1 /* 2 * Copyright (c) 2009-2012 Nick Mathewson and Niels Provos 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 3. The name of the author may not be used to endorse or promote products 13 * derived from this software without specific prior written permission. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 #include "../util-internal.h" 27 28 #ifdef _WIN32 29 #include <winsock2.h> 30 #include <windows.h> 31 #include <ws2tcpip.h> 32 #endif 33 34 #include "event2/event-config.h" 35 36 #include <sys/types.h> 37 38 #ifndef _WIN32 39 #include <sys/socket.h> 40 #include <netinet/in.h> 41 #include <arpa/inet.h> 42 #include <unistd.h> 43 #endif 44 #ifdef EVENT__HAVE_NETINET_IN6_H 45 #include <netinet/in6.h> 46 #endif 47 #ifdef EVENT__HAVE_SYS_WAIT_H 48 #include <sys/wait.h> 49 #endif 50 #include <signal.h> 51 #include <stdio.h> 52 #include <stdlib.h> 53 #include <string.h> 54 55 #include "event2/event.h" 56 #include "event2/util.h" 57 #include "../ipv6-internal.h" 58 #include "../log-internal.h" 59 #include "../strlcpy-internal.h" 60 #include "../mm-internal.h" 61 #include "../time-internal.h" 62 63 #include "regress.h" 64 65 enum entry_status { NORMAL, CANONICAL, BAD }; 66 67 /* This is a big table of results we expect from generating and parsing */ 68 static struct ipv4_entry { 69 const char *addr; 70 ev_uint32_t res; 71 enum entry_status status; 72 } ipv4_entries[] = { 73 { "1.2.3.4", 0x01020304u, CANONICAL }, 74 { "255.255.255.255", 0xffffffffu, CANONICAL }, 75 { "256.0.0.0", 0, BAD }, 76 { "ABC", 0, BAD }, 77 { "1.2.3.4.5", 0, BAD }, 78 { "176.192.208.244", 0xb0c0d0f4, CANONICAL }, 79 { NULL, 0, BAD }, 80 }; 81 82 static struct ipv6_entry { 83 const char *addr; 84 ev_uint32_t res[4]; 85 enum entry_status status; 86 } ipv6_entries[] = { 87 { "::", { 0, 0, 0, 0, }, CANONICAL }, 88 { "0:0:0:0:0:0:0:0", { 0, 0, 0, 0, }, NORMAL }, 89 { "::1", { 0, 0, 0, 1, }, CANONICAL }, 90 { "::1.2.3.4", { 0, 0, 0, 0x01020304, }, CANONICAL }, 91 { "ffff:1::", { 0xffff0001u, 0, 0, 0, }, CANONICAL }, 92 { "ffff:0000::", { 0xffff0000u, 0, 0, 0, }, NORMAL }, 93 { "ffff::1234", { 0xffff0000u, 0, 0, 0x1234, }, CANONICAL }, 94 { "0102::1.2.3.4", {0x01020000u, 0, 0, 0x01020304u }, NORMAL }, 95 { "::9:c0a8:1:1", { 0, 0, 0x0009c0a8u, 0x00010001u }, CANONICAL }, 96 { "::ffff:1.2.3.4", { 0, 0, 0x000ffffu, 0x01020304u }, CANONICAL }, 97 { "FFFF::", { 0xffff0000u, 0, 0, 0 }, NORMAL }, 98 { "foobar.", { 0, 0, 0, 0 }, BAD }, 99 { "foobar", { 0, 0, 0, 0 }, BAD }, 100 { "fo:obar", { 0, 0, 0, 0 }, BAD }, 101 { "ffff", { 0, 0, 0, 0 }, BAD }, 102 { "fffff::", { 0, 0, 0, 0 }, BAD }, 103 { "fffff::", { 0, 0, 0, 0 }, BAD }, 104 { "::1.0.1.1000", { 0, 0, 0, 0 }, BAD }, 105 { "1:2:33333:4::", { 0, 0, 0, 0 }, BAD }, 106 { "1:2:3:4:5:6:7:8:9", { 0, 0, 0, 0 }, BAD }, 107 { "1::2::3", { 0, 0, 0, 0 }, BAD }, 108 { ":::1", { 0, 0, 0, 0 }, BAD }, 109 { NULL, { 0, 0, 0, 0, }, BAD }, 110 }; 111 112 static void 113 regress_ipv4_parse(void *ptr) 114 { 115 int i; 116 for (i = 0; ipv4_entries[i].addr; ++i) { 117 char written[128]; 118 struct ipv4_entry *ent = &ipv4_entries[i]; 119 struct in_addr in; 120 int r; 121 r = evutil_inet_pton(AF_INET, ent->addr, &in); 122 if (r == 0) { 123 if (ent->status != BAD) { 124 TT_FAIL(("%s did not parse, but it's a good address!", 125 ent->addr)); 126 } 127 continue; 128 } 129 if (ent->status == BAD) { 130 TT_FAIL(("%s parsed, but we expected an error", ent->addr)); 131 continue; 132 } 133 if (ntohl(in.s_addr) != ent->res) { 134 TT_FAIL(("%s parsed to %lx, but we expected %lx", ent->addr, 135 (unsigned long)ntohl(in.s_addr), 136 (unsigned long)ent->res)); 137 continue; 138 } 139 if (ent->status == CANONICAL) { 140 const char *w = evutil_inet_ntop(AF_INET, &in, written, 141 sizeof(written)); 142 if (!w) { 143 TT_FAIL(("Tried to write out %s; got NULL.", ent->addr)); 144 continue; 145 } 146 if (strcmp(written, ent->addr)) { 147 TT_FAIL(("Tried to write out %s; got %s", 148 ent->addr, written)); 149 continue; 150 } 151 } 152 153 } 154 155 } 156 157 static void 158 regress_ipv6_parse(void *ptr) 159 { 160 #ifdef AF_INET6 161 int i, j; 162 163 for (i = 0; ipv6_entries[i].addr; ++i) { 164 char written[128]; 165 struct ipv6_entry *ent = &ipv6_entries[i]; 166 struct in6_addr in6; 167 int r; 168 r = evutil_inet_pton(AF_INET6, ent->addr, &in6); 169 if (r == 0) { 170 if (ent->status != BAD) 171 TT_FAIL(("%s did not parse, but it's a good address!", 172 ent->addr)); 173 continue; 174 } 175 if (ent->status == BAD) { 176 TT_FAIL(("%s parsed, but we expected an error", ent->addr)); 177 continue; 178 } 179 for (j = 0; j < 4; ++j) { 180 /* Can't use s6_addr32 here; some don't have it. */ 181 ev_uint32_t u = 182 ((ev_uint32_t)in6.s6_addr[j*4 ] << 24) | 183 ((ev_uint32_t)in6.s6_addr[j*4+1] << 16) | 184 ((ev_uint32_t)in6.s6_addr[j*4+2] << 8) | 185 ((ev_uint32_t)in6.s6_addr[j*4+3]); 186 if (u != ent->res[j]) { 187 TT_FAIL(("%s did not parse as expected.", ent->addr)); 188 continue; 189 } 190 } 191 if (ent->status == CANONICAL) { 192 const char *w = evutil_inet_ntop(AF_INET6, &in6, written, 193 sizeof(written)); 194 if (!w) { 195 TT_FAIL(("Tried to write out %s; got NULL.", ent->addr)); 196 continue; 197 } 198 if (strcmp(written, ent->addr)) { 199 TT_FAIL(("Tried to write out %s; got %s", ent->addr, written)); 200 continue; 201 } 202 } 203 204 } 205 #else 206 TT_BLATHER(("Skipping IPv6 address parsing.")); 207 #endif 208 } 209 210 static struct sa_port_ent { 211 const char *parse; 212 int safamily; 213 const char *addr; 214 int port; 215 } sa_port_ents[] = { 216 { "[ffff::1]:1000", AF_INET6, "ffff::1", 1000 }, 217 { "[ffff::1]", AF_INET6, "ffff::1", 0 }, 218 { "[ffff::1", 0, NULL, 0 }, 219 { "[ffff::1]:65599", 0, NULL, 0 }, 220 { "[ffff::1]:0", 0, NULL, 0 }, 221 { "[ffff::1]:-1", 0, NULL, 0 }, 222 { "::1", AF_INET6, "::1", 0 }, 223 { "1:2::1", AF_INET6, "1:2::1", 0 }, 224 { "192.168.0.1:50", AF_INET, "192.168.0.1", 50 }, 225 { "1.2.3.4", AF_INET, "1.2.3.4", 0 }, 226 { NULL, 0, NULL, 0 }, 227 }; 228 229 static void 230 regress_sockaddr_port_parse(void *ptr) 231 { 232 struct sockaddr_storage ss; 233 int i, r; 234 235 for (i = 0; sa_port_ents[i].parse; ++i) { 236 struct sa_port_ent *ent = &sa_port_ents[i]; 237 int len = sizeof(ss); 238 memset(&ss, 0, sizeof(ss)); 239 r = evutil_parse_sockaddr_port(ent->parse, (struct sockaddr*)&ss, &len); 240 if (r < 0) { 241 if (ent->safamily) 242 TT_FAIL(("Couldn't parse %s!", ent->parse)); 243 continue; 244 } else if (! ent->safamily) { 245 TT_FAIL(("Shouldn't have been able to parse %s!", ent->parse)); 246 continue; 247 } 248 if (ent->safamily == AF_INET) { 249 struct sockaddr_in sin; 250 memset(&sin, 0, sizeof(sin)); 251 #ifdef EVENT__HAVE_STRUCT_SOCKADDR_IN_SIN_LEN 252 sin.sin_len = sizeof(sin); 253 #endif 254 sin.sin_family = AF_INET; 255 sin.sin_port = htons(ent->port); 256 r = evutil_inet_pton(AF_INET, ent->addr, &sin.sin_addr); 257 if (1 != r) { 258 TT_FAIL(("Couldn't parse ipv4 target %s.", ent->addr)); 259 } else if (memcmp(&sin, &ss, sizeof(sin))) { 260 TT_FAIL(("Parse for %s was not as expected.", ent->parse)); 261 } else if (len != sizeof(sin)) { 262 TT_FAIL(("Length for %s not as expected.",ent->parse)); 263 } 264 } else { 265 struct sockaddr_in6 sin6; 266 memset(&sin6, 0, sizeof(sin6)); 267 #ifdef EVENT__HAVE_STRUCT_SOCKADDR_IN6_SIN6_LEN 268 sin6.sin6_len = sizeof(sin6); 269 #endif 270 sin6.sin6_family = AF_INET6; 271 sin6.sin6_port = htons(ent->port); 272 r = evutil_inet_pton(AF_INET6, ent->addr, &sin6.sin6_addr); 273 if (1 != r) { 274 TT_FAIL(("Couldn't parse ipv6 target %s.", ent->addr)); 275 } else if (memcmp(&sin6, &ss, sizeof(sin6))) { 276 TT_FAIL(("Parse for %s was not as expected.", ent->parse)); 277 } else if (len != sizeof(sin6)) { 278 TT_FAIL(("Length for %s not as expected.",ent->parse)); 279 } 280 } 281 } 282 } 283 284 285 static void 286 regress_sockaddr_port_format(void *ptr) 287 { 288 struct sockaddr_storage ss; 289 int len; 290 const char *cp; 291 char cbuf[128]; 292 int r; 293 294 len = sizeof(ss); 295 r = evutil_parse_sockaddr_port("192.168.1.1:80", 296 (struct sockaddr*)&ss, &len); 297 tt_int_op(r,==,0); 298 cp = evutil_format_sockaddr_port_( 299 (struct sockaddr*)&ss, cbuf, sizeof(cbuf)); 300 tt_ptr_op(cp,==,cbuf); 301 tt_str_op(cp,==,"192.168.1.1:80"); 302 303 len = sizeof(ss); 304 r = evutil_parse_sockaddr_port("[ff00::8010]:999", 305 (struct sockaddr*)&ss, &len); 306 tt_int_op(r,==,0); 307 cp = evutil_format_sockaddr_port_( 308 (struct sockaddr*)&ss, cbuf, sizeof(cbuf)); 309 tt_ptr_op(cp,==,cbuf); 310 tt_str_op(cp,==,"[ff00::8010]:999"); 311 312 ss.ss_family=99; 313 cp = evutil_format_sockaddr_port_( 314 (struct sockaddr*)&ss, cbuf, sizeof(cbuf)); 315 tt_ptr_op(cp,==,cbuf); 316 tt_str_op(cp,==,"<addr with socktype 99>"); 317 end: 318 ; 319 } 320 321 static struct sa_pred_ent { 322 const char *parse; 323 324 int is_loopback; 325 } sa_pred_entries[] = { 326 { "127.0.0.1", 1 }, 327 { "127.0.3.2", 1 }, 328 { "128.1.2.3", 0 }, 329 { "18.0.0.1", 0 }, 330 { "129.168.1.1", 0 }, 331 332 { "::1", 1 }, 333 { "::0", 0 }, 334 { "f::1", 0 }, 335 { "::501", 0 }, 336 { NULL, 0 }, 337 338 }; 339 340 static void 341 test_evutil_sockaddr_predicates(void *ptr) 342 { 343 struct sockaddr_storage ss; 344 int r, i; 345 346 for (i=0; sa_pred_entries[i].parse; ++i) { 347 struct sa_pred_ent *ent = &sa_pred_entries[i]; 348 int len = sizeof(ss); 349 350 r = evutil_parse_sockaddr_port(ent->parse, (struct sockaddr*)&ss, &len); 351 352 if (r<0) { 353 TT_FAIL(("Couldn't parse %s!", ent->parse)); 354 continue; 355 } 356 357 /* sockaddr_is_loopback */ 358 if (ent->is_loopback != evutil_sockaddr_is_loopback_((struct sockaddr*)&ss)) { 359 TT_FAIL(("evutil_sockaddr_loopback(%s) not as expected", 360 ent->parse)); 361 } 362 } 363 } 364 365 static void 366 test_evutil_strtoll(void *ptr) 367 { 368 const char *s; 369 char *endptr; 370 371 tt_want(evutil_strtoll("5000000000", NULL, 10) == 372 ((ev_int64_t)5000000)*1000); 373 tt_want(evutil_strtoll("-5000000000", NULL, 10) == 374 ((ev_int64_t)5000000)*-1000); 375 s = " 99999stuff"; 376 tt_want(evutil_strtoll(s, &endptr, 10) == (ev_int64_t)99999); 377 tt_want(endptr == s+6); 378 tt_want(evutil_strtoll("foo", NULL, 10) == 0); 379 } 380 381 static void 382 test_evutil_snprintf(void *ptr) 383 { 384 char buf[16]; 385 int r; 386 ev_uint64_t u64 = ((ev_uint64_t)1000000000)*200; 387 ev_int64_t i64 = -1 * (ev_int64_t) u64; 388 size_t size = 8000; 389 ev_ssize_t ssize = -9000; 390 391 r = evutil_snprintf(buf, sizeof(buf), "%d %d", 50, 100); 392 tt_str_op(buf, ==, "50 100"); 393 tt_int_op(r, ==, 6); 394 395 r = evutil_snprintf(buf, sizeof(buf), "longish %d", 1234567890); 396 tt_str_op(buf, ==, "longish 1234567"); 397 tt_int_op(r, ==, 18); 398 399 r = evutil_snprintf(buf, sizeof(buf), EV_U64_FMT, EV_U64_ARG(u64)); 400 tt_str_op(buf, ==, "200000000000"); 401 tt_int_op(r, ==, 12); 402 403 r = evutil_snprintf(buf, sizeof(buf), EV_I64_FMT, EV_I64_ARG(i64)); 404 tt_str_op(buf, ==, "-200000000000"); 405 tt_int_op(r, ==, 13); 406 407 r = evutil_snprintf(buf, sizeof(buf), EV_SIZE_FMT" "EV_SSIZE_FMT, 408 EV_SIZE_ARG(size), EV_SSIZE_ARG(ssize)); 409 tt_str_op(buf, ==, "8000 -9000"); 410 tt_int_op(r, ==, 10); 411 412 end: 413 ; 414 } 415 416 static void 417 test_evutil_casecmp(void *ptr) 418 { 419 tt_int_op(evutil_ascii_strcasecmp("ABC", "ABC"), ==, 0); 420 tt_int_op(evutil_ascii_strcasecmp("ABC", "abc"), ==, 0); 421 tt_int_op(evutil_ascii_strcasecmp("ABC", "abcd"), <, 0); 422 tt_int_op(evutil_ascii_strcasecmp("ABC", "abb"), >, 0); 423 tt_int_op(evutil_ascii_strcasecmp("ABCd", "abc"), >, 0); 424 425 tt_int_op(evutil_ascii_strncasecmp("Libevent", "LibEvEnT", 100), ==, 0); 426 tt_int_op(evutil_ascii_strncasecmp("Libevent", "LibEvEnT", 4), ==, 0); 427 tt_int_op(evutil_ascii_strncasecmp("Libevent", "LibEXXXX", 4), ==, 0); 428 tt_int_op(evutil_ascii_strncasecmp("Libevent", "LibE", 4), ==, 0); 429 tt_int_op(evutil_ascii_strncasecmp("Libe", "LibEvEnT", 4), ==, 0); 430 tt_int_op(evutil_ascii_strncasecmp("Lib", "LibEvEnT", 4), <, 0); 431 tt_int_op(evutil_ascii_strncasecmp("abc", "def", 99), <, 0); 432 tt_int_op(evutil_ascii_strncasecmp("Z", "qrst", 1), >, 0); 433 end: 434 ; 435 } 436 437 static void 438 test_evutil_rtrim(void *ptr) 439 { 440 #define TEST_TRIM(s, result) \ 441 do { \ 442 if (cp) mm_free(cp); \ 443 cp = mm_strdup(s); \ 444 tt_assert(cp); \ 445 evutil_rtrim_lws_(cp); \ 446 tt_str_op(cp, ==, result); \ 447 } while(0) 448 449 char *cp = NULL; 450 (void) ptr; 451 452 TEST_TRIM("", ""); 453 TEST_TRIM("a", "a"); 454 TEST_TRIM("abcdef ghi", "abcdef ghi"); 455 456 TEST_TRIM(" ", ""); 457 TEST_TRIM(" ", ""); 458 TEST_TRIM("a ", "a"); 459 TEST_TRIM("abcdef gH ", "abcdef gH"); 460 461 TEST_TRIM("\t\t", ""); 462 TEST_TRIM(" \t", ""); 463 TEST_TRIM("\t", ""); 464 TEST_TRIM("a \t", "a"); 465 TEST_TRIM("a\t ", "a"); 466 TEST_TRIM("a\t", "a"); 467 TEST_TRIM("abcdef gH \t ", "abcdef gH"); 468 469 end: 470 if (cp) 471 mm_free(cp); 472 } 473 474 static int logsev = 0; 475 static char *logmsg = NULL; 476 477 static void 478 logfn(int severity, const char *msg) 479 { 480 logsev = severity; 481 tt_want(msg); 482 if (msg) { 483 if (logmsg) 484 free(logmsg); 485 logmsg = strdup(msg); 486 } 487 } 488 489 static int fatal_want_severity = 0; 490 static const char *fatal_want_message = NULL; 491 static void 492 fatalfn(int exitcode) 493 { 494 if (logsev != fatal_want_severity || 495 !logmsg || 496 strcmp(logmsg, fatal_want_message)) 497 exit(0); 498 else 499 exit(exitcode); 500 } 501 502 #ifndef _WIN32 503 #define CAN_CHECK_ERR 504 static void 505 check_error_logging(void (*fn)(void), int wantexitcode, 506 int wantseverity, const char *wantmsg) 507 { 508 pid_t pid; 509 int status = 0, exitcode; 510 fatal_want_severity = wantseverity; 511 fatal_want_message = wantmsg; 512 if ((pid = regress_fork()) == 0) { 513 /* child process */ 514 fn(); 515 exit(0); /* should be unreachable. */ 516 } else { 517 wait(&status); 518 exitcode = WEXITSTATUS(status); 519 tt_int_op(wantexitcode, ==, exitcode); 520 } 521 end: 522 ; 523 } 524 525 static void 526 errx_fn(void) 527 { 528 event_errx(2, "Fatal error; too many kumquats (%d)", 5); 529 } 530 531 static void 532 err_fn(void) 533 { 534 errno = ENOENT; 535 event_err(5,"Couldn't open %s", "/very/bad/file"); 536 } 537 538 static void 539 sock_err_fn(void) 540 { 541 evutil_socket_t fd = socket(AF_INET, SOCK_STREAM, 0); 542 #ifdef _WIN32 543 EVUTIL_SET_SOCKET_ERROR(WSAEWOULDBLOCK); 544 #else 545 errno = EAGAIN; 546 #endif 547 event_sock_err(20, fd, "Unhappy socket"); 548 } 549 #endif 550 551 static void 552 test_evutil_log(void *ptr) 553 { 554 evutil_socket_t fd = -1; 555 char buf[128]; 556 557 event_set_log_callback(logfn); 558 event_set_fatal_callback(fatalfn); 559 #define RESET() do { \ 560 logsev = 0; \ 561 if (logmsg) free(logmsg); \ 562 logmsg = NULL; \ 563 } while (0) 564 #define LOGEQ(sev,msg) do { \ 565 tt_int_op(logsev,==,sev); \ 566 tt_assert(logmsg != NULL); \ 567 tt_str_op(logmsg,==,msg); \ 568 } while (0) 569 570 #ifdef CAN_CHECK_ERR 571 /* We need to disable these tests for now. Previously, the logging 572 * module didn't enforce the requirement that a fatal callback 573 * actually exit. Now, it exits no matter what, so if we wan to 574 * reinstate these tests, we'll need to fork for each one. */ 575 check_error_logging(errx_fn, 2, EVENT_LOG_ERR, 576 "Fatal error; too many kumquats (5)"); 577 RESET(); 578 #endif 579 580 event_warnx("Far too many %s (%d)", "wombats", 99); 581 LOGEQ(EVENT_LOG_WARN, "Far too many wombats (99)"); 582 RESET(); 583 584 event_msgx("Connecting lime to coconut"); 585 LOGEQ(EVENT_LOG_MSG, "Connecting lime to coconut"); 586 RESET(); 587 588 event_debug(("A millisecond passed! We should log that!")); 589 #ifdef USE_DEBUG 590 LOGEQ(EVENT_LOG_DEBUG, "A millisecond passed! We should log that!"); 591 #else 592 tt_int_op(logsev,==,0); 593 tt_ptr_op(logmsg,==,NULL); 594 #endif 595 RESET(); 596 597 /* Try with an errno. */ 598 errno = ENOENT; 599 event_warn("Couldn't open %s", "/bad/file"); 600 evutil_snprintf(buf, sizeof(buf), 601 "Couldn't open /bad/file: %s",strerror(ENOENT)); 602 LOGEQ(EVENT_LOG_WARN,buf); 603 RESET(); 604 605 #ifdef CAN_CHECK_ERR 606 evutil_snprintf(buf, sizeof(buf), 607 "Couldn't open /very/bad/file: %s",strerror(ENOENT)); 608 check_error_logging(err_fn, 5, EVENT_LOG_ERR, buf); 609 RESET(); 610 #endif 611 612 /* Try with a socket errno. */ 613 fd = socket(AF_INET, SOCK_STREAM, 0); 614 #ifdef _WIN32 615 evutil_snprintf(buf, sizeof(buf), 616 "Unhappy socket: %s", 617 evutil_socket_error_to_string(WSAEWOULDBLOCK)); 618 EVUTIL_SET_SOCKET_ERROR(WSAEWOULDBLOCK); 619 #else 620 evutil_snprintf(buf, sizeof(buf), 621 "Unhappy socket: %s", strerror(EAGAIN)); 622 errno = EAGAIN; 623 #endif 624 event_sock_warn(fd, "Unhappy socket"); 625 LOGEQ(EVENT_LOG_WARN, buf); 626 RESET(); 627 628 #ifdef CAN_CHECK_ERR 629 check_error_logging(sock_err_fn, 20, EVENT_LOG_ERR, buf); 630 RESET(); 631 #endif 632 633 #undef RESET 634 #undef LOGEQ 635 end: 636 if (logmsg) 637 free(logmsg); 638 if (fd >= 0) 639 evutil_closesocket(fd); 640 } 641 642 static void 643 test_evutil_strlcpy(void *arg) 644 { 645 char buf[8]; 646 647 /* Successful case. */ 648 tt_int_op(5, ==, strlcpy(buf, "Hello", sizeof(buf))); 649 tt_str_op(buf, ==, "Hello"); 650 651 /* Overflow by a lot. */ 652 tt_int_op(13, ==, strlcpy(buf, "pentasyllabic", sizeof(buf))); 653 tt_str_op(buf, ==, "pentasy"); 654 655 /* Overflow by exactly one. */ 656 tt_int_op(8, ==, strlcpy(buf, "overlong", sizeof(buf))); 657 tt_str_op(buf, ==, "overlon"); 658 end: 659 ; 660 } 661 662 struct example_struct { 663 const char *a; 664 const char *b; 665 long c; 666 }; 667 668 static void 669 test_evutil_upcast(void *arg) 670 { 671 struct example_struct es1; 672 const char **cp; 673 es1.a = "World"; 674 es1.b = "Hello"; 675 es1.c = -99; 676 677 tt_int_op(evutil_offsetof(struct example_struct, b), ==, sizeof(char*)); 678 679 cp = &es1.b; 680 tt_ptr_op(EVUTIL_UPCAST(cp, struct example_struct, b), ==, &es1); 681 682 end: 683 ; 684 } 685 686 static void 687 test_evutil_integers(void *arg) 688 { 689 ev_int64_t i64; 690 ev_uint64_t u64; 691 ev_int32_t i32; 692 ev_uint32_t u32; 693 ev_int16_t i16; 694 ev_uint16_t u16; 695 ev_int8_t i8; 696 ev_uint8_t u8; 697 698 void *ptr; 699 ev_intptr_t iptr; 700 ev_uintptr_t uptr; 701 702 ev_ssize_t ssize; 703 704 tt_int_op(sizeof(u64), ==, 8); 705 tt_int_op(sizeof(i64), ==, 8); 706 tt_int_op(sizeof(u32), ==, 4); 707 tt_int_op(sizeof(i32), ==, 4); 708 tt_int_op(sizeof(u16), ==, 2); 709 tt_int_op(sizeof(i16), ==, 2); 710 tt_int_op(sizeof(u8), ==, 1); 711 tt_int_op(sizeof(i8), ==, 1); 712 713 tt_int_op(sizeof(ev_ssize_t), ==, sizeof(size_t)); 714 tt_int_op(sizeof(ev_intptr_t), >=, sizeof(void *)); 715 tt_int_op(sizeof(ev_uintptr_t), ==, sizeof(intptr_t)); 716 717 u64 = 1000000000; 718 u64 *= 1000000000; 719 tt_assert(u64 / 1000000000 == 1000000000); 720 i64 = -1000000000; 721 i64 *= 1000000000; 722 tt_assert(i64 / 1000000000 == -1000000000); 723 724 u64 = EV_UINT64_MAX; 725 i64 = EV_INT64_MAX; 726 tt_assert(u64 > 0); 727 tt_assert(i64 > 0); 728 u64++; 729 /* i64++; */ 730 tt_assert(u64 == 0); 731 /* tt_assert(i64 == EV_INT64_MIN); */ 732 /* tt_assert(i64 < 0); */ 733 734 u32 = EV_UINT32_MAX; 735 i32 = EV_INT32_MAX; 736 tt_assert(u32 > 0); 737 tt_assert(i32 > 0); 738 u32++; 739 /* i32++; */ 740 tt_assert(u32 == 0); 741 /* tt_assert(i32 == EV_INT32_MIN); */ 742 /* tt_assert(i32 < 0); */ 743 744 u16 = EV_UINT16_MAX; 745 i16 = EV_INT16_MAX; 746 tt_assert(u16 > 0); 747 tt_assert(i16 > 0); 748 u16++; 749 /* i16++; */ 750 tt_assert(u16 == 0); 751 /* tt_assert(i16 == EV_INT16_MIN); */ 752 /* tt_assert(i16 < 0); */ 753 754 u8 = EV_UINT8_MAX; 755 i8 = EV_INT8_MAX; 756 tt_assert(u8 > 0); 757 tt_assert(i8 > 0); 758 u8++; 759 /* i8++;*/ 760 tt_assert(u8 == 0); 761 /* tt_assert(i8 == EV_INT8_MIN); */ 762 /* tt_assert(i8 < 0); */ 763 764 /* 765 ssize = EV_SSIZE_MAX; 766 tt_assert(ssize > 0); 767 ssize++; 768 tt_assert(ssize < 0); 769 tt_assert(ssize == EV_SSIZE_MIN); 770 */ 771 772 ptr = &ssize; 773 iptr = (ev_intptr_t)ptr; 774 uptr = (ev_uintptr_t)ptr; 775 ptr = (void *)iptr; 776 tt_assert(ptr == &ssize); 777 ptr = (void *)uptr; 778 tt_assert(ptr == &ssize); 779 780 iptr = -1; 781 tt_assert(iptr < 0); 782 end: 783 ; 784 } 785 786 struct evutil_addrinfo * 787 ai_find_by_family(struct evutil_addrinfo *ai, int family) 788 { 789 while (ai) { 790 if (ai->ai_family == family) 791 return ai; 792 ai = ai->ai_next; 793 } 794 return NULL; 795 } 796 797 struct evutil_addrinfo * 798 ai_find_by_protocol(struct evutil_addrinfo *ai, int protocol) 799 { 800 while (ai) { 801 if (ai->ai_protocol == protocol) 802 return ai; 803 ai = ai->ai_next; 804 } 805 return NULL; 806 } 807 808 809 int 810 test_ai_eq_(const struct evutil_addrinfo *ai, const char *sockaddr_port, 811 int socktype, int protocol, int line) 812 { 813 struct sockaddr_storage ss; 814 int slen = sizeof(ss); 815 int gotport; 816 char buf[128]; 817 memset(&ss, 0, sizeof(ss)); 818 if (socktype > 0) 819 tt_int_op(ai->ai_socktype, ==, socktype); 820 if (protocol > 0) 821 tt_int_op(ai->ai_protocol, ==, protocol); 822 823 if (evutil_parse_sockaddr_port( 824 sockaddr_port, (struct sockaddr*)&ss, &slen)<0) { 825 TT_FAIL(("Couldn't parse expected address %s on line %d", 826 sockaddr_port, line)); 827 return -1; 828 } 829 if (ai->ai_family != ss.ss_family) { 830 TT_FAIL(("Address family %d did not match %d on line %d", 831 ai->ai_family, ss.ss_family, line)); 832 return -1; 833 } 834 if (ai->ai_addr->sa_family == AF_INET) { 835 struct sockaddr_in *sin = (struct sockaddr_in*)ai->ai_addr; 836 evutil_inet_ntop(AF_INET, &sin->sin_addr, buf, sizeof(buf)); 837 gotport = ntohs(sin->sin_port); 838 if (ai->ai_addrlen != sizeof(struct sockaddr_in)) { 839 TT_FAIL(("Addr size mismatch on line %d", line)); 840 return -1; 841 } 842 } else { 843 struct sockaddr_in6 *sin6 = (struct sockaddr_in6*)ai->ai_addr; 844 evutil_inet_ntop(AF_INET6, &sin6->sin6_addr, buf, sizeof(buf)); 845 gotport = ntohs(sin6->sin6_port); 846 if (ai->ai_addrlen != sizeof(struct sockaddr_in6)) { 847 TT_FAIL(("Addr size mismatch on line %d", line)); 848 return -1; 849 } 850 } 851 if (evutil_sockaddr_cmp(ai->ai_addr, (struct sockaddr*)&ss, 1)) { 852 TT_FAIL(("Wanted %s, got %s:%d on line %d", sockaddr_port, 853 buf, gotport, line)); 854 return -1; 855 } else { 856 TT_BLATHER(("Wanted %s, got %s:%d on line %d", sockaddr_port, 857 buf, gotport, line)); 858 } 859 return 0; 860 end: 861 TT_FAIL(("Test failed on line %d", line)); 862 return -1; 863 } 864 865 static void 866 test_evutil_rand(void *arg) 867 { 868 char buf1[32]; 869 char buf2[32]; 870 int counts[256]; 871 int i, j, k, n=0; 872 struct evutil_weakrand_state seed = { 12346789U }; 873 874 memset(buf2, 0, sizeof(buf2)); 875 memset(counts, 0, sizeof(counts)); 876 877 for (k=0;k<32;++k) { 878 /* Try a few different start and end points; try to catch 879 * the various misaligned cases of arc4random_buf */ 880 int startpoint = evutil_weakrand_(&seed) % 4; 881 int endpoint = 32 - (evutil_weakrand_(&seed) % 4); 882 883 memset(buf2, 0, sizeof(buf2)); 884 885 /* Do 6 runs over buf1, or-ing the result into buf2 each 886 * time, to make sure we're setting each byte that we mean 887 * to set. */ 888 for (i=0;i<8;++i) { 889 memset(buf1, 0, sizeof(buf1)); 890 evutil_secure_rng_get_bytes(buf1 + startpoint, 891 endpoint-startpoint); 892 n += endpoint - startpoint; 893 for (j=0; j<32; ++j) { 894 if (j >= startpoint && j < endpoint) { 895 buf2[j] |= buf1[j]; 896 ++counts[(unsigned char)buf1[j]]; 897 } else { 898 tt_assert(buf1[j] == 0); 899 tt_int_op(buf1[j], ==, 0); 900 901 } 902 } 903 } 904 905 /* This will give a false positive with P=(256**8)==(2**64) 906 * for each character. */ 907 for (j=startpoint;j<endpoint;++j) { 908 tt_int_op(buf2[j], !=, 0); 909 } 910 } 911 912 evutil_weakrand_seed_(&seed, 0); 913 for (i = 0; i < 10000; ++i) { 914 ev_int32_t r = evutil_weakrand_range_(&seed, 9999); 915 tt_int_op(0, <=, r); 916 tt_int_op(r, <, 9999); 917 } 918 919 /* for (i=0;i<256;++i) { printf("%3d %2d\n", i, counts[i]); } */ 920 end: 921 ; 922 } 923 924 static void 925 test_evutil_getaddrinfo(void *arg) 926 { 927 struct evutil_addrinfo *ai = NULL, *a; 928 struct evutil_addrinfo hints; 929 int r; 930 931 /* Try using it as a pton. */ 932 memset(&hints, 0, sizeof(hints)); 933 hints.ai_family = PF_UNSPEC; 934 hints.ai_socktype = SOCK_STREAM; 935 r = evutil_getaddrinfo("1.2.3.4", "8080", &hints, &ai); 936 tt_int_op(r, ==, 0); 937 tt_assert(ai); 938 tt_ptr_op(ai->ai_next, ==, NULL); /* no ambiguity */ 939 test_ai_eq(ai, "1.2.3.4:8080", SOCK_STREAM, IPPROTO_TCP); 940 evutil_freeaddrinfo(ai); 941 ai = NULL; 942 943 memset(&hints, 0, sizeof(hints)); 944 hints.ai_family = PF_UNSPEC; 945 hints.ai_protocol = IPPROTO_UDP; 946 r = evutil_getaddrinfo("1001:b0b::f00f", "4321", &hints, &ai); 947 tt_int_op(r, ==, 0); 948 tt_assert(ai); 949 tt_ptr_op(ai->ai_next, ==, NULL); /* no ambiguity */ 950 test_ai_eq(ai, "[1001:b0b::f00f]:4321", SOCK_DGRAM, IPPROTO_UDP); 951 evutil_freeaddrinfo(ai); 952 ai = NULL; 953 954 /* Try out the behavior of nodename=NULL */ 955 memset(&hints, 0, sizeof(hints)); 956 hints.ai_family = PF_INET; 957 hints.ai_protocol = IPPROTO_TCP; 958 hints.ai_flags = EVUTIL_AI_PASSIVE; /* as if for bind */ 959 r = evutil_getaddrinfo(NULL, "9999", &hints, &ai); 960 tt_int_op(r,==,0); 961 tt_assert(ai); 962 tt_ptr_op(ai->ai_next, ==, NULL); 963 test_ai_eq(ai, "0.0.0.0:9999", SOCK_STREAM, IPPROTO_TCP); 964 evutil_freeaddrinfo(ai); 965 ai = NULL; 966 hints.ai_flags = 0; /* as if for connect */ 967 r = evutil_getaddrinfo(NULL, "9998", &hints, &ai); 968 tt_assert(ai); 969 tt_int_op(r,==,0); 970 test_ai_eq(ai, "127.0.0.1:9998", SOCK_STREAM, IPPROTO_TCP); 971 tt_ptr_op(ai->ai_next, ==, NULL); 972 evutil_freeaddrinfo(ai); 973 ai = NULL; 974 975 hints.ai_flags = 0; /* as if for connect */ 976 hints.ai_family = PF_INET6; 977 r = evutil_getaddrinfo(NULL, "9997", &hints, &ai); 978 tt_assert(ai); 979 tt_int_op(r,==,0); 980 tt_ptr_op(ai->ai_next, ==, NULL); 981 test_ai_eq(ai, "[::1]:9997", SOCK_STREAM, IPPROTO_TCP); 982 evutil_freeaddrinfo(ai); 983 ai = NULL; 984 985 hints.ai_flags = EVUTIL_AI_PASSIVE; /* as if for bind. */ 986 hints.ai_family = PF_INET6; 987 r = evutil_getaddrinfo(NULL, "9996", &hints, &ai); 988 tt_assert(ai); 989 tt_int_op(r,==,0); 990 tt_ptr_op(ai->ai_next, ==, NULL); 991 test_ai_eq(ai, "[::]:9996", SOCK_STREAM, IPPROTO_TCP); 992 evutil_freeaddrinfo(ai); 993 ai = NULL; 994 995 /* Now try an unspec one. We should get a v6 and a v4. */ 996 hints.ai_family = PF_UNSPEC; 997 r = evutil_getaddrinfo(NULL, "9996", &hints, &ai); 998 tt_assert(ai); 999 tt_int_op(r,==,0); 1000 a = ai_find_by_family(ai, PF_INET6); 1001 tt_assert(a); 1002 test_ai_eq(a, "[::]:9996", SOCK_STREAM, IPPROTO_TCP); 1003 a = ai_find_by_family(ai, PF_INET); 1004 tt_assert(a); 1005 test_ai_eq(a, "0.0.0.0:9996", SOCK_STREAM, IPPROTO_TCP); 1006 evutil_freeaddrinfo(ai); 1007 ai = NULL; 1008 1009 /* Try out AI_NUMERICHOST: successful case. Also try 1010 * multiprotocol. */ 1011 memset(&hints, 0, sizeof(hints)); 1012 hints.ai_family = PF_UNSPEC; 1013 hints.ai_flags = EVUTIL_AI_NUMERICHOST; 1014 r = evutil_getaddrinfo("1.2.3.4", NULL, &hints, &ai); 1015 tt_int_op(r, ==, 0); 1016 a = ai_find_by_protocol(ai, IPPROTO_TCP); 1017 tt_assert(a); 1018 test_ai_eq(a, "1.2.3.4", SOCK_STREAM, IPPROTO_TCP); 1019 a = ai_find_by_protocol(ai, IPPROTO_UDP); 1020 tt_assert(a); 1021 test_ai_eq(a, "1.2.3.4", SOCK_DGRAM, IPPROTO_UDP); 1022 evutil_freeaddrinfo(ai); 1023 ai = NULL; 1024 1025 /* Try the failing case of AI_NUMERICHOST */ 1026 memset(&hints, 0, sizeof(hints)); 1027 hints.ai_family = PF_UNSPEC; 1028 hints.ai_flags = EVUTIL_AI_NUMERICHOST; 1029 r = evutil_getaddrinfo("www.google.com", "80", &hints, &ai); 1030 tt_int_op(r, ==, EVUTIL_EAI_NONAME); 1031 tt_ptr_op(ai, ==, NULL); 1032 1033 /* Try symbolic service names wit AI_NUMERICSERV */ 1034 memset(&hints, 0, sizeof(hints)); 1035 hints.ai_family = PF_UNSPEC; 1036 hints.ai_socktype = SOCK_STREAM; 1037 hints.ai_flags = EVUTIL_AI_NUMERICSERV; 1038 r = evutil_getaddrinfo("1.2.3.4", "http", &hints, &ai); 1039 tt_int_op(r,==,EVUTIL_EAI_NONAME); 1040 1041 /* Try symbolic service names */ 1042 memset(&hints, 0, sizeof(hints)); 1043 hints.ai_family = PF_UNSPEC; 1044 hints.ai_socktype = SOCK_STREAM; 1045 r = evutil_getaddrinfo("1.2.3.4", "http", &hints, &ai); 1046 if (r!=0) { 1047 TT_DECLARE("SKIP", ("Symbolic service names seem broken.")); 1048 } else { 1049 tt_assert(ai); 1050 test_ai_eq(ai, "1.2.3.4:80", SOCK_STREAM, IPPROTO_TCP); 1051 evutil_freeaddrinfo(ai); 1052 ai = NULL; 1053 } 1054 1055 end: 1056 if (ai) 1057 evutil_freeaddrinfo(ai); 1058 } 1059 1060 static void 1061 test_evutil_getaddrinfo_live(void *arg) 1062 { 1063 struct evutil_addrinfo *ai = NULL; 1064 struct evutil_addrinfo hints; 1065 1066 struct sockaddr_in6 *sin6; 1067 struct sockaddr_in *sin; 1068 char buf[128]; 1069 const char *cp; 1070 int r; 1071 1072 /* Now do some actual lookups. */ 1073 memset(&hints, 0, sizeof(hints)); 1074 hints.ai_family = PF_INET; 1075 hints.ai_protocol = IPPROTO_TCP; 1076 hints.ai_socktype = SOCK_STREAM; 1077 r = evutil_getaddrinfo("www.google.com", "80", &hints, &ai); 1078 if (r != 0) { 1079 TT_DECLARE("SKIP", ("Couldn't resolve www.google.com")); 1080 } else { 1081 tt_assert(ai); 1082 tt_int_op(ai->ai_family, ==, PF_INET); 1083 tt_int_op(ai->ai_protocol, ==, IPPROTO_TCP); 1084 tt_int_op(ai->ai_socktype, ==, SOCK_STREAM); 1085 tt_int_op(ai->ai_addrlen, ==, sizeof(struct sockaddr_in)); 1086 sin = (struct sockaddr_in*)ai->ai_addr; 1087 tt_int_op(sin->sin_family, ==, AF_INET); 1088 tt_int_op(sin->sin_port, ==, htons(80)); 1089 tt_int_op(sin->sin_addr.s_addr, !=, 0xffffffff); 1090 1091 cp = evutil_inet_ntop(AF_INET, &sin->sin_addr, buf, sizeof(buf)); 1092 TT_BLATHER(("www.google.com resolved to %s", 1093 cp?cp:"<unwriteable>")); 1094 evutil_freeaddrinfo(ai); 1095 ai = NULL; 1096 } 1097 1098 hints.ai_family = PF_INET6; 1099 r = evutil_getaddrinfo("ipv6.google.com", "80", &hints, &ai); 1100 if (r != 0) { 1101 TT_BLATHER(("Couldn't do an ipv6 lookup for ipv6.google.com")); 1102 } else { 1103 tt_assert(ai); 1104 tt_int_op(ai->ai_family, ==, PF_INET6); 1105 tt_int_op(ai->ai_addrlen, ==, sizeof(struct sockaddr_in6)); 1106 sin6 = (struct sockaddr_in6*)ai->ai_addr; 1107 tt_int_op(sin6->sin6_port, ==, htons(80)); 1108 1109 cp = evutil_inet_ntop(AF_INET6, &sin6->sin6_addr, buf, 1110 sizeof(buf)); 1111 TT_BLATHER(("ipv6.google.com resolved to %s", 1112 cp?cp:"<unwriteable>")); 1113 } 1114 1115 end: 1116 if (ai) 1117 evutil_freeaddrinfo(ai); 1118 } 1119 1120 #ifdef _WIN32 1121 static void 1122 test_evutil_loadsyslib(void *arg) 1123 { 1124 HMODULE h=NULL; 1125 1126 h = evutil_load_windows_system_library_(TEXT("kernel32.dll")); 1127 tt_assert(h); 1128 1129 end: 1130 if (h) 1131 CloseHandle(h); 1132 1133 } 1134 #endif 1135 1136 /** Test mm_malloc(). */ 1137 static void 1138 test_event_malloc(void *arg) 1139 { 1140 void *p = NULL; 1141 (void)arg; 1142 1143 /* mm_malloc(0) should simply return NULL. */ 1144 #ifndef EVENT__DISABLE_MM_REPLACEMENT 1145 errno = 0; 1146 p = mm_malloc(0); 1147 tt_assert(p == NULL); 1148 tt_int_op(errno, ==, 0); 1149 #endif 1150 1151 /* Trivial case. */ 1152 errno = 0; 1153 p = mm_malloc(8); 1154 tt_assert(p != NULL); 1155 tt_int_op(errno, ==, 0); 1156 mm_free(p); 1157 1158 end: 1159 errno = 0; 1160 return; 1161 } 1162 1163 static void 1164 test_event_calloc(void *arg) 1165 { 1166 void *p = NULL; 1167 (void)arg; 1168 1169 #ifndef EVENT__DISABLE_MM_REPLACEMENT 1170 /* mm_calloc() should simply return NULL 1171 * if either argument is zero. */ 1172 errno = 0; 1173 p = mm_calloc(0, 0); 1174 tt_assert(p == NULL); 1175 tt_int_op(errno, ==, 0); 1176 errno = 0; 1177 p = mm_calloc(0, 1); 1178 tt_assert(p == NULL); 1179 tt_int_op(errno, ==, 0); 1180 errno = 0; 1181 p = mm_calloc(1, 0); 1182 tt_assert(p == NULL); 1183 tt_int_op(errno, ==, 0); 1184 #endif 1185 1186 /* Trivial case. */ 1187 errno = 0; 1188 p = mm_calloc(8, 8); 1189 tt_assert(p != NULL); 1190 tt_int_op(errno, ==, 0); 1191 mm_free(p); 1192 p = NULL; 1193 1194 /* mm_calloc() should set errno = ENOMEM and return NULL 1195 * in case of potential overflow. */ 1196 errno = 0; 1197 p = mm_calloc(EV_SIZE_MAX/2, EV_SIZE_MAX/2 + 8); 1198 tt_assert(p == NULL); 1199 tt_int_op(errno, ==, ENOMEM); 1200 1201 end: 1202 errno = 0; 1203 if (p) 1204 mm_free(p); 1205 1206 return; 1207 } 1208 1209 static void 1210 test_event_strdup(void *arg) 1211 { 1212 void *p = NULL; 1213 (void)arg; 1214 1215 #ifndef EVENT__DISABLE_MM_REPLACEMENT 1216 /* mm_strdup(NULL) should set errno = EINVAL and return NULL. */ 1217 errno = 0; 1218 p = mm_strdup(NULL); 1219 tt_assert(p == NULL); 1220 tt_int_op(errno, ==, EINVAL); 1221 #endif 1222 1223 /* Trivial cases. */ 1224 1225 errno = 0; 1226 p = mm_strdup(""); 1227 tt_assert(p != NULL); 1228 tt_int_op(errno, ==, 0); 1229 tt_str_op(p, ==, ""); 1230 mm_free(p); 1231 1232 errno = 0; 1233 p = mm_strdup("foo"); 1234 tt_assert(p != NULL); 1235 tt_int_op(errno, ==, 0); 1236 tt_str_op(p, ==, "foo"); 1237 mm_free(p); 1238 1239 /* XXX 1240 * mm_strdup(str) where str is a string of length EV_SIZE_MAX 1241 * should set errno = ENOMEM and return NULL. */ 1242 1243 end: 1244 errno = 0; 1245 return; 1246 } 1247 1248 static void 1249 test_evutil_usleep(void *arg) 1250 { 1251 struct timeval tv1, tv2, tv3, diff1, diff2; 1252 const struct timeval quarter_sec = {0, 250*1000}; 1253 const struct timeval tenth_sec = {0, 100*1000}; 1254 long usec1, usec2; 1255 1256 evutil_gettimeofday(&tv1, NULL); 1257 evutil_usleep_(&quarter_sec); 1258 evutil_gettimeofday(&tv2, NULL); 1259 evutil_usleep_(&tenth_sec); 1260 evutil_gettimeofday(&tv3, NULL); 1261 1262 evutil_timersub(&tv2, &tv1, &diff1); 1263 evutil_timersub(&tv3, &tv2, &diff2); 1264 usec1 = diff1.tv_sec * 1000000 + diff1.tv_usec; 1265 usec2 = diff2.tv_sec * 1000000 + diff2.tv_usec; 1266 1267 tt_int_op(usec1, >, 200000); 1268 tt_int_op(usec1, <, 300000); 1269 tt_int_op(usec2, >, 80000); 1270 tt_int_op(usec2, <, 120000); 1271 1272 end: 1273 ; 1274 } 1275 1276 static void 1277 test_evutil_monotonic_res(void *data_) 1278 { 1279 /* Basic santity-test for monotonic timers. What we'd really like 1280 * to do is make sure that they can't go backwards even when the 1281 * system clock goes backwards. But we haven't got a good way to 1282 * move the system clock backwards. 1283 */ 1284 struct basic_test_data *data = data_; 1285 struct evutil_monotonic_timer timer; 1286 const int precise = strstr(data->setup_data, "precise") != NULL; 1287 const int fallback = strstr(data->setup_data, "fallback") != NULL; 1288 struct timeval tv[10], delay; 1289 int total_diff = 0; 1290 1291 int flags = 0, wantres, acceptdiff, i; 1292 if (precise) 1293 flags |= EV_MONOT_PRECISE; 1294 if (fallback) 1295 flags |= EV_MONOT_FALLBACK; 1296 if (precise || fallback) { 1297 #ifdef _WIN32 1298 wantres = 10*1000; 1299 acceptdiff = 1000; 1300 #else 1301 wantres = 1000; 1302 acceptdiff = 300; 1303 #endif 1304 } else { 1305 wantres = 40*1000; 1306 acceptdiff = 20*1000; 1307 } 1308 1309 TT_BLATHER(("Precise = %d", precise)); 1310 TT_BLATHER(("Fallback = %d", fallback)); 1311 1312 /* First, make sure we match up with usleep. */ 1313 1314 delay.tv_sec = 0; 1315 delay.tv_usec = wantres; 1316 1317 tt_int_op(evutil_configure_monotonic_time_(&timer, flags), ==, 0); 1318 1319 for (i = 0; i < 10; ++i) { 1320 evutil_gettime_monotonic_(&timer, &tv[i]); 1321 evutil_usleep_(&delay); 1322 } 1323 1324 for (i = 0; i < 9; ++i) { 1325 struct timeval diff; 1326 tt_assert(evutil_timercmp(&tv[i], &tv[i+1], <)); 1327 evutil_timersub(&tv[i+1], &tv[i], &diff); 1328 tt_int_op(diff.tv_sec, ==, 0); 1329 total_diff += diff.tv_usec; 1330 TT_BLATHER(("Difference = %d", (int)diff.tv_usec)); 1331 } 1332 tt_int_op(abs(total_diff/9 - wantres), <, acceptdiff); 1333 1334 end: 1335 ; 1336 } 1337 1338 static void 1339 test_evutil_monotonic_prc(void *data_) 1340 { 1341 struct basic_test_data *data = data_; 1342 struct evutil_monotonic_timer timer; 1343 const int precise = strstr(data->setup_data, "precise") != NULL; 1344 const int fallback = strstr(data->setup_data, "fallback") != NULL; 1345 struct timeval tv[10]; 1346 int total_diff = 0; 1347 int i, maxstep = 25*1000,flags=0; 1348 if (precise) 1349 maxstep = 500; 1350 if (precise) 1351 flags |= EV_MONOT_PRECISE; 1352 if (fallback) 1353 flags |= EV_MONOT_FALLBACK; 1354 tt_int_op(evutil_configure_monotonic_time_(&timer, flags), ==, 0); 1355 1356 /* find out what precision we actually see. */ 1357 1358 evutil_gettime_monotonic_(&timer, &tv[0]); 1359 for (i = 1; i < 10; ++i) { 1360 do { 1361 evutil_gettime_monotonic_(&timer, &tv[i]); 1362 } while (evutil_timercmp(&tv[i-1], &tv[i], ==)); 1363 } 1364 1365 total_diff = 0; 1366 for (i = 0; i < 9; ++i) { 1367 struct timeval diff; 1368 tt_assert(evutil_timercmp(&tv[i], &tv[i+1], <)); 1369 evutil_timersub(&tv[i+1], &tv[i], &diff); 1370 tt_int_op(diff.tv_sec, ==, 0); 1371 total_diff += diff.tv_usec; 1372 TT_BLATHER(("Step difference = %d", (int)diff.tv_usec)); 1373 } 1374 TT_BLATHER(("Average step difference = %d", total_diff / 9)); 1375 tt_int_op(total_diff/9, <, maxstep); 1376 1377 end: 1378 ; 1379 } 1380 1381 struct testcase_t util_testcases[] = { 1382 { "ipv4_parse", regress_ipv4_parse, 0, NULL, NULL }, 1383 { "ipv6_parse", regress_ipv6_parse, 0, NULL, NULL }, 1384 { "sockaddr_port_parse", regress_sockaddr_port_parse, 0, NULL, NULL }, 1385 { "sockaddr_port_format", regress_sockaddr_port_format, 0, NULL, NULL }, 1386 { "sockaddr_predicates", test_evutil_sockaddr_predicates, 0,NULL,NULL }, 1387 { "evutil_snprintf", test_evutil_snprintf, 0, NULL, NULL }, 1388 { "evutil_strtoll", test_evutil_strtoll, 0, NULL, NULL }, 1389 { "evutil_casecmp", test_evutil_casecmp, 0, NULL, NULL }, 1390 { "evutil_rtrim", test_evutil_rtrim, 0, NULL, NULL }, 1391 { "strlcpy", test_evutil_strlcpy, 0, NULL, NULL }, 1392 { "log", test_evutil_log, TT_FORK, NULL, NULL }, 1393 { "upcast", test_evutil_upcast, 0, NULL, NULL }, 1394 { "integers", test_evutil_integers, 0, NULL, NULL }, 1395 { "rand", test_evutil_rand, TT_FORK, NULL, NULL }, 1396 { "getaddrinfo", test_evutil_getaddrinfo, TT_FORK, NULL, NULL }, 1397 { "getaddrinfo_live", test_evutil_getaddrinfo_live, TT_FORK|TT_OFF_BY_DEFAULT, NULL, NULL }, 1398 #ifdef _WIN32 1399 { "loadsyslib", test_evutil_loadsyslib, TT_FORK, NULL, NULL }, 1400 #endif 1401 { "mm_malloc", test_event_malloc, 0, NULL, NULL }, 1402 { "mm_calloc", test_event_calloc, 0, NULL, NULL }, 1403 { "mm_strdup", test_event_strdup, 0, NULL, NULL }, 1404 { "usleep", test_evutil_usleep, 0, NULL, NULL }, 1405 { "monotonic_res", test_evutil_monotonic_res, 0, &basic_setup, (void*)"" }, 1406 { "monotonic_res_precise", test_evutil_monotonic_res, TT_OFF_BY_DEFAULT, &basic_setup, (void*)"precise" }, 1407 { "monotonic_res_fallback", test_evutil_monotonic_res, TT_OFF_BY_DEFAULT, &basic_setup, (void*)"fallback" }, 1408 { "monotonic_prc", test_evutil_monotonic_prc, 0, &basic_setup, (void*)"" }, 1409 { "monotonic_prc_precise", test_evutil_monotonic_prc, 0, &basic_setup, (void*)"precise" }, 1410 { "monotonic_prc_fallback", test_evutil_monotonic_prc, 0, &basic_setup, (void*)"fallback" }, 1411 END_OF_TESTCASES, 1412 }; 1413 1414