1 /* 2 * /src/NTP/REPOSITORY/ntp4-dev/parseutil/dcfd.c,v 4.18 2005/10/07 22:08:18 kardel RELEASE_20051008_A 3 * 4 * dcfd.c,v 4.18 2005/10/07 22:08:18 kardel RELEASE_20051008_A 5 * 6 * DCF77 100/200ms pulse synchronisation daemon program (via 50Baud serial line) 7 * 8 * Features: 9 * DCF77 decoding 10 * simple NTP loopfilter logic for local clock 11 * interactive display for debugging 12 * 13 * Lacks: 14 * Leap second handling (at that level you should switch to NTP Version 4 - really!) 15 * 16 * Copyright (c) 1995-2005 by Frank Kardel <kardel <AT> ntp.org> 17 * Copyright (c) 1989-1994 by Frank Kardel, Friedrich-Alexander Universitaet Erlangen-Nuernberg, Germany 18 * 19 * Redistribution and use in source and binary forms, with or without 20 * modification, are permitted provided that the following conditions 21 * are met: 22 * 1. Redistributions of source code must retain the above copyright 23 * notice, this list of conditions and the following disclaimer. 24 * 2. Redistributions in binary form must reproduce the above copyright 25 * notice, this list of conditions and the following disclaimer in the 26 * documentation and/or other materials provided with the distribution. 27 * 3. Neither the name of the author nor the names of its contributors 28 * may be used to endorse or promote products derived from this software 29 * without specific prior written permission. 30 * 31 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 34 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 41 * SUCH DAMAGE. 42 * 43 */ 44 45 #ifdef HAVE_CONFIG_H 46 # include <config.h> 47 #endif 48 49 #include <sys/ioctl.h> 50 #include <unistd.h> 51 #include <stdio.h> 52 #include <fcntl.h> 53 #include <sys/types.h> 54 #include <sys/time.h> 55 #include <signal.h> 56 #include <syslog.h> 57 #include <time.h> 58 59 /* 60 * NTP compilation environment 61 */ 62 #include "ntp_stdlib.h" 63 #include "ntpd.h" /* indirectly include ntp.h to get YEAR_PIVOT Y2KFixes */ 64 65 /* 66 * select which terminal handling to use (currently only SysV variants) 67 */ 68 #if defined(HAVE_TERMIOS_H) || defined(STREAM) 69 #include <termios.h> 70 #define TTY_GETATTR(_FD_, _ARG_) tcgetattr((_FD_), (_ARG_)) 71 #define TTY_SETATTR(_FD_, _ARG_) tcsetattr((_FD_), TCSANOW, (_ARG_)) 72 #else /* not HAVE_TERMIOS_H || STREAM */ 73 # if defined(HAVE_TERMIO_H) || defined(HAVE_SYSV_TTYS) 74 # include <termio.h> 75 # define TTY_GETATTR(_FD_, _ARG_) ioctl((_FD_), TCGETA, (_ARG_)) 76 # define TTY_SETATTR(_FD_, _ARG_) ioctl((_FD_), TCSETAW, (_ARG_)) 77 # endif/* HAVE_TERMIO_H || HAVE_SYSV_TTYS */ 78 #endif /* not HAVE_TERMIOS_H || STREAM */ 79 80 81 #ifndef TTY_GETATTR 82 #include "Bletch: MUST DEFINE ONE OF 'HAVE_TERMIOS_H' or 'HAVE_TERMIO_H'" 83 #endif 84 85 #ifndef days_per_year 86 #define days_per_year(_x_) (((_x_) % 4) ? 365 : (((_x_) % 400) ? 365 : 366)) 87 #endif 88 89 #define timernormalize(_a_) \ 90 if ((_a_)->tv_usec >= 1000000) \ 91 { \ 92 (_a_)->tv_sec += (_a_)->tv_usec / 1000000; \ 93 (_a_)->tv_usec = (_a_)->tv_usec % 1000000; \ 94 } \ 95 if ((_a_)->tv_usec < 0) \ 96 { \ 97 (_a_)->tv_sec -= 1 + (-(_a_)->tv_usec / 1000000); \ 98 (_a_)->tv_usec = 999999 - (-(_a_)->tv_usec - 1); \ 99 } 100 101 #ifdef timeradd 102 #undef timeradd 103 #endif 104 #define timeradd(_a_, _b_) \ 105 (_a_)->tv_sec += (_b_)->tv_sec; \ 106 (_a_)->tv_usec += (_b_)->tv_usec; \ 107 timernormalize((_a_)) 108 109 #ifdef timersub 110 #undef timersub 111 #endif 112 #define timersub(_a_, _b_) \ 113 (_a_)->tv_sec -= (_b_)->tv_sec; \ 114 (_a_)->tv_usec -= (_b_)->tv_usec; \ 115 timernormalize((_a_)) 116 117 /* 118 * debug macros 119 */ 120 #define PRINTF if (interactive) printf 121 #define LPRINTF if (interactive && loop_filter_debug) printf 122 123 #ifdef DEBUG 124 #define dprintf(_x_) LPRINTF _x_ 125 #else 126 #define dprintf(_x_) 127 #endif 128 129 #ifdef DECL_ERRNO 130 extern int errno; 131 #endif 132 133 static char *revision = "4.18"; 134 135 /* 136 * display received data (avoids also detaching from tty) 137 */ 138 static int interactive = 0; 139 140 /* 141 * display loopfilter (clock control) variables 142 */ 143 static int loop_filter_debug = 0; 144 145 /* 146 * do not set/adjust system time 147 */ 148 static int no_set = 0; 149 150 /* 151 * time that passes between start of DCF impulse and time stamping (fine 152 * adjustment) in microseconds (receiver/OS dependent) 153 */ 154 #define DEFAULT_DELAY 230000 /* rough estimate */ 155 156 /* 157 * The two states we can be in - eithe we receive nothing 158 * usable or we have the correct time 159 */ 160 #define NO_SYNC 0x01 161 #define SYNC 0x02 162 163 static int sync_state = NO_SYNC; 164 static time_t last_sync; 165 166 static unsigned long ticks = 0; 167 168 static char pat[] = "-\\|/"; 169 170 #define LINES (24-2) /* error lines after which the two headlines are repeated */ 171 172 #define MAX_UNSYNC (10*60) /* allow synchronisation loss for 10 minutes */ 173 #define NOTICE_INTERVAL (20*60) /* mention missing synchronisation every 20 minutes */ 174 175 /* 176 * clock adjustment PLL - see NTP protocol spec (RFC1305) for details 177 */ 178 179 #define USECSCALE 10 180 #define TIMECONSTANT 2 181 #define ADJINTERVAL 0 182 #define FREQ_WEIGHT 18 183 #define PHASE_WEIGHT 7 184 #define MAX_DRIFT 0x3FFFFFFF 185 186 #define R_SHIFT(_X_, _Y_) (((_X_) < 0) ? -(-(_X_) >> (_Y_)) : ((_X_) >> (_Y_))) 187 188 static long max_adj_offset_usec = 128000; 189 190 static long clock_adjust = 0; /* current adjustment value (usec * 2^USECSCALE) */ 191 static long accum_drift = 0; /* accumulated drift value (usec / ADJINTERVAL) */ 192 static long adjustments = 0; 193 static char skip_adjust = 1; /* discard first adjustment (bad samples) */ 194 195 /* 196 * DCF77 state flags 197 */ 198 #define DCFB_ANNOUNCE 0x0001 /* switch time zone warning (DST switch) */ 199 #define DCFB_DST 0x0002 /* DST in effect */ 200 #define DCFB_LEAP 0x0004 /* LEAP warning (1 hour prior to occurrence) */ 201 #define DCFB_CALLBIT 0x0008 /* "call bit" used to signalize irregularities in the control facilities */ 202 203 struct clocktime /* clock time broken up from time code */ 204 { 205 long wday; /* Day of week: 1: Monday - 7: Sunday */ 206 long day; 207 long month; 208 long year; 209 long hour; 210 long minute; 211 long second; 212 long usecond; 213 long utcoffset; /* in minutes */ 214 long flags; /* current clock status (DCF77 state flags) */ 215 }; 216 217 typedef struct clocktime clocktime_t; 218 219 /* 220 * (usually) quick constant multiplications 221 */ 222 #ifndef TIMES10 223 #define TIMES10(_X_) (((_X_) << 3) + ((_X_) << 1)) /* *8 + *2 */ 224 #endif 225 #ifndef TIMES24 226 #define TIMES24(_X_) (((_X_) << 4) + ((_X_) << 3)) /* *16 + *8 */ 227 #endif 228 #ifndef TIMES60 229 #define TIMES60(_X_) ((((_X_) << 4) - (_X_)) << 2) /* *(16 - 1) *4 */ 230 #endif 231 232 /* 233 * generic l_abs() function 234 */ 235 #define l_abs(_x_) (((_x_) < 0) ? -(_x_) : (_x_)) 236 237 /* 238 * conversion related return/error codes 239 */ 240 #define CVT_MASK 0x0000000F /* conversion exit code */ 241 #define CVT_NONE 0x00000001 /* format not applicable */ 242 #define CVT_FAIL 0x00000002 /* conversion failed - error code returned */ 243 #define CVT_OK 0x00000004 /* conversion succeeded */ 244 #define CVT_BADFMT 0x00000010 /* general format error - (unparsable) */ 245 #define CVT_BADDATE 0x00000020 /* invalid date */ 246 #define CVT_BADTIME 0x00000040 /* invalid time */ 247 248 /* 249 * DCF77 raw time code 250 * 251 * From "Zur Zeit", Physikalisch-Technische Bundesanstalt (PTB), Braunschweig 252 * und Berlin, Maerz 1989 253 * 254 * Timecode transmission: 255 * AM: 256 * time marks are send every second except for the second before the 257 * next minute mark 258 * time marks consist of a reduction of transmitter power to 25% 259 * of the nominal level 260 * the falling edge is the time indication (on time) 261 * time marks of a 100ms duration constitute a logical 0 262 * time marks of a 200ms duration constitute a logical 1 263 * FM: 264 * see the spec. (basically a (non-)inverted psuedo random phase shift) 265 * 266 * Encoding: 267 * Second Contents 268 * 0 - 10 AM: free, FM: 0 269 * 11 - 14 free 270 * 15 R - "call bit" used to signalize irregularities in the control facilities 271 * (until 2003 indicated transmission via alternate antenna) 272 * 16 A1 - expect zone change (1 hour before) 273 * 17 - 18 Z1,Z2 - time zone 274 * 0 0 illegal 275 * 0 1 MEZ (MET) 276 * 1 0 MESZ (MED, MET DST) 277 * 1 1 illegal 278 * 19 A2 - expect leap insertion/deletion (1 hour before) 279 * 20 S - start of time code (1) 280 * 21 - 24 M1 - BCD (lsb first) Minutes 281 * 25 - 27 M10 - BCD (lsb first) 10 Minutes 282 * 28 P1 - Minute Parity (even) 283 * 29 - 32 H1 - BCD (lsb first) Hours 284 * 33 - 34 H10 - BCD (lsb first) 10 Hours 285 * 35 P2 - Hour Parity (even) 286 * 36 - 39 D1 - BCD (lsb first) Days 287 * 40 - 41 D10 - BCD (lsb first) 10 Days 288 * 42 - 44 DW - BCD (lsb first) day of week (1: Monday -> 7: Sunday) 289 * 45 - 49 MO - BCD (lsb first) Month 290 * 50 MO0 - 10 Months 291 * 51 - 53 Y1 - BCD (lsb first) Years 292 * 54 - 57 Y10 - BCD (lsb first) 10 Years 293 * 58 P3 - Date Parity (even) 294 * 59 - usually missing (minute indication), except for leap insertion 295 */ 296 297 /*----------------------------------------------------------------------- 298 * conversion table to map DCF77 bit stream into data fields. 299 * Encoding: 300 * Each field of the DCF77 code is described with two adjacent entries in 301 * this table. The first entry specifies the offset into the DCF77 data stream 302 * while the length is given as the difference between the start index and 303 * the start index of the following field. 304 */ 305 static struct rawdcfcode 306 { 307 char offset; /* start bit */ 308 } rawdcfcode[] = 309 { 310 { 0 }, { 15 }, { 16 }, { 17 }, { 19 }, { 20 }, { 21 }, { 25 }, { 28 }, { 29 }, 311 { 33 }, { 35 }, { 36 }, { 40 }, { 42 }, { 45 }, { 49 }, { 50 }, { 54 }, { 58 }, { 59 } 312 }; 313 314 /*----------------------------------------------------------------------- 315 * symbolic names for the fields of DCF77 describes in "rawdcfcode". 316 * see comment above for the structure of the DCF77 data 317 */ 318 #define DCF_M 0 319 #define DCF_R 1 320 #define DCF_A1 2 321 #define DCF_Z 3 322 #define DCF_A2 4 323 #define DCF_S 5 324 #define DCF_M1 6 325 #define DCF_M10 7 326 #define DCF_P1 8 327 #define DCF_H1 9 328 #define DCF_H10 10 329 #define DCF_P2 11 330 #define DCF_D1 12 331 #define DCF_D10 13 332 #define DCF_DW 14 333 #define DCF_MO 15 334 #define DCF_MO0 16 335 #define DCF_Y1 17 336 #define DCF_Y10 18 337 #define DCF_P3 19 338 339 /*----------------------------------------------------------------------- 340 * parity field table (same encoding as rawdcfcode) 341 * This table describes the sections of the DCF77 code that are 342 * parity protected 343 */ 344 static struct partab 345 { 346 char offset; /* start bit of parity field */ 347 } partab[] = 348 { 349 { 21 }, { 29 }, { 36 }, { 59 } 350 }; 351 352 /*----------------------------------------------------------------------- 353 * offsets for parity field descriptions 354 */ 355 #define DCF_P_P1 0 356 #define DCF_P_P2 1 357 #define DCF_P_P3 2 358 359 /*----------------------------------------------------------------------- 360 * legal values for time zone information 361 */ 362 #define DCF_Z_MET 0x2 363 #define DCF_Z_MED 0x1 364 365 /*----------------------------------------------------------------------- 366 * symbolic representation if the DCF77 data stream 367 */ 368 static struct dcfparam 369 { 370 unsigned char onebits[60]; 371 unsigned char zerobits[60]; 372 } dcfparam = 373 { 374 "###############RADMLS1248124P124812P1248121241248112481248P", /* 'ONE' representation */ 375 "--------------------s-------p------p----------------------p" /* 'ZERO' representation */ 376 }; 377 378 /*----------------------------------------------------------------------- 379 * extract a bitfield from DCF77 datastream 380 * All numeric fields are LSB first. 381 * buf holds a pointer to a DCF77 data buffer in symbolic 382 * representation 383 * idx holds the index to the field description in rawdcfcode 384 */ 385 static unsigned long 386 ext_bf( 387 register unsigned char *buf, 388 register int idx 389 ) 390 { 391 register unsigned long sum = 0; 392 register int i, first; 393 394 first = rawdcfcode[idx].offset; 395 396 for (i = rawdcfcode[idx+1].offset - 1; i >= first; i--) 397 { 398 sum <<= 1; 399 sum |= (buf[i] != dcfparam.zerobits[i]); 400 } 401 return sum; 402 } 403 404 /*----------------------------------------------------------------------- 405 * check even parity integrity for a bitfield 406 * 407 * buf holds a pointer to a DCF77 data buffer in symbolic 408 * representation 409 * idx holds the index to the field description in partab 410 */ 411 static unsigned 412 pcheck( 413 register unsigned char *buf, 414 register int idx 415 ) 416 { 417 register int i,last; 418 register unsigned psum = 1; 419 420 last = partab[idx+1].offset; 421 422 for (i = partab[idx].offset; i < last; i++) 423 psum ^= (buf[i] != dcfparam.zerobits[i]); 424 425 return psum; 426 } 427 428 /*----------------------------------------------------------------------- 429 * convert a DCF77 data buffer into wall clock time + flags 430 * 431 * buffer holds a pointer to a DCF77 data buffer in symbolic 432 * representation 433 * size describes the length of DCF77 information in bits (represented 434 * as chars in symbolic notation 435 * clock points to a wall clock time description of the DCF77 data (result) 436 */ 437 static unsigned long 438 convert_rawdcf( 439 unsigned char *buffer, 440 int size, 441 clocktime_t *clock_time 442 ) 443 { 444 if (size < 57) 445 { 446 PRINTF("%-30s", "*** INCOMPLETE"); 447 return CVT_NONE; 448 } 449 450 /* 451 * check Start and Parity bits 452 */ 453 if ((ext_bf(buffer, DCF_S) == 1) && 454 pcheck(buffer, DCF_P_P1) && 455 pcheck(buffer, DCF_P_P2) && 456 pcheck(buffer, DCF_P_P3)) 457 { 458 /* 459 * buffer OK - extract all fields and build wall clock time from them 460 */ 461 462 clock_time->flags = 0; 463 clock_time->usecond= 0; 464 clock_time->second = 0; 465 clock_time->minute = ext_bf(buffer, DCF_M10); 466 clock_time->minute = TIMES10(clock_time->minute) + ext_bf(buffer, DCF_M1); 467 clock_time->hour = ext_bf(buffer, DCF_H10); 468 clock_time->hour = TIMES10(clock_time->hour) + ext_bf(buffer, DCF_H1); 469 clock_time->day = ext_bf(buffer, DCF_D10); 470 clock_time->day = TIMES10(clock_time->day) + ext_bf(buffer, DCF_D1); 471 clock_time->month = ext_bf(buffer, DCF_MO0); 472 clock_time->month = TIMES10(clock_time->month) + ext_bf(buffer, DCF_MO); 473 clock_time->year = ext_bf(buffer, DCF_Y10); 474 clock_time->year = TIMES10(clock_time->year) + ext_bf(buffer, DCF_Y1); 475 clock_time->wday = ext_bf(buffer, DCF_DW); 476 477 /* 478 * determine offset to UTC by examining the time zone 479 */ 480 switch (ext_bf(buffer, DCF_Z)) 481 { 482 case DCF_Z_MET: 483 clock_time->utcoffset = -60; 484 break; 485 486 case DCF_Z_MED: 487 clock_time->flags |= DCFB_DST; 488 clock_time->utcoffset = -120; 489 break; 490 491 default: 492 PRINTF("%-30s", "*** BAD TIME ZONE"); 493 return CVT_FAIL|CVT_BADFMT; 494 } 495 496 /* 497 * extract various warnings from DCF77 498 */ 499 if (ext_bf(buffer, DCF_A1)) 500 clock_time->flags |= DCFB_ANNOUNCE; 501 502 if (ext_bf(buffer, DCF_A2)) 503 clock_time->flags |= DCFB_LEAP; 504 505 if (ext_bf(buffer, DCF_R)) 506 clock_time->flags |= DCFB_CALLBIT; 507 508 return CVT_OK; 509 } 510 else 511 { 512 /* 513 * bad format - not for us 514 */ 515 PRINTF("%-30s", "*** BAD FORMAT (invalid/parity)"); 516 return CVT_FAIL|CVT_BADFMT; 517 } 518 } 519 520 /*----------------------------------------------------------------------- 521 * raw dcf input routine - fix up 50 baud 522 * characters for 1/0 decision 523 */ 524 static unsigned long 525 cvt_rawdcf( 526 unsigned char *buffer, 527 int size, 528 clocktime_t *clock_time 529 ) 530 { 531 register unsigned char *s = buffer; 532 register unsigned char *e = buffer + size; 533 register unsigned char *b = dcfparam.onebits; 534 register unsigned char *c = dcfparam.zerobits; 535 register unsigned rtc = CVT_NONE; 536 register unsigned int i, lowmax, highmax, cutoff, span; 537 #define BITS 9 538 unsigned char histbuf[BITS]; 539 /* 540 * the input buffer contains characters with runs of consecutive 541 * bits set. These set bits are an indication of the DCF77 pulse 542 * length. We assume that we receive the pulse at 50 Baud. Thus 543 * a 100ms pulse would generate a 4 bit train (20ms per bit and 544 * start bit) 545 * a 200ms pulse would create all zeroes (and probably a frame error) 546 * 547 * The basic idea is that on corret reception we must have two 548 * maxima in the pulse length distribution histogram. (one for 549 * the zero representing pulses and one for the one representing 550 * pulses) 551 * There will always be ones in the datastream, thus we have to see 552 * two maxima. 553 * The best point to cut for a 1/0 decision is the minimum between those 554 * between the maxima. The following code tries to find this cutoff point. 555 */ 556 557 /* 558 * clear histogram buffer 559 */ 560 for (i = 0; i < BITS; i++) 561 { 562 histbuf[i] = 0; 563 } 564 565 cutoff = 0; 566 lowmax = 0; 567 568 /* 569 * convert sequences of set bits into bits counts updating 570 * the histogram alongway 571 */ 572 while (s < e) 573 { 574 register unsigned int ch = *s ^ 0xFF; 575 /* 576 * check integrity and update histogramm 577 */ 578 if (!((ch+1) & ch) || !*s) 579 { 580 /* 581 * character ok 582 */ 583 for (i = 0; ch; i++) 584 { 585 ch >>= 1; 586 } 587 588 *s = i; 589 histbuf[i]++; 590 cutoff += i; 591 lowmax++; 592 } 593 else 594 { 595 /* 596 * invalid character (no consecutive bit sequence) 597 */ 598 dprintf(("parse: cvt_rawdcf: character check for 0x%x@%ld FAILED\n", 599 (u_int)*s, (long)(s - buffer))); 600 *s = (unsigned char)~0; 601 rtc = CVT_FAIL|CVT_BADFMT; 602 } 603 s++; 604 } 605 606 /* 607 * first cutoff estimate (average bit count - must be between both 608 * maxima) 609 */ 610 if (lowmax) 611 { 612 cutoff /= lowmax; 613 } 614 else 615 { 616 cutoff = 4; /* doesn't really matter - it'll fail anyway, but gives error output */ 617 } 618 619 dprintf(("parse: cvt_rawdcf: average bit count: %d\n", cutoff)); 620 621 lowmax = 0; /* weighted sum */ 622 highmax = 0; /* bitcount */ 623 624 /* 625 * collect weighted sum of lower bits (left of initial guess) 626 */ 627 dprintf(("parse: cvt_rawdcf: histogram:")); 628 for (i = 0; i <= cutoff; i++) 629 { 630 lowmax += histbuf[i] * i; 631 highmax += histbuf[i]; 632 dprintf((" %d", histbuf[i])); 633 } 634 dprintf((" <M>")); 635 636 /* 637 * round up 638 */ 639 lowmax += highmax / 2; 640 641 /* 642 * calculate lower bit maximum (weighted sum / bit count) 643 * 644 * avoid divide by zero 645 */ 646 if (highmax) 647 { 648 lowmax /= highmax; 649 } 650 else 651 { 652 lowmax = 0; 653 } 654 655 highmax = 0; /* weighted sum of upper bits counts */ 656 cutoff = 0; /* bitcount */ 657 658 /* 659 * collect weighted sum of lower bits (right of initial guess) 660 */ 661 for (; i < BITS; i++) 662 { 663 highmax+=histbuf[i] * i; 664 cutoff +=histbuf[i]; 665 dprintf((" %d", histbuf[i])); 666 } 667 dprintf(("\n")); 668 669 /* 670 * determine upper maximum (weighted sum / bit count) 671 */ 672 if (cutoff) 673 { 674 highmax /= cutoff; 675 } 676 else 677 { 678 highmax = BITS-1; 679 } 680 681 /* 682 * following now holds: 683 * lowmax <= cutoff(initial guess) <= highmax 684 * best cutoff is the minimum nearest to higher bits 685 */ 686 687 /* 688 * find the minimum between lowmax and highmax (detecting 689 * possibly a minimum span) 690 */ 691 span = cutoff = lowmax; 692 for (i = lowmax; i <= highmax; i++) 693 { 694 if (histbuf[cutoff] > histbuf[i]) 695 { 696 /* 697 * got a new minimum move beginning of minimum (cutoff) and 698 * end of minimum (span) there 699 */ 700 cutoff = span = i; 701 } 702 else 703 if (histbuf[cutoff] == histbuf[i]) 704 { 705 /* 706 * minimum not better yet - but it spans more than 707 * one bit value - follow it 708 */ 709 span = i; 710 } 711 } 712 713 /* 714 * cutoff point for 1/0 decision is the middle of the minimum section 715 * in the histogram 716 */ 717 cutoff = (cutoff + span) / 2; 718 719 dprintf(("parse: cvt_rawdcf: lower maximum %d, higher maximum %d, cutoff %d\n", lowmax, highmax, cutoff)); 720 721 /* 722 * convert the bit counts to symbolic 1/0 information for data conversion 723 */ 724 s = buffer; 725 while ((s < e) && *c && *b) 726 { 727 if (*s == (unsigned char)~0) 728 { 729 /* 730 * invalid character 731 */ 732 *s = '?'; 733 } 734 else 735 { 736 /* 737 * symbolic 1/0 representation 738 */ 739 *s = (*s >= cutoff) ? *b : *c; 740 } 741 s++; 742 b++; 743 c++; 744 } 745 746 /* 747 * if everything went well so far return the result of the symbolic 748 * conversion routine else just the accumulated errors 749 */ 750 if (rtc != CVT_NONE) 751 { 752 PRINTF("%-30s", "*** BAD DATA"); 753 } 754 755 return (rtc == CVT_NONE) ? convert_rawdcf(buffer, size, clock_time) : rtc; 756 } 757 758 /*----------------------------------------------------------------------- 759 * convert a wall clock time description of DCF77 to a Unix time (seconds 760 * since 1.1. 1970 UTC) 761 */ 762 static time_t 763 dcf_to_unixtime( 764 clocktime_t *clock_time, 765 unsigned *cvtrtc 766 ) 767 { 768 #define SETRTC(_X_) { if (cvtrtc) *cvtrtc = (_X_); } 769 static int days_of_month[] = 770 { 771 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 772 }; 773 register int i; 774 time_t t; 775 776 /* 777 * map 2 digit years to 19xx (DCF77 is a 20th century item) 778 */ 779 if ( clock_time->year < YEAR_PIVOT ) /* in case of Y2KFixes [ */ 780 clock_time->year += 100; /* *year%100, make tm_year */ 781 /* *(do we need this?) */ 782 if ( clock_time->year < YEAR_BREAK ) /* (failsafe if) */ 783 clock_time->year += 1900; /* Y2KFixes ] */ 784 785 /* 786 * must have been a really bad year code - drop it 787 */ 788 if (clock_time->year < (YEAR_PIVOT + 1900) ) /* Y2KFixes */ 789 { 790 SETRTC(CVT_FAIL|CVT_BADDATE); 791 return -1; 792 } 793 /* 794 * sorry, slow section here - but it's not time critical anyway 795 */ 796 797 /* 798 * calculate days since 1970 (watching leap years) 799 */ 800 t = julian0( clock_time->year ) - julian0( 1970 ); 801 802 /* month */ 803 if (clock_time->month <= 0 || clock_time->month > 12) 804 { 805 SETRTC(CVT_FAIL|CVT_BADDATE); 806 return -1; /* bad month */ 807 } 808 /* adjust current leap year */ 809 #if 0 810 if (clock_time->month < 3 && days_per_year(clock_time->year) == 366) 811 t--; 812 #endif 813 814 /* 815 * collect days from months excluding the current one 816 */ 817 for (i = 1; i < clock_time->month; i++) 818 { 819 t += days_of_month[i]; 820 } 821 /* day */ 822 if (clock_time->day < 1 || ((clock_time->month == 2 && days_per_year(clock_time->year) == 366) ? 823 clock_time->day > 29 : clock_time->day > days_of_month[clock_time->month])) 824 { 825 SETRTC(CVT_FAIL|CVT_BADDATE); 826 return -1; /* bad day */ 827 } 828 829 /* 830 * collect days from date excluding the current one 831 */ 832 t += clock_time->day - 1; 833 834 /* hour */ 835 if (clock_time->hour < 0 || clock_time->hour >= 24) 836 { 837 SETRTC(CVT_FAIL|CVT_BADTIME); 838 return -1; /* bad hour */ 839 } 840 841 /* 842 * calculate hours from 1. 1. 1970 843 */ 844 t = TIMES24(t) + clock_time->hour; 845 846 /* min */ 847 if (clock_time->minute < 0 || clock_time->minute > 59) 848 { 849 SETRTC(CVT_FAIL|CVT_BADTIME); 850 return -1; /* bad min */ 851 } 852 853 /* 854 * calculate minutes from 1. 1. 1970 855 */ 856 t = TIMES60(t) + clock_time->minute; 857 /* sec */ 858 859 /* 860 * calculate UTC in minutes 861 */ 862 t += clock_time->utcoffset; 863 864 if (clock_time->second < 0 || clock_time->second > 60) /* allow for LEAPs */ 865 { 866 SETRTC(CVT_FAIL|CVT_BADTIME); 867 return -1; /* bad sec */ 868 } 869 870 /* 871 * calculate UTC in seconds - phew ! 872 */ 873 t = TIMES60(t) + clock_time->second; 874 /* done */ 875 return t; 876 } 877 878 /*----------------------------------------------------------------------- 879 * cheap half baked 1/0 decision - for interactive operation only 880 */ 881 static char 882 type( 883 unsigned int c 884 ) 885 { 886 c ^= 0xFF; 887 return (c > 0xF); 888 } 889 890 /*----------------------------------------------------------------------- 891 * week day representation 892 */ 893 static const char *wday[8] = 894 { 895 "??", 896 "Mo", 897 "Tu", 898 "We", 899 "Th", 900 "Fr", 901 "Sa", 902 "Su" 903 }; 904 905 /*----------------------------------------------------------------------- 906 * generate a string representation for a timeval 907 */ 908 static char * 909 pr_timeval( 910 struct timeval *val 911 ) 912 { 913 static char buf[20]; 914 915 if (val->tv_sec == 0) 916 snprintf(buf, sizeof(buf), "%c0.%06ld", 917 (val->tv_usec < 0) ? '-' : '+', 918 (long int)l_abs(val->tv_usec)); 919 else 920 snprintf(buf, sizeof(buf), "%ld.%06ld", 921 (long int)val->tv_sec, 922 (long int)l_abs(val->tv_usec)); 923 return buf; 924 } 925 926 /*----------------------------------------------------------------------- 927 * correct the current time by an offset by setting the time rigorously 928 */ 929 static void 930 set_time( 931 struct timeval *offset 932 ) 933 { 934 struct timeval the_time; 935 936 if (no_set) 937 return; 938 939 LPRINTF("set_time: %s ", pr_timeval(offset)); 940 syslog(LOG_NOTICE, "setting time (offset %s)", pr_timeval(offset)); 941 942 if (gettimeofday(&the_time, 0L) == -1) 943 { 944 perror("gettimeofday()"); 945 } 946 else 947 { 948 timeradd(&the_time, offset); 949 if (settimeofday(&the_time, 0L) == -1) 950 { 951 perror("settimeofday()"); 952 } 953 } 954 } 955 956 /*----------------------------------------------------------------------- 957 * slew the time by a given offset 958 */ 959 static void 960 adj_time( 961 long offset 962 ) 963 { 964 struct timeval time_offset; 965 966 if (no_set) 967 return; 968 969 time_offset.tv_sec = offset / 1000000; 970 time_offset.tv_usec = offset % 1000000; 971 972 LPRINTF("adj_time: %ld us ", (long int)offset); 973 if (adjtime(&time_offset, 0L) == -1) 974 perror("adjtime()"); 975 } 976 977 /*----------------------------------------------------------------------- 978 * read in a possibly previously written drift value 979 */ 980 static void 981 read_drift( 982 const char *drift_file 983 ) 984 { 985 FILE *df; 986 987 df = fopen(drift_file, "r"); 988 if (df != NULL) 989 { 990 int idrift = 0, fdrift = 0; 991 992 fscanf(df, "%4d.%03d", &idrift, &fdrift); 993 fclose(df); 994 LPRINTF("read_drift: %d.%03d ppm ", idrift, fdrift); 995 996 accum_drift = idrift << USECSCALE; 997 fdrift = (fdrift << USECSCALE) / 1000; 998 accum_drift += fdrift & (1<<USECSCALE); 999 LPRINTF("read_drift: drift_comp %ld ", (long int)accum_drift); 1000 } 1001 } 1002 1003 /*----------------------------------------------------------------------- 1004 * write out the current drift value 1005 */ 1006 static void 1007 update_drift( 1008 const char *drift_file, 1009 long offset, 1010 time_t reftime 1011 ) 1012 { 1013 FILE *df; 1014 1015 df = fopen(drift_file, "w"); 1016 if (df != NULL) 1017 { 1018 int idrift = R_SHIFT(accum_drift, USECSCALE); 1019 int fdrift = accum_drift & ((1<<USECSCALE)-1); 1020 1021 LPRINTF("update_drift: drift_comp %ld ", (long int)accum_drift); 1022 fdrift = (fdrift * 1000) / (1<<USECSCALE); 1023 fprintf(df, "%4d.%03d %c%ld.%06ld %.24s\n", idrift, fdrift, 1024 (offset < 0) ? '-' : '+', (long int)(l_abs(offset) / 1000000), 1025 (long int)(l_abs(offset) % 1000000), asctime(localtime(&reftime))); 1026 fclose(df); 1027 LPRINTF("update_drift: %d.%03d ppm ", idrift, fdrift); 1028 } 1029 } 1030 1031 /*----------------------------------------------------------------------- 1032 * process adjustments derived from the DCF77 observation 1033 * (controls clock PLL) 1034 */ 1035 static void 1036 adjust_clock( 1037 struct timeval *offset, 1038 const char *drift_file, 1039 time_t reftime 1040 ) 1041 { 1042 struct timeval toffset; 1043 register long usecoffset; 1044 int tmp; 1045 1046 if (no_set) 1047 return; 1048 1049 if (skip_adjust) 1050 { 1051 skip_adjust = 0; 1052 return; 1053 } 1054 1055 toffset = *offset; 1056 toffset.tv_sec = l_abs(toffset.tv_sec); 1057 toffset.tv_usec = l_abs(toffset.tv_usec); 1058 if (toffset.tv_sec || 1059 (!toffset.tv_sec && toffset.tv_usec > max_adj_offset_usec)) 1060 { 1061 /* 1062 * hopeless - set the clock - and clear the timing 1063 */ 1064 set_time(offset); 1065 clock_adjust = 0; 1066 skip_adjust = 1; 1067 return; 1068 } 1069 1070 usecoffset = offset->tv_sec * 1000000 + offset->tv_usec; 1071 1072 clock_adjust = R_SHIFT(usecoffset, TIMECONSTANT); /* adjustment to make for next period */ 1073 1074 tmp = 0; 1075 while (adjustments > (1 << tmp)) 1076 tmp++; 1077 adjustments = 0; 1078 if (tmp > FREQ_WEIGHT) 1079 tmp = FREQ_WEIGHT; 1080 1081 accum_drift += R_SHIFT(usecoffset << USECSCALE, TIMECONSTANT+TIMECONSTANT+FREQ_WEIGHT-tmp); 1082 1083 if (accum_drift > MAX_DRIFT) /* clamp into interval */ 1084 accum_drift = MAX_DRIFT; 1085 else 1086 if (accum_drift < -MAX_DRIFT) 1087 accum_drift = -MAX_DRIFT; 1088 1089 update_drift(drift_file, usecoffset, reftime); 1090 LPRINTF("clock_adjust: %s, clock_adjust %ld, drift_comp %ld(%ld) ", 1091 pr_timeval(offset),(long int) R_SHIFT(clock_adjust, USECSCALE), 1092 (long int)R_SHIFT(accum_drift, USECSCALE), (long int)accum_drift); 1093 } 1094 1095 /*----------------------------------------------------------------------- 1096 * adjust the clock by a small mount to simulate frequency correction 1097 */ 1098 static void 1099 periodic_adjust( 1100 void 1101 ) 1102 { 1103 register long adjustment; 1104 1105 adjustments++; 1106 1107 adjustment = R_SHIFT(clock_adjust, PHASE_WEIGHT); 1108 1109 clock_adjust -= adjustment; 1110 1111 adjustment += R_SHIFT(accum_drift, USECSCALE+ADJINTERVAL); 1112 1113 adj_time(adjustment); 1114 } 1115 1116 /*----------------------------------------------------------------------- 1117 * control synchronisation status (warnings) and do periodic adjusts 1118 * (frequency control simulation) 1119 */ 1120 static void 1121 tick( 1122 int signum 1123 ) 1124 { 1125 static unsigned long last_notice = 0; 1126 1127 #if !defined(HAVE_SIGACTION) && !defined(HAVE_SIGVEC) 1128 (void)signal(SIGALRM, tick); 1129 #endif 1130 1131 periodic_adjust(); 1132 1133 ticks += 1<<ADJINTERVAL; 1134 1135 if ((ticks - last_sync) > MAX_UNSYNC) 1136 { 1137 /* 1138 * not getting time for a while 1139 */ 1140 if (sync_state == SYNC) 1141 { 1142 /* 1143 * completely lost information 1144 */ 1145 sync_state = NO_SYNC; 1146 syslog(LOG_INFO, "DCF77 reception lost (timeout)"); 1147 last_notice = ticks; 1148 } 1149 else 1150 /* 1151 * in NO_SYNC state - look whether its time to speak up again 1152 */ 1153 if ((ticks - last_notice) > NOTICE_INTERVAL) 1154 { 1155 syslog(LOG_NOTICE, "still not synchronized to DCF77 - check receiver/signal"); 1156 last_notice = ticks; 1157 } 1158 } 1159 1160 #ifndef ITIMER_REAL 1161 (void) alarm(1<<ADJINTERVAL); 1162 #endif 1163 } 1164 1165 /*----------------------------------------------------------------------- 1166 * break association from terminal to avoid catching terminal 1167 * or process group related signals (-> daemon operation) 1168 */ 1169 static void 1170 detach( 1171 void 1172 ) 1173 { 1174 # ifdef HAVE_DAEMON 1175 daemon(0, 0); 1176 # else /* not HAVE_DAEMON */ 1177 if (fork()) 1178 exit(0); 1179 1180 { 1181 u_long s; 1182 int max_fd; 1183 1184 #if defined(HAVE_SYSCONF) && defined(_SC_OPEN_MAX) 1185 max_fd = sysconf(_SC_OPEN_MAX); 1186 #else /* HAVE_SYSCONF && _SC_OPEN_MAX */ 1187 max_fd = getdtablesize(); 1188 #endif /* HAVE_SYSCONF && _SC_OPEN_MAX */ 1189 for (s = 0; s < max_fd; s++) 1190 (void) close((int)s); 1191 (void) open("/", 0); 1192 (void) dup2(0, 1); 1193 (void) dup2(0, 2); 1194 #ifdef SYS_DOMAINOS 1195 { 1196 uid_$t puid; 1197 status_$t st; 1198 1199 proc2_$who_am_i(&puid); 1200 proc2_$make_server(&puid, &st); 1201 } 1202 #endif /* SYS_DOMAINOS */ 1203 #if defined(HAVE_SETPGID) || defined(HAVE_SETSID) 1204 # ifdef HAVE_SETSID 1205 if (setsid() == (pid_t)-1) 1206 syslog(LOG_ERR, "dcfd: setsid(): %m"); 1207 # else 1208 if (setpgid(0, 0) == -1) 1209 syslog(LOG_ERR, "dcfd: setpgid(): %m"); 1210 # endif 1211 #else /* HAVE_SETPGID || HAVE_SETSID */ 1212 { 1213 int fid; 1214 1215 fid = open("/dev/tty", 2); 1216 if (fid >= 0) 1217 { 1218 (void) ioctl(fid, (u_long) TIOCNOTTY, (char *) 0); 1219 (void) close(fid); 1220 } 1221 # ifdef HAVE_SETPGRP_0 1222 (void) setpgrp(); 1223 # else /* HAVE_SETPGRP_0 */ 1224 (void) setpgrp(0, getpid()); 1225 # endif /* HAVE_SETPGRP_0 */ 1226 } 1227 #endif /* HAVE_SETPGID || HAVE_SETSID */ 1228 } 1229 #endif /* not HAVE_DAEMON */ 1230 } 1231 1232 /*----------------------------------------------------------------------- 1233 * list possible arguments and options 1234 */ 1235 static void 1236 usage( 1237 char *program 1238 ) 1239 { 1240 fprintf(stderr, "usage: %s [-n] [-f] [-l] [-t] [-i] [-o] [-d <drift_file>] [-D <input delay>] <device>\n", program); 1241 fprintf(stderr, "\t-n do not change time\n"); 1242 fprintf(stderr, "\t-i interactive\n"); 1243 fprintf(stderr, "\t-t trace (print all datagrams)\n"); 1244 fprintf(stderr, "\t-f print all databits (includes PTB private data)\n"); 1245 fprintf(stderr, "\t-l print loop filter debug information\n"); 1246 fprintf(stderr, "\t-o print offet average for current minute\n"); 1247 fprintf(stderr, "\t-Y make internal Y2K checks then exit\n"); /* Y2KFixes */ 1248 fprintf(stderr, "\t-d <drift_file> specify alternate drift file\n"); 1249 fprintf(stderr, "\t-D <input delay>specify delay from input edge to processing in micro seconds\n"); 1250 } 1251 1252 /*----------------------------------------------------------------------- 1253 * check_y2k() - internal check of Y2K logic 1254 * (a lot of this logic lifted from ../ntpd/check_y2k.c) 1255 */ 1256 static int 1257 check_y2k( void ) 1258 { 1259 int year; /* current working year */ 1260 int year0 = 1900; /* sarting year for NTP time */ 1261 int yearend; /* ending year we test for NTP time. 1262 * 32-bit systems: through 2036, the 1263 **year in which NTP time overflows. 1264 * 64-bit systems: a reasonable upper 1265 **limit (well, maybe somewhat beyond 1266 **reasonable, but well before the 1267 **max time, by which time the earth 1268 **will be dead.) */ 1269 time_t Time; 1270 struct tm LocalTime; 1271 1272 int Fatals, Warnings; 1273 #define Error(year) if ( (year)>=2036 && LocalTime.tm_year < 110 ) \ 1274 Warnings++; else Fatals++ 1275 1276 Fatals = Warnings = 0; 1277 1278 Time = time( (time_t *)NULL ); 1279 LocalTime = *localtime( &Time ); 1280 1281 year = ( sizeof( u_long ) > 4 ) /* save max span using year as temp */ 1282 ? ( 400 * 3 ) /* three greater gregorian cycles */ 1283 : ((int)(0x7FFFFFFF / 365.242 / 24/60/60)* 2 ); /*32-bit limit*/ 1284 /* NOTE: will automacially expand test years on 1285 * 64 bit machines.... this may cause some of the 1286 * existing ntp logic to fail for years beyond 1287 * 2036 (the current 32-bit limit). If all checks 1288 * fail ONLY beyond year 2036 you may ignore such 1289 * errors, at least for a decade or so. */ 1290 yearend = year0 + year; 1291 1292 year = 1900+YEAR_PIVOT; 1293 printf( " starting year %04d\n", (int) year ); 1294 printf( " ending year %04d\n", (int) yearend ); 1295 1296 for ( ; year < yearend; year++ ) 1297 { 1298 clocktime_t ct; 1299 time_t Observed; 1300 time_t Expected; 1301 unsigned Flag; 1302 unsigned long t; 1303 1304 ct.day = 1; 1305 ct.month = 1; 1306 ct.year = year; 1307 ct.hour = ct.minute = ct.second = ct.usecond = 0; 1308 ct.utcoffset = 0; 1309 ct.flags = 0; 1310 1311 Flag = 0; 1312 Observed = dcf_to_unixtime( &ct, &Flag ); 1313 /* seems to be a clone of parse_to_unixtime() with 1314 * *a minor difference to arg2 type */ 1315 if ( ct.year != year ) 1316 { 1317 fprintf( stdout, 1318 "%04d: dcf_to_unixtime(,%d) CORRUPTED ct.year: was %d\n", 1319 (int)year, (int)Flag, (int)ct.year ); 1320 Error(year); 1321 break; 1322 } 1323 t = julian0(year) - julian0(1970); /* Julian day from 1970 */ 1324 Expected = t * 24 * 60 * 60; 1325 if ( Observed != Expected || Flag ) 1326 { /* time difference */ 1327 fprintf( stdout, 1328 "%04d: dcf_to_unixtime(,%d) FAILURE: was=%lu s/b=%lu (%ld)\n", 1329 year, (int)Flag, 1330 (unsigned long)Observed, (unsigned long)Expected, 1331 ((long)Observed - (long)Expected) ); 1332 Error(year); 1333 break; 1334 } 1335 1336 } 1337 1338 return ( Fatals ); 1339 } 1340 1341 /*-------------------------------------------------- 1342 * rawdcf_init - set up modem lines for RAWDCF receivers 1343 */ 1344 #if defined(TIOCMSET) && (defined(TIOCM_DTR) || defined(CIOCM_DTR)) 1345 static void 1346 rawdcf_init( 1347 int fd 1348 ) 1349 { 1350 /* 1351 * You can use the RS232 to supply the power for a DCF77 receiver. 1352 * Here a voltage between the DTR and the RTS line is used. Unfortunately 1353 * the name has changed from CIOCM_DTR to TIOCM_DTR recently. 1354 */ 1355 1356 #ifdef TIOCM_DTR 1357 int sl232 = TIOCM_DTR; /* turn on DTR for power supply */ 1358 #else 1359 int sl232 = CIOCM_DTR; /* turn on DTR for power supply */ 1360 #endif 1361 1362 if (ioctl(fd, TIOCMSET, (caddr_t)&sl232) == -1) 1363 { 1364 syslog(LOG_NOTICE, "rawdcf_init: WARNING: ioctl(fd, TIOCMSET, [C|T]IOCM_DTR): %m"); 1365 } 1366 } 1367 #else 1368 static void 1369 rawdcf_init( 1370 int fd 1371 ) 1372 { 1373 syslog(LOG_NOTICE, "rawdcf_init: WARNING: OS interface incapable of setting DTR to power DCF modules"); 1374 } 1375 #endif /* DTR initialisation type */ 1376 1377 /*----------------------------------------------------------------------- 1378 * main loop - argument interpreter / setup / main loop 1379 */ 1380 int 1381 main( 1382 int argc, 1383 char **argv 1384 ) 1385 { 1386 unsigned char c; 1387 char **a = argv; 1388 int ac = argc; 1389 char *file = NULL; 1390 const char *drift_file = "/etc/dcfd.drift"; 1391 int fd; 1392 int offset = 15; 1393 int offsets = 0; 1394 int delay = DEFAULT_DELAY; /* average delay from input edge to time stamping */ 1395 int trace = 0; 1396 int errs = 0; 1397 1398 /* 1399 * process arguments 1400 */ 1401 while (--ac) 1402 { 1403 char *arg = *++a; 1404 if (*arg == '-') 1405 while ((c = *++arg)) 1406 switch (c) 1407 { 1408 case 't': 1409 trace = 1; 1410 interactive = 1; 1411 break; 1412 1413 case 'f': 1414 offset = 0; 1415 interactive = 1; 1416 break; 1417 1418 case 'l': 1419 loop_filter_debug = 1; 1420 offsets = 1; 1421 interactive = 1; 1422 break; 1423 1424 case 'n': 1425 no_set = 1; 1426 break; 1427 1428 case 'o': 1429 offsets = 1; 1430 interactive = 1; 1431 break; 1432 1433 case 'i': 1434 interactive = 1; 1435 break; 1436 1437 case 'D': 1438 if (ac > 1) 1439 { 1440 delay = atoi(*++a); 1441 ac--; 1442 } 1443 else 1444 { 1445 fprintf(stderr, "%s: -D requires integer argument\n", argv[0]); 1446 errs=1; 1447 } 1448 break; 1449 1450 case 'd': 1451 if (ac > 1) 1452 { 1453 drift_file = *++a; 1454 ac--; 1455 } 1456 else 1457 { 1458 fprintf(stderr, "%s: -d requires file name argument\n", argv[0]); 1459 errs=1; 1460 } 1461 break; 1462 1463 case 'Y': 1464 errs=check_y2k(); 1465 exit( errs ? 1 : 0 ); 1466 1467 default: 1468 fprintf(stderr, "%s: unknown option -%c\n", argv[0], c); 1469 errs=1; 1470 break; 1471 } 1472 else 1473 if (file == NULL) 1474 file = arg; 1475 else 1476 { 1477 fprintf(stderr, "%s: device specified twice\n", argv[0]); 1478 errs=1; 1479 } 1480 } 1481 1482 if (errs) 1483 { 1484 usage(argv[0]); 1485 exit(1); 1486 } 1487 else 1488 if (file == NULL) 1489 { 1490 fprintf(stderr, "%s: device not specified\n", argv[0]); 1491 usage(argv[0]); 1492 exit(1); 1493 } 1494 1495 errs = LINES+1; 1496 1497 /* 1498 * get access to DCF77 tty port 1499 */ 1500 fd = open(file, O_RDONLY); 1501 if (fd == -1) 1502 { 1503 perror(file); 1504 exit(1); 1505 } 1506 else 1507 { 1508 int i, rrc; 1509 struct timeval t, tt, tlast; 1510 struct timeval timeout; 1511 struct timeval phase; 1512 struct timeval time_offset; 1513 char pbuf[61]; /* printable version */ 1514 char buf[61]; /* raw data */ 1515 clocktime_t clock_time; /* wall clock time */ 1516 time_t utc_time = 0; 1517 time_t last_utc_time = 0; 1518 long usecerror = 0; 1519 long lasterror = 0; 1520 #if defined(HAVE_TERMIOS_H) || defined(STREAM) 1521 struct termios term; 1522 #else /* not HAVE_TERMIOS_H || STREAM */ 1523 # if defined(HAVE_TERMIO_H) || defined(HAVE_SYSV_TTYS) 1524 struct termio term; 1525 # endif/* HAVE_TERMIO_H || HAVE_SYSV_TTYS */ 1526 #endif /* not HAVE_TERMIOS_H || STREAM */ 1527 unsigned int rtc = CVT_NONE; 1528 1529 rawdcf_init(fd); 1530 1531 timeout.tv_sec = 1; 1532 timeout.tv_usec = 500000; 1533 1534 phase.tv_sec = 0; 1535 phase.tv_usec = delay; 1536 1537 /* 1538 * setup TTY (50 Baud, Read, 8Bit, No Hangup, 1 character IO) 1539 */ 1540 if (TTY_GETATTR(fd, &term) == -1) 1541 { 1542 perror("tcgetattr"); 1543 exit(1); 1544 } 1545 1546 memset(term.c_cc, 0, sizeof(term.c_cc)); 1547 term.c_cc[VMIN] = 1; 1548 #ifdef NO_PARENB_IGNPAR 1549 term.c_cflag = CS8|CREAD|CLOCAL; 1550 #else 1551 term.c_cflag = CS8|CREAD|CLOCAL|PARENB; 1552 #endif 1553 term.c_iflag = IGNPAR; 1554 term.c_oflag = 0; 1555 term.c_lflag = 0; 1556 1557 cfsetispeed(&term, B50); 1558 cfsetospeed(&term, B50); 1559 1560 if (TTY_SETATTR(fd, &term) == -1) 1561 { 1562 perror("tcsetattr"); 1563 exit(1); 1564 } 1565 1566 /* 1567 * lose terminal if in daemon operation 1568 */ 1569 if (!interactive) 1570 detach(); 1571 1572 /* 1573 * get syslog() initialized 1574 */ 1575 #ifdef LOG_DAEMON 1576 openlog("dcfd", LOG_PID, LOG_DAEMON); 1577 #else 1578 openlog("dcfd", LOG_PID); 1579 #endif 1580 1581 /* 1582 * setup periodic operations (state control / frequency control) 1583 */ 1584 #ifdef HAVE_SIGACTION 1585 { 1586 struct sigaction act; 1587 1588 # ifdef HAVE_SA_SIGACTION_IN_STRUCT_SIGACTION 1589 act.sa_sigaction = (void (*) (int, siginfo_t *, void *))0; 1590 # endif /* HAVE_SA_SIGACTION_IN_STRUCT_SIGACTION */ 1591 act.sa_handler = tick; 1592 sigemptyset(&act.sa_mask); 1593 act.sa_flags = 0; 1594 1595 if (sigaction(SIGALRM, &act, (struct sigaction *)0) == -1) 1596 { 1597 syslog(LOG_ERR, "sigaction(SIGALRM): %m"); 1598 exit(1); 1599 } 1600 } 1601 #else 1602 #ifdef HAVE_SIGVEC 1603 { 1604 struct sigvec vec; 1605 1606 vec.sv_handler = tick; 1607 vec.sv_mask = 0; 1608 vec.sv_flags = 0; 1609 1610 if (sigvec(SIGALRM, &vec, (struct sigvec *)0) == -1) 1611 { 1612 syslog(LOG_ERR, "sigvec(SIGALRM): %m"); 1613 exit(1); 1614 } 1615 } 1616 #else 1617 (void) signal(SIGALRM, tick); 1618 #endif 1619 #endif 1620 1621 #ifdef ITIMER_REAL 1622 { 1623 struct itimerval it; 1624 1625 it.it_interval.tv_sec = 1<<ADJINTERVAL; 1626 it.it_interval.tv_usec = 0; 1627 it.it_value.tv_sec = 1<<ADJINTERVAL; 1628 it.it_value.tv_usec = 0; 1629 1630 if (setitimer(ITIMER_REAL, &it, (struct itimerval *)0) == -1) 1631 { 1632 syslog(LOG_ERR, "setitimer: %m"); 1633 exit(1); 1634 } 1635 } 1636 #else 1637 (void) alarm(1<<ADJINTERVAL); 1638 #endif 1639 1640 PRINTF(" DCF77 monitor %s - Copyright (C) 1993-2005 by Frank Kardel\n\n", revision); 1641 1642 pbuf[60] = '\0'; 1643 for ( i = 0; i < 60; i++) 1644 pbuf[i] = '.'; 1645 1646 read_drift(drift_file); 1647 1648 /* 1649 * what time is it now (for interval measurement) 1650 */ 1651 gettimeofday(&tlast, 0L); 1652 i = 0; 1653 /* 1654 * loop until input trouble ... 1655 */ 1656 do 1657 { 1658 /* 1659 * get an impulse 1660 */ 1661 while ((rrc = read(fd, &c, 1)) == 1) 1662 { 1663 gettimeofday(&t, 0L); 1664 tt = t; 1665 timersub(&t, &tlast); 1666 1667 if (errs > LINES) 1668 { 1669 PRINTF(" %s", &"PTB private....RADMLSMin....PHour..PMDay..DayMonthYear....P\n"[offset]); 1670 PRINTF(" %s", &"---------------RADMLS1248124P124812P1248121241248112481248P\n"[offset]); 1671 errs = 0; 1672 } 1673 1674 /* 1675 * timeout -> possible minute mark -> interpretation 1676 */ 1677 if (timercmp(&t, &timeout, >)) 1678 { 1679 PRINTF("%c %.*s ", pat[i % (sizeof(pat)-1)], 59 - offset, &pbuf[offset]); 1680 1681 if ((rtc = cvt_rawdcf((unsigned char *)buf, i, &clock_time)) != CVT_OK) 1682 { 1683 /* 1684 * this data was bad - well - forget synchronisation for now 1685 */ 1686 PRINTF("\n"); 1687 if (sync_state == SYNC) 1688 { 1689 sync_state = NO_SYNC; 1690 syslog(LOG_INFO, "DCF77 reception lost (bad data)"); 1691 } 1692 errs++; 1693 } 1694 else 1695 if (trace) 1696 { 1697 PRINTF("\r %.*s ", 59 - offset, &buf[offset]); 1698 } 1699 1700 1701 buf[0] = c; 1702 1703 /* 1704 * collect first character 1705 */ 1706 if (((c^0xFF)+1) & (c^0xFF)) 1707 pbuf[0] = '?'; 1708 else 1709 pbuf[0] = type(c) ? '#' : '-'; 1710 1711 for ( i = 1; i < 60; i++) 1712 pbuf[i] = '.'; 1713 1714 i = 0; 1715 } 1716 else 1717 { 1718 /* 1719 * collect character 1720 */ 1721 buf[i] = c; 1722 1723 /* 1724 * initial guess (usually correct) 1725 */ 1726 if (((c^0xFF)+1) & (c^0xFF)) 1727 pbuf[i] = '?'; 1728 else 1729 pbuf[i] = type(c) ? '#' : '-'; 1730 1731 PRINTF("%c %.*s ", pat[i % (sizeof(pat)-1)], 59 - offset, &pbuf[offset]); 1732 } 1733 1734 if (i == 0 && rtc == CVT_OK) 1735 { 1736 /* 1737 * we got a good time code here - try to convert it to 1738 * UTC 1739 */ 1740 if ((utc_time = dcf_to_unixtime(&clock_time, &rtc)) == -1) 1741 { 1742 PRINTF("*** BAD CONVERSION\n"); 1743 } 1744 1745 if (utc_time != (last_utc_time + 60)) 1746 { 1747 /* 1748 * well, two successive sucessful telegrams are not 60 seconds 1749 * apart 1750 */ 1751 PRINTF("*** NO MINUTE INC\n"); 1752 if (sync_state == SYNC) 1753 { 1754 sync_state = NO_SYNC; 1755 syslog(LOG_INFO, "DCF77 reception lost (data mismatch)"); 1756 } 1757 errs++; 1758 rtc = CVT_FAIL|CVT_BADTIME|CVT_BADDATE; 1759 } 1760 else 1761 usecerror = 0; 1762 1763 last_utc_time = utc_time; 1764 } 1765 1766 if (rtc == CVT_OK) 1767 { 1768 if (i == 0) 1769 { 1770 /* 1771 * valid time code - determine offset and 1772 * note regained reception 1773 */ 1774 last_sync = ticks; 1775 if (sync_state == NO_SYNC) 1776 { 1777 syslog(LOG_INFO, "receiving DCF77"); 1778 } 1779 else 1780 { 1781 /* 1782 * we had at least one minute SYNC - thus 1783 * last error is valid 1784 */ 1785 time_offset.tv_sec = lasterror / 1000000; 1786 time_offset.tv_usec = lasterror % 1000000; 1787 adjust_clock(&time_offset, drift_file, utc_time); 1788 } 1789 sync_state = SYNC; 1790 } 1791 1792 time_offset.tv_sec = utc_time + i; 1793 time_offset.tv_usec = 0; 1794 1795 timeradd(&time_offset, &phase); 1796 1797 usecerror += (time_offset.tv_sec - tt.tv_sec) * 1000000 + time_offset.tv_usec 1798 -tt.tv_usec; 1799 1800 /* 1801 * output interpreted DCF77 data 1802 */ 1803 PRINTF(offsets ? "%s, %2ld:%02ld:%02d, %ld.%02ld.%02ld, <%s%s%s%s> (%c%ld.%06lds)" : 1804 "%s, %2ld:%02ld:%02d, %ld.%02ld.%02ld, <%s%s%s%s>", 1805 wday[clock_time.wday], 1806 clock_time.hour, clock_time.minute, i, clock_time.day, clock_time.month, 1807 clock_time.year, 1808 (clock_time.flags & DCFB_CALLBIT) ? "R" : "_", 1809 (clock_time.flags & DCFB_ANNOUNCE) ? "A" : "_", 1810 (clock_time.flags & DCFB_DST) ? "D" : "_", 1811 (clock_time.flags & DCFB_LEAP) ? "L" : "_", 1812 (lasterror < 0) ? '-' : '+', l_abs(lasterror) / 1000000, l_abs(lasterror) % 1000000 1813 ); 1814 1815 if (trace && (i == 0)) 1816 { 1817 PRINTF("\n"); 1818 errs++; 1819 } 1820 lasterror = usecerror / (i+1); 1821 } 1822 else 1823 { 1824 lasterror = 0; /* we cannot calculate phase errors on bad reception */ 1825 } 1826 1827 PRINTF("\r"); 1828 1829 if (i < 60) 1830 { 1831 i++; 1832 } 1833 1834 tlast = tt; 1835 1836 if (interactive) 1837 fflush(stdout); 1838 } 1839 } while ((rrc == -1) && (errno == EINTR)); 1840 1841 /* 1842 * lost IO - sorry guys 1843 */ 1844 syslog(LOG_ERR, "TERMINATING - cannot read from device %s (%m)", file); 1845 1846 (void)close(fd); 1847 } 1848 1849 closelog(); 1850 1851 return 0; 1852 } 1853 1854 /* 1855 * History: 1856 * 1857 * dcfd.c,v 1858 * Revision 4.18 2005/10/07 22:08:18 kardel 1859 * make dcfd.c compile on NetBSD 3.99.9 again (configure/sigvec compatibility fix) 1860 * 1861 * Revision 4.17.2.1 2005/10/03 19:15:16 kardel 1862 * work around configure not detecting a missing sigvec compatibility 1863 * interface on NetBSD 3.99.9 and above 1864 * 1865 * Revision 4.17 2005/08/10 10:09:44 kardel 1866 * output revision information 1867 * 1868 * Revision 4.16 2005/08/10 06:33:25 kardel 1869 * cleanup warnings 1870 * 1871 * Revision 4.15 2005/08/10 06:28:45 kardel 1872 * fix setting of baud rate 1873 * 1874 * Revision 4.14 2005/04/16 17:32:10 kardel 1875 * update copyright 1876 * 1877 * Revision 4.13 2004/11/14 15:29:41 kardel 1878 * support PPSAPI, upgrade Copyright to Berkeley style 1879 * 1880 */ 1881