xref: /freebsd/contrib/ntp/parseutil/dcfd.c (revision daf1cffce2e07931f27c6c6998652e90df6ba87e)
1 /*
2  * /src/NTP/ntp-4/parseutil/dcfd.c,v 4.9 1999/02/28 13:06:27 kardel RELEASE_19990228_A
3  *
4  * dcfd.c,v 4.9 1999/02/28 13:06:27 kardel RELEASE_19990228_A
5  *
6  * DCF77 100/200ms pulse synchronisation daemon program (via 50Baud serial line)
7  *
8  * Features:
9  *  DCF77 decoding
10  *  simple NTP loopfilter logic for local clock
11  *  interactive display for debugging
12  *
13  * Lacks:
14  *  Leap second handling (at that level you should switch to NTP Version 4 - really!)
15  *
16  * Copyright (C) 1995-1999 by Frank Kardel <kardel@acm.org>
17  * Copyright (C) 1993-1994 by Frank Kardel
18  * Friedrich-Alexander Universit�t Erlangen-N�rnberg, Germany
19  *
20  * This program is distributed in the hope that it will be useful,
21  * but WITHOUT ANY WARRANTY; without even the implied warranty of
22  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
23  *
24  * This program may not be sold or used for profit without prior
25  * written consent of the author.
26  */
27 
28 #ifdef HAVE_CONFIG_H
29 # include <config.h>
30 #endif
31 
32 #include <unistd.h>
33 #include <stdio.h>
34 #include <fcntl.h>
35 #include <sys/types.h>
36 #include <sys/time.h>
37 #include <signal.h>
38 #include <syslog.h>
39 #include <time.h>
40 
41 /*
42  * NTP compilation environment
43  */
44 #include "ntp_stdlib.h"
45 #include "ntpd.h"   /* indirectly include ntp.h to get YEAR_PIVOT   Y2KFixes */
46 
47 /*
48  * select which terminal handling to use (currently only SysV variants)
49  */
50 #if defined(HAVE_TERMIOS_H) || defined(STREAM)
51 #include <termios.h>
52 #define TTY_GETATTR(_FD_, _ARG_) tcgetattr((_FD_), (_ARG_))
53 #define TTY_SETATTR(_FD_, _ARG_) tcsetattr((_FD_), TCSANOW, (_ARG_))
54 #else  /* not HAVE_TERMIOS_H || STREAM */
55 # if defined(HAVE_TERMIO_H) || defined(HAVE_SYSV_TTYS)
56 #  include <termio.h>
57 #  define TTY_GETATTR(_FD_, _ARG_) ioctl((_FD_), TCGETA, (_ARG_))
58 #  define TTY_SETATTR(_FD_, _ARG_) ioctl((_FD_), TCSETAW, (_ARG_))
59 # endif/* HAVE_TERMIO_H || HAVE_SYSV_TTYS */
60 #endif /* not HAVE_TERMIOS_H || STREAM */
61 
62 
63 #ifndef TTY_GETATTR
64 #include "Bletch: MUST DEFINE ONE OF 'HAVE_TERMIOS_H' or 'HAVE_TERMIO_H'"
65 #endif
66 
67 #ifndef days_per_year
68 #define days_per_year(_x_) (((_x_) % 4) ? 365 : (((_x_) % 400) ? 365 : 366))
69 #endif
70 
71 #define timernormalize(_a_) \
72 	if ((_a_)->tv_usec >= 1000000) \
73 	{ \
74 		(_a_)->tv_sec  += (_a_)->tv_usec / 1000000; \
75 		(_a_)->tv_usec  = (_a_)->tv_usec % 1000000; \
76 	} \
77 	if ((_a_)->tv_usec < 0) \
78 	{ \
79 		(_a_)->tv_sec  -= 1 + (-(_a_)->tv_usec / 1000000); \
80 		(_a_)->tv_usec = 999999 - (-(_a_)->tv_usec - 1); \
81 	}
82 
83 #ifdef timeradd
84 #undef timeradd
85 #endif
86 #define timeradd(_a_, _b_) \
87 	(_a_)->tv_sec  += (_b_)->tv_sec; \
88 	(_a_)->tv_usec += (_b_)->tv_usec; \
89 	timernormalize((_a_))
90 
91 #ifdef timersub
92 #undef timersub
93 #endif
94 #define timersub(_a_, _b_) \
95 	(_a_)->tv_sec  -= (_b_)->tv_sec; \
96 	(_a_)->tv_usec -= (_b_)->tv_usec; \
97 	timernormalize((_a_))
98 
99 /*
100  * debug macros
101  */
102 #define PRINTF if (interactive) printf
103 #define LPRINTF if (interactive && loop_filter_debug) printf
104 
105 #ifdef DEBUG
106 #define dprintf(_x_) LPRINTF _x_
107 #else
108 #define dprintf(_x_)
109 #endif
110 
111      extern int errno;
112 
113 /*
114  * display received data (avoids also detaching from tty)
115  */
116 static int interactive = 0;
117 
118 /*
119  * display loopfilter (clock control) variables
120  */
121 static int loop_filter_debug = 0;
122 
123 /*
124  * do not set/adjust system time
125  */
126 static int no_set = 0;
127 
128 /*
129  * time that passes between start of DCF impulse and time stamping (fine
130  * adjustment) in microseconds (receiver/OS dependent)
131  */
132 #define DEFAULT_DELAY	230000	/* rough estimate */
133 
134 /*
135  * The two states we can be in - eithe we receive nothing
136  * usable or we have the correct time
137  */
138 #define NO_SYNC		0x01
139 #define SYNC		0x02
140 
141 static int    sync_state = NO_SYNC;
142 static time_t last_sync;
143 
144 static unsigned long ticks = 0;
145 
146 static char pat[] = "-\\|/";
147 
148 #define LINES		(24-2)	/* error lines after which the two headlines are repeated */
149 
150 #define MAX_UNSYNC	(10*60)	/* allow synchronisation loss for 10 minutes */
151 #define NOTICE_INTERVAL (20*60)	/* mention missing synchronisation every 20 minutes */
152 
153 /*
154  * clock adjustment PLL - see NTP protocol spec (RFC1305) for details
155  */
156 
157 #define USECSCALE	10
158 #define TIMECONSTANT	2
159 #define ADJINTERVAL	0
160 #define FREQ_WEIGHT	18
161 #define PHASE_WEIGHT	7
162 #define MAX_DRIFT	0x3FFFFFFF
163 
164 #define R_SHIFT(_X_, _Y_) (((_X_) < 0) ? -(-(_X_) >> (_Y_)) : ((_X_) >> (_Y_)))
165 
166 static struct timeval max_adj_offset = { 0, 128000 };
167 
168 static long clock_adjust = 0;	/* current adjustment value (usec * 2^USECSCALE) */
169 static long accum_drift   = 0;	/* accumulated drift value  (usec / ADJINTERVAL) */
170 static long adjustments  = 0;
171 static char skip_adjust  = 1;	/* discard first adjustment (bad samples) */
172 
173 /*
174  * DCF77 state flags
175  */
176 #define DCFB_ANNOUNCE           0x0001 /* switch time zone warning (DST switch) */
177 #define DCFB_DST                0x0002 /* DST in effect */
178 #define DCFB_LEAP		0x0004 /* LEAP warning (1 hour prior to occurence) */
179 #define DCFB_ALTERNATE		0x0008 /* alternate antenna used */
180 
181 struct clocktime		/* clock time broken up from time code */
182 {
183 	long wday;		/* Day of week: 1: Monday - 7: Sunday */
184 	long day;
185 	long month;
186 	long year;
187 	long hour;
188 	long minute;
189 	long second;
190 	long usecond;
191 	long utcoffset;	/* in minutes */
192 	long flags;		/* current clock status  (DCF77 state flags) */
193 };
194 
195 typedef struct clocktime clocktime_t;
196 
197 /*
198  * (usually) quick constant multiplications
199  */
200 #define TIMES10(_X_) (((_X_) << 3) + ((_X_) << 1))	/* *8 + *2 */
201 #define TIMES24(_X_) (((_X_) << 4) + ((_X_) << 3))      /* *16 + *8 */
202 #define TIMES60(_X_) ((((_X_) << 4)  - (_X_)) << 2)     /* *(16 - 1) *4 */
203 /*
204  * generic l_abs() function
205  */
206 #define l_abs(_x_)     (((_x_) < 0) ? -(_x_) : (_x_))
207 
208 /*
209  * conversion related return/error codes
210  */
211 #define CVT_MASK	0x0000000F /* conversion exit code */
212 #define   CVT_NONE	0x00000001 /* format not applicable */
213 #define   CVT_FAIL	0x00000002 /* conversion failed - error code returned */
214 #define   CVT_OK	0x00000004 /* conversion succeeded */
215 #define CVT_BADFMT	0x00000010 /* general format error - (unparsable) */
216 #define CVT_BADDATE	0x00000020 /* invalid date */
217 #define CVT_BADTIME	0x00000040 /* invalid time */
218 
219 /*
220  * DCF77 raw time code
221  *
222  * From "Zur Zeit", Physikalisch-Technische Bundesanstalt (PTB), Braunschweig
223  * und Berlin, Maerz 1989
224  *
225  * Timecode transmission:
226  * AM:
227  *	time marks are send every second except for the second before the
228  *	next minute mark
229  *	time marks consist of a reduction of transmitter power to 25%
230  *	of the nominal level
231  *	the falling edge is the time indication (on time)
232  *	time marks of a 100ms duration constitute a logical 0
233  *	time marks of a 200ms duration constitute a logical 1
234  * FM:
235  *	see the spec. (basically a (non-)inverted psuedo random phase shift)
236  *
237  * Encoding:
238  * Second	Contents
239  * 0  - 10	AM: free, FM: 0
240  * 11 - 14	free
241  * 15		R     - alternate antenna
242  * 16		A1    - expect zone change (1 hour before)
243  * 17 - 18	Z1,Z2 - time zone
244  *		 0  0 illegal
245  *		 0  1 MEZ  (MET)
246  *		 1  0 MESZ (MED, MET DST)
247  *		 1  1 illegal
248  * 19		A2    - expect leap insertion/deletion (1 hour before)
249  * 20		S     - start of time code (1)
250  * 21 - 24	M1    - BCD (lsb first) Minutes
251  * 25 - 27	M10   - BCD (lsb first) 10 Minutes
252  * 28		P1    - Minute Parity (even)
253  * 29 - 32	H1    - BCD (lsb first) Hours
254  * 33 - 34      H10   - BCD (lsb first) 10 Hours
255  * 35		P2    - Hour Parity (even)
256  * 36 - 39	D1    - BCD (lsb first) Days
257  * 40 - 41	D10   - BCD (lsb first) 10 Days
258  * 42 - 44	DW    - BCD (lsb first) day of week (1: Monday -> 7: Sunday)
259  * 45 - 49	MO    - BCD (lsb first) Month
260  * 50           MO0   - 10 Months
261  * 51 - 53	Y1    - BCD (lsb first) Years
262  * 54 - 57	Y10   - BCD (lsb first) 10 Years
263  * 58 		P3    - Date Parity (even)
264  * 59		      - usually missing (minute indication), except for leap insertion
265  */
266 
267 /*-----------------------------------------------------------------------
268  * conversion table to map DCF77 bit stream into data fields.
269  * Encoding:
270  *   Each field of the DCF77 code is described with two adjacent entries in
271  *   this table. The first entry specifies the offset into the DCF77 data stream
272  *   while the length is given as the difference between the start index and
273  *   the start index of the following field.
274  */
275 static struct rawdcfcode
276 {
277 	char offset;			/* start bit */
278 } rawdcfcode[] =
279 {
280 	{  0 }, { 15 }, { 16 }, { 17 }, { 19 }, { 20 }, { 21 }, { 25 }, { 28 }, { 29 },
281 	{ 33 }, { 35 }, { 36 }, { 40 }, { 42 }, { 45 }, { 49 }, { 50 }, { 54 }, { 58 }, { 59 }
282 };
283 
284 /*-----------------------------------------------------------------------
285  * symbolic names for the fields of DCF77 describes in "rawdcfcode".
286  * see comment above for the structure of the DCF77 data
287  */
288 #define DCF_M	0
289 #define DCF_R	1
290 #define DCF_A1	2
291 #define DCF_Z	3
292 #define DCF_A2	4
293 #define DCF_S	5
294 #define DCF_M1	6
295 #define DCF_M10	7
296 #define DCF_P1	8
297 #define DCF_H1	9
298 #define DCF_H10	10
299 #define DCF_P2	11
300 #define DCF_D1	12
301 #define DCF_D10	13
302 #define DCF_DW	14
303 #define DCF_MO	15
304 #define DCF_MO0	16
305 #define DCF_Y1	17
306 #define DCF_Y10	18
307 #define DCF_P3	19
308 
309 /*-----------------------------------------------------------------------
310  * parity field table (same encoding as rawdcfcode)
311  * This table describes the sections of the DCF77 code that are
312  * parity protected
313  */
314 static struct partab
315 {
316 	char offset;			/* start bit of parity field */
317 } partab[] =
318 {
319 	{ 21 }, { 29 }, { 36 }, { 59 }
320 };
321 
322 /*-----------------------------------------------------------------------
323  * offsets for parity field descriptions
324  */
325 #define DCF_P_P1	0
326 #define DCF_P_P2	1
327 #define DCF_P_P3	2
328 
329 /*-----------------------------------------------------------------------
330  * legal values for time zone information
331  */
332 #define DCF_Z_MET 0x2
333 #define DCF_Z_MED 0x1
334 
335 /*-----------------------------------------------------------------------
336  * symbolic representation if the DCF77 data stream
337  */
338 static struct dcfparam
339 {
340 	unsigned char onebits[60];
341 	unsigned char zerobits[60];
342 } dcfparam =
343 {
344 	"###############RADMLS1248124P124812P1248121241248112481248P", /* 'ONE' representation */
345 	"--------------------s-------p------p----------------------p"  /* 'ZERO' representation */
346 };
347 
348 /*-----------------------------------------------------------------------
349  * extract a bitfield from DCF77 datastream
350  * All numeric fields are LSB first.
351  * buf holds a pointer to a DCF77 data buffer in symbolic
352  *     representation
353  * idx holds the index to the field description in rawdcfcode
354  */
355 static unsigned long
356 ext_bf(
357 	register unsigned char *buf,
358 	register int   idx
359 	)
360 {
361 	register unsigned long sum = 0;
362 	register int i, first;
363 
364 	first = rawdcfcode[idx].offset;
365 
366 	for (i = rawdcfcode[idx+1].offset - 1; i >= first; i--)
367 	{
368 		sum <<= 1;
369 		sum |= (buf[i] != dcfparam.zerobits[i]);
370 	}
371 	return sum;
372 }
373 
374 /*-----------------------------------------------------------------------
375  * check even parity integrity for a bitfield
376  *
377  * buf holds a pointer to a DCF77 data buffer in symbolic
378  *     representation
379  * idx holds the index to the field description in partab
380  */
381 static unsigned
382 pcheck(
383 	register unsigned char *buf,
384 	register int   idx
385 	)
386 {
387 	register int i,last;
388 	register unsigned psum = 1;
389 
390 	last = partab[idx+1].offset;
391 
392 	for (i = partab[idx].offset; i < last; i++)
393 	    psum ^= (buf[i] != dcfparam.zerobits[i]);
394 
395 	return psum;
396 }
397 
398 /*-----------------------------------------------------------------------
399  * convert a DCF77 data buffer into wall clock time + flags
400  *
401  * buffer holds a pointer to a DCF77 data buffer in symbolic
402  *        representation
403  * size   describes the length of DCF77 information in bits (represented
404  *        as chars in symbolic notation
405  * clock  points to a wall clock time description of the DCF77 data (result)
406  */
407 static unsigned long
408 convert_rawdcf(
409 	       unsigned char   *buffer,
410 	       int              size,
411 	       clocktime_t     *clock_time
412 	       )
413 {
414 	if (size < 57)
415 	{
416 		PRINTF("%-30s", "*** INCOMPLETE");
417 		return CVT_NONE;
418 	}
419 
420 	/*
421 	 * check Start and Parity bits
422 	 */
423 	if ((ext_bf(buffer, DCF_S) == 1) &&
424 	    pcheck(buffer, DCF_P_P1) &&
425 	    pcheck(buffer, DCF_P_P2) &&
426 	    pcheck(buffer, DCF_P_P3))
427 	{
428 		/*
429 		 * buffer OK - extract all fields and build wall clock time from them
430 		 */
431 
432 		clock_time->flags  = 0;
433 		clock_time->usecond= 0;
434 		clock_time->second = 0;
435 		clock_time->minute = ext_bf(buffer, DCF_M10);
436 		clock_time->minute = TIMES10(clock_time->minute) + ext_bf(buffer, DCF_M1);
437 		clock_time->hour   = ext_bf(buffer, DCF_H10);
438 		clock_time->hour   = TIMES10(clock_time->hour)   + ext_bf(buffer, DCF_H1);
439 		clock_time->day    = ext_bf(buffer, DCF_D10);
440 		clock_time->day    = TIMES10(clock_time->day)    + ext_bf(buffer, DCF_D1);
441 		clock_time->month  = ext_bf(buffer, DCF_MO0);
442 		clock_time->month  = TIMES10(clock_time->month)  + ext_bf(buffer, DCF_MO);
443 		clock_time->year   = ext_bf(buffer, DCF_Y10);
444 		clock_time->year   = TIMES10(clock_time->year)   + ext_bf(buffer, DCF_Y1);
445 		clock_time->wday   = ext_bf(buffer, DCF_DW);
446 
447 		/*
448 		 * determine offset to UTC by examining the time zone
449 		 */
450 		switch (ext_bf(buffer, DCF_Z))
451 		{
452 		    case DCF_Z_MET:
453 			clock_time->utcoffset = -60;
454 			break;
455 
456 		    case DCF_Z_MED:
457 			clock_time->flags     |= DCFB_DST;
458 			clock_time->utcoffset  = -120;
459 			break;
460 
461 		    default:
462 			PRINTF("%-30s", "*** BAD TIME ZONE");
463 			return CVT_FAIL|CVT_BADFMT;
464 		}
465 
466 		/*
467 		 * extract various warnings from DCF77
468 		 */
469 		if (ext_bf(buffer, DCF_A1))
470 		    clock_time->flags |= DCFB_ANNOUNCE;
471 
472 		if (ext_bf(buffer, DCF_A2))
473 		    clock_time->flags |= DCFB_LEAP;
474 
475 		if (ext_bf(buffer, DCF_R))
476 		    clock_time->flags |= DCFB_ALTERNATE;
477 
478 		return CVT_OK;
479 	}
480 	else
481 	{
482 		/*
483 		 * bad format - not for us
484 		 */
485 		PRINTF("%-30s", "*** BAD FORMAT (invalid/parity)");
486 		return CVT_FAIL|CVT_BADFMT;
487 	}
488 }
489 
490 /*-----------------------------------------------------------------------
491  * raw dcf input routine - fix up 50 baud
492  * characters for 1/0 decision
493  */
494 static unsigned long
495 cvt_rawdcf(
496 	   unsigned char   *buffer,
497 	   int              size,
498 	   clocktime_t     *clock_time
499 	   )
500 {
501 	register unsigned char *s = buffer;
502 	register unsigned char *e = buffer + size;
503 	register unsigned char *b = dcfparam.onebits;
504 	register unsigned char *c = dcfparam.zerobits;
505 	register unsigned rtc = CVT_NONE;
506 	register unsigned int i, lowmax, highmax, cutoff, span;
507 #define BITS 9
508 	unsigned char     histbuf[BITS];
509 	/*
510 	 * the input buffer contains characters with runs of consecutive
511 	 * bits set. These set bits are an indication of the DCF77 pulse
512 	 * length. We assume that we receive the pulse at 50 Baud. Thus
513 	 * a 100ms pulse would generate a 4 bit train (20ms per bit and
514 	 * start bit)
515 	 * a 200ms pulse would create all zeroes (and probably a frame error)
516 	 *
517 	 * The basic idea is that on corret reception we must have two
518 	 * maxima in the pulse length distribution histogram. (one for
519 	 * the zero representing pulses and one for the one representing
520 	 * pulses)
521 	 * There will always be ones in the datastream, thus we have to see
522 	 * two maxima.
523 	 * The best point to cut for a 1/0 decision is the minimum between those
524 	 * between the maxima. The following code tries to find this cutoff point.
525 	 */
526 
527 	/*
528 	 * clear histogram buffer
529 	 */
530 	for (i = 0; i < BITS; i++)
531 	{
532 		histbuf[i] = 0;
533 	}
534 
535 	cutoff = 0;
536 	lowmax = 0;
537 
538 	/*
539 	 * convert sequences of set bits into bits counts updating
540 	 * the histogram alongway
541 	 */
542 	while (s < e)
543 	{
544 		register unsigned int ch = *s ^ 0xFF;
545 		/*
546 		 * check integrity and update histogramm
547 		 */
548 		if (!((ch+1) & ch) || !*s)
549 		{
550 			/*
551 			 * character ok
552 			 */
553 			for (i = 0; ch; i++)
554 			{
555 				ch >>= 1;
556 			}
557 
558 			*s = i;
559 			histbuf[i]++;
560 			cutoff += i;
561 			lowmax++;
562 		}
563 		else
564 		{
565 			/*
566 			 * invalid character (no consecutive bit sequence)
567 			 */
568 			dprintf(("parse: cvt_rawdcf: character check for 0x%x@%d FAILED\n", *s, s - buffer));
569 			*s = (unsigned char)~0;
570 			rtc = CVT_FAIL|CVT_BADFMT;
571 		}
572 		s++;
573 	}
574 
575 	/*
576 	 * first cutoff estimate (average bit count - must be between both
577 	 * maxima)
578 	 */
579 	if (lowmax)
580 	{
581 		cutoff /= lowmax;
582 	}
583 	else
584 	{
585 		cutoff = 4;	/* doesn't really matter - it'll fail anyway, but gives error output */
586 	}
587 
588 	dprintf(("parse: cvt_rawdcf: average bit count: %d\n", cutoff));
589 
590 	lowmax = 0;  /* weighted sum */
591 	highmax = 0; /* bitcount */
592 
593 	/*
594 	 * collect weighted sum of lower bits (left of initial guess)
595 	 */
596 	dprintf(("parse: cvt_rawdcf: histogram:"));
597 	for (i = 0; i <= cutoff; i++)
598 	{
599 		lowmax  += histbuf[i] * i;
600 		highmax += histbuf[i];
601 		dprintf((" %d", histbuf[i]));
602 	}
603 	dprintf((" <M>"));
604 
605 	/*
606 	 * round up
607 	 */
608 	lowmax += highmax / 2;
609 
610 	/*
611 	 * calculate lower bit maximum (weighted sum / bit count)
612 	 *
613 	 * avoid divide by zero
614 	 */
615 	if (highmax)
616 	{
617 		lowmax /= highmax;
618 	}
619 	else
620 	{
621 		lowmax = 0;
622 	}
623 
624 	highmax = 0; /* weighted sum of upper bits counts */
625 	cutoff = 0;  /* bitcount */
626 
627 	/*
628 	 * collect weighted sum of lower bits (right of initial guess)
629 	 */
630 	for (; i < BITS; i++)
631 	{
632 		highmax+=histbuf[i] * i;
633 		cutoff +=histbuf[i];
634 		dprintf((" %d", histbuf[i]));
635 	}
636 	dprintf(("\n"));
637 
638 	/*
639 	 * determine upper maximum (weighted sum / bit count)
640 	 */
641 	if (cutoff)
642 	{
643 		highmax /= cutoff;
644 	}
645 	else
646 	{
647 		highmax = BITS-1;
648 	}
649 
650 	/*
651 	 * following now holds:
652 	 * lowmax <= cutoff(initial guess) <= highmax
653 	 * best cutoff is the minimum nearest to higher bits
654 	 */
655 
656 	/*
657 	 * find the minimum between lowmax and highmax (detecting
658 	 * possibly a minimum span)
659 	 */
660 	span = cutoff = lowmax;
661 	for (i = lowmax; i <= highmax; i++)
662 	{
663 		if (histbuf[cutoff] > histbuf[i])
664 		{
665 			/*
666 			 * got a new minimum move beginning of minimum (cutoff) and
667 			 * end of minimum (span) there
668 			 */
669 			cutoff = span = i;
670 		}
671 		else
672 		    if (histbuf[cutoff] == histbuf[i])
673 		    {
674 			    /*
675 			     * minimum not better yet - but it spans more than
676 			     * one bit value - follow it
677 			     */
678 			    span = i;
679 		    }
680 	}
681 
682 	/*
683 	 * cutoff point for 1/0 decision is the middle of the minimum section
684 	 * in the histogram
685 	 */
686 	cutoff = (cutoff + span) / 2;
687 
688 	dprintf(("parse: cvt_rawdcf: lower maximum %d, higher maximum %d, cutoff %d\n", lowmax, highmax, cutoff));
689 
690 	/*
691 	 * convert the bit counts to symbolic 1/0 information for data conversion
692 	 */
693 	s = buffer;
694 	while ((s < e) && *c && *b)
695 	{
696 		if (*s == (unsigned char)~0)
697 		{
698 			/*
699 			 * invalid character
700 			 */
701 			*s = '?';
702 		}
703 		else
704 		{
705 			/*
706 			 * symbolic 1/0 representation
707 			 */
708 			*s = (*s >= cutoff) ? *b : *c;
709 		}
710 		s++;
711 		b++;
712 		c++;
713 	}
714 
715 	/*
716 	 * if everything went well so far return the result of the symbolic
717 	 * conversion routine else just the accumulated errors
718 	 */
719 	if (rtc != CVT_NONE)
720 	{
721 		PRINTF("%-30s", "*** BAD DATA");
722 	}
723 
724 	return (rtc == CVT_NONE) ? convert_rawdcf(buffer, size, clock_time) : rtc;
725 }
726 
727 /*-----------------------------------------------------------------------
728  * convert a wall clock time description of DCF77 to a Unix time (seconds
729  * since 1.1. 1970 UTC)
730  */
731 time_t
732 dcf_to_unixtime(
733 		clocktime_t   *clock_time,
734 		unsigned *cvtrtc
735 		)
736 {
737 #define SETRTC(_X_)	{ if (cvtrtc) *cvtrtc = (_X_); }
738 	static int days_of_month[] =
739 	{
740 		0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
741 	};
742 	register int i;
743 	time_t t;
744 
745 	/*
746 	 * map 2 digit years to 19xx (DCF77 is a 20th century item)
747 	 */
748 	if ( clock_time->year < YEAR_PIVOT ) 	/* in case of	   Y2KFixes [ */
749 		clock_time->year += 100;	/* *year%100, make tm_year */
750 						/* *(do we need this?) */
751 	if ( clock_time->year < YEAR_BREAK )	/* (failsafe if) */
752 	    clock_time->year += 1900;				/* Y2KFixes ] */
753 
754 	/*
755 	 * must have been a really bad year code - drop it
756 	 */
757 	if (clock_time->year < (YEAR_PIVOT + 1900) )		/* Y2KFixes */
758 	{
759 		SETRTC(CVT_FAIL|CVT_BADDATE);
760 		return -1;
761 	}
762 	/*
763 	 * sorry, slow section here - but it's not time critical anyway
764 	 */
765 
766 	/*
767 	 * calculate days since 1970 (watching leap years)
768 	 */
769 	t = julian0( clock_time->year ) - julian0( 1970 );
770 
771   				/* month */
772 	if (clock_time->month <= 0 || clock_time->month > 12)
773 	{
774 		SETRTC(CVT_FAIL|CVT_BADDATE);
775 		return -1;		/* bad month */
776 	}
777 				/* adjust current leap year */
778 #if 0
779 	if (clock_time->month < 3 && days_per_year(clock_time->year) == 366)
780 	    t--;
781 #endif
782 
783 	/*
784 	 * collect days from months excluding the current one
785 	 */
786 	for (i = 1; i < clock_time->month; i++)
787 	{
788 		t += days_of_month[i];
789 	}
790 				/* day */
791 	if (clock_time->day < 1 || ((clock_time->month == 2 && days_per_year(clock_time->year) == 366) ?
792 			       clock_time->day > 29 : clock_time->day > days_of_month[clock_time->month]))
793 	{
794 		SETRTC(CVT_FAIL|CVT_BADDATE);
795 		return -1;		/* bad day */
796 	}
797 
798 	/*
799 	 * collect days from date excluding the current one
800 	 */
801 	t += clock_time->day - 1;
802 
803 				/* hour */
804 	if (clock_time->hour < 0 || clock_time->hour >= 24)
805 	{
806 		SETRTC(CVT_FAIL|CVT_BADTIME);
807 		return -1;		/* bad hour */
808 	}
809 
810 	/*
811 	 * calculate hours from 1. 1. 1970
812 	 */
813 	t = TIMES24(t) + clock_time->hour;
814 
815   				/* min */
816 	if (clock_time->minute < 0 || clock_time->minute > 59)
817 	{
818 		SETRTC(CVT_FAIL|CVT_BADTIME);
819 		return -1;		/* bad min */
820 	}
821 
822 	/*
823 	 * calculate minutes from 1. 1. 1970
824 	 */
825 	t = TIMES60(t) + clock_time->minute;
826 				/* sec */
827 
828 	/*
829 	 * calculate UTC in minutes
830 	 */
831 	t += clock_time->utcoffset;
832 
833 	if (clock_time->second < 0 || clock_time->second > 60)	/* allow for LEAPs */
834 	{
835 		SETRTC(CVT_FAIL|CVT_BADTIME);
836 		return -1;		/* bad sec */
837 	}
838 
839 	/*
840 	 * calculate UTC in seconds - phew !
841 	 */
842 	t  = TIMES60(t) + clock_time->second;
843 				/* done */
844 	return t;
845 }
846 
847 /*-----------------------------------------------------------------------
848  * cheap half baked 1/0 decision - for interactive operation only
849  */
850 static char
851 type(
852      unsigned int c
853      )
854 {
855 	c ^= 0xFF;
856 	return (c > 0xF);
857 }
858 
859 /*-----------------------------------------------------------------------
860  * week day representation
861  */
862 static const char *wday[8] =
863 {
864 	"??",
865 	"Mo",
866 	"Tu",
867 	"We",
868 	"Th",
869 	"Fr",
870 	"Sa",
871 	"Su"
872 };
873 
874 /*-----------------------------------------------------------------------
875  * generate a string representation for a timeval
876  */
877 static char *
878 pr_timeval(
879 	   struct timeval *val
880 	   )
881 {
882 	static char buf[20];
883 
884 	if (val->tv_sec == 0)
885 	    sprintf(buf, "%c0.%06ld", (val->tv_usec < 0) ? '-' : '+', (long int)l_abs(val->tv_usec));
886 	else
887 	    sprintf(buf, "%ld.%06ld", (long int)val->tv_sec, (long int)l_abs(val->tv_usec));
888 	return buf;
889 }
890 
891 /*-----------------------------------------------------------------------
892  * correct the current time by an offset by setting the time rigorously
893  */
894 static void
895 set_time(
896 	 struct timeval *offset
897 	 )
898 {
899 	struct timeval the_time;
900 
901 	if (no_set)
902 	    return;
903 
904 	LPRINTF("set_time: %s ", pr_timeval(offset));
905 	syslog(LOG_NOTICE, "setting time (offset %s)", pr_timeval(offset));
906 
907 	if (gettimeofday(&the_time, 0L) == -1)
908 	{
909 		perror("gettimeofday()");
910 	}
911 	else
912 	{
913 		timeradd(&the_time, offset);
914 		if (settimeofday(&the_time, 0L) == -1)
915 		{
916 			perror("settimeofday()");
917 		}
918 	}
919 }
920 
921 /*-----------------------------------------------------------------------
922  * slew the time by a given offset
923  */
924 static void
925 adj_time(
926 	 long offset
927 	 )
928 {
929 	struct timeval time_offset;
930 
931 	if (no_set)
932 	    return;
933 
934 	time_offset.tv_sec  = offset / 1000000;
935 	time_offset.tv_usec = offset % 1000000;
936 
937 	LPRINTF("adj_time: %ld us ", (long int)offset);
938 	if (adjtime(&time_offset, 0L) == -1)
939 	    perror("adjtime()");
940 }
941 
942 /*-----------------------------------------------------------------------
943  * read in a possibly previously written drift value
944  */
945 static void
946 read_drift(
947 	   const char *drift_file
948 	   )
949 {
950 	FILE *df;
951 
952 	df = fopen(drift_file, "r");
953 	if (df != NULL)
954 	{
955 		int idrift = 0, fdrift = 0;
956 
957 		fscanf(df, "%4d.%03d", &idrift, &fdrift);
958 		fclose(df);
959 		LPRINTF("read_drift: %d.%03d ppm ", idrift, fdrift);
960 
961 		accum_drift = idrift << USECSCALE;
962 		fdrift     = (fdrift << USECSCALE) / 1000;
963 		accum_drift += fdrift & (1<<USECSCALE);
964 		LPRINTF("read_drift: drift_comp %ld ", (long int)accum_drift);
965 	}
966 }
967 
968 /*-----------------------------------------------------------------------
969  * write out the current drift value
970  */
971 static void
972 update_drift(
973 	     const char *drift_file,
974 	     long offset,
975 	     time_t reftime
976 	     )
977 {
978 	FILE *df;
979 
980 	df = fopen(drift_file, "w");
981 	if (df != NULL)
982 	{
983 		int idrift = R_SHIFT(accum_drift, USECSCALE);
984 		int fdrift = accum_drift & ((1<<USECSCALE)-1);
985 
986 		LPRINTF("update_drift: drift_comp %ld ", (long int)accum_drift);
987 		fdrift = (fdrift * 1000) / (1<<USECSCALE);
988 		fprintf(df, "%4d.%03d %c%ld.%06ld %.24s\n", idrift, fdrift,
989 			(offset < 0) ? '-' : '+', (long int)(l_abs(offset) / 1000000),
990 			(long int)(l_abs(offset) % 1000000), asctime(localtime(&reftime)));
991 		fclose(df);
992 		LPRINTF("update_drift: %d.%03d ppm ", idrift, fdrift);
993 	}
994 }
995 
996 /*-----------------------------------------------------------------------
997  * process adjustments derived from the DCF77 observation
998  * (controls clock PLL)
999  */
1000 static void
1001 adjust_clock(
1002 	     struct timeval *offset,
1003 	     const char *drift_file,
1004 	     time_t reftime
1005 	     )
1006 {
1007 	struct timeval toffset;
1008 	register long usecoffset;
1009 	int tmp;
1010 
1011 	if (no_set)
1012 	    return;
1013 
1014 	if (skip_adjust)
1015 	{
1016 		skip_adjust = 0;
1017 		return;
1018 	}
1019 
1020 	toffset = *offset;
1021 	toffset.tv_sec  = l_abs(toffset.tv_sec);
1022 	toffset.tv_usec = l_abs(toffset.tv_usec);
1023 	if (timercmp(&toffset, &max_adj_offset, >))
1024 	{
1025 		/*
1026 		 * hopeless - set the clock - and clear the timing
1027 		 */
1028 		set_time(offset);
1029 		clock_adjust = 0;
1030 		skip_adjust  = 1;
1031 		return;
1032 	}
1033 
1034 	usecoffset   = offset->tv_sec * 1000000 + offset->tv_usec;
1035 
1036 	clock_adjust = R_SHIFT(usecoffset, TIMECONSTANT);	/* adjustment to make for next period */
1037 
1038 	tmp = 0;
1039 	while (adjustments > (1 << tmp))
1040 	    tmp++;
1041 	adjustments = 0;
1042 	if (tmp > FREQ_WEIGHT)
1043 	    tmp = FREQ_WEIGHT;
1044 
1045 	accum_drift  += R_SHIFT(usecoffset << USECSCALE, TIMECONSTANT+TIMECONSTANT+FREQ_WEIGHT-tmp);
1046 
1047 	if (accum_drift > MAX_DRIFT)		/* clamp into interval */
1048 	    accum_drift = MAX_DRIFT;
1049 	else
1050 	    if (accum_drift < -MAX_DRIFT)
1051 		accum_drift = -MAX_DRIFT;
1052 
1053 	update_drift(drift_file, usecoffset, reftime);
1054 	LPRINTF("clock_adjust: %s, clock_adjust %ld, drift_comp %ld(%ld) ",
1055 		pr_timeval(offset),(long int) R_SHIFT(clock_adjust, USECSCALE),
1056 		(long int)R_SHIFT(accum_drift, USECSCALE), (long int)accum_drift);
1057 }
1058 
1059 /*-----------------------------------------------------------------------
1060  * adjust the clock by a small mount to simulate frequency correction
1061  */
1062 static void
1063 periodic_adjust(
1064 		void
1065 		)
1066 {
1067 	register long adjustment;
1068 
1069 	adjustments++;
1070 
1071 	adjustment = R_SHIFT(clock_adjust, PHASE_WEIGHT);
1072 
1073 	clock_adjust -= adjustment;
1074 
1075 	adjustment += R_SHIFT(accum_drift, USECSCALE+ADJINTERVAL);
1076 
1077 	adj_time(adjustment);
1078 }
1079 
1080 /*-----------------------------------------------------------------------
1081  * control synchronisation status (warnings) and do periodic adjusts
1082  * (frequency control simulation)
1083  */
1084 static void
1085 tick(
1086      void
1087      )
1088 {
1089 	static unsigned long last_notice = 0;
1090 
1091 #if !defined(HAVE_SIGACTION) && !defined(HAVE_SIGVEC)
1092 	(void)signal(SIGALRM, tick);
1093 #endif
1094 
1095 	periodic_adjust();
1096 
1097 	ticks += 1<<ADJINTERVAL;
1098 
1099 	if ((ticks - last_sync) > MAX_UNSYNC)
1100 	{
1101 		/*
1102 		 * not getting time for a while
1103 		 */
1104 		if (sync_state == SYNC)
1105 		{
1106 			/*
1107 			 * completely lost information
1108 			 */
1109 			sync_state = NO_SYNC;
1110 			syslog(LOG_INFO, "DCF77 reception lost (timeout)");
1111 			last_notice = ticks;
1112 		}
1113 		else
1114 		    /*
1115 		     * in NO_SYNC state - look whether its time to speak up again
1116 		     */
1117 		    if ((ticks - last_notice) > NOTICE_INTERVAL)
1118 		    {
1119 			    syslog(LOG_NOTICE, "still not synchronized to DCF77 - check receiver/signal");
1120 			    last_notice = ticks;
1121 		    }
1122 	}
1123 
1124 #ifndef ITIMER_REAL
1125 	(void) alarm(1<<ADJINTERVAL);
1126 #endif
1127 }
1128 
1129 /*-----------------------------------------------------------------------
1130  * break association from terminal to avoid catching terminal
1131  * or process group related signals (-> daemon operation)
1132  */
1133 static void
1134 detach(
1135        void
1136        )
1137 {
1138 #   ifdef HAVE_DAEMON
1139 	daemon(0, 0);
1140 #   else /* not HAVE_DAEMON */
1141 	if (fork())
1142 	    exit(0);
1143 
1144 	{
1145 		u_long s;
1146 		int max_fd;
1147 
1148 #if defined(HAVE_SYSCONF) && defined(_SC_OPEN_MAX)
1149 		max_fd = sysconf(_SC_OPEN_MAX);
1150 #else /* HAVE_SYSCONF && _SC_OPEN_MAX */
1151 		max_fd = getdtablesize();
1152 #endif /* HAVE_SYSCONF && _SC_OPEN_MAX */
1153 		for (s = 0; s < max_fd; s++)
1154 		    (void) close((int)s);
1155 		(void) open("/", 0);
1156 		(void) dup2(0, 1);
1157 		(void) dup2(0, 2);
1158 #ifdef SYS_DOMAINOS
1159 		{
1160 			uid_$t puid;
1161 			status_$t st;
1162 
1163 			proc2_$who_am_i(&puid);
1164 			proc2_$make_server(&puid, &st);
1165 		}
1166 #endif /* SYS_DOMAINOS */
1167 #if defined(HAVE_SETPGID) || defined(HAVE_SETSID)
1168 # ifdef HAVE_SETSID
1169 		if (setsid() == (pid_t)-1)
1170 		    syslog(LOG_ERR, "dcfd: setsid(): %m");
1171 # else
1172 		if (setpgid(0, 0) == -1)
1173 		    syslog(LOG_ERR, "dcfd: setpgid(): %m");
1174 # endif
1175 #else /* HAVE_SETPGID || HAVE_SETSID */
1176 		{
1177 			int fid;
1178 
1179 			fid = open("/dev/tty", 2);
1180 			if (fid >= 0)
1181 			{
1182 				(void) ioctl(fid, (u_long) TIOCNOTTY, (char *) 0);
1183 				(void) close(fid);
1184 			}
1185 # ifdef HAVE_SETPGRP_0
1186 			(void) setpgrp();
1187 # else /* HAVE_SETPGRP_0 */
1188 			(void) setpgrp(0, getpid());
1189 # endif /* HAVE_SETPGRP_0 */
1190 		}
1191 #endif /* HAVE_SETPGID || HAVE_SETSID */
1192 	}
1193 #endif /* not HAVE_DAEMON */
1194 }
1195 
1196 /*-----------------------------------------------------------------------
1197  * list possible arguments and options
1198  */
1199 static void
1200 usage(
1201       char *program
1202       )
1203 {
1204   fprintf(stderr, "usage: %s [-n] [-f] [-l] [-t] [-i] [-o] [-d <drift_file>] [-D <input delay>] <device>\n", program);
1205 	fprintf(stderr, "\t-n              do not change time\n");
1206 	fprintf(stderr, "\t-i              interactive\n");
1207 	fprintf(stderr, "\t-t              trace (print all datagrams)\n");
1208 	fprintf(stderr, "\t-f              print all databits (includes PTB private data)\n");
1209 	fprintf(stderr, "\t-l              print loop filter debug information\n");
1210 	fprintf(stderr, "\t-o              print offet average for current minute\n");
1211 	fprintf(stderr, "\t-Y              make internal Y2K checks then exit\n");	/* Y2KFixes */
1212 	fprintf(stderr, "\t-d <drift_file> specify alternate drift file\n");
1213 	fprintf(stderr, "\t-D <input delay>specify delay from input edge to processing in micro seconds\n");
1214 }
1215 
1216 /*-----------------------------------------------------------------------
1217  * check_y2k() - internal check of Y2K logic
1218  *	(a lot of this logic lifted from ../ntpd/check_y2k.c)
1219  */
1220 int
1221 check_y2k( void )
1222 {
1223     int  year;			/* current working year */
1224     int  year0 = 1900;		/* sarting year for NTP time */
1225     int  yearend;		/* ending year we test for NTP time.
1226 				    * 32-bit systems: through 2036, the
1227 				      **year in which NTP time overflows.
1228 				    * 64-bit systems: a reasonable upper
1229 				      **limit (well, maybe somewhat beyond
1230 				      **reasonable, but well before the
1231 				      **max time, by which time the earth
1232 				      **will be dead.) */
1233     time_t Time;
1234     struct tm LocalTime;
1235 
1236     int Fatals, Warnings;
1237 #define Error(year) if ( (year)>=2036 && LocalTime.tm_year < 110 ) \
1238 	Warnings++; else Fatals++
1239 
1240     Fatals = Warnings = 0;
1241 
1242     Time = time( (time_t *)NULL );
1243     LocalTime = *localtime( &Time );
1244 
1245     year = ( sizeof( u_long ) > 4 ) 	/* save max span using year as temp */
1246 		? ( 400 * 3 ) 		/* three greater gregorian cycles */
1247 		: ((int)(0x7FFFFFFF / 365.242 / 24/60/60)* 2 ); /*32-bit limit*/
1248 			/* NOTE: will automacially expand test years on
1249 			 * 64 bit machines.... this may cause some of the
1250 			 * existing ntp logic to fail for years beyond
1251 			 * 2036 (the current 32-bit limit). If all checks
1252 			 * fail ONLY beyond year 2036 you may ignore such
1253 			 * errors, at least for a decade or so. */
1254     yearend = year0 + year;
1255 
1256     year = 1900+YEAR_PIVOT;
1257     printf( "  starting year %04d\n", (int) year );
1258     printf( "  ending year   %04d\n", (int) yearend );
1259 
1260     for ( ; year < yearend; year++ )
1261     {
1262 	clocktime_t  ct;
1263 	time_t	     Observed;
1264 	time_t	     Expected;
1265 	unsigned     Flag;
1266 	unsigned long t;
1267 
1268 	ct.day = 1;
1269 	ct.month = 1;
1270 	ct.year = year;
1271 	ct.hour = ct.minute = ct.second = ct.usecond = 0;
1272 	ct.utcoffset = 0;
1273 	ct.flags = 0;
1274 
1275 	Flag = 0;
1276  	Observed = dcf_to_unixtime( &ct, &Flag );
1277 		/* seems to be a clone of parse_to_unixtime() with
1278 		 * *a minor difference to arg2 type */
1279 	if ( ct.year != year )
1280 	{
1281 	    fprintf( stdout,
1282 	       "%04d: dcf_to_unixtime(,%d) CORRUPTED ct.year: was %d\n",
1283 	       (int)year, (int)Flag, (int)ct.year );
1284 	    Error(year);
1285 	    break;
1286 	}
1287 	t = julian0(year) - julian0(1970);	/* Julian day from 1970 */
1288 	Expected = t * 24 * 60 * 60;
1289 	if ( Observed != Expected  ||  Flag )
1290 	{   /* time difference */
1291 	    fprintf( stdout,
1292 	       "%04d: dcf_to_unixtime(,%d) FAILURE: was=%lu s/b=%lu  (%ld)\n",
1293 	       year, (int)Flag,
1294 	       (unsigned long)Observed, (unsigned long)Expected,
1295 	       ((long)Observed - (long)Expected) );
1296 	    Error(year);
1297 	    break;
1298 	}
1299 
1300 	if ( year >= YEAR_PIVOT+1900 )
1301 	{
1302 	    /* check year % 100 code we put into dcf_to_unixtime() */
1303 	    ct.year = year % 100;
1304 	    Flag = 0;
1305 
1306 	    Observed = dcf_to_unixtime( &ct, &Flag );
1307 
1308 	    if ( Observed != Expected  ||  Flag )
1309 	    {   /* time difference */
1310 		fprintf( stdout,
1311 "%04d: dcf_to_unixtime(%d,%d) FAILURE: was=%lu s/b=%lu  (%ld)\n",
1312 		   year, (int)ct.year, (int)Flag,
1313 		   (unsigned long)Observed, (unsigned long)Expected,
1314 		   ((long)Observed - (long)Expected) );
1315 		Error(year);
1316 		break;
1317 	    }
1318 
1319 	    /* check year - 1900 code we put into dcf_to_unixtime() */
1320 	    ct.year = year - 1900;
1321 	    Flag = 0;
1322 
1323 	    Observed = dcf_to_unixtime( &ct, &Flag );
1324 
1325 	    if ( Observed != Expected  ||  Flag ) {   /* time difference */
1326 		    fprintf( stdout,
1327 			     "%04d: dcf_to_unixtime(%d,%d) FAILURE: was=%lu s/b=%lu  (%ld)\n",
1328 			     year, (int)ct.year, (int)Flag,
1329 			     (unsigned long)Observed, (unsigned long)Expected,
1330 			     ((long)Observed - (long)Expected) );
1331 		    Error(year);
1332 		break;
1333 	    }
1334 
1335 
1336 	}
1337     }
1338 
1339     return ( Fatals );
1340 }
1341 
1342 /*--------------------------------------------------
1343  * rawdcf_init - set up modem lines for RAWDCF receivers
1344  */
1345 #if defined(TIOCMSET) && (defined(TIOCM_DTR) || defined(CIOCM_DTR))
1346 static void
1347 rawdcf_init(
1348 	int fd
1349 	)
1350 {
1351 	/*
1352 	 * You can use the RS232 to supply the power for a DCF77 receiver.
1353 	 * Here a voltage between the DTR and the RTS line is used. Unfortunately
1354 	 * the name has changed from CIOCM_DTR to TIOCM_DTR recently.
1355 	 */
1356 
1357 #ifdef TIOCM_DTR
1358 	int sl232 = TIOCM_DTR;	/* turn on DTR for power supply */
1359 #else
1360 	int sl232 = CIOCM_DTR;	/* turn on DTR for power supply */
1361 #endif
1362 
1363 	if (ioctl(fd, TIOCMSET, (caddr_t)&sl232) == -1)
1364 	{
1365 		syslog(LOG_NOTICE, "rawdcf_init: WARNING: ioctl(fd, TIOCMSET, [C|T]IOCM_DTR): %m");
1366 	}
1367 }
1368 #else
1369 static void
1370 rawdcf_init(
1371 	    int fd
1372 	)
1373 {
1374 	syslog(LOG_NOTICE, "rawdcf_init: WARNING: OS interface incapable of setting DTR to power DCF modules");
1375 }
1376 #endif  /* DTR initialisation type */
1377 
1378 /*-----------------------------------------------------------------------
1379  * main loop - argument interpreter / setup / main loop
1380  */
1381 int
1382 main(
1383      int argc,
1384      char **argv
1385      )
1386 {
1387 	unsigned char c;
1388 	char **a = argv;
1389 	int  ac = argc;
1390 	char *file = NULL;
1391 	const char *drift_file = "/etc/dcfd.drift";
1392 	int fd;
1393 	int offset = 15;
1394 	int offsets = 0;
1395 	int delay = DEFAULT_DELAY;	/* average delay from input edge to time stamping */
1396 	int trace = 0;
1397 	int errs = 0;
1398 
1399 	/*
1400 	 * process arguments
1401 	 */
1402 	while (--ac)
1403 	{
1404 		char *arg = *++a;
1405 		if (*arg == '-')
1406 		    while ((c = *++arg))
1407 			switch (c)
1408 			{
1409 			    case 't':
1410 				trace = 1;
1411 				interactive = 1;
1412 				break;
1413 
1414 			    case 'f':
1415 				offset = 0;
1416 				interactive = 1;
1417 				break;
1418 
1419 			    case 'l':
1420 				loop_filter_debug = 1;
1421 				offsets = 1;
1422 				interactive = 1;
1423 				break;
1424 
1425 			    case 'n':
1426 				no_set = 1;
1427 				break;
1428 
1429 			    case 'o':
1430 				offsets = 1;
1431 				interactive = 1;
1432 				break;
1433 
1434 			    case 'i':
1435 				interactive = 1;
1436 				break;
1437 
1438 			    case 'D':
1439 				if (ac > 1)
1440 				{
1441 					delay = atoi(*++a);
1442 					ac--;
1443 				}
1444 				else
1445 				{
1446 					fprintf(stderr, "%s: -D requires integer argument\n", argv[0]);
1447 					errs=1;
1448 				}
1449 				break;
1450 
1451 			    case 'd':
1452 				if (ac > 1)
1453 				{
1454 					drift_file = *++a;
1455 					ac--;
1456 				}
1457 				else
1458 				{
1459 					fprintf(stderr, "%s: -d requires file name argument\n", argv[0]);
1460 					errs=1;
1461 				}
1462 				break;
1463 
1464 			    case 'Y':
1465 				errs=check_y2k();
1466 				exit( errs ? 1 : 0 );
1467 
1468 			    default:
1469 				fprintf(stderr, "%s: unknown option -%c\n", argv[0], c);
1470 				errs=1;
1471 				break;
1472 			}
1473 		else
1474 		    if (file == NULL)
1475 			file = arg;
1476 		    else
1477 		    {
1478 			    fprintf(stderr, "%s: device specified twice\n", argv[0]);
1479 			    errs=1;
1480 		    }
1481 	}
1482 
1483 	if (errs)
1484 	{
1485 		usage(argv[0]);
1486 		exit(1);
1487 	}
1488 	else
1489 	    if (file == NULL)
1490 	    {
1491 		    fprintf(stderr, "%s: device not specified\n", argv[0]);
1492 		    usage(argv[0]);
1493 		    exit(1);
1494 	    }
1495 
1496 	errs = LINES+1;
1497 
1498 	/*
1499 	 * get access to DCF77 tty port
1500 	 */
1501 	fd = open(file, O_RDONLY);
1502 	if (fd == -1)
1503 	{
1504 		perror(file);
1505 		exit(1);
1506 	}
1507 	else
1508 	{
1509 		int i, rrc;
1510 		struct timeval t, tt, tlast;
1511 		struct timeval timeout;
1512 		struct timeval phase;
1513 		struct timeval time_offset;
1514 		char pbuf[61];		/* printable version */
1515 		char buf[61];		/* raw data */
1516 		clocktime_t clock_time;	/* wall clock time */
1517 		time_t utc_time = 0;
1518 		time_t last_utc_time = 0;
1519 		long usecerror = 0;
1520 		long lasterror = 0;
1521 #if defined(HAVE_TERMIOS_H) || defined(STREAM)
1522 		struct termios term;
1523 #else  /* not HAVE_TERMIOS_H || STREAM */
1524 # if defined(HAVE_TERMIO_H) || defined(HAVE_SYSV_TTYS)
1525 		struct termio term;
1526 # endif/* HAVE_TERMIO_H || HAVE_SYSV_TTYS */
1527 #endif /* not HAVE_TERMIOS_H || STREAM */
1528 		unsigned int rtc = CVT_NONE;
1529 
1530 		rawdcf_init(fd);
1531 
1532 		timeout.tv_sec  = 1;
1533 		timeout.tv_usec = 500000;
1534 
1535 		phase.tv_sec    = 0;
1536 		phase.tv_usec   = delay;
1537 
1538 		/*
1539 		 * setup TTY (50 Baud, Read, 8Bit, No Hangup, 1 character IO)
1540 		 */
1541 		if (TTY_GETATTR(fd,  &term) == -1)
1542 		{
1543 			perror("tcgetattr");
1544 			exit(1);
1545 		}
1546 
1547 		memset(term.c_cc, 0, sizeof(term.c_cc));
1548 		term.c_cc[VMIN] = 1;
1549 #ifdef NO_PARENB_IGNPAR
1550 		term.c_cflag = B50|CS8|CREAD|CLOCAL;
1551 #else
1552 		term.c_cflag = B50|CS8|CREAD|CLOCAL|PARENB;
1553 #endif
1554 		term.c_iflag = IGNPAR;
1555 		term.c_oflag = 0;
1556 		term.c_lflag = 0;
1557 
1558 		if (TTY_SETATTR(fd, &term) == -1)
1559 		{
1560 			perror("tcsetattr");
1561 			exit(1);
1562 		}
1563 
1564 		/*
1565 		 * loose terminal if in daemon operation
1566 		 */
1567 		if (!interactive)
1568 		    detach();
1569 
1570 		/*
1571 		 * get syslog() initialized
1572 		 */
1573 #ifdef LOG_DAEMON
1574 		openlog("dcfd", LOG_PID, LOG_DAEMON);
1575 #else
1576 		openlog("dcfd", LOG_PID);
1577 #endif
1578 
1579 		/*
1580 		 * setup periodic operations (state control / frequency control)
1581 		 */
1582 #ifdef HAVE_SIGVEC
1583 		{
1584 			struct sigvec vec;
1585 
1586 			vec.sv_handler   = tick;
1587 			vec.sv_mask      = 0;
1588 			vec.sv_flags     = 0;
1589 
1590 			if (sigvec(SIGALRM, &vec, (struct sigvec *)0) == -1)
1591 			{
1592 				syslog(LOG_ERR, "sigvec(SIGALRM): %m");
1593 				exit(1);
1594 			}
1595 		}
1596 #else
1597 #ifdef HAVE_SIGACTION
1598 		{
1599 			struct sigaction act;
1600 
1601 			act.sa_handler   = tick;
1602 # ifdef HAVE_SA_SIGACTION_IN_STRUCT_SIGACTION
1603 			act.sa_sigaction = (void (*) P((int, siginfo_t *, void *)))0;
1604 # endif /* HAVE_SA_SIGACTION_IN_STRUCT_SIGACTION */
1605 			sigemptyset(&act.sa_mask);
1606 			act.sa_flags     = 0;
1607 
1608 			if (sigaction(SIGALRM, &act, (struct sigaction *)0) == -1)
1609 			{
1610 				syslog(LOG_ERR, "sigaction(SIGALRM): %m");
1611 				exit(1);
1612 			}
1613 		}
1614 #else
1615 		(void) signal(SIGALRM, tick);
1616 #endif
1617 #endif
1618 
1619 #ifdef ITIMER_REAL
1620 		{
1621 			struct itimerval it;
1622 
1623 			it.it_interval.tv_sec  = 1<<ADJINTERVAL;
1624 			it.it_interval.tv_usec = 0;
1625 			it.it_value.tv_sec     = 1<<ADJINTERVAL;
1626 			it.it_value.tv_usec    = 0;
1627 
1628 			if (setitimer(ITIMER_REAL, &it, (struct itimerval *)0) == -1)
1629 			{
1630 				syslog(LOG_ERR, "setitimer: %m");
1631 				exit(1);
1632 			}
1633 		}
1634 #else
1635 		(void) alarm(1<<ADJINTERVAL);
1636 #endif
1637 
1638 		PRINTF("  DCF77 monitor - Copyright (C) 1993-1998 by Frank Kardel\n\n");
1639 
1640 		pbuf[60] = '\0';
1641 		for ( i = 0; i < 60; i++)
1642 		    pbuf[i] = '.';
1643 
1644 		read_drift(drift_file);
1645 
1646 		/*
1647 		 * what time is it now (for interval measurement)
1648 		 */
1649 		gettimeofday(&tlast, 0L);
1650 		i = 0;
1651 		/*
1652 		 * loop until input trouble ...
1653 		 */
1654 		do
1655 		{
1656 			/*
1657 			 * get an impulse
1658 			 */
1659 			while ((rrc = read(fd, &c, 1)) == 1)
1660 			{
1661 				gettimeofday(&t, 0L);
1662 				tt = t;
1663 				timersub(&t, &tlast);
1664 
1665 				if (errs > LINES)
1666 				{
1667 					PRINTF("  %s", &"PTB private....RADMLSMin....PHour..PMDay..DayMonthYear....P\n"[offset]);
1668 					PRINTF("  %s", &"---------------RADMLS1248124P124812P1248121241248112481248P\n"[offset]);
1669 					errs = 0;
1670 				}
1671 
1672 				/*
1673 				 * timeout -> possible minute mark -> interpretation
1674 				 */
1675 				if (timercmp(&t, &timeout, >))
1676 				{
1677 					PRINTF("%c %.*s ", pat[i % (sizeof(pat)-1)], 59 - offset, &pbuf[offset]);
1678 
1679 					if ((rtc = cvt_rawdcf((unsigned char *)buf, i, &clock_time)) != CVT_OK)
1680 					{
1681 						/*
1682 						 * this data was bad - well - forget synchronisation for now
1683 						 */
1684 						PRINTF("\n");
1685 						if (sync_state == SYNC)
1686 						{
1687 							sync_state = NO_SYNC;
1688 							syslog(LOG_INFO, "DCF77 reception lost (bad data)");
1689 						}
1690 						errs++;
1691 					}
1692 					else
1693 					    if (trace)
1694 					    {
1695 						    PRINTF("\r  %.*s ", 59 - offset, &buf[offset]);
1696 					    }
1697 
1698 
1699 					buf[0] = c;
1700 
1701 					/*
1702 					 * collect first character
1703 					 */
1704 					if (((c^0xFF)+1) & (c^0xFF))
1705 					    pbuf[0] = '?';
1706 					else
1707 					    pbuf[0] = type(c) ? '#' : '-';
1708 
1709 					for ( i = 1; i < 60; i++)
1710 					    pbuf[i] = '.';
1711 
1712 					i = 0;
1713 				}
1714 				else
1715 				{
1716 					/*
1717 					 * collect character
1718 					 */
1719 					buf[i] = c;
1720 
1721 					/*
1722 					 * initial guess (usually correct)
1723 					 */
1724 					if (((c^0xFF)+1) & (c^0xFF))
1725 					    pbuf[i] = '?';
1726 					else
1727 					    pbuf[i] = type(c) ? '#' : '-';
1728 
1729 					PRINTF("%c %.*s ", pat[i % (sizeof(pat)-1)], 59 - offset, &pbuf[offset]);
1730 				}
1731 
1732 				if (i == 0 && rtc == CVT_OK)
1733 				{
1734 					/*
1735 					 * we got a good time code here - try to convert it to
1736 					 * UTC
1737 					 */
1738 					if ((utc_time = dcf_to_unixtime(&clock_time, &rtc)) == -1)
1739 					{
1740 						PRINTF("*** BAD CONVERSION\n");
1741 					}
1742 
1743 					if (utc_time != (last_utc_time + 60))
1744 					{
1745 						/*
1746 						 * well, two successive sucessful telegrams are not 60 seconds
1747 						 * apart
1748 						 */
1749 						PRINTF("*** NO MINUTE INC\n");
1750 						if (sync_state == SYNC)
1751 						{
1752 							sync_state = NO_SYNC;
1753 							syslog(LOG_INFO, "DCF77 reception lost (data mismatch)");
1754 						}
1755 						errs++;
1756 						rtc = CVT_FAIL|CVT_BADTIME|CVT_BADDATE;
1757 					}
1758 					else
1759 					    usecerror = 0;
1760 
1761 					last_utc_time = utc_time;
1762 				}
1763 
1764 				if (rtc == CVT_OK)
1765 				{
1766 					if (i == 0)
1767 					{
1768 						/*
1769 						 * valid time code - determine offset and
1770 						 * note regained reception
1771 						 */
1772 						last_sync = ticks;
1773 						if (sync_state == NO_SYNC)
1774 						{
1775 							syslog(LOG_INFO, "receiving DCF77");
1776 						}
1777 						else
1778 						{
1779 							/*
1780 							 * we had at least one minute SYNC - thus
1781 							 * last error is valid
1782 							 */
1783 							time_offset.tv_sec  = lasterror / 1000000;
1784 							time_offset.tv_usec = lasterror % 1000000;
1785 							adjust_clock(&time_offset, drift_file, utc_time);
1786 						}
1787 						sync_state = SYNC;
1788 					}
1789 
1790 					time_offset.tv_sec  = utc_time + i;
1791 					time_offset.tv_usec = 0;
1792 
1793 					timeradd(&time_offset, &phase);
1794 
1795 					usecerror += (time_offset.tv_sec - tt.tv_sec) * 1000000 + time_offset.tv_usec
1796 						-tt.tv_usec;
1797 
1798 					/*
1799 					 * output interpreted DCF77 data
1800 					 */
1801 					PRINTF(offsets ? "%s, %2d:%02d:%02d, %d.%02d.%02d, <%s%s%s%s> (%c%d.%06ds)" :
1802 					       "%s, %2d:%02d:%02d, %d.%02d.%02d, <%s%s%s%s>",
1803 					       wday[clock_time.wday],
1804 					       clock_time.hour, clock_time.minute, i, clock_time.day, clock_time.month,
1805 					       clock_time.year,
1806 					       (clock_time.flags & DCFB_ALTERNATE) ? "R" : "_",
1807 					       (clock_time.flags & DCFB_ANNOUNCE) ? "A" : "_",
1808 					       (clock_time.flags & DCFB_DST) ? "D" : "_",
1809 					       (clock_time.flags & DCFB_LEAP) ? "L" : "_",
1810 					       (lasterror < 0) ? '-' : '+', l_abs(lasterror) / 1000000, l_abs(lasterror) % 1000000
1811 					       );
1812 
1813 					if (trace && (i == 0))
1814 					{
1815 						PRINTF("\n");
1816 						errs++;
1817 					}
1818 					lasterror = usecerror / (i+1);
1819 				}
1820 				else
1821 				{
1822 					lasterror = 0; /* we cannot calculate phase errors on bad reception */
1823 				}
1824 
1825 				PRINTF("\r");
1826 
1827 				if (i < 60)
1828 				{
1829 					i++;
1830 				}
1831 
1832 				tlast = tt;
1833 
1834 				if (interactive)
1835 				    fflush(stdout);
1836 			}
1837 		} while ((rrc == -1) && (errno == EINTR));
1838 
1839 		/*
1840 		 * lost IO - sorry guys
1841 		 */
1842 		syslog(LOG_ERR, "TERMINATING - cannot read from device %s (%m)", file);
1843 
1844 		(void)close(fd);
1845 	}
1846 
1847 	closelog();
1848 
1849 	return 0;
1850 }
1851