1 /* 2 * refclock_irig - audio IRIG-B/E demodulator/decoder 3 */ 4 #ifdef HAVE_CONFIG_H 5 #include <config.h> 6 #endif 7 8 #if defined(REFCLOCK) && defined(CLOCK_IRIG) 9 10 #include "ntpd.h" 11 #include "ntp_io.h" 12 #include "ntp_refclock.h" 13 #include "ntp_calendar.h" 14 #include "ntp_stdlib.h" 15 16 #include <stdio.h> 17 #include <ctype.h> 18 #include <math.h> 19 #ifdef HAVE_SYS_IOCTL_H 20 #include <sys/ioctl.h> 21 #endif /* HAVE_SYS_IOCTL_H */ 22 23 #include "audio.h" 24 25 /* 26 * Audio IRIG-B/E demodulator/decoder 27 * 28 * This driver receives, demodulates and decodes IRIG-B/E signals when 29 * connected to the audio codec /dev/audio. The IRIG signal format is an 30 * amplitude-modulated carrier with pulse-width modulated data bits. For 31 * IRIG-B, the carrier frequency is 1000 Hz and bit rate 100 b/s; for 32 * IRIG-E, the carrier frequenchy is 100 Hz and bit rate 10 b/s. The 33 * driver automatically recognizes which format is in use. 34 * 35 * The program processes 8000-Hz mu-law companded samples using separate 36 * signal filters for IRIG-B and IRIG-E, a comb filter, envelope 37 * detector and automatic threshold corrector. Cycle crossings relative 38 * to the corrected slice level determine the width of each pulse and 39 * its value - zero, one or position identifier. The data encode 20 BCD 40 * digits which determine the second, minute, hour and day of the year 41 * and sometimes the year and synchronization condition. The comb filter 42 * exponentially averages the corresponding samples of successive baud 43 * intervals in order to reliably identify the reference carrier cycle. 44 * A type-II phase-lock loop (PLL) performs additional integration and 45 * interpolation to accurately determine the zero crossing of that 46 * cycle, which determines the reference timestamp. A pulse-width 47 * discriminator demodulates the data pulses, which are then encoded as 48 * the BCD digits of the timecode. 49 * 50 * The timecode and reference timestamp are updated once each second 51 * with IRIG-B (ten seconds with IRIG-E) and local clock offset samples 52 * saved for later processing. At poll intervals of 64 s, the saved 53 * samples are processed by a trimmed-mean filter and used to update the 54 * system clock. 55 * 56 * An automatic gain control feature provides protection against 57 * overdriven or underdriven input signal amplitudes. It is designed to 58 * maintain adequate demodulator signal amplitude while avoiding 59 * occasional noise spikes. In order to assure reliable capture, the 60 * decompanded input signal amplitude must be greater than 100 units and 61 * the codec sample frequency error less than 250 PPM (.025 percent). 62 * 63 * The program performs a number of error checks to protect against 64 * overdriven or underdriven input signal levels, incorrect signal 65 * format or improper hardware configuration. Specifically, if any of 66 * the following errors occur for a time measurement, the data are 67 * rejected. 68 * 69 * o The peak carrier amplitude is less than DRPOUT (100). This usually 70 * means dead IRIG signal source, broken cable or wrong input port. 71 * 72 * o The frequency error is greater than MAXFREQ +-250 PPM (.025%). This 73 * usually means broken codec hardware or wrong codec configuration. 74 * 75 * o The modulation index is less than MODMIN (0.5). This usually means 76 * overdriven IRIG signal or wrong IRIG format. 77 * 78 * o A frame synchronization error has occurred. This usually means 79 * wrong IRIG signal format or the IRIG signal source has lost 80 * synchronization (signature control). 81 * 82 * o A data decoding error has occurred. This usually means wrong IRIG 83 * signal format. 84 * 85 * o The current second of the day is not exactly one greater than the 86 * previous one. This usually means a very noisy IRIG signal or 87 * insufficient CPU resources. 88 * 89 * o An audio codec error (overrun) occurred. This usually means 90 * insufficient CPU resources, as sometimes happens with Sun SPARC 91 * IPCs when doing something useful. 92 * 93 * Note that additional checks are done elsewhere in the reference clock 94 * interface routines. 95 * 96 * Debugging aids 97 * 98 * The timecode format used for debugging and data recording includes 99 * data helpful in diagnosing problems with the IRIG signal and codec 100 * connections. With debugging enabled (-d on the ntpd command line), 101 * the driver produces one line for each timecode in the following 102 * format: 103 * 104 * 00 1 98 23 19:26:52 721 143 0.694 20 0.1 66.5 3094572411.00027 105 * 106 * The most recent line is also written to the clockstats file at 64-s 107 * intervals. 108 * 109 * The first field contains the error flags in hex, where the hex bits 110 * are interpreted as below. This is followed by the IRIG status 111 * indicator, year of century, day of year and time of day. The status 112 * indicator and year are not produced by some IRIG devices. Following 113 * these fields are the signal amplitude (0-8100), codec gain (0-255), 114 * modulation index (0-1), time constant (2-20), carrier phase error 115 * (us) and carrier frequency error (PPM). The last field is the on-time 116 * timestamp in NTP format. 117 * 118 * The fraction part of the on-time timestamp is a good indicator of how 119 * well the driver is doing. Once upon a time, an UltrSPARC 30 and 120 * Solaris 2.7 kept the clock within a few tens of microseconds relative 121 * to the IRIG-B signal. Accuracy with IRIG-E was about ten times worse. 122 * Unfortunately, Sun broke the 2.7 audio driver in 2.8, which has a 10- 123 * ms sawtooth modulation. The driver attempts to remove the modulation 124 * by some clever estimation techniques which mostly work. With the 125 * "mixerctl -o" command before starting the daemon, the jitter is down 126 * to about 100 microseconds. Your experience may vary. 127 * 128 * Unlike other drivers, which can have multiple instantiations, this 129 * one supports only one. It does not seem likely that more than one 130 * audio codec would be useful in a single machine. More than one would 131 * probably chew up too much CPU time anyway. 132 * 133 * Fudge factors 134 * 135 * Fudge flag4 causes the dubugging output described above to be 136 * recorded in the clockstats file. Fudge flag2 selects the audio input 137 * port, where 0 is the mike port (default) and 1 is the line-in port. 138 * It does not seem useful to select the compact disc player port. Fudge 139 * flag3 enables audio monitoring of the input signal. For this purpose, 140 * the monitor gain is set to a default value. Fudgetime2 is used as a 141 * frequency vernier for broken codec sample frequency. 142 */ 143 /* 144 * Interface definitions 145 */ 146 #define DEVICE_AUDIO "/dev/audio" /* audio device name */ 147 #define PRECISION (-17) /* precision assumed (about 10 us) */ 148 #define REFID "IRIG" /* reference ID */ 149 #define DESCRIPTION "Generic IRIG Audio Driver" /* WRU */ 150 #define AUDIO_BUFSIZ 320 /* audio buffer size (40 ms) */ 151 #define SECOND 8000 /* nominal sample rate (Hz) */ 152 #define BAUD 80 /* samples per baud interval */ 153 #define OFFSET 128 /* companded sample offset */ 154 #define SIZE 256 /* decompanding table size */ 155 #define CYCLE 8 /* samples per carrier cycle */ 156 #define SUBFLD 10 /* bits per subfield */ 157 #define FIELD 10 /* subfields per field */ 158 #define MINTC 2 /* min PLL time constant */ 159 #define MAXTC 20 /* max PLL time constant max */ 160 #define MAXAMP 6000. /* maximum signal level */ 161 #define MAXCLP 100 /* max clips above reference per s */ 162 #define DRPOUT 100. /* dropout signal level */ 163 #define MODMIN 0.5 /* minimum modulation index */ 164 #define MAXFREQ (250e-6 * SECOND) /* freq tolerance (.025%) */ 165 #define PI 3.1415926535 /* the real thing */ 166 #ifdef IRIG_SUCKS 167 #define WIGGLE 11 /* wiggle filter length */ 168 #endif /* IRIG_SUCKS */ 169 170 /* 171 * Experimentally determined filter delays 172 */ 173 #define IRIG_B .0019 /* IRIG-B filter delay */ 174 #define IRIG_E .0019 /* IRIG-E filter delay */ 175 176 /* 177 * Data bit definitions 178 */ 179 #define BIT0 0 /* zero */ 180 #define BIT1 1 /* one */ 181 #define BITP 2 /* position identifier */ 182 183 /* 184 * Error flags (up->errflg) 185 */ 186 #define IRIG_ERR_AMP 0x01 /* low carrier amplitude */ 187 #define IRIG_ERR_FREQ 0x02 /* frequency tolerance exceeded */ 188 #define IRIG_ERR_MOD 0x04 /* low modulation index */ 189 #define IRIG_ERR_SYNCH 0x08 /* frame synch error */ 190 #define IRIG_ERR_DECODE 0x10 /* frame decoding error */ 191 #define IRIG_ERR_CHECK 0x20 /* second numbering discrepancy */ 192 #define IRIG_ERR_ERROR 0x40 /* codec error (overrun) */ 193 #define IRIG_ERR_SIGERR 0x80 /* IRIG status error (Spectracom) */ 194 195 /* 196 * IRIG unit control structure 197 */ 198 struct irigunit { 199 u_char timecode[21]; /* timecode string */ 200 l_fp timestamp; /* audio sample timestamp */ 201 l_fp tick; /* audio sample increment */ 202 double integ[BAUD]; /* baud integrator */ 203 double phase, freq; /* logical clock phase and frequency */ 204 double zxing; /* phase detector integrator */ 205 double yxing; /* cycle phase */ 206 double exing; /* envelope phase */ 207 double modndx; /* modulation index */ 208 double irig_b; /* IRIG-B signal amplitude */ 209 double irig_e; /* IRIG-E signal amplitude */ 210 int errflg; /* error flags */ 211 /* 212 * Audio codec variables 213 */ 214 double comp[SIZE]; /* decompanding table */ 215 int port; /* codec port */ 216 int gain; /* codec gain */ 217 int mongain; /* codec monitor gain */ 218 int clipcnt; /* sample clipped count */ 219 int seccnt; /* second interval counter */ 220 221 /* 222 * RF variables 223 */ 224 double hpf[5]; /* IRIG-B filter shift register */ 225 double lpf[5]; /* IRIG-E filter shift register */ 226 double intmin, intmax; /* integrated envelope min and max */ 227 double envmax; /* peak amplitude */ 228 double envmin; /* noise amplitude */ 229 double maxsignal; /* integrated peak amplitude */ 230 double noise; /* integrated noise amplitude */ 231 double lastenv[CYCLE]; /* last cycle amplitudes */ 232 double lastint[CYCLE]; /* last integrated cycle amplitudes */ 233 double lastsig; /* last carrier sample */ 234 double fdelay; /* filter delay */ 235 int decim; /* sample decimation factor */ 236 int envphase; /* envelope phase */ 237 int envptr; /* envelope phase pointer */ 238 int carphase; /* carrier phase */ 239 int envsw; /* envelope state */ 240 int envxing; /* envelope slice crossing */ 241 int tc; /* time constant */ 242 int tcount; /* time constant counter */ 243 int badcnt; /* decimation interval counter */ 244 245 /* 246 * Decoder variables 247 */ 248 int pulse; /* cycle counter */ 249 int cycles; /* carrier cycles */ 250 int dcycles; /* data cycles */ 251 int xptr; /* translate table pointer */ 252 int lastbit; /* last code element length */ 253 int second; /* previous second */ 254 int fieldcnt; /* subfield count in field */ 255 int bits; /* demodulated bits */ 256 int bitcnt; /* bit count in subfield */ 257 #ifdef IRIG_SUCKS 258 l_fp wigwag; /* wiggle accumulator */ 259 int wp; /* wiggle filter pointer */ 260 l_fp wiggle[WIGGLE]; /* wiggle filter */ 261 l_fp wigbot[WIGGLE]; /* wiggle bottom fisher*/ 262 #endif /* IRIG_SUCKS */ 263 l_fp wuggle; 264 }; 265 266 /* 267 * Function prototypes 268 */ 269 static int irig_start P((int, struct peer *)); 270 static void irig_shutdown P((int, struct peer *)); 271 static void irig_receive P((struct recvbuf *)); 272 static void irig_poll P((int, struct peer *)); 273 274 /* 275 * More function prototypes 276 */ 277 static void irig_base P((struct peer *, double)); 278 static void irig_rf P((struct peer *, double)); 279 static void irig_decode P((struct peer *, int)); 280 static void irig_gain P((struct peer *)); 281 282 /* 283 * Transfer vector 284 */ 285 struct refclock refclock_irig = { 286 irig_start, /* start up driver */ 287 irig_shutdown, /* shut down driver */ 288 irig_poll, /* transmit poll message */ 289 noentry, /* not used (old irig_control) */ 290 noentry, /* initialize driver (not used) */ 291 noentry, /* not used (old irig_buginfo) */ 292 NOFLAGS /* not used */ 293 }; 294 295 /* 296 * Global variables 297 */ 298 static char hexchar[] = { /* really quick decoding table */ 299 '0', '8', '4', 'c', /* 0000 0001 0010 0011 */ 300 '2', 'a', '6', 'e', /* 0100 0101 0110 0111 */ 301 '1', '9', '5', 'd', /* 1000 1001 1010 1011 */ 302 '3', 'b', '7', 'f' /* 1100 1101 1110 1111 */ 303 }; 304 305 306 /* 307 * irig_start - open the devices and initialize data for processing 308 */ 309 static int 310 irig_start( 311 int unit, /* instance number (used for PCM) */ 312 struct peer *peer /* peer structure pointer */ 313 ) 314 { 315 struct refclockproc *pp; 316 struct irigunit *up; 317 318 /* 319 * Local variables 320 */ 321 int fd; /* file descriptor */ 322 int i; /* index */ 323 double step; /* codec adjustment */ 324 325 /* 326 * Open audio device 327 */ 328 fd = audio_init(DEVICE_AUDIO, AUDIO_BUFSIZ, unit); 329 if (fd < 0) 330 return (0); 331 #ifdef DEBUG 332 if (debug) 333 audio_show(); 334 #endif 335 336 /* 337 * Allocate and initialize unit structure 338 */ 339 if (!(up = (struct irigunit *) 340 emalloc(sizeof(struct irigunit)))) { 341 (void) close(fd); 342 return (0); 343 } 344 memset((char *)up, 0, sizeof(struct irigunit)); 345 pp = peer->procptr; 346 pp->unitptr = (caddr_t)up; 347 pp->io.clock_recv = irig_receive; 348 pp->io.srcclock = (caddr_t)peer; 349 pp->io.datalen = 0; 350 pp->io.fd = fd; 351 if (!io_addclock(&pp->io)) { 352 (void)close(fd); 353 free(up); 354 return (0); 355 } 356 357 /* 358 * Initialize miscellaneous variables 359 */ 360 peer->precision = PRECISION; 361 pp->clockdesc = DESCRIPTION; 362 memcpy((char *)&pp->refid, REFID, 4); 363 up->tc = MINTC; 364 up->decim = 1; 365 up->fdelay = IRIG_B; 366 up->gain = 127; 367 368 /* 369 * The companded samples are encoded sign-magnitude. The table 370 * contains all the 256 values in the interest of speed. 371 */ 372 up->comp[0] = up->comp[OFFSET] = 0.; 373 up->comp[1] = 1; up->comp[OFFSET + 1] = -1.; 374 up->comp[2] = 3; up->comp[OFFSET + 2] = -3.; 375 step = 2.; 376 for (i = 3; i < OFFSET; i++) { 377 up->comp[i] = up->comp[i - 1] + step; 378 up->comp[OFFSET + i] = -up->comp[i]; 379 if (i % 16 == 0) 380 step *= 2.; 381 } 382 DTOLFP(1. / SECOND, &up->tick); 383 return (1); 384 } 385 386 387 /* 388 * irig_shutdown - shut down the clock 389 */ 390 static void 391 irig_shutdown( 392 int unit, /* instance number (not used) */ 393 struct peer *peer /* peer structure pointer */ 394 ) 395 { 396 struct refclockproc *pp; 397 struct irigunit *up; 398 399 pp = peer->procptr; 400 up = (struct irigunit *)pp->unitptr; 401 io_closeclock(&pp->io); 402 free(up); 403 } 404 405 406 /* 407 * irig_receive - receive data from the audio device 408 * 409 * This routine reads input samples and adjusts the logical clock to 410 * track the irig clock by dropping or duplicating codec samples. 411 */ 412 static void 413 irig_receive( 414 struct recvbuf *rbufp /* receive buffer structure pointer */ 415 ) 416 { 417 struct peer *peer; 418 struct refclockproc *pp; 419 struct irigunit *up; 420 421 /* 422 * Local variables 423 */ 424 double sample; /* codec sample */ 425 u_char *dpt; /* buffer pointer */ 426 int bufcnt; /* buffer counter */ 427 l_fp ltemp; /* l_fp temp */ 428 429 peer = (struct peer *)rbufp->recv_srcclock; 430 pp = peer->procptr; 431 up = (struct irigunit *)pp->unitptr; 432 433 /* 434 * Main loop - read until there ain't no more. Note codec 435 * samples are bit-inverted. 436 */ 437 DTOLFP((double)rbufp->recv_length / SECOND, <emp); 438 L_SUB(&rbufp->recv_time, <emp); 439 up->timestamp = rbufp->recv_time; 440 dpt = rbufp->recv_buffer; 441 for (bufcnt = 0; bufcnt < rbufp->recv_length; bufcnt++) { 442 sample = up->comp[~*dpt++ & 0xff]; 443 444 /* 445 * Clip noise spikes greater than MAXAMP. If no clips, 446 * increase the gain a tad; if the clips are too high, 447 * decrease a tad. 448 */ 449 if (sample > MAXAMP) { 450 sample = MAXAMP; 451 up->clipcnt++; 452 } else if (sample < -MAXAMP) { 453 sample = -MAXAMP; 454 up->clipcnt++; 455 } 456 457 /* 458 * Variable frequency oscillator. The codec oscillator 459 * runs at the nominal rate of 8000 samples per second, 460 * or 125 us per sample. A frequency change of one unit 461 * results in either duplicating or deleting one sample 462 * per second, which results in a frequency change of 463 * 125 PPM. 464 */ 465 up->phase += up->freq / SECOND; 466 up->phase += pp->fudgetime2 / 1e6; 467 if (up->phase >= .5) { 468 up->phase -= 1.; 469 } else if (up->phase < -.5) { 470 up->phase += 1.; 471 irig_rf(peer, sample); 472 irig_rf(peer, sample); 473 } else { 474 irig_rf(peer, sample); 475 } 476 L_ADD(&up->timestamp, &up->tick); 477 478 /* 479 * Once each second, determine the IRIG format and gain. 480 */ 481 up->seccnt = (up->seccnt + 1) % SECOND; 482 if (up->seccnt == 0) { 483 if (up->irig_b > up->irig_e) { 484 up->decim = 1; 485 up->fdelay = IRIG_B; 486 } else { 487 up->decim = 10; 488 up->fdelay = IRIG_E; 489 } 490 irig_gain(peer); 491 up->irig_b = up->irig_e = 0; 492 } 493 } 494 495 /* 496 * Set the input port and monitor gain for the next buffer. 497 */ 498 if (pp->sloppyclockflag & CLK_FLAG2) 499 up->port = 2; 500 else 501 up->port = 1; 502 if (pp->sloppyclockflag & CLK_FLAG3) 503 up->mongain = MONGAIN; 504 else 505 up->mongain = 0; 506 } 507 508 /* 509 * irig_rf - RF processing 510 * 511 * This routine filters the RF signal using a highpass filter for IRIG-B 512 * and a lowpass filter for IRIG-E. In case of IRIG-E, the samples are 513 * decimated by a factor of ten. The lowpass filter functions also as a 514 * decimation filter in this case. Note that the codec filters function 515 * as roofing filters to attenuate both the high and low ends of the 516 * passband. IIR filter coefficients were determined using Matlab Signal 517 * Processing Toolkit. 518 */ 519 static void 520 irig_rf( 521 struct peer *peer, /* peer structure pointer */ 522 double sample /* current signal sample */ 523 ) 524 { 525 struct refclockproc *pp; 526 struct irigunit *up; 527 528 /* 529 * Local variables 530 */ 531 double irig_b, irig_e; /* irig filter outputs */ 532 533 pp = peer->procptr; 534 up = (struct irigunit *)pp->unitptr; 535 536 /* 537 * IRIG-B filter. 4th-order elliptic, 800-Hz highpass, 0.3 dB 538 * passband ripple, -50 dB stopband ripple, phase delay .0022 539 * s) 540 */ 541 irig_b = (up->hpf[4] = up->hpf[3]) * 2.322484e-01; 542 irig_b += (up->hpf[3] = up->hpf[2]) * -1.103929e+00; 543 irig_b += (up->hpf[2] = up->hpf[1]) * 2.351081e+00; 544 irig_b += (up->hpf[1] = up->hpf[0]) * -2.335036e+00; 545 up->hpf[0] = sample - irig_b; 546 irig_b = up->hpf[0] * 4.335855e-01 547 + up->hpf[1] * -1.695859e+00 548 + up->hpf[2] * 2.525004e+00 549 + up->hpf[3] * -1.695859e+00 550 + up->hpf[4] * 4.335855e-01; 551 up->irig_b += irig_b * irig_b; 552 553 /* 554 * IRIG-E filter. 4th-order elliptic, 130-Hz lowpass, 0.3 dB 555 * passband ripple, -50 dB stopband ripple, phase delay .0219 s. 556 */ 557 irig_e = (up->lpf[4] = up->lpf[3]) * 8.694604e-01; 558 irig_e += (up->lpf[3] = up->lpf[2]) * -3.589893e+00; 559 irig_e += (up->lpf[2] = up->lpf[1]) * 5.570154e+00; 560 irig_e += (up->lpf[1] = up->lpf[0]) * -3.849667e+00; 561 up->lpf[0] = sample - irig_e; 562 irig_e = up->lpf[0] * 3.215696e-03 563 + up->lpf[1] * -1.174951e-02 564 + up->lpf[2] * 1.712074e-02 565 + up->lpf[3] * -1.174951e-02 566 + up->lpf[4] * 3.215696e-03; 567 up->irig_e += irig_e * irig_e; 568 569 /* 570 * Decimate by a factor of either 1 (IRIG-B) or 10 (IRIG-E). 571 */ 572 up->badcnt = (up->badcnt + 1) % up->decim; 573 if (up->badcnt == 0) { 574 if (up->decim == 1) 575 irig_base(peer, irig_b); 576 else 577 irig_base(peer, irig_e); 578 } 579 } 580 581 /* 582 * irig_base - baseband processing 583 * 584 * This routine processes the baseband signal and demodulates the AM 585 * carrier using a synchronous detector. It then synchronizes to the 586 * data frame at the baud rate and decodes the data pulses. 587 */ 588 static void 589 irig_base( 590 struct peer *peer, /* peer structure pointer */ 591 double sample /* current signal sample */ 592 ) 593 { 594 struct refclockproc *pp; 595 struct irigunit *up; 596 597 /* 598 * Local variables 599 */ 600 double xxing; /* phase detector interpolated output */ 601 double lope; /* integrator output */ 602 double env; /* envelope detector output */ 603 double dtemp; /* double temp */ 604 605 pp = peer->procptr; 606 up = (struct irigunit *)pp->unitptr; 607 608 /* 609 * Synchronous baud integrator. Corresponding samples of current 610 * and past baud intervals are integrated to refine the envelope 611 * amplitude and phase estimate. We keep one cycle of both the 612 * raw and integrated data for later use. 613 */ 614 up->envphase = (up->envphase + 1) % BAUD; 615 up->carphase = (up->carphase + 1) % CYCLE; 616 up->integ[up->envphase] += (sample - up->integ[up->envphase]) / 617 (5 * up->tc); 618 lope = up->integ[up->envphase]; 619 up->lastenv[up->carphase] = sample; 620 up->lastint[up->carphase] = lope; 621 622 /* 623 * Phase detector. Sample amplitudes are integrated over the 624 * baud interval. Cycle phase is determined from these 625 * amplitudes using an eight-sample cyclic buffer. A phase 626 * change of 360 degrees produces an output change of one unit. 627 */ 628 if (up->lastsig > 0 && lope <= 0) { 629 xxing = lope / (up->lastsig - lope); 630 up->zxing += (up->carphase - 4 + xxing) / CYCLE; 631 } 632 up->lastsig = lope; 633 634 /* 635 * Update signal/noise estimates and PLL phase/frequency. 636 */ 637 if (up->envphase == 0) { 638 639 /* 640 * Update envelope signal and noise estimates and mess 641 * with error bits. 642 */ 643 up->maxsignal = up->intmax; 644 up->noise = up->intmin; 645 if (up->maxsignal < DRPOUT) 646 up->errflg |= IRIG_ERR_AMP; 647 if (up->maxsignal > 0) 648 up->modndx = (up->intmax - up->intmin) / 649 up->intmax; 650 else 651 up->modndx = 0; 652 if (up->modndx < MODMIN) 653 up->errflg |= IRIG_ERR_MOD; 654 up->intmin = 1e6; up->intmax = 0; 655 if (up->errflg & (IRIG_ERR_AMP | IRIG_ERR_FREQ | 656 IRIG_ERR_MOD | IRIG_ERR_SYNCH)) { 657 up->tc = MINTC; 658 up->tcount = 0; 659 } 660 661 /* 662 * Update PLL phase and frequency. The PLL time constant 663 * is set initially to stabilize the frequency within a 664 * minute or two, then increases to the maximum. The 665 * frequency is clamped so that the PLL capture range 666 * cannot be exceeded. 667 */ 668 dtemp = up->zxing * up->decim / BAUD; 669 up->yxing = dtemp; 670 up->zxing = 0.; 671 up->phase += dtemp / up->tc; 672 up->freq += dtemp / (4. * up->tc * up->tc); 673 if (up->freq > MAXFREQ) { 674 up->freq = MAXFREQ; 675 up->errflg |= IRIG_ERR_FREQ; 676 } else if (up->freq < -MAXFREQ) { 677 up->freq = -MAXFREQ; 678 up->errflg |= IRIG_ERR_FREQ; 679 } 680 } 681 682 /* 683 * Synchronous demodulator. There are eight samples in the cycle 684 * and ten cycles in the baud interval. The amplitude of each 685 * cycle is determined at the last sample in the cycle. The 686 * beginning of the data pulse is determined from the integrated 687 * samples, while the end of the pulse is determined from the 688 * raw samples. The raw data bits are demodulated relative to 689 * the slice level and left-shifted in the decoding register. 690 */ 691 if (up->carphase != 7) 692 return; 693 694 env = (up->lastenv[2] - up->lastenv[6]) / 2.; 695 lope = (up->lastint[2] - up->lastint[6]) / 2.; 696 if (lope > up->intmax) 697 up->intmax = lope; 698 if (lope < up->intmin) 699 up->intmin = lope; 700 701 /* 702 * Pulse code demodulator and reference timestamp. The decoder 703 * looks for a sequence of ten bits; the first two bits must be 704 * one, the last two bits must be zero. Frame synch is asserted 705 * when three correct frames have been found. 706 */ 707 up->pulse = (up->pulse + 1) % 10; 708 if (up->pulse == 1) 709 up->envmax = env; 710 else if (up->pulse == 9) 711 up->envmin = env; 712 up->dcycles <<= 1; 713 if (env >= (up->envmax + up->envmin) / 2.) 714 up->dcycles |= 1; 715 up->cycles <<= 1; 716 if (lope >= (up->maxsignal + up->noise) / 2.) 717 up->cycles |= 1; 718 if ((up->cycles & 0x303c0f03) == 0x300c0300) { 719 l_fp ltemp; 720 int bitz; 721 722 /* 723 * The PLL time constant starts out small, in order to 724 * sustain a frequency tolerance of 250 PPM. It 725 * gradually increases as the loop settles down. Note 726 * that small wiggles are not believed, unless they 727 * persist for lots of samples. 728 */ 729 if (up->pulse != 9) 730 up->errflg |= IRIG_ERR_SYNCH; 731 up->pulse = 9; 732 up->exing = -up->yxing; 733 if (fabs(up->envxing - up->envphase) <= 1) { 734 up->tcount++; 735 if (up->tcount > 50 * up->tc) { 736 up->tc++; 737 if (up->tc > MAXTC) 738 up->tc = MAXTC; 739 up->tcount = 0; 740 up->envxing = up->envphase; 741 } else { 742 up->exing -= up->envxing - up->envphase; 743 } 744 } else { 745 up->tcount = 0; 746 up->envxing = up->envphase; 747 } 748 749 /* 750 * Determine a reference timestamp, accounting for the 751 * codec delay and filter delay. Note the timestamp is 752 * for the previous frame, so we have to backtrack for 753 * this plus the delay since the last carrier positive 754 * zero crossing. 755 */ 756 dtemp = up->decim * ((up->exing + BAUD) / SECOND + 1.) + 757 up->fdelay; 758 DTOLFP(dtemp, <emp); 759 pp->lastrec = up->timestamp; 760 L_SUB(&pp->lastrec, <emp); 761 762 /* 763 * The data bits are collected in ten-bit frames. The 764 * first two and last two bits are determined by frame 765 * sync and ignored here; the resulting patterns 766 * represent zero (0-1 bits), one (2-4 bits) and 767 * position identifier (5-6 bits). The remaining 768 * patterns represent errors and are treated as zeros. 769 */ 770 bitz = up->dcycles & 0xfc; 771 switch(bitz) { 772 773 case 0x00: 774 case 0x80: 775 irig_decode(peer, BIT0); 776 break; 777 778 case 0xc0: 779 case 0xe0: 780 case 0xf0: 781 irig_decode(peer, BIT1); 782 break; 783 784 case 0xf8: 785 case 0xfc: 786 irig_decode(peer, BITP); 787 break; 788 789 default: 790 irig_decode(peer, 0); 791 up->errflg |= IRIG_ERR_DECODE; 792 } 793 } 794 } 795 796 797 /* 798 * irig_decode - decode the data 799 * 800 * This routine assembles bits into digits, digits into subfields and 801 * subfields into the timecode field. Bits can have values of zero, one 802 * or position identifier. There are four bits per digit, two digits per 803 * subfield and ten subfields per field. The last bit in every subfield 804 * and the first bit in the first subfield are position identifiers. 805 */ 806 static void 807 irig_decode( 808 struct peer *peer, /* peer structure pointer */ 809 int bit /* data bit (0, 1 or 2) */ 810 ) 811 { 812 struct refclockproc *pp; 813 struct irigunit *up; 814 #ifdef IRIG_SUCKS 815 int i; 816 #endif /* IRIG_SUCKS */ 817 818 /* 819 * Local variables 820 */ 821 char syncchar; /* sync character (Spectracom) */ 822 char sbs[6]; /* binary seconds since 0h */ 823 char spare[2]; /* mulligan digits */ 824 825 pp = peer->procptr; 826 up = (struct irigunit *)pp->unitptr; 827 828 /* 829 * Assemble subfield bits. 830 */ 831 up->bits <<= 1; 832 if (bit == BIT1) { 833 up->bits |= 1; 834 } else if (bit == BITP && up->lastbit == BITP) { 835 836 /* 837 * Frame sync - two adjacent position identifiers. 838 * Monitor the reference timestamp and wiggle the 839 * clock, but only if no errors have occurred. 840 */ 841 up->bitcnt = 1; 842 up->fieldcnt = 0; 843 up->lastbit = 0; 844 if (up->errflg == 0) { 845 #ifdef IRIG_SUCKS 846 l_fp ltemp; 847 848 /* 849 * You really don't wanna know what comes down 850 * here. Leave it to say Solaris 2.8 broke the 851 * nice clean audio stream, apparently affected 852 * by a 5-ms sawtooth jitter. Sundown on 853 * Solaris. This leaves a little twilight. 854 * 855 * The scheme involves differentiation, forward 856 * learning and integration. The sawtooth has a 857 * period of 11 seconds. The timestamp 858 * differences are integrated and subtracted 859 * from the signal. 860 */ 861 ltemp = pp->lastrec; 862 L_SUB(<emp, &pp->lastref); 863 if (ltemp.l_f < 0) 864 ltemp.l_i = -1; 865 else 866 ltemp.l_i = 0; 867 pp->lastref = pp->lastrec; 868 if (!L_ISNEG(<emp)) 869 L_CLR(&up->wigwag); 870 else 871 L_ADD(&up->wigwag, <emp); 872 L_SUB(&pp->lastrec, &up->wigwag); 873 up->wiggle[up->wp] = ltemp; 874 875 /* 876 * Bottom fisher. To understand this, you have 877 * to know about velocity microphones and AM 878 * transmitters. No further explanation is 879 * offered, as this is truly a black art. 880 */ 881 up->wigbot[up->wp] = pp->lastrec; 882 for (i = 0; i < WIGGLE; i++) { 883 if (i != up->wp) 884 up->wigbot[i].l_ui++; 885 L_SUB(&pp->lastrec, &up->wigbot[i]); 886 if (L_ISNEG(&pp->lastrec)) 887 L_ADD(&pp->lastrec, 888 &up->wigbot[i]); 889 else 890 pp->lastrec = up->wigbot[i]; 891 } 892 up->wp++; 893 up->wp %= WIGGLE; 894 up->wuggle = pp->lastrec; 895 refclock_process(pp); 896 #else /* IRIG_SUCKS */ 897 pp->lastref = pp->lastrec; 898 up->wuggle = pp->lastrec; 899 refclock_process(pp); 900 #endif /* IRIG_SUCKS */ 901 } 902 up->errflg = 0; 903 } 904 up->bitcnt = (up->bitcnt + 1) % SUBFLD; 905 if (up->bitcnt == 0) { 906 907 /* 908 * End of subfield. Encode two hexadecimal digits in 909 * little-endian timecode field. 910 */ 911 if (up->fieldcnt == 0) 912 up->bits <<= 1; 913 if (up->xptr < 2) 914 up->xptr = 2 * FIELD; 915 up->timecode[--up->xptr] = hexchar[(up->bits >> 5) & 916 0xf]; 917 up->timecode[--up->xptr] = hexchar[up->bits & 0xf]; 918 up->fieldcnt = (up->fieldcnt + 1) % FIELD; 919 if (up->fieldcnt == 0) { 920 921 /* 922 * End of field. Decode the timecode and wind 923 * the clock. Not all IRIG generators have the 924 * year; if so, it is nonzero after year 2000. 925 * Not all have the hardware status bit; if so, 926 * it is lit when the source is okay and dim 927 * when bad. We watch this only if the year is 928 * nonzero. Not all are configured for signature 929 * control. If so, all BCD digits are set to 930 * zero if the source is bad. In this case the 931 * refclock_process() will reject the timecode 932 * as invalid. 933 */ 934 up->xptr = 2 * FIELD; 935 if (sscanf((char *)up->timecode, 936 "%6s%2d%c%2s%3d%2d%2d%2d", sbs, &pp->year, 937 &syncchar, spare, &pp->day, &pp->hour, 938 &pp->minute, &pp->second) != 8) 939 pp->leap = LEAP_NOTINSYNC; 940 else 941 pp->leap = LEAP_NOWARNING; 942 up->second = (up->second + up->decim) % 60; 943 if (pp->year > 0) 944 pp->year += 2000; 945 if (pp->second != up->second) 946 up->errflg |= IRIG_ERR_CHECK; 947 up->second = pp->second; 948 sprintf(pp->a_lastcode, 949 "%02x %c %2d %3d %02d:%02d:%02d %4.0f %3d %6.3f %2d %6.1f %6.1f %s", 950 up->errflg, syncchar, pp->year, pp->day, 951 pp->hour, pp->minute, pp->second, 952 up->maxsignal, up->gain, up->modndx, 953 up->tc, up->exing * 1e6 / SECOND, up->freq * 954 1e6 / SECOND, ulfptoa(&up->wuggle, 6)); 955 pp->lencode = strlen(pp->a_lastcode); 956 if (pp->sloppyclockflag & CLK_FLAG4) { 957 record_clock_stats(&peer->srcadr, 958 pp->a_lastcode); 959 #ifdef DEBUG 960 if (debug) 961 printf("irig: %s\n", 962 pp->a_lastcode); 963 #endif /* DEBUG */ 964 } 965 } 966 } 967 up->lastbit = bit; 968 } 969 970 971 /* 972 * irig_poll - called by the transmit procedure 973 * 974 * This routine sweeps up the timecode updates since the last poll. For 975 * IRIG-B there should be at least 60 updates; for IRIG-E there should 976 * be at least 6. If nothing is heard, a timeout event is declared and 977 * any orphaned timecode updates are sent to foster care. 978 */ 979 static void 980 irig_poll( 981 int unit, /* instance number (not used) */ 982 struct peer *peer /* peer structure pointer */ 983 ) 984 { 985 struct refclockproc *pp; 986 struct irigunit *up; 987 988 pp = peer->procptr; 989 up = (struct irigunit *)pp->unitptr; 990 991 if (pp->coderecv == pp->codeproc) { 992 refclock_report(peer, CEVNT_TIMEOUT); 993 return; 994 995 } else { 996 refclock_receive(peer); 997 record_clock_stats(&peer->srcadr, pp->a_lastcode); 998 #ifdef DEBUG 999 if (debug) 1000 printf("irig: %s\n", pp->a_lastcode); 1001 #endif /* DEBUG */ 1002 } 1003 pp->polls++; 1004 1005 } 1006 1007 1008 /* 1009 * irig_gain - adjust codec gain 1010 * 1011 * This routine is called once each second. If the signal envelope 1012 * amplitude is too low, the codec gain is bumped up by four units; if 1013 * too high, it is bumped down. The decoder is relatively insensitive to 1014 * amplitude, so this crudity works just fine. The input port is set and 1015 * the error flag is cleared, mostly to be ornery. 1016 */ 1017 static void 1018 irig_gain( 1019 struct peer *peer /* peer structure pointer */ 1020 ) 1021 { 1022 struct refclockproc *pp; 1023 struct irigunit *up; 1024 1025 pp = peer->procptr; 1026 up = (struct irigunit *)pp->unitptr; 1027 1028 /* 1029 * Apparently, the codec uses only the high order bits of the 1030 * gain control field. Thus, it may take awhile for changes to 1031 * wiggle the hardware bits. 1032 */ 1033 if (up->clipcnt == 0) { 1034 up->gain += 4; 1035 if (up->gain > MAXGAIN) 1036 up->gain = MAXGAIN; 1037 } else if (up->clipcnt > MAXCLP) { 1038 up->gain -= 4; 1039 if (up->gain < 0) 1040 up->gain = 0; 1041 } 1042 audio_gain(up->gain, up->mongain, up->port); 1043 up->clipcnt = 0; 1044 } 1045 1046 #else 1047 int refclock_irig_bs; 1048 #endif /* REFCLOCK */ 1049