xref: /freebsd/contrib/ntp/ntpd/refclock_nmea.c (revision 0b3105a37d7adcadcb720112fed4dc4e8040be99)
1 /*
2  * refclock_nmea.c - clock driver for an NMEA GPS CLOCK
3  *		Michael Petry Jun 20, 1994
4  *		 based on refclock_heathn.c
5  *
6  * Updated to add support for Accord GPS Clock
7  *		Venu Gopal Dec 05, 2007
8  *		neo.venu@gmail.com, venugopal_d@pgad.gov.in
9  *
10  * Updated to process 'time1' fudge factor
11  *		Venu Gopal May 05, 2008
12  *
13  * Converted to common PPSAPI code, separate PPS fudge time1
14  * from serial timecode fudge time2.
15  *		Dave Hart July 1, 2009
16  *		hart@ntp.org, davehart@davehart.com
17  */
18 
19 #ifdef HAVE_CONFIG_H
20 #include <config.h>
21 #endif
22 
23 #include "ntp_types.h"
24 
25 #if defined(REFCLOCK) && defined(CLOCK_NMEA)
26 
27 #define NMEA_WRITE_SUPPORT 0 /* no write support at the moment */
28 
29 #include <sys/stat.h>
30 #include <stdio.h>
31 #include <ctype.h>
32 #ifdef HAVE_SYS_SOCKET_H
33 #include <sys/socket.h>
34 #endif
35 
36 #include "ntpd.h"
37 #include "ntp_io.h"
38 #include "ntp_unixtime.h"
39 #include "ntp_refclock.h"
40 #include "ntp_stdlib.h"
41 #include "ntp_calendar.h"
42 #include "timespecops.h"
43 
44 #ifdef HAVE_PPSAPI
45 # include "ppsapi_timepps.h"
46 # include "refclock_atom.h"
47 #endif /* HAVE_PPSAPI */
48 
49 
50 /*
51  * This driver supports NMEA-compatible GPS receivers
52  *
53  * Prototype was refclock_trak.c, Thanks a lot.
54  *
55  * The receiver used spits out the NMEA sentences for boat navigation.
56  * And you thought it was an information superhighway.	Try a raging river
57  * filled with rapids and whirlpools that rip away your data and warp time.
58  *
59  * If HAVE_PPSAPI is defined code to use the PPSAPI will be compiled in.
60  * On startup if initialization of the PPSAPI fails, it will fall back
61  * to the "normal" timestamps.
62  *
63  * The PPSAPI part of the driver understands fudge flag2 and flag3. If
64  * flag2 is set, it will use the clear edge of the pulse. If flag3 is
65  * set, kernel hardpps is enabled.
66  *
67  * GPS sentences other than RMC (the default) may be enabled by setting
68  * the relevent bits of 'mode' in the server configuration line
69  * server 127.127.20.x mode X
70  *
71  * bit 0 - enables RMC (1)
72  * bit 1 - enables GGA (2)
73  * bit 2 - enables GLL (4)
74  * bit 3 - enables ZDA (8) - Standard Time & Date
75  * bit 3 - enables ZDG (8) - Accord GPS Clock's custom sentence with GPS time
76  *			     very close to standard ZDA
77  *
78  * Multiple sentences may be selected except when ZDG/ZDA is selected.
79  *
80  * bit 4/5/6 - selects the baudrate for serial port :
81  *		0 for 4800 (default)
82  *		1 for 9600
83  *		2 for 19200
84  *		3 for 38400
85  *		4 for 57600
86  *		5 for 115200
87  */
88 #define NMEA_MESSAGE_MASK	0x0000FF0FU
89 #define NMEA_BAUDRATE_MASK	0x00000070U
90 #define NMEA_BAUDRATE_SHIFT	4
91 
92 #define NMEA_DELAYMEAS_MASK	0x80
93 #define NMEA_EXTLOG_MASK	0x00010000U
94 #define NMEA_DATETRUST_MASK	0x02000000U
95 
96 #define NMEA_PROTO_IDLEN	5	/* tag name must be at least 5 chars */
97 #define NMEA_PROTO_MINLEN	6	/* min chars in sentence, excluding CS */
98 #define NMEA_PROTO_MAXLEN	80	/* max chars in sentence, excluding CS */
99 #define NMEA_PROTO_FIELDS	32	/* not official; limit on fields per record */
100 
101 /*
102  * We check the timecode format and decode its contents.  We only care
103  * about a few of them, the most important being the $GPRMC format:
104  *
105  * $GPRMC,hhmmss,a,fddmm.xx,n,dddmmm.xx,w,zz.z,yyy.,ddmmyy,dd,v*CC
106  *
107  * mode (0,1,2,3) selects sentence ANY/ALL, RMC, GGA, GLL, ZDA
108  * $GPGLL,3513.8385,S,14900.7851,E,232420.594,A*21
109  * $GPGGA,232420.59,3513.8385,S,14900.7851,E,1,05,3.4,00519,M,,,,*3F
110  * $GPRMC,232418.19,A,3513.8386,S,14900.7853,E,00.0,000.0,121199,12.,E*77
111  *
112  * Defining GPZDA to support Standard Time & Date
113  * sentence. The sentence has the following format
114  *
115  *  $--ZDA,HHMMSS.SS,DD,MM,YYYY,TH,TM,*CS<CR><LF>
116  *
117  *  Apart from the familiar fields,
118  *  'TH'    Time zone Hours
119  *  'TM'    Time zone Minutes
120  *
121  * Defining GPZDG to support Accord GPS Clock's custom NMEA
122  * sentence. The sentence has the following format
123  *
124  *  $GPZDG,HHMMSS.S,DD,MM,YYYY,AA.BB,V*CS<CR><LF>
125  *
126  *  It contains the GPS timestamp valid for next PPS pulse.
127  *  Apart from the familiar fields,
128  *  'AA.BB' denotes the signal strength( should be < 05.00 )
129  *  'V'	    denotes the GPS sync status :
130  *	   '0' indicates INVALID time,
131  *	   '1' indicates accuracy of +/-20 ms
132  *	   '2' indicates accuracy of +/-100 ns
133  *
134  * Defining PGRMF for Garmin GPS Fix Data
135  * $PGRMF,WN,WS,DATE,TIME,LS,LAT,LAT_DIR,LON,LON_DIR,MODE,FIX,SPD,DIR,PDOP,TDOP
136  * WN  -- GPS week number (weeks since 1980-01-06, mod 1024)
137  * WS  -- GPS seconds in week
138  * LS  -- GPS leap seconds, accumulated ( UTC + LS == GPS )
139  * FIX -- Fix type: 0=nofix, 1=2D, 2=3D
140  * DATE/TIME are standard date/time strings in UTC time scale
141  *
142  * The GPS time can be used to get the full century for the truncated
143  * date spec.
144  */
145 
146 /*
147  * Definitions
148  */
149 #define	DEVICE		"/dev/gps%d"	/* GPS serial device */
150 #define	PPSDEV		"/dev/gpspps%d"	/* PPSAPI device override */
151 #define	SPEED232	B4800	/* uart speed (4800 bps) */
152 #define	PRECISION	(-9)	/* precision assumed (about 2 ms) */
153 #define	PPS_PRECISION	(-20)	/* precision assumed (about 1 us) */
154 #define	REFID		"GPS\0"	/* reference id */
155 #define	DESCRIPTION	"NMEA GPS Clock" /* who we are */
156 #ifndef O_NOCTTY
157 #define M_NOCTTY	0
158 #else
159 #define M_NOCTTY	O_NOCTTY
160 #endif
161 #ifndef O_NONBLOCK
162 #define M_NONBLOCK	0
163 #else
164 #define M_NONBLOCK	O_NONBLOCK
165 #endif
166 #define PPSOPENMODE	(O_RDWR | M_NOCTTY | M_NONBLOCK)
167 
168 /* NMEA sentence array indexes for those we use */
169 #define NMEA_GPRMC	0	/* recommended min. nav. */
170 #define NMEA_GPGGA	1	/* fix and quality */
171 #define NMEA_GPGLL	2	/* geo. lat/long */
172 #define NMEA_GPZDA	3	/* date/time */
173 /*
174  * $GPZDG is a proprietary sentence that violates the spec, by not
175  * using $P and an assigned company identifier to prefix the sentence
176  * identifier.	When used with this driver, the system needs to be
177  * isolated from other NTP networks, as it operates in GPS time, not
178  * UTC as is much more common.	GPS time is >15 seconds different from
179  * UTC due to not respecting leap seconds since 1970 or so.  Other
180  * than the different timebase, $GPZDG is similar to $GPZDA.
181  */
182 #define NMEA_GPZDG	4
183 #define NMEA_PGRMF	5
184 #define NMEA_ARRAY_SIZE (NMEA_PGRMF + 1)
185 
186 /*
187  * Sentence selection mode bits
188  */
189 #define USE_GPRMC		0x00000001u
190 #define USE_GPGGA		0x00000002u
191 #define USE_GPGLL		0x00000004u
192 #define USE_GPZDA		0x00000008u
193 #define USE_PGRMF		0x00000100u
194 
195 /* mapping from sentence index to controlling mode bit */
196 static const u_int32 sentence_mode[NMEA_ARRAY_SIZE] =
197 {
198 	USE_GPRMC,
199 	USE_GPGGA,
200 	USE_GPGLL,
201 	USE_GPZDA,
202 	USE_GPZDA,
203 	USE_PGRMF
204 };
205 
206 /* date formats we support */
207 enum date_fmt {
208 	DATE_1_DDMMYY,	/* use 1 field	with 2-digit year */
209 	DATE_3_DDMMYYYY	/* use 3 fields with 4-digit year */
210 };
211 
212 /* results for 'field_init()'
213  *
214  * Note: If a checksum is present, the checksum test must pass OK or the
215  * sentence is tagged invalid.
216  */
217 #define CHECK_EMPTY  -1	/* no data			*/
218 #define CHECK_INVALID 0	/* not a valid NMEA sentence	*/
219 #define CHECK_VALID   1	/* valid but without checksum	*/
220 #define CHECK_CSVALID 2	/* valid with checksum OK	*/
221 
222 /*
223  * Unit control structure
224  */
225 typedef struct {
226 #ifdef HAVE_PPSAPI
227 	struct refclock_atom atom; /* PPSAPI structure */
228 	int	ppsapi_fd;	/* fd used with PPSAPI */
229 	u_char	ppsapi_tried;	/* attempt PPSAPI once */
230 	u_char	ppsapi_lit;	/* time_pps_create() worked */
231 	u_char	ppsapi_gate;	/* system is on PPS */
232 #endif /* HAVE_PPSAPI */
233 	u_char  gps_time;	/* use GPS time, not UTC */
234 	u_short century_cache;	/* cached current century */
235 	l_fp	last_reftime;	/* last processed reference stamp */
236 	short 	epoch_warp;	/* last epoch warp, for logging */
237 	/* tally stats, reset each poll cycle */
238 	struct
239 	{
240 		u_int total;
241 		u_int accepted;
242 		u_int rejected;   /* GPS said not enough signal */
243 		u_int malformed;  /* Bad checksum, invalid date or time */
244 		u_int filtered;   /* mode bits, not GPZDG, same second */
245 		u_int pps_used;
246 	}
247 		tally;
248 	/* per sentence checksum seen flag */
249 	u_char	cksum_type[NMEA_ARRAY_SIZE];
250 } nmea_unit;
251 
252 /*
253  * helper for faster field access
254  */
255 typedef struct {
256 	char  *base;	/* buffer base		*/
257 	char  *cptr;	/* current field ptr	*/
258 	int    blen;	/* buffer length	*/
259 	int    cidx;	/* current field index	*/
260 } nmea_data;
261 
262 /*
263  * NMEA gps week/time information
264  * This record contains the number of weeks since 1980-01-06 modulo
265  * 1024, the seconds elapsed since start of the week, and the number of
266  * leap seconds that are the difference between GPS and UTC time scale.
267  */
268 typedef struct {
269 	u_int32 wt_time;	/* seconds since weekstart */
270 	u_short wt_week;	/* week number */
271 	short	wt_leap;	/* leap seconds */
272 } gps_weektm;
273 
274 /*
275  * The GPS week time scale starts on Sunday, 1980-01-06. We need the
276  * rata die number of this day.
277  */
278 #ifndef DAY_GPS_STARTS
279 #define DAY_GPS_STARTS 722820
280 #endif
281 
282 /*
283  * Function prototypes
284  */
285 static	void	nmea_init	(void);
286 static	int	nmea_start	(int, struct peer *);
287 static	void	nmea_shutdown	(int, struct peer *);
288 static	void	nmea_receive	(struct recvbuf *);
289 static	void	nmea_poll	(int, struct peer *);
290 #ifdef HAVE_PPSAPI
291 static	void	nmea_control	(int, const struct refclockstat *,
292 				 struct refclockstat *, struct peer *);
293 #define		NMEA_CONTROL	nmea_control
294 #else
295 #define		NMEA_CONTROL	noentry
296 #endif /* HAVE_PPSAPI */
297 static	void	nmea_timer	(int, struct peer *);
298 
299 /* parsing helpers */
300 static int	field_init	(nmea_data * data, char * cp, int len);
301 static char *	field_parse	(nmea_data * data, int fn);
302 static void	field_wipe	(nmea_data * data, ...);
303 static u_char	parse_qual	(nmea_data * data, int idx,
304 				 char tag, int inv);
305 static int	parse_time	(struct calendar * jd, long * nsec,
306 				 nmea_data *, int idx);
307 static int	parse_date	(struct calendar *jd, nmea_data*,
308 				 int idx, enum date_fmt fmt);
309 static int	parse_weekdata	(gps_weektm *, nmea_data *,
310 				 int weekidx, int timeidx, int leapidx);
311 /* calendar / date helpers */
312 static int	unfold_day	(struct calendar * jd, u_int32 rec_ui);
313 static int	unfold_century	(struct calendar * jd, u_int32 rec_ui);
314 static int	gpsfix_century	(struct calendar * jd, const gps_weektm * wd,
315 				 u_short * ccentury);
316 static l_fp     eval_gps_time	(struct peer * peer, const struct calendar * gpst,
317 				 const struct timespec * gpso, const l_fp * xrecv);
318 
319 static int	nmead_open	(const char * device);
320 static void     save_ltc        (struct refclockproc * const, const char * const,
321 				 size_t);
322 
323 /*
324  * If we want the driver to ouput sentences, too: re-enable the send
325  * support functions by defining NMEA_WRITE_SUPPORT to non-zero...
326  */
327 #if NMEA_WRITE_SUPPORT
328 
329 static	void gps_send(int, const char *, struct peer *);
330 # ifdef SYS_WINNT
331 #  undef write	/* ports/winnt/include/config.h: #define write _write */
332 extern int async_write(int, const void *, unsigned int);
333 #  define write(fd, data, octets)	async_write(fd, data, octets)
334 # endif /* SYS_WINNT */
335 
336 #endif /* NMEA_WRITE_SUPPORT */
337 
338 static int32_t g_gpsMinBase;
339 static int32_t g_gpsMinYear;
340 
341 /*
342  * -------------------------------------------------------------------
343  * Transfer vector
344  * -------------------------------------------------------------------
345  */
346 struct refclock refclock_nmea = {
347 	nmea_start,		/* start up driver */
348 	nmea_shutdown,		/* shut down driver */
349 	nmea_poll,		/* transmit poll message */
350 	NMEA_CONTROL,		/* fudge control */
351 	nmea_init,		/* initialize driver */
352 	noentry,		/* buginfo */
353 	nmea_timer		/* called once per second */
354 };
355 
356 /*
357  * -------------------------------------------------------------------
358  * nmea_init - initialise data
359  *
360  * calculates a few runtime constants that cannot be made compile time
361  * constants.
362  * -------------------------------------------------------------------
363  */
364 static void
365 nmea_init(void)
366 {
367 	struct calendar date;
368 
369 	/* - calculate min. base value for GPS epoch & century unfolding
370 	 * This assumes that the build system was roughly in sync with
371 	 * the world, and that really synchronising to a time before the
372 	 * program was created would be unsafe or insane. If the build
373 	 * date cannot be stablished, at least use the start of GPS
374 	 * (1980-01-06) as minimum, because GPS can surely NOT
375 	 * synchronise beyond it's own big bang. We add a little safety
376 	 * margin for the fuzziness of the build date, which is in an
377 	 * undefined time zone. */
378 	if (ntpcal_get_build_date(&date))
379 		g_gpsMinBase = ntpcal_date_to_rd(&date) - 2;
380 	else
381 		g_gpsMinBase = 0;
382 
383 	if (g_gpsMinBase < DAY_GPS_STARTS)
384 		g_gpsMinBase = DAY_GPS_STARTS;
385 
386 	ntpcal_rd_to_date(&date, g_gpsMinBase);
387 	g_gpsMinYear  = date.year;
388 	g_gpsMinBase -= DAY_NTP_STARTS;
389 }
390 
391 /*
392  * -------------------------------------------------------------------
393  * nmea_start - open the GPS devices and initialize data for processing
394  *
395  * return 0 on error, 1 on success. Even on error the peer structures
396  * must be in a state that permits 'nmea_shutdown()' to clean up all
397  * resources, because it will be called immediately to do so.
398  * -------------------------------------------------------------------
399  */
400 static int
401 nmea_start(
402 	int		unit,
403 	struct peer *	peer
404 	)
405 {
406 	struct refclockproc * const	pp = peer->procptr;
407 	nmea_unit * const		up = emalloc_zero(sizeof(*up));
408 	char				device[20];
409 	size_t				devlen;
410 	u_int32				rate;
411 	int				baudrate;
412 	const char *			baudtext;
413 
414 
415 	/* Get baudrate choice from mode byte bits 4/5/6 */
416 	rate = (peer->ttl & NMEA_BAUDRATE_MASK) >> NMEA_BAUDRATE_SHIFT;
417 
418 	switch (rate) {
419 	case 0:
420 		baudrate = SPEED232;
421 		baudtext = "4800";
422 		break;
423 	case 1:
424 		baudrate = B9600;
425 		baudtext = "9600";
426 		break;
427 	case 2:
428 		baudrate = B19200;
429 		baudtext = "19200";
430 		break;
431 	case 3:
432 		baudrate = B38400;
433 		baudtext = "38400";
434 		break;
435 #ifdef B57600
436 	case 4:
437 		baudrate = B57600;
438 		baudtext = "57600";
439 		break;
440 #endif
441 #ifdef B115200
442 	case 5:
443 		baudrate = B115200;
444 		baudtext = "115200";
445 		break;
446 #endif
447 	default:
448 		baudrate = SPEED232;
449 		baudtext = "4800 (fallback)";
450 		break;
451 	}
452 
453 	/* Allocate and initialize unit structure */
454 	pp->unitptr = (caddr_t)up;
455 	pp->io.fd = -1;
456 	pp->io.clock_recv = nmea_receive;
457 	pp->io.srcclock = peer;
458 	pp->io.datalen = 0;
459 	/* force change detection on first valid message */
460 	memset(&up->last_reftime, 0xFF, sizeof(up->last_reftime));
461 	/* force checksum on GPRMC, see below */
462 	up->cksum_type[NMEA_GPRMC] = CHECK_CSVALID;
463 #ifdef HAVE_PPSAPI
464 	up->ppsapi_fd = -1;
465 #endif
466 	ZERO(up->tally);
467 
468 	/* Initialize miscellaneous variables */
469 	peer->precision = PRECISION;
470 	pp->clockdesc = DESCRIPTION;
471 	memcpy(&pp->refid, REFID, 4);
472 
473 	/* Open serial port. Use CLK line discipline, if available. */
474 	devlen = snprintf(device, sizeof(device), DEVICE, unit);
475 	if (devlen >= sizeof(device)) {
476 		msyslog(LOG_ERR, "%s clock device name too long",
477 			refnumtoa(&peer->srcadr));
478 		return FALSE; /* buffer overflow */
479 	}
480 	pp->io.fd = refclock_open(device, baudrate, LDISC_CLK);
481 	if (0 >= pp->io.fd) {
482 		pp->io.fd = nmead_open(device);
483 		if (-1 == pp->io.fd)
484 			return FALSE;
485 	}
486 	LOGIF(CLOCKINFO, (LOG_NOTICE, "%s serial %s open at %s bps",
487 	      refnumtoa(&peer->srcadr), device, baudtext));
488 
489 	/* succeed if this clock can be added */
490 	return io_addclock(&pp->io) != 0;
491 }
492 
493 
494 /*
495  * -------------------------------------------------------------------
496  * nmea_shutdown - shut down a GPS clock
497  *
498  * NOTE this routine is called after nmea_start() returns failure,
499  * as well as during a normal shutdown due to ntpq :config unpeer.
500  * -------------------------------------------------------------------
501  */
502 static void
503 nmea_shutdown(
504 	int           unit,
505 	struct peer * peer
506 	)
507 {
508 	struct refclockproc * const pp = peer->procptr;
509 	nmea_unit	    * const up = (nmea_unit *)pp->unitptr;
510 
511 	UNUSED_ARG(unit);
512 
513 	if (up != NULL) {
514 #ifdef HAVE_PPSAPI
515 		if (up->ppsapi_lit)
516 			time_pps_destroy(up->atom.handle);
517 		if (up->ppsapi_tried && up->ppsapi_fd != pp->io.fd)
518 			close(up->ppsapi_fd);
519 #endif
520 		free(up);
521 	}
522 	pp->unitptr = (caddr_t)NULL;
523 	if (-1 != pp->io.fd)
524 		io_closeclock(&pp->io);
525 	pp->io.fd = -1;
526 }
527 
528 /*
529  * -------------------------------------------------------------------
530  * nmea_control - configure fudge params
531  * -------------------------------------------------------------------
532  */
533 #ifdef HAVE_PPSAPI
534 static void
535 nmea_control(
536 	int                         unit,
537 	const struct refclockstat * in_st,
538 	struct refclockstat       * out_st,
539 	struct peer               * peer
540 	)
541 {
542 	struct refclockproc * const pp = peer->procptr;
543 	nmea_unit	    * const up = (nmea_unit *)pp->unitptr;
544 
545 	char   device[32];
546 	size_t devlen;
547 
548 	UNUSED_ARG(in_st);
549 	UNUSED_ARG(out_st);
550 
551 	/*
552 	 * PPS control
553 	 *
554 	 * If /dev/gpspps$UNIT can be opened that will be used for
555 	 * PPSAPI.  Otherwise, the GPS serial device /dev/gps$UNIT
556 	 * already opened is used for PPSAPI as well. (This might not
557 	 * work, in which case the PPS API remains unavailable...)
558 	 */
559 
560 	/* Light up the PPSAPI interface if not yet attempted. */
561 	if ((CLK_FLAG1 & pp->sloppyclockflag) && !up->ppsapi_tried) {
562 		up->ppsapi_tried = TRUE;
563 		devlen = snprintf(device, sizeof(device), PPSDEV, unit);
564 		if (devlen < sizeof(device)) {
565 			up->ppsapi_fd = open(device, PPSOPENMODE,
566 					     S_IRUSR | S_IWUSR);
567 		} else {
568 			up->ppsapi_fd = -1;
569 			msyslog(LOG_ERR, "%s PPS device name too long",
570 				refnumtoa(&peer->srcadr));
571 		}
572 		if (-1 == up->ppsapi_fd)
573 			up->ppsapi_fd = pp->io.fd;
574 		if (refclock_ppsapi(up->ppsapi_fd, &up->atom)) {
575 			/* use the PPS API for our own purposes now. */
576 			up->ppsapi_lit = refclock_params(
577 				pp->sloppyclockflag, &up->atom);
578 			if (!up->ppsapi_lit) {
579 				/* failed to configure, drop PPS unit */
580 				time_pps_destroy(up->atom.handle);
581 				msyslog(LOG_WARNING,
582 					"%s set PPSAPI params fails",
583 					refnumtoa(&peer->srcadr));
584 			}
585 			/* note: the PPS I/O handle remains valid until
586 			 * flag1 is cleared or the clock is shut down.
587 			 */
588 		} else {
589 			msyslog(LOG_WARNING,
590 				"%s flag1 1 but PPSAPI fails",
591 				refnumtoa(&peer->srcadr));
592 		}
593 	}
594 
595 	/* shut down PPS API if activated */
596 	if (!(CLK_FLAG1 & pp->sloppyclockflag) && up->ppsapi_tried) {
597 		/* shutdown PPS API */
598 		if (up->ppsapi_lit)
599 			time_pps_destroy(up->atom.handle);
600 		up->atom.handle = 0;
601 		/* close/drop PPS fd */
602 		if (up->ppsapi_fd != pp->io.fd)
603 			close(up->ppsapi_fd);
604 		up->ppsapi_fd = -1;
605 
606 		/* clear markers and peer items */
607 		up->ppsapi_gate  = FALSE;
608 		up->ppsapi_lit   = FALSE;
609 		up->ppsapi_tried = FALSE;
610 
611 		peer->flags &= ~FLAG_PPS;
612 		peer->precision = PRECISION;
613 	}
614 }
615 #endif	/* HAVE_PPSAPI */
616 
617 /*
618  * -------------------------------------------------------------------
619  * nmea_timer - called once per second
620  *		this only polls (older?) Oncore devices now
621  *
622  * Usually 'nmea_receive()' can get a timestamp every second, but at
623  * least one Motorola unit needs prompting each time. Doing so in
624  * 'nmea_poll()' gives only one sample per poll cycle, which actually
625  * defeats the purpose of the median filter. Polling once per second
626  * seems a much better idea.
627  * -------------------------------------------------------------------
628  */
629 static void
630 nmea_timer(
631 	int	      unit,
632 	struct peer * peer
633 	)
634 {
635 #if NMEA_WRITE_SUPPORT
636 
637 	struct refclockproc * const pp = peer->procptr;
638 
639 	UNUSED_ARG(unit);
640 
641 	if (-1 != pp->io.fd) /* any mode bits to evaluate here? */
642 		gps_send(pp->io.fd, "$PMOTG,RMC,0000*1D\r\n", peer);
643 #else
644 
645 	UNUSED_ARG(unit);
646 	UNUSED_ARG(peer);
647 
648 #endif /* NMEA_WRITE_SUPPORT */
649 }
650 
651 #ifdef HAVE_PPSAPI
652 /*
653  * -------------------------------------------------------------------
654  * refclock_ppsrelate(...) -- correlate with PPS edge
655  *
656  * This function is used to correlate a receive time stamp and a
657  * reference time with a PPS edge time stamp. It applies the necessary
658  * fudges (fudge1 for PPS, fudge2 for receive time) and then tries to
659  * move the receive time stamp to the corresponding edge. This can warp
660  * into future, if a transmission delay of more than 500ms is not
661  * compensated with a corresponding fudge time2 value, because then the
662  * next PPS edge is nearer than the last. (Similiar to what the PPS ATOM
663  * driver does, but we deal with full time stamps here, not just phase
664  * shift information.) Likewise, a negative fudge time2 value must be
665  * used if the reference time stamp correlates with the *following* PPS
666  * pulse.
667  *
668  * Note that the receive time fudge value only needs to move the receive
669  * stamp near a PPS edge but that close proximity is not required;
670  * +/-100ms precision should be enough. But since the fudge value will
671  * probably also be used to compensate the transmission delay when no
672  * PPS edge can be related to the time stamp, it's best to get it as
673  * close as possible.
674  *
675  * It should also be noted that the typical use case is matching to the
676  * preceeding edge, as most units relate their sentences to the current
677  * second.
678  *
679  * The function returns PPS_RELATE_NONE (0) if no PPS edge correlation
680  * can be fixed; PPS_RELATE_EDGE (1) when a PPS edge could be fixed, but
681  * the distance to the reference time stamp is too big (exceeds
682  * +/-400ms) and the ATOM driver PLL cannot be used to fix the phase;
683  * and PPS_RELATE_PHASE (2) when the ATOM driver PLL code can be used.
684  *
685  * On output, the receive time stamp is replaced with the corresponding
686  * PPS edge time if a fix could be made; the PPS fudge is updated to
687  * reflect the proper fudge time to apply. (This implies that
688  * 'refclock_process_offset()' must be used!)
689  * -------------------------------------------------------------------
690  */
691 #define PPS_RELATE_NONE	 0	/* no pps correlation possible	  */
692 #define PPS_RELATE_EDGE	 1	/* recv time fixed, no phase lock */
693 #define PPS_RELATE_PHASE 2	/* recv time fixed, phase lock ok */
694 
695 static int
696 refclock_ppsrelate(
697 	const struct refclockproc  * pp	    ,	/* for sanity	  */
698 	const struct refclock_atom * ap	    ,	/* for PPS io	  */
699 	const l_fp		   * reftime ,
700 	l_fp			   * rd_stamp,	/* i/o read stamp */
701 	double			     pp_fudge,	/* pps fudge	  */
702 	double			   * rd_fudge	/* i/o read fudge */
703 	)
704 {
705 	pps_info_t	pps_info;
706 	struct timespec timeout;
707 	l_fp		pp_stamp, pp_delta;
708 	double		delta, idelta;
709 
710 	if (pp->leap == LEAP_NOTINSYNC)
711 		return PPS_RELATE_NONE; /* clock is insane, no chance */
712 
713 	ZERO(timeout);
714 	ZERO(pps_info);
715 	if (time_pps_fetch(ap->handle, PPS_TSFMT_TSPEC,
716 			   &pps_info, &timeout) < 0)
717 		return PPS_RELATE_NONE; /* can't get time stamps */
718 
719 	/* get last active PPS edge before receive */
720 	if (ap->pps_params.mode & PPS_CAPTUREASSERT)
721 		timeout = pps_info.assert_timestamp;
722 	else if (ap->pps_params.mode & PPS_CAPTURECLEAR)
723 		timeout = pps_info.clear_timestamp;
724 	else
725 		return PPS_RELATE_NONE; /* WHICH edge, please?!? */
726 
727 	/* get delta between receive time and PPS time */
728 	pp_stamp = tspec_stamp_to_lfp(timeout);
729 	pp_delta = *rd_stamp;
730 	L_SUB(&pp_delta, &pp_stamp);
731 	LFPTOD(&pp_delta, delta);
732 	delta += pp_fudge - *rd_fudge;
733 	if (fabs(delta) > 1.5)
734 		return PPS_RELATE_NONE; /* PPS timeout control */
735 
736 	/* eventually warp edges, check phase */
737 	idelta	  = floor(delta + 0.5);
738 	pp_fudge -= idelta;
739 	delta	 -= idelta;
740 	if (fabs(delta) > 0.45)
741 		return PPS_RELATE_NONE; /* dead band control */
742 
743 	/* we actually have a PPS edge to relate with! */
744 	*rd_stamp = pp_stamp;
745 	*rd_fudge = pp_fudge;
746 
747 	/* if whole system out-of-sync, do not try to PLL */
748 	if (sys_leap == LEAP_NOTINSYNC)
749 		return PPS_RELATE_EDGE; /* cannot PLL with atom code */
750 
751 	/* check against reftime if ATOM PLL can be used */
752 	pp_delta = *reftime;
753 	L_SUB(&pp_delta, &pp_stamp);
754 	LFPTOD(&pp_delta, delta);
755 	delta += pp_fudge;
756 	if (fabs(delta) > 0.45)
757 		return PPS_RELATE_EDGE; /* cannot PLL with atom code */
758 
759 	/* all checks passed, gets an AAA rating here! */
760 	return PPS_RELATE_PHASE; /* can PLL with atom code */
761 }
762 #endif	/* HAVE_PPSAPI */
763 
764 /*
765  * -------------------------------------------------------------------
766  * nmea_receive - receive data from the serial interface
767  *
768  * This is the workhorse for NMEA data evaluation:
769  *
770  * + it checks all NMEA data, and rejects sentences that are not valid
771  *   NMEA sentences
772  * + it checks whether a sentence is known and to be used
773  * + it parses the time and date data from the NMEA data string and
774  *   augments the missing bits. (century in dat, whole date, ...)
775  * + it rejects data that is not from the first accepted sentence in a
776  *   burst
777  * + it eventually replaces the receive time with the PPS edge time.
778  * + it feeds the data to the internal processing stages.
779  * -------------------------------------------------------------------
780  */
781 static void
782 nmea_receive(
783 	struct recvbuf * rbufp
784 	)
785 {
786 	/* declare & init control structure ptrs */
787 	struct peer	    * const peer = rbufp->recv_peer;
788 	struct refclockproc * const pp = peer->procptr;
789 	nmea_unit	    * const up = (nmea_unit*)pp->unitptr;
790 
791 	/* Use these variables to hold data until we decide its worth keeping */
792 	nmea_data rdata;
793 	char 	  rd_lastcode[BMAX];
794 	l_fp 	  rd_timestamp, rd_reftime;
795 	int	  rd_lencode;
796 	double	  rd_fudge;
797 
798 	/* working stuff */
799 	struct calendar date;	/* to keep & convert the time stamp */
800 	struct timespec tofs;	/* offset to full-second reftime */
801 	gps_weektm      gpsw;	/* week time storage */
802 	/* results of sentence/date/time parsing */
803 	u_char		sentence;	/* sentence tag */
804 	int		checkres;
805 	char *		cp;
806 	int		rc_date;
807 	int		rc_time;
808 
809 	/* make sure data has defined pristine state */
810 	ZERO(tofs);
811 	ZERO(date);
812 	ZERO(gpsw);
813 	sentence = 0;	// Should never be needed.
814 	rc_date = 0;	// Should never be needed.
815 	rc_time = 0;	// Should never be needed.
816 
817 	/*
818 	 * Read the timecode and timestamp, then initialise field
819 	 * processing. The <CR><LF> at the NMEA line end is translated
820 	 * to <LF><LF> by the terminal input routines on most systems,
821 	 * and this gives us one spurious empty read per record which we
822 	 * better ignore silently.
823 	 */
824 	rd_lencode = refclock_gtlin(rbufp, rd_lastcode,
825 				    sizeof(rd_lastcode), &rd_timestamp);
826 	checkres = field_init(&rdata, rd_lastcode, rd_lencode);
827 	switch (checkres) {
828 
829 	case CHECK_INVALID:
830 		DPRINTF(1, ("%s invalid data: '%s'\n",
831 			refnumtoa(&peer->srcadr), rd_lastcode));
832 		refclock_report(peer, CEVNT_BADREPLY);
833 		return;
834 
835 	case CHECK_EMPTY:
836 		return;
837 
838 	default:
839 		DPRINTF(1, ("%s gpsread: %d '%s'\n",
840 			refnumtoa(&peer->srcadr), rd_lencode,
841 			rd_lastcode));
842 		break;
843 	}
844 	up->tally.total++;
845 
846 	/*
847 	 * --> below this point we have a valid NMEA sentence <--
848 	 *
849 	 * Check sentence name. Skip first 2 chars (talker ID) in most
850 	 * cases, to allow for $GLGGA and $GPGGA etc. Since the name
851 	 * field has at least 5 chars we can simply shift the field
852 	 * start.
853 	 */
854 	cp = field_parse(&rdata, 0);
855 	if      (strncmp(cp + 2, "RMC,", 4) == 0)
856 		sentence = NMEA_GPRMC;
857 	else if (strncmp(cp + 2, "GGA,", 4) == 0)
858 		sentence = NMEA_GPGGA;
859 	else if (strncmp(cp + 2, "GLL,", 4) == 0)
860 		sentence = NMEA_GPGLL;
861 	else if (strncmp(cp + 2, "ZDA,", 4) == 0)
862 		sentence = NMEA_GPZDA;
863 	else if (strncmp(cp + 2, "ZDG,", 4) == 0)
864 		sentence = NMEA_GPZDG;
865 	else if (strncmp(cp,   "PGRMF,", 6) == 0)
866 		sentence = NMEA_PGRMF;
867 	else
868 		return;	/* not something we know about */
869 
870 	/* Eventually output delay measurement now. */
871 	if (peer->ttl & NMEA_DELAYMEAS_MASK) {
872 		mprintf_clock_stats(&peer->srcadr, "delay %0.6f %.*s",
873 			 ldexp(rd_timestamp.l_uf, -32),
874 			 (int)(strchr(rd_lastcode, ',') - rd_lastcode),
875 			 rd_lastcode);
876 	}
877 
878 	/* See if I want to process this message type */
879 	if ((peer->ttl & NMEA_MESSAGE_MASK) &&
880 	    !(peer->ttl & sentence_mode[sentence])) {
881 		up->tally.filtered++;
882 		return;
883 	}
884 
885 	/*
886 	 * make sure it came in clean
887 	 *
888 	 * Apparently, older NMEA specifications (which are expensive)
889 	 * did not require the checksum for all sentences.  $GPMRC is
890 	 * the only one so far identified which has always been required
891 	 * to include a checksum.
892 	 *
893 	 * Today, most NMEA GPS receivers checksum every sentence.  To
894 	 * preserve its error-detection capabilities with modern GPSes
895 	 * while allowing operation without checksums on all but $GPMRC,
896 	 * we keep track of whether we've ever seen a valid checksum on
897 	 * a given sentence, and if so, reject future instances without
898 	 * checksum.  ('up->cksum_type[NMEA_GPRMC]' is set in
899 	 * 'nmea_start()' to enforce checksums for $GPRMC right from the
900 	 * start.)
901 	 */
902 	if (up->cksum_type[sentence] <= (u_char)checkres) {
903 		up->cksum_type[sentence] = (u_char)checkres;
904 	} else {
905 		DPRINTF(1, ("%s checksum missing: '%s'\n",
906 			refnumtoa(&peer->srcadr), rd_lastcode));
907 		refclock_report(peer, CEVNT_BADREPLY);
908 		up->tally.malformed++;
909 		return;
910 	}
911 
912 	/*
913 	 * $GPZDG provides GPS time not UTC, and the two mix poorly.
914 	 * Once have processed a $GPZDG, do not process any further UTC
915 	 * sentences (all but $GPZDG currently).
916 	 */
917 	if (up->gps_time && NMEA_GPZDG != sentence) {
918 		up->tally.filtered++;
919 		return;
920 	}
921 
922 	DPRINTF(1, ("%s processing %d bytes, timecode '%s'\n",
923 		refnumtoa(&peer->srcadr), rd_lencode, rd_lastcode));
924 
925 	/*
926 	 * Grab fields depending on clock string type and possibly wipe
927 	 * sensitive data from the last timecode.
928 	 */
929 	switch (sentence) {
930 
931 	case NMEA_GPRMC:
932 		/* Check quality byte, fetch data & time */
933 		rc_time	 = parse_time(&date, &tofs.tv_nsec, &rdata, 1);
934 		pp->leap = parse_qual(&rdata, 2, 'A', 0);
935 		rc_date	 = parse_date(&date, &rdata, 9, DATE_1_DDMMYY)
936 			&& unfold_century(&date, rd_timestamp.l_ui);
937 		if (CLK_FLAG4 & pp->sloppyclockflag)
938 			field_wipe(&rdata, 3, 4, 5, 6, -1);
939 		break;
940 
941 	case NMEA_GPGGA:
942 		/* Check quality byte, fetch time only */
943 		rc_time	 = parse_time(&date, &tofs.tv_nsec, &rdata, 1);
944 		pp->leap = parse_qual(&rdata, 6, '0', 1);
945 		rc_date	 = unfold_day(&date, rd_timestamp.l_ui);
946 		if (CLK_FLAG4 & pp->sloppyclockflag)
947 			field_wipe(&rdata, 2, 4, -1);
948 		break;
949 
950 	case NMEA_GPGLL:
951 		/* Check quality byte, fetch time only */
952 		rc_time	 = parse_time(&date, &tofs.tv_nsec, &rdata, 5);
953 		pp->leap = parse_qual(&rdata, 6, 'A', 0);
954 		rc_date	 = unfold_day(&date, rd_timestamp.l_ui);
955 		if (CLK_FLAG4 & pp->sloppyclockflag)
956 			field_wipe(&rdata, 1, 3, -1);
957 		break;
958 
959 	case NMEA_GPZDA:
960 		/* No quality.	Assume best, fetch time & full date */
961 		pp->leap = LEAP_NOWARNING;
962 		rc_time	 = parse_time(&date, &tofs.tv_nsec, &rdata, 1);
963 		rc_date	 = parse_date(&date, &rdata, 2, DATE_3_DDMMYYYY);
964 		break;
965 
966 	case NMEA_GPZDG:
967 		/* Check quality byte, fetch time & full date */
968 		rc_time	 = parse_time(&date, &tofs.tv_nsec, &rdata, 1);
969 		rc_date	 = parse_date(&date, &rdata, 2, DATE_3_DDMMYYYY);
970 		pp->leap = parse_qual(&rdata, 4, '0', 1);
971 		tofs.tv_sec = -1; /* GPZDG is following second */
972 		break;
973 
974 	case NMEA_PGRMF:
975 		/* get date, time, qualifier and GPS weektime. We need
976 		 * date and time-of-day for the century fix, so we read
977 		 * them first.
978 		 */
979 		rc_date  = parse_weekdata(&gpsw, &rdata, 1, 2, 5)
980 		        && parse_date(&date, &rdata, 3, DATE_1_DDMMYY);
981 		rc_time  = parse_time(&date, &tofs.tv_nsec, &rdata, 4);
982 		pp->leap = parse_qual(&rdata, 11, '0', 1);
983 		rc_date  = rc_date
984 		        && gpsfix_century(&date, &gpsw, &up->century_cache);
985 		if (CLK_FLAG4 & pp->sloppyclockflag)
986 			field_wipe(&rdata, 6, 8, -1);
987 		break;
988 
989 	default:
990 		INVARIANT(0);	/* Coverity 97123 */
991 		return;
992 	}
993 
994 	/* Check sanity of time-of-day. */
995 	if (rc_time == 0) {	/* no time or conversion error? */
996 		checkres = CEVNT_BADTIME;
997 		up->tally.malformed++;
998 	}
999 	/* Check sanity of date. */
1000 	else if (rc_date == 0) {/* no date or conversion error? */
1001 		checkres = CEVNT_BADDATE;
1002 		up->tally.malformed++;
1003 	}
1004 	/* check clock sanity; [bug 2143] */
1005 	else if (pp->leap == LEAP_NOTINSYNC) { /* no good status? */
1006 		checkres = CEVNT_BADREPLY;
1007 		up->tally.rejected++;
1008 	}
1009 	else
1010 		checkres = -1;
1011 
1012 	if (checkres != -1) {
1013 		save_ltc(pp, rd_lastcode, rd_lencode);
1014 		refclock_report(peer, checkres);
1015 		return;
1016 	}
1017 
1018 	DPRINTF(1, ("%s effective timecode: %04u-%02u-%02u %02d:%02d:%02d\n",
1019 		refnumtoa(&peer->srcadr),
1020 		date.year, date.month, date.monthday,
1021 		date.hour, date.minute, date.second));
1022 
1023 	/* Check if we must enter GPS time mode; log so if we do */
1024 	if (!up->gps_time && (sentence == NMEA_GPZDG)) {
1025 		msyslog(LOG_INFO, "%s using GPS time as if it were UTC",
1026 			refnumtoa(&peer->srcadr));
1027 		up->gps_time = 1;
1028 	}
1029 
1030 	/*
1031 	 * Get the reference time stamp from the calendar buffer.
1032 	 * Process the new sample in the median filter and determine the
1033 	 * timecode timestamp, but only if the PPS is not in control.
1034 	 * Discard sentence if reference time did not change.
1035 	 */
1036 	rd_reftime = eval_gps_time(peer, &date, &tofs, &rd_timestamp);
1037 	if (L_ISEQU(&up->last_reftime, &rd_reftime)) {
1038 		/* Do not touch pp->a_lastcode on purpose! */
1039 		up->tally.filtered++;
1040 		return;
1041 	}
1042 	up->last_reftime = rd_reftime;
1043 	rd_fudge = pp->fudgetime2;
1044 
1045 	DPRINTF(1, ("%s using '%s'\n",
1046 		    refnumtoa(&peer->srcadr), rd_lastcode));
1047 
1048 	/* Data will be accepted. Update stats & log data. */
1049 	up->tally.accepted++;
1050 	save_ltc(pp, rd_lastcode, rd_lencode);
1051 	pp->lastrec = rd_timestamp;
1052 
1053 #ifdef HAVE_PPSAPI
1054 	/*
1055 	 * If we have PPS running, we try to associate the sentence
1056 	 * with the last active edge of the PPS signal.
1057 	 */
1058 	if (up->ppsapi_lit)
1059 		switch (refclock_ppsrelate(
1060 				pp, &up->atom, &rd_reftime, &rd_timestamp,
1061 				pp->fudgetime1,	&rd_fudge))
1062 		{
1063 		case PPS_RELATE_PHASE:
1064 			up->ppsapi_gate = TRUE;
1065 			peer->precision = PPS_PRECISION;
1066 			peer->flags |= FLAG_PPS;
1067 			DPRINTF(2, ("%s PPS_RELATE_PHASE\n",
1068 				    refnumtoa(&peer->srcadr)));
1069 			up->tally.pps_used++;
1070 			break;
1071 
1072 		case PPS_RELATE_EDGE:
1073 			up->ppsapi_gate = TRUE;
1074 			peer->precision = PPS_PRECISION;
1075 			DPRINTF(2, ("%s PPS_RELATE_EDGE\n",
1076 				    refnumtoa(&peer->srcadr)));
1077 			break;
1078 
1079 		case PPS_RELATE_NONE:
1080 		default:
1081 			/*
1082 			 * Resetting precision and PPS flag is done in
1083 			 * 'nmea_poll', since it might be a glitch. But
1084 			 * at the end of the poll cycle we know...
1085 			 */
1086 			DPRINTF(2, ("%s PPS_RELATE_NONE\n",
1087 				    refnumtoa(&peer->srcadr)));
1088 			break;
1089 		}
1090 #endif /* HAVE_PPSAPI */
1091 
1092 	refclock_process_offset(pp, rd_reftime, rd_timestamp, rd_fudge);
1093 }
1094 
1095 
1096 /*
1097  * -------------------------------------------------------------------
1098  * nmea_poll - called by the transmit procedure
1099  *
1100  * Does the necessary bookkeeping stuff to keep the reported state of
1101  * the clock in sync with reality.
1102  *
1103  * We go to great pains to avoid changing state here, since there may
1104  * be more than one eavesdropper receiving the same timecode.
1105  * -------------------------------------------------------------------
1106  */
1107 static void
1108 nmea_poll(
1109 	int           unit,
1110 	struct peer * peer
1111 	)
1112 {
1113 	struct refclockproc * const pp = peer->procptr;
1114 	nmea_unit	    * const up = (nmea_unit *)pp->unitptr;
1115 
1116 	/*
1117 	 * Process median filter samples. If none received, declare a
1118 	 * timeout and keep going.
1119 	 */
1120 #ifdef HAVE_PPSAPI
1121 	/*
1122 	 * If we don't have PPS pulses and time stamps, turn PPS down
1123 	 * for now.
1124 	 */
1125 	if (!up->ppsapi_gate) {
1126 		peer->flags &= ~FLAG_PPS;
1127 		peer->precision = PRECISION;
1128 	} else {
1129 		up->ppsapi_gate = FALSE;
1130 	}
1131 #endif /* HAVE_PPSAPI */
1132 
1133 	/*
1134 	 * If the median filter is empty, claim a timeout. Else process
1135 	 * the input data and keep the stats going.
1136 	 */
1137 	if (pp->coderecv == pp->codeproc) {
1138 		refclock_report(peer, CEVNT_TIMEOUT);
1139 	} else {
1140 		pp->polls++;
1141 		pp->lastref = pp->lastrec;
1142 		refclock_receive(peer);
1143 	}
1144 
1145 	/*
1146 	 * If extended logging is required, write the tally stats to the
1147 	 * clockstats file; otherwise just do a normal clock stats
1148 	 * record. Clear the tally stats anyway.
1149 	*/
1150 	if (peer->ttl & NMEA_EXTLOG_MASK) {
1151 		/* Log & reset counters with extended logging */
1152 		const char *nmea = pp->a_lastcode;
1153 		if (*nmea == '\0') nmea = "(none)";
1154 		mprintf_clock_stats(
1155 		  &peer->srcadr, "%s  %u %u %u %u %u %u",
1156 		  nmea,
1157 		  up->tally.total, up->tally.accepted,
1158 		  up->tally.rejected, up->tally.malformed,
1159 		  up->tally.filtered, up->tally.pps_used);
1160 	} else {
1161 		record_clock_stats(&peer->srcadr, pp->a_lastcode);
1162 	}
1163 	ZERO(up->tally);
1164 }
1165 
1166 /*
1167  * -------------------------------------------------------------------
1168  * Save the last timecode string, making sure it's properly truncated
1169  * if necessary and NUL terminated in any case.
1170  */
1171 static void
1172 save_ltc(
1173 	struct refclockproc * const pp,
1174 	const char * const          tc,
1175 	size_t                      len
1176 	)
1177 {
1178 	if (len >= sizeof(pp->a_lastcode))
1179 		len = sizeof(pp->a_lastcode) - 1;
1180 	pp->lencode = (u_short)len;
1181 	memcpy(pp->a_lastcode, tc, len);
1182 	pp->a_lastcode[len] = '\0';
1183 }
1184 
1185 
1186 #if NMEA_WRITE_SUPPORT
1187 /*
1188  * -------------------------------------------------------------------
1189  *  gps_send(fd, cmd, peer)	Sends a command to the GPS receiver.
1190  *   as in gps_send(fd, "rqts,u", peer);
1191  *
1192  * If 'cmd' starts with a '$' it is assumed that this command is in raw
1193  * format, that is, starts with '$', ends with '<cr><lf>' and that any
1194  * checksum is correctly provided; the command will be send 'as is' in
1195  * that case. Otherwise the function will create the necessary frame
1196  * (start char, chksum, final CRLF) on the fly.
1197  *
1198  * We don't currently send any data, but would like to send RTCM SC104
1199  * messages for differential positioning. It should also give us better
1200  * time. Without a PPS output, we're Just fooling ourselves because of
1201  * the serial code paths
1202  * -------------------------------------------------------------------
1203  */
1204 static void
1205 gps_send(
1206 	int           fd,
1207 	const char  * cmd,
1208 	struct peer * peer
1209 	)
1210 {
1211 	/* $...*xy<CR><LF><NUL> add 7 */
1212 	char	      buf[NMEA_PROTO_MAXLEN + 7];
1213 	int	      len;
1214 	u_char	      dcs;
1215 	const u_char *beg, *end;
1216 
1217 	if (*cmd != '$') {
1218 		/* get checksum and length */
1219 		beg = end = (const u_char*)cmd;
1220 		dcs = 0;
1221 		while (*end >= ' ' && *end != '*')
1222 			dcs ^= *end++;
1223 		len = end - beg;
1224 		/* format into output buffer with overflow check */
1225 		len = snprintf(buf, sizeof(buf), "$%.*s*%02X\r\n",
1226 			       len, beg, dcs);
1227 		if ((size_t)len >= sizeof(buf)) {
1228 			DPRINTF(1, ("%s gps_send: buffer overflow for command '%s'\n",
1229 				    refnumtoa(&peer->srcadr), cmd));
1230 			return;	/* game over player 1 */
1231 		}
1232 		cmd = buf;
1233 	} else {
1234 		len = strlen(cmd);
1235 	}
1236 
1237 	DPRINTF(1, ("%s gps_send: '%.*s'\n", refnumtoa(&peer->srcadr),
1238 		len - 2, cmd));
1239 
1240 	/* send out the whole stuff */
1241 	if (write(fd, cmd, len) == -1)
1242 		refclock_report(peer, CEVNT_FAULT);
1243 }
1244 #endif /* NMEA_WRITE_SUPPORT */
1245 
1246 /*
1247  * -------------------------------------------------------------------
1248  * helpers for faster field splitting
1249  * -------------------------------------------------------------------
1250  *
1251  * set up a field record, check syntax and verify checksum
1252  *
1253  * format is $XXXXX,1,2,3,4*ML
1254  *
1255  * 8-bit XOR of characters between $ and * noninclusive is transmitted
1256  * in last two chars M and L holding most and least significant nibbles
1257  * in hex representation such as:
1258  *
1259  *   $GPGLL,5057.970,N,00146.110,E,142451,A*27
1260  *   $GPVTG,089.0,T,,,15.2,N,,*7F
1261  *
1262  * Some other constraints:
1263  * + The field name must at least 5 upcase characters or digits and must
1264  *   start with a character.
1265  * + The checksum (if present) must be uppercase hex digits.
1266  * + The length of a sentence is limited to 80 characters (not including
1267  *   the final CR/LF nor the checksum, but including the leading '$')
1268  *
1269  * Return values:
1270  *  + CHECK_INVALID
1271  *	The data does not form a valid NMEA sentence or a checksum error
1272  *	occurred.
1273  *  + CHECK_VALID
1274  *	The data is a valid NMEA sentence but contains no checksum.
1275  *  + CHECK_CSVALID
1276  *	The data is a valid NMEA sentence and passed the checksum test.
1277  * -------------------------------------------------------------------
1278  */
1279 static int
1280 field_init(
1281 	nmea_data * data,	/* context structure		       */
1282 	char 	  * cptr,	/* start of raw data		       */
1283 	int	    dlen	/* data len, not counting trailing NUL */
1284 	)
1285 {
1286 	u_char cs_l;	/* checksum local computed	*/
1287 	u_char cs_r;	/* checksum remote given	*/
1288 	char * eptr;	/* buffer end end pointer	*/
1289 	char   tmp;	/* char buffer 			*/
1290 
1291 	cs_l = 0;
1292 	cs_r = 0;
1293 	/* some basic input constraints */
1294 	if (dlen < 0)
1295 		dlen = 0;
1296 	eptr = cptr + dlen;
1297 	*eptr = '\0';
1298 
1299 	/* load data context */
1300 	data->base = cptr;
1301 	data->cptr = cptr;
1302 	data->cidx = 0;
1303 	data->blen = dlen;
1304 
1305 	/* syntax check follows here. check allowed character
1306 	 * sequences, updating the local computed checksum as we go.
1307 	 *
1308 	 * regex equiv: '^\$[A-Z][A-Z0-9]{4,}[^*]*(\*[0-9A-F]{2})?$'
1309 	 */
1310 
1311 	/* -*- start character: '^\$' */
1312 	if (*cptr == '\0')
1313 		return CHECK_EMPTY;
1314 	if (*cptr++ != '$')
1315 		return CHECK_INVALID;
1316 
1317 	/* -*- advance context beyond start character */
1318 	data->base++;
1319 	data->cptr++;
1320 	data->blen--;
1321 
1322 	/* -*- field name: '[A-Z][A-Z0-9]{4,},' */
1323 	if (*cptr < 'A' || *cptr > 'Z')
1324 		return CHECK_INVALID;
1325 	cs_l ^= *cptr++;
1326 	while ((*cptr >= 'A' && *cptr <= 'Z') ||
1327 	       (*cptr >= '0' && *cptr <= '9')  )
1328 		cs_l ^= *cptr++;
1329 	if (*cptr != ',' || (cptr - data->base) < NMEA_PROTO_IDLEN)
1330 		return CHECK_INVALID;
1331 	cs_l ^= *cptr++;
1332 
1333 	/* -*- data: '[^*]*' */
1334 	while (*cptr && *cptr != '*')
1335 		cs_l ^= *cptr++;
1336 
1337 	/* -*- checksum field: (\*[0-9A-F]{2})?$ */
1338 	if (*cptr == '\0')
1339 		return CHECK_VALID;
1340 	if (*cptr != '*' || cptr != eptr - 3 ||
1341 	    (cptr - data->base) >= NMEA_PROTO_MAXLEN)
1342 		return CHECK_INVALID;
1343 
1344 	for (cptr++; (tmp = *cptr) != '\0'; cptr++) {
1345 		if (tmp >= '0' && tmp <= '9')
1346 			cs_r = (cs_r << 4) + (tmp - '0');
1347 		else if (tmp >= 'A' && tmp <= 'F')
1348 			cs_r = (cs_r << 4) + (tmp - 'A' + 10);
1349 		else
1350 			break;
1351 	}
1352 
1353 	/* -*- make sure we are at end of string and csum matches */
1354 	if (cptr != eptr || cs_l != cs_r)
1355 		return CHECK_INVALID;
1356 
1357 	return CHECK_CSVALID;
1358 }
1359 
1360 /*
1361  * -------------------------------------------------------------------
1362  * fetch a data field by index, zero being the name field. If this
1363  * function is called repeatedly with increasing indices, the total load
1364  * is O(n), n being the length of the string; if it is called with
1365  * decreasing indices, the total load is O(n^2). Try not to go backwards
1366  * too often.
1367  * -------------------------------------------------------------------
1368  */
1369 static char *
1370 field_parse(
1371 	nmea_data * data,
1372 	int 	    fn
1373 	)
1374 {
1375 	char tmp;
1376 
1377 	if (fn < data->cidx) {
1378 		data->cidx = 0;
1379 		data->cptr = data->base;
1380 	}
1381 	while ((fn > data->cidx) && (tmp = *data->cptr) != '\0') {
1382 		data->cidx += (tmp == ',');
1383 		data->cptr++;
1384 	}
1385 	return data->cptr;
1386 }
1387 
1388 /*
1389  * -------------------------------------------------------------------
1390  * Wipe (that is, overwrite with '_') data fields and the checksum in
1391  * the last timecode.  The list of field indices is given as integers
1392  * in a varargs list, preferrably in ascending order, in any case
1393  * terminated by a negative field index.
1394  *
1395  * A maximum number of 8 fields can be overwritten at once to guard
1396  * against runaway (that is, unterminated) argument lists.
1397  *
1398  * This function affects what a remote user can see with
1399  *
1400  * ntpq -c clockvar <server>
1401  *
1402  * Note that this also removes the wiped fields from any clockstats
1403  * log.	 Some NTP operators monitor their NMEA GPS using the change in
1404  * location in clockstats over time as as a proxy for the quality of
1405  * GPS reception and thereby time reported.
1406  * -------------------------------------------------------------------
1407  */
1408 static void
1409 field_wipe(
1410 	nmea_data * data,
1411 	...
1412 	)
1413 {
1414 	va_list	va;		/* vararg index list */
1415 	int	fcnt;		/* safeguard against runaway arglist */
1416 	int	fidx;		/* field to nuke, or -1 for checksum */
1417 	char  * cp;		/* overwrite destination */
1418 
1419 	fcnt = 8;
1420 	cp = NULL;
1421 	va_start(va, data);
1422 	do {
1423 		fidx = va_arg(va, int);
1424 		if (fidx >= 0 && fidx <= NMEA_PROTO_FIELDS) {
1425 			cp = field_parse(data, fidx);
1426 		} else {
1427 			cp = data->base + data->blen;
1428 			if (data->blen >= 3 && cp[-3] == '*')
1429 				cp -= 2;
1430 		}
1431 		for ( ; '\0' != *cp && '*' != *cp && ',' != *cp; cp++)
1432 			if ('.' != *cp)
1433 				*cp = '_';
1434 	} while (fcnt-- && fidx >= 0);
1435 	va_end(va);
1436 }
1437 
1438 /*
1439  * -------------------------------------------------------------------
1440  * PARSING HELPERS
1441  * -------------------------------------------------------------------
1442  *
1443  * Check sync status
1444  *
1445  * If the character at the data field start matches the tag value,
1446  * return LEAP_NOWARNING and LEAP_NOTINSYNC otherwise. If the 'inverted'
1447  * flag is given, just the opposite value is returned. If there is no
1448  * data field (*cp points to the NUL byte) the result is LEAP_NOTINSYNC.
1449  * -------------------------------------------------------------------
1450  */
1451 static u_char
1452 parse_qual(
1453 	nmea_data * rd,
1454 	int         idx,
1455 	char        tag,
1456 	int         inv
1457 	)
1458 {
1459 	static const u_char table[2] =
1460 				{ LEAP_NOTINSYNC, LEAP_NOWARNING };
1461 	char * dp;
1462 
1463 	dp = field_parse(rd, idx);
1464 
1465 	return table[ *dp && ((*dp == tag) == !inv) ];
1466 }
1467 
1468 /*
1469  * -------------------------------------------------------------------
1470  * Parse a time stamp in HHMMSS[.sss] format with error checking.
1471  *
1472  * returns 1 on success, 0 on failure
1473  * -------------------------------------------------------------------
1474  */
1475 static int
1476 parse_time(
1477 	struct calendar * jd,	/* result calendar pointer */
1478 	long		* ns,	/* storage for nsec fraction */
1479 	nmea_data       * rd,
1480 	int		  idx
1481 	)
1482 {
1483 	static const unsigned long weight[4] = {
1484 		0, 100000000, 10000000, 1000000
1485 	};
1486 
1487 	int	rc;
1488 	u_int	h;
1489 	u_int	m;
1490 	u_int	s;
1491 	int	p1;
1492 	int	p2;
1493 	u_long	f;
1494 	char  * dp;
1495 
1496 	dp = field_parse(rd, idx);
1497 	rc = sscanf(dp, "%2u%2u%2u%n.%3lu%n", &h, &m, &s, &p1, &f, &p2);
1498 	if (rc < 3 || p1 != 6) {
1499 		DPRINTF(1, ("nmea: invalid time code: '%.6s'\n", dp));
1500 		return FALSE;
1501 	}
1502 
1503 	/* value sanity check */
1504 	if (h > 23 || m > 59 || s > 60) {
1505 		DPRINTF(1, ("nmea: invalid time spec %02u:%02u:%02u\n",
1506 			    h, m, s));
1507 		return FALSE;
1508 	}
1509 
1510 	jd->hour   = (u_char)h;
1511 	jd->minute = (u_char)m;
1512 	jd->second = (u_char)s;
1513 	/* if we have a fraction, scale it up to nanoseconds. */
1514 	if (rc == 4)
1515 		*ns = f * weight[p2 - p1 - 1];
1516 	else
1517 		*ns = 0;
1518 
1519 	return TRUE;
1520 }
1521 
1522 /*
1523  * -------------------------------------------------------------------
1524  * Parse a date string from an NMEA sentence. This could either be a
1525  * partial date in DDMMYY format in one field, or DD,MM,YYYY full date
1526  * spec spanning three fields. This function does some extensive error
1527  * checking to make sure the date string was consistent.
1528  *
1529  * returns 1 on success, 0 on failure
1530  * -------------------------------------------------------------------
1531  */
1532 static int
1533 parse_date(
1534 	struct calendar * jd,	/* result pointer */
1535 	nmea_data       * rd,
1536 	int		  idx,
1537 	enum date_fmt	  fmt
1538 	)
1539 {
1540 	int	rc;
1541 	u_int	y;
1542 	u_int	m;
1543 	u_int	d;
1544 	int	p;
1545 	char  * dp;
1546 
1547 	dp = field_parse(rd, idx);
1548 	switch (fmt) {
1549 
1550 	case DATE_1_DDMMYY:
1551 		rc = sscanf(dp, "%2u%2u%2u%n", &d, &m, &y, &p);
1552 		if (rc != 3 || p != 6) {
1553 			DPRINTF(1, ("nmea: invalid date code: '%.6s'\n",
1554 				    dp));
1555 			return FALSE;
1556 		}
1557 		break;
1558 
1559 	case DATE_3_DDMMYYYY:
1560 		rc = sscanf(dp, "%2u,%2u,%4u%n", &d, &m, &y, &p);
1561 		if (rc != 3 || p != 10) {
1562 			DPRINTF(1, ("nmea: invalid date code: '%.10s'\n",
1563 				    dp));
1564 			return FALSE;
1565 		}
1566 		break;
1567 
1568 	default:
1569 		DPRINTF(1, ("nmea: invalid parse format: %d\n", fmt));
1570 		return FALSE;
1571 	}
1572 
1573 	/* value sanity check */
1574 	if (d < 1 || d > 31 || m < 1 || m > 12) {
1575 		DPRINTF(1, ("nmea: invalid date spec (YMD) %04u:%02u:%02u\n",
1576 			    y, m, d));
1577 		return FALSE;
1578 	}
1579 
1580 	/* store results */
1581 	jd->monthday = (u_char)d;
1582 	jd->month    = (u_char)m;
1583 	jd->year     = (u_short)y;
1584 
1585 	return TRUE;
1586 }
1587 
1588 /*
1589  * -------------------------------------------------------------------
1590  * Parse GPS week time info from an NMEA sentence. This info contains
1591  * the GPS week number, the GPS time-of-week and the leap seconds GPS
1592  * to UTC.
1593  *
1594  * returns 1 on success, 0 on failure
1595  * -------------------------------------------------------------------
1596  */
1597 static int
1598 parse_weekdata(
1599 	gps_weektm * wd,
1600 	nmea_data  * rd,
1601 	int          weekidx,
1602 	int          timeidx,
1603 	int          leapidx
1604 	)
1605 {
1606 	u_long secs;
1607 	int    fcnt;
1608 
1609 	/* parse fields and count success */
1610 	fcnt  = sscanf(field_parse(rd, weekidx), "%hu", &wd->wt_week);
1611 	fcnt += sscanf(field_parse(rd, timeidx), "%lu", &secs);
1612 	fcnt += sscanf(field_parse(rd, leapidx), "%hd", &wd->wt_leap);
1613 	if (fcnt != 3 || wd->wt_week >= 1024 || secs >= 7*SECSPERDAY) {
1614 		DPRINTF(1, ("nmea: parse_weekdata: invalid weektime spec\n"));
1615 		return FALSE;
1616 	}
1617 	wd->wt_time = (u_int32)secs;
1618 
1619 	return TRUE;
1620 }
1621 
1622 /*
1623  * -------------------------------------------------------------------
1624  * funny calendar-oriented stuff -- perhaps a bit hard to grok.
1625  * -------------------------------------------------------------------
1626  *
1627  * Unfold a time-of-day (seconds since midnight) around the current
1628  * system time in a manner that guarantees an absolute difference of
1629  * less than 12hrs.
1630  *
1631  * This function is used for NMEA sentences that contain no date
1632  * information. This requires the system clock to be in +/-12hrs
1633  * around the true time, or the clock will synchronize the system 1day
1634  * off if not augmented with a time sources that also provide the
1635  * necessary date information.
1636  *
1637  * The function updates the calendar structure it also uses as
1638  * input to fetch the time from.
1639  *
1640  * returns 1 on success, 0 on failure
1641  * -------------------------------------------------------------------
1642  */
1643 static int
1644 unfold_day(
1645 	struct calendar * jd,
1646 	u_int32		  rec_ui
1647 	)
1648 {
1649 	vint64	     rec_qw;
1650 	ntpcal_split rec_ds;
1651 
1652 	/*
1653 	 * basically this is the peridiodic extension of the receive
1654 	 * time - 12hrs to the time-of-day with a period of 1 day.
1655 	 * But we would have to execute this in 64bit arithmetic, and we
1656 	 * cannot assume we can do this; therefore this is done
1657 	 * in split representation.
1658 	 */
1659 	rec_qw = ntpcal_ntp_to_ntp(rec_ui - SECSPERDAY/2, NULL);
1660 	rec_ds = ntpcal_daysplit(&rec_qw);
1661 	rec_ds.lo = ntpcal_periodic_extend(rec_ds.lo,
1662 					   ntpcal_date_to_daysec(jd),
1663 					   SECSPERDAY);
1664 	rec_ds.hi += ntpcal_daysec_to_date(jd, rec_ds.lo);
1665 	return (ntpcal_rd_to_date(jd, rec_ds.hi + DAY_NTP_STARTS) >= 0);
1666 }
1667 
1668 /*
1669  * -------------------------------------------------------------------
1670  * A 2-digit year is expanded into full year spec around the year found
1671  * in 'jd->year'. This should be in +79/-19 years around the system time,
1672  * or the result will be off by 100 years.  The assymetric behaviour was
1673  * chosen to enable inital sync for systems that do not have a
1674  * battery-backup clock and start with a date that is typically years in
1675  * the past.
1676  *
1677  * Since the GPS epoch starts at 1980-01-06, the resulting year will be
1678  * not be before 1980 in any case.
1679  *
1680  * returns 1 on success, 0 on failure
1681  * -------------------------------------------------------------------
1682  */
1683 static int
1684 unfold_century(
1685 	struct calendar * jd,
1686 	u_int32		  rec_ui
1687 	)
1688 {
1689 	struct calendar rec;
1690 	int32		baseyear;
1691 
1692 	ntpcal_ntp_to_date(&rec, rec_ui, NULL);
1693 	baseyear = rec.year - 20;
1694 	if (baseyear < g_gpsMinYear)
1695 		baseyear = g_gpsMinYear;
1696 	jd->year = (u_short)ntpcal_periodic_extend(baseyear, jd->year,
1697 						   100);
1698 
1699 	return ((baseyear <= jd->year) && (baseyear + 100 > jd->year));
1700 }
1701 
1702 /*
1703  * -------------------------------------------------------------------
1704  * A 2-digit year is expanded into a full year spec by correlation with
1705  * a GPS week number and the current leap second count.
1706  *
1707  * The GPS week time scale counts weeks since Sunday, 1980-01-06, modulo
1708  * 1024 and seconds since start of the week. The GPS time scale is based
1709  * on international atomic time (TAI), so the leap second difference to
1710  * UTC is also needed for a proper conversion.
1711  *
1712  * A brute-force analysis (that is, test for every date) shows that a
1713  * wrong assignment of the century can not happen between the years 1900
1714  * to 2399 when comparing the week signatures for different
1715  * centuries. (I *think* that will not happen for 400*1024 years, but I
1716  * have no valid proof. -*-perlinger@ntp.org-*-)
1717  *
1718  * This function is bound to to work between years 1980 and 2399
1719  * (inclusive), which should suffice for now ;-)
1720  *
1721  * Note: This function needs a full date&time spec on input due to the
1722  * necessary leap second corrections!
1723  *
1724  * returns 1 on success, 0 on failure
1725  * -------------------------------------------------------------------
1726  */
1727 static int
1728 gpsfix_century(
1729 	struct calendar  * jd,
1730 	const gps_weektm * wd,
1731 	u_short          * century
1732 	)
1733 {
1734 	int32	days;
1735 	int32	doff;
1736 	u_short week;
1737 	u_short year;
1738 	int     loop;
1739 
1740 	/* Get day offset. Assumes that the input time is in range and
1741 	 * that the leap seconds do not shift more than +/-1 day.
1742 	 */
1743 	doff = ntpcal_date_to_daysec(jd) + wd->wt_leap;
1744 	doff = (doff >= SECSPERDAY) - (doff < 0);
1745 
1746 	/*
1747 	 * Loop over centuries to get a match, starting with the last
1748 	 * successful one. (Or with the 19th century if the cached value
1749 	 * is out of range...)
1750 	 */
1751 	year = jd->year % 100;
1752 	for (loop = 5; loop > 0; loop--,(*century)++) {
1753 		if (*century < 19 || *century >= 24)
1754 			*century = 19;
1755 		/* Get days and week in GPS epoch */
1756 		jd->year = year + *century * 100;
1757 		days = ntpcal_date_to_rd(jd) - DAY_GPS_STARTS + doff;
1758 		week = (days / 7) % 1024;
1759 		if (days >= 0 && wd->wt_week == week)
1760 			return TRUE; /* matched... */
1761 	}
1762 
1763 	jd->year = year;
1764 	return FALSE; /* match failed... */
1765 }
1766 
1767 /*
1768  * -------------------------------------------------------------------
1769  * And now the final execise: Considering the fact that many (most?)
1770  * GPS receivers cannot handle a GPS epoch wrap well, we try to
1771  * compensate for that problem by unwrapping a GPS epoch around the
1772  * receive stamp. Another execise in periodic unfolding, of course,
1773  * but with enough points to take care of.
1774  *
1775  * Note: The integral part of 'tofs' is intended to handle small(!)
1776  * systematic offsets, as -1 for handling $GPZDG, which gives the
1777  * following second. (sigh...) The absolute value shall be less than a
1778  * day (86400 seconds).
1779  * -------------------------------------------------------------------
1780  */
1781 static l_fp
1782 eval_gps_time(
1783 	struct peer           * peer, /* for logging etc */
1784 	const struct calendar * gpst, /* GPS time stamp  */
1785 	const struct timespec * tofs, /* GPS frac second & offset */
1786 	const l_fp            * xrecv /* receive time stamp */
1787 	)
1788 {
1789 	struct refclockproc * const pp = peer->procptr;
1790 	nmea_unit	    * const up = (nmea_unit *)pp->unitptr;
1791 
1792 	l_fp    retv;
1793 
1794 	/* components of calculation */
1795 	int32_t rcv_sec, rcv_day; /* receive ToD and day */
1796 	int32_t gps_sec, gps_day; /* GPS ToD and day in NTP epoch */
1797 	int32_t adj_day, weeks;   /* adjusted GPS day and week shift */
1798 
1799 	/* some temporaries to shuffle data */
1800 	vint64       vi64;
1801 	ntpcal_split rs64;
1802 
1803 	/* evaluate time stamp from receiver. */
1804 	gps_sec = ntpcal_date_to_daysec(gpst);
1805 	gps_day = ntpcal_date_to_rd(gpst) - DAY_NTP_STARTS;
1806 
1807 	/* merge in fractional offset */
1808 	retv = tspec_intv_to_lfp(*tofs);
1809 	gps_sec += retv.l_i;
1810 
1811 	/* If we fully trust the GPS receiver, just combine days and
1812 	 * seconds and be done. */
1813 	if (peer->ttl & NMEA_DATETRUST_MASK) {
1814 		retv.l_ui = ntpcal_dayjoin(gps_day, gps_sec).D_s.lo;
1815 		return retv;
1816 	}
1817 
1818 	/* So we do not trust the GPS receiver to deliver a correct date
1819 	 * due to the GPS epoch changes. We map the date from the
1820 	 * receiver into the +/-512 week interval around the receive
1821 	 * time in that case. This would be a tad easier with 64bit
1822 	 * calculations, but again, we restrict the code to 32bit ops
1823 	 * when possible. */
1824 
1825 	/* - make sure the GPS fractional day is normalised
1826 	 * Applying the offset value might have put us slightly over the
1827 	 * edge of the allowed range for seconds-of-day. Doing a full
1828 	 * division with floor correction is overkill here; a simple
1829 	 * addition or subtraction step is sufficient. Using WHILE loops
1830 	 * gives the right result even if the offset exceeds one day,
1831 	 * which is NOT what it's intented for! */
1832 	while (gps_sec >= SECSPERDAY) {
1833 		gps_sec -= SECSPERDAY;
1834 		gps_day += 1;
1835 	}
1836 	while (gps_sec < 0) {
1837 		gps_sec += SECSPERDAY;
1838 		gps_day -= 1;
1839 	}
1840 
1841 	/* - get unfold base: day of full recv time - 512 weeks */
1842 	vi64 = ntpcal_ntp_to_ntp(xrecv->l_ui, NULL);
1843 	rs64 = ntpcal_daysplit(&vi64);
1844 	rcv_sec = rs64.lo;
1845 	rcv_day = rs64.hi - 512 * 7;
1846 
1847 	/* - take the fractional days into account
1848 	 * If the fractional day of the GPS time is smaller than the
1849 	 * fractional day of the receive time, we shift the base day for
1850 	 * the unfold by 1. */
1851 	if (   gps_sec  < rcv_sec
1852 	   || (gps_sec == rcv_sec && retv.l_uf < xrecv->l_uf))
1853 		rcv_day += 1;
1854 
1855 	/* - don't warp ahead of GPS invention! */
1856 	if (rcv_day < g_gpsMinBase)
1857 		rcv_day = g_gpsMinBase;
1858 
1859 	/* - let the magic happen: */
1860 	adj_day = ntpcal_periodic_extend(rcv_day, gps_day, 1024*7);
1861 
1862 	/* - check if we should log a GPS epoch warp */
1863 	weeks = (adj_day - gps_day) / 7;
1864 	if (weeks != up->epoch_warp) {
1865 		up->epoch_warp = weeks;
1866 		LOGIF(CLOCKINFO, (LOG_INFO,
1867 				  "%s Changed GPS epoch warp to %d weeks",
1868 				  refnumtoa(&peer->srcadr), weeks));
1869 	}
1870 
1871 	/* - build result and be done */
1872 	retv.l_ui = ntpcal_dayjoin(adj_day, gps_sec).D_s.lo;
1873 	return retv;
1874 }
1875 
1876 /*
1877  * ===================================================================
1878  *
1879  * NMEAD support
1880  *
1881  * original nmead support added by Jon Miner (cp_n18@yahoo.com)
1882  *
1883  * See http://home.hiwaay.net/~taylorc/gps/nmea-server/
1884  * for information about nmead
1885  *
1886  * To use this, you need to create a link from /dev/gpsX to
1887  * the server:port where nmead is running.  Something like this:
1888  *
1889  * ln -s server:port /dev/gps1
1890  *
1891  * Split into separate function by Juergen Perlinger
1892  * (perlinger-at-ntp-dot-org)
1893  *
1894  * ===================================================================
1895  */
1896 static int
1897 nmead_open(
1898 	const char * device
1899 	)
1900 {
1901 	int	fd = -1;		/* result file descriptor */
1902 
1903 #ifdef HAVE_READLINK
1904 	char	host[80];		/* link target buffer	*/
1905 	char  * port;			/* port name or number	*/
1906 	int	rc;			/* result code (several)*/
1907 	int     sh;			/* socket handle	*/
1908 	struct addrinfo	 ai_hint;	/* resolution hint	*/
1909 	struct addrinfo	*ai_list;	/* resolution result	*/
1910 	struct addrinfo *ai;		/* result scan ptr	*/
1911 
1912 	fd = -1;
1913 
1914 	/* try to read as link, make sure no overflow occurs */
1915 	rc = readlink(device, host, sizeof(host));
1916 	if ((size_t)rc >= sizeof(host))
1917 		return fd;	/* error / overflow / truncation */
1918 	host[rc] = '\0';	/* readlink does not place NUL	*/
1919 
1920 	/* get port */
1921 	port = strchr(host, ':');
1922 	if (!port)
1923 		return fd; /* not 'host:port' syntax ? */
1924 	*port++ = '\0';	/* put in separator */
1925 
1926 	/* get address infos and try to open socket
1927 	 *
1928 	 * This getaddrinfo() is naughty in ntpd's nonblocking main
1929 	 * thread, but you have to go out of your wary to use this code
1930 	 * and typically the blocking is at startup where its impact is
1931 	 * reduced. The same holds for the 'connect()', as it is
1932 	 * blocking, too...
1933 	 */
1934 	ZERO(ai_hint);
1935 	ai_hint.ai_protocol = IPPROTO_TCP;
1936 	ai_hint.ai_socktype = SOCK_STREAM;
1937 	if (getaddrinfo(host, port, &ai_hint, &ai_list))
1938 		return fd;
1939 
1940 	for (ai = ai_list; ai && (fd == -1); ai = ai->ai_next) {
1941 		sh = socket(ai->ai_family, ai->ai_socktype,
1942 			    ai->ai_protocol);
1943 		if (INVALID_SOCKET == sh)
1944 			continue;
1945 		rc = connect(sh, ai->ai_addr, ai->ai_addrlen);
1946 		if (-1 != rc)
1947 			fd = sh;
1948 		else
1949 			close(sh);
1950 	}
1951 	freeaddrinfo(ai_list);
1952 #else
1953 	fd = -1;
1954 #endif
1955 
1956 	return fd;
1957 }
1958 #else
1959 NONEMPTY_TRANSLATION_UNIT
1960 #endif /* REFCLOCK && CLOCK_NMEA */
1961