1 /* 2 * /src/NTP/ntp-4/parseutil/dcfd.c,v 4.9 1999/02/28 13:06:27 kardel RELEASE_19990228_A 3 * 4 * dcfd.c,v 4.9 1999/02/28 13:06:27 kardel RELEASE_19990228_A 5 * 6 * DCF77 100/200ms pulse synchronisation daemon program (via 50Baud serial line) 7 * 8 * Features: 9 * DCF77 decoding 10 * simple NTP loopfilter logic for local clock 11 * interactive display for debugging 12 * 13 * Lacks: 14 * Leap second handling (at that level you should switch to NTP Version 4 - really!) 15 * 16 * Copyright (C) 1995-1999 by Frank Kardel <kardel@acm.org> 17 * Copyright (C) 1993-1994 by Frank Kardel 18 * Friedrich-Alexander Universit�t Erlangen-N�rnberg, Germany 19 * 20 * This program is distributed in the hope that it will be useful, 21 * but WITHOUT ANY WARRANTY; without even the implied warranty of 22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 23 * 24 * This program may not be sold or used for profit without prior 25 * written consent of the author. 26 */ 27 28 #ifdef HAVE_CONFIG_H 29 # include <config.h> 30 #endif 31 32 #include <unistd.h> 33 #include <stdio.h> 34 #include <fcntl.h> 35 #include <sys/types.h> 36 #include <sys/time.h> 37 #include <signal.h> 38 #include <syslog.h> 39 #include <time.h> 40 41 /* 42 * NTP compilation environment 43 */ 44 #include "ntp_stdlib.h" 45 #include "ntpd.h" /* indirectly include ntp.h to get YEAR_PIVOT Y2KFixes */ 46 47 /* 48 * select which terminal handling to use (currently only SysV variants) 49 */ 50 #if defined(HAVE_TERMIOS_H) || defined(STREAM) 51 #include <termios.h> 52 #define TTY_GETATTR(_FD_, _ARG_) tcgetattr((_FD_), (_ARG_)) 53 #define TTY_SETATTR(_FD_, _ARG_) tcsetattr((_FD_), TCSANOW, (_ARG_)) 54 #else /* not HAVE_TERMIOS_H || STREAM */ 55 # if defined(HAVE_TERMIO_H) || defined(HAVE_SYSV_TTYS) 56 # include <termio.h> 57 # define TTY_GETATTR(_FD_, _ARG_) ioctl((_FD_), TCGETA, (_ARG_)) 58 # define TTY_SETATTR(_FD_, _ARG_) ioctl((_FD_), TCSETAW, (_ARG_)) 59 # endif/* HAVE_TERMIO_H || HAVE_SYSV_TTYS */ 60 #endif /* not HAVE_TERMIOS_H || STREAM */ 61 62 63 #ifndef TTY_GETATTR 64 #include "Bletch: MUST DEFINE ONE OF 'HAVE_TERMIOS_H' or 'HAVE_TERMIO_H'" 65 #endif 66 67 #ifndef days_per_year 68 #define days_per_year(_x_) (((_x_) % 4) ? 365 : (((_x_) % 400) ? 365 : 366)) 69 #endif 70 71 #define timernormalize(_a_) \ 72 if ((_a_)->tv_usec >= 1000000) \ 73 { \ 74 (_a_)->tv_sec += (_a_)->tv_usec / 1000000; \ 75 (_a_)->tv_usec = (_a_)->tv_usec % 1000000; \ 76 } \ 77 if ((_a_)->tv_usec < 0) \ 78 { \ 79 (_a_)->tv_sec -= 1 + (-(_a_)->tv_usec / 1000000); \ 80 (_a_)->tv_usec = 999999 - (-(_a_)->tv_usec - 1); \ 81 } 82 83 #ifdef timeradd 84 #undef timeradd 85 #endif 86 #define timeradd(_a_, _b_) \ 87 (_a_)->tv_sec += (_b_)->tv_sec; \ 88 (_a_)->tv_usec += (_b_)->tv_usec; \ 89 timernormalize((_a_)) 90 91 #ifdef timersub 92 #undef timersub 93 #endif 94 #define timersub(_a_, _b_) \ 95 (_a_)->tv_sec -= (_b_)->tv_sec; \ 96 (_a_)->tv_usec -= (_b_)->tv_usec; \ 97 timernormalize((_a_)) 98 99 /* 100 * debug macros 101 */ 102 #define PRINTF if (interactive) printf 103 #define LPRINTF if (interactive && loop_filter_debug) printf 104 105 #ifdef DEBUG 106 #define dprintf(_x_) LPRINTF _x_ 107 #else 108 #define dprintf(_x_) 109 #endif 110 111 #ifdef DECL_ERRNO 112 extern int errno; 113 #endif 114 115 /* 116 * display received data (avoids also detaching from tty) 117 */ 118 static int interactive = 0; 119 120 /* 121 * display loopfilter (clock control) variables 122 */ 123 static int loop_filter_debug = 0; 124 125 /* 126 * do not set/adjust system time 127 */ 128 static int no_set = 0; 129 130 /* 131 * time that passes between start of DCF impulse and time stamping (fine 132 * adjustment) in microseconds (receiver/OS dependent) 133 */ 134 #define DEFAULT_DELAY 230000 /* rough estimate */ 135 136 /* 137 * The two states we can be in - eithe we receive nothing 138 * usable or we have the correct time 139 */ 140 #define NO_SYNC 0x01 141 #define SYNC 0x02 142 143 static int sync_state = NO_SYNC; 144 static time_t last_sync; 145 146 static unsigned long ticks = 0; 147 148 static char pat[] = "-\\|/"; 149 150 #define LINES (24-2) /* error lines after which the two headlines are repeated */ 151 152 #define MAX_UNSYNC (10*60) /* allow synchronisation loss for 10 minutes */ 153 #define NOTICE_INTERVAL (20*60) /* mention missing synchronisation every 20 minutes */ 154 155 /* 156 * clock adjustment PLL - see NTP protocol spec (RFC1305) for details 157 */ 158 159 #define USECSCALE 10 160 #define TIMECONSTANT 2 161 #define ADJINTERVAL 0 162 #define FREQ_WEIGHT 18 163 #define PHASE_WEIGHT 7 164 #define MAX_DRIFT 0x3FFFFFFF 165 166 #define R_SHIFT(_X_, _Y_) (((_X_) < 0) ? -(-(_X_) >> (_Y_)) : ((_X_) >> (_Y_))) 167 168 static struct timeval max_adj_offset = { 0, 128000 }; 169 170 static long clock_adjust = 0; /* current adjustment value (usec * 2^USECSCALE) */ 171 static long accum_drift = 0; /* accumulated drift value (usec / ADJINTERVAL) */ 172 static long adjustments = 0; 173 static char skip_adjust = 1; /* discard first adjustment (bad samples) */ 174 175 /* 176 * DCF77 state flags 177 */ 178 #define DCFB_ANNOUNCE 0x0001 /* switch time zone warning (DST switch) */ 179 #define DCFB_DST 0x0002 /* DST in effect */ 180 #define DCFB_LEAP 0x0004 /* LEAP warning (1 hour prior to occurrence) */ 181 #define DCFB_ALTERNATE 0x0008 /* alternate antenna used */ 182 183 struct clocktime /* clock time broken up from time code */ 184 { 185 long wday; /* Day of week: 1: Monday - 7: Sunday */ 186 long day; 187 long month; 188 long year; 189 long hour; 190 long minute; 191 long second; 192 long usecond; 193 long utcoffset; /* in minutes */ 194 long flags; /* current clock status (DCF77 state flags) */ 195 }; 196 197 typedef struct clocktime clocktime_t; 198 199 /* 200 * (usually) quick constant multiplications 201 */ 202 #define TIMES10(_X_) (((_X_) << 3) + ((_X_) << 1)) /* *8 + *2 */ 203 #define TIMES24(_X_) (((_X_) << 4) + ((_X_) << 3)) /* *16 + *8 */ 204 #define TIMES60(_X_) ((((_X_) << 4) - (_X_)) << 2) /* *(16 - 1) *4 */ 205 /* 206 * generic l_abs() function 207 */ 208 #define l_abs(_x_) (((_x_) < 0) ? -(_x_) : (_x_)) 209 210 /* 211 * conversion related return/error codes 212 */ 213 #define CVT_MASK 0x0000000F /* conversion exit code */ 214 #define CVT_NONE 0x00000001 /* format not applicable */ 215 #define CVT_FAIL 0x00000002 /* conversion failed - error code returned */ 216 #define CVT_OK 0x00000004 /* conversion succeeded */ 217 #define CVT_BADFMT 0x00000010 /* general format error - (unparsable) */ 218 #define CVT_BADDATE 0x00000020 /* invalid date */ 219 #define CVT_BADTIME 0x00000040 /* invalid time */ 220 221 /* 222 * DCF77 raw time code 223 * 224 * From "Zur Zeit", Physikalisch-Technische Bundesanstalt (PTB), Braunschweig 225 * und Berlin, Maerz 1989 226 * 227 * Timecode transmission: 228 * AM: 229 * time marks are send every second except for the second before the 230 * next minute mark 231 * time marks consist of a reduction of transmitter power to 25% 232 * of the nominal level 233 * the falling edge is the time indication (on time) 234 * time marks of a 100ms duration constitute a logical 0 235 * time marks of a 200ms duration constitute a logical 1 236 * FM: 237 * see the spec. (basically a (non-)inverted psuedo random phase shift) 238 * 239 * Encoding: 240 * Second Contents 241 * 0 - 10 AM: free, FM: 0 242 * 11 - 14 free 243 * 15 R - alternate antenna 244 * 16 A1 - expect zone change (1 hour before) 245 * 17 - 18 Z1,Z2 - time zone 246 * 0 0 illegal 247 * 0 1 MEZ (MET) 248 * 1 0 MESZ (MED, MET DST) 249 * 1 1 illegal 250 * 19 A2 - expect leap insertion/deletion (1 hour before) 251 * 20 S - start of time code (1) 252 * 21 - 24 M1 - BCD (lsb first) Minutes 253 * 25 - 27 M10 - BCD (lsb first) 10 Minutes 254 * 28 P1 - Minute Parity (even) 255 * 29 - 32 H1 - BCD (lsb first) Hours 256 * 33 - 34 H10 - BCD (lsb first) 10 Hours 257 * 35 P2 - Hour Parity (even) 258 * 36 - 39 D1 - BCD (lsb first) Days 259 * 40 - 41 D10 - BCD (lsb first) 10 Days 260 * 42 - 44 DW - BCD (lsb first) day of week (1: Monday -> 7: Sunday) 261 * 45 - 49 MO - BCD (lsb first) Month 262 * 50 MO0 - 10 Months 263 * 51 - 53 Y1 - BCD (lsb first) Years 264 * 54 - 57 Y10 - BCD (lsb first) 10 Years 265 * 58 P3 - Date Parity (even) 266 * 59 - usually missing (minute indication), except for leap insertion 267 */ 268 269 /*----------------------------------------------------------------------- 270 * conversion table to map DCF77 bit stream into data fields. 271 * Encoding: 272 * Each field of the DCF77 code is described with two adjacent entries in 273 * this table. The first entry specifies the offset into the DCF77 data stream 274 * while the length is given as the difference between the start index and 275 * the start index of the following field. 276 */ 277 static struct rawdcfcode 278 { 279 char offset; /* start bit */ 280 } rawdcfcode[] = 281 { 282 { 0 }, { 15 }, { 16 }, { 17 }, { 19 }, { 20 }, { 21 }, { 25 }, { 28 }, { 29 }, 283 { 33 }, { 35 }, { 36 }, { 40 }, { 42 }, { 45 }, { 49 }, { 50 }, { 54 }, { 58 }, { 59 } 284 }; 285 286 /*----------------------------------------------------------------------- 287 * symbolic names for the fields of DCF77 describes in "rawdcfcode". 288 * see comment above for the structure of the DCF77 data 289 */ 290 #define DCF_M 0 291 #define DCF_R 1 292 #define DCF_A1 2 293 #define DCF_Z 3 294 #define DCF_A2 4 295 #define DCF_S 5 296 #define DCF_M1 6 297 #define DCF_M10 7 298 #define DCF_P1 8 299 #define DCF_H1 9 300 #define DCF_H10 10 301 #define DCF_P2 11 302 #define DCF_D1 12 303 #define DCF_D10 13 304 #define DCF_DW 14 305 #define DCF_MO 15 306 #define DCF_MO0 16 307 #define DCF_Y1 17 308 #define DCF_Y10 18 309 #define DCF_P3 19 310 311 /*----------------------------------------------------------------------- 312 * parity field table (same encoding as rawdcfcode) 313 * This table describes the sections of the DCF77 code that are 314 * parity protected 315 */ 316 static struct partab 317 { 318 char offset; /* start bit of parity field */ 319 } partab[] = 320 { 321 { 21 }, { 29 }, { 36 }, { 59 } 322 }; 323 324 /*----------------------------------------------------------------------- 325 * offsets for parity field descriptions 326 */ 327 #define DCF_P_P1 0 328 #define DCF_P_P2 1 329 #define DCF_P_P3 2 330 331 /*----------------------------------------------------------------------- 332 * legal values for time zone information 333 */ 334 #define DCF_Z_MET 0x2 335 #define DCF_Z_MED 0x1 336 337 /*----------------------------------------------------------------------- 338 * symbolic representation if the DCF77 data stream 339 */ 340 static struct dcfparam 341 { 342 unsigned char onebits[60]; 343 unsigned char zerobits[60]; 344 } dcfparam = 345 { 346 "###############RADMLS1248124P124812P1248121241248112481248P", /* 'ONE' representation */ 347 "--------------------s-------p------p----------------------p" /* 'ZERO' representation */ 348 }; 349 350 /*----------------------------------------------------------------------- 351 * extract a bitfield from DCF77 datastream 352 * All numeric fields are LSB first. 353 * buf holds a pointer to a DCF77 data buffer in symbolic 354 * representation 355 * idx holds the index to the field description in rawdcfcode 356 */ 357 static unsigned long 358 ext_bf( 359 register unsigned char *buf, 360 register int idx 361 ) 362 { 363 register unsigned long sum = 0; 364 register int i, first; 365 366 first = rawdcfcode[idx].offset; 367 368 for (i = rawdcfcode[idx+1].offset - 1; i >= first; i--) 369 { 370 sum <<= 1; 371 sum |= (buf[i] != dcfparam.zerobits[i]); 372 } 373 return sum; 374 } 375 376 /*----------------------------------------------------------------------- 377 * check even parity integrity for a bitfield 378 * 379 * buf holds a pointer to a DCF77 data buffer in symbolic 380 * representation 381 * idx holds the index to the field description in partab 382 */ 383 static unsigned 384 pcheck( 385 register unsigned char *buf, 386 register int idx 387 ) 388 { 389 register int i,last; 390 register unsigned psum = 1; 391 392 last = partab[idx+1].offset; 393 394 for (i = partab[idx].offset; i < last; i++) 395 psum ^= (buf[i] != dcfparam.zerobits[i]); 396 397 return psum; 398 } 399 400 /*----------------------------------------------------------------------- 401 * convert a DCF77 data buffer into wall clock time + flags 402 * 403 * buffer holds a pointer to a DCF77 data buffer in symbolic 404 * representation 405 * size describes the length of DCF77 information in bits (represented 406 * as chars in symbolic notation 407 * clock points to a wall clock time description of the DCF77 data (result) 408 */ 409 static unsigned long 410 convert_rawdcf( 411 unsigned char *buffer, 412 int size, 413 clocktime_t *clock_time 414 ) 415 { 416 if (size < 57) 417 { 418 PRINTF("%-30s", "*** INCOMPLETE"); 419 return CVT_NONE; 420 } 421 422 /* 423 * check Start and Parity bits 424 */ 425 if ((ext_bf(buffer, DCF_S) == 1) && 426 pcheck(buffer, DCF_P_P1) && 427 pcheck(buffer, DCF_P_P2) && 428 pcheck(buffer, DCF_P_P3)) 429 { 430 /* 431 * buffer OK - extract all fields and build wall clock time from them 432 */ 433 434 clock_time->flags = 0; 435 clock_time->usecond= 0; 436 clock_time->second = 0; 437 clock_time->minute = ext_bf(buffer, DCF_M10); 438 clock_time->minute = TIMES10(clock_time->minute) + ext_bf(buffer, DCF_M1); 439 clock_time->hour = ext_bf(buffer, DCF_H10); 440 clock_time->hour = TIMES10(clock_time->hour) + ext_bf(buffer, DCF_H1); 441 clock_time->day = ext_bf(buffer, DCF_D10); 442 clock_time->day = TIMES10(clock_time->day) + ext_bf(buffer, DCF_D1); 443 clock_time->month = ext_bf(buffer, DCF_MO0); 444 clock_time->month = TIMES10(clock_time->month) + ext_bf(buffer, DCF_MO); 445 clock_time->year = ext_bf(buffer, DCF_Y10); 446 clock_time->year = TIMES10(clock_time->year) + ext_bf(buffer, DCF_Y1); 447 clock_time->wday = ext_bf(buffer, DCF_DW); 448 449 /* 450 * determine offset to UTC by examining the time zone 451 */ 452 switch (ext_bf(buffer, DCF_Z)) 453 { 454 case DCF_Z_MET: 455 clock_time->utcoffset = -60; 456 break; 457 458 case DCF_Z_MED: 459 clock_time->flags |= DCFB_DST; 460 clock_time->utcoffset = -120; 461 break; 462 463 default: 464 PRINTF("%-30s", "*** BAD TIME ZONE"); 465 return CVT_FAIL|CVT_BADFMT; 466 } 467 468 /* 469 * extract various warnings from DCF77 470 */ 471 if (ext_bf(buffer, DCF_A1)) 472 clock_time->flags |= DCFB_ANNOUNCE; 473 474 if (ext_bf(buffer, DCF_A2)) 475 clock_time->flags |= DCFB_LEAP; 476 477 if (ext_bf(buffer, DCF_R)) 478 clock_time->flags |= DCFB_ALTERNATE; 479 480 return CVT_OK; 481 } 482 else 483 { 484 /* 485 * bad format - not for us 486 */ 487 PRINTF("%-30s", "*** BAD FORMAT (invalid/parity)"); 488 return CVT_FAIL|CVT_BADFMT; 489 } 490 } 491 492 /*----------------------------------------------------------------------- 493 * raw dcf input routine - fix up 50 baud 494 * characters for 1/0 decision 495 */ 496 static unsigned long 497 cvt_rawdcf( 498 unsigned char *buffer, 499 int size, 500 clocktime_t *clock_time 501 ) 502 { 503 register unsigned char *s = buffer; 504 register unsigned char *e = buffer + size; 505 register unsigned char *b = dcfparam.onebits; 506 register unsigned char *c = dcfparam.zerobits; 507 register unsigned rtc = CVT_NONE; 508 register unsigned int i, lowmax, highmax, cutoff, span; 509 #define BITS 9 510 unsigned char histbuf[BITS]; 511 /* 512 * the input buffer contains characters with runs of consecutive 513 * bits set. These set bits are an indication of the DCF77 pulse 514 * length. We assume that we receive the pulse at 50 Baud. Thus 515 * a 100ms pulse would generate a 4 bit train (20ms per bit and 516 * start bit) 517 * a 200ms pulse would create all zeroes (and probably a frame error) 518 * 519 * The basic idea is that on corret reception we must have two 520 * maxima in the pulse length distribution histogram. (one for 521 * the zero representing pulses and one for the one representing 522 * pulses) 523 * There will always be ones in the datastream, thus we have to see 524 * two maxima. 525 * The best point to cut for a 1/0 decision is the minimum between those 526 * between the maxima. The following code tries to find this cutoff point. 527 */ 528 529 /* 530 * clear histogram buffer 531 */ 532 for (i = 0; i < BITS; i++) 533 { 534 histbuf[i] = 0; 535 } 536 537 cutoff = 0; 538 lowmax = 0; 539 540 /* 541 * convert sequences of set bits into bits counts updating 542 * the histogram alongway 543 */ 544 while (s < e) 545 { 546 register unsigned int ch = *s ^ 0xFF; 547 /* 548 * check integrity and update histogramm 549 */ 550 if (!((ch+1) & ch) || !*s) 551 { 552 /* 553 * character ok 554 */ 555 for (i = 0; ch; i++) 556 { 557 ch >>= 1; 558 } 559 560 *s = i; 561 histbuf[i]++; 562 cutoff += i; 563 lowmax++; 564 } 565 else 566 { 567 /* 568 * invalid character (no consecutive bit sequence) 569 */ 570 dprintf(("parse: cvt_rawdcf: character check for 0x%x@%d FAILED\n", *s, s - buffer)); 571 *s = (unsigned char)~0; 572 rtc = CVT_FAIL|CVT_BADFMT; 573 } 574 s++; 575 } 576 577 /* 578 * first cutoff estimate (average bit count - must be between both 579 * maxima) 580 */ 581 if (lowmax) 582 { 583 cutoff /= lowmax; 584 } 585 else 586 { 587 cutoff = 4; /* doesn't really matter - it'll fail anyway, but gives error output */ 588 } 589 590 dprintf(("parse: cvt_rawdcf: average bit count: %d\n", cutoff)); 591 592 lowmax = 0; /* weighted sum */ 593 highmax = 0; /* bitcount */ 594 595 /* 596 * collect weighted sum of lower bits (left of initial guess) 597 */ 598 dprintf(("parse: cvt_rawdcf: histogram:")); 599 for (i = 0; i <= cutoff; i++) 600 { 601 lowmax += histbuf[i] * i; 602 highmax += histbuf[i]; 603 dprintf((" %d", histbuf[i])); 604 } 605 dprintf((" <M>")); 606 607 /* 608 * round up 609 */ 610 lowmax += highmax / 2; 611 612 /* 613 * calculate lower bit maximum (weighted sum / bit count) 614 * 615 * avoid divide by zero 616 */ 617 if (highmax) 618 { 619 lowmax /= highmax; 620 } 621 else 622 { 623 lowmax = 0; 624 } 625 626 highmax = 0; /* weighted sum of upper bits counts */ 627 cutoff = 0; /* bitcount */ 628 629 /* 630 * collect weighted sum of lower bits (right of initial guess) 631 */ 632 for (; i < BITS; i++) 633 { 634 highmax+=histbuf[i] * i; 635 cutoff +=histbuf[i]; 636 dprintf((" %d", histbuf[i])); 637 } 638 dprintf(("\n")); 639 640 /* 641 * determine upper maximum (weighted sum / bit count) 642 */ 643 if (cutoff) 644 { 645 highmax /= cutoff; 646 } 647 else 648 { 649 highmax = BITS-1; 650 } 651 652 /* 653 * following now holds: 654 * lowmax <= cutoff(initial guess) <= highmax 655 * best cutoff is the minimum nearest to higher bits 656 */ 657 658 /* 659 * find the minimum between lowmax and highmax (detecting 660 * possibly a minimum span) 661 */ 662 span = cutoff = lowmax; 663 for (i = lowmax; i <= highmax; i++) 664 { 665 if (histbuf[cutoff] > histbuf[i]) 666 { 667 /* 668 * got a new minimum move beginning of minimum (cutoff) and 669 * end of minimum (span) there 670 */ 671 cutoff = span = i; 672 } 673 else 674 if (histbuf[cutoff] == histbuf[i]) 675 { 676 /* 677 * minimum not better yet - but it spans more than 678 * one bit value - follow it 679 */ 680 span = i; 681 } 682 } 683 684 /* 685 * cutoff point for 1/0 decision is the middle of the minimum section 686 * in the histogram 687 */ 688 cutoff = (cutoff + span) / 2; 689 690 dprintf(("parse: cvt_rawdcf: lower maximum %d, higher maximum %d, cutoff %d\n", lowmax, highmax, cutoff)); 691 692 /* 693 * convert the bit counts to symbolic 1/0 information for data conversion 694 */ 695 s = buffer; 696 while ((s < e) && *c && *b) 697 { 698 if (*s == (unsigned char)~0) 699 { 700 /* 701 * invalid character 702 */ 703 *s = '?'; 704 } 705 else 706 { 707 /* 708 * symbolic 1/0 representation 709 */ 710 *s = (*s >= cutoff) ? *b : *c; 711 } 712 s++; 713 b++; 714 c++; 715 } 716 717 /* 718 * if everything went well so far return the result of the symbolic 719 * conversion routine else just the accumulated errors 720 */ 721 if (rtc != CVT_NONE) 722 { 723 PRINTF("%-30s", "*** BAD DATA"); 724 } 725 726 return (rtc == CVT_NONE) ? convert_rawdcf(buffer, size, clock_time) : rtc; 727 } 728 729 /*----------------------------------------------------------------------- 730 * convert a wall clock time description of DCF77 to a Unix time (seconds 731 * since 1.1. 1970 UTC) 732 */ 733 static time_t 734 dcf_to_unixtime( 735 clocktime_t *clock_time, 736 unsigned *cvtrtc 737 ) 738 { 739 #define SETRTC(_X_) { if (cvtrtc) *cvtrtc = (_X_); } 740 static int days_of_month[] = 741 { 742 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 743 }; 744 register int i; 745 time_t t; 746 747 /* 748 * map 2 digit years to 19xx (DCF77 is a 20th century item) 749 */ 750 if ( clock_time->year < YEAR_PIVOT ) /* in case of Y2KFixes [ */ 751 clock_time->year += 100; /* *year%100, make tm_year */ 752 /* *(do we need this?) */ 753 if ( clock_time->year < YEAR_BREAK ) /* (failsafe if) */ 754 clock_time->year += 1900; /* Y2KFixes ] */ 755 756 /* 757 * must have been a really bad year code - drop it 758 */ 759 if (clock_time->year < (YEAR_PIVOT + 1900) ) /* Y2KFixes */ 760 { 761 SETRTC(CVT_FAIL|CVT_BADDATE); 762 return -1; 763 } 764 /* 765 * sorry, slow section here - but it's not time critical anyway 766 */ 767 768 /* 769 * calculate days since 1970 (watching leap years) 770 */ 771 t = julian0( clock_time->year ) - julian0( 1970 ); 772 773 /* month */ 774 if (clock_time->month <= 0 || clock_time->month > 12) 775 { 776 SETRTC(CVT_FAIL|CVT_BADDATE); 777 return -1; /* bad month */ 778 } 779 /* adjust current leap year */ 780 #if 0 781 if (clock_time->month < 3 && days_per_year(clock_time->year) == 366) 782 t--; 783 #endif 784 785 /* 786 * collect days from months excluding the current one 787 */ 788 for (i = 1; i < clock_time->month; i++) 789 { 790 t += days_of_month[i]; 791 } 792 /* day */ 793 if (clock_time->day < 1 || ((clock_time->month == 2 && days_per_year(clock_time->year) == 366) ? 794 clock_time->day > 29 : clock_time->day > days_of_month[clock_time->month])) 795 { 796 SETRTC(CVT_FAIL|CVT_BADDATE); 797 return -1; /* bad day */ 798 } 799 800 /* 801 * collect days from date excluding the current one 802 */ 803 t += clock_time->day - 1; 804 805 /* hour */ 806 if (clock_time->hour < 0 || clock_time->hour >= 24) 807 { 808 SETRTC(CVT_FAIL|CVT_BADTIME); 809 return -1; /* bad hour */ 810 } 811 812 /* 813 * calculate hours from 1. 1. 1970 814 */ 815 t = TIMES24(t) + clock_time->hour; 816 817 /* min */ 818 if (clock_time->minute < 0 || clock_time->minute > 59) 819 { 820 SETRTC(CVT_FAIL|CVT_BADTIME); 821 return -1; /* bad min */ 822 } 823 824 /* 825 * calculate minutes from 1. 1. 1970 826 */ 827 t = TIMES60(t) + clock_time->minute; 828 /* sec */ 829 830 /* 831 * calculate UTC in minutes 832 */ 833 t += clock_time->utcoffset; 834 835 if (clock_time->second < 0 || clock_time->second > 60) /* allow for LEAPs */ 836 { 837 SETRTC(CVT_FAIL|CVT_BADTIME); 838 return -1; /* bad sec */ 839 } 840 841 /* 842 * calculate UTC in seconds - phew ! 843 */ 844 t = TIMES60(t) + clock_time->second; 845 /* done */ 846 return t; 847 } 848 849 /*----------------------------------------------------------------------- 850 * cheap half baked 1/0 decision - for interactive operation only 851 */ 852 static char 853 type( 854 unsigned int c 855 ) 856 { 857 c ^= 0xFF; 858 return (c > 0xF); 859 } 860 861 /*----------------------------------------------------------------------- 862 * week day representation 863 */ 864 static const char *wday[8] = 865 { 866 "??", 867 "Mo", 868 "Tu", 869 "We", 870 "Th", 871 "Fr", 872 "Sa", 873 "Su" 874 }; 875 876 /*----------------------------------------------------------------------- 877 * generate a string representation for a timeval 878 */ 879 static char * 880 pr_timeval( 881 struct timeval *val 882 ) 883 { 884 static char buf[20]; 885 886 if (val->tv_sec == 0) 887 sprintf(buf, "%c0.%06ld", (val->tv_usec < 0) ? '-' : '+', (long int)l_abs(val->tv_usec)); 888 else 889 sprintf(buf, "%ld.%06ld", (long int)val->tv_sec, (long int)l_abs(val->tv_usec)); 890 return buf; 891 } 892 893 /*----------------------------------------------------------------------- 894 * correct the current time by an offset by setting the time rigorously 895 */ 896 static void 897 set_time( 898 struct timeval *offset 899 ) 900 { 901 struct timeval the_time; 902 903 if (no_set) 904 return; 905 906 LPRINTF("set_time: %s ", pr_timeval(offset)); 907 syslog(LOG_NOTICE, "setting time (offset %s)", pr_timeval(offset)); 908 909 if (gettimeofday(&the_time, 0L) == -1) 910 { 911 perror("gettimeofday()"); 912 } 913 else 914 { 915 timeradd(&the_time, offset); 916 if (settimeofday(&the_time, 0L) == -1) 917 { 918 perror("settimeofday()"); 919 } 920 } 921 } 922 923 /*----------------------------------------------------------------------- 924 * slew the time by a given offset 925 */ 926 static void 927 adj_time( 928 long offset 929 ) 930 { 931 struct timeval time_offset; 932 933 if (no_set) 934 return; 935 936 time_offset.tv_sec = offset / 1000000; 937 time_offset.tv_usec = offset % 1000000; 938 939 LPRINTF("adj_time: %ld us ", (long int)offset); 940 if (adjtime(&time_offset, 0L) == -1) 941 perror("adjtime()"); 942 } 943 944 /*----------------------------------------------------------------------- 945 * read in a possibly previously written drift value 946 */ 947 static void 948 read_drift( 949 const char *drift_file 950 ) 951 { 952 FILE *df; 953 954 df = fopen(drift_file, "r"); 955 if (df != NULL) 956 { 957 int idrift = 0, fdrift = 0; 958 959 fscanf(df, "%4d.%03d", &idrift, &fdrift); 960 fclose(df); 961 LPRINTF("read_drift: %d.%03d ppm ", idrift, fdrift); 962 963 accum_drift = idrift << USECSCALE; 964 fdrift = (fdrift << USECSCALE) / 1000; 965 accum_drift += fdrift & (1<<USECSCALE); 966 LPRINTF("read_drift: drift_comp %ld ", (long int)accum_drift); 967 } 968 } 969 970 /*----------------------------------------------------------------------- 971 * write out the current drift value 972 */ 973 static void 974 update_drift( 975 const char *drift_file, 976 long offset, 977 time_t reftime 978 ) 979 { 980 FILE *df; 981 982 df = fopen(drift_file, "w"); 983 if (df != NULL) 984 { 985 int idrift = R_SHIFT(accum_drift, USECSCALE); 986 int fdrift = accum_drift & ((1<<USECSCALE)-1); 987 988 LPRINTF("update_drift: drift_comp %ld ", (long int)accum_drift); 989 fdrift = (fdrift * 1000) / (1<<USECSCALE); 990 fprintf(df, "%4d.%03d %c%ld.%06ld %.24s\n", idrift, fdrift, 991 (offset < 0) ? '-' : '+', (long int)(l_abs(offset) / 1000000), 992 (long int)(l_abs(offset) % 1000000), asctime(localtime(&reftime))); 993 fclose(df); 994 LPRINTF("update_drift: %d.%03d ppm ", idrift, fdrift); 995 } 996 } 997 998 /*----------------------------------------------------------------------- 999 * process adjustments derived from the DCF77 observation 1000 * (controls clock PLL) 1001 */ 1002 static void 1003 adjust_clock( 1004 struct timeval *offset, 1005 const char *drift_file, 1006 time_t reftime 1007 ) 1008 { 1009 struct timeval toffset; 1010 register long usecoffset; 1011 int tmp; 1012 1013 if (no_set) 1014 return; 1015 1016 if (skip_adjust) 1017 { 1018 skip_adjust = 0; 1019 return; 1020 } 1021 1022 toffset = *offset; 1023 toffset.tv_sec = l_abs(toffset.tv_sec); 1024 toffset.tv_usec = l_abs(toffset.tv_usec); 1025 if (timercmp(&toffset, &max_adj_offset, >)) 1026 { 1027 /* 1028 * hopeless - set the clock - and clear the timing 1029 */ 1030 set_time(offset); 1031 clock_adjust = 0; 1032 skip_adjust = 1; 1033 return; 1034 } 1035 1036 usecoffset = offset->tv_sec * 1000000 + offset->tv_usec; 1037 1038 clock_adjust = R_SHIFT(usecoffset, TIMECONSTANT); /* adjustment to make for next period */ 1039 1040 tmp = 0; 1041 while (adjustments > (1 << tmp)) 1042 tmp++; 1043 adjustments = 0; 1044 if (tmp > FREQ_WEIGHT) 1045 tmp = FREQ_WEIGHT; 1046 1047 accum_drift += R_SHIFT(usecoffset << USECSCALE, TIMECONSTANT+TIMECONSTANT+FREQ_WEIGHT-tmp); 1048 1049 if (accum_drift > MAX_DRIFT) /* clamp into interval */ 1050 accum_drift = MAX_DRIFT; 1051 else 1052 if (accum_drift < -MAX_DRIFT) 1053 accum_drift = -MAX_DRIFT; 1054 1055 update_drift(drift_file, usecoffset, reftime); 1056 LPRINTF("clock_adjust: %s, clock_adjust %ld, drift_comp %ld(%ld) ", 1057 pr_timeval(offset),(long int) R_SHIFT(clock_adjust, USECSCALE), 1058 (long int)R_SHIFT(accum_drift, USECSCALE), (long int)accum_drift); 1059 } 1060 1061 /*----------------------------------------------------------------------- 1062 * adjust the clock by a small mount to simulate frequency correction 1063 */ 1064 static void 1065 periodic_adjust( 1066 void 1067 ) 1068 { 1069 register long adjustment; 1070 1071 adjustments++; 1072 1073 adjustment = R_SHIFT(clock_adjust, PHASE_WEIGHT); 1074 1075 clock_adjust -= adjustment; 1076 1077 adjustment += R_SHIFT(accum_drift, USECSCALE+ADJINTERVAL); 1078 1079 adj_time(adjustment); 1080 } 1081 1082 /*----------------------------------------------------------------------- 1083 * control synchronisation status (warnings) and do periodic adjusts 1084 * (frequency control simulation) 1085 */ 1086 static void 1087 tick( 1088 int signum 1089 ) 1090 { 1091 static unsigned long last_notice = 0; 1092 1093 #if !defined(HAVE_SIGACTION) && !defined(HAVE_SIGVEC) 1094 (void)signal(SIGALRM, tick); 1095 #endif 1096 1097 periodic_adjust(); 1098 1099 ticks += 1<<ADJINTERVAL; 1100 1101 if ((ticks - last_sync) > MAX_UNSYNC) 1102 { 1103 /* 1104 * not getting time for a while 1105 */ 1106 if (sync_state == SYNC) 1107 { 1108 /* 1109 * completely lost information 1110 */ 1111 sync_state = NO_SYNC; 1112 syslog(LOG_INFO, "DCF77 reception lost (timeout)"); 1113 last_notice = ticks; 1114 } 1115 else 1116 /* 1117 * in NO_SYNC state - look whether its time to speak up again 1118 */ 1119 if ((ticks - last_notice) > NOTICE_INTERVAL) 1120 { 1121 syslog(LOG_NOTICE, "still not synchronized to DCF77 - check receiver/signal"); 1122 last_notice = ticks; 1123 } 1124 } 1125 1126 #ifndef ITIMER_REAL 1127 (void) alarm(1<<ADJINTERVAL); 1128 #endif 1129 } 1130 1131 /*----------------------------------------------------------------------- 1132 * break association from terminal to avoid catching terminal 1133 * or process group related signals (-> daemon operation) 1134 */ 1135 static void 1136 detach( 1137 void 1138 ) 1139 { 1140 # ifdef HAVE_DAEMON 1141 daemon(0, 0); 1142 # else /* not HAVE_DAEMON */ 1143 if (fork()) 1144 exit(0); 1145 1146 { 1147 u_long s; 1148 int max_fd; 1149 1150 #if defined(HAVE_SYSCONF) && defined(_SC_OPEN_MAX) 1151 max_fd = sysconf(_SC_OPEN_MAX); 1152 #else /* HAVE_SYSCONF && _SC_OPEN_MAX */ 1153 max_fd = getdtablesize(); 1154 #endif /* HAVE_SYSCONF && _SC_OPEN_MAX */ 1155 for (s = 0; s < max_fd; s++) 1156 (void) close((int)s); 1157 (void) open("/", 0); 1158 (void) dup2(0, 1); 1159 (void) dup2(0, 2); 1160 #ifdef SYS_DOMAINOS 1161 { 1162 uid_$t puid; 1163 status_$t st; 1164 1165 proc2_$who_am_i(&puid); 1166 proc2_$make_server(&puid, &st); 1167 } 1168 #endif /* SYS_DOMAINOS */ 1169 #if defined(HAVE_SETPGID) || defined(HAVE_SETSID) 1170 # ifdef HAVE_SETSID 1171 if (setsid() == (pid_t)-1) 1172 syslog(LOG_ERR, "dcfd: setsid(): %m"); 1173 # else 1174 if (setpgid(0, 0) == -1) 1175 syslog(LOG_ERR, "dcfd: setpgid(): %m"); 1176 # endif 1177 #else /* HAVE_SETPGID || HAVE_SETSID */ 1178 { 1179 int fid; 1180 1181 fid = open("/dev/tty", 2); 1182 if (fid >= 0) 1183 { 1184 (void) ioctl(fid, (u_long) TIOCNOTTY, (char *) 0); 1185 (void) close(fid); 1186 } 1187 # ifdef HAVE_SETPGRP_0 1188 (void) setpgrp(); 1189 # else /* HAVE_SETPGRP_0 */ 1190 (void) setpgrp(0, getpid()); 1191 # endif /* HAVE_SETPGRP_0 */ 1192 } 1193 #endif /* HAVE_SETPGID || HAVE_SETSID */ 1194 } 1195 #endif /* not HAVE_DAEMON */ 1196 } 1197 1198 /*----------------------------------------------------------------------- 1199 * list possible arguments and options 1200 */ 1201 static void 1202 usage( 1203 char *program 1204 ) 1205 { 1206 fprintf(stderr, "usage: %s [-n] [-f] [-l] [-t] [-i] [-o] [-d <drift_file>] [-D <input delay>] <device>\n", program); 1207 fprintf(stderr, "\t-n do not change time\n"); 1208 fprintf(stderr, "\t-i interactive\n"); 1209 fprintf(stderr, "\t-t trace (print all datagrams)\n"); 1210 fprintf(stderr, "\t-f print all databits (includes PTB private data)\n"); 1211 fprintf(stderr, "\t-l print loop filter debug information\n"); 1212 fprintf(stderr, "\t-o print offet average for current minute\n"); 1213 fprintf(stderr, "\t-Y make internal Y2K checks then exit\n"); /* Y2KFixes */ 1214 fprintf(stderr, "\t-d <drift_file> specify alternate drift file\n"); 1215 fprintf(stderr, "\t-D <input delay>specify delay from input edge to processing in micro seconds\n"); 1216 } 1217 1218 /*----------------------------------------------------------------------- 1219 * check_y2k() - internal check of Y2K logic 1220 * (a lot of this logic lifted from ../ntpd/check_y2k.c) 1221 */ 1222 static int 1223 check_y2k( void ) 1224 { 1225 int year; /* current working year */ 1226 int year0 = 1900; /* sarting year for NTP time */ 1227 int yearend; /* ending year we test for NTP time. 1228 * 32-bit systems: through 2036, the 1229 **year in which NTP time overflows. 1230 * 64-bit systems: a reasonable upper 1231 **limit (well, maybe somewhat beyond 1232 **reasonable, but well before the 1233 **max time, by which time the earth 1234 **will be dead.) */ 1235 time_t Time; 1236 struct tm LocalTime; 1237 1238 int Fatals, Warnings; 1239 #define Error(year) if ( (year)>=2036 && LocalTime.tm_year < 110 ) \ 1240 Warnings++; else Fatals++ 1241 1242 Fatals = Warnings = 0; 1243 1244 Time = time( (time_t *)NULL ); 1245 LocalTime = *localtime( &Time ); 1246 1247 year = ( sizeof( u_long ) > 4 ) /* save max span using year as temp */ 1248 ? ( 400 * 3 ) /* three greater gregorian cycles */ 1249 : ((int)(0x7FFFFFFF / 365.242 / 24/60/60)* 2 ); /*32-bit limit*/ 1250 /* NOTE: will automacially expand test years on 1251 * 64 bit machines.... this may cause some of the 1252 * existing ntp logic to fail for years beyond 1253 * 2036 (the current 32-bit limit). If all checks 1254 * fail ONLY beyond year 2036 you may ignore such 1255 * errors, at least for a decade or so. */ 1256 yearend = year0 + year; 1257 1258 year = 1900+YEAR_PIVOT; 1259 printf( " starting year %04d\n", (int) year ); 1260 printf( " ending year %04d\n", (int) yearend ); 1261 1262 for ( ; year < yearend; year++ ) 1263 { 1264 clocktime_t ct; 1265 time_t Observed; 1266 time_t Expected; 1267 unsigned Flag; 1268 unsigned long t; 1269 1270 ct.day = 1; 1271 ct.month = 1; 1272 ct.year = year; 1273 ct.hour = ct.minute = ct.second = ct.usecond = 0; 1274 ct.utcoffset = 0; 1275 ct.flags = 0; 1276 1277 Flag = 0; 1278 Observed = dcf_to_unixtime( &ct, &Flag ); 1279 /* seems to be a clone of parse_to_unixtime() with 1280 * *a minor difference to arg2 type */ 1281 if ( ct.year != year ) 1282 { 1283 fprintf( stdout, 1284 "%04d: dcf_to_unixtime(,%d) CORRUPTED ct.year: was %d\n", 1285 (int)year, (int)Flag, (int)ct.year ); 1286 Error(year); 1287 break; 1288 } 1289 t = julian0(year) - julian0(1970); /* Julian day from 1970 */ 1290 Expected = t * 24 * 60 * 60; 1291 if ( Observed != Expected || Flag ) 1292 { /* time difference */ 1293 fprintf( stdout, 1294 "%04d: dcf_to_unixtime(,%d) FAILURE: was=%lu s/b=%lu (%ld)\n", 1295 year, (int)Flag, 1296 (unsigned long)Observed, (unsigned long)Expected, 1297 ((long)Observed - (long)Expected) ); 1298 Error(year); 1299 break; 1300 } 1301 1302 if ( year >= YEAR_PIVOT+1900 ) 1303 { 1304 /* check year % 100 code we put into dcf_to_unixtime() */ 1305 ct.year = year % 100; 1306 Flag = 0; 1307 1308 Observed = dcf_to_unixtime( &ct, &Flag ); 1309 1310 if ( Observed != Expected || Flag ) 1311 { /* time difference */ 1312 fprintf( stdout, 1313 "%04d: dcf_to_unixtime(%d,%d) FAILURE: was=%lu s/b=%lu (%ld)\n", 1314 year, (int)ct.year, (int)Flag, 1315 (unsigned long)Observed, (unsigned long)Expected, 1316 ((long)Observed - (long)Expected) ); 1317 Error(year); 1318 break; 1319 } 1320 1321 /* check year - 1900 code we put into dcf_to_unixtime() */ 1322 ct.year = year - 1900; 1323 Flag = 0; 1324 1325 Observed = dcf_to_unixtime( &ct, &Flag ); 1326 1327 if ( Observed != Expected || Flag ) { /* time difference */ 1328 fprintf( stdout, 1329 "%04d: dcf_to_unixtime(%d,%d) FAILURE: was=%lu s/b=%lu (%ld)\n", 1330 year, (int)ct.year, (int)Flag, 1331 (unsigned long)Observed, (unsigned long)Expected, 1332 ((long)Observed - (long)Expected) ); 1333 Error(year); 1334 break; 1335 } 1336 1337 1338 } 1339 } 1340 1341 return ( Fatals ); 1342 } 1343 1344 /*-------------------------------------------------- 1345 * rawdcf_init - set up modem lines for RAWDCF receivers 1346 */ 1347 #if defined(TIOCMSET) && (defined(TIOCM_DTR) || defined(CIOCM_DTR)) 1348 static void 1349 rawdcf_init( 1350 int fd 1351 ) 1352 { 1353 /* 1354 * You can use the RS232 to supply the power for a DCF77 receiver. 1355 * Here a voltage between the DTR and the RTS line is used. Unfortunately 1356 * the name has changed from CIOCM_DTR to TIOCM_DTR recently. 1357 */ 1358 1359 #ifdef TIOCM_DTR 1360 int sl232 = TIOCM_DTR; /* turn on DTR for power supply */ 1361 #else 1362 int sl232 = CIOCM_DTR; /* turn on DTR for power supply */ 1363 #endif 1364 1365 if (ioctl(fd, TIOCMSET, (caddr_t)&sl232) == -1) 1366 { 1367 syslog(LOG_NOTICE, "rawdcf_init: WARNING: ioctl(fd, TIOCMSET, [C|T]IOCM_DTR): %m"); 1368 } 1369 } 1370 #else 1371 static void 1372 rawdcf_init( 1373 int fd 1374 ) 1375 { 1376 syslog(LOG_NOTICE, "rawdcf_init: WARNING: OS interface incapable of setting DTR to power DCF modules"); 1377 } 1378 #endif /* DTR initialisation type */ 1379 1380 /*----------------------------------------------------------------------- 1381 * main loop - argument interpreter / setup / main loop 1382 */ 1383 int 1384 main( 1385 int argc, 1386 char **argv 1387 ) 1388 { 1389 unsigned char c; 1390 char **a = argv; 1391 int ac = argc; 1392 char *file = NULL; 1393 const char *drift_file = "/etc/dcfd.drift"; 1394 int fd; 1395 int offset = 15; 1396 int offsets = 0; 1397 int delay = DEFAULT_DELAY; /* average delay from input edge to time stamping */ 1398 int trace = 0; 1399 int errs = 0; 1400 1401 /* 1402 * process arguments 1403 */ 1404 while (--ac) 1405 { 1406 char *arg = *++a; 1407 if (*arg == '-') 1408 while ((c = *++arg)) 1409 switch (c) 1410 { 1411 case 't': 1412 trace = 1; 1413 interactive = 1; 1414 break; 1415 1416 case 'f': 1417 offset = 0; 1418 interactive = 1; 1419 break; 1420 1421 case 'l': 1422 loop_filter_debug = 1; 1423 offsets = 1; 1424 interactive = 1; 1425 break; 1426 1427 case 'n': 1428 no_set = 1; 1429 break; 1430 1431 case 'o': 1432 offsets = 1; 1433 interactive = 1; 1434 break; 1435 1436 case 'i': 1437 interactive = 1; 1438 break; 1439 1440 case 'D': 1441 if (ac > 1) 1442 { 1443 delay = atoi(*++a); 1444 ac--; 1445 } 1446 else 1447 { 1448 fprintf(stderr, "%s: -D requires integer argument\n", argv[0]); 1449 errs=1; 1450 } 1451 break; 1452 1453 case 'd': 1454 if (ac > 1) 1455 { 1456 drift_file = *++a; 1457 ac--; 1458 } 1459 else 1460 { 1461 fprintf(stderr, "%s: -d requires file name argument\n", argv[0]); 1462 errs=1; 1463 } 1464 break; 1465 1466 case 'Y': 1467 errs=check_y2k(); 1468 exit( errs ? 1 : 0 ); 1469 1470 default: 1471 fprintf(stderr, "%s: unknown option -%c\n", argv[0], c); 1472 errs=1; 1473 break; 1474 } 1475 else 1476 if (file == NULL) 1477 file = arg; 1478 else 1479 { 1480 fprintf(stderr, "%s: device specified twice\n", argv[0]); 1481 errs=1; 1482 } 1483 } 1484 1485 if (errs) 1486 { 1487 usage(argv[0]); 1488 exit(1); 1489 } 1490 else 1491 if (file == NULL) 1492 { 1493 fprintf(stderr, "%s: device not specified\n", argv[0]); 1494 usage(argv[0]); 1495 exit(1); 1496 } 1497 1498 errs = LINES+1; 1499 1500 /* 1501 * get access to DCF77 tty port 1502 */ 1503 fd = open(file, O_RDONLY); 1504 if (fd == -1) 1505 { 1506 perror(file); 1507 exit(1); 1508 } 1509 else 1510 { 1511 int i, rrc; 1512 struct timeval t, tt, tlast; 1513 struct timeval timeout; 1514 struct timeval phase; 1515 struct timeval time_offset; 1516 char pbuf[61]; /* printable version */ 1517 char buf[61]; /* raw data */ 1518 clocktime_t clock_time; /* wall clock time */ 1519 time_t utc_time = 0; 1520 time_t last_utc_time = 0; 1521 long usecerror = 0; 1522 long lasterror = 0; 1523 #if defined(HAVE_TERMIOS_H) || defined(STREAM) 1524 struct termios term; 1525 #else /* not HAVE_TERMIOS_H || STREAM */ 1526 # if defined(HAVE_TERMIO_H) || defined(HAVE_SYSV_TTYS) 1527 struct termio term; 1528 # endif/* HAVE_TERMIO_H || HAVE_SYSV_TTYS */ 1529 #endif /* not HAVE_TERMIOS_H || STREAM */ 1530 unsigned int rtc = CVT_NONE; 1531 1532 rawdcf_init(fd); 1533 1534 timeout.tv_sec = 1; 1535 timeout.tv_usec = 500000; 1536 1537 phase.tv_sec = 0; 1538 phase.tv_usec = delay; 1539 1540 /* 1541 * setup TTY (50 Baud, Read, 8Bit, No Hangup, 1 character IO) 1542 */ 1543 if (TTY_GETATTR(fd, &term) == -1) 1544 { 1545 perror("tcgetattr"); 1546 exit(1); 1547 } 1548 1549 memset(term.c_cc, 0, sizeof(term.c_cc)); 1550 term.c_cc[VMIN] = 1; 1551 #ifdef NO_PARENB_IGNPAR 1552 term.c_cflag = B50|CS8|CREAD|CLOCAL; 1553 #else 1554 term.c_cflag = B50|CS8|CREAD|CLOCAL|PARENB; 1555 #endif 1556 term.c_iflag = IGNPAR; 1557 term.c_oflag = 0; 1558 term.c_lflag = 0; 1559 1560 if (TTY_SETATTR(fd, &term) == -1) 1561 { 1562 perror("tcsetattr"); 1563 exit(1); 1564 } 1565 1566 /* 1567 * lose terminal if in daemon operation 1568 */ 1569 if (!interactive) 1570 detach(); 1571 1572 /* 1573 * get syslog() initialized 1574 */ 1575 #ifdef LOG_DAEMON 1576 openlog("dcfd", LOG_PID, LOG_DAEMON); 1577 #else 1578 openlog("dcfd", LOG_PID); 1579 #endif 1580 1581 /* 1582 * setup periodic operations (state control / frequency control) 1583 */ 1584 #ifdef HAVE_SIGVEC 1585 { 1586 struct sigvec vec; 1587 1588 vec.sv_handler = tick; 1589 vec.sv_mask = 0; 1590 vec.sv_flags = 0; 1591 1592 if (sigvec(SIGALRM, &vec, (struct sigvec *)0) == -1) 1593 { 1594 syslog(LOG_ERR, "sigvec(SIGALRM): %m"); 1595 exit(1); 1596 } 1597 } 1598 #else 1599 #ifdef HAVE_SIGACTION 1600 { 1601 struct sigaction act; 1602 1603 act.sa_handler = tick; 1604 # ifdef HAVE_SA_SIGACTION_IN_STRUCT_SIGACTION 1605 act.sa_sigaction = (void (*) P((int, siginfo_t *, void *)))0; 1606 # endif /* HAVE_SA_SIGACTION_IN_STRUCT_SIGACTION */ 1607 sigemptyset(&act.sa_mask); 1608 act.sa_flags = 0; 1609 1610 if (sigaction(SIGALRM, &act, (struct sigaction *)0) == -1) 1611 { 1612 syslog(LOG_ERR, "sigaction(SIGALRM): %m"); 1613 exit(1); 1614 } 1615 } 1616 #else 1617 (void) signal(SIGALRM, tick); 1618 #endif 1619 #endif 1620 1621 #ifdef ITIMER_REAL 1622 { 1623 struct itimerval it; 1624 1625 it.it_interval.tv_sec = 1<<ADJINTERVAL; 1626 it.it_interval.tv_usec = 0; 1627 it.it_value.tv_sec = 1<<ADJINTERVAL; 1628 it.it_value.tv_usec = 0; 1629 1630 if (setitimer(ITIMER_REAL, &it, (struct itimerval *)0) == -1) 1631 { 1632 syslog(LOG_ERR, "setitimer: %m"); 1633 exit(1); 1634 } 1635 } 1636 #else 1637 (void) alarm(1<<ADJINTERVAL); 1638 #endif 1639 1640 PRINTF(" DCF77 monitor - Copyright (C) 1993-1998 by Frank Kardel\n\n"); 1641 1642 pbuf[60] = '\0'; 1643 for ( i = 0; i < 60; i++) 1644 pbuf[i] = '.'; 1645 1646 read_drift(drift_file); 1647 1648 /* 1649 * what time is it now (for interval measurement) 1650 */ 1651 gettimeofday(&tlast, 0L); 1652 i = 0; 1653 /* 1654 * loop until input trouble ... 1655 */ 1656 do 1657 { 1658 /* 1659 * get an impulse 1660 */ 1661 while ((rrc = read(fd, &c, 1)) == 1) 1662 { 1663 gettimeofday(&t, 0L); 1664 tt = t; 1665 timersub(&t, &tlast); 1666 1667 if (errs > LINES) 1668 { 1669 PRINTF(" %s", &"PTB private....RADMLSMin....PHour..PMDay..DayMonthYear....P\n"[offset]); 1670 PRINTF(" %s", &"---------------RADMLS1248124P124812P1248121241248112481248P\n"[offset]); 1671 errs = 0; 1672 } 1673 1674 /* 1675 * timeout -> possible minute mark -> interpretation 1676 */ 1677 if (timercmp(&t, &timeout, >)) 1678 { 1679 PRINTF("%c %.*s ", pat[i % (sizeof(pat)-1)], 59 - offset, &pbuf[offset]); 1680 1681 if ((rtc = cvt_rawdcf((unsigned char *)buf, i, &clock_time)) != CVT_OK) 1682 { 1683 /* 1684 * this data was bad - well - forget synchronisation for now 1685 */ 1686 PRINTF("\n"); 1687 if (sync_state == SYNC) 1688 { 1689 sync_state = NO_SYNC; 1690 syslog(LOG_INFO, "DCF77 reception lost (bad data)"); 1691 } 1692 errs++; 1693 } 1694 else 1695 if (trace) 1696 { 1697 PRINTF("\r %.*s ", 59 - offset, &buf[offset]); 1698 } 1699 1700 1701 buf[0] = c; 1702 1703 /* 1704 * collect first character 1705 */ 1706 if (((c^0xFF)+1) & (c^0xFF)) 1707 pbuf[0] = '?'; 1708 else 1709 pbuf[0] = type(c) ? '#' : '-'; 1710 1711 for ( i = 1; i < 60; i++) 1712 pbuf[i] = '.'; 1713 1714 i = 0; 1715 } 1716 else 1717 { 1718 /* 1719 * collect character 1720 */ 1721 buf[i] = c; 1722 1723 /* 1724 * initial guess (usually correct) 1725 */ 1726 if (((c^0xFF)+1) & (c^0xFF)) 1727 pbuf[i] = '?'; 1728 else 1729 pbuf[i] = type(c) ? '#' : '-'; 1730 1731 PRINTF("%c %.*s ", pat[i % (sizeof(pat)-1)], 59 - offset, &pbuf[offset]); 1732 } 1733 1734 if (i == 0 && rtc == CVT_OK) 1735 { 1736 /* 1737 * we got a good time code here - try to convert it to 1738 * UTC 1739 */ 1740 if ((utc_time = dcf_to_unixtime(&clock_time, &rtc)) == -1) 1741 { 1742 PRINTF("*** BAD CONVERSION\n"); 1743 } 1744 1745 if (utc_time != (last_utc_time + 60)) 1746 { 1747 /* 1748 * well, two successive sucessful telegrams are not 60 seconds 1749 * apart 1750 */ 1751 PRINTF("*** NO MINUTE INC\n"); 1752 if (sync_state == SYNC) 1753 { 1754 sync_state = NO_SYNC; 1755 syslog(LOG_INFO, "DCF77 reception lost (data mismatch)"); 1756 } 1757 errs++; 1758 rtc = CVT_FAIL|CVT_BADTIME|CVT_BADDATE; 1759 } 1760 else 1761 usecerror = 0; 1762 1763 last_utc_time = utc_time; 1764 } 1765 1766 if (rtc == CVT_OK) 1767 { 1768 if (i == 0) 1769 { 1770 /* 1771 * valid time code - determine offset and 1772 * note regained reception 1773 */ 1774 last_sync = ticks; 1775 if (sync_state == NO_SYNC) 1776 { 1777 syslog(LOG_INFO, "receiving DCF77"); 1778 } 1779 else 1780 { 1781 /* 1782 * we had at least one minute SYNC - thus 1783 * last error is valid 1784 */ 1785 time_offset.tv_sec = lasterror / 1000000; 1786 time_offset.tv_usec = lasterror % 1000000; 1787 adjust_clock(&time_offset, drift_file, utc_time); 1788 } 1789 sync_state = SYNC; 1790 } 1791 1792 time_offset.tv_sec = utc_time + i; 1793 time_offset.tv_usec = 0; 1794 1795 timeradd(&time_offset, &phase); 1796 1797 usecerror += (time_offset.tv_sec - tt.tv_sec) * 1000000 + time_offset.tv_usec 1798 -tt.tv_usec; 1799 1800 /* 1801 * output interpreted DCF77 data 1802 */ 1803 PRINTF(offsets ? "%s, %2ld:%02ld:%02d, %ld.%02ld.%02ld, <%s%s%s%s> (%c%ld.%06lds)" : 1804 "%s, %2ld:%02ld:%02d, %ld.%02ld.%02ld, <%s%s%s%s>", 1805 wday[clock_time.wday], 1806 clock_time.hour, clock_time.minute, i, clock_time.day, clock_time.month, 1807 clock_time.year, 1808 (clock_time.flags & DCFB_ALTERNATE) ? "R" : "_", 1809 (clock_time.flags & DCFB_ANNOUNCE) ? "A" : "_", 1810 (clock_time.flags & DCFB_DST) ? "D" : "_", 1811 (clock_time.flags & DCFB_LEAP) ? "L" : "_", 1812 (lasterror < 0) ? '-' : '+', l_abs(lasterror) / 1000000, l_abs(lasterror) % 1000000 1813 ); 1814 1815 if (trace && (i == 0)) 1816 { 1817 PRINTF("\n"); 1818 errs++; 1819 } 1820 lasterror = usecerror / (i+1); 1821 } 1822 else 1823 { 1824 lasterror = 0; /* we cannot calculate phase errors on bad reception */ 1825 } 1826 1827 PRINTF("\r"); 1828 1829 if (i < 60) 1830 { 1831 i++; 1832 } 1833 1834 tlast = tt; 1835 1836 if (interactive) 1837 fflush(stdout); 1838 } 1839 } while ((rrc == -1) && (errno == EINTR)); 1840 1841 /* 1842 * lost IO - sorry guys 1843 */ 1844 syslog(LOG_ERR, "TERMINATING - cannot read from device %s (%m)", file); 1845 1846 (void)close(fd); 1847 } 1848 1849 closelog(); 1850 1851 return 0; 1852 } 1853