1 /* refclock_ees - clock driver for the EES M201 receiver */ 2 3 #ifdef HAVE_CONFIG_H 4 #include <config.h> 5 #endif 6 7 #include "ntp_types.h" 8 9 #if defined(REFCLOCK) && defined(CLOCK_MSFEES) && defined(PPS) 10 11 /* Currently REQUIRES STREAM and PPSCD. CLK and CBREAK modes 12 * were removed as the code was overly hairy, they weren't in use 13 * (hence probably didn't work). Still in RCS file at cl.cam.ac.uk 14 */ 15 16 #include "ntpd.h" 17 #include "ntp_io.h" 18 #include "ntp_refclock.h" 19 #include "timevalops.h" 20 21 #include <ctype.h> 22 #if defined(HAVE_BSD_TTYS) 23 #include <sgtty.h> 24 #endif /* HAVE_BSD_TTYS */ 25 #if defined(HAVE_SYSV_TTYS) 26 #include <termio.h> 27 #endif /* HAVE_SYSV_TTYS */ 28 #if defined(HAVE_TERMIOS) 29 #include <termios.h> 30 #endif 31 #if defined(STREAM) 32 #include <stropts.h> 33 #endif 34 35 #ifdef HAVE_SYS_TERMIOS_H 36 # include <sys/termios.h> 37 #endif 38 #ifdef HAVE_SYS_PPSCLOCK_H 39 # include <sys/ppsclock.h> 40 #endif 41 42 #include "ntp_stdlib.h" 43 44 int dbg = 0; 45 /* 46 fudgefactor = fudgetime1; 47 os_delay = fudgetime2; 48 offset_fudge = os_delay + fudgefactor + inherent_delay; 49 stratumtouse = fudgeval1 & 0xf 50 dbg = fudgeval2; 51 sloppyclockflag = flags & CLK_FLAG1; 52 1 log smoothing summary when processing sample 53 4 dump the buffer from the clock 54 8 EIOGETKD the last n uS time stamps 55 if (flags & CLK_FLAG2 && unitinuse) ees->leaphold = 0; 56 ees->dump_vals = flags & CLK_FLAG3; 57 ees->usealldata = flags & CLK_FLAG4; 58 59 60 bug->values[0] = (ees->lasttime) ? current_time - ees->lasttime : 0; 61 bug->values[1] = (ees->clocklastgood)?current_time-ees->clocklastgood:0; 62 bug->values[2] = (u_long)ees->status; 63 bug->values[3] = (u_long)ees->lastevent; 64 bug->values[4] = (u_long)ees->reason; 65 bug->values[5] = (u_long)ees->nsamples; 66 bug->values[6] = (u_long)ees->codestate; 67 bug->values[7] = (u_long)ees->day; 68 bug->values[8] = (u_long)ees->hour; 69 bug->values[9] = (u_long)ees->minute; 70 bug->values[10] = (u_long)ees->second; 71 bug->values[11] = (u_long)ees->tz; 72 bug->values[12] = ees->yearstart; 73 bug->values[13] = (ees->leaphold > current_time) ? 74 ees->leaphold - current_time : 0; 75 bug->values[14] = inherent_delay[unit].l_uf; 76 bug->values[15] = offset_fudge[unit].l_uf; 77 78 bug->times[0] = ees->reftime; 79 bug->times[1] = ees->arrvtime; 80 bug->times[2] = ees->lastsampletime; 81 bug->times[3] = ees->offset; 82 bug->times[4] = ees->lowoffset; 83 bug->times[5] = ees->highoffset; 84 bug->times[6] = inherent_delay[unit]; 85 bug->times[8] = os_delay[unit]; 86 bug->times[7] = fudgefactor[unit]; 87 bug->times[9] = offset_fudge[unit]; 88 bug->times[10]= ees->yearstart, 0; 89 */ 90 91 /* This should support the use of an EES M201 receiver with RS232 92 * output (modified to transmit time once per second). 93 * 94 * For the format of the message sent by the clock, see the EESM_ 95 * definitions below. 96 * 97 * It appears to run free for an integral number of minutes, until the error 98 * reaches 4mS, at which point it steps at second = 01. 99 * It appears that sometimes it steps 4mS (say at 7 min interval), 100 * then the next minute it decides that it was an error, so steps back. 101 * On the next minute it steps forward again :-( 102 * This is typically 16.5uS/S then 3975uS at the 4min re-sync, 103 * or 9.5uS/S then 3990.5uS at a 7min re-sync, 104 * at which point it may lose the "00" second time stamp. 105 * I assume that the most accurate time is just AFTER the re-sync. 106 * Hence remember the last cycle interval, 107 * 108 * Can run in any one of: 109 * 110 * PPSCD PPS signal sets CD which interupts, and grabs the current TOD 111 * (sun) *in the interupt code*, so as to avoid problems with 112 * the STREAMS scheduling. 113 * 114 * It appears that it goes 16.5 uS slow each second, then every 4 mins it 115 * generates no "00" second tick, and gains 3975 uS. Ho Hum ! (93/2/7) 116 */ 117 118 /* Definitions */ 119 #ifndef MAXUNITS 120 #define MAXUNITS 4 /* maximum number of EES units permitted */ 121 #endif 122 123 #ifndef EES232 124 #define EES232 "/dev/ees%d" /* Device to open to read the data */ 125 #endif 126 127 /* Other constant stuff */ 128 #ifndef EESPRECISION 129 #define EESPRECISION (-10) /* what the heck - 2**-10 = 1ms */ 130 #endif 131 #ifndef EESREFID 132 #define EESREFID "MSF\0" /* String to identify the clock */ 133 #endif 134 #ifndef EESHSREFID 135 #define EESHSREFID (0x7f7f0000 | ((REFCLK_MSF_EES) << 8)) /* Numeric refid */ 136 #endif 137 138 /* Description of clock */ 139 #define EESDESCRIPTION "EES M201 MSF Receiver" 140 141 /* Speed we run the clock port at. If this is changed the UARTDELAY 142 * value should be recomputed to suit. 143 */ 144 #ifndef SPEED232 145 #define SPEED232 B9600 /* 9600 baud */ 146 #endif 147 148 /* What is the inherent delay for this mode of working, i.e. when is the 149 * data time stamped. 150 */ 151 #define SAFETY_SHIFT 10 /* Split the shift to avoid overflow */ 152 #define BITS_TO_L_FP(bits, baud) \ 153 (((((bits)*2 +1) << (FRACTION_PREC-SAFETY_SHIFT)) / (2*baud)) << SAFETY_SHIFT) 154 #define INH_DELAY_CBREAK BITS_TO_L_FP(119, 9600) 155 #define INH_DELAY_PPS BITS_TO_L_FP( 0, 9600) 156 157 #ifndef STREAM_PP1 158 #define STREAM_PP1 "ppsclocd\0<-- patch space for module name1 -->" 159 #endif 160 #ifndef STREAM_PP2 161 #define STREAM_PP2 "ppsclock\0<-- patch space for module name2 -->" 162 #endif 163 164 /* Offsets of the bytes of the serial line code. The clock gives 165 * local time with a GMT/BST indication. The EESM_ definitions 166 * give offsets into ees->lastcode. 167 */ 168 #define EESM_CSEC 0 /* centiseconds - always zero in our clock */ 169 #define EESM_SEC 1 /* seconds in BCD */ 170 #define EESM_MIN 2 /* minutes in BCD */ 171 #define EESM_HOUR 3 /* hours in BCD */ 172 #define EESM_DAYWK 4 /* day of week (Sun = 0 etc) */ 173 #define EESM_DAY 5 /* day of month in BCD */ 174 #define EESM_MON 6 /* month in BCD */ 175 #define EESM_YEAR 7 /* year MOD 100 in BCD */ 176 #define EESM_LEAP 8 /* 0x0f if leap year, otherwise zero */ 177 #define EESM_BST 9 /* 0x03 if BST, 0x00 if GMT */ 178 #define EESM_MSFOK 10 /* 0x3f if radio good, otherwise zero */ 179 /* followed by a frame alignment byte (0xff) / 180 / which is not put into the lastcode buffer*/ 181 182 /* Length of the serial time code, in characters. The first length 183 * is less the frame alignment byte. 184 */ 185 #define LENEESPRT (EESM_MSFOK+1) 186 #define LENEESCODE (LENEESPRT+1) 187 188 /* Code state. */ 189 #define EESCS_WAIT 0 /* waiting for start of timecode */ 190 #define EESCS_GOTSOME 1 /* have an incomplete time code buffered */ 191 192 /* Default fudge factor and character to receive */ 193 #define DEFFUDGETIME 0 /* Default user supplied fudge factor */ 194 #ifndef DEFOSTIME 195 #define DEFOSTIME 0 /* Default OS delay -- passed by Make ? */ 196 #endif 197 #define DEFINHTIME INH_DELAY_PPS /* inherent delay due to sample point*/ 198 199 /* Limits on things. Reduce the number of samples to SAMPLEREDUCE by median 200 * elimination. If we're running with an accurate clock, chose the BESTSAMPLE 201 * as the estimated offset, otherwise average the remainder. 202 */ 203 #define FULLSHIFT 6 /* NCODES root 2 */ 204 #define NCODES (1<< FULLSHIFT) /* 64 */ 205 #define REDUCESHIFT (FULLSHIFT -1) /* SAMPLEREDUCE root 2 */ 206 207 /* Towards the high ( Why ?) end of half */ 208 #define BESTSAMPLE ((samplereduce * 3) /4) /* 24 */ 209 210 /* Leap hold time. After a leap second the clock will no longer be 211 * reliable until it resynchronizes. Hope 40 minutes is enough. */ 212 #define EESLEAPHOLD (40 * 60) 213 214 #define EES_STEP_F (1 << 24) /* the receiver steps in units of about 4ms */ 215 #define EES_STEP_F_GRACE (EES_STEP_F/8) /*Allow for slop of 1/8 which is .5ms*/ 216 #define EES_STEP_NOTE (1 << 21)/* Log any unexpected jumps, say .5 ms .... */ 217 #define EES_STEP_NOTES 50 /* Only do a limited number */ 218 #define MAX_STEP 16 /* Max number of steps to remember */ 219 220 /* debug is a bit mask of debugging that is wanted */ 221 #define DB_SYSLOG_SMPLI 0x0001 222 #define DB_SYSLOG_SMPLE 0x0002 223 #define DB_SYSLOG_SMTHI 0x0004 224 #define DB_SYSLOG_NSMTHE 0x0008 225 #define DB_SYSLOG_NSMTHI 0x0010 226 #define DB_SYSLOG_SMTHE 0x0020 227 #define DB_PRINT_EV 0x0040 228 #define DB_PRINT_CDT 0x0080 229 #define DB_PRINT_CDTC 0x0100 230 #define DB_SYSLOG_KEEPD 0x0800 231 #define DB_SYSLOG_KEEPE 0x1000 232 #define DB_LOG_DELTAS 0x2000 233 #define DB_PRINT_DELTAS 0x4000 234 #define DB_LOG_AWAITMORE 0x8000 235 #define DB_LOG_SAMPLES 0x10000 236 #define DB_NO_PPS 0x20000 237 #define DB_INC_PPS 0x40000 238 #define DB_DUMP_DELTAS 0x80000 239 240 struct eesunit { /* EES unit control structure. */ 241 struct peer *peer; /* associated peer structure */ 242 struct refclockio io; /* given to the I/O handler */ 243 l_fp reftime; /* reference time */ 244 l_fp lastsampletime; /* time as in txt from last EES msg */ 245 l_fp arrvtime; /* Time at which pkt arrived */ 246 l_fp codeoffsets[NCODES]; /* the time of arrival of 232 codes */ 247 l_fp offset; /* chosen offset (for clkbug) */ 248 l_fp lowoffset; /* lowest sample offset (for clkbug) */ 249 l_fp highoffset; /* highest " " (for clkbug) */ 250 char lastcode[LENEESCODE+6]; /* last time code we received */ 251 u_long lasttime; /* last time clock heard from */ 252 u_long clocklastgood; /* last time good radio seen */ 253 u_char lencode; /* length of code in buffer */ 254 u_char nsamples; /* number of samples we've collected */ 255 u_char codestate; /* state of 232 code reception */ 256 u_char unit; /* unit number for this guy */ 257 u_char status; /* clock status */ 258 u_char lastevent; /* last clock event */ 259 u_char reason; /* reason for last abort */ 260 u_char hour; /* hour of day */ 261 u_char minute; /* minute of hour */ 262 u_char second; /* seconds of minute */ 263 char tz; /* timezone from clock */ 264 u_char ttytype; /* method used */ 265 u_char dump_vals; /* Should clock values be dumped */ 266 u_char usealldata; /* Use ALL samples */ 267 u_short day; /* day of year from last code */ 268 u_long yearstart; /* start of current year */ 269 u_long leaphold; /* time of leap hold expiry */ 270 u_long badformat; /* number of bad format codes */ 271 u_long baddata; /* number of invalid time codes */ 272 u_long timestarted; /* time we started this */ 273 long last_pps_no; /* The serial # of the last PPS */ 274 char fix_pending; /* Is a "sync to time" pending ? */ 275 /* Fine tuning - compensate for 4 mS ramping .... */ 276 l_fp last_l; /* last time stamp */ 277 u_char last_steps[MAX_STEP]; /* Most recent n steps */ 278 int best_av_step; /* Best guess at average step */ 279 char best_av_step_count; /* # of steps over used above */ 280 char this_step; /* Current pos in buffer */ 281 int last_step_late; /* How late the last step was (0-59) */ 282 long jump_fsecs; /* # of fractions of a sec last jump */ 283 u_long last_step; /* time of last step */ 284 int last_step_secs; /* Number of seconds in last step */ 285 int using_ramp; /* 1 -> noemal, -1 -> over stepped */ 286 }; 287 #define last_sec last_l.l_ui 288 #define last_sfsec last_l.l_f 289 #define this_uisec ((ees->arrvtime).l_ui) 290 #define this_sfsec ((ees->arrvtime).l_f) 291 #define msec(x) ((x) / (1<<22)) 292 #define LAST_STEPS (sizeof ees->last_steps / sizeof ees->last_steps[0]) 293 #define subms(x) ((((((x < 0) ? (-(x)) : (x)) % (1<<22))/2) * 625) / (1<<(22 -5))) 294 295 /* Bitmask for what methods to try to use -- currently only PPS enabled */ 296 #define T_CBREAK 1 297 #define T_PPS 8 298 /* macros to test above */ 299 #define is_cbreak(x) ((x)->ttytype & T_CBREAK) 300 #define is_pps(x) ((x)->ttytype & T_PPS) 301 #define is_any(x) ((x)->ttytype) 302 303 #define CODEREASON 20 /* reason codes */ 304 305 /* Data space for the unit structures. Note that we allocate these on 306 * the fly, but never give them back. */ 307 static struct eesunit *eesunits[MAXUNITS]; 308 static u_char unitinuse[MAXUNITS]; 309 310 /* Keep the fudge factors separately so they can be set even 311 * when no clock is configured. */ 312 static l_fp inherent_delay[MAXUNITS]; /* when time stamp is taken */ 313 static l_fp fudgefactor[MAXUNITS]; /* fudgetime1 */ 314 static l_fp os_delay[MAXUNITS]; /* fudgetime2 */ 315 static l_fp offset_fudge[MAXUNITS]; /* Sum of above */ 316 static u_char stratumtouse[MAXUNITS]; 317 static u_char sloppyclockflag[MAXUNITS]; 318 319 static int deltas[60]; 320 321 static l_fp acceptable_slop; /* = { 0, 1 << (FRACTION_PREC -2) }; */ 322 static l_fp onesec; /* = { 1, 0 }; */ 323 324 #ifndef DUMP_BUF_SIZE /* Size of buffer to be used by dump_buf */ 325 #define DUMP_BUF_SIZE 10112 326 #endif 327 328 /* ees_reset - reset the count back to zero */ 329 #define ees_reset(ees) (ees)->nsamples = 0; \ 330 (ees)->codestate = EESCS_WAIT 331 332 /* ees_event - record and report an event */ 333 #define ees_event(ees, evcode) if ((ees)->status != (u_char)(evcode)) \ 334 ees_report_event((ees), (evcode)) 335 336 /* Find the precision of the system clock by reading it */ 337 #define USECS 1000000 338 #define MINSTEP 5 /* some systems increment uS on each call */ 339 #define MAXLOOPS (USECS/9) 340 341 /* 342 * Function prototypes 343 */ 344 345 static int msfees_start P((int unit, struct peer *peer)); 346 static void msfees_shutdown P((int unit, struct peer *peer)); 347 static void msfees_poll P((int unit, struct peer *peer)); 348 static void msfees_init P((void)); 349 static void dump_buf P((l_fp *coffs, int from, int to, char *text)); 350 static void ees_report_event P((struct eesunit *ees, int code)); 351 static void ees_receive P((struct recvbuf *rbufp)); 352 static void ees_process P((struct eesunit *ees)); 353 static int offcompare P((const void *va, const void *vb)); 354 355 356 /* 357 * Transfer vector 358 */ 359 struct refclock refclock_msfees = { 360 msfees_start, /* start up driver */ 361 msfees_shutdown, /* shut down driver */ 362 msfees_poll, /* transmit poll message */ 363 noentry, /* not used */ 364 msfees_init, /* initialize driver */ 365 noentry, /* not used */ 366 NOFLAGS /* not used */ 367 }; 368 369 370 static void 371 dump_buf( 372 l_fp *coffs, 373 int from, 374 int to, 375 char *text 376 ) 377 { 378 char buff[DUMP_BUF_SIZE + 80]; 379 int i; 380 register char *ptr = buff; 381 382 snprintf(buff, sizeof(buff), text); 383 for (i = from; i < to; i++) { 384 ptr += strlen(ptr); 385 if ((ptr - buff) > DUMP_BUF_SIZE) { 386 msyslog(LOG_DEBUG, "D: %s", buff); 387 ptr = buff; 388 } 389 snprintf(ptr, sizeof(buff) - (ptr - buff), 390 " %06d", ((int)coffs[i].l_f) / 4295); 391 } 392 msyslog(LOG_DEBUG, "D: %s", buff); 393 } 394 395 /* msfees_init - initialize internal ees driver data */ 396 static void 397 msfees_init(void) 398 { 399 register int i; 400 /* Just zero the data arrays */ 401 memset((char *)eesunits, 0, sizeof eesunits); 402 memset((char *)unitinuse, 0, sizeof unitinuse); 403 404 acceptable_slop.l_ui = 0; 405 acceptable_slop.l_uf = 1 << (FRACTION_PREC -2); 406 407 onesec.l_ui = 1; 408 onesec.l_uf = 0; 409 410 /* Initialize fudge factors to default. */ 411 for (i = 0; i < MAXUNITS; i++) { 412 fudgefactor[i].l_ui = 0; 413 fudgefactor[i].l_uf = DEFFUDGETIME; 414 os_delay[i].l_ui = 0; 415 os_delay[i].l_uf = DEFOSTIME; 416 inherent_delay[i].l_ui = 0; 417 inherent_delay[i].l_uf = DEFINHTIME; 418 offset_fudge[i] = os_delay[i]; 419 L_ADD(&offset_fudge[i], &fudgefactor[i]); 420 L_ADD(&offset_fudge[i], &inherent_delay[i]); 421 stratumtouse[i] = 0; 422 sloppyclockflag[i] = 0; 423 } 424 } 425 426 427 /* msfees_start - open the EES devices and initialize data for processing */ 428 static int 429 msfees_start( 430 int unit, 431 struct peer *peer 432 ) 433 { 434 register struct eesunit *ees; 435 register int i; 436 int fd232 = -1; 437 char eesdev[20]; 438 struct termios ttyb, *ttyp; 439 struct refclockproc *pp; 440 pp = peer->procptr; 441 442 if (unit >= MAXUNITS) { 443 msyslog(LOG_ERR, "ees clock: unit number %d invalid (max %d)", 444 unit, MAXUNITS-1); 445 return 0; 446 } 447 if (unitinuse[unit]) { 448 msyslog(LOG_ERR, "ees clock: unit number %d in use", unit); 449 return 0; 450 } 451 452 /* Unit okay, attempt to open the devices. We do them both at 453 * once to make sure we can */ 454 snprintf(eesdev, sizeof(eesdev), EES232, unit); 455 456 fd232 = open(eesdev, O_RDWR, 0777); 457 if (fd232 == -1) { 458 msyslog(LOG_ERR, "ees clock: open of %s failed: %m", eesdev); 459 return 0; 460 } 461 462 #ifdef TIOCEXCL 463 /* Set for exclusive use */ 464 if (ioctl(fd232, TIOCEXCL, (char *)0) < 0) { 465 msyslog(LOG_ERR, "ees clock: ioctl(%s, TIOCEXCL): %m", eesdev); 466 goto screwed; 467 } 468 #endif 469 470 /* STRIPPED DOWN VERSION: Only PPS CD is supported at the moment */ 471 472 /* Set port characteristics. If we don't have a STREAMS module or 473 * a clock line discipline, cooked mode is just usable, even though it 474 * strips the top bit. The only EES byte which uses the top 475 * bit is the year, and we don't use that anyway. If we do 476 * have the line discipline, we choose raw mode, and the 477 * line discipline code will block up the messages. 478 */ 479 480 /* STIPPED DOWN VERSION: Only PPS CD is supported at the moment */ 481 482 ttyp = &ttyb; 483 if (tcgetattr(fd232, ttyp) < 0) { 484 msyslog(LOG_ERR, "msfees_start: tcgetattr(%s): %m", eesdev); 485 goto screwed; 486 } 487 488 ttyp->c_iflag = IGNBRK|IGNPAR|ICRNL; 489 ttyp->c_cflag = SPEED232|CS8|CLOCAL|CREAD; 490 ttyp->c_oflag = 0; 491 ttyp->c_lflag = ICANON; 492 ttyp->c_cc[VERASE] = ttyp->c_cc[VKILL] = '\0'; 493 if (tcsetattr(fd232, TCSANOW, ttyp) < 0) { 494 msyslog(LOG_ERR, "msfees_start: tcsetattr(%s): %m", eesdev); 495 goto screwed; 496 } 497 498 if (tcflush(fd232, TCIOFLUSH) < 0) { 499 msyslog(LOG_ERR, "msfees_start: tcflush(%s): %m", eesdev); 500 goto screwed; 501 } 502 503 inherent_delay[unit].l_uf = INH_DELAY_PPS; 504 505 /* offset fudge (how *late* the timestamp is) = fudge + os delays */ 506 offset_fudge[unit] = os_delay[unit]; 507 L_ADD(&offset_fudge[unit], &fudgefactor[unit]); 508 L_ADD(&offset_fudge[unit], &inherent_delay[unit]); 509 510 /* Looks like this might succeed. Find memory for the structure. 511 * Look to see if there are any unused ones, if not we malloc() one. 512 */ 513 if (eesunits[unit] != 0) /* The one we want is okay */ 514 ees = eesunits[unit]; 515 else { 516 /* Look for an unused, but allocated struct */ 517 for (i = 0; i < MAXUNITS; i++) { 518 if (!unitinuse[i] && eesunits[i] != 0) 519 break; 520 } 521 522 if (i < MAXUNITS) { /* Reclaim this one */ 523 ees = eesunits[i]; 524 eesunits[i] = 0; 525 } /* no spare -- make a new one */ 526 else ees = (struct eesunit *) emalloc(sizeof(struct eesunit)); 527 } 528 memset((char *)ees, 0, sizeof(struct eesunit)); 529 eesunits[unit] = ees; 530 531 /* Set up the structures */ 532 ees->peer = peer; 533 ees->unit = (u_char)unit; 534 ees->timestarted= current_time; 535 ees->ttytype = 0; 536 ees->io.clock_recv= ees_receive; 537 ees->io.srcclock= peer; 538 ees->io.datalen = 0; 539 ees->io.fd = fd232; 540 541 /* Okay. Push one of the two (linked into the kernel, or dynamically 542 * loaded) STREAMS module, and give it to the I/O code to start 543 * receiving stuff. 544 */ 545 546 #ifdef STREAM 547 { 548 int rc1; 549 /* Pop any existing onews first ... */ 550 while (ioctl(fd232, I_POP, 0 ) >= 0) ; 551 552 /* Now try pushing either of the possible modules */ 553 if ((rc1=ioctl(fd232, I_PUSH, STREAM_PP1)) < 0 && 554 ioctl(fd232, I_PUSH, STREAM_PP2) < 0) { 555 msyslog(LOG_ERR, 556 "ees clock: Push of `%s' and `%s' to %s failed %m", 557 STREAM_PP1, STREAM_PP2, eesdev); 558 goto screwed; 559 } 560 else { 561 NLOG(NLOG_CLOCKINFO) /* conditional if clause for conditional syslog */ 562 msyslog(LOG_INFO, "I: ees clock: PUSHed %s on %s", 563 (rc1 >= 0) ? STREAM_PP1 : STREAM_PP2, eesdev); 564 ees->ttytype |= T_PPS; 565 } 566 } 567 #endif /* STREAM */ 568 569 /* Add the clock */ 570 if (!io_addclock(&ees->io)) { 571 /* Oh shit. Just close and return. */ 572 msyslog(LOG_ERR, "ees clock: io_addclock(%s): %m", eesdev); 573 goto screwed; 574 } 575 576 577 /* All done. Initialize a few random peer variables, then 578 * return success. */ 579 peer->precision = sys_precision; 580 peer->stratum = stratumtouse[unit]; 581 if (stratumtouse[unit] <= 1) { 582 memcpy((char *)&pp->refid, EESREFID, 4); 583 if (unit > 0 && unit < 10) 584 ((char *)&pp->refid)[3] = '0' + unit; 585 } else { 586 peer->refid = htonl(EESHSREFID); 587 } 588 unitinuse[unit] = 1; 589 pp->unitptr = &eesunits[unit]; 590 pp->clockdesc = EESDESCRIPTION; 591 msyslog(LOG_ERR, "ees clock: %s OK on %d", eesdev, unit); 592 return (1); 593 594 screwed: 595 if (fd232 != -1) 596 (void) close(fd232); 597 return (0); 598 } 599 600 601 /* msfees_shutdown - shut down a EES clock */ 602 static void 603 msfees_shutdown( 604 int unit, 605 struct peer *peer 606 ) 607 { 608 register struct eesunit *ees; 609 610 if (unit >= MAXUNITS) { 611 msyslog(LOG_ERR, 612 "ees clock: INTERNAL ERROR, unit number %d invalid (max %d)", 613 unit, MAXUNITS); 614 return; 615 } 616 if (!unitinuse[unit]) { 617 msyslog(LOG_ERR, 618 "ees clock: INTERNAL ERROR, unit number %d not in use", unit); 619 return; 620 } 621 622 /* Tell the I/O module to turn us off. We're history. */ 623 ees = eesunits[unit]; 624 io_closeclock(&ees->io); 625 unitinuse[unit] = 0; 626 } 627 628 629 /* ees_report_event - note the occurance of an event */ 630 static void 631 ees_report_event( 632 struct eesunit *ees, 633 int code 634 ) 635 { 636 if (ees->status != (u_char)code) { 637 ees->status = (u_char)code; 638 if (code != CEVNT_NOMINAL) 639 ees->lastevent = (u_char)code; 640 /* Should report event to trap handler in here. 641 * Soon... 642 */ 643 } 644 } 645 646 647 /* ees_receive - receive data from the serial interface on an EES clock */ 648 static void 649 ees_receive( 650 struct recvbuf *rbufp 651 ) 652 { 653 register int n_sample; 654 register int day; 655 register struct eesunit *ees; 656 register u_char *dpt; /* Data PoinTeR: move along ... */ 657 register u_char *dpend; /* Points just *after* last data char */ 658 register char *cp; 659 l_fp tmp; 660 int call_pps_sample = 0; 661 l_fp pps_arrvstamp; 662 int sincelast; 663 int pps_step = 0; 664 int suspect_4ms_step = 0; 665 struct ppsclockev ppsclockev; 666 long *ptr = (long *) &ppsclockev; 667 int rc; 668 int request; 669 #ifdef HAVE_CIOGETEV 670 request = CIOGETEV; 671 #endif 672 #ifdef HAVE_TIOCGPPSEV 673 request = TIOCGPPSEV; 674 #endif 675 676 /* Get the clock this applies to and a pointer to the data */ 677 ees = (struct eesunit *)rbufp->recv_peer->procptr->unitptr; 678 dpt = (u_char *)&rbufp->recv_space; 679 dpend = dpt + rbufp->recv_length; 680 if ((dbg & DB_LOG_AWAITMORE) && (rbufp->recv_length != LENEESCODE)) 681 printf("[%d] ", rbufp->recv_length); 682 683 /* Check out our state and process appropriately */ 684 switch (ees->codestate) { 685 case EESCS_WAIT: 686 /* Set an initial guess at the timestamp as the recv time. 687 * If just running in CBREAK mode, we can't improve this. 688 * If we have the CLOCK Line Discipline, PPSCD, or sime such, 689 * then we will do better later .... 690 */ 691 ees->arrvtime = rbufp->recv_time; 692 ees->codestate = EESCS_GOTSOME; 693 ees->lencode = 0; 694 /*FALLSTHROUGH*/ 695 696 case EESCS_GOTSOME: 697 cp = &(ees->lastcode[ees->lencode]); 698 699 /* Gobble the bytes until the final (possibly stripped) 0xff */ 700 while (dpt < dpend && (*dpt & 0x7f) != 0x7f) { 701 *cp++ = (char)*dpt++; 702 ees->lencode++; 703 /* Oh dear -- too many bytes .. */ 704 if (ees->lencode > LENEESPRT) { 705 NLOG(NLOG_CLOCKINFO) /* conditional if clause for conditional syslog */ 706 msyslog(LOG_INFO, 707 "I: ees clock: %d + %d > %d [%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x]", 708 ees->lencode, dpend - dpt, LENEESPRT, 709 #define D(x) (ees->lastcode[x]) 710 D(0), D(1), D(2), D(3), D(4), D(5), D(6), 711 D(7), D(8), D(9), D(10), D(11), D(12)); 712 #undef D 713 ees->badformat++; 714 ees->reason = CODEREASON + 1; 715 ees_event(ees, CEVNT_BADREPLY); 716 ees_reset(ees); 717 return; 718 } 719 } 720 /* Gave up because it was end of the buffer, rather than ff */ 721 if (dpt == dpend) { 722 /* Incomplete. Wait for more. */ 723 if (dbg & DB_LOG_AWAITMORE) 724 msyslog(LOG_INFO, 725 "I: ees clock %d: %p == %p: await more", 726 ees->unit, dpt, dpend); 727 return; 728 } 729 730 /* This shouldn't happen ... ! */ 731 if ((*dpt & 0x7f) != 0x7f) { 732 msyslog(LOG_INFO, "I: ees clock: %0x & 0x7f != 0x7f", *dpt); 733 ees->badformat++; 734 ees->reason = CODEREASON + 2; 735 ees_event(ees, CEVNT_BADREPLY); 736 ees_reset(ees); 737 return; 738 } 739 740 /* Skip the 0xff */ 741 dpt++; 742 743 /* Finally, got a complete buffer. Mainline code will 744 * continue on. */ 745 cp = ees->lastcode; 746 break; 747 748 default: 749 msyslog(LOG_ERR, "ees clock: INTERNAL ERROR: %d state %d", 750 ees->unit, ees->codestate); 751 ees->reason = CODEREASON + 5; 752 ees_event(ees, CEVNT_FAULT); 753 ees_reset(ees); 754 return; 755 } 756 757 /* Boy! After all that crap, the lastcode buffer now contains 758 * something we hope will be a valid time code. Do length 759 * checks and sanity checks on constant data. 760 */ 761 ees->codestate = EESCS_WAIT; 762 ees->lasttime = current_time; 763 if (ees->lencode != LENEESPRT) { 764 ees->badformat++; 765 ees->reason = CODEREASON + 6; 766 ees_event(ees, CEVNT_BADREPLY); 767 ees_reset(ees); 768 return; 769 } 770 771 cp = ees->lastcode; 772 773 /* Check that centisecond is zero */ 774 if (cp[EESM_CSEC] != 0) { 775 ees->baddata++; 776 ees->reason = CODEREASON + 7; 777 ees_event(ees, CEVNT_BADREPLY); 778 ees_reset(ees); 779 return; 780 } 781 782 /* Check flag formats */ 783 if (cp[EESM_LEAP] != 0 && cp[EESM_LEAP] != 0x0f) { 784 ees->badformat++; 785 ees->reason = CODEREASON + 8; 786 ees_event(ees, CEVNT_BADREPLY); 787 ees_reset(ees); 788 return; 789 } 790 791 if (cp[EESM_BST] != 0 && cp[EESM_BST] != 0x03) { 792 ees->badformat++; 793 ees->reason = CODEREASON + 9; 794 ees_event(ees, CEVNT_BADREPLY); 795 ees_reset(ees); 796 return; 797 } 798 799 if (cp[EESM_MSFOK] != 0 && cp[EESM_MSFOK] != 0x3f) { 800 ees->badformat++; 801 ees->reason = CODEREASON + 10; 802 ees_event(ees, CEVNT_BADREPLY); 803 ees_reset(ees); 804 return; 805 } 806 807 /* So far, so good. Compute day, hours, minutes, seconds, 808 * time zone. Do range checks on these. 809 */ 810 811 #define bcdunpack(val) ( (((val)>>4) & 0x0f) * 10 + ((val) & 0x0f) ) 812 #define istrue(x) ((x)?1:0) 813 814 ees->second = bcdunpack(cp[EESM_SEC]); /* second */ 815 ees->minute = bcdunpack(cp[EESM_MIN]); /* minute */ 816 ees->hour = bcdunpack(cp[EESM_HOUR]); /* hour */ 817 818 day = bcdunpack(cp[EESM_DAY]); /* day of month */ 819 820 switch (bcdunpack(cp[EESM_MON])) { /* month */ 821 822 /* Add in lengths of all previous months. Add one more 823 if it is a leap year and after February. 824 */ 825 case 12: day += NOV; /*FALLSTHROUGH*/ 826 case 11: day += OCT; /*FALLSTHROUGH*/ 827 case 10: day += SEP; /*FALLSTHROUGH*/ 828 case 9: day += AUG; /*FALLSTHROUGH*/ 829 case 8: day += JUL; /*FALLSTHROUGH*/ 830 case 7: day += JUN; /*FALLSTHROUGH*/ 831 case 6: day += MAY; /*FALLSTHROUGH*/ 832 case 5: day += APR; /*FALLSTHROUGH*/ 833 case 4: day += MAR; /*FALLSTHROUGH*/ 834 case 3: day += FEB; 835 if (istrue(cp[EESM_LEAP])) day++; /*FALLSTHROUGH*/ 836 case 2: day += JAN; /*FALLSTHROUGH*/ 837 case 1: break; 838 default: ees->baddata++; 839 ees->reason = CODEREASON + 11; 840 ees_event(ees, CEVNT_BADDATE); 841 ees_reset(ees); 842 return; 843 } 844 845 ees->day = day; 846 847 /* Get timezone. The clocktime routine wants the number 848 * of hours to add to the delivered time to get UT. 849 * Currently -1 if BST flag set, 0 otherwise. This 850 * is the place to tweak things if double summer time 851 * ever happens. 852 */ 853 ees->tz = istrue(cp[EESM_BST]) ? -1 : 0; 854 855 if (ees->day > 366 || ees->day < 1 || 856 ees->hour > 23 || ees->minute > 59 || ees->second > 59) { 857 ees->baddata++; 858 ees->reason = CODEREASON + 12; 859 ees_event(ees, CEVNT_BADDATE); 860 ees_reset(ees); 861 return; 862 } 863 864 n_sample = ees->nsamples; 865 866 /* Now, compute the reference time value: text -> tmp.l_ui */ 867 if (!clocktime(ees->day, ees->hour, ees->minute, ees->second, 868 ees->tz, rbufp->recv_time.l_ui, &ees->yearstart, 869 &tmp.l_ui)) { 870 ees->baddata++; 871 ees->reason = CODEREASON + 13; 872 ees_event(ees, CEVNT_BADDATE); 873 ees_reset(ees); 874 return; 875 } 876 tmp.l_uf = 0; 877 878 /* DON'T use ees->arrvtime -- it may be < reftime */ 879 ees->lastsampletime = tmp; 880 881 /* If we are synchronised to the radio, update the reference time. 882 * Also keep a note of when clock was last good. 883 */ 884 if (istrue(cp[EESM_MSFOK])) { 885 ees->reftime = tmp; 886 ees->clocklastgood = current_time; 887 } 888 889 890 /* Compute the offset. For the fractional part of the 891 * offset we use the expected delay for the message. 892 */ 893 ees->codeoffsets[n_sample].l_ui = tmp.l_ui; 894 ees->codeoffsets[n_sample].l_uf = 0; 895 896 /* Number of seconds since the last step */ 897 sincelast = this_uisec - ees->last_step; 898 899 memset((char *) &ppsclockev, 0, sizeof ppsclockev); 900 901 rc = ioctl(ees->io.fd, request, (char *) &ppsclockev); 902 if (dbg & DB_PRINT_EV) fprintf(stderr, 903 "[%x] CIOGETEV u%d %d (%x %d) gave %d (%d): %08lx %08lx %ld\n", 904 DB_PRINT_EV, ees->unit, ees->io.fd, request, is_pps(ees), 905 rc, errno, ptr[0], ptr[1], ptr[2]); 906 907 /* If we managed to get the time of arrival, process the info */ 908 if (rc >= 0) { 909 int conv = -1; 910 pps_step = ppsclockev.serial - ees->last_pps_no; 911 912 /* Possible that PPS triggered, but text message didn't */ 913 if (pps_step == 2) msyslog(LOG_ERR, "pps step = 2 @ %02d", ees->second); 914 if (pps_step == 2 && ees->second == 1) suspect_4ms_step |= 1; 915 if (pps_step == 2 && ees->second == 2) suspect_4ms_step |= 4; 916 917 /* allow for single loss of PPS only */ 918 if (pps_step != 1 && pps_step != 2) 919 fprintf(stderr, "PPS step: %d too far off %ld (%d)\n", 920 ppsclockev.serial, ees->last_pps_no, pps_step); 921 else { 922 pps_arrvstamp = tval_stamp_to_lfp(ppsclockev.tv); 923 /* if ((ABS(time difference) - 0.25) < 0) 924 * then believe it ... 925 */ 926 l_fp diff; 927 diff = pps_arrvstamp; 928 conv = 0; 929 L_SUB(&diff, &ees->arrvtime); 930 if (dbg & DB_PRINT_CDT) 931 printf("[%x] Have %lx.%08lx and %lx.%08lx -> %lx.%08lx @ %s", 932 DB_PRINT_CDT, (long)ees->arrvtime.l_ui, (long)ees->arrvtime.l_uf, 933 (long)pps_arrvstamp.l_ui, (long)pps_arrvstamp.l_uf, 934 (long)diff.l_ui, (long)diff.l_uf, 935 ctime(&(ppsclockev.tv.tv_sec))); 936 if (L_ISNEG(&diff)) M_NEG(diff.l_ui, diff.l_uf); 937 L_SUB(&diff, &acceptable_slop); 938 if (L_ISNEG(&diff)) { /* AOK -- pps_sample */ 939 ees->arrvtime = pps_arrvstamp; 940 conv++; 941 call_pps_sample++; 942 } 943 /* Some loss of some signals around sec = 1 */ 944 else if (ees->second == 1) { 945 diff = pps_arrvstamp; 946 L_ADD(&diff, &onesec); 947 L_SUB(&diff, &ees->arrvtime); 948 if (L_ISNEG(&diff)) M_NEG(diff.l_ui, diff.l_uf); 949 L_SUB(&diff, &acceptable_slop); 950 msyslog(LOG_ERR, "Have sec==1 slip %ds a=%08x-p=%08x -> %x.%08x (u=%d) %s", 951 pps_arrvstamp.l_ui - ees->arrvtime.l_ui, 952 pps_arrvstamp.l_uf, 953 ees->arrvtime.l_uf, 954 diff.l_ui, diff.l_uf, 955 (int)ppsclockev.tv.tv_usec, 956 ctime(&(ppsclockev.tv.tv_sec))); 957 if (L_ISNEG(&diff)) { /* AOK -- pps_sample */ 958 suspect_4ms_step |= 2; 959 ees->arrvtime = pps_arrvstamp; 960 L_ADD(&ees->arrvtime, &onesec); 961 conv++; 962 call_pps_sample++; 963 } 964 } 965 } 966 ees->last_pps_no = ppsclockev.serial; 967 if (dbg & DB_PRINT_CDTC) 968 printf( 969 "[%x] %08lx %08lx %d u%d (%d %d)\n", 970 DB_PRINT_CDTC, (long)pps_arrvstamp.l_ui, 971 (long)pps_arrvstamp.l_uf, conv, ees->unit, 972 call_pps_sample, pps_step); 973 } 974 975 /* See if there has been a 4ms jump at a minute boundry */ 976 { l_fp delta; 977 #define delta_isec delta.l_ui 978 #define delta_ssec delta.l_i 979 #define delta_sfsec delta.l_f 980 long delta_f_abs; 981 982 delta.l_i = ees->arrvtime.l_i; 983 delta.l_f = ees->arrvtime.l_f; 984 985 L_SUB(&delta, &ees->last_l); 986 delta_f_abs = delta_sfsec; 987 if (delta_f_abs < 0) delta_f_abs = -delta_f_abs; 988 989 /* Dump the deltas each minute */ 990 if (dbg & DB_DUMP_DELTAS) 991 { 992 if (/*0 <= ees->second && */ 993 ees->second < COUNTOF(deltas)) 994 deltas[ees->second] = delta_sfsec; 995 /* Dump on second 1, as second 0 sometimes missed */ 996 if (ees->second == 1) { 997 char text[16 * COUNTOF(deltas)]; 998 char *cptr=text; 999 int i; 1000 for (i = 0; i < COUNTOF(deltas); i++) { 1001 snprintf(cptr, sizeof(text) / COUNTOF(deltas), 1002 " %d.%04d", msec(deltas[i]), 1003 subms(deltas[i])); 1004 cptr += strlen(cptr); 1005 } 1006 msyslog(LOG_ERR, "Deltas: %d.%04d<->%d.%04d: %s", 1007 msec(EES_STEP_F - EES_STEP_F_GRACE), subms(EES_STEP_F - EES_STEP_F_GRACE), 1008 msec(EES_STEP_F + EES_STEP_F_GRACE), subms(EES_STEP_F + EES_STEP_F_GRACE), 1009 text+1); 1010 for (i=0; i<((sizeof deltas) / (sizeof deltas[0])); i++) deltas[i] = 0; 1011 } 1012 } 1013 1014 /* Lets see if we have a 4 mS step at a minute boundaary */ 1015 if ( ((EES_STEP_F - EES_STEP_F_GRACE) < delta_f_abs) && 1016 (delta_f_abs < (EES_STEP_F + EES_STEP_F_GRACE)) && 1017 (ees->second == 0 || ees->second == 1 || ees->second == 2) && 1018 (sincelast < 0 || sincelast > 122) 1019 ) { /* 4ms jump at min boundry */ 1020 int old_sincelast; 1021 int count=0; 1022 int sum = 0; 1023 /* Yes -- so compute the ramp time */ 1024 if (ees->last_step == 0) sincelast = 0; 1025 old_sincelast = sincelast; 1026 1027 /* First time in, just set "ees->last_step" */ 1028 if(ees->last_step) { 1029 int other_step = 0; 1030 int third_step = 0; 1031 int this_step = (sincelast + (60 /2)) / 60; 1032 int p_step = ees->this_step; 1033 int p; 1034 ees->last_steps[p_step] = this_step; 1035 p= p_step; 1036 p_step++; 1037 if (p_step >= LAST_STEPS) p_step = 0; 1038 ees->this_step = p_step; 1039 /* Find the "average" interval */ 1040 while (p != p_step) { 1041 int this = ees->last_steps[p]; 1042 if (this == 0) break; 1043 if (this != this_step) { 1044 if (other_step == 0 && ( 1045 this== (this_step +2) || 1046 this== (this_step -2) || 1047 this== (this_step +1) || 1048 this== (this_step -1))) 1049 other_step = this; 1050 if (other_step != this) { 1051 int idelta = (this_step - other_step); 1052 if (idelta < 0) idelta = - idelta; 1053 if (third_step == 0 && ( 1054 (idelta == 1) ? ( 1055 this == (other_step +1) || 1056 this == (other_step -1) || 1057 this == (this_step +1) || 1058 this == (this_step -1)) 1059 : 1060 ( 1061 this == (this_step + other_step)/2 1062 ) 1063 )) third_step = this; 1064 if (third_step != this) break; 1065 } 1066 } 1067 sum += this; 1068 p--; 1069 if (p < 0) p += LAST_STEPS; 1070 count++; 1071 } 1072 msyslog(LOG_ERR, "MSF%d: %d: This=%d (%d), other=%d/%d, sum=%d, count=%d, pps_step=%d, suspect=%x", ees->unit, p, ees->last_steps[p], this_step, other_step, third_step, sum, count, pps_step, suspect_4ms_step); 1073 if (count != 0) sum = ((sum * 60) + (count /2)) / count; 1074 #define SV(x) (ees->last_steps[(x + p_step) % LAST_STEPS]) 1075 msyslog(LOG_ERR, "MSF%d: %x steps %d: %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d", 1076 ees->unit, suspect_4ms_step, p_step, SV(0), SV(1), SV(2), SV(3), SV(4), SV(5), SV(6), 1077 SV(7), SV(8), SV(9), SV(10), SV(11), SV(12), SV(13), SV(14), SV(15)); 1078 printf("MSF%d: steps %d: %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d\n", 1079 ees->unit, p_step, SV(0), SV(1), SV(2), SV(3), SV(4), SV(5), SV(6), 1080 SV(7), SV(8), SV(9), SV(10), SV(11), SV(12), SV(13), SV(14), SV(15)); 1081 #undef SV 1082 ees->jump_fsecs = delta_sfsec; 1083 ees->using_ramp = 1; 1084 if (sincelast > 170) 1085 ees->last_step_late += sincelast - ((sum) ? sum : ees->last_step_secs); 1086 else ees->last_step_late = 30; 1087 if (ees->last_step_late < -60 || ees->last_step_late > 120) ees->last_step_late = 30; 1088 if (ees->last_step_late < 0) ees->last_step_late = 0; 1089 if (ees->last_step_late >= 60) ees->last_step_late = 59; 1090 sincelast = 0; 1091 } 1092 else { /* First time in -- just save info */ 1093 ees->last_step_late = 30; 1094 ees->jump_fsecs = delta_sfsec; 1095 ees->using_ramp = 1; 1096 sum = 4 * 60; 1097 } 1098 ees->last_step = this_uisec; 1099 printf("MSF%d: d=%3ld.%04ld@%d :%d:%d:$%d:%d:%d\n", 1100 ees->unit, (long)msec(delta_sfsec), (long)subms(delta_sfsec), 1101 ees->second, old_sincelast, ees->last_step_late, count, sum, 1102 ees->last_step_secs); 1103 msyslog(LOG_ERR, "MSF%d: d=%3d.%04d@%d :%d:%d:%d:%d:%d", 1104 ees->unit, msec(delta_sfsec), subms(delta_sfsec), ees->second, 1105 old_sincelast, ees->last_step_late, count, sum, ees->last_step_secs); 1106 if (sum) ees->last_step_secs = sum; 1107 } 1108 /* OK, so not a 4ms step at a minute boundry */ 1109 else { 1110 if (suspect_4ms_step) msyslog(LOG_ERR, 1111 "MSF%d: suspect = %x, but delta of %d.%04d [%d.%04d<%d.%04d<%d.%04d: %d %d]", 1112 ees->unit, suspect_4ms_step, msec(delta_sfsec), subms(delta_sfsec), 1113 msec(EES_STEP_F - EES_STEP_F_GRACE), 1114 subms(EES_STEP_F - EES_STEP_F_GRACE), 1115 (int)msec(delta_f_abs), 1116 (int)subms(delta_f_abs), 1117 msec(EES_STEP_F + EES_STEP_F_GRACE), 1118 subms(EES_STEP_F + EES_STEP_F_GRACE), 1119 ees->second, 1120 sincelast); 1121 if ((delta_f_abs > EES_STEP_NOTE) && ees->last_l.l_i) { 1122 static int ees_step_notes = EES_STEP_NOTES; 1123 if (ees_step_notes > 0) { 1124 ees_step_notes--; 1125 printf("MSF%d: D=%3ld.%04ld@%02d :%d%s\n", 1126 ees->unit, (long)msec(delta_sfsec), (long)subms(delta_sfsec), 1127 ees->second, sincelast, ees_step_notes ? "" : " -- NO MORE !"); 1128 msyslog(LOG_ERR, "MSF%d: D=%3d.%04d@%02d :%d%s", 1129 ees->unit, msec(delta_sfsec), subms(delta_sfsec), ees->second, (ees->last_step) ? sincelast : -1, ees_step_notes ? "" : " -- NO MORE !"); 1130 } 1131 } 1132 } 1133 } 1134 ees->last_l = ees->arrvtime; 1135 1136 /* IF we have found that it's ramping 1137 * && it's within twice the expected ramp period 1138 * && there is a non zero step size (avoid /0 !) 1139 * THEN we twiddle things 1140 */ 1141 if (ees->using_ramp && 1142 sincelast < (ees->last_step_secs)*2 && 1143 ees->last_step_secs) 1144 { long sec_of_ramp = sincelast + ees->last_step_late; 1145 long fsecs; 1146 l_fp inc; 1147 1148 /* Ramp time may vary, so may ramp for longer than last time */ 1149 if (sec_of_ramp > (ees->last_step_secs + 120)) 1150 sec_of_ramp = ees->last_step_secs; 1151 1152 /* sec_of_ramp * ees->jump_fsecs may overflow 2**32 */ 1153 fsecs = sec_of_ramp * (ees->jump_fsecs / ees->last_step_secs); 1154 1155 if (dbg & DB_LOG_DELTAS) msyslog(LOG_ERR, 1156 "[%x] MSF%d: %3ld/%03d -> d=%11ld (%d|%ld)", 1157 DB_LOG_DELTAS, 1158 ees->unit, sec_of_ramp, ees->last_step_secs, fsecs, 1159 pps_arrvstamp.l_f, pps_arrvstamp.l_f + fsecs); 1160 if (dbg & DB_PRINT_DELTAS) printf( 1161 "MSF%d: %3ld/%03d -> d=%11ld (%ld|%ld)\n", 1162 ees->unit, sec_of_ramp, ees->last_step_secs, fsecs, 1163 (long)pps_arrvstamp.l_f, pps_arrvstamp.l_f + fsecs); 1164 1165 /* Must sign extend the result */ 1166 inc.l_i = (fsecs < 0) ? -1 : 0; 1167 inc.l_f = fsecs; 1168 if (dbg & DB_INC_PPS) 1169 { L_SUB(&pps_arrvstamp, &inc); 1170 L_SUB(&ees->arrvtime, &inc); 1171 } 1172 else 1173 { L_ADD(&pps_arrvstamp, &inc); 1174 L_ADD(&ees->arrvtime, &inc); 1175 } 1176 } 1177 else { 1178 if (dbg & DB_LOG_DELTAS) msyslog(LOG_ERR, 1179 "[%x] MSF%d: ees->using_ramp=%d, sincelast=%x / %x, ees->last_step_secs=%x", 1180 DB_LOG_DELTAS, 1181 ees->unit, ees->using_ramp, 1182 sincelast, 1183 (ees->last_step_secs)*2, 1184 ees->last_step_secs); 1185 if (dbg & DB_PRINT_DELTAS) printf( 1186 "[%x] MSF%d: ees->using_ramp=%d, sincelast=%x / %x, ees->last_step_secs=%x\n", 1187 DB_LOG_DELTAS, 1188 ees->unit, ees->using_ramp, 1189 sincelast, 1190 (ees->last_step_secs)*2, 1191 ees->last_step_secs); 1192 } 1193 1194 L_SUB(&ees->arrvtime, &offset_fudge[ees->unit]); 1195 L_SUB(&pps_arrvstamp, &offset_fudge[ees->unit]); 1196 1197 if (call_pps_sample && !(dbg & DB_NO_PPS)) { 1198 /* Sigh -- it expects its args negated */ 1199 L_NEG(&pps_arrvstamp); 1200 /* 1201 * I had to disable this here, since it appears there is no pointer to the 1202 * peer structure. 1203 * 1204 (void) pps_sample(peer, &pps_arrvstamp); 1205 */ 1206 } 1207 1208 /* Subtract off the local clock time stamp */ 1209 L_SUB(&ees->codeoffsets[n_sample], &ees->arrvtime); 1210 if (dbg & DB_LOG_SAMPLES) msyslog(LOG_ERR, 1211 "MSF%d: [%x] %d (ees: %d %d) (pps: %d %d)%s", 1212 ees->unit, DB_LOG_DELTAS, n_sample, 1213 ees->codeoffsets[n_sample].l_f, 1214 ees->codeoffsets[n_sample].l_f / 4295, 1215 pps_arrvstamp.l_f, 1216 pps_arrvstamp.l_f /4295, 1217 (dbg & DB_NO_PPS) ? " [no PPS]" : ""); 1218 1219 if (ees->nsamples++ == NCODES-1) ees_process(ees); 1220 1221 /* Done! */ 1222 } 1223 1224 1225 /* offcompare - auxiliary comparison routine for offset sort */ 1226 1227 static int 1228 offcompare( 1229 const void *va, 1230 const void *vb 1231 ) 1232 { 1233 const l_fp *a = (const l_fp *)va; 1234 const l_fp *b = (const l_fp *)vb; 1235 return(L_ISGEQ(a, b) ? (L_ISEQU(a, b) ? 0 : 1) : -1); 1236 } 1237 1238 1239 /* ees_process - process a pile of samples from the clock */ 1240 static void 1241 ees_process( 1242 struct eesunit *ees 1243 ) 1244 { 1245 static int last_samples = -1; 1246 register int i, j; 1247 register int noff; 1248 register l_fp *coffs = ees->codeoffsets; 1249 l_fp offset, tmp; 1250 double dispersion; /* ++++ */ 1251 int lostsync, isinsync; 1252 int samples = ees->nsamples; 1253 int samplelog = 0; /* keep "gcc -Wall" happy ! */ 1254 int samplereduce = (samples + 1) / 2; 1255 double doffset; 1256 1257 /* Reset things to zero so we don't have to worry later */ 1258 ees_reset(ees); 1259 1260 if (sloppyclockflag[ees->unit]) { 1261 samplelog = (samples < 2) ? 0 : 1262 (samples < 5) ? 1 : 1263 (samples < 9) ? 2 : 1264 (samples < 17) ? 3 : 1265 (samples < 33) ? 4 : 5; 1266 samplereduce = (1 << samplelog); 1267 } 1268 1269 if (samples != last_samples && 1270 ((samples != (last_samples-1)) || samples < 3)) { 1271 msyslog(LOG_ERR, "Samples=%d (%d), samplereduce=%d ....", 1272 samples, last_samples, samplereduce); 1273 last_samples = samples; 1274 } 1275 if (samples < 1) return; 1276 1277 /* If requested, dump the raw data we have in the buffer */ 1278 if (ees->dump_vals) 1279 dump_buf(coffs, 0, samples, "Raw data is:"); 1280 1281 /* Sort the offsets, trim off the extremes, then choose one. */ 1282 qsort(coffs, (size_t)samples, sizeof(coffs[0]), offcompare); 1283 1284 noff = samples; 1285 i = 0; 1286 while ((noff - i) > samplereduce) { 1287 /* Trim off the sample which is further away 1288 * from the median. We work this out by doubling 1289 * the median, subtracting off the end samples, and 1290 * looking at the sign of the answer, using the 1291 * identity (c-b)-(b-a) == 2*b-a-c 1292 */ 1293 tmp = coffs[(noff + i)/2]; 1294 L_ADD(&tmp, &tmp); 1295 L_SUB(&tmp, &coffs[i]); 1296 L_SUB(&tmp, &coffs[noff-1]); 1297 if (L_ISNEG(&tmp)) noff--; else i++; 1298 } 1299 1300 /* If requested, dump the reduce data we have in the buffer */ 1301 if (ees->dump_vals) dump_buf(coffs, i, noff, "Reduced to:"); 1302 1303 /* What we do next depends on the setting of the sloppy clock flag. 1304 * If it is on, average the remainder to derive our estimate. 1305 * Otherwise, just pick a representative value from the remaining stuff 1306 */ 1307 if (sloppyclockflag[ees->unit]) { 1308 offset.l_ui = offset.l_uf = 0; 1309 for (j = i; j < noff; j++) 1310 L_ADD(&offset, &coffs[j]); 1311 for (j = samplelog; j > 0; j--) 1312 L_RSHIFTU(&offset); 1313 } 1314 else offset = coffs[i+BESTSAMPLE]; 1315 1316 /* Compute the dispersion as the difference between the 1317 * lowest and highest offsets that remain in the 1318 * consideration list. 1319 * 1320 * It looks like MOST clocks have MOD (max error), so halve it ! 1321 */ 1322 tmp = coffs[noff-1]; 1323 L_SUB(&tmp, &coffs[i]); 1324 #define FRACT_SEC(n) ((1 << 30) / (n/2)) 1325 dispersion = LFPTOFP(&tmp) / 2; /* ++++ */ 1326 if (dbg & (DB_SYSLOG_SMPLI | DB_SYSLOG_SMPLE)) msyslog( 1327 (dbg & DB_SYSLOG_SMPLE) ? LOG_ERR : LOG_INFO, 1328 "I: [%x] Offset=%06d (%d), disp=%f%s [%d], %d %d=%d %d:%d %d=%d %d", 1329 dbg & (DB_SYSLOG_SMPLI | DB_SYSLOG_SMPLE), 1330 offset.l_f / 4295, offset.l_f, 1331 (dispersion * 1526) / 100, 1332 (sloppyclockflag[ees->unit]) ? " by averaging" : "", 1333 FRACT_SEC(10) / 4295, 1334 (coffs[0].l_f) / 4295, 1335 i, 1336 (coffs[i].l_f) / 4295, 1337 (coffs[samples/2].l_f) / 4295, 1338 (coffs[i+BESTSAMPLE].l_f) / 4295, 1339 noff-1, 1340 (coffs[noff-1].l_f) / 4295, 1341 (coffs[samples-1].l_f) / 4295); 1342 1343 /* Are we playing silly wotsits ? 1344 * If we are using all data, see if there is a "small" delta, 1345 * and if so, blurr this with 3/4 of the delta from the last value 1346 */ 1347 if (ees->usealldata && ees->offset.l_uf) { 1348 long diff = (long) (ees->offset.l_uf - offset.l_uf); 1349 1350 /* is the delta small enough ? */ 1351 if ((- FRACT_SEC(100)) < diff && diff < FRACT_SEC(100)) { 1352 int samd = (64 * 4) / samples; 1353 long new; 1354 if (samd < 2) samd = 2; 1355 new = offset.l_uf + ((diff * (samd -1)) / samd); 1356 1357 /* Sign change -> need to fix up int part */ 1358 if ((new & 0x80000000) != 1359 (((long) offset.l_uf) & 0x80000000)) 1360 { NLOG(NLOG_CLOCKINFO) /* conditional if clause for conditional syslog */ 1361 msyslog(LOG_INFO, "I: %lx != %lx (%lx %lx), so add %d", 1362 new & 0x80000000, 1363 ((long) offset.l_uf) & 0x80000000, 1364 new, (long) offset.l_uf, 1365 (new < 0) ? -1 : 1); 1366 offset.l_ui += (new < 0) ? -1 : 1; 1367 } 1368 dispersion /= 4; 1369 if (dbg & (DB_SYSLOG_SMTHI | DB_SYSLOG_SMTHE)) msyslog( 1370 (dbg & DB_SYSLOG_SMTHE) ? LOG_ERR : LOG_INFO, 1371 "I: [%x] Smooth data: %ld -> %ld, dispersion now %f", 1372 dbg & (DB_SYSLOG_SMTHI | DB_SYSLOG_SMTHE), 1373 ((long) offset.l_uf) / 4295, new / 4295, 1374 (dispersion * 1526) / 100); 1375 offset.l_uf = (unsigned long) new; 1376 } 1377 else if (dbg & (DB_SYSLOG_NSMTHI | DB_SYSLOG_NSMTHE)) msyslog( 1378 (dbg & DB_SYSLOG_NSMTHE) ? LOG_ERR : LOG_INFO, 1379 "[%x] No smooth as delta not %d < %ld < %d", 1380 dbg & (DB_SYSLOG_NSMTHI | DB_SYSLOG_NSMTHE), 1381 - FRACT_SEC(100), diff, FRACT_SEC(100)); 1382 } 1383 else if (dbg & (DB_SYSLOG_NSMTHI | DB_SYSLOG_NSMTHE)) msyslog( 1384 (dbg & DB_SYSLOG_NSMTHE) ? LOG_ERR : LOG_INFO, 1385 "I: [%x] No smooth as flag=%x and old=%x=%d (%d:%d)", 1386 dbg & (DB_SYSLOG_NSMTHI | DB_SYSLOG_NSMTHE), 1387 ees->usealldata, ees->offset.l_f, ees->offset.l_uf, 1388 offset.l_f, ees->offset.l_f - offset.l_f); 1389 1390 /* Collect offset info for debugging info */ 1391 ees->offset = offset; 1392 ees->lowoffset = coffs[i]; 1393 ees->highoffset = coffs[noff-1]; 1394 1395 /* Determine synchronization status. Can be unsync'd either 1396 * by a report from the clock or by a leap hold. 1397 * 1398 * Loss of the radio signal for a short time does not cause 1399 * us to go unsynchronised, since the receiver keeps quite 1400 * good time on its own. The spec says 20ms in 4 hours; the 1401 * observed drift in our clock (Cambridge) is about a second 1402 * a day, but even that keeps us within the inherent tolerance 1403 * of the clock for about 15 minutes. Observation shows that 1404 * the typical "short" outage is 3 minutes, so to allow us 1405 * to ride out those, we will give it 5 minutes. 1406 */ 1407 lostsync = current_time - ees->clocklastgood > 300 ? 1 : 0; 1408 isinsync = (lostsync || ees->leaphold > current_time) ? 0 : 1; 1409 1410 /* Done. Use time of last good, synchronised code as the 1411 * reference time, and lastsampletime as the receive time. 1412 */ 1413 if (ees->fix_pending) { 1414 msyslog(LOG_ERR, "MSF%d: fix_pending=%d -> jump %x.%08x", 1415 ees->fix_pending, ees->unit, offset.l_i, offset.l_f); 1416 ees->fix_pending = 0; 1417 } 1418 LFPTOD(&offset, doffset); 1419 refclock_receive(ees->peer); 1420 ees_event(ees, lostsync ? CEVNT_PROP : CEVNT_NOMINAL); 1421 } 1422 1423 /* msfees_poll - called by the transmit procedure */ 1424 static void 1425 msfees_poll( 1426 int unit, 1427 struct peer *peer 1428 ) 1429 { 1430 if (unit >= MAXUNITS) { 1431 msyslog(LOG_ERR, "ees clock poll: INTERNAL: unit %d invalid", 1432 unit); 1433 return; 1434 } 1435 if (!unitinuse[unit]) { 1436 msyslog(LOG_ERR, "ees clock poll: INTERNAL: unit %d unused", 1437 unit); 1438 return; 1439 } 1440 1441 ees_process(eesunits[unit]); 1442 1443 if ((current_time - eesunits[unit]->lasttime) > 150) 1444 ees_event(eesunits[unit], CEVNT_FAULT); 1445 } 1446 1447 1448 #else 1449 NONEMPTY_TRANSLATION_UNIT 1450 #endif /* REFCLOCK */ 1451