1 /* 2 * /src/NTP/REPOSITORY/ntp4-dev/parseutil/dcfd.c,v 4.18 2005/10/07 22:08:18 kardel RELEASE_20051008_A 3 * 4 * dcfd.c,v 4.18 2005/10/07 22:08:18 kardel RELEASE_20051008_A 5 * 6 * DCF77 100/200ms pulse synchronisation daemon program (via 50Baud serial line) 7 * 8 * Features: 9 * DCF77 decoding 10 * simple NTP loopfilter logic for local clock 11 * interactive display for debugging 12 * 13 * Lacks: 14 * Leap second handling (at that level you should switch to NTP Version 4 - really!) 15 * 16 * Copyright (c) 1995-2005 by Frank Kardel <kardel <AT> ntp.org> 17 * Copyright (c) 1989-1994 by Frank Kardel, Friedrich-Alexander Universit�t Erlangen-N�rnberg, Germany 18 * 19 * Redistribution and use in source and binary forms, with or without 20 * modification, are permitted provided that the following conditions 21 * are met: 22 * 1. Redistributions of source code must retain the above copyright 23 * notice, this list of conditions and the following disclaimer. 24 * 2. Redistributions in binary form must reproduce the above copyright 25 * notice, this list of conditions and the following disclaimer in the 26 * documentation and/or other materials provided with the distribution. 27 * 3. Neither the name of the author nor the names of its contributors 28 * may be used to endorse or promote products derived from this software 29 * without specific prior written permission. 30 * 31 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 34 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 41 * SUCH DAMAGE. 42 * 43 */ 44 45 #ifdef HAVE_CONFIG_H 46 # include <config.h> 47 #endif 48 49 #include <sys/ioctl.h> 50 #include <unistd.h> 51 #include <stdio.h> 52 #include <fcntl.h> 53 #include <sys/types.h> 54 #include <sys/time.h> 55 #include <signal.h> 56 #include <syslog.h> 57 #include <time.h> 58 59 /* 60 * NTP compilation environment 61 */ 62 #include "ntp_stdlib.h" 63 #include "ntpd.h" /* indirectly include ntp.h to get YEAR_PIVOT Y2KFixes */ 64 65 /* 66 * select which terminal handling to use (currently only SysV variants) 67 */ 68 #if defined(HAVE_TERMIOS_H) || defined(STREAM) 69 #include <termios.h> 70 #define TTY_GETATTR(_FD_, _ARG_) tcgetattr((_FD_), (_ARG_)) 71 #define TTY_SETATTR(_FD_, _ARG_) tcsetattr((_FD_), TCSANOW, (_ARG_)) 72 #else /* not HAVE_TERMIOS_H || STREAM */ 73 # if defined(HAVE_TERMIO_H) || defined(HAVE_SYSV_TTYS) 74 # include <termio.h> 75 # define TTY_GETATTR(_FD_, _ARG_) ioctl((_FD_), TCGETA, (_ARG_)) 76 # define TTY_SETATTR(_FD_, _ARG_) ioctl((_FD_), TCSETAW, (_ARG_)) 77 # endif/* HAVE_TERMIO_H || HAVE_SYSV_TTYS */ 78 #endif /* not HAVE_TERMIOS_H || STREAM */ 79 80 81 #ifndef TTY_GETATTR 82 #include "Bletch: MUST DEFINE ONE OF 'HAVE_TERMIOS_H' or 'HAVE_TERMIO_H'" 83 #endif 84 85 #ifndef days_per_year 86 #define days_per_year(_x_) (((_x_) % 4) ? 365 : (((_x_) % 400) ? 365 : 366)) 87 #endif 88 89 #define timernormalize(_a_) \ 90 if ((_a_)->tv_usec >= 1000000) \ 91 { \ 92 (_a_)->tv_sec += (_a_)->tv_usec / 1000000; \ 93 (_a_)->tv_usec = (_a_)->tv_usec % 1000000; \ 94 } \ 95 if ((_a_)->tv_usec < 0) \ 96 { \ 97 (_a_)->tv_sec -= 1 + (-(_a_)->tv_usec / 1000000); \ 98 (_a_)->tv_usec = 999999 - (-(_a_)->tv_usec - 1); \ 99 } 100 101 #ifdef timeradd 102 #undef timeradd 103 #endif 104 #define timeradd(_a_, _b_) \ 105 (_a_)->tv_sec += (_b_)->tv_sec; \ 106 (_a_)->tv_usec += (_b_)->tv_usec; \ 107 timernormalize((_a_)) 108 109 #ifdef timersub 110 #undef timersub 111 #endif 112 #define timersub(_a_, _b_) \ 113 (_a_)->tv_sec -= (_b_)->tv_sec; \ 114 (_a_)->tv_usec -= (_b_)->tv_usec; \ 115 timernormalize((_a_)) 116 117 /* 118 * debug macros 119 */ 120 #define PRINTF if (interactive) printf 121 #define LPRINTF if (interactive && loop_filter_debug) printf 122 123 #ifdef DEBUG 124 #define dprintf(_x_) LPRINTF _x_ 125 #else 126 #define dprintf(_x_) 127 #endif 128 129 #ifdef DECL_ERRNO 130 extern int errno; 131 #endif 132 133 static char *revision = "4.18"; 134 135 /* 136 * display received data (avoids also detaching from tty) 137 */ 138 static int interactive = 0; 139 140 /* 141 * display loopfilter (clock control) variables 142 */ 143 static int loop_filter_debug = 0; 144 145 /* 146 * do not set/adjust system time 147 */ 148 static int no_set = 0; 149 150 /* 151 * time that passes between start of DCF impulse and time stamping (fine 152 * adjustment) in microseconds (receiver/OS dependent) 153 */ 154 #define DEFAULT_DELAY 230000 /* rough estimate */ 155 156 /* 157 * The two states we can be in - eithe we receive nothing 158 * usable or we have the correct time 159 */ 160 #define NO_SYNC 0x01 161 #define SYNC 0x02 162 163 static int sync_state = NO_SYNC; 164 static time_t last_sync; 165 166 static unsigned long ticks = 0; 167 168 static char pat[] = "-\\|/"; 169 170 #define LINES (24-2) /* error lines after which the two headlines are repeated */ 171 172 #define MAX_UNSYNC (10*60) /* allow synchronisation loss for 10 minutes */ 173 #define NOTICE_INTERVAL (20*60) /* mention missing synchronisation every 20 minutes */ 174 175 /* 176 * clock adjustment PLL - see NTP protocol spec (RFC1305) for details 177 */ 178 179 #define USECSCALE 10 180 #define TIMECONSTANT 2 181 #define ADJINTERVAL 0 182 #define FREQ_WEIGHT 18 183 #define PHASE_WEIGHT 7 184 #define MAX_DRIFT 0x3FFFFFFF 185 186 #define R_SHIFT(_X_, _Y_) (((_X_) < 0) ? -(-(_X_) >> (_Y_)) : ((_X_) >> (_Y_))) 187 188 static struct timeval max_adj_offset = { 0, 128000 }; 189 190 static long clock_adjust = 0; /* current adjustment value (usec * 2^USECSCALE) */ 191 static long accum_drift = 0; /* accumulated drift value (usec / ADJINTERVAL) */ 192 static long adjustments = 0; 193 static char skip_adjust = 1; /* discard first adjustment (bad samples) */ 194 195 /* 196 * DCF77 state flags 197 */ 198 #define DCFB_ANNOUNCE 0x0001 /* switch time zone warning (DST switch) */ 199 #define DCFB_DST 0x0002 /* DST in effect */ 200 #define DCFB_LEAP 0x0004 /* LEAP warning (1 hour prior to occurrence) */ 201 #define DCFB_ALTERNATE 0x0008 /* alternate antenna used */ 202 203 struct clocktime /* clock time broken up from time code */ 204 { 205 long wday; /* Day of week: 1: Monday - 7: Sunday */ 206 long day; 207 long month; 208 long year; 209 long hour; 210 long minute; 211 long second; 212 long usecond; 213 long utcoffset; /* in minutes */ 214 long flags; /* current clock status (DCF77 state flags) */ 215 }; 216 217 typedef struct clocktime clocktime_t; 218 219 /* 220 * (usually) quick constant multiplications 221 */ 222 #define TIMES10(_X_) (((_X_) << 3) + ((_X_) << 1)) /* *8 + *2 */ 223 #define TIMES24(_X_) (((_X_) << 4) + ((_X_) << 3)) /* *16 + *8 */ 224 #define TIMES60(_X_) ((((_X_) << 4) - (_X_)) << 2) /* *(16 - 1) *4 */ 225 /* 226 * generic l_abs() function 227 */ 228 #define l_abs(_x_) (((_x_) < 0) ? -(_x_) : (_x_)) 229 230 /* 231 * conversion related return/error codes 232 */ 233 #define CVT_MASK 0x0000000F /* conversion exit code */ 234 #define CVT_NONE 0x00000001 /* format not applicable */ 235 #define CVT_FAIL 0x00000002 /* conversion failed - error code returned */ 236 #define CVT_OK 0x00000004 /* conversion succeeded */ 237 #define CVT_BADFMT 0x00000010 /* general format error - (unparsable) */ 238 #define CVT_BADDATE 0x00000020 /* invalid date */ 239 #define CVT_BADTIME 0x00000040 /* invalid time */ 240 241 /* 242 * DCF77 raw time code 243 * 244 * From "Zur Zeit", Physikalisch-Technische Bundesanstalt (PTB), Braunschweig 245 * und Berlin, Maerz 1989 246 * 247 * Timecode transmission: 248 * AM: 249 * time marks are send every second except for the second before the 250 * next minute mark 251 * time marks consist of a reduction of transmitter power to 25% 252 * of the nominal level 253 * the falling edge is the time indication (on time) 254 * time marks of a 100ms duration constitute a logical 0 255 * time marks of a 200ms duration constitute a logical 1 256 * FM: 257 * see the spec. (basically a (non-)inverted psuedo random phase shift) 258 * 259 * Encoding: 260 * Second Contents 261 * 0 - 10 AM: free, FM: 0 262 * 11 - 14 free 263 * 15 R - alternate antenna 264 * 16 A1 - expect zone change (1 hour before) 265 * 17 - 18 Z1,Z2 - time zone 266 * 0 0 illegal 267 * 0 1 MEZ (MET) 268 * 1 0 MESZ (MED, MET DST) 269 * 1 1 illegal 270 * 19 A2 - expect leap insertion/deletion (1 hour before) 271 * 20 S - start of time code (1) 272 * 21 - 24 M1 - BCD (lsb first) Minutes 273 * 25 - 27 M10 - BCD (lsb first) 10 Minutes 274 * 28 P1 - Minute Parity (even) 275 * 29 - 32 H1 - BCD (lsb first) Hours 276 * 33 - 34 H10 - BCD (lsb first) 10 Hours 277 * 35 P2 - Hour Parity (even) 278 * 36 - 39 D1 - BCD (lsb first) Days 279 * 40 - 41 D10 - BCD (lsb first) 10 Days 280 * 42 - 44 DW - BCD (lsb first) day of week (1: Monday -> 7: Sunday) 281 * 45 - 49 MO - BCD (lsb first) Month 282 * 50 MO0 - 10 Months 283 * 51 - 53 Y1 - BCD (lsb first) Years 284 * 54 - 57 Y10 - BCD (lsb first) 10 Years 285 * 58 P3 - Date Parity (even) 286 * 59 - usually missing (minute indication), except for leap insertion 287 */ 288 289 /*----------------------------------------------------------------------- 290 * conversion table to map DCF77 bit stream into data fields. 291 * Encoding: 292 * Each field of the DCF77 code is described with two adjacent entries in 293 * this table. The first entry specifies the offset into the DCF77 data stream 294 * while the length is given as the difference between the start index and 295 * the start index of the following field. 296 */ 297 static struct rawdcfcode 298 { 299 char offset; /* start bit */ 300 } rawdcfcode[] = 301 { 302 { 0 }, { 15 }, { 16 }, { 17 }, { 19 }, { 20 }, { 21 }, { 25 }, { 28 }, { 29 }, 303 { 33 }, { 35 }, { 36 }, { 40 }, { 42 }, { 45 }, { 49 }, { 50 }, { 54 }, { 58 }, { 59 } 304 }; 305 306 /*----------------------------------------------------------------------- 307 * symbolic names for the fields of DCF77 describes in "rawdcfcode". 308 * see comment above for the structure of the DCF77 data 309 */ 310 #define DCF_M 0 311 #define DCF_R 1 312 #define DCF_A1 2 313 #define DCF_Z 3 314 #define DCF_A2 4 315 #define DCF_S 5 316 #define DCF_M1 6 317 #define DCF_M10 7 318 #define DCF_P1 8 319 #define DCF_H1 9 320 #define DCF_H10 10 321 #define DCF_P2 11 322 #define DCF_D1 12 323 #define DCF_D10 13 324 #define DCF_DW 14 325 #define DCF_MO 15 326 #define DCF_MO0 16 327 #define DCF_Y1 17 328 #define DCF_Y10 18 329 #define DCF_P3 19 330 331 /*----------------------------------------------------------------------- 332 * parity field table (same encoding as rawdcfcode) 333 * This table describes the sections of the DCF77 code that are 334 * parity protected 335 */ 336 static struct partab 337 { 338 char offset; /* start bit of parity field */ 339 } partab[] = 340 { 341 { 21 }, { 29 }, { 36 }, { 59 } 342 }; 343 344 /*----------------------------------------------------------------------- 345 * offsets for parity field descriptions 346 */ 347 #define DCF_P_P1 0 348 #define DCF_P_P2 1 349 #define DCF_P_P3 2 350 351 /*----------------------------------------------------------------------- 352 * legal values for time zone information 353 */ 354 #define DCF_Z_MET 0x2 355 #define DCF_Z_MED 0x1 356 357 /*----------------------------------------------------------------------- 358 * symbolic representation if the DCF77 data stream 359 */ 360 static struct dcfparam 361 { 362 unsigned char onebits[60]; 363 unsigned char zerobits[60]; 364 } dcfparam = 365 { 366 "###############RADMLS1248124P124812P1248121241248112481248P", /* 'ONE' representation */ 367 "--------------------s-------p------p----------------------p" /* 'ZERO' representation */ 368 }; 369 370 /*----------------------------------------------------------------------- 371 * extract a bitfield from DCF77 datastream 372 * All numeric fields are LSB first. 373 * buf holds a pointer to a DCF77 data buffer in symbolic 374 * representation 375 * idx holds the index to the field description in rawdcfcode 376 */ 377 static unsigned long 378 ext_bf( 379 register unsigned char *buf, 380 register int idx 381 ) 382 { 383 register unsigned long sum = 0; 384 register int i, first; 385 386 first = rawdcfcode[idx].offset; 387 388 for (i = rawdcfcode[idx+1].offset - 1; i >= first; i--) 389 { 390 sum <<= 1; 391 sum |= (buf[i] != dcfparam.zerobits[i]); 392 } 393 return sum; 394 } 395 396 /*----------------------------------------------------------------------- 397 * check even parity integrity for a bitfield 398 * 399 * buf holds a pointer to a DCF77 data buffer in symbolic 400 * representation 401 * idx holds the index to the field description in partab 402 */ 403 static unsigned 404 pcheck( 405 register unsigned char *buf, 406 register int idx 407 ) 408 { 409 register int i,last; 410 register unsigned psum = 1; 411 412 last = partab[idx+1].offset; 413 414 for (i = partab[idx].offset; i < last; i++) 415 psum ^= (buf[i] != dcfparam.zerobits[i]); 416 417 return psum; 418 } 419 420 /*----------------------------------------------------------------------- 421 * convert a DCF77 data buffer into wall clock time + flags 422 * 423 * buffer holds a pointer to a DCF77 data buffer in symbolic 424 * representation 425 * size describes the length of DCF77 information in bits (represented 426 * as chars in symbolic notation 427 * clock points to a wall clock time description of the DCF77 data (result) 428 */ 429 static unsigned long 430 convert_rawdcf( 431 unsigned char *buffer, 432 int size, 433 clocktime_t *clock_time 434 ) 435 { 436 if (size < 57) 437 { 438 PRINTF("%-30s", "*** INCOMPLETE"); 439 return CVT_NONE; 440 } 441 442 /* 443 * check Start and Parity bits 444 */ 445 if ((ext_bf(buffer, DCF_S) == 1) && 446 pcheck(buffer, DCF_P_P1) && 447 pcheck(buffer, DCF_P_P2) && 448 pcheck(buffer, DCF_P_P3)) 449 { 450 /* 451 * buffer OK - extract all fields and build wall clock time from them 452 */ 453 454 clock_time->flags = 0; 455 clock_time->usecond= 0; 456 clock_time->second = 0; 457 clock_time->minute = ext_bf(buffer, DCF_M10); 458 clock_time->minute = TIMES10(clock_time->minute) + ext_bf(buffer, DCF_M1); 459 clock_time->hour = ext_bf(buffer, DCF_H10); 460 clock_time->hour = TIMES10(clock_time->hour) + ext_bf(buffer, DCF_H1); 461 clock_time->day = ext_bf(buffer, DCF_D10); 462 clock_time->day = TIMES10(clock_time->day) + ext_bf(buffer, DCF_D1); 463 clock_time->month = ext_bf(buffer, DCF_MO0); 464 clock_time->month = TIMES10(clock_time->month) + ext_bf(buffer, DCF_MO); 465 clock_time->year = ext_bf(buffer, DCF_Y10); 466 clock_time->year = TIMES10(clock_time->year) + ext_bf(buffer, DCF_Y1); 467 clock_time->wday = ext_bf(buffer, DCF_DW); 468 469 /* 470 * determine offset to UTC by examining the time zone 471 */ 472 switch (ext_bf(buffer, DCF_Z)) 473 { 474 case DCF_Z_MET: 475 clock_time->utcoffset = -60; 476 break; 477 478 case DCF_Z_MED: 479 clock_time->flags |= DCFB_DST; 480 clock_time->utcoffset = -120; 481 break; 482 483 default: 484 PRINTF("%-30s", "*** BAD TIME ZONE"); 485 return CVT_FAIL|CVT_BADFMT; 486 } 487 488 /* 489 * extract various warnings from DCF77 490 */ 491 if (ext_bf(buffer, DCF_A1)) 492 clock_time->flags |= DCFB_ANNOUNCE; 493 494 if (ext_bf(buffer, DCF_A2)) 495 clock_time->flags |= DCFB_LEAP; 496 497 if (ext_bf(buffer, DCF_R)) 498 clock_time->flags |= DCFB_ALTERNATE; 499 500 return CVT_OK; 501 } 502 else 503 { 504 /* 505 * bad format - not for us 506 */ 507 PRINTF("%-30s", "*** BAD FORMAT (invalid/parity)"); 508 return CVT_FAIL|CVT_BADFMT; 509 } 510 } 511 512 /*----------------------------------------------------------------------- 513 * raw dcf input routine - fix up 50 baud 514 * characters for 1/0 decision 515 */ 516 static unsigned long 517 cvt_rawdcf( 518 unsigned char *buffer, 519 int size, 520 clocktime_t *clock_time 521 ) 522 { 523 register unsigned char *s = buffer; 524 register unsigned char *e = buffer + size; 525 register unsigned char *b = dcfparam.onebits; 526 register unsigned char *c = dcfparam.zerobits; 527 register unsigned rtc = CVT_NONE; 528 register unsigned int i, lowmax, highmax, cutoff, span; 529 #define BITS 9 530 unsigned char histbuf[BITS]; 531 /* 532 * the input buffer contains characters with runs of consecutive 533 * bits set. These set bits are an indication of the DCF77 pulse 534 * length. We assume that we receive the pulse at 50 Baud. Thus 535 * a 100ms pulse would generate a 4 bit train (20ms per bit and 536 * start bit) 537 * a 200ms pulse would create all zeroes (and probably a frame error) 538 * 539 * The basic idea is that on corret reception we must have two 540 * maxima in the pulse length distribution histogram. (one for 541 * the zero representing pulses and one for the one representing 542 * pulses) 543 * There will always be ones in the datastream, thus we have to see 544 * two maxima. 545 * The best point to cut for a 1/0 decision is the minimum between those 546 * between the maxima. The following code tries to find this cutoff point. 547 */ 548 549 /* 550 * clear histogram buffer 551 */ 552 for (i = 0; i < BITS; i++) 553 { 554 histbuf[i] = 0; 555 } 556 557 cutoff = 0; 558 lowmax = 0; 559 560 /* 561 * convert sequences of set bits into bits counts updating 562 * the histogram alongway 563 */ 564 while (s < e) 565 { 566 register unsigned int ch = *s ^ 0xFF; 567 /* 568 * check integrity and update histogramm 569 */ 570 if (!((ch+1) & ch) || !*s) 571 { 572 /* 573 * character ok 574 */ 575 for (i = 0; ch; i++) 576 { 577 ch >>= 1; 578 } 579 580 *s = i; 581 histbuf[i]++; 582 cutoff += i; 583 lowmax++; 584 } 585 else 586 { 587 /* 588 * invalid character (no consecutive bit sequence) 589 */ 590 dprintf(("parse: cvt_rawdcf: character check for 0x%x@%d FAILED\n", *s, s - buffer)); 591 *s = (unsigned char)~0; 592 rtc = CVT_FAIL|CVT_BADFMT; 593 } 594 s++; 595 } 596 597 /* 598 * first cutoff estimate (average bit count - must be between both 599 * maxima) 600 */ 601 if (lowmax) 602 { 603 cutoff /= lowmax; 604 } 605 else 606 { 607 cutoff = 4; /* doesn't really matter - it'll fail anyway, but gives error output */ 608 } 609 610 dprintf(("parse: cvt_rawdcf: average bit count: %d\n", cutoff)); 611 612 lowmax = 0; /* weighted sum */ 613 highmax = 0; /* bitcount */ 614 615 /* 616 * collect weighted sum of lower bits (left of initial guess) 617 */ 618 dprintf(("parse: cvt_rawdcf: histogram:")); 619 for (i = 0; i <= cutoff; i++) 620 { 621 lowmax += histbuf[i] * i; 622 highmax += histbuf[i]; 623 dprintf((" %d", histbuf[i])); 624 } 625 dprintf((" <M>")); 626 627 /* 628 * round up 629 */ 630 lowmax += highmax / 2; 631 632 /* 633 * calculate lower bit maximum (weighted sum / bit count) 634 * 635 * avoid divide by zero 636 */ 637 if (highmax) 638 { 639 lowmax /= highmax; 640 } 641 else 642 { 643 lowmax = 0; 644 } 645 646 highmax = 0; /* weighted sum of upper bits counts */ 647 cutoff = 0; /* bitcount */ 648 649 /* 650 * collect weighted sum of lower bits (right of initial guess) 651 */ 652 for (; i < BITS; i++) 653 { 654 highmax+=histbuf[i] * i; 655 cutoff +=histbuf[i]; 656 dprintf((" %d", histbuf[i])); 657 } 658 dprintf(("\n")); 659 660 /* 661 * determine upper maximum (weighted sum / bit count) 662 */ 663 if (cutoff) 664 { 665 highmax /= cutoff; 666 } 667 else 668 { 669 highmax = BITS-1; 670 } 671 672 /* 673 * following now holds: 674 * lowmax <= cutoff(initial guess) <= highmax 675 * best cutoff is the minimum nearest to higher bits 676 */ 677 678 /* 679 * find the minimum between lowmax and highmax (detecting 680 * possibly a minimum span) 681 */ 682 span = cutoff = lowmax; 683 for (i = lowmax; i <= highmax; i++) 684 { 685 if (histbuf[cutoff] > histbuf[i]) 686 { 687 /* 688 * got a new minimum move beginning of minimum (cutoff) and 689 * end of minimum (span) there 690 */ 691 cutoff = span = i; 692 } 693 else 694 if (histbuf[cutoff] == histbuf[i]) 695 { 696 /* 697 * minimum not better yet - but it spans more than 698 * one bit value - follow it 699 */ 700 span = i; 701 } 702 } 703 704 /* 705 * cutoff point for 1/0 decision is the middle of the minimum section 706 * in the histogram 707 */ 708 cutoff = (cutoff + span) / 2; 709 710 dprintf(("parse: cvt_rawdcf: lower maximum %d, higher maximum %d, cutoff %d\n", lowmax, highmax, cutoff)); 711 712 /* 713 * convert the bit counts to symbolic 1/0 information for data conversion 714 */ 715 s = buffer; 716 while ((s < e) && *c && *b) 717 { 718 if (*s == (unsigned char)~0) 719 { 720 /* 721 * invalid character 722 */ 723 *s = '?'; 724 } 725 else 726 { 727 /* 728 * symbolic 1/0 representation 729 */ 730 *s = (*s >= cutoff) ? *b : *c; 731 } 732 s++; 733 b++; 734 c++; 735 } 736 737 /* 738 * if everything went well so far return the result of the symbolic 739 * conversion routine else just the accumulated errors 740 */ 741 if (rtc != CVT_NONE) 742 { 743 PRINTF("%-30s", "*** BAD DATA"); 744 } 745 746 return (rtc == CVT_NONE) ? convert_rawdcf(buffer, size, clock_time) : rtc; 747 } 748 749 /*----------------------------------------------------------------------- 750 * convert a wall clock time description of DCF77 to a Unix time (seconds 751 * since 1.1. 1970 UTC) 752 */ 753 static time_t 754 dcf_to_unixtime( 755 clocktime_t *clock_time, 756 unsigned *cvtrtc 757 ) 758 { 759 #define SETRTC(_X_) { if (cvtrtc) *cvtrtc = (_X_); } 760 static int days_of_month[] = 761 { 762 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 763 }; 764 register int i; 765 time_t t; 766 767 /* 768 * map 2 digit years to 19xx (DCF77 is a 20th century item) 769 */ 770 if ( clock_time->year < YEAR_PIVOT ) /* in case of Y2KFixes [ */ 771 clock_time->year += 100; /* *year%100, make tm_year */ 772 /* *(do we need this?) */ 773 if ( clock_time->year < YEAR_BREAK ) /* (failsafe if) */ 774 clock_time->year += 1900; /* Y2KFixes ] */ 775 776 /* 777 * must have been a really bad year code - drop it 778 */ 779 if (clock_time->year < (YEAR_PIVOT + 1900) ) /* Y2KFixes */ 780 { 781 SETRTC(CVT_FAIL|CVT_BADDATE); 782 return -1; 783 } 784 /* 785 * sorry, slow section here - but it's not time critical anyway 786 */ 787 788 /* 789 * calculate days since 1970 (watching leap years) 790 */ 791 t = julian0( clock_time->year ) - julian0( 1970 ); 792 793 /* month */ 794 if (clock_time->month <= 0 || clock_time->month > 12) 795 { 796 SETRTC(CVT_FAIL|CVT_BADDATE); 797 return -1; /* bad month */ 798 } 799 /* adjust current leap year */ 800 #if 0 801 if (clock_time->month < 3 && days_per_year(clock_time->year) == 366) 802 t--; 803 #endif 804 805 /* 806 * collect days from months excluding the current one 807 */ 808 for (i = 1; i < clock_time->month; i++) 809 { 810 t += days_of_month[i]; 811 } 812 /* day */ 813 if (clock_time->day < 1 || ((clock_time->month == 2 && days_per_year(clock_time->year) == 366) ? 814 clock_time->day > 29 : clock_time->day > days_of_month[clock_time->month])) 815 { 816 SETRTC(CVT_FAIL|CVT_BADDATE); 817 return -1; /* bad day */ 818 } 819 820 /* 821 * collect days from date excluding the current one 822 */ 823 t += clock_time->day - 1; 824 825 /* hour */ 826 if (clock_time->hour < 0 || clock_time->hour >= 24) 827 { 828 SETRTC(CVT_FAIL|CVT_BADTIME); 829 return -1; /* bad hour */ 830 } 831 832 /* 833 * calculate hours from 1. 1. 1970 834 */ 835 t = TIMES24(t) + clock_time->hour; 836 837 /* min */ 838 if (clock_time->minute < 0 || clock_time->minute > 59) 839 { 840 SETRTC(CVT_FAIL|CVT_BADTIME); 841 return -1; /* bad min */ 842 } 843 844 /* 845 * calculate minutes from 1. 1. 1970 846 */ 847 t = TIMES60(t) + clock_time->minute; 848 /* sec */ 849 850 /* 851 * calculate UTC in minutes 852 */ 853 t += clock_time->utcoffset; 854 855 if (clock_time->second < 0 || clock_time->second > 60) /* allow for LEAPs */ 856 { 857 SETRTC(CVT_FAIL|CVT_BADTIME); 858 return -1; /* bad sec */ 859 } 860 861 /* 862 * calculate UTC in seconds - phew ! 863 */ 864 t = TIMES60(t) + clock_time->second; 865 /* done */ 866 return t; 867 } 868 869 /*----------------------------------------------------------------------- 870 * cheap half baked 1/0 decision - for interactive operation only 871 */ 872 static char 873 type( 874 unsigned int c 875 ) 876 { 877 c ^= 0xFF; 878 return (c > 0xF); 879 } 880 881 /*----------------------------------------------------------------------- 882 * week day representation 883 */ 884 static const char *wday[8] = 885 { 886 "??", 887 "Mo", 888 "Tu", 889 "We", 890 "Th", 891 "Fr", 892 "Sa", 893 "Su" 894 }; 895 896 /*----------------------------------------------------------------------- 897 * generate a string representation for a timeval 898 */ 899 static char * 900 pr_timeval( 901 struct timeval *val 902 ) 903 { 904 static char buf[20]; 905 906 if (val->tv_sec == 0) 907 sprintf(buf, "%c0.%06ld", (val->tv_usec < 0) ? '-' : '+', (long int)l_abs(val->tv_usec)); 908 else 909 sprintf(buf, "%ld.%06ld", (long int)val->tv_sec, (long int)l_abs(val->tv_usec)); 910 return buf; 911 } 912 913 /*----------------------------------------------------------------------- 914 * correct the current time by an offset by setting the time rigorously 915 */ 916 static void 917 set_time( 918 struct timeval *offset 919 ) 920 { 921 struct timeval the_time; 922 923 if (no_set) 924 return; 925 926 LPRINTF("set_time: %s ", pr_timeval(offset)); 927 syslog(LOG_NOTICE, "setting time (offset %s)", pr_timeval(offset)); 928 929 if (gettimeofday(&the_time, 0L) == -1) 930 { 931 perror("gettimeofday()"); 932 } 933 else 934 { 935 timeradd(&the_time, offset); 936 if (settimeofday(&the_time, 0L) == -1) 937 { 938 perror("settimeofday()"); 939 } 940 } 941 } 942 943 /*----------------------------------------------------------------------- 944 * slew the time by a given offset 945 */ 946 static void 947 adj_time( 948 long offset 949 ) 950 { 951 struct timeval time_offset; 952 953 if (no_set) 954 return; 955 956 time_offset.tv_sec = offset / 1000000; 957 time_offset.tv_usec = offset % 1000000; 958 959 LPRINTF("adj_time: %ld us ", (long int)offset); 960 if (adjtime(&time_offset, 0L) == -1) 961 perror("adjtime()"); 962 } 963 964 /*----------------------------------------------------------------------- 965 * read in a possibly previously written drift value 966 */ 967 static void 968 read_drift( 969 const char *drift_file 970 ) 971 { 972 FILE *df; 973 974 df = fopen(drift_file, "r"); 975 if (df != NULL) 976 { 977 int idrift = 0, fdrift = 0; 978 979 fscanf(df, "%4d.%03d", &idrift, &fdrift); 980 fclose(df); 981 LPRINTF("read_drift: %d.%03d ppm ", idrift, fdrift); 982 983 accum_drift = idrift << USECSCALE; 984 fdrift = (fdrift << USECSCALE) / 1000; 985 accum_drift += fdrift & (1<<USECSCALE); 986 LPRINTF("read_drift: drift_comp %ld ", (long int)accum_drift); 987 } 988 } 989 990 /*----------------------------------------------------------------------- 991 * write out the current drift value 992 */ 993 static void 994 update_drift( 995 const char *drift_file, 996 long offset, 997 time_t reftime 998 ) 999 { 1000 FILE *df; 1001 1002 df = fopen(drift_file, "w"); 1003 if (df != NULL) 1004 { 1005 int idrift = R_SHIFT(accum_drift, USECSCALE); 1006 int fdrift = accum_drift & ((1<<USECSCALE)-1); 1007 1008 LPRINTF("update_drift: drift_comp %ld ", (long int)accum_drift); 1009 fdrift = (fdrift * 1000) / (1<<USECSCALE); 1010 fprintf(df, "%4d.%03d %c%ld.%06ld %.24s\n", idrift, fdrift, 1011 (offset < 0) ? '-' : '+', (long int)(l_abs(offset) / 1000000), 1012 (long int)(l_abs(offset) % 1000000), asctime(localtime(&reftime))); 1013 fclose(df); 1014 LPRINTF("update_drift: %d.%03d ppm ", idrift, fdrift); 1015 } 1016 } 1017 1018 /*----------------------------------------------------------------------- 1019 * process adjustments derived from the DCF77 observation 1020 * (controls clock PLL) 1021 */ 1022 static void 1023 adjust_clock( 1024 struct timeval *offset, 1025 const char *drift_file, 1026 time_t reftime 1027 ) 1028 { 1029 struct timeval toffset; 1030 register long usecoffset; 1031 int tmp; 1032 1033 if (no_set) 1034 return; 1035 1036 if (skip_adjust) 1037 { 1038 skip_adjust = 0; 1039 return; 1040 } 1041 1042 toffset = *offset; 1043 toffset.tv_sec = l_abs(toffset.tv_sec); 1044 toffset.tv_usec = l_abs(toffset.tv_usec); 1045 if (timercmp(&toffset, &max_adj_offset, >)) 1046 { 1047 /* 1048 * hopeless - set the clock - and clear the timing 1049 */ 1050 set_time(offset); 1051 clock_adjust = 0; 1052 skip_adjust = 1; 1053 return; 1054 } 1055 1056 usecoffset = offset->tv_sec * 1000000 + offset->tv_usec; 1057 1058 clock_adjust = R_SHIFT(usecoffset, TIMECONSTANT); /* adjustment to make for next period */ 1059 1060 tmp = 0; 1061 while (adjustments > (1 << tmp)) 1062 tmp++; 1063 adjustments = 0; 1064 if (tmp > FREQ_WEIGHT) 1065 tmp = FREQ_WEIGHT; 1066 1067 accum_drift += R_SHIFT(usecoffset << USECSCALE, TIMECONSTANT+TIMECONSTANT+FREQ_WEIGHT-tmp); 1068 1069 if (accum_drift > MAX_DRIFT) /* clamp into interval */ 1070 accum_drift = MAX_DRIFT; 1071 else 1072 if (accum_drift < -MAX_DRIFT) 1073 accum_drift = -MAX_DRIFT; 1074 1075 update_drift(drift_file, usecoffset, reftime); 1076 LPRINTF("clock_adjust: %s, clock_adjust %ld, drift_comp %ld(%ld) ", 1077 pr_timeval(offset),(long int) R_SHIFT(clock_adjust, USECSCALE), 1078 (long int)R_SHIFT(accum_drift, USECSCALE), (long int)accum_drift); 1079 } 1080 1081 /*----------------------------------------------------------------------- 1082 * adjust the clock by a small mount to simulate frequency correction 1083 */ 1084 static void 1085 periodic_adjust( 1086 void 1087 ) 1088 { 1089 register long adjustment; 1090 1091 adjustments++; 1092 1093 adjustment = R_SHIFT(clock_adjust, PHASE_WEIGHT); 1094 1095 clock_adjust -= adjustment; 1096 1097 adjustment += R_SHIFT(accum_drift, USECSCALE+ADJINTERVAL); 1098 1099 adj_time(adjustment); 1100 } 1101 1102 /*----------------------------------------------------------------------- 1103 * control synchronisation status (warnings) and do periodic adjusts 1104 * (frequency control simulation) 1105 */ 1106 static void 1107 tick( 1108 int signum 1109 ) 1110 { 1111 static unsigned long last_notice = 0; 1112 1113 #if !defined(HAVE_SIGACTION) && !defined(HAVE_SIGVEC) 1114 (void)signal(SIGALRM, tick); 1115 #endif 1116 1117 periodic_adjust(); 1118 1119 ticks += 1<<ADJINTERVAL; 1120 1121 if ((ticks - last_sync) > MAX_UNSYNC) 1122 { 1123 /* 1124 * not getting time for a while 1125 */ 1126 if (sync_state == SYNC) 1127 { 1128 /* 1129 * completely lost information 1130 */ 1131 sync_state = NO_SYNC; 1132 syslog(LOG_INFO, "DCF77 reception lost (timeout)"); 1133 last_notice = ticks; 1134 } 1135 else 1136 /* 1137 * in NO_SYNC state - look whether its time to speak up again 1138 */ 1139 if ((ticks - last_notice) > NOTICE_INTERVAL) 1140 { 1141 syslog(LOG_NOTICE, "still not synchronized to DCF77 - check receiver/signal"); 1142 last_notice = ticks; 1143 } 1144 } 1145 1146 #ifndef ITIMER_REAL 1147 (void) alarm(1<<ADJINTERVAL); 1148 #endif 1149 } 1150 1151 /*----------------------------------------------------------------------- 1152 * break association from terminal to avoid catching terminal 1153 * or process group related signals (-> daemon operation) 1154 */ 1155 static void 1156 detach( 1157 void 1158 ) 1159 { 1160 # ifdef HAVE_DAEMON 1161 daemon(0, 0); 1162 # else /* not HAVE_DAEMON */ 1163 if (fork()) 1164 exit(0); 1165 1166 { 1167 u_long s; 1168 int max_fd; 1169 1170 #if defined(HAVE_SYSCONF) && defined(_SC_OPEN_MAX) 1171 max_fd = sysconf(_SC_OPEN_MAX); 1172 #else /* HAVE_SYSCONF && _SC_OPEN_MAX */ 1173 max_fd = getdtablesize(); 1174 #endif /* HAVE_SYSCONF && _SC_OPEN_MAX */ 1175 for (s = 0; s < max_fd; s++) 1176 (void) close((int)s); 1177 (void) open("/", 0); 1178 (void) dup2(0, 1); 1179 (void) dup2(0, 2); 1180 #ifdef SYS_DOMAINOS 1181 { 1182 uid_$t puid; 1183 status_$t st; 1184 1185 proc2_$who_am_i(&puid); 1186 proc2_$make_server(&puid, &st); 1187 } 1188 #endif /* SYS_DOMAINOS */ 1189 #if defined(HAVE_SETPGID) || defined(HAVE_SETSID) 1190 # ifdef HAVE_SETSID 1191 if (setsid() == (pid_t)-1) 1192 syslog(LOG_ERR, "dcfd: setsid(): %m"); 1193 # else 1194 if (setpgid(0, 0) == -1) 1195 syslog(LOG_ERR, "dcfd: setpgid(): %m"); 1196 # endif 1197 #else /* HAVE_SETPGID || HAVE_SETSID */ 1198 { 1199 int fid; 1200 1201 fid = open("/dev/tty", 2); 1202 if (fid >= 0) 1203 { 1204 (void) ioctl(fid, (u_long) TIOCNOTTY, (char *) 0); 1205 (void) close(fid); 1206 } 1207 # ifdef HAVE_SETPGRP_0 1208 (void) setpgrp(); 1209 # else /* HAVE_SETPGRP_0 */ 1210 (void) setpgrp(0, getpid()); 1211 # endif /* HAVE_SETPGRP_0 */ 1212 } 1213 #endif /* HAVE_SETPGID || HAVE_SETSID */ 1214 } 1215 #endif /* not HAVE_DAEMON */ 1216 } 1217 1218 /*----------------------------------------------------------------------- 1219 * list possible arguments and options 1220 */ 1221 static void 1222 usage( 1223 char *program 1224 ) 1225 { 1226 fprintf(stderr, "usage: %s [-n] [-f] [-l] [-t] [-i] [-o] [-d <drift_file>] [-D <input delay>] <device>\n", program); 1227 fprintf(stderr, "\t-n do not change time\n"); 1228 fprintf(stderr, "\t-i interactive\n"); 1229 fprintf(stderr, "\t-t trace (print all datagrams)\n"); 1230 fprintf(stderr, "\t-f print all databits (includes PTB private data)\n"); 1231 fprintf(stderr, "\t-l print loop filter debug information\n"); 1232 fprintf(stderr, "\t-o print offet average for current minute\n"); 1233 fprintf(stderr, "\t-Y make internal Y2K checks then exit\n"); /* Y2KFixes */ 1234 fprintf(stderr, "\t-d <drift_file> specify alternate drift file\n"); 1235 fprintf(stderr, "\t-D <input delay>specify delay from input edge to processing in micro seconds\n"); 1236 } 1237 1238 /*----------------------------------------------------------------------- 1239 * check_y2k() - internal check of Y2K logic 1240 * (a lot of this logic lifted from ../ntpd/check_y2k.c) 1241 */ 1242 static int 1243 check_y2k( void ) 1244 { 1245 int year; /* current working year */ 1246 int year0 = 1900; /* sarting year for NTP time */ 1247 int yearend; /* ending year we test for NTP time. 1248 * 32-bit systems: through 2036, the 1249 **year in which NTP time overflows. 1250 * 64-bit systems: a reasonable upper 1251 **limit (well, maybe somewhat beyond 1252 **reasonable, but well before the 1253 **max time, by which time the earth 1254 **will be dead.) */ 1255 time_t Time; 1256 struct tm LocalTime; 1257 1258 int Fatals, Warnings; 1259 #define Error(year) if ( (year)>=2036 && LocalTime.tm_year < 110 ) \ 1260 Warnings++; else Fatals++ 1261 1262 Fatals = Warnings = 0; 1263 1264 Time = time( (time_t *)NULL ); 1265 LocalTime = *localtime( &Time ); 1266 1267 year = ( sizeof( u_long ) > 4 ) /* save max span using year as temp */ 1268 ? ( 400 * 3 ) /* three greater gregorian cycles */ 1269 : ((int)(0x7FFFFFFF / 365.242 / 24/60/60)* 2 ); /*32-bit limit*/ 1270 /* NOTE: will automacially expand test years on 1271 * 64 bit machines.... this may cause some of the 1272 * existing ntp logic to fail for years beyond 1273 * 2036 (the current 32-bit limit). If all checks 1274 * fail ONLY beyond year 2036 you may ignore such 1275 * errors, at least for a decade or so. */ 1276 yearend = year0 + year; 1277 1278 year = 1900+YEAR_PIVOT; 1279 printf( " starting year %04d\n", (int) year ); 1280 printf( " ending year %04d\n", (int) yearend ); 1281 1282 for ( ; year < yearend; year++ ) 1283 { 1284 clocktime_t ct; 1285 time_t Observed; 1286 time_t Expected; 1287 unsigned Flag; 1288 unsigned long t; 1289 1290 ct.day = 1; 1291 ct.month = 1; 1292 ct.year = year; 1293 ct.hour = ct.minute = ct.second = ct.usecond = 0; 1294 ct.utcoffset = 0; 1295 ct.flags = 0; 1296 1297 Flag = 0; 1298 Observed = dcf_to_unixtime( &ct, &Flag ); 1299 /* seems to be a clone of parse_to_unixtime() with 1300 * *a minor difference to arg2 type */ 1301 if ( ct.year != year ) 1302 { 1303 fprintf( stdout, 1304 "%04d: dcf_to_unixtime(,%d) CORRUPTED ct.year: was %d\n", 1305 (int)year, (int)Flag, (int)ct.year ); 1306 Error(year); 1307 break; 1308 } 1309 t = julian0(year) - julian0(1970); /* Julian day from 1970 */ 1310 Expected = t * 24 * 60 * 60; 1311 if ( Observed != Expected || Flag ) 1312 { /* time difference */ 1313 fprintf( stdout, 1314 "%04d: dcf_to_unixtime(,%d) FAILURE: was=%lu s/b=%lu (%ld)\n", 1315 year, (int)Flag, 1316 (unsigned long)Observed, (unsigned long)Expected, 1317 ((long)Observed - (long)Expected) ); 1318 Error(year); 1319 break; 1320 } 1321 1322 if ( year >= YEAR_PIVOT+1900 ) 1323 { 1324 /* check year % 100 code we put into dcf_to_unixtime() */ 1325 ct.year = year % 100; 1326 Flag = 0; 1327 1328 Observed = dcf_to_unixtime( &ct, &Flag ); 1329 1330 if ( Observed != Expected || Flag ) 1331 { /* time difference */ 1332 fprintf( stdout, 1333 "%04d: dcf_to_unixtime(%d,%d) FAILURE: was=%lu s/b=%lu (%ld)\n", 1334 year, (int)ct.year, (int)Flag, 1335 (unsigned long)Observed, (unsigned long)Expected, 1336 ((long)Observed - (long)Expected) ); 1337 Error(year); 1338 break; 1339 } 1340 1341 /* check year - 1900 code we put into dcf_to_unixtime() */ 1342 ct.year = year - 1900; 1343 Flag = 0; 1344 1345 Observed = dcf_to_unixtime( &ct, &Flag ); 1346 1347 if ( Observed != Expected || Flag ) { /* time difference */ 1348 fprintf( stdout, 1349 "%04d: dcf_to_unixtime(%d,%d) FAILURE: was=%lu s/b=%lu (%ld)\n", 1350 year, (int)ct.year, (int)Flag, 1351 (unsigned long)Observed, (unsigned long)Expected, 1352 ((long)Observed - (long)Expected) ); 1353 Error(year); 1354 break; 1355 } 1356 1357 1358 } 1359 } 1360 1361 return ( Fatals ); 1362 } 1363 1364 /*-------------------------------------------------- 1365 * rawdcf_init - set up modem lines for RAWDCF receivers 1366 */ 1367 #if defined(TIOCMSET) && (defined(TIOCM_DTR) || defined(CIOCM_DTR)) 1368 static void 1369 rawdcf_init( 1370 int fd 1371 ) 1372 { 1373 /* 1374 * You can use the RS232 to supply the power for a DCF77 receiver. 1375 * Here a voltage between the DTR and the RTS line is used. Unfortunately 1376 * the name has changed from CIOCM_DTR to TIOCM_DTR recently. 1377 */ 1378 1379 #ifdef TIOCM_DTR 1380 int sl232 = TIOCM_DTR; /* turn on DTR for power supply */ 1381 #else 1382 int sl232 = CIOCM_DTR; /* turn on DTR for power supply */ 1383 #endif 1384 1385 if (ioctl(fd, TIOCMSET, (caddr_t)&sl232) == -1) 1386 { 1387 syslog(LOG_NOTICE, "rawdcf_init: WARNING: ioctl(fd, TIOCMSET, [C|T]IOCM_DTR): %m"); 1388 } 1389 } 1390 #else 1391 static void 1392 rawdcf_init( 1393 int fd 1394 ) 1395 { 1396 syslog(LOG_NOTICE, "rawdcf_init: WARNING: OS interface incapable of setting DTR to power DCF modules"); 1397 } 1398 #endif /* DTR initialisation type */ 1399 1400 /*----------------------------------------------------------------------- 1401 * main loop - argument interpreter / setup / main loop 1402 */ 1403 int 1404 main( 1405 int argc, 1406 char **argv 1407 ) 1408 { 1409 unsigned char c; 1410 char **a = argv; 1411 int ac = argc; 1412 char *file = NULL; 1413 const char *drift_file = "/etc/dcfd.drift"; 1414 int fd; 1415 int offset = 15; 1416 int offsets = 0; 1417 int delay = DEFAULT_DELAY; /* average delay from input edge to time stamping */ 1418 int trace = 0; 1419 int errs = 0; 1420 1421 /* 1422 * process arguments 1423 */ 1424 while (--ac) 1425 { 1426 char *arg = *++a; 1427 if (*arg == '-') 1428 while ((c = *++arg)) 1429 switch (c) 1430 { 1431 case 't': 1432 trace = 1; 1433 interactive = 1; 1434 break; 1435 1436 case 'f': 1437 offset = 0; 1438 interactive = 1; 1439 break; 1440 1441 case 'l': 1442 loop_filter_debug = 1; 1443 offsets = 1; 1444 interactive = 1; 1445 break; 1446 1447 case 'n': 1448 no_set = 1; 1449 break; 1450 1451 case 'o': 1452 offsets = 1; 1453 interactive = 1; 1454 break; 1455 1456 case 'i': 1457 interactive = 1; 1458 break; 1459 1460 case 'D': 1461 if (ac > 1) 1462 { 1463 delay = atoi(*++a); 1464 ac--; 1465 } 1466 else 1467 { 1468 fprintf(stderr, "%s: -D requires integer argument\n", argv[0]); 1469 errs=1; 1470 } 1471 break; 1472 1473 case 'd': 1474 if (ac > 1) 1475 { 1476 drift_file = *++a; 1477 ac--; 1478 } 1479 else 1480 { 1481 fprintf(stderr, "%s: -d requires file name argument\n", argv[0]); 1482 errs=1; 1483 } 1484 break; 1485 1486 case 'Y': 1487 errs=check_y2k(); 1488 exit( errs ? 1 : 0 ); 1489 1490 default: 1491 fprintf(stderr, "%s: unknown option -%c\n", argv[0], c); 1492 errs=1; 1493 break; 1494 } 1495 else 1496 if (file == NULL) 1497 file = arg; 1498 else 1499 { 1500 fprintf(stderr, "%s: device specified twice\n", argv[0]); 1501 errs=1; 1502 } 1503 } 1504 1505 if (errs) 1506 { 1507 usage(argv[0]); 1508 exit(1); 1509 } 1510 else 1511 if (file == NULL) 1512 { 1513 fprintf(stderr, "%s: device not specified\n", argv[0]); 1514 usage(argv[0]); 1515 exit(1); 1516 } 1517 1518 errs = LINES+1; 1519 1520 /* 1521 * get access to DCF77 tty port 1522 */ 1523 fd = open(file, O_RDONLY); 1524 if (fd == -1) 1525 { 1526 perror(file); 1527 exit(1); 1528 } 1529 else 1530 { 1531 int i, rrc; 1532 struct timeval t, tt, tlast; 1533 struct timeval timeout; 1534 struct timeval phase; 1535 struct timeval time_offset; 1536 char pbuf[61]; /* printable version */ 1537 char buf[61]; /* raw data */ 1538 clocktime_t clock_time; /* wall clock time */ 1539 time_t utc_time = 0; 1540 time_t last_utc_time = 0; 1541 long usecerror = 0; 1542 long lasterror = 0; 1543 #if defined(HAVE_TERMIOS_H) || defined(STREAM) 1544 struct termios term; 1545 #else /* not HAVE_TERMIOS_H || STREAM */ 1546 # if defined(HAVE_TERMIO_H) || defined(HAVE_SYSV_TTYS) 1547 struct termio term; 1548 # endif/* HAVE_TERMIO_H || HAVE_SYSV_TTYS */ 1549 #endif /* not HAVE_TERMIOS_H || STREAM */ 1550 unsigned int rtc = CVT_NONE; 1551 1552 rawdcf_init(fd); 1553 1554 timeout.tv_sec = 1; 1555 timeout.tv_usec = 500000; 1556 1557 phase.tv_sec = 0; 1558 phase.tv_usec = delay; 1559 1560 /* 1561 * setup TTY (50 Baud, Read, 8Bit, No Hangup, 1 character IO) 1562 */ 1563 if (TTY_GETATTR(fd, &term) == -1) 1564 { 1565 perror("tcgetattr"); 1566 exit(1); 1567 } 1568 1569 memset(term.c_cc, 0, sizeof(term.c_cc)); 1570 term.c_cc[VMIN] = 1; 1571 #ifdef NO_PARENB_IGNPAR 1572 term.c_cflag = CS8|CREAD|CLOCAL; 1573 #else 1574 term.c_cflag = CS8|CREAD|CLOCAL|PARENB; 1575 #endif 1576 term.c_iflag = IGNPAR; 1577 term.c_oflag = 0; 1578 term.c_lflag = 0; 1579 1580 cfsetispeed(&term, B50); 1581 cfsetospeed(&term, B50); 1582 1583 if (TTY_SETATTR(fd, &term) == -1) 1584 { 1585 perror("tcsetattr"); 1586 exit(1); 1587 } 1588 1589 /* 1590 * lose terminal if in daemon operation 1591 */ 1592 if (!interactive) 1593 detach(); 1594 1595 /* 1596 * get syslog() initialized 1597 */ 1598 #ifdef LOG_DAEMON 1599 openlog("dcfd", LOG_PID, LOG_DAEMON); 1600 #else 1601 openlog("dcfd", LOG_PID); 1602 #endif 1603 1604 /* 1605 * setup periodic operations (state control / frequency control) 1606 */ 1607 #ifdef HAVE_SIGACTION 1608 { 1609 struct sigaction act; 1610 1611 # ifdef HAVE_SA_SIGACTION_IN_STRUCT_SIGACTION 1612 act.sa_sigaction = (void (*) P((int, siginfo_t *, void *)))0; 1613 # endif /* HAVE_SA_SIGACTION_IN_STRUCT_SIGACTION */ 1614 act.sa_handler = tick; 1615 sigemptyset(&act.sa_mask); 1616 act.sa_flags = 0; 1617 1618 if (sigaction(SIGALRM, &act, (struct sigaction *)0) == -1) 1619 { 1620 syslog(LOG_ERR, "sigaction(SIGALRM): %m"); 1621 exit(1); 1622 } 1623 } 1624 #else 1625 #ifdef HAVE_SIGVEC 1626 { 1627 struct sigvec vec; 1628 1629 vec.sv_handler = tick; 1630 vec.sv_mask = 0; 1631 vec.sv_flags = 0; 1632 1633 if (sigvec(SIGALRM, &vec, (struct sigvec *)0) == -1) 1634 { 1635 syslog(LOG_ERR, "sigvec(SIGALRM): %m"); 1636 exit(1); 1637 } 1638 } 1639 #else 1640 (void) signal(SIGALRM, tick); 1641 #endif 1642 #endif 1643 1644 #ifdef ITIMER_REAL 1645 { 1646 struct itimerval it; 1647 1648 it.it_interval.tv_sec = 1<<ADJINTERVAL; 1649 it.it_interval.tv_usec = 0; 1650 it.it_value.tv_sec = 1<<ADJINTERVAL; 1651 it.it_value.tv_usec = 0; 1652 1653 if (setitimer(ITIMER_REAL, &it, (struct itimerval *)0) == -1) 1654 { 1655 syslog(LOG_ERR, "setitimer: %m"); 1656 exit(1); 1657 } 1658 } 1659 #else 1660 (void) alarm(1<<ADJINTERVAL); 1661 #endif 1662 1663 PRINTF(" DCF77 monitor %s - Copyright (C) 1993-2005 by Frank Kardel\n\n", revision); 1664 1665 pbuf[60] = '\0'; 1666 for ( i = 0; i < 60; i++) 1667 pbuf[i] = '.'; 1668 1669 read_drift(drift_file); 1670 1671 /* 1672 * what time is it now (for interval measurement) 1673 */ 1674 gettimeofday(&tlast, 0L); 1675 i = 0; 1676 /* 1677 * loop until input trouble ... 1678 */ 1679 do 1680 { 1681 /* 1682 * get an impulse 1683 */ 1684 while ((rrc = read(fd, &c, 1)) == 1) 1685 { 1686 gettimeofday(&t, 0L); 1687 tt = t; 1688 timersub(&t, &tlast); 1689 1690 if (errs > LINES) 1691 { 1692 PRINTF(" %s", &"PTB private....RADMLSMin....PHour..PMDay..DayMonthYear....P\n"[offset]); 1693 PRINTF(" %s", &"---------------RADMLS1248124P124812P1248121241248112481248P\n"[offset]); 1694 errs = 0; 1695 } 1696 1697 /* 1698 * timeout -> possible minute mark -> interpretation 1699 */ 1700 if (timercmp(&t, &timeout, >)) 1701 { 1702 PRINTF("%c %.*s ", pat[i % (sizeof(pat)-1)], 59 - offset, &pbuf[offset]); 1703 1704 if ((rtc = cvt_rawdcf((unsigned char *)buf, i, &clock_time)) != CVT_OK) 1705 { 1706 /* 1707 * this data was bad - well - forget synchronisation for now 1708 */ 1709 PRINTF("\n"); 1710 if (sync_state == SYNC) 1711 { 1712 sync_state = NO_SYNC; 1713 syslog(LOG_INFO, "DCF77 reception lost (bad data)"); 1714 } 1715 errs++; 1716 } 1717 else 1718 if (trace) 1719 { 1720 PRINTF("\r %.*s ", 59 - offset, &buf[offset]); 1721 } 1722 1723 1724 buf[0] = c; 1725 1726 /* 1727 * collect first character 1728 */ 1729 if (((c^0xFF)+1) & (c^0xFF)) 1730 pbuf[0] = '?'; 1731 else 1732 pbuf[0] = type(c) ? '#' : '-'; 1733 1734 for ( i = 1; i < 60; i++) 1735 pbuf[i] = '.'; 1736 1737 i = 0; 1738 } 1739 else 1740 { 1741 /* 1742 * collect character 1743 */ 1744 buf[i] = c; 1745 1746 /* 1747 * initial guess (usually correct) 1748 */ 1749 if (((c^0xFF)+1) & (c^0xFF)) 1750 pbuf[i] = '?'; 1751 else 1752 pbuf[i] = type(c) ? '#' : '-'; 1753 1754 PRINTF("%c %.*s ", pat[i % (sizeof(pat)-1)], 59 - offset, &pbuf[offset]); 1755 } 1756 1757 if (i == 0 && rtc == CVT_OK) 1758 { 1759 /* 1760 * we got a good time code here - try to convert it to 1761 * UTC 1762 */ 1763 if ((utc_time = dcf_to_unixtime(&clock_time, &rtc)) == -1) 1764 { 1765 PRINTF("*** BAD CONVERSION\n"); 1766 } 1767 1768 if (utc_time != (last_utc_time + 60)) 1769 { 1770 /* 1771 * well, two successive sucessful telegrams are not 60 seconds 1772 * apart 1773 */ 1774 PRINTF("*** NO MINUTE INC\n"); 1775 if (sync_state == SYNC) 1776 { 1777 sync_state = NO_SYNC; 1778 syslog(LOG_INFO, "DCF77 reception lost (data mismatch)"); 1779 } 1780 errs++; 1781 rtc = CVT_FAIL|CVT_BADTIME|CVT_BADDATE; 1782 } 1783 else 1784 usecerror = 0; 1785 1786 last_utc_time = utc_time; 1787 } 1788 1789 if (rtc == CVT_OK) 1790 { 1791 if (i == 0) 1792 { 1793 /* 1794 * valid time code - determine offset and 1795 * note regained reception 1796 */ 1797 last_sync = ticks; 1798 if (sync_state == NO_SYNC) 1799 { 1800 syslog(LOG_INFO, "receiving DCF77"); 1801 } 1802 else 1803 { 1804 /* 1805 * we had at least one minute SYNC - thus 1806 * last error is valid 1807 */ 1808 time_offset.tv_sec = lasterror / 1000000; 1809 time_offset.tv_usec = lasterror % 1000000; 1810 adjust_clock(&time_offset, drift_file, utc_time); 1811 } 1812 sync_state = SYNC; 1813 } 1814 1815 time_offset.tv_sec = utc_time + i; 1816 time_offset.tv_usec = 0; 1817 1818 timeradd(&time_offset, &phase); 1819 1820 usecerror += (time_offset.tv_sec - tt.tv_sec) * 1000000 + time_offset.tv_usec 1821 -tt.tv_usec; 1822 1823 /* 1824 * output interpreted DCF77 data 1825 */ 1826 PRINTF(offsets ? "%s, %2ld:%02ld:%02d, %ld.%02ld.%02ld, <%s%s%s%s> (%c%ld.%06lds)" : 1827 "%s, %2ld:%02ld:%02d, %ld.%02ld.%02ld, <%s%s%s%s>", 1828 wday[clock_time.wday], 1829 clock_time.hour, clock_time.minute, i, clock_time.day, clock_time.month, 1830 clock_time.year, 1831 (clock_time.flags & DCFB_ALTERNATE) ? "R" : "_", 1832 (clock_time.flags & DCFB_ANNOUNCE) ? "A" : "_", 1833 (clock_time.flags & DCFB_DST) ? "D" : "_", 1834 (clock_time.flags & DCFB_LEAP) ? "L" : "_", 1835 (lasterror < 0) ? '-' : '+', l_abs(lasterror) / 1000000, l_abs(lasterror) % 1000000 1836 ); 1837 1838 if (trace && (i == 0)) 1839 { 1840 PRINTF("\n"); 1841 errs++; 1842 } 1843 lasterror = usecerror / (i+1); 1844 } 1845 else 1846 { 1847 lasterror = 0; /* we cannot calculate phase errors on bad reception */ 1848 } 1849 1850 PRINTF("\r"); 1851 1852 if (i < 60) 1853 { 1854 i++; 1855 } 1856 1857 tlast = tt; 1858 1859 if (interactive) 1860 fflush(stdout); 1861 } 1862 } while ((rrc == -1) && (errno == EINTR)); 1863 1864 /* 1865 * lost IO - sorry guys 1866 */ 1867 syslog(LOG_ERR, "TERMINATING - cannot read from device %s (%m)", file); 1868 1869 (void)close(fd); 1870 } 1871 1872 closelog(); 1873 1874 return 0; 1875 } 1876 1877 /* 1878 * History: 1879 * 1880 * dcfd.c,v 1881 * Revision 4.18 2005/10/07 22:08:18 kardel 1882 * make dcfd.c compile on NetBSD 3.99.9 again (configure/sigvec compatibility fix) 1883 * 1884 * Revision 4.17.2.1 2005/10/03 19:15:16 kardel 1885 * work around configure not detecting a missing sigvec compatibility 1886 * interface on NetBSD 3.99.9 and above 1887 * 1888 * Revision 4.17 2005/08/10 10:09:44 kardel 1889 * output revision information 1890 * 1891 * Revision 4.16 2005/08/10 06:33:25 kardel 1892 * cleanup warnings 1893 * 1894 * Revision 4.15 2005/08/10 06:28:45 kardel 1895 * fix setting of baud rate 1896 * 1897 * Revision 4.14 2005/04/16 17:32:10 kardel 1898 * update copyright 1899 * 1900 * Revision 4.13 2004/11/14 15:29:41 kardel 1901 * support PPSAPI, upgrade Copyright to Berkeley style 1902 * 1903 */ 1904