1 /* 2 * refclock_nmea.c - clock driver for an NMEA GPS CLOCK 3 * Michael Petry Jun 20, 1994 4 * based on refclock_heathn.c 5 * 6 * Updated to add support for Accord GPS Clock 7 * Venu Gopal Dec 05, 2007 8 * neo.venu@gmail.com, venugopal_d@pgad.gov.in 9 * 10 * Updated to process 'time1' fudge factor 11 * Venu Gopal May 05, 2008 12 * 13 * Converted to common PPSAPI code, separate PPS fudge time1 14 * from serial timecode fudge time2. 15 * Dave Hart July 1, 2009 16 * hart@ntp.org, davehart@davehart.com 17 */ 18 19 #ifdef HAVE_CONFIG_H 20 #include <config.h> 21 #endif 22 23 #include "ntp_types.h" 24 25 #if defined(REFCLOCK) && defined(CLOCK_NMEA) 26 27 #define NMEA_WRITE_SUPPORT 0 /* no write support at the moment */ 28 29 #include <sys/stat.h> 30 #include <stdio.h> 31 #include <ctype.h> 32 #ifdef HAVE_SYS_SOCKET_H 33 #include <sys/socket.h> 34 #endif 35 36 #include "ntpd.h" 37 #include "ntp_io.h" 38 #include "ntp_unixtime.h" 39 #include "ntp_refclock.h" 40 #include "ntp_stdlib.h" 41 #include "ntp_calendar.h" 42 #include "timespecops.h" 43 44 #ifdef HAVE_PPSAPI 45 # include "ppsapi_timepps.h" 46 # include "refclock_atom.h" 47 #endif /* HAVE_PPSAPI */ 48 49 50 /* 51 * This driver supports NMEA-compatible GPS receivers 52 * 53 * Prototype was refclock_trak.c, Thanks a lot. 54 * 55 * The receiver used spits out the NMEA sentences for boat navigation. 56 * And you thought it was an information superhighway. Try a raging river 57 * filled with rapids and whirlpools that rip away your data and warp time. 58 * 59 * If HAVE_PPSAPI is defined code to use the PPSAPI will be compiled in. 60 * On startup if initialization of the PPSAPI fails, it will fall back 61 * to the "normal" timestamps. 62 * 63 * The PPSAPI part of the driver understands fudge flag2 and flag3. If 64 * flag2 is set, it will use the clear edge of the pulse. If flag3 is 65 * set, kernel hardpps is enabled. 66 * 67 * GPS sentences other than RMC (the default) may be enabled by setting 68 * the relevent bits of 'mode' in the server configuration line 69 * server 127.127.20.x mode X 70 * 71 * bit 0 - enables RMC (1) 72 * bit 1 - enables GGA (2) 73 * bit 2 - enables GLL (4) 74 * bit 3 - enables ZDA (8) - Standard Time & Date 75 * bit 3 - enables ZDG (8) - Accord GPS Clock's custom sentence with GPS time 76 * very close to standard ZDA 77 * 78 * Multiple sentences may be selected except when ZDG/ZDA is selected. 79 * 80 * bit 4/5/6 - selects the baudrate for serial port : 81 * 0 for 4800 (default) 82 * 1 for 9600 83 * 2 for 19200 84 * 3 for 38400 85 * 4 for 57600 86 * 5 for 115200 87 */ 88 #define NMEA_MESSAGE_MASK 0x0000FF0FU 89 #define NMEA_BAUDRATE_MASK 0x00000070U 90 #define NMEA_BAUDRATE_SHIFT 4 91 92 #define NMEA_DELAYMEAS_MASK 0x80 93 #define NMEA_EXTLOG_MASK 0x00010000U 94 #define NMEA_DATETRUST_MASK 0x02000000U 95 96 #define NMEA_PROTO_IDLEN 5 /* tag name must be at least 5 chars */ 97 #define NMEA_PROTO_MINLEN 6 /* min chars in sentence, excluding CS */ 98 #define NMEA_PROTO_MAXLEN 80 /* max chars in sentence, excluding CS */ 99 #define NMEA_PROTO_FIELDS 32 /* not official; limit on fields per record */ 100 101 /* 102 * We check the timecode format and decode its contents. We only care 103 * about a few of them, the most important being the $GPRMC format: 104 * 105 * $GPRMC,hhmmss,a,fddmm.xx,n,dddmmm.xx,w,zz.z,yyy.,ddmmyy,dd,v*CC 106 * 107 * mode (0,1,2,3) selects sentence ANY/ALL, RMC, GGA, GLL, ZDA 108 * $GPGLL,3513.8385,S,14900.7851,E,232420.594,A*21 109 * $GPGGA,232420.59,3513.8385,S,14900.7851,E,1,05,3.4,00519,M,,,,*3F 110 * $GPRMC,232418.19,A,3513.8386,S,14900.7853,E,00.0,000.0,121199,12.,E*77 111 * 112 * Defining GPZDA to support Standard Time & Date 113 * sentence. The sentence has the following format 114 * 115 * $--ZDA,HHMMSS.SS,DD,MM,YYYY,TH,TM,*CS<CR><LF> 116 * 117 * Apart from the familiar fields, 118 * 'TH' Time zone Hours 119 * 'TM' Time zone Minutes 120 * 121 * Defining GPZDG to support Accord GPS Clock's custom NMEA 122 * sentence. The sentence has the following format 123 * 124 * $GPZDG,HHMMSS.S,DD,MM,YYYY,AA.BB,V*CS<CR><LF> 125 * 126 * It contains the GPS timestamp valid for next PPS pulse. 127 * Apart from the familiar fields, 128 * 'AA.BB' denotes the signal strength( should be < 05.00 ) 129 * 'V' denotes the GPS sync status : 130 * '0' indicates INVALID time, 131 * '1' indicates accuracy of +/-20 ms 132 * '2' indicates accuracy of +/-100 ns 133 * 134 * Defining PGRMF for Garmin GPS Fix Data 135 * $PGRMF,WN,WS,DATE,TIME,LS,LAT,LAT_DIR,LON,LON_DIR,MODE,FIX,SPD,DIR,PDOP,TDOP 136 * WN -- GPS week number (weeks since 1980-01-06, mod 1024) 137 * WS -- GPS seconds in week 138 * LS -- GPS leap seconds, accumulated ( UTC + LS == GPS ) 139 * FIX -- Fix type: 0=nofix, 1=2D, 2=3D 140 * DATE/TIME are standard date/time strings in UTC time scale 141 * 142 * The GPS time can be used to get the full century for the truncated 143 * date spec. 144 */ 145 146 /* 147 * Definitions 148 */ 149 #define DEVICE "/dev/gps%d" /* GPS serial device */ 150 #define PPSDEV "/dev/gpspps%d" /* PPSAPI device override */ 151 #define SPEED232 B4800 /* uart speed (4800 bps) */ 152 #define PRECISION (-9) /* precision assumed (about 2 ms) */ 153 #define PPS_PRECISION (-20) /* precision assumed (about 1 us) */ 154 #define REFID "GPS\0" /* reference id */ 155 #define DESCRIPTION "NMEA GPS Clock" /* who we are */ 156 #ifndef O_NOCTTY 157 #define M_NOCTTY 0 158 #else 159 #define M_NOCTTY O_NOCTTY 160 #endif 161 #ifndef O_NONBLOCK 162 #define M_NONBLOCK 0 163 #else 164 #define M_NONBLOCK O_NONBLOCK 165 #endif 166 #define PPSOPENMODE (O_RDWR | M_NOCTTY | M_NONBLOCK) 167 168 /* NMEA sentence array indexes for those we use */ 169 #define NMEA_GPRMC 0 /* recommended min. nav. */ 170 #define NMEA_GPGGA 1 /* fix and quality */ 171 #define NMEA_GPGLL 2 /* geo. lat/long */ 172 #define NMEA_GPZDA 3 /* date/time */ 173 /* 174 * $GPZDG is a proprietary sentence that violates the spec, by not 175 * using $P and an assigned company identifier to prefix the sentence 176 * identifier. When used with this driver, the system needs to be 177 * isolated from other NTP networks, as it operates in GPS time, not 178 * UTC as is much more common. GPS time is >15 seconds different from 179 * UTC due to not respecting leap seconds since 1970 or so. Other 180 * than the different timebase, $GPZDG is similar to $GPZDA. 181 */ 182 #define NMEA_GPZDG 4 183 #define NMEA_PGRMF 5 184 #define NMEA_ARRAY_SIZE (NMEA_PGRMF + 1) 185 186 /* 187 * Sentence selection mode bits 188 */ 189 #define USE_GPRMC 0x00000001u 190 #define USE_GPGGA 0x00000002u 191 #define USE_GPGLL 0x00000004u 192 #define USE_GPZDA 0x00000008u 193 #define USE_PGRMF 0x00000100u 194 195 /* mapping from sentence index to controlling mode bit */ 196 static const u_int32 sentence_mode[NMEA_ARRAY_SIZE] = 197 { 198 USE_GPRMC, 199 USE_GPGGA, 200 USE_GPGLL, 201 USE_GPZDA, 202 USE_GPZDA, 203 USE_PGRMF 204 }; 205 206 /* date formats we support */ 207 enum date_fmt { 208 DATE_1_DDMMYY, /* use 1 field with 2-digit year */ 209 DATE_3_DDMMYYYY /* use 3 fields with 4-digit year */ 210 }; 211 212 /* results for 'field_init()' 213 * 214 * Note: If a checksum is present, the checksum test must pass OK or the 215 * sentence is tagged invalid. 216 */ 217 #define CHECK_EMPTY -1 /* no data */ 218 #define CHECK_INVALID 0 /* not a valid NMEA sentence */ 219 #define CHECK_VALID 1 /* valid but without checksum */ 220 #define CHECK_CSVALID 2 /* valid with checksum OK */ 221 222 /* 223 * Unit control structure 224 */ 225 typedef struct { 226 #ifdef HAVE_PPSAPI 227 struct refclock_atom atom; /* PPSAPI structure */ 228 int ppsapi_fd; /* fd used with PPSAPI */ 229 u_char ppsapi_tried; /* attempt PPSAPI once */ 230 u_char ppsapi_lit; /* time_pps_create() worked */ 231 u_char ppsapi_gate; /* system is on PPS */ 232 #endif /* HAVE_PPSAPI */ 233 u_char gps_time; /* use GPS time, not UTC */ 234 u_short century_cache; /* cached current century */ 235 l_fp last_reftime; /* last processed reference stamp */ 236 short epoch_warp; /* last epoch warp, for logging */ 237 /* tally stats, reset each poll cycle */ 238 struct 239 { 240 u_int total; 241 u_int accepted; 242 u_int rejected; /* GPS said not enough signal */ 243 u_int malformed; /* Bad checksum, invalid date or time */ 244 u_int filtered; /* mode bits, not GPZDG, same second */ 245 u_int pps_used; 246 } 247 tally; 248 /* per sentence checksum seen flag */ 249 u_char cksum_type[NMEA_ARRAY_SIZE]; 250 } nmea_unit; 251 252 /* 253 * helper for faster field access 254 */ 255 typedef struct { 256 char *base; /* buffer base */ 257 char *cptr; /* current field ptr */ 258 int blen; /* buffer length */ 259 int cidx; /* current field index */ 260 } nmea_data; 261 262 /* 263 * NMEA gps week/time information 264 * This record contains the number of weeks since 1980-01-06 modulo 265 * 1024, the seconds elapsed since start of the week, and the number of 266 * leap seconds that are the difference between GPS and UTC time scale. 267 */ 268 typedef struct { 269 u_int32 wt_time; /* seconds since weekstart */ 270 u_short wt_week; /* week number */ 271 short wt_leap; /* leap seconds */ 272 } gps_weektm; 273 274 /* 275 * The GPS week time scale starts on Sunday, 1980-01-06. We need the 276 * rata die number of this day. 277 */ 278 #ifndef DAY_GPS_STARTS 279 #define DAY_GPS_STARTS 722820 280 #endif 281 282 /* 283 * Function prototypes 284 */ 285 static void nmea_init (void); 286 static int nmea_start (int, struct peer *); 287 static void nmea_shutdown (int, struct peer *); 288 static void nmea_receive (struct recvbuf *); 289 static void nmea_poll (int, struct peer *); 290 #ifdef HAVE_PPSAPI 291 static void nmea_control (int, const struct refclockstat *, 292 struct refclockstat *, struct peer *); 293 #define NMEA_CONTROL nmea_control 294 #else 295 #define NMEA_CONTROL noentry 296 #endif /* HAVE_PPSAPI */ 297 static void nmea_timer (int, struct peer *); 298 299 /* parsing helpers */ 300 static int field_init (nmea_data * data, char * cp, int len); 301 static char * field_parse (nmea_data * data, int fn); 302 static void field_wipe (nmea_data * data, ...); 303 static u_char parse_qual (nmea_data * data, int idx, 304 char tag, int inv); 305 static int parse_time (struct calendar * jd, long * nsec, 306 nmea_data *, int idx); 307 static int parse_date (struct calendar *jd, nmea_data*, 308 int idx, enum date_fmt fmt); 309 static int parse_weekdata (gps_weektm *, nmea_data *, 310 int weekidx, int timeidx, int leapidx); 311 /* calendar / date helpers */ 312 static int unfold_day (struct calendar * jd, u_int32 rec_ui); 313 static int unfold_century (struct calendar * jd, u_int32 rec_ui); 314 static int gpsfix_century (struct calendar * jd, const gps_weektm * wd, 315 u_short * ccentury); 316 static l_fp eval_gps_time (struct peer * peer, const struct calendar * gpst, 317 const struct timespec * gpso, const l_fp * xrecv); 318 319 static int nmead_open (const char * device); 320 static void save_ltc (struct refclockproc * const, const char * const, 321 size_t); 322 323 /* 324 * If we want the driver to ouput sentences, too: re-enable the send 325 * support functions by defining NMEA_WRITE_SUPPORT to non-zero... 326 */ 327 #if NMEA_WRITE_SUPPORT 328 329 static void gps_send(int, const char *, struct peer *); 330 # ifdef SYS_WINNT 331 # undef write /* ports/winnt/include/config.h: #define write _write */ 332 extern int async_write(int, const void *, unsigned int); 333 # define write(fd, data, octets) async_write(fd, data, octets) 334 # endif /* SYS_WINNT */ 335 336 #endif /* NMEA_WRITE_SUPPORT */ 337 338 static int32_t g_gpsMinBase; 339 static int32_t g_gpsMinYear; 340 341 /* 342 * ------------------------------------------------------------------- 343 * Transfer vector 344 * ------------------------------------------------------------------- 345 */ 346 struct refclock refclock_nmea = { 347 nmea_start, /* start up driver */ 348 nmea_shutdown, /* shut down driver */ 349 nmea_poll, /* transmit poll message */ 350 NMEA_CONTROL, /* fudge control */ 351 nmea_init, /* initialize driver */ 352 noentry, /* buginfo */ 353 nmea_timer /* called once per second */ 354 }; 355 356 /* 357 * ------------------------------------------------------------------- 358 * nmea_init - initialise data 359 * 360 * calculates a few runtime constants that cannot be made compile time 361 * constants. 362 * ------------------------------------------------------------------- 363 */ 364 static void 365 nmea_init(void) 366 { 367 struct calendar date; 368 369 /* - calculate min. base value for GPS epoch & century unfolding 370 * This assumes that the build system was roughly in sync with 371 * the world, and that really synchronising to a time before the 372 * program was created would be unsafe or insane. If the build 373 * date cannot be stablished, at least use the start of GPS 374 * (1980-01-06) as minimum, because GPS can surely NOT 375 * synchronise beyond it's own big bang. We add a little safety 376 * margin for the fuzziness of the build date, which is in an 377 * undefined time zone. */ 378 if (ntpcal_get_build_date(&date)) 379 g_gpsMinBase = ntpcal_date_to_rd(&date) - 2; 380 else 381 g_gpsMinBase = 0; 382 383 if (g_gpsMinBase < DAY_GPS_STARTS) 384 g_gpsMinBase = DAY_GPS_STARTS; 385 386 ntpcal_rd_to_date(&date, g_gpsMinBase); 387 g_gpsMinYear = date.year; 388 g_gpsMinBase -= DAY_NTP_STARTS; 389 } 390 391 /* 392 * ------------------------------------------------------------------- 393 * nmea_start - open the GPS devices and initialize data for processing 394 * 395 * return 0 on error, 1 on success. Even on error the peer structures 396 * must be in a state that permits 'nmea_shutdown()' to clean up all 397 * resources, because it will be called immediately to do so. 398 * ------------------------------------------------------------------- 399 */ 400 static int 401 nmea_start( 402 int unit, 403 struct peer * peer 404 ) 405 { 406 struct refclockproc * const pp = peer->procptr; 407 nmea_unit * const up = emalloc_zero(sizeof(*up)); 408 char device[20]; 409 size_t devlen; 410 u_int32 rate; 411 int baudrate; 412 const char * baudtext; 413 414 415 /* Get baudrate choice from mode byte bits 4/5/6 */ 416 rate = (peer->ttl & NMEA_BAUDRATE_MASK) >> NMEA_BAUDRATE_SHIFT; 417 418 switch (rate) { 419 case 0: 420 baudrate = SPEED232; 421 baudtext = "4800"; 422 break; 423 case 1: 424 baudrate = B9600; 425 baudtext = "9600"; 426 break; 427 case 2: 428 baudrate = B19200; 429 baudtext = "19200"; 430 break; 431 case 3: 432 baudrate = B38400; 433 baudtext = "38400"; 434 break; 435 #ifdef B57600 436 case 4: 437 baudrate = B57600; 438 baudtext = "57600"; 439 break; 440 #endif 441 #ifdef B115200 442 case 5: 443 baudrate = B115200; 444 baudtext = "115200"; 445 break; 446 #endif 447 default: 448 baudrate = SPEED232; 449 baudtext = "4800 (fallback)"; 450 break; 451 } 452 453 /* Allocate and initialize unit structure */ 454 pp->unitptr = (caddr_t)up; 455 pp->io.fd = -1; 456 pp->io.clock_recv = nmea_receive; 457 pp->io.srcclock = peer; 458 pp->io.datalen = 0; 459 /* force change detection on first valid message */ 460 memset(&up->last_reftime, 0xFF, sizeof(up->last_reftime)); 461 /* force checksum on GPRMC, see below */ 462 up->cksum_type[NMEA_GPRMC] = CHECK_CSVALID; 463 #ifdef HAVE_PPSAPI 464 up->ppsapi_fd = -1; 465 #endif 466 ZERO(up->tally); 467 468 /* Initialize miscellaneous variables */ 469 peer->precision = PRECISION; 470 pp->clockdesc = DESCRIPTION; 471 memcpy(&pp->refid, REFID, 4); 472 473 /* Open serial port. Use CLK line discipline, if available. */ 474 devlen = snprintf(device, sizeof(device), DEVICE, unit); 475 if (devlen >= sizeof(device)) { 476 msyslog(LOG_ERR, "%s clock device name too long", 477 refnumtoa(&peer->srcadr)); 478 return FALSE; /* buffer overflow */ 479 } 480 pp->io.fd = refclock_open(device, baudrate, LDISC_CLK); 481 if (0 >= pp->io.fd) { 482 pp->io.fd = nmead_open(device); 483 if (-1 == pp->io.fd) 484 return FALSE; 485 } 486 LOGIF(CLOCKINFO, (LOG_NOTICE, "%s serial %s open at %s bps", 487 refnumtoa(&peer->srcadr), device, baudtext)); 488 489 /* succeed if this clock can be added */ 490 return io_addclock(&pp->io) != 0; 491 } 492 493 494 /* 495 * ------------------------------------------------------------------- 496 * nmea_shutdown - shut down a GPS clock 497 * 498 * NOTE this routine is called after nmea_start() returns failure, 499 * as well as during a normal shutdown due to ntpq :config unpeer. 500 * ------------------------------------------------------------------- 501 */ 502 static void 503 nmea_shutdown( 504 int unit, 505 struct peer * peer 506 ) 507 { 508 struct refclockproc * const pp = peer->procptr; 509 nmea_unit * const up = (nmea_unit *)pp->unitptr; 510 511 UNUSED_ARG(unit); 512 513 if (up != NULL) { 514 #ifdef HAVE_PPSAPI 515 if (up->ppsapi_lit) 516 time_pps_destroy(up->atom.handle); 517 if (up->ppsapi_tried && up->ppsapi_fd != pp->io.fd) 518 close(up->ppsapi_fd); 519 #endif 520 free(up); 521 } 522 pp->unitptr = (caddr_t)NULL; 523 if (-1 != pp->io.fd) 524 io_closeclock(&pp->io); 525 pp->io.fd = -1; 526 } 527 528 /* 529 * ------------------------------------------------------------------- 530 * nmea_control - configure fudge params 531 * ------------------------------------------------------------------- 532 */ 533 #ifdef HAVE_PPSAPI 534 static void 535 nmea_control( 536 int unit, 537 const struct refclockstat * in_st, 538 struct refclockstat * out_st, 539 struct peer * peer 540 ) 541 { 542 struct refclockproc * const pp = peer->procptr; 543 nmea_unit * const up = (nmea_unit *)pp->unitptr; 544 545 char device[32]; 546 size_t devlen; 547 548 UNUSED_ARG(in_st); 549 UNUSED_ARG(out_st); 550 551 /* 552 * PPS control 553 * 554 * If /dev/gpspps$UNIT can be opened that will be used for 555 * PPSAPI. Otherwise, the GPS serial device /dev/gps$UNIT 556 * already opened is used for PPSAPI as well. (This might not 557 * work, in which case the PPS API remains unavailable...) 558 */ 559 560 /* Light up the PPSAPI interface if not yet attempted. */ 561 if ((CLK_FLAG1 & pp->sloppyclockflag) && !up->ppsapi_tried) { 562 up->ppsapi_tried = TRUE; 563 devlen = snprintf(device, sizeof(device), PPSDEV, unit); 564 if (devlen < sizeof(device)) { 565 up->ppsapi_fd = open(device, PPSOPENMODE, 566 S_IRUSR | S_IWUSR); 567 } else { 568 up->ppsapi_fd = -1; 569 msyslog(LOG_ERR, "%s PPS device name too long", 570 refnumtoa(&peer->srcadr)); 571 } 572 if (-1 == up->ppsapi_fd) 573 up->ppsapi_fd = pp->io.fd; 574 if (refclock_ppsapi(up->ppsapi_fd, &up->atom)) { 575 /* use the PPS API for our own purposes now. */ 576 up->ppsapi_lit = refclock_params( 577 pp->sloppyclockflag, &up->atom); 578 if (!up->ppsapi_lit) { 579 /* failed to configure, drop PPS unit */ 580 time_pps_destroy(up->atom.handle); 581 msyslog(LOG_WARNING, 582 "%s set PPSAPI params fails", 583 refnumtoa(&peer->srcadr)); 584 } 585 /* note: the PPS I/O handle remains valid until 586 * flag1 is cleared or the clock is shut down. 587 */ 588 } else { 589 msyslog(LOG_WARNING, 590 "%s flag1 1 but PPSAPI fails", 591 refnumtoa(&peer->srcadr)); 592 } 593 } 594 595 /* shut down PPS API if activated */ 596 if (!(CLK_FLAG1 & pp->sloppyclockflag) && up->ppsapi_tried) { 597 /* shutdown PPS API */ 598 if (up->ppsapi_lit) 599 time_pps_destroy(up->atom.handle); 600 up->atom.handle = 0; 601 /* close/drop PPS fd */ 602 if (up->ppsapi_fd != pp->io.fd) 603 close(up->ppsapi_fd); 604 up->ppsapi_fd = -1; 605 606 /* clear markers and peer items */ 607 up->ppsapi_gate = FALSE; 608 up->ppsapi_lit = FALSE; 609 up->ppsapi_tried = FALSE; 610 611 peer->flags &= ~FLAG_PPS; 612 peer->precision = PRECISION; 613 } 614 } 615 #endif /* HAVE_PPSAPI */ 616 617 /* 618 * ------------------------------------------------------------------- 619 * nmea_timer - called once per second 620 * this only polls (older?) Oncore devices now 621 * 622 * Usually 'nmea_receive()' can get a timestamp every second, but at 623 * least one Motorola unit needs prompting each time. Doing so in 624 * 'nmea_poll()' gives only one sample per poll cycle, which actually 625 * defeats the purpose of the median filter. Polling once per second 626 * seems a much better idea. 627 * ------------------------------------------------------------------- 628 */ 629 static void 630 nmea_timer( 631 int unit, 632 struct peer * peer 633 ) 634 { 635 #if NMEA_WRITE_SUPPORT 636 637 struct refclockproc * const pp = peer->procptr; 638 639 UNUSED_ARG(unit); 640 641 if (-1 != pp->io.fd) /* any mode bits to evaluate here? */ 642 gps_send(pp->io.fd, "$PMOTG,RMC,0000*1D\r\n", peer); 643 #else 644 645 UNUSED_ARG(unit); 646 UNUSED_ARG(peer); 647 648 #endif /* NMEA_WRITE_SUPPORT */ 649 } 650 651 #ifdef HAVE_PPSAPI 652 /* 653 * ------------------------------------------------------------------- 654 * refclock_ppsrelate(...) -- correlate with PPS edge 655 * 656 * This function is used to correlate a receive time stamp and a 657 * reference time with a PPS edge time stamp. It applies the necessary 658 * fudges (fudge1 for PPS, fudge2 for receive time) and then tries to 659 * move the receive time stamp to the corresponding edge. This can warp 660 * into future, if a transmission delay of more than 500ms is not 661 * compensated with a corresponding fudge time2 value, because then the 662 * next PPS edge is nearer than the last. (Similiar to what the PPS ATOM 663 * driver does, but we deal with full time stamps here, not just phase 664 * shift information.) Likewise, a negative fudge time2 value must be 665 * used if the reference time stamp correlates with the *following* PPS 666 * pulse. 667 * 668 * Note that the receive time fudge value only needs to move the receive 669 * stamp near a PPS edge but that close proximity is not required; 670 * +/-100ms precision should be enough. But since the fudge value will 671 * probably also be used to compensate the transmission delay when no 672 * PPS edge can be related to the time stamp, it's best to get it as 673 * close as possible. 674 * 675 * It should also be noted that the typical use case is matching to the 676 * preceeding edge, as most units relate their sentences to the current 677 * second. 678 * 679 * The function returns PPS_RELATE_NONE (0) if no PPS edge correlation 680 * can be fixed; PPS_RELATE_EDGE (1) when a PPS edge could be fixed, but 681 * the distance to the reference time stamp is too big (exceeds 682 * +/-400ms) and the ATOM driver PLL cannot be used to fix the phase; 683 * and PPS_RELATE_PHASE (2) when the ATOM driver PLL code can be used. 684 * 685 * On output, the receive time stamp is replaced with the corresponding 686 * PPS edge time if a fix could be made; the PPS fudge is updated to 687 * reflect the proper fudge time to apply. (This implies that 688 * 'refclock_process_offset()' must be used!) 689 * ------------------------------------------------------------------- 690 */ 691 #define PPS_RELATE_NONE 0 /* no pps correlation possible */ 692 #define PPS_RELATE_EDGE 1 /* recv time fixed, no phase lock */ 693 #define PPS_RELATE_PHASE 2 /* recv time fixed, phase lock ok */ 694 695 static int 696 refclock_ppsrelate( 697 const struct refclockproc * pp , /* for sanity */ 698 const struct refclock_atom * ap , /* for PPS io */ 699 const l_fp * reftime , 700 l_fp * rd_stamp, /* i/o read stamp */ 701 double pp_fudge, /* pps fudge */ 702 double * rd_fudge /* i/o read fudge */ 703 ) 704 { 705 pps_info_t pps_info; 706 struct timespec timeout; 707 l_fp pp_stamp, pp_delta; 708 double delta, idelta; 709 710 if (pp->leap == LEAP_NOTINSYNC) 711 return PPS_RELATE_NONE; /* clock is insane, no chance */ 712 713 ZERO(timeout); 714 ZERO(pps_info); 715 if (time_pps_fetch(ap->handle, PPS_TSFMT_TSPEC, 716 &pps_info, &timeout) < 0) 717 return PPS_RELATE_NONE; /* can't get time stamps */ 718 719 /* get last active PPS edge before receive */ 720 if (ap->pps_params.mode & PPS_CAPTUREASSERT) 721 timeout = pps_info.assert_timestamp; 722 else if (ap->pps_params.mode & PPS_CAPTURECLEAR) 723 timeout = pps_info.clear_timestamp; 724 else 725 return PPS_RELATE_NONE; /* WHICH edge, please?!? */ 726 727 /* get delta between receive time and PPS time */ 728 pp_stamp = tspec_stamp_to_lfp(timeout); 729 pp_delta = *rd_stamp; 730 L_SUB(&pp_delta, &pp_stamp); 731 LFPTOD(&pp_delta, delta); 732 delta += pp_fudge - *rd_fudge; 733 if (fabs(delta) > 1.5) 734 return PPS_RELATE_NONE; /* PPS timeout control */ 735 736 /* eventually warp edges, check phase */ 737 idelta = floor(delta + 0.5); 738 pp_fudge -= idelta; 739 delta -= idelta; 740 if (fabs(delta) > 0.45) 741 return PPS_RELATE_NONE; /* dead band control */ 742 743 /* we actually have a PPS edge to relate with! */ 744 *rd_stamp = pp_stamp; 745 *rd_fudge = pp_fudge; 746 747 /* if whole system out-of-sync, do not try to PLL */ 748 if (sys_leap == LEAP_NOTINSYNC) 749 return PPS_RELATE_EDGE; /* cannot PLL with atom code */ 750 751 /* check against reftime if ATOM PLL can be used */ 752 pp_delta = *reftime; 753 L_SUB(&pp_delta, &pp_stamp); 754 LFPTOD(&pp_delta, delta); 755 delta += pp_fudge; 756 if (fabs(delta) > 0.45) 757 return PPS_RELATE_EDGE; /* cannot PLL with atom code */ 758 759 /* all checks passed, gets an AAA rating here! */ 760 return PPS_RELATE_PHASE; /* can PLL with atom code */ 761 } 762 #endif /* HAVE_PPSAPI */ 763 764 /* 765 * ------------------------------------------------------------------- 766 * nmea_receive - receive data from the serial interface 767 * 768 * This is the workhorse for NMEA data evaluation: 769 * 770 * + it checks all NMEA data, and rejects sentences that are not valid 771 * NMEA sentences 772 * + it checks whether a sentence is known and to be used 773 * + it parses the time and date data from the NMEA data string and 774 * augments the missing bits. (century in dat, whole date, ...) 775 * + it rejects data that is not from the first accepted sentence in a 776 * burst 777 * + it eventually replaces the receive time with the PPS edge time. 778 * + it feeds the data to the internal processing stages. 779 * ------------------------------------------------------------------- 780 */ 781 static void 782 nmea_receive( 783 struct recvbuf * rbufp 784 ) 785 { 786 /* declare & init control structure ptrs */ 787 struct peer * const peer = rbufp->recv_peer; 788 struct refclockproc * const pp = peer->procptr; 789 nmea_unit * const up = (nmea_unit*)pp->unitptr; 790 791 /* Use these variables to hold data until we decide its worth keeping */ 792 nmea_data rdata; 793 char rd_lastcode[BMAX]; 794 l_fp rd_timestamp, rd_reftime; 795 int rd_lencode; 796 double rd_fudge; 797 798 /* working stuff */ 799 struct calendar date; /* to keep & convert the time stamp */ 800 struct timespec tofs; /* offset to full-second reftime */ 801 gps_weektm gpsw; /* week time storage */ 802 /* results of sentence/date/time parsing */ 803 u_char sentence; /* sentence tag */ 804 int checkres; 805 char * cp; 806 int rc_date; 807 int rc_time; 808 809 /* make sure data has defined pristine state */ 810 ZERO(tofs); 811 ZERO(date); 812 ZERO(gpsw); 813 sentence = 0; 814 rc_date = 0; 815 rc_time = 0; 816 /* 817 * Read the timecode and timestamp, then initialise field 818 * processing. The <CR><LF> at the NMEA line end is translated 819 * to <LF><LF> by the terminal input routines on most systems, 820 * and this gives us one spurious empty read per record which we 821 * better ignore silently. 822 */ 823 rd_lencode = refclock_gtlin(rbufp, rd_lastcode, 824 sizeof(rd_lastcode), &rd_timestamp); 825 checkres = field_init(&rdata, rd_lastcode, rd_lencode); 826 switch (checkres) { 827 828 case CHECK_INVALID: 829 DPRINTF(1, ("%s invalid data: '%s'\n", 830 refnumtoa(&peer->srcadr), rd_lastcode)); 831 refclock_report(peer, CEVNT_BADREPLY); 832 return; 833 834 case CHECK_EMPTY: 835 return; 836 837 default: 838 DPRINTF(1, ("%s gpsread: %d '%s'\n", 839 refnumtoa(&peer->srcadr), rd_lencode, 840 rd_lastcode)); 841 break; 842 } 843 up->tally.total++; 844 845 /* 846 * --> below this point we have a valid NMEA sentence <-- 847 * 848 * Check sentence name. Skip first 2 chars (talker ID) in most 849 * cases, to allow for $GLGGA and $GPGGA etc. Since the name 850 * field has at least 5 chars we can simply shift the field 851 * start. 852 */ 853 cp = field_parse(&rdata, 0); 854 if (strncmp(cp + 2, "RMC,", 4) == 0) 855 sentence = NMEA_GPRMC; 856 else if (strncmp(cp + 2, "GGA,", 4) == 0) 857 sentence = NMEA_GPGGA; 858 else if (strncmp(cp + 2, "GLL,", 4) == 0) 859 sentence = NMEA_GPGLL; 860 else if (strncmp(cp + 2, "ZDA,", 4) == 0) 861 sentence = NMEA_GPZDA; 862 else if (strncmp(cp + 2, "ZDG,", 4) == 0) 863 sentence = NMEA_GPZDG; 864 else if (strncmp(cp, "PGRMF,", 6) == 0) 865 sentence = NMEA_PGRMF; 866 else 867 return; /* not something we know about */ 868 869 /* Eventually output delay measurement now. */ 870 if (peer->ttl & NMEA_DELAYMEAS_MASK) { 871 mprintf_clock_stats(&peer->srcadr, "delay %0.6f %.*s", 872 ldexp(rd_timestamp.l_uf, -32), 873 (int)(strchr(rd_lastcode, ',') - rd_lastcode), 874 rd_lastcode); 875 } 876 877 /* See if I want to process this message type */ 878 if ((peer->ttl & NMEA_MESSAGE_MASK) && 879 !(peer->ttl & sentence_mode[sentence])) { 880 up->tally.filtered++; 881 return; 882 } 883 884 /* 885 * make sure it came in clean 886 * 887 * Apparently, older NMEA specifications (which are expensive) 888 * did not require the checksum for all sentences. $GPMRC is 889 * the only one so far identified which has always been required 890 * to include a checksum. 891 * 892 * Today, most NMEA GPS receivers checksum every sentence. To 893 * preserve its error-detection capabilities with modern GPSes 894 * while allowing operation without checksums on all but $GPMRC, 895 * we keep track of whether we've ever seen a valid checksum on 896 * a given sentence, and if so, reject future instances without 897 * checksum. ('up->cksum_type[NMEA_GPRMC]' is set in 898 * 'nmea_start()' to enforce checksums for $GPRMC right from the 899 * start.) 900 */ 901 if (up->cksum_type[sentence] <= (u_char)checkres) { 902 up->cksum_type[sentence] = (u_char)checkres; 903 } else { 904 DPRINTF(1, ("%s checksum missing: '%s'\n", 905 refnumtoa(&peer->srcadr), rd_lastcode)); 906 refclock_report(peer, CEVNT_BADREPLY); 907 up->tally.malformed++; 908 return; 909 } 910 911 /* 912 * $GPZDG provides GPS time not UTC, and the two mix poorly. 913 * Once have processed a $GPZDG, do not process any further UTC 914 * sentences (all but $GPZDG currently). 915 */ 916 if (up->gps_time && NMEA_GPZDG != sentence) { 917 up->tally.filtered++; 918 return; 919 } 920 921 DPRINTF(1, ("%s processing %d bytes, timecode '%s'\n", 922 refnumtoa(&peer->srcadr), rd_lencode, rd_lastcode)); 923 924 /* 925 * Grab fields depending on clock string type and possibly wipe 926 * sensitive data from the last timecode. 927 */ 928 switch (sentence) { 929 930 case NMEA_GPRMC: 931 /* Check quality byte, fetch data & time */ 932 rc_time = parse_time(&date, &tofs.tv_nsec, &rdata, 1); 933 pp->leap = parse_qual(&rdata, 2, 'A', 0); 934 rc_date = parse_date(&date, &rdata, 9, DATE_1_DDMMYY) 935 && unfold_century(&date, rd_timestamp.l_ui); 936 if (CLK_FLAG4 & pp->sloppyclockflag) 937 field_wipe(&rdata, 3, 4, 5, 6, -1); 938 break; 939 940 case NMEA_GPGGA: 941 /* Check quality byte, fetch time only */ 942 rc_time = parse_time(&date, &tofs.tv_nsec, &rdata, 1); 943 pp->leap = parse_qual(&rdata, 6, '0', 1); 944 rc_date = unfold_day(&date, rd_timestamp.l_ui); 945 if (CLK_FLAG4 & pp->sloppyclockflag) 946 field_wipe(&rdata, 2, 4, -1); 947 break; 948 949 case NMEA_GPGLL: 950 /* Check quality byte, fetch time only */ 951 rc_time = parse_time(&date, &tofs.tv_nsec, &rdata, 5); 952 pp->leap = parse_qual(&rdata, 6, 'A', 0); 953 rc_date = unfold_day(&date, rd_timestamp.l_ui); 954 if (CLK_FLAG4 & pp->sloppyclockflag) 955 field_wipe(&rdata, 1, 3, -1); 956 break; 957 958 case NMEA_GPZDA: 959 /* No quality. Assume best, fetch time & full date */ 960 pp->leap = LEAP_NOWARNING; 961 rc_time = parse_time(&date, &tofs.tv_nsec, &rdata, 1); 962 rc_date = parse_date(&date, &rdata, 2, DATE_3_DDMMYYYY); 963 break; 964 965 case NMEA_GPZDG: 966 /* Check quality byte, fetch time & full date */ 967 rc_time = parse_time(&date, &tofs.tv_nsec, &rdata, 1); 968 rc_date = parse_date(&date, &rdata, 2, DATE_3_DDMMYYYY); 969 pp->leap = parse_qual(&rdata, 4, '0', 1); 970 tofs.tv_sec = -1; /* GPZDG is following second */ 971 break; 972 973 case NMEA_PGRMF: 974 /* get date, time, qualifier and GPS weektime. We need 975 * date and time-of-day for the century fix, so we read 976 * them first. 977 */ 978 rc_date = parse_weekdata(&gpsw, &rdata, 1, 2, 5) 979 && parse_date(&date, &rdata, 3, DATE_1_DDMMYY); 980 rc_time = parse_time(&date, &tofs.tv_nsec, &rdata, 4); 981 pp->leap = parse_qual(&rdata, 11, '0', 1); 982 rc_date = rc_date 983 && gpsfix_century(&date, &gpsw, &up->century_cache); 984 if (CLK_FLAG4 & pp->sloppyclockflag) 985 field_wipe(&rdata, 6, 8, -1); 986 break; 987 988 default: 989 INVARIANT(0); /* Coverity 97123 */ 990 return; 991 } 992 993 /* Check sanity of time-of-day. */ 994 if (rc_time == 0) { /* no time or conversion error? */ 995 checkres = CEVNT_BADTIME; 996 up->tally.malformed++; 997 } 998 /* Check sanity of date. */ 999 else if (rc_date == 0) {/* no date or conversion error? */ 1000 checkres = CEVNT_BADDATE; 1001 up->tally.malformed++; 1002 } 1003 /* check clock sanity; [bug 2143] */ 1004 else if (pp->leap == LEAP_NOTINSYNC) { /* no good status? */ 1005 checkres = CEVNT_BADREPLY; 1006 up->tally.rejected++; 1007 } 1008 else 1009 checkres = -1; 1010 1011 if (checkres != -1) { 1012 save_ltc(pp, rd_lastcode, rd_lencode); 1013 refclock_report(peer, checkres); 1014 return; 1015 } 1016 1017 DPRINTF(1, ("%s effective timecode: %04u-%02u-%02u %02d:%02d:%02d\n", 1018 refnumtoa(&peer->srcadr), 1019 date.year, date.month, date.monthday, 1020 date.hour, date.minute, date.second)); 1021 1022 /* Check if we must enter GPS time mode; log so if we do */ 1023 if (!up->gps_time && (sentence == NMEA_GPZDG)) { 1024 msyslog(LOG_INFO, "%s using GPS time as if it were UTC", 1025 refnumtoa(&peer->srcadr)); 1026 up->gps_time = 1; 1027 } 1028 1029 /* 1030 * Get the reference time stamp from the calendar buffer. 1031 * Process the new sample in the median filter and determine the 1032 * timecode timestamp, but only if the PPS is not in control. 1033 * Discard sentence if reference time did not change. 1034 */ 1035 rd_reftime = eval_gps_time(peer, &date, &tofs, &rd_timestamp); 1036 if (L_ISEQU(&up->last_reftime, &rd_reftime)) { 1037 /* Do not touch pp->a_lastcode on purpose! */ 1038 up->tally.filtered++; 1039 return; 1040 } 1041 up->last_reftime = rd_reftime; 1042 rd_fudge = pp->fudgetime2; 1043 1044 DPRINTF(1, ("%s using '%s'\n", 1045 refnumtoa(&peer->srcadr), rd_lastcode)); 1046 1047 /* Data will be accepted. Update stats & log data. */ 1048 up->tally.accepted++; 1049 save_ltc(pp, rd_lastcode, rd_lencode); 1050 pp->lastrec = rd_timestamp; 1051 1052 #ifdef HAVE_PPSAPI 1053 /* 1054 * If we have PPS running, we try to associate the sentence 1055 * with the last active edge of the PPS signal. 1056 */ 1057 if (up->ppsapi_lit) 1058 switch (refclock_ppsrelate( 1059 pp, &up->atom, &rd_reftime, &rd_timestamp, 1060 pp->fudgetime1, &rd_fudge)) 1061 { 1062 case PPS_RELATE_PHASE: 1063 up->ppsapi_gate = TRUE; 1064 peer->precision = PPS_PRECISION; 1065 peer->flags |= FLAG_PPS; 1066 DPRINTF(2, ("%s PPS_RELATE_PHASE\n", 1067 refnumtoa(&peer->srcadr))); 1068 up->tally.pps_used++; 1069 break; 1070 1071 case PPS_RELATE_EDGE: 1072 up->ppsapi_gate = TRUE; 1073 peer->precision = PPS_PRECISION; 1074 DPRINTF(2, ("%s PPS_RELATE_EDGE\n", 1075 refnumtoa(&peer->srcadr))); 1076 break; 1077 1078 case PPS_RELATE_NONE: 1079 default: 1080 /* 1081 * Resetting precision and PPS flag is done in 1082 * 'nmea_poll', since it might be a glitch. But 1083 * at the end of the poll cycle we know... 1084 */ 1085 DPRINTF(2, ("%s PPS_RELATE_NONE\n", 1086 refnumtoa(&peer->srcadr))); 1087 break; 1088 } 1089 #endif /* HAVE_PPSAPI */ 1090 1091 refclock_process_offset(pp, rd_reftime, rd_timestamp, rd_fudge); 1092 } 1093 1094 1095 /* 1096 * ------------------------------------------------------------------- 1097 * nmea_poll - called by the transmit procedure 1098 * 1099 * Does the necessary bookkeeping stuff to keep the reported state of 1100 * the clock in sync with reality. 1101 * 1102 * We go to great pains to avoid changing state here, since there may 1103 * be more than one eavesdropper receiving the same timecode. 1104 * ------------------------------------------------------------------- 1105 */ 1106 static void 1107 nmea_poll( 1108 int unit, 1109 struct peer * peer 1110 ) 1111 { 1112 struct refclockproc * const pp = peer->procptr; 1113 nmea_unit * const up = (nmea_unit *)pp->unitptr; 1114 1115 /* 1116 * Process median filter samples. If none received, declare a 1117 * timeout and keep going. 1118 */ 1119 #ifdef HAVE_PPSAPI 1120 /* 1121 * If we don't have PPS pulses and time stamps, turn PPS down 1122 * for now. 1123 */ 1124 if (!up->ppsapi_gate) { 1125 peer->flags &= ~FLAG_PPS; 1126 peer->precision = PRECISION; 1127 } else { 1128 up->ppsapi_gate = FALSE; 1129 } 1130 #endif /* HAVE_PPSAPI */ 1131 1132 /* 1133 * If the median filter is empty, claim a timeout. Else process 1134 * the input data and keep the stats going. 1135 */ 1136 if (pp->coderecv == pp->codeproc) { 1137 refclock_report(peer, CEVNT_TIMEOUT); 1138 } else { 1139 pp->polls++; 1140 pp->lastref = pp->lastrec; 1141 refclock_receive(peer); 1142 } 1143 1144 /* 1145 * If extended logging is required, write the tally stats to the 1146 * clockstats file; otherwise just do a normal clock stats 1147 * record. Clear the tally stats anyway. 1148 */ 1149 if (peer->ttl & NMEA_EXTLOG_MASK) { 1150 /* Log & reset counters with extended logging */ 1151 const char *nmea = pp->a_lastcode; 1152 if (*nmea == '\0') nmea = "(none)"; 1153 mprintf_clock_stats( 1154 &peer->srcadr, "%s %u %u %u %u %u %u", 1155 nmea, 1156 up->tally.total, up->tally.accepted, 1157 up->tally.rejected, up->tally.malformed, 1158 up->tally.filtered, up->tally.pps_used); 1159 } else { 1160 record_clock_stats(&peer->srcadr, pp->a_lastcode); 1161 } 1162 ZERO(up->tally); 1163 } 1164 1165 /* 1166 * ------------------------------------------------------------------- 1167 * Save the last timecode string, making sure it's properly truncated 1168 * if necessary and NUL terminated in any case. 1169 */ 1170 static void 1171 save_ltc( 1172 struct refclockproc * const pp, 1173 const char * const tc, 1174 size_t len 1175 ) 1176 { 1177 if (len >= sizeof(pp->a_lastcode)) 1178 len = sizeof(pp->a_lastcode) - 1; 1179 pp->lencode = (u_short)len; 1180 memcpy(pp->a_lastcode, tc, len); 1181 pp->a_lastcode[len] = '\0'; 1182 } 1183 1184 1185 #if NMEA_WRITE_SUPPORT 1186 /* 1187 * ------------------------------------------------------------------- 1188 * gps_send(fd, cmd, peer) Sends a command to the GPS receiver. 1189 * as in gps_send(fd, "rqts,u", peer); 1190 * 1191 * If 'cmd' starts with a '$' it is assumed that this command is in raw 1192 * format, that is, starts with '$', ends with '<cr><lf>' and that any 1193 * checksum is correctly provided; the command will be send 'as is' in 1194 * that case. Otherwise the function will create the necessary frame 1195 * (start char, chksum, final CRLF) on the fly. 1196 * 1197 * We don't currently send any data, but would like to send RTCM SC104 1198 * messages for differential positioning. It should also give us better 1199 * time. Without a PPS output, we're Just fooling ourselves because of 1200 * the serial code paths 1201 * ------------------------------------------------------------------- 1202 */ 1203 static void 1204 gps_send( 1205 int fd, 1206 const char * cmd, 1207 struct peer * peer 1208 ) 1209 { 1210 /* $...*xy<CR><LF><NUL> add 7 */ 1211 char buf[NMEA_PROTO_MAXLEN + 7]; 1212 int len; 1213 u_char dcs; 1214 const u_char *beg, *end; 1215 1216 if (*cmd != '$') { 1217 /* get checksum and length */ 1218 beg = end = (const u_char*)cmd; 1219 dcs = 0; 1220 while (*end >= ' ' && *end != '*') 1221 dcs ^= *end++; 1222 len = end - beg; 1223 /* format into output buffer with overflow check */ 1224 len = snprintf(buf, sizeof(buf), "$%.*s*%02X\r\n", 1225 len, beg, dcs); 1226 if ((size_t)len >= sizeof(buf)) { 1227 DPRINTF(1, ("%s gps_send: buffer overflow for command '%s'\n", 1228 refnumtoa(&peer->srcadr), cmd)); 1229 return; /* game over player 1 */ 1230 } 1231 cmd = buf; 1232 } else { 1233 len = strlen(cmd); 1234 } 1235 1236 DPRINTF(1, ("%s gps_send: '%.*s'\n", refnumtoa(&peer->srcadr), 1237 len - 2, cmd)); 1238 1239 /* send out the whole stuff */ 1240 if (write(fd, cmd, len) == -1) 1241 refclock_report(peer, CEVNT_FAULT); 1242 } 1243 #endif /* NMEA_WRITE_SUPPORT */ 1244 1245 /* 1246 * ------------------------------------------------------------------- 1247 * helpers for faster field splitting 1248 * ------------------------------------------------------------------- 1249 * 1250 * set up a field record, check syntax and verify checksum 1251 * 1252 * format is $XXXXX,1,2,3,4*ML 1253 * 1254 * 8-bit XOR of characters between $ and * noninclusive is transmitted 1255 * in last two chars M and L holding most and least significant nibbles 1256 * in hex representation such as: 1257 * 1258 * $GPGLL,5057.970,N,00146.110,E,142451,A*27 1259 * $GPVTG,089.0,T,,,15.2,N,,*7F 1260 * 1261 * Some other constraints: 1262 * + The field name must at least 5 upcase characters or digits and must 1263 * start with a character. 1264 * + The checksum (if present) must be uppercase hex digits. 1265 * + The length of a sentence is limited to 80 characters (not including 1266 * the final CR/LF nor the checksum, but including the leading '$') 1267 * 1268 * Return values: 1269 * + CHECK_INVALID 1270 * The data does not form a valid NMEA sentence or a checksum error 1271 * occurred. 1272 * + CHECK_VALID 1273 * The data is a valid NMEA sentence but contains no checksum. 1274 * + CHECK_CSVALID 1275 * The data is a valid NMEA sentence and passed the checksum test. 1276 * ------------------------------------------------------------------- 1277 */ 1278 static int 1279 field_init( 1280 nmea_data * data, /* context structure */ 1281 char * cptr, /* start of raw data */ 1282 int dlen /* data len, not counting trailing NUL */ 1283 ) 1284 { 1285 u_char cs_l; /* checksum local computed */ 1286 u_char cs_r; /* checksum remote given */ 1287 char * eptr; /* buffer end end pointer */ 1288 char tmp; /* char buffer */ 1289 1290 cs_l = 0; 1291 cs_r = 0; 1292 /* some basic input constraints */ 1293 if (dlen < 0) 1294 dlen = 0; 1295 eptr = cptr + dlen; 1296 *eptr = '\0'; 1297 1298 /* load data context */ 1299 data->base = cptr; 1300 data->cptr = cptr; 1301 data->cidx = 0; 1302 data->blen = dlen; 1303 1304 /* syntax check follows here. check allowed character 1305 * sequences, updating the local computed checksum as we go. 1306 * 1307 * regex equiv: '^\$[A-Z][A-Z0-9]{4,}[^*]*(\*[0-9A-F]{2})?$' 1308 */ 1309 1310 /* -*- start character: '^\$' */ 1311 if (*cptr == '\0') 1312 return CHECK_EMPTY; 1313 if (*cptr++ != '$') 1314 return CHECK_INVALID; 1315 1316 /* -*- advance context beyond start character */ 1317 data->base++; 1318 data->cptr++; 1319 data->blen--; 1320 1321 /* -*- field name: '[A-Z][A-Z0-9]{4,},' */ 1322 if (*cptr < 'A' || *cptr > 'Z') 1323 return CHECK_INVALID; 1324 cs_l ^= *cptr++; 1325 while ((*cptr >= 'A' && *cptr <= 'Z') || 1326 (*cptr >= '0' && *cptr <= '9') ) 1327 cs_l ^= *cptr++; 1328 if (*cptr != ',' || (cptr - data->base) < NMEA_PROTO_IDLEN) 1329 return CHECK_INVALID; 1330 cs_l ^= *cptr++; 1331 1332 /* -*- data: '[^*]*' */ 1333 while (*cptr && *cptr != '*') 1334 cs_l ^= *cptr++; 1335 1336 /* -*- checksum field: (\*[0-9A-F]{2})?$ */ 1337 if (*cptr == '\0') 1338 return CHECK_VALID; 1339 if (*cptr != '*' || cptr != eptr - 3 || 1340 (cptr - data->base) >= NMEA_PROTO_MAXLEN) 1341 return CHECK_INVALID; 1342 1343 for (cptr++; (tmp = *cptr) != '\0'; cptr++) { 1344 if (tmp >= '0' && tmp <= '9') 1345 cs_r = (cs_r << 4) + (tmp - '0'); 1346 else if (tmp >= 'A' && tmp <= 'F') 1347 cs_r = (cs_r << 4) + (tmp - 'A' + 10); 1348 else 1349 break; 1350 } 1351 1352 /* -*- make sure we are at end of string and csum matches */ 1353 if (cptr != eptr || cs_l != cs_r) 1354 return CHECK_INVALID; 1355 1356 return CHECK_CSVALID; 1357 } 1358 1359 /* 1360 * ------------------------------------------------------------------- 1361 * fetch a data field by index, zero being the name field. If this 1362 * function is called repeatedly with increasing indices, the total load 1363 * is O(n), n being the length of the string; if it is called with 1364 * decreasing indices, the total load is O(n^2). Try not to go backwards 1365 * too often. 1366 * ------------------------------------------------------------------- 1367 */ 1368 static char * 1369 field_parse( 1370 nmea_data * data, 1371 int fn 1372 ) 1373 { 1374 char tmp; 1375 1376 if (fn < data->cidx) { 1377 data->cidx = 0; 1378 data->cptr = data->base; 1379 } 1380 while ((fn > data->cidx) && (tmp = *data->cptr) != '\0') { 1381 data->cidx += (tmp == ','); 1382 data->cptr++; 1383 } 1384 return data->cptr; 1385 } 1386 1387 /* 1388 * ------------------------------------------------------------------- 1389 * Wipe (that is, overwrite with '_') data fields and the checksum in 1390 * the last timecode. The list of field indices is given as integers 1391 * in a varargs list, preferrably in ascending order, in any case 1392 * terminated by a negative field index. 1393 * 1394 * A maximum number of 8 fields can be overwritten at once to guard 1395 * against runaway (that is, unterminated) argument lists. 1396 * 1397 * This function affects what a remote user can see with 1398 * 1399 * ntpq -c clockvar <server> 1400 * 1401 * Note that this also removes the wiped fields from any clockstats 1402 * log. Some NTP operators monitor their NMEA GPS using the change in 1403 * location in clockstats over time as as a proxy for the quality of 1404 * GPS reception and thereby time reported. 1405 * ------------------------------------------------------------------- 1406 */ 1407 static void 1408 field_wipe( 1409 nmea_data * data, 1410 ... 1411 ) 1412 { 1413 va_list va; /* vararg index list */ 1414 int fcnt; /* safeguard against runaway arglist */ 1415 int fidx; /* field to nuke, or -1 for checksum */ 1416 char * cp; /* overwrite destination */ 1417 1418 fcnt = 8; 1419 cp = NULL; 1420 va_start(va, data); 1421 do { 1422 fidx = va_arg(va, int); 1423 if (fidx >= 0 && fidx <= NMEA_PROTO_FIELDS) { 1424 cp = field_parse(data, fidx); 1425 } else { 1426 cp = data->base + data->blen; 1427 if (data->blen >= 3 && cp[-3] == '*') 1428 cp -= 2; 1429 } 1430 for ( ; '\0' != *cp && '*' != *cp && ',' != *cp; cp++) 1431 if ('.' != *cp) 1432 *cp = '_'; 1433 } while (fcnt-- && fidx >= 0); 1434 va_end(va); 1435 } 1436 1437 /* 1438 * ------------------------------------------------------------------- 1439 * PARSING HELPERS 1440 * ------------------------------------------------------------------- 1441 * 1442 * Check sync status 1443 * 1444 * If the character at the data field start matches the tag value, 1445 * return LEAP_NOWARNING and LEAP_NOTINSYNC otherwise. If the 'inverted' 1446 * flag is given, just the opposite value is returned. If there is no 1447 * data field (*cp points to the NUL byte) the result is LEAP_NOTINSYNC. 1448 * ------------------------------------------------------------------- 1449 */ 1450 static u_char 1451 parse_qual( 1452 nmea_data * rd, 1453 int idx, 1454 char tag, 1455 int inv 1456 ) 1457 { 1458 static const u_char table[2] = 1459 { LEAP_NOTINSYNC, LEAP_NOWARNING }; 1460 char * dp; 1461 1462 dp = field_parse(rd, idx); 1463 1464 return table[ *dp && ((*dp == tag) == !inv) ]; 1465 } 1466 1467 /* 1468 * ------------------------------------------------------------------- 1469 * Parse a time stamp in HHMMSS[.sss] format with error checking. 1470 * 1471 * returns 1 on success, 0 on failure 1472 * ------------------------------------------------------------------- 1473 */ 1474 static int 1475 parse_time( 1476 struct calendar * jd, /* result calendar pointer */ 1477 long * ns, /* storage for nsec fraction */ 1478 nmea_data * rd, 1479 int idx 1480 ) 1481 { 1482 static const unsigned long weight[4] = { 1483 0, 100000000, 10000000, 1000000 1484 }; 1485 1486 int rc; 1487 u_int h; 1488 u_int m; 1489 u_int s; 1490 int p1; 1491 int p2; 1492 u_long f; 1493 char * dp; 1494 1495 dp = field_parse(rd, idx); 1496 rc = sscanf(dp, "%2u%2u%2u%n.%3lu%n", &h, &m, &s, &p1, &f, &p2); 1497 if (rc < 3 || p1 != 6) { 1498 DPRINTF(1, ("nmea: invalid time code: '%.6s'\n", dp)); 1499 return FALSE; 1500 } 1501 1502 /* value sanity check */ 1503 if (h > 23 || m > 59 || s > 60) { 1504 DPRINTF(1, ("nmea: invalid time spec %02u:%02u:%02u\n", 1505 h, m, s)); 1506 return FALSE; 1507 } 1508 1509 jd->hour = (u_char)h; 1510 jd->minute = (u_char)m; 1511 jd->second = (u_char)s; 1512 /* if we have a fraction, scale it up to nanoseconds. */ 1513 if (rc == 4) 1514 *ns = f * weight[p2 - p1 - 1]; 1515 else 1516 *ns = 0; 1517 1518 return TRUE; 1519 } 1520 1521 /* 1522 * ------------------------------------------------------------------- 1523 * Parse a date string from an NMEA sentence. This could either be a 1524 * partial date in DDMMYY format in one field, or DD,MM,YYYY full date 1525 * spec spanning three fields. This function does some extensive error 1526 * checking to make sure the date string was consistent. 1527 * 1528 * returns 1 on success, 0 on failure 1529 * ------------------------------------------------------------------- 1530 */ 1531 static int 1532 parse_date( 1533 struct calendar * jd, /* result pointer */ 1534 nmea_data * rd, 1535 int idx, 1536 enum date_fmt fmt 1537 ) 1538 { 1539 int rc; 1540 u_int y; 1541 u_int m; 1542 u_int d; 1543 int p; 1544 char * dp; 1545 1546 dp = field_parse(rd, idx); 1547 switch (fmt) { 1548 1549 case DATE_1_DDMMYY: 1550 rc = sscanf(dp, "%2u%2u%2u%n", &d, &m, &y, &p); 1551 if (rc != 3 || p != 6) { 1552 DPRINTF(1, ("nmea: invalid date code: '%.6s'\n", 1553 dp)); 1554 return FALSE; 1555 } 1556 break; 1557 1558 case DATE_3_DDMMYYYY: 1559 rc = sscanf(dp, "%2u,%2u,%4u%n", &d, &m, &y, &p); 1560 if (rc != 3 || p != 10) { 1561 DPRINTF(1, ("nmea: invalid date code: '%.10s'\n", 1562 dp)); 1563 return FALSE; 1564 } 1565 break; 1566 1567 default: 1568 DPRINTF(1, ("nmea: invalid parse format: %d\n", fmt)); 1569 return FALSE; 1570 } 1571 1572 /* value sanity check */ 1573 if (d < 1 || d > 31 || m < 1 || m > 12) { 1574 DPRINTF(1, ("nmea: invalid date spec (YMD) %04u:%02u:%02u\n", 1575 y, m, d)); 1576 return FALSE; 1577 } 1578 1579 /* store results */ 1580 jd->monthday = (u_char)d; 1581 jd->month = (u_char)m; 1582 jd->year = (u_short)y; 1583 1584 return TRUE; 1585 } 1586 1587 /* 1588 * ------------------------------------------------------------------- 1589 * Parse GPS week time info from an NMEA sentence. This info contains 1590 * the GPS week number, the GPS time-of-week and the leap seconds GPS 1591 * to UTC. 1592 * 1593 * returns 1 on success, 0 on failure 1594 * ------------------------------------------------------------------- 1595 */ 1596 static int 1597 parse_weekdata( 1598 gps_weektm * wd, 1599 nmea_data * rd, 1600 int weekidx, 1601 int timeidx, 1602 int leapidx 1603 ) 1604 { 1605 u_long secs; 1606 int fcnt; 1607 1608 /* parse fields and count success */ 1609 fcnt = sscanf(field_parse(rd, weekidx), "%hu", &wd->wt_week); 1610 fcnt += sscanf(field_parse(rd, timeidx), "%lu", &secs); 1611 fcnt += sscanf(field_parse(rd, leapidx), "%hd", &wd->wt_leap); 1612 if (fcnt != 3 || wd->wt_week >= 1024 || secs >= 7*SECSPERDAY) { 1613 DPRINTF(1, ("nmea: parse_weekdata: invalid weektime spec\n")); 1614 return FALSE; 1615 } 1616 wd->wt_time = (u_int32)secs; 1617 1618 return TRUE; 1619 } 1620 1621 /* 1622 * ------------------------------------------------------------------- 1623 * funny calendar-oriented stuff -- perhaps a bit hard to grok. 1624 * ------------------------------------------------------------------- 1625 * 1626 * Unfold a time-of-day (seconds since midnight) around the current 1627 * system time in a manner that guarantees an absolute difference of 1628 * less than 12hrs. 1629 * 1630 * This function is used for NMEA sentences that contain no date 1631 * information. This requires the system clock to be in +/-12hrs 1632 * around the true time, or the clock will synchronize the system 1day 1633 * off if not augmented with a time sources that also provide the 1634 * necessary date information. 1635 * 1636 * The function updates the calendar structure it also uses as 1637 * input to fetch the time from. 1638 * 1639 * returns 1 on success, 0 on failure 1640 * ------------------------------------------------------------------- 1641 */ 1642 static int 1643 unfold_day( 1644 struct calendar * jd, 1645 u_int32 rec_ui 1646 ) 1647 { 1648 vint64 rec_qw; 1649 ntpcal_split rec_ds; 1650 1651 /* 1652 * basically this is the peridiodic extension of the receive 1653 * time - 12hrs to the time-of-day with a period of 1 day. 1654 * But we would have to execute this in 64bit arithmetic, and we 1655 * cannot assume we can do this; therefore this is done 1656 * in split representation. 1657 */ 1658 rec_qw = ntpcal_ntp_to_ntp(rec_ui - SECSPERDAY/2, NULL); 1659 rec_ds = ntpcal_daysplit(&rec_qw); 1660 rec_ds.lo = ntpcal_periodic_extend(rec_ds.lo, 1661 ntpcal_date_to_daysec(jd), 1662 SECSPERDAY); 1663 rec_ds.hi += ntpcal_daysec_to_date(jd, rec_ds.lo); 1664 return (ntpcal_rd_to_date(jd, rec_ds.hi + DAY_NTP_STARTS) >= 0); 1665 } 1666 1667 /* 1668 * ------------------------------------------------------------------- 1669 * A 2-digit year is expanded into full year spec around the year found 1670 * in 'jd->year'. This should be in +79/-19 years around the system time, 1671 * or the result will be off by 100 years. The assymetric behaviour was 1672 * chosen to enable inital sync for systems that do not have a 1673 * battery-backup clock and start with a date that is typically years in 1674 * the past. 1675 * 1676 * Since the GPS epoch starts at 1980-01-06, the resulting year will be 1677 * not be before 1980 in any case. 1678 * 1679 * returns 1 on success, 0 on failure 1680 * ------------------------------------------------------------------- 1681 */ 1682 static int 1683 unfold_century( 1684 struct calendar * jd, 1685 u_int32 rec_ui 1686 ) 1687 { 1688 struct calendar rec; 1689 int32 baseyear; 1690 1691 ntpcal_ntp_to_date(&rec, rec_ui, NULL); 1692 baseyear = rec.year - 20; 1693 if (baseyear < g_gpsMinYear) 1694 baseyear = g_gpsMinYear; 1695 jd->year = (u_short)ntpcal_periodic_extend(baseyear, jd->year, 1696 100); 1697 1698 return ((baseyear <= jd->year) && (baseyear + 100 > jd->year)); 1699 } 1700 1701 /* 1702 * ------------------------------------------------------------------- 1703 * A 2-digit year is expanded into a full year spec by correlation with 1704 * a GPS week number and the current leap second count. 1705 * 1706 * The GPS week time scale counts weeks since Sunday, 1980-01-06, modulo 1707 * 1024 and seconds since start of the week. The GPS time scale is based 1708 * on international atomic time (TAI), so the leap second difference to 1709 * UTC is also needed for a proper conversion. 1710 * 1711 * A brute-force analysis (that is, test for every date) shows that a 1712 * wrong assignment of the century can not happen between the years 1900 1713 * to 2399 when comparing the week signatures for different 1714 * centuries. (I *think* that will not happen for 400*1024 years, but I 1715 * have no valid proof. -*-perlinger@ntp.org-*-) 1716 * 1717 * This function is bound to to work between years 1980 and 2399 1718 * (inclusive), which should suffice for now ;-) 1719 * 1720 * Note: This function needs a full date&time spec on input due to the 1721 * necessary leap second corrections! 1722 * 1723 * returns 1 on success, 0 on failure 1724 * ------------------------------------------------------------------- 1725 */ 1726 static int 1727 gpsfix_century( 1728 struct calendar * jd, 1729 const gps_weektm * wd, 1730 u_short * century 1731 ) 1732 { 1733 int32 days; 1734 int32 doff; 1735 u_short week; 1736 u_short year; 1737 int loop; 1738 1739 /* Get day offset. Assumes that the input time is in range and 1740 * that the leap seconds do not shift more than +/-1 day. 1741 */ 1742 doff = ntpcal_date_to_daysec(jd) + wd->wt_leap; 1743 doff = (doff >= SECSPERDAY) - (doff < 0); 1744 1745 /* 1746 * Loop over centuries to get a match, starting with the last 1747 * successful one. (Or with the 19th century if the cached value 1748 * is out of range...) 1749 */ 1750 year = jd->year % 100; 1751 for (loop = 5; loop > 0; loop--,(*century)++) { 1752 if (*century < 19 || *century >= 24) 1753 *century = 19; 1754 /* Get days and week in GPS epoch */ 1755 jd->year = year + *century * 100; 1756 days = ntpcal_date_to_rd(jd) - DAY_GPS_STARTS + doff; 1757 week = (days / 7) % 1024; 1758 if (days >= 0 && wd->wt_week == week) 1759 return TRUE; /* matched... */ 1760 } 1761 1762 jd->year = year; 1763 return FALSE; /* match failed... */ 1764 } 1765 1766 /* 1767 * ------------------------------------------------------------------- 1768 * And now the final execise: Considering the fact that many (most?) 1769 * GPS receivers cannot handle a GPS epoch wrap well, we try to 1770 * compensate for that problem by unwrapping a GPS epoch around the 1771 * receive stamp. Another execise in periodic unfolding, of course, 1772 * but with enough points to take care of. 1773 * 1774 * Note: The integral part of 'tofs' is intended to handle small(!) 1775 * systematic offsets, as -1 for handling $GPZDG, which gives the 1776 * following second. (sigh...) The absolute value shall be less than a 1777 * day (86400 seconds). 1778 * ------------------------------------------------------------------- 1779 */ 1780 static l_fp 1781 eval_gps_time( 1782 struct peer * peer, /* for logging etc */ 1783 const struct calendar * gpst, /* GPS time stamp */ 1784 const struct timespec * tofs, /* GPS frac second & offset */ 1785 const l_fp * xrecv /* receive time stamp */ 1786 ) 1787 { 1788 struct refclockproc * const pp = peer->procptr; 1789 nmea_unit * const up = (nmea_unit *)pp->unitptr; 1790 1791 l_fp retv; 1792 1793 /* components of calculation */ 1794 int32_t rcv_sec, rcv_day; /* receive ToD and day */ 1795 int32_t gps_sec, gps_day; /* GPS ToD and day in NTP epoch */ 1796 int32_t adj_day, weeks; /* adjusted GPS day and week shift */ 1797 1798 /* some temporaries to shuffle data */ 1799 vint64 vi64; 1800 ntpcal_split rs64; 1801 1802 /* evaluate time stamp from receiver. */ 1803 gps_sec = ntpcal_date_to_daysec(gpst); 1804 gps_day = ntpcal_date_to_rd(gpst) - DAY_NTP_STARTS; 1805 1806 /* merge in fractional offset */ 1807 retv = tspec_intv_to_lfp(*tofs); 1808 gps_sec += retv.l_i; 1809 1810 /* If we fully trust the GPS receiver, just combine days and 1811 * seconds and be done. */ 1812 if (peer->ttl & NMEA_DATETRUST_MASK) { 1813 retv.l_ui = ntpcal_dayjoin(gps_day, gps_sec).D_s.lo; 1814 return retv; 1815 } 1816 1817 /* So we do not trust the GPS receiver to deliver a correct date 1818 * due to the GPS epoch changes. We map the date from the 1819 * receiver into the +/-512 week interval around the receive 1820 * time in that case. This would be a tad easier with 64bit 1821 * calculations, but again, we restrict the code to 32bit ops 1822 * when possible. */ 1823 1824 /* - make sure the GPS fractional day is normalised 1825 * Applying the offset value might have put us slightly over the 1826 * edge of the allowed range for seconds-of-day. Doing a full 1827 * division with floor correction is overkill here; a simple 1828 * addition or subtraction step is sufficient. Using WHILE loops 1829 * gives the right result even if the offset exceeds one day, 1830 * which is NOT what it's intented for! */ 1831 while (gps_sec >= SECSPERDAY) { 1832 gps_sec -= SECSPERDAY; 1833 gps_day += 1; 1834 } 1835 while (gps_sec < 0) { 1836 gps_sec += SECSPERDAY; 1837 gps_day -= 1; 1838 } 1839 1840 /* - get unfold base: day of full recv time - 512 weeks */ 1841 vi64 = ntpcal_ntp_to_ntp(xrecv->l_ui, NULL); 1842 rs64 = ntpcal_daysplit(&vi64); 1843 rcv_sec = rs64.lo; 1844 rcv_day = rs64.hi - 512 * 7; 1845 1846 /* - take the fractional days into account 1847 * If the fractional day of the GPS time is smaller than the 1848 * fractional day of the receive time, we shift the base day for 1849 * the unfold by 1. */ 1850 if ( gps_sec < rcv_sec 1851 || (gps_sec == rcv_sec && retv.l_uf < xrecv->l_uf)) 1852 rcv_day += 1; 1853 1854 /* - don't warp ahead of GPS invention! */ 1855 if (rcv_day < g_gpsMinBase) 1856 rcv_day = g_gpsMinBase; 1857 1858 /* - let the magic happen: */ 1859 adj_day = ntpcal_periodic_extend(rcv_day, gps_day, 1024*7); 1860 1861 /* - check if we should log a GPS epoch warp */ 1862 weeks = (adj_day - gps_day) / 7; 1863 if (weeks != up->epoch_warp) { 1864 up->epoch_warp = weeks; 1865 LOGIF(CLOCKINFO, (LOG_INFO, 1866 "%s Changed GPS epoch warp to %d weeks", 1867 refnumtoa(&peer->srcadr), weeks)); 1868 } 1869 1870 /* - build result and be done */ 1871 retv.l_ui = ntpcal_dayjoin(adj_day, gps_sec).D_s.lo; 1872 return retv; 1873 } 1874 1875 /* 1876 * =================================================================== 1877 * 1878 * NMEAD support 1879 * 1880 * original nmead support added by Jon Miner (cp_n18@yahoo.com) 1881 * 1882 * See http://home.hiwaay.net/~taylorc/gps/nmea-server/ 1883 * for information about nmead 1884 * 1885 * To use this, you need to create a link from /dev/gpsX to 1886 * the server:port where nmead is running. Something like this: 1887 * 1888 * ln -s server:port /dev/gps1 1889 * 1890 * Split into separate function by Juergen Perlinger 1891 * (perlinger-at-ntp-dot-org) 1892 * 1893 * =================================================================== 1894 */ 1895 static int 1896 nmead_open( 1897 const char * device 1898 ) 1899 { 1900 int fd = -1; /* result file descriptor */ 1901 1902 #ifdef HAVE_READLINK 1903 char host[80]; /* link target buffer */ 1904 char * port; /* port name or number */ 1905 int rc; /* result code (several)*/ 1906 int sh; /* socket handle */ 1907 struct addrinfo ai_hint; /* resolution hint */ 1908 struct addrinfo *ai_list; /* resolution result */ 1909 struct addrinfo *ai; /* result scan ptr */ 1910 1911 fd = -1; 1912 1913 /* try to read as link, make sure no overflow occurs */ 1914 rc = readlink(device, host, sizeof(host)); 1915 if ((size_t)rc >= sizeof(host)) 1916 return fd; /* error / overflow / truncation */ 1917 host[rc] = '\0'; /* readlink does not place NUL */ 1918 1919 /* get port */ 1920 port = strchr(host, ':'); 1921 if (!port) 1922 return fd; /* not 'host:port' syntax ? */ 1923 *port++ = '\0'; /* put in separator */ 1924 1925 /* get address infos and try to open socket 1926 * 1927 * This getaddrinfo() is naughty in ntpd's nonblocking main 1928 * thread, but you have to go out of your wary to use this code 1929 * and typically the blocking is at startup where its impact is 1930 * reduced. The same holds for the 'connect()', as it is 1931 * blocking, too... 1932 */ 1933 ZERO(ai_hint); 1934 ai_hint.ai_protocol = IPPROTO_TCP; 1935 ai_hint.ai_socktype = SOCK_STREAM; 1936 if (getaddrinfo(host, port, &ai_hint, &ai_list)) 1937 return fd; 1938 1939 for (ai = ai_list; ai && (fd == -1); ai = ai->ai_next) { 1940 sh = socket(ai->ai_family, ai->ai_socktype, 1941 ai->ai_protocol); 1942 if (INVALID_SOCKET == sh) 1943 continue; 1944 rc = connect(sh, ai->ai_addr, ai->ai_addrlen); 1945 if (-1 != rc) 1946 fd = sh; 1947 else 1948 close(sh); 1949 } 1950 freeaddrinfo(ai_list); 1951 #else 1952 fd = -1; 1953 #endif 1954 1955 return fd; 1956 } 1957 #else 1958 NONEMPTY_TRANSLATION_UNIT 1959 #endif /* REFCLOCK && CLOCK_NMEA */ 1960