xref: /freebsd/contrib/ntp/ntpd/refclock_msfees.c (revision 1e413cf93298b5b97441a21d9a50fdcd0ee9945e)
1 /* refclock_ees - clock driver for the EES M201 receiver */
2 
3 #ifdef HAVE_CONFIG_H
4 #include <config.h>
5 #endif
6 
7 #if defined(REFCLOCK) && defined(CLOCK_MSFEES) && defined(PPS)
8 
9 /* Currently REQUIRES STREAM and PPSCD. CLK and CBREAK modes
10  * were removed as the code was overly hairy, they weren't in use
11  * (hence probably didn't work).  Still in RCS file at cl.cam.ac.uk
12  */
13 
14 #include "ntpd.h"
15 #include "ntp_io.h"
16 #include "ntp_refclock.h"
17 #include "ntp_unixtime.h"
18 #include "ntp_calendar.h"
19 
20 #include <ctype.h>
21 #if defined(HAVE_BSD_TTYS)
22 #include <sgtty.h>
23 #endif /* HAVE_BSD_TTYS */
24 #if defined(HAVE_SYSV_TTYS)
25 #include <termio.h>
26 #endif /* HAVE_SYSV_TTYS */
27 #if defined(HAVE_TERMIOS)
28 #include <termios.h>
29 #endif
30 #if defined(STREAM)
31 #include <stropts.h>
32 #endif
33 
34 #ifdef HAVE_SYS_TERMIOS_H
35 # include <sys/termios.h>
36 #endif
37 #ifdef HAVE_SYS_PPSCLOCK_H
38 # include <sys/ppsclock.h>
39 #endif
40 
41 #include "ntp_stdlib.h"
42 
43 /*
44 	fudgefactor	= fudgetime1;
45 	os_delay	= fudgetime2;
46 	   offset_fudge	= os_delay + fudgefactor + inherent_delay;
47 	stratumtouse	= fudgeval1 & 0xf
48 	debug		= fudgeval2;
49 	sloppyclockflag	= flags & CLK_FLAG1;
50 		1	  log smoothing summary when processing sample
51 		4	  dump the buffer from the clock
52 		8	  EIOGETKD the last n uS time stamps
53 	if (flags & CLK_FLAG2 && unitinuse) ees->leaphold = 0;
54 	ees->dump_vals	= flags & CLK_FLAG3;
55 	ees->usealldata	= flags & CLK_FLAG4;
56 
57 
58 	bug->values[0] = (ees->lasttime) ? current_time - ees->lasttime : 0;
59 	bug->values[1] = (ees->clocklastgood)?current_time-ees->clocklastgood:0;
60 	bug->values[2] = (u_long)ees->status;
61 	bug->values[3] = (u_long)ees->lastevent;
62 	bug->values[4] = (u_long)ees->reason;
63 	bug->values[5] = (u_long)ees->nsamples;
64 	bug->values[6] = (u_long)ees->codestate;
65 	bug->values[7] = (u_long)ees->day;
66 	bug->values[8] = (u_long)ees->hour;
67 	bug->values[9] = (u_long)ees->minute;
68 	bug->values[10] = (u_long)ees->second;
69 	bug->values[11] = (u_long)ees->tz;
70 	bug->values[12] = ees->yearstart;
71 	bug->values[13] = (ees->leaphold > current_time) ?
72 				ees->leaphold - current_time : 0;
73 	bug->values[14] = inherent_delay[unit].l_uf;
74 	bug->values[15] = offset_fudge[unit].l_uf;
75 
76 	bug->times[0] = ees->reftime;
77 	bug->times[1] = ees->arrvtime;
78 	bug->times[2] = ees->lastsampletime;
79 	bug->times[3] = ees->offset;
80 	bug->times[4] = ees->lowoffset;
81 	bug->times[5] = ees->highoffset;
82 	bug->times[6] = inherent_delay[unit];
83 	bug->times[8] = os_delay[unit];
84 	bug->times[7] = fudgefactor[unit];
85 	bug->times[9] = offset_fudge[unit];
86 	bug->times[10]= ees->yearstart, 0;
87 	*/
88 
89 /* This should support the use of an EES M201 receiver with RS232
90  * output (modified to transmit time once per second).
91  *
92  * For the format of the message sent by the clock, see the EESM_
93  * definitions below.
94  *
95  * It appears to run free for an integral number of minutes, until the error
96  * reaches 4mS, at which point it steps at second = 01.
97  * It appears that sometimes it steps 4mS (say at 7 min interval),
98  * then the next minute it decides that it was an error, so steps back.
99  * On the next minute it steps forward again :-(
100  * This is typically 16.5uS/S then 3975uS at the 4min re-sync,
101  * or 9.5uS/S then 3990.5uS at a 7min re-sync,
102  * at which point it may lose the "00" second time stamp.
103  * I assume that the most accurate time is just AFTER the re-sync.
104  * Hence remember the last cycle interval,
105  *
106  * Can run in any one of:
107  *
108  *	PPSCD	PPS signal sets CD which interupts, and grabs the current TOD
109  *	(sun)		*in the interupt code*, so as to avoid problems with
110  *			the STREAMS scheduling.
111  *
112  * It appears that it goes 16.5 uS slow each second, then every 4 mins it
113  * generates no "00" second tick, and gains 3975 uS. Ho Hum ! (93/2/7)
114  */
115 
116 /* Definitions */
117 #ifndef	MAXUNITS
118 #define	MAXUNITS	4	/* maximum number of EES units permitted */
119 #endif
120 
121 #ifndef	EES232
122 #define	EES232	"/dev/ees%d"	/* Device to open to read the data */
123 #endif
124 
125 /* Other constant stuff */
126 #ifndef	EESPRECISION
127 #define	EESPRECISION	(-10)		/* what the heck - 2**-10 = 1ms */
128 #endif
129 #ifndef	EESREFID
130 #define	EESREFID	"MSF\0"		/* String to identify the clock */
131 #endif
132 #ifndef	EESHSREFID
133 #define	EESHSREFID	(0x7f7f0000 | ((REFCLK_MSF_EES) << 8)) /* Numeric refid */
134 #endif
135 
136 /* Description of clock */
137 #define	EESDESCRIPTION		"EES M201 MSF Receiver"
138 
139 /* Speed we run the clock port at. If this is changed the UARTDELAY
140  * value should be recomputed to suit.
141  */
142 #ifndef	SPEED232
143 #define	SPEED232	B9600	/* 9600 baud */
144 #endif
145 
146 /* What is the inherent delay for this mode of working, i.e. when is the
147  * data time stamped.
148  */
149 #define	SAFETY_SHIFT	10	/* Split the shift to avoid overflow */
150 #define	BITS_TO_L_FP(bits, baud) \
151 (((((bits)*2 +1) << (FRACTION_PREC-SAFETY_SHIFT)) / (2*baud)) << SAFETY_SHIFT)
152 #define	INH_DELAY_CBREAK	BITS_TO_L_FP(119, 9600)
153 #define	INH_DELAY_PPS		BITS_TO_L_FP(  0, 9600)
154 
155 #ifndef	STREAM_PP1
156 #define	STREAM_PP1	"ppsclocd\0<-- patch space for module name1 -->"
157 #endif
158 #ifndef	STREAM_PP2
159 #define	STREAM_PP2	"ppsclock\0<-- patch space for module name2 -->"
160 #endif
161 
162      /* Offsets of the bytes of the serial line code.  The clock gives
163  * local time with a GMT/BST indication. The EESM_ definitions
164  * give offsets into ees->lastcode.
165  */
166 #define EESM_CSEC	 0	/* centiseconds - always zero in our clock  */
167 #define EESM_SEC	 1	/* seconds in BCD			    */
168 #define EESM_MIN	 2	/* minutes in BCD			    */
169 #define EESM_HOUR	 3	/* hours in BCD				    */
170 #define EESM_DAYWK	 4	/* day of week (Sun = 0 etc)		    */
171 #define EESM_DAY	 5	/* day of month in BCD			    */
172 #define EESM_MON	 6	/* month in BCD				    */
173 #define EESM_YEAR	 7	/* year MOD 100 in BCD			    */
174 #define EESM_LEAP	 8	/* 0x0f if leap year, otherwise zero        */
175 #define EESM_BST	 9	/* 0x03 if BST, 0x00 if GMT		    */
176 #define EESM_MSFOK	10	/* 0x3f if radio good, otherwise zero	    */
177 				/* followed by a frame alignment byte (0xff) /
178 				/  which is not put into the lastcode buffer*/
179 
180 /* Length of the serial time code, in characters.  The first length
181  * is less the frame alignment byte.
182  */
183 #define	LENEESPRT	(EESM_MSFOK+1)
184 #define	LENEESCODE	(LENEESPRT+1)
185 
186      /* Code state. */
187 #define	EESCS_WAIT	0       /* waiting for start of timecode */
188 #define	EESCS_GOTSOME	1	/* have an incomplete time code buffered */
189 
190      /* Default fudge factor and character to receive */
191 #define	DEFFUDGETIME	0	/* Default user supplied fudge factor */
192 #ifndef	DEFOSTIME
193 #define	DEFOSTIME	0	/* Default OS delay -- passed by Make ? */
194 #endif
195 #define	DEFINHTIME	INH_DELAY_PPS /* inherent delay due to sample point*/
196 
197      /* Limits on things.  Reduce the number of samples to SAMPLEREDUCE by median
198  * elimination.  If we're running with an accurate clock, chose the BESTSAMPLE
199  * as the estimated offset, otherwise average the remainder.
200  */
201 #define	FULLSHIFT	6			/* NCODES root 2 */
202 #define NCODES		(1<< FULLSHIFT)		/* 64 */
203 #define	REDUCESHIFT	(FULLSHIFT -1)		/* SAMPLEREDUCE root 2 */
204 
205      /* Towards the high ( Why ?) end of half */
206 #define	BESTSAMPLE	((samplereduce * 3) /4)	/* 24 */
207 
208      /* Leap hold time.  After a leap second the clock will no longer be
209  * reliable until it resynchronizes.  Hope 40 minutes is enough. */
210 #define	EESLEAPHOLD	(40 * 60)
211 
212 #define	EES_STEP_F	(1 << 24) /* the receiver steps in units of about 4ms */
213 #define	EES_STEP_F_GRACE (EES_STEP_F/8) /*Allow for slop of 1/8 which is .5ms*/
214 #define	EES_STEP_NOTE	(1 << 21)/* Log any unexpected jumps, say .5 ms .... */
215 #define	EES_STEP_NOTES	50	/* Only do a limited number */
216 #define	MAX_STEP	16	/* Max number of steps to remember */
217 
218      /* debug is a bit mask of debugging that is wanted */
219 #define	DB_SYSLOG_SMPLI		0x0001
220 #define	DB_SYSLOG_SMPLE		0x0002
221 #define	DB_SYSLOG_SMTHI		0x0004
222 #define	DB_SYSLOG_NSMTHE	0x0008
223 #define	DB_SYSLOG_NSMTHI	0x0010
224 #define	DB_SYSLOG_SMTHE		0x0020
225 #define	DB_PRINT_EV		0x0040
226 #define	DB_PRINT_CDT		0x0080
227 #define	DB_PRINT_CDTC		0x0100
228 #define	DB_SYSLOG_KEEPD		0x0800
229 #define	DB_SYSLOG_KEEPE		0x1000
230 #define	DB_LOG_DELTAS		0x2000
231 #define	DB_PRINT_DELTAS		0x4000
232 #define	DB_LOG_AWAITMORE	0x8000
233 #define	DB_LOG_SAMPLES		0x10000
234 #define	DB_NO_PPS		0x20000
235 #define	DB_INC_PPS		0x40000
236 #define	DB_DUMP_DELTAS		0x80000
237 
238      struct eesunit {			/* EES unit control structure. */
239 	     struct peer *peer;		/* associated peer structure */
240 	     struct refclockio io;		/* given to the I/O handler */
241 	     l_fp	reftime;		/* reference time */
242 	     l_fp	lastsampletime;		/* time as in txt from last EES msg */
243 	     l_fp	arrvtime;		/* Time at which pkt arrived */
244 	     l_fp	codeoffsets[NCODES];	/* the time of arrival of 232 codes */
245 	     l_fp	offset;			/* chosen offset        (for clkbug) */
246 	     l_fp	lowoffset;		/* lowest sample offset (for clkbug) */
247 	     l_fp	highoffset;		/* highest   "     "    (for clkbug) */
248 	     char	lastcode[LENEESCODE+6];	/* last time code we received */
249 	     u_long	lasttime;		/* last time clock heard from */
250 	     u_long	clocklastgood;		/* last time good radio seen */
251 	     u_char	lencode;		/* length of code in buffer */
252 	     u_char	nsamples;		/* number of samples we've collected */
253 	     u_char	codestate;		/* state of 232 code reception */
254 	     u_char	unit;			/* unit number for this guy */
255 	     u_char	status;			/* clock status */
256 	     u_char	lastevent;		/* last clock event */
257 	     u_char	reason;			/* reason for last abort */
258 	     u_char	hour;			/* hour of day */
259 	     u_char	minute;			/* minute of hour */
260 	     u_char	second;			/* seconds of minute */
261 	     char	tz;			/* timezone from clock */
262 	     u_char	ttytype;		/* method used */
263 	     u_char	dump_vals;		/* Should clock values be dumped */
264 	     u_char	usealldata;		/* Use ALL samples */
265 	     u_short	day;			/* day of year from last code */
266 	     u_long	yearstart;		/* start of current year */
267 	     u_long	leaphold;		/* time of leap hold expiry */
268 	     u_long	badformat;		/* number of bad format codes */
269 	     u_long	baddata;		/* number of invalid time codes */
270 	     u_long	timestarted;		/* time we started this */
271 	     long	last_pps_no;		/* The serial # of the last PPS */
272 	     char	fix_pending;		/* Is a "sync to time" pending ? */
273 	     /* Fine tuning - compensate for 4 mS ramping .... */
274 	     l_fp	last_l;			/* last time stamp */
275 	     u_char	last_steps[MAX_STEP];	/* Most recent n steps */
276 	     int	best_av_step;		/* Best guess at average step */
277 	     char	best_av_step_count;	/* # of steps over used above */
278 	     char	this_step;		/* Current pos in buffer */
279 	     int	last_step_late;		/* How late the last step was (0-59) */
280 	     long	jump_fsecs;		/* # of fractions of a sec last jump */
281 	     u_long	last_step;		/* time of last step */
282 	     int	last_step_secs;		/* Number of seconds in last step */
283 	     int	using_ramp;		/* 1 -> noemal, -1 -> over stepped */
284      };
285 #define	last_sec	last_l.l_ui
286 #define	last_sfsec	last_l.l_f
287 #define	this_uisec	((ees->arrvtime).l_ui)
288 #define	this_sfsec	((ees->arrvtime).l_f)
289 #define	msec(x)		((x) / (1<<22))
290 #define	LAST_STEPS	(sizeof ees->last_steps / sizeof ees->last_steps[0])
291 #define	subms(x)	((((((x < 0) ? (-(x)) : (x)) % (1<<22))/2) * 625) / (1<<(22 -5)))
292 
293 /* Bitmask for what methods to try to use -- currently only PPS enabled */
294 #define	T_CBREAK	1
295 #define	T_PPS		8
296 /* macros to test above */
297 #define	is_cbreak(x)	((x)->ttytype & T_CBREAK)
298 #define	is_pps(x)	((x)->ttytype & T_PPS)
299 #define	is_any(x)	((x)->ttytype)
300 
301 #define	CODEREASON	20	/* reason codes */
302 
303 /* Data space for the unit structures.  Note that we allocate these on
304  * the fly, but never give them back. */
305 static struct eesunit *eesunits[MAXUNITS];
306 static u_char unitinuse[MAXUNITS];
307 
308 /* Keep the fudge factors separately so they can be set even
309  * when no clock is configured. */
310 static l_fp inherent_delay[MAXUNITS];		/* when time stamp is taken */
311 static l_fp fudgefactor[MAXUNITS];		/* fudgetime1 */
312 static l_fp os_delay[MAXUNITS];			/* fudgetime2 */
313 static l_fp offset_fudge[MAXUNITS];		/* Sum of above */
314 static u_char stratumtouse[MAXUNITS];
315 static u_char sloppyclockflag[MAXUNITS];
316 
317 static int deltas[60];
318 
319 static l_fp acceptable_slop; /* = { 0, 1 << (FRACTION_PREC -2) }; */
320 static l_fp onesec; /* = { 1, 0 }; */
321 
322 #ifndef	DUMP_BUF_SIZE	/* Size of buffer to be used by dump_buf */
323 #define	DUMP_BUF_SIZE	10112
324 #endif
325 
326 /* ees_reset - reset the count back to zero */
327 #define	ees_reset(ees) (ees)->nsamples = 0; \
328 (ees)->codestate = EESCS_WAIT
329 
330 /* ees_event - record and report an event */
331 #define	ees_event(ees, evcode) if ((ees)->status != (u_char)(evcode)) \
332 ees_report_event((ees), (evcode))
333 
334      /* Find the precision of the system clock by reading it */
335 #define	USECS	1000000
336 #define	MINSTEP	5	/* some systems increment uS on each call */
337 #define	MAXLOOPS (USECS/9)
338 
339 /*
340  * Function prototypes
341  */
342 
343 static	int	msfees_start	P((int unit, struct peer *peer));
344 static	void	msfees_shutdown	P((int unit, struct peer *peer));
345 static	void	msfees_poll	P((int unit, struct peer *peer));
346 static	void	msfees_init	P((void));
347 static	void	dump_buf	P((l_fp *coffs, int from, int to, char *text));
348 static	void	ees_report_event P((struct eesunit *ees, int code));
349 static	void	ees_receive	P((struct recvbuf *rbufp));
350 static	void	ees_process	P((struct eesunit *ees));
351 #ifdef QSORT_USES_VOID_P
352 static	int	offcompare	P((const void *va, const void *vb));
353 #else
354 static	int	offcompare	P((const l_fp *a, const l_fp *b));
355 #endif /* QSORT_USES_VOID_P */
356 
357 
358 /*
359  * Transfer vector
360  */
361 struct	refclock refclock_msfees = {
362 	msfees_start,		/* start up driver */
363 	msfees_shutdown,	/* shut down driver */
364 	msfees_poll,		/* transmit poll message */
365 	noentry,		/* not used */
366 	msfees_init,		/* initialize driver */
367 	noentry,		/* not used */
368 	NOFLAGS			/* not used */
369 };
370 
371 
372 static void
373 dump_buf(
374 	l_fp *coffs,
375 	int from,
376 	int to,
377 	char *text
378 	)
379 {
380 	char buff[DUMP_BUF_SIZE + 80];
381 	int i;
382 	register char *ptr = buff;
383 
384 	sprintf(ptr, text);
385 	for (i=from; i<to; i++)
386 	{	while (*ptr) ptr++;
387 	if ((ptr-buff) > DUMP_BUF_SIZE) msyslog(LOG_DEBUG, "D: %s", ptr=buff);
388 	sprintf(ptr, " %06d", ((int)coffs[i].l_f) / 4295);
389 	}
390 	msyslog(LOG_DEBUG, "D: %s", buff);
391 }
392 
393 /* msfees_init - initialize internal ees driver data */
394 static void
395 msfees_init(void)
396 {
397 	register int i;
398 	/* Just zero the data arrays */
399 	memset((char *)eesunits, 0, sizeof eesunits);
400 	memset((char *)unitinuse, 0, sizeof unitinuse);
401 
402 	acceptable_slop.l_ui = 0;
403 	acceptable_slop.l_uf = 1 << (FRACTION_PREC -2);
404 
405 	onesec.l_ui = 1;
406 	onesec.l_uf = 0;
407 
408 	/* Initialize fudge factors to default. */
409 	for (i = 0; i < MAXUNITS; i++) {
410 		fudgefactor[i].l_ui	= 0;
411 		fudgefactor[i].l_uf	= DEFFUDGETIME;
412 		os_delay[i].l_ui	= 0;
413 		os_delay[i].l_uf	= DEFOSTIME;
414 		inherent_delay[i].l_ui	= 0;
415 		inherent_delay[i].l_uf	= DEFINHTIME;
416 		offset_fudge[i]		= os_delay[i];
417 		L_ADD(&offset_fudge[i], &fudgefactor[i]);
418 		L_ADD(&offset_fudge[i], &inherent_delay[i]);
419 		stratumtouse[i]		= 0;
420 		sloppyclockflag[i]	= 0;
421 	}
422 }
423 
424 
425 /* msfees_start - open the EES devices and initialize data for processing */
426 static int
427 msfees_start(
428 	int unit,
429 	struct peer *peer
430 	)
431 {
432 	register struct eesunit *ees;
433 	register int i;
434 	int fd232 = -1;
435 	char eesdev[20];
436 	struct termios ttyb, *ttyp;
437 	struct refclockproc *pp;
438 	pp = peer->procptr;
439 
440 	if (unit >= MAXUNITS) {
441 		msyslog(LOG_ERR, "ees clock: unit number %d invalid (max %d)",
442 			unit, MAXUNITS-1);
443 		return 0;
444 	}
445 	if (unitinuse[unit]) {
446 		msyslog(LOG_ERR, "ees clock: unit number %d in use", unit);
447 		return 0;
448 	}
449 
450 	/* Unit okay, attempt to open the devices.  We do them both at
451 	 * once to make sure we can */
452 	(void) sprintf(eesdev, EES232, unit);
453 
454 	fd232 = open(eesdev, O_RDWR, 0777);
455 	if (fd232 == -1) {
456 		msyslog(LOG_ERR, "ees clock: open of %s failed: %m", eesdev);
457 		return 0;
458 	}
459 
460 #ifdef	TIOCEXCL
461 	/* Set for exclusive use */
462 	if (ioctl(fd232, TIOCEXCL, (char *)0) < 0) {
463 		msyslog(LOG_ERR, "ees clock: ioctl(%s, TIOCEXCL): %m", eesdev);
464 		goto screwed;
465 	}
466 #endif
467 
468 	/* STRIPPED DOWN VERSION: Only PPS CD is supported at the moment */
469 
470 	/* Set port characteristics.  If we don't have a STREAMS module or
471 	 * a clock line discipline, cooked mode is just usable, even though it
472 	 * strips the top bit.  The only EES byte which uses the top
473 	 * bit is the year, and we don't use that anyway. If we do
474 	 * have the line discipline, we choose raw mode, and the
475 	 * line discipline code will block up the messages.
476 	 */
477 
478 	/* STIPPED DOWN VERSION: Only PPS CD is supported at the moment */
479 
480 	ttyp = &ttyb;
481 	if (tcgetattr(fd232, ttyp) < 0) {
482 		msyslog(LOG_ERR, "msfees_start: tcgetattr(%s): %m", eesdev);
483 		goto screwed;
484 	}
485 
486 	ttyp->c_iflag = IGNBRK|IGNPAR|ICRNL;
487 	ttyp->c_cflag = SPEED232|CS8|CLOCAL|CREAD;
488 	ttyp->c_oflag = 0;
489 	ttyp->c_lflag = ICANON;
490 	ttyp->c_cc[VERASE] = ttyp->c_cc[VKILL] = '\0';
491 	if (tcsetattr(fd232, TCSANOW, ttyp) < 0) {
492 		msyslog(LOG_ERR, "msfees_start: tcsetattr(%s): %m", eesdev);
493 		goto screwed;
494 	}
495 
496 	if (tcflush(fd232, TCIOFLUSH) < 0) {
497 		msyslog(LOG_ERR, "msfees_start: tcflush(%s): %m", eesdev);
498 		goto screwed;
499 	}
500 
501 	inherent_delay[unit].l_uf = INH_DELAY_PPS;
502 
503 	/* offset fudge (how *late* the timestamp is) = fudge + os delays */
504 	offset_fudge[unit] = os_delay[unit];
505 	L_ADD(&offset_fudge[unit], &fudgefactor[unit]);
506 	L_ADD(&offset_fudge[unit], &inherent_delay[unit]);
507 
508 	/* Looks like this might succeed.  Find memory for the structure.
509 	 * Look to see if there are any unused ones, if not we malloc() one.
510 	 */
511 	if (eesunits[unit] != 0) /* The one we want is okay */
512 	    ees = eesunits[unit];
513 	else {
514 		/* Look for an unused, but allocated struct */
515 		for (i = 0; i < MAXUNITS; i++) {
516 			if (!unitinuse[i] && eesunits[i] != 0)
517 			    break;
518 		}
519 
520 		if (i < MAXUNITS) {	/* Reclaim this one */
521 			ees = eesunits[i];
522 			eesunits[i] = 0;
523 		}			/* no spare -- make a new one */
524 		else ees = (struct eesunit *) emalloc(sizeof(struct eesunit));
525 	}
526 	memset((char *)ees, 0, sizeof(struct eesunit));
527 	eesunits[unit] = ees;
528 
529 	/* Set up the structures */
530 	ees->peer	= peer;
531 	ees->unit	= (u_char)unit;
532 	ees->timestarted= current_time;
533 	ees->ttytype	= 0;
534 	ees->io.clock_recv= ees_receive;
535 	ees->io.srcclock= (caddr_t)ees;
536 	ees->io.datalen	= 0;
537 	ees->io.fd	= fd232;
538 
539 	/* Okay.  Push one of the two (linked into the kernel, or dynamically
540 	 * loaded) STREAMS module, and give it to the I/O code to start
541 	 * receiving stuff.
542 	 */
543 
544 #ifdef STREAM
545 	{
546 		int rc1;
547 		/* Pop any existing onews first ... */
548 		while (ioctl(fd232, I_POP, 0 ) >= 0) ;
549 
550 		/* Now try pushing either of the possible modules */
551 		if ((rc1=ioctl(fd232, I_PUSH, STREAM_PP1)) < 0 &&
552 		    ioctl(fd232, I_PUSH, STREAM_PP2) < 0) {
553 			msyslog(LOG_ERR,
554 				"ees clock: Push of `%s' and `%s' to %s failed %m",
555 				STREAM_PP1, STREAM_PP2, eesdev);
556 			goto screwed;
557 		}
558 		else {
559 			NLOG(NLOG_CLOCKINFO) /* conditional if clause for conditional syslog */
560 				msyslog(LOG_INFO, "I: ees clock: PUSHed %s on %s",
561 					(rc1 >= 0) ? STREAM_PP1 : STREAM_PP2, eesdev);
562 			ees->ttytype |= T_PPS;
563 		}
564 	}
565 #endif /* STREAM */
566 
567 	/* Add the clock */
568 	if (!io_addclock(&ees->io)) {
569 		/* Oh shit.  Just close and return. */
570 		msyslog(LOG_ERR, "ees clock: io_addclock(%s): %m", eesdev);
571 		goto screwed;
572 	}
573 
574 
575 	/* All done.  Initialize a few random peer variables, then
576 	 * return success. */
577 	peer->precision	= sys_precision;
578 	peer->stratum	= stratumtouse[unit];
579 	if (stratumtouse[unit] <= 1) {
580 		memcpy((char *)&pp->refid, EESREFID, 4);
581 		if (unit > 0 && unit < 10)
582 		    ((char *)&pp->refid)[3] = '0' + unit;
583 	} else {
584 		peer->refid = htonl(EESHSREFID);
585 	}
586 	unitinuse[unit] = 1;
587 	pp->unitptr = (caddr_t) &eesunits[unit];
588 	pp->clockdesc = EESDESCRIPTION;
589 	msyslog(LOG_ERR, "ees clock: %s OK on %d", eesdev, unit);
590 	return (1);
591 
592     screwed:
593 	if (fd232 != -1)
594 	    (void) close(fd232);
595 	return (0);
596 }
597 
598 
599 /* msfees_shutdown - shut down a EES clock */
600 static void
601 msfees_shutdown(
602 	int unit,
603 	struct peer *peer
604 	)
605 {
606 	register struct eesunit *ees;
607 
608 	if (unit >= MAXUNITS) {
609 		msyslog(LOG_ERR,
610 			"ees clock: INTERNAL ERROR, unit number %d invalid (max %d)",
611 			unit, MAXUNITS);
612 		return;
613 	}
614 	if (!unitinuse[unit]) {
615 		msyslog(LOG_ERR,
616 			"ees clock: INTERNAL ERROR, unit number %d not in use", unit);
617 		return;
618 	}
619 
620 	/* Tell the I/O module to turn us off.  We're history. */
621 	ees = eesunits[unit];
622 	io_closeclock(&ees->io);
623 	unitinuse[unit] = 0;
624 }
625 
626 
627 /* ees_report_event - note the occurance of an event */
628 static void
629 ees_report_event(
630 	struct eesunit *ees,
631 	int code
632 	)
633 {
634 	if (ees->status != (u_char)code) {
635 		ees->status = (u_char)code;
636 		if (code != CEVNT_NOMINAL)
637 		    ees->lastevent = (u_char)code;
638 		/* Should report event to trap handler in here.
639 		 * Soon...
640 		 */
641 	}
642 }
643 
644 
645 /* ees_receive - receive data from the serial interface on an EES clock */
646 static void
647 ees_receive(
648 	struct recvbuf *rbufp
649 	)
650 {
651 	register int n_sample;
652 	register int day;
653 	register struct eesunit *ees;
654 	register u_char *dpt;		/* Data PoinTeR: move along ... */
655 	register u_char *dpend;		/* Points just *after* last data char */
656 	register char *cp;
657 	l_fp tmp;
658 	int call_pps_sample = 0;
659 	l_fp pps_arrvstamp;
660 	int	sincelast;
661 	int	pps_step = 0;
662 	int	suspect_4ms_step = 0;
663 	struct ppsclockev ppsclockev;
664 	long *ptr = (long *) &ppsclockev;
665 	int rc;
666 	int request;
667 #ifdef HAVE_CIOGETEV
668 	request = CIOGETEV;
669 #endif
670 #ifdef HAVE_TIOCGPPSEV
671 	request = TIOCGPPSEV;
672 #endif
673 
674 	/* Get the clock this applies to and a pointer to the data */
675 	ees = (struct eesunit *)rbufp->recv_srcclock;
676 	dpt = (u_char *)&rbufp->recv_space;
677 	dpend = dpt + rbufp->recv_length;
678 	if ((debug & DB_LOG_AWAITMORE) && (rbufp->recv_length != LENEESCODE))
679 	    printf("[%d] ", rbufp->recv_length);
680 
681 	/* Check out our state and process appropriately */
682 	switch (ees->codestate) {
683 	    case EESCS_WAIT:
684 		/* Set an initial guess at the timestamp as the recv time.
685 		 * If just running in CBREAK mode, we can't improve this.
686 		 * If we have the CLOCK Line Discipline, PPSCD, or sime such,
687 		 * then we will do better later ....
688 		 */
689 		ees->arrvtime = rbufp->recv_time;
690 		ees->codestate = EESCS_GOTSOME;
691 		ees->lencode = 0;
692 		/*FALLSTHROUGH*/
693 
694 	    case EESCS_GOTSOME:
695 		cp = &(ees->lastcode[ees->lencode]);
696 
697 		/* Gobble the bytes until the final (possibly stripped) 0xff */
698 		while (dpt < dpend && (*dpt & 0x7f) != 0x7f) {
699 			*cp++ = (char)*dpt++;
700 			ees->lencode++;
701 			/* Oh dear -- too many bytes .. */
702 			if (ees->lencode > LENEESPRT) {
703 				NLOG(NLOG_CLOCKINFO) /* conditional if clause for conditional syslog */
704 					msyslog(LOG_INFO,
705 						"I: ees clock: %d + %d > %d [%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x]",
706 						ees->lencode, dpend - dpt, LENEESPRT,
707 #define D(x) (ees->lastcode[x])
708 						D(0), D(1), D(2), D(3), D(4), D(5), D(6),
709 						D(7), D(8), D(9), D(10), D(11), D(12));
710 #undef	D
711 				ees->badformat++;
712 				ees->reason = CODEREASON + 1;
713 				ees_event(ees, CEVNT_BADREPLY);
714 				ees_reset(ees);
715 				return;
716 			}
717 		}
718 		/* Gave up because it was end of the buffer, rather than ff */
719 		if (dpt == dpend) {
720 			/* Incomplete.  Wait for more. */
721 			if (debug & DB_LOG_AWAITMORE)
722 			    msyslog(LOG_INFO,
723 				    "I: ees clock %d: %p == %p: await more",
724 				    ees->unit, dpt, dpend);
725 			return;
726 		}
727 
728 		/* This shouldn't happen ... ! */
729 		if ((*dpt & 0x7f) != 0x7f) {
730 			msyslog(LOG_INFO, "I: ees clock: %0x & 0x7f != 0x7f", *dpt);
731 			ees->badformat++;
732 			ees->reason = CODEREASON + 2;
733 			ees_event(ees, CEVNT_BADREPLY);
734 			ees_reset(ees);
735 			return;
736 		}
737 
738 		/* Skip the 0xff */
739 		dpt++;
740 
741 		/* Finally, got a complete buffer.  Mainline code will
742 		 * continue on. */
743 		cp = ees->lastcode;
744 		break;
745 
746 	    default:
747 		msyslog(LOG_ERR, "ees clock: INTERNAL ERROR: %d state %d",
748 			ees->unit, ees->codestate);
749 		ees->reason = CODEREASON + 5;
750 		ees_event(ees, CEVNT_FAULT);
751 		ees_reset(ees);
752 		return;
753 	}
754 
755 	/* Boy!  After all that crap, the lastcode buffer now contains
756 	 * something we hope will be a valid time code.  Do length
757 	 * checks and sanity checks on constant data.
758 	 */
759 	ees->codestate = EESCS_WAIT;
760 	ees->lasttime = current_time;
761 	if (ees->lencode != LENEESPRT) {
762 		ees->badformat++;
763 		ees->reason = CODEREASON + 6;
764 		ees_event(ees, CEVNT_BADREPLY);
765 		ees_reset(ees);
766 		return;
767 	}
768 
769 	cp = ees->lastcode;
770 
771 	/* Check that centisecond is zero */
772 	if (cp[EESM_CSEC] != 0) {
773 		ees->baddata++;
774 		ees->reason = CODEREASON + 7;
775 		ees_event(ees, CEVNT_BADREPLY);
776 		ees_reset(ees);
777 		return;
778 	}
779 
780 	/* Check flag formats */
781 	if (cp[EESM_LEAP] != 0 && cp[EESM_LEAP] != 0x0f) {
782 		ees->badformat++;
783 		ees->reason = CODEREASON + 8;
784 		ees_event(ees, CEVNT_BADREPLY);
785 		ees_reset(ees);
786 		return;
787 	}
788 
789 	if (cp[EESM_BST] != 0 && cp[EESM_BST] != 0x03) {
790 		ees->badformat++;
791 		ees->reason = CODEREASON + 9;
792 		ees_event(ees, CEVNT_BADREPLY);
793 		ees_reset(ees);
794 		return;
795 	}
796 
797 	if (cp[EESM_MSFOK] != 0 && cp[EESM_MSFOK] != 0x3f) {
798 		ees->badformat++;
799 		ees->reason = CODEREASON + 10;
800 		ees_event(ees, CEVNT_BADREPLY);
801 		ees_reset(ees);
802 		return;
803 	}
804 
805 	/* So far, so good.  Compute day, hours, minutes, seconds,
806 	 * time zone.  Do range checks on these.
807 	 */
808 
809 #define bcdunpack(val)	( (((val)>>4) & 0x0f) * 10 + ((val) & 0x0f) )
810 #define istrue(x)	((x)?1:0)
811 
812 	ees->second  = bcdunpack(cp[EESM_SEC]);  /* second       */
813 	ees->minute  = bcdunpack(cp[EESM_MIN]);  /* minute       */
814 	ees->hour    = bcdunpack(cp[EESM_HOUR]); /* hour         */
815 
816 	day          = bcdunpack(cp[EESM_DAY]);  /* day of month */
817 
818 	switch (bcdunpack(cp[EESM_MON])) {       /* month        */
819 
820 		/*  Add in lengths of all previous months.  Add one more
821 		    if it is a leap year and after February.
822 		*/
823 	    case 12:	day += NOV;			  /*FALLSTHROUGH*/
824 	    case 11:	day += OCT;			  /*FALLSTHROUGH*/
825 	    case 10:	day += SEP;			  /*FALLSTHROUGH*/
826 	    case  9:	day += AUG;			  /*FALLSTHROUGH*/
827 	    case  8:	day += JUL;			  /*FALLSTHROUGH*/
828 	    case  7:	day += JUN;			  /*FALLSTHROUGH*/
829 	    case  6:	day += MAY;			  /*FALLSTHROUGH*/
830 	    case  5:	day += APR;			  /*FALLSTHROUGH*/
831 	    case  4:	day += MAR;			  /*FALLSTHROUGH*/
832 	    case  3:	day += FEB;
833 		if (istrue(cp[EESM_LEAP])) day++; /*FALLSTHROUGH*/
834 	    case  2:	day += JAN;			  /*FALLSTHROUGH*/
835 	    case  1:	break;
836 	    default:	ees->baddata++;
837 		ees->reason = CODEREASON + 11;
838 		ees_event(ees, CEVNT_BADDATE);
839 		ees_reset(ees);
840 		return;
841 	}
842 
843 	ees->day     = day;
844 
845 	/* Get timezone. The clocktime routine wants the number
846 	 * of hours to add to the delivered time to get UT.
847 	 * Currently -1 if BST flag set, 0 otherwise.  This
848 	 * is the place to tweak things if double summer time
849 	 * ever happens.
850 	 */
851 	ees->tz      = istrue(cp[EESM_BST]) ? -1 : 0;
852 
853 	if (ees->day > 366 || ees->day < 1 ||
854 	    ees->hour > 23 || ees->minute > 59 || ees->second > 59) {
855 		ees->baddata++;
856 		ees->reason = CODEREASON + 12;
857 		ees_event(ees, CEVNT_BADDATE);
858 		ees_reset(ees);
859 		return;
860 	}
861 
862 	n_sample = ees->nsamples;
863 
864 	/* Now, compute the reference time value: text -> tmp.l_ui */
865 	if (!clocktime(ees->day, ees->hour, ees->minute, ees->second,
866 		       ees->tz, rbufp->recv_time.l_ui, &ees->yearstart,
867 		       &tmp.l_ui)) {
868 		ees->baddata++;
869 		ees->reason = CODEREASON + 13;
870 		ees_event(ees, CEVNT_BADDATE);
871 		ees_reset(ees);
872 		return;
873 	}
874 	tmp.l_uf = 0;
875 
876 	/*  DON'T use ees->arrvtime -- it may be < reftime */
877 	ees->lastsampletime = tmp;
878 
879 	/* If we are synchronised to the radio, update the reference time.
880 	 * Also keep a note of when clock was last good.
881 	 */
882 	if (istrue(cp[EESM_MSFOK])) {
883 		ees->reftime = tmp;
884 		ees->clocklastgood = current_time;
885 	}
886 
887 
888 	/* Compute the offset.  For the fractional part of the
889 	 * offset we use the expected delay for the message.
890 	 */
891 	ees->codeoffsets[n_sample].l_ui = tmp.l_ui;
892 	ees->codeoffsets[n_sample].l_uf = 0;
893 
894 	/* Number of seconds since the last step */
895 	sincelast = this_uisec - ees->last_step;
896 
897 	memset((char *) &ppsclockev, 0, sizeof ppsclockev);
898 
899 	rc = ioctl(ees->io.fd, request, (char *) &ppsclockev);
900 	if (debug & DB_PRINT_EV) fprintf(stderr,
901 					 "[%x] CIOGETEV u%d %d (%x %d) gave %d (%d): %08lx %08lx %ld\n",
902 					 DB_PRINT_EV, ees->unit, ees->io.fd, request, is_pps(ees),
903 					 rc, errno, ptr[0], ptr[1], ptr[2]);
904 
905 	/* If we managed to get the time of arrival, process the info */
906 	if (rc >= 0) {
907 		int conv = -1;
908 		pps_step = ppsclockev.serial - ees->last_pps_no;
909 
910 		/* Possible that PPS triggered, but text message didn't */
911 		if (pps_step == 2) msyslog(LOG_ERR, "pps step = 2 @ %02d", ees->second);
912 		if (pps_step == 2 && ees->second == 1) suspect_4ms_step |= 1;
913 		if (pps_step == 2 && ees->second == 2) suspect_4ms_step |= 4;
914 
915 		/* allow for single loss of PPS only */
916 		if (pps_step != 1 && pps_step != 2)
917 		    fprintf(stderr, "PPS step: %d too far off %ld (%d)\n",
918 			    ppsclockev.serial, ees->last_pps_no, pps_step);
919 		else if (!buftvtots((char *) &(ppsclockev.tv), &pps_arrvstamp))
920 		    fprintf(stderr, "buftvtots failed\n");
921 		else {	/* if ((ABS(time difference) - 0.25) < 0)
922 			 * then believe it ...
923 			 */
924 			l_fp diff;
925 			diff = pps_arrvstamp;
926 			conv = 0;
927 			L_SUB(&diff, &ees->arrvtime);
928 			if (debug & DB_PRINT_CDT)
929 			    printf("[%x] Have %lx.%08lx and %lx.%08lx -> %lx.%08lx @ %s",
930 				   DB_PRINT_CDT, (long)ees->arrvtime.l_ui, (long)ees->arrvtime.l_uf,
931 				   (long)pps_arrvstamp.l_ui, (long)pps_arrvstamp.l_uf,
932 				   (long)diff.l_ui, (long)diff.l_uf,
933 				   ctime(&(ppsclockev.tv.tv_sec)));
934 			if (L_ISNEG(&diff)) M_NEG(diff.l_ui, diff.l_uf);
935 			L_SUB(&diff, &acceptable_slop);
936 			if (L_ISNEG(&diff)) {	/* AOK -- pps_sample */
937 				ees->arrvtime = pps_arrvstamp;
938 				conv++;
939 				call_pps_sample++;
940 			}
941 			/* Some loss of some signals around sec = 1 */
942 			else if (ees->second == 1) {
943 				diff = pps_arrvstamp;
944 				L_ADD(&diff, &onesec);
945 				L_SUB(&diff, &ees->arrvtime);
946 				if (L_ISNEG(&diff)) M_NEG(diff.l_ui, diff.l_uf);
947 				L_SUB(&diff, &acceptable_slop);
948 				msyslog(LOG_ERR, "Have sec==1 slip %ds a=%08x-p=%08x -> %x.%08x (u=%d) %s",
949 					pps_arrvstamp.l_ui - ees->arrvtime.l_ui,
950 					pps_arrvstamp.l_uf,
951 					ees->arrvtime.l_uf,
952 					diff.l_ui, diff.l_uf,
953 					(int)ppsclockev.tv.tv_usec,
954 					ctime(&(ppsclockev.tv.tv_sec)));
955 				if (L_ISNEG(&diff)) {	/* AOK -- pps_sample */
956 					suspect_4ms_step |= 2;
957 					ees->arrvtime = pps_arrvstamp;
958 					L_ADD(&ees->arrvtime, &onesec);
959 					conv++;
960 					call_pps_sample++;
961 				}
962 			}
963 		}
964 		ees->last_pps_no = ppsclockev.serial;
965 		if (debug & DB_PRINT_CDTC)
966 		    printf(
967 			    "[%x] %08lx %08lx %d u%d (%d %d)\n",
968 			    DB_PRINT_CDTC, (long)pps_arrvstamp.l_ui,
969 			    (long)pps_arrvstamp.l_uf, conv, ees->unit,
970 			    call_pps_sample, pps_step);
971 	}
972 
973 	/* See if there has been a 4ms jump at a minute boundry */
974 	{	l_fp	delta;
975 #define	delta_isec	delta.l_ui
976 #define	delta_ssec	delta.l_i
977 #define	delta_sfsec	delta.l_f
978 	long	delta_f_abs;
979 
980 	delta.l_i = ees->arrvtime.l_i;
981 	delta.l_f = ees->arrvtime.l_f;
982 
983 	L_SUB(&delta, &ees->last_l);
984 	delta_f_abs = delta_sfsec;
985 	if (delta_f_abs < 0) delta_f_abs = -delta_f_abs;
986 
987 	/* Dump the deltas each minute */
988 	if (debug & DB_DUMP_DELTAS)
989 	{	if (/*0 <= ees->second && */
990 		ees->second < ((sizeof deltas) / (sizeof deltas[0]))) deltas[ees->second] = delta_sfsec;
991 	/* Dump on second 1, as second 0 sometimes missed */
992 	if (ees->second == 1) {
993 		char text[16 * ((sizeof deltas) / (sizeof deltas[0]))];
994 		char *cptr=text;
995 		int i;
996 		for (i=0; i<((sizeof deltas) / (sizeof deltas[0])); i++) {
997 			sprintf(cptr, " %d.%04d",
998 				msec(deltas[i]), subms(deltas[i]));
999 			while (*cptr) cptr++;
1000 		}
1001 		msyslog(LOG_ERR, "Deltas: %d.%04d<->%d.%04d: %s",
1002 			msec(EES_STEP_F - EES_STEP_F_GRACE), subms(EES_STEP_F - EES_STEP_F_GRACE),
1003 			msec(EES_STEP_F + EES_STEP_F_GRACE), subms(EES_STEP_F + EES_STEP_F_GRACE),
1004 			text+1);
1005 		for (i=0; i<((sizeof deltas) / (sizeof deltas[0])); i++) deltas[i] = 0;
1006 	}
1007 	}
1008 
1009 	/* Lets see if we have a 4 mS step at a minute boundaary */
1010 	if (	((EES_STEP_F - EES_STEP_F_GRACE) < delta_f_abs) &&
1011 		(delta_f_abs < (EES_STEP_F + EES_STEP_F_GRACE)) &&
1012 		(ees->second == 0 || ees->second == 1 || ees->second == 2) &&
1013 		(sincelast < 0 || sincelast > 122)
1014 		) {	/* 4ms jump at min boundry */
1015 		int old_sincelast;
1016 		int count=0;
1017 		int sum = 0;
1018 		/* Yes -- so compute the ramp time */
1019 		if (ees->last_step == 0) sincelast = 0;
1020 		old_sincelast = sincelast;
1021 
1022 		/* First time in, just set "ees->last_step" */
1023 		if(ees->last_step) {
1024 			int other_step = 0;
1025 			int third_step = 0;
1026 			int this_step = (sincelast + (60 /2)) / 60;
1027 			int p_step = ees->this_step;
1028 			int p;
1029 			ees->last_steps[p_step] = this_step;
1030 			p= p_step;
1031 			p_step++;
1032 			if (p_step >= LAST_STEPS) p_step = 0;
1033 			ees->this_step = p_step;
1034 				/* Find the "average" interval */
1035 			while (p != p_step) {
1036 				int this = ees->last_steps[p];
1037 				if (this == 0) break;
1038 				if (this != this_step) {
1039 					if (other_step == 0 && (
1040 						this== (this_step +2) ||
1041 						this== (this_step -2) ||
1042 						this== (this_step +1) ||
1043 						this== (this_step -1)))
1044 					    other_step = this;
1045 					if (other_step != this) {
1046 						int idelta = (this_step - other_step);
1047 						if (idelta < 0) idelta = - idelta;
1048 						if (third_step == 0 && (
1049 							(idelta == 1) ? (
1050 								this == (other_step +1) ||
1051 								this == (other_step -1) ||
1052 								this == (this_step +1) ||
1053 								this == (this_step -1))
1054 							:
1055 							(
1056 								this == (this_step + other_step)/2
1057 								)
1058 							)) third_step = this;
1059 						if (third_step != this) break;
1060 					}
1061 				}
1062 				sum += this;
1063 				p--;
1064 				if (p < 0) p += LAST_STEPS;
1065 				count++;
1066 			}
1067 			msyslog(LOG_ERR, "MSF%d: %d: This=%d (%d), other=%d/%d, sum=%d, count=%d, pps_step=%d, suspect=%x", ees->unit, p, ees->last_steps[p], this_step, other_step, third_step, sum, count, pps_step, suspect_4ms_step);
1068 			if (count != 0) sum = ((sum * 60) + (count /2)) / count;
1069 #define	SV(x) (ees->last_steps[(x + p_step) % LAST_STEPS])
1070 			msyslog(LOG_ERR, "MSF%d: %x steps %d: %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d",
1071 				ees->unit, suspect_4ms_step, p_step, SV(0), SV(1), SV(2), SV(3), SV(4), SV(5), SV(6),
1072 				SV(7), SV(8), SV(9), SV(10), SV(11), SV(12), SV(13), SV(14), SV(15));
1073 			printf("MSF%d: steps %d: %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d\n",
1074 			       ees->unit, p_step, SV(0), SV(1), SV(2), SV(3), SV(4), SV(5), SV(6),
1075 			       SV(7), SV(8), SV(9), SV(10), SV(11), SV(12), SV(13), SV(14), SV(15));
1076 #undef SV
1077 			ees->jump_fsecs = delta_sfsec;
1078 			ees->using_ramp = 1;
1079 			if (sincelast > 170)
1080 			    ees->last_step_late += sincelast - ((sum) ? sum : ees->last_step_secs);
1081 			else ees->last_step_late = 30;
1082 			if (ees->last_step_late < -60 || ees->last_step_late > 120) ees->last_step_late = 30;
1083 			if (ees->last_step_late < 0) ees->last_step_late = 0;
1084 			if (ees->last_step_late >= 60) ees->last_step_late = 59;
1085 			sincelast = 0;
1086 		}
1087 		else {	/* First time in -- just save info */
1088 			ees->last_step_late = 30;
1089 			ees->jump_fsecs = delta_sfsec;
1090 			ees->using_ramp = 1;
1091 			sum = 4 * 60;
1092 		}
1093 		ees->last_step = this_uisec;
1094 		printf("MSF%d: d=%3ld.%04ld@%d :%d:%d:$%d:%d:%d\n",
1095 		       ees->unit, (long)msec(delta_sfsec), (long)subms(delta_sfsec),
1096 		       ees->second, old_sincelast, ees->last_step_late, count, sum,
1097 		       ees->last_step_secs);
1098 		msyslog(LOG_ERR, "MSF%d: d=%3d.%04d@%d :%d:%d:%d:%d:%d",
1099 			ees->unit, msec(delta_sfsec), subms(delta_sfsec), ees->second,
1100 			old_sincelast, ees->last_step_late, count, sum, ees->last_step_secs);
1101 		if (sum) ees->last_step_secs = sum;
1102 	}
1103 	/* OK, so not a 4ms step at a minute boundry */
1104 	else {
1105 		if (suspect_4ms_step) msyslog(LOG_ERR,
1106 					      "MSF%d: suspect = %x, but delta of %d.%04d [%d.%04d<%d.%04d<%d.%04d: %d %d]",
1107 					      ees->unit, suspect_4ms_step, msec(delta_sfsec), subms(delta_sfsec),
1108 					      msec(EES_STEP_F - EES_STEP_F_GRACE),
1109 					      subms(EES_STEP_F - EES_STEP_F_GRACE),
1110 					      (int)msec(delta_f_abs),
1111 					      (int)subms(delta_f_abs),
1112 					      msec(EES_STEP_F + EES_STEP_F_GRACE),
1113 					      subms(EES_STEP_F + EES_STEP_F_GRACE),
1114 					      ees->second,
1115 					      sincelast);
1116 		if ((delta_f_abs > EES_STEP_NOTE) && ees->last_l.l_i) {
1117 			static int ees_step_notes = EES_STEP_NOTES;
1118 			if (ees_step_notes > 0) {
1119 				ees_step_notes--;
1120 				printf("MSF%d: D=%3ld.%04ld@%02d :%d%s\n",
1121 				       ees->unit, (long)msec(delta_sfsec), (long)subms(delta_sfsec),
1122 				       ees->second, sincelast, ees_step_notes ? "" : " -- NO MORE !");
1123 				msyslog(LOG_ERR, "MSF%d: D=%3d.%04d@%02d :%d%s",
1124 					ees->unit, msec(delta_sfsec), subms(delta_sfsec), ees->second, (ees->last_step) ? sincelast : -1, ees_step_notes ? "" : " -- NO MORE !");
1125 			}
1126 		}
1127 	}
1128 	}
1129 	ees->last_l = ees->arrvtime;
1130 
1131 	/* IF we have found that it's ramping
1132 	 * && it's within twice the expected ramp period
1133 	 * && there is a non zero step size (avoid /0 !)
1134 	 * THEN we twiddle things
1135 	 */
1136 	if (ees->using_ramp &&
1137 	    sincelast < (ees->last_step_secs)*2 &&
1138 	    ees->last_step_secs)
1139 	{	long	sec_of_ramp = sincelast + ees->last_step_late;
1140 	long	fsecs;
1141 	l_fp	inc;
1142 
1143 	/* Ramp time may vary, so may ramp for longer than last time */
1144 	if (sec_of_ramp > (ees->last_step_secs + 120))
1145 	    sec_of_ramp =  ees->last_step_secs;
1146 
1147 	/* sec_of_ramp * ees->jump_fsecs may overflow 2**32 */
1148 	fsecs = sec_of_ramp * (ees->jump_fsecs /  ees->last_step_secs);
1149 
1150 	if (debug & DB_LOG_DELTAS) msyslog(LOG_ERR,
1151 					   "[%x] MSF%d: %3ld/%03d -> d=%11ld (%d|%ld)",
1152 					   DB_LOG_DELTAS,
1153 					   ees->unit, sec_of_ramp, ees->last_step_secs, fsecs,
1154 					   pps_arrvstamp.l_f, pps_arrvstamp.l_f + fsecs);
1155 	if (debug & DB_PRINT_DELTAS) printf(
1156 		"MSF%d: %3ld/%03d -> d=%11ld (%ld|%ld)\n",
1157 		ees->unit, sec_of_ramp, ees->last_step_secs, fsecs,
1158 		(long)pps_arrvstamp.l_f, pps_arrvstamp.l_f + fsecs);
1159 
1160 	/* Must sign extend the result */
1161 	inc.l_i = (fsecs < 0) ? -1 : 0;
1162 	inc.l_f = fsecs;
1163 	if (debug & DB_INC_PPS)
1164 	{	L_SUB(&pps_arrvstamp, &inc);
1165 	L_SUB(&ees->arrvtime, &inc);
1166 	}
1167 	else
1168 	{	L_ADD(&pps_arrvstamp, &inc);
1169 	L_ADD(&ees->arrvtime, &inc);
1170 	}
1171 	}
1172 	else {
1173 		if (debug & DB_LOG_DELTAS) msyslog(LOG_ERR,
1174 						   "[%x] MSF%d: ees->using_ramp=%d, sincelast=%x / %x, ees->last_step_secs=%x",
1175 						   DB_LOG_DELTAS,
1176 						   ees->unit, ees->using_ramp,
1177 						   sincelast,
1178 						   (ees->last_step_secs)*2,
1179 						   ees->last_step_secs);
1180 		if (debug & DB_PRINT_DELTAS) printf(
1181 			"[%x] MSF%d: ees->using_ramp=%d, sincelast=%x / %x, ees->last_step_secs=%x\n",
1182 			DB_LOG_DELTAS,
1183 			ees->unit, ees->using_ramp,
1184 			sincelast,
1185 			(ees->last_step_secs)*2,
1186 			ees->last_step_secs);
1187 	}
1188 
1189 	L_SUB(&ees->arrvtime, &offset_fudge[ees->unit]);
1190 	L_SUB(&pps_arrvstamp, &offset_fudge[ees->unit]);
1191 
1192 	if (call_pps_sample && !(debug & DB_NO_PPS)) {
1193 		/* Sigh -- it expects its args negated */
1194 		L_NEG(&pps_arrvstamp);
1195 		/*
1196 		 * I had to disable this here, since it appears there is no pointer to the
1197 		 * peer structure.
1198 		 *
1199 		 (void) pps_sample(peer, &pps_arrvstamp);
1200 		*/
1201 	}
1202 
1203 	/* Subtract off the local clock time stamp */
1204 	L_SUB(&ees->codeoffsets[n_sample], &ees->arrvtime);
1205 	if (debug & DB_LOG_SAMPLES) msyslog(LOG_ERR,
1206 					    "MSF%d: [%x] %d (ees: %d %d) (pps: %d %d)%s",
1207 					    ees->unit, DB_LOG_DELTAS, n_sample,
1208 					    ees->codeoffsets[n_sample].l_f,
1209 					    ees->codeoffsets[n_sample].l_f / 4295,
1210 					    pps_arrvstamp.l_f,
1211 					    pps_arrvstamp.l_f /4295,
1212 					    (debug & DB_NO_PPS) ? " [no PPS]" : "");
1213 
1214 	if (ees->nsamples++ == NCODES-1) ees_process(ees);
1215 
1216 	/* Done! */
1217 }
1218 
1219 
1220 /* offcompare - auxiliary comparison routine for offset sort */
1221 
1222 #ifdef QSORT_USES_VOID_P
1223 static int
1224 offcompare(
1225 	const void *va,
1226 	const void *vb
1227 	)
1228 {
1229 	const l_fp *a = (const l_fp *)va;
1230 	const l_fp *b = (const l_fp *)vb;
1231 	return(L_ISGEQ(a, b) ? (L_ISEQU(a, b) ? 0 : 1) : -1);
1232 }
1233 #else
1234 static int
1235 offcompare(
1236 	const l_fp *a,
1237 	const l_fp *b
1238 	)
1239 {
1240 	return(L_ISGEQ(a, b) ? (L_ISEQU(a, b) ? 0 : 1) : -1);
1241 }
1242 #endif /* QSORT_USES_VOID_P */
1243 
1244 
1245 /* ees_process - process a pile of samples from the clock */
1246 static void
1247 ees_process(
1248 	struct eesunit *ees
1249 	)
1250 {
1251 	static int last_samples = -1;
1252 	register int i, j;
1253 	register int noff;
1254 	register l_fp *coffs = ees->codeoffsets;
1255 	l_fp offset, tmp;
1256 	double dispersion;	/* ++++ */
1257 	int lostsync, isinsync;
1258 	int samples = ees->nsamples;
1259 	int samplelog = 0;	/* keep "gcc -Wall" happy ! */
1260 	int samplereduce = (samples + 1) / 2;
1261 	double doffset;
1262 
1263 	/* Reset things to zero so we don't have to worry later */
1264 	ees_reset(ees);
1265 
1266 	if (sloppyclockflag[ees->unit]) {
1267 		samplelog = (samples <  2) ? 0 :
1268 			(samples <  5) ? 1 :
1269 			(samples <  9) ? 2 :
1270 			(samples < 17) ? 3 :
1271 			(samples < 33) ? 4 : 5;
1272 		samplereduce = (1 << samplelog);
1273 	}
1274 
1275 	if (samples != last_samples &&
1276 	    ((samples != (last_samples-1)) || samples < 3)) {
1277 		msyslog(LOG_ERR, "Samples=%d (%d), samplereduce=%d ....",
1278 			samples, last_samples, samplereduce);
1279 		last_samples = samples;
1280 	}
1281 	if (samples < 1) return;
1282 
1283 	/* If requested, dump the raw data we have in the buffer */
1284 	if (ees->dump_vals) dump_buf(coffs, 0, samples, "Raw  data  is:");
1285 
1286 	/* Sort the offsets, trim off the extremes, then choose one. */
1287 	qsort((char *) coffs, (size_t)samples, sizeof(l_fp), offcompare);
1288 
1289 	noff = samples;
1290 	i = 0;
1291 	while ((noff - i) > samplereduce) {
1292 		/* Trim off the sample which is further away
1293 		 * from the median.  We work this out by doubling
1294 		 * the median, subtracting off the end samples, and
1295 		 * looking at the sign of the answer, using the
1296 		 * identity (c-b)-(b-a) == 2*b-a-c
1297 		 */
1298 		tmp = coffs[(noff + i)/2];
1299 		L_ADD(&tmp, &tmp);
1300 		L_SUB(&tmp, &coffs[i]);
1301 		L_SUB(&tmp, &coffs[noff-1]);
1302 		if (L_ISNEG(&tmp)) noff--; else i++;
1303 	}
1304 
1305 	/* If requested, dump the reduce data we have in the buffer */
1306 	if (ees->dump_vals) dump_buf(coffs, i, noff, "Reduced    to:");
1307 
1308 	/* What we do next depends on the setting of the sloppy clock flag.
1309 	 * If it is on, average the remainder to derive our estimate.
1310 	 * Otherwise, just pick a representative value from the remaining stuff
1311 	 */
1312 	if (sloppyclockflag[ees->unit]) {
1313 		offset.l_ui = offset.l_uf = 0;
1314 		for (j = i; j < noff; j++)
1315 		    L_ADD(&offset, &coffs[j]);
1316 		for (j = samplelog; j > 0; j--)
1317 		    L_RSHIFTU(&offset);
1318 	}
1319 	else offset = coffs[i+BESTSAMPLE];
1320 
1321 	/* Compute the dispersion as the difference between the
1322 	 * lowest and highest offsets that remain in the
1323 	 * consideration list.
1324 	 *
1325 	 * It looks like MOST clocks have MOD (max error), so halve it !
1326 	 */
1327 	tmp = coffs[noff-1];
1328 	L_SUB(&tmp, &coffs[i]);
1329 #define	FRACT_SEC(n) ((1 << 30) / (n/2))
1330 	dispersion = LFPTOFP(&tmp) / 2; /* ++++ */
1331 	if (debug & (DB_SYSLOG_SMPLI | DB_SYSLOG_SMPLE)) msyslog(
1332 		(debug & DB_SYSLOG_SMPLE) ? LOG_ERR : LOG_INFO,
1333 		"I: [%x] Offset=%06d (%d), disp=%f%s [%d], %d %d=%d %d:%d %d=%d %d",
1334 		debug & (DB_SYSLOG_SMPLI | DB_SYSLOG_SMPLE),
1335 		offset.l_f / 4295, offset.l_f,
1336 		(dispersion * 1526) / 100,
1337 		(sloppyclockflag[ees->unit]) ? " by averaging" : "",
1338 		FRACT_SEC(10) / 4295,
1339 		(coffs[0].l_f) / 4295,
1340 		i,
1341 		(coffs[i].l_f) / 4295,
1342 		(coffs[samples/2].l_f) / 4295,
1343 		(coffs[i+BESTSAMPLE].l_f) / 4295,
1344 		noff-1,
1345 		(coffs[noff-1].l_f) / 4295,
1346 		(coffs[samples-1].l_f) / 4295);
1347 
1348 	/* Are we playing silly wotsits ?
1349 	 * If we are using all data, see if there is a "small" delta,
1350 	 * and if so, blurr this with 3/4 of the delta from the last value
1351 	 */
1352 	if (ees->usealldata && ees->offset.l_uf) {
1353 		long diff = (long) (ees->offset.l_uf - offset.l_uf);
1354 
1355 		/* is the delta small enough ? */
1356 		if ((- FRACT_SEC(100)) < diff && diff < FRACT_SEC(100)) {
1357 			int samd = (64 * 4) / samples;
1358 			long new;
1359 			if (samd < 2) samd = 2;
1360 			new = offset.l_uf + ((diff * (samd -1)) / samd);
1361 
1362 			/* Sign change -> need to fix up int part */
1363 			if ((new & 0x80000000) !=
1364 			    (((long) offset.l_uf) & 0x80000000))
1365 			{	NLOG(NLOG_CLOCKINFO) /* conditional if clause for conditional syslog */
1366 					msyslog(LOG_INFO, "I: %lx != %lx (%lx %lx), so add %d",
1367 						new & 0x80000000,
1368 						((long) offset.l_uf) & 0x80000000,
1369 						new, (long) offset.l_uf,
1370 						(new < 0) ? -1 : 1);
1371 				offset.l_ui += (new < 0) ? -1 : 1;
1372 			}
1373 			dispersion /= 4;
1374 			if (debug & (DB_SYSLOG_SMTHI | DB_SYSLOG_SMTHE)) msyslog(
1375 				(debug & DB_SYSLOG_SMTHE) ? LOG_ERR : LOG_INFO,
1376 				"I: [%x] Smooth data: %ld -> %ld, dispersion now %f",
1377 				debug & (DB_SYSLOG_SMTHI | DB_SYSLOG_SMTHE),
1378 				((long) offset.l_uf) / 4295, new / 4295,
1379 				(dispersion * 1526) / 100);
1380 			offset.l_uf = (unsigned long) new;
1381 		}
1382 		else if (debug & (DB_SYSLOG_NSMTHI | DB_SYSLOG_NSMTHE)) msyslog(
1383 			(debug & DB_SYSLOG_NSMTHE) ? LOG_ERR : LOG_INFO,
1384 			"[%x] No smooth as delta not %d < %ld < %d",
1385 			debug & (DB_SYSLOG_NSMTHI | DB_SYSLOG_NSMTHE),
1386 			- FRACT_SEC(100), diff, FRACT_SEC(100));
1387 	}
1388 	else if (debug & (DB_SYSLOG_NSMTHI | DB_SYSLOG_NSMTHE)) msyslog(
1389 		(debug & DB_SYSLOG_NSMTHE) ? LOG_ERR : LOG_INFO,
1390 		"I: [%x] No smooth as flag=%x and old=%x=%d (%d:%d)",
1391 		debug & (DB_SYSLOG_NSMTHI | DB_SYSLOG_NSMTHE),
1392 		ees->usealldata, ees->offset.l_f, ees->offset.l_uf,
1393 		offset.l_f, ees->offset.l_f - offset.l_f);
1394 
1395 	/* Collect offset info for debugging info */
1396 	ees->offset = offset;
1397 	ees->lowoffset = coffs[i];
1398 	ees->highoffset = coffs[noff-1];
1399 
1400 	/* Determine synchronization status.  Can be unsync'd either
1401 	 * by a report from the clock or by a leap hold.
1402 	 *
1403 	 * Loss of the radio signal for a short time does not cause
1404 	 * us to go unsynchronised, since the receiver keeps quite
1405 	 * good time on its own.  The spec says 20ms in 4 hours; the
1406 	 * observed drift in our clock (Cambridge) is about a second
1407 	 * a day, but even that keeps us within the inherent tolerance
1408 	 * of the clock for about 15 minutes. Observation shows that
1409 	 * the typical "short" outage is 3 minutes, so to allow us
1410 	 * to ride out those, we will give it 5 minutes.
1411 	 */
1412 	lostsync = current_time - ees->clocklastgood > 300 ? 1 : 0;
1413 	isinsync = (lostsync || ees->leaphold > current_time) ? 0 : 1;
1414 
1415 	/* Done.  Use time of last good, synchronised code as the
1416 	 * reference time, and lastsampletime as the receive time.
1417 	 */
1418 	if (ees->fix_pending) {
1419 		msyslog(LOG_ERR, "MSF%d: fix_pending=%d -> jump %x.%08x\n",
1420 			ees->fix_pending, ees->unit, offset.l_i, offset.l_f);
1421 		ees->fix_pending = 0;
1422 	}
1423 	LFPTOD(&offset, doffset);
1424 	refclock_receive(ees->peer);
1425 	ees_event(ees, lostsync ? CEVNT_PROP : CEVNT_NOMINAL);
1426 }
1427 
1428 /* msfees_poll - called by the transmit procedure */
1429 static void
1430 msfees_poll(
1431 	int unit,
1432 	struct peer *peer
1433 	)
1434 {
1435 	if (unit >= MAXUNITS) {
1436 		msyslog(LOG_ERR, "ees clock poll: INTERNAL: unit %d invalid",
1437 			unit);
1438 		return;
1439 	}
1440 	if (!unitinuse[unit]) {
1441 		msyslog(LOG_ERR, "ees clock poll: INTERNAL: unit %d unused",
1442 			unit);
1443 		return;
1444 	}
1445 
1446 	ees_process(eesunits[unit]);
1447 
1448 	if ((current_time - eesunits[unit]->lasttime) > 150)
1449 	    ees_event(eesunits[unit], CEVNT_FAULT);
1450 }
1451 
1452 
1453 #else
1454 int refclock_msfees_bs;
1455 #endif /* REFCLOCK */
1456