965 if (debug) { 966 if (EVP_PKEY_base_id(parkey) == EVP_PKEY_DSA) 967 DSA_print_fp(stderr, EVP_PKEY_get0_DSA(parkey), 968 0); 969 else if (EVP_PKEY_base_id(parkey) == EVP_PKEY_RSA) 970 RSA_print_fp(stderr, EVP_PKEY_get0_RSA(parkey), 971 0); 972 } 973 } 974 fclose(str); 975 if (pkey == NULL) { 976 fprintf(stderr, "Corrupt file %s or wrong key %s\n%s\n", 977 cp, passwd, ERR_error_string(ERR_get_error(), 978 NULL)); 979 exit (-1); 980 } 981 *estamp = gstamp; 982 return (pkey); 983 } 984 985 986 /* 987 * Generate RSA public/private key pair 988 */ 989 EVP_PKEY * /* public/private key pair */ 990 gen_rsa( 991 const char *id /* file name id */ 992 ) 993 { 994 EVP_PKEY *pkey; /* private key */ 995 RSA *rsa; /* RSA parameters and key pair */ 996 FILE *str; 997 998 fprintf(stderr, "Generating RSA keys (%d bits)...\n", modulus); 999 rsa = genRsaKeyPair(modulus, _UC("RSA")); 1000 fprintf(stderr, "\n"); 1001 if (rsa == NULL) { 1002 fprintf(stderr, "RSA generate keys fails\n%s\n", 1003 ERR_error_string(ERR_get_error(), NULL)); 1004 return (NULL); 1005 } 1006 1007 /* 1008 * For signature encryption it is not necessary that the RSA 1009 * parameters be strictly groomed and once in a while the 1010 * modulus turns out to be non-prime. Just for grins, we check 1011 * the primality. 1012 */ 1013 if (!RSA_check_key(rsa)) { 1014 fprintf(stderr, "Invalid RSA key\n%s\n", 1015 ERR_error_string(ERR_get_error(), NULL)); 1016 RSA_free(rsa); 1017 return (NULL); 1018 } 1019 1020 /* 1021 * Write the RSA parameters and keys as a RSA private key 1022 * encoded in PEM. 1023 */ 1024 if (strcmp(id, "sign") == 0) 1025 str = fheader("RSAsign", id, hostname); 1026 else 1027 str = fheader("RSAhost", id, hostname); 1028 pkey = EVP_PKEY_new(); 1029 EVP_PKEY_assign_RSA(pkey, rsa); 1030 PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL, 1031 passwd1); 1032 fclose(str); 1033 if (debug) 1034 RSA_print_fp(stderr, rsa, 0); 1035 return (pkey); 1036 } 1037 1038 1039 /* 1040 * Generate DSA public/private key pair 1041 */ 1042 EVP_PKEY * /* public/private key pair */ 1043 gen_dsa( 1044 const char *id /* file name id */ 1045 ) 1046 { 1047 EVP_PKEY *pkey; /* private key */ 1048 DSA *dsa; /* DSA parameters */ 1049 FILE *str; 1050 1051 /* 1052 * Generate DSA parameters. 1053 */ 1054 fprintf(stderr, 1055 "Generating DSA parameters (%d bits)...\n", modulus); 1056 dsa = genDsaParams(modulus, _UC("DSA")); 1057 fprintf(stderr, "\n"); 1058 if (dsa == NULL) { 1059 fprintf(stderr, "DSA generate parameters fails\n%s\n", 1060 ERR_error_string(ERR_get_error(), NULL)); 1061 return (NULL); 1062 } 1063 1064 /* 1065 * Generate DSA keys. 1066 */ 1067 fprintf(stderr, "Generating DSA keys (%d bits)...\n", modulus); 1068 if (!DSA_generate_key(dsa)) { 1069 fprintf(stderr, "DSA generate keys fails\n%s\n", 1070 ERR_error_string(ERR_get_error(), NULL)); 1071 DSA_free(dsa); 1072 return (NULL); 1073 } 1074 1075 /* 1076 * Write the DSA parameters and keys as a DSA private key 1077 * encoded in PEM. 1078 */ 1079 str = fheader("DSAsign", id, hostname); 1080 pkey = EVP_PKEY_new(); 1081 EVP_PKEY_assign_DSA(pkey, dsa); 1082 PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL, 1083 passwd1); 1084 fclose(str); 1085 if (debug) 1086 DSA_print_fp(stderr, dsa, 0); 1087 return (pkey); 1088 } 1089 1090 1091 /* 1092 *********************************************************************** 1093 * * 1094 * The following routines implement the Schnorr (IFF) identity scheme * 1095 * * 1096 *********************************************************************** 1097 * 1098 * The Schnorr (IFF) identity scheme is intended for use when 1099 * certificates are generated by some other trusted certificate 1100 * authority and the certificate cannot be used to convey public 1101 * parameters. There are two kinds of files: encrypted server files that 1102 * contain private and public values and nonencrypted client files that 1103 * contain only public values. New generations of server files must be 1104 * securely transmitted to all servers of the group; client files can be 1105 * distributed by any means. The scheme is self contained and 1106 * independent of new generations of host keys, sign keys and 1107 * certificates. 1108 * 1109 * The IFF values hide in a DSA cuckoo structure which uses the same 1110 * parameters. The values are used by an identity scheme based on DSA 1111 * cryptography and described in Stimson p. 285. The p is a 512-bit 1112 * prime, g a generator of Zp* and q a 160-bit prime that divides p - 1 1113 * and is a qth root of 1 mod p; that is, g^q = 1 mod p. The TA rolls a 1114 * private random group key b (0 < b < q) and public key v = g^b, then 1115 * sends (p, q, g, b) to the servers and (p, q, g, v) to the clients. 1116 * Alice challenges Bob to confirm identity using the protocol described 1117 * below. 1118 * 1119 * How it works 1120 * 1121 * The scheme goes like this. Both Alice and Bob have the public primes 1122 * p, q and generator g. The TA gives private key b to Bob and public 1123 * key v to Alice. 1124 * 1125 * Alice rolls new random challenge r (o < r < q) and sends to Bob in 1126 * the IFF request message. Bob rolls new random k (0 < k < q), then 1127 * computes y = k + b r mod q and x = g^k mod p and sends (y, hash(x)) 1128 * to Alice in the response message. Besides making the response 1129 * shorter, the hash makes it effectivey impossible for an intruder to 1130 * solve for b by observing a number of these messages. 1131 * 1132 * Alice receives the response and computes g^y v^r mod p. After a bit 1133 * of algebra, this simplifies to g^k. If the hash of this result 1134 * matches hash(x), Alice knows that Bob has the group key b. The signed 1135 * response binds this knowledge to Bob's private key and the public key 1136 * previously received in his certificate. 1137 */ 1138 /* 1139 * Generate Schnorr (IFF) keys. 1140 */ 1141 EVP_PKEY * /* DSA cuckoo nest */ 1142 gen_iffkey( 1143 const char *id /* file name id */ 1144 ) 1145 { 1146 EVP_PKEY *pkey; /* private key */ 1147 DSA *dsa; /* DSA parameters */ 1148 BN_CTX *ctx; /* BN working space */ 1149 BIGNUM *b, *r, *k, *u, *v, *w; /* BN temp */ 1150 FILE *str; 1151 u_int temp; 1152 const BIGNUM *p, *q, *g; 1153 BIGNUM *pub_key, *priv_key; 1154 1155 /* 1156 * Generate DSA parameters for use as IFF parameters. 1157 */ 1158 fprintf(stderr, "Generating IFF keys (%d bits)...\n", 1159 modulus2); 1160 dsa = genDsaParams(modulus2, _UC("IFF")); 1161 fprintf(stderr, "\n"); 1162 if (dsa == NULL) { 1163 fprintf(stderr, "DSA generate parameters fails\n%s\n", 1164 ERR_error_string(ERR_get_error(), NULL)); 1165 return (NULL); 1166 } 1167 DSA_get0_pqg(dsa, &p, &q, &g); 1168 1169 /* 1170 * Generate the private and public keys. The DSA parameters and 1171 * private key are distributed to the servers, while all except 1172 * the private key are distributed to the clients. 1173 */ 1174 b = BN_new(); r = BN_new(); k = BN_new(); 1175 u = BN_new(); v = BN_new(); w = BN_new(); ctx = BN_CTX_new(); 1176 BN_rand(b, BN_num_bits(q), -1, 0); /* a */ 1177 BN_mod(b, b, q, ctx); 1178 BN_sub(v, q, b); 1179 BN_mod_exp(v, g, v, p, ctx); /* g^(q - b) mod p */ 1180 BN_mod_exp(u, g, b, p, ctx); /* g^b mod p */ 1181 BN_mod_mul(u, u, v, p, ctx); 1182 temp = BN_is_one(u); 1183 fprintf(stderr, 1184 "Confirm g^(q - b) g^b = 1 mod p: %s\n", temp == 1 ? 1185 "yes" : "no"); 1186 if (!temp) { 1187 BN_free(b); BN_free(r); BN_free(k); 1188 BN_free(u); BN_free(v); BN_free(w); BN_CTX_free(ctx); 1189 return (NULL); 1190 } 1191 pub_key = BN_dup(v); 1192 priv_key = BN_dup(b); 1193 DSA_set0_key(dsa, pub_key, priv_key); 1194 1195 /* 1196 * Here is a trial round of the protocol. First, Alice rolls 1197 * random nonce r mod q and sends it to Bob. She needs only 1198 * q from parameters. 1199 */ 1200 BN_rand(r, BN_num_bits(q), -1, 0); /* r */ 1201 BN_mod(r, r, q, ctx); 1202 1203 /* 1204 * Bob rolls random nonce k mod q, computes y = k + b r mod q 1205 * and x = g^k mod p, then sends (y, x) to Alice. He needs 1206 * p, q and b from parameters and r from Alice. 1207 */ 1208 BN_rand(k, BN_num_bits(q), -1, 0); /* k, 0 < k < q */ 1209 BN_mod(k, k, q, ctx); 1210 BN_mod_mul(v, priv_key, r, q, ctx); /* b r mod q */ 1211 BN_add(v, v, k); 1212 BN_mod(v, v, q, ctx); /* y = k + b r mod q */ 1213 BN_mod_exp(u, g, k, p, ctx); /* x = g^k mod p */ 1214 1215 /* 1216 * Alice verifies x = g^y v^r to confirm that Bob has group key 1217 * b. She needs p, q, g from parameters, (y, x) from Bob and the 1218 * original r. We omit the detail here thatt only the hash of y 1219 * is sent. 1220 */ 1221 BN_mod_exp(v, g, v, p, ctx); /* g^y mod p */ 1222 BN_mod_exp(w, pub_key, r, p, ctx); /* v^r */ 1223 BN_mod_mul(v, w, v, p, ctx); /* product mod p */ 1224 temp = BN_cmp(u, v); 1225 fprintf(stderr, 1226 "Confirm g^k = g^(k + b r) g^(q - b) r: %s\n", temp == 1227 0 ? "yes" : "no"); 1228 BN_free(b); BN_free(r); BN_free(k); 1229 BN_free(u); BN_free(v); BN_free(w); BN_CTX_free(ctx); 1230 if (temp != 0) { 1231 DSA_free(dsa); 1232 return (NULL); 1233 } 1234 1235 /* 1236 * Write the IFF keys as an encrypted DSA private key encoded in 1237 * PEM. 1238 * 1239 * p modulus p 1240 * q modulus q 1241 * g generator g 1242 * priv_key b 1243 * public_key v 1244 * kinv not used 1245 * r not used 1246 */ 1247 str = fheader("IFFkey", id, groupname); 1248 pkey = EVP_PKEY_new(); 1249 EVP_PKEY_assign_DSA(pkey, dsa); 1250 PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL, 1251 passwd1); 1252 fclose(str); 1253 if (debug) 1254 DSA_print_fp(stderr, dsa, 0); 1255 return (pkey); 1256 } 1257 1258 1259 /* 1260 *********************************************************************** 1261 * * 1262 * The following routines implement the Guillou-Quisquater (GQ) * 1263 * identity scheme * 1264 * * 1265 *********************************************************************** 1266 * 1267 * The Guillou-Quisquater (GQ) identity scheme is intended for use when 1268 * the certificate can be used to convey public parameters. The scheme 1269 * uses a X509v3 certificate extension field do convey the public key of 1270 * a private key known only to servers. There are two kinds of files: 1271 * encrypted server files that contain private and public values and 1272 * nonencrypted client files that contain only public values. New 1273 * generations of server files must be securely transmitted to all 1274 * servers of the group; client files can be distributed by any means. 1275 * The scheme is self contained and independent of new generations of 1276 * host keys and sign keys. The scheme is self contained and independent 1277 * of new generations of host keys and sign keys. 1278 * 1279 * The GQ parameters hide in a RSA cuckoo structure which uses the same 1280 * parameters. The values are used by an identity scheme based on RSA 1281 * cryptography and described in Stimson p. 300 (with errors). The 512- 1282 * bit public modulus is n = p q, where p and q are secret large primes. 1283 * The TA rolls private random group key b as RSA exponent. These values 1284 * are known to all group members. 1285 * 1286 * When rolling new certificates, a server recomputes the private and 1287 * public keys. The private key u is a random roll, while the public key 1288 * is the inverse obscured by the group key v = (u^-1)^b. These values 1289 * replace the private and public keys normally generated by the RSA 1290 * scheme. Alice challenges Bob to confirm identity using the protocol 1291 * described below. 1292 * 1293 * How it works 1294 * 1295 * The scheme goes like this. Both Alice and Bob have the same modulus n 1296 * and some random b as the group key. These values are computed and 1297 * distributed in advance via secret means, although only the group key 1298 * b is truly secret. Each has a private random private key u and public 1299 * key (u^-1)^b, although not necessarily the same ones. Bob and Alice 1300 * can regenerate the key pair from time to time without affecting 1301 * operations. The public key is conveyed on the certificate in an 1302 * extension field; the private key is never revealed. 1303 * 1304 * Alice rolls new random challenge r and sends to Bob in the GQ 1305 * request message. Bob rolls new random k, then computes y = k u^r mod 1306 * n and x = k^b mod n and sends (y, hash(x)) to Alice in the response 1307 * message. Besides making the response shorter, the hash makes it 1308 * effectivey impossible for an intruder to solve for b by observing 1309 * a number of these messages. 1310 * 1311 * Alice receives the response and computes y^b v^r mod n. After a bit 1312 * of algebra, this simplifies to k^b. If the hash of this result 1313 * matches hash(x), Alice knows that Bob has the group key b. The signed 1314 * response binds this knowledge to Bob's private key and the public key 1315 * previously received in his certificate. 1316 */ 1317 /* 1318 * Generate Guillou-Quisquater (GQ) parameters file. 1319 */ 1320 EVP_PKEY * /* RSA cuckoo nest */ 1321 gen_gqkey( 1322 const char *id /* file name id */ 1323 ) 1324 { 1325 EVP_PKEY *pkey; /* private key */ 1326 RSA *rsa; /* RSA parameters */ 1327 BN_CTX *ctx; /* BN working space */ 1328 BIGNUM *u, *v, *g, *k, *r, *y; /* BN temps */ 1329 FILE *str; 1330 u_int temp; 1331 BIGNUM *b; 1332 const BIGNUM *n; 1333 1334 /* 1335 * Generate RSA parameters for use as GQ parameters. 1336 */ 1337 fprintf(stderr, 1338 "Generating GQ parameters (%d bits)...\n", 1339 modulus2); 1340 rsa = genRsaKeyPair(modulus2, _UC("GQ")); 1341 fprintf(stderr, "\n"); 1342 if (rsa == NULL) { 1343 fprintf(stderr, "RSA generate keys fails\n%s\n", 1344 ERR_error_string(ERR_get_error(), NULL)); 1345 return (NULL); 1346 } 1347 RSA_get0_key(rsa, &n, NULL, NULL); 1348 u = BN_new(); v = BN_new(); g = BN_new(); 1349 k = BN_new(); r = BN_new(); y = BN_new(); 1350 b = BN_new(); 1351 1352 /* 1353 * Generate the group key b, which is saved in the e member of 1354 * the RSA structure. The group key is transmitted to each group 1355 * member encrypted by the member private key. 1356 */ 1357 ctx = BN_CTX_new(); 1358 BN_rand(b, BN_num_bits(n), -1, 0); /* b */ 1359 BN_mod(b, b, n, ctx); 1360 1361 /* 1362 * When generating his certificate, Bob rolls random private key 1363 * u, then computes inverse v = u^-1. 1364 */ 1365 BN_rand(u, BN_num_bits(n), -1, 0); /* u */ 1366 BN_mod(u, u, n, ctx); 1367 BN_mod_inverse(v, u, n, ctx); /* u^-1 mod n */ 1368 BN_mod_mul(k, v, u, n, ctx); 1369 1370 /* 1371 * Bob computes public key v = (u^-1)^b, which is saved in an 1372 * extension field on his certificate. We check that u^b v = 1373 * 1 mod n. 1374 */ 1375 BN_mod_exp(v, v, b, n, ctx); 1376 BN_mod_exp(g, u, b, n, ctx); /* u^b */ 1377 BN_mod_mul(g, g, v, n, ctx); /* u^b (u^-1)^b */ 1378 temp = BN_is_one(g); 1379 fprintf(stderr, 1380 "Confirm u^b (u^-1)^b = 1 mod n: %s\n", temp ? "yes" : 1381 "no"); 1382 if (!temp) { 1383 BN_free(u); BN_free(v); 1384 BN_free(g); BN_free(k); BN_free(r); BN_free(y); 1385 BN_CTX_free(ctx); 1386 RSA_free(rsa); 1387 return (NULL); 1388 } 1389 /* setting 'u' and 'v' into a RSA object takes over ownership. 1390 * Since we use these values again, we have to pass in dupes, 1391 * or we'll corrupt the program! 1392 */ 1393 RSA_set0_factors(rsa, BN_dup(u), BN_dup(v)); 1394 1395 /* 1396 * Here is a trial run of the protocol. First, Alice rolls 1397 * random nonce r mod n and sends it to Bob. She needs only n 1398 * from parameters. 1399 */ 1400 BN_rand(r, BN_num_bits(n), -1, 0); /* r */ 1401 BN_mod(r, r, n, ctx); 1402 1403 /* 1404 * Bob rolls random nonce k mod n, computes y = k u^r mod n and 1405 * g = k^b mod n, then sends (y, g) to Alice. He needs n, u, b 1406 * from parameters and r from Alice. 1407 */ 1408 BN_rand(k, BN_num_bits(n), -1, 0); /* k */ 1409 BN_mod(k, k, n, ctx); 1410 BN_mod_exp(y, u, r, n, ctx); /* u^r mod n */ 1411 BN_mod_mul(y, k, y, n, ctx); /* y = k u^r mod n */ 1412 BN_mod_exp(g, k, b, n, ctx); /* g = k^b mod n */ 1413 1414 /* 1415 * Alice verifies g = v^r y^b mod n to confirm that Bob has 1416 * private key u. She needs n, g from parameters, public key v = 1417 * (u^-1)^b from the certificate, (y, g) from Bob and the 1418 * original r. We omit the detaul here that only the hash of g 1419 * is sent. 1420 */ 1421 BN_mod_exp(v, v, r, n, ctx); /* v^r mod n */ 1422 BN_mod_exp(y, y, b, n, ctx); /* y^b mod n */ 1423 BN_mod_mul(y, v, y, n, ctx); /* v^r y^b mod n */ 1424 temp = BN_cmp(y, g); 1425 fprintf(stderr, "Confirm g^k = v^r y^b mod n: %s\n", temp == 0 ? 1426 "yes" : "no"); 1427 BN_CTX_free(ctx); BN_free(u); BN_free(v); 1428 BN_free(g); BN_free(k); BN_free(r); BN_free(y); 1429 if (temp != 0) { 1430 RSA_free(rsa); 1431 return (NULL); 1432 } 1433 1434 /* 1435 * Write the GQ parameter file as an encrypted RSA private key 1436 * encoded in PEM. 1437 * 1438 * n modulus n 1439 * e group key b 1440 * d not used 1441 * p private key u 1442 * q public key (u^-1)^b 1443 * dmp1 not used 1444 * dmq1 not used 1445 * iqmp not used 1446 */ 1447 RSA_set0_key(rsa, NULL, b, BN_dup(BN_value_one())); 1448 RSA_set0_crt_params(rsa, BN_dup(BN_value_one()), BN_dup(BN_value_one()), 1449 BN_dup(BN_value_one())); 1450 str = fheader("GQkey", id, groupname); 1451 pkey = EVP_PKEY_new(); 1452 EVP_PKEY_assign_RSA(pkey, rsa); 1453 PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL, 1454 passwd1); 1455 fclose(str); 1456 if (debug) 1457 RSA_print_fp(stderr, rsa, 0); 1458 return (pkey); 1459 } 1460 1461 1462 /* 1463 *********************************************************************** 1464 * * 1465 * The following routines implement the Mu-Varadharajan (MV) identity * 1466 * scheme * 1467 * * 1468 *********************************************************************** 1469 * 1470 * The Mu-Varadharajan (MV) cryptosystem was originally intended when 1471 * servers broadcast messages to clients, but clients never send 1472 * messages to servers. There is one encryption key for the server and a 1473 * separate decryption key for each client. It operated something like a 1474 * pay-per-view satellite broadcasting system where the session key is 1475 * encrypted by the broadcaster and the decryption keys are held in a 1476 * tamperproof set-top box. 1477 * 1478 * The MV parameters and private encryption key hide in a DSA cuckoo 1479 * structure which uses the same parameters, but generated in a 1480 * different way. The values are used in an encryption scheme similar to 1481 * El Gamal cryptography and a polynomial formed from the expansion of 1482 * product terms (x - x[j]), as described in Mu, Y., and V. 1483 * Varadharajan: Robust and Secure Broadcasting, Proc. Indocrypt 2001, 1484 * 223-231. The paper has significant errors and serious omissions. 1485 * 1486 * Let q be the product of n distinct primes s1[j] (j = 1...n), where 1487 * each s1[j] has m significant bits. Let p be a prime p = 2 * q + 1, so 1488 * that q and each s1[j] divide p - 1 and p has M = n * m + 1 1489 * significant bits. Let g be a generator of Zp; that is, gcd(g, p - 1) 1490 * = 1 and g^q = 1 mod p. We do modular arithmetic over Zq and then 1491 * project into Zp* as exponents of g. Sometimes we have to compute an 1492 * inverse b^-1 of random b in Zq, but for that purpose we require 1493 * gcd(b, q) = 1. We expect M to be in the 500-bit range and n 1494 * relatively small, like 30. These are the parameters of the scheme and 1495 * they are expensive to compute. 1496 * 1497 * We set up an instance of the scheme as follows. A set of random 1498 * values x[j] mod q (j = 1...n), are generated as the zeros of a 1499 * polynomial of order n. The product terms (x - x[j]) are expanded to 1500 * form coefficients a[i] mod q (i = 0...n) in powers of x. These are 1501 * used as exponents of the generator g mod p to generate the private 1502 * encryption key A. The pair (gbar, ghat) of public server keys and the 1503 * pairs (xbar[j], xhat[j]) (j = 1...n) of private client keys are used 1504 * to construct the decryption keys. The devil is in the details. 1505 * 1506 * This routine generates a private server encryption file including the 1507 * private encryption key E and partial decryption keys gbar and ghat. 1508 * It then generates public client decryption files including the public 1509 * keys xbar[j] and xhat[j] for each client j. The partial decryption 1510 * files are used to compute the inverse of E. These values are suitably 1511 * blinded so secrets are not revealed. 1512 * 1513 * The distinguishing characteristic of this scheme is the capability to 1514 * revoke keys. Included in the calculation of E, gbar and ghat is the 1515 * product s = prod(s1[j]) (j = 1...n) above. If the factor s1[j] is 1516 * subsequently removed from the product and E, gbar and ghat 1517 * recomputed, the jth client will no longer be able to compute E^-1 and 1518 * thus unable to decrypt the messageblock. 1519 * 1520 * How it works 1521 * 1522 * The scheme goes like this. Bob has the server values (p, E, q, 1523 * gbar, ghat) and Alice has the client values (p, xbar, xhat). 1524 * 1525 * Alice rolls new random nonce r mod p and sends to Bob in the MV 1526 * request message. Bob rolls random nonce k mod q, encrypts y = r E^k 1527 * mod p and sends (y, gbar^k, ghat^k) to Alice. 1528 * 1529 * Alice receives the response and computes the inverse (E^k)^-1 from 1530 * the partial decryption keys gbar^k, ghat^k, xbar and xhat. She then 1531 * decrypts y and verifies it matches the original r. The signed 1532 * response binds this knowledge to Bob's private key and the public key 1533 * previously received in his certificate. 1534 */ 1535 EVP_PKEY * /* DSA cuckoo nest */ 1536 gen_mvkey( 1537 const char *id, /* file name id */ 1538 EVP_PKEY **evpars /* parameter list pointer */ 1539 ) 1540 { 1541 EVP_PKEY *pkey, *pkey1; /* private keys */ 1542 DSA *dsa, *dsa2, *sdsa; /* DSA parameters */ 1543 BN_CTX *ctx; /* BN working space */ 1544 BIGNUM *a[MVMAX]; /* polynomial coefficient vector */ 1545 BIGNUM *gs[MVMAX]; /* public key vector */ 1546 BIGNUM *s1[MVMAX]; /* private enabling keys */ 1547 BIGNUM *x[MVMAX]; /* polynomial zeros vector */ 1548 BIGNUM *xbar[MVMAX], *xhat[MVMAX]; /* private keys vector */ 1549 BIGNUM *b; /* group key */ 1550 BIGNUM *b1; /* inverse group key */ 1551 BIGNUM *s; /* enabling key */ 1552 BIGNUM *biga; /* master encryption key */ 1553 BIGNUM *bige; /* session encryption key */ 1554 BIGNUM *gbar, *ghat; /* public key */ 1555 BIGNUM *u, *v, *w; /* BN scratch */ 1556 BIGNUM *p, *q, *g, *priv_key, *pub_key; 1557 int i, j, n; 1558 FILE *str; 1559 u_int temp; 1560 1561 /* 1562 * Generate MV parameters. 1563 * 1564 * The object is to generate a multiplicative group Zp* modulo a 1565 * prime p and a subset Zq mod q, where q is the product of n 1566 * distinct primes s1[j] (j = 1...n) and q divides p - 1. We 1567 * first generate n m-bit primes, where the product n m is in 1568 * the order of 512 bits. One or more of these may have to be 1569 * replaced later. As a practical matter, it is tough to find 1570 * more than 31 distinct primes for 512 bits or 61 primes for 1571 * 1024 bits. The latter can take several hundred iterations 1572 * and several minutes on a Sun Blade 1000. 1573 */ 1574 n = nkeys; 1575 fprintf(stderr, 1576 "Generating MV parameters for %d keys (%d bits)...\n", n, 1577 modulus2 / n); 1578 ctx = BN_CTX_new(); u = BN_new(); v = BN_new(); w = BN_new(); 1579 b = BN_new(); b1 = BN_new(); 1580 dsa = DSA_new(); 1581 p = BN_new(); q = BN_new(); g = BN_new(); 1582 priv_key = BN_new(); pub_key = BN_new(); 1583 temp = 0; 1584 for (j = 1; j <= n; j++) { 1585 s1[j] = BN_new(); 1586 while (1) { 1587 BN_generate_prime_ex(s1[j], modulus2 / n, 0, 1588 NULL, NULL, NULL); 1589 for (i = 1; i < j; i++) { 1590 if (BN_cmp(s1[i], s1[j]) == 0) 1591 break; 1592 } 1593 if (i == j) 1594 break; 1595 temp++; 1596 } 1597 } 1598 fprintf(stderr, "Birthday keys regenerated %d\n", temp); 1599 1600 /* 1601 * Compute the modulus q as the product of the primes. Compute 1602 * the modulus p as 2 * q + 1 and test p for primality. If p 1603 * is composite, replace one of the primes with a new distinct 1604 * one and try again. Note that q will hardly be a secret since 1605 * we have to reveal p to servers, but not clients. However, 1606 * factoring q to find the primes should be adequately hard, as 1607 * this is the same problem considered hard in RSA. Question: is 1608 * it as hard to find n small prime factors totalling n bits as 1609 * it is to find two large prime factors totalling n bits? 1610 * Remember, the bad guy doesn't know n. 1611 */ 1612 temp = 0; 1613 while (1) { 1614 BN_one(q); 1615 for (j = 1; j <= n; j++) 1616 BN_mul(q, q, s1[j], ctx); 1617 BN_copy(p, q); 1618 BN_add(p, p, p); 1619 BN_add_word(p, 1); 1620 if (BN_is_prime_ex(p, BN_prime_checks, ctx, NULL)) 1621 break; 1622 1623 temp++; 1624 j = temp % n + 1; 1625 while (1) { 1626 BN_generate_prime_ex(u, modulus2 / n, 0, 1627 NULL, NULL, NULL); 1628 for (i = 1; i <= n; i++) { 1629 if (BN_cmp(u, s1[i]) == 0) 1630 break; 1631 } 1632 if (i > n) 1633 break; 1634 } 1635 BN_copy(s1[j], u); 1636 } 1637 fprintf(stderr, "Defective keys regenerated %d\n", temp); 1638 1639 /* 1640 * Compute the generator g using a random roll such that 1641 * gcd(g, p - 1) = 1 and g^q = 1. This is a generator of p, not 1642 * q. This may take several iterations. 1643 */ 1644 BN_copy(v, p); 1645 BN_sub_word(v, 1); 1646 while (1) { 1647 BN_rand(g, BN_num_bits(p) - 1, 0, 0); 1648 BN_mod(g, g, p, ctx); 1649 BN_gcd(u, g, v, ctx); 1650 if (!BN_is_one(u)) 1651 continue; 1652 1653 BN_mod_exp(u, g, q, p, ctx); 1654 if (BN_is_one(u)) 1655 break; 1656 } 1657 1658 DSA_set0_pqg(dsa, p, q, g); 1659 1660 /* 1661 * Setup is now complete. Roll random polynomial roots x[j] 1662 * (j = 1...n) for all j. While it may not be strictly 1663 * necessary, Make sure each root has no factors in common with 1664 * q. 1665 */ 1666 fprintf(stderr, 1667 "Generating polynomial coefficients for %d roots (%d bits)\n", 1668 n, BN_num_bits(q)); 1669 for (j = 1; j <= n; j++) { 1670 x[j] = BN_new(); 1671 1672 while (1) { 1673 BN_rand(x[j], BN_num_bits(q), 0, 0); 1674 BN_mod(x[j], x[j], q, ctx); 1675 BN_gcd(u, x[j], q, ctx); 1676 if (BN_is_one(u)) 1677 break; 1678 } 1679 } 1680 1681 /* 1682 * Generate polynomial coefficients a[i] (i = 0...n) from the 1683 * expansion of root products (x - x[j]) mod q for all j. The 1684 * method is a present from Charlie Boncelet. 1685 */ 1686 for (i = 0; i <= n; i++) { 1687 a[i] = BN_new(); 1688 BN_one(a[i]); 1689 } 1690 for (j = 1; j <= n; j++) { 1691 BN_zero(w); 1692 for (i = 0; i < j; i++) { 1693 BN_copy(u, q); 1694 BN_mod_mul(v, a[i], x[j], q, ctx); 1695 BN_sub(u, u, v); 1696 BN_add(u, u, w); 1697 BN_copy(w, a[i]); 1698 BN_mod(a[i], u, q, ctx); 1699 } 1700 } 1701 1702 /* 1703 * Generate gs[i] = g^a[i] mod p for all i and the generator g. 1704 */ 1705 for (i = 0; i <= n; i++) { 1706 gs[i] = BN_new(); 1707 BN_mod_exp(gs[i], g, a[i], p, ctx); 1708 } 1709 1710 /* 1711 * Verify prod(gs[i]^(a[i] x[j]^i)) = 1 for all i, j. Note the 1712 * a[i] x[j]^i exponent is computed mod q, but the gs[i] is 1713 * computed mod p. also note the expression given in the paper 1714 * is incorrect. 1715 */ 1716 temp = 1; 1717 for (j = 1; j <= n; j++) { 1718 BN_one(u); 1719 for (i = 0; i <= n; i++) { 1720 BN_set_word(v, i); 1721 BN_mod_exp(v, x[j], v, q, ctx); 1722 BN_mod_mul(v, v, a[i], q, ctx); 1723 BN_mod_exp(v, g, v, p, ctx); 1724 BN_mod_mul(u, u, v, p, ctx); 1725 } 1726 if (!BN_is_one(u)) 1727 temp = 0; 1728 } 1729 fprintf(stderr, 1730 "Confirm prod(gs[i]^(x[j]^i)) = 1 for all i, j: %s\n", temp ? 1731 "yes" : "no"); 1732 if (!temp) { 1733 return (NULL); 1734 } 1735 1736 /* 1737 * Make private encryption key A. Keep it around for awhile, 1738 * since it is expensive to compute. 1739 */ 1740 biga = BN_new(); 1741 1742 BN_one(biga); 1743 for (j = 1; j <= n; j++) { 1744 for (i = 0; i < n; i++) { 1745 BN_set_word(v, i); 1746 BN_mod_exp(v, x[j], v, q, ctx); 1747 BN_mod_exp(v, gs[i], v, p, ctx); 1748 BN_mod_mul(biga, biga, v, p, ctx); 1749 } 1750 } 1751 1752 /* 1753 * Roll private random group key b mod q (0 < b < q), where 1754 * gcd(b, q) = 1 to guarantee b^-1 exists, then compute b^-1 1755 * mod q. If b is changed, the client keys must be recomputed. 1756 */ 1757 while (1) { 1758 BN_rand(b, BN_num_bits(q), 0, 0); 1759 BN_mod(b, b, q, ctx); 1760 BN_gcd(u, b, q, ctx); 1761 if (BN_is_one(u)) 1762 break; 1763 } 1764 BN_mod_inverse(b1, b, q, ctx); 1765 1766 /* 1767 * Make private client keys (xbar[j], xhat[j]) for all j. Note 1768 * that the keys for the jth client do not s1[j] or the product 1769 * s1[j]) (j = 1...n) which is q by construction. 1770 * 1771 * Compute the factor w such that w s1[j] = s1[j] for all j. The 1772 * easy way to do this is to compute (q + s1[j]) / s1[j]. 1773 * Exercise for the student: prove the remainder is always zero. 1774 */ 1775 for (j = 1; j <= n; j++) { 1776 xbar[j] = BN_new(); xhat[j] = BN_new(); 1777 1778 BN_add(w, q, s1[j]); 1779 BN_div(w, u, w, s1[j], ctx); 1780 BN_zero(xbar[j]); 1781 BN_set_word(v, n); 1782 for (i = 1; i <= n; i++) { 1783 if (i == j) 1784 continue; 1785 1786 BN_mod_exp(u, x[i], v, q, ctx); 1787 BN_add(xbar[j], xbar[j], u); 1788 } 1789 BN_mod_mul(xbar[j], xbar[j], b1, q, ctx); 1790 BN_mod_exp(xhat[j], x[j], v, q, ctx); 1791 BN_mod_mul(xhat[j], xhat[j], w, q, ctx); 1792 } 1793 1794 /* 1795 * We revoke client j by dividing q by s1[j]. The quotient 1796 * becomes the enabling key s. Note we always have to revoke 1797 * one key; otherwise, the plaintext and cryptotext would be 1798 * identical. For the present there are no provisions to revoke 1799 * additional keys, so we sail on with only token revocations. 1800 */ 1801 s = BN_new(); 1802 BN_copy(s, q); 1803 BN_div(s, u, s, s1[n], ctx); 1804 1805 /* 1806 * For each combination of clients to be revoked, make private 1807 * encryption key E = A^s and partial decryption keys gbar = g^s 1808 * and ghat = g^(s b), all mod p. The servers use these keys to 1809 * compute the session encryption key and partial decryption 1810 * keys. These values must be regenerated if the enabling key is 1811 * changed. 1812 */ 1813 bige = BN_new(); gbar = BN_new(); ghat = BN_new(); 1814 BN_mod_exp(bige, biga, s, p, ctx); 1815 BN_mod_exp(gbar, g, s, p, ctx); 1816 BN_mod_mul(v, s, b, q, ctx); 1817 BN_mod_exp(ghat, g, v, p, ctx); 1818 1819 /* 1820 * Notes: We produce the key media in three steps. The first 1821 * step is to generate the system parameters p, q, g, b, A and 1822 * the enabling keys s1[j]. Associated with each s1[j] are 1823 * parameters xbar[j] and xhat[j]. All of these parameters are 1824 * retained in a data structure protecteted by the trusted-agent 1825 * password. The p, xbar[j] and xhat[j] paremeters are 1826 * distributed to the j clients. When the client keys are to be 1827 * activated, the enabled keys are multipied together to form 1828 * the master enabling key s. This and the other parameters are 1829 * used to compute the server encryption key E and the partial 1830 * decryption keys gbar and ghat. 1831 * 1832 * In the identity exchange the client rolls random r and sends 1833 * it to the server. The server rolls random k, which is used 1834 * only once, then computes the session key E^k and partial 1835 * decryption keys gbar^k and ghat^k. The server sends the 1836 * encrypted r along with gbar^k and ghat^k to the client. The 1837 * client completes the decryption and verifies it matches r. 1838 */ 1839 /* 1840 * Write the MV trusted-agent parameters and keys as a DSA 1841 * private key encoded in PEM. 1842 * 1843 * p modulus p 1844 * q modulus q 1845 * g generator g 1846 * priv_key A mod p 1847 * pub_key b mod q 1848 * (remaining values are not used) 1849 */ 1850 i = 0; 1851 str = fheader("MVta", "mvta", groupname); 1852 fprintf(stderr, "Generating MV trusted-authority keys\n"); 1853 BN_copy(priv_key, biga); 1854 BN_copy(pub_key, b); 1855 DSA_set0_key(dsa, pub_key, priv_key); 1856 pkey = EVP_PKEY_new(); 1857 EVP_PKEY_assign_DSA(pkey, dsa); 1858 PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL, 1859 passwd1); 1860 evpars[i++] = pkey; 1861 if (debug) 1862 DSA_print_fp(stderr, dsa, 0); 1863 1864 /* 1865 * Append the MV server parameters and keys as a DSA key encoded 1866 * in PEM. 1867 * 1868 * p modulus p 1869 * q modulus q (used only when generating k) 1870 * g bige 1871 * priv_key gbar 1872 * pub_key ghat 1873 * (remaining values are not used) 1874 */ 1875 fprintf(stderr, "Generating MV server keys\n"); 1876 dsa2 = DSA_new(); 1877 DSA_set0_pqg(dsa2, BN_dup(p), BN_dup(q), BN_dup(bige)); 1878 DSA_set0_key(dsa2, BN_dup(ghat), BN_dup(gbar)); 1879 pkey1 = EVP_PKEY_new(); 1880 EVP_PKEY_assign_DSA(pkey1, dsa2); 1881 PEM_write_PKCS8PrivateKey(str, pkey1, cipher, NULL, 0, NULL, 1882 passwd1); 1883 evpars[i++] = pkey1; 1884 if (debug) 1885 DSA_print_fp(stderr, dsa2, 0); 1886 1887 /* 1888 * Append the MV client parameters for each client j as DSA keys 1889 * encoded in PEM. 1890 * 1891 * p modulus p 1892 * priv_key xbar[j] mod q 1893 * pub_key xhat[j] mod q 1894 * (remaining values are not used) 1895 */ 1896 fprintf(stderr, "Generating %d MV client keys\n", n); 1897 for (j = 1; j <= n; j++) { 1898 sdsa = DSA_new(); 1899 DSA_set0_pqg(sdsa, BN_dup(p), BN_dup(BN_value_one()), 1900 BN_dup(BN_value_one())); 1901 DSA_set0_key(sdsa, BN_dup(xhat[j]), BN_dup(xbar[j])); 1902 pkey1 = EVP_PKEY_new(); 1903 EVP_PKEY_set1_DSA(pkey1, sdsa); 1904 PEM_write_PKCS8PrivateKey(str, pkey1, cipher, NULL, 0, 1905 NULL, passwd1); 1906 evpars[i++] = pkey1; 1907 if (debug) 1908 DSA_print_fp(stderr, sdsa, 0); 1909 1910 /* 1911 * The product (gbar^k)^xbar[j] (ghat^k)^xhat[j] and E 1912 * are inverses of each other. We check that the product 1913 * is one for each client except the ones that have been 1914 * revoked. 1915 */ 1916 BN_mod_exp(v, gbar, xhat[j], p, ctx); 1917 BN_mod_exp(u, ghat, xbar[j], p, ctx); 1918 BN_mod_mul(u, u, v, p, ctx); 1919 BN_mod_mul(u, u, bige, p, ctx); 1920 if (!BN_is_one(u)) { 1921 fprintf(stderr, "Revoke key %d\n", j); 1922 continue; 1923 } 1924 } 1925 evpars[i++] = NULL; 1926 fclose(str); 1927 1928 /* 1929 * Free the countries. 1930 */ 1931 for (i = 0; i <= n; i++) { 1932 BN_free(a[i]); BN_free(gs[i]); 1933 } 1934 for (j = 1; j <= n; j++) { 1935 BN_free(x[j]); BN_free(xbar[j]); BN_free(xhat[j]); 1936 BN_free(s1[j]); 1937 } 1938 return (pkey); 1939 } 1940 1941 1942 /* 1943 * Generate X509v3 certificate. 1944 * 1945 * The certificate consists of the version number, serial number, 1946 * validity interval, issuer name, subject name and public key. For a 1947 * self-signed certificate, the issuer name is the same as the subject 1948 * name and these items are signed using the subject private key. The 1949 * validity interval extends from the current time to the same time one 1950 * year hence. For NTP purposes, it is convenient to use the NTP seconds 1951 * of the current time as the serial number. 1952 */ 1953 int 1954 x509 ( 1955 EVP_PKEY *pkey, /* signing key */ 1956 const EVP_MD *md, /* signature/digest scheme */ 1957 char *gqpub, /* identity extension (hex string) */ 1958 const char *exten, /* private cert extension */ 1959 char *name /* subject/issuer name */ 1960 ) 1961 { 1962 X509 *cert; /* X509 certificate */ 1963 X509_NAME *subj; /* distinguished (common) name */ 1964 X509_EXTENSION *ex; /* X509v3 extension */ 1965 FILE *str; /* file handle */ 1966 ASN1_INTEGER *serial; /* serial number */ 1967 const char *id; /* digest/signature scheme name */ 1968 char pathbuf[MAXFILENAME + 1]; 1969 1970 /* 1971 * Generate X509 self-signed certificate. 1972 * 1973 * Set the certificate serial to the NTP seconds for grins. Set 1974 * the version to 3. Set the initial validity to the current 1975 * time and the finalvalidity one year hence. 1976 */ 1977 id = OBJ_nid2sn(EVP_MD_pkey_type(md)); 1978 fprintf(stderr, "Generating new certificate %s %s\n", name, id); 1979 cert = X509_new(); 1980 X509_set_version(cert, 2L); 1981 serial = ASN1_INTEGER_new(); 1982 ASN1_INTEGER_set(serial, (long)epoch + JAN_1970); 1983 X509_set_serialNumber(cert, serial); 1984 ASN1_INTEGER_free(serial); 1985 X509_time_adj(X509_getm_notBefore(cert), 0L, &epoch); 1986 X509_time_adj(X509_getm_notAfter(cert), lifetime * SECSPERDAY, &epoch); 1987 subj = X509_get_subject_name(cert); 1988 X509_NAME_add_entry_by_txt(subj, "commonName", MBSTRING_ASC, 1989 (u_char *)name, -1, -1, 0); 1990 subj = X509_get_issuer_name(cert); 1991 X509_NAME_add_entry_by_txt(subj, "commonName", MBSTRING_ASC, 1992 (u_char *)name, -1, -1, 0); 1993 if (!X509_set_pubkey(cert, pkey)) { 1994 fprintf(stderr, "Assign certificate signing key fails\n%s\n", 1995 ERR_error_string(ERR_get_error(), NULL)); 1996 X509_free(cert); 1997 return (0); 1998 } 1999 2000 /* 2001 * Add X509v3 extensions if present. These represent the minimum 2002 * set defined in RFC3280 less the certificate_policy extension, 2003 * which is seriously obfuscated in OpenSSL. 2004 */ 2005 /* 2006 * The basic_constraints extension CA:TRUE allows servers to 2007 * sign client certficitates. 2008 */ 2009 fprintf(stderr, "%s: %s\n", LN_basic_constraints, 2010 BASIC_CONSTRAINTS); 2011 ex = X509V3_EXT_conf_nid(NULL, NULL, NID_basic_constraints, 2012 _UC(BASIC_CONSTRAINTS)); 2013 if (!X509_add_ext(cert, ex, -1)) { 2014 fprintf(stderr, "Add extension field fails\n%s\n", 2015 ERR_error_string(ERR_get_error(), NULL)); 2016 return (0); 2017 } 2018 X509_EXTENSION_free(ex); 2019 2020 /* 2021 * The key_usage extension designates the purposes the key can 2022 * be used for. 2023 */ 2024 fprintf(stderr, "%s: %s\n", LN_key_usage, KEY_USAGE); 2025 ex = X509V3_EXT_conf_nid(NULL, NULL, NID_key_usage, _UC(KEY_USAGE)); 2026 if (!X509_add_ext(cert, ex, -1)) { 2027 fprintf(stderr, "Add extension field fails\n%s\n", 2028 ERR_error_string(ERR_get_error(), NULL)); 2029 return (0); 2030 } 2031 X509_EXTENSION_free(ex); 2032 /* 2033 * The subject_key_identifier is used for the GQ public key. 2034 * This should not be controversial. 2035 */ 2036 if (gqpub != NULL) { 2037 fprintf(stderr, "%s\n", LN_subject_key_identifier); 2038 ex = X509V3_EXT_conf_nid(NULL, NULL, 2039 NID_subject_key_identifier, gqpub); 2040 if (!X509_add_ext(cert, ex, -1)) { 2041 fprintf(stderr, 2042 "Add extension field fails\n%s\n", 2043 ERR_error_string(ERR_get_error(), NULL)); 2044 return (0); 2045 } 2046 X509_EXTENSION_free(ex); 2047 } 2048 2049 /* 2050 * The extended key usage extension is used for special purpose 2051 * here. The semantics probably do not conform to the designer's 2052 * intent and will likely change in future. 2053 * 2054 * "trustRoot" designates a root authority 2055 * "private" designates a private certificate 2056 */ 2057 if (exten != NULL) { 2058 fprintf(stderr, "%s: %s\n", LN_ext_key_usage, exten); 2059 ex = X509V3_EXT_conf_nid(NULL, NULL, 2060 NID_ext_key_usage, _UC(exten)); 2061 if (!X509_add_ext(cert, ex, -1)) { 2062 fprintf(stderr, 2063 "Add extension field fails\n%s\n", 2064 ERR_error_string(ERR_get_error(), NULL)); 2065 return (0); 2066 } 2067 X509_EXTENSION_free(ex); 2068 } 2069 2070 /* 2071 * Sign and verify. 2072 */ 2073 X509_sign(cert, pkey, md); 2074 if (X509_verify(cert, pkey) <= 0) { 2075 fprintf(stderr, "Verify %s certificate fails\n%s\n", id, 2076 ERR_error_string(ERR_get_error(), NULL)); 2077 X509_free(cert); 2078 return (0); 2079 } 2080 2081 /* 2082 * Write the certificate encoded in PEM. 2083 */ 2084 snprintf(pathbuf, sizeof(pathbuf), "%scert", id); 2085 str = fheader(pathbuf, "cert", hostname); 2086 PEM_write_X509(str, cert); 2087 fclose(str); 2088 if (debug) 2089 X509_print_fp(stderr, cert); 2090 X509_free(cert); 2091 return (1); 2092 } 2093 2094 #if 0 /* asn2ntp is used only with commercial certificates */ 2095 /* 2096 * asn2ntp - convert ASN1_TIME time structure to NTP time 2097 */ 2098 u_long 2099 asn2ntp ( 2100 ASN1_TIME *asn1time /* pointer to ASN1_TIME structure */ 2101 ) 2102 { 2103 char *v; /* pointer to ASN1_TIME string */ 2104 struct tm tm; /* time decode structure time */ 2105 2106 /* 2107 * Extract time string YYMMDDHHMMSSZ from ASN.1 time structure. 2108 * Note that the YY, MM, DD fields start with one, the HH, MM, 2109 * SS fiels start with zero and the Z character should be 'Z' 2110 * for UTC. Also note that years less than 50 map to years 2111 * greater than 100. Dontcha love ASN.1? 2112 */ 2113 if (asn1time->length > 13) 2114 return (-1); 2115 v = (char *)asn1time->data; 2116 tm.tm_year = (v[0] - '0') * 10 + v[1] - '0'; 2117 if (tm.tm_year < 50) 2118 tm.tm_year += 100; 2119 tm.tm_mon = (v[2] - '0') * 10 + v[3] - '0' - 1; 2120 tm.tm_mday = (v[4] - '0') * 10 + v[5] - '0'; 2121 tm.tm_hour = (v[6] - '0') * 10 + v[7] - '0'; 2122 tm.tm_min = (v[8] - '0') * 10 + v[9] - '0'; 2123 tm.tm_sec = (v[10] - '0') * 10 + v[11] - '0'; 2124 tm.tm_wday = 0; 2125 tm.tm_yday = 0; 2126 tm.tm_isdst = 0; 2127 return (mktime(&tm) + JAN_1970); 2128 } 2129 #endif 2130 2131 /* 2132 * Callback routine 2133 */ 2134 void 2135 cb ( 2136 int n1, /* arg 1 */ 2137 int n2, /* arg 2 */ 2138 void *chr /* arg 3 */ 2139 ) 2140 { 2141 switch (n1) { 2142 case 0: 2143 d0++; 2144 fprintf(stderr, "%s %d %d %lu\r", (char *)chr, n1, n2, 2145 d0); 2146 break; 2147 case 1: 2148 d1++; 2149 fprintf(stderr, "%s\t\t%d %d %lu\r", (char *)chr, n1, 2150 n2, d1); 2151 break; 2152 case 2: 2153 d2++; 2154 fprintf(stderr, "%s\t\t\t\t%d %d %lu\r", (char *)chr, 2155 n1, n2, d2); 2156 break; 2157 case 3: 2158 d3++; 2159 fprintf(stderr, "%s\t\t\t\t\t\t%d %d %lu\r", 2160 (char *)chr, n1, n2, d3); 2161 break; 2162 } 2163 } 2164 2165 2166 /* 2167 * Generate key 2168 */ 2169 EVP_PKEY * /* public/private key pair */ 2170 genkey( 2171 const char *type, /* key type (RSA or DSA) */ 2172 const char *id /* file name id */ 2173 ) 2174 { 2175 if (type == NULL) 2176 return (NULL); 2177 if (strcmp(type, "RSA") == 0) 2178 return (gen_rsa(id)); 2179 2180 else if (strcmp(type, "DSA") == 0) 2181 return (gen_dsa(id)); 2182 2183 fprintf(stderr, "Invalid %s key type %s\n", id, type); 2184 return (NULL); 2185 } 2186 2187 static RSA* 2188 genRsaKeyPair( 2189 int bits, 2190 char * what 2191 ) 2192 { 2193 RSA * rsa = RSA_new(); 2194 BN_GENCB * gcb = BN_GENCB_new(); 2195 BIGNUM * bne = BN_new(); 2196 2197 if (gcb) 2198 BN_GENCB_set_old(gcb, cb, what); 2199 if (bne) 2200 BN_set_word(bne, 65537); 2201 if (!(rsa && gcb && bne && RSA_generate_key_ex( 2202 rsa, bits, bne, gcb))) 2203 { 2204 RSA_free(rsa); 2205 rsa = NULL; 2206 } 2207 BN_GENCB_free(gcb); 2208 BN_free(bne); 2209 return rsa; 2210 } 2211 2212 static DSA* 2213 genDsaParams( 2214 int bits, 2215 char * what 2216 ) 2217 { 2218 2219 DSA * dsa = DSA_new(); 2220 BN_GENCB * gcb = BN_GENCB_new(); 2221 u_char seed[20]; 2222 2223 if (gcb) 2224 BN_GENCB_set_old(gcb, cb, what); 2225 RAND_bytes(seed, sizeof(seed)); 2226 if (!(dsa && gcb && DSA_generate_parameters_ex( 2227 dsa, bits, seed, sizeof(seed), NULL, NULL, gcb))) 2228 { 2229 DSA_free(dsa); 2230 dsa = NULL; 2231 } 2232 BN_GENCB_free(gcb); 2233 return dsa; 2234 } 2235 2236 #endif /* AUTOKEY */ 2237 2238 2239 /* 2240 * Generate file header and link 2241 */ 2242 FILE * 2243 fheader ( 2244 const char *file, /* file name id */ 2245 const char *ulink, /* linkname */ 2246 const char *owner /* owner name */ 2247 ) 2248 { 2249 FILE *str; /* file handle */ 2250 char linkname[MAXFILENAME]; /* link name */ 2251 int temp; 2252 #ifdef HAVE_UMASK 2253 mode_t orig_umask; 2254 #endif 2255 2256 snprintf(filename, sizeof(filename), "ntpkey_%s_%s.%u", file, 2257 owner, fstamp); 2258 #ifdef HAVE_UMASK 2259 orig_umask = umask( S_IWGRP | S_IRWXO ); 2260 str = fopen(filename, "w"); 2261 (void) umask(orig_umask); 2262 #else 2263 str = fopen(filename, "w"); 2264 #endif 2265 if (str == NULL) { 2266 perror("Write"); 2267 exit (-1); 2268 } 2269 if (strcmp(ulink, "md5") == 0) { 2270 strcpy(linkname,"ntp.keys"); 2271 } else { 2272 snprintf(linkname, sizeof(linkname), "ntpkey_%s_%s", ulink, 2273 hostname); 2274 } 2275 (void)remove(linkname); /* The symlink() line below matters */ 2276 temp = symlink(filename, linkname); 2277 if (temp < 0) 2278 perror(file); 2279 fprintf(stderr, "Generating new %s file and link\n", ulink); 2280 fprintf(stderr, "%s->%s\n", linkname, filename); 2281 fprintf(str, "# %s\n# %s\n", filename, ctime(&epoch)); 2282 return (str); 2283 } 2284