1 /* 2 * refclock_nmea.c - clock driver for an NMEA GPS CLOCK 3 * Michael Petry Jun 20, 1994 4 * based on refclock_heathn.c 5 * 6 * Updated to add support for Accord GPS Clock 7 * Venu Gopal Dec 05, 2007 8 * neo.venu@gmail.com, venugopal_d@pgad.gov.in 9 * 10 * Updated to process 'time1' fudge factor 11 * Venu Gopal May 05, 2008 12 * 13 * Converted to common PPSAPI code, separate PPS fudge time1 14 * from serial timecode fudge time2. 15 * Dave Hart July 1, 2009 16 * hart@ntp.org, davehart@davehart.com 17 */ 18 19 #ifdef HAVE_CONFIG_H 20 #include <config.h> 21 #endif 22 23 #include "ntp_types.h" 24 25 #if defined(REFCLOCK) && defined(CLOCK_NMEA) 26 27 #define NMEA_WRITE_SUPPORT 0 /* no write support at the moment */ 28 29 #include <sys/stat.h> 30 #include <stdio.h> 31 #include <ctype.h> 32 #ifdef HAVE_SYS_SOCKET_H 33 #include <sys/socket.h> 34 #endif 35 36 #include "ntpd.h" 37 #include "ntp_io.h" 38 #include "ntp_unixtime.h" 39 #include "ntp_refclock.h" 40 #include "ntp_stdlib.h" 41 #include "ntp_calendar.h" 42 #include "timespecops.h" 43 44 #ifdef HAVE_PPSAPI 45 # include "ppsapi_timepps.h" 46 # include "refclock_atom.h" 47 #endif /* HAVE_PPSAPI */ 48 49 50 /* 51 * This driver supports NMEA-compatible GPS receivers 52 * 53 * Prototype was refclock_trak.c, Thanks a lot. 54 * 55 * The receiver used spits out the NMEA sentences for boat navigation. 56 * And you thought it was an information superhighway. Try a raging river 57 * filled with rapids and whirlpools that rip away your data and warp time. 58 * 59 * If HAVE_PPSAPI is defined code to use the PPSAPI will be compiled in. 60 * On startup if initialization of the PPSAPI fails, it will fall back 61 * to the "normal" timestamps. 62 * 63 * The PPSAPI part of the driver understands fudge flag2 and flag3. If 64 * flag2 is set, it will use the clear edge of the pulse. If flag3 is 65 * set, kernel hardpps is enabled. 66 * 67 * GPS sentences other than RMC (the default) may be enabled by setting 68 * the relevent bits of 'mode' in the server configuration line 69 * server 127.127.20.x mode X 70 * 71 * bit 0 - enables RMC (1) 72 * bit 1 - enables GGA (2) 73 * bit 2 - enables GLL (4) 74 * bit 3 - enables ZDA (8) - Standard Time & Date 75 * bit 3 - enables ZDG (8) - Accord GPS Clock's custom sentence with GPS time 76 * very close to standard ZDA 77 * 78 * Multiple sentences may be selected except when ZDG/ZDA is selected. 79 * 80 * bit 4/5/6 - selects the baudrate for serial port : 81 * 0 for 4800 (default) 82 * 1 for 9600 83 * 2 for 19200 84 * 3 for 38400 85 * 4 for 57600 86 * 5 for 115200 87 */ 88 #define NMEA_MESSAGE_MASK 0x0000FF0FU 89 #define NMEA_BAUDRATE_MASK 0x00000070U 90 #define NMEA_BAUDRATE_SHIFT 4 91 92 #define NMEA_DELAYMEAS_MASK 0x80 93 #define NMEA_EXTLOG_MASK 0x00010000U 94 #define NMEA_DATETRUST_MASK 0x02000000U 95 96 #define NMEA_PROTO_IDLEN 5 /* tag name must be at least 5 chars */ 97 #define NMEA_PROTO_MINLEN 6 /* min chars in sentence, excluding CS */ 98 #define NMEA_PROTO_MAXLEN 80 /* max chars in sentence, excluding CS */ 99 #define NMEA_PROTO_FIELDS 32 /* not official; limit on fields per record */ 100 101 /* 102 * We check the timecode format and decode its contents. We only care 103 * about a few of them, the most important being the $GPRMC format: 104 * 105 * $GPRMC,hhmmss,a,fddmm.xx,n,dddmmm.xx,w,zz.z,yyy.,ddmmyy,dd,v*CC 106 * 107 * mode (0,1,2,3) selects sentence ANY/ALL, RMC, GGA, GLL, ZDA 108 * $GPGLL,3513.8385,S,14900.7851,E,232420.594,A*21 109 * $GPGGA,232420.59,3513.8385,S,14900.7851,E,1,05,3.4,00519,M,,,,*3F 110 * $GPRMC,232418.19,A,3513.8386,S,14900.7853,E,00.0,000.0,121199,12.,E*77 111 * 112 * Defining GPZDA to support Standard Time & Date 113 * sentence. The sentence has the following format 114 * 115 * $--ZDA,HHMMSS.SS,DD,MM,YYYY,TH,TM,*CS<CR><LF> 116 * 117 * Apart from the familiar fields, 118 * 'TH' Time zone Hours 119 * 'TM' Time zone Minutes 120 * 121 * Defining GPZDG to support Accord GPS Clock's custom NMEA 122 * sentence. The sentence has the following format 123 * 124 * $GPZDG,HHMMSS.S,DD,MM,YYYY,AA.BB,V*CS<CR><LF> 125 * 126 * It contains the GPS timestamp valid for next PPS pulse. 127 * Apart from the familiar fields, 128 * 'AA.BB' denotes the signal strength( should be < 05.00 ) 129 * 'V' denotes the GPS sync status : 130 * '0' indicates INVALID time, 131 * '1' indicates accuracy of +/-20 ms 132 * '2' indicates accuracy of +/-100 ns 133 * 134 * Defining PGRMF for Garmin GPS Fix Data 135 * $PGRMF,WN,WS,DATE,TIME,LS,LAT,LAT_DIR,LON,LON_DIR,MODE,FIX,SPD,DIR,PDOP,TDOP 136 * WN -- GPS week number (weeks since 1980-01-06, mod 1024) 137 * WS -- GPS seconds in week 138 * LS -- GPS leap seconds, accumulated ( UTC + LS == GPS ) 139 * FIX -- Fix type: 0=nofix, 1=2D, 2=3D 140 * DATE/TIME are standard date/time strings in UTC time scale 141 * 142 * The GPS time can be used to get the full century for the truncated 143 * date spec. 144 */ 145 146 /* 147 * Definitions 148 */ 149 #define DEVICE "/dev/gps%d" /* GPS serial device */ 150 #define PPSDEV "/dev/gpspps%d" /* PPSAPI device override */ 151 #define SPEED232 B4800 /* uart speed (4800 bps) */ 152 #define PRECISION (-9) /* precision assumed (about 2 ms) */ 153 #define PPS_PRECISION (-20) /* precision assumed (about 1 us) */ 154 #define REFID "GPS\0" /* reference id */ 155 #define DESCRIPTION "NMEA GPS Clock" /* who we are */ 156 #ifndef O_NOCTTY 157 #define M_NOCTTY 0 158 #else 159 #define M_NOCTTY O_NOCTTY 160 #endif 161 #ifndef O_NONBLOCK 162 #define M_NONBLOCK 0 163 #else 164 #define M_NONBLOCK O_NONBLOCK 165 #endif 166 #define PPSOPENMODE (O_RDWR | M_NOCTTY | M_NONBLOCK) 167 168 /* NMEA sentence array indexes for those we use */ 169 #define NMEA_GPRMC 0 /* recommended min. nav. */ 170 #define NMEA_GPGGA 1 /* fix and quality */ 171 #define NMEA_GPGLL 2 /* geo. lat/long */ 172 #define NMEA_GPZDA 3 /* date/time */ 173 /* 174 * $GPZDG is a proprietary sentence that violates the spec, by not 175 * using $P and an assigned company identifier to prefix the sentence 176 * identifier. When used with this driver, the system needs to be 177 * isolated from other NTP networks, as it operates in GPS time, not 178 * UTC as is much more common. GPS time is >15 seconds different from 179 * UTC due to not respecting leap seconds since 1970 or so. Other 180 * than the different timebase, $GPZDG is similar to $GPZDA. 181 */ 182 #define NMEA_GPZDG 4 183 #define NMEA_PGRMF 5 184 #define NMEA_ARRAY_SIZE (NMEA_PGRMF + 1) 185 186 /* 187 * Sentence selection mode bits 188 */ 189 #define USE_GPRMC 0x00000001u 190 #define USE_GPGGA 0x00000002u 191 #define USE_GPGLL 0x00000004u 192 #define USE_GPZDA 0x00000008u 193 #define USE_PGRMF 0x00000100u 194 195 /* mapping from sentence index to controlling mode bit */ 196 static const u_int32 sentence_mode[NMEA_ARRAY_SIZE] = 197 { 198 USE_GPRMC, 199 USE_GPGGA, 200 USE_GPGLL, 201 USE_GPZDA, 202 USE_GPZDA, 203 USE_PGRMF 204 }; 205 206 /* date formats we support */ 207 enum date_fmt { 208 DATE_1_DDMMYY, /* use 1 field with 2-digit year */ 209 DATE_3_DDMMYYYY /* use 3 fields with 4-digit year */ 210 }; 211 212 /* results for 'field_init()' 213 * 214 * Note: If a checksum is present, the checksum test must pass OK or the 215 * sentence is tagged invalid. 216 */ 217 #define CHECK_EMPTY -1 /* no data */ 218 #define CHECK_INVALID 0 /* not a valid NMEA sentence */ 219 #define CHECK_VALID 1 /* valid but without checksum */ 220 #define CHECK_CSVALID 2 /* valid with checksum OK */ 221 222 /* 223 * Unit control structure 224 */ 225 typedef struct { 226 #ifdef HAVE_PPSAPI 227 struct refclock_atom atom; /* PPSAPI structure */ 228 int ppsapi_fd; /* fd used with PPSAPI */ 229 u_char ppsapi_tried; /* attempt PPSAPI once */ 230 u_char ppsapi_lit; /* time_pps_create() worked */ 231 u_char ppsapi_gate; /* system is on PPS */ 232 #endif /* HAVE_PPSAPI */ 233 u_char gps_time; /* use GPS time, not UTC */ 234 u_short century_cache; /* cached current century */ 235 l_fp last_reftime; /* last processed reference stamp */ 236 short epoch_warp; /* last epoch warp, for logging */ 237 /* tally stats, reset each poll cycle */ 238 struct 239 { 240 u_int total; 241 u_int accepted; 242 u_int rejected; /* GPS said not enough signal */ 243 u_int malformed; /* Bad checksum, invalid date or time */ 244 u_int filtered; /* mode bits, not GPZDG, same second */ 245 u_int pps_used; 246 } 247 tally; 248 /* per sentence checksum seen flag */ 249 u_char cksum_type[NMEA_ARRAY_SIZE]; 250 } nmea_unit; 251 252 /* 253 * helper for faster field access 254 */ 255 typedef struct { 256 char *base; /* buffer base */ 257 char *cptr; /* current field ptr */ 258 int blen; /* buffer length */ 259 int cidx; /* current field index */ 260 } nmea_data; 261 262 /* 263 * NMEA gps week/time information 264 * This record contains the number of weeks since 1980-01-06 modulo 265 * 1024, the seconds elapsed since start of the week, and the number of 266 * leap seconds that are the difference between GPS and UTC time scale. 267 */ 268 typedef struct { 269 u_int32 wt_time; /* seconds since weekstart */ 270 u_short wt_week; /* week number */ 271 short wt_leap; /* leap seconds */ 272 } gps_weektm; 273 274 /* 275 * The GPS week time scale starts on Sunday, 1980-01-06. We need the 276 * rata die number of this day. 277 */ 278 #ifndef DAY_GPS_STARTS 279 #define DAY_GPS_STARTS 722820 280 #endif 281 282 /* 283 * Function prototypes 284 */ 285 static void nmea_init (void); 286 static int nmea_start (int, struct peer *); 287 static void nmea_shutdown (int, struct peer *); 288 static void nmea_receive (struct recvbuf *); 289 static void nmea_poll (int, struct peer *); 290 #ifdef HAVE_PPSAPI 291 static void nmea_control (int, const struct refclockstat *, 292 struct refclockstat *, struct peer *); 293 #define NMEA_CONTROL nmea_control 294 #else 295 #define NMEA_CONTROL noentry 296 #endif /* HAVE_PPSAPI */ 297 static void nmea_timer (int, struct peer *); 298 299 /* parsing helpers */ 300 static int field_init (nmea_data * data, char * cp, int len); 301 static char * field_parse (nmea_data * data, int fn); 302 static void field_wipe (nmea_data * data, ...); 303 static u_char parse_qual (nmea_data * data, int idx, 304 char tag, int inv); 305 static int parse_time (struct calendar * jd, long * nsec, 306 nmea_data *, int idx); 307 static int parse_date (struct calendar *jd, nmea_data*, 308 int idx, enum date_fmt fmt); 309 static int parse_weekdata (gps_weektm *, nmea_data *, 310 int weekidx, int timeidx, int leapidx); 311 /* calendar / date helpers */ 312 static int unfold_day (struct calendar * jd, u_int32 rec_ui); 313 static int unfold_century (struct calendar * jd, u_int32 rec_ui); 314 static int gpsfix_century (struct calendar * jd, const gps_weektm * wd, 315 u_short * ccentury); 316 static l_fp eval_gps_time (struct peer * peer, const struct calendar * gpst, 317 const struct timespec * gpso, const l_fp * xrecv); 318 319 static int nmead_open (const char * device); 320 static void save_ltc (struct refclockproc * const, const char * const, 321 size_t); 322 323 /* 324 * If we want the driver to ouput sentences, too: re-enable the send 325 * support functions by defining NMEA_WRITE_SUPPORT to non-zero... 326 */ 327 #if NMEA_WRITE_SUPPORT 328 329 static void gps_send(int, const char *, struct peer *); 330 # ifdef SYS_WINNT 331 # undef write /* ports/winnt/include/config.h: #define write _write */ 332 extern int async_write(int, const void *, unsigned int); 333 # define write(fd, data, octets) async_write(fd, data, octets) 334 # endif /* SYS_WINNT */ 335 336 #endif /* NMEA_WRITE_SUPPORT */ 337 338 static int32_t g_gpsMinBase; 339 static int32_t g_gpsMinYear; 340 341 /* 342 * ------------------------------------------------------------------- 343 * Transfer vector 344 * ------------------------------------------------------------------- 345 */ 346 struct refclock refclock_nmea = { 347 nmea_start, /* start up driver */ 348 nmea_shutdown, /* shut down driver */ 349 nmea_poll, /* transmit poll message */ 350 NMEA_CONTROL, /* fudge control */ 351 nmea_init, /* initialize driver */ 352 noentry, /* buginfo */ 353 nmea_timer /* called once per second */ 354 }; 355 356 /* 357 * ------------------------------------------------------------------- 358 * nmea_init - initialise data 359 * 360 * calculates a few runtime constants that cannot be made compile time 361 * constants. 362 * ------------------------------------------------------------------- 363 */ 364 static void 365 nmea_init(void) 366 { 367 struct calendar date; 368 369 /* - calculate min. base value for GPS epoch & century unfolding 370 * This assumes that the build system was roughly in sync with 371 * the world, and that really synchronising to a time before the 372 * program was created would be unsafe or insane. If the build 373 * date cannot be stablished, at least use the start of GPS 374 * (1980-01-06) as minimum, because GPS can surely NOT 375 * synchronise beyond it's own big bang. We add a little safety 376 * margin for the fuzziness of the build date, which is in an 377 * undefined time zone. */ 378 if (ntpcal_get_build_date(&date)) 379 g_gpsMinBase = ntpcal_date_to_rd(&date) - 2; 380 else 381 g_gpsMinBase = 0; 382 383 if (g_gpsMinBase < DAY_GPS_STARTS) 384 g_gpsMinBase = DAY_GPS_STARTS; 385 386 ntpcal_rd_to_date(&date, g_gpsMinBase); 387 g_gpsMinYear = date.year; 388 g_gpsMinBase -= DAY_NTP_STARTS; 389 } 390 391 /* 392 * ------------------------------------------------------------------- 393 * nmea_start - open the GPS devices and initialize data for processing 394 * 395 * return 0 on error, 1 on success. Even on error the peer structures 396 * must be in a state that permits 'nmea_shutdown()' to clean up all 397 * resources, because it will be called immediately to do so. 398 * ------------------------------------------------------------------- 399 */ 400 static int 401 nmea_start( 402 int unit, 403 struct peer * peer 404 ) 405 { 406 struct refclockproc * const pp = peer->procptr; 407 nmea_unit * const up = emalloc_zero(sizeof(*up)); 408 char device[20]; 409 size_t devlen; 410 u_int32 rate; 411 int baudrate; 412 const char * baudtext; 413 414 415 /* Get baudrate choice from mode byte bits 4/5/6 */ 416 rate = (peer->ttl & NMEA_BAUDRATE_MASK) >> NMEA_BAUDRATE_SHIFT; 417 418 switch (rate) { 419 case 0: 420 baudrate = SPEED232; 421 baudtext = "4800"; 422 break; 423 case 1: 424 baudrate = B9600; 425 baudtext = "9600"; 426 break; 427 case 2: 428 baudrate = B19200; 429 baudtext = "19200"; 430 break; 431 case 3: 432 baudrate = B38400; 433 baudtext = "38400"; 434 break; 435 #ifdef B57600 436 case 4: 437 baudrate = B57600; 438 baudtext = "57600"; 439 break; 440 #endif 441 #ifdef B115200 442 case 5: 443 baudrate = B115200; 444 baudtext = "115200"; 445 break; 446 #endif 447 default: 448 baudrate = SPEED232; 449 baudtext = "4800 (fallback)"; 450 break; 451 } 452 453 /* Allocate and initialize unit structure */ 454 pp->unitptr = (caddr_t)up; 455 pp->io.fd = -1; 456 pp->io.clock_recv = nmea_receive; 457 pp->io.srcclock = peer; 458 pp->io.datalen = 0; 459 /* force change detection on first valid message */ 460 memset(&up->last_reftime, 0xFF, sizeof(up->last_reftime)); 461 /* force checksum on GPRMC, see below */ 462 up->cksum_type[NMEA_GPRMC] = CHECK_CSVALID; 463 #ifdef HAVE_PPSAPI 464 up->ppsapi_fd = -1; 465 #endif 466 ZERO(up->tally); 467 468 /* Initialize miscellaneous variables */ 469 peer->precision = PRECISION; 470 pp->clockdesc = DESCRIPTION; 471 memcpy(&pp->refid, REFID, 4); 472 473 /* Open serial port. Use CLK line discipline, if available. */ 474 devlen = snprintf(device, sizeof(device), DEVICE, unit); 475 if (devlen >= sizeof(device)) { 476 msyslog(LOG_ERR, "%s clock device name too long", 477 refnumtoa(&peer->srcadr)); 478 return FALSE; /* buffer overflow */ 479 } 480 pp->io.fd = refclock_open(device, baudrate, LDISC_CLK); 481 if (0 >= pp->io.fd) { 482 pp->io.fd = nmead_open(device); 483 if (-1 == pp->io.fd) 484 return FALSE; 485 } 486 LOGIF(CLOCKINFO, (LOG_NOTICE, "%s serial %s open at %s bps", 487 refnumtoa(&peer->srcadr), device, baudtext)); 488 489 /* succeed if this clock can be added */ 490 return io_addclock(&pp->io) != 0; 491 } 492 493 494 /* 495 * ------------------------------------------------------------------- 496 * nmea_shutdown - shut down a GPS clock 497 * 498 * NOTE this routine is called after nmea_start() returns failure, 499 * as well as during a normal shutdown due to ntpq :config unpeer. 500 * ------------------------------------------------------------------- 501 */ 502 static void 503 nmea_shutdown( 504 int unit, 505 struct peer * peer 506 ) 507 { 508 struct refclockproc * const pp = peer->procptr; 509 nmea_unit * const up = (nmea_unit *)pp->unitptr; 510 511 UNUSED_ARG(unit); 512 513 if (up != NULL) { 514 #ifdef HAVE_PPSAPI 515 if (up->ppsapi_lit) 516 time_pps_destroy(up->atom.handle); 517 if (up->ppsapi_tried && up->ppsapi_fd != pp->io.fd) 518 close(up->ppsapi_fd); 519 #endif 520 free(up); 521 } 522 pp->unitptr = (caddr_t)NULL; 523 if (-1 != pp->io.fd) 524 io_closeclock(&pp->io); 525 pp->io.fd = -1; 526 } 527 528 /* 529 * ------------------------------------------------------------------- 530 * nmea_control - configure fudge params 531 * ------------------------------------------------------------------- 532 */ 533 #ifdef HAVE_PPSAPI 534 static void 535 nmea_control( 536 int unit, 537 const struct refclockstat * in_st, 538 struct refclockstat * out_st, 539 struct peer * peer 540 ) 541 { 542 struct refclockproc * const pp = peer->procptr; 543 nmea_unit * const up = (nmea_unit *)pp->unitptr; 544 545 char device[32]; 546 size_t devlen; 547 548 UNUSED_ARG(in_st); 549 UNUSED_ARG(out_st); 550 551 /* 552 * PPS control 553 * 554 * If /dev/gpspps$UNIT can be opened that will be used for 555 * PPSAPI. Otherwise, the GPS serial device /dev/gps$UNIT 556 * already opened is used for PPSAPI as well. (This might not 557 * work, in which case the PPS API remains unavailable...) 558 */ 559 560 /* Light up the PPSAPI interface if not yet attempted. */ 561 if ((CLK_FLAG1 & pp->sloppyclockflag) && !up->ppsapi_tried) { 562 up->ppsapi_tried = TRUE; 563 devlen = snprintf(device, sizeof(device), PPSDEV, unit); 564 if (devlen < sizeof(device)) { 565 up->ppsapi_fd = open(device, PPSOPENMODE, 566 S_IRUSR | S_IWUSR); 567 } else { 568 up->ppsapi_fd = -1; 569 msyslog(LOG_ERR, "%s PPS device name too long", 570 refnumtoa(&peer->srcadr)); 571 } 572 if (-1 == up->ppsapi_fd) 573 up->ppsapi_fd = pp->io.fd; 574 if (refclock_ppsapi(up->ppsapi_fd, &up->atom)) { 575 /* use the PPS API for our own purposes now. */ 576 up->ppsapi_lit = refclock_params( 577 pp->sloppyclockflag, &up->atom); 578 if (!up->ppsapi_lit) { 579 /* failed to configure, drop PPS unit */ 580 time_pps_destroy(up->atom.handle); 581 msyslog(LOG_WARNING, 582 "%s set PPSAPI params fails", 583 refnumtoa(&peer->srcadr)); 584 } 585 /* note: the PPS I/O handle remains valid until 586 * flag1 is cleared or the clock is shut down. 587 */ 588 } else { 589 msyslog(LOG_WARNING, 590 "%s flag1 1 but PPSAPI fails", 591 refnumtoa(&peer->srcadr)); 592 } 593 } 594 595 /* shut down PPS API if activated */ 596 if (!(CLK_FLAG1 & pp->sloppyclockflag) && up->ppsapi_tried) { 597 /* shutdown PPS API */ 598 if (up->ppsapi_lit) 599 time_pps_destroy(up->atom.handle); 600 up->atom.handle = 0; 601 /* close/drop PPS fd */ 602 if (up->ppsapi_fd != pp->io.fd) 603 close(up->ppsapi_fd); 604 up->ppsapi_fd = -1; 605 606 /* clear markers and peer items */ 607 up->ppsapi_gate = FALSE; 608 up->ppsapi_lit = FALSE; 609 up->ppsapi_tried = FALSE; 610 611 peer->flags &= ~FLAG_PPS; 612 peer->precision = PRECISION; 613 } 614 } 615 #endif /* HAVE_PPSAPI */ 616 617 /* 618 * ------------------------------------------------------------------- 619 * nmea_timer - called once per second 620 * this only polls (older?) Oncore devices now 621 * 622 * Usually 'nmea_receive()' can get a timestamp every second, but at 623 * least one Motorola unit needs prompting each time. Doing so in 624 * 'nmea_poll()' gives only one sample per poll cycle, which actually 625 * defeats the purpose of the median filter. Polling once per second 626 * seems a much better idea. 627 * ------------------------------------------------------------------- 628 */ 629 static void 630 nmea_timer( 631 int unit, 632 struct peer * peer 633 ) 634 { 635 #if NMEA_WRITE_SUPPORT 636 637 struct refclockproc * const pp = peer->procptr; 638 639 UNUSED_ARG(unit); 640 641 if (-1 != pp->io.fd) /* any mode bits to evaluate here? */ 642 gps_send(pp->io.fd, "$PMOTG,RMC,0000*1D\r\n", peer); 643 #else 644 645 UNUSED_ARG(unit); 646 UNUSED_ARG(peer); 647 648 #endif /* NMEA_WRITE_SUPPORT */ 649 } 650 651 #ifdef HAVE_PPSAPI 652 /* 653 * ------------------------------------------------------------------- 654 * refclock_ppsrelate(...) -- correlate with PPS edge 655 * 656 * This function is used to correlate a receive time stamp and a 657 * reference time with a PPS edge time stamp. It applies the necessary 658 * fudges (fudge1 for PPS, fudge2 for receive time) and then tries to 659 * move the receive time stamp to the corresponding edge. This can warp 660 * into future, if a transmission delay of more than 500ms is not 661 * compensated with a corresponding fudge time2 value, because then the 662 * next PPS edge is nearer than the last. (Similiar to what the PPS ATOM 663 * driver does, but we deal with full time stamps here, not just phase 664 * shift information.) Likewise, a negative fudge time2 value must be 665 * used if the reference time stamp correlates with the *following* PPS 666 * pulse. 667 * 668 * Note that the receive time fudge value only needs to move the receive 669 * stamp near a PPS edge but that close proximity is not required; 670 * +/-100ms precision should be enough. But since the fudge value will 671 * probably also be used to compensate the transmission delay when no 672 * PPS edge can be related to the time stamp, it's best to get it as 673 * close as possible. 674 * 675 * It should also be noted that the typical use case is matching to the 676 * preceeding edge, as most units relate their sentences to the current 677 * second. 678 * 679 * The function returns PPS_RELATE_NONE (0) if no PPS edge correlation 680 * can be fixed; PPS_RELATE_EDGE (1) when a PPS edge could be fixed, but 681 * the distance to the reference time stamp is too big (exceeds 682 * +/-400ms) and the ATOM driver PLL cannot be used to fix the phase; 683 * and PPS_RELATE_PHASE (2) when the ATOM driver PLL code can be used. 684 * 685 * On output, the receive time stamp is replaced with the corresponding 686 * PPS edge time if a fix could be made; the PPS fudge is updated to 687 * reflect the proper fudge time to apply. (This implies that 688 * 'refclock_process_offset()' must be used!) 689 * ------------------------------------------------------------------- 690 */ 691 #define PPS_RELATE_NONE 0 /* no pps correlation possible */ 692 #define PPS_RELATE_EDGE 1 /* recv time fixed, no phase lock */ 693 #define PPS_RELATE_PHASE 2 /* recv time fixed, phase lock ok */ 694 695 static int 696 refclock_ppsrelate( 697 const struct refclockproc * pp , /* for sanity */ 698 const struct refclock_atom * ap , /* for PPS io */ 699 const l_fp * reftime , 700 l_fp * rd_stamp, /* i/o read stamp */ 701 double pp_fudge, /* pps fudge */ 702 double * rd_fudge /* i/o read fudge */ 703 ) 704 { 705 pps_info_t pps_info; 706 struct timespec timeout; 707 l_fp pp_stamp, pp_delta; 708 double delta, idelta; 709 710 if (pp->leap == LEAP_NOTINSYNC) 711 return PPS_RELATE_NONE; /* clock is insane, no chance */ 712 713 ZERO(timeout); 714 ZERO(pps_info); 715 if (time_pps_fetch(ap->handle, PPS_TSFMT_TSPEC, 716 &pps_info, &timeout) < 0) 717 return PPS_RELATE_NONE; /* can't get time stamps */ 718 719 /* get last active PPS edge before receive */ 720 if (ap->pps_params.mode & PPS_CAPTUREASSERT) 721 timeout = pps_info.assert_timestamp; 722 else if (ap->pps_params.mode & PPS_CAPTURECLEAR) 723 timeout = pps_info.clear_timestamp; 724 else 725 return PPS_RELATE_NONE; /* WHICH edge, please?!? */ 726 727 /* get delta between receive time and PPS time */ 728 pp_stamp = tspec_stamp_to_lfp(timeout); 729 pp_delta = *rd_stamp; 730 L_SUB(&pp_delta, &pp_stamp); 731 LFPTOD(&pp_delta, delta); 732 delta += pp_fudge - *rd_fudge; 733 if (fabs(delta) > 1.5) 734 return PPS_RELATE_NONE; /* PPS timeout control */ 735 736 /* eventually warp edges, check phase */ 737 idelta = floor(delta + 0.5); 738 pp_fudge -= idelta; 739 delta -= idelta; 740 if (fabs(delta) > 0.45) 741 return PPS_RELATE_NONE; /* dead band control */ 742 743 /* we actually have a PPS edge to relate with! */ 744 *rd_stamp = pp_stamp; 745 *rd_fudge = pp_fudge; 746 747 /* if whole system out-of-sync, do not try to PLL */ 748 if (sys_leap == LEAP_NOTINSYNC) 749 return PPS_RELATE_EDGE; /* cannot PLL with atom code */ 750 751 /* check against reftime if ATOM PLL can be used */ 752 pp_delta = *reftime; 753 L_SUB(&pp_delta, &pp_stamp); 754 LFPTOD(&pp_delta, delta); 755 delta += pp_fudge; 756 if (fabs(delta) > 0.45) 757 return PPS_RELATE_EDGE; /* cannot PLL with atom code */ 758 759 /* all checks passed, gets an AAA rating here! */ 760 return PPS_RELATE_PHASE; /* can PLL with atom code */ 761 } 762 #endif /* HAVE_PPSAPI */ 763 764 /* 765 * ------------------------------------------------------------------- 766 * nmea_receive - receive data from the serial interface 767 * 768 * This is the workhorse for NMEA data evaluation: 769 * 770 * + it checks all NMEA data, and rejects sentences that are not valid 771 * NMEA sentences 772 * + it checks whether a sentence is known and to be used 773 * + it parses the time and date data from the NMEA data string and 774 * augments the missing bits. (century in dat, whole date, ...) 775 * + it rejects data that is not from the first accepted sentence in a 776 * burst 777 * + it eventually replaces the receive time with the PPS edge time. 778 * + it feeds the data to the internal processing stages. 779 * ------------------------------------------------------------------- 780 */ 781 static void 782 nmea_receive( 783 struct recvbuf * rbufp 784 ) 785 { 786 /* declare & init control structure ptrs */ 787 struct peer * const peer = rbufp->recv_peer; 788 struct refclockproc * const pp = peer->procptr; 789 nmea_unit * const up = (nmea_unit*)pp->unitptr; 790 791 /* Use these variables to hold data until we decide its worth keeping */ 792 nmea_data rdata; 793 char rd_lastcode[BMAX]; 794 l_fp rd_timestamp, rd_reftime; 795 int rd_lencode; 796 double rd_fudge; 797 798 /* working stuff */ 799 struct calendar date; /* to keep & convert the time stamp */ 800 struct timespec tofs; /* offset to full-second reftime */ 801 gps_weektm gpsw; /* week time storage */ 802 /* results of sentence/date/time parsing */ 803 u_char sentence; /* sentence tag */ 804 int checkres; 805 char * cp; 806 int rc_date; 807 int rc_time; 808 809 /* make sure data has defined pristine state */ 810 ZERO(tofs); 811 ZERO(date); 812 ZERO(gpsw); 813 sentence = 0; // Should never be needed. 814 rc_date = 0; // Should never be needed. 815 rc_time = 0; // Should never be needed. 816 817 /* 818 * Read the timecode and timestamp, then initialise field 819 * processing. The <CR><LF> at the NMEA line end is translated 820 * to <LF><LF> by the terminal input routines on most systems, 821 * and this gives us one spurious empty read per record which we 822 * better ignore silently. 823 */ 824 rd_lencode = refclock_gtlin(rbufp, rd_lastcode, 825 sizeof(rd_lastcode), &rd_timestamp); 826 checkres = field_init(&rdata, rd_lastcode, rd_lencode); 827 switch (checkres) { 828 829 case CHECK_INVALID: 830 DPRINTF(1, ("%s invalid data: '%s'\n", 831 refnumtoa(&peer->srcadr), rd_lastcode)); 832 refclock_report(peer, CEVNT_BADREPLY); 833 return; 834 835 case CHECK_EMPTY: 836 return; 837 838 default: 839 DPRINTF(1, ("%s gpsread: %d '%s'\n", 840 refnumtoa(&peer->srcadr), rd_lencode, 841 rd_lastcode)); 842 break; 843 } 844 up->tally.total++; 845 846 /* 847 * --> below this point we have a valid NMEA sentence <-- 848 * 849 * Check sentence name. Skip first 2 chars (talker ID) in most 850 * cases, to allow for $GLGGA and $GPGGA etc. Since the name 851 * field has at least 5 chars we can simply shift the field 852 * start. 853 */ 854 cp = field_parse(&rdata, 0); 855 if (strncmp(cp + 2, "RMC,", 4) == 0) 856 sentence = NMEA_GPRMC; 857 else if (strncmp(cp + 2, "GGA,", 4) == 0) 858 sentence = NMEA_GPGGA; 859 else if (strncmp(cp + 2, "GLL,", 4) == 0) 860 sentence = NMEA_GPGLL; 861 else if (strncmp(cp + 2, "ZDA,", 4) == 0) 862 sentence = NMEA_GPZDA; 863 else if (strncmp(cp + 2, "ZDG,", 4) == 0) 864 sentence = NMEA_GPZDG; 865 else if (strncmp(cp, "PGRMF,", 6) == 0) 866 sentence = NMEA_PGRMF; 867 else 868 return; /* not something we know about */ 869 870 /* Eventually output delay measurement now. */ 871 if (peer->ttl & NMEA_DELAYMEAS_MASK) { 872 mprintf_clock_stats(&peer->srcadr, "delay %0.6f %.*s", 873 ldexp(rd_timestamp.l_uf, -32), 874 (int)(strchr(rd_lastcode, ',') - rd_lastcode), 875 rd_lastcode); 876 } 877 878 /* See if I want to process this message type */ 879 if ((peer->ttl & NMEA_MESSAGE_MASK) && 880 !(peer->ttl & sentence_mode[sentence])) { 881 up->tally.filtered++; 882 return; 883 } 884 885 /* 886 * make sure it came in clean 887 * 888 * Apparently, older NMEA specifications (which are expensive) 889 * did not require the checksum for all sentences. $GPMRC is 890 * the only one so far identified which has always been required 891 * to include a checksum. 892 * 893 * Today, most NMEA GPS receivers checksum every sentence. To 894 * preserve its error-detection capabilities with modern GPSes 895 * while allowing operation without checksums on all but $GPMRC, 896 * we keep track of whether we've ever seen a valid checksum on 897 * a given sentence, and if so, reject future instances without 898 * checksum. ('up->cksum_type[NMEA_GPRMC]' is set in 899 * 'nmea_start()' to enforce checksums for $GPRMC right from the 900 * start.) 901 */ 902 if (up->cksum_type[sentence] <= (u_char)checkres) { 903 up->cksum_type[sentence] = (u_char)checkres; 904 } else { 905 DPRINTF(1, ("%s checksum missing: '%s'\n", 906 refnumtoa(&peer->srcadr), rd_lastcode)); 907 refclock_report(peer, CEVNT_BADREPLY); 908 up->tally.malformed++; 909 return; 910 } 911 912 /* 913 * $GPZDG provides GPS time not UTC, and the two mix poorly. 914 * Once have processed a $GPZDG, do not process any further UTC 915 * sentences (all but $GPZDG currently). 916 */ 917 if (up->gps_time && NMEA_GPZDG != sentence) { 918 up->tally.filtered++; 919 return; 920 } 921 922 DPRINTF(1, ("%s processing %d bytes, timecode '%s'\n", 923 refnumtoa(&peer->srcadr), rd_lencode, rd_lastcode)); 924 925 /* 926 * Grab fields depending on clock string type and possibly wipe 927 * sensitive data from the last timecode. 928 */ 929 switch (sentence) { 930 931 case NMEA_GPRMC: 932 /* Check quality byte, fetch data & time */ 933 rc_time = parse_time(&date, &tofs.tv_nsec, &rdata, 1); 934 pp->leap = parse_qual(&rdata, 2, 'A', 0); 935 rc_date = parse_date(&date, &rdata, 9, DATE_1_DDMMYY) 936 && unfold_century(&date, rd_timestamp.l_ui); 937 if (CLK_FLAG4 & pp->sloppyclockflag) 938 field_wipe(&rdata, 3, 4, 5, 6, -1); 939 break; 940 941 case NMEA_GPGGA: 942 /* Check quality byte, fetch time only */ 943 rc_time = parse_time(&date, &tofs.tv_nsec, &rdata, 1); 944 pp->leap = parse_qual(&rdata, 6, '0', 1); 945 rc_date = unfold_day(&date, rd_timestamp.l_ui); 946 if (CLK_FLAG4 & pp->sloppyclockflag) 947 field_wipe(&rdata, 2, 4, -1); 948 break; 949 950 case NMEA_GPGLL: 951 /* Check quality byte, fetch time only */ 952 rc_time = parse_time(&date, &tofs.tv_nsec, &rdata, 5); 953 pp->leap = parse_qual(&rdata, 6, 'A', 0); 954 rc_date = unfold_day(&date, rd_timestamp.l_ui); 955 if (CLK_FLAG4 & pp->sloppyclockflag) 956 field_wipe(&rdata, 1, 3, -1); 957 break; 958 959 case NMEA_GPZDA: 960 /* No quality. Assume best, fetch time & full date */ 961 pp->leap = LEAP_NOWARNING; 962 rc_time = parse_time(&date, &tofs.tv_nsec, &rdata, 1); 963 rc_date = parse_date(&date, &rdata, 2, DATE_3_DDMMYYYY); 964 break; 965 966 case NMEA_GPZDG: 967 /* Check quality byte, fetch time & full date */ 968 rc_time = parse_time(&date, &tofs.tv_nsec, &rdata, 1); 969 rc_date = parse_date(&date, &rdata, 2, DATE_3_DDMMYYYY); 970 pp->leap = parse_qual(&rdata, 4, '0', 1); 971 tofs.tv_sec = -1; /* GPZDG is following second */ 972 break; 973 974 case NMEA_PGRMF: 975 /* get date, time, qualifier and GPS weektime. We need 976 * date and time-of-day for the century fix, so we read 977 * them first. 978 */ 979 rc_date = parse_weekdata(&gpsw, &rdata, 1, 2, 5) 980 && parse_date(&date, &rdata, 3, DATE_1_DDMMYY); 981 rc_time = parse_time(&date, &tofs.tv_nsec, &rdata, 4); 982 pp->leap = parse_qual(&rdata, 11, '0', 1); 983 rc_date = rc_date 984 && gpsfix_century(&date, &gpsw, &up->century_cache); 985 if (CLK_FLAG4 & pp->sloppyclockflag) 986 field_wipe(&rdata, 6, 8, -1); 987 break; 988 989 default: 990 INVARIANT(0); /* Coverity 97123 */ 991 return; 992 } 993 994 /* Check sanity of time-of-day. */ 995 if (rc_time == 0) { /* no time or conversion error? */ 996 checkres = CEVNT_BADTIME; 997 up->tally.malformed++; 998 } 999 /* Check sanity of date. */ 1000 else if (rc_date == 0) {/* no date or conversion error? */ 1001 checkres = CEVNT_BADDATE; 1002 up->tally.malformed++; 1003 } 1004 /* check clock sanity; [bug 2143] */ 1005 else if (pp->leap == LEAP_NOTINSYNC) { /* no good status? */ 1006 checkres = CEVNT_BADREPLY; 1007 up->tally.rejected++; 1008 } 1009 else 1010 checkres = -1; 1011 1012 if (checkres != -1) { 1013 save_ltc(pp, rd_lastcode, rd_lencode); 1014 refclock_report(peer, checkres); 1015 return; 1016 } 1017 1018 DPRINTF(1, ("%s effective timecode: %04u-%02u-%02u %02d:%02d:%02d\n", 1019 refnumtoa(&peer->srcadr), 1020 date.year, date.month, date.monthday, 1021 date.hour, date.minute, date.second)); 1022 1023 /* Check if we must enter GPS time mode; log so if we do */ 1024 if (!up->gps_time && (sentence == NMEA_GPZDG)) { 1025 msyslog(LOG_INFO, "%s using GPS time as if it were UTC", 1026 refnumtoa(&peer->srcadr)); 1027 up->gps_time = 1; 1028 } 1029 1030 /* 1031 * Get the reference time stamp from the calendar buffer. 1032 * Process the new sample in the median filter and determine the 1033 * timecode timestamp, but only if the PPS is not in control. 1034 * Discard sentence if reference time did not change. 1035 */ 1036 rd_reftime = eval_gps_time(peer, &date, &tofs, &rd_timestamp); 1037 if (L_ISEQU(&up->last_reftime, &rd_reftime)) { 1038 /* Do not touch pp->a_lastcode on purpose! */ 1039 up->tally.filtered++; 1040 return; 1041 } 1042 up->last_reftime = rd_reftime; 1043 rd_fudge = pp->fudgetime2; 1044 1045 DPRINTF(1, ("%s using '%s'\n", 1046 refnumtoa(&peer->srcadr), rd_lastcode)); 1047 1048 /* Data will be accepted. Update stats & log data. */ 1049 up->tally.accepted++; 1050 save_ltc(pp, rd_lastcode, rd_lencode); 1051 pp->lastrec = rd_timestamp; 1052 1053 #ifdef HAVE_PPSAPI 1054 /* 1055 * If we have PPS running, we try to associate the sentence 1056 * with the last active edge of the PPS signal. 1057 */ 1058 if (up->ppsapi_lit) 1059 switch (refclock_ppsrelate( 1060 pp, &up->atom, &rd_reftime, &rd_timestamp, 1061 pp->fudgetime1, &rd_fudge)) 1062 { 1063 case PPS_RELATE_PHASE: 1064 up->ppsapi_gate = TRUE; 1065 peer->precision = PPS_PRECISION; 1066 peer->flags |= FLAG_PPS; 1067 DPRINTF(2, ("%s PPS_RELATE_PHASE\n", 1068 refnumtoa(&peer->srcadr))); 1069 up->tally.pps_used++; 1070 break; 1071 1072 case PPS_RELATE_EDGE: 1073 up->ppsapi_gate = TRUE; 1074 peer->precision = PPS_PRECISION; 1075 DPRINTF(2, ("%s PPS_RELATE_EDGE\n", 1076 refnumtoa(&peer->srcadr))); 1077 break; 1078 1079 case PPS_RELATE_NONE: 1080 default: 1081 /* 1082 * Resetting precision and PPS flag is done in 1083 * 'nmea_poll', since it might be a glitch. But 1084 * at the end of the poll cycle we know... 1085 */ 1086 DPRINTF(2, ("%s PPS_RELATE_NONE\n", 1087 refnumtoa(&peer->srcadr))); 1088 break; 1089 } 1090 #endif /* HAVE_PPSAPI */ 1091 1092 refclock_process_offset(pp, rd_reftime, rd_timestamp, rd_fudge); 1093 } 1094 1095 1096 /* 1097 * ------------------------------------------------------------------- 1098 * nmea_poll - called by the transmit procedure 1099 * 1100 * Does the necessary bookkeeping stuff to keep the reported state of 1101 * the clock in sync with reality. 1102 * 1103 * We go to great pains to avoid changing state here, since there may 1104 * be more than one eavesdropper receiving the same timecode. 1105 * ------------------------------------------------------------------- 1106 */ 1107 static void 1108 nmea_poll( 1109 int unit, 1110 struct peer * peer 1111 ) 1112 { 1113 struct refclockproc * const pp = peer->procptr; 1114 nmea_unit * const up = (nmea_unit *)pp->unitptr; 1115 1116 /* 1117 * Process median filter samples. If none received, declare a 1118 * timeout and keep going. 1119 */ 1120 #ifdef HAVE_PPSAPI 1121 /* 1122 * If we don't have PPS pulses and time stamps, turn PPS down 1123 * for now. 1124 */ 1125 if (!up->ppsapi_gate) { 1126 peer->flags &= ~FLAG_PPS; 1127 peer->precision = PRECISION; 1128 } else { 1129 up->ppsapi_gate = FALSE; 1130 } 1131 #endif /* HAVE_PPSAPI */ 1132 1133 /* 1134 * If the median filter is empty, claim a timeout. Else process 1135 * the input data and keep the stats going. 1136 */ 1137 if (pp->coderecv == pp->codeproc) { 1138 refclock_report(peer, CEVNT_TIMEOUT); 1139 } else { 1140 pp->polls++; 1141 pp->lastref = pp->lastrec; 1142 refclock_receive(peer); 1143 } 1144 1145 /* 1146 * If extended logging is required, write the tally stats to the 1147 * clockstats file; otherwise just do a normal clock stats 1148 * record. Clear the tally stats anyway. 1149 */ 1150 if (peer->ttl & NMEA_EXTLOG_MASK) { 1151 /* Log & reset counters with extended logging */ 1152 const char *nmea = pp->a_lastcode; 1153 if (*nmea == '\0') nmea = "(none)"; 1154 mprintf_clock_stats( 1155 &peer->srcadr, "%s %u %u %u %u %u %u", 1156 nmea, 1157 up->tally.total, up->tally.accepted, 1158 up->tally.rejected, up->tally.malformed, 1159 up->tally.filtered, up->tally.pps_used); 1160 } else { 1161 record_clock_stats(&peer->srcadr, pp->a_lastcode); 1162 } 1163 ZERO(up->tally); 1164 } 1165 1166 /* 1167 * ------------------------------------------------------------------- 1168 * Save the last timecode string, making sure it's properly truncated 1169 * if necessary and NUL terminated in any case. 1170 */ 1171 static void 1172 save_ltc( 1173 struct refclockproc * const pp, 1174 const char * const tc, 1175 size_t len 1176 ) 1177 { 1178 if (len >= sizeof(pp->a_lastcode)) 1179 len = sizeof(pp->a_lastcode) - 1; 1180 pp->lencode = (u_short)len; 1181 memcpy(pp->a_lastcode, tc, len); 1182 pp->a_lastcode[len] = '\0'; 1183 } 1184 1185 1186 #if NMEA_WRITE_SUPPORT 1187 /* 1188 * ------------------------------------------------------------------- 1189 * gps_send(fd, cmd, peer) Sends a command to the GPS receiver. 1190 * as in gps_send(fd, "rqts,u", peer); 1191 * 1192 * If 'cmd' starts with a '$' it is assumed that this command is in raw 1193 * format, that is, starts with '$', ends with '<cr><lf>' and that any 1194 * checksum is correctly provided; the command will be send 'as is' in 1195 * that case. Otherwise the function will create the necessary frame 1196 * (start char, chksum, final CRLF) on the fly. 1197 * 1198 * We don't currently send any data, but would like to send RTCM SC104 1199 * messages for differential positioning. It should also give us better 1200 * time. Without a PPS output, we're Just fooling ourselves because of 1201 * the serial code paths 1202 * ------------------------------------------------------------------- 1203 */ 1204 static void 1205 gps_send( 1206 int fd, 1207 const char * cmd, 1208 struct peer * peer 1209 ) 1210 { 1211 /* $...*xy<CR><LF><NUL> add 7 */ 1212 char buf[NMEA_PROTO_MAXLEN + 7]; 1213 int len; 1214 u_char dcs; 1215 const u_char *beg, *end; 1216 1217 if (*cmd != '$') { 1218 /* get checksum and length */ 1219 beg = end = (const u_char*)cmd; 1220 dcs = 0; 1221 while (*end >= ' ' && *end != '*') 1222 dcs ^= *end++; 1223 len = end - beg; 1224 /* format into output buffer with overflow check */ 1225 len = snprintf(buf, sizeof(buf), "$%.*s*%02X\r\n", 1226 len, beg, dcs); 1227 if ((size_t)len >= sizeof(buf)) { 1228 DPRINTF(1, ("%s gps_send: buffer overflow for command '%s'\n", 1229 refnumtoa(&peer->srcadr), cmd)); 1230 return; /* game over player 1 */ 1231 } 1232 cmd = buf; 1233 } else { 1234 len = strlen(cmd); 1235 } 1236 1237 DPRINTF(1, ("%s gps_send: '%.*s'\n", refnumtoa(&peer->srcadr), 1238 len - 2, cmd)); 1239 1240 /* send out the whole stuff */ 1241 if (write(fd, cmd, len) == -1) 1242 refclock_report(peer, CEVNT_FAULT); 1243 } 1244 #endif /* NMEA_WRITE_SUPPORT */ 1245 1246 /* 1247 * ------------------------------------------------------------------- 1248 * helpers for faster field splitting 1249 * ------------------------------------------------------------------- 1250 * 1251 * set up a field record, check syntax and verify checksum 1252 * 1253 * format is $XXXXX,1,2,3,4*ML 1254 * 1255 * 8-bit XOR of characters between $ and * noninclusive is transmitted 1256 * in last two chars M and L holding most and least significant nibbles 1257 * in hex representation such as: 1258 * 1259 * $GPGLL,5057.970,N,00146.110,E,142451,A*27 1260 * $GPVTG,089.0,T,,,15.2,N,,*7F 1261 * 1262 * Some other constraints: 1263 * + The field name must at least 5 upcase characters or digits and must 1264 * start with a character. 1265 * + The checksum (if present) must be uppercase hex digits. 1266 * + The length of a sentence is limited to 80 characters (not including 1267 * the final CR/LF nor the checksum, but including the leading '$') 1268 * 1269 * Return values: 1270 * + CHECK_INVALID 1271 * The data does not form a valid NMEA sentence or a checksum error 1272 * occurred. 1273 * + CHECK_VALID 1274 * The data is a valid NMEA sentence but contains no checksum. 1275 * + CHECK_CSVALID 1276 * The data is a valid NMEA sentence and passed the checksum test. 1277 * ------------------------------------------------------------------- 1278 */ 1279 static int 1280 field_init( 1281 nmea_data * data, /* context structure */ 1282 char * cptr, /* start of raw data */ 1283 int dlen /* data len, not counting trailing NUL */ 1284 ) 1285 { 1286 u_char cs_l; /* checksum local computed */ 1287 u_char cs_r; /* checksum remote given */ 1288 char * eptr; /* buffer end end pointer */ 1289 char tmp; /* char buffer */ 1290 1291 cs_l = 0; 1292 cs_r = 0; 1293 /* some basic input constraints */ 1294 if (dlen < 0) 1295 dlen = 0; 1296 eptr = cptr + dlen; 1297 *eptr = '\0'; 1298 1299 /* load data context */ 1300 data->base = cptr; 1301 data->cptr = cptr; 1302 data->cidx = 0; 1303 data->blen = dlen; 1304 1305 /* syntax check follows here. check allowed character 1306 * sequences, updating the local computed checksum as we go. 1307 * 1308 * regex equiv: '^\$[A-Z][A-Z0-9]{4,}[^*]*(\*[0-9A-F]{2})?$' 1309 */ 1310 1311 /* -*- start character: '^\$' */ 1312 if (*cptr == '\0') 1313 return CHECK_EMPTY; 1314 if (*cptr++ != '$') 1315 return CHECK_INVALID; 1316 1317 /* -*- advance context beyond start character */ 1318 data->base++; 1319 data->cptr++; 1320 data->blen--; 1321 1322 /* -*- field name: '[A-Z][A-Z0-9]{4,},' */ 1323 if (*cptr < 'A' || *cptr > 'Z') 1324 return CHECK_INVALID; 1325 cs_l ^= *cptr++; 1326 while ((*cptr >= 'A' && *cptr <= 'Z') || 1327 (*cptr >= '0' && *cptr <= '9') ) 1328 cs_l ^= *cptr++; 1329 if (*cptr != ',' || (cptr - data->base) < NMEA_PROTO_IDLEN) 1330 return CHECK_INVALID; 1331 cs_l ^= *cptr++; 1332 1333 /* -*- data: '[^*]*' */ 1334 while (*cptr && *cptr != '*') 1335 cs_l ^= *cptr++; 1336 1337 /* -*- checksum field: (\*[0-9A-F]{2})?$ */ 1338 if (*cptr == '\0') 1339 return CHECK_VALID; 1340 if (*cptr != '*' || cptr != eptr - 3 || 1341 (cptr - data->base) >= NMEA_PROTO_MAXLEN) 1342 return CHECK_INVALID; 1343 1344 for (cptr++; (tmp = *cptr) != '\0'; cptr++) { 1345 if (tmp >= '0' && tmp <= '9') 1346 cs_r = (cs_r << 4) + (tmp - '0'); 1347 else if (tmp >= 'A' && tmp <= 'F') 1348 cs_r = (cs_r << 4) + (tmp - 'A' + 10); 1349 else 1350 break; 1351 } 1352 1353 /* -*- make sure we are at end of string and csum matches */ 1354 if (cptr != eptr || cs_l != cs_r) 1355 return CHECK_INVALID; 1356 1357 return CHECK_CSVALID; 1358 } 1359 1360 /* 1361 * ------------------------------------------------------------------- 1362 * fetch a data field by index, zero being the name field. If this 1363 * function is called repeatedly with increasing indices, the total load 1364 * is O(n), n being the length of the string; if it is called with 1365 * decreasing indices, the total load is O(n^2). Try not to go backwards 1366 * too often. 1367 * ------------------------------------------------------------------- 1368 */ 1369 static char * 1370 field_parse( 1371 nmea_data * data, 1372 int fn 1373 ) 1374 { 1375 char tmp; 1376 1377 if (fn < data->cidx) { 1378 data->cidx = 0; 1379 data->cptr = data->base; 1380 } 1381 while ((fn > data->cidx) && (tmp = *data->cptr) != '\0') { 1382 data->cidx += (tmp == ','); 1383 data->cptr++; 1384 } 1385 return data->cptr; 1386 } 1387 1388 /* 1389 * ------------------------------------------------------------------- 1390 * Wipe (that is, overwrite with '_') data fields and the checksum in 1391 * the last timecode. The list of field indices is given as integers 1392 * in a varargs list, preferrably in ascending order, in any case 1393 * terminated by a negative field index. 1394 * 1395 * A maximum number of 8 fields can be overwritten at once to guard 1396 * against runaway (that is, unterminated) argument lists. 1397 * 1398 * This function affects what a remote user can see with 1399 * 1400 * ntpq -c clockvar <server> 1401 * 1402 * Note that this also removes the wiped fields from any clockstats 1403 * log. Some NTP operators monitor their NMEA GPS using the change in 1404 * location in clockstats over time as as a proxy for the quality of 1405 * GPS reception and thereby time reported. 1406 * ------------------------------------------------------------------- 1407 */ 1408 static void 1409 field_wipe( 1410 nmea_data * data, 1411 ... 1412 ) 1413 { 1414 va_list va; /* vararg index list */ 1415 int fcnt; /* safeguard against runaway arglist */ 1416 int fidx; /* field to nuke, or -1 for checksum */ 1417 char * cp; /* overwrite destination */ 1418 1419 fcnt = 8; 1420 cp = NULL; 1421 va_start(va, data); 1422 do { 1423 fidx = va_arg(va, int); 1424 if (fidx >= 0 && fidx <= NMEA_PROTO_FIELDS) { 1425 cp = field_parse(data, fidx); 1426 } else { 1427 cp = data->base + data->blen; 1428 if (data->blen >= 3 && cp[-3] == '*') 1429 cp -= 2; 1430 } 1431 for ( ; '\0' != *cp && '*' != *cp && ',' != *cp; cp++) 1432 if ('.' != *cp) 1433 *cp = '_'; 1434 } while (fcnt-- && fidx >= 0); 1435 va_end(va); 1436 } 1437 1438 /* 1439 * ------------------------------------------------------------------- 1440 * PARSING HELPERS 1441 * ------------------------------------------------------------------- 1442 * 1443 * Check sync status 1444 * 1445 * If the character at the data field start matches the tag value, 1446 * return LEAP_NOWARNING and LEAP_NOTINSYNC otherwise. If the 'inverted' 1447 * flag is given, just the opposite value is returned. If there is no 1448 * data field (*cp points to the NUL byte) the result is LEAP_NOTINSYNC. 1449 * ------------------------------------------------------------------- 1450 */ 1451 static u_char 1452 parse_qual( 1453 nmea_data * rd, 1454 int idx, 1455 char tag, 1456 int inv 1457 ) 1458 { 1459 static const u_char table[2] = 1460 { LEAP_NOTINSYNC, LEAP_NOWARNING }; 1461 char * dp; 1462 1463 dp = field_parse(rd, idx); 1464 1465 return table[ *dp && ((*dp == tag) == !inv) ]; 1466 } 1467 1468 /* 1469 * ------------------------------------------------------------------- 1470 * Parse a time stamp in HHMMSS[.sss] format with error checking. 1471 * 1472 * returns 1 on success, 0 on failure 1473 * ------------------------------------------------------------------- 1474 */ 1475 static int 1476 parse_time( 1477 struct calendar * jd, /* result calendar pointer */ 1478 long * ns, /* storage for nsec fraction */ 1479 nmea_data * rd, 1480 int idx 1481 ) 1482 { 1483 static const unsigned long weight[4] = { 1484 0, 100000000, 10000000, 1000000 1485 }; 1486 1487 int rc; 1488 u_int h; 1489 u_int m; 1490 u_int s; 1491 int p1; 1492 int p2; 1493 u_long f; 1494 char * dp; 1495 1496 dp = field_parse(rd, idx); 1497 rc = sscanf(dp, "%2u%2u%2u%n.%3lu%n", &h, &m, &s, &p1, &f, &p2); 1498 if (rc < 3 || p1 != 6) { 1499 DPRINTF(1, ("nmea: invalid time code: '%.6s'\n", dp)); 1500 return FALSE; 1501 } 1502 1503 /* value sanity check */ 1504 if (h > 23 || m > 59 || s > 60) { 1505 DPRINTF(1, ("nmea: invalid time spec %02u:%02u:%02u\n", 1506 h, m, s)); 1507 return FALSE; 1508 } 1509 1510 jd->hour = (u_char)h; 1511 jd->minute = (u_char)m; 1512 jd->second = (u_char)s; 1513 /* if we have a fraction, scale it up to nanoseconds. */ 1514 if (rc == 4) 1515 *ns = f * weight[p2 - p1 - 1]; 1516 else 1517 *ns = 0; 1518 1519 return TRUE; 1520 } 1521 1522 /* 1523 * ------------------------------------------------------------------- 1524 * Parse a date string from an NMEA sentence. This could either be a 1525 * partial date in DDMMYY format in one field, or DD,MM,YYYY full date 1526 * spec spanning three fields. This function does some extensive error 1527 * checking to make sure the date string was consistent. 1528 * 1529 * returns 1 on success, 0 on failure 1530 * ------------------------------------------------------------------- 1531 */ 1532 static int 1533 parse_date( 1534 struct calendar * jd, /* result pointer */ 1535 nmea_data * rd, 1536 int idx, 1537 enum date_fmt fmt 1538 ) 1539 { 1540 int rc; 1541 u_int y; 1542 u_int m; 1543 u_int d; 1544 int p; 1545 char * dp; 1546 1547 dp = field_parse(rd, idx); 1548 switch (fmt) { 1549 1550 case DATE_1_DDMMYY: 1551 rc = sscanf(dp, "%2u%2u%2u%n", &d, &m, &y, &p); 1552 if (rc != 3 || p != 6) { 1553 DPRINTF(1, ("nmea: invalid date code: '%.6s'\n", 1554 dp)); 1555 return FALSE; 1556 } 1557 break; 1558 1559 case DATE_3_DDMMYYYY: 1560 rc = sscanf(dp, "%2u,%2u,%4u%n", &d, &m, &y, &p); 1561 if (rc != 3 || p != 10) { 1562 DPRINTF(1, ("nmea: invalid date code: '%.10s'\n", 1563 dp)); 1564 return FALSE; 1565 } 1566 break; 1567 1568 default: 1569 DPRINTF(1, ("nmea: invalid parse format: %d\n", fmt)); 1570 return FALSE; 1571 } 1572 1573 /* value sanity check */ 1574 if (d < 1 || d > 31 || m < 1 || m > 12) { 1575 DPRINTF(1, ("nmea: invalid date spec (YMD) %04u:%02u:%02u\n", 1576 y, m, d)); 1577 return FALSE; 1578 } 1579 1580 /* store results */ 1581 jd->monthday = (u_char)d; 1582 jd->month = (u_char)m; 1583 jd->year = (u_short)y; 1584 1585 return TRUE; 1586 } 1587 1588 /* 1589 * ------------------------------------------------------------------- 1590 * Parse GPS week time info from an NMEA sentence. This info contains 1591 * the GPS week number, the GPS time-of-week and the leap seconds GPS 1592 * to UTC. 1593 * 1594 * returns 1 on success, 0 on failure 1595 * ------------------------------------------------------------------- 1596 */ 1597 static int 1598 parse_weekdata( 1599 gps_weektm * wd, 1600 nmea_data * rd, 1601 int weekidx, 1602 int timeidx, 1603 int leapidx 1604 ) 1605 { 1606 u_long secs; 1607 int fcnt; 1608 1609 /* parse fields and count success */ 1610 fcnt = sscanf(field_parse(rd, weekidx), "%hu", &wd->wt_week); 1611 fcnt += sscanf(field_parse(rd, timeidx), "%lu", &secs); 1612 fcnt += sscanf(field_parse(rd, leapidx), "%hd", &wd->wt_leap); 1613 if (fcnt != 3 || wd->wt_week >= 1024 || secs >= 7*SECSPERDAY) { 1614 DPRINTF(1, ("nmea: parse_weekdata: invalid weektime spec\n")); 1615 return FALSE; 1616 } 1617 wd->wt_time = (u_int32)secs; 1618 1619 return TRUE; 1620 } 1621 1622 /* 1623 * ------------------------------------------------------------------- 1624 * funny calendar-oriented stuff -- perhaps a bit hard to grok. 1625 * ------------------------------------------------------------------- 1626 * 1627 * Unfold a time-of-day (seconds since midnight) around the current 1628 * system time in a manner that guarantees an absolute difference of 1629 * less than 12hrs. 1630 * 1631 * This function is used for NMEA sentences that contain no date 1632 * information. This requires the system clock to be in +/-12hrs 1633 * around the true time, or the clock will synchronize the system 1day 1634 * off if not augmented with a time sources that also provide the 1635 * necessary date information. 1636 * 1637 * The function updates the calendar structure it also uses as 1638 * input to fetch the time from. 1639 * 1640 * returns 1 on success, 0 on failure 1641 * ------------------------------------------------------------------- 1642 */ 1643 static int 1644 unfold_day( 1645 struct calendar * jd, 1646 u_int32 rec_ui 1647 ) 1648 { 1649 vint64 rec_qw; 1650 ntpcal_split rec_ds; 1651 1652 /* 1653 * basically this is the peridiodic extension of the receive 1654 * time - 12hrs to the time-of-day with a period of 1 day. 1655 * But we would have to execute this in 64bit arithmetic, and we 1656 * cannot assume we can do this; therefore this is done 1657 * in split representation. 1658 */ 1659 rec_qw = ntpcal_ntp_to_ntp(rec_ui - SECSPERDAY/2, NULL); 1660 rec_ds = ntpcal_daysplit(&rec_qw); 1661 rec_ds.lo = ntpcal_periodic_extend(rec_ds.lo, 1662 ntpcal_date_to_daysec(jd), 1663 SECSPERDAY); 1664 rec_ds.hi += ntpcal_daysec_to_date(jd, rec_ds.lo); 1665 return (ntpcal_rd_to_date(jd, rec_ds.hi + DAY_NTP_STARTS) >= 0); 1666 } 1667 1668 /* 1669 * ------------------------------------------------------------------- 1670 * A 2-digit year is expanded into full year spec around the year found 1671 * in 'jd->year'. This should be in +79/-19 years around the system time, 1672 * or the result will be off by 100 years. The assymetric behaviour was 1673 * chosen to enable inital sync for systems that do not have a 1674 * battery-backup clock and start with a date that is typically years in 1675 * the past. 1676 * 1677 * Since the GPS epoch starts at 1980-01-06, the resulting year will be 1678 * not be before 1980 in any case. 1679 * 1680 * returns 1 on success, 0 on failure 1681 * ------------------------------------------------------------------- 1682 */ 1683 static int 1684 unfold_century( 1685 struct calendar * jd, 1686 u_int32 rec_ui 1687 ) 1688 { 1689 struct calendar rec; 1690 int32 baseyear; 1691 1692 ntpcal_ntp_to_date(&rec, rec_ui, NULL); 1693 baseyear = rec.year - 20; 1694 if (baseyear < g_gpsMinYear) 1695 baseyear = g_gpsMinYear; 1696 jd->year = (u_short)ntpcal_periodic_extend(baseyear, jd->year, 1697 100); 1698 1699 return ((baseyear <= jd->year) && (baseyear + 100 > jd->year)); 1700 } 1701 1702 /* 1703 * ------------------------------------------------------------------- 1704 * A 2-digit year is expanded into a full year spec by correlation with 1705 * a GPS week number and the current leap second count. 1706 * 1707 * The GPS week time scale counts weeks since Sunday, 1980-01-06, modulo 1708 * 1024 and seconds since start of the week. The GPS time scale is based 1709 * on international atomic time (TAI), so the leap second difference to 1710 * UTC is also needed for a proper conversion. 1711 * 1712 * A brute-force analysis (that is, test for every date) shows that a 1713 * wrong assignment of the century can not happen between the years 1900 1714 * to 2399 when comparing the week signatures for different 1715 * centuries. (I *think* that will not happen for 400*1024 years, but I 1716 * have no valid proof. -*-perlinger@ntp.org-*-) 1717 * 1718 * This function is bound to to work between years 1980 and 2399 1719 * (inclusive), which should suffice for now ;-) 1720 * 1721 * Note: This function needs a full date&time spec on input due to the 1722 * necessary leap second corrections! 1723 * 1724 * returns 1 on success, 0 on failure 1725 * ------------------------------------------------------------------- 1726 */ 1727 static int 1728 gpsfix_century( 1729 struct calendar * jd, 1730 const gps_weektm * wd, 1731 u_short * century 1732 ) 1733 { 1734 int32 days; 1735 int32 doff; 1736 u_short week; 1737 u_short year; 1738 int loop; 1739 1740 /* Get day offset. Assumes that the input time is in range and 1741 * that the leap seconds do not shift more than +/-1 day. 1742 */ 1743 doff = ntpcal_date_to_daysec(jd) + wd->wt_leap; 1744 doff = (doff >= SECSPERDAY) - (doff < 0); 1745 1746 /* 1747 * Loop over centuries to get a match, starting with the last 1748 * successful one. (Or with the 19th century if the cached value 1749 * is out of range...) 1750 */ 1751 year = jd->year % 100; 1752 for (loop = 5; loop > 0; loop--,(*century)++) { 1753 if (*century < 19 || *century >= 24) 1754 *century = 19; 1755 /* Get days and week in GPS epoch */ 1756 jd->year = year + *century * 100; 1757 days = ntpcal_date_to_rd(jd) - DAY_GPS_STARTS + doff; 1758 week = (days / 7) % 1024; 1759 if (days >= 0 && wd->wt_week == week) 1760 return TRUE; /* matched... */ 1761 } 1762 1763 jd->year = year; 1764 return FALSE; /* match failed... */ 1765 } 1766 1767 /* 1768 * ------------------------------------------------------------------- 1769 * And now the final execise: Considering the fact that many (most?) 1770 * GPS receivers cannot handle a GPS epoch wrap well, we try to 1771 * compensate for that problem by unwrapping a GPS epoch around the 1772 * receive stamp. Another execise in periodic unfolding, of course, 1773 * but with enough points to take care of. 1774 * 1775 * Note: The integral part of 'tofs' is intended to handle small(!) 1776 * systematic offsets, as -1 for handling $GPZDG, which gives the 1777 * following second. (sigh...) The absolute value shall be less than a 1778 * day (86400 seconds). 1779 * ------------------------------------------------------------------- 1780 */ 1781 static l_fp 1782 eval_gps_time( 1783 struct peer * peer, /* for logging etc */ 1784 const struct calendar * gpst, /* GPS time stamp */ 1785 const struct timespec * tofs, /* GPS frac second & offset */ 1786 const l_fp * xrecv /* receive time stamp */ 1787 ) 1788 { 1789 struct refclockproc * const pp = peer->procptr; 1790 nmea_unit * const up = (nmea_unit *)pp->unitptr; 1791 1792 l_fp retv; 1793 1794 /* components of calculation */ 1795 int32_t rcv_sec, rcv_day; /* receive ToD and day */ 1796 int32_t gps_sec, gps_day; /* GPS ToD and day in NTP epoch */ 1797 int32_t adj_day, weeks; /* adjusted GPS day and week shift */ 1798 1799 /* some temporaries to shuffle data */ 1800 vint64 vi64; 1801 ntpcal_split rs64; 1802 1803 /* evaluate time stamp from receiver. */ 1804 gps_sec = ntpcal_date_to_daysec(gpst); 1805 gps_day = ntpcal_date_to_rd(gpst) - DAY_NTP_STARTS; 1806 1807 /* merge in fractional offset */ 1808 retv = tspec_intv_to_lfp(*tofs); 1809 gps_sec += retv.l_i; 1810 1811 /* If we fully trust the GPS receiver, just combine days and 1812 * seconds and be done. */ 1813 if (peer->ttl & NMEA_DATETRUST_MASK) { 1814 retv.l_ui = ntpcal_dayjoin(gps_day, gps_sec).D_s.lo; 1815 return retv; 1816 } 1817 1818 /* So we do not trust the GPS receiver to deliver a correct date 1819 * due to the GPS epoch changes. We map the date from the 1820 * receiver into the +/-512 week interval around the receive 1821 * time in that case. This would be a tad easier with 64bit 1822 * calculations, but again, we restrict the code to 32bit ops 1823 * when possible. */ 1824 1825 /* - make sure the GPS fractional day is normalised 1826 * Applying the offset value might have put us slightly over the 1827 * edge of the allowed range for seconds-of-day. Doing a full 1828 * division with floor correction is overkill here; a simple 1829 * addition or subtraction step is sufficient. Using WHILE loops 1830 * gives the right result even if the offset exceeds one day, 1831 * which is NOT what it's intented for! */ 1832 while (gps_sec >= SECSPERDAY) { 1833 gps_sec -= SECSPERDAY; 1834 gps_day += 1; 1835 } 1836 while (gps_sec < 0) { 1837 gps_sec += SECSPERDAY; 1838 gps_day -= 1; 1839 } 1840 1841 /* - get unfold base: day of full recv time - 512 weeks */ 1842 vi64 = ntpcal_ntp_to_ntp(xrecv->l_ui, NULL); 1843 rs64 = ntpcal_daysplit(&vi64); 1844 rcv_sec = rs64.lo; 1845 rcv_day = rs64.hi - 512 * 7; 1846 1847 /* - take the fractional days into account 1848 * If the fractional day of the GPS time is smaller than the 1849 * fractional day of the receive time, we shift the base day for 1850 * the unfold by 1. */ 1851 if ( gps_sec < rcv_sec 1852 || (gps_sec == rcv_sec && retv.l_uf < xrecv->l_uf)) 1853 rcv_day += 1; 1854 1855 /* - don't warp ahead of GPS invention! */ 1856 if (rcv_day < g_gpsMinBase) 1857 rcv_day = g_gpsMinBase; 1858 1859 /* - let the magic happen: */ 1860 adj_day = ntpcal_periodic_extend(rcv_day, gps_day, 1024*7); 1861 1862 /* - check if we should log a GPS epoch warp */ 1863 weeks = (adj_day - gps_day) / 7; 1864 if (weeks != up->epoch_warp) { 1865 up->epoch_warp = weeks; 1866 LOGIF(CLOCKINFO, (LOG_INFO, 1867 "%s Changed GPS epoch warp to %d weeks", 1868 refnumtoa(&peer->srcadr), weeks)); 1869 } 1870 1871 /* - build result and be done */ 1872 retv.l_ui = ntpcal_dayjoin(adj_day, gps_sec).D_s.lo; 1873 return retv; 1874 } 1875 1876 /* 1877 * =================================================================== 1878 * 1879 * NMEAD support 1880 * 1881 * original nmead support added by Jon Miner (cp_n18@yahoo.com) 1882 * 1883 * See http://home.hiwaay.net/~taylorc/gps/nmea-server/ 1884 * for information about nmead 1885 * 1886 * To use this, you need to create a link from /dev/gpsX to 1887 * the server:port where nmead is running. Something like this: 1888 * 1889 * ln -s server:port /dev/gps1 1890 * 1891 * Split into separate function by Juergen Perlinger 1892 * (perlinger-at-ntp-dot-org) 1893 * 1894 * =================================================================== 1895 */ 1896 static int 1897 nmead_open( 1898 const char * device 1899 ) 1900 { 1901 int fd = -1; /* result file descriptor */ 1902 1903 #ifdef HAVE_READLINK 1904 char host[80]; /* link target buffer */ 1905 char * port; /* port name or number */ 1906 int rc; /* result code (several)*/ 1907 int sh; /* socket handle */ 1908 struct addrinfo ai_hint; /* resolution hint */ 1909 struct addrinfo *ai_list; /* resolution result */ 1910 struct addrinfo *ai; /* result scan ptr */ 1911 1912 fd = -1; 1913 1914 /* try to read as link, make sure no overflow occurs */ 1915 rc = readlink(device, host, sizeof(host)); 1916 if ((size_t)rc >= sizeof(host)) 1917 return fd; /* error / overflow / truncation */ 1918 host[rc] = '\0'; /* readlink does not place NUL */ 1919 1920 /* get port */ 1921 port = strchr(host, ':'); 1922 if (!port) 1923 return fd; /* not 'host:port' syntax ? */ 1924 *port++ = '\0'; /* put in separator */ 1925 1926 /* get address infos and try to open socket 1927 * 1928 * This getaddrinfo() is naughty in ntpd's nonblocking main 1929 * thread, but you have to go out of your wary to use this code 1930 * and typically the blocking is at startup where its impact is 1931 * reduced. The same holds for the 'connect()', as it is 1932 * blocking, too... 1933 */ 1934 ZERO(ai_hint); 1935 ai_hint.ai_protocol = IPPROTO_TCP; 1936 ai_hint.ai_socktype = SOCK_STREAM; 1937 if (getaddrinfo(host, port, &ai_hint, &ai_list)) 1938 return fd; 1939 1940 for (ai = ai_list; ai && (fd == -1); ai = ai->ai_next) { 1941 sh = socket(ai->ai_family, ai->ai_socktype, 1942 ai->ai_protocol); 1943 if (INVALID_SOCKET == sh) 1944 continue; 1945 rc = connect(sh, ai->ai_addr, ai->ai_addrlen); 1946 if (-1 != rc) 1947 fd = sh; 1948 else 1949 close(sh); 1950 } 1951 freeaddrinfo(ai_list); 1952 #else 1953 fd = -1; 1954 #endif 1955 1956 return fd; 1957 } 1958 #else 1959 NONEMPTY_TRANSLATION_UNIT 1960 #endif /* REFCLOCK && CLOCK_NMEA */ 1961