1 /* refclock_ees - clock driver for the EES M201 receiver */ 2 3 #ifdef HAVE_CONFIG_H 4 #include <config.h> 5 #endif 6 7 #if defined(REFCLOCK) && defined(CLOCK_MSFEES) && defined(PPS) 8 9 /* Currently REQUIRES STREAM and PPSCD. CLK and CBREAK modes 10 * were removed as the code was overly hairy, they weren't in use 11 * (hence probably didn't work). Still in RCS file at cl.cam.ac.uk 12 */ 13 14 #include "ntpd.h" 15 #include "ntp_io.h" 16 #include "ntp_refclock.h" 17 #include "ntp_unixtime.h" 18 #include "ntp_calendar.h" 19 20 #include <ctype.h> 21 #if defined(HAVE_BSD_TTYS) 22 #include <sgtty.h> 23 #endif /* HAVE_BSD_TTYS */ 24 #if defined(HAVE_SYSV_TTYS) 25 #include <termio.h> 26 #endif /* HAVE_SYSV_TTYS */ 27 #if defined(HAVE_TERMIOS) 28 #include <termios.h> 29 #endif 30 #if defined(STREAM) 31 #include <stropts.h> 32 #endif 33 34 #ifdef HAVE_SYS_TERMIOS_H 35 # include <sys/termios.h> 36 #endif 37 #ifdef HAVE_SYS_PPSCLOCK_H 38 # include <sys/ppsclock.h> 39 #endif 40 41 #include "ntp_stdlib.h" 42 43 /* 44 fudgefactor = fudgetime1; 45 os_delay = fudgetime2; 46 offset_fudge = os_delay + fudgefactor + inherent_delay; 47 stratumtouse = fudgeval1 & 0xf 48 debug = fudgeval2; 49 sloppyclockflag = flags & CLK_FLAG1; 50 1 log smoothing summary when processing sample 51 4 dump the buffer from the clock 52 8 EIOGETKD the last n uS time stamps 53 if (flags & CLK_FLAG2 && unitinuse) ees->leaphold = 0; 54 ees->dump_vals = flags & CLK_FLAG3; 55 ees->usealldata = flags & CLK_FLAG4; 56 57 58 bug->values[0] = (ees->lasttime) ? current_time - ees->lasttime : 0; 59 bug->values[1] = (ees->clocklastgood)?current_time-ees->clocklastgood:0; 60 bug->values[2] = (u_long)ees->status; 61 bug->values[3] = (u_long)ees->lastevent; 62 bug->values[4] = (u_long)ees->reason; 63 bug->values[5] = (u_long)ees->nsamples; 64 bug->values[6] = (u_long)ees->codestate; 65 bug->values[7] = (u_long)ees->day; 66 bug->values[8] = (u_long)ees->hour; 67 bug->values[9] = (u_long)ees->minute; 68 bug->values[10] = (u_long)ees->second; 69 bug->values[11] = (u_long)ees->tz; 70 bug->values[12] = ees->yearstart; 71 bug->values[13] = (ees->leaphold > current_time) ? 72 ees->leaphold - current_time : 0; 73 bug->values[14] = inherent_delay[unit].l_uf; 74 bug->values[15] = offset_fudge[unit].l_uf; 75 76 bug->times[0] = ees->reftime; 77 bug->times[1] = ees->arrvtime; 78 bug->times[2] = ees->lastsampletime; 79 bug->times[3] = ees->offset; 80 bug->times[4] = ees->lowoffset; 81 bug->times[5] = ees->highoffset; 82 bug->times[6] = inherent_delay[unit]; 83 bug->times[8] = os_delay[unit]; 84 bug->times[7] = fudgefactor[unit]; 85 bug->times[9] = offset_fudge[unit]; 86 bug->times[10]= ees->yearstart, 0; 87 */ 88 89 /* This should support the use of an EES M201 receiver with RS232 90 * output (modified to transmit time once per second). 91 * 92 * For the format of the message sent by the clock, see the EESM_ 93 * definitions below. 94 * 95 * It appears to run free for an integral number of minutes, until the error 96 * reaches 4mS, at which point it steps at second = 01. 97 * It appears that sometimes it steps 4mS (say at 7 min interval), 98 * then the next minute it decides that it was an error, so steps back. 99 * On the next minute it steps forward again :-( 100 * This is typically 16.5uS/S then 3975uS at the 4min re-sync, 101 * or 9.5uS/S then 3990.5uS at a 7min re-sync, 102 * at which point it may loose the "00" second time stamp. 103 * I assume that the most accurate time is just AFTER the re-sync. 104 * Hence remember the last cycle interval, 105 * 106 * Can run in any one of: 107 * 108 * PPSCD PPS signal sets CD which interupts, and grabs the current TOD 109 * (sun) *in the interupt code*, so as to avoid problems with 110 * the STREAMS scheduling. 111 * 112 * It appears that it goes 16.5 uS slow each second, then every 4 mins it 113 * generates no "00" second tick, and gains 3975 uS. Ho Hum ! (93/2/7) 114 */ 115 116 /* Definitions */ 117 #ifndef MAXUNITS 118 #define MAXUNITS 4 /* maximum number of EES units permitted */ 119 #endif 120 121 #ifndef EES232 122 #define EES232 "/dev/ees%d" /* Device to open to read the data */ 123 #endif 124 125 /* Other constant stuff */ 126 #ifndef EESPRECISION 127 #define EESPRECISION (-10) /* what the heck - 2**-10 = 1ms */ 128 #endif 129 #ifndef EESREFID 130 #define EESREFID "MSF\0" /* String to identify the clock */ 131 #endif 132 #ifndef EESHSREFID 133 #define EESHSREFID (0x7f7f0000 | ((REFCLK_MSF_EES) << 8)) /* Numeric refid */ 134 #endif 135 136 /* Description of clock */ 137 #define EESDESCRIPTION "EES M201 MSF Receiver" 138 139 /* Speed we run the clock port at. If this is changed the UARTDELAY 140 * value should be recomputed to suit. 141 */ 142 #ifndef SPEED232 143 #define SPEED232 B9600 /* 9600 baud */ 144 #endif 145 146 /* What is the inherent delay for this mode of working, i.e. when is the 147 * data time stamped. 148 */ 149 #define SAFETY_SHIFT 10 /* Split the shift to avoid overflow */ 150 #define BITS_TO_L_FP(bits, baud) \ 151 (((((bits)*2 +1) << (FRACTION_PREC-SAFETY_SHIFT)) / (2*baud)) << SAFETY_SHIFT) 152 #define INH_DELAY_CBREAK BITS_TO_L_FP(119, 9600) 153 #define INH_DELAY_PPS BITS_TO_L_FP( 0, 9600) 154 155 #ifndef STREAM_PP1 156 #define STREAM_PP1 "ppsclocd\0<-- patch space for module name1 -->" 157 #endif 158 #ifndef STREAM_PP2 159 #define STREAM_PP2 "ppsclock\0<-- patch space for module name2 -->" 160 #endif 161 162 /* Offsets of the bytes of the serial line code. The clock gives 163 * local time with a GMT/BST indication. The EESM_ definitions 164 * give offsets into ees->lastcode. 165 */ 166 #define EESM_CSEC 0 /* centiseconds - always zero in our clock */ 167 #define EESM_SEC 1 /* seconds in BCD */ 168 #define EESM_MIN 2 /* minutes in BCD */ 169 #define EESM_HOUR 3 /* hours in BCD */ 170 #define EESM_DAYWK 4 /* day of week (Sun = 0 etc) */ 171 #define EESM_DAY 5 /* day of month in BCD */ 172 #define EESM_MON 6 /* month in BCD */ 173 #define EESM_YEAR 7 /* year MOD 100 in BCD */ 174 #define EESM_LEAP 8 /* 0x0f if leap year, otherwise zero */ 175 #define EESM_BST 9 /* 0x03 if BST, 0x00 if GMT */ 176 #define EESM_MSFOK 10 /* 0x3f if radio good, otherwise zero */ 177 /* followed by a frame alignment byte (0xff) / 178 / which is not put into the lastcode buffer*/ 179 180 /* Length of the serial time code, in characters. The first length 181 * is less the frame alignment byte. 182 */ 183 #define LENEESPRT (EESM_MSFOK+1) 184 #define LENEESCODE (LENEESPRT+1) 185 186 /* Code state. */ 187 #define EESCS_WAIT 0 /* waiting for start of timecode */ 188 #define EESCS_GOTSOME 1 /* have an incomplete time code buffered */ 189 190 /* Default fudge factor and character to receive */ 191 #define DEFFUDGETIME 0 /* Default user supplied fudge factor */ 192 #ifndef DEFOSTIME 193 #define DEFOSTIME 0 /* Default OS delay -- passed by Make ? */ 194 #endif 195 #define DEFINHTIME INH_DELAY_PPS /* inherent delay due to sample point*/ 196 197 /* Limits on things. Reduce the number of samples to SAMPLEREDUCE by median 198 * elimination. If we're running with an accurate clock, chose the BESTSAMPLE 199 * as the estimated offset, otherwise average the remainder. 200 */ 201 #define FULLSHIFT 6 /* NCODES root 2 */ 202 #define NCODES (1<< FULLSHIFT) /* 64 */ 203 #define REDUCESHIFT (FULLSHIFT -1) /* SAMPLEREDUCE root 2 */ 204 205 /* Towards the high ( Why ?) end of half */ 206 #define BESTSAMPLE ((samplereduce * 3) /4) /* 24 */ 207 208 /* Leap hold time. After a leap second the clock will no longer be 209 * reliable until it resynchronizes. Hope 40 minutes is enough. */ 210 #define EESLEAPHOLD (40 * 60) 211 212 #define EES_STEP_F (1 << 24) /* the receiver steps in units of about 4ms */ 213 #define EES_STEP_F_GRACE (EES_STEP_F/8) /*Allow for slop of 1/8 which is .5ms*/ 214 #define EES_STEP_NOTE (1 << 21)/* Log any unexpected jumps, say .5 ms .... */ 215 #define EES_STEP_NOTES 50 /* Only do a limited number */ 216 #define MAX_STEP 16 /* Max number of steps to remember */ 217 218 /* debug is a bit mask of debugging that is wanted */ 219 #define DB_SYSLOG_SMPLI 0x0001 220 #define DB_SYSLOG_SMPLE 0x0002 221 #define DB_SYSLOG_SMTHI 0x0004 222 #define DB_SYSLOG_NSMTHE 0x0008 223 #define DB_SYSLOG_NSMTHI 0x0010 224 #define DB_SYSLOG_SMTHE 0x0020 225 #define DB_PRINT_EV 0x0040 226 #define DB_PRINT_CDT 0x0080 227 #define DB_PRINT_CDTC 0x0100 228 #define DB_SYSLOG_KEEPD 0x0800 229 #define DB_SYSLOG_KEEPE 0x1000 230 #define DB_LOG_DELTAS 0x2000 231 #define DB_PRINT_DELTAS 0x4000 232 #define DB_LOG_AWAITMORE 0x8000 233 #define DB_LOG_SAMPLES 0x10000 234 #define DB_NO_PPS 0x20000 235 #define DB_INC_PPS 0x40000 236 #define DB_DUMP_DELTAS 0x80000 237 238 struct eesunit { /* EES unit control structure. */ 239 struct peer *peer; /* associated peer structure */ 240 struct refclockio io; /* given to the I/O handler */ 241 l_fp reftime; /* reference time */ 242 l_fp lastsampletime; /* time as in txt from last EES msg */ 243 l_fp arrvtime; /* Time at which pkt arrived */ 244 l_fp codeoffsets[NCODES]; /* the time of arrival of 232 codes */ 245 l_fp offset; /* chosen offset (for clkbug) */ 246 l_fp lowoffset; /* lowest sample offset (for clkbug) */ 247 l_fp highoffset; /* highest " " (for clkbug) */ 248 char lastcode[LENEESCODE+6]; /* last time code we received */ 249 u_long lasttime; /* last time clock heard from */ 250 u_long clocklastgood; /* last time good radio seen */ 251 u_char lencode; /* length of code in buffer */ 252 u_char nsamples; /* number of samples we've collected */ 253 u_char codestate; /* state of 232 code reception */ 254 u_char unit; /* unit number for this guy */ 255 u_char status; /* clock status */ 256 u_char lastevent; /* last clock event */ 257 u_char reason; /* reason for last abort */ 258 u_char hour; /* hour of day */ 259 u_char minute; /* minute of hour */ 260 u_char second; /* seconds of minute */ 261 char tz; /* timezone from clock */ 262 u_char ttytype; /* method used */ 263 u_char dump_vals; /* Should clock values be dumped */ 264 u_char usealldata; /* Use ALL samples */ 265 u_short day; /* day of year from last code */ 266 u_long yearstart; /* start of current year */ 267 u_long leaphold; /* time of leap hold expiry */ 268 u_long badformat; /* number of bad format codes */ 269 u_long baddata; /* number of invalid time codes */ 270 u_long timestarted; /* time we started this */ 271 long last_pps_no; /* The serial # of the last PPS */ 272 char fix_pending; /* Is a "sync to time" pending ? */ 273 /* Fine tuning - compensate for 4 mS ramping .... */ 274 l_fp last_l; /* last time stamp */ 275 u_char last_steps[MAX_STEP]; /* Most recent n steps */ 276 int best_av_step; /* Best guess at average step */ 277 char best_av_step_count; /* # of steps over used above */ 278 char this_step; /* Current pos in buffer */ 279 int last_step_late; /* How late the last step was (0-59) */ 280 long jump_fsecs; /* # of fractions of a sec last jump */ 281 u_long last_step; /* time of last step */ 282 int last_step_secs; /* Number of seconds in last step */ 283 int using_ramp; /* 1 -> noemal, -1 -> over stepped */ 284 }; 285 #define last_sec last_l.l_ui 286 #define last_sfsec last_l.l_f 287 #define this_uisec ((ees->arrvtime).l_ui) 288 #define this_sfsec ((ees->arrvtime).l_f) 289 #define msec(x) ((x) / (1<<22)) 290 #define LAST_STEPS (sizeof ees->last_steps / sizeof ees->last_steps[0]) 291 #define subms(x) ((((((x < 0) ? (-(x)) : (x)) % (1<<22))/2) * 625) / (1<<(22 -5))) 292 293 /* Bitmask for what methods to try to use -- currently only PPS enabled */ 294 #define T_CBREAK 1 295 #define T_PPS 8 296 /* macros to test above */ 297 #define is_cbreak(x) ((x)->ttytype & T_CBREAK) 298 #define is_pps(x) ((x)->ttytype & T_PPS) 299 #define is_any(x) ((x)->ttytype) 300 301 #define CODEREASON 20 /* reason codes */ 302 303 /* Data space for the unit structures. Note that we allocate these on 304 * the fly, but never give them back. */ 305 static struct eesunit *eesunits[MAXUNITS]; 306 static u_char unitinuse[MAXUNITS]; 307 308 /* Keep the fudge factors separately so they can be set even 309 * when no clock is configured. */ 310 static l_fp inherent_delay[MAXUNITS]; /* when time stamp is taken */ 311 static l_fp fudgefactor[MAXUNITS]; /* fudgetime1 */ 312 static l_fp os_delay[MAXUNITS]; /* fudgetime2 */ 313 static l_fp offset_fudge[MAXUNITS]; /* Sum of above */ 314 static u_char stratumtouse[MAXUNITS]; 315 static u_char sloppyclockflag[MAXUNITS]; 316 317 static int deltas[60]; 318 319 static l_fp acceptable_slop; /* = { 0, 1 << (FRACTION_PREC -2) }; */ 320 static l_fp onesec; /* = { 1, 0 }; */ 321 322 #ifndef DUMP_BUF_SIZE /* Size of buffer to be used by dump_buf */ 323 #define DUMP_BUF_SIZE 10112 324 #endif 325 326 /* ees_reset - reset the count back to zero */ 327 #define ees_reset(ees) (ees)->nsamples = 0; \ 328 (ees)->codestate = EESCS_WAIT 329 330 /* ees_event - record and report an event */ 331 #define ees_event(ees, evcode) if ((ees)->status != (u_char)(evcode)) \ 332 ees_report_event((ees), (evcode)) 333 334 /* Find the precision of the system clock by reading it */ 335 #define USECS 1000000 336 #define MINSTEP 5 /* some systems increment uS on each call */ 337 #define MAXLOOPS (USECS/9) 338 339 /* 340 * Function prototypes 341 */ 342 343 static int msfees_start P((int unit, struct peer *peer)); 344 static void msfees_shutdown P((int unit, struct peer *peer)); 345 static void msfees_poll P((int unit, struct peer *peer)); 346 static void msfees_init P((void)); 347 static void dump_buf P((l_fp *coffs, int from, int to, char *text)); 348 static void ees_report_event P((struct eesunit *ees, int code)); 349 static void ees_receive P((struct recvbuf *rbufp)); 350 static void ees_process P((struct eesunit *ees)); 351 #ifdef QSORT_USES_VOID_P 352 static int offcompare P((const void *va, const void *vb)); 353 #else 354 static int offcompare P((const l_fp *a, const l_fp *b)); 355 #endif /* QSORT_USES_VOID_P */ 356 357 358 /* 359 * Transfer vector 360 */ 361 struct refclock refclock_msfees = { 362 msfees_start, /* start up driver */ 363 msfees_shutdown, /* shut down driver */ 364 msfees_poll, /* transmit poll message */ 365 noentry, /* not used */ 366 msfees_init, /* initialize driver */ 367 noentry, /* not used */ 368 NOFLAGS /* not used */ 369 }; 370 371 372 static void 373 dump_buf( 374 l_fp *coffs, 375 int from, 376 int to, 377 char *text 378 ) 379 { 380 char buff[DUMP_BUF_SIZE + 80]; 381 int i; 382 register char *ptr = buff; 383 384 sprintf(ptr, text); 385 for (i=from; i<to; i++) 386 { while (*ptr) ptr++; 387 if ((ptr-buff) > DUMP_BUF_SIZE) msyslog(LOG_DEBUG, "D: %s", ptr=buff); 388 sprintf(ptr, " %06d", ((int)coffs[i].l_f) / 4295); 389 } 390 msyslog(LOG_DEBUG, "D: %s", buff); 391 } 392 393 /* msfees_init - initialize internal ees driver data */ 394 static void 395 msfees_init(void) 396 { 397 register int i; 398 /* Just zero the data arrays */ 399 memset((char *)eesunits, 0, sizeof eesunits); 400 memset((char *)unitinuse, 0, sizeof unitinuse); 401 402 acceptable_slop.l_ui = 0; 403 acceptable_slop.l_uf = 1 << (FRACTION_PREC -2); 404 405 onesec.l_ui = 1; 406 onesec.l_uf = 0; 407 408 /* Initialize fudge factors to default. */ 409 for (i = 0; i < MAXUNITS; i++) { 410 fudgefactor[i].l_ui = 0; 411 fudgefactor[i].l_uf = DEFFUDGETIME; 412 os_delay[i].l_ui = 0; 413 os_delay[i].l_uf = DEFOSTIME; 414 inherent_delay[i].l_ui = 0; 415 inherent_delay[i].l_uf = DEFINHTIME; 416 offset_fudge[i] = os_delay[i]; 417 L_ADD(&offset_fudge[i], &fudgefactor[i]); 418 L_ADD(&offset_fudge[i], &inherent_delay[i]); 419 stratumtouse[i] = 0; 420 sloppyclockflag[i] = 0; 421 } 422 } 423 424 425 /* msfees_start - open the EES devices and initialize data for processing */ 426 static int 427 msfees_start( 428 int unit, 429 struct peer *peer 430 ) 431 { 432 register struct eesunit *ees; 433 register int i; 434 int fd232 = -1; 435 char eesdev[20]; 436 struct termios ttyb, *ttyp; 437 struct refclockproc *pp; 438 pp = peer->procptr; 439 440 if (unit >= MAXUNITS) { 441 msyslog(LOG_ERR, "ees clock: unit number %d invalid (max %d)", 442 unit, MAXUNITS-1); 443 return 0; 444 } 445 if (unitinuse[unit]) { 446 msyslog(LOG_ERR, "ees clock: unit number %d in use", unit); 447 return 0; 448 } 449 450 /* Unit okay, attempt to open the devices. We do them both at 451 * once to make sure we can */ 452 (void) sprintf(eesdev, EES232, unit); 453 454 fd232 = open(eesdev, O_RDWR, 0777); 455 if (fd232 == -1) { 456 msyslog(LOG_ERR, "ees clock: open of %s failed: %m", eesdev); 457 return 0; 458 } 459 460 #ifdef TIOCEXCL 461 /* Set for exclusive use */ 462 if (ioctl(fd232, TIOCEXCL, (char *)0) < 0) { 463 msyslog(LOG_ERR, "ees clock: ioctl(%s, TIOCEXCL): %m", eesdev); 464 goto screwed; 465 } 466 #endif 467 468 /* STRIPPED DOWN VERSION: Only PPS CD is supported at the moment */ 469 470 /* Set port characteristics. If we don't have a STREAMS module or 471 * a clock line discipline, cooked mode is just usable, even though it 472 * strips the top bit. The only EES byte which uses the top 473 * bit is the year, and we don't use that anyway. If we do 474 * have the line discipline, we choose raw mode, and the 475 * line discipline code will block up the messages. 476 */ 477 478 /* STIPPED DOWN VERSION: Only PPS CD is supported at the moment */ 479 480 ttyp = &ttyb; 481 if (tcgetattr(fd232, ttyp) < 0) { 482 msyslog(LOG_ERR, "msfees_start: tcgetattr(%s): %m", eesdev); 483 goto screwed; 484 } 485 486 ttyp->c_iflag = IGNBRK|IGNPAR|ICRNL; 487 ttyp->c_cflag = SPEED232|CS8|CLOCAL|CREAD; 488 ttyp->c_oflag = 0; 489 ttyp->c_lflag = ICANON; 490 ttyp->c_cc[VERASE] = ttyp->c_cc[VKILL] = '\0'; 491 if (tcsetattr(fd232, TCSANOW, ttyp) < 0) { 492 msyslog(LOG_ERR, "msfees_start: tcsetattr(%s): %m", eesdev); 493 goto screwed; 494 } 495 496 if (tcflush(fd232, TCIOFLUSH) < 0) { 497 msyslog(LOG_ERR, "msfees_start: tcflush(%s): %m", eesdev); 498 goto screwed; 499 } 500 501 inherent_delay[unit].l_uf = INH_DELAY_PPS; 502 503 /* offset fudge (how *late* the timestamp is) = fudge + os delays */ 504 offset_fudge[unit] = os_delay[unit]; 505 L_ADD(&offset_fudge[unit], &fudgefactor[unit]); 506 L_ADD(&offset_fudge[unit], &inherent_delay[unit]); 507 508 /* Looks like this might succeed. Find memory for the structure. 509 * Look to see if there are any unused ones, if not we malloc() one. 510 */ 511 if (eesunits[unit] != 0) /* The one we want is okay */ 512 ees = eesunits[unit]; 513 else { 514 /* Look for an unused, but allocated struct */ 515 for (i = 0; i < MAXUNITS; i++) { 516 if (!unitinuse[i] && eesunits[i] != 0) 517 break; 518 } 519 520 if (i < MAXUNITS) { /* Reclaim this one */ 521 ees = eesunits[i]; 522 eesunits[i] = 0; 523 } /* no spare -- make a new one */ 524 else ees = (struct eesunit *) emalloc(sizeof(struct eesunit)); 525 } 526 memset((char *)ees, 0, sizeof(struct eesunit)); 527 eesunits[unit] = ees; 528 529 /* Set up the structures */ 530 ees->peer = peer; 531 ees->unit = (u_char)unit; 532 ees->timestarted= current_time; 533 ees->ttytype = 0; 534 ees->io.clock_recv= ees_receive; 535 ees->io.srcclock= (caddr_t)ees; 536 ees->io.datalen = 0; 537 ees->io.fd = fd232; 538 539 /* Okay. Push one of the two (linked into the kernel, or dynamically 540 * loaded) STREAMS module, and give it to the I/O code to start 541 * receiving stuff. 542 */ 543 544 #ifdef STREAM 545 { 546 int rc1; 547 /* Pop any existing onews first ... */ 548 while (ioctl(fd232, I_POP, 0 ) >= 0) ; 549 550 /* Now try pushing either of the possible modules */ 551 if ((rc1=ioctl(fd232, I_PUSH, STREAM_PP1)) < 0 && 552 ioctl(fd232, I_PUSH, STREAM_PP2) < 0) { 553 msyslog(LOG_ERR, 554 "ees clock: Push of `%s' and `%s' to %s failed %m", 555 STREAM_PP1, STREAM_PP2, eesdev); 556 goto screwed; 557 } 558 else { 559 NLOG(NLOG_CLOCKINFO) /* conditional if clause for conditional syslog */ 560 msyslog(LOG_INFO, "I: ees clock: PUSHed %s on %s", 561 (rc1 >= 0) ? STREAM_PP1 : STREAM_PP2, eesdev); 562 ees->ttytype |= T_PPS; 563 } 564 } 565 #endif /* STREAM */ 566 567 /* Add the clock */ 568 if (!io_addclock(&ees->io)) { 569 /* Oh shit. Just close and return. */ 570 msyslog(LOG_ERR, "ees clock: io_addclock(%s): %m", eesdev); 571 goto screwed; 572 } 573 574 575 /* All done. Initialize a few random peer variables, then 576 * return success. */ 577 peer->precision = sys_precision; 578 peer->stratum = stratumtouse[unit]; 579 if (stratumtouse[unit] <= 1) { 580 memcpy((char *)&pp->refid, EESREFID, 4); 581 if (unit > 0 && unit < 10) 582 ((char *)&pp->refid)[3] = '0' + unit; 583 } else { 584 peer->refid = htonl(EESHSREFID); 585 } 586 unitinuse[unit] = 1; 587 pp->unitptr = (caddr_t) &eesunits[unit]; 588 pp->clockdesc = EESDESCRIPTION; 589 msyslog(LOG_ERR, "ees clock: %s OK on %d", eesdev, unit); 590 return (1); 591 592 screwed: 593 if (fd232 != -1) 594 (void) close(fd232); 595 return (0); 596 } 597 598 599 /* msfees_shutdown - shut down a EES clock */ 600 static void 601 msfees_shutdown( 602 int unit, 603 struct peer *peer 604 ) 605 { 606 register struct eesunit *ees; 607 608 if (unit >= MAXUNITS) { 609 msyslog(LOG_ERR, 610 "ees clock: INTERNAL ERROR, unit number %d invalid (max %d)", 611 unit, MAXUNITS); 612 return; 613 } 614 if (!unitinuse[unit]) { 615 msyslog(LOG_ERR, 616 "ees clock: INTERNAL ERROR, unit number %d not in use", unit); 617 return; 618 } 619 620 /* Tell the I/O module to turn us off. We're history. */ 621 ees = eesunits[unit]; 622 io_closeclock(&ees->io); 623 unitinuse[unit] = 0; 624 } 625 626 627 /* ees_report_event - note the occurance of an event */ 628 static void 629 ees_report_event( 630 struct eesunit *ees, 631 int code 632 ) 633 { 634 if (ees->status != (u_char)code) { 635 ees->status = (u_char)code; 636 if (code != CEVNT_NOMINAL) 637 ees->lastevent = (u_char)code; 638 /* Should report event to trap handler in here. 639 * Soon... 640 */ 641 } 642 } 643 644 645 /* ees_receive - receive data from the serial interface on an EES clock */ 646 static void 647 ees_receive( 648 struct recvbuf *rbufp 649 ) 650 { 651 register int n_sample; 652 register int day; 653 register struct eesunit *ees; 654 register u_char *dpt; /* Data PoinTeR: move along ... */ 655 register u_char *dpend; /* Points just *after* last data char */ 656 register char *cp; 657 l_fp tmp; 658 int call_pps_sample = 0; 659 l_fp pps_arrvstamp; 660 int sincelast; 661 int pps_step = 0; 662 int suspect_4ms_step = 0; 663 struct ppsclockev ppsclockev; 664 long *ptr = (long *) &ppsclockev; 665 int rc; 666 int request; 667 #ifdef HAVE_CIOGETEV 668 request = CIOGETEV; 669 #endif 670 #ifdef HAVE_TIOCGPPSEV 671 request = TIOCGPPSEV; 672 #endif 673 674 /* Get the clock this applies to and a pointer to the data */ 675 ees = (struct eesunit *)rbufp->recv_srcclock; 676 dpt = (u_char *)&rbufp->recv_space; 677 dpend = dpt + rbufp->recv_length; 678 if ((debug & DB_LOG_AWAITMORE) && (rbufp->recv_length != LENEESCODE)) 679 printf("[%d] ", rbufp->recv_length); 680 681 /* Check out our state and process appropriately */ 682 switch (ees->codestate) { 683 case EESCS_WAIT: 684 /* Set an initial guess at the timestamp as the recv time. 685 * If just running in CBREAK mode, we can't improve this. 686 * If we have the CLOCK Line Discipline, PPSCD, or sime such, 687 * then we will do better later .... 688 */ 689 ees->arrvtime = rbufp->recv_time; 690 ees->codestate = EESCS_GOTSOME; 691 ees->lencode = 0; 692 /*FALLSTHROUGH*/ 693 694 case EESCS_GOTSOME: 695 cp = &(ees->lastcode[ees->lencode]); 696 697 /* Gobble the bytes until the final (possibly stripped) 0xff */ 698 while (dpt < dpend && (*dpt & 0x7f) != 0x7f) { 699 *cp++ = (char)*dpt++; 700 ees->lencode++; 701 /* Oh dear -- too many bytes .. */ 702 if (ees->lencode > LENEESPRT) { 703 NLOG(NLOG_CLOCKINFO) /* conditional if clause for conditional syslog */ 704 msyslog(LOG_INFO, 705 "I: ees clock: %d + %d > %d [%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x]", 706 ees->lencode, dpend - dpt, LENEESPRT, 707 #define D(x) (ees->lastcode[x]) 708 D(0), D(1), D(2), D(3), D(4), D(5), D(6), 709 D(7), D(8), D(9), D(10), D(11), D(12)); 710 #undef D 711 ees->badformat++; 712 ees->reason = CODEREASON + 1; 713 ees_event(ees, CEVNT_BADREPLY); 714 ees_reset(ees); 715 return; 716 } 717 } 718 /* Gave up because it was end of the buffer, rather than ff */ 719 if (dpt == dpend) { 720 /* Incomplete. Wait for more. */ 721 if (debug & DB_LOG_AWAITMORE) 722 msyslog(LOG_INFO, 723 "I: ees clock %d: %x == %x: await more", 724 ees->unit, dpt, dpend); 725 return; 726 } 727 728 /* This shouldn't happen ... ! */ 729 if ((*dpt & 0x7f) != 0x7f) { 730 msyslog(LOG_INFO, "I: ees clock: %0x & 0x7f != 0x7f", *dpt); 731 ees->badformat++; 732 ees->reason = CODEREASON + 2; 733 ees_event(ees, CEVNT_BADREPLY); 734 ees_reset(ees); 735 return; 736 } 737 738 /* Skip the 0xff */ 739 dpt++; 740 741 /* Finally, got a complete buffer. Mainline code will 742 * continue on. */ 743 cp = ees->lastcode; 744 break; 745 746 default: 747 msyslog(LOG_ERR, "ees clock: INTERNAL ERROR: %d state %d", 748 ees->unit, ees->codestate); 749 ees->reason = CODEREASON + 5; 750 ees_event(ees, CEVNT_FAULT); 751 ees_reset(ees); 752 return; 753 } 754 755 /* Boy! After all that crap, the lastcode buffer now contains 756 * something we hope will be a valid time code. Do length 757 * checks and sanity checks on constant data. 758 */ 759 ees->codestate = EESCS_WAIT; 760 ees->lasttime = current_time; 761 if (ees->lencode != LENEESPRT) { 762 ees->badformat++; 763 ees->reason = CODEREASON + 6; 764 ees_event(ees, CEVNT_BADREPLY); 765 ees_reset(ees); 766 return; 767 } 768 769 cp = ees->lastcode; 770 771 /* Check that centisecond is zero */ 772 if (cp[EESM_CSEC] != 0) { 773 ees->baddata++; 774 ees->reason = CODEREASON + 7; 775 ees_event(ees, CEVNT_BADREPLY); 776 ees_reset(ees); 777 return; 778 } 779 780 /* Check flag formats */ 781 if (cp[EESM_LEAP] != 0 && cp[EESM_LEAP] != 0x0f) { 782 ees->badformat++; 783 ees->reason = CODEREASON + 8; 784 ees_event(ees, CEVNT_BADREPLY); 785 ees_reset(ees); 786 return; 787 } 788 789 if (cp[EESM_BST] != 0 && cp[EESM_BST] != 0x03) { 790 ees->badformat++; 791 ees->reason = CODEREASON + 9; 792 ees_event(ees, CEVNT_BADREPLY); 793 ees_reset(ees); 794 return; 795 } 796 797 if (cp[EESM_MSFOK] != 0 && cp[EESM_MSFOK] != 0x3f) { 798 ees->badformat++; 799 ees->reason = CODEREASON + 10; 800 ees_event(ees, CEVNT_BADREPLY); 801 ees_reset(ees); 802 return; 803 } 804 805 /* So far, so good. Compute day, hours, minutes, seconds, 806 * time zone. Do range checks on these. 807 */ 808 809 #define bcdunpack(val) ( (((val)>>4) & 0x0f) * 10 + ((val) & 0x0f) ) 810 #define istrue(x) ((x)?1:0) 811 812 ees->second = bcdunpack(cp[EESM_SEC]); /* second */ 813 ees->minute = bcdunpack(cp[EESM_MIN]); /* minute */ 814 ees->hour = bcdunpack(cp[EESM_HOUR]); /* hour */ 815 816 day = bcdunpack(cp[EESM_DAY]); /* day of month */ 817 818 switch (bcdunpack(cp[EESM_MON])) { /* month */ 819 820 /* Add in lengths of all previous months. Add one more 821 if it is a leap year and after February. 822 */ 823 case 12: day += NOV; /*FALLSTHROUGH*/ 824 case 11: day += OCT; /*FALLSTHROUGH*/ 825 case 10: day += SEP; /*FALLSTHROUGH*/ 826 case 9: day += AUG; /*FALLSTHROUGH*/ 827 case 8: day += JUL; /*FALLSTHROUGH*/ 828 case 7: day += JUN; /*FALLSTHROUGH*/ 829 case 6: day += MAY; /*FALLSTHROUGH*/ 830 case 5: day += APR; /*FALLSTHROUGH*/ 831 case 4: day += MAR; /*FALLSTHROUGH*/ 832 case 3: day += FEB; 833 if (istrue(cp[EESM_LEAP])) day++; /*FALLSTHROUGH*/ 834 case 2: day += JAN; /*FALLSTHROUGH*/ 835 case 1: break; 836 default: ees->baddata++; 837 ees->reason = CODEREASON + 11; 838 ees_event(ees, CEVNT_BADDATE); 839 ees_reset(ees); 840 return; 841 } 842 843 ees->day = day; 844 845 /* Get timezone. The clocktime routine wants the number 846 * of hours to add to the delivered time to get UT. 847 * Currently -1 if BST flag set, 0 otherwise. This 848 * is the place to tweak things if double summer time 849 * ever happens. 850 */ 851 ees->tz = istrue(cp[EESM_BST]) ? -1 : 0; 852 853 if (ees->day > 366 || ees->day < 1 || 854 ees->hour > 23 || ees->minute > 59 || ees->second > 59) { 855 ees->baddata++; 856 ees->reason = CODEREASON + 12; 857 ees_event(ees, CEVNT_BADDATE); 858 ees_reset(ees); 859 return; 860 } 861 862 n_sample = ees->nsamples; 863 864 /* Now, compute the reference time value: text -> tmp.l_ui */ 865 if (!clocktime(ees->day, ees->hour, ees->minute, ees->second, 866 ees->tz, rbufp->recv_time.l_ui, &ees->yearstart, 867 &tmp.l_ui)) { 868 ees->baddata++; 869 ees->reason = CODEREASON + 13; 870 ees_event(ees, CEVNT_BADDATE); 871 ees_reset(ees); 872 return; 873 } 874 tmp.l_uf = 0; 875 876 /* DON'T use ees->arrvtime -- it may be < reftime */ 877 ees->lastsampletime = tmp; 878 879 /* If we are synchronised to the radio, update the reference time. 880 * Also keep a note of when clock was last good. 881 */ 882 if (istrue(cp[EESM_MSFOK])) { 883 ees->reftime = tmp; 884 ees->clocklastgood = current_time; 885 } 886 887 888 /* Compute the offset. For the fractional part of the 889 * offset we use the expected delay for the message. 890 */ 891 ees->codeoffsets[n_sample].l_ui = tmp.l_ui; 892 ees->codeoffsets[n_sample].l_uf = 0; 893 894 /* Number of seconds since the last step */ 895 sincelast = this_uisec - ees->last_step; 896 897 memset((char *) &ppsclockev, 0, sizeof ppsclockev); 898 899 rc = ioctl(ees->io.fd, request, (char *) &ppsclockev); 900 if (debug & DB_PRINT_EV) fprintf(stderr, 901 "[%x] CIOGETEV u%d %d (%x %d) gave %d (%d): %08lx %08lx %ld\n", 902 DB_PRINT_EV, ees->unit, ees->io.fd, request, is_pps(ees), 903 rc, errno, ptr[0], ptr[1], ptr[2]); 904 905 /* If we managed to get the time of arrival, process the info */ 906 if (rc >= 0) { 907 int conv = -1; 908 pps_step = ppsclockev.serial - ees->last_pps_no; 909 910 /* Possible that PPS triggered, but text message didn't */ 911 if (pps_step == 2) msyslog(LOG_ERR, "pps step = 2 @ %02d", ees->second); 912 if (pps_step == 2 && ees->second == 1) suspect_4ms_step |= 1; 913 if (pps_step == 2 && ees->second == 2) suspect_4ms_step |= 4; 914 915 /* allow for single loss of PPS only */ 916 if (pps_step != 1 && pps_step != 2) 917 fprintf(stderr, "PPS step: %d too far off %ld (%d)\n", 918 ppsclockev.serial, ees->last_pps_no, pps_step); 919 else if (!buftvtots((char *) &(ppsclockev.tv), &pps_arrvstamp)) 920 fprintf(stderr, "buftvtots failed\n"); 921 else { /* if ((ABS(time difference) - 0.25) < 0) 922 * then believe it ... 923 */ 924 l_fp diff; 925 diff = pps_arrvstamp; 926 conv = 0; 927 L_SUB(&diff, &ees->arrvtime); 928 if (debug & DB_PRINT_CDT) 929 printf("[%x] Have %lx.%08lx and %lx.%08lx -> %lx.%08lx @ %s", 930 DB_PRINT_CDT, (long)ees->arrvtime.l_ui, (long)ees->arrvtime.l_uf, 931 (long)pps_arrvstamp.l_ui, (long)pps_arrvstamp.l_uf, 932 (long)diff.l_ui, (long)diff.l_uf, 933 ctime(&(ppsclockev.tv.tv_sec))); 934 if (L_ISNEG(&diff)) M_NEG(diff.l_ui, diff.l_uf); 935 L_SUB(&diff, &acceptable_slop); 936 if (L_ISNEG(&diff)) { /* AOK -- pps_sample */ 937 ees->arrvtime = pps_arrvstamp; 938 conv++; 939 call_pps_sample++; 940 } 941 /* Some loss of some signals around sec = 1 */ 942 else if (ees->second == 1) { 943 diff = pps_arrvstamp; 944 L_ADD(&diff, &onesec); 945 L_SUB(&diff, &ees->arrvtime); 946 if (L_ISNEG(&diff)) M_NEG(diff.l_ui, diff.l_uf); 947 L_SUB(&diff, &acceptable_slop); 948 msyslog(LOG_ERR, "Have sec==1 slip %ds a=%08x-p=%08x -> %x.%08x (u=%d) %s", 949 pps_arrvstamp.l_ui - ees->arrvtime.l_ui, 950 pps_arrvstamp.l_uf, 951 ees->arrvtime.l_uf, 952 diff.l_ui, diff.l_uf, 953 (int)ppsclockev.tv.tv_usec, 954 ctime(&(ppsclockev.tv.tv_sec))); 955 if (L_ISNEG(&diff)) { /* AOK -- pps_sample */ 956 suspect_4ms_step |= 2; 957 ees->arrvtime = pps_arrvstamp; 958 L_ADD(&ees->arrvtime, &onesec); 959 conv++; 960 call_pps_sample++; 961 } 962 } 963 } 964 ees->last_pps_no = ppsclockev.serial; 965 if (debug & DB_PRINT_CDTC) 966 printf( 967 "[%x] %08lx %08lx %d u%d (%d %d)\n", 968 DB_PRINT_CDTC, (long)pps_arrvstamp.l_ui, 969 (long)pps_arrvstamp.l_uf, conv, ees->unit, 970 call_pps_sample, pps_step); 971 } 972 973 /* See if there has been a 4ms jump at a minute boundry */ 974 { l_fp delta; 975 #define delta_isec delta.l_ui 976 #define delta_ssec delta.l_i 977 #define delta_sfsec delta.l_f 978 long delta_f_abs; 979 980 delta.l_i = ees->arrvtime.l_i; 981 delta.l_f = ees->arrvtime.l_f; 982 983 L_SUB(&delta, &ees->last_l); 984 delta_f_abs = delta_sfsec; 985 if (delta_f_abs < 0) delta_f_abs = -delta_f_abs; 986 987 /* Dump the deltas each minute */ 988 if (debug & DB_DUMP_DELTAS) 989 { if (/*0 <= ees->second && */ 990 ees->second < ((sizeof deltas) / (sizeof deltas[0]))) deltas[ees->second] = delta_sfsec; 991 /* Dump on second 1, as second 0 sometimes missed */ 992 if (ees->second == 1) { 993 char text[16 * ((sizeof deltas) / (sizeof deltas[0]))]; 994 char *cptr=text; 995 int i; 996 for (i=0; i<((sizeof deltas) / (sizeof deltas[0])); i++) { 997 sprintf(cptr, " %d.%04d", 998 msec(deltas[i]), subms(deltas[i])); 999 while (*cptr) cptr++; 1000 } 1001 msyslog(LOG_ERR, "Deltas: %d.%04d<->%d.%04d: %s", 1002 msec(EES_STEP_F - EES_STEP_F_GRACE), subms(EES_STEP_F - EES_STEP_F_GRACE), 1003 msec(EES_STEP_F + EES_STEP_F_GRACE), subms(EES_STEP_F + EES_STEP_F_GRACE), 1004 text+1); 1005 for (i=0; i<((sizeof deltas) / (sizeof deltas[0])); i++) deltas[i] = 0; 1006 } 1007 } 1008 1009 /* Lets see if we have a 4 mS step at a minute boundaary */ 1010 if ( ((EES_STEP_F - EES_STEP_F_GRACE) < delta_f_abs) && 1011 (delta_f_abs < (EES_STEP_F + EES_STEP_F_GRACE)) && 1012 (ees->second == 0 || ees->second == 1 || ees->second == 2) && 1013 (sincelast < 0 || sincelast > 122) 1014 ) { /* 4ms jump at min boundry */ 1015 int old_sincelast; 1016 int count=0; 1017 int sum = 0; 1018 /* Yes -- so compute the ramp time */ 1019 if (ees->last_step == 0) sincelast = 0; 1020 old_sincelast = sincelast; 1021 1022 /* First time in, just set "ees->last_step" */ 1023 if(ees->last_step) { 1024 int other_step = 0; 1025 int third_step = 0; 1026 int this_step = (sincelast + (60 /2)) / 60; 1027 int p_step = ees->this_step; 1028 int p; 1029 ees->last_steps[p_step] = this_step; 1030 p= p_step; 1031 p_step++; 1032 if (p_step >= LAST_STEPS) p_step = 0; 1033 ees->this_step = p_step; 1034 /* Find the "average" interval */ 1035 while (p != p_step) { 1036 int this = ees->last_steps[p]; 1037 if (this == 0) break; 1038 if (this != this_step) { 1039 if (other_step == 0 && ( 1040 this== (this_step +2) || 1041 this== (this_step -2) || 1042 this== (this_step +1) || 1043 this== (this_step -1))) 1044 other_step = this; 1045 if (other_step != this) { 1046 int idelta = (this_step - other_step); 1047 if (idelta < 0) idelta = - idelta; 1048 if (third_step == 0 && ( 1049 (idelta == 1) ? ( 1050 this == (other_step +1) || 1051 this == (other_step -1) || 1052 this == (this_step +1) || 1053 this == (this_step -1)) 1054 : 1055 ( 1056 this == (this_step + other_step)/2 1057 ) 1058 )) third_step = this; 1059 if (third_step != this) break; 1060 } 1061 } 1062 sum += this; 1063 p--; 1064 if (p < 0) p += LAST_STEPS; 1065 count++; 1066 } 1067 msyslog(LOG_ERR, "MSF%d: %d: This=%d (%d), other=%d/%d, sum=%d, count=%d, pps_step=%d, suspect=%x", ees->unit, p, ees->last_steps[p], this_step, other_step, third_step, sum, count, pps_step, suspect_4ms_step); 1068 if (count != 0) sum = ((sum * 60) + (count /2)) / count; 1069 #define SV(x) (ees->last_steps[(x + p_step) % LAST_STEPS]) 1070 msyslog(LOG_ERR, "MSF%d: %x steps %d: %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d", 1071 ees->unit, suspect_4ms_step, p_step, SV(0), SV(1), SV(2), SV(3), SV(4), SV(5), SV(6), 1072 SV(7), SV(8), SV(9), SV(10), SV(11), SV(12), SV(13), SV(14), SV(15)); 1073 printf("MSF%d: steps %d: %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d\n", 1074 ees->unit, p_step, SV(0), SV(1), SV(2), SV(3), SV(4), SV(5), SV(6), 1075 SV(7), SV(8), SV(9), SV(10), SV(11), SV(12), SV(13), SV(14), SV(15)); 1076 #undef SV 1077 ees->jump_fsecs = delta_sfsec; 1078 ees->using_ramp = 1; 1079 if (sincelast > 170) 1080 ees->last_step_late += sincelast - ((sum) ? sum : ees->last_step_secs); 1081 else ees->last_step_late = 30; 1082 if (ees->last_step_late < -60 || ees->last_step_late > 120) ees->last_step_late = 30; 1083 if (ees->last_step_late < 0) ees->last_step_late = 0; 1084 if (ees->last_step_late >= 60) ees->last_step_late = 59; 1085 sincelast = 0; 1086 } 1087 else { /* First time in -- just save info */ 1088 ees->last_step_late = 30; 1089 ees->jump_fsecs = delta_sfsec; 1090 ees->using_ramp = 1; 1091 sum = 4 * 60; 1092 } 1093 ees->last_step = this_uisec; 1094 printf("MSF%d: d=%3ld.%04ld@%d :%d:%d:$%d:%d:%d\n", 1095 ees->unit, (long)msec(delta_sfsec), (long)subms(delta_sfsec), 1096 ees->second, old_sincelast, ees->last_step_late, count, sum, 1097 ees->last_step_secs); 1098 msyslog(LOG_ERR, "MSF%d: d=%3d.%04d@%d :%d:%d:%d:%d:%d", 1099 ees->unit, msec(delta_sfsec), subms(delta_sfsec), ees->second, 1100 old_sincelast, ees->last_step_late, count, sum, ees->last_step_secs); 1101 if (sum) ees->last_step_secs = sum; 1102 } 1103 /* OK, so not a 4ms step at a minute boundry */ 1104 else { 1105 if (suspect_4ms_step) msyslog(LOG_ERR, 1106 "MSF%d: suspect = %x, but delta of %d.%04d [%d.%04d<%d.%04d<%d.%04d: %d %d]", 1107 ees->unit, suspect_4ms_step, msec(delta_sfsec), subms(delta_sfsec), 1108 msec(EES_STEP_F - EES_STEP_F_GRACE), 1109 subms(EES_STEP_F - EES_STEP_F_GRACE), 1110 (int)msec(delta_f_abs), 1111 (int)subms(delta_f_abs), 1112 msec(EES_STEP_F + EES_STEP_F_GRACE), 1113 subms(EES_STEP_F + EES_STEP_F_GRACE), 1114 ees->second, 1115 sincelast); 1116 if ((delta_f_abs > EES_STEP_NOTE) && ees->last_l.l_i) { 1117 static int ees_step_notes = EES_STEP_NOTES; 1118 if (ees_step_notes > 0) { 1119 ees_step_notes--; 1120 printf("MSF%d: D=%3ld.%04ld@%02d :%d%s\n", 1121 ees->unit, (long)msec(delta_sfsec), (long)subms(delta_sfsec), 1122 ees->second, sincelast, ees_step_notes ? "" : " -- NO MORE !"); 1123 msyslog(LOG_ERR, "MSF%d: D=%3d.%04d@%02d :%d%s", 1124 ees->unit, msec(delta_sfsec), subms(delta_sfsec), ees->second, (ees->last_step) ? sincelast : -1, ees_step_notes ? "" : " -- NO MORE !"); 1125 } 1126 } 1127 } 1128 } 1129 ees->last_l = ees->arrvtime; 1130 1131 /* IF we have found that it's ramping 1132 * && it's within twice the expected ramp period 1133 * && there is a non zero step size (avoid /0 !) 1134 * THEN we twiddle things 1135 */ 1136 if (ees->using_ramp && 1137 sincelast < (ees->last_step_secs)*2 && 1138 ees->last_step_secs) 1139 { long sec_of_ramp = sincelast + ees->last_step_late; 1140 long fsecs; 1141 l_fp inc; 1142 1143 /* Ramp time may vary, so may ramp for longer than last time */ 1144 if (sec_of_ramp > (ees->last_step_secs + 120)) 1145 sec_of_ramp = ees->last_step_secs; 1146 1147 /* sec_of_ramp * ees->jump_fsecs may overflow 2**32 */ 1148 fsecs = sec_of_ramp * (ees->jump_fsecs / ees->last_step_secs); 1149 1150 if (debug & DB_LOG_DELTAS) msyslog(LOG_ERR, 1151 "[%x] MSF%d: %3ld/%03d -> d=%11ld (%d|%ld)", 1152 DB_LOG_DELTAS, 1153 ees->unit, sec_of_ramp, ees->last_step_secs, fsecs, 1154 pps_arrvstamp.l_f, pps_arrvstamp.l_f + fsecs); 1155 if (debug & DB_PRINT_DELTAS) printf( 1156 "MSF%d: %3ld/%03d -> d=%11ld (%ld|%ld)\n", 1157 ees->unit, sec_of_ramp, ees->last_step_secs, fsecs, 1158 (long)pps_arrvstamp.l_f, pps_arrvstamp.l_f + fsecs); 1159 1160 /* Must sign extend the result */ 1161 inc.l_i = (fsecs < 0) ? -1 : 0; 1162 inc.l_f = fsecs; 1163 if (debug & DB_INC_PPS) 1164 { L_SUB(&pps_arrvstamp, &inc); 1165 L_SUB(&ees->arrvtime, &inc); 1166 } 1167 else 1168 { L_ADD(&pps_arrvstamp, &inc); 1169 L_ADD(&ees->arrvtime, &inc); 1170 } 1171 } 1172 else { 1173 if (debug & DB_LOG_DELTAS) msyslog(LOG_ERR, 1174 "[%x] MSF%d: ees->using_ramp=%d, sincelast=%x / %x, ees->last_step_secs=%x", 1175 DB_LOG_DELTAS, 1176 ees->unit, ees->using_ramp, 1177 sincelast, 1178 (ees->last_step_secs)*2, 1179 ees->last_step_secs); 1180 if (debug & DB_PRINT_DELTAS) printf( 1181 "[%x] MSF%d: ees->using_ramp=%d, sincelast=%x / %x, ees->last_step_secs=%x\n", 1182 DB_LOG_DELTAS, 1183 ees->unit, ees->using_ramp, 1184 sincelast, 1185 (ees->last_step_secs)*2, 1186 ees->last_step_secs); 1187 } 1188 1189 L_SUB(&ees->arrvtime, &offset_fudge[ees->unit]); 1190 L_SUB(&pps_arrvstamp, &offset_fudge[ees->unit]); 1191 1192 if (call_pps_sample && !(debug & DB_NO_PPS)) { 1193 /* Sigh -- it expects its args negated */ 1194 L_NEG(&pps_arrvstamp); 1195 /* 1196 * I had to disable this here, since it appears there is no pointer to the 1197 * peer structure. 1198 * 1199 (void) pps_sample(peer, &pps_arrvstamp); 1200 */ 1201 } 1202 1203 /* Subtract off the local clock time stamp */ 1204 L_SUB(&ees->codeoffsets[n_sample], &ees->arrvtime); 1205 if (debug & DB_LOG_SAMPLES) msyslog(LOG_ERR, 1206 "MSF%d: [%x] %d (ees: %d %d) (pps: %d %d)%s", 1207 ees->unit, DB_LOG_DELTAS, n_sample, 1208 ees->codeoffsets[n_sample].l_f, 1209 ees->codeoffsets[n_sample].l_f / 4295, 1210 pps_arrvstamp.l_f, 1211 pps_arrvstamp.l_f /4295, 1212 (debug & DB_NO_PPS) ? " [no PPS]" : ""); 1213 1214 if (ees->nsamples++ == NCODES-1) ees_process(ees); 1215 1216 /* Done! */ 1217 } 1218 1219 1220 /* offcompare - auxiliary comparison routine for offset sort */ 1221 1222 #ifdef QSORT_USES_VOID_P 1223 static int 1224 offcompare( 1225 const void *va, 1226 const void *vb 1227 ) 1228 { 1229 const l_fp *a = (const l_fp *)va; 1230 const l_fp *b = (const l_fp *)vb; 1231 return(L_ISGEQ(a, b) ? (L_ISEQU(a, b) ? 0 : 1) : -1); 1232 } 1233 #else 1234 static int 1235 offcompare( 1236 const l_fp *a, 1237 const l_fp *b 1238 ) 1239 { 1240 return(L_ISGEQ(a, b) ? (L_ISEQU(a, b) ? 0 : 1) : -1); 1241 } 1242 #endif /* QSORT_USES_VOID_P */ 1243 1244 1245 /* ees_process - process a pile of samples from the clock */ 1246 static void 1247 ees_process( 1248 struct eesunit *ees 1249 ) 1250 { 1251 static int last_samples = -1; 1252 register int i, j; 1253 register int noff; 1254 register l_fp *coffs = ees->codeoffsets; 1255 l_fp offset, tmp; 1256 double dispersion; /* ++++ */ 1257 int lostsync, isinsync; 1258 int samples = ees->nsamples; 1259 int samplelog = 0; /* keep "gcc -Wall" happy ! */ 1260 int samplereduce = (samples + 1) / 2; 1261 double doffset; 1262 1263 /* Reset things to zero so we don't have to worry later */ 1264 ees_reset(ees); 1265 1266 if (sloppyclockflag[ees->unit]) { 1267 samplelog = (samples < 2) ? 0 : 1268 (samples < 5) ? 1 : 1269 (samples < 9) ? 2 : 1270 (samples < 17) ? 3 : 1271 (samples < 33) ? 4 : 5; 1272 samplereduce = (1 << samplelog); 1273 } 1274 1275 if (samples != last_samples && 1276 ((samples != (last_samples-1)) || samples < 3)) { 1277 msyslog(LOG_ERR, "Samples=%d (%d), samplereduce=%d ....", 1278 samples, last_samples, samplereduce); 1279 last_samples = samples; 1280 } 1281 if (samples < 1) return; 1282 1283 /* If requested, dump the raw data we have in the buffer */ 1284 if (ees->dump_vals) dump_buf(coffs, 0, samples, "Raw data is:"); 1285 1286 /* Sort the offsets, trim off the extremes, then choose one. */ 1287 qsort((char *) coffs, (size_t)samples, sizeof(l_fp), offcompare); 1288 1289 noff = samples; 1290 i = 0; 1291 while ((noff - i) > samplereduce) { 1292 /* Trim off the sample which is further away 1293 * from the median. We work this out by doubling 1294 * the median, subtracting off the end samples, and 1295 * looking at the sign of the answer, using the 1296 * identity (c-b)-(b-a) == 2*b-a-c 1297 */ 1298 tmp = coffs[(noff + i)/2]; 1299 L_ADD(&tmp, &tmp); 1300 L_SUB(&tmp, &coffs[i]); 1301 L_SUB(&tmp, &coffs[noff-1]); 1302 if (L_ISNEG(&tmp)) noff--; else i++; 1303 } 1304 1305 /* If requested, dump the reduce data we have in the buffer */ 1306 if (ees->dump_vals) dump_buf(coffs, i, noff, "Reduced to:"); 1307 1308 /* What we do next depends on the setting of the sloppy clock flag. 1309 * If it is on, average the remainder to derive our estimate. 1310 * Otherwise, just pick a representative value from the remaining stuff 1311 */ 1312 if (sloppyclockflag[ees->unit]) { 1313 offset.l_ui = offset.l_uf = 0; 1314 for (j = i; j < noff; j++) 1315 L_ADD(&offset, &coffs[j]); 1316 for (j = samplelog; j > 0; j--) 1317 L_RSHIFTU(&offset); 1318 } 1319 else offset = coffs[i+BESTSAMPLE]; 1320 1321 /* Compute the dispersion as the difference between the 1322 * lowest and highest offsets that remain in the 1323 * consideration list. 1324 * 1325 * It looks like MOST clocks have MOD (max error), so halve it ! 1326 */ 1327 tmp = coffs[noff-1]; 1328 L_SUB(&tmp, &coffs[i]); 1329 #define FRACT_SEC(n) ((1 << 30) / (n/2)) 1330 dispersion = LFPTOFP(&tmp) / 2; /* ++++ */ 1331 if (debug & (DB_SYSLOG_SMPLI | DB_SYSLOG_SMPLE)) msyslog( 1332 (debug & DB_SYSLOG_SMPLE) ? LOG_ERR : LOG_INFO, 1333 "I: [%x] Offset=%06d (%d), disp=%f%s [%d], %d %d=%d %d:%d %d=%d %d", 1334 debug & (DB_SYSLOG_SMPLI | DB_SYSLOG_SMPLE), 1335 offset.l_f / 4295, offset.l_f, 1336 (dispersion * 1526) / 100, 1337 (sloppyclockflag[ees->unit]) ? " by averaging" : "", 1338 FRACT_SEC(10) / 4295, 1339 (coffs[0].l_f) / 4295, 1340 i, 1341 (coffs[i].l_f) / 4295, 1342 (coffs[samples/2].l_f) / 4295, 1343 (coffs[i+BESTSAMPLE].l_f) / 4295, 1344 noff-1, 1345 (coffs[noff-1].l_f) / 4295, 1346 (coffs[samples-1].l_f) / 4295); 1347 1348 /* Are we playing silly wotsits ? 1349 * If we are using all data, see if there is a "small" delta, 1350 * and if so, blurr this with 3/4 of the delta from the last value 1351 */ 1352 if (ees->usealldata && ees->offset.l_uf) { 1353 long diff = (long) (ees->offset.l_uf - offset.l_uf); 1354 1355 /* is the delta small enough ? */ 1356 if ((- FRACT_SEC(100)) < diff && diff < FRACT_SEC(100)) { 1357 int samd = (64 * 4) / samples; 1358 long new; 1359 if (samd < 2) samd = 2; 1360 new = offset.l_uf + ((diff * (samd -1)) / samd); 1361 1362 /* Sign change -> need to fix up int part */ 1363 if ((new & 0x80000000) != 1364 (((long) offset.l_uf) & 0x80000000)) 1365 { NLOG(NLOG_CLOCKINFO) /* conditional if clause for conditional syslog */ 1366 msyslog(LOG_INFO, "I: %lx != %lx (%lx %lx), so add %d", 1367 new & 0x80000000, 1368 ((long) offset.l_uf) & 0x80000000, 1369 new, (long) offset.l_uf, 1370 (new < 0) ? -1 : 1); 1371 offset.l_ui += (new < 0) ? -1 : 1; 1372 } 1373 dispersion /= 4; 1374 if (debug & (DB_SYSLOG_SMTHI | DB_SYSLOG_SMTHE)) msyslog( 1375 (debug & DB_SYSLOG_SMTHE) ? LOG_ERR : LOG_INFO, 1376 "I: [%x] Smooth data: %ld -> %ld, dispersion now %f", 1377 debug & (DB_SYSLOG_SMTHI | DB_SYSLOG_SMTHE), 1378 ((long) offset.l_uf) / 4295, new / 4295, 1379 (dispersion * 1526) / 100); 1380 offset.l_uf = (unsigned long) new; 1381 } 1382 else if (debug & (DB_SYSLOG_NSMTHI | DB_SYSLOG_NSMTHE)) msyslog( 1383 (debug & DB_SYSLOG_NSMTHE) ? LOG_ERR : LOG_INFO, 1384 "[%x] No smooth as delta not %d < %ld < %d", 1385 debug & (DB_SYSLOG_NSMTHI | DB_SYSLOG_NSMTHE), 1386 - FRACT_SEC(100), diff, FRACT_SEC(100)); 1387 } 1388 else if (debug & (DB_SYSLOG_NSMTHI | DB_SYSLOG_NSMTHE)) msyslog( 1389 (debug & DB_SYSLOG_NSMTHE) ? LOG_ERR : LOG_INFO, 1390 "I: [%x] No smooth as flag=%x and old=%x=%d (%d:%d)", 1391 debug & (DB_SYSLOG_NSMTHI | DB_SYSLOG_NSMTHE), 1392 ees->usealldata, ees->offset.l_f, ees->offset.l_uf, 1393 offset.l_f, ees->offset.l_f - offset.l_f); 1394 1395 /* Collect offset info for debugging info */ 1396 ees->offset = offset; 1397 ees->lowoffset = coffs[i]; 1398 ees->highoffset = coffs[noff-1]; 1399 1400 /* Determine synchronization status. Can be unsync'd either 1401 * by a report from the clock or by a leap hold. 1402 * 1403 * Loss of the radio signal for a short time does not cause 1404 * us to go unsynchronised, since the receiver keeps quite 1405 * good time on its own. The spec says 20ms in 4 hours; the 1406 * observed drift in our clock (Cambridge) is about a second 1407 * a day, but even that keeps us within the inherent tolerance 1408 * of the clock for about 15 minutes. Observation shows that 1409 * the typical "short" outage is 3 minutes, so to allow us 1410 * to ride out those, we will give it 5 minutes. 1411 */ 1412 lostsync = current_time - ees->clocklastgood > 300 ? 1 : 0; 1413 isinsync = (lostsync || ees->leaphold > current_time) ? 0 : 1; 1414 1415 /* Done. Use time of last good, synchronised code as the 1416 * reference time, and lastsampletime as the receive time. 1417 */ 1418 if (ees->fix_pending) { 1419 msyslog(LOG_ERR, "MSF%d: fix_pending=%d -> jump %x.%08x\n", 1420 ees->fix_pending, ees->unit, offset.l_i, offset.l_f); 1421 ees->fix_pending = 0; 1422 } 1423 LFPTOD(&offset, doffset); 1424 refclock_receive(ees->peer); 1425 ees_event(ees, lostsync ? CEVNT_PROP : CEVNT_NOMINAL); 1426 } 1427 1428 /* msfees_poll - called by the transmit procedure */ 1429 static void 1430 msfees_poll( 1431 int unit, 1432 struct peer *peer 1433 ) 1434 { 1435 if (unit >= MAXUNITS) { 1436 msyslog(LOG_ERR, "ees clock poll: INTERNAL: unit %d invalid", 1437 unit); 1438 return; 1439 } 1440 if (!unitinuse[unit]) { 1441 msyslog(LOG_ERR, "ees clock poll: INTERNAL: unit %d unused", 1442 unit); 1443 return; 1444 } 1445 1446 ees_process(eesunits[unit]); 1447 1448 if ((current_time - eesunits[unit]->lasttime) > 150) 1449 ees_event(eesunits[unit], CEVNT_FAULT); 1450 } 1451 1452 1453 #else 1454 int refclock_msfees_bs; 1455 #endif /* REFCLOCK */ 1456