xref: /freebsd/contrib/ntp/sntp/libevent/compat/sys/queue.h (revision 31d62a73c2e6ac0ff413a7a17700ffc7dce254ef)
1 /*	$OpenBSD: queue.h,v 1.16 2000/09/07 19:47:59 art Exp $	*/
2 /*	$NetBSD: queue.h,v 1.11 1996/05/16 05:17:14 mycroft Exp $	*/
3 
4 /*
5  * Copyright (c) 1991, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)queue.h	8.5 (Berkeley) 8/20/94
33  */
34 
35 #ifndef	SYS_QUEUE_H__
36 #define	SYS_QUEUE_H__
37 
38 /*
39  * This file defines five types of data structures: singly-linked lists,
40  * lists, simple queues, tail queues, and circular queues.
41  *
42  *
43  * A singly-linked list is headed by a single forward pointer. The elements
44  * are singly linked for minimum space and pointer manipulation overhead at
45  * the expense of O(n) removal for arbitrary elements. New elements can be
46  * added to the list after an existing element or at the head of the list.
47  * Elements being removed from the head of the list should use the explicit
48  * macro for this purpose for optimum efficiency. A singly-linked list may
49  * only be traversed in the forward direction.  Singly-linked lists are ideal
50  * for applications with large datasets and few or no removals or for
51  * implementing a LIFO queue.
52  *
53  * A list is headed by a single forward pointer (or an array of forward
54  * pointers for a hash table header). The elements are doubly linked
55  * so that an arbitrary element can be removed without a need to
56  * traverse the list. New elements can be added to the list before
57  * or after an existing element or at the head of the list. A list
58  * may only be traversed in the forward direction.
59  *
60  * A simple queue is headed by a pair of pointers, one the head of the
61  * list and the other to the tail of the list. The elements are singly
62  * linked to save space, so elements can only be removed from the
63  * head of the list. New elements can be added to the list before or after
64  * an existing element, at the head of the list, or at the end of the
65  * list. A simple queue may only be traversed in the forward direction.
66  *
67  * A tail queue is headed by a pair of pointers, one to the head of the
68  * list and the other to the tail of the list. The elements are doubly
69  * linked so that an arbitrary element can be removed without a need to
70  * traverse the list. New elements can be added to the list before or
71  * after an existing element, at the head of the list, or at the end of
72  * the list. A tail queue may be traversed in either direction.
73  *
74  * A circle queue is headed by a pair of pointers, one to the head of the
75  * list and the other to the tail of the list. The elements are doubly
76  * linked so that an arbitrary element can be removed without a need to
77  * traverse the list. New elements can be added to the list before or after
78  * an existing element, at the head of the list, or at the end of the list.
79  * A circle queue may be traversed in either direction, but has a more
80  * complex end of list detection.
81  *
82  * For details on the use of these macros, see the queue(3) manual page.
83  */
84 
85 /*
86  * Singly-linked List definitions.
87  */
88 #define SLIST_HEAD(name, type)						\
89 struct name {								\
90 	struct type *slh_first;	/* first element */			\
91 }
92 
93 #define	SLIST_HEAD_INITIALIZER(head)					\
94 	{ NULL }
95 
96 #ifndef _WIN32
97 #define SLIST_ENTRY(type)						\
98 struct {								\
99 	struct type *sle_next;	/* next element */			\
100 }
101 #endif
102 
103 /*
104  * Singly-linked List access methods.
105  */
106 #define	SLIST_FIRST(head)	((head)->slh_first)
107 #define	SLIST_END(head)		NULL
108 #define	SLIST_EMPTY(head)	(SLIST_FIRST(head) == SLIST_END(head))
109 #define	SLIST_NEXT(elm, field)	((elm)->field.sle_next)
110 
111 #define	SLIST_FOREACH(var, head, field)					\
112 	for((var) = SLIST_FIRST(head);					\
113 	    (var) != SLIST_END(head);					\
114 	    (var) = SLIST_NEXT(var, field))
115 
116 /*
117  * Singly-linked List functions.
118  */
119 #define	SLIST_INIT(head) {						\
120 	SLIST_FIRST(head) = SLIST_END(head);				\
121 }
122 
123 #define	SLIST_INSERT_AFTER(slistelm, elm, field) do {			\
124 	(elm)->field.sle_next = (slistelm)->field.sle_next;		\
125 	(slistelm)->field.sle_next = (elm);				\
126 } while (0)
127 
128 #define	SLIST_INSERT_HEAD(head, elm, field) do {			\
129 	(elm)->field.sle_next = (head)->slh_first;			\
130 	(head)->slh_first = (elm);					\
131 } while (0)
132 
133 #define	SLIST_REMOVE_HEAD(head, field) do {				\
134 	(head)->slh_first = (head)->slh_first->field.sle_next;		\
135 } while (0)
136 
137 /*
138  * List definitions.
139  */
140 #define LIST_HEAD(name, type)						\
141 struct name {								\
142 	struct type *lh_first;	/* first element */			\
143 }
144 
145 #define LIST_HEAD_INITIALIZER(head)					\
146 	{ NULL }
147 
148 #define LIST_ENTRY(type)						\
149 struct {								\
150 	struct type *le_next;	/* next element */			\
151 	struct type **le_prev;	/* address of previous next element */	\
152 }
153 
154 /*
155  * List access methods
156  */
157 #define	LIST_FIRST(head)		((head)->lh_first)
158 #define	LIST_END(head)			NULL
159 #define	LIST_EMPTY(head)		(LIST_FIRST(head) == LIST_END(head))
160 #define	LIST_NEXT(elm, field)		((elm)->field.le_next)
161 
162 #define LIST_FOREACH(var, head, field)					\
163 	for((var) = LIST_FIRST(head);					\
164 	    (var)!= LIST_END(head);					\
165 	    (var) = LIST_NEXT(var, field))
166 
167 /*
168  * List functions.
169  */
170 #define	LIST_INIT(head) do {						\
171 	LIST_FIRST(head) = LIST_END(head);				\
172 } while (0)
173 
174 #define LIST_INSERT_AFTER(listelm, elm, field) do {			\
175 	if (((elm)->field.le_next = (listelm)->field.le_next) != NULL)	\
176 		(listelm)->field.le_next->field.le_prev =		\
177 		    &(elm)->field.le_next;				\
178 	(listelm)->field.le_next = (elm);				\
179 	(elm)->field.le_prev = &(listelm)->field.le_next;		\
180 } while (0)
181 
182 #define	LIST_INSERT_BEFORE(listelm, elm, field) do {			\
183 	(elm)->field.le_prev = (listelm)->field.le_prev;		\
184 	(elm)->field.le_next = (listelm);				\
185 	*(listelm)->field.le_prev = (elm);				\
186 	(listelm)->field.le_prev = &(elm)->field.le_next;		\
187 } while (0)
188 
189 #define LIST_INSERT_HEAD(head, elm, field) do {				\
190 	if (((elm)->field.le_next = (head)->lh_first) != NULL)		\
191 		(head)->lh_first->field.le_prev = &(elm)->field.le_next;\
192 	(head)->lh_first = (elm);					\
193 	(elm)->field.le_prev = &(head)->lh_first;			\
194 } while (0)
195 
196 #define LIST_REMOVE(elm, field) do {					\
197 	if ((elm)->field.le_next != NULL)				\
198 		(elm)->field.le_next->field.le_prev =			\
199 		    (elm)->field.le_prev;				\
200 	*(elm)->field.le_prev = (elm)->field.le_next;			\
201 } while (0)
202 
203 #define LIST_REPLACE(elm, elm2, field) do {				\
204 	if (((elm2)->field.le_next = (elm)->field.le_next) != NULL)	\
205 		(elm2)->field.le_next->field.le_prev =			\
206 		    &(elm2)->field.le_next;				\
207 	(elm2)->field.le_prev = (elm)->field.le_prev;			\
208 	*(elm2)->field.le_prev = (elm2);				\
209 } while (0)
210 
211 /*
212  * Simple queue definitions.
213  */
214 #define SIMPLEQ_HEAD(name, type)					\
215 struct name {								\
216 	struct type *sqh_first;	/* first element */			\
217 	struct type **sqh_last;	/* addr of last next element */		\
218 }
219 
220 #define SIMPLEQ_HEAD_INITIALIZER(head)					\
221 	{ NULL, &(head).sqh_first }
222 
223 #define SIMPLEQ_ENTRY(type)						\
224 struct {								\
225 	struct type *sqe_next;	/* next element */			\
226 }
227 
228 /*
229  * Simple queue access methods.
230  */
231 #define	SIMPLEQ_FIRST(head)	    ((head)->sqh_first)
232 #define	SIMPLEQ_END(head)	    NULL
233 #define	SIMPLEQ_EMPTY(head)	    (SIMPLEQ_FIRST(head) == SIMPLEQ_END(head))
234 #define	SIMPLEQ_NEXT(elm, field)    ((elm)->field.sqe_next)
235 
236 #define SIMPLEQ_FOREACH(var, head, field)				\
237 	for((var) = SIMPLEQ_FIRST(head);				\
238 	    (var) != SIMPLEQ_END(head);					\
239 	    (var) = SIMPLEQ_NEXT(var, field))
240 
241 /*
242  * Simple queue functions.
243  */
244 #define	SIMPLEQ_INIT(head) do {						\
245 	(head)->sqh_first = NULL;					\
246 	(head)->sqh_last = &(head)->sqh_first;				\
247 } while (0)
248 
249 #define SIMPLEQ_INSERT_HEAD(head, elm, field) do {			\
250 	if (((elm)->field.sqe_next = (head)->sqh_first) == NULL)	\
251 		(head)->sqh_last = &(elm)->field.sqe_next;		\
252 	(head)->sqh_first = (elm);					\
253 } while (0)
254 
255 #define SIMPLEQ_INSERT_TAIL(head, elm, field) do {			\
256 	(elm)->field.sqe_next = NULL;					\
257 	*(head)->sqh_last = (elm);					\
258 	(head)->sqh_last = &(elm)->field.sqe_next;			\
259 } while (0)
260 
261 #define SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do {		\
262 	if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\
263 		(head)->sqh_last = &(elm)->field.sqe_next;		\
264 	(listelm)->field.sqe_next = (elm);				\
265 } while (0)
266 
267 #define SIMPLEQ_REMOVE_HEAD(head, elm, field) do {			\
268 	if (((head)->sqh_first = (elm)->field.sqe_next) == NULL)	\
269 		(head)->sqh_last = &(head)->sqh_first;			\
270 } while (0)
271 
272 /*
273  * Tail queue definitions.
274  */
275 #define TAILQ_HEAD(name, type)						\
276 struct name {								\
277 	struct type *tqh_first;	/* first element */			\
278 	struct type **tqh_last;	/* addr of last next element */		\
279 }
280 
281 #define TAILQ_HEAD_INITIALIZER(head)					\
282 	{ NULL, &(head).tqh_first }
283 
284 #define TAILQ_ENTRY(type)						\
285 struct {								\
286 	struct type *tqe_next;	/* next element */			\
287 	struct type **tqe_prev;	/* address of previous next element */	\
288 }
289 
290 /*
291  * tail queue access methods
292  */
293 #define	TAILQ_FIRST(head)		((head)->tqh_first)
294 #define	TAILQ_END(head)			NULL
295 #define	TAILQ_NEXT(elm, field)		((elm)->field.tqe_next)
296 #define TAILQ_LAST(head, headname)					\
297 	(*(((struct headname *)((head)->tqh_last))->tqh_last))
298 /* XXX */
299 #define TAILQ_PREV(elm, headname, field)				\
300 	(*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
301 #define	TAILQ_EMPTY(head)						\
302 	(TAILQ_FIRST(head) == TAILQ_END(head))
303 
304 #define TAILQ_FOREACH(var, head, field)					\
305 	for((var) = TAILQ_FIRST(head);					\
306 	    (var) != TAILQ_END(head);					\
307 	    (var) = TAILQ_NEXT(var, field))
308 
309 #define TAILQ_FOREACH_REVERSE(var, head, headname, field)		\
310 	for((var) = TAILQ_LAST(head, headname);				\
311 	    (var) != TAILQ_END(head);					\
312 	    (var) = TAILQ_PREV(var, headname, field))
313 
314 /*
315  * Tail queue functions.
316  */
317 #define	TAILQ_INIT(head) do {						\
318 	(head)->tqh_first = NULL;					\
319 	(head)->tqh_last = &(head)->tqh_first;				\
320 } while (0)
321 
322 #define TAILQ_INSERT_HEAD(head, elm, field) do {			\
323 	if (((elm)->field.tqe_next = (head)->tqh_first) != NULL)	\
324 		(head)->tqh_first->field.tqe_prev =			\
325 		    &(elm)->field.tqe_next;				\
326 	else								\
327 		(head)->tqh_last = &(elm)->field.tqe_next;		\
328 	(head)->tqh_first = (elm);					\
329 	(elm)->field.tqe_prev = &(head)->tqh_first;			\
330 } while (0)
331 
332 #define TAILQ_INSERT_TAIL(head, elm, field) do {			\
333 	(elm)->field.tqe_next = NULL;					\
334 	(elm)->field.tqe_prev = (head)->tqh_last;			\
335 	*(head)->tqh_last = (elm);					\
336 	(head)->tqh_last = &(elm)->field.tqe_next;			\
337 } while (0)
338 
339 #define TAILQ_INSERT_AFTER(head, listelm, elm, field) do {		\
340 	if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
341 		(elm)->field.tqe_next->field.tqe_prev =			\
342 		    &(elm)->field.tqe_next;				\
343 	else								\
344 		(head)->tqh_last = &(elm)->field.tqe_next;		\
345 	(listelm)->field.tqe_next = (elm);				\
346 	(elm)->field.tqe_prev = &(listelm)->field.tqe_next;		\
347 } while (0)
348 
349 #define	TAILQ_INSERT_BEFORE(listelm, elm, field) do {			\
350 	(elm)->field.tqe_prev = (listelm)->field.tqe_prev;		\
351 	(elm)->field.tqe_next = (listelm);				\
352 	*(listelm)->field.tqe_prev = (elm);				\
353 	(listelm)->field.tqe_prev = &(elm)->field.tqe_next;		\
354 } while (0)
355 
356 #define TAILQ_REMOVE(head, elm, field) do {				\
357 	if (((elm)->field.tqe_next) != NULL)				\
358 		(elm)->field.tqe_next->field.tqe_prev =			\
359 		    (elm)->field.tqe_prev;				\
360 	else								\
361 		(head)->tqh_last = (elm)->field.tqe_prev;		\
362 	*(elm)->field.tqe_prev = (elm)->field.tqe_next;			\
363 } while (0)
364 
365 #define TAILQ_REPLACE(head, elm, elm2, field) do {			\
366 	if (((elm2)->field.tqe_next = (elm)->field.tqe_next) != NULL)	\
367 		(elm2)->field.tqe_next->field.tqe_prev =		\
368 		    &(elm2)->field.tqe_next;				\
369 	else								\
370 		(head)->tqh_last = &(elm2)->field.tqe_next;		\
371 	(elm2)->field.tqe_prev = (elm)->field.tqe_prev;			\
372 	*(elm2)->field.tqe_prev = (elm2);				\
373 } while (0)
374 
375 /*
376  * Circular queue definitions.
377  */
378 #define CIRCLEQ_HEAD(name, type)					\
379 struct name {								\
380 	struct type *cqh_first;		/* first element */		\
381 	struct type *cqh_last;		/* last element */		\
382 }
383 
384 #define CIRCLEQ_HEAD_INITIALIZER(head)					\
385 	{ CIRCLEQ_END(&head), CIRCLEQ_END(&head) }
386 
387 #define CIRCLEQ_ENTRY(type)						\
388 struct {								\
389 	struct type *cqe_next;		/* next element */		\
390 	struct type *cqe_prev;		/* previous element */		\
391 }
392 
393 /*
394  * Circular queue access methods
395  */
396 #define	CIRCLEQ_FIRST(head)		((head)->cqh_first)
397 #define	CIRCLEQ_LAST(head)		((head)->cqh_last)
398 #define	CIRCLEQ_END(head)		((void *)(head))
399 #define	CIRCLEQ_NEXT(elm, field)	((elm)->field.cqe_next)
400 #define	CIRCLEQ_PREV(elm, field)	((elm)->field.cqe_prev)
401 #define	CIRCLEQ_EMPTY(head)						\
402 	(CIRCLEQ_FIRST(head) == CIRCLEQ_END(head))
403 
404 #define CIRCLEQ_FOREACH(var, head, field)				\
405 	for((var) = CIRCLEQ_FIRST(head);				\
406 	    (var) != CIRCLEQ_END(head);					\
407 	    (var) = CIRCLEQ_NEXT(var, field))
408 
409 #define CIRCLEQ_FOREACH_REVERSE(var, head, field)			\
410 	for((var) = CIRCLEQ_LAST(head);					\
411 	    (var) != CIRCLEQ_END(head);					\
412 	    (var) = CIRCLEQ_PREV(var, field))
413 
414 /*
415  * Circular queue functions.
416  */
417 #define	CIRCLEQ_INIT(head) do {						\
418 	(head)->cqh_first = CIRCLEQ_END(head);				\
419 	(head)->cqh_last = CIRCLEQ_END(head);				\
420 } while (0)
421 
422 #define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do {		\
423 	(elm)->field.cqe_next = (listelm)->field.cqe_next;		\
424 	(elm)->field.cqe_prev = (listelm);				\
425 	if ((listelm)->field.cqe_next == CIRCLEQ_END(head))		\
426 		(head)->cqh_last = (elm);				\
427 	else								\
428 		(listelm)->field.cqe_next->field.cqe_prev = (elm);	\
429 	(listelm)->field.cqe_next = (elm);				\
430 } while (0)
431 
432 #define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do {		\
433 	(elm)->field.cqe_next = (listelm);				\
434 	(elm)->field.cqe_prev = (listelm)->field.cqe_prev;		\
435 	if ((listelm)->field.cqe_prev == CIRCLEQ_END(head))		\
436 		(head)->cqh_first = (elm);				\
437 	else								\
438 		(listelm)->field.cqe_prev->field.cqe_next = (elm);	\
439 	(listelm)->field.cqe_prev = (elm);				\
440 } while (0)
441 
442 #define CIRCLEQ_INSERT_HEAD(head, elm, field) do {			\
443 	(elm)->field.cqe_next = (head)->cqh_first;			\
444 	(elm)->field.cqe_prev = CIRCLEQ_END(head);			\
445 	if ((head)->cqh_last == CIRCLEQ_END(head))			\
446 		(head)->cqh_last = (elm);				\
447 	else								\
448 		(head)->cqh_first->field.cqe_prev = (elm);		\
449 	(head)->cqh_first = (elm);					\
450 } while (0)
451 
452 #define CIRCLEQ_INSERT_TAIL(head, elm, field) do {			\
453 	(elm)->field.cqe_next = CIRCLEQ_END(head);			\
454 	(elm)->field.cqe_prev = (head)->cqh_last;			\
455 	if ((head)->cqh_first == CIRCLEQ_END(head))			\
456 		(head)->cqh_first = (elm);				\
457 	else								\
458 		(head)->cqh_last->field.cqe_next = (elm);		\
459 	(head)->cqh_last = (elm);					\
460 } while (0)
461 
462 #define	CIRCLEQ_REMOVE(head, elm, field) do {				\
463 	if ((elm)->field.cqe_next == CIRCLEQ_END(head))			\
464 		(head)->cqh_last = (elm)->field.cqe_prev;		\
465 	else								\
466 		(elm)->field.cqe_next->field.cqe_prev =			\
467 		    (elm)->field.cqe_prev;				\
468 	if ((elm)->field.cqe_prev == CIRCLEQ_END(head))			\
469 		(head)->cqh_first = (elm)->field.cqe_next;		\
470 	else								\
471 		(elm)->field.cqe_prev->field.cqe_next =			\
472 		    (elm)->field.cqe_next;				\
473 } while (0)
474 
475 #define CIRCLEQ_REPLACE(head, elm, elm2, field) do {			\
476 	if (((elm2)->field.cqe_next = (elm)->field.cqe_next) ==		\
477 	    CIRCLEQ_END(head))						\
478 		(head).cqh_last = (elm2);				\
479 	else								\
480 		(elm2)->field.cqe_next->field.cqe_prev = (elm2);	\
481 	if (((elm2)->field.cqe_prev = (elm)->field.cqe_prev) ==		\
482 	    CIRCLEQ_END(head))						\
483 		(head).cqh_first = (elm2);				\
484 	else								\
485 		(elm2)->field.cqe_prev->field.cqe_next = (elm2);	\
486 } while (0)
487 
488 #endif	/* !SYS_QUEUE_H__ */
489