xref: /freebsd/contrib/ntp/ntpd/refclock_msfees.c (revision 5ca8e32633c4ffbbcd6762e5888b6a4ba0708c6c)
1 /* refclock_ees - clock driver for the EES M201 receiver */
2 
3 #ifdef HAVE_CONFIG_H
4 #include <config.h>
5 #endif
6 
7 #include "ntp_types.h"
8 
9 #if defined(REFCLOCK) && defined(CLOCK_MSFEES) && defined(PPS)
10 
11 /* Currently REQUIRES STREAM and PPSCD. CLK and CBREAK modes
12  * were removed as the code was overly hairy, they weren't in use
13  * (hence probably didn't work).  Still in RCS file at cl.cam.ac.uk
14  */
15 
16 #include "ntpd.h"
17 #include "ntp_io.h"
18 #include "ntp_refclock.h"
19 #include "timevalops.h"
20 
21 #include <ctype.h>
22 #if defined(HAVE_BSD_TTYS)
23 #include <sgtty.h>
24 #endif /* HAVE_BSD_TTYS */
25 #if defined(HAVE_SYSV_TTYS)
26 #include <termio.h>
27 #endif /* HAVE_SYSV_TTYS */
28 #if defined(HAVE_TERMIOS)
29 #include <termios.h>
30 #endif
31 #if defined(STREAM)
32 #include <stropts.h>
33 #endif
34 
35 #ifdef HAVE_SYS_TERMIOS_H
36 # include <sys/termios.h>
37 #endif
38 #ifdef HAVE_SYS_PPSCLOCK_H
39 # include <sys/ppsclock.h>
40 #endif
41 
42 #include "ntp_stdlib.h"
43 
44 int dbg = 0;
45 /*
46 	fudgefactor	= fudgetime1;
47 	os_delay	= fudgetime2;
48 	   offset_fudge	= os_delay + fudgefactor + inherent_delay;
49 	stratumtouse	= fudgeval1 & 0xf
50 	dbg		= fudgeval2;
51 	sloppyclockflag	= flags & CLK_FLAG1;
52 		1	  log smoothing summary when processing sample
53 		4	  dump the buffer from the clock
54 		8	  EIOGETKD the last n uS time stamps
55 	if (flags & CLK_FLAG2 && unitinuse) ees->leaphold = 0;
56 	ees->dump_vals	= flags & CLK_FLAG3;
57 	ees->usealldata	= flags & CLK_FLAG4;
58 
59 
60 	bug->values[0] = (ees->lasttime) ? current_time - ees->lasttime : 0;
61 	bug->values[1] = (ees->clocklastgood)?current_time-ees->clocklastgood:0;
62 	bug->values[2] = (u_long)ees->status;
63 	bug->values[3] = (u_long)ees->lastevent;
64 	bug->values[4] = (u_long)ees->reason;
65 	bug->values[5] = (u_long)ees->nsamples;
66 	bug->values[6] = (u_long)ees->codestate;
67 	bug->values[7] = (u_long)ees->day;
68 	bug->values[8] = (u_long)ees->hour;
69 	bug->values[9] = (u_long)ees->minute;
70 	bug->values[10] = (u_long)ees->second;
71 	bug->values[11] = (u_long)ees->tz;
72 	bug->values[12] = ees->yearstart;
73 	bug->values[13] = (ees->leaphold > current_time) ?
74 				ees->leaphold - current_time : 0;
75 	bug->values[14] = inherent_delay[unit].l_uf;
76 	bug->values[15] = offset_fudge[unit].l_uf;
77 
78 	bug->times[0] = ees->reftime;
79 	bug->times[1] = ees->arrvtime;
80 	bug->times[2] = ees->lastsampletime;
81 	bug->times[3] = ees->offset;
82 	bug->times[4] = ees->lowoffset;
83 	bug->times[5] = ees->highoffset;
84 	bug->times[6] = inherent_delay[unit];
85 	bug->times[8] = os_delay[unit];
86 	bug->times[7] = fudgefactor[unit];
87 	bug->times[9] = offset_fudge[unit];
88 	bug->times[10]= ees->yearstart, 0;
89 	*/
90 
91 /* This should support the use of an EES M201 receiver with RS232
92  * output (modified to transmit time once per second).
93  *
94  * For the format of the message sent by the clock, see the EESM_
95  * definitions below.
96  *
97  * It appears to run free for an integral number of minutes, until the error
98  * reaches 4mS, at which point it steps at second = 01.
99  * It appears that sometimes it steps 4mS (say at 7 min interval),
100  * then the next minute it decides that it was an error, so steps back.
101  * On the next minute it steps forward again :-(
102  * This is typically 16.5uS/S then 3975uS at the 4min re-sync,
103  * or 9.5uS/S then 3990.5uS at a 7min re-sync,
104  * at which point it may lose the "00" second time stamp.
105  * I assume that the most accurate time is just AFTER the re-sync.
106  * Hence remember the last cycle interval,
107  *
108  * Can run in any one of:
109  *
110  *	PPSCD	PPS signal sets CD which interupts, and grabs the current TOD
111  *	(sun)		*in the interupt code*, so as to avoid problems with
112  *			the STREAMS scheduling.
113  *
114  * It appears that it goes 16.5 uS slow each second, then every 4 mins it
115  * generates no "00" second tick, and gains 3975 uS. Ho Hum ! (93/2/7)
116  */
117 
118 /* Definitions */
119 #ifndef	MAXUNITS
120 #define	MAXUNITS	4	/* maximum number of EES units permitted */
121 #endif
122 
123 #ifndef	EES232
124 #define	EES232	"/dev/ees%d"	/* Device to open to read the data */
125 #endif
126 
127 /* Other constant stuff */
128 #ifndef	EESPRECISION
129 #define	EESPRECISION	(-10)		/* what the heck - 2**-10 = 1ms */
130 #endif
131 #ifndef	EESREFID
132 #define	EESREFID	"MSF\0"		/* String to identify the clock */
133 #endif
134 #ifndef	EESHSREFID
135 #define	EESHSREFID	(0x7f7f0000 | ((REFCLK_MSF_EES) << 8)) /* Numeric refid */
136 #endif
137 
138 /* Description of clock */
139 #define	EESDESCRIPTION		"EES M201 MSF Receiver"
140 
141 /* Speed we run the clock port at. If this is changed the UARTDELAY
142  * value should be recomputed to suit.
143  */
144 #ifndef	SPEED232
145 #define	SPEED232	B9600	/* 9600 baud */
146 #endif
147 
148 /* What is the inherent delay for this mode of working, i.e. when is the
149  * data time stamped.
150  */
151 #define	SAFETY_SHIFT	10	/* Split the shift to avoid overflow */
152 #define	BITS_TO_L_FP(bits, baud) \
153 (((((bits)*2 +1) << (FRACTION_PREC-SAFETY_SHIFT)) / (2*baud)) << SAFETY_SHIFT)
154 #define	INH_DELAY_CBREAK	BITS_TO_L_FP(119, 9600)
155 #define	INH_DELAY_PPS		BITS_TO_L_FP(  0, 9600)
156 
157 #ifndef	STREAM_PP1
158 #define	STREAM_PP1	"ppsclocd\0<-- patch space for module name1 -->"
159 #endif
160 #ifndef	STREAM_PP2
161 #define	STREAM_PP2	"ppsclock\0<-- patch space for module name2 -->"
162 #endif
163 
164      /* Offsets of the bytes of the serial line code.  The clock gives
165  * local time with a GMT/BST indication. The EESM_ definitions
166  * give offsets into ees->lastcode.
167  */
168 #define EESM_CSEC	 0	/* centiseconds - always zero in our clock  */
169 #define EESM_SEC	 1	/* seconds in BCD			    */
170 #define EESM_MIN	 2	/* minutes in BCD			    */
171 #define EESM_HOUR	 3	/* hours in BCD				    */
172 #define EESM_DAYWK	 4	/* day of week (Sun = 0 etc)		    */
173 #define EESM_DAY	 5	/* day of month in BCD			    */
174 #define EESM_MON	 6	/* month in BCD				    */
175 #define EESM_YEAR	 7	/* year MOD 100 in BCD			    */
176 #define EESM_LEAP	 8	/* 0x0f if leap year, otherwise zero        */
177 #define EESM_BST	 9	/* 0x03 if BST, 0x00 if GMT		    */
178 #define EESM_MSFOK	10	/* 0x3f if radio good, otherwise zero	    */
179 				/* followed by a frame alignment byte (0xff) /
180 				/  which is not put into the lastcode buffer*/
181 
182 /* Length of the serial time code, in characters.  The first length
183  * is less the frame alignment byte.
184  */
185 #define	LENEESPRT	(EESM_MSFOK+1)
186 #define	LENEESCODE	(LENEESPRT+1)
187 
188      /* Code state. */
189 #define	EESCS_WAIT	0       /* waiting for start of timecode */
190 #define	EESCS_GOTSOME	1	/* have an incomplete time code buffered */
191 
192      /* Default fudge factor and character to receive */
193 #define	DEFFUDGETIME	0	/* Default user supplied fudge factor */
194 #ifndef	DEFOSTIME
195 #define	DEFOSTIME	0	/* Default OS delay -- passed by Make ? */
196 #endif
197 #define	DEFINHTIME	INH_DELAY_PPS /* inherent delay due to sample point*/
198 
199      /* Limits on things.  Reduce the number of samples to SAMPLEREDUCE by median
200  * elimination.  If we're running with an accurate clock, chose the BESTSAMPLE
201  * as the estimated offset, otherwise average the remainder.
202  */
203 #define	FULLSHIFT	6			/* NCODES root 2 */
204 #define NCODES		(1<< FULLSHIFT)		/* 64 */
205 #define	REDUCESHIFT	(FULLSHIFT -1)		/* SAMPLEREDUCE root 2 */
206 
207      /* Towards the high ( Why ?) end of half */
208 #define	BESTSAMPLE	((samplereduce * 3) /4)	/* 24 */
209 
210      /* Leap hold time.  After a leap second the clock will no longer be
211  * reliable until it resynchronizes.  Hope 40 minutes is enough. */
212 #define	EESLEAPHOLD	(40 * 60)
213 
214 #define	EES_STEP_F	(1 << 24) /* the receiver steps in units of about 4ms */
215 #define	EES_STEP_F_GRACE (EES_STEP_F/8) /*Allow for slop of 1/8 which is .5ms*/
216 #define	EES_STEP_NOTE	(1 << 21)/* Log any unexpected jumps, say .5 ms .... */
217 #define	EES_STEP_NOTES	50	/* Only do a limited number */
218 #define	MAX_STEP	16	/* Max number of steps to remember */
219 
220      /* debug is a bit mask of debugging that is wanted */
221 #define	DB_SYSLOG_SMPLI		0x0001
222 #define	DB_SYSLOG_SMPLE		0x0002
223 #define	DB_SYSLOG_SMTHI		0x0004
224 #define	DB_SYSLOG_NSMTHE	0x0008
225 #define	DB_SYSLOG_NSMTHI	0x0010
226 #define	DB_SYSLOG_SMTHE		0x0020
227 #define	DB_PRINT_EV		0x0040
228 #define	DB_PRINT_CDT		0x0080
229 #define	DB_PRINT_CDTC		0x0100
230 #define	DB_SYSLOG_KEEPD		0x0800
231 #define	DB_SYSLOG_KEEPE		0x1000
232 #define	DB_LOG_DELTAS		0x2000
233 #define	DB_PRINT_DELTAS		0x4000
234 #define	DB_LOG_AWAITMORE	0x8000
235 #define	DB_LOG_SAMPLES		0x10000
236 #define	DB_NO_PPS		0x20000
237 #define	DB_INC_PPS		0x40000
238 #define	DB_DUMP_DELTAS		0x80000
239 
240      struct eesunit {			/* EES unit control structure. */
241 	     struct peer *peer;		/* associated peer structure */
242 	     struct refclockio io;		/* given to the I/O handler */
243 	     l_fp	reftime;		/* reference time */
244 	     l_fp	lastsampletime;		/* time as in txt from last EES msg */
245 	     l_fp	arrvtime;		/* Time at which pkt arrived */
246 	     l_fp	codeoffsets[NCODES];	/* the time of arrival of 232 codes */
247 	     l_fp	offset;			/* chosen offset        (for clkbug) */
248 	     l_fp	lowoffset;		/* lowest sample offset (for clkbug) */
249 	     l_fp	highoffset;		/* highest   "     "    (for clkbug) */
250 	     char	lastcode[LENEESCODE+6];	/* last time code we received */
251 	     u_long	lasttime;		/* last time clock heard from */
252 	     u_long	clocklastgood;		/* last time good radio seen */
253 	     u_char	lencode;		/* length of code in buffer */
254 	     u_char	nsamples;		/* number of samples we've collected */
255 	     u_char	codestate;		/* state of 232 code reception */
256 	     u_char	unit;			/* unit number for this guy */
257 	     u_char	status;			/* clock status */
258 	     u_char	lastevent;		/* last clock event */
259 	     u_char	reason;			/* reason for last abort */
260 	     u_char	hour;			/* hour of day */
261 	     u_char	minute;			/* minute of hour */
262 	     u_char	second;			/* seconds of minute */
263 	     char	tz;			/* timezone from clock */
264 	     u_char	ttytype;		/* method used */
265 	     u_char	dump_vals;		/* Should clock values be dumped */
266 	     u_char	usealldata;		/* Use ALL samples */
267 	     u_short	day;			/* day of year from last code */
268 	     u_long	yearstart;		/* start of current year */
269 	     u_long	leaphold;		/* time of leap hold expiry */
270 	     u_long	badformat;		/* number of bad format codes */
271 	     u_long	baddata;		/* number of invalid time codes */
272 	     u_long	timestarted;		/* time we started this */
273 	     long	last_pps_no;		/* The serial # of the last PPS */
274 	     char	fix_pending;		/* Is a "sync to time" pending ? */
275 	     /* Fine tuning - compensate for 4 mS ramping .... */
276 	     l_fp	last_l;			/* last time stamp */
277 	     u_char	last_steps[MAX_STEP];	/* Most recent n steps */
278 	     int	best_av_step;		/* Best guess at average step */
279 	     char	best_av_step_count;	/* # of steps over used above */
280 	     char	this_step;		/* Current pos in buffer */
281 	     int	last_step_late;		/* How late the last step was (0-59) */
282 	     long	jump_fsecs;		/* # of fractions of a sec last jump */
283 	     u_long	last_step;		/* time of last step */
284 	     int	last_step_secs;		/* Number of seconds in last step */
285 	     int	using_ramp;		/* 1 -> noemal, -1 -> over stepped */
286      };
287 #define	last_sec	last_l.l_ui
288 #define	last_sfsec	last_l.l_f
289 #define	this_uisec	((ees->arrvtime).l_ui)
290 #define	this_sfsec	((ees->arrvtime).l_f)
291 #define	msec(x)		((x) / (1<<22))
292 #define	LAST_STEPS	(sizeof ees->last_steps / sizeof ees->last_steps[0])
293 #define	subms(x)	((((((x < 0) ? (-(x)) : (x)) % (1<<22))/2) * 625) / (1<<(22 -5)))
294 
295 /* Bitmask for what methods to try to use -- currently only PPS enabled */
296 #define	T_CBREAK	1
297 #define	T_PPS		8
298 /* macros to test above */
299 #define	is_cbreak(x)	((x)->ttytype & T_CBREAK)
300 #define	is_pps(x)	((x)->ttytype & T_PPS)
301 #define	is_any(x)	((x)->ttytype)
302 
303 #define	CODEREASON	20	/* reason codes */
304 
305 /* Data space for the unit structures.  Note that we allocate these on
306  * the fly, but never give them back. */
307 static struct eesunit *eesunits[MAXUNITS];
308 static u_char unitinuse[MAXUNITS];
309 
310 /* Keep the fudge factors separately so they can be set even
311  * when no clock is configured. */
312 static l_fp inherent_delay[MAXUNITS];		/* when time stamp is taken */
313 static l_fp fudgefactor[MAXUNITS];		/* fudgetime1 */
314 static l_fp os_delay[MAXUNITS];			/* fudgetime2 */
315 static l_fp offset_fudge[MAXUNITS];		/* Sum of above */
316 static u_char stratumtouse[MAXUNITS];
317 static u_char sloppyclockflag[MAXUNITS];
318 
319 static int deltas[60];
320 
321 static l_fp acceptable_slop; /* = { 0, 1 << (FRACTION_PREC -2) }; */
322 static l_fp onesec; /* = { 1, 0 }; */
323 
324 #ifndef	DUMP_BUF_SIZE	/* Size of buffer to be used by dump_buf */
325 #define	DUMP_BUF_SIZE	10112
326 #endif
327 
328 /* ees_reset - reset the count back to zero */
329 #define	ees_reset(ees) (ees)->nsamples = 0; \
330 (ees)->codestate = EESCS_WAIT
331 
332 /* ees_event - record and report an event */
333 #define	ees_event(ees, evcode) if ((ees)->status != (u_char)(evcode)) \
334 ees_report_event((ees), (evcode))
335 
336      /* Find the precision of the system clock by reading it */
337 #define	USECS	1000000
338 #define	MINSTEP	5	/* some systems increment uS on each call */
339 #define	MAXLOOPS (USECS/9)
340 
341 /*
342  * Function prototypes
343  */
344 
345 static	int	msfees_start	P((int unit, struct peer *peer));
346 static	void	msfees_shutdown	P((int unit, struct peer *peer));
347 static	void	msfees_poll	P((int unit, struct peer *peer));
348 static	void	msfees_init	P((void));
349 static	void	dump_buf	P((l_fp *coffs, int from, int to, char *text));
350 static	void	ees_report_event P((struct eesunit *ees, int code));
351 static	void	ees_receive	P((struct recvbuf *rbufp));
352 static	void	ees_process	P((struct eesunit *ees));
353 static	int	offcompare	P((const void *va, const void *vb));
354 
355 
356 /*
357  * Transfer vector
358  */
359 struct	refclock refclock_msfees = {
360 	msfees_start,		/* start up driver */
361 	msfees_shutdown,	/* shut down driver */
362 	msfees_poll,		/* transmit poll message */
363 	noentry,		/* not used */
364 	msfees_init,		/* initialize driver */
365 	noentry,		/* not used */
366 	NOFLAGS			/* not used */
367 };
368 
369 
370 static void
371 dump_buf(
372 	l_fp *coffs,
373 	int from,
374 	int to,
375 	char *text
376 	)
377 {
378 	char buff[DUMP_BUF_SIZE + 80];
379 	int i;
380 	register char *ptr = buff;
381 
382 	snprintf(buff, sizeof(buff), text);
383 	for (i = from; i < to; i++) {
384 		ptr += strlen(ptr);
385 		if ((ptr - buff) > DUMP_BUF_SIZE) {
386 			msyslog(LOG_DEBUG, "D: %s", buff);
387 			ptr = buff;
388 		}
389 		snprintf(ptr, sizeof(buff) - (ptr - buff),
390 			 " %06d", ((int)coffs[i].l_f) / 4295);
391 	}
392 	msyslog(LOG_DEBUG, "D: %s", buff);
393 }
394 
395 /* msfees_init - initialize internal ees driver data */
396 static void
397 msfees_init(void)
398 {
399 	register int i;
400 	/* Just zero the data arrays */
401 	memset((char *)eesunits, 0, sizeof eesunits);
402 	memset((char *)unitinuse, 0, sizeof unitinuse);
403 
404 	acceptable_slop.l_ui = 0;
405 	acceptable_slop.l_uf = 1 << (FRACTION_PREC -2);
406 
407 	onesec.l_ui = 1;
408 	onesec.l_uf = 0;
409 
410 	/* Initialize fudge factors to default. */
411 	for (i = 0; i < MAXUNITS; i++) {
412 		fudgefactor[i].l_ui	= 0;
413 		fudgefactor[i].l_uf	= DEFFUDGETIME;
414 		os_delay[i].l_ui	= 0;
415 		os_delay[i].l_uf	= DEFOSTIME;
416 		inherent_delay[i].l_ui	= 0;
417 		inherent_delay[i].l_uf	= DEFINHTIME;
418 		offset_fudge[i]		= os_delay[i];
419 		L_ADD(&offset_fudge[i], &fudgefactor[i]);
420 		L_ADD(&offset_fudge[i], &inherent_delay[i]);
421 		stratumtouse[i]		= 0;
422 		sloppyclockflag[i]	= 0;
423 	}
424 }
425 
426 
427 /* msfees_start - open the EES devices and initialize data for processing */
428 static int
429 msfees_start(
430 	int unit,
431 	struct peer *peer
432 	)
433 {
434 	register struct eesunit *ees;
435 	register int i;
436 	int fd232 = -1;
437 	char eesdev[20];
438 	struct termios ttyb, *ttyp;
439 	struct refclockproc *pp;
440 	pp = peer->procptr;
441 
442 	if (unit >= MAXUNITS) {
443 		msyslog(LOG_ERR, "ees clock: unit number %d invalid (max %d)",
444 			unit, MAXUNITS-1);
445 		return 0;
446 	}
447 	if (unitinuse[unit]) {
448 		msyslog(LOG_ERR, "ees clock: unit number %d in use", unit);
449 		return 0;
450 	}
451 
452 	/* Unit okay, attempt to open the devices.  We do them both at
453 	 * once to make sure we can */
454 	snprintf(eesdev, sizeof(eesdev), EES232, unit);
455 
456 	fd232 = open(eesdev, O_RDWR, 0777);
457 	if (fd232 == -1) {
458 		msyslog(LOG_ERR, "ees clock: open of %s failed: %m", eesdev);
459 		return 0;
460 	}
461 
462 #ifdef	TIOCEXCL
463 	/* Set for exclusive use */
464 	if (ioctl(fd232, TIOCEXCL, (char *)0) < 0) {
465 		msyslog(LOG_ERR, "ees clock: ioctl(%s, TIOCEXCL): %m", eesdev);
466 		goto screwed;
467 	}
468 #endif
469 
470 	/* STRIPPED DOWN VERSION: Only PPS CD is supported at the moment */
471 
472 	/* Set port characteristics.  If we don't have a STREAMS module or
473 	 * a clock line discipline, cooked mode is just usable, even though it
474 	 * strips the top bit.  The only EES byte which uses the top
475 	 * bit is the year, and we don't use that anyway. If we do
476 	 * have the line discipline, we choose raw mode, and the
477 	 * line discipline code will block up the messages.
478 	 */
479 
480 	/* STIPPED DOWN VERSION: Only PPS CD is supported at the moment */
481 
482 	ttyp = &ttyb;
483 	if (tcgetattr(fd232, ttyp) < 0) {
484 		msyslog(LOG_ERR, "msfees_start: tcgetattr(%s): %m", eesdev);
485 		goto screwed;
486 	}
487 
488 	ttyp->c_iflag = IGNBRK|IGNPAR|ICRNL;
489 	ttyp->c_cflag = SPEED232|CS8|CLOCAL|CREAD;
490 	ttyp->c_oflag = 0;
491 	ttyp->c_lflag = ICANON;
492 	ttyp->c_cc[VERASE] = ttyp->c_cc[VKILL] = '\0';
493 	if (tcsetattr(fd232, TCSANOW, ttyp) < 0) {
494 		msyslog(LOG_ERR, "msfees_start: tcsetattr(%s): %m", eesdev);
495 		goto screwed;
496 	}
497 
498 	if (tcflush(fd232, TCIOFLUSH) < 0) {
499 		msyslog(LOG_ERR, "msfees_start: tcflush(%s): %m", eesdev);
500 		goto screwed;
501 	}
502 
503 	inherent_delay[unit].l_uf = INH_DELAY_PPS;
504 
505 	/* offset fudge (how *late* the timestamp is) = fudge + os delays */
506 	offset_fudge[unit] = os_delay[unit];
507 	L_ADD(&offset_fudge[unit], &fudgefactor[unit]);
508 	L_ADD(&offset_fudge[unit], &inherent_delay[unit]);
509 
510 	/* Looks like this might succeed.  Find memory for the structure.
511 	 * Look to see if there are any unused ones, if not we malloc() one.
512 	 */
513 	if (eesunits[unit] != 0) /* The one we want is okay */
514 	    ees = eesunits[unit];
515 	else {
516 		/* Look for an unused, but allocated struct */
517 		for (i = 0; i < MAXUNITS; i++) {
518 			if (!unitinuse[i] && eesunits[i] != 0)
519 			    break;
520 		}
521 
522 		if (i < MAXUNITS) {	/* Reclaim this one */
523 			ees = eesunits[i];
524 			eesunits[i] = 0;
525 		}			/* no spare -- make a new one */
526 		else ees = (struct eesunit *) emalloc(sizeof(struct eesunit));
527 	}
528 	memset((char *)ees, 0, sizeof(struct eesunit));
529 	eesunits[unit] = ees;
530 
531 	/* Set up the structures */
532 	ees->peer	= peer;
533 	ees->unit	= (u_char)unit;
534 	ees->timestarted= current_time;
535 	ees->ttytype	= 0;
536 	ees->io.clock_recv= ees_receive;
537 	ees->io.srcclock= peer;
538 	ees->io.datalen	= 0;
539 	ees->io.fd	= fd232;
540 
541 	/* Okay.  Push one of the two (linked into the kernel, or dynamically
542 	 * loaded) STREAMS module, and give it to the I/O code to start
543 	 * receiving stuff.
544 	 */
545 
546 #ifdef STREAM
547 	{
548 		int rc1;
549 		/* Pop any existing onews first ... */
550 		while (ioctl(fd232, I_POP, 0 ) >= 0) ;
551 
552 		/* Now try pushing either of the possible modules */
553 		if ((rc1=ioctl(fd232, I_PUSH, STREAM_PP1)) < 0 &&
554 		    ioctl(fd232, I_PUSH, STREAM_PP2) < 0) {
555 			msyslog(LOG_ERR,
556 				"ees clock: Push of `%s' and `%s' to %s failed %m",
557 				STREAM_PP1, STREAM_PP2, eesdev);
558 			goto screwed;
559 		}
560 		else {
561 			NLOG(NLOG_CLOCKINFO) /* conditional if clause for conditional syslog */
562 				msyslog(LOG_INFO, "I: ees clock: PUSHed %s on %s",
563 					(rc1 >= 0) ? STREAM_PP1 : STREAM_PP2, eesdev);
564 			ees->ttytype |= T_PPS;
565 		}
566 	}
567 #endif /* STREAM */
568 
569 	/* Add the clock */
570 	if (!io_addclock(&ees->io)) {
571 		/* Oh shit.  Just close and return. */
572 		msyslog(LOG_ERR, "ees clock: io_addclock(%s): %m", eesdev);
573 		goto screwed;
574 	}
575 
576 
577 	/* All done.  Initialize a few random peer variables, then
578 	 * return success. */
579 	peer->precision	= sys_precision;
580 	peer->stratum	= stratumtouse[unit];
581 	if (stratumtouse[unit] <= 1) {
582 		memcpy((char *)&pp->refid, EESREFID, 4);
583 		if (unit > 0 && unit < 10)
584 		    ((char *)&pp->refid)[3] = '0' + unit;
585 	} else {
586 		peer->refid = htonl(EESHSREFID);
587 	}
588 	unitinuse[unit] = 1;
589 	pp->unitptr = &eesunits[unit];
590 	pp->clockdesc = EESDESCRIPTION;
591 	msyslog(LOG_ERR, "ees clock: %s OK on %d", eesdev, unit);
592 	return (1);
593 
594     screwed:
595 	if (fd232 != -1)
596 	    (void) close(fd232);
597 	return (0);
598 }
599 
600 
601 /* msfees_shutdown - shut down a EES clock */
602 static void
603 msfees_shutdown(
604 	int unit,
605 	struct peer *peer
606 	)
607 {
608 	register struct eesunit *ees;
609 
610 	if (unit >= MAXUNITS) {
611 		msyslog(LOG_ERR,
612 			"ees clock: INTERNAL ERROR, unit number %d invalid (max %d)",
613 			unit, MAXUNITS);
614 		return;
615 	}
616 	if (!unitinuse[unit]) {
617 		msyslog(LOG_ERR,
618 			"ees clock: INTERNAL ERROR, unit number %d not in use", unit);
619 		return;
620 	}
621 
622 	/* Tell the I/O module to turn us off.  We're history. */
623 	ees = eesunits[unit];
624 	io_closeclock(&ees->io);
625 	unitinuse[unit] = 0;
626 }
627 
628 
629 /* ees_report_event - note the occurance of an event */
630 static void
631 ees_report_event(
632 	struct eesunit *ees,
633 	int code
634 	)
635 {
636 	if (ees->status != (u_char)code) {
637 		ees->status = (u_char)code;
638 		if (code != CEVNT_NOMINAL)
639 		    ees->lastevent = (u_char)code;
640 		/* Should report event to trap handler in here.
641 		 * Soon...
642 		 */
643 	}
644 }
645 
646 
647 /* ees_receive - receive data from the serial interface on an EES clock */
648 static void
649 ees_receive(
650 	struct recvbuf *rbufp
651 	)
652 {
653 	register int n_sample;
654 	register int day;
655 	register struct eesunit *ees;
656 	register u_char *dpt;		/* Data PoinTeR: move along ... */
657 	register u_char *dpend;		/* Points just *after* last data char */
658 	register char *cp;
659 	l_fp tmp;
660 	int call_pps_sample = 0;
661 	l_fp pps_arrvstamp;
662 	int	sincelast;
663 	int	pps_step = 0;
664 	int	suspect_4ms_step = 0;
665 	struct ppsclockev ppsclockev;
666 	long *ptr = (long *) &ppsclockev;
667 	int rc;
668 	int request;
669 #ifdef HAVE_CIOGETEV
670 	request = CIOGETEV;
671 #endif
672 #ifdef HAVE_TIOCGPPSEV
673 	request = TIOCGPPSEV;
674 #endif
675 
676 	/* Get the clock this applies to and a pointer to the data */
677 	ees = (struct eesunit *)rbufp->recv_peer->procptr->unitptr;
678 	dpt = (u_char *)&rbufp->recv_space;
679 	dpend = dpt + rbufp->recv_length;
680 	if ((dbg & DB_LOG_AWAITMORE) && (rbufp->recv_length != LENEESCODE))
681 	    printf("[%d] ", rbufp->recv_length);
682 
683 	/* Check out our state and process appropriately */
684 	switch (ees->codestate) {
685 	    case EESCS_WAIT:
686 		/* Set an initial guess at the timestamp as the recv time.
687 		 * If just running in CBREAK mode, we can't improve this.
688 		 * If we have the CLOCK Line Discipline, PPSCD, or sime such,
689 		 * then we will do better later ....
690 		 */
691 		ees->arrvtime = rbufp->recv_time;
692 		ees->codestate = EESCS_GOTSOME;
693 		ees->lencode = 0;
694 		/*FALLSTHROUGH*/
695 
696 	    case EESCS_GOTSOME:
697 		cp = &(ees->lastcode[ees->lencode]);
698 
699 		/* Gobble the bytes until the final (possibly stripped) 0xff */
700 		while (dpt < dpend && (*dpt & 0x7f) != 0x7f) {
701 			*cp++ = (char)*dpt++;
702 			ees->lencode++;
703 			/* Oh dear -- too many bytes .. */
704 			if (ees->lencode > LENEESPRT) {
705 				NLOG(NLOG_CLOCKINFO) /* conditional if clause for conditional syslog */
706 					msyslog(LOG_INFO,
707 						"I: ees clock: %d + %d > %d [%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x]",
708 						ees->lencode, dpend - dpt, LENEESPRT,
709 #define D(x) (ees->lastcode[x])
710 						D(0), D(1), D(2), D(3), D(4), D(5), D(6),
711 						D(7), D(8), D(9), D(10), D(11), D(12));
712 #undef	D
713 				ees->badformat++;
714 				ees->reason = CODEREASON + 1;
715 				ees_event(ees, CEVNT_BADREPLY);
716 				ees_reset(ees);
717 				return;
718 			}
719 		}
720 		/* Gave up because it was end of the buffer, rather than ff */
721 		if (dpt == dpend) {
722 			/* Incomplete.  Wait for more. */
723 			if (dbg & DB_LOG_AWAITMORE)
724 			    msyslog(LOG_INFO,
725 				    "I: ees clock %d: %p == %p: await more",
726 				    ees->unit, dpt, dpend);
727 			return;
728 		}
729 
730 		/* This shouldn't happen ... ! */
731 		if ((*dpt & 0x7f) != 0x7f) {
732 			msyslog(LOG_INFO, "I: ees clock: %0x & 0x7f != 0x7f", *dpt);
733 			ees->badformat++;
734 			ees->reason = CODEREASON + 2;
735 			ees_event(ees, CEVNT_BADREPLY);
736 			ees_reset(ees);
737 			return;
738 		}
739 
740 		/* Skip the 0xff */
741 		dpt++;
742 
743 		/* Finally, got a complete buffer.  Mainline code will
744 		 * continue on. */
745 		cp = ees->lastcode;
746 		break;
747 
748 	    default:
749 		msyslog(LOG_ERR, "ees clock: INTERNAL ERROR: %d state %d",
750 			ees->unit, ees->codestate);
751 		ees->reason = CODEREASON + 5;
752 		ees_event(ees, CEVNT_FAULT);
753 		ees_reset(ees);
754 		return;
755 	}
756 
757 	/* Boy!  After all that crap, the lastcode buffer now contains
758 	 * something we hope will be a valid time code.  Do length
759 	 * checks and sanity checks on constant data.
760 	 */
761 	ees->codestate = EESCS_WAIT;
762 	ees->lasttime = current_time;
763 	if (ees->lencode != LENEESPRT) {
764 		ees->badformat++;
765 		ees->reason = CODEREASON + 6;
766 		ees_event(ees, CEVNT_BADREPLY);
767 		ees_reset(ees);
768 		return;
769 	}
770 
771 	cp = ees->lastcode;
772 
773 	/* Check that centisecond is zero */
774 	if (cp[EESM_CSEC] != 0) {
775 		ees->baddata++;
776 		ees->reason = CODEREASON + 7;
777 		ees_event(ees, CEVNT_BADREPLY);
778 		ees_reset(ees);
779 		return;
780 	}
781 
782 	/* Check flag formats */
783 	if (cp[EESM_LEAP] != 0 && cp[EESM_LEAP] != 0x0f) {
784 		ees->badformat++;
785 		ees->reason = CODEREASON + 8;
786 		ees_event(ees, CEVNT_BADREPLY);
787 		ees_reset(ees);
788 		return;
789 	}
790 
791 	if (cp[EESM_BST] != 0 && cp[EESM_BST] != 0x03) {
792 		ees->badformat++;
793 		ees->reason = CODEREASON + 9;
794 		ees_event(ees, CEVNT_BADREPLY);
795 		ees_reset(ees);
796 		return;
797 	}
798 
799 	if (cp[EESM_MSFOK] != 0 && cp[EESM_MSFOK] != 0x3f) {
800 		ees->badformat++;
801 		ees->reason = CODEREASON + 10;
802 		ees_event(ees, CEVNT_BADREPLY);
803 		ees_reset(ees);
804 		return;
805 	}
806 
807 	/* So far, so good.  Compute day, hours, minutes, seconds,
808 	 * time zone.  Do range checks on these.
809 	 */
810 
811 #define bcdunpack(val)	( (((val)>>4) & 0x0f) * 10 + ((val) & 0x0f) )
812 #define istrue(x)	((x)?1:0)
813 
814 	ees->second  = bcdunpack(cp[EESM_SEC]);  /* second       */
815 	ees->minute  = bcdunpack(cp[EESM_MIN]);  /* minute       */
816 	ees->hour    = bcdunpack(cp[EESM_HOUR]); /* hour         */
817 
818 	day          = bcdunpack(cp[EESM_DAY]);  /* day of month */
819 
820 	switch (bcdunpack(cp[EESM_MON])) {       /* month        */
821 
822 		/*  Add in lengths of all previous months.  Add one more
823 		    if it is a leap year and after February.
824 		*/
825 	    case 12:	day += NOV;			  /*FALLSTHROUGH*/
826 	    case 11:	day += OCT;			  /*FALLSTHROUGH*/
827 	    case 10:	day += SEP;			  /*FALLSTHROUGH*/
828 	    case  9:	day += AUG;			  /*FALLSTHROUGH*/
829 	    case  8:	day += JUL;			  /*FALLSTHROUGH*/
830 	    case  7:	day += JUN;			  /*FALLSTHROUGH*/
831 	    case  6:	day += MAY;			  /*FALLSTHROUGH*/
832 	    case  5:	day += APR;			  /*FALLSTHROUGH*/
833 	    case  4:	day += MAR;			  /*FALLSTHROUGH*/
834 	    case  3:	day += FEB;
835 		if (istrue(cp[EESM_LEAP])) day++; /*FALLSTHROUGH*/
836 	    case  2:	day += JAN;			  /*FALLSTHROUGH*/
837 	    case  1:	break;
838 	    default:	ees->baddata++;
839 		ees->reason = CODEREASON + 11;
840 		ees_event(ees, CEVNT_BADDATE);
841 		ees_reset(ees);
842 		return;
843 	}
844 
845 	ees->day     = day;
846 
847 	/* Get timezone. The clocktime routine wants the number
848 	 * of hours to add to the delivered time to get UT.
849 	 * Currently -1 if BST flag set, 0 otherwise.  This
850 	 * is the place to tweak things if double summer time
851 	 * ever happens.
852 	 */
853 	ees->tz      = istrue(cp[EESM_BST]) ? -1 : 0;
854 
855 	if (ees->day > 366 || ees->day < 1 ||
856 	    ees->hour > 23 || ees->minute > 59 || ees->second > 59) {
857 		ees->baddata++;
858 		ees->reason = CODEREASON + 12;
859 		ees_event(ees, CEVNT_BADDATE);
860 		ees_reset(ees);
861 		return;
862 	}
863 
864 	n_sample = ees->nsamples;
865 
866 	/* Now, compute the reference time value: text -> tmp.l_ui */
867 	if (!clocktime(ees->day, ees->hour, ees->minute, ees->second,
868 		       ees->tz, rbufp->recv_time.l_ui, &ees->yearstart,
869 		       &tmp.l_ui)) {
870 		ees->baddata++;
871 		ees->reason = CODEREASON + 13;
872 		ees_event(ees, CEVNT_BADDATE);
873 		ees_reset(ees);
874 		return;
875 	}
876 	tmp.l_uf = 0;
877 
878 	/*  DON'T use ees->arrvtime -- it may be < reftime */
879 	ees->lastsampletime = tmp;
880 
881 	/* If we are synchronised to the radio, update the reference time.
882 	 * Also keep a note of when clock was last good.
883 	 */
884 	if (istrue(cp[EESM_MSFOK])) {
885 		ees->reftime = tmp;
886 		ees->clocklastgood = current_time;
887 	}
888 
889 
890 	/* Compute the offset.  For the fractional part of the
891 	 * offset we use the expected delay for the message.
892 	 */
893 	ees->codeoffsets[n_sample].l_ui = tmp.l_ui;
894 	ees->codeoffsets[n_sample].l_uf = 0;
895 
896 	/* Number of seconds since the last step */
897 	sincelast = this_uisec - ees->last_step;
898 
899 	memset((char *) &ppsclockev, 0, sizeof ppsclockev);
900 
901 	rc = ioctl(ees->io.fd, request, (char *) &ppsclockev);
902 	if (dbg & DB_PRINT_EV) fprintf(stderr,
903 					 "[%x] CIOGETEV u%d %d (%x %d) gave %d (%d): %08lx %08lx %ld\n",
904 					 DB_PRINT_EV, ees->unit, ees->io.fd, request, is_pps(ees),
905 					 rc, errno, ptr[0], ptr[1], ptr[2]);
906 
907 	/* If we managed to get the time of arrival, process the info */
908 	if (rc >= 0) {
909 		int conv = -1;
910 		pps_step = ppsclockev.serial - ees->last_pps_no;
911 
912 		/* Possible that PPS triggered, but text message didn't */
913 		if (pps_step == 2) msyslog(LOG_ERR, "pps step = 2 @ %02d", ees->second);
914 		if (pps_step == 2 && ees->second == 1) suspect_4ms_step |= 1;
915 		if (pps_step == 2 && ees->second == 2) suspect_4ms_step |= 4;
916 
917 		/* allow for single loss of PPS only */
918 		if (pps_step != 1 && pps_step != 2)
919 		    fprintf(stderr, "PPS step: %d too far off %ld (%d)\n",
920 			    ppsclockev.serial, ees->last_pps_no, pps_step);
921 		else {
922 			pps_arrvstamp = tval_stamp_to_lfp(ppsclockev.tv);
923 			/* if ((ABS(time difference) - 0.25) < 0)
924 			 * then believe it ...
925 			 */
926 			l_fp diff;
927 			diff = pps_arrvstamp;
928 			conv = 0;
929 			L_SUB(&diff, &ees->arrvtime);
930 			if (dbg & DB_PRINT_CDT)
931 			    printf("[%x] Have %lx.%08lx and %lx.%08lx -> %lx.%08lx @ %s",
932 				   DB_PRINT_CDT, (long)ees->arrvtime.l_ui, (long)ees->arrvtime.l_uf,
933 				   (long)pps_arrvstamp.l_ui, (long)pps_arrvstamp.l_uf,
934 				   (long)diff.l_ui, (long)diff.l_uf,
935 				   ctime(&(ppsclockev.tv.tv_sec)));
936 			if (L_ISNEG(&diff)) M_NEG(diff.l_ui, diff.l_uf);
937 			L_SUB(&diff, &acceptable_slop);
938 			if (L_ISNEG(&diff)) {	/* AOK -- pps_sample */
939 				ees->arrvtime = pps_arrvstamp;
940 				conv++;
941 				call_pps_sample++;
942 			}
943 			/* Some loss of some signals around sec = 1 */
944 			else if (ees->second == 1) {
945 				diff = pps_arrvstamp;
946 				L_ADD(&diff, &onesec);
947 				L_SUB(&diff, &ees->arrvtime);
948 				if (L_ISNEG(&diff)) M_NEG(diff.l_ui, diff.l_uf);
949 				L_SUB(&diff, &acceptable_slop);
950 				msyslog(LOG_ERR, "Have sec==1 slip %ds a=%08x-p=%08x -> %x.%08x (u=%d) %s",
951 					pps_arrvstamp.l_ui - ees->arrvtime.l_ui,
952 					pps_arrvstamp.l_uf,
953 					ees->arrvtime.l_uf,
954 					diff.l_ui, diff.l_uf,
955 					(int)ppsclockev.tv.tv_usec,
956 					ctime(&(ppsclockev.tv.tv_sec)));
957 				if (L_ISNEG(&diff)) {	/* AOK -- pps_sample */
958 					suspect_4ms_step |= 2;
959 					ees->arrvtime = pps_arrvstamp;
960 					L_ADD(&ees->arrvtime, &onesec);
961 					conv++;
962 					call_pps_sample++;
963 				}
964 			}
965 		}
966 		ees->last_pps_no = ppsclockev.serial;
967 		if (dbg & DB_PRINT_CDTC)
968 		    printf(
969 			    "[%x] %08lx %08lx %d u%d (%d %d)\n",
970 			    DB_PRINT_CDTC, (long)pps_arrvstamp.l_ui,
971 			    (long)pps_arrvstamp.l_uf, conv, ees->unit,
972 			    call_pps_sample, pps_step);
973 	}
974 
975 	/* See if there has been a 4ms jump at a minute boundry */
976 	{	l_fp	delta;
977 #define	delta_isec	delta.l_ui
978 #define	delta_ssec	delta.l_i
979 #define	delta_sfsec	delta.l_f
980 	long	delta_f_abs;
981 
982 	delta.l_i = ees->arrvtime.l_i;
983 	delta.l_f = ees->arrvtime.l_f;
984 
985 	L_SUB(&delta, &ees->last_l);
986 	delta_f_abs = delta_sfsec;
987 	if (delta_f_abs < 0) delta_f_abs = -delta_f_abs;
988 
989 	/* Dump the deltas each minute */
990 	if (dbg & DB_DUMP_DELTAS)
991 	{
992 		if (/*0 <= ees->second && */
993 		    ees->second < COUNTOF(deltas))
994 			deltas[ees->second] = delta_sfsec;
995 	/* Dump on second 1, as second 0 sometimes missed */
996 	if (ees->second == 1) {
997 		char text[16 * COUNTOF(deltas)];
998 		char *cptr=text;
999 		int i;
1000 		for (i = 0; i < COUNTOF(deltas); i++) {
1001 			snprintf(cptr, sizeof(text) / COUNTOF(deltas),
1002 				" %d.%04d", msec(deltas[i]),
1003 				subms(deltas[i]));
1004 			cptr += strlen(cptr);
1005 		}
1006 		msyslog(LOG_ERR, "Deltas: %d.%04d<->%d.%04d: %s",
1007 			msec(EES_STEP_F - EES_STEP_F_GRACE), subms(EES_STEP_F - EES_STEP_F_GRACE),
1008 			msec(EES_STEP_F + EES_STEP_F_GRACE), subms(EES_STEP_F + EES_STEP_F_GRACE),
1009 			text+1);
1010 		for (i=0; i<((sizeof deltas) / (sizeof deltas[0])); i++) deltas[i] = 0;
1011 	}
1012 	}
1013 
1014 	/* Lets see if we have a 4 mS step at a minute boundaary */
1015 	if (	((EES_STEP_F - EES_STEP_F_GRACE) < delta_f_abs) &&
1016 		(delta_f_abs < (EES_STEP_F + EES_STEP_F_GRACE)) &&
1017 		(ees->second == 0 || ees->second == 1 || ees->second == 2) &&
1018 		(sincelast < 0 || sincelast > 122)
1019 		) {	/* 4ms jump at min boundry */
1020 		int old_sincelast;
1021 		int count=0;
1022 		int sum = 0;
1023 		/* Yes -- so compute the ramp time */
1024 		if (ees->last_step == 0) sincelast = 0;
1025 		old_sincelast = sincelast;
1026 
1027 		/* First time in, just set "ees->last_step" */
1028 		if(ees->last_step) {
1029 			int other_step = 0;
1030 			int third_step = 0;
1031 			int this_step = (sincelast + (60 /2)) / 60;
1032 			int p_step = ees->this_step;
1033 			int p;
1034 			ees->last_steps[p_step] = this_step;
1035 			p= p_step;
1036 			p_step++;
1037 			if (p_step >= LAST_STEPS) p_step = 0;
1038 			ees->this_step = p_step;
1039 				/* Find the "average" interval */
1040 			while (p != p_step) {
1041 				int this = ees->last_steps[p];
1042 				if (this == 0) break;
1043 				if (this != this_step) {
1044 					if (other_step == 0 && (
1045 						this== (this_step +2) ||
1046 						this== (this_step -2) ||
1047 						this== (this_step +1) ||
1048 						this== (this_step -1)))
1049 					    other_step = this;
1050 					if (other_step != this) {
1051 						int idelta = (this_step - other_step);
1052 						if (idelta < 0) idelta = - idelta;
1053 						if (third_step == 0 && (
1054 							(idelta == 1) ? (
1055 								this == (other_step +1) ||
1056 								this == (other_step -1) ||
1057 								this == (this_step +1) ||
1058 								this == (this_step -1))
1059 							:
1060 							(
1061 								this == (this_step + other_step)/2
1062 								)
1063 							)) third_step = this;
1064 						if (third_step != this) break;
1065 					}
1066 				}
1067 				sum += this;
1068 				p--;
1069 				if (p < 0) p += LAST_STEPS;
1070 				count++;
1071 			}
1072 			msyslog(LOG_ERR, "MSF%d: %d: This=%d (%d), other=%d/%d, sum=%d, count=%d, pps_step=%d, suspect=%x", ees->unit, p, ees->last_steps[p], this_step, other_step, third_step, sum, count, pps_step, suspect_4ms_step);
1073 			if (count != 0) sum = ((sum * 60) + (count /2)) / count;
1074 #define	SV(x) (ees->last_steps[(x + p_step) % LAST_STEPS])
1075 			msyslog(LOG_ERR, "MSF%d: %x steps %d: %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d",
1076 				ees->unit, suspect_4ms_step, p_step, SV(0), SV(1), SV(2), SV(3), SV(4), SV(5), SV(6),
1077 				SV(7), SV(8), SV(9), SV(10), SV(11), SV(12), SV(13), SV(14), SV(15));
1078 			printf("MSF%d: steps %d: %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d\n",
1079 			       ees->unit, p_step, SV(0), SV(1), SV(2), SV(3), SV(4), SV(5), SV(6),
1080 			       SV(7), SV(8), SV(9), SV(10), SV(11), SV(12), SV(13), SV(14), SV(15));
1081 #undef SV
1082 			ees->jump_fsecs = delta_sfsec;
1083 			ees->using_ramp = 1;
1084 			if (sincelast > 170)
1085 			    ees->last_step_late += sincelast - ((sum) ? sum : ees->last_step_secs);
1086 			else ees->last_step_late = 30;
1087 			if (ees->last_step_late < -60 || ees->last_step_late > 120) ees->last_step_late = 30;
1088 			if (ees->last_step_late < 0) ees->last_step_late = 0;
1089 			if (ees->last_step_late >= 60) ees->last_step_late = 59;
1090 			sincelast = 0;
1091 		}
1092 		else {	/* First time in -- just save info */
1093 			ees->last_step_late = 30;
1094 			ees->jump_fsecs = delta_sfsec;
1095 			ees->using_ramp = 1;
1096 			sum = 4 * 60;
1097 		}
1098 		ees->last_step = this_uisec;
1099 		printf("MSF%d: d=%3ld.%04ld@%d :%d:%d:$%d:%d:%d\n",
1100 		       ees->unit, (long)msec(delta_sfsec), (long)subms(delta_sfsec),
1101 		       ees->second, old_sincelast, ees->last_step_late, count, sum,
1102 		       ees->last_step_secs);
1103 		msyslog(LOG_ERR, "MSF%d: d=%3d.%04d@%d :%d:%d:%d:%d:%d",
1104 			ees->unit, msec(delta_sfsec), subms(delta_sfsec), ees->second,
1105 			old_sincelast, ees->last_step_late, count, sum, ees->last_step_secs);
1106 		if (sum) ees->last_step_secs = sum;
1107 	}
1108 	/* OK, so not a 4ms step at a minute boundry */
1109 	else {
1110 		if (suspect_4ms_step) msyslog(LOG_ERR,
1111 					      "MSF%d: suspect = %x, but delta of %d.%04d [%d.%04d<%d.%04d<%d.%04d: %d %d]",
1112 					      ees->unit, suspect_4ms_step, msec(delta_sfsec), subms(delta_sfsec),
1113 					      msec(EES_STEP_F - EES_STEP_F_GRACE),
1114 					      subms(EES_STEP_F - EES_STEP_F_GRACE),
1115 					      (int)msec(delta_f_abs),
1116 					      (int)subms(delta_f_abs),
1117 					      msec(EES_STEP_F + EES_STEP_F_GRACE),
1118 					      subms(EES_STEP_F + EES_STEP_F_GRACE),
1119 					      ees->second,
1120 					      sincelast);
1121 		if ((delta_f_abs > EES_STEP_NOTE) && ees->last_l.l_i) {
1122 			static int ees_step_notes = EES_STEP_NOTES;
1123 			if (ees_step_notes > 0) {
1124 				ees_step_notes--;
1125 				printf("MSF%d: D=%3ld.%04ld@%02d :%d%s\n",
1126 				       ees->unit, (long)msec(delta_sfsec), (long)subms(delta_sfsec),
1127 				       ees->second, sincelast, ees_step_notes ? "" : " -- NO MORE !");
1128 				msyslog(LOG_ERR, "MSF%d: D=%3d.%04d@%02d :%d%s",
1129 					ees->unit, msec(delta_sfsec), subms(delta_sfsec), ees->second, (ees->last_step) ? sincelast : -1, ees_step_notes ? "" : " -- NO MORE !");
1130 			}
1131 		}
1132 	}
1133 	}
1134 	ees->last_l = ees->arrvtime;
1135 
1136 	/* IF we have found that it's ramping
1137 	 * && it's within twice the expected ramp period
1138 	 * && there is a non zero step size (avoid /0 !)
1139 	 * THEN we twiddle things
1140 	 */
1141 	if (ees->using_ramp &&
1142 	    sincelast < (ees->last_step_secs)*2 &&
1143 	    ees->last_step_secs)
1144 	{	long	sec_of_ramp = sincelast + ees->last_step_late;
1145 	long	fsecs;
1146 	l_fp	inc;
1147 
1148 	/* Ramp time may vary, so may ramp for longer than last time */
1149 	if (sec_of_ramp > (ees->last_step_secs + 120))
1150 	    sec_of_ramp =  ees->last_step_secs;
1151 
1152 	/* sec_of_ramp * ees->jump_fsecs may overflow 2**32 */
1153 	fsecs = sec_of_ramp * (ees->jump_fsecs /  ees->last_step_secs);
1154 
1155 	if (dbg & DB_LOG_DELTAS) msyslog(LOG_ERR,
1156 					   "[%x] MSF%d: %3ld/%03d -> d=%11ld (%d|%ld)",
1157 					   DB_LOG_DELTAS,
1158 					   ees->unit, sec_of_ramp, ees->last_step_secs, fsecs,
1159 					   pps_arrvstamp.l_f, pps_arrvstamp.l_f + fsecs);
1160 	if (dbg & DB_PRINT_DELTAS) printf(
1161 		"MSF%d: %3ld/%03d -> d=%11ld (%ld|%ld)\n",
1162 		ees->unit, sec_of_ramp, ees->last_step_secs, fsecs,
1163 		(long)pps_arrvstamp.l_f, pps_arrvstamp.l_f + fsecs);
1164 
1165 	/* Must sign extend the result */
1166 	inc.l_i = (fsecs < 0) ? -1 : 0;
1167 	inc.l_f = fsecs;
1168 	if (dbg & DB_INC_PPS)
1169 	{	L_SUB(&pps_arrvstamp, &inc);
1170 	L_SUB(&ees->arrvtime, &inc);
1171 	}
1172 	else
1173 	{	L_ADD(&pps_arrvstamp, &inc);
1174 	L_ADD(&ees->arrvtime, &inc);
1175 	}
1176 	}
1177 	else {
1178 		if (dbg & DB_LOG_DELTAS) msyslog(LOG_ERR,
1179 						   "[%x] MSF%d: ees->using_ramp=%d, sincelast=%x / %x, ees->last_step_secs=%x",
1180 						   DB_LOG_DELTAS,
1181 						   ees->unit, ees->using_ramp,
1182 						   sincelast,
1183 						   (ees->last_step_secs)*2,
1184 						   ees->last_step_secs);
1185 		if (dbg & DB_PRINT_DELTAS) printf(
1186 			"[%x] MSF%d: ees->using_ramp=%d, sincelast=%x / %x, ees->last_step_secs=%x\n",
1187 			DB_LOG_DELTAS,
1188 			ees->unit, ees->using_ramp,
1189 			sincelast,
1190 			(ees->last_step_secs)*2,
1191 			ees->last_step_secs);
1192 	}
1193 
1194 	L_SUB(&ees->arrvtime, &offset_fudge[ees->unit]);
1195 	L_SUB(&pps_arrvstamp, &offset_fudge[ees->unit]);
1196 
1197 	if (call_pps_sample && !(dbg & DB_NO_PPS)) {
1198 		/* Sigh -- it expects its args negated */
1199 		L_NEG(&pps_arrvstamp);
1200 		/*
1201 		 * I had to disable this here, since it appears there is no pointer to the
1202 		 * peer structure.
1203 		 *
1204 		 (void) pps_sample(peer, &pps_arrvstamp);
1205 		*/
1206 	}
1207 
1208 	/* Subtract off the local clock time stamp */
1209 	L_SUB(&ees->codeoffsets[n_sample], &ees->arrvtime);
1210 	if (dbg & DB_LOG_SAMPLES) msyslog(LOG_ERR,
1211 					    "MSF%d: [%x] %d (ees: %d %d) (pps: %d %d)%s",
1212 					    ees->unit, DB_LOG_DELTAS, n_sample,
1213 					    ees->codeoffsets[n_sample].l_f,
1214 					    ees->codeoffsets[n_sample].l_f / 4295,
1215 					    pps_arrvstamp.l_f,
1216 					    pps_arrvstamp.l_f /4295,
1217 					    (dbg & DB_NO_PPS) ? " [no PPS]" : "");
1218 
1219 	if (ees->nsamples++ == NCODES-1) ees_process(ees);
1220 
1221 	/* Done! */
1222 }
1223 
1224 
1225 /* offcompare - auxiliary comparison routine for offset sort */
1226 
1227 static int
1228 offcompare(
1229 	const void *va,
1230 	const void *vb
1231 	)
1232 {
1233 	const l_fp *a = (const l_fp *)va;
1234 	const l_fp *b = (const l_fp *)vb;
1235 	return(L_ISGEQ(a, b) ? (L_ISEQU(a, b) ? 0 : 1) : -1);
1236 }
1237 
1238 
1239 /* ees_process - process a pile of samples from the clock */
1240 static void
1241 ees_process(
1242 	struct eesunit *ees
1243 	)
1244 {
1245 	static int last_samples = -1;
1246 	register int i, j;
1247 	register int noff;
1248 	register l_fp *coffs = ees->codeoffsets;
1249 	l_fp offset, tmp;
1250 	double dispersion;	/* ++++ */
1251 	int lostsync, isinsync;
1252 	int samples = ees->nsamples;
1253 	int samplelog = 0;	/* keep "gcc -Wall" happy ! */
1254 	int samplereduce = (samples + 1) / 2;
1255 	double doffset;
1256 
1257 	/* Reset things to zero so we don't have to worry later */
1258 	ees_reset(ees);
1259 
1260 	if (sloppyclockflag[ees->unit]) {
1261 		samplelog = (samples <  2) ? 0 :
1262 			(samples <  5) ? 1 :
1263 			(samples <  9) ? 2 :
1264 			(samples < 17) ? 3 :
1265 			(samples < 33) ? 4 : 5;
1266 		samplereduce = (1 << samplelog);
1267 	}
1268 
1269 	if (samples != last_samples &&
1270 	    ((samples != (last_samples-1)) || samples < 3)) {
1271 		msyslog(LOG_ERR, "Samples=%d (%d), samplereduce=%d ....",
1272 			samples, last_samples, samplereduce);
1273 		last_samples = samples;
1274 	}
1275 	if (samples < 1) return;
1276 
1277 	/* If requested, dump the raw data we have in the buffer */
1278 	if (ees->dump_vals)
1279 		dump_buf(coffs, 0, samples, "Raw  data  is:");
1280 
1281 	/* Sort the offsets, trim off the extremes, then choose one. */
1282 	qsort(coffs, (size_t)samples, sizeof(coffs[0]), offcompare);
1283 
1284 	noff = samples;
1285 	i = 0;
1286 	while ((noff - i) > samplereduce) {
1287 		/* Trim off the sample which is further away
1288 		 * from the median.  We work this out by doubling
1289 		 * the median, subtracting off the end samples, and
1290 		 * looking at the sign of the answer, using the
1291 		 * identity (c-b)-(b-a) == 2*b-a-c
1292 		 */
1293 		tmp = coffs[(noff + i)/2];
1294 		L_ADD(&tmp, &tmp);
1295 		L_SUB(&tmp, &coffs[i]);
1296 		L_SUB(&tmp, &coffs[noff-1]);
1297 		if (L_ISNEG(&tmp)) noff--; else i++;
1298 	}
1299 
1300 	/* If requested, dump the reduce data we have in the buffer */
1301 	if (ees->dump_vals) dump_buf(coffs, i, noff, "Reduced    to:");
1302 
1303 	/* What we do next depends on the setting of the sloppy clock flag.
1304 	 * If it is on, average the remainder to derive our estimate.
1305 	 * Otherwise, just pick a representative value from the remaining stuff
1306 	 */
1307 	if (sloppyclockflag[ees->unit]) {
1308 		offset.l_ui = offset.l_uf = 0;
1309 		for (j = i; j < noff; j++)
1310 		    L_ADD(&offset, &coffs[j]);
1311 		for (j = samplelog; j > 0; j--)
1312 		    L_RSHIFTU(&offset);
1313 	}
1314 	else offset = coffs[i+BESTSAMPLE];
1315 
1316 	/* Compute the dispersion as the difference between the
1317 	 * lowest and highest offsets that remain in the
1318 	 * consideration list.
1319 	 *
1320 	 * It looks like MOST clocks have MOD (max error), so halve it !
1321 	 */
1322 	tmp = coffs[noff-1];
1323 	L_SUB(&tmp, &coffs[i]);
1324 #define	FRACT_SEC(n) ((1 << 30) / (n/2))
1325 	dispersion = LFPTOFP(&tmp) / 2; /* ++++ */
1326 	if (dbg & (DB_SYSLOG_SMPLI | DB_SYSLOG_SMPLE)) msyslog(
1327 		(dbg & DB_SYSLOG_SMPLE) ? LOG_ERR : LOG_INFO,
1328 		"I: [%x] Offset=%06d (%d), disp=%f%s [%d], %d %d=%d %d:%d %d=%d %d",
1329 		dbg & (DB_SYSLOG_SMPLI | DB_SYSLOG_SMPLE),
1330 		offset.l_f / 4295, offset.l_f,
1331 		(dispersion * 1526) / 100,
1332 		(sloppyclockflag[ees->unit]) ? " by averaging" : "",
1333 		FRACT_SEC(10) / 4295,
1334 		(coffs[0].l_f) / 4295,
1335 		i,
1336 		(coffs[i].l_f) / 4295,
1337 		(coffs[samples/2].l_f) / 4295,
1338 		(coffs[i+BESTSAMPLE].l_f) / 4295,
1339 		noff-1,
1340 		(coffs[noff-1].l_f) / 4295,
1341 		(coffs[samples-1].l_f) / 4295);
1342 
1343 	/* Are we playing silly wotsits ?
1344 	 * If we are using all data, see if there is a "small" delta,
1345 	 * and if so, blurr this with 3/4 of the delta from the last value
1346 	 */
1347 	if (ees->usealldata && ees->offset.l_uf) {
1348 		long diff = (long) (ees->offset.l_uf - offset.l_uf);
1349 
1350 		/* is the delta small enough ? */
1351 		if ((- FRACT_SEC(100)) < diff && diff < FRACT_SEC(100)) {
1352 			int samd = (64 * 4) / samples;
1353 			long new;
1354 			if (samd < 2) samd = 2;
1355 			new = offset.l_uf + ((diff * (samd -1)) / samd);
1356 
1357 			/* Sign change -> need to fix up int part */
1358 			if ((new & 0x80000000) !=
1359 			    (((long) offset.l_uf) & 0x80000000))
1360 			{	NLOG(NLOG_CLOCKINFO) /* conditional if clause for conditional syslog */
1361 					msyslog(LOG_INFO, "I: %lx != %lx (%lx %lx), so add %d",
1362 						new & 0x80000000,
1363 						((long) offset.l_uf) & 0x80000000,
1364 						new, (long) offset.l_uf,
1365 						(new < 0) ? -1 : 1);
1366 				offset.l_ui += (new < 0) ? -1 : 1;
1367 			}
1368 			dispersion /= 4;
1369 			if (dbg & (DB_SYSLOG_SMTHI | DB_SYSLOG_SMTHE)) msyslog(
1370 				(dbg & DB_SYSLOG_SMTHE) ? LOG_ERR : LOG_INFO,
1371 				"I: [%x] Smooth data: %ld -> %ld, dispersion now %f",
1372 				dbg & (DB_SYSLOG_SMTHI | DB_SYSLOG_SMTHE),
1373 				((long) offset.l_uf) / 4295, new / 4295,
1374 				(dispersion * 1526) / 100);
1375 			offset.l_uf = (unsigned long) new;
1376 		}
1377 		else if (dbg & (DB_SYSLOG_NSMTHI | DB_SYSLOG_NSMTHE)) msyslog(
1378 			(dbg & DB_SYSLOG_NSMTHE) ? LOG_ERR : LOG_INFO,
1379 			"[%x] No smooth as delta not %d < %ld < %d",
1380 			dbg & (DB_SYSLOG_NSMTHI | DB_SYSLOG_NSMTHE),
1381 			- FRACT_SEC(100), diff, FRACT_SEC(100));
1382 	}
1383 	else if (dbg & (DB_SYSLOG_NSMTHI | DB_SYSLOG_NSMTHE)) msyslog(
1384 		(dbg & DB_SYSLOG_NSMTHE) ? LOG_ERR : LOG_INFO,
1385 		"I: [%x] No smooth as flag=%x and old=%x=%d (%d:%d)",
1386 		dbg & (DB_SYSLOG_NSMTHI | DB_SYSLOG_NSMTHE),
1387 		ees->usealldata, ees->offset.l_f, ees->offset.l_uf,
1388 		offset.l_f, ees->offset.l_f - offset.l_f);
1389 
1390 	/* Collect offset info for debugging info */
1391 	ees->offset = offset;
1392 	ees->lowoffset = coffs[i];
1393 	ees->highoffset = coffs[noff-1];
1394 
1395 	/* Determine synchronization status.  Can be unsync'd either
1396 	 * by a report from the clock or by a leap hold.
1397 	 *
1398 	 * Loss of the radio signal for a short time does not cause
1399 	 * us to go unsynchronised, since the receiver keeps quite
1400 	 * good time on its own.  The spec says 20ms in 4 hours; the
1401 	 * observed drift in our clock (Cambridge) is about a second
1402 	 * a day, but even that keeps us within the inherent tolerance
1403 	 * of the clock for about 15 minutes. Observation shows that
1404 	 * the typical "short" outage is 3 minutes, so to allow us
1405 	 * to ride out those, we will give it 5 minutes.
1406 	 */
1407 	lostsync = current_time - ees->clocklastgood > 300 ? 1 : 0;
1408 	isinsync = (lostsync || ees->leaphold > current_time) ? 0 : 1;
1409 
1410 	/* Done.  Use time of last good, synchronised code as the
1411 	 * reference time, and lastsampletime as the receive time.
1412 	 */
1413 	if (ees->fix_pending) {
1414 		msyslog(LOG_ERR, "MSF%d: fix_pending=%d -> jump %x.%08x",
1415 			ees->fix_pending, ees->unit, offset.l_i, offset.l_f);
1416 		ees->fix_pending = 0;
1417 	}
1418 	LFPTOD(&offset, doffset);
1419 	refclock_receive(ees->peer);
1420 	ees_event(ees, lostsync ? CEVNT_PROP : CEVNT_NOMINAL);
1421 }
1422 
1423 /* msfees_poll - called by the transmit procedure */
1424 static void
1425 msfees_poll(
1426 	int unit,
1427 	struct peer *peer
1428 	)
1429 {
1430 	if (unit >= MAXUNITS) {
1431 		msyslog(LOG_ERR, "ees clock poll: INTERNAL: unit %d invalid",
1432 			unit);
1433 		return;
1434 	}
1435 	if (!unitinuse[unit]) {
1436 		msyslog(LOG_ERR, "ees clock poll: INTERNAL: unit %d unused",
1437 			unit);
1438 		return;
1439 	}
1440 
1441 	ees_process(eesunits[unit]);
1442 
1443 	if ((current_time - eesunits[unit]->lasttime) > 150)
1444 	    ees_event(eesunits[unit], CEVNT_FAULT);
1445 }
1446 
1447 
1448 #else
1449 NONEMPTY_TRANSLATION_UNIT
1450 #endif /* REFCLOCK */
1451