xref: /freebsd/contrib/ntp/ntpd/refclock_nmea.c (revision 61898cde69374d5a9994e2074605bc4101aff72d)
1 /*
2  * refclock_nmea.c - clock driver for an NMEA GPS CLOCK
3  *		Michael Petry Jun 20, 1994
4  *		 based on refclock_heathn.c
5  *
6  * Updated to add support for Accord GPS Clock
7  *		Venu Gopal Dec 05, 2007
8  *		neo.venu@gmail.com, venugopal_d@pgad.gov.in
9  *
10  * Updated to process 'time1' fudge factor
11  *		Venu Gopal May 05, 2008
12  *
13  * Converted to common PPSAPI code, separate PPS fudge time1
14  * from serial timecode fudge time2.
15  *		Dave Hart July 1, 2009
16  *		hart@ntp.org, davehart@davehart.com
17  */
18 
19 #ifdef HAVE_CONFIG_H
20 #include <config.h>
21 #endif
22 
23 #include "ntp_types.h"
24 
25 #if defined(REFCLOCK) && defined(CLOCK_NMEA)
26 
27 #define NMEA_WRITE_SUPPORT 0 /* no write support at the moment */
28 
29 #include <sys/stat.h>
30 #include <stdio.h>
31 #include <ctype.h>
32 #ifdef HAVE_SYS_SOCKET_H
33 #include <sys/socket.h>
34 #endif
35 
36 #include "ntpd.h"
37 #include "ntp_io.h"
38 #include "ntp_unixtime.h"
39 #include "ntp_refclock.h"
40 #include "ntp_stdlib.h"
41 #include "ntp_calgps.h"
42 #include "timespecops.h"
43 
44 #ifdef HAVE_PPSAPI
45 # include "ppsapi_timepps.h"
46 # include "refclock_atom.h"
47 #endif /* HAVE_PPSAPI */
48 
49 
50 /*
51  * This driver supports NMEA-compatible GPS receivers
52  *
53  * Prototype was refclock_trak.c, Thanks a lot.
54  *
55  * The receiver used spits out the NMEA sentences for boat navigation.
56  * And you thought it was an information superhighway.	Try a raging river
57  * filled with rapids and whirlpools that rip away your data and warp time.
58  *
59  * If HAVE_PPSAPI is defined code to use the PPSAPI will be compiled in.
60  * On startup if initialization of the PPSAPI fails, it will fall back
61  * to the "normal" timestamps.
62  *
63  * The PPSAPI part of the driver understands fudge flag2 and flag3. If
64  * flag2 is set, it will use the clear edge of the pulse. If flag3 is
65  * set, kernel hardpps is enabled.
66  *
67  * GPS sentences other than RMC (the default) may be enabled by setting
68  * the relevent bits of 'mode' in the server configuration line
69  * server 127.127.20.x mode X
70  *
71  * bit 0 - enables RMC (1)
72  * bit 1 - enables GGA (2)
73  * bit 2 - enables GLL (4)
74  * bit 3 - enables ZDA (8) - Standard Time & Date
75  * bit 3 - enables ZDG (8) - Accord GPS Clock's custom sentence with GPS time
76  *			     very close to standard ZDA
77  *
78  * Multiple sentences may be selected except when ZDG/ZDA is selected.
79  *
80  * bit 4/5/6 - selects the baudrate for serial port :
81  *		0 for 4800 (default)
82  *		1 for 9600
83  *		2 for 19200
84  *		3 for 38400
85  *		4 for 57600
86  *		5 for 115200
87  */
88 #define NMEA_MESSAGE_MASK	0x0000FF0FU
89 #define NMEA_BAUDRATE_MASK	0x00000070U
90 #define NMEA_BAUDRATE_SHIFT	4
91 
92 #define NMEA_DELAYMEAS_MASK	0x00000080U
93 #define NMEA_EXTLOG_MASK	0x00010000U
94 #define NMEA_QUIETPPS_MASK	0x00020000U
95 #define NMEA_DATETRUST_MASK	0x00040000U
96 
97 #define NMEA_PROTO_IDLEN	4	/* tag name must be at least 4 chars */
98 #define NMEA_PROTO_MINLEN	6	/* min chars in sentence, excluding CS */
99 #define NMEA_PROTO_MAXLEN	80	/* max chars in sentence, excluding CS */
100 #define NMEA_PROTO_FIELDS	32	/* not official; limit on fields per record */
101 
102 /*
103  * We check the timecode format and decode its contents.  We only care
104  * about a few of them, the most important being the $GPRMC format:
105  *
106  * $GPRMC,hhmmss,a,fddmm.xx,n,dddmmm.xx,w,zz.z,yyy.,ddmmyy,dd,v*CC
107  *
108  * mode (0,1,2,3) selects sentence ANY/ALL, RMC, GGA, GLL, ZDA
109  * $GPGLL,3513.8385,S,14900.7851,E,232420.594,A*21
110  * $GPGGA,232420.59,3513.8385,S,14900.7851,E,1,05,3.4,00519,M,,,,*3F
111  * $GPRMC,232418.19,A,3513.8386,S,14900.7853,E,00.0,000.0,121199,12.,E*77
112  *
113  * Defining GPZDA to support Standard Time & Date
114  * sentence. The sentence has the following format
115  *
116  *  $--ZDA,HHMMSS.SS,DD,MM,YYYY,TH,TM,*CS<CR><LF>
117  *
118  *  Apart from the familiar fields,
119  *  'TH'    Time zone Hours
120  *  'TM'    Time zone Minutes
121  *
122  * Defining GPZDG to support Accord GPS Clock's custom NMEA
123  * sentence. The sentence has the following format
124  *
125  *  $GPZDG,HHMMSS.S,DD,MM,YYYY,AA.BB,V*CS<CR><LF>
126  *
127  *  It contains the GPS timestamp valid for next PPS pulse.
128  *  Apart from the familiar fields,
129  *  'AA.BB' denotes the signal strength( should be < 05.00 )
130  *  'V'	    denotes the GPS sync status :
131  *	   '0' indicates INVALID time,
132  *	   '1' indicates accuracy of +/-20 ms
133  *	   '2' indicates accuracy of +/-100 ns
134  *
135  * Defining PGRMF for Garmin GPS Fix Data
136  * $PGRMF,WN,WS,DATE,TIME,LS,LAT,LAT_DIR,LON,LON_DIR,MODE,FIX,SPD,DIR,PDOP,TDOP
137  * WN  -- GPS week number (weeks since 1980-01-06, mod 1024)
138  * WS  -- GPS seconds in week
139  * LS  -- GPS leap seconds, accumulated ( UTC + LS == GPS )
140  * FIX -- Fix type: 0=nofix, 1=2D, 2=3D
141  * DATE/TIME are standard date/time strings in UTC time scale
142  *
143  * The GPS time can be used to get the full century for the truncated
144  * date spec.
145  */
146 
147 /*
148  * Definitions
149  */
150 #define	DEVICE		"/dev/gps%d"	/* GPS serial device */
151 #define	PPSDEV		"/dev/gpspps%d"	/* PPSAPI device override */
152 #define	SPEED232	B4800	/* uart speed (4800 bps) */
153 #define	PRECISION	(-9)	/* precision assumed (about 2 ms) */
154 #define	PPS_PRECISION	(-20)	/* precision assumed (about 1 us) */
155 #define	DATE_HOLD	16	/* seconds to hold on provided GPS date */
156 #define	DATE_HLIM	4	/* when do we take ANY date format */
157 #define	REFID		"GPS\0"	/* reference id */
158 #define	DESCRIPTION	"NMEA GPS Clock" /* who we are */
159 #ifndef O_NOCTTY
160 #define M_NOCTTY	0
161 #else
162 #define M_NOCTTY	O_NOCTTY
163 #endif
164 #ifndef O_NONBLOCK
165 #define M_NONBLOCK	0
166 #else
167 #define M_NONBLOCK	O_NONBLOCK
168 #endif
169 #define PPSOPENMODE	(O_RDWR | M_NOCTTY | M_NONBLOCK)
170 
171 /* NMEA sentence array indexes for those we use */
172 #define NMEA_GPRMC	0	/* recommended min. nav. */
173 #define NMEA_GPGGA	1	/* fix and quality */
174 #define NMEA_GPGLL	2	/* geo. lat/long */
175 #define NMEA_GPZDA	3	/* date/time */
176 /*
177  * $GPZDG is a proprietary sentence that violates the spec, by not
178  * using $P and an assigned company identifier to prefix the sentence
179  * identifier.	When used with this driver, the system needs to be
180  * isolated from other NTP networks, as it operates in GPS time, not
181  * UTC as is much more common.	GPS time is >15 seconds different from
182  * UTC due to not respecting leap seconds since 1970 or so.  Other
183  * than the different timebase, $GPZDG is similar to $GPZDA.
184  */
185 #define NMEA_GPZDG	4
186 #define NMEA_PGRMF	5
187 #define NMEA_PUBX04	6
188 #define NMEA_ARRAY_SIZE (NMEA_PUBX04 + 1)
189 
190 /*
191  * Sentence selection mode bits
192  */
193 #define USE_GPRMC		0x00000001u
194 #define USE_GPGGA		0x00000002u
195 #define USE_GPGLL		0x00000004u
196 #define USE_GPZDA		0x00000008u
197 #define USE_PGRMF		0x00000100u
198 #define USE_PUBX04		0x00000200u
199 
200 /* mapping from sentence index to controlling mode bit */
201 static const u_int32 sentence_mode[NMEA_ARRAY_SIZE] =
202 {
203 	USE_GPRMC,
204 	USE_GPGGA,
205 	USE_GPGLL,
206 	USE_GPZDA,
207 	USE_GPZDA,
208 	USE_PGRMF,
209 	USE_PUBX04
210 };
211 
212 /* date formats we support */
213 enum date_fmt {
214 	DATE_1_DDMMYY,	/* use 1 field	with 2-digit year */
215 	DATE_3_DDMMYYYY	/* use 3 fields with 4-digit year */
216 };
217 
218 /* date type */
219 enum date_type {
220 	DTYP_NONE,
221 	DTYP_Y2D,	/* 2-digit year */
222 	DTYP_W10B,	/* 10-bit week in GPS epoch */
223 	DTYP_Y4D,	/* 4-digit (full) year */
224 	DTYP_WEXT	/* extended week in GPS epoch */
225 };
226 
227 /* results for 'field_init()'
228  *
229  * Note: If a checksum is present, the checksum test must pass OK or the
230  * sentence is tagged invalid.
231  */
232 #define CHECK_EMPTY  -1	/* no data			*/
233 #define CHECK_INVALID 0	/* not a valid NMEA sentence	*/
234 #define CHECK_VALID   1	/* valid but without checksum	*/
235 #define CHECK_CSVALID 2	/* valid with checksum OK	*/
236 
237 /*
238  * Unit control structure
239  */
240 struct refclock_atom;
241 typedef struct refclock_atom TAtomUnit;
242 typedef struct {
243 #   ifdef HAVE_PPSAPI
244 	TAtomUnit	atom;		/* PPSAPI structure */
245 	int		ppsapi_fd;	/* fd used with PPSAPI */
246 	u_char		ppsapi_tried;	/* attempt PPSAPI once */
247 	u_char		ppsapi_lit;	/* time_pps_create() worked */
248 #   endif /* HAVE_PPSAPI */
249 	uint16_t	rcvtout;	/* one-shot for sample expiration */
250 	u_char		ppsapi_gate;	/* system is on PPS */
251 	u_char  	gps_time;	/* use GPS time, not UTC */
252 	l_fp		last_reftime;	/* last processed reference stamp */
253 	TNtpDatum	last_gpsdate;	/* last processed split date/time */
254 	u_short		hold_gpsdate;	/* validity ticker for above */
255 	u_short		type_gpsdate;	/* date info type for above */
256 	/* tally stats, reset each poll cycle */
257 	struct
258 	{
259 		u_int total;
260 		u_int accepted;
261 		u_int rejected;   /* GPS said not enough signal */
262 		u_int malformed;  /* Bad checksum, invalid date or time */
263 		u_int filtered;   /* mode bits, not GPZDG, same second */
264 		u_int pps_used;
265 	}
266 		tally;
267 	/* per sentence checksum seen flag */
268 	u_char		cksum_type[NMEA_ARRAY_SIZE];
269 
270 	/* line assembly buffer (NMEAD support) */
271 	u_short	lb_len;
272 	char	lb_buf[BMAX];	/* assembly buffer */
273 } nmea_unit;
274 
275 /*
276  * helper for faster field access
277  */
278 typedef struct {
279 	char  *base;	/* buffer base		*/
280 	char  *cptr;	/* current field ptr	*/
281 	int    blen;	/* buffer length	*/
282 	int    cidx;	/* current field index	*/
283 } nmea_data;
284 
285 /*
286  * Function prototypes
287  */
288 static	int	nmea_start	(int, struct peer *);
289 static	void	nmea_shutdown	(int, struct peer *);
290 static	void	nmea_receive	(struct recvbuf *);
291 static	void	nmea_poll	(int, struct peer *);
292 static	void	nmea_procrec	(struct peer * const, l_fp);
293 #ifdef HAVE_PPSAPI
294 static	double	tabsdiffd	(l_fp, l_fp);
295 static	void	nmea_control	(int, const struct refclockstat *,
296 				 struct refclockstat *, struct peer *);
297 #define		NMEA_CONTROL	nmea_control
298 #else
299 #define		NMEA_CONTROL	noentry
300 #endif /* HAVE_PPSAPI */
301 static	void	nmea_timer	(int, struct peer *);
302 
303 /* parsing helpers */
304 static int	field_init	(nmea_data * data, char * cp, int len);
305 static char *	field_parse	(nmea_data * data, int fn);
306 static void	field_wipe	(nmea_data * data, ...);
307 static u_char	parse_qual	(nmea_data * data, int idx,
308 				 char tag, int inv);
309 static int	parse_time	(TCivilDate * jd, l_fp * fofs,
310 				 nmea_data *, int idx);
311 static int	parse_date	(TCivilDate * jd, nmea_data *,
312 				 int idx, enum date_fmt fmt);
313 static int	parse_gpsw	(TGpsDatum *, nmea_data *,
314 				 int weekidx, int timeidx, int leapidx);
315 
316 static int	nmead_open	(const char * device);
317 
318 /*
319  * If we want the driver to output sentences, too: re-enable the send
320  * support functions by defining NMEA_WRITE_SUPPORT to non-zero...
321  */
322 #if NMEA_WRITE_SUPPORT
323 
324 static	void gps_send(int, const char *, struct peer *);
325 # ifdef SYS_WINNT
326 #  undef write	/* ports/winnt/include/config.h: #define write _write */
327 extern int async_write(int, const void *, unsigned int);
328 #  define write(fd, data, octets)	async_write(fd, data, octets)
329 # endif /* SYS_WINNT */
330 
331 #endif /* NMEA_WRITE_SUPPORT */
332 
333 /*
334  * -------------------------------------------------------------------
335  * Transfer vector
336  * -------------------------------------------------------------------
337  */
338 struct refclock refclock_nmea = {
339 	nmea_start,		/* start up driver */
340 	nmea_shutdown,		/* shut down driver */
341 	nmea_poll,		/* transmit poll message */
342 	NMEA_CONTROL,		/* fudge control */
343 	noentry,		/* initialize driver */
344 	noentry,		/* buginfo */
345 	nmea_timer		/* called once per second */
346 };
347 
348 
349 /*
350  * -------------------------------------------------------------------
351  * nmea_start - open the GPS devices and initialize data for processing
352  *
353  * return 0 on error, 1 on success. Even on error the peer structures
354  * must be in a state that permits 'nmea_shutdown()' to clean up all
355  * resources, because it will be called immediately to do so.
356  * -------------------------------------------------------------------
357  */
358 static int
359 nmea_start(
360 	int		unit,
361 	struct peer *	peer
362 	)
363 {
364 	struct refclockproc * const	pp = peer->procptr;
365 	nmea_unit * const		up = emalloc_zero(sizeof(*up));
366 	char				device[20];
367 	size_t				devlen;
368 	u_int32				rate;
369 	int				baudrate;
370 	const char *			baudtext;
371 
372 
373 	/* Get baudrate choice from mode byte bits 4/5/6 */
374 	rate = (peer->ttl & NMEA_BAUDRATE_MASK) >> NMEA_BAUDRATE_SHIFT;
375 
376 	switch (rate) {
377 	case 0:
378 		baudrate = SPEED232;
379 		baudtext = "4800";
380 		break;
381 	case 1:
382 		baudrate = B9600;
383 		baudtext = "9600";
384 		break;
385 	case 2:
386 		baudrate = B19200;
387 		baudtext = "19200";
388 		break;
389 	case 3:
390 		baudrate = B38400;
391 		baudtext = "38400";
392 		break;
393 #   ifdef B57600
394 	case 4:
395 		baudrate = B57600;
396 		baudtext = "57600";
397 		break;
398 #   endif
399 #   ifdef B115200
400 	case 5:
401 		baudrate = B115200;
402 		baudtext = "115200";
403 		break;
404 #   endif
405 	default:
406 		baudrate = SPEED232;
407 		baudtext = "4800 (fallback)";
408 		break;
409 	}
410 
411 	/* Allocate and initialize unit structure */
412 	pp->unitptr = (caddr_t)up;
413 	pp->io.fd = -1;
414 	pp->io.clock_recv = nmea_receive;
415 	pp->io.srcclock = peer;
416 	pp->io.datalen = 0;
417 	/* force change detection on first valid message */
418 	memset(&up->last_reftime, 0xFF, sizeof(up->last_reftime));
419 	memset(&up->last_gpsdate, 0x00, sizeof(up->last_gpsdate));
420 	/* force checksum on GPRMC, see below */
421 	up->cksum_type[NMEA_GPRMC] = CHECK_CSVALID;
422 #   ifdef HAVE_PPSAPI
423 	up->ppsapi_fd = -1;
424 #   endif /* HAVE_PPSAPI */
425 	ZERO(up->tally);
426 
427 	/* Initialize miscellaneous variables */
428 	peer->precision = PRECISION;
429 	pp->clockdesc = DESCRIPTION;
430 	memcpy(&pp->refid, REFID, 4);
431 
432 	/* Open serial port. Use CLK line discipline, if available. */
433 	devlen = snprintf(device, sizeof(device), DEVICE, unit);
434 	if (devlen >= sizeof(device)) {
435 		msyslog(LOG_ERR, "%s clock device name too long",
436 			refnumtoa(&peer->srcadr));
437 		return FALSE; /* buffer overflow */
438 	}
439 	pp->io.fd = refclock_open(device, baudrate, LDISC_CLK);
440 	if (0 >= pp->io.fd) {
441 		pp->io.fd = nmead_open(device);
442 		if (-1 == pp->io.fd)
443 			return FALSE;
444 	}
445 	LOGIF(CLOCKINFO, (LOG_NOTICE, "%s serial %s open at %s bps",
446 	      refnumtoa(&peer->srcadr), device, baudtext));
447 
448 	/* succeed if this clock can be added */
449 	return io_addclock(&pp->io) != 0;
450 }
451 
452 /*
453  * -------------------------------------------------------------------
454  * nmea_shutdown - shut down a GPS clock
455  *
456  * NOTE this routine is called after nmea_start() returns failure,
457  * as well as during a normal shutdown due to ntpq :config unpeer.
458  * -------------------------------------------------------------------
459  */
460 static void
461 nmea_shutdown(
462 	int           unit,
463 	struct peer * peer
464 	)
465 {
466 	struct refclockproc * const pp = peer->procptr;
467 	nmea_unit	    * const up = (nmea_unit *)pp->unitptr;
468 
469 	UNUSED_ARG(unit);
470 
471 	if (up != NULL) {
472 #	    ifdef HAVE_PPSAPI
473 		if (up->ppsapi_lit)
474 			time_pps_destroy(up->atom.handle);
475 		if (up->ppsapi_tried && up->ppsapi_fd != pp->io.fd)
476 			close(up->ppsapi_fd);
477 #	    endif
478 		free(up);
479 	}
480 	pp->unitptr = (caddr_t)NULL;
481 	if (-1 != pp->io.fd)
482 		io_closeclock(&pp->io);
483 	pp->io.fd = -1;
484 }
485 
486 /*
487  * -------------------------------------------------------------------
488  * nmea_control - configure fudge params
489  * -------------------------------------------------------------------
490  */
491 #ifdef HAVE_PPSAPI
492 static void
493 nmea_control(
494 	int                         unit,
495 	const struct refclockstat * in_st,
496 	struct refclockstat       * out_st,
497 	struct peer               * peer
498 	)
499 {
500 	struct refclockproc * const pp = peer->procptr;
501 	nmea_unit	    * const up = (nmea_unit *)pp->unitptr;
502 
503 	char   device[32];
504 	size_t devlen;
505 
506 	UNUSED_ARG(in_st);
507 	UNUSED_ARG(out_st);
508 
509 	/*
510 	 * PPS control
511 	 *
512 	 * If /dev/gpspps$UNIT can be opened that will be used for
513 	 * PPSAPI.  Otherwise, the GPS serial device /dev/gps$UNIT
514 	 * already opened is used for PPSAPI as well. (This might not
515 	 * work, in which case the PPS API remains unavailable...)
516 	 */
517 
518 	/* Light up the PPSAPI interface if not yet attempted. */
519 	if ((CLK_FLAG1 & pp->sloppyclockflag) && !up->ppsapi_tried) {
520 		up->ppsapi_tried = TRUE;
521 		devlen = snprintf(device, sizeof(device), PPSDEV, unit);
522 		if (devlen < sizeof(device)) {
523 			up->ppsapi_fd = open(device, PPSOPENMODE,
524 					     S_IRUSR | S_IWUSR);
525 		} else {
526 			up->ppsapi_fd = -1;
527 			msyslog(LOG_ERR, "%s PPS device name too long",
528 				refnumtoa(&peer->srcadr));
529 		}
530 		if (-1 == up->ppsapi_fd)
531 			up->ppsapi_fd = pp->io.fd;
532 		if (refclock_ppsapi(up->ppsapi_fd, &up->atom)) {
533 			/* use the PPS API for our own purposes now. */
534 			up->ppsapi_lit = refclock_params(
535 				pp->sloppyclockflag, &up->atom);
536 			if (!up->ppsapi_lit) {
537 				/* failed to configure, drop PPS unit */
538 				time_pps_destroy(up->atom.handle);
539 				msyslog(LOG_WARNING,
540 					"%s set PPSAPI params fails",
541 					refnumtoa(&peer->srcadr));
542 			}
543 			/* note: the PPS I/O handle remains valid until
544 			 * flag1 is cleared or the clock is shut down.
545 			 */
546 		} else {
547 			msyslog(LOG_WARNING,
548 				"%s flag1 1 but PPSAPI fails",
549 				refnumtoa(&peer->srcadr));
550 		}
551 	}
552 
553 	/* shut down PPS API if activated */
554 	if ( !(CLK_FLAG1 & pp->sloppyclockflag) && up->ppsapi_tried) {
555 		/* shutdown PPS API */
556 		if (up->ppsapi_lit)
557 			time_pps_destroy(up->atom.handle);
558 		up->atom.handle = 0;
559 		/* close/drop PPS fd */
560 		if (up->ppsapi_fd != pp->io.fd)
561 			close(up->ppsapi_fd);
562 		up->ppsapi_fd = -1;
563 
564 		/* clear markers and peer items */
565 		up->ppsapi_gate  = FALSE;
566 		up->ppsapi_lit   = FALSE;
567 		up->ppsapi_tried = FALSE;
568 
569 		peer->flags &= ~FLAG_PPS;
570 		peer->precision = PRECISION;
571 	}
572 }
573 #endif /* HAVE_PPSAPI */
574 
575 /*
576  * -------------------------------------------------------------------
577  * nmea_timer - called once per second
578  *
579  * Usually 'nmea_receive()' can get a timestamp every second, but at
580  * least one Motorola unit needs prompting each time. Doing so in
581  * 'nmea_poll()' gives only one sample per poll cycle, which actually
582  * defeats the purpose of the median filter. Polling once per second
583  * seems a much better idea.
584  *
585  * Also takes care of sample expiration if the receiver fails to
586  * provide new input data.
587  * -------------------------------------------------------------------
588  */
589 static void
590 nmea_timer(
591 	int	      unit,
592 	struct peer * peer
593 	)
594 {
595 	struct refclockproc * const pp = peer->procptr;
596 	nmea_unit	    * const up = (nmea_unit *)pp->unitptr;
597 
598 	UNUSED_ARG(unit);
599 
600 #   if NMEA_WRITE_SUPPORT
601 
602 	if (-1 != pp->io.fd) /* any mode bits to evaluate here? */
603 		gps_send(pp->io.fd, "$PMOTG,RMC,0000*1D\r\n", peer);
604 
605 #   endif /* NMEA_WRITE_SUPPORT */
606 
607 	/* receive timeout occurred? */
608 	if (up->rcvtout) {
609 		--up->rcvtout;
610 	} else if (pp->codeproc != pp->coderecv) {
611 		/* expire one (the oldest) sample, if any */
612 		refclock_samples_expire(pp, 1);
613 		/* reset message assembly buffer */
614 		up->lb_buf[0] = '\0';
615 		up->lb_len    = 0;
616 	}
617 
618 	if (up->hold_gpsdate && (--up->hold_gpsdate < DATE_HLIM))
619 		up->type_gpsdate = DTYP_NONE;
620 }
621 
622 /*
623  * -------------------------------------------------------------------
624  * nmea_procrec - receive data from the serial interface
625  *
626  * This is the workhorse for NMEA data evaluation:
627  *
628  * + it checks all NMEA data, and rejects sentences that are not valid
629  *   NMEA sentences
630  * + it checks whether a sentence is known and to be used
631  * + it parses the time and date data from the NMEA data string and
632  *   augments the missing bits. (century in date, whole date, ...)
633  * + it rejects data that is not from the first accepted sentence in a
634  *   burst
635  * + it eventually replaces the receive time with the PPS edge time.
636  * + it feeds the data to the internal processing stages.
637  *
638  * This function assumes a non-empty line in the unit line buffer.
639  * -------------------------------------------------------------------
640  */
641 static void
642 nmea_procrec(
643 	struct peer * const	peer,
644 	l_fp 	  		rd_timestamp
645 	)
646 {
647 	/* declare & init control structure pointers */
648 	struct refclockproc * const pp = peer->procptr;
649 	nmea_unit	    * const up = (nmea_unit*)pp->unitptr;
650 
651 	/* Use these variables to hold data until we decide its worth keeping */
652 	nmea_data rdata;
653 	l_fp 	  rd_reftime;
654 
655 	/* working stuff */
656 	TCivilDate	date;	/* to keep & convert the time stamp */
657 	TGpsDatum	wgps;	/* week time storage */
658 	TNtpDatum	dntp;
659 	l_fp		tofs;	/* offset to full-second reftime */
660 	/* results of sentence/date/time parsing */
661 	u_char		sentence;	/* sentence tag */
662 	int		checkres;
663 	int		warp;		/* warp to GPS base date */
664 	char *		cp;
665 	int		rc_date, rc_time;
666 	u_short		rc_dtyp;
667 #   ifdef HAVE_PPSAPI
668 	int		withpps = 0;
669 #   endif /* HAVE_PPSAPI */
670 
671 	/* make sure data has defined pristine state */
672 	ZERO(tofs);
673 	ZERO(date);
674 	ZERO(wgps);
675 	ZERO(dntp);
676 
677 	/*
678 	 * Read the timecode and timestamp, then initialize field
679 	 * processing. The <CR><LF> at the NMEA line end is translated
680 	 * to <LF><LF> by the terminal input routines on most systems,
681 	 * and this gives us one spurious empty read per record which we
682 	 * better ignore silently.
683 	 */
684 	checkres = field_init(&rdata, up->lb_buf, up->lb_len);
685 	switch (checkres) {
686 
687 	case CHECK_INVALID:
688 		DPRINTF(1, ("%s invalid data: '%s'\n",
689 			refnumtoa(&peer->srcadr), up->lb_buf));
690 		refclock_report(peer, CEVNT_BADREPLY);
691 		return;
692 
693 	case CHECK_EMPTY:
694 		return;
695 
696 	default:
697 		DPRINTF(1, ("%s gpsread: %d '%s'\n",
698 			refnumtoa(&peer->srcadr), up->lb_len,
699 			up->lb_buf));
700 		break;
701 	}
702 	up->tally.total++;
703 
704 	/*
705 	 * --> below this point we have a valid NMEA sentence <--
706 	 *
707 	 * Check sentence name. Skip first 2 chars (talker ID) in most
708 	 * cases, to allow for $GLGGA and $GPGGA etc. Since the name
709 	 * field has at least 5 chars we can simply shift the field
710 	 * start.
711 	 */
712 	cp = field_parse(&rdata, 0);
713 	if      (strncmp(cp + 2, "RMC,", 4) == 0)
714 		sentence = NMEA_GPRMC;
715 	else if (strncmp(cp + 2, "GGA,", 4) == 0)
716 		sentence = NMEA_GPGGA;
717 	else if (strncmp(cp + 2, "GLL,", 4) == 0)
718 		sentence = NMEA_GPGLL;
719 	else if (strncmp(cp + 2, "ZDA,", 4) == 0)
720 		sentence = NMEA_GPZDA;
721 	else if (strncmp(cp + 2, "ZDG,", 4) == 0)
722 		sentence = NMEA_GPZDG;
723 	else if (strncmp(cp,   "PGRMF,", 6) == 0)
724 		sentence = NMEA_PGRMF;
725 	else if (strncmp(cp,   "PUBX,04,", 8) == 0)
726 		sentence = NMEA_PUBX04;
727 	else
728 		return;	/* not something we know about */
729 
730 	/* Eventually output delay measurement now. */
731 	if (peer->ttl & NMEA_DELAYMEAS_MASK) {
732 		mprintf_clock_stats(&peer->srcadr, "delay %0.6f %.*s",
733 			 ldexp(rd_timestamp.l_uf, -32),
734 			 (int)(strchr(up->lb_buf, ',') - up->lb_buf),
735 			 up->lb_buf);
736 	}
737 
738 	/* See if I want to process this message type */
739 	if ((peer->ttl & NMEA_MESSAGE_MASK) &&
740 	    !(peer->ttl & sentence_mode[sentence])) {
741 		up->tally.filtered++;
742 		return;
743 	}
744 
745 	/*
746 	 * make sure it came in clean
747 	 *
748 	 * Apparently, older NMEA specifications (which are expensive)
749 	 * did not require the checksum for all sentences.  $GPMRC is
750 	 * the only one so far identified which has always been required
751 	 * to include a checksum.
752 	 *
753 	 * Today, most NMEA GPS receivers checksum every sentence.  To
754 	 * preserve its error-detection capabilities with modern GPSes
755 	 * while allowing operation without checksums on all but $GPMRC,
756 	 * we keep track of whether we've ever seen a valid checksum on
757 	 * a given sentence, and if so, reject future instances without
758 	 * checksum.  ('up->cksum_type[NMEA_GPRMC]' is set in
759 	 * 'nmea_start()' to enforce checksums for $GPRMC right from the
760 	 * start.)
761 	 */
762 	if (up->cksum_type[sentence] <= (u_char)checkres) {
763 		up->cksum_type[sentence] = (u_char)checkres;
764 	} else {
765 		DPRINTF(1, ("%s checksum missing: '%s'\n",
766 			refnumtoa(&peer->srcadr), up->lb_buf));
767 		refclock_report(peer, CEVNT_BADREPLY);
768 		up->tally.malformed++;
769 		return;
770 	}
771 
772 	/*
773 	 * $GPZDG provides GPS time not UTC, and the two mix poorly.
774 	 * Once have processed a $GPZDG, do not process any further UTC
775 	 * sentences (all but $GPZDG currently).
776 	 */
777 	if (sentence == NMEA_GPZDG) {
778 		if (!up->gps_time) {
779 			msyslog(LOG_INFO,
780 				"%s using GPS time as if it were UTC",
781 				refnumtoa(&peer->srcadr));
782 			up->gps_time = 1;
783 		}
784 	} else {
785 		if (up->gps_time) {
786 			up->tally.filtered++;
787 			return;
788 		}
789 	}
790 
791 	DPRINTF(1, ("%s processing %d bytes, timecode '%s'\n",
792 		refnumtoa(&peer->srcadr), up->lb_len, up->lb_buf));
793 
794 	/*
795 	 * Grab fields depending on clock string type and possibly wipe
796 	 * sensitive data from the last timecode.
797 	 */
798 	rc_date = -1;	/* assume we have to do day-time mapping */
799 	rc_dtyp = DTYP_NONE;
800        	switch (sentence) {
801 
802 	case NMEA_GPRMC:
803 		/* Check quality byte, fetch data & time */
804 		rc_time	 = parse_time(&date, &tofs, &rdata, 1);
805 		pp->leap = parse_qual(&rdata, 2, 'A', 0);
806 		if (up->type_gpsdate <= DTYP_Y2D) {
807 			rc_date	= parse_date(&date, &rdata, 9, DATE_1_DDMMYY);
808 			rc_dtyp = DTYP_Y2D;
809 		}
810  		if (CLK_FLAG4 & pp->sloppyclockflag)
811 			field_wipe(&rdata, 3, 4, 5, 6, -1);
812 		break;
813 
814 	case NMEA_GPGGA:
815 		/* Check quality byte, fetch time only */
816 		rc_time	 = parse_time(&date, &tofs, &rdata, 1);
817 		pp->leap = parse_qual(&rdata, 6, '0', 1);
818 		if (CLK_FLAG4 & pp->sloppyclockflag)
819 			field_wipe(&rdata, 2, 4, -1);
820 		break;
821 
822 	case NMEA_GPGLL:
823 		/* Check quality byte, fetch time only */
824 		rc_time	 = parse_time(&date, &tofs, &rdata, 5);
825 		pp->leap = parse_qual(&rdata, 6, 'A', 0);
826 		if (CLK_FLAG4 & pp->sloppyclockflag)
827 			field_wipe(&rdata, 1, 3, -1);
828 		break;
829 
830 	case NMEA_GPZDA:
831 		/* No quality.	Assume best, fetch time & full date */
832 		rc_time	= parse_time(&date, &tofs, &rdata, 1);
833 		if (up->type_gpsdate <= DTYP_Y4D) {
834 			rc_date	= parse_date(&date, &rdata, 2, DATE_3_DDMMYYYY);
835 			rc_dtyp = DTYP_Y4D;
836 		}
837 		break;
838 
839 	case NMEA_GPZDG:
840 		/* Check quality byte, fetch time & full date */
841 		rc_time	 = parse_time(&date, &tofs, &rdata, 1);
842 		pp->leap = parse_qual(&rdata, 4, '0', 1);
843 		--tofs.l_ui; /* GPZDG gives *following* second */
844 		if (up->type_gpsdate <= DTYP_Y4D) {
845 			rc_date	= parse_date(&date, &rdata, 2, DATE_3_DDMMYYYY);
846 			rc_dtyp = DTYP_Y4D;
847 		}
848 		break;
849 
850 	case NMEA_PGRMF:
851 		/* get time, qualifier and GPS weektime. */
852 		rc_time = parse_time(&date, &tofs, &rdata, 4);
853 		if (up->type_gpsdate <= DTYP_W10B) {
854 			rc_date = parse_gpsw(&wgps, &rdata, 1, 2, 5);
855 			rc_dtyp = DTYP_W10B;
856 		}
857 		pp->leap = parse_qual(&rdata, 11, '0', 1);
858 		if (CLK_FLAG4 & pp->sloppyclockflag)
859 			field_wipe(&rdata, 6, 8, -1);
860 		break;
861 
862 	case NMEA_PUBX04:
863 		/* PUBX,04 is peculiar. The UTC time-of-week is the *internal*
864 		 * time base, which is not exactly on par with the fix time.
865 		 */
866 		rc_time = parse_time(&date, &tofs, &rdata, 2);
867 		if (up->type_gpsdate <= DTYP_WEXT) {
868 			rc_date = parse_gpsw(&wgps, &rdata, 5, 4, -1);
869 			rc_dtyp = DTYP_WEXT;
870 		}
871 		break;
872 
873 	default:
874 		INVARIANT(0);	/* Coverity 97123 */
875 		return;
876 	}
877 
878 	/* check clock sanity; [bug 2143] */
879 	if (pp->leap == LEAP_NOTINSYNC) { /* no good status? */
880 		checkres = CEVNT_PROP;
881 		up->tally.rejected++;
882 	}
883 	/* Check sanity of time-of-day. */
884 	else if (rc_time == 0) {	/* no time or conversion error? */
885 		checkres = CEVNT_BADTIME;
886 		up->tally.malformed++;
887 	}
888 	/* Check sanity of date. */
889 	else if (rc_date == 0) {	/* no date or conversion error? */
890 		checkres = CEVNT_BADDATE;
891 		up->tally.malformed++;
892 	}
893 	else {
894 		checkres = -1;
895 	}
896 
897 	if (checkres != -1) {
898 		refclock_save_lcode(pp, up->lb_buf, up->lb_len);
899 		refclock_report(peer, checkres);
900 		return;
901 	}
902 
903 	/* See if we can augment the receive time stamp. If not, apply
904 	 * fudge time 2 to the receive time stamp directly.
905 	 */
906 #   ifdef HAVE_PPSAPI
907 	if (up->ppsapi_lit && pp->leap != LEAP_NOTINSYNC)
908 		withpps = refclock_ppsaugment(
909 			&up->atom, &rd_timestamp,
910 			pp->fudgetime2, pp->fudgetime1);
911 	else
912 #   endif /* HAVE_PPSAPI */
913 		rd_timestamp = ntpfp_with_fudge(
914 			rd_timestamp, pp->fudgetime2);
915 
916 	/* set the GPS base date, if possible */
917 	warp = !(peer->ttl & NMEA_DATETRUST_MASK);
918 	if (rc_dtyp != DTYP_NONE) {
919 		DPRINTF(1, ("%s saving date, type=%hu\n",
920 			    refnumtoa(&peer->srcadr), rc_dtyp));
921 		switch (rc_dtyp) {
922 		case DTYP_W10B:
923 			up->last_gpsdate = gpsntp_from_gpscal_ex(
924 				&wgps, (warp = TRUE));
925 			break;
926 		case DTYP_WEXT:
927 			up->last_gpsdate = gpsntp_from_gpscal_ex(
928 				&wgps, warp);
929 			break;
930 		default:
931 			up->last_gpsdate = gpsntp_from_calendar_ex(
932 				&date, tofs, warp);
933 			break;
934 		}
935 		up->type_gpsdate = rc_dtyp;
936 		up->hold_gpsdate = DATE_HOLD;
937 	}
938 	/* now convert and possibly extend/expand the time stamp. */
939 	if (up->hold_gpsdate) {	/* time of day, based */
940 		dntp = gpsntp_from_daytime2_ex(
941 			&date, tofs, &up->last_gpsdate, warp);
942 	} else {		/* time of day, floating */
943 		dntp = gpsntp_from_daytime1_ex(
944 			&date, tofs, rd_timestamp, warp);
945 	}
946 
947 	if (debug) {
948 		/* debug print time stamp */
949 		gpsntp_to_calendar(&date, &dntp);
950 #	    ifdef HAVE_PPSAPI
951 		DPRINTF(1, ("%s effective timecode: %s (%s PPS)\n",
952 			    refnumtoa(&peer->srcadr),
953 			    ntpcal_iso8601std(NULL, 0, &date),
954 			    (withpps ? "with" : "without")));
955 #	    else /* ?HAVE_PPSAPI */
956 		DPRINTF(1, ("%s effective timecode: %s\n",
957 			    refnumtoa(&peer->srcadr),
958 			    ntpcal_iso8601std(NULL, 0, &date)));
959 #	    endif /* !HAVE_PPSAPI */
960 	}
961 
962 	/* Get the reference time stamp from the calendar buffer.
963 	 * Process the new sample in the median filter and determine the
964 	 * timecode timestamp, but only if the PPS is not in control.
965 	 * Discard sentence if reference time did not change.
966 	 */
967 	rd_reftime = ntpfp_from_ntpdatum(&dntp);
968 	if (L_ISEQU(&up->last_reftime, &rd_reftime)) {
969 		/* Do not touch pp->a_lastcode on purpose! */
970 		up->tally.filtered++;
971 		return;
972 	}
973 	up->last_reftime = rd_reftime;
974 
975 	DPRINTF(1, ("%s using '%s'\n",
976 		    refnumtoa(&peer->srcadr), up->lb_buf));
977 
978 	/* Data will be accepted. Update stats & log data. */
979 	up->tally.accepted++;
980 	refclock_save_lcode(pp, up->lb_buf, up->lb_len);
981 	pp->lastrec = rd_timestamp;
982 
983 	/* If we have PPS augmented receive time, we *must* have a
984 	 * working PPS source and we must set the flags accordingly.
985 	 */
986 #   ifdef HAVE_PPSAPI
987 	if (withpps) {
988 		up->ppsapi_gate = TRUE;
989 		peer->precision = PPS_PRECISION;
990 		if (tabsdiffd(rd_reftime, rd_timestamp) < 0.5) {
991 			if ( ! (peer->ttl & NMEA_QUIETPPS_MASK))
992 				peer->flags |= FLAG_PPS;
993 			DPRINTF(2, ("%s PPS_RELATE_PHASE\n",
994 				    refnumtoa(&peer->srcadr)));
995 			up->tally.pps_used++;
996 		} else {
997 			DPRINTF(2, ("%s PPS_RELATE_EDGE\n",
998 				    refnumtoa(&peer->srcadr)));
999 		}
1000 		/* !Note! 'FLAG_PPS' is reset in 'nmea_poll()' */
1001 	}
1002 #   endif /* HAVE_PPSAPI */
1003 	/* Whether the receive time stamp is PPS-augmented or not,
1004 	 * the proper fudge offset is already applied. There's no
1005 	 * residual fudge to process.
1006 	 */
1007 	refclock_process_offset(pp, rd_reftime, rd_timestamp, 0.0);
1008 	up->rcvtout = 2;
1009 }
1010 
1011 /*
1012  * -------------------------------------------------------------------
1013  * nmea_receive - receive data from the serial interface
1014  *
1015  * With serial IO only, a single call to 'refclock_gtlin()' to get the
1016  * string would suffice to get the NMEA data. When using NMEAD, this
1017  * does unfortunately no longer hold, since TCP is stream oriented and
1018  * not line oriented, and there's no one to do the line-splitting work
1019  * of the TTY driver in line/cooked mode.
1020  *
1021  * So we have to do this manually here, and we have to live with the
1022  * fact that there could be more than one sentence in a receive buffer.
1023  * Likewise, there can be partial messages on either end. (Strictly
1024  * speaking, a receive buffer could also contain just a single fragment,
1025  * though that's unlikely.)
1026  *
1027  * We deal with that by scanning the input buffer, copying bytes from
1028  * the receive buffer to the assembly buffer as we go and calling the
1029  * record processor every time we hit a CR/LF, provided the resulting
1030  * line is not empty. Any leftovers are kept for the next round.
1031  *
1032  * Note: When used with a serial data stream, there's no change to the
1033  * previous line-oriented input: One line is copied to the buffer and
1034  * processed per call. Only with NMEAD the behavior changes, and the
1035  * timing is badly affected unless a PPS channel is also associated with
1036  * the clock instance. TCP leaves us nothing to improve on here.
1037  * -------------------------------------------------------------------
1038  */
1039 static void
1040 nmea_receive(
1041 	struct recvbuf * rbufp
1042 	)
1043 {
1044 	/* declare & init control structure pointers */
1045 	struct peer	    * const peer = rbufp->recv_peer;
1046 	struct refclockproc * const pp = peer->procptr;
1047 	nmea_unit	    * const up = (nmea_unit*)pp->unitptr;
1048 
1049 	const char *sp, *se;
1050 	char	   *dp, *de;
1051 
1052 	/* paranoia check: */
1053 	if (up->lb_len >= sizeof(up->lb_buf))
1054 		up->lb_len = 0;
1055 
1056 	/* pick up last assembly position; leave room for NUL */
1057 	dp = up->lb_buf + up->lb_len;
1058 	de = up->lb_buf + sizeof(up->lb_buf) - 1;
1059 	/* set up input range */
1060 	sp = (const char *)rbufp->recv_buffer;
1061 	se = sp + rbufp->recv_length;
1062 
1063 	/* walk over the input data, dropping parity bits and control
1064 	 * chars as we go, and calling the record processor for each
1065 	 * complete non-empty line.
1066 	 */
1067 	while (sp != se) {
1068 		char ch = (*sp++ & 0x7f);
1069 		if (dp == up->lb_buf) {
1070 			if (ch == '$')
1071 				*dp++ = ch;
1072 		} else if (dp > de) {
1073 			dp = up->lb_buf;
1074 		} else if (ch == '\n' || ch == '\r') {
1075 			*dp = '\0';
1076 			up->lb_len = (int)(dp - up->lb_buf);
1077 			dp = up->lb_buf;
1078 			nmea_procrec(peer, rbufp->recv_time);
1079 		} else if (ch >= 0x20 && ch < 0x7f) {
1080 			*dp++ = ch;
1081 		}
1082 	}
1083 	/* update state to keep for next round */
1084 	*dp = '\0';
1085 	up->lb_len = (int)(dp - up->lb_buf);
1086 }
1087 
1088 /*
1089  * -------------------------------------------------------------------
1090  * nmea_poll - called by the transmit procedure
1091  *
1092  * Does the necessary bookkeeping stuff to keep the reported state of
1093  * the clock in sync with reality.
1094  *
1095  * We go to great pains to avoid changing state here, since there may
1096  * be more than one eavesdropper receiving the same timecode.
1097  * -------------------------------------------------------------------
1098  */
1099 static void
1100 nmea_poll(
1101 	int           unit,
1102 	struct peer * peer
1103 	)
1104 {
1105 	struct refclockproc * const pp = peer->procptr;
1106 	nmea_unit	    * const up = (nmea_unit *)pp->unitptr;
1107 
1108 	/*
1109 	 * Process median filter samples. If none received, declare a
1110 	 * timeout and keep going.
1111 	 */
1112 #   ifdef HAVE_PPSAPI
1113 	/*
1114 	 * If we don't have PPS pulses and time stamps, turn PPS down
1115 	 * for now.
1116 	 */
1117 	if (!up->ppsapi_gate) {
1118 		peer->flags &= ~FLAG_PPS;
1119 		peer->precision = PRECISION;
1120 	} else {
1121 		up->ppsapi_gate = FALSE;
1122 	}
1123 #   endif /* HAVE_PPSAPI */
1124 
1125 	/*
1126 	 * If the median filter is empty, claim a timeout. Else process
1127 	 * the input data and keep the stats going.
1128 	 */
1129 	if (pp->coderecv == pp->codeproc) {
1130 		peer->flags &= ~FLAG_PPS;
1131 		if (pp->currentstatus < CEVNT_TIMEOUT)
1132 		    refclock_report(peer, CEVNT_TIMEOUT);
1133 		memset(&up->last_gpsdate, 0, sizeof(up->last_gpsdate));
1134 	} else {
1135 		pp->polls++;
1136 		pp->lastref = pp->lastrec;
1137 		refclock_receive(peer);
1138 		if (pp->currentstatus > CEVNT_NOMINAL)
1139 		    refclock_report(peer, CEVNT_NOMINAL);
1140 	}
1141 
1142 	/*
1143 	 * If extended logging is required, write the tally stats to the
1144 	 * clockstats file; otherwise just do a normal clock stats
1145 	 * record. Clear the tally stats anyway.
1146 	*/
1147 	if (peer->ttl & NMEA_EXTLOG_MASK) {
1148 		/* Log & reset counters with extended logging */
1149 		const char *nmea = pp->a_lastcode;
1150 		if (*nmea == '\0') nmea = "(none)";
1151 		mprintf_clock_stats(
1152 		  &peer->srcadr, "%s  %u %u %u %u %u %u",
1153 		  nmea,
1154 		  up->tally.total, up->tally.accepted,
1155 		  up->tally.rejected, up->tally.malformed,
1156 		  up->tally.filtered, up->tally.pps_used);
1157 	} else {
1158 		record_clock_stats(&peer->srcadr, pp->a_lastcode);
1159 	}
1160 	ZERO(up->tally);
1161 }
1162 
1163 #if NMEA_WRITE_SUPPORT
1164 /*
1165  * -------------------------------------------------------------------
1166  *  gps_send(fd, cmd, peer)	Sends a command to the GPS receiver.
1167  *   as in gps_send(fd, "rqts,u", peer);
1168  *
1169  * If 'cmd' starts with a '$' it is assumed that this command is in raw
1170  * format, that is, starts with '$', ends with '<cr><lf>' and that any
1171  * checksum is correctly provided; the command will be send 'as is' in
1172  * that case. Otherwise the function will create the necessary frame
1173  * (start char, chksum, final CRLF) on the fly.
1174  *
1175  * We don't currently send any data, but would like to send RTCM SC104
1176  * messages for differential positioning. It should also give us better
1177  * time. Without a PPS output, we're Just fooling ourselves because of
1178  * the serial code paths
1179  * -------------------------------------------------------------------
1180  */
1181 static void
1182 gps_send(
1183 	int           fd,
1184 	const char  * cmd,
1185 	struct peer * peer
1186 	)
1187 {
1188 	/* $...*xy<CR><LF><NUL> add 7 */
1189 	char	      buf[NMEA_PROTO_MAXLEN + 7];
1190 	int	      len;
1191 	u_char	      dcs;
1192 	const u_char *beg, *end;
1193 
1194 	if (*cmd != '$') {
1195 		/* get checksum and length */
1196 		beg = end = (const u_char*)cmd;
1197 		dcs = 0;
1198 		while (*end >= ' ' && *end != '*')
1199 			dcs ^= *end++;
1200 		len = end - beg;
1201 		/* format into output buffer with overflow check */
1202 		len = snprintf(buf, sizeof(buf), "$%.*s*%02X\r\n",
1203 			       len, beg, dcs);
1204 		if ((size_t)len >= sizeof(buf)) {
1205 			DPRINTF(1, ("%s gps_send: buffer overflow for command '%s'\n",
1206 				    refnumtoa(&peer->srcadr), cmd));
1207 			return;	/* game over player 1 */
1208 		}
1209 		cmd = buf;
1210 	} else {
1211 		len = strlen(cmd);
1212 	}
1213 
1214 	DPRINTF(1, ("%s gps_send: '%.*s'\n", refnumtoa(&peer->srcadr),
1215 		len - 2, cmd));
1216 
1217 	/* send out the whole stuff */
1218 	if (write(fd, cmd, len) == -1)
1219 		refclock_report(peer, CEVNT_FAULT);
1220 }
1221 #endif /* NMEA_WRITE_SUPPORT */
1222 
1223 /*
1224  * -------------------------------------------------------------------
1225  * helpers for faster field splitting
1226  * -------------------------------------------------------------------
1227  *
1228  * set up a field record, check syntax and verify checksum
1229  *
1230  * format is $XXXXX,1,2,3,4*ML
1231  *
1232  * 8-bit XOR of characters between $ and * noninclusive is transmitted
1233  * in last two chars M and L holding most and least significant nibbles
1234  * in hex representation such as:
1235  *
1236  *   $GPGLL,5057.970,N,00146.110,E,142451,A*27
1237  *   $GPVTG,089.0,T,,,15.2,N,,*7F
1238  *
1239  * Some other constraints:
1240  * + The field name must be at least 5 upcase characters or digits and
1241  *   must start with a character.
1242  * + The checksum (if present) must be uppercase hex digits.
1243  * + The length of a sentence is limited to 80 characters (not including
1244  *   the final CR/LF nor the checksum, but including the leading '$')
1245  *
1246  * Return values:
1247  *  + CHECK_INVALID
1248  *	The data does not form a valid NMEA sentence or a checksum error
1249  *	occurred.
1250  *  + CHECK_VALID
1251  *	The data is a valid NMEA sentence but contains no checksum.
1252  *  + CHECK_CSVALID
1253  *	The data is a valid NMEA sentence and passed the checksum test.
1254  * -------------------------------------------------------------------
1255  */
1256 static int
1257 field_init(
1258 	nmea_data * data,	/* context structure		       */
1259 	char 	  * cptr,	/* start of raw data		       */
1260 	int	    dlen	/* data len, not counting trailing NUL */
1261 	)
1262 {
1263 	u_char cs_l;	/* checksum local computed	*/
1264 	u_char cs_r;	/* checksum remote given	*/
1265 	char * eptr;	/* buffer end end pointer	*/
1266 	char   tmp;	/* char buffer 			*/
1267 
1268 	cs_l = 0;
1269 	cs_r = 0;
1270 	/* some basic input constraints */
1271 	if (dlen < 0)
1272 		dlen = 0;
1273 	eptr = cptr + dlen;
1274 	*eptr = '\0';
1275 
1276 	/* load data context */
1277 	data->base = cptr;
1278 	data->cptr = cptr;
1279 	data->cidx = 0;
1280 	data->blen = dlen;
1281 
1282 	/* syntax check follows here. check allowed character
1283 	 * sequences, updating the local computed checksum as we go.
1284 	 *
1285 	 * regex equiv: '^\$[A-Z][A-Z0-9]{4,}[^*]*(\*[0-9A-F]{2})?$'
1286 	 */
1287 
1288 	/* -*- start character: '^\$' */
1289 	if (*cptr == '\0')
1290 		return CHECK_EMPTY;
1291 	if (*cptr++ != '$')
1292 		return CHECK_INVALID;
1293 
1294 	/* -*- advance context beyond start character */
1295 	data->base++;
1296 	data->cptr++;
1297 	data->blen--;
1298 
1299 	/* -*- field name: '[A-Z][A-Z0-9]{4,},' */
1300 	if (*cptr < 'A' || *cptr > 'Z')
1301 		return CHECK_INVALID;
1302 	cs_l ^= *cptr++;
1303 	while ((*cptr >= 'A' && *cptr <= 'Z') ||
1304 	       (*cptr >= '0' && *cptr <= '9')  )
1305 		cs_l ^= *cptr++;
1306 	if (*cptr != ',' || (cptr - data->base) < NMEA_PROTO_IDLEN)
1307 		return CHECK_INVALID;
1308 	cs_l ^= *cptr++;
1309 
1310 	/* -*- data: '[^*]*' */
1311 	while (*cptr && *cptr != '*')
1312 		cs_l ^= *cptr++;
1313 
1314 	/* -*- checksum field: (\*[0-9A-F]{2})?$ */
1315 	if (*cptr == '\0')
1316 		return CHECK_VALID;
1317 	if (*cptr != '*' || cptr != eptr - 3 ||
1318 	    (cptr - data->base) >= NMEA_PROTO_MAXLEN)
1319 		return CHECK_INVALID;
1320 
1321 	for (cptr++; (tmp = *cptr) != '\0'; cptr++) {
1322 		if (tmp >= '0' && tmp <= '9')
1323 			cs_r = (cs_r << 4) + (tmp - '0');
1324 		else if (tmp >= 'A' && tmp <= 'F')
1325 			cs_r = (cs_r << 4) + (tmp - 'A' + 10);
1326 		else
1327 			break;
1328 	}
1329 
1330 	/* -*- make sure we are at end of string and csum matches */
1331 	if (cptr != eptr || cs_l != cs_r)
1332 		return CHECK_INVALID;
1333 
1334 	return CHECK_CSVALID;
1335 }
1336 
1337 /*
1338  * -------------------------------------------------------------------
1339  * fetch a data field by index, zero being the name field. If this
1340  * function is called repeatedly with increasing indices, the total load
1341  * is O(n), n being the length of the string; if it is called with
1342  * decreasing indices, the total load is O(n^2). Try not to go backwards
1343  * too often.
1344  * -------------------------------------------------------------------
1345  */
1346 static char *
1347 field_parse(
1348 	nmea_data * data,
1349 	int 	    fn
1350 	)
1351 {
1352 	char tmp;
1353 
1354 	if (fn < data->cidx) {
1355 		data->cidx = 0;
1356 		data->cptr = data->base;
1357 	}
1358 	while ((fn > data->cidx) && (tmp = *data->cptr) != '\0') {
1359 		data->cidx += (tmp == ',');
1360 		data->cptr++;
1361 	}
1362 	return data->cptr;
1363 }
1364 
1365 /*
1366  * -------------------------------------------------------------------
1367  * Wipe (that is, overwrite with '_') data fields and the checksum in
1368  * the last timecode.  The list of field indices is given as integers
1369  * in a varargs list, preferably in ascending order, in any case
1370  * terminated by a negative field index.
1371  *
1372  * A maximum number of 8 fields can be overwritten at once to guard
1373  * against runaway (that is, unterminated) argument lists.
1374  *
1375  * This function affects what a remote user can see with
1376  *
1377  * ntpq -c clockvar <server>
1378  *
1379  * Note that this also removes the wiped fields from any clockstats
1380  * log.	 Some NTP operators monitor their NMEA GPS using the change in
1381  * location in clockstats over time as as a proxy for the quality of
1382  * GPS reception and thereby time reported.
1383  * -------------------------------------------------------------------
1384  */
1385 static void
1386 field_wipe(
1387 	nmea_data * data,
1388 	...
1389 	)
1390 {
1391 	va_list	va;		/* vararg index list */
1392 	int	fcnt;		/* safeguard against runaway arglist */
1393 	int	fidx;		/* field to nuke, or -1 for checksum */
1394 	char  * cp;		/* overwrite destination */
1395 
1396 	fcnt = 8;
1397 	cp = NULL;
1398 	va_start(va, data);
1399 	do {
1400 		fidx = va_arg(va, int);
1401 		if (fidx >= 0 && fidx <= NMEA_PROTO_FIELDS) {
1402 			cp = field_parse(data, fidx);
1403 		} else {
1404 			cp = data->base + data->blen;
1405 			if (data->blen >= 3 && cp[-3] == '*')
1406 				cp -= 2;
1407 		}
1408 		for ( ; '\0' != *cp && '*' != *cp && ',' != *cp; cp++)
1409 			if ('.' != *cp)
1410 				*cp = '_';
1411 	} while (fcnt-- && fidx >= 0);
1412 	va_end(va);
1413 }
1414 
1415 /*
1416  * -------------------------------------------------------------------
1417  * PARSING HELPERS
1418  * -------------------------------------------------------------------
1419  */
1420 typedef unsigned char const UCC;
1421 
1422 static char const * const s_eof_chars = ",*\r\n";
1423 
1424 static int field_length(UCC *cp, unsigned int nfields)
1425 {
1426 	char const * ep = (char const*)cp;
1427 	ep = strpbrk(ep, s_eof_chars);
1428 	if (ep && nfields)
1429 		while (--nfields && ep && *ep == ',')
1430 			ep = strpbrk(ep + 1, s_eof_chars);
1431 	return (ep)
1432 	    ? (int)((UCC*)ep - cp)
1433 	    : (int)strlen((char const*)cp);
1434 }
1435 
1436 /* /[,*\r\n]/ --> skip */
1437 static int _parse_eof(UCC *cp, UCC ** ep)
1438 {
1439 	int rc = (strchr(s_eof_chars, *(char const*)cp) != NULL);
1440 	*ep = cp + rc;
1441 	return rc;
1442 }
1443 
1444 /* /,/ --> skip */
1445 static int _parse_sep(UCC *cp, UCC ** ep)
1446 {
1447 	int rc = (*cp == ',');
1448 	*ep = cp + rc;
1449 	return rc;
1450 }
1451 
1452 /* /[[:digit:]]{2}/ --> uint16_t */
1453 static int _parse_num2d(UCC *cp, UCC ** ep, uint16_t *into)
1454 {
1455 	int	rc = FALSE;
1456 
1457 	if (isdigit(cp[0]) && isdigit(cp[1])) {
1458 		*into = (cp[0] - '0') * 10 + (cp[1] - '0');
1459 		cp += 2;
1460 		rc = TRUE;
1461 	}
1462 	*ep = cp;
1463 	return rc;
1464 }
1465 
1466 /* /[[:digit:]]+/ --> uint16_t */
1467 static int _parse_u16(UCC *cp, UCC **ep, uint16_t *into, unsigned int ndig)
1468 {
1469 	uint16_t	num = 0;
1470 	int		rc  = FALSE;
1471 	if (isdigit(*cp) && ndig) {
1472 		rc = TRUE;
1473 		do
1474 			num = (num * 10) + (*cp - '0');
1475 		while (isdigit(*++cp) && --ndig);
1476 		*into = num;
1477 	}
1478 	*ep = cp;
1479 	return rc;
1480 }
1481 
1482 /* /[[:digit:]]+/ --> uint32_t */
1483 static int _parse_u32(UCC *cp, UCC **ep, uint32_t *into, unsigned int ndig)
1484 {
1485 	uint32_t	num = 0;
1486 	int		rc  = FALSE;
1487 	if (isdigit(*cp) && ndig) {
1488 		rc = TRUE;
1489 		do
1490 			num = (num * 10) + (*cp - '0');
1491 		while (isdigit(*++cp) && --ndig);
1492 		*into = num;
1493 	}
1494 	*ep = cp;
1495 	return rc;
1496 }
1497 
1498 /* /(\.[[:digit:]]*)?/ --> l_fp{0, f}
1499  * read fractional seconds, convert to l_fp
1500  *
1501  * Only the first 9 decimal digits are evaluated; any excess is parsed
1502  * away but silently ignored. (--> truncation to 1 nanosecond)
1503  */
1504 static int _parse_frac(UCC *cp, UCC **ep, l_fp *into)
1505 {
1506 	static const uint32_t powtab[10] = {
1507 		        0,
1508 		100000000, 10000000, 1000000,
1509 		   100000,    10000,    1000,
1510 		      100,       10,       1
1511 	};
1512 
1513 	struct timespec	ts;
1514 	ZERO(ts);
1515 	if (*cp == '.') {
1516 		uint32_t fval = 0;
1517 		UCC *    sp   = cp + 1;
1518 		if (_parse_u32(sp, &cp, &fval, 9))
1519 			ts.tv_nsec = fval * powtab[(size_t)(cp - sp)];
1520 		while (isdigit(*cp))
1521 			++cp;
1522 	}
1523 
1524 	*ep   = cp;
1525 	*into = tspec_intv_to_lfp(ts);
1526 	return TRUE;
1527 }
1528 
1529 /* /[[:digit:]]{6}/ --> time-of-day
1530  * parses a number string representing 'HHMMSS'
1531  */
1532 static int _parse_time(UCC *cp, UCC ** ep, TCivilDate *into)
1533 {
1534 	uint16_t	s, m, h;
1535 	int		rc;
1536 	UCC *		xp = cp;
1537 
1538 	rc =   _parse_num2d(cp, &cp, &h) && (h < 24)
1539 	    && _parse_num2d(cp, &cp, &m) && (m < 60)
1540 	    && _parse_num2d(cp, &cp, &s) && (s < 61); /* leap seconds! */
1541 
1542 	if (rc) {
1543 		into->hour   = (uint8_t)h;
1544 		into->minute = (uint8_t)m;
1545 		into->second = (uint8_t)s;
1546 		*ep = cp;
1547 	} else {
1548 		*ep = xp;
1549 		DPRINTF(1, ("nmea: invalid time code: '%.*s'\n",
1550 			    field_length(xp, 1), xp));
1551 	}
1552 	return rc;
1553 }
1554 
1555 /* /[[:digit:]]{6}/ --> civil date
1556  * parses a number string representing 'ddmmyy'
1557  */
1558 static int _parse_date1(UCC *cp, UCC **ep, TCivilDate *into)
1559 {
1560 	unsigned short	d, m, y;
1561 	int		rc;
1562 	UCC *		xp = cp;
1563 
1564 	rc =   _parse_num2d(cp, &cp, &d) && (d - 1 < 31)
1565 	    && _parse_num2d(cp, &cp, &m) && (m - 1 < 12)
1566 	    && _parse_num2d(cp, &cp, &y)
1567 	    && _parse_eof(cp, ep);
1568 	if (rc) {
1569 		into->monthday = (uint8_t )d;
1570 		into->month    = (uint8_t )m;
1571 		into->year     = (uint16_t)y;
1572 		*ep = cp;
1573 	} else {
1574 		*ep = xp;
1575 		DPRINTF(1, ("nmea: invalid date code: '%.*s'\n",
1576 			    field_length(xp, 1), xp));
1577 	}
1578 	return rc;
1579 }
1580 
1581 /* /[[:digit:]]+,[[:digit:]]+,[[:digit:]]+/ --> civil date
1582  * parses three successive numeric fields as date: day,month,year
1583  */
1584 static int _parse_date3(UCC *cp, UCC **ep, TCivilDate *into)
1585 {
1586 	uint16_t	d, m, y;
1587 	int		rc;
1588 	UCC *		xp = cp;
1589 
1590 	rc =   _parse_u16(cp, &cp, &d, 2) && (d - 1 < 31)
1591 	    && _parse_sep(cp, &cp)
1592 	    && _parse_u16(cp, &cp, &m, 2) && (m - 1 < 12)
1593 	    && _parse_sep(cp, &cp)
1594 	    && _parse_u16(cp, &cp, &y, 4) && (y > 1980)
1595 	    && _parse_eof(cp, ep);
1596 	if (rc) {
1597 		into->monthday = (uint8_t )d;
1598 		into->month    = (uint8_t )m;
1599 		into->year     = (uint16_t)y;
1600 		*ep = cp;
1601 	} else {
1602 		*ep = xp;
1603 		DPRINTF(1, ("nmea: invalid date code: '%.*s'\n",
1604 			    field_length(xp, 3), xp));
1605 	}
1606 	return rc;
1607 }
1608 
1609 /*
1610  * -------------------------------------------------------------------
1611  * Check sync status
1612  *
1613  * If the character at the data field start matches the tag value,
1614  * return LEAP_NOWARNING and LEAP_NOTINSYNC otherwise. If the 'inverted'
1615  * flag is given, just the opposite value is returned. If there is no
1616  * data field (*cp points to the NUL byte) the result is LEAP_NOTINSYNC.
1617  * -------------------------------------------------------------------
1618  */
1619 static u_char
1620 parse_qual(
1621 	nmea_data * rd,
1622 	int         idx,
1623 	char        tag,
1624 	int         inv
1625 	)
1626 {
1627 	static const u_char table[2] = {
1628 		LEAP_NOTINSYNC, LEAP_NOWARNING };
1629 
1630 	char * dp = field_parse(rd, idx);
1631 
1632 	return table[ *dp && ((*dp == tag) == !inv) ];
1633 }
1634 
1635 /*
1636  * -------------------------------------------------------------------
1637  * Parse a time stamp in HHMMSS[.sss] format with error checking.
1638  *
1639  * returns 1 on success, 0 on failure
1640  * -------------------------------------------------------------------
1641  */
1642 static int
1643 parse_time(
1644 	struct calendar * jd,	/* result calendar pointer */
1645 	l_fp		* fofs,	/* storage for nsec fraction */
1646 	nmea_data       * rd,
1647 	int		  idx
1648 	)
1649 {
1650 	UCC * 	dp = (UCC*)field_parse(rd, idx);
1651 
1652 	return _parse_time(dp, &dp, jd)
1653 	    && _parse_frac(dp, &dp, fofs)
1654 	    && _parse_eof (dp, &dp);
1655 }
1656 
1657 /*
1658  * -------------------------------------------------------------------
1659  * Parse a date string from an NMEA sentence. This could either be a
1660  * partial date in DDMMYY format in one field, or DD,MM,YYYY full date
1661  * spec spanning three fields. This function does some extensive error
1662  * checking to make sure the date string was consistent.
1663  *
1664  * returns 1 on success, 0 on failure
1665  * -------------------------------------------------------------------
1666  */
1667 static int
1668 parse_date(
1669 	struct calendar * jd,	/* result pointer */
1670 	nmea_data       * rd,
1671 	int		  idx,
1672 	enum date_fmt	  fmt
1673 	)
1674 {
1675 	UCC  * dp = (UCC*)field_parse(rd, idx);
1676 
1677 	switch (fmt) {
1678 	case DATE_1_DDMMYY:
1679 		return _parse_date1(dp, &dp, jd);
1680 	case DATE_3_DDMMYYYY:
1681 		return _parse_date3(dp, &dp, jd);
1682 	default:
1683 		DPRINTF(1, ("nmea: invalid parse format: %d\n", fmt));
1684 		break;
1685 	}
1686 	return FALSE;
1687 }
1688 
1689 /*
1690  * -------------------------------------------------------------------
1691  * Parse GPS week time info from an NMEA sentence. This info contains
1692  * the GPS week number, the GPS time-of-week and the leap seconds GPS
1693  * to UTC.
1694  *
1695  * returns 1 on success, 0 on failure
1696  * -------------------------------------------------------------------
1697  */
1698 static int
1699 parse_gpsw(
1700 	TGpsDatum *  wd,
1701 	nmea_data *  rd,
1702 	int          weekidx,
1703 	int          timeidx,
1704 	int          leapidx
1705 	)
1706 {
1707 	uint32_t	secs;
1708 	uint16_t	week, leap = 0;
1709 	l_fp		fofs;
1710 	int		rc;
1711 
1712 	UCC *	dpw = (UCC*)field_parse(rd, weekidx);
1713 	UCC *	dps = (UCC*)field_parse(rd, timeidx);
1714 
1715 	rc =   _parse_u16 (dpw, &dpw, &week, 5)
1716 	    && _parse_eof (dpw, &dpw)
1717 	    && _parse_u32 (dps, &dps, &secs, 9)
1718 	    && _parse_frac(dps, &dps, &fofs)
1719 	    && _parse_eof (dps, &dps)
1720 	    && (secs < 7*SECSPERDAY);
1721 	if (rc && leapidx > 0) {
1722 		UCC *	dpl = (UCC*)field_parse(rd, leapidx);
1723 		rc =   _parse_u16 (dpl, &dpl, &leap, 5)
1724 		    && _parse_eof (dpl, &dpl);
1725 	}
1726 	if (rc) {
1727 		fofs.l_ui -= leap;
1728 		*wd = gpscal_from_gpsweek(week, secs, fofs);
1729 	} else {
1730 		DPRINTF(1, ("nmea: parse_gpsw: invalid weektime spec\n"));
1731 	}
1732 	return rc;
1733 }
1734 
1735 
1736 #ifdef HAVE_PPSAPI
1737 static double
1738 tabsdiffd(
1739 	l_fp	t1,
1740 	l_fp	t2
1741 	)
1742 {
1743 	double	dd;
1744 	L_SUB(&t1, &t2);
1745 	LFPTOD(&t1, dd);
1746 	return fabs(dd);
1747 }
1748 #endif /* HAVE_PPSAPI */
1749 
1750 /*
1751  * ===================================================================
1752  *
1753  * NMEAD support
1754  *
1755  * original nmead support added by Jon Miner (cp_n18@yahoo.com)
1756  *
1757  * See http://home.hiwaay.net/~taylorc/gps/nmea-server/
1758  * for information about nmead
1759  *
1760  * To use this, you need to create a link from /dev/gpsX to
1761  * the server:port where nmead is running.  Something like this:
1762  *
1763  * ln -s server:port /dev/gps1
1764  *
1765  * Split into separate function by Juergen Perlinger
1766  * (perlinger-at-ntp-dot-org)
1767  *
1768  * ===================================================================
1769  */
1770 static int
1771 nmead_open(
1772 	const char * device
1773 	)
1774 {
1775 	int	fd = -1;		/* result file descriptor */
1776 
1777 #   ifdef HAVE_READLINK
1778 	char	host[80];		/* link target buffer	*/
1779 	char  * port;			/* port name or number	*/
1780 	int	rc;			/* result code (several)*/
1781 	int     sh;			/* socket handle	*/
1782 	struct addrinfo	 ai_hint;	/* resolution hint	*/
1783 	struct addrinfo	*ai_list;	/* resolution result	*/
1784 	struct addrinfo *ai;		/* result scan ptr	*/
1785 
1786 	fd = -1;
1787 
1788 	/* try to read as link, make sure no overflow occurs */
1789 	rc = readlink(device, host, sizeof(host));
1790 	if ((size_t)rc >= sizeof(host))
1791 		return fd;	/* error / overflow / truncation */
1792 	host[rc] = '\0';	/* readlink does not place NUL	*/
1793 
1794 	/* get port */
1795 	port = strchr(host, ':');
1796 	if (!port)
1797 		return fd; /* not 'host:port' syntax ? */
1798 	*port++ = '\0';	/* put in separator */
1799 
1800 	/* get address infos and try to open socket
1801 	 *
1802 	 * This getaddrinfo() is naughty in ntpd's nonblocking main
1803 	 * thread, but you have to go out of your wary to use this code
1804 	 * and typically the blocking is at startup where its impact is
1805 	 * reduced. The same holds for the 'connect()', as it is
1806 	 * blocking, too...
1807 	 */
1808 	ZERO(ai_hint);
1809 	ai_hint.ai_protocol = IPPROTO_TCP;
1810 	ai_hint.ai_socktype = SOCK_STREAM;
1811 	if (getaddrinfo(host, port, &ai_hint, &ai_list))
1812 		return fd;
1813 
1814 	for (ai = ai_list; ai && (fd == -1); ai = ai->ai_next) {
1815 		sh = socket(ai->ai_family, ai->ai_socktype,
1816 			    ai->ai_protocol);
1817 		if (INVALID_SOCKET == sh)
1818 			continue;
1819 		rc = connect(sh, ai->ai_addr, ai->ai_addrlen);
1820 		if (-1 != rc)
1821 			fd = sh;
1822 		else
1823 			close(sh);
1824 	}
1825 	freeaddrinfo(ai_list);
1826 	if (fd != -1)
1827 		make_socket_nonblocking(fd);
1828 #   else
1829 	fd = -1;
1830 #   endif
1831 
1832 	return fd;
1833 }
1834 #else
1835 NONEMPTY_TRANSLATION_UNIT
1836 #endif /* REFCLOCK && CLOCK_NMEA */
1837