xref: /freebsd/contrib/ntp/util/ntp-keygen.c (revision f5f40dd63bc7acbb5312b26ac1ea1103c12352a6)
19c2daa00SOllivier Robert /*
22b15cb3dSCy Schubert  * Program to generate cryptographic keys for ntp clients and servers
39c2daa00SOllivier Robert  *
42b15cb3dSCy Schubert  * This program generates password encrypted data files for use with the
52b15cb3dSCy Schubert  * Autokey security protocol and Network Time Protocol Version 4. Files
62b15cb3dSCy Schubert  * are prefixed with a header giving the name and date of creation
79c2daa00SOllivier Robert  * followed by a type-specific descriptive label and PEM-encoded data
82b15cb3dSCy Schubert  * structure compatible with programs of the OpenSSL library.
99c2daa00SOllivier Robert  *
102b15cb3dSCy Schubert  * All file names are like "ntpkey_<type>_<hostname>.<filestamp>", where
112b15cb3dSCy Schubert  * <type> is the file type, <hostname> the generating host name and
122b15cb3dSCy Schubert  * <filestamp> the generation time in NTP seconds. The NTP programs
132b15cb3dSCy Schubert  * expect generic names such as "ntpkey_<type>_whimsy.udel.edu" with the
142b15cb3dSCy Schubert  * association maintained by soft links. Following is a list of file
152b15cb3dSCy Schubert  * types; the first line is the file name and the second link name.
169c2daa00SOllivier Robert  *
179c2daa00SOllivier Robert  * ntpkey_MD5key_<hostname>.<filestamp>
189c2daa00SOllivier Robert  * 	MD5 (128-bit) keys used to compute message digests in symmetric
199c2daa00SOllivier Robert  *	key cryptography
209c2daa00SOllivier Robert  *
212b15cb3dSCy Schubert  * ntpkey_RSAhost_<hostname>.<filestamp>
222b15cb3dSCy Schubert  * ntpkey_host_<hostname>
239c2daa00SOllivier Robert  *	RSA private/public host key pair used for public key signatures
249c2daa00SOllivier Robert  *
252b15cb3dSCy Schubert  * ntpkey_RSAsign_<hostname>.<filestamp>
262b15cb3dSCy Schubert  * ntpkey_sign_<hostname>
272b15cb3dSCy Schubert  *	RSA private/public sign key pair used for public key signatures
289c2daa00SOllivier Robert  *
292b15cb3dSCy Schubert  * ntpkey_DSAsign_<hostname>.<filestamp>
302b15cb3dSCy Schubert  * ntpkey_sign_<hostname>
312b15cb3dSCy Schubert  *	DSA Private/public sign key pair used for public key signatures
329c2daa00SOllivier Robert  *
339c2daa00SOllivier Robert  * Available digest/signature schemes
349c2daa00SOllivier Robert  *
359c2daa00SOllivier Robert  * RSA:	RSA-MD2, RSA-MD5, RSA-SHA, RSA-SHA1, RSA-MDC2, EVP-RIPEMD160
369c2daa00SOllivier Robert  * DSA:	DSA-SHA, DSA-SHA1
379c2daa00SOllivier Robert  *
382b15cb3dSCy Schubert  * ntpkey_XXXcert_<hostname>.<filestamp>
392b15cb3dSCy Schubert  * ntpkey_cert_<hostname>
402b15cb3dSCy Schubert  *	X509v3 certificate using RSA or DSA public keys and signatures.
412b15cb3dSCy Schubert  *	XXX is a code identifying the message digest and signature
422b15cb3dSCy Schubert  *	encryption algorithm
432b15cb3dSCy Schubert  *
442b15cb3dSCy Schubert  * Identity schemes. The key type par is used for the challenge; the key
452b15cb3dSCy Schubert  * type key is used for the response.
462b15cb3dSCy Schubert  *
472b15cb3dSCy Schubert  * ntpkey_IFFkey_<groupname>.<filestamp>
482b15cb3dSCy Schubert  * ntpkey_iffkey_<groupname>
492b15cb3dSCy Schubert  *	Schnorr (IFF) identity parameters and keys
502b15cb3dSCy Schubert  *
512b15cb3dSCy Schubert  * ntpkey_GQkey_<groupname>.<filestamp>,
522b15cb3dSCy Schubert  * ntpkey_gqkey_<groupname>
532b15cb3dSCy Schubert  *	Guillou-Quisquater (GQ) identity parameters and keys
542b15cb3dSCy Schubert  *
552b15cb3dSCy Schubert  * ntpkey_MVkeyX_<groupname>.<filestamp>,
562b15cb3dSCy Schubert  * ntpkey_mvkey_<groupname>
572b15cb3dSCy Schubert  *	Mu-Varadharajan (MV) identity parameters and keys
582b15cb3dSCy Schubert  *
599c2daa00SOllivier Robert  * Note: Once in a while because of some statistical fluke this program
609c2daa00SOllivier Robert  * fails to generate and verify some cryptographic data, as indicated by
619c2daa00SOllivier Robert  * exit status -1. In this case simply run the program again. If the
622b15cb3dSCy Schubert  * program does complete with exit code 0, the data are correct as
639c2daa00SOllivier Robert  * verified.
649c2daa00SOllivier Robert  *
659c2daa00SOllivier Robert  * These cryptographic routines are characterized by the prime modulus
669c2daa00SOllivier Robert  * size in bits. The default value of 512 bits is a compromise between
679c2daa00SOllivier Robert  * cryptographic strength and computing time and is ordinarily
689c2daa00SOllivier Robert  * considered adequate for this application. The routines have been
699c2daa00SOllivier Robert  * tested with sizes of 256, 512, 1024 and 2048 bits. Not all message
709c2daa00SOllivier Robert  * digest and signature encryption schemes work with sizes less than 512
719c2daa00SOllivier Robert  * bits. The computing time for sizes greater than 2048 bits is
729c2daa00SOllivier Robert  * prohibitive on all but the fastest processors. An UltraSPARC Blade
739c2daa00SOllivier Robert  * 1000 took something over nine minutes to generate and verify the
749c2daa00SOllivier Robert  * values with size 2048. An old SPARC IPC would take a week.
759c2daa00SOllivier Robert  *
769c2daa00SOllivier Robert  * The OpenSSL library used by this program expects a random seed file.
779c2daa00SOllivier Robert  * As described in the OpenSSL documentation, the file name defaults to
789c2daa00SOllivier Robert  * first the RANDFILE environment variable in the user's home directory
799c2daa00SOllivier Robert  * and then .rnd in the user's home directory.
809c2daa00SOllivier Robert  */
819c2daa00SOllivier Robert #ifdef HAVE_CONFIG_H
829c2daa00SOllivier Robert # include <config.h>
839c2daa00SOllivier Robert #endif
849c2daa00SOllivier Robert #include <string.h>
859c2daa00SOllivier Robert #include <stdio.h>
869c2daa00SOllivier Robert #include <stdlib.h>
879c2daa00SOllivier Robert #include <unistd.h>
889c2daa00SOllivier Robert #include <sys/stat.h>
899c2daa00SOllivier Robert #include <sys/time.h>
909c2daa00SOllivier Robert #include <sys/types.h>
912b15cb3dSCy Schubert 
922b15cb3dSCy Schubert #include "ntp.h"
93ea906c41SOllivier Robert #include "ntp_random.h"
942b15cb3dSCy Schubert #include "ntp_stdlib.h"
952b15cb3dSCy Schubert #include "ntp_assert.h"
962b15cb3dSCy Schubert #include "ntp_libopts.h"
972b15cb3dSCy Schubert #include "ntp_unixtime.h"
98ea906c41SOllivier Robert #include "ntp-keygen-opts.h"
99ea906c41SOllivier Robert 
1009c2daa00SOllivier Robert #ifdef OPENSSL
101f0574f5cSXin LI #include "openssl/asn1.h"
1029c2daa00SOllivier Robert #include "openssl/bn.h"
103f0574f5cSXin LI #include "openssl/crypto.h"
1049c2daa00SOllivier Robert #include "openssl/evp.h"
1059c2daa00SOllivier Robert #include "openssl/err.h"
1069c2daa00SOllivier Robert #include "openssl/rand.h"
107f0574f5cSXin LI #include "openssl/opensslv.h"
1089c2daa00SOllivier Robert #include "openssl/pem.h"
109f0574f5cSXin LI #include "openssl/x509.h"
1109c2daa00SOllivier Robert #include "openssl/x509v3.h"
1119c2daa00SOllivier Robert #include <openssl/objects.h>
112f391d6bcSXin LI #include "libssl_compat.h"
1139c2daa00SOllivier Robert #endif	/* OPENSSL */
1142b15cb3dSCy Schubert #include <ssl_applink.c>
1159c2daa00SOllivier Robert 
1162b15cb3dSCy Schubert #define _UC(str)	((char *)(intptr_t)(str))
1179c2daa00SOllivier Robert /*
1189c2daa00SOllivier Robert  * Cryptodefines
1199c2daa00SOllivier Robert  */
1202b15cb3dSCy Schubert #define	MD5KEYS		10	/* number of keys generated of each type */
1212b15cb3dSCy Schubert #define	MD5SIZE		20	/* maximum key size */
1222b15cb3dSCy Schubert #ifdef AUTOKEY
1239c2daa00SOllivier Robert #define	PLEN		512	/* default prime modulus size (bits) */
124a466cc55SCy Schubert #define	ILEN		512	/* default identity modulus size (bits) */
1252b15cb3dSCy Schubert #define	MVMAX		100	/* max MV parameters */
1269c2daa00SOllivier Robert 
1279c2daa00SOllivier Robert /*
1289c2daa00SOllivier Robert  * Strings used in X509v3 extension fields
1299c2daa00SOllivier Robert  */
1309c2daa00SOllivier Robert #define KEY_USAGE		"digitalSignature,keyCertSign"
1319c2daa00SOllivier Robert #define BASIC_CONSTRAINTS	"critical,CA:TRUE"
1329c2daa00SOllivier Robert #define EXT_KEY_PRIVATE		"private"
1339c2daa00SOllivier Robert #define EXT_KEY_TRUST		"trustRoot"
1342b15cb3dSCy Schubert #endif	/* AUTOKEY */
1359c2daa00SOllivier Robert 
1369c2daa00SOllivier Robert /*
1379c2daa00SOllivier Robert  * Prototypes
1389c2daa00SOllivier Robert  */
1392b15cb3dSCy Schubert FILE	*fheader	(const char *, const char *, const char *);
1402b15cb3dSCy Schubert int	gen_md5		(const char *);
1412b15cb3dSCy Schubert void	followlink	(char *, size_t);
1422b15cb3dSCy Schubert #ifdef AUTOKEY
1432b15cb3dSCy Schubert EVP_PKEY *gen_rsa	(const char *);
1442b15cb3dSCy Schubert EVP_PKEY *gen_dsa	(const char *);
1452b15cb3dSCy Schubert EVP_PKEY *gen_iffkey	(const char *);
1462b15cb3dSCy Schubert EVP_PKEY *gen_gqkey	(const char *);
1472b15cb3dSCy Schubert EVP_PKEY *gen_mvkey	(const char *, EVP_PKEY **);
1482b15cb3dSCy Schubert void	gen_mvserv	(char *, EVP_PKEY **);
1492b15cb3dSCy Schubert int	x509		(EVP_PKEY *, const EVP_MD *, char *, const char *,
1502b15cb3dSCy Schubert 			    char *);
1512b15cb3dSCy Schubert void	cb		(int, int, void *);
1522b15cb3dSCy Schubert EVP_PKEY *genkey	(const char *, const char *);
1532b15cb3dSCy Schubert EVP_PKEY *readkey	(char *, char *, u_int *, EVP_PKEY **);
1542b15cb3dSCy Schubert void	writekey	(char *, char *, u_int *, EVP_PKEY **);
1552b15cb3dSCy Schubert u_long	asn2ntp		(ASN1_TIME *);
156f391d6bcSXin LI 
157f391d6bcSXin LI static DSA* genDsaParams(int, char*);
158f391d6bcSXin LI static RSA* genRsaKeyPair(int, char*);
159f391d6bcSXin LI 
1602b15cb3dSCy Schubert #endif	/* AUTOKEY */
1619c2daa00SOllivier Robert 
1629c2daa00SOllivier Robert /*
1639c2daa00SOllivier Robert  * Program variables
1649c2daa00SOllivier Robert  */
1659c2daa00SOllivier Robert extern char *optarg;		/* command line argument */
1669034852cSGleb Smirnoff char	const *progname;
1672b15cb3dSCy Schubert u_int	lifetime = DAYSPERYEAR;	/* certificate lifetime (days) */
1682b15cb3dSCy Schubert int	nkeys;			/* MV keys */
1699c2daa00SOllivier Robert time_t	epoch;			/* Unix epoch (seconds) since 1970 */
1702b15cb3dSCy Schubert u_int	fstamp;			/* NTP filestamp */
1712b15cb3dSCy Schubert char	hostbuf[MAXHOSTNAME + 1];
1722b15cb3dSCy Schubert char	*hostname = NULL;	/* host, used in cert filenames */
1732b15cb3dSCy Schubert char	*groupname = NULL;	/* group name */
1742b15cb3dSCy Schubert char	certnamebuf[2 * sizeof(hostbuf)];
1752b15cb3dSCy Schubert char	*certname = NULL;	/* certificate subject/issuer name */
1769c2daa00SOllivier Robert char	*passwd1 = NULL;	/* input private key password */
1779c2daa00SOllivier Robert char	*passwd2 = NULL;	/* output private key password */
1782b15cb3dSCy Schubert char	filename[MAXFILENAME + 1]; /* file name */
1792b15cb3dSCy Schubert #ifdef AUTOKEY
1802b15cb3dSCy Schubert u_int	modulus = PLEN;		/* prime modulus size (bits) */
1812b15cb3dSCy Schubert u_int	modulus2 = ILEN;	/* identity modulus size (bits) */
1829c2daa00SOllivier Robert long	d0, d1, d2, d3;		/* callback counters */
1832b15cb3dSCy Schubert const EVP_CIPHER * cipher = NULL;
1842b15cb3dSCy Schubert #endif	/* AUTOKEY */
1859c2daa00SOllivier Robert 
1869c2daa00SOllivier Robert #ifdef SYS_WINNT
1879c2daa00SOllivier Robert BOOL init_randfile();
1889c2daa00SOllivier Robert 
1899c2daa00SOllivier Robert /*
1902b15cb3dSCy Schubert  * Don't try to follow symbolic links on Windows.  Assume link == file.
1919c2daa00SOllivier Robert  */
1929c2daa00SOllivier Robert int
1932b15cb3dSCy Schubert readlink(
1942b15cb3dSCy Schubert 	char *	link,
1952b15cb3dSCy Schubert 	char *	file,
1962b15cb3dSCy Schubert 	int	len
1972b15cb3dSCy Schubert 	)
1982b15cb3dSCy Schubert {
1993311ff84SXin LI 	return (int)strlen(file); /* assume no overflow possible */
2009c2daa00SOllivier Robert }
2012b15cb3dSCy Schubert 
2029c2daa00SOllivier Robert /*
2032b15cb3dSCy Schubert  * Don't try to create symbolic links on Windows, that is supported on
2042b15cb3dSCy Schubert  * Vista and later only.  Instead, if CreateHardLink is available (XP
2052b15cb3dSCy Schubert  * and later), hardlink the linkname to the original filename.  On
2062b15cb3dSCy Schubert  * earlier systems, user must rename file to match expected link for
2072b15cb3dSCy Schubert  * ntpd to find it.  To allow building a ntp-keygen.exe which loads on
2082b15cb3dSCy Schubert  * Windows pre-XP, runtime link to CreateHardLinkA().
2099c2daa00SOllivier Robert  */
2109c2daa00SOllivier Robert int
2112b15cb3dSCy Schubert symlink(
2122b15cb3dSCy Schubert 	char *	filename,
2132b15cb3dSCy Schubert 	char*	linkname
2142b15cb3dSCy Schubert 	)
2152b15cb3dSCy Schubert {
2162b15cb3dSCy Schubert 	typedef BOOL (WINAPI *PCREATEHARDLINKA)(
2172b15cb3dSCy Schubert 		__in LPCSTR	lpFileName,
2182b15cb3dSCy Schubert 		__in LPCSTR	lpExistingFileName,
2192b15cb3dSCy Schubert 		__reserved LPSECURITY_ATTRIBUTES lpSA
2202b15cb3dSCy Schubert 		);
2212b15cb3dSCy Schubert 	static PCREATEHARDLINKA pCreateHardLinkA;
2222b15cb3dSCy Schubert 	static int		tried;
2232b15cb3dSCy Schubert 	HMODULE			hDll;
2242b15cb3dSCy Schubert 	FARPROC			pfn;
2252b15cb3dSCy Schubert 	int			link_created;
2262b15cb3dSCy Schubert 	int			saved_errno;
2272b15cb3dSCy Schubert 
2282b15cb3dSCy Schubert 	if (!tried) {
2292b15cb3dSCy Schubert 		tried = TRUE;
2302b15cb3dSCy Schubert 		hDll = LoadLibrary("kernel32");
2312b15cb3dSCy Schubert 		pfn = GetProcAddress(hDll, "CreateHardLinkA");
2322b15cb3dSCy Schubert 		pCreateHardLinkA = (PCREATEHARDLINKA)pfn;
2339c2daa00SOllivier Robert 	}
2342b15cb3dSCy Schubert 
2352b15cb3dSCy Schubert 	if (NULL == pCreateHardLinkA) {
2362b15cb3dSCy Schubert 		errno = ENOSYS;
2372b15cb3dSCy Schubert 		return -1;
2382b15cb3dSCy Schubert 	}
2392b15cb3dSCy Schubert 
2402b15cb3dSCy Schubert 	link_created = (*pCreateHardLinkA)(linkname, filename, NULL);
2412b15cb3dSCy Schubert 
2422b15cb3dSCy Schubert 	if (link_created)
2432b15cb3dSCy Schubert 		return 0;
2442b15cb3dSCy Schubert 
2452b15cb3dSCy Schubert 	saved_errno = GetLastError();	/* yes we play loose */
2462b15cb3dSCy Schubert 	mfprintf(stderr, "Create hard link %s to %s failed: %m\n",
2472b15cb3dSCy Schubert 		 linkname, filename);
2482b15cb3dSCy Schubert 	errno = saved_errno;
2492b15cb3dSCy Schubert 	return -1;
2502b15cb3dSCy Schubert }
2512b15cb3dSCy Schubert 
2529c2daa00SOllivier Robert void
2539c2daa00SOllivier Robert InitWin32Sockets() {
2549c2daa00SOllivier Robert 	WORD wVersionRequested;
2559c2daa00SOllivier Robert 	WSADATA wsaData;
2569c2daa00SOllivier Robert 	wVersionRequested = MAKEWORD(2,0);
2579c2daa00SOllivier Robert 	if (WSAStartup(wVersionRequested, &wsaData))
2589c2daa00SOllivier Robert 	{
2592b15cb3dSCy Schubert 		fprintf(stderr, "No useable winsock.dll\n");
2609c2daa00SOllivier Robert 		exit(1);
2619c2daa00SOllivier Robert 	}
2629c2daa00SOllivier Robert }
2639c2daa00SOllivier Robert #endif /* SYS_WINNT */
2649c2daa00SOllivier Robert 
2652b15cb3dSCy Schubert 
2662b15cb3dSCy Schubert /*
2672b15cb3dSCy Schubert  * followlink() - replace filename with its target if symlink.
2682b15cb3dSCy Schubert  *
269a466cc55SCy Schubert  * readlink() does not null-terminate the result.
2702b15cb3dSCy Schubert  */
2712b15cb3dSCy Schubert void
2722b15cb3dSCy Schubert followlink(
2732b15cb3dSCy Schubert 	char *	fname,
2742b15cb3dSCy Schubert 	size_t	bufsiz
2752b15cb3dSCy Schubert 	)
2762b15cb3dSCy Schubert {
277a466cc55SCy Schubert 	ssize_t	len;
278a466cc55SCy Schubert 	char *	target;
2792b15cb3dSCy Schubert 
280a466cc55SCy Schubert 	REQUIRE(bufsiz > 0 && bufsiz <= SSIZE_MAX);
2812b15cb3dSCy Schubert 
282a466cc55SCy Schubert 	target = emalloc(bufsiz);
283a466cc55SCy Schubert 	len = readlink(fname, target, bufsiz);
2842b15cb3dSCy Schubert 	if (len < 0) {
2852b15cb3dSCy Schubert 		fname[0] = '\0';
2862b15cb3dSCy Schubert 		return;
2872b15cb3dSCy Schubert 	}
288a466cc55SCy Schubert 	if ((size_t)len > bufsiz - 1)
289a466cc55SCy Schubert 		len = bufsiz - 1;
290a466cc55SCy Schubert 	memcpy(fname, target, len);
2912b15cb3dSCy Schubert 	fname[len] = '\0';
292a466cc55SCy Schubert 	free(target);
2932b15cb3dSCy Schubert }
2942b15cb3dSCy Schubert 
2952b15cb3dSCy Schubert 
2969c2daa00SOllivier Robert /*
2979c2daa00SOllivier Robert  * Main program
2989c2daa00SOllivier Robert  */
2999c2daa00SOllivier Robert int
3009c2daa00SOllivier Robert main(
3019c2daa00SOllivier Robert 	int	argc,		/* command line options */
3029c2daa00SOllivier Robert 	char	**argv
3039c2daa00SOllivier Robert 	)
3049c2daa00SOllivier Robert {
3059c2daa00SOllivier Robert 	struct timeval tv;	/* initialization vector */
306ea906c41SOllivier Robert 	int	md5key = 0;	/* generate MD5 keys */
3072b15cb3dSCy Schubert 	int	optct;		/* option count */
3082b15cb3dSCy Schubert #ifdef AUTOKEY
3099c2daa00SOllivier Robert 	X509	*cert = NULL;	/* X509 certificate */
3109c2daa00SOllivier Robert 	EVP_PKEY *pkey_host = NULL; /* host key */
3119c2daa00SOllivier Robert 	EVP_PKEY *pkey_sign = NULL; /* sign key */
3122b15cb3dSCy Schubert 	EVP_PKEY *pkey_iffkey = NULL; /* IFF sever keys */
3132b15cb3dSCy Schubert 	EVP_PKEY *pkey_gqkey = NULL; /* GQ server keys */
3142b15cb3dSCy Schubert 	EVP_PKEY *pkey_mvkey = NULL; /* MV trusted agen keys */
3152b15cb3dSCy Schubert 	EVP_PKEY *pkey_mvpar[MVMAX]; /* MV cleient keys */
3169c2daa00SOllivier Robert 	int	hostkey = 0;	/* generate RSA keys */
3172b15cb3dSCy Schubert 	int	iffkey = 0;	/* generate IFF keys */
3182b15cb3dSCy Schubert 	int	gqkey = 0;	/* generate GQ keys */
3199c2daa00SOllivier Robert 	int	mvkey = 0;	/* update MV keys */
3202b15cb3dSCy Schubert 	int	mvpar = 0;	/* generate MV parameters */
3219c2daa00SOllivier Robert 	char	*sign = NULL;	/* sign key */
3229c2daa00SOllivier Robert 	EVP_PKEY *pkey = NULL;	/* temp key */
3239c2daa00SOllivier Robert 	const EVP_MD *ectx;	/* EVP digest */
3249c2daa00SOllivier Robert 	char	pathbuf[MAXFILENAME + 1];
3259c2daa00SOllivier Robert 	const char *scheme = NULL; /* digest/signature scheme */
3262b15cb3dSCy Schubert 	const char *ciphername = NULL; /* to encrypt priv. key */
3272b15cb3dSCy Schubert 	const char *exten = NULL;	/* private extension */
3289c2daa00SOllivier Robert 	char	*grpkey = NULL;	/* identity extension */
3299c2daa00SOllivier Robert 	int	nid;		/* X509 digest/signature scheme */
3309c2daa00SOllivier Robert 	FILE	*fstr = NULL;	/* file handle */
3312b15cb3dSCy Schubert 	char	groupbuf[MAXHOSTNAME + 1];
332ea906c41SOllivier Robert 	u_int	temp;
3332b15cb3dSCy Schubert 	BIO *	bp;
3342b15cb3dSCy Schubert 	int	i, cnt;
3352b15cb3dSCy Schubert 	char *	ptr;
3362b15cb3dSCy Schubert #endif	/* AUTOKEY */
337f0574f5cSXin LI #ifdef OPENSSL
338f0574f5cSXin LI 	const char *sslvtext;
339f0574f5cSXin LI 	int sslvmatch;
340f0574f5cSXin LI #endif /* OPENSSL */
3412b15cb3dSCy Schubert 
3422b15cb3dSCy Schubert 	progname = argv[0];
3439c2daa00SOllivier Robert 
3449c2daa00SOllivier Robert #ifdef SYS_WINNT
3459c2daa00SOllivier Robert 	/* Initialize before OpenSSL checks */
3469c2daa00SOllivier Robert 	InitWin32Sockets();
3479c2daa00SOllivier Robert 	if (!init_randfile())
3489c2daa00SOllivier Robert 		fprintf(stderr, "Unable to initialize .rnd file\n");
3492b15cb3dSCy Schubert 	ssl_applink();
3509c2daa00SOllivier Robert #endif
3519c2daa00SOllivier Robert 
3529c2daa00SOllivier Robert #ifdef OPENSSL
3532b15cb3dSCy Schubert 	ssl_check_version();
3549c2daa00SOllivier Robert #endif	/* OPENSSL */
3559c2daa00SOllivier Robert 
3562b15cb3dSCy Schubert 	ntp_crypto_srandom();
3572b15cb3dSCy Schubert 
3589c2daa00SOllivier Robert 	/*
3599c2daa00SOllivier Robert 	 * Process options, initialize host name and timestamp.
3602b15cb3dSCy Schubert 	 * gethostname() won't null-terminate if hostname is exactly the
3612b15cb3dSCy Schubert 	 * length provided for the buffer.
3629c2daa00SOllivier Robert 	 */
3632b15cb3dSCy Schubert 	gethostname(hostbuf, sizeof(hostbuf) - 1);
3642b15cb3dSCy Schubert 	hostbuf[COUNTOF(hostbuf) - 1] = '\0';
3659c2daa00SOllivier Robert 	hostname = hostbuf;
3662b15cb3dSCy Schubert 	groupname = hostbuf;
3679c2daa00SOllivier Robert 	passwd1 = hostbuf;
3682b15cb3dSCy Schubert 	passwd2 = NULL;
3692b15cb3dSCy Schubert 	GETTIMEOFDAY(&tv, NULL);
3709c2daa00SOllivier Robert 	epoch = tv.tv_sec;
3712b15cb3dSCy Schubert 	fstamp = (u_int)(epoch + JAN_1970);
372ea906c41SOllivier Robert 
3732b15cb3dSCy Schubert 	optct = ntpOptionProcess(&ntp_keygenOptions, argc, argv);
3749034852cSGleb Smirnoff 	argc -= optct;	// Just in case we care later.
3759034852cSGleb Smirnoff 	argv += optct;	// Just in case we care later.
3769c2daa00SOllivier Robert 
3775e91a9b7SOllivier Robert #ifdef OPENSSL
378f0574f5cSXin LI 	sslvtext = OpenSSL_version(OPENSSL_VERSION);
379f0574f5cSXin LI 	sslvmatch = OpenSSL_version_num() == OPENSSL_VERSION_NUMBER;
380f0574f5cSXin LI 	if (sslvmatch)
3812b15cb3dSCy Schubert 		fprintf(stderr, "Using OpenSSL version %s\n",
382f0574f5cSXin LI 			sslvtext);
3832b15cb3dSCy Schubert 	else
3842b15cb3dSCy Schubert 		fprintf(stderr, "Built against OpenSSL %s, using version %s\n",
385f0574f5cSXin LI 			OPENSSL_VERSION_TEXT, sslvtext);
3862b15cb3dSCy Schubert #endif /* OPENSSL */
3879c2daa00SOllivier Robert 
3882b15cb3dSCy Schubert 	debug = OPT_VALUE_SET_DEBUG_LEVEL;
3899c2daa00SOllivier Robert 
3902b15cb3dSCy Schubert 	if (HAVE_OPT( MD5KEY ))
3912b15cb3dSCy Schubert 		md5key++;
3922b15cb3dSCy Schubert #ifdef AUTOKEY
3932b15cb3dSCy Schubert 	if (HAVE_OPT( PASSWORD ))
3942b15cb3dSCy Schubert 		passwd1 = estrdup(OPT_ARG( PASSWORD ));
3959c2daa00SOllivier Robert 
3962b15cb3dSCy Schubert 	if (HAVE_OPT( EXPORT_PASSWD ))
3972b15cb3dSCy Schubert 		passwd2 = estrdup(OPT_ARG( EXPORT_PASSWD ));
3989c2daa00SOllivier Robert 
399ea906c41SOllivier Robert 	if (HAVE_OPT( HOST_KEY ))
4009c2daa00SOllivier Robert 		hostkey++;
4019c2daa00SOllivier Robert 
4022b15cb3dSCy Schubert 	if (HAVE_OPT( SIGN_KEY ))
4032b15cb3dSCy Schubert 		sign = estrdup(OPT_ARG( SIGN_KEY ));
4042b15cb3dSCy Schubert 
4052b15cb3dSCy Schubert 	if (HAVE_OPT( GQ_PARAMS ))
4062b15cb3dSCy Schubert 		gqkey++;
4072b15cb3dSCy Schubert 
408ea906c41SOllivier Robert 	if (HAVE_OPT( IFFKEY ))
4099c2daa00SOllivier Robert 		iffkey++;
410ea906c41SOllivier Robert 
4112b15cb3dSCy Schubert 	if (HAVE_OPT( MV_PARAMS )) {
412*f5f40dd6SCy Schubert 		mvkey++;			/* DLH are these two swapped? */
4132b15cb3dSCy Schubert 		nkeys = OPT_VALUE_MV_PARAMS;
4142b15cb3dSCy Schubert 	}
4152b15cb3dSCy Schubert 	if (HAVE_OPT( MV_KEYS )) {
416*f5f40dd6SCy Schubert 		mvpar++;	/* not used! */	/* DLH are these two swapped? */
4172b15cb3dSCy Schubert 		nkeys = OPT_VALUE_MV_KEYS;
4182b15cb3dSCy Schubert 	}
4199c2daa00SOllivier Robert 
4202b15cb3dSCy Schubert 	if (HAVE_OPT( IMBITS ))
4212b15cb3dSCy Schubert 		modulus2 = OPT_VALUE_IMBITS;
4229c2daa00SOllivier Robert 
423ea906c41SOllivier Robert 	if (HAVE_OPT( MODULUS ))
424ea906c41SOllivier Robert 		modulus = OPT_VALUE_MODULUS;
4259c2daa00SOllivier Robert 
4262b15cb3dSCy Schubert 	if (HAVE_OPT( CERTIFICATE ))
4272b15cb3dSCy Schubert 		scheme = OPT_ARG( CERTIFICATE );
4282b15cb3dSCy Schubert 
4292b15cb3dSCy Schubert 	if (HAVE_OPT( CIPHER ))
4302b15cb3dSCy Schubert 		ciphername = OPT_ARG( CIPHER );
4312b15cb3dSCy Schubert 
4322b15cb3dSCy Schubert 	if (HAVE_OPT( SUBJECT_NAME ))
4332b15cb3dSCy Schubert 		hostname = estrdup(OPT_ARG( SUBJECT_NAME ));
4342b15cb3dSCy Schubert 
4352b15cb3dSCy Schubert 	if (HAVE_OPT( IDENT ))
4362b15cb3dSCy Schubert 		groupname = estrdup(OPT_ARG( IDENT ));
4372b15cb3dSCy Schubert 
4382b15cb3dSCy Schubert 	if (HAVE_OPT( LIFETIME ))
4392b15cb3dSCy Schubert 		lifetime = OPT_VALUE_LIFETIME;
4402b15cb3dSCy Schubert 
441ea906c41SOllivier Robert 	if (HAVE_OPT( PVT_CERT ))
4429c2daa00SOllivier Robert 		exten = EXT_KEY_PRIVATE;
4439c2daa00SOllivier Robert 
444ea906c41SOllivier Robert 	if (HAVE_OPT( TRUSTED_CERT ))
4459c2daa00SOllivier Robert 		exten = EXT_KEY_TRUST;
4469c2daa00SOllivier Robert 
4472b15cb3dSCy Schubert 	/*
4482b15cb3dSCy Schubert 	 * Remove the group name from the hostname variable used
4492b15cb3dSCy Schubert 	 * in host and sign certificate file names.
4502b15cb3dSCy Schubert 	 */
4512b15cb3dSCy Schubert 	if (hostname != hostbuf)
4522b15cb3dSCy Schubert 		ptr = strchr(hostname, '@');
4532b15cb3dSCy Schubert 	else
4542b15cb3dSCy Schubert 		ptr = NULL;
4552b15cb3dSCy Schubert 	if (ptr != NULL) {
4562b15cb3dSCy Schubert 		*ptr = '\0';
4572b15cb3dSCy Schubert 		groupname = estrdup(ptr + 1);
4582b15cb3dSCy Schubert 		/* -s @group is equivalent to -i group, host unch. */
4592b15cb3dSCy Schubert 		if (ptr == hostname)
4602b15cb3dSCy Schubert 			hostname = hostbuf;
461ea906c41SOllivier Robert 	}
4629c2daa00SOllivier Robert 
4632b15cb3dSCy Schubert 	/*
4642b15cb3dSCy Schubert 	 * Derive host certificate issuer/subject names from host name
4652b15cb3dSCy Schubert 	 * and optional group.  If no groupname is provided, the issuer
4662b15cb3dSCy Schubert 	 * and subject is the hostname with no '@group', and the
4672b15cb3dSCy Schubert 	 * groupname variable is pointed to hostname for use in IFF, GQ,
4682b15cb3dSCy Schubert 	 * and MV parameters file names.
4692b15cb3dSCy Schubert 	 */
4702b15cb3dSCy Schubert 	if (groupname == hostbuf) {
4712b15cb3dSCy Schubert 		certname = hostname;
4722b15cb3dSCy Schubert 	} else {
4732b15cb3dSCy Schubert 		snprintf(certnamebuf, sizeof(certnamebuf), "%s@%s",
4742b15cb3dSCy Schubert 			 hostname, groupname);
4752b15cb3dSCy Schubert 		certname = certnamebuf;
476ea906c41SOllivier Robert 	}
4779c2daa00SOllivier Robert 
4789c2daa00SOllivier Robert 	/*
4799c2daa00SOllivier Robert 	 * Seed random number generator and grow weeds.
4809c2daa00SOllivier Robert 	 */
481f0574f5cSXin LI #if OPENSSL_VERSION_NUMBER < 0x10100000L
4829c2daa00SOllivier Robert 	ERR_load_crypto_strings();
4839c2daa00SOllivier Robert 	OpenSSL_add_all_algorithms();
484f0574f5cSXin LI #endif /* OPENSSL_VERSION_NUMBER */
4852b15cb3dSCy Schubert 	if (!RAND_status()) {
4862b15cb3dSCy Schubert 		if (RAND_file_name(pathbuf, sizeof(pathbuf)) == NULL) {
4879c2daa00SOllivier Robert 			fprintf(stderr, "RAND_file_name %s\n",
4889c2daa00SOllivier Robert 			    ERR_error_string(ERR_get_error(), NULL));
4892b15cb3dSCy Schubert 			exit (-1);
4909c2daa00SOllivier Robert 		}
4919c2daa00SOllivier Robert 		temp = RAND_load_file(pathbuf, -1);
4929c2daa00SOllivier Robert 		if (temp == 0) {
4939c2daa00SOllivier Robert 			fprintf(stderr,
4942b15cb3dSCy Schubert 			    "RAND_load_file %s not found or empty\n",
4952b15cb3dSCy Schubert 			    pathbuf);
4962b15cb3dSCy Schubert 			exit (-1);
4979c2daa00SOllivier Robert 		}
4989c2daa00SOllivier Robert 		fprintf(stderr,
4999c2daa00SOllivier Robert 		    "Random seed file %s %u bytes\n", pathbuf, temp);
5009c2daa00SOllivier Robert 		RAND_add(&epoch, sizeof(epoch), 4.0);
5012b15cb3dSCy Schubert 	}
5022b15cb3dSCy Schubert #endif	/* AUTOKEY */
5039c2daa00SOllivier Robert 
5049c2daa00SOllivier Robert 	/*
5052b15cb3dSCy Schubert 	 * Create new unencrypted MD5 keys file if requested. If this
5062b15cb3dSCy Schubert 	 * option is selected, ignore all other options.
5079c2daa00SOllivier Robert 	 */
5082b15cb3dSCy Schubert 	if (md5key) {
5092b15cb3dSCy Schubert 		gen_md5("md5");
5102b15cb3dSCy Schubert 		exit (0);
5112b15cb3dSCy Schubert 	}
5129c2daa00SOllivier Robert 
5132b15cb3dSCy Schubert #ifdef AUTOKEY
5149c2daa00SOllivier Robert 	/*
5152b15cb3dSCy Schubert 	 * Load previous certificate if available.
5169c2daa00SOllivier Robert 	 */
5172b15cb3dSCy Schubert 	snprintf(filename, sizeof(filename), "ntpkey_cert_%s", hostname);
5189c2daa00SOllivier Robert 	if ((fstr = fopen(filename, "r")) != NULL) {
5199c2daa00SOllivier Robert 		cert = PEM_read_X509(fstr, NULL, NULL, NULL);
5209c2daa00SOllivier Robert 		fclose(fstr);
5212b15cb3dSCy Schubert 	}
5222b15cb3dSCy Schubert 	if (cert != NULL) {
5232b15cb3dSCy Schubert 
5242b15cb3dSCy Schubert 		/*
5252b15cb3dSCy Schubert 		 * Extract subject name.
5262b15cb3dSCy Schubert 		 */
5272b15cb3dSCy Schubert 		X509_NAME_oneline(X509_get_subject_name(cert), groupbuf,
5282b15cb3dSCy Schubert 		    MAXFILENAME);
5292b15cb3dSCy Schubert 
5302b15cb3dSCy Schubert 		/*
5312b15cb3dSCy Schubert 		 * Extract digest/signature scheme.
5322b15cb3dSCy Schubert 		 */
5332b15cb3dSCy Schubert 		if (scheme == NULL) {
534f391d6bcSXin LI 			nid = X509_get_signature_nid(cert);
5359c2daa00SOllivier Robert 			scheme = OBJ_nid2sn(nid);
5362b15cb3dSCy Schubert 		}
5372b15cb3dSCy Schubert 
5382b15cb3dSCy Schubert 		/*
5392b15cb3dSCy Schubert 		 * If a key_usage extension field is present, determine
5402b15cb3dSCy Schubert 		 * whether this is a trusted or private certificate.
5412b15cb3dSCy Schubert 		 */
5422b15cb3dSCy Schubert 		if (exten == NULL) {
5432b15cb3dSCy Schubert 			ptr = strstr(groupbuf, "CN=");
5442b15cb3dSCy Schubert 			cnt = X509_get_ext_count(cert);
5452b15cb3dSCy Schubert 			for (i = 0; i < cnt; i++) {
546f391d6bcSXin LI 				X509_EXTENSION *ext;
547f391d6bcSXin LI 				ASN1_OBJECT *obj;
548f391d6bcSXin LI 
5492b15cb3dSCy Schubert 				ext = X509_get_ext(cert, i);
550f391d6bcSXin LI 				obj = X509_EXTENSION_get_object(ext);
551f391d6bcSXin LI 
552f391d6bcSXin LI 				if (OBJ_obj2nid(obj) ==
5532b15cb3dSCy Schubert 				    NID_ext_key_usage) {
5542b15cb3dSCy Schubert 					bp = BIO_new(BIO_s_mem());
5552b15cb3dSCy Schubert 					X509V3_EXT_print(bp, ext, 0, 0);
5562b15cb3dSCy Schubert 					BIO_gets(bp, pathbuf,
5572b15cb3dSCy Schubert 					    MAXFILENAME);
5582b15cb3dSCy Schubert 					BIO_free(bp);
5592b15cb3dSCy Schubert 					if (strcmp(pathbuf,
5602b15cb3dSCy Schubert 					    "Trust Root") == 0)
5612b15cb3dSCy Schubert 						exten = EXT_KEY_TRUST;
5622b15cb3dSCy Schubert 					else if (strcmp(pathbuf,
5632b15cb3dSCy Schubert 					    "Private") == 0)
5642b15cb3dSCy Schubert 						exten = EXT_KEY_PRIVATE;
5652b15cb3dSCy Schubert 					certname = estrdup(ptr + 3);
5669c2daa00SOllivier Robert 				}
5679c2daa00SOllivier Robert 			}
5682b15cb3dSCy Schubert 		}
5692b15cb3dSCy Schubert 	}
5702b15cb3dSCy Schubert 	if (scheme == NULL)
5719c2daa00SOllivier Robert 		scheme = "RSA-MD5";
5722b15cb3dSCy Schubert 	if (ciphername == NULL)
5732b15cb3dSCy Schubert 		ciphername = "des-ede3-cbc";
5742b15cb3dSCy Schubert 	cipher = EVP_get_cipherbyname(ciphername);
5752b15cb3dSCy Schubert 	if (cipher == NULL) {
5762b15cb3dSCy Schubert 		fprintf(stderr, "Unknown cipher %s\n", ciphername);
5772b15cb3dSCy Schubert 		exit(-1);
5789c2daa00SOllivier Robert 	}
5792b15cb3dSCy Schubert 	fprintf(stderr, "Using host %s group %s\n", hostname,
5802b15cb3dSCy Schubert 	    groupname);
5812b15cb3dSCy Schubert 
5822b15cb3dSCy Schubert 	/*
5832b15cb3dSCy Schubert 	 * Create a new encrypted RSA host key file if requested;
5842b15cb3dSCy Schubert 	 * otherwise, look for an existing host key file. If not found,
5852b15cb3dSCy Schubert 	 * create a new encrypted RSA host key file. If that fails, go
5862b15cb3dSCy Schubert 	 * no further.
5872b15cb3dSCy Schubert 	 */
5882b15cb3dSCy Schubert 	if (hostkey)
5892b15cb3dSCy Schubert 		pkey_host = genkey("RSA", "host");
5902b15cb3dSCy Schubert 	if (pkey_host == NULL) {
5912b15cb3dSCy Schubert 		snprintf(filename, sizeof(filename), "ntpkey_host_%s", hostname);
5922b15cb3dSCy Schubert 		pkey_host = readkey(filename, passwd1, &fstamp, NULL);
5932b15cb3dSCy Schubert 		if (pkey_host != NULL) {
5942b15cb3dSCy Schubert 			followlink(filename, sizeof(filename));
5952b15cb3dSCy Schubert 			fprintf(stderr, "Using host key %s\n",
5962b15cb3dSCy Schubert 			    filename);
5972b15cb3dSCy Schubert 		} else {
5982b15cb3dSCy Schubert 			pkey_host = genkey("RSA", "host");
5992b15cb3dSCy Schubert 		}
6002b15cb3dSCy Schubert 	}
6012b15cb3dSCy Schubert 	if (pkey_host == NULL) {
6022b15cb3dSCy Schubert 		fprintf(stderr, "Generating host key fails\n");
6032b15cb3dSCy Schubert 		exit(-1);
6042b15cb3dSCy Schubert 	}
6052b15cb3dSCy Schubert 
6062b15cb3dSCy Schubert 	/*
6072b15cb3dSCy Schubert 	 * Create new encrypted RSA or DSA sign keys file if requested;
6082b15cb3dSCy Schubert 	 * otherwise, look for an existing sign key file. If not found,
6092b15cb3dSCy Schubert 	 * use the host key instead.
6102b15cb3dSCy Schubert 	 */
6112b15cb3dSCy Schubert 	if (sign != NULL)
6122b15cb3dSCy Schubert 		pkey_sign = genkey(sign, "sign");
6132b15cb3dSCy Schubert 	if (pkey_sign == NULL) {
6142b15cb3dSCy Schubert 		snprintf(filename, sizeof(filename), "ntpkey_sign_%s",
6152b15cb3dSCy Schubert 			 hostname);
6162b15cb3dSCy Schubert 		pkey_sign = readkey(filename, passwd1, &fstamp, NULL);
6172b15cb3dSCy Schubert 		if (pkey_sign != NULL) {
6182b15cb3dSCy Schubert 			followlink(filename, sizeof(filename));
6192b15cb3dSCy Schubert 			fprintf(stderr, "Using sign key %s\n",
6202b15cb3dSCy Schubert 			    filename);
6212b15cb3dSCy Schubert 		} else {
6222b15cb3dSCy Schubert 			pkey_sign = pkey_host;
6232b15cb3dSCy Schubert 			fprintf(stderr, "Using host key as sign key\n");
6242b15cb3dSCy Schubert 		}
6252b15cb3dSCy Schubert 	}
6262b15cb3dSCy Schubert 
6272b15cb3dSCy Schubert 	/*
6282b15cb3dSCy Schubert 	 * Create new encrypted GQ server keys file if requested;
6292b15cb3dSCy Schubert 	 * otherwise, look for an exisiting file. If found, fetch the
6302b15cb3dSCy Schubert 	 * public key for the certificate.
6312b15cb3dSCy Schubert 	 */
6322b15cb3dSCy Schubert 	if (gqkey)
6332b15cb3dSCy Schubert 		pkey_gqkey = gen_gqkey("gqkey");
6342b15cb3dSCy Schubert 	if (pkey_gqkey == NULL) {
6352b15cb3dSCy Schubert 		snprintf(filename, sizeof(filename), "ntpkey_gqkey_%s",
6362b15cb3dSCy Schubert 		    groupname);
6372b15cb3dSCy Schubert 		pkey_gqkey = readkey(filename, passwd1, &fstamp, NULL);
6382b15cb3dSCy Schubert 		if (pkey_gqkey != NULL) {
6392b15cb3dSCy Schubert 			followlink(filename, sizeof(filename));
6402b15cb3dSCy Schubert 			fprintf(stderr, "Using GQ parameters %s\n",
6412b15cb3dSCy Schubert 			    filename);
6422b15cb3dSCy Schubert 		}
6432b15cb3dSCy Schubert 	}
644f391d6bcSXin LI 	if (pkey_gqkey != NULL) {
645f391d6bcSXin LI 		RSA		*rsa;
646f391d6bcSXin LI 		const BIGNUM	*q;
647f391d6bcSXin LI 
648*f5f40dd6SCy Schubert 		rsa = EVP_PKEY_get1_RSA(pkey_gqkey);
649f391d6bcSXin LI 		RSA_get0_factors(rsa, NULL, &q);
650f391d6bcSXin LI 		grpkey = BN_bn2hex(q);
651*f5f40dd6SCy Schubert 		RSA_free(rsa);
652f391d6bcSXin LI 	}
6532b15cb3dSCy Schubert 
6542b15cb3dSCy Schubert 	/*
6552b15cb3dSCy Schubert 	 * Write the nonencrypted GQ client parameters to the stdout
6562b15cb3dSCy Schubert 	 * stream. The parameter file is the server key file with the
6572b15cb3dSCy Schubert 	 * private key obscured.
6582b15cb3dSCy Schubert 	 */
6592b15cb3dSCy Schubert 	if (pkey_gqkey != NULL && HAVE_OPT(ID_KEY)) {
6602b15cb3dSCy Schubert 		RSA	*rsa;
6612b15cb3dSCy Schubert 
6622b15cb3dSCy Schubert 		snprintf(filename, sizeof(filename),
6632b15cb3dSCy Schubert 		    "ntpkey_gqpar_%s.%u", groupname, fstamp);
6642b15cb3dSCy Schubert 		fprintf(stderr, "Writing GQ parameters %s to stdout\n",
6652b15cb3dSCy Schubert 		    filename);
6662b15cb3dSCy Schubert 		fprintf(stdout, "# %s\n# %s\n", filename,
6672b15cb3dSCy Schubert 		    ctime(&epoch));
668*f5f40dd6SCy Schubert 		rsa = EVP_PKEY_get1_RSA(pkey_gqkey);
669f391d6bcSXin LI 		RSA_set0_factors(rsa, BN_dup(BN_value_one()), BN_dup(BN_value_one()));
6702b15cb3dSCy Schubert 		pkey = EVP_PKEY_new();
6712b15cb3dSCy Schubert 		EVP_PKEY_assign_RSA(pkey, rsa);
6722b15cb3dSCy Schubert 		PEM_write_PKCS8PrivateKey(stdout, pkey, NULL, NULL, 0,
6732b15cb3dSCy Schubert 		    NULL, NULL);
6742b15cb3dSCy Schubert 		fflush(stdout);
675*f5f40dd6SCy Schubert 		if (debug) {
6762b15cb3dSCy Schubert 			RSA_print_fp(stderr, rsa, 0);
6772b15cb3dSCy Schubert 		}
678*f5f40dd6SCy Schubert 		EVP_PKEY_free(pkey);
679*f5f40dd6SCy Schubert 		pkey = NULL;
680*f5f40dd6SCy Schubert 		RSA_free(rsa);
681*f5f40dd6SCy Schubert 	}
6822b15cb3dSCy Schubert 
6832b15cb3dSCy Schubert 	/*
6842b15cb3dSCy Schubert 	 * Write the encrypted GQ server keys to the stdout stream.
6852b15cb3dSCy Schubert 	 */
6862b15cb3dSCy Schubert 	if (pkey_gqkey != NULL && passwd2 != NULL) {
6872b15cb3dSCy Schubert 		RSA	*rsa;
6882b15cb3dSCy Schubert 
6892b15cb3dSCy Schubert 		snprintf(filename, sizeof(filename),
6902b15cb3dSCy Schubert 		    "ntpkey_gqkey_%s.%u", groupname, fstamp);
6912b15cb3dSCy Schubert 		fprintf(stderr, "Writing GQ keys %s to stdout\n",
6922b15cb3dSCy Schubert 		    filename);
6932b15cb3dSCy Schubert 		fprintf(stdout, "# %s\n# %s\n", filename,
6942b15cb3dSCy Schubert 		    ctime(&epoch));
695*f5f40dd6SCy Schubert 		rsa = EVP_PKEY_get1_RSA(pkey_gqkey);
6962b15cb3dSCy Schubert 		pkey = EVP_PKEY_new();
6972b15cb3dSCy Schubert 		EVP_PKEY_assign_RSA(pkey, rsa);
6982b15cb3dSCy Schubert 		PEM_write_PKCS8PrivateKey(stdout, pkey, cipher, NULL, 0,
6992b15cb3dSCy Schubert 		    NULL, passwd2);
7002b15cb3dSCy Schubert 		fflush(stdout);
701*f5f40dd6SCy Schubert 		if (debug) {
7022b15cb3dSCy Schubert 			RSA_print_fp(stderr, rsa, 0);
7032b15cb3dSCy Schubert 		}
704*f5f40dd6SCy Schubert 		EVP_PKEY_free(pkey);
705*f5f40dd6SCy Schubert 		pkey = NULL;
706*f5f40dd6SCy Schubert 		RSA_free(rsa);
707*f5f40dd6SCy Schubert 	}
7082b15cb3dSCy Schubert 
7092b15cb3dSCy Schubert 	/*
7102b15cb3dSCy Schubert 	 * Create new encrypted IFF server keys file if requested;
7112b15cb3dSCy Schubert 	 * otherwise, look for existing file.
7122b15cb3dSCy Schubert 	 */
7132b15cb3dSCy Schubert 	if (iffkey)
7142b15cb3dSCy Schubert 		pkey_iffkey = gen_iffkey("iffkey");
7152b15cb3dSCy Schubert 	if (pkey_iffkey == NULL) {
7162b15cb3dSCy Schubert 		snprintf(filename, sizeof(filename), "ntpkey_iffkey_%s",
7172b15cb3dSCy Schubert 		    groupname);
7182b15cb3dSCy Schubert 		pkey_iffkey = readkey(filename, passwd1, &fstamp, NULL);
7192b15cb3dSCy Schubert 		if (pkey_iffkey != NULL) {
7202b15cb3dSCy Schubert 			followlink(filename, sizeof(filename));
7212b15cb3dSCy Schubert 			fprintf(stderr, "Using IFF keys %s\n",
7222b15cb3dSCy Schubert 			    filename);
7232b15cb3dSCy Schubert 		}
7242b15cb3dSCy Schubert 	}
7252b15cb3dSCy Schubert 
7262b15cb3dSCy Schubert 	/*
7272b15cb3dSCy Schubert 	 * Write the nonencrypted IFF client parameters to the stdout
7282b15cb3dSCy Schubert 	 * stream. The parameter file is the server key file with the
7292b15cb3dSCy Schubert 	 * private key obscured.
7302b15cb3dSCy Schubert 	 */
7312b15cb3dSCy Schubert 	if (pkey_iffkey != NULL && HAVE_OPT(ID_KEY)) {
7322b15cb3dSCy Schubert 		DSA	*dsa;
7332b15cb3dSCy Schubert 
7342b15cb3dSCy Schubert 		snprintf(filename, sizeof(filename),
7352b15cb3dSCy Schubert 		    "ntpkey_iffpar_%s.%u", groupname, fstamp);
7362b15cb3dSCy Schubert 		fprintf(stderr, "Writing IFF parameters %s to stdout\n",
7372b15cb3dSCy Schubert 		    filename);
7382b15cb3dSCy Schubert 		fprintf(stdout, "# %s\n# %s\n", filename,
7392b15cb3dSCy Schubert 		    ctime(&epoch));
740*f5f40dd6SCy Schubert 		dsa = EVP_PKEY_get1_DSA(pkey_iffkey);
741f391d6bcSXin LI 		DSA_set0_key(dsa, NULL, BN_dup(BN_value_one()));
7422b15cb3dSCy Schubert 		pkey = EVP_PKEY_new();
7432b15cb3dSCy Schubert 		EVP_PKEY_assign_DSA(pkey, dsa);
7442b15cb3dSCy Schubert 		PEM_write_PKCS8PrivateKey(stdout, pkey, NULL, NULL, 0,
7452b15cb3dSCy Schubert 		    NULL, NULL);
7462b15cb3dSCy Schubert 		fflush(stdout);
747*f5f40dd6SCy Schubert 		if (debug) {
7482b15cb3dSCy Schubert 			DSA_print_fp(stderr, dsa, 0);
7492b15cb3dSCy Schubert 		}
750*f5f40dd6SCy Schubert 		EVP_PKEY_free(pkey);
751*f5f40dd6SCy Schubert 		pkey = NULL;
752*f5f40dd6SCy Schubert 		DSA_free(dsa);
753*f5f40dd6SCy Schubert 	}
7542b15cb3dSCy Schubert 
7552b15cb3dSCy Schubert 	/*
7562b15cb3dSCy Schubert 	 * Write the encrypted IFF server keys to the stdout stream.
7572b15cb3dSCy Schubert 	 */
7582b15cb3dSCy Schubert 	if (pkey_iffkey != NULL && passwd2 != NULL) {
7592b15cb3dSCy Schubert 		DSA	*dsa;
7602b15cb3dSCy Schubert 
7612b15cb3dSCy Schubert 		snprintf(filename, sizeof(filename),
7622b15cb3dSCy Schubert 		    "ntpkey_iffkey_%s.%u", groupname, fstamp);
7632b15cb3dSCy Schubert 		fprintf(stderr, "Writing IFF keys %s to stdout\n",
7642b15cb3dSCy Schubert 		    filename);
7652b15cb3dSCy Schubert 		fprintf(stdout, "# %s\n# %s\n", filename,
7662b15cb3dSCy Schubert 		    ctime(&epoch));
767*f5f40dd6SCy Schubert 		dsa = EVP_PKEY_get1_DSA(pkey_iffkey);
7682b15cb3dSCy Schubert 		pkey = EVP_PKEY_new();
7692b15cb3dSCy Schubert 		EVP_PKEY_assign_DSA(pkey, dsa);
7702b15cb3dSCy Schubert 		PEM_write_PKCS8PrivateKey(stdout, pkey, cipher, NULL, 0,
7712b15cb3dSCy Schubert 		    NULL, passwd2);
7722b15cb3dSCy Schubert 		fflush(stdout);
773*f5f40dd6SCy Schubert 		if (debug) {
7742b15cb3dSCy Schubert 			DSA_print_fp(stderr, dsa, 0);
7752b15cb3dSCy Schubert 		}
776*f5f40dd6SCy Schubert 		EVP_PKEY_free(pkey);
777*f5f40dd6SCy Schubert 		pkey = NULL;
778*f5f40dd6SCy Schubert 		DSA_free(dsa);
779*f5f40dd6SCy Schubert 	}
7802b15cb3dSCy Schubert 
7812b15cb3dSCy Schubert 	/*
7822b15cb3dSCy Schubert 	 * Create new encrypted MV trusted-authority keys file if
7832b15cb3dSCy Schubert 	 * requested; otherwise, look for existing keys file.
7842b15cb3dSCy Schubert 	 */
7852b15cb3dSCy Schubert 	if (mvkey)
7862b15cb3dSCy Schubert 		pkey_mvkey = gen_mvkey("mv", pkey_mvpar);
7872b15cb3dSCy Schubert 	if (pkey_mvkey == NULL) {
7882b15cb3dSCy Schubert 		snprintf(filename, sizeof(filename), "ntpkey_mvta_%s",
7892b15cb3dSCy Schubert 		    groupname);
7902b15cb3dSCy Schubert 		pkey_mvkey = readkey(filename, passwd1, &fstamp,
7912b15cb3dSCy Schubert 		    pkey_mvpar);
7922b15cb3dSCy Schubert 		if (pkey_mvkey != NULL) {
7932b15cb3dSCy Schubert 			followlink(filename, sizeof(filename));
7942b15cb3dSCy Schubert 			fprintf(stderr, "Using MV keys %s\n",
7952b15cb3dSCy Schubert 			    filename);
7962b15cb3dSCy Schubert 		}
7972b15cb3dSCy Schubert 	}
7982b15cb3dSCy Schubert 
7992b15cb3dSCy Schubert 	/*
8002b15cb3dSCy Schubert 	 * Write the nonencrypted MV client parameters to the stdout
8012b15cb3dSCy Schubert 	 * stream. For the moment, we always use the client parameters
8022b15cb3dSCy Schubert 	 * associated with client key 1.
8032b15cb3dSCy Schubert 	 */
8042b15cb3dSCy Schubert 	if (pkey_mvkey != NULL && HAVE_OPT(ID_KEY)) {
8052b15cb3dSCy Schubert 		snprintf(filename, sizeof(filename),
8062b15cb3dSCy Schubert 		    "ntpkey_mvpar_%s.%u", groupname, fstamp);
8072b15cb3dSCy Schubert 		fprintf(stderr, "Writing MV parameters %s to stdout\n",
8082b15cb3dSCy Schubert 		    filename);
8092b15cb3dSCy Schubert 		fprintf(stdout, "# %s\n# %s\n", filename,
8102b15cb3dSCy Schubert 		    ctime(&epoch));
8112b15cb3dSCy Schubert 		pkey = pkey_mvpar[2];
8122b15cb3dSCy Schubert 		PEM_write_PKCS8PrivateKey(stdout, pkey, NULL, NULL, 0,
8132b15cb3dSCy Schubert 		    NULL, NULL);
8142b15cb3dSCy Schubert 		fflush(stdout);
815*f5f40dd6SCy Schubert 		if (debug) {
816f391d6bcSXin LI 			DSA_print_fp(stderr, EVP_PKEY_get0_DSA(pkey), 0);
8172b15cb3dSCy Schubert 		}
818*f5f40dd6SCy Schubert 	}
8192b15cb3dSCy Schubert 
8202b15cb3dSCy Schubert 	/*
8212b15cb3dSCy Schubert 	 * Write the encrypted MV server keys to the stdout stream.
8222b15cb3dSCy Schubert 	 */
8232b15cb3dSCy Schubert 	if (pkey_mvkey != NULL && passwd2 != NULL) {
8242b15cb3dSCy Schubert 		snprintf(filename, sizeof(filename),
8252b15cb3dSCy Schubert 		    "ntpkey_mvkey_%s.%u", groupname, fstamp);
8262b15cb3dSCy Schubert 		fprintf(stderr, "Writing MV keys %s to stdout\n",
8272b15cb3dSCy Schubert 		    filename);
8282b15cb3dSCy Schubert 		fprintf(stdout, "# %s\n# %s\n", filename,
8292b15cb3dSCy Schubert 		    ctime(&epoch));
8302b15cb3dSCy Schubert 		pkey = pkey_mvpar[1];
8312b15cb3dSCy Schubert 		PEM_write_PKCS8PrivateKey(stdout, pkey, cipher, NULL, 0,
8322b15cb3dSCy Schubert 		    NULL, passwd2);
8332b15cb3dSCy Schubert 		fflush(stdout);
834*f5f40dd6SCy Schubert 		if (debug) {
835f391d6bcSXin LI 			DSA_print_fp(stderr, EVP_PKEY_get0_DSA(pkey), 0);
8362b15cb3dSCy Schubert 		}
837*f5f40dd6SCy Schubert 	}
8382b15cb3dSCy Schubert 
8392b15cb3dSCy Schubert 	/*
8402b15cb3dSCy Schubert 	 * Decode the digest/signature scheme and create the
8412b15cb3dSCy Schubert 	 * certificate. Do this every time we run the program.
8422b15cb3dSCy Schubert 	 */
8439c2daa00SOllivier Robert 	ectx = EVP_get_digestbyname(scheme);
8449c2daa00SOllivier Robert 	if (ectx == NULL) {
8459c2daa00SOllivier Robert 		fprintf(stderr,
8469c2daa00SOllivier Robert 		    "Invalid digest/signature combination %s\n",
8479c2daa00SOllivier Robert 		    scheme);
8482b15cb3dSCy Schubert 		exit (-1);
8499c2daa00SOllivier Robert 	}
8502b15cb3dSCy Schubert 	x509(pkey_sign, ectx, grpkey, exten, certname);
8512b15cb3dSCy Schubert #endif	/* AUTOKEY */
8522b15cb3dSCy Schubert 	exit(0);
8539c2daa00SOllivier Robert }
8549c2daa00SOllivier Robert 
8552b15cb3dSCy Schubert 
8569c2daa00SOllivier Robert /*
8572b15cb3dSCy Schubert  * Generate semi-random MD5 keys compatible with NTPv3 and NTPv4. Also,
8582b15cb3dSCy Schubert  * if OpenSSL is around, generate random SHA1 keys compatible with
8592b15cb3dSCy Schubert  * symmetric key cryptography.
8609c2daa00SOllivier Robert  */
8619c2daa00SOllivier Robert int
8629c2daa00SOllivier Robert gen_md5(
8632b15cb3dSCy Schubert 	const char *id		/* file name id */
8649c2daa00SOllivier Robert 	)
8659c2daa00SOllivier Robert {
8662b15cb3dSCy Schubert 	u_char	md5key[MD5SIZE + 1];	/* MD5 key */
8679c2daa00SOllivier Robert 	FILE	*str;
8689c2daa00SOllivier Robert 	int	i, j;
8692b15cb3dSCy Schubert #ifdef OPENSSL
8702b15cb3dSCy Schubert 	u_char	keystr[MD5SIZE];
8712b15cb3dSCy Schubert 	u_char	hexstr[2 * MD5SIZE + 1];
8722b15cb3dSCy Schubert 	u_char	hex[] = "0123456789abcdef";
8732b15cb3dSCy Schubert #endif	/* OPENSSL */
8749c2daa00SOllivier Robert 
8752b15cb3dSCy Schubert 	str = fheader("MD5key", id, groupname);
8769c2daa00SOllivier Robert 	for (i = 1; i <= MD5KEYS; i++) {
8772b15cb3dSCy Schubert 		for (j = 0; j < MD5SIZE; j++) {
878a25439b6SCy Schubert 			u_char temp;
8792b15cb3dSCy Schubert 
8809c2daa00SOllivier Robert 			while (1) {
8812b15cb3dSCy Schubert 				int rc;
8822b15cb3dSCy Schubert 
883a25439b6SCy Schubert 				rc = ntp_crypto_random_buf(
884a25439b6SCy Schubert 				    &temp, sizeof(temp));
8852b15cb3dSCy Schubert 				if (-1 == rc) {
8862b15cb3dSCy Schubert 					fprintf(stderr, "ntp_crypto_random_buf() failed.\n");
8872b15cb3dSCy Schubert 					exit (-1);
8882b15cb3dSCy Schubert 				}
8899c2daa00SOllivier Robert 				if (temp == '#')
8909c2daa00SOllivier Robert 					continue;
8912b15cb3dSCy Schubert 
8929c2daa00SOllivier Robert 				if (temp > 0x20 && temp < 0x7f)
8939c2daa00SOllivier Robert 					break;
8949c2daa00SOllivier Robert 			}
895a25439b6SCy Schubert 			md5key[j] = temp;
8969c2daa00SOllivier Robert 		}
8972b15cb3dSCy Schubert 		md5key[j] = '\0';
8982b15cb3dSCy Schubert 		fprintf(str, "%2d MD5 %s  # MD5 key\n", i,
8999c2daa00SOllivier Robert 		    md5key);
9009c2daa00SOllivier Robert 	}
9012b15cb3dSCy Schubert #ifdef OPENSSL
9022b15cb3dSCy Schubert 	for (i = 1; i <= MD5KEYS; i++) {
9032b15cb3dSCy Schubert 		RAND_bytes(keystr, 20);
9042b15cb3dSCy Schubert 		for (j = 0; j < MD5SIZE; j++) {
9052b15cb3dSCy Schubert 			hexstr[2 * j] = hex[keystr[j] >> 4];
9062b15cb3dSCy Schubert 			hexstr[2 * j + 1] = hex[keystr[j] & 0xf];
9072b15cb3dSCy Schubert 		}
9082b15cb3dSCy Schubert 		hexstr[2 * MD5SIZE] = '\0';
9092b15cb3dSCy Schubert 		fprintf(str, "%2d SHA1 %s  # SHA1 key\n", i + MD5KEYS,
9102b15cb3dSCy Schubert 		    hexstr);
9119c2daa00SOllivier Robert 	}
9129c2daa00SOllivier Robert #endif	/* OPENSSL */
9132b15cb3dSCy Schubert 	fclose(str);
9142b15cb3dSCy Schubert 	return (1);
9152b15cb3dSCy Schubert }
9169c2daa00SOllivier Robert 
9179c2daa00SOllivier Robert 
9182b15cb3dSCy Schubert #ifdef AUTOKEY
9192b15cb3dSCy Schubert /*
9202b15cb3dSCy Schubert  * readkey - load cryptographic parameters and keys
9212b15cb3dSCy Schubert  *
9222b15cb3dSCy Schubert  * This routine loads a PEM-encoded file of given name and password and
9232b15cb3dSCy Schubert  * extracts the filestamp from the file name. It returns a pointer to
9242b15cb3dSCy Schubert  * the first key if valid, NULL if not.
9252b15cb3dSCy Schubert  */
9262b15cb3dSCy Schubert EVP_PKEY *			/* public/private key pair */
9272b15cb3dSCy Schubert readkey(
9282b15cb3dSCy Schubert 	char	*cp,		/* file name */
9292b15cb3dSCy Schubert 	char	*passwd,	/* password */
9302b15cb3dSCy Schubert 	u_int	*estamp,	/* file stamp */
9312b15cb3dSCy Schubert 	EVP_PKEY **evpars	/* parameter list pointer */
9322b15cb3dSCy Schubert 	)
9332b15cb3dSCy Schubert {
9342b15cb3dSCy Schubert 	FILE	*str;		/* file handle */
9352b15cb3dSCy Schubert 	EVP_PKEY *pkey = NULL;	/* public/private key */
9362b15cb3dSCy Schubert 	u_int	gstamp;		/* filestamp */
9372b15cb3dSCy Schubert 	char	linkname[MAXFILENAME]; /* filestamp buffer) */
9382b15cb3dSCy Schubert 	EVP_PKEY *parkey;
9392b15cb3dSCy Schubert 	char	*ptr;
9402b15cb3dSCy Schubert 	int	i;
9412b15cb3dSCy Schubert 
9422b15cb3dSCy Schubert 	/*
9432b15cb3dSCy Schubert 	 * Open the key file.
9442b15cb3dSCy Schubert 	 */
9452b15cb3dSCy Schubert 	str = fopen(cp, "r");
9462b15cb3dSCy Schubert 	if (str == NULL)
9472b15cb3dSCy Schubert 		return (NULL);
9482b15cb3dSCy Schubert 
9492b15cb3dSCy Schubert 	/*
9502b15cb3dSCy Schubert 	 * Read the filestamp, which is contained in the first line.
9512b15cb3dSCy Schubert 	 */
9522b15cb3dSCy Schubert 	if ((ptr = fgets(linkname, MAXFILENAME, str)) == NULL) {
9532b15cb3dSCy Schubert 		fprintf(stderr, "Empty key file %s\n", cp);
9542b15cb3dSCy Schubert 		fclose(str);
9552b15cb3dSCy Schubert 		return (NULL);
9562b15cb3dSCy Schubert 	}
9572b15cb3dSCy Schubert 	if ((ptr = strrchr(ptr, '.')) == NULL) {
9582b15cb3dSCy Schubert 		fprintf(stderr, "No filestamp found in %s\n", cp);
9592b15cb3dSCy Schubert 		fclose(str);
9602b15cb3dSCy Schubert 		return (NULL);
9612b15cb3dSCy Schubert 	}
9622b15cb3dSCy Schubert 	if (sscanf(++ptr, "%u", &gstamp) != 1) {
9632b15cb3dSCy Schubert 		fprintf(stderr, "Invalid filestamp found in %s\n", cp);
9642b15cb3dSCy Schubert 		fclose(str);
9652b15cb3dSCy Schubert 		return (NULL);
9662b15cb3dSCy Schubert 	}
9672b15cb3dSCy Schubert 
9682b15cb3dSCy Schubert 	/*
9692b15cb3dSCy Schubert 	 * Read and decrypt PEM-encoded private keys. The first one
9702b15cb3dSCy Schubert 	 * found is returned. If others are expected, add them to the
9712b15cb3dSCy Schubert 	 * parameter list.
9722b15cb3dSCy Schubert 	 */
9732b15cb3dSCy Schubert 	for (i = 0; i <= MVMAX - 1;) {
9742b15cb3dSCy Schubert 		parkey = PEM_read_PrivateKey(str, NULL, NULL, passwd);
9752b15cb3dSCy Schubert 		if (evpars != NULL) {
9762b15cb3dSCy Schubert 			evpars[i++] = parkey;
9772b15cb3dSCy Schubert 			evpars[i] = NULL;
9782b15cb3dSCy Schubert 		}
9792b15cb3dSCy Schubert 		if (parkey == NULL)
9802b15cb3dSCy Schubert 			break;
9812b15cb3dSCy Schubert 
9822b15cb3dSCy Schubert 		if (pkey == NULL)
9832b15cb3dSCy Schubert 			pkey = parkey;
9842b15cb3dSCy Schubert 		if (debug) {
985f391d6bcSXin LI 			if (EVP_PKEY_base_id(parkey) == EVP_PKEY_DSA)
986f391d6bcSXin LI 				DSA_print_fp(stderr, EVP_PKEY_get0_DSA(parkey),
9872b15cb3dSCy Schubert 				    0);
988f391d6bcSXin LI 			else if (EVP_PKEY_base_id(parkey) == EVP_PKEY_RSA)
989f391d6bcSXin LI 				RSA_print_fp(stderr, EVP_PKEY_get0_RSA(parkey),
9902b15cb3dSCy Schubert 				    0);
9912b15cb3dSCy Schubert 		}
9922b15cb3dSCy Schubert 	}
9932b15cb3dSCy Schubert 	fclose(str);
9942b15cb3dSCy Schubert 	if (pkey == NULL) {
9952b15cb3dSCy Schubert 		fprintf(stderr, "Corrupt file %s or wrong key %s\n%s\n",
9962b15cb3dSCy Schubert 		    cp, passwd, ERR_error_string(ERR_get_error(),
9972b15cb3dSCy Schubert 		    NULL));
9982b15cb3dSCy Schubert 		exit (-1);
9992b15cb3dSCy Schubert 	}
10002b15cb3dSCy Schubert 	*estamp = gstamp;
10012b15cb3dSCy Schubert 	return (pkey);
10022b15cb3dSCy Schubert }
10032b15cb3dSCy Schubert 
10042b15cb3dSCy Schubert 
10059c2daa00SOllivier Robert /*
10069c2daa00SOllivier Robert  * Generate RSA public/private key pair
10079c2daa00SOllivier Robert  */
10089c2daa00SOllivier Robert EVP_PKEY *			/* public/private key pair */
10099c2daa00SOllivier Robert gen_rsa(
10102b15cb3dSCy Schubert 	const char *id		/* file name id */
10119c2daa00SOllivier Robert 	)
10129c2daa00SOllivier Robert {
10139c2daa00SOllivier Robert 	EVP_PKEY *pkey;		/* private key */
10149c2daa00SOllivier Robert 	RSA	*rsa;		/* RSA parameters and key pair */
10159c2daa00SOllivier Robert 	FILE	*str;
10169c2daa00SOllivier Robert 
10179c2daa00SOllivier Robert 	fprintf(stderr, "Generating RSA keys (%d bits)...\n", modulus);
1018f391d6bcSXin LI 	rsa = genRsaKeyPair(modulus, _UC("RSA"));
10199c2daa00SOllivier Robert 	fprintf(stderr, "\n");
10209c2daa00SOllivier Robert 	if (rsa == NULL) {
10219c2daa00SOllivier Robert 		fprintf(stderr, "RSA generate keys fails\n%s\n",
10229c2daa00SOllivier Robert 		    ERR_error_string(ERR_get_error(), NULL));
10239c2daa00SOllivier Robert 		return (NULL);
10249c2daa00SOllivier Robert 	}
10259c2daa00SOllivier Robert 
10269c2daa00SOllivier Robert 	/*
10279c2daa00SOllivier Robert 	 * For signature encryption it is not necessary that the RSA
10289c2daa00SOllivier Robert 	 * parameters be strictly groomed and once in a while the
10299c2daa00SOllivier Robert 	 * modulus turns out to be non-prime. Just for grins, we check
10309c2daa00SOllivier Robert 	 * the primality.
10319c2daa00SOllivier Robert 	 */
10329c2daa00SOllivier Robert 	if (!RSA_check_key(rsa)) {
10339c2daa00SOllivier Robert 		fprintf(stderr, "Invalid RSA key\n%s\n",
10349c2daa00SOllivier Robert 		    ERR_error_string(ERR_get_error(), NULL));
10359c2daa00SOllivier Robert 		RSA_free(rsa);
10369c2daa00SOllivier Robert 		return (NULL);
10379c2daa00SOllivier Robert 	}
10389c2daa00SOllivier Robert 
10399c2daa00SOllivier Robert 	/*
10409c2daa00SOllivier Robert 	 * Write the RSA parameters and keys as a RSA private key
10419c2daa00SOllivier Robert 	 * encoded in PEM.
10429c2daa00SOllivier Robert 	 */
10432b15cb3dSCy Schubert 	if (strcmp(id, "sign") == 0)
10442b15cb3dSCy Schubert 		str = fheader("RSAsign", id, hostname);
10452b15cb3dSCy Schubert 	else
10462b15cb3dSCy Schubert 		str = fheader("RSAhost", id, hostname);
10479c2daa00SOllivier Robert 	pkey = EVP_PKEY_new();
10489c2daa00SOllivier Robert 	EVP_PKEY_assign_RSA(pkey, rsa);
10492b15cb3dSCy Schubert 	PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL,
10502b15cb3dSCy Schubert 	    passwd1);
10519c2daa00SOllivier Robert 	fclose(str);
10529c2daa00SOllivier Robert 	if (debug)
10532b15cb3dSCy Schubert 		RSA_print_fp(stderr, rsa, 0);
10549c2daa00SOllivier Robert 	return (pkey);
10559c2daa00SOllivier Robert }
10569c2daa00SOllivier Robert 
10579c2daa00SOllivier Robert 
10589c2daa00SOllivier Robert /*
10599c2daa00SOllivier Robert  * Generate DSA public/private key pair
10609c2daa00SOllivier Robert  */
10619c2daa00SOllivier Robert EVP_PKEY *			/* public/private key pair */
10629c2daa00SOllivier Robert gen_dsa(
10632b15cb3dSCy Schubert 	const char *id		/* file name id */
10649c2daa00SOllivier Robert 	)
10659c2daa00SOllivier Robert {
10669c2daa00SOllivier Robert 	EVP_PKEY *pkey;		/* private key */
10679c2daa00SOllivier Robert 	DSA	*dsa;		/* DSA parameters */
10689c2daa00SOllivier Robert 	FILE	*str;
10699c2daa00SOllivier Robert 
10709c2daa00SOllivier Robert 	/*
10719c2daa00SOllivier Robert 	 * Generate DSA parameters.
10729c2daa00SOllivier Robert 	 */
10739c2daa00SOllivier Robert 	fprintf(stderr,
10749c2daa00SOllivier Robert 	    "Generating DSA parameters (%d bits)...\n", modulus);
1075f391d6bcSXin LI 	dsa = genDsaParams(modulus, _UC("DSA"));
10769c2daa00SOllivier Robert 	fprintf(stderr, "\n");
10779c2daa00SOllivier Robert 	if (dsa == NULL) {
10789c2daa00SOllivier Robert 		fprintf(stderr, "DSA generate parameters fails\n%s\n",
10799c2daa00SOllivier Robert 		    ERR_error_string(ERR_get_error(), NULL));
10809c2daa00SOllivier Robert 		return (NULL);
10819c2daa00SOllivier Robert 	}
10829c2daa00SOllivier Robert 
10839c2daa00SOllivier Robert 	/*
10849c2daa00SOllivier Robert 	 * Generate DSA keys.
10859c2daa00SOllivier Robert 	 */
10869c2daa00SOllivier Robert 	fprintf(stderr, "Generating DSA keys (%d bits)...\n", modulus);
10879c2daa00SOllivier Robert 	if (!DSA_generate_key(dsa)) {
10889c2daa00SOllivier Robert 		fprintf(stderr, "DSA generate keys fails\n%s\n",
10899c2daa00SOllivier Robert 		    ERR_error_string(ERR_get_error(), NULL));
10909c2daa00SOllivier Robert 		DSA_free(dsa);
10919c2daa00SOllivier Robert 		return (NULL);
10929c2daa00SOllivier Robert 	}
10939c2daa00SOllivier Robert 
10949c2daa00SOllivier Robert 	/*
10959c2daa00SOllivier Robert 	 * Write the DSA parameters and keys as a DSA private key
10969c2daa00SOllivier Robert 	 * encoded in PEM.
10979c2daa00SOllivier Robert 	 */
10982b15cb3dSCy Schubert 	str = fheader("DSAsign", id, hostname);
10999c2daa00SOllivier Robert 	pkey = EVP_PKEY_new();
11009c2daa00SOllivier Robert 	EVP_PKEY_assign_DSA(pkey, dsa);
11012b15cb3dSCy Schubert 	PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL,
11022b15cb3dSCy Schubert 	    passwd1);
11039c2daa00SOllivier Robert 	fclose(str);
11049c2daa00SOllivier Robert 	if (debug)
11052b15cb3dSCy Schubert 		DSA_print_fp(stderr, dsa, 0);
11069c2daa00SOllivier Robert 	return (pkey);
11079c2daa00SOllivier Robert }
11089c2daa00SOllivier Robert 
11099c2daa00SOllivier Robert 
11109c2daa00SOllivier Robert /*
11112b15cb3dSCy Schubert  ***********************************************************************
11122b15cb3dSCy Schubert  *								       *
11132b15cb3dSCy Schubert  * The following routines implement the Schnorr (IFF) identity scheme  *
11142b15cb3dSCy Schubert  *								       *
11152b15cb3dSCy Schubert  ***********************************************************************
11169c2daa00SOllivier Robert  *
11179c2daa00SOllivier Robert  * The Schnorr (IFF) identity scheme is intended for use when
11189c2daa00SOllivier Robert  * certificates are generated by some other trusted certificate
11192b15cb3dSCy Schubert  * authority and the certificate cannot be used to convey public
11202b15cb3dSCy Schubert  * parameters. There are two kinds of files: encrypted server files that
11212b15cb3dSCy Schubert  * contain private and public values and nonencrypted client files that
11222b15cb3dSCy Schubert  * contain only public values. New generations of server files must be
11232b15cb3dSCy Schubert  * securely transmitted to all servers of the group; client files can be
11242b15cb3dSCy Schubert  * distributed by any means. The scheme is self contained and
11252b15cb3dSCy Schubert  * independent of new generations of host keys, sign keys and
11262b15cb3dSCy Schubert  * certificates.
11279c2daa00SOllivier Robert  *
11289c2daa00SOllivier Robert  * The IFF values hide in a DSA cuckoo structure which uses the same
11299c2daa00SOllivier Robert  * parameters. The values are used by an identity scheme based on DSA
11309c2daa00SOllivier Robert  * cryptography and described in Stimson p. 285. The p is a 512-bit
11319c2daa00SOllivier Robert  * prime, g a generator of Zp* and q a 160-bit prime that divides p - 1
11329c2daa00SOllivier Robert  * and is a qth root of 1 mod p; that is, g^q = 1 mod p. The TA rolls a
11332b15cb3dSCy Schubert  * private random group key b (0 < b < q) and public key v = g^b, then
11342b15cb3dSCy Schubert  * sends (p, q, g, b) to the servers and (p, q, g, v) to the clients.
11352b15cb3dSCy Schubert  * Alice challenges Bob to confirm identity using the protocol described
11362b15cb3dSCy Schubert  * below.
11372b15cb3dSCy Schubert  *
11382b15cb3dSCy Schubert  * How it works
11392b15cb3dSCy Schubert  *
11402b15cb3dSCy Schubert  * The scheme goes like this. Both Alice and Bob have the public primes
11412b15cb3dSCy Schubert  * p, q and generator g. The TA gives private key b to Bob and public
11422b15cb3dSCy Schubert  * key v to Alice.
11432b15cb3dSCy Schubert  *
11442b15cb3dSCy Schubert  * Alice rolls new random challenge r (o < r < q) and sends to Bob in
11452b15cb3dSCy Schubert  * the IFF request message. Bob rolls new random k (0 < k < q), then
11462b15cb3dSCy Schubert  * computes y = k + b r mod q and x = g^k mod p and sends (y, hash(x))
11472b15cb3dSCy Schubert  * to Alice in the response message. Besides making the response
11482b15cb3dSCy Schubert  * shorter, the hash makes it effectivey impossible for an intruder to
11492b15cb3dSCy Schubert  * solve for b by observing a number of these messages.
11502b15cb3dSCy Schubert  *
11512b15cb3dSCy Schubert  * Alice receives the response and computes g^y v^r mod p. After a bit
11522b15cb3dSCy Schubert  * of algebra, this simplifies to g^k. If the hash of this result
11532b15cb3dSCy Schubert  * matches hash(x), Alice knows that Bob has the group key b. The signed
11542b15cb3dSCy Schubert  * response binds this knowledge to Bob's private key and the public key
11552b15cb3dSCy Schubert  * previously received in his certificate.
11562b15cb3dSCy Schubert  */
11572b15cb3dSCy Schubert /*
11582b15cb3dSCy Schubert  * Generate Schnorr (IFF) keys.
11599c2daa00SOllivier Robert  */
11609c2daa00SOllivier Robert EVP_PKEY *			/* DSA cuckoo nest */
11612b15cb3dSCy Schubert gen_iffkey(
11622b15cb3dSCy Schubert 	const char *id		/* file name id */
11639c2daa00SOllivier Robert 	)
11649c2daa00SOllivier Robert {
11659c2daa00SOllivier Robert 	EVP_PKEY *pkey;		/* private key */
11669c2daa00SOllivier Robert 	DSA	*dsa;		/* DSA parameters */
11679c2daa00SOllivier Robert 	BN_CTX	*ctx;		/* BN working space */
11689c2daa00SOllivier Robert 	BIGNUM	*b, *r, *k, *u, *v, *w; /* BN temp */
11699c2daa00SOllivier Robert 	FILE	*str;
11709c2daa00SOllivier Robert 	u_int	temp;
1171f391d6bcSXin LI 	const BIGNUM *p, *q, *g;
1172f391d6bcSXin LI 	BIGNUM *pub_key, *priv_key;
11739c2daa00SOllivier Robert 
11749c2daa00SOllivier Robert 	/*
11759c2daa00SOllivier Robert 	 * Generate DSA parameters for use as IFF parameters.
11769c2daa00SOllivier Robert 	 */
11772b15cb3dSCy Schubert 	fprintf(stderr, "Generating IFF keys (%d bits)...\n",
11782b15cb3dSCy Schubert 	    modulus2);
1179f391d6bcSXin LI 	dsa = genDsaParams(modulus2, _UC("IFF"));
11809c2daa00SOllivier Robert 	fprintf(stderr, "\n");
11819c2daa00SOllivier Robert 	if (dsa == NULL) {
11829c2daa00SOllivier Robert 		fprintf(stderr, "DSA generate parameters fails\n%s\n",
11839c2daa00SOllivier Robert 		    ERR_error_string(ERR_get_error(), NULL));
1184f391d6bcSXin LI 		return (NULL);
11859c2daa00SOllivier Robert 	}
1186f391d6bcSXin LI 	DSA_get0_pqg(dsa, &p, &q, &g);
11879c2daa00SOllivier Robert 
11889c2daa00SOllivier Robert 	/*
11899c2daa00SOllivier Robert 	 * Generate the private and public keys. The DSA parameters and
11902b15cb3dSCy Schubert 	 * private key are distributed to the servers, while all except
11912b15cb3dSCy Schubert 	 * the private key are distributed to the clients.
11929c2daa00SOllivier Robert 	 */
11939c2daa00SOllivier Robert 	b = BN_new(); r = BN_new(); k = BN_new();
11949c2daa00SOllivier Robert 	u = BN_new(); v = BN_new(); w = BN_new(); ctx = BN_CTX_new();
1195f391d6bcSXin LI 	BN_rand(b, BN_num_bits(q), -1, 0);	/* a */
1196f391d6bcSXin LI 	BN_mod(b, b, q, ctx);
1197f391d6bcSXin LI 	BN_sub(v, q, b);
1198f391d6bcSXin LI 	BN_mod_exp(v, g, v, p, ctx); /* g^(q - b) mod p */
1199f391d6bcSXin LI 	BN_mod_exp(u, g, b, p, ctx);	/* g^b mod p */
1200f391d6bcSXin LI 	BN_mod_mul(u, u, v, p, ctx);
12019c2daa00SOllivier Robert 	temp = BN_is_one(u);
12029c2daa00SOllivier Robert 	fprintf(stderr,
12039c2daa00SOllivier Robert 	    "Confirm g^(q - b) g^b = 1 mod p: %s\n", temp == 1 ?
12049c2daa00SOllivier Robert 	    "yes" : "no");
12059c2daa00SOllivier Robert 	if (!temp) {
12069c2daa00SOllivier Robert 		BN_free(b); BN_free(r); BN_free(k);
12079c2daa00SOllivier Robert 		BN_free(u); BN_free(v); BN_free(w); BN_CTX_free(ctx);
12089c2daa00SOllivier Robert 		return (NULL);
12099c2daa00SOllivier Robert 	}
1210f391d6bcSXin LI 	pub_key = BN_dup(v);
1211f391d6bcSXin LI 	priv_key = BN_dup(b);
1212f391d6bcSXin LI 	DSA_set0_key(dsa, pub_key, priv_key);
12139c2daa00SOllivier Robert 
12149c2daa00SOllivier Robert 	/*
12159c2daa00SOllivier Robert 	 * Here is a trial round of the protocol. First, Alice rolls
12162b15cb3dSCy Schubert 	 * random nonce r mod q and sends it to Bob. She needs only
12172b15cb3dSCy Schubert 	 * q from parameters.
12189c2daa00SOllivier Robert 	 */
1219f391d6bcSXin LI 	BN_rand(r, BN_num_bits(q), -1, 0);	/* r */
1220f391d6bcSXin LI 	BN_mod(r, r, q, ctx);
12219c2daa00SOllivier Robert 
12229c2daa00SOllivier Robert 	/*
12232b15cb3dSCy Schubert 	 * Bob rolls random nonce k mod q, computes y = k + b r mod q
12249c2daa00SOllivier Robert 	 * and x = g^k mod p, then sends (y, x) to Alice. He needs
12252b15cb3dSCy Schubert 	 * p, q and b from parameters and r from Alice.
12269c2daa00SOllivier Robert 	 */
1227f391d6bcSXin LI 	BN_rand(k, BN_num_bits(q), -1, 0);	/* k, 0 < k < q  */
1228f391d6bcSXin LI 	BN_mod(k, k, q, ctx);
1229f391d6bcSXin LI 	BN_mod_mul(v, priv_key, r, q, ctx); /* b r mod q */
12309c2daa00SOllivier Robert 	BN_add(v, v, k);
1231f391d6bcSXin LI 	BN_mod(v, v, q, ctx);		/* y = k + b r mod q */
1232f391d6bcSXin LI 	BN_mod_exp(u, g, k, p, ctx);	/* x = g^k mod p */
12339c2daa00SOllivier Robert 
12349c2daa00SOllivier Robert 	/*
12352b15cb3dSCy Schubert 	 * Alice verifies x = g^y v^r to confirm that Bob has group key
12362b15cb3dSCy Schubert 	 * b. She needs p, q, g from parameters, (y, x) from Bob and the
12372b15cb3dSCy Schubert 	 * original r. We omit the detail here thatt only the hash of y
12382b15cb3dSCy Schubert 	 * is sent.
12399c2daa00SOllivier Robert 	 */
1240f391d6bcSXin LI 	BN_mod_exp(v, g, v, p, ctx); /* g^y mod p */
1241f391d6bcSXin LI 	BN_mod_exp(w, pub_key, r, p, ctx); /* v^r */
1242f391d6bcSXin LI 	BN_mod_mul(v, w, v, p, ctx);	/* product mod p */
12439c2daa00SOllivier Robert 	temp = BN_cmp(u, v);
12449c2daa00SOllivier Robert 	fprintf(stderr,
12459c2daa00SOllivier Robert 	    "Confirm g^k = g^(k + b r) g^(q - b) r: %s\n", temp ==
12469c2daa00SOllivier Robert 	    0 ? "yes" : "no");
12479c2daa00SOllivier Robert 	BN_free(b); BN_free(r);	BN_free(k);
12489c2daa00SOllivier Robert 	BN_free(u); BN_free(v); BN_free(w); BN_CTX_free(ctx);
12499c2daa00SOllivier Robert 	if (temp != 0) {
12509c2daa00SOllivier Robert 		DSA_free(dsa);
12519c2daa00SOllivier Robert 		return (NULL);
12529c2daa00SOllivier Robert 	}
12539c2daa00SOllivier Robert 
12549c2daa00SOllivier Robert 	/*
12552b15cb3dSCy Schubert 	 * Write the IFF keys as an encrypted DSA private key encoded in
12562b15cb3dSCy Schubert 	 * PEM.
12579c2daa00SOllivier Robert 	 *
12589c2daa00SOllivier Robert 	 * p	modulus p
12599c2daa00SOllivier Robert 	 * q	modulus q
12609c2daa00SOllivier Robert 	 * g	generator g
12619c2daa00SOllivier Robert 	 * priv_key b
12629c2daa00SOllivier Robert 	 * public_key v
12632b15cb3dSCy Schubert 	 * kinv	not used
12642b15cb3dSCy Schubert 	 * r	not used
12659c2daa00SOllivier Robert 	 */
12662b15cb3dSCy Schubert 	str = fheader("IFFkey", id, groupname);
12679c2daa00SOllivier Robert 	pkey = EVP_PKEY_new();
12689c2daa00SOllivier Robert 	EVP_PKEY_assign_DSA(pkey, dsa);
12692b15cb3dSCy Schubert 	PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL,
12702b15cb3dSCy Schubert 	    passwd1);
12719c2daa00SOllivier Robert 	fclose(str);
12729c2daa00SOllivier Robert 	if (debug)
12732b15cb3dSCy Schubert 		DSA_print_fp(stderr, dsa, 0);
12749c2daa00SOllivier Robert 	return (pkey);
12759c2daa00SOllivier Robert }
12769c2daa00SOllivier Robert 
12779c2daa00SOllivier Robert 
12789c2daa00SOllivier Robert /*
12792b15cb3dSCy Schubert  ***********************************************************************
12802b15cb3dSCy Schubert  *								       *
12812b15cb3dSCy Schubert  * The following routines implement the Guillou-Quisquater (GQ)        *
12822b15cb3dSCy Schubert  * identity scheme                                                     *
12832b15cb3dSCy Schubert  *								       *
12842b15cb3dSCy Schubert  ***********************************************************************
12859c2daa00SOllivier Robert  *
12869c2daa00SOllivier Robert  * The Guillou-Quisquater (GQ) identity scheme is intended for use when
12872b15cb3dSCy Schubert  * the certificate can be used to convey public parameters. The scheme
12882b15cb3dSCy Schubert  * uses a X509v3 certificate extension field do convey the public key of
12892b15cb3dSCy Schubert  * a private key known only to servers. There are two kinds of files:
12902b15cb3dSCy Schubert  * encrypted server files that contain private and public values and
12912b15cb3dSCy Schubert  * nonencrypted client files that contain only public values. New
12922b15cb3dSCy Schubert  * generations of server files must be securely transmitted to all
12932b15cb3dSCy Schubert  * servers of the group; client files can be distributed by any means.
12942b15cb3dSCy Schubert  * The scheme is self contained and independent of new generations of
12952b15cb3dSCy Schubert  * host keys and sign keys. The scheme is self contained and independent
12962b15cb3dSCy Schubert  * of new generations of host keys and sign keys.
12979c2daa00SOllivier Robert  *
12989c2daa00SOllivier Robert  * The GQ parameters hide in a RSA cuckoo structure which uses the same
12999c2daa00SOllivier Robert  * parameters. The values are used by an identity scheme based on RSA
13009c2daa00SOllivier Robert  * cryptography and described in Stimson p. 300 (with errors). The 512-
13019c2daa00SOllivier Robert  * bit public modulus is n = p q, where p and q are secret large primes.
13029c2daa00SOllivier Robert  * The TA rolls private random group key b as RSA exponent. These values
13039c2daa00SOllivier Robert  * are known to all group members.
13049c2daa00SOllivier Robert  *
13052b15cb3dSCy Schubert  * When rolling new certificates, a server recomputes the private and
13069c2daa00SOllivier Robert  * public keys. The private key u is a random roll, while the public key
13079c2daa00SOllivier Robert  * is the inverse obscured by the group key v = (u^-1)^b. These values
13089c2daa00SOllivier Robert  * replace the private and public keys normally generated by the RSA
13099c2daa00SOllivier Robert  * scheme. Alice challenges Bob to confirm identity using the protocol
13109c2daa00SOllivier Robert  * described below.
13119c2daa00SOllivier Robert  *
13122b15cb3dSCy Schubert  * How it works
13132b15cb3dSCy Schubert  *
13142b15cb3dSCy Schubert  * The scheme goes like this. Both Alice and Bob have the same modulus n
13152b15cb3dSCy Schubert  * and some random b as the group key. These values are computed and
13162b15cb3dSCy Schubert  * distributed in advance via secret means, although only the group key
13172b15cb3dSCy Schubert  * b is truly secret. Each has a private random private key u and public
13182b15cb3dSCy Schubert  * key (u^-1)^b, although not necessarily the same ones. Bob and Alice
13192b15cb3dSCy Schubert  * can regenerate the key pair from time to time without affecting
13202b15cb3dSCy Schubert  * operations. The public key is conveyed on the certificate in an
13212b15cb3dSCy Schubert  * extension field; the private key is never revealed.
13222b15cb3dSCy Schubert  *
13232b15cb3dSCy Schubert  * Alice rolls new random challenge r and sends to Bob in the GQ
13242b15cb3dSCy Schubert  * request message. Bob rolls new random k, then computes y = k u^r mod
13252b15cb3dSCy Schubert  * n and x = k^b mod n and sends (y, hash(x)) to Alice in the response
13262b15cb3dSCy Schubert  * message. Besides making the response shorter, the hash makes it
13272b15cb3dSCy Schubert  * effectivey impossible for an intruder to solve for b by observing
13282b15cb3dSCy Schubert  * a number of these messages.
13292b15cb3dSCy Schubert  *
13302b15cb3dSCy Schubert  * Alice receives the response and computes y^b v^r mod n. After a bit
13312b15cb3dSCy Schubert  * of algebra, this simplifies to k^b. If the hash of this result
13322b15cb3dSCy Schubert  * matches hash(x), Alice knows that Bob has the group key b. The signed
13332b15cb3dSCy Schubert  * response binds this knowledge to Bob's private key and the public key
13342b15cb3dSCy Schubert  * previously received in his certificate.
13359c2daa00SOllivier Robert  */
13369c2daa00SOllivier Robert /*
13372b15cb3dSCy Schubert  * Generate Guillou-Quisquater (GQ) parameters file.
13389c2daa00SOllivier Robert  */
13399c2daa00SOllivier Robert EVP_PKEY *			/* RSA cuckoo nest */
13409c2daa00SOllivier Robert gen_gqkey(
13412b15cb3dSCy Schubert 	const char *id		/* file name id */
13429c2daa00SOllivier Robert 	)
13439c2daa00SOllivier Robert {
13449c2daa00SOllivier Robert 	EVP_PKEY *pkey;		/* private key */
13459c2daa00SOllivier Robert 	RSA	*rsa;		/* RSA parameters */
13469c2daa00SOllivier Robert 	BN_CTX	*ctx;		/* BN working space */
13479c2daa00SOllivier Robert 	BIGNUM	*u, *v, *g, *k, *r, *y; /* BN temps */
13489c2daa00SOllivier Robert 	FILE	*str;
13499c2daa00SOllivier Robert 	u_int	temp;
1350f391d6bcSXin LI 	BIGNUM	*b;
1351f391d6bcSXin LI 	const BIGNUM	*n;
13529c2daa00SOllivier Robert 
13539c2daa00SOllivier Robert 	/*
13542b15cb3dSCy Schubert 	 * Generate RSA parameters for use as GQ parameters.
13559c2daa00SOllivier Robert 	 */
13562b15cb3dSCy Schubert 	fprintf(stderr,
13572b15cb3dSCy Schubert 	    "Generating GQ parameters (%d bits)...\n",
13582b15cb3dSCy Schubert 	     modulus2);
1359f391d6bcSXin LI 	rsa = genRsaKeyPair(modulus2, _UC("GQ"));
13602b15cb3dSCy Schubert 	fprintf(stderr, "\n");
13612b15cb3dSCy Schubert 	if (rsa == NULL) {
13622b15cb3dSCy Schubert 		fprintf(stderr, "RSA generate keys fails\n%s\n",
13632b15cb3dSCy Schubert 		    ERR_error_string(ERR_get_error(), NULL));
13642b15cb3dSCy Schubert 		return (NULL);
13652b15cb3dSCy Schubert 	}
1366f391d6bcSXin LI 	RSA_get0_key(rsa, &n, NULL, NULL);
13672b15cb3dSCy Schubert 	u = BN_new(); v = BN_new(); g = BN_new();
13682b15cb3dSCy Schubert 	k = BN_new(); r = BN_new(); y = BN_new();
1369f391d6bcSXin LI 	b = BN_new();
13702b15cb3dSCy Schubert 
13712b15cb3dSCy Schubert 	/*
13722b15cb3dSCy Schubert 	 * Generate the group key b, which is saved in the e member of
13732b15cb3dSCy Schubert 	 * the RSA structure. The group key is transmitted to each group
13742b15cb3dSCy Schubert 	 * member encrypted by the member private key.
13752b15cb3dSCy Schubert 	 */
13762b15cb3dSCy Schubert 	ctx = BN_CTX_new();
1377f391d6bcSXin LI 	BN_rand(b, BN_num_bits(n), -1, 0); /* b */
1378f391d6bcSXin LI 	BN_mod(b, b, n, ctx);
13799c2daa00SOllivier Robert 
13809c2daa00SOllivier Robert 	/*
13819c2daa00SOllivier Robert 	 * When generating his certificate, Bob rolls random private key
13822b15cb3dSCy Schubert 	 * u, then computes inverse v = u^-1.
13839c2daa00SOllivier Robert 	 */
1384f391d6bcSXin LI 	BN_rand(u, BN_num_bits(n), -1, 0); /* u */
1385f391d6bcSXin LI 	BN_mod(u, u, n, ctx);
1386f391d6bcSXin LI 	BN_mod_inverse(v, u, n, ctx);	/* u^-1 mod n */
1387f391d6bcSXin LI 	BN_mod_mul(k, v, u, n, ctx);
13889c2daa00SOllivier Robert 
13899c2daa00SOllivier Robert 	/*
13909c2daa00SOllivier Robert 	 * Bob computes public key v = (u^-1)^b, which is saved in an
13919c2daa00SOllivier Robert 	 * extension field on his certificate. We check that u^b v =
13929c2daa00SOllivier Robert 	 * 1 mod n.
13939c2daa00SOllivier Robert 	 */
1394f391d6bcSXin LI 	BN_mod_exp(v, v, b, n, ctx);
1395f391d6bcSXin LI 	BN_mod_exp(g, u, b, n, ctx); /* u^b */
1396f391d6bcSXin LI 	BN_mod_mul(g, g, v, n, ctx); /* u^b (u^-1)^b */
13979c2daa00SOllivier Robert 	temp = BN_is_one(g);
13989c2daa00SOllivier Robert 	fprintf(stderr,
13999c2daa00SOllivier Robert 	    "Confirm u^b (u^-1)^b = 1 mod n: %s\n", temp ? "yes" :
14009c2daa00SOllivier Robert 	    "no");
14019c2daa00SOllivier Robert 	if (!temp) {
14029c2daa00SOllivier Robert 		BN_free(u); BN_free(v);
14039c2daa00SOllivier Robert 		BN_free(g); BN_free(k); BN_free(r); BN_free(y);
14049c2daa00SOllivier Robert 		BN_CTX_free(ctx);
14059c2daa00SOllivier Robert 		RSA_free(rsa);
14069c2daa00SOllivier Robert 		return (NULL);
14079c2daa00SOllivier Robert 	}
1408f391d6bcSXin LI 	/* setting 'u' and 'v' into a RSA object takes over ownership.
1409f391d6bcSXin LI 	 * Since we use these values again, we have to pass in dupes,
1410f391d6bcSXin LI 	 * or we'll corrupt the program!
1411f391d6bcSXin LI 	 */
1412f391d6bcSXin LI 	RSA_set0_factors(rsa, BN_dup(u), BN_dup(v));
14139c2daa00SOllivier Robert 
14149c2daa00SOllivier Robert 	/*
14159c2daa00SOllivier Robert 	 * Here is a trial run of the protocol. First, Alice rolls
14162b15cb3dSCy Schubert 	 * random nonce r mod n and sends it to Bob. She needs only n
14172b15cb3dSCy Schubert 	 * from parameters.
14189c2daa00SOllivier Robert 	 */
1419f391d6bcSXin LI 	BN_rand(r, BN_num_bits(n), -1, 0);	/* r */
1420f391d6bcSXin LI 	BN_mod(r, r, n, ctx);
14219c2daa00SOllivier Robert 
14229c2daa00SOllivier Robert 	/*
14232b15cb3dSCy Schubert 	 * Bob rolls random nonce k mod n, computes y = k u^r mod n and
14242b15cb3dSCy Schubert 	 * g = k^b mod n, then sends (y, g) to Alice. He needs n, u, b
14252b15cb3dSCy Schubert 	 * from parameters and r from Alice.
14269c2daa00SOllivier Robert 	 */
1427f391d6bcSXin LI 	BN_rand(k, BN_num_bits(n), -1, 0);	/* k */
1428f391d6bcSXin LI 	BN_mod(k, k, n, ctx);
1429f391d6bcSXin LI 	BN_mod_exp(y, u, r, n, ctx);	/* u^r mod n */
1430f391d6bcSXin LI 	BN_mod_mul(y, k, y, n, ctx);	/* y = k u^r mod n */
1431f391d6bcSXin LI 	BN_mod_exp(g, k, b, n, ctx);	/* g = k^b mod n */
14329c2daa00SOllivier Robert 
14339c2daa00SOllivier Robert 	/*
14342b15cb3dSCy Schubert 	 * Alice verifies g = v^r y^b mod n to confirm that Bob has
14352b15cb3dSCy Schubert 	 * private key u. She needs n, g from parameters, public key v =
14362b15cb3dSCy Schubert 	 * (u^-1)^b from the certificate, (y, g) from Bob and the
14372b15cb3dSCy Schubert 	 * original r. We omit the detaul here that only the hash of g
14382b15cb3dSCy Schubert 	 * is sent.
14399c2daa00SOllivier Robert 	 */
1440f391d6bcSXin LI 	BN_mod_exp(v, v, r, n, ctx);	/* v^r mod n */
1441f391d6bcSXin LI 	BN_mod_exp(y, y, b, n, ctx);	/* y^b mod n */
1442f391d6bcSXin LI 	BN_mod_mul(y, v, y, n, ctx);	/* v^r y^b mod n */
14439c2daa00SOllivier Robert 	temp = BN_cmp(y, g);
14449c2daa00SOllivier Robert 	fprintf(stderr, "Confirm g^k = v^r y^b mod n: %s\n", temp == 0 ?
14459c2daa00SOllivier Robert 	    "yes" : "no");
14469c2daa00SOllivier Robert 	BN_CTX_free(ctx); BN_free(u); BN_free(v);
14479c2daa00SOllivier Robert 	BN_free(g); BN_free(k); BN_free(r); BN_free(y);
14489c2daa00SOllivier Robert 	if (temp != 0) {
14499c2daa00SOllivier Robert 		RSA_free(rsa);
14509c2daa00SOllivier Robert 		return (NULL);
14519c2daa00SOllivier Robert 	}
14529c2daa00SOllivier Robert 
14539c2daa00SOllivier Robert 	/*
14542b15cb3dSCy Schubert 	 * Write the GQ parameter file as an encrypted RSA private key
14552b15cb3dSCy Schubert 	 * encoded in PEM.
14569c2daa00SOllivier Robert 	 *
14579c2daa00SOllivier Robert 	 * n	modulus n
14589c2daa00SOllivier Robert 	 * e	group key b
14592b15cb3dSCy Schubert 	 * d	not used
14609c2daa00SOllivier Robert 	 * p	private key u
14619c2daa00SOllivier Robert 	 * q	public key (u^-1)^b
14622b15cb3dSCy Schubert 	 * dmp1	not used
14632b15cb3dSCy Schubert 	 * dmq1	not used
14642b15cb3dSCy Schubert 	 * iqmp	not used
14659c2daa00SOllivier Robert 	 */
1466f391d6bcSXin LI 	RSA_set0_key(rsa, NULL, b, BN_dup(BN_value_one()));
1467f391d6bcSXin LI 	RSA_set0_crt_params(rsa, BN_dup(BN_value_one()), BN_dup(BN_value_one()),
1468f391d6bcSXin LI 		BN_dup(BN_value_one()));
14692b15cb3dSCy Schubert 	str = fheader("GQkey", id, groupname);
14709c2daa00SOllivier Robert 	pkey = EVP_PKEY_new();
14719c2daa00SOllivier Robert 	EVP_PKEY_assign_RSA(pkey, rsa);
14722b15cb3dSCy Schubert 	PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL,
14732b15cb3dSCy Schubert 	    passwd1);
14749c2daa00SOllivier Robert 	fclose(str);
14759c2daa00SOllivier Robert 	if (debug)
14762b15cb3dSCy Schubert 		RSA_print_fp(stderr, rsa, 0);
14779c2daa00SOllivier Robert 	return (pkey);
14789c2daa00SOllivier Robert }
14799c2daa00SOllivier Robert 
14809c2daa00SOllivier Robert 
14819c2daa00SOllivier Robert /*
14822b15cb3dSCy Schubert  ***********************************************************************
14832b15cb3dSCy Schubert  *								       *
14842b15cb3dSCy Schubert  * The following routines implement the Mu-Varadharajan (MV) identity  *
14852b15cb3dSCy Schubert  * scheme                                                              *
14862b15cb3dSCy Schubert  *								       *
14872b15cb3dSCy Schubert  ***********************************************************************
14889c2daa00SOllivier Robert  *
14892b15cb3dSCy Schubert  * The Mu-Varadharajan (MV) cryptosystem was originally intended when
14902b15cb3dSCy Schubert  * servers broadcast messages to clients, but clients never send
14912b15cb3dSCy Schubert  * messages to servers. There is one encryption key for the server and a
14922b15cb3dSCy Schubert  * separate decryption key for each client. It operated something like a
14939c2daa00SOllivier Robert  * pay-per-view satellite broadcasting system where the session key is
14949c2daa00SOllivier Robert  * encrypted by the broadcaster and the decryption keys are held in a
14952b15cb3dSCy Schubert  * tamperproof set-top box.
14969c2daa00SOllivier Robert  *
14979c2daa00SOllivier Robert  * The MV parameters and private encryption key hide in a DSA cuckoo
14989c2daa00SOllivier Robert  * structure which uses the same parameters, but generated in a
14999c2daa00SOllivier Robert  * different way. The values are used in an encryption scheme similar to
15009c2daa00SOllivier Robert  * El Gamal cryptography and a polynomial formed from the expansion of
15019c2daa00SOllivier Robert  * product terms (x - x[j]), as described in Mu, Y., and V.
15029c2daa00SOllivier Robert  * Varadharajan: Robust and Secure Broadcasting, Proc. Indocrypt 2001,
15039c2daa00SOllivier Robert  * 223-231. The paper has significant errors and serious omissions.
15049c2daa00SOllivier Robert  *
15052b15cb3dSCy Schubert  * Let q be the product of n distinct primes s1[j] (j = 1...n), where
15062b15cb3dSCy Schubert  * each s1[j] has m significant bits. Let p be a prime p = 2 * q + 1, so
15072b15cb3dSCy Schubert  * that q and each s1[j] divide p - 1 and p has M = n * m + 1
15089c2daa00SOllivier Robert  * significant bits. Let g be a generator of Zp; that is, gcd(g, p - 1)
15099c2daa00SOllivier Robert  * = 1 and g^q = 1 mod p. We do modular arithmetic over Zq and then
15109c2daa00SOllivier Robert  * project into Zp* as exponents of g. Sometimes we have to compute an
15119c2daa00SOllivier Robert  * inverse b^-1 of random b in Zq, but for that purpose we require
15129c2daa00SOllivier Robert  * gcd(b, q) = 1. We expect M to be in the 500-bit range and n
15132b15cb3dSCy Schubert  * relatively small, like 30. These are the parameters of the scheme and
15142b15cb3dSCy Schubert  * they are expensive to compute.
15159c2daa00SOllivier Robert  *
15169c2daa00SOllivier Robert  * We set up an instance of the scheme as follows. A set of random
15179c2daa00SOllivier Robert  * values x[j] mod q (j = 1...n), are generated as the zeros of a
15189c2daa00SOllivier Robert  * polynomial of order n. The product terms (x - x[j]) are expanded to
15199c2daa00SOllivier Robert  * form coefficients a[i] mod q (i = 0...n) in powers of x. These are
15209c2daa00SOllivier Robert  * used as exponents of the generator g mod p to generate the private
15219c2daa00SOllivier Robert  * encryption key A. The pair (gbar, ghat) of public server keys and the
15229c2daa00SOllivier Robert  * pairs (xbar[j], xhat[j]) (j = 1...n) of private client keys are used
15239c2daa00SOllivier Robert  * to construct the decryption keys. The devil is in the details.
15249c2daa00SOllivier Robert  *
15252b15cb3dSCy Schubert  * This routine generates a private server encryption file including the
15262b15cb3dSCy Schubert  * private encryption key E and partial decryption keys gbar and ghat.
15272b15cb3dSCy Schubert  * It then generates public client decryption files including the public
15282b15cb3dSCy Schubert  * keys xbar[j] and xhat[j] for each client j. The partial decryption
15292b15cb3dSCy Schubert  * files are used to compute the inverse of E. These values are suitably
15302b15cb3dSCy Schubert  * blinded so secrets are not revealed.
15319c2daa00SOllivier Robert  *
15329c2daa00SOllivier Robert  * The distinguishing characteristic of this scheme is the capability to
15339c2daa00SOllivier Robert  * revoke keys. Included in the calculation of E, gbar and ghat is the
15342b15cb3dSCy Schubert  * product s = prod(s1[j]) (j = 1...n) above. If the factor s1[j] is
15359c2daa00SOllivier Robert  * subsequently removed from the product and E, gbar and ghat
15369c2daa00SOllivier Robert  * recomputed, the jth client will no longer be able to compute E^-1 and
15372b15cb3dSCy Schubert  * thus unable to decrypt the messageblock.
15382b15cb3dSCy Schubert  *
15392b15cb3dSCy Schubert  * How it works
15402b15cb3dSCy Schubert  *
15412b15cb3dSCy Schubert  * The scheme goes like this. Bob has the server values (p, E, q,
15422b15cb3dSCy Schubert  * gbar, ghat) and Alice has the client values (p, xbar, xhat).
15432b15cb3dSCy Schubert  *
15442b15cb3dSCy Schubert  * Alice rolls new random nonce r mod p and sends to Bob in the MV
15452b15cb3dSCy Schubert  * request message. Bob rolls random nonce k mod q, encrypts y = r E^k
15462b15cb3dSCy Schubert  * mod p and sends (y, gbar^k, ghat^k) to Alice.
15472b15cb3dSCy Schubert  *
15482b15cb3dSCy Schubert  * Alice receives the response and computes the inverse (E^k)^-1 from
15492b15cb3dSCy Schubert  * the partial decryption keys gbar^k, ghat^k, xbar and xhat. She then
15502b15cb3dSCy Schubert  * decrypts y and verifies it matches the original r. The signed
15512b15cb3dSCy Schubert  * response binds this knowledge to Bob's private key and the public key
15522b15cb3dSCy Schubert  * previously received in his certificate.
15539c2daa00SOllivier Robert  */
15549c2daa00SOllivier Robert EVP_PKEY *			/* DSA cuckoo nest */
15552b15cb3dSCy Schubert gen_mvkey(
15562b15cb3dSCy Schubert 	const char *id,		/* file name id */
15572b15cb3dSCy Schubert 	EVP_PKEY **evpars	/* parameter list pointer */
15589c2daa00SOllivier Robert 	)
15599c2daa00SOllivier Robert {
15602b15cb3dSCy Schubert 	EVP_PKEY *pkey, *pkey1;	/* private keys */
15612b15cb3dSCy Schubert 	DSA	*dsa, *dsa2, *sdsa; /* DSA parameters */
15629c2daa00SOllivier Robert 	BN_CTX	*ctx;		/* BN working space */
15632b15cb3dSCy Schubert 	BIGNUM	*a[MVMAX];	/* polynomial coefficient vector */
1564f391d6bcSXin LI 	BIGNUM	*gs[MVMAX];	/* public key vector */
15652b15cb3dSCy Schubert 	BIGNUM	*s1[MVMAX];	/* private enabling keys */
15662b15cb3dSCy Schubert 	BIGNUM	*x[MVMAX];	/* polynomial zeros vector */
15672b15cb3dSCy Schubert 	BIGNUM	*xbar[MVMAX], *xhat[MVMAX]; /* private keys vector */
15689c2daa00SOllivier Robert 	BIGNUM	*b;		/* group key */
15699c2daa00SOllivier Robert 	BIGNUM	*b1;		/* inverse group key */
15702b15cb3dSCy Schubert 	BIGNUM	*s;		/* enabling key */
15719c2daa00SOllivier Robert 	BIGNUM	*biga;		/* master encryption key */
15729c2daa00SOllivier Robert 	BIGNUM	*bige;		/* session encryption key */
15739c2daa00SOllivier Robert 	BIGNUM	*gbar, *ghat;	/* public key */
15749c2daa00SOllivier Robert 	BIGNUM	*u, *v, *w;	/* BN scratch */
1575f391d6bcSXin LI 	BIGNUM	*p, *q, *g, *priv_key, *pub_key;
15769c2daa00SOllivier Robert 	int	i, j, n;
15779c2daa00SOllivier Robert 	FILE	*str;
15789c2daa00SOllivier Robert 	u_int	temp;
15799c2daa00SOllivier Robert 
15809c2daa00SOllivier Robert 	/*
15819c2daa00SOllivier Robert 	 * Generate MV parameters.
15829c2daa00SOllivier Robert 	 *
15839c2daa00SOllivier Robert 	 * The object is to generate a multiplicative group Zp* modulo a
15849c2daa00SOllivier Robert 	 * prime p and a subset Zq mod q, where q is the product of n
15852b15cb3dSCy Schubert 	 * distinct primes s1[j] (j = 1...n) and q divides p - 1. We
15862b15cb3dSCy Schubert 	 * first generate n m-bit primes, where the product n m is in
15872b15cb3dSCy Schubert 	 * the order of 512 bits. One or more of these may have to be
15882b15cb3dSCy Schubert 	 * replaced later. As a practical matter, it is tough to find
15892b15cb3dSCy Schubert 	 * more than 31 distinct primes for 512 bits or 61 primes for
15902b15cb3dSCy Schubert 	 * 1024 bits. The latter can take several hundred iterations
15919c2daa00SOllivier Robert 	 * and several minutes on a Sun Blade 1000.
15929c2daa00SOllivier Robert 	 */
15939c2daa00SOllivier Robert 	n = nkeys;
15949c2daa00SOllivier Robert 	fprintf(stderr,
15959c2daa00SOllivier Robert 	    "Generating MV parameters for %d keys (%d bits)...\n", n,
15962b15cb3dSCy Schubert 	    modulus2 / n);
15979c2daa00SOllivier Robert 	ctx = BN_CTX_new(); u = BN_new(); v = BN_new(); w = BN_new();
15989c2daa00SOllivier Robert 	b = BN_new(); b1 = BN_new();
15995e91a9b7SOllivier Robert 	dsa = DSA_new();
1600f391d6bcSXin LI 	p = BN_new(); q = BN_new(); g = BN_new();
1601f391d6bcSXin LI 	priv_key = BN_new(); pub_key = BN_new();
16029c2daa00SOllivier Robert 	temp = 0;
16039c2daa00SOllivier Robert 	for (j = 1; j <= n; j++) {
16042b15cb3dSCy Schubert 		s1[j] = BN_new();
16059c2daa00SOllivier Robert 		while (1) {
1606f391d6bcSXin LI 			BN_generate_prime_ex(s1[j], modulus2 / n, 0,
16079c2daa00SOllivier Robert 					     NULL, NULL, NULL);
16089c2daa00SOllivier Robert 			for (i = 1; i < j; i++) {
16099c2daa00SOllivier Robert 				if (BN_cmp(s1[i], s1[j]) == 0)
16109c2daa00SOllivier Robert 					break;
16119c2daa00SOllivier Robert 			}
16129c2daa00SOllivier Robert 			if (i == j)
16139c2daa00SOllivier Robert 				break;
16149c2daa00SOllivier Robert 			temp++;
16159c2daa00SOllivier Robert 		}
16169c2daa00SOllivier Robert 	}
16172b15cb3dSCy Schubert 	fprintf(stderr, "Birthday keys regenerated %d\n", temp);
16189c2daa00SOllivier Robert 
16199c2daa00SOllivier Robert 	/*
16209c2daa00SOllivier Robert 	 * Compute the modulus q as the product of the primes. Compute
16219c2daa00SOllivier Robert 	 * the modulus p as 2 * q + 1 and test p for primality. If p
16229c2daa00SOllivier Robert 	 * is composite, replace one of the primes with a new distinct
16239c2daa00SOllivier Robert 	 * one and try again. Note that q will hardly be a secret since
16242b15cb3dSCy Schubert 	 * we have to reveal p to servers, but not clients. However,
16259c2daa00SOllivier Robert 	 * factoring q to find the primes should be adequately hard, as
16269c2daa00SOllivier Robert 	 * this is the same problem considered hard in RSA. Question: is
16279c2daa00SOllivier Robert 	 * it as hard to find n small prime factors totalling n bits as
16289c2daa00SOllivier Robert 	 * it is to find two large prime factors totalling n bits?
16299c2daa00SOllivier Robert 	 * Remember, the bad guy doesn't know n.
16309c2daa00SOllivier Robert 	 */
16319c2daa00SOllivier Robert 	temp = 0;
16329c2daa00SOllivier Robert 	while (1) {
1633f391d6bcSXin LI 		BN_one(q);
16349c2daa00SOllivier Robert 		for (j = 1; j <= n; j++)
1635f391d6bcSXin LI 			BN_mul(q, q, s1[j], ctx);
1636f391d6bcSXin LI 		BN_copy(p, q);
1637f391d6bcSXin LI 		BN_add(p, p, p);
1638f391d6bcSXin LI 		BN_add_word(p, 1);
1639f391d6bcSXin LI 		if (BN_is_prime_ex(p, BN_prime_checks, ctx, NULL))
16409c2daa00SOllivier Robert 			break;
16419c2daa00SOllivier Robert 
16422b15cb3dSCy Schubert 		temp++;
16439c2daa00SOllivier Robert 		j = temp % n + 1;
16449c2daa00SOllivier Robert 		while (1) {
1645f391d6bcSXin LI 			BN_generate_prime_ex(u, modulus2 / n, 0,
1646f391d6bcSXin LI 					     NULL, NULL, NULL);
16479c2daa00SOllivier Robert 			for (i = 1; i <= n; i++) {
16489c2daa00SOllivier Robert 				if (BN_cmp(u, s1[i]) == 0)
16499c2daa00SOllivier Robert 					break;
16509c2daa00SOllivier Robert 			}
16519c2daa00SOllivier Robert 			if (i > n)
16529c2daa00SOllivier Robert 				break;
16539c2daa00SOllivier Robert 		}
16549c2daa00SOllivier Robert 		BN_copy(s1[j], u);
16559c2daa00SOllivier Robert 	}
16562b15cb3dSCy Schubert 	fprintf(stderr, "Defective keys regenerated %d\n", temp);
16579c2daa00SOllivier Robert 
16589c2daa00SOllivier Robert 	/*
16599c2daa00SOllivier Robert 	 * Compute the generator g using a random roll such that
16609c2daa00SOllivier Robert 	 * gcd(g, p - 1) = 1 and g^q = 1. This is a generator of p, not
16612b15cb3dSCy Schubert 	 * q. This may take several iterations.
16629c2daa00SOllivier Robert 	 */
1663f391d6bcSXin LI 	BN_copy(v, p);
16649c2daa00SOllivier Robert 	BN_sub_word(v, 1);
16659c2daa00SOllivier Robert 	while (1) {
1666f391d6bcSXin LI 		BN_rand(g, BN_num_bits(p) - 1, 0, 0);
1667f391d6bcSXin LI 		BN_mod(g, g, p, ctx);
1668f391d6bcSXin LI 		BN_gcd(u, g, v, ctx);
16699c2daa00SOllivier Robert 		if (!BN_is_one(u))
16709c2daa00SOllivier Robert 			continue;
16719c2daa00SOllivier Robert 
1672f391d6bcSXin LI 		BN_mod_exp(u, g, q, p, ctx);
16739c2daa00SOllivier Robert 		if (BN_is_one(u))
16749c2daa00SOllivier Robert 			break;
16759c2daa00SOllivier Robert 	}
16769c2daa00SOllivier Robert 
1677f391d6bcSXin LI 	DSA_set0_pqg(dsa, p, q, g);
1678f391d6bcSXin LI 
16799c2daa00SOllivier Robert 	/*
16809c2daa00SOllivier Robert 	 * Setup is now complete. Roll random polynomial roots x[j]
16812b15cb3dSCy Schubert 	 * (j = 1...n) for all j. While it may not be strictly
16829c2daa00SOllivier Robert 	 * necessary, Make sure each root has no factors in common with
16839c2daa00SOllivier Robert 	 * q.
16849c2daa00SOllivier Robert 	 */
16859c2daa00SOllivier Robert 	fprintf(stderr,
16869c2daa00SOllivier Robert 	    "Generating polynomial coefficients for %d roots (%d bits)\n",
1687f391d6bcSXin LI 	    n, BN_num_bits(q));
16889c2daa00SOllivier Robert 	for (j = 1; j <= n; j++) {
16899c2daa00SOllivier Robert 		x[j] = BN_new();
16902b15cb3dSCy Schubert 
16919c2daa00SOllivier Robert 		while (1) {
1692f391d6bcSXin LI 			BN_rand(x[j], BN_num_bits(q), 0, 0);
1693f391d6bcSXin LI 			BN_mod(x[j], x[j], q, ctx);
1694f391d6bcSXin LI 			BN_gcd(u, x[j], q, ctx);
16959c2daa00SOllivier Robert 			if (BN_is_one(u))
16969c2daa00SOllivier Robert 				break;
16979c2daa00SOllivier Robert 		}
16989c2daa00SOllivier Robert 	}
16999c2daa00SOllivier Robert 
17009c2daa00SOllivier Robert 	/*
17019c2daa00SOllivier Robert 	 * Generate polynomial coefficients a[i] (i = 0...n) from the
17029c2daa00SOllivier Robert 	 * expansion of root products (x - x[j]) mod q for all j. The
17039c2daa00SOllivier Robert 	 * method is a present from Charlie Boncelet.
17049c2daa00SOllivier Robert 	 */
17059c2daa00SOllivier Robert 	for (i = 0; i <= n; i++) {
17069c2daa00SOllivier Robert 		a[i] = BN_new();
17079c2daa00SOllivier Robert 		BN_one(a[i]);
17089c2daa00SOllivier Robert 	}
17099c2daa00SOllivier Robert 	for (j = 1; j <= n; j++) {
17109c2daa00SOllivier Robert 		BN_zero(w);
17119c2daa00SOllivier Robert 		for (i = 0; i < j; i++) {
1712f391d6bcSXin LI 			BN_copy(u, q);
1713f391d6bcSXin LI 			BN_mod_mul(v, a[i], x[j], q, ctx);
17149c2daa00SOllivier Robert 			BN_sub(u, u, v);
17159c2daa00SOllivier Robert 			BN_add(u, u, w);
17169c2daa00SOllivier Robert 			BN_copy(w, a[i]);
1717f391d6bcSXin LI 			BN_mod(a[i], u, q, ctx);
17189c2daa00SOllivier Robert 		}
17199c2daa00SOllivier Robert 	}
17209c2daa00SOllivier Robert 
17219c2daa00SOllivier Robert 	/*
1722f391d6bcSXin LI 	 * Generate gs[i] = g^a[i] mod p for all i and the generator g.
17239c2daa00SOllivier Robert 	 */
17249c2daa00SOllivier Robert 	for (i = 0; i <= n; i++) {
1725f391d6bcSXin LI 		gs[i] = BN_new();
1726f391d6bcSXin LI 		BN_mod_exp(gs[i], g, a[i], p, ctx);
17279c2daa00SOllivier Robert 	}
17289c2daa00SOllivier Robert 
17299c2daa00SOllivier Robert 	/*
1730f391d6bcSXin LI 	 * Verify prod(gs[i]^(a[i] x[j]^i)) = 1 for all i, j. Note the
1731f391d6bcSXin LI 	 * a[i] x[j]^i exponent is computed mod q, but the gs[i] is
17322b15cb3dSCy Schubert 	 * computed mod p. also note the expression given in the paper
17332b15cb3dSCy Schubert 	 * is incorrect.
17349c2daa00SOllivier Robert 	 */
17359c2daa00SOllivier Robert 	temp = 1;
17369c2daa00SOllivier Robert 	for (j = 1; j <= n; j++) {
17379c2daa00SOllivier Robert 		BN_one(u);
17389c2daa00SOllivier Robert 		for (i = 0; i <= n; i++) {
17399c2daa00SOllivier Robert 			BN_set_word(v, i);
1740f391d6bcSXin LI 			BN_mod_exp(v, x[j], v, q, ctx);
1741f391d6bcSXin LI 			BN_mod_mul(v, v, a[i], q, ctx);
1742f391d6bcSXin LI 			BN_mod_exp(v, g, v, p, ctx);
1743f391d6bcSXin LI 			BN_mod_mul(u, u, v, p, ctx);
17449c2daa00SOllivier Robert 		}
17459c2daa00SOllivier Robert 		if (!BN_is_one(u))
17469c2daa00SOllivier Robert 			temp = 0;
17479c2daa00SOllivier Robert 	}
17489c2daa00SOllivier Robert 	fprintf(stderr,
1749f391d6bcSXin LI 	    "Confirm prod(gs[i]^(x[j]^i)) = 1 for all i, j: %s\n", temp ?
17509c2daa00SOllivier Robert 	    "yes" : "no");
17519c2daa00SOllivier Robert 	if (!temp) {
17529c2daa00SOllivier Robert 		return (NULL);
17539c2daa00SOllivier Robert 	}
17549c2daa00SOllivier Robert 
17559c2daa00SOllivier Robert 	/*
17569c2daa00SOllivier Robert 	 * Make private encryption key A. Keep it around for awhile,
17579c2daa00SOllivier Robert 	 * since it is expensive to compute.
17589c2daa00SOllivier Robert 	 */
17599c2daa00SOllivier Robert 	biga = BN_new();
17602b15cb3dSCy Schubert 
17619c2daa00SOllivier Robert 	BN_one(biga);
17629c2daa00SOllivier Robert 	for (j = 1; j <= n; j++) {
17639c2daa00SOllivier Robert 		for (i = 0; i < n; i++) {
17649c2daa00SOllivier Robert 			BN_set_word(v, i);
1765f391d6bcSXin LI 			BN_mod_exp(v, x[j], v, q, ctx);
1766f391d6bcSXin LI 			BN_mod_exp(v, gs[i], v, p, ctx);
1767f391d6bcSXin LI 			BN_mod_mul(biga, biga, v, p, ctx);
17689c2daa00SOllivier Robert 		}
17699c2daa00SOllivier Robert 	}
17709c2daa00SOllivier Robert 
17719c2daa00SOllivier Robert 	/*
17729c2daa00SOllivier Robert 	 * Roll private random group key b mod q (0 < b < q), where
17732b15cb3dSCy Schubert 	 * gcd(b, q) = 1 to guarantee b^-1 exists, then compute b^-1
17749c2daa00SOllivier Robert 	 * mod q. If b is changed, the client keys must be recomputed.
17759c2daa00SOllivier Robert 	 */
17769c2daa00SOllivier Robert 	while (1) {
1777f391d6bcSXin LI 		BN_rand(b, BN_num_bits(q), 0, 0);
1778f391d6bcSXin LI 		BN_mod(b, b, q, ctx);
1779f391d6bcSXin LI 		BN_gcd(u, b, q, ctx);
17809c2daa00SOllivier Robert 		if (BN_is_one(u))
17819c2daa00SOllivier Robert 			break;
17829c2daa00SOllivier Robert 	}
1783f391d6bcSXin LI 	BN_mod_inverse(b1, b, q, ctx);
17849c2daa00SOllivier Robert 
17859c2daa00SOllivier Robert 	/*
17869c2daa00SOllivier Robert 	 * Make private client keys (xbar[j], xhat[j]) for all j. Note
17872b15cb3dSCy Schubert 	 * that the keys for the jth client do not s1[j] or the product
17882b15cb3dSCy Schubert 	 * s1[j]) (j = 1...n) which is q by construction.
17892b15cb3dSCy Schubert 	 *
17902b15cb3dSCy Schubert 	 * Compute the factor w such that w s1[j] = s1[j] for all j. The
17912b15cb3dSCy Schubert 	 * easy way to do this is to compute (q + s1[j]) / s1[j].
17922b15cb3dSCy Schubert 	 * Exercise for the student: prove the remainder is always zero.
17939c2daa00SOllivier Robert 	 */
17949c2daa00SOllivier Robert 	for (j = 1; j <= n; j++) {
17959c2daa00SOllivier Robert 		xbar[j] = BN_new(); xhat[j] = BN_new();
17962b15cb3dSCy Schubert 
1797f391d6bcSXin LI 		BN_add(w, q, s1[j]);
17982b15cb3dSCy Schubert 		BN_div(w, u, w, s1[j], ctx);
17999c2daa00SOllivier Robert 		BN_zero(xbar[j]);
18009c2daa00SOllivier Robert 		BN_set_word(v, n);
18019c2daa00SOllivier Robert 		for (i = 1; i <= n; i++) {
18029c2daa00SOllivier Robert 			if (i == j)
18039c2daa00SOllivier Robert 				continue;
18042b15cb3dSCy Schubert 
1805f391d6bcSXin LI 			BN_mod_exp(u, x[i], v, q, ctx);
18069c2daa00SOllivier Robert 			BN_add(xbar[j], xbar[j], u);
18079c2daa00SOllivier Robert 		}
1808f391d6bcSXin LI 		BN_mod_mul(xbar[j], xbar[j], b1, q, ctx);
1809f391d6bcSXin LI 		BN_mod_exp(xhat[j], x[j], v, q, ctx);
1810f391d6bcSXin LI 		BN_mod_mul(xhat[j], xhat[j], w, q, ctx);
18119c2daa00SOllivier Robert 	}
18129c2daa00SOllivier Robert 
18139c2daa00SOllivier Robert 	/*
18142b15cb3dSCy Schubert 	 * We revoke client j by dividing q by s1[j]. The quotient
18152b15cb3dSCy Schubert 	 * becomes the enabling key s. Note we always have to revoke
18162b15cb3dSCy Schubert 	 * one key; otherwise, the plaintext and cryptotext would be
18172b15cb3dSCy Schubert 	 * identical. For the present there are no provisions to revoke
18182b15cb3dSCy Schubert 	 * additional keys, so we sail on with only token revocations.
18199c2daa00SOllivier Robert 	 */
18202b15cb3dSCy Schubert 	s = BN_new();
1821f391d6bcSXin LI 	BN_copy(s, q);
18222b15cb3dSCy Schubert 	BN_div(s, u, s, s1[n], ctx);
18239c2daa00SOllivier Robert 
18249c2daa00SOllivier Robert 	/*
18252b15cb3dSCy Schubert 	 * For each combination of clients to be revoked, make private
18262b15cb3dSCy Schubert 	 * encryption key E = A^s and partial decryption keys gbar = g^s
18272b15cb3dSCy Schubert 	 * and ghat = g^(s b), all mod p. The servers use these keys to
18282b15cb3dSCy Schubert 	 * compute the session encryption key and partial decryption
18292b15cb3dSCy Schubert 	 * keys. These values must be regenerated if the enabling key is
18302b15cb3dSCy Schubert 	 * changed.
18319c2daa00SOllivier Robert 	 */
18329c2daa00SOllivier Robert 	bige = BN_new(); gbar = BN_new(); ghat = BN_new();
1833f391d6bcSXin LI 	BN_mod_exp(bige, biga, s, p, ctx);
1834f391d6bcSXin LI 	BN_mod_exp(gbar, g, s, p, ctx);
1835f391d6bcSXin LI 	BN_mod_mul(v, s, b, q, ctx);
1836f391d6bcSXin LI 	BN_mod_exp(ghat, g, v, p, ctx);
18379c2daa00SOllivier Robert 
18389c2daa00SOllivier Robert 	/*
18392b15cb3dSCy Schubert 	 * Notes: We produce the key media in three steps. The first
18402b15cb3dSCy Schubert 	 * step is to generate the system parameters p, q, g, b, A and
18412b15cb3dSCy Schubert 	 * the enabling keys s1[j]. Associated with each s1[j] are
18422b15cb3dSCy Schubert 	 * parameters xbar[j] and xhat[j]. All of these parameters are
18432b15cb3dSCy Schubert 	 * retained in a data structure protecteted by the trusted-agent
18442b15cb3dSCy Schubert 	 * password. The p, xbar[j] and xhat[j] paremeters are
18452b15cb3dSCy Schubert 	 * distributed to the j clients. When the client keys are to be
18462b15cb3dSCy Schubert 	 * activated, the enabled keys are multipied together to form
18472b15cb3dSCy Schubert 	 * the master enabling key s. This and the other parameters are
18482b15cb3dSCy Schubert 	 * used to compute the server encryption key E and the partial
18492b15cb3dSCy Schubert 	 * decryption keys gbar and ghat.
18509c2daa00SOllivier Robert 	 *
18512b15cb3dSCy Schubert 	 * In the identity exchange the client rolls random r and sends
18522b15cb3dSCy Schubert 	 * it to the server. The server rolls random k, which is used
18532b15cb3dSCy Schubert 	 * only once, then computes the session key E^k and partial
18542b15cb3dSCy Schubert 	 * decryption keys gbar^k and ghat^k. The server sends the
18552b15cb3dSCy Schubert 	 * encrypted r along with gbar^k and ghat^k to the client. The
18562b15cb3dSCy Schubert 	 * client completes the decryption and verifies it matches r.
18579c2daa00SOllivier Robert 	 */
18589c2daa00SOllivier Robert 	/*
18592b15cb3dSCy Schubert 	 * Write the MV trusted-agent parameters and keys as a DSA
18602b15cb3dSCy Schubert 	 * private key encoded in PEM.
18619c2daa00SOllivier Robert 	 *
18629c2daa00SOllivier Robert 	 * p	modulus p
18632b15cb3dSCy Schubert 	 * q	modulus q
18642b15cb3dSCy Schubert 	 * g	generator g
18652b15cb3dSCy Schubert 	 * priv_key A mod p
18662b15cb3dSCy Schubert 	 * pub_key b mod q
18672b15cb3dSCy Schubert 	 * (remaining values are not used)
18689c2daa00SOllivier Robert 	 */
18692b15cb3dSCy Schubert 	i = 0;
18702b15cb3dSCy Schubert 	str = fheader("MVta", "mvta", groupname);
18712b15cb3dSCy Schubert 	fprintf(stderr, "Generating MV trusted-authority keys\n");
1872f391d6bcSXin LI 	BN_copy(priv_key, biga);
1873f391d6bcSXin LI 	BN_copy(pub_key, b);
1874f391d6bcSXin LI 	DSA_set0_key(dsa, pub_key, priv_key);
18759c2daa00SOllivier Robert 	pkey = EVP_PKEY_new();
18769c2daa00SOllivier Robert 	EVP_PKEY_assign_DSA(pkey, dsa);
18772b15cb3dSCy Schubert 	PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL,
18782b15cb3dSCy Schubert 	    passwd1);
18792b15cb3dSCy Schubert 	evpars[i++] = pkey;
18809c2daa00SOllivier Robert 	if (debug)
18812b15cb3dSCy Schubert 		DSA_print_fp(stderr, dsa, 0);
18829c2daa00SOllivier Robert 
18839c2daa00SOllivier Robert 	/*
18842b15cb3dSCy Schubert 	 * Append the MV server parameters and keys as a DSA key encoded
18852b15cb3dSCy Schubert 	 * in PEM.
18862b15cb3dSCy Schubert 	 *
18872b15cb3dSCy Schubert 	 * p	modulus p
18882b15cb3dSCy Schubert 	 * q	modulus q (used only when generating k)
18892b15cb3dSCy Schubert 	 * g	bige
18902b15cb3dSCy Schubert 	 * priv_key gbar
18912b15cb3dSCy Schubert 	 * pub_key ghat
18922b15cb3dSCy Schubert 	 * (remaining values are not used)
18939c2daa00SOllivier Robert 	 */
18942b15cb3dSCy Schubert 	fprintf(stderr, "Generating MV server keys\n");
18952b15cb3dSCy Schubert 	dsa2 = DSA_new();
1896f391d6bcSXin LI 	DSA_set0_pqg(dsa2, BN_dup(p), BN_dup(q), BN_dup(bige));
1897f391d6bcSXin LI 	DSA_set0_key(dsa2, BN_dup(ghat), BN_dup(gbar));
18982b15cb3dSCy Schubert 	pkey1 = EVP_PKEY_new();
18992b15cb3dSCy Schubert 	EVP_PKEY_assign_DSA(pkey1, dsa2);
19002b15cb3dSCy Schubert 	PEM_write_PKCS8PrivateKey(str, pkey1, cipher, NULL, 0, NULL,
19012b15cb3dSCy Schubert 	    passwd1);
19022b15cb3dSCy Schubert 	evpars[i++] = pkey1;
19032b15cb3dSCy Schubert 	if (debug)
19042b15cb3dSCy Schubert 		DSA_print_fp(stderr, dsa2, 0);
19059c2daa00SOllivier Robert 
19069c2daa00SOllivier Robert 	/*
19072b15cb3dSCy Schubert 	 * Append the MV client parameters for each client j as DSA keys
19082b15cb3dSCy Schubert 	 * encoded in PEM.
19099c2daa00SOllivier Robert 	 *
19109c2daa00SOllivier Robert 	 * p	modulus p
19119c2daa00SOllivier Robert 	 * priv_key xbar[j] mod q
19129c2daa00SOllivier Robert 	 * pub_key xhat[j] mod q
19139c2daa00SOllivier Robert 	 * (remaining values are not used)
19149c2daa00SOllivier Robert 	 */
19152b15cb3dSCy Schubert 	fprintf(stderr, "Generating %d MV client keys\n", n);
19162b15cb3dSCy Schubert 	for (j = 1; j <= n; j++) {
19172b15cb3dSCy Schubert 		sdsa = DSA_new();
1918f391d6bcSXin LI 		DSA_set0_pqg(sdsa, BN_dup(p), BN_dup(BN_value_one()),
1919f391d6bcSXin LI 			BN_dup(BN_value_one()));
1920f391d6bcSXin LI 		DSA_set0_key(sdsa, BN_dup(xhat[j]), BN_dup(xbar[j]));
19215e91a9b7SOllivier Robert 		pkey1 = EVP_PKEY_new();
19225e91a9b7SOllivier Robert 		EVP_PKEY_set1_DSA(pkey1, sdsa);
19232b15cb3dSCy Schubert 		PEM_write_PKCS8PrivateKey(str, pkey1, cipher, NULL, 0,
19242b15cb3dSCy Schubert 		    NULL, passwd1);
19252b15cb3dSCy Schubert 		evpars[i++] = pkey1;
19269c2daa00SOllivier Robert 		if (debug)
19272b15cb3dSCy Schubert 			DSA_print_fp(stderr, sdsa, 0);
19282b15cb3dSCy Schubert 
19292b15cb3dSCy Schubert 		/*
1930f391d6bcSXin LI 		 * The product (gbar^k)^xbar[j] (ghat^k)^xhat[j] and E
19312b15cb3dSCy Schubert 		 * are inverses of each other. We check that the product
19322b15cb3dSCy Schubert 		 * is one for each client except the ones that have been
19332b15cb3dSCy Schubert 		 * revoked.
19342b15cb3dSCy Schubert 		 */
1935f391d6bcSXin LI 		BN_mod_exp(v, gbar, xhat[j], p, ctx);
1936f391d6bcSXin LI 		BN_mod_exp(u, ghat, xbar[j], p, ctx);
1937f391d6bcSXin LI 		BN_mod_mul(u, u, v, p, ctx);
1938f391d6bcSXin LI 		BN_mod_mul(u, u, bige, p, ctx);
19392b15cb3dSCy Schubert 		if (!BN_is_one(u)) {
19402b15cb3dSCy Schubert 			fprintf(stderr, "Revoke key %d\n", j);
19412b15cb3dSCy Schubert 			continue;
19429c2daa00SOllivier Robert 		}
19432b15cb3dSCy Schubert 	}
19442b15cb3dSCy Schubert 	evpars[i++] = NULL;
19452b15cb3dSCy Schubert 	fclose(str);
19469c2daa00SOllivier Robert 
19479c2daa00SOllivier Robert 	/*
19489c2daa00SOllivier Robert 	 * Free the countries.
19499c2daa00SOllivier Robert 	 */
19509c2daa00SOllivier Robert 	for (i = 0; i <= n; i++) {
1951f391d6bcSXin LI 		BN_free(a[i]); BN_free(gs[i]);
19529c2daa00SOllivier Robert 	}
19532b15cb3dSCy Schubert 	for (j = 1; j <= n; j++) {
19542b15cb3dSCy Schubert 		BN_free(x[j]); BN_free(xbar[j]); BN_free(xhat[j]);
19552b15cb3dSCy Schubert 		BN_free(s1[j]);
19562b15cb3dSCy Schubert 	}
19579c2daa00SOllivier Robert 	return (pkey);
19589c2daa00SOllivier Robert }
19599c2daa00SOllivier Robert 
19609c2daa00SOllivier Robert 
19619c2daa00SOllivier Robert /*
19622b15cb3dSCy Schubert  * Generate X509v3 certificate.
19639c2daa00SOllivier Robert  *
19649c2daa00SOllivier Robert  * The certificate consists of the version number, serial number,
19659c2daa00SOllivier Robert  * validity interval, issuer name, subject name and public key. For a
19669c2daa00SOllivier Robert  * self-signed certificate, the issuer name is the same as the subject
19679c2daa00SOllivier Robert  * name and these items are signed using the subject private key. The
19689c2daa00SOllivier Robert  * validity interval extends from the current time to the same time one
19699c2daa00SOllivier Robert  * year hence. For NTP purposes, it is convenient to use the NTP seconds
19709c2daa00SOllivier Robert  * of the current time as the serial number.
19719c2daa00SOllivier Robert  */
19729c2daa00SOllivier Robert int
19739c2daa00SOllivier Robert x509	(
19742b15cb3dSCy Schubert 	EVP_PKEY *pkey,		/* signing key */
19752b15cb3dSCy Schubert 	const EVP_MD *md,	/* signature/digest scheme */
19769c2daa00SOllivier Robert 	char	*gqpub,		/* identity extension (hex string) */
19772b15cb3dSCy Schubert 	const char *exten,	/* private cert extension */
19782b15cb3dSCy Schubert 	char	*name		/* subject/issuer name */
19799c2daa00SOllivier Robert 	)
19809c2daa00SOllivier Robert {
19819c2daa00SOllivier Robert 	X509	*cert;		/* X509 certificate */
19829c2daa00SOllivier Robert 	X509_NAME *subj;	/* distinguished (common) name */
19839c2daa00SOllivier Robert 	X509_EXTENSION *ex;	/* X509v3 extension */
19849c2daa00SOllivier Robert 	FILE	*str;		/* file handle */
19859c2daa00SOllivier Robert 	ASN1_INTEGER *serial;	/* serial number */
19869c2daa00SOllivier Robert 	const char *id;		/* digest/signature scheme name */
19879c2daa00SOllivier Robert 	char	pathbuf[MAXFILENAME + 1];
19889c2daa00SOllivier Robert 
19899c2daa00SOllivier Robert 	/*
19909c2daa00SOllivier Robert 	 * Generate X509 self-signed certificate.
19919c2daa00SOllivier Robert 	 *
19929c2daa00SOllivier Robert 	 * Set the certificate serial to the NTP seconds for grins. Set
19932b15cb3dSCy Schubert 	 * the version to 3. Set the initial validity to the current
19942b15cb3dSCy Schubert 	 * time and the finalvalidity one year hence.
19959c2daa00SOllivier Robert 	 */
1996f391d6bcSXin LI  	id = OBJ_nid2sn(EVP_MD_pkey_type(md));
19972b15cb3dSCy Schubert 	fprintf(stderr, "Generating new certificate %s %s\n", name, id);
19989c2daa00SOllivier Robert 	cert = X509_new();
19999c2daa00SOllivier Robert 	X509_set_version(cert, 2L);
20009c2daa00SOllivier Robert 	serial = ASN1_INTEGER_new();
20012b15cb3dSCy Schubert 	ASN1_INTEGER_set(serial, (long)epoch + JAN_1970);
20029c2daa00SOllivier Robert 	X509_set_serialNumber(cert, serial);
20039c2daa00SOllivier Robert 	ASN1_INTEGER_free(serial);
2004f0574f5cSXin LI 	X509_time_adj(X509_getm_notBefore(cert), 0L, &epoch);
2005f0574f5cSXin LI 	X509_time_adj(X509_getm_notAfter(cert), lifetime * SECSPERDAY, &epoch);
20069c2daa00SOllivier Robert 	subj = X509_get_subject_name(cert);
20079c2daa00SOllivier Robert 	X509_NAME_add_entry_by_txt(subj, "commonName", MBSTRING_ASC,
20083311ff84SXin LI 	    (u_char *)name, -1, -1, 0);
20099c2daa00SOllivier Robert 	subj = X509_get_issuer_name(cert);
20109c2daa00SOllivier Robert 	X509_NAME_add_entry_by_txt(subj, "commonName", MBSTRING_ASC,
20113311ff84SXin LI 	    (u_char *)name, -1, -1, 0);
20129c2daa00SOllivier Robert 	if (!X509_set_pubkey(cert, pkey)) {
20132b15cb3dSCy Schubert 		fprintf(stderr, "Assign certificate signing key fails\n%s\n",
20149c2daa00SOllivier Robert 		    ERR_error_string(ERR_get_error(), NULL));
20159c2daa00SOllivier Robert 		X509_free(cert);
20169c2daa00SOllivier Robert 		return (0);
20179c2daa00SOllivier Robert 	}
20189c2daa00SOllivier Robert 
20199c2daa00SOllivier Robert 	/*
20209c2daa00SOllivier Robert 	 * Add X509v3 extensions if present. These represent the minimum
20219c2daa00SOllivier Robert 	 * set defined in RFC3280 less the certificate_policy extension,
20229c2daa00SOllivier Robert 	 * which is seriously obfuscated in OpenSSL.
20239c2daa00SOllivier Robert 	 */
20249c2daa00SOllivier Robert 	/*
20259c2daa00SOllivier Robert 	 * The basic_constraints extension CA:TRUE allows servers to
20269c2daa00SOllivier Robert 	 * sign client certficitates.
20279c2daa00SOllivier Robert 	 */
20289c2daa00SOllivier Robert 	fprintf(stderr, "%s: %s\n", LN_basic_constraints,
20299c2daa00SOllivier Robert 	    BASIC_CONSTRAINTS);
20309c2daa00SOllivier Robert 	ex = X509V3_EXT_conf_nid(NULL, NULL, NID_basic_constraints,
20312b15cb3dSCy Schubert 	    _UC(BASIC_CONSTRAINTS));
20329c2daa00SOllivier Robert 	if (!X509_add_ext(cert, ex, -1)) {
20339c2daa00SOllivier Robert 		fprintf(stderr, "Add extension field fails\n%s\n",
20349c2daa00SOllivier Robert 		    ERR_error_string(ERR_get_error(), NULL));
20359c2daa00SOllivier Robert 		return (0);
20369c2daa00SOllivier Robert 	}
20379c2daa00SOllivier Robert 	X509_EXTENSION_free(ex);
20389c2daa00SOllivier Robert 
20399c2daa00SOllivier Robert 	/*
20409c2daa00SOllivier Robert 	 * The key_usage extension designates the purposes the key can
20419c2daa00SOllivier Robert 	 * be used for.
20429c2daa00SOllivier Robert 	 */
20439c2daa00SOllivier Robert 	fprintf(stderr, "%s: %s\n", LN_key_usage, KEY_USAGE);
20442b15cb3dSCy Schubert 	ex = X509V3_EXT_conf_nid(NULL, NULL, NID_key_usage, _UC(KEY_USAGE));
20459c2daa00SOllivier Robert 	if (!X509_add_ext(cert, ex, -1)) {
20469c2daa00SOllivier Robert 		fprintf(stderr, "Add extension field fails\n%s\n",
20479c2daa00SOllivier Robert 		    ERR_error_string(ERR_get_error(), NULL));
20489c2daa00SOllivier Robert 		return (0);
20499c2daa00SOllivier Robert 	}
20509c2daa00SOllivier Robert 	X509_EXTENSION_free(ex);
20519c2daa00SOllivier Robert 	/*
20529c2daa00SOllivier Robert 	 * The subject_key_identifier is used for the GQ public key.
20539c2daa00SOllivier Robert 	 * This should not be controversial.
20549c2daa00SOllivier Robert 	 */
20559c2daa00SOllivier Robert 	if (gqpub != NULL) {
20569c2daa00SOllivier Robert 		fprintf(stderr, "%s\n", LN_subject_key_identifier);
20579c2daa00SOllivier Robert 		ex = X509V3_EXT_conf_nid(NULL, NULL,
20589c2daa00SOllivier Robert 		    NID_subject_key_identifier, gqpub);
20599c2daa00SOllivier Robert 		if (!X509_add_ext(cert, ex, -1)) {
20609c2daa00SOllivier Robert 			fprintf(stderr,
20619c2daa00SOllivier Robert 			    "Add extension field fails\n%s\n",
20629c2daa00SOllivier Robert 			    ERR_error_string(ERR_get_error(), NULL));
20639c2daa00SOllivier Robert 			return (0);
20649c2daa00SOllivier Robert 		}
20659c2daa00SOllivier Robert 		X509_EXTENSION_free(ex);
20669c2daa00SOllivier Robert 	}
20679c2daa00SOllivier Robert 
20689c2daa00SOllivier Robert 	/*
20699c2daa00SOllivier Robert 	 * The extended key usage extension is used for special purpose
20709c2daa00SOllivier Robert 	 * here. The semantics probably do not conform to the designer's
20719c2daa00SOllivier Robert 	 * intent and will likely change in future.
20729c2daa00SOllivier Robert 	 *
20739c2daa00SOllivier Robert 	 * "trustRoot" designates a root authority
20749c2daa00SOllivier Robert 	 * "private" designates a private certificate
20759c2daa00SOllivier Robert 	 */
20769c2daa00SOllivier Robert 	if (exten != NULL) {
20779c2daa00SOllivier Robert 		fprintf(stderr, "%s: %s\n", LN_ext_key_usage, exten);
20789c2daa00SOllivier Robert 		ex = X509V3_EXT_conf_nid(NULL, NULL,
20792b15cb3dSCy Schubert 		    NID_ext_key_usage, _UC(exten));
20809c2daa00SOllivier Robert 		if (!X509_add_ext(cert, ex, -1)) {
20819c2daa00SOllivier Robert 			fprintf(stderr,
20829c2daa00SOllivier Robert 			    "Add extension field fails\n%s\n",
20839c2daa00SOllivier Robert 			    ERR_error_string(ERR_get_error(), NULL));
20849c2daa00SOllivier Robert 			return (0);
20859c2daa00SOllivier Robert 		}
20869c2daa00SOllivier Robert 		X509_EXTENSION_free(ex);
20879c2daa00SOllivier Robert 	}
20889c2daa00SOllivier Robert 
20899c2daa00SOllivier Robert 	/*
20909c2daa00SOllivier Robert 	 * Sign and verify.
20919c2daa00SOllivier Robert 	 */
20929c2daa00SOllivier Robert 	X509_sign(cert, pkey, md);
20932b15cb3dSCy Schubert 	if (X509_verify(cert, pkey) <= 0) {
20949c2daa00SOllivier Robert 		fprintf(stderr, "Verify %s certificate fails\n%s\n", id,
20959c2daa00SOllivier Robert 		    ERR_error_string(ERR_get_error(), NULL));
20969c2daa00SOllivier Robert 		X509_free(cert);
20979c2daa00SOllivier Robert 		return (0);
20989c2daa00SOllivier Robert 	}
20999c2daa00SOllivier Robert 
21009c2daa00SOllivier Robert 	/*
21019c2daa00SOllivier Robert 	 * Write the certificate encoded in PEM.
21029c2daa00SOllivier Robert 	 */
21032b15cb3dSCy Schubert 	snprintf(pathbuf, sizeof(pathbuf), "%scert", id);
21042b15cb3dSCy Schubert 	str = fheader(pathbuf, "cert", hostname);
21059c2daa00SOllivier Robert 	PEM_write_X509(str, cert);
21069c2daa00SOllivier Robert 	fclose(str);
21079c2daa00SOllivier Robert 	if (debug)
21082b15cb3dSCy Schubert 		X509_print_fp(stderr, cert);
21099c2daa00SOllivier Robert 	X509_free(cert);
21109c2daa00SOllivier Robert 	return (1);
21119c2daa00SOllivier Robert }
21129c2daa00SOllivier Robert 
21132b15cb3dSCy Schubert #if 0	/* asn2ntp is used only with commercial certificates */
21149c2daa00SOllivier Robert /*
21159c2daa00SOllivier Robert  * asn2ntp - convert ASN1_TIME time structure to NTP time
21169c2daa00SOllivier Robert  */
21179c2daa00SOllivier Robert u_long
21189c2daa00SOllivier Robert asn2ntp	(
21199c2daa00SOllivier Robert 	ASN1_TIME *asn1time	/* pointer to ASN1_TIME structure */
21209c2daa00SOllivier Robert 	)
21219c2daa00SOllivier Robert {
21229c2daa00SOllivier Robert 	char	*v;		/* pointer to ASN1_TIME string */
21239c2daa00SOllivier Robert 	struct	tm tm;		/* time decode structure time */
21249c2daa00SOllivier Robert 
21259c2daa00SOllivier Robert 	/*
21269c2daa00SOllivier Robert 	 * Extract time string YYMMDDHHMMSSZ from ASN.1 time structure.
21279c2daa00SOllivier Robert 	 * Note that the YY, MM, DD fields start with one, the HH, MM,
21289c2daa00SOllivier Robert 	 * SS fiels start with zero and the Z character should be 'Z'
21299c2daa00SOllivier Robert 	 * for UTC. Also note that years less than 50 map to years
21309c2daa00SOllivier Robert 	 * greater than 100. Dontcha love ASN.1?
21319c2daa00SOllivier Robert 	 */
21329c2daa00SOllivier Robert 	if (asn1time->length > 13)
21339c2daa00SOllivier Robert 		return (-1);
21349c2daa00SOllivier Robert 	v = (char *)asn1time->data;
21359c2daa00SOllivier Robert 	tm.tm_year = (v[0] - '0') * 10 + v[1] - '0';
21369c2daa00SOllivier Robert 	if (tm.tm_year < 50)
21379c2daa00SOllivier Robert 		tm.tm_year += 100;
21389c2daa00SOllivier Robert 	tm.tm_mon = (v[2] - '0') * 10 + v[3] - '0' - 1;
21399c2daa00SOllivier Robert 	tm.tm_mday = (v[4] - '0') * 10 + v[5] - '0';
21409c2daa00SOllivier Robert 	tm.tm_hour = (v[6] - '0') * 10 + v[7] - '0';
21419c2daa00SOllivier Robert 	tm.tm_min = (v[8] - '0') * 10 + v[9] - '0';
21429c2daa00SOllivier Robert 	tm.tm_sec = (v[10] - '0') * 10 + v[11] - '0';
21439c2daa00SOllivier Robert 	tm.tm_wday = 0;
21449c2daa00SOllivier Robert 	tm.tm_yday = 0;
21459c2daa00SOllivier Robert 	tm.tm_isdst = 0;
21469c2daa00SOllivier Robert 	return (mktime(&tm) + JAN_1970);
21479c2daa00SOllivier Robert }
21489c2daa00SOllivier Robert #endif
21499c2daa00SOllivier Robert 
21509c2daa00SOllivier Robert /*
21519c2daa00SOllivier Robert  * Callback routine
21529c2daa00SOllivier Robert  */
21539c2daa00SOllivier Robert void
21549c2daa00SOllivier Robert cb	(
21559c2daa00SOllivier Robert 	int	n1,		/* arg 1 */
21569c2daa00SOllivier Robert 	int	n2,		/* arg 2 */
21579c2daa00SOllivier Robert 	void	*chr		/* arg 3 */
21589c2daa00SOllivier Robert 	)
21599c2daa00SOllivier Robert {
21609c2daa00SOllivier Robert 	switch (n1) {
21619c2daa00SOllivier Robert 	case 0:
21629c2daa00SOllivier Robert 		d0++;
21639c2daa00SOllivier Robert 		fprintf(stderr, "%s %d %d %lu\r", (char *)chr, n1, n2,
21649c2daa00SOllivier Robert 		    d0);
21659c2daa00SOllivier Robert 		break;
21669c2daa00SOllivier Robert 	case 1:
21679c2daa00SOllivier Robert 		d1++;
21689c2daa00SOllivier Robert 		fprintf(stderr, "%s\t\t%d %d %lu\r", (char *)chr, n1,
21699c2daa00SOllivier Robert 		    n2, d1);
21709c2daa00SOllivier Robert 		break;
21719c2daa00SOllivier Robert 	case 2:
21729c2daa00SOllivier Robert 		d2++;
21739c2daa00SOllivier Robert 		fprintf(stderr, "%s\t\t\t\t%d %d %lu\r", (char *)chr,
21749c2daa00SOllivier Robert 		    n1, n2, d2);
21759c2daa00SOllivier Robert 		break;
21769c2daa00SOllivier Robert 	case 3:
21779c2daa00SOllivier Robert 		d3++;
21789c2daa00SOllivier Robert 		fprintf(stderr, "%s\t\t\t\t\t\t%d %d %lu\r",
21799c2daa00SOllivier Robert 		    (char *)chr, n1, n2, d3);
21809c2daa00SOllivier Robert 		break;
21819c2daa00SOllivier Robert 	}
21829c2daa00SOllivier Robert }
21839c2daa00SOllivier Robert 
21849c2daa00SOllivier Robert 
21859c2daa00SOllivier Robert /*
21869c2daa00SOllivier Robert  * Generate key
21879c2daa00SOllivier Robert  */
21889c2daa00SOllivier Robert EVP_PKEY *			/* public/private key pair */
21899c2daa00SOllivier Robert genkey(
21902b15cb3dSCy Schubert 	const char *type,	/* key type (RSA or DSA) */
21912b15cb3dSCy Schubert 	const char *id		/* file name id */
21929c2daa00SOllivier Robert 	)
21939c2daa00SOllivier Robert {
21949c2daa00SOllivier Robert 	if (type == NULL)
21959c2daa00SOllivier Robert 		return (NULL);
21969c2daa00SOllivier Robert 	if (strcmp(type, "RSA") == 0)
21979c2daa00SOllivier Robert 		return (gen_rsa(id));
21989c2daa00SOllivier Robert 
21999c2daa00SOllivier Robert 	else if (strcmp(type, "DSA") == 0)
22009c2daa00SOllivier Robert 		return (gen_dsa(id));
22019c2daa00SOllivier Robert 
22029c2daa00SOllivier Robert 	fprintf(stderr, "Invalid %s key type %s\n", id, type);
22039c2daa00SOllivier Robert 	return (NULL);
22049c2daa00SOllivier Robert }
2205f391d6bcSXin LI 
2206f391d6bcSXin LI static RSA*
2207f391d6bcSXin LI genRsaKeyPair(
2208f391d6bcSXin LI 	int	bits,
2209f391d6bcSXin LI 	char *	what
2210f391d6bcSXin LI 	)
2211f391d6bcSXin LI {
2212f391d6bcSXin LI 	RSA *		rsa = RSA_new();
2213f391d6bcSXin LI 	BN_GENCB *	gcb = BN_GENCB_new();
2214f391d6bcSXin LI 	BIGNUM *	bne = BN_new();
2215f391d6bcSXin LI 
2216f391d6bcSXin LI 	if (gcb)
2217f391d6bcSXin LI 		BN_GENCB_set_old(gcb, cb, what);
2218f391d6bcSXin LI 	if (bne)
2219f391d6bcSXin LI 		BN_set_word(bne, 65537);
2220f391d6bcSXin LI 	if (!(rsa && gcb && bne && RSA_generate_key_ex(
2221f391d6bcSXin LI 		      rsa, bits, bne, gcb)))
2222f391d6bcSXin LI 	{
2223f391d6bcSXin LI 		RSA_free(rsa);
2224f391d6bcSXin LI 		rsa = NULL;
2225f391d6bcSXin LI 	}
2226f391d6bcSXin LI 	BN_GENCB_free(gcb);
2227f391d6bcSXin LI 	BN_free(bne);
2228f391d6bcSXin LI 	return rsa;
2229f391d6bcSXin LI }
2230f391d6bcSXin LI 
2231f391d6bcSXin LI static DSA*
2232f391d6bcSXin LI genDsaParams(
2233f391d6bcSXin LI 	int	bits,
2234f391d6bcSXin LI 	char *	what
2235f391d6bcSXin LI 	)
2236f391d6bcSXin LI {
2237f391d6bcSXin LI 
2238f391d6bcSXin LI 	DSA *		dsa = DSA_new();
2239f391d6bcSXin LI 	BN_GENCB *	gcb = BN_GENCB_new();
2240f391d6bcSXin LI 	u_char		seed[20];
2241f391d6bcSXin LI 
2242f391d6bcSXin LI 	if (gcb)
2243f391d6bcSXin LI 		BN_GENCB_set_old(gcb, cb, what);
2244f391d6bcSXin LI 	RAND_bytes(seed, sizeof(seed));
2245f391d6bcSXin LI 	if (!(dsa && gcb && DSA_generate_parameters_ex(
2246f391d6bcSXin LI 		      dsa, bits, seed, sizeof(seed), NULL, NULL, gcb)))
2247f391d6bcSXin LI 	{
2248f391d6bcSXin LI 		DSA_free(dsa);
2249f391d6bcSXin LI 		dsa = NULL;
2250f391d6bcSXin LI 	}
2251f391d6bcSXin LI 	BN_GENCB_free(gcb);
2252f391d6bcSXin LI 	return dsa;
2253f391d6bcSXin LI }
2254f391d6bcSXin LI 
22552b15cb3dSCy Schubert #endif	/* AUTOKEY */
22569c2daa00SOllivier Robert 
22579c2daa00SOllivier Robert 
22589c2daa00SOllivier Robert /*
22592b15cb3dSCy Schubert  * Generate file header and link
22609c2daa00SOllivier Robert  */
22619c2daa00SOllivier Robert FILE *
22629c2daa00SOllivier Robert fheader	(
22632b15cb3dSCy Schubert 	const char *file,	/* file name id */
22642b15cb3dSCy Schubert 	const char *ulink,	/* linkname */
22652b15cb3dSCy Schubert 	const char *owner	/* owner name */
22669c2daa00SOllivier Robert 	)
22679c2daa00SOllivier Robert {
22689c2daa00SOllivier Robert 	FILE	*str;		/* file handle */
22692b15cb3dSCy Schubert 	char	linkname[MAXFILENAME]; /* link name */
22702b15cb3dSCy Schubert 	int	temp;
2271a25439b6SCy Schubert #ifdef HAVE_UMASK
2272a25439b6SCy Schubert         mode_t  orig_umask;
2273a25439b6SCy Schubert #endif
22749c2daa00SOllivier Robert 
22752b15cb3dSCy Schubert 	snprintf(filename, sizeof(filename), "ntpkey_%s_%s.%u", file,
22762b15cb3dSCy Schubert 	    owner, fstamp);
2277a25439b6SCy Schubert #ifdef HAVE_UMASK
2278a25439b6SCy Schubert         orig_umask = umask( S_IWGRP | S_IRWXO );
2279a25439b6SCy Schubert         str = fopen(filename, "w");
2280a25439b6SCy Schubert         (void) umask(orig_umask);
2281a25439b6SCy Schubert #else
2282a25439b6SCy Schubert         str = fopen(filename, "w");
2283a25439b6SCy Schubert #endif
2284a25439b6SCy Schubert 	if (str == NULL) {
22859c2daa00SOllivier Robert 		perror("Write");
22869c2daa00SOllivier Robert 		exit (-1);
22879c2daa00SOllivier Robert 	}
2288a25439b6SCy Schubert         if (strcmp(ulink, "md5") == 0) {
2289a25439b6SCy Schubert           strcpy(linkname,"ntp.keys");
2290a25439b6SCy Schubert         } else {
22912b15cb3dSCy Schubert           snprintf(linkname, sizeof(linkname), "ntpkey_%s_%s", ulink,
22922b15cb3dSCy Schubert                    hostname);
2293a25439b6SCy Schubert         }
22942b15cb3dSCy Schubert 	(void)remove(linkname);		/* The symlink() line below matters */
22959c2daa00SOllivier Robert 	temp = symlink(filename, linkname);
22969c2daa00SOllivier Robert 	if (temp < 0)
22972b15cb3dSCy Schubert 		perror(file);
22982b15cb3dSCy Schubert 	fprintf(stderr, "Generating new %s file and link\n", ulink);
22999c2daa00SOllivier Robert 	fprintf(stderr, "%s->%s\n", linkname, filename);
23002b15cb3dSCy Schubert 	fprintf(str, "# %s\n# %s\n", filename, ctime(&epoch));
23012b15cb3dSCy Schubert 	return (str);
23029c2daa00SOllivier Robert }
2303