1 /* 2 * /src/NTP/ntp-4/parseutil/dcfd.c,v 4.9 1999/02/28 13:06:27 kardel RELEASE_19990228_A 3 * 4 * dcfd.c,v 4.9 1999/02/28 13:06:27 kardel RELEASE_19990228_A 5 * 6 * DCF77 100/200ms pulse synchronisation daemon program (via 50Baud serial line) 7 * 8 * Features: 9 * DCF77 decoding 10 * simple NTP loopfilter logic for local clock 11 * interactive display for debugging 12 * 13 * Lacks: 14 * Leap second handling (at that level you should switch to NTP Version 4 - really!) 15 * 16 * Copyright (C) 1995-1999 by Frank Kardel <kardel@acm.org> 17 * Copyright (C) 1993-1994 by Frank Kardel 18 * Friedrich-Alexander Universit�t Erlangen-N�rnberg, Germany 19 * 20 * This program is distributed in the hope that it will be useful, 21 * but WITHOUT ANY WARRANTY; without even the implied warranty of 22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 23 * 24 * This program may not be sold or used for profit without prior 25 * written consent of the author. 26 */ 27 28 #ifdef HAVE_CONFIG_H 29 # include <config.h> 30 #endif 31 32 #include <unistd.h> 33 #include <stdio.h> 34 #include <fcntl.h> 35 #include <sys/types.h> 36 #include <sys/time.h> 37 #include <signal.h> 38 #include <syslog.h> 39 #include <time.h> 40 41 /* 42 * NTP compilation environment 43 */ 44 #include "ntp_stdlib.h" 45 #include "ntpd.h" /* indirectly include ntp.h to get YEAR_PIVOT Y2KFixes */ 46 47 /* 48 * select which terminal handling to use (currently only SysV variants) 49 */ 50 #if defined(HAVE_TERMIOS_H) || defined(STREAM) 51 #include <termios.h> 52 #define TTY_GETATTR(_FD_, _ARG_) tcgetattr((_FD_), (_ARG_)) 53 #define TTY_SETATTR(_FD_, _ARG_) tcsetattr((_FD_), TCSANOW, (_ARG_)) 54 #else /* not HAVE_TERMIOS_H || STREAM */ 55 # if defined(HAVE_TERMIO_H) || defined(HAVE_SYSV_TTYS) 56 # include <termio.h> 57 # define TTY_GETATTR(_FD_, _ARG_) ioctl((_FD_), TCGETA, (_ARG_)) 58 # define TTY_SETATTR(_FD_, _ARG_) ioctl((_FD_), TCSETAW, (_ARG_)) 59 # endif/* HAVE_TERMIO_H || HAVE_SYSV_TTYS */ 60 #endif /* not HAVE_TERMIOS_H || STREAM */ 61 62 63 #ifndef TTY_GETATTR 64 #include "Bletch: MUST DEFINE ONE OF 'HAVE_TERMIOS_H' or 'HAVE_TERMIO_H'" 65 #endif 66 67 #ifndef days_per_year 68 #define days_per_year(_x_) (((_x_) % 4) ? 365 : (((_x_) % 400) ? 365 : 366)) 69 #endif 70 71 #define timernormalize(_a_) \ 72 if ((_a_)->tv_usec >= 1000000) \ 73 { \ 74 (_a_)->tv_sec += (_a_)->tv_usec / 1000000; \ 75 (_a_)->tv_usec = (_a_)->tv_usec % 1000000; \ 76 } \ 77 if ((_a_)->tv_usec < 0) \ 78 { \ 79 (_a_)->tv_sec -= 1 + (-(_a_)->tv_usec / 1000000); \ 80 (_a_)->tv_usec = 999999 - (-(_a_)->tv_usec - 1); \ 81 } 82 83 #ifdef timeradd 84 #undef timeradd 85 #endif 86 #define timeradd(_a_, _b_) \ 87 (_a_)->tv_sec += (_b_)->tv_sec; \ 88 (_a_)->tv_usec += (_b_)->tv_usec; \ 89 timernormalize((_a_)) 90 91 #ifdef timersub 92 #undef timersub 93 #endif 94 #define timersub(_a_, _b_) \ 95 (_a_)->tv_sec -= (_b_)->tv_sec; \ 96 (_a_)->tv_usec -= (_b_)->tv_usec; \ 97 timernormalize((_a_)) 98 99 /* 100 * debug macros 101 */ 102 #define PRINTF if (interactive) printf 103 #define LPRINTF if (interactive && loop_filter_debug) printf 104 105 #ifdef DEBUG 106 #define dprintf(_x_) LPRINTF _x_ 107 #else 108 #define dprintf(_x_) 109 #endif 110 111 extern int errno; 112 113 /* 114 * display received data (avoids also detaching from tty) 115 */ 116 static int interactive = 0; 117 118 /* 119 * display loopfilter (clock control) variables 120 */ 121 static int loop_filter_debug = 0; 122 123 /* 124 * do not set/adjust system time 125 */ 126 static int no_set = 0; 127 128 /* 129 * time that passes between start of DCF impulse and time stamping (fine 130 * adjustment) in microseconds (receiver/OS dependent) 131 */ 132 #define DEFAULT_DELAY 230000 /* rough estimate */ 133 134 /* 135 * The two states we can be in - eithe we receive nothing 136 * usable or we have the correct time 137 */ 138 #define NO_SYNC 0x01 139 #define SYNC 0x02 140 141 static int sync_state = NO_SYNC; 142 static time_t last_sync; 143 144 static unsigned long ticks = 0; 145 146 static char pat[] = "-\\|/"; 147 148 #define LINES (24-2) /* error lines after which the two headlines are repeated */ 149 150 #define MAX_UNSYNC (10*60) /* allow synchronisation loss for 10 minutes */ 151 #define NOTICE_INTERVAL (20*60) /* mention missing synchronisation every 20 minutes */ 152 153 /* 154 * clock adjustment PLL - see NTP protocol spec (RFC1305) for details 155 */ 156 157 #define USECSCALE 10 158 #define TIMECONSTANT 2 159 #define ADJINTERVAL 0 160 #define FREQ_WEIGHT 18 161 #define PHASE_WEIGHT 7 162 #define MAX_DRIFT 0x3FFFFFFF 163 164 #define R_SHIFT(_X_, _Y_) (((_X_) < 0) ? -(-(_X_) >> (_Y_)) : ((_X_) >> (_Y_))) 165 166 static struct timeval max_adj_offset = { 0, 128000 }; 167 168 static long clock_adjust = 0; /* current adjustment value (usec * 2^USECSCALE) */ 169 static long accum_drift = 0; /* accumulated drift value (usec / ADJINTERVAL) */ 170 static long adjustments = 0; 171 static char skip_adjust = 1; /* discard first adjustment (bad samples) */ 172 173 /* 174 * DCF77 state flags 175 */ 176 #define DCFB_ANNOUNCE 0x0001 /* switch time zone warning (DST switch) */ 177 #define DCFB_DST 0x0002 /* DST in effect */ 178 #define DCFB_LEAP 0x0004 /* LEAP warning (1 hour prior to occurence) */ 179 #define DCFB_ALTERNATE 0x0008 /* alternate antenna used */ 180 181 struct clocktime /* clock time broken up from time code */ 182 { 183 long wday; /* Day of week: 1: Monday - 7: Sunday */ 184 long day; 185 long month; 186 long year; 187 long hour; 188 long minute; 189 long second; 190 long usecond; 191 long utcoffset; /* in minutes */ 192 long flags; /* current clock status (DCF77 state flags) */ 193 }; 194 195 typedef struct clocktime clocktime_t; 196 197 /* 198 * (usually) quick constant multiplications 199 */ 200 #define TIMES10(_X_) (((_X_) << 3) + ((_X_) << 1)) /* *8 + *2 */ 201 #define TIMES24(_X_) (((_X_) << 4) + ((_X_) << 3)) /* *16 + *8 */ 202 #define TIMES60(_X_) ((((_X_) << 4) - (_X_)) << 2) /* *(16 - 1) *4 */ 203 /* 204 * generic l_abs() function 205 */ 206 #define l_abs(_x_) (((_x_) < 0) ? -(_x_) : (_x_)) 207 208 /* 209 * conversion related return/error codes 210 */ 211 #define CVT_MASK 0x0000000F /* conversion exit code */ 212 #define CVT_NONE 0x00000001 /* format not applicable */ 213 #define CVT_FAIL 0x00000002 /* conversion failed - error code returned */ 214 #define CVT_OK 0x00000004 /* conversion succeeded */ 215 #define CVT_BADFMT 0x00000010 /* general format error - (unparsable) */ 216 #define CVT_BADDATE 0x00000020 /* invalid date */ 217 #define CVT_BADTIME 0x00000040 /* invalid time */ 218 219 /* 220 * DCF77 raw time code 221 * 222 * From "Zur Zeit", Physikalisch-Technische Bundesanstalt (PTB), Braunschweig 223 * und Berlin, Maerz 1989 224 * 225 * Timecode transmission: 226 * AM: 227 * time marks are send every second except for the second before the 228 * next minute mark 229 * time marks consist of a reduction of transmitter power to 25% 230 * of the nominal level 231 * the falling edge is the time indication (on time) 232 * time marks of a 100ms duration constitute a logical 0 233 * time marks of a 200ms duration constitute a logical 1 234 * FM: 235 * see the spec. (basically a (non-)inverted psuedo random phase shift) 236 * 237 * Encoding: 238 * Second Contents 239 * 0 - 10 AM: free, FM: 0 240 * 11 - 14 free 241 * 15 R - alternate antenna 242 * 16 A1 - expect zone change (1 hour before) 243 * 17 - 18 Z1,Z2 - time zone 244 * 0 0 illegal 245 * 0 1 MEZ (MET) 246 * 1 0 MESZ (MED, MET DST) 247 * 1 1 illegal 248 * 19 A2 - expect leap insertion/deletion (1 hour before) 249 * 20 S - start of time code (1) 250 * 21 - 24 M1 - BCD (lsb first) Minutes 251 * 25 - 27 M10 - BCD (lsb first) 10 Minutes 252 * 28 P1 - Minute Parity (even) 253 * 29 - 32 H1 - BCD (lsb first) Hours 254 * 33 - 34 H10 - BCD (lsb first) 10 Hours 255 * 35 P2 - Hour Parity (even) 256 * 36 - 39 D1 - BCD (lsb first) Days 257 * 40 - 41 D10 - BCD (lsb first) 10 Days 258 * 42 - 44 DW - BCD (lsb first) day of week (1: Monday -> 7: Sunday) 259 * 45 - 49 MO - BCD (lsb first) Month 260 * 50 MO0 - 10 Months 261 * 51 - 53 Y1 - BCD (lsb first) Years 262 * 54 - 57 Y10 - BCD (lsb first) 10 Years 263 * 58 P3 - Date Parity (even) 264 * 59 - usually missing (minute indication), except for leap insertion 265 */ 266 267 /*----------------------------------------------------------------------- 268 * conversion table to map DCF77 bit stream into data fields. 269 * Encoding: 270 * Each field of the DCF77 code is described with two adjacent entries in 271 * this table. The first entry specifies the offset into the DCF77 data stream 272 * while the length is given as the difference between the start index and 273 * the start index of the following field. 274 */ 275 static struct rawdcfcode 276 { 277 char offset; /* start bit */ 278 } rawdcfcode[] = 279 { 280 { 0 }, { 15 }, { 16 }, { 17 }, { 19 }, { 20 }, { 21 }, { 25 }, { 28 }, { 29 }, 281 { 33 }, { 35 }, { 36 }, { 40 }, { 42 }, { 45 }, { 49 }, { 50 }, { 54 }, { 58 }, { 59 } 282 }; 283 284 /*----------------------------------------------------------------------- 285 * symbolic names for the fields of DCF77 describes in "rawdcfcode". 286 * see comment above for the structure of the DCF77 data 287 */ 288 #define DCF_M 0 289 #define DCF_R 1 290 #define DCF_A1 2 291 #define DCF_Z 3 292 #define DCF_A2 4 293 #define DCF_S 5 294 #define DCF_M1 6 295 #define DCF_M10 7 296 #define DCF_P1 8 297 #define DCF_H1 9 298 #define DCF_H10 10 299 #define DCF_P2 11 300 #define DCF_D1 12 301 #define DCF_D10 13 302 #define DCF_DW 14 303 #define DCF_MO 15 304 #define DCF_MO0 16 305 #define DCF_Y1 17 306 #define DCF_Y10 18 307 #define DCF_P3 19 308 309 /*----------------------------------------------------------------------- 310 * parity field table (same encoding as rawdcfcode) 311 * This table describes the sections of the DCF77 code that are 312 * parity protected 313 */ 314 static struct partab 315 { 316 char offset; /* start bit of parity field */ 317 } partab[] = 318 { 319 { 21 }, { 29 }, { 36 }, { 59 } 320 }; 321 322 /*----------------------------------------------------------------------- 323 * offsets for parity field descriptions 324 */ 325 #define DCF_P_P1 0 326 #define DCF_P_P2 1 327 #define DCF_P_P3 2 328 329 /*----------------------------------------------------------------------- 330 * legal values for time zone information 331 */ 332 #define DCF_Z_MET 0x2 333 #define DCF_Z_MED 0x1 334 335 /*----------------------------------------------------------------------- 336 * symbolic representation if the DCF77 data stream 337 */ 338 static struct dcfparam 339 { 340 unsigned char onebits[60]; 341 unsigned char zerobits[60]; 342 } dcfparam = 343 { 344 "###############RADMLS1248124P124812P1248121241248112481248P", /* 'ONE' representation */ 345 "--------------------s-------p------p----------------------p" /* 'ZERO' representation */ 346 }; 347 348 /*----------------------------------------------------------------------- 349 * extract a bitfield from DCF77 datastream 350 * All numeric fields are LSB first. 351 * buf holds a pointer to a DCF77 data buffer in symbolic 352 * representation 353 * idx holds the index to the field description in rawdcfcode 354 */ 355 static unsigned long 356 ext_bf( 357 register unsigned char *buf, 358 register int idx 359 ) 360 { 361 register unsigned long sum = 0; 362 register int i, first; 363 364 first = rawdcfcode[idx].offset; 365 366 for (i = rawdcfcode[idx+1].offset - 1; i >= first; i--) 367 { 368 sum <<= 1; 369 sum |= (buf[i] != dcfparam.zerobits[i]); 370 } 371 return sum; 372 } 373 374 /*----------------------------------------------------------------------- 375 * check even parity integrity for a bitfield 376 * 377 * buf holds a pointer to a DCF77 data buffer in symbolic 378 * representation 379 * idx holds the index to the field description in partab 380 */ 381 static unsigned 382 pcheck( 383 register unsigned char *buf, 384 register int idx 385 ) 386 { 387 register int i,last; 388 register unsigned psum = 1; 389 390 last = partab[idx+1].offset; 391 392 for (i = partab[idx].offset; i < last; i++) 393 psum ^= (buf[i] != dcfparam.zerobits[i]); 394 395 return psum; 396 } 397 398 /*----------------------------------------------------------------------- 399 * convert a DCF77 data buffer into wall clock time + flags 400 * 401 * buffer holds a pointer to a DCF77 data buffer in symbolic 402 * representation 403 * size describes the length of DCF77 information in bits (represented 404 * as chars in symbolic notation 405 * clock points to a wall clock time description of the DCF77 data (result) 406 */ 407 static unsigned long 408 convert_rawdcf( 409 unsigned char *buffer, 410 int size, 411 clocktime_t *clock_time 412 ) 413 { 414 if (size < 57) 415 { 416 PRINTF("%-30s", "*** INCOMPLETE"); 417 return CVT_NONE; 418 } 419 420 /* 421 * check Start and Parity bits 422 */ 423 if ((ext_bf(buffer, DCF_S) == 1) && 424 pcheck(buffer, DCF_P_P1) && 425 pcheck(buffer, DCF_P_P2) && 426 pcheck(buffer, DCF_P_P3)) 427 { 428 /* 429 * buffer OK - extract all fields and build wall clock time from them 430 */ 431 432 clock_time->flags = 0; 433 clock_time->usecond= 0; 434 clock_time->second = 0; 435 clock_time->minute = ext_bf(buffer, DCF_M10); 436 clock_time->minute = TIMES10(clock_time->minute) + ext_bf(buffer, DCF_M1); 437 clock_time->hour = ext_bf(buffer, DCF_H10); 438 clock_time->hour = TIMES10(clock_time->hour) + ext_bf(buffer, DCF_H1); 439 clock_time->day = ext_bf(buffer, DCF_D10); 440 clock_time->day = TIMES10(clock_time->day) + ext_bf(buffer, DCF_D1); 441 clock_time->month = ext_bf(buffer, DCF_MO0); 442 clock_time->month = TIMES10(clock_time->month) + ext_bf(buffer, DCF_MO); 443 clock_time->year = ext_bf(buffer, DCF_Y10); 444 clock_time->year = TIMES10(clock_time->year) + ext_bf(buffer, DCF_Y1); 445 clock_time->wday = ext_bf(buffer, DCF_DW); 446 447 /* 448 * determine offset to UTC by examining the time zone 449 */ 450 switch (ext_bf(buffer, DCF_Z)) 451 { 452 case DCF_Z_MET: 453 clock_time->utcoffset = -60; 454 break; 455 456 case DCF_Z_MED: 457 clock_time->flags |= DCFB_DST; 458 clock_time->utcoffset = -120; 459 break; 460 461 default: 462 PRINTF("%-30s", "*** BAD TIME ZONE"); 463 return CVT_FAIL|CVT_BADFMT; 464 } 465 466 /* 467 * extract various warnings from DCF77 468 */ 469 if (ext_bf(buffer, DCF_A1)) 470 clock_time->flags |= DCFB_ANNOUNCE; 471 472 if (ext_bf(buffer, DCF_A2)) 473 clock_time->flags |= DCFB_LEAP; 474 475 if (ext_bf(buffer, DCF_R)) 476 clock_time->flags |= DCFB_ALTERNATE; 477 478 return CVT_OK; 479 } 480 else 481 { 482 /* 483 * bad format - not for us 484 */ 485 PRINTF("%-30s", "*** BAD FORMAT (invalid/parity)"); 486 return CVT_FAIL|CVT_BADFMT; 487 } 488 } 489 490 /*----------------------------------------------------------------------- 491 * raw dcf input routine - fix up 50 baud 492 * characters for 1/0 decision 493 */ 494 static unsigned long 495 cvt_rawdcf( 496 unsigned char *buffer, 497 int size, 498 clocktime_t *clock_time 499 ) 500 { 501 register unsigned char *s = buffer; 502 register unsigned char *e = buffer + size; 503 register unsigned char *b = dcfparam.onebits; 504 register unsigned char *c = dcfparam.zerobits; 505 register unsigned rtc = CVT_NONE; 506 register unsigned int i, lowmax, highmax, cutoff, span; 507 #define BITS 9 508 unsigned char histbuf[BITS]; 509 /* 510 * the input buffer contains characters with runs of consecutive 511 * bits set. These set bits are an indication of the DCF77 pulse 512 * length. We assume that we receive the pulse at 50 Baud. Thus 513 * a 100ms pulse would generate a 4 bit train (20ms per bit and 514 * start bit) 515 * a 200ms pulse would create all zeroes (and probably a frame error) 516 * 517 * The basic idea is that on corret reception we must have two 518 * maxima in the pulse length distribution histogram. (one for 519 * the zero representing pulses and one for the one representing 520 * pulses) 521 * There will always be ones in the datastream, thus we have to see 522 * two maxima. 523 * The best point to cut for a 1/0 decision is the minimum between those 524 * between the maxima. The following code tries to find this cutoff point. 525 */ 526 527 /* 528 * clear histogram buffer 529 */ 530 for (i = 0; i < BITS; i++) 531 { 532 histbuf[i] = 0; 533 } 534 535 cutoff = 0; 536 lowmax = 0; 537 538 /* 539 * convert sequences of set bits into bits counts updating 540 * the histogram alongway 541 */ 542 while (s < e) 543 { 544 register unsigned int ch = *s ^ 0xFF; 545 /* 546 * check integrity and update histogramm 547 */ 548 if (!((ch+1) & ch) || !*s) 549 { 550 /* 551 * character ok 552 */ 553 for (i = 0; ch; i++) 554 { 555 ch >>= 1; 556 } 557 558 *s = i; 559 histbuf[i]++; 560 cutoff += i; 561 lowmax++; 562 } 563 else 564 { 565 /* 566 * invalid character (no consecutive bit sequence) 567 */ 568 dprintf(("parse: cvt_rawdcf: character check for 0x%x@%d FAILED\n", *s, s - buffer)); 569 *s = (unsigned char)~0; 570 rtc = CVT_FAIL|CVT_BADFMT; 571 } 572 s++; 573 } 574 575 /* 576 * first cutoff estimate (average bit count - must be between both 577 * maxima) 578 */ 579 if (lowmax) 580 { 581 cutoff /= lowmax; 582 } 583 else 584 { 585 cutoff = 4; /* doesn't really matter - it'll fail anyway, but gives error output */ 586 } 587 588 dprintf(("parse: cvt_rawdcf: average bit count: %d\n", cutoff)); 589 590 lowmax = 0; /* weighted sum */ 591 highmax = 0; /* bitcount */ 592 593 /* 594 * collect weighted sum of lower bits (left of initial guess) 595 */ 596 dprintf(("parse: cvt_rawdcf: histogram:")); 597 for (i = 0; i <= cutoff; i++) 598 { 599 lowmax += histbuf[i] * i; 600 highmax += histbuf[i]; 601 dprintf((" %d", histbuf[i])); 602 } 603 dprintf((" <M>")); 604 605 /* 606 * round up 607 */ 608 lowmax += highmax / 2; 609 610 /* 611 * calculate lower bit maximum (weighted sum / bit count) 612 * 613 * avoid divide by zero 614 */ 615 if (highmax) 616 { 617 lowmax /= highmax; 618 } 619 else 620 { 621 lowmax = 0; 622 } 623 624 highmax = 0; /* weighted sum of upper bits counts */ 625 cutoff = 0; /* bitcount */ 626 627 /* 628 * collect weighted sum of lower bits (right of initial guess) 629 */ 630 for (; i < BITS; i++) 631 { 632 highmax+=histbuf[i] * i; 633 cutoff +=histbuf[i]; 634 dprintf((" %d", histbuf[i])); 635 } 636 dprintf(("\n")); 637 638 /* 639 * determine upper maximum (weighted sum / bit count) 640 */ 641 if (cutoff) 642 { 643 highmax /= cutoff; 644 } 645 else 646 { 647 highmax = BITS-1; 648 } 649 650 /* 651 * following now holds: 652 * lowmax <= cutoff(initial guess) <= highmax 653 * best cutoff is the minimum nearest to higher bits 654 */ 655 656 /* 657 * find the minimum between lowmax and highmax (detecting 658 * possibly a minimum span) 659 */ 660 span = cutoff = lowmax; 661 for (i = lowmax; i <= highmax; i++) 662 { 663 if (histbuf[cutoff] > histbuf[i]) 664 { 665 /* 666 * got a new minimum move beginning of minimum (cutoff) and 667 * end of minimum (span) there 668 */ 669 cutoff = span = i; 670 } 671 else 672 if (histbuf[cutoff] == histbuf[i]) 673 { 674 /* 675 * minimum not better yet - but it spans more than 676 * one bit value - follow it 677 */ 678 span = i; 679 } 680 } 681 682 /* 683 * cutoff point for 1/0 decision is the middle of the minimum section 684 * in the histogram 685 */ 686 cutoff = (cutoff + span) / 2; 687 688 dprintf(("parse: cvt_rawdcf: lower maximum %d, higher maximum %d, cutoff %d\n", lowmax, highmax, cutoff)); 689 690 /* 691 * convert the bit counts to symbolic 1/0 information for data conversion 692 */ 693 s = buffer; 694 while ((s < e) && *c && *b) 695 { 696 if (*s == (unsigned char)~0) 697 { 698 /* 699 * invalid character 700 */ 701 *s = '?'; 702 } 703 else 704 { 705 /* 706 * symbolic 1/0 representation 707 */ 708 *s = (*s >= cutoff) ? *b : *c; 709 } 710 s++; 711 b++; 712 c++; 713 } 714 715 /* 716 * if everything went well so far return the result of the symbolic 717 * conversion routine else just the accumulated errors 718 */ 719 if (rtc != CVT_NONE) 720 { 721 PRINTF("%-30s", "*** BAD DATA"); 722 } 723 724 return (rtc == CVT_NONE) ? convert_rawdcf(buffer, size, clock_time) : rtc; 725 } 726 727 /*----------------------------------------------------------------------- 728 * convert a wall clock time description of DCF77 to a Unix time (seconds 729 * since 1.1. 1970 UTC) 730 */ 731 time_t 732 dcf_to_unixtime( 733 clocktime_t *clock_time, 734 unsigned *cvtrtc 735 ) 736 { 737 #define SETRTC(_X_) { if (cvtrtc) *cvtrtc = (_X_); } 738 static int days_of_month[] = 739 { 740 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 741 }; 742 register int i; 743 time_t t; 744 745 /* 746 * map 2 digit years to 19xx (DCF77 is a 20th century item) 747 */ 748 if ( clock_time->year < YEAR_PIVOT ) /* in case of Y2KFixes [ */ 749 clock_time->year += 100; /* *year%100, make tm_year */ 750 /* *(do we need this?) */ 751 if ( clock_time->year < YEAR_BREAK ) /* (failsafe if) */ 752 clock_time->year += 1900; /* Y2KFixes ] */ 753 754 /* 755 * must have been a really bad year code - drop it 756 */ 757 if (clock_time->year < (YEAR_PIVOT + 1900) ) /* Y2KFixes */ 758 { 759 SETRTC(CVT_FAIL|CVT_BADDATE); 760 return -1; 761 } 762 /* 763 * sorry, slow section here - but it's not time critical anyway 764 */ 765 766 /* 767 * calculate days since 1970 (watching leap years) 768 */ 769 t = julian0( clock_time->year ) - julian0( 1970 ); 770 771 /* month */ 772 if (clock_time->month <= 0 || clock_time->month > 12) 773 { 774 SETRTC(CVT_FAIL|CVT_BADDATE); 775 return -1; /* bad month */ 776 } 777 /* adjust current leap year */ 778 #if 0 779 if (clock_time->month < 3 && days_per_year(clock_time->year) == 366) 780 t--; 781 #endif 782 783 /* 784 * collect days from months excluding the current one 785 */ 786 for (i = 1; i < clock_time->month; i++) 787 { 788 t += days_of_month[i]; 789 } 790 /* day */ 791 if (clock_time->day < 1 || ((clock_time->month == 2 && days_per_year(clock_time->year) == 366) ? 792 clock_time->day > 29 : clock_time->day > days_of_month[clock_time->month])) 793 { 794 SETRTC(CVT_FAIL|CVT_BADDATE); 795 return -1; /* bad day */ 796 } 797 798 /* 799 * collect days from date excluding the current one 800 */ 801 t += clock_time->day - 1; 802 803 /* hour */ 804 if (clock_time->hour < 0 || clock_time->hour >= 24) 805 { 806 SETRTC(CVT_FAIL|CVT_BADTIME); 807 return -1; /* bad hour */ 808 } 809 810 /* 811 * calculate hours from 1. 1. 1970 812 */ 813 t = TIMES24(t) + clock_time->hour; 814 815 /* min */ 816 if (clock_time->minute < 0 || clock_time->minute > 59) 817 { 818 SETRTC(CVT_FAIL|CVT_BADTIME); 819 return -1; /* bad min */ 820 } 821 822 /* 823 * calculate minutes from 1. 1. 1970 824 */ 825 t = TIMES60(t) + clock_time->minute; 826 /* sec */ 827 828 /* 829 * calculate UTC in minutes 830 */ 831 t += clock_time->utcoffset; 832 833 if (clock_time->second < 0 || clock_time->second > 60) /* allow for LEAPs */ 834 { 835 SETRTC(CVT_FAIL|CVT_BADTIME); 836 return -1; /* bad sec */ 837 } 838 839 /* 840 * calculate UTC in seconds - phew ! 841 */ 842 t = TIMES60(t) + clock_time->second; 843 /* done */ 844 return t; 845 } 846 847 /*----------------------------------------------------------------------- 848 * cheap half baked 1/0 decision - for interactive operation only 849 */ 850 static char 851 type( 852 unsigned int c 853 ) 854 { 855 c ^= 0xFF; 856 return (c > 0xF); 857 } 858 859 /*----------------------------------------------------------------------- 860 * week day representation 861 */ 862 static const char *wday[8] = 863 { 864 "??", 865 "Mo", 866 "Tu", 867 "We", 868 "Th", 869 "Fr", 870 "Sa", 871 "Su" 872 }; 873 874 /*----------------------------------------------------------------------- 875 * generate a string representation for a timeval 876 */ 877 static char * 878 pr_timeval( 879 struct timeval *val 880 ) 881 { 882 static char buf[20]; 883 884 if (val->tv_sec == 0) 885 sprintf(buf, "%c0.%06ld", (val->tv_usec < 0) ? '-' : '+', (long int)l_abs(val->tv_usec)); 886 else 887 sprintf(buf, "%ld.%06ld", (long int)val->tv_sec, (long int)l_abs(val->tv_usec)); 888 return buf; 889 } 890 891 /*----------------------------------------------------------------------- 892 * correct the current time by an offset by setting the time rigorously 893 */ 894 static void 895 set_time( 896 struct timeval *offset 897 ) 898 { 899 struct timeval the_time; 900 901 if (no_set) 902 return; 903 904 LPRINTF("set_time: %s ", pr_timeval(offset)); 905 syslog(LOG_NOTICE, "setting time (offset %s)", pr_timeval(offset)); 906 907 if (gettimeofday(&the_time, 0L) == -1) 908 { 909 perror("gettimeofday()"); 910 } 911 else 912 { 913 timeradd(&the_time, offset); 914 if (settimeofday(&the_time, 0L) == -1) 915 { 916 perror("settimeofday()"); 917 } 918 } 919 } 920 921 /*----------------------------------------------------------------------- 922 * slew the time by a given offset 923 */ 924 static void 925 adj_time( 926 long offset 927 ) 928 { 929 struct timeval time_offset; 930 931 if (no_set) 932 return; 933 934 time_offset.tv_sec = offset / 1000000; 935 time_offset.tv_usec = offset % 1000000; 936 937 LPRINTF("adj_time: %ld us ", (long int)offset); 938 if (adjtime(&time_offset, 0L) == -1) 939 perror("adjtime()"); 940 } 941 942 /*----------------------------------------------------------------------- 943 * read in a possibly previously written drift value 944 */ 945 static void 946 read_drift( 947 const char *drift_file 948 ) 949 { 950 FILE *df; 951 952 df = fopen(drift_file, "r"); 953 if (df != NULL) 954 { 955 int idrift = 0, fdrift = 0; 956 957 fscanf(df, "%4d.%03d", &idrift, &fdrift); 958 fclose(df); 959 LPRINTF("read_drift: %d.%03d ppm ", idrift, fdrift); 960 961 accum_drift = idrift << USECSCALE; 962 fdrift = (fdrift << USECSCALE) / 1000; 963 accum_drift += fdrift & (1<<USECSCALE); 964 LPRINTF("read_drift: drift_comp %ld ", (long int)accum_drift); 965 } 966 } 967 968 /*----------------------------------------------------------------------- 969 * write out the current drift value 970 */ 971 static void 972 update_drift( 973 const char *drift_file, 974 long offset, 975 time_t reftime 976 ) 977 { 978 FILE *df; 979 980 df = fopen(drift_file, "w"); 981 if (df != NULL) 982 { 983 int idrift = R_SHIFT(accum_drift, USECSCALE); 984 int fdrift = accum_drift & ((1<<USECSCALE)-1); 985 986 LPRINTF("update_drift: drift_comp %ld ", (long int)accum_drift); 987 fdrift = (fdrift * 1000) / (1<<USECSCALE); 988 fprintf(df, "%4d.%03d %c%ld.%06ld %.24s\n", idrift, fdrift, 989 (offset < 0) ? '-' : '+', (long int)(l_abs(offset) / 1000000), 990 (long int)(l_abs(offset) % 1000000), asctime(localtime(&reftime))); 991 fclose(df); 992 LPRINTF("update_drift: %d.%03d ppm ", idrift, fdrift); 993 } 994 } 995 996 /*----------------------------------------------------------------------- 997 * process adjustments derived from the DCF77 observation 998 * (controls clock PLL) 999 */ 1000 static void 1001 adjust_clock( 1002 struct timeval *offset, 1003 const char *drift_file, 1004 time_t reftime 1005 ) 1006 { 1007 struct timeval toffset; 1008 register long usecoffset; 1009 int tmp; 1010 1011 if (no_set) 1012 return; 1013 1014 if (skip_adjust) 1015 { 1016 skip_adjust = 0; 1017 return; 1018 } 1019 1020 toffset = *offset; 1021 toffset.tv_sec = l_abs(toffset.tv_sec); 1022 toffset.tv_usec = l_abs(toffset.tv_usec); 1023 if (timercmp(&toffset, &max_adj_offset, >)) 1024 { 1025 /* 1026 * hopeless - set the clock - and clear the timing 1027 */ 1028 set_time(offset); 1029 clock_adjust = 0; 1030 skip_adjust = 1; 1031 return; 1032 } 1033 1034 usecoffset = offset->tv_sec * 1000000 + offset->tv_usec; 1035 1036 clock_adjust = R_SHIFT(usecoffset, TIMECONSTANT); /* adjustment to make for next period */ 1037 1038 tmp = 0; 1039 while (adjustments > (1 << tmp)) 1040 tmp++; 1041 adjustments = 0; 1042 if (tmp > FREQ_WEIGHT) 1043 tmp = FREQ_WEIGHT; 1044 1045 accum_drift += R_SHIFT(usecoffset << USECSCALE, TIMECONSTANT+TIMECONSTANT+FREQ_WEIGHT-tmp); 1046 1047 if (accum_drift > MAX_DRIFT) /* clamp into interval */ 1048 accum_drift = MAX_DRIFT; 1049 else 1050 if (accum_drift < -MAX_DRIFT) 1051 accum_drift = -MAX_DRIFT; 1052 1053 update_drift(drift_file, usecoffset, reftime); 1054 LPRINTF("clock_adjust: %s, clock_adjust %ld, drift_comp %ld(%ld) ", 1055 pr_timeval(offset),(long int) R_SHIFT(clock_adjust, USECSCALE), 1056 (long int)R_SHIFT(accum_drift, USECSCALE), (long int)accum_drift); 1057 } 1058 1059 /*----------------------------------------------------------------------- 1060 * adjust the clock by a small mount to simulate frequency correction 1061 */ 1062 static void 1063 periodic_adjust( 1064 void 1065 ) 1066 { 1067 register long adjustment; 1068 1069 adjustments++; 1070 1071 adjustment = R_SHIFT(clock_adjust, PHASE_WEIGHT); 1072 1073 clock_adjust -= adjustment; 1074 1075 adjustment += R_SHIFT(accum_drift, USECSCALE+ADJINTERVAL); 1076 1077 adj_time(adjustment); 1078 } 1079 1080 /*----------------------------------------------------------------------- 1081 * control synchronisation status (warnings) and do periodic adjusts 1082 * (frequency control simulation) 1083 */ 1084 static void 1085 tick( 1086 void 1087 ) 1088 { 1089 static unsigned long last_notice = 0; 1090 1091 #if !defined(HAVE_SIGACTION) && !defined(HAVE_SIGVEC) 1092 (void)signal(SIGALRM, tick); 1093 #endif 1094 1095 periodic_adjust(); 1096 1097 ticks += 1<<ADJINTERVAL; 1098 1099 if ((ticks - last_sync) > MAX_UNSYNC) 1100 { 1101 /* 1102 * not getting time for a while 1103 */ 1104 if (sync_state == SYNC) 1105 { 1106 /* 1107 * completely lost information 1108 */ 1109 sync_state = NO_SYNC; 1110 syslog(LOG_INFO, "DCF77 reception lost (timeout)"); 1111 last_notice = ticks; 1112 } 1113 else 1114 /* 1115 * in NO_SYNC state - look whether its time to speak up again 1116 */ 1117 if ((ticks - last_notice) > NOTICE_INTERVAL) 1118 { 1119 syslog(LOG_NOTICE, "still not synchronized to DCF77 - check receiver/signal"); 1120 last_notice = ticks; 1121 } 1122 } 1123 1124 #ifndef ITIMER_REAL 1125 (void) alarm(1<<ADJINTERVAL); 1126 #endif 1127 } 1128 1129 /*----------------------------------------------------------------------- 1130 * break association from terminal to avoid catching terminal 1131 * or process group related signals (-> daemon operation) 1132 */ 1133 static void 1134 detach( 1135 void 1136 ) 1137 { 1138 # ifdef HAVE_DAEMON 1139 daemon(0, 0); 1140 # else /* not HAVE_DAEMON */ 1141 if (fork()) 1142 exit(0); 1143 1144 { 1145 u_long s; 1146 int max_fd; 1147 1148 #if defined(HAVE_SYSCONF) && defined(_SC_OPEN_MAX) 1149 max_fd = sysconf(_SC_OPEN_MAX); 1150 #else /* HAVE_SYSCONF && _SC_OPEN_MAX */ 1151 max_fd = getdtablesize(); 1152 #endif /* HAVE_SYSCONF && _SC_OPEN_MAX */ 1153 for (s = 0; s < max_fd; s++) 1154 (void) close((int)s); 1155 (void) open("/", 0); 1156 (void) dup2(0, 1); 1157 (void) dup2(0, 2); 1158 #ifdef SYS_DOMAINOS 1159 { 1160 uid_$t puid; 1161 status_$t st; 1162 1163 proc2_$who_am_i(&puid); 1164 proc2_$make_server(&puid, &st); 1165 } 1166 #endif /* SYS_DOMAINOS */ 1167 #if defined(HAVE_SETPGID) || defined(HAVE_SETSID) 1168 # ifdef HAVE_SETSID 1169 if (setsid() == (pid_t)-1) 1170 syslog(LOG_ERR, "dcfd: setsid(): %m"); 1171 # else 1172 if (setpgid(0, 0) == -1) 1173 syslog(LOG_ERR, "dcfd: setpgid(): %m"); 1174 # endif 1175 #else /* HAVE_SETPGID || HAVE_SETSID */ 1176 { 1177 int fid; 1178 1179 fid = open("/dev/tty", 2); 1180 if (fid >= 0) 1181 { 1182 (void) ioctl(fid, (u_long) TIOCNOTTY, (char *) 0); 1183 (void) close(fid); 1184 } 1185 # ifdef HAVE_SETPGRP_0 1186 (void) setpgrp(); 1187 # else /* HAVE_SETPGRP_0 */ 1188 (void) setpgrp(0, getpid()); 1189 # endif /* HAVE_SETPGRP_0 */ 1190 } 1191 #endif /* HAVE_SETPGID || HAVE_SETSID */ 1192 } 1193 #endif /* not HAVE_DAEMON */ 1194 } 1195 1196 /*----------------------------------------------------------------------- 1197 * list possible arguments and options 1198 */ 1199 static void 1200 usage( 1201 char *program 1202 ) 1203 { 1204 fprintf(stderr, "usage: %s [-n] [-f] [-l] [-t] [-i] [-o] [-d <drift_file>] [-D <input delay>] <device>\n", program); 1205 fprintf(stderr, "\t-n do not change time\n"); 1206 fprintf(stderr, "\t-i interactive\n"); 1207 fprintf(stderr, "\t-t trace (print all datagrams)\n"); 1208 fprintf(stderr, "\t-f print all databits (includes PTB private data)\n"); 1209 fprintf(stderr, "\t-l print loop filter debug information\n"); 1210 fprintf(stderr, "\t-o print offet average for current minute\n"); 1211 fprintf(stderr, "\t-Y make internal Y2K checks then exit\n"); /* Y2KFixes */ 1212 fprintf(stderr, "\t-d <drift_file> specify alternate drift file\n"); 1213 fprintf(stderr, "\t-D <input delay>specify delay from input edge to processing in micro seconds\n"); 1214 } 1215 1216 /*----------------------------------------------------------------------- 1217 * check_y2k() - internal check of Y2K logic 1218 * (a lot of this logic lifted from ../ntpd/check_y2k.c) 1219 */ 1220 int 1221 check_y2k( void ) 1222 { 1223 int year; /* current working year */ 1224 int year0 = 1900; /* sarting year for NTP time */ 1225 int yearend; /* ending year we test for NTP time. 1226 * 32-bit systems: through 2036, the 1227 **year in which NTP time overflows. 1228 * 64-bit systems: a reasonable upper 1229 **limit (well, maybe somewhat beyond 1230 **reasonable, but well before the 1231 **max time, by which time the earth 1232 **will be dead.) */ 1233 time_t Time; 1234 struct tm LocalTime; 1235 1236 int Fatals, Warnings; 1237 #define Error(year) if ( (year)>=2036 && LocalTime.tm_year < 110 ) \ 1238 Warnings++; else Fatals++ 1239 1240 Fatals = Warnings = 0; 1241 1242 Time = time( (time_t *)NULL ); 1243 LocalTime = *localtime( &Time ); 1244 1245 year = ( sizeof( u_long ) > 4 ) /* save max span using year as temp */ 1246 ? ( 400 * 3 ) /* three greater gregorian cycles */ 1247 : ((int)(0x7FFFFFFF / 365.242 / 24/60/60)* 2 ); /*32-bit limit*/ 1248 /* NOTE: will automacially expand test years on 1249 * 64 bit machines.... this may cause some of the 1250 * existing ntp logic to fail for years beyond 1251 * 2036 (the current 32-bit limit). If all checks 1252 * fail ONLY beyond year 2036 you may ignore such 1253 * errors, at least for a decade or so. */ 1254 yearend = year0 + year; 1255 1256 year = 1900+YEAR_PIVOT; 1257 printf( " starting year %04d\n", (int) year ); 1258 printf( " ending year %04d\n", (int) yearend ); 1259 1260 for ( ; year < yearend; year++ ) 1261 { 1262 clocktime_t ct; 1263 time_t Observed; 1264 time_t Expected; 1265 unsigned Flag; 1266 unsigned long t; 1267 1268 ct.day = 1; 1269 ct.month = 1; 1270 ct.year = year; 1271 ct.hour = ct.minute = ct.second = ct.usecond = 0; 1272 ct.utcoffset = 0; 1273 ct.flags = 0; 1274 1275 Flag = 0; 1276 Observed = dcf_to_unixtime( &ct, &Flag ); 1277 /* seems to be a clone of parse_to_unixtime() with 1278 * *a minor difference to arg2 type */ 1279 if ( ct.year != year ) 1280 { 1281 fprintf( stdout, 1282 "%04d: dcf_to_unixtime(,%d) CORRUPTED ct.year: was %d\n", 1283 (int)year, (int)Flag, (int)ct.year ); 1284 Error(year); 1285 break; 1286 } 1287 t = julian0(year) - julian0(1970); /* Julian day from 1970 */ 1288 Expected = t * 24 * 60 * 60; 1289 if ( Observed != Expected || Flag ) 1290 { /* time difference */ 1291 fprintf( stdout, 1292 "%04d: dcf_to_unixtime(,%d) FAILURE: was=%lu s/b=%lu (%ld)\n", 1293 year, (int)Flag, 1294 (unsigned long)Observed, (unsigned long)Expected, 1295 ((long)Observed - (long)Expected) ); 1296 Error(year); 1297 break; 1298 } 1299 1300 if ( year >= YEAR_PIVOT+1900 ) 1301 { 1302 /* check year % 100 code we put into dcf_to_unixtime() */ 1303 ct.year = year % 100; 1304 Flag = 0; 1305 1306 Observed = dcf_to_unixtime( &ct, &Flag ); 1307 1308 if ( Observed != Expected || Flag ) 1309 { /* time difference */ 1310 fprintf( stdout, 1311 "%04d: dcf_to_unixtime(%d,%d) FAILURE: was=%lu s/b=%lu (%ld)\n", 1312 year, (int)ct.year, (int)Flag, 1313 (unsigned long)Observed, (unsigned long)Expected, 1314 ((long)Observed - (long)Expected) ); 1315 Error(year); 1316 break; 1317 } 1318 1319 /* check year - 1900 code we put into dcf_to_unixtime() */ 1320 ct.year = year - 1900; 1321 Flag = 0; 1322 1323 Observed = dcf_to_unixtime( &ct, &Flag ); 1324 1325 if ( Observed != Expected || Flag ) { /* time difference */ 1326 fprintf( stdout, 1327 "%04d: dcf_to_unixtime(%d,%d) FAILURE: was=%lu s/b=%lu (%ld)\n", 1328 year, (int)ct.year, (int)Flag, 1329 (unsigned long)Observed, (unsigned long)Expected, 1330 ((long)Observed - (long)Expected) ); 1331 Error(year); 1332 break; 1333 } 1334 1335 1336 } 1337 } 1338 1339 return ( Fatals ); 1340 } 1341 1342 /*-------------------------------------------------- 1343 * rawdcf_init - set up modem lines for RAWDCF receivers 1344 */ 1345 #if defined(TIOCMSET) && (defined(TIOCM_DTR) || defined(CIOCM_DTR)) 1346 static void 1347 rawdcf_init( 1348 int fd 1349 ) 1350 { 1351 /* 1352 * You can use the RS232 to supply the power for a DCF77 receiver. 1353 * Here a voltage between the DTR and the RTS line is used. Unfortunately 1354 * the name has changed from CIOCM_DTR to TIOCM_DTR recently. 1355 */ 1356 1357 #ifdef TIOCM_DTR 1358 int sl232 = TIOCM_DTR; /* turn on DTR for power supply */ 1359 #else 1360 int sl232 = CIOCM_DTR; /* turn on DTR for power supply */ 1361 #endif 1362 1363 if (ioctl(fd, TIOCMSET, (caddr_t)&sl232) == -1) 1364 { 1365 syslog(LOG_NOTICE, "rawdcf_init: WARNING: ioctl(fd, TIOCMSET, [C|T]IOCM_DTR): %m"); 1366 } 1367 } 1368 #else 1369 static void 1370 rawdcf_init( 1371 int fd 1372 ) 1373 { 1374 syslog(LOG_NOTICE, "rawdcf_init: WARNING: OS interface incapable of setting DTR to power DCF modules"); 1375 } 1376 #endif /* DTR initialisation type */ 1377 1378 /*----------------------------------------------------------------------- 1379 * main loop - argument interpreter / setup / main loop 1380 */ 1381 int 1382 main( 1383 int argc, 1384 char **argv 1385 ) 1386 { 1387 unsigned char c; 1388 char **a = argv; 1389 int ac = argc; 1390 char *file = NULL; 1391 const char *drift_file = "/etc/dcfd.drift"; 1392 int fd; 1393 int offset = 15; 1394 int offsets = 0; 1395 int delay = DEFAULT_DELAY; /* average delay from input edge to time stamping */ 1396 int trace = 0; 1397 int errs = 0; 1398 1399 /* 1400 * process arguments 1401 */ 1402 while (--ac) 1403 { 1404 char *arg = *++a; 1405 if (*arg == '-') 1406 while ((c = *++arg)) 1407 switch (c) 1408 { 1409 case 't': 1410 trace = 1; 1411 interactive = 1; 1412 break; 1413 1414 case 'f': 1415 offset = 0; 1416 interactive = 1; 1417 break; 1418 1419 case 'l': 1420 loop_filter_debug = 1; 1421 offsets = 1; 1422 interactive = 1; 1423 break; 1424 1425 case 'n': 1426 no_set = 1; 1427 break; 1428 1429 case 'o': 1430 offsets = 1; 1431 interactive = 1; 1432 break; 1433 1434 case 'i': 1435 interactive = 1; 1436 break; 1437 1438 case 'D': 1439 if (ac > 1) 1440 { 1441 delay = atoi(*++a); 1442 ac--; 1443 } 1444 else 1445 { 1446 fprintf(stderr, "%s: -D requires integer argument\n", argv[0]); 1447 errs=1; 1448 } 1449 break; 1450 1451 case 'd': 1452 if (ac > 1) 1453 { 1454 drift_file = *++a; 1455 ac--; 1456 } 1457 else 1458 { 1459 fprintf(stderr, "%s: -d requires file name argument\n", argv[0]); 1460 errs=1; 1461 } 1462 break; 1463 1464 case 'Y': 1465 errs=check_y2k(); 1466 exit( errs ? 1 : 0 ); 1467 1468 default: 1469 fprintf(stderr, "%s: unknown option -%c\n", argv[0], c); 1470 errs=1; 1471 break; 1472 } 1473 else 1474 if (file == NULL) 1475 file = arg; 1476 else 1477 { 1478 fprintf(stderr, "%s: device specified twice\n", argv[0]); 1479 errs=1; 1480 } 1481 } 1482 1483 if (errs) 1484 { 1485 usage(argv[0]); 1486 exit(1); 1487 } 1488 else 1489 if (file == NULL) 1490 { 1491 fprintf(stderr, "%s: device not specified\n", argv[0]); 1492 usage(argv[0]); 1493 exit(1); 1494 } 1495 1496 errs = LINES+1; 1497 1498 /* 1499 * get access to DCF77 tty port 1500 */ 1501 fd = open(file, O_RDONLY); 1502 if (fd == -1) 1503 { 1504 perror(file); 1505 exit(1); 1506 } 1507 else 1508 { 1509 int i, rrc; 1510 struct timeval t, tt, tlast; 1511 struct timeval timeout; 1512 struct timeval phase; 1513 struct timeval time_offset; 1514 char pbuf[61]; /* printable version */ 1515 char buf[61]; /* raw data */ 1516 clocktime_t clock_time; /* wall clock time */ 1517 time_t utc_time = 0; 1518 time_t last_utc_time = 0; 1519 long usecerror = 0; 1520 long lasterror = 0; 1521 #if defined(HAVE_TERMIOS_H) || defined(STREAM) 1522 struct termios term; 1523 #else /* not HAVE_TERMIOS_H || STREAM */ 1524 # if defined(HAVE_TERMIO_H) || defined(HAVE_SYSV_TTYS) 1525 struct termio term; 1526 # endif/* HAVE_TERMIO_H || HAVE_SYSV_TTYS */ 1527 #endif /* not HAVE_TERMIOS_H || STREAM */ 1528 unsigned int rtc = CVT_NONE; 1529 1530 rawdcf_init(fd); 1531 1532 timeout.tv_sec = 1; 1533 timeout.tv_usec = 500000; 1534 1535 phase.tv_sec = 0; 1536 phase.tv_usec = delay; 1537 1538 /* 1539 * setup TTY (50 Baud, Read, 8Bit, No Hangup, 1 character IO) 1540 */ 1541 if (TTY_GETATTR(fd, &term) == -1) 1542 { 1543 perror("tcgetattr"); 1544 exit(1); 1545 } 1546 1547 memset(term.c_cc, 0, sizeof(term.c_cc)); 1548 term.c_cc[VMIN] = 1; 1549 #ifdef NO_PARENB_IGNPAR 1550 term.c_cflag = B50|CS8|CREAD|CLOCAL; 1551 #else 1552 term.c_cflag = B50|CS8|CREAD|CLOCAL|PARENB; 1553 #endif 1554 term.c_iflag = IGNPAR; 1555 term.c_oflag = 0; 1556 term.c_lflag = 0; 1557 1558 if (TTY_SETATTR(fd, &term) == -1) 1559 { 1560 perror("tcsetattr"); 1561 exit(1); 1562 } 1563 1564 /* 1565 * loose terminal if in daemon operation 1566 */ 1567 if (!interactive) 1568 detach(); 1569 1570 /* 1571 * get syslog() initialized 1572 */ 1573 #ifdef LOG_DAEMON 1574 openlog("dcfd", LOG_PID, LOG_DAEMON); 1575 #else 1576 openlog("dcfd", LOG_PID); 1577 #endif 1578 1579 /* 1580 * setup periodic operations (state control / frequency control) 1581 */ 1582 #ifdef HAVE_SIGVEC 1583 { 1584 struct sigvec vec; 1585 1586 vec.sv_handler = tick; 1587 vec.sv_mask = 0; 1588 vec.sv_flags = 0; 1589 1590 if (sigvec(SIGALRM, &vec, (struct sigvec *)0) == -1) 1591 { 1592 syslog(LOG_ERR, "sigvec(SIGALRM): %m"); 1593 exit(1); 1594 } 1595 } 1596 #else 1597 #ifdef HAVE_SIGACTION 1598 { 1599 struct sigaction act; 1600 1601 act.sa_handler = tick; 1602 # ifdef HAVE_SA_SIGACTION_IN_STRUCT_SIGACTION 1603 act.sa_sigaction = (void (*) P((int, siginfo_t *, void *)))0; 1604 # endif /* HAVE_SA_SIGACTION_IN_STRUCT_SIGACTION */ 1605 sigemptyset(&act.sa_mask); 1606 act.sa_flags = 0; 1607 1608 if (sigaction(SIGALRM, &act, (struct sigaction *)0) == -1) 1609 { 1610 syslog(LOG_ERR, "sigaction(SIGALRM): %m"); 1611 exit(1); 1612 } 1613 } 1614 #else 1615 (void) signal(SIGALRM, tick); 1616 #endif 1617 #endif 1618 1619 #ifdef ITIMER_REAL 1620 { 1621 struct itimerval it; 1622 1623 it.it_interval.tv_sec = 1<<ADJINTERVAL; 1624 it.it_interval.tv_usec = 0; 1625 it.it_value.tv_sec = 1<<ADJINTERVAL; 1626 it.it_value.tv_usec = 0; 1627 1628 if (setitimer(ITIMER_REAL, &it, (struct itimerval *)0) == -1) 1629 { 1630 syslog(LOG_ERR, "setitimer: %m"); 1631 exit(1); 1632 } 1633 } 1634 #else 1635 (void) alarm(1<<ADJINTERVAL); 1636 #endif 1637 1638 PRINTF(" DCF77 monitor - Copyright (C) 1993-1998 by Frank Kardel\n\n"); 1639 1640 pbuf[60] = '\0'; 1641 for ( i = 0; i < 60; i++) 1642 pbuf[i] = '.'; 1643 1644 read_drift(drift_file); 1645 1646 /* 1647 * what time is it now (for interval measurement) 1648 */ 1649 gettimeofday(&tlast, 0L); 1650 i = 0; 1651 /* 1652 * loop until input trouble ... 1653 */ 1654 do 1655 { 1656 /* 1657 * get an impulse 1658 */ 1659 while ((rrc = read(fd, &c, 1)) == 1) 1660 { 1661 gettimeofday(&t, 0L); 1662 tt = t; 1663 timersub(&t, &tlast); 1664 1665 if (errs > LINES) 1666 { 1667 PRINTF(" %s", &"PTB private....RADMLSMin....PHour..PMDay..DayMonthYear....P\n"[offset]); 1668 PRINTF(" %s", &"---------------RADMLS1248124P124812P1248121241248112481248P\n"[offset]); 1669 errs = 0; 1670 } 1671 1672 /* 1673 * timeout -> possible minute mark -> interpretation 1674 */ 1675 if (timercmp(&t, &timeout, >)) 1676 { 1677 PRINTF("%c %.*s ", pat[i % (sizeof(pat)-1)], 59 - offset, &pbuf[offset]); 1678 1679 if ((rtc = cvt_rawdcf((unsigned char *)buf, i, &clock_time)) != CVT_OK) 1680 { 1681 /* 1682 * this data was bad - well - forget synchronisation for now 1683 */ 1684 PRINTF("\n"); 1685 if (sync_state == SYNC) 1686 { 1687 sync_state = NO_SYNC; 1688 syslog(LOG_INFO, "DCF77 reception lost (bad data)"); 1689 } 1690 errs++; 1691 } 1692 else 1693 if (trace) 1694 { 1695 PRINTF("\r %.*s ", 59 - offset, &buf[offset]); 1696 } 1697 1698 1699 buf[0] = c; 1700 1701 /* 1702 * collect first character 1703 */ 1704 if (((c^0xFF)+1) & (c^0xFF)) 1705 pbuf[0] = '?'; 1706 else 1707 pbuf[0] = type(c) ? '#' : '-'; 1708 1709 for ( i = 1; i < 60; i++) 1710 pbuf[i] = '.'; 1711 1712 i = 0; 1713 } 1714 else 1715 { 1716 /* 1717 * collect character 1718 */ 1719 buf[i] = c; 1720 1721 /* 1722 * initial guess (usually correct) 1723 */ 1724 if (((c^0xFF)+1) & (c^0xFF)) 1725 pbuf[i] = '?'; 1726 else 1727 pbuf[i] = type(c) ? '#' : '-'; 1728 1729 PRINTF("%c %.*s ", pat[i % (sizeof(pat)-1)], 59 - offset, &pbuf[offset]); 1730 } 1731 1732 if (i == 0 && rtc == CVT_OK) 1733 { 1734 /* 1735 * we got a good time code here - try to convert it to 1736 * UTC 1737 */ 1738 if ((utc_time = dcf_to_unixtime(&clock_time, &rtc)) == -1) 1739 { 1740 PRINTF("*** BAD CONVERSION\n"); 1741 } 1742 1743 if (utc_time != (last_utc_time + 60)) 1744 { 1745 /* 1746 * well, two successive sucessful telegrams are not 60 seconds 1747 * apart 1748 */ 1749 PRINTF("*** NO MINUTE INC\n"); 1750 if (sync_state == SYNC) 1751 { 1752 sync_state = NO_SYNC; 1753 syslog(LOG_INFO, "DCF77 reception lost (data mismatch)"); 1754 } 1755 errs++; 1756 rtc = CVT_FAIL|CVT_BADTIME|CVT_BADDATE; 1757 } 1758 else 1759 usecerror = 0; 1760 1761 last_utc_time = utc_time; 1762 } 1763 1764 if (rtc == CVT_OK) 1765 { 1766 if (i == 0) 1767 { 1768 /* 1769 * valid time code - determine offset and 1770 * note regained reception 1771 */ 1772 last_sync = ticks; 1773 if (sync_state == NO_SYNC) 1774 { 1775 syslog(LOG_INFO, "receiving DCF77"); 1776 } 1777 else 1778 { 1779 /* 1780 * we had at least one minute SYNC - thus 1781 * last error is valid 1782 */ 1783 time_offset.tv_sec = lasterror / 1000000; 1784 time_offset.tv_usec = lasterror % 1000000; 1785 adjust_clock(&time_offset, drift_file, utc_time); 1786 } 1787 sync_state = SYNC; 1788 } 1789 1790 time_offset.tv_sec = utc_time + i; 1791 time_offset.tv_usec = 0; 1792 1793 timeradd(&time_offset, &phase); 1794 1795 usecerror += (time_offset.tv_sec - tt.tv_sec) * 1000000 + time_offset.tv_usec 1796 -tt.tv_usec; 1797 1798 /* 1799 * output interpreted DCF77 data 1800 */ 1801 PRINTF(offsets ? "%s, %2d:%02d:%02d, %d.%02d.%02d, <%s%s%s%s> (%c%d.%06ds)" : 1802 "%s, %2d:%02d:%02d, %d.%02d.%02d, <%s%s%s%s>", 1803 wday[clock_time.wday], 1804 clock_time.hour, clock_time.minute, i, clock_time.day, clock_time.month, 1805 clock_time.year, 1806 (clock_time.flags & DCFB_ALTERNATE) ? "R" : "_", 1807 (clock_time.flags & DCFB_ANNOUNCE) ? "A" : "_", 1808 (clock_time.flags & DCFB_DST) ? "D" : "_", 1809 (clock_time.flags & DCFB_LEAP) ? "L" : "_", 1810 (lasterror < 0) ? '-' : '+', l_abs(lasterror) / 1000000, l_abs(lasterror) % 1000000 1811 ); 1812 1813 if (trace && (i == 0)) 1814 { 1815 PRINTF("\n"); 1816 errs++; 1817 } 1818 lasterror = usecerror / (i+1); 1819 } 1820 else 1821 { 1822 lasterror = 0; /* we cannot calculate phase errors on bad reception */ 1823 } 1824 1825 PRINTF("\r"); 1826 1827 if (i < 60) 1828 { 1829 i++; 1830 } 1831 1832 tlast = tt; 1833 1834 if (interactive) 1835 fflush(stdout); 1836 } 1837 } while ((rrc == -1) && (errno == EINTR)); 1838 1839 /* 1840 * lost IO - sorry guys 1841 */ 1842 syslog(LOG_ERR, "TERMINATING - cannot read from device %s (%m)", file); 1843 1844 (void)close(fd); 1845 } 1846 1847 closelog(); 1848 1849 return 0; 1850 } 1851