1 /* 2 * refclock_wwv - clock driver for NIST WWV/H time/frequency station 3 */ 4 #ifdef HAVE_CONFIG_H 5 #include <config.h> 6 #endif 7 8 #if defined(REFCLOCK) && defined(CLOCK_WWV) 9 10 #include "ntpd.h" 11 #include "ntp_io.h" 12 #include "ntp_refclock.h" 13 #include "ntp_calendar.h" 14 #include "ntp_stdlib.h" 15 #include "audio.h" 16 17 #include <stdio.h> 18 #include <ctype.h> 19 #include <math.h> 20 #ifdef HAVE_SYS_IOCTL_H 21 # include <sys/ioctl.h> 22 #endif /* HAVE_SYS_IOCTL_H */ 23 24 #define ICOM 1 25 26 #ifdef ICOM 27 #include "icom.h" 28 #endif /* ICOM */ 29 30 /* 31 * Audio WWV/H demodulator/decoder 32 * 33 * This driver synchronizes the computer time using data encoded in 34 * radio transmissions from NIST time/frequency stations WWV in Boulder, 35 * CO, and WWVH in Kauai, HI. Transmissions are made continuously on 36 * 2.5, 5, 10 and 15 MHz from WWV and WWVH, and 20 MHz from WWV. An 37 * ordinary AM shortwave receiver can be tuned manually to one of these 38 * frequencies or, in the case of ICOM receivers, the receiver can be 39 * tuned automatically using this program as propagation conditions 40 * change throughout the weasons, both day and night. 41 * 42 * The driver receives, demodulates and decodes the radio signals when 43 * connected to the audio codec of a workstation running Solaris, SunOS 44 * FreeBSD or Linux, and with a little help, other workstations with 45 * similar codecs or sound cards. In this implementation, only one audio 46 * driver and codec can be supported on a single machine. 47 * 48 * The demodulation and decoding algorithms used in this driver are 49 * based on those developed for the TAPR DSP93 development board and the 50 * TI 320C25 digital signal processor described in: Mills, D.L. A 51 * precision radio clock for WWV transmissions. Electrical Engineering 52 * Report 97-8-1, University of Delaware, August 1997, 25 pp., available 53 * from www.eecis.udel.edu/~mills/reports.html. The algorithms described 54 * in this report have been modified somewhat to improve performance 55 * under weak signal conditions and to provide an automatic station 56 * identification feature. 57 * 58 * The ICOM code is normally compiled in the driver. It isn't used, 59 * unless the mode keyword on the server configuration command specifies 60 * a nonzero ICOM ID select code. The C-IV trace is turned on if the 61 * debug level is greater than one. 62 * 63 * Fudge factors 64 * 65 * Fudge flag4 causes the dubugging output described above to be 66 * recorded in the clockstats file. Fudge flag2 selects the audio input 67 * port, where 0 is the mike port (default) and 1 is the line-in port. 68 * It does not seem useful to select the compact disc player port. Fudge 69 * flag3 enables audio monitoring of the input signal. For this purpose, 70 * the monitor gain is set to a default value. 71 */ 72 /* 73 * General definitions. These ordinarily do not need to be changed. 74 */ 75 #define DEVICE_AUDIO "/dev/audio" /* audio device name */ 76 #define AUDIO_BUFSIZ 320 /* audio buffer size (50 ms) */ 77 #define PRECISION (-10) /* precision assumed (about 1 ms) */ 78 #define DESCRIPTION "WWV/H Audio Demodulator/Decoder" /* WRU */ 79 #define SECOND 8000 /* second epoch (sample rate) (Hz) */ 80 #define MINUTE (SECOND * 60) /* minute epoch */ 81 #define OFFSET 128 /* companded sample offset */ 82 #define SIZE 256 /* decompanding table size */ 83 #define MAXAMP 6000. /* max signal level reference */ 84 #define MAXCLP 100 /* max clips above reference per s */ 85 #define MAXSNR 40. /* max SNR reference */ 86 #define MAXFREQ 1.5 /* max frequency tolerance (187 PPM) */ 87 #define DATCYC 170 /* data filter cycles */ 88 #define DATSIZ (DATCYC * MS) /* data filter size */ 89 #define SYNCYC 800 /* minute filter cycles */ 90 #define SYNSIZ (SYNCYC * MS) /* minute filter size */ 91 #define TCKCYC 5 /* tick filter cycles */ 92 #define TCKSIZ (TCKCYC * MS) /* tick filter size */ 93 #define NCHAN 5 /* number of radio channels */ 94 #define AUDIO_PHI 5e-6 /* dispersion growth factor */ 95 96 /* 97 * Tunable parameters. The DGAIN parameter can be changed to fit the 98 * audio response of the radio at 100 Hz. The WWV/WWVH data subcarrier 99 * is transmitted at about 20 percent percent modulation; the matched 100 * filter boosts it by a factor of 17 and the receiver response does 101 * what it does. The compromise value works for ICOM radios. If the 102 * radio is not tunable, the DCHAN parameter can be changed to fit the 103 * expected best propagation frequency: higher if further from the 104 * transmitter, lower if nearer. The compromise value works for the US 105 * right coast. The FREQ_OFFSET parameter can be used as a frequency 106 * vernier to correct codec requency if greater than MAXFREQ. 107 */ 108 #define DCHAN 3 /* default radio channel (15 Mhz) */ 109 #define DGAIN 5. /* subcarrier gain */ 110 #define FREQ_OFFSET 0. /* codec frequency correction (PPM) */ 111 112 /* 113 * General purpose status bits (status) 114 * 115 * SELV and/or SELH are set when WWV or WWVH have been heard and cleared 116 * on signal loss. SSYNC is set when the second sync pulse has been 117 * acquired and cleared by signal loss. MSYNC is set when the minute 118 * sync pulse has been acquired. DSYNC is set when the units digit has 119 * has reached the threshold and INSYNC is set when all nine digits have 120 * reached the threshold. The MSYNC, DSYNC and INSYNC bits are cleared 121 * only by timeout, upon which the driver starts over from scratch. 122 * 123 * DGATE is lit if the data bit amplitude or SNR is below thresholds and 124 * BGATE is lit if the pulse width amplitude or SNR is below thresolds. 125 * LEPSEC is set during the last minute of the leap day. At the end of 126 * this minute the driver inserts second 60 in the seconds state machine 127 * and the minute sync slips a second. 128 */ 129 #define MSYNC 0x0001 /* minute epoch sync */ 130 #define SSYNC 0x0002 /* second epoch sync */ 131 #define DSYNC 0x0004 /* minute units sync */ 132 #define INSYNC 0x0008 /* clock synchronized */ 133 #define FGATE 0x0010 /* frequency gate */ 134 #define DGATE 0x0020 /* data pulse amplitude error */ 135 #define BGATE 0x0040 /* data pulse width error */ 136 #define LEPSEC 0x1000 /* leap minute */ 137 138 /* 139 * Station scoreboard bits 140 * 141 * These are used to establish the signal quality for each of the five 142 * frequencies and two stations. 143 */ 144 #define SELV 0x0100 /* WWV station select */ 145 #define SELH 0x0200 /* WWVH station select */ 146 147 /* 148 * Alarm status bits (alarm) 149 * 150 * These bits indicate various alarm conditions, which are decoded to 151 * form the quality character included in the timecode. 152 */ 153 #define CMPERR 1 /* digit or misc bit compare error */ 154 #define LOWERR 2 /* low bit or digit amplitude or SNR */ 155 #define NINERR 4 /* less than nine digits in minute */ 156 #define SYNERR 8 /* not tracking second sync */ 157 158 /* 159 * Watchcat timeouts (watch) 160 * 161 * If these timeouts expire, the status bits are mashed to zero and the 162 * driver starts from scratch. Suitably more refined procedures may be 163 * developed in future. All these are in minutes. 164 */ 165 #define ACQSN 6 /* station acquisition timeout */ 166 #define DATA 15 /* unit minutes timeout */ 167 #define SYNCH 40 /* station sync timeout */ 168 #define PANIC (2 * 1440) /* panic timeout */ 169 170 /* 171 * Thresholds. These establish the minimum signal level, minimum SNR and 172 * maximum jitter thresholds which establish the error and false alarm 173 * rates of the driver. The values defined here may be on the 174 * adventurous side in the interest of the highest sensitivity. 175 */ 176 #define MTHR 13. /* minute sync gate (percent) */ 177 #define TTHR 50. /* minute sync threshold (percent) */ 178 #define AWND 20 /* minute sync jitter threshold (ms) */ 179 #define ATHR 2500. /* QRZ minute sync threshold */ 180 #define ASNR 20. /* QRZ minute sync SNR threshold (dB) */ 181 #define QTHR 2500. /* QSY minute sync threshold */ 182 #define QSNR 20. /* QSY minute sync SNR threshold (dB) */ 183 #define STHR 2500. /* second sync threshold */ 184 #define SSNR 15. /* second sync SNR threshold (dB) */ 185 #define SCMP 10 /* second sync compare threshold */ 186 #define DTHR 1000. /* bit threshold */ 187 #define DSNR 10. /* bit SNR threshold (dB) */ 188 #define AMIN 3 /* min bit count */ 189 #define AMAX 6 /* max bit count */ 190 #define BTHR 1000. /* digit threshold */ 191 #define BSNR 3. /* digit likelihood threshold (dB) */ 192 #define BCMP 3 /* digit compare threshold */ 193 #define MAXERR 40 /* maximum error alarm */ 194 195 /* 196 * Tone frequency definitions. The increments are for 4.5-deg sine 197 * table. 198 */ 199 #define MS (SECOND / 1000) /* samples per millisecond */ 200 #define IN100 ((100 * 80) / SECOND) /* 100 Hz increment */ 201 #define IN1000 ((1000 * 80) / SECOND) /* 1000 Hz increment */ 202 #define IN1200 ((1200 * 80) / SECOND) /* 1200 Hz increment */ 203 204 /* 205 * Acquisition and tracking time constants 206 */ 207 #define MINAVG 8 /* min averaging time */ 208 #define MAXAVG 1024 /* max averaging time */ 209 #define FCONST 3 /* frequency time constant */ 210 #define TCONST 16 /* data bit/digit time constant */ 211 212 /* 213 * Miscellaneous status bits (misc) 214 * 215 * These bits correspond to designated bits in the WWV/H timecode. The 216 * bit probabilities are exponentially averaged over several minutes and 217 * processed by a integrator and threshold. 218 */ 219 #define DUT1 0x01 /* 56 DUT .1 */ 220 #define DUT2 0x02 /* 57 DUT .2 */ 221 #define DUT4 0x04 /* 58 DUT .4 */ 222 #define DUTS 0x08 /* 50 DUT sign */ 223 #define DST1 0x10 /* 55 DST1 leap warning */ 224 #define DST2 0x20 /* 2 DST2 DST1 delayed one day */ 225 #define SECWAR 0x40 /* 3 leap second warning */ 226 227 /* 228 * The on-time synchronization point for the driver is the second epoch 229 * sync pulse produced by the FIR matched filters. As the 5-ms delay of 230 * these filters is compensated, the program delay is 1.1 ms due to the 231 * 600-Hz IIR bandpass filter. The measured receiver delay is 4.7 ms and 232 * the codec delay less than 0.2 ms. The additional propagation delay 233 * specific to each receiver location can be programmed in the fudge 234 * time1 and time2 values for WWV and WWVH, respectively. 235 */ 236 #define PDELAY (.0011 + .0047 + .0002) /* net system delay (s) */ 237 238 /* 239 * Table of sine values at 4.5-degree increments. This is used by the 240 * synchronous matched filter demodulators. 241 */ 242 double sintab[] = { 243 0.000000e+00, 7.845910e-02, 1.564345e-01, 2.334454e-01, /* 0-3 */ 244 3.090170e-01, 3.826834e-01, 4.539905e-01, 5.224986e-01, /* 4-7 */ 245 5.877853e-01, 6.494480e-01, 7.071068e-01, 7.604060e-01, /* 8-11 */ 246 8.090170e-01, 8.526402e-01, 8.910065e-01, 9.238795e-01, /* 12-15 */ 247 9.510565e-01, 9.723699e-01, 9.876883e-01, 9.969173e-01, /* 16-19 */ 248 1.000000e+00, 9.969173e-01, 9.876883e-01, 9.723699e-01, /* 20-23 */ 249 9.510565e-01, 9.238795e-01, 8.910065e-01, 8.526402e-01, /* 24-27 */ 250 8.090170e-01, 7.604060e-01, 7.071068e-01, 6.494480e-01, /* 28-31 */ 251 5.877853e-01, 5.224986e-01, 4.539905e-01, 3.826834e-01, /* 32-35 */ 252 3.090170e-01, 2.334454e-01, 1.564345e-01, 7.845910e-02, /* 36-39 */ 253 -0.000000e+00, -7.845910e-02, -1.564345e-01, -2.334454e-01, /* 40-43 */ 254 -3.090170e-01, -3.826834e-01, -4.539905e-01, -5.224986e-01, /* 44-47 */ 255 -5.877853e-01, -6.494480e-01, -7.071068e-01, -7.604060e-01, /* 48-51 */ 256 -8.090170e-01, -8.526402e-01, -8.910065e-01, -9.238795e-01, /* 52-55 */ 257 -9.510565e-01, -9.723699e-01, -9.876883e-01, -9.969173e-01, /* 56-59 */ 258 -1.000000e+00, -9.969173e-01, -9.876883e-01, -9.723699e-01, /* 60-63 */ 259 -9.510565e-01, -9.238795e-01, -8.910065e-01, -8.526402e-01, /* 64-67 */ 260 -8.090170e-01, -7.604060e-01, -7.071068e-01, -6.494480e-01, /* 68-71 */ 261 -5.877853e-01, -5.224986e-01, -4.539905e-01, -3.826834e-01, /* 72-75 */ 262 -3.090170e-01, -2.334454e-01, -1.564345e-01, -7.845910e-02, /* 76-79 */ 263 0.000000e+00}; /* 80 */ 264 265 /* 266 * Decoder operations at the end of each second are driven by a state 267 * machine. The transition matrix consists of a dispatch table indexed 268 * by second number. Each entry in the table contains a case switch 269 * number and argument. 270 */ 271 struct progx { 272 int sw; /* case switch number */ 273 int arg; /* argument */ 274 }; 275 276 /* 277 * Case switch numbers 278 */ 279 #define IDLE 0 /* no operation */ 280 #define COEF 1 /* BCD bit */ 281 #define COEF1 2 /* BCD bit for minute unit */ 282 #define COEF2 3 /* BCD bit not used */ 283 #define DECIM9 4 /* BCD digit 0-9 */ 284 #define DECIM6 5 /* BCD digit 0-6 */ 285 #define DECIM3 6 /* BCD digit 0-3 */ 286 #define DECIM2 7 /* BCD digit 0-2 */ 287 #define MSCBIT 8 /* miscellaneous bit */ 288 #define MSC20 9 /* miscellaneous bit */ 289 #define MSC21 10 /* QSY probe channel */ 290 #define MIN1 11 /* latch time */ 291 #define MIN2 12 /* leap second */ 292 #define SYNC2 13 /* latch minute sync pulse */ 293 #define SYNC3 14 /* latch data pulse */ 294 295 /* 296 * Offsets in decoding matrix 297 */ 298 #define MN 0 /* minute digits (2) */ 299 #define HR 2 /* hour digits (2) */ 300 #define DA 4 /* day digits (3) */ 301 #define YR 7 /* year digits (2) */ 302 303 struct progx progx[] = { 304 {SYNC2, 0}, /* 0 latch minute sync pulse */ 305 {SYNC3, 0}, /* 1 latch data pulse */ 306 {MSCBIT, DST2}, /* 2 dst2 */ 307 {MSCBIT, SECWAR}, /* 3 lw */ 308 {COEF, 0}, /* 4 1 year units */ 309 {COEF, 1}, /* 5 2 */ 310 {COEF, 2}, /* 6 4 */ 311 {COEF, 3}, /* 7 8 */ 312 {DECIM9, YR}, /* 8 */ 313 {IDLE, 0}, /* 9 p1 */ 314 {COEF1, 0}, /* 10 1 minute units */ 315 {COEF1, 1}, /* 11 2 */ 316 {COEF1, 2}, /* 12 4 */ 317 {COEF1, 3}, /* 13 8 */ 318 {DECIM9, MN}, /* 14 */ 319 {COEF, 0}, /* 15 10 minute tens */ 320 {COEF, 1}, /* 16 20 */ 321 {COEF, 2}, /* 17 40 */ 322 {COEF2, 3}, /* 18 80 (not used) */ 323 {DECIM6, MN + 1}, /* 19 p2 */ 324 {COEF, 0}, /* 20 1 hour units */ 325 {COEF, 1}, /* 21 2 */ 326 {COEF, 2}, /* 22 4 */ 327 {COEF, 3}, /* 23 8 */ 328 {DECIM9, HR}, /* 24 */ 329 {COEF, 0}, /* 25 10 hour tens */ 330 {COEF, 1}, /* 26 20 */ 331 {COEF2, 2}, /* 27 40 (not used) */ 332 {COEF2, 3}, /* 28 80 (not used) */ 333 {DECIM2, HR + 1}, /* 29 p3 */ 334 {COEF, 0}, /* 30 1 day units */ 335 {COEF, 1}, /* 31 2 */ 336 {COEF, 2}, /* 32 4 */ 337 {COEF, 3}, /* 33 8 */ 338 {DECIM9, DA}, /* 34 */ 339 {COEF, 0}, /* 35 10 day tens */ 340 {COEF, 1}, /* 36 20 */ 341 {COEF, 2}, /* 37 40 */ 342 {COEF, 3}, /* 38 80 */ 343 {DECIM9, DA + 1}, /* 39 p4 */ 344 {COEF, 0}, /* 40 100 day hundreds */ 345 {COEF, 1}, /* 41 200 */ 346 {COEF2, 2}, /* 42 400 (not used) */ 347 {COEF2, 3}, /* 43 800 (not used) */ 348 {DECIM3, DA + 2}, /* 44 */ 349 {IDLE, 0}, /* 45 */ 350 {IDLE, 0}, /* 46 */ 351 {IDLE, 0}, /* 47 */ 352 {IDLE, 0}, /* 48 */ 353 {IDLE, 0}, /* 49 p5 */ 354 {MSCBIT, DUTS}, /* 50 dut+- */ 355 {COEF, 0}, /* 51 10 year tens */ 356 {COEF, 1}, /* 52 20 */ 357 {COEF, 2}, /* 53 40 */ 358 {COEF, 3}, /* 54 80 */ 359 {MSC20, DST1}, /* 55 dst1 */ 360 {MSCBIT, DUT1}, /* 56 0.1 dut */ 361 {MSCBIT, DUT2}, /* 57 0.2 */ 362 {MSC21, DUT4}, /* 58 0.4 QSY probe channel */ 363 {MIN1, 0}, /* 59 p6 latch time */ 364 {MIN2, 0} /* 60 leap second */ 365 }; 366 367 /* 368 * BCD coefficients for maximum likelihood digit decode 369 */ 370 #define P15 1. /* max positive number */ 371 #define N15 -1. /* max negative number */ 372 373 /* 374 * Digits 0-9 375 */ 376 #define P9 (P15 / 4) /* mark (+1) */ 377 #define N9 (N15 / 4) /* space (-1) */ 378 379 double bcd9[][4] = { 380 {N9, N9, N9, N9}, /* 0 */ 381 {P9, N9, N9, N9}, /* 1 */ 382 {N9, P9, N9, N9}, /* 2 */ 383 {P9, P9, N9, N9}, /* 3 */ 384 {N9, N9, P9, N9}, /* 4 */ 385 {P9, N9, P9, N9}, /* 5 */ 386 {N9, P9, P9, N9}, /* 6 */ 387 {P9, P9, P9, N9}, /* 7 */ 388 {N9, N9, N9, P9}, /* 8 */ 389 {P9, N9, N9, P9}, /* 9 */ 390 {0, 0, 0, 0} /* backstop */ 391 }; 392 393 /* 394 * Digits 0-6 (minute tens) 395 */ 396 #define P6 (P15 / 3) /* mark (+1) */ 397 #define N6 (N15 / 3) /* space (-1) */ 398 399 double bcd6[][4] = { 400 {N6, N6, N6, 0}, /* 0 */ 401 {P6, N6, N6, 0}, /* 1 */ 402 {N6, P6, N6, 0}, /* 2 */ 403 {P6, P6, N6, 0}, /* 3 */ 404 {N6, N6, P6, 0}, /* 4 */ 405 {P6, N6, P6, 0}, /* 5 */ 406 {N6, P6, P6, 0}, /* 6 */ 407 {0, 0, 0, 0} /* backstop */ 408 }; 409 410 /* 411 * Digits 0-3 (day hundreds) 412 */ 413 #define P3 (P15 / 2) /* mark (+1) */ 414 #define N3 (N15 / 2) /* space (-1) */ 415 416 double bcd3[][4] = { 417 {N3, N3, 0, 0}, /* 0 */ 418 {P3, N3, 0, 0}, /* 1 */ 419 {N3, P3, 0, 0}, /* 2 */ 420 {P3, P3, 0, 0}, /* 3 */ 421 {0, 0, 0, 0} /* backstop */ 422 }; 423 424 /* 425 * Digits 0-2 (hour tens) 426 */ 427 #define P2 (P15 / 2) /* mark (+1) */ 428 #define N2 (N15 / 2) /* space (-1) */ 429 430 double bcd2[][4] = { 431 {N2, N2, 0, 0}, /* 0 */ 432 {P2, N2, 0, 0}, /* 1 */ 433 {N2, P2, 0, 0}, /* 2 */ 434 {0, 0, 0, 0} /* backstop */ 435 }; 436 437 /* 438 * DST decode (DST2 DST1) for prettyprint 439 */ 440 char dstcod[] = { 441 'S', /* 00 standard time */ 442 'I', /* 01 set clock ahead at 0200 local */ 443 'O', /* 10 set clock back at 0200 local */ 444 'D' /* 11 daylight time */ 445 }; 446 447 /* 448 * The decoding matrix consists of nine row vectors, one for each digit 449 * of the timecode. The digits are stored from least to most significant 450 * order. The maximum likelihood timecode is formed from the digits 451 * corresponding to the maximum likelihood values reading in the 452 * opposite order: yy ddd hh:mm. 453 */ 454 struct decvec { 455 int radix; /* radix (3, 4, 6, 10) */ 456 int digit; /* current clock digit */ 457 int mldigit; /* maximum likelihood digit */ 458 int count; /* match count */ 459 double digprb; /* max digit probability */ 460 double digsnr; /* likelihood function (dB) */ 461 double like[10]; /* likelihood integrator 0-9 */ 462 }; 463 464 /* 465 * The station structure (sp) is used to acquire the minute pulse from 466 * WWV and/or WWVH. These stations are distinguished by the frequency 467 * used for the second and minute sync pulses, 1000 Hz for WWV and 1200 468 * Hz for WWVH. Other than frequency, the format is the same. 469 */ 470 struct sync { 471 double epoch; /* accumulated epoch differences */ 472 double maxeng; /* sync max energy */ 473 double noieng; /* sync noise energy */ 474 long pos; /* max amplitude position */ 475 long lastpos; /* last max position */ 476 long mepoch; /* minute synch epoch */ 477 478 double amp; /* sync signal */ 479 double syneng; /* sync signal max */ 480 double synmax; /* sync signal max latched at 0 s */ 481 double synsnr; /* sync signal SNR */ 482 double metric; /* signal quality metric */ 483 int reach; /* reachability register */ 484 int count; /* bit counter */ 485 int select; /* select bits */ 486 char refid[5]; /* reference identifier */ 487 }; 488 489 /* 490 * The channel structure (cp) is used to mitigate between channels. 491 */ 492 struct chan { 493 int gain; /* audio gain */ 494 struct sync wwv; /* wwv station */ 495 struct sync wwvh; /* wwvh station */ 496 }; 497 498 /* 499 * WWV unit control structure (up) 500 */ 501 struct wwvunit { 502 l_fp timestamp; /* audio sample timestamp */ 503 l_fp tick; /* audio sample increment */ 504 double phase, freq; /* logical clock phase and frequency */ 505 double monitor; /* audio monitor point */ 506 #ifdef ICOM 507 int fd_icom; /* ICOM file descriptor */ 508 #endif /* ICOM */ 509 int errflg; /* error flags */ 510 int watch; /* watchcat */ 511 512 /* 513 * Audio codec variables 514 */ 515 double comp[SIZE]; /* decompanding table */ 516 int port; /* codec port */ 517 int gain; /* codec gain */ 518 int mongain; /* codec monitor gain */ 519 int clipcnt; /* sample clipped count */ 520 521 /* 522 * Variables used to establish basic system timing 523 */ 524 int avgint; /* master time constant */ 525 int yepoch; /* sync epoch */ 526 int repoch; /* buffered sync epoch */ 527 double epomax; /* second sync amplitude */ 528 double eposnr; /* second sync SNR */ 529 double irig; /* data I channel amplitude */ 530 double qrig; /* data Q channel amplitude */ 531 int datapt; /* 100 Hz ramp */ 532 double datpha; /* 100 Hz VFO control */ 533 int rphase; /* second sample counter */ 534 long mphase; /* minute sample counter */ 535 536 /* 537 * Variables used to mitigate which channel to use 538 */ 539 struct chan mitig[NCHAN]; /* channel data */ 540 struct sync *sptr; /* station pointer */ 541 int dchan; /* data channel */ 542 int schan; /* probe channel */ 543 int achan; /* active channel */ 544 545 /* 546 * Variables used by the clock state machine 547 */ 548 struct decvec decvec[9]; /* decoding matrix */ 549 int rsec; /* seconds counter */ 550 int digcnt; /* count of digits synchronized */ 551 552 /* 553 * Variables used to estimate signal levels and bit/digit 554 * probabilities 555 */ 556 double datsig; /* data signal max */ 557 double datsnr; /* data signal SNR (dB) */ 558 559 /* 560 * Variables used to establish status and alarm conditions 561 */ 562 int status; /* status bits */ 563 int alarm; /* alarm flashers */ 564 int misc; /* miscellaneous timecode bits */ 565 int errcnt; /* data bit error counter */ 566 }; 567 568 /* 569 * Function prototypes 570 */ 571 static int wwv_start P((int, struct peer *)); 572 static void wwv_shutdown P((int, struct peer *)); 573 static void wwv_receive P((struct recvbuf *)); 574 static void wwv_poll P((int, struct peer *)); 575 576 /* 577 * More function prototypes 578 */ 579 static void wwv_epoch P((struct peer *)); 580 static void wwv_rf P((struct peer *, double)); 581 static void wwv_endpoc P((struct peer *, int)); 582 static void wwv_rsec P((struct peer *, double)); 583 static void wwv_qrz P((struct peer *, struct sync *, int)); 584 static void wwv_corr4 P((struct peer *, struct decvec *, 585 double [], double [][4])); 586 static void wwv_gain P((struct peer *)); 587 static void wwv_tsec P((struct peer *)); 588 static int timecode P((struct wwvunit *, char *)); 589 static double wwv_snr P((double, double)); 590 static int carry P((struct decvec *)); 591 static int wwv_newchan P((struct peer *)); 592 static void wwv_newgame P((struct peer *)); 593 static double wwv_metric P((struct sync *)); 594 static void wwv_clock P((struct peer *)); 595 #ifdef ICOM 596 static int wwv_qsy P((struct peer *, int)); 597 #endif /* ICOM */ 598 599 static double qsy[NCHAN] = {2.5, 5, 10, 15, 20}; /* frequencies (MHz) */ 600 601 /* 602 * Transfer vector 603 */ 604 struct refclock refclock_wwv = { 605 wwv_start, /* start up driver */ 606 wwv_shutdown, /* shut down driver */ 607 wwv_poll, /* transmit poll message */ 608 noentry, /* not used (old wwv_control) */ 609 noentry, /* initialize driver (not used) */ 610 noentry, /* not used (old wwv_buginfo) */ 611 NOFLAGS /* not used */ 612 }; 613 614 615 /* 616 * wwv_start - open the devices and initialize data for processing 617 */ 618 static int 619 wwv_start( 620 int unit, /* instance number (used by PCM) */ 621 struct peer *peer /* peer structure pointer */ 622 ) 623 { 624 struct refclockproc *pp; 625 struct wwvunit *up; 626 #ifdef ICOM 627 int temp; 628 #endif /* ICOM */ 629 630 /* 631 * Local variables 632 */ 633 int fd; /* file descriptor */ 634 int i; /* index */ 635 double step; /* codec adjustment */ 636 637 /* 638 * Open audio device 639 */ 640 fd = audio_init(DEVICE_AUDIO, AUDIO_BUFSIZ, unit); 641 if (fd < 0) 642 return (0); 643 #ifdef DEBUG 644 if (debug) 645 audio_show(); 646 #endif /* DEBUG */ 647 648 /* 649 * Allocate and initialize unit structure 650 */ 651 if (!(up = (struct wwvunit *)emalloc(sizeof(struct wwvunit)))) { 652 close(fd); 653 return (0); 654 } 655 memset(up, 0, sizeof(struct wwvunit)); 656 pp = peer->procptr; 657 pp->unitptr = (caddr_t)up; 658 pp->io.clock_recv = wwv_receive; 659 pp->io.srcclock = (caddr_t)peer; 660 pp->io.datalen = 0; 661 pp->io.fd = fd; 662 if (!io_addclock(&pp->io)) { 663 close(fd); 664 free(up); 665 return (0); 666 } 667 668 /* 669 * Initialize miscellaneous variables 670 */ 671 peer->precision = PRECISION; 672 pp->clockdesc = DESCRIPTION; 673 674 /* 675 * The companded samples are encoded sign-magnitude. The table 676 * contains all the 256 values in the interest of speed. 677 */ 678 up->comp[0] = up->comp[OFFSET] = 0.; 679 up->comp[1] = 1.; up->comp[OFFSET + 1] = -1.; 680 up->comp[2] = 3.; up->comp[OFFSET + 2] = -3.; 681 step = 2.; 682 for (i = 3; i < OFFSET; i++) { 683 up->comp[i] = up->comp[i - 1] + step; 684 up->comp[OFFSET + i] = -up->comp[i]; 685 if (i % 16 == 0) 686 step *= 2.; 687 } 688 DTOLFP(1. / SECOND, &up->tick); 689 690 /* 691 * Initialize the decoding matrix with the radix for each digit 692 * position. 693 */ 694 up->decvec[MN].radix = 10; /* minutes */ 695 up->decvec[MN + 1].radix = 6; 696 up->decvec[HR].radix = 10; /* hours */ 697 up->decvec[HR + 1].radix = 3; 698 up->decvec[DA].radix = 10; /* days */ 699 up->decvec[DA + 1].radix = 10; 700 up->decvec[DA + 2].radix = 4; 701 up->decvec[YR].radix = 10; /* years */ 702 up->decvec[YR + 1].radix = 10; 703 704 #ifdef ICOM 705 /* 706 * Initialize autotune if available. Note that the ICOM select 707 * code must be less than 128, so the high order bit can be used 708 * to select the line speed 0 (9600 bps) or 1 (1200 bps). 709 */ 710 temp = 0; 711 #ifdef DEBUG 712 if (debug > 1) 713 temp = P_TRACE; 714 #endif /* DEBUG */ 715 if (peer->ttl != 0) { 716 if (peer->ttl & 0x80) 717 up->fd_icom = icom_init("/dev/icom", B1200, 718 temp); 719 else 720 up->fd_icom = icom_init("/dev/icom", B9600, 721 temp); 722 if (up->fd_icom < 0) { 723 NLOG(NLOG_SYNCEVENT | NLOG_SYSEVENT) 724 msyslog(LOG_NOTICE, 725 "icom: %m"); 726 up->errflg = CEVNT_FAULT; 727 } 728 } 729 if (up->fd_icom > 0) { 730 if (wwv_qsy(peer, DCHAN) != 0) { 731 NLOG(NLOG_SYNCEVENT | NLOG_SYSEVENT) 732 msyslog(LOG_NOTICE, 733 "icom: radio not found"); 734 up->errflg = CEVNT_FAULT; 735 close(up->fd_icom); 736 up->fd_icom = 0; 737 } else { 738 NLOG(NLOG_SYNCEVENT | NLOG_SYSEVENT) 739 msyslog(LOG_NOTICE, 740 "icom: autotune enabled"); 741 } 742 } 743 #endif /* ICOM */ 744 745 /* 746 * Let the games begin. 747 */ 748 wwv_newgame(peer); 749 return (1); 750 } 751 752 753 /* 754 * wwv_shutdown - shut down the clock 755 */ 756 static void 757 wwv_shutdown( 758 int unit, /* instance number (not used) */ 759 struct peer *peer /* peer structure pointer */ 760 ) 761 { 762 struct refclockproc *pp; 763 struct wwvunit *up; 764 765 pp = peer->procptr; 766 up = (struct wwvunit *)pp->unitptr; 767 if (up == NULL) 768 return; 769 770 io_closeclock(&pp->io); 771 #ifdef ICOM 772 if (up->fd_icom > 0) 773 close(up->fd_icom); 774 #endif /* ICOM */ 775 free(up); 776 } 777 778 779 /* 780 * wwv_receive - receive data from the audio device 781 * 782 * This routine reads input samples and adjusts the logical clock to 783 * track the A/D sample clock by dropping or duplicating codec samples. 784 * It also controls the A/D signal level with an AGC loop to mimimize 785 * quantization noise and avoid overload. 786 */ 787 static void 788 wwv_receive( 789 struct recvbuf *rbufp /* receive buffer structure pointer */ 790 ) 791 { 792 struct peer *peer; 793 struct refclockproc *pp; 794 struct wwvunit *up; 795 796 /* 797 * Local variables 798 */ 799 double sample; /* codec sample */ 800 u_char *dpt; /* buffer pointer */ 801 int bufcnt; /* buffer counter */ 802 l_fp ltemp; 803 804 peer = (struct peer *)rbufp->recv_srcclock; 805 pp = peer->procptr; 806 up = (struct wwvunit *)pp->unitptr; 807 808 /* 809 * Main loop - read until there ain't no more. Note codec 810 * samples are bit-inverted. 811 */ 812 DTOLFP((double)rbufp->recv_length / SECOND, <emp); 813 L_SUB(&rbufp->recv_time, <emp); 814 up->timestamp = rbufp->recv_time; 815 dpt = rbufp->recv_buffer; 816 for (bufcnt = 0; bufcnt < rbufp->recv_length; bufcnt++) { 817 sample = up->comp[~*dpt++ & 0xff]; 818 819 /* 820 * Clip noise spikes greater than MAXAMP (6000) and 821 * record the number of clips to be used later by the 822 * AGC. 823 */ 824 if (sample > MAXAMP) { 825 sample = MAXAMP; 826 up->clipcnt++; 827 } else if (sample < -MAXAMP) { 828 sample = -MAXAMP; 829 up->clipcnt++; 830 } 831 832 /* 833 * Variable frequency oscillator. The codec oscillator 834 * runs at the nominal rate of 8000 samples per second, 835 * or 125 us per sample. A frequency change of one unit 836 * results in either duplicating or deleting one sample 837 * per second, which results in a frequency change of 838 * 125 PPM. 839 */ 840 up->phase += up->freq / SECOND; 841 up->phase += FREQ_OFFSET / 1e6; 842 if (up->phase >= .5) { 843 up->phase -= 1.; 844 } else if (up->phase < -.5) { 845 up->phase += 1.; 846 wwv_rf(peer, sample); 847 wwv_rf(peer, sample); 848 } else { 849 wwv_rf(peer, sample); 850 } 851 L_ADD(&up->timestamp, &up->tick); 852 } 853 854 /* 855 * Set the input port and monitor gain for the next buffer. 856 */ 857 if (pp->sloppyclockflag & CLK_FLAG2) 858 up->port = 2; 859 else 860 up->port = 1; 861 if (pp->sloppyclockflag & CLK_FLAG3) 862 up->mongain = MONGAIN; 863 else 864 up->mongain = 0; 865 } 866 867 868 /* 869 * wwv_poll - called by the transmit procedure 870 * 871 * This routine keeps track of status. If no offset samples have been 872 * processed during a poll interval, a timeout event is declared. If 873 * errors have have occurred during the interval, they are reported as 874 * well. 875 */ 876 static void 877 wwv_poll( 878 int unit, /* instance number (not used) */ 879 struct peer *peer /* peer structure pointer */ 880 ) 881 { 882 struct refclockproc *pp; 883 struct wwvunit *up; 884 885 pp = peer->procptr; 886 up = (struct wwvunit *)pp->unitptr; 887 if (pp->coderecv == pp->codeproc) 888 up->errflg = CEVNT_TIMEOUT; 889 if (up->errflg) 890 refclock_report(peer, up->errflg); 891 up->errflg = 0; 892 pp->polls++; 893 } 894 895 896 /* 897 * wwv_rf - process signals and demodulate to baseband 898 * 899 * This routine grooms and filters decompanded raw audio samples. The 900 * output signal is the 100-Hz filtered baseband data signal in 901 * quadrature phase. The routine also determines the minute synch epoch, 902 * as well as certain signal maxima, minima and related values. 903 * 904 * There are two 1-s ramps used by this program. Both count the 8000 905 * logical clock samples spanning exactly one second. The epoch ramp 906 * counts the samples starting at an arbitrary time. The rphase ramp 907 * counts the samples starting at the 5-ms second sync pulse found 908 * during the epoch ramp. 909 * 910 * There are two 1-m ramps used by this program. The mphase ramp counts 911 * the 480,000 logical clock samples spanning exactly one minute and 912 * starting at an arbitrary time. The rsec ramp counts the 60 seconds of 913 * the minute starting at the 800-ms minute sync pulse found during the 914 * mphase ramp. The rsec ramp drives the seconds state machine to 915 * determine the bits and digits of the timecode. 916 * 917 * Demodulation operations are based on three synthesized quadrature 918 * sinusoids: 100 Hz for the data signal, 1000 Hz for the WWV sync 919 * signal and 1200 Hz for the WWVH sync signal. These drive synchronous 920 * matched filters for the data signal (170 ms at 100 Hz), WWV minute 921 * sync signal (800 ms at 1000 Hz) and WWVH minute sync signal (800 ms 922 * at 1200 Hz). Two additional matched filters are switched in 923 * as required for the WWV second sync signal (5 cycles at 1000 Hz) and 924 * WWVH second sync signal (6 cycles at 1200 Hz). 925 */ 926 static void 927 wwv_rf( 928 struct peer *peer, /* peerstructure pointer */ 929 double isig /* input signal */ 930 ) 931 { 932 struct refclockproc *pp; 933 struct wwvunit *up; 934 struct sync *sp, *rp; 935 936 static double lpf[5]; /* 150-Hz lpf delay line */ 937 double data; /* lpf output */ 938 static double bpf[9]; /* 1000/1200-Hz bpf delay line */ 939 double syncx; /* bpf output */ 940 static double mf[41]; /* 1000/1200-Hz mf delay line */ 941 double mfsync; /* mf output */ 942 943 static int iptr; /* data channel pointer */ 944 static double ibuf[DATSIZ]; /* data I channel delay line */ 945 static double qbuf[DATSIZ]; /* data Q channel delay line */ 946 947 static int jptr; /* sync channel pointer */ 948 static int kptr; /* tick channel pointer */ 949 950 static int csinptr; /* wwv channel phase */ 951 static double cibuf[SYNSIZ]; /* wwv I channel delay line */ 952 static double cqbuf[SYNSIZ]; /* wwv Q channel delay line */ 953 static double ciamp; /* wwv I channel amplitude */ 954 static double cqamp; /* wwv Q channel amplitude */ 955 956 static double csibuf[TCKSIZ]; /* wwv I tick delay line */ 957 static double csqbuf[TCKSIZ]; /* wwv Q tick delay line */ 958 static double csiamp; /* wwv I tick amplitude */ 959 static double csqamp; /* wwv Q tick amplitude */ 960 961 static int hsinptr; /* wwvh channel phase */ 962 static double hibuf[SYNSIZ]; /* wwvh I channel delay line */ 963 static double hqbuf[SYNSIZ]; /* wwvh Q channel delay line */ 964 static double hiamp; /* wwvh I channel amplitude */ 965 static double hqamp; /* wwvh Q channel amplitude */ 966 967 static double hsibuf[TCKSIZ]; /* wwvh I tick delay line */ 968 static double hsqbuf[TCKSIZ]; /* wwvh Q tick delay line */ 969 static double hsiamp; /* wwvh I tick amplitude */ 970 static double hsqamp; /* wwvh Q tick amplitude */ 971 972 static double epobuf[SECOND]; /* second sync comb filter */ 973 static double epomax, nxtmax; /* second sync amplitude buffer */ 974 static int epopos; /* epoch second sync position buffer */ 975 976 static int iniflg; /* initialization flag */ 977 int pdelay; /* propagation delay (samples) */ 978 int epoch; /* comb filter index */ 979 double dtemp; 980 int i; 981 982 pp = peer->procptr; 983 up = (struct wwvunit *)pp->unitptr; 984 985 if (!iniflg) { 986 iniflg = 1; 987 memset((char *)lpf, 0, sizeof(lpf)); 988 memset((char *)bpf, 0, sizeof(bpf)); 989 memset((char *)mf, 0, sizeof(mf)); 990 memset((char *)ibuf, 0, sizeof(ibuf)); 991 memset((char *)qbuf, 0, sizeof(qbuf)); 992 memset((char *)cibuf, 0, sizeof(cibuf)); 993 memset((char *)cqbuf, 0, sizeof(cqbuf)); 994 memset((char *)csibuf, 0, sizeof(csibuf)); 995 memset((char *)csqbuf, 0, sizeof(csqbuf)); 996 memset((char *)hibuf, 0, sizeof(hibuf)); 997 memset((char *)hqbuf, 0, sizeof(hqbuf)); 998 memset((char *)hsibuf, 0, sizeof(hsibuf)); 999 memset((char *)hsqbuf, 0, sizeof(hsqbuf)); 1000 memset((char *)epobuf, 0, sizeof(epobuf)); 1001 } 1002 1003 /* 1004 * Baseband data demodulation. The 100-Hz subcarrier is 1005 * extracted using a 150-Hz IIR lowpass filter. This attenuates 1006 * the 1000/1200-Hz sync signals, as well as the 440-Hz and 1007 * 600-Hz tones and most of the noise and voice modulation 1008 * components. 1009 * 1010 * The subcarrier is transmitted 10 dB down from the carrier. 1011 * The DGAIN parameter can be adjusted for this and to 1012 * compensate for the radio audio response at 100 Hz. 1013 * 1014 * Matlab IIR 4th-order IIR elliptic, 150 Hz lowpass, 0.2 dB 1015 * passband ripple, -50 dB stopband ripple. 1016 */ 1017 data = (lpf[4] = lpf[3]) * 8.360961e-01; 1018 data += (lpf[3] = lpf[2]) * -3.481740e+00; 1019 data += (lpf[2] = lpf[1]) * 5.452988e+00; 1020 data += (lpf[1] = lpf[0]) * -3.807229e+00; 1021 lpf[0] = isig * DGAIN - data; 1022 data = lpf[0] * 3.281435e-03 1023 + lpf[1] * -1.149947e-02 1024 + lpf[2] * 1.654858e-02 1025 + lpf[3] * -1.149947e-02 1026 + lpf[4] * 3.281435e-03; 1027 1028 /* 1029 * The 100-Hz data signal is demodulated using a pair of 1030 * quadrature multipliers, matched filters and a phase lock 1031 * loop. The I and Q quadrature data signals are produced by 1032 * multiplying the filtered signal by 100-Hz sine and cosine 1033 * signals, respectively. The signals are processed by 170-ms 1034 * synchronous matched filters to produce the amplitude and 1035 * phase signals used by the demodulator. The signals are scaled 1036 * to produce unit energy at the maximum value. 1037 */ 1038 i = up->datapt; 1039 up->datapt = (up->datapt + IN100) % 80; 1040 dtemp = sintab[i] * data / (MS / 2. * DATCYC); 1041 up->irig -= ibuf[iptr]; 1042 ibuf[iptr] = dtemp; 1043 up->irig += dtemp; 1044 1045 i = (i + 20) % 80; 1046 dtemp = sintab[i] * data / (MS / 2. * DATCYC); 1047 up->qrig -= qbuf[iptr]; 1048 qbuf[iptr] = dtemp; 1049 up->qrig += dtemp; 1050 iptr = (iptr + 1) % DATSIZ; 1051 1052 /* 1053 * Baseband sync demodulation. The 1000/1200 sync signals are 1054 * extracted using a 600-Hz IIR bandpass filter. This removes 1055 * the 100-Hz data subcarrier, as well as the 440-Hz and 600-Hz 1056 * tones and most of the noise and voice modulation components. 1057 * 1058 * Matlab 4th-order IIR elliptic, 800-1400 Hz bandpass, 0.2 dB 1059 * passband ripple, -50 dB stopband ripple. 1060 */ 1061 syncx = (bpf[8] = bpf[7]) * 4.897278e-01; 1062 syncx += (bpf[7] = bpf[6]) * -2.765914e+00; 1063 syncx += (bpf[6] = bpf[5]) * 8.110921e+00; 1064 syncx += (bpf[5] = bpf[4]) * -1.517732e+01; 1065 syncx += (bpf[4] = bpf[3]) * 1.975197e+01; 1066 syncx += (bpf[3] = bpf[2]) * -1.814365e+01; 1067 syncx += (bpf[2] = bpf[1]) * 1.159783e+01; 1068 syncx += (bpf[1] = bpf[0]) * -4.735040e+00; 1069 bpf[0] = isig - syncx; 1070 syncx = bpf[0] * 8.203628e-03 1071 + bpf[1] * -2.375732e-02 1072 + bpf[2] * 3.353214e-02 1073 + bpf[3] * -4.080258e-02 1074 + bpf[4] * 4.605479e-02 1075 + bpf[5] * -4.080258e-02 1076 + bpf[6] * 3.353214e-02 1077 + bpf[7] * -2.375732e-02 1078 + bpf[8] * 8.203628e-03; 1079 1080 /* 1081 * The 1000/1200 sync signals are demodulated using a pair of 1082 * quadrature multipliers and matched filters. However, 1083 * synchronous demodulation at these frequencies is impractical, 1084 * so only the signal amplitude is used. The I and Q quadrature 1085 * sync signals are produced by multiplying the filtered signal 1086 * by 1000-Hz (WWV) and 1200-Hz (WWVH) sine and cosine signals, 1087 * respectively. The WWV and WWVH signals are processed by 800- 1088 * ms synchronous matched filters and combined to produce the 1089 * minute sync signal and detect which one (or both) the WWV or 1090 * WWVH signal is present. The WWV and WWVH signals are also 1091 * processed by 5-ms synchronous matched filters and combined to 1092 * produce the second sync signal. The signals are scaled to 1093 * produce unit energy at the maximum value. 1094 * 1095 * Note the master timing ramps, which run continuously. The 1096 * minute counter (mphase) counts the samples in the minute, 1097 * while the second counter (epoch) counts the samples in the 1098 * second. 1099 */ 1100 up->mphase = (up->mphase + 1) % MINUTE; 1101 epoch = up->mphase % SECOND; 1102 1103 /* 1104 * WWV 1105 */ 1106 i = csinptr; 1107 csinptr = (csinptr + IN1000) % 80; 1108 1109 dtemp = sintab[i] * syncx / (MS / 2.); 1110 ciamp -= cibuf[jptr]; 1111 cibuf[jptr] = dtemp; 1112 ciamp += dtemp; 1113 csiamp -= csibuf[kptr]; 1114 csibuf[kptr] = dtemp; 1115 csiamp += dtemp; 1116 1117 i = (i + 20) % 80; 1118 dtemp = sintab[i] * syncx / (MS / 2.); 1119 cqamp -= cqbuf[jptr]; 1120 cqbuf[jptr] = dtemp; 1121 cqamp += dtemp; 1122 csqamp -= csqbuf[kptr]; 1123 csqbuf[kptr] = dtemp; 1124 csqamp += dtemp; 1125 1126 sp = &up->mitig[up->achan].wwv; 1127 sp->amp = sqrt(ciamp * ciamp + cqamp * cqamp) / SYNCYC; 1128 if (!(up->status & MSYNC)) 1129 wwv_qrz(peer, sp, (int)(pp->fudgetime1 * SECOND)); 1130 1131 /* 1132 * WWVH 1133 */ 1134 i = hsinptr; 1135 hsinptr = (hsinptr + IN1200) % 80; 1136 1137 dtemp = sintab[i] * syncx / (MS / 2.); 1138 hiamp -= hibuf[jptr]; 1139 hibuf[jptr] = dtemp; 1140 hiamp += dtemp; 1141 hsiamp -= hsibuf[kptr]; 1142 hsibuf[kptr] = dtemp; 1143 hsiamp += dtemp; 1144 1145 i = (i + 20) % 80; 1146 dtemp = sintab[i] * syncx / (MS / 2.); 1147 hqamp -= hqbuf[jptr]; 1148 hqbuf[jptr] = dtemp; 1149 hqamp += dtemp; 1150 hsqamp -= hsqbuf[kptr]; 1151 hsqbuf[kptr] = dtemp; 1152 hsqamp += dtemp; 1153 1154 rp = &up->mitig[up->achan].wwvh; 1155 rp->amp = sqrt(hiamp * hiamp + hqamp * hqamp) / SYNCYC; 1156 if (!(up->status & MSYNC)) 1157 wwv_qrz(peer, rp, (int)(pp->fudgetime2 * SECOND)); 1158 jptr = (jptr + 1) % SYNSIZ; 1159 kptr = (kptr + 1) % TCKSIZ; 1160 1161 /* 1162 * The following section is called once per minute. It does 1163 * housekeeping and timeout functions and empties the dustbins. 1164 */ 1165 if (up->mphase == 0) { 1166 up->watch++; 1167 if (!(up->status & MSYNC)) { 1168 1169 /* 1170 * If minute sync has not been acquired before 1171 * ACQSN timeout (6 min), or if no signal is 1172 * heard, the program cycles to the next 1173 * frequency and tries again. 1174 */ 1175 if (!wwv_newchan(peer)) 1176 up->watch = 0; 1177 #ifdef ICOM 1178 if (up->fd_icom > 0) 1179 wwv_qsy(peer, up->dchan); 1180 #endif /* ICOM */ 1181 } else { 1182 1183 /* 1184 * If the leap bit is set, set the minute epoch 1185 * back one second so the station processes 1186 * don't miss a beat. 1187 */ 1188 if (up->status & LEPSEC) { 1189 up->mphase -= SECOND; 1190 if (up->mphase < 0) 1191 up->mphase += MINUTE; 1192 } 1193 } 1194 } 1195 1196 /* 1197 * When the channel metric reaches threshold and the second 1198 * counter matches the minute epoch within the second, the 1199 * driver has synchronized to the station. The second number is 1200 * the remaining seconds until the next minute epoch, while the 1201 * sync epoch is zero. Watch out for the first second; if 1202 * already synchronized to the second, the buffered sync epoch 1203 * must be set. 1204 * 1205 * Note the guard interval is 200 ms; if for some reason the 1206 * clock drifts more than that, it might wind up in the wrong 1207 * second. If the maximum frequency error is not more than about 1208 * 1 PPM, the clock can go as much as two days while still in 1209 * the same second. 1210 */ 1211 if (up->status & MSYNC) { 1212 wwv_epoch(peer); 1213 } else if (up->sptr != NULL) { 1214 sp = up->sptr; 1215 if (sp->metric >= TTHR && epoch == sp->mepoch % SECOND) { 1216 up->rsec = (60 - sp->mepoch / SECOND) % 60; 1217 up->rphase = 0; 1218 up->status |= MSYNC; 1219 up->watch = 0; 1220 if (!(up->status & SSYNC)) 1221 up->repoch = up->yepoch = epoch; 1222 else 1223 up->repoch = up->yepoch; 1224 1225 } 1226 } 1227 1228 /* 1229 * The second sync pulse is extracted using 5-ms (40 sample) FIR 1230 * matched filters at 1000 Hz for WWV or 1200 Hz for WWVH. This 1231 * pulse is used for the most precise synchronization, since if 1232 * provides a resolution of one sample (125 us). The filters run 1233 * only if the station has been reliably determined. 1234 */ 1235 if (up->status & SELV) { 1236 pdelay = (int)(pp->fudgetime1 * SECOND); 1237 mfsync = sqrt(csiamp * csiamp + csqamp * csqamp) / 1238 TCKCYC; 1239 } else if (up->status & SELH) { 1240 pdelay = (int)(pp->fudgetime2 * SECOND); 1241 mfsync = sqrt(hsiamp * hsiamp + hsqamp * hsqamp) / 1242 TCKCYC; 1243 } else { 1244 pdelay = 0; 1245 mfsync = 0; 1246 } 1247 1248 /* 1249 * Enhance the seconds sync pulse using a 1-s (8000-sample) comb 1250 * filter. Correct for the FIR matched filter delay, which is 5 1251 * ms for both the WWV and WWVH filters, and also for the 1252 * propagation delay. Once each second look for second sync. If 1253 * not in minute sync, fiddle the codec gain. Note the SNR is 1254 * computed from the maximum sample and the envelope of the 1255 * sample 6 ms before it, so if we slip more than a cycle the 1256 * SNR should plummet. The signal is scaled to produce unit 1257 * energy at the maximum value. 1258 */ 1259 dtemp = (epobuf[epoch] += (mfsync - epobuf[epoch]) / 1260 up->avgint); 1261 if (dtemp > epomax) { 1262 int j; 1263 1264 epomax = dtemp; 1265 epopos = epoch; 1266 j = epoch - 6 * MS; 1267 if (j < 0) 1268 j += SECOND; 1269 nxtmax = fabs(epobuf[j]); 1270 } 1271 if (epoch == 0) { 1272 up->epomax = epomax; 1273 up->eposnr = wwv_snr(epomax, nxtmax); 1274 epopos -= pdelay + TCKCYC * MS; 1275 if (epopos < 0) 1276 epopos += SECOND; 1277 wwv_endpoc(peer, epopos); 1278 if (!(up->status & SSYNC)) 1279 up->alarm |= SYNERR; 1280 epomax = 0; 1281 if (!(up->status & MSYNC)) 1282 wwv_gain(peer); 1283 } 1284 } 1285 1286 1287 /* 1288 * wwv_qrz - identify and acquire WWV/WWVH minute sync pulse 1289 * 1290 * This routine implements a virtual station process used to acquire 1291 * minute sync and to mitigate among the ten frequency and station 1292 * combinations. During minute sync acquisition the process probes each 1293 * frequency and station in turn for the minute pulse, which 1294 * involves searching through the entire 480,000-sample minute. The 1295 * process finds the maximum signal and RMS noise plus signal. Then, the 1296 * actual noise is determined by subtracting the energy of the matched 1297 * filter. 1298 * 1299 * Students of radar receiver technology will discover this algorithm 1300 * amounts to a range-gate discriminator. A valid pulse must have peak 1301 * amplitude at least QTHR (2500) and SNR at least QSNR (20) dB and the 1302 * difference between the current and previous epoch must be less than 1303 * AWND (20 ms). Note that the discriminator peak occurs about 800 ms 1304 * into the second, so the timing is retarded to the previous second 1305 * epoch. 1306 */ 1307 static void 1308 wwv_qrz( 1309 struct peer *peer, /* peer structure pointer */ 1310 struct sync *sp, /* sync channel structure */ 1311 int pdelay /* propagation delay (samples) */ 1312 ) 1313 { 1314 struct refclockproc *pp; 1315 struct wwvunit *up; 1316 char tbuf[80]; /* monitor buffer */ 1317 long epoch; 1318 1319 pp = peer->procptr; 1320 up = (struct wwvunit *)pp->unitptr; 1321 1322 /* 1323 * Find the sample with peak amplitude, which defines the minute 1324 * epoch. Accumulate all samples to determine the total noise 1325 * energy. 1326 */ 1327 epoch = up->mphase - pdelay - SYNSIZ; 1328 if (epoch < 0) 1329 epoch += MINUTE; 1330 if (sp->amp > sp->maxeng) { 1331 sp->maxeng = sp->amp; 1332 sp->pos = epoch; 1333 } 1334 sp->noieng += sp->amp; 1335 1336 /* 1337 * At the end of the minute, determine the epoch of the minute 1338 * sync pulse, as well as the difference between the current and 1339 * previous epoches due to the intrinsic frequency error plus 1340 * jitter. When calculating the SNR, subtract the pulse energy 1341 * from the total noise energy and then normalize. 1342 */ 1343 if (up->mphase == 0) { 1344 sp->synmax = sp->maxeng; 1345 sp->synsnr = wwv_snr(sp->synmax, (sp->noieng - 1346 sp->synmax) / MINUTE); 1347 if (sp->count == 0) 1348 sp->lastpos = sp->pos; 1349 epoch = (sp->pos - sp->lastpos) % MINUTE; 1350 sp->reach <<= 1; 1351 if (sp->reach & (1 << AMAX)) 1352 sp->count--; 1353 if (sp->synmax > ATHR && sp->synsnr > ASNR) { 1354 if (abs(epoch) < AWND * MS) { 1355 sp->reach |= 1; 1356 sp->count++; 1357 sp->mepoch = sp->lastpos = sp->pos; 1358 } else if (sp->count == 1) { 1359 sp->lastpos = sp->pos; 1360 } 1361 } 1362 if (up->watch > ACQSN) 1363 sp->metric = 0; 1364 else 1365 sp->metric = wwv_metric(sp); 1366 if (pp->sloppyclockflag & CLK_FLAG4) { 1367 sprintf(tbuf, 1368 "wwv8 %04x %3d %s %04x %.0f %.0f/%.1f %4ld %4ld", 1369 up->status, up->gain, sp->refid, 1370 sp->reach & 0xffff, sp->metric, sp->synmax, 1371 sp->synsnr, sp->pos % SECOND, epoch); 1372 record_clock_stats(&peer->srcadr, tbuf); 1373 #ifdef DEBUG 1374 if (debug) 1375 printf("%s\n", tbuf); 1376 #endif /* DEBUG */ 1377 } 1378 sp->maxeng = sp->noieng = 0; 1379 } 1380 } 1381 1382 1383 /* 1384 * wwv_endpoc - identify and acquire second sync pulse 1385 * 1386 * This routine is called at the end of the second sync interval. It 1387 * determines the second sync epoch position within the second and 1388 * disciplines the sample clock using a frequency-lock loop (FLL). 1389 * 1390 * Second sync is determined in the RF input routine as the maximum 1391 * over all 8000 samples in the second comb filter. To assure accurate 1392 * and reliable time and frequency discipline, this routine performs a 1393 * great deal of heavy-handed heuristic data filtering and grooming. 1394 */ 1395 static void 1396 wwv_endpoc( 1397 struct peer *peer, /* peer structure pointer */ 1398 int epopos /* epoch max position */ 1399 ) 1400 { 1401 struct refclockproc *pp; 1402 struct wwvunit *up; 1403 static int epoch_mf[3]; /* epoch median filter */ 1404 static int tepoch; /* current second epoch */ 1405 static int xepoch; /* last second epoch */ 1406 static int zepoch; /* last run epoch */ 1407 static int zcount; /* last run end time */ 1408 static int scount; /* seconds counter */ 1409 static int syncnt; /* run length counter */ 1410 static int maxrun; /* longest run length */ 1411 static int mepoch; /* longest run end epoch */ 1412 static int mcount; /* longest run end time */ 1413 static int avgcnt; /* averaging interval counter */ 1414 static int avginc; /* averaging ratchet */ 1415 static int iniflg; /* initialization flag */ 1416 char tbuf[80]; /* monitor buffer */ 1417 double dtemp; 1418 int tmp2; 1419 1420 pp = peer->procptr; 1421 up = (struct wwvunit *)pp->unitptr; 1422 if (!iniflg) { 1423 iniflg = 1; 1424 memset((char *)epoch_mf, 0, sizeof(epoch_mf)); 1425 } 1426 1427 /* 1428 * If the signal amplitude or SNR fall below thresholds, dim the 1429 * second sync lamp and wait for hotter ions. If no stations are 1430 * heard, we are either in a probe cycle or the ions are really 1431 * cold. 1432 */ 1433 scount++; 1434 if (up->epomax < STHR || up->eposnr < SSNR) { 1435 up->status &= ~(SSYNC | FGATE); 1436 avgcnt = syncnt = maxrun = 0; 1437 return; 1438 } 1439 if (!(up->status & (SELV | SELH))) 1440 return; 1441 1442 /* 1443 * A three-stage median filter is used to help denoise the 1444 * second sync pulse. The median sample becomes the candidate 1445 * epoch. 1446 */ 1447 epoch_mf[2] = epoch_mf[1]; 1448 epoch_mf[1] = epoch_mf[0]; 1449 epoch_mf[0] = epopos; 1450 if (epoch_mf[0] > epoch_mf[1]) { 1451 if (epoch_mf[1] > epoch_mf[2]) 1452 tepoch = epoch_mf[1]; /* 0 1 2 */ 1453 else if (epoch_mf[2] > epoch_mf[0]) 1454 tepoch = epoch_mf[0]; /* 2 0 1 */ 1455 else 1456 tepoch = epoch_mf[2]; /* 0 2 1 */ 1457 } else { 1458 if (epoch_mf[1] < epoch_mf[2]) 1459 tepoch = epoch_mf[1]; /* 2 1 0 */ 1460 else if (epoch_mf[2] < epoch_mf[0]) 1461 tepoch = epoch_mf[0]; /* 1 0 2 */ 1462 else 1463 tepoch = epoch_mf[2]; /* 1 2 0 */ 1464 } 1465 1466 1467 /* 1468 * If the epoch candidate is the same as the last one, increment 1469 * the run counter. If not, save the length, epoch and end 1470 * time of the current run for use later and reset the counter. 1471 * The epoch is considered valid if the run is at least SCMP 1472 * (10) s, the minute is synchronized and the interval since the 1473 * last epoch is not greater than the averaging interval. Thus, 1474 * after a long absence, the program will wait a full averaging 1475 * interval while the comb filter charges up and noise 1476 * dissapates.. 1477 */ 1478 tmp2 = (tepoch - xepoch) % SECOND; 1479 if (tmp2 == 0) { 1480 syncnt++; 1481 if (syncnt > SCMP && up->status & MSYNC && (up->status & 1482 FGATE || scount - zcount <= up->avgint)) { 1483 up->status |= SSYNC; 1484 up->yepoch = tepoch; 1485 } 1486 } else if (syncnt >= maxrun) { 1487 maxrun = syncnt; 1488 mcount = scount; 1489 mepoch = xepoch; 1490 syncnt = 0; 1491 } 1492 if ((pp->sloppyclockflag & CLK_FLAG4) && !(up->status & MSYNC)) 1493 { 1494 sprintf(tbuf, 1495 "wwv1 %04x %3d %4d %5.0f %5.1f %5d %4d %4d %4d", 1496 up->status, up->gain, tepoch, up->epomax, 1497 up->eposnr, tmp2, avgcnt, syncnt, 1498 maxrun); 1499 record_clock_stats(&peer->srcadr, tbuf); 1500 #ifdef DEBUG 1501 if (debug) 1502 printf("%s\n", tbuf); 1503 #endif /* DEBUG */ 1504 } 1505 avgcnt++; 1506 if (avgcnt < up->avgint) { 1507 xepoch = tepoch; 1508 return; 1509 } 1510 1511 /* 1512 * The sample clock frequency is disciplined using a first-order 1513 * feedback loop with time constant consistent with the Allan 1514 * intercept of typical computer clocks. During each averaging 1515 * interval the candidate epoch at the end of the longest run is 1516 * determined. If the longest run is zero, all epoches in the 1517 * interval are different, so the candidate epoch is the current 1518 * epoch. The frequency update is computed from the candidate 1519 * epoch difference (125-us units) and time difference (seconds) 1520 * between updates. 1521 */ 1522 if (syncnt >= maxrun) { 1523 maxrun = syncnt; 1524 mcount = scount; 1525 mepoch = xepoch; 1526 } 1527 xepoch = tepoch; 1528 if (maxrun == 0) { 1529 mepoch = tepoch; 1530 mcount = scount; 1531 } 1532 1533 /* 1534 * The master clock runs at the codec sample frequency of 8000 1535 * Hz, so the intrinsic time resolution is 125 us. The frequency 1536 * resolution ranges from 18 PPM at the minimum averaging 1537 * interval of 8 s to 0.12 PPM at the maximum interval of 1024 1538 * s. An offset update is determined at the end of the longest 1539 * run in each averaging interval. The frequency adjustment is 1540 * computed from the difference between offset updates and the 1541 * interval between them. 1542 * 1543 * The maximum frequency adjustment ranges from 187 PPM at the 1544 * minimum interval to 1.5 PPM at the maximum. If the adjustment 1545 * exceeds the maximum, the update is discarded and the 1546 * hysteresis counter is decremented. Otherwise, the frequency 1547 * is incremented by the adjustment, but clamped to the maximum 1548 * 187.5 PPM. If the update is less than half the maximum, the 1549 * hysteresis counter is incremented. If the counter increments 1550 * to +3, the averaging interval is doubled and the counter set 1551 * to zero; if it decrements to -3, the interval is halved and 1552 * the counter set to zero. 1553 */ 1554 dtemp = (mepoch - zepoch) % SECOND; 1555 if (up->status & FGATE) { 1556 if (abs(dtemp) < MAXFREQ * MINAVG) { 1557 up->freq += (dtemp / 2.) / ((mcount - zcount) * 1558 FCONST); 1559 if (up->freq > MAXFREQ) 1560 up->freq = MAXFREQ; 1561 else if (up->freq < -MAXFREQ) 1562 up->freq = -MAXFREQ; 1563 if (abs(dtemp) < MAXFREQ * MINAVG / 2.) { 1564 if (avginc < 3) { 1565 avginc++; 1566 } else { 1567 if (up->avgint < MAXAVG) { 1568 up->avgint <<= 1; 1569 avginc = 0; 1570 } 1571 } 1572 } 1573 } else { 1574 if (avginc > -3) { 1575 avginc--; 1576 } else { 1577 if (up->avgint > MINAVG) { 1578 up->avgint >>= 1; 1579 avginc = 0; 1580 } 1581 } 1582 } 1583 } 1584 if (pp->sloppyclockflag & CLK_FLAG4) { 1585 sprintf(tbuf, 1586 "wwv2 %04x %5.0f %5.1f %5d %4d %4d %4d %4.0f %7.2f", 1587 up->status, up->epomax, up->eposnr, mepoch, 1588 up->avgint, maxrun, mcount - zcount, dtemp, 1589 up->freq * 1e6 / SECOND); 1590 record_clock_stats(&peer->srcadr, tbuf); 1591 #ifdef DEBUG 1592 if (debug) 1593 printf("%s\n", tbuf); 1594 #endif /* DEBUG */ 1595 } 1596 1597 /* 1598 * This is a valid update; set up for the next interval. 1599 */ 1600 up->status |= FGATE; 1601 zepoch = mepoch; 1602 zcount = mcount; 1603 avgcnt = syncnt = maxrun = 0; 1604 } 1605 1606 1607 /* 1608 * wwv_epoch - epoch scanner 1609 * 1610 * This routine extracts data signals from the 100-Hz subcarrier. It 1611 * scans the receiver second epoch to determine the signal amplitudes 1612 * and pulse timings. Receiver synchronization is determined by the 1613 * minute sync pulse detected in the wwv_rf() routine and the second 1614 * sync pulse detected in the wwv_epoch() routine. The transmitted 1615 * signals are delayed by the propagation delay, receiver delay and 1616 * filter delay of this program. Delay corrections are introduced 1617 * separately for WWV and WWVH. 1618 * 1619 * Most communications radios use a highpass filter in the audio stages, 1620 * which can do nasty things to the subcarrier phase relative to the 1621 * sync pulses. Therefore, the data subcarrier reference phase is 1622 * disciplined using the hardlimited quadrature-phase signal sampled at 1623 * the same time as the in-phase signal. The phase tracking loop uses 1624 * phase adjustments of plus-minus one sample (125 us). 1625 */ 1626 static void 1627 wwv_epoch( 1628 struct peer *peer /* peer structure pointer */ 1629 ) 1630 { 1631 struct refclockproc *pp; 1632 struct wwvunit *up; 1633 struct chan *cp; 1634 static double sigmin, sigzer, sigone, engmax, engmin; 1635 1636 pp = peer->procptr; 1637 up = (struct wwvunit *)pp->unitptr; 1638 1639 /* 1640 * Find the maximum minute sync pulse energy for both the 1641 * WWV and WWVH stations. This will be used later for channel 1642 * and station mitigation. Also set the seconds epoch at 800 ms 1643 * well before the end of the second to make sure we never set 1644 * the epoch backwards. 1645 */ 1646 cp = &up->mitig[up->achan]; 1647 if (cp->wwv.amp > cp->wwv.syneng) 1648 cp->wwv.syneng = cp->wwv.amp; 1649 if (cp->wwvh.amp > cp->wwvh.syneng) 1650 cp->wwvh.syneng = cp->wwvh.amp; 1651 if (up->rphase == 800 * MS) 1652 up->repoch = up->yepoch; 1653 1654 /* 1655 * Use the signal amplitude at epoch 15 ms as the noise floor. 1656 * This gives a guard time of +-15 ms from the beginning of the 1657 * second until the second pulse rises at 30 ms. There is a 1658 * compromise here; we want to delay the sample as long as 1659 * possible to give the radio time to change frequency and the 1660 * AGC to stabilize, but as early as possible if the second 1661 * epoch is not exact. 1662 */ 1663 if (up->rphase == 15 * MS) 1664 sigmin = sigzer = sigone = up->irig; 1665 1666 /* 1667 * Latch the data signal at 200 ms. Keep this around until the 1668 * end of the second. Use the signal energy as the peak to 1669 * compute the SNR. Use the Q sample to adjust the 100-Hz 1670 * reference oscillator phase. 1671 */ 1672 if (up->rphase == 200 * MS) { 1673 sigzer = up->irig; 1674 engmax = sqrt(up->irig * up->irig + up->qrig * 1675 up->qrig); 1676 up->datpha = up->qrig / up->avgint; 1677 if (up->datpha >= 0) { 1678 up->datapt++; 1679 if (up->datapt >= 80) 1680 up->datapt -= 80; 1681 } else { 1682 up->datapt--; 1683 if (up->datapt < 0) 1684 up->datapt += 80; 1685 } 1686 } 1687 1688 1689 /* 1690 * Latch the data signal at 500 ms. Keep this around until the 1691 * end of the second. 1692 */ 1693 else if (up->rphase == 500 * MS) 1694 sigone = up->irig; 1695 1696 /* 1697 * At the end of the second crank the clock state machine and 1698 * adjust the codec gain. Note the epoch is buffered from the 1699 * center of the second in order to avoid jitter while the 1700 * seconds synch is diddling the epoch. Then, determine the true 1701 * offset and update the median filter in the driver interface. 1702 * 1703 * Use the energy at the end of the second as the noise to 1704 * compute the SNR for the data pulse. This gives a better 1705 * measurement than the beginning of the second, especially when 1706 * returning from the probe channel. This gives a guard time of 1707 * 30 ms from the decay of the longest pulse to the rise of the 1708 * next pulse. 1709 */ 1710 up->rphase++; 1711 if (up->mphase % SECOND == up->repoch) { 1712 up->status &= ~(DGATE | BGATE); 1713 engmin = sqrt(up->irig * up->irig + up->qrig * 1714 up->qrig); 1715 up->datsig = engmax; 1716 up->datsnr = wwv_snr(engmax, engmin); 1717 1718 /* 1719 * If the amplitude or SNR is below threshold, average a 1720 * 0 in the the integrators; otherwise, average the 1721 * bipolar signal. This is done to avoid noise polution. 1722 */ 1723 if (engmax < DTHR || up->datsnr < DSNR) { 1724 up->status |= DGATE; 1725 wwv_rsec(peer, 0); 1726 } else { 1727 sigzer -= sigone; 1728 sigone -= sigmin; 1729 wwv_rsec(peer, sigone - sigzer); 1730 } 1731 if (up->status & (DGATE | BGATE)) 1732 up->errcnt++; 1733 if (up->errcnt > MAXERR) 1734 up->alarm |= LOWERR; 1735 wwv_gain(peer); 1736 cp = &up->mitig[up->achan]; 1737 cp->wwv.syneng = 0; 1738 cp->wwvh.syneng = 0; 1739 up->rphase = 0; 1740 } 1741 } 1742 1743 1744 /* 1745 * wwv_rsec - process receiver second 1746 * 1747 * This routine is called at the end of each receiver second to 1748 * implement the per-second state machine. The machine assembles BCD 1749 * digit bits, decodes miscellaneous bits and dances the leap seconds. 1750 * 1751 * Normally, the minute has 60 seconds numbered 0-59. If the leap 1752 * warning bit is set, the last minute (1439) of 30 June (day 181 or 182 1753 * for leap years) or 31 December (day 365 or 366 for leap years) is 1754 * augmented by one second numbered 60. This is accomplished by 1755 * extending the minute interval by one second and teaching the state 1756 * machine to ignore it. 1757 */ 1758 static void 1759 wwv_rsec( 1760 struct peer *peer, /* peer structure pointer */ 1761 double bit 1762 ) 1763 { 1764 static int iniflg; /* initialization flag */ 1765 static double bcddld[4]; /* BCD data bits */ 1766 static double bitvec[61]; /* bit integrator for misc bits */ 1767 struct refclockproc *pp; 1768 struct wwvunit *up; 1769 struct chan *cp; 1770 struct sync *sp, *rp; 1771 char tbuf[80]; /* monitor buffer */ 1772 int sw, arg, nsec; 1773 1774 pp = peer->procptr; 1775 up = (struct wwvunit *)pp->unitptr; 1776 if (!iniflg) { 1777 iniflg = 1; 1778 memset((char *)bitvec, 0, sizeof(bitvec)); 1779 } 1780 1781 /* 1782 * The bit represents the probability of a hit on zero (negative 1783 * values), a hit on one (positive values) or a miss (zero 1784 * value). The likelihood vector is the exponential average of 1785 * these probabilities. Only the bits of this vector 1786 * corresponding to the miscellaneous bits of the timecode are 1787 * used, but it's easier to do them all. After that, crank the 1788 * seconds state machine. 1789 */ 1790 nsec = up->rsec; 1791 up->rsec++; 1792 bitvec[nsec] += (bit - bitvec[nsec]) / TCONST; 1793 sw = progx[nsec].sw; 1794 arg = progx[nsec].arg; 1795 1796 /* 1797 * The minute state machine. Fly off to a particular section as 1798 * directed by the transition matrix and second number. 1799 */ 1800 switch (sw) { 1801 1802 /* 1803 * Ignore this second. 1804 */ 1805 case IDLE: /* 9, 45-49 */ 1806 break; 1807 1808 /* 1809 * Probe channel stuff 1810 * 1811 * The WWV/H format contains data pulses in second 59 (position 1812 * identifier) and second 1, but not in second 0. The minute 1813 * sync pulse is contained in second 0. At the end of second 58 1814 * QSY to the probe channel, which rotates in turn over all 1815 * WWV/H frequencies. At the end of second 0 measure the minute 1816 * sync pulse. At the end of second 1 measure the data pulse and 1817 * QSY back to the data channel. Note that the actions commented 1818 * here happen at the end of the second numbered as shown. 1819 * 1820 * At the end of second 0 save the minute sync amplitude latched 1821 * at 800 ms as the signal later used to calculate the SNR. 1822 */ 1823 case SYNC2: /* 0 */ 1824 cp = &up->mitig[up->achan]; 1825 cp->wwv.synmax = cp->wwv.syneng; 1826 cp->wwvh.synmax = cp->wwvh.syneng; 1827 break; 1828 1829 /* 1830 * At the end of second 1 use the minute sync amplitude latched 1831 * at 800 ms as the noise to calculate the SNR. If the minute 1832 * sync pulse and SNR are above thresholds and the data pulse 1833 * amplitude and SNR are above thresolds, shift a 1 into the 1834 * station reachability register; otherwise, shift a 0. The 1835 * number of 1 bits in the last six intervals is a component of 1836 * the channel metric computed by the wwv_metric() routine. 1837 * Finally, QSY back to the data channel. 1838 */ 1839 case SYNC3: /* 1 */ 1840 cp = &up->mitig[up->achan]; 1841 1842 /* 1843 * WWV station 1844 */ 1845 sp = &cp->wwv; 1846 sp->synsnr = wwv_snr(sp->synmax, sp->amp); 1847 sp->reach <<= 1; 1848 if (sp->reach & (1 << AMAX)) 1849 sp->count--; 1850 if (sp->synmax >= QTHR && sp->synsnr >= QSNR && 1851 !(up->status & (DGATE | BGATE))) { 1852 sp->reach |= 1; 1853 sp->count++; 1854 } 1855 sp->metric = wwv_metric(sp); 1856 1857 /* 1858 * WWVH station 1859 */ 1860 rp = &cp->wwvh; 1861 rp->synsnr = wwv_snr(rp->synmax, rp->amp); 1862 rp->reach <<= 1; 1863 if (rp->reach & (1 << AMAX)) 1864 rp->count--; 1865 if (rp->synmax >= QTHR && rp->synsnr >= QSNR && 1866 !(up->status & (DGATE | BGATE))) { 1867 rp->reach |= 1; 1868 rp->count++; 1869 } 1870 rp->metric = wwv_metric(rp); 1871 if (pp->sloppyclockflag & CLK_FLAG4) { 1872 sprintf(tbuf, 1873 "wwv5 %04x %3d %4d %.0f/%.1f %.0f/%.1f %s %04x %.0f %.0f/%.1f %s %04x %.0f %.0f/%.1f", 1874 up->status, up->gain, up->yepoch, 1875 up->epomax, up->eposnr, up->datsig, 1876 up->datsnr, 1877 sp->refid, sp->reach & 0xffff, 1878 sp->metric, sp->synmax, sp->synsnr, 1879 rp->refid, rp->reach & 0xffff, 1880 rp->metric, rp->synmax, rp->synsnr); 1881 record_clock_stats(&peer->srcadr, tbuf); 1882 #ifdef DEBUG 1883 if (debug) 1884 printf("%s\n", tbuf); 1885 #endif /* DEBUG */ 1886 } 1887 up->errcnt = up->digcnt = up->alarm = 0; 1888 1889 /* 1890 * We now begin the minute scan. If not yet synchronized 1891 * to a station, restart if the units digit has not been 1892 * found within the DATA timeout (15 m) or if not 1893 * synchronized within the SYNCH timeout (40 m). After 1894 * synchronizing to a station, restart if no stations 1895 * are found within the PANIC timeout (2 days). 1896 */ 1897 if (up->status & INSYNC) { 1898 if (up->watch > PANIC) { 1899 wwv_newgame(peer); 1900 return; 1901 } 1902 } else { 1903 if (!(up->status & DSYNC)) { 1904 if (up->watch > DATA) { 1905 wwv_newgame(peer); 1906 return; 1907 } 1908 } 1909 if (up->watch > SYNCH) { 1910 wwv_newgame(peer); 1911 return; 1912 } 1913 } 1914 wwv_newchan(peer); 1915 #ifdef ICOM 1916 if (up->fd_icom > 0) 1917 wwv_qsy(peer, up->dchan); 1918 #endif /* ICOM */ 1919 break; 1920 1921 /* 1922 * Save the bit probability in the BCD data vector at the index 1923 * given by the argument. Bits not used in the digit are forced 1924 * to zero. 1925 */ 1926 case COEF1: /* 4-7 */ 1927 bcddld[arg] = bit; 1928 break; 1929 1930 case COEF: /* 10-13, 15-17, 20-23, 25-26, 1931 30-33, 35-38, 40-41, 51-54 */ 1932 if (up->status & DSYNC) 1933 bcddld[arg] = bit; 1934 else 1935 bcddld[arg] = 0; 1936 break; 1937 1938 case COEF2: /* 18, 27-28, 42-43 */ 1939 bcddld[arg] = 0; 1940 break; 1941 1942 /* 1943 * Correlate coefficient vector with each valid digit vector and 1944 * save in decoding matrix. We step through the decoding matrix 1945 * digits correlating each with the coefficients and saving the 1946 * greatest and the next lower for later SNR calculation. 1947 */ 1948 case DECIM2: /* 29 */ 1949 wwv_corr4(peer, &up->decvec[arg], bcddld, bcd2); 1950 break; 1951 1952 case DECIM3: /* 44 */ 1953 wwv_corr4(peer, &up->decvec[arg], bcddld, bcd3); 1954 break; 1955 1956 case DECIM6: /* 19 */ 1957 wwv_corr4(peer, &up->decvec[arg], bcddld, bcd6); 1958 break; 1959 1960 case DECIM9: /* 8, 14, 24, 34, 39 */ 1961 wwv_corr4(peer, &up->decvec[arg], bcddld, bcd9); 1962 break; 1963 1964 /* 1965 * Miscellaneous bits. If above the positive threshold, declare 1966 * 1; if below the negative threshold, declare 0; otherwise 1967 * raise the BGATE bit. The design is intended to avoid 1968 * integrating noise under low SNR conditions. 1969 */ 1970 case MSC20: /* 55 */ 1971 wwv_corr4(peer, &up->decvec[YR + 1], bcddld, bcd9); 1972 /* fall through */ 1973 1974 case MSCBIT: /* 2-3, 50, 56-57 */ 1975 if (bitvec[nsec] > BTHR) { 1976 if (!(up->misc & arg)) 1977 up->alarm |= CMPERR; 1978 up->misc |= arg; 1979 } else if (bitvec[nsec] < -BTHR) { 1980 if (up->misc & arg) 1981 up->alarm |= CMPERR; 1982 up->misc &= ~arg; 1983 } else { 1984 up->status |= BGATE; 1985 } 1986 break; 1987 1988 /* 1989 * Save the data channel gain, then QSY to the probe channel and 1990 * dim the seconds comb filters. The newchan() routine will 1991 * light them back up. 1992 */ 1993 case MSC21: /* 58 */ 1994 if (bitvec[nsec] > BTHR) { 1995 if (!(up->misc & arg)) 1996 up->alarm |= CMPERR; 1997 up->misc |= arg; 1998 } else if (bitvec[nsec] < -BTHR) { 1999 if (up->misc & arg) 2000 up->alarm |= CMPERR; 2001 up->misc &= ~arg; 2002 } else { 2003 up->status |= BGATE; 2004 } 2005 up->status &= ~(SELV | SELH); 2006 #ifdef ICOM 2007 if (up->fd_icom > 0) { 2008 up->schan = (up->schan + 1) % NCHAN; 2009 wwv_qsy(peer, up->schan); 2010 } else { 2011 up->mitig[up->achan].gain = up->gain; 2012 } 2013 #else 2014 up->mitig[up->achan].gain = up->gain; 2015 #endif /* ICOM */ 2016 break; 2017 2018 /* 2019 * The endgames 2020 * 2021 * During second 59 the receiver and codec AGC are settling 2022 * down, so the data pulse is unusable as quality metric. If 2023 * LEPSEC is set on the last minute of 30 June or 31 December, 2024 * the transmitter and receiver insert an extra second (60) in 2025 * the timescale and the minute sync repeats the second. Once 2026 * leaps occurred at intervals of about 18 months, but the last 2027 * leap before the most recent leap in 1995 was in 1998. 2028 */ 2029 case MIN1: /* 59 */ 2030 if (up->status & LEPSEC) 2031 break; 2032 2033 /* fall through */ 2034 2035 case MIN2: /* 60 */ 2036 up->status &= ~LEPSEC; 2037 wwv_tsec(peer); 2038 up->rsec = 0; 2039 wwv_clock(peer); 2040 break; 2041 } 2042 if ((pp->sloppyclockflag & CLK_FLAG4) && !(up->status & 2043 DSYNC)) { 2044 sprintf(tbuf, 2045 "wwv3 %2d %04x %3d %4d %5.0f %5.1f %5.0f %5.1f %5.0f", 2046 nsec, up->status, up->gain, up->yepoch, up->epomax, 2047 up->eposnr, up->datsig, up->datsnr, bit); 2048 record_clock_stats(&peer->srcadr, tbuf); 2049 #ifdef DEBUG 2050 if (debug) 2051 printf("%s\n", tbuf); 2052 #endif /* DEBUG */ 2053 } 2054 pp->disp += AUDIO_PHI; 2055 } 2056 2057 /* 2058 * The radio clock is set if the alarm bits are all zero. After that, 2059 * the time is considered valid if the second sync bit is lit. It should 2060 * not be a surprise, especially if the radio is not tunable, that 2061 * sometimes no stations are above the noise and the integrators 2062 * discharge below the thresholds. We assume that, after a day of signal 2063 * loss, the minute sync epoch will be in the same second. This requires 2064 * the codec frequency be accurate within 6 PPM. Practical experience 2065 * shows the frequency typically within 0.1 PPM, so after a day of 2066 * signal loss, the time should be within 8.6 ms.. 2067 */ 2068 static void 2069 wwv_clock( 2070 struct peer *peer /* peer unit pointer */ 2071 ) 2072 { 2073 struct refclockproc *pp; 2074 struct wwvunit *up; 2075 l_fp offset; /* offset in NTP seconds */ 2076 2077 pp = peer->procptr; 2078 up = (struct wwvunit *)pp->unitptr; 2079 if (!(up->status & SSYNC)) 2080 up->alarm |= SYNERR; 2081 if (up->digcnt < 9) 2082 up->alarm |= NINERR; 2083 if (!(up->alarm)) 2084 up->status |= INSYNC; 2085 if (up->status & INSYNC && up->status & SSYNC) { 2086 if (up->misc & SECWAR) 2087 pp->leap = LEAP_ADDSECOND; 2088 else 2089 pp->leap = LEAP_NOWARNING; 2090 pp->second = up->rsec; 2091 pp->minute = up->decvec[MN].digit + up->decvec[MN + 2092 1].digit * 10; 2093 pp->hour = up->decvec[HR].digit + up->decvec[HR + 2094 1].digit * 10; 2095 pp->day = up->decvec[DA].digit + up->decvec[DA + 2096 1].digit * 10 + up->decvec[DA + 2].digit * 100; 2097 pp->year = up->decvec[YR].digit + up->decvec[YR + 2098 1].digit * 10; 2099 pp->year += 2000; 2100 L_CLR(&offset); 2101 if (!clocktime(pp->day, pp->hour, pp->minute, 2102 pp->second, GMT, up->timestamp.l_ui, 2103 &pp->yearstart, &offset.l_ui)) { 2104 up->errflg = CEVNT_BADTIME; 2105 } else { 2106 up->watch = 0; 2107 pp->disp = 0; 2108 pp->lastref = up->timestamp; 2109 refclock_process_offset(pp, offset, 2110 up->timestamp, PDELAY); 2111 refclock_receive(peer); 2112 } 2113 } 2114 pp->lencode = timecode(up, pp->a_lastcode); 2115 record_clock_stats(&peer->srcadr, pp->a_lastcode); 2116 #ifdef DEBUG 2117 if (debug) 2118 printf("wwv: timecode %d %s\n", pp->lencode, 2119 pp->a_lastcode); 2120 #endif /* DEBUG */ 2121 } 2122 2123 2124 /* 2125 * wwv_corr4 - determine maximum likelihood digit 2126 * 2127 * This routine correlates the received digit vector with the BCD 2128 * coefficient vectors corresponding to all valid digits at the given 2129 * position in the decoding matrix. The maximum value corresponds to the 2130 * maximum likelihood digit, while the ratio of this value to the next 2131 * lower value determines the likelihood function. Note that, if the 2132 * digit is invalid, the likelihood vector is averaged toward a miss. 2133 */ 2134 static void 2135 wwv_corr4( 2136 struct peer *peer, /* peer unit pointer */ 2137 struct decvec *vp, /* decoding table pointer */ 2138 double data[], /* received data vector */ 2139 double tab[][4] /* correlation vector array */ 2140 ) 2141 { 2142 struct refclockproc *pp; 2143 struct wwvunit *up; 2144 double topmax, nxtmax; /* metrics */ 2145 double acc; /* accumulator */ 2146 char tbuf[80]; /* monitor buffer */ 2147 int mldigit; /* max likelihood digit */ 2148 int i, j; 2149 2150 pp = peer->procptr; 2151 up = (struct wwvunit *)pp->unitptr; 2152 2153 /* 2154 * Correlate digit vector with each BCD coefficient vector. If 2155 * any BCD digit bit is bad, consider all bits a miss. Until the 2156 * minute units digit has been resolved, don't to anything else. 2157 * Note the SNR is calculated as the ratio of the largest 2158 * likelihood value to the next largest likelihood value. 2159 */ 2160 mldigit = 0; 2161 topmax = nxtmax = -MAXAMP; 2162 for (i = 0; tab[i][0] != 0; i++) { 2163 acc = 0; 2164 for (j = 0; j < 4; j++) 2165 acc += data[j] * tab[i][j]; 2166 acc = (vp->like[i] += (acc - vp->like[i]) / TCONST); 2167 if (acc > topmax) { 2168 nxtmax = topmax; 2169 topmax = acc; 2170 mldigit = i; 2171 } else if (acc > nxtmax) { 2172 nxtmax = acc; 2173 } 2174 } 2175 vp->digprb = topmax; 2176 vp->digsnr = wwv_snr(topmax, nxtmax); 2177 2178 /* 2179 * The current maximum likelihood digit is compared to the last 2180 * maximum likelihood digit. If different, the compare counter 2181 * and maximum likelihood digit are reset. When the compare 2182 * counter reaches the BCMP threshold (3), the digit is assumed 2183 * correct. When the compare counter of all nine digits have 2184 * reached threshold, the clock is assumed correct. 2185 * 2186 * Note that the clock display digit is set before the compare 2187 * counter has reached threshold; however, the clock display is 2188 * not considered correct until all nine clock digits have 2189 * reached threshold. This is intended as eye candy, but avoids 2190 * mistakes when the signal is low and the SNR is very marginal. 2191 * once correctly set, the maximum likelihood digit is ignored 2192 * on the assumption the clock will always be correct unless for 2193 * some reason it drifts to a different second. 2194 */ 2195 vp->mldigit = mldigit; 2196 if (vp->digprb < BTHR || vp->digsnr < BSNR) { 2197 vp->count = 0; 2198 up->status |= BGATE; 2199 } else { 2200 up->status |= DSYNC; 2201 if (vp->digit != mldigit) { 2202 vp->count = 0; 2203 up->alarm |= CMPERR; 2204 if (!(up->status & INSYNC)) 2205 vp->digit = mldigit; 2206 } else { 2207 if (vp->count < BCMP) 2208 vp->count++; 2209 else 2210 up->digcnt++; 2211 } 2212 } 2213 if ((pp->sloppyclockflag & CLK_FLAG4) && !(up->status & 2214 INSYNC)) { 2215 sprintf(tbuf, 2216 "wwv4 %2d %04x %3d %4d %5.0f %2d %d %d %d %5.0f %5.1f", 2217 up->rsec - 1, up->status, up->gain, up->yepoch, 2218 up->epomax, vp->radix, vp->digit, vp->mldigit, 2219 vp->count, vp->digprb, vp->digsnr); 2220 record_clock_stats(&peer->srcadr, tbuf); 2221 #ifdef DEBUG 2222 if (debug) 2223 printf("%s\n", tbuf); 2224 #endif /* DEBUG */ 2225 } 2226 } 2227 2228 2229 /* 2230 * wwv_tsec - transmitter minute processing 2231 * 2232 * This routine is called at the end of the transmitter minute. It 2233 * implements a state machine that advances the logical clock subject to 2234 * the funny rules that govern the conventional clock and calendar. 2235 */ 2236 static void 2237 wwv_tsec( 2238 struct peer *peer /* driver structure pointer */ 2239 ) 2240 { 2241 struct refclockproc *pp; 2242 struct wwvunit *up; 2243 int minute, day, isleap; 2244 int temp; 2245 2246 pp = peer->procptr; 2247 up = (struct wwvunit *)pp->unitptr; 2248 2249 /* 2250 * Advance minute unit of the day. Don't propagate carries until 2251 * the unit minute digit has been found. 2252 */ 2253 temp = carry(&up->decvec[MN]); /* minute units */ 2254 if (!(up->status & DSYNC)) 2255 return; 2256 2257 /* 2258 * Propagate carries through the day. 2259 */ 2260 if (temp == 0) /* carry minutes */ 2261 temp = carry(&up->decvec[MN + 1]); 2262 if (temp == 0) /* carry hours */ 2263 temp = carry(&up->decvec[HR]); 2264 if (temp == 0) 2265 temp = carry(&up->decvec[HR + 1]); 2266 2267 /* 2268 * Decode the current minute and day. Set leap day if the 2269 * timecode leap bit is set on 30 June or 31 December. Set leap 2270 * minute if the last minute on leap day, but only if the clock 2271 * is syncrhronized. This code fails in 2400 AD. 2272 */ 2273 minute = up->decvec[MN].digit + up->decvec[MN + 1].digit * 2274 10 + up->decvec[HR].digit * 60 + up->decvec[HR + 2275 1].digit * 600; 2276 day = up->decvec[DA].digit + up->decvec[DA + 1].digit * 10 + 2277 up->decvec[DA + 2].digit * 100; 2278 2279 /* 2280 * Set the leap bit on the last minute of the leap day. 2281 */ 2282 isleap = up->decvec[YR].digit & 0x3; 2283 if (up->misc & SECWAR && up->status & INSYNC) { 2284 if ((day == (isleap ? 182 : 183) || day == (isleap ? 2285 365 : 366)) && minute == 1439) 2286 up->status |= LEPSEC; 2287 } 2288 2289 /* 2290 * Roll the day if this the first minute and propagate carries 2291 * through the year. 2292 */ 2293 if (minute != 1440) 2294 return; 2295 2296 minute = 0; 2297 while (carry(&up->decvec[HR]) != 0); /* advance to minute 0 */ 2298 while (carry(&up->decvec[HR + 1]) != 0); 2299 day++; 2300 temp = carry(&up->decvec[DA]); /* carry days */ 2301 if (temp == 0) 2302 temp = carry(&up->decvec[DA + 1]); 2303 if (temp == 0) 2304 temp = carry(&up->decvec[DA + 2]); 2305 2306 /* 2307 * Roll the year if this the first day and propagate carries 2308 * through the century. 2309 */ 2310 if (day != (isleap ? 365 : 366)) 2311 return; 2312 2313 day = 1; 2314 while (carry(&up->decvec[DA]) != 1); /* advance to day 1 */ 2315 while (carry(&up->decvec[DA + 1]) != 0); 2316 while (carry(&up->decvec[DA + 2]) != 0); 2317 temp = carry(&up->decvec[YR]); /* carry years */ 2318 if (temp == 0) 2319 carry(&up->decvec[YR + 1]); 2320 } 2321 2322 2323 /* 2324 * carry - process digit 2325 * 2326 * This routine rotates a likelihood vector one position and increments 2327 * the clock digit modulo the radix. It returns the new clock digit or 2328 * zero if a carry occurred. Once synchronized, the clock digit will 2329 * match the maximum likelihood digit corresponding to that position. 2330 */ 2331 static int 2332 carry( 2333 struct decvec *dp /* decoding table pointer */ 2334 ) 2335 { 2336 int temp; 2337 int j; 2338 2339 dp->digit++; 2340 if (dp->digit == dp->radix) 2341 dp->digit = 0; 2342 temp = dp->like[dp->radix - 1]; 2343 for (j = dp->radix - 1; j > 0; j--) 2344 dp->like[j] = dp->like[j - 1]; 2345 dp->like[0] = temp; 2346 return (dp->digit); 2347 } 2348 2349 2350 /* 2351 * wwv_snr - compute SNR or likelihood function 2352 */ 2353 static double 2354 wwv_snr( 2355 double signal, /* signal */ 2356 double noise /* noise */ 2357 ) 2358 { 2359 double rval; 2360 2361 /* 2362 * This is a little tricky. Due to the way things are measured, 2363 * either or both the signal or noise amplitude can be negative 2364 * or zero. The intent is that, if the signal is negative or 2365 * zero, the SNR must always be zero. This can happen with the 2366 * subcarrier SNR before the phase has been aligned. On the 2367 * other hand, in the likelihood function the "noise" is the 2368 * next maximum down from the peak and this could be negative. 2369 * However, in this case the SNR is truly stupendous, so we 2370 * simply cap at MAXSNR dB (40). 2371 */ 2372 if (signal <= 0) { 2373 rval = 0; 2374 } else if (noise <= 0) { 2375 rval = MAXSNR; 2376 } else { 2377 rval = 20. * log10(signal / noise); 2378 if (rval > MAXSNR) 2379 rval = MAXSNR; 2380 } 2381 return (rval); 2382 } 2383 2384 2385 /* 2386 * wwv_newchan - change to new data channel 2387 * 2388 * The radio actually appears to have ten channels, one channel for each 2389 * of five frequencies and each of two stations (WWV and WWVH), although 2390 * if not tunable only the DCHAN channel appears live. While the radio 2391 * is tuned to the working data channel frequency and station for most 2392 * of the minute, during seconds 59, 0 and 1 the radio is tuned to a 2393 * probe frequency in order to search for minute sync pulse and data 2394 * subcarrier from other transmitters. 2395 * 2396 * The search for WWV and WWVH operates simultaneously, with WWV minute 2397 * sync pulse at 1000 Hz and WWVH at 1200 Hz. The probe frequency 2398 * rotates each minute over 2.5, 5, 10, 15 and 20 MHz in order and yes, 2399 * we all know WWVH is dark on 20 MHz, but few remember when WWV was lit 2400 * on 25 MHz. 2401 * 2402 * This routine selects the best channel using a metric computed from 2403 * the reachability register and minute pulse amplitude. Normally, the 2404 * award goes to the the channel with the highest metric; but, in case 2405 * of ties, the award goes to the channel with the highest minute sync 2406 * pulse amplitude and then to the highest frequency. 2407 * 2408 * The routine performs an important squelch function to keep dirty data 2409 * from polluting the integrators. In order to consider a station valid, 2410 * the metric must be at least MTHR (13); otherwise, the station select 2411 * bits are cleared so the second sync is disabled and the data bit 2412 * integrators averaged to a miss. 2413 */ 2414 static int 2415 wwv_newchan( 2416 struct peer *peer /* peer structure pointer */ 2417 ) 2418 { 2419 struct refclockproc *pp; 2420 struct wwvunit *up; 2421 struct sync *sp, *rp; 2422 double rank, dtemp; 2423 int i, j; 2424 2425 pp = peer->procptr; 2426 up = (struct wwvunit *)pp->unitptr; 2427 2428 /* 2429 * Search all five station pairs looking for the channel with 2430 * maximum metric. If no station is found above thresholds, tune 2431 * to WWV on 15 MHz, set the reference ID to NONE and wait for 2432 * hotter ions. 2433 */ 2434 sp = NULL; 2435 j = 0; 2436 rank = 0; 2437 for (i = 0; i < NCHAN; i++) { 2438 rp = &up->mitig[i].wwvh; 2439 dtemp = rp->metric; 2440 if (dtemp >= rank) { 2441 rank = dtemp; 2442 sp = rp; 2443 j = i; 2444 } 2445 rp = &up->mitig[i].wwv; 2446 dtemp = rp->metric; 2447 if (dtemp >= rank) { 2448 rank = dtemp; 2449 sp = rp; 2450 j = i; 2451 } 2452 } 2453 2454 /* 2455 * If the strongest signal is less than the MTHR threshold (13), 2456 * we are beneath the waves, so squelch the second sync. If the 2457 * strongest signal is greater than the threshold, tune to that 2458 * frequency and transmitter QTH. 2459 */ 2460 if (rank < MTHR) { 2461 up->dchan = (up->dchan + 1) % NCHAN; 2462 up->status &= ~(SELV | SELH); 2463 return (FALSE); 2464 } 2465 up->dchan = j; 2466 up->status |= SELV | SELH; 2467 up->sptr = sp; 2468 memcpy(&pp->refid, sp->refid, 4); 2469 peer->refid = pp->refid; 2470 return (TRUE); 2471 } 2472 2473 2474 /* 2475 * wwv_newgame - reset and start over 2476 * 2477 * There are four conditions resulting in a new game: 2478 * 2479 * 1 During initial acquisition (MSYNC dark) going 6 minutes (ACQSN) 2480 * without reliably finding the minute pulse (MSYNC lit). 2481 * 2482 * 2 After finding the minute pulse (MSYNC lit), going 15 minutes 2483 * (DATA) without finding the unit seconds digit. 2484 * 2485 * 3 After finding good data (DATA lit), going more than 40 minutes 2486 * (SYNCH) without finding station sync (INSYNC lit). 2487 * 2488 * 4 After finding station sync (INSYNC lit), going more than 2 days 2489 * (PANIC) without finding any station. 2490 */ 2491 static void 2492 wwv_newgame( 2493 struct peer *peer /* peer structure pointer */ 2494 ) 2495 { 2496 struct refclockproc *pp; 2497 struct wwvunit *up; 2498 struct chan *cp; 2499 int i; 2500 2501 pp = peer->procptr; 2502 up = (struct wwvunit *)pp->unitptr; 2503 2504 /* 2505 * Initialize strategic values. Note we set the leap bits 2506 * NOTINSYNC and the refid "NONE". 2507 */ 2508 peer->leap = LEAP_NOTINSYNC; 2509 up->watch = up->status = up->alarm = 0; 2510 up->avgint = MINAVG; 2511 up->freq = 0; 2512 up->gain = MAXGAIN / 2; 2513 2514 /* 2515 * Initialize the station processes for audio gain, select bit, 2516 * station/frequency identifier and reference identifier. Start 2517 * probing at the next channel after the data channel. 2518 */ 2519 memset(up->mitig, 0, sizeof(up->mitig)); 2520 for (i = 0; i < NCHAN; i++) { 2521 cp = &up->mitig[i]; 2522 cp->gain = up->gain; 2523 cp->wwv.select = SELV; 2524 sprintf(cp->wwv.refid, "WV%.0f", floor(qsy[i])); 2525 cp->wwvh.select = SELH; 2526 sprintf(cp->wwvh.refid, "WH%.0f", floor(qsy[i])); 2527 } 2528 up->dchan = (DCHAN + NCHAN - 1) % NCHAN;; 2529 wwv_newchan(peer); 2530 up->achan = up->schan = up->dchan; 2531 #ifdef ICOM 2532 if (up->fd_icom > 0) 2533 wwv_qsy(peer, up->dchan); 2534 #endif /* ICOM */ 2535 } 2536 2537 /* 2538 * wwv_metric - compute station metric 2539 * 2540 * The most significant bits represent the number of ones in the 2541 * station reachability register. The least significant bits represent 2542 * the minute sync pulse amplitude. The combined value is scaled 0-100. 2543 */ 2544 double 2545 wwv_metric( 2546 struct sync *sp /* station pointer */ 2547 ) 2548 { 2549 double dtemp; 2550 2551 dtemp = sp->count * MAXAMP; 2552 if (sp->synmax < MAXAMP) 2553 dtemp += sp->synmax; 2554 else 2555 dtemp += MAXAMP - 1; 2556 dtemp /= (AMAX + 1) * MAXAMP; 2557 return (dtemp * 100.); 2558 } 2559 2560 2561 #ifdef ICOM 2562 /* 2563 * wwv_qsy - Tune ICOM receiver 2564 * 2565 * This routine saves the AGC for the current channel, switches to a new 2566 * channel and restores the AGC for that channel. If a tunable receiver 2567 * is not available, just fake it. 2568 */ 2569 static int 2570 wwv_qsy( 2571 struct peer *peer, /* peer structure pointer */ 2572 int chan /* channel */ 2573 ) 2574 { 2575 int rval = 0; 2576 struct refclockproc *pp; 2577 struct wwvunit *up; 2578 2579 pp = peer->procptr; 2580 up = (struct wwvunit *)pp->unitptr; 2581 if (up->fd_icom > 0) { 2582 up->mitig[up->achan].gain = up->gain; 2583 rval = icom_freq(up->fd_icom, peer->ttl & 0x7f, 2584 qsy[chan]); 2585 up->achan = chan; 2586 up->gain = up->mitig[up->achan].gain; 2587 } 2588 return (rval); 2589 } 2590 #endif /* ICOM */ 2591 2592 2593 /* 2594 * timecode - assemble timecode string and length 2595 * 2596 * Prettytime format - similar to Spectracom 2597 * 2598 * sq yy ddd hh:mm:ss ld dut lset agc iden sig errs freq avgt 2599 * 2600 * s sync indicator ('?' or ' ') 2601 * q error bits (hex 0-F) 2602 * yyyy year of century 2603 * ddd day of year 2604 * hh hour of day 2605 * mm minute of hour 2606 * ss second of minute) 2607 * l leap second warning (' ' or 'L') 2608 * d DST state ('S', 'D', 'I', or 'O') 2609 * dut DUT sign and magnitude (0.1 s) 2610 * lset minutes since last clock update 2611 * agc audio gain (0-255) 2612 * iden reference identifier (station and frequency) 2613 * sig signal quality (0-100) 2614 * errs bit errors in last minute 2615 * freq frequency offset (PPM) 2616 * avgt averaging time (s) 2617 */ 2618 static int 2619 timecode( 2620 struct wwvunit *up, /* driver structure pointer */ 2621 char *ptr /* target string */ 2622 ) 2623 { 2624 struct sync *sp; 2625 int year, day, hour, minute, second, dut; 2626 char synchar, leapchar, dst; 2627 char cptr[50]; 2628 2629 2630 /* 2631 * Common fixed-format fields 2632 */ 2633 synchar = (up->status & INSYNC) ? ' ' : '?'; 2634 year = up->decvec[YR].digit + up->decvec[YR + 1].digit * 10 + 2635 2000; 2636 day = up->decvec[DA].digit + up->decvec[DA + 1].digit * 10 + 2637 up->decvec[DA + 2].digit * 100; 2638 hour = up->decvec[HR].digit + up->decvec[HR + 1].digit * 10; 2639 minute = up->decvec[MN].digit + up->decvec[MN + 1].digit * 10; 2640 second = 0; 2641 leapchar = (up->misc & SECWAR) ? 'L' : ' '; 2642 dst = dstcod[(up->misc >> 4) & 0x3]; 2643 dut = up->misc & 0x7; 2644 if (!(up->misc & DUTS)) 2645 dut = -dut; 2646 sprintf(ptr, "%c%1X", synchar, up->alarm); 2647 sprintf(cptr, " %4d %03d %02d:%02d:%02d %c%c %+d", 2648 year, day, hour, minute, second, leapchar, dst, dut); 2649 strcat(ptr, cptr); 2650 2651 /* 2652 * Specific variable-format fields 2653 */ 2654 sp = up->sptr; 2655 sprintf(cptr, " %d %d %s %.0f %d %.1f %d", up->watch, 2656 up->mitig[up->dchan].gain, sp->refid, sp->metric, 2657 up->errcnt, up->freq / SECOND * 1e6, up->avgint); 2658 strcat(ptr, cptr); 2659 return (strlen(ptr)); 2660 } 2661 2662 2663 /* 2664 * wwv_gain - adjust codec gain 2665 * 2666 * This routine is called at the end of each second. During the second 2667 * the number of signal clips above the MAXAMP threshold (6000). If 2668 * there are no clips, the gain is bumped up; if there are more than 2669 * MAXCLP clips (100), it is bumped down. The decoder is relatively 2670 * insensitive to amplitude, so this crudity works just peachy. The 2671 * input port is set and the error flag is cleared, mostly to be ornery. 2672 */ 2673 static void 2674 wwv_gain( 2675 struct peer *peer /* peer structure pointer */ 2676 ) 2677 { 2678 struct refclockproc *pp; 2679 struct wwvunit *up; 2680 2681 pp = peer->procptr; 2682 up = (struct wwvunit *)pp->unitptr; 2683 2684 /* 2685 * Apparently, the codec uses only the high order bits of the 2686 * gain control field. Thus, it may take awhile for changes to 2687 * wiggle the hardware bits. 2688 */ 2689 if (up->clipcnt == 0) { 2690 up->gain += 4; 2691 if (up->gain > MAXGAIN) 2692 up->gain = MAXGAIN; 2693 } else if (up->clipcnt > MAXCLP) { 2694 up->gain -= 4; 2695 if (up->gain < 0) 2696 up->gain = 0; 2697 } 2698 audio_gain(up->gain, up->mongain, up->port); 2699 up->clipcnt = 0; 2700 #if DEBUG 2701 if (debug > 1) 2702 audio_show(); 2703 #endif 2704 } 2705 2706 2707 #else 2708 int refclock_wwv_bs; 2709 #endif /* REFCLOCK */ 2710