xref: /freebsd/contrib/ntp/ntpd/refclock_msfees.c (revision c243e4902be8df1e643c76b5f18b68bb77cc5268)
1 /* refclock_ees - clock driver for the EES M201 receiver */
2 
3 #ifdef HAVE_CONFIG_H
4 #include <config.h>
5 #endif
6 
7 #if defined(REFCLOCK) && defined(CLOCK_MSFEES) && defined(PPS)
8 
9 /* Currently REQUIRES STREAM and PPSCD. CLK and CBREAK modes
10  * were removed as the code was overly hairy, they weren't in use
11  * (hence probably didn't work).  Still in RCS file at cl.cam.ac.uk
12  */
13 
14 #include "ntpd.h"
15 #include "ntp_io.h"
16 #include "ntp_refclock.h"
17 #include "ntp_unixtime.h"
18 #include "ntp_calendar.h"
19 
20 #include <ctype.h>
21 #if defined(HAVE_BSD_TTYS)
22 #include <sgtty.h>
23 #endif /* HAVE_BSD_TTYS */
24 #if defined(HAVE_SYSV_TTYS)
25 #include <termio.h>
26 #endif /* HAVE_SYSV_TTYS */
27 #if defined(HAVE_TERMIOS)
28 #include <termios.h>
29 #endif
30 #if defined(STREAM)
31 #include <stropts.h>
32 #endif
33 
34 #ifdef HAVE_SYS_TERMIOS_H
35 # include <sys/termios.h>
36 #endif
37 #ifdef HAVE_SYS_PPSCLOCK_H
38 # include <sys/ppsclock.h>
39 #endif
40 
41 #include "ntp_stdlib.h"
42 
43 int dbg = 0;
44 /*
45 	fudgefactor	= fudgetime1;
46 	os_delay	= fudgetime2;
47 	   offset_fudge	= os_delay + fudgefactor + inherent_delay;
48 	stratumtouse	= fudgeval1 & 0xf
49 	dbg		= fudgeval2;
50 	sloppyclockflag	= flags & CLK_FLAG1;
51 		1	  log smoothing summary when processing sample
52 		4	  dump the buffer from the clock
53 		8	  EIOGETKD the last n uS time stamps
54 	if (flags & CLK_FLAG2 && unitinuse) ees->leaphold = 0;
55 	ees->dump_vals	= flags & CLK_FLAG3;
56 	ees->usealldata	= flags & CLK_FLAG4;
57 
58 
59 	bug->values[0] = (ees->lasttime) ? current_time - ees->lasttime : 0;
60 	bug->values[1] = (ees->clocklastgood)?current_time-ees->clocklastgood:0;
61 	bug->values[2] = (u_long)ees->status;
62 	bug->values[3] = (u_long)ees->lastevent;
63 	bug->values[4] = (u_long)ees->reason;
64 	bug->values[5] = (u_long)ees->nsamples;
65 	bug->values[6] = (u_long)ees->codestate;
66 	bug->values[7] = (u_long)ees->day;
67 	bug->values[8] = (u_long)ees->hour;
68 	bug->values[9] = (u_long)ees->minute;
69 	bug->values[10] = (u_long)ees->second;
70 	bug->values[11] = (u_long)ees->tz;
71 	bug->values[12] = ees->yearstart;
72 	bug->values[13] = (ees->leaphold > current_time) ?
73 				ees->leaphold - current_time : 0;
74 	bug->values[14] = inherent_delay[unit].l_uf;
75 	bug->values[15] = offset_fudge[unit].l_uf;
76 
77 	bug->times[0] = ees->reftime;
78 	bug->times[1] = ees->arrvtime;
79 	bug->times[2] = ees->lastsampletime;
80 	bug->times[3] = ees->offset;
81 	bug->times[4] = ees->lowoffset;
82 	bug->times[5] = ees->highoffset;
83 	bug->times[6] = inherent_delay[unit];
84 	bug->times[8] = os_delay[unit];
85 	bug->times[7] = fudgefactor[unit];
86 	bug->times[9] = offset_fudge[unit];
87 	bug->times[10]= ees->yearstart, 0;
88 	*/
89 
90 /* This should support the use of an EES M201 receiver with RS232
91  * output (modified to transmit time once per second).
92  *
93  * For the format of the message sent by the clock, see the EESM_
94  * definitions below.
95  *
96  * It appears to run free for an integral number of minutes, until the error
97  * reaches 4mS, at which point it steps at second = 01.
98  * It appears that sometimes it steps 4mS (say at 7 min interval),
99  * then the next minute it decides that it was an error, so steps back.
100  * On the next minute it steps forward again :-(
101  * This is typically 16.5uS/S then 3975uS at the 4min re-sync,
102  * or 9.5uS/S then 3990.5uS at a 7min re-sync,
103  * at which point it may lose the "00" second time stamp.
104  * I assume that the most accurate time is just AFTER the re-sync.
105  * Hence remember the last cycle interval,
106  *
107  * Can run in any one of:
108  *
109  *	PPSCD	PPS signal sets CD which interupts, and grabs the current TOD
110  *	(sun)		*in the interupt code*, so as to avoid problems with
111  *			the STREAMS scheduling.
112  *
113  * It appears that it goes 16.5 uS slow each second, then every 4 mins it
114  * generates no "00" second tick, and gains 3975 uS. Ho Hum ! (93/2/7)
115  */
116 
117 /* Definitions */
118 #ifndef	MAXUNITS
119 #define	MAXUNITS	4	/* maximum number of EES units permitted */
120 #endif
121 
122 #ifndef	EES232
123 #define	EES232	"/dev/ees%d"	/* Device to open to read the data */
124 #endif
125 
126 /* Other constant stuff */
127 #ifndef	EESPRECISION
128 #define	EESPRECISION	(-10)		/* what the heck - 2**-10 = 1ms */
129 #endif
130 #ifndef	EESREFID
131 #define	EESREFID	"MSF\0"		/* String to identify the clock */
132 #endif
133 #ifndef	EESHSREFID
134 #define	EESHSREFID	(0x7f7f0000 | ((REFCLK_MSF_EES) << 8)) /* Numeric refid */
135 #endif
136 
137 /* Description of clock */
138 #define	EESDESCRIPTION		"EES M201 MSF Receiver"
139 
140 /* Speed we run the clock port at. If this is changed the UARTDELAY
141  * value should be recomputed to suit.
142  */
143 #ifndef	SPEED232
144 #define	SPEED232	B9600	/* 9600 baud */
145 #endif
146 
147 /* What is the inherent delay for this mode of working, i.e. when is the
148  * data time stamped.
149  */
150 #define	SAFETY_SHIFT	10	/* Split the shift to avoid overflow */
151 #define	BITS_TO_L_FP(bits, baud) \
152 (((((bits)*2 +1) << (FRACTION_PREC-SAFETY_SHIFT)) / (2*baud)) << SAFETY_SHIFT)
153 #define	INH_DELAY_CBREAK	BITS_TO_L_FP(119, 9600)
154 #define	INH_DELAY_PPS		BITS_TO_L_FP(  0, 9600)
155 
156 #ifndef	STREAM_PP1
157 #define	STREAM_PP1	"ppsclocd\0<-- patch space for module name1 -->"
158 #endif
159 #ifndef	STREAM_PP2
160 #define	STREAM_PP2	"ppsclock\0<-- patch space for module name2 -->"
161 #endif
162 
163      /* Offsets of the bytes of the serial line code.  The clock gives
164  * local time with a GMT/BST indication. The EESM_ definitions
165  * give offsets into ees->lastcode.
166  */
167 #define EESM_CSEC	 0	/* centiseconds - always zero in our clock  */
168 #define EESM_SEC	 1	/* seconds in BCD			    */
169 #define EESM_MIN	 2	/* minutes in BCD			    */
170 #define EESM_HOUR	 3	/* hours in BCD				    */
171 #define EESM_DAYWK	 4	/* day of week (Sun = 0 etc)		    */
172 #define EESM_DAY	 5	/* day of month in BCD			    */
173 #define EESM_MON	 6	/* month in BCD				    */
174 #define EESM_YEAR	 7	/* year MOD 100 in BCD			    */
175 #define EESM_LEAP	 8	/* 0x0f if leap year, otherwise zero        */
176 #define EESM_BST	 9	/* 0x03 if BST, 0x00 if GMT		    */
177 #define EESM_MSFOK	10	/* 0x3f if radio good, otherwise zero	    */
178 				/* followed by a frame alignment byte (0xff) /
179 				/  which is not put into the lastcode buffer*/
180 
181 /* Length of the serial time code, in characters.  The first length
182  * is less the frame alignment byte.
183  */
184 #define	LENEESPRT	(EESM_MSFOK+1)
185 #define	LENEESCODE	(LENEESPRT+1)
186 
187      /* Code state. */
188 #define	EESCS_WAIT	0       /* waiting for start of timecode */
189 #define	EESCS_GOTSOME	1	/* have an incomplete time code buffered */
190 
191      /* Default fudge factor and character to receive */
192 #define	DEFFUDGETIME	0	/* Default user supplied fudge factor */
193 #ifndef	DEFOSTIME
194 #define	DEFOSTIME	0	/* Default OS delay -- passed by Make ? */
195 #endif
196 #define	DEFINHTIME	INH_DELAY_PPS /* inherent delay due to sample point*/
197 
198      /* Limits on things.  Reduce the number of samples to SAMPLEREDUCE by median
199  * elimination.  If we're running with an accurate clock, chose the BESTSAMPLE
200  * as the estimated offset, otherwise average the remainder.
201  */
202 #define	FULLSHIFT	6			/* NCODES root 2 */
203 #define NCODES		(1<< FULLSHIFT)		/* 64 */
204 #define	REDUCESHIFT	(FULLSHIFT -1)		/* SAMPLEREDUCE root 2 */
205 
206      /* Towards the high ( Why ?) end of half */
207 #define	BESTSAMPLE	((samplereduce * 3) /4)	/* 24 */
208 
209      /* Leap hold time.  After a leap second the clock will no longer be
210  * reliable until it resynchronizes.  Hope 40 minutes is enough. */
211 #define	EESLEAPHOLD	(40 * 60)
212 
213 #define	EES_STEP_F	(1 << 24) /* the receiver steps in units of about 4ms */
214 #define	EES_STEP_F_GRACE (EES_STEP_F/8) /*Allow for slop of 1/8 which is .5ms*/
215 #define	EES_STEP_NOTE	(1 << 21)/* Log any unexpected jumps, say .5 ms .... */
216 #define	EES_STEP_NOTES	50	/* Only do a limited number */
217 #define	MAX_STEP	16	/* Max number of steps to remember */
218 
219      /* debug is a bit mask of debugging that is wanted */
220 #define	DB_SYSLOG_SMPLI		0x0001
221 #define	DB_SYSLOG_SMPLE		0x0002
222 #define	DB_SYSLOG_SMTHI		0x0004
223 #define	DB_SYSLOG_NSMTHE	0x0008
224 #define	DB_SYSLOG_NSMTHI	0x0010
225 #define	DB_SYSLOG_SMTHE		0x0020
226 #define	DB_PRINT_EV		0x0040
227 #define	DB_PRINT_CDT		0x0080
228 #define	DB_PRINT_CDTC		0x0100
229 #define	DB_SYSLOG_KEEPD		0x0800
230 #define	DB_SYSLOG_KEEPE		0x1000
231 #define	DB_LOG_DELTAS		0x2000
232 #define	DB_PRINT_DELTAS		0x4000
233 #define	DB_LOG_AWAITMORE	0x8000
234 #define	DB_LOG_SAMPLES		0x10000
235 #define	DB_NO_PPS		0x20000
236 #define	DB_INC_PPS		0x40000
237 #define	DB_DUMP_DELTAS		0x80000
238 
239      struct eesunit {			/* EES unit control structure. */
240 	     struct peer *peer;		/* associated peer structure */
241 	     struct refclockio io;		/* given to the I/O handler */
242 	     l_fp	reftime;		/* reference time */
243 	     l_fp	lastsampletime;		/* time as in txt from last EES msg */
244 	     l_fp	arrvtime;		/* Time at which pkt arrived */
245 	     l_fp	codeoffsets[NCODES];	/* the time of arrival of 232 codes */
246 	     l_fp	offset;			/* chosen offset        (for clkbug) */
247 	     l_fp	lowoffset;		/* lowest sample offset (for clkbug) */
248 	     l_fp	highoffset;		/* highest   "     "    (for clkbug) */
249 	     char	lastcode[LENEESCODE+6];	/* last time code we received */
250 	     u_long	lasttime;		/* last time clock heard from */
251 	     u_long	clocklastgood;		/* last time good radio seen */
252 	     u_char	lencode;		/* length of code in buffer */
253 	     u_char	nsamples;		/* number of samples we've collected */
254 	     u_char	codestate;		/* state of 232 code reception */
255 	     u_char	unit;			/* unit number for this guy */
256 	     u_char	status;			/* clock status */
257 	     u_char	lastevent;		/* last clock event */
258 	     u_char	reason;			/* reason for last abort */
259 	     u_char	hour;			/* hour of day */
260 	     u_char	minute;			/* minute of hour */
261 	     u_char	second;			/* seconds of minute */
262 	     char	tz;			/* timezone from clock */
263 	     u_char	ttytype;		/* method used */
264 	     u_char	dump_vals;		/* Should clock values be dumped */
265 	     u_char	usealldata;		/* Use ALL samples */
266 	     u_short	day;			/* day of year from last code */
267 	     u_long	yearstart;		/* start of current year */
268 	     u_long	leaphold;		/* time of leap hold expiry */
269 	     u_long	badformat;		/* number of bad format codes */
270 	     u_long	baddata;		/* number of invalid time codes */
271 	     u_long	timestarted;		/* time we started this */
272 	     long	last_pps_no;		/* The serial # of the last PPS */
273 	     char	fix_pending;		/* Is a "sync to time" pending ? */
274 	     /* Fine tuning - compensate for 4 mS ramping .... */
275 	     l_fp	last_l;			/* last time stamp */
276 	     u_char	last_steps[MAX_STEP];	/* Most recent n steps */
277 	     int	best_av_step;		/* Best guess at average step */
278 	     char	best_av_step_count;	/* # of steps over used above */
279 	     char	this_step;		/* Current pos in buffer */
280 	     int	last_step_late;		/* How late the last step was (0-59) */
281 	     long	jump_fsecs;		/* # of fractions of a sec last jump */
282 	     u_long	last_step;		/* time of last step */
283 	     int	last_step_secs;		/* Number of seconds in last step */
284 	     int	using_ramp;		/* 1 -> noemal, -1 -> over stepped */
285      };
286 #define	last_sec	last_l.l_ui
287 #define	last_sfsec	last_l.l_f
288 #define	this_uisec	((ees->arrvtime).l_ui)
289 #define	this_sfsec	((ees->arrvtime).l_f)
290 #define	msec(x)		((x) / (1<<22))
291 #define	LAST_STEPS	(sizeof ees->last_steps / sizeof ees->last_steps[0])
292 #define	subms(x)	((((((x < 0) ? (-(x)) : (x)) % (1<<22))/2) * 625) / (1<<(22 -5)))
293 
294 /* Bitmask for what methods to try to use -- currently only PPS enabled */
295 #define	T_CBREAK	1
296 #define	T_PPS		8
297 /* macros to test above */
298 #define	is_cbreak(x)	((x)->ttytype & T_CBREAK)
299 #define	is_pps(x)	((x)->ttytype & T_PPS)
300 #define	is_any(x)	((x)->ttytype)
301 
302 #define	CODEREASON	20	/* reason codes */
303 
304 /* Data space for the unit structures.  Note that we allocate these on
305  * the fly, but never give them back. */
306 static struct eesunit *eesunits[MAXUNITS];
307 static u_char unitinuse[MAXUNITS];
308 
309 /* Keep the fudge factors separately so they can be set even
310  * when no clock is configured. */
311 static l_fp inherent_delay[MAXUNITS];		/* when time stamp is taken */
312 static l_fp fudgefactor[MAXUNITS];		/* fudgetime1 */
313 static l_fp os_delay[MAXUNITS];			/* fudgetime2 */
314 static l_fp offset_fudge[MAXUNITS];		/* Sum of above */
315 static u_char stratumtouse[MAXUNITS];
316 static u_char sloppyclockflag[MAXUNITS];
317 
318 static int deltas[60];
319 
320 static l_fp acceptable_slop; /* = { 0, 1 << (FRACTION_PREC -2) }; */
321 static l_fp onesec; /* = { 1, 0 }; */
322 
323 #ifndef	DUMP_BUF_SIZE	/* Size of buffer to be used by dump_buf */
324 #define	DUMP_BUF_SIZE	10112
325 #endif
326 
327 /* ees_reset - reset the count back to zero */
328 #define	ees_reset(ees) (ees)->nsamples = 0; \
329 (ees)->codestate = EESCS_WAIT
330 
331 /* ees_event - record and report an event */
332 #define	ees_event(ees, evcode) if ((ees)->status != (u_char)(evcode)) \
333 ees_report_event((ees), (evcode))
334 
335      /* Find the precision of the system clock by reading it */
336 #define	USECS	1000000
337 #define	MINSTEP	5	/* some systems increment uS on each call */
338 #define	MAXLOOPS (USECS/9)
339 
340 /*
341  * Function prototypes
342  */
343 
344 static	int	msfees_start	P((int unit, struct peer *peer));
345 static	void	msfees_shutdown	P((int unit, struct peer *peer));
346 static	void	msfees_poll	P((int unit, struct peer *peer));
347 static	void	msfees_init	P((void));
348 static	void	dump_buf	P((l_fp *coffs, int from, int to, char *text));
349 static	void	ees_report_event P((struct eesunit *ees, int code));
350 static	void	ees_receive	P((struct recvbuf *rbufp));
351 static	void	ees_process	P((struct eesunit *ees));
352 #ifdef QSORT_USES_VOID_P
353 static	int	offcompare	P((const void *va, const void *vb));
354 #else
355 static	int	offcompare	P((const l_fp *a, const l_fp *b));
356 #endif /* QSORT_USES_VOID_P */
357 
358 
359 /*
360  * Transfer vector
361  */
362 struct	refclock refclock_msfees = {
363 	msfees_start,		/* start up driver */
364 	msfees_shutdown,	/* shut down driver */
365 	msfees_poll,		/* transmit poll message */
366 	noentry,		/* not used */
367 	msfees_init,		/* initialize driver */
368 	noentry,		/* not used */
369 	NOFLAGS			/* not used */
370 };
371 
372 
373 static void
374 dump_buf(
375 	l_fp *coffs,
376 	int from,
377 	int to,
378 	char *text
379 	)
380 {
381 	char buff[DUMP_BUF_SIZE + 80];
382 	int i;
383 	register char *ptr = buff;
384 
385 	sprintf(ptr, text);
386 	for (i=from; i<to; i++)
387 	{	while (*ptr) ptr++;
388 	if ((ptr-buff) > DUMP_BUF_SIZE) msyslog(LOG_DEBUG, "D: %s", ptr=buff);
389 	sprintf(ptr, " %06d", ((int)coffs[i].l_f) / 4295);
390 	}
391 	msyslog(LOG_DEBUG, "D: %s", buff);
392 }
393 
394 /* msfees_init - initialize internal ees driver data */
395 static void
396 msfees_init(void)
397 {
398 	register int i;
399 	/* Just zero the data arrays */
400 	memset((char *)eesunits, 0, sizeof eesunits);
401 	memset((char *)unitinuse, 0, sizeof unitinuse);
402 
403 	acceptable_slop.l_ui = 0;
404 	acceptable_slop.l_uf = 1 << (FRACTION_PREC -2);
405 
406 	onesec.l_ui = 1;
407 	onesec.l_uf = 0;
408 
409 	/* Initialize fudge factors to default. */
410 	for (i = 0; i < MAXUNITS; i++) {
411 		fudgefactor[i].l_ui	= 0;
412 		fudgefactor[i].l_uf	= DEFFUDGETIME;
413 		os_delay[i].l_ui	= 0;
414 		os_delay[i].l_uf	= DEFOSTIME;
415 		inherent_delay[i].l_ui	= 0;
416 		inherent_delay[i].l_uf	= DEFINHTIME;
417 		offset_fudge[i]		= os_delay[i];
418 		L_ADD(&offset_fudge[i], &fudgefactor[i]);
419 		L_ADD(&offset_fudge[i], &inherent_delay[i]);
420 		stratumtouse[i]		= 0;
421 		sloppyclockflag[i]	= 0;
422 	}
423 }
424 
425 
426 /* msfees_start - open the EES devices and initialize data for processing */
427 static int
428 msfees_start(
429 	int unit,
430 	struct peer *peer
431 	)
432 {
433 	register struct eesunit *ees;
434 	register int i;
435 	int fd232 = -1;
436 	char eesdev[20];
437 	struct termios ttyb, *ttyp;
438 	struct refclockproc *pp;
439 	pp = peer->procptr;
440 
441 	if (unit >= MAXUNITS) {
442 		msyslog(LOG_ERR, "ees clock: unit number %d invalid (max %d)",
443 			unit, MAXUNITS-1);
444 		return 0;
445 	}
446 	if (unitinuse[unit]) {
447 		msyslog(LOG_ERR, "ees clock: unit number %d in use", unit);
448 		return 0;
449 	}
450 
451 	/* Unit okay, attempt to open the devices.  We do them both at
452 	 * once to make sure we can */
453 	(void) sprintf(eesdev, EES232, unit);
454 
455 	fd232 = open(eesdev, O_RDWR, 0777);
456 	if (fd232 == -1) {
457 		msyslog(LOG_ERR, "ees clock: open of %s failed: %m", eesdev);
458 		return 0;
459 	}
460 
461 #ifdef	TIOCEXCL
462 	/* Set for exclusive use */
463 	if (ioctl(fd232, TIOCEXCL, (char *)0) < 0) {
464 		msyslog(LOG_ERR, "ees clock: ioctl(%s, TIOCEXCL): %m", eesdev);
465 		goto screwed;
466 	}
467 #endif
468 
469 	/* STRIPPED DOWN VERSION: Only PPS CD is supported at the moment */
470 
471 	/* Set port characteristics.  If we don't have a STREAMS module or
472 	 * a clock line discipline, cooked mode is just usable, even though it
473 	 * strips the top bit.  The only EES byte which uses the top
474 	 * bit is the year, and we don't use that anyway. If we do
475 	 * have the line discipline, we choose raw mode, and the
476 	 * line discipline code will block up the messages.
477 	 */
478 
479 	/* STIPPED DOWN VERSION: Only PPS CD is supported at the moment */
480 
481 	ttyp = &ttyb;
482 	if (tcgetattr(fd232, ttyp) < 0) {
483 		msyslog(LOG_ERR, "msfees_start: tcgetattr(%s): %m", eesdev);
484 		goto screwed;
485 	}
486 
487 	ttyp->c_iflag = IGNBRK|IGNPAR|ICRNL;
488 	ttyp->c_cflag = SPEED232|CS8|CLOCAL|CREAD;
489 	ttyp->c_oflag = 0;
490 	ttyp->c_lflag = ICANON;
491 	ttyp->c_cc[VERASE] = ttyp->c_cc[VKILL] = '\0';
492 	if (tcsetattr(fd232, TCSANOW, ttyp) < 0) {
493 		msyslog(LOG_ERR, "msfees_start: tcsetattr(%s): %m", eesdev);
494 		goto screwed;
495 	}
496 
497 	if (tcflush(fd232, TCIOFLUSH) < 0) {
498 		msyslog(LOG_ERR, "msfees_start: tcflush(%s): %m", eesdev);
499 		goto screwed;
500 	}
501 
502 	inherent_delay[unit].l_uf = INH_DELAY_PPS;
503 
504 	/* offset fudge (how *late* the timestamp is) = fudge + os delays */
505 	offset_fudge[unit] = os_delay[unit];
506 	L_ADD(&offset_fudge[unit], &fudgefactor[unit]);
507 	L_ADD(&offset_fudge[unit], &inherent_delay[unit]);
508 
509 	/* Looks like this might succeed.  Find memory for the structure.
510 	 * Look to see if there are any unused ones, if not we malloc() one.
511 	 */
512 	if (eesunits[unit] != 0) /* The one we want is okay */
513 	    ees = eesunits[unit];
514 	else {
515 		/* Look for an unused, but allocated struct */
516 		for (i = 0; i < MAXUNITS; i++) {
517 			if (!unitinuse[i] && eesunits[i] != 0)
518 			    break;
519 		}
520 
521 		if (i < MAXUNITS) {	/* Reclaim this one */
522 			ees = eesunits[i];
523 			eesunits[i] = 0;
524 		}			/* no spare -- make a new one */
525 		else ees = (struct eesunit *) emalloc(sizeof(struct eesunit));
526 	}
527 	memset((char *)ees, 0, sizeof(struct eesunit));
528 	eesunits[unit] = ees;
529 
530 	/* Set up the structures */
531 	ees->peer	= peer;
532 	ees->unit	= (u_char)unit;
533 	ees->timestarted= current_time;
534 	ees->ttytype	= 0;
535 	ees->io.clock_recv= ees_receive;
536 	ees->io.srcclock= (caddr_t)ees;
537 	ees->io.datalen	= 0;
538 	ees->io.fd	= fd232;
539 
540 	/* Okay.  Push one of the two (linked into the kernel, or dynamically
541 	 * loaded) STREAMS module, and give it to the I/O code to start
542 	 * receiving stuff.
543 	 */
544 
545 #ifdef STREAM
546 	{
547 		int rc1;
548 		/* Pop any existing onews first ... */
549 		while (ioctl(fd232, I_POP, 0 ) >= 0) ;
550 
551 		/* Now try pushing either of the possible modules */
552 		if ((rc1=ioctl(fd232, I_PUSH, STREAM_PP1)) < 0 &&
553 		    ioctl(fd232, I_PUSH, STREAM_PP2) < 0) {
554 			msyslog(LOG_ERR,
555 				"ees clock: Push of `%s' and `%s' to %s failed %m",
556 				STREAM_PP1, STREAM_PP2, eesdev);
557 			goto screwed;
558 		}
559 		else {
560 			NLOG(NLOG_CLOCKINFO) /* conditional if clause for conditional syslog */
561 				msyslog(LOG_INFO, "I: ees clock: PUSHed %s on %s",
562 					(rc1 >= 0) ? STREAM_PP1 : STREAM_PP2, eesdev);
563 			ees->ttytype |= T_PPS;
564 		}
565 	}
566 #endif /* STREAM */
567 
568 	/* Add the clock */
569 	if (!io_addclock(&ees->io)) {
570 		/* Oh shit.  Just close and return. */
571 		msyslog(LOG_ERR, "ees clock: io_addclock(%s): %m", eesdev);
572 		goto screwed;
573 	}
574 
575 
576 	/* All done.  Initialize a few random peer variables, then
577 	 * return success. */
578 	peer->precision	= sys_precision;
579 	peer->stratum	= stratumtouse[unit];
580 	if (stratumtouse[unit] <= 1) {
581 		memcpy((char *)&pp->refid, EESREFID, 4);
582 		if (unit > 0 && unit < 10)
583 		    ((char *)&pp->refid)[3] = '0' + unit;
584 	} else {
585 		peer->refid = htonl(EESHSREFID);
586 	}
587 	unitinuse[unit] = 1;
588 	pp->unitptr = (caddr_t) &eesunits[unit];
589 	pp->clockdesc = EESDESCRIPTION;
590 	msyslog(LOG_ERR, "ees clock: %s OK on %d", eesdev, unit);
591 	return (1);
592 
593     screwed:
594 	if (fd232 != -1)
595 	    (void) close(fd232);
596 	return (0);
597 }
598 
599 
600 /* msfees_shutdown - shut down a EES clock */
601 static void
602 msfees_shutdown(
603 	int unit,
604 	struct peer *peer
605 	)
606 {
607 	register struct eesunit *ees;
608 
609 	if (unit >= MAXUNITS) {
610 		msyslog(LOG_ERR,
611 			"ees clock: INTERNAL ERROR, unit number %d invalid (max %d)",
612 			unit, MAXUNITS);
613 		return;
614 	}
615 	if (!unitinuse[unit]) {
616 		msyslog(LOG_ERR,
617 			"ees clock: INTERNAL ERROR, unit number %d not in use", unit);
618 		return;
619 	}
620 
621 	/* Tell the I/O module to turn us off.  We're history. */
622 	ees = eesunits[unit];
623 	io_closeclock(&ees->io);
624 	unitinuse[unit] = 0;
625 }
626 
627 
628 /* ees_report_event - note the occurance of an event */
629 static void
630 ees_report_event(
631 	struct eesunit *ees,
632 	int code
633 	)
634 {
635 	if (ees->status != (u_char)code) {
636 		ees->status = (u_char)code;
637 		if (code != CEVNT_NOMINAL)
638 		    ees->lastevent = (u_char)code;
639 		/* Should report event to trap handler in here.
640 		 * Soon...
641 		 */
642 	}
643 }
644 
645 
646 /* ees_receive - receive data from the serial interface on an EES clock */
647 static void
648 ees_receive(
649 	struct recvbuf *rbufp
650 	)
651 {
652 	register int n_sample;
653 	register int day;
654 	register struct eesunit *ees;
655 	register u_char *dpt;		/* Data PoinTeR: move along ... */
656 	register u_char *dpend;		/* Points just *after* last data char */
657 	register char *cp;
658 	l_fp tmp;
659 	int call_pps_sample = 0;
660 	l_fp pps_arrvstamp;
661 	int	sincelast;
662 	int	pps_step = 0;
663 	int	suspect_4ms_step = 0;
664 	struct ppsclockev ppsclockev;
665 	long *ptr = (long *) &ppsclockev;
666 	int rc;
667 	int request;
668 #ifdef HAVE_CIOGETEV
669 	request = CIOGETEV;
670 #endif
671 #ifdef HAVE_TIOCGPPSEV
672 	request = TIOCGPPSEV;
673 #endif
674 
675 	/* Get the clock this applies to and a pointer to the data */
676 	ees = (struct eesunit *)rbufp->recv_srcclock;
677 	dpt = (u_char *)&rbufp->recv_space;
678 	dpend = dpt + rbufp->recv_length;
679 	if ((dbg & DB_LOG_AWAITMORE) && (rbufp->recv_length != LENEESCODE))
680 	    printf("[%d] ", rbufp->recv_length);
681 
682 	/* Check out our state and process appropriately */
683 	switch (ees->codestate) {
684 	    case EESCS_WAIT:
685 		/* Set an initial guess at the timestamp as the recv time.
686 		 * If just running in CBREAK mode, we can't improve this.
687 		 * If we have the CLOCK Line Discipline, PPSCD, or sime such,
688 		 * then we will do better later ....
689 		 */
690 		ees->arrvtime = rbufp->recv_time;
691 		ees->codestate = EESCS_GOTSOME;
692 		ees->lencode = 0;
693 		/*FALLSTHROUGH*/
694 
695 	    case EESCS_GOTSOME:
696 		cp = &(ees->lastcode[ees->lencode]);
697 
698 		/* Gobble the bytes until the final (possibly stripped) 0xff */
699 		while (dpt < dpend && (*dpt & 0x7f) != 0x7f) {
700 			*cp++ = (char)*dpt++;
701 			ees->lencode++;
702 			/* Oh dear -- too many bytes .. */
703 			if (ees->lencode > LENEESPRT) {
704 				NLOG(NLOG_CLOCKINFO) /* conditional if clause for conditional syslog */
705 					msyslog(LOG_INFO,
706 						"I: ees clock: %d + %d > %d [%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x]",
707 						ees->lencode, dpend - dpt, LENEESPRT,
708 #define D(x) (ees->lastcode[x])
709 						D(0), D(1), D(2), D(3), D(4), D(5), D(6),
710 						D(7), D(8), D(9), D(10), D(11), D(12));
711 #undef	D
712 				ees->badformat++;
713 				ees->reason = CODEREASON + 1;
714 				ees_event(ees, CEVNT_BADREPLY);
715 				ees_reset(ees);
716 				return;
717 			}
718 		}
719 		/* Gave up because it was end of the buffer, rather than ff */
720 		if (dpt == dpend) {
721 			/* Incomplete.  Wait for more. */
722 			if (dbg & DB_LOG_AWAITMORE)
723 			    msyslog(LOG_INFO,
724 				    "I: ees clock %d: %p == %p: await more",
725 				    ees->unit, dpt, dpend);
726 			return;
727 		}
728 
729 		/* This shouldn't happen ... ! */
730 		if ((*dpt & 0x7f) != 0x7f) {
731 			msyslog(LOG_INFO, "I: ees clock: %0x & 0x7f != 0x7f", *dpt);
732 			ees->badformat++;
733 			ees->reason = CODEREASON + 2;
734 			ees_event(ees, CEVNT_BADREPLY);
735 			ees_reset(ees);
736 			return;
737 		}
738 
739 		/* Skip the 0xff */
740 		dpt++;
741 
742 		/* Finally, got a complete buffer.  Mainline code will
743 		 * continue on. */
744 		cp = ees->lastcode;
745 		break;
746 
747 	    default:
748 		msyslog(LOG_ERR, "ees clock: INTERNAL ERROR: %d state %d",
749 			ees->unit, ees->codestate);
750 		ees->reason = CODEREASON + 5;
751 		ees_event(ees, CEVNT_FAULT);
752 		ees_reset(ees);
753 		return;
754 	}
755 
756 	/* Boy!  After all that crap, the lastcode buffer now contains
757 	 * something we hope will be a valid time code.  Do length
758 	 * checks and sanity checks on constant data.
759 	 */
760 	ees->codestate = EESCS_WAIT;
761 	ees->lasttime = current_time;
762 	if (ees->lencode != LENEESPRT) {
763 		ees->badformat++;
764 		ees->reason = CODEREASON + 6;
765 		ees_event(ees, CEVNT_BADREPLY);
766 		ees_reset(ees);
767 		return;
768 	}
769 
770 	cp = ees->lastcode;
771 
772 	/* Check that centisecond is zero */
773 	if (cp[EESM_CSEC] != 0) {
774 		ees->baddata++;
775 		ees->reason = CODEREASON + 7;
776 		ees_event(ees, CEVNT_BADREPLY);
777 		ees_reset(ees);
778 		return;
779 	}
780 
781 	/* Check flag formats */
782 	if (cp[EESM_LEAP] != 0 && cp[EESM_LEAP] != 0x0f) {
783 		ees->badformat++;
784 		ees->reason = CODEREASON + 8;
785 		ees_event(ees, CEVNT_BADREPLY);
786 		ees_reset(ees);
787 		return;
788 	}
789 
790 	if (cp[EESM_BST] != 0 && cp[EESM_BST] != 0x03) {
791 		ees->badformat++;
792 		ees->reason = CODEREASON + 9;
793 		ees_event(ees, CEVNT_BADREPLY);
794 		ees_reset(ees);
795 		return;
796 	}
797 
798 	if (cp[EESM_MSFOK] != 0 && cp[EESM_MSFOK] != 0x3f) {
799 		ees->badformat++;
800 		ees->reason = CODEREASON + 10;
801 		ees_event(ees, CEVNT_BADREPLY);
802 		ees_reset(ees);
803 		return;
804 	}
805 
806 	/* So far, so good.  Compute day, hours, minutes, seconds,
807 	 * time zone.  Do range checks on these.
808 	 */
809 
810 #define bcdunpack(val)	( (((val)>>4) & 0x0f) * 10 + ((val) & 0x0f) )
811 #define istrue(x)	((x)?1:0)
812 
813 	ees->second  = bcdunpack(cp[EESM_SEC]);  /* second       */
814 	ees->minute  = bcdunpack(cp[EESM_MIN]);  /* minute       */
815 	ees->hour    = bcdunpack(cp[EESM_HOUR]); /* hour         */
816 
817 	day          = bcdunpack(cp[EESM_DAY]);  /* day of month */
818 
819 	switch (bcdunpack(cp[EESM_MON])) {       /* month        */
820 
821 		/*  Add in lengths of all previous months.  Add one more
822 		    if it is a leap year and after February.
823 		*/
824 	    case 12:	day += NOV;			  /*FALLSTHROUGH*/
825 	    case 11:	day += OCT;			  /*FALLSTHROUGH*/
826 	    case 10:	day += SEP;			  /*FALLSTHROUGH*/
827 	    case  9:	day += AUG;			  /*FALLSTHROUGH*/
828 	    case  8:	day += JUL;			  /*FALLSTHROUGH*/
829 	    case  7:	day += JUN;			  /*FALLSTHROUGH*/
830 	    case  6:	day += MAY;			  /*FALLSTHROUGH*/
831 	    case  5:	day += APR;			  /*FALLSTHROUGH*/
832 	    case  4:	day += MAR;			  /*FALLSTHROUGH*/
833 	    case  3:	day += FEB;
834 		if (istrue(cp[EESM_LEAP])) day++; /*FALLSTHROUGH*/
835 	    case  2:	day += JAN;			  /*FALLSTHROUGH*/
836 	    case  1:	break;
837 	    default:	ees->baddata++;
838 		ees->reason = CODEREASON + 11;
839 		ees_event(ees, CEVNT_BADDATE);
840 		ees_reset(ees);
841 		return;
842 	}
843 
844 	ees->day     = day;
845 
846 	/* Get timezone. The clocktime routine wants the number
847 	 * of hours to add to the delivered time to get UT.
848 	 * Currently -1 if BST flag set, 0 otherwise.  This
849 	 * is the place to tweak things if double summer time
850 	 * ever happens.
851 	 */
852 	ees->tz      = istrue(cp[EESM_BST]) ? -1 : 0;
853 
854 	if (ees->day > 366 || ees->day < 1 ||
855 	    ees->hour > 23 || ees->minute > 59 || ees->second > 59) {
856 		ees->baddata++;
857 		ees->reason = CODEREASON + 12;
858 		ees_event(ees, CEVNT_BADDATE);
859 		ees_reset(ees);
860 		return;
861 	}
862 
863 	n_sample = ees->nsamples;
864 
865 	/* Now, compute the reference time value: text -> tmp.l_ui */
866 	if (!clocktime(ees->day, ees->hour, ees->minute, ees->second,
867 		       ees->tz, rbufp->recv_time.l_ui, &ees->yearstart,
868 		       &tmp.l_ui)) {
869 		ees->baddata++;
870 		ees->reason = CODEREASON + 13;
871 		ees_event(ees, CEVNT_BADDATE);
872 		ees_reset(ees);
873 		return;
874 	}
875 	tmp.l_uf = 0;
876 
877 	/*  DON'T use ees->arrvtime -- it may be < reftime */
878 	ees->lastsampletime = tmp;
879 
880 	/* If we are synchronised to the radio, update the reference time.
881 	 * Also keep a note of when clock was last good.
882 	 */
883 	if (istrue(cp[EESM_MSFOK])) {
884 		ees->reftime = tmp;
885 		ees->clocklastgood = current_time;
886 	}
887 
888 
889 	/* Compute the offset.  For the fractional part of the
890 	 * offset we use the expected delay for the message.
891 	 */
892 	ees->codeoffsets[n_sample].l_ui = tmp.l_ui;
893 	ees->codeoffsets[n_sample].l_uf = 0;
894 
895 	/* Number of seconds since the last step */
896 	sincelast = this_uisec - ees->last_step;
897 
898 	memset((char *) &ppsclockev, 0, sizeof ppsclockev);
899 
900 	rc = ioctl(ees->io.fd, request, (char *) &ppsclockev);
901 	if (dbg & DB_PRINT_EV) fprintf(stderr,
902 					 "[%x] CIOGETEV u%d %d (%x %d) gave %d (%d): %08lx %08lx %ld\n",
903 					 DB_PRINT_EV, ees->unit, ees->io.fd, request, is_pps(ees),
904 					 rc, errno, ptr[0], ptr[1], ptr[2]);
905 
906 	/* If we managed to get the time of arrival, process the info */
907 	if (rc >= 0) {
908 		int conv = -1;
909 		pps_step = ppsclockev.serial - ees->last_pps_no;
910 
911 		/* Possible that PPS triggered, but text message didn't */
912 		if (pps_step == 2) msyslog(LOG_ERR, "pps step = 2 @ %02d", ees->second);
913 		if (pps_step == 2 && ees->second == 1) suspect_4ms_step |= 1;
914 		if (pps_step == 2 && ees->second == 2) suspect_4ms_step |= 4;
915 
916 		/* allow for single loss of PPS only */
917 		if (pps_step != 1 && pps_step != 2)
918 		    fprintf(stderr, "PPS step: %d too far off %ld (%d)\n",
919 			    ppsclockev.serial, ees->last_pps_no, pps_step);
920 		else if (!buftvtots((char *) &(ppsclockev.tv), &pps_arrvstamp))
921 		    fprintf(stderr, "buftvtots failed\n");
922 		else {	/* if ((ABS(time difference) - 0.25) < 0)
923 			 * then believe it ...
924 			 */
925 			l_fp diff;
926 			diff = pps_arrvstamp;
927 			conv = 0;
928 			L_SUB(&diff, &ees->arrvtime);
929 			if (dbg & DB_PRINT_CDT)
930 			    printf("[%x] Have %lx.%08lx and %lx.%08lx -> %lx.%08lx @ %s",
931 				   DB_PRINT_CDT, (long)ees->arrvtime.l_ui, (long)ees->arrvtime.l_uf,
932 				   (long)pps_arrvstamp.l_ui, (long)pps_arrvstamp.l_uf,
933 				   (long)diff.l_ui, (long)diff.l_uf,
934 				   ctime(&(ppsclockev.tv.tv_sec)));
935 			if (L_ISNEG(&diff)) M_NEG(diff.l_ui, diff.l_uf);
936 			L_SUB(&diff, &acceptable_slop);
937 			if (L_ISNEG(&diff)) {	/* AOK -- pps_sample */
938 				ees->arrvtime = pps_arrvstamp;
939 				conv++;
940 				call_pps_sample++;
941 			}
942 			/* Some loss of some signals around sec = 1 */
943 			else if (ees->second == 1) {
944 				diff = pps_arrvstamp;
945 				L_ADD(&diff, &onesec);
946 				L_SUB(&diff, &ees->arrvtime);
947 				if (L_ISNEG(&diff)) M_NEG(diff.l_ui, diff.l_uf);
948 				L_SUB(&diff, &acceptable_slop);
949 				msyslog(LOG_ERR, "Have sec==1 slip %ds a=%08x-p=%08x -> %x.%08x (u=%d) %s",
950 					pps_arrvstamp.l_ui - ees->arrvtime.l_ui,
951 					pps_arrvstamp.l_uf,
952 					ees->arrvtime.l_uf,
953 					diff.l_ui, diff.l_uf,
954 					(int)ppsclockev.tv.tv_usec,
955 					ctime(&(ppsclockev.tv.tv_sec)));
956 				if (L_ISNEG(&diff)) {	/* AOK -- pps_sample */
957 					suspect_4ms_step |= 2;
958 					ees->arrvtime = pps_arrvstamp;
959 					L_ADD(&ees->arrvtime, &onesec);
960 					conv++;
961 					call_pps_sample++;
962 				}
963 			}
964 		}
965 		ees->last_pps_no = ppsclockev.serial;
966 		if (dbg & DB_PRINT_CDTC)
967 		    printf(
968 			    "[%x] %08lx %08lx %d u%d (%d %d)\n",
969 			    DB_PRINT_CDTC, (long)pps_arrvstamp.l_ui,
970 			    (long)pps_arrvstamp.l_uf, conv, ees->unit,
971 			    call_pps_sample, pps_step);
972 	}
973 
974 	/* See if there has been a 4ms jump at a minute boundry */
975 	{	l_fp	delta;
976 #define	delta_isec	delta.l_ui
977 #define	delta_ssec	delta.l_i
978 #define	delta_sfsec	delta.l_f
979 	long	delta_f_abs;
980 
981 	delta.l_i = ees->arrvtime.l_i;
982 	delta.l_f = ees->arrvtime.l_f;
983 
984 	L_SUB(&delta, &ees->last_l);
985 	delta_f_abs = delta_sfsec;
986 	if (delta_f_abs < 0) delta_f_abs = -delta_f_abs;
987 
988 	/* Dump the deltas each minute */
989 	if (dbg & DB_DUMP_DELTAS)
990 	{	if (/*0 <= ees->second && */
991 		ees->second < ((sizeof deltas) / (sizeof deltas[0]))) deltas[ees->second] = delta_sfsec;
992 	/* Dump on second 1, as second 0 sometimes missed */
993 	if (ees->second == 1) {
994 		char text[16 * ((sizeof deltas) / (sizeof deltas[0]))];
995 		char *cptr=text;
996 		int i;
997 		for (i=0; i<((sizeof deltas) / (sizeof deltas[0])); i++) {
998 			sprintf(cptr, " %d.%04d",
999 				msec(deltas[i]), subms(deltas[i]));
1000 			while (*cptr) cptr++;
1001 		}
1002 		msyslog(LOG_ERR, "Deltas: %d.%04d<->%d.%04d: %s",
1003 			msec(EES_STEP_F - EES_STEP_F_GRACE), subms(EES_STEP_F - EES_STEP_F_GRACE),
1004 			msec(EES_STEP_F + EES_STEP_F_GRACE), subms(EES_STEP_F + EES_STEP_F_GRACE),
1005 			text+1);
1006 		for (i=0; i<((sizeof deltas) / (sizeof deltas[0])); i++) deltas[i] = 0;
1007 	}
1008 	}
1009 
1010 	/* Lets see if we have a 4 mS step at a minute boundaary */
1011 	if (	((EES_STEP_F - EES_STEP_F_GRACE) < delta_f_abs) &&
1012 		(delta_f_abs < (EES_STEP_F + EES_STEP_F_GRACE)) &&
1013 		(ees->second == 0 || ees->second == 1 || ees->second == 2) &&
1014 		(sincelast < 0 || sincelast > 122)
1015 		) {	/* 4ms jump at min boundry */
1016 		int old_sincelast;
1017 		int count=0;
1018 		int sum = 0;
1019 		/* Yes -- so compute the ramp time */
1020 		if (ees->last_step == 0) sincelast = 0;
1021 		old_sincelast = sincelast;
1022 
1023 		/* First time in, just set "ees->last_step" */
1024 		if(ees->last_step) {
1025 			int other_step = 0;
1026 			int third_step = 0;
1027 			int this_step = (sincelast + (60 /2)) / 60;
1028 			int p_step = ees->this_step;
1029 			int p;
1030 			ees->last_steps[p_step] = this_step;
1031 			p= p_step;
1032 			p_step++;
1033 			if (p_step >= LAST_STEPS) p_step = 0;
1034 			ees->this_step = p_step;
1035 				/* Find the "average" interval */
1036 			while (p != p_step) {
1037 				int this = ees->last_steps[p];
1038 				if (this == 0) break;
1039 				if (this != this_step) {
1040 					if (other_step == 0 && (
1041 						this== (this_step +2) ||
1042 						this== (this_step -2) ||
1043 						this== (this_step +1) ||
1044 						this== (this_step -1)))
1045 					    other_step = this;
1046 					if (other_step != this) {
1047 						int idelta = (this_step - other_step);
1048 						if (idelta < 0) idelta = - idelta;
1049 						if (third_step == 0 && (
1050 							(idelta == 1) ? (
1051 								this == (other_step +1) ||
1052 								this == (other_step -1) ||
1053 								this == (this_step +1) ||
1054 								this == (this_step -1))
1055 							:
1056 							(
1057 								this == (this_step + other_step)/2
1058 								)
1059 							)) third_step = this;
1060 						if (third_step != this) break;
1061 					}
1062 				}
1063 				sum += this;
1064 				p--;
1065 				if (p < 0) p += LAST_STEPS;
1066 				count++;
1067 			}
1068 			msyslog(LOG_ERR, "MSF%d: %d: This=%d (%d), other=%d/%d, sum=%d, count=%d, pps_step=%d, suspect=%x", ees->unit, p, ees->last_steps[p], this_step, other_step, third_step, sum, count, pps_step, suspect_4ms_step);
1069 			if (count != 0) sum = ((sum * 60) + (count /2)) / count;
1070 #define	SV(x) (ees->last_steps[(x + p_step) % LAST_STEPS])
1071 			msyslog(LOG_ERR, "MSF%d: %x steps %d: %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d",
1072 				ees->unit, suspect_4ms_step, p_step, SV(0), SV(1), SV(2), SV(3), SV(4), SV(5), SV(6),
1073 				SV(7), SV(8), SV(9), SV(10), SV(11), SV(12), SV(13), SV(14), SV(15));
1074 			printf("MSF%d: steps %d: %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d\n",
1075 			       ees->unit, p_step, SV(0), SV(1), SV(2), SV(3), SV(4), SV(5), SV(6),
1076 			       SV(7), SV(8), SV(9), SV(10), SV(11), SV(12), SV(13), SV(14), SV(15));
1077 #undef SV
1078 			ees->jump_fsecs = delta_sfsec;
1079 			ees->using_ramp = 1;
1080 			if (sincelast > 170)
1081 			    ees->last_step_late += sincelast - ((sum) ? sum : ees->last_step_secs);
1082 			else ees->last_step_late = 30;
1083 			if (ees->last_step_late < -60 || ees->last_step_late > 120) ees->last_step_late = 30;
1084 			if (ees->last_step_late < 0) ees->last_step_late = 0;
1085 			if (ees->last_step_late >= 60) ees->last_step_late = 59;
1086 			sincelast = 0;
1087 		}
1088 		else {	/* First time in -- just save info */
1089 			ees->last_step_late = 30;
1090 			ees->jump_fsecs = delta_sfsec;
1091 			ees->using_ramp = 1;
1092 			sum = 4 * 60;
1093 		}
1094 		ees->last_step = this_uisec;
1095 		printf("MSF%d: d=%3ld.%04ld@%d :%d:%d:$%d:%d:%d\n",
1096 		       ees->unit, (long)msec(delta_sfsec), (long)subms(delta_sfsec),
1097 		       ees->second, old_sincelast, ees->last_step_late, count, sum,
1098 		       ees->last_step_secs);
1099 		msyslog(LOG_ERR, "MSF%d: d=%3d.%04d@%d :%d:%d:%d:%d:%d",
1100 			ees->unit, msec(delta_sfsec), subms(delta_sfsec), ees->second,
1101 			old_sincelast, ees->last_step_late, count, sum, ees->last_step_secs);
1102 		if (sum) ees->last_step_secs = sum;
1103 	}
1104 	/* OK, so not a 4ms step at a minute boundry */
1105 	else {
1106 		if (suspect_4ms_step) msyslog(LOG_ERR,
1107 					      "MSF%d: suspect = %x, but delta of %d.%04d [%d.%04d<%d.%04d<%d.%04d: %d %d]",
1108 					      ees->unit, suspect_4ms_step, msec(delta_sfsec), subms(delta_sfsec),
1109 					      msec(EES_STEP_F - EES_STEP_F_GRACE),
1110 					      subms(EES_STEP_F - EES_STEP_F_GRACE),
1111 					      (int)msec(delta_f_abs),
1112 					      (int)subms(delta_f_abs),
1113 					      msec(EES_STEP_F + EES_STEP_F_GRACE),
1114 					      subms(EES_STEP_F + EES_STEP_F_GRACE),
1115 					      ees->second,
1116 					      sincelast);
1117 		if ((delta_f_abs > EES_STEP_NOTE) && ees->last_l.l_i) {
1118 			static int ees_step_notes = EES_STEP_NOTES;
1119 			if (ees_step_notes > 0) {
1120 				ees_step_notes--;
1121 				printf("MSF%d: D=%3ld.%04ld@%02d :%d%s\n",
1122 				       ees->unit, (long)msec(delta_sfsec), (long)subms(delta_sfsec),
1123 				       ees->second, sincelast, ees_step_notes ? "" : " -- NO MORE !");
1124 				msyslog(LOG_ERR, "MSF%d: D=%3d.%04d@%02d :%d%s",
1125 					ees->unit, msec(delta_sfsec), subms(delta_sfsec), ees->second, (ees->last_step) ? sincelast : -1, ees_step_notes ? "" : " -- NO MORE !");
1126 			}
1127 		}
1128 	}
1129 	}
1130 	ees->last_l = ees->arrvtime;
1131 
1132 	/* IF we have found that it's ramping
1133 	 * && it's within twice the expected ramp period
1134 	 * && there is a non zero step size (avoid /0 !)
1135 	 * THEN we twiddle things
1136 	 */
1137 	if (ees->using_ramp &&
1138 	    sincelast < (ees->last_step_secs)*2 &&
1139 	    ees->last_step_secs)
1140 	{	long	sec_of_ramp = sincelast + ees->last_step_late;
1141 	long	fsecs;
1142 	l_fp	inc;
1143 
1144 	/* Ramp time may vary, so may ramp for longer than last time */
1145 	if (sec_of_ramp > (ees->last_step_secs + 120))
1146 	    sec_of_ramp =  ees->last_step_secs;
1147 
1148 	/* sec_of_ramp * ees->jump_fsecs may overflow 2**32 */
1149 	fsecs = sec_of_ramp * (ees->jump_fsecs /  ees->last_step_secs);
1150 
1151 	if (dbg & DB_LOG_DELTAS) msyslog(LOG_ERR,
1152 					   "[%x] MSF%d: %3ld/%03d -> d=%11ld (%d|%ld)",
1153 					   DB_LOG_DELTAS,
1154 					   ees->unit, sec_of_ramp, ees->last_step_secs, fsecs,
1155 					   pps_arrvstamp.l_f, pps_arrvstamp.l_f + fsecs);
1156 	if (dbg & DB_PRINT_DELTAS) printf(
1157 		"MSF%d: %3ld/%03d -> d=%11ld (%ld|%ld)\n",
1158 		ees->unit, sec_of_ramp, ees->last_step_secs, fsecs,
1159 		(long)pps_arrvstamp.l_f, pps_arrvstamp.l_f + fsecs);
1160 
1161 	/* Must sign extend the result */
1162 	inc.l_i = (fsecs < 0) ? -1 : 0;
1163 	inc.l_f = fsecs;
1164 	if (dbg & DB_INC_PPS)
1165 	{	L_SUB(&pps_arrvstamp, &inc);
1166 	L_SUB(&ees->arrvtime, &inc);
1167 	}
1168 	else
1169 	{	L_ADD(&pps_arrvstamp, &inc);
1170 	L_ADD(&ees->arrvtime, &inc);
1171 	}
1172 	}
1173 	else {
1174 		if (dbg & DB_LOG_DELTAS) msyslog(LOG_ERR,
1175 						   "[%x] MSF%d: ees->using_ramp=%d, sincelast=%x / %x, ees->last_step_secs=%x",
1176 						   DB_LOG_DELTAS,
1177 						   ees->unit, ees->using_ramp,
1178 						   sincelast,
1179 						   (ees->last_step_secs)*2,
1180 						   ees->last_step_secs);
1181 		if (dbg & DB_PRINT_DELTAS) printf(
1182 			"[%x] MSF%d: ees->using_ramp=%d, sincelast=%x / %x, ees->last_step_secs=%x\n",
1183 			DB_LOG_DELTAS,
1184 			ees->unit, ees->using_ramp,
1185 			sincelast,
1186 			(ees->last_step_secs)*2,
1187 			ees->last_step_secs);
1188 	}
1189 
1190 	L_SUB(&ees->arrvtime, &offset_fudge[ees->unit]);
1191 	L_SUB(&pps_arrvstamp, &offset_fudge[ees->unit]);
1192 
1193 	if (call_pps_sample && !(dbg & DB_NO_PPS)) {
1194 		/* Sigh -- it expects its args negated */
1195 		L_NEG(&pps_arrvstamp);
1196 		/*
1197 		 * I had to disable this here, since it appears there is no pointer to the
1198 		 * peer structure.
1199 		 *
1200 		 (void) pps_sample(peer, &pps_arrvstamp);
1201 		*/
1202 	}
1203 
1204 	/* Subtract off the local clock time stamp */
1205 	L_SUB(&ees->codeoffsets[n_sample], &ees->arrvtime);
1206 	if (dbg & DB_LOG_SAMPLES) msyslog(LOG_ERR,
1207 					    "MSF%d: [%x] %d (ees: %d %d) (pps: %d %d)%s",
1208 					    ees->unit, DB_LOG_DELTAS, n_sample,
1209 					    ees->codeoffsets[n_sample].l_f,
1210 					    ees->codeoffsets[n_sample].l_f / 4295,
1211 					    pps_arrvstamp.l_f,
1212 					    pps_arrvstamp.l_f /4295,
1213 					    (dbg & DB_NO_PPS) ? " [no PPS]" : "");
1214 
1215 	if (ees->nsamples++ == NCODES-1) ees_process(ees);
1216 
1217 	/* Done! */
1218 }
1219 
1220 
1221 /* offcompare - auxiliary comparison routine for offset sort */
1222 
1223 #ifdef QSORT_USES_VOID_P
1224 static int
1225 offcompare(
1226 	const void *va,
1227 	const void *vb
1228 	)
1229 {
1230 	const l_fp *a = (const l_fp *)va;
1231 	const l_fp *b = (const l_fp *)vb;
1232 	return(L_ISGEQ(a, b) ? (L_ISEQU(a, b) ? 0 : 1) : -1);
1233 }
1234 #else
1235 static int
1236 offcompare(
1237 	const l_fp *a,
1238 	const l_fp *b
1239 	)
1240 {
1241 	return(L_ISGEQ(a, b) ? (L_ISEQU(a, b) ? 0 : 1) : -1);
1242 }
1243 #endif /* QSORT_USES_VOID_P */
1244 
1245 
1246 /* ees_process - process a pile of samples from the clock */
1247 static void
1248 ees_process(
1249 	struct eesunit *ees
1250 	)
1251 {
1252 	static int last_samples = -1;
1253 	register int i, j;
1254 	register int noff;
1255 	register l_fp *coffs = ees->codeoffsets;
1256 	l_fp offset, tmp;
1257 	double dispersion;	/* ++++ */
1258 	int lostsync, isinsync;
1259 	int samples = ees->nsamples;
1260 	int samplelog = 0;	/* keep "gcc -Wall" happy ! */
1261 	int samplereduce = (samples + 1) / 2;
1262 	double doffset;
1263 
1264 	/* Reset things to zero so we don't have to worry later */
1265 	ees_reset(ees);
1266 
1267 	if (sloppyclockflag[ees->unit]) {
1268 		samplelog = (samples <  2) ? 0 :
1269 			(samples <  5) ? 1 :
1270 			(samples <  9) ? 2 :
1271 			(samples < 17) ? 3 :
1272 			(samples < 33) ? 4 : 5;
1273 		samplereduce = (1 << samplelog);
1274 	}
1275 
1276 	if (samples != last_samples &&
1277 	    ((samples != (last_samples-1)) || samples < 3)) {
1278 		msyslog(LOG_ERR, "Samples=%d (%d), samplereduce=%d ....",
1279 			samples, last_samples, samplereduce);
1280 		last_samples = samples;
1281 	}
1282 	if (samples < 1) return;
1283 
1284 	/* If requested, dump the raw data we have in the buffer */
1285 	if (ees->dump_vals) dump_buf(coffs, 0, samples, "Raw  data  is:");
1286 
1287 	/* Sort the offsets, trim off the extremes, then choose one. */
1288 	qsort(
1289 #ifdef QSORT_USES_VOID_P
1290 	    (void *)
1291 #else
1292 	    (char *)
1293 #endif
1294 	    coffs, (size_t)samples, sizeof(l_fp), offcompare);
1295 
1296 	noff = samples;
1297 	i = 0;
1298 	while ((noff - i) > samplereduce) {
1299 		/* Trim off the sample which is further away
1300 		 * from the median.  We work this out by doubling
1301 		 * the median, subtracting off the end samples, and
1302 		 * looking at the sign of the answer, using the
1303 		 * identity (c-b)-(b-a) == 2*b-a-c
1304 		 */
1305 		tmp = coffs[(noff + i)/2];
1306 		L_ADD(&tmp, &tmp);
1307 		L_SUB(&tmp, &coffs[i]);
1308 		L_SUB(&tmp, &coffs[noff-1]);
1309 		if (L_ISNEG(&tmp)) noff--; else i++;
1310 	}
1311 
1312 	/* If requested, dump the reduce data we have in the buffer */
1313 	if (ees->dump_vals) dump_buf(coffs, i, noff, "Reduced    to:");
1314 
1315 	/* What we do next depends on the setting of the sloppy clock flag.
1316 	 * If it is on, average the remainder to derive our estimate.
1317 	 * Otherwise, just pick a representative value from the remaining stuff
1318 	 */
1319 	if (sloppyclockflag[ees->unit]) {
1320 		offset.l_ui = offset.l_uf = 0;
1321 		for (j = i; j < noff; j++)
1322 		    L_ADD(&offset, &coffs[j]);
1323 		for (j = samplelog; j > 0; j--)
1324 		    L_RSHIFTU(&offset);
1325 	}
1326 	else offset = coffs[i+BESTSAMPLE];
1327 
1328 	/* Compute the dispersion as the difference between the
1329 	 * lowest and highest offsets that remain in the
1330 	 * consideration list.
1331 	 *
1332 	 * It looks like MOST clocks have MOD (max error), so halve it !
1333 	 */
1334 	tmp = coffs[noff-1];
1335 	L_SUB(&tmp, &coffs[i]);
1336 #define	FRACT_SEC(n) ((1 << 30) / (n/2))
1337 	dispersion = LFPTOFP(&tmp) / 2; /* ++++ */
1338 	if (dbg & (DB_SYSLOG_SMPLI | DB_SYSLOG_SMPLE)) msyslog(
1339 		(dbg & DB_SYSLOG_SMPLE) ? LOG_ERR : LOG_INFO,
1340 		"I: [%x] Offset=%06d (%d), disp=%f%s [%d], %d %d=%d %d:%d %d=%d %d",
1341 		dbg & (DB_SYSLOG_SMPLI | DB_SYSLOG_SMPLE),
1342 		offset.l_f / 4295, offset.l_f,
1343 		(dispersion * 1526) / 100,
1344 		(sloppyclockflag[ees->unit]) ? " by averaging" : "",
1345 		FRACT_SEC(10) / 4295,
1346 		(coffs[0].l_f) / 4295,
1347 		i,
1348 		(coffs[i].l_f) / 4295,
1349 		(coffs[samples/2].l_f) / 4295,
1350 		(coffs[i+BESTSAMPLE].l_f) / 4295,
1351 		noff-1,
1352 		(coffs[noff-1].l_f) / 4295,
1353 		(coffs[samples-1].l_f) / 4295);
1354 
1355 	/* Are we playing silly wotsits ?
1356 	 * If we are using all data, see if there is a "small" delta,
1357 	 * and if so, blurr this with 3/4 of the delta from the last value
1358 	 */
1359 	if (ees->usealldata && ees->offset.l_uf) {
1360 		long diff = (long) (ees->offset.l_uf - offset.l_uf);
1361 
1362 		/* is the delta small enough ? */
1363 		if ((- FRACT_SEC(100)) < diff && diff < FRACT_SEC(100)) {
1364 			int samd = (64 * 4) / samples;
1365 			long new;
1366 			if (samd < 2) samd = 2;
1367 			new = offset.l_uf + ((diff * (samd -1)) / samd);
1368 
1369 			/* Sign change -> need to fix up int part */
1370 			if ((new & 0x80000000) !=
1371 			    (((long) offset.l_uf) & 0x80000000))
1372 			{	NLOG(NLOG_CLOCKINFO) /* conditional if clause for conditional syslog */
1373 					msyslog(LOG_INFO, "I: %lx != %lx (%lx %lx), so add %d",
1374 						new & 0x80000000,
1375 						((long) offset.l_uf) & 0x80000000,
1376 						new, (long) offset.l_uf,
1377 						(new < 0) ? -1 : 1);
1378 				offset.l_ui += (new < 0) ? -1 : 1;
1379 			}
1380 			dispersion /= 4;
1381 			if (dbg & (DB_SYSLOG_SMTHI | DB_SYSLOG_SMTHE)) msyslog(
1382 				(dbg & DB_SYSLOG_SMTHE) ? LOG_ERR : LOG_INFO,
1383 				"I: [%x] Smooth data: %ld -> %ld, dispersion now %f",
1384 				dbg & (DB_SYSLOG_SMTHI | DB_SYSLOG_SMTHE),
1385 				((long) offset.l_uf) / 4295, new / 4295,
1386 				(dispersion * 1526) / 100);
1387 			offset.l_uf = (unsigned long) new;
1388 		}
1389 		else if (dbg & (DB_SYSLOG_NSMTHI | DB_SYSLOG_NSMTHE)) msyslog(
1390 			(dbg & DB_SYSLOG_NSMTHE) ? LOG_ERR : LOG_INFO,
1391 			"[%x] No smooth as delta not %d < %ld < %d",
1392 			dbg & (DB_SYSLOG_NSMTHI | DB_SYSLOG_NSMTHE),
1393 			- FRACT_SEC(100), diff, FRACT_SEC(100));
1394 	}
1395 	else if (dbg & (DB_SYSLOG_NSMTHI | DB_SYSLOG_NSMTHE)) msyslog(
1396 		(dbg & DB_SYSLOG_NSMTHE) ? LOG_ERR : LOG_INFO,
1397 		"I: [%x] No smooth as flag=%x and old=%x=%d (%d:%d)",
1398 		dbg & (DB_SYSLOG_NSMTHI | DB_SYSLOG_NSMTHE),
1399 		ees->usealldata, ees->offset.l_f, ees->offset.l_uf,
1400 		offset.l_f, ees->offset.l_f - offset.l_f);
1401 
1402 	/* Collect offset info for debugging info */
1403 	ees->offset = offset;
1404 	ees->lowoffset = coffs[i];
1405 	ees->highoffset = coffs[noff-1];
1406 
1407 	/* Determine synchronization status.  Can be unsync'd either
1408 	 * by a report from the clock or by a leap hold.
1409 	 *
1410 	 * Loss of the radio signal for a short time does not cause
1411 	 * us to go unsynchronised, since the receiver keeps quite
1412 	 * good time on its own.  The spec says 20ms in 4 hours; the
1413 	 * observed drift in our clock (Cambridge) is about a second
1414 	 * a day, but even that keeps us within the inherent tolerance
1415 	 * of the clock for about 15 minutes. Observation shows that
1416 	 * the typical "short" outage is 3 minutes, so to allow us
1417 	 * to ride out those, we will give it 5 minutes.
1418 	 */
1419 	lostsync = current_time - ees->clocklastgood > 300 ? 1 : 0;
1420 	isinsync = (lostsync || ees->leaphold > current_time) ? 0 : 1;
1421 
1422 	/* Done.  Use time of last good, synchronised code as the
1423 	 * reference time, and lastsampletime as the receive time.
1424 	 */
1425 	if (ees->fix_pending) {
1426 		msyslog(LOG_ERR, "MSF%d: fix_pending=%d -> jump %x.%08x\n",
1427 			ees->fix_pending, ees->unit, offset.l_i, offset.l_f);
1428 		ees->fix_pending = 0;
1429 	}
1430 	LFPTOD(&offset, doffset);
1431 	refclock_receive(ees->peer);
1432 	ees_event(ees, lostsync ? CEVNT_PROP : CEVNT_NOMINAL);
1433 }
1434 
1435 /* msfees_poll - called by the transmit procedure */
1436 static void
1437 msfees_poll(
1438 	int unit,
1439 	struct peer *peer
1440 	)
1441 {
1442 	if (unit >= MAXUNITS) {
1443 		msyslog(LOG_ERR, "ees clock poll: INTERNAL: unit %d invalid",
1444 			unit);
1445 		return;
1446 	}
1447 	if (!unitinuse[unit]) {
1448 		msyslog(LOG_ERR, "ees clock poll: INTERNAL: unit %d unused",
1449 			unit);
1450 		return;
1451 	}
1452 
1453 	ees_process(eesunits[unit]);
1454 
1455 	if ((current_time - eesunits[unit]->lasttime) > 150)
1456 	    ees_event(eesunits[unit], CEVNT_FAULT);
1457 }
1458 
1459 
1460 #else
1461 int refclock_msfees_bs;
1462 #endif /* REFCLOCK */
1463