1 /* refclock_ees - clock driver for the EES M201 receiver */ 2 3 #ifdef HAVE_CONFIG_H 4 #include <config.h> 5 #endif 6 7 #if defined(REFCLOCK) && defined(CLOCK_MSFEES) && defined(PPS) 8 9 /* Currently REQUIRES STREAM and PPSCD. CLK and CBREAK modes 10 * were removed as the code was overly hairy, they weren't in use 11 * (hence probably didn't work). Still in RCS file at cl.cam.ac.uk 12 */ 13 14 #include <ctype.h> 15 #ifdef HAVE_SYS_TIME_H 16 # include <sys/time.h> 17 #endif 18 19 #include "ntpd.h" 20 #include "ntp_io.h" 21 #include "ntp_refclock.h" 22 #include "ntp_unixtime.h" 23 #include "ntp_calendar.h" 24 #if defined(HAVE_BSD_TTYS) 25 #include <sgtty.h> 26 #endif /* HAVE_BSD_TTYS */ 27 #if defined(HAVE_SYSV_TTYS) 28 #include <termio.h> 29 #endif /* HAVE_SYSV_TTYS */ 30 #if defined(HAVE_TERMIOS) 31 #include <termios.h> 32 #endif 33 #if defined(STREAM) 34 #include <stropts.h> 35 #endif 36 37 #ifdef HAVE_SYS_TERMIOS_H 38 # include <sys/termios.h> 39 #endif 40 #ifdef HAVE_SYS_PPSCLOCK_H 41 # include <sys/ppsclock.h> 42 #endif 43 44 #include "ntp_stdlib.h" 45 46 /* 47 fudgefactor = fudgetime1; 48 os_delay = fudgetime2; 49 offset_fudge = os_delay + fudgefactor + inherent_delay; 50 stratumtouse = fudgeval1 & 0xf 51 debug = fudgeval2; 52 sloppyclockflag = flags & CLK_FLAG1; 53 1 log smoothing summary when processing sample 54 4 dump the buffer from the clock 55 8 EIOGETKD the last n uS time stamps 56 if (flags & CLK_FLAG2 && unitinuse) ees->leaphold = 0; 57 ees->dump_vals = flags & CLK_FLAG3; 58 ees->usealldata = flags & CLK_FLAG4; 59 60 61 bug->values[0] = (ees->lasttime) ? current_time - ees->lasttime : 0; 62 bug->values[1] = (ees->clocklastgood)?current_time-ees->clocklastgood:0; 63 bug->values[2] = (u_long)ees->status; 64 bug->values[3] = (u_long)ees->lastevent; 65 bug->values[4] = (u_long)ees->reason; 66 bug->values[5] = (u_long)ees->nsamples; 67 bug->values[6] = (u_long)ees->codestate; 68 bug->values[7] = (u_long)ees->day; 69 bug->values[8] = (u_long)ees->hour; 70 bug->values[9] = (u_long)ees->minute; 71 bug->values[10] = (u_long)ees->second; 72 bug->values[11] = (u_long)ees->tz; 73 bug->values[12] = ees->yearstart; 74 bug->values[13] = (ees->leaphold > current_time) ? 75 ees->leaphold - current_time : 0; 76 bug->values[14] = inherent_delay[unit].l_uf; 77 bug->values[15] = offset_fudge[unit].l_uf; 78 79 bug->times[0] = ees->reftime; 80 bug->times[1] = ees->arrvtime; 81 bug->times[2] = ees->lastsampletime; 82 bug->times[3] = ees->offset; 83 bug->times[4] = ees->lowoffset; 84 bug->times[5] = ees->highoffset; 85 bug->times[6] = inherent_delay[unit]; 86 bug->times[8] = os_delay[unit]; 87 bug->times[7] = fudgefactor[unit]; 88 bug->times[9] = offset_fudge[unit]; 89 bug->times[10]= ees->yearstart, 0; 90 */ 91 92 /* This should support the use of an EES M201 receiver with RS232 93 * output (modified to transmit time once per second). 94 * 95 * For the format of the message sent by the clock, see the EESM_ 96 * definitions below. 97 * 98 * It appears to run free for an integral number of minutes, until the error 99 * reaches 4mS, at which point it steps at second = 01. 100 * It appears that sometimes it steps 4mS (say at 7 min interval), 101 * then the next minute it decides that it was an error, so steps back. 102 * On the next minute it steps forward again :-( 103 * This is typically 16.5uS/S then 3975uS at the 4min re-sync, 104 * or 9.5uS/S then 3990.5uS at a 7min re-sync, 105 * at which point it may loose the "00" second time stamp. 106 * I assume that the most accurate time is just AFTER the re-sync. 107 * Hence remember the last cycle interval, 108 * 109 * Can run in any one of: 110 * 111 * PPSCD PPS signal sets CD which interupts, and grabs the current TOD 112 * (sun) *in the interupt code*, so as to avoid problems with 113 * the STREAMS scheduling. 114 * 115 * It appears that it goes 16.5 uS slow each second, then every 4 mins it 116 * generates no "00" second tick, and gains 3975 uS. Ho Hum ! (93/2/7) 117 */ 118 119 /* Definitions */ 120 #ifndef MAXUNITS 121 #define MAXUNITS 4 /* maximum number of EES units permitted */ 122 #endif 123 124 #ifndef EES232 125 #define EES232 "/dev/ees%d" /* Device to open to read the data */ 126 #endif 127 128 /* Other constant stuff */ 129 #ifndef EESPRECISION 130 #define EESPRECISION (-10) /* what the heck - 2**-10 = 1ms */ 131 #endif 132 #ifndef EESREFID 133 #define EESREFID "MSF\0" /* String to identify the clock */ 134 #endif 135 #ifndef EESHSREFID 136 #define EESHSREFID (0x7f7f0000 | ((REFCLK_MSF_EES) << 8)) /* Numeric refid */ 137 #endif 138 139 /* Description of clock */ 140 #define EESDESCRIPTION "EES M201 MSF Receiver" 141 142 /* Speed we run the clock port at. If this is changed the UARTDELAY 143 * value should be recomputed to suit. 144 */ 145 #ifndef SPEED232 146 #define SPEED232 B9600 /* 9600 baud */ 147 #endif 148 149 /* What is the inherent delay for this mode of working, i.e. when is the 150 * data time stamped. 151 */ 152 #define SAFETY_SHIFT 10 /* Split the shift to avoid overflow */ 153 #define BITS_TO_L_FP(bits, baud) \ 154 (((((bits)*2 +1) << (FRACTION_PREC-SAFETY_SHIFT)) / (2*baud)) << SAFETY_SHIFT) 155 #define INH_DELAY_CBREAK BITS_TO_L_FP(119, 9600) 156 #define INH_DELAY_PPS BITS_TO_L_FP( 0, 9600) 157 158 #ifndef STREAM_PP1 159 #define STREAM_PP1 "ppsclocd\0<-- patch space for module name1 -->" 160 #endif 161 #ifndef STREAM_PP2 162 #define STREAM_PP2 "ppsclock\0<-- patch space for module name2 -->" 163 #endif 164 165 /* Offsets of the bytes of the serial line code. The clock gives 166 * local time with a GMT/BST indication. The EESM_ definitions 167 * give offsets into ees->lastcode. 168 */ 169 #define EESM_CSEC 0 /* centiseconds - always zero in our clock */ 170 #define EESM_SEC 1 /* seconds in BCD */ 171 #define EESM_MIN 2 /* minutes in BCD */ 172 #define EESM_HOUR 3 /* hours in BCD */ 173 #define EESM_DAYWK 4 /* day of week (Sun = 0 etc) */ 174 #define EESM_DAY 5 /* day of month in BCD */ 175 #define EESM_MON 6 /* month in BCD */ 176 #define EESM_YEAR 7 /* year MOD 100 in BCD */ 177 #define EESM_LEAP 8 /* 0x0f if leap year, otherwise zero */ 178 #define EESM_BST 9 /* 0x03 if BST, 0x00 if GMT */ 179 #define EESM_MSFOK 10 /* 0x3f if radio good, otherwise zero */ 180 /* followed by a frame alignment byte (0xff) / 181 / which is not put into the lastcode buffer*/ 182 183 /* Length of the serial time code, in characters. The first length 184 * is less the frame alignment byte. 185 */ 186 #define LENEESPRT (EESM_MSFOK+1) 187 #define LENEESCODE (LENEESPRT+1) 188 189 /* Code state. */ 190 #define EESCS_WAIT 0 /* waiting for start of timecode */ 191 #define EESCS_GOTSOME 1 /* have an incomplete time code buffered */ 192 193 /* Default fudge factor and character to receive */ 194 #define DEFFUDGETIME 0 /* Default user supplied fudge factor */ 195 #ifndef DEFOSTIME 196 #define DEFOSTIME 0 /* Default OS delay -- passed by Make ? */ 197 #endif 198 #define DEFINHTIME INH_DELAY_PPS /* inherent delay due to sample point*/ 199 200 /* Limits on things. Reduce the number of samples to SAMPLEREDUCE by median 201 * elimination. If we're running with an accurate clock, chose the BESTSAMPLE 202 * as the estimated offset, otherwise average the remainder. 203 */ 204 #define FULLSHIFT 6 /* NCODES root 2 */ 205 #define NCODES (1<< FULLSHIFT) /* 64 */ 206 #define REDUCESHIFT (FULLSHIFT -1) /* SAMPLEREDUCE root 2 */ 207 208 /* Towards the high ( Why ?) end of half */ 209 #define BESTSAMPLE ((samplereduce * 3) /4) /* 24 */ 210 211 /* Leap hold time. After a leap second the clock will no longer be 212 * reliable until it resynchronizes. Hope 40 minutes is enough. */ 213 #define EESLEAPHOLD (40 * 60) 214 215 #define EES_STEP_F (1 << 24) /* the receiver steps in units of about 4ms */ 216 #define EES_STEP_F_GRACE (EES_STEP_F/8) /*Allow for slop of 1/8 which is .5ms*/ 217 #define EES_STEP_NOTE (1 << 21)/* Log any unexpected jumps, say .5 ms .... */ 218 #define EES_STEP_NOTES 50 /* Only do a limited number */ 219 #define MAX_STEP 16 /* Max number of steps to remember */ 220 221 /* debug is a bit mask of debugging that is wanted */ 222 #define DB_SYSLOG_SMPLI 0x0001 223 #define DB_SYSLOG_SMPLE 0x0002 224 #define DB_SYSLOG_SMTHI 0x0004 225 #define DB_SYSLOG_NSMTHE 0x0008 226 #define DB_SYSLOG_NSMTHI 0x0010 227 #define DB_SYSLOG_SMTHE 0x0020 228 #define DB_PRINT_EV 0x0040 229 #define DB_PRINT_CDT 0x0080 230 #define DB_PRINT_CDTC 0x0100 231 #define DB_SYSLOG_KEEPD 0x0800 232 #define DB_SYSLOG_KEEPE 0x1000 233 #define DB_LOG_DELTAS 0x2000 234 #define DB_PRINT_DELTAS 0x4000 235 #define DB_LOG_AWAITMORE 0x8000 236 #define DB_LOG_SAMPLES 0x10000 237 #define DB_NO_PPS 0x20000 238 #define DB_INC_PPS 0x40000 239 #define DB_DUMP_DELTAS 0x80000 240 241 struct eesunit { /* EES unit control structure. */ 242 struct peer *peer; /* associated peer structure */ 243 struct refclockio io; /* given to the I/O handler */ 244 l_fp reftime; /* reference time */ 245 l_fp lastsampletime; /* time as in txt from last EES msg */ 246 l_fp arrvtime; /* Time at which pkt arrived */ 247 l_fp codeoffsets[NCODES]; /* the time of arrival of 232 codes */ 248 l_fp offset; /* chosen offset (for clkbug) */ 249 l_fp lowoffset; /* lowest sample offset (for clkbug) */ 250 l_fp highoffset; /* highest " " (for clkbug) */ 251 char lastcode[LENEESCODE+6]; /* last time code we received */ 252 u_long lasttime; /* last time clock heard from */ 253 u_long clocklastgood; /* last time good radio seen */ 254 u_char lencode; /* length of code in buffer */ 255 u_char nsamples; /* number of samples we've collected */ 256 u_char codestate; /* state of 232 code reception */ 257 u_char unit; /* unit number for this guy */ 258 u_char status; /* clock status */ 259 u_char lastevent; /* last clock event */ 260 u_char reason; /* reason for last abort */ 261 u_char hour; /* hour of day */ 262 u_char minute; /* minute of hour */ 263 u_char second; /* seconds of minute */ 264 char tz; /* timezone from clock */ 265 u_char ttytype; /* method used */ 266 u_char dump_vals; /* Should clock values be dumped */ 267 u_char usealldata; /* Use ALL samples */ 268 u_short day; /* day of year from last code */ 269 u_long yearstart; /* start of current year */ 270 u_long leaphold; /* time of leap hold expiry */ 271 u_long badformat; /* number of bad format codes */ 272 u_long baddata; /* number of invalid time codes */ 273 u_long timestarted; /* time we started this */ 274 long last_pps_no; /* The serial # of the last PPS */ 275 char fix_pending; /* Is a "sync to time" pending ? */ 276 /* Fine tuning - compensate for 4 mS ramping .... */ 277 l_fp last_l; /* last time stamp */ 278 u_char last_steps[MAX_STEP]; /* Most recent n steps */ 279 int best_av_step; /* Best guess at average step */ 280 char best_av_step_count; /* # of steps over used above */ 281 char this_step; /* Current pos in buffer */ 282 int last_step_late; /* How late the last step was (0-59) */ 283 long jump_fsecs; /* # of fractions of a sec last jump */ 284 u_long last_step; /* time of last step */ 285 int last_step_secs; /* Number of seconds in last step */ 286 int using_ramp; /* 1 -> noemal, -1 -> over stepped */ 287 }; 288 #define last_sec last_l.l_ui 289 #define last_sfsec last_l.l_f 290 #define this_uisec ((ees->arrvtime).l_ui) 291 #define this_sfsec ((ees->arrvtime).l_f) 292 #define msec(x) ((x) / (1<<22)) 293 #define LAST_STEPS (sizeof ees->last_steps / sizeof ees->last_steps[0]) 294 #define subms(x) ((((((x < 0) ? (-(x)) : (x)) % (1<<22))/2) * 625) / (1<<(22 -5))) 295 296 /* Bitmask for what methods to try to use -- currently only PPS enabled */ 297 #define T_CBREAK 1 298 #define T_PPS 8 299 /* macros to test above */ 300 #define is_cbreak(x) ((x)->ttytype & T_CBREAK) 301 #define is_pps(x) ((x)->ttytype & T_PPS) 302 #define is_any(x) ((x)->ttytype) 303 304 #define CODEREASON 20 /* reason codes */ 305 306 /* Data space for the unit structures. Note that we allocate these on 307 * the fly, but never give them back. */ 308 static struct eesunit *eesunits[MAXUNITS]; 309 static u_char unitinuse[MAXUNITS]; 310 311 /* Keep the fudge factors separately so they can be set even 312 * when no clock is configured. */ 313 static l_fp inherent_delay[MAXUNITS]; /* when time stamp is taken */ 314 static l_fp fudgefactor[MAXUNITS]; /* fudgetime1 */ 315 static l_fp os_delay[MAXUNITS]; /* fudgetime2 */ 316 static l_fp offset_fudge[MAXUNITS]; /* Sum of above */ 317 static u_char stratumtouse[MAXUNITS]; 318 static u_char sloppyclockflag[MAXUNITS]; 319 320 static int deltas[60]; 321 322 static l_fp acceptable_slop; /* = { 0, 1 << (FRACTION_PREC -2) }; */ 323 static l_fp onesec; /* = { 1, 0 }; */ 324 325 #ifndef DUMP_BUF_SIZE /* Size of buffer to be used by dump_buf */ 326 #define DUMP_BUF_SIZE 10112 327 #endif 328 329 /* ees_reset - reset the count back to zero */ 330 #define ees_reset(ees) (ees)->nsamples = 0; \ 331 (ees)->codestate = EESCS_WAIT 332 333 /* ees_event - record and report an event */ 334 #define ees_event(ees, evcode) if ((ees)->status != (u_char)(evcode)) \ 335 ees_report_event((ees), (evcode)) 336 337 /* Find the precision of the system clock by reading it */ 338 #define USECS 1000000 339 #define MINSTEP 5 /* some systems increment uS on each call */ 340 #define MAXLOOPS (USECS/9) 341 342 /* 343 * Function prototypes 344 */ 345 346 static int msfees_start P((int unit, struct peer *peer)); 347 static void msfees_shutdown P((int unit, struct peer *peer)); 348 static void msfees_poll P((int unit, struct peer *peer)); 349 static void msfees_init P((void)); 350 static void dump_buf P((l_fp *coffs, int from, int to, char *text)); 351 static void ees_report_event P((struct eesunit *ees, int code)); 352 static void ees_receive P((struct recvbuf *rbufp)); 353 static void ees_process P((struct eesunit *ees)); 354 #ifdef QSORT_USES_VOID_P 355 static int offcompare P((const void *va, const void *vb)); 356 #else 357 static int offcompare P((const l_fp *a, const l_fp *b)); 358 #endif /* QSORT_USES_VOID_P */ 359 360 361 /* 362 * Transfer vector 363 */ 364 struct refclock refclock_msfees = { 365 msfees_start, /* start up driver */ 366 msfees_shutdown, /* shut down driver */ 367 msfees_poll, /* transmit poll message */ 368 noentry, /* not used */ 369 msfees_init, /* initialize driver */ 370 noentry, /* not used */ 371 NOFLAGS /* not used */ 372 }; 373 374 375 static void 376 dump_buf( 377 l_fp *coffs, 378 int from, 379 int to, 380 char *text 381 ) 382 { 383 char buff[DUMP_BUF_SIZE + 80]; 384 int i; 385 register char *ptr = buff; 386 387 sprintf(ptr, text); 388 for (i=from; i<to; i++) 389 { while (*ptr) ptr++; 390 if ((ptr-buff) > DUMP_BUF_SIZE) msyslog(LOG_DEBUG, "D: %s", ptr=buff); 391 sprintf(ptr, " %06d", ((int)coffs[i].l_f) / 4295); 392 } 393 msyslog(LOG_DEBUG, "D: %s", buff); 394 } 395 396 /* msfees_init - initialize internal ees driver data */ 397 static void 398 msfees_init(void) 399 { 400 register int i; 401 /* Just zero the data arrays */ 402 memset((char *)eesunits, 0, sizeof eesunits); 403 memset((char *)unitinuse, 0, sizeof unitinuse); 404 405 acceptable_slop.l_ui = 0; 406 acceptable_slop.l_uf = 1 << (FRACTION_PREC -2); 407 408 onesec.l_ui = 1; 409 onesec.l_uf = 0; 410 411 /* Initialize fudge factors to default. */ 412 for (i = 0; i < MAXUNITS; i++) { 413 fudgefactor[i].l_ui = 0; 414 fudgefactor[i].l_uf = DEFFUDGETIME; 415 os_delay[i].l_ui = 0; 416 os_delay[i].l_uf = DEFOSTIME; 417 inherent_delay[i].l_ui = 0; 418 inherent_delay[i].l_uf = DEFINHTIME; 419 offset_fudge[i] = os_delay[i]; 420 L_ADD(&offset_fudge[i], &fudgefactor[i]); 421 L_ADD(&offset_fudge[i], &inherent_delay[i]); 422 stratumtouse[i] = 0; 423 sloppyclockflag[i] = 0; 424 } 425 } 426 427 428 /* msfees_start - open the EES devices and initialize data for processing */ 429 static int 430 msfees_start( 431 int unit, 432 struct peer *peer 433 ) 434 { 435 register struct eesunit *ees; 436 register int i; 437 int fd232 = -1; 438 char eesdev[20]; 439 struct termios ttyb, *ttyp; 440 struct refclockproc *pp; 441 pp = peer->procptr; 442 443 if (unit >= MAXUNITS) { 444 msyslog(LOG_ERR, "ees clock: unit number %d invalid (max %d)", 445 unit, MAXUNITS-1); 446 return 0; 447 } 448 if (unitinuse[unit]) { 449 msyslog(LOG_ERR, "ees clock: unit number %d in use", unit); 450 return 0; 451 } 452 453 /* Unit okay, attempt to open the devices. We do them both at 454 * once to make sure we can */ 455 (void) sprintf(eesdev, EES232, unit); 456 457 fd232 = open(eesdev, O_RDWR, 0777); 458 if (fd232 == -1) { 459 msyslog(LOG_ERR, "ees clock: open of %s failed: %m", eesdev); 460 return 0; 461 } 462 463 #ifdef TIOCEXCL 464 /* Set for exclusive use */ 465 if (ioctl(fd232, TIOCEXCL, (char *)0) < 0) { 466 msyslog(LOG_ERR, "ees clock: ioctl(%s, TIOCEXCL): %m", eesdev); 467 goto screwed; 468 } 469 #endif 470 471 /* STRIPPED DOWN VERSION: Only PPS CD is supported at the moment */ 472 473 /* Set port characteristics. If we don't have a STREAMS module or 474 * a clock line discipline, cooked mode is just usable, even though it 475 * strips the top bit. The only EES byte which uses the top 476 * bit is the year, and we don't use that anyway. If we do 477 * have the line discipline, we choose raw mode, and the 478 * line discipline code will block up the messages. 479 */ 480 481 /* STIPPED DOWN VERSION: Only PPS CD is supported at the moment */ 482 483 ttyp = &ttyb; 484 if (tcgetattr(fd232, ttyp) < 0) { 485 msyslog(LOG_ERR, "msfees_start: tcgetattr(%s): %m", eesdev); 486 goto screwed; 487 } 488 489 ttyp->c_iflag = IGNBRK|IGNPAR|ICRNL; 490 ttyp->c_cflag = SPEED232|CS8|CLOCAL|CREAD; 491 ttyp->c_oflag = 0; 492 ttyp->c_lflag = ICANON; 493 ttyp->c_cc[VERASE] = ttyp->c_cc[VKILL] = '\0'; 494 if (tcsetattr(fd232, TCSANOW, ttyp) < 0) { 495 msyslog(LOG_ERR, "msfees_start: tcsetattr(%s): %m", eesdev); 496 goto screwed; 497 } 498 499 if (tcflush(fd232, TCIOFLUSH) < 0) { 500 msyslog(LOG_ERR, "msfees_start: tcflush(%s): %m", eesdev); 501 goto screwed; 502 } 503 504 inherent_delay[unit].l_uf = INH_DELAY_PPS; 505 506 /* offset fudge (how *late* the timestamp is) = fudge + os delays */ 507 offset_fudge[unit] = os_delay[unit]; 508 L_ADD(&offset_fudge[unit], &fudgefactor[unit]); 509 L_ADD(&offset_fudge[unit], &inherent_delay[unit]); 510 511 /* Looks like this might succeed. Find memory for the structure. 512 * Look to see if there are any unused ones, if not we malloc() one. 513 */ 514 if (eesunits[unit] != 0) /* The one we want is okay */ 515 ees = eesunits[unit]; 516 else { 517 /* Look for an unused, but allocated struct */ 518 for (i = 0; i < MAXUNITS; i++) { 519 if (!unitinuse[i] && eesunits[i] != 0) 520 break; 521 } 522 523 if (i < MAXUNITS) { /* Reclaim this one */ 524 ees = eesunits[i]; 525 eesunits[i] = 0; 526 } /* no spare -- make a new one */ 527 else ees = (struct eesunit *) emalloc(sizeof(struct eesunit)); 528 } 529 memset((char *)ees, 0, sizeof(struct eesunit)); 530 eesunits[unit] = ees; 531 532 /* Set up the structures */ 533 ees->peer = peer; 534 ees->unit = (u_char)unit; 535 ees->timestarted= current_time; 536 ees->ttytype = 0; 537 ees->io.clock_recv= ees_receive; 538 ees->io.srcclock= (caddr_t)ees; 539 ees->io.datalen = 0; 540 ees->io.fd = fd232; 541 542 /* Okay. Push one of the two (linked into the kernel, or dynamically 543 * loaded) STREAMS module, and give it to the I/O code to start 544 * receiving stuff. 545 */ 546 547 #ifdef STREAM 548 { 549 int rc1; 550 /* Pop any existing onews first ... */ 551 while (ioctl(fd232, I_POP, 0 ) >= 0) ; 552 553 /* Now try pushing either of the possible modules */ 554 if ((rc1=ioctl(fd232, I_PUSH, STREAM_PP1)) < 0 && 555 ioctl(fd232, I_PUSH, STREAM_PP2) < 0) { 556 msyslog(LOG_ERR, 557 "ees clock: Push of `%s' and `%s' to %s failed %m", 558 STREAM_PP1, STREAM_PP2, eesdev); 559 goto screwed; 560 } 561 else { 562 NLOG(NLOG_CLOCKINFO) /* conditional if clause for conditional syslog */ 563 msyslog(LOG_INFO, "I: ees clock: PUSHed %s on %s", 564 (rc1 >= 0) ? STREAM_PP1 : STREAM_PP2, eesdev); 565 ees->ttytype |= T_PPS; 566 } 567 } 568 #endif /* STREAM */ 569 570 /* Add the clock */ 571 if (!io_addclock(&ees->io)) { 572 /* Oh shit. Just close and return. */ 573 msyslog(LOG_ERR, "ees clock: io_addclock(%s): %m", eesdev); 574 goto screwed; 575 } 576 577 578 /* All done. Initialize a few random peer variables, then 579 * return success. */ 580 peer->precision = sys_precision; 581 peer->stratum = stratumtouse[unit]; 582 if (stratumtouse[unit] <= 1) { 583 memcpy((char *)&pp->refid, EESREFID, 4); 584 if (unit > 0 && unit < 10) 585 ((char *)&pp->refid)[3] = '0' + unit; 586 } else { 587 peer->refid = htonl(EESHSREFID); 588 } 589 unitinuse[unit] = 1; 590 pp->unitptr = (caddr_t) &eesunits[unit]; 591 pp->clockdesc = EESDESCRIPTION; 592 msyslog(LOG_ERR, "ees clock: %s OK on %d", eesdev, unit); 593 return (1); 594 595 screwed: 596 if (fd232 != -1) 597 (void) close(fd232); 598 return (0); 599 } 600 601 602 /* msfees_shutdown - shut down a EES clock */ 603 static void 604 msfees_shutdown( 605 int unit, 606 struct peer *peer 607 ) 608 { 609 register struct eesunit *ees; 610 611 if (unit >= MAXUNITS) { 612 msyslog(LOG_ERR, 613 "ees clock: INTERNAL ERROR, unit number %d invalid (max %d)", 614 unit, MAXUNITS); 615 return; 616 } 617 if (!unitinuse[unit]) { 618 msyslog(LOG_ERR, 619 "ees clock: INTERNAL ERROR, unit number %d not in use", unit); 620 return; 621 } 622 623 /* Tell the I/O module to turn us off. We're history. */ 624 ees = eesunits[unit]; 625 io_closeclock(&ees->io); 626 unitinuse[unit] = 0; 627 } 628 629 630 /* ees_report_event - note the occurance of an event */ 631 static void 632 ees_report_event( 633 struct eesunit *ees, 634 int code 635 ) 636 { 637 if (ees->status != (u_char)code) { 638 ees->status = (u_char)code; 639 if (code != CEVNT_NOMINAL) 640 ees->lastevent = (u_char)code; 641 /* Should report event to trap handler in here. 642 * Soon... 643 */ 644 } 645 } 646 647 648 /* ees_receive - receive data from the serial interface on an EES clock */ 649 static void 650 ees_receive( 651 struct recvbuf *rbufp 652 ) 653 { 654 register int n_sample; 655 register int day; 656 register struct eesunit *ees; 657 register u_char *dpt; /* Data PoinTeR: move along ... */ 658 register u_char *dpend; /* Points just *after* last data char */ 659 register char *cp; 660 l_fp tmp; 661 int call_pps_sample = 0; 662 l_fp pps_arrvstamp; 663 int sincelast; 664 int pps_step = 0; 665 int suspect_4ms_step = 0; 666 struct ppsclockev ppsclockev; 667 long *ptr = (long *) &ppsclockev; 668 int rc; 669 int request; 670 #ifdef HAVE_CIOGETEV 671 request = CIOGETEV; 672 #endif 673 #ifdef HAVE_TIOCGPPSEV 674 request = TIOCGPPSEV; 675 #endif 676 677 /* Get the clock this applies to and a pointer to the data */ 678 ees = (struct eesunit *)rbufp->recv_srcclock; 679 dpt = (u_char *)&rbufp->recv_space; 680 dpend = dpt + rbufp->recv_length; 681 if ((debug & DB_LOG_AWAITMORE) && (rbufp->recv_length != LENEESCODE)) 682 printf("[%d] ", rbufp->recv_length); 683 684 /* Check out our state and process appropriately */ 685 switch (ees->codestate) { 686 case EESCS_WAIT: 687 /* Set an initial guess at the timestamp as the recv time. 688 * If just running in CBREAK mode, we can't improve this. 689 * If we have the CLOCK Line Discipline, PPSCD, or sime such, 690 * then we will do better later .... 691 */ 692 ees->arrvtime = rbufp->recv_time; 693 ees->codestate = EESCS_GOTSOME; 694 ees->lencode = 0; 695 /*FALLSTHROUGH*/ 696 697 case EESCS_GOTSOME: 698 cp = &(ees->lastcode[ees->lencode]); 699 700 /* Gobble the bytes until the final (possibly stripped) 0xff */ 701 while (dpt < dpend && (*dpt & 0x7f) != 0x7f) { 702 *cp++ = (char)*dpt++; 703 ees->lencode++; 704 /* Oh dear -- too many bytes .. */ 705 if (ees->lencode > LENEESPRT) { 706 NLOG(NLOG_CLOCKINFO) /* conditional if clause for conditional syslog */ 707 msyslog(LOG_INFO, 708 "I: ees clock: %d + %d > %d [%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x]", 709 ees->lencode, dpend - dpt, LENEESPRT, 710 #define D(x) (ees->lastcode[x]) 711 D(0), D(1), D(2), D(3), D(4), D(5), D(6), 712 D(7), D(8), D(9), D(10), D(11), D(12)); 713 #undef D 714 ees->badformat++; 715 ees->reason = CODEREASON + 1; 716 ees_event(ees, CEVNT_BADREPLY); 717 ees_reset(ees); 718 return; 719 } 720 } 721 /* Gave up because it was end of the buffer, rather than ff */ 722 if (dpt == dpend) { 723 /* Incomplete. Wait for more. */ 724 if (debug & DB_LOG_AWAITMORE) 725 msyslog(LOG_INFO, 726 "I: ees clock %d: %x == %x: await more", 727 ees->unit, dpt, dpend); 728 return; 729 } 730 731 /* This shouldn't happen ... ! */ 732 if ((*dpt & 0x7f) != 0x7f) { 733 msyslog(LOG_INFO, "I: ees clock: %0x & 0x7f != 0x7f", *dpt); 734 ees->badformat++; 735 ees->reason = CODEREASON + 2; 736 ees_event(ees, CEVNT_BADREPLY); 737 ees_reset(ees); 738 return; 739 } 740 741 /* Skip the 0xff */ 742 dpt++; 743 744 /* Finally, got a complete buffer. Mainline code will 745 * continue on. */ 746 cp = ees->lastcode; 747 break; 748 749 default: 750 msyslog(LOG_ERR, "ees clock: INTERNAL ERROR: %d state %d", 751 ees->unit, ees->codestate); 752 ees->reason = CODEREASON + 5; 753 ees_event(ees, CEVNT_FAULT); 754 ees_reset(ees); 755 return; 756 } 757 758 /* Boy! After all that crap, the lastcode buffer now contains 759 * something we hope will be a valid time code. Do length 760 * checks and sanity checks on constant data. 761 */ 762 ees->codestate = EESCS_WAIT; 763 ees->lasttime = current_time; 764 if (ees->lencode != LENEESPRT) { 765 ees->badformat++; 766 ees->reason = CODEREASON + 6; 767 ees_event(ees, CEVNT_BADREPLY); 768 ees_reset(ees); 769 return; 770 } 771 772 cp = ees->lastcode; 773 774 /* Check that centisecond is zero */ 775 if (cp[EESM_CSEC] != 0) { 776 ees->baddata++; 777 ees->reason = CODEREASON + 7; 778 ees_event(ees, CEVNT_BADREPLY); 779 ees_reset(ees); 780 return; 781 } 782 783 /* Check flag formats */ 784 if (cp[EESM_LEAP] != 0 && cp[EESM_LEAP] != 0x0f) { 785 ees->badformat++; 786 ees->reason = CODEREASON + 8; 787 ees_event(ees, CEVNT_BADREPLY); 788 ees_reset(ees); 789 return; 790 } 791 792 if (cp[EESM_BST] != 0 && cp[EESM_BST] != 0x03) { 793 ees->badformat++; 794 ees->reason = CODEREASON + 9; 795 ees_event(ees, CEVNT_BADREPLY); 796 ees_reset(ees); 797 return; 798 } 799 800 if (cp[EESM_MSFOK] != 0 && cp[EESM_MSFOK] != 0x3f) { 801 ees->badformat++; 802 ees->reason = CODEREASON + 10; 803 ees_event(ees, CEVNT_BADREPLY); 804 ees_reset(ees); 805 return; 806 } 807 808 /* So far, so good. Compute day, hours, minutes, seconds, 809 * time zone. Do range checks on these. 810 */ 811 812 #define bcdunpack(val) ( (((val)>>4) & 0x0f) * 10 + ((val) & 0x0f) ) 813 #define istrue(x) ((x)?1:0) 814 815 ees->second = bcdunpack(cp[EESM_SEC]); /* second */ 816 ees->minute = bcdunpack(cp[EESM_MIN]); /* minute */ 817 ees->hour = bcdunpack(cp[EESM_HOUR]); /* hour */ 818 819 day = bcdunpack(cp[EESM_DAY]); /* day of month */ 820 821 switch (bcdunpack(cp[EESM_MON])) { /* month */ 822 823 /* Add in lengths of all previous months. Add one more 824 if it is a leap year and after February. 825 */ 826 case 12: day += NOV; /*FALLSTHROUGH*/ 827 case 11: day += OCT; /*FALLSTHROUGH*/ 828 case 10: day += SEP; /*FALLSTHROUGH*/ 829 case 9: day += AUG; /*FALLSTHROUGH*/ 830 case 8: day += JUL; /*FALLSTHROUGH*/ 831 case 7: day += JUN; /*FALLSTHROUGH*/ 832 case 6: day += MAY; /*FALLSTHROUGH*/ 833 case 5: day += APR; /*FALLSTHROUGH*/ 834 case 4: day += MAR; /*FALLSTHROUGH*/ 835 case 3: day += FEB; 836 if (istrue(cp[EESM_LEAP])) day++; /*FALLSTHROUGH*/ 837 case 2: day += JAN; /*FALLSTHROUGH*/ 838 case 1: break; 839 default: ees->baddata++; 840 ees->reason = CODEREASON + 11; 841 ees_event(ees, CEVNT_BADDATE); 842 ees_reset(ees); 843 return; 844 } 845 846 ees->day = day; 847 848 /* Get timezone. The clocktime routine wants the number 849 * of hours to add to the delivered time to get UT. 850 * Currently -1 if BST flag set, 0 otherwise. This 851 * is the place to tweak things if double summer time 852 * ever happens. 853 */ 854 ees->tz = istrue(cp[EESM_BST]) ? -1 : 0; 855 856 if (ees->day > 366 || ees->day < 1 || 857 ees->hour > 23 || ees->minute > 59 || ees->second > 59) { 858 ees->baddata++; 859 ees->reason = CODEREASON + 12; 860 ees_event(ees, CEVNT_BADDATE); 861 ees_reset(ees); 862 return; 863 } 864 865 n_sample = ees->nsamples; 866 867 /* Now, compute the reference time value: text -> tmp.l_ui */ 868 if (!clocktime(ees->day, ees->hour, ees->minute, ees->second, 869 ees->tz, rbufp->recv_time.l_ui, &ees->yearstart, 870 &tmp.l_ui)) { 871 ees->baddata++; 872 ees->reason = CODEREASON + 13; 873 ees_event(ees, CEVNT_BADDATE); 874 ees_reset(ees); 875 return; 876 } 877 tmp.l_uf = 0; 878 879 /* DON'T use ees->arrvtime -- it may be < reftime */ 880 ees->lastsampletime = tmp; 881 882 /* If we are synchronised to the radio, update the reference time. 883 * Also keep a note of when clock was last good. 884 */ 885 if (istrue(cp[EESM_MSFOK])) { 886 ees->reftime = tmp; 887 ees->clocklastgood = current_time; 888 } 889 890 891 /* Compute the offset. For the fractional part of the 892 * offset we use the expected delay for the message. 893 */ 894 ees->codeoffsets[n_sample].l_ui = tmp.l_ui; 895 ees->codeoffsets[n_sample].l_uf = 0; 896 897 /* Number of seconds since the last step */ 898 sincelast = this_uisec - ees->last_step; 899 900 memset((char *) &ppsclockev, 0, sizeof ppsclockev); 901 902 rc = ioctl(ees->io.fd, request, (char *) &ppsclockev); 903 if (debug & DB_PRINT_EV) fprintf(stderr, 904 "[%x] CIOGETEV u%d %d (%x %d) gave %d (%d): %08lx %08lx %ld\n", 905 DB_PRINT_EV, ees->unit, ees->io.fd, request, is_pps(ees), 906 rc, errno, ptr[0], ptr[1], ptr[2]); 907 908 /* If we managed to get the time of arrival, process the info */ 909 if (rc >= 0) { 910 int conv = -1; 911 pps_step = ppsclockev.serial - ees->last_pps_no; 912 913 /* Possible that PPS triggered, but text message didn't */ 914 if (pps_step == 2) msyslog(LOG_ERR, "pps step = 2 @ %02d", ees->second); 915 if (pps_step == 2 && ees->second == 1) suspect_4ms_step |= 1; 916 if (pps_step == 2 && ees->second == 2) suspect_4ms_step |= 4; 917 918 /* allow for single loss of PPS only */ 919 if (pps_step != 1 && pps_step != 2) 920 fprintf(stderr, "PPS step: %d too far off %ld (%d)\n", 921 ppsclockev.serial, ees->last_pps_no, pps_step); 922 else if (!buftvtots((char *) &(ppsclockev.tv), &pps_arrvstamp)) 923 fprintf(stderr, "buftvtots failed\n"); 924 else { /* if ((ABS(time difference) - 0.25) < 0) 925 * then believe it ... 926 */ 927 l_fp diff; 928 diff = pps_arrvstamp; 929 conv = 0; 930 L_SUB(&diff, &ees->arrvtime); 931 if (debug & DB_PRINT_CDT) 932 printf("[%x] Have %lx.%08lx and %lx.%08lx -> %lx.%08lx @ %s", 933 DB_PRINT_CDT, (long)ees->arrvtime.l_ui, (long)ees->arrvtime.l_uf, 934 (long)pps_arrvstamp.l_ui, (long)pps_arrvstamp.l_uf, 935 (long)diff.l_ui, (long)diff.l_uf, 936 ctime(&(ppsclockev.tv.tv_sec))); 937 if (L_ISNEG(&diff)) M_NEG(diff.l_ui, diff.l_uf); 938 L_SUB(&diff, &acceptable_slop); 939 if (L_ISNEG(&diff)) { /* AOK -- pps_sample */ 940 ees->arrvtime = pps_arrvstamp; 941 conv++; 942 call_pps_sample++; 943 } 944 /* Some loss of some signals around sec = 1 */ 945 else if (ees->second == 1) { 946 diff = pps_arrvstamp; 947 L_ADD(&diff, &onesec); 948 L_SUB(&diff, &ees->arrvtime); 949 if (L_ISNEG(&diff)) M_NEG(diff.l_ui, diff.l_uf); 950 L_SUB(&diff, &acceptable_slop); 951 msyslog(LOG_ERR, "Have sec==1 slip %ds a=%08x-p=%08x -> %x.%08x (u=%d) %s", 952 pps_arrvstamp.l_ui - ees->arrvtime.l_ui, 953 pps_arrvstamp.l_uf, 954 ees->arrvtime.l_uf, 955 diff.l_ui, diff.l_uf, 956 (int)ppsclockev.tv.tv_usec, 957 ctime(&(ppsclockev.tv.tv_sec))); 958 if (L_ISNEG(&diff)) { /* AOK -- pps_sample */ 959 suspect_4ms_step |= 2; 960 ees->arrvtime = pps_arrvstamp; 961 L_ADD(&ees->arrvtime, &onesec); 962 conv++; 963 call_pps_sample++; 964 } 965 } 966 } 967 ees->last_pps_no = ppsclockev.serial; 968 if (debug & DB_PRINT_CDTC) 969 printf( 970 "[%x] %08lx %08lx %d u%d (%d %d)\n", 971 DB_PRINT_CDTC, (long)pps_arrvstamp.l_ui, 972 (long)pps_arrvstamp.l_uf, conv, ees->unit, 973 call_pps_sample, pps_step); 974 } 975 976 /* See if there has been a 4ms jump at a minute boundry */ 977 { l_fp delta; 978 #define delta_isec delta.l_ui 979 #define delta_ssec delta.l_i 980 #define delta_sfsec delta.l_f 981 long delta_f_abs; 982 983 delta.l_i = ees->arrvtime.l_i; 984 delta.l_f = ees->arrvtime.l_f; 985 986 L_SUB(&delta, &ees->last_l); 987 delta_f_abs = delta_sfsec; 988 if (delta_f_abs < 0) delta_f_abs = -delta_f_abs; 989 990 /* Dump the deltas each minute */ 991 if (debug & DB_DUMP_DELTAS) 992 { if (/*0 <= ees->second && */ 993 ees->second < ((sizeof deltas) / (sizeof deltas[0]))) deltas[ees->second] = delta_sfsec; 994 /* Dump on second 1, as second 0 sometimes missed */ 995 if (ees->second == 1) { 996 char text[16 * ((sizeof deltas) / (sizeof deltas[0]))]; 997 char *cptr=text; 998 int i; 999 for (i=0; i<((sizeof deltas) / (sizeof deltas[0])); i++) { 1000 sprintf(cptr, " %d.%04d", 1001 msec(deltas[i]), subms(deltas[i])); 1002 while (*cptr) cptr++; 1003 } 1004 msyslog(LOG_ERR, "Deltas: %d.%04d<->%d.%04d: %s", 1005 msec(EES_STEP_F - EES_STEP_F_GRACE), subms(EES_STEP_F - EES_STEP_F_GRACE), 1006 msec(EES_STEP_F + EES_STEP_F_GRACE), subms(EES_STEP_F + EES_STEP_F_GRACE), 1007 text+1); 1008 for (i=0; i<((sizeof deltas) / (sizeof deltas[0])); i++) deltas[i] = 0; 1009 } 1010 } 1011 1012 /* Lets see if we have a 4 mS step at a minute boundaary */ 1013 if ( ((EES_STEP_F - EES_STEP_F_GRACE) < delta_f_abs) && 1014 (delta_f_abs < (EES_STEP_F + EES_STEP_F_GRACE)) && 1015 (ees->second == 0 || ees->second == 1 || ees->second == 2) && 1016 (sincelast < 0 || sincelast > 122) 1017 ) { /* 4ms jump at min boundry */ 1018 int old_sincelast; 1019 int count=0; 1020 int sum = 0; 1021 /* Yes -- so compute the ramp time */ 1022 if (ees->last_step == 0) sincelast = 0; 1023 old_sincelast = sincelast; 1024 1025 /* First time in, just set "ees->last_step" */ 1026 if(ees->last_step) { 1027 int other_step = 0; 1028 int third_step = 0; 1029 int this_step = (sincelast + (60 /2)) / 60; 1030 int p_step = ees->this_step; 1031 int p; 1032 ees->last_steps[p_step] = this_step; 1033 p= p_step; 1034 p_step++; 1035 if (p_step >= LAST_STEPS) p_step = 0; 1036 ees->this_step = p_step; 1037 /* Find the "average" interval */ 1038 while (p != p_step) { 1039 int this = ees->last_steps[p]; 1040 if (this == 0) break; 1041 if (this != this_step) { 1042 if (other_step == 0 && ( 1043 this== (this_step +2) || 1044 this== (this_step -2) || 1045 this== (this_step +1) || 1046 this== (this_step -1))) 1047 other_step = this; 1048 if (other_step != this) { 1049 int idelta = (this_step - other_step); 1050 if (idelta < 0) idelta = - idelta; 1051 if (third_step == 0 && ( 1052 (idelta == 1) ? ( 1053 this == (other_step +1) || 1054 this == (other_step -1) || 1055 this == (this_step +1) || 1056 this == (this_step -1)) 1057 : 1058 ( 1059 this == (this_step + other_step)/2 1060 ) 1061 )) third_step = this; 1062 if (third_step != this) break; 1063 } 1064 } 1065 sum += this; 1066 p--; 1067 if (p < 0) p += LAST_STEPS; 1068 count++; 1069 } 1070 msyslog(LOG_ERR, "MSF%d: %d: This=%d (%d), other=%d/%d, sum=%d, count=%d, pps_step=%d, suspect=%x", ees->unit, p, ees->last_steps[p], this_step, other_step, third_step, sum, count, pps_step, suspect_4ms_step); 1071 if (count != 0) sum = ((sum * 60) + (count /2)) / count; 1072 #define SV(x) (ees->last_steps[(x + p_step) % LAST_STEPS]) 1073 msyslog(LOG_ERR, "MSF%d: %x steps %d: %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d", 1074 ees->unit, suspect_4ms_step, p_step, SV(0), SV(1), SV(2), SV(3), SV(4), SV(5), SV(6), 1075 SV(7), SV(8), SV(9), SV(10), SV(11), SV(12), SV(13), SV(14), SV(15)); 1076 printf("MSF%d: steps %d: %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d\n", 1077 ees->unit, p_step, SV(0), SV(1), SV(2), SV(3), SV(4), SV(5), SV(6), 1078 SV(7), SV(8), SV(9), SV(10), SV(11), SV(12), SV(13), SV(14), SV(15)); 1079 #undef SV 1080 ees->jump_fsecs = delta_sfsec; 1081 ees->using_ramp = 1; 1082 if (sincelast > 170) 1083 ees->last_step_late += sincelast - ((sum) ? sum : ees->last_step_secs); 1084 else ees->last_step_late = 30; 1085 if (ees->last_step_late < -60 || ees->last_step_late > 120) ees->last_step_late = 30; 1086 if (ees->last_step_late < 0) ees->last_step_late = 0; 1087 if (ees->last_step_late >= 60) ees->last_step_late = 59; 1088 sincelast = 0; 1089 } 1090 else { /* First time in -- just save info */ 1091 ees->last_step_late = 30; 1092 ees->jump_fsecs = delta_sfsec; 1093 ees->using_ramp = 1; 1094 sum = 4 * 60; 1095 } 1096 ees->last_step = this_uisec; 1097 printf("MSF%d: d=%3ld.%04ld@%d :%d:%d:$%d:%d:%d\n", 1098 ees->unit, (long)msec(delta_sfsec), (long)subms(delta_sfsec), 1099 ees->second, old_sincelast, ees->last_step_late, count, sum, 1100 ees->last_step_secs); 1101 msyslog(LOG_ERR, "MSF%d: d=%3d.%04d@%d :%d:%d:%d:%d:%d", 1102 ees->unit, msec(delta_sfsec), subms(delta_sfsec), ees->second, 1103 old_sincelast, ees->last_step_late, count, sum, ees->last_step_secs); 1104 if (sum) ees->last_step_secs = sum; 1105 } 1106 /* OK, so not a 4ms step at a minute boundry */ 1107 else { 1108 if (suspect_4ms_step) msyslog(LOG_ERR, 1109 "MSF%d: suspect = %x, but delta of %d.%04d [%d.%04d<%d.%04d<%d.%04d: %d %d]", 1110 ees->unit, suspect_4ms_step, msec(delta_sfsec), subms(delta_sfsec), 1111 msec(EES_STEP_F - EES_STEP_F_GRACE), 1112 subms(EES_STEP_F - EES_STEP_F_GRACE), 1113 (int)msec(delta_f_abs), 1114 (int)subms(delta_f_abs), 1115 msec(EES_STEP_F + EES_STEP_F_GRACE), 1116 subms(EES_STEP_F + EES_STEP_F_GRACE), 1117 ees->second, 1118 sincelast); 1119 if ((delta_f_abs > EES_STEP_NOTE) && ees->last_l.l_i) { 1120 static int ees_step_notes = EES_STEP_NOTES; 1121 if (ees_step_notes > 0) { 1122 ees_step_notes--; 1123 printf("MSF%d: D=%3ld.%04ld@%02d :%d%s\n", 1124 ees->unit, (long)msec(delta_sfsec), (long)subms(delta_sfsec), 1125 ees->second, sincelast, ees_step_notes ? "" : " -- NO MORE !"); 1126 msyslog(LOG_ERR, "MSF%d: D=%3d.%04d@%02d :%d%s", 1127 ees->unit, msec(delta_sfsec), subms(delta_sfsec), ees->second, (ees->last_step) ? sincelast : -1, ees_step_notes ? "" : " -- NO MORE !"); 1128 } 1129 } 1130 } 1131 } 1132 ees->last_l = ees->arrvtime; 1133 1134 /* IF we have found that it's ramping 1135 * && it's within twice the expected ramp period 1136 * && there is a non zero step size (avoid /0 !) 1137 * THEN we twiddle things 1138 */ 1139 if (ees->using_ramp && 1140 sincelast < (ees->last_step_secs)*2 && 1141 ees->last_step_secs) 1142 { long sec_of_ramp = sincelast + ees->last_step_late; 1143 long fsecs; 1144 l_fp inc; 1145 1146 /* Ramp time may vary, so may ramp for longer than last time */ 1147 if (sec_of_ramp > (ees->last_step_secs + 120)) 1148 sec_of_ramp = ees->last_step_secs; 1149 1150 /* sec_of_ramp * ees->jump_fsecs may overflow 2**32 */ 1151 fsecs = sec_of_ramp * (ees->jump_fsecs / ees->last_step_secs); 1152 1153 if (debug & DB_LOG_DELTAS) msyslog(LOG_ERR, 1154 "[%x] MSF%d: %3ld/%03d -> d=%11ld (%d|%ld)", 1155 DB_LOG_DELTAS, 1156 ees->unit, sec_of_ramp, ees->last_step_secs, fsecs, 1157 pps_arrvstamp.l_f, pps_arrvstamp.l_f + fsecs); 1158 if (debug & DB_PRINT_DELTAS) printf( 1159 "MSF%d: %3ld/%03d -> d=%11ld (%ld|%ld)\n", 1160 ees->unit, sec_of_ramp, ees->last_step_secs, fsecs, 1161 (long)pps_arrvstamp.l_f, pps_arrvstamp.l_f + fsecs); 1162 1163 /* Must sign extend the result */ 1164 inc.l_i = (fsecs < 0) ? -1 : 0; 1165 inc.l_f = fsecs; 1166 if (debug & DB_INC_PPS) 1167 { L_SUB(&pps_arrvstamp, &inc); 1168 L_SUB(&ees->arrvtime, &inc); 1169 } 1170 else 1171 { L_ADD(&pps_arrvstamp, &inc); 1172 L_ADD(&ees->arrvtime, &inc); 1173 } 1174 } 1175 else { 1176 if (debug & DB_LOG_DELTAS) msyslog(LOG_ERR, 1177 "[%x] MSF%d: ees->using_ramp=%d, sincelast=%x / %x, ees->last_step_secs=%x", 1178 DB_LOG_DELTAS, 1179 ees->unit, ees->using_ramp, 1180 sincelast, 1181 (ees->last_step_secs)*2, 1182 ees->last_step_secs); 1183 if (debug & DB_PRINT_DELTAS) printf( 1184 "[%x] MSF%d: ees->using_ramp=%d, sincelast=%x / %x, ees->last_step_secs=%x\n", 1185 DB_LOG_DELTAS, 1186 ees->unit, ees->using_ramp, 1187 sincelast, 1188 (ees->last_step_secs)*2, 1189 ees->last_step_secs); 1190 } 1191 1192 L_SUB(&ees->arrvtime, &offset_fudge[ees->unit]); 1193 L_SUB(&pps_arrvstamp, &offset_fudge[ees->unit]); 1194 1195 if (call_pps_sample && !(debug & DB_NO_PPS)) { 1196 /* Sigh -- it expects its args negated */ 1197 L_NEG(&pps_arrvstamp); 1198 /* 1199 * I had to disable this here, since it appears there is no pointer to the 1200 * peer structure. 1201 * 1202 (void) pps_sample(peer, &pps_arrvstamp); 1203 */ 1204 } 1205 1206 /* Subtract off the local clock time stamp */ 1207 L_SUB(&ees->codeoffsets[n_sample], &ees->arrvtime); 1208 if (debug & DB_LOG_SAMPLES) msyslog(LOG_ERR, 1209 "MSF%d: [%x] %d (ees: %d %d) (pps: %d %d)%s", 1210 ees->unit, DB_LOG_DELTAS, n_sample, 1211 ees->codeoffsets[n_sample].l_f, 1212 ees->codeoffsets[n_sample].l_f / 4295, 1213 pps_arrvstamp.l_f, 1214 pps_arrvstamp.l_f /4295, 1215 (debug & DB_NO_PPS) ? " [no PPS]" : ""); 1216 1217 if (ees->nsamples++ == NCODES-1) ees_process(ees); 1218 1219 /* Done! */ 1220 } 1221 1222 1223 /* offcompare - auxiliary comparison routine for offset sort */ 1224 1225 #ifdef QSORT_USES_VOID_P 1226 static int 1227 offcompare( 1228 const void *va, 1229 const void *vb 1230 ) 1231 { 1232 const l_fp *a = (const l_fp *)va; 1233 const l_fp *b = (const l_fp *)vb; 1234 return(L_ISGEQ(a, b) ? (L_ISEQU(a, b) ? 0 : 1) : -1); 1235 } 1236 #else 1237 static int 1238 offcompare( 1239 const l_fp *a, 1240 const l_fp *b 1241 ) 1242 { 1243 return(L_ISGEQ(a, b) ? (L_ISEQU(a, b) ? 0 : 1) : -1); 1244 } 1245 #endif /* QSORT_USES_VOID_P */ 1246 1247 1248 /* ees_process - process a pile of samples from the clock */ 1249 static void 1250 ees_process( 1251 struct eesunit *ees 1252 ) 1253 { 1254 static int last_samples = -1; 1255 register int i, j; 1256 register int noff; 1257 register l_fp *coffs = ees->codeoffsets; 1258 l_fp offset, tmp; 1259 double dispersion; /* ++++ */ 1260 int lostsync, isinsync; 1261 int samples = ees->nsamples; 1262 int samplelog = 0; /* keep "gcc -Wall" happy ! */ 1263 int samplereduce = (samples + 1) / 2; 1264 double doffset; 1265 1266 /* Reset things to zero so we don't have to worry later */ 1267 ees_reset(ees); 1268 1269 if (sloppyclockflag[ees->unit]) { 1270 samplelog = (samples < 2) ? 0 : 1271 (samples < 5) ? 1 : 1272 (samples < 9) ? 2 : 1273 (samples < 17) ? 3 : 1274 (samples < 33) ? 4 : 5; 1275 samplereduce = (1 << samplelog); 1276 } 1277 1278 if (samples != last_samples && 1279 ((samples != (last_samples-1)) || samples < 3)) { 1280 msyslog(LOG_ERR, "Samples=%d (%d), samplereduce=%d ....", 1281 samples, last_samples, samplereduce); 1282 last_samples = samples; 1283 } 1284 if (samples < 1) return; 1285 1286 /* If requested, dump the raw data we have in the buffer */ 1287 if (ees->dump_vals) dump_buf(coffs, 0, samples, "Raw data is:"); 1288 1289 /* Sort the offsets, trim off the extremes, then choose one. */ 1290 qsort((char *) coffs, (u_int)samples, sizeof(l_fp), offcompare); 1291 1292 noff = samples; 1293 i = 0; 1294 while ((noff - i) > samplereduce) { 1295 /* Trim off the sample which is further away 1296 * from the median. We work this out by doubling 1297 * the median, subtracting off the end samples, and 1298 * looking at the sign of the answer, using the 1299 * identity (c-b)-(b-a) == 2*b-a-c 1300 */ 1301 tmp = coffs[(noff + i)/2]; 1302 L_ADD(&tmp, &tmp); 1303 L_SUB(&tmp, &coffs[i]); 1304 L_SUB(&tmp, &coffs[noff-1]); 1305 if (L_ISNEG(&tmp)) noff--; else i++; 1306 } 1307 1308 /* If requested, dump the reduce data we have in the buffer */ 1309 if (ees->dump_vals) dump_buf(coffs, i, noff, "Reduced to:"); 1310 1311 /* What we do next depends on the setting of the sloppy clock flag. 1312 * If it is on, average the remainder to derive our estimate. 1313 * Otherwise, just pick a representative value from the remaining stuff 1314 */ 1315 if (sloppyclockflag[ees->unit]) { 1316 offset.l_ui = offset.l_uf = 0; 1317 for (j = i; j < noff; j++) 1318 L_ADD(&offset, &coffs[j]); 1319 for (j = samplelog; j > 0; j--) 1320 L_RSHIFTU(&offset); 1321 } 1322 else offset = coffs[i+BESTSAMPLE]; 1323 1324 /* Compute the dispersion as the difference between the 1325 * lowest and highest offsets that remain in the 1326 * consideration list. 1327 * 1328 * It looks like MOST clocks have MOD (max error), so halve it ! 1329 */ 1330 tmp = coffs[noff-1]; 1331 L_SUB(&tmp, &coffs[i]); 1332 #define FRACT_SEC(n) ((1 << 30) / (n/2)) 1333 dispersion = LFPTOFP(&tmp) / 2; /* ++++ */ 1334 if (debug & (DB_SYSLOG_SMPLI | DB_SYSLOG_SMPLE)) msyslog( 1335 (debug & DB_SYSLOG_SMPLE) ? LOG_ERR : LOG_INFO, 1336 "I: [%x] Offset=%06d (%d), disp=%f%s [%d], %d %d=%d %d:%d %d=%d %d", 1337 debug & (DB_SYSLOG_SMPLI | DB_SYSLOG_SMPLE), 1338 offset.l_f / 4295, offset.l_f, 1339 (dispersion * 1526) / 100, 1340 (sloppyclockflag[ees->unit]) ? " by averaging" : "", 1341 FRACT_SEC(10) / 4295, 1342 (coffs[0].l_f) / 4295, 1343 i, 1344 (coffs[i].l_f) / 4295, 1345 (coffs[samples/2].l_f) / 4295, 1346 (coffs[i+BESTSAMPLE].l_f) / 4295, 1347 noff-1, 1348 (coffs[noff-1].l_f) / 4295, 1349 (coffs[samples-1].l_f) / 4295); 1350 1351 /* Are we playing silly wotsits ? 1352 * If we are using all data, see if there is a "small" delta, 1353 * and if so, blurr this with 3/4 of the delta from the last value 1354 */ 1355 if (ees->usealldata && ees->offset.l_uf) { 1356 long diff = (long) (ees->offset.l_uf - offset.l_uf); 1357 1358 /* is the delta small enough ? */ 1359 if ((- FRACT_SEC(100)) < diff && diff < FRACT_SEC(100)) { 1360 int samd = (64 * 4) / samples; 1361 long new; 1362 if (samd < 2) samd = 2; 1363 new = offset.l_uf + ((diff * (samd -1)) / samd); 1364 1365 /* Sign change -> need to fix up int part */ 1366 if ((new & 0x80000000) != 1367 (((long) offset.l_uf) & 0x80000000)) 1368 { NLOG(NLOG_CLOCKINFO) /* conditional if clause for conditional syslog */ 1369 msyslog(LOG_INFO, "I: %lx != %lx (%lx %lx), so add %d", 1370 new & 0x80000000, 1371 ((long) offset.l_uf) & 0x80000000, 1372 new, (long) offset.l_uf, 1373 (new < 0) ? -1 : 1); 1374 offset.l_ui += (new < 0) ? -1 : 1; 1375 } 1376 dispersion /= 4; 1377 if (debug & (DB_SYSLOG_SMTHI | DB_SYSLOG_SMTHE)) msyslog( 1378 (debug & DB_SYSLOG_SMTHE) ? LOG_ERR : LOG_INFO, 1379 "I: [%x] Smooth data: %ld -> %ld, dispersion now %f", 1380 debug & (DB_SYSLOG_SMTHI | DB_SYSLOG_SMTHE), 1381 ((long) offset.l_uf) / 4295, new / 4295, 1382 (dispersion * 1526) / 100); 1383 offset.l_uf = (unsigned long) new; 1384 } 1385 else if (debug & (DB_SYSLOG_NSMTHI | DB_SYSLOG_NSMTHE)) msyslog( 1386 (debug & DB_SYSLOG_NSMTHE) ? LOG_ERR : LOG_INFO, 1387 "[%x] No smooth as delta not %d < %ld < %d", 1388 debug & (DB_SYSLOG_NSMTHI | DB_SYSLOG_NSMTHE), 1389 - FRACT_SEC(100), diff, FRACT_SEC(100)); 1390 } 1391 else if (debug & (DB_SYSLOG_NSMTHI | DB_SYSLOG_NSMTHE)) msyslog( 1392 (debug & DB_SYSLOG_NSMTHE) ? LOG_ERR : LOG_INFO, 1393 "I: [%x] No smooth as flag=%x and old=%x=%d (%d:%d)", 1394 debug & (DB_SYSLOG_NSMTHI | DB_SYSLOG_NSMTHE), 1395 ees->usealldata, ees->offset.l_f, ees->offset.l_uf, 1396 offset.l_f, ees->offset.l_f - offset.l_f); 1397 1398 /* Collect offset info for debugging info */ 1399 ees->offset = offset; 1400 ees->lowoffset = coffs[i]; 1401 ees->highoffset = coffs[noff-1]; 1402 1403 /* Determine synchronization status. Can be unsync'd either 1404 * by a report from the clock or by a leap hold. 1405 * 1406 * Loss of the radio signal for a short time does not cause 1407 * us to go unsynchronised, since the receiver keeps quite 1408 * good time on its own. The spec says 20ms in 4 hours; the 1409 * observed drift in our clock (Cambridge) is about a second 1410 * a day, but even that keeps us within the inherent tolerance 1411 * of the clock for about 15 minutes. Observation shows that 1412 * the typical "short" outage is 3 minutes, so to allow us 1413 * to ride out those, we will give it 5 minutes. 1414 */ 1415 lostsync = current_time - ees->clocklastgood > 300 ? 1 : 0; 1416 isinsync = (lostsync || ees->leaphold > current_time) ? 0 : 1; 1417 1418 /* Done. Use time of last good, synchronised code as the 1419 * reference time, and lastsampletime as the receive time. 1420 */ 1421 if (ees->fix_pending) { 1422 msyslog(LOG_ERR, "MSF%d: fix_pending=%d -> jump %x.%08x\n", 1423 ees->fix_pending, ees->unit, offset.l_i, offset.l_f); 1424 ees->fix_pending = 0; 1425 } 1426 LFPTOD(&offset, doffset); 1427 refclock_receive(ees->peer); 1428 ees_event(ees, lostsync ? CEVNT_PROP : CEVNT_NOMINAL); 1429 } 1430 1431 /* msfees_poll - called by the transmit procedure */ 1432 static void 1433 msfees_poll( 1434 int unit, 1435 struct peer *peer 1436 ) 1437 { 1438 if (unit >= MAXUNITS) { 1439 msyslog(LOG_ERR, "ees clock poll: INTERNAL: unit %d invalid", 1440 unit); 1441 return; 1442 } 1443 if (!unitinuse[unit]) { 1444 msyslog(LOG_ERR, "ees clock poll: INTERNAL: unit %d unused", 1445 unit); 1446 return; 1447 } 1448 1449 ees_process(eesunits[unit]); 1450 1451 if ((current_time - eesunits[unit]->lasttime) > 150) 1452 ees_event(eesunits[unit], CEVNT_FAULT); 1453 } 1454 1455 1456 #else 1457 int refclock_msfees_bs; 1458 #endif /* REFCLOCK */ 1459