xref: /freebsd/contrib/ntp/ntpd/refclock_wwv.c (revision f5f40dd63bc7acbb5312b26ac1ea1103c12352a6)
1a151a66cSOllivier Robert /*
2a151a66cSOllivier Robert  * refclock_wwv - clock driver for NIST WWV/H time/frequency station
3a151a66cSOllivier Robert  */
4a151a66cSOllivier Robert #ifdef HAVE_CONFIG_H
5a151a66cSOllivier Robert #include <config.h>
6a151a66cSOllivier Robert #endif
7a151a66cSOllivier Robert 
8a151a66cSOllivier Robert #if defined(REFCLOCK) && defined(CLOCK_WWV)
9a151a66cSOllivier Robert 
10a151a66cSOllivier Robert #include "ntpd.h"
11a151a66cSOllivier Robert #include "ntp_io.h"
12a151a66cSOllivier Robert #include "ntp_refclock.h"
13a151a66cSOllivier Robert #include "ntp_calendar.h"
14a151a66cSOllivier Robert #include "ntp_stdlib.h"
15a151a66cSOllivier Robert #include "audio.h"
16a151a66cSOllivier Robert 
17224ba2bdSOllivier Robert #include <stdio.h>
18224ba2bdSOllivier Robert #include <ctype.h>
19224ba2bdSOllivier Robert #include <math.h>
20224ba2bdSOllivier Robert #ifdef HAVE_SYS_IOCTL_H
21224ba2bdSOllivier Robert # include <sys/ioctl.h>
22224ba2bdSOllivier Robert #endif /* HAVE_SYS_IOCTL_H */
23224ba2bdSOllivier Robert 
249c2daa00SOllivier Robert #define ICOM 1
25a151a66cSOllivier Robert 
26a151a66cSOllivier Robert #ifdef ICOM
27a151a66cSOllivier Robert #include "icom.h"
28a151a66cSOllivier Robert #endif /* ICOM */
29a151a66cSOllivier Robert 
30a151a66cSOllivier Robert /*
31a151a66cSOllivier Robert  * Audio WWV/H demodulator/decoder
32a151a66cSOllivier Robert  *
33a151a66cSOllivier Robert  * This driver synchronizes the computer time using data encoded in
34a151a66cSOllivier Robert  * radio transmissions from NIST time/frequency stations WWV in Boulder,
359c2daa00SOllivier Robert  * CO, and WWVH in Kauai, HI. Transmissions are made continuously on
36ea906c41SOllivier Robert  * 2.5, 5, 10 and 15 MHz from WWV and WWVH, and 20 MHz from WWV. An
37ea906c41SOllivier Robert  * ordinary AM shortwave receiver can be tuned manually to one of these
38ea906c41SOllivier Robert  * frequencies or, in the case of ICOM receivers, the receiver can be
39ea906c41SOllivier Robert  * tuned automatically using this program as propagation conditions
40ea906c41SOllivier Robert  * change throughout the weasons, both day and night.
41a151a66cSOllivier Robert  *
422b15cb3dSCy Schubert  * The driver requires an audio codec or sound card with sampling rate 8
432b15cb3dSCy Schubert  * kHz and mu-law companding. This is the same standard as used by the
442b15cb3dSCy Schubert  * telephone industry and is supported by most hardware and operating
452b15cb3dSCy Schubert  * systems, including Solaris, SunOS, FreeBSD, NetBSD and Linux. In this
462b15cb3dSCy Schubert  * implementation, only one audio driver and codec can be supported on a
472b15cb3dSCy Schubert  * single machine.
48a151a66cSOllivier Robert  *
49a151a66cSOllivier Robert  * The demodulation and decoding algorithms used in this driver are
50a151a66cSOllivier Robert  * based on those developed for the TAPR DSP93 development board and the
51a151a66cSOllivier Robert  * TI 320C25 digital signal processor described in: Mills, D.L. A
52a151a66cSOllivier Robert  * precision radio clock for WWV transmissions. Electrical Engineering
539c2daa00SOllivier Robert  * Report 97-8-1, University of Delaware, August 1997, 25 pp., available
54ea906c41SOllivier Robert  * from www.eecis.udel.edu/~mills/reports.html. The algorithms described
55a151a66cSOllivier Robert  * in this report have been modified somewhat to improve performance
56a151a66cSOllivier Robert  * under weak signal conditions and to provide an automatic station
57a151a66cSOllivier Robert  * identification feature.
58a151a66cSOllivier Robert  *
59a151a66cSOllivier Robert  * The ICOM code is normally compiled in the driver. It isn't used,
60a151a66cSOllivier Robert  * unless the mode keyword on the server configuration command specifies
61a151a66cSOllivier Robert  * a nonzero ICOM ID select code. The C-IV trace is turned on if the
62a151a66cSOllivier Robert  * debug level is greater than one.
63ea906c41SOllivier Robert  *
64ea906c41SOllivier Robert  * Fudge factors
65ea906c41SOllivier Robert  *
662b15cb3dSCy Schubert  * Fudge flag4 causes the debugging output described above to be
67ea906c41SOllivier Robert  * recorded in the clockstats file. Fudge flag2 selects the audio input
68ea906c41SOllivier Robert  * port, where 0 is the mike port (default) and 1 is the line-in port.
69ea906c41SOllivier Robert  * It does not seem useful to select the compact disc player port. Fudge
70ea906c41SOllivier Robert  * flag3 enables audio monitoring of the input signal. For this purpose,
71ea906c41SOllivier Robert  * the monitor gain is set to a default value.
722b15cb3dSCy Schubert  *
732b15cb3dSCy Schubert  * CEVNT_BADTIME	invalid date or time
742b15cb3dSCy Schubert  * CEVNT_PROP		propagation failure - no stations heard
752b15cb3dSCy Schubert  * CEVNT_TIMEOUT	timeout (see newgame() below)
76a151a66cSOllivier Robert  */
77a151a66cSOllivier Robert /*
78ea906c41SOllivier Robert  * General definitions. These ordinarily do not need to be changed.
79a151a66cSOllivier Robert  */
80224ba2bdSOllivier Robert #define	DEVICE_AUDIO	"/dev/audio" /* audio device name */
819c2daa00SOllivier Robert #define	AUDIO_BUFSIZ	320	/* audio buffer size (50 ms) */
82a151a66cSOllivier Robert #define	PRECISION	(-10)	/* precision assumed (about 1 ms) */
83a151a66cSOllivier Robert #define	DESCRIPTION	"WWV/H Audio Demodulator/Decoder" /* WRU */
842b15cb3dSCy Schubert #define WWV_SEC		8000	/* second epoch (sample rate) (Hz) */
852b15cb3dSCy Schubert #define WWV_MIN		(WWV_SEC * 60) /* minute epoch */
86a151a66cSOllivier Robert #define OFFSET		128	/* companded sample offset */
87a151a66cSOllivier Robert #define SIZE		256	/* decompanding table size */
88ea906c41SOllivier Robert #define	MAXAMP		6000.	/* max signal level reference */
899c2daa00SOllivier Robert #define	MAXCLP		100	/* max clips above reference per s */
90ea906c41SOllivier Robert #define MAXSNR		40.	/* max SNR reference */
91ea906c41SOllivier Robert #define MAXFREQ		1.5	/* max frequency tolerance (187 PPM) */
92ea906c41SOllivier Robert #define DATCYC		170	/* data filter cycles */
93ea906c41SOllivier Robert #define DATSIZ		(DATCYC * MS) /* data filter size */
94ea906c41SOllivier Robert #define SYNCYC		800	/* minute filter cycles */
95ea906c41SOllivier Robert #define SYNSIZ		(SYNCYC * MS) /* minute filter size */
96ea906c41SOllivier Robert #define TCKCYC		5	/* tick filter cycles */
97ea906c41SOllivier Robert #define TCKSIZ		(TCKCYC * MS) /* tick filter size */
989c2daa00SOllivier Robert #define NCHAN		5	/* number of radio channels */
999c2daa00SOllivier Robert #define	AUDIO_PHI	5e-6	/* dispersion growth factor */
1002b15cb3dSCy Schubert #define	TBUF		128	/* max monitor line length */
101ea906c41SOllivier Robert 
102ea906c41SOllivier Robert /*
103ea906c41SOllivier Robert  * Tunable parameters. The DGAIN parameter can be changed to fit the
104ea906c41SOllivier Robert  * audio response of the radio at 100 Hz. The WWV/WWVH data subcarrier
105ea906c41SOllivier Robert  * is transmitted at about 20 percent percent modulation; the matched
106ea906c41SOllivier Robert  * filter boosts it by a factor of 17 and the receiver response does
107ea906c41SOllivier Robert  * what it does. The compromise value works for ICOM radios. If the
108ea906c41SOllivier Robert  * radio is not tunable, the DCHAN parameter can be changed to fit the
109ea906c41SOllivier Robert  * expected best propagation frequency: higher if further from the
110ea906c41SOllivier Robert  * transmitter, lower if nearer. The compromise value works for the US
1112b15cb3dSCy Schubert  * right coast.
112ea906c41SOllivier Robert  */
113ea906c41SOllivier Robert #define DCHAN		3	/* default radio channel (15 Mhz) */
114ea906c41SOllivier Robert #define DGAIN		5.	/* subcarrier gain */
115a151a66cSOllivier Robert 
116a151a66cSOllivier Robert /*
117a151a66cSOllivier Robert  * General purpose status bits (status)
118a151a66cSOllivier Robert  *
119ea906c41SOllivier Robert  * SELV and/or SELH are set when WWV or WWVH have been heard and cleared
1209c2daa00SOllivier Robert  * on signal loss. SSYNC is set when the second sync pulse has been
1219c2daa00SOllivier Robert  * acquired and cleared by signal loss. MSYNC is set when the minute
122ea906c41SOllivier Robert  * sync pulse has been acquired. DSYNC is set when the units digit has
123ea906c41SOllivier Robert  * has reached the threshold and INSYNC is set when all nine digits have
124ea906c41SOllivier Robert  * reached the threshold. The MSYNC, DSYNC and INSYNC bits are cleared
125ea906c41SOllivier Robert  * only by timeout, upon which the driver starts over from scratch.
126a151a66cSOllivier Robert  *
127ea906c41SOllivier Robert  * DGATE is lit if the data bit amplitude or SNR is below thresholds and
128ea906c41SOllivier Robert  * BGATE is lit if the pulse width amplitude or SNR is below thresolds.
129ea906c41SOllivier Robert  * LEPSEC is set during the last minute of the leap day. At the end of
130ea906c41SOllivier Robert  * this minute the driver inserts second 60 in the seconds state machine
131ea906c41SOllivier Robert  * and the minute sync slips a second.
132a151a66cSOllivier Robert  */
133a151a66cSOllivier Robert #define MSYNC		0x0001	/* minute epoch sync */
134a151a66cSOllivier Robert #define SSYNC		0x0002	/* second epoch sync */
135a151a66cSOllivier Robert #define DSYNC		0x0004	/* minute units sync */
136a151a66cSOllivier Robert #define INSYNC		0x0008	/* clock synchronized */
1379c2daa00SOllivier Robert #define FGATE		0x0010	/* frequency gate */
138ea906c41SOllivier Robert #define DGATE		0x0020	/* data pulse amplitude error */
139ea906c41SOllivier Robert #define BGATE		0x0040	/* data pulse width error */
1402b15cb3dSCy Schubert #define	METRIC		0x0080	/* one or more stations heard */
141ea906c41SOllivier Robert #define LEPSEC		0x1000	/* leap minute */
142a151a66cSOllivier Robert 
143a151a66cSOllivier Robert /*
1449c2daa00SOllivier Robert  * Station scoreboard bits
145a151a66cSOllivier Robert  *
146a151a66cSOllivier Robert  * These are used to establish the signal quality for each of the five
147a151a66cSOllivier Robert  * frequencies and two stations.
148a151a66cSOllivier Robert  */
149a151a66cSOllivier Robert #define SELV		0x0100	/* WWV station select */
150a151a66cSOllivier Robert #define SELH		0x0200	/* WWVH station select */
151a151a66cSOllivier Robert 
152a151a66cSOllivier Robert /*
153a151a66cSOllivier Robert  * Alarm status bits (alarm)
154a151a66cSOllivier Robert  *
155a151a66cSOllivier Robert  * These bits indicate various alarm conditions, which are decoded to
156ea906c41SOllivier Robert  * form the quality character included in the timecode.
157a151a66cSOllivier Robert  */
1582b15cb3dSCy Schubert #define CMPERR		0x1	/* digit or misc bit compare error */
1592b15cb3dSCy Schubert #define LOWERR		0x2	/* low bit or digit amplitude or SNR */
1602b15cb3dSCy Schubert #define NINERR		0x4	/* less than nine digits in minute */
1612b15cb3dSCy Schubert #define SYNERR		0x8	/* not tracking second sync */
162a151a66cSOllivier Robert 
163a151a66cSOllivier Robert /*
1649c2daa00SOllivier Robert  * Watchcat timeouts (watch)
165a151a66cSOllivier Robert  *
166a151a66cSOllivier Robert  * If these timeouts expire, the status bits are mashed to zero and the
167a151a66cSOllivier Robert  * driver starts from scratch. Suitably more refined procedures may be
168a151a66cSOllivier Robert  * developed in future. All these are in minutes.
169a151a66cSOllivier Robert  */
170ea906c41SOllivier Robert #define ACQSN		6	/* station acquisition timeout */
171ea906c41SOllivier Robert #define DATA		15	/* unit minutes timeout */
172ea906c41SOllivier Robert #define SYNCH		40	/* station sync timeout */
1739c2daa00SOllivier Robert #define PANIC		(2 * 1440) /* panic timeout */
174a151a66cSOllivier Robert 
175a151a66cSOllivier Robert /*
176a151a66cSOllivier Robert  * Thresholds. These establish the minimum signal level, minimum SNR and
177a151a66cSOllivier Robert  * maximum jitter thresholds which establish the error and false alarm
1789c2daa00SOllivier Robert  * rates of the driver. The values defined here may be on the
179a151a66cSOllivier Robert  * adventurous side in the interest of the highest sensitivity.
180a151a66cSOllivier Robert  */
181ea906c41SOllivier Robert #define MTHR		13.	/* minute sync gate (percent) */
182ea906c41SOllivier Robert #define TTHR		50.	/* minute sync threshold (percent) */
183ea906c41SOllivier Robert #define AWND		20	/* minute sync jitter threshold (ms) */
184ea906c41SOllivier Robert #define ATHR		2500.	/* QRZ minute sync threshold */
185ea906c41SOllivier Robert #define ASNR		20.	/* QRZ minute sync SNR threshold (dB) */
186ea906c41SOllivier Robert #define QTHR		2500.	/* QSY minute sync threshold */
187ea906c41SOllivier Robert #define QSNR		20.	/* QSY minute sync SNR threshold (dB) */
188ea906c41SOllivier Robert #define STHR		2500.	/* second sync threshold */
189ea906c41SOllivier Robert #define	SSNR		15.	/* second sync SNR threshold (dB) */
190ea906c41SOllivier Robert #define SCMP		10 	/* second sync compare threshold */
191ea906c41SOllivier Robert #define DTHR		1000.	/* bit threshold */
192ea906c41SOllivier Robert #define DSNR		10.	/* bit SNR threshold (dB) */
1939c2daa00SOllivier Robert #define AMIN		3	/* min bit count */
1949c2daa00SOllivier Robert #define AMAX		6	/* max bit count */
195ea906c41SOllivier Robert #define BTHR		1000.	/* digit threshold */
1969c2daa00SOllivier Robert #define BSNR		3.	/* digit likelihood threshold (dB) */
197ea906c41SOllivier Robert #define BCMP		3	/* digit compare threshold */
198ea906c41SOllivier Robert #define	MAXERR		40	/* maximum error alarm */
199a151a66cSOllivier Robert 
200a151a66cSOllivier Robert /*
2019c2daa00SOllivier Robert  * Tone frequency definitions. The increments are for 4.5-deg sine
2029c2daa00SOllivier Robert  * table.
203a151a66cSOllivier Robert  */
2042b15cb3dSCy Schubert #define MS		(WWV_SEC / 1000) /* samples per millisecond */
2052b15cb3dSCy Schubert #define IN100		((100 * 80) / WWV_SEC) /* 100 Hz increment */
2062b15cb3dSCy Schubert #define IN1000		((1000 * 80) / WWV_SEC) /* 1000 Hz increment */
2072b15cb3dSCy Schubert #define IN1200		((1200 * 80) / WWV_SEC) /* 1200 Hz increment */
208a151a66cSOllivier Robert 
209a151a66cSOllivier Robert /*
210ea906c41SOllivier Robert  * Acquisition and tracking time constants
211a151a66cSOllivier Robert  */
212ea906c41SOllivier Robert #define MINAVG		8	/* min averaging time */
213ea906c41SOllivier Robert #define MAXAVG		1024	/* max averaging time */
214ea906c41SOllivier Robert #define FCONST		3	/* frequency time constant */
2159c2daa00SOllivier Robert #define TCONST		16	/* data bit/digit time constant */
216a151a66cSOllivier Robert 
217a151a66cSOllivier Robert /*
218a151a66cSOllivier Robert  * Miscellaneous status bits (misc)
219a151a66cSOllivier Robert  *
220a151a66cSOllivier Robert  * These bits correspond to designated bits in the WWV/H timecode. The
221a151a66cSOllivier Robert  * bit probabilities are exponentially averaged over several minutes and
222a151a66cSOllivier Robert  * processed by a integrator and threshold.
223a151a66cSOllivier Robert  */
224a151a66cSOllivier Robert #define DUT1		0x01	/* 56 DUT .1 */
225a151a66cSOllivier Robert #define DUT2		0x02	/* 57 DUT .2 */
226a151a66cSOllivier Robert #define DUT4		0x04	/* 58 DUT .4 */
227a151a66cSOllivier Robert #define DUTS		0x08	/* 50 DUT sign */
2289c2daa00SOllivier Robert #define DST1		0x10	/* 55 DST1 leap warning */
2299c2daa00SOllivier Robert #define DST2		0x20	/* 2 DST2 DST1 delayed one day */
230a151a66cSOllivier Robert #define SECWAR		0x40	/* 3 leap second warning */
231a151a66cSOllivier Robert 
232a151a66cSOllivier Robert /*
2332b15cb3dSCy Schubert  * The on-time synchronization point is the positive-going zero crossing
2342b15cb3dSCy Schubert  * of the first cycle of the 5-ms second pulse. The IIR baseband filter
2352b15cb3dSCy Schubert  * phase delay is 0.91 ms, while the receiver delay is approximately 4.7
2362b15cb3dSCy Schubert  * ms at 1000 Hz. The fudge value -0.45 ms due to the codec and other
2372b15cb3dSCy Schubert  * causes was determined by calibrating to a PPS signal from a GPS
2382b15cb3dSCy Schubert  * receiver. The additional propagation delay specific to each receiver
2392b15cb3dSCy Schubert  * location can be  programmed in the fudge time1 and time2 values for
2402b15cb3dSCy Schubert  * WWV and WWVH, respectively.
2412b15cb3dSCy Schubert  *
2422b15cb3dSCy Schubert  * The resulting offsets with a 2.4-GHz P4 running FreeBSD 6.1 are
2432b15cb3dSCy Schubert  * generally within .02 ms short-term with .02 ms jitter. The long-term
2442b15cb3dSCy Schubert  * offsets vary up to 0.3 ms due to ionosperhic layer height variations.
2452b15cb3dSCy Schubert  * The processor load due to the driver is 5.8 percent.
246a151a66cSOllivier Robert  */
2472b15cb3dSCy Schubert #define PDELAY	((.91 + 4.7 - 0.45) / 1000) /* system delay (s) */
248a151a66cSOllivier Robert 
249a151a66cSOllivier Robert /*
250a151a66cSOllivier Robert  * Table of sine values at 4.5-degree increments. This is used by the
251ea906c41SOllivier Robert  * synchronous matched filter demodulators.
252a151a66cSOllivier Robert  */
253a151a66cSOllivier Robert double sintab[] = {
254ea906c41SOllivier Robert  0.000000e+00,  7.845910e-02,  1.564345e-01,  2.334454e-01, /* 0-3 */
255ea906c41SOllivier Robert  3.090170e-01,  3.826834e-01,  4.539905e-01,  5.224986e-01, /* 4-7 */
256ea906c41SOllivier Robert  5.877853e-01,  6.494480e-01,  7.071068e-01,  7.604060e-01, /* 8-11 */
257ea906c41SOllivier Robert  8.090170e-01,  8.526402e-01,  8.910065e-01,  9.238795e-01, /* 12-15 */
258ea906c41SOllivier Robert  9.510565e-01,  9.723699e-01,  9.876883e-01,  9.969173e-01, /* 16-19 */
259ea906c41SOllivier Robert  1.000000e+00,  9.969173e-01,  9.876883e-01,  9.723699e-01, /* 20-23 */
260ea906c41SOllivier Robert  9.510565e-01,  9.238795e-01,  8.910065e-01,  8.526402e-01, /* 24-27 */
261ea906c41SOllivier Robert  8.090170e-01,  7.604060e-01,  7.071068e-01,  6.494480e-01, /* 28-31 */
262ea906c41SOllivier Robert  5.877853e-01,  5.224986e-01,  4.539905e-01,  3.826834e-01, /* 32-35 */
263ea906c41SOllivier Robert  3.090170e-01,  2.334454e-01,  1.564345e-01,  7.845910e-02, /* 36-39 */
264ea906c41SOllivier Robert -0.000000e+00, -7.845910e-02, -1.564345e-01, -2.334454e-01, /* 40-43 */
265ea906c41SOllivier Robert -3.090170e-01, -3.826834e-01, -4.539905e-01, -5.224986e-01, /* 44-47 */
266ea906c41SOllivier Robert -5.877853e-01, -6.494480e-01, -7.071068e-01, -7.604060e-01, /* 48-51 */
267ea906c41SOllivier Robert -8.090170e-01, -8.526402e-01, -8.910065e-01, -9.238795e-01, /* 52-55 */
268ea906c41SOllivier Robert -9.510565e-01, -9.723699e-01, -9.876883e-01, -9.969173e-01, /* 56-59 */
269ea906c41SOllivier Robert -1.000000e+00, -9.969173e-01, -9.876883e-01, -9.723699e-01, /* 60-63 */
270ea906c41SOllivier Robert -9.510565e-01, -9.238795e-01, -8.910065e-01, -8.526402e-01, /* 64-67 */
271ea906c41SOllivier Robert -8.090170e-01, -7.604060e-01, -7.071068e-01, -6.494480e-01, /* 68-71 */
272ea906c41SOllivier Robert -5.877853e-01, -5.224986e-01, -4.539905e-01, -3.826834e-01, /* 72-75 */
273ea906c41SOllivier Robert -3.090170e-01, -2.334454e-01, -1.564345e-01, -7.845910e-02, /* 76-79 */
274a151a66cSOllivier Robert  0.000000e+00};						    /* 80 */
275a151a66cSOllivier Robert 
276a151a66cSOllivier Robert /*
277a151a66cSOllivier Robert  * Decoder operations at the end of each second are driven by a state
278a151a66cSOllivier Robert  * machine. The transition matrix consists of a dispatch table indexed
279a151a66cSOllivier Robert  * by second number. Each entry in the table contains a case switch
280a151a66cSOllivier Robert  * number and argument.
281a151a66cSOllivier Robert  */
282a151a66cSOllivier Robert struct progx {
283a151a66cSOllivier Robert 	int sw;			/* case switch number */
284a151a66cSOllivier Robert 	int arg;		/* argument */
285a151a66cSOllivier Robert };
286a151a66cSOllivier Robert 
287a151a66cSOllivier Robert /*
288a151a66cSOllivier Robert  * Case switch numbers
289a151a66cSOllivier Robert  */
290a151a66cSOllivier Robert #define IDLE		0	/* no operation */
2919c2daa00SOllivier Robert #define COEF		1	/* BCD bit */
292ea906c41SOllivier Robert #define COEF1		2	/* BCD bit for minute unit */
293ea906c41SOllivier Robert #define COEF2		3	/* BCD bit not used */
294ea906c41SOllivier Robert #define DECIM9		4	/* BCD digit 0-9 */
295ea906c41SOllivier Robert #define DECIM6		5	/* BCD digit 0-6 */
296ea906c41SOllivier Robert #define DECIM3		6	/* BCD digit 0-3 */
297ea906c41SOllivier Robert #define DECIM2		7	/* BCD digit 0-2 */
298ea906c41SOllivier Robert #define MSCBIT		8	/* miscellaneous bit */
299ea906c41SOllivier Robert #define MSC20		9	/* miscellaneous bit */
300ea906c41SOllivier Robert #define MSC21		10	/* QSY probe channel */
301ea906c41SOllivier Robert #define MIN1		11	/* latch time */
302ea906c41SOllivier Robert #define MIN2		12	/* leap second */
303ea906c41SOllivier Robert #define SYNC2		13	/* latch minute sync pulse */
304ea906c41SOllivier Robert #define SYNC3		14	/* latch data pulse */
305a151a66cSOllivier Robert 
306a151a66cSOllivier Robert /*
307a151a66cSOllivier Robert  * Offsets in decoding matrix
308a151a66cSOllivier Robert  */
309a151a66cSOllivier Robert #define MN		0	/* minute digits (2) */
310a151a66cSOllivier Robert #define HR		2	/* hour digits (2) */
311a151a66cSOllivier Robert #define DA		4	/* day digits (3) */
312a151a66cSOllivier Robert #define YR		7	/* year digits (2) */
313a151a66cSOllivier Robert 
314a151a66cSOllivier Robert struct progx progx[] = {
315ea906c41SOllivier Robert 	{SYNC2,	0},		/* 0 latch minute sync pulse */
316ea906c41SOllivier Robert 	{SYNC3,	0},		/* 1 latch data pulse */
317a151a66cSOllivier Robert 	{MSCBIT, DST2},		/* 2 dst2 */
318a151a66cSOllivier Robert 	{MSCBIT, SECWAR},	/* 3 lw */
319a151a66cSOllivier Robert 	{COEF,	0},		/* 4 1 year units */
320a151a66cSOllivier Robert 	{COEF,	1},		/* 5 2 */
321a151a66cSOllivier Robert 	{COEF,	2},		/* 6 4 */
322a151a66cSOllivier Robert 	{COEF,	3},		/* 7 8 */
323a151a66cSOllivier Robert 	{DECIM9, YR},		/* 8 */
324a151a66cSOllivier Robert 	{IDLE,	0},		/* 9 p1 */
325ea906c41SOllivier Robert 	{COEF1,	0},		/* 10 1 minute units */
326ea906c41SOllivier Robert 	{COEF1,	1},		/* 11 2 */
327ea906c41SOllivier Robert 	{COEF1,	2},		/* 12 4 */
328ea906c41SOllivier Robert 	{COEF1,	3},		/* 13 8 */
329a151a66cSOllivier Robert 	{DECIM9, MN},		/* 14 */
330a151a66cSOllivier Robert 	{COEF,	0},		/* 15 10 minute tens */
331a151a66cSOllivier Robert 	{COEF,	1},		/* 16 20 */
332a151a66cSOllivier Robert 	{COEF,	2},		/* 17 40 */
333a151a66cSOllivier Robert 	{COEF2,	3},		/* 18 80 (not used) */
334a151a66cSOllivier Robert 	{DECIM6, MN + 1},	/* 19 p2 */
335a151a66cSOllivier Robert 	{COEF,	0},		/* 20 1 hour units */
336a151a66cSOllivier Robert 	{COEF,	1},		/* 21 2 */
337a151a66cSOllivier Robert 	{COEF,	2},		/* 22 4 */
338a151a66cSOllivier Robert 	{COEF,	3},		/* 23 8 */
339a151a66cSOllivier Robert 	{DECIM9, HR},		/* 24 */
340a151a66cSOllivier Robert 	{COEF,	0},		/* 25 10 hour tens */
341a151a66cSOllivier Robert 	{COEF,	1},		/* 26 20 */
342a151a66cSOllivier Robert 	{COEF2,	2},		/* 27 40 (not used) */
343a151a66cSOllivier Robert 	{COEF2,	3},		/* 28 80 (not used) */
344a151a66cSOllivier Robert 	{DECIM2, HR + 1},	/* 29 p3 */
345a151a66cSOllivier Robert 	{COEF,	0},		/* 30 1 day units */
346a151a66cSOllivier Robert 	{COEF,	1},		/* 31 2 */
347a151a66cSOllivier Robert 	{COEF,	2},		/* 32 4 */
348a151a66cSOllivier Robert 	{COEF,	3},		/* 33 8 */
349a151a66cSOllivier Robert 	{DECIM9, DA},		/* 34 */
350a151a66cSOllivier Robert 	{COEF,	0},		/* 35 10 day tens */
351a151a66cSOllivier Robert 	{COEF,	1},		/* 36 20 */
352a151a66cSOllivier Robert 	{COEF,	2},		/* 37 40 */
353a151a66cSOllivier Robert 	{COEF,	3},		/* 38 80 */
354a151a66cSOllivier Robert 	{DECIM9, DA + 1},	/* 39 p4 */
355a151a66cSOllivier Robert 	{COEF,	0},		/* 40 100 day hundreds */
356a151a66cSOllivier Robert 	{COEF,	1},		/* 41 200 */
357a151a66cSOllivier Robert 	{COEF2,	2},		/* 42 400 (not used) */
358a151a66cSOllivier Robert 	{COEF2,	3},		/* 43 800 (not used) */
359a151a66cSOllivier Robert 	{DECIM3, DA + 2},	/* 44 */
360a151a66cSOllivier Robert 	{IDLE,	0},		/* 45 */
361a151a66cSOllivier Robert 	{IDLE,	0},		/* 46 */
362a151a66cSOllivier Robert 	{IDLE,	0},		/* 47 */
363a151a66cSOllivier Robert 	{IDLE,	0},		/* 48 */
364a151a66cSOllivier Robert 	{IDLE,	0},		/* 49 p5 */
365a151a66cSOllivier Robert 	{MSCBIT, DUTS},		/* 50 dut+- */
366a151a66cSOllivier Robert 	{COEF,	0},		/* 51 10 year tens */
367a151a66cSOllivier Robert 	{COEF,	1},		/* 52 20 */
368a151a66cSOllivier Robert 	{COEF,	2},		/* 53 40 */
369a151a66cSOllivier Robert 	{COEF,	3},		/* 54 80 */
370a151a66cSOllivier Robert 	{MSC20, DST1},		/* 55 dst1 */
371a151a66cSOllivier Robert 	{MSCBIT, DUT1},		/* 56 0.1 dut */
372a151a66cSOllivier Robert 	{MSCBIT, DUT2},		/* 57 0.2 */
373a151a66cSOllivier Robert 	{MSC21, DUT4},		/* 58 0.4 QSY probe channel */
374ea906c41SOllivier Robert 	{MIN1,	0},		/* 59 p6 latch time */
375a151a66cSOllivier Robert 	{MIN2,	0}		/* 60 leap second */
376a151a66cSOllivier Robert };
377a151a66cSOllivier Robert 
378a151a66cSOllivier Robert /*
3792b15cb3dSCy Schubert  * BCD coefficients for maximum-likelihood digit decode
380a151a66cSOllivier Robert  */
381a151a66cSOllivier Robert #define P15	1.		/* max positive number */
382a151a66cSOllivier Robert #define N15	-1.		/* max negative number */
383a151a66cSOllivier Robert 
384a151a66cSOllivier Robert /*
385a151a66cSOllivier Robert  * Digits 0-9
386a151a66cSOllivier Robert  */
387a151a66cSOllivier Robert #define P9	(P15 / 4)	/* mark (+1) */
388a151a66cSOllivier Robert #define N9	(N15 / 4)	/* space (-1) */
389a151a66cSOllivier Robert 
390a151a66cSOllivier Robert double bcd9[][4] = {
391a151a66cSOllivier Robert 	{N9, N9, N9, N9}, 	/* 0 */
392a151a66cSOllivier Robert 	{P9, N9, N9, N9}, 	/* 1 */
393a151a66cSOllivier Robert 	{N9, P9, N9, N9}, 	/* 2 */
394a151a66cSOllivier Robert 	{P9, P9, N9, N9}, 	/* 3 */
395a151a66cSOllivier Robert 	{N9, N9, P9, N9}, 	/* 4 */
396a151a66cSOllivier Robert 	{P9, N9, P9, N9}, 	/* 5 */
397a151a66cSOllivier Robert 	{N9, P9, P9, N9}, 	/* 6 */
398a151a66cSOllivier Robert 	{P9, P9, P9, N9}, 	/* 7 */
399a151a66cSOllivier Robert 	{N9, N9, N9, P9}, 	/* 8 */
400a151a66cSOllivier Robert 	{P9, N9, N9, P9}, 	/* 9 */
401a151a66cSOllivier Robert 	{0, 0, 0, 0}		/* backstop */
402a151a66cSOllivier Robert };
403a151a66cSOllivier Robert 
404a151a66cSOllivier Robert /*
405a151a66cSOllivier Robert  * Digits 0-6 (minute tens)
406a151a66cSOllivier Robert  */
407a151a66cSOllivier Robert #define P6	(P15 / 3)	/* mark (+1) */
408a151a66cSOllivier Robert #define N6	(N15 / 3)	/* space (-1) */
409a151a66cSOllivier Robert 
410a151a66cSOllivier Robert double bcd6[][4] = {
411a151a66cSOllivier Robert 	{N6, N6, N6, 0}, 	/* 0 */
412a151a66cSOllivier Robert 	{P6, N6, N6, 0}, 	/* 1 */
413a151a66cSOllivier Robert 	{N6, P6, N6, 0}, 	/* 2 */
414a151a66cSOllivier Robert 	{P6, P6, N6, 0}, 	/* 3 */
415a151a66cSOllivier Robert 	{N6, N6, P6, 0}, 	/* 4 */
416a151a66cSOllivier Robert 	{P6, N6, P6, 0}, 	/* 5 */
417a151a66cSOllivier Robert 	{N6, P6, P6, 0}, 	/* 6 */
418a151a66cSOllivier Robert 	{0, 0, 0, 0}		/* backstop */
419a151a66cSOllivier Robert };
420a151a66cSOllivier Robert 
421a151a66cSOllivier Robert /*
422a151a66cSOllivier Robert  * Digits 0-3 (day hundreds)
423a151a66cSOllivier Robert  */
424a151a66cSOllivier Robert #define P3	(P15 / 2)	/* mark (+1) */
425a151a66cSOllivier Robert #define N3	(N15 / 2)	/* space (-1) */
426a151a66cSOllivier Robert 
427a151a66cSOllivier Robert double bcd3[][4] = {
428a151a66cSOllivier Robert 	{N3, N3, 0, 0}, 	/* 0 */
429a151a66cSOllivier Robert 	{P3, N3, 0, 0}, 	/* 1 */
430a151a66cSOllivier Robert 	{N3, P3, 0, 0}, 	/* 2 */
431a151a66cSOllivier Robert 	{P3, P3, 0, 0}, 	/* 3 */
432a151a66cSOllivier Robert 	{0, 0, 0, 0}		/* backstop */
433a151a66cSOllivier Robert };
434a151a66cSOllivier Robert 
435a151a66cSOllivier Robert /*
436a151a66cSOllivier Robert  * Digits 0-2 (hour tens)
437a151a66cSOllivier Robert  */
438a151a66cSOllivier Robert #define P2	(P15 / 2)	/* mark (+1) */
439a151a66cSOllivier Robert #define N2	(N15 / 2)	/* space (-1) */
440a151a66cSOllivier Robert 
441a151a66cSOllivier Robert double bcd2[][4] = {
442a151a66cSOllivier Robert 	{N2, N2, 0, 0}, 	/* 0 */
443a151a66cSOllivier Robert 	{P2, N2, 0, 0}, 	/* 1 */
444a151a66cSOllivier Robert 	{N2, P2, 0, 0}, 	/* 2 */
445a151a66cSOllivier Robert 	{0, 0, 0, 0}		/* backstop */
446a151a66cSOllivier Robert };
447a151a66cSOllivier Robert 
448a151a66cSOllivier Robert /*
449a151a66cSOllivier Robert  * DST decode (DST2 DST1) for prettyprint
450a151a66cSOllivier Robert  */
451a151a66cSOllivier Robert char dstcod[] = {
452a151a66cSOllivier Robert 	'S',			/* 00 standard time */
4539c2daa00SOllivier Robert 	'I',			/* 01 set clock ahead at 0200 local */
4549c2daa00SOllivier Robert 	'O',			/* 10 set clock back at 0200 local */
455a151a66cSOllivier Robert 	'D'			/* 11 daylight time */
456a151a66cSOllivier Robert };
457a151a66cSOllivier Robert 
458a151a66cSOllivier Robert /*
459a151a66cSOllivier Robert  * The decoding matrix consists of nine row vectors, one for each digit
460a151a66cSOllivier Robert  * of the timecode. The digits are stored from least to most significant
4612b15cb3dSCy Schubert  * order. The maximum-likelihood timecode is formed from the digits
4622b15cb3dSCy Schubert  * corresponding to the maximum-likelihood values reading in the
463a151a66cSOllivier Robert  * opposite order: yy ddd hh:mm.
464a151a66cSOllivier Robert  */
465a151a66cSOllivier Robert struct decvec {
466a151a66cSOllivier Robert 	int radix;		/* radix (3, 4, 6, 10) */
467a151a66cSOllivier Robert 	int digit;		/* current clock digit */
468a151a66cSOllivier Robert 	int count;		/* match count */
469a151a66cSOllivier Robert 	double digprb;		/* max digit probability */
470a151a66cSOllivier Robert 	double digsnr;		/* likelihood function (dB) */
471a151a66cSOllivier Robert 	double like[10];	/* likelihood integrator 0-9 */
472a151a66cSOllivier Robert };
473a151a66cSOllivier Robert 
474a151a66cSOllivier Robert /*
475ea906c41SOllivier Robert  * The station structure (sp) is used to acquire the minute pulse from
476ea906c41SOllivier Robert  * WWV and/or WWVH. These stations are distinguished by the frequency
477ea906c41SOllivier Robert  * used for the second and minute sync pulses, 1000 Hz for WWV and 1200
478ea906c41SOllivier Robert  * Hz for WWVH. Other than frequency, the format is the same.
479a151a66cSOllivier Robert  */
480a151a66cSOllivier Robert struct sync {
4819c2daa00SOllivier Robert 	double	epoch;		/* accumulated epoch differences */
482ea906c41SOllivier Robert 	double	maxeng;		/* sync max energy */
483ea906c41SOllivier Robert 	double	noieng;		/* sync noise energy */
4849c2daa00SOllivier Robert 	long	pos;		/* max amplitude position */
4859c2daa00SOllivier Robert 	long	lastpos;	/* last max position */
486a151a66cSOllivier Robert 	long	mepoch;		/* minute synch epoch */
4879c2daa00SOllivier Robert 
488ea906c41SOllivier Robert 	double	amp;		/* sync signal */
489ea906c41SOllivier Robert 	double	syneng;		/* sync signal max */
490ea906c41SOllivier Robert 	double	synmax;		/* sync signal max latched at 0 s */
4919c2daa00SOllivier Robert 	double	synsnr;		/* sync signal SNR */
492ea906c41SOllivier Robert 	double	metric;		/* signal quality metric */
4939c2daa00SOllivier Robert 	int	reach;		/* reachability register */
494ea906c41SOllivier Robert 	int	count;		/* bit counter */
495ea906c41SOllivier Robert 	int	select;		/* select bits */
496ea906c41SOllivier Robert 	char	refid[5];	/* reference identifier */
497a151a66cSOllivier Robert };
498a151a66cSOllivier Robert 
499a151a66cSOllivier Robert /*
500ea906c41SOllivier Robert  * The channel structure (cp) is used to mitigate between channels.
501a151a66cSOllivier Robert  */
502a151a66cSOllivier Robert struct chan {
503a151a66cSOllivier Robert 	int	gain;		/* audio gain */
504a151a66cSOllivier Robert 	struct sync wwv;	/* wwv station */
505a151a66cSOllivier Robert 	struct sync wwvh;	/* wwvh station */
506a151a66cSOllivier Robert };
507a151a66cSOllivier Robert 
508a151a66cSOllivier Robert /*
509ea906c41SOllivier Robert  * WWV unit control structure (up)
510a151a66cSOllivier Robert  */
511a151a66cSOllivier Robert struct wwvunit {
512a151a66cSOllivier Robert 	l_fp	timestamp;	/* audio sample timestamp */
513a151a66cSOllivier Robert 	l_fp	tick;		/* audio sample increment */
514a151a66cSOllivier Robert 	double	phase, freq;	/* logical clock phase and frequency */
515a151a66cSOllivier Robert 	double	monitor;	/* audio monitor point */
5162b15cb3dSCy Schubert 	double	pdelay;		/* propagation delay (s) */
517ea906c41SOllivier Robert #ifdef ICOM
518a151a66cSOllivier Robert 	int	fd_icom;	/* ICOM file descriptor */
519ea906c41SOllivier Robert #endif /* ICOM */
520a151a66cSOllivier Robert 	int	errflg;		/* error flags */
5219c2daa00SOllivier Robert 	int	watch;		/* watchcat */
5229c2daa00SOllivier Robert 
5239c2daa00SOllivier Robert 	/*
5249c2daa00SOllivier Robert 	 * Audio codec variables
5259c2daa00SOllivier Robert 	 */
5269c2daa00SOllivier Robert 	double	comp[SIZE];	/* decompanding table */
527a151a66cSOllivier Robert  	int	port;		/* codec port */
528a151a66cSOllivier Robert 	int	gain;		/* codec gain */
5299c2daa00SOllivier Robert 	int	mongain;	/* codec monitor gain */
530a151a66cSOllivier Robert 	int	clipcnt;	/* sample clipped count */
531a151a66cSOllivier Robert 
532a151a66cSOllivier Robert 	/*
533a151a66cSOllivier Robert 	 * Variables used to establish basic system timing
534a151a66cSOllivier Robert 	 */
5359c2daa00SOllivier Robert 	int	avgint;		/* master time constant */
5369c2daa00SOllivier Robert 	int	yepoch;		/* sync epoch */
5379c2daa00SOllivier Robert 	int	repoch;		/* buffered sync epoch */
538a151a66cSOllivier Robert 	double	epomax;		/* second sync amplitude */
5399c2daa00SOllivier Robert 	double	eposnr;		/* second sync SNR */
540a151a66cSOllivier Robert 	double	irig;		/* data I channel amplitude */
541a151a66cSOllivier Robert 	double	qrig;		/* data Q channel amplitude */
542a151a66cSOllivier Robert 	int	datapt;		/* 100 Hz ramp */
543a151a66cSOllivier Robert 	double	datpha;		/* 100 Hz VFO control */
5449c2daa00SOllivier Robert 	int	rphase;		/* second sample counter */
545a151a66cSOllivier Robert 	long	mphase;		/* minute sample counter */
546a151a66cSOllivier Robert 
547a151a66cSOllivier Robert 	/*
548a151a66cSOllivier Robert 	 * Variables used to mitigate which channel to use
549a151a66cSOllivier Robert 	 */
550a151a66cSOllivier Robert 	struct chan mitig[NCHAN]; /* channel data */
551a151a66cSOllivier Robert 	struct sync *sptr;	/* station pointer */
552a151a66cSOllivier Robert 	int	dchan;		/* data channel */
553a151a66cSOllivier Robert 	int	schan;		/* probe channel */
554a151a66cSOllivier Robert 	int	achan;		/* active channel */
555a151a66cSOllivier Robert 
556a151a66cSOllivier Robert 	/*
557a151a66cSOllivier Robert 	 * Variables used by the clock state machine
558a151a66cSOllivier Robert 	 */
559a151a66cSOllivier Robert 	struct decvec decvec[9]; /* decoding matrix */
5609c2daa00SOllivier Robert 	int	rsec;		/* seconds counter */
561a151a66cSOllivier Robert 	int	digcnt;		/* count of digits synchronized */
562a151a66cSOllivier Robert 
563a151a66cSOllivier Robert 	/*
564a151a66cSOllivier Robert 	 * Variables used to estimate signal levels and bit/digit
565a151a66cSOllivier Robert 	 * probabilities
566a151a66cSOllivier Robert 	 */
567ea906c41SOllivier Robert 	double	datsig;		/* data signal max */
568ea906c41SOllivier Robert 	double	datsnr;		/* data signal SNR (dB) */
569a151a66cSOllivier Robert 
570a151a66cSOllivier Robert 	/*
571a151a66cSOllivier Robert 	 * Variables used to establish status and alarm conditions
572a151a66cSOllivier Robert 	 */
573a151a66cSOllivier Robert 	int	status;		/* status bits */
574a151a66cSOllivier Robert 	int	alarm;		/* alarm flashers */
575a151a66cSOllivier Robert 	int	misc;		/* miscellaneous timecode bits */
576a151a66cSOllivier Robert 	int	errcnt;		/* data bit error counter */
577a151a66cSOllivier Robert };
578a151a66cSOllivier Robert 
579a151a66cSOllivier Robert /*
580a151a66cSOllivier Robert  * Function prototypes
581a151a66cSOllivier Robert  */
5822b15cb3dSCy Schubert static	int	wwv_start	(int, struct peer *);
5832b15cb3dSCy Schubert static	void	wwv_shutdown	(int, struct peer *);
5842b15cb3dSCy Schubert static	void	wwv_receive	(struct recvbuf *);
5852b15cb3dSCy Schubert static	void	wwv_poll	(int, struct peer *);
586a151a66cSOllivier Robert 
587a151a66cSOllivier Robert /*
588a151a66cSOllivier Robert  * More function prototypes
589a151a66cSOllivier Robert  */
5902b15cb3dSCy Schubert static	void	wwv_epoch	(struct peer *);
5912b15cb3dSCy Schubert static	void	wwv_rf		(struct peer *, double);
5922b15cb3dSCy Schubert static	void	wwv_endpoc	(struct peer *, int);
5932b15cb3dSCy Schubert static	void	wwv_rsec	(struct peer *, double);
5942b15cb3dSCy Schubert static	void	wwv_qrz		(struct peer *, struct sync *, int);
5952b15cb3dSCy Schubert static	void	wwv_corr4	(struct peer *, struct decvec *,
5962b15cb3dSCy Schubert 				    double [], double [][4]);
5972b15cb3dSCy Schubert static	void	wwv_gain	(struct peer *);
5982b15cb3dSCy Schubert static	void	wwv_tsec	(struct peer *);
5992b15cb3dSCy Schubert static	int	timecode	(struct wwvunit *, char *, size_t);
6002b15cb3dSCy Schubert static	double	wwv_snr		(double, double);
6012b15cb3dSCy Schubert static	int	carry		(struct decvec *);
6022b15cb3dSCy Schubert static	int	wwv_newchan	(struct peer *);
6032b15cb3dSCy Schubert static	void	wwv_newgame	(struct peer *);
6042b15cb3dSCy Schubert static	double	wwv_metric	(struct sync *);
6052b15cb3dSCy Schubert static	void	wwv_clock	(struct peer *);
6069c2daa00SOllivier Robert #ifdef ICOM
6072b15cb3dSCy Schubert static	int	wwv_qsy		(struct peer *, int);
6089c2daa00SOllivier Robert #endif /* ICOM */
6099c2daa00SOllivier Robert 
610a151a66cSOllivier Robert static double qsy[NCHAN] = {2.5, 5, 10, 15, 20}; /* frequencies (MHz) */
611a151a66cSOllivier Robert 
612a151a66cSOllivier Robert /*
613a151a66cSOllivier Robert  * Transfer vector
614a151a66cSOllivier Robert  */
615a151a66cSOllivier Robert struct	refclock refclock_wwv = {
616a151a66cSOllivier Robert 	wwv_start,		/* start up driver */
617a151a66cSOllivier Robert 	wwv_shutdown,		/* shut down driver */
618a151a66cSOllivier Robert 	wwv_poll,		/* transmit poll message */
619a151a66cSOllivier Robert 	noentry,		/* not used (old wwv_control) */
620a151a66cSOllivier Robert 	noentry,		/* initialize driver (not used) */
621a151a66cSOllivier Robert 	noentry,		/* not used (old wwv_buginfo) */
622a151a66cSOllivier Robert 	NOFLAGS			/* not used */
623a151a66cSOllivier Robert };
624a151a66cSOllivier Robert 
625a151a66cSOllivier Robert 
626a151a66cSOllivier Robert /*
627a151a66cSOllivier Robert  * wwv_start - open the devices and initialize data for processing
628a151a66cSOllivier Robert  */
629a151a66cSOllivier Robert static int
630a151a66cSOllivier Robert wwv_start(
6319c2daa00SOllivier Robert 	int	unit,		/* instance number (used by PCM) */
632a151a66cSOllivier Robert 	struct peer *peer	/* peer structure pointer */
633a151a66cSOllivier Robert 	)
634a151a66cSOllivier Robert {
635a151a66cSOllivier Robert 	struct refclockproc *pp;
636a151a66cSOllivier Robert 	struct wwvunit *up;
637a151a66cSOllivier Robert #ifdef ICOM
638a151a66cSOllivier Robert 	int	temp;
639a151a66cSOllivier Robert #endif /* ICOM */
640a151a66cSOllivier Robert 
641a151a66cSOllivier Robert 	/*
642a151a66cSOllivier Robert 	 * Local variables
643a151a66cSOllivier Robert 	 */
644a151a66cSOllivier Robert 	int	fd;		/* file descriptor */
645a151a66cSOllivier Robert 	int	i;		/* index */
646a151a66cSOllivier Robert 	double	step;		/* codec adjustment */
647a151a66cSOllivier Robert 
648a151a66cSOllivier Robert 	/*
649a151a66cSOllivier Robert 	 * Open audio device
650a151a66cSOllivier Robert 	 */
6519c2daa00SOllivier Robert 	fd = audio_init(DEVICE_AUDIO, AUDIO_BUFSIZ, unit);
652a151a66cSOllivier Robert 	if (fd < 0)
653a151a66cSOllivier Robert 		return (0);
654a151a66cSOllivier Robert #ifdef DEBUG
655a151a66cSOllivier Robert 	if (debug)
656a151a66cSOllivier Robert 		audio_show();
657ea906c41SOllivier Robert #endif /* DEBUG */
658a151a66cSOllivier Robert 
659a151a66cSOllivier Robert 	/*
660a151a66cSOllivier Robert 	 * Allocate and initialize unit structure
661a151a66cSOllivier Robert 	 */
6622b15cb3dSCy Schubert 	up = emalloc_zero(sizeof(*up));
663a151a66cSOllivier Robert 	pp = peer->procptr;
664a151a66cSOllivier Robert 	pp->io.clock_recv = wwv_receive;
6652b15cb3dSCy Schubert 	pp->io.srcclock = peer;
666a151a66cSOllivier Robert 	pp->io.datalen = 0;
667a151a66cSOllivier Robert 	pp->io.fd = fd;
668a151a66cSOllivier Robert 	if (!io_addclock(&pp->io)) {
6699c2daa00SOllivier Robert 		close(fd);
670a151a66cSOllivier Robert 		free(up);
671a151a66cSOllivier Robert 		return (0);
672a151a66cSOllivier Robert 	}
6732b15cb3dSCy Schubert 	pp->unitptr = up;
674a151a66cSOllivier Robert 
675a151a66cSOllivier Robert 	/*
676a151a66cSOllivier Robert 	 * Initialize miscellaneous variables
677a151a66cSOllivier Robert 	 */
678a151a66cSOllivier Robert 	peer->precision = PRECISION;
679a151a66cSOllivier Robert 	pp->clockdesc = DESCRIPTION;
680a151a66cSOllivier Robert 
681a151a66cSOllivier Robert 	/*
682a151a66cSOllivier Robert 	 * The companded samples are encoded sign-magnitude. The table
683a151a66cSOllivier Robert 	 * contains all the 256 values in the interest of speed.
684a151a66cSOllivier Robert 	 */
685a151a66cSOllivier Robert 	up->comp[0] = up->comp[OFFSET] = 0.;
686ea906c41SOllivier Robert 	up->comp[1] = 1.; up->comp[OFFSET + 1] = -1.;
687ea906c41SOllivier Robert 	up->comp[2] = 3.; up->comp[OFFSET + 2] = -3.;
688a151a66cSOllivier Robert 	step = 2.;
689a151a66cSOllivier Robert 	for (i = 3; i < OFFSET; i++) {
690a151a66cSOllivier Robert 		up->comp[i] = up->comp[i - 1] + step;
691a151a66cSOllivier Robert 		up->comp[OFFSET + i] = -up->comp[i];
692a151a66cSOllivier Robert 		if (i % 16 == 0)
693a151a66cSOllivier Robert 			step *= 2.;
694a151a66cSOllivier Robert 	}
6952b15cb3dSCy Schubert 	DTOLFP(1. / WWV_SEC, &up->tick);
696a151a66cSOllivier Robert 
697a151a66cSOllivier Robert 	/*
698a151a66cSOllivier Robert 	 * Initialize the decoding matrix with the radix for each digit
699a151a66cSOllivier Robert 	 * position.
700a151a66cSOllivier Robert 	 */
701a151a66cSOllivier Robert 	up->decvec[MN].radix = 10;	/* minutes */
702a151a66cSOllivier Robert 	up->decvec[MN + 1].radix = 6;
703a151a66cSOllivier Robert 	up->decvec[HR].radix = 10;	/* hours */
704a151a66cSOllivier Robert 	up->decvec[HR + 1].radix = 3;
705a151a66cSOllivier Robert 	up->decvec[DA].radix = 10;	/* days */
706a151a66cSOllivier Robert 	up->decvec[DA + 1].radix = 10;
707a151a66cSOllivier Robert 	up->decvec[DA + 2].radix = 4;
708a151a66cSOllivier Robert 	up->decvec[YR].radix = 10;	/* years */
709a151a66cSOllivier Robert 	up->decvec[YR + 1].radix = 10;
710a151a66cSOllivier Robert 
711a151a66cSOllivier Robert #ifdef ICOM
712ea906c41SOllivier Robert 	/*
713ea906c41SOllivier Robert 	 * Initialize autotune if available. Note that the ICOM select
714ea906c41SOllivier Robert 	 * code must be less than 128, so the high order bit can be used
7152b15cb3dSCy Schubert 	 * to select the line speed 0 (9600 bps) or 1 (1200 bps). Note
7162b15cb3dSCy Schubert 	 * we don't complain if the ICOM device is not there; but, if it
7172b15cb3dSCy Schubert 	 * is, the radio better be working.
718ea906c41SOllivier Robert 	 */
719a151a66cSOllivier Robert 	temp = 0;
720a151a66cSOllivier Robert #ifdef DEBUG
721a151a66cSOllivier Robert 	if (debug > 1)
722a151a66cSOllivier Robert 		temp = P_TRACE;
723ea906c41SOllivier Robert #endif /* DEBUG */
7249c2daa00SOllivier Robert 	if (peer->ttl != 0) {
7259c2daa00SOllivier Robert 		if (peer->ttl & 0x80)
726a151a66cSOllivier Robert 			up->fd_icom = icom_init("/dev/icom", B1200,
727a151a66cSOllivier Robert 			    temp);
728a151a66cSOllivier Robert 		else
729a151a66cSOllivier Robert 			up->fd_icom = icom_init("/dev/icom", B9600,
730a151a66cSOllivier Robert 			    temp);
731a151a66cSOllivier Robert 	}
732a151a66cSOllivier Robert 	if (up->fd_icom > 0) {
733ea906c41SOllivier Robert 		if (wwv_qsy(peer, DCHAN) != 0) {
7342b15cb3dSCy Schubert 			msyslog(LOG_NOTICE, "icom: radio not found");
735a151a66cSOllivier Robert 			close(up->fd_icom);
736a151a66cSOllivier Robert 			up->fd_icom = 0;
7379c2daa00SOllivier Robert 		} else {
7382b15cb3dSCy Schubert 			msyslog(LOG_NOTICE, "icom: autotune enabled");
739a151a66cSOllivier Robert 		}
740a151a66cSOllivier Robert 	}
741a151a66cSOllivier Robert #endif /* ICOM */
742ea906c41SOllivier Robert 
743ea906c41SOllivier Robert 	/*
744ea906c41SOllivier Robert 	 * Let the games begin.
745ea906c41SOllivier Robert 	 */
746ea906c41SOllivier Robert 	wwv_newgame(peer);
747a151a66cSOllivier Robert 	return (1);
748a151a66cSOllivier Robert }
749a151a66cSOllivier Robert 
750a151a66cSOllivier Robert 
751a151a66cSOllivier Robert /*
752a151a66cSOllivier Robert  * wwv_shutdown - shut down the clock
753a151a66cSOllivier Robert  */
754a151a66cSOllivier Robert static void
755a151a66cSOllivier Robert wwv_shutdown(
756a151a66cSOllivier Robert 	int	unit,		/* instance number (not used) */
757a151a66cSOllivier Robert 	struct peer *peer	/* peer structure pointer */
758a151a66cSOllivier Robert 	)
759a151a66cSOllivier Robert {
760a151a66cSOllivier Robert 	struct refclockproc *pp;
761a151a66cSOllivier Robert 	struct wwvunit *up;
762a151a66cSOllivier Robert 
763a151a66cSOllivier Robert 	pp = peer->procptr;
7642b15cb3dSCy Schubert 	up = pp->unitptr;
765ea906c41SOllivier Robert 	if (up == NULL)
766ea906c41SOllivier Robert 		return;
767ea906c41SOllivier Robert 
768a151a66cSOllivier Robert 	io_closeclock(&pp->io);
769ea906c41SOllivier Robert #ifdef ICOM
770a151a66cSOllivier Robert 	if (up->fd_icom > 0)
771a151a66cSOllivier Robert 		close(up->fd_icom);
772ea906c41SOllivier Robert #endif /* ICOM */
773a151a66cSOllivier Robert 	free(up);
774a151a66cSOllivier Robert }
775a151a66cSOllivier Robert 
776a151a66cSOllivier Robert 
777a151a66cSOllivier Robert /*
778a151a66cSOllivier Robert  * wwv_receive - receive data from the audio device
779a151a66cSOllivier Robert  *
780a151a66cSOllivier Robert  * This routine reads input samples and adjusts the logical clock to
781a151a66cSOllivier Robert  * track the A/D sample clock by dropping or duplicating codec samples.
782a151a66cSOllivier Robert  * It also controls the A/D signal level with an AGC loop to mimimize
783a151a66cSOllivier Robert  * quantization noise and avoid overload.
784a151a66cSOllivier Robert  */
785a151a66cSOllivier Robert static void
786a151a66cSOllivier Robert wwv_receive(
787a151a66cSOllivier Robert 	struct recvbuf *rbufp	/* receive buffer structure pointer */
788a151a66cSOllivier Robert 	)
789a151a66cSOllivier Robert {
790a151a66cSOllivier Robert 	struct peer *peer;
791a151a66cSOllivier Robert 	struct refclockproc *pp;
792a151a66cSOllivier Robert 	struct wwvunit *up;
793a151a66cSOllivier Robert 
794a151a66cSOllivier Robert 	/*
795a151a66cSOllivier Robert 	 * Local variables
796a151a66cSOllivier Robert 	 */
797a151a66cSOllivier Robert 	double	sample;		/* codec sample */
798a151a66cSOllivier Robert 	u_char	*dpt;		/* buffer pointer */
7999c2daa00SOllivier Robert 	int	bufcnt;		/* buffer counter */
800a151a66cSOllivier Robert 	l_fp	ltemp;
801a151a66cSOllivier Robert 
8022b15cb3dSCy Schubert 	peer = rbufp->recv_peer;
803a151a66cSOllivier Robert 	pp = peer->procptr;
8042b15cb3dSCy Schubert 	up = pp->unitptr;
805a151a66cSOllivier Robert 
806a151a66cSOllivier Robert 	/*
807a151a66cSOllivier Robert 	 * Main loop - read until there ain't no more. Note codec
808a151a66cSOllivier Robert 	 * samples are bit-inverted.
809a151a66cSOllivier Robert 	 */
8102b15cb3dSCy Schubert 	DTOLFP((double)rbufp->recv_length / WWV_SEC, &ltemp);
8119c2daa00SOllivier Robert 	L_SUB(&rbufp->recv_time, &ltemp);
812a151a66cSOllivier Robert 	up->timestamp = rbufp->recv_time;
813a151a66cSOllivier Robert 	dpt = rbufp->recv_buffer;
8149c2daa00SOllivier Robert 	for (bufcnt = 0; bufcnt < rbufp->recv_length; bufcnt++) {
8159c2daa00SOllivier Robert 		sample = up->comp[~*dpt++ & 0xff];
816a151a66cSOllivier Robert 
817a151a66cSOllivier Robert 		/*
818ea906c41SOllivier Robert 		 * Clip noise spikes greater than MAXAMP (6000) and
819ea906c41SOllivier Robert 		 * record the number of clips to be used later by the
820ea906c41SOllivier Robert 		 * AGC.
821a151a66cSOllivier Robert 		 */
822ea906c41SOllivier Robert 		if (sample > MAXAMP) {
823ea906c41SOllivier Robert 			sample = MAXAMP;
824a151a66cSOllivier Robert 			up->clipcnt++;
825ea906c41SOllivier Robert 		} else if (sample < -MAXAMP) {
826ea906c41SOllivier Robert 			sample = -MAXAMP;
827a151a66cSOllivier Robert 			up->clipcnt++;
828a151a66cSOllivier Robert 		}
829a151a66cSOllivier Robert 
830a151a66cSOllivier Robert 		/*
8319c2daa00SOllivier Robert 		 * Variable frequency oscillator. The codec oscillator
8329c2daa00SOllivier Robert 		 * runs at the nominal rate of 8000 samples per second,
8339c2daa00SOllivier Robert 		 * or 125 us per sample. A frequency change of one unit
8349c2daa00SOllivier Robert 		 * results in either duplicating or deleting one sample
8359c2daa00SOllivier Robert 		 * per second, which results in a frequency change of
8369c2daa00SOllivier Robert 		 * 125 PPM.
837a151a66cSOllivier Robert 		 */
8382b15cb3dSCy Schubert 		up->phase += (up->freq + clock_codec) / WWV_SEC;
839a151a66cSOllivier Robert 		if (up->phase >= .5) {
840a151a66cSOllivier Robert 			up->phase -= 1.;
841a151a66cSOllivier Robert 		} else if (up->phase < -.5) {
842a151a66cSOllivier Robert 			up->phase += 1.;
843a151a66cSOllivier Robert 			wwv_rf(peer, sample);
844a151a66cSOllivier Robert 			wwv_rf(peer, sample);
845a151a66cSOllivier Robert 		} else {
846a151a66cSOllivier Robert 			wwv_rf(peer, sample);
847a151a66cSOllivier Robert 		}
848a151a66cSOllivier Robert 		L_ADD(&up->timestamp, &up->tick);
8499c2daa00SOllivier Robert 	}
850a151a66cSOllivier Robert 
851a151a66cSOllivier Robert 	/*
8529c2daa00SOllivier Robert 	 * Set the input port and monitor gain for the next buffer.
853a151a66cSOllivier Robert 	 */
854a151a66cSOllivier Robert 	if (pp->sloppyclockflag & CLK_FLAG2)
855a151a66cSOllivier Robert 		up->port = 2;
856a151a66cSOllivier Robert 	else
857a151a66cSOllivier Robert 		up->port = 1;
858a151a66cSOllivier Robert 	if (pp->sloppyclockflag & CLK_FLAG3)
8599c2daa00SOllivier Robert 		up->mongain = MONGAIN;
8609c2daa00SOllivier Robert 	else
8619c2daa00SOllivier Robert 		up->mongain = 0;
862a151a66cSOllivier Robert }
863a151a66cSOllivier Robert 
864a151a66cSOllivier Robert 
865a151a66cSOllivier Robert /*
866a151a66cSOllivier Robert  * wwv_poll - called by the transmit procedure
867a151a66cSOllivier Robert  *
8689c2daa00SOllivier Robert  * This routine keeps track of status. If no offset samples have been
8699c2daa00SOllivier Robert  * processed during a poll interval, a timeout event is declared. If
8709c2daa00SOllivier Robert  * errors have have occurred during the interval, they are reported as
871ea906c41SOllivier Robert  * well.
872a151a66cSOllivier Robert  */
873a151a66cSOllivier Robert static void
874a151a66cSOllivier Robert wwv_poll(
875a151a66cSOllivier Robert 	int	unit,		/* instance number (not used) */
876a151a66cSOllivier Robert 	struct peer *peer	/* peer structure pointer */
877a151a66cSOllivier Robert 	)
878a151a66cSOllivier Robert {
879a151a66cSOllivier Robert 	struct refclockproc *pp;
880a151a66cSOllivier Robert 	struct wwvunit *up;
881a151a66cSOllivier Robert 
882a151a66cSOllivier Robert 	pp = peer->procptr;
8832b15cb3dSCy Schubert 	up = pp->unitptr;
884a151a66cSOllivier Robert 	if (up->errflg)
885a151a66cSOllivier Robert 		refclock_report(peer, up->errflg);
886a151a66cSOllivier Robert 	up->errflg = 0;
8879c2daa00SOllivier Robert 	pp->polls++;
888a151a66cSOllivier Robert }
889a151a66cSOllivier Robert 
890a151a66cSOllivier Robert 
891a151a66cSOllivier Robert /*
892a151a66cSOllivier Robert  * wwv_rf - process signals and demodulate to baseband
893a151a66cSOllivier Robert  *
894a151a66cSOllivier Robert  * This routine grooms and filters decompanded raw audio samples. The
895ea906c41SOllivier Robert  * output signal is the 100-Hz filtered baseband data signal in
896ea906c41SOllivier Robert  * quadrature phase. The routine also determines the minute synch epoch,
897ea906c41SOllivier Robert  * as well as certain signal maxima, minima and related values.
898a151a66cSOllivier Robert  *
8999c2daa00SOllivier Robert  * There are two 1-s ramps used by this program. Both count the 8000
9009c2daa00SOllivier Robert  * logical clock samples spanning exactly one second. The epoch ramp
9019c2daa00SOllivier Robert  * counts the samples starting at an arbitrary time. The rphase ramp
9029c2daa00SOllivier Robert  * counts the samples starting at the 5-ms second sync pulse found
9039c2daa00SOllivier Robert  * during the epoch ramp.
904a151a66cSOllivier Robert  *
9059c2daa00SOllivier Robert  * There are two 1-m ramps used by this program. The mphase ramp counts
9069c2daa00SOllivier Robert  * the 480,000 logical clock samples spanning exactly one minute and
9079c2daa00SOllivier Robert  * starting at an arbitrary time. The rsec ramp counts the 60 seconds of
9089c2daa00SOllivier Robert  * the minute starting at the 800-ms minute sync pulse found during the
9099c2daa00SOllivier Robert  * mphase ramp. The rsec ramp drives the seconds state machine to
9109c2daa00SOllivier Robert  * determine the bits and digits of the timecode.
911a151a66cSOllivier Robert  *
912a151a66cSOllivier Robert  * Demodulation operations are based on three synthesized quadrature
9139c2daa00SOllivier Robert  * sinusoids: 100 Hz for the data signal, 1000 Hz for the WWV sync
9149c2daa00SOllivier Robert  * signal and 1200 Hz for the WWVH sync signal. These drive synchronous
9159c2daa00SOllivier Robert  * matched filters for the data signal (170 ms at 100 Hz), WWV minute
9169c2daa00SOllivier Robert  * sync signal (800 ms at 1000 Hz) and WWVH minute sync signal (800 ms
9179c2daa00SOllivier Robert  * at 1200 Hz). Two additional matched filters are switched in
918ea906c41SOllivier Robert  * as required for the WWV second sync signal (5 cycles at 1000 Hz) and
919ea906c41SOllivier Robert  * WWVH second sync signal (6 cycles at 1200 Hz).
920a151a66cSOllivier Robert  */
921a151a66cSOllivier Robert static void
922a151a66cSOllivier Robert wwv_rf(
923a151a66cSOllivier Robert 	struct peer *peer,	/* peerstructure pointer */
924a151a66cSOllivier Robert 	double isig		/* input signal */
925a151a66cSOllivier Robert 	)
926a151a66cSOllivier Robert {
927a151a66cSOllivier Robert 	struct refclockproc *pp;
928a151a66cSOllivier Robert 	struct wwvunit *up;
929ea906c41SOllivier Robert 	struct sync *sp, *rp;
930a151a66cSOllivier Robert 
931a151a66cSOllivier Robert 	static double lpf[5];	/* 150-Hz lpf delay line */
932a151a66cSOllivier Robert 	double data;		/* lpf output */
933a151a66cSOllivier Robert 	static double bpf[9];	/* 1000/1200-Hz bpf delay line */
934a151a66cSOllivier Robert 	double syncx;		/* bpf output */
935a151a66cSOllivier Robert 	static double mf[41];	/* 1000/1200-Hz mf delay line */
936a151a66cSOllivier Robert 	double mfsync;		/* mf output */
937a151a66cSOllivier Robert 
938a151a66cSOllivier Robert 	static int iptr;	/* data channel pointer */
939a151a66cSOllivier Robert 	static double ibuf[DATSIZ]; /* data I channel delay line */
940a151a66cSOllivier Robert 	static double qbuf[DATSIZ]; /* data Q channel delay line */
941a151a66cSOllivier Robert 
942a151a66cSOllivier Robert 	static int jptr;	/* sync channel pointer */
943ea906c41SOllivier Robert 	static int kptr;	/* tick channel pointer */
944ea906c41SOllivier Robert 
945ea906c41SOllivier Robert 	static int csinptr;	/* wwv channel phase */
946a151a66cSOllivier Robert 	static double cibuf[SYNSIZ]; /* wwv I channel delay line */
947a151a66cSOllivier Robert 	static double cqbuf[SYNSIZ]; /* wwv Q channel delay line */
948a151a66cSOllivier Robert 	static double ciamp;	/* wwv I channel amplitude */
949a151a66cSOllivier Robert 	static double cqamp;	/* wwv Q channel amplitude */
950ea906c41SOllivier Robert 
951ea906c41SOllivier Robert 	static double csibuf[TCKSIZ]; /* wwv I tick delay line */
952ea906c41SOllivier Robert 	static double csqbuf[TCKSIZ]; /* wwv Q tick delay line */
953ea906c41SOllivier Robert 	static double csiamp;	/* wwv I tick amplitude */
954ea906c41SOllivier Robert 	static double csqamp;	/* wwv Q tick amplitude */
955ea906c41SOllivier Robert 
956ea906c41SOllivier Robert 	static int hsinptr;	/* wwvh channel phase */
957a151a66cSOllivier Robert 	static double hibuf[SYNSIZ]; /* wwvh I channel delay line */
958a151a66cSOllivier Robert 	static double hqbuf[SYNSIZ]; /* wwvh Q channel delay line */
959a151a66cSOllivier Robert 	static double hiamp;	/* wwvh I channel amplitude */
960a151a66cSOllivier Robert 	static double hqamp;	/* wwvh Q channel amplitude */
961a151a66cSOllivier Robert 
962ea906c41SOllivier Robert 	static double hsibuf[TCKSIZ]; /* wwvh I tick delay line */
963ea906c41SOllivier Robert 	static double hsqbuf[TCKSIZ]; /* wwvh Q tick delay line */
964ea906c41SOllivier Robert 	static double hsiamp;	/* wwvh I tick amplitude */
965ea906c41SOllivier Robert 	static double hsqamp;	/* wwvh Q tick amplitude */
966ea906c41SOllivier Robert 
9672b15cb3dSCy Schubert 	static double epobuf[WWV_SEC]; /* second sync comb filter */
968ea906c41SOllivier Robert 	static double epomax, nxtmax; /* second sync amplitude buffer */
969ea906c41SOllivier Robert 	static int epopos;	/* epoch second sync position buffer */
970a151a66cSOllivier Robert 
971a151a66cSOllivier Robert 	static int iniflg;	/* initialization flag */
972ea906c41SOllivier Robert 	int	epoch;		/* comb filter index */
973a151a66cSOllivier Robert 	double	dtemp;
974a151a66cSOllivier Robert 	int	i;
975a151a66cSOllivier Robert 
976a151a66cSOllivier Robert 	pp = peer->procptr;
9772b15cb3dSCy Schubert 	up = pp->unitptr;
9789c2daa00SOllivier Robert 
979a151a66cSOllivier Robert 	if (!iniflg) {
980a151a66cSOllivier Robert 		iniflg = 1;
981a151a66cSOllivier Robert 		memset((char *)lpf, 0, sizeof(lpf));
982a151a66cSOllivier Robert 		memset((char *)bpf, 0, sizeof(bpf));
983a151a66cSOllivier Robert 		memset((char *)mf, 0, sizeof(mf));
984a151a66cSOllivier Robert 		memset((char *)ibuf, 0, sizeof(ibuf));
985a151a66cSOllivier Robert 		memset((char *)qbuf, 0, sizeof(qbuf));
986a151a66cSOllivier Robert 		memset((char *)cibuf, 0, sizeof(cibuf));
987a151a66cSOllivier Robert 		memset((char *)cqbuf, 0, sizeof(cqbuf));
988ea906c41SOllivier Robert 		memset((char *)csibuf, 0, sizeof(csibuf));
989ea906c41SOllivier Robert 		memset((char *)csqbuf, 0, sizeof(csqbuf));
990a151a66cSOllivier Robert 		memset((char *)hibuf, 0, sizeof(hibuf));
991a151a66cSOllivier Robert 		memset((char *)hqbuf, 0, sizeof(hqbuf));
992ea906c41SOllivier Robert 		memset((char *)hsibuf, 0, sizeof(hsibuf));
993ea906c41SOllivier Robert 		memset((char *)hsqbuf, 0, sizeof(hsqbuf));
994a151a66cSOllivier Robert 		memset((char *)epobuf, 0, sizeof(epobuf));
995a151a66cSOllivier Robert 	}
996a151a66cSOllivier Robert 
997a151a66cSOllivier Robert 	/*
998a151a66cSOllivier Robert 	 * Baseband data demodulation. The 100-Hz subcarrier is
999a151a66cSOllivier Robert 	 * extracted using a 150-Hz IIR lowpass filter. This attenuates
1000a151a66cSOllivier Robert 	 * the 1000/1200-Hz sync signals, as well as the 440-Hz and
1001a151a66cSOllivier Robert 	 * 600-Hz tones and most of the noise and voice modulation
1002a151a66cSOllivier Robert 	 * components.
1003a151a66cSOllivier Robert 	 *
1004ea906c41SOllivier Robert 	 * The subcarrier is transmitted 10 dB down from the carrier.
1005ea906c41SOllivier Robert 	 * The DGAIN parameter can be adjusted for this and to
1006ea906c41SOllivier Robert 	 * compensate for the radio audio response at 100 Hz.
1007ea906c41SOllivier Robert 	 *
1008a151a66cSOllivier Robert 	 * Matlab IIR 4th-order IIR elliptic, 150 Hz lowpass, 0.2 dB
10092b15cb3dSCy Schubert 	 * passband ripple, -50 dB stopband ripple, phase delay 0.97 ms.
1010a151a66cSOllivier Robert 	 */
1011a151a66cSOllivier Robert 	data = (lpf[4] = lpf[3]) * 8.360961e-01;
1012a151a66cSOllivier Robert 	data += (lpf[3] = lpf[2]) * -3.481740e+00;
1013a151a66cSOllivier Robert 	data += (lpf[2] = lpf[1]) * 5.452988e+00;
1014a151a66cSOllivier Robert 	data += (lpf[1] = lpf[0]) * -3.807229e+00;
1015ea906c41SOllivier Robert 	lpf[0] = isig * DGAIN - data;
1016a151a66cSOllivier Robert 	data = lpf[0] * 3.281435e-03
1017a151a66cSOllivier Robert 	    + lpf[1] * -1.149947e-02
1018a151a66cSOllivier Robert 	    + lpf[2] * 1.654858e-02
1019a151a66cSOllivier Robert 	    + lpf[3] * -1.149947e-02
1020a151a66cSOllivier Robert 	    + lpf[4] * 3.281435e-03;
1021a151a66cSOllivier Robert 
1022a151a66cSOllivier Robert 	/*
1023ea906c41SOllivier Robert 	 * The 100-Hz data signal is demodulated using a pair of
1024ea906c41SOllivier Robert 	 * quadrature multipliers, matched filters and a phase lock
1025ea906c41SOllivier Robert 	 * loop. The I and Q quadrature data signals are produced by
1026a151a66cSOllivier Robert 	 * multiplying the filtered signal by 100-Hz sine and cosine
1027ea906c41SOllivier Robert 	 * signals, respectively. The signals are processed by 170-ms
1028ea906c41SOllivier Robert 	 * synchronous matched filters to produce the amplitude and
1029ea906c41SOllivier Robert 	 * phase signals used by the demodulator. The signals are scaled
1030ea906c41SOllivier Robert 	 * to produce unit energy at the maximum value.
1031a151a66cSOllivier Robert 	 */
10329c2daa00SOllivier Robert 	i = up->datapt;
1033a151a66cSOllivier Robert 	up->datapt = (up->datapt + IN100) % 80;
1034ea906c41SOllivier Robert 	dtemp = sintab[i] * data / (MS / 2. * DATCYC);
1035a151a66cSOllivier Robert 	up->irig -= ibuf[iptr];
1036a151a66cSOllivier Robert 	ibuf[iptr] = dtemp;
1037a151a66cSOllivier Robert 	up->irig += dtemp;
1038ea906c41SOllivier Robert 
1039a151a66cSOllivier Robert 	i = (i + 20) % 80;
1040ea906c41SOllivier Robert 	dtemp = sintab[i] * data / (MS / 2. * DATCYC);
1041a151a66cSOllivier Robert 	up->qrig -= qbuf[iptr];
1042a151a66cSOllivier Robert 	qbuf[iptr] = dtemp;
1043a151a66cSOllivier Robert 	up->qrig += dtemp;
1044a151a66cSOllivier Robert 	iptr = (iptr + 1) % DATSIZ;
1045a151a66cSOllivier Robert 
1046a151a66cSOllivier Robert 	/*
1047a151a66cSOllivier Robert 	 * Baseband sync demodulation. The 1000/1200 sync signals are
1048a151a66cSOllivier Robert 	 * extracted using a 600-Hz IIR bandpass filter. This removes
1049a151a66cSOllivier Robert 	 * the 100-Hz data subcarrier, as well as the 440-Hz and 600-Hz
1050a151a66cSOllivier Robert 	 * tones and most of the noise and voice modulation components.
1051a151a66cSOllivier Robert 	 *
1052a151a66cSOllivier Robert 	 * Matlab 4th-order IIR elliptic, 800-1400 Hz bandpass, 0.2 dB
10532b15cb3dSCy Schubert 	 * passband ripple, -50 dB stopband ripple, phase delay 0.91 ms.
1054a151a66cSOllivier Robert 	 */
1055a151a66cSOllivier Robert 	syncx = (bpf[8] = bpf[7]) * 4.897278e-01;
1056a151a66cSOllivier Robert 	syncx += (bpf[7] = bpf[6]) * -2.765914e+00;
1057a151a66cSOllivier Robert 	syncx += (bpf[6] = bpf[5]) * 8.110921e+00;
1058a151a66cSOllivier Robert 	syncx += (bpf[5] = bpf[4]) * -1.517732e+01;
1059a151a66cSOllivier Robert 	syncx += (bpf[4] = bpf[3]) * 1.975197e+01;
1060a151a66cSOllivier Robert 	syncx += (bpf[3] = bpf[2]) * -1.814365e+01;
1061a151a66cSOllivier Robert 	syncx += (bpf[2] = bpf[1]) * 1.159783e+01;
1062a151a66cSOllivier Robert 	syncx += (bpf[1] = bpf[0]) * -4.735040e+00;
1063a151a66cSOllivier Robert 	bpf[0] = isig - syncx;
1064a151a66cSOllivier Robert 	syncx = bpf[0] * 8.203628e-03
1065a151a66cSOllivier Robert 	    + bpf[1] * -2.375732e-02
1066a151a66cSOllivier Robert 	    + bpf[2] * 3.353214e-02
1067a151a66cSOllivier Robert 	    + bpf[3] * -4.080258e-02
1068a151a66cSOllivier Robert 	    + bpf[4] * 4.605479e-02
1069a151a66cSOllivier Robert 	    + bpf[5] * -4.080258e-02
1070a151a66cSOllivier Robert 	    + bpf[6] * 3.353214e-02
1071a151a66cSOllivier Robert 	    + bpf[7] * -2.375732e-02
1072a151a66cSOllivier Robert 	    + bpf[8] * 8.203628e-03;
1073a151a66cSOllivier Robert 
1074a151a66cSOllivier Robert 	/*
1075ea906c41SOllivier Robert 	 * The 1000/1200 sync signals are demodulated using a pair of
1076ea906c41SOllivier Robert 	 * quadrature multipliers and matched filters. However,
1077ea906c41SOllivier Robert 	 * synchronous demodulation at these frequencies is impractical,
1078ea906c41SOllivier Robert 	 * so only the signal amplitude is used. The I and Q quadrature
1079ea906c41SOllivier Robert 	 * sync signals are produced by multiplying the filtered signal
1080ea906c41SOllivier Robert 	 * by 1000-Hz (WWV) and 1200-Hz (WWVH) sine and cosine signals,
1081ea906c41SOllivier Robert 	 * respectively. The WWV and WWVH signals are processed by 800-
1082ea906c41SOllivier Robert 	 * ms synchronous matched filters and combined to produce the
1083ea906c41SOllivier Robert 	 * minute sync signal and detect which one (or both) the WWV or
1084ea906c41SOllivier Robert 	 * WWVH signal is present. The WWV and WWVH signals are also
1085ea906c41SOllivier Robert 	 * processed by 5-ms synchronous matched filters and combined to
1086ea906c41SOllivier Robert 	 * produce the second sync signal. The signals are scaled to
1087ea906c41SOllivier Robert 	 * produce unit energy at the maximum value.
10889c2daa00SOllivier Robert 	 *
10899c2daa00SOllivier Robert 	 * Note the master timing ramps, which run continuously. The
10909c2daa00SOllivier Robert 	 * minute counter (mphase) counts the samples in the minute,
10919c2daa00SOllivier Robert 	 * while the second counter (epoch) counts the samples in the
10929c2daa00SOllivier Robert 	 * second.
1093a151a66cSOllivier Robert 	 */
10942b15cb3dSCy Schubert 	up->mphase = (up->mphase + 1) % WWV_MIN;
10952b15cb3dSCy Schubert 	epoch = up->mphase % WWV_SEC;
1096ea906c41SOllivier Robert 
1097ea906c41SOllivier Robert 	/*
1098ea906c41SOllivier Robert 	 * WWV
1099ea906c41SOllivier Robert 	 */
1100a151a66cSOllivier Robert 	i = csinptr;
1101a151a66cSOllivier Robert 	csinptr = (csinptr + IN1000) % 80;
1102ea906c41SOllivier Robert 
1103ea906c41SOllivier Robert 	dtemp = sintab[i] * syncx / (MS / 2.);
1104ea906c41SOllivier Robert 	ciamp -= cibuf[jptr];
1105a151a66cSOllivier Robert 	cibuf[jptr] = dtemp;
1106ea906c41SOllivier Robert 	ciamp += dtemp;
1107ea906c41SOllivier Robert 	csiamp -= csibuf[kptr];
1108ea906c41SOllivier Robert 	csibuf[kptr] = dtemp;
1109ea906c41SOllivier Robert 	csiamp += dtemp;
1110ea906c41SOllivier Robert 
1111a151a66cSOllivier Robert 	i = (i + 20) % 80;
1112ea906c41SOllivier Robert 	dtemp = sintab[i] * syncx / (MS / 2.);
1113ea906c41SOllivier Robert 	cqamp -= cqbuf[jptr];
1114a151a66cSOllivier Robert 	cqbuf[jptr] = dtemp;
1115ea906c41SOllivier Robert 	cqamp += dtemp;
1116ea906c41SOllivier Robert 	csqamp -= csqbuf[kptr];
1117ea906c41SOllivier Robert 	csqbuf[kptr] = dtemp;
1118ea906c41SOllivier Robert 	csqamp += dtemp;
1119ea906c41SOllivier Robert 
1120ea906c41SOllivier Robert 	sp = &up->mitig[up->achan].wwv;
1121ea906c41SOllivier Robert 	sp->amp = sqrt(ciamp * ciamp + cqamp * cqamp) / SYNCYC;
11229c2daa00SOllivier Robert 	if (!(up->status & MSYNC))
11232b15cb3dSCy Schubert 		wwv_qrz(peer, sp, (int)(pp->fudgetime1 * WWV_SEC));
1124ea906c41SOllivier Robert 
1125ea906c41SOllivier Robert 	/*
1126ea906c41SOllivier Robert 	 * WWVH
1127ea906c41SOllivier Robert 	 */
1128a151a66cSOllivier Robert 	i = hsinptr;
1129a151a66cSOllivier Robert 	hsinptr = (hsinptr + IN1200) % 80;
1130ea906c41SOllivier Robert 
1131ea906c41SOllivier Robert 	dtemp = sintab[i] * syncx / (MS / 2.);
1132ea906c41SOllivier Robert 	hiamp -= hibuf[jptr];
1133a151a66cSOllivier Robert 	hibuf[jptr] = dtemp;
1134ea906c41SOllivier Robert 	hiamp += dtemp;
1135ea906c41SOllivier Robert 	hsiamp -= hsibuf[kptr];
1136ea906c41SOllivier Robert 	hsibuf[kptr] = dtemp;
1137ea906c41SOllivier Robert 	hsiamp += dtemp;
1138ea906c41SOllivier Robert 
1139a151a66cSOllivier Robert 	i = (i + 20) % 80;
1140ea906c41SOllivier Robert 	dtemp = sintab[i] * syncx / (MS / 2.);
1141ea906c41SOllivier Robert 	hqamp -= hqbuf[jptr];
1142a151a66cSOllivier Robert 	hqbuf[jptr] = dtemp;
1143ea906c41SOllivier Robert 	hqamp += dtemp;
1144ea906c41SOllivier Robert 	hsqamp -= hsqbuf[kptr];
1145ea906c41SOllivier Robert 	hsqbuf[kptr] = dtemp;
1146ea906c41SOllivier Robert 	hsqamp += dtemp;
1147ea906c41SOllivier Robert 
1148ea906c41SOllivier Robert 	rp = &up->mitig[up->achan].wwvh;
1149ea906c41SOllivier Robert 	rp->amp = sqrt(hiamp * hiamp + hqamp * hqamp) / SYNCYC;
11509c2daa00SOllivier Robert 	if (!(up->status & MSYNC))
11512b15cb3dSCy Schubert 		wwv_qrz(peer, rp, (int)(pp->fudgetime2 * WWV_SEC));
1152a151a66cSOllivier Robert 	jptr = (jptr + 1) % SYNSIZ;
1153ea906c41SOllivier Robert 	kptr = (kptr + 1) % TCKSIZ;
1154a151a66cSOllivier Robert 
11559c2daa00SOllivier Robert 	/*
11569c2daa00SOllivier Robert 	 * The following section is called once per minute. It does
11579c2daa00SOllivier Robert 	 * housekeeping and timeout functions and empties the dustbins.
11589c2daa00SOllivier Robert 	 */
1159a151a66cSOllivier Robert 	if (up->mphase == 0) {
1160a151a66cSOllivier Robert 		up->watch++;
11619c2daa00SOllivier Robert 		if (!(up->status & MSYNC)) {
1162a151a66cSOllivier Robert 
1163a151a66cSOllivier Robert 			/*
11649c2daa00SOllivier Robert 			 * If minute sync has not been acquired before
1165ea906c41SOllivier Robert 			 * ACQSN timeout (6 min), or if no signal is
1166ea906c41SOllivier Robert 			 * heard, the program cycles to the next
1167ea906c41SOllivier Robert 			 * frequency and tries again.
1168a151a66cSOllivier Robert 			 */
1169ea906c41SOllivier Robert 			if (!wwv_newchan(peer))
1170ea906c41SOllivier Robert 				up->watch = 0;
1171a151a66cSOllivier Robert 		} else {
1172a151a66cSOllivier Robert 
1173a151a66cSOllivier Robert 			/*
11749c2daa00SOllivier Robert 			 * If the leap bit is set, set the minute epoch
11759c2daa00SOllivier Robert 			 * back one second so the station processes
11769c2daa00SOllivier Robert 			 * don't miss a beat.
1177a151a66cSOllivier Robert 			 */
11789c2daa00SOllivier Robert 			if (up->status & LEPSEC) {
11792b15cb3dSCy Schubert 				up->mphase -= WWV_SEC;
11809c2daa00SOllivier Robert 				if (up->mphase < 0)
11812b15cb3dSCy Schubert 					up->mphase += WWV_MIN;
11829c2daa00SOllivier Robert 			}
11839c2daa00SOllivier Robert 		}
11849c2daa00SOllivier Robert 	}
1185a151a66cSOllivier Robert 
1186a151a66cSOllivier Robert 	/*
11879c2daa00SOllivier Robert 	 * When the channel metric reaches threshold and the second
11889c2daa00SOllivier Robert 	 * counter matches the minute epoch within the second, the
11899c2daa00SOllivier Robert 	 * driver has synchronized to the station. The second number is
11909c2daa00SOllivier Robert 	 * the remaining seconds until the next minute epoch, while the
11919c2daa00SOllivier Robert 	 * sync epoch is zero. Watch out for the first second; if
11929c2daa00SOllivier Robert 	 * already synchronized to the second, the buffered sync epoch
11939c2daa00SOllivier Robert 	 * must be set.
1194ea906c41SOllivier Robert 	 *
1195ea906c41SOllivier Robert 	 * Note the guard interval is 200 ms; if for some reason the
1196ea906c41SOllivier Robert 	 * clock drifts more than that, it might wind up in the wrong
1197ea906c41SOllivier Robert 	 * second. If the maximum frequency error is not more than about
1198ea906c41SOllivier Robert 	 * 1 PPM, the clock can go as much as two days while still in
1199ea906c41SOllivier Robert 	 * the same second.
1200a151a66cSOllivier Robert 	 */
12019c2daa00SOllivier Robert 	if (up->status & MSYNC) {
12029c2daa00SOllivier Robert 		wwv_epoch(peer);
1203ea906c41SOllivier Robert 	} else if (up->sptr != NULL) {
1204ea906c41SOllivier Robert 		sp = up->sptr;
12052b15cb3dSCy Schubert 		if (sp->metric >= TTHR && epoch == sp->mepoch % WWV_SEC)
12062b15cb3dSCy Schubert  		    {
12072b15cb3dSCy Schubert 			up->rsec = (60 - sp->mepoch / WWV_SEC) % 60;
12089c2daa00SOllivier Robert 			up->rphase = 0;
12099c2daa00SOllivier Robert 			up->status |= MSYNC;
12109c2daa00SOllivier Robert 			up->watch = 0;
1211a151a66cSOllivier Robert 			if (!(up->status & SSYNC))
12129c2daa00SOllivier Robert 				up->repoch = up->yepoch = epoch;
12139c2daa00SOllivier Robert 			else
12149c2daa00SOllivier Robert 				up->repoch = up->yepoch;
1215ea906c41SOllivier Robert 
1216a151a66cSOllivier Robert 		}
1217a151a66cSOllivier Robert 	}
1218a151a66cSOllivier Robert 
1219a151a66cSOllivier Robert 	/*
12209c2daa00SOllivier Robert 	 * The second sync pulse is extracted using 5-ms (40 sample) FIR
12219c2daa00SOllivier Robert 	 * matched filters at 1000 Hz for WWV or 1200 Hz for WWVH. This
12229c2daa00SOllivier Robert 	 * pulse is used for the most precise synchronization, since if
12239c2daa00SOllivier Robert 	 * provides a resolution of one sample (125 us). The filters run
12249c2daa00SOllivier Robert 	 * only if the station has been reliably determined.
1225a151a66cSOllivier Robert 	 */
12262b15cb3dSCy Schubert 	if (up->status & SELV)
1227ea906c41SOllivier Robert 		mfsync = sqrt(csiamp * csiamp + csqamp * csqamp) /
1228ea906c41SOllivier Robert 		    TCKCYC;
12292b15cb3dSCy Schubert 	else if (up->status & SELH)
1230ea906c41SOllivier Robert 		mfsync = sqrt(hsiamp * hsiamp + hsqamp * hsqamp) /
1231ea906c41SOllivier Robert 		    TCKCYC;
12322b15cb3dSCy Schubert 	else
1233ea906c41SOllivier Robert 		mfsync = 0;
1234a151a66cSOllivier Robert 
1235a151a66cSOllivier Robert 	/*
12369c2daa00SOllivier Robert 	 * Enhance the seconds sync pulse using a 1-s (8000-sample) comb
12379c2daa00SOllivier Robert 	 * filter. Correct for the FIR matched filter delay, which is 5
12389c2daa00SOllivier Robert 	 * ms for both the WWV and WWVH filters, and also for the
12399c2daa00SOllivier Robert 	 * propagation delay. Once each second look for second sync. If
12409c2daa00SOllivier Robert 	 * not in minute sync, fiddle the codec gain. Note the SNR is
1241ea906c41SOllivier Robert 	 * computed from the maximum sample and the envelope of the
1242ea906c41SOllivier Robert 	 * sample 6 ms before it, so if we slip more than a cycle the
1243ea906c41SOllivier Robert 	 * SNR should plummet. The signal is scaled to produce unit
1244ea906c41SOllivier Robert 	 * energy at the maximum value.
1245a151a66cSOllivier Robert 	 */
12469c2daa00SOllivier Robert 	dtemp = (epobuf[epoch] += (mfsync - epobuf[epoch]) /
12479c2daa00SOllivier Robert 	    up->avgint);
12489c2daa00SOllivier Robert 	if (dtemp > epomax) {
1249ea906c41SOllivier Robert 		int	j;
1250ea906c41SOllivier Robert 
12519c2daa00SOllivier Robert 		epomax = dtemp;
12529c2daa00SOllivier Robert 		epopos = epoch;
1253ea906c41SOllivier Robert 		j = epoch - 6 * MS;
1254ea906c41SOllivier Robert 		if (j < 0)
12552b15cb3dSCy Schubert 			j += WWV_SEC;
1256ea906c41SOllivier Robert 		nxtmax = fabs(epobuf[j]);
12579c2daa00SOllivier Robert 	}
12589c2daa00SOllivier Robert 	if (epoch == 0) {
1259a151a66cSOllivier Robert 		up->epomax = epomax;
1260ea906c41SOllivier Robert 		up->eposnr = wwv_snr(epomax, nxtmax);
12612b15cb3dSCy Schubert 		epopos -= TCKCYC * MS;
12629c2daa00SOllivier Robert 		if (epopos < 0)
12632b15cb3dSCy Schubert 			epopos += WWV_SEC;
12649c2daa00SOllivier Robert 		wwv_endpoc(peer, epopos);
12659c2daa00SOllivier Robert 		if (!(up->status & SSYNC))
12669c2daa00SOllivier Robert 			up->alarm |= SYNERR;
1267a151a66cSOllivier Robert 		epomax = 0;
1268a151a66cSOllivier Robert 		if (!(up->status & MSYNC))
1269a151a66cSOllivier Robert 			wwv_gain(peer);
1270a151a66cSOllivier Robert 	}
1271a151a66cSOllivier Robert }
1272a151a66cSOllivier Robert 
1273a151a66cSOllivier Robert 
1274a151a66cSOllivier Robert /*
1275a151a66cSOllivier Robert  * wwv_qrz - identify and acquire WWV/WWVH minute sync pulse
1276a151a66cSOllivier Robert  *
1277a151a66cSOllivier Robert  * This routine implements a virtual station process used to acquire
1278a151a66cSOllivier Robert  * minute sync and to mitigate among the ten frequency and station
12799c2daa00SOllivier Robert  * combinations. During minute sync acquisition the process probes each
1280ea906c41SOllivier Robert  * frequency and station in turn for the minute pulse, which
1281ea906c41SOllivier Robert  * involves searching through the entire 480,000-sample minute. The
1282ea906c41SOllivier Robert  * process finds the maximum signal and RMS noise plus signal. Then, the
1283ea906c41SOllivier Robert  * actual noise is determined by subtracting the energy of the matched
1284ea906c41SOllivier Robert  * filter.
1285a151a66cSOllivier Robert  *
1286a151a66cSOllivier Robert  * Students of radar receiver technology will discover this algorithm
1287ea906c41SOllivier Robert  * amounts to a range-gate discriminator. A valid pulse must have peak
1288ea906c41SOllivier Robert  * amplitude at least QTHR (2500) and SNR at least QSNR (20) dB and the
12899c2daa00SOllivier Robert  * difference between the current and previous epoch must be less than
1290ea906c41SOllivier Robert  * AWND (20 ms). Note that the discriminator peak occurs about 800 ms
1291ea906c41SOllivier Robert  * into the second, so the timing is retarded to the previous second
1292ea906c41SOllivier Robert  * epoch.
1293a151a66cSOllivier Robert  */
1294a151a66cSOllivier Robert static void
1295a151a66cSOllivier Robert wwv_qrz(
1296a151a66cSOllivier Robert 	struct peer *peer,	/* peer structure pointer */
1297a151a66cSOllivier Robert 	struct sync *sp,	/* sync channel structure */
12989c2daa00SOllivier Robert 	int	pdelay		/* propagation delay (samples) */
1299a151a66cSOllivier Robert 	)
1300a151a66cSOllivier Robert {
1301a151a66cSOllivier Robert 	struct refclockproc *pp;
1302a151a66cSOllivier Robert 	struct wwvunit *up;
13032b15cb3dSCy Schubert 	char	tbuf[TBUF];	/* monitor buffer */
1304ea906c41SOllivier Robert 	long	epoch;
1305a151a66cSOllivier Robert 
1306a151a66cSOllivier Robert 	pp = peer->procptr;
13072b15cb3dSCy Schubert 	up = pp->unitptr;
1308a151a66cSOllivier Robert 
1309a151a66cSOllivier Robert 	/*
1310ea906c41SOllivier Robert 	 * Find the sample with peak amplitude, which defines the minute
1311ea906c41SOllivier Robert 	 * epoch. Accumulate all samples to determine the total noise
1312ea906c41SOllivier Robert 	 * energy.
1313a151a66cSOllivier Robert 	 */
1314ea906c41SOllivier Robert 	epoch = up->mphase - pdelay - SYNSIZ;
13159c2daa00SOllivier Robert 	if (epoch < 0)
13162b15cb3dSCy Schubert 		epoch += WWV_MIN;
1317ea906c41SOllivier Robert 	if (sp->amp > sp->maxeng) {
1318ea906c41SOllivier Robert 		sp->maxeng = sp->amp;
13199c2daa00SOllivier Robert 		sp->pos = epoch;
1320a151a66cSOllivier Robert 	}
1321ea906c41SOllivier Robert 	sp->noieng += sp->amp;
1322a151a66cSOllivier Robert 
1323a151a66cSOllivier Robert 	/*
1324ea906c41SOllivier Robert 	 * At the end of the minute, determine the epoch of the minute
1325ea906c41SOllivier Robert 	 * sync pulse, as well as the difference between the current and
1326ea906c41SOllivier Robert 	 * previous epoches due to the intrinsic frequency error plus
1327ea906c41SOllivier Robert 	 * jitter. When calculating the SNR, subtract the pulse energy
1328ea906c41SOllivier Robert 	 * from the total noise energy and then normalize.
1329a151a66cSOllivier Robert 	 */
13309c2daa00SOllivier Robert 	if (up->mphase == 0) {
1331ea906c41SOllivier Robert 		sp->synmax = sp->maxeng;
1332ea906c41SOllivier Robert 		sp->synsnr = wwv_snr(sp->synmax, (sp->noieng -
13332b15cb3dSCy Schubert 		    sp->synmax) / WWV_MIN);
1334ea906c41SOllivier Robert 		if (sp->count == 0)
1335ea906c41SOllivier Robert 			sp->lastpos = sp->pos;
13362b15cb3dSCy Schubert 		epoch = (sp->pos - sp->lastpos) % WWV_MIN;
1337ea906c41SOllivier Robert 		sp->reach <<= 1;
1338ea906c41SOllivier Robert 		if (sp->reach & (1 << AMAX))
1339ea906c41SOllivier Robert 			sp->count--;
1340ea906c41SOllivier Robert 		if (sp->synmax > ATHR && sp->synsnr > ASNR) {
13412b15cb3dSCy Schubert 			if (labs(epoch) < AWND * MS) {
1342ea906c41SOllivier Robert 				sp->reach |= 1;
1343a151a66cSOllivier Robert 				sp->count++;
1344ea906c41SOllivier Robert 				sp->mepoch = sp->lastpos = sp->pos;
1345ea906c41SOllivier Robert 			} else if (sp->count == 1) {
1346ea906c41SOllivier Robert 				sp->lastpos = sp->pos;
1347a151a66cSOllivier Robert 			}
1348a151a66cSOllivier Robert 		}
1349ea906c41SOllivier Robert 		if (up->watch > ACQSN)
1350ea906c41SOllivier Robert 			sp->metric = 0;
1351ea906c41SOllivier Robert 		else
1352ea906c41SOllivier Robert 			sp->metric = wwv_metric(sp);
13539c2daa00SOllivier Robert 		if (pp->sloppyclockflag & CLK_FLAG4) {
13542b15cb3dSCy Schubert 			snprintf(tbuf, sizeof(tbuf),
13552b15cb3dSCy Schubert 			    "wwv8 %04x %3d %s %04x %.0f %.0f/%.1f %ld %ld",
1356ea906c41SOllivier Robert 			    up->status, up->gain, sp->refid,
1357ea906c41SOllivier Robert 			    sp->reach & 0xffff, sp->metric, sp->synmax,
13582b15cb3dSCy Schubert 			    sp->synsnr, sp->pos % WWV_SEC, epoch);
1359a151a66cSOllivier Robert 			record_clock_stats(&peer->srcadr, tbuf);
1360a151a66cSOllivier Robert #ifdef DEBUG
1361a151a66cSOllivier Robert 			if (debug)
1362a151a66cSOllivier Robert 				printf("%s\n", tbuf);
1363ea906c41SOllivier Robert #endif /* DEBUG */
1364a151a66cSOllivier Robert 		}
1365ea906c41SOllivier Robert 		sp->maxeng = sp->noieng = 0;
1366a151a66cSOllivier Robert 	}
1367a151a66cSOllivier Robert }
1368a151a66cSOllivier Robert 
1369a151a66cSOllivier Robert 
1370a151a66cSOllivier Robert /*
13719c2daa00SOllivier Robert  * wwv_endpoc - identify and acquire second sync pulse
1372a151a66cSOllivier Robert  *
13739c2daa00SOllivier Robert  * This routine is called at the end of the second sync interval. It
1374ea906c41SOllivier Robert  * determines the second sync epoch position within the second and
13759c2daa00SOllivier Robert  * disciplines the sample clock using a frequency-lock loop (FLL).
1376a151a66cSOllivier Robert  *
13779c2daa00SOllivier Robert  * Second sync is determined in the RF input routine as the maximum
1378a151a66cSOllivier Robert  * over all 8000 samples in the second comb filter. To assure accurate
1379a151a66cSOllivier Robert  * and reliable time and frequency discipline, this routine performs a
13809c2daa00SOllivier Robert  * great deal of heavy-handed heuristic data filtering and grooming.
1381a151a66cSOllivier Robert  */
1382a151a66cSOllivier Robert static void
1383a151a66cSOllivier Robert wwv_endpoc(
1384a151a66cSOllivier Robert 	struct peer *peer,	/* peer structure pointer */
1385a151a66cSOllivier Robert 	int epopos		/* epoch max position */
1386a151a66cSOllivier Robert 	)
1387a151a66cSOllivier Robert {
1388a151a66cSOllivier Robert 	struct refclockproc *pp;
1389a151a66cSOllivier Robert 	struct wwvunit *up;
1390a151a66cSOllivier Robert 	static int epoch_mf[3]; /* epoch median filter */
1391ea906c41SOllivier Robert 	static int tepoch;	/* current second epoch */
1392a151a66cSOllivier Robert  	static int xepoch;	/* last second epoch */
1393ea906c41SOllivier Robert  	static int zepoch;	/* last run epoch */
1394ea906c41SOllivier Robert 	static int zcount;	/* last run end time */
1395ea906c41SOllivier Robert 	static int scount;	/* seconds counter */
13969c2daa00SOllivier Robert 	static int syncnt;	/* run length counter */
13979c2daa00SOllivier Robert 	static int maxrun;	/* longest run length */
1398ea906c41SOllivier Robert 	static int mepoch;	/* longest run end epoch */
1399ea906c41SOllivier Robert 	static int mcount;	/* longest run end time */
1400a151a66cSOllivier Robert 	static int avgcnt;	/* averaging interval counter */
1401a151a66cSOllivier Robert 	static int avginc;	/* averaging ratchet */
1402a151a66cSOllivier Robert 	static int iniflg;	/* initialization flag */
14032b15cb3dSCy Schubert 	char tbuf[TBUF];		/* monitor buffer */
1404a151a66cSOllivier Robert 	double dtemp;
14059c2daa00SOllivier Robert 	int tmp2;
1406a151a66cSOllivier Robert 
1407a151a66cSOllivier Robert 	pp = peer->procptr;
14082b15cb3dSCy Schubert 	up = pp->unitptr;
1409a151a66cSOllivier Robert 	if (!iniflg) {
1410a151a66cSOllivier Robert 		iniflg = 1;
14112b15cb3dSCy Schubert 		ZERO(epoch_mf);
1412a151a66cSOllivier Robert 	}
1413a151a66cSOllivier Robert 
1414a151a66cSOllivier Robert 	/*
1415ea906c41SOllivier Robert 	 * If the signal amplitude or SNR fall below thresholds, dim the
1416ea906c41SOllivier Robert 	 * second sync lamp and wait for hotter ions. If no stations are
1417ea906c41SOllivier Robert 	 * heard, we are either in a probe cycle or the ions are really
1418ea906c41SOllivier Robert 	 * cold.
1419ea906c41SOllivier Robert 	 */
1420ea906c41SOllivier Robert 	scount++;
1421ea906c41SOllivier Robert 	if (up->epomax < STHR || up->eposnr < SSNR) {
1422ea906c41SOllivier Robert 		up->status &= ~(SSYNC | FGATE);
1423ea906c41SOllivier Robert 		avgcnt = syncnt = maxrun = 0;
1424ea906c41SOllivier Robert 		return;
1425ea906c41SOllivier Robert 	}
1426ea906c41SOllivier Robert 	if (!(up->status & (SELV | SELH)))
1427ea906c41SOllivier Robert 		return;
1428ea906c41SOllivier Robert 
1429ea906c41SOllivier Robert 	/*
1430a151a66cSOllivier Robert 	 * A three-stage median filter is used to help denoise the
14319c2daa00SOllivier Robert 	 * second sync pulse. The median sample becomes the candidate
14329c2daa00SOllivier Robert 	 * epoch.
1433a151a66cSOllivier Robert 	 */
1434a151a66cSOllivier Robert 	epoch_mf[2] = epoch_mf[1];
1435a151a66cSOllivier Robert 	epoch_mf[1] = epoch_mf[0];
1436a151a66cSOllivier Robert 	epoch_mf[0] = epopos;
1437a151a66cSOllivier Robert 	if (epoch_mf[0] > epoch_mf[1]) {
14389c2daa00SOllivier Robert 		if (epoch_mf[1] > epoch_mf[2])
1439ea906c41SOllivier Robert 			tepoch = epoch_mf[1];	/* 0 1 2 */
14409c2daa00SOllivier Robert 		else if (epoch_mf[2] > epoch_mf[0])
1441ea906c41SOllivier Robert 			tepoch = epoch_mf[0];	/* 2 0 1 */
14429c2daa00SOllivier Robert 		else
1443ea906c41SOllivier Robert 			tepoch = epoch_mf[2];	/* 0 2 1 */
1444a151a66cSOllivier Robert 	} else {
14459c2daa00SOllivier Robert 		if (epoch_mf[1] < epoch_mf[2])
1446ea906c41SOllivier Robert 			tepoch = epoch_mf[1];	/* 2 1 0 */
14479c2daa00SOllivier Robert 		else if (epoch_mf[2] < epoch_mf[0])
1448ea906c41SOllivier Robert 			tepoch = epoch_mf[0];	/* 1 0 2 */
14499c2daa00SOllivier Robert 		else
1450ea906c41SOllivier Robert 			tepoch = epoch_mf[2];	/* 1 2 0 */
1451a151a66cSOllivier Robert 	}
1452a151a66cSOllivier Robert 
14539c2daa00SOllivier Robert 
14549c2daa00SOllivier Robert 	/*
14559c2daa00SOllivier Robert 	 * If the epoch candidate is the same as the last one, increment
1456ea906c41SOllivier Robert 	 * the run counter. If not, save the length, epoch and end
1457ea906c41SOllivier Robert 	 * time of the current run for use later and reset the counter.
1458ea906c41SOllivier Robert 	 * The epoch is considered valid if the run is at least SCMP
1459ea906c41SOllivier Robert 	 * (10) s, the minute is synchronized and the interval since the
1460ea906c41SOllivier Robert 	 * last epoch  is not greater than the averaging interval. Thus,
1461ea906c41SOllivier Robert 	 * after a long absence, the program will wait a full averaging
1462ea906c41SOllivier Robert 	 * interval while the comb filter charges up and noise
1463ea906c41SOllivier Robert 	 * dissapates..
14649c2daa00SOllivier Robert 	 */
14652b15cb3dSCy Schubert 	tmp2 = (tepoch - xepoch) % WWV_SEC;
14669c2daa00SOllivier Robert 	if (tmp2 == 0) {
14679c2daa00SOllivier Robert 		syncnt++;
1468ea906c41SOllivier Robert 		if (syncnt > SCMP && up->status & MSYNC && (up->status &
1469ea906c41SOllivier Robert 		    FGATE || scount - zcount <= up->avgint)) {
1470ea906c41SOllivier Robert 			up->status |= SSYNC;
1471ea906c41SOllivier Robert 			up->yepoch = tepoch;
1472a151a66cSOllivier Robert 		}
1473ea906c41SOllivier Robert 	} else if (syncnt >= maxrun) {
1474ea906c41SOllivier Robert 		maxrun = syncnt;
1475ea906c41SOllivier Robert 		mcount = scount;
1476ea906c41SOllivier Robert 		mepoch = xepoch;
14779c2daa00SOllivier Robert 		syncnt = 0;
14789c2daa00SOllivier Robert 	}
14792b15cb3dSCy Schubert 	if ((pp->sloppyclockflag & CLK_FLAG4) && !(up->status &
14802b15cb3dSCy Schubert 	    MSYNC)) {
14812b15cb3dSCy Schubert 		snprintf(tbuf, sizeof(tbuf),
1482ea906c41SOllivier Robert 		    "wwv1 %04x %3d %4d %5.0f %5.1f %5d %4d %4d %4d",
1483ea906c41SOllivier Robert 		    up->status, up->gain, tepoch, up->epomax,
1484ea906c41SOllivier Robert 		    up->eposnr, tmp2, avgcnt, syncnt,
1485ea906c41SOllivier Robert 		    maxrun);
1486a151a66cSOllivier Robert 		record_clock_stats(&peer->srcadr, tbuf);
1487a151a66cSOllivier Robert #ifdef DEBUG
1488a151a66cSOllivier Robert 		if (debug)
1489a151a66cSOllivier Robert 			printf("%s\n", tbuf);
1490a151a66cSOllivier Robert #endif /* DEBUG */
1491a151a66cSOllivier Robert 	}
1492ea906c41SOllivier Robert 	avgcnt++;
14939c2daa00SOllivier Robert 	if (avgcnt < up->avgint) {
1494ea906c41SOllivier Robert 		xepoch = tepoch;
14959c2daa00SOllivier Robert 		return;
14969c2daa00SOllivier Robert 	}
14979c2daa00SOllivier Robert 
14989c2daa00SOllivier Robert 	/*
1499ea906c41SOllivier Robert 	 * The sample clock frequency is disciplined using a first-order
1500ea906c41SOllivier Robert 	 * feedback loop with time constant consistent with the Allan
1501ea906c41SOllivier Robert 	 * intercept of typical computer clocks. During each averaging
1502ea906c41SOllivier Robert 	 * interval the candidate epoch at the end of the longest run is
1503ea906c41SOllivier Robert 	 * determined. If the longest run is zero, all epoches in the
1504ea906c41SOllivier Robert 	 * interval are different, so the candidate epoch is the current
1505ea906c41SOllivier Robert 	 * epoch. The frequency update is computed from the candidate
1506ea906c41SOllivier Robert 	 * epoch difference (125-us units) and time difference (seconds)
1507ea906c41SOllivier Robert 	 * between updates.
15089c2daa00SOllivier Robert 	 */
1509ea906c41SOllivier Robert 	if (syncnt >= maxrun) {
15109c2daa00SOllivier Robert 		maxrun = syncnt;
1511ea906c41SOllivier Robert 		mcount = scount;
15129c2daa00SOllivier Robert 		mepoch = xepoch;
15139c2daa00SOllivier Robert 	}
1514ea906c41SOllivier Robert 	xepoch = tepoch;
1515ea906c41SOllivier Robert 	if (maxrun == 0) {
1516ea906c41SOllivier Robert 		mepoch = tepoch;
1517ea906c41SOllivier Robert 		mcount = scount;
15189c2daa00SOllivier Robert 	}
15199c2daa00SOllivier Robert 
15209c2daa00SOllivier Robert 	/*
1521ea906c41SOllivier Robert 	 * The master clock runs at the codec sample frequency of 8000
1522ea906c41SOllivier Robert 	 * Hz, so the intrinsic time resolution is 125 us. The frequency
1523ea906c41SOllivier Robert 	 * resolution ranges from 18 PPM at the minimum averaging
1524ea906c41SOllivier Robert 	 * interval of 8 s to 0.12 PPM at the maximum interval of 1024
1525ea906c41SOllivier Robert 	 * s. An offset update is determined at the end of the longest
1526ea906c41SOllivier Robert 	 * run in each averaging interval. The frequency adjustment is
1527ea906c41SOllivier Robert 	 * computed from the difference between offset updates and the
1528ea906c41SOllivier Robert 	 * interval between them.
15299c2daa00SOllivier Robert 	 *
1530ea906c41SOllivier Robert 	 * The maximum frequency adjustment ranges from 187 PPM at the
1531ea906c41SOllivier Robert 	 * minimum interval to 1.5 PPM at the maximum. If the adjustment
1532ea906c41SOllivier Robert 	 * exceeds the maximum, the update is discarded and the
1533ea906c41SOllivier Robert 	 * hysteresis counter is decremented. Otherwise, the frequency
1534ea906c41SOllivier Robert 	 * is incremented by the adjustment, but clamped to the maximum
1535ea906c41SOllivier Robert 	 * 187.5 PPM. If the update is less than half the maximum, the
1536ea906c41SOllivier Robert 	 * hysteresis counter is incremented. If the counter increments
1537ea906c41SOllivier Robert 	 * to +3, the averaging interval is doubled and the counter set
1538ea906c41SOllivier Robert 	 * to zero; if it decrements to -3, the interval is halved and
1539ea906c41SOllivier Robert 	 * the counter set to zero.
15409c2daa00SOllivier Robert 	 */
15412b15cb3dSCy Schubert 	dtemp = (mepoch - zepoch) % WWV_SEC;
15429c2daa00SOllivier Robert 	if (up->status & FGATE) {
15432b15cb3dSCy Schubert 		if (fabs(dtemp) < MAXFREQ * MINAVG) {
1544ea906c41SOllivier Robert 			up->freq += (dtemp / 2.) / ((mcount - zcount) *
1545ea906c41SOllivier Robert 			    FCONST);
1546a151a66cSOllivier Robert 			if (up->freq > MAXFREQ)
1547a151a66cSOllivier Robert 				up->freq = MAXFREQ;
1548a151a66cSOllivier Robert 			else if (up->freq < -MAXFREQ)
1549a151a66cSOllivier Robert 				up->freq = -MAXFREQ;
15502b15cb3dSCy Schubert 			if (fabs(dtemp) < MAXFREQ * MINAVG / 2.) {
15519c2daa00SOllivier Robert 				if (avginc < 3) {
1552a151a66cSOllivier Robert 					avginc++;
1553a151a66cSOllivier Robert 				} else {
1554a151a66cSOllivier Robert 					if (up->avgint < MAXAVG) {
15559c2daa00SOllivier Robert 						up->avgint <<= 1;
15569c2daa00SOllivier Robert 						avginc = 0;
15579c2daa00SOllivier Robert 					}
15589c2daa00SOllivier Robert 				}
15599c2daa00SOllivier Robert 			}
15609c2daa00SOllivier Robert 		} else {
15619c2daa00SOllivier Robert 			if (avginc > -3) {
15629c2daa00SOllivier Robert 				avginc--;
15639c2daa00SOllivier Robert 			} else {
15649c2daa00SOllivier Robert 				if (up->avgint > MINAVG) {
15659c2daa00SOllivier Robert 					up->avgint >>= 1;
15669c2daa00SOllivier Robert 					avginc = 0;
15679c2daa00SOllivier Robert 				}
15689c2daa00SOllivier Robert 			}
15699c2daa00SOllivier Robert 		}
15709c2daa00SOllivier Robert 	}
15719c2daa00SOllivier Robert 	if (pp->sloppyclockflag & CLK_FLAG4) {
15722b15cb3dSCy Schubert 		snprintf(tbuf, sizeof(tbuf),
1573ea906c41SOllivier Robert 		    "wwv2 %04x %5.0f %5.1f %5d %4d %4d %4d %4.0f %7.2f",
1574ea906c41SOllivier Robert 		    up->status, up->epomax, up->eposnr, mepoch,
1575ea906c41SOllivier Robert 		    up->avgint, maxrun, mcount - zcount, dtemp,
15762b15cb3dSCy Schubert 		    up->freq * 1e6 / WWV_SEC);
15779c2daa00SOllivier Robert 		record_clock_stats(&peer->srcadr, tbuf);
1578a151a66cSOllivier Robert #ifdef DEBUG
1579a151a66cSOllivier Robert 		if (debug)
1580a151a66cSOllivier Robert 			printf("%s\n", tbuf);
1581a151a66cSOllivier Robert #endif /* DEBUG */
1582a151a66cSOllivier Robert 	}
1583ea906c41SOllivier Robert 
1584ea906c41SOllivier Robert 	/*
1585ea906c41SOllivier Robert 	 * This is a valid update; set up for the next interval.
1586ea906c41SOllivier Robert 	 */
15879c2daa00SOllivier Robert 	up->status |= FGATE;
15889c2daa00SOllivier Robert 	zepoch = mepoch;
1589ea906c41SOllivier Robert 	zcount = mcount;
15909c2daa00SOllivier Robert 	avgcnt = syncnt = maxrun = 0;
1591a151a66cSOllivier Robert }
1592a151a66cSOllivier Robert 
1593a151a66cSOllivier Robert 
1594a151a66cSOllivier Robert /*
15959c2daa00SOllivier Robert  * wwv_epoch - epoch scanner
1596a151a66cSOllivier Robert  *
1597ea906c41SOllivier Robert  * This routine extracts data signals from the 100-Hz subcarrier. It
1598ea906c41SOllivier Robert  * scans the receiver second epoch to determine the signal amplitudes
1599ea906c41SOllivier Robert  * and pulse timings. Receiver synchronization is determined by the
1600ea906c41SOllivier Robert  * minute sync pulse detected in the wwv_rf() routine and the second
1601ea906c41SOllivier Robert  * sync pulse detected in the wwv_epoch() routine. The transmitted
1602ea906c41SOllivier Robert  * signals are delayed by the propagation delay, receiver delay and
1603ea906c41SOllivier Robert  * filter delay of this program. Delay corrections are introduced
1604ea906c41SOllivier Robert  * separately for WWV and WWVH.
1605a151a66cSOllivier Robert  *
1606a151a66cSOllivier Robert  * Most communications radios use a highpass filter in the audio stages,
1607a151a66cSOllivier Robert  * which can do nasty things to the subcarrier phase relative to the
1608a151a66cSOllivier Robert  * sync pulses. Therefore, the data subcarrier reference phase is
1609a151a66cSOllivier Robert  * disciplined using the hardlimited quadrature-phase signal sampled at
1610a151a66cSOllivier Robert  * the same time as the in-phase signal. The phase tracking loop uses
1611a151a66cSOllivier Robert  * phase adjustments of plus-minus one sample (125 us).
1612a151a66cSOllivier Robert  */
1613a151a66cSOllivier Robert static void
1614a151a66cSOllivier Robert wwv_epoch(
1615a151a66cSOllivier Robert 	struct peer *peer	/* peer structure pointer */
1616a151a66cSOllivier Robert 	)
1617a151a66cSOllivier Robert {
1618a151a66cSOllivier Robert 	struct refclockproc *pp;
1619a151a66cSOllivier Robert 	struct wwvunit *up;
1620a151a66cSOllivier Robert 	struct chan *cp;
1621ea906c41SOllivier Robert 	static double sigmin, sigzer, sigone, engmax, engmin;
1622a151a66cSOllivier Robert 
1623a151a66cSOllivier Robert 	pp = peer->procptr;
16242b15cb3dSCy Schubert 	up = pp->unitptr;
1625a151a66cSOllivier Robert 
1626a151a66cSOllivier Robert 	/*
1627ea906c41SOllivier Robert 	 * Find the maximum minute sync pulse energy for both the
1628ea906c41SOllivier Robert 	 * WWV and WWVH stations. This will be used later for channel
1629ea906c41SOllivier Robert 	 * and station mitigation. Also set the seconds epoch at 800 ms
1630ea906c41SOllivier Robert 	 * well before the end of the second to make sure we never set
1631ea906c41SOllivier Robert 	 * the epoch backwards.
1632a151a66cSOllivier Robert 	 */
16339c2daa00SOllivier Robert 	cp = &up->mitig[up->achan];
1634ea906c41SOllivier Robert 	if (cp->wwv.amp > cp->wwv.syneng)
1635ea906c41SOllivier Robert 		cp->wwv.syneng = cp->wwv.amp;
1636ea906c41SOllivier Robert 	if (cp->wwvh.amp > cp->wwvh.syneng)
1637ea906c41SOllivier Robert 		cp->wwvh.syneng = cp->wwvh.amp;
1638ea906c41SOllivier Robert 	if (up->rphase == 800 * MS)
1639ea906c41SOllivier Robert 		up->repoch = up->yepoch;
1640a151a66cSOllivier Robert 
16419c2daa00SOllivier Robert 	/*
1642ea906c41SOllivier Robert 	 * Use the signal amplitude at epoch 15 ms as the noise floor.
1643ea906c41SOllivier Robert 	 * This gives a guard time of +-15 ms from the beginning of the
1644ea906c41SOllivier Robert 	 * second until the second pulse rises at 30 ms. There is a
16459c2daa00SOllivier Robert 	 * compromise here; we want to delay the sample as long as
16469c2daa00SOllivier Robert 	 * possible to give the radio time to change frequency and the
16479c2daa00SOllivier Robert 	 * AGC to stabilize, but as early as possible if the second
16489c2daa00SOllivier Robert 	 * epoch is not exact.
16499c2daa00SOllivier Robert 	 */
1650ea906c41SOllivier Robert 	if (up->rphase == 15 * MS)
1651ea906c41SOllivier Robert 		sigmin = sigzer = sigone = up->irig;
1652a151a66cSOllivier Robert 
1653a151a66cSOllivier Robert 	/*
1654ea906c41SOllivier Robert 	 * Latch the data signal at 200 ms. Keep this around until the
1655ea906c41SOllivier Robert 	 * end of the second. Use the signal energy as the peak to
1656ea906c41SOllivier Robert 	 * compute the SNR. Use the Q sample to adjust the 100-Hz
1657ea906c41SOllivier Robert 	 * reference oscillator phase.
1658a151a66cSOllivier Robert 	 */
1659ea906c41SOllivier Robert 	if (up->rphase == 200 * MS) {
1660ea906c41SOllivier Robert 		sigzer = up->irig;
1661ea906c41SOllivier Robert 		engmax = sqrt(up->irig * up->irig + up->qrig *
1662ea906c41SOllivier Robert 		    up->qrig);
16639c2daa00SOllivier Robert 		up->datpha = up->qrig / up->avgint;
1664a151a66cSOllivier Robert 		if (up->datpha >= 0) {
1665a151a66cSOllivier Robert 			up->datapt++;
1666a151a66cSOllivier Robert 			if (up->datapt >= 80)
1667a151a66cSOllivier Robert 				up->datapt -= 80;
1668a151a66cSOllivier Robert 		} else {
1669a151a66cSOllivier Robert 			up->datapt--;
1670a151a66cSOllivier Robert 			if (up->datapt < 0)
1671a151a66cSOllivier Robert 				up->datapt += 80;
1672a151a66cSOllivier Robert 		}
1673ea906c41SOllivier Robert 	}
1674ea906c41SOllivier Robert 
1675a151a66cSOllivier Robert 
1676a151a66cSOllivier Robert 	/*
1677ea906c41SOllivier Robert 	 * Latch the data signal at 500 ms. Keep this around until the
1678ea906c41SOllivier Robert 	 * end of the second.
1679a151a66cSOllivier Robert 	 */
1680ea906c41SOllivier Robert 	else if (up->rphase == 500 * MS)
1681ea906c41SOllivier Robert 		sigone = up->irig;
1682a151a66cSOllivier Robert 
1683a151a66cSOllivier Robert 	/*
16849c2daa00SOllivier Robert 	 * At the end of the second crank the clock state machine and
16859c2daa00SOllivier Robert 	 * adjust the codec gain. Note the epoch is buffered from the
16869c2daa00SOllivier Robert 	 * center of the second in order to avoid jitter while the
16879c2daa00SOllivier Robert 	 * seconds synch is diddling the epoch. Then, determine the true
16889c2daa00SOllivier Robert 	 * offset and update the median filter in the driver interface.
16899c2daa00SOllivier Robert 	 *
1690ea906c41SOllivier Robert 	 * Use the energy at the end of the second as the noise to
1691ea906c41SOllivier Robert 	 * compute the SNR for the data pulse. This gives a better
1692ea906c41SOllivier Robert 	 * measurement than the beginning of the second, especially when
1693ea906c41SOllivier Robert 	 * returning from the probe channel. This gives a guard time of
1694ea906c41SOllivier Robert 	 * 30 ms from the decay of the longest pulse to the rise of the
1695ea906c41SOllivier Robert 	 * next pulse.
1696a151a66cSOllivier Robert 	 */
1697a151a66cSOllivier Robert 	up->rphase++;
16982b15cb3dSCy Schubert 	if (up->mphase % WWV_SEC == up->repoch) {
1699ea906c41SOllivier Robert 		up->status &= ~(DGATE | BGATE);
1700ea906c41SOllivier Robert 		engmin = sqrt(up->irig * up->irig + up->qrig *
1701ea906c41SOllivier Robert 		    up->qrig);
1702ea906c41SOllivier Robert 		up->datsig = engmax;
1703ea906c41SOllivier Robert 		up->datsnr = wwv_snr(engmax, engmin);
1704ea906c41SOllivier Robert 
1705ea906c41SOllivier Robert 		/*
1706ea906c41SOllivier Robert 		 * If the amplitude or SNR is below threshold, average a
1707ea906c41SOllivier Robert 		 * 0 in the the integrators; otherwise, average the
1708ea906c41SOllivier Robert 		 * bipolar signal. This is done to avoid noise polution.
1709ea906c41SOllivier Robert 		 */
1710ea906c41SOllivier Robert 		if (engmax < DTHR || up->datsnr < DSNR) {
1711ea906c41SOllivier Robert 			up->status |= DGATE;
1712ea906c41SOllivier Robert 			wwv_rsec(peer, 0);
1713ea906c41SOllivier Robert 		} else {
1714ea906c41SOllivier Robert 			sigzer -= sigone;
1715ea906c41SOllivier Robert 			sigone -= sigmin;
1716ea906c41SOllivier Robert 			wwv_rsec(peer, sigone - sigzer);
1717ea906c41SOllivier Robert 		}
1718ea906c41SOllivier Robert 		if (up->status & (DGATE | BGATE))
1719ea906c41SOllivier Robert 			up->errcnt++;
1720ea906c41SOllivier Robert 		if (up->errcnt > MAXERR)
1721ea906c41SOllivier Robert 			up->alarm |= LOWERR;
1722a151a66cSOllivier Robert 		wwv_gain(peer);
1723ea906c41SOllivier Robert 		cp = &up->mitig[up->achan];
1724ea906c41SOllivier Robert 		cp->wwv.syneng = 0;
1725ea906c41SOllivier Robert 		cp->wwvh.syneng = 0;
1726ea906c41SOllivier Robert 		up->rphase = 0;
1727a151a66cSOllivier Robert 	}
1728a151a66cSOllivier Robert }
1729a151a66cSOllivier Robert 
1730a151a66cSOllivier Robert 
1731a151a66cSOllivier Robert /*
1732a151a66cSOllivier Robert  * wwv_rsec - process receiver second
1733a151a66cSOllivier Robert  *
1734a151a66cSOllivier Robert  * This routine is called at the end of each receiver second to
1735a151a66cSOllivier Robert  * implement the per-second state machine. The machine assembles BCD
1736a151a66cSOllivier Robert  * digit bits, decodes miscellaneous bits and dances the leap seconds.
1737a151a66cSOllivier Robert  *
1738a151a66cSOllivier Robert  * Normally, the minute has 60 seconds numbered 0-59. If the leap
1739a151a66cSOllivier Robert  * warning bit is set, the last minute (1439) of 30 June (day 181 or 182
1740a151a66cSOllivier Robert  * for leap years) or 31 December (day 365 or 366 for leap years) is
1741a151a66cSOllivier Robert  * augmented by one second numbered 60. This is accomplished by
1742a151a66cSOllivier Robert  * extending the minute interval by one second and teaching the state
17439c2daa00SOllivier Robert  * machine to ignore it.
1744a151a66cSOllivier Robert  */
1745a151a66cSOllivier Robert static void
1746a151a66cSOllivier Robert wwv_rsec(
1747a151a66cSOllivier Robert 	struct peer *peer,	/* peer structure pointer */
1748ea906c41SOllivier Robert 	double bit
1749a151a66cSOllivier Robert 	)
1750a151a66cSOllivier Robert {
1751a151a66cSOllivier Robert 	static int iniflg;	/* initialization flag */
1752a151a66cSOllivier Robert 	static double bcddld[4]; /* BCD data bits */
1753a151a66cSOllivier Robert 	static double bitvec[61]; /* bit integrator for misc bits */
1754a151a66cSOllivier Robert 	struct refclockproc *pp;
1755a151a66cSOllivier Robert 	struct wwvunit *up;
1756a151a66cSOllivier Robert 	struct chan *cp;
1757a151a66cSOllivier Robert 	struct sync *sp, *rp;
17582b15cb3dSCy Schubert 	char	tbuf[TBUF];	/* monitor buffer */
1759a151a66cSOllivier Robert 	int	sw, arg, nsec;
1760a151a66cSOllivier Robert 
1761a151a66cSOllivier Robert 	pp = peer->procptr;
17622b15cb3dSCy Schubert 	up = pp->unitptr;
1763a151a66cSOllivier Robert 	if (!iniflg) {
1764a151a66cSOllivier Robert 		iniflg = 1;
17652b15cb3dSCy Schubert 		ZERO(bitvec);
1766a151a66cSOllivier Robert 	}
1767a151a66cSOllivier Robert 
1768a151a66cSOllivier Robert 	/*
1769a151a66cSOllivier Robert 	 * The bit represents the probability of a hit on zero (negative
1770a151a66cSOllivier Robert 	 * values), a hit on one (positive values) or a miss (zero
1771a151a66cSOllivier Robert 	 * value). The likelihood vector is the exponential average of
1772a151a66cSOllivier Robert 	 * these probabilities. Only the bits of this vector
1773a151a66cSOllivier Robert 	 * corresponding to the miscellaneous bits of the timecode are
1774a151a66cSOllivier Robert 	 * used, but it's easier to do them all. After that, crank the
1775a151a66cSOllivier Robert 	 * seconds state machine.
1776a151a66cSOllivier Robert 	 */
1777ea906c41SOllivier Robert 	nsec = up->rsec;
1778ea906c41SOllivier Robert 	up->rsec++;
1779ea906c41SOllivier Robert 	bitvec[nsec] += (bit - bitvec[nsec]) / TCONST;
1780ea906c41SOllivier Robert 	sw = progx[nsec].sw;
1781ea906c41SOllivier Robert 	arg = progx[nsec].arg;
1782ea906c41SOllivier Robert 
1783ea906c41SOllivier Robert 	/*
1784ea906c41SOllivier Robert 	 * The minute state machine. Fly off to a particular section as
1785ea906c41SOllivier Robert 	 * directed by the transition matrix and second number.
1786ea906c41SOllivier Robert 	 */
1787a151a66cSOllivier Robert 	switch (sw) {
1788a151a66cSOllivier Robert 
1789a151a66cSOllivier Robert 	/*
1790a151a66cSOllivier Robert 	 * Ignore this second.
1791a151a66cSOllivier Robert 	 */
1792a151a66cSOllivier Robert 	case IDLE:			/* 9, 45-49 */
1793a151a66cSOllivier Robert 		break;
1794a151a66cSOllivier Robert 
1795a151a66cSOllivier Robert 	/*
1796a151a66cSOllivier Robert 	 * Probe channel stuff
1797a151a66cSOllivier Robert 	 *
1798a151a66cSOllivier Robert 	 * The WWV/H format contains data pulses in second 59 (position
1799ea906c41SOllivier Robert 	 * identifier) and second 1, but not in second 0. The minute
1800ea906c41SOllivier Robert 	 * sync pulse is contained in second 0. At the end of second 58
1801ea906c41SOllivier Robert 	 * QSY to the probe channel, which rotates in turn over all
1802ea906c41SOllivier Robert 	 * WWV/H frequencies. At the end of second 0 measure the minute
1803ea906c41SOllivier Robert 	 * sync pulse. At the end of second 1 measure the data pulse and
1804ea906c41SOllivier Robert 	 * QSY back to the data channel. Note that the actions commented
1805ea906c41SOllivier Robert 	 * here happen at the end of the second numbered as shown.
18069c2daa00SOllivier Robert 	 *
1807ea906c41SOllivier Robert 	 * At the end of second 0 save the minute sync amplitude latched
1808ea906c41SOllivier Robert 	 * at 800 ms as the signal later used to calculate the SNR.
1809a151a66cSOllivier Robert 	 */
1810a151a66cSOllivier Robert 	case SYNC2:			/* 0 */
1811a151a66cSOllivier Robert 		cp = &up->mitig[up->achan];
1812ea906c41SOllivier Robert 		cp->wwv.synmax = cp->wwv.syneng;
1813ea906c41SOllivier Robert 		cp->wwvh.synmax = cp->wwvh.syneng;
1814a151a66cSOllivier Robert 		break;
1815a151a66cSOllivier Robert 
1816a151a66cSOllivier Robert 	/*
1817ea906c41SOllivier Robert 	 * At the end of second 1 use the minute sync amplitude latched
1818ea906c41SOllivier Robert 	 * at 800 ms as the noise to calculate the SNR. If the minute
1819ea906c41SOllivier Robert 	 * sync pulse and SNR are above thresholds and the data pulse
1820ea906c41SOllivier Robert 	 * amplitude and SNR are above thresolds, shift a 1 into the
1821ea906c41SOllivier Robert 	 * station reachability register; otherwise, shift a 0. The
1822ea906c41SOllivier Robert 	 * number of 1 bits in the last six intervals is a component of
1823ea906c41SOllivier Robert 	 * the channel metric computed by the wwv_metric() routine.
18249c2daa00SOllivier Robert 	 * Finally, QSY back to the data channel.
1825a151a66cSOllivier Robert 	 */
1826a151a66cSOllivier Robert 	case SYNC3:			/* 1 */
1827a151a66cSOllivier Robert 		cp = &up->mitig[up->achan];
1828a151a66cSOllivier Robert 
18299c2daa00SOllivier Robert 		/*
18309c2daa00SOllivier Robert 		 * WWV station
18319c2daa00SOllivier Robert 		 */
1832a151a66cSOllivier Robert 		sp = &cp->wwv;
1833ea906c41SOllivier Robert 		sp->synsnr = wwv_snr(sp->synmax, sp->amp);
18349c2daa00SOllivier Robert 		sp->reach <<= 1;
18359c2daa00SOllivier Robert 		if (sp->reach & (1 << AMAX))
18369c2daa00SOllivier Robert 			sp->count--;
1837ea906c41SOllivier Robert 		if (sp->synmax >= QTHR && sp->synsnr >= QSNR &&
1838ea906c41SOllivier Robert 		    !(up->status & (DGATE | BGATE))) {
18399c2daa00SOllivier Robert 			sp->reach |= 1;
18409c2daa00SOllivier Robert 			sp->count++;
18419c2daa00SOllivier Robert 		}
1842ea906c41SOllivier Robert 		sp->metric = wwv_metric(sp);
1843a151a66cSOllivier Robert 
18449c2daa00SOllivier Robert 		/*
18459c2daa00SOllivier Robert 		 * WWVH station
18469c2daa00SOllivier Robert 		 */
1847a151a66cSOllivier Robert 		rp = &cp->wwvh;
1848ea906c41SOllivier Robert 		rp->synsnr = wwv_snr(rp->synmax, rp->amp);
18499c2daa00SOllivier Robert 		rp->reach <<= 1;
18509c2daa00SOllivier Robert 		if (rp->reach & (1 << AMAX))
18519c2daa00SOllivier Robert 			rp->count--;
1852ea906c41SOllivier Robert 		if (rp->synmax >= QTHR && rp->synsnr >= QSNR &&
1853ea906c41SOllivier Robert 		    !(up->status & (DGATE | BGATE))) {
18549c2daa00SOllivier Robert 			rp->reach |= 1;
18559c2daa00SOllivier Robert 			rp->count++;
18569c2daa00SOllivier Robert 		}
1857ea906c41SOllivier Robert 		rp->metric = wwv_metric(rp);
18589c2daa00SOllivier Robert 		if (pp->sloppyclockflag & CLK_FLAG4) {
18592b15cb3dSCy Schubert 			snprintf(tbuf, sizeof(tbuf),
1860ea906c41SOllivier Robert 			    "wwv5 %04x %3d %4d %.0f/%.1f %.0f/%.1f %s %04x %.0f %.0f/%.1f %s %04x %.0f %.0f/%.1f",
1861ea906c41SOllivier Robert 			    up->status, up->gain, up->yepoch,
1862ea906c41SOllivier Robert 			    up->epomax, up->eposnr, up->datsig,
1863ea906c41SOllivier Robert 			    up->datsnr,
18649c2daa00SOllivier Robert 			    sp->refid, sp->reach & 0xffff,
1865ea906c41SOllivier Robert 			    sp->metric, sp->synmax, sp->synsnr,
18669c2daa00SOllivier Robert 			    rp->refid, rp->reach & 0xffff,
1867ea906c41SOllivier Robert 			    rp->metric, rp->synmax, rp->synsnr);
1868a151a66cSOllivier Robert 			record_clock_stats(&peer->srcadr, tbuf);
1869a151a66cSOllivier Robert #ifdef DEBUG
1870a151a66cSOllivier Robert 			if (debug)
1871a151a66cSOllivier Robert 				printf("%s\n", tbuf);
1872a151a66cSOllivier Robert #endif /* DEBUG */
18739c2daa00SOllivier Robert 		}
1874ea906c41SOllivier Robert 		up->errcnt = up->digcnt = up->alarm = 0;
1875ea906c41SOllivier Robert 
1876ea906c41SOllivier Robert 		/*
18772b15cb3dSCy Schubert 		 * If synchronized to a station, restart if no stations
18782b15cb3dSCy Schubert 		 * have been heard within the PANIC timeout (2 days). If
18792b15cb3dSCy Schubert 		 * not and the minute digit has been found, restart if
18802b15cb3dSCy Schubert 		 * not synchronized withing the SYNCH timeout (40 m). If
18812b15cb3dSCy Schubert 		 * not, restart if the unit digit has not been found
18822b15cb3dSCy Schubert 		 * within the DATA timeout (15 m).
1883ea906c41SOllivier Robert 		 */
1884ea906c41SOllivier Robert 		if (up->status & INSYNC) {
1885ea906c41SOllivier Robert 			if (up->watch > PANIC) {
1886ea906c41SOllivier Robert 				wwv_newgame(peer);
1887ea906c41SOllivier Robert 				return;
1888ea906c41SOllivier Robert 			}
18892b15cb3dSCy Schubert 		} else if (up->status & DSYNC) {
1890ea906c41SOllivier Robert 			if (up->watch > SYNCH) {
1891ea906c41SOllivier Robert 				wwv_newgame(peer);
1892ea906c41SOllivier Robert 				return;
1893ea906c41SOllivier Robert 			}
18942b15cb3dSCy Schubert 		} else if (up->watch > DATA) {
18952b15cb3dSCy Schubert 			wwv_newgame(peer);
18962b15cb3dSCy Schubert 			return;
1897ea906c41SOllivier Robert 		}
1898ea906c41SOllivier Robert 		wwv_newchan(peer);
1899a151a66cSOllivier Robert 		break;
1900a151a66cSOllivier Robert 
1901a151a66cSOllivier Robert 	/*
1902a151a66cSOllivier Robert 	 * Save the bit probability in the BCD data vector at the index
1903ea906c41SOllivier Robert 	 * given by the argument. Bits not used in the digit are forced
1904ea906c41SOllivier Robert 	 * to zero.
1905a151a66cSOllivier Robert 	 */
1906ea906c41SOllivier Robert 	case COEF1:			/* 4-7 */
1907a151a66cSOllivier Robert 		bcddld[arg] = bit;
1908a151a66cSOllivier Robert 		break;
1909a151a66cSOllivier Robert 
1910ea906c41SOllivier Robert 	case COEF:			/* 10-13, 15-17, 20-23, 25-26,
1911ea906c41SOllivier Robert 					   30-33, 35-38, 40-41, 51-54 */
1912ea906c41SOllivier Robert 		if (up->status & DSYNC)
1913ea906c41SOllivier Robert 			bcddld[arg] = bit;
1914ea906c41SOllivier Robert 		else
1915ea906c41SOllivier Robert 			bcddld[arg] = 0;
1916ea906c41SOllivier Robert 		break;
1917ea906c41SOllivier Robert 
1918a151a66cSOllivier Robert 	case COEF2:			/* 18, 27-28, 42-43 */
1919a151a66cSOllivier Robert 		bcddld[arg] = 0;
1920a151a66cSOllivier Robert 		break;
1921a151a66cSOllivier Robert 
1922a151a66cSOllivier Robert 	/*
1923a151a66cSOllivier Robert 	 * Correlate coefficient vector with each valid digit vector and
1924a151a66cSOllivier Robert 	 * save in decoding matrix. We step through the decoding matrix
1925a151a66cSOllivier Robert 	 * digits correlating each with the coefficients and saving the
1926a151a66cSOllivier Robert 	 * greatest and the next lower for later SNR calculation.
1927a151a66cSOllivier Robert 	 */
1928a151a66cSOllivier Robert 	case DECIM2:			/* 29 */
1929a151a66cSOllivier Robert 		wwv_corr4(peer, &up->decvec[arg], bcddld, bcd2);
1930a151a66cSOllivier Robert 		break;
1931a151a66cSOllivier Robert 
1932a151a66cSOllivier Robert 	case DECIM3:			/* 44 */
1933a151a66cSOllivier Robert 		wwv_corr4(peer, &up->decvec[arg], bcddld, bcd3);
1934a151a66cSOllivier Robert 		break;
1935a151a66cSOllivier Robert 
1936a151a66cSOllivier Robert 	case DECIM6:			/* 19 */
1937a151a66cSOllivier Robert 		wwv_corr4(peer, &up->decvec[arg], bcddld, bcd6);
1938a151a66cSOllivier Robert 		break;
1939a151a66cSOllivier Robert 
1940a151a66cSOllivier Robert 	case DECIM9:			/* 8, 14, 24, 34, 39 */
1941a151a66cSOllivier Robert 		wwv_corr4(peer, &up->decvec[arg], bcddld, bcd9);
1942a151a66cSOllivier Robert 		break;
1943a151a66cSOllivier Robert 
1944a151a66cSOllivier Robert 	/*
1945a151a66cSOllivier Robert 	 * Miscellaneous bits. If above the positive threshold, declare
1946a151a66cSOllivier Robert 	 * 1; if below the negative threshold, declare 0; otherwise
1947ea906c41SOllivier Robert 	 * raise the BGATE bit. The design is intended to avoid
1948ea906c41SOllivier Robert 	 * integrating noise under low SNR conditions.
1949a151a66cSOllivier Robert 	 */
1950a151a66cSOllivier Robert 	case MSC20:			/* 55 */
1951a151a66cSOllivier Robert 		wwv_corr4(peer, &up->decvec[YR + 1], bcddld, bcd9);
1952a151a66cSOllivier Robert 		/* fall through */
1953a151a66cSOllivier Robert 
19549c2daa00SOllivier Robert 	case MSCBIT:			/* 2-3, 50, 56-57 */
1955ea906c41SOllivier Robert 		if (bitvec[nsec] > BTHR) {
1956ea906c41SOllivier Robert 			if (!(up->misc & arg))
1957ea906c41SOllivier Robert 				up->alarm |= CMPERR;
1958a151a66cSOllivier Robert 			up->misc |= arg;
1959ea906c41SOllivier Robert 		} else if (bitvec[nsec] < -BTHR) {
1960ea906c41SOllivier Robert 			if (up->misc & arg)
1961ea906c41SOllivier Robert 				up->alarm |= CMPERR;
1962a151a66cSOllivier Robert 			up->misc &= ~arg;
1963ea906c41SOllivier Robert 		} else {
1964ea906c41SOllivier Robert 			up->status |= BGATE;
1965ea906c41SOllivier Robert 		}
1966a151a66cSOllivier Robert 		break;
1967a151a66cSOllivier Robert 
19689c2daa00SOllivier Robert 	/*
1969ea906c41SOllivier Robert 	 * Save the data channel gain, then QSY to the probe channel and
19702b15cb3dSCy Schubert 	 * dim the seconds comb filters. The www_newchan() routine will
1971ea906c41SOllivier Robert 	 * light them back up.
19729c2daa00SOllivier Robert 	 */
1973a151a66cSOllivier Robert 	case MSC21:			/* 58 */
1974ea906c41SOllivier Robert 		if (bitvec[nsec] > BTHR) {
1975ea906c41SOllivier Robert 			if (!(up->misc & arg))
1976ea906c41SOllivier Robert 				up->alarm |= CMPERR;
1977a151a66cSOllivier Robert 			up->misc |= arg;
1978ea906c41SOllivier Robert 		} else if (bitvec[nsec] < -BTHR) {
1979ea906c41SOllivier Robert 			if (up->misc & arg)
1980ea906c41SOllivier Robert 				up->alarm |= CMPERR;
1981a151a66cSOllivier Robert 			up->misc &= ~arg;
1982ea906c41SOllivier Robert 		} else {
1983ea906c41SOllivier Robert 			up->status |= BGATE;
1984ea906c41SOllivier Robert 		}
1985ea906c41SOllivier Robert 		up->status &= ~(SELV | SELH);
19869c2daa00SOllivier Robert #ifdef ICOM
19879c2daa00SOllivier Robert 		if (up->fd_icom > 0) {
1988a151a66cSOllivier Robert 			up->schan = (up->schan + 1) % NCHAN;
1989a151a66cSOllivier Robert 			wwv_qsy(peer, up->schan);
1990ea906c41SOllivier Robert 		} else {
1991ea906c41SOllivier Robert 			up->mitig[up->achan].gain = up->gain;
19929c2daa00SOllivier Robert 		}
1993ea906c41SOllivier Robert #else
1994ea906c41SOllivier Robert 		up->mitig[up->achan].gain = up->gain;
19959c2daa00SOllivier Robert #endif /* ICOM */
1996a151a66cSOllivier Robert 		break;
1997a151a66cSOllivier Robert 
1998a151a66cSOllivier Robert 	/*
1999a151a66cSOllivier Robert 	 * The endgames
2000a151a66cSOllivier Robert 	 *
20019c2daa00SOllivier Robert 	 * During second 59 the receiver and codec AGC are settling
2002ea906c41SOllivier Robert 	 * down, so the data pulse is unusable as quality metric. If
2003ea906c41SOllivier Robert 	 * LEPSEC is set on the last minute of 30 June or 31 December,
2004ea906c41SOllivier Robert 	 * the transmitter and receiver insert an extra second (60) in
2005ea906c41SOllivier Robert 	 * the timescale and the minute sync repeats the second. Once
2006ea906c41SOllivier Robert 	 * leaps occurred at intervals of about 18 months, but the last
2007ea906c41SOllivier Robert 	 * leap before the most recent leap in 1995 was in  1998.
2008a151a66cSOllivier Robert 	 */
2009a151a66cSOllivier Robert 	case MIN1:			/* 59 */
2010ea906c41SOllivier Robert 		if (up->status & LEPSEC)
2011ea906c41SOllivier Robert 			break;
2012a151a66cSOllivier Robert 
2013ea906c41SOllivier Robert 		/* fall through */
2014ea906c41SOllivier Robert 
2015ea906c41SOllivier Robert 	case MIN2:			/* 60 */
2016ea906c41SOllivier Robert 		up->status &= ~LEPSEC;
2017ea906c41SOllivier Robert 		wwv_tsec(peer);
2018ea906c41SOllivier Robert 		up->rsec = 0;
2019ea906c41SOllivier Robert 		wwv_clock(peer);
2020ea906c41SOllivier Robert 		break;
2021a151a66cSOllivier Robert 	}
2022ea906c41SOllivier Robert 	if ((pp->sloppyclockflag & CLK_FLAG4) && !(up->status &
2023ea906c41SOllivier Robert 	    DSYNC)) {
20242b15cb3dSCy Schubert 		snprintf(tbuf, sizeof(tbuf),
2025ea906c41SOllivier Robert 		    "wwv3 %2d %04x %3d %4d %5.0f %5.1f %5.0f %5.1f %5.0f",
2026ea906c41SOllivier Robert 		    nsec, up->status, up->gain, up->yepoch, up->epomax,
2027ea906c41SOllivier Robert 		    up->eposnr, up->datsig, up->datsnr, bit);
2028ea906c41SOllivier Robert 		record_clock_stats(&peer->srcadr, tbuf);
2029a151a66cSOllivier Robert #ifdef DEBUG
2030a151a66cSOllivier Robert 		if (debug)
2031ea906c41SOllivier Robert 			printf("%s\n", tbuf);
2032a151a66cSOllivier Robert #endif /* DEBUG */
20339c2daa00SOllivier Robert 	}
20349c2daa00SOllivier Robert 	pp->disp += AUDIO_PHI;
20359c2daa00SOllivier Robert }
20369c2daa00SOllivier Robert 
20379c2daa00SOllivier Robert /*
2038ea906c41SOllivier Robert  * The radio clock is set if the alarm bits are all zero. After that,
2039ea906c41SOllivier Robert  * the time is considered valid if the second sync bit is lit. It should
2040ea906c41SOllivier Robert  * not be a surprise, especially if the radio is not tunable, that
2041ea906c41SOllivier Robert  * sometimes no stations are above the noise and the integrators
2042ea906c41SOllivier Robert  * discharge below the thresholds. We assume that, after a day of signal
2043ea906c41SOllivier Robert  * loss, the minute sync epoch will be in the same second. This requires
2044ea906c41SOllivier Robert  * the codec frequency be accurate within 6 PPM. Practical experience
2045ea906c41SOllivier Robert  * shows the frequency typically within 0.1 PPM, so after a day of
2046ea906c41SOllivier Robert  * signal loss, the time should be within 8.6 ms..
20479c2daa00SOllivier Robert  */
2048ea906c41SOllivier Robert static void
2049ea906c41SOllivier Robert wwv_clock(
2050ea906c41SOllivier Robert 	struct peer *peer	/* peer unit pointer */
2051ea906c41SOllivier Robert 	)
2052ea906c41SOllivier Robert {
2053ea906c41SOllivier Robert 	struct refclockproc *pp;
2054ea906c41SOllivier Robert 	struct wwvunit *up;
2055ea906c41SOllivier Robert 	l_fp	offset;		/* offset in NTP seconds */
2056ea906c41SOllivier Robert 
2057ea906c41SOllivier Robert 	pp = peer->procptr;
20582b15cb3dSCy Schubert 	up = pp->unitptr;
2059ea906c41SOllivier Robert 	if (!(up->status & SSYNC))
2060ea906c41SOllivier Robert 		up->alarm |= SYNERR;
2061ea906c41SOllivier Robert 	if (up->digcnt < 9)
2062ea906c41SOllivier Robert 		up->alarm |= NINERR;
2063ea906c41SOllivier Robert 	if (!(up->alarm))
2064ea906c41SOllivier Robert 		up->status |= INSYNC;
20659c2daa00SOllivier Robert 	if (up->status & INSYNC && up->status & SSYNC) {
2066ea906c41SOllivier Robert 		if (up->misc & SECWAR)
2067ea906c41SOllivier Robert 			pp->leap = LEAP_ADDSECOND;
2068ea906c41SOllivier Robert 		else
2069ea906c41SOllivier Robert 			pp->leap = LEAP_NOWARNING;
20709c2daa00SOllivier Robert 		pp->second = up->rsec;
20719c2daa00SOllivier Robert 		pp->minute = up->decvec[MN].digit + up->decvec[MN +
20729c2daa00SOllivier Robert 		    1].digit * 10;
20739c2daa00SOllivier Robert 		pp->hour = up->decvec[HR].digit + up->decvec[HR +
20749c2daa00SOllivier Robert 		    1].digit * 10;
20759c2daa00SOllivier Robert 		pp->day = up->decvec[DA].digit + up->decvec[DA +
20769c2daa00SOllivier Robert 		    1].digit * 10 + up->decvec[DA + 2].digit * 100;
20779c2daa00SOllivier Robert 		pp->year = up->decvec[YR].digit + up->decvec[YR +
20789c2daa00SOllivier Robert 		    1].digit * 10;
20799c2daa00SOllivier Robert 		pp->year += 2000;
20809c2daa00SOllivier Robert 		L_CLR(&offset);
20819c2daa00SOllivier Robert 		if (!clocktime(pp->day, pp->hour, pp->minute,
20829c2daa00SOllivier Robert 		    pp->second, GMT, up->timestamp.l_ui,
20839c2daa00SOllivier Robert 		    &pp->yearstart, &offset.l_ui)) {
20849c2daa00SOllivier Robert 			up->errflg = CEVNT_BADTIME;
20859c2daa00SOllivier Robert 		} else {
20869c2daa00SOllivier Robert 			up->watch = 0;
20879c2daa00SOllivier Robert 			pp->disp = 0;
2088ea906c41SOllivier Robert 			pp->lastref = up->timestamp;
20899c2daa00SOllivier Robert 			refclock_process_offset(pp, offset,
20902b15cb3dSCy Schubert 			    up->timestamp, PDELAY + up->pdelay);
2091ea906c41SOllivier Robert 			refclock_receive(peer);
20929c2daa00SOllivier Robert 		}
20939c2daa00SOllivier Robert 	}
20942b15cb3dSCy Schubert 	pp->lencode = timecode(up, pp->a_lastcode,
20952b15cb3dSCy Schubert 			       sizeof(pp->a_lastcode));
2096ea906c41SOllivier Robert 	record_clock_stats(&peer->srcadr, pp->a_lastcode);
2097a151a66cSOllivier Robert #ifdef DEBUG
2098a151a66cSOllivier Robert 	if (debug)
2099ea906c41SOllivier Robert 		printf("wwv: timecode %d %s\n", pp->lencode,
2100ea906c41SOllivier Robert 		    pp->a_lastcode);
2101a151a66cSOllivier Robert #endif /* DEBUG */
2102a151a66cSOllivier Robert }
2103a151a66cSOllivier Robert 
2104a151a66cSOllivier Robert 
2105a151a66cSOllivier Robert /*
21062b15cb3dSCy Schubert  * wwv_corr4 - determine maximum-likelihood digit
2107a151a66cSOllivier Robert  *
2108a151a66cSOllivier Robert  * This routine correlates the received digit vector with the BCD
2109a151a66cSOllivier Robert  * coefficient vectors corresponding to all valid digits at the given
2110a151a66cSOllivier Robert  * position in the decoding matrix. The maximum value corresponds to the
21112b15cb3dSCy Schubert  * maximum-likelihood digit, while the ratio of this value to the next
2112a151a66cSOllivier Robert  * lower value determines the likelihood function. Note that, if the
2113a151a66cSOllivier Robert  * digit is invalid, the likelihood vector is averaged toward a miss.
2114a151a66cSOllivier Robert  */
2115a151a66cSOllivier Robert static void
2116a151a66cSOllivier Robert wwv_corr4(
2117a151a66cSOllivier Robert 	struct peer *peer,	/* peer unit pointer */
2118a151a66cSOllivier Robert 	struct decvec *vp,	/* decoding table pointer */
2119a151a66cSOllivier Robert 	double	data[],		/* received data vector */
2120a151a66cSOllivier Robert 	double	tab[][4]	/* correlation vector array */
2121a151a66cSOllivier Robert 	)
2122a151a66cSOllivier Robert {
2123a151a66cSOllivier Robert 	struct refclockproc *pp;
2124a151a66cSOllivier Robert 	struct wwvunit *up;
2125a151a66cSOllivier Robert 	double	topmax, nxtmax;	/* metrics */
2126a151a66cSOllivier Robert 	double	acc;		/* accumulator */
21272b15cb3dSCy Schubert 	char	tbuf[TBUF];	/* monitor buffer */
2128a151a66cSOllivier Robert 	int	mldigit;	/* max likelihood digit */
2129a151a66cSOllivier Robert 	int	i, j;
2130a151a66cSOllivier Robert 
2131a151a66cSOllivier Robert 	pp = peer->procptr;
21322b15cb3dSCy Schubert 	up = pp->unitptr;
2133a151a66cSOllivier Robert 
2134a151a66cSOllivier Robert 	/*
2135a151a66cSOllivier Robert 	 * Correlate digit vector with each BCD coefficient vector. If
2136ea906c41SOllivier Robert 	 * any BCD digit bit is bad, consider all bits a miss. Until the
2137ea906c41SOllivier Robert 	 * minute units digit has been resolved, don't to anything else.
2138ea906c41SOllivier Robert 	 * Note the SNR is calculated as the ratio of the largest
2139ea906c41SOllivier Robert 	 * likelihood value to the next largest likelihood value.
2140a151a66cSOllivier Robert  	 */
2141a151a66cSOllivier Robert 	mldigit = 0;
2142ea906c41SOllivier Robert 	topmax = nxtmax = -MAXAMP;
2143a151a66cSOllivier Robert 	for (i = 0; tab[i][0] != 0; i++) {
2144a151a66cSOllivier Robert 		acc = 0;
2145ea906c41SOllivier Robert 		for (j = 0; j < 4; j++)
2146a151a66cSOllivier Robert 			acc += data[j] * tab[i][j];
2147a151a66cSOllivier Robert 		acc = (vp->like[i] += (acc - vp->like[i]) / TCONST);
2148a151a66cSOllivier Robert 		if (acc > topmax) {
2149a151a66cSOllivier Robert 			nxtmax = topmax;
2150a151a66cSOllivier Robert 			topmax = acc;
2151a151a66cSOllivier Robert 			mldigit = i;
2152a151a66cSOllivier Robert 		} else if (acc > nxtmax) {
2153a151a66cSOllivier Robert 			nxtmax = acc;
2154a151a66cSOllivier Robert 		}
2155a151a66cSOllivier Robert 	}
2156a151a66cSOllivier Robert 	vp->digprb = topmax;
2157a151a66cSOllivier Robert 	vp->digsnr = wwv_snr(topmax, nxtmax);
2158a151a66cSOllivier Robert 
2159a151a66cSOllivier Robert 	/*
21602b15cb3dSCy Schubert 	 * The current maximum-likelihood digit is compared to the last
21612b15cb3dSCy Schubert 	 * maximum-likelihood digit. If different, the compare counter
21622b15cb3dSCy Schubert 	 * and maximum-likelihood digit are reset.  When the compare
2163ea906c41SOllivier Robert 	 * counter reaches the BCMP threshold (3), the digit is assumed
2164ea906c41SOllivier Robert 	 * correct. When the compare counter of all nine digits have
2165ea906c41SOllivier Robert 	 * reached threshold, the clock is assumed correct.
2166ea906c41SOllivier Robert 	 *
2167ea906c41SOllivier Robert 	 * Note that the clock display digit is set before the compare
2168ea906c41SOllivier Robert 	 * counter has reached threshold; however, the clock display is
2169ea906c41SOllivier Robert 	 * not considered correct until all nine clock digits have
2170ea906c41SOllivier Robert 	 * reached threshold. This is intended as eye candy, but avoids
2171ea906c41SOllivier Robert 	 * mistakes when the signal is low and the SNR is very marginal.
2172a151a66cSOllivier Robert 	 */
2173ea906c41SOllivier Robert 	if (vp->digprb < BTHR || vp->digsnr < BSNR) {
2174ea906c41SOllivier Robert 		up->status |= BGATE;
2175a151a66cSOllivier Robert 	} else {
2176ea906c41SOllivier Robert 		if (vp->digit != mldigit) {
2177ea906c41SOllivier Robert 			up->alarm |= CMPERR;
21782b15cb3dSCy Schubert 			if (vp->count > 0)
21792b15cb3dSCy Schubert 				vp->count--;
21802b15cb3dSCy Schubert 			if (vp->count == 0)
2181a151a66cSOllivier Robert 				vp->digit = mldigit;
2182ea906c41SOllivier Robert 		} else {
2183ea906c41SOllivier Robert 			if (vp->count < BCMP)
2184ea906c41SOllivier Robert 				vp->count++;
21852b15cb3dSCy Schubert 			if (vp->count == BCMP) {
21862b15cb3dSCy Schubert 				up->status |= DSYNC;
2187a151a66cSOllivier Robert 				up->digcnt++;
2188a151a66cSOllivier Robert 			}
2189ea906c41SOllivier Robert 		}
21902b15cb3dSCy Schubert 	}
21919c2daa00SOllivier Robert 	if ((pp->sloppyclockflag & CLK_FLAG4) && !(up->status &
21929c2daa00SOllivier Robert 	    INSYNC)) {
21932b15cb3dSCy Schubert 		snprintf(tbuf, sizeof(tbuf),
2194ea906c41SOllivier Robert 		    "wwv4 %2d %04x %3d %4d %5.0f %2d %d %d %d %5.0f %5.1f",
2195ea906c41SOllivier Robert 		    up->rsec - 1, up->status, up->gain, up->yepoch,
21962b15cb3dSCy Schubert 		    up->epomax, vp->radix, vp->digit, mldigit,
2197ea906c41SOllivier Robert 		    vp->count, vp->digprb, vp->digsnr);
2198a151a66cSOllivier Robert 		record_clock_stats(&peer->srcadr, tbuf);
2199a151a66cSOllivier Robert #ifdef DEBUG
2200a151a66cSOllivier Robert 		if (debug)
2201a151a66cSOllivier Robert 			printf("%s\n", tbuf);
2202a151a66cSOllivier Robert #endif /* DEBUG */
2203a151a66cSOllivier Robert 	}
2204a151a66cSOllivier Robert }
2205a151a66cSOllivier Robert 
2206a151a66cSOllivier Robert 
2207a151a66cSOllivier Robert /*
22089c2daa00SOllivier Robert  * wwv_tsec - transmitter minute processing
2209a151a66cSOllivier Robert  *
22109c2daa00SOllivier Robert  * This routine is called at the end of the transmitter minute. It
2211a151a66cSOllivier Robert  * implements a state machine that advances the logical clock subject to
22129c2daa00SOllivier Robert  * the funny rules that govern the conventional clock and calendar.
2213a151a66cSOllivier Robert  */
2214a151a66cSOllivier Robert static void
2215a151a66cSOllivier Robert wwv_tsec(
2216ea906c41SOllivier Robert 	struct peer *peer	/* driver structure pointer */
2217a151a66cSOllivier Robert 	)
2218a151a66cSOllivier Robert {
2219ea906c41SOllivier Robert 	struct refclockproc *pp;
2220ea906c41SOllivier Robert 	struct wwvunit *up;
2221a151a66cSOllivier Robert 	int minute, day, isleap;
2222a151a66cSOllivier Robert 	int temp;
2223a151a66cSOllivier Robert 
2224ea906c41SOllivier Robert 	pp = peer->procptr;
22252b15cb3dSCy Schubert 	up = pp->unitptr;
2226ea906c41SOllivier Robert 
2227a151a66cSOllivier Robert 	/*
2228ea906c41SOllivier Robert 	 * Advance minute unit of the day. Don't propagate carries until
2229ea906c41SOllivier Robert 	 * the unit minute digit has been found.
2230a151a66cSOllivier Robert 	 */
2231a151a66cSOllivier Robert 	temp = carry(&up->decvec[MN]);	/* minute units */
2232ea906c41SOllivier Robert 	if (!(up->status & DSYNC))
2233ea906c41SOllivier Robert 		return;
2234a151a66cSOllivier Robert 
2235a151a66cSOllivier Robert 	/*
2236a151a66cSOllivier Robert 	 * Propagate carries through the day.
2237a151a66cSOllivier Robert 	 */
2238a151a66cSOllivier Robert 	if (temp == 0)			/* carry minutes */
2239a151a66cSOllivier Robert 		temp = carry(&up->decvec[MN + 1]);
2240a151a66cSOllivier Robert 	if (temp == 0)			/* carry hours */
2241a151a66cSOllivier Robert 		temp = carry(&up->decvec[HR]);
2242a151a66cSOllivier Robert 	if (temp == 0)
2243a151a66cSOllivier Robert 		temp = carry(&up->decvec[HR + 1]);
22449034852cSGleb Smirnoff 	// XXX: Does temp have an expected value here?
2245a151a66cSOllivier Robert 
2246a151a66cSOllivier Robert 	/*
22479c2daa00SOllivier Robert 	 * Decode the current minute and day. Set leap day if the
22489c2daa00SOllivier Robert 	 * timecode leap bit is set on 30 June or 31 December. Set leap
2249ea906c41SOllivier Robert 	 * minute if the last minute on leap day, but only if the clock
2250ea906c41SOllivier Robert 	 * is syncrhronized. This code fails in 2400 AD.
2251a151a66cSOllivier Robert 	 */
2252a151a66cSOllivier Robert 	minute = up->decvec[MN].digit + up->decvec[MN + 1].digit *
2253a151a66cSOllivier Robert 	    10 + up->decvec[HR].digit * 60 + up->decvec[HR +
2254a151a66cSOllivier Robert 	    1].digit * 600;
2255a151a66cSOllivier Robert 	day = up->decvec[DA].digit + up->decvec[DA + 1].digit * 10 +
2256a151a66cSOllivier Robert 	    up->decvec[DA + 2].digit * 100;
2257ea906c41SOllivier Robert 
2258ea906c41SOllivier Robert 	/*
2259ea906c41SOllivier Robert 	 * Set the leap bit on the last minute of the leap day.
2260ea906c41SOllivier Robert 	 */
2261ea906c41SOllivier Robert 	isleap = up->decvec[YR].digit & 0x3;
2262ea906c41SOllivier Robert 	if (up->misc & SECWAR && up->status & INSYNC) {
2263ea906c41SOllivier Robert 		if ((day == (isleap ? 182 : 183) || day == (isleap ?
2264ea906c41SOllivier Robert 		    365 : 366)) && minute == 1439)
2265a151a66cSOllivier Robert 			up->status |= LEPSEC;
2266ea906c41SOllivier Robert 	}
2267a151a66cSOllivier Robert 
2268a151a66cSOllivier Robert 	/*
2269a151a66cSOllivier Robert 	 * Roll the day if this the first minute and propagate carries
2270a151a66cSOllivier Robert 	 * through the year.
2271a151a66cSOllivier Robert 	 */
2272a151a66cSOllivier Robert 	if (minute != 1440)
2273a151a66cSOllivier Robert 		return;
2274ea906c41SOllivier Robert 
22759034852cSGleb Smirnoff 	// minute = 0;
2276a151a66cSOllivier Robert 	while (carry(&up->decvec[HR]) != 0); /* advance to minute 0 */
2277a151a66cSOllivier Robert 	while (carry(&up->decvec[HR + 1]) != 0);
2278a151a66cSOllivier Robert 	day++;
2279a151a66cSOllivier Robert 	temp = carry(&up->decvec[DA]);	/* carry days */
2280a151a66cSOllivier Robert 	if (temp == 0)
2281a151a66cSOllivier Robert 		temp = carry(&up->decvec[DA + 1]);
2282a151a66cSOllivier Robert 	if (temp == 0)
2283a151a66cSOllivier Robert 		temp = carry(&up->decvec[DA + 2]);
22849034852cSGleb Smirnoff 	// XXX: Is there an expected value of temp here?
2285a151a66cSOllivier Robert 
2286a151a66cSOllivier Robert 	/*
2287a151a66cSOllivier Robert 	 * Roll the year if this the first day and propagate carries
2288a151a66cSOllivier Robert 	 * through the century.
2289a151a66cSOllivier Robert 	 */
2290a151a66cSOllivier Robert 	if (day != (isleap ? 365 : 366))
2291a151a66cSOllivier Robert 		return;
2292ea906c41SOllivier Robert 
22939034852cSGleb Smirnoff 	// day = 1;
2294a151a66cSOllivier Robert 	while (carry(&up->decvec[DA]) != 1); /* advance to day 1 */
2295a151a66cSOllivier Robert 	while (carry(&up->decvec[DA + 1]) != 0);
2296a151a66cSOllivier Robert 	while (carry(&up->decvec[DA + 2]) != 0);
2297a151a66cSOllivier Robert 	temp = carry(&up->decvec[YR]);	/* carry years */
2298ea906c41SOllivier Robert 	if (temp == 0)
2299a151a66cSOllivier Robert 		carry(&up->decvec[YR + 1]);
2300a151a66cSOllivier Robert }
2301a151a66cSOllivier Robert 
2302a151a66cSOllivier Robert 
2303a151a66cSOllivier Robert /*
2304a151a66cSOllivier Robert  * carry - process digit
2305a151a66cSOllivier Robert  *
2306a151a66cSOllivier Robert  * This routine rotates a likelihood vector one position and increments
23079c2daa00SOllivier Robert  * the clock digit modulo the radix. It returns the new clock digit or
23089c2daa00SOllivier Robert  * zero if a carry occurred. Once synchronized, the clock digit will
23092b15cb3dSCy Schubert  * match the maximum-likelihood digit corresponding to that position.
2310a151a66cSOllivier Robert  */
2311a151a66cSOllivier Robert static int
2312a151a66cSOllivier Robert carry(
2313a151a66cSOllivier Robert 	struct decvec *dp	/* decoding table pointer */
2314a151a66cSOllivier Robert 	)
2315a151a66cSOllivier Robert {
2316a151a66cSOllivier Robert 	int temp;
2317a151a66cSOllivier Robert 	int j;
2318a151a66cSOllivier Robert 
2319ea906c41SOllivier Robert 	dp->digit++;
2320ea906c41SOllivier Robert 	if (dp->digit == dp->radix)
2321a151a66cSOllivier Robert 		dp->digit = 0;
2322ea906c41SOllivier Robert 	temp = dp->like[dp->radix - 1];
2323a151a66cSOllivier Robert 	for (j = dp->radix - 1; j > 0; j--)
2324a151a66cSOllivier Robert 		dp->like[j] = dp->like[j - 1];
2325a151a66cSOllivier Robert 	dp->like[0] = temp;
2326a151a66cSOllivier Robert 	return (dp->digit);
2327a151a66cSOllivier Robert }
2328a151a66cSOllivier Robert 
2329a151a66cSOllivier Robert 
2330a151a66cSOllivier Robert /*
2331a151a66cSOllivier Robert  * wwv_snr - compute SNR or likelihood function
2332a151a66cSOllivier Robert  */
2333a151a66cSOllivier Robert static double
2334a151a66cSOllivier Robert wwv_snr(
2335a151a66cSOllivier Robert 	double signal,		/* signal */
2336a151a66cSOllivier Robert 	double noise		/* noise */
2337a151a66cSOllivier Robert 	)
2338a151a66cSOllivier Robert {
2339a151a66cSOllivier Robert 	double rval;
2340a151a66cSOllivier Robert 
2341a151a66cSOllivier Robert 	/*
2342a151a66cSOllivier Robert 	 * This is a little tricky. Due to the way things are measured,
2343a151a66cSOllivier Robert 	 * either or both the signal or noise amplitude can be negative
2344a151a66cSOllivier Robert 	 * or zero. The intent is that, if the signal is negative or
2345a151a66cSOllivier Robert 	 * zero, the SNR must always be zero. This can happen with the
2346a151a66cSOllivier Robert 	 * subcarrier SNR before the phase has been aligned. On the
2347a151a66cSOllivier Robert 	 * other hand, in the likelihood function the "noise" is the
2348a151a66cSOllivier Robert 	 * next maximum down from the peak and this could be negative.
2349a151a66cSOllivier Robert 	 * However, in this case the SNR is truly stupendous, so we
2350ea906c41SOllivier Robert 	 * simply cap at MAXSNR dB (40).
2351a151a66cSOllivier Robert 	 */
2352a151a66cSOllivier Robert 	if (signal <= 0) {
2353a151a66cSOllivier Robert 		rval = 0;
2354a151a66cSOllivier Robert 	} else if (noise <= 0) {
2355a151a66cSOllivier Robert 		rval = MAXSNR;
2356a151a66cSOllivier Robert 	} else {
2357ea906c41SOllivier Robert 		rval = 20. * log10(signal / noise);
2358a151a66cSOllivier Robert 		if (rval > MAXSNR)
2359a151a66cSOllivier Robert 			rval = MAXSNR;
2360a151a66cSOllivier Robert 	}
2361a151a66cSOllivier Robert 	return (rval);
2362a151a66cSOllivier Robert }
2363a151a66cSOllivier Robert 
23649c2daa00SOllivier Robert 
2365a151a66cSOllivier Robert /*
2366a151a66cSOllivier Robert  * wwv_newchan - change to new data channel
2367a151a66cSOllivier Robert  *
23689c2daa00SOllivier Robert  * The radio actually appears to have ten channels, one channel for each
23699c2daa00SOllivier Robert  * of five frequencies and each of two stations (WWV and WWVH), although
2370ea906c41SOllivier Robert  * if not tunable only the DCHAN channel appears live. While the radio
23719c2daa00SOllivier Robert  * is tuned to the working data channel frequency and station for most
23729c2daa00SOllivier Robert  * of the minute, during seconds 59, 0 and 1 the radio is tuned to a
23739c2daa00SOllivier Robert  * probe frequency in order to search for minute sync pulse and data
23749c2daa00SOllivier Robert  * subcarrier from other transmitters.
23759c2daa00SOllivier Robert  *
23769c2daa00SOllivier Robert  * The search for WWV and WWVH operates simultaneously, with WWV minute
23779c2daa00SOllivier Robert  * sync pulse at 1000 Hz and WWVH at 1200 Hz. The probe frequency
23789c2daa00SOllivier Robert  * rotates each minute over 2.5, 5, 10, 15 and 20 MHz in order and yes,
23799c2daa00SOllivier Robert  * we all know WWVH is dark on 20 MHz, but few remember when WWV was lit
23809c2daa00SOllivier Robert  * on 25 MHz.
23819c2daa00SOllivier Robert  *
23829c2daa00SOllivier Robert  * This routine selects the best channel using a metric computed from
23839c2daa00SOllivier Robert  * the reachability register and minute pulse amplitude. Normally, the
23849c2daa00SOllivier Robert  * award goes to the the channel with the highest metric; but, in case
23859c2daa00SOllivier Robert  * of ties, the award goes to the channel with the highest minute sync
23869c2daa00SOllivier Robert  * pulse amplitude and then to the highest frequency.
23879c2daa00SOllivier Robert  *
23889c2daa00SOllivier Robert  * The routine performs an important squelch function to keep dirty data
2389ea906c41SOllivier Robert  * from polluting the integrators. In order to consider a station valid,
2390ea906c41SOllivier Robert  * the metric must be at least MTHR (13); otherwise, the station select
2391ea906c41SOllivier Robert  * bits are cleared so the second sync is disabled and the data bit
2392ea906c41SOllivier Robert  * integrators averaged to a miss.
2393a151a66cSOllivier Robert  */
2394ea906c41SOllivier Robert static int
2395a151a66cSOllivier Robert wwv_newchan(
2396a151a66cSOllivier Robert 	struct peer *peer	/* peer structure pointer */
2397a151a66cSOllivier Robert 	)
2398a151a66cSOllivier Robert {
2399a151a66cSOllivier Robert 	struct refclockproc *pp;
2400a151a66cSOllivier Robert 	struct wwvunit *up;
2401a151a66cSOllivier Robert 	struct sync *sp, *rp;
24029c2daa00SOllivier Robert 	double rank, dtemp;
24032b15cb3dSCy Schubert 	int i, j, rval;
2404a151a66cSOllivier Robert 
2405a151a66cSOllivier Robert 	pp = peer->procptr;
24062b15cb3dSCy Schubert 	up = pp->unitptr;
2407a151a66cSOllivier Robert 
2408a151a66cSOllivier Robert 	/*
24099c2daa00SOllivier Robert 	 * Search all five station pairs looking for the channel with
24102b15cb3dSCy Schubert 	 * maximum metric.
2411a151a66cSOllivier Robert 	 */
24129c2daa00SOllivier Robert 	sp = NULL;
2413ea906c41SOllivier Robert 	j = 0;
2414a151a66cSOllivier Robert 	rank = 0;
2415a151a66cSOllivier Robert 	for (i = 0; i < NCHAN; i++) {
24169c2daa00SOllivier Robert 		rp = &up->mitig[i].wwvh;
2417ea906c41SOllivier Robert 		dtemp = rp->metric;
24189c2daa00SOllivier Robert 		if (dtemp >= rank) {
24199c2daa00SOllivier Robert 			rank = dtemp;
24209c2daa00SOllivier Robert 			sp = rp;
24219c2daa00SOllivier Robert 			j = i;
24229c2daa00SOllivier Robert 		}
24239c2daa00SOllivier Robert 		rp = &up->mitig[i].wwv;
2424ea906c41SOllivier Robert 		dtemp = rp->metric;
24259c2daa00SOllivier Robert 		if (dtemp >= rank) {
24269c2daa00SOllivier Robert 			rank = dtemp;
24279c2daa00SOllivier Robert 			sp = rp;
24289c2daa00SOllivier Robert 			j = i;
24299c2daa00SOllivier Robert 		}
24309c2daa00SOllivier Robert 	}
2431ea906c41SOllivier Robert 
2432ea906c41SOllivier Robert 	/*
2433ea906c41SOllivier Robert 	 * If the strongest signal is less than the MTHR threshold (13),
24342b15cb3dSCy Schubert 	 * we are beneath the waves, so squelch the second sync and
24352b15cb3dSCy Schubert 	 * advance to the next station. This makes sure all stations are
24362b15cb3dSCy Schubert 	 * scanned when the ions grow dim. If the strongest signal is
24372b15cb3dSCy Schubert 	 * greater than the threshold, tune to that frequency and
24382b15cb3dSCy Schubert 	 * transmitter QTH.
2439ea906c41SOllivier Robert 	 */
24402b15cb3dSCy Schubert 	up->status &= ~(SELV | SELH);
2441ea906c41SOllivier Robert 	if (rank < MTHR) {
2442ea906c41SOllivier Robert 		up->dchan = (up->dchan + 1) % NCHAN;
24432b15cb3dSCy Schubert 		if (up->status & METRIC) {
24442b15cb3dSCy Schubert 			up->status &= ~METRIC;
24452b15cb3dSCy Schubert 			refclock_report(peer, CEVNT_PROP);
24469c2daa00SOllivier Robert 		}
24472b15cb3dSCy Schubert 		rval = FALSE;
24482b15cb3dSCy Schubert 	} else {
2449ea906c41SOllivier Robert 		up->dchan = j;
2450ea906c41SOllivier Robert 		up->sptr = sp;
2451ea906c41SOllivier Robert 		memcpy(&pp->refid, sp->refid, 4);
2452ea906c41SOllivier Robert 		peer->refid = pp->refid;
24532b15cb3dSCy Schubert 		up->status |= METRIC;
24542b15cb3dSCy Schubert 		if (sp->select & SELV) {
24552b15cb3dSCy Schubert 			up->status |= SELV;
24562b15cb3dSCy Schubert 			up->pdelay = pp->fudgetime1;
24572b15cb3dSCy Schubert 		} else if (sp->select & SELH) {
24582b15cb3dSCy Schubert 			up->status |= SELH;
24592b15cb3dSCy Schubert 			up->pdelay = pp->fudgetime2;
24602b15cb3dSCy Schubert 		} else {
24612b15cb3dSCy Schubert 			up->pdelay = 0;
24622b15cb3dSCy Schubert 		}
24632b15cb3dSCy Schubert 		rval = TRUE;
24642b15cb3dSCy Schubert 	}
24652b15cb3dSCy Schubert #ifdef ICOM
24662b15cb3dSCy Schubert 	if (up->fd_icom > 0)
24672b15cb3dSCy Schubert 		wwv_qsy(peer, up->dchan);
24682b15cb3dSCy Schubert #endif /* ICOM */
24692b15cb3dSCy Schubert 	return (rval);
24709c2daa00SOllivier Robert }
24719c2daa00SOllivier Robert 
24729c2daa00SOllivier Robert 
24739c2daa00SOllivier Robert /*
2474ea906c41SOllivier Robert  * wwv_newgame - reset and start over
2475ea906c41SOllivier Robert  *
24762b15cb3dSCy Schubert  * There are three conditions resulting in a new game:
2477ea906c41SOllivier Robert  *
24782b15cb3dSCy Schubert  * 1	After finding the minute pulse (MSYNC lit), going 15 minutes
2479ea906c41SOllivier Robert  *	(DATA) without finding the unit seconds digit.
2480ea906c41SOllivier Robert  *
24812b15cb3dSCy Schubert  * 2	After finding good data (DSYNC lit), going more than 40 minutes
2482ea906c41SOllivier Robert  *	(SYNCH) without finding station sync (INSYNC lit).
2483ea906c41SOllivier Robert  *
24842b15cb3dSCy Schubert  * 3	After finding station sync (INSYNC lit), going more than 2 days
2485ea906c41SOllivier Robert  *	(PANIC) without finding any station.
24869c2daa00SOllivier Robert  */
24879c2daa00SOllivier Robert static void
24889c2daa00SOllivier Robert wwv_newgame(
24899c2daa00SOllivier Robert 	struct peer *peer	/* peer structure pointer */
24909c2daa00SOllivier Robert 	)
24919c2daa00SOllivier Robert {
24929c2daa00SOllivier Robert 	struct refclockproc *pp;
24939c2daa00SOllivier Robert 	struct wwvunit *up;
24949c2daa00SOllivier Robert 	struct chan *cp;
24959c2daa00SOllivier Robert 	int i;
24969c2daa00SOllivier Robert 
24979c2daa00SOllivier Robert 	pp = peer->procptr;
24982b15cb3dSCy Schubert 	up = pp->unitptr;
24999c2daa00SOllivier Robert 
25009c2daa00SOllivier Robert 	/*
25019c2daa00SOllivier Robert 	 * Initialize strategic values. Note we set the leap bits
25029c2daa00SOllivier Robert 	 * NOTINSYNC and the refid "NONE".
25039c2daa00SOllivier Robert 	 */
25042b15cb3dSCy Schubert 	if (up->status)
25052b15cb3dSCy Schubert 		up->errflg = CEVNT_TIMEOUT;
25069c2daa00SOllivier Robert 	peer->leap = LEAP_NOTINSYNC;
25079c2daa00SOllivier Robert 	up->watch = up->status = up->alarm = 0;
25089c2daa00SOllivier Robert 	up->avgint = MINAVG;
25099c2daa00SOllivier Robert 	up->freq = 0;
25109c2daa00SOllivier Robert 	up->gain = MAXGAIN / 2;
25119c2daa00SOllivier Robert 
25129c2daa00SOllivier Robert 	/*
25139c2daa00SOllivier Robert 	 * Initialize the station processes for audio gain, select bit,
2514ea906c41SOllivier Robert 	 * station/frequency identifier and reference identifier. Start
25152b15cb3dSCy Schubert 	 * probing at the strongest channel or the default channel if
25162b15cb3dSCy Schubert 	 * nothing heard.
25179c2daa00SOllivier Robert 	 */
25189c2daa00SOllivier Robert 	memset(up->mitig, 0, sizeof(up->mitig));
25199c2daa00SOllivier Robert 	for (i = 0; i < NCHAN; i++) {
2520a151a66cSOllivier Robert 		cp = &up->mitig[i];
25219c2daa00SOllivier Robert 		cp->gain = up->gain;
25229c2daa00SOllivier Robert 		cp->wwv.select = SELV;
25232b15cb3dSCy Schubert 		snprintf(cp->wwv.refid, sizeof(cp->wwv.refid), "WV%.0f",
25242b15cb3dSCy Schubert 		    floor(qsy[i]));
25259c2daa00SOllivier Robert 		cp->wwvh.select = SELH;
25262b15cb3dSCy Schubert 		snprintf(cp->wwvh.refid, sizeof(cp->wwvh.refid), "WH%.0f",
25272b15cb3dSCy Schubert 		    floor(qsy[i]));
2528a151a66cSOllivier Robert 	}
25292b15cb3dSCy Schubert 	up->dchan = (DCHAN + NCHAN - 1) % NCHAN;
25309c2daa00SOllivier Robert 	wwv_newchan(peer);
25312b15cb3dSCy Schubert 	up->schan = up->dchan;
2532a151a66cSOllivier Robert }
2533a151a66cSOllivier Robert 
2534a151a66cSOllivier Robert /*
25359c2daa00SOllivier Robert  * wwv_metric - compute station metric
25369c2daa00SOllivier Robert  *
25379c2daa00SOllivier Robert  * The most significant bits represent the number of ones in the
2538ea906c41SOllivier Robert  * station reachability register. The least significant bits represent
2539ea906c41SOllivier Robert  * the minute sync pulse amplitude. The combined value is scaled 0-100.
2540a151a66cSOllivier Robert  */
25419c2daa00SOllivier Robert double
25429c2daa00SOllivier Robert wwv_metric(
25439c2daa00SOllivier Robert 	struct sync *sp		/* station pointer */
25449c2daa00SOllivier Robert 	)
25459c2daa00SOllivier Robert {
25469c2daa00SOllivier Robert 	double	dtemp;
25479c2daa00SOllivier Robert 
2548ea906c41SOllivier Robert 	dtemp = sp->count * MAXAMP;
2549ea906c41SOllivier Robert 	if (sp->synmax < MAXAMP)
25509c2daa00SOllivier Robert 		dtemp += sp->synmax;
25519c2daa00SOllivier Robert 	else
2552ea906c41SOllivier Robert 		dtemp += MAXAMP - 1;
2553ea906c41SOllivier Robert 	dtemp /= (AMAX + 1) * MAXAMP;
25549c2daa00SOllivier Robert 	return (dtemp * 100.);
2555a151a66cSOllivier Robert }
2556a151a66cSOllivier Robert 
2557a151a66cSOllivier Robert 
25589c2daa00SOllivier Robert #ifdef ICOM
2559a151a66cSOllivier Robert /*
2560a151a66cSOllivier Robert  * wwv_qsy - Tune ICOM receiver
2561a151a66cSOllivier Robert  *
2562a151a66cSOllivier Robert  * This routine saves the AGC for the current channel, switches to a new
2563a151a66cSOllivier Robert  * channel and restores the AGC for that channel. If a tunable receiver
2564a151a66cSOllivier Robert  * is not available, just fake it.
2565a151a66cSOllivier Robert  */
2566a151a66cSOllivier Robert static int
2567a151a66cSOllivier Robert wwv_qsy(
2568a151a66cSOllivier Robert 	struct peer *peer,	/* peer structure pointer */
2569a151a66cSOllivier Robert 	int	chan		/* channel */
2570a151a66cSOllivier Robert 	)
2571a151a66cSOllivier Robert {
25729c2daa00SOllivier Robert 	int rval = 0;
2573a151a66cSOllivier Robert 	struct refclockproc *pp;
2574a151a66cSOllivier Robert 	struct wwvunit *up;
2575a151a66cSOllivier Robert 
2576a151a66cSOllivier Robert 	pp = peer->procptr;
25772b15cb3dSCy Schubert 	up = pp->unitptr;
25789c2daa00SOllivier Robert 	if (up->fd_icom > 0) {
2579a151a66cSOllivier Robert 		up->mitig[up->achan].gain = up->gain;
25809c2daa00SOllivier Robert 		rval = icom_freq(up->fd_icom, peer->ttl & 0x7f,
2581a151a66cSOllivier Robert 		    qsy[chan]);
2582a151a66cSOllivier Robert 		up->achan = chan;
2583a151a66cSOllivier Robert 		up->gain = up->mitig[up->achan].gain;
25849c2daa00SOllivier Robert 	}
2585a151a66cSOllivier Robert 	return (rval);
2586a151a66cSOllivier Robert }
25879c2daa00SOllivier Robert #endif /* ICOM */
2588a151a66cSOllivier Robert 
2589a151a66cSOllivier Robert 
2590a151a66cSOllivier Robert /*
2591a151a66cSOllivier Robert  * timecode - assemble timecode string and length
2592a151a66cSOllivier Robert  *
2593a151a66cSOllivier Robert  * Prettytime format - similar to Spectracom
2594a151a66cSOllivier Robert  *
25959c2daa00SOllivier Robert  * sq yy ddd hh:mm:ss ld dut lset agc iden sig errs freq avgt
2596a151a66cSOllivier Robert  *
2597a151a66cSOllivier Robert  * s	sync indicator ('?' or ' ')
25989c2daa00SOllivier Robert  * q	error bits (hex 0-F)
2599a151a66cSOllivier Robert  * yyyy	year of century
2600a151a66cSOllivier Robert  * ddd	day of year
2601a151a66cSOllivier Robert  * hh	hour of day
2602a151a66cSOllivier Robert  * mm	minute of hour
26039c2daa00SOllivier Robert  * ss	second of minute)
26049c2daa00SOllivier Robert  * l	leap second warning (' ' or 'L')
26059c2daa00SOllivier Robert  * d	DST state ('S', 'D', 'I', or 'O')
26069c2daa00SOllivier Robert  * dut	DUT sign and magnitude (0.1 s)
2607a151a66cSOllivier Robert  * lset	minutes since last clock update
2608a151a66cSOllivier Robert  * agc	audio gain (0-255)
26099c2daa00SOllivier Robert  * iden	reference identifier (station and frequency)
26109c2daa00SOllivier Robert  * sig	signal quality (0-100)
2611224ba2bdSOllivier Robert  * errs	bit errors in last minute
2612224ba2bdSOllivier Robert  * freq	frequency offset (PPM)
2613224ba2bdSOllivier Robert  * avgt	averaging time (s)
2614224ba2bdSOllivier Robert  */
2615a151a66cSOllivier Robert static int
2616a151a66cSOllivier Robert timecode(
2617a151a66cSOllivier Robert 	struct wwvunit *up,	/* driver structure pointer */
26182b15cb3dSCy Schubert 	char *		tc,	/* target string */
26192b15cb3dSCy Schubert 	size_t		tcsiz	/* target max chars */
2620a151a66cSOllivier Robert 	)
2621a151a66cSOllivier Robert {
2622a151a66cSOllivier Robert 	struct sync *sp;
26239c2daa00SOllivier Robert 	int year, day, hour, minute, second, dut;
26249c2daa00SOllivier Robert 	char synchar, leapchar, dst;
2625a151a66cSOllivier Robert 	char cptr[50];
2626a151a66cSOllivier Robert 
2627a151a66cSOllivier Robert 
2628a151a66cSOllivier Robert 	/*
2629a151a66cSOllivier Robert 	 * Common fixed-format fields
2630a151a66cSOllivier Robert 	 */
2631a151a66cSOllivier Robert 	synchar = (up->status & INSYNC) ? ' ' : '?';
26329c2daa00SOllivier Robert 	year = up->decvec[YR].digit + up->decvec[YR + 1].digit * 10 +
26339c2daa00SOllivier Robert 	    2000;
26349c2daa00SOllivier Robert 	day = up->decvec[DA].digit + up->decvec[DA + 1].digit * 10 +
26359c2daa00SOllivier Robert 	    up->decvec[DA + 2].digit * 100;
26369c2daa00SOllivier Robert 	hour = up->decvec[HR].digit + up->decvec[HR + 1].digit * 10;
26379c2daa00SOllivier Robert 	minute = up->decvec[MN].digit + up->decvec[MN + 1].digit * 10;
26389c2daa00SOllivier Robert 	second = 0;
2639a151a66cSOllivier Robert 	leapchar = (up->misc & SECWAR) ? 'L' : ' ';
2640a151a66cSOllivier Robert 	dst = dstcod[(up->misc >> 4) & 0x3];
2641a151a66cSOllivier Robert 	dut = up->misc & 0x7;
2642a151a66cSOllivier Robert 	if (!(up->misc & DUTS))
2643a151a66cSOllivier Robert 		dut = -dut;
26442b15cb3dSCy Schubert 	snprintf(tc, tcsiz, "%c%1X", synchar, up->alarm);
26452b15cb3dSCy Schubert 	snprintf(cptr, sizeof(cptr),
26462b15cb3dSCy Schubert 		 " %4d %03d %02d:%02d:%02d %c%c %+d",
26479c2daa00SOllivier Robert 		 year, day, hour, minute, second, leapchar, dst, dut);
26482b15cb3dSCy Schubert 	strlcat(tc, cptr, tcsiz);
2649a151a66cSOllivier Robert 
2650a151a66cSOllivier Robert 	/*
2651a151a66cSOllivier Robert 	 * Specific variable-format fields
2652a151a66cSOllivier Robert 	 */
2653a151a66cSOllivier Robert 	sp = up->sptr;
26542b15cb3dSCy Schubert 	snprintf(cptr, sizeof(cptr), " %d %d %s %.0f %d %.1f %d",
26552b15cb3dSCy Schubert 		 up->watch, up->mitig[up->dchan].gain, sp->refid,
26562b15cb3dSCy Schubert 		 sp->metric, up->errcnt, up->freq / WWV_SEC * 1e6,
26572b15cb3dSCy Schubert 		 up->avgint);
26582b15cb3dSCy Schubert 	strlcat(tc, cptr, tcsiz);
26592b15cb3dSCy Schubert 
26602b15cb3dSCy Schubert 	return strlen(tc);
2661a151a66cSOllivier Robert }
2662a151a66cSOllivier Robert 
2663a151a66cSOllivier Robert 
2664a151a66cSOllivier Robert /*
2665a151a66cSOllivier Robert  * wwv_gain - adjust codec gain
2666a151a66cSOllivier Robert  *
2667ea906c41SOllivier Robert  * This routine is called at the end of each second. During the second
2668ea906c41SOllivier Robert  * the number of signal clips above the MAXAMP threshold (6000). If
2669ea906c41SOllivier Robert  * there are no clips, the gain is bumped up; if there are more than
2670ea906c41SOllivier Robert  * MAXCLP clips (100), it is bumped down. The decoder is relatively
2671ea906c41SOllivier Robert  * insensitive to amplitude, so this crudity works just peachy. The
26722b15cb3dSCy Schubert  * routine also jiggles the input port and selectively mutes the
26732b15cb3dSCy Schubert  * monitor.
2674a151a66cSOllivier Robert  */
2675a151a66cSOllivier Robert static void
2676a151a66cSOllivier Robert wwv_gain(
2677a151a66cSOllivier Robert 	struct peer *peer	/* peer structure pointer */
2678a151a66cSOllivier Robert 	)
2679a151a66cSOllivier Robert {
2680a151a66cSOllivier Robert 	struct refclockproc *pp;
2681a151a66cSOllivier Robert 	struct wwvunit *up;
2682a151a66cSOllivier Robert 
2683a151a66cSOllivier Robert 	pp = peer->procptr;
26842b15cb3dSCy Schubert 	up = pp->unitptr;
2685a151a66cSOllivier Robert 
2686a151a66cSOllivier Robert 	/*
2687a151a66cSOllivier Robert 	 * Apparently, the codec uses only the high order bits of the
2688a151a66cSOllivier Robert 	 * gain control field. Thus, it may take awhile for changes to
2689a151a66cSOllivier Robert 	 * wiggle the hardware bits.
2690a151a66cSOllivier Robert 	 */
2691a151a66cSOllivier Robert 	if (up->clipcnt == 0) {
2692a151a66cSOllivier Robert 		up->gain += 4;
26939c2daa00SOllivier Robert 		if (up->gain > MAXGAIN)
26949c2daa00SOllivier Robert 			up->gain = MAXGAIN;
26959c2daa00SOllivier Robert 	} else if (up->clipcnt > MAXCLP) {
2696a151a66cSOllivier Robert 		up->gain -= 4;
2697a151a66cSOllivier Robert 		if (up->gain < 0)
2698a151a66cSOllivier Robert 			up->gain = 0;
2699a151a66cSOllivier Robert 	}
27009c2daa00SOllivier Robert 	audio_gain(up->gain, up->mongain, up->port);
2701a151a66cSOllivier Robert 	up->clipcnt = 0;
27029c2daa00SOllivier Robert #if DEBUG
27039c2daa00SOllivier Robert 	if (debug > 1)
27049c2daa00SOllivier Robert 		audio_show();
27059c2daa00SOllivier Robert #endif
2706a151a66cSOllivier Robert }
2707a151a66cSOllivier Robert 
2708a151a66cSOllivier Robert 
2709a151a66cSOllivier Robert #else
2710*f5f40dd6SCy Schubert NONEMPTY_TRANSLATION_UNIT
2711a151a66cSOllivier Robert #endif /* REFCLOCK */
2712