xref: /freebsd/contrib/ntp/sntp/libevent/test/regress_util.c (revision a466cc55373fc3cf86837f09da729535b57e69a1)
1 /*
2  * Copyright (c) 2009-2012 Nick Mathewson and Niels Provos
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  * 3. The name of the author may not be used to endorse or promote products
13  *    derived from this software without specific prior written permission.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 /** For event_debug() usage/coverage */
28 #define EVENT_VISIBILITY_WANT_DLLIMPORT
29 
30 #include "../util-internal.h"
31 
32 #ifdef _WIN32
33 #include <winsock2.h>
34 #include <windows.h>
35 #include <ws2tcpip.h>
36 #endif
37 
38 #include "event2/event-config.h"
39 
40 #include <sys/types.h>
41 
42 #ifndef _WIN32
43 #include <sys/socket.h>
44 #include <netinet/in.h>
45 #include <arpa/inet.h>
46 #include <unistd.h>
47 #endif
48 #ifdef EVENT__HAVE_NETINET_IN6_H
49 #include <netinet/in6.h>
50 #endif
51 #ifdef EVENT__HAVE_SYS_WAIT_H
52 #include <sys/wait.h>
53 #endif
54 #include <signal.h>
55 #include <stdio.h>
56 #include <stdlib.h>
57 #include <string.h>
58 
59 #include "event2/event.h"
60 #include "event2/util.h"
61 #include "../ipv6-internal.h"
62 #include "../log-internal.h"
63 #include "../strlcpy-internal.h"
64 #include "../mm-internal.h"
65 #include "../time-internal.h"
66 
67 #include "regress.h"
68 
69 enum entry_status { NORMAL, CANONICAL, BAD };
70 
71 /* This is a big table of results we expect from generating and parsing */
72 static struct ipv4_entry {
73 	const char *addr;
74 	ev_uint32_t res;
75 	enum entry_status status;
76 } ipv4_entries[] = {
77 	{ "1.2.3.4", 0x01020304u, CANONICAL },
78 	{ "255.255.255.255", 0xffffffffu, CANONICAL },
79 	{ "256.0.0.0", 0, BAD },
80 	{ "ABC", 0, BAD },
81 	{ "1.2.3.4.5", 0, BAD },
82 	{ "176.192.208.244", 0xb0c0d0f4, CANONICAL },
83 	{ NULL, 0, BAD },
84 };
85 
86 static struct ipv6_entry {
87 	const char *addr;
88 	ev_uint32_t res[4];
89 	enum entry_status status;
90 } ipv6_entries[] = {
91 	{ "::", { 0, 0, 0, 0, }, CANONICAL },
92 	{ "0:0:0:0:0:0:0:0", { 0, 0, 0, 0, }, NORMAL },
93 	{ "::1", { 0, 0, 0, 1, }, CANONICAL },
94 	{ "::1.2.3.4", { 0, 0, 0, 0x01020304, }, CANONICAL },
95 	{ "ffff:1::", { 0xffff0001u, 0, 0, 0, }, CANONICAL },
96 	{ "ffff:0000::", { 0xffff0000u, 0, 0, 0, }, NORMAL },
97 	{ "ffff::1234", { 0xffff0000u, 0, 0, 0x1234, }, CANONICAL },
98 	{ "0102::1.2.3.4", {0x01020000u, 0, 0, 0x01020304u }, NORMAL },
99 	{ "::9:c0a8:1:1", { 0, 0, 0x0009c0a8u, 0x00010001u }, CANONICAL },
100 	{ "::ffff:1.2.3.4", { 0, 0, 0x000ffffu, 0x01020304u }, CANONICAL },
101 	{ "FFFF::", { 0xffff0000u, 0, 0, 0 }, NORMAL },
102 	{ "foobar.", { 0, 0, 0, 0 }, BAD },
103 	{ "foobar", { 0, 0, 0, 0 }, BAD },
104 	{ "fo:obar", { 0, 0, 0, 0 }, BAD },
105 	{ "ffff", { 0, 0, 0, 0 }, BAD },
106 	{ "fffff::", { 0, 0, 0, 0 }, BAD },
107 	{ "fffff::", { 0, 0, 0, 0 }, BAD },
108 	{ "::1.0.1.1000", { 0, 0, 0, 0 }, BAD },
109 	{ "1:2:33333:4::", { 0, 0, 0, 0 }, BAD },
110 	{ "1:2:3:4:5:6:7:8:9", { 0, 0, 0, 0 }, BAD },
111 	{ "1::2::3", { 0, 0, 0, 0 }, BAD },
112 	{ ":::1", { 0, 0, 0, 0 }, BAD },
113 	{ NULL, { 0, 0, 0, 0,  }, BAD },
114 };
115 
116 static void
regress_ipv4_parse(void * ptr)117 regress_ipv4_parse(void *ptr)
118 {
119 	int i;
120 	for (i = 0; ipv4_entries[i].addr; ++i) {
121 		char written[128];
122 		struct ipv4_entry *ent = &ipv4_entries[i];
123 		struct in_addr in;
124 		int r;
125 		r = evutil_inet_pton(AF_INET, ent->addr, &in);
126 		if (r == 0) {
127 			if (ent->status != BAD) {
128 				TT_FAIL(("%s did not parse, but it's a good address!",
129 					ent->addr));
130 			}
131 			continue;
132 		}
133 		if (ent->status == BAD) {
134 			TT_FAIL(("%s parsed, but we expected an error", ent->addr));
135 			continue;
136 		}
137 		if (ntohl(in.s_addr) != ent->res) {
138 			TT_FAIL(("%s parsed to %lx, but we expected %lx", ent->addr,
139 				(unsigned long)ntohl(in.s_addr),
140 				(unsigned long)ent->res));
141 			continue;
142 		}
143 		if (ent->status == CANONICAL) {
144 			const char *w = evutil_inet_ntop(AF_INET, &in, written,
145 											 sizeof(written));
146 			if (!w) {
147 				TT_FAIL(("Tried to write out %s; got NULL.", ent->addr));
148 				continue;
149 			}
150 			if (strcmp(written, ent->addr)) {
151 				TT_FAIL(("Tried to write out %s; got %s",
152 					ent->addr, written));
153 				continue;
154 			}
155 		}
156 
157 	}
158 
159 }
160 
161 static void
regress_ipv6_parse(void * ptr)162 regress_ipv6_parse(void *ptr)
163 {
164 #ifdef AF_INET6
165 	int i, j;
166 
167 	for (i = 0; ipv6_entries[i].addr; ++i) {
168 		char written[128];
169 		struct ipv6_entry *ent = &ipv6_entries[i];
170 		struct in6_addr in6;
171 		int r;
172 		r = evutil_inet_pton(AF_INET6, ent->addr, &in6);
173 		if (r == 0) {
174 			if (ent->status != BAD)
175 				TT_FAIL(("%s did not parse, but it's a good address!",
176 					ent->addr));
177 			continue;
178 		}
179 		if (ent->status == BAD) {
180 			TT_FAIL(("%s parsed, but we expected an error", ent->addr));
181 			continue;
182 		}
183 		for (j = 0; j < 4; ++j) {
184 			/* Can't use s6_addr32 here; some don't have it. */
185 			ev_uint32_t u =
186 			    ((ev_uint32_t)in6.s6_addr[j*4  ] << 24) |
187 			    ((ev_uint32_t)in6.s6_addr[j*4+1] << 16) |
188 			    ((ev_uint32_t)in6.s6_addr[j*4+2] << 8) |
189 			    ((ev_uint32_t)in6.s6_addr[j*4+3]);
190 			if (u != ent->res[j]) {
191 				TT_FAIL(("%s did not parse as expected.", ent->addr));
192 				continue;
193 			}
194 		}
195 		if (ent->status == CANONICAL) {
196 			const char *w = evutil_inet_ntop(AF_INET6, &in6, written,
197 											 sizeof(written));
198 			if (!w) {
199 				TT_FAIL(("Tried to write out %s; got NULL.", ent->addr));
200 				continue;
201 			}
202 			if (strcmp(written, ent->addr)) {
203 				TT_FAIL(("Tried to write out %s; got %s", ent->addr, written));
204 				continue;
205 			}
206 		}
207 
208 	}
209 #else
210 	TT_BLATHER(("Skipping IPv6 address parsing."));
211 #endif
212 }
213 
214 static struct ipv6_entry_scope {
215 	const char *addr;
216 	ev_uint32_t res[4];
217 	unsigned scope;
218 	enum entry_status status;
219 } ipv6_entries_scope[] = {
220 	{ "2001:DB8::", { 0x20010db8, 0, 0 }, 0, NORMAL },
221 	{ "2001:DB8::%0", { 0x20010db8, 0, 0, 0 }, 0, NORMAL },
222 	{ "2001:DB8::%1", { 0x20010db8, 0, 0, 0 }, 1, NORMAL },
223 	{ "foobar.", { 0, 0, 0, 0 }, 0, BAD },
224 	{ "2001:DB8::%does-not-exist", { 0, 0, 0, 0 }, 0, BAD },
225 	{ NULL, { 0, 0, 0, 0,  }, 0, BAD },
226 };
227 static void
regress_ipv6_parse_scope(void * ptr)228 regress_ipv6_parse_scope(void *ptr)
229 {
230 #ifdef AF_INET6
231 	int i, j;
232 	unsigned if_scope;
233 
234 	for (i = 0; ipv6_entries_scope[i].addr; ++i) {
235 		struct ipv6_entry_scope *ent = &ipv6_entries_scope[i];
236 		struct in6_addr in6;
237 		int r;
238 		r = evutil_inet_pton_scope(AF_INET6, ent->addr, &in6,
239 			&if_scope);
240 		if (r == 0) {
241 			if (ent->status != BAD)
242 				TT_FAIL(("%s did not parse, but it's a good address!",
243 					ent->addr));
244 			continue;
245 		}
246 		if (ent->status == BAD) {
247 			TT_FAIL(("%s parsed, but we expected an error", ent->addr));
248 			continue;
249 		}
250 		for (j = 0; j < 4; ++j) {
251 			/* Can't use s6_addr32 here; some don't have it. */
252 			ev_uint32_t u =
253 			    ((ev_uint32_t)in6.s6_addr[j*4  ] << 24) |
254 			    ((ev_uint32_t)in6.s6_addr[j*4+1] << 16) |
255 			    ((ev_uint32_t)in6.s6_addr[j*4+2] << 8) |
256 			    ((ev_uint32_t)in6.s6_addr[j*4+3]);
257 			if (u != ent->res[j]) {
258 				TT_FAIL(("%s did not parse as expected.", ent->addr));
259 				continue;
260 			}
261 		}
262 		if (if_scope != ent->scope) {
263 			TT_FAIL(("%s did not parse as expected.", ent->addr));
264 			continue;
265 		}
266 	}
267 #else
268 	TT_BLATHER(("Skipping IPv6 address parsing."));
269 #endif
270 }
271 
272 
273 static struct sa_port_ent {
274 	const char *parse;
275 	int safamily;
276 	const char *addr;
277 	int port;
278 } sa_port_ents[] = {
279 	{ "[ffff::1]:1000", AF_INET6, "ffff::1", 1000 },
280 	{ "[ffff::1]", AF_INET6, "ffff::1", 0 },
281 	{ "[ffff::1", 0, NULL, 0 },
282 	{ "[ffff::1]:65599", 0, NULL, 0 },
283 	{ "[ffff::1]:0", 0, NULL, 0 },
284 	{ "[ffff::1]:-1", 0, NULL, 0 },
285 	{ "::1", AF_INET6, "::1", 0 },
286 	{ "1:2::1", AF_INET6, "1:2::1", 0 },
287 	{ "192.168.0.1:50", AF_INET, "192.168.0.1", 50 },
288 	{ "1.2.3.4", AF_INET, "1.2.3.4", 0 },
289 	{ NULL, 0, NULL, 0 },
290 };
291 
292 static void
regress_sockaddr_port_parse(void * ptr)293 regress_sockaddr_port_parse(void *ptr)
294 {
295 	struct sockaddr_storage ss;
296 	int i, r;
297 
298 	for (i = 0; sa_port_ents[i].parse; ++i) {
299 		struct sa_port_ent *ent = &sa_port_ents[i];
300 		int len = sizeof(ss);
301 		memset(&ss, 0, sizeof(ss));
302 		r = evutil_parse_sockaddr_port(ent->parse, (struct sockaddr*)&ss, &len);
303 		if (r < 0) {
304 			if (ent->safamily)
305 				TT_FAIL(("Couldn't parse %s!", ent->parse));
306 			continue;
307 		} else if (! ent->safamily) {
308 			TT_FAIL(("Shouldn't have been able to parse %s!", ent->parse));
309 			continue;
310 		}
311 		if (ent->safamily == AF_INET) {
312 			struct sockaddr_in sin;
313 			memset(&sin, 0, sizeof(sin));
314 #ifdef EVENT__HAVE_STRUCT_SOCKADDR_IN_SIN_LEN
315 			sin.sin_len = sizeof(sin);
316 #endif
317 			sin.sin_family = AF_INET;
318 			sin.sin_port = htons(ent->port);
319 			r = evutil_inet_pton(AF_INET, ent->addr, &sin.sin_addr);
320 			if (1 != r) {
321 				TT_FAIL(("Couldn't parse ipv4 target %s.", ent->addr));
322 			} else if (memcmp(&sin, &ss, sizeof(sin))) {
323 				TT_FAIL(("Parse for %s was not as expected.", ent->parse));
324 			} else if (len != sizeof(sin)) {
325 				TT_FAIL(("Length for %s not as expected.",ent->parse));
326 			}
327 		} else {
328 			struct sockaddr_in6 sin6;
329 			memset(&sin6, 0, sizeof(sin6));
330 #ifdef EVENT__HAVE_STRUCT_SOCKADDR_IN6_SIN6_LEN
331 			sin6.sin6_len = sizeof(sin6);
332 #endif
333 			sin6.sin6_family = AF_INET6;
334 			sin6.sin6_port = htons(ent->port);
335 			r = evutil_inet_pton(AF_INET6, ent->addr, &sin6.sin6_addr);
336 			if (1 != r) {
337 				TT_FAIL(("Couldn't parse ipv6 target %s.", ent->addr));
338 			} else if (memcmp(&sin6, &ss, sizeof(sin6))) {
339 				TT_FAIL(("Parse for %s was not as expected.", ent->parse));
340 			} else if (len != sizeof(sin6)) {
341 				TT_FAIL(("Length for %s not as expected.",ent->parse));
342 			}
343 		}
344 	}
345 }
346 
347 
348 static void
regress_sockaddr_port_format(void * ptr)349 regress_sockaddr_port_format(void *ptr)
350 {
351 	struct sockaddr_storage ss;
352 	int len;
353 	const char *cp;
354 	char cbuf[128];
355 	int r;
356 
357 	len = sizeof(ss);
358 	r = evutil_parse_sockaddr_port("192.168.1.1:80",
359 	    (struct sockaddr*)&ss, &len);
360 	tt_int_op(r,==,0);
361 	cp = evutil_format_sockaddr_port_(
362 		(struct sockaddr*)&ss, cbuf, sizeof(cbuf));
363 	tt_ptr_op(cp,==,cbuf);
364 	tt_str_op(cp,==,"192.168.1.1:80");
365 
366 	len = sizeof(ss);
367 	r = evutil_parse_sockaddr_port("[ff00::8010]:999",
368 	    (struct sockaddr*)&ss, &len);
369 	tt_int_op(r,==,0);
370 	cp = evutil_format_sockaddr_port_(
371 		(struct sockaddr*)&ss, cbuf, sizeof(cbuf));
372 	tt_ptr_op(cp,==,cbuf);
373 	tt_str_op(cp,==,"[ff00::8010]:999");
374 
375 	ss.ss_family=99;
376 	cp = evutil_format_sockaddr_port_(
377 		(struct sockaddr*)&ss, cbuf, sizeof(cbuf));
378 	tt_ptr_op(cp,==,cbuf);
379 	tt_str_op(cp,==,"<addr with socktype 99>");
380 end:
381 	;
382 }
383 
384 static struct sa_pred_ent {
385 	const char *parse;
386 
387 	int is_loopback;
388 } sa_pred_entries[] = {
389 	{ "127.0.0.1",	 1 },
390 	{ "127.0.3.2",	 1 },
391 	{ "128.1.2.3",	 0 },
392 	{ "18.0.0.1",	 0 },
393 	{ "129.168.1.1", 0 },
394 
395 	{ "::1",	 1 },
396 	{ "::0",	 0 },
397 	{ "f::1",	 0 },
398 	{ "::501",	 0 },
399 	{ NULL,		 0 },
400 
401 };
402 
403 static void
test_evutil_sockaddr_predicates(void * ptr)404 test_evutil_sockaddr_predicates(void *ptr)
405 {
406 	struct sockaddr_storage ss;
407 	int r, i;
408 
409 	for (i=0; sa_pred_entries[i].parse; ++i) {
410 		struct sa_pred_ent *ent = &sa_pred_entries[i];
411 		int len = sizeof(ss);
412 
413 		r = evutil_parse_sockaddr_port(ent->parse, (struct sockaddr*)&ss, &len);
414 
415 		if (r<0) {
416 			TT_FAIL(("Couldn't parse %s!", ent->parse));
417 			continue;
418 		}
419 
420 		/* sockaddr_is_loopback */
421 		if (ent->is_loopback != evutil_sockaddr_is_loopback_((struct sockaddr*)&ss)) {
422 			TT_FAIL(("evutil_sockaddr_loopback(%s) not as expected",
423 				ent->parse));
424 		}
425 	}
426 }
427 
428 static void
test_evutil_strtoll(void * ptr)429 test_evutil_strtoll(void *ptr)
430 {
431 	const char *s;
432 	char *endptr;
433 
434 	tt_want(evutil_strtoll("5000000000", NULL, 10) ==
435 		((ev_int64_t)5000000)*1000);
436 	tt_want(evutil_strtoll("-5000000000", NULL, 10) ==
437 		((ev_int64_t)5000000)*-1000);
438 	s = " 99999stuff";
439 	tt_want(evutil_strtoll(s, &endptr, 10) == (ev_int64_t)99999);
440 	tt_want(endptr == s+6);
441 	tt_want(evutil_strtoll("foo", NULL, 10) == 0);
442  }
443 
444 static void
test_evutil_snprintf(void * ptr)445 test_evutil_snprintf(void *ptr)
446 {
447 	char buf[16];
448 	int r;
449 	ev_uint64_t u64 = ((ev_uint64_t)1000000000)*200;
450 	ev_int64_t i64 = -1 * (ev_int64_t) u64;
451 	size_t size = 8000;
452 	ev_ssize_t ssize = -9000;
453 
454 	r = evutil_snprintf(buf, sizeof(buf), "%d %d", 50, 100);
455 	tt_str_op(buf, ==, "50 100");
456 	tt_int_op(r, ==, 6);
457 
458 	r = evutil_snprintf(buf, sizeof(buf), "longish %d", 1234567890);
459 	tt_str_op(buf, ==, "longish 1234567");
460 	tt_int_op(r, ==, 18);
461 
462 	r = evutil_snprintf(buf, sizeof(buf), EV_U64_FMT, EV_U64_ARG(u64));
463 	tt_str_op(buf, ==, "200000000000");
464 	tt_int_op(r, ==, 12);
465 
466 	r = evutil_snprintf(buf, sizeof(buf), EV_I64_FMT, EV_I64_ARG(i64));
467 	tt_str_op(buf, ==, "-200000000000");
468 	tt_int_op(r, ==, 13);
469 
470 	r = evutil_snprintf(buf, sizeof(buf), EV_SIZE_FMT" "EV_SSIZE_FMT,
471 	    EV_SIZE_ARG(size), EV_SSIZE_ARG(ssize));
472 	tt_str_op(buf, ==, "8000 -9000");
473 	tt_int_op(r, ==, 10);
474 
475       end:
476 	;
477 }
478 
479 static void
test_evutil_casecmp(void * ptr)480 test_evutil_casecmp(void *ptr)
481 {
482 	tt_int_op(evutil_ascii_strcasecmp("ABC", "ABC"), ==, 0);
483 	tt_int_op(evutil_ascii_strcasecmp("ABC", "abc"), ==, 0);
484 	tt_int_op(evutil_ascii_strcasecmp("ABC", "abcd"), <, 0);
485 	tt_int_op(evutil_ascii_strcasecmp("ABC", "abb"), >, 0);
486 	tt_int_op(evutil_ascii_strcasecmp("ABCd", "abc"), >, 0);
487 
488 	tt_int_op(evutil_ascii_strncasecmp("Libevent", "LibEvEnT", 100), ==, 0);
489 	tt_int_op(evutil_ascii_strncasecmp("Libevent", "LibEvEnT", 4), ==, 0);
490 	tt_int_op(evutil_ascii_strncasecmp("Libevent", "LibEXXXX", 4), ==, 0);
491 	tt_int_op(evutil_ascii_strncasecmp("Libevent", "LibE", 4), ==, 0);
492 	tt_int_op(evutil_ascii_strncasecmp("Libe", "LibEvEnT", 4), ==, 0);
493 	tt_int_op(evutil_ascii_strncasecmp("Lib", "LibEvEnT", 4), <, 0);
494 	tt_int_op(evutil_ascii_strncasecmp("abc", "def", 99), <, 0);
495 	tt_int_op(evutil_ascii_strncasecmp("Z", "qrst", 1), >, 0);
496 end:
497 	;
498 }
499 
500 static void
test_evutil_rtrim(void * ptr)501 test_evutil_rtrim(void *ptr)
502 {
503 #define TEST_TRIM(s, result) \
504 	do {						\
505 	    if (cp) mm_free(cp);			\
506 	    cp = mm_strdup(s);				\
507 	    tt_assert(cp);				\
508 	    evutil_rtrim_lws_(cp);			\
509 	    tt_str_op(cp, ==, result);			\
510 	} while(0)
511 
512 	char *cp = NULL;
513 	(void) ptr;
514 
515 	TEST_TRIM("", "");
516 	TEST_TRIM("a", "a");
517 	TEST_TRIM("abcdef ghi", "abcdef ghi");
518 
519 	TEST_TRIM(" ", "");
520 	TEST_TRIM("  ", "");
521 	TEST_TRIM("a ", "a");
522 	TEST_TRIM("abcdef  gH       ", "abcdef  gH");
523 
524 	TEST_TRIM("\t\t", "");
525 	TEST_TRIM(" \t", "");
526 	TEST_TRIM("\t", "");
527 	TEST_TRIM("a \t", "a");
528 	TEST_TRIM("a\t ", "a");
529 	TEST_TRIM("a\t", "a");
530 	TEST_TRIM("abcdef  gH    \t  ", "abcdef  gH");
531 
532 end:
533 	if (cp)
534 		mm_free(cp);
535 }
536 
537 static int logsev = 0;
538 static char *logmsg = NULL;
539 
540 static void
logfn(int severity,const char * msg)541 logfn(int severity, const char *msg)
542 {
543 	logsev = severity;
544 	tt_want(msg);
545 	if (msg) {
546 		if (logmsg)
547 			free(logmsg);
548 		logmsg = strdup(msg);
549 	}
550 }
551 
552 static int fatal_want_severity = 0;
553 static const char *fatal_want_message = NULL;
554 static void
fatalfn(int exitcode)555 fatalfn(int exitcode)
556 {
557 	if (logsev != fatal_want_severity ||
558 	    !logmsg ||
559 	    strcmp(logmsg, fatal_want_message))
560 		exit(0);
561 	else
562 		exit(exitcode);
563 }
564 
565 #ifndef _WIN32
566 #define CAN_CHECK_ERR
567 static void
check_error_logging(void (* fn)(void),int wantexitcode,int wantseverity,const char * wantmsg)568 check_error_logging(void (*fn)(void), int wantexitcode,
569     int wantseverity, const char *wantmsg)
570 {
571 	pid_t pid;
572 	int status = 0, exitcode;
573 	fatal_want_severity = wantseverity;
574 	fatal_want_message = wantmsg;
575 	if ((pid = regress_fork()) == 0) {
576 		/* child process */
577 		fn();
578 		exit(0); /* should be unreachable. */
579 	} else {
580 		wait(&status);
581 		exitcode = WEXITSTATUS(status);
582 		tt_int_op(wantexitcode, ==, exitcode);
583 	}
584 end:
585 	;
586 }
587 
588 static void
errx_fn(void)589 errx_fn(void)
590 {
591 	event_errx(2, "Fatal error; too many kumquats (%d)", 5);
592 }
593 
594 static void
err_fn(void)595 err_fn(void)
596 {
597 	errno = ENOENT;
598 	event_err(5,"Couldn't open %s", "/very/bad/file");
599 }
600 
601 static void
sock_err_fn(void)602 sock_err_fn(void)
603 {
604 	evutil_socket_t fd = socket(AF_INET, SOCK_STREAM, 0);
605 #ifdef _WIN32
606 	EVUTIL_SET_SOCKET_ERROR(WSAEWOULDBLOCK);
607 #else
608 	errno = EAGAIN;
609 #endif
610 	event_sock_err(20, fd, "Unhappy socket");
611 }
612 #endif
613 
614 static void
test_evutil_log(void * ptr)615 test_evutil_log(void *ptr)
616 {
617 	evutil_socket_t fd = -1;
618 	char buf[128];
619 
620 	event_set_log_callback(logfn);
621 	event_set_fatal_callback(fatalfn);
622 #define RESET() do {				\
623 		logsev = 0;	\
624 		if (logmsg) free(logmsg);	\
625 		logmsg = NULL;			\
626 	} while (0)
627 #define LOGEQ(sev,msg) do {			\
628 		tt_int_op(logsev,==,sev);	\
629 		tt_assert(logmsg != NULL);	\
630 		tt_str_op(logmsg,==,msg);	\
631 	} while (0)
632 
633 #ifdef CAN_CHECK_ERR
634 	/* We need to disable these tests for now.  Previously, the logging
635 	 * module didn't enforce the requirement that a fatal callback
636 	 * actually exit.  Now, it exits no matter what, so if we wan to
637 	 * reinstate these tests, we'll need to fork for each one. */
638 	check_error_logging(errx_fn, 2, EVENT_LOG_ERR,
639 	    "Fatal error; too many kumquats (5)");
640 	RESET();
641 #endif
642 
643 	event_warnx("Far too many %s (%d)", "wombats", 99);
644 	LOGEQ(EVENT_LOG_WARN, "Far too many wombats (99)");
645 	RESET();
646 
647 	event_msgx("Connecting lime to coconut");
648 	LOGEQ(EVENT_LOG_MSG, "Connecting lime to coconut");
649 	RESET();
650 
651 	event_debug(("A millisecond passed! We should log that!"));
652 #ifdef USE_DEBUG
653 	LOGEQ(EVENT_LOG_DEBUG, "A millisecond passed! We should log that!");
654 #else
655 	tt_int_op(logsev,==,0);
656 	tt_ptr_op(logmsg,==,NULL);
657 #endif
658 	RESET();
659 
660 	/* Try with an errno. */
661 	errno = ENOENT;
662 	event_warn("Couldn't open %s", "/bad/file");
663 	evutil_snprintf(buf, sizeof(buf),
664 	    "Couldn't open /bad/file: %s",strerror(ENOENT));
665 	LOGEQ(EVENT_LOG_WARN,buf);
666 	RESET();
667 
668 #ifdef CAN_CHECK_ERR
669 	evutil_snprintf(buf, sizeof(buf),
670 	    "Couldn't open /very/bad/file: %s",strerror(ENOENT));
671 	check_error_logging(err_fn, 5, EVENT_LOG_ERR, buf);
672 	RESET();
673 #endif
674 
675 	/* Try with a socket errno. */
676 	fd = socket(AF_INET, SOCK_STREAM, 0);
677 #ifdef _WIN32
678 	evutil_snprintf(buf, sizeof(buf),
679 	    "Unhappy socket: %s",
680 	    evutil_socket_error_to_string(WSAEWOULDBLOCK));
681 	EVUTIL_SET_SOCKET_ERROR(WSAEWOULDBLOCK);
682 #else
683 	evutil_snprintf(buf, sizeof(buf),
684 	    "Unhappy socket: %s", strerror(EAGAIN));
685 	errno = EAGAIN;
686 #endif
687 	event_sock_warn(fd, "Unhappy socket");
688 	LOGEQ(EVENT_LOG_WARN, buf);
689 	RESET();
690 
691 #ifdef CAN_CHECK_ERR
692 	check_error_logging(sock_err_fn, 20, EVENT_LOG_ERR, buf);
693 	RESET();
694 #endif
695 
696 #undef RESET
697 #undef LOGEQ
698 end:
699 	if (logmsg)
700 		free(logmsg);
701 	if (fd >= 0)
702 		evutil_closesocket(fd);
703 }
704 
705 static void
test_evutil_strlcpy(void * arg)706 test_evutil_strlcpy(void *arg)
707 {
708 	char buf[8];
709 
710 	/* Successful case. */
711 	tt_int_op(5, ==, strlcpy(buf, "Hello", sizeof(buf)));
712 	tt_str_op(buf, ==, "Hello");
713 
714 	/* Overflow by a lot. */
715 	tt_int_op(13, ==, strlcpy(buf, "pentasyllabic", sizeof(buf)));
716 	tt_str_op(buf, ==, "pentasy");
717 
718 	/* Overflow by exactly one. */
719 	tt_int_op(8, ==, strlcpy(buf, "overlong", sizeof(buf)));
720 	tt_str_op(buf, ==, "overlon");
721 end:
722 	;
723 }
724 
725 struct example_struct {
726 	const char *a;
727 	const char *b;
728 	long c;
729 };
730 
731 static void
test_evutil_upcast(void * arg)732 test_evutil_upcast(void *arg)
733 {
734 	struct example_struct es1;
735 	const char **cp;
736 	es1.a = "World";
737 	es1.b = "Hello";
738 	es1.c = -99;
739 
740 	tt_int_op(evutil_offsetof(struct example_struct, b), ==, sizeof(char*));
741 
742 	cp = &es1.b;
743 	tt_ptr_op(EVUTIL_UPCAST(cp, struct example_struct, b), ==, &es1);
744 
745 end:
746 	;
747 }
748 
749 static void
test_evutil_integers(void * arg)750 test_evutil_integers(void *arg)
751 {
752 	ev_int64_t i64;
753 	ev_uint64_t u64;
754 	ev_int32_t i32;
755 	ev_uint32_t u32;
756 	ev_int16_t i16;
757 	ev_uint16_t u16;
758 	ev_int8_t  i8;
759 	ev_uint8_t  u8;
760 
761 	void *ptr;
762 	ev_intptr_t iptr;
763 	ev_uintptr_t uptr;
764 
765 	ev_ssize_t ssize;
766 
767 	tt_int_op(sizeof(u64), ==, 8);
768 	tt_int_op(sizeof(i64), ==, 8);
769 	tt_int_op(sizeof(u32), ==, 4);
770 	tt_int_op(sizeof(i32), ==, 4);
771 	tt_int_op(sizeof(u16), ==, 2);
772 	tt_int_op(sizeof(i16), ==, 2);
773 	tt_int_op(sizeof(u8), ==,  1);
774 	tt_int_op(sizeof(i8), ==,  1);
775 
776 	tt_int_op(sizeof(ev_ssize_t), ==, sizeof(size_t));
777 	tt_int_op(sizeof(ev_intptr_t), >=, sizeof(void *));
778 	tt_int_op(sizeof(ev_uintptr_t), ==, sizeof(intptr_t));
779 
780 	u64 = 1000000000;
781 	u64 *= 1000000000;
782 	tt_assert(u64 / 1000000000 == 1000000000);
783 	i64 = -1000000000;
784 	i64 *= 1000000000;
785 	tt_assert(i64 / 1000000000 == -1000000000);
786 
787 	u64 = EV_UINT64_MAX;
788 	i64 = EV_INT64_MAX;
789 	tt_assert(u64 > 0);
790 	tt_assert(i64 > 0);
791 	u64++;
792 /*	i64++; */
793 	tt_assert(u64 == 0);
794 /*	tt_assert(i64 == EV_INT64_MIN); */
795 /*	tt_assert(i64 < 0); */
796 
797 	u32 = EV_UINT32_MAX;
798 	i32 = EV_INT32_MAX;
799 	tt_assert(u32 > 0);
800 	tt_assert(i32 > 0);
801 	u32++;
802 /*	i32++; */
803 	tt_assert(u32 == 0);
804 /*	tt_assert(i32 == EV_INT32_MIN); */
805 /*	tt_assert(i32 < 0); */
806 
807 	u16 = EV_UINT16_MAX;
808 	i16 = EV_INT16_MAX;
809 	tt_assert(u16 > 0);
810 	tt_assert(i16 > 0);
811 	u16++;
812 /*	i16++; */
813 	tt_assert(u16 == 0);
814 /*	tt_assert(i16 == EV_INT16_MIN); */
815 /* 	tt_assert(i16 < 0); */
816 
817 	u8 = EV_UINT8_MAX;
818 	i8 = EV_INT8_MAX;
819 	tt_assert(u8 > 0);
820 	tt_assert(i8 > 0);
821 	u8++;
822 /*	i8++;*/
823 	tt_assert(u8 == 0);
824 /*	tt_assert(i8 == EV_INT8_MIN); */
825 /*	tt_assert(i8 < 0); */
826 
827 /*
828 	ssize = EV_SSIZE_MAX;
829 	tt_assert(ssize > 0);
830 	ssize++;
831 	tt_assert(ssize < 0);
832 	tt_assert(ssize == EV_SSIZE_MIN);
833 */
834 
835 	ptr = &ssize;
836 	iptr = (ev_intptr_t)ptr;
837 	uptr = (ev_uintptr_t)ptr;
838 	ptr = (void *)iptr;
839 	tt_assert(ptr == &ssize);
840 	ptr = (void *)uptr;
841 	tt_assert(ptr == &ssize);
842 
843 	iptr = -1;
844 	tt_assert(iptr < 0);
845 end:
846 	;
847 }
848 
849 struct evutil_addrinfo *
ai_find_by_family(struct evutil_addrinfo * ai,int family)850 ai_find_by_family(struct evutil_addrinfo *ai, int family)
851 {
852 	while (ai) {
853 		if (ai->ai_family == family)
854 			return ai;
855 		ai = ai->ai_next;
856 	}
857 	return NULL;
858 }
859 
860 struct evutil_addrinfo *
ai_find_by_protocol(struct evutil_addrinfo * ai,int protocol)861 ai_find_by_protocol(struct evutil_addrinfo *ai, int protocol)
862 {
863 	while (ai) {
864 		if (ai->ai_protocol == protocol)
865 			return ai;
866 		ai = ai->ai_next;
867 	}
868 	return NULL;
869 }
870 
871 
872 int
test_ai_eq_(const struct evutil_addrinfo * ai,const char * sockaddr_port,int socktype,int protocol,int line)873 test_ai_eq_(const struct evutil_addrinfo *ai, const char *sockaddr_port,
874     int socktype, int protocol, int line)
875 {
876 	struct sockaddr_storage ss;
877 	int slen = sizeof(ss);
878 	int gotport;
879 	char buf[128];
880 	memset(&ss, 0, sizeof(ss));
881 	if (socktype > 0)
882 		tt_int_op(ai->ai_socktype, ==, socktype);
883 	if (protocol > 0)
884 		tt_int_op(ai->ai_protocol, ==, protocol);
885 
886 	if (evutil_parse_sockaddr_port(
887 		    sockaddr_port, (struct sockaddr*)&ss, &slen)<0) {
888 		TT_FAIL(("Couldn't parse expected address %s on line %d",
889 			sockaddr_port, line));
890 		return -1;
891 	}
892 	if (ai->ai_family != ss.ss_family) {
893 		TT_FAIL(("Address family %d did not match %d on line %d",
894 			ai->ai_family, ss.ss_family, line));
895 		return -1;
896 	}
897 	if (ai->ai_addr->sa_family == AF_INET) {
898 		struct sockaddr_in *sin = (struct sockaddr_in*)ai->ai_addr;
899 		evutil_inet_ntop(AF_INET, &sin->sin_addr, buf, sizeof(buf));
900 		gotport = ntohs(sin->sin_port);
901 		if (ai->ai_addrlen != sizeof(struct sockaddr_in)) {
902 			TT_FAIL(("Addr size mismatch on line %d", line));
903 			return -1;
904 		}
905 	} else {
906 		struct sockaddr_in6 *sin6 = (struct sockaddr_in6*)ai->ai_addr;
907 		evutil_inet_ntop(AF_INET6, &sin6->sin6_addr, buf, sizeof(buf));
908 		gotport = ntohs(sin6->sin6_port);
909 		if (ai->ai_addrlen != sizeof(struct sockaddr_in6)) {
910 			TT_FAIL(("Addr size mismatch on line %d", line));
911 			return -1;
912 		}
913 	}
914 	if (evutil_sockaddr_cmp(ai->ai_addr, (struct sockaddr*)&ss, 1)) {
915 		TT_FAIL(("Wanted %s, got %s:%d on line %d", sockaddr_port,
916 			buf, gotport, line));
917 		return -1;
918 	} else {
919 		TT_BLATHER(("Wanted %s, got %s:%d on line %d", sockaddr_port,
920 			buf, gotport, line));
921 	}
922 	return 0;
923 end:
924 	TT_FAIL(("Test failed on line %d", line));
925 	return -1;
926 }
927 
928 static void
test_evutil_rand(void * arg)929 test_evutil_rand(void *arg)
930 {
931 	char buf1[32];
932 	char buf2[32];
933 	int counts[256];
934 	int i, j, k, n=0;
935 	struct evutil_weakrand_state seed = { 12346789U };
936 
937 	memset(buf2, 0, sizeof(buf2));
938 	memset(counts, 0, sizeof(counts));
939 
940 	for (k=0;k<32;++k) {
941 		/* Try a few different start and end points; try to catch
942 		 * the various misaligned cases of arc4random_buf */
943 		int startpoint = evutil_weakrand_(&seed) % 4;
944 		int endpoint = 32 - (evutil_weakrand_(&seed) % 4);
945 
946 		memset(buf2, 0, sizeof(buf2));
947 
948 		/* Do 6 runs over buf1, or-ing the result into buf2 each
949 		 * time, to make sure we're setting each byte that we mean
950 		 * to set. */
951 		for (i=0;i<8;++i) {
952 			memset(buf1, 0, sizeof(buf1));
953 			evutil_secure_rng_get_bytes(buf1 + startpoint,
954 			    endpoint-startpoint);
955 			n += endpoint - startpoint;
956 			for (j=0; j<32; ++j) {
957 				if (j >= startpoint && j < endpoint) {
958 					buf2[j] |= buf1[j];
959 					++counts[(unsigned char)buf1[j]];
960 				} else {
961 					tt_assert(buf1[j] == 0);
962 					tt_int_op(buf1[j], ==, 0);
963 
964 				}
965 			}
966 		}
967 
968 		/* This will give a false positive with P=(256**8)==(2**64)
969 		 * for each character. */
970 		for (j=startpoint;j<endpoint;++j) {
971 			tt_int_op(buf2[j], !=, 0);
972 		}
973 	}
974 
975 	evutil_weakrand_seed_(&seed, 0);
976 	for (i = 0; i < 10000; ++i) {
977 		ev_int32_t r = evutil_weakrand_range_(&seed, 9999);
978 		tt_int_op(0, <=, r);
979 		tt_int_op(r, <, 9999);
980 	}
981 
982 	/* for (i=0;i<256;++i) { printf("%3d %2d\n", i, counts[i]); } */
983 end:
984 	;
985 }
986 
987 static void
test_EVUTIL_IS_(void * arg)988 test_EVUTIL_IS_(void *arg)
989 {
990 	tt_int_op(EVUTIL_ISDIGIT_('0'), ==, 1);
991 	tt_int_op(EVUTIL_ISDIGIT_('a'), ==, 0);
992 	tt_int_op(EVUTIL_ISDIGIT_('\xff'), ==, 0);
993 end:
994 	;
995 }
996 
997 static void
test_evutil_getaddrinfo(void * arg)998 test_evutil_getaddrinfo(void *arg)
999 {
1000 	struct evutil_addrinfo *ai = NULL, *a;
1001 	struct evutil_addrinfo hints;
1002 	int r;
1003 
1004 	/* Try using it as a pton. */
1005 	memset(&hints, 0, sizeof(hints));
1006 	hints.ai_family = PF_UNSPEC;
1007 	hints.ai_socktype = SOCK_STREAM;
1008 	r = evutil_getaddrinfo("1.2.3.4", "8080", &hints, &ai);
1009 	tt_int_op(r, ==, 0);
1010 	tt_assert(ai);
1011 	tt_ptr_op(ai->ai_next, ==, NULL); /* no ambiguity */
1012 	test_ai_eq(ai, "1.2.3.4:8080", SOCK_STREAM, IPPROTO_TCP);
1013 	evutil_freeaddrinfo(ai);
1014 	ai = NULL;
1015 
1016 	memset(&hints, 0, sizeof(hints));
1017 	hints.ai_family = PF_UNSPEC;
1018 	hints.ai_protocol = IPPROTO_UDP;
1019 	r = evutil_getaddrinfo("1001:b0b::f00f", "4321", &hints, &ai);
1020 	tt_int_op(r, ==, 0);
1021 	tt_assert(ai);
1022 	tt_ptr_op(ai->ai_next, ==, NULL); /* no ambiguity */
1023 	test_ai_eq(ai, "[1001:b0b::f00f]:4321", SOCK_DGRAM, IPPROTO_UDP);
1024 	evutil_freeaddrinfo(ai);
1025 	ai = NULL;
1026 
1027 	/* Try out the behavior of nodename=NULL */
1028 	memset(&hints, 0, sizeof(hints));
1029 	hints.ai_family = PF_INET;
1030 	hints.ai_protocol = IPPROTO_TCP;
1031 	hints.ai_flags = EVUTIL_AI_PASSIVE; /* as if for bind */
1032 	r = evutil_getaddrinfo(NULL, "9999", &hints, &ai);
1033 	tt_int_op(r,==,0);
1034 	tt_assert(ai);
1035 	tt_ptr_op(ai->ai_next, ==, NULL);
1036 	test_ai_eq(ai, "0.0.0.0:9999", SOCK_STREAM, IPPROTO_TCP);
1037 	evutil_freeaddrinfo(ai);
1038 	ai = NULL;
1039 	hints.ai_flags = 0; /* as if for connect */
1040 	r = evutil_getaddrinfo(NULL, "9998", &hints, &ai);
1041 	tt_assert(ai);
1042 	tt_int_op(r,==,0);
1043 	test_ai_eq(ai, "127.0.0.1:9998", SOCK_STREAM, IPPROTO_TCP);
1044 	tt_ptr_op(ai->ai_next, ==, NULL);
1045 	evutil_freeaddrinfo(ai);
1046 	ai = NULL;
1047 
1048 	hints.ai_flags = 0; /* as if for connect */
1049 	hints.ai_family = PF_INET6;
1050 	r = evutil_getaddrinfo(NULL, "9997", &hints, &ai);
1051 	tt_assert(ai);
1052 	tt_int_op(r,==,0);
1053 	tt_ptr_op(ai->ai_next, ==, NULL);
1054 	test_ai_eq(ai, "[::1]:9997", SOCK_STREAM, IPPROTO_TCP);
1055 	evutil_freeaddrinfo(ai);
1056 	ai = NULL;
1057 
1058 	hints.ai_flags = EVUTIL_AI_PASSIVE; /* as if for bind. */
1059 	hints.ai_family = PF_INET6;
1060 	r = evutil_getaddrinfo(NULL, "9996", &hints, &ai);
1061 	tt_assert(ai);
1062 	tt_int_op(r,==,0);
1063 	tt_ptr_op(ai->ai_next, ==, NULL);
1064 	test_ai_eq(ai, "[::]:9996", SOCK_STREAM, IPPROTO_TCP);
1065 	evutil_freeaddrinfo(ai);
1066 	ai = NULL;
1067 
1068 	/* Now try an unspec one. We should get a v6 and a v4. */
1069 	hints.ai_family = PF_UNSPEC;
1070 	r = evutil_getaddrinfo(NULL, "9996", &hints, &ai);
1071 	tt_assert(ai);
1072 	tt_int_op(r,==,0);
1073 	a = ai_find_by_family(ai, PF_INET6);
1074 	tt_assert(a);
1075 	test_ai_eq(a, "[::]:9996", SOCK_STREAM, IPPROTO_TCP);
1076 	a = ai_find_by_family(ai, PF_INET);
1077 	tt_assert(a);
1078 	test_ai_eq(a, "0.0.0.0:9996", SOCK_STREAM, IPPROTO_TCP);
1079 	evutil_freeaddrinfo(ai);
1080 	ai = NULL;
1081 
1082 	/* Try out AI_NUMERICHOST: successful case.  Also try
1083 	 * multiprotocol. */
1084 	memset(&hints, 0, sizeof(hints));
1085 	hints.ai_family = PF_UNSPEC;
1086 	hints.ai_flags = EVUTIL_AI_NUMERICHOST;
1087 	r = evutil_getaddrinfo("1.2.3.4", NULL, &hints, &ai);
1088 	tt_int_op(r, ==, 0);
1089 	a = ai_find_by_protocol(ai, IPPROTO_TCP);
1090 	tt_assert(a);
1091 	test_ai_eq(a, "1.2.3.4", SOCK_STREAM, IPPROTO_TCP);
1092 	a = ai_find_by_protocol(ai, IPPROTO_UDP);
1093 	tt_assert(a);
1094 	test_ai_eq(a, "1.2.3.4", SOCK_DGRAM, IPPROTO_UDP);
1095 	evutil_freeaddrinfo(ai);
1096 	ai = NULL;
1097 
1098 	/* Try the failing case of AI_NUMERICHOST */
1099 	memset(&hints, 0, sizeof(hints));
1100 	hints.ai_family = PF_UNSPEC;
1101 	hints.ai_flags = EVUTIL_AI_NUMERICHOST;
1102 	r = evutil_getaddrinfo("www.google.com", "80", &hints, &ai);
1103 	tt_int_op(r, ==, EVUTIL_EAI_NONAME);
1104 	tt_ptr_op(ai, ==, NULL);
1105 
1106 	/* Try symbolic service names wit AI_NUMERICSERV */
1107 	memset(&hints, 0, sizeof(hints));
1108 	hints.ai_family = PF_UNSPEC;
1109 	hints.ai_socktype = SOCK_STREAM;
1110 	hints.ai_flags = EVUTIL_AI_NUMERICSERV;
1111 	r = evutil_getaddrinfo("1.2.3.4", "http", &hints, &ai);
1112 	tt_int_op(r,==,EVUTIL_EAI_NONAME);
1113 
1114 	/* Try symbolic service names */
1115 	memset(&hints, 0, sizeof(hints));
1116 	hints.ai_family = PF_UNSPEC;
1117 	hints.ai_socktype = SOCK_STREAM;
1118 	r = evutil_getaddrinfo("1.2.3.4", "http", &hints, &ai);
1119 	if (r!=0) {
1120 		TT_DECLARE("SKIP", ("Symbolic service names seem broken."));
1121 	} else {
1122 		tt_assert(ai);
1123 		test_ai_eq(ai, "1.2.3.4:80", SOCK_STREAM, IPPROTO_TCP);
1124 		evutil_freeaddrinfo(ai);
1125 		ai = NULL;
1126 	}
1127 
1128 end:
1129 	if (ai)
1130 		evutil_freeaddrinfo(ai);
1131 }
1132 
1133 static void
test_evutil_getaddrinfo_live(void * arg)1134 test_evutil_getaddrinfo_live(void *arg)
1135 {
1136 	struct evutil_addrinfo *ai = NULL;
1137 	struct evutil_addrinfo hints;
1138 
1139 	struct sockaddr_in6 *sin6;
1140 	struct sockaddr_in *sin;
1141 	char buf[128];
1142 	const char *cp;
1143 	int r;
1144 
1145 	/* Now do some actual lookups. */
1146 	memset(&hints, 0, sizeof(hints));
1147 	hints.ai_family = PF_INET;
1148 	hints.ai_protocol = IPPROTO_TCP;
1149 	hints.ai_socktype = SOCK_STREAM;
1150 	r = evutil_getaddrinfo("www.google.com", "80", &hints, &ai);
1151 	if (r != 0) {
1152 		TT_DECLARE("SKIP", ("Couldn't resolve www.google.com"));
1153 	} else {
1154 		tt_assert(ai);
1155 		tt_int_op(ai->ai_family, ==, PF_INET);
1156 		tt_int_op(ai->ai_protocol, ==, IPPROTO_TCP);
1157 		tt_int_op(ai->ai_socktype, ==, SOCK_STREAM);
1158 		tt_int_op(ai->ai_addrlen, ==, sizeof(struct sockaddr_in));
1159 		sin = (struct sockaddr_in*)ai->ai_addr;
1160 		tt_int_op(sin->sin_family, ==, AF_INET);
1161 		tt_int_op(sin->sin_port, ==, htons(80));
1162 		tt_int_op(sin->sin_addr.s_addr, !=, 0xffffffff);
1163 
1164 		cp = evutil_inet_ntop(AF_INET, &sin->sin_addr, buf, sizeof(buf));
1165 		TT_BLATHER(("www.google.com resolved to %s",
1166 			cp?cp:"<unwriteable>"));
1167 		evutil_freeaddrinfo(ai);
1168 		ai = NULL;
1169 	}
1170 
1171 	hints.ai_family = PF_INET6;
1172 	r = evutil_getaddrinfo("ipv6.google.com", "80", &hints, &ai);
1173 	if (r != 0) {
1174 		TT_BLATHER(("Couldn't do an ipv6 lookup for ipv6.google.com"));
1175 	} else {
1176 		tt_assert(ai);
1177 		tt_int_op(ai->ai_family, ==, PF_INET6);
1178 		tt_int_op(ai->ai_addrlen, ==, sizeof(struct sockaddr_in6));
1179 		sin6 = (struct sockaddr_in6*)ai->ai_addr;
1180 		tt_int_op(sin6->sin6_port, ==, htons(80));
1181 
1182 		cp = evutil_inet_ntop(AF_INET6, &sin6->sin6_addr, buf,
1183 		    sizeof(buf));
1184 		TT_BLATHER(("ipv6.google.com resolved to %s",
1185 			cp?cp:"<unwriteable>"));
1186 	}
1187 
1188 end:
1189 	if (ai)
1190 		evutil_freeaddrinfo(ai);
1191 }
1192 
1193 static void
test_evutil_getaddrinfo_AI_ADDRCONFIG(void * arg)1194 test_evutil_getaddrinfo_AI_ADDRCONFIG(void *arg)
1195 {
1196 	struct evutil_addrinfo *ai = NULL;
1197 	struct evutil_addrinfo hints;
1198 	int r;
1199 
1200 	memset(&hints, 0, sizeof(hints));
1201 	hints.ai_family = AF_UNSPEC;
1202 	hints.ai_socktype = SOCK_STREAM;
1203 	hints.ai_flags = EVUTIL_AI_PASSIVE|EVUTIL_AI_ADDRCONFIG;
1204 
1205 	/* IPv4 */
1206 	r = evutil_getaddrinfo("127.0.0.1", "80", &hints, &ai);
1207 	tt_int_op(r, ==, 0);
1208 	tt_assert(ai);
1209 	tt_ptr_op(ai->ai_next, ==, NULL);
1210 	test_ai_eq(ai, "127.0.0.1:80", SOCK_STREAM, IPPROTO_TCP);
1211 	evutil_freeaddrinfo(ai);
1212 	ai = NULL;
1213 
1214 	/* IPv6 */
1215 	r = evutil_getaddrinfo("::1", "80", &hints, &ai);
1216 	tt_int_op(r, ==, 0);
1217 	tt_assert(ai);
1218 	tt_ptr_op(ai->ai_next, ==, NULL);
1219 	test_ai_eq(ai, "[::1]:80", SOCK_STREAM, IPPROTO_TCP);
1220 	evutil_freeaddrinfo(ai);
1221 	ai = NULL;
1222 
1223 end:
1224 	if (ai)
1225 		evutil_freeaddrinfo(ai);
1226 }
1227 
1228 #ifdef _WIN32
1229 static void
test_evutil_loadsyslib(void * arg)1230 test_evutil_loadsyslib(void *arg)
1231 {
1232 	HMODULE h=NULL;
1233 
1234 	h = evutil_load_windows_system_library_(TEXT("kernel32.dll"));
1235 	tt_assert(h);
1236 
1237 end:
1238 	if (h)
1239 		CloseHandle(h);
1240 
1241 }
1242 #endif
1243 
1244 /** Test mm_malloc(). */
1245 static void
test_event_malloc(void * arg)1246 test_event_malloc(void *arg)
1247 {
1248 	void *p = NULL;
1249 	(void)arg;
1250 
1251 	/* mm_malloc(0) should simply return NULL. */
1252 #ifndef EVENT__DISABLE_MM_REPLACEMENT
1253 	errno = 0;
1254 	p = mm_malloc(0);
1255 	tt_assert(p == NULL);
1256 	tt_int_op(errno, ==, 0);
1257 #endif
1258 
1259 	/* Trivial case. */
1260 	errno = 0;
1261 	p = mm_malloc(8);
1262 	tt_assert(p != NULL);
1263 	tt_int_op(errno, ==, 0);
1264 	mm_free(p);
1265 
1266  end:
1267 	errno = 0;
1268 	return;
1269 }
1270 
1271 static void
test_event_calloc(void * arg)1272 test_event_calloc(void *arg)
1273 {
1274 	void *p = NULL;
1275 	(void)arg;
1276 
1277 #ifndef EVENT__DISABLE_MM_REPLACEMENT
1278 	/* mm_calloc() should simply return NULL
1279 	 * if either argument is zero. */
1280 	errno = 0;
1281 	p = mm_calloc(0, 0);
1282 	tt_assert(p == NULL);
1283 	tt_int_op(errno, ==, 0);
1284 	errno = 0;
1285 	p = mm_calloc(0, 1);
1286 	tt_assert(p == NULL);
1287 	tt_int_op(errno, ==, 0);
1288 	errno = 0;
1289 	p = mm_calloc(1, 0);
1290 	tt_assert(p == NULL);
1291 	tt_int_op(errno, ==, 0);
1292 #endif
1293 
1294 	/* Trivial case. */
1295 	errno = 0;
1296 	p = mm_calloc(8, 8);
1297 	tt_assert(p != NULL);
1298 	tt_int_op(errno, ==, 0);
1299 	mm_free(p);
1300 	p = NULL;
1301 
1302 	/* mm_calloc() should set errno = ENOMEM and return NULL
1303 	 * in case of potential overflow. */
1304 	errno = 0;
1305 	p = mm_calloc(EV_SIZE_MAX/2, EV_SIZE_MAX/2 + 8);
1306 	tt_assert(p == NULL);
1307 	tt_int_op(errno, ==, ENOMEM);
1308 
1309  end:
1310 	errno = 0;
1311 	if (p)
1312 		mm_free(p);
1313 
1314 	return;
1315 }
1316 
1317 static void
test_event_strdup(void * arg)1318 test_event_strdup(void *arg)
1319 {
1320 	void *p = NULL;
1321 	(void)arg;
1322 
1323 #ifndef EVENT__DISABLE_MM_REPLACEMENT
1324 	/* mm_strdup(NULL) should set errno = EINVAL and return NULL. */
1325 	errno = 0;
1326 	p = mm_strdup(NULL);
1327 	tt_assert(p == NULL);
1328 	tt_int_op(errno, ==, EINVAL);
1329 #endif
1330 
1331 	/* Trivial cases. */
1332 
1333 	errno = 0;
1334 	p = mm_strdup("");
1335 	tt_assert(p != NULL);
1336 	tt_int_op(errno, ==, 0);
1337 	tt_str_op(p, ==, "");
1338 	mm_free(p);
1339 
1340 	errno = 0;
1341 	p = mm_strdup("foo");
1342 	tt_assert(p != NULL);
1343 	tt_int_op(errno, ==, 0);
1344 	tt_str_op(p, ==, "foo");
1345 	mm_free(p);
1346 
1347 	/* XXX
1348 	 * mm_strdup(str) where str is a string of length EV_SIZE_MAX
1349 	 * should set errno = ENOMEM and return NULL. */
1350 
1351  end:
1352 	errno = 0;
1353 	return;
1354 }
1355 
1356 static void
test_evutil_usleep(void * arg)1357 test_evutil_usleep(void *arg)
1358 {
1359 	struct timeval tv1, tv2, tv3, diff1, diff2;
1360 	const struct timeval quarter_sec = {0, 250*1000};
1361 	const struct timeval tenth_sec = {0, 100*1000};
1362 	long usec1, usec2;
1363 
1364 	evutil_gettimeofday(&tv1, NULL);
1365 	evutil_usleep_(&quarter_sec);
1366 	evutil_gettimeofday(&tv2, NULL);
1367 	evutil_usleep_(&tenth_sec);
1368 	evutil_gettimeofday(&tv3, NULL);
1369 
1370 	evutil_timersub(&tv2, &tv1, &diff1);
1371 	evutil_timersub(&tv3, &tv2, &diff2);
1372 	usec1 = diff1.tv_sec * 1000000 + diff1.tv_usec;
1373 	usec2 = diff2.tv_sec * 1000000 + diff2.tv_usec;
1374 
1375 	tt_int_op(usec1, >, 200000);
1376 	tt_int_op(usec1, <, 300000);
1377 	tt_int_op(usec2, >,  80000);
1378 	tt_int_op(usec2, <, 120000);
1379 
1380 end:
1381 	;
1382 }
1383 
1384 static void
test_evutil_monotonic_res(void * data_)1385 test_evutil_monotonic_res(void *data_)
1386 {
1387 	/* Basic santity-test for monotonic timers.  What we'd really like
1388 	 * to do is make sure that they can't go backwards even when the
1389 	 * system clock goes backwards. But we haven't got a good way to
1390 	 * move the system clock backwards.
1391 	 */
1392 	struct basic_test_data *data = data_;
1393 	struct evutil_monotonic_timer timer;
1394 	const int precise = strstr(data->setup_data, "precise") != NULL;
1395 	const int fallback = strstr(data->setup_data, "fallback") != NULL;
1396 	struct timeval tv[10], delay;
1397 	int total_diff = 0;
1398 
1399 	int flags = 0, wantres, acceptdiff, i;
1400 	if (precise)
1401 		flags |= EV_MONOT_PRECISE;
1402 	if (fallback)
1403 		flags |= EV_MONOT_FALLBACK;
1404 	if (precise || fallback) {
1405 #ifdef _WIN32
1406 		wantres = 10*1000;
1407 		acceptdiff = 1000;
1408 #else
1409 		wantres = 1000;
1410 		acceptdiff = 300;
1411 #endif
1412 	} else {
1413 		wantres = 40*1000;
1414 		acceptdiff = 20*1000;
1415 	}
1416 
1417 	TT_BLATHER(("Precise = %d", precise));
1418 	TT_BLATHER(("Fallback = %d", fallback));
1419 
1420 	/* First, make sure we match up with usleep. */
1421 
1422 	delay.tv_sec = 0;
1423 	delay.tv_usec = wantres;
1424 
1425 	tt_int_op(evutil_configure_monotonic_time_(&timer, flags), ==, 0);
1426 
1427 	for (i = 0; i < 10; ++i) {
1428 		evutil_gettime_monotonic_(&timer, &tv[i]);
1429 		evutil_usleep_(&delay);
1430 	}
1431 
1432 	for (i = 0; i < 9; ++i) {
1433 		struct timeval diff;
1434 		tt_assert(evutil_timercmp(&tv[i], &tv[i+1], <));
1435 		evutil_timersub(&tv[i+1], &tv[i], &diff);
1436 		tt_int_op(diff.tv_sec, ==, 0);
1437 		total_diff += diff.tv_usec;
1438 		TT_BLATHER(("Difference = %d", (int)diff.tv_usec));
1439 	}
1440 	tt_int_op(abs(total_diff/9 - wantres), <, acceptdiff);
1441 
1442 end:
1443 	;
1444 }
1445 
1446 static void
test_evutil_monotonic_prc(void * data_)1447 test_evutil_monotonic_prc(void *data_)
1448 {
1449 	struct basic_test_data *data = data_;
1450 	struct evutil_monotonic_timer timer;
1451 	const int precise = strstr(data->setup_data, "precise") != NULL;
1452 	const int fallback = strstr(data->setup_data, "fallback") != NULL;
1453 	struct timeval tv[10];
1454 	int total_diff = 0;
1455 	int i, maxstep = 25*1000,flags=0;
1456 	if (precise)
1457 		maxstep = 500;
1458 	if (precise)
1459 		flags |= EV_MONOT_PRECISE;
1460 	if (fallback)
1461 		flags |= EV_MONOT_FALLBACK;
1462 	tt_int_op(evutil_configure_monotonic_time_(&timer, flags), ==, 0);
1463 
1464 	/* find out what precision we actually see. */
1465 
1466 	evutil_gettime_monotonic_(&timer, &tv[0]);
1467 	for (i = 1; i < 10; ++i) {
1468 		do {
1469 			evutil_gettime_monotonic_(&timer, &tv[i]);
1470 		} while (evutil_timercmp(&tv[i-1], &tv[i], ==));
1471 	}
1472 
1473 	total_diff = 0;
1474 	for (i = 0; i < 9; ++i) {
1475 		struct timeval diff;
1476 		tt_assert(evutil_timercmp(&tv[i], &tv[i+1], <));
1477 		evutil_timersub(&tv[i+1], &tv[i], &diff);
1478 		tt_int_op(diff.tv_sec, ==, 0);
1479 		total_diff += diff.tv_usec;
1480 		TT_BLATHER(("Step difference = %d", (int)diff.tv_usec));
1481 	}
1482 	TT_BLATHER(("Average step difference = %d", total_diff / 9));
1483 	tt_int_op(total_diff/9, <, maxstep);
1484 
1485 end:
1486 	;
1487 }
1488 
1489 static void
create_tm_from_unix_epoch(struct tm * cur_p,const time_t t)1490 create_tm_from_unix_epoch(struct tm *cur_p, const time_t t)
1491 {
1492 #ifdef _WIN32
1493 	struct tm *tmp = gmtime(&t);
1494 	if (!tmp) {
1495 		fprintf(stderr, "gmtime: %s (%i)", strerror(errno), (int)t);
1496 		exit(1);
1497 	}
1498 	*cur_p = *tmp;
1499 #else
1500 	gmtime_r(&t, cur_p);
1501 #endif
1502 }
1503 
1504 static struct date_rfc1123_case {
1505 	time_t t;
1506 	char date[30];
1507 } date_rfc1123_cases[] = {
1508 	{           0, "Thu, 01 Jan 1970 00:00:00 GMT"} /* UNIX time of zero */,
1509 	{   946684799, "Fri, 31 Dec 1999 23:59:59 GMT"} /* the last moment of the 20th century */,
1510 	{   946684800, "Sat, 01 Jan 2000 00:00:00 GMT"} /* the first moment of the 21st century */,
1511 	{   981072000, "Fri, 02 Feb 2001 00:00:00 GMT"},
1512 	{  1015113600, "Sun, 03 Mar 2002 00:00:00 GMT"},
1513 	{  1049414400, "Fri, 04 Apr 2003 00:00:00 GMT"},
1514 	{  1083715200, "Wed, 05 May 2004 00:00:00 GMT"},
1515 	{  1118016000, "Mon, 06 Jun 2005 00:00:00 GMT"},
1516 	{  1152230400, "Fri, 07 Jul 2006 00:00:00 GMT"},
1517 	{  1186531200, "Wed, 08 Aug 2007 00:00:00 GMT"},
1518 	{  1220918400, "Tue, 09 Sep 2008 00:00:00 GMT"},
1519 	{  1255132800, "Sat, 10 Oct 2009 00:00:00 GMT"},
1520 	{  1289433600, "Thu, 11 Nov 2010 00:00:00 GMT"},
1521 	{  1323648000, "Mon, 12 Dec 2011 00:00:00 GMT"},
1522 #ifndef _WIN32
1523 #if EVENT__SIZEOF_TIME_T > 4
1524 	/** In win32 case we have max   "23:59:59 January 18, 2038, UTC" for time32 */
1525 	{  4294967296, "Sun, 07 Feb 2106 06:28:16 GMT"} /* 2^32 */,
1526 	/** In win32 case we have max "23:59:59, December 31, 3000, UTC" for time64 */
1527 	{253402300799, "Fri, 31 Dec 9999 23:59:59 GMT"} /* long long future no one can imagine */,
1528 #endif /* time_t != 32bit */
1529 	{  1456704000, "Mon, 29 Feb 2016 00:00:00 GMT"} /* leap year */,
1530 #endif
1531 	{  1435708800, "Wed, 01 Jul 2015 00:00:00 GMT"} /* leap second */,
1532 	{  1481866376, "Fri, 16 Dec 2016 05:32:56 GMT"} /* the time this test case is generated */,
1533 	{0, ""} /* end of test cases. */
1534 };
1535 
1536 static void
test_evutil_date_rfc1123(void * arg)1537 test_evutil_date_rfc1123(void *arg)
1538 {
1539 	struct tm query;
1540 	char result[30];
1541 	size_t i = 0;
1542 
1543 	/* Checks if too small buffers are safely accepted. */
1544 	{
1545 		create_tm_from_unix_epoch(&query, 0);
1546 		evutil_date_rfc1123(result, 8, &query);
1547 		tt_str_op(result, ==, "Thu, 01");
1548 	}
1549 
1550 	/* Checks for testcases. */
1551 	for (i = 0; ; i++) {
1552 		struct date_rfc1123_case c = date_rfc1123_cases[i];
1553 
1554 		if (strlen(c.date) == 0)
1555 			break;
1556 
1557 		create_tm_from_unix_epoch(&query, c.t);
1558 		evutil_date_rfc1123(result, sizeof(result), &query);
1559 		tt_str_op(result, ==, c.date);
1560 	}
1561 
1562 end:
1563 	;
1564 }
1565 
1566 static void
test_evutil_v4addr_is_local(void * arg)1567 test_evutil_v4addr_is_local(void *arg)
1568 {
1569 	struct sockaddr_in sin;
1570 	sin.sin_family = AF_INET;
1571 
1572 	/* we use evutil_inet_pton() here to fill in network-byte order */
1573 #define LOCAL(str, yes) do {                                              \
1574 	tt_int_op(evutil_inet_pton(AF_INET, str, &sin.sin_addr), ==, 1);  \
1575 	tt_int_op(evutil_v4addr_is_local_(&sin.sin_addr), ==, yes);       \
1576 } while (0)
1577 
1578 	/** any */
1579 	sin.sin_addr.s_addr = INADDR_ANY;
1580 	tt_int_op(evutil_v4addr_is_local_(&sin.sin_addr), ==, 1);
1581 
1582 	/** loopback */
1583 	sin.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
1584 	tt_int_op(evutil_v4addr_is_local_(&sin.sin_addr), ==, 1);
1585 	LOCAL("127.0.0.1", 1);
1586 	LOCAL("127.255.255.255", 1);
1587 	LOCAL("121.0.0.1", 0);
1588 
1589 	/** link-local */
1590 	LOCAL("169.254.0.1", 1);
1591 	LOCAL("169.254.255.255", 1);
1592 	LOCAL("170.0.0.0", 0);
1593 
1594 	/** Multicast */
1595 	LOCAL("224.0.0.0", 1);
1596 	LOCAL("239.255.255.255", 1);
1597 	LOCAL("240.0.0.0", 0);
1598 end:
1599 	;
1600 }
1601 
1602 static void
test_evutil_v6addr_is_local(void * arg)1603 test_evutil_v6addr_is_local(void *arg)
1604 {
1605 	struct sockaddr_in6 sin6;
1606 	struct in6_addr anyaddr = IN6ADDR_ANY_INIT;
1607 	struct in6_addr loopback = IN6ADDR_LOOPBACK_INIT;
1608 
1609 	sin6.sin6_family = AF_INET6;
1610 #define LOCAL6(str, yes) do {                                              \
1611 	tt_int_op(evutil_inet_pton(AF_INET6, str, &sin6.sin6_addr), ==, 1);\
1612 	tt_int_op(evutil_v6addr_is_local_(&sin6.sin6_addr), ==, yes);      \
1613 } while (0)
1614 
1615 	/** any */
1616 	tt_int_op(evutil_v6addr_is_local_(&anyaddr), ==, 1);
1617 	LOCAL6("::0", 1);
1618 
1619 	/** loopback */
1620 	tt_int_op(evutil_v6addr_is_local_(&loopback), ==, 1);
1621 	LOCAL6("::1", 1);
1622 
1623 	/** IPV4 mapped */
1624 	LOCAL6("::ffff:0:0", 1);
1625 	/** IPv4 translated */
1626 	LOCAL6("::ffff:0:0:0", 1);
1627 	/** IPv4/IPv6 translation */
1628 	LOCAL6("64:ff9b::", 0);
1629 	/** Link-local */
1630 	LOCAL6("fe80::", 1);
1631 	/** Multicast */
1632 	LOCAL6("ff00::", 1);
1633 	/** Unspecified */
1634 	LOCAL6("::", 1);
1635 
1636 	/** Global Internet */
1637 	LOCAL6("2001::", 0);
1638 	LOCAL6("2001:4860:4802:32::1b", 0);
1639 end:
1640 	;
1641 }
1642 
1643 struct testcase_t util_testcases[] = {
1644 	{ "ipv4_parse", regress_ipv4_parse, 0, NULL, NULL },
1645 	{ "ipv6_parse", regress_ipv6_parse, 0, NULL, NULL },
1646 	{ "ipv6_parse_scope", regress_ipv6_parse_scope, 0, NULL, NULL },
1647 	{ "sockaddr_port_parse", regress_sockaddr_port_parse, 0, NULL, NULL },
1648 	{ "sockaddr_port_format", regress_sockaddr_port_format, 0, NULL, NULL },
1649 	{ "sockaddr_predicates", test_evutil_sockaddr_predicates, 0,NULL,NULL },
1650 	{ "evutil_snprintf", test_evutil_snprintf, 0, NULL, NULL },
1651 	{ "evutil_strtoll", test_evutil_strtoll, 0, NULL, NULL },
1652 	{ "evutil_casecmp", test_evutil_casecmp, 0, NULL, NULL },
1653 	{ "evutil_rtrim", test_evutil_rtrim, 0, NULL, NULL },
1654 	{ "strlcpy", test_evutil_strlcpy, 0, NULL, NULL },
1655 	{ "log", test_evutil_log, TT_FORK, NULL, NULL },
1656 	{ "upcast", test_evutil_upcast, 0, NULL, NULL },
1657 	{ "integers", test_evutil_integers, 0, NULL, NULL },
1658 	{ "rand", test_evutil_rand, TT_FORK, NULL, NULL },
1659 	{ "EVUTIL_IS_", test_EVUTIL_IS_, 0, NULL, NULL },
1660 	{ "getaddrinfo", test_evutil_getaddrinfo, TT_FORK, NULL, NULL },
1661 	{ "getaddrinfo_live", test_evutil_getaddrinfo_live, TT_FORK|TT_OFF_BY_DEFAULT, NULL, NULL },
1662 	{ "getaddrinfo_AI_ADDRCONFIG", test_evutil_getaddrinfo_AI_ADDRCONFIG, TT_FORK|TT_OFF_BY_DEFAULT, NULL, NULL },
1663 #ifdef _WIN32
1664 	{ "loadsyslib", test_evutil_loadsyslib, TT_FORK, NULL, NULL },
1665 #endif
1666 	{ "mm_malloc", test_event_malloc, 0, NULL, NULL },
1667 	{ "mm_calloc", test_event_calloc, 0, NULL, NULL },
1668 	{ "mm_strdup", test_event_strdup, 0, NULL, NULL },
1669 	{ "usleep", test_evutil_usleep, TT_RETRIABLE, NULL, NULL },
1670 	{ "monotonic_res", test_evutil_monotonic_res, 0, &basic_setup, (void*)"" },
1671 	{ "monotonic_res_precise", test_evutil_monotonic_res, TT_OFF_BY_DEFAULT, &basic_setup, (void*)"precise" },
1672 	{ "monotonic_res_fallback", test_evutil_monotonic_res, TT_OFF_BY_DEFAULT, &basic_setup, (void*)"fallback" },
1673 	{ "monotonic_prc", test_evutil_monotonic_prc, 0, &basic_setup, (void*)"" },
1674 	{ "monotonic_prc_precise", test_evutil_monotonic_prc, TT_RETRIABLE, &basic_setup, (void*)"precise" },
1675 	{ "monotonic_prc_fallback", test_evutil_monotonic_prc, 0, &basic_setup, (void*)"fallback" },
1676 	{ "date_rfc1123", test_evutil_date_rfc1123, 0, NULL, NULL },
1677 	{ "evutil_v4addr_is_local", test_evutil_v4addr_is_local, 0, NULL, NULL },
1678 	{ "evutil_v6addr_is_local", test_evutil_v6addr_is_local, 0, NULL, NULL },
1679 	END_OF_TESTCASES,
1680 };
1681 
1682